Program Development by Proof
Transformation

Luca Chiarabini

Dissertation
an der Fakultdt fiir Mathematik, Informatik und Statistik
Ludwig—Maximilians—Universitat
Miinchen

vorgelegt von
Luca Chiarabini

Luca Chiarabini

PROGRAM DEVELOPMENT BY PROOF TRANSFORMATION

Dissertation an der Fakultit fiir Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universitdt Miinchen

1. Berichterstatter: Prof. Dr. Volker Heun

2. Berichterstatter: Prof. Dr. Helmut Schwichtenberg

3. Priifer: Prof. Dr. Rolf Hennicker

4. Priifer: Prof. Dr. Hans Jiirgen Ohlbach

Ersatzpriifer: Prof. Dr. Martin Wirsing

Externer Gutachter: Prof. Dr. Stefano Berardi (Universita di Torino)

iv

With all its sinful doings, I must say,

That Italy’s a pleasant place for me,

‘Who love to see the Sun shine every day,

And vines (not nail’d to walls) from tree to tree
Festoon’d, much like the back scene of a play
Or melodrame, which people flock to see

When the first act is ended by a dance

In vineyards copied from the south of France.

I also like to dine on becaficas,

To see the Sun set, sure he’ll rise to-morrow,

Not through a misty morning twinkling weak as

A drunken man’s dead eye in maudlin sorrow,

But with all Heaven t’himself; that day will break as
Beauteous as cloudless, nor be fore’d to borrow
That sort of farthing candlelight which glimmers
‘When reeking London’s smoky cauldron simmers.

I love the language, that soft bastard Latin,

‘Which melts like kisses from a female mouth,

And sounds as if it should be writ on satin,

With syllables which breathe of the sweet South,
And gentle liquids gliding all so pat in,

That not a single accent seems uncouth,

Like our harsh northern whistling, grunting guttural,
Which we’re oblig’s to hiss, and spit, and sputter all.

I like the womens too (forgive my folly),

From the rich peasant-cheek of ruddy bronze,
And large black eyes that flash on you a volley
Of rays that say thousand things at once,

To the high dama’s brow, more melancholy,
But clear, and with a wild and liquid glance,
Heart on her lips, and soul within her eyes,
Soft as her clime, and sunny as her skies.

Da Beppo: A Venetian Story [Beppo:

Con tutti i suoi peccati, devo dire

Che I’'Italia mi piace, che mi piace
Vedere il sole splendere ogni giorno,

E le viti non piantate su un muro,

Ma abbarbicate ai tralicci, fondi
D’opera dove la gente accorre

Quando una danza chiude il primo atto,
Tra vigne rosseggianti come in Francia.

Mi piace poi mangiare beccafichi,
Guardare il sole che tramonta, certo
Che domani risorge e non opaco
Come un occhio ubriaco tra le nubi,
Ma in pieno cielo rinascera il giorno,
Lucente e senza nuvole, e non gonfio
Di quel torvo lucore di candela

Del fetido bollore londinese.

La lingua, poi, quel latino bastardo
Morbido come il bacio di una donna,
Che vibra come se scritto sul raso,
Sillabe respiranti il mezzogiorno,

Le liquide che scorrono gentili,

Dove nessun accento suona rozzo
Come le gutturali nordiche, grugniti
O fischi che sputiamo, scoppiettanti.

Infine (perdonate) amo le donne,

Le ricche guance contadine bronzee,
E gli occhi neri, e irradianti, e grandi,
Che ti dicono tutto in un istante,

Le dame, la fronte malinconica,

Ma chiara e dallo sguardo selvatico,
Cuore su labbra, sugli occhi ’anima,
Solare e dolce come il cielo e il clima.

Una Storia Veneziana] di Lord Byron

Abstract

In the last 20 years the formal approach to the development of software turned
out to be a crucial technique for the generation of correct programs.

This idea has its theoretical base into the several semi-automatic methods to
transform a formal specification that describe the behavior of a program into
an effective executable piece of code.

One of this is the so-called "program extraction from proof". The idea is that
from an constructive proof of a formula "for each x there exists y such that
P(x,y)" we can automatically extract a program "t" such that the property
P(x,t(x)) hold. In our days such proofs are normally written by ad-hoc tools
(some of them are: COQ, ISABLLE, MINLOG, PX, AGDA, etc...) called
"proof assistants'.

Even if today this technique is pretty well established, the "manipulation" of
proofs in order to develop performing programs did not received big attention.
In this thesis we will develop several automatic and semi-automatic methods
in order to extract efficient code from constructive proofs. Our field of applica-
tion will be computational biology, a research field in which the development of
efficient programs is crucial. So our main goal will be to show how the manip-
ulation of formal proofs, essentially studied by proof theorist, has a big effect
also in practical program generation.

In den letzten 20 Jahren stellte sich der Einsatz formaler Methoden in der Soft-
wareentwicklung als eine dufierst wichtige Technik zur Generierung korrekter
Programmen heraus.

Die theoretische Grundlage dieser Idee basiert auf mehreren semiautomatis-
chen Methoden zur Umwandlung einer formalen Spezifizierung, die das Verhal-
ten eines Programms beschreibt, zu einem ausfiihrlichen Codeblock.

Eine dieser Methoden nennt sich "program extraction from proof". Die Idee
ist, dass wir von einem konstruktiven Beweis einer Formel “fiir jedes x ex-
istiert ein y so dass P(x,y)” ein Programm “t” automatisch extrahieren kann,
in welchem die Eigenschaft P(x,t(x)) erfiillt ist. Heutzutage werden solche Be-
weise von ad hoc Tools erzeugt (z.B.: COQ, ISABLLE, MINLOG, PX, AGDA,
usw.), die “proof assistants” genannt werden.

Obwohl sich diese Technik heutzutage gut etabliert hat, hat die “Manipula-
tion” von Beweisen, mit den Ziel effiziente Programme zu realisieren, keine
grofse Beachtung gefunden. Innerhalb dieser Doktorarbeit werden wir ver-
schiedene automatische und semiautomatische Methoden mit dem Ziel entwick-
eln, Code von konstruktiven

Beweisen zu extrahieren. Unser Anwendungsbereich wird die Bioinformatik

vii

sein, ein Forschungsbereich fiir den die Entwicklung effizienter Programme
entscheidend ist. Unser Ziel wird folglich sein zu zeigen, wie die Manipula-
tion von formalen Beweisen - hauptsé chlich erforscht von Beweistheoretikern
- eine grofle Auswirkung auf die praktische Programmgenerierung hat.

viii

Acknowledgements

I wish to thank my advisors, Prof. Dr. Helmut Schwichtenberg and Prof.Dr.
Volker Heun for the help and the guidance which they have given to me during
all the period of my doctoral studies. Thanks also to my external advisor
Stefano Berardi for helping me during the corrections of the thesis. I wish
to thank my colleagues Diana Ratiu, Stefan Schimanski, Freiric Barral, Trifon
Trifonv, Bogomil Kovachachev, Basil Karadais and Simon W. Ginzinger for
their academic and human support. I wish to thank Frau. Gerlinde Bach for
the help in filling dozens of bureaucratic documents and Franziska Schneider
for the nice philosophical chats.

I wish to thanks all the members of the “pataccas” or “pizzas” Munich
group: Antonio Marraffa, Giuseppe Marraffa, Giovanni Alunni, Simone Bren-
ner, Mauro Improta, Martina Dreifig, Marco Favorito, Manuela Bianchi, Rocco
Marvaso and Agostino Santisi. I passed with them wonderful moments. I think
that, without them, I would never ever had the power to live in Munich for
so long time. They are and will remain my best friends. I wish also to thank
all the friends in the Internationale Haus of Munich (one of the most exciting
place I ever had the chance to live) in particular to Tonia Ludwig for her kind-
ness. Thanks to the Genova’s friends, among them David Burlando and Luana
Noselli for all the support they gave to me in the last five years.

I wish to thank all my relatives: my grandmothers Franca and Iolanda,
my cousins Francesca, Katy, Emanuele and Elisa, my uncles Eugenio, Paolo,
Roberto and my aunts Mara, Rosa and Serenella. A special thought goes to
my grandparents Anselmo and Angelo, that left us too early.

Finally, I wish to thank the most important persons in my life, the persons
without whom I would not be here today and that always supported me: my
mother Loredana Grassellini and my father Valter Chiarabini, to which this
thesis is dedicated.

ix

Contents

1

Introduction

1.1 Automatic Program Development
1.2 Content of the Thesis
1.3 Related Work L

Logical Foundations

2.1 Modified Realizability for First Order Minimal Logic
211 Godel’'sT oo
2.1.2 Heyting Arithmetic.
2.1.3 Normalization of Proofs
2.1.4 Short Excursus in Program Extraction from Proofs . . .

2.2 A First Example of Proof Transformation: How to Extract Pro-
grams with let oo 0000

23 MINLOG o

Pruning

3.1 Introduction.

3.2 Pruning in MINLOG
3.2.1 Immediate Simplification in MINLOG
3.2.2 Dependencies Removal Transformation
3.2.3 Computing with Permutative Conversions

3.3 Case Study: The Bin Packing Problem
3.3.1 Experiment Lo

34 Conclusions

Bounded Perfect Matching Problem
4.1 Introduction and Motivation
4.2 Bounded Perfect Matching of a Complete Bipartite Graph . . .
4.2.1 Basic Definitionso
4.2.2 Algorithms, Data Structures and Automatic Program
Synthesis L
4.2.3 Problem Specialization: The Monge Inequality
4.3 Pruningat Worko
44 Conclusions Lo

© B R

11

11
11
15
16

19
21

xi

Contents

5

xii

Generalizing Pruning 55
5.1 Introduction 55
5.2 Proof Contexts, 55
5.3 Properties of the General Pruning Rule 56
54 Case Study 58
String Alignment 61
6.1 Introduction 61
6.1.1 The String Similarity Problem 62
6.1.2 List as Memory Paradigm 67
6.2 Conclusions Lo 73
Tail Recursion 75
7.1 Introductiono 75
7.2 Proof Manipulation 76
7.2.1 Continuation Based Tail Recursion 7
7.2.2 Accumulator Based Tail Recursion 79
7.3 From Higher Order to First Order Computation 82
74 Case Study 85
7.4.1 The MSS Problem 86
7.4.2 Generation of a Continuation/Accumulator Based MSS-
Program L. 89
Beyond Primitive Recursion 91
8.1 Introduction 91
8.1.1 Up Primitive Recursive Induction. 91
8.1.2 Up Primitive Iterative Induction 92
8.1.3 Down Primitive Recursive Induction 93
8.1.4 Down Primitive Iterative Induction 95
8.2 Expressive Power oL 96

8.2.1 Up Primitive Iteration in Terms of Up Primitive Recursion 96
8.2.2 Up primitive Recursion in Terms of Up Primitive Iteration 98
8.2.3 Up Primitive Recursion in Terms of Down Primitive Re-

CUTSIOIL . v v v v v v e e e e e e e e e e e e e e e 99
8.2.4 Down Primitive Recursion in Terms of Up Primitive Re-
CUTSIONt e e e e e 101
8.2.5 Down Primitive Iteration in Terms of Down Primitive
Recursion 102
8.2.6 Down Primitive Recursion in Terms of Down Primitive
Iteration 103
8.2.7 Up Primitive Iteration in Terms of Down Primitive Iter-
ation 104

Contents

8.2.8 Down Primitive Iteration in Terms up Primitive Iteration 104

8.2.9 Summary and conclusion 105

8.3 Primitive Recursion and Iteration with Accumulators. 105
8.3.1 Up Primitive Recursion with Accumulator 105

8.3.2 Up Primitive Iteration with Accumulator 106

8.3.3 Down Primitive Recursion with Accumulator 106

8.3.4 Down Primitive Iteration with Accumulator 107

8.3.5 Summary and Conclusion 108

8.4 Case Study: The Factorial Function 108

9 Conclusions and Future Works 111
Bibliography 113

xiii

Contents

xiv

1 Introduction

1.1 Automatic Program Development

The software life-cycle [26] (Figure 1.1) is the our-days model for the production
of software in the industrial world. The basic idea is the following: given an
input problem (most of the time specified in natural language -as English-) one
write a program that is assumed to solve the problem. Afterwards the program
is tested on several inputs and modified in case errors pop up. After this step,
the program is put in practical use.

Problem D

lProgramming

Program written in a
prog. language

Maintenance Compiling Testing

Program written in
machine code

Executing

—_ Results

Figure 1.1: A software life-cycle model illustrating conventional software design

The main limit of this approach is that it can only confirm the presence
of errors but not their absence. What we miss following this approach is the
evidence of the correctness of the program. A better methodology for the
production of correct software with respect to a given specification, rely on
deriving a program from a problem in several controlled steps as illustrated
Figure 1.2.

The step in Figure 1.2 can be in the following way resumed:

1 Introduction

Problem

l Formalization

Formal specification ‘—‘

Program
Program Development Verification

Program written in
a prog.language

Maintenance l Compiling

Program written in
machine code

l Executing

Results

Figure 1.2: A software life-cycle model illustrating conventional software design

1. The problem of the customer is analyzed and a first informal specification
is produced.

2. The formal specification is translated in a more formal language (equa-
tional for term rewriting, or Horn-clausal form for logic programming)

3. From the formal specification is derived a program that is provably cor-
rect, that is can be proven that the program meets the specification (pro-
gram verification).

4. The derived program can be compiled and executed and the results can
be used to test the program.

Essentially, there are two broad paradigms to fulfill step number 3: the
“proofs-as-programs”[2] and “synthesis by transformations” [8].

e In the proof-as-program paradigm a specification is usually expressed by
formulas that state the existence of an object with a given property. Thus
a constructive proof of the given specification is produced and a program
is extracted from the proofs. By the realizability method we can prove

1.1 Automatic Program Development

that the program so produced respects the given specification (that is
the proved formula). Research in this field focuses on the development of
strong theorem provers and mechanisms for extracting algorithms from
proofs.

e In synthesis by transformations the algorithms are derived from the spec-
ification by forward reasoning. The specification is seen as executable
and is transformed in a real program by a set of rewriting rules. This
paradigm is particularly well-suited for the synthesis of logic programs
since a declarative formula can be viewed as executable program which
“only” has to be transformed into some restricted syntax like Horn logic.

Our work concerned essentially the proof-as-program paradigm. According
to this paradigm we have the following correspondences

formula = data type

constructive proof of formulaA = program of type A

The basic idea in order to develop correct programs by the proof-as-program
methodology can be resumed in the followings steps:

e We assume that the programming problem is given in the form
Vz3IyA(z,y)

e One finds (manually, or computer-aided) a constructive formal proof of
the formula Vz3yA(x,y).

e From the proof a program p is extracted (fully automatically) that prov-
able meets the specification, that is,

VzA(z,p(z))
is provable

There exist a number of systems supporting program extraction from proofs
(e.g. Agda', Coq?, Minlog®, NuPrl?).

From the end of the ’80s a lot of research focused on the development of
efficient algorithms by the proof-as-programs paradigm. This was stimulated
by the fact that often the computational content of elegant and short proofs is

1ht’.tp ://unit.aist.go.jp/cvs/Agda/

2ht’.tp ://coq.inria.fr/

3ht’.tp ://www.minlog-system.de/

4ht’.tp ://www.cs.cornell.edu/Info/Projects/NuPRL/nuprl.html

1 Introduction

particularly inefficient. Consider for example the following statement:
For each natural number n there exists a natural y such that y = 2".

This sentence is simply provable by induction on n. In the base case its enough
toset y = 1, in fact 1 = y = 2°. Then if (by induction hypothesis) we know
that y = 2" for some fixed n, to prove the sentence for n + 1 its enough to to
set y =7+ 7. In fact

y = y+y
— 2n +_271

2n+1

By the proof-as-program paradigm the computational content of this proof is
the power of 2 function, EXP3, sketched in the following piece of code:

Algorithm 1 Procedure EXP;
Input: 0<n
Output: 2"
loop
if n =0 then
return 1
else
return EXPy(n — 1) + EXPa(n — 1)
end if
end loop

Unfortunately the computational complexity of EXPy is exponential in n.
Historically the research concerning the problem of extracting efficient pro-
grams from proofs focused both in tuning the extracted code[12, 3, 7] (the
optimization phase take place after the extraction) and in tuning the proof
from which the code is extracted[30, 29, 1] (the optimization phase take place
before the extraction) Our work regarded this second line of research.

1.2 Content of the Thesis

The originality of the present work regarded the development of a set of new
proof-techniques to transform proofs in order to develop efficient programs. In
particular we investigated and developed the following proof-transformations:

Pruning This technique has its theoretical bases in the proof theory work of
Dag Prawitz [31] later on successfully developed in the pioneer work of

1.2 Content of the Thesis

C.A. Goad [17]. Pruning regards the eliminations of redundant case dis-
tinctions in proofs. Consider for example the following simple statement:

Given a natural n there exists a natural y such that n <y

We can prove this statement as follow. We assume n. There are two
cases: n < lorn £ 1. Assume ip : n < 1 then we set y = 1, and we
have the thesis by ip. Else (that is n £ 1) we set y = n and we conclude
by the reflexivity of the less-or-equal relation between naturals numbers.
The computational content of this proof is the following piece of code:

Algorithm 2
Input: 0<n
Output: 0 < y such that: n <y
if n <1 then
return 1

else
return n
end if

Of course in the above proof the case distinction over n is useless (we could
for example immediately conclude setting y = n). The pruning technique
is useful in detecting and simplifying this kind of redundancies. The main
idea on which pruning is based is the following: if the left /right branch of
a case distinction proof over A V B does not depend on the assumptions
A/ B, then the entire case distinction can be replaced by the left/right
branch.

In the example above, the left branch of the case distinction refer to the
assumption variable u : n < 1, but the right branch does not depend on
the condition n £ 1. So applying the pruning rule, we can replace the
case distinction by its right branch, obtaining a new proof from which
we can extract the identity function. We note as the simplified extracted
program is not only more efficient (we don’t perform a useless “if”’) but it
changes also its computational behavior.

In the chapter 3 of this thesis we extensively revisit the pruning idea
and we apply it in simplifying some instantiations of the proof of the bin
packing problem. In chapter 4 we develop a proof of the bounded perfect
matching problem and we simplify some instantiations of it with the
pruning technique, showing on another not trivial example that pruning
has to be considered an essential tool in order to extract efficient programs
from instantiated proofs. Finally in chapter 5 we prose an extension of

1 Introduction

pruning.

Dynamic Programming The question that motivated this line of research was
the following: how it is possible to transform a proof into another proof,
from which it is possible to extract a dynamic program? We refer to
dynamic programming as a programming technique where we evaluate
a sufficient amount of data in advance so that the at each iteration the
program gets to reuse it instead of recomputing it each time it is needed.
Though at programming level this technique is pretty well known, it is
not so clear how to obtain the same result at proof level. In chapter 6
of the thesis we developed (taking as a case study the formalization of
the similarity of DNA sequences problem) a general method in order to
extract dynamic programs from proof. The proposed method unfortu-
nately is not general enough to be applied automatically to a large set
of proofs (the automatic transformation is not possible even at program-
ming level). What we developed has to be considered more as a general
scheme that should instantiated case by case.

In order to get an informal idea of the method (that will be formally
presented in chapter 6), let consider the following example. Assume we
want to prove, for each 0 < n, the existence of a natural y such that
y = Fib(n) with Fib(n) n-th Fibonacci number, defined as usual:

0 n=>0
Fib(n)=¢ 1 n=1
Fib(n —1) + Fib(n—2) 2<n

This statement can be proved by (general) induction over n as follow: for
n=0wesety=0,for n=1weset y=1 and for 2 < n, we apply the
induction hypothesis

vn(Vk.k < n — Jy.y = Fib(k))

on n — 1 and n — 2 obtaining u; = Fib(n — 1) and us = Fib(n — 2) and
thus we have the thesis for y = u1 + u2. In Algorithm 3 is showed the
computational content of this proof.

In Algorithm 3 the procedure fib has an exponential computational com-
plexity in n. The idea we propose in this thesis to tune this kind of proof
(in order to extract dynamic programs) consist in adding a set of new ax-
ioms to manage a list of intermediate computed results in order to avoid
re-computation. For example for the specific case of the Fibonacci num-
bers, an idea would be to introduce a new predicate MEM C N x NN x N,
where MEM(4, fi—1, fi) (for 1 <) means that f;_1 and f; are the ¢ — 1-th

1.2 Content of the Thesis

Algorithm 3 Procedure fib
Input: 0<n
Output: Fib(n)
loop
if n =0 then
return 0
else if n = 1 then
return 1
else
return fib(n — 1) + fib(n — 2)
end if
end loop

and i-th Fibonacci number. The axioms required in this case would be
necessary to state formally that the value we store in f;—1 and f; are
Fibonacci numbers. Then new thesis to prove require a little modifica-
tion: we have to show that for each natural n there exists a natural y
such that y = Fib(n) and that there exists two naturals w and z such
that MEM(n, w, z). Later on, in the proof of the new thesis, we can avoid
to instantiate twice the induction hypothesis (source of the exponential
behavior of fib) and we can refer to the induction hypothesis only once
and to the partial results stored in MEM. The computational content of
this proof is a linear time algorithm.

Tail Recursion For a program to be tail recursive is a desired property that
guarantee a certain level of efficiency. In a tail recursive procedure the
recursive call are done as last operation: this avoid, during the compila-
tion or interpretation task, the storage/recover (during the call/return of
the procedure) of a big amount of data (the procedure-contexts). One of
the main tool to perform an automatic transformation of a program into
a tail recursive one is the so called CPS [33] [13] (Continuation Passing
Style) transformation.

In the chapters 7 and 8 of the present thesis we investigated the relation
between constructive proofs and tail recursion. In particular, our study
was motivated by the following question: how it is possible to transform
(possibly automatically) a proof by induction into another proof in such
a way the content of the transformed proof is tail recursive?

In the literature, one of the main references (that we will briefly review
later) on this topics, is the Penny Anderson’s Ph.D. thesis [1]. Though
the approach described in the Anderson’s thesis is extremely interesting,

1 Introduction

this is not completely automatic but it require some user interaction. In
the present thesis we develop a method fully automatic to obtain the
same result, based on a particular simple idea.

Let consider for example the task to prove that for each natural n there
exist a natural y such that y = Fact(n) with Fact(n) the factorial of n
defined as follow :

Fact(n) = ! n=0
" | nxFact(n—1) 0<n

We can prove this statement by induction on n. For n = 0 we set y = 1
and assuming u = Fact(n) then we can build the factorial of n+ 1 setting
y = n xu. The content of this proof is the usual factorial function in
Algorithm 4.

Algorithm 4 Procedure fact
Input: 0<n
Output: Fact(n)
loop
if n =0 then
return 1
else
return n * fact(n — 1)
end if
end loop

The procedure fact in Algorithm 4 is not tail recursive (in the else branch
we have to store the context (n* _)). An idea to tune fact is to shift the
control of the execution to another recursive procedure that will be tail-
called and use an accumulator parameter where the effective computation
of the factorial numbers will take place. At logical level this is done by
proving an intermediate lemma, where we state that, given two naturals
n and m and the the factorial for m, u = Fact(m), we are able to supply
a natural y such that y = Fact(n+m). The proof of this intermediate
lemma, is the heart of the transformation and it will be carefully presented
in chapter 8. Later on, we can instantiate the proof of this lemma on a
generic n and on 0 in order to obtain the proof of the factorial of n. In
this example, we worked with the factorial of n but it is possible to apply
the method to a generic predicate P(n).

1.3 Related Work

1.3 Related Work

We can divide the literature in the field of the generation of efficient programs
by the usage of a proof assistants into two big blocks: methods that transform
a program after the extraction phase (I), and methods to transform a proof in
order extract efficient code (II).

(1
In [28], Nakoi Kobayashi propose a method to solve the “useless-variable elimi-
nation” problem. This is one of the problems that affect the code automatically
extracted from a proof. The proposed algorithm to solve the problem is a sur-
prisingly simple extension of the usual type-reconstruction algorithm. The
proposed method has several attractive features. First, it is simple, so that
the proof of the correctness is clear and the method can be easily extended to
deal with a polymorphic language. Second, it is efficient: for a simply-typed
A-calculus, it runs in time almost linear in the size of an input expression.

In [3] Stefano Berardi presents a pruning method to simplify program ex-
tracted from proofs. The proposed method is based on the replacement of some
sub-terms with dummy constants. Berardi proves that the proposed method
preserves observational behavior of a simply typed A-term if it does not modify
the type nor the context (assignment of types to free variables) of the term.
This result is used to define a map Fl : simply typed A-terms — simply typed
A-terms removing redundant code in functional programs. In the paper are
formally proved some properties of Fl interesting from a computational view-
point.

In [12], Damiani and Giannini presents two type inference systems for de-
tecting useless-code in higher-order typed functional programs. This work rep-
resents an extension of the previously analyzed work of Berardi on pruning. In
the paper it is proposed a useless-code elimination algorithm which is based
on a combined use of these type inference systems. The main application of
the technique is the optimization of programs extracted from proofs in logical
frameworks, but it can be used as well in the elimination of useless-code deter-
mined by program transformations.

(1
In [17] Alan Goad introduce the use of the pruning for the development of
efficient programs generated by formal proofs. The paper concerns: (1) the uses
of this additional information in the automatic transformation of algorithms,
and in particular, in the adaptation of algorithms to special situations, and (2)
efficient methods for executing and transforming proofs. The proposed method
is later on tested on the implementation of the bin packing problem.

In [1], Penny Anderson propose a solution to the problem of transforming

1 Introduction

a proof in order to extract a tail recursive function. The method is based on
the representation of derived logical rules in Elf, a logic programming language
that gives an operational interpretation to the Edinburg Logical Framework.
It results in declarative implementations with a general correctness property
that is verified automatically by the Elf type checking algorithm.

In [30] Frank Pfenning presents an interesting proof transformation to ex-
tract efficient code from proofs (this work constitute the theoretical base of the
Anderson’s work [1]). In his paper Pfenning extends the paradigm employed
in systems like NuPrl where a program is developed and verified through the
proof of the specification in a constructive type theory. The method is illus-
trated on an extended example — a derivation of Warshall’s algorithm for graph
reachability. In the paper, the author, outline how the framework supports the
definition, implementation, and use of abstract data types.

10

2 Logical Foundations

2.1 Modified Realizability for First Order Minimal Logic

2.1.1 Godel's T

Types are built from base types N (Naturals) , L(p) (lists with elements of
type p) and B (booleans) by function (—) and pair (x) formation. The Terms
of Godel’s T [39] are simply typed A-calculus terms with pairs, projections (m;)
and constants (constructors and recursive operators for the basic types)

Types p,o == N|B|L(p)|p—olpxo
Const ¢ = ON[SuccN N[etB [8| (;)L() | :p = LO=LO IR RY | RE
Terms r,s,t = c|zP|(AzPr?)P77|(rP77sP)7 [(motP *7)P| (m1tP*7)7 | (rP, s7)P*7
The expression (:) represents the empty list, and (ao :: ... :: an :) a list with

n+1 elements. We equip this calculus with the following usual conversion rules
for the recursive operators, applications and projections:

Ri:0 > (N—>0oc—0)—>N-=>o0 'Ri(p):(7—>(p—>L(p)—>(7—>(7)—>L(p)—>(7

(R&b£)0— b (Rg(pb 1)] — b

(REbF) (n+1)— fr((R&bH) (REbS) (@ D) — FL(REq b))
g:0—>0—>B—o mo(r,s) — T

(Rgrs)tt — 7 m(r,s) — s

(R rs)ff — s (Az.r)s — r[z = 3]

2.1.2 Heyting Arithmetic

We define Heyting Arithmetic HA® for our language based on Gédel’s T, which
is finitely typed.

Formulas: Atomic formulas (Pt?) (P a predicate symbol, , § lists of terms
and types), A — B, VzfA, V™2 A, Jx” A, Iz A, A A B. Given a term ¢ of
type B we define a special kind of atomic formula, atom(¢) that means ‘¢t = tt’.
In particular we have the atomic formula 1 := atom(ff). We define negation
—-A by A — L. In writing formulas we assume that V,3, = bind more strongly
than A, and that in turn A binds more strongly than —.

11

2 Logical Foundations

Derivations: By the Curry-Howard correspondence it is convenient to write
derivations as terms: we define A-terms M# for natural deduction proofs in
minimal logic of formulas A together with the set OA(M) of open assumptions
in M:

4, OA(w)={u}

(M4, NBYANEY " OA((M, N))=OA(M) U OA(N)
MAMNBOYA | OA(MO0)=0A (M)

NA"B1)B OA(N1)=0A(N)

Mt MEYA=E OAMuM)=0A(M)\{u}
MAZBNAE OA(MN)=0A(M) U OA(N)

AzP M4 A OA (A M)=0A (M)

Sl

+

~ T —
~—

NSNS 2

provided z* ¢ FV(B), for any u® €OA(M)
(v7) (MY="AtP) A OA(Mt)=0A (M)
(v) (A2 M)A OA (A2 M)=0A(M)

provided = ¢ FV(B), for any u® €OA(M), and z ¢ [M]
(V") (MY =" AP A T OA(Mt)=0A(M)

To obtain intuitionistic logic we can use the additional ez-falso-quodlibedt
rule:
V(L — P(#)) (Efa)

with P predicate symbol different from 1. We will use two specials quantifiers
v"¢/3" to indicate that there should be no computational content [5][4]. The
logical meaning of the universal quantifiers is unchanged. However, we have
to observe a special variable condition for V"“t: the variable to be abstracted
should not be a computational variable in the given proof, i.e. the extracted
program of this proof should not depend on x.

We will write proofs in form of proof-terms, as above, or as metarules

Al An
C

to read as ‘from the assumptions A1, ..., A,, by the rules R we derive C. Here
R can be an introduction rule (AT, =1, VT ¥"") or an elimination rule (A,
A;’ q_7 v_J Vnc_)'

Usually we will omit type and formula indices in derivations if they are
uniquely determined by the context or if they are not relevant. We use 3 (with
or without computational content) and V in our logic, if we allow the following
axioms as constant derivation terms:

R

H:p,A : Vz(A — 3z A)

12

2.1 Modified Realizability for First Order Minimal Logic

3o ap ¢ F2"A—-Vz’(A— B)— Bwith ¢ FV(B)
(H"C)IP’A ¢ V2P (A — 3P A)
(3Veran : IF2?A—-V"2"(A— B) — B with ¢ FV(B)
The constant 3~ followed by 3T elide themselves by the following (Elid) rule:
3—(3+ P MA)E'QCPA _ /\y\mpAﬁB.ytp MA
We can define V from 3 via:
AVB2 3P (p— AA(p— L) — B)

Here (for short) we wrote p for atom(p). The induction proof-terms associated
with N,B and L(p) are:

Ind, amy : A(0) = (Vn.A(n) — A(n+ 1)) — V™. A(n)
Ind; oy @ A(tt) — A(ff) — ViR A(t)
Ind; a0y : A() — (Ya, L A(l) — A(a = 1)) — V1" A(l)
Finally we use the constant derivation term (IF4),
IFa:pP(p— A) = (p— L) = A) = A
to perform case distinction on boolean terms w.r.t. a formula A.

Proof Abbreviations:
For simplicity, we will use the following proof abbreviations:

|M
Joa t Al
JzA
for
34t |M
Alz/t] — 3zA Alz/t]
Jx A -
and
|M N
Iac dzA Vz(A — C)
C 3
for

13

2 Logical Foundations

|M
Jrac JzA |N
Ve(A—>C)—=C Vz(A — O)
c -

Given a goal formula C, the application of the cases proof tactic on ¢ generate
the following proof tree:

IFo ¢ M
t—-C)— (t—-ff)—C)—C t—C |N
(t—f)—-0C)—C t—ff) > C
C

that we will simply rewrite as:

|M N
IFo t t—C t—f)—-C
(if)
C
We simulate V-introduction by
| M
3¢ tt Cla/t] ot
AV B ’

with Clz/tt] = (&t — A) A ((tt — ff) — B), and
|M
dic . Cla/f]
AV B

with Clz/ff] = (f — A) A ((ff — ff) — B). Finally, by (if) we can mimic the
V-elimination as follow:

+
\/l

(p— A)A((p— ff) = B) (p—=A)A((p—ff) = B)
p— A p ((p—f) — B)
A B
|M N
C C
IF p p—C (p—ff)—>C
C

(—=AHr(lp—f)—B)—~C
vp((p — A) A ((p—) = B)) = C

14

2.1 Modified Realizability for First Order Minimal Logic

|
3 pe AV B
C
will be shortly rewritten by
|R IS
A B
|M N
C C
% |K
3, AV B VpD — C
c Ve

with D = (p — A) A ((p — ff) — B).

2.1.3 Normalization of Proofs

A derivation in normal form does not make “detours”, or more precisely, it
cannot occur that an elimination rule immediately follows an introduction rule.
We now spell out in detail which conversions we shall allow: this is done for
derivations written in tree notation and also as derivation terms.

2.1.3.1 Conversions
A-conversions
|M |N
A B . |M
A —
ANB L
A
or written as a lambda-term
mo((M*, N?)) — M*
A B |N

AT —

AANB = B

or written as a lambda-term

m((M*, NP)) — NP

15

2 Logical Foundations

—-conversion

|M IN
B —t IN — A
A—B " A |M
B - B

or written as a derivation term
M MPYN? — M[u® /N4

V-conversion

|M
M’
A s — ‘
VaA to- Alz/t]
Alz/1]

or written as a derivation term

Az M)At — M [z/t]

V"-conversion

\M
M/
A V"C+ — ‘
oA b Ale/1]
Alz/t]

or written as a derivation term

()\ncxMA)V"‘:xAt — MA [.T/t]

2.1.3.2 Strong Normalization

No matter in which order we apply the conversion rules, they will always termi-
nate and produce a derivation in “normal form”, where no further conversions
can be applied.

Theorem 2.1.1 ([36]). Every proof-term is strongly normalizing, that is every
reduction sequence starting from a proof term M, terminates.
2.1.4 Short Excursus in Program Extraction from Proofs

Clearly proper existence proofs have computational content. A well-known and
natural way to define this concept is the notion of realizability, which can be

16

2.1 Modified Realizability for First Order Minimal Logic

seen as an incarnation of the Brouwer-Heyting-Kolmogorov interpretation of
proofs.

2.1.4.1 Type of a Formula

We indicate by 7(A) as the type of the term (or “program”) to be extracted
from a proof of A. More precisely, to every formula A it is possible to assign an
object T7(A) (a type or the “nulltype” symbol ¢). In case 7(A) = e proofs of A
have no computational content; such formulas A are called Harrop formulas.

N ap if Pis a predicate variable with assigned ap
T(P(@) = { e Otherwise
o _ p ifr(A)=¢
(3274) = { p X 7(A) Otherwise
o _ € ifr(A)=¢
(V24) = { p — 7(A) Otherwise
(F*2z"4) = 7(4)
(V™z”A) = 7(4)
7(A) ifr(B)=¢
(ANB) = 7(B) ifr(A)=¢
7(A) x 7(B) Otherwise
7(B) ifr(A)=¢
T(A— B) = € ifr(B)=¢

7(A) — 7(B) Otherwise

2.1.4.2 Extraction Map

From every derivation M of a computationally meaningful formula A (that is,
7(A) # €) it is possible to define its eztracted program [M] of type 7(A)[24].
If 7(A) = ¢ then [M] =e¢.

[u?] = =& (27 uniquely associated with A)
A B [M] ifr(A)=¢
Pu"M] = { M [M] Otherwise
A—B By [M] 1f7'(A) =¢
[M N7l = { [M][N] Otherwise
s IN] ifr(A)=¢
ety = 1o it7(B) = =
(IM], 1 Otherwise

17

2 Logical Foundations

B, M ifr(A) =eor7(B) =
[MANEi] = { En d/[]] ifOtherWiSS::]
[Az? M) = xz[M]
HMVJcAt]] — IIM]]t
[Az"M)" 4] = [M]
IIMV"‘:xAt]] _ IIM]]

Content of the proof constants:

Hopanl = {000 I r(4) = ¢
=481 AzPXTA) pp=m(A=T(B) f(rx)(ma) Otherwise
e Axlx Ifr(A)=¢

ep,Al T AzPy™™ (z,y) Otherwise

[(3™):] = Az B) g Ifr(A)=¢
v ABL T g™ fr)=7(B) £ Otherwise

[(3)a] = X" We

[IFa] = MB 0@ WD (Gfblr) I r(A) £e
[Ind, am] = RX
[md o] = Rig
HIndt,A(t)]] = R%

2.1.4.3 Realize a Formula

Correctness of the extracted programs is guaranteed by the notion of modified
realizability. Intuitively, if ¢ is the extracted program from the derivation M of
the formula A equal to Vz3y.P(z,y) then for each x the formula P(z,t(x)) is
provable correct (Soundness) i.e. t (modified) realize A (written (¢t mr A))

rmr P(f) =

rmr(3z.4) = {i:ﬁ[%;/mr] iéggjr)szi
ey = { e
rmr (3. A) = {g::iizii g:lgfr)szz

18

2.2 A First Example of Proof Transformation: How to Extract Programs with let

ror (V2" A) = { V"z.emr A ifr(A)=¢

V2. rmr A Otherwise

emrA— rmrB ifr(A)=¢
rmr(A— B) = Vez.xmr A — ecmr B ifr(A) #e=7(B)

Vez.xmr A — remr B Otherwise

emrAArmrB ifr(A)=¢
rmr(AAB) = rmrA — emr B ifr(B)=¢

mormr A — myrmr B Otherwise

Theorem 2.1.2 (Soundness). Let M be a derivation of a formula A from
assumptions u; : A;. Then we can find a derivation of the formula ([M] mr
A) from assumptions u;: T, mr A;.

Proof. By structural induction on M ([36]). a

2.2 A First Example of Proof Transformation: How to Extract
Programs with let

In a proof it can happen that, to prove B, we need to prove an auxiliary formula

A:

|M
B |V
A— B A
B

This create a detour that, once normalized, reduce to

That is |N, with end formula A, is substituted for all the open assumptions
u® in M. At programming level this conversion is represented by following

B-reduction:

A" MTENINTTE — 5 [M]T P a7 /[N]T]

with 7(A),7(B) # e. Clearly the piece of code [N]™“) will be duplicated as
many times 27" appear free in [[M]]T(B). A way to create more compact code
is replace the original proof by:

19

2 Logical Foundations

|M
B
ld:(A—-B)—A—B A— B |N
A—B A

B

With Id the identity aziom. If Id is not animated[37], then it is considered as a
back-bozr proof-term and is not involved in any simplification. The content of
the previous proof is:

(IdT((AA)B)HAA)B) A (ET(A) HM]]T(B)) HN]]T(A)
If we consider a call-by-value evaluation strategy the argument of the applica-
tion is evaluated first, and the previous program is printed as
let z [N] [M]

with the obvious meaning: set x equal to [IN], then execute [M]. An interesting
application of this program replacement is in the context of the proofs by
induction. Consider the derivation:

|M
VP A(n + 1)
|N Vo A(n) — VP A(n + 1)
Ind,, vee a(n) Vz? A(0) Vn(Vz? A(n) — VP A(n + 1))

VYnVz? A(n)
Assuming 7(A) # ¢, the algorithmic content of the step case is:

o=)\n/\mpHT(A(n))HM]]pHT(A(nH))

Now suppose = appear several times inside [M] and each time in the applicative
form (z t”), for some ¢. This will produce severals executions of same code when
the term « is applied to a natural number and to a functional term. To avoid
this phenomena we substitute the proof in step case M by:

|M
VaP A(n + 1)
Id:o (A(n)[zF /tP] — VzP A(n + 1)) [u:VzPA(n)| t°
A(n)[zP /tP] — VP A(n + 1) A(n)[zP /tP]
VzP A(n + 1)

VP A(n) — VaPA(n + 1)
Vn(VzP A(n) — VaP A(n + 1))

20

2.3 MINLOG

with 0 = (A(n)[z”/t?] — Va?A(n + 1)) — A(n)[z”/t’] — VzPA(n + 1). The
computational content of the modified step case is:

An, T

p=T(AM) (14(0) 77 (A] =T (AMHD) Y (o= (A py7(AG)

that is printed as

An,zlet y (z t) [M]

that is, given a natural and a real procedure f (the recursive call), f is applied
on t, the returning value binded by y and [M] (where y may occur) executed.

2.3 Minlog

MINLOG is intended to reason about computable functionals, using minimal

logic.

It is an interactive prover with the following features [36]:

Proofs are treated as first class objects: they can be normalized and then
used for reading off an instance if the proven formula is existential, or
changed for program development by proof transformation.

To keep control over the complexity of extracted programs, we follow
Kreisel’s proposal and aim at a theory with a strong language and weak
existence axioms. It should be conservative over (a fragment of) arith-
metic.

MINLOG is based on minimal rather than classical or intuitionistic logic.
This more general setting makes it possible to implement program ex-
traction from classical proofs, via a refined A-translation (cf. [6]).

Constants are intended to denote computable functionals. Since their
(mathematically correct) domains are the Scott-Ershov partial continuous
functionals, this is the intended range of the quantifiers.

Variables carry (simple) types, with free algebras as base types. The
latter need not be finitary (so we allow e.g. countably branching trees),
and can be simultaneously generated. Type parameters (ML style) are
allowed, but we keep the theory predicative and disallow type quantifi-
cation. Also predicate variables are allowed, as placeholders for formulas
(or more precisely, comprehension terms).

To simplify equational reasoning, the system identifies terms with the
same normal form. A rich collection of rewrite rules is provided, which
can be extended by the user. Decidable predicates are implemented via
boolean valued functions, hence the rewrite mechanism applies to them
as well.

21

2 Logical Foundations

Notation:

In the MINLOG proof assistant, extracted programs are presented in a textual
style, that we briefly describe now along with the correspondence with the
above mathematical notations: in programs produced by MiNLOG, tt and ff
are typeset #tt and #ff respectively; p X o as (rho@@sigma), L(p) as (list
rho), Az.t is written as ([x1t), (R, m/L(p) bS) as (Rec (mat/bool/list rho =>
sigma) b s) and (m,1€) as (left/right e).

22

3 Pruning

3.1 Introduction

In this chapter we deal with an old idea first introduced by Christopher Alan
Goad in the 1980s[17] called Pruning. Pruning is first of all a proof transforma-
tion to remove redundant (computationally relevant or not) parts of a proof.
But pruning is a also a program transformation: in the program extracted from
a pruned proof redundant chunks of code are dropped making use of a kind of
dependency information which does not appear in ordinary programs. For the
most part, the redundancies removed by pruning are not to be found in proofs
generated by people, however, proofs that result from automatic process tend
to include such redundancies. Thus the pruning transformation will not be of
much use when applied to proofs of algorithms as originally presented.

The pruning transformation has its theoretical foundation in the work in
proof theory of Dag Prawitz.

Dag Prawitz[31] asserts that redundant application of (VE) and (3E) consti-
tute unnecessary complication in proof, and can be easily removed. A natural
deduction proof in normal form and without such redundancies is said to be
in full-normal form . The rules to bring a derivation in full-normal form, the
Immediate Simplification rules [31, pag.254], are depicted in Figure 3.1.

Nine years later Goad showed that the application of the immediate sim-
plification rules (which he called pruning rules) to a proof which has been
specialized can lead to a very large increase in the efficiency of the extracted
algorithm. Pruning has the unusual quality that it modifies the function com-
puted by the expression to which it is applied[17, pp 23,56] while preserving
the validity of an algorithm for the specification embodied in the end formula
of the proof describing the algorithm.

The pruning protocol developed by Goad is based on the following three
steps:

Proof specialization : specialization of a subset of the input parameters of a
given proof.

Dependency removal transformation : replacement of all the open assumptions,
the type can be derived from a certain knowledge, by another proof of
the same type. This knowledge will consist in a set of formulas (types of
assumption variables) accumulated during a traversal of the proof tree.

23

3 Pruning

= MW ‘M
. AV B C C — No open assumption
(i) (VE) C c in M is discharged by
(VE)
=M N N
. AV B C C — No open assumption
(i7) (VE) ol c in N is discharged by
(VE)
M N
Jz A C — No open assumption
(1) (3B) ——F—— c in N is discharged by
(3E)

Figure 3.1: Prawitz’s Immediate Simplification / Pruning rules

Application of the Immediate Simplification /Pruning rules : simplification of the
proof tree with respect to a given set of pruning rules in order to eliminate
all the V/3 redundant inferences.

In this chapter, we present an implementation of pruning into the MINLOG
proof assistant. The adaptation is less obvious than what it appears at first
view. Several new developments upon the existing work include:

e The demonstration how pruning is intimately related to (and depends
on) the operation of permuting a proof [41, pag. 180]. Moreover we will
show the computational benefits, in terms of elimination of redundant
code, that the permutation operation induce on the extracted code.

e The development in MINLOG of a proof for the Bin Packing problem.
After the pruning protocol has been applied on such proof we show the
computational benefit on the extracted programs of this operation.

To our knowledge, this is the first implementation of the pruning transformation
in a modern proof assistant.

Since Goad’s original thesis, the research in this field has expanded in sev-
eral directions. Berardi[3] and Boerio[7], then later Damiani and Giannini[12]
developed a set of techniques in order to eliminate useless code in the programs
extracted from proofs. Nogin[29] put a lot of effort in re-implementing many
NuPrl tactics in order to make them work more efficiently. Penny Anderson in

24

3.1 Introduction

her Ph.D. thesis[1] used Frank Pfenning’s[30] lemma insertion (user dependent)
proof transformation in order to extract tail recursive programs from proofs.
Finally Chiarabini [9] generalized the Anderson’s idea producing a completely
user-independent proof transformation to obtain the same result.

Before ending this introductory section, in order to show how pruning effects
the efficiency of the extracted programs, we present the following,

Example 3.1.1 (From Goad’s thesis [17]). Let A(z,y,z) C N x N x N such
that A(z,y,2) = (x +y < 2) A (zy < 2). In order to prove that for each pair
of naturals « and y there exists z such that A(z,y, z), we define the following
axioms:

e Axy =Vz,y((x <1) - A(z,y,y + 1))
e Axo =Vr,y((y < 1) — Az, y,xz + 1))

e Axg=Vz,y((z<1— 1) = (y<1— 1) — A(z,y,22y))
Now we can proceed with the following proof Pi:

(Axz zy) vizﬁl)
(Aory) wpl @A) Awyom) oY
| Az, y,z +1) A(z,y, 2zy)
(y<1)V(y ﬁ 1) 2z A(z,y, 2) JzA(z,y, 2)
JzA(z,y, z)
(Ax1 zy) ugfgl
|z’ Az, y,y + 1)
(<) V(x£1) J2A(z,y, 2) 2z A(z,y, z)
JzA(z,y, 2)

VydzA(z,y, 2)
V%QHZA(%ZA Z)
Where ¥, X' are instantiations of the lemma Vz,y(x < y) V (y <) which

states the decidability of numerical inequality. The algorithmic content of this
proof is the following program P:

[x,y] [if (x<=1) (y+1)
[if (y<=1) (x+1)
2xy]]
We specialize our proof setting y equal to “1” | that is, we substitute “1” for
each free occurrence of y in Pi. The condition (y < 1) becomes true, and
after normalizing the instantiated proof, the inner case distinction is simplified
according to the following proof reduction rules

Zatom(tt)\/BMC’ NC _ MC

25

3 Pruning

EA\/atom(tt) MC NC _ NC

obtaining the following proof Pa:

(Axq z 1) urst (Axa 2 1) [1<1]
| A(z,1,2) Az, 1,2+ 1)
(x<DV(@Ll) JzA(z, 1, 2) JzA(z, 1, 2)
JzA(z, 1, 2)

Ve3zA(z, 1, z)
Such proof correspond to the specialized conditional term Ps:
[x] [if (x<=1) 2 (x+1)]

The second minor premise of the (VE) inference in the specialized proof

above does not depend on the assumption vizﬁl) and so the rule i) of Table

3.1 applies. We prune P> obtaining the following simplified proof Ps:

(Axy z 1) 1<1)
Az, 1,2+ 1)
J2A(z, 1, 2)

Ve3zA(z, 1, z)
from which we extract the following lambda abstraction P3:
[x] (x+1)

The proofs P» and Ps are different derivations of the same formula Vz3zA(x, 1, 2)
and they have different computational content: in fact meanwhile the program
(P2 0) rewrites into 2, (P30) rewrites into 1.

This shows that the application of pruning to a proof can lead to an increase
in the efficiency of the extracted algorithm (in this case it consists in discharging
the case distinction) and that it modifies the computational behavior of the
(computational) content of the proof to which it is applied.

3.2 Pruning in Minlog

3.2.1 Immediate Simplification in Minlog

As we have seen in the previous chapter in our logic we perform case distinction

over a boolean term ¢ by the application of the proof constant IF4 : V6B ((b —
A) — ((b— 1) - A) — A) to t. Given a goal formula A, the application of
the cases proof tactic on t generates the following proof tree:

|M N
IFq ¢t t— A t—1)— A
A

(if)

26

3.2 Pruning in MINLOG

where M and N are the proofs the user will have to supply. The derivation
rule (if) could be seen as an (V3) inference where the or formula to eliminate
AV B is just t V —t. In order to act on more general formulas than atom(t) we
remember that in our system we adopted the following convention

AVB:=3p(p—-AN(p— 1) — B)

So, if we need to prove C dispatching over the truth A or B we can proceed
building the following derivation:

(p— A)A((p— L) — B) (p—=A)A(p—1)—B)
p— A p (p—1)— B
A B
|M N
B B
IF p p— B (p—1)—B
B

(p—=A)AN((p—1)—B)—B
vp((p— A)AN((p—L)—B)—B

\
3- AVB l

B
Clearly here the assumption p has to be read as “A holds” meanwhile p — L
as “B holds”. For this reason we adapted the pruning rules a la Goad (Fig-
ure 3.1) to work on (if)-inference patterns rather than general (V3)-inferences,
as depicted in Figure (3.2). We can write such rules also as conversion rules
between proof-terms as follow:

(Ft M'.M® M'7TH N9 — MY Wt gFV(MO)
(Ft M'.M° M'7TH N9 — NY W7t gFV(NY)
(Fonc M4 Az, .N9) — NY w* gFV(NO)

3.2.2 Dependencies Removal Transformation

The dependencies removal transformation improves the effectiveness of pruning.
This operation involves the replacement of occurrences of assumption variables,
when possible, by proofs of those assumptions from other available information.
Consider for example the proof in Figure 3.3.

In M both the assumptions u§§1 and ufSQ are active, i.e. they can appear
free in M in order to prove C. On the other hand, we note that the type of
the assumption u; is logically implied by the type of us. So we can create the

27

3 Pruning

| M |N
¢ ¢ — M ut is not free in
. IFc t t— C t—1)—-C C |M
(&)
C
|M N
c C |V bl
- t i
.. IFc t t— C t—1)—-C - C .(U|N)1SIIO ree
(i7”) in |N,
C
| M N
- JrA v ‘N A .
z,A,C z (A — C) — u* is not free in
(i) —== c [N
C
Figure 3.2: Pruning rules for minimal logic.
new proof

(AX :Va(z <1 — z < 2)zul<!

of type (z < 2) and substitute it for each open assumption u*<* in M (with
AX new axiom)

In general we will have to face the following problem: given a conditional
proof-term if-cmd of the form

(IF t M M© M7+ N)

and a knowledge KWN (list of axioms, assumption variables, . ..) how to simplify
if-cmd with respect to KWN? In order to solve this problem, we implemented a
procedure named drt(dependency removal transformation) shown in Algorithm
1. In the present work we assume KWN to be a list of pairs (¢,u") with ¢ linear
inequality (in the sense that ¢ involves an inequality in some linear function of
the variables) and u® assumption variable of type ¢, assumed during the proof
tree traversal plus, (eventually) some ezternal knowledge supplied directly by
the user.

In Algorithm 1 the truth of the formulas (KNW > ¢), to be red as ‘from the
knowledge KNW it is possible to deduce the formula ¢’, is decided by a proce-
dure call to the Simpler Algorithm (we implemented in MINLOG the simplex
algorithm reported in [38]).

A final remark regarding the termination of the procedure drt. Given an
input proof p the computation of drt is driven by the inductive structure of p.
If p is a basic proof (assumption variable or proof constant) then drt stops (line

28

3.2 Pruning in MINLOG

Algorithm 5 drt(p, KNW = ((tn,ul) ... (t1,ul))), for some 0 < n, p input
proof, t; linear inequality and u'* assumption variable associated with ¢;. We
indicate by M[u®/N“] the substitution in M of all free occurrences of the
open assumption u with N. We write AX"281 7=+~ for the axiom AX of type
VZ(t1 — ... — t,) with & list of variables that occur in t¢1,...,t,. Given a
linear inequality ¢, we indicate with (KNW > t) a boolean condition that holds
if and only if t; — ... — ¢, — t holds (eventually n = 0). Finally proof _constr
is a generic proof constructor.

1: if p is a proof-constant, axiom or assumption variable then

2: p

3 else if p=IFt \u!M) (AP~ N) then

4: let

5: M/ =

6: if (KNW > ¢t) then

7. let (M" = drt(M, KNW)) in M"[ul /(AXE1 = —tn =t gt | gptn)]
8: else

9: drt(M, ((t,u') :: KNW))

10: end if

11:

12: N =

13: if (KNW > (¢t — 1)) then

14: let (N = drt(N,KNW)) in N”[pt 7L /(AXYE = —tn= (=D gyt gtn)]
15: else

16: drt(N, ((t — ff), 0= D)) = KNW))

17: end if

18: in (IFt (M) (AW~ NY))
19: else {that is p = (proof constr Ry ... Ry)}

200 let R, = drt (Ri,KNW),...,R, = drt (R.,KNW) in
(proof constr R} ... R},)
21: end if

29

3 Pruning

|M |N
c _’+wg2 C "er§2—>¢f
Uy Ug
IF (z <2) r<2—-C (z<2—=ff)=C
c -7, <1 -
US7
r<1—-0C
N’
¢ *:xglﬂff
4
IF (x<1) (z<1—ff)=C
C
Figure 3.3:

1,2 Algorithm 1). Otherwise, all the recursive calls in drt (lines 7, 9 14, 16,
20 in Algorithm 1) are performed on structurally simpler proof than the input
proof p.

3.2.3 Computing with Permutative Conversions

It is not always possible to perform the dependencies removal transformation
step of the pruning protocol. The occurrences of particular proof-patterns
(example below) make such transformation impossible. Consider the following
proof P:

|P lQ
|M N c c
Jz A JzA IF =z t—C t—1)—>C
IF ¢t t — JzA (t—1)—3zA C
JzA V(A — C) -
z,A,C

c

For space reasons, we indicate the application of the existential elimination
axiom just by a label on the right hand side of the last inference, and we
dropped the labels —* associated with the assumption-introduction inferences.
The problems that can arise from these kind of proof patterns are essentially
two: 7) the condition z is not comparable with any other boolean condition)

30

3.2 Pruning in MINLOG

from such proof-patterns it may be possible to extract code with redundancies
that are difficult to eliminate.

For example if we assume the proofs M, N, P and @ to be in normal form,
then the entire derivation P is in normal form. On the other hand, assuming
A and C not an harrop-formulas, the algorithmic content of P is the redex:

([x,q] (if x [P] [Q])) 1left(if t [M] [N]) right(if t [M] [N]) (3.1)
1\(Tiow consider the following instantiation of (3.1) for generic terms el,e2,e3
and t:
([x,q] (if x (#tt, q) (#£ff, el)))
left (if t<=2 (#tt, e2) (#ff, e3)) (3.2)
right (if t<=2 (#tt, e2) (#ff, e3))
Considering the additional conversion rule that map f(if t r s) to (ift fr fs),

(if t #tt #£f) to t, and (a,(if t b s)) to (if t (a,b) (a,s)) then (3.2) re-
duces to:

(if t<=2 (if t<=2 (#tt, e2) (#tt, e3))(#ff, el)) (3.3)
The two nested and redundant if’s on the condition (t<=2) in the term above
have no counterpart at proof level, i.e. in P we don’t find two nested case
distinctions on the same condition (t<=2) as we could guess looking at the
program (3.3). Moreover, the two nested and redundant case distinctions in
(3.3) are a source of inefficiency. In order to overcome these problems, we
implemented in MINLOG the permutative conversion rule (in the proof-tree
style) in Figure 3.4 or written as a conversion rule between proof-terms:

a= Hf(IFt)\uthla:A)\utHﬂ:Nfla:A) ZVIA*)C
== (3.4)
IFt ()\uta— MELZ‘A ZVJCA—»C) ()\ut—n‘Fa— NHxA ZVJBA—»C)
This rule permutes an existential elimination inference upwards over the
minor premises of a case distinction proof (for more details refer to [41, pp,
180]). We see now how particular instances of the conversion rule (3.4) help

us in simplifying proof pattern as P and solve the problems raised in points)
and 1) above.

Let consider the following specialization in o: assume M=% to be the proof
term (3% 7 R4)3*4. We can rewrite « as:

3_(|Ft)\ut (El+ ERA)HJ,‘A)\ut—>ffN3xA) ZVxA—>C
By (3.4) it is converted to:

IF ¢ (Autﬂ_(3+fRA)3xA ZVxA—>C) ()\ut—%fa— NHJCA ZVJcA—»C)

31

3 Pruning

|M IN
JzA JdzA
IFa,4 t t — dzA (t— 1) —3zA |Z
3 ac JzA V(A — C)
C
=
|M |z |N |Z
3;,,A,C JxA Vx(A — C) 3;,,A,C dz A Vx(A — C)
_<¢ S G
IFc ¢ t—C t—1)—C
C

Figure 3.4: Conversion rule to permute an IF followed by an 3~ axiom.

and eliding the 3~ /3% -axioms by (Elid), we obtain:
Oé/ =IFt ()\utZVa:A—»CzRA) ()\utaﬁrzlf NEla:A ZVIAHC)

If we assume Z be the proof-term (Az®,u*SC) with S case distinction over
the condition = (as in P) then a consequence of the instantiation (Z7) in o is
making explicit the term on which the case distinction S is performed, elimi-
nating the problem raised in point 7) above. We note that just the substitution
of (3YfR) for M in « would have no benefit without the permutation rule
(3.4). A similar study can be done for the second minor premise of the case
distinction in ¢, for a suitable N34,

Now we see here how the conversion rule (3.4) can help in simplifying redun-
dancies in the extracted code. Let £ be the following specialization of P from
which the procedure (3.2) could be extracted (here we assume 7(C) = €):

37 (f (¢ < 2) =D (Tt (ITe2 MC)FWO)FTwC
Au(th)—»L(HJ,- ff (3+ e3 NC)HyC)Hx,yC)
Az, ¢ VCif A (3t g)F®vC
)\uzﬂl(aﬁ» ff (3+ el RC)HyC)Ela:,yC

Now let’s permute £ with (3.4):

32

3.3 Case Study: The Bin Packing Problem

if (¢ <2) (=237 (T tt (I e2 MC)FWC)3wC
Az, ¢ VCif A (3t g)FvC
M7+ (3Tff (3T et RY)FVO)FmvC
MSD=L 3= (3T ff (IFe3 NO)FvC)FewC
Az, g VCif A (3T tt)Y
Mt~ (3 £ (3t et RO)FVO)ITwC

Eliminating 3~ /3% by (Elid) we have:

if (¢ < 2) M=\t (3T tt (3T e2 MC)3vO)F2C
)\u(tSQ)ﬂl)\uffﬂl (H+ ff (3+ el RC)HyC)Hx,yC

And finally, extracting the term from the last proof we obtain the simplified
code:

if t<=2 (#tt, e2) (#ff, el)

3.3 Case Study: The Bin Packing Problem

In this section we introduce the 1-dimensional Bin-Packing problem, as origi-
nally formulated in [17].

Given a list of boxes of dimensions expressed by the naturals pi,...,p, and
bins of capacity expressed by the naturals b1, ...,bn, find, if it exists, a valid
assignment of the boxes into the bins in such a way that for each bin the sum
of the dimensions of the boxes assigned to it does not exceeds the capacity of
the bin itself.

We will indicate the input list of boxes by X, the list of bins by B, and the
output assignment by A. We indicate the i-th element of I, the length of list
! and the list | —where the position ¢ is decreased by a— respectively by [[i],
|I| and I[i/a]. The output assignment list A has this property: for each natural
i, the i-th box has to be put in the bin A[:]. It follows that the list of boxes
and assignments have to have the same length, that is, the equality (| X| = |A])
holds. Now we introduce some notation that will be useful for our proof. For
lists of naturals A and X and a natural ¢, we define SUM to be the following
function:

SUM(A, X,i) = Y X[j] with Q= {j|A[j] =1}
JjEQ
We define a predicate PACK that states under which conditions a list of naturals
A can be considered a valid assignment for the list of boxes X and bins B, and
the additional predicate PACKB that states the existence of a valid assignment
for the list of boxes X and bins B puls an additional constraint on the bin the
first box should be associated,

PACK(A,X,B) <« (Vi.i<|A|— A[i] <|B|)A

33

3 Pruning

(1X] = 14]) A
(Vi.i < |B] — SUM(4, X, i) < Bli])

PACKB(n,A,X,B) < X #(:)A
PACK(A, X, B) A
(1Bl =n) < A0]
The 1-dimensional bin packing problem can be formulated as a decision problem
where, given an input element =, we have to state if there exists an y such that
a property P(z,y) holds or not. We can express this fact by the following

formula:
Vz(IyP(z,y)) vV ((ByP(z,y)) — L)

As already seen, in our system we express such formulas as:
VaIp(p — JyP(z,y)) A ((p — L) — ((FyP(z,y)) — 1))

that is, for each input x there exists a boolean p such that if p holds then we are
able to supply a solution, else no solution exists. We will call (p — JyP(x,y))
and ((p — L) — ((3yP(z,y)) — 1)) the positive and negative part of the
formula above. The proof-algorithm that we propose is a first-fit algorithm
because, in the course of the search, it attempts to place a block in the first
bin in which it fits as its initial try.

Theorem 3.3.1.
VX, B3p (p — 3JAPACK(A, X, B)) A
((p— L) — (3APACK(A, X,B)) — 1)

Proof. By induction on X. Case X = (:). If there are no boxes to fit, then
for each list of bins B the empty list is a valid assignment. Case X = (a ::).
Assume the induction hypothesis (IH) and a generic list B of bins. In order to
prove

Ip (p — JAPACK(A, (a :: 1),B)) A
((p — ff) — (3APACK(A, (a :: 1), B)) — L) (3.5)

we prove the following assertion:

Vn. (n<|B|)—3p (p— JA(PACKB(n,A,(a::1),B))A
((p— L) — (3APACKB(n, A, (a =: 1), B)) — L03.6)

Obviously we can derive (3.5) instantiating (3.6) on |B|. To prove (3.6) we go

34

3.3 Case Study: The Bin Packing Problem

by induction on n. Case n = 0. We fail finding a valid assignment for (a :: [)
in B because it should holds |B| < A[0] and A[0] < |B|. Case n + 1. Assume
the nested induction hypothesis (NIH) and (n + 1 < |B]). We prove:

Jp (p— FAPACKB((n+1),4,(a::1),B)) A
((p— ff) > (3APACKB((n+1),A,(a::1),B)) — 1) (3.7)

Obviously if (n+ 1 < |B]) then (n < |B]). There are only two cases:

e (a < B[|B| — (n+ 1)]): The dimension of the first box fits in the bin in
position (|B| — (n+ 1)). So we check if a valid assignment exists for the
list ! into the list of bins B, where the position (|B| — (n + 1)) (of B) is
decreased by the quantity a. We instantiate (IH) on B[(|B|— (n+1))/al.
So there exists a boolean p such that:

(P — JAPACK(A, I, B[(|B] — (n+1))/a])) A (3.8)
(P — L) — (3APACK(A, 1, B[(|B| — (n +1))/a])) — L)

There are two cases: p holds or it doesn’t hold.

P holds: We are done. From (3.8) we know A such that PACK(4, 1, B[(|B|-
(n+1))/a]), so the thesis is proved introducing tt for p and ((|B| —
(n+1)) = A) for A in the positive part of (3.7).

(p — ff) holds : A valid assignment A, if it does exists, has to assign a
to the bin ¢ with |B| —n < i < |B|. So the searched assignment and
the proof of its existence (or the proof of its non existence) is given
by the nested induction hypothesis (NIH)

e (a £ B[|B| — (n+1)]): Also in this case, if a solution does exists, it is
given by (NIH)

a

The code extracted from the previous proof is:

(Rec (list nat=> list nat=> (boole, list nat)))
([B] (#tt , (:)))
(fa,1,£,B]
[(Rec (nat => (boole, list nat))
(#£f, (1))
[n, (p ,M)]
if (a <= B[IBI-(n+1)1)
let (p’,A’) = £ B[(|B|-n)/al
if p> (#tt, (IB|-(n+1))::4°) (p, A)
(p, 1 Bl

The let constructor is obtained using in some strategic point of the proof the
identity axiom (Section 2.2).

35

3 Pruning

3.3.1 Experiment

We specialize the bin-packing proof on the input lists of boxes X = (n :: m :)
and bins B = (a :: a :). The content of the specialized proof is:

if (n<=a)
if (m<=a--n)
(#tt, 0::(if (m<=a-n) (0:) (if (m<=a) (1:) (:)))
if (m<=a)
(#tt, 0::(if (m<=a-n) (0:) (if (m<=a) (1:) (:))))
if (n<=a)
if (m<=a)
(#tt, 1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))
(m<=a-n@
if (m<=a-n)
(1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))
)
#£f, ()
if (n<=a)
if (m<=a)
(#tt, 1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))
(m<=a-n,
if (m<=a-n) (1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))) (:))
#£f, ()

The permutative conversion rules are applied to the specialized proof. The
computational content of the permuted proof is:

if (n<=a)
if (m<=a-n)
(#tt, (0::0:))
if (m<=a)
(#tt,(0::1:))
if (n<=a)
if (m<=a) (#tt, (1::0:)) (m<=a-n, (if (m<=a-n) (1::1:) (:)))
#£f, ()
if (n<=a)
if (m<=a) (#tt, (1::0:)) (m<=a-n, (if (m<=a-n) (1::1:) (:)))
#£f, ()

Finally pruning is applied to the permuted proof. Here we distinguish two
cases in extracting the code from the pruned proof:

No additional knowledge on n,m is required:

Pi= if (n<=a)
if (m<=a-n) (#tt, (0::0:)) (m<=a, (if (m<=a) (0::1:) (:)))
#£f, (:))

Assuming m < n:

36

3.4 Conclusions

P2 = (n<=a, if (n<=a) (0::1:) (:))

In the first case (no knowledge on the input parameters) the effect of pruning
is the simplification of if-statements that occur in the left/right branch of an
outer if-statement with the same boolean condition. This process could be
performed with a program transformation techniques such as partial evalua-
tion[21].

In the second case (m < n) something different happens: there is no way
to go from P1 to P2 with any program transformation technique. In fact,
the elimination of the if-statement on the condition (m<=a-n) only refers to
dependency information available at proof level, and not at program level.
Finally we see that the extensional behavior of the extracted code P1 and P2
changes. While P1, if n<=a may return (0::0:), P2 will always return (0::1:).
But pruning keeps the end formula of the sub-proofs on which it is applied so
both the results even if different will satisfy the same logical specification.

3.4 Conclusions

In this chapter we presented an adaptation of the pruning technique[l7] to
minimal logic on which the MINLOG proof assistant is based and we applied
it to the formalization and simplification of the bin packing problem. In our
work we showed how pruning is intimately related to the operation of proof
permutation and we showed the computational benefits, in terms of elimination
of redundant code, that the permutation operation induce s on the extracted
code. In chapter 5 we will propose an extension of the pruning technique.

37

3 Pruning

38

4 Bounded Perfect Matching Problem

4.1 Introduction and Motivation

In this section we introduce a widely studied problem in Bioinformatcs, the
shortest common superstring problem. The problem can be formulated as fol-
lows: given a set of strings P = {s1,...,sn} find the shortest string S that
contains every string in P. For example a superstring of abc and cfa is we-
faabed but abcfa and cfabe are the shortests.

The problem of finding the shortest superstring have applications in data
compression but the major motivation is related to the sequence assembly prob-
lem in shotgun sequencing, a method used for sequencing long DNA strands.
Each string in the set P models one of the sequenced DNA fragments created
by the shotgun sequencing protocol[20, pp. 420]. The assembly problem is to
deduce the originating DNA string S from the set of sequenced fragments P.
Without sequencing errors, the originating string .S is a superstring of P and,
under some assumptions, S is likely to be a shortest superstring of P. In that
case, a shortest superstring of P is a good candidate for the originating string
S.

In [40] it is formally showed that the shortest common superstring is a NP-
hard problem, that is there is no polynomial time algorithm solving it (unless
P=NP). An idea to solve this problem is to embed it into more familiar algo-
rithmic fields, namely Hamiltonian circuit problems.

Let s1,...,8m be a list of strings. We indicate by o(s;, si+1), p(8s, Si+1) and
s(s:, si+1) the lengths of the overlap, of the prefix and of the suffix between the
strings s; and s;4+1. Here we use the notion of “prefix” and “overlap” defined
as follow. Given decompositions of strings S = XY and T = Y Z such that
Y is the longest suffix of S (different form S) and also a prefix of T, we call
Y, X and Z respectively the the overlap, prefix and suffix strings of S with
T. These definitions give rise to two graphs, called overlap graph, and prefiz
graph for a string list s1,...,sm,. Both are directed graphs that have m nodes
labeled si,...,sm and directed edges between any two such nodes (thus also
from every node back to itself). Furthermore, the edge pointing from node s;
to s; is weighted by number o(s;, s;) in the overlap graph, and p(s;, s;) in the
prefix graph.

As showed in [40], searching for a shortest common superstring might as
well replaced with searching for the cheapest Hamiltonian cycle (closed path

39

4 Bounded Perfect Matching Problem

visiting each node exactly once) through the prefix graph. Unfortunately the
Hamiltonian cycle problem is NP-complete, but as it is known from algorithm
theory, computing a finite set of disjoint cycles (instead of a single cycle) having
minimum summed costs and covering every node in a weighted graph is an
efficiently solvable problem. Such a finite set of cycles is called a cycle cover.

As proved [40] the problem of computing a cycle cover with minimum costs
in a prefiz graph is equivalent to the problem of computing a cycle cover with
mazimum costs in overlap graph. To do so, we transform the cycle cover prob-
lem for overlap graphs into a perfect matching problem in a bipartite version
of overlap graph. The latter is defined as follows. Create for every node s; in
overlap graph a copy node called g;. Thus the new graph consists of two parts,
a left part with all the nodes from the original graph, and a right part that is a
copy of the left part. Every directed edge from node s; to node s; is simulated
by an undirect edge between node s; and copy node g; with weight o(s;, s;).
Now consider an arbitrary local cycle with cost ¢ in overlap graph:

Smy = Smy 77 Smy T ... T Smpn g 77 S 77 Sy

for some permutation 7. Its directed edges correspond to undirected edges of
the bipartite version as follows:

Sty Smy Smg -+ Smp1 Sm
Gny Gng Gmg -+ Grm Gm
Such a one-to-one relation between node sets {s1,...,sm} and {g1,...,9m}

with an undirected edge between any two related nodes is called a matching.
The cost of a matching are defined as the summed weights of its undirected
edges. We observe that the costs of the constructed matching coincide with
the cost c of the considered local cycle. Conversely, having a matching with

costs ¢ between node sets {s1,...,5m} and {g1,...,gm} we may always arrange
matches pairs in an ordering as above, thus we obtain a local cycle with costs
¢ through node set {s1,...,$m}. Now let us consider an arbitrary cycle cover

with costs ¢ in overlap graph. Its cycles lead to a collection of (local) matchings
that together form a matching with costs ¢, called a perfect matching (“perfect”
since all nodes participate in the matching).

In this chapter we formalize the problem of finding a perfect matching with
maximum weight higher or equal of a fixed threshold ¢ of a complete bipartite
graph. We will present a proof of the existence of such perfect matching and we
will extract a program from it. The proof-strategy we follow is simply to enu-
merate all the possible solutions and select the one that satisfy our constraints.
This clearly generate an exponential extracted program. In our experiments
we show how, applying the pruning method on special instantiations of this

40

4.2 Bounded Perfect Matching of a Complete Bipartite Graph

problem where some additional knowledge on the input graph is assumed (the
Monge inequality) then it is possible to extract a program extremely simplifier
than the one that enumerate all the possible solutions.

4.2 Bounded Perfect Matching of a Complete Bipartite Graph

4.2.1 Basic Definitions

Definition 4.2.1 (Weighted Bipartite Graph). The weighted graph G = (V C
N, E C Nx NxN) is bipartite, if there exists V1 and Va2 such that: V = V1 UVa,
VinVa =0 and Ve € E.mge € Vi A mie € Vs.

Here m;c{0,1,2} (11,2, n3) = n;, and the natural ns is the weight of the edge
(n1,m2). If the graph G = (V, E) is bipartite then we write it as G = (V1, V2, E)
for two opportune sets of vertices Vi and V5.

Definition 4.2.2 (Complete Weighted Bipartite Graph). Let G = (V1, V2, E)

be a weighted bipartite graph. G is complete if Vu € Viv € Vode € E.mpe =
uANme=uv.

Definition 4.2.3 (Matching). Given the weighted bipartite graph G = (V1, Va2, E)
a matching M of G is a subset of V1 x Vo with the following two properties: for
allu e Vi, v € Va if (u,v) € M, then

LYW eViuw#u — (W,v)gM
2. V' eVaw#£ v — (u,v') g M
Definition 4.2.4 (Weight of a Bipartite Graph). Given a matching M of
the weighted bipartite graph G = (Vi,Va, E) the weight of M, SUM(M, E), is
defined as follows:
SUM({}, E)
SUM(M > e, E)

0
v+ SUM(M\{e}, E) with (moe, m1e,v) € E

In the following we will indicate the cardinality of a set U by |U].

Definition 4.2.5 (Perfect Matching). Given a complete weighted bipartite
graph G = (Vi,Va, E), with |Vi| = |V2| = n, we say that a matching M of
G 1is perfect if |M| = n.

Definition 4.2.6 (Maximum Perfect Matching Problem). Given the complete
weighted bipartite graph G = (Vi,Va, E) with |Vi| = |Va|, find a matching M
such that SUM(M', E) < SUM(M, E) for any perfect matching M' of G.
Definition 4.2.7 (Bounded Perfect Matching Problem). Given the complete
weighted bipartite graph G = (V1,Va, E) with |Vi| = |Va|, and T a natural
number, find a matching M such that T < SUM(M, E).

41

4 Bounded Perfect Matching Problem

4.2.2 Algorithms, Data Structures and Automatic Program Synthesis

The sets Vi and V> are implemented as lists of naturals without duplications.
We indicate the length of the list V by |[V|. We indicate by tail(V') the operation
that return the tail of the non empty list V. The set E of weights is implemented
by a list of triple of naturals (i, j,v;), with i € Vi, j € V2 and v, ; weight of
the edge (i,7). Given i € V1, j € Va, the weight of the arc (3, j) is indicated by
Eli, j]. A perfect matching M of V1 and V> is implemented by a list of naturals
M with the following two properties: %) for all j, if M[j] = k then (Vi[j], k),
with Va[m] = k for some m, belong to the perfect matching and) for all
Jj # k, M[j] # M[k]. By i) and i) it follows that M is a permutation of Va.
Under these assumptions the function SUM : N — N — (N x N x N) — N
(that takes in input the vector of nodes Vi, the matching vector M, the the
matrix of weights F and returns the weight of M) is defined as follow:

SuM(([l, [, E) =0
SUM(v :: Vi,m :: M, E) = E[v,m] + SUM(V1, M, E)

Given a complete weighted bipartite graph G = (Vi, Vo, E), with |V1| = |V2|, M
is a complete matching of G if and only if MATCH(M, V), with the predicate
MATCH defined as follow:

MATCH (M, Va\{n})

MY G ATCR(), () M) AT CH(m = M, V) 2ln] =

Proposition 4.2.1. VI.MATCH(l,1)

Proof. Case |l = (:), by (my). Case I = (a::I"), We have to prove MATCH(', ")
that follow by the induction hypothesis. O

Now we supply a constructive proof of the existence (or not) of a perfect
matching (with weight higher or equal than a fixed threshold) of a complete
bipartite graph. The used strategy is to enumerate all the possibilities, till
the desired solution is found. Obviously this searching method is particularly
inefficient, and it require an exponential number of steps when executed on a
specific input graph.

In the rest of the chapter we will use the following conventions:

Vi,Vo, E; T — M for “M is a perfect matching between V7 and V5, such that
T < SUM(Vi, M, E)”, that is MATCH(M, V2) AT < SUM(M, V1, E)

V17V27E7T —n M fOI‘ V1 75 (:), V17V27E7T — M and |‘/2|—’I’L S h(M[O],‘/Q)

and we wrote V\{m} to indicate the list V' from which is dropped the node in
position m, with m : 0,...,|V|—1 and f(n, Vo) = m for Va[m] = n.

42

4.2 Bounded Perfect Matching of a Complete Bipartite Graph

Theorem 4.2.2.

VWiV E, T. (|Vi] =|V2|A0 < T) — 3p.
p— (BAM. V1, Vo, E,T — M)A
p—1)— (EMV, Vo, EST — M) — L

Proof. By induction on V;. Case Vi = (:): Assume Vo,E, T and ip:(|(:)| =
[V2]) AO < T). By ip it follows V2 = (:). The current thesis became:

Ip. p— 3M.(),),E, T — M)A

p—L1)—-(3M.(0),G),E, T —M)— L (4.1)

Two cases are possible: Case 0 < T: then no perfect matching does exist. So
we introduce ff for p. The positive part of (4.1) is proved by (Efq). To prove
the negative part of (4.1) let’s assume T and ip:3M.(:),(:), E,T — M. By
ip does exists M such that MATCH(MM, () and T < SUM(M, (:), E). But if
MATCH(M, (:)) by (m;) we have M = (:), and so SUM((:), (:), E) = 0 that
generate a contradiction with the hypothesis 0 < 7" < SUM((:), (:), E). Case
0 = T Introduce tt for p. The positive part of (4.1) is proved introducing (:)
for M, and the negative part of (4.1) is proved by (Efq). Case Vi = (a = 1) :
Assume

VIRE,T. (|l = |Va| AO < T) — 3p.
p— (3M.L,Va, E,T — M)A (4.2)
p—1)— 3EMILVo, E,\ T — M) — L

Va, E, T and ip:(|(a ::)] = |[V2| A0 < T'). Given the natural a, we prove

Ip. p— AM.(a::1), Vo, E,T — M)A

p—1)—-3EM(a=:1),Vo,E, T — M) — L (4.3)
In order to prove (4.3) we prove the following assertion:
Yn.3p. p— (3M.(a::1),Vo, E,T —p M)A (4.4)

p—1)—3EM(a=:1),Vo, E, T —, M) — L

Obviously (4.3) is obtained instantiating (4.4) on |Vz|. To prove (4.4) we pro-
ceed by induction on n. Case n = 0: We shall look for a matching M such
that f(M]0], Vo) > |V2|, but from this follow a contradiction. So we introduce
ff for p. The positive part of (4.4) is proved by (Efq). For the negative part,
assume T, and ip": IM.(a :: 1), Vo, E,T — v, M. From ip’ it follows that
there exists M such that (a :: 1), V2, E,T — M and |Va2| < §(M][0], V2). But
M]0] is an element of Va, that is §(A[0], Va) < |Va| — 1, from which it follow a

43

4 Bounded Perfect Matching Problem

contradiction. Now let’s assume the nested inductive hypothesis

Ip. p— (AM.(a::1),Va, E,T —y M)A

p—1)—-3EM(a=1),Vo, E, T —,, M) — L (4.5)
a natural n, and we prove
Ip. p— (3EM(a::1),Vo, E,T —pni1 M)A (4.6)

p—1)—=3EM(a::1),Vo, E,T —pni1 M) — L

There are two cases, Case E[a, V2[|V2| — (n + 1)]] < T: We instantiate (4.2) on
Vo\{|V2| = (n+ 1)}, E and (T — El[a, V2[|V2] — (n + 1)]]). This instantiation
produce the following hypothesis:

(il = [Va\{IVa] = (n + D} A0 < (T — Efa, Va[|V2| — (n+ 1)]])) — 3p.
;EH (iy.lyvz\{lvzl —(n+1D}LE, (T — Ela, Va[[V2| = (n+ 1)]]) — M)A
p— —

AM.LVA{|V2| = (n+ 1D}, E, (T — Ela, Va[|Va| — (n+ 1)]]) — M) — L

By ip, [(a 2)] = [V2| thus [I] = [V2\{|V2| - (n+1)}|, moreover by Ela, Vo[|V2| -
(n+1)]] < T it follows that 0 < (T — Ela, V2[|V2| — (n + 1)]]). Instantiating
(4.7) on these two facts, we know a boolean p such that
P — ML Ve\{[Ve| = (n+ 1)}, B, (T = Ela, Vo[|V2| = (n + D]]) — M)A
P—1)—
BM.LVe\{[Ve| = (n+ 1)}, By (T = Ela, Va[|Ve| = (n + D)) — M) — L

Two cases are possible, Case p: We introduce tt for p in the goal formula (4.6)
obtaining the new goal:

(tt > 3IM.(a:: 1), Vo, E,T —ni1 M)A

1L —(@M(ax:1),Va,E,T —ni1 M) — 1) (*9)

To prove the positive part of (4.9): assume tt and instantiate the left of (4.8)
on p, from which it follow that there exists M such that:

LV\{[Va| = (n+ D)} E (T = Ela, Va[[Va| = (n+ D])) — M (4.10)

So we introduce (Va[|Va| — (n +1)] :: M) for M. We have to prove:

o MATCH((Va[[V2| = (n +1)] =: M), Va): by (a) this correspond to prove
MATCH(M, Va\{|Va| — (n + 1)}), that hold by (4.10).

o T < SUM(a :: I, (V2[|Va] — (n + 1)] ::_M),E): This correspond to prove
T — Ela, V2[|Va] — (n + 1)]] < SUM(l, M, E), that follow by (4.10).

o [Va| = (n+1) < {((Vo[|[Va]| — (n+1)] :: M)[0], Va): By definition (Va[|V2|—

44

(4.8)

4.2 Bounded Perfect Matching of a Complete Bipartite Graph
(n+1)] : M1)[0] = Va|Va| — (n + 1)] and then 5(Va, Va[[Va| — (n + 1)]) =
[Va| = (n+1).

To prove the negative part of (4.9): by (Efq). Casep — _L: by (4.5) there exists
P such that:

p— (3M.(a:1), Vo, B,T —sn M)A

P—1)— 3M(a::1),Vo, E,T —p M) — L (4.11)
We introduce P for p in (4.6) obtaining the new goal:
p— (AM.(a::1),Va, B, T —nt1 M)A (4.12)

P—1)— 3M.(a:1),Vo,E, T —py1 M) — L~

To prove the positive part of (4.12): assume p and instantiate the positive part
of (4.11) on B. It follows that there exists M perfect matching between (a :: 1)
and Va such that [Va| —n < §(M[0], V2), and thus, |Vz| — (n + 1) < 4(M[0], V5).
To prove the negative part of (4.12): Assume p — L. Now, considering that:

e Instantiating the negative part of (4.8) on (p — L) there not exists any
M such that I, Vo\{|Va| — (n+ 1)}, E, (T — Ela, V2[|V2| — (n+1)]]) — M.
Thus, for each matching M, naming dyr = SUM(I, M, E), we have dar <
T — Ela, V2[|V2| — (n + 1)]] and thus dp + Efa, Va[|V2| — (n+1)]] < T,
i.e. there exists no matching M between (a :: I) and V5 such that M[0] =
VallVal — (n + 1)].

e Instantiating the negative part of (4.11) on p — L there not exists any
M such that: (a:: 1), Vo, B, T —, M

we conclude that there exists no matching M such that: (a :: 1), Vo, E,T — 41
M. Case E[a, V2[|V2| — (n + 1)]] > T": The value of the matching built so far is
higher than T, so we can stop the search. Instantiate (4.2) on V2\{|V2|—(n+1)},
FE and 0. Thus there exists p such that

p— OM.LV\{|Vz2] = (n+ 1)}, E,0 — M)A

B — L) — GMLV\{|Va| = (n+ 1)}, B0 — M) — 1 (413)

Each matching between two set has a value greater or equal than zero (except
the case in which we consider arcs with negative weight). Thus p has to be
true. We state this fact asserting the validity of p. So we have two new goals:
P and p —(4.6). To prove p: we assert that the existence a matching between
I and Vo\{|V2| — (n + 1)} with a value higher or equal than 0. We create two
new subgoals:

AMLVo\{|Va| — (n+ 1)}, E,0 — M (4.14)

45

4 Bounded Perfect Matching Problem

AM.LV\{|Va] — (n+ 1)}, E,0 — M) — p. (4.15)

To prove (4.14): by definition the returning matching, if it exists, is a list of
naturals, permutation of V2\{|Vz2| — (n + 1)}. So we can return the identity
permutation, that is we introduce V2\{|V2|— (n+1)} for M. We have to prove:

o MATCH(V2\{|V2| — (n + 1)}, Va\{|V2| — (n + 1)}): By Prop. 4.2.1.
e 0 <SUM(l, Vao\{|Vz] — (n+ 1)}, E): By definition of SUM.

To prove (4.15): Assume ip’ : IM.LVo\{|V2| — (n + 1)}, E,0 — M. The
hypothesis (4.13) is a conjunction, so both the branches have to be true. In
particular, by ip, (IM.[,Va\{|V2| — (n + 1)}, E,0 — M) — L is false, thus
p — L has to be false and p true. To prove p — (4.6). Assume p. We introduce
tt for p in (4.6) obtaining

tt —» (AM.(a = 1), Vo, B, T —n11 M)A

1 —(3M(a:1),Vo, B, T —pi1 M) — L (4.16)

To prove the positive part of (4.16): assume tt. Instantiate the left of (4.13)
on P, so we know M such that:

LVa\{|Ve| = (n+ 1)}, E,0 — M (4.17)
We introduce (Va[|Vz| — (n+ 1)] :: M) for M. We have to prove:

o MATCH(Vz[|Va] — (n + 1)] = M,Vs2): By (M) it corresponds to prove
MATCH (M, Va\{|Va| — (n + 1)}) that follow by (4.17).

o T < SUM((a == 1), Va[|Va| — (n +1)] = M, E): It is equivalent to prove
T < Ela,V2[|V2] — (n + 1)]] + SUM(I, M, E). This fact follows from

SUM(l,M,E) > 0, by (4.17), and by the hypothesis Ela, V2[|V2| — (n +
L

o [Va| — (n+1) < {((Ve[|Va] — (n+ 1)] : M)[0],V2): already proved as a
valid inequality.

To prove the negative part of (4.16): by (Efq). O

The computational content of the Theorem4.2.2 is showed in Table 4.1 (the
algorithm is written by metarules)

4.2.3 Problem Specialization: The Monge Inequality

In this subsection we present an algorithm to solve the bounded perfect match-
ing problem in presence of additional knowledge on the input parameters. The

46

4.2 Bounded Perfect Matching of a Complete Bipartite Graph

OV BT —)y O~7T)V, B, 0 — (16, ()

(a::1),Va, E,T — vy, (p, M)
(a::1),Va, E,T — (p, M) Vi, Vo, B, T — (ff, (%))

tail(V), Va\{|[Va| — (n + 1)}, B, T' — (tt, M)
Vi, Vo, B, T g (8, (Va[|Va| — (n + 1)] == M)

Ci

tall(V1)7V2\{|V~)| B (n+ 1)}?E7 T — (ﬂ:? _) Vla V~)7E3T —n (pa M)
V13V23E7T}—)n+1 (p7M)

Cy

tail(V1), Va\{|Ve| = (n + 1)}, E,0 — (p, M)
Vi, Vo, B, T i (tt, (V2[|V2| = (n + 1)] == M)

_‘Cl

with
T :=T — E[Vi[0], Va[|Va| — (n+ 1)]],
Ci:= E[Vi[0], Va[[Va| — (n+ 1)]] < T,
—C1 == EVi[0], V2[|[Va| = (n+ D)]] £ T

Table 4.1: Algorithm to compute the Maximum Perfect Matching of the Bipar-
tite Graph G = (V4, V2, E) (V1 and Vs of same cardinality)

solution we present here is not synthesized from a proof, anyway the correctness
of the method is proved formally. The basic idea is that if the input bipartite
graph V satisfy a certain property, the Monge inequality, then we can compute
the weight of the maximum perfect matching of V using a particularly fast
algorithm, called the Greedy algorithm [20]. Once we have vmaz, weight of the
maximum perfect machting of V, and ¢ natural threshold, then the bounded
perfect matching problem can be solved by just a comparison between vp,qz
and t.

Definition 4.2.8. Let G = (V4,V2, E) a complete weighted bipartite graph.
Now let u,u’ € Vi and v,v' € Vo and assume without loss of generality that
max{E[u,v'], Elu’,v], E[u',v']} < E[u,v]. If

E,v] + E[u,v'] < Elu,v] + E[u’,v']

then the four nodes u,v,u’,v’ are said to satisfy the Monge inequality.

47

4 Bounded Perfect Matching Problem

A complete weighted bipartite graph is said to satisfy the Monge inequalities
if the Monge inequality is satisfied for any two arbitrary nodes from Vi together
with any two arbitrary nodes from V5.

If a complete weighted bipartite graph G satisfy the Monge inequalities then
the Greedy Assignment algorithm (Figure 4.1) applied to G return a maxi-
mal matching for G (theorem 4.2.3). This is not true in general [For example
consider G = ({0,1}, {0,1}, {(0,0,9), (0,1,10),(1,0,1),(1,1,7)})].

The greedy assignment algorithm runs in O(n%log(n)), with V; = n, and is
one the known fastest algorithm to compute the maximal perfect matching of
G for G complete weighted bipartite graph that satisfy the Monge inequality.

In Figure 4.1 we used the following notation:

® [1,lo —>m I3, for “ I3 is the ordered merge of the two lists of weighted
nodes /7 and 1"

o E+—ms E', for “E’ is obtained ordering the list of weighted nodes E by
the Merge Sort algorithm”

o Vi,Vo, E +——g M, for “M is the perfect matching between Vi and V>
obtained by the Greedy assignment ”.

e E{— v} for the list F where are dropped all the arcs (u,v,ly,), for each
u €V

e F{u <} for the list E where are dropped all the arcs (u, v, l.,), for each
veE Vs

Theorem 4.2.3. Given a complete weighted bipartite graph G = (V1,Va, E), if
Vi, Vo, E ——g M then M is a mazimum perfect matching of G.

Proof. By contradiction. Assume M is a perfect matching between Vi and
Vo with respect to the set of edges E such that SUM(M) < SUM(M). Then
assume e = (u,v) € M first edge found by the greedy algorithm that does not
belong to M. Follow that the two edges a = (u,v’), and b = (u’,v), has to
belong to M, for some v’ € Vi, v # v/, v € Va, v # v/,. The edge e was
chosen by the greedy algorithm among also all the edges incident in v and v,
so Ele] > Ela] and Ele] > E[b]. Now the cases are possible:

f=(u',v)e M , Obviously f ¢ M. Being e the first edge chosen by the
greedy algorithm not in M then E[e] > E[f] and by the Monge inequality,

48

4.2 Bounded Perfect Matching of a Complete Bipartite Graph

L) —ml ()l—ml
AR "
ll, ((u , U ,lu,v) o lg) —m l3 low < l;“)
((uy v, L) 2 1), (0,0 1) it l2) —m (w0, Luw) 1 l3)
((u,v,lu,v) o l1),l2 —m lg luw > l;,v

((uy v, L) = l), (0,0, 1,0) it 1) ¥—m (W0, 1, ,) 2 1)

Bty —mh Bmy gy —melz il —m s

|E| >0,
E —ms l3

H=oHu <} —ee M

() —gr () ((u, v, luw) 2 1) —gr ((u, v, luw) = M)
—————|BI=0 Bl Ly M
E’—’ms () ‘/17V27EngM
Vi,Vo, E —ge M c Vi,Vo, E —ge M c
Vi, Vo, B, T ——bg, (tt, M) Vi, Vo, B, T ——bgr (fF, ())

with C = T < SUM(M, E)

Figure 4.1: Greedy Assignment to find the Bounded Perfect Matching of a bi-
partite Graph G = (Vi, Va2, E) that satisfy the Monge inequality.

Ela] + E[b] < Ele] + E[f]. We define the new perfect matching M by a
“local” modification of M as follow:

M = (M\{a,b}) U{e, f}

Being e, f in M we have [M\M'| = |M\M|~2, that is |M\M'| < |[M\M|.
Moreover by the inequality E[a]+ E[b] < E[e]+ E[f] we have SUM(M) <
SUM(M).

f= @) g M, Let’s assume h = (u',v") € M and g = (v',u") € M with
v' # v and v’ # u'. Obviously h,g ¢ M else would be violated the

property to be a matching for M, and being e the first edge in M\M

49

4 Bounded Perfect Matching Problem

chose by the greedy algorithm we have E[h| < Ele] and E[g] < Ele]. If
h,g are picked up by the greedy algorithm then E[f] < E[h], E[f] <
E[g] and by transitivity E[f] < E[e]. Thus by the monge inequality
Ela]+ E[b] < Ele]+ E[f]. As in the above case we define the new perfect
matching M by a “local” modification of M as follow:

M = (M\{a,b}) U{e, f}

Being e in M we have [M\M | = [M\M]| — 1, that is |M\M'| < |M\M|.
Moreover by the inequality Efa] + E[b] < Ele] + E[f], SUM(M) <
SUM(DT).

Now if M = M stop, else we set M « M , pick a new e first edge in M\M and
repeat the procedure above. This algorithm produce a list of perfect matchings
Mi,Ma,...,Ma<n (in the beginning we have M = M) such that

0=|M\Mgy| <...<|M\Ms|<|M\M|
(from which follow M = M) and

SUM(M) < SUM(M1) < ... < Ma = SUM(M)

4.3 Pruning at Work

In this section we show the results we obtained applying the pruning protocol
to the proof of Theorem 4.2.2.

Proof Specialization We specialized the proof on the following complete bipar-
tite graph V:

1e . 4

50

4.3 Pruning at Work

That is, V = ({1,2,3,4,5,6},{(1,4,1), (1,5,a), (1,6,4), (2,4,n), (2,5,m),
(27 67 2)7 (37 47 a)7 (37 57 ’U), (37 67])})

Pruning We applied a first time pruning on the specialized proof in order to
manipulate a shorter proof during the pruning protocol. The extracted
code is here listed:

[if (0<t--i--m--j)
[if (0<t--i--i--v)
[if (0<t--a--n--j)
[if (0<t--a--i--a)
[if (0<t--j--n--v)
[if (0<t--j--m--a)
(False@(Nil nat))
(True@
6::
[if (0<t--j--n--v)
[if (0<t--j--m--a)(Nil nat)
(5::[1£(0<t--j--m--a)(Nil nat)(4:)]1)]
(4::[if(0<t--j--n--v) (Nil nat)(5:)1)1)]
(True@
6::
[if (0<t--j--n--v)
[if(0<t--j--m--a) (Nil nat) (5::[if(0<t--j--m--a) (Nil nat)(4:)1)]
(4::[if (0<t--j--n--v) (Nil nat) (5:)1)1)]
(True@
5::
[if (0<t--a--n--j)
[1f(0<t--a--i--a)(Nil nat)(6::[if (0<t--a--i--a)(Nil nat)(4:)]1)]
(4::[if (0<t--a--n--j) (Nil mnat) (6:)1)1)]
(True@
5::[if (0<t--a--n--j)
[if (O<t--a--i--a) (Nil nat)(6::[if (0<t--a--i--a)(Nil nat)(4:)1)]
(4::[if (0<t--a--n--j) (Nil nat) (6:)1)1)] (True@ 4::
[if (0<t--i--m--j)
[if (0<t--i--i--v) (Nil nat)(6::[if(0<t--i--i--v)(Nil nat)(5:)1)]
(5::[if (0<t--i--m--j) (Nil nat) (6:)]1)]1)] (True@
4:: [if (0<t--i--m--j)
[1f(0<t--i--i--v)(Nil nat)(6::[if (0<t--i--i--v) (Nil nat) (5:)1)]
(5::[if (0<t--i--m--j) (Nil nat) (6:)]1)1)]

Permutative Conversion At this stage we permuted the pruned proof of the
previous step. As extensively explained in chapter 3.2.3 this operation
is necessary if we want to perform successfully the dependencies removal
transformation step of the pruning protocol. Moreover, as we will see,
to permute a proof it has the nice side effect of eliminating part of the
redundancies in the extracted code. It follow the code synthesized from
permuted proof:

51

4 Bounded Perfect Matching Problem

[if (0<t-i-m-j)
[if (0<t-i-i-v)
[if (0<t-a-n-j)
[if (O<t-a-i-a)
[if (0<t-j-n-v)
[if (0<t-j-m-a)
(False@(Nil nat))
(True@6::[if (0<t-j-m-a) (Nil nat) (5::4:)1)]
(True@6::4::5:)]
(True@5::[if (0<t-a-i-a) (Nil nat) (6::4:)]1)]
(True@5::4::6:)]
(True@4::[if (0<t-i-i-v) (Nil nat) (6::5:)1)]
(True@4::5::6:)]

Removal Dependencies Transformation The code extracted in the previous step

52

still contain several redundancies, as for example the presence of several
nested if’s statements on the same boolean condition. This kind of re-
dundancies are even more if we assume to have some knowledge on the
input weights of the complete graph V. In this particular case study we
assumed the input graph V to satisfy the Monge inequality. More pre-
cisely we assumed the following inequalities relations among the weights
of the input graph:

.m<i<n<a<v<]
.m+1<a+m
itta<<m+4g

L 20<j+n

.a+1<j+n
it v<j+m

1

2

3

4

5 a+tm<v+n
6

7

8. 2a <wv+1

At this point the removal dependencies transformation was applied keep-
ing into account the additional knowledge on V. After that, pruning was
applied again. It follow the extracted program of the resulting proof:

(*) [if (0<t-i-m-j)
[if (0<t-a-n-j)
[if (0<t-j-n-v) (False@(Nil nat)) (True@6::4::5:)]
(True@5::4::6:)]
(True@4::5::6:)]

We note that this code is extremely shorter than the code we synthesized
after the proof specialization step. Anyway, in order have a better

4.4 Conclusions

comprehension of the quality of our result, we instantiated the program
in Figure ...(the better algorithm to compute a solution for the bounded
perfect matching problem) on the input graph V and later on we simplified
it according to the above constraints 1.,...,8. The resulting program is
the following:

(*x) [if (0<t-m-i-j) (False@(Nil nat)) (True@4::5::6:)]

As we can see, if the input parameter t is less or equal than t,qe., with
tmaz weight of the perfect matching of V with maximum weight, then both
(*) and (*#*) returns in one step the couple (True@4::5::6:). On the other
hand if t > ¢4z, that is the problem does not admit a solution, (**)
return (False@(Nil nat)) in one step while (*) needs to perform, in order
to return the same result, two more case distinctions. This phenomena
rely essentially on the fact that no one of the eight constraints 1.,...,8.
involve the parameter t

4.4 Conclusions

What we showed in this chapter is that the pruning protocol matters in the
automatic synthesis of correct and efficient code. Starting from a proof of an
existential statement proved by an enumeration strategy (from which it was
possible to synthesize an algorithm with an exponential complexity running
time) we were able to produce, through the several proof refinements steps
of the pruning technique, a new proof of an instance of the original problem
with computational content comparable with the instantiation of a quadratic
running time algorithm that solved the same problem.

The main limit of the present work is the restricted set of input graphs on
which we could test the pruning protocol, but are working in order to extend
this set of examples in order to have a cleared idea of the power of this method.

53

4 Bounded Perfect Matching Problem

54

5 Generalizing Pruning

5.1 Introduction

In Chapters 3 and 4 we have introduced the Pruning technique and we have
shown the power of this proof transformation on two particularly big exam-
ples: the Bin Packing Problem and the Bounded Perfect Matching Problem.
We have seen that the transformations pruning induce on the extracted pro-
grams could not be performed by any other known program transformation:
pruning manipulates the proofs of the programs, so it works with dependen-
cies informations that does not occur in programs written by people. In this
chapter we present an extension of the pruning technique and we will show its
effectiveness on a very simple but instructive example.

5.2 Proof Contexts

Here we define A-terms C'4 for natural deduction proofs of type A with exactly
one hole (o) of type B.

Definition 5.2.1 (Proof Context).

Cc = .B | <MA7CB>A/\B | <CA7MB>A/\B | (ﬂ_OCA/\B)A | (ﬂ_ch/\B)B |
()\xpCA)Va:pA | (CVszt)A[z/t] | (MAA)BCA)B | (CAHBMA)B |
()\’U,ACB)AHB

By C#[M?P] we indicate the replacing of ¢ in C* with MZ.
Definition 5.2.2. Let M* and N* be two proofs of the same formula A with
the property that there exists a proof context C* such that M4 = C4 [NA]

(syntactic equivalence). The set of discharged assumptions from N to M,
DSA(C), is defined as follow:

DSA(s) = 0

DSA(C)U{u} C=C"[Mue]

DSA(C/) C = C/[(’JT().AAB)A],C/[(ﬂ'l.AAB)B],
DSA(C) _ [MA7.B>AAB]7C/[<.A7MB>A/\B]

'l
Cl[(.VJc”At)A[x/t]]’ C/[(MA—>B.A)B]’
C/[(OAHCMA)B], C/[)\xp.L

55

5 Generalizing Pruning

for some opportune C’.

Based on the previous definitions, in Figure 5.1 we propose the general prun-

ing rule. The redundancies eliminated by the simplification rule in Figure
|N
N
z . | OA(N)\DSA(C) = OA(N)
| A with M = C[N].
A

Figure 5.1: General pruning rule

5.1 are not so obvious to find in proof written by hand but not rely such infer-
ences occurs in proofs generated automatically by automatic theorem provers
or in proofs where part of the input parameters are specialized.

5.3 Properties of the General Pruning Rule

We will write M —, N for “N is obtained from M applying one of the pruning
rules in Figure 3.1”, M — g, N for “N is obtained from M applying the general
pruning rule in Figure 5.17, and —; and —, for the transitive closure of
—, and —,,. Given the derivations M and N we define M —-, N, with

0 < n, as follow:
e If M —, N then M —>, N

o If M —, M’ —} N and M’ =, N then M 25, N

Being not unique the derivation between M and N (there could be many) there
will be different “n” such that M —», N.

Proposition 5.3.1. For each proof context CS, proofs M and N*, if M —p
N then C[M] —, C[N].

The same hold for —,. Obviously if we locally simplify a proof by —
then the same simplification can be performed by the general pruning rule
—gp. This fact is stated in the following

Theorem 5.3.2. For all proofs M and N, if M —, N then M — 4, N.

Proof. If M —, N, then only three cases are possible:

56

5.3 Properties of the General Pruning Rule

1. M = C[N'] with N’ = (IFt \u! M'C Xt~ N"9) for an opportune con-
text proof C, and u' does not occur in M’. Then C[N’] —, C[M'] by
the rule 4), Figure 3.1. On the other hand we can write N’ = C'[M’]
with C' = (IFt \u' &® X7 N"%)?. Tt follow that OA(M’')\DSA(C’) =
OA(M') because DSA(C") = {u} and by hypothesis u ¢ OA(M’). So ap-
plying the simplification rule in Figure 5.1 to N’ we have C[C'[M']] —4p
ciM]

2. M = C[N'] with N' = (IF t Au! M’C Mt~ +N"9)C and v'~* does not
occur in N”. We proceed as in the previous case (but we use the pruning
rule 1) instead of 7)).

3. M = C[N'] with N = (3, 4 c M"7** AzPu N"“)“ and u” does not
occur in N”. We proceed as in point 1. (and we use the pruning rule 7ii)
instead of 7)).

O

Theorem 5.3.3. For alln, M and N, if M n—H>p N then M —>3'p N.
Proof. By induction on n. If n = 0 we have M —, N and thus M — g, N

by Theorem 5.3.2, and M —, N by definition of —,. Now assume that for

each M and N, if M "%, N then M — 4, N and assume M’ —, M N,

for some ﬁxed_]\f7 M and N’. Instantiating the induction hypothesis on M and
N', we have M —/, N’. By Theorem 5.3.2 if M —, M then M —g, M
and hence M —}, M and by transitivity M —3, N'. O

Corollary 5.3.4. For all M and N, if M —>:,' N then M —>3'p N.

On the other hand, it is not true that we can mimic any reduction performed
by —gp with —, (for this reason the implication in Theorem 5.3.2 is not an
equivalence). Consider for example the following proof:

|M
A
N N’
A A
Ft t—A (t—1)—A

A

and assume that the assumption u® occur in N but not in M, that v’
occur in N’ and finally that no open assumption of M is discharged in N.
Under these conditions the pruning rules (Figure 3.1) are not applicable. For
the contrary using the general pruning rules (Figure 5.1) the above proof reduce
to the simplest:

1

57

5 Generalizing Pruning

| M

5.4 Case Study

Consider the predicate 1 C N x N such that ¢ (z,y) < 22 < y. We propose
the following original derivation of the fact that for each natural = there exist
a natural y such that ¥ (z,y). Through the proof we will make use of the fol-
lowing axioms: Vai)(x,2?) and Va(z < 1) — (=, 2).

[u:z>1— JyyP(z,y)]

(z>1—=3yd(z,y) — (2> 1 = 3yp(z,y))
Vz(z > 1 — Jyi(z,y)) — (> 1= yi(z,y))

Vap(x,z?) x
P(z,2”)
Fyp(z, y)
Ind, (e>1)—3yw(z,y) z>1— JyyY(z,y)
Vz(z > 1) — Jy(z,y)

Ve(z <1) = ¥(z,2) =

(x<1) = ¢(x,2) [v:x <1]
@
Jy(z,y)

z <1— Jyy(z,y)

Vz(xz > 1) — Jyy(z,y) =
[u:z >1] (x> 1) — Fyy(z,y)

(=, y)
IF z>1 z>1— Jy(x,y)

Iy (z,y)
VaIyp(z,y)
The code extracted from the previous proof is the following:

Mz if (z > 1) (RN z° An,p.p)x) 2

Obviously, for z > 1, this code perform useless computation in order to compute
z2, but more important, no redundancies are detect in the proof by the pruning

58

5.4 Case Study

rules (Figure 3.1). In fact, both the assumption variables u and v occurs
respectively in the left and right branches of the case distinction.

On the other hand we see that in the base case of the induction we prove
the formula Jyi(z,y) without using u and none of the assumptions used in
this subproof is later on discharged through the path to the other occurrences
of Jy(x,y) at the end of the case distinction. Under these conditions we can
apply the general pruning rule (Figure5.1) to our proof obtaining;:

Vap(z,2%) x
P(z,2%)
y(z,y)

Vay(z,y)

From which it is possible to extract the simplified code: Azz?.

59

5 Generalizing Pruning

60

6 String Alignment

6.1 Introduction

A widely studied problem in Bioinformatics is to find the distance between two
given sequences of symbols (over an alphabet). The two main techniques
developed in this area to solve this problem turned out to be the edit distance
and the similarity of strings [20].

Edit distance focus on the transformation of the first list into the second
one using a restricted set of operations (insertion I, deletion D, matching M,
and replacement R) Given two lists we define the edit distance problem the
task of finding the minimum number of insertions, deletions and substitutions
operations to transform the first list to the second one. Once the right set of
basic operation is found, this is stored in a string called edit transcript (build
on the alphabet I,D,M, and R) that will constitute the output of the problem
(Figure 6.1, line 1).

The other way to measure the distance of lists is the so called similarity
method. The idea is based on the concept of siring alignment. Given two
strings /1 and l2, an alignment of I; and [s is obtained inserting a new symbol
“ 7 (named space) (that does not belong to X) into the strings [; and l; and
then placing the two strings one above the other, so that every character or
space in either list is opposite a unique character or space in the other list,
and no space is opposite to another space (Figure 6.1, lines 2,3). We indicate
by (61,d2) a general alignment the lists {1 and l2. Here §; and 2 are strings
over ¥ U {_}. Afterwards the similarity between [; and I3 is defined as the
greatest £((d1,02)) with £ function with values in N that associate a score to
each alignment (d1,02).

In computational biology the similarity of [; and Is is efficiently solved using
dynamic programming; in fact the problem can be solved storing in a matrix
M, of dimension |l1] X |l2], the values of the similarities between all the prefixes
of length ¢ < |l;] and j < |l2] of I; and l2. This could be seen as a sort of
generalization of the Fibonacci problem to 2-dimensions.

In this work we will formalize the similarity problem in the proof assistant
MiNLoG. We will extract, from the proof of the existence of an alignment
with highest score between two given strings the naive exponential program
to compute the similarity of strings. Afterwards, we will propose a method to
transform the given proof into another from which it will be possible to extract

61

6 String Alignment

N
g ¢ w
= H
S e =

3 ©
o =

3 -
o o=
= 3=
w

Figure 6.1: Alignment (lines 2, 3) and edit-transcript (line 1) of the strings wintner
and writers. It is possible to note how the two methods are equivalent: a
mismatch in the alignment correspond to a replacement in the edit tran-
script, a space in the alignment contained in the first string correspond
to the insertion of the opposite character in first string, and a space in
the alignment contained in the second string correspond to a deletion of
the opposite character in the first string.

a more efficient program, in dynamic programming style.

We propose a method that we name list as memory. The idea consist in eval-
uating a sufficient amount of data in advance so that the extracted algorithm
gets to reuse it instead of recomputing it each time it is needed. This is done
by introducing in the proof a list of ad-hoc axioms. The method we propose
cannot be applied automatically to an arbitrary proof; it can be seen more as
a general schema (that has to be instantiated case by case) to follow in order
extract dynamic programs from proofs.

This chapter is organized as follow: in section 6.1.1 we formalize the proof of
the existence of an alignment with highest score between lists and we extract
a program from the proof. The designed solution enumerate all the alignments
in order to find the right one, and this generate an exponential running time
extracted algorithm. In section 6.1.2 we present a proof transformation to
apply to the proof presented in section 6.1.1 in order to extract an algorithm in
dynamic programming style. In section 6.2, we make some final considerations
over the presented method and future works.

6.1.1 The String Similarity Problem

Let I; and l2 be two lists built on the alphabet X, with ¥ equal to Nso (the
set of naturals strictly higher than zero), 0 ¢ X be the space character and
a: N x N — Z be the scoring function on a pair of symbols.

Given two lists [; and I over X, in Figure 6.2 we give an inductive definition
of the family of sets Aﬁfj?b, the set of the alignments between the first ¢ < |I1]
characters of 11 and j < |l2| characters of [s.

In Figure 6.2 and in the rest of the chapter we make use of the following
conventions: n, m, i and j ranges over N, |I| is the length of [, {[¢] is the i 4 1-
th character of [, head(a :: 1) = a, tail(a :: [) = I, pre,(l) is a partial operator

62

6.1 Introduction

(Ag)) ———————————— (A1)

(), () € Agly'2 (071 prej1(12)) € Agh'?)
Lyl
(A2) (61,62) € A 3475
re;i1(l1), 001y e 4lL:t2 (A3z)
(pre;41(l1)) e A o (61 - (0), 62 - Ia[5]) € Af‘&f—’i?jﬁ—l
(51,62) € ALL'2 (81,6) € ALL2
(A1) S (45) 2
(61 11lil, 82 - (0)) € A% 44 (61 - Uil 62 - Lals]) € A2
Figure 6.2: Induction definition of the alignments Al‘lll’lﬁ‘lz‘
(Bp) ——————— (B1) - -
E[((), (N]a =0 E[(07, pre;(12)]a = S5 _, (0, l2[k])
(E2) - - (Es) E[(61,82)]=n
Elprei (1), 09)]a = Zj—y a(l1[k], 0) el (0,52 - 12 liD]a = n + a(0, 12 [j])
E[(81,82)] = £[(51,62)] =
(B4) : [(51,82)] =n : (Bs) : I(1 2)]_ n : :
E[(81 - 11[i], 62 - (0)]a = n + a(l1[4], 0) E[(81 - 11 [i], 82 - l2[iD]a = n + a(l1[i], I2[5])

Figure 6.3: Induction definition of the evaluator function &

that return the first n elements of a list [, 0" is the list composed by a sequence
of n zeros, I - g the operation of appending the list g to [and (a1,...,an) is the
list composed by a; € N.

We associate a score to each alignment by the evaluator function &£ : Al‘lll’l‘zuz‘

(N xN — N) — N defined on the inductive structure of A\lzll’ﬁm (Figure 6.3).

The function £ take as input an alignment, a scoring function and return the
score of the input alignment. Our goal is to find the alignment in A‘llll’ﬁlz‘ with

1

highest score (this score will be the similarity between 1 and l2) with respect
to a given scoring function a.

Remark Many problems can be modeled as special case of similarity by choos-
ing an appropriate scoring function «. Let consider (below) the definition of
the longest common subsequence problem.

Definition 6.1.1. A subsequence of a string | is specified by a list of indices

63

6 String Alignment

i1 <2 < ...<ig for some k <|l|. The subsequence specified by this list is the
string li1]l[é2] - . . U[ik]

Definition 6.1.2 (Longest Common Subsequence Problem). Given two strings
l1 and l2 a common subsequence of 1 and l2 is a sequence that appear both in
l1 and Iy as a subsequence. The Longest Common Subsequence Problem consist
in finding the longest common subsequence between 11 and l2

For example, 145 is a common subsequence of 114666725 and 1124375 but
11475 is the longest common ones. The solution of the longest common sub-
sequence problem can be obtained from the solution of the similarity of lists
problem by choosing a scoring function « that scores a “1” for each match and
“0” for each mismatch or presence of a 0 (the result will depend by the im-
plemented strategy to solve the problem since there could be more alignments
with the same highest score).

Now we show formally that given a couple of lists l1,l2 over 3 there exists
always an alignment in A‘llll‘lz‘ | of maximum score with respect to a.

Theorem 6.1.1.

Vi1, 13361, 82((61,62) € AL2,, A

Vo1, 05((0%,05) € A2 — E(81,05) < £(01,02))

[]12]

Proof. We assume [/; and [>. In order to prove the thesis we prove the following
statement:
Vn,m3d1, 62((61,82) € A2)A
V81, 85((81,85) € Ady2) — E(81,05) < E(61,82)
Obviously we obtain the thesis instantiating this assertion on |l1| and |l2].
From now on we will write Q(d1, d2,n, m) for

((81,02) € AlLy2) AT, 55((61,85) € Abi?) — E(87,85) < E(61,02)

We go by induction on n and m.
Base Case[n = 0] We prove

Vmﬂél, (52@((51, (52, 07 m)
by case distinction over m:
Base Case[n =0, m = 0]: Q((:), (:),0,0) by rule (Ao).

Induction Step[n =0, m + 1]
We have Q(0™ ", premt1(l2),0,m + 1) by rule (A1).

Induction Step[n + 1] We now assume

Vm351,52Q(51,52,n, m) (62)

64

6.1 Introduction

and we must show
VYm361,82Q(d1,02,n + 1,m)

By induction over m:
Base Case[n + 1, m = 0]
Q(pren+1(11),0™™ n 4+ 1,0) by (Az)

Induction Step[n + 1, m + 1]: Assume
361,52Q(61,62,n+ 1,m) (63)

we have to prove
351, 62Q(51, 52,7’1, +1,m+ 1)

By (6.3) there exists 61,05 such that (81,03) € Ai}ﬁim and such that for
every (01,02) € Ai};lim
E(01,02) < E£(61,03) (6.4)
Instantiating (6.2) on m+ 1 there exists 87, d5 such that (67,8%) € Aﬁ},’lmzﬂ and
for every (d1,02) € Ail{’lnf“
E(81,62) < E(57,63) (6.5)

Instantiating (6.2) on m there exists 87,85 such that (67,65) € A% and for
every (01,02) € Ai}fnz

E(61,82) < E(81",85") (6.6)
Now we have to dispatch over the following cases:

ip,. £(67 li[n+1],87 - (0:) < £, - (0:),8, - lafm + 1]):

Then, only 2 cases are possible:

ipyq- E@Y - lin + 1,84 - la[m+1]) < E(8) - (0:),85 - la[m + 1]): We claim Q(6] -
(0 :),65 - la[m + 1],n + 1,m + 1). This is proved dispatching over (61,d2) in
Ai}_;_lf,mH. In fact for every (61,02) € Aill_;_lf,mH only three cases are possible

ipy11(01,82) = (67 - (0:), 85 - la[m + 1))

E(01,02) E(67-(01),65 - lafm+1))
E(87,65) +a((0:),la[m + 1]) by(Es)

£(01,02) +a((02),la[m +1]) by (6.4)

IN

65

6 String Alignment

= &(81-(0:),65-l2[m +1]) by(FEs)

ipy 1.4 (61,62) = (67 - l1[n +1]),65 - (0:)): So

E[(01,02)] = &(01-ln+1],05-(0:))
= £(01,03) + a(li[n+1],(0:)) by(Es)
< 5(5;/,5;’)+a(11[n+1],(0 :)) by (6.5)
= &6 -lLn+1],65-(02))
< &(61-(0:),65 - lxlm +1]) by (ip,)

ipy 13 (01,02) = (67 - lan + 1), 65 - lam + 1])

E[(61,02)] = E(61 -liln+1],65 - la[m +1])
= &(61,02) + a(hln +1],l2[m +1]) by(FEs)
< E(87,65") + a(li[n 4+ 1],12[m + 1]) by (6.6)
= (8 - ln+1],85" - l2[m +1])
< E(01-(01),85 Ia[m +1]) by (ipy ;)

ipy o Y - lin+1],84" - lafm+1]) £ £(8) - (0:),8, - la[m + 1]): We claim Q(87"-
(li[n +1]),685" - l2[m +1],n +1,m + 1). The proof of this claim is done, as in
the previous case, dispatching over (d1,02) in A,H_1 S

ipy E(6Y -li[n+ 11,65 - (0:)) £ £(87 - (0:),8% - la[m + 1]): Then there exists only
two cases:

ipyq EOY -liln+1],85 - lafm +1]) < E(SY - li[n +1],84 - (0:)): Weclaim Q(d7'-
Lin+1],65 - (0:),n+1,m+1).
ipy o E(8) -li[n+1],85" - la[m+ 1)) j(_ E(SY -lin+1],85 - (0:)): We claim Q(d7" -
li[n+1],65" - la[m + 1],n + 1,m + 1). The proofs of the previous two claims is
done dispatching over (d1,02) in Aill_;_limH. |

The theorem 6.1.1 can be simply modified in order to construct not only the

alignment with highest score but also the score itself (that is the similarity).
The program extracted from the previous proof is the following:

[1,g,alphal
(Rec nat=>nat=>(list nat @@ list nat))
([m] if (@=0) ((:), (:))
((zeros (m+1)), (pre (m+1) g))

([n, f: (nat=>(list nat @@ list nat))]

(Rec nat=>(list nat, list nat))

((pre (n+1) 1), (zeros (n+1)))

([m,(d_1,d_27)]

[LET (d_1’°, d4_2’°) = (f (m+1)) IN

66

6.1 Introduction

[LET (d_1°’’, d_2?’’) = (f m) IN
[IF ((E (d_1°’:+: 1[n+1]) O alpha) <=
(E (d_1?:+: (:)) (d_2’:+: g[m+1]) alpha))
[IF ((E (d_1’’’:+: 1[n+1]) (d_2’’’:+: g[m+1]) alpha)
<=(E (d_1’:+: (:)) (d_2’:+: glm+1]) alpha))
((d_1?:+:(:)), (d_2?:+: g[m+1]))
((d_1222:4: 1[n+1]) (d_2°77:+: gm+1]))]
[IF ((E (d_1’’?:+: 1[n+1]) (d_2’’’:+: g[m+1]) alpha)
<=(E (d_1’’:+: 1[n+1]) (d_2’’:+: (:)) alpha))
((d_122:+: 1[n+11) (d_2°7 :+: (:)))
((d_1222:+:1[n+1]) (d_2’’’:+:gm+11))111))N) 111 gl

Here we indicated by (pre n) the operator pre,, by (zeros n) the string 0",
by E the function £ and by alpha the scoring function a.

Complexity of the Extracted Algorithm: The complexity of the ex-
tracted program can be modeled by the following recurrence:

] Eim n=0
Ti(n,m) = { Ta(m) n>0

with

kan m=0
To(m) = To(m —1)+Ti(n—1,m)+
Ti(n—1,m — 1) 4+ 2ksmax(n + m)

with 2ksmax(n+m) cost for the severals application of the append operation
in the body of the nested recursion. The complexity of the extracted program
then will be given by T1(|l1],|l2]). Given n > 0 and m > 0 the unfolding
of Th(n,m) can be represented as a ternary tree where the lowest branch has
high m and the highest n + m. Thus the extracted programs has a number of
recursive calls in Q(3™P(m)),

6.1.2 List as Memory Paradigm

To drastically reduce the complexity of our extracted program, we developed
a method that we named list as memory. The idea consist in evaluating a
sufficient amount of data in advance so that the extracted algorithm gets to
reuse it instead of recomputing it each time it is needed.

The basic idea is still to prove Theorem6.1.1 by a double induction (before
on the length |1 | of the first list and by a nested induction on |l2| length of the
second list) but this time using an additional data structure w, a FIFO (First
In First Out) list where we store the alignments with highest score computed
in the previous steps. The list w will be built and updated during the proof

67

6 String Alignment

and it will constitute part of the witness of the new proof together with the
alignment of highest score.

Thus assuming we want to compute the best alignment of the first n + 1
characters of [; and m + 1 character of l2, we will assume w to be the following
list of alignments:

61, 82) 502 (81, 80) 0k (61, 80) 002
s n,m-+1

n,|l2]
(61,82),11% 00 (61,02),4F 1 -, (61, 82), 53 1

with (01, (52)2}12 alignment of highest score between the first ¢ characters of 11
and j characters of l2. At this point the intended alignment will be computed
considering the head of w, (41, 62)5}7;1,5, the head of the tail of w, (41, 52)21’%“
and the recursive call of the nested induction on l> (the alignment of highest
score between the first n+ 1 element of [; and m elements of l2, that here occur
as last element in w) Once the new alignment is computed the list w has to be
properly updated.

So in general the idea is to replace the double instantiation of the induction
hypothesis (6.2) in Theorem 6.1.1 (that correspond to the two recursive calls
in the extracted algorithm) with just a reading operation of the head and the
head of the tail of our memory list w.

In order to use such memory list in our proof we have to modify the original
proof of the Theorem 6.1.1 in an appropriate way. More precisely we introduce
the predicate MEM C L(Nx¢) X L(INso) x N x N x L(L(N) x L(N)) where,

e (MEM l; I3 0vw), stands for “in w are stored the the v + 1 alignments
(0%, prex(l2)) with k = 0,...v” (here we assume 0° = (:) and preo(l2) =
(:)) and

e (MEM l1 I3 (u + 1) vw), stands for “in w are stored the |lz| + 2 alignments
of highest scores between the first j and k characters of I1 and lo with

(4, k) € {(u,v), ..., (u,|l2]), (u+1,0),...,(u+1,0)}

and the following set of axioms specifying the necessary operations to build
and correctly update the memory list w:

[I](Initialization),

Vi1, la, m, w(MEM l1150m (initm lg))

) m =0
(initm l>) = { ((init(m —1)) : +: (0™, preml2)) 0 <m

with

[H] (Head of the list):

68

6.1 Introduction

Vi, lo,n,m, w(MEM l1 l2 (n + 1) mw) —
Q(mo(headw), 71 (headw), n, m)
[HT] (Head of the tail):
Vi, la,n,m,w(m < |l2]) — (MEM l1 l2 (n 4+ 1) mw) —
Q(mo(head(tailw)), w1 (head(tailw)), n, m + 1)
[CL] (Change Line):
Vi1, l2,n, m,w(MEM lilan |lg| w) —
(MEM 14 12 (n + 1) 0 ((tailw) : + : ((prent1l1), 0™)
[OSOR1]| (One Step On the Right 1):
Vi1, la,n,m, 81,85, w(im < |l2]) — (Q 5 danm) —
(MEM [; Il nmw) —
(E(F - li[n +1],85 - (0:)) < E(SL - (0:),05 - la[m + 1])) —
(E@GY - lin+1],85 - la[m +1]) < E(1 - (0:),85 - la[m + 1)) —
(MEM 11 lan (m + 1) ((tailw) - (61 - (0:), 85 - la[m + 1])))
with (677,05") = (headw) and (67,85) = (head (tail w)).

[OSOR2] (One Step On the Right 2):
Vi1, l2,n,m, 81,85, w(m < |l2]) — (Qd d5nm) —
(MEM l; lonmw) —
(E(07 - lan+1],05 - (0:)) < E(01- (0), 52 lo[m +1])) —
(EE" - 1y[n +1],80 - la[m +1]) £ £(81 - (0:), 8 - la[m + 1])) —
(MEM 1 lon (m + 1) ((tailw) - (51” lin+ 1] 55" - lo[m + 1])))
with (67",05") = (headw) and (87,85) = (head (tailw)).

[OSOR3| (One Step On the Right 3):
Vi1, l2,n,m, 81, 65, w(m < |l2]) — (Q 61 d5nm) —
(MEM li lanmw) —
(E(8Y - li[n + 1], 65) £ EWB1-(0:),85 - l2[m+ 1])) —
(& - lin+1], 5”' lg[erl]) (5” ll[nJrl] 55 -(0:)
(MEM 11 lon (m + 1) ((tailw) - (67 - li[n +1],05 - (0:))))
with (67",05") = (headw) and (87,85) = (head (tailw)).

) —

[OSORA4] (One Step On the Right 4):
Vi1, la,n,m, 81,85, w(im < |l2]) — (Q 5 donm) —
(MEM [; Il nmw) —
(& Ln+1],67 - (0:)) £ £, - (0:), 8 - la[m + 1)) —
(6 Db 85 b 1) % (60t 850) —
(MEM Iy lon (m + 1) ((tailw) - (67" - lhi[n + 1], 65" - lo[m + 1])))
with (677,05") = (headw) and (67,85) = (head (tail w)).

Theorem 6.1.2. [I] — [CL] — [H] — [HT] — [OSOR1] — [OSOR2] —
[OSOR3] — [OSOR4] — Vi1,12(361,62(61,02) € Af;j?uz‘ AV, 85((84,8%) €

69

6 String Alignment

A2, — E(81,85) < E(81,82))) A Fw(HEH 1y Lo || [I2| w)
Sketch. Assume [I], [CL], [H], [HT], [OSOR1], [OSOR2], [OSORS3], [OSORA4]
1 and l>. In order to prove the theorem 6.1.2 we prove the following assertion:

Vn, m(351, 52(51, (52) S .Aill,’ln? A

V81, 64(81,0) € Al2 — (8, 8%) < E(51,82))A
Fw(MEM I1 I nm w)

By induction on n and m.

Base Case[n = 0] We prove

Ym301, 62Q (91, 62,0, m) A Fw(MEM l1 l2 0mw)

by case distincion over m:

Base Case[n =0, m = 0]

Q((:),(:),0,0) A Jw(MEM [1 1200 (init012))) by rule (Ap) and [I].

Induction Step[n =0, m + 1]

We have Q0™ premr1(l2),0,m + 1) A

Jw(MEM {1 l2 0 (m + 1) (init (m + 1) I2)) by rule (A1) and [I].
Induction Step[n + 1]

We now assume

VYm3d1, 62Q (1, 02, n,m) A Jw(MEM I1 lo n mw) (6.7)
and we show
Ym3o1, 62Q (91,02, n + 1, m) A Jw(MEM l1 Iz (n + 1) mw)

By induction over m:

Base Case[n + 1, m = 0] Q(pren+1(l1),0""',n + 1,0) by (A2). Then in-
stantiating (6.7) on |l2| we have w such that Jw(MEM [, [2 n|l2|w) and by [CL]
we have (MEM I1 Is (n + 1) 0 ((tail®@) - ((prent i1),0™).

Induction Step[n + 1, m + 1] Assume
361, 02Q (61,02, n + 1,m) A Jw(MEM I3 l2 (n + 1) mw) (6.8)
we prove
361,02Q(61,02,n+1,m+ 1) AJwMEM l1 Iz (n + 1) (m + 1) w)

By (6.8) there exists 7,05 such that (d1,05) € Aﬁ}jrlfm and such that for every
(61,02) € Alta

n+1,m

E(61,82) < E(81,63) (6.9)

70

6.1 Introduction

By (6.8) let w be such that (MEM l;l> (n + 1) mw). By [HT], we have that
(87,04) € Alrt2 | and for every (51,02) € A2,
E(61,02) < E(67,6%) (6.10)

with (67, 8%) = (head(tailw)).
By [H] we have that that (6{",6%") € A2 and for every (01,d2) € A2

E(61,82) < £(87",85") (6.11)

with (67,8%) = (headw). Now we have to dispatch over the following cases:

ip;. E(6) -liln+1],64 - (0:)) < E(8] - (0:),85 - l2[m + 1]): Then, only 2 cases are
possible:

Py O - ln+1],0Y - lafm +1]) < (8, - (02),8, - Ia[m + 1]): We claim

Q81 -(0:),65 - lafm +1],n 4+ 1,m + 1)

and
(MEM l1 lon (m + 1) ((tailw) - (61 -(03), 5h - la[m 4+ 1))))

This is proved dispatching over (41, d2) in Alljrlf’erl and by [OSOR1], ip, and

n
Py.-

ip1g. £ -lin+1],84" - la[m+1]) L E(87 - (0:),8% - la[m + 1]): We claim

Q((si” : (ll[n + 1])3 (5é” : lQ[m + 1],TL+ 13m+ 1)

and
(MEM 11 lan (m + 1) ((tailw) - (67" - la[n 4+ 1], 85" - Ia[m + 1])))
This is proved dispatching over (41, d2) in Aﬁ}jrlf’mﬂ and by [OSOR2], ip; and
iP1.2
ipy- E(8Y -liln+1],684 - (0:)) £ (S} - (0:),8% - la[m + 1]):Then there exists only
two cases:
Py y. £ - lifn+1],68) - lafm+1]) < E@Y - Ia[n+ 11,84 - (0:)): We claim

QY -liln+1],85 - (0:),n+1,m+1)

and
(MEM 11 l2n (m + 1) ((tailw) - (87 - l1[n 4+ 1],63 - (0:)))

Proved dispatching over (d1,d2) in ill_;_l'f,mﬂ and by [OSOR3], ip, and ip, ;

71

6 String Alignment

iPoo. EGV - i[n+1],8Y - lafm +1]) £ £} - li[n+ 11,87 - (0:)): We claim

Q((siﬁ : ll[n+ 1]75g, : l2[m + 1]7” +1,m+ 1)

and
(MEM I3 lan (m + 1) ((tailw) - (61" “lin+1], 5y lam + 1))

Proved dispatching over (41, d2) in Aijﬁimﬂ and by proved by [OSORA4], ip,
and ips 5 a

From the previous proof we can extract the following program:

[1,g,alphal
(Rec nat=>nat=>((list nat@@list nat)Q@
(list(list nat@@list nat))
([m] [if (m=0)
),), (), N
(((nZeros (m+1)), (nPrefix (m+1) g)),(init (m+1) g)

([n,f:(nat=>((list nat@@list nat)Q@
(list(list nat@@list nat)))]
(Rec nat=>((list nat@@list nat)@@
(list(list nat@@list nat)))
LET w = (£ Igl) IN
(((nPrefix (n+1) 1), (nZeros (n+1))) ,
((tail w):+:((nPrefix (n+1) 1),(nZeros(n+1)))))
([m, ((d_1?,d_2?),w)]
[LET (d_1’’, d_2’’) = (head (tail w)) IN
[LET (d_1°’’, d4_2°?’) = (head w) IN
[IF((E (d_1’’:+: 1[n+1]) O alpha) <=
(E (d_1’:+: (:)) (d_2’:+: g[m+1]) alpha))
[IF((E(d_1°’?:+: 1[n+1])(d_2?’’:+: g[m+1])alpha)
<=(E (d_1’:+: (:))(d_2?:+: glm+1]) alpha))
((at?:+:(:)),(d_2? :+:g[m+11)),
((tail w):+:(d_12:+:(:)),(d_2?:+:g[m+1])))
(((a_t?22:+: 1[n+11)(d_2°?’:+:g[m+1])),
((tail w):+:(d_1°??:+: 1[n+1])(d_2?’’:+:g[m+1])))]
[IF((E(d_1’’?:+: 1[n+1]) (d_2’?’:+: g[m+1])alpha)
<= (E(d_1’?:+:1[n+1]) (d_2°’:+: (:))alpha))
(((d_1?2:+: 1[n+1]1)(d_2?° :+: (:))),
((tail w):+:((d_1?’:+: 1[n+1]) (d_2?:+:(:)))))
(((a_t?22:+: 1[n+1]1) (d_2°?7:+: glm+1])),
((tail w):+:((d_1’?:+:1[n+1]1) (d_2?’’:+:g[m+11))))
111N 11 gl

72

6.2 Conclusions

6.1.2.1 Complexity Considerations

The complexity of the extracted program can be modeled by the following
recurrence (here we have as additional parameter the length of g):

| kim n=20
Tl(n,m)—{ Ta(n,m) n>0

with
Ti(n—1,|g|) m =0

To(n,m) = { To(n,m — 1) + 2ksmax(n+m) m >0

Given || > 0 and |g| > O the unfolding of T1(J{|,|g|) can be represented by
the following |I| X |g| matrix of list of calls:

7o (1], 1g1) — Ta(|ll lg]) — ... = Tx(|1],0)
- Tu(lll=1,191) — T2(ll[=1,1g]) —... = Ta(I] = 1,0)

— Ti(1,]g]) — T(1,lg]) — ... = T»(1,0)

and being the complexity of each call 2ksmax(|!| + |g|) then T (]I, |g]) is in
O([tllglmax(li]lgl))

6.2 Conclusions

With an opportune modification of the alighment definition in Figure 6.2 we
can avoid the cost relative to the applications of the append function. In this
way, the extracted program from the efficient implementation of the existence
of an alignment with highest score will have a complexity in O(|!||g|). Future
work will regards a sort of automation of the presented method.

73

6 String Alignment

74

7 Tail Recursion

7.1 Introduction

Let M be a proof by induction over n (natural number) of the property VnA(n),
and let, by the Proofs-as-Program paradigm, [M] be the (recursive) content of
M. In this chapter we will try to answer the following question: How to turn
automatically M into another proof, say N, with tail recursive content? Penny
Anderson in her Phd thesis [1] used Frank Pfenning’s Insertion Lemma [30]
proof transformation, in order to extract tail recursive programs from proofs.
This method, although particularly interesting, is user dependent. What we
will do here is to present and develop in a formal setting an idea first roughly
introduced in [9] (originated from an informal chat the author had with Andrej
Bauer in 2004, reported in the Bauer’s mathematical blog!) in order to extract
tail recursive programs from proofs but in a completely automatic fashion.
Let us consider the following program, written in an ML-like syntax:

let rec FACT n = if n = 0 then 1 else n * FACT (n - 1)

FACT computes the factorial of n, for any positive integer n. But this imple-
mentation is not tail recursive because in each step of the computation the
compiler has to store (on a stack) the context (n x []), evaluate FACT (n-1)
— v, and returns (n % v). It is well known that FACT can be turned into a
simpler function where it is not necessary to stack any context information:

let rec FACT’ n =
let rec FACT’’ nmy =
if n = 0 then y else FACT’’ (n - 1) (m+ 1) ((m + 1) * y)
in FACT’ n 0 1

Now assume FACT to be the computational content of the proof by induction
M, with end formula VnA(n), that states that for each natural n there exists
n!l. From which proof is it possible to extract FACT’>? Both programs FACT
and FACT’ compute the factorial function, so FACT’ should be the content of an
appropriate proof of VnA(n) as well. So the problem is shifted in understanding
which logical property FACT”’ has. Given a natural n, (FACT’n) is a function

1ht’.tp ://math.andrej.com/2005/09/16/proof-hacking/

75

7 Tail Recursion

that takes the natural m, the witness y for A(m) and returns a witness for
A(n+m).

Hence given n, (FACT>n 01) is the witness for A(n) as expected. Intuitively,
we expect FACT’ to be the computational content of some proof of the formula
Vn, m(A(m) — A(n+m))

Will show that this is the right intuition to follow for the automatic genera-
tion of tail recursive programs.

This chapter is organized as follows. In section 7.2 we address two proof
transformations in order to extract continuation and accumulator based tail
recursive programs, in section 7.3 we show that there exists a formal connection
between the two proof transformations presented in section 7.2 and finally, in
section 7.4 we apply our methods to a well known problem in bioinformatics,
the Mazimal Scoring Subsequence Problem.

7.2 Proof Manipulation

This section is devoted to expose the proofs transformation we have in mind in
order to generate (by extraction) more efficient programs starting with a given
inductive proof on natural numbers. How the techniques can be extended to
other data types is discussed in the conclusion.

Definition 7.2.1 (Tail Expressions [22]). The tail ezpressions of t € Terms,
are defined inductively as follows:

1. If t = (Ax.e) then e is a tail expression.
2. Ift = (iftrs) is a tail expression, then both r and s are tail expressions.
3. Ift = (R.rs) is a tail expression, then r and s are tail expressions.

4. Nothing else is a tail expression,
where « € {N, L(p)}.
Definition 7.2.2. A tail call is a tail expression that is a procedure call.

Definition 7.2.3 (Tail Recursion [23]). A recursive procedure is said to be
tail recursive when it tail calls itself or calls itself indirectly through a series of
tail calls.

Now, let F' be the following induction proof over N:
|M |N
A(0) vn(A(n) — A(n + 1))
VYnA(n)
The content of F'is (R b f) with b and f content of the proofs M and N.

76

7.2 Proof Manipulation

7.2.1 Continuation Based Tail Recursion

Given the procedure (R{ b f) defined in the previous section, let A be the term:

R (kb)Y (M, p, k. p Aue(f nuw))

In A, the first input parameter, which has type (¢ — o¢’). is called a con-
tinuation; A is a function with just one tail recursive call and a functional
accumulator parameter k£ with the following property: for each n, at the i-th
(0 < i < n) step of the computation of (An (Az.x)) the continuation has the
form Au.(f(n — 1) (...(f(n —4)u)...)). At the n-th step the continuation
Au.(f (n=1)(...(fO0u)...)) is applied to the term b and returns. We see that
such returned value corresponds to (R b f)n. This fact is stated formally in
the following,

Theorem 7.2.1. For each natural n:
An =rups A7 k((R& b f)n)
Proof. By induction over n:
n=20
A0 =gy Ak.ED
=rnp Ak k((RX b f)0)
n+1

An+1) =gy On,pk.pruk(fnu))n(An)
=rng Ak.(An)\u.k(fnu)
—rns MNe.(AkK((RE b F)n))Muk(fru) (by IH)
=rng Mk.Quk(fnu)((R&bf)n)
=rng Akk(f n((Ryb f)n))
=rns ME((RKDf)(n+1))

O

Now, as expected, when applied to the identity continuation Ax.x we get
another program in the same equivalence class:

Corollary 7.2.2. An.An (Az.z) =rys (RYDf)

So we have at hand a better program. We still need to ensure it can be
reached, in an automatic way, from another proof of the same given statement.

7

7 Tail Recursion

More formally, assume we are given some proof term F', with extraction [F] =
(R&bS), is it possible to find out another proof F’ of the same statement,
which leads to the other program: [F'] = (An.An (Az.z)). This is the challenge
that we will answer positively below.

The key point is to understand the logical role of the continuation parameter
in A: given a natural n, at each step ¢ : n,...,0 in computing (An (A\z.x)),
the continuation is a function that takes the witness for A(i) and returns the
witness for A(i + m), for m such that ¢ + m = n. So we expect A to be the
computational content of a proof with end formula:

vV “m((A(n) — A(n+m)) — A(n+m)) (7.1)

‘We observe that the counter m is introduced to count how much n is decreasing
during the computation. So, as such, it plays a “logical” role (or commentary
role if one prefers); in other words, it is irrelevant at the programming level, and
should be marked to be dropped out. To this end, we explicitly underline the
“hidden” role of m quantifying over it by the special non-computational quan-
tifier V"[5][4]. Let us prove the above statement (7.1), under the assumptions
we have proofs for both A(0) and Vn(A(n) — A(n + 1)),

Proposition 7.2.3. A(0) — Vn(A(n) — A(n+1)) — VavV"™m((A(n) — A(n+
m)) — A(n +m))

Proof. Assume b: A(0) and f : Vn(A(n) — A(n + 1)). By induction on n.
n =0 We have to prove
v m((A(0) — A(m)) — A(m))
So assume m and k : (A(0) — A(m)). Apply k to b: A(0).

n+ 1 Assume n, the recursive call p : V"m((A(n) — A(n+m)) — A(n+m)),
m, and the continuation k : A(n+1) — A(n+m+1). We have to prove:

An+m+1)

Apply p to (m + 1) obtaining (p (m + 1)) : (A(n) = A(n+m+1)) —
A(n+m+1). So, if we are able to prove the formula A(n) — A(n+m+1),
by some proof ¢, we can just apply (p (m + 1)) to t and we are done.

So let us prove
An) - A(n+m+1)

Assume v : A(n). We apply k to (fnv).

78

7.2 Proof Manipulation

Proposition 7.2.4. A(0) — Vn(A(n) — A(n+ 1)) — VnA(n).

Proof. Assume b: A(0), f:Vn(A(n) — A(n+1)). Given n, to prove A(n), we
instantiate the formula proved in Proposition 7.2.3 on b, f, n, 0 and A(n) —
A(n). a

The content of the previous proof, that we name Ind_CONT, is the following:

[b,f,n] (Rec nat => (sigma => sigma) => sigma)
([k](k b))
([n,p,k] p ([ul k¥ (f n w)) n ([x]x))

Notice that, although the functional parameter in A is a continuation, A is
not of the kind provided alongside a CPS-transformation of the recursion over
naturals schema. In fact f and b are not altered in our transformation and
they could contain bad expressions, like not tail calls.

The formula (7.1) could be substituted by the more general ¥n(A(n) —
1) — 1. By an opportune adaptation of the proof of Proposition 7.2.3 we
would have obtained the same computational content (of Porposition 7.2.4)
Ind_CONT. However, here we offer a clearer formulation for the logical property
the continuation parameter is supposed to satisfy. In addition, this approach
represents a non trivial usage of the non computational quantifiers V"¢.

7.2.2 Accumulator Based Tail Recursion

Here we present the essence of Bauer’s [? | original idea. Given the procedure
(RG b f) defined in the last section, let IT be the term:

RN 777 (W, y.y) (A, p,myy.p (m+ 1) (fmy))

In IT there are two accumulator parameters: a natural and parameter of type o
where intermediate results are stored. For each natural n, at the i-th (0 <17 <
n) step of the computation of (IIn0b) the accumulator of the partial results
will be equal to the expression (f (1—1)(...(f00b)...)). At the n-th step (base
case of IT) the accumulator of the partial results is returned and it corresponds
to (R b f)n. This fact is stated in theorem 7.2.6 below.

Definition 7.2.4. For all n,m, let 7NHNHUHG be a function such that:
fmn=[(n+m)
Proposition 7.2.5. For all naturals n and m:

(R (1 00) f 1) n =rnp (R B F,,) (n+1)

Proof. By induction on n.

79

7 Tail Recursion

n=20
(RGN (fm Ob) 7m+1) 0 —RnpB (7771, b)
=rns (RAbf,)1
n+1
(R& (f,, 00) fm+1)n+1 =RnpB fm+1n((RUN (_mOb)7m+l)n)
=Rnp fm+1n((RaN b?) (n+1)) by IH
=rns f(m+1+n)(RGDLS,,) (n+1))

by Def. 7.2.4

Theorem 7.2.6. For all naturals n,

n =rns Am, y(RR Y fr) 1
Proof. By induction on n:
n=>0

II0 =gy Am,y.y
=Rnp)‘mvy(RaNyfm)O

n+1

(n+1) =rns (An,p,m,y. p(m+) n (Tn)

D(f
=rns Am,y.(In) (m + 1) (f

=rns A, y.(Am,y.(RY Y frn

(1 m

(n
=ras A, Y (R (fmy) frusr)

(

(

Yy
Y)
)(m+1)(fmy) byIH

n

=rns A, Y.(RG (F1 0Y) frop1) 0 by Def. 7.2.4
=rns Am,y.(RGy [,)(n+1) by Prop. 7.2.5
O

Now, compared with previous step, we have to provide an initial value to
IT in order to get an equivalent program. According to the accumulator-based

80

7.2 Proof Manipulation

approach, arguments 0, b roughly take the place of the continuation (function).
See section 7.3 for more development on this remark.

Corollary 7.2.7. AnIIn0b=xr,3 (R bf)

Again, we still have to address the question, whether given a proof F' such
that

[F] = (R b)
it is possible to find F’ such that:
[F'] = An.(TIn0b)?

Functions are very powerful tools, so it is not a surprise that going along without
them has a cost. Actually, we can still achieve our goal, but the answer is now
a little bit more elaborate.

Given two natural indexes 7 , j, with ¢ + 7 = n, (Il4j) is a function that
takes the witness for A(j) and returns the witness for A(i 4+ j). So we expect
II to be the computational content of a proof with end formula:

Vn, m(A(m) — A(n+m))

that use the proofs terms M“(® and N"*(A)=AM+1) 55 assumptions. Let us
prove this claim.

Proposition 7.2.8. A(0) — Vn(A(n) — A(n+ 1)) — Vn,m(A(m) — A(n +
m))

Proof. Assume b: A(0) and f : Vn(A(n) — A(n+ 1)). By induction on n:

n =0 We have to prove
vm(A(m) — A(m))

this is trivially proved by (Am,u.u).

n+ 1 Let us assume n, the recursive call p : Vm(A(m) — A(n + m)), m and
the accumulator y : A(m). We have to prove

An+m+1)

Apply f to m and y obtaining (f my) : A(m+1). Now apply p to (m+1)
and (fmy).
|

The accumulator-based program transformation provides us with a new proof
of the induction principle over natural numbers:

81

7 Tail Recursion

Proposition 7.2.9. A(0) — Vn(A(n) — A(n+ 1)) — VnA(n).

Proof. Assume b : A(0), f : Vn(A(n) — A(n + 1)) and n. To prove A(n):
instantiate the formula proved in Proposition 7.2.8 on n, 0 and b : A(0) O

We are done: the program extracted from the previous proof named as
Ind_ACC, is the following:

[b,f,n] (Rec nat => nat => sigma => sigma)
([m,yly)
([n,p,m,y] p m*1)(f my)) n 0D

7.3 From Higher Order to First Order Computation

In this section, we answer positively to the question of the existence for some
formal connection between Ind_CONT and Ind_ACC. The link between the
two of them relies on Defunctionalization. This program transformation, first
introduced by Reynolds in the early 1970’s [32] and later on extensively studied
by Danvy [15], is a whole program transformation to turn higher-order into
first-order functional programs, that is to transform programs where functions
may be anonymous, given as arguments to other functions and returned as
results, into programs where none of the functions involved accept arguments
or produce results that are functions. Let us consider the following simple
example taken from [15]:

(* auz : (nat -> nat) -> nat *)
let aux £ = (£ 1) + (£ 10)

(¥ main : nat * nat * bool -> nat #)
let main x y b = aux (fun z -> x + z) *
aux (fun z -> if b then y + z else y * z)

The above function aux calls the higher order function f twice: on 1 and 10
and returns the sum as its result. Also, the main function calls aux twice and
returns the product of these calls. There are only two function abstractions
and they occur in main.

Defunctionalizing this program amounts to defining a data type with two
constructors, one for each function abstraction, and its associated apply func-
tion. The first function abstraction contains one free variable (x, of type nat),
and therefore the first data-type constructor requires a natural. The second
function abstraction contains two free variables (y, of type nat, and b of type
bool), and therefore the second data-type constructor requires an integer and
a boolean.

82

7.3 From Higher Order to First Order Computation

In main, the first abstraction is thus introduced with the first constructor
and the value of x, and the second abstraction with the second constructor and
the values of y and b.

To the functional argument used in aux, corresponds a pattern matching
done by the following apply function:

type lam = LAM1 of nat | LAM2 of nat * bool

(¥ apply : lam * nat -> nat *)
let apply 1 z =
match 1 with
| LAM1 x -> x + 2z
| LAM2 y b -> if b then y + z else y - z

(¥ auz_def : lam -> nat #*)
let aux_def f = apply f 1 + apply f 10

(¥ main_def : mat * int * bool -> nat *)
let main_def x y b = aux_def (LAM1 x) * aux_def (LAM2 y D)

Now let us apply defunctionalization to Ind_ CONT. We introduce the algebra
path_nat (below) to represent the initial continuation Az.x and the interme-
diate continuation Au.k(f nu).

type path_nat = TOP | UP of path_nat * nat

Each constructor has as much parameters as free variables occurring in the
corresponding continuation function. Finally the call (k b) in Ind_CONT is
replaced by the apply function (here is anonymous) that dispatches over the
path nat constructors. We named the defunctionalization of Ind _CONT by
Insd_Def CONT and it is listed below:

[n] (Rec nat => path_nat => sigma
[q] (Rec path_nat => sigma => sigma
Iyl y
[m,q?,p,y] (p (£my))) qb
[n,p,q] (p (UP q n))) n TOP

Now the question is: from which proof is it possible to extract Ind_Def CONT?
Given ¢ of type path _nat and y “of type” A(n) the inner procedure would be
expected to return an element of type A(n) when ¢ = TOP and an element of
type A(n+m + 1) when ¢ = (UP (...(UP TOPn +m)...) n). But g does
not depend explicitly on n, so given y and p alone one cannot guess anything
about the type of the returned value. In order to state this link between the

83

7 Tail Recursion

above two inputs we need to quantify non computationally over an additional
parameter as showed in the theorem below. In order to do that, let us before
introduce the following notation.

Definition 7.3.1. Given p and q of type path_nat the “degree” of q with respect
to p is defined by the following partial function:

tp(p) =0
tp(q) = ip(T0P) = Undef ifp # T0P
tp((UPgn)) =1+ 1H(q)

Definition 7.3.2. Given x and p of type path_nat and a natural n, we say
that x has a “good shape” with respect to p at level n when

p==x
GoodShape(x,p,n) <= { p#z=(UPgl) A (I = n) A GoodShape(g, p,n + 1)

In the following we adopt the following notation: by C[t] we indicate a
path_nat term that contain an occurrence of the term ¢. So for example if
C[t]=(UP(UP TOP j)i), for some naturals ¢ and j, then ¢ it could be TOP, (UP
TOP j) or C[t] it self.

Theorem 7.3.1. A(0) — Vn(A(n) — A(n+1)) — VaV"n GoodShape(x, TOP,n) —
A(n) — A(n + ()

Proof. By induction over .
x =TOP Assume n, u : A(n) and GoodShape(TOP, TOP,n). The thesis follows
by wu.

x = (UPql) Assume p : V™n. GoodShape(q, TOP,n) — A(n) — A(n + #(q)), n,
gs : GoodShape((UPg!), TOP,n) and y : A(n). By gs and definition 7.3.1
follows I = n and gs’ : GoodShape(q, TOP,n + 1). Instantiate f on [and
A(n) (I is equal to n) obtaining (fly) : A(n + 1). To prove the thesis, it
remains to instantiate p on n + 1, gs’ and (f1y).

O

The program extracted from theorem 7.3.1 is Ind _Def CONT but we are
not done yet: the theorem below shows as Ind_Def CONT needs some ad-

ditional simplification. In the following lines we will favor the presentation
(An.PnTOP) in place of Ind_Def CONT.

Theorem 7.3.2. For all n,p?*™"t ACC*™-"* if
(An.Pnp)(n+1) =g,z POACC
then GoodShape(ACC,p,0) and $,ACC=mn + 1.

84

7.4 Case Study

Proof. By induction on n.

n =0 (An.Pnp)1 rewrite to P 0 (UP p0) in one step.

n >0 Assume IH: Vp,ACC, if (An.Pnp)(n+ 1) =rys POACC then #,ACC =
n + 1 and GoodShape(ACC, p,0); assume p, ACC and ip:(An.Pnp)(n +
2) =rys POACC. We have to prove GoodShape(ACC, p,0) and #,ACC =
n+2. It is just enough to see that (An.P np) (n+2) =g,z (An.Pn (UPp (n+
1)))(n+ 1) and so by ip, we have ip’ : (An.Pn (UPp (n+1)))(n+1) =rys
P OACC. Then instantiating IH on (UPp (n+ 1)) and ACC, and by ip’ we
have that GoodShape(ACC, (UPp (n + 1)),0) and fwpp (n4+1))ACC =n + 1.
It follows that ACC = C[(UP (UPp (n + 1)) n)], for some path_nat term C,
that is f,(ACC) = n + 2 and GoodShape(ACC, p,0).

O

As a corollary of theorem 7.3.2, we have that, for p = TOP the expression
(An.PnTOP)(n+1), that is Ind_Def CONT(n+1), rewrites to (P 0 ACC) with
GoodShape(ACC, TOP, 0) and firee (ACC) = n+1. A data structure like type_nat
is too complex to store this particular simple data. So we replace type_nat by
N in Ind_Def CPS according to the informal correspondence:

TOP «w 0
(UPTOPn) o~ 1

(UP(... (WP TOPn).. .)05 - ntl

obtaining the code Ind_Intermediate ACC, listed below:
[n] (Rec nat => nat => sigma
[q] (Rec nat => nat => sigma => sigma
[m,y]l y
[q’,p,m,y]l (p (m+1) (£ my))) q 0D
[n,p,q] (p (q*+1))) n O
This procedure still performs some redundant computations: the outer recur-
sion runs over n, so the accumulator parameter g ranges from 0 to n. At this
point the inner routine (that will return the final result) is called on g, now
equal to n. This is equivalent to calling directly the subroutine over n, which
corresponds to Ind_ACC as expected.

7.4 Case Study

Let us consider now a more elaborated example taken from Bioinformatics.
This is an area where the correctness and the efficiency of programs plays

85

7 Tail Recursion

a crucial role: efficiency because DNA sequences are really huge and getting
lower complexity class is essential, correctness because we need to trust pro-
grams and we cannot check their results by hand. An important line of research
is the “Sequence Analysis”, which is concerned with locating biologically mean-
ingful segments in DNA sequences. In this context, we will treat the so-called
“Maximal Scoring Subsequence” (MSS) Problem. For a sequence of real num-
bers, we are looking for a contiguous sub-sequence such that the sum of its
elements is maximal over all sub-sequences. Several authors have investigated
that problem or a variation thereof, see, e.g., [16, 11, 18, 25, 42]

The MSS problem has various applications in Bioinformatics and we will
mention only a few of them. The GC content in DNA of all organisms varies
from 25% to 75%, where, e.g., genes are usually located in region with a high
GC content. Such regions can easily be determined with a MSS algorithm,
where the bases G and C get a positive, while the bases A and T get a negative
value. Also in comparative genomics, the sequence similarity for corresponding
exons between human and mouse is up to 85%, while for introns it is as low
as 35%. Using the Smith-Waterman local alignment algorithm such regions
with high similarity can be roughly determined, but a refinement in a post-
processing step using variations of MSS algorithms are helpful to eliminate
sub-regions with a low similarity. Furthermore, strongly conserved regions of a
multiple sequence alignment can be found using MSS algorithms, where each
column will be scored based on a suitable similarity measure. In transmembrane
proteins, the more hydrophobic regions of the protein are usually located inside
the membrane and more hydrophilic regions are located outside. Thus, locating
hydrophobic regions using MSS algorithms are helpful for a first rough structure
resolution of transmembrane proteins, where hydrophobic amino acids get a
positive and hydrophilic a negative value. For a detailed list of applications in
biomolecular sequence analysis, see [25], for example.

7.4.1 The MSS Problem

The MSS (Maximal Scoring Subsequence) problem, in its most general presen-
tation, can be explained as follows:

MSS Problem : Given a list ! of real numbers, find an interval (i,k) (with
i <k < || — 1) such that
K’ k
ULESIT)
j=i’ j=i

for every (i',k’) (with ¢/ < k' < |l| — 1). The problem doesn’t admit
solutions for all the inputs, in fact on the empty list there is no solution.

86

7.4 Case Study

seg[j’,n] < segljn,n], Vi’ <n

-1
| [1 1] .
-dJ

in]n kn n n+1

seg [i', k'] < seglin, kn], Vi', k' <n

Figure 7.1: The witnesses in,j» and k, at step n of the induction

Here we report on a variant of the MSS problem first proposed in [2, 35].

MSS Problem Instance :Given the function seg : NxN — X defined on [0, . .., n]x
[0,...,n], find the interval (4, k),(with ¢ < k < n) such that

seg [i/7j/] SX seg [17]]

for every (i',k’), (with i’ < k' < n). This time the problem admits
solution on each natural input n. Here X is a set on which we can define
a total order relation <x. Moreover we require seg to have the following

property:

AX =Vn,i,j. seg[i,n] <x seglj,n] — segli, (Succ n)] <x seg[j, (Succ n)]

Theorem 7.4.1. For alln

i, k(i <k <n) AV K (' <K <n)— segli’, k'] <x segli, k]) (7.2)
(5 < n) AV (" <n) — (segli’,n] <x seg[j,n])))) (7.3)

Proof. By induction on n.

n=0 Weseti=k=j5=0.

n + 1 Assume (7.2) and (7.3) hold for n (hypothesis IH},,IH2). Let (in, ks) and
jn be the segment and the value that satisfy IH, and IH2 respectively
(see picture in Figure 7.1) By IH2, for an arbitrary ;' < n

seglj’,n] <x segljn, 1] (7.4)

87

7 Tail Recursion

Instantiating Ax on n,j’,j, and (7.4),
segli’yn + 1] <x seg[jn,n + 1]

The witness for IH?LJA is given by:

[g seg[n +1,n + 1] <x seg[jn,n + 1]
HEZ (1) segln+1,n+1] £x seglin, n+ 1]

We have to prove that j,y1 satisfies,
V(5" < (n+1)) — segli’, (n +1)] <x segljnt1, (n+ 1))

This has to be proved both for 5 < n and j' = (n + 1). Both cases
follow straightforwardly from IHZ and the construction of j,+1. The new
maximal segment, is given by:

(Z 1, 1) — (Zru kn) Seg[jn+l7 n+ 1] <x Seg[in7 k/'n]
b (Gn+1,m+1) seglinrr,n+1] £x seglin, ko]
Again, we have to prove that (in+1, knt1) satisfies,
Vil k' (i <K < (n+1)) — segli’, k'] <x seglint1, knt1]

This property has to be proved both for (' < k¥’ < n)and (' < k¥’ = n+1).
Both cases follows from IH}, IH2, and the construction of (in+1,kn+1)

O

The program extracted from the previous proof, named MSS, is the following:

(Rec nat => sigma
(0,0,0)
[n,(i,j,k)]
LET m = (if(seg[n+1, n+1] <= segl[j, n+1]) j (n+1))
IN if(seg[m,n+1] <= segl[i,k]) (i,m,k) (m,m,n+1))

With seg some fixed function. The above algorithm makes use of the ex-
pression (LET r IN s). This is actually syntactic sugar: although it does not
belong to our term language, MINLOG allows the user to make use of it. This
is irrelevant in the context of this section, and the reader is referred to [10] for
a a further development on that issue.

By the following extension of the definition 7.2.1:

3. if t = (LET r IN s) then s is a tail ezpression.

and w.r.t. definition 3.3, the program MSS is not tail recursive.

88

7.4 Case Study

7.4.2 Generation of a Continuation/Accumulator Based
MSS-Program

We apply the transformations proposed in section 7.2.1 and 7.2.2 to the proof
of the theorem 7.4.1 in order to extract respectively a continuation and an
accumulator based version of the MSS program. We first consider the extraction
of a continuation based version of the MSS program. Before to do that, let’s
name the following formula,

Vi, k((i <k <n)A
Vi' K (i <k <n)— segli’, k'] <x segli, k]) A
(G < n) AV < n) — (seglj’,n] <x seglj,n]))))

with VnMSS5?(n). Moreover we name the base and the step of the inductive
proof of theorem 7.4.1 respectively as M and N. Clearly M has type MSS53?(0)
and N has type Vn(MSSY?(n) — MSSY?(n + 1)).

Now, let instantiate A(n) in Proposition 7.2.3 with MSS3?(n). We name
the proof of the Proposition 7.2.3 so istantiated as MSS_CONT. At this point,
following the idea proposed in Proposition 7.2.4 we build the following proof-
tree:

IN
Vn(MSS;{‘g(n) — MSS;:g(n + 1))

MSS_CONT
MSS3E (0) —

Vn(MSS;fg(n) — MSS;fg(n+1)) — | M
VvV m(MSS3 Y (n) — MSS5EY(n 4+ m)) — MSS5 9 (n + m) MsSS5E9(0) B
Yn(MSS5E (n) — MSSEY (n + 1)) — -
VnV"cm(MSS;fg (n) — MSS;?Q (n+m)) — MSS;:g(n + m)
VnV"cm(MSS‘;:g(n) — MSS;:g(n+m)) — MSS;:g(n+m) n 0
N N y v
(MSSSE9 (n) — MSSE (n)) — MSSEY (n)
[u : MSSEI (n)]
X *}r

MSS;:g(n) — MSS;:g(n)

—

MSS379 (n)
VnMSS;:g (n) v
The program extracted from the above proof is the continuation based version

of the MSS program:

([n]
(Rec nat => (sigma => sigma) => sigma

89

7 Tail Recursion

[k] k (0,0,0)
[n,p,k] p ([(i,],k)]
LET m = if (seg[n+l, n+1] <= segl[j, n+1]) j (n+1)
IN if (seg[m,n+1] <= segl[i,k]) (i,m,k) (m,m,n+1))))
n [x]x

For the extraction of an accumulator based version of the MSS program we
follow the same idea. Before we instantiate A(n) in Proposition 7.2.8 with
MSS39(n). We name the proof of the Proposition 7.2.8 so istantiated as
MSS _ACC. Now adapting the proof of Proposition 7.2.9 we build the following
proof-tree:

MSS_CONT
Vn(MSS‘;:g(n) — MSS;:g(n+l)) — |N
Vn, m(MSS;:‘g(m) — MSS;:g(n + m)) Vn(MSS‘;:g(n) — MSS;:g(n + 1))
Vi, m(MSS3E (m) — MSSEY (n + m)) n 0 -

N N v~
(MSSE9(0) — MSS3IEY (n))

| M
MSS39(0)

MSS;:g(n)
N v
VnMSS;:g(n)

The program extracted from the above proof is the accumulator based version
of the MSS program

([n]
(Rec nat => nat => sigma => sigma
[m,yl y

[n,p,m,(i,j,k)]
p (m+1) LET m = (if (seg[nt+l, n+1] <= seg[j, n+1]) j (n+1))
IN if (seg[m,n+1] <= segl[i,k]) (i,m,k) (m,m,n+1))))
n 0 (0,0,0)

Both the continuation and accumulator version of the MSS program are tail
recursive, as the result of automatic transformation from the proof of the the-
orem 7.4.1. This way, we have ensured these are still correct implementations
of the abstract algorithm while being more efficient in the same time.

90

8 Beyond Primitive Recursion

8.1 Introduction

In this chapter! we extend what we have seen in the previous chapter. Follow-
ing the pioneering work of Manna and Waldinger’s [27] we introduce several
induction principles over natural numbers and we will investigate how it is pos-
sible to express each one in terms of the others, both from a programming and
a proof-theoretic point of view. This represents a contribution with respect to
[27]. Moreover we will show how it is possible to turn each induction principle
into an equivalent one, but from which it is possible to automatically synthesize
a tail recursive program.

For readability reasons part of the code presented in this section will be
written with the ML syntax.

8.1.1 Up Primitive Recursive Induction

Here is the proof principle for primitive recursion:

|Z |S
P(0) Vn(P(n) — P(n+1))
VnP(n)

(up—prim—rec)

Manna and Waldinger refer to it as ‘going up’ since P(n) is needed to deduce
P(n+1). The corresponding synthesized functional Up.prim_rec is displayed in
Figure 8.1. There, z is extracted from [Z] and s from [S]. The computation is
driven by the input variable n: computing the result for n requires the result
for n — 1 to be computed, until the base case n = 0 is reached in a trail of
nested applications of the function denoted by s.

The recursive definition of the factorial function is a straightforward example
of primitive recursion, and is obtained as an instance of Up.prim_rec where z
is instantiated with identity element for multiplication (z = 1) and s with the
(curried) multiplication function (s =fn i => fn ¢ => (L + 1) * c):

1The material in this chapter was developed in collaboration with Olivier Danvy during
January 2009, during a visit to the Arhus’s Computer Science Department.

91

8 Beyond Primitive Recursion

structure Up
= struct
fun prim_rec n (*: nat-> ’a *)
= let fun visit m
= if m =0 then z else s (m - 1)(visit(m - 1))
in visit n
end

fun prim_iter n (* : nat ->’a *)
= let fun visit m
= if m = O then z else s (visit (m - 1))
in visit n
end
end

Figure 8.1: Synthesized up-induction functionals

fun up_prim_rec_fact n
= let fun visit m
= if m = 0 then 1 else m * (visit (m - 1))
in visit n
end

8.1.2 Up Primitive Iterative Induction
Here is the proof principle for primitive iteration:
|Z 1S
P(0) V"n(P(n) — P(n+1))
VYnP(n)

(up—prim—iter)

The difference between primitive and iterative iteration is that in the itera-
tive case, we quantify non computationally over n in the inductive step. One
can then synthesize the functional for up primitive iteration Up.prim_rec in

Figure 8.1. Again, there, z is extracted from [Z] and s from [S].

To define the factorial function as an instance of Up.prim_iter we must gener-
alize Kleene’s trick to compute the predecessor function over Church numerals.
So instantiating z = (1,1) and s = fn(i, c) =>(i+1l,i*c) in Up.prim_iter we

obtain:

fun up_prim_iter_fact n
= let fun visit m

92

8.1 Introduction

= if m = 0 then (1,1) else let val (i,c)=visit(m - 1)
in (i + 1,i *c)
end
in #2 (visit n)
end

8.1.3 Down Primitive Recursive Induction

Manna and Waldlinger also present a ‘going down’ version of primitive recur-
sion:

|Z 1S
Q(n) Vm(Q(m + 1) — Q(m))
Q(0)

where n could be a free variable in). They refer to it as ‘going down’ since
Q(n + 1) is needed to deduce Q(n).

The idea is that the property VnP(n) is proved using a predicate Q(m) such
that Q(0) reduces to P(n) (noted Q(0) ~» P(n)). This induction principle is
then applied to Q(0). The challenging point here is that a kind of eureka step
is required in order to find a satisfactory predicate Q.

So, given the proof of Q(0) in terms of MR apd NYHQUrHD)—=Q(m)
we prove VnP(n) by

(down—prim—rec)

|R
P(n) - :
Q(0) — P(n) Q(0)
P(n)
VnP(n)

s

Here we require the normalization of the code extracted from the proof-term
MCORP™M t6 be equal to the identity function. This is because we assume
Q(z) to be a predicate that, when instantiated with 0, can be rewritten into
P(n) in a finite number of steps, using an opportune set of rewriting rules.
This process of simplification is performed using the following, and only the
following axiom:

Eqg-Compat : Va1, z2(z1 ~ 22 — P(21) — P(x2))

where ~» denotes a binary relation and P a generic predicate symbol. This
axiom says that, if we know that a given term (bounded by z1) is in relation
with another term (bounded by z2) — for example the equality relation — and

93

8 Beyond Primitive Recursion

structure Down
= struct
fun prim_rec n (* : nat -> ’a *)
= let fun visit m
= if m = n then z else s m (visit (m + 1))
in visit 0
end

fun prim_iter n (* : nat ->’a %)
= let fun visit m
= if m = n then z else s (visit (m + 1))
in visit 0
end
end

Figure 8.2: Synthesized down-induction functionals

we know that P(z1) holds then we can conclude that P(z2) holds. Letting
the computational content of the Eq-compat axiom be the identity function,
it is clear that the program extracted from nested applications of Eq-compact,
once normalized, will correspond to the identity function. Since the derivation
above is a detour, we rewrite it in the following way:

Qo)
|R
P(n)
VnP(n)

which can be read as the replacement of each open assumption u?©® in R by
the proof of Q(0). The program extracted from the complete proof of VnP(n)
is the functional Down.prim_rec in Figure 8.2, where z could depend on n (hence
the order of the parameters).

We now return to the factorial function over natural numbers:

1 ifn=0
fact(n) = { n X fact(n —1) ifn>0

Let us prove that Vnim(m = fact(n)) by going-down primitive recursion.
We assume n. In order to prove Im(m = fact(n)), we design the new goal
Im(fact(0) x m = fact(n)). Applying the going-down primitive recursive in-
duction principle to this formula requires us to prove the following two subgoals:

94

8.1 Introduction

e Im(fact(n) x m = fact(n)): It is sufficient to set m = 1.

e Now assume y and ih : Im(fact(y + 1) x m = fact(n)). We prove
Im(fact(y) x m = fact(n)). By ih we know that there does exist an
m’ such that fact(y + 1) x m’ = fact(n). Considering that fact(y + 1) =

/

(y 4+ 1) x fact(y), the thesis is proved for m = (y + 1) x m’.
The program extracted from this proof reads as follows:

fun down_prim_rec_fact n
= let fun visit m
= if m = n then 1 else (m + 1) * (visit (m + 1))
in visit O
end

Correspondingly, this residual program is also obtained by specializing Down.prim_rec
on z equal to the identity element for multiplication and s the (curried) multi-
plication function:

8.1.4 Down Primitive lterative Induction

Here is the proof principle for primitive iteration:

4 IS
Q) vrem(Q(m +1) — Q(m))
Q(0)

Again, the difference between primitive and iterative iteration is that in the
iterative case, we quantify non computationally over m in the inductive step.
One can then synthesize the functional for down primitive iteration in Fig-
ure 8.2, where n, in the local definition of visit, is free.

Again, to define the factorial function as an instance of Down.prim_iter we
use Goldberg and Reynolds’s generalization of Kleene’s trick to compute the
predecessor function over Church numerals. So instantiating z = (1,1) and
s =fn(i,c) => (i+1, i*c) in Down.prim_iter we obtain:

(down—prim—iter)

fun down_prim_iter_fact n
= let fun visit m
= if m=n then (1,1) else let val (i,c) = visit (m+1)
in (i + 1, i * ¢)
end
in #2 (visit 0)
end

95

8 Beyond Primitive Recursion

8.2 Expressive Power

In this section we show that the induction principles reviewed in Section 8.1
share the same expressive power.

Up.prim-rec Down.prim-rec

Up.prim-iter Down.prim-iter

8.2.1 Up Primitive Iteration in Terms of Up Primitive Recursion

To simulate up primitive iteration in terms of up primitive recursion we instan-
tiate the base and step of Up.prim_rec respectively by z’> and fn n=>fn y=>s’y
with z’> and s’ base and step of Up.prim_item:

fun up_prim_iter n
= let fun visit m
= if m =0 then z’ else s’(visit(m - 1))
in visit n
end

Proof interpretation:
Proposition 8.2.1. Given the proof
|M IN
P(0) Ven(P(n) — P(n+1))
VYnP(n)

(up—prim—iter)

then there exists M', N’ such that:
M’ IN’
P(0) vn(P(n) — P(n+ 1))
VnP(n)

(up—prim—rec)

with computational content equal to up_prim_iter.

Proof.

96

8.2 Expressive Power

|N
vn(P(n) — P(n+ 1)) y
Eq-Compat [u:y=n] P(y) — P(y+1)

—

[r: Jy(y =n) A P(n)]
P(n)

=

—

Pn+1)
y=n— Pn+1)
Vy(y =n — P(n+1))

+

—u

+

[r:3y(y =n) A P(n)]

3 Jy(y =n) -
P(n+1) 3
[u:y=n]
It (y+1) y+l=n+1
Jyly=n+1) B
[r:3y(y =n) A P(n)] o y=n—3yly=n+1)
3~ Jy(y =n) ’ Vyly=n — Jy(y =n+1))
Jyly =n+1) Lo

Jy(ly=n+1) A P(n+1)
(Fyly=n) A P(n)) = Fy(ly =n+1) A P(n+1))

vren((Jy(y = n) A P(n)) — (Fy(y =n+1) A P(n+1)))

3+ 1 (1=0) |M
_— g+
Jy(y =0) P(0) ot
ay(y = O) A P(O) ¥ (up-prim-iter)
vn(Jy(y = n) A P(n)) noo_
Jy(y = n) A P(n) o
P(n) 1

nc+

Figure 8.3: Simulation of up-prim-rec in term of up-prim-iter. The variable n does
not occur in content of the proof of the formula (3y(y = n) A P(n)) —
(Fy(y =n+1) A P(n+ 1)), thus the (V"°*) inference results correct
w.r.t. the definition given in section 2.1.2. I

8 Beyond Primitive Recursion

|N
v"n(P(n) — P(n+1)) n -
P(n) — P(n+1) [u: P(n)] .
Pn+1) N
|M P(n) — P(n+1) "
P(0) vn(P(n) — P(n+1)) (up-prim-rec)
VYnP(n)

8.2.2 Up primitive Recursion in Terms of Up Primitive Iteration

To simulate up primitive recursion in terms of up primitive iteration we use
Kleene’s trick: we instantiate the base and step of Up.prim_iter respectively
by (0,z’) and fn (j, ¢c)=>(j + 1, s’ j c), with z’> and s’ base and step
of Up.prim_rec:

fun up_prim_rec n
= let fun visit m
= if m = 0 then (0,z’)
else let val (j,c) = (visit (m - 1))
in (j+1, s’ j c) end
in #2 (visit n)
end)

Proof interpretation:
Proposition 8.2.2. Given the proof
|M N
P(0) vn(P(n) — P(n+ 1))
VnP(n)

(up—prim—rec)

then there exists M', N', R such that:

| M [N
Jy(y = 0) A P(0) Vn(Jy(y =n) A P(n) — Jy(y =n+1) A P(n+1)) (upmprim-ier)
vn(Jy(y = n) A P(n))
R
VnP(n)

98

8.2 Expressive Power
and from which it is possible to ertract up-prim-rec.

Proof. See Figure 8.3. O

8.2.3 Up Primitive Recursion in Terms of Down Primitive Recursion

To simulate up primitive recursion in terms of down primitive recursion, we use
Kleene’s trick: we instantiate the base and step of Down.prim_rec respectively
by (0,z’) and fn m =>fn(j,c)=>(j+1,s’jc), with z’ and s’ base and step
of Up.prim_rec:

fun up_prim_rec’ n
= let fun visit m
= if m = n then (0,z’) else let val (j,c) = (visit (m + 1))
in (j+1,s’jc) end
in #2(visit 0)
end

Proof interpretation:
Proposition 8.2.3. Given the proof
|M N

P(0) vn(P(n) — P(n+1))
VnP(n)

(up-prim-rec)

then there exists M', N’ such that:

|N
|M Yy((Fz(z =n—(y+ 1)) AP(n—(y+1))) —
Jz(z=n-—n)AP(n—n) (Fz(z=n—y) A P(n—1y))) .
(down-prim-rec)
Jz(z=n—-0)AP(n—-0)
P(n) 1
VnP(n) v

and from which it is possible to extract the procedure up-prim-rec’.

Proof. See Figure 8.4. O

99

8 Beyond Primitive Recursion

[r:32(z=n— W+ D)) AP -+ 1)) A +1<n)

3x(z=n—(y+ 1) APn—(y+1)
P(n - (y+1)

| N
Vn(P(n) — P(n + 1))
Eq-Compat [u:z=n — (y+ 1)] P(z) - P(z+1)
Pn—(y+ 1) — P(n—y) B
P(n —y) o -
(z=n-(y+1) = Pn-y "
vt
Vz((z=n—-(y+1)) = P(n—vy))
i3z =n =+) AP - W+ DAL W]
Be=n-@W+APG-(u+D) ’
=i Jz(z=n—(y+ 1)) 0 B
P(n—y) ?
pis=n—@+l
ER) z+l=n—-y
3+
Jz(z =y —n) n
(z=n—(y+1) - Fz(z=n+1) “
vt
Vz((z=n—(y+1)) = 32(z =n —y))
[r:32z=n—-(@wW+HY)APn—(y+1)Ay+1<n)] _
=l Jz(z=n— (y+1)) !
-

Jz(z=n —vy)

AT
Jz(z=n—y) AN P(n—y)

[ri32(z=n—(y+ 1) AP(n—(y+ 1) Ay +1<n)

1

(y+1<mn)
(y <n)
AT
Jz(z=n—y) AN P(n—y) ANy <n) "
Gxlz=n—(@+1) A Pn— @+ Ay+1<n) —
Jz(z=n—y) AN P(n—y) Ay <n)
Vy((Bz(z=n—-(y+ 1) A P(n—(y+1) A(y+1<n)) —
Jz(z=n—y) AN P(n —y) A (y <n))
3t 0 (0=n—n) | M
_ 3+
Jz(z =n —n) P(n —n) .
Jz(z =n —n) A P(n —n) A n<n +
A
3 =n—-—nm)APn—-—n)A(n<n
2) (Jrtm=m (down-prim-rec)
Jz(z=n—-0)AP(n—0)A(0<n) _
N
3z(z =n —0) A P(n —0) _ 0
1
100 Poy_
VnP(n)

Figure 8.4:

8.2 Expressive Power

8.2.4 Down Primitive Recursion in Terms of Up Primitive Recursion

To simulate down primitive recursion in terms of up primitive recursion, we
instantiate the base and step of Up.prim_rec respectively by (n,z’) (for some
input parameter n) and fn m=>fn (j,c)=> (j-1, s’(j-1)c), with z’> and s’
base and step of Up.prim_rec:

fun down_prim_rec n
= let fun visit m
= if m =0 then (z’,n) else let val (j,c) = (visit(m - 1))
in (j-1, s’(j-1)c) end
in #2(visit n)
end

Proof interpretation:

Proposition 8.2.4. Given

|M |V
Q(n) vm(Q(m +1) — Q(m)) (down-prim-rec)
Q(0)
IR
P(n)
VnP(n) v

we want to find the opportune M', N' such that if the proof of Q(0) is substituted
by

[V
|M’ Vy(((3z(z =n—y) AQ(n —y)) —
3z(z = n) AQ(n) (Fzz=n-(y+1)AQ(n~—(y+1))) (up-prim-re)
Vy(Fz(z =n—y) AQ(n —y)) no
Jz(z = 0) A Q(0) o
Q(0)

then the computational content of the resulting proof corresponds to down_prim_rec.

Proof. We propose only a sketch because the structure of the proof is the same
as the one displayed in Fig. 8.4. The idea is to prove the lemma

Vy(3z(z=n—-y) AQ(n —y))

by up primitive recursion:

101

8 Beyond Primitive Recursion

[Base y = 0] We have to prove 3z(z = n) A Q(n). The left conjunct is proved
by just introducing n for z. The right conjunct is given my M.

[Step y+1] Let us assume y and 2’ such that 2’ = n—y and Q(n—y). We have
to prove 3z(z =n— (y+1)) AQ(n— (y+1)). The left conjunct is proved
introducing 2z’ — 1 for z. The right conjunct is proved by instantiating N
on 2z’ — 1, from which we deduce Q(z') — Q(z’ — 1) that can be rewritten
as Q(n —y) — Q(n — y — 1) by the induction hypothesis 2’ = n — y and
finally instantiating this formula on Q(n — vy).

O

8.2.5 Down Primitive lteration in Terms of Down Primitive
Recursion

To simulate down primitive iteration in terms of down primitive recursion, we
instantiate the base and step of Down.prim_rec respectively by z’> and fn j =>fn c=>s’c,
with z’ and s’ base and step of Down.prim_iter:

fun down_prim_iter n
= let fun visit m
= if m = n then z’ else s’(visit (m + 1))
in visit O
end

Proof interpretation:
Proposition 8.2.1. Given

|M N
Qn) vrem(Q(m + 1) — Q(m)) o
(down-prim-iter)
Q(0)
R
P(n)
VYnP(n) v

we want to find the opportune M’, N’ such that if the proof of Q(0) is replacled
by
|’ [N’
Qn) vm(Q(m + 1) — Q(m))
Q(0)

then computation content of the transformed proof is equal to down_prim_iter.

(down-prim-rec)

102

8.2 Expressive Power

Proof. The structure of the proof is similar to that of Prop. 8.2.1. We simply set
M’ equal to M and N’ equal to the proof term Am, u@(Mm+TD (N m(@Qm+D=Q0m) py gy,
O

8.2.6 Down Primitive Recursion in Terms of Down Primitive
Iteration

To simulate down primitive recursion in terms of down primitive iteration, we
instantiate the base and step of Down.prim_iter respectively by (n,z’) (for
some given n) and fn(j, c)=>(j -1, s(j-1)c), with z’ and s’ base and step

of Down.prim_rec:

fun down_prim_rec’ n
= let fun visit m
= if m = n then (n,z’) else let val (j,c)=(visit (m+1))
in (j -1, s(j-1)c)) end
in #2(visit 0)
end

= #2 (Down.prim_iter n ((n, z), fn(j, c)=>(j -1, s(j-1)c)))

Proof interpretation:

Proposition 8.2.5. Given the proof

|M N
Q) Ym(@um+) = Q)
Q(0)
R
P(n)
VYnP(n) v
find M', N' and an appropriate Q' such that
|’ |N
Q'(n) v em(Q'(m + 1) — Q'(m)) o
(down-prim-iter)
Q'(0)
R
P(n)
VYnP(n) v

103

8 Beyond Primitive Recursion
and from which it is possible to extract down_prim_rec’.

Proof. We propose only a sketch because the structure of the proof is the same
as the one displayed in Fig. 8.3. The idea is to set

Q'(0) = 3y(y = 0) A Q(0)

and prove Q'(0) by up primitive iterative induction:

[Case n] We have to prove Jy(y = n) A Q(n), which follows directly by n =n
and M@,

[Case m + 1 — m] Assume m (which we quantify non computationally) and y’
such that y’ = m+1 and Q(m+1). We prove Jy(y = m) AQ(m). For the
left conjunct, it is enough to introduce 3’ —1 for y. For the right conjunct,
we need to instantiate N with (y" — 1), obtaining Q(y') — Q(y' — 1). By
the assumption y’ = m + 1, we have Q(m + 1) — Q(m) and instantiating
it with Q(m + 1) we obtain the thesis.

O

8.2.7 Up Primitive Iteration in Terms of Down Primitive Iteration

To simulate up primitive iteration in terms of down primitive iteration, we
instantiate the base and step of Down.prim_iter respectively by (0,z’) and
fn(j,c) => (j+1, s’c), with z’> and s’ base and step of Up.prim_iter:

fun up_prim_iter’ n
= let fun visit m
= if m = n then (0,z’) else let val (j,c) = (visit (m+1))
in (j+1, s’c) end
in #2(visit 0)
end

This case is treated as the one in Section 8.2.4.

8.2.8 Down Primitive Iteration in Terms up Primitive Iteration

To simulate down primitive iteration in terms of up primitive iteration, we use
Kleene’s trick: we instantiate the base and step of Up.prim_iter respectively
by (n,z’) and fn(j,c) => (j - 1, s’ ¢), with z’ and s’ base and step of

Down.prim_iter:

104

8.3 Primitive Recursion and Iteration with Accumulators

fun down_prim_iter’ n (z, s)
= let fun visit m
= if m = 0 then (n,z’) else let val (j,c)=(visit(m -1))
in (j-1, s’c) end
in #2(visit n)
end

This case is treated as the one in Section 8.2.3.

8.2.9 Summary and conclusion

We have shown proof theoretically how the original up versions and Manna
and Waldinger’s down versions of primitive recursion and primitive iteration
are equivalent.

8.3 Primitive Recursion and Iteration with Accumulators

Here we present the proof-theoretical analogous of fold-left from functional
programming with lists, where the result is accumulated at call time instead of
at return time. We consider in turn the accumulator-based versions of each of
the induction principles reviewed in Section 8.1.

8.3.1 Up Primitive Recursion with Accumulator
Here the problem is how to transform the following up primitive recursive
induction principle,
|M IN
P(0) vn(P(n) — P(n+1))
VnP(n)

(up-prim-rec)

into another proof (of the same formula VnP(n)) but with a computational
content that is the accumulator-based version of up primitive recursion:

fun up_prim_rec_acc n
= let fun visit m j a
= if m = O then a else visit (m - 1) (j + 1) (s j a)
in visit n 0 z
end

with z and s base and step of Up.prim_rec. In these definitions, we use and
manipulate two accumulators: j, to count from 0 to n and a, to store the partial
result at step j. Obviously, for j =n we have a = s(n —1)(...(s0z2) ...).

105

8 Beyond Primitive Recursion

So given a proof of YnP(n) by the up primitive recursive induction principle
in terms of z : MT©® and s : NP =P0+D) woe can build a new proof of
VnP(n) with content up_prim_rec_acc through the following two steps:

1. We prove the lemma VYnVm(P(m) — P(n+m)) by up primitive recursive
induction:

Casen = 0 We have to prove
Vm(P(m) — P(m))

which is trivially proved by (Am,u.u).

Casen + 1 Let us assume n, the recursive call p : Vm(P(m) — P(n+m)),
m and the accumulator y : P(m). We have to prove

Pln+m+1)

Apply s to m and y, obtaining (smy) : P(m + 1). Now apply p to
(m+1) and smy.

2. Finally we derive the initial formula YnP(n) by assuming n and instan-
tiating the formula proved in the first step on n, 0 and z : MF©®,

8.3.2 Up Primitive Iteration with Accumulator

We follow the same schema as in Section 8.3.1. The only difference is that in
the intermediate lemma (point 1), we have to quantify non computationally
over m. In other words, we have to prove the modified intermediate lemma:

VvV " m(P(m) — P(n+m))
The synthesized program will embody the up primitive iterative induction prin-
ciple with accumulator:

fun up_prim_iter_acc n
= let fun visit m a
= if m = 0 then a else visit (m - 1) (s a)
in visit n z
end

with z and s base and step of Up.prim_iter.

8.3.3 Down Primitive Recursion with Accumulator

Here the problem is how to transform the following down primitive recursive
induction principle,

106

8.3 Primitive Recursion and Iteration with Accumulators

|M [N
Q(n) Vy(Qy +1) — Q(y))
Q(0)

into another proof, still of the formula Q(0), but with a computational content
that is the accumulator-based version of down primitive recursion:

(down-prim-rec)

fun down_prim_rec_acc n
= let fun visit m j a
= if m = n then a else visit (m+1) (j-1)(s(j-1)a)
in visit O n z
end

with z and s base and step of Down.prim_rec. We propose here an approach
similar to the one in Section 8.3.1. The function down_prim_rec_acc is equipped
with two additional accumulators, indicated with the letters j and a. The first
one is initialized with n at the beginning of the computation and decreased of 1
in each iteration, and the second accumulator, initialized with z, of type P(n),
is dedicated to store the partial results. The proof from which it is possible to
synthesize up_prim_rec_acc is based on the following two steps:

1. We prove the intermediate lemma Vi(Q(i) — Q((¢ + 0) — n)) by down
primitive recursive induction:

Case y = n We have to prove Vi(Q(z) — Q(7)) that is given by construc-

tion by the following proof term Ai, u®¥y,

Case y + 1 — y Given y, the induction hypothesis visit : Vi(Q(i) — Q((i+
y+1)—n)), i and u : Q(i), we prove Q((i + y) — n) by construct-
ing the following proof term: (visit (i — 1) (N"¥(@u+D=QW) (; _
1) u))Q((i+y)—n)_

2. We instantiate the proof of the formula Vi(Q(i) — Q((i +0) —n)) on n
and on 22 obtaining Q(0).
8.3.4 Down Primitive Iteration with Accumulator

We follow the same schema as in section8.3.3. The only difference is that in the
intermediate lemma (point 1), we have to quantify non computationally over
i. In other words, we have to prove the modified intermediate lemma:

v*i(Q(i) — P((i+0) —n))

The procedure extracted from this new proof is the following down primitive
iteration principle with accumulator:

107

8 Beyond Primitive Recursion

fun down_prim_iter_acc’ n
= let fun visit m a
= if m = n then a else visit (m + 1) (s a)
in visit 0 z
end

with z and s base and step of Down.prim_iter.

8.3.5 Summary and Conclusion

We have presented the accumulator-based versions of Manna and Waldinger’s
going-up and going-down primitive recursion and primitive iteration reviewed
in Section 8.1.

8.4 Case Study: The Factorial Function
In this section we put into practice what we have seen so far on a case study. We
prove by up primitive induction over natural numbers that Vn3y(y = Fact (n))

(definition of Fact in 1.2):

[u : y = Fact(n)]
y* (n+ 1) = Fact(n + 1)

I+
Jy(y = Fact(n + 1)) I
(y = Fact(n)) — !
Jy(y = Fact(n + 1))
_ y+
Vy(y = Fact(n) —
37 [v: 3y(y = Fact(n))] Jy(y = Fact(n + 1)))
Jy(y = Fact(n + 1)) +
3t 1 = Fact(0) Jy(y = Fact(n)) — Jy(y = Fact(n + 1)) !
En \as
Jy(y = Fact(0)) Vn(3y(y = Fact(n)) — Jy(y = Fact(n + 1)))

up-prim-rec
Vn3y(y = Fact(n))

We name this proof as Proof _factl. The program extracted from Proof factl
is the following:

let fun fact n =
if (n=0) then 1
else (fact (n-1))*n

Let assume to name the base’s and step’s proofs of Proof factl respectively
as B and the step as S. We have already seen in section 8.2.2 how to express
at programming level, via the Kleene trick, up primitive recursion in terms of
up primitive iteration. In the same section we have seen how to do it also at
proof level. So replacing M with B, N with S and P(n) with Fact(n) in Figure
8.3, we obtain a new proof, that we name Proof fact2, with the following
computational content:

108

8.4 Case Study: The Factorial Function

fun fact’ n =
#2(let fun visit m =
if (m=0) then (0,1)
else
let val (j,c)=visit (m-1)
in (j+1,j*c) end
in visit n end

Proof fact2 will be a proof with the following shape:

IS
|B vn(3y(y = Fact(n)) — Jy(y = Fact(n + 1)))
Jy(y = Fact(0)) [
| K v n((3y(y = n) A y(y = Fact(n))) —
Jy(y = 0) A y(y = Fact(0)) (Jy(y = n+1) A Jy(y = Fact(n + 1)))) (up-prim-iter)
Vn(3y(y = n) A Jy(y = Fact(n))) n

3y(y = n) A Jy(y = Fact(n)) v

Fact(n)
4
VnFact(n)

Where |K and |J can be deduced from Figure 8.3. Now, in section 8.3.2 we
have seen how to transform an up primitive iterative proof of the form:

|M N
P(0) vren(P(n) — P(n + 1))
VnP(n)
into another proof with an accumulator based extracted program. Now re-
placing M with K[B], N with J[S] and P(n) with Jy(y = n) A Fact(n) in
the above schema and then appling the proof transformation described in sec-

tion 8.3.2 to the proof so instantiated, we obtain a new proof of the formula
Vn(3y(y = n) AFact(n)), that we name Proof fact3. Thus, from the derivation:

(up-prim-iter)

Proof fact3
vn(3y(y = n) A Fact(n)) n
Jy(y = n) A Fact(n)

Fact(n)
VnFact(n) v

we extract the following iterative with accumulator version of the factorial
function:

fun fact’’ n =
#2(let fun visit m a=
if (m=0) then a
else visit (m-1) ((#la)+1, #la*x#2a)
in visit n (0,1) end)

109

8 Beyond Primitive Recursion

We would like to point out once more that, even if the program obtained after
the application of the above transformation is not particularly complicated, our
transformation is completely automatic and acts at proof level, that is, the proof
itself will constitute a certificate of the correctness of our transformation.

110

9 Conclusions and Future Works

In this thesis we developed a set of proof-transformations in order to extract
efficient program from proofs. In the following we will briefly introduce each
proof-transformation technique presented and we will discuss possible exten-
sions of it.

Pruning

One of the main result in this thesis regarded pruning: we showed on two big
examples, the bin packing problem and the perfect matching one, that pruning
can be an essential tool to improve the efficiency of the programs extracted
from proofs. The aspect that make pruning a proof/program transformation
not comparable with other proof/program transformations rely on the fact that
pruning modify the computational behavior of the extracted programs. This
can looks (in a first moment) a property not desideable, but in the truth is the
secret of the power of this method: given a proof of a problem with many so-
lutions pruning transform the proof (and so the solution codified in the proof)
into another proof, simplifying all the redundant case distinctions.

In chapter 5 then we extended pruning with a more general rule. We proved
formally that each simplification that can be done by pruning then is per-
formable by the new pruning rule, and we showed on a case study that the
opposite is not true: that is there are simplifications performed by the new
rule that is not possible to mimic with pruning.

Further works could regards an extension of the new pruning rule in order to
overcame the problem (that we did not treat in our formulation) of pruning as
source of inefficiency. In order to make clear this point consider the following
example. If we apply pruning on the proof in Figure 9.1 we obtain the proof
term:

IF to (3T ro (AXyu'?)) (31 rs (AXa u72))

Now assume in this case that ¢; is a fast algorithm, that is that ¢1[z/r] can
be normalized in just few steps for each input r. Suppose further that ¢o is
very slow. Then we have the following situation: whenever ¢; holds, 1 may
be immediately returned as the output, but when —¢; holds a long computa-
tion must be undertaken to determine which of ¢2 or —t2 holds. However, the
correctness of the “long computation” does not depend on whether —¢; holds.
Thus we have a fast way (¢1) of discriminating between two ways of computing

111

9 Conclusions and Future Works

[AX; : atom(t2) — C(z,y,72)] u'2 [AX2 : matom(t2) — C(x,y,r3)] v7i2
Clz,y,r2) C(z,y,73)
IF o 32C(z,y, 2) 32C(z, y, 2)
J2C(x, vy, 2)
AX3 : [atom(t1) — C(z,y,7r1)] ult
C(z,y,m1)
IF ¢; J2C(x, vy, 2)
32C(z, y, 2)

VI, yﬂzC(m, Y, Z)

Figure 9.1:

a satisfactory output, one of which is very fast (the simple return of r1) and
the other of which is very slow. Further the slow way always works. Pruning in
this case has the effect of throwing away the discrimination (¢1) and choosing
the slow way every time.

Dynamic Programming

In chapter 6 we presented an a doc proof-transformation in order to synthesize
a dynamic program from a constructive proof. The proposed method’s name
was list as memory. The idea consist in evaluating a sufficient amount of data
in advance so that the extracted algorithm gets to reuse it instead of recom-
puting it each time it is needed. This is done introducing in the proof a list
of ad-hoc axioms. The method we proposed in this thesis can not be applied
automatically to an arbitrary proof but it can be seen more as a general schema
(that has to be instantiated case by case) to follow in order extract dynamic
programs from proofs. Future works in this direction will regards the automa-
tion of this process.

Tail Recursion

In chapter 7 we have seen how to transform a proof with recursive content into
another proof with tail recursive content. We presented two proof transforma-
tions: an “accumulator” based one, from which it is possible synthesize the II
tail recursive schema and a “continuation” based, from which it is possible to
extract the A schema.

We note that A is in some way more general than II. The modification of A
in order to make it working on lists (let us name it Ap,)) instead of naturals
is easy; more importantly, the proof from which Ap(, can be extracted is
obtained by a slightly modification of the proof from which A is extracted. In

112

the case of lists the end formula to prove should be: VI¥®?) (P(l) — 1) — L.
Unfortunately we can not extend in the same way II and its proof: II looks
intrinsically dependent from the algebra of natural numbers.

Possible applications of A and IT go beyond the tail recursion. We noted that
there exists proofs from which are extracted programs that run in exponential
time that can be turned (by the proofs transformations proposed here) in new
proofs from which it is possible to extract polynomial time algorithms. This
can appear pretty amazing and we are currently working in order to state such
result more precisely.

Another application of the proofs transformations proposed here is an exten-
sion of the CPS-transformation over formal proofs (Schwichtenberg [34] and
Griffin [19]) but this time concerning the induction axiom. The proposal is
to perform CPS over proofs in two stages: a pre-processing step where all the
proofs by induction are transformed according to our method, and a second
stage where CPS is applied skipping all the proofs by inductions. Currently we
are studying also this aspect but it need a deeper investigation.

A final remarks on the formal transformation of Ind_CONT into Ind_ACC
presented in section 7.3. It could be interesting to study if, and how, to
perform the inverse operation, that is to go from Ind_ACC to Ind_ CONT. We
argue that it could be done by the Refunctionalization technique [14], but also
this aspect needs a deeper investigation.

113

9 Conclusions and Future Works

114

Bibliography

[1]] Penny Anderson. Program Derivation by Proof Transformation. PhD
thesis, Carnegie Mellon University, 1993.

[2] Joseph L. Bates and Robert L. Constable. Proofs as programs. ACM
Transactions on Programming Languages and Systems, 7(1):53-71, 1985.

[3] Stefano Berardi. Pruning simply typed lambda terms. Journal of Logic
and Computation, 6(5), 1996.

[4] Ulrich Berger. Uniform Heyting Arithmetic. Annals Pure Applied Logic,
133:125-148, 2005.

[5] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem
and J.F. Groote, editors, Typed Lambda Calculi and Applications, volume
664 of LNCS, pages 91-106. Springer Verlag, 1993.

[6] Ulrich Berger, Wilfried Bucholz, and Helmut Schwichtenberg. Refined
program extraction from classical proofs. Annals of Pure and Applied
Logic, 114:3-25, 2002.

[7] Luca Boerio. Optimazing Programs Extracted from Proofs. PhD thesis,
Computer Science Department of Turin, 1997.

[8] R. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of ACM, 24(1), August, 1977.

[9] Luca Chiarabini. Extraction of Efficient Programs from Proofs: The case
of Structural Induction over Natural Numbers. In Arnold Beckmann,
Costas Dimitracopoulos, and Benedikt Lowe, editors, Logic and Theory
of Algorithms, 2008.

[10] Luca Chiarabini. A new adaptation of the pruning tech-
nique for the extraction of efficient program from proofs, 2008.
http://www.mathematik.uni-muenchen.de/”chiarabi/publ.html/PrunInMinlog.pdf.

[11] K.-M. Chung and H.-I. Lu. An optimal algorithm for the maximum-density
segment problem. SIAM Journal on Computing, 34:373-387, 2004.

115

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

23]

116

Ferruccio Damiani and Paola Giannini. Automatic useless code detec-
tion and elimination for hot functional programs. Journal of Functional
Programming, 10(6), 2000.

Olivier Danvy. Three steps for the cps transformation. Technical report
C15-92-02, 1991. DAIMI, Department of Computer Science, University of
Arhus, Danimark.

Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science
of Computer Programming, 2008.

Olivier Danvy and Lasse R.Nielsen. Defunctionalization at work. In ed-
itor Harald Sgndergaard, editor, Proceedings of the Third International
Conference of Principles and Practice of Declarative Programming, pages
162-174, Firenze, Italy, September 2001. ACM Press. Extended version
available as the technical report BRICS RS-01-23.

P. Fariselli, M. Finelli, D. Marchignoli, P.L. Martelli, I. Rossi, and R. Casa-
dio. Maxsubseq: An algorithm for segment-length optimization. the case
study of the transmembrane spanning segments. Bioinformatics, 19:500—
505, 2003.

Christopher Goad. Computational uses of the manupulation of formal
proofs. Technical report, Stanford Departmet of Computer Science, Au-
gust 1980. Report No. STAN-CS-80-819.

M.H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Linear-time algorithms for
computing maximum-density sequence. Journal of Computer and System
Sciences, 70(2):128-144, 2005.

Timothy G. Griffin. A formulae-as-types notion of control. In Proceedings
of the 17th Annual ACM Symp. on Principles of Programming Languages,
POPL’90, San Francisco, CA, USA, 1990.

Dan Gusfield. Algorithms on Strings, Tree and Sequences. Cambridge
University Press, 1997.

N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and automatic
Program Generation. Prentice Hall, 1993.

R. Kelsey, W. Clinger, and J. Rees (eds.). Revised® report on the algo-
rithmic language scheme. Higher-Order and Symbolic Computation, 11(1),
August, 1998.

K. Kent Dybvig. The Scheme Programming Language. Mit Press, 1996.

[24]

[25]

[26]

27]

(28]

[29]

(30]

31]

(32]

[33]

(34]

[35]

Bibliography

G. Kreisel. Interpretation of Analysis by means of Functionals of Finite
Type. In A. Heyting, editor, Constructivity in Mathematics, 1959.

Y.-L. Lin, T. Jiang, and K.-M. Chao. Efficient algorithms for locating the
length-constrained heaviest segments with applications to biomolecular
sequence analysis. Journal of Computer and System Sciences, 65:570-586,
2002.

Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of
Abstract Data Types. Wiley/Teubner Computing Series, 1997.

Zohar Manna and Richard J. Waldinger. Towards automatic program
synthesis. Communications of the ACM, 14(3), 1971.

Kobayashi Naoki. Type-based useless variable elimination. Technical re-
port, Department of Information Science, University of Tokyo, July 1999.
Technical Report 99-02.

Aleksey Nogin. Writing Constructive Proofs Yielding Efficient Extracted
Programs. In Didier Galmiche, editor, Proceedings of the Workshop on
Type-Theoretic Languages: Proof Search and Semantics, volume 37 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
2000.

Frank Pfenning. Program development through proof transformation. In
Contemporary Mathematics, volume 106, pages 251-262, 1990.

Dag Prawitz. Ideas and results in proof theory. Proceedings of the 2.
Scandinavian Logic Symposium, pages 237 — 309, 1971.

John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363-397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

Amr Sabry. Continuations in programming practice: Introduction and
survey, 1999. Unpublished manuscript.

Helmut Schwichtenberg. Proofs, lambda terms and control operators. In
Logic of computation. Proceedings of the NATO ASI.Marktoberdorf, Ger-
many, 1995.

Helmut Schwichtenberg. Programmentwicklung durch beweistransforma-
tion: Das Maximalsegmentproblem. In Bayer. Akad., 1996.

117

Bibliography

[36]

[37]

(38]

(39]

[40]

[41]

[42]

118

Helmut Schwichtenberg. Minimal Logic for Computable Functionals. De-
cember 2008.

Helmut Schwichtenberg. Minlog referece manual.
http://www.minlog-system.de/, December 2006.

Thomas S.Ferguson. Linear programming, a concise introduction. Lecture
Notes, www.math.ucla.edu/~tom/LP.pdf, 2009.

M.H. Sgrensen and P.Urzyczyn. Lectures on the Curry-Howard Isomor-
phism, volume 149 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 2006.

Volker Sperschneider. Bioinformatics. Springer, 2008.

Anne S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2002.

M. Tompa W.L. Ruzzo. A linear time algorithm for finding all maximal
scoring subsequences. In Proceedings of the 7th International Conference
on Intelligent Systems for Molecular Biology, ISMB’99, pages 234-241,
1999.

	Introduction
	Automatic Program Development
	Content of the Thesis
	Related Work

	Logical Foundations
	Modified Realizability for First Order Minimal Logic
	Gödel's T
	Heyting Arithmetic
	Normalization of Proofs
	Short Excursus in Program Extraction from Proofs

	A First Example of Proof Transformation: How to Extract Programs with let
	Minlog

	Pruning
	Introduction
	Pruning in Minlog
	Immediate Simplification in Minlog
	Dependencies Removal Transformation
	Computing with Permutative Conversions

	Case Study: The Bin Packing Problem
	Experiment

	Conclusions

	Bounded Perfect Matching Problem
	Introduction and Motivation
	Bounded Perfect Matching of a Complete Bipartite Graph
	Basic Definitions
	Algorithms, Data Structures and Automatic Program Synthesis
	Problem Specialization: The Monge Inequality

	Pruning at Work
	Conclusions

	Generalizing Pruning
	Introduction
	Proof Contexts
	Properties of the General Pruning Rule
	Case Study

	String Alignment
	Introduction
	The String Similarity Problem
	List as Memory Paradigm

	Conclusions

	Tail Recursion
	Introduction
	Proof Manipulation
	Continuation Based Tail Recursion
	Accumulator Based Tail Recursion

	From Higher Order to First Order Computation
	Case Study
	The MSS Problem
	Generation of a Continuation/Accumulator Based MSS-Program

	Beyond Primitive Recursion
	Introduction
	Up Primitive Recursive Induction
	Up Primitive Iterative Induction
	Down Primitive Recursive Induction
	Down Primitive Iterative Induction

	Expressive Power
	Up Primitive Iteration in Terms of Up Primitive Recursion
	Up primitive Recursion in Terms of Up Primitive Iteration
	Up Primitive Recursion in Terms of Down Primitive Recursion
	Down Primitive Recursion in Terms of Up Primitive Recursion
	Down Primitive Iteration in Terms of Down Primitive Recursion
	Down Primitive Recursion in Terms of Down Primitive Iteration
	Up Primitive Iteration in Terms of Down Primitive Iteration
	Down Primitive Iteration in Terms up Primitive Iteration
	Summary and conclusion

	Primitive Recursion and Iteration with Accumulators
	Up Primitive Recursion with Accumulator
	Up Primitive Iteration with Accumulator
	Down Primitive Recursion with Accumulator
	Down Primitive Iteration with Accumulator
	Summary and Conclusion

	Case Study: The Factorial Function

	Conclusions and Future Works
	Bibliography

