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Preface

Research on economic forecasting historically has focused on models with only a
handful of variables. In contrast, economists in central and commercial banks, gov-
ernments and related agencies whose daily business is to track the swings of the
economy and to provide decision—makers with forecasts in real time have long ex-
amined a large number of time series. Nowadays, improvements in computing and
electronic data availability have made it feasible to put the forecasts on a broader
information basis. In fact, given the growing number of indicators developed, each
forecast exercise can be described as being conducted in a data-rich environment.
In general, two approaches have been developed to deal with the plurality of in-
formation: Pooling of information (PI) and pooling or combining of forecasts (PF).
Pooling of information densifies the available information into a manageable number
of variables which are used as predictors in a forecast equation. This corresponds to
a single model approach of the forecast exercise. In a situation where the number
of candidate predictor variables is rather limited, a simple least squares regression
poses a straightforward approach to pool the available information. In contrast,
pooling of forecasts is a multi model approach where the available dataset is split
into subsets, each of them building the basis for a forecast of the target series. These
single predictions are densified in a second step to form one final prediction. A priori,
it is an open question which of the two frameworks fits a certain empirical forecast
exercise. This dissertation compares both forecast frameworks in a general setting

and contributes to each of them in various aspects described below.

Combining has a long history in science that predates its use in economic forecasting.

The idea that averaging improves the quality of an outcome had been formally
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developed by Laplace (1818): “In combining the results of these two methods, we can
obtain a result for which the probability of errors is more rapidly decreasing.” Galton
(1879) used photographic equipment to combine many portraits and concluded that
“all of the composites are better looking than their components because the averaged
portrait of many persons is free from the irregularities that variously blemish the

look of each of them.” In other words, the more average, the better looking.

However, it was not until the pioneering work of Bates and Granger (1969) that
the idea of combining or pooling of forecasts was established. Since then, a growing
number of studies have been reviewed and applied in a variety of research fields
including economics, management, systematics, biomedicine, meteorology and cli-
matology. The logic of pooling of forecasts is that instead of searching the single
best method, one asks which methods would help to improve accuracy, assuming
that each method has something to contribute. The different methods are com-
bined using some sort of rule that can be replicated. In the literature on economic
forecasting, the single predictions are typically obtained by estimating a number of
alternative models over the same sample period. The individual models differ in the
predictor variables they use to forecast the target series. However, the employed
forecast equations can differ not only in what information they use, i.e. what vari-
ables are employed as predictors but also in how the information is used. Pesaran
and Timmermann (2007) demonstrate that pooled forecasts obtained using the same
model but estimated across different observation windows improves accuracy in the
presence of structural breaks. In an empirical application for a wide range of US
macroeconomic aggregates, Clark and McCracken (2009b) find similar results in
pooling forecast from recursive and rolling estimation windows. Restricting their
analysis to random walk models with drift, Pesaran and Pick (2008) find that fore-
casts of inflation in 21 OECD countries gain accuracy if the drift parameters are
averaged over models across different estimation windows. Apart from estimation
samples, the idea of improving performance by combining can be extended to vari-
ous dimensions. Regarding dynamic time series approaches, averaging forecasts from
models estimated with different lag polynomials or different data transformations

are promising areas of future research.
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In practice, pooled forecasts increasingly gain attention by both, by forecasters
themselves as well as by the public. A growing number of private and public orga-
nizations such as Consensus Economics (Consensus Forecast), the Federal Reserve
Bank of Philadelphia (Survey of Professional Forecasters and the Livingston Sur-
vey) and Aspen Publishers (Blue Chip Economic Indicators) publishes surveys of
macroeconomic forecasts. As a comprehensive figure of each publication, the agen-
cies calculate the simple average of all respondents’ forecasts. Several of the in-
stitutes further report the empirical distribution of all predictions as a measure of
the uncertainty among the forecasters. These consensus forecasts have gained wide
acceptance and are frequently used as a benchmark in forecast evaluation exercises.
A larger academic literature has studied the benefits of pooling the forecasts from
professional agencies. Batchelor and Dua (1995) showed that Blue Chip Economic
Indicators forecasts for main US economic aggregates outperformed more than 70%
of the panelists in the 1980s, confirming earlier findings of Zarnowitz (1984) and
McNees (1987). Although the vast majority of articles confirms the predominance
of pooling for model based forecasts, the results remain heterogenous regarding the
size of gains. As there are numerous sources for the large variation of the gains,
it is difficult to estimate the improvement in forecast accuracy in a given forecast
situation ex ante based on empirical findings. To fill this gap, Chapter 1 of this
dissertation analytically analyzes the benefits of pooling of forecasts compared to
pooling of information and derives conditions where the former outperforms the lat-
ter. To provide a guideline to practitioners, Chapter 3 estimates the minimum gains
of pooling of forecasts that are achievable in any forecast situation. We employ a
Monte Carlo study based on a standard DSGE model to mirror the characteristics
of major economies and estimate the gains from pooling of VAR forecasts that are
obtained under strict lab conditions. Keeping control of the data—generating pro-
cess, our Monte Carlo experiment further allows us to decompose the forecast errors

and analyze where the observed gains stem from.

Theoretically, pooling of information and pooling of forecast strategies can be used
at any forecast horizon. In fact, meteorologists employ what they call “ensemble

forecasting” in particular for larger forecast horizons. By slightly varying the initial
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conditions of their models, they produce a range of forecasts and calculate the
“ensemble mean” or average which is expected to have more skill because it averages
over the many possible initial states and essentially smoothes the chaotic nature
of climate. In contrast, for macroeconomic target series, pooling of forecasts and
pooling of information gains relevance especially for short-run predictions. This
is due to the fact that most forecasts of macroeconomic time series are based on
business cycle indicators that exhibit a rather short lead over the economic activity
or even track the target series contemporaneously. Again, Monte Carlo techniques
enable us to answer the question whether pooling of forecasts makes sense in the
medium and long run as well. Chapter 3 of this dissertation tracks the gains of

pooling as the forecast horizon grows.

Predicting the current quarter of macroeconomic aggregates has recently gained in-
creasing attention. In the course of the financial crisis and the successive crash of
the world economy, the focus has somehow shifted from longer run perspectives to
the current state of the economy. One reason is that policy decision makers as well
as central banks — in their decision to implement fiscal stimulus packages or mone-
tary policy actions — strongly rely on assessments of the current unobservable state
of the economy. This is of great importance as the effectiveness of certain fiscal
and monetary measures greatly depends on the right timing. However, as there
are numerous indicators that potentially track the current unobservable state of the
economy, solely focussing on one predictor variable or one single forecast model is
frequently considered as being venturesome. The main reason is that during excep-
tional rapid movements of the economy, the ex post observed and estimated relation
of the indicator or the set of indicators to the reference series is intensified exposed
to structural breaks or other forms of non—linearities. Pooling of forecasts can be
regarded as an easy to handle but still informative alternative way of dealing with
the potentially very rich set of short—term indicators. Instead of specifying one
single forecast model, an approach developed and implemented during this disser-
tation builds on the idea of pooling the forecasts from small subset models based
on all possible combinations of the predictors. Each of the indicator combinations

is used to estimate a simple linear forecast equation and predictions for the current
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period are derived. The combined forecast is calculated as a simple average of the
single predictions. Two major advantages emerge from the approach. First, the
final prediction is based on a broader information set and the approach guarantees
insurance against breakdowns of single relationships between indicators and the ref-
erence series. Second, the empirical distribution of the single predictions provides
a measure of uncertainty associated with the indicator selection process. Chapter 1
of this dissertation presents the approach in forecasting the current monthly value

of German industrial production based on various branch level indices.

Despite the undeniable success of pooling of forecasts in empirical exercises, various
researchers object its use in general. From a statistical point of view, combining
forecasts and models plays havoc with traditional statistical procedures, such as
the calculation of statistical significance levels. A strong headwind also comes from
frequentists who believe there is a one right model to forecast. The issue of how
to choose “best” among a number of candidate models is however an open ques-
tion. Notably, statisticians and econometricians have different preferences over this.
While econometricians tend to carry out a series of tests to compare competing
model specifications, statisticians more likely choose a model by selecting a gen-
eral class of models and then selecting a member of this family so as to minimize
a statistical information criterion. Tests are only used to check the residuals from
the chosen “best” model. In contrast, bayesian statisticians will avoid tests and at-
tempt to assess the strength of evidence as between competing models by calculating

posterior odds ratios.

One widely accepted approach in econometrics is the step-wise general-to—specific
(Gets) procedure. Hendry (1980) provides an overview. The Gets approach employs
t—tests to remove individual variables with statistically insignificant coefficient es-
timates. While computationally attractive, the approach suffers from two major
drawbacks. Insignificant estimates can arise not only because the true parameters
are small but also because the predictive variables are highly multicollinear what in-
creases the variance in the estimates of the parameters. Furthermore, re-estimating
the model after removal of some parameters and examining statistical significant

levels, the method becomes path dependent. Additionally, this “all or nothing”
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approach of either using the OLS estimate or omitting the regressor may be too
restrictive. Finally, given a potentially very large number of candidate predictor
variables, the Gets approach seems rather infeasible in the data-rich environment
of macroeconomic forecasting. A number of approaches that smooth the zero one
decision to a softer threshold have been proposed in literature, including bayesian

estimation techniques.

Although pooling of information incorporates the Gets approach, it can be defined
more broadly as a framework that densifies the available information into a manage-
able number of predictors that are used to forecast the variable of interest. In recent
years, a growing number of pooling of information techniques have been developed.
The majority of these frameworks deals with the trade—of between an adequate
reduction of the dimension of the information set and capturing all important vari-

ations of the different variables, the so—called bias variance trade—off.

One increasingly popular way to pool the information from a large dimensional data
set of predictors is to extract some sort of common latent factors that are linear
combinations of the total set of variables. Incorporating these factors in the forecast
equation bases the prediction on a broader information set without running into
estimation problems. A large number of empirical as well as theoretical studies has
demonstrated the potential of these approaches especially for very large datasets,
see Eickmeier and Ziegler (2008) for a meta—analysis. The major drawback of the
classical factor models in terms of forecasting is that they are exclusively in—sample
focused and do not take the correlation towards the target series into account. In
Chapter 1 of this dissertation, we develop a new method of pooling of information
that explicitly weights the relevant predictors with respect to an out—of-sample
based loss function. The approach builds on the idea of predictive modeling. This
optimal pooling of information algorithm (OPI) is evaluated in an empirical forecast
setting predicting German industrial production. To test the applicability of the
approach in an international setting, Chapter 2 compares the OPI approach with
several competing pooling of information techniques in predicting real GDP in the

euro area and opposes the results to pooling of forecasts.

More precisely, Chapter 1 analytically analyzes the relative benefits of pooling of
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forecasts compared to pooling of information. We demonstrate that pooling of
information theoretically dominates pooling of forecasts for perfectly measured ex-
planatory variables. However, in the more realistic scenario where the explanatory
variables that form the data—generating process are unobservable and the forecasts
rely on noisy indicators of the variables, pooling of information potentially looses
its predominance. To compare pooling of forecasts and pooling of information in an
empirical experiment, we forecast German industrial production based on Ifo survey
data. We propose a new method to aggregate the set of candidate predictor vari-
ables that weights the individual series with respect to an out—of-sample based loss
function. We find that the algorithm performs considerably well and outperforms
economically weighted indices by attributing a non—zero weight to only a smaller
number of candidate predictors. However, in general, the analysis confirms the an-
alytical findings that pooling of forecasts likely dominates pooling of information in
small samples and under imperfect measurement. We find that pooling of forecasts
each based only on a smaller subset of the predictors improves accuracy by up to
40% compared to the benchmark model that combines the entire information by

means of economic weights.

Chapter 2 applies the OPI approach in an empirical experiment of forecasting euro
area quarterly real GDP.! Choosing three different indicators that are available on
the national and on the area—wide level, we compare the performance of OPI against
the published area—wide benchmark indices as well as against different pooling of
forecast strategies. In an out—of-sample experiment we find that OPI outperforms
alternative forecasting methods in terms of mean squared forecast error (MSE).
Again, only a reduced number of national indicators are attributed a non—zero weight

and enter the newly generated area—wide indices.

Chapter 3 quantifies the gains from pooling of VAR forecasts under strict lab con-
ditions where accidental effects such as breaks in the data—generating process that
bias the results in favor of combination approaches in empirical studies are explicitly

excluded.? Employing a Monte Carlo study based on a standard DSGE model, we

!The chapter relies on Hiilsewig et al. (2008) which is available as CESifo Working Paper 2371.
2The chapter relies on Henzel and Mayr (2009) which is available as ifo Working Paper 65.
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mimic a macroeconomic forecast situation and obtain the business cycle behavior
of the most relevant variables such as GDP, inflation and interest rates for flexible
as well as more persistent economies. Dynamically forecasting real economic ac-
tivity from parsimonious VAR models, each built only on a subset of the relevant
information we find that pooling of forecasts leads to a substantial improvement in
accuracy of about 20 percent, which is comparable to the effect of an increase of the
estimation sample from 25 to 1000 observations. Most notably, this gain is already
obtained with an average of about four different forecasts and is higher for more

persistent economies.
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Chapter 1

The Use of Plural Information in
Forecasting: Pooling of Forecasts

and Pooling of Information

In this paper, we analyze the relative merits of pooling of forecasts compared to
pooling of information. In an analytical part, we demonstrate that for perfectly mea-
sured explanatory variables, pooling of information theoretically dominates pooling
of forecasts but looses its virtues in the more realistic scenario where only noisy
measures of the explanatory variables are at hand. In accordance with the analyti-
cal findings, our empirical experiment of forecasting German industrial production
based on Ifo survey data confirms the advantages of pooling of forecasts. We find
that pooling predictions each based only on a small subset of branch level indices
improves forecast accuracy by up to 40% compared to the benchmark model that
pools the entire information by means of economically weighted indices. Relating to
the framework of predictive modeling, we further develop the OPI approach as an
alternative pooling of information strategy that optimizes the weights of the sub—
indices specifically with respect to a certain forecast exercise. We find that OPI
performs considerably well and poses a serious alternative to the dominant pooling
of forecasts strategies. Most notably, only a small subset of branch level indices is

assigned a non—zero weight and thus relevant in forecasting industrial production.
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1.1 Introduction

Forecasting a variable of interest, one is usually faced with a broader set of can-
didate predictor variables. The question that arises is how to use this set. There
are generally two directions one can proceed: Pooling of forecasts and pooling of
information. Pooling of information integrates the available predictor variables into
one model whereas pooling of forecasts combines the predictions of various models

each based only on a subset of the predictor variables at hand.

Hendry and Clements (2004) as well as Huang and Lee (2006) analytically analyze
the merits of pooling of forecasts compared to single subset models as well as com-
pared to larger models incorporating all relevant predictor variables. These studies
assume that the predictor variables available to the forecaster correspond to the
explanatory variables that build the data—generating process. In other words, the
explanatory variables are perfectly measured, i.e. they are directly observable. Pool-
ing of information then corresponds to estimating a model including all explanatory

variables and mirrors the data—generating process.

In practice however, the true explanatory variables are often not directly observable
but are only measured by certain indicator variables that additionally incorporate
noise components. The lower the signal-to—noise ratio of these indices, the higher
the resulting forecast error with respect to the target series. The question that
arises is whether pooling of information maintains its theoretical predominance if

all models are build on noisy measures of unobservable explanatory variables.

In this paper, we follow Hendry and Clements (2004) and Huang and Lee (2006)
and show analytically that pooling of information dominates pooling of forecasts for
observable explanatory variables in the absence of sample uncertainty. Extending
the analysis to the more relevant case where the explanatory variables are only
imperfectly measured, we introduce additional noise into the system. We find that
the relative merits of pooling of information decrease with increasing noise as well
as for increasing correlation of the shocks that hit the observable indicators of the

explanatory variables.
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As an empirical application, we predict the German industrial production index on
basis of survey data of the Ifo business climate for manufacturing industry. We
compare the economically weighted Ifo series as one straightforward pooling of in-
formation strategy with alternative PI and PF approaches based on disaggregate
branch level data. We develop the OPI algorithm that pools the available time se-
ries by means of out-of-sample optimized weights. We find that the economically
weighted indices have considerable predictive content and pose an adequate aggre-
gation scheme to forecast industrial production. However, reweighting the branch
level data by means of PI and PF strategies additionally improves forecast accuracy
by up to 40%. The OPI algorithm performs best for all PI approaches under con-
sideration attributing a non—zero weight only to a subset of the disaggregate branch
level series. In general, PF strategies that weight the single forecasts by means of

their discounted past performance perform best and reduce the MSE considerably.

This paper is organized as follows. Section 1.2 analyzes analytically the relative
merits of pooling of forecasts compared to pooling of information. Section 1.2.1 de-
rives expressions of the MSE for PF and PI under perfectly measured explanatory
variables and compares theoretically optimal and equal PF weights. Section 1.2.2
extends the analysis to imperfectly measured explanatory variables by introducing
noise into the system. Section 1.3 compares the relative merits of PI and PF strate-
gies in an empirical application predicting German industrial production via survey

data of the Ifo business climate for manufacturing industry. Section 1.4 concludes.
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1.2 Analytical Analysis

In this section, we analyze analytically the relative merits of pooling of forecasts
compared to pooling of information. We follow Hendry and Clements (2004) and
Huang and Lee (2006) and define the DGP as

Yo = Dixig+ Paayr + e (1.1)
= [0Xi+te

where e, ~ N(0,€.). y: denotes the target series and z;, and x,; are strictly
exogenous explanatory variables.! We assume that all variables of the DGP have
been reduced to weak stationarity by appropriate transformations. The explanatory

variables are defined as

L1t G14 1t

Lot ¢2,t 52,t

where ¢, and ¢, are fixed functions of past variables and

§1 0 D Qo
: . (1.3)
St 0 Qo1 Qg

~ I Ny

Abstracting from any dynamic and deterministic factors in the DGP, we set ¢, =
¢2. = 0. We assume that this is known to the forecaster, so intercepts and further
lags are omitted in all forecast equations. To simplify the algebra later on, we assume

that 3, = 1 — 3, i.e. the coefficients in the DGP sum up to unity.? We aim to

!The assumption of strict exogeneity rules out lagged dependent variables only to simplify the
algebra. The results can be extended to a more complicated model without the strict exogeneity

assumption.
2This mirrors an economic context where the growth rate y; of a certain target series can

be calculated by aggregating the growth rates of its components. The weights assigned to the

components’ growth rates reflect their relative shares in the target series.
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forecast the unknown current value of scalar variable y, on basis of the information

available up to time ¢.3

1.2.1 Perfect Measurement

In the first part of the analytical analysis, we assume that the current values of the
explanatory variables are observable to the forecaster, i.e. we forecast the unknown
value of scalar variable y; on basis of an information set given as I, = (X;)._,. Build
on this assumption, we derive expressions of the MSE as the relevant loss function
and compare the performance of PF against the dominant single subset model as
well as against PI. This analysis gives insights into the relative merits of PF and PI

under strict lab conditions.

1.2.1.1 Forecast Framework I

Pooling of information corresponds to a forecast equation given as
Jpry = Q1T14+ GoTay (1.4)
- AXt
where all relevant explanatory variables form part of the model and the parame-
ters are estimated by ordinary least squares.* In contrast, the pooling of forecasts
approach can be written as
Upre = wilhy + walay (1.5)

where the single predictions result from two non—nested misspecified forecast equa-

tions given as

G0 = by (1.6)

Yoo = 525172,1‘,

3Forecasting the value of a reference series for the current period is frequently referred to as
nowcast. Preponing the index of the target series in the forecast equations to t + h adjusts the

setting to a forecast of a h—step ahead value of the target series.
4In the empirical part of the study, we extend the comparison to PI schemes that abstract from

coefficients estimated by least squares but pool the information via alternative techniques.
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and w; (i = 1,2) denote the combination weights of the two predictions respectively.
For the analytical analysis, we assume that the combination weights are exogenously
given such that no additional estimation uncertainty enters. Given the structure of
the DGP and to simplify the algebra, we set w; = w and wy = 1 —w, assuming that

the combination weights sum up to unity.

1.2.1.2 Forecast Error Comparison I

To compare the forecast performance of PF against the single models as well as
compared to PI, we derive analytical expressions of the MSEs for each of the frame-

works in Appendix 1.B. The MSEs of the different forecast approaches are given as

MSE, = T7'Qc+ 030, + Qee

MSE, = T Qe+ i, + Qe

MSEpr = Qe+ T ' Qc(w?+ (1 —w)?) + 2w(l — w) B0, x1422,40;, ] + w? B30,
+(1 = w)?B{ U, + 20(1 = w) 3152 E[n21,0m,]

MSEp; = 2T71965 + Qe

where T' represents the estimation sample size, 7,2, and 19, are the idiosyncratic

components of x;; and xy, respectively, €2, and €,, are the corresponding vari-

721

ances and 0; = b; — E[b;] for i = 1,2 are the sample variabilities of the estimators.
To illustrate the dominance of PF against the best single subset model and thus to
justify its use in general, we assume that the forecasts from Model 2 are on average
more accurate than those of Model 1, i.e. MSE, < MSE;. The pooled prediction
predominates the more accurate forecast model, that is MSEpr < MSE, if the

following condition holds:
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T Qee(w? 4 (1 — w)?) + 2w(1 — w) E[6; 21,472,40;, ] + w? 55,
+(1 = w)?B{Q,, + 201 — w) 132 E N1 o]
<

T Qe + 37,

This condition can be simplified by defining 579, = k339
sure of the predominance of Model 2 against Model 1. In the absence of estimation
uncertainty, i.e. for T'— oo, it follows that M SEpr < MSFE5 holds if

1 With £ <1 as a mea-

12 21

where [Ty = Q55 Q1 and [[y; = Q7' Q2. In the special case of uncorrelated ex-

planatory variables, i.e. {215 = 0, the condition simplifies to
2k

— (1.8)

and

k> —. (1.9)

Hence, an improvement over the dominant single model is achieved for a certain
range of the combination weight w. The weight attributed to the worse model must
be less than a threshold value that is proportional to k. In other words, the larger the
difference in forecast performance between the two models and thus the smaller k,

the higher the weight attributed to the superior model must be for PF to dominate.

Now we turn to the comparison of PF and PI. To simplify the MSE equations given
above, we assume that the variances of the subseries equal unity, i.e {217 = Q9 =1
in the following. Pooling the forecasts from the two parsimonious and misspecified
models given in Equation (1.18) dominates the forecasts from the PI model given in
Equation (1.4), i.e. MSEpr < MSEp; if the following condition holds:®

SNote: For Q7 = Q = 1, we can reformulate B[y w1420,05,] = E[xl,thSi,le,t] =
E[xl,tQ(si)Q T24) =T QecOio.
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wAH (T Qe + F3(1 = Q) + (1 — w) (T Qe + B{(1 — OF))
+2w(1 — w) (T Q12 — 15202(1 — OF))
<
27710,
This inequality condition can be rewritten as:

(1- 932)(7”25% +(1 - w)zﬁ% — 2w(1l — w)B1528h2)

T Qe
1+ 2w(l —w)(1 —Q49)

(1.10)

PF dominates PI more likely for small values of T" and large values of €2, as well as for
|12 — 1, i.e. for a high positive or negative correlation of the explanatory variables.
This is due to the parameter estimation error that is larger in the PI equation then
in the single equations that build the basis for the PF approach. With an increasing
sample size, i.e. for T — oo, the left hand side of Equation (1.10) converges to
zero and M SEp; < MSFEpr necessarily holds. The large sample predominance
of PI is due to the two—stage estimation strategy of PF that filters the available
information set through individual forecast models first. This strategy introduces the
usual efficiency loss by ignoring any correlations between the underlying information
sources. More precisely, when estimating the single models as given in Equation
(1.18), the estimated coefficients b; are based on the covariances Q;, but do not take
the covariances €2, and €;; into account, where 7, j = 1,2 and 7 # j. In the absence

of estimation uncertainty, this implies that PI necessarily predominates PF.

In case of PF, the MSE is a complex function of the weights w assigned to the
forecasts as well as of the dynamics of the subseries, the variance of the noise in
the DGP and the estimation uncertainty that depends on the size of the estima-
tion sample 7. To better understand the relative merits of PF, we focus on MSE
minimizing weights and on equal weights as the most frequently applied weighting

schemes in literature.® Abstracting from estimation uncertainty, i.e. for T — oo,

5In the empirical part of the chapter, we present a more detailed discussion of relevant PF
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the MSE minimizing optimal weights w* are given as

. B (B1 (1 — o) + Qo)
wt = 5 (1.11)
Qoo (B — 1)+ B1 (511 — 2 (61 — 1) Qua)
and the corresponding M SE} amounts to
—1)? 32 (02, — 011 Q)°
MSES, = (B = 1)" B (5 — Qo) + Q.(1.12)

911922 (922 (ﬂl - 1)2 + Bl (ﬁlQH —2 (ﬁl - 1) Ql?))

Assuming equal variances of the subseries, i.e. {217 = 299 = 1, Figure 1.1 illustrates
w* and the corresponding M SE} . as a function of the correlations of the subseries
Q15 and of the coefficients 3; and 3, in the DGP.” As long as Q15 < 1, w* is a s—
shaped function of the coefficient 3y, i.e. the weight attributed to a forecast model
increases disproportionately with the weight of the respective explanatory variable
in the DGP. As mentioned above, PF generally benefits from a high positive or
negative correlation of the explanatory variables, i.e. MSEppr — Qe for [Q5] —
1.8 Independent of the correlation of the explanatory variables, M SFE% reaches a

maximum for 5, = 0.5.

Figure 1.2 illustrates the MSE for equal weights again as a function of the correla-
tions of the subseries {215 and of the economic weights (3;. Assigning equal weights
to the single forecasts, the MSE is minimized and equals M SE* for §; = 0.5. Re-
garding the correlation of the explanatory variables, the MSEs reach a maximum

for Q9 = —% for both weighting schemes considered.

weighting schemes.
"As w* tends to infinite values for perfectly negative correlated variables and 3, = 0.5, we limit

the graphical illustration of w* to values of Q12 between 1 and -0.75.
8Note that .. does not influence the dynamics of the MSE function as it enters additively. To

simplify matters, we set 2., = 0 for the graphical illustrations.
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-
w
Q 12 = o
1.5
1
o.s N
o R
o 0.2 0.4 0.6 0.8 1
B,
MSE
B 1= 0.5
o.1ef : : ! ]
o0.14
PN
0.15 "'::ﬁs\“\{\\ 0.12
/;,Z:,‘:Q:‘\\\\\%\\
4 ‘ " W 0.1
0.1 /) e I
AR
)
Z NN
0.05 ATRAARETHTING 0.06
. "’ X TN
o, \ N
0.04
o 0470 e R W -1
iyttt \ W 0.02
1 2 :5{;';':3":/'//':"' LR SN
IR —0.5
ot 0.5 ; ; ;
: -1 -0.5 o 0.5 1
B ot Q5 Q.
1

Figure 1.1: Pooling of Forecasts - Optimal Weights
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Figure 1.2: Pooling of Forecasts - Equal Weights

1.2.2 Imperfect Measurement - The Role of Indicators

In the second part of the analytical analysis we turn to a more realistic scenario and

assume that the current values of the explanatory variables are not observable to
the forecaster but that the predictions are based only on noisy measures of x; and

xo. The observable proxy variables can be regarded as indicators, each measuring a

certain part of the DGP.

1.2.2.1 Indicators of Subseries

The indicator variables are defined as

Xt :(5+CXt+€t (].].3)

where § denotes a (2 x 1) vector of fixed intercept terms, C is a (2 x 2) diagonal

matrix of fixed coefficients and
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El,t 0 Qelel Qelez
~ N, , (1.14)

62715 0 Q€251 Q

€2€2

is an innovation process that comprises all noisy information affecting the indicator
series.” The quality of indicator ¢ (for i = 1,2) is measured by means of a signal-

to—noise ratio, given as

(1.15)

R; =

Qcie;

Thus, a high value of k; corresponds to an indicator that poses a proper measure of
an economic aggregate whereas a low value of k; corresponds to a noisy indicator

that contains less relevant information.

1.2.2.2 Forecast Framework II

Forecasts of the unknown value of scalar variable y; are based on the information set
available up to time ¢ that now comprises the indicators instead of the unobservable
explanatory variables, i.e. I, = (X,)'_,. The forecaster is faced with the question of
how to optimally use the information set available to forecast y;. In contrast to the
situation of observable explanatory variables as described in section 1.2.1, pooling
the information by means of the coefficients of Equation (1.43) is not necessarily

optimal even in the absence of estimation uncertainty.

In fact, various PI and PF approaches have been proposed in literature to deal
with this issue and we take a closer look at the most relevant ones in the empirical
application presented in section 1.3. Figure 1.3 illustrates the links between the

observable indicators X, and the aggregate target series y; in a general setting.

Three major frameworks to forecast y, can be distinguished. 1.) The observable

indicators are aggregated by means of the coefficients # of the DGP. In a macroe-

9To simplify the algebra, we assume that the observable indicators are mean-adjusted, i.e. we

set 61 = 6 = 0 and that C is an identity matrix.



1.2. ANALYTICAL ANALYSIS 13
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Figure 1.3: Structure of the Forecast Problem

conomic context, these coefficients correspond to observable economic weights, e.g.
relative shares in gross—value added. 2.) The observable indicators are aggregated
by alternative PI weighting schemes. A larger number of econometric approaches
has been developed to extract or summarize the information contained in various
indicators. The majority of these frameworks computes an aggregate predictor by
means of a linear combination of the indicators with estimated weights ;1 The
weights potentially deviate from the coefficients in the DGP even in the absence of
estimation uncertainty as certain indicators potentially fail to track the respective
explanatory variables and exhibit a lower signal-to—noise ratio. 3.) The observable
indicators are used as predictor variables in various subset model. The single pre-
dictions are pooled based on estimated or ad—hoc attributed combination weights

w.

Analogously to Section 1.2.1, the PI forecast equation based on OLS estimated
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weights is given as

Upry = @1+ GaFay (1.16)
== AXt

where all observable indicators form part of the model. The PF approach based on

indicator variables is given as
ﬁPF,t = wﬂjl,t + w2?j2,t (1.17)
where the single predictions result from two forecast equations given as

e = biFy (1.18)

Yig = badgy

1.2.2.3 Forecast Error Comparison II

To analyze the effects of noisily measured indicators on the relative merits of PF
and PI, we restrict the analysis to a stylized case where the subseries z;,; and s,
are uncorrelated and have unity variance, i.e. 215 = 0 and €217 = 290 = 1. The vari-
ances of the noise components of the indicators are determined by the corresponding
signal-to—noise ratios x;. To simplify the algebra, we further abstract from estima-
tion uncertainty and assume equal coefficients in the DGP, i.e. §; = 3 = 0.5. The
MSE expressions for the single models as well as for PF and PI are obtained by re-
placing the unobservable explanatory variables x;; and x5, with the corresponding

indicator variables #;; and Z5, in the MSE derivations shown in Appendix 1.B.°

To illustrate the effect of increasing values of €,.,, we first assume a signal-to—
noise ratio of unity for both indicator series, i.e k; = ko = 1. The left graphic
of Figure 1.4 illustrates the effects of increasingly correlated shocks on the forecast

performance of PI and PF measured by the MSE. Assuming that the indicators are

10We abstract from presenting the resulting expressions of the MSEs and of the combination
weights as they are complex expressions of the dynamics of the subseries as well as of the noise
components of the indicators. All expressions have been computed using the software package

Mathematica 5.2 and are available from the author upon request.
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disturbed by uncorrelated shocks, i.e. Q.. = 0, the right graphic illustrates the
effects of increasing shares of noise measured by the indicators. To simplify matters,

we assume symmetric measurement errors, i.e. Kk = K1 = Ka.

MSE (k = 1) MSE (Q_,,=0)

0.35¢}
0.31
0.25¢}
0.2

0.15¢}

0.1p

0.05}
-1 -0.5 0 0.5 1 0 2 4 6 8 10

ele2

Figure 1.4: Effects of noise on PF and PI

Notably, PF relatively benefits from positively correlated noise components whereas
the dominance of PI increases for negative values of €),.,. Regarding the size of
the signal-to-noise ratios, the MSEs converge for k — 0, i.e. for indicators that
contain only little relevant information. Obviously, although not explicitly shown in
the analysis, pooling the information by means of the coefficients 3 of the DGP can
be regarded optimal only for symmetric measurement errors, i.e. for ki = Kky. As
soon as k1 # kg, a deviation from these coefficients by down weighting the indicator

that exhibits the lower signal-to—noise ratio potentially improves forecast accuracy.

The analytical analysis shows that PI looses its merits compared to PF for highly
correlated shocks to the indicators as well as for noisily measured subseries. This
potentially adds to the success of pooled predictions from parsimonious models fre-
quently found in empirical applications. In practice, indicators measuring different
parts of the economy are frequently disturbed by global shocks or shocks that are

highly correlated interfering the estimation of larger models.
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1.3 Empirical Study - Forecasting Industrial Pro-
duction with Ifo Business Survey Data for

Germany

In this section, we study the relative performance of different PF and PI techniques in
predicting the German industrial production index (IPI). As explanatory variables,
we employ data of the Ifo business survey of manufacturing industry for Germany,
both at the branch level as well as at the sectoral level. We explore whether the
construction of sectoral indicators based on economic weights — as used by the Ifo
institute — poses an adequate strategy or whether an alternative weighting scheme
improves forecast accuracy. Furthermore, we evaluate the merits of pooled forecasts
based on the disaggregated branch level series. Throughout this chapter, X; denotes
the (N x 1) dimensional vector of stationary predictor variables with observations

from ¢t =1,...,T and y, is the stationary target series.

1.3.1 Ifo Business Survey

The widely noticed Ifo Business Climate — published by the Ifo Institute in the last
week of each month — is based on micro-level data that is aggregated in several
steps.!! At the different levels, the aggregation is carried out according to the
German version (WZ 2003) of the European statistical classification scheme (NACE)
by means of shares in gross—value added. The resulting indices are thus comparable

to official economic data published by the German authorities.!?

At each level of the aggregation hierarchy, the Business Climate (BC) is calculated

' The deadline for the return of the questionnaires ends about two days before the release day
of the indicator that is set by the European Commission as major principal. As the distribution
of the questionnaires for a given month already starts in the last days of the previous months, the
level of information of the respondents varies between the last week of the previous month and the

first three weeks of the current month.
12Currently, the aggregation scheme is modified to fit the German version (WZ 2008) of the

NACE revision 2. The implementation will be finished by May 2010.
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as the geometric mean of the balances of the current Business Situation (BS) and
the Business Expectations (BE):*

BC = /(BS + 200)(BE + 200) — 200 (1.19)

The balance value of the current Business Situation is the difference in percentage
shares of the responses “good” and “poor”. The balance value of the Business Fxpec-
tations is the difference in percentage shares of the responses “more favorable” and
“less favorable”* To derive the indices, the transformed balances are normalized to

the average of a base year, currently the year 2000.

Balance; + 200
Index; = 100 1.20
nact Balancesgyy + 200 ( )

Figure 1.5 illustrates the aggregation scheme of the Ifo Business Climate.

Focussing on manufacturing industries, in a first step, the responses of participants
are aggregated to results for 300 product groups. Weights are assigned to the indi-
vidual responding unit in accordance with the logarithmic function of the number
of employees involved in the production of the product or products to which the
response refers.!> The resulting indices of four—digit level product groups are then
aggregated to the three—digit and two—digit level based on relative shares in gross—
value added. The two—digit level series represent the 22 major branches in manufac-
turing such as chemicals and chemical products or machinery and equipment. The
indices of these major branches are aggregated to the sectoral level, again based on
relative shares in gross—value added. The sectoral time series for manufacturing,

construction, wholesaling and retailing are seasonally adjusted by means of the so—

13BS refers to the firms’ assessment of the current business situation and BE refers to their

business expectations for the next six months.
14The enterprises can give one of three categorical answers (“1” positive, “2” neutral, “3” nega-

tive) per standard question.
15See Ruppert (2007) for details.
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Figure 1.5: Aggregation of the Ifo Business Climate

called ASA II procedure.'® The seasonally adjusted series are aggregated to the Ifo
Business Climate of industry and trade again by means of relative shares in gross—
value added. Table 1.1 reports the relative economic weights of the 22 branches on

the two—digit level within the sectoral indices of manufacturing industry.

16See Goldrian (1993) and Goldrian and Lehne (1998) for details.
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D Manufacturing Industries
Branches (two digits) Relative Weights
DA15 Food products and beverage 8.5
DA16 Tobacco Products 0.4
DB17 Textiles 1.6
DB18 Wearing apparel 1.0
DC Leather and Leather products 0.3
DD Wood and wood products 2.0
DE21 Pulp, paper and paper products 2.3
DE22 Publishing, printing and reproduction of recorded media 3.0
DF Coke, refines petroleum 0.6
DG Chemicals and chemical products 11.0
DH Rubber and plastic products 5.1
DI Non-metallic mineral products 4.8
DJ27 Basic metals 4.7
DJ28 Fabricated metals products 9.1
DK Machinery and equipment 15.1
DL30 Office machinery and computers 1.1
DL31 Electrical machinery 7.8
DL32 Radio, television and communication equipment 2.1
DL33 Medical, precision and optical instruments 3.2
DM34 Motor vehicles 12.3
DM35 Other transport 0.8
DN36 Furniture 3.1
Sum 100.0

Notes: The weights of the two-digit branches in Ifo business surveys represent their relative share
in gross—value added of manufacturing industry.

Table 1.1: Relative weights of two—digit branches in manufacturing industry

The relative weights assigned to the different branches within the manufacturing
industries vary significantly. The largest weights are assigned to machinery and
equipment, motor vehicles and chemicals and chemical products whereas e.g. tobacco

products or leather and leather products are of less economic importance.

Aggregating the branch level data by means of economic weights as given in Table
1.1 poses a simple and straight forward form of PL.'" The use of economic weights
guarantees that important industries are highly represented within the aggregate

sectoral indices.

1"Economic weights are frequently used in the construction of economic indicators for the euro
area, see e.g. European Commission (2007) for the Economic Sentiment Indicator (ESI) and Stangl
(2007) for the World Economic Survey (WES).
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However, in a forecast framework, the adequacy of the weighting scheme builds on

the assumptions that

e the target series for the forecast exercise is proportional to the weighting

scheme

e the subindices have comparable forecast performance regarding the disaggre-

gate reference series

e the subindices have similar time series characteristics

In case of violation of one of these assumptions, a deviation from economic weights
potentially improves forecast performance. If the target to be predicted is not a
measure of output but the demand for commodities, employment or credit, the
weights of the branch level indices should not refer to relative shares in gross—value
added but rather to some measure of relative energy, labor or debt financing of the
industry.'® If the branch level indices significantly differ in their ability to track the
corresponding components of production, again a deviation from economic weights
potentially increases forecast performance. These differences can either be caused by
different qualities of the indices or different signal-to—noise ratios of the production

series themselves.

1.3.2 Industrial Production

To evaluate the forecast performance of different PI and PF schemes, we choose
monthly data of IPI as reference series to assess the state of the economy. The data is
obtained from the Federal Statistical Office (Destatis). As described in section 1.3.1,
the weights used by Destatis to aggregate the branch level production to the sectoral
IPI series are used for the construction of the sectoral Ifo series as given in Table
1.1. Although the share of the industrial sector in total gross—value added amounts
to not more than one forth, IPI mirrors the state of the economy comparably well

and shows a high correlation to quarterly values of real GDP. Hinze (2003) shows

18Gee the Ifo Employment Barometer for employment as target and the Ifo Credit Constraint
indicator for credit supply as target.
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that the relative performance of business—cycle indicators is mostly independent of
the chosen measure for aggregate output. In fact, due to the higher variance of
production, the industrial sector is frequently referred to as the cyclemaker of the
German economy.'® Its monthly publication is a major advantage of choosing IPI
as reference since the Ifo business survey series — as most business—cycle indicators
— are published on a monthly frequency as well. The monthly set—up prevents any

information loss due to quarterly aggregation.

Since the Ifo business survey series fluctuate around stationary values, we detrend
the target series to satisfy stationarity conditions. As we aim at evaluating the quan-
titative forecast performance of several PI and PF strategies, IPI is transformed to
growth rates.?® As shown in Figure 1.6, the Ifo business survey series for manufac-

turing industry exhibit a high correlation to the annual growth rates of IPI.

Business Climate Business Situation Business Expectations
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80 80 80
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Notes: The thick lines represent the Ifo Business surveys (LS) and the thin line gives the annual
growth rate of IPT (RS).

Figure 1.6: Ifo indices for manufacturing industry and annual growth rate of IPI

Hence, we follow Hiifner and Schroder (2002), Dreger and Schumacher (2005),
Fritsche and Kuzin (2005) and the analysis of the Sachverstandigenrat (2005) who

choose annual growth of IPI as target series.

In contrast to symmetric statistical filter approaches as the HP filter or other band—

pass filters, growth rates can be interpreted as asymmetric filters, implicating that

19See e.g. Sachverstéindigenrat (2005).

20To evaluate the performance of indicators for the detection of turning points in the business
cycle, the reference series are frequently detrended by means of symmetric filter techniques, see
e.g. Abberger and Nierhaus (2008) for an application with Ifo survey data.
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the resulting series do not change when new observations are added. This comes
along with the drawback that asymmetric filters lead to phase shifts of the reference
time series towards the beginning, i.e. peaks and troughs are dated earlier. Thus,
leading indicators potentially loose their lead character. Additionally, as the cyclical
component of a reference series can be regarded as the combination of various ideal
cycles of different cycle length, calculating growth rates increases the relative size of

shorter cyclical components.?!

Forecasting month—to—month growth rates of IPI via month—to-month changes of
the Ifo business survey series removes the phase shift problem and the predictor
variables maintain their potential qualities as leading indicators. This comes along
with the drawback that the resulting series are noisier and the correlation between
the indices and the reference series is considerably lower. As it is a priori not clear
which of the transformations is optimal, we present the corresponding results for

month—to—month changes in Appendix 1.C.2.

In the present study, we exclusively use latest—available (final) data of IPI instead
of real-time data.?? We thus circumvent the problem of which vintage to choose as
target series. Figure 1.7 shows the overlapping time series of the monthly vintages
from March 2000 to March 2009 for annual and monthly growth rates of IPI and
displays the correlation coefficients of the first vintage with the subsequent vintages.
Obviously, the revisions regarding IPI in Germany are only minor such that the

results of our forecast experiment should hold whatever vintage is used as estimation

21Let the complex cyclical function be represented by a weighted sum of i sine waves of varying
cycle length

c(y) = Z a;sin(k;y)

with k; determining the frequency and a; the weight in the total cycle of subcycle i. Thus, the
greater k;, the shorter is the length of subcycle i. The derivative of the cycle corresponds to the
short term growth rate:

c/(y) = Z aik:icos(kiy)

As the derivatives of sine waves are cosine waves, the transformation corresponds to a shift to
the left. After the differentiation, the k;s modify the original weights a; of the subcycles, over—
weighting the shorter cycles.

22Schumacher and Breitung (2008) show that data revisions do not affect the forecast perfor-
mance regarding macroeconomic aggregates for Germany.
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and realization base. In fact, the bivariate correlation decreases with an increasing
distance between the vintages but remains above 0.99 for the annual growth rate

and 0.92 for the more volatile month—on—month rate.
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Notes: The figures show monthly overlapping vintages of y—y and m—m growth of IPI from March
2000 to March 2009 and the corresponding bivariate correlation coefficients of each vintage to the
first vintage.

Figure 1.7: Real-time data of industrial production

1.3.3 Analysis of Branch Level Data

To obtain an assessment of the quality of the Ifo survey data on branch level, Fig-
ure 1.15 in Appendix 1.C.1 shows the annual growth rates of the production series
with the corresponding Ifo indices of the 22 branches of manufacturing industry.
Obviously, some branches, such as rubber or basic metals, are very well tracked by
the Ifo survey series whereas others, such as food products and beverage or tobacco
products, show a larger idiosyncratic part not captured by the related indices. To
extract critical branches that likely affect forecast accuracy of the sectoral Ifo series
of manufacturing industry, Figure 1.8 plots — for each of the branches — the contem-

poraneous correlation of the indices to the corresponding production series against
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its relative economic weight.
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Notes: The figure plots the contemporaneous correlation of branch level indices to annual growth
of the corresponding production series against the relative weight of the branches.

Figure 1.8: Performance of Ifo branch level indices

The branches in the upper right quadrant are heavily weighted within the sectoral
index for manufacturing industry and measure the underlying production properly.
In contrast, branches to the lower left are not very well tracked by the survey series
and do not contribute much to the sectoral index. In general, branches located in
the left quadrants fail to indicate movements of the respective production series.
Particularly critical are branches in the upper left quadrant, such as food products
and beverages, that are assigned an unproportional high weight. Overall, the spread
of the branches in Figure 1.8 suggests that the sectoral Ifo business survey series for
manufacturing industry are not optimal in terms of forecasting IPI growth and that

some form of re-weighting likely improves forecast accuracy.

Focussing on sectoral IPI as target, the time dependencies between the reference se-
ries and the Ifo survey series of manufacturing industry on branch level as candidate
predictor variables are shown in Figure 1.9 by means of the cross—correlations. With
a peak in the cross—correlations at a lead or lag of zero, BC' can be regarded as a
coincident indicator for almost all branches. BS is coincident for some branches but
shows a lag of up to two months for the majority of branches and for the sectoral in-

dex. In contrast, BE leads year—on—year IPI growth for 2 months on average. These
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correlations remain mainly unchanged when using the HP detrended reference series
as shown in Figure 1.16 in Appendix 1.C.2.% The structure of the cross—correlation
functions suggests that the performance of BS and BE in forecasting IPI as well
as the optimal weights for the branches within an aggregate index depend on the
forecast horizon. Notably, the sectoral indices do not show the highest correlations

to the target series for various lead and lag constellations.
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Notes: The solid lines represents the cross—correlations of year—on-year growth of IPI with the
survey series for manufacturing industry and the dotted lines give the correlations to the 22 branch
series.

Figure 1.9: Cross—Correlation of Ifo surveys and annual growth of IPI

1.3.4 PI Strategies

As shown in the analytical part in Section 1.2.2, one straightforward form of PI is
to estimate the forecast equation including all N = 22 branch indices at once. The
point estimates reflect the weights of the subindices within the aggregate indicator.
However, due to their multitude and their high correlation, including all variables
simultaneously in an unrestricted forecast equation is not feasible and leads to the
well-known problem of overfitting which detrimentally affects the forecast perfor-
mance.?* Thus, the PI strategies described below deal with a large dimension dataset

by either shrinking the variance of parameters in estimated equations or by sum-

23Notably, the phase shift associated with the calculation of growth rates contributes only minor
to the observed lag of BS which might be explained by the time structure of the responses as
described in section 1.3.1.

24The average bivariate correlation amounts to about 0.55 for BC' but varies considerably be-
tween —0.04 and 0.93 among the branches.
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marizing the information into a reduced number of common factors or both. One
major advantage of PI compared to PF in the context of the present study is that
it results in a new representable index that tracks the current or future monthly

values of IPI.

1.3.4.1 Economic Weights

The use of economic weights to combine the information of disaggregate indicators
is widely spread among the publishing agencies. As described in Section 1.2.2, the
approach ignores any correlation between the indices as well as towards the reference
series and assumes that the weights are exogenously given. It further builds on a
set of assumptions described in Section 1.3.1. As described in Section 1.3.1, the
aggregate Ifo indices for manufacturing industry that pose the benchmark in our

study are aggregated by means of economic weights.

1.3.4.2 Ad-—Hoc Restrictions

Figure 1.8 suggests that the exclusion of branches located in the upper and lower
left quadrants potentially improves forecast accuracy of the sectoral indices. Tra-
ditionally, the Ifo institute additionally reports the survey data for manufacturing
industry excluding food products and beverages and tobacco products in its monthly
publication. Figure 1.15 in Appendix 1.C.1 shows that the growth rates of these
production series are less persistent and do not exhibit well-defined business cycles
and that the corresponding branch indices are only very noisy measures. As one
of the candidate PI strategies, we thus analyze whether ad—hoc attributing zero

weights to these branches improves forecast accuracy of the aggregate index.?

1.3.4.3 Factor Models

Factor models pose an alternative framework to aggregate the branch indices without

running into overfitting problems. The motivation to use factor models in the present

25 Abberger (2006) finds that excluding these branches slightly reduces forecast errors of month—
on—month growth rates of IPI.
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context is that the variation of the branch indices can be explained by a small number
of common factors or shocks. Factor models exploit the co-movement of the branch
level series and reduce the dimension of the dataset to a smaller set of underlying
unobservable factors. The resulting factors can be interpreted as the driving forces
of the survey responses for all branches an thus be entered into the forecast equation
to derive a prediction of the target series. In factor models, the vector of observed
variables X is represented as the sum of two mutually orthogonal unobservable
components, the common component y and the idiosyncratic component =. The
common component is driven by a small number of factors common to all variables
in the model. In contrast, the idiosyncratic component is driven by variable specific
shocks. This idea has a long tradition in macroeconomics. For example, the notion of
a common business cycle underlies the classic work of Burns and Mitchell (1947) and
the indices of leading and coincident indicators originally developed at the National
Bureau of Economic Research (NBER). In the literature, forecasting using factor
models has provided a formal way to systematically handle larger information sets
of potentially relevant predictor variables. The dynamic factor model representation

for variable z;; as an element of X; is given as
Tip = N(L) fi + i (1.21)

where f; is the (¢ x 1) vector of latent factors to be estimated from the data. A;(L)
is a lag polynomial with non—negative power of the lag operator. Thus, in a general
setting it is allowed that lags of the factors affect the current movement of the
variables. &; is the idiosyncratic component of variable i. For estimation purposes,
it is convenient to reformulate the model. If the lag polynomial has finite order p,

the model can be rewritten as

X, = AF, +=,. (1.22)

In case of a static factor model, F; is the (r x 1) vector of common factors, A is
the (N x r) matrix of factor loadings and Z; is the (N x 1) vector of idiosyncratic
components which can be weakly mutually and serially correlated as shown by Bai

and Ng (2002). The factors are used to replace the original predictor variables in
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the forecast equation.

The main advantage of this static representation is that the factors F; and the factor
loadings A can be estimated using principal components (PC). This corresponds to

solving the following optimization problem

1 N T
V(r) = mingp—= > > (T — N Fy)? (1.23)
CNTIIHE
subject to 3.1, th’f] = I, and A’A being diagonal. One unique solution is given by
an eigenvalue-eigenvector decomposition of 37, Xéxt. Estimates for A and F; are
given by
A=V (1.24)
and
F=V'X, (1.25)

where V is the (N x r) matrix of eigenvectors corresponding to the r largest eigen-

XIX
values of /_; =,

The number of factors r has to be set exogenously. To identify
the factors up to a rotation, the data are usually normalized to have zero mean and
unit variance prior to the estimation, see e.g. Stock and Watson (2002a) and Bai
(2003). The above described estimation of the latent factors via PC is essentially a
static exercise although leads and lags of the original variables can be added to Xj,

see e.g. Grenouilleau (2004).

Forni et al. (2005) propose a weighted version of the principal component estimator
where the time series are weighted according to their signal-to—noise ratio, esti-
mated in the frequency domain. They estimate the covariance matrices of common
and idiosyncratic components with dynamic principal components analysis. This
involves estimating the spectral density matrix of X;, ¥x(0) which has rank g¢.
The largest ¢ eigenvalues and corresponding eigenvectors of Yx(0) are computed
for each frequency © and the spectral density matrix of the common components
f]x(@) is estimated. The corresponding spectral density matrix of the idiosyncratic
components is calculated as 3=(0) = Sx(0) — 3,(0). The time-domain autoco-
variances fx(p) and f‘g(p) of the common and the idiosyncratic component for lag

p are derived by the inverse Fourier transform. Since dynamic PC corresponds to a
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two—sided filter of the time series, this approach alone is not suited for forecasting. In
a second step, the r linear combinations of X; that maximize the contemporaneous
covariance explained by the common factors G;f‘X(O)CA?] with j = 1,...,r are cal-
culated. This optimization problem is subject to the normalization é;fg((])él =1
for © = j and 0 else. It can be reformulated as the generalized eigenvalue problem
f‘X(O) = ﬂjf‘x(())éj where fi; denotes the j-th generalized eigenvalue and G the cor-

responding N x 1 eigenvector. The factor estimates are obtained as Ftdy" = (G'X,.2

Another alternative to estimate the factors relevant for smaller data samples is to use
parametric state—space frameworks. This technique builds on early work of Stock
and Watson (1989) who use state space models to extract factors via the Kalman
filter and maximum likelihood estimation. Kapetanios and Marcellino (2003) apply
a subspace algorithm which allows the factors to be estimated without specifying and
identifying the full state space model. This essentially uses OLS to obtain estimates
of the matrix coefficient in a multivariate regression of leads of X; on lags of X;.
Then a reduced rank approximation to this estimated coefficient matrix provides

estimates for the factors.

Comparing the different dynamic factor estimation frameworks, it is frequently found
that the easy to implement static PC approach proposed by Stock and Watson
(2002b) performs comparably well in terms of forecasting macroeconomic variables
based on a larger set of potential predictors.?” In the present study, we thus focus

on static PC estimation.

26The difference between static and dynamic PC analysis can be explained by means of a model
given as

Tip = MFy + AF1+ &y

Static PC views the model as having two static factors, F; and F;_; though there is only one
common source of variation. Dynamic PC deals with such a shifted relation between the factor
and x;; via evaluation of the periodogram at different frequencies. However, if such a shifted
relation between F; and z; . is not present in the data, unnecessary estimation of the spectral
density matrices potentially induce efficiency losses.

27Schumacher (2005) forecasts quarterly German GDP and finds no statistical significant dif-
ferences in terms of accuracy between the three methods described above. Boivin and Ng (2005)
compare static and dynamic PC via Monte Carlo simulations as well as for forecasting eight US
macroeconomic times series such as industrial production. They find that static PC dominates in
the majority of settings and favor the method on practical grounds.
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1.3.4.4 Partial Least Squares

Partial least squares regression (PLS) has been developed and is used primarily by
chemometricians for predicting a response variable from an often large number of
highly correlated explanatory variables. The origins of the technique can be traced
to Wold (1966). The basic idea is that factors or components which are linear
combinations of the original predictor variables are used as regressors. However,
in contrast to PC as described above, the relationship between the explanatory
variables and the dependent variable is explicitly considered in constructing the
factors. The PLS factors are those linear combinations of the predictor variables that
give maximum covariance towards the dependent variable while being orthogonal
to each other.?Generalizing the PC approach, in a first step PLS simultaneously
decomposes both X and Y as a product of a common set of orthogonal latent
factors Z and a set of specific loadings.?? As for PC, the data are normalized to
have zero mean and unit variance prior to the estimation. The predictor variables

are decomposed as

X =PZ (1.26)

where Z is the (r x 1) vector of latent factors, P is the (N x r) matrix of factor

loadings and Z’Z is an identity matrix. Likewise, Y is estimated as
Y =CBZ (1.27)

where C' is the (1 x r) weight vector of the dependent variable and B is a (r x 1)
diagonal matrix with the regression weights as the diagonal elements. r < rank(X)
is the limit on the number of latent factors in the regression and is exogenously set.
As any set of orthogonal vectors spanning the column space of X could be used as

latent factors, additional conditions are required to identify Z.

28In general, PLS allows for multiple independent variables. As we restrict our analysis on IPI
as target series, we set Y = y in the following.
29A detailed description of the PLS algorithm is given in Appendix 1.C.3.
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This amounts to finding two sets of weights, w and ¢, to create a linear combination

of the columns of X and Y, i.e.

z = Xw
u = Yc

such that their covariance z’u is maximal with w'w = 1 and 2’z = 1. When the
first latent vector z is found, it is subtracted from X and Y and the procedure is

reiterated until X is a null matrix.3°

1.3.4.5 Lasso Regression

The lasso regression (least absolute shrinkage and selection operator) is a shrink-
age and selection method for linear regression proposed by Tibshirani (1996). By
construction, the underlying algorithm combines variable selection and parameter
estimation. The estimator depends in a nonlinear manner on the variable to be
predicted what potentially has advantages in empirical applications. De Mol et al.
(2008) show that lasso regressions as well as ridge regressions can be described as
Bayesian regression methods shrinking the parameters via Gaussian and double—

exponential priors respectively.

In case of ridge regressions, the Gaussian prior yields non—zero coefficients for all
variables in the panel. Ridge regressions amount to solving a penalized least-squares
problem with a penalty proportional to the sum of the squared regression coeffi-

cients.?!
t

w5 = arg minf3° (5 — yi)? + vl[w] . (1.28)
=1

where ||w|[? = X w?.
The procedure gives non—zero weights to all candidate predictor variables under

the constraint that ||w||* < s where s is determined by the regularization param-

30Groen and Kapetanios (2008) provide an overview of candidate algorithms and give an example
for using PLS in macroeconomic forecasting in data-rich environments.
31n what follows, we will denote by ||.|| the Euclidean norm of the respective vector of weights.
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eter v. As for principal components, the regressors are linear combinations of all
variables in the panel. However, unlike PC where unit weight is imposed to the
dominant eigenvalue of the covariance matrix and zero to the others, the Gaussian
prior gives decreasing weight to the ordered eigenvalues. In case of the standard

ridge regression, the coefficients can be estimated via a closed form.

As a modification of the ridge regression, the lasso regression penalizes proportional
to the sum of the absolute values of the coefficients

t

w!*° = arg mu%n[Z(y} — ;) +v||wl||'] (1.29)
i=1
where [[w||' = X, Jwj|. In contrast to the classical ridge regressions, the algorithm

sets certain coefficients to zero. Hence, compared to principal components or partial
least squares, the lasso approach is a regression on a few variables rather than
on a few aggregates of the variables. Under high collinearity, a few variables, if
appropriately selected, should capture the essence of the covariation of the data
and approximately span the space of the pervasive common factors. However, the
selection should also be unstable and rather sensitive to minor perturbations of
the data preventing a clearer economic interpretation of the results. As there are
no analytical solutions to the minimization problem stated in Equation (1.29), we
employ the LARS (Least Angle Regression) algorithm developed by Efron et al.
(2004). The algorithm starts with all coefficients set to zero and finds the predictor
that is highest correlated with y. The corresponding coefficient is stepwise increased
in the direction of the sign of its correlation with y and the vector of residuals is
calculated at each step. The algorithm includes an additional predictor once it is
as high correlated with the remaining residuals as the previous. The coefficients
of both predictors are increased in their joint least squares direction until another
predictor enters. The algorithm stops at an exogenously set limit of regressors to
include. We denote the number of coefficients that are assigned a non—zero weight

with .32

32 A1l the procedures are applied to standardized data. Mean and variance are re-attributed to
the forecasts accordingly.
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1.3.4.6 Optimal Pooling of Information

Relating to the framework of predictive modeling, we propose a method we name
optimal pooling of information. OPI poses an alternative PI approach where the

weighting scheme is specifically optimized with respect to a certain forecast exercise.

In the present context, based on a non-linear numerical optimization routine, the
branch level indices are aggregated by weights that minimize the MSE of the forecast
equation over a rolling window of past observations. To describe the algorithm, we

assume a simple static forecast equation of the form
Yirn = 0 + cxp + €44 (1.30)

where 1, is the target series and x; is an aggregated index. We aim to forecast y; 5
based on information of the predictor variables available at time t. The determina-
tion of the corresponding OPI weights includes the following steps. We begin with
an initial guess for the weights w and compute the aggregate index as x; = wX;.
Employing a recursive procedure, we estimate the forecast equation based on a re-
duced estimation window of size 7 with 7 =t — M — h,...,t — 1 — h and forecast
the respective h—step ahead value of the target series y,,; at each iteration step.
This leaves us with M ex—post forecasts and respective forecast errors that build
the basis for the optimization of the OPI weights. The MSE as the loss function to
minimize is calculated on basis of these M forecasts that can be evaluated at time
t.33 The optimized weights are restricted to sum up to unity and to be non-negative,

ie. wlg =1 and w; = 0 Vi.

33 As M is a constant number, the weights are calculated by means of a rolling window approach.
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More precisely, at forecast origin ¢t and for each forecast horizon h, the iterative steps

7 of the algorithm are given as:

1. Step w = w; (Update the weighting scheme)

2. Step z; = wX; (Calculate the aggregate index)

w

. Step Fort=t— M — h,...,t — 1 — h, estimate Equation 1.30 and derive the
h-step ahead forecast of y,, .1 based on z,,; (Evaluate aggregated index for

past M observations of y;)

N

. Step Calculate the objective function as MSE}; = ﬁ S (@ —yr)?

If IMSE}, | — MSE},| > tol, go back to 1.Step. Else, the algorithm has converged
and the current vector of optimal weights has been found, i.e. w* = w. The
corresponding OPT index is calculated as z; = w*X; and used as predictor in the

forecast equation to derive the h-steps ahead prediction §;.p of the target series.

Restricting the weights to be non—negative and to sum up to unity promotes sparse
portfolios of branch level indices attributing a weight larger zero only to a reduced
number of variables. While being analytically simple, the solution of this problem
can still be challenging in practice, depending on the nature of X;. For highly
correlated candidate predictors, a non-regularized numerical procedure will lead to

unstable and unreliable estimates of the weights w.
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To obtain meaningful and stable results for such an ill-conditioned problem, we
adopt a regularization procedure similar to the one proposed by Brodie et al. (2007).
We augment the objective function of the optimization procedure with a penalty

term ¢, yielding a minimization problem given as

. ' 1 t—1—h A
w" = arg min i Z (yT+h,T—yT+h)2+€t (1.31)
T=t—M—h
sit. wlg =
w; =20 Vi
where
f= v i (1.32)
t = K 4 Wit — Wig—1) - .

Thus, we introduce a term penalizing any deviation of the current weights from
the weights assigned to the indices one period before. v is a parameter that allows
us to adjust the relative importance of the penalization in our optimization. At-
tributing large values to v corresponds to stabilizing the weights as any deviation of
past weights is penalized more heavily. For ¢) — oo, the algorithm yields constant
weights, determined by the starting values.®® In contrast, for ©» — 0, the weights

adjust very quickly to the most recent forecast errors and are thus more flexible.

The main advantages of the OPI algorithm compared to the above described in—
sample approaches is that it can easily be adjusted to various forms of penalty
terms and the weights can simultaneously be restricted to be non—negative and
to sum up to unity. Most important, OPI is strictly out—of-sample focused, i.e.
the forecast errors rather than in—sample residuals are minimized. This feature
potentially contributes to a sparser weighting scheme that is more robust. On the
other hand, splitting the data sample into an estimation and an optimization period

potentially leads to less consistent estimates of the respective coefficients.

34 As the starting values gain relevance only for large values of v, we initialize the weights of the
branch level indices with the relative shares in gross—value added as reported in Table 1.1. Thus,
the MSE of the OPI algorithm converges to the MSE of the sectoral index for ) — co.
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1.3.5 PF Strategies

Given the set of 22 candidate explanatory variables, pooling of forecasts corresponds
to the estimation of a larger set of parsimonious models, each based on a subset of
the total information. As it is a priori impossible to discard a certain variable
combination, we follow Mayr and Ulbricht (2007) and derive all permutations of the
candidate predictors. To prevent overfitting, we exclude combinations with more
than 4 indicators. This procedure leaves us with n = 9108 different combinations
of the branch level indices. Each of these variable combinations is used to forecast
the target series for h = 0,...,2. The combined forecast is derived as a weighted

average of the single predictions, i.e.

K
Otrn = sz’@tm,i = wYiip. (1.33)
i=1

The empirical distribution of the single forecasts gives an insight into the variation of
the assessment within the 22 branches and provides a measure of model uncertainty
related to the selection of relevant branch indices. Figure 1.10 exemplarily shows
the empirical distributions of the single forecasts for January 2002. The label on

the abscissae represents the realized value of IPI growth as published by Destatis.

The difference between the mean forecast and the realized value corresponds to the
forecast error of the equally weighted average of all single predictions. To generate
pooled forecasts, we focus on a limited selection of the different weighting schemes
proposed in literature. Diebold and Lopez (1996), Newbold and Harvey (2007) and
Timmermann (2006) provide surveys on candidate forecast combination techniques.
These methods differ in the way they use historical information to compute the
combination weights. A theme that is common across estimators of the combination
weights w is that estimation errors in forecast combinations are generally important
especially when the number of forecasts is large relative to the length of the data

sample.
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Notes: The figure illustrates the empirical distribution of forecasts of year—on—year growth of IPI
for January 2002 based on Ifo branch level data of manufacturing industry.

Figure 1.10: Empirical distribution of IPI forecasts

1.3.5.1 Theoretically Optimal Weights

Assuming a MSE based loss function that exclusively depends on the forecast error
of the pooled forecast, optimal weights in the sense of Bates and Granger (1969) are

chosen to solve the problem:

w* = arg Irgn[w,Eew] (1.34)
which gives
D3|
gy 1.35
YTy, (1.35)

where ¥, denotes the (n x n) covariance matrix of the forecast errors e; (for i =
1,...,n) of the single models. In practice, the elements of ¥, are unknown and have
to be estimated which introduces an additional source of uncertainty. Imprecise
estimates of X, potentially deteriorate forecast performance. Assuming a linear—
in-weights model, the combination weights can be estimated via OLS, regressing

realizations of the target series on the n—vector of forecasts, using ex—post data.
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Three different versions of the basic least squares projection have been considered
by Granger and Ramanathan (1984).

(1) Yesn = wopn + WyGesnt + €ren
(2) Yirh = WTerht + €t
(3) Yi+n = wggjﬁh,t + €r4n,  S.T. w;LL =1

The first and second equation can be estimated by standard least—squares whereas
estimation of the third equation is done via constrained least—squares. The second
and third equation omit an intercept term, assuming unbiasedness of the single

forecasts.

1.3.5.2 Relative Performance Weights

As the number of single forecasts is large in the present study, we abstract from
estimating all elements of the covariance matrix of the forecast errors. We follow
Stock and Watson (1998) who propose to disregard the off-diagonal elements of X,
and employ relative performance weights, assuming uncorrelated errors. This yields
a weighting scheme based on the inverse MSE of the single models relative to the

sum of those of all models as a measure of relative past forecast performance.

MSE; i,
W= e (1.36)
im1 MS itlt—h

The parameter K sets the inverse MSE to various powers. A value of K = 0
corresponds to an equal weighted average whereas K — oo assigns a weight of one
to the best performing model whereas all other models are assigned a weight of
zero. It can thus be considered as a special case of MSE weighted averages, where
at each forecast origin, the model with the lowest historical MSE is identified and
exclusively used to forecast into the future. Clark and McCracken (2009a) refer to

this scheme as predictive least squares.

Frequently, the historical forecast errors are discounted, i.e. from the forecast origin

t, the squared forecast errors in the preceding periods are discounted by a certain
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factor (see e.g. Rapach and Stauss (2008)). Instead of the common MSE, an adjusted

measure of past forecast performance is used in Equation 1.36, given as

adi 1 t—h e
MSE({ =~ 3 d™"*(Jssnjs — Yssn)” (1.37)
s=To

where d is the discount factor with 0 < d < 1. For values of d < 1, more distant
squared errors are assigned a lower weight within the calculation of the weight-
ing scheme. For d = 1, no discounting is implemented and all squared errors are
weighted equally regardless of the distance to the forecast origin. For both ap-
proaches, the measure of past forecast performance can be calculated in a recursive
manner as well as be means of a rolling window. As we employ a recursive strategy
to estimate the forecast equations, our learning period for the combination weights

corresponds to a rolling window of fixed length.

1.3.5.3 Simple Combinations

The simplest weighting scheme is the mean forecast which corresponds to an equally
weighted average of the single predictions. The mean can either be calculated on the
unadjusted set of forecasts, or on an adjusted set truncating a certain percentage of
extreme large and small predicted values. This technique is frequently referred to
as trimming (see e.g. Stock and Watson (1999) and Clark and McCracken (2009a)).
The trimmed mean is computed with symmetric trimming a certain percentage of
forecasts. In that way, the median forecast which corresponds to the 0.5 quantile
of the forecast distribution equals a trimmed forecast with a trimming parameter
of 50 percent. In case of highly volatile predictions, trimming likely improves fore-
cast accuracy as less importance is attached to predictions within the tails of the

distribution.
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1.3.5.4 Nonparametric Combination Schemes

Rank based weighting schemes let the combination weights be inversely proportional

to the models’ ranks:

-K
Rt,t—h,i

- n —-K
i=1 Rt,t—h,i

Wit (1.38)
The parameter K again sets the inverse performance measure to various powers.
As the MSE weighted averages, the combination scheme ignores correlations across
forecast errors. Since ranks tend to be less sensitive to outliers, these approaches
are likely more robust than weighting schemes directly based on measures of past

forecast performance.

1.3.5.5 Bayesian Model Averaging

Bayesian model averaging (BMA) can be thought of as a bayesian approach to pool-
ing of forecasts. In BMA, the weights assigned to the single forecasts are computed
as formal posterior probabilities that the respective models are correct. In addition,
the individual forecasts in BMA are the posterior means of the variable to forecast,
conditional of the selected model. The posterior probabilities P(M;|D) of model i

can be derived as

P(D|M;)P(M;)
i1 P(D|M;)P(M;)

P(M;|D) = (1.39)

where
P(D|M,) = /P(D|@,M,;)P(@|Mi)d® (1.40)
is the marginal likelihood, P(©|M;) is the prior density of the parameter vector

in model ¢ and P(D|O, M;) is the likelihood. The model priors P(M;) and the
parameter priors P(©|M;) need to be specified ad—hoc.?®

35For a detailed description of BMA in forecasting macroeconomic aggregates, see e.g. Stock
and Watson (2006).
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Assuming diffuse priors of the model parameters, the marginal likelihood can be
approximated by means of the BIC criterion (see e.g. Clark and McCracken (2009a)).
Assuming that all single models are equally likely, i.e. P(M;) = %, the BMA weights

T n

correspond to the relative BIC values of all models in the framework.3¢

1.3.6 Settings of the Forecast Experiment

Timely information on the current state of economic activity is of great interest
for policy makers as well as for market analysts and central banks. As described
in section 1.3.2, the monthly published IPI mirrors the dynamics of the economy
comparably well as it shows a high correlation to real GDP. However, it is only
released with a lag of about 38 days after the end of the reference month. During
this interval of time, decision makers are faced with considerable uncertainty about

the economic conditions.

To provide a consistent and prompt picture of the state of the economy, nowcasting
the current monthly value has become an important task. Additionally, forecasting
the missing monthly values of the current quarter is essential when IPI itself is used
as predictor in bridge equations to nowcast real GDP.3" Thus, the present study
not only evaluates the Ifo business survey data for the IPI nowcast, i.e. h = 0, but

extends the forecast horizon to h =1 and h = 2.

36 As an alternative, Wright (2003) uses routine integration to approximate the marginal likeli-
hood.

37Bridging stands for linking monthly data of economic indicators such as IPI, typically released
early in the quarter, with quarterly data such as GDP or its components. The bridge equation is
estimated from quarterly aggregates of monthly observations. Predictions of the lower frequency
target variable are derived in two steps. First, the monthly indicators are forecasted over the
remainder of the quarter to obtain forecasts of their quarterly aggregates. Second, the resulting
values are used as regressors in the bridge equation to generate a forecast of the target series. Due
to the different timing of data releases, the number of missing monthly values differs across series
and models. Nowcasts of real GDP growth based on bridge equations are usually derived under
incomplete information, i.e. when the indicators are only partially known for the respective quarter
and one to three monthly values are missing. In contrast to the present study where we use IPI
as the reference series to assess the state of the economy, industrial production is frequently used
itself as a business cycle indicator of a higher frequency, predicting a broader measure of a lower
frequency such as real GDP, see e.g. Banerjee et al. (2005) and Angelini et al. (2008) who derive
nowcasts of quarterly real GDP growth in the Euro area based on monthly indicators including
IPI.
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The set of explanatory variables used to forecast IPI contains the Ifo business survey
indices, namely Business Climate, Business Situation and Business Expectations for
manufacturing industry as well as for the 22 branches shown in Table 1.1. All time
series are seasonally adjusted by means of ASA II methodology and cover a time span
from January 1992 to December 2008. Although the published series for aggregate
manufacturing industry are seasonally adjusted after aggregation, weighting the
branch level data by means of the relative shares in gross—value added fits the

sectoral counterpart as published very well.?8

The forecasts based on the candidate predictors are computed using h—step ahead

projections. Our forecast equations are specified as autoregressive distributed lag
models (ADL) of the form

Z/t+h =c-+ A(L)yt + B(L)xt + €t+h (141)

where

A(L) = OélL + 062L2 + ...+ Oépr
B(L) = By + L+ Bl + ... + B, L1

are lag polynomials. The forecasts are derived as direct step predictions. The general
specification of ADL models as given in Equation (1.41) nests a larger number of
special cases as the static regression model, the univariate autoregression model or

the general error—correction model.

To assess the forecast performance of different PI and PF frameworks, the data
sample is split into an estimation period and an evaluation period. The first is used
to estimate the forecasting relationships, the second to evaluate the forecast perfor-
mance of competing approaches. Forecasting with a constant lead time implies that
the information set on which the forecast is based is updated as the forecast moves
through the evaluation sub—sample. It is an open question whether and, if so, how

the estimated relationships should also be updated. The three possibilities are re-

38The correlation coefficients amount to 0.9997 for BC and to 0.9995 and 0.9996 for BS and BE
respectively.
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ferred to as fixed, recursive and rolling estimation scheme.?® Due to the shortness of
our dataset, we focus on the recursive estimation technique, updating the regression
coefficients based on the total available information set at any point on the timeline.
Consequently, for PF and PI strategies that build on weights estimated by means
of out—of-sample measures, a fixed length rolling optimization window is split from

the sample used to estimate the model coefficients.

For h = 0, starting with an estimation sample from January 1992 to December
1999, we nowcast the following month of IPI based on the current value of the
respective predictors. Employing the recursive estimation strategy, the estimation
sample is augmented by one month afterwards and the procedure is repeated. The
most recent predictions are derived for December 2008 yielding a forecast window
of 108 observations.*® Following Hiifner and Schréder (2002), in the first part of
the forecast experiment, the lag orders p and ¢ of Equation (1.41) are optimized
in a two—step procedure. First, the lag length of a purely autoregressive model of
the reference series is selected via the Akaike information criterion (AIC). Second,
given the specified AR-order, the size of the B(L) polynomial is optimized again via
AIC.*! The purely autoregressive model is thus necessarily nested in the unrestricted

ADL equation based on the indicator series.

39In general, reducing the estimation sample to reduce heterogeneity increases the variance of
the parameter estimates what maps into the forecast errors and causes the MSE to increase.
However, in the presence of structural breaks, using older data that follows a data—generating
process uncorrelated to the present potentially leads to biased parameter estimates and forecasts.
This trade—off has to be dealt with when deciding between a recursive and a rolling estimation
sample.

4ONote: For h > 0, the initial estimation sample is shortened by h-periods such that the size of
the forecast window is held constant.

4INote: The contemporaneous value of the predictor z; is always incorporated in the model.
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1.3.7 Results for Manufacturing Indices

To evaluate whether the Ifo survey series for manufacturing industry are useful in
forecasting IPI at all and whether certain branches exceptionally track IPI, Table 1.2
(annual growth rates) and Table 1.6 in Appendix 1.C.2 (month—on-month growth
rates) compare the forecast accuracy of unrestricted ADL models as given in Equa-
tion (1.41) based on sectoral indices and based on branch level indices as listed in

Table 1.1 to purely autoregressive models where 3; =0 for : = 0,...,p.

The columns present the results for BC' and its components as predictors separately
as well as for including both, BS and BE simultaneously in the forecast equation.
We report relative MSEs together with t—statistics of the test proposed by Clark and
West (2007) comparing predictive accuracy of the respective model to the restricted

univariate benchmark model.*?

42 Assuming that model 1 is the parsimonious model and Model 2 is the larger model that nests
model 1, we test for equal mean—squared prediction errors by regressing f; 1, given as

fean = Wern — T1een)® = (Wern — G2i04n)® — @re4n — J2,040)°]. (1.42)

on a constant and using the resulting t—statistic for a zero coefficient. We reject if this statistic
is greater than +1.28 (for a one-sided 0.10 test) or +1.65 (for a one-sided 0.05 test). For the
one—step—ahead forecast errors, the usual least squares error can be used. For autocorrelated
forecasting errors, we use the Newey—West heteroscedasticity—autocorrelation consistent standard
errors. Note: As the lag orders of the forecast equations are optimized in a two—step procedure as
described in section 1.3.6, the tested models necessarily nest the univariate benchmark model and
the test is applicable.
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| I h=0 I h=1 I h=2 |
\ [ BC] BS| BE[BS/BE] BC|[ BS[ BE[BS/BE] BC| BS| BE]BS/BE]
\ AR[ 364 364 364] 364 519] 519] 519] 519] 692] 692] 692] 692
Manufacturing || 0.81[ 072 079 074 066] 062] 061] 060] 063] 062] 058] 057
(2.85) | (2.36) | (240) | (2.64) | (3.09) | (3.11) | (2.76) | (3.07) || (3.19) | (3.17) | (2.84) | (3.16)
DAI5 | 1.03] 1.06] 099] 1.02] 1.04[ 1.04] 099 101] 1.03] 1.03] 1.07| 1.09
(-0.87) | (-0.63) | (0.92) | (-0.38) || (-0.24) | (-0.05) | (1.12) | (0.54) || (0.80) | (-0.24) | (0.24) | (0.04)
DAI6 || 1.02] 1.04] 1.04] 109] 110[ 1.06[ 104[ 107[ 111] 1.05] 1.02| 1.04
(-0.55) | (-0.60) | (-0.53) | (-1.01) || (-0.45) | (-0.25) | (-0.30) | (-0.77) || (-0.60) | (-1.11) | (0.14) | (-0.28)
DB17 || 1.04| 1.05] 097] 1.00] 093] 093] 096 093] 091] 094] 094] 0092
(1.24) | (0.34) | (1.62) | (144) || (243) | (3.02) | (1.52) | (1.88) | (2.21) | (2.61) | (1.54) | (1.84)
DBIS || 098] 1.02] 089] 085 094 097 084 079[ 093] 099] 083] 0.78
(1.16) | (-1.56) | (2.07) | (1.85) || (2:20) | (0.81) | (2.40) | (2.12) | (2.91) | (0.59) | (3.03) | (2.39)
DC| 097 101 089 090 095] 099] 087 088| 091] 099] 084] 084
(1.41) | (-1.63) | (1.61) | (141) || (1.61) | (1.20) | (1.58) | (1.41) || (1.55) | (1.18) | (1.73) | (1.61)
DD || 1.05| 1a1] 099] 1.00] 1.02] 1.08] 091 095[ 093] 1.00| 089] 0093
(0.20) | (-0.19) | (1.53) | (1.74) | (L.77) | (0.22) | (2.53) | (2.15) || (2.69) | (1.57) | (2.30) | (2.32)
DE21 | 091] 088] 084] 082| 087 093] 076| o078] o082 092] 072] 073
(342) | (279) | (2.82) | (2.92) || (3.02) | (256) | (2.84) | (2.97) || (2.92) | (2.22) | (2.81) | (2.97)
DE22 | 097| 1.02] 08| 088 1.02] 1i12] 079| 082 094 1.03] 084| 089
(1.62) | (-1.35) | (1.94) | (1.83) || (1.30) | (0.45) | (2.18) | (2.02) || (1.85) | (1.46) | (2.28) | (2.03)
DF| 1.03] 105 092| 098] 100[ 1.05| 08| 097 1.02] 1.05| 085] 1.00
(0.47) | (-1.10) | (1.29) | (0.92) | (1.33) | (0.12) | (1.45) | (1.31) || (1.50) | (0.09) | (1.74) | (1.72)
DG 096| 095 085] 090 08| 094 073] 081 09| 093] 072] 081
(2.89) | (226) | (2.12) | (2.39) || (2.89) | (2.86) | (242) | (2.63) || (2.82) | (2.93) | (2.40) | (2.74)
DH| 079 o078| 077 076 073] 086 066 066 072] 082] 064] 063
(2.59) | (2.32) | (254) | (270) || (2:84) | (3:21) | (273) | (3.03) | (2.80) | (2.99) | (2.94) | (3.06)
DI 102] 107 092 091 100] 1.09] 084 083] 1.00] 1.06| 082] 0.90
(0.54) | (-0.19) | (2.63) | (2.53) || (2.16) | (0.96) | (3.22) | (2.80) | (2.05) | (1.66) | (2.89) | (2.48)
DJ27| 084] 089] o087 087 077 08| 08 ] 079 08| 095] 081] 082
(2.77) | (1.88) | (2.60) | (2.78) || (2.95) | (2.45) | (275) | (2.97) || (3.01) | (2.16) | (2.55) | (2.79)
DJ28| 086| 080] 079 075 083] 080] o072] 068| o086] 084] 072] 072
(1.95) | (1.80) | (248) | (2.06) | (223)| (2.00) | (2.81) | (247) || (2.85) | (2.62) | (2.96) | (2.70)
DK|| 080| 079] 071] 075] 068 068 055 056] 064] 068] 053] 055
(346) | (231) | (2.86) | (2.90) | (3.66) | (3.74) | (3.11) | (3.39) || (3.97) | (3.98) | (3.36) | (3.84)
DL30 | 099] 1.01| 1.03] 099] 1.03| 1.00| 107 111| 1.01] 099] 1.03| 1.05
(1.30) | (-0.30) | (-0.61) | (0.85) | (0.59) | (0.15) | (0.42) | (-0.15) || (1.37) | (0.81) | (1.00) | (0.96)
DL31|| 090| 085 | 08| 088] 073] 08| 075 088 071 077 070] 081
(2.82) | (2.00) | (2.88) | (2.80) | (270) | (1.97) | (3.08) | (2.78) || (2.83) | (2.08) | (3.29) | (3.04)
DL32 || 078] 093] 08| 079] 079| 091 077 075 079 093] 075] 0.74
(246) | (1.50) | (2.26) | (2:25) || (2.56) | (1.52) | (2.18) | (2.32) || (257) | (1.82) | (1.95) | (2.20)
DL33 | 084] 090 08 083 079] 096] o080 077 071] 090] 071] 073
(1.68) | (1.59) | (2.12) | (1.89) || (2.44) | (1.68) | (2.55) | (2.30) || (3.06) | (2.14) | (3.03) | (2.59)
DM34| 08| 08| 091 o088| 08] o082] 08] 08 077] 079] 090] 085
(1.82) | (1.70) | (211) | (1.91) || (1.69) | (1.59) | (1.96) | (1.92) | (1.89) | (1.78) | (1.98) | (1.60)
DM35 | 100 107| 094 10U[ 098] 107] 094] 098] 096] 110] 088] 0.99
(0.92) | (-1.62) | (2.88) | (0.96) | (1.35) | (-1.01) | (2.61) | (2.11) | (2.08) | (-0.99) | (4.12) | (2.35)
DN36 || 0.92] 1.01] 084] 089] 074[ 093] o072 o080 077 095] 069] 0.77
(218) | (1.20) | (248) | (217) | (322) | (2.74) | (276) | (2.92) | (2.68) | (224) | (273) | (2.81)

Notes: The first line reports the absolute MSE values for the univariate benchmark process. For the
Ifo indices, we report the relative MSE values relative to the benchmark. The figures in parentheses
represent the t—statistics of a one-sided test for predictive accuracy for nested models as proposed
by Clark and West (2007). A t-statistic greater than +1.28 (10 percent significance level) or +1.65
(5 percent significance level) indicates that the unrestricted model which additionally contains Ifo
survey series yields a significant smaller MSE than the autoregressive benchmark model. The
standard errors are heteroscedastic and autocorrelation robust (Newey—West).

Table 1.2: Relative MSE of Ifo indices against AR benchmark for annual growth of
IPI



46 CHAPTER1: THE USE OF PLURAL INFORMATION IN FORECASTING

For the annual growth rates, in general, incorporating Ifo business survey data sig-
nificantly improves forecast accuracy compared to the purely autoregressive models.
On average, the improvement slightly increases with a growing forecast horizon. Fo-
cusing on aggregate manufacturing industry, BS performs best for h = 0 whereas
BFE is dominant as the forecast horizon grows. The calculation of Business Climate
as the geometric mean of BS and BE cannot be considered optimal in terms of
predicting IPI for any of the considered forecast horizons. In fact, incorporating BS
and BE simultaneously in the forecast equation improves accuracy compared to BC
and yields a MSE comparable to the better of BS and BE.*?

Regarding the disaggregate predictor variables, certain indicators at the branch
level such as machinery and equipment and rubber and plastic products significantly
improve forecast accuracy compared to autoregressive models and even slightly out-
perform the sectoral indices of manufacturing industry.** In particular, BE of ma-
chinery and equipment yields the lowest MSE regarding IPI for a forecast horizon
of h =0,...,2. For the month-on—month growth rates, incorporating sectoral Ifo
survey data improves forecast accuracy significantly for h = 0 whereas the gains
are minor for h = 1 and h = 2. For the nowcast, BS again clearly dominates the
aggregated Business Climate. As for the annual growth rates of IPI, machinery and
equipment and rubber and plastic products are among those branches that signifi-
cantly outperform the univariate benchmark and yield a smaller MSE than sectoral

aggregated indices of manufacturing industry.

To examine the stability of our results, we divide the evaluation period in half and

“3Entorf (1991) finds a similar result. He specifies BC as
BC = BE*(BS/BE)” = BE*~°BS”

and evaluates the forecast performance regarding industrial production of a parameter setting
a =1 and § = 0.5 (which corresponds to the aggregation scheme used by the Ifo institute) against
a setting where the parameters are freely estimated via the log—linearized equation

INDyyp, = c+ (a— B)log(BE) + Blog(BSt).

IN Dy, thereby corresponds to the trend adjusted logarithmic value of industrial production. He
finds that, for h = 3, a deviation of equal weights significantly improves forecast accuracy.

44 Abberger (2006) predicts month—on-month grows rates of IPI based on first differences of the
indices and finds similar results.
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compute the MSEs over the two subsamples from January 2000 to June 2004 and
from July 2004 to December 2008. A stable and potent forecast model exhibits a
MSE less than the benchmark in both subsamples, whereas an unstable model is
characterized by a relative MSE less than one in one period but greater than one in
the other period. Figure 1.11 exemplarily shows scatterplots of the relative MSEs

of the forecasts in the first versus the second sub-sample for h = 0.4

The points represent pairs of relative MSEs of the branch level data as well as the
sectoral indices. Stable forecast relations correspond to points scattered around
the 45°-line. Points in the lower left quadrant indicate an improvement over the
univariate benchmark in both periods whereas points in the upper right quadrant
correspond to branches that yield a worsening of forecast accuracy in both forecast
periods. Evidently, the sectoral index of manufacturing industry — which is marked
with a circle — as well as a larger number of branch level indices show considerable
stability, outperforming the benchmark model in both sub—samples. As there are
barely any points above the horizontal line, the Ifo survey series on average exhibit
a slightly stronger forecast performance in the second subsample compared to the
first. Obviously, incorporating survey data helps predicting IPI particularly in times
of volatile movements as the sharp decline of IPI starting in September 2008. These
results hold for all forecast horizons of annual growth of IPI. For the month—on—
month growth of IPI, the Ifo data contains valuable information in both subsamples
only for the nowcast, i.e. for h = 0 whereas for h = 1 and h = 2, the relative MSEs
are clustered around the origin, indicating predictors that have negligible marginal
predictive content for month—on—-month growth of IPI above and beyond that in

lags of the reference series.

Overall, the analysis suggests that economically weighted indices for manufacturing
industry — as published by the Ifo institute — pose an adequate measure of indus-
trial output and are capable to forecast future monthly values of annual IPI growth.
However, disaggregate survey data on branch level contains additional information

that can be used to improve forecast accuracy. Although BS is favorable when

45The scatterplots for annual growth for h = 1 and h = 2 as well as for month-on-month growth
for h =0,...,2 are shown in Figure 1.17 to 1.21 in Appendix 1.C.1
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Figure 1.11: Scatter plot of relative MSEs against univariate benchmark model for
annual growth of IPI (h = 0).

forecasting the current monthly value of IPI and BF slightly dominates as the fore-
cast horizon grows, calculating BC' as the geometric mean of BS and BF yields a

comparable proper forecast performance for each of the horizons considered.

1.3.8 Results for PI and PF

For the comparison of the different PI and PF frameworks, we focus on Business
Climate as predictor as it performs considerably well for each of the forecast hori-
zons h = 0,...,2. We follow De Mol (2008) and report the results of the competing
approaches for a fixed value of p = 0, i.e. we abstract from lags of the regressors.
Hence, we do not evaluate the incremental forecasting power of the competing ap-
proaches but compare the performance in terms of direct out—of-sample Granger
causality. The exclusion of lagged predictor variables guarantees comparability of
the approaches in terms of how a given information set is used to predict the tar-
get series. Furthermore, a constant lag choice is important for the OPI approach

as varying numbers of lags potentially interfere with the convergence of the algo-
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rithm. In general, the OPI algorithm can be used for any given number of lags.46
Additionally, the extraction of PLS factors is complicated when lagged endogenous
variables are included as one needs to control for the effect of these lagged terms
on the covariances between the predictor and the reference time series. For the PF
and PI frameworks that require information on ex—post (historical) forecast perfor-
mance, a training (optimization) period is split from the model estimation sample
at each forecast origin. The training sample is used as a rolling window with a size
of N = 48 periods. Table 1.3 shows the performance of the different PI and PF
frameworks for the full evaluation period, spanning 108 forecasts for annual growth
of IPL.4" We report the relative MSEs together with t-statistics of a one-sided test
for forecast accuracy for non-nested models proposed by Harvey et al. (1997) —
denoted HLN hereafter — comparing predictive accuracy of the respective model to

a benchmark model based on the published indices of manufacturing industry.*®

Notably, the majority of PI and PF frameworks outperforms the economically weighted
sectoral indices in terms of forecast accuracy. As indicated by the low correlations of
their indices and the corresponding production series, ad—hoc attributing a weight
of zero to volatile branches as food products and beverages and tobacco products re-
duces the MSE of the aggregate index. However, these gains are not significant for

any of the forecast horizons.

46Chapter 2 of this dissertation illustrates of how OPI can handle potentially varying numbers
of optimal lags in an ADL forecast equation.
4"Table 1.7 in Appendix 1.C.2 reports the results for month-on-month growth of IPI as reference

series.
48Note that the tested models do not nest the benchmark model which uses the economically

sectoral index as predictor variable.
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‘ Pooling of Information (PI) ‘ h=0 ‘ h=1 ‘ h=2 H Pooling of forecasts (PF) ‘ h=0 ‘ h=1 ‘ h=2 ‘

\ | BC] BC|] BC] | BC] BC] BC|
Ex DA15 DA16 0.98 0.98 0.98 Mean | 0.79 | 0.86 0.89
(1.16) | (1.12) | (0.94) (3.34) | (1.76) | (1.52)
PC (r=1) 1.04 1.09 1.10 Median | 0.82 | 0.86 0.89
(-0.60) | (-1.03) | (-1.04) (2.53) | (1.79) | (1.67)
PC (r=2) 1.04 1.07 1.07 Mean trimmed 5 % 0.80 0.86 0.89
(-0.58) | (-0.71) | (-0.68) (3.34) | (1.79) | (1.54)
PC (r=3) 0.80 0.78 0.82 Mean trimmed 10 % | 0.80 | 0.86 0.89
(3.56) | (2.88) | (2.43) (3.29) | (1.78) | (1.53)
PC (1=4) 0.84 0.84 0.86 BMA K=1 0.79 0.86 0.89
(2.56) | (2.05) | (1.82) (3.40) | (1.82) | (1.54)
PLS (r=1) 1.06 1.10 1.09 BMA K=2 0.79 0.86 0.89
(-0.93) | (-1.13) | (-1.03) (3.45) | (1.86) | (1.56)
PLS (r=2) 0.87 0.90 0.95 BMA K=4| 0.80| 0.86 0.89
(1.60) | (0.89) | (0.43) (3.52) | (1.93) | (1.56)
PLS (r=3) 0.90 0.85 0.89 BMA K=10| 0.80| 0.86 0.90
(1.46) | (1.65) | (1.22) (3.51) | (1.98) | (1.46)
PLS (r=4) 0.98 0.92 1.02 MSE K=1| 0.79 | 0.85 0.89
(0.23) | (0.87) | (-0.17) (3.63) | (2.03) | (1.63)
OPI (¢ =0) 0.78 0.82 0.87 MSE K=2| 0.79 | 0.85 0.89
(2.52) | (1.81) | (1.70) (3.72) | (2.13) | (1.58)
OPI (¢ = 10°) 0.75 0.84 0.88 MSE K=4| 0.79 | 0.86 0.91
(3.01) | (1.59) | (1.54) (3.58) | (2.11) | (1.32)
OPI (¢ = 10%) 0.78 0.89 0.86 MSE K=10 0.80 0.88 0.95
(2.78) | (1.10) | (1.03) (2.73) | (1.72) | (0.66)
OPI (¢ =10?) 0.90 0.97 0.89 Predictive Least Squares | 0.90 | 0.95 1.04
(1.60) | (0.27) | (1.30) (1.01) | (0.51) | (-0.42)
OPI (¢ =10% | 097| 094| 092 Disc MSE (d=0.95, K=1) | 0.77 | 081 085
(0.94) | (1.52) | (1.86) (3.93) | (2.64) | (2.24)
OPI (y=10% | 1.00| 098] 0.98 Disc MSE (d=0.95, K=2) | 0.75 | 0.78 | 0.82
(0.29) | (1.26) | (1.52) (4.23) | (3.07) | (2.51)
OPI (¢ = 10°) 1.02 1.01 1.00 Disc MSE (d=0.95, K=4) | 0.73 | 0.75 0.78
(-2.13) | (-1.03) | (-0.10) (4.44) | (3.24) | (2.51)
OPI (=105 | 1.03| 1.01| 1.00| Disc MSE (d=0.95, K=10) | 0.70 | 0.71| 0.74
(-2.45) | (-1.17) | (-0.20) (4.22) | (2.82) | (2.17)
LASSO (r=1) 3.26 3.62 3.17 Disc MSE (d=0.90, K=1) | 0.75 | 0.78 0.81
(-4.80) | (-3.64) | (-3.13) (4.24) | (3.08) | (2.57)
LASSO (r=2) 2.77 2.74 243 Disc MSE (d=0.90, K=2) | 0.72 | 0.73 0.76
(-4.15) | (-3.08) | (-2.89) (4.59) | (3.41) | (2.72)
LASSO (r=4) 1.15 1.20 1.08 Disc MSE (d=0.90, K=4) 0.69 0.68 0.70
(-1.21) | (-1.20) | (-0.30) (4.74) | (3.27) | (2.51)
LASSO (r=6) 0.95 1.02 0.92 Disc MSE (d=0.90, K=10) 0.65 0.64 0.65
(0.60) | (-0.12) | (0.35) (4.39) | (2.75) | (2.17)
LASSO (r=8) | 096 | 1.02| 091 Rank (K=1) | 064| 067 068
(0.54) | (-0.13) | (0.36) (4.82) | (2.96) | (2.32)
LASSO (r=10) | 097 | 1.02| 091 Rank (K=2) | 063 072 068
(0.42) | (-0.16) | (0.32) (3.72) | (1.94) | (1.71)
Rank (K=4) | 0.62| 0.75 0.69
(3.55) | (1.69) | (1.56)
Rank (K=10) | 0.62 | 0.75 0.69
(3.51) | (1.64) | (1.53)

Notes: We report the relative MSE values for the PI and PF approaches compared to the economi-
cally weighted sectoral index as benchmark. The figures in parentheses represent the t—statistics of
a one-sided test for predictive accuracy for non—nested models as proposed by Harvey et al. (1997).
A t—statistic greater than +1.28 (10 percent significance level) or +1.65 (5 percent significance level)
indicates that the tested approach yields a significant smaller MSE than the benchmark.

Table 1.3: Relative MSE of PI and PF approaches against economically weighted
benchmark for annual growth of IPI
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Regarding PI, the largest improvements are achieved by the OPI algorithm for
smaller values of ¢ between 0 and 10, depending on the forecast horizon. These
gains fade away for large values of ¢ as the optimized weights converge to their
economic counterparts. For ¢» = 10°, the OPI algorithm improves forecast accuracy
by about 25% for h = 0 and still more than 10% for h = 1 and h = 2. Figure
1.12 illustrates the weights attributed to the branch level indices within the OPI
approach at the different forecast origins ¢t = 1,...,108 for the respective values of

1 for the nowcast.
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Notes: The lines represent the weights attributed to the branch level indices at the different forecast
origins t =1,...,108 for h = 0.

Figure 1.12: OPI weights for annual growth of IPI (A = 0)

In general, the weights gain persistence with an increasing value of ¥. In the absence
of a penalty term, i.e. for ¢» = 0, the weights are very volatile whereas they show

a rather persistent behavior for ¢ > 103. As the relative MSEs reported in Table
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1.3 show, the trade-off between persistence and flexibility is optimal for ¢ = 10°
in terms of forecast accuracy. Table 1.4 compares the relative economic weights of
the branches to the average weights attributed to the branch level indices by the
OPI approach for 1 = 10°. The columns give the average weights for the forecast
horizons h = 0,...,2 and the corresponding MSE of an aggregate index build on

these weights relative to the sectoral benchmark index.*”

For each horizon, only a smaller number of branch level indices is attributed a
significant weight. As the relative MSEs show, focussing on a core group of indices
consisting of about 8 branches improves the forecast performance by about 30% on
average. Forecast accuracy can be further improved by introducing a five percent
threshold, i.e. setting all weights less than 5% exogenously to zero. The resulting
index for h = 0 as shown in the last column of Table 1.4 reduces the MSE by around
40% and yields comparable improvements even for h = 1 and h = 2. This means that
a weighted index based only on a small subset of branch indices including teztiles
and basic metals has a considerable higher forecast performance regarding aggregate
industrial production. Most notably, machinery and equipment, frequently referred

to as the key branch of German industry is not included in this index.

Pooling the branch level information via the extraction of principal components
improves accuracy for r = 3 and r = 4 by about 20% for each forecast horizon.
The PLS approach works best for » = 2 and r = 3, reducing MSE compared to the
economically weighted sectoral index by about 10%. Hence, for both approaches,
a rather small number of 3 common factors captures most of the dynamics of the
manufacturing sector. The predominance of PC compared to PLS indicates that
the correlations between the predictor variables and the reference series are rather
volatile such that excluding these relations in the extraction of common factors

improves stability and forecast accuracy.

The lasso regressions work best for r = 6, i.e. incorporating 6 branch level indices
simultaneously in a forecast equation yields the best forecast performance. However,

the resulting gains are significant only for the month—on—month growth rate of IPI.

49Note that the MSE ratio shows a hypothetical improvement as the average weights are calcu-
lated using ex ante information that would not have been available to the forecaster in real-time.
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\ Branches (two digits) | Relative Weights [ Mean Coefficients |

h=0 [ h=1 [ h=2[[ 5 % threshold
0.0

DAT5 Food products and beverage

DA16 Tobacco Products

DB17 Textiles

DB18 Wearing apparel

DC Leather and Leather products

DD Wood and wood products

DE21 Pulp, paper and paper products

DE22 Publishing, printing and reproduction of recorded media
DF Coke, refines petroleum

DG Chemicals and chemical products

DH Rubber and plastic products

DI Non-metallic mineral products

DJ27 Basic metals

DJ28 Fabricated metals products

DK Machinery and equipment

DL30 Office machinery and computers

DL31 Electrical machinery

DL32 Radio, television and communication equipment
DL33 Medical, precision and optical instruments
DM34 Motor vehicles

DM35 Other transport

DN36 Furniture
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Notes: The reported figures are the mean weights attributed to the 22 branches in manufacturing
by the OPI algorithm over 108 forecasts.

Table 1.4: Average OPI weights for annual growth of IPI

Figure 1.13 illustrates the corresponding coefficients of the branch level indices in
the lasso equation for h = 0,...,2 and Table 1.5 reports the average coefficients
for the 108 forecast steps. Notably, compared to the OPI approach, the coefficients
exhibit a rather persistent behavior over the sample.?® In fact, only a smaller subset
of branch level indices are attributed a coefficient larger than zero in any of the
estimation steps, including paper products, chemicals and rubber. Although the
number of branches is comparable to the OPI selection, different branches are chosen

on average.

Regarding the PF strategies, the simple mean and the median forecast reduce MSE
by 20% on average for h = 0 and by 10% for h = 1,2 compared to the sectoral
index. Trimming the 5% and 10% highest and lowest forecasts as well as weighting
predictions by means of their in—sample and out—of-sample performance does not
significantly change the results. In contrast, discounting the past prediction errors
increases forecast performance by another 10% on average. These gains grow with a

decreasing discount factor d. This indicates again that the relative performance of

50Note that at each forecast origin, the lasso equation is estimated over the full ex post estimation
sample. As the optimal branch selection potentially varies over time, a reduced estimation sample
by means of a rolling window could improve forecast performance.
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Notes: The lines represent the coefficients attributed to the branch level indices at the different
forecast origins t = 1,...,108.

Figure 1.13: Lasso coefficients for annual growth of IPT (h=0)

Branches (two digits) | Relative Weights [ Mean Coefficients |

h=0 | h=1 =2
DAT5 Food products and beverage 8.5 00 -01] -0.1
DA16 Tobacco Products 0.4 00| 00| 0.0
DB17 Textiles 1.6 45| 47| 3.7
DB18 Wearing apparel 1.0 0.0 0.1 0.4
DC Leather and Leather products 0.3 00| 00| 0.0
DD Wood and wood products 2.0 00| 00| 0.0
DE21 Pulp, paper and paper products 2.3 9.3 | 11.7 | 12.8
DE22 Publishing, printing and reproduction of recorded media 3.0 0.0 0.0 0.0
F Coke, refines petroleum 0.6 14 17| 1.8
DG Chemicals and chemical products 11.0 17.6 | 20.6 | 21.2
DH Rubber and plastic products 5.1 15.6 | 10.6 | 8.5
DI Non-metallic mineral products 4.8 0.0 0.0 0.0
DJ27 Basic metals 4.7 1.4 08| 0.6
DJ28 Fabricated metals products 9.1 00| 00| 0.0
DK Machinery and equipment 15.1 21| 23| 23
DL30 Office machinery and computers 1.1 00| 00| 0.0
DL31 Electrical machinery 7.8 00| 00| 0.0
DL32 Radio, television and communication equipment 2.1 00| 00| 0.2
DL33 Medical, precision and optical instruments 3.2 00| 00| 0.0
DM34 Motor vehicles 12.3 03| 0.1 0.0
DM35 Other transport 0.8 0.0 0.0 0.0
DN36 Furniture 3.1 07] 1.2 1.0
Notes: The reported figures are the mean coeflicients for the 22 branches in manufacturing over

108 estimations of the lasso regression.

Table 1.5: Average lasso coefficients for annual growth of IPI
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branch level indices regarding IPI growth changes over time. The highest improve-
ments in forecast accuracy are obtained for weighting the models by means of their
inverse ranks over the past periods. As this approach disregards the absolute size of
the differences in forecast accuracy, it is less sensitive to outliers and the weighting
scheme is more robust than weighting schemes directly based on measures of past
forecast performance. The proper forecast record of the approach in the present
study further indicates that single models that perform well on average are hit by

extra ordinary forecast failure in certain periods.

To examine the stability of these high dimensional forecasts, we divide the evaluation
period again in half and compute the MSEs over the two periods from January 2000
to June 2004 and from July 2004 to December 2008.%!

For the different horizons, most scatter points are located in the lower left quadrant
around the 45°-line. This indicate an dominant and stable forecast accuracy of
the corresponding PI and PF approaches compared to the economically weighted

sectoral index as benchmark in both periods.

Regarding the month—on—-month growth rates of IPI, again OPI as well as the rank
weighted PF approach are the best performing frameworks. For OPI, a value of
1 = 10? yields the highest forecast accuracy in the short run whereas the approach
fails to outperform the benchmark for h = 2. In contrast, the lasso regression
significantly outperforms the benchmark model for ¥ > 4 and h = 2.2 Ad-hoc
attributing a weight of zero to food products and beverages and tobacco products
significantly improves forecast performance for h = 0. Extracting common factors
via PC and PLS does not increase forecast accuracy for any of the settings under
consideration. The results for the competing PF strategies are less encouraging
as well as none of the weighting schemes significantly outperforms the benchmark
model. Focussing on OPI, as for the annual growth rates, only a smaller number

of branch level indices is attributed a significant weight.?® Again, a smaller core

51The OPI forecast for ¢ = 10° which dominates the PI schemes for the total forecast sample is
marked with a circle.

52Table 1.9 and Figure 1.24 in Appendix 1.C.2 report the respective coefficients of the lasso
approach for month—-on—month growth of IPI.

53Table 1.8 in Appendix 1.C.2 reports the average weights attributed to the branch level indices
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Figure 1.14: Scatter plot of relative MSEs of PI and PF against economic weighted
benchmark for annual growth of IPI (h=0)

group of indices significantly improves the forecast performance of the resulting
index. Introducing a five percent threshold yields an aggregate index that reduces
the MSE by around 10% for h = 0 whereas these gains fade away for h = 1 and
h = 2.

The empirical forecast evaluation leads to a number of general observations. First,
when predicting IPI growth, the use of the economically weighted sectoral indices
cannot be regarded optimal in terms of MSE loss. Instead, predictively pooling
the information via the OPI algorithm significantly improves forecast performance.
As the corresponding weights fluctuate considerably over time, introducing a reg-
ularization term that penalizes deviations from previous weights increases forecast
performance. Pooling forecast from models that build on a small subset of branch
level indices poses a robust alternative. Although the equal weighted average yields
a significant improvement in forecast accuracy, the method can be boosted by dis-
counting past prediction errors or weighting the predictions by means of the past
inverse ranks of the respective models. Overall, in case of predicting annual growth
of IPI, pooling forecasts from parsimonious models based on a smaller number of
branch level indices poses the dominant forecast strategy and can be favored on

practical grounds.

for ¢» = 102 and gives the corresponding MSE relative to the sectoral benchmark index. Figure
1.23 tracks the weights over the different forecast origins.
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1.4 Conclusion

In this paper, we analyze the relative merits of pooling of forecasts compared to
pooling of information. In an analytical part, we demonstrate that PI theoretically
dominates PF in the absence of estimation uncertainty and for perfectly measured
explanatory variables. In the more realistic scenario where only noisy measures of
the explanatory variables are at hand, PI looses its virtues as the noise components

increase and for highly correlated shocks.

In an empirical exercise, we evaluate the performance of various candidate PI and
PF strategies predicting German industrial production based on Ifo business survey
data. As a first result of the experiment, we find that economically weighted indices
— as published by the Ifo institute — exhibit significant predictive content regarding
monthly industrial production. Although the Business Climate index, calculated as
geometric mean of the Business Situation and the Business Fxpectations performs
reasonably well, this form of aggregation cannot be regarded optimal in terms of
forecasting. In fact, BS is favorable when forecasting the current monthly value of

IPI and BFE dominates as the forecast horizon grows.

In accordance with the analytical findings, our empirical study confirms the advan-
tages of pooling a larger number of single forecasts, each based only on a subset of
the available information. Comparing various PF frameworks, we find that weight-
ing single predictions based on branch level indices by means of their past forecast
performance improves forecast accuracy by up to 40% compared to economically
weighted indices. The best results are obtained for weights measured in terms of

relative ranks and discounted MSEs of the single forecasts.

Although PF poses the dominant strategy, we find that alternative PI approaches
also improve forecast accuracy compared to the economically weighted benchmark
index. Relating to the framework of predictive modeling, we develop the OPI ap-
proach that optimizes the weighting scheme specifically with respect to a certain
forecast exercise. We find that OPI performs considerably well and poses a serious

alternative to the dominant PF strategies.
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Appendix

1.A Analytical Derivations - DGP

The data—generating process is given as

Y = Pixiy + Boxoy + €
= [BXi+e

with

L1t ¢1,t fl,t

T2t D24 §ot

where ¢, and ¢, are fixed functions of past variables and

S 0 Qi Qo
~ IN, ,

S 0 Qo1 oo

The explanatory variables can be described as

T = [92_21912]$2,t + Moy

Top = [91_11912]951,t + M21,t

where 7, 2, and 791, are the idiosyncratic components with
E[xz,tnm,t] = 0

E[l’l,ﬂhl,t] =0

(1.43)

(1.44)

(1.45)

The variances and covariances of the explanatory variables and their idiosyncratic
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parts can be written as:

Qi = [ Q2] Q2[00 Qua] + Dy
= Q19055 Qs + Qs

V= [91_11912]911[91_11912] + €,
00+ O,

Q= Q- Qo5

Qpyy = Qoo — Q1207 Q1o

E[’f]12,t?721,t] = E[(xz,t - QﬁlQlﬂLt)(l’l,t - Q2721912172,15)]
= El(zouw1y — Qop Quawd;, — Q1 Quaxd, + Q' Qoy Oy 1,472,4)]
= Elrggr1] — Qon QuuBla3 ] — Qi Qo B2 ] + Q01 Q55 QF, Elay 420
= 1y — 5 D200 — Q' Doy + Q7' Qo O
= Qi+ Q1_1192_219?2
= —Qu(l, — 01 Q19055 Qo)

= _QIQ(In - H12 HQI)

where

[y = Q%00

H21 = Q1_11912
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1.B Analytical Derivations - Perfect Measurement
1.B.1 Single Forecasts

The single forecast equations are given as:

Yig = bzt

Yo = boxay + vy

Employing ordinary least squares, the estimated coefficients can be written as

b1 = E[i)l]‘i‘éi)l

A~ ~

by = E[bz]+552

where the expected values of the estimators are given as
E[b)] = E[Q7'Q4)
= b1+ Q' Q2o
Elb] = E[Q3; 0]

= [o+ 952191251-

The latter terms of these expression are the corresponding omitted variable biases

for each of the estimators.

The variances of the estimators are given as

Q= Q5 =T710..07

QEQ = QJ,;Q - T_lQeeQ2_21
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and depend on the sample size, the variance of the errors as well as the variance of

the explanatory variable in the forecast equation.
The forecast errors of the single models can be calculated as
U = Yy — @1,t
= (61— Bl)fﬂl,t + Boxay + €4
= (b1 — E[Bl] - 551)951,7: + Batas + €4
= (b1 — (B + Q1_1191252) - 551)$1,t + 52(91_11912951,t + Mo1t) + e
= [Panoir — 04,14+ €
Uy = Y — Z?z,t
= [z + (B2 — BQ)xQ,t + €
= [z + (B2 — E[gz] - (5;;2)$2,t + e

= [1(Qn Qowoy + may) + (B2 — (B2 + Qg Q261) — 03, )T + €

= 617712,15 — (SBQZL’QJ + €.

with expected values given as

E[ﬁt|l’1,t,$2,t] = 527721,t

E[@t|$1,t7$2,t] = Oima-

The expected values of the single models’ forecast errors correspond to the idiosyn-

cratic component of the missing variable weighted by its share in the DGP. Assuming

unbiased forecast errors, the MSEs of the single forecast equations are calculated as
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MSE, = Ela}|z1,, 2]
= x17t(231x1,t + 5391721 + Qe
= T7'Qc + B30, + Qee
MSE, = E[}|a1,1a,]
= 9112,t952x2,t + 5%97712 + Qe

= T7'Qc + B2, + Qee.

and depend on the sample size, the variance of the noise in the DGP as well as on
the variance of the idiosyncratic component of the missing variable weighted by its
squared share in the DGP.

1.B.2 PF Forecast

Assuming exogenously given weights w, the pooled forecast can be derived as
Upry = Wi+ (1 —w)fay

= w(Y1s — Yo,t) + Yo

This translates into a PF forecast error of
eprt = Yt — Yefu
= (Z/t - 372,16) - w(@l,t - 3?2,1‘,)
= O —w(y — U — Yy + 0y)
= O+ w(t — 0)
= U+ wil; — wiy
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Inserting the forecast errors of the single models, the corresponding MSE of pooling

of forecasts can be calculated as

MSEpr = Elédp,|v1720]

= E[((wi) + (1 — w)d,)?]

= E[(w(Bamars — 6,210 + ) + (1 — w)(Brmnas — 6,22 + €1))]

= Qe + E[(w(Banars — 0y 1) + (1 — w)(Briag — 0, 72¢))?]

= Qe + E[(w?(Bamars — 6, 21.0)% + (1 — w)*(Brmays — 5, 22,4)%+
2w(1 — w)(Bamare — 0, 1.6) (Bimas — 6;,721))]

= Qe + W E[(Banrs — 0, 14)%] + (1 — w)?E[(Brmiag — 0, w2) ]+
2w(1 = w)E[(Bana1e — 63, 14) (Brinze — 6, w24)]

= Qe + WH(T 7 Qee + F3,,) + (1 — w) (T Qee + B7,)+
2w(1 — w) E[Banaemzi 1 + 0y, 21,402,407, ]

= Qe + T Qee(w? + (1 — w)?) + 2w(1 — w) E[6;, 21,402,46;, | + w55,

+(1 - w)2 %sz +2w(1 — w>ﬁ2E[7l21,t7]12,t]51

1.B.3 PI Forecast

Pooling of information corresponds to a forecast model that incorporates all relevant

explanatory variables. Hence, the PI forecast equation is given as
Yprp = @1T1¢+ 2T+ €pry

= AX, +epry.
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The estimated coefficients are defined as

&1 — E[&l]—i—&“

dy = FElas] + da,

and their expected values equal the true parameters of the DGP, i.e.

Ela] = B
Elas] = po
E[A] = 3.

This translates into a forecast error of
épre = (B1— 1)z + (B2 — Go)xoy + €
= (B-AX; +e
= (B E[A] - 30,)X; +e

= _5AXt ‘|‘ Ct

with an expected value given as

Eleprilzie, woy] = 0
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The corresponding MSE can be written as
MSEp; = E[éb;|w1s, Tay]

= E[(=0,X)(=0,X:)] + Qec
= E[XQ5, Xi{] + Qee
— B[X,X]) + O
= E[Xy(T7' Q%) X{] + Qee
= EX: QA X)T Qe + Qee
= tr( QN EIXIX )T Qee + Qee
= tr( Qe Vxx) T Qe + Qee
= tr(li) T Qe + Qee
= kT 'Qu + Qee
= 27710 + Qee

= Qee(l + %)
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1.C Empirical Study

1.C.1 Time Series Characteristics

DA1l5 Food products and beverage
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Figure 1.15: Ifo branch level survey and annual growth rate of production
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DF Coke, refines petroleum
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DJ28 Fabricated metals
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Notes: The figures show Ifo Business Climate, Business Situation and Business Ezxpectations for
the 22 branches of manufacturing industry (thick line, LS) against the annual growth rate of
industrial production in the corresponding industry (thin line, RS).
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1.C.2 Robustness Checks

Business Climate
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Business Expectations
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Notes: The solid lines represents the cross—correlations of HP detrended IPI with the survey series
for manufacturing industry and the dotted lines give the correlations to the 22 branch series.

Figure 1.16: Cross—Correlation of Ifo surveys and HP detrended IPI
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Figure 1.17: Scatter plot of relative MSEs against univariate benchmark model for

annual growth of IPI (h = 1).
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Figure 1.18: Scatter plot of relative MSEs against univariate benchmark model for

annual growth of IPT (h = 2).
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Figure 1.20:
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\ I h=0 h=1 h=2 |
\ [ BC] BS|] BE|BS/BE[ BC|[ BS| BE|BS/BE] BC| BS| BE]|BS/BE]
\ AR 209] 209] 209] 209] 200] 200 200] 200] 205] 205] 205] 205

Manufacturing | 088 076 100 080 098] 098] 101 100] 098] 098] 100[ 098
(1.67) | (2.01) | (0.76) | (1.87) | (0.97) | (1.16) | (041) | (0.80) | (1.03) | (1.16) | (0.71) | (1.01)

DAI5 || 1.00| 098] 105| 100| 1.02[ 099 106| 105 106 10| 107| 107
(0.40) | (1.49) | (-0.96) | (0.56) || (0.50) | (1.16) | (-0.34) | (-0.40) | (-0.72) | (-0.77) | (-0.48) | (-0.64)

DAIG || 1.07| 104| 105| 108| 110| 1.03| 104| 107 1.03] 10| 103] 103
(0.18) | (0.31) | (-0.96) | (-0.12) || (-0.48) | (0.52) | (-0.19) | (0.06) | (0.13) | (0.48) | (-0.03) | (0.26)

DBI7 || 099 | 100 101| 1O01| 097 099] 099 L1OL| 099] 104 099] 099
(1.33) | (0.81) | (0.60) | (0.70) | (1.76) | (1.38) | (0.97) | (0.53) | (1.49) | (-1.17) | (1.26) | (0.99)

DBI8 | 096 102 096] 097[ 102] 097 102] 1.02] 098] 095 099] 0.99
(1.18) | (-1.38) | (1.18) | (0.90) || (-1.05) | (1.19) | (-1.54) | (-1.04) | (1.20) | (1.56) | (0.83) | (0.63)

DC| 099 1.00[ 1OI|[ 099 1.00| L1o01| 103| LOL| 099] 103 098] 101
(0.64) | (0.73) | (0.03) | (0.86) | (0.10) | (-1.04) | (-1.12) | (-0.47) | (0.61) | (-1.49) | (1.30) | (0.28)

DD | 108| 107] 1.05| 109[ 1.02] 1.03| 1.03| 100] 098] 1.02] 1.01| 1.03
(-0.37) | (017) | (-0.16) | (0.85) || (-0.43) | (0.06) | (0.29) | (1.43) || (1.18) | (0.13) | (-1.36) | (-0.02)

DE21 | 092] 094 095 096 098] 1.02[ 098] 10I| 101[ 100| 1L02| 1.00
(2.35) | (2.11) | (1.83) | (1.85) | (1.36) | (0.29) | (L41) | (0.91) | (0.49) | (0.59) | (0.41) | (0.57)

DE22 | 102] 102 100[ 100[ 087] 094] 102] 096[ 084] 092] 098] 091
(-0.04) | (-2.10) | (0.48) | (0.35) | (2.53) | (2.10) | (0.60) | (1.41) || (2.33) | (1.99) | (1.10) | (2.01)

DF| 093] 098] 101| 096] 094] 096| 100[ 098] 1.00| 10r| 1.01] 099
(1.51) | (1.81) | (0.06) | (1.20) | (1.43) | (2.25) | (0.69) | (1.41) | (044) | (-1.17) | (0.37) | (0.80)

DG 097] 097 104| 103] 1L02| 10I| 104 103| 1Lod| 1od4| 100| 1.04
(0.94) | (1.22) | (-0.83) | (0.07) | (0.01) | (0.12) | (-1.79) | (-0.42) | (-0.74) | (-1.67) | (0.02) | (-0.82)

DH| 085| 082] 093] 087[ 098] 103| 095 096] 097 0.99] 097] 0.95
(1.67) | (1.82) | (1.40) | (1.47) | (0.77) | (0.51) | (1.27) | (1.04) | (0.87) | (0.92) | (0.84) | (1.08)

DI|| 1.07| 1.02] 102] LIl| 104 108 100[ 110 102 105| 103| 107
(0.66) | (0.98) | (1.61) | (0.31) | (1.24) | (-0.78) | (1.81) | (0.88) | (1.64) | (-0.21) | (0.88) | (0.76)

D27 || 089] 093] 095[ 088 092 098] 093] 095 1.04] 1.00| 1.04| 1.09
(1.47) | (1.03) | (1.67) | (1.27) || (1.39) | (1.00) | (1.93) | (L.75) || (-0.19) | (0.56) | (1.17) | (0.59)

DJ2s || 08| 073| 091 074| 093] 096[ 093] 089 1Lo4[ 1.03| 099] 1.01
(157) | (179) | (1.59) | (1.80) | (1.39) | (1.14) | (1.61) | (1.59) || (-0.71) | (-1.76) | (1.03) | (0.45)

DK || 08| 085] 093] 087[ 094 095] 095 095 093] 095 097] 095
(1.77) | (2.08) | (1.36) | (1.64) | (1.49) | (1L.77) | (L.18) | (1.49) | (1.42) | (1.65) | (1.06) | (1.45)

DL30 | 099] 101| 100| 10r] 1o0| 101| 100| 103] 10| 103] 101 104
(1.24) | (-3.02) | (0.26) | (-0.41) || (-0.04) | (-0.74) | (0.25) | (-0.24) || (-1.86) | (-1.05) | (-0.91) | (-2.12)

DL3L|[ 094] 090| 099| 093] 098] 098] 101 098] 098] 097 098] 101
(1.56) | (2.53) | (1.09) | (2.12) | (0.93) | (1.27) | (L.19) | (1.08) | (0.86) | (0.76) | (1.39) | (0.72)

DL32 | 089] 092| 099| 090 102| 100| 102[ 103[ 099] 102[ 099] 0.99
(1.64) | (1.10) | (1.18) | (1.41) || (-0.17) | (-0.19) | (0.20) | (-1.85) | (1.10) | (-0.76) | (0.98) | (1.02)

DL33 | 078] 092 083| 084| 095 1.02| 097 10| 095| 103 096| 101
(1.87) | (1.85) | (1.65) | (1.71) || (1.63) | (0.36) | (1.20) | (0.76) | (1.69) | (0.22) | (1.75) | (1.03)

DM34 [ 08| 080| 100] 08| 097 095 1.02| 099 096] 093] 098] 095
(1.62) | (1.64) | (0.92) | (1.57) || (1.29) | (1.60) | (-0.05) | (1.32) | (1.33) | (1.53) | (0.94) | (1.48)

DM35 | 099 095] 10| 094 106] 102] 103 104 103] 102 LOI| 1.09
(0.94) | (1.67) | (0.76) | (1.68) || (-0.41) | (-1.73) | (0.49) | (-1.84) | (0.26) | (-0.79) | (1.05) | (-0.36)

DN36 [ 0.92] 100 098] 098] 097 1.01] 099] 099| 1.00[ 1.00| 097| 098
(1.89) | (1.30) | (1.00) | (1.29) | (1.45) | (0.71) | (0.97) | (1.23) | (0.96) | (0.93) | (1.22) | (1.49)

Notes: The first line reports the absolute MSE values for the univariate benchmark process. For the
Ifo indices, we report the relative MSE values relative to the benchmark. The figures in parentheses
represent the t—statistics of a one-sided test for predictive accuracy for nested models as proposed
by Clark and West (2007). A t-statistic greater than +1.28 (10 percent significance level) or +1.65
(5 percent significance level) indicates that the unrestricted model which additionally contains Ifo
survey series yields a significant smaller MSE than the autoregressive benchmark model. The
standard errors are heteroscedastic and autocorrelation robust (Newey—West).

Table 1.6: Relative MSE of Ifo indices against AR benchmark for month—on—month
growth of IPI
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‘ Pooling of Information (PI) ‘ h=0 ‘ h=1 ‘ h=2 H Pooling of forecasts (PF) ‘ h=0 ‘ h=1 ‘ h=2 ‘
\ | BC] BC|] BC] | BC] BC| BC|
Ex DA15 DA16 0.98 1.00 0.99 Mean 1.00 1.03 1.01
(1.79) | (-0.05) | (0.65) (0.06) | (-1.02) | (-0.21)
PC (r=1) 1.09 1.11 1.03 Median 1.00 1.03 1.01
(-1.14) | (-1.40) | (-0.50) (-0.01) | (-1.00) | (-0.22)
PC (r=2) 1.10 1.02 1.05 Mean trimmed 5 % 1.00 1.03 1.01
(-1.39) | (-0.45) | (-0.89) (0.04) | (-1.00) | (-0.20)
PC (r=3) 1.10 1.03 1.08 Mean trimmed 10 % 1.00 1.03 1.01
(-1.49) | (-0.65) | (-1.47) (0.02) | (-0.99) | (-0.20)
PC (r=4) 0.97 0.99 1.06 BMA K=1 1.00 1.03 1.01
(0.68) | (0.26) | (-1.33) (0.07) | (-1.01) | (-0.21)
PLS (r=1) 0.98 0.99 0.99 BMA K=2 1.00 1.03 1.01
(0.91) | (0.68) | (0.59) (0.07) | (-1.01) | (-0.21)
PLS (r=2) 1.02 1.13 1.04 BMA K=4 1.00 1.03 1.01
(:0.32) | (-1.35) | (-0.55) (0.09) | (-1.01) | (-0.21)
PLS (r=3) 0.98 1.10 1.05 BMA K=10 1.00 1.03 1.01
(0.21) | (-1.61) | (-0.61) (0.12) | (-1.00) | (-0.21)
PLS (r=4) 0.98 1.09 1.05 MSE K=1 1.00 1.03 1.01
(0.17) | (-1.54) | (-0.64) (0.10) | (-1.03) | (-0.21)
OPI (v =0) 0.99 0.97 1.02 MSE K=2 1.00 1.03 1.01
(0.30) | (0.70) | (-0.32) (0.13) | (-1.04) | (-0.20)
OPI (v = 10°) 0.99 0.94 1.04 MSE K=4 0.99 1.03 1.01
(0.14) | (1.41) | (-0.59) (0.20) | (-1.06) | (-0.18)
OPI (v = 10Y) 1.00 0.97 1.06 MSE K=10 0.99 1.03 1.00
(0.00) | (1.12) | (-0.70) (0.40) | (-1.11) | (-0.13)
OPI (¢ = 10%) 0.96 0.97 1.08 Predictive Least Squares 1.00 1.03 1.01
(1.11) | (1.68) | (-1.73) (0.11) | (-1.00) | (-0.20)
OPI (=10%) | 099 | 098| 1.01| Disc MSE (d=0.95, K=1) | 1.00| 1.02| 101
(1.27) | (1.57) | (-0.55) (0.15) | (-0.99) | (-0.18)
OPI () =10%) | 1.00| 099| 1.00| Disc MSE (d=0.95, K=2) | 099 | 1.02| 1.01
(0.12) | (1.33) | (0.25) (0.23) | (-0.93) | (-0.15)
OPI (¢ = 10%) 1.00 0.99 1.00 Disc MSE (d=0.95, K=4) 0.99 1.01 1.00
(:0.16) | (1.25) | (0.35) (0.38) | (-0.47) | (-0.10)
OPI (¢ = 10) 1.00 0.99 1.00 Disc MSE (d=0.95, K=10) 1.00 1.02 1.01
(:0.19) | (1.24) | (0.36) (0.12) | (-1.00) | (-0.18)
LASSO (r=1) 1.07 1.07 0.98 Disc MSE (d=0.90, K=1) 1.00 1.02 1.01
(-1.07) | (-1.48) | (0.73) (0.18) | (-0.97) | (-0.15)
LASSO (r=2) 1.00 1.06 0.98 Disc MSE (d=0.90, K=2) 0.99 1.02 1.00
(-0.05) | (-1.35) | (0.83) (0.29) | (-0.89) | (-0.10)
LASSO (r=4) 0.99 1.05 0.96 Disc MSE (d=0.90, K=4) 0.99 1.00 1.00
(0.26) | (-1.28) | (1.46) (0.44) | (-0.23) | (-0.04)
LASSO (r=6) 0.98 1.01 0.94 Disc MSE (d=0.90, K=10) 0.97 1.00 1.01
(0.78) | (-0.52) | (2.06) (0.75) | (0.11) | (-0.14)
LASSO (r=8) | 007| 1.01| 094 Rank (K=1) | 0.6 | 1.00| 102
(0.82) | (-0.49) | (2.11) (0.81) | (0.08) | (-0.36)
LASSO (r=10) | 098 | 1.02| 0.93 Rank (K=2) | 096 | 099 | 1.03
(0.63) | (-0.69) | (2.04) (0.79) | (0.15) | (-0.45)
Rank (K=4) 0.96 0.99 1.04
(0.78) | (0.19) | (-0.48)
Rank (K=10) | 0.95| 104| 1.05
(0.84) | (-0.57) | (-0.91)

Notes: We report the relative MSE values for the PI and PF approaches compared to the economi-
cally weighted sectoral index as benchmark. The figures in parentheses represent the t—statistics of
a one—sided test for predictive accuracy for non—nested models as proposed by Harvey et al. (1997).
A t—statistic greater than +1.28 (10 percent significance level) or +1.65 (5 percent significance level)
indicates that the tested approach yields a significant smaller MSE than the benchmark.

Table 1.7: Relative MSE of PI and PF approaches against economically weighted
benchmark for month—on-month growth of IPI
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‘ Branches (two digits) H Relative Weights H Optimized Weights ‘

h=0 | h=1| h=2 || 5 % threshold
DA15 Food products and beverage 8.5 2.8 | 148 2.3 0.0
DA16 Tobacco Products 0.4 0.0 0.1 6.2 0.0
DB17 Textiles 1.6 04| 4.7 4.0 0.0
DB18 Wearing apparel 1.0 3.6 | 0.1 2.2 0.0
DC Leather and Leather products 0.3 3.8 | 0.8 1.7 0.0
DD Wood and wood products 2.0 06| 1.8 2.8 0.0
DE21 Pulp, paper and paper products 2.3 09| 7.0 0.6 0.0
DE22 Publishing, printing and reproduction of recorded media 3.0 1.2 19 2.8 0.0
DF Coke, refines petroleum 0.6 1.0 1.8 9.2 0.0
DG Chemicals and chemical products 11.0 4.8 | 8.6 4.1 0.0
DH Rubber and plastic products 5.1 54| 5.0 1.9 7.9
DI Non-metallic mineral products 4.8 21| 36 3.5 0.0
DJ27 Basic metals 4.7 29| 75 2.0 0.0
DJ28 Fabricated metals products 9.1 9.7 | 11.0 7.2 14.1
DK Machinery and equipment 15.1 129 | 14.1 16.6 18.8
DL30 Office machinery and computers 1.1 21| 0.0 11 0.0
DL31 Electrical machinery 7.8 87| 49 1.4 12.6
DL32 Radio, television and communication equipment 2.1 86| 0.2 0.9 12.6
DL33 Medical, precision and optical instruments 3.2 8.0 4.0 0.5 11.7
DM34 Motor vehicles 12.3 154 | 49| 16.0 224
DM35 Other transport 0.8 42| 0.3 1.1 0.0
DN36 Furniture 3.1 0.8 3.0 12.0 0.0
relative MSE 0.92 | 1.02 | 0.99

Notes: The reported figures are the mean weights attributed to the 22 branches in manufacturing
by the OPI algorithm over 108 forecasts.

Table 1.8: Average OPI weights for month—on—-month growth of IPI
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Figure 1.22: Scatter plot of relative MSEs of PI and PF against economic weighted

Branches (two digits) H Relative Weights H

Mean Coefficients

h=0 | h=1 | h=2

DA15 Food products and beverage 8.5 241 00| 0.0

DA16 Tobacco Products 0.4 00| 08| 0.0

DB17 Textiles 1.6 04| 1.1| 0.0

DB18 Wearing apparel 1.0 0.0 0.0 0.0

DC Leather and Leather products 0.3 -0.2 1 0.0 0.0

DD Wood and wood products 2.0 0.0 0.0 0.0

DE21 Pulp, paper and paper products 2.3 72| 40| 0.0

DE22 Publishing, printing and reproduction of recorded media 3.0 0.1 0.0 1.0
DF Coke, refines petroleum 0.6 02| 05| 0.0

DG Chemicals and chemical products 11.0 -0.5| 00| 0.0

DH Rubber and plastic products 5.1 0.0 04 34

DI Non-metallic mineral products 4.8 0.0 0.0 09

DJ27 Basic metals 4.7 1.0 09 0.8

DJ28 Fabricated metals products 9.1 4.6 | 0.7 1.1

DK Machinery and equipment 15.1 0.0 | 5.8 10.7

DL30 Office machinery and computers 1.1 -0.7 0.0 0.0

DL31 Electrical machinery 7.8 0.0 0.0 0.0

DL32 Radio, television and communication equipment 2.1 0.0 0.0 0.0
DL33 Medical, precision and optical instruments 3.2 0.0 0.0] 33
DM34 Motor vehicles 12.3 -04 1 0.0 0.4

DM35 Other transport 0.8 0.0 0.0 0.0

DN36 Furniture 3.1 04| 23 0.0

Notes: The reported figures are the mean coefficients for the 22 branches in manufacturing over
108 estimations of the lasso regression.

Table 1.9: Average lasso coefficients for month—on—-month growth of IPI
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Notes: The lines represent the weights attributed to the branch level indices at the different forecast
origins t =1,...,108 for h = 0.

Figure 1.23: OPI weights for month-on—-month growth of IPI (h = 0)
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Notes: The lines represent the coefficients attributed to the branch level indices at the different
forecast origins t = 1,...,108.

Figure 1.24: Lasso coefficients for month-on—-month growth of IPI (h=0)
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1.C.3 PLS Algorithm

Create the matrices X = X and Y = Y. X and Y are column centered and
normalized. Starting the algorithm, the Y score vector u and the X weighting
matrix w are initialized as v = Y and w; = X'u and we set i = j = 1. The
algorithm is given as:

1. Step w = wj; (initialize the X weight vector)

2. Step z = Xw (compute the X score vector)

3. Step ¢ =Y’z (compute the Y loadings vector)

4. Step u = Y¢ (compute the Y score vector)

5. Step w; = X'u (update the X weight matrix)

If |w—wj| > tol, set j = j+1 and go back to 1.Step. Else, continue to 6.Step as the

inner algorithm has converged and two new score vectors z and u have been found.

6. Step p = (2'2)"'2’X (compute the X loading vector from relationship X = pz)

7. Step b= (2'2)"'2'Y (compute the Y coefficients that explain Y as linear com-
bination of the already found factors z Y = bz2)

8. Step X; = X — zp/ (adjust X for the already found factors)

9. Step Y; =Y — zb¢ (adjust Y for the already found factors)

If |Y;| > tol, set i =i+ 1 and set Y = Y; and X = X; and go back to Step 1. Else,
the outer algorithm has converged and all score vectors have been found.
The dependent variables Y can be predicted using the multivariate regression for-

mula as Y = CBZ = X Bpyg with Bprg = P, BC where P! is the Moore-Penrose

pseudo-inverse of P’.
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CHAPTER 1: FORECASTING EURO AREA REAL GDP




Chapter 2

Forecasting Euro Area Real GDP:
Optimal Pooling of Information

This paper proposes a new method of forecasting euro area quarterly real GDP that
uses area—wide indicators, which are derived by optimally pooling the information
contained in national indicator series. Following the ideas of predictive modeling, we
construct the area—wide indicators by utilizing weights that minimize the variance
of the out—of-sample forecast errors of the area—wide target variable. In an out—of—
sample forecast experiment we find that our optimal pooling of information (OPI)

approach outperforms alternative forecasting methods in terms of forecast accuracy.

81
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2.1 Introduction

Since Eurostat publishes the first official release of euro area quarterly real GDP
several weeks after the end of each quarter, an early assessment of the actual state
of the economy is appreciable. Timely information is contained in business cycle
indicators — e.g. industrial production, confidence surveys or composite indicators
— that are more promptly available. Forecasts of euro area quarterly real GDP
are frequently derived by means of bridge models that explicitly incorporate such

business cycle indicators.

In the euro area, business cycle indicators are typically collected at a national level
by national statistical agencies or national survey institutes. In such a data-rich
environment professional forecasters who aim at predicting euro area quarterly real
GDP, can choose between two forecast strategies: pooling of forecasts and pooling
of information. In the case of predicting euro area wide aggregates, pooling of
forecasts uses national indicator series as predictors in the bridge model equations.
One strategy is to generate a number of forecasts of euro area real GDP growth rates
by employing various parsimonious models and to combine them to a single forecast
of the area—wide target variable. The optimal weighting scheme thereby takes the
correlations of the forecast errors of each model into account. Alternatively, real
GDP growth rates of each euro area member country can be forecasted separately
and then be aggregated to a single euro area real GDP growth rate by using the
relative economic weight of each member country as proposed by Marcellino et al.
(2003).

Pooling of information generates a projection of euro area real GDP growth rates
by using area—wide indicators as predictors that combine the information of the
national indicators. Thus, the number of regressions is reduced to one. The sim-
plest strategy is to employ area—wide indicators which are provided by Eurostat or
other institutions — e.g. the European Commission or the OECD — and which are
economically weighted averages of national indicators. Alternatively, professional
forecasters might combine the set of national information by extracting common

dynamic factors or principal components (see e.g. Forni et al. (2000) and Stock and
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Watson (2002b)).

This paper proposes the OPI algorithm as a new method of forecasting euro area
quarterly real GDP that uses area-wide indicators, which are derived by optimally
pooling the information contained in national indicator series. Following the ideas of
predictive modeling, we construct the area—wide indicators by utilizing weights that
minimize the MSE of the aggregate target variable. By allowing a pre—aggregation
of individual information to national indicator series, the optimal pooling of infor-
mation problem is reduced to a manageable number of variables, which avoids the
construction of a “super model” (Timmermann, 2006) whose computation is often

deemed to be prohibitively costly or even impossible.

To evaluate the forecast performance of the OPI approach for the euro area, we fo-
cus on three business cycle indicators, which are all available at both the area—wide
and the national level: the Industrial Production Index (IPI), the Economic Senti-
ment Indicator (ESI) of the European Commission and the CESifo World Economic
Survey (WES) indicator for the euro area. The forecast models are specified as
Autoregressive Distributed Lag (ADL) models, which are estimated by employing
a model averaging strategy in order to reduce the problems associated with select-
ing a certain lag length. In a first step, we evaluate the potential gain of the OPI
approach in a forecast exercise using ex ante information. Our main result is that
optimally pooled area—wide indicators potentially reduce the out—of-sample mean
squared forecast errors for euro area quarterly real GDP growth by 25% on average
compared to economically weighted indicators. An analysis of the optimal weight-
ing schemes shows that only a limited number of national indicators is attributed a
weight larger than zero. As we find that the optimal weights derived from shorter
optimization windows significantly vary over time, we introduce a stabilization factor

to make our approach feasible in practice.

In a second step, we evaluate the applicability of the OPI approach in real-time by
employing a pseudo out—of-sample forecast experiment, in which optimally pooled
area—wide indicators are computed using only ex—post information that would have
been available in real-time. The optimized weights are derived from a recursively

growing optimization window, which is then excluded from the forecast evaluation
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process. The performance of OPI is compared to a number of alternative forecast
methods, which include pooling of forecast and competing pooling of information
strategies. We find that the OPI approach generally outperforms the alternative
forecast methods in terms of forecast accuracy as measured by the out—of-sample
forecast MSE.

The remainder of the paper is structured as follows. Section 2.2 reviews the tradi-
tional forecast strategies. In Section 2.3 we introduce our OPI approach. In Section
2.4 we present the forecast experiment. We describe the forecast models applied,
introduce the data set and discuss the empirical results, which refer to (i) the use
of ex—ante information and (ii) to the use of ex—post information. Section 2.5 sum-

marizes and concludes.

2.2 Review of Traditional Forecast Strategies

For an overview of the traditional forecast strategies we introduce the following
notations. Suppose we forecast the aggregate target variable Y, — i.e. euro area
quarterly real GDP growth — using a broad set of disaggregate information variables,
denoted by X ;, where ¢ is time and ¢ refers to the disaggregate unit, i.e. the member
states of the currency area. The number of disaggregate units is given by K. The
data sample that is available for the forecast experiment ranges from t =1,...,0,.
The forecast model is estimated recursively over the estimation window [1, T, with

T gradually increasing from ©g to O, — 1, where 1 < ¢ < Oy — 1.

The current quarter forecasts of the area—wide target variable, denoted by )A/TH‘TH,
are computed for 7'+ 1 using the national information already available at T+1.! As
T increases from Oy to ©, — 1, the maximum number of out—of-sample forecasts is
given by O3 —0,. In the first part of our experiment, the performance of the different
forecast strategies is evaluated by computing the MSE for each model over the total
out—of-sample window [©g+ 1, O3] on the basis of the out—of-sample forecast errors

Eryir+1 = Y741 — Yriyry1. In the second part of our experiment, we mimic a

1Since in our set—up the current quarter of the target is predicted, the literature often uses the
notion “nowcast” instead of forecast (Domenico et al. (2006)).
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forecast situation in real time and hence optimize the different forecast models only
on basis of ex post information that would have been available to the forecaster.
We thus separate a so—called optimization window of size [T+ 1, ©4] such that the

evaluation period is reduced to [©; + 1, ©y].

Figure 2.1 summarizes the time structure of the estimation, optimization and fore-

cast evaluation windows.

forecast
estimation optimization evaluation
window window window
A Al N
- N N/ A
f H H f t
1 T . 0,
€[0,,0,-1]

Figure 2.1: Time structure of the estimation and forecasting procedures I

Notice that in the following we use a static structure of the forecasting models to
keep the review as simple as possible. Later in the empirical part of the paper, we

allow for more dynamics.

2.2.1 Pooling of Forecasts

Pooling of forecasts summarizes the combination of two or more individual forecasts
to generate one single, pooled forecast. The idea of improving the accuracy of
predictions regarding a certain target variable by combining the forecasts of different
models was first proposed by Bates and Granger (1969) and mainly follows the ideas
of portfolio optimization and diversification gains. A large number of theoretical and
empirical studies — see e.g. Timmermann (2006) and Stock and Watson (2004) — have
shown the superiority of combined model based predictions compared to individual

models.?

In the context of forecasting euro area quarterly real GDP, three strategies have been

2For a more detailed description of different pooling of forecast strategies, see Section 1.3.5 in
Chapter 1.
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proposed for combining single forecasts, which are derived from national indicator
series using a multiple equation set—up. The crucial issue in all strategies is the

determination of an adequate weighting scheme.

2.2.1.1 Optimal Combination of Area—Wide GDP Forecasts

In the first strategy the following forecasting model is estimated for each of the K

national indicators over the period ¢t =1,...,T"
}/t =0 + Cz'Xi,t + €i,ty (21)

where 0 is a constant term, ¢; denote parameter matrices and €it are error terms.
The K forecasts resulting from the models are then linearly combined to a single
forecast for the area—wide target variable according to:

K
Yrigra = ZinTZ+1|T+1, (2.2)

i=1
where the superscript ¢ attached to SA/TH‘TH denotes the forecast of the area—wide

target variable obtained from the model using the national indicator X ;.

The optimal weights w; of the single forecasts, and hence the weights attributed to
each model, depend on the model’s out—of-sample performance. Under the assump-
tion that the forecasts are unconditionally unbiased, the Oy — Oy out—of-sample
forecast errors of model 1, é\iTJrHTH = Yrg — Y/{;JFHTH with T" = Oy, ...,0s — 1,
are distributed around zero with variance o7 and covariance p;jo;0; for j =1,..., K,
where p;; denotes the correlation coefficient of the forecast errors from the forecast
models 7 and j. Defining w as the K x 1 vector containing the weights of each
model and 3~ as the K x K variance—covariance matrix of the out—of-sample fore-
cast errors, the optimal weights are obtained from minimizing the variance of the

combined out—of-sample forecast error:
w? = arg min [wIng} , (2.3)

which gives:
_ iy
= T w11 -

opt

w (2.4)



2.2. REVIEW OF TRADITIONAL FORECAST STRATEGIES 87

A major benefit of the combination of forecasts approach is the possibility of in-
cluding a large number of candidate regressors in forecasting a certain target series
without running into the problem of overparametrization or overfitting. However,
as the data generating process is typically unknown, the need to specify a large
number of parsimonious regression models may lead to high specification errors
(Lutkepohl, 1987). The major challenge of the approach is the estimation of the
variance-covariance matrix 3~ Assuming linear relationships, the optimal weights
can be estimated by ordinary least squares, regressing realizations of the target vari-
able Y; on the K-vector of forecasts Y 1741 and the constant term (Granger and
Ramanathan, 1984). However, for the computation of the optimal weights problems

arise if the number of models K becomes too large.

2.2.1.2 Equally Weighted Combination of Area—Wide GDP Forecasts

A simplification of the optimal combination approach is the use of equal weights,
which particularly solves the computation problem. Concerning the forecast perfor-
mance of equally weighted combinations, Timmermann (2006) derives conditions,
under which the simple average of a number of forecasts outperforms single model
based forecasts as well as more elaborated weighting schemes. Among others, Stock
and Watson (2004) provide evidence for the superiority of the equal weighting scheme
in a broad empirical application, thereby confirming the so—called forecast combina-

tion puzzle.

2.2.1.3 Aggregation of National GDP Forecasts

Following Marcellino et al. (2003) the third strategy is to aggregate national real
GDP forecasts to a single euro area real GDP forecast. The forecast model is
estimated for each member country of the monetary union ¢ = 1,..., K over the
period t =1,...,T"

Yie=0i+cXip + €y, (2.5)
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and forecasts of euro area real GDP growth are generated by computing weighted

averages of the national predictions:

K K K
Yrpire = > wiYirprer = Y wid + > wiei X, ri1- (2.6)
i=1 i=1 i=1

The economic weights w; reflect the relative importance of country ¢ in the monetary

union (e.g. GDP shares).

In contrast to the optimal combination approach, the weighting of national informa-
tion X;; is not derived from the minimization of the variance of the out-of-sample
forecast error, but is influenced by both, the in—sample fit of the disaggregate model
for country 7 and the economic weight of country ¢ (see equation (2.6)). As before,
the approach hardly suffers from the problem of overfitting. However, due to the
need to specify of a large number of parsimonious models, it faces the drawback of

larger specification errors when the data generating processes are unknown.

2.2.2 Pooling of Information

Pooling of information generates a projection of euro area quarterly real GDP by
using area—wide indicators as predictors that combine all national information. In
contrast to the multi—equation approaches of forecast pooling, pooling of information
reduces the number of regressions to one and — as a consequence — the problem of
running into specification errors is reduced. The crucial issue of the pooling of
information approach is again the weighting scheme applied to derive area—wide

indicators from the national indicator series.3

2.2.2.1 Economic Weights

A straightforward strategy is to use area—wide indicators officially provided by sta-

tistical agencies as regressors of the forecasting model:

}/;5 =9 + CXt + Et, (27)

3For a more detailed description of different pooling of information strategies, see Section 1.3.4
in Chapter 1.
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where t = 1,...,T. The area—wide indicator X, is computed as a weighted average

of national indicators:

K
Xy =Y wiXiy, (2.8)
i=1

where the w;’s typically reflect country ¢’s relative economic weight in the currency

area.

Employing economic weights to construct a single aggregate indicator series implies
that these weights are exogenously given. Thus, any correlation between the national
indicator series is ignored. Furthermore, the approach does not take into account
any correlations between the resulting indicator series and the area—wide target

variable.

2.2.2.2 OLS Weights

The use of OLS weights circumvents this drawback. Estimating the forecast model:

K
Y;g =9 + ZCiXi,t + &¢ (29)

i=1
over the period t = 1,...,T, the weighting of national information is given by

the point estimates for ¢;, which are derived from the minimization of the in—sample
residuals. Thus, the in—sample fit of this approach with respect to the aggregate tar-
get variable must be superior to a multiple equation approach (see Section 2.2.1.3).
The problem of this approach is, however, that with an increasing number of dis-
aggregate information variables K, the regression model more likely suffers from
overfitting. As overparametrization leads to higher estimation uncertainty in finite
samples, the out—of-sample performance of the OLS weighting approach is likely to

worsen.

2.2.2.3 Factor Models

The use of factor models attempts to mitigate the problem of parameter prolifera-
tion. While the forecasting model has the same structure as in equation (2.7), it is

preceded by a factor model that pools disaggregate information over the estimation
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window [1,T] to a common factor X;, which is used to forecast the target variable
Y.

The intuition behind factor models in the context of macroeconomic forecasting is
that the co-movement in economic time series, in our case the co-movement in the
national indicator series, is arising largely from a small set of common factors or even
from a single common factor. A number of estimation techniques have been applied
in the literature. The simplest method of constructing latent factors proposed by
Stock and Watson (2002b) is the static principal components analysis (PC). In our
case, the single common factor thereby corresponds to the first principal component,
which accounts for as much of the variability in the disaggregate indicators as possi-
ble. The weights w; are the squared elements of the eigenvector, which is associated
with the first principal component. If the resulting common factor explains a large

part of the variance of X, then X, is attributed a high weight.

In the context of business cycle analysis a useful extension of the static version
of the factor model is the generalized dynamic factor model of Forni et al. (2000),
which takes into account phase differences between disaggregate indicator time series
by appropriately weighting leading and lagging variables. The advantage of factor
models is that information of a possibly large set of indicators is pooled by taking
into account the in—sample covariances between the candidate regressors. The main
drawback of common factor models is that the construction of the common factor
ignores any correlation between the disaggregate indicator variables X; and the
area—wide target series Y;. Thus, the weighting of national information only reflects
in—sample correlation patterns between the national indicators and is independent

of the forecasting model.

2.3 Optimal Pooling of Information

The OPI approach forecasts euro area quarterly real GDP by area—wide indicators
that are constructed from national indicator series using optimal weights, which

minimize the MSE of the area—wide target variable.* The procedure involves a non-—

4For a more detailed description of the algorithm, see Section 1.3.4.6 in Chapter 1.
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linear numerical optimization routine, which accounts for correlations between both,

the national indicator series and the area—wide target series.

The determination of the optimal weights includes the following steps. We begin
with an initial guess for the weights w = (w1, ...,wx) . We then compute the area—
wide indicator X; according to equation (2.8) and estimate equation (2.7) over the

period t = 1,...,T. Finally, we compute the out—of-sample forecasts:

K
YT+1|T+1<w> =0+ 52 wi X1 = 0 + 6XT+1|T+1w7 (2.10)
i=1

where X7 741 is a K X 1 vector containing the national indicators at time 7"+ 1.

The optimal weights then result from a minimization problem given as:

1 &

w? = argmin|— > Yrr = Y,)2 44, (2.11)
“ N T=T+1
K
i=1
where
1 E )
b = Q/J? > (wie, — wie-1)° (2.12)

=1

and ©; marks the end of the window used to optimize the weights.?

Following the idea of sparse and stable portfolio optimization, we regularize our
objective function by restricting the weights to be non—negative and to sum up to
unity. Additionally, we introduce a penalty term ¢; for any deviation of the current
weights from previous weights. 1 is a parameter that allows us to adjust the relative
importance of the penalization in our optimization. Attributing large values to

corresponds to stabilizing the weights as any deviation of past weights is penalized

5Note: We use ex ante information to optimize the weights in the first part of the empirical
experiment such that ©; = ©,.
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more heavily. For ¢y — oo, the algorithm yields constant weights, determined by

the starting values.

Introducing the penalty term leads to a stabilization of the optimization problem and
promotes sparse portfolios by attributing a weight of zero to a number of national

indicators.

The main advantage of the optimal pooling of information approach is that it takes
into account correlations between both, predictors as well as predictors and the
target variable. In contrast to other pooling of information strategies these corre-
lations refer to the out—of-sample performance of the forecast model. Thus, as a
way of predictive modeling optimal pooling of information poses a way to handle
the bias—variance trade—off that typically appears when specifying a forecast model.
A major drawback of the approach is that the computation of optimal weights may
become difficult with an increasing number of disaggregate information K. One way
to circumvent the construction of such a “super model” (Timmermann, 2006) is to
pre—aggregate individual information to national indicator series, which reduces the

optimal pooling of information problem to a manageable number of variables.®

2.4 Empirical Results

2.4.1 Forecast Model Specification

Following Banerjee et al. (2005), we generate forecasts of euro area quarterly real

GDP by using bridge models that are specified as:
A(L)Y; =6+ B(L)X; + &4, (2.13)

where Y; denotes real GDP expressed in quarterly growth rates, J is a constant
term, X; describes the quarterly values of a business cycle indicator, A(L) and

B(L) are lag polynomials and &; denotes the error terms.” Quarterly projections of

61n case of consumer or business surveys, the number of disaggregate information K can be very
large as the approach could in principle be tracked down to the level of single survey respondents.

"Notice that in cases where national information enters the bridge model equation (2.13) and/or
if national real GDP growth rates are used as dependent variables, the following model specification
applies: A(L)Y;;, =0+ B(L)X;: + €.
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real GDP growth are derived by exploiting the timely information contained in the
contemporaneous business cycle indicator in addition to the information provided

by past realizations.

An important issue in specifying bridge models for forecasting purposes is the choice
of the number of lags of the endogenous and exogenous variables included. Since
traditional lag selection approaches — such as in—sample and out—of-sample criteria
— suffer from shortcomings, e.g. problems of overparametrization or the use of ex
post information that would not have been available in real time, we do not restrict
the model specifications to a certain lag length but implement a model averaging
strategy that allows us to consider different lag orders. Accordingly, we follow the
notion that it is a priori impossible to discard a certain lag order from the forecasting
exercise. We derive forecasts from a business cycle indicator within each forecast
model by considering a certain maximum number of lags of the exogenous and
endogenous variables. The different model specifications are built by permutating
the candidate regressors and imposing the restriction that the contemporaneous
value of the business—cycle indicator forms part of each model.® One-step-ahead
forecasts from every model specification are computed. Since simple pooling schemes
perform comparably well (see e.g. Timmermann, 2005, and Stock and Watson, 2004 ),

the forecasts are then combined using equal weights.

2.4.2 Data Set

Our data set includes real GDP and several business cycle indicators. The data
is collected for both, the euro area and the member states, over the period from
1990Q1 to 2008Q4. Real GDP is taken from the OECD’s Main Economic Indicators
Original Release Data and Revisions Database that comprises vintage data, which
is published each month since January 2000. Since the availability of real GDP for
the euro area member states is limited in the sample period under consideration,

we focus on a subset of member states — as summarized in Table 2.1 — that cover

8In the following we specify the forecasting models with a maximum lag length of two, which
means that we obtain 16 different model specifications for each business—cycle indicator.
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almost 95% of area-wide economic activity.”

Table 2.1: Selected euro area member states

Rank Country Share of GDP

in %
1. Germany 26.9
2. France 21.1
3. Italy 17.0
4. Spain 11.9
5. Netherlands 6.3
6. Belgium 3.8
7. Austria 3.1
8. Finland 2.0
9. Portugal 1.8

Notes: Furo area member states considered. Share of country GDP in area—wide economic activity

evaluated in the year 2008.

In order to get a balanced panel of real GDP data, missing values for the period
from 1990Q1 to 1994Q4 were completed with real GDP data from the first vintage
available of the OECD database. Vintages of real GDP that exhibit a seasonal
pattern are seasonally adjusted by means of Census X-12. All series are converted

into quarterly growth rates to satisfy stationarity conditions.

For a business cycle indicator to be selected the following criteria had to be met: (1)
It is published both at the area—wide and at the national level. (2) It is a leading
or a coincident indicator of economic activity and therefore suited to forecast real
GDP growth. (3) The indicator is published quarterly or at a higher frequency. (4)
It covers a sufficient time span, starting at least in 1990. (5) It is either not revised
or vintage data is available covering the total time span. Keeping these guidelines
in mind, we end up with three business cycle indicators, namely the Industrial
Production Index (IPI), the Economic Sentiment Indicator (ESI) of the European
Commission and the CESifo World Economic Survey (WES).

The IPI provides a measure of the volume of value added generated by production

9Real time data for Ireland, Luxembourg and Greece starts considerably later in the OECD
database such that we excluded these countries — as well as the new member states — from our
data set.
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units classified under the industrial sectors, i.e. C (mining), D (manufacturing) and
E (electricity, gas and water) of the International Standard Industrial Classification
of all Economic Activities (ISIC Rev.3). It is released on a monthly basis so that
the quarterly value is derived from the monthly average. In the euro area data
are collected by the national statistical offices and aggregated by Eurostat to an
area—wide index. The country weights used for the aggregation are value added at
factor costs; they are revised every five years (Eurostat, 2006). As the indicator is
subject to data revisions, vintage data is provided by the OECD’s Main Economic

Indicators Original Release Data and Revisions Database from 1990 onwards.

The ESI combines the weighted information contained in confidence indicators of
different sectors —namely industry, services, construction, retail trade and consumers
— that are in turn constructed from survey data. Since the indicator is published
on a monthly basis, the quarterly value is computed as an average of the monthly
releases within the survey quarter. The ESI is built in two steps. In a first step,
the area—wide confidence indicators of each sector are derived by aggregating the
individual country sector confidence indicators. The weights are the shares of each
of the member states in an area—wide reference series — here GDP growth — and are
smoothed by calculating a two year moving average. In a second step, the area—
wide confidence indicators are combined by using survey weights, which are based on
two criteria: (i) the importance of the corresponding sector in the overall economy,
and (ii) the ability of tracking the movements of the reference series (European

Commission, 2007).

Finally, the WES summarizes the judgement of economic experts about the economic
situation of the country they inhabit by revealing their appraisals and expectations.
It is exclusively based on qualitative information and is timely released within the
survey quarter on a quarterly basis. The WES is collected for each member state
of the euro area, whereby the aggregate area—wide index is calculated as a weighted
average of the individual country indices. The weighting scheme adopted refers to

the share of a single country in total world trade (Stangl, 2007).1

10The calculation of the national trade volumes is based on the foreign trade statistic published

by the United Nations. The weighting scheme is readjusted once a year.



96 CHAPTER 2: FORECASTING EURO AREA REAL GDP

2.4.3 Forecast Experiment Using Ex—Ante Information

We generate forecasts of euro area quarterly real GDP by estimating bridge models
for each business cycle indicator recursively. We focus on the entire forecast evalu-
ation window that ranges from ©¢ = 1999Q4 to O, = 2008Q4. The projections are
derived as nowcasts for every quarter following the end of the estimation window T,
which is gradually extended from 1999Q3 to 2008Q3.

Since we seek to evaluate the full forecast potential of the optimal pooling of in-
formation approach, the computation of the optimal weights draws on the 37 out—
of-sample forecast errors of the entire forecast evaluation window. As the forecast
evaluation window and the optimization window coincide, we explicitly use so—called
ex—ante information to optimize the weights, which means that we use information
that would not have been available in real time.'? Notwithstanding this analysis al-
lows us to gain an insight into the composition of the weighting schemes that result

from the optimization algorithm.

Table 2.2: Forecast performance of optimally pooled indicators relative to econom-
ically weighted indicators

MSE ratio HLN p—value

Industrial Production IPI 0.75 0.03
Economic sentiment ESI 0.69 0.04
CESifo Economic Climate WES 0.82 0.10

Notes: The MSE ratios are calculated as the MSE resulting from optimally pooled area—wide
indicators relative to the MSE resulting from economically weighted area—wide indicators. The
HLN p—value was calculated from a Student’s ¢—distribution with ©3 — ©g — 1 = 36 degrees of

freedom. Note that ¢ is set too zero.

Analyzing the full forecast potential of optimal pooling of information, the results

in Table 2.2 indicate that forecast accuracy in terms of the out—of-sample MSE

I Note that we use the first release of real GDP available after the end of the respective quarter
as the relevant realization for computing the forecast errors. As our data set ranges from 1990Q1

to 2008Q4 the last projection is generated for 2008Q4.
12For a comparison of the forecast performance of different forecast strategies in a real-time

experiment, the optimization window should be separated from the evaluation window in order to

avoid any informational advantages. We perform such an experiment in Section 2.4.4.
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calculated over the entire forecast evaluation window is on average improved by
around 25% compared to the economically weighted indicators. The test of forecast
accuracy by Harvey et al. (1997) confirms the significance of the improvement at
the 10% level.!3

For an insight into the composition of the optimally pooled area—wide indicators,
Table 2.3 depicts the weights that the optimization algorithm attributes to the single
national indicator series. For the IPI almost all national indicators are considered
— the only exception are the Belgian and the Portuguese indicators — while for the
ESI and the WES a smaller number of national indicator series are selected. In the
case of the IPI high weights are attributed to Germany, France and Italy, which also
constitute the largest economies in the currency area. In the cases of the ESI and
the WES, a large weight is assigned to Germany, but also to a subset of indicators of
economically smaller countries, such as the Netherlands and Portugal. Surprisingly,
for the ESI the Dutch indicator series obtains a weight that lies far above the Dutch
share in euro area economic activity, which is currently around 6%. For the WES
the same holds for the Portuguese indicator series. Even more surprisingly, despite
the eminent economic role of France and Italy within the euro area, in the cases of
both, the ESI and the WES, the indicators of these countries obtain weights which

are close to or even equal to zero.

In order to analyze why certain national indicators enter the optimally pooled area—
wide indicators, we calculated the out-of-sample MSE resulting from area-wide
models using only a single national indicator as predictor relative to the MSE result-
ing from an area-wide model using the economically weighted area—wide indicators.
The results are shown in Table 2.4 in which the best—performing national indicators
are marked in bold. A comparison of the relative MSEs with the results reported in
Table 2.3 shows that the optimization algorithm attributes a high weight to those
national indicators that exhibit a high degree of forecast accuracy regarding area—
wide real GDP. For the ESI (WES), the Dutch (Spanish) indicator that is heavily

13The null hypothesis of the HLN test is that the difference between the squared out—of-sample
forecast error resulting from optimally pooled area—wide indicators and the squared out—of-sample

forecast error resulting from economically weighted area—wide indicators is not less than zero.
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Table 2.3: Optimal weighting schemes

National Indicator Series IPI ESI WES

Austria 0.05 0.00 0.00
Belgium 0.00 0.00 0.00
Finland 0.08 0.06 0.00
France 0.17 0.00 0.03
Germany 0.24 0.26 0.23
Italy 0.34 0.00 0.00
Netherlands 0.03 0.25 0.05
Portugal 0.00 0.17 0.32
Spain 0.09 0.25 0.37

Notes: The weights are derived by minimizing the out—of-sample MSE resulting from 37 one—step

ahead forecasts.

weighted by the optimization algorithm performs as well as the area—wide counter-
part. In contrast, there is no national IPI series that shows a comparable forecast
record for the euro area. This hints to the fact that a larger number of national

IPI series are needed to capture the predictive information regarding area—wide real

GDP.

Table 2.4: Area—wide ADL-models using single national indicators as predictors

National Indicator Series IPI EST  WES

MSE ratio
Austria 3.45 1.65 1.20
Belgium 2.67 154 1.12
Finland 3.83 142 149
France 1.76 1.46 1.19
Germany 213 113 1.25
Italy 2.01 165 1.35
Netherlands 4.83 0.99 1.31
Portugal 413 1.32 1.28
Spain 1.84 144 1.04

Notes: The MSE ratios are calculated as the MSE resulting from national indicators relative to
the MSE resulting from economically weighted area—wide indicators. MSE ratios in bold label the

best performing nation indicators.

Apart from looking one—dimensionally at the mean forecast error, the theory of

portfolio optimization highlights the role of correlations for the determination of
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Table 2.5: Correlations of forecast errors of the area—wide models using single na-
tional indicators as predictors

[P1 Aus Bel Fin Fra Ger Tta Net Por Spa
Aus 1.00 0.85 0.93 0.63 0.37 088 0.85 093 0.88
Bel 0.85 1.00 0.86 0.61 048 0.88 0.82 0.85 0.81
Fin 0.93 0.86 1.00 0.64 0.33 087 0.84 0.93 0.86
Fra 0.63 0.61 0.64 1.00 054 0.67 0.65 0.71 0.77
Ger 0.37 048 0.33 0.54 1.00 049 042 044 0.51
Ita 0.88 0.88 0.87 0.67 049 1.00 0.83 0.93 091
Net 0.85 0.82 0.84 0.65 042 0.83 1.00 0.89 0.80
Por 093 085 093 0.71 044 093 0.89 1.00 091
Spa 0.88 0.81 0.86 0.77 051 091 0.80 0.91 1.00

ESI Aus Bel Fin Fra Ger Tta Net Por Spa
Aus 1.00 091 093 094 0.88 094 085 0.88 0.84
Bel 091 1.00 0.87 091 0.89 0.89 0.88 0.87 0.73
Fin 093 087 1.00 095 085 094 0.83 0.88 0.87
Fra 094 091 095 1.00 083 0.96 0.81 0.90 0.90
Ger 0.88 0.89 0.85 0.83 1.00 0.83 0.83 0.84 0.66
Ita 094 089 094 096 083 1.00 0.83 0.89 0.92
Net 0.85 0.88 0.83 0.81 0.83 0.83 1.00 0.87 0.67
Por 0.88 0.87 0.88 0.90 0.84 0.89 0.87 1.00 0.80
Spa 0.84 0.73 0.87 090 0.66 0.92 0.67 0.80 1.00

WES Aus Bel Fin Fra Ger Tta Net Por Spa
Aus 1.00 095 097 096 087 097 096 0.96 0.91
Bel 0.95 1.00 094 096 0.85 094 0.89 091 0.95
Fin 097 094 1.00 098 0.84 0.99 0.97 097 0.93
Fra 0.96 0.96 098 1.00 0.85 0.98 0.94 0.95 0.95
Ger 0.87 0.85 0.84 0.85 1.00 0.84 0.85 0.82 0.79
Ita 097 094 099 098 0.84 1.00 0.97 0.97 0.95
Net 096 0.89 097 094 0.85 097 1.00 0.96 0.89
Por 096 091 097 095 0.82 097 0.96 1.00 0.90
Spa 091 095 093 0.95 0.79 095 0.89 0.90 1.00

Notes: Figures in bold label the national indicator series that additionally enter the newly con-

structed area—wide indicators besides the dominant ones.



100 CHAPTER 2: FORECASTING EURO AREA REAL GDP

the optimal weighting scheme. An analysis of the correlations of the forecast errors
resulting from area—wide models that only use a single national indicator as pre-
dictor, might in particular be helpful in explaining why some of the rather poorly—
performing national indicator series enter the optimally pooled indicators in addition
to the best performing ones. Table 2.5 reveals that the optimization algorithm at-
tributes a weight larger than zero to those national indicator series whose forecast
errors are less correlated with the best—performing national indicators. Consider the
ESI as an example where the Dutch series poses the dominant single indicator in
terms of forecasting area—wide real GDP. The Spanish index is assigned a weight
that is far greater than the relative economic share of its economy in the euro area
although it performs rather poorly when it comes to forecasting euro area real GDP
growth. Evidently, its high MSE ratio which is greater than that of the Finish and
the Portuguese indicators is overcompensated by the low correlation between its
forecast errors and those resulting from the dominant Dutch indicator. The same
holds for the German WES indicator that is attributed a weight comparable to its
economic importance although its forecast performance regarding area—wide GDP
is rather limited. Again, its forecast errors are relatively low correlated with those

of the dominant Spanish index.

2.4.4 Forecast Experiment Using Ex—Post Information

The critical point of the optimal pooling of information approach is the use of the
out—of-sample MSE as the target function of the optimization algorithm since this
requires to rely on (pseudo) ex—ante information. By exploiting information stem-
ming from the forecast evaluation window, the approach is advantaged compared to

competing forecasting methods.

Hence, this section evaluates the performance of OPI in a real-time forecast exper-
iment where only ex—post information enters the optimization frameworks. Given
the results based on ex—ante information as shown in Table 2.2, OPI necessarily
outperforms the economically weighted indices if the optimized weights reported in

Table 2.3 remain stable over time. In this context stability means that the weights
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attributed to each national indicator series are robust against variations of the length

and the initial date of the optimization window.

In the following we derive optimal weights by focusing on shorter optimization win-
dows that are strictly separated from the evaluation window. Figure 2.1 presents
an overview of the timing of events. Table 2.6 shows the optimal weights that are
computed from rolling fixed length optimization windows with 10 and 15 forecast
errors. Given that the number of potential out—of-sample forecasts in the experi-
ment is equal to Oy — ©y = 37, we end up with 27 and 22 fixed-length optimization
windows, which can be used to derive the weights. A comparison of Table 2.6 with
Table 2.3 shows that the means of the weights deviate from the weights computed
from the complete optimization window for various indices. Although the variation,
measured in terms of standard deviations, decreases with an increasing optimiza-
tion window on average, the weights still vary considerably over time such that the

practicability of the approach has to be evaluated in a real-time experiment.

Table 2.6: Optimal weighting schemes derived from rolling optimization windows
with 10 and 15 forecast errors

window size 10 window size 15
IPI ESI WES IPI ESI WES
Aus 0.04 0.01 0.09 0.02 0.00 0.03
(0.04) (0.02) (0.12) (0.02) (0.00) (0.05)
Bel 0.09 0.04 0.00 0.05 0.02 0.00
(0.13) (0.08) (0.01) (0.09) (0.05) (0.00)
Fin  0.06 0.06 0.00 0.07 0.07 0.01
(0.05) (0.09) (0.03) (0.05) (0.11) (0.07)
Fra 0.14 0.03 0.11 0.15 0.01 0.16
(0.15) (0.08) (0.17) (0.13) (0.02) (0.19)
Ger 0.20 0.44 0.40 0.19 0.50 0.41
(0.09) (0.29) (0.30) (0.10) (0.13) (0.26)
Ita 0.19 0.00 0.00 0.24 0.00 0.00
(0.13) (0.01) (0.00) (0.10) (0.00) (0.00)
Net 0.10 0.17 0.10 0.08 0.21 0.14
(0.10) (0.20) (0.12) (0.08) (0.16) (0.08)
Por  0.07 0.07 0.16 0.06 0.04 0.14
(0.09) (0.15) (0.21) (0.08) (0.07) (0.18)
Spa  0.12 0.18 0.13 0.15 0.15 0.11
(0.15) (0.17) (0.18) (0.11) (0.20) (0.17)

Notes: The Table shows the mean of 27 and 22 optimal weights derived from rolling optimization
windows with 10 and 15 forecast errors. The figures in parentheses denote the standard deviations

around the mean.
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One straight forward way to increase stability of the weights over time is to employ
a recursive optimization window instead of a rolling window. Another approach is
to add an additional term to the minimization function that penalizes a deviation of
the optimized weights from those computed one period before. For small values of
this penalty term 1, the weights are allowed to vary whereas larger values force the
algorithm to keep the weights more constant. This trade—off is analyzed in Figure
2.2 which gives the relative MSE of OPI to the economically weighted indices for

various values of the penalization coefficient ranging from ¢ = 0 to 1) = 10e5.

IPI ESI WES

0.8 0.8 0.8
0 10e-1 10el  10e3 0 10e-1 10el  10e3 0 10e-1 10el  10e3
Y W Y

Notes: The lines represent the relative MSE of OPI to the economically weighted indices for the

different values of .

Figure 2.2: Relative MSE of OPI for varying values of 1

The results show that the stability of the weights is sufficiently high for the ESI and
the WES to outperform the benchmark indices in a real-time experiment and the
introduction of a penalty term does not increase forecast performance. In contrast,
for the IPI, a value of ¢ = 10el is optimal in terms of forecasting area—wide GDP
since the weights are too volatile in absence of the penalty term. This confirms the
analysis of the optimal weighting scheme for a rolling window as presented in Table

2.6. For 1 — oo, the weights are kept constant at the level of the nations relative
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economic share and the relative MSE converge to unity for the IPI and the WES.
This does not hold for the ESI where the area—wide index is aggregated differently

as described in Section 2.4.2.

Although economic weights pose the most popular aggregation scheme, a number of
alternative benchmark models are at disposal. In order to take our optimal pooling
approach to a tougher test we compare its forecast accuracy in the following with the
competing economic and econometric weighting schemes and prediction approaches
presented in Section 2.2 in a real-time experiment. In addition, we also derive fore-
casts from an univariate forecast model. The competing forecast models are thereby
estimated using the same area—wide and national business cycle indicators at dis-
posal. The optimized weights are derived from a recursively growing optimization
window, which is excluded from the forecast evaluation process. For the first iter-
ation, the optimized indicator is calculated by minimizing the sum of the first 10
out—of-sample squared forecast errors and the forecast of euro area real GDP growth
for second quarter 2002 is generated. At each iteration, the optimization window is
expanded one quarter and the weights are updated using this recursive approach.
The same setting is used to derive the weights for the optimal pooling of area—wide
forecasts as described in Section 2.2.1.1 in detail. Again, the weighting scheme is
solely based on ex—post information. Furthermore, at each iteration a static factor
model as well as a dynamic factor model are employed to extract an area—wide indi-
cator which is used to forecast current quarter’s real GDP growth for the euro area.
The area~wide indicator thereby corresponds to the first common factor extracted.!4
For the aggregation of national GDP forecasts, we employ economic weights based

on the countries’ shares of national GDP in euro area real activity.

Table 2.7 reports the forecast MSE of the optimal pooling of information approach
relative to those of the alternative forecast approaches for 1) = 10el in case of IPI
and for ¢ = 0 in case of the ESI and the WES. The results can be summarized

as follows: 1) The optimal pooling of information approach results in general in a

14The number of common factors extracted as well as the lag-window size used in the dynamic
factor model are optimized regarding the ex—post forecast performance of the resulting area—wide

indicator.
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Table 2.7: Forecast performance of optimal pooling of information relative to tradi-
tional forecast strategies

MSE  HLN

ratio p—value
IPI TUnivariate approach 0.19 0.01

Pooling of information

Economic weights 0.93 0.24
OLS weights 0.47 0.01
Principal component analysis 0.74 0.19
Dynamic factor model 0.62 0.09

Pooling of forecasts

Optimal weighting of area—wide forecasts 0.54 0.11
Equal weighting of area—wide forecasts 0.39 0.02
Aggregation of national forecasts 1.06 0.78
EST  Univariate approach 0.48 0.02
Pooling of information
Economic weights 0.89 0.26
OLS weights 1.08 0.62
Principal component analysis 0.92 0.25
Dynamic factor model 0.57 0.02
Pooling of forecasts
Optimal weighting of area—wide forecasts (.59 0.00
Equal weighting of area—wide forecasts 0.73 0.00
Aggregation of national forecasts 0.84 0.27
WES Univariate approach 0.69 0.03
Pooling of information
Economic weights 0.95 0.35
OLS weights 0.79 0.04
Principal component analysis 0.94 0.35
Dynamic factor model 0.87 0.25
Pooling of forecasts
Optimal weighting of area—wide forecasts (.82 0.25
Equal weighting of area-wide forecasts 0.85 0.10
Aggregation of national forecasts 0.94 0.36

Notes: The MSE ratios are calculated as the MSE resulting from the optimal pooling of information
approach relative to the MSE resulting from respective forecast strategy. The HLN p—value was
calculated from a Student’s t—distribution with ©, — ©g — 1 = 26 degrees of freedom.
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lower forecast error, i.e. the MSE ratios are below unity. Only in two cases — for
the IPI and the ESI — the MSE ratios are above unity. 2) The optimal pooling of
information approach dominates the univariate forecast model significantly in all
cases. 3.) The optimal pooling of information approach yields a smaller MSE than
the economic weighting schemes for all three indicators under consideration, which
confirms the results obtained in Section 2.4.3 where we allowed for the use of ex—
ante information. However, the improvements are not significant. 4) The HLN test
shows at the 10% significance level that the optimal pooling of information approach
significantly dominates 4 of the competing forecast approaches in the case of the IPI
and the ESI, and 3 of the competing forecast approaches in the case of the WES. 5)
In those cases where the MSE ratio is above unity, the optimal pooling of information

approach is not systematically beaten by the competing forecast method.

2.5 Conclusion

This paper proposes a new method of forecasting euro area quarterly real GDP that
uses area—wide indicators, which are derived by optimally pooling the information
contained in national indicator series. Following the ideas of predictive modeling, the
area—wide indicators are computed by applying weights that minimize the variance
of the out—of-sample forecast error of the aggregate target variable. We evaluate the
forecast performance of our optimal pooling of information approach by focusing on
three business cycle indicators, namely the Industrial Production Index (IPI), the
economic sentiment indicator (ESI) of the European Commission and the CESifo
World Economic Survey (WES) indicator for the euro area, which are all available

at the area—wide and country-specific level.

Our results show that short-term forecasts of euro area quarterly real GDP are
improved by using area-wide indicators based on optimal weights rather than eco-
nomic weights. The optimally pooled area—wide indicators reduce the out—of-sample
MSE by 25% on average. Since the optimal weights can vary considerably over time
depending on the indicator used, the introduction of a penalty term that helps

to stabilize the weights potentially promotes the practicability of the approach in
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real-time.

In an out—of-sample forecast experiment we compare the forecast performance of
the optimal pooling of information approach with that of a number of competing
forecasting strategies. The optimally pooled area—wide indicators are constructed
using only information that would have been available in real-time. We find that
our OPI approach outperforms competing methods in terms of forecast accuracy
and that optimized indices for the euro area consist of only a rather small number

of national indices .



Chapter 3

The Virtues of VAR Forecast
Pooling - A DSGE Model Based
Monte Carlo Study

In the presence of model uncertainty, pooling different forecasts tends to outperform
individual forecasts. However, any empirical forecast evaluation approach suffers
from numerous unknown detrimental effects that deteriorate the results. Hence, the
magnitude of benefits attainable is still unclear. Consequently, we use Monte Carlo
techniques which enable us to identify the virtues from pooling VAR forecasts which
can be traced back to a well-defined form of mis—specification. To mimic a forecast
situation, we derive the data from a common DSGE model. Given strict lab con-
ditions, the results are allowed to vary with respect to the structure of the model
economy, number of pooled forecasts, forecast weighting scheme, forecast horizon,
estimation sample size and the noisiness of data available. As the setup assumes a
form of mis—specification inevitably present in VAR forecast approaches, the exper-
iment yields a quantification of the virtues obtainable in any forecast situation. We
find that pooling of VAR forecasts leads to a substantial improvement in accuracy of
about 20 percent, which is comparable to the effect of the elimination of estimation
uncertainty. Most notably, this gain is already obtained with an average of about

four different forecasts and is higher for more persistent economies.
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3.1 Introduction

Since the seminal article of Bates and Granger (1969), a large number of studies
have shown that pooling different forecasts of the same event tends to outperform
individual forecasts in terms of forecast accuracy.! Empirical evidence suggests
that in many cases it is possible to improve performance considerably by simple
averaging the forecasts (Clemen (1989)). For instance, Makridakis et al. (1982) find
that combinations of as little as six time-series forecasts outperform most individual
forecasts. In addition to assessing the predominance of pooled predictions, a number
of papers quantify their empirical gains compared to single forecasts. Although
the vast majority of articles confirms the predominance of pooled forecasts, the
results remain heterogenous regarding the size of gains. Armstrong (2001) reviews
30 empirical studies on forecast combinations and reports an average reduction in
forecast errors of 12.5 percent, ranging between 3 and 24 percent each. As there
are numerous sources for the large variation of the resulting gains, it is difficult to
estimate the improvement in accuracy in a given forecast situation ex—ante based on
empirical findings. A broad range of detrimental effects such as structural breaks or
outliers and revisions of the data potentially impact empirical findings and account

for the differences of gains reported.

To provide a common guideline to the forecaster, we employ a Monte Carlo study
and simulate the data sets from standard DSGE models. This has the advantage that
we deal with a well-specified dynamic structure that lends itself to an economically
meaningful interpretation. We calibrate three different data generating processes
(DGPs) to mirror the characteristics of major economies as commonly done by
central banks. As a result, we obtain the business cycle behavior of the most relevant

variables such as GDP, inflation and interest rates.

Naturally, if the true DGP is known, there is no scope to downsize forecast errors
by means of different forecasting approaches. However, in practice the forecaster is

not equipped with the true model. This is why the present paper is based on the

1See e.g. Marcellino (2004), Kuzin et al. (2009), Stock and Watson (2004), Clark and Mc-
Cracken (2009a) and Clark and McCracken (2009b).
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more realistic assumption that the DGP is unknown to the forecaster and thus all
forecast models at hand necessarily suffer from some form of mis—specification. To
be more precise we dynamically forecast from parsimonious VAR models, each built
only on a subset of the relevant information. Thus, as we keep control of the DGP,
our results rely on well-defined forms of mis—specification of the forecast models and
we explicitly exclude any accidental effects that might bias the results in favor of
combination approaches. Hence, Monte Carlo techniques enable us to estimate the

gains of pooling under strict lab conditions.

The findings have practical relevance as the forms of mis-specification we assume
are likely to occur in any real forecast situation where forecasts are conducted with
the help of VAR models. As presented in Section 3.2, there are numerous sources
of mis—specification which tend to make pooling beneficial. Naturally, the exact
form of mis—specification is not known ex—ante. Hence, we exclude any effects like
structural breaks that might occur accidentally and bias results in favor of pooling
approaches. In that sense, the reported results can be interpreted as some sort of
minimum gain that is obtained from pooling of forecasts. To provide guidance if
pooling is beneficial in a specific forecast situation, we vary the setting with respect
to different dimensions. First, altering the DGP leads to conclusions about the in-
fluence economic structures exert on the virtues of combined forecasts. Second, we
analyze the effects of a growing number of forecasts included in the combination
approach. Third, we track the performance of pooling as the forecast horizon grows.
Forth, we explicitly assess estimation uncertainty by varying the estimation sample
size. Moreover, we contrast a simple average with theoretically optimal pooling tech-
niques as in Timmermann (2006) and answer the question in which situations the
former outperforms the latter. We also evaluate how pooling performs if economic
variables of the DGP are not directly observable and the forecasts rely on noisily
measured indicators. Moreover, we also compare the performance of pooled fore-
casts from parsimonious VARs to benchmark VARs including all relevant variables.
Finally, we check if gains from equally weighted forecasts prevail if the benchmark
model is chosen by a statistical information criterion. Additionally, we analyze the

composition of the resulting mean squared forecast errors (MSEs) in order to clarify



110 CHAPTER 3: THE VIRTUES OF VAR FORECAST POOLING

where the gains from pooling originate.

Our analysis shows that pooling leads to a substantial reduction of the MSE that
amounts to about 20 percent for more rigid economies. In fact, the gain from pooling
is approximately comparable to an extinction of estimation uncertainty associated
with a forecast model. Most notably, this gain is already obtained with a simple
average of about four different forecasts. In contrast, the estimation of theoreti-
cally optimal weights is advisable only for very large data sets hardly available in
practice. Thus, given our results, we recommend the use of equally weighted VAR
predictions as an easy to implement forecast approach that most likely improves

accuracy compared to single VAR predictions.

The structure of the paper is given as follows. Section 3.2 gives the framework for
the theoretical and empirical gains of pooling of forecasts. Section 3.3 describes the
model economy which constitutes the DGP. Section 3.4 introduces the VAR forecast
framework and presents the combination schemes used. Section 3.4.3 describes the
settings of our Monte Carlo experiment. Section 3.5 presents the results and Section

3.6 concludes.

3.2 The Gains from Pooling

In general, the use of pooled forecast is motivated by portfolio diversification or
hedging arguments, guaranteeing insurance against very large forecast errors. Obvi-
ously, if the true DGP is known to the forecaster, there are no gains to be made by
pooling forecasts from different models. Instead, as argued by Timmermann (2006),
pooling the information and thus constructing one “super model” yields the best
forecast performance. However, in practice none of the models at hand coincides
with the unobservable DGP. Moreover, Diebold and Lopez (1995) point out, that
in many forecast situations, particularly in real time, pooling of information sets is
either impossible or prohibitively costly. Thus, some form of mis—specification or
mis—estimation will be present and contribute to the resulting forecast error. To

be more precise, it may be the case that the forecast model omits relevant vari-
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ables or information in general. Moreover, there is a risk of employing a biased
model especially when there are unobserved structural breaks in the DGP. In fact,
pooled forecasts can even dominate the best individual device. When using VARs
for forecasting, we necessarily introduce inefficiencies by omitting cross—equation re-
strictions from the DGP. This negatively effects the forecast performance for finite

estimation samples.

Hendry and Clements (2004) describe a set of potential explanations for the gains
achieved by combining individual forecasts regarding the forecast MSE. If single
predictions are differently biased — i.e. upwards biased and downwards biased —
pooling them might improve forecast accuracy. However, reasonably constructed
forecast models prevent systematically biased predictions. A source of improve-
ment more relevant in practice results from unexpected breaks in the DGP. As each
forecast model is affected differently by breaks, i.e. each model is differentially mis—
specified, pooling the resulting predictions guarantees insurance and might again
improve forecast accuracy. In the presence of estimation uncertainty, another po-
tential source of gain follows from a reduction of parameter proliferation due to
overfitting. Forecasts from the true but estimated DGP do not encompass fore-
casts from competing mis—specified models in general, especially when the sample
size is short in relation to the number of parameters to be estimated in the true
model. As a result, pooling forecasts from parsimonious models that omit a subset

of explanatory variables might even outperform forecasts from the true model.

Given there are numerous situations where pooling is advantageous, we briefly dis-
cuss the general framework building the theoretical motivation for the analysis. As
in Batchelor and Dua (1995), we want to forecast h—period ahead future values
of some target variable y whose realization is given by ;.. The forecast based
on some model ¢ is denoted by ¥, 15, and the resulting forecast error is given by
€it+h = Uit+h — Yirh- Lhe presumed loss function is MSE loss. Assuming unbiased
predictions, i.e. E(e;rrn) = 0, MSE; ) equals the variance of the forecast errors
(07),)- Given a total number M of different single forecasts, the expected error vari-

ance of a single randomly selected forecast k can be calculated as the average of the
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error variances of all single forecasts, i.e.
2 0y _ =2 _ 2
E(Uk,h) =0p= 775 O h (3.1)

The expected error variance of an equally weighted average of a set of m randomly

selected single forecasts can be calculated as

1

B(o}m) =7h(m) = — o} + "L,

T, (3.2)

where 1, is the average bivariate covariance between all pairs of single forecast errors
for horizon h.2 The percentage reduction in expected error variance by pooling m

forecasts is thus given by

?%(m)—ﬁ%zl—m(l_@) (3.3)
o7 m o7’ '

Since 7 > o}, this term is negative and takes a value of zero only if forecast errors
are perfectly correlated. Figure 3.1 shows the percentage reduction in expected error
variance for 72 = 1 as a function of the number m of forecasts combined and of the

average bivariate covariance ¥, of forecast errors.

The improvement in forecast accuracy increases with the number of forecasts com-
bined and with a decreasing average bivariate covariance of the forecast errors and
converges to % — 1 for large values of m. Figure 3.1 supports the conclusion of
Armstrong (2001), that the combination of five forecasting methods is sufficient
to achieve most of the possible reduction in forecast error variance and that the

inclusion of further forecasts generates only minor additional gains.

In the present paper, we largely follow the framework of Batchelor and Dua (1995).
Similarly, here, the analysis relies on randomly drawn benchmark models which
has the advantage that results are not dependent on the performance of some model
selection process.? In fact, following Equation (3.3), documented changes in forecast
accuracy represent the average effect resulting from a condensation of information

contained in many economic time series.

2For the derivation of the above expression, see Appendix 3.A.1.
3See Section 3.5.5 for a further discussion on that issue.
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Notes: The figure presents the gain in MSE of pooling m randomly chosen forecasts as % of one

single randomly chosen model for forecast horizon h.

Figure 3.1: Theoretical MSE Gain from pooling m randomly chosen forecasts

3.3 The Model Economy

For our controlled experiment, we choose a common New—Keynesian type model to
simulate economic relationships. Generally speaking, New-Keynesian DSGE models
have been developed to replicate distinct features of economic data on a business
cycle frequency. Consequently, they are most commonly estimated on quarterly
data of aggregate measures such as real GDP, inflation and money—-market rates.
In recent years, they have become a popular tool — e.g. for central banks — not
only for policy analysis, but also for forecasting.? In contrast to VAR models, the
behavior of all variables is traceable to a set of fundamental assumptions about
the underlying structure of the model economy. In other words, the forecasts lend
themselves to an economic interpretation as the dynamics of variables are the result
of economic decisions taken at the micro—level. Thus, given that economic theory is
in any case meaningful, employing a New-Keynesian DSGE model to simulate the

data guarantees that the forecasting experiment is based on data which shares the

4See among others Smets and Wouters (2003), Harrison et al. (2005) or Murchison and
Rennison (2006).
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distinct features of aggregate economic data on a business cycle frequency.

The model we choose is very similar to the one presented in Canova and Paustian
(2007). Featuring staggered wages and prices, it is very much in the spirit of Erceg
et al. (2000). We allow for habit formation as in Fuhrer (2000) and for indexation
as in Rabanal and Rubio-Ramirez (2005). The model also captures interest rate
smoothing of the central bank as in Clarida et al. (2000). The approach has the
advantage that many simpler models are nested in our baseline scenario and we can
vary the degree of persistence of the system by changing well specified parameter
values that have a structural interpretation. The linearized model equations are (in

log deviations from steady state):

A = B+ Edry — m] (3.4)

o= & gy e ) (3.5)

yo= §+(1—am (3.6)

me; = W+ ng — Y+ erry (3.7)

mrs; = —M\ + YN (3.8)

wy = wi+m —m+err (3.9)

T = foTi—1 =  Ko(mrsy —we) + BE ) — HwT) (3.10)
T — ppTi—1 = Kp(meg + &) + BBy — ppm) (3.11)
re = prreet + (1= o) (Ve + Yye) + & (3.12)

{= ety v~ N(0,03) (3.13)

i= &ty v~ N(0,07) (3.14)

!~ N(0,07) (3.15)

& ~ N(0,07) (3.16)

Equations (3.4) and (3.5) describe the demand side of the economy where ); is the
marginal utility of consumption which depends on the expected real interest rate as
the difference of the nominal rate r; and inflation 7, and h, measures the degree
of habit formation in total demand ;. Moreover, demand is subject to a taste

shock £. Equation (3.6) is the linearized production function where 1 — o denotes
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labor share in production and n; is labor input (hours worked). The process is
subject to a productivity shock &7. Equations (3.7) and (3.8) define marginal cost
and the marginal rate of substitution, respectively. Here, w, is the real wage and ~
measures the substitution effect of a change in hourly wages on labor supply. The
real wage is defined in Equation (3.9), with real wage inflation being the difference
between nominal wage inflation 7" and price inflation m;. The wage Phillips curve
is presented in Equation (3.10), where indexation is measured by p,, and k., is the
slope. The parameter that determines the dynamics of the wage equation k, can
also be calculated from deep parameters; i.e. by the probability of keeping wages
fixed 1 — (,, the discount factor 3, the elasticity of the labor bundler 1) and the
elasticity of labor supply with respect to wages ~:

Ky = (1 — Cw)(l — ﬁ(w) ) (317)

Cu(1 4 1)

Analogously, Equation (3.11) defines the Phillips curve for prices with indexation
parameter p, and slope x,. The slope of the Phillips curve can be shown to depend
upon the probability of keeping prices fixed 1—¢,, the discount factor 3, the elasticity

of the goods bundler € and the labor share in production 1 — « in the following way:

1-G)A-pG) 1-a
G (1—a+ae)

Ky = (3.18)
In addition, marginal cost is also driven by an exogenous mark—up shock &‘. The
nominal interest rate is set by the central bank according to a Taylor-type rule
(3.12) with interest rate smoothing of degree p,. ~, and ~, capture the response of
the central bank to inflation and output, respectively. The remaining four equations
define the emergence of exogenous shocks, where some persistence is allowed for the
taste shock and the productivity shock. Moreover, to avoid perfect multicollinearity,
real wages and marginal cost are assumed to be measured with error err; and errs,
respectively. The parameter values assigned during the experiment are reported in
Table 3.1.

In principle, we adopt the values from Canova and Paustian (2007) but allow for
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Model parameter Model I | Model I1 | Model IIT
[ discount factor 0.99 0.99 0.99
e elasticity (goods) 6.00 6.00 6.00
1 elasticity (labor) 6.00 6.00 6.00
o. risk aversion 8.33 8.33 8.33
v inverse Frish elasticity of labor supply 1.74 1.74 1.74
hy  degree of habit formation 0.90 0.00 0.00
(p 1-probability of keeping prices fixed 0.75 0.75 0.75
Cw 1-probability of keeping wages fixed 0.62 0.62 0.62
tp rule-of-thumb price setters 0.70 0.70 0.00
[ rule—of-thumb wage setters 0.80 0.80 0.00
«  1-labor share in production function 0.36 0.36 0.36
pr  interest rate smoothing 0.74 0.74 0.74
vy reaction to output in Taylor rule 0.26 0.26 0.26
~vr  reaction to inflation in Taylor rule 1.08 1.08 1.08
py  persistence of taste shock 0.82 0.82 0.82
p. persistence of productivity shock 0.74 0.74 0.74
op std of taste shock 0.1188 0.1188 0.1188
0, std of productivity shock 0.0388 0.0388 0.0388
o, std of markup shock 0.3167 0.3167 0.3167
o, std of monetary policy shock 0.0033 0.0033 0.0033
Oerr1 Std of measurement error 1 0.0001 0.0001 0.0001
Oerra  Std of measurement error 2 0.0001 0.0001 0.0001

Table 3.1: Calibration of the model economy

three different types of economies. In Model I, we allow for a considerable degree of
backward—lookingness and habit formation. This results in a more sluggish response
of GDP to all kinds of shocks when compared to Model IT and III. The setup of Model
II abstracts from habit formation, i.e. h, = 0, and, thus, output is less persistent
when compared to Model I. A productivity shock results in a more pronounced,
but somewhat earlier response. Model III mimics a more flexible economy where
neither prices nor wages are subject to indexation, i.e. h, =0, y, = 0 and p,, = 0.
This leads to quite similar responses of GDP as in Model II. However, differences
occur with respect to price and wage reactions to shocks. As intended, prices tend

to adjust quicker — especially in response to markup—shocks.

When it comes to forecasting, the differences between Models I to III stem from
the fact that interdependencies between variables differ. As lags and leads are
important, we also depict the cross—correlations of the relevant variables with the

target variable y in Figure 3.2 for £10 lags. In Model I and II, for instance, output
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y has only little correlation with employment n, whereas in Model III, there is a
rather strong correlation with lags of employment. Also wage inflation 7, shows a
strong negative correlation in Model I and II, whereas in Model III there is almost no
relationship. Naturally, correlations among variables are lower for the less persistent
economy given by Model III. On the whole, the procedure introduces economically
meaningful cross—equation restrictions and a well-defined cross—correlation structure

between variables.
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Note: The plots show the correlation of the first variable with the lags of the second variable, e.g.
corr(ys, etk ). Lags are given on the abscissa and correlations are depicted on the ordinate, where
the numbers represent the mean of a Monte—Carlo simulation based on 10000 replications of the

data set.

Figure 3.2: Mean of cross—correlation functions of the DGP
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3.4 Setting up the Simulation Study

3.4.1 VAR Forecast Framework

To analyze the gains from pooling of forecasts, we choose to predict the target series
y employing VAR models. The use of VAR models for macroeconomic forecasting
has first been introduced by Sims (1980) to address the common structural iden-
tification problem inherent in simultaneous equation models. It follows the idea
of exploiting the dynamic correlation patterns among observed time series without
imposing restrictions. As all variables are determined endogenously, no a—priori
knowledge is used except to decide which variables should enter the system. Thus,
the VAR approach is often referred to as being atheoretical. An important fea-
ture of VAR forecasts is their unbiasedness. Dufour (1985) shows that, as long as
the DGP considered has an autoregressive representation and satisfies the symme-
try condition, a VAR estimated by least squares will yield unbiased forecasts even
if the lag length of the estimated VAR is lower than the actual one and even if
explanatory variables are missing. Due to their comparable good forecast record,
the comparatively low computational effort involved and their ability to generate
iterative multi—step predictions VAR models are frequently used in macroeconomic

forecasting.’

In the presence of model uncertainty, the researcher has to choose about the lag
length and the variables to include into the VAR. We restrict the analysis to small
scale VAR models with K = 2 endogenous variables and a lag length of p = 1 simply
because this is the simplest forecasting model available and keeps the dimension of

the analysis tractable. Furthermore, given the structure and the dynamics of the

SExamples of small scale VAR-systems used to forecast output, prices and interest rates are
numerous, including Litterman (1986), Del-Negro and Schorfheide (2004), Favero and Marcellino
(2005) and Clark and McCracken (2009a). See Liitkepohl (2006) for a detailed discussion of VARs

in macroeconomic forecasting.
6To check if the lag length is appropriate, we calculated the BIC for each bivariate model and

each replication. It delivered a lag length of one in more than 90% of the cases. The reason why
we do not implement this approach, is that we need to compare VARs that suffer from an identical

degree of estimation uncertainty. Consequently, we choose identical lag lengths for all VARs.
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DGPs described in Section 3.3, each of these VARs will provide reasonable forecasts
and — by holding p and K constant for each VAR — we compare forecast approaches
that are subject to the same degree of estimation uncertainty.” Most important, as
any larger VAR — i.e. choosing K > 2 — would still be only an approximation to
the true DGP — in our Monte Carlo experiment as well as in practice — it will again
necessarily be mis—specified in our sense. In general, the size of the VAR should
only be of minor importance for our results, as the model specification is identical

also for the pooling approach.

However, a bivariate VAR will completely omit information present in cross correla-
tions among y, the additional variable and observable variables that are not included
in the VAR. Moreover, any cross equation restrictions from the DSGE model are
omitted. Thus, information contained in the cross—correlation of the additional ob-
servable variable with y is necessarily inefficiently used by the forecaster. In fact, we
focus on a form of mis—specification that essentially arises when VAR models are em-
ployed to forecast structural processes. In detail, each VAR model only incorporates
the target series plus one of the remaining 5 variables. Here, we assume that past
values of y, r,n,w, ™ and 7" are directly observable by the forecaster. This reflects a
practical situation, as these quantities are usually provided by national accounts or
—in case of r — are observable from financial markets. Given an estimation sample
of size T, we estimate VAR models with T'— (K?p + K) degrees of freedom. Using
this simplest form of multivariate forecasting models at hand leaves us with M =5
different forecast models. Finally, we calculate h = 1,...,100 step predictions of
variable y for each VAR model to see how far we can forecast until the differences

between forecasting approaches eventually die out.

3.4.2 Pooling Techniques

One crucial issue when pooling different forecasts is the weighting scheme that de-
fines how single predictions are combined into one pooled forecast of the target

variable. Various methods for the estimation of appropriate weighting schemes have

"For a further discussion on this issue see Section 3.5.4.
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been proposed and their relative performance depends on the underlying assump-
tions. As Winkler (1989) points out: “The better we understand which sets of
underlying assumptions are associated with which combining rules, the more effec-
tive we will be at matching combining rules to forecasting situations.” We focus
on two schemes which define the upper and the lower bound of complexity.® On
the one hand we introduce theoretically optimal weighting of forecasts, which relies
on the covariance structure of forecast errors from different models. On the other
hand, we employ a simple average which is particularly easy to implement and no
additional information is needed for the computation of weights. Note that all re-
maining weighting schemes discussed in the literature rely on some form of trade—off

between the advantages of these two schemes.

Optimal weighting scheme Assuming a MSE based loss function that exclu-
sively depends on the forecast error of the pooled forecast, € = yrin — g(Yitin;w),

optimal weights are chosen to solve the problem:

w* = arg rrgn[leew], (3.19)
which gives
DI
w' = %. (320)

where Y. denotes the covariance matrix of the forecast errors e; of the single mod-
els. In practice, the elements of ¥, are unknown and have to be estimated which
introduces an additional source of uncertainty. Imprecise estimates of ¥, potentially

deteriorate forecast performance.

Equal weighting scheme Another straightforward pooling approach is the use of
equal weights, which particularly solves the estimation problem. In empirical appli-
cations, simple averages of forecasts tend to outperform more elaborated weighting

schemes, a phenomenon often referred to as forecast combination puzzle (see e.g.

8For a more detailed description of different pooling of forecast strategies, see Section 1.3.5 in
Chapter 1.
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Stock and Watson (2004)). As Timmermann (2006) shows, equal weights are theo-
retically optimal if the individual forecast errors have the same variance and identical
pair-wise correlations, i.e. w* = %L, where ¢ is an N x 1 column vector of ones.
This case gains relevance by the fact that forecasts of a certain variable based on
differently specified VAR models often show similar characteristics. As forecasts
converge to the unconditional mean of the process when the forecast horizon grows,
the respective moments, variances and pair—wise correlations of the forecast errors

also converge.

3.4.3 Monte Carlo Simulations

We employ each of the DSGE Models described in Section 3.3 to simulate the path
of the six observable variables (y, r,n,w, 7, 7") for 1100 periods. The Monte Carlo
experiment relies on 10000 replications. Each time, we draw m = 1,..., M random
bivariate VAR models from all possible bivariate VARs. The respective model is
estimated from a sample of length 7. We then derive h = 1,...,100 step ahead
forecasts of the target variable y from each single VAR (m = 1) as well as from m =
2,..., M pooled VAR forecasts. As the forecast exercise builds on the assumption
that VAR operators are stable and forecasts are stationary, we exclude iterations that
yield estimated VAR models with unstable roots.” Single VAR forecasts are pooled
employing equal weights as well as optimized weights calculated from the estimated
covariance matrix of forecast errors as already described in Section 3.4.2. In the
latter case, for each forecast horizon h, the covariance matrix is estimated from a
subset of N forecast errors of the total of 10000 draws. This keeps the computational
effort tractable and makes it possible to simulate weights for different degrees of
estimation uncertainty by varying N. To rule out randomness when estimating the
weights, we also draw the subset N 1000 times, which ensures that weights converge

to their average values.

In a second step, we assume that macroeconomic aggregates are imperfectly mea-

9Note: If an unstable root is detected in any of the estimated single VAR models, the entire

draw is excluded from the analysis.
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sured. This means that observed values are noisy indicators — e.g. some sort of
business or consumer confidence — of the underlying economic activity and useless
information enters the procedure. In fact, we inflate the variables by measurement
error. To be more precise, we define a signal-to—noise ratio s that relates the variance
of the respective economic variable to the variance of the added measurement error.
This introduces another dimension to the simulations. Theoretically, s might run
from infinity (no measurement error) to zero (infinite variance of the measurement
error). For the analysis we add values ranging from s = 10* (the signal variance is
10000 times the error variance) to s = 107 (the signal is completely overlaid with

noise).

To quantify the virtues of a reduction of the mis—specification problem, as introduced
in Section 3.2, we compare the performance of a randomly chosen single VAR to the
performance of a pooled prediction from m randomly chosen VARs with 2 < m < M.
The random draw of one or more forecasts from a broader set reflects the situation
of a practical forecaster who is faced with choosing between a possibly large number

of different reasonable models and thus forecasts. °

3.5 Discussion of the Results

3.5.1 Forecast Errors from Single VARs

To receive a first impression of the results, we analyze forecast errors from single
models. For a deeper understanding of the characteristics of forecast errors, it

seems worthwhile to analyze their structure by breaking down the MSE into three

10Tn empirical applications, variable selection is frequently based on some form of information
criterion. We do not pursue this approach here, because different criteria might indicate different
specifications and, as a consequence, results are distorted by the performance of the respective
selection criterion. Moreover, in such a framework, one cannot ignore the information supplied
by the selection criterion when implementing the pooling approach. In effect, one could use the
ranking of forecasts delivered by the selection criterion to overweight outperforming models in the
pooling approach. In Section 3.5.5 we look a little closer at this issue and use R? to select the

benchmark model.
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components: the bias part, the variance part, and the covariance part. Following

Theil (1966), the h-step forecast MSE can be written as:

MSEt+h - (§t+h - gt+h)2 + (J?Qt+h - O-yt+h>2 + 2(1 - p)aﬁt+h0yt+h7 (3'21)

where ¢y, and y,,, are the forecast and actual values of some variable y for period
t+h, Yesn, Gerns Oy, .» and oy, are the respective mean and standard deviation.
The correlation between them is p.*! The first term on the right hand side shows the
deviation of the forecast mean from the mean of the actual series and is identified as
the bias part. In the present setup, we can neglect the bias part because it is virtually
zero. The second term, which is labeled the variance part, reports the deviation of
forecast variation from the variation of the actual series. The last term on the right
hand side is named the covariance part and reflects the general co-movement of

forecast and realized values.

As Table 3.2 in Appendix 3.B.1 shows, the MSE decreases with an increasing esti-
mation sample size T'. This is, of course, due to a decline of estimation uncertainty
associated with the forecast. With 7" growing from 25 to 1000, the reduction in the
MSE is quite considerable and converges to about 17 percent (Model I and II) and
19 percent (Model IIT) for h = 1. As the forecast horizon grows, benefits from pre-
cisely estimated model coefficients accumulate to around 40 percent (Model I and
II) and 35 percent (Model III) for h = 100. Comparing the predictability of the
three models, the levels of MSE decrease from Model I to Model III independent
of the estimation sample size and the forecast horizon.!? Figure 3.3 exemplarily
illustrates the development of the MSE components mentioned above for different
DGPs and T = 1000.

The MSE of a single randomly chosen VAR rises with the forecast horizon for all
DGPs. Of course, this is in line with theoretical considerations, as the MSE should

converge to the variance of the process if forecasts are unbiased. The covariance

"For the derivation of the above expression see Appendix 3.A.2.
12This hints at the fact that a forecasting exercise is more difficult in less flexible economies

because the variation of the target series and, hence, the unavoidable part of the MSE tends to be

larger.
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Figure 3.3: MSE and its components for a single VAR forecast (7' = 1000)

part, though, does not increase monotonically with the forecast horizon. For larger
estimation samples it shows a peak during the first 10 forecast periods and declines
to some lower values afterwards. The larger the estimation sample T', the earlier is
the turning point and the steeper is the decline of the covariance part as the horizon
h grows. This movement can be explained by the ambivalent effect of converging
forecasts. As equation (3.21) shows, on the one hand, the covariance part increases
with a growing forecast horizon as the correlation p between the predicted and the
actual values decreases. On the other hand, the standard deviation of the predicted
values oy, , decreases for larger values of h reducing the covariance part. As can be
inferred from the second and third column of Table 3.2 in Appendix 3.B, for shorter
horizons up to about h = 10 (Model I and II) and h = 3 (Model III), the rise
of the MSE is largely attributed to a rise of the covariance part. In contrast, the
variance part increases monotonically until a certain level is reached. In the absence
of estimation uncertainty, its contribution to the MSE eventually dominates that of
the covariance part for horizons greater than h = 19 (Model I), h = 17 (Model II)
and h = 10 (Model III). Thus, if we wish to forecast on a business cycle frequency, we
should make an effort to reduce the covariance part of the forecast errors in the first
place. In fact, this is done by pooling of forecasts. In contrast, for longer horizons

the variance part plays the crucial role as far as forecast accuracy is concerned.!?

BFor details refer to results presented in Section 3.5.2.1.
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3.5.2 Pooling and Perfectly Measured Economic Variables

In the following, we present results for pooling of forecasts in case only relevant
information enters the candidate models. In effect, this coincides with a situation
where only variables are considered which are indeed useful for forecasting as they
emerge from the DGP. In particular, variables are perfectly measured and there is
no noisy information. Tables 3.3 to 3.5 in Appendix 3.B.2 show the results of Monte
Carlo simulations for Model I to Model III in turn. Columns titled ‘AVERAGE’
correspond to equal weighting of forecasts whereas ‘OPTIMAL WEIGHTS’ refers

to the optimal weighting scheme.

3.5.2.1 Equally Weighted Forecasts

We first focus on equally weighted forecasts and look at the performance relative
to a single VAR. The percentage changes in the MSE are given with respect to
four dimensions: sample size T', forecast horizon h, number of pooled forecasts m
and the type of the simulated economy (Model I to Model III). A negative value,
thus, represents an improvement in forecast accuracy.'* To clarify how the virtues
of pooling develop, we also present the respective contribution of the variance and

the covariance part to the total MSE change.

It turns out that even the small number of five pooled VAR forecasts yields a sig-
nificant reduction of the MSE. The results are very much in line with theoretical
gains described in Section 3.2, as a combination of only m = 4 single predictions
already guarantees the major proportion of improvement. Most notably, for shorter
horizons, when combining m = 5 forecasts the decline of the MSE is comparable to
the decline achieved by an extension of the sample size for a single VAR from T" = 25
to T = 1000.'> Thus, the gain from pooling is approximately comparable to the
abolition of estimation uncertainty. This has practical relevance when forecasting
quarterly macroeconomic aggregates, as one usually has to deal with a maximum

number of observations no more than 200.

14The presentation, here follows equation (3.3) in Section 3.2.
5Compare the results presented in Section 3.5.1.



126 CHAPTER 3: THE VIRTUES OF VAR FORECAST POOLING

Figure 3.4 exemplarily illustrates the reduction of the MSE when combining m =5
VARs for T' = 100 as the forecast horizon h grows. It also gives the corresponding

contributions of the variance and covariance part to the MSE change respectively.

In terms of the variance part, pooling is clearly not favorable as it reduces the
variation of the forecast compared to the single VAR prediction. Although this is
intended in most applications — because pooling is often seen as an insurance against
extreme forecast errors — it leads to a positive contribution to the MSE change. By
contrast, pooling considerably reduces the covariance part. This over-compensates
for the increase of the variance part and leads to a decline of the total MSE, as the
covariance part dominates for VAR forecasts in absolute terms. With respect to
different DGPs, reduction in the MSE is considerably higher for Model I and Model
IT than for Model III. Note that gains are remarkably persistent for Model I and
prevail until A~ = 100. In more flexible economies like Model III, benefits die out
for h > 25. This indicates that pooling of forecasts is particularly beneficial in less

flexible economies.

As presented in Tables 3.3 to 3.5 in Appendix 3.B.2, we find that the improvement
is higher for smaller samples. This holds for all DGPs. If we consider T' = 25, we
find that the MSE reduction due to pooling of five VARs ranges from 17 percent
(Model I) to 9 percent (Model III) for h = 1. It becomes clear that the gain
is quite substantial and it increases with the number of pooled forecasts. With
growing estimation samples, gains decrease and reach 12 percent and 4 percent
for T = 100, respectively. And even for T = 1000, i.e. when there is virtually no
estimation uncertainty, the gain still amounts to 9 percent (Model I') and 3.5 percent
(Model III). It is worth noting that, irrespective of the DGP and the estimation
sample size, the gain reaches a maximum for h = 2 and gradually decreases with
the forecast horizon. This result supports the findings of equation (3.3), as the
average bivariate covariance of the VAR forecast errors is minimal for h = 2 in
the present study. Whereas gains remain significant for small samples, for larger
estimation samples they vanish as h increases. Most notably, as there remains a
small sample bias in the estimation of the unconditional mean for each model, the

gain does not disappear for T' < 1000. Thus, averaging long—term forecasts can



3.5. DISCUSSION OF THE RESULTS 127

MSE Gain (%)
| |
MSE Gain (%)
| |
MSE Gain (%)
| |
L

—_ .=Variance —_ =Variande —_ - 'Varijange
S5 5| Covari. S5 5 _ Covari S5 5| Covari
= ’ = S (RS c
® ‘® . = ® .
O OF O 0 O 0
w w w
[} 2] [}
> -5 = -5 S S
bS] e o | TTtemmmeept
st e I ISP st
5 . 5 | ROUPE Sl 5
B S B 2 -15 ===t £-15
5 J5 £
O -2 O -2 O -2

_25 _og _og

1 5 N 10 25 50 75100 1 5 N 10 25 50 75100 1 5 N 10 25 50 75100

Note: The upper panel depicts MSE gain compared to a single VAR for m = 1,...,5 and h =
1,...,100. For better readability, the lower panel concentrates on contributions of variance and
covariance to total MSE change for m = 5 VARs.

Figure 3.4: MSE gains from pooling of m =5 VARs for 7" = 100.
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be regarded as an insurance against a mis—estimation of the unconditional mean
of the DGP. On the contrary, when the estimation sample is large, all forecasts
of bivariate VAR(1) processes asymptotically converge to an unconditional mean of
zero and thus, pooling these predictions does not reduce the MSE compared to single
forecasts. Regarding the number of pooled predictions, the variance part of the MSE
increases and the covariance part decreases monotonically with m. The reduction
of the total MSE due to pooling can thus be attributed to a higher covariance of

the forecast and the target variable.

3.5.2.2 Optimally Weighted Forecasts

We now turn to optimized weights which adds an additional dimension to the anal-
ysis. Here, we present gains for different numbers N of forecast errors used to
estimate the covariance matrix .. N is referred to as the size of the optimization
window and grows from N = 10 to N = 1000 observations. In a practical forecast
exercise, one has to rely on ex—post forecast errors to estimate .. Thus, the total
length of the data set available has to be split into an estimation sample used to es-
timate the models’ coefficients and an optimization window used to estimate .. As
the total number of observations is usually limited when forecasting macroeconomic
aggregates, sizes of the optimization window of N = 10 to N = 50 gain practical
relevance. In contrast, a size of N = 1000 imitates a situation without estimation
uncertainty regarding >, and, thus, estimated optimal weights will approximate

their true values.

From Tables 3.3 to 3.5 in Appendix 3.B.2, it becomes clear that optimal pooling
benefits from an increasing N. This holds for all sizes T" and for all forecast horizons
h. For N = 10, optimal pooling yields a MSE way above its single VAR counterpart
for all models and all estimation samples. The relative inferiority increases with the
forecast horizon. For Model I and T" = 1000, it amounts to about 56 percent for
h = 1 and reaches about 100 percent for A = 100. This most likely explains empirical
studies finding that pooling forecasts based on optimized weights frequently yields
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a poor forecast performance.!®

At shorter horizons, the optimal pooling approach dominates the single VARs for
N = 25 (N = 50) and beats the equally weighted average for N = 50 (N = 100)
for Model I and II (Model III). However, these gains fade away for longer horizons.
When there is no estimation uncertainty regarding the optimal weights, i.e. for
N = 1000, optimally pooling 5 single VAR forecasts improves forecast accuracy for
h =1 compared to a single forecast by about 20 percent on average for Model I and
IT and by about 10 percent on average for Model I1I. These gains slightly increase
for h = 2 and then decline with the forecast horizon. However, even for h = 10,
an improvement of about 10 percent on average for Model I and II and of about 3

percent on average for Model III remains.

In the absence of estimation uncertainty with respect to Y., benefits of using op-
timized weights mainly result from a reduction of the covariance part of the MSE.
Given that the estimated parameters of Y, approximate their true values, the co-
variance part is considerably reduced for short— and mid—term forecasts. Hence, for
h =1 to h = 10 it decreases by about 20 percent (10 percent) for Model I and II
(Model I1I).

The variance part is slightly smaller for optimized weights when compared to a
simple average for small values of h, but it increases faster as h grows. Interestingly,
we observe, that a larger optimization window N comes along with a larger variance
part. However, it converges to the value of the benchmark approach only in the
absence of uncertainty about .. For values of N < 200 the variance part stays
below these levels even for h = 100. Hence, employing optimized weights in practice,
i.e. for N < 50, likely reduces the variance part of the forecast errors provided that
the underlying estimation samples are sufficiently long. Thus, the gain, if any, from
estimating optimal weights in practice most likely originates from a reduction of the

variance part.

Having two different pooling approaches at hand, we now further evaluate which

16Starting their recursive optimization window with a size of N = 17, Clark and McCracken
(2009a) find that pooling based on optimized weights yields a root mean squared forecast error

(RMSE) twice as high as an equally weighted average.
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of the two dominates under certain conditions. This can be done by comparing
relative gains of optimal to equally weighted predictions. In order to save space, we
restrict this analysis to m = 5 pooled forecasts. A graphical representation is given

in Figure 3.5 by way of a contour plot.

The displayed line marks those combinations of A and N which lead to an equal
performance of both approaches in terms of MSE gain. The simple average dom-
inates for parameter combinations that fall into the gray area.'” For all values of
T, the frontier shows a positive relationship between h and N, i.e. the larger the
forecast horizon, the larger the optimization window N needs to be to dominate the
equal weighted average. As a rule of thumb, the use of optimized weights based on
the covariance matrix of the forecast errors seems advisable only for an adequate
length of the optimization window of N > 50 and only for predictions up to h = 10.
This holds for all DGPs analyzed here. For larger values of h, the equally weighted
average clearly dominates the more enhanced weighting scheme for values of N that
have practical relevance. Interestingly, the optimized framework works best for less
flexible economies that are harder to forecast in general as represented by Model T
and Model I1.

3.5.3 Pooling and Noisily Measured Economic Variables

So far, all observable variables at hand solely carried relevant information. This
stacks the cards in favor of pooling as, by construction, all observable variables of
the model economy are necessarily useful to forecast y and should thus be considered
in a forecast model. In a practical situation, however, the forecaster is faced with
observables that do not directly emerge from the DGP. Instead, she most likely

uses indicator variables — e.g. business sentiment — to measure the state of a certain

17As we alter parameters in discrete steps during the simulation, those combinations that lead
to an equal performance are approximated by interpolation in order to obtain a suitable graphical
representation of the results. As a consequence, it might happen that whenever the surface of
the considered data is flat, then approximated contour lines will show a rather volatile behavior.
If a line is not displayed in the respective contour plot this indicates that, for those parameter

combinations, the threshold lies beyond the simulated values.
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Notes: The figure compares the MSEs of optimized weights versus equal weights for m = 5. The

gray area describes those parameter combinations of h and N where the simple average dominates

the optimized weighting scheme.

Figure 3.5: Contour plots for optimized versus equal weights (m=5)
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unobservable economic variable. Hence, this section deals with the question whether
pooling of forecasts still has benefits if the additional variables used to forecast
the target series are poorly measured and, thus, do not correlate perfectly with
their underlying economic counterparts. More precisely, we evaluate how much
valuable information has to be present for pooling to carry its virtues. Of course,
if all additional variables are pure noise without any correlation to the DGP, then
pooling of forecasts will loose its benefits. This relates to the fact that no valuable
information enters the system apart from y. Still, it seems worthwhile to estimate the
amount of noise that builds the threshold for the benefits of pooling to prevail. As
described in Section 3.4.3, the signal-to-noise ratio s thereby measures the variance
of an economic variable in relation to the variance of a measurement error. A
high value of s corresponds to a precise indicator whereas an imprecise indicator is

associated with a low value of s.

3.5.3.1 Equally Weighted Forecasts

As in Section 3.5.2.1, we analyze the performance of an equally weighted forecast
relative to a forecast from a single VAR. With the signal-to—noise ratio varying from
s = 00 to s = 107°, this adds an additional dimension to our results. Tables 3.6 to
3.8 in Appendix 3.B.3 compare gains of equally pooled forecasts to one randomly
chosen VAR for various values of the signal-to—noise ratio in detail. Figure 3.6
illustrates the main findings and shows the relative gains in the MSE of equally
pooling m = 5 VARs as a function of the signal-to—noise ratio s and the forecast
horizon h for a sample size of T'= 100. A negative value, again, corresponds to an

improvement in forecast accuracy.

It becomes visible that the benefit of pooling decreases with a decreasing value
of s. However, the MSE gains basically remain unaffected for values of s > 100.
Interestingly, even for a value of s = 1, for h = 1 the gain is still half the size
when compared to a situation without noise. For larger values of s, the benefits
decline rapidly. Thus, s = 1 poses the threshold value for the benefits of equally

pooling short—run forecasts. For larger horizons, the corresponding threshold values
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are higher. This holds for all estimation samples T". For values of s found in practice
and very small sample sizes, the gains persist even for h = 100. Even for s = 1075,
i.e. in a situation where the indicators carry very little information, pooled forecasts
outperform the benchmark by about 3 percent on average. Like before, gains are
larger for Model I and II in general. In a nutshell, results indicate that, even in case
additional variables carry to some extent useless information, virtues from pooling

still prevail.

3.5.3.2 Optimally Weighted Forecasts

We now turn to pooling of forecasts with weights based on the covariance matrix
of the errors. As optimal weights are estimated, introducing noise potentially alters
the performance of the approach shown in Section 3.5.2.2. Tables 3.9 to 3.11 in
Appendix 3.B.3 compare gains of m = 5 optimally pooled forecasts to one randomly
chosen VAR in the presence of noise in detail. Compared to a single random VAR,
it becomes obvious, that a rather large N is needed. For very little noise, results
qualitatively coincide with those of Section 3.5.2.2. If, however, there is less infor-
mation provided by the data, the performance of a single VAR improves relative to
optimal weighting. When the signal-to—noise ratio approaches zero, then, eventu-
ally, even for N = 1000, optimal pooling loses its virtues for almost all sample sizes
T we consider. Only for small values of T" and short horizons, we obtain an improve-
ment.'® In other words, when forecasting with noisy indicators, N has to be larger
in order to outperform the simple average. We interpret this as the explanation of
the so—called forecast combination puzzle as described in Section 3.4.2. Illustrating
the performance of optimal relative to equal weights for m = 5, Figure 3.7 shows

the contour lines for a zero gain.

Thus, all points to the lower left of the displayed lines represent combinations of s

and h where optimal pooling outperforms the equally weighted average.'® In general,

18Note: In practice, a combination of small T and large N is not of importance as the forecaster
would trade—off the estimation window and the optimization window when sample size is limited.

However, we present results for these cases for completeness.
19For very low signal-to—noise ratios, the performance of both approaches is approximately
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the contour lines show a negative relationship between s and h, i.e. the more noise
overlays the signals, the shorter the maximum forecast horizon for optimal pooling
to outperform equal weights. As a rule of thumb, a signal-to—noise ratio of s = 1
and a forecast horizon of h = 10 pose threshold values. For s > 1 or h > 10, the
size N of the optimization window necessary for optimal pooling do predominate
exceeds values relevant in practice. This leads to the conclusion that, in practice,
equal pooling is more advisable the larger the forecast horizon and the lower the

signal-to—noise ratio are.

3.5.4 Incorporating all Variables as Benchmark

In the present section, we simulate a situation without model uncertainty, i.e. where
all economic aggregates are known to the forecaster. In such a situation, it would
be possible to combine all relevant variables from the DGP into one large model.
Naturally, as the large model uses information in an efficient way, pooling forecasts
from parsimonious and thus mis—specified VARs is asymptotically less advantageous.
However, when facing a real forecasting situation, such a large VAR simply is in-
feasible because of the multitude of variables we would have to include. In fact, as
in the large model, more parameters have to be estimated from a given number of
observations, estimates will be less precise than those of a smaller (subset) model.
As a consequence, incorporating all variables can also lead to an inferior perfor-
mance in finite samples. Also note, that we depart from the proceeding in previous
sections when analyzing models with different degrees of estimation uncertainty. In
effect, the present section is not a strict quantification of the gains that emerge from
pooling of forecasts. It gives rather a hint under which circumstances pooling would
lose its virtues. Note, that in our understanding, the large model is not exactly the
correct benchmark the pooling approach from bivariate VARs should be contrasted
with. It is easy to imagine the use of a number of larger VARs also within the

pooling exercise and contrast these with the large model.?°

identical. This leads to a rather flat surface of the plotted data and translates into a volatile

behavior of (interpolated) contour lines.
20Compare also Section 3.4.1.
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under noisy information. All points to the lower left of the displayed lines represent parameter

combinations of s and h where optimized weights outperform equal weights for the respective value

of N.

Figure 3.7: Contour plots for optimized weights with noisy information (m=>5)
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In detail, we specify the benchmark model as a VAR(1) that consists of all observable
variables (y,r,n,w,m,7) and compute predictions h steps ahead.?! Table 3.12 to
3.14 in Appendix 3.B.4 compare the MSE of a single randomly chosen (m = 1)
and pooled (m = 5) bivariate VAR prediction to the MSE of a benchmark model
that contains all observable variables for different sample sizes T and signal-to—
noise ratios s. Figure 3.8 illustrates the performance of m = 5 equally weighted
forecasts compared to the large model as a function of h and s for Model I to
Model III and for T' = 25 (first row) to 7" = 1000 (last row). The contour line
shows those combinations of A and s that correspond to an identical performance of
both approaches. All points on the white area represent combinations where pooled

forecasts are beneficial.

For T' = 25, the pooling approach outperforms the large model for all combinations
of h and s and all models, as all contour lines are off the scale.?? For T growing from
50 to 1000, the space of advantageous combinations of h and s shrinks successively.
Still, for sample sizes relevant in practice (T' < 100), pooling m = 5 forecasts derived
from bivariate VARs is beneficial. Only if the number of observations exceeds 100,
the large model tends to outperform the pooling approach. Results are similar
for Model II. In contrast, for Model III pooled forecasts dominate the benchmark
model even for T" = 1000. Again, the differences between the approaches die out
as the signal-to—noise ratio s decreases. To put it in a nutshell, for sample sizes T’
relevant in practice, pooling of forecasts from parsimonious and thus mis—specified
models poses a competitive approach even if all relevant variables are known to the
forecaster. This claim is supported by the fact that in a practical situation, there
will be uncertainty about the model and it will be likely that the forecaster omits

variables that should be included in the large model.

21Given the setting of our experiment, we abstract from including higher lag orders in the

benchmark process.
22For very small samples, even the randomly chosen single VAR model outperforms the bench-

mark. For more detailed results see Tables 3.12 to 3.14 in Appendix 3.B.4 were we contrast the
MSE of one randomly chosen VAR (m = 1) and an average of m = 5 randomly chosen models to

the MSE of the large model for different sample sizes T" and signal-to—noise ratios s.
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Notes: The figure compares the MSEs of equal weights for m = 5 versus a large VAR incorporating
all relevant variables. The white area describes those parameter combinations of s and h where

the simple average dominates the large VAR.

Figure 3.8: Contour plots for equal weights versus large VAR (m=5)
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3.5.5 Non—Random Benchmark Models

In practice, the assumption of perfect knowledge of the variables to include in a
forecast model is quite unrealistic. As none of the models at hand coincides with the
DGP, the decision is one of selecting between mis—specified models which most likely
omit relevant information. A researcher would rather choose the set of variables to
include in a model with the help of some statistical model selection criterion.?> The
R? of the forecast equation of the VAR provides us with a measure of the in—sample
fit of the target series. When comparing pooled forecast from randomly chosen
models to benchmark models chosen by some form of statistical model selection
criterion, the results have to be interpreted differently from previous sections. Gains
from pooling cannot be traced back to a broader information base as intended in the
present study but are also affected by the performance of the selection criterion.?*
Again, the present section rather gives a hint under which circumstances pooling

would lose its virtues.

Tables 3.15 to 3.17 in Appendix 3.B.5 compare the MSE of a single randomly chosen
VAR (m = 1) and m = 5 pooled VAR predictions to the MSE of a benchmark model
selected by R? for different sample sizes T and signal-to-noise ratios s. A graphical

representation is given in Figure 3.9.

ZMost commonly, for lag length selection, Akaike’s Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) are applicable. These criteria refer to all equations of the
system simultaneously. More precisely, both criteria build on the full system log likelihood that
depends on the determinant of the residual covariance. However, in the present setup, additional
variables in the VAR are characterized by different variances. Hence, calculated BIC or AIC values
are not comparable across different bivariate VARs and a selection based on these values potentially

leads to models that poorly perform in forecasting the target series.
2In fact, selecting models according to their in-sample performance can be understood as a

specific form of weighting scheme. The selected model is given a weight of one, whereas all com-
peting models are given a weight of zero. Alternatively, one could think about implementing a
weighting scheme according to R?. Attaching a non-zero or, say, declining weight to competing
models would leave us with some sort of trimming of pooled forecasts in the sense of Aiolfi and
Timmermann (2006) or Granger and Jeon (2004).
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Notes: The figure compares the MSEs of equal weights for m = 5 versus a VAR chosen by means
of the R? criterion. The white area describes those parameter combinations of s and h where the

simple average dominates the R?-selected VAR.

Figure 3.9: Contour plots for equal weights versus R? selected VAR (m=5)
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White areas mark situations in which pooling is still beneficial. It becomes clear
that the benefits from equally weighted forecasts still prevail for smaller samples
up to T' = 50 for Model I and Model II and T' = 100 for Model III. Moreover,
they tend to increase with a growing forecast horizon.?> This means, that pooling
forecast from a larger number of reasonable VARs tends to dominate the selection

of one “best” model via model selection criteria.

3.6 Conclusion

This paper employs a Monte Carlo study based on a standard DSGE model to quan-
tify the gains from pooling of forecasts. Given strict lab conditions, we identify the
virtues of pooling and explicitly exclude any accidental effects — present in empirical
applications — that may bias the results in favor of combination approaches. Thus,
reported gains should be realizable in almost any forecast situation encountered
in practice. Built on simulated data sets, we specify parsimonious VAR models
to derive h—step ahead predictions of output. Single forecasts are combined using
equal weighting as well as theoretically optimal weighting as two boundary cases. In
addition, forecast errors are decomposed into variance and covariance part. Given
our setup, we identify constellations where pooling yields a higher gain in forecast
accuracy and show how different combination schemes work under certain economic
structures. Additionally, we show how the number of pooled forecasts effects the
performance and analyze the size of the gains as the forecast horizon and estimation

sample size vary.

Allowing for noisy information, we analyze how the gains of the different pooling
schemes are effected by noise and how much valuable information has to be present
for pooling to carry its virtues. We thus estimate the signal-to—noise ratio that
builds the threshold value for the benefits of the different pooling schemes. More-

over, we simulate the hypothetical scenario that a forecaster knows with certainty

25Choosing according to R? minimizes the 1-step ahead prediction error. Given an iterative
procedure to generate h—step ahead forecasts, not taking into account the fit of additional equations

translates into higher forecast errors as the horizon increases.
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which variables carry relevant information. Hence, we compare the performance of
pooled forecasts from parsimonious models to benchmark VARs including all rele-
vant variables. Finally, we check if gains from equally weighted forecasts prevail if

the benchmark model is chosen by a model selection criterion.

Our results show that pooling forecasts is clearly beneficial. Despite the fact that the
gain in forecast accuracy increases with the number of forecasts pooled, we find that
a combination of about four predictions is sufficient to achieve most of the possible
gain. Most notably, the decline in the MSE is comparable to the decline achieved by
a considerable enlargement of the length of the estimation sample. This gains practi-
cal relevance, as one usually has to deal with a rather limited number of observations
yielding a relative high estimation uncertainty when forecasting macroeconomic ag-
gregates. Regarding the structure of the underlying DGP, the largest benefits are
achieved for rigid economies that are harder to forecast in general. Interestingly,
the benefits reach a maximum for the 2-steps ahead predictions and decrease with a
growing forecast horizon. However, in finite estimation samples, they remain signif-
icant even for very long horizons reflecting the estimation uncertainty regarding the
unconditional mean of the process. We find that — under lab conditions — pooling
leads to a substantial reduction of the MSE of up to 20 percent. Decomposing the
MSE, results show that gains due to pooling mainly reflect a better forecast per-
formance with respect to the covariance part whereas the variance part of the MSE
increases. We show that the estimation of optimized weights built on the covariance
matrix of the forecast errors yields a substantial improvement over a single model
only in the absence of corresponding sample uncertainty. For reasonable sizes of
the underlying optimization window, estimation uncertainty is too large for benefits
of optimal pooling to outperform equal weights. This leads to the conclusion that

optimal pooling can be discarded for most practical applications.

Allowing for noisy information, we find that a signal-to—noise ratio of s = 1 poses a
threshold value for pooling to carry on its virtues. Hence, in case additional variables
carry to some extent useless information the virtues from pooling still prevail. We
also find that, for reasonable sample sizes T, pooling the forecasts from randomly

selected, parsimonious VAR models tends to outperform forecasts from models that
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incorporate all relevant variables. For small samples and little noise, pooling by
equal weights dominates even the “best” bivariate model as selected by R?. To sum
up, the use of equally weighted VAR predictions provides an easy to implement

forecast approach that most likely improves accuracy substantially.
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Appendix

3.A Theoretical Deviations
3.A.1 Quantification of the Gain from Pooling of Forecasts

The expected error variance E(c2) of an equally weighted average of a set of m

randomly selected single forecasts can be derived as follows:
E(oj(m)) = Elvar(en(m))]
= wvar(Eles(m)])
= war(y; 3, en(i))
= Lovar(X, en(i))
= LS var(en(i) 4+ 250 S04 covlen(i), en())))

= 0+ g S Xl cov(en(i), en()))

1 o mm—1) Doty Doy cov(en(i)ien(s))
mOh T2 =)
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3.A.2 Decomposition of the MSE

The mean squared error (MSE) can be derived as follows:

MSE

Elef.]

(Elern])? +var(etin)

(Blge+n — Yesn))® + var (Gesn — Yern)

(E[gt—l-h - yt+h])2 + 0’5,% + U§t+h - QPUQHhUth

(ElJern] = Elyesn))* + 03, + 00 = 2004,,0y,,,

(Eldern] = Blyern])® + (0g0n = Oyiin)? = 20050000 yisn + 205,04,

(E[@t+h] - E[yt+h])2 + <O-Z?t+h - Uyt+h)2 + 2(1 - p>o-gt+h0-yt+h
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3.B Results — Tables

3.B.1 Single VARs

MODEL I
MSE (10e-4) VARIANCE (10e-4) COVARIANCE (10e-4)

25 50 100 200 1000 25 50 100 200 1000 25 50 100 200 1000
0.221  0.200 0.186 0.190 0.183 | 0.001 0.004 0.003 0.003 0.006 | 0.220 0.196 0.184 0.187 0.177
0.542 0485 0.439 0.436 0.421 | 0.006 0.015 0.013 0.012 0.020 | 0.535 0.470 0.426 0.424 0.401
0.942 0.843 0.737 0.730 0.712 | 0.013 0.043 0.028 0.031 0.049 | 0.928 0.800 0.709 0.698 0.663
1.406 1.217 1.081 1.040 1.032|0.024 0.071 0.056 0.061 0.094 | 1.382 1.145 1.025 0.980 0.938
1.805 1.518 1.368 1.342 1.357 | 0.031 0.095 0.091 0.099 0.161 | 1.774 1.422 1.276 1.243 1.195
2191 1.844 1.637 1.629 1.606 | 0.040 0.132 0.135 0.150 0.240 | 2.151 1.711 1.500 1.479 1.366
2.504 2.074 1.869 1.861 1.800 | 0.045 0.155 0.184 0.215 0.326 | 2.460 1.917 1.685 1.646 1.473
2,772 2248 2.045 2.060 1.921 [ 0.051 0.177 0.236 0.289 0.409 | 2.720 2.071 1.807 1.771 1.512
2977 2382 2150 2182 2.015 | 0.059 0.195 0.280 0.350 0.494 | 2.916 2.186 1.869 1.830 1.521
10 | 3.154 2449 2.227 2.256 2.057 | 0.069 0.207 0.315 0.411 0.567 | 3.084 2.241 1.911 1.843 1.490
25 |3.218 2.706 2.351 2.166 1.999 | 0.061 0.324 0.588 0.801 1.175 | 3.157 2.382 1.762 1.365 0.824
50 | 3.364 2.542 2218 2,125 1.971 | 0.057 0.357 0.738 1.042 1.400 | 3.307 2.184 1.480 1.083 0.570
100 | 3.361 2.459 2.316 2.052 1.953 | 0.038 0.360 0.834 1.094 1.528 | 3.322 2.100 1.481 0.958 0.425

P e,

© o -1 o wr

MODEL I
MSE (10e-4) VARIANCE (10e-4) COVARIANCE (10c-4)

T| 2 50 100 200 1000| 25 50 100 200 1000 25 50 100 200 1000
1]0225 0204 0.195 0185 0.185 | 0.002 0.003 0.003 0.004 0.005|0.223 0202 0.191 0.181 0.180
200527 0491 0452 0431 0425 [ 0006 0.012 0014 0015 0021 | 0.521 0479 0438 0415 0.404
3
4

0.896 0.837 0.753 0.719 0.684 | 0.016 0.031 0.032 0.037 0.044 | 0.880 0.806 0.720 0.682 0.640
1.280 1.175 1.057 1.018 0.968 | 0.025 0.057 0.056 0.071 0.084 | 1.255 1.118 1.000 0.947 0.884
51 1.628 1.462 1.323 1.296 1.265 | 0.034 0.082 0.085 0.113 0.144 | 1.594 1.379 1.237 1.183 1.121
6 1.933 1.734 1.568 1.535 1.494|0.041 0.113 0.127 0.170 0.217 | 1.892 1.619 1.439 1.365 1.276
712188 1.942 1.792 1.720 1.672 | 0.043 0.138 0.181 0.236 0.296 | 2.145 1.803 1.610 1.484 1.376
812453 2120 1.966 1.899 1.798 | 0.055 0.172 0.239 0.311 0.375 | 2.396 1.947 1.727 1.588 1.424
912610 2225 2061 1.985 1.8840.060 0.193 0.285 0.370 0.453 | 2.547 2.031 1.777 1.615 1.431
10 | 2.711 2299 2.111 2.057 1.929 | 0.063 0.212 0.325 0.441 0.531 | 2.646 2.086 1.786 1.616 1.397
2512929 2449 2192 1.976 1.888 | 0.062 0.347 0.682 0.919 1.300 | 2.867 2.101 1.511 1.057 0.588
50 | 3.0562 2.398 2.118 1.966 1.849 | 0.075 0.373 0.747 1.042 1.446 | 2.976 2.023 1.370 0.924 0.403
100 | 3.153 2.409 2.163 1.931 1.870 | 0.076 0.389 0.785 1.038 1.472|3.076 2.018 1.378 0.893 0.398
MODEL III
MSE (10e-4) VARIANCE (10e-4) COVARIANCE (10e-4)
T 25 50 100 200 1000 25 50 100 200 1000 25 50 100 200 1000
110196 0.177 0.167 0.166 0.158 | 0.005 0.009 0.010 0.011 0.012 | 0.191 0.168 0.157 0.155 0.147
20.365 0.342 0.312 0.305 0.298 | 0.014 0.029 0.035 0.035 0.040 | 0.351 0.313 0.277 0.269 0.259
3
4

0.529 0.479 0.437 0.431 0.406 | 0.022 0.051 0.060 0.071 0.073 | 0.507 0.428 0.377 0.359 0.332
0.647 0.596 0.535 0.537 0.507 | 0.028 0.070 0.087 0.117 0.123 | 0.619 0.526 0.447 0.419 0.384
510.741 0.678 0.600 0.612 0.591 | 0.035 0.091 0.114 0.160 0.178 | 0.706 0.586 0.486 0.452 0.413
6 0.818 0.737 0.663 0.651 0.633 | 0.040 0.107 0.149 0.193 0.225 | 0.778 0.629 0.514 0.458 0.408
710860 0.779 0.732 0.670 0.667 | 0.039 0.118 0.187 0.221 0.268 | 0.820 0.660 0.545 0.448 0.399
810915 0.809 0.762 0.710 0.691 | 0.044 0.126 0.209 0.256 0.308 | 0.870 0.682 0.553 0.453 0.383
910935 0.815 0.755 0.712 0.688 | 0.047 0.133 0.217 0.272 0.333 | 0.888 0.682 0.538 0.439 0.355
1010971 0.829 0.751 0.724 0.698 | 0.051 0.141 0.227 0.297 0.368 | 0.920 0.687 0.524 0.427 0.329
25 1.079 0.854 0.784 0.744 0.717 | 0.050 0.169 0.310 0.411 0.562 | 1.028 0.685 0.474 0.333 0.155
50 | 1.040 0.874 0.770 0.759 0.724 | 0.045 0.183 0.304 0.426 0.574 | 0.995 0.692 0.466 0.333 0.150
100 | 1.102 0.856 0.796 0.726 0.715 | 0.047 0.176 0.321 0.406 0.571 | 1.055 0.679 0.475 0.320 0.144

Table 3.2: MSE decomposition of a single VAR
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3.B.2 Perfectly Measured Economic Variables
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3.B.3 Noisily Measured Economic Variables
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3.B.4 Incorporating all Variables

as Benchmark

MODEL T
T =2
s oo 10e: 10 10e-6.
m 1 5 1 5 1 5 5 1 5
h 1| 418 -20.31 396 -16.32 -19.30 2178
2| -249 -2042 -20.44 | 269 -9.79 -10.06 -10.94
3| -587 -22.05| -5.30 -21.86 | -0.02 -10.16 -6.87  -7.46
4| 740 22119 | -246 -11.02 -480  -5.45
5| -10.67 -8.68 -22.35 | -4.26 -11.56 -3.61  -4.27
6|-10.88 997 -2246 | -5.01 -11.56 91 -3.54
7|-13.08 -11.09 -22.38 | -5.02 -11.03 -247 310
8| -12.21 <1041 2105 | -5.64 -11.08 =226 -2.99
9 -10.22 839 1878 | -5.25 -10.54 262 | -181  -2.80
10| -9.35 -7.58 -17.37 | -5.85 -10.67 -2.67| -1.66 -2.64
25| -9.51 916 -17.48 | -3.08  -6.31 -3.86 7412
50 | -10.19 -16.96 | -10.69 -19.89 | -4.30  -8.81 -5.23 | -4.78  -5.62
100 [ -11.08 -18.62 | -13.18 -23.65 | -3.58 -9.06 | -3.05 -2.90 | -6.26 -7.57| -5.68 -6.58
T =50
s oo 1004 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
Lo 1| 1284 -117| 1311 -1.63 | 1110 -245| 364 -3.25| -7.06 -9.11| -9.10 -10.65
2| 1817 036 | 18.08 -0.04 | 20.25 5721074 6.06 | -1.70 -2.69 | -419 -5.01
3| 1466 -0.90 | 1586 -1.27 | 1949  7.66 [ 1132 839 | 0.04 -0.64| -249 285
4 6.85 -6.47| 795 -6.89 1473 5.13 | 9.91 7.92 033 -0.19| -1.70 -1.85
5[ 020 -1164| 114 -1202 1014  1.85| 829 680 | 050 0.09| -156 -1.68
G| -5.39 -15.74| -447 -1611| 671 -040 | 687 558| 096 055 4 149
T| -847 -18.05| -740 -1829| 510 -1.30| 6.16 5.11 L15 071 -1.23  -1.39
8(-1038 -19.59 | 941 -19.71| 366 -1.94| 506 419| 11§ 062 | -1.34  -168
9[-11.48 -20.03 | -10.61 -20.21 | 232 -235| 439  3.64 097 045| -1.53 -1.98
10 -20.56 | -11.20 -20.65 | 2.2 -233 | 410  3.58| 087 30| -1.49  -1.99
25 21029 | -5.06 -10.90 | 178 -0.60 | 267  242| -051 -047| -1.01 -1.36
50 -6.68 | -270 -7.16| 242 076 | 3.70  3.26 019  010| -1.19 -1.21
100 -6.66 | -4.05 723 | 223 124| 360 3.00| 048 016 -113 -145
T = 100
s o 10e4 10 0.1 10e-6.
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 1872 421 | 17.94 4622119 1013 | 13.16 -3.32 81 -4.65
2| 26414 848 2685 8952010 16.52 | 17.80 019 -160  -2.08
3| 24.53 T.88 | 24.35 7972643 16.70 | 16.70 0.76 | -1.06 -1.28
4| 19.37 5.01 | 1857  4.75| 2145  13.55 | 14.17 093] -0.66 -0.82
5| 1177 041 1075 058 | 16.88  10.60 | 1 0.79| 057  -0.66
6 480 597 | 356 -5.96 1223  6.98 | 10.39 0.75| -0.42  -0.50
7| 150 3| 005 8241029 567| 9.12 0.70| -0.32  -0.39
8] 095 -964| -1.91 -982| 856 432 818 0.68| 019 -0.29
9| -2.33 -10.51| -3.05 -10.60 | 750  3.82 0.72| -0.17 -0.26
10| 278 -11.05 | -3.62 -11.03 | 6.90 353 079 013 -0.25
25| -1.64  -6.10| -1.42 -590| 403 244 0.84| -0.01 -0.14
50| -022 226 -036 -212| 253 156 013 0.05
100 039 -094| 041 -101| L7  131| 255 0.79| 010 007
T = 200
s < 10e4 10 0.1 10e-6.
m 1 5 1 5 1 5 1 5 1 5 1 5
ho 1| 2523 1193 | 2552 1177|2322 1187|1454  815| 132 062 -1.87
2| 3699 18.99 S 18.84 [ 3100 1873 | 18.95 1463 | 248 214 | -087 -0.93
3| 3433 17.59 3 17.63 (2892 1935 [ 17.60  14.68 239 219| -048 -047
4] 2769 1414 18 1418 [ 2351 1653 | 1489 1298 | 197 192 | -026 -0.23
5) 2013 865| 1984 8911882 1359|1298 1161| 178 174| -0.14 -0.10
G| 1449 501 | 1460 545 | 1504 1074 [ 11.29 1021 | 155 158 | -0.10 -0.09
7| 1079 330 1186 3931317 9.28|1043  9.72| 136  L41| -0.08 -0.05
8 8.63  0.82 8.94 1471142 780 957  9.03 1.35 139 004  0.06
9| 717 -0.35| 703 0.3 ]1088 731 929 88| 140 145| 009 0.1
10| 614 -092| 605 -058| 997 664 | 882 847| 145 149| 013 016
25| 054 -383| 081 -364| 317 209| 463 439| 087 089| -0.16 -0.12
50| 002 -L70| -0.24 -182| 109 066 | 167 158| 048 047 | -0.08 -0.06
100 048 0.12 035 -0.02| 042 040| 0.76  0.69 0.20  0.21 0.01 0.00
T = 1000
s oo 104 10 0.1 10e-6.
m 1 5 1 5 1 5 1 5 1 5 1 5
ho 1 14.76 | 29.00 2844 1687 | 16.21 294 254| 042 051
2| 3713 2106 | 38.37 36.03 18.90 3 319 3.08| -022 -0.24
3| 3219 1741 3442 1748 1596 | 277 272| -0.08 -0.09
4| 3045 17.60 30.40 1478 1389 | 235 235 | -0.07  -0.06
5| 27.66 17.28 25.91 1290 1228 205  2.02| -0.03 -0.02
G| 2605 1691 | 26.18 1681 [ 22.87 1L59 1117 | 190 187| -0.02 -0.01
T| 2298 1501 2342 1510 | 20.34 10.5 10.24 179 1.78 0.00  0.01
8| 1912 1193 | 1961 12.06 [ 17.52 966 949 | 164 165| 003 003
9| 1634 9.95| 1667 10.02 | 15.90 919| L6l 162| 003 004
10| 1494 9.05| 1550  9.04 | 14.41 920  9.02 1.58 159 0.05  0.06
25| 120 091 192 -0.86| 199 286 275] 080 076| 005 004
50 61| <321 -417| 001 -004| 012 011| 006 006] 002 001
100 -0.89 -099| -0.83 -088| 005 0.07| 0.06 005]| 001 001| 000 0.00

Table 3.12: Gains from equal VAR pooling relative to large VAR (Model I)
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MODEL II
T=25
s 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5

h 1] -5.14 -18.02 | -5.08 -18.28 | -0.79
2] -1.93 -16.32 | -1.22 -16.44 | 4.11
3] -5.62 -18.29 | -5.22 -18.24| 0.17
4| -9.84 -2037| -8.98 -20.21 | -4.33

-7.49 -14.89 | -15.78 -19.67 | -18.63 -21.29
-0.25  -5.14| -9.87 -11.29 | -11.25 -12.19
017 -319| -6.59 -7.50 | -6.97 -7.69
-0.70  -2.83| -5.03 -5.14  -5.60

51-12.60 -21.61 | -11.72 -21.53 | -6.57 -0.74  -2.53| -4.05 -3.96  -4.39
6 ]-14.40 -22.13 | -13.60 -21.98 | -8.26 -1.62 -3.06 | -3.46 03 -3.44
T1-1475 -21.66 | -14.38 -21.53 | -8.78 -1.92 -2 21 -2.61  -2.89
8 1-13.64 -19.81 | -13.44 -19.66 | -8.75 -2.27  -3.25| -2.86 -1.97  -2.24
9 1-11.93 -17.69 | -12.15 -17.55 | -7.95 -210  -3.29 | -2.78 -174 2211
10 [-10.96 -16.47 | -11.33 -16.25 | -7.47 -211 -2.99 -1.62 -1.94
25| -6.19 -10.40 | -7.76 -10.08 | -3.46 -1.08  -1.46 -2.76 -3.08
50| -6.29 -11.21| -7.68 -10.69 | -6.03 -3.06  -4.11 -4.45  -4.50
100 | -5.27 -10.29 | -6.35 -9.59 | -3.94 =241 -3.77 -4.33
50

s 00 10e4 10 1 0.1 10e-4
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 1580 244 | 15.64 1540  230| 538 -1.50| -749 -9.25 -9.07

20.08  4.59 | 2091

2 1996  6.73| 876 443 | -298 -3.69 | -3.40 -4.51
31 1530 177 | 15.96
4

1547 539 | 8.11 533 -1.18  -1.97| -2.00 -2.72

-3.57 | 853 10.07 1.84| 6.68 455 -0.68 -1.16 | -1.50 -1.85
5 -7.68 2.74 6.44  -0.65 | 5.41 3.66 | -0.44 -0.78 | -117 -1.32
6 -9.81 | -1.01 3.82 -205| 480 3.05| -0.35 -0.64| -0.93 -0.98
7 -10.52 3.02 -219| 489 328| -021 -040| -0.62 -0.71
8 -10.26 2.08 -2.38 | 484 344 -018 -0.28| -0.59 -0.64
9 -9.68 150 -2.28 | 435 3.24| -0.15 -0.21| -0.59 -0.69
10 -8.54 139 -1.84| 432 330 -0.13 -0.14 44 -0.68
25 -1.78 2.63 1.19| 441 3.04| -022 -040| -0.88 -0.92
50 0.95 3.50 249 | 403  318| 038 039| -111 -0.85
100 0.10 2.73 136 | 336 292 038 -0.05| -0.62 -0.39
T = 100

B 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 2194  949| 21.64 950 |20.75 883 |10.54 542 | -2.00 -3.39| -480 -5.55
21 2650 11.44 | 26.52  11.46 | 2740 14.12 | 15.01 11.31 0.57  0.00 | -1.84 -2.17
312426 1014 | 23.23 10.16 | 25.11  14.74 | 1412  11.86 122 087| -096 -1.11
411832 579 | 17.29 580 | 1917 11.54 | 11.35  9.93 125 097 | -049 -0.59
511298 259 | 1274 260 | 1440 876 | 9.91 8.75 125 098 -0.24  -0.33
6 847 -0.25| 830 -0.25|11.00 6.44| 853 7.78 114 093 | -0.23  -0.29
71 590 -1.67| 573 -1.68| 882 513| 7.73 7.19 112 091| -0.13 -0.16
8 3.72 249 | 386 -252| 721 405| 698  6.62 1.24 1.02 | -0.02 -0.08
91 324 -235| 351 -238| 654  3.79] 696  6.61 1.31 1.08 013 0.04
10| 264 -228| 325 -231| 623 3.70| 692  6.69 1.44 1.26 025  0.16
25 3.49 172 3.19 171 | 440 323 510 463 090 0.70 029 020
50 103  0.51 115 049 | 197 124| 260 235 074 040 012 011
100 121 091 118 0.90 | 1.82 144| 199 194 067 046 028 027

T = 200

s 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1] 2698 13.14| 26.86 13.09 | 22.62 6.27 | -0.12 -1.01| -2.94 -3.00
2| 3440 16.80 | 33.72 16.79 | 28.84 12.02 116 084 | -1.26  -1.21
3] 31.64 15.08 | 3042 15.08 | 28.13 12.52 1.74 1.54 | -0.80 -0.74
412566 11.95| 24.65 11.95|24.03 11.42 1.65 1.55 | -0.53  -0.49
51 19.51 8.62 | 1895  8.63 | 19.64 10.32 1.70 159 | -0.35 -0.33
6] 14.89 591 | 1482 5921538 9.23 1.62 158 | -0.23 -0.21
711199 437 12.00 13.03 8.75 1.58 155 | -0.11  -0.11
81 10.09 359 | 10.24 11.16 8.30 1.53 153 | -0.02  -0.03
91 921 337 9.34 10.50 8.25 1.53 1.54 0.04  0.03
10| 741 2.45 767 247 | 9.00 7.65 1.56 1.53 0.07  0.04
25 1.99  0.68 173 0.68| 235 3.62 1.02 1.03 0.21 0.20
50 036 037| 050 037 0.84 137 053 0.51 0.10  0.10
100 | 037  019] 022  019| 044 057 020 018 0.04  0.04

s 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 2758 1759 | 29.75 1759 | 2532 15.58 | 15.84 10.76 | 3.24 239 | -045 -0.53
2] 3465 2225 38.03 22.27 | 32.59 2236 | 1949 1647 | 342 290 | -017 -0.17
31 31.59 19.88 | 3452 19.88 3095 2210 | 17.51 1578 | 275 248 | -0.10 -0.09
412607 1644 | 28.68 16.45|26.08 19.14 | 15.03 13.90 | 229 213 | -0.09 -0.08
51 2132 13.28 | 23.06 13.30 | 21.78 16.21 | 12.68 11.86 1.98 188 | -0.07 -0.06
6] 18.23 11.32 | 19.26 11.34 | 19.15 14.27 | 11.17  10.46 1.84 175 | -0.04 -0.03
711507 911 1577 9121619 1215 10.16  9.65 1.74 1.66 | -0.02 -0.01
81 1263 717 | 1283  T.18|13.71 1046 | 947  9.03 1.62 1.55 0.01  0.01

91 1084 623 | 11.32  6.23 1232  9.66 | 9.01 8.64 147 1.46 0.03  0.03
10 980 580 1025 580 |11.46  9.14| 884 846 1.46 1.46 0.04  0.03
25 1.29  0.50 1.37  0.50 | 1.70 1.29 | 245  247| 066  0.64 0.02  0.02
50| 007 0.07| 010 0.07| 016 0.11| 027 021 0.09  0.10 0.00  0.00

100 | 0.04 0.03] 0.06 0.03| 001 0.03] 002 003| 001 0.01 0.00  0.00

Table 3.13: Gains from equal VAR pooling relative to large VAR (Model II)
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MODEL III
T =25
s 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1|-40.91 -45.71 | -15.68 -22.92 | -15.65 -18.09 -21.32
2-39.62 -44.63 | -11.89 -19.10 | -9.63 -10.32 -11.82
3|-38.59 -43.18 | -10.26 -17.18 | -8.56 -6.50  -7.57
41-35.96 -40.20 | -11.59 -17.50 | -8.27 -4.87  -5.78
5|-33.61 -37.39 | -11.54 -16.95| -7.67 -3.79  -4.52
6| -28.45 -11.63 -8.00 -3.69  -4.38
7| -2851 -10.09 -6.52 -3.33  -3.90
8| -29.36 -9.30 -6.13 -2.96  -3.55
9|-3047 -33.27 | -7.61 -5.06 -2.80  -3.37
10 | -30.37 -32.87 | -7.29 -4.72 -3.18 371
25 | -44.82 -46.39 | -4.06 -4.56 -3.62  -4.07
50 | -60.03 -61.48 | -7.02 -6.00 -5.34  -5.86
100 | -65.70 -67.00 | -6.36 -6.30 -6.29  -7.02
=50
s 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1|-36.20 -39.91 -7.28 | -0.83  -6.67| -3.36 -7.39| -7.67 -9.40|-10.09 -11.61
2| -33.65 -38.10 -6.16 117 -3.99 150 -1.49 | -3.30 -4.18| -529 -5.63
3| -32.53 -36.48 -5.79 135 -317| 216  0.11| -1.83 -227| -3.52 -3.78
4|-31.61 -34.78 -7.29 | -0.58  -4.10 144 -015| -1.26  -149 | -2.40 -2.56
51-30.25 -33.12 -7T98 | -1.06  -4.02 175 043| -089 -099 | -1.77 -1.99
6]-29.93 -32.75 -8.63 | -1.69 -4.07 172 048] -086 -0.88| -1.38 -1.51
7|-2896 -31.40 -8.66 | -1.75  -3.97 156 0.52| -0.53 -0.58 | -1.05 -1.18
8| -27.31 -29.57 -7.50 | <087 -2.77 1.52 047 | -0.37 -044 | -0.94 -1.00
9]-29.11 -31.26 -6.68 | -0.72 -2.35 1.50 047 35 -042| -0.89 -1.03
10 -29.75 -6.11 | -0.94 -2.24 115 0.14 .24 -0.40 | -0.90 -1.06
25 -32.44 -1.38 | -017  -0.83| 0.69 0.12| -0.09 -0.23| -086 -0.97
50 -42.57 -1.21| -039  -0.88| 057  0.05 0.01  -0.28 | -0.55 -0.66
101 -54.05 -0.60 018 -0.18 | 030 -007| -0.52 -0.62| -0.57 -0.88
=100
s 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1]-3323 -36.44 | 480 026 526 0.52 117 -1.87| -252 -3.86| -4.16
2| -3472 -3833 | 7.60 1.64 718 224 374 143 -029 -0.88]| -1.53 -2.01
3 -33.39 | 622 0.70 5.78 1.84 1.85 0.03 -0.17 | -0.84 -1.08
4 -30.33 | 430 -029 | 433 115 1.53 0.14 007 | -0.50 -0.66
-27.96 | 335 -0.94 3.69  0.75 1.50 043 037 -0.13  -0.32
-24.07 | 2.07 234 001 1.05 034 023 -0.01 -0.16
-22.63 1.20 2.11 0.20 1.13 048 032 0.09 -0.02
-19.37 | 033 -2.06 095  -0.44 0.83 046 031 0.01  -0.08
-20.11 | -0.18  -2.19 0.62  -0.52 0.75 045 032 0.00 -0.09
-20.10 | -0.30  -2.12 0.57  -0.37 0.78 0.41 0.30 | 0.00 -0.09
-48.63 | 0.32  -0.03 045 018 0.23 0.06 010 | 0.06  0.03
-72.62 | 016 0.06 013 0.14 0.23 0.05 002 0.03 0.04
-74.17 | -0.06  -0.03 012 012 017 0.08 0.09]| 0.01 0.01
T = 200
s 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 11]-22.14 -24.76 718 297 | 434 244 -1.07 -1.84| -1.93 -2.37
2| -27.64 -30.39 9.82 579 4 019 -021| -049 -0.81
3 -28.44 9.14 545 0.90 067 | -0.37 -0.51
4 -28.52 8.08  5.16 0.68  0.60 | -0.23 -0.35
5 -27.42 6.14 3.93 0.51 0.46 | -0.05 -0.13
6 -27.03 424 241 0.31 0.26 | -0.03 -0.08
7 -26.51 2.83 1.42 030 024 | -0.05 -0.08
8| -23.69 -25.30 205 0.92 025 020 -0.11 -0.12
91-19.23 -20.77 197 1.08 027 024 -0.09 -0.09
10 | -21.06 -22.56 1.26  0.52 0.21 0.17 | -0.07 -0.07
25 | -18.33 -18.43 0.05  0.02 0.00  0.01 0.04  0.05
50 | -18.93 -18.98 0.03  0.02 0.00 -0.01 | -0.01 -0.01
100 | -25.64 -25.66 0.06  0.03 0.01 0.01 0.00  0.00
T = 100
5 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1] -6.39 -997| 1011  6.38 9.68  6.10| 6.06 397 1.05  0.51| -025 -0.48
2|-10.06 -14.60 | 13.72 844 | 1248 824 | 757 595 1.53 129 | -0.13  -0.23
31-12.12 -16.45 | 11.99 6.86 | 11.25 7.29 6.47 5.49 1.04 095 | -0.05 -0.11
41-11.89 -15.78 | 946  557| 963 6.18| 517  457| 083 081| -0.10 -0.13
5-10.64 -13.86 | 7.71 455 774 504 | 422 378 079 077 | -0.07 -0.08
6|-12.22 -15.11 572 323 579 379 345 317 073 069 | -0.05 -0.06
7|-12.37 -15.22 459 218 3.98 266 | 259 252 0.64 063 -0.02 -0.03
8|-1041 -12.71 3.35 1.28 2.96 1.76 1.93 1.92 049 047 | -0.03 -0.03
9|-1340 -15.37| 281 1.04 2.39 1.35 1.61 157 040 039 -0.03 -0.03
10| -13.10 -1487 | 229 067 | 201 1.11 1.41 1.35 032 032 -0.01 -0.02
25| -746 -7.53| 017  0.08 0.10 007 | 0.08  0.09 0.02  0.02| 0.00 0.00
50| -0.50 -0.51| -0.01 -0.01| -0.01 -0.01| -0.01 -0.01 0.00  0.00 | 0.00 0.00
100 | -6.62 -6.62| 0.01 0.01 0.01 0.01 0.01  0.00 0.00  0.00 | 0.00  0.00

Table 3.14: Gains from equal VAR pooling relative to

large VAR (Model III)
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3.B.5 Non—Random Benchmark Models

MODEL I

%
s % 1004 10 1 0.1 1066

m 1 5 1 5 1 5 1 5 1 5 1 5

h 1(11.22 -725|1222 -6.79| 7.72 -8.84 -10 -6.34  -9.90

21297 832 13. -7.65| 925 -581 -2.56  -4.06

3| 826 -1087| 838 -1023| 680 -581 174 248

1] 6.04 -1056 | 6.51 -10.09 | 4.99 -5.60 -0.81|-1.24 -1.81

5| 485 -1043| 498 -10.30 | 3.70 -4.87 -0.08 | -0.83 -1.36

6] 324 -1082| 323 -10.76 | 232 -4.94 0.07 [ -0.45 -1.05

-
et

21021 | 262 -1005 | 205 -4.56
8| 256 -927| 282 -920| 163 -4.28
9| 266 -8.31

10| 322 694

25| 748 -256

0| 9.67  -0.90

100 | 7.88 -3.95

0.59 | 012 -0.76
0.79 | 0.04 -0.81
0.85 | 0.10 -1.05
0.67 | 042 -0.96
144
55 255 | 148 232 | 255 0.77
7.35 471|243 242 409 171

S oo 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
ho 1|1302 -1.35 | 1447 -0.99| 7.82 -3.96 |-027 -6.21|-220 -4.60 |-3.61 -5.13
2| 16.66 1287 0.4 -0.87-022 -1.20 |-1.12 -1.78
3| 1382 1516 -207 | 11.94 161 0.90 | 017  -0.41 |-0.62 -1.02
411016 1147 -371[ 1028 198 | 274 143| 027  -0.16 | -0.29 -0.59
5| 864 9.85 -445| 814 1.33| 291 1.77| 051 0.03 | -0.21 -0.37
6| 6.89 796 521| 604 042|305 212|052 005|010 -0.24
7| 676 762 -483| 560 069 | 330 263|064 031|004 -0.17
8| 7.56 -3.96 | 550 1.04 286 | 0.73 025 0.03 -0.09
9| 793 -353 | 555 121 3.02| 082 050 | 015 011
10| 861 -249| 815 -254| 539 1.55| 380 3.12| 088 073 | 027 0.21
25| 995 220| 938  207| 480 268 | 461 4.04| 120 127 | 031 017
50| 671 L74| 636 178| 379 230 | 337 155 180 018 0.05
100 671 190 | 7.03  1.99| 3.08 197|285 324| 140 142] 025 0.1

T = 100

S oo 10ed 10 1 0.1 10e-6

m 1 5 1 5 1 5 1 5 1 5 1 5
ho1 70 1852 2231265 130 | 433 -1.13 | -0.39 -173
2| 19.46 1944 2631592 426 | 6.56 3.06 | 065 -0.13|-0.56 -0.95
3| 17.58 1811 261 [ 1539 6.03 | 574 402 | 091 037|030 -0.53
4 15.05 15.19 197 [ 1272 551 | 518 397 0.79  0.28|-0.18 -0.35
5[ 1218 1227 056 |10.79 483 | 473 367 | 077 037 [-0.09 -0.20
G| 9.69 997  -0.83 433 343| 072 047 [-0.05 -0.07
7| 864 894 -1.21 4.08 334|077 059 -0.03 001
8| 7.80 851 147 3.92 321 072 062 ]-0.06 001
9| 764 818 -1.40 310 070 0.71 [-0.06 0.05
0] 7.82 815  -1.36 371 3.02| 078 081 [-009 007
25| 772 730 133 3.09 254 071 066 | 015 028
50 3.21 2.87  0.83 153 125 054 047| 0.16 0.22
100 | 2.14 220 057 114 085| 033 033 021 015
T = 200

S oo 10ed 10 1 0.1 10e-6.
m 1 5 1 5 1 5 1 5 1 5 1 5
h 15.21 3.00 | 1545 3071260 177 | 349 -1.35| 045 -0.72|-1.07 -1.55

1
21865 3301786 347 | 1688 5.02
3(1661 275 [1596 273 |1536 6.27
41318 106 1215 098 [ 1310 6.10
5[1028 013 989 0141097 557
6 909 -017| 819 -0.12| 912 483
7| 851 027 017 | 834 4
8| 832 -010| 661 -0.07| 800 4
9 878 068 719 0.78| 778 475
4
1

267| 076 038 [-0.31 -0.61
3.82| 062 053 |-020 -0.31
3.75( 050 049 [-0.10 -0.21
3.60 | 0.63 057 [-0.03 -0.12
3.33| 0.66 063 [-0.01 -0.08
0.73 0.66 | 0.02 -0.03
073 0.64| 006 002
3.4 073 066 | 0.09 0.06
3.15| 073 0.68| 0.06  0.06
2.02| 0.65 0.61 | 0.09 0.08
0.83| 030 031|004 006
029 012 012 001 002

10 910 116| 749 1.25| 740
25| 6.27 152 | 6.64 151 | 286
0| 183 036 153  0.29| 076 0.60
100 071 015| 053 028 031 025

T=1

s oo 10e4 10 1 0.1 10e-6.
m 1 5 1 5 1 5 1 5 1 5 1 5
ho 1{1631 549 [ 1801 561 (1248 418 542 121| 062 -0.12|-027 -0.32
2[17.63 4781977 480 | 17.73 857 | 741 474| 098 057 |-0.06 -0.10
31504 335 16.20 17.34 989 | 7.05 546 | 0.80 057 | 0.00 -0.01
11206 214 | 1241 1480 918 6.02 5.16| 0.71 055 | 0.00 0.01
5[ 991 1.96 1035 1289 853 | 517 465 064 051 | 0.00 001
G| 899 225| 949 1187 814 | 461 423 062 050 | 0.00 001

-

882 242 868
8| 807 238 7.92
9| 816 268 | 7.89

1056 743 | 428 3.95| 060 049 | 0.01 0.03
941 668 | 3.90 3.61| 056 045 0.03 0.03
879 6.28| 3.63 3.48| 054 046 | 004 0.04

10| 820 295| 7.76 822 602 349 337|056 048 005 0.04

25| 331 089 408 183 1.09| 130 134|022 024 0.02 001

0| 122 020] 104 025| 0.04 -0.01| 007 0.06] 0.02 001 000 0.00

100 005 -0.01| 011 -0.09| 004 003|003 003|000 001]| 0.00 0.00

Table 3.15: Gains from equal VAR pooling relative to R? selected VAR (Model I)
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Model II
T =25
S 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 989 -7.34| 956 -7.48| 5.04 -9.45|-210 -11.77 | -6.65 -6.60
2| 9.5 -822|10.02 -835| 557 -7.83| 042 -5.66 |-2.45 -2.82
3| 598 -9.02| 644 -9.06| 506 -6.29| 049 -3.58 |-1.55 -1.47
4| 3.61 -949| 338 -9.63| 3.02 -6.18 |-0.10 -2.83|-0.79 -0.72
5] 213 -938| 142 -948| 1.98 -591 |-0.18 -2.26 | -0.58 -0.73
6| 057 -9.01| 040 -9.12| 1.38 -533|-0.07 -1.78 |-0.27 -0.55
7| 085 -7.93| 033 -8.03| 145 -451| 020 -1.21| 0.03 -0.54
8| 1.39 -6.63| 079 -6.65| 141 -3.73| 049 -0.75| 0.36 -0.47
9| 202 -511| 139 -5.09| 165 -2.71| 0.90 -0.47 | 0.70 -0.44
10 290 -3.76 | 227 -3.72| 208 -210| 118 -0.12| 0.64 -0.64
25| 4.8 151 | 552 1.65| 545 224| 246  1.53 | 1.94 0.34
50| 492 170 | 578 1.85| 7.04 3.26| 3.77 201 214 1.02
100 | 6.75 286 | 7.31 3.14| 822 3.16| 3.27 1.89 | 2.15 0.23
T =50
S 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 11280 -0.92 |11.59 -1.03| 9.32 -2.73| 0.81 -4.93|-1.80 -4.28|-3.45 -5.09
2| 1515 -0.23 | 1430 -0.25| 11.32 -048 | 3.39  0.08 | -0.02 -0.76 | -1.42  -2.07
3| 13.59 -0.52 | 12,97 -0.42 | 11.39 1.51 | 3.46 1.43| 0.16 -0.02|-0.92 -1.15
4| 994 -2.06| 9.63 -2.00| 897 1.13]| 3.05 142 035 019 ]-044 -0.72
5| 732 -3.09| 7.57 -3.08| 7.67 1.00| 2.65 1.34| 059 0.23] 0.02 -0.36
6| 580 -322| 640 -327| 722 122|226 115| 0.77 0.19  -0.10
7| 525 -3.04| 590 -3.15| 707 1.62]| 2.14 1.25 | 0.86 021 011
8| 5.02 -236| 566 -254| 7.07 1.80| 2.09 131 1.19 0.87] 028 0.20
9| 499 -184| 558 -205| 697 1.82| 2.22 1.43 1.09 | 0.51 0.33
10| 507 -1.34| 581 -1.55| 6.90 1.81 | 2.19 1.35 3 117|074 046
25| 551 224 | 561 228| 549 240| 3.01 258 | 135 1.24| 095 0.19
50 | 4.74 228 | 420 232| 471 260| 3.04 257| 160 1.08| 074  0.78
100 | 3.88 1.65| 347 1.72| 449 213 | 239 203| 1.31 128| 0.61  0.36
T = 100
S 00 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1]13.12 -0.81]10.46 -0.92|10.24 -0.62 | 541 -0.48]|-0.64 -2.08|-217 -3.00
2| 1547 -0.12 | 1283 -0.13 | 1340 2.52| 5.64 215| 0.68 0.16 | -0.90 -1.01
31486 0.56 | 1231 0.62 | 12.96 4.39 | 5.71 3.41] 072 0.54]-0.55 -0.58
4|13.10 046 | 11.02 0.62|11.06 4.31| 482 323 | 069 0.62]-0.52 -0.42
501097 -0.14 | 890 -0.01| 937 3.73| 430 298| 058 0.57|-0.32 -0.29
6| 9.00 -057| 744 -052| 7.75 3.04| 4.00 292 055 0.54]-0.14 -0.20
7| 822 -026| 664 -021| 7.03 295| 373 281 | 053 0.54]-0.06 -0.18
8| 772 031 614 034| 681 3.19| 3.56 275 052 0.51]-0.03 -0.15
9| 768 091 | 630 094| 692 342| 3.53 267 | 057 0.58] 0.06 -0.08
10| 7.53 140 | 6.57 140 7.04 3.65| 347 2.64| 056 0.59| 0.11 0.00
25| 317 1.74| 318 1.74| 329 230| 2.28 1.96 | 0.53 058 | 022 017
50 | 158 090 | 1.48 0.90| 192 1.24| 1.60 1.26 | 0.65 0.55| 0.13  0.02
100 125 073] 111 075| L.70 095 | 1.04 092| 047 041| 0.07  0.10
T = 200
S 0 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1] 1411 256 | 1587 260 | 12.11 578 049 [-0.33 -1.58 | -0.64 -1.13
2| 19.63 4292061 428 16.97 7.01 3.92] 0.64 0.18]-0.13 -0.35
3| 17.89 3.78 | 1840 3.69 | 16.04 6.28 459 | 068 0.37] 0.01 -0.17
411475 253 | 15.07 250 | 13.57 505 422 074 056 | 0.06 -0.04
51271 233 | 1316 2.36 | 11.76 3.93 | 0.75 0.60| 0.08 -0.01
6 10.72 7101054 1.76 | 9.94 3.45] 073 0.60| 0.02 -0.04
7| 950 157 923 159| 9.09 546 | 3.69 331 | 0.77 0.64|-0.01 -0.04
8| 876 175 819 1.72| 812 515| 335 3.10| 0.78 0.66 | 0.00 -0.01
9| 877 204| 800 1.98| 758 5.10| 3.16 3.04| 080 0.68| 0.02 0.01
10 789 1.77| 697 1.70| 6.81 4.59| 291 2.83| 0.75 0.66| 0.00 -0.02
25| 1.67 0.72| 227 0.74| 185 1.36| 1.52 1.51| 048 048 0.10  0.07
50| 047 034 051 034| 076 0.50| 0.66 057 | 021 0.21] 0.04 0.04
100 019 018] 021 018| 030 019 026 021| 010 0.10] 0.03  0.02
T = 1000
S 0 10e4 10 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1]16.86 4.84 1534 4.86|13.11 389 | 630 270 | 1.58 0.87|-020 -0.25
22248 7982062 8001775 876 | T.41 555 | 136 1.03 |-0.03 -0.11
32141 8242042 830|17.12 992 6.73 552 | 115 099 |-0.03 -0.07
41841 759 |17.62 7.66| 1494 929 | 566 486 | 110 1.01|-0.02 -0.07
516.02 6.79 | 1467 6.85 | 12.54 8.27 | 495 434 | 093 0.87|-0.01 -0.05
6| 13.51 5891244 597|10.50 7.12| 440 383 | 085 0.81| 0.01 -0.03
711128 4.84 1052 4.95| 9.00 6.10| 3.94 347 | 0.76 0.73| 0.01 -0.02
8| 9.80 4.07| 9.08 418| 7.71 525| 3.63 326 0.73 0.68| 0.02 -0.02
9| 896 3.67| 821 377| 714 486| 339 3.07| 072 0.64| 0.03 0.00
10| 830 362| 779 3.70| 690 4.75| 326  3.02| 0.67 0.58| 0.03  0.00
25 1.22 043 | 1.16 044 | 143 092| 1.16 1.03 | 024 0.21] 0.01 0.01
50 0.02 0.06| 0.06 006| 010 0.09| 0.12 0.2} 002 0.02| 0.00 0.00
100 | 0.03 0.02| 0.02 0.02]| 0.03 0.02| 0.01 0.02 | 0.00 0.00| 0.00  0.00

Table 3.16: Gains from equal VAR pooling

relative to R? selected VAR (Model II)
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Model ITT

T=25

S 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1]-1.60 -9.98-2.23 -10.02 | -4.79 -10.98 | -7.25 -6.65 -10.68 | -6.91 -10.94
21093 -8.60| 032 -873| 0.11 -6.84|-2.12 -2.40  -4.46 | -249  -4.50
31 117 -7.19| 0.61 -7.34| 052 -5.96 | -1.04 -1.17  -2.51 | -1.40  -2.96
4| 1.02 -6.28| 036 -6.31| 048 -5.19|-0.19 -0.73  -1.66 | -1.09  -2.40
51 141 -499| 0.64 -4.94| 048 -4.30| 0.02 -0.56  -1.44|-0.82 -1.99
6] 022 -503| 027 -490| 039 -3.89| 0.42 <021 -0.91|-0.76  -1.86
71-036 -480| 0.13 -4.69| 0.18 -3.52| 0.25 0.06 -0.86 | -0.51  -1.50
81-0.36 -4.231-0.05 -4.11| 0.62 -291|-0.02 032 -0.78 | -0.66 -1.76
91 064 -320| 0.68 -3.05| 094 -230| 0.20 0.25 -0.76 | -0.58  -1.66
10 | 054 -2.83| 0.73 -2.73| 1.09 -2.09| 0.28 0.14  -1.11 | -049 -1.84
25| 049 -193| 045 -1.76 | 1.04 -1.31 | 0.09 -0.06 -1.13|-0.53 -1.53
50| 204 -1.04| 225 -0.78| 1.26 -1.10 |-0.41 0.04  -1.29 | -1.04 -1.87
100 | 210 -1.25| 1.62 -1.11| 0.59 -1.98|-0.59 -0.75  -1.13 | -0.35  -1.99

T =50

S 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 043 -5.40 | -0.58  -5.70 | -0.49 =277 -4.37
21 110 -5.50 | 0.18  -5.02 | 0.15 -1.04  -1.69
3] 127 -428 | 1.01  -3.63 | 0.81 -0.79
41123 -4.10 | 103 -2.74| 0.87 -0.55
51 0.60 -4.55 | 016 -2.59 | 0.82 -0.59
61 0.04 032  -222| 037 -0.51
71-0.33 0.51  -1.74 | -0.02 -0.45
8 1-0.15 0.86 -1.31 | 0.03 -0.37
9 1-0.44 0.80 -1.01 | 0.12 -0.38
10 | -0.61 049 -1.16 | 0.27 -0.39
25| 0.36 0.58  -0.25 | -0.05 -0.19
50 | -0.03 0.02  -0.62 | 0.06 0.06
100 | 0.67 0.25| 0.86  0.32|-0.07 -0.04

T = 100

S 00 10e4 10 1 10e-6
m 1 5 1 5 1 5 1 1 5
h 1| 301 -1.23| 3.00 -117| 1.63 -1.65  -2.81
2| 314 -1.84| 347 -1.84 | 277 -1.03 -1.38
31 235 -265| 286 -2.68 | 2.01 -0.60  -0.77
41 089 -346| 1.63 -3.48| 138 -0.33  -0.42
51 110 -2.87| 1.87 -2.90 | 140 -0.21  -0.25
6] 060 -2.88| 1.48 -2.88 | 0.99 -0.11  -0.14
71071 -220| 1.86 -2.14 | 1.09 -0.02  -0.01
81 094 -1.71| 2.02 -1.65| 0.80 0.03  0.06
9| 110 -1.25 | 218 -1.20 | 0.62 0.05 0.04
10| 1.16 -0.87 | 229 -0.80 | 0.80 0.08  0.10
25| 024 0.06 | 0.60 0.05| 0.34 0.05  0.06
50| 034 013 027 012 0.12 -0.01  -0.02
100 | 021 0.11| 026 012 | 0.19 0.00  0.01

S 00 10e4 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 383 003|460 001|299 -023| 1.06 <031 -1.16 | -1.02  -1.41
21 527 0.57| 583 058 | 444 056 | 1.25 025 -0.19 | -0.47 -0.71
31495 036|559 035|387 050 | 0.98 039 0.09|-029 -0.44
41 413 -0.05| 470 -0.06 | 2.54  0.02| 083 0.41 0.21|-0.11  -0.20
51350 -0.20| 3.79 -0.20 | 225  0.09| 0.78 034 0.21]-0.06 -0.13
6] 303 -0.35| 316 -0.33| 1.82  0.06 | 0.66 022 0.13]-0.06 -0.14
71243 -050| 279 -049 | 186 -0.09 | 0.68 0.10  0.07| 0.02 -0.09
81230 -0.21| 233 -0.21| 173  0.01| 0.44 0.04  0.03| 0.05 -0.05
91 179 -025| 1.81 -0.26 | 142  0.00| 0.39 0.04 0.06| 0.04 -0.05
10| 1.07 -047 | 1.28 -048| 0.85 -0.21| 0.33 0.00  0.01| 0.04 -0.03
25( 021 0.02| 0.16 0.02| 0.14  0.03 | 0.05 0.00  0.00 | -0.01 0.00
50| 0.07 0.05| 0.08 0.06| 0.07 0.03| 0.02 0.01 0.01 | -0.01  -0.02
100 | 0.06 0.04 | 0.06  0.04 | 0.03 -0.01 |-0.01 -0.01  -0.01| 0.00  0.00

T = 1000

S 00 10e4 10 1 0.1 10e-6
m 1 5 1 5 1 5 1 5 1 5 1 5
h 1| 636 261|620 261| 496 2.08| 044 -1.49|-0.01 -0.26|-0.08 -0.05
2] 694 248| 735 249 | 5.09 1.84| 094 -0.14| 026 013 [-0.12 -0.08
31607 1.63| 6.15 1.64 | 4.78 1.62 | 1.02  027] 007  0.00]|-0.04 -0.05
41 484 1.04 | 487 1.04 | 4.40 1.45| 1.05  043] 008 0.01]|-0.04 -0.03
51 421 074|427 074 3.15 1.09| 078 045| 016  0.10 [-0.03  0.00
6] 379 045| 344 045| 266 070 | 0.63 036 | 0.07  0.06 |-0.02  0.00
71306 015|254 015|224 043| 048 0.33| 0.05 0.03| 002 0.01
81252 0.04] 203 0.04| 196 039| 038 032] 005 0.01] 0.00 0.00
91219 -0.03| 1.69 -0.03| 155 022] 037 028| 0.04 0.01| 000 -0.01
10| 206 0.08| 147 008 | 122 029| 025 021| 005 0.01[-0.01 -0.01
25| 0.14 0.02| 0.19 0.02] 010 003 002 0.02| 0.00 0.00| 0.00 0.00
50| 0.00 0.00| 0.00 0.00| 0.01 0.00 | 0.00 0.00| 0.00 0.00| 0.00 0.00
100 | 0.00 0.00 | 0.00  0.00 | 0.00 0.00| 0.00 0.00]| 0.00 0.00| 0.00 0.00

Table 3.17: Gains from equal VAR pooling relative to R* selected VAR, (Model III)
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