
Program Development by ProofTransformationLu
a Chiarabini
Dissertationan der Fakultät für Mathematik, Informatik und StatistikLudwig�Maximilians�UniversitätMün
henvorgelegt vonLu
a Chiarabini

Lu
a ChiarabiniProgram Development by Proof Transformation

Dissertation an der Fakultät für Mathematik, Informatik und Statistikder Ludwig-Maximilians-Universität Mün
hen1. Beri
hterstatter: Prof. Dr. Volker Heun2. Beri
hterstatter: Prof. Dr. Helmut S
hwi
htenberg3. Prüfer: Prof. Dr. Rolf Henni
ker4. Prüfer: Prof. Dr. Hans Jürgen Ohlba
hErsatzprüfer: Prof. Dr. Martin WirsingExterner Guta
hter: Prof. Dr. Stefano Berardi (Università di Torino)

iv

With all its sinful doings, I must say, Con tutti i suoi pe

ati, devo direThat Italy's a pleasant pla
e for me, Che l'Italia mi pia
e,
he mi pia
eWho love to see the Sun shine every day, Vedere il sole splendere ogni giorno,And vines (not nail'd to walls) from tree to tree E le viti non piantate su un muro,Festoon'd, mu
h like the ba
k s
ene of a play Ma abbarbi
ate ai trali

i, fondiOr melodrame, whi
h people �o
k to see D'opera dove la gente a

orreWhen the �rst a
t is ended by a dan
e Quando una danza
hiude il primo atto,In vineyards
opied from the south of Fran
e. Tra vigne rosseggianti
ome in Fran
ia.I also like to dine on be
a�
as, Mi pia
e poi mangiare be

a�
hi,To see the Sun set, sure he'll rise to-morrow, Guardare il sole
he tramonta,
ertoNot through a misty morning twinkling weak as Che domani risorge e non opa
oA drunken man's dead eye in maudlin sorrow, Come un o

hio ubria
o tra le nubi,But with all Heaven t'himself; that day will break as Ma in pieno
ielo rinas
erà il giorno,Beauteous as
loudless, nor be fore'd to borrow Lu
ente e senza nuvole, e non gon�oThat sort of farthing
andlelight whi
h glimmers Di quel torvo lu
ore di
andelaWhen reeking London's smoky
auldron simmers. Del fetido bollore londinese.I love the language, that soft bastard Latin, La lingua, poi, quel latino bastardoWhi
h melts like kisses from a female mouth, Morbido
ome il ba
io di una donna,And sounds as if it should be writ on satin, Che vibra
ome se s
ritto sul raso,With syllables whi
h breathe of the sweet South, Sillabe respiranti il mezzogiorno,And gentle liquids gliding all so pat in, Le liquide
he s
orrono gentili,That not a single a

ent seems un
outh, Dove nessun a

ento suona rozzoLike our harsh northern whistling, grunting guttural, Come le gutturali nordi
he, grugnitiWhi
h we're oblig's to hiss, and spit, and sputter all. O �s
hi
he sputiamo, s
oppiettanti.I like the womens too (forgive my folly), In�ne (perdonate) amo le donne,From the ri
h peasant-
heek of ruddy bronze, Le ri

he guan
e
ontadine bronzee,And large bla
k eyes that �ash on you a volley E gli o

hi neri, e irradianti, e grandi,Of rays that say thousand things at on
e, Che ti di
ono tutto in un istante,To the high dama's brow, more melan
holy, Le dame, la fronte malin
oni
a,But
lear, and with a wild and liquid glan
e, Ma
hiara e dallo sguardo selvati
o,Heart on her lips, and soul within her eyes, Cuore su labbra, sugli o

hi l'anima,Soft as her
lime, and sunny as her skies. Solare e dol
e
ome il
ielo e il
lima.Da Beppo: A Venetian Story [Beppo: Una Storia Veneziana℄ di Lord Byron
v

vi

Abstra
tIn the last 20 years the formal approa
h to the development of software turnedout to be a
ru
ial te
hnique for the generation of
orre
t programs.This idea has its theoreti
al base into the several semi-automati
 methods totransform a formal spe
i�
ation that des
ribe the behavior of a program intoan e�e
tive exe
utable pie
e of
ode.One of this is the so-
alled "program extra
tion from proof". The idea is thatfrom an
onstru
tive proof of a formula "for ea
h x there exists y su
h thatP(x,y)" we
an automati
ally extra
t a program "t" su
h that the propertyP(x,t(x)) hold. In our days su
h proofs are normally written by ad-ho
 tools(some of them are: COQ, ISABLLE, MINLOG, PX, AGDA, et
...)
alled"proof assistants".Even if today this te
hnique is pretty well established, the "manipulation" ofproofs in order to develop performing programs did not re
eived big attention.In this thesis we will develop several automati
 and semi-automati
 methodsin order to extra
t e�
ient
ode from
onstru
tive proofs. Our �eld of appli
a-tion will be
omputational biology, a resear
h �eld in whi
h the development ofe�
ient programs is
ru
ial. So our main goal will be to show how the manip-ulation of formal proofs, essentially studied by proof theorist, has a big e�e
talso in pra
ti
al program generation.In den letzten 20 Jahren stellte si
h der Einsatz formaler Methoden in der Soft-wareentwi
klung als eine äuÿerst wi
htige Te
hnik zur Generierung korrekterProgrammen heraus.Die theoretis
he Grundlage dieser Idee basiert auf mehreren semiautomatis-
hen Methoden zur Umwandlung einer formalen Spezi�zierung, die das Verhal-ten eines Programms bes
hreibt, zu einem ausführli
hen Codeblo
k.Eine dieser Methoden nennt si
h "program extra
tion from proof". Die Ideeist, dass wir von einem konstruktiven Beweis einer Formel �für jedes x ex-istiert ein y so dass P(x,y)� ein Programm �t� automatis
h extrahieren kann,in wel
hem die Eigens
haft P(x,t(x)) erfüllt ist. Heutzutage werden sol
he Be-weise von ad ho
 Tools erzeugt (z.B.: COQ, ISABLLE, MINLOG, PX, AGDA,usw.), die �proof assistants� genannt werden.Obwohl si
h diese Te
hnik heutzutage gut etabliert hat, hat die �Manipula-tion� von Beweisen, mit den Ziel e�ziente Programme zu realisieren, keinegroÿe Bea
htung gefunden. Innerhalb dieser Doktorarbeit werden wir ver-s
hiedene automatis
he und semiautomatis
he Methoden mit dem Ziel entwi
k-eln, Code von konstruktivenBeweisen zu extrahieren. Unser Anwendungsberei
h wird die Bioinformatikvii

sein, ein Fors
hungsberei
h für den die Entwi
klung e�zienter Programmeents
heidend ist. Unser Ziel wird folgli
h sein zu zeigen, wie die Manipula-tion von formalen Beweisen - hauptsä
hli
h erfors
ht von Beweistheoretikern- eine groÿe Auswirkung auf die praktis
he Programmgenerierung hat.

viii

A
knowledgementsI wish to thank my advisors, Prof. Dr. Helmut S
hwi
htenberg and Prof.Dr.Volker Heun for the help and the guidan
e whi
h they have given to me duringall the period of my do
toral studies. Thanks also to my external advisorStefano Berardi for helping me during the
orre
tions of the thesis. I wishto thank my
olleagues Diana Ratiu, Stefan S
himanski, Freiri
 Barral, TrifonTrifonv, Bogomil Kova
ha
hev, Basil Karàdais and Simon W. Ginzinger fortheir a
ademi
 and human support. I wish to thank Frau. Gerlinde Ba
h forthe help in �lling dozens of bureau
rati
 do
uments and Franziska S
hneiderfor the ni
e philosophi
al
hats.I wish to thanks all the members of the �pata

as� or �pizzas� Muni
hgroup: Antonio Marra�a, Giuseppe Marra�a, Giovanni Alunni, Simone Bren-ner, Mauro Improta, Martina Dreiÿig, Mar
o Favorito, Manuela Bian
hi, Ro

oMarvaso and Agostino Santisi. I passed with them wonderful moments. I thinkthat, without them, I would never ever had the power to live in Muni
h forso long time. They are and will remain my best friends. I wish also to thankall the friends in the Internationale Haus of Muni
h (one of the most ex
itingpla
e I ever had the
han
e to live) in parti
ular to Tonia Ludwig for her kind-ness. Thanks to the Genova's friends, among them David Burlando and LuanaNoselli for all the support they gave to me in the last �ve years.I wish to thank all my relatives: my grandmothers Fran
a and Iolanda,my
ousins Fran
es
a, Katy, Emanuele and Elisa, my un
les Eugenio, Paolo,Roberto and my aunts Mara, Rosa and Serenella. A spe
ial thought goes tomy grandparents Anselmo and Angelo, that left us too early.Finally, I wish to thank the most important persons in my life, the personswithout whom I would not be here today and that always supported me: mymother Loredana Grassellini and my father Valter Chiarabini, to whi
h thisthesis is dedi
ated.
ix

x

Contents1 Introdu
tion 11.1 Automati
 Program Development 11.2 Content of the Thesis . 41.3 Related Work . 92 Logi
al Foundations 112.1 Modi�ed Realizability for First Order Minimal Logi
 112.1.1 Gödel's T . 112.1.2 Heyting Arithmeti
 . 112.1.3 Normalization of Proofs 152.1.4 Short Ex
ursus in Program Extra
tion from Proofs . . . 162.2 A First Example of Proof Transformation: How to Extra
t Pro-grams with let . 192.3 Minlog . 213 Pruning 233.1 Introdu
tion . 233.2 Pruning in Minlog . 263.2.1 Immediate Simpli�
ation in Minlog 263.2.2 Dependen
ies Removal Transformation 273.2.3 Computing with Permutative Conversions 303.3 Case Study: The Bin Pa
king Problem 333.3.1 Experiment . 363.4 Con
lusions . 374 Bounded Perfe
t Mat
hing Problem 394.1 Introdu
tion and Motivation . 394.2 Bounded Perfe
t Mat
hing of a Complete Bipartite Graph . . . 414.2.1 Basi
 De�nitions . 414.2.2 Algorithms, Data Stru
tures and Automati
 ProgramSynthesis . 424.2.3 Problem Spe
ialization: The Monge Inequality 464.3 Pruning at Work . 504.4 Con
lusions . 53xi

Contents5 Generalizing Pruning 555.1 Introdu
tion . 555.2 Proof Contexts . 555.3 Properties of the General Pruning Rule 565.4 Case Study . 586 String Alignment 616.1 Introdu
tion . 616.1.1 The String Similarity Problem 626.1.2 List as Memory Paradigm 676.2 Con
lusions . 737 Tail Re
ursion 757.1 Introdu
tion . 757.2 Proof Manipulation . 767.2.1 Continuation Based Tail Re
ursion 777.2.2 A

umulator Based Tail Re
ursion 797.3 From Higher Order to First Order Computation 827.4 Case Study . 857.4.1 The MSS Problem . 867.4.2 Generation of a Continuation/A

umulator Based MSS-Program . 898 Beyond Primitive Re
ursion 918.1 Introdu
tion . 918.1.1 Up Primitive Re
ursive Indu
tion 918.1.2 Up Primitive Iterative Indu
tion 928.1.3 Down Primitive Re
ursive Indu
tion 938.1.4 Down Primitive Iterative Indu
tion 958.2 Expressive Power . 968.2.1 Up Primitive Iteration in Terms of Up Primitive Re
ursion 968.2.2 Up primitive Re
ursion in Terms of Up Primitive Iteration 988.2.3 Up Primitive Re
ursion in Terms of Down Primitive Re-
ursion . 998.2.4 Down Primitive Re
ursion in Terms of Up Primitive Re-
ursion . 1018.2.5 Down Primitive Iteration in Terms of Down PrimitiveRe
ursion . 1028.2.6 Down Primitive Re
ursion in Terms of Down PrimitiveIteration . 1038.2.7 Up Primitive Iteration in Terms of Down Primitive Iter-ation . 104xii

Contents8.2.8 Down Primitive Iteration in Terms up Primitive Iteration 1048.2.9 Summary and
on
lusion 1058.3 Primitive Re
ursion and Iteration with A

umulators 1058.3.1 Up Primitive Re
ursion with A

umulator 1058.3.2 Up Primitive Iteration with A

umulator 1068.3.3 Down Primitive Re
ursion with A

umulator 1068.3.4 Down Primitive Iteration with A

umulator 1078.3.5 Summary and Con
lusion 1088.4 Case Study: The Fa
torial Fun
tion 1089 Con
lusions and Future Works 111Bibliography 113

xiii

Contents

xiv

1 Introdu
tion1.1 Automati
 Program DevelopmentThe software life-
y
le [26℄ (Figure 1.1) is the our-days model for the produ
tionof software in the industrial world. The basi
 idea is the following: given aninput problem (most of the time spe
i�ed in natural language -as English-) onewrite a program that is assumed to solve the problem. Afterwards the programis tested on several inputs and modi�ed in
ase errors pop up. After this step,the program is put in pra
ti
al use.
Problem

 Program written in a

 prog. language

 Program written in

 machine code

 Results

Testing

Executing

Compiling

Programming

Maintenance

Figure 1.1: A software life-
y
le model illustrating
onventional software designThe main limit of this approa
h is that it
an only
on�rm the presen
eof errors but not their absen
e. What we miss following this approa
h is theeviden
e of the
orre
tness of the program. A better methodology for theprodu
tion of
orre
t software with respe
t to a given spe
i�
ation, rely onderiving a program from a problem in several
ontrolled steps as illustratedFigure 1.2.The step in Figure 1.2
an be in the following way resumed: 1

1 Introdu
tion
Problem

 Formal specification

 Program written in

 a prog.language

 Results

Program
Verification

Compiling

Program Development

Formalization

Maintenance

 Program written in

 machine code

Executing

Figure 1.2: A software life-
y
le model illustrating
onventional software design1. The problem of the
ustomer is analyzed and a �rst informal spe
i�
ationis produ
ed.2. The formal spe
i�
ation is translated in a more formal language (equa-tional for term rewriting, or Horn-
lausal form for logi
 programming)3. From the formal spe
i�
ation is derived a program that is provably
or-re
t, that is
an be proven that the program meets the spe
i�
ation (pro-gram veri�
ation).4. The derived program
an be
ompiled and exe
uted and the results
anbe used to test the program.Essentially, there are two broad paradigms to ful�ll step number 3: the�proofs-as-programs�[2℄ and �synthesis by transformations� [8℄.
• In the proof-as-program paradigm a spe
i�
ation is usually expressed byformulas that state the existen
e of an obje
t with a given property. Thusa
onstru
tive proof of the given spe
i�
ation is produ
ed and a programis extra
ted from the proofs. By the realizability method we
an prove2

1.1 Automati
 Program Developmentthat the program so produ
ed respe
ts the given spe
i�
ation (that isthe proved formula). Resear
h in this �eld fo
uses on the development ofstrong theorem provers and me
hanisms for extra
ting algorithms fromproofs.
• In synthesis by transformations the algorithms are derived from the spe
-i�
ation by forward reasoning. The spe
i�
ation is seen as exe
utableand is transformed in a real program by a set of rewriting rules. Thisparadigm is parti
ularly well-suited for the synthesis of logi
 programssin
e a de
larative formula
an be viewed as exe
utable program whi
h�only� has to be transformed into some restri
ted syntax like Horn logi
.Our work
on
erned essentially the proof-as-program paradigm. A

ordingto this paradigm we have the following
orresponden
esformula ≡ data type
onstru
tive proof of formulaA ≡ program of typeAThe basi
 idea in order to develop
orre
t programs by the proof-as-programmethodology
an be resumed in the followings steps:
• We assume that the programming problem is given in the form

∀x∃yA(x,y)

• One �nds (manually, or
omputer-aided) a
onstru
tive formal proof ofthe formula ∀x∃yA(x, y).
• From the proof a program p is extra
ted (fully automati
ally) that prov-able meets the spe
i�
ation, that is,

∀xA(x, p(x))is provableThere exist a number of systems supporting program extra
tion from proofs(e.g. Agda1, Coq2, Minlog3, NuPrl4).From the end of the '80s a lot of resear
h fo
used on the development ofe�
ient algorithms by the proof-as-programs paradigm. This was stimulatedby the fa
t that often the
omputational
ontent of elegant and short proofs is1http://unit.aist.go.jp/
vs/Agda/2http://
oq.inria.fr/3http://www.minlog-system.de/4http://www.
s.
ornell.edu/Info/Proje
ts/NuPRL/nuprl.html 3

1 Introdu
tionparti
ularly ine�
ient. Consider for example the following statement:
For each natural number n there exists a natural y such that y = 2n.This senten
e is simply provable by indu
tion on n. In the base
ase its enoughto set y = 1, in fa
t 1 = y = 20. Then if (by indu
tion hypothesis) we knowthat y = 2n for some �xed n, to prove the senten
e for n+ 1 its enough to toset y = y + y. In fa
t

y = y + y

= 2n + 2n

= 2n+1By the proof-as-program paradigm the
omputational
ontent of this proof isthe power of 2 fun
tion, EXP2, sket
hed in the following pie
e of
ode:Algorithm 1 Pro
edure EXP2Input: 0 ≤ nOutput: 2nloopif n = 0 thenreturn 1elsereturn EXP2(n− 1) + EXP2(n− 1)end ifend loopUnfortunately the
omputational
omplexity of EXP2 is exponential in n.Histori
ally the resear
h
on
erning the problem of extra
ting e�
ient pro-grams from proofs fo
used both in tuning the extra
ted
ode[12, 3, 7℄ (theoptimization phase take pla
e after the extra
tion) and in tuning the prooffrom whi
h the
ode is extra
ted[30, 29, 1℄ (the optimization phase take pla
ebefore the extra
tion) Our work regarded this se
ond line of resear
h.1.2 Content of the ThesisThe originality of the present work regarded the development of a set of newproof-te
hniques to transform proofs in order to develop e�
ient programs. Inparti
ular we investigated and developed the following proof-transformations:Pruning This te
hnique has its theoreti
al bases in the proof theory work ofDag Prawitz [31℄ later on su

essfully developed in the pioneer work of4

1.2 Content of the ThesisC.A. Goad [17℄. Pruning regards the eliminations of redundant
ase dis-tin
tions in proofs. Consider for example the following simple statement:
Given a natural n there exists a natural y such that n ≤ yWe
an prove this statement as follow. We assume n. There are two
ases: n ≤ 1 or n 6≤ 1. Assume ip : n ≤ 1 then we set y = 1, and wehave the thesis by ip. Else (that is n 6≤ 1) we set y = n and we
on
ludeby the re�exivity of the less-or-equal relation between naturals numbers.The
omputational
ontent of this proof is the following pie
e of
ode:Algorithm 2Input: 0 ≤ nOutput: 0 ≤ y su
h that: n ≤ yif n ≤ 1 thenreturn 1elsereturn nend ifOf
ourse in the above proof the
ase distin
tion over n is useless (we
ouldfor example immediately
on
lude setting y = n). The pruning te
hniqueis useful in dete
ting and simplifying this kind of redundan
ies. The mainidea on whi
h pruning is based is the following: if the left/right bran
h ofa
ase distin
tion proof over A ∨B does not depend on the assumptions

A/B, then the entire
ase distin
tion
an be repla
ed by the left/rightbran
h.In the example above, the left bran
h of the
ase distin
tion refer to theassumption variable u : n ≤ 1, but the right bran
h does not depend onthe
ondition n 6≤ 1. So applying the pruning rule, we
an repla
e the
ase distin
tion by its right bran
h, obtaining a new proof from whi
hwe
an extra
t the identity fun
tion. We note as the simpli�ed extra
tedprogram is not only more e�
ient (we don't perform a useless �if�) but it
hanges also its
omputational behavior.In the
hapter 3 of this thesis we extensively revisit the pruning ideaand we apply it in simplifying some instantiations of the proof of the binpa
king problem. In
hapter 4 we develop a proof of the bounded perfe
tmat
hing problem and we simplify some instantiations of it with thepruning te
hnique, showing on another not trivial example that pruninghas to be
onsidered an essential tool in order to extra
t e�
ient programsfrom instantiated proofs. Finally in
hapter 5 we prose an extension of5

1 Introdu
tionpruning.Dynami
 Programming The question that motivated this line of resear
h wasthe following: how it is possible to transform a proof into another proof,from whi
h it is possible to extra
t a dynami
 program? We refer todynami
 programming as a programming te
hnique where we evaluatea su�
ient amount of data in advan
e so that the at ea
h iteration theprogram gets to reuse it instead of re
omputing it ea
h time it is needed.Though at programming level this te
hnique is pretty well known, it isnot so
lear how to obtain the same result at proof level. In
hapter 6of the thesis we developed (taking as a
ase study the formalization ofthe similarity of DNA sequen
es problem) a general method in order toextra
t dynami
 programs from proof. The proposed method unfortu-nately is not general enough to be applied automati
ally to a large setof proofs (the automati
 transformation is not possible even at program-ming level). What we developed has to be
onsidered more as a generals
heme that should instantiated
ase by
ase.In order to get an informal idea of the method (that will be formallypresented in
hapter 6), let
onsider the following example. Assume wewant to prove, for ea
h 0 ≤ n, the existen
e of a natural y su
h that
y = Fib(n) with Fib(n) n-th Fibona

i number, de�ned as usual:Fib(n) =

8

<

:

0 n = 0
1 n = 1Fib(n− 1) + Fib(n− 2) 2 ≤ nThis statement
an be proved by (general) indu
tion over n as follow: for

n = 0 we set y = 0, for n = 1 we set y = 1 and for 2 ≤ n, we apply theindu
tion hypothesis
∀n(∀k.k < n→ ∃y.y = Fib(k))on n − 1 and n− 2 obtaining u1 = Fib(n− 1) and u2 = Fib(n− 2) andthus we have the thesis for y = u1 + u2. In Algorithm 3 is showed the
omputational
ontent of this proof.In Algorithm 3 the pro
edure �b has an exponential
omputational
om-plexity in n. The idea we propose in this thesis to tune this kind of proof(in order to extra
t dynami
 programs)
onsist in adding a set of new ax-ioms to manage a list of intermediate
omputed results in order to avoidre-
omputation. For example for the spe
i�

ase of the Fibona

i num-bers, an idea would be to introdu
e a new predi
ate MEM ⊆ N ×N ×N,where MEM(i, fi−1, fi) (for 1 ≤ i) means that fi−1 and fi are the i− 1-th6

1.2 Content of the ThesisAlgorithm 3 Pro
edure �bInput: 0 ≤ nOutput: Fib(n)loopif n = 0 thenreturn 0else if n = 1 thenreturn 1elsereturn �b(n− 1) + �b(n− 2)end ifend loopand i-th Fibona

i number. The axioms required in this
ase would bene
essary to state formally that the value we store in fi−1 and fi areFibona

i numbers. Then new thesis to prove require a little modi�
a-tion: we have to show that for ea
h natural n there exists a natural ysu
h that y = Fib(n) and that there exists two naturals w and z su
hthat MEM(n,w, z). Later on, in the proof of the new thesis, we
an avoidto instantiate twi
e the indu
tion hypothesis (sour
e of the exponentialbehavior of �b) and we
an refer to the indu
tion hypothesis only on
eand to the partial results stored in MEM. The
omputational
ontent ofthis proof is a linear time algorithm.Tail Re
ursion For a program to be tail re
ursive is a desired property thatguarantee a
ertain level of e�
ien
y. In a tail re
ursive pro
edure there
ursive
all are done as last operation: this avoid, during the
ompila-tion or interpretation task, the storage/re
over (during the
all/return ofthe pro
edure) of a big amount of data (the pro
edure-
ontexts). One ofthe main tool to perform an automati
 transformation of a program intoa tail re
ursive one is the so
alled CPS [33℄ [13℄ (Continuation PassingStyle) transformation.In the
hapters 7 and 8 of the present thesis we investigated the relationbetween
onstru
tive proofs and tail re
ursion. In parti
ular, our studywas motivated by the following question: how it is possible to transform(possibly automati
ally) a proof by indu
tion into another proof in su
ha way the
ontent of the transformed proof is tail re
ursive?In the literature, one of the main referen
es (that we will brie�y reviewlater) on this topi
s, is the Penny Anderson's Ph.D. thesis [1℄. Thoughthe approa
h des
ribed in the Anderson's thesis is extremely interesting,7

1 Introdu
tionthis is not
ompletely automati
 but it require some user intera
tion. Inthe present thesis we develop a method fully automati
 to obtain thesame result, based on a parti
ular simple idea.Let
onsider for example the task to prove that for ea
h natural n thereexist a natural y su
h that y = Fa
t(n) with Fa
t(n) the fa
torial of nde�ned as follow :Fa
t(n) =



1 n = 0
n ∗ Fa
t(n− 1) 0 < nWe
an prove this statement by indu
tion on n. For n = 0 we set y = 1and assuming u = Fa
t(n) then we
an build the fa
torial of n+1 setting

y = n ∗ u. The
ontent of this proof is the usual fa
torial fun
tion inAlgorithm 4.Algorithm 4 Pro
edure fa
tInput: 0 ≤ nOutput: Fa
t(n)loopif n = 0 thenreturn 1elsereturn n ∗ fa
t(n− 1)end ifend loopThe pro
edure fa
t in Algorithm 4 is not tail re
ursive (in the else bran
hwe have to store the
ontext (n ∗_)). An idea to tune fa
t is to shift the
ontrol of the exe
ution to another re
ursive pro
edure that will be tail-
alled and use an a

umulator parameter where the e�e
tive
omputationof the fa
torial numbers will take pla
e. At logi
al level this is done byproving an intermediate lemma, where we state that, given two naturals
n and m and the the fa
torial for m, u = Fa
t(m), we are able to supplya natural y su
h that y = Fa
t(n+m). The proof of this intermediatelemma is the heart of the transformation and it will be
arefully presentedin
hapter 8. Later on, we
an instantiate the proof of this lemma on ageneri
 n and on 0 in order to obtain the proof of the fa
torial of n. Inthis example, we worked with the fa
torial of n but it is possible to applythe method to a generi
 predi
ate P (n).8

1.3 Related Work1.3 Related WorkWe
an divide the literature in the �eld of the generation of e�
ient programsby the usage of a proof assistants into two big blo
ks: methods that transforma program after the extra
tion phase (I), and methods to transform a proof inorder extra
t e�
ient
ode (II).(I)In [28℄, Nakoi Kobayashi propose a method to solve the �useless-variable elimi-nation� problem. This is one of the problems that a�e
t the
ode automati
allyextra
ted from a proof. The proposed algorithm to solve the problem is a sur-prisingly simple extension of the usual type-re
onstru
tion algorithm. Theproposed method has several attra
tive features. First, it is simple, so thatthe proof of the
orre
tness is
lear and the method
an be easily extended todeal with a polymorphi
 language. Se
ond, it is e�
ient: for a simply-typed
λ-
al
ulus, it runs in time almost linear in the size of an input expression.In [3℄ Stefano Berardi presents a pruning method to simplify program ex-tra
ted from proofs. The proposed method is based on the repla
ement of somesub-terms with dummy
onstants. Berardi proves that the proposed methodpreserves observational behavior of a simply typed λ-term if it does not modifythe type nor the
ontext (assignment of types to free variables) of the term.This result is used to de�ne a map Fl : simply typed λ-terms → simply typed
λ-terms removing redundant
ode in fun
tional programs. In the paper areformally proved some properties of Fl interesting from a
omputational view-point.In [12℄, Damiani and Giannini presents two type inferen
e systems for de-te
ting useless-
ode in higher-order typed fun
tional programs. This work rep-resents an extension of the previously analyzed work of Berardi on pruning. Inthe paper it is proposed a useless-
ode elimination algorithm whi
h is basedon a
ombined use of these type inferen
e systems. The main appli
ation ofthe te
hnique is the optimization of programs extra
ted from proofs in logi
alframeworks, but it
an be used as well in the elimination of useless-
ode deter-mined by program transformations.(II)In [17℄ Alan Goad introdu
e the use of the pruning for the development ofe�
ient programs generated by formal proofs. The paper
on
erns: (1) the usesof this additional information in the automati
 transformation of algorithms,and in parti
ular, in the adaptation of algorithms to spe
ial situations, and (2)e�
ient methods for exe
uting and transforming proofs. The proposed methodis later on tested on the implementation of the bin pa
king problem.In [1℄, Penny Anderson propose a solution to the problem of transforming9

1 Introdu
tiona proof in order to extra
t a tail re
ursive fun
tion. The method is based onthe representation of derived logi
al rules in Elf, a logi
 programming languagethat gives an operational interpretation to the Edinburg Logi
al Framework.It results in de
larative implementations with a general
orre
tness propertythat is veri�ed automati
ally by the Elf type
he
king algorithm.In [30℄ Frank Pfenning presents an interesting proof transformation to ex-tra
t e�
ient
ode from proofs (this work
onstitute the theoreti
al base of theAnderson's work [1℄). In his paper Pfenning extends the paradigm employedin systems like NuPrl where a program is developed and veri�ed through theproof of the spe
i�
ation in a
onstru
tive type theory. The method is illus-trated on an extended example − a derivation of Warshall's algorithm for graphrea
hability. In the paper, the author, outline how the framework supports thede�nition, implementation, and use of abstra
t data types.

10

2 Logi
al Foundations2.1 Modi�ed Realizability for First Order Minimal Logi
2.1.1 Gödel's TTypes are built from base types N (Naturals) , L(ρ) (lists with elements oftype ρ) and B (booleans) by fun
tion (→) and pair (×) formation. The Termsof Gödel's T [39℄ are simply typed λ-
al
ulus terms with pairs, proje
tions (πi)and
onstants (
onstru
tors and re
ursive operators for the basi
 types)
Types ρ, σ ::= N |B |L(ρ) | ρ → σ | ρ × σ

Const c ::= 0N | Su

N→N | ttB |�B | (:)L(ρ) | ::ρ→L(ρ)→L(ρ) |Rσ
N
|Rσ

L(ρ)|R
σ
B

Terms r, s, t ::= c |xρ|(λxρrσ)ρ→σ |(rρ→σsρ)σ |(π0tρ×σ)ρ| (π1tρ×σ)σ | (rρ, sσ)ρ×σThe expression (:) represents the empty list, and (a0 :: . . . :: an :) a list with
n+1 elements. We equip this
al
ulus with the following usual
onversion rulesfor the re
ursive operators, appli
ations and proje
tions:
RσN : σ → (N→ σ → σ)→ N→ σ RσL(ρ)

: σ → (ρ → L(ρ) → σ → σ) → L(ρ) → σ

(RσN b f) 0 7−→ b (Rσ
L(ρ) b f) [] 7−→ b

(RσN b f) (n+ 1) 7−→ f n ((RσN b f)n) (Rσ
L(ρ) b f) (a :: l) 7−→ f l ((Rσ

L(ρ) b f) l)

RσB : σ → σ → B→ σ π0(r, s) −→ r
(RσB r s)tt 7−→ r π1(r, s) −→ s
(RσB r s)� 7−→ s (λx.r)s −→ r[x := s]2.1.2 Heyting Arithmeti
We de�ne Heyting Arithmeti
 HAω for our language based on Gödel's T, whi
his �nitely typed.Formulas: Atomi
 formulas (P~t~ρ) (P a predi
ate symbol, ~t, ~ρ lists of termsand types), A → B, ∀xρA, ∀n
xρA, ∃xρA, ∃n
xρA, A ∧ B. Given a term t oftype B we de�ne a spe
ial kind of atomi
 formula, atom(t) that means `t = tt'.In parti
ular we have the atomi
 formula ⊥ := atom(�). We de�ne negation
¬A by A→ ⊥. In writing formulas we assume that ∀,∃,¬ bind more stronglythan ∧, and that in turn ∧ binds more strongly than →. 11

2 Logi
al FoundationsDerivations: By the Curry-Howard
orresponden
e it is
onvenient to writederivations as terms: we de�ne λ-terms MA for natural dedu
tion proofs inminimal logi
 of formulas A together with the set OA(M) of open assumptionsin M : (ass) uA, OA(u)={u}(∧+) (〈MA, NB〉A∧B), OA(〈M,N〉)=OA(M) ∪ OA(N)(∧−
0) (MA∧B0)A , OA(M0)=OA(M)(∧−
1) (NA∧B1)B , OA(N1)=OA(N)(→+) (λuAMB)A→B , OA(λuM)=OA(M)\{u}(→−) (MA→BNA)B , OA(MN)=OA(M) ∪ OA(N)(∀+) (λxρMA)∀x

ρA, OA(λxM)=OA(M)provided xρ 6∈ FV(B), for any uB ∈OA(M)(∀−) (M∀xρAtρ)A, OA(Mt)=OA(M)(∀n
+) (λn
xρMA)∀
n
xρA, OA(λn
xM)=OA(M)provided xρ 6∈ FV(B), for any uB ∈OA(M), and x 6∈ [[M]](∀n
−) (M∀n
xρAtρ)A, OA(Mt)=OA(M)To obtain intuitionisti
 logi
 we
an use the additional ex-falso-quodlibedtrule:
∀~x(⊥ → P (~x)) (Efq)with P predi
ate symbol di�erent from ⊥. We will use two spe
ials quanti�ers

∀n
/∃n
 to indi
ate that there should be no
omputational
ontent [5℄[4℄. Thelogi
al meaning of the universal quanti�ers is un
hanged. However, we haveto observe a spe
ial variable
ondition for ∀n
+: the variable to be abstra
tedshould not be a
omputational variable in the given proof, i.e. the extra
tedprogram of this proof should not depend on x.We will write proofs in form of proof-terms, as above, or as metarules
A1, . . . , An

R
Cto read as `from the assumptions A1, . . . , An, by the rules R we derive C. Here

R
an be an introdu
tion rule (∧+, →+, ∀+,∀n
+) or an elimination rule (∧−
0 ,

∧−
1 , →−, ∀−, ∀n
−).Usually we will omit type and formula indi
es in derivations if they areuniquely determined by the
ontext or if they are not relevant. We use ∃ (withor without
omputational
ontent) and ∨ in our logi
, if we allow the followingaxioms as
onstant derivation terms:

∃+xρ,A : ∀xρ(A→ ∃xρA)12

2.1 Modi�ed Realizability for First Order Minimal Logi

∃−xρ,A,B : ∃xρA→ ∀xρ(A→ B)→ B with 6∈ FV (B)

(∃n
)+xρ,A : ∀n
xρ(A→ ∃n
xρA)

(∃n
)−xρ,A,B : ∃n
xρA→ ∀n
xρ(A→ B)→ B with 6∈ FV (B)The
onstant ∃− followed by ∃+ elide themselves by the following (Elid) rule:
∃−(∃+ tρMA)∃x

ρA = λy∀x
ρA→B.y tρMAWe
an de�ne ∨ from ∃ via:

A ∨ B , ∃pB.(p→ A) ∧ ((p→ ⊥)→ B)Here (for short) we wrote p for atom(p). The indu
tion proof-terms asso
iatedwith N,B and L(ρ) are:Indn,A(n) : A(0)→ (∀n.A(n)→ A(n+ 1))→ ∀nN.A(n)Indt,A(t) : A(tt)→ A(�)→ ∀tB.A(t)Indl,A(l) : A([])→ (∀a, l.A(l)→ A(a :: l))→ ∀lL(ρ).A(l)Finally we use the
onstant derivation term (IFA),IFA : ∀pB(p → A) → ((p → ⊥) → A) → Ato perform
ase distin
tion on boolean terms w.r.t. a formula A.Proof Abbreviations:For simpli
ity, we will use the following proof abbreviations:
∃+x,A t

|M

A[x/t]
∃+∃xAfor

∃+x,A t
→−

A[x/t]→ ∃xA

|M

A[x/t]
→−

∃xAand
∃−x,A,C

|M

∃xA

|N

∀x(A→ C)
∃−Cfor 13

2 Logi
al Foundations
∃−x,A,C

|M

∃xA
→−

∀x(A→ C)→ C

|N

∀x(A→ C)
→−

CGiven a goal formula C, the appli
ation of the
ases proof ta
ti
 on t generatethe following proof tree:IFC t

(t → C) → ((t → ff) → C) → C

|M

t → C

((t → ff) → C) → C

|N

(t → ff) → C

Cthat we will simply rewrite as:IFC t

|M

t → C

|N

(t → ff) → C (if)
CWe simulate ∨-introdu
tion by

∃+x,C tt

|M

C[x/tt]
∨+

0
A ∨Bwith C[x/tt] ≡ (tt→ A) ∧ ((tt→ ff)→ B), and

∃+x,C ff

|M

C[x/ff]
∨+

1
A ∨Bwith C[x/ff] ≡ (ff → A) ∧ ((ff → ff) → B). Finally, by (if) we
an mimi
 the

∨-elimination as follow:
IF p

(p → A) ∧ ((p → ff) → B)

p → A p

A

|M

C
p → C

(p → A) ∧ ((p → ff) → B)

((p → ff) → B) p → ff

B

|N

C

(p → ff) → C

C

((p → A) ∧ ((p → ff) → B)) → C

∀p((p → A) ∧ ((p → ff) → B)) → C14

2.1 Modi�ed Realizability for First Order Minimal Logi

∃−p,D,C

|Σ

A ∨ B _____________________
Cwill be shortly rewritten by

∃−p,D,C

|Σ

A ∨ B

|R

A

|M

C

|S

B

|N

C

|K

∀pD → C
∨−

Cwith D ≡ (p→ A) ∧ ((p→ ff)→ B).2.1.3 Normalization of ProofsA derivation in normal form does not make �detours�, or more pre
isely, it
annot o

ur that an elimination rule immediately follows an introdu
tion rule.We now spell out in detail whi
h
onversions we shall allow: this is done forderivations written in tree notation and also as derivation terms.2.1.3.1 Conversions
∧-conversions

|M

A

|N

B
∧+

A ∧B
∧−

0
A

7−→
|M

Aor written as a lambda-term
π0(〈M

A, NB〉) 7−→MA

|M

A

|N

B
∧+

A ∧B
∧−

1
B

7−→
|N

Bor written as a lambda-term
π1(〈M

A, NB〉) 7−→ NB 15

2 Logi
al Foundations
→-conversion

|M

B
→+
u

A→ B

|N

A
→−

B

7−→

|N

A

|M

Bor written as a derivation term
(λuAMB)NA 7−→M [uA/NA]

∀-conversion
|M

A
∀+

∀xA t
∀−

A[x/t]

7−→
|M ′

A[x/t]or written as a derivation term
(λxMA)∀xAt 7−→MA[x/t]

∀n
-conversion
|M

A
∀n
+

∀xA t
∀n
−

A[x/t]

7−→
|M ′

A[x/t]or written as a derivation term
(λn
xMA)∀

n
xAt 7−→MA[x/t]2.1.3.2 Strong NormalizationNo matter in whi
h order we apply the
onversion rules, they will always termi-nate and produ
e a derivation in �normal form�, where no further
onversions
an be applied.Theorem 2.1.1 ([36℄). Every proof-term is strongly normalizing, that is everyredu
tion sequen
e starting from a proof term M , terminates.2.1.4 Short Ex
ursus in Program Extra
tion from ProofsClearly proper existen
e proofs have
omputational
ontent. A well-known andnatural way to de�ne this
on
ept is the notion of realizability, whi
h
an be16

2.1 Modi�ed Realizability for First Order Minimal Logi
seen as an in
arnation of the Brouwer-Heyting-Kolmogorov interpretation ofproofs.2.1.4.1 Type of a FormulaWe indi
ate by τ (A) as the type of the term (or �program�) to be extra
tedfrom a proof of A. More pre
isely, to every formula A it is possible to assign anobje
t τ (A) (a type or the �nulltype� symbol ε). In
ase τ (A) = ε proofs of Ahave no
omputational
ontent; su
h formulas A are
alled Harrop formulas.
τ (P (~x)) =



αP ifP is a predi
ate variable with assignedαP
ε Otherwise

τ (∃xρA) =



ρ if τ (A) = ε
ρ× τ (A) Otherwise

τ (∀xρA) =



ε if τ (A) = ε
ρ→ τ (A) Otherwise

τ (∃n
xρA) = τ (A)

τ (∀n
xρA) = τ (A)

τ (A ∧B) =

8

<

:

τ (A) if τ (B) = ε
τ (B) if τ (A) = ε
τ (A)× τ (B) Otherwise

τ (A→ B) =

8

<

:

τ (B) if τ (A) = ε
ε if τ (B) = ε
τ (A)→ τ (B) Otherwise2.1.4.2 Extra
tion MapFrom every derivation M of a
omputationally meaningful formula A (that is,

τ (A) 6= ε) it is possible to de�ne its extra
ted program [[M]] of type τ (A)[24℄.If τ (A) = ε then [[M]] = ε.
[[uA]] = xAu (xAu uniquely asso
iated with A)

[[λuAM]] =



[[M]] if τ (A) = ε

λx
τ(A)
u [[M]] Otherwise

[[MA→BNB]] =



[[M]] if τ (A) = ε
[[M]][[N]] Otherwise

[[〈MA, NB〉]] =

8

<

:

[[N]] if τ (A) = ε
[[M]] if τ (B) = ε
〈[[M]], [[N]]〉 Otherwise 17

2 Logi
al Foundations
[[MA∧Bi]] =



[[M]] if τ (A) = ε or τ (B) = ε
πi[[M]] if Otherwise

[[(λxρM)∀xA]] = λxρ[[M]]

[[M∀xAt]] = [[M]]t

[[(λxρM)∀
n
xA]] = [[M]]

[[M∀n
xAt]] = [[M]]Content of the proof
onstants:
[[∃−xρ,A,B]] =



λxρfρ→τ(B).fx If τ (A) = ε

λxρ×τ(A)fρ→τ(A)→τ(B).f(π0x)(π1x) Otherwise
[[∃+xρ,A]] =



λxρx If τ (A) = ε

λxρyτ(A).〈x, y〉 Otherwise
[[(∃n
)−xρ,A,B]] =



λxτ(B).x If τ (A) = ε

λxτ(A)fτ(A)→τ(B).fx Otherwise
[[(∃n
)+xρ,A]] = λxτ(A)x

[[IFA]] = λbB, lτ(A), rτ(A).(if b l r) If τ (A) 6= ε

[[Indn,A(n)]] = RσN

[[Indl,A(l)]] = RσL(ρ)

[[Indt,A(t)]] = RσB2.1.4.3 Realize a FormulaCorre
tness of the extra
ted programs is guaranteed by the notion of modi�edrealizability. Intuitively, if t is the extra
ted program from the derivation M ofthe formula A equal to ∀x∃y.P (x, y) then for ea
h x the formula P (x, t(x)) isprovable
orre
t (Soundness) i.e. t (modi�ed) realize A (written (tmrA))
rmrP (~t) = P (~t)

rmr (∃x.A) =



εmrA[x/r] if τ (A) = ε
π1rmrA[x/π0r] Otherwise

rmr (∀x.A) =



∀x.εmrA if τ (A) = ε
∀x.rxmrA Otherwise

rmr (∃n
x.A) =



∃n
x.εmrA if τ (A) = ε
∃n
x.rmrA Otherwise18

2.2 A First Example of Proof Transformation: How to Extra
t Programs with let
rmr (∀xn
.A) =



∀n
x.εmrA if τ (A) = ε
∀n
x.rmrA Otherwise

rmr (A→ B) =

8

<

:

εmrA→ rmrB if τ (A) = ε
∀x.xmrA→ εmrB if τ (A) 6= ε = τ (B)
∀x.xmrA→ rxmrB Otherwise

rmr (A ∧ B) =

8

<

:

εmrA ∧ rmrB if τ (A) = ε
rmrA→ εmrB if τ (B) = ε
π0rmrA→ π1rmrB OtherwiseTheorem 2.1.2 (Soundness). Let M be a derivation of a formula A fromassumptions ui : Ai. Then we
an �nd a derivation of the formula ([[M]] mr

A) from assumptions ūi : xui
mr Ai.Proof. By stru
tural indu
tion on M ([36℄).2.2 A First Example of Proof Transformation: How to Extra
tPrograms with letIn a proof it
an happen that, to prove B, we need to prove an auxiliary formula

A:
|M

B
A→ B

|N

A
BThis
reate a detour that, on
e normalized, redu
e to
|N

A

|M

BThat is |N , with end formula A, is substituted for all the open assumptions
uA in M . At programming level this
onversion is represented by following
β-redu
tion:

(λ xτ(A)[[M]]τ(B))[[N]]τ(A) −→β [[M]]τ(B)[xτ(A)/[[N]]τ(A)]with τ (A), τ (B) 6= ǫ. Clearly the pie
e of
ode [[N]]τ(A) will be dupli
ated asmany times xτ(A) appear free in [[M]]τ(B). A way to
reate more
ompa
t
odeis repla
e the original proof by: 19

2 Logi
al FoundationsId : (A→ B)→ A→ B

|M

B
A→ B

A→ B

|N

A
BWith Id the identity axiom. If Id is not animated [37℄, then it is
onsidered as aba
k-box proof-term and is not involved in any simpli�
ation. The
ontent ofthe previous proof is:

(Idτ((A→B)→A→B) λxτ(A)[[M]]τ(B)) [[N]]τ(A)If we
onsider a
all-by-value evaluation strategy the argument of the appli
a-tion is evaluated �rst, and the previous program is printed aslet x [[N]] [[M]]with the obvious meaning: set x equal to [[N]], then exe
ute [[M]]. An interestingappli
ation of this program repla
ement is in the
ontext of the proofs byindu
tion. Consider the derivation:Indn,∀xρA(n)

|N

∀xρA(0)

|M

∀xρA(n+ 1)

∀xρA(n)→ ∀xρA(n+ 1)

∀n(∀xρA(n)→ ∀xρA(n+ 1))

∀n∀xρA(n)Assuming τ (A) 6= ǫ, the algorithmi

ontent of the step
ase is:
α ≡ λnλxρ→τ(A(n))[[M]]ρ→τ(A(n+1))Now suppose x appear several times inside [[M]] and ea
h time in the appli
ativeform (x tρ), for some t. This will produ
e severals exe
utions of same
ode whenthe term α is applied to a natural number and to a fun
tional term. To avoidthis phenomena we substitute the proof in step
ase M by:Id : σ

|M

∀xρA(n + 1)

(A(n)[xρ/tρ] → ∀xρA(n + 1))

A(n)[xρ/tρ] → ∀xρA(n + 1)

[u : ∀xρA(n)] tρ

A(n)[xρ/tρ]

∀xρA(n + 1)

∀xρA(n) → ∀xρA(n + 1)

∀n(∀xρA(n) → ∀xρA(n + 1))20

2.3 Minlogwith σ ≡ (A(n)[xρ/tρ] → ∀xρA(n + 1)) → A(n)[xρ/tρ] → ∀xρA(n + 1). The
omputational
ontent of the modi�ed step
ase is:
λn, xρ→τ(A(n))(Idτ(σ) λxτ(A(n))[[M]]ρ→τ(A(n+1))) (xρ→τ(A(n)) t)τ(A(n))that is printed as

λn, x let y (x t) [[M]]that is, given a natural and a real pro
edure f (the re
ursive
all), f is appliedon t, the returning value binded by y and [[M]] (where y may o

ur) exe
uted.2.3 MinlogMinlog is intended to reason about
omputable fun
tionals, using minimallogi
. It is an intera
tive prover with the following features [36℄:
• Proofs are treated as �rst
lass obje
ts: they
an be normalized and thenused for reading o� an instan
e if the proven formula is existential, or
hanged for program development by proof transformation.
• To keep
ontrol over the
omplexity of extra
ted programs, we followKreisel's proposal and aim at a theory with a strong language and weakexisten
e axioms. It should be
onservative over (a fragment of) arith-meti
.
• Minlog is based on minimal rather than
lassi
al or intuitionisti
 logi
.This more general setting makes it possible to implement program ex-tra
tion from
lassi
al proofs, via a re�ned A-translation (
f. [6℄).
• Constants are intended to denote
omputable fun
tionals. Sin
e their(mathemati
ally
orre
t) domains are the S
ott-Ershov partial
ontinuousfun
tionals, this is the intended range of the quanti�ers.
• Variables
arry (simple) types, with free algebras as base types. Thelatter need not be �nitary (so we allow e.g.
ountably bran
hing trees),and
an be simultaneously generated. Type parameters (ML style) areallowed, but we keep the theory predi
ative and disallow type quanti�-
ation. Also predi
ate variables are allowed, as pla
eholders for formulas(or more pre
isely,
omprehension terms).
• To simplify equational reasoning, the system identi�es terms with thesame normal form. A ri
h
olle
tion of rewrite rules is provided, whi
h
an be extended by the user. De
idable predi
ates are implemented viaboolean valued fun
tions, hen
e the rewrite me
hanism applies to themas well. 21

2 Logi
al FoundationsNotation:In the Minlog proof assistant, extra
ted programs are presented in a textualstyle, that we brie�y des
ribe now along with the
orresponden
e with theabove mathemati
al notations: in programs produ
ed by Minlog, tt and �are typeset #tt and #ff respe
tively; ρ × σ as (rho��sigma), L(ρ) as (listrho), λx.t is written as ([x℄t), (Rσ
N/B/L(ρ) b s) as (Re
 (nat/bool/list rho =>sigma) b s) and (π0/1e) as (left/right e).

22

3 Pruning3.1 Introdu
tionIn this
hapter we deal with an old idea �rst introdu
ed by Christopher AlanGoad in the 1980s[17℄
alled Pruning. Pruning is �rst of all a proof transforma-tion to remove redundant (
omputationally relevant or not) parts of a proof.But pruning is a also a program transformation: in the program extra
ted froma pruned proof redundant
hunks of
ode are dropped making use of a kind ofdependen
y information whi
h does not appear in ordinary programs. For themost part, the redundan
ies removed by pruning are not to be found in proofsgenerated by people, however, proofs that result from automati
 pro
ess tendto in
lude su
h redundan
ies. Thus the pruning transformation will not be ofmu
h use when applied to proofs of algorithms as originally presented.The pruning transformation has its theoreti
al foundation in the work inproof theory of Dag Prawitz.Dag Prawitz[31℄ asserts that redundant appli
ation of (∨E) and (∃E)
onsti-tute unne
essary
ompli
ation in proof, and
an be easily removed. A naturaldedu
tion proof in normal form and without su
h redundan
ies is said to bein full -normal form . The rules to bring a derivation in full -normal form, theImmediate Simpli�
ation rules [31, pag.254℄, are depi
ted in Figure 3.1.Nine years later Goad showed that the appli
ation of the immediate sim-pli�
ation rules (whi
h he
alled pruning rules) to a proof whi
h has beenspe
ialized
an lead to a very large in
rease in the e�
ien
y of the extra
tedalgorithm. Pruning has the unusual quality that it modi�es the fun
tion
om-puted by the expression to whi
h it is applied[17, pp 23,56℄ while preservingthe validity of an algorithm for the spe
i�
ation embodied in the end formulaof the proof des
ribing the algorithm.The pruning proto
ol developed by Goad is based on the following threesteps:Proof spe
ialization : spe
ialization of a subset of the input parameters of agiven proof.Dependen
y removal transformation : repla
ement of all the open assumptions,the type
an be derived from a
ertain knowledge, by another proof ofthe same type. This knowledge will
onsist in a set of formulas (types ofassumption variables) a

umulated during a traversal of the proof tree.23

3 Pruning
|Σ

A ∨ B

|M

C

|N

C(i) (∨E)
C

−→
|M

C
No open assumptionin M is dis
harged by
(∨E)

|Σ

A ∨ B

|M

C

|N

C(ii) (∨E)
C

−→
|N

C
No open assumptionin N is dis
harged by
(∨E)

|M

∃xA

|N

C(iii) (∃E)
C

−→
|N

C
No open assumptionin N is dis
harged by
(∃E)Figure 3.1: Prawitz's Immediate Simpli�
ation / Pruning rulesAppli
ation of the Immediate Simpli�
ation /Pruning rules : simpli�
ation of theproof tree with respe
t to a given set of pruning rules in order to eliminateall the ∨/∃ redundant inferen
es.In this
hapter, we present an implementation of pruning into the Minlogproof assistant. The adaptation is less obvious than what it appears at �rstview. Several new developments upon the existing work in
lude:

• The demonstration how pruning is intimately related to (and dependson) the operation of permuting a proof [41, pag. 180℄. Moreover we willshow the
omputational bene�ts, in terms of elimination of redundant
ode, that the permutation operation indu
e on the extra
ted
ode.
• The development in Minlog of a proof for the Bin Pa
king problem.After the pruning proto
ol has been applied on su
h proof we show the
omputational bene�t on the extra
ted programs of this operation.To our knowledge, this is the �rst implementation of the pruning transformationin a modern proof assistant.Sin
e Goad's original thesis, the resear
h in this �eld has expanded in sev-eral dire
tions. Berardi[3℄ and Boerio[7℄, then later Damiani and Giannini[12℄developed a set of te
hniques in order to eliminate useless
ode in the programsextra
ted from proofs. Nogin[29℄ put a lot of e�ort in re-implementing manyNuPrl ta
ti
s in order to make them work more e�
iently. Penny Anderson in24

3.1 Introdu
tionher Ph.D. thesis[1℄ used Frank Pfenning's[30℄ lemma insertion (user dependent)proof transformation in order to extra
t tail re
ursive programs from proofs.Finally Chiarabini [9℄ generalized the Anderson's idea produ
ing a
ompletelyuser-independent proof transformation to obtain the same result.Before ending this introdu
tory se
tion, in order to show how pruning e�e
tsthe e�
ien
y of the extra
ted programs, we present the following,Example 3.1.1 (From Goad's thesis [17℄). Let A(x, y, z) ⊆ N ×N ×N su
hthat A(x, y, z) ≡ (x + y ≤ z) ∧ (xy ≤ z). In order to prove that for ea
h pairof naturals x and y there exists z su
h that A(x, y, z), we de�ne the followingaxioms:
• Ax1 ≡ ∀x, y((x ≤ 1)→ A(x, y, y + 1))

• Ax2 ≡ ∀x, y((y ≤ 1)→ A(x, y, x+ 1))

• Ax3 ≡ ∀x, y((x ≤ 1→ ⊥)→ (y ≤ 1→ ⊥)→ A(x, y, 2xy))Now we
an pro
eed with the following proof P1:
|Σ

(y ≤ 1) ∨ (y � 1)

(Ax2 x y) uy≤1
2

A(x, y, x + 1)

∃zA(x, y, z)

(Ax3 x y) v
(x�1)

1

(y � 1) → A(x, y, 2xy) v
(y�1)

2

A(x, y, 2xy)

∃zA(x, y, z)

∃zA(x, y, z)

|Σ′

(x ≤ 1) ∨ (x � 1)

(Ax1 x y) ux≤1
1

A(x, y, y + 1)

∃zA(x, y, z) ∃zA(x, y, z)

∃zA(x, y, z)

∀y∃zA(x, y, z)

∀x, y∃zA(x, y, z)Where Σ, Σ′ are instantiations of the lemma ∀x, y(x ≤ y) ∨ (y ≤ x) whi
hstates the de
idability of numeri
al inequality. The algorithmi

ontent of thisproof is the following program P1:[x,y℄ [if (x<=1) (y+1)[if (y<=1) (x+1)2xy℄℄We spe
ialize our proof setting y equal to �1� , that is, we substitute �1� forea
h free o

urren
e of y in P1. The
ondition (y ≤ 1) be
omes true, andafter normalizing the instantiated proof, the inner
ase distin
tion is simpli�eda

ording to the following proof redu
tion rules
Σatom(tt)∨BMC NC → MC 25

3 Pruning
ΣA∨atom(tt) MC NC → NCobtaining the following proof P2:

|Σ

(x ≤ 1) ∨ (x � 1)

(Ax1 x 1) ux≤1
1

A(x, 1, 2)

∃zA(x, 1, z)

(Ax2 x 1) [1 ≤ 1]

A(x, 1, x + 1)

∃zA(x, 1, z)

∃zA(x, 1, z)

∀x∃zA(x, 1, z)Su
h proof
orrespond to the spe
ialized
onditional term P2:[x℄ [if (x<=1) 2 (x+1)℄The se
ond minor premise of the (∨E) inferen
e in the spe
ialized proofabove does not depend on the assumption v(x�1)

1 and so the rule ii) of Table3.1 applies. We prune P2 obtaining the following simpli�ed proof P3:
(Ax2 x 1) [1 ≤ 1]

A(x, 1, x + 1)

∃zA(x, 1, z)

∀x∃zA(x, 1, z)from whi
h we extra
t the following lambda abstra
tion P3:[x℄ (x+1)The proofs P2 and P3 are di�erent derivations of the same formula ∀x∃zA(x,1, z)and they have di�erent
omputational
ontent: in fa
t meanwhile the program(P2 0) rewrites into 2, (P3 0) rewrites into 1.This shows that the appli
ation of pruning to a proof
an lead to an in
reasein the e�
ien
y of the extra
ted algorithm (in this
ase it
onsists in dis
hargingthe
ase distin
tion) and that it modi�es the
omputational behavior of the(
omputational)
ontent of the proof to whi
h it is applied.3.2 Pruning in Minlog3.2.1 Immediate Simpli�
ation in MinlogAs we have seen in the previous
hapter in our logi
 we perform
ase distin
tionover a boolean term t by the appli
ation of the proof
onstant IFA : ∀bB((b→
A) → ((b → ⊥) → A) → A) to t. Given a goal formula A, the appli
ation ofthe
ases proof ta
ti
 on t generates the following proof tree:IFA t

|M

t → A

|N

(t → ⊥) → A (if)
A26

3.2 Pruning in Minlogwhere M and N are the proofs the user will have to supply. The derivationrule (if)
ould be seen as an (∨∃) inferen
e where the or formula to eliminate
A ∨B is just t∨¬t. In order to a
t on more general formulas than atom(t) weremember that in our system we adopted the following
onvention

A ∨ B := ∃p(p→ A ∧ (p→ ⊥)→ B)So, if we need to prove C dispat
hing over the truth A or B we
an pro
eedbuilding the following derivation:
IF p

(p → A) ∧ ((p → ⊥) → B)

p → A p

A

|M

B
p → B

(p → A) ∧ ((p → ⊥) → B)

((p → ⊥) → B) p → ⊥

B

|N

B

(p → ⊥) → B

B

((p → A) ∧ ((p → ⊥) → B)) → B

∀p((p → A) ∧ ((p → ⊥) → B)) → B

∃−
|Σ

A ∨ B _____________________
BClearly here the assumption p has to be read as �A holds� meanwhile p → ⊥as �B holds�. For this reason we adapted the pruning rules à la Goad (Fig-ure 3.1) to work on (if)-inferen
e patterns rather than general (∨∃)-inferen
es,as depi
ted in Figure (3.2). We
an write su
h rules also as
onversion rulesbetween proof-terms as follow:

(IF t λut.MC λut→⊥.NC) −→ MC ut 6∈ FV(MC)

(IF t λut.MC λut→⊥.NC) −→ NC ut→⊥ 6∈ FV(NC)

(∃−x,A,C M∃xA λx, uA.NC) −→ NC uA 6∈ FV(NC)3.2.2 Dependen
ies Removal TransformationThe dependen
ies removal transformation improves the e�e
tiveness of pruning.This operation involves the repla
ement of o

urren
es of assumption variables,when possible, by proofs of those assumptions from other available information.Consider for example the proof in Figure 3.3.In M both the assumptions ux≤1
3 and ux≤2

1 are a
tive, i.e. they
an appearfree in M in order to prove C. On the other hand, we note that the type ofthe assumption u1 is logi
ally implied by the type of u3. So we
an
reate the27

3 PruningIFC t

|M

C
t → C

|N

C

(t → ⊥) → C(i ')
C

−→
|M

C
ut is not free in
|MIFC t

|M

C
t → C

|N

C

(t → ⊥) → C(ii')
C

−→
|N

C
(ut→⊥) is not freein |N ,

∃−x,A,C

|M

∃xA

|N

∀x(A → C)(iii')
C

−→
|N

C
uA is not free in
|NFigure 3.2: Pruning rules for minimal logi
.new proof

(AX : ∀x(x ≤ 1→ x ≤ 2)) x ux≤1
3of type (x ≤ 2) and substitute it for ea
h open assumption ux≤2

1 in M (withAX new axiom)In general we will have to fa
e the following problem: given a
onditionalproof-term if-
md of the form
(IF t λutMC λvt→⊥NC)and a knowledge KWN (list of axioms, assumption variables, . . .) how to simplifyif-
md with respe
t to KWN? In order to solve this problem, we implemented apro
edure named drt(dependen
y removal transformation) shown in Algorithm1. In the present work we assume KWN to be a list of pairs (t, ut) with t linearinequality (in the sense that t involves an inequality in some linear fun
tion ofthe variables) and ut assumption variable of type t, assumed during the prooftree traversal plus, (eventually) some external knowledge supplied dire
tly bythe user.In Algorithm 1 the truth of the formulas (KNW ≻ t), to be red as `from theknowledge KNW it is possible to dedu
e the formula t', is de
ided by a pro
e-dure
all to the Simplex Algorithm (we implemented in Minlog the simplexalgorithm reported in [38℄).A �nal remark regarding the termination of the pro
edure drt. Given aninput proof p the
omputation of drt is driven by the indu
tive stru
ture of p.If p is a basi
 proof (assumption variable or proof
onstant) then drt stops (line28

3.2 Pruning in Minlog
Algorithm 5 drt(p,KNW = ((tn, u

tn
n) . . . (t1, u

t1
1))), for some 0 ≤ n, p inputproof, ti linear inequality and uti assumption variable asso
iated with ti. Weindi
ate by M [uα/Nα] the substitution in M of all free o

urren
es of theopen assumption u with N . We write AX∀~xt1→...→tn for the axiom AX of type

∀~x(t1 → . . . → tn) with ~x list of variables that o

ur in t1, . . . , tn. Given alinear inequality t, we indi
ate with (KNW ≻ t) a boolean
ondition that holdsif and only if t1 → . . .→ tn → t holds (eventually n = 0). Finally proof_
onstris a generi
 proof
onstru
tor.1: if p is a proof-
onstant, axiom or assumption variable then2: p3: else if p ≡ IF t (λutM) (λv(t→⊥)N) then4: let5: M ′ =6: if (KNW ≻ t) then7: let (M ′′ = drt(M,KNW)) inM ′′[ut/(AX∀~xt1→...→tn→t ~x ut1 . . . utn)]8: else9: drt(M, ((t, ut) :: KNW))10: end if11:12: N ′ =13: if (KNW ≻ (t→ ⊥)) then14: let (N ′′ = drt(N,KNW)) inN ′′[vt→⊥/(AX∀~xt1→...→tn→(t→⊥) ~xut1 . . . utn)]15: else16: drt(N, ((t→ ff), v(t→⊥)) :: KNW))17: end if18: in (IF t (λutM ′) (λv(t→⊥)N ′))19: else {that is p = (proof_
onstr R1 . . . Rn)}20: let R′
1 = drt (R1,KNW), . . . , R′

n = drt (Rn,KNW) in
(proof_
onstr R′

1 . . . R
′
n)21: end if

29

3 Pruning
IF (x ≤ 2)

|M

C →+

u
x≤2
1

x ≤ 2→ C

|N

C →+

u
x≤2→ff

2

(x ≤ 2→ ff)→ C
→−

C →+

u
x≤1
3

x ≤ 1→ CIF (x ≤ 1) ____________ |N ′

C →+

u
x≤1→ff

4

(x ≤ 1→ ff)→ C

CFigure 3.3:1,2 Algorithm 1). Otherwise, all the re
ursive
alls in drt (lines 7, 9 14, 16,20 in Algorithm 1) are performed on stru
turally simpler proof than the inputproof p.3.2.3 Computing with Permutative ConversionsIt is not always possible to perform the dependen
ies removal transformationstep of the pruning proto
ol. The o

urren
es of parti
ular proof-patterns(example below) make su
h transformation impossible. Consider the followingproof P :
IF t

|M

∃xA
t → ∃xA

|N

∃xA

(t → ⊥) → ∃xA

∃xA

IF x

|P

C
t → C

|Q

C

(t → ⊥) → C

C

∀x(A → C)
∃−x,A,C

CFor spa
e reasons, we indi
ate the appli
ation of the existential eliminationaxiom just by a label on the right hand side of the last inferen
e, and wedropped the labels→+ asso
iated with the assumption-introdu
tion inferen
es.The problems that
an arise from these kind of proof patterns are essentiallytwo: i) the
ondition x is not
omparable with any other boolean
ondition ii)30

3.2 Pruning in Minlogfrom su
h proof-patterns it may be possible to extra
t
ode with redundan
iesthat are di�
ult to eliminate.For example if we assume the proofs M,N, P and Q to be in normal form,then the entire derivation P is in normal form. On the other hand, assuming
A and C not an harrop-formulas, the algorithmi

ontent of P is the redex:([x,q℄ (if x [[P]] [[Q]])) left(if t [[M]] [[N]]) right(if t [[M]] [[N]]) (3.1)Now
onsider the following instantiation of (3.1) for generi
 terms e1,e2,e3and t: ([x,q℄ (if x (#tt, q) (#ff, e1)))left (if t<=2 (#tt, e2) (#ff, e3)) (3.2)right(if t<=2 (#tt, e2) (#ff, e3))Considering the additional
onversion rule that map f(if t r s) to (if t fr fs),(if t #tt #ff) to t, and (a,(if t b s)) to (if t (a,b) (a,s)) then (3.2) re-du
es to: (if t<=2 (if t<=2 (#tt, e2) (#tt, e3))(#ff, e1)) (3.3)The two nested and redundant if's on the
ondition (t<=2) in the term abovehave no
ounterpart at proof level, i.e. in P we don't �nd two nested
asedistin
tions on the same
ondition (t<=2) as we
ould guess looking at theprogram (3.3). Moreover, the two nested and redundant
ase distin
tions in(3.3) are a sour
e of ine�
ien
y. In order to over
ome these problems, weimplemented in Minlog the permutative
onversion rule (in the proof-treestyle) in Figure 3.4 or written as a
onversion rule between proof-terms:

α ≡ ∃−(IF t λutM∃xA λut→ffN∃xA)Z∀xA→C

=⇒ (3.4)IF t (λut∃−M∃xA Z∀xA→C) (λut→ff∃−N∃xA Z∀xA→C)This rule permutes an existential elimination inferen
e upwards over theminor premises of a
ase distin
tion proof (for more details refer to [41, pp,180℄). We see now how parti
ular instan
es of the
onversion rule (3.4) helpus in simplifying proof pattern as P and solve the problems raised in points i)and ii) above.Let
onsider the following spe
ialization in α: assume M∃xA to be the proofterm (∃+ t RA)∃xA. We
an rewrite α as:
∃−(IF t λut(∃+ tRA)∃xA λut→ffN∃xA)Z∀xA→CBy (3.4) it is
onverted to:IF t (λut∃−(∃+ tRA)∃xA Z∀xA→C) (λut→ff∃−N∃xA Z∀xA→C) 31

3 Pruning
∃−x,A,C

IF∃xA t

|M

∃xA
t → ∃xA

|N

∃xA

(t → ⊥) → ∃xA

∃xA

|Z

∀x(A → C)

C

=⇒IFC t

∃−x,A,C

|M

∃xA

|Z

∀x(A → C)

C
t → C

∃−x,A,C

|N

∃xA

|Z

∀x(A → C)

C

(t → ⊥) → C

CFigure 3.4: Conversion rule to permute an IF followed by an ∃− axiom.and eliding the ∃−/∃+-axioms by (Elid), we obtain:
α′ ≡ IF t (λutZ∀xA→C t RA) (λut→ff∃−N∃xA Z∀xA→C)If we assume Z be the proof-term (λxB, uASC) with S
ase distin
tion overthe
ondition x (as in P) then a
onsequen
e of the instantiation (Z t) in α′ ismaking expli
it the term on whi
h the
ase distin
tion S is performed, elimi-nating the problem raised in point i) above. We note that just the substitutionof (∃+ t R) for M in α would have no bene�t without the permutation rule(3.4). A similar study
an be done for the se
ond minor premise of the
asedistin
tion in α′, for a suitable N∃xA.Now we see here how the
onversion rule (3.4)
an help in simplifying redun-dan
ies in the extra
ted
ode. Let ξ be the following spe
ialization of P fromwhi
h the pro
edure (3.2)
ould be extra
ted (here we assume τ (C) = ǫ):
∃− (if (t ≤ 2) λu(t≤2) (∃+ tt (∃+ e2MC)∃yC)∃x,yC

λu(t≤2)→⊥(∃+ � (∃+ e3NC)∃yC)∃x,yC)

λx, q∃yC if x λux (∃+ tt q)∃x,yC
λux→⊥(∃+ � (∃+ e1RC)∃yC)∃x,yCNow let's permute ξ with (3.4):32

3.3 Case Study: The Bin Pa
king Problemif (t ≤ 2) λu(t≤2) ∃− (∃+ tt (∃+ e2MC)∃yC)∃x,yC

λx, q∃yC if x λux (∃+ tt q)∃x,yC
λux→⊥(∃+ � (∃+ e1RC)∃yC)∃x,yC

λu(t≤2)→⊥ ∃− (∃+ � (∃+ e3NC)∃yC)∃x,yC

λx, q∃yC if x λux (∃+ tt q)∃x,yC
λux→⊥(∃+ � (∃+ e1RC)∃yC)∃x,yCEliminating ∃−/∃+ by (Elid) we have:if (t ≤ 2) λu(t≤2)λutt (∃+ tt (∃+ e2MC)∃yC)∃x,yC

λu(t≤2)→⊥λu�→⊥ (∃+ � (∃+ e1RC)∃yC)∃x,yCAnd �nally, extra
ting the term from the last proof we obtain the simpli�ed
ode:if t<=2 (#tt, e2) (#ff, e1)3.3 Case Study: The Bin Pa
king ProblemIn this se
tion we introdu
e the 1-dimensional Bin-Pa
king problem, as origi-nally formulated in [17℄.Given a list of boxes of dimensions expressed by the naturals p1, . . . , pn andbins of
apa
ity expressed by the naturals b1, . . . , bm, �nd, if it exists, a validassignment of the boxes into the bins in su
h a way that for ea
h bin the sumof the dimensions of the boxes assigned to it does not ex
eeds the
apa
ity ofthe bin itself.We will indi
ate the input list of boxes by X, the list of bins by B, and theoutput assignment by A. We indi
ate the i-th element of l, the length of list
l and the list l �where the position i is de
reased by a� respe
tively by l[i],
|l| and l[i/a]. The output assignment list A has this property: for ea
h natural
i, the i-th box has to be put in the bin A[i]. It follows that the list of boxesand assignments have to have the same length, that is, the equality (|X| = |A|)holds. Now we introdu
e some notation that will be useful for our proof. Forlists of naturals A and X and a natural i, we de�ne SUM to be the followingfun
tion: SUM(A,X, i) =

X

j∈Q

X[j] with Q = {j|A[j] = i}We de�ne a predi
ate PACK that states under whi
h
onditions a list of naturals
A
an be
onsidered a valid assignment for the list of boxes X and bins B, andthe additional predi
ate PACKB that states the existen
e of a valid assignmentfor the list of boxes X and bins B puls an additional
onstraint on the bin the�rst box should be asso
iated,PACK(A,X,B) ⇐⇒ (∀i.i < |A| → A[i] < |B|) ∧ 33

3 Pruning
(|X| = |A|) ∧

(∀i.i < |B| → SUM(A,X, i) ≤ B[i])PACKB(n,A,X,B) ⇐⇒ X 6= (:) ∧PACK(A,X,B) ∧

(|B| − n) ≤ A[0]The 1-dimensional bin pa
king problem
an be formulated as a de
ision problemwhere, given an input element x, we have to state if there exists an y su
h thata property P (x, y) holds or not. We
an express this fa
t by the followingformula:
∀x(∃yP (x,y)) ∨ ((∃yP (x, y))→ ⊥)As already seen, in our system we express su
h formulas as:

∀x∃p(p→ ∃yP (x, y)) ∧ ((p→ ⊥)→ ((∃yP (x, y))→ ⊥))that is, for ea
h input x there exists a boolean p su
h that if p holds then we areable to supply a solution, else no solution exists. We will
all (p→ ∃yP (x, y))and ((p → ⊥) → ((∃yP (x, y)) → ⊥)) the positive and negative part of theformula above. The proof-algorithm that we propose is a �rst-�t algorithmbe
ause, in the
ourse of the sear
h, it attempts to pla
e a blo
k in the �rstbin in whi
h it �ts as its initial try.Theorem 3.3.1.
∀X,B∃p (p→ ∃APACK(A,X,B)) ∧

((p→ ⊥)→ (∃APACK(A,X,B))→ ⊥)Proof. By indu
tion on X. Case X = (:). If there are no boxes to �t, thenfor ea
h list of bins B the empty list is a valid assignment. Case X = (a :: l).Assume the indu
tion hypothesis (IH) and a generi
 list B of bins. In order toprove
∃p (p→ ∃APACK(A, (a :: l), B)) ∧

((p→ ff)→ (∃APACK(A, (a :: l), B))→ ⊥) (3.5)we prove the following assertion:
∀n. (n ≤ |B|)→ ∃p (p→ ∃A(PACKB(n,A, (a :: l), B)) ∧

((p→ ⊥)→ (∃APACKB(n,A, (a :: l), B))→ ⊥)(3.6)Obviously we
an derive (3.5) instantiating (3.6) on |B|. To prove (3.6) we go34

3.3 Case Study: The Bin Pa
king Problemby indu
tion on n. Case n = 0. We fail �nding a valid assignment for (a :: l)in B be
ause it should holds |B| ≤ A[0] and A[0] < |B|. Case n + 1. Assumethe nested indu
tion hypothesis (NIH) and (n+ 1 ≤ |B|). We prove:
∃p (p→ ∃APACKB((n+ 1), A, (a :: l), B)) ∧

((p→ ff)→ (∃APACKB((n+ 1), A, (a :: l), B))→ ⊥) (3.7)Obviously if (n+ 1 ≤ |B|) then (n ≤ |B|). There are only two
ases:
• (a ≤ B[|B| − (n+ 1)]): The dimension of the �rst box �ts in the bin inposition (|B| − (n+ 1)). So we
he
k if a valid assignment exists for thelist l into the list of bins B, where the position (|B| − (n+ 1)) (of B) isde
reased by the quantity a. We instantiate (IH) on B[(|B|− (n+1))/a].So there exists a boolean p su
h that:

(p→ ∃APACK(A, l, B[(|B| − (n+ 1))/a])) ∧ (3.8)
((p→ ⊥)→ (∃APACK(A, l, B[(|B| − (n+ 1))/a]))→ ⊥)There are two
ases: p holds or it doesn't hold.

p holds: We are done. From (3.8) we knowA su
h that PACK(A, l, B[(|B|−
(n+ 1))/a]), so the thesis is proved introdu
ing tt for p and ((|B| −
(n+ 1)) :: A) for A in the positive part of (3.7).

(p→ ff) holds : A valid assignment A, if it does exists, has to assign ato the bin i with |B| −n ≤ i < |B|. So the sear
hed assignment andthe proof of its existen
e (or the proof of its non existen
e) is givenby the nested indu
tion hypothesis (NIH)
• (a � B[|B| − (n + 1)]): Also in this
ase, if a solution does exists, it isgiven by (NIH)The
ode extra
ted from the previous proof is:(Re
 (list nat=> list nat=> (boole, list nat)))([B℄ (#tt , (:)))([a,l,f,B℄[(Re
 (nat => (boole, list nat))(#ff, (:))[n, (p ,A)℄if (a <= B[|B|-(n+1)℄)let (p',A') = f B[(|B|-n)/a℄if p' (#tt, (|B|-(n+1))::A') (p, A)(p, A)℄ |B|The let
onstru
tor is obtained using in some strategi
 point of the proof theidentity axiom (Se
tion 2.2). 35

3 Pruning3.3.1 ExperimentWe spe
ialize the bin-pa
king proof on the input lists of boxes X = (n :: m :)and bins B = (a :: a :). The
ontent of the spe
ialized proof is:if (n<=a)if (m<=a--n)(#tt, 0::(if (m<=a-n) (0:) (if (m<=a) (1:) (:))))if (m<=a)(#tt, 0::(if (m<=a-n) (0:) (if (m<=a) (1:) (:))))if (n<=a)if (m<=a)(#tt, 1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))(m<=a-n�if (m<=a-n)(1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))(:))(#ff, (:))if (n<=a)if (m<=a)(#tt, 1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))(m<=a-n,if (m<=a-n) (1::(if (m<=a) (0:) (if (m<=a-n) (1:) (:))))) (:))(#ff, (:))The permutative
onversion rules are applied to the spe
ialized proof. The
omputational
ontent of the permuted proof is:if (n<=a)if (m<=a-n)(#tt, (0::0:))if (m<=a)(#tt,(0::1:))if (n<=a)if (m<=a) (#tt, (1::0:)) (m<=a-n, (if (m<=a-n) (1::1:) (:)))(#ff, (:))if (n<=a)if (m<=a) (#tt, (1::0:)) (m<=a-n, (if (m<=a-n) (1::1:) (:)))(#ff, (:))Finally pruning is applied to the permuted proof. Here we distinguish two
ases in extra
ting the
ode from the pruned proof:No additional knowledge on n,m is required:
P1= if (n<=a)if (m<=a-n) (#tt, (0::0:)) (m<=a, (if (m<=a) (0::1:) (:)))(#ff, (:))Assuming m ≤ n:
36

3.4 Con
lusionsP2 = (n<=a, if (n<=a) (0::1:) (:))In the �rst
ase (no knowledge on the input parameters) the e�e
t of pruningis the simpli�
ation of if-statements that o

ur in the left/right bran
h of anouter if-statement with the same boolean
ondition. This pro
ess
ould beperformed with a program transformation te
hniques su
h as partial evalua-tion[21℄.In the se
ond
ase (m ≤ n) something di�erent happens: there is no wayto go from P1 to P2 with any program transformation te
hnique. In fa
t,the elimination of the if-statement on the
ondition (m<=a-n) only refers todependen
y information available at proof level, and not at program level.Finally we see that the extensional behavior of the extra
ted
ode P1 and P2
hanges. While P1, if n<=a may return (0::0:), P2 will always return (0::1:).But pruning keeps the end formula of the sub-proofs on whi
h it is applied soboth the results even if di�erent will satisfy the same logi
al spe
i�
ation.3.4 Con
lusionsIn this
hapter we presented an adaptation of the pruning te
hnique[17℄ tominimal logi
 on whi
h the Minlog proof assistant is based and we appliedit to the formalization and simpli�
ation of the bin pa
king problem. In ourwork we showed how pruning is intimately related to the operation of proofpermutation and we showed the
omputational bene�ts, in terms of eliminationof redundant
ode, that the permutation operation indu
e s on the extra
ted
ode. In
hapter 5 we will propose an extension of the pruning te
hnique.

37

3 Pruning

38

4 Bounded Perfe
t Mat
hing Problem4.1 Introdu
tion and MotivationIn this se
tion we introdu
e a widely studied problem in Bioinformat
s, theshortest
ommon superstring problem. The problem
an be formulated as fol-lows: given a set of strings P = {s1, . . . , sn} �nd the shortest string S that
ontains every string in P . For example a superstring of ab
 and
fa is w
-faab
d but ab
fa and
fab
 are the shortests.The problem of �nding the shortest superstring have appli
ations in data
ompression but the major motivation is related to the sequen
e assembly prob-lem in shotgun sequen
ing, a method used for sequen
ing long DNA strands.Ea
h string in the set P models one of the sequen
ed DNA fragments
reatedby the shotgun sequen
ing proto
ol[20, pp. 420℄. The assembly problem is todedu
e the originating DNA string S from the set of sequen
ed fragments P .Without sequen
ing errors, the originating string S is a superstring of P and,under some assumptions, S is likely to be a shortest superstring of P . In that
ase, a shortest superstring of P is a good
andidate for the originating string
S.In [40℄ it is formally showed that the shortest
ommon superstring is a NP-hard problem, that is there is no polynomial time algorithm solving it (unlessP=NP). An idea to solve this problem is to embed it into more familiar algo-rithmi
 �elds, namely Hamiltonian
ir
uit problems.Let s1, . . . , sm be a list of strings. We indi
ate by o(si, si+1), p(si, si+1) and
s(si, si+1) the lengths of the overlap, of the pre�x and of the su�x between thestrings si and si+1. Here we use the notion of �pre�x� and �overlap� de�nedas follow. Given de
ompositions of strings S = XY and T = Y Z su
h that
Y is the longest su�x of S (di�erent form S) and also a pre�x of T , we
all
Y , X and Z respe
tively the the overlap, pre�x and su�x strings of S with
T . These de�nitions give rise to two graphs,
alled overlap graph, and pre�xgraph for a string list s1, . . . , sm. Both are dire
ted graphs that have m nodeslabeled s1, . . . , sm and dire
ted edges between any two su
h nodes (thus alsofrom every node ba
k to itself). Furthermore, the edge pointing from node sito sj is weighted by number o(si, sj) in the overlap graph, and p(si, sj) in thepre�x graph.As showed in [40℄, sear
hing for a shortest
ommon superstring might aswell repla
ed with sear
hing for the
heapest Hamiltonian
y
le (
losed path39

4 Bounded Perfe
t Mat
hing Problemvisiting ea
h node exa
tly on
e) through the pre�x graph. Unfortunately theHamiltonian
y
le problem is NP-
omplete, but as it is known from algorithmtheory,
omputing a �nite set of disjoint
y
les (instead of a single
y
le) havingminimum summed
osts and
overing every node in a weighted graph is ane�
iently solvable problem. Su
h a �nite set of
y
les is
alled a
y
le
over.As proved [40℄ the problem of
omputing a
y
le
over with minimum
ostsin a pre�x graph is equivalent to the problem of
omputing a
y
le
over withmaximum
osts in overlap graph. To do so, we transform the
y
le
over prob-lem for overlap graphs into a perfe
t mat
hing problem in a bipartite versionof overlap graph. The latter is de�ned as follows. Create for every node si inoverlap graph a
opy node
alled gi. Thus the new graph
onsists of two parts,a left part with all the nodes from the original graph, and a right part that is a
opy of the left part. Every dire
ted edge from node si to node sj is simulatedby an undire
t edge between node si and
opy node gj with weight o(si, sj).Now
onsider an arbitrary lo
al
y
le with
ost c in overlap graph:
sπ1 → sπ2 → sπ3 → . . .→ sπm−1 → sπm → sπ1for some permutation π. Its dire
ted edges
orrespond to undire
ted edges ofthe bipartite version as follows:

sπ1 sπ2 sπ3
. . . sπm−1 sm

gπ2 gπ3 gπ4
. . . gπm gπ1Su
h a one-to-one relation between node sets {s1, . . . , sm} and {g1, . . . , gm}with an undire
ted edge between any two related nodes is
alled a mat
hing.The
ost of a mat
hing are de�ned as the summed weights of its undire
tededges. We observe that the
osts of the
onstru
ted mat
hing
oin
ide withthe
ost c of the
onsidered lo
al
y
le. Conversely, having a mat
hing with
osts c between node sets {s1, . . . , sm} and {g1, . . . , gm} we may always arrangemat
hes pairs in an ordering as above, thus we obtain a lo
al
y
le with
osts

c through node set {s1, . . . , sm}. Now let us
onsider an arbitrary
y
le
overwith
osts c in overlap graph. Its
y
les lead to a
olle
tion of (lo
al) mat
hingsthat together form a mat
hing with
osts c,
alled a perfe
t mat
hing (�perfe
t�sin
e all nodes parti
ipate in the mat
hing).In this
hapter we formalize the problem of �nding a perfe
t mat
hing withmaximum weight higher or equal of a �xed threshold t of a
omplete bipartitegraph. We will present a proof of the existen
e of su
h perfe
t mat
hing and wewill extra
t a program from it. The proof-strategy we follow is simply to enu-merate all the possible solutions and sele
t the one that satisfy our
onstraints.This
learly generate an exponential extra
ted program. In our experimentswe show how, applying the pruning method on spe
ial instantiations of this40

4.2 Bounded Perfe
t Mat
hing of a Complete Bipartite Graphproblem where some additional knowledge on the input graph is assumed (theMonge inequality) then it is possible to extra
t a program extremely simpli�erthan the one that enumerate all the possible solutions.4.2 Bounded Perfe
t Mat
hing of a Complete Bipartite Graph4.2.1 Basi
 De�nitionsDe�nition 4.2.1 (Weighted Bipartite Graph). The weighted graph G = (V ⊆
N, E ⊆ N×N×N) is bipartite, if there exists V1 and V2 su
h that: V = V1∪V2,
V1 ∩ V2 = ∅ and ∀e ∈ E. π0e ∈ V1 ∧ π1e ∈ V2.Here πi∈{0,1,2}(n1, n2, n3) = ni, and the natural n3 is the weight of the edge
(n1, n2). If the graph G = (V,E) is bipartite then we write it as G = (V1, V2, E)for two opportune sets of verti
es V1 and V2.De�nition 4.2.2 (Complete Weighted Bipartite Graph). Let G = (V1, V2, E)be a weighted bipartite graph. G is
omplete if ∀u ∈ V1 v ∈ V2 ∃e ∈ E.π0e =
u ∧ π1e = v.De�nition 4.2.3 (Mat
hing). Given the weighted bipartite graph G = (V1, V2, E)a mat
hing M of G is a subset of V1×V2 with the following two properties: forall u ∈ V1, v ∈ V2 if (u, v) ∈M , then1. ∀u′ ∈ V1.u 6= u′ → (u′, v) 6∈M2. ∀v′ ∈ V2.v 6= v′ → (u, v′) 6∈MDe�nition 4.2.4 (Weight of a Bipartite Graph). Given a mat
hing M ofthe weighted bipartite graph G = (V1, V2, E) the weight of M, SUM(M,E), isde�ned as follows:SUM({}, E) = 0SUM(M ∋ e, E) = v + SUM(M\{e}, E) with (π0e, π1e, v) ∈ EIn the following we will indi
ate the
ardinality of a set U by |U |.De�nition 4.2.5 (Perfe
t Mat
hing). Given a
omplete weighted bipartitegraph G = (V1, V2, E), with |V1| = |V2| = n, we say that a mat
hing M of
G is perfe
t if |M | = n.De�nition 4.2.6 (Maximum Perfe
t Mat
hing Problem). Given the
ompleteweighted bipartite graph G = (V1, V2, E) with |V1| = |V2|, �nd a mat
hing Msu
h that SUM(M ′, E) ≤ SUM(M,E) for any perfe
t mat
hing M ′ of G.De�nition 4.2.7 (Bounded Perfe
t Mat
hing Problem). Given the
ompleteweighted bipartite graph G = (V1, V2, E) with |V1| = |V2|, and T a naturalnumber, �nd a mat
hing M su
h that T ≤ SUM(M,E). 41

4 Bounded Perfe
t Mat
hing Problem4.2.2 Algorithms, Data Stru
tures and Automati
 Program SynthesisThe sets V1 and V2 are implemented as lists of naturals without dupli
ations.We indi
ate the length of the list V by |V |. We indi
ate by tail(V) the operationthat return the tail of the non empty list V . The set E of weights is implementedby a list of triple of naturals (i, j, vi,j), with i ∈ V1, j ∈ V2 and vi,j weight ofthe edge (i, j). Given i ∈ V1, j ∈ V2, the weight of the ar
 (i, j) is indi
ated by
E[i, j]. A perfe
t mat
hingM of V1 and V2 is implemented by a list of naturals
M with the following two properties: i) for all j, if M [j] = k then (V1[j], k),with V2[m] = k for some m, belong to the perfe
t mat
hing and ii) for all
j 6= k, M [j] 6= M [k]. By i) and ii) it follows that M is a permutation of V2.Under these assumptions the fun
tion SUM : N → N → (N ×N ×N) → N(that takes in input the ve
tor of nodes V1, the mat
hing ve
tor M , the thematrix of weights E and returns the weight of M) is de�ned as follow:SUM([], [], E) = 0SUM(v :: V1,m :: M,E) = E[v,m] + SUM(V1,M,E)Given a
omplete weighted bipartite graph G = (V1, V2, E), with |V1| = |V2|,Mis a
omplete mat
hing of G if and only if MATCH(M,V2), with the predi
ateMATCH de�ned as follow:

rri
(M1) MATCH((:), (:))

MATCH(M, V2\{n})
(M2) V2[n] = mMATCH(m :: M, V2)Proposition 4.2.1. ∀l.MATCH(l, l)Proof. Case l = (:), by (M1). Case l = (a :: l′), We have to prove MATCH(l′, l′)that follow by the indu
tion hypothesis.Now we supply a
onstru
tive proof of the existen
e (or not) of a perfe
tmat
hing (with weight higher or equal than a �xed threshold) of a
ompletebipartite graph. The used strategy is to enumerate all the possibilities, tillthe desired solution is found. Obviously this sear
hing method is parti
ularlyine�
ient, and it require an exponential number of steps when exe
uted on aspe
i�
 input graph.In the rest of the
hapter we will use the following
onventions:

V1, V2, E, T −→M for �M is a perfe
t mat
hing between V1 and V2 su
h that
T ≤ SUM(V1,M, E)�, that is MATCH(M,V2) ∧ T ≤ SUM(M,V1, E)

V1, V2, E, T −→n M for V1 6= (:), V1, V2, E, T −→M and |V2|−n ≤ ♮(M [0], V2)and we wrote V \{m} to indi
ate the list V from whi
h is dropped the node inposition m, with m : 0, . . . , |V | − 1 and ♮(n, V2) = m for V2[m] = n.42

4.2 Bounded Perfe
t Mat
hing of a Complete Bipartite GraphTheorem 4.2.2.
∀V1V2E,T. (|V1| = |V2| ∧ 0 ≤ T)→ ∃p.

p→ (∃M.V1, V2, E, T −→M)∧
(p→ ⊥)→ (∃M.V1, V2, E, T −→M)→ ⊥Proof. By indu
tion on V1. Case V1 = (:): Assume V2,E, T and ip:(|(:)| =

|V2|) ∧ 0 ≤ T). By ip it follows V2 = (:). The
urrent thesis be
ame:
∃p. p→ (∃M.(:), (:), E, T −→M)∧

(p→ ⊥)→ (∃M.(:), (:), E, T −→M)→ ⊥
(4.1)Two
ases are possible: Case 0 < T : then no perfe
t mat
hing does exist. Sowe introdu
e � for p. The positive part of (4.1) is proved by (Efq). To provethe negative part of (4.1) let's assume ⊤ and ip:∃M.(:), (:), E, T −→ M . Byip does exists M su
h that MATCH(M, (:)) and T ≤ SUM(M, (:), E). But ifMATCH(M, (:)) by (M1) we have M = (:), and so SUM((:), (:), E) = 0 thatgenerate a
ontradi
tion with the hypothesis 0 < T ≤ SUM((:), (:), E). Case

0 = T : Introdu
e tt for p. The positive part of (4.1) is proved introdu
ing (:)for M , and the negative part of (4.1) is proved by (Efq). Case V1 = (a :: l) :Assume
∀V2E,T. (|l| = |V2| ∧ 0 ≤ T)→ ∃p.

p→ (∃M.l, V2, E, T −→M)∧
(p→ ⊥)→ (∃M.l, V2, E, T −→M)→ ⊥

(4.2)
V2, E, T and ip:(|(a :: l)| = |V2| ∧ 0 ≤ T). Given the natural a, we prove

∃p. p→ (∃M.(a :: l), V2, E, T −→M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→M)→ ⊥

(4.3)In order to prove (4.3) we prove the following assertion:
∀n.∃p. p→ (∃M.(a :: l), V2, E, T −→n M)∧

(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n M)→ ⊥
(4.4)Obviously (4.3) is obtained instantiating (4.4) on |V2|. To prove (4.4) we pro-
eed by indu
tion on n. Case n = 0: We shall look for a mat
hing M su
hthat ♮(M [0], V2) ≥ |V2|, but from this follow a
ontradi
tion. So we introdu
e� for p. The positive part of (4.4) is proved by (Efq). For the negative part,assume ⊤, and ip′: ∃M.(a :: l), V2, E, T −→|V2| M . From ip′ it follows thatthere exists M su
h that (a :: l), V2, E, T −→ M and |V2| ≤ ♮(M [0], V2). But

M [0] is an element of V2, that is ♮(M [0], V2) ≤ |V2| − 1, from whi
h it follow a43

4 Bounded Perfe
t Mat
hing Problem
ontradi
tion. Now let's assume the nested indu
tive hypothesis
∃p. p→ (∃M.(a :: l), V2, E, T −→n M)∧

(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n M)→ ⊥
(4.5)a natural n, and we prove

∃p. p→ (∃M.(a :: l), V2, E, T −→n+1 M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥

(4.6)There are two
ases, CaseE[a, V2[|V2| − (n+ 1)]] < T : We instantiate (4.2) on
V2\{|V2| − (n + 1)}, E and (T − E[a, V2[|V2| − (n + 1)]]). This instantiationprodu
e the following hypothesis:

(|l| = |V2\{|V2| − (n+ 1)}| ∧ 0 ≤ (T − E[a, V2[|V2| − (n+ 1)]]))→ ∃p.
p→ (∃M.l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M)∧
(p→ ⊥)→
(∃M.l, V2\{|V2| − (n+ 1)}, E, (T −E[a, V2[|V2| − (n+ 1)]]) −→M)→ ⊥

(4.7)By ip, |(a :: l)| = |V2| thus |l| = |V2\{|V2|−(n+1)}|, moreover by E[a, V2[|V2|−
(n + 1)]] < T it follows that 0 ≤ (T − E[a, V2[|V2| − (n + 1)]]). Instantiating(4.7) on these two fa
ts, we know a boolean p su
h that

p→ (∃M.l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M)∧
(p→ ⊥)→
(∃M.l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M)→ ⊥

(4.8)Two
ases are possible, Case p: We introdu
e tt for p in the goal formula (4.6)obtaining the new goal:
(tt→ ∃M.(a :: l), V2, E, T −→n+1 M)∧
⊥ → ((∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥)

(4.9)To prove the positive part of (4.9): assume tt and instantiate the left of (4.8)on p, from whi
h it follow that there exists M su
h that:
l, V2\{|V2| − (n+ 1)}, E, (T − E[a, V2[|V2| − (n+ 1)]]) −→M (4.10)So we introdu
e (V2[|V2| − (n+ 1)] :: M) for M . We have to prove:

• MATCH((V2[|V2| − (n+ 1)] :: M), V2): by (M2) this
orrespond to proveMATCH(M,V2\{|V2| − (n+ 1)}), that hold by (4.10).
• T ≤ SUM(a :: l, (V2[|V2| − (n + 1)] :: M), E): This
orrespond to prove
T − E[a, V2[|V2| − (n+ 1)]] ≤ SUM(l,M,E), that follow by (4.10).

• |V2|− (n+1) ≤ ♮((V2[|V2|− (n+1)] :: M)[0], V2): By de�nition (V2[|V2|−44

4.2 Bounded Perfe
t Mat
hing of a Complete Bipartite Graph
(n+ 1)] :: M)[0] = V2[|V2| − (n+ 1)] and then ♮(V2, V2[|V2| − (n+ 1)]) =
|V2| − (n+ 1).To prove the negative part of (4.9): by (Efq). Case p→ ⊥: by (4.5) there exists

p su
h that:
p→ (∃M.(a :: l), V2, E, T −→n M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n M)→ ⊥

(4.11)We introdu
e p for p in (4.6) obtaining the new goal:
p→ (∃M.(a :: l), V2, E, T −→n+1 M)∧
(p→ ⊥)→ (∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥

. (4.12)To prove the positive part of (4.12): assume p and instantiate the positive partof (4.11) on p. It follows that there exists M perfe
t mat
hing between (a :: l)and V2 su
h that |V2| − n ≤ ♮(M [0], V2), and thus, |V2| − (n+ 1) ≤ ♮(M [0], V2).To prove the negative part of (4.12): Assume p→ ⊥. Now,
onsidering that:
• Instantiating the negative part of (4.8) on (p → ⊥) there not exists any
M su
h that l, V2\{|V2|− (n+1)},E, (T −E[a, V2[|V2|− (n+1)]]) −→M .Thus, for ea
h mat
hing M , naming δM = SUM(l,M,E), we have δM <
T − E[a, V2[|V2| − (n + 1)]] and thus δM + E[a, V2[|V2| − (n + 1)]] < T ,i.e. there exists no mat
hingM between (a :: l) and V2 su
h that M [0] =
V2[|V2| − (n+ 1)].
• Instantiating the negative part of (4.11) on p → ⊥ there not exists any
M su
h that: (a :: l), V2, E, T −→n Mwe
on
lude that there exists no mat
hingM su
h that: (a :: l), V2, E, T −→n+1

M . CaseE[a, V2[|V2| − (n+ 1)]] ≥ T : The value of the mat
hing built so far ishigher than T , so we
an stop the sear
h. Instantiate (4.2) on V2\{|V2|−(n+1)},
E and 0. Thus there exists p su
h that

p→ (∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M)∧
(p→ ⊥)→ (∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M)→ ⊥

(4.13)Ea
h mat
hing between two set has a value greater or equal than zero (ex
eptthe
ase in whi
h we
onsider ar
s with negative weight). Thus p has to betrue. We state this fa
t asserting the validity of p. So we have two new goals:
p and p→(4.6). To prove p: we assert that the existen
e a mat
hing between
l and V2\{|V2| − (n+ 1)} with a value higher or equal than 0. We
reate twonew subgoals:

∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M (4.14)45

4 Bounded Perfe
t Mat
hing Problem
(∃M.l, V2\{|V2| − (n+ 1)}, E, 0 −→M)→ p. (4.15)To prove (4.14): by de�nition the returning mat
hing, if it exists, is a list ofnaturals, permutation of V2\{|V2| − (n + 1)}. So we
an return the identitypermutation, that is we introdu
e V2\{|V2|− (n+1)} forM . We have to prove:

• MATCH(V2\{|V2| − (n+ 1)}, V2\{|V2| − (n+ 1)}): By Prop. 4.2.1.
• 0 ≤ SUM(l, V2\{|V2| − (n+ 1)}, E): By de�nition of SUM.To prove (4.15): Assume ip′ : ∃M.l, V2\{|V2| − (n + 1)}, E, 0 −→ M . Thehypothesis (4.13) is a
onjun
tion, so both the bran
hes have to be true. Inparti
ular, by ip, (∃M.l, V2\{|V2| − (n + 1)}, E, 0 −→ M) → ⊥ is false, thus

p→ ⊥ has to be false and p true. To prove p→ (4.6). Assume p. We introdu
ett for p in (4.6) obtainingtt→ (∃M.(a :: l), V2, E, T −→n+1 M)∧
⊥ → (∃M.(a :: l), V2, E, T −→n+1 M)→ ⊥

(4.16)To prove the positive part of (4.16): assume tt. Instantiate the left of (4.13)on p, so we know M su
h that:
l, V2\{|V2| − (n+ 1)}, E, 0 −→M (4.17)We introdu
e (V2[|V2| − (n+ 1)] :: M) for M . We have to prove:

• MATCH(V2[|V2| − (n + 1)] :: M,V2): By (M2) it
orresponds to proveMATCH(M,V2\{|V2| − (n+ 1)}) that follow by (4.17).
• T ≤ SUM((a :: l), V2[|V2| − (n + 1)] :: M,E): It is equivalent to prove
T ≤ E[a, V2[|V2| − (n + 1)]] + SUM(l,M,E). This fa
t follows fromSUM(l,M,E) ≥ 0, by (4.17), and by the hypothesis E[a, V2[|V2| − (n +
1)]] ≥ T .

• |V2| − (n + 1) ≤ ♮((V2[|V2| − (n + 1)] :: M)[0], V2): already proved as avalid inequality.To prove the negative part of (4.16): by (Efq).The
omputational
ontent of the Theorem4.2.2 is showed in Table 4.1 (thealgorithm is written by metarules)4.2.3 Problem Spe
ialization: The Monge InequalityIn this subse
tion we present an algorithm to solve the bounded perfe
t mat
h-ing problem in presen
e of additional knowledge on the input parameters. The46

4.2 Bounded Perfe
t Mat
hing of a Complete Bipartite Graph
0 < T

(:), V2, E, T −→ (�, (:)) (:), V2, E, 0 −→ (tt, (:))
(a :: l), V2, E, T −→|V2| (p,M)

(a :: l), V2, E, T −→ (p,M)

T −→|V2| T

V1, V2, E, T −→0 (�, (:))tail(V1), V2\{|V2| − (n+ 1)}, E, T ′ −→ (tt,M) C1
V1, V2, E, T 7−→n+1 (tt, (V2[|V2| − (n+ 1)] :: M))tail(V1), V2\{|V2| − (n+ 1)}, E, T ′ −→ (�,_) V1, V2, E, T −→n (p,M) C1

V1, V2, E, T 7−→n+1 (p,M)tail(V1), V2\{|V2| − (n+ 1)}, E, 0 −→ (p,M)
¬C1

V1, V2, E, T 7−→n+1 (tt, (V2[|V2| − (n+ 1)] :: M))with
T ′ := T − E[V1[0], V2[|V2| − (n+ 1)]],C1 := E[V1[0], V2[|V2| − (n+ 1)]] < T ,
¬C1 := E[V1[0], V2[|V2| − (n+ 1)]] 6< TTable 4.1: Algorithm to
ompute the Maximum Perfe
t Mat
hing of the Bipar-tite Graph G = (V1, V2, E) (V1 and V2 of same
ardinality)solution we present here is not synthesized from a proof, anyway the
orre
tnessof the method is proved formally. The basi
 idea is that if the input bipartitegraph V satisfy a
ertain property, the Monge inequality, then we
an
omputethe weight of the maximum perfe
t mat
hing of V using a parti
ularly fastalgorithm,
alled the Greedy algorithm [20℄. On
e we have vmax, weight of themaximum perfe
t ma
hting of V, and t natural threshold, then the boundedperfe
t mat
hing problem
an be solved by just a
omparison between vmaxand t.De�nition 4.2.8. Let G = (V1, V2, E) a
omplete weighted bipartite graph.Now let u, u′ ∈ V1 and v, v′ ∈ V2 and assume without loss of generality thatmax{E[u, v′], E[u′, v], E[u′, v′]} ≤ E[u, v]. If

E[u′, v] + E[u, v′] ≤ E[u, v] + E[u′, v′]then the four nodes u, v, u′, v′ are said to satisfy the Monge inequality. 47

4 Bounded Perfe
t Mat
hing ProblemA
omplete weighted bipartite graph is said to satisfy the Monge inequalitiesif the Monge inequality is satis�ed for any two arbitrary nodes from V1 togetherwith any two arbitrary nodes from V2.If a
omplete weighted bipartite graph G satisfy the Monge inequalities thenthe Greedy Assignment algorithm (Figure 4.1) applied to G return a maxi-mal mat
hing for G (theorem 4.2.3). This is not true in general [For example
onsider G = ({0, 1}, {0, 1}, {(0, 0, 9), (0, 1, 10), (1, 0, 1), (1, 1, 7)})℄.The greedy assignment algorithm runs in O(n2log(n)), with Vi = n, and isone the known fastest algorithm to
ompute the maximal perfe
t mat
hing of
G for G
omplete weighted bipartite graph that satisfy the Monge inequality.In Figure 4.1 we used the following notation:
• l1, l2 7−→m l3, for � l3 is the ordered merge of the two lists of weightednodes l1 and l2�
• E 7−→ms E′, for �E′ is obtained ordering the list of weighted nodes E bythe Merge Sort algorithm�
• V1, V2, E 7−→gr M , for �M is the perfe
t mat
hing between V1 and V2obtained by the Greedy assignment �.
• E{→ v} for the list E where are dropped all the ar
s (u, v, lu,v), for ea
h
u ∈ V1

• E{u←} for the list E where are dropped all the ar
s (u, v, lu,v), for ea
h
v ∈ V2

• E[i,...,j] = (E[i], . . . , E[j]), E[|E|,...,|E|−1] = (:).Theorem 4.2.3. Given a
omplete weighted bipartite graph G = (V1, V2, E), if
V1, V2, E 7−→gr M then M is a maximum perfe
t mat
hing of G.Proof. By
ontradi
tion. Assume M is a perfe
t mat
hing between V1 and
V2 with respe
t to the set of edges E su
h that SUM(M) < SUM(M). Thenassume e = (u, v) ∈ M �rst edge found by the greedy algorithm that does notbelong to M . Follow that the two edges a = (u, v′), and b = (u′, v), has tobelong to M , for some u′ ∈ V1, v 6= u′, u′ ∈ V2, v 6= v′,. The edge e was
hosen by the greedy algorithm among also all the edges in
ident in u and v,so E[e] ≥ E[a] and E[e] ≥ E[b]. Now the
ases are possible:
f = (u′, v′) ∈M , Obviously f 6∈ M . Being e the �rst edge
hosen by thegreedy algorithm not inM then E[e] ≥ E[f] and by the Monge inequality,48

4.2 Bounded Perfe
t Mat
hing of a Complete Bipartite Graph
l, (:) 7−→m l (:), l 7−→m l

l1, ((u
′, v′, l′u,v) :: l2) 7−→m l3

lu,v ≤ l′u,v

((u, v, lu,v) :: l1), ((u
′, v′, l′u,v) :: l2) 7−→m ((u, v, lu,v) :: l3)

((u, v, lu,v) :: l1), l2 7−→m l3
lu,v > l′u,v

((u, v, lu,v) :: l1), ((u
′, v′, l′u,v) :: l2) 7−→m (((u′, v′, l′u,v) :: l3)

E
[0,...,⌊

|E|
2

⌋−1]
7−→ms l1 E

[⌊
|E|
2

⌋,...,|E|−1]
7−→ms l2 l1, l2 7−→m l3

|E| > 0,
E 7−→ms l3

{}

(:) 7−→gr' (:)

l{→ v}{u←} 7−→gr' M
((u, v, lu,v) :: l) 7−→gr' ((u, v, lu,v) :: M)

{}
|E| = 0

E 7−→ms (:)

E 7−→ms l l 7−→gr' M
V1, V2, E 7−→gr M

V1, V2, E 7−→gr M C
V1, V2, E, T 7−→bgr (tt,M)

V1, V2, E 7−→gr M
¬C

V1, V2, E, T 7−→bgr (�, (:))with C ≡ T ≤ SUM(M,E)Figure 4.1: Greedy Assignment to �nd the Bounded Perfe
t Mat
hing of a bi-partite Graph G = (V1, V2, E) that satisfy the Monge inequality.
E[a] + E[b] ≤ E[e] + E[f]. We de�ne the new perfe
t mat
hing M ′ by a�lo
al� modi�
ation of M as follow:

M
′
= (M\{a, b}) ∪ {e, f}Being e, f inM we have |M\M ′
| = |M\M |−2, that is |M\M ′

| < |M\M |.Moreover by the inequality E[a]+E[b] ≤ E[e]+E[f] we have SUM(M) ≤SUM(M
′
).

f = (u′, v′) 6∈M , Let's assume h = (u′, v′′) ∈ M and g = (v′, u′′) ∈ M with
v′ 6= v′′ and u′ 6= u′. Obviously h, g 6∈ M else would be violated theproperty to be a mat
hing for M , and being e the �rst edge in M\M49

4 Bounded Perfe
t Mat
hing Problem
hose by the greedy algorithm we have E[h] ≤ E[e] and E[g] ≤ E[e]. If
h, g are pi
ked up by the greedy algorithm then E[f] ≤ E[h], E[f] ≤
E[g] and by transitivity E[f] ≤ E[e]. Thus by the monge inequality
E[a]+E[b] ≤ E[e]+E[f]. As in the above
ase we de�ne the new perfe
tmat
hing M ′ by a �lo
al� modi�
ation of M as follow:

M
′
= (M\{a, b}) ∪ {e, f}Being e in M we have |M\M ′
| = |M\M | − 1, that is |M\M ′

| < |M\M |.Moreover by the inequality E[a] + E[b] ≤ E[e] + E[f], SUM(M) ≤SUM(M
′
).Now ifM = M
′ stop, else we setM ←M

′, pi
k a new e �rst edge inM\M andrepeat the pro
edure above. This algorithm produ
e a list of perfe
t mat
hings
M1,M2, . . . ,Md≤n (in the beginning we have M = M1) su
h that

0 = |M\Md| < . . . < |M\M2| < |M\M 1|(from whi
h follow M = Md) andSUM(M) < SUM(M1) ≤ . . . ≤Md = SUM(M)4.3 Pruning at WorkIn this se
tion we show the results we obtained applying the pruning proto
olto the proof of Theorem 4.2.2.Proof Spe
ialization We spe
ialized the proof on the following
omplete bipar-tite graph V:
b b

b b

b b

i

a n

m

a v

j

i j

1

2

3

4

5

650

4.3 Pruning at WorkThat is, V = ({1, 2, 3, 4, 5, 6}, {(1, 4, i), (1, 5, a), (1, 6, j), (2, 4, n), (2, 5,m),
(2, 6, i), (3, 4, a), (3, 5, v), (3, 6, j)}).Pruning We applied a �rst time pruning on the spe
ialized proof in order tomanipulate a shorter proof during the pruning proto
ol. The extra
ted
ode is here listed:[if (0<t--i--m--j)[if (0<t--i--i--v)[if (0<t--a--n--j)[if (0<t--a--i--a)[if (0<t--j--n--v)[if (0<t--j--m--a)(False�(Nil nat))(True�6::[if (0<t--j--n--v)[if (0<t--j--m--a)(Nil nat)(5::[if(0<t--j--m--a)(Nil nat)(4:)℄)℄(4::[if(0<t--j--n--v)(Nil nat)(5:)℄)℄)℄(True�6::[if(0<t--j--n--v)[if(0<t--j--m--a)(Nil nat)(5::[if(0<t--j--m--a)(Nil nat)(4:)℄)℄(4::[if (0<t--j--n--v) (Nil nat) (5:)℄)℄)℄(True�5::[if (0<t--a--n--j)[if(0<t--a--i--a)(Nil nat)(6::[if(0<t--a--i--a)(Nil nat)(4:)℄)℄(4::[if (0<t--a--n--j) (Nil nat) (6:)℄)℄)℄(True�5::[if (0<t--a--n--j)[if(0<t--a--i--a)(Nil nat)(6::[if (0<t--a--i--a)(Nil nat)(4:)℄)℄(4::[if (0<t--a--n--j) (Nil nat) (6:)℄)℄)℄ (True� 4::[if (0<t--i--m--j)[if (0<t--i--i--v) (Nil nat)(6::[if(0<t--i--i--v)(Nil nat)(5:)℄)℄(5::[if (0<t--i--m--j) (Nil nat) (6:)℄)℄)℄ (True�4:: [if (0<t--i--m--j)[if(0<t--i--i--v)(Nil nat)(6::[if (0<t--i--i--v) (Nil nat) (5:)℄)℄(5::[if (0<t--i--m--j) (Nil nat) (6:)℄)℄)℄Permutative Conversion At this stage we permuted the pruned proof of theprevious step. As extensively explained in
hapter 3.2.3 this operationis ne
essary if we want to perform su

essfully the dependen
ies removaltransformation step of the pruning proto
ol. Moreover, as we will see,to permute a proof it has the ni
e side e�e
t of eliminating part of theredundan
ies in the extra
ted
ode. It follow the
ode synthesized frompermuted proof: 51

4 Bounded Perfe
t Mat
hing Problem[if (0<t-i-m-j)[if (0<t-i-i-v)[if (0<t-a-n-j)[if (0<t-a-i-a)[if (0<t-j-n-v)[if (0<t-j-m-a)(False�(Nil nat))(True�6::[if (0<t-j-m-a) (Nil nat) (5::4:)℄)℄(True�6::4::5:)℄(True�5::[if (0<t-a-i-a) (Nil nat) (6::4:)℄)℄(True�5::4::6:)℄(True�4::[if (0<t-i-i-v) (Nil nat) (6::5:)℄)℄(True�4::5::6:)℄Removal Dependen
ies Transformation The
ode extra
ted in the previous stepstill
ontain several redundan
ies, as for example the presen
e of severalnested if's statements on the same boolean
ondition. This kind of re-dundan
ies are even more if we assume to have some knowledge on theinput weights of the
omplete graph V. In this parti
ular
ase study weassumed the input graph V to satisfy the Monge inequality. More pre-
isely we assumed the following inequalities relations among the weightsof the input graph:1. m < i < n < a < v < j2. m+ 1 ≤ a+m3. i+ a ≤ m+ j4. 2i ≤ j + n5. a+m ≤ v + n6. a+ i ≤ j + n7. i+ v ≤ j +m8. 2a ≤ v + iAt this point the removal dependen
ies transformation was applied keep-ing into a

ount the additional knowledge on V. After that, pruning wasapplied again. It follow the extra
ted program of the resulting proof:(*) [if (0<t-i-m-j)[if (0<t-a-n-j)[if (0<t-j-n-v) (False�(Nil nat)) (True�6::4::5:)℄(True�5::4::6:)℄(True�4::5::6:)℄We note that this
ode is extremely shorter than the
ode we synthesizedafter the proof spe
ialization step. Anyway, in order have a better52

4.4 Con
lusions
omprehension of the quality of our result, we instantiated the programin Figure ...(the better algorithm to
ompute a solution for the boundedperfe
t mat
hing problem) on the input graph V and later on we simpli�edit a

ording to the above
onstraints 1., . . . , 8. The resulting program isthe following:(**) [if (0<t-m-i-j) (False�(Nil nat)) (True�4::5::6:)℄As we
an see, if the input parameter t is less or equal than tmax, with
tmax weight of the perfe
t mat
hing of V with maximumweight, then both(*) and (**) returns in one step the
ouple (True�4::5::6:). On the otherhand if t > tmax, that is the problem does not admit a solution, (**)return (False�(Nil nat)) in one step while (*) needs to perform, in orderto return the same result, two more
ase distin
tions. This phenomenarely essentially on the fa
t that no one of the eight
onstraints 1., . . . , 8.involve the parameter t4.4 Con
lusionsWhat we showed in this
hapter is that the pruning proto
ol matters in theautomati
 synthesis of
orre
t and e�
ient
ode. Starting from a proof of anexistential statement proved by an enumeration strategy (from whi
h it waspossible to synthesize an algorithm with an exponential
omplexity runningtime) we were able to produ
e, through the several proof re�nements stepsof the pruning te
hnique, a new proof of an instan
e of the original problemwith
omputational
ontent
omparable with the instantiation of a quadrati
running time algorithm that solved the same problem.The main limit of the present work is the restri
ted set of input graphs onwhi
h we
ould test the pruning proto
ol, but are working in order to extendthis set of examples in order to have a
leared idea of the power of this method.

53

4 Bounded Perfe
t Mat
hing Problem

54

5 Generalizing Pruning5.1 Introdu
tionIn Chapters 3 and 4 we have introdu
ed the Pruning te
hnique and we haveshown the power of this proof transformation on two parti
ularly big exam-ples: the Bin Pa
king Problem and the Bounded Perfe
t Mat
hing Problem.We have seen that the transformations pruning indu
e on the extra
ted pro-grams
ould not be performed by any other known program transformation:pruning manipulates the proofs of the programs, so it works with dependen-
ies informations that does not o

ur in programs written by people. In this
hapter we present an extension of the pruning te
hnique and we will show itse�e
tiveness on a very simple but instru
tive example.5.2 Proof ContextsHere we de�ne λ-terms CAB for natural dedu
tion proofs of type A with exa
tlyone hole (•) of type B.De�nition 5.2.1 (Proof Context).
C := •B | 〈MA, CB〉A∧B | 〈CA,MB〉A∧B | (π0C

A∧B)A | (π1C
A∧B)B |

(λxρCA)∀x
ρA | (C∀xρAt)A[x/t] | (MA→BCA)B | (CA→BMA)B |

(λuACB)A→BBy CAB [MB] we indi
ate the repla
ing of •B in CA with MB .De�nition 5.2.2. Let MA and NA be two proofs of the same formula A withthe property that there exists a proof
ontext CA su
h that MA ≡ CA[NA](synta
ti
 equivalen
e). The set of dis
harged assumptions from N to M ,DSA(C), is de�ned as follow:DSA(•) = ∅DSA(C) =

8

>

>

>

>

<

>

>

>

>

:

DSA(C′) ∪ {u} C ≡ C′[λuA•]DSA(C′) C ≡ C′[(π0•
A∧B)A], C′[(π1•

A∧B)B],
C′[〈MA, •B〉A∧B], C′[〈•A,MB〉A∧B]

C′[(•∀x
ρAt)A[x/t]], C′[(MA→B•A)B],

C′[(•A→CMA)B], C′[λxρ•], 55

5 Generalizing Pruningfor some opportune C′.Based on the previous de�nitions, in Figure 5.1 we propose the general prun-ing rule. The redundan
ies eliminated by the simpli�
ation rule in Figure
|N

A

|M

A

−→
|N

A
OA(N)\DSA(C) = OA(N)with M ≡ C[N].Figure 5.1: General pruning rule5.1 are not so obvious to �nd in proof written by hand but not rely su
h infer-en
es o

urs in proofs generated automati
ally by automati
 theorem proversor in proofs where part of the input parameters are spe
ialized.5.3 Properties of the General Pruning RuleWe will writeM −→p N for �N is obtained fromM applying one of the pruningrules in Figure 3.1�,M −→gp N for �N is obtained fromM applying the generalpruning rule in Figure 5.1�, and −→+

p and −→+
gp for the transitive
losure of

−→p and −→gp. Given the derivations M and N we de�ne M n
−→p N , with

0 < n, as follow:
• If M −→p N then M 1

−→p N

• If M −→p M
′ −→+

p N and M ′ n
−→p N then M n+1

−→p NBeing not unique the derivation betweenM and N (there
ould be many) therewill be di�erent �n� su
h that M n
−→p N .Proposition 5.3.1. For ea
h proof
ontext CCA , proofsMA and NA, ifM −→p

N then C[M] −→p C[N].The same hold for −→gp. Obviously if we lo
ally simplify a proof by −→pthen the same simpli�
ation
an be performed by the general pruning rule
−→gp. This fa
t is stated in the followingTheorem 5.3.2. For all proofs M and N , if M −→p N then M −→gp N .Proof. If M −→p N , then only three
ases are possible:56

5.3 Properties of the General Pruning Rule1. M ≡ C[N ′] with N ′ ≡ (IF t λutM ′C λvt→⊥N ′′C)C , for an opportune
on-text proof C, and ut does not o

ur in M ′. Then C[N ′] −→p C[M ′] bythe rule i), Figure 3.1. On the other hand we
an write N ′ ≡ C′[M ′]with C′ ≡ (IF t λut •φ λvt→⊥N ′′φ)φ. It follow that OA(M ′)\DSA(C′) =OA(M ′) be
ause DSA(C′) = {u} and by hypothesis u 6∈ OA(M ′). So ap-plying the simpli�
ation rule in Figure 5.1 to N ′ we have C[C′[M ′]] −→gp

C[M ′]2. M ≡ C[N ′] with N ′ ≡ (IF t λutM ′C λvt→⊥N ′′C)C and vt→⊥ does noto

ur in N ′′. We pro
eed as in the previous
ase (but we use the pruningrule ii) instead of i)).3. M ≡ C[N ′] with N ′ ≡ (∃−x,A,CM
′∃xA λxρuAN ′′C)C and uA does noto

ur in N ′′. We pro
eed as in point 1. (and we use the pruning rule iii)instead of i)).Theorem 5.3.3. For all n, M and N , if M n+1
−→p N then M −→+

gp N .Proof. By indu
tion on n. If n = 0 we have M −→p N and thus M −→gp Nby Theorem 5.3.2, andM −→+
gp N by de�nition of −→+

gp. Now assume that forea
hM andN , ifM n+1
−→p N thenM −→+

gp N and assumeM ′ −→p M
n+1
−→p N

′,for some �xedM ′,M and N ′. Instantiating the indu
tion hypothesis onM and
N ′, we have M −→+

gp N
′. By Theorem 5.3.2 if M −→p M then M −→gp Mand hen
e M −→+

gp M and by transitivity M −→+
gp N

′.Corollary 5.3.4. For all M and N , if M −→+
p N then M −→+

gp N .On the other hand, it is not true that we
an mimi
 any redu
tion performedby −→gp with −→p (for this reason the impli
ation in Theorem 5.3.2 is not anequivalen
e). Consider for example the following proof:
IF t

|M

A

|N

A
t→ A

|N ′

A
(t→ ⊥)→ A

Aand assume that the assumption ut o

ur in N but not in M , that vt→⊥o

ur in N ′ and �nally that no open assumption of M is dis
harged in N .Under these
onditions the pruning rules (Figure 3.1) are not appli
able. Forthe
ontrary using the general pruning rules (Figure 5.1) the above proof redu
eto the simplest: 57

5 Generalizing Pruning
|M

A5.4 Case StudyConsider the predi
ate ψ ⊆ N ×N su
h that ψ(x, y) ⇔ x2 ≤ y. We proposethe following original derivation of the fa
t that for ea
h natural x there exista natural y su
h that ψ(x, y). Through the proof we will make use of the fol-lowing axioms: ∀xψ(x, x2) and ∀x(x ≤ 1)→ ψ(x, 2).
[u : x > 1→ ∃yψ(x, y)]

(x > 1→ ∃yψ(x, y))→ (x > 1→ ∃yψ(x, y))

∀z(x > 1→ ∃yψ(x, y))→ (x > 1→ ∃yψ(x, y))

Indz, (x>1)→∃yψ(x,y)

∀xψ(x,x2) x

ψ(x, x2)
∃+

∃yψ(x, y)

x > 1→ ∃yψ(x, y)

∀z(x > 1)→ ∃yψ(x, y)

∀x(x ≤ 1)→ ψ(x, 2) x

(x ≤ 1)→ ψ(x, 2) [v : x ≤ 1]

ψ(x, 2)
∃+

∃yψ(x, y)

x ≤ 1→ ∃yψ(x, y)

IF x > 1

[u : x > 1]

∀z(x > 1)→ ∃yψ(x, y) x

(x > 1)→ ∃yψ(x, y)

∃yψ(x, y)

x > 1→ ∃yψ(x, y)

∃yψ(x, y)

∀x∃yψ(x, y)The
ode extra
ted from the previous proof is the following:
λx if (x > 1) ((RN

N x2 λn, p. p)x) 2Obviously, for x > 1, this
ode perform useless
omputation in order to
ompute
x2, but more important, no redundan
ies are dete
t in the proof by the pruning58

5.4 Case Studyrules (Figure 3.1). In fa
t, both the assumption variables u and v o

ursrespe
tively in the left and right bran
hes of the
ase distin
tion.On the other hand we see that in the base
ase of the indu
tion we provethe formula ∃yψ(x, y) without using u and none of the assumptions used inthis subproof is later on dis
harged through the path to the other o

urren
esof ∃yψ(x, y) at the end of the
ase distin
tion. Under these
onditions we
anapply the general pruning rule (Figure5.1) to our proof obtaining:
∀xψ(x, x2) x

ψ(x, x2)

∃yψ(x, y)

∀x∃yψ(x, y)From whi
h it is possible to extra
t the simpli�ed
ode: λxx2.

59

5 Generalizing Pruning

60

6 String Alignment6.1 Introdu
tionA widely studied problem in Bioinformati
s is to �nd the distan
e between twogiven sequen
es of symbols (over an alphabet Σ). The two main te
hniquesdeveloped in this area to solve this problem turned out to be the edit distan
eand the similarity of strings [20℄.Edit distan
e fo
us on the transformation of the �rst list into the se
ondone using a restri
ted set of operations (insertion I , deletion D, mat
hing M ,and repla
ement R) Given two lists we de�ne the edit distan
e problem thetask of �nding the minimum number of insertions, deletions and substitutionsoperations to transform the �rst list to the se
ond one. On
e the right set ofbasi
 operation is found, this is stored in a string
alled edit trans
ript (buildon the alphabet I ,D,M , and R) that will
onstitute the output of the problem(Figure 6.1, line 1).The other way to measure the distan
e of lists is the so
alled similaritymethod. The idea is based on the
on
ept of string alignment. Given twostrings l1 and l2, an alignment of l1 and l2 is obtained inserting a new symbol�_� (named spa
e) (that does not belong to Σ) into the strings l1 and l2 andthen pla
ing the two strings one above the other, so that every
hara
ter orspa
e in either list is opposite a unique
hara
ter or spa
e in the other list,and no spa
e is opposite to another spa
e (Figure 6.1, lines 2,3). We indi
ateby (δ1, δ2) a general alignment the lists l1 and l2. Here δ1 and δ2 are stringsover Σ ∪ {_}. Afterwards the similarity between l1 and l2 is de�ned as thegreatest E((δ1, δ2)) with E fun
tion with values in N that asso
iate a s
ore toea
h alignment (δ1, δ2).In
omputational biology the similarity of l1 and l2 is e�
iently solved usingdynami
 programming; in fa
t the problem
an be solved storing in a matrix
M , of dimension |l1|× |l2|, the values of the similarities between all the pre�xesof length i ≤ |l1| and j ≤ |l2| of l1 and l2. This
ould be seen as a sort ofgeneralization of the Fibona

i problem to 2-dimensions.In this work we will formalize the similarity problem in the proof assistantMinlog. We will extra
t, from the proof of the existen
e of an alignmentwith highest s
ore between two given strings the naive exponential programto
ompute the similarity of strings. Afterwards, we will propose a method totransform the given proof into another from whi
h it will be possible to extra
t61

6 String Alignment
1 : R I M D M D M M I
2 : v _ i n t n e r _
3 : w r i _ t _ e r s

(6.1)Figure 6.1: Alignment (lines 2, 3) and edit-trans
ript (line 1) of the strings wintnerand writers. It is possible to note how the two methods are equivalent: amismat
h in the alignment
orrespond to a repla
ement in the edit tran-s
ript, a spa
e in the alignment
ontained in the �rst string
orrespondto the insertion of the opposite
hara
ter in �rst string, and a spa
e inthe alignment
ontained in the se
ond string
orrespond to a deletion ofthe opposite
hara
ter in the �rst string.a more e�
ient program, in dynami
 programming style.We propose a method that we name list as memory. The idea
onsist in eval-uating a su�
ient amount of data in advan
e so that the extra
ted algorithmgets to reuse it instead of re
omputing it ea
h time it is needed. This is doneby introdu
ing in the proof a list of ad-ho
 axioms. The method we propose
annot be applied automati
ally to an arbitrary proof; it
an be seen more asa general s
hema (that has to be instantiated
ase by
ase) to follow in orderextra
t dynami
 programs from proofs.This
hapter is organized as follow: in se
tion 6.1.1 we formalize the proof ofthe existen
e of an alignment with highest s
ore between lists and we extra
ta program from the proof. The designed solution enumerate all the alignmentsin order to �nd the right one, and this generate an exponential running timeextra
ted algorithm. In se
tion 6.1.2 we present a proof transformation toapply to the proof presented in se
tion 6.1.1 in order to extra
t an algorithm indynami
 programming style. In se
tion 6.2, we make some �nal
onsiderationsover the presented method and future works.6.1.1 The String Similarity ProblemLet l1 and l2 be two lists built on the alphabet Σ, with Σ equal to N>0 (theset of naturals stri
tly higher than zero), 0 6∈ Σ be the spa
e
hara
ter and
α : N×N→ Z be the s
oring fun
tion on a pair of symbols.Given two lists l1 and l2 over Σ, in Figure 6.2 we give an indu
tive de�nitionof the family of sets Al1,l2i,j , the set of the alignments between the �rst i ≤ |l1|
hara
ters of l1 and j ≤ |l2|
hara
ters of l2.In Figure 6.2 and in the rest of the
hapter we make use of the following
onventions: n, m, i and j ranges over N, |l| is the length of l, l[i] is the i+ 1-th
hara
ter of l, head(a :: l) = a, tail(a :: l) = l, pren(l) is a partial operator62

6.1 Introdu
tion(A0)
((:), (:)) ∈ A

l1,l2
0,0

(A1)
(0j+1, prej+1(l2)) ∈ A

l1,l2
0,j+1(A2)

(prei+1(l1), 0i+1) ∈ A
l1,l2
i+1,0

(δ1, δ2) ∈ A
l1,l2
i+1,j(A3)

(δ1 · (0), δ2 · l2[j]) ∈ A
l1,l2
i+1,j+1

(δ1, δ2) ∈ A
l1,l2
i,j+1(A4)

(δ1 · l1[i], δ2 · (0)) ∈ A
l1,l2
i+1,j+1

(δ1, δ2) ∈ A
l1,l2
i,j(A5)

(δ1 · l1[i], δ2 · l2[j]) ∈ A
l1,l2
i+1,j+1Figure 6.2: Indu
tion de�nition of the alignments Al1,l2

|l1|,|l2|(E0)
E[((:), (:))]α = 0

(E1)
E[(0j , prej(l2))]α =

Pj
k=1

α(0, l2[k])(E2)
E[(prei(l1), 0i)]α =

Pi
k=1 α(l1[k],0)

E[(δ1, δ2)] = n(E3)
E[(δ1 · (0), δ2 · l2[j])]α = n+ α(0, l2[j])

E[(δ1, δ2)] = n(E4)
E[(δ1 · l1[i], δ2 · (0))]α = n + α(l1[i], 0)

E[(δ1, δ2)] = n(E5)
E[(δ1 · l1[i], δ2 · l2[j])]α = n+ α(l1[i], l2[j])Figure 6.3: Indu
tion de�nition of the evaluator fun
tion Ethat return the �rst n elements of a list l, 0n is the list
omposed by a sequen
eof n zeros, l · g the operation of appending the list g to l and (a1, . . . , an) is thelist
omposed by ai ∈ N.We asso
iate a s
ore to ea
h alignment by the evaluator fun
tion E : Al1,l2

|l1|,|l2|
→

(N×N→ N)→ N de�ned on the indu
tive stru
ture of Al1,l2
|l1|,|l2|

(Figure 6.3).The fun
tion E take as input an alignment, a s
oring fun
tion and return thes
ore of the input alignment. Our goal is to �nd the alignment in Al1,l2|l1|,|l2|
withhighest s
ore (this s
ore will be the similarity between l1 and l2) with respe
tto a given s
oring fun
tion α.RemarkMany problems
an be modeled as spe
ial
ase of similarity by
hoos-ing an appropriate s
oring fun
tion α. Let
onsider (below) the de�nition ofthe longest
ommon subsequen
e problem.De�nition 6.1.1. A subsequen
e of a string l is spe
i�ed by a list of indi
es63

6 String Alignment
i1 < i2 < . . . < ik for some k ≤ |l|. The subsequen
e spe
i�ed by this list is thestring l[i1]l[i2] . . . l[ik]De�nition 6.1.2 (Longest Common Subsequen
e Problem). Given two strings
l1 and l2 a
ommon subsequen
e of l1 and l2 is a sequen
e that appear both in
l1 and l2 as a subsequen
e. The Longest Common Subsequen
e Problem
onsistin �nding the longest
ommon subsequen
e between l1 and l2For example, 145 is a
ommon subsequen
e of 114666725 and 1124375 but
11475 is the longest
ommon ones. The solution of the longest
ommon sub-sequen
e problem
an be obtained from the solution of the similarity of listsproblem by
hoosing a s
oring fun
tion α that s
ores a �1� for ea
h mat
h and�0� for ea
h mismat
h or presen
e of a 0 (the result will depend by the im-plemented strategy to solve the problem sin
e there
ould be more alignmentswith the same highest s
ore).Now we show formally that given a
ouple of lists l1, l2 over Σ there existsalways an alignment in Al1,l2

|l1|,|l2|
of maximum s
ore with respe
t to α.Theorem 6.1.1.

∀l1, l2∃δ1, δ2((δ1, δ2) ∈ A
l1,l2
|l1|,|l2|

)∧

∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ A

l1,l2
|l1|,|l2|

→ E(δ′1, δ
′
2) ≤ E(δ1, δ2))Proof. We assume l1 and l2. In order to prove the thesis we prove the followingstatement:

∀n,m∃δ1, δ2((δ1, δ2) ∈ A
l1,l2
n,m)∧

∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈ A

l1,l2
n,m)→ E(δ′1, δ

′
2) ≤ E(δ1, δ2)Obviously we obtain the thesis instantiating this assertion on |l1| and |l2|.From now on we will write Q(δ1, δ2, n,m) for

((δ1, δ2) ∈ A
l1,l2
n,m) ∧ ∀δ′1, δ

′
2((δ

′
1, δ

′
2) ∈ A

l1,l2
n,m)→ E(δ′1, δ

′
2) ≤ E(δ1, δ2)We go by indu
tion on n and m.Base Case[n = 0℄ We prove

∀m∃δ1, δ2Q(δ1, δ2, 0,m)by
ase distin
tion over m:Base Case[n = 0, m = 0℄: Q((:), (:), 0, 0) by rule (A0).Indu
tion Step[n = 0, m+ 1℄We have Q(0m+1, prem+1(l2), 0,m+ 1) by rule (A1).Indu
tion Step[n+ 1℄ We now assume
∀m∃δ1, δ2Q(δ1, δ2, n,m) (6.2)64

6.1 Introdu
tionand we must show
∀m∃δ1, δ2Q(δ1, δ2, n+ 1,m)By indu
tion over m:Base Case[n+ 1, m = 0℄

Q(pren+1(l1), 0
n+1, n+ 1, 0) by (A2)Indu
tion Step[n+ 1, m+ 1℄: Assume

∃δ1, δ2Q(δ1, δ2, n+ 1, m) (6.3)we have to prove
∃δ1, δ2Q(δ1, δ2, n+ 1, m+ 1)By (6.3) there exists δ′1,δ′2 su
h that (δ′1, δ

′
2) ∈ A

l1,l2
n+1,m and su
h that forevery (δ1, δ2) ∈ A

l1,l2
n+1,m

E(δ1, δ2) ≤ E(δ
′
1, δ

′
2) (6.4)Instantiating (6.2) on m+1 there exists δ′′1 , δ′′2 su
h that (δ′′1 , δ

′′
2) ∈ Al1,l2n,m+1 andfor every (δ1, δ2) ∈ A

l1,l2
n,m+1

E(δ1, δ2) ≤ E(δ
′′
1 , δ

′′
2) (6.5)Instantiating (6.2) on m there exists δ′′′1 , δ

′′′
2 su
h that (δ′′1 , δ

′′
2) ∈ Al1,l2n,m and forevery (δ1, δ2) ∈ A

l1,l2
n,m

E(δ1, δ2) ≤ E(δ
′′′
1 , δ

′′′
2) (6.6)Now we have to dispat
h over the following
ases:ip1. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]):Then, only 2
ases are possible:ip1.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): We
laim Q(δ′1 ·

(0 :), δ′2 · l2[m + 1], n + 1,m + 1). This is proved dispat
hing over (δ1, δ2) in
Al1,l2n+1,m+1. In fa
t for every (δ1, δ2) ∈ A

l1,l2
n+1,m+1 only three
ases are possibleip1.1.1(δ1, δ2) = (δ∗1 · (0 :), δ∗2 · l2[m + 1])

E(δ1, δ2) = E(δ∗1 · (0 :), δ∗2 · l2[m+ 1])

= E(δ∗1 , δ
∗
2) + α((0 :), l2[m+ 1]) by(E3)

≤ E(δ′1, δ
′
2) + α((0 :), l2[m + 1]) by (6.4) 65

6 String Alignment
= E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by(E3)ip1.1.2 (δ1, δ2) = (δ∗1 · l1[n + 1]), δ∗2 · (0 :)): So,

E [(δ1, δ2)] = E(δ∗1 · l1[n+ 1], δ∗2 · (0 :))

= E(δ∗1 , δ
∗
2) + α(l1[n+ 1], (0 :)) by(E4)

≤ E(δ′′1 , δ
′′
2) + α(l1[n+ 1], (0 :)) by (6.5)

= E(δ′′1 · l1[n+ 1], δ′′2 · (0 :))

≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by (ip1)ip1.1.3 (δ1, δ2) = (δ∗1 · l1[n + 1]), δ∗2 · l2[m + 1])

E [(δ1, δ2)] = E(δ∗1 · l1[n+ 1], δ∗2 · l2[m+ 1])

= E(δ∗1 , δ
∗
2) + α(l1[n+ 1], l2[m+ 1]) by(E5)

≤ E(δ′′′1 , δ
′′′
2) + α(l1[n+ 1], l2[m+ 1]) by (6.6)

= E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])

≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]) by (ip1.1)ip1.2 E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): We
laimQ(δ′′′1 ·

(l1[n + 1]), δ′′′2 · l2[m + 1], n + 1, m + 1). The proof of this
laim is done, as inthe previous
ase, dispat
hing over (δ1, δ2) in Al1,l2n+1,m+1.ip2 E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): Then there exists onlytwo
ases:ip2.1 E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We
laimQ(δ′′1 ·

l1[n+ 1], δ′′2 · (0 :), n+ 1,m+ 1).ip2.2 E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We
laim Q(δ′′′1 ·

l1[n+ 1], δ′′′2 · l2[m+ 1], n+ 1, m+ 1). The proofs of the previous two
laims isdone dispat
hing over (δ1, δ2) in Al1,l2n+1,m+1.The theorem 6.1.1
an be simply modi�ed in order to
onstru
t not only thealignment with highest s
ore but also the s
ore itself (that is the similarity).The program extra
ted from the previous proof is the following:[l,g,alpha℄(Re
 nat=>nat=>(list nat �� list nat))([m℄ if (m=0) ((:), (:))((zeros (m+1)), (pre (m+1) g))([n, f: (nat=>(list nat �� list nat))℄(Re
 nat=>(list nat, list nat))((pre (n+1) l), (zeros (n+1)))([m,(d_1',d_2')℄[LET (d_1'', d_2'') = (f (m+1)) IN66

6.1 Introdu
tion[LET (d_1''', d_2''') = (f m) IN[IF ((E (d_1'':+: l[n+1℄) 0 alpha) <=(E (d_1':+: (:)) (d_2':+: g[m+1℄) alpha))[IF ((E (d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄) alpha)<=(E (d_1':+: (:)) (d_2':+: g[m+1℄) alpha))((d_1':+:(:)), (d_2':+: g[m+1℄))((d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄))℄[IF ((E (d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄) alpha)<=(E (d_1'':+: l[n+1℄) (d_2'':+: (:)) alpha))((d_1'':+: l[n+1℄) (d_2'' :+: (:)))((d_1''':+:l[n+1℄) (d_2''':+:g[m+1℄))℄℄℄℄)))|l||g|Here we indi
ated by (pre n) the operator pren, by (zeros n) the string 0n,by E the fun
tion E and by alpha the s
oring fun
tion α.Complexity of the Extra
ted Algorithm: The
omplexity of the ex-tra
ted program
an be modeled by the following re
urren
e:
T1(n,m) =



k1m n = 0
T2(m) n > 0with

T2(m) =

8

<

:

k2n m = 0
T2(m− 1) + T1(n− 1, m)+
T1(n− 1, m− 1) + 2k3max(n+m)

m > 0with 2k3max(n+m)
ost for the severals appli
ation of the append operationin the body of the nested re
ursion. The
omplexity of the extra
ted programthen will be given by T1(|l1|, |l2|). Given n > 0 and m > 0 the unfoldingof T1(n,m)
an be represented as a ternary tree where the lowest bran
h hashigh m and the highest n+m. Thus the extra
ted programs has a number ofre
ursive
alls in Ω(3min(n,m)).6.1.2 List as Memory ParadigmTo drasti
ally redu
e the
omplexity of our extra
ted program, we developeda method that we named list as memory. The idea
onsist in evaluating asu�
ient amount of data in advan
e so that the extra
ted algorithm gets toreuse it instead of re
omputing it ea
h time it is needed.The basi
 idea is still to prove Theorem6.1.1 by a double indu
tion (beforeon the length |l1| of the �rst list and by a nested indu
tion on |l2| length of these
ond list) but this time using an additional data stru
ture w, a FIFO (FirstIn First Out) list where we store the alignments with highest s
ore
omputedin the previous steps. The list w will be built and updated during the proof67

6 String Alignmentand it will
onstitute part of the witness of the new proof together with thealignment of highest s
ore.Thus assuming we want to
ompute the best alignment of the �rst n + 1
hara
ters of l1 and m+1
hara
ter of l2, we will assume w to be the followinglist of alignments:
(δ1, δ2)

l1,l2
n,m , (δ1, δ2)

l1,l2
n,m+1, . . . (δ1, δ2)

l1,l2
n,|l2|

(δ1, δ2)
l1,l2
n+1,0, (δ1, δ2)

l1,l2
n+1,1 . . . , (δ1, δ2)

l1,l2
n+1,mwith (δ1, δ2)

l1,l2
i,j alignment of highest s
ore between the �rst i
hara
ters of l1and j
hara
ters of l2. At this point the intended alignment will be
omputed
onsidering the head of w, (δ1, δ2)

l1,l2
n,m , the head of the tail of w, (δ1, δ2)

l1,l2
n,m+1and the re
ursive
all of the nested indu
tion on l2 (the alignment of highests
ore between the �rst n+1 element of l1 and m elements of l2, that here o

uras last element in w) On
e the new alignment is
omputed the list w has to beproperly updated.So in general the idea is to repla
e the double instantiation of the indu
tionhypothesis (6.2) in Theorem 6.1.1 (that
orrespond to the two re
ursive
allsin the extra
ted algorithm) with just a reading operation of the head and thehead of the tail of our memory list w.In order to use su
h memory list in our proof we have to modify the originalproof of the Theorem 6.1.1 in an appropriate way. More pre
isely we introdu
ethe predi
ate MEM ⊆ L(N>0)× L(N>0)×N×N × L(L(N) × L(N)) where,

• (MEM l1 l2 0 v w), stands for �in w are stored the the v + 1 alignments
(0k, prek(l2)) with k = 0, . . . v� (here we assume 00 = (:) and pre0(l2) =
(:)) and

• (MEM l1 l2 (u+ 1) v w), stands for �in w are stored the |l2|+ 2 alignmentsof highest s
ores between the �rst j and k
hara
ters of l1 and l2 with
(j, k) ∈ {(u, v), . . . , (u, |l2|), (u+ 1, 0), . . . , (u+ 1, v)}and the following set of axioms spe
ifying the ne
essary operations to buildand
orre
tly update the memory list w:[I℄(Initialization),

∀l1, l2,m,w(MEM l1 l2 0m (initml2))with
(initml2) =



((:), (:)) m = 0
((init (m− 1)) : + : (0m, prem l2)) 0 < m[H℄ (Head of the list):68

6.1 Introdu
tion
∀l!, l2, n,m,w(MEM l1 l2 (n+ 1)mw)→

Q(π0(headw), π1(headw), n,m)[HT℄ (Head of the tail):
∀l!, l2, n,m,w(m < |l2|)→ (MEM l1 l2 (n+ 1)mw)→

Q(π0(head(tailw)), π1(head(tailw)), n,m+ 1)[CL℄ (Change Line):
∀l1, l2, n,m,w(MEM l1 l2 n |l2|w)→

(MEM l1 l2 (n+ 1) 0 ((tailw) : + : ((pren+1 l1), 0
n+1))[OSOR1℄ (One Step On the Right 1):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′1 · (0 :), δ′2 · l2[m+ 1])))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).[OSOR2℄ (One Step On the Right 2):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) � E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).[OSOR3℄ (One Step On the Right 3):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) ≤ (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′1 · l1[n+ 1], δ′′2 · (0 :))))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).[OSOR4℄ (One Step On the Right 4):

∀l1, l2, n,m, δ
′
1, δ

′
2, w(m < |l2|)→ (Qδ′1 δ

′
2 nm)→

(MEM l1 l2 nmw)→
(E(δ′′1 · l1[n+ 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m+ 1]))→
(E(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]) � (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))→
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))with (δ′′′1 , δ

′′′
2) = (headw) and (δ′′1 , δ

′′
2) = (head (tailw)).Theorem 6.1.2. [I℄ → [CL℄ → [H℄ → [HT℄ → [OSOR1℄ → [OSOR2℄ →[OSOR3℄ → [OSOR4℄ → ∀l1, l2(∃δ1, δ2(δ1, δ2) ∈ Al1,l2|l1|,|l2|

∧ ∀δ′1, δ
′
2((δ

′
1, δ

′
2) ∈69

6 String Alignment
Al1,l2|l1|,|l2|

→ E(δ′1, δ
′
2) ≤ E(δ1, δ2))) ∧ ∃w(MEM l1 l2 |l1| |l2|w)Sket
h. Assume [I℄, [CL℄, [H℄, [HT℄, [OSOR1℄, [OSOR2℄, [OSOR3℄, [OSOR4℄

l1 and l2. In order to prove the theorem 6.1.2 we prove the following assertion:
∀n,m(∃δ1, δ2(δ1, δ2) ∈ A

l1,l2
n,m ∧

∀δ′1, δ
′
2(δ

′
1, δ

′
2) ∈ A

l1,l2
n,m → E(δ

′
1, δ

′
2) ≤ E(δ1, δ2))∧

∃w(MEM l1 l2 nmw)By indu
tion on n and m.Base Case[n = 0℄ We prove
∀m∃δ1, δ2Q(δ1, δ2, 0, m) ∧ ∃w(MEM l1 l2 0mw)by
ase distin
ion over m:Base Case[n = 0, m = 0℄

Q((:), (:), 0, 0) ∧ ∃w(MEM l1 l2 0 0 (init0 l2))) by rule (A0) and [I℄.Indu
tion Step[n = 0, m+ 1℄We have Q(0m+1, prem+1(l2), 0,m+ 1) ∧
∃w(MEM l1 l2 0 (m+ 1) (init (m+ 1) l2)) by rule (A1) and [I℄.Indu
tion Step[n+ 1℄We now assume

∀m∃δ1, δ2Q(δ1, δ2, n,m) ∧ ∃w(MEM l1 l2 nmw) (6.7)and we show
∀m∃δ1, δ2Q(δ1, δ2, n+ 1, m) ∧ ∃w(MEM l1 l2 (n+ 1)mw)By indu
tion over m:Base Case[n + 1, m = 0℄ Q(pren+1(l1), 0

n+1, n + 1, 0) by (A2). Then in-stantiating (6.7) on |l2| we have w su
h that ∃w(MEM l1 l2 n |l2|w) and by [CL℄we have (MEM l1 l2 (n+ 1) 0 ((tailw) · ((pren+1 l1), 0
n+1)).Indu
tion Step[n+ 1, m+ 1℄ Assume

∃δ1, δ2Q(δ1, δ2, n+ 1, m) ∧ ∃w(MEM l1 l2 (n+ 1)mw) (6.8)we prove
∃δ1, δ2Q(δ1, δ2, n+ 1, m+ 1) ∧ ∃w(MEM l1 l2 (n+ 1) (m+ 1)w)By (6.8) there exists δ′1,δ′2 su
h that (δ′1, δ

′
2) ∈ A

l1,l2
n+1,m and su
h that for every

(δ1, δ2) ∈ A
l1,l2
n+1,m

E(δ1, δ2) ≤ E(δ
′
1, δ

′
2) (6.9)70

6.1 Introdu
tionBy (6.8) let w be su
h that (MEM l1 l2 (n + 1)mw). By [HT℄, we have that
(δ′′1 , δ

′′
2) ∈ Al1,l2n,m+1 and for every (δ1, δ2) ∈ A

l1,l2
n,m+1

E(δ1, δ2) ≤ E(δ
′′
1 , δ

′′
2) (6.10)with (δ′′1 , δ

′′
2) = (head(tailw)).By [H℄ we have that that (δ′′′1 , δ

′′′
2) ∈ Al1,l2n,m and for every (δ1, δ2) ∈ A

l1,l2
n,m

E(δ1, δ2) ≤ E(δ
′′′
1 , δ

′′′
2) (6.11)with (δ′′1 , δ

′′
2) = (headw). Now we have to dispat
h over the following
ases:ip1. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): Then, only 2
ases arepossible:ip1.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′1 · (0 :), δ′2 · l2[m + 1]): We
laim

Q(δ′1 · (0 :), δ′2 · l2[m+ 1], n+ 1, m+ 1)and
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′1 · (0 :), δ′2 · l2[m+ 1])))This is proved dispat
hing over (δ1, δ2) in Al1,l2n+1,m+1 and by [OSOR1℄, ip1 andip1.1.ip1.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′1 · (0 :), δ′2 · l2[m + 1]): We
laim

Q(δ′′′1 · (l1[n+ 1]), δ′′′2 · l2[m+ 1], n+ 1, m+ 1)and
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1])))This is proved dispat
hing over (δ1, δ2) in Al1,l2n+1,m+1 and by [OSOR2℄, ip1 andip1.2ip2. E(δ′′1 · l1[n + 1], δ′′2 · (0 :)) � E(δ′1 · (0 :), δ′2 · l2[m + 1]):Then there exists onlytwo
ases:ip2.1. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) ≤ E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We
laim

Q(δ′′1 · l1[n+ 1], δ′′2 · (0 :), n+ 1, m+ 1)and
(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′1 · l1[n+ 1], δ′′2 · (0 :)))Proved dispat
hing over (δ1, δ2) in Al1,l2n+1,m+1 and by [OSOR3℄, ip2 and ip2.171

6 String Alignmentip2.2. E(δ′′′1 · l1[n + 1], δ′′′2 · l2[m + 1]) � E(δ′′1 · l1[n + 1], δ′′2 · (0 :)): We
laim
Q(δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1], n+ 1,m+ 1)and

(MEM l1 l2 n (m+ 1) ((tailw) · (δ′′′1 · l1[n+ 1], δ′′′2 · l2[m+ 1]))Proved dispat
hing over (δ1, δ2) in Al1,l2n+1,m+1 and by proved by [OSOR4℄, ip2and ip2.2From the previous proof we
an extra
t the following program:[l,g,alpha℄(Re
 nat=>nat=>((list nat��list nat)��(list(list nat��list nat))([m℄ [if (m=0)(((:),(:)) , ((:),(:)))(((nZeros (m+1)), (nPrefix (m+1) g)),(init (m+1) g)([n,f:(nat=>((list nat��list nat)��(list(list nat��list nat)))℄(Re
 nat=>((list nat��list nat)��(list(list nat��list nat)))LET w = (f |g|) IN(((nPrefix (n+1) l), (nZeros (n+1))) ,((tail w):+:((nPrefix (n+1) l),(nZeros(n+1)))))([m,((d_1',d_2'),w)℄[LET (d_1'', d_2'') = (head (tail w)) IN[LET (d_1''', d_2''') = (head w) IN[IF((E (d_1'':+: l[n+1℄) 0 alpha) <=(E (d_1':+: (:)) (d_2':+: g[m+1℄) alpha))[IF((E(d_1''':+: l[n+1℄)(d_2''':+: g[m+1℄)alpha)<=(E (d_1':+: (:))(d_2':+: g[m+1℄) alpha))(((d_1':+:(:)),(d_2':+:g[m+1℄)),((tail w):+:(d_1':+:(:)),(d_2':+:g[m+1℄)))(((d_1''':+: l[n+1℄)(d_2''':+:g[m+1℄)),((tail w):+:(d_1''':+: l[n+1℄)(d_2''':+:g[m+1℄)))℄[IF((E(d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄)alpha)<= (E(d_1'':+:l[n+1℄) (d_2'':+: (:))alpha))(((d_1'':+: l[n+1℄)(d_2'' :+: (:))),((tail w):+:((d_1'':+: l[n+1℄) (d_2'':+:(:)))))(((d_1''':+: l[n+1℄) (d_2''':+: g[m+1℄)),((tail w):+:((d_1''':+:l[n+1℄) (d_2''':+:g[m+1℄))))℄℄℄℄)))|l| |g|72

6.2 Con
lusions6.1.2.1 Complexity ConsiderationsThe
omplexity of the extra
ted program
an be modeled by the followingre
urren
e (here we have as additional parameter the length of g):
T1(n,m) =



k1m n = 0
T2(n,m) n > 0with

T2(n,m) =



T1(n− 1, |g|) m = 0
T2(n,m− 1) + 2k3max(n+m) m > 0Given |l| > 0 and |g| > 0 the unfolding of T1(|l|, |g|)
an be represented bythe following |l| × |g| matrix of list of
alls:

T1(|l|, |g|) → T2(|l|, |g|) → . . . → T2(|l|, 0)
→ T1(|l|−1, |g|) → T2(|l| − 1, |g|) → . . . → T2(|l| − 1, 0)...
→ T1(1, |g|) → T2(1, |g|) → . . . → T2(1, 0)and being the
omplexity of ea
h
all 2k3max(|l| + |g|) then T1(|l|, |g|) is in
O(|l||g|max(|l||g|))6.2 Con
lusionsWith an opportune modi�
ation of the alignment de�nition in Figure 6.2 we
an avoid the
ost relative to the appli
ations of the append fun
tion. In thisway, the extra
ted program from the e�
ient implementation of the existen
eof an alignment with highest s
ore will have a
omplexity in O(|l||g|). Futurework will regards a sort of automation of the presented method.

73

6 String Alignment

74

7 Tail Re
ursion7.1 Introdu
tionLetM be a proof by indu
tion over n (natural number) of the property ∀nA(n),and let, by the Proofs-as-Program paradigm, [[M]] be the (re
ursive)
ontent of
M . In this
hapter we will try to answer the following question: How to turnautomati
ally M into another proof, say N , with tail re
ursive
ontent? PennyAnderson in her Phd thesis [1℄ used Frank Pfenning's Insertion Lemma [30℄proof transformation, in order to extra
t tail re
ursive programs from proofs.This method, although parti
ularly interesting, is user dependent. What wewill do here is to present and develop in a formal setting an idea �rst roughlyintrodu
ed in [9℄ (originated from an informal
hat the author had with AndrejBauer in 2004, reported in the Bauer's mathemati
al blog1) in order to extra
ttail re
ursive programs from proofs but in a
ompletely automati
 fashion.Let us
onsider the following program, written in an ML-like syntax:let re
 FACT n = if n = 0 then 1 else n * FACT (n - 1)FACT
omputes the fa
torial of n, for any positive integer n. But this imple-mentation is not tail re
ursive be
ause in ea
h step of the
omputation the
ompiler has to store (on a sta
k) the
ontext (n ∗ []), evaluate FACT (n-1)
7→ v, and returns (n ∗ v). It is well known that FACT
an be turned into asimpler fun
tion where it is not ne
essary to sta
k any
ontext information:let re
 FACT' n =let re
 FACT'' n m y =if n = 0 then y else FACT'' (n - 1) (m + 1) ((m + 1) * y)in FACT'' n 0 1Now assume FACT to be the
omputational
ontent of the proof by indu
tion
M , with end formula ∀nA(n), that states that for ea
h natural n there exists
n!. From whi
h proof is it possible to extra
t FACT'? Both programs FACTand FACT'
ompute the fa
torial fun
tion, so FACT' should be the
ontent of anappropriate proof of ∀nA(n) as well. So the problem is shifted in understandingwhi
h logi
al property FACT� has. Given a natural n, (FACT�n) is a fun
tion1http://math.andrej.
om/2005/09/16/proof-ha
king/ 75

7 Tail Re
ursionthat takes the natural m, the witness y for A(m) and returns a witness for
A(n+m).Hen
e given n, (FACT�n 0 1) is the witness for A(n) as expe
ted. Intuitively,we expe
t FACT� to be the
omputational
ontent of some proof of the formula
∀n,m(A(m)→ A(n+m))Will show that this is the right intuition to follow for the automati
 genera-tion of tail re
ursive programs.This
hapter is organized as follows. In se
tion 7.2 we address two prooftransformations in order to extra
t
ontinuation and a

umulator based tailre
ursive programs, in se
tion 7.3 we show that there exists a formal
onne
tionbetween the two proof transformations presented in se
tion 7.2 and �nally, inse
tion 7.4 we apply our methods to a well known problem in bioinformati
s,the Maximal S
oring Subsequen
e Problem.7.2 Proof ManipulationThis se
tion is devoted to expose the proofs transformation we have in mind inorder to generate (by extra
tion) more e�
ient programs starting with a givenindu
tive proof on natural numbers. How the te
hniques
an be extended toother data types is dis
ussed in the
on
lusion.De�nition 7.2.1 (Tail Expressions [22℄). The tail expressions of t ∈ Terms,are de�ned indu
tively as follows:1. If t ≡ (λx.e) then e is a tail expression.2. If t ≡ (if t r s) is a tail expression, then both r and s are tail expressions.3. If t ≡ (Rι r s) is a tail expression, then r and s are tail expressions.4. Nothing else is a tail expression,where ι ∈ {N,L(ρ)}.De�nition 7.2.2. A tail
all is a tail expression that is a pro
edure
all.De�nition 7.2.3 (Tail Re
ursion [23℄). A re
ursive pro
edure is said to betail re
ursive when it tail
alls itself or
alls itself indire
tly through a series oftail
alls.Now, let F be the following indu
tion proof over N:

|M

A(0)

|N

∀n(A(n)→ A(n+ 1))

∀nA(n)The
ontent of F is (RσN b f) with b and f
ontent of the proofs M and N .76

7.2 Proof Manipulation7.2.1 Continuation Based Tail Re
ursionGiven the pro
edure (RσN b f) de�ned in the previous se
tion, let Λ be the term:
R

(σ→σ′)→σ′

N
(λk.kb)(λn, p, k. p λu.k(f nu))In Λ, the �rst input parameter, whi
h has type (σ → σ′). is
alled a
on-tinuation; Λ is a fun
tion with just one tail re
ursive
all and a fun
tionala

umulator parameter k with the following property: for ea
h n, at the i-th(0 < i ≤ n) step of the
omputation of (Λn (λx.x)) the
ontinuation has theform λu.(f (n − 1) (. . . (f (n − i)u) . . .)). At the n-th step the
ontinuation

λu.(f (n− 1) (. . . (f 0u) . . .)) is applied to the term b and returns. We see thatsu
h returned value
orresponds to (RσN b f)n. This fa
t is stated formally inthe following,Theorem 7.2.1. For ea
h natural n:
Λn =Rηβ λk

σ→σ′

. k((RσN b f)n)Proof. By indu
tion over n:
n = 0

Λ0 =Rηβ λk.kb

=Rηβ λk. k((RσN b f)0)

n+ 1

Λ (n+ 1) =Rηβ (λn, p, k. p λu.k(f nu))n (Λn)

=Rηβ λk.(Λn)λu.k(f nu)

=Rηβ λk.(λk.k((RσN b f)n))λu.k(f nu) (by IH)
=Rηβ λk.(λu.k(f nu))((RσN b f)n)

=Rηβ λk.k(f n ((RσN b f)n))

=Rηβ λk.k((RσN b f)(n+ 1))Now, as expe
ted, when applied to the identity
ontinuation λx.x we getanother program in the same equivalen
e
lass:Corollary 7.2.2. λn.Λn (λx.x) =Rηβ (RσN b f)So we have at hand a better program. We still need to ensure it
an berea
hed, in an automati
 way, from another proof of the same given statement.77

7 Tail Re
ursionMore formally, assume we are given some proof term F , with extra
tion [[F]] =
(RσN b f), is it possible to �nd out another proof F ′ of the same statement,whi
h leads to the other program: [[F ′]] = (λn.Λn (λx.x)). This is the
hallengethat we will answer positively below.The key point is to understand the logi
al role of the
ontinuation parameterin Λ: given a natural n, at ea
h step i : n, . . . , 0 in
omputing (Λn (λx.x)),the
ontinuation is a fun
tion that takes the witness for A(i) and returns thewitness for A(i + m), for m su
h that i + m = n. So we expe
t Λ to be the
omputational
ontent of a proof with end formula:

∀n∀n
m((A(n)→ A(n+m))→ A(n+m)) (7.1)We observe that the
ounter m is introdu
ed to
ount how mu
h n is de
reasingduring the
omputation. So, as su
h, it plays a �logi
al� role (or
ommentaryrole if one prefers); in other words, it is irrelevant at the programming level, andshould be marked to be dropped out. To this end, we expli
itly underline the�hidden� role of m quantifying over it by the spe
ial non-
omputational quan-ti�er ∀n
[5℄[4℄. Let us prove the above statement (7.1), under the assumptionswe have proofs for both A(0) and ∀n(A(n)→ A(n+ 1)),Proposition 7.2.3. A(0)→ ∀n(A(n)→ A(n+1))→ ∀n∀n
m((A(n)→ A(n+
m))→ A(n+m))Proof. Assume b : A(0) and f : ∀n(A(n)→ A(n+ 1)). By indu
tion on n.
n = 0 We have to prove

∀n
m((A(0)→ A(m))→ A(m))So assume m and k : (A(0)→ A(m)). Apply k to b : A(0).
n+ 1 Assume n, the re
ursive
all p : ∀n
m((A(n)→ A(n+m))→ A(n+m)),

m, and the
ontinuation k : A(n+1)→ A(n+m+1). We have to prove:
A(n+m+ 1)Apply p to (m + 1) obtaining (p (m + 1)) : (A(n) → A(n + m + 1)) →

A(n+m+1). So, if we are able to prove the formula A(n)→ A(n+m+1),by some proof t, we
an just apply (p (m+ 1)) to t and we are done.So let us prove
A(n)→ A(n+m+ 1)Assume v : A(n). We apply k to (f n v).78

7.2 Proof ManipulationProposition 7.2.4. A(0)→ ∀n(A(n)→ A(n+ 1))→ ∀nA(n).Proof. Assume b : A(0), f : ∀n(A(n)→ A(n+ 1)). Given n, to prove A(n), weinstantiate the formula proved in Proposition 7.2.3 on b, f , n, 0 and A(n) →
A(n).The
ontent of the previous proof, that we name Ind_CONT, is the following:[b,f,n℄ (Re
 nat => (sigma => sigma) => sigma)([k℄(k b))([n,p,k℄ p ([u℄ k (f n u)) n ([x℄x))Noti
e that, although the fun
tional parameter in Λ is a
ontinuation, Λ isnot of the kind provided alongside a CPS-transformation of the re
ursion overnaturals s
hema. In fa
t f and b are not altered in our transformation andthey
ould
ontain bad expressions, like not tail
alls.The formula (7.1)
ould be substituted by the more general ∀n(A(n) →
⊥) → ⊥. By an opportune adaptation of the proof of Proposition 7.2.3 wewould have obtained the same
omputational
ontent (of Porposition 7.2.4)Ind_CONT. However, here we o�er a
learer formulation for the logi
al propertythe
ontinuation parameter is supposed to satisfy. In addition, this approa
hrepresents a non trivial usage of the non
omputational quanti�ers ∀n
.7.2.2 A

umulator Based Tail Re
ursionHere we present the essen
e of Bauer's [? ℄ original idea. Given the pro
edure
(RσN b f) de�ned in the last se
tion, let Π be the term:

RN→σ→σ
N (λm, y.y) (λn, p,m, y. p (m+ 1) (f my))In Π there are two a

umulator parameters: a natural and parameter of type σwhere intermediate results are stored. For ea
h natural n, at the i-th (0 < i ≤

n) step of the
omputation of (Πn 0 b) the a

umulator of the partial resultswill be equal to the expression (f (i−1) (. . . (f 0 b) . . .)). At the n-th step (base
ase of Π) the a

umulator of the partial results is returned and it
orrespondsto (RσN b f)n. This fa
t is stated in theorem 7.2.6 below.De�nition 7.2.4. For all n,m, let fN→N→σ→σ be a fun
tion su
h that:
fm n = f (n+m)Proposition 7.2.5. For all naturals n and m:

(RσN (fm 0 b) fm+1)n =Rηβ (RσN b fm) (n+ 1)Proof. By indu
tion on n. 79

7 Tail Re
ursion
n = 0

(RσN (fm 0 b) fm+1) 0 =Rηβ (fm 0 b)

=Rηβ (RσN b fm) 1

n+ 1

(RσN (fm 0 b) fm+1)n+ 1 =Rηβ fm+1 n ((RσN (fm 0 b) fm+1)n)

=Rηβ fm+1 n ((RσN b fm) (n+ 1)) by IH
=Rηβ f (m+ 1 + n) ((RσN b fm) (n+ 1))by Def. 7.2.4
=Rηβ fm (n+ 1) ((RσN b fm) (n+ 1))

=Rηβ (RσN b fm) (n+ 2)Theorem 7.2.6. For all naturals n,
Πn =Rηβ λm, y(R

σ
N y fm)nProof. By indu
tion on n:

n = 0

Π 0 =Rηβ λm, y.y

=Rηβ λm, y.(RσN y fm) 0

n+ 1

Π(n+ 1) =Rηβ (λn, p,m, y.p(m+ 1)(f my))n (Πn)

=Rηβ λm, y.(Πn) (m+ 1) (f my)

=Rηβ λm, y.(λm, y.(RσN y fm)n) (m+ 1) (f my) by IH
=Rηβ λm, y.(RσN (f my) fm+1)n

=Rηβ λm, y.(RσN (fm 0 y) fm+1)n by Def. 7.2.4
=Rηβ λm, y.(RσN y fm)(n+ 1) by Prop. 7.2.5Now,
ompared with previous step, we have to provide an initial value to

Π in order to get an equivalent program. A

ording to the a

umulator-based80

7.2 Proof Manipulationapproa
h, arguments 0, b roughly take the pla
e of the
ontinuation (fun
tion).See se
tion 7.3 for more development on this remark.Corollary 7.2.7. λn.Πn 0 b =Rηβ (RσN b f)Again, we still have to address the question, whether given a proof F su
hthat
[[F]] = (RσN b f)it is possible to �nd F ′ su
h that:

[[F ′]] = λn.(Πn 0 b)?Fun
tions are very powerful tools, so it is not a surprise that going along withoutthem has a
ost. A
tually, we
an still a
hieve our goal, but the answer is nowa little bit more elaborate.Given two natural indexes i , j, with i + j = n, (Π i j) is a fun
tion thattakes the witness for A(j) and returns the witness for A(i+ j). So we expe
t
Π to be the
omputational
ontent of a proof with end formula:

∀n,m(A(m)→ A(n+m))that use the proofs termsMA(0) and N∀n(A(n)→A(n+1)) as assumptions. Let usprove this
laim.Proposition 7.2.8. A(0) → ∀n(A(n) → A(n+ 1)) → ∀n,m(A(m) → A(n +
m))Proof. Assume b : A(0) and f : ∀n(A(n)→ A(n+ 1)). By indu
tion on n:
n = 0 We have to prove

∀m(A(m)→ A(m))this is trivially proved by (λm, u.u).
n+ 1 Let us assume n, the re
ursive
all p : ∀m(A(m) → A(n + m)), m andthe a

umulator y : A(m). We have to prove

A(n+m+ 1)Apply f to m and y obtaining (f my) : A(m+1). Now apply p to (m+1)and (f my).The a

umulator-based program transformation provides us with a new proofof the indu
tion prin
iple over natural numbers: 81

7 Tail Re
ursionProposition 7.2.9. A(0)→ ∀n(A(n)→ A(n+ 1))→ ∀nA(n).Proof. Assume b : A(0), f : ∀n(A(n) → A(n + 1)) and n. To prove A(n):instantiate the formula proved in Proposition 7.2.8 on n, 0 and b : A(0)We are done: the program extra
ted from the previous proof named asInd_ACC, is the following:[b,f,n℄ (Re
 nat => nat => sigma => sigma)([m,y℄y)([n,p,m,y℄ p (m+1)(f m y)) n 0 b7.3 From Higher Order to First Order ComputationIn this se
tion, we answer positively to the question of the existen
e for someformal
onne
tion between Ind_CONT and Ind_ACC. The link between thetwo of them relies on Defun
tionalization. This program transformation, �rstintrodu
ed by Reynolds in the early 1970's [32℄ and later on extensively studiedby Danvy [15℄, is a whole program transformation to turn higher-order into�rst-order fun
tional programs, that is to transform programs where fun
tionsmay be anonymous, given as arguments to other fun
tions and returned asresults, into programs where none of the fun
tions involved a

ept argumentsor produ
e results that are fun
tions. Let us
onsider the following simpleexample taken from [15℄:(* aux : (nat -> nat) -> nat *)let aux f = (f 1) + (f 10)(* main : nat * nat * bool -> nat *)let main x y b = aux (fun z -> x + z) *aux (fun z -> if b then y + z else y * z)The above fun
tion aux
alls the higher order fun
tion f twi
e: on 1 and 10and returns the sum as its result. Also, the main fun
tion
alls aux twi
e andreturns the produ
t of these
alls. There are only two fun
tion abstra
tionsand they o

ur in main.Defun
tionalizing this program amounts to de�ning a data type with two
onstru
tors, one for ea
h fun
tion abstra
tion, and its asso
iated apply fun
-tion. The �rst fun
tion abstra
tion
ontains one free variable (x, of type nat),and therefore the �rst data-type
onstru
tor requires a natural. The se
ondfun
tion abstra
tion
ontains two free variables (y, of type nat, and b of typebool), and therefore the se
ond data-type
onstru
tor requires an integer anda boolean.82

7.3 From Higher Order to First Order ComputationIn main, the �rst abstra
tion is thus introdu
ed with the �rst
onstru
torand the value of x, and the se
ond abstra
tion with the se
ond
onstru
tor andthe values of y and b.To the fun
tional argument used in aux,
orresponds a pattern mat
hingdone by the following apply fun
tion:type lam = LAM1 of nat | LAM2 of nat * bool(* apply : lam * nat -> nat *)let apply l z =mat
h l with| LAM1 x -> x + z| LAM2 y b -> if b then y + z else y - z(* aux_def : lam -> nat *)let aux_def f = apply f 1 + apply f 10(* main_def : nat * int * bool -> nat *)let main_def x y b = aux_def (LAM1 x) * aux_def (LAM2 y b)Now let us apply defun
tionalization to Ind_CONT. We introdu
e the algebrapath_nat (below) to represent the initial
ontinuation λx.x and the interme-diate
ontinuation λu.k(f n u).type path_nat = TOP | UP of path_nat * natEa
h
onstru
tor has as mu
h parameters as free variables o

urring in the
orresponding
ontinuation fun
tion. Finally the
all (k b) in Ind_CONT isrepla
ed by the apply fun
tion (here is anonymous) that dispat
hes over thepath_nat
onstru
tors. We named the defun
tionalization of Ind_CONT byInsd_Def_CONT and it is listed below:[n℄(Re
 nat => path_nat => sigma[q℄ (Re
 path_nat => sigma => sigma[y℄ y[m,q',p,y℄ (p (f m y))) q b[n,p,q℄ (p (UP q n))) n TOPNow the question is: from whi
h proof is it possible to extra
t Ind_Def_CONT?Given q of type path_nat and y �of type� A(n) the inner pro
edure would beexpe
ted to return an element of type A(n) when q = TOP and an element oftype A(n+ m + 1) when q = (UP (...(UP TOPn + m)...) n). But q doesnot depend expli
itly on n, so given y and p alone one
annot guess anythingabout the type of the returned value. In order to state this link between the83

7 Tail Re
ursionabove two inputs we need to quantify non
omputationally over an additionalparameter as showed in the theorem below. In order to do that, let us beforeintrodu
e the following notation.De�nition 7.3.1. Given p and q of type path_nat the �degree� of q with respe
tto p is de�ned by the following partial fun
tion:
♯p(q) =

8

<

:

♯p(p) = 0
♯p(TOP) = Undef if p 6= TOP
♯p((UP q n)) = 1 + ♯(q)De�nition 7.3.2. Given x and p of type path_nat and a natural n, we saythat x has a �good shape� with respe
t to p at level n whenGoodShape(x, p, n)⇐⇒



p = x
p 6= x = (UP q l) ∧ (l = n) ∧ GoodShape(q, p, n+ 1)In the following we adopt the following notation: by C[t] we indi
ate apath_nat term that
ontain an o

urren
e of the term t. So for example if

C[t]=(UP(UP TOP j)i), for some naturals i and j, then t it
ould be TOP, (UPTOP j) or C[t] it self.Theorem 7.3.1. A(0)→ ∀n(A(n)→ A(n+1))→ ∀x∀n
nGoodShape(x, TOP, n)→
A(n)→ A(n+ ♯TOP(x))Proof. By indu
tion over x.
x = TOP Assume n, u : A(n) and GoodShape(TOP, TOP, n). The thesis followsby u.
x = (UP q l) Assume p : ∀n
n.GoodShape(q, TOP, n) → A(n) → A(n + ♯(q)), n,gs : GoodShape((UP q l), TOP, n) and y : A(n). By gs and de�nition 7.3.1follows l = n and gs′ : GoodShape(q, TOP, n + 1). Instantiate f on l and

A(n) (l is equal to n) obtaining (f l y) : A(n+ 1). To prove the thesis, itremains to instantiate p on n+ 1, gs′ and (f l y).The program extra
ted from theorem 7.3.1 is Ind_Def_CONT but we arenot done yet: the theorem below shows as Ind_Def_CONT needs some ad-ditional simpli�
ation. In the following lines we will favor the presentation
(λn.P nTOP) in pla
e of Ind_Def_CONT.Theorem 7.3.2. For all n, ppath_nat ,ACCpath_nat , if

(λn.P np) (n+ 1) =Rηβ P 0ACCthen GoodShape(ACC, p, 0) and ♯pACC = n+ 1.84

7.4 Case StudyProof. By indu
tion on n.
n = 0 (λn.P np) 1 rewrite to P 0 (UP p 0) in one step.
n > 0 Assume IH: ∀p,ACC, if (λn.P np) (n+ 1) =Rηβ P 0ACC then ♯pACC =

n + 1 and GoodShape(ACC, p, 0); assume p, ACC and ip:(λn.P n p) (n +
2) =Rηβ P 0ACC. We have to prove GoodShape(ACC, p, 0) and ♯pACC =
n+2. It is just enough to see that (λn.P n p) (n+2) =Rηβ (λn.P n (UP p (n+
1)))(n+1) and so by ip, we have ip′ : (λn.P n (UP p (n+1)))(n+1) =Rηβ

P 0ACC. Then instantiating IH on (UP p (n+ 1)) and ACC, and by ip′ wehave that GoodShape(ACC, (UP p (n+ 1)), 0) and ♯(UP p (n+1))ACC = n+ 1.It follows that ACC = C[(UP (UP p (n+ 1))n)], for some path_nat term C,that is ♯p(ACC) = n+ 2 and GoodShape(ACC, p, 0).As a
orollary of theorem 7.3.2, we have that, for p = TOP the expression
(λn.P n TOP)(n+1), that is Ind_Def_CONT(n+1), rewrites to (P 0ACC) withGoodShape(ACC, TOP, 0) and ♯TOP(ACC) = n+1. A data stru
ture like type_natis too
omplex to store this parti
ular simple data. So we repla
e type_nat by
N in Ind_Def_CPS a

ording to the informal
orresponden
e:TOP ! 0

(UPTOPn) ! 1... ...
(UP(. . . (UPTOPn) . . .)0) ! n+ 1obtaining the
ode Ind_Intermediate_ACC, listed below:[n℄ (Re
 nat => nat => sigma[q℄ (Re
 nat => nat => sigma => sigma[m,y℄ y[q',p,m,y℄ (p (m+1) (f m y))) q 0 b[n,p,q℄ (p (q+1))) n 0This pro
edure still performs some redundant
omputations: the outer re
ur-sion runs over n, so the a

umulator parameter q ranges from 0 to n. At thispoint the inner routine (that will return the �nal result) is
alled on q, nowequal to n. This is equivalent to
alling dire
tly the subroutine over n, whi
h
orresponds to Ind_ACC as expe
ted.7.4 Case StudyLet us
onsider now a more elaborated example taken from Bioinformati
s.This is an area where the
orre
tness and the e�
ien
y of programs plays85

7 Tail Re
ursiona
ru
ial role: e�
ien
y be
ause DNA sequen
es are really huge and gettinglower
omplexity
lass is essential,
orre
tness be
ause we need to trust pro-grams and we
annot
he
k their results by hand. An important line of resear
his the �Sequen
e Analysis�, whi
h is
on
erned with lo
ating biologi
ally mean-ingful segments in DNA sequen
es. In this
ontext, we will treat the so-
alled�Maximal S
oring Subsequen
e� (MSS) Problem. For a sequen
e of real num-bers, we are looking for a
ontiguous sub-sequen
e su
h that the sum of itselements is maximal over all sub-sequen
es. Several authors have investigatedthat problem or a variation thereof, see, e.g., [16, 11, 18, 25, 42℄The MSS problem has various appli
ations in Bioinformati
s and we willmention only a few of them. The GC
ontent in DNA of all organisms variesfrom 25% to 75%, where, e.g., genes are usually lo
ated in region with a highGC
ontent. Su
h regions
an easily be determined with a MSS algorithm,where the bases G and C get a positive, while the bases A and T get a negativevalue. Also in
omparative genomi
s, the sequen
e similarity for
orrespondingexons between human and mouse is up to 85%, while for introns it is as lowas 35%. Using the Smith-Waterman lo
al alignment algorithm su
h regionswith high similarity
an be roughly determined, but a re�nement in a post-pro
essing step using variations of MSS algorithms are helpful to eliminatesub-regions with a low similarity. Furthermore, strongly
onserved regions of amultiple sequen
e alignment
an be found using MSS algorithms, where ea
h
olumn will be s
ored based on a suitable similarity measure. In transmembraneproteins, the more hydrophobi
 regions of the protein are usually lo
ated insidethe membrane and more hydrophili
 regions are lo
ated outside. Thus, lo
atinghydrophobi
 regions using MSS algorithms are helpful for a �rst rough stru
tureresolution of transmembrane proteins, where hydrophobi
 amino a
ids get apositive and hydrophili
 a negative value. For a detailed list of appli
ations inbiomole
ular sequen
e analysis, see [25℄, for example.7.4.1 The MSS ProblemThe MSS (Maximal S
oring Subsequen
e) problem, in its most general presen-tation,
an be explained as follows:MSS Problem : Given a list l of real numbers, �nd an interval (i, k) (with
i ≤ k ≤ |l| − 1) su
h that

k′
X

j=i′

l [j] ≤
k

X

j=i

l [j]for every (i′, k′) (with i′ ≤ k′ ≤ |l| − 1). The problem doesn't admitsolutions for all the inputs, in fa
t on the empty list there is no solution.86

7.4 Case Study
in knjn n n + 1

seg [j′, n] ≤ seg[jn, n], ∀j′ ≤ n

seg [i′, k′] ≤ seg[in, kn], ∀i′, k′ ≤ nFigure 7.1: The witnesses in,jn and kn at step n of the indu
tionHere we report on a variant of the MSS problem �rst proposed in [2, 35℄.MSS Problem Instan
e :Given the fun
tion seg : N×N→ X de�ned on [0, . . . , n]×
[0, . . . , n], �nd the interval (i, k),(with i ≤ k ≤ n) su
h that

seg [i′, j′] ≤X seg [i, j]for every (i′, k′), (with i′ ≤ k′ ≤ n). This time the problem admitssolution on ea
h natural input n. Here X is a set on whi
h we
an de�nea total order relation ≤X. Moreover we require seg to have the followingproperty:AX = ∀n, i, j. seg[i, n] ≤X seg[j, n]→ seg[i, (Su

 n)] ≤X seg[j, (Su

 n)]Theorem 7.4.1. For all n
∃i, k((i ≤ k ≤ n) ∧ ∀i′, k′((i′ ≤ k′ ≤ n)→ seg[i′, k′] ≤X seg[i, k]) (7.2)

∃j((j ≤ n) ∧ ∀j′((j′ ≤ n)→ (seg[j′, n] ≤X seg[j, n])))) (7.3)Proof. By indu
tion on n.
n = 0 We set i = k = j = 0.
n+ 1 Assume (7.2) and (7.3) hold for n (hypothesis IH1

n,IH2
n). Let (in, kn) and

jn be the segment and the value that satisfy IH1
n and IH2

n respe
tively(see pi
ture in Figure 7.1) By IH2
n, for an arbitrary j′ ≤ n

seg[j′, n] ≤X seg[jn, n] (7.4)87

7 Tail Re
ursionInstantiating Ax on n,j′,jn and (7.4),
seg[j′, n+ 1] ≤X seg[jn, n+ 1]The witness for IH2

n+1 is given by:
jn+1 =



jn seg[n+ 1, n+ 1] ≤X seg[jn, n+ 1]
(n+ 1) seg[n+ 1, n+ 1] �X seg[jn, n+ 1]We have to prove that jn+1 satis�es,

∀j′.(j′ ≤ (n+ 1))→ seg[j′, (n+ 1)] ≤X seg[jn+1, (n+ 1)])This has to be proved both for j′ ≤ n and j′ = (n + 1). Both
asesfollow straightforwardly from IH2
n and the
onstru
tion of jn+1. The newmaximal segment, is given by:

(in+1, jn+1) =



(in, kn) seg[jn+1, n+ 1] ≤X seg[in, kn]
(jn+1, n+ 1) seg[jn+1, n+ 1] �X seg[in, kn]Again, we have to prove that (in+1, kn+1) satis�es,

∀i′, k′(i′ ≤ k′ ≤ (n+ 1))→ seg[i′, k′] ≤X seg[in+1, kn+1]This property has to be proved both for (i′ ≤ k′ ≤ n) and (i′ ≤ k′ = n+1).Both
ases follows from IH1
n, IH2

n, and the
onstru
tion of (in+1, kn+1)The program extra
ted from the previous proof, namedMSS, is the following:(Re
 nat => sigma(0,0,0)[n,(i,j,k)℄LET m = (if(seg[n+1, n+1℄ <= seg[j, n+1℄) j (n+1))IN if(seg[m,n+1℄ <= seg[i,k℄) (i,m,k) (m,m,n+1))With seg some �xed fun
tion. The above algorithm makes use of the ex-pression (LET r IN s). This is a
tually synta
ti
 sugar : although it does notbelong to our term language, Minlog allows the user to make use of it. Thisis irrelevant in the
ontext of this se
tion, and the reader is referred to [10℄ fora a further development on that issue.By the following extension of the de�nition 7.2.1:
3′. if t ≡ (LET r IN s) then s is a tail expression.and w.r.t. de�nition 3.3, the program MSS is not tail re
ursive.88

7.4 Case Study7.4.2 Generation of a Continuation/A

umulator BasedMSS-ProgramWe apply the transformations proposed in se
tion 7.2.1 and 7.2.2 to the proofof the theorem 7.4.1 in order to extra
t respe
tively a
ontinuation and ana

umulator based version of theMSS program. We �rst
onsider the extra
tionof a
ontinuation based version of the MSS program. Before to do that, let'sname the following formula,
∀n∃i, k((i ≤ k ≤ n) ∧

∀i′, k′((i′ ≤ k′ ≤ n)→ seg[i′, k′] ≤X seg[i, k]) ∧

∃j((j ≤ n) ∧ ∀j′((j′ ≤ n)→ (seg[j′, n] ≤X seg[j, n]))))with ∀nMSSseg
X

(n). Moreover we name the base and the step of the indu
tiveproof of theorem 7.4.1 respe
tively asM andN . ClearlyM has typeMSSseg
X

(0)and N has type ∀n(MSSseg
X

(n)→MSSseg
X

(n+ 1)).Now, let instantiate A(n) in Proposition 7.2.3 with MSSseg
X

(n). We namethe proof of the Proposition 7.2.3 so istantiated as MSS_CONT. At this point,following the idea proposed in Proposition 7.2.4 we build the following proof-tree:
|N

∀n(MSSseg
X

(n) →MSSseg
X

(n+ 1))MSS_CONTMSSseg
X

(0) →

∀n(MSSseg
X

(n) →MSSseg
X

(n+ 1)) →

∀n∀n
m(MSSseg
X

(n) →MSSseg
X

(n +m)) →MSSseg
X

(n+m)

|MMSSseg
X

(0)

→−

∀n(MSSseg
X

(n) →MSSseg
X

(n+ 1)) →

∀n∀n
m(MSSseg
X

(n) →MSSseg
X

(n+m)) →MSSseg
X

(n+m) __
→−

∀n∀n
m(MSSseg
X

(n) → MSSseg
X

(n +m)) → MSSseg
X

(n +m) n 0

∀−

(MSSseg
X

(n) → MSSseg
X

(n)) → MSSseg
X

(n)___ [u : MSSseg
X

(n)]
→+

uMSSseg
X

(n) → MSSseg
X

(n)

→−MSSseg
X

(n)

∀+

∀nMSSseg
X

(n)The program extra
ted from the above proof is the
ontinuation based versionof the MSS program:([n℄(Re
 nat => (sigma => sigma) => sigma 89

7 Tail Re
ursion[k℄ k (0,0,0)[n,p,k℄ p ([(i,j,k)℄LET m = if (seg[n+1, n+1℄ <= seg[j, n+1℄) j (n+1)IN if (seg[m,n+1℄ <= seg[i,k℄) (i,m,k) (m,m,n+1))))n [x℄xFor the extra
tion of an a

umulator based version of the MSS program wefollow the same idea. Before we instantiate A(n) in Proposition 7.2.8 withMSSseg
X

(n). We name the proof of the Proposition 7.2.8 so istantiated asMSS_ACC. Now adapting the proof of Proposition 7.2.9 we build the followingproof-tree: MSS_CONT
∀n(MSSseg

X
(n) → MSSseg

X
(n + 1)) →

∀n,m(MSSseg
X

(m) →MSSseg
X

(n +m))

|N

∀n(MSSseg
X

(n) → MSSseg
X

(n + 1))

→−

∀n,m(MSSseg
X

(m) → MSSseg
X

(n +m)) n 0

∀−

(MSSseg
X

(0) →MSSseg
X

(n))

|MMSSseg
X

(0)MSSseg
X

(n)

∀+

∀nMSSseg
X

(n)The program extra
ted from the above proof is the a

umulator based versionof the MSS program([n℄(Re
 nat => nat => sigma => sigma[m,y℄ y[n,p,m,(i,j,k)℄p (m+1) LET m = (if (seg[n+1, n+1℄ <= seg[j, n+1℄) j (n+1))IN if (seg[m,n+1℄ <= seg[i,k℄) (i,m,k) (m,m,n+1))))n 0 (0,0,0)Both the
ontinuation and a

umulator version of the MSS program are tailre
ursive, as the result of automati
 transformation from the proof of the the-orem 7.4.1. This way, we have ensured these are still
orre
t implementationsof the abstra
t algorithm while being more e�
ient in the same time.
90

8 Beyond Primitive Re
ursion8.1 Introdu
tionIn this
hapter1 we extend what we have seen in the previous
hapter. Follow-ing the pioneering work of Manna and Waldinger's [27℄ we introdu
e severalindu
tion prin
iples over natural numbers and we will investigate how it is pos-sible to express ea
h one in terms of the others, both from a programming anda proof-theoreti
 point of view. This represents a
ontribution with respe
t to[27℄. Moreover we will show how it is possible to turn ea
h indu
tion prin
ipleinto an equivalent one, but from whi
h it is possible to automati
ally synthesizea tail re
ursive program.For readability reasons part of the
ode presented in this se
tion will bewritten with the ML syntax.8.1.1 Up Primitive Re
ursive Indu
tionHere is the proof prin
iple for primitive re
ursion:
|Z

P (0)

|S

∀n(P (n)→ P (n+ 1)) (up-prim-re
)
∀nP (n)Manna and Waldinger refer to it as `going up' sin
e P (n) is needed to dedu
e

P (n+1). The
orresponding synthesized fun
tional Up.prim_re
 is displayed inFigure 8.1. There, z is extra
ted from [[Z]] and s from [[S]]. The
omputation isdriven by the input variable n:
omputing the result for n requires the resultfor n − 1 to be
omputed, until the base
ase n = 0 is rea
hed in a trail ofnested appli
ations of the fun
tion denoted by s.The re
ursive de�nition of the fa
torial fun
tion is a straightforward exampleof primitive re
ursion, and is obtained as an instan
e of Up.prim_re
 where zis instantiated with identity element for multipli
ation (z = 1) and s with the(
urried) multipli
ation fun
tion (s = fn i => fn
 => (i + 1) *
):1The material in this
hapter was developed in
ollaboration with Olivier Danvy duringJanuary 2009, during a visit to the Århus's Computer S
ien
e Department. 91

8 Beyond Primitive Re
ursionstru
ture Up= stru
tfun prim_re
 n (*: nat-> 'a *)= let fun visit m= if m =0 then z else s (m - 1)(visit(m - 1))in visit nendfun prim_iter n (* : nat ->'a *)= let fun visit m= if m = 0 then z else s (visit (m - 1))in visit nendend Figure 8.1: Synthesized up-indu
tion fun
tionalsfun up_prim_re
_fa
t n= let fun visit m= if m = 0 then 1 else m * (visit (m - 1))in visit nend8.1.2 Up Primitive Iterative Indu
tionHere is the proof prin
iple for primitive iteration:
|Z

P (0)

|S

∀n
n(P (n) → P (n + 1)) (up-prim-iter)
∀nP (n)The di�eren
e between primitive and iterative iteration is that in the itera-tive
ase, we quantify non
omputationally over n in the indu
tive step. One
an then synthesize the fun
tional for up primitive iteration Up.prim_re
 inFigure 8.1. Again, there, z is extra
ted from [[Z]] and s from [[S]].To de�ne the fa
torial fun
tion as an instan
e of Up.prim_iter we must gener-alize Kleene's tri
k to
ompute the prede
essor fun
tion over Chur
h numerals.So instantiating z = (1,1) and s = fn(i,
) =>(i+1,i*
) in Up.prim_iter weobtain:fun up_prim_iter_fa
t n= let fun visit m92

8.1 Introdu
tion= if m = 0 then (1,1) else let val (i,
)=visit(m - 1)in (i + 1,i *
)endin #2 (visit n)end8.1.3 Down Primitive Re
ursive Indu
tionManna and Waldlinger also present a `going down' version of primitive re
ur-sion:
|Z

Q(n)

|S

∀m(Q(m + 1) → Q(m)) (down-prim-re
)
Q(0)where n
ould be a free variable in Q. They refer to it as `going down' sin
e

Q(n+ 1) is needed to dedu
e Q(n).The idea is that the property ∀nP (n) is proved using a predi
ate Q(m) su
hthat Q(0) redu
es to P (n) (noted Q(0) ; P (n)). This indu
tion prin
iple isthen applied to Q(0). The
hallenging point here is that a kind of eureka stepis required in order to �nd a satisfa
tory predi
ate Q.So, given the proof of Q(0) in terms of M∃mQ(n) and N∀m(Q(m+1)→Q(m)),we prove ∀nP (n) by
|R

P (n)
→+

Q(0) → P (n)

...
Q(0)

→−

P (n)
∀+

∀nP (n)Here we require the normalization of the
ode extra
ted from the proof-term
λuQ(0)RP (n) to be equal to the identity fun
tion. This is be
ause we assume
Q(z) to be a predi
ate that, when instantiated with 0,
an be rewritten into
P (n) in a �nite number of steps, using an opportune set of rewriting rules.This pro
ess of simpli�
ation is performed using the following, and only thefollowing axiom:Eq-Compat : ∀x1, x2(x1 ; x2 → P (x1)→ P (x2))where ; denotes a binary relation and P a generi
 predi
ate symbol. Thisaxiom says that, if we know that a given term (bounded by x1) is in relationwith another term (bounded by x2) � for example the equality relation � and93

8 Beyond Primitive Re
ursionstru
ture Down= stru
tfun prim_re
 n (* : nat -> 'a *)= let fun visit m= if m = n then z else s m (visit (m + 1))in visit 0endfun prim_iter n (* : nat ->'a *)= let fun visit m= if m = n then z else s (visit (m + 1))in visit 0endend Figure 8.2: Synthesized down-indu
tion fun
tionalswe know that P (x1) holds then we
an
on
lude that P (x2) holds. Lettingthe
omputational
ontent of the Eq-
ompat axiom be the identity fun
tion,it is
lear that the program extra
ted from nested appli
ations of Eq-
ompa
t,on
e normalized, will
orrespond to the identity fun
tion. Sin
e the derivationabove is a detour, we rewrite it in the following way:...
Q(0)

|R

P (n)
∀+

∀nP (n)whi
h
an be read as the repla
ement of ea
h open assumption uQ(0) in R bythe proof of Q(0). The program extra
ted from the
omplete proof of ∀nP (n)is the fun
tional Down.prim_re
 in Figure 8.2, where z
ould depend on n (hen
ethe order of the parameters).We now return to the fa
torial fun
tion over natural numbers:fa
t(n) =



1 if n = 0
n× fa
t(n− 1) if n > 0Let us prove that ∀n∃m(m = fa
t(n)) by going-down primitive re
ursion.We assume n. In order to prove ∃m(m = fa
t(n)), we design the new goal

∃m(fa
t(0) × m = fa
t(n)). Applying the going-down primitive re
ursive in-du
tion prin
iple to this formula requires us to prove the following two subgoals:94

8.1 Introdu
tion
• ∃m(fa
t(n)×m = fa
t(n)): It is su�
ient to set m = 1.
• Now assume y and ih : ∃m(fa
t(y + 1) × m = fa
t(n)). We prove
∃m(fa
t(y) × m = fa
t(n)). By ih we know that there does exist an
m′ su
h that fa
t(y + 1) ×m′ = fa
t(n). Considering that fa
t(y + 1) =
(y + 1)× fa
t(y), the thesis is proved for m = (y + 1)×m′.The program extra
ted from this proof reads as follows:fun down_prim_re
_fa
t n= let fun visit m= if m = n then 1 else (m + 1) * (visit (m + 1))in visit 0endCorrespondingly, this residual program is also obtained by spe
ializing Down.prim_re
on z equal to the identity element for multipli
ation and s the (
urried) multi-pli
ation fun
tion:8.1.4 Down Primitive Iterative Indu
tionHere is the proof prin
iple for primitive iteration:

|Z

Q(n)

|S

∀n
m(Q(m + 1) → Q(m)) (down-prim-iter)
Q(0)Again, the di�eren
e between primitive and iterative iteration is that in theiterative
ase, we quantify non
omputationally over m in the indu
tive step.One
an then synthesize the fun
tional for down primitive iteration in Fig-ure 8.2, where n, in the lo
al de�nition of visit, is free.Again, to de�ne the fa
torial fun
tion as an instan
e of Down.prim_iter weuse Goldberg and Reynolds's generalization of Kleene's tri
k to
ompute theprede
essor fun
tion over Chur
h numerals. So instantiating z = (1,1) ands = fn(i,
) => (i+1, i*
) in Down.prim_iter we obtain:fun down_prim_iter_fa
t n= let fun visit m= if m=n then (1,1) else let val (i,
) = visit (m+1)in (i + 1, i *
)endin #2 (visit 0)end 95

8 Beyond Primitive Re
ursion8.2 Expressive PowerIn this se
tion we show that the indu
tion prin
iples reviewed in Se
tion 8.1share the same expressive power.Up.prim-re
 //

��

Down.prim-re
oo

��Up.prim-iter
OO

// Down.prim-iteroo

OO

8.2.1 Up Primitive Iteration in Terms of Up Primitive Re
ursionTo simulate up primitive iteration in terms of up primitive re
ursion we instan-tiate the base and step of Up.prim_re
 respe
tively by z' and fn n=>fn y=>s'ywith z' and s' base and step of Up.prim_item:fun up_prim_iter n= let fun visit m= if m =0 then z' else s'(visit(m - 1))in visit nendProof interpretation:Proposition 8.2.1. Given the proof
|M

P (0)

|N

∀n
n(P (n) → P (n + 1)) (up-prim-iter)
∀nP (n)then there exists M ′, N ′ su
h that:

|M ′

P (0)

|N ′

∀n(P (n) → P (n + 1)) (up-prim-re
)
∀nP (n)with
omputational
ontent equal to up_prim_iter.Proof.
iao96

8.2 Expressive PowerEq-Compat [u : y = n]

|N

∀n(P (n) → P (n + 1)) y
∀−

P (y) → P (y + 1)
→−

P (n) → P (n + 1)

[r : ∃y(y = n) ∧ P (n)]
∧−

1

P (n)
→−

P (n + 1)
→+
u

y = n → P (n + 1)
∀+

∀y(y = n → P (n + 1))

∃−

[r : ∃y(y = n) ∧ P (n)]
∧

−
0

∃y(y = n) ________
∃−

P (n + 1)

∃−

[r : ∃y(y = n) ∧ P (n)]
∧

−
0

∃y(y = n)

∃+ (y + 1)

[u : y = n]

y + 1 = n + 1
∃+

∃y(y = n + 1)
→+

u

y = n → ∃y(y = n + 1)
∀+

∀y(y = n → ∃y(y = n + 1))
∃−

∃y(y = n + 1) _
∧+

∃y(y = n + 1) ∧ P (n + 1)
→+

r

(∃y(y = n) ∧ P (n)) → (∃y(y = n + 1) ∧ P (n + 1))
∀n
+

∀n
n((∃y(y = n) ∧ P (n)) → (∃y(y = n + 1) ∧ P (n + 1)))

∃+ 1 (1 = 0)
∃+

∃y(y = 0)

|M

P (0)
∧+

∃y(y = 0) ∧ P (0) __ (up-prim-iter)
∀n(∃y(y = n) ∧ P (n)) n

∀−

∃y(y = n) ∧ P (n)
∧−

1

P (n)
∀+

∀nP (n)Figure 8.3: Simulation of up-prim-re
 in term of up-prim-iter. The variable n doesnot o

ur in
ontent of the proof of the formula (∃y(y = n) ∧ P (n)) →

(∃y(y = n + 1) ∧ P (n + 1)), thus the (∀n
+) inferen
e results
orre
tw.r.t. the de�nition given in se
tion 2.1.2. 97

8 Beyond Primitive Re
ursion
|M

P (0)

|N

∀n
n(P (n) → P (n + 1)) n
∀−

P (n) → P (n + 1) [u : P (n)]
→−

P (n + 1)
→+

u

P (n) → P (n + 1)
∀+

∀n(P (n) → P (n + 1)) (up-prim-re
)
∀nP (n)8.2.2 Up primitive Re
ursion in Terms of Up Primitive IterationTo simulate up primitive re
ursion in terms of up primitive iteration we useKleene's tri
k: we instantiate the base and step of Up.prim_iter respe
tivelyby (0,z') and fn (j,
)=>(j + 1, s' j
), with z' and s' base and stepof Up.prim_re
:fun up_prim_re
 n= let fun visit m= if m = 0 then (0,z')else let val (j,
) = (visit (m - 1))in (j+1, s' j
) endin #2 (visit n)end)Proof interpretation:Proposition 8.2.2. Given the proof

|M

P (0)

|N

∀n(P (n) → P (n + 1)) (up-prim-re
)
∀nP (n)then there exists M ′, N ′, R su
h that:

|M ′

∃y(y = 0) ∧ P (0)

|N ′

∀n
n(∃y(y = n) ∧ P (n) → ∃y(y = n + 1) ∧ P (n + 1)) (up-prim-iter)
∀n(∃y(y = n) ∧ P (n))

|R

∀nP (n)98

8.2 Expressive Powerand from whi
h it is possible to extra
t up-prim-re
.Proof. See Figure 8.3.8.2.3 Up Primitive Re
ursion in Terms of Down Primitive Re
ursionTo simulate up primitive re
ursion in terms of down primitive re
ursion, we useKleene's tri
k: we instantiate the base and step of Down.prim_re
 respe
tivelyby (0,z') and fn m =>fn(j,
)=>(j+1,s'j
), with z' and s' base and stepof Up.prim_re
:fun up_prim_re
' n= let fun visit m= if m = n then (0,z') else let val (j,
) = (visit (m + 1))in (j+1,s'j
) endin #2(visit 0)endProof interpretation:Proposition 8.2.3. Given the proof
|M

P (0)

|N

∀n(P (n) → P (n + 1)) (up-prim-re
)
∀nP (n)then there exists M ′, N ′ su
h that:

|M ′

∃z(z = n − n) ∧ P (n − n)

|N ′

∀y((∃z(z = n − (y + 1)) ∧ P (n − (y + 1))) →

(∃z(z = n − y) ∧ P (n − y))) (down-prim-re
)
∃z(z = n − 0) ∧ P (n − 0)

∧−
1

P (n)
∀+

∀nP (n)and from whi
h it is possible to extra
t the pro
edure up-prim-re
'.Proof. See Figure 8.4. 99

8 Beyond Primitive Re
ursion
[r : ∃z(z = n− (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)]

∧
−
0

∃z(z = n − (y + 1)) ∧ P (n− (y + 1))
∧−

1
P (n − (y + 1))Eq-Compat [u : z = n− (y + 1)]

|N

∀n(P (n) → P (n+ 1)) z
∀−

P (z) → P (z + 1)
→−

P (n − (y + 1)) → P (n− y)
→−

P (n − y)
→+

u
(z = n − (y + 1)) → P (n− y)

∀+

∀z((z = n− (y + 1)) → P (n− y))

∃−

[r : ∃z(z = n − (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)]
∧−

0
∃z(z = n − (y + 1)) ∧ P (n − (y + 1))

∧−
0

∃z(z = n − (y + 1)) __
∃−

P (n− y)

∃+ (n − y)

[u : z = n − (y + 1)]
(∗)

z + 1 = n− y
∃+

∃z(z = y − n)
→+

u
(z = n − (y + 1)) → ∃z(z = n + 1)

∀+

∀z((z = n− (y + 1)) → ∃z(z = n − y))

∃−

[r : ∃z(z = n− (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)]
∧−

1
∃z(z = n− (y + 1))

∃−

∃z(z = n − y)__________________________ ________________________
∧+

∃z(z = n − y) ∧ P (n − y)__________ [r : ∃z(z = n − (y + 1)) ∧ P (n − (y + 1)) ∧ (y + 1 ≤ n)]
∧−

1
(y + 1 ≤ n)

(y ≤ n)
∧+

∃z(z = n − y) ∧ P (n − y) ∧ (y ≤ n)
→+

r
(∃z(z = n − (y + 1)) ∧ P (n − (y + 1)) ∧ (y + 1 ≤ n)) →

∃z(z = n − y) ∧ P (n − y) ∧ (y ≤ n)
∀+

∀y((∃z(z = n − (y + 1)) ∧ P (n− (y + 1)) ∧ (y + 1 ≤ n)) →

∃z(z = n − y) ∧ P (n − y) ∧ (y ≤ n))

∃+ 0 (0 = n− n)
∃+

∃z(z = n− n)

|M

P (n− n)
∧+

∃z(z = n− n) ∧ P (n − n) n ≤ n
∧+

∃z(z = n− n) ∧ P (n− n) ∧ (n ≤ n) ____ (down-prim-re
)
∃z(z = n− 0) ∧ P (n− 0) ∧ (0 ≤ n)

∧−
0

∃z(z = n− 0) ∧ P (n− 0)
∧

−
1

P (n)
∀+

∀nP (n)Figure 8.4:100

8.2 Expressive Power8.2.4 Down Primitive Re
ursion in Terms of Up Primitive Re
ursionTo simulate down primitive re
ursion in terms of up primitive re
ursion, weinstantiate the base and step of Up.prim_re
 respe
tively by (n,z') (for someinput parameter n) and fn m=>fn (j,
)=> (j-1, s'(j-1)
), with z' and s'base and step of Up.prim_re
:fun down_prim_re
 n= let fun visit m= if m =0 then (z',n) else let val (j,
) = (visit(m - 1))in (j-1, s'(j-1)
) endin #2(visit n)endProof interpretation:Proposition 8.2.4. Given
|M

Q(n)

|N

∀m(Q(m + 1) → Q(m)) (down-prim-re
)
Q(0)

|R

P (n)
∀+

∀nP (n)we want to �nd the opportuneM ′, N ′ su
h that if the proof of Q(0) is substitutedby
|M ′

∃z(z = n) ∧ Q(n)

|N ′

∀y(((∃z(z = n − y) ∧ Q(n − y)) →

(∃z(z = n − (y + 1)) ∧ Q(n − (y + 1)))) (up-prim-re
)
∀y(∃z(z = n − y) ∧ Q(n − y)) n

∀−

∃z(z = 0) ∧ Q(0)
∧

−
1

Q(0)then the
omputational
ontent of the resulting proof
orresponds to down_prim_re
.Proof. We propose only a sket
h be
ause the stru
ture of the proof is the sameas the one displayed in Fig. 8.4. The idea is to prove the lemma
∀y(∃z(z = n− y) ∧Q(n− y))by up primitive re
ursion: 101

8 Beyond Primitive Re
ursion
[Base y = 0] We have to prove ∃z(z = n) ∧Q(n). The left
onjun
t is provedby just introdu
ing n for z. The right
onjun
t is given my M .
[Step y+1] Let us assume y and z′ su
h that z′ = n−y and Q(n−y). We haveto prove ∃z(z = n− (y+1))∧Q(n− (y+1)). The left
onjun
t is provedintrodu
ing z′− 1 for z. The right
onjun
t is proved by instantiating Non z′− 1, from whi
h we dedu
e Q(z′)→ Q(z′− 1) that
an be rewrittenas Q(n− y)→ Q(n− y − 1) by the indu
tion hypothesis z′ = n− y and�nally instantiating this formula on Q(n− y).8.2.5 Down Primitive Iteration in Terms of Down PrimitiveRe
ursionTo simulate down primitive iteration in terms of down primitive re
ursion, weinstantiate the base and step of Down.prim_re
 respe
tively by z' and fn j =>fn
=>s'
,with z' and s' base and step of Down.prim_iter:fun down_prim_iter n= let fun visit m= if m = n then z' else s'(visit (m + 1))in visit 0endProof interpretation:Proposition 8.2.1. Given

|M

Q(n)

|N

∀n
m(Q(m + 1) → Q(m)) (down-prim-iter)
Q(0)

|R

P (n)
∀+

∀nP (n)we want to �nd the opportuneM ′, N ′ su
h that if the proof of Q(0) is repla
ledby
|M ′

Q(n)

|N ′

∀m(Q(m + 1) → Q(m)) (down-prim-re
)
Q(0)then
omputation
ontent of the transformed proof is equal to down_prim_iter.102

8.2 Expressive PowerProof. The stru
ture of the proof is similar to that of Prop. 8.2.1. We simply set
M ′ equal toM andN ′ equal to the proof term λm,uQ(m+1)(N∀n
m(Q(m+1)→Q(m)) mu).8.2.6 Down Primitive Re
ursion in Terms of Down PrimitiveIterationTo simulate down primitive re
ursion in terms of down primitive iteration, weinstantiate the base and step of Down.prim_iter respe
tively by (n,z') (forsome given n) and fn(j,
)=>(j -1, s(j-1)
), with z' and s' base and stepof Down.prim_re
:fun down_prim_re
' n= let fun visit m= if m = n then (n,z') else let val (j,
)=(visit (m+1))in (j -1, s(j-1)
)) endin #2(visit 0)end= #2 (Down.prim_iter n ((n, z), fn(j,
)=>(j -1, s(j-1)
)))Proof interpretation:Proposition 8.2.5. Given the proof

|M

Q(n)

|N

∀m(Q(m + 1) → Q(m)) (down-prim-re
)
Q(0)

|R

P (n)
∀+

∀nP (n)�nd M ′, N ′ and an appropriate Q′ su
h that
|M ′

Q′(n)

|N ′

∀n
m(Q′(m + 1) → Q′(m)) (down-prim-iter)
Q′(0)

|R

P (n)
∀+

∀nP (n) 103

8 Beyond Primitive Re
ursionand from whi
h it is possible to extra
t down_prim_re
'.Proof. We propose only a sket
h be
ause the stru
ture of the proof is the sameas the one displayed in Fig. 8.3. The idea is to set
Q′(0) ≡ ∃y(y = 0) ∧Q(0)and prove Q′(0) by up primitive iterative indu
tion:

[Case n] We have to prove ∃y(y = n) ∧Q(n), whi
h follows dire
tly by n = nand MQ(n).
[Case m+ 1→ m] Assumem (whi
h we quantify non
omputationally) and y′su
h that y′ = m+1 and Q(m+1). We prove ∃y(y = m)∧Q(m). For theleft
onjun
t, it is enough to introdu
e y′−1 for y. For the right
onjun
t,we need to instantiate N with (y′− 1), obtaining Q(y′)→ Q(y′− 1). Bythe assumption y′ = m+1, we have Q(m+1)→ Q(m) and instantiatingit with Q(m+ 1) we obtain the thesis.8.2.7 Up Primitive Iteration in Terms of Down Primitive IterationTo simulate up primitive iteration in terms of down primitive iteration, weinstantiate the base and step of Down.prim_iter respe
tively by (0,z') andfn(j,
) => (j+1, s'
), with z' and s' base and step of Up.prim_iter:fun up_prim_iter' n= let fun visit m= if m = n then (0,z') else let val (j,
) = (visit (m+1))in (j+1, s'
) endin #2(visit 0)endThis
ase is treated as the one in Se
tion 8.2.4.8.2.8 Down Primitive Iteration in Terms up Primitive IterationTo simulate down primitive iteration in terms of up primitive iteration, we useKleene's tri
k: we instantiate the base and step of Up.prim_iter respe
tivelyby (n,z') and fn(j,
) => (j - 1, s'
), with z' and s' base and step ofDown.prim_iter:104

8.3 Primitive Re
ursion and Iteration with A

umulatorsfun down_prim_iter' n (z, s)= let fun visit m= if m = 0 then (n,z') else let val (j,
)=(visit(m -1))in (j-1, s'
) endin #2(visit n)endThis
ase is treated as the one in Se
tion 8.2.3.8.2.9 Summary and
on
lusionWe have shown proof theoreti
ally how the original up versions and Mannaand Waldinger's down versions of primitive re
ursion and primitive iterationare equivalent.8.3 Primitive Re
ursion and Iteration with A

umulatorsHere we present the proof-theoreti
al analogous of fold-left from fun
tionalprogramming with lists, where the result is a

umulated at
all time instead ofat return time. We
onsider in turn the a

umulator-based versions of ea
h ofthe indu
tion prin
iples reviewed in Se
tion 8.1.8.3.1 Up Primitive Re
ursion with A

umulatorHere the problem is how to transform the following up primitive re
ursiveindu
tion prin
iple,
|M

P (0)

|N

∀n(P (n)→ P (n+ 1)) (up-prim-re
)
∀nP (n)into another proof (of the same formula ∀nP (n)) but with a
omputational
ontent that is the a

umulator-based version of up primitive re
ursion:fun up_prim_re
_a

 n= let fun visit m j a= if m = 0 then a else visit (m - 1) (j + 1) (s j a)in visit n 0 zendwith z and s base and step of Up.prim_re
. In these de�nitions, we use andmanipulate two a

umulators: j, to
ount from 0 to n and a, to store the partialresult at step j. Obviously, for j = n we have a = s (n− 1)(. . . (s 0 z) . . .). 105

8 Beyond Primitive Re
ursionSo given a proof of ∀nP (n) by the up primitive re
ursive indu
tion prin
iplein terms of z : MP (0) and s : N∀n(P (n)→P (n+1)) we
an build a new proof of
∀nP (n) with
ontent up_prim_re
_a

 through the following two steps:1. We prove the lemma ∀n∀m(P (m)→ P (n+m)) by up primitive re
ursiveindu
tion:Casen = 0 We have to prove

∀m(P (m)→ P (m))whi
h is trivially proved by (λm, u.u).Casen+ 1 Let us assume n, the re
ursive
all p : ∀m(P (m)→ P (n+m)),
m and the a

umulator y : P (m). We have to prove

P (n+m+ 1)Apply s to m and y, obtaining (smy) : P (m+ 1). Now apply p to
(m+ 1) and smy.2. Finally we derive the initial formula ∀nP (n) by assuming n and instan-tiating the formula proved in the �rst step on n, 0 and z : MP (0).8.3.2 Up Primitive Iteration with A

umulatorWe follow the same s
hema as in Se
tion 8.3.1. The only di�eren
e is that inthe intermediate lemma (point 1), we have to quantify non
omputationallyover m. In other words, we have to prove the modi�ed intermediate lemma:

∀n∀n
m(P (m)→ P (n+m))The synthesized program will embody the up primitive iterative indu
tion prin-
iple with a

umulator:fun up_prim_iter_a

 n= let fun visit m a= if m = 0 then a else visit (m - 1) (s a)in visit n zendwith z and s base and step of Up.prim_iter.8.3.3 Down Primitive Re
ursion with A

umulatorHere the problem is how to transform the following down primitive re
ursiveindu
tion prin
iple,106

8.3 Primitive Re
ursion and Iteration with A

umulators
|M

Q(n)

|N

∀y(Q(y + 1) → Q(y)) (down-prim-re
)
Q(0)into another proof, still of the formula Q(0), but with a
omputational
ontentthat is the a

umulator-based version of down primitive re
ursion:fun down_prim_re
_a

 n= let fun visit m j a= if m = n then a else visit (m+1)(j-1)(s(j-1)a)in visit 0 n zendwith z and s base and step of Down.prim_re
. We propose here an approa
hsimilar to the one in Se
tion 8.3.1. The fun
tion down_prim_re
_a

 is equippedwith two additional a

umulators, indi
ated with the letters j and a. The �rstone is initialized with n at the beginning of the
omputation and de
reased of 1in ea
h iteration, and the se
ond a

umulator, initialized with z, of type P (n),is dedi
ated to store the partial results. The proof from whi
h it is possible tosynthesize up_prim_re
_a

 is based on the following two steps:1. We prove the intermediate lemma ∀i(Q(i) → Q((i + 0) − n)) by downprimitive re
ursive indu
tion:Case y = n We have to prove ∀i(Q(i)→ Q(i)) that is given by
onstru
-tion by the following proof term λi, uQ(i)uCase y + 1→ y Given y, the indu
tion hypothesis visit : ∀i(Q(i)→ Q((i+

y + 1) − n)), i and u : Q(i), we prove Q((i+ y) − n) by
onstru
t-ing the following proof term: (visit (i − 1) (N∀y(Q(y+1)→Q(y)) (i −
1)u))Q((i+y)−n).2. We instantiate the proof of the formula ∀i(Q(i) → Q((i+ 0) − n)) on nand on zQ(n), obtaining Q(0).8.3.4 Down Primitive Iteration with A

umulatorWe follow the same s
hema as in se
tion8.3.3. The only di�eren
e is that in theintermediate lemma (point 1), we have to quantify non
omputationally over

i. In other words, we have to prove the modi�ed intermediate lemma:
∀n
i(Q(i)→ P ((i+ 0)− n))The pro
edure extra
ted from this new proof is the following down primitiveiteration prin
iple with a

umulator: 107

8 Beyond Primitive Re
ursionfun down_prim_iter_a

' n= let fun visit m a= if m = n then a else visit (m + 1) (s a)in visit 0 zendwith z and s base and step of Down.prim_iter.8.3.5 Summary and Con
lusionWe have presented the a

umulator-based versions of Manna and Waldinger'sgoing-up and going-down primitive re
ursion and primitive iteration reviewedin Se
tion 8.1.8.4 Case Study: The Fa
torial Fun
tionIn this se
tion we put into pra
ti
e what we have seen so far on a
ase study. Weprove by up primitive indu
tion over natural numbers that ∀n∃y(y = Fa
t (n))(de�nition of Fa
t in 1.2):
∃+ 1 = Fa
t(0)

∃+

∃y(y = Fa
t(0)) ∃− [v : ∃y(y = Fa
t(n))]

[u : y = Fa
t(n)]

y ∗ (n+ 1) = Fa
t(n+ 1)
∃+

∃y(y = Fa
t(n+ 1))
→+

u
(y = Fa
t(n)) →

∃y(y = Fa
t(n+ 1))
∀+

∀y(y = Fa
t(n) →

∃y(y = Fa
t(n + 1)))
∃−

∃y(y = Fa
t(n+ 1))
→+

v
∃y(y = Fa
t(n)) → ∃y(y = Fa
t(n+ 1))

∀+

∀n(∃y(y = Fa
t(n)) → ∃y(y = Fa
t(n + 1))) up-prim-re

∀n∃y(y = Fa
t(n))We name this proof as Proof_fa
t1. The program extra
ted from Proof_fa
t1is the following:let fun fa
t n =if (n=0) then 1else (fa
t (n-1))*nLet assume to name the base's and step's proofs of Proof_fa
t1 respe
tivelyas B and the step as S. We have already seen in se
tion 8.2.2 how to expressat programming level, via the Kleene tri
k, up primitive re
ursion in terms ofup primitive iteration. In the same se
tion we have seen how to do it also atproof level. So repla
ing M with B, N with S and P (n) with Fa
t(n) in Figure8.3, we obtain a new proof, that we name Proof_fa
t2, with the following
omputational
ontent:108

8.4 Case Study: The Fa
torial Fun
tionfun fa
t' n =#2(let fun visit m =if (m=0) then (0,1)elselet val (j,
)=visit (m-1)in (j+1,j*
) endin visit n endProof_fa
t2 will be a proof with the following shape:
|B

∃y(y = Fa
t(0))
|K

∃y(y = 0) ∧ ∃y(y = Fa
t(0)) |S

∀n(∃y(y = Fa
t(n)) → ∃y(y = Fa
t(n + 1)))

|J

∀n
n((∃y(y = n) ∧ ∃y(y = Fa
t(n))) →

(∃y(y = n+ 1) ∧ ∃y(y = Fa
t(n + 1)))) (up-prim-iter)
∀n(∃y(y = n) ∧ ∃y(y = Fa
t(n))) n

∀−

∃y(y = n) ∧ ∃y(y = Fa
t(n))
∧−

1Fa
t(n)
∀+

∀nFa
t(n)Where |K and |J
an be dedu
ed from Figure 8.3. Now, in se
tion 8.3.2 wehave seen how to transform an up primitive iterative proof of the form:
|M

P (0)

|N

∀n
n(P (n) → P (n + 1)) (up-prim-iter)
∀nP (n)into another proof with an a

umulator based extra
ted program. Now re-pla
ing M with K[B], N with J [S] and P (n) with ∃y(y = n) ∧ Fa
t(n) inthe above s
hema and then appling the proof transformation des
ribed in se
-tion 8.3.2 to the proof so instantiated, we obtain a new proof of the formula

∀n(∃y(y = n)∧Fa
t(n)), that we name Proof_fa
t3. Thus, from the derivation:Proof_fa
t3
∀n(∃y(y = n) ∧ Fa
t(n)) n

∀−

∃y(y = n) ∧ Fa
t(n)
∧−

1Fa
t(n)
∀+

∀nFa
t(n)we extra
t the following iterative with a

umulator version of the fa
torialfun
tion:fun fa
t'' n =#2(let fun visit m a=if (m=0) then aelse visit (m-1) ((#1a)+1, #1a*#2a)in visit n (0,1) end) 109

8 Beyond Primitive Re
ursionWe would like to point out on
e more that, even if the program obtained afterthe appli
ation of the above transformation is not parti
ularly
ompli
ated, ourtransformation is
ompletely automati
 and a
ts at proof level, that is, the proofitself will
onstitute a
erti�
ate of the
orre
tness of our transformation.

110

9 Con
lusions and Future WorksIn this thesis we developed a set of proof-transformations in order to extra
te�
ient program from proofs. In the following we will brie�y introdu
e ea
hproof-transformation te
hnique presented and we will dis
uss possible exten-sions of it.PruningOne of the main result in this thesis regarded pruning: we showed on two bigexamples, the bin pa
king problem and the perfe
t mat
hing one, that pruning
an be an essential tool to improve the e�
ien
y of the programs extra
tedfrom proofs. The aspe
t that make pruning a proof/program transformationnot
omparable with other proof/program transformations rely on the fa
t thatpruning modify the
omputational behavior of the extra
ted programs. This
an looks (in a �rst moment) a property not desideable, but in the truth is these
ret of the power of this method: given a proof of a problem with many so-lutions pruning transform the proof (and so the solution
odi�ed in the proof)into another proof, simplifying all the redundant
ase distin
tions.In
hapter 5 then we extended pruning with a more general rule. We provedformally that ea
h simpli�
ation that
an be done by pruning then is per-formable by the new pruning rule, and we showed on a
ase study that theopposite is not true: that is there are simpli�
ations performed by the newrule that is not possible to mimi
 with pruning.Further works
ould regards an extension of the new pruning rule in order toover
ame the problem (that we did not treat in our formulation) of pruning assour
e of ine�
ien
y. In order to make
lear this point
onsider the followingexample. If we apply pruning on the proof in Figure 9.1 we obtain the proofterm: IF t2 (∃+ r2 (AX1 u
t2)) (∃+ r3 (AX2 u

¬t2))Now assume in this
ase that t1 is a fast algorithm, that is that t1[x/r]
anbe normalized in just few steps for ea
h input r. Suppose further that t2 isvery slow. Then we have the following situation: whenever t1 holds, r1 maybe immediately returned as the output, but when ¬t1 holds a long
omputa-tion must be undertaken to determine whi
h of t2 or ¬t2 holds. However, the
orre
tness of the �long
omputation� does not depend on whether ¬t1 holds.Thus we have a fast way (t1) of dis
riminating between two ways of
omputing111

9 Con
lusions and Future WorksIF t2

[AX1 : atom(t2) → C(x, y, r2)] ut2

C(x, y, r2)

∃zC(x, y, z)

[AX2 : ¬atom(t2) → C(x, y, r3)] v¬t2

C(x, y, r3)

∃zC(x, y, z)

∃zC(x, y, z)IF t1

AX3 : [atom(t1) → C(x, y, r1)] ut1

C(x, y, r1)

∃zC(x, y, z) ____________
∃zC(x, y, z)

∀x, y∃zC(x, y, z)Figure 9.1:a satisfa
tory output, one of whi
h is very fast (the simple return of r1) andthe other of whi
h is very slow. Further the slow way always works. Pruning inthis
ase has the e�e
t of throwing away the dis
rimination (t1) and
hoosingthe slow way every time.Dynami
 ProgrammingIn
hapter 6 we presented an a do
 proof-transformation in order to synthesizea dynami
 program from a
onstru
tive proof. The proposed method's namewas list as memory. The idea
onsist in evaluating a su�
ient amount of datain advan
e so that the extra
ted algorithm gets to reuse it instead of re
om-puting it ea
h time it is needed. This is done introdu
ing in the proof a listof ad-ho
 axioms. The method we proposed in this thesis
an not be appliedautomati
ally to an arbitrary proof but it
an be seen more as a general s
hema(that has to be instantiated
ase by
ase) to follow in order extra
t dynami
programs from proofs. Future works in this dire
tion will regards the automa-tion of this pro
ess.Tail Re
ursionIn
hapter 7 we have seen how to transform a proof with re
ursive
ontent intoanother proof with tail re
ursive
ontent. We presented two proof transforma-tions: an �a

umulator� based one, from whi
h it is possible synthesize the Πtail re
ursive s
hema and a �
ontinuation� based, from whi
h it is possible toextra
t the Λ s
hema.We note that Λ is in some way more general than Π. The modi�
ation of Λin order to make it working on lists (let us name it ΛL(ρ)) instead of naturalsis easy; more importantly, the proof from whi
h ΛL(ρ)
an be extra
ted isobtained by a slightly modi�
ation of the proof from whi
h Λ is extra
ted. In112

the
ase of lists the end formula to prove should be: ∀lL(ρ).(P (l) → ⊥) → ⊥.Unfortunately we
an not extend in the same way Π and its proof: Π looksintrinsi
ally dependent from the algebra of natural numbers.Possible appli
ations of Λ and Π go beyond the tail re
ursion. We noted thatthere exists proofs from whi
h are extra
ted programs that run in exponentialtime that
an be turned (by the proofs transformations proposed here) in newproofs from whi
h it is possible to extra
t polynomial time algorithms. This
an appear pretty amazing and we are
urrently working in order to state su
hresult more pre
isely.Another appli
ation of the proofs transformations proposed here is an exten-sion of the CPS-transformation over formal proofs (S
hwi
htenberg [34℄ andGri�n [19℄) but this time
on
erning the indu
tion axiom. The proposal isto perform CPS over proofs in two stages: a pre-pro
essing step where all theproofs by indu
tion are transformed a

ording to our method, and a se
ondstage where CPS is applied skipping all the proofs by indu
tions. Currently weare studying also this aspe
t but it need a deeper investigation.A �nal remarks on the formal transformation of Ind_CONT into Ind_ACCpresented in se
tion 7.3. It
ould be interesting to study if, and how, toperform the inverse operation, that is to go from Ind_ACC to Ind_CONT. Weargue that it
ould be done by the Refun
tionalization te
hnique [14℄, but alsothis aspe
t needs a deeper investigation.

113

9 Con
lusions and Future Works

114

Bibliography[1℄ Penny Anderson. Program Derivation by Proof Transformation. PhDthesis, Carnegie Mellon University, 1993.[2℄ Joseph L. Bates and Robert L. Constable. Proofs as programs. ACMTransa
tions on Programming Languages and Systems, 7(1):53�71, 1985.[3℄ Stefano Berardi. Pruning simply typed lambda terms. Journal of Logi
and Computation, 6(5), 1996.[4℄ Ulri
h Berger. Uniform Heyting Arithmeti
. Annals Pure Applied Logi
,133:125�148, 2005.[5℄ Ulri
h Berger. Program extra
tion from normalization proofs. In M. Bezemand J.F. Groote, editors, Typed Lambda Cal
uli and Appli
ations, volume664 of LNCS, pages 91�106. Springer Verlag, 1993.[6℄ Ulri
h Berger, Wilfried Bu
holz, and Helmut S
hwi
htenberg. Re�nedprogram extra
tion from
lassi
al proofs. Annals of Pure and AppliedLogi
, 114:3�25, 2002.[7℄ Lu
a Boerio. Optimazing Programs Extra
ted from Proofs. PhD thesis,Computer S
ien
e Department of Turin, 1997.[8℄ R. Burstall and J. Darlington. A transformation system for developingre
ursive programs. Journal of ACM, 24(1), August, 1977.[9℄ Lu
a Chiarabini. Extra
tion of E�
ient Programs from Proofs: The
aseof Stru
tural Indu
tion over Natural Numbers. In Arnold Be
kmann,Costas Dimitra
opoulos, and Benedikt Löwe, editors, Logi
 and Theoryof Algorithms, 2008.[10℄ Lu
a Chiarabini. A new adaptation of the pruning te
h-nique for the extra
tion of e�
ient program from proofs, 2008.http://www.mathematik.uni-muen
hen.de/�
hiarabi/publ.html/PrunInMinlog.pdf.[11℄ K.-M. Chung and H.-I. Lu. An optimal algorithm for the maximum-densitysegment problem. SIAM Journal on Computing, 34:373�387, 2004. 115

Bibliography[12℄ Ferru

io Damiani and Paola Giannini. Automati
 useless
ode dete
-tion and elimination for hot fun
tional programs. Journal of Fun
tionalProgramming, 10(6), 2000.[13℄ Olivier Danvy. Three steps for the
ps transformation. Te
hni
al reportCIS-92-02, 1991. DAIMI, Department of Computer S
ien
e, University ofÅrhus, Danimark.[14℄ Olivier Danvy and Kevin Millikin. Refun
tionalization at work. S
ien
eof Computer Programming, 2008.[15℄ Olivier Danvy and Lasse R.Nielsen. Defun
tionalization at work. In ed-itor Harald Søndergaard, editor, Pro
eedings of the Third InternationalConferen
e of Prin
iples and Pra
ti
e of De
larative Programming, pages162�174, Firenze, Italy, September 2001. ACM Press. Extended versionavailable as the te
hni
al report BRICS RS-01-23.[16℄ P. Fariselli, M. Finelli, D. Mar
hignoli, P.L. Martelli, I. Rossi, and R. Casa-dio. Maxsubseq: An algorithm for segment-length optimization. the
asestudy of the transmembrane spanning segments. Bioinformati
s, 19:500�505, 2003.[17℄ Christopher Goad. Computational uses of the manupulation of formalproofs. Te
hni
al report, Stanford Departmet of Computer S
ien
e, Au-gust 1980. Report No. STAN-CS-80-819.[18℄ M.H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Linear-time algorithms for
omputing maximum-density sequen
e. Journal of Computer and SystemS
ien
es, 70(2):128�144, 2005.[19℄ Timothy G. Gri�n. A formulae-as-types notion of
ontrol. In Pro
eedingsof the 17th Annual ACM Symp. on Prin
iples of Programming Languages,POPL'90, San Fran
is
o, CA, USA, 1990.[20℄ Dan Gus�eld. Algorithms on Strings, Tree and Sequen
es. CambridgeUniversity Press, 1997.[21℄ N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and automati
Program Generation. Prenti
e Hall, 1993.[22℄ R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on the algo-rithmi
 language s
heme. Higher-Order and Symboli
 Computation, 11(1),August, 1998.[23℄ K. Kent Dybvig. The S
heme Programming Language. Mit Press, 1996.116

Bibliography[24℄ G. Kreisel. Interpretation of Analysis by means of Fun
tionals of FiniteType. In A. Heyting, editor, Constru
tivity in Mathemati
s, 1959.[25℄ Y.-L. Lin, T. Jiang, and K.-M. Chao. E�
ient algorithms for lo
ating thelength-
onstrained heaviest segments with appli
ations to biomole
ularsequen
e analysis. Journal of Computer and System S
ien
es, 65:570�586,2002.[26℄ Ja
ques Loe
kx, Hans-Dieter Ehri
h, and Markus Wolf. Spe
i�
ation ofAbstra
t Data Types. Wiley/Teubner Computing Series, 1997.[27℄ Zohar Manna and Ri
hard J. Waldinger. Towards automati
 programsynthesis. Communi
ations of the ACM, 14(3), 1971.[28℄ Kobayashi Naoki. Type-based useless variable elimination. Te
hni
al re-port, Department of Information S
ien
e, University of Tokyo, July 1999.Te
hni
al Report 99-02.[29℄ Aleksey Nogin. Writing Constru
tive Proofs Yielding E�
ient Extra
tedPrograms. In Didier Galmi
he, editor, Pro
eedings of the Workshop onType-Theoreti
 Languages: Proof Sear
h and Semanti
s, volume 37 of Ele
-troni
 Notes in Theoreti
al Computer S
ien
e. Elsevier S
ien
e Publishers,2000.[30℄ Frank Pfenning. Program development through proof transformation. InContemporary Mathemati
s, volume 106, pages 251�262, 1990.[31℄ Dag Prawitz. Ideas and results in proof theory. Pro
eedings of the 2.S
andinavian Logi
 Symposium, pages 237 � 309, 1971.[32℄ John C. Reynolds. De�nitional interpreters for higher-order programminglanguages. Higher-Order and Symboli
 Computation, 11(4):363�397, 1998.Reprinted from the pro
eedings of the 25th ACM National Conferen
e(1972).[33℄ Amr Sabry. Continuations in programming pra
ti
e: Introdu
tion andsurvey, 1999. Unpublished manus
ript.[34℄ Helmut S
hwi
htenberg. Proofs, lambda terms and
ontrol operators. InLogi
 of
omputation. Pro
eedings of the NATO ASI.Marktoberdorf, Ger-many, 1995.[35℄ Helmut S
hwi
htenberg. Programmentwi
klung dur
h beweistransforma-tion: Das Maximalsegmentproblem. In Bayer. Akad., 1996. 117

Bibliography[36℄ Helmut S
hwi
htenberg. Minimal Logi
 for Computable Fun
tionals. De-
ember 2008.[37℄ Helmut S
hwi
htenberg. Minlog refere
e manual.http://www.minlog-system.de/, De
ember 2006.[38℄ Thomas S.Ferguson. Linear programming, a
on
ise introdu
tion. Le
tureNotes, www.math.u
la.edu/�tom/LP.pdf, 2009.[39℄ M.H. Sørensen and P.Urzy
zyn. Le
tures on the Curry-Howard Isomor-phism, volume 149 of Studies in Logi
 and the Foundations of Mathemati
s.Elsevier, 2006.[40℄ Volker Spers
hneider. Bioinformati
s. Springer, 2008.[41℄ Anne S. Troelstra and H. S
hwi
htenberg. Basi
 Proof Theory. CambridgeUniversity Press, 2002.[42℄ M. Tompa W.L. Ruzzo. A linear time algorithm for �nding all maximals
oring subsequen
es. In Pro
eedings of the 7th International Conferen
eon Intelligent Systems for Mole
ular Biology, ISMB'99, pages 234�241,1999.

118

	Introduction
	Automatic Program Development
	Content of the Thesis
	Related Work

	Logical Foundations
	Modified Realizability for First Order Minimal Logic
	Gödel's T
	Heyting Arithmetic
	Normalization of Proofs
	Short Excursus in Program Extraction from Proofs

	A First Example of Proof Transformation: How to Extract Programs with let
	Minlog

	Pruning
	Introduction
	Pruning in Minlog
	Immediate Simplification in Minlog
	Dependencies Removal Transformation
	Computing with Permutative Conversions

	Case Study: The Bin Packing Problem
	Experiment

	Conclusions

	Bounded Perfect Matching Problem
	Introduction and Motivation
	Bounded Perfect Matching of a Complete Bipartite Graph
	Basic Definitions
	Algorithms, Data Structures and Automatic Program Synthesis
	Problem Specialization: The Monge Inequality

	Pruning at Work
	Conclusions

	Generalizing Pruning
	Introduction
	Proof Contexts
	Properties of the General Pruning Rule
	Case Study

	String Alignment
	Introduction
	The String Similarity Problem
	List as Memory Paradigm

	Conclusions

	Tail Recursion
	Introduction
	Proof Manipulation
	Continuation Based Tail Recursion
	Accumulator Based Tail Recursion

	From Higher Order to First Order Computation
	Case Study
	The MSS Problem
	Generation of a Continuation/Accumulator Based MSS-Program

	Beyond Primitive Recursion
	Introduction
	Up Primitive Recursive Induction
	Up Primitive Iterative Induction
	Down Primitive Recursive Induction
	Down Primitive Iterative Induction

	Expressive Power
	Up Primitive Iteration in Terms of Up Primitive Recursion
	Up primitive Recursion in Terms of Up Primitive Iteration
	Up Primitive Recursion in Terms of Down Primitive Recursion
	Down Primitive Recursion in Terms of Up Primitive Recursion
	Down Primitive Iteration in Terms of Down Primitive Recursion
	Down Primitive Recursion in Terms of Down Primitive Iteration
	Up Primitive Iteration in Terms of Down Primitive Iteration
	Down Primitive Iteration in Terms up Primitive Iteration
	Summary and conclusion

	Primitive Recursion and Iteration with Accumulators
	Up Primitive Recursion with Accumulator
	Up Primitive Iteration with Accumulator
	Down Primitive Recursion with Accumulator
	Down Primitive Iteration with Accumulator
	Summary and Conclusion

	Case Study: The Factorial Function

	Conclusions and Future Works
	Bibliography

