

Professional Search in
Pharmaceutical Research

Alex Kohn

München 2009

Professional Search in
Pharmaceutical Research

Alex Kohn

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig‐Maximilians‐Universität

München

vorgelegt von

Alex Kohn

München, den 24.11.2009

Erstgutachter: Prof. Dr. François Bry
 (Ludwig‐Maximilians‐Universität München)
Zweitgutachter: Prof. Dr. Steffen Staab
 (Universität Koblenz‐Landau)
Tag der mündlichen Prüfung: 19.01.2010

v

Abstract

In the mid 90s, visiting libraries – as means of retrieving the latest literature – was
still a common necessity among professionals. Nowadays, professionals simply
access information by ‘googling’. Indeed, the name of the Web search engine market
leader “Google” became a synonym for searching and retrieving information.
Despite the increased popularity of search as a method for retrieving relevant
information, at the workplace search engines still do not deliver satisfying results to
professionals.

Search engines for instance ignore that the relevance of answers (the satisfaction of
a searcher’s needs) depends not only on the query (the information request) and the
document corpus, but also on the working context (the user’s personal needs,
education, etc.). In effect, an answer which might be appropriate to one user might
not be appropriate to the other user, even though the query and the document
corpus are the same for both. Personalization services addressing the context
become therefore more and more popular and are an active field of research.

This is only one of several challenges encountered in ‘professional search’: How can
the working context of the searcher be incorporated in the ranking process; how can
unstructured free‐text documents be enriched with semantic information so that the
information need can be expressed precisely at query time; how and to which extent
can a company’s knowledge be exploited for search purposes; how should data from
distributed sources be accessed from into one‐single‐entry‐point.

This thesis is devoted to ‘professional search’, i.e. search at the workplace, especially
in industrial research and development. We contribute by compiling and developing
several approaches for facing the challenges mentioned above. The approaches are
implemented into the prototype YASA (Your Adaptive Search Agent) which provides
meta‐search, adaptive ranking of search results, guided navigation, and which uses
domain knowledge to drive the search processes. YASA is deployed in the
pharmaceutical research department of Roche in Penzberg – a major pharmaceutical
company – in which the applied methods were empirically evaluated.

Being confronted with mostly unstructured free‐text documents and having barely
explicit metadata at hand, we faced a serious challenge. Incorporating semantics (i.e.
formal knowledge representation) into the search process can only be as good as the
underlying data. Nonetheless, we are able to demonstrate that this issue can be
largely compensated by incorporating automatic metadata extraction techniques.
The metadata we were able to extract automatically was not perfectly accurate, nor
did the ontology we applied contain considerably “rich semantics”. Nonetheless, our
results show that already the little semantics incorporated into the search process,
suffices to achieve a significant improvement in search and retrieval.

We thus contribute to the research field of context‐based search by incorporating
the working context into the search process – an area which so far has not yet been
well studied.

vi

Zusammenfassung

Die seit den 90er Jahren vorherrschende Informationsflut als auch das Aufkommen
neuer Technologien haben die Prozesse des Informationszugriffes auf nie
dagewesene Art und Weise geprägt. Das Ergebnis dieses Wandels ist, daß Menschen
heutzutage nach Informationen ‚googeln’ anstatt Bibliotheken zu durchstöbern.
Tatsächlich ist der Name des derzeitigen Internet‐Suchmaschinen‐Marktführers
Google zu einem Synonym für die Suche nach Informationen geworden. Dieses
Phänomen betrifft insbesondere auch Experten, für die Suche nach Informationen
ein Teil des alltäglichen Geschäftes ist. Folglich sind Suchmaschinen nicht nur im Web
die erste Wahl um Informationen zu finden sondern auch im Intranet von Firmen.

Obwohl die Verwendung von Suchmaschinen bei Experten – insbesondere bei
Fachkräften in Unternehmen – sehr populär geworden ist, liefern Suchmaschinen im
Intranet immer noch nicht zufriedenstellende Ergebnisse.

Eine mögliche Ursache unter anderen ist, daß Suchmaschinen häufig den Kontext des
Suchenden (persönliche Bedürfnisse, Hintergrundwissen, usw.) ignorieren.
Tatsächlich ist aber die Relevanz eines Suchergebnisses, nicht nur von der
eigentlichen Suchanfrage und der Dokumentsammlung abhängig, sondern auch vom
Arbeitskontext des Suchenden. Folglich kann eine Antwort – bei gleichbleibender
Suchanfrage und identischem Korpus – für den einen Benutzer relevant sein und für
den anderen Benutzer nicht. Die Einbeziehung des Kontexts bei der Suche ist ein
aktives Forschungsfeld und wird zunehmend auch in Personalisierungsdiensten
führender Internet‐Suchmaschinen berücksichtigt.

Kontext‐basierte Suche ist nur eine von vielen Herausforderungen im Umfeld von
spezialisierten Suchmaschinen: Wie kann der Arbeitskontext des Suchenden in die
Ermittlung der Rangfolge der Ergebnisdokumente einbezogen werden; Wie können
vorhandene Daten mit semantischen Informationen bereichert werden, so daß die
Frage präzise formuliert werden kann; Wie und zu welchem ausmaß kann das
Vorwissen eines Unternehmens dazu genutzt werden die Suche zu verbessern; Wie
sollen verteilte Daten in einem Suchportal zusammengefaßt werden.

Die vorliegende Dissertation befaßt sich dem Thema „Expertensuche“, d.h. Suche am
Arbeitsplatz, insbesondere in der Forschung und Entwicklung. Ein Beitrag dieser
Arbeit liegt in der Zusammenstellung und Entwicklung von Ansätzen, mit denen den
zuvor genannten Herausforderungen begegnet werden kann. Die Ansätze werden in
dem Prototyp YASA (Your Adaptive Search Agent) implementiert, welcher Meta‐
Suche, adaptive Sortierung von Suchergebnissen und unterstütztes Navigieren
ermöglicht. Zahlreiche Prozesse profitieren dabei von domänen‐spezifischem
Wissen. YASA wird in der pharmazeutischen Forschungsabteilung von Roche in
Penzberg (ein größeres Pharma Unternehmen) produktiv genutzt. Letzteres bietet
ein ideales Umfeld für die empirische Untersuchung der angewandten Prinzipien.

vii

Die überwiegende Speicherung der Daten in Form unstrukturierter Textdokumente
und das Fehlen expliziter Metadaten, stellten eine ernste Herausforderung dar. Die
Einbindung von Semantik (traditionell als formale Wissensrepräsentation
verstanden) kann nämlich nur so gut sein wie die zugrundeliegenden Daten.
Nichtsdestotrotz sind wir in der Lage dieses Problem durch Einbindung
automatischer Metadaten‐Extraktionsmethoden weitgehend zu umgehen. Die
Metadaten, welche wir extrahieren konnten, waren weder perfekt noch war die
daraus resultierende und von uns verwendete Ontologie semantisch betrachtet
besonders reich. Unsere Ergebnisse zeigen aber, daß bereits ein bißchen Semantik
die Informationsbeschaffung deutlich erleichtert.

Der Beitrag der Arbeit liegt also auf dem Gebiet der kontext‐basierten Suche, d.h.
der Einbeziehung des Arbeitskontexts in den Suchprozeß – ein Gebiet, welches bis
jetzt noch nicht gut erforscht wurde.

viii

Acknowledgements

“It is with words as with sunbeams. The more they are condensed, the deeper they
burn.”

Robert Southey (1774 – 1843)

I would like to thank my scientific mentor and advisor Prof. François Bry, who –
always optimistic and positive – helped me discover my research interests as well as
to find and shape my ideas. I appreciated the discussions with him, his feedback, and
his friendly attitude throughout my dissertation. I am also grateful to Prof. Steffen
Staab for his willingness to scientific cooperation. The experience and knowledge he
provided were particularly enlightening and helpful for my research.

Next, I thank my supervising tutor Dr. Alexander Manta at Roche and the company
itself for offering me the scientific and financial opportunity to pursue my doctoral
thesis. In countless discussions, Alexander guided me in times of despair, doubt, and
idea hunting. His open mindedness gave me a lot of flexibility and freedom during
my research. Special thanks to my colleague Dr. Stefan Klostermann who provided
valuable insights about research at Roche and guidance during my first year. Thanks
to my colleagues from In Silico Sciences who gave me advice and support in all
questions related to bioinformatics and statistics. Thanks to the technical staff of
Scientific Research Informatics for their support with servers and hardware
upgrades. Special thanks to all colleagues from Pharma Research who participated in
the evaluation of YASA. Finally, a great and warm thanks to Tobias Högel, who wrote
his diploma thesis under my supervision, and to Florian Stadler and Marc Gössling,
whom I partially supervised during their internship at Roche. Their contribution and
dedication helped me tremendously.

Thanks to my current as well as past fellow students in the PMS department at the
University of Munich, Paula‐Lavinia Pătrânjan, Sacha Berger, Edgar Stoffel, Tim
Furche, Benedikt Linse, Michael Eckert, Stephan Leutenmayr, Alexander Pohl,
Christoph Wieser, Jakub Kotowski, Klara Weiand, and Olga Poppe who made the
time at the university always a pleasure. Special thanks to Dr. Norbert Eisinger who
gave me valuable feedback about my work. Thanks also to our secretary Ingeborg
von Troschke, who helped me a lot with administrative tasks.

Most importantly I would like to thank my friends and my family for their love and
care. Special thanks to my fiancée who absorbed so much of my stress, gave me
energy and who made me take my mind of things, even though she is quite busy
pursuing her master scholar.

Last, I would like to thank everyone who pushed me to finish this thesis.

ix

Contents

I Prelude

Chapter 1 Introduction.. 3
1.1 Motivation..4
1.2 Hypotheses ..4
1.3 Contributions ...5
1.4 Structure of the thesis ...6

II Background

Chapter 2 Search for information...13
2.1 Information retrieval process overview ..14
2.2 Traditional retrieval models...16

2.2.1 Boolean model ...17
2.2.2 Vector space model ...19
2.2.3 Term weighting ..21
2.2.4 Discussion...24

2.3 Text processing ..25
2.3.1 Tokenization...25
2.3.2 Stopword removal ...26
2.3.3 Stemming and lemmatization..26

2.4 Search in the World Wide Web ...27
2.4.1 PageRank in a nutshell ...28
2.4.2 HITS in a nutshell..30
2.4.3 Web search engines...31
2.4.4 Discussion...33

2.5 Search in an intranet environment..35
2.5.1 Differences between intranet search and Web search35
2.5.2 Open issues in intranet search...37
2.5.3 Search in structured sources ...39
2.5.4 Enterprise search engines..40

2.6 Evidence for document relevance ...44
2.6.1 Content evidence...45
2.6.2 Context evidence ...46
2.6.3 Time evidence ..46
2.6.4 Hyperlink evidence...47
2.6.5 URL evidence..47
2.6.6 Feedback evidence...48

2.7 Precision and recall ..48

Chapter 3 Adaptation in Information Retrieval ..51
3.1 User modeling..51

Contents

x

3.1.1 User model types ...52
3.2 Personalized search ...54

3.2.1 Personalization process types..55
3.2.2 Methods for personalized search ..56
3.2.3 Personalized search based on the search history................................58
3.2.4 Adaptation of search results based on the search history61
3.2.5 Other applications of personalized search ..61

3.3 Recommender systems..62
3.4 Algorithms for recommender systems ..64

3.4.1 Memory‐based algorithms ..65
3.4.2 Model‐based algorithms..67

3.5 Discussion...67

Chapter 4 Semantic Technologies ..71
4.1 Semantic Web ..71

4.1.1 Resource Description Framework (RDF)..73
4.1.2 RDF Schema (RDFS)..75
4.1.3 Web Ontology Language (OWL) ..77

4.2 F‐Logic ..78
4.2.1 The is‐a hierarchy...79
4.2.2 The object base..79
4.2.3 Rules and queries...80
4.2.4 F‐Logic vs. OWL‐DL...81

4.3 Semantic technologies in Information Retrieval ...82
4.3.1 State of the art ...82
4.3.2 Discussion...84

4.4 Semantic technologies in life sciences...85
4.4.1 State of the art ...85
4.4.2 Discussion...86

III Core

Chapter 5 Characteristics of professional search in pharmaceutical research.........89
5.1 Evaluation of the initial situation in the department investigated89

5.1.1 Intranet web...90
5.1.2 File shares ..91
5.1.3 Databases and applications ...93
5.1.4 Search engine usage on the PRPZ‐WebSite – A log file analysis94
5.1.5 Empirical studies of information acquisition95

5.2 Quality characteristics of a professional search tool...................................96
5.2.1 One single entry point..96
5.2.2 Role‐specific ranking ..96
5.2.3 Guided navigation..97
5.2.4 Exploit existing knowledge ..98
5.2.5 Professional search beyond research and development98

xi

Chapter 6 An ontology‐based information retrieval approach for professional
search ..101

6.1 Beyond traditional search for information ..101
6.1.1 Key approaches..102
6.1.2 Targeted sources..104

6.2 Ontologies ..105
6.2.1 Classification ontology ...105
6.2.2 Annotation ontology..106
6.2.3 Adaptation ontology ..108

6.3 Assigning metadata to “unstructured” text documents108
6.3.1 Considered document classes..109
6.3.2 Text representation ...110
6.3.3 Named Entity Recognition ...111
6.3.4 Classification using a knowledge‐engineering approach...................112
6.3.5 Classification rules ...113
6.3.6 Classification using Machine Learning...116
6.3.7 Discussion...118

6.4 Search results adaptation ..119
6.4.1 Knowledge‐based adaptation..119
6.4.2 Advanced user roles...122
6.4.3 Log‐based adaptation ..123
6.4.4 Extending knowledge‐based adaptation with implicit feedback124

6.5 Weighting document relevance...124
6.5.1 Similarity function..125
6.5.2 The context’s influence on the ranking of results126

6.6 Discussion and related work..129

Chapter 7 The professional search agent prototype YASA....................................131
7.1 Implementation decisions ...131

7.1.1 Search engine: Lucene ...132
7.1.2 Semantic web middle‐ware: OntoBroker ..132
7.1.3 Text analysis platform: UIMA...133
7.1.4 Machine learning platform: WEKA ..133

7.2 Architecture of YASA..134
7.2.1 Data adapter ..135
7.2.2 Crawler ...137
7.2.3 Annotator...137
7.2.4 Indexer and searcher ...137
7.2.5 Graphical user interface...137
7.2.6 Service layer ...139

7.3 Discussion...139

Chapter 8 Evaluation..141
8.1 Usage, access, query, and session statistics ..141

8.1.1 Changes in the search engine usage on the PRPZ‐WebSite – A log file
analysis 142
8.1.2 Access of sources within YASA...144
8.1.3 Statistics concerning individual queries...146

Contents

xii

8.1.4 Statistics concerning query duplicates ..147
8.1.5 Statistics concerning query sessions..148
8.1.6 Statistics concerning click statistics ...149
8.1.7 Discussion...149

8.2 Text categorization performance ..150
8.2.1 Training and test set ..150
8.2.2 Optimization of the ML text classifier..151
8.2.3 Knowledge engineering vs. machine learning152
8.2.4 Discussion...154

8.3 Retrieval performance evaluation using click‐through data155
8.3.1 Design...156
8.3.2 Baseline ranking vs. baseline ranking with feedback157
8.3.3 Baseline ranking vs. baseline ranking with context...........................158
8.3.4 Discussion...159

8.4 Controlled experiments ...161
8.4.1 Evaluation process and methodology..161
8.4.2 Test persons ...163
8.4.3 Designing the tasks ..164
8.4.4 Test system ..166
8.4.5 Conducting the evaluation...167
8.4.6 Results of the observation phase...167
8.4.7 Results of the feedback phase ...172
8.4.8 Results interpretation ..175

8.5 Discussion...176

IV Conclusion

Chapter 9 Summary and future work ...181
9.1 Summary ..181
9.2 Lessons learned..183
9.3 Future work..184
9.4 Outlook...186

Bibliography ..189

List of Figures...201

List of Tables..204

Abbreviations ..206

Publications of the author related to this thesis...207

Curriculum Vitae..208

1

Part I

Prelude

3

Chapter 1

Introduction

“An expert is a person who has made all the mistakes that can be made in a very
narrow field.”

Niels Bohr (1885 – 1962)

1.1 Motivation..4
1.2 Hypotheses ..4
1.3 Contributions ...5
1.4 Structure of the thesis ...6

Once upon a time scientists were experts in their field. They knew not only the “hot
questions” but also the scientists involved and the various approaches investigated.
More important, they were well informed of novel research results. Gone are these
favorable times! Hot issues and active research teams emerge with high pace and
being informed early enough might be essential for success. Furthermore, no one
can any longer keep an eye on the research publications, patents, and other
information that might be relevant to one’s research. As a consequence, scientists
often feel – and in fact they sometimes are – rather unaware of areas that are of
prime importance to their research. High diversity, considerable amounts of
information and extremely fast communication are key characteristics of today's
research – especially in medical biology.

The profiling and retrieval of the most relevant information for any scientist, based
on similarities between roles, information needs and reading behavior, is a way to
cope with these aspects of today’s research. Systems providing such services are
made possible by emerging Semantic Web techniques as well as established
Information Retrieval, Text Categorization, and Adaptation methods.

This thesis investigates different approaches to satisfy the information needs of
scientists in Pharmaceutical Research, based on the concrete needs of a research
department at Roche in Penzberg, a research centre of a major pharmaceutical
company. The approaches are implemented in an “Intelligent Information Portal”
which functions as a platform for conducting several empirical studies.

Chapter 1 Introduction

4

1.1 Motivation
Search is an increasingly important method for information access and retrieval in
large companies. Having experienced the possibilities of public search tools such as
Google or Yahoo!, employees now expect a similar performance in context of their
professional search activities.

However, public search significantly differs from ‘professional search’. Relevance for
instance is rarely the same in public and ‘professional search’. Consider for example
a hematologist searching for “polycythemia vera”, a blood disorder, at Google (on
the 4th of Mai 2009 at www.google.de). Due to Google’s virtue to present most
popular pages on any subject, the first five returned results link to encyclopedia like
web pages which describe the blood disorder in a very general manner. Although
these pages might be relevant to the average searcher, they are probably not what a
pharmaceutical researcher is looking for. Even if Google first returned the pages
relevant to pharmaceutical researchers, not all these pages would be relevant to
every pharmaceutical researcher. Indeed, research is a highly specialized activity:
different researchers have different interests. One might be interested in drugs for
curing the blood disorder “polycythemia vera”; another one might be interested in
the causes of the disorder; a third one in the costs of the disorder for society in order
to analyze the market possibilities of new drugs, etc. Thus, the “one size fits all”
approach of public search engines is not appropriate for ‘professional search’.

Another reason why public search engines are rarely appropriate for ‘professional
search’ is that they do not access data behind a company’s firewall, that is, the data
that best reflects on‐going professional activities. Further, public search engines are
not focused on expert knowledge, the field where professional users are active. In
case of pharmaceutical research, this expert knowledge is mostly expressed in
databases, public life science ontologies, libraries, etc. It is worth noting that
specialized search services of public search engines, such as Google Scholar, are
important efforts to fulfill the need of ‘professional search’ for expert sources. In
addition, search engines and information services targeted at specific areas are
available, such as the life science literature search service PubMed.

1.2 Hypotheses
The previous section briefly outlined that public search is only to some extent – if at
all – appropriate to professionals. The aim of this thesis is to determine which quality
characteristics are most adequate for a professional search tool. In order to identify
these (i.e. investigated approaches), we first discuss the following working
hypotheses, on which the research described in this thesis is based:

1. Professional searchers prefer to access all sources via one single entry point
2. Professional searchers require a role‐specific ranking of results
3. Guided navigation is relevant for professional search
4. A company’s knowledge is instrumental for professional search

The first hypothesis is deduced from the fact that much of the success of public
search tools such as Google, is because they offer a convenient way of searching and

Contributions

5

accessing all kind of data from one single entry point (i.e. one search box). We
assume that similarly, professional searchers would also prefer to have a search tool
which gives access to large parts of the professional information sources. Therefore,
we investigate in this thesis whether the approach of a meta‐search engine (Chapter
2) – giving access to public domain data as well as in‐house data – is preferred by
professional users.

The second hypothesis results from the observation that the “one size fits all”
paradigm applied by today’s search engines is in contrast to research nowadays,
which requires a high degree of specialization. As a consequence, we postulate that
professional searchers require a role‐specific ranking of results. Even though various
adaptation techniques (Chapter 3) could be applied to achieve a role‐specific ranking
of results, we restrict our investigations to knowledge‐based and log‐based
approaches. Knowledge‐based methods are considered because they offer a
convenient way of encoding static a priori knowledge (cf. fourth hypothesis) into the
ranking process. Log‐based methods on the other hand cover the dynamic parts as
they adjust the adaptation based on past search activities. Whether the individual
approaches or their combination improve search performance is one target of the
investigations conducted in this thesis (Chapter 8.3).

The third hypothesis is given because guided navigation (faceted navigation) [Yee et
al. 2003] enables professionals to “search as they think”. Arguably, being able to
browse information along multiple dimensions instead of a fixed taxonomy enables a
user to find information faster as he can use his preferred way of structuring
information. Facets have also a second effect: they provide a brief overview of the
results’ characteristics so that professionals are supported in case they conduct
queries in unfamiliar topics. In order to provide facets, existing documents must be
enriched with annotations (i.e. metadata). We investigate whether a knowledge‐
engineering or a machine learning approach are suitable for this task (Chapter 8.2).
We then evaluate whether the automatically generated facets improve the
information retrieval process of a user (Chapter 8.4).

The fourth hypothesis characterizes a key difference between public search and
professional search: In ‘professional search’ a priori knowledge about the searcher is
usually available whereas in a public search environment this is generally not the
case. Professional searchers are part of a larger organization in which they have
specific roles and tasks. These roles and tasks reflect their professional context and
could thus be used as a priori knowledge so that information retrieval is improved
(Chapter 6). We investigate the benefits of using a company’s a priori knowledge in
the context of hypothesis two (knowledge‐based adaptation; cf. 6.4.1) and three
(guided navigation; cf. 6.3.4).

1.3 Contributions
The contributions of this thesis are twofold. On the one hand, we present
characteristics of professional search in a scientific community, devise a conceptual
framework, and the architecture of a professional search tool. The characteristics
being presented are derived from the working hypotheses and lead to a number of

Chapter 1 Introduction

6

applied principles for designing professional search tools. On the other hand, we
provide an implementation of the principles in a prototype called YASA (Your
Adaptive Search Agent) and we conduct an empirical evaluation of the applied
principles in a real world setting using YASA.

YASA provides meta‐search (cf. first hypothesis), adaptive ranking of search results
(cf. second hypothesis), guided navigation (cf. third hypothesis), and it uses domain
knowledge to drive several processes (cf. fourth hypothesis). The wiring of the
methods is done in an intelligent and unique manner, achieving a novel approach in
the context of professional search. The prototype is deployed in the pharmaceutical
research department of Roche in Penzberg, with several hundred users.

The prototype (Chapter 7) can be considered an ideal platform for conducting
experiments in the area of professional search. In this thesis we verify which of the
principles (one single entry point, role‐specific ranking of results, guided navigation,
exploitation of contextual knowledge) are most instrumental for professional search.
The availability of the prototype to several hundred employees enables us to collect
sufficient empirical data in order to draw statistically significant conclusions to the
given hypotheses.

Our main findings revolve around incorporating semantics into the search process so
that context‐based search is enabled – an area, which so far has not yet been well
studied in research. Indeed, research in adaptation mostly focused on specific types
of content as well as personalization services based on a user’s search history. The
incorporation of the working context as conducted in this thesis (Chapter 6) has not
yet been well studied in research.

A further issue we address is the fact that our work targets unstructured free‐text
documents. Hence, the ability to extend search with semantics is limited by the
quality of the symbolic knowledge representation, which itself is dependent on the
quality of the indexed documents. This is a key issue because free‐text documents do
not contain explicit semantics.

We show that this limitation can be largely compensated by automatic metadata
extraction techniques. Further, we show that even in light of the “sparse semantics”
we are able to extract, the benefits for search are considerable. (cf. Chapter 8).

1.4 Structure of the thesis
The thesis is structured as follows. We begin with the background part (Chapter 2, 3,
and 4), which introduces the basics of information retrieval, adaptation and semantic
technologies and presents the main research directions in the area. We continue
with the core part, which begins with the analysis of the peculiarities of professional
search in research & development and identify topics and techniques to be
investigated (Chapter 5). Following that, we introduce the concept of a professional
search tool (Chapter 6) as well as the technical design decisions and architecture of
the developed prototype (Chapter 7). Finally, we present the results of the empirical
study conducted with the prototype and their consequences for ‘professional search’

Structure of the thesis

7

(Chapter 8). In the last part, we conclude the work (Chapter 9). A more detailed
overview of the chapters is given next.

Part II: Background

Chapter 2: Search for information
We start with the introduction of the basics of search engines. Here, special focus is
put on the information retrieval aspects. Then, we move on to search in the Web
and its impacts on traditional information retrieval. Finally, we discuss search in
intranets and its differences to search in the Web.

The chapter is fundamental for this thesis as it describes the state of the art in public
search as well as in professional search. Further it points out current limitations and
issues in context of professional search. Last, it provides the necessary background
knowledge for the concepts introduced in Chapter 6.

Chapter 3: Adaptation in Information Retrieval
Adaptive techniques seem to be a promising approach for achieving acceptable
precision and recall levels even with exponentially growing information volumes. The
chapter introduces the fundamentals of adaptive systems. In particular, the user
modeling, i.e. construction of user profiles and involved issues are discussed.
Further, an overview of adaptive applications is given.

The chapter not only provides the foundation for understanding the role‐specific
ranking approach introduced in Chapter 6 but also goes beyond and discusses
recommender systems. Even though these are not considered in context of this
thesis, we believe that discussing them is necessary in order to provide a complete
picture of adaptive systems.

Chapter 4: Semantic Technologies
We begin with the presentation of the Semantic Web vision and standards. Then, we
introduce the ontology language F‐Logic which is used in this thesis for capturing
domain knowledge. Following that, the usage of semantic technologies in
Information Retrieval systems is discussed. Finally, we examine the role of ontologies
and rules for the health care & life science sector.

This chapter is of particular importance because ontologies and rules (written in F‐
Logic) are an integral part of the overall concept introduced in Chapter 6. More
precisely: a priori knowledge of the professional domain is encoded in a semantic
knowledge base; role‐specific ranking of search results and the automatic annotation
of documents is based on ontologies and rules.

Chapter 1 Introduction

8

Part III: Core

Chapter 5: Characteristics of professional search in pharmaceutical research
The chapter begins with an evaluation of the initial situation in a research
department at Roche. The focus is on existing information sources and the way they
are used. Difficulties and shortcomings are outlined and discussed. Based on this
analysis, the working hypotheses of this thesis are justified and several quality
characteristics a professional search tool should offer are suggested.

Chapter 6: An ontology‐based information retrieval approach for professional
search
This chapter introduces a concept for an ontology‐based information retrieval portal.
Each corner stone of the concept is described in detail and the technical feasibility is
discussed.

In particular we describe the meta‐search approach; the role‐specific ranking of
results based on knowledge‐bases and logs; and guided navigation based on
automatic annotations of text documents. In order to automatically enrich text
documents with annotations we use ontologies and rules, Machine Learning, and
Natural Language Processing. While the basic principles of knowledge bases are
described in Chapter 4, the techniques of Machine Learning and Natural Language
Processing are not addressed in the background part of this thesis. Rather we point
to reference work in this area. The reason for skipping the discussion of the two
topics is that these are merely auxiliary technologies.

Chapter 7: The professional search agent prototype YASA
Design decisions and the architecture of the prototype named “Your Adaptive Search
Agent” (YASA) are outlined. YASA implements the concepts introduced in Chapter 6.

Chapter 8: Evaluation
The empirical results obtained from evaluating the professional search prototype
YASA in a R&D context are presented. In particular, we evaluate: the usage of YASA
compared to other search tools in the investigated department; we investigate query
sessions of YASA and interpret them; we examine which annotation method works
best, i.e. knowledge‐engineering or machine learning; we examine whether our
knowledge‐based and log‐based role‐specific ranking methods outperform the
baseline ranking; we conduct a user study in which various aspects of the prototype
YASA are examined.

The chapter is the core contribution of this thesis as it shows which methods are
suitable for a professional search tool in R&D and which are not.

Structure of the thesis

9

Part IV: Conclusion

Chapter 9: Summary and future work
The last chapter gives a summary and conclusion of the conducted work. Further, we
discuss the consequences of the obtained results and the applicability of the
presented concepts in other environments. Finally, areas of future work are outlined.

11

Part II

Background

13

Chapter 2

Search for information

“As a general rule the most successful man in life is the man who has the best
information.”

Benjamin Disraeli (1804 – 1881)

2.1 Information retrieval process overview ..14
2.2 Traditional retrieval models...16
2.3 Text processing ..25
2.4 Search in the World Wide Web ...27
2.5 Search in an intranet environment..35
2.6 Evidence for document relevance ...44
2.7 Precision and recall ..48

The “Sputnik shock” in the 1950s and the subsequent funding by U.S. government
was a key enabler of early research in information retrieval. At that time,
information retrieval was based on mechanized literature searching systems. The
first computers enabled free text indexing to spread in the 1960s. In that time
period, Gerald Salton set the foundations of modern search technology by
introducing the Vector Space Model [Salton et al. 1975]. The 1970s are characterized
by a large‐scale adoption of computer typesetting which provided useful material for
information retrieval systems. In the same decade, C. J. Van Rijsbergen proposed the
probabilistic retrieval model [Van Rijsbergen 1979]. In the 1980s the digital
information available grew further and in 1989, Tim Berners‐Lee set the foundations
for today’s World Wide Web. The invention of the Web revolutionized the world as it
enabled anyone to publish any content. Driven by the people’s need to find
information in the steadily growing Web, many researchers and companies started
to create Internet search engines: Archie (1990; the first search tool for the Internet),
I, Robot (1993; the first Web Wanderer), Excite (1993), EINet Galaxy (1994), Yahoo
(1994), Lycos (1994), Infoseek (1995), Alta Vista (1995), Inktomi (1996), AskJeeves
(1997), Northern Light (1997), Google (1997), and MSN Search (1998). The given list
contains only the well known ones. In fact many more have been developed and
some are still in use today.

This chapter introduces basic principles of today’s modern information retrieval. Key
aspects of professional search in the Web as well as in intranets are described.

Chapter 2 Search for information

14

We begin this chapter by giving an overview of the basic steps in the information
retrieval process. In the subsequent chapters we discuss several aspects of
Information Retrieval (IR) which are relevant for this thesis. In particular, we
introduce the vector space model as this is the retrieval model which is applied by
our concept. Then, we discuss text processing, i.e. how to represent text. Text
processing is not only important for IR but also for text classification (cf. 6.3.2 and
8.2.2). Following that, we switch the topic to search in the Web. On the one hand,
we introduce the ranking algorithms PageRank and HITS, which turned the Web
search engine market upside down. On the other hand, we list several general as
well as specialized search engines of the Web and discuss their strength and
weaknesses with respect to professional search. Having introduced search in the
Web, we then continue with search in an intranet environment. This chapter is of
particular interest for this thesis as it outlines the typical problems and the current
state of the art in intranet search. Following that, we talk about evidence for
document relevance. Here, various options for improving the ranking of results in
the Web as well as in intranets are shown. We briefly discuss which of the options
are applicable in an intranet environment and which not. Finally, we give an
introduction to the widely used performance measures precision and recall. These
are also applied in various evaluations conducted in this thesis.

2.1 Information retrieval process overview
An IR system consists of several interconnected modules (Fig. 2‐1) which enable two
basic processes: Building an index and querying the index. The index, an integral part
of the IR system, contains the searchable “features” (typically the words of text
documents) and enables fast query answering.

Building a search index starts with a crawler (also known as robot, bot, or spider)
[Heydon & Najork 1999]. Search engines use a crawler program in order to find new
documents in a data repository. The crawler contains thus the algorithms to “crawl”
(scan) specific data repositories. In case of the World Wide Web, discovery of new
documents is accomplished by starting from a set of seed URLs and then recursively
following all hyperlinks from the seed pages. The crawling process of file share
repositories is quite similar to Web crawling. The crawler also starts from a set of
seed pages or entry points. However, since no hyperlinks exist in file shares, the
crawler simply uses the operating system’s directory listing command in order to find
new documents. Thus, it recursively scans the directory tree using a breadth‐first‐
search or depth‐first‐search approach. Other types of repositories are crawled in a
similar fashion. The crawler implementation needs to know the search scope, which
is highly dependent on the targeted IR application. In one case, search in the full‐text
content does suffice. In another case, both, search in full‐text and metadata is
relevant (e.g. in Web search the body’s content as well as the meta‐tags’ content of
HTML pages). Yet in other scenarios, only metadata is considered. Literature retrieval
tools e.g. might be restricted to search in metadata (author, title, journal, year of
publication, and abstract), in order to protect the publisher’s rights on the full‐text
content.

Information retrieval process overview

15

The output of the crawler is delegated to a text processing engine (Chapter 2.3)
where several text manipulation tasks are conducted: tokenization (splitting
sentences into words), removal of stop words (frequent words like “the”, “or”, “and”
…), stemming (reducing words to their root form, e.g. “eating” becomes “eat”), and
synonym injection (e.g. adding “research paper” to ”research article”) are just a few
examples. The aim of the text processing pipeline is to identify index terms that best
describe the content of a document and help to discriminate it from others. An index
term is a “content‐bearing key […] which needs not be single words but may be
multi‐word units” [Jones 1999]. For instance, the text “Acetyl‐CoA” might be
processed to the single index term “Acetyl‐CoA” or to the index terms “Acetyl” and
“CoA”, depending on what is relevant for the application field. The important point is
that the same text processing pipeline must be applied to a user’s query. Otherwise
discrepancies between indexed content and queries could lead to anomalies in the
search results.

Fig. 2‐1: Information retrieval process.

In the next step, the processed text is transferred to the indexer which builds an
inverted file. The inverted file is an index structure where each indexed term is
linked to the document in which it occurs, just like a book index where each term
points to page numbers. The benefit of using an inverted file is that documents
matching a query terms can be found efficiently.

Once the index is constructed, the IR system can be queried by its users. Analogous
to the text processing step, the query is first analyzed by a text processing engine in
exactly the same way, before it is transformed into an internal representation. The
processed query is then transmitted to the searcher.

Chapter 2 Search for information

16

The searcher processes the query and retrieves all relevant documents from the
index. Here, the investment of building the index pays off because thousands of
queries can be answered within milliseconds.

In the final step, the retrieved documents are passed to the ranking module. This
module plays a crucial role as its task is to order the results by relevance. The
documents matching best the user’s information need to be located at the top of the
result list.

In the next chapter, parts of the information retrieval process are described in detail,
i.e. the query processing, the searcher, and the ranking of results. Afterwards, the
invention of the World Wide Web and its impacts on information retrieval as well as
on the scientific community and their search behavior are discussed. Following that,
the focus is set to search in intranet environments and the difficulties encountered
there are outlined. Finally, state of the art methods for improving ranking of results
are listed and discussed.

2.2 Traditional retrieval models
Formally, an information retrieval model is a quadruple (D, Q, F, R(qi,dj)) [Baeza‐
Yates & Ribeiro‐Neto 1999], where

- D is a representation of documents,
- Q is a representation of queries (user information needs),
- F is a modeling framework for D, Q, and the relationships among them,
- R(qi,dj) is a ranking function which defines an ordering among the

documents for the given query.
In case the Boolean model (Chapter 2.2.1) is used, D is a set of words (indexing
terms) occurring in the documents. Q is a Boolean expression of index terms
composed with Boolean operators. F is the set algebra (in case of the Vector Space
Model shown in Chapter 2.2.2 it would be the vector space and its operators). R
predicts a document as relevant to a query if the document can be satisfied, i.e. the
document matches the query. The components of the IR model can be derived in a
similar fashion for other IR models.

In advance to the introduction of the retrieval models, we define two notions which
are used in the subsequent chapters: “index term weight” and “index term weight
vector”. The definitions revolve around weighted terms – a key principle for
measuring relevance in IR, which is usually incorporated in the retrieval models. For
instance, an index term occurring in every document of the indexed corpus is not
useful as it can’t discriminate well between different documents. If, however, an
index term occurs only in a small subset of documents, it is very useful for
discriminating documents, and thus for making queries.

Definition 2‐1: Index Term Weight
Let D={d1,...,dN} be the set of all indexed documents. Further, let K={k1,...,kT} be the
set of all distinct index terms. Then, a term weight wi,j is a non‐negative number
reflecting the relevance of index term ki for document dj.

Traditional retrieval models

17

Index terms appearing in a document dj, receive a positive weight wi,j>0. The higher
the number, the more relevant is the index term kj for document dj. In case an index
term does not occur in a document, its weight is set to wi,j=0. The scale of term
weights, and if they are continuous or discrete depends on the model used for
calculating them. In one case they might be binary (e.g. Boolean model), in another
case they might be continuous and normalized to the range of [0..1] (e.g. vector
space model), and so forth. Most methods for calculating the term weights are based
on the “term frequency – inverse document frequency” (tf‐idf) measure, which is
introduced in chapter 2.2.2.

The index term weight as defined previously, represents the weight of an index term
for a specific document. The index term weight vector, which is defined next, groups
the index term weights of one document into a vector.

Definition 2‐2: Index Term Weight Vector (Document Vector)
Let K be defined as previously, namely the set of all distinct index terms. Then, each
document dj is represented by a t‐dimensional vector dj=(w1,j,...,wT,j) where wi,j
represents the weight of the index term ki in the document dj.

Modern IR has its roots in the 70’s and so it is no surprise that nowadays dozens of
different retrieval models and hundred of variations exists. The literature describes
amongst others the Boolean model, the vector space model [Salton et al. 1975], the
extended Boolean model [Salton et al. 1983], the probabilistic model [Robertson &
Jones 1976; Robertson & Walker 1994], the fuzzy set model [Fox et al. 1992], the
generalized vector space model [Wong et al. 1985], the latent semantic indexing
model [Furnas et al. 1988], the neural network model [Wilkinson & Hingston 1991],
the inference network model [Turtle & Croft 1989], and many variations of the basic
approaches. Due to this large amount of different approaches we will put focus only
on the Boolean model and on the vector space model. Although simple, these
models perform well and are among the most popular in the field of IR. In addition,
hybrid approaches which attempt to combine the advantages of the vector space
model and the Boolean model are discussed.

2.2.1 Boolean model
Boolean algebra, formulated by George Boole in 1847 [Boolean algebra 2008], is the
calculus of the binary truth‐values 0 and 1, or F and T (False and True). Boolean
algebra differs from ordinary numeric algebra because it applies a two element set
of values which are not seen as numeric but as symbolic quantities. The Boolean
algebra has three basic operations defined, namely conjunction (∧, AND), disjunction
(∨, OR) and negation (¬, NOT). These logical connectives can be used to construct
propositions. The truth‐value of the resulting proposition is dependent on the truth‐
values of the components and on the connectives employed.

The Boolean model is not only based on Boolean algebra, but also on set theory. This
is possible, because the basic Boolean operators (∧, ∨, and ¬) are isomorphic to the
basic set operations (intersection, union and complement). The atomic terms

Chapter 2 Search for information

18

connected by the Boolean operators can be interpreted as representing propositions
that are true or false, or as representing sets that do or do not contain certain items.

In the Boolean model we would thus express a query as a connective of terms, e.g.
“antibody ∧ cancer”. Each query term specifies a set of matching documents
(documents containing the query term). In the example, the set matching “antibody”
would be intersected with the set of documents matching “cancer”, yielding the set
of documents containing both terms, “antibody” and “cancer”, which is seen as the
answer to the query.

Next, we define the index term weight for the Boolean model. The definition maps
the binary truth values of the Boolean algebra to the index term weights.

Definition 2‐3: Index Term Weight of Boolean model
Let dj be a document and ki an index term. Then, the binary index term weights, i.e. wi,j∈{0,1}, of the Boolean model are defined as:



 ∈

=
otherwise0

 if1
,

ji
ji

dk
w

The similarity function of the Boolean model is also binary. If sim(dj,q)=1 then the
document is considered relevant, i.e. it fulfills the query’s conditions (denoted as:
the document satisfies the query). Otherwise, i.e. sim(dj,q)=0, the document is
considered irrelevant.

Definition 2‐4: Similarity function of the Boolean model

()




= otherwise0 q satisfies d if1q,dsim jj

In order to illustrate the Boolean model, we define a sample corpus in Table 2‐1.

Table 2‐1: Sample corpus consisting of three different documents. The document index terms are the
result of stop‐word removal and Porter’s stemming algorithm.

Document Text content Index terms
d1 Rare side effects of Monoclonal Antibody

therapy: Heart problems and skin problems.
rare, side, effect, monoclon, antibodi,
therapi, heart, problem, skin, problem

d2 Monoclonal Antibody drugs are used for the
treatment of breast cancer, colon cancer, and
lung cancer.

monoclon, antibodi, drug, us,
treatment, breast, cancer, colon,
cancer, lung, cancer

d3 A monoclonal antibody is a laboratory‐
produced molecule that attaches to specific
defects in a cancer cell.

monoclon, antibodi, laboratori,
produc, molecul, attach, specif,
defect, cancer, cell

Assume that the Boolean query is q=”monoclonal ∧ antibody ∧ ¬cancer”. First, for
each query term the matching documents are calculated. Then, the document sets
are merged using the given connectives, yielding the final answer ser. In the
example, the result is {d1}. The query processing is illustrated in Fig. 2‐2.

Traditional retrieval models

19

Fig. 2‐2: Query processing.

Query processing in the Boolean model is usually optimized in order to improve
runtime performance [Sormunen 2000]. Optimization means to determine the
optimal query processing order. Algorithms for query optimization consider factors
like set size or occurrences of a query term within a document. It is thus similar to
the optimization of SQL queries in database systems.

Though the Boolean model is simple and easy to use, it provides neither partial
matching nor a ranking of results. Partial matching allows a document to match a
query even though not all query terms are covered, i.e. present in the document. In
the introduced document corpus for instance, d2 does only partially match the query
“cancer AND cell” and thus, would not be in the answer set if the Boolean model is
used. Another restriction of the Boolean model is that all terms are considered
equally important, i.e. a Boolean operator has much more influence than a critical
word. Nevertheless, the Boolean model was for three decades the primary retrieval
model in commercial tools and many professional searchers are still relying on the
Boolean model. Indeed, the ability to provide exact matches is popular among
librarians. Because ranking by relevance is not possible, other criteria for ranking
results are used, like sorting by alphabet, by categories, by chronology or by date.
The latter approach is used e.g. by PubMed, where the newest publications are listed
first.

The next model to be introduced compensates for the major drawbacks of the
Boolean model. It provides a relevance ranking and partial matching.

2.2.2 Vector space model
The vector space model uses vectors to represent documents and queries [Baeza‐
Yates & Ribeiro‐Neto 1999; Salton et al. 1975]. Each document dj consists of a T‐
dimensional vector, where each entry contains the weight wi,j of the corresponding
index term ki (Definition 2‐2). The model creates a space in which the document
vectors are represented (Fig. 2‐3). The dimension of the space is determined by the
fixed collection of documents dj and index terms ki, i.e. it consists of T rows (the

“monoclonal“ S1={d1,d2,d3} “antibody“ S2={d1,d2,d3}

S1 ∩ S2

S12 \ S3

“cancer“ S3={d2 ,d3}S12={d1,d2,d3}

S3={d1}

Chapter 2 Search for information

20

collection of all index terms) and N columns (the collection of all documents).
Because the documents and terms are represented as vectors, linear algebra can be
used for calculation purposes.

Fig. 2‐3: A vector space matrix consisting of
document vectors (vertical) and term vectors (horizontal).

 d1 d2 … dN
k1 w11 w12 … w1N
k2 w21 w22 … w2N
… … … … …
kT wT1 wT2 … wTN

Consider for instance Fig. 2‐4, which illustrates two 2‐dimensional vector spaces and
assume that the index term weights reflect the number of times a term occurs in a
document. The vector spaces a) and b) consist of the same base vectors, created by
the index terms k1 and k2. The displayed documents d1,…,d4 contain a different
distribution of the index terms, i.e. their document vectors differ. In picture a) the
document vectors d1 and d2 have different lengths and point in the same direction,
while in picture b) the vectors d3 and d4 point in different directions. The vectors
displayed in case a) could result if d1 contains the terms k1 and k2 only once, and if d2 contains each term twice. In case of b) the relative proportion of the index term
weights is different between vector d3 and d4. For instance, vector d3 might contain
term k1 once and term k2 twice, while vector d4 contains term k1 twice and term k2
once.

Fig. 2‐4: Illustration of two 2‐dimensional vector spaces.

Given the vectors of two documents, a similarity between the vectors can be
computed, which reflects the degree of similarity in the corresponding terms and
term weights. The used similarity measure is usually the inner product (scalar
product) of the two vectors or a function of the angle (e.g. cosine) between the
corresponding vector pairs. In case of picture a) the angle between the two vectors is
zero degrees and thus they would be considered identical even though one
document is a multiple of the other with respect to index term occurrence. In picture
b) the relative proportion of the index term weights is different and thus the angle is
non‐zero.

Traditional retrieval models

21

The vector similarity is the normalized scalar product between a query vector and a
document vector. Therefore, the similarity value varies in [0, 1]. A value of sim(d,q)=1 corresponds to maximal similarity, i.e. d=q, while a similarity value of 0
means that d and q share no terms. Results of a query are ranked by decreasing
similarity values, i.e. relevancy.

Definition 2‐5: Vector similarity
Let q be a query having the vector q=(w1,q,...,wt,q). Further, let dj=(w1,j,...,wt,j) be the
vector of a document. Then, the similarity between the two vectors is computed by
the cosine of the angle:

() ()
∑∑

∑
==

=

×

×
=

×

•
=θ= t 1i 2q,it 1i 2j,i

t 1i q,ij,ijjj ww wwqd qdcosq,dsim
Having defined the similarity function the next important step is to introduce a
better weighting schema than the binary weighting. The following section discusses
term weighting in detail.

2.2.3 Term weighting
Term weights should be continuous and they should weight a term the higher the
more important it is for a document. Defining term importance has been elaborately
described in literature. A good overview can be found in [Zobel & Moffat 1998].
Three main factors are usually incorporated into the final term weighting formula:
Term frequency, document frequency, and document length. Term frequency
incorporates the idea that a term describes a document well if it occurs often within
the document’s text. Document frequency on the other hand says that a term is
important if it is not too common across the document collection. Normalization by
the document length compensates for the tendency to score longer documents
higher. Next, we briefly discuss approaches for calculating term frequency,
document frequency, and document length normalization (Table 2‐2).

A natural method for calculating term frequency (tf) is to simply count the
occurrences of an index term t in a given document d. The more often a term occurs
in a document, the more relevant the term is for the document. The downside of this
approach is that high‐frequency terms do significantly bias relevance.

A common approach to deal with this issue is normalization: Normalization can be
done directly in the term frequency component (cf. Table 2‐2 “augmented”, “log
average”) or on the whole document vector (cf. Table 2‐2 “cosine”, “pivoted
unique”, “byte size”) after the weights have been calculated.

In case of “augmented” normalization, the term frequency is normalized by the most
frequent term to a range between 0.5 and 1. Because this definition is based solely
on one term, namely the maximal term, it might bias the weights of all other terms
of the document vector. In particular, if two documents d1 and d2 are identical
except that d1’s and d2’s maximum frequent term occurs more often in d1 due to

Chapter 2 Search for information

22

some stylistic reasons, then the term frequencies of d1 would be lower compared to d2.

Alternatively, the influence of high‐frequency terms can be reduced by taking the
“logarithm” of the term’s occurrence within a document. The logarithm dampens the
effect of high frequency terms, yielding a similar effect as normalization.

Another option is the “log average” definition, which normalizes the logarithm of the
term frequency by the logarithm of the average term frequency. In effect, a term
frequency of 1 would reflect average importance, a frequency above 1 would reflect
that the term is quite important for the document and an average below 1 would
reflect that the term is not so important for the document. The benefit of this
approach over the augmented method is that normalization is not dependent on one
term but on all terms. Hence, outliers (in sense of term frequency) do not impact
weighting so extremely.

In case of the “cosine” normalization, the weights are divided by the Euclidean
length of the document vector. The distortion of weights by terms having an
unusually high frequency is thus reduced. In addition, the effect of a high frequency
term may be further reduced by combining term frequency with document
frequency (cf. below). A disadvantage of the cosine normalization is that it tends to
favor shorter documents. Consider for instance a document d1 which covers topic A.
Further, consider a document d2 which covers topic A and several other topics – d2
thus covers all the terms from d1 and several other terms related to the other topics.
In effect, the weights of the terms relevant to topic A will be dragged down in d2 by
the weights of the other topics’ terms. Hence, a query asking for topic A will be more
likely to receive d1 than d2.

The issue of cosine normalization was investigated more closely in [Singhal et al.
1996]. The authors plotted the probability of retrieval and the probability of
relevance vs. the document length. Their results supported the initial assumption
that the “probability of retrieval” is higher than the “probability of relevance” for
shorter documents. Based on their findings they introduced the “pivoted unique”
normalization which compensates for this error by introducing a correction factor
which adjusts the original normalization.

Last, normalization could be based on the number of characters in the document, or
we could introduce a bias towards a specific document length.

The document frequency within a collection could be ignored so that the original
term frequency is not modified. However, using the document frequency is often
advantageous in terms of retrieval precision (Chapter 2.7).

The inverse document frequency (idf) is not about relevancy but about the
discriminatory power of a term in context of a document collection. Terms which are
frequently used in a document collection have a weak discriminatory power, while
terms which are rarely mentioned in a collection have a strong discriminative power.

Traditional retrieval models

23

Interestingly, the discriminative power ignores the relevancy of a term, i.e. the term
frequency. The idf is defined as the logarithm of the inverse fraction of documents
containing a given term. Taking the logarithm of the idf and thus rescaling it is a
matter of taste. Nonetheless, idf is often logarithmized because logs are additive and
thus, agree well with document scoring functions which tend to be additive. A
discussion of theoretical arguments for idf can be found in [Robertson 2004].

Given the codes from Table 2‐2 one can define weighting schemas for document
vectors and query vectors using a triple code notation. For instance, a common
weighting schema yielding high retrieval effectiveness is “lnc‐ltc” [Lee 1995]. The
schema specifies that the document’s vector weights should be calculated using the
logarithm term frequency “l”, no document frequency “n”, and that cosine
normalization “c” should be applied. The weights of the query vector are calculated
almost the same except that the document frequency “t” is considered, i.e. term
frequencies are multiplied with the inverse document frequency. Notice that the
factor “t” is usually not calculated for the document vectors but for the query
vectors. Indeed, for the cosine similarity measure it does not matter if the idf is
calculated for the document vectors or for the query vectors. Hence, omitting the idf
calculation for the document vectors is computationally beneficial as we do not have
to re‐calculate all term weights of all document vectors in case the document index
is modified (e.g. by adding a new document to the index).

Table 2‐2: Overview of term weighting components. Let N be the number of documents in the
collection, and let T be the number of terms in the collection. Further, let t be a term, let d be a

document, let wi be the weight of term i, and let occt,d refer to the number of times term t occurs in
document d. Further, let dft be the number of documents in which term t occurs. Then, the term

weighting components can be defined as follows.

Term frequency Document frequency Normalization
n (natural)
 d,tocc

n (no)
 1

n (none)
 1

l (logarithm)

()d,tocclog1+

t (idf)

tdfNlog

c (cosine)

2T2221 w...ww 1
+++

a (augmented)

()d,tt d,toccmax occ5.05.0 ×
+

p (probability idf)







 −

t tdfdfNlog,0max

u (pivoted unique)

()
() pivotslope1 terms unique of# slope 1

×−+
×

b (Boolean)



 >otherwise0 0occ1 d,t

b (byte size)

1 ,CharLength1
<α

α

L (log average)

()
()()d,tdt d,toccavglog1 occlog1

∈+
+

Chapter 2 Search for information

24

The subsequent development of weighting schemas yielded two widely used and
effective weighting schemas [Singhal 2001]. The first, Okapi BM‐25, was developed
by Robertson and his colleagues [Robertson et al. 2000]. It is based on the
probabilistic retrieval model published in the 1970s [Robertson & Jones 1976]. The
second is called pivoted normalization weighting [Singhal et al. 1999]. A discussion of
these state of the art weighting schemas is omitted here, because they are not
considered in this thesis. Instead we use the “lnc‐ltc” weighting schema. The reason
is two‐fold. First, the “lnc‐ltc” schema is supported by the search engine our work is
based on (Chapter 7). Second, and more importantly the “lnc‐ltc” schema also gives
a reasonable retrieval performance.

Measures based on the tf‐idf schema are extraordinarily robust, so that even much
more complex models have difficulties to beat it. Therefore, the majority of IR
systems are based on the tf‐idf measure. Notice however, that the tf‐idf phrase is
often used in literature to refer to any weighting schema which incorporates the
term frequency and the document frequency, regardless of the applied term
weighting method, which could be a very simple one like “ntn” or a state of the art
weighting schema like BM‐25. Nonetheless, the choice of the weighting schema
strongly depends on the considered document collection. What works well in one
case might not be appropriate for another.

2.2.4 Discussion
The vector space model is superior to the Boolean model as it allows for partial
matching and a ranking of results. Best of all, the computational expensive
calculations of the term weights can be done offline for the document vectors so
that fast ad hoc retrieval is possible.

Nonetheless, the vector space model suffers by two issues: Polysemy and synonymy.
In case of polysemy the vector space model can not discriminate between different
meanings of the same word, i.e. simtrue(d,q) < simcos(d,q). In case of synonymy, the
vector space model is unable to associate terms, i.e. simtrue(d,q) > simcos(d,q). The
fundamental reason for this is the vector space model’s assumption of term
independence.

In order to mitigate the problem of synonymy and polysemy the Latent Semantic
Indexing (LSI) approach could be applied [Furnas et al. 1988]. In LSI the documents
are mapped to a low‐dimensional space in which the semantic associations between
the terms are reflected. Computation of similarity is conducted in just the same
manner as in the Vector Space Model. The LSI yields a higher recall than the VSM and
a slightly better precision. However, the LSI is computationally expensive for large
collections. Further, it is not required for documents which are well described by a
few terms. Rather, it is effective in case documents on the desired topic contain only
a subset of these terms. Hence, the benefits of applying LSI depend on the
considered document collection.

Text processing

25

An increased recall could also be achieved with the vector space model, if query
expansion would be applied. Query expansion means that query terms are expanded
with their synonyms, e.g. “car” becomes “car automobile”. The disadvantage of this
approach is that a thesaurus with synonyms is required and that expanded queries
tend to be rather long, potentially increasing processing time.

Regarding the usage of Boolean queries vs. so called “natural language queries”
(vector space model), a study conducted by [Turtle 1994] found that professional
searchers prefer Boolean queries. The reason is that in the examined use case,
experts want to precisely state their question. In the same evaluation [Turtle 1994]
also found that despite the usage of Boolean queries by experts, natural language
queries perform better on average. Only for special queries does the Boolean model
outperform natural language queries.

The Boolean model is often combined with the previously introduced vector space
model to get the advantages of both approaches: a filtering of results based on
Boolean logic and a relevance ranking based on the vector space model. One of the
earliest approaches for achieving this goal is the Extended Boolean model which was
proposed in [Salton et al. 1983]. The framework provided by Salton et al. interprets
Boolean operations in terms of algebraic distances. Even though the extended
Boolean model has been introduced more than 20 years ago it is barely used [Baeza‐
Yates & Ribeiro‐Neto 1999]. Instead, search engines combine the models serially:
Results are first filtered by Boolean logic and then ranked by the vector space model.
This serial approach will also be used in context of this thesis.

2.3 Text processing
In the previous section, the basic principles of document retrieval have been
outlined: Documents and queries are represented as vectors with a tf‐idf weighting
schema and their correspondence is calculated using the vector similarity measure.
However, simply using every word of a document as an index term is not a good
approach because not all words are equally significant. Terms with a low
discriminative power (idf value near 0), i.e. terms which occur with high frequency in
any document of the collection, like the words “the”, “or”, “and”, “a”, etc. are not
useful index terms. Therefore, a document is processed by one or more analyzers
before being indexed. An analyzer is a combination of several text operations like
tokenization, stopword removal, and stemming.

Next, the frequently used tokenization, stopword removal, and stemming operations
are explained in more detail.

2.3.1 Tokenization
Tokenization is the process of splitting the character stream of a text document into
separate tokens. A trivial approach of doing this would be to split the character
stream at every space character. However, considering only space characters
wouldn’t yield optimal results. Punctuation marks, quotation marks, exclamation
marks, quote signs, hyphens, and many other characters must be considered when
processing the character stream. According to [Fox 1992], special attention has to be

Chapter 2 Search for information

26

given to punctuation characters, hyphens, digits and letter case. A punctuation mark
might indicate the end of a sentence or it might be an integral part of the word. As
an example consider the word “EC3.4.21.69” which refers to a serine protease
enzyme. Removing the punctuation marks would put the digits out of context. On
the one hand, a query for “EC3.4.21.69” will still return the document as the query is
processed by the same tokenizer. On the other hand, a query for the number “21”
will result in false positive hits. A common approach for dealing with this issue is to
add special rules to the tokenizer. In the example the “EC”‐numbers would be
treated differently, i.e. they are not tokenized at dot characters. In just the same
manner hyphens (e.g. in department names like “PH‐RT”) and digits (e.g. in time
“10a.m.”) might be an integral part of a word, leading to similar contextual problems
if tokenized. The last point mentioned by Fox is the letter case, e.g. “General
Motors” vs. “general motors”. Ignoring it might result in the loss of the word’s true
semantics. In the example we would loose the knowledge that “General Motors”
refers to a company. Nevertheless this problem is in general ignored, i.e. the
character stream is either made lower case or upper case.

2.3.2 Stopword removal
In this process, words which have a high frequency across the document corpus are
removed, i.e. they are not considered as index terms. High‐frequency words like “a”,
“the”, and “is” are not good discriminators as they usually occur in almost all
documents. Another benefit gained by removing stopwords is the size reduction of
the index structure by 40% or more. While removing stopwords has its clear benefits
it can as a side effect also reduce recall (i.e. the amount of returned documents
considered relevant; cf. Chapter 2.7). Deciding upon which words to include in the
stopword list is thus a crucial task. Many different stopword lists exist and the
inclusion or exclusion of stopwords is often dependent on the targeted corpus –
indeed, in a corpus about logic words like “and”, “or”, and “not” would be
considered relevant. A list of general stopwords for the English language can be
found e.g. in [Fox 1989].

2.3.3 Stemming and lemmatization
Stemming is the process of removing prefixes and/or suffixes from a word. Consider
for instance the words “connect”, “connected”, “connecting”, “connection”, and
“connections”. These words have a similar meaning and can thus be conflated into a
single term by removing the suffixes “‐ed”, “‐ing”, “‐ion” and “ions”, yielding the
stem “connect”. Stemming can thus reduce complexity by reducing the number of
indexed terms and hence the size of the index structure. Another advantage is that
relevant documents can be found regardless of the used query word variation (like
singular, plural, past tense, ...).

Despite its advantages, stemming can also raise new problems. There are cases,
where words with a distinct meaning are conflated, i.e. they have the same stem. As
an example consider the words “wand” and “wander”, which obviously have
different meanings. They are conflated together, receiving “wand” as a stem.
Another example are the words “new” (adjective) and “news” (announcement),
which are conflated to “new”. Between these two extremes, of similarity and

Search in the World Wide Web

27

dissimilarity, there is a continuum of cases where one can argue in favor or against
conflating.

The different stemming algorithms [Smirnov 2008] being described in literature
focus mostly on suffix removal because most word variations are introduced through
suffixes. The most popular suffix removal algorithm is the one developed by [Porter
1980]. It is simple, fast, elegant, and it yields a similar performance as more complex
algorithms. An example of the Porter stemmer is given in Table 2‐1.

Lemmatization is closely related to stemming. While stemming uses an algorithmic
approach based on heuristics, lemmatization is based on vocabularies and
morphological analysis of words. Lemmatization returns only the base of a word
form as given in the dictionary, namely the lemma. For instance, lemmatizing the
word “saw” yields either “see” or “saw” depending on whether the used token was a
verb or a noun. In contrast, the heuristics used in stemming algorithms might
conflate the word to “s”. Therefore, lemmatization provides a higher quality in terms
of retaining a word’s semantic. The improvement comes at the cost of higher
implementation efforts as well as a slower runtime of the algorithm.

The usage of a stemming algorithm is not obligatory. In fact due to the reduced costs
of storage space and due to the disputes about the benefits of stemming for IR
[Frakes 1992] many search engines ignore stemming completely. Of course, if
morphological word variations are still to be matched other methods must be
applied such as query expansion. Query expansion simply means to add additional
terms to the query. Each word is expanded by its variants, achieving a similar effect
as stemming. The query “connect” for instance, is expanded to “connect OR
connected OR connecting OR connection OR connections”, so that all variants are
covered. However, this approach can become expensive in terms of computation
time when long queries are processed.

2.4 Search in the World Wide Web
In 1989 Tim Berners‐Lee revolutionized information storage, access, and retrieval by
inventing the World Wide Web (WWW) [Gillies & Cailliau 2000]. The invention of the
WWW had strong influence on the field of information retrieval. IR which was until
then the playground of a few specialists suddenly became an ever growing need of
millions of users. Everyone was seeking information on the WWW. However, the size
of the Web made search a tedious task. Traditional IR techniques (Boolean model,
vector space model, and probabilistic model) which performed well on smaller data
sets were not capable of delivering a good performance for the WWW’s information
jungle. Indeed, in the mid 1990s search in the Web was like looking for a needle in a
haystack. In response to this, many people started to collect and bookmark good
websites. The bookmarks were sorted by topic and published in the WWW, so that
other people could benefit from “topic of interest” catalogues containing high
quality links.

In 1998 IR on the Web was revolutionized by the incorporation of link analysis
[Langville & Meyer 2006]. The central idea is that a link is viewed as a

Chapter 2 Search for information

28

recommendation to the page linked to. Hence, link analysis algorithms calculate
relevancy, intuitively “popularity”, for the pages of the Web. The higher the
popularity, the more important a page is. For example, if a page PA points to a page PB, then PB is considered more relevant than if no page would link to it. Further, the
relevancy of the link depends on the importance of PA. If PA has a low relevancy, i.e.
only few pages point to PA, then the link from PA to PB is less relevant. If on the other
hand, many pages link to PA, then the link from PA to PB is more relevant.

The first algorithms to use link analysis were PageRank [Brin & Page 1998; Page et al.
1998] and HITS [Kleinberg 1999]. Analyzing the hyperlink structure of the Web
improved search precision dramatically. Nowadays any web search engine uses link
analysis as a piece of its ranking formula. However, spammers soon realized how
PageRank works and how it can be manipulated. As a result the linkage structure of
the web changed and it is assumed that link analysis does no longer play the major
role it once did in search engines like Google [Najork et al. 2007].

Because link analysis had a strong impact on IR in the Web, we briefly introduce the
most popular algorithms next. We start with PageRank, continue with HITS and then
give a short comparison between them.

2.4.1 PageRank in a nutshell
Let Pi be a web page. Then, let BPi be the set of pages linking to Pi. Let |Pj| be the
number of outlinks from page Pj. Then, the simplified PageRank is defined as follows.

Definition 2‐6: Simplified PageRank

() ()
∑
∈

=
iPj BP j ji PPrPr

The PageRank of Pi is the sum of the PageRanks of all pages linking to Pi. Because the
PageRank values of Pj linking to Pi are unknown, Brin and Page applied an iterative
procedure to calculate the PageRank values.

Definition 2‐7: Recursive PageRank calculation

() ()
∑
∈

+ =
iPj BP j jki1k PPrPr

 rk(Pi) is the PageRank at iteration k and rk+1(Pi) the PageRank of Pi at step k+1.
Initially all PageRank values are set to r0(Pi)=1/n, where n is the total number of
pages. The iteration is conducted until the PageRank values converge.

Using a matrix notation, the PageRank values of all pages can be stored in a single
vector. In order to do so, an n x n matrix H and a 1 x n row vector π is introduced.

Search in the World Wide Web

29

Definition 2‐8: Hyperlink matrix H







= otherwise0 P to P fromlink a is there ifP1H jiij,i

The matrix H is like an adjacency matrix except that its non‐zero values are
probabilities of following a link to Pj from Pi. Using the matrix H and the row vector π(k)T – which is the PageRank vector at the k‐th iteration – the simplified PageRank
can be written in matrix notation as follows.

Definition 2‐9: Simplified PageRank in matrix representation HT)k(T)1k(π=π +

The simplified PageRank definition has two drawbacks. First, convergence is not
guaranteed. Second, pages can accumulate a higher rank score at each iteration step
(rank sink) leaving no score for the others. In advance to the introduction of the final
PageRank algorithm which fixes these issues, the random surfer model is introduced.
The random surfer model illustrates the adjustments to the simplified PageRank.

The simplified PageRank corresponds to a surfer who randomly walks on the graph
of the Web: The surfer clicks on successive links at random. Doing so he could get
stuck in dangling pages (pages with no outlinks) or he could get stuck in a loop of
web pages. However, in reality a surfer will neither get stuck in dangling pages nor in
a loop of web pages. Instead, he would randomly jump to another page to continue
his surfing. Mathematically, this random jump is modeled by replacing the 0T rows of H with (1/n)eT, where n represents the total number of pages and eT is the row
vector of all 1s. Hence, if a random surfer enters a dangling page he can jump to any
page at random.

Definition 2‐10: Stochastic adjustment





=







+=

otherwise0 node dangling a is P1a
where ,en1aHS

ii
T

In order to guarantee convergence, Page & Brin made a second adjustment yielding
the so called Google matrix which is stochastic and primitive (irreducible and
aperiodic).

Definition 2‐11: Google matrix

() Teen11SG α−+α=

The parameter alpha is a scalar between 0 and 1. It models the probability of the
random surfer to follow the hyperlinks vs. making a random jump to another page.

Chapter 2 Search for information

30

The higher its value, the more fluctuates the PageRank for even small changes.
Further, the higher the value the more iterations are needed until convergence.
Therefore, Page and Brin suggested setting the parameter alpha to 0.85 which gives
a good balance between efficiency and effectiveness. Given the matrix G, the final
PageRank formula can be written as follows.

Definition 2‐12: PageRank GT)k(T)1k(π=π +

2.4.2 HITS in a nutshell
The previous section briefly outlined how PageRank uses in‐links to calculate the
relevancy of a webpage. HITS uses like PageRank hyperlinks to calculate popularity
scores. The crucial difference to PageRank is that HITS produces two popularity
scores for every page [Langville & Meyer 2006]: an authority score and a hub score.
An authority is a page with many in‐links and a hub is a page with many out‐links.
Further, authorities and hubs can be given the adjective “good” if the following
circular statement holds: A good authority is a page to which good hubs point and a
page is a good hub if it points to lots of pages that are good authorities. Another
important difference between PageRank and HITS is the computation of the page
scores. Computation of PageRank scores is query‐independent and can be done
offline for a large hyperlink graph. In contrast, HITS scores are query‐dependent.
Therefore, HITS is computed online for a query‐dependent subset of the hyperlink
graph. In this respect, the HITS algorithm is computationally more expensive than
PageRank.

We continue with a brief description of the HITS algorithm. Let xi be the authority
score and let yi be the hub score. Further, let E be the set of all directed edges in the
Web graph and let ei,j represent the directed edge from node i to node j. Similar to
PageRank, the scores are computed iteratively.

Definition 2‐13: Authority score and hub score [Kleinberg 1999]

∑
∈

−= Ee:j)1k(j)k(i i,j yx and ∑
∈

−= Ee:j)1k(j)k(i j,i xy for k=1,2,3,…

The computation of the scores involves two steps. First, a neighborhood graph N is
built which is related to the query. Then, the authority and hub scores of each page
in N are calculated. The neighborhood graph N contains all Web pages which match
the query. In addition, N is expanded by nodes which pointed to from N or pointing
into N. It is assumed that this expansion includes related pages and that it resolves
the synonym problem [Langville & Meyer 2006]. For instance, if the query term is
“car”, pages in N might point to pages outside N, which contain the term
“automobile”. The expansion is usually limited to a maximum number in order to
reduce complexity. Once the neighborhood graph is created, the authority and hub
scores are computed until convergence.

Search in the World Wide Web

31

Because the definition of HITS is stronger than PageRank (HITS considers two scores
rather than just one PageRank score), one would expect HITS to deliver a better
ranking performance than PageRank. However, a recent study by [Najork et al.
2007] shows that HITS does not perform considerably better than PageRank.

2.4.3 Web search engines
In the Web two types of search engines can be found: General, all purpose search
engines (e.g. Google or Yahoo!) covering a broad spectrum of content and
specialized search engines (such as Scirus, Bionity, Entrez or ExPASy) which restrict to
a small domain of interest. While the general search engines are known by the
majority of users, the specialized search tools are only known by domain experts.
Considering the fact that today’s all purpose search engines like Google or Yahoo!
are indexing billions of web pages the question arises why a single all purpose search
engine does not suffice?

First of all, the indexes of two distinct search engines are not identical [Bailey et al.
2007; Spink et al. 2006], regardless if “all purpose” search engines targeting the Web
or “specialized” search engines targeting a specific domain are compared. Therefore,
inquiries which aim to retrieve all relevant data must use more than one search
engine in order to achieve the coverage. Despite their smaller index size, specialized
search engines usually provide a higher coverage of domain specific information than
an “all purpose” search engine. The common pitfall of all purpose search engines is
their ignorance of the Deep Web (database driven portals). Hence, huge amounts of
domain relevant data are invisible to them. Targeting only domain relevant
information has another benefit for specialized search engines because noise
(irrelevant information) is filtered. This is particularly useful for disambiguating
homonyms. For instance, scientists looking for “REM” are not interested in the rock
group but in web pages about sleep behavior. Wrapping it up, specialized search
engines are expected to give results of a higher quality [Steele 2001] compared to all
purpose search engines.

Nowadays, thousands of specialized search engines (products, yellow pages,
literature, patents, news, social networks, etc.) exist. The variety is so high that next,
we mostly restrict on popular tools from the health care & life sciences (HCLS)
domain.

The publisher Elsevier hosts the search engine Scirus (www.scirus.com) which has its
focus on scientific information. It covers about 480 million documents and Web
pages from a variety of scientific domains like pharmacology, chemistry, medicine,
astronomy, mathematics, physics, and so forth. Scirus, which uses the FAST
technology (which is now owned by Microsoft; cf. Chapter 2.5.4) to drive its search
engine, offers a variety of options to refine search. Most notable is the fact, that
Scirus has a wide range of subject areas (SciTopics; www.scitopics.com) which can be
used to specify the search domain. Further, search can be refined by specifying a
particular author, journal, article, date range, information type (abstracts, articles,
books, conferences, patents, etc.), and file format. Last but not least, query
keywords can be combined with Boolean operators.

Chapter 2 Search for information

32

Bionity (www.bionity.com) is an information portal of the Chemie.DE company. The
focus of Bionity is set to biotechnology, biosequences, pharmaceuticals, lab
equipment and institutions. The information from the different areas is organized
similar to the Yellow Pages or to product catalogues. In addition to these, Bionity
offers also news articles. All accessible data can be browsed using their pre‐defined
thesaurus. Alternatively, a user can access the data by using their search tool.
Several search refinement options are available: The information type (all,
antibodies, products, companies, news …) can be specified; combination of query
words can be switched between conjunction and disjunction; query words matching
can be exact or partial; and the search target can be switched between full‐text, title,
and company name.

The Entrez cross‐database search tool (http://www.ncbi.nlm.nih.gov/Entrez) is one
of the most important search engines in the HCLS sector. It is a federator which gives
access to many NCBI (National Center for Biotechnology Information) databases such
as PubMed (a free digital archive of biomedical and life sciences journal literature),
PubChem (a free database of chemical structures of small organic molecules), Entrez
Protein, and Entrez Nucleotide. Advanced search options include Boolean operators
and the possibility to restrict search to particular database fields (e.g. medical
subject headings). The first result page provides a summary of the hits, i.e. each
database is listed together with the total number of hits matching the query. Results
can be viewed by selecting a database of interest. The search interface for each
database is similar. Another noteworthy feature is that past searches are stored. Past
searches can be combined to form new ones. Further, notifications can be
transmitted via e‐mail if updates for saved queries occur.

The ExPASy (Expert Protein Analysis System) proteomics server (www.expasy.ch) is a
specialized search engine for protein sequences and protein structures. It covers a
variety of databases like Swiss‐Prot, PROSITE, SWISS‐2DPAGE, etc. as well as other
cross‐referenced databases such as EMBL, OMIM, Medline, etc. The databases are
full‐text indexed and can be searched by keywords using Boolean operators and
wildcards. In addition, search can be restricted to a specific database. More
sophisticated refinement options for search are often available in the specialized
database page. Despite the fact, that all databases are accessible from one search
box, they don’t share a common layout. Hence, the visualization varies from simple
flat files to full‐fledged designs.

Google Book Search is specialized on finding books online – similarly to Amazon.
Currently, the Google Books index contains about 7 million books, which are full‐text
searchable. Depending on the local copyright laws, the books are displayed as full
previews or only as short result summaries. Advanced search enables search by
authors, journals, title / subject, and ISBN / ISSN. Further, results can be restricted by
date and language. Google Books is thus a good alternative to Amazon.

Google Scholar is a multidisciplinary, broad meta‐search engine for scientific
literature. It covers peer‐reviewed papers, theses, books, abstracts and articles. Their

Search in the World Wide Web

33

index covers publications from the Web as well as from the Deep Web. In order to
access the latter, Google Scholar cooperates with several journals and digital
repositories [Jacso 2008]. For instance, they index about 7 million documents from
Elsevier – still a small portion considering that Elsevier hosts 480 million documents.
Another partially integrated database is PubMed Central. Here, about a quarter of
the articles are indexed. Recently, Google Books was also integrated into Google
Scholar. The total size of Google Scholar’s index is unknown because Google does
not provide any information about it. Regarding the search features, Google Scholar
offers an advanced search tab which enables search by authors and publisher.
Further, results can be restricted by date and by a few broad topics of interests.
Despite the advantages, one should not forget that Google Scholar is still in beta,
having several bugs and limitations [Jacso 2008]. A very annoying bug is that Boolean
search does not work correctly in Google Scholar. For instance, a search for
“information” yields 61,900,000 results and a search for “retrieval” returns
1,450,000 hits (submitted on the 21st April 2009). According to the Boolean model, a
search for “information OR retrieval” should return the union of the individual
results. However, the total number of results does not nearly match the union. In
fact, only 7,200,000 hits are returned for “information OR retrieval” – a serious error
in context of professional search. Similar effects occur when restricting the date
range. Google Scholar also has problems with the classification of author names.
Often, weird names are displayed as authors. For instance searching for
“Arabidopsis” returns “A. Initiative” as a key author, even though “A. Initiative” is
part of a title and not an author’s name. A further limitation is that result sets often
contain citation records with almost no information about the content. Further,
many duplicates occur in the result list because Google Scholar is not able to detect
if two citations are the same. Another limitation is that the ranking of results can’t be
adjusted (e.g. by date, citation, etc.). Last but not least, the first result items often
link to journals while the open access versions of the same paper are ranked lower.

The last paragraphs have only touched the tip of the search engine iceberg. In just
the same manner, workers of companies are confronted with a large variety of
intranet search engines. Here, focused search engines are even more important than
in the Web, because employees – especially in R&D – have a high degree of
specialization and thus very focused interests. An overview of the usage of
specialized search engines in a R&D department of Roche is given in chapter 5.1.

2.4.4 Discussion
The invention of the WWW as well as the development of the search engines which
operate on the Web had a strong influence on the way people access information. In
the past it was common to visit libraries and pore over books. Often, the required
literature was unavailable and had to be ordered, arriving at the library with a delay
of several days. Nowadays, most information is available online and retrieval is a
matter of a few mouse clicks. In addition, the variety of topics and the number of
accessible information sources is extremely large with.

Modern ranking algorithms, like PageRank and HITS, enabled state‐of‐the‐art search
engines to achieve a significant improvement in retrieval performance compared to

Chapter 2 Search for information

34

previous methods. In fact, the average user uses the word “google” as a synonym for
“searching the Web for information”. This holds also for professionals to some
extent because Google offers many convenient services for them: Search for
transportation, search for accommodations, search for patents, search in Wikipedia,
and search in selected literature databases. Nevertheless, due to the size and
heterogeneity of the professional domains, specialized search engines are used by
many professional searchers (cf. previous section). Because the indexes do not
overlap well, a complete coverage implies several different search engines.
Nonetheless, surveys show that professionals tend to use only a few specialized
search engines [Miller 2002; Mühlbacher 2008]. In fact, they are often unaware
about a search engine’s indexed content and do often assume all purpose search
engines would cover all relevant content (e.g. Google indexes all Web content).

Professional searchers might thus benefit from a “portal” which knows about their
domain of expertise. Such a portal could automatically decide to which sources a
query is transmitted and it might even integrate the results into a unifying interface.
Further, a ranking of results adjusted to the professionals’ context would be
convenient. That means, not only ranking by text similarity, date, and citation is
interesting for professionals but also by context. Ideally the topics matching the
professional’s context would be selected automatically.

A problem which primarily affects “all purpose” but barely specialized search engines
is spam [Henzinger et al. 2002], i.e. the malicious manipulation of the page ranking.
In the 90s, spamming was a piece of cake because traditional IR techniques were not
able to cope with spam – they were tuned for neat document collections. It sufficed
to create pages with manipulated text content in order to boost their relevance.
While the manipulation was often invisible to the user (because the chosen text
color matched the background color), the indexers still processed the fake text
content. The fake text was placed in such a manner that manipulated pages yielded a
high similarity score for many queries. As a result it was common that a lot of spam
sites appeared in the first result pages of a query. Then, link analysis algorithms like
PageRank and HITS appeared. Soon, spammers realized how these algorithms work
and they adjusted their techniques. Now they use sophisticated link farms
(“artificial” links between pages) in order to increase their authority score resp. hub
score values. The development of anti‐spam methods and new spam techniques is
like a cat‐and‐mouse game. For professional search however, we assume that spam
is not such a big issue. First, spammers try to target popular queries and not exotic
technical terms. Second, professionals often use specialized search engines which
are barely affected by spam. Third, professionals search also in intranets, which are
in general not affected by spam (cf. next section).

People expect another revolution from the Semantic Web (Chapter 4), which aims at
making the Web content “machine understandable” so that complex reasoning is
enabled. Even though the idea and Semantic Web standards exist now for over 8
years, the vision of a large scale Semantic Web has not yet become reality. Maybe
this is due to the fact that the semantic information has to be provided manually and

Search in an intranet environment

35

in a common meta‐model. Despite this, there are already some successful projects
using semantic technology, especially in small domains.

2.5 Search in an intranet environment
Huge amounts of data are not exposed to the Internet but are kept behind an
organization’s firewall, accessible only by its members. Data within such a private
network (intranet) can encode business processes, administrative tasks, domain
expertise, etc. and is often of special value to the organization. Therefore, being able
to find information in private networks is essential as a study conducted by the
market analyst IDC shows. Their white paper called “The high costs of not finding
information” [Feldman & Sherman 2004] states that information workers spend 15%
to 35% of their work time on searching for information. Further, 40% of corporate
users complain that they cannot find the information they need to do their work.
Arguably the costs caused by time wasted for searching information, reworking
information, and missed opportunities can get enormous for a company.
Consequently, a company can greatly benefit if its workers can easily discover
existing data in their intranet. This applies in particular to large corporations where
huge amounts of data are available.

This sub‐chapter is dedicated to search in intranet environments – the area our work
is focused on, i.e. professional search at the workplace. In this respect, the following
sections are crucial to the main part of this thesis. In detail, we will discuss
characteristics of intranets, issues of search in intranets, and solutions of leading
search engine companies.

2.5.1 Differences between intranet search and Web search
An intranet environment is different in many aspects from the Internet. Even though
both are using the TCP/IP protocol for communications, the structure in which data
is stored differs a lot. The Internet has the World Wide Web as the main structure for
storing and interlinking information. As a consequence, users can access all data on
the Web using a single tool, namely their web browser. Hypertext exists in many
intranet landscapes. However, hypertext in intranet environments is much less
prevalent than in the Internet. In fact hypertext is just a small piece of the landscape,
sharing it with file share protocols, database systems, etc. An intranet environment is
a collection of all kind of electronic information within a private network. Therefore,
search in an intranet environment differs from search in the Internet and the term
enterprise search is used instead of web search.

Enterprise search is defined by [Hawking 2004] as search over all electronic text
content of an organization, including search of the organization’s external websites,
search of internal websites, search of other electronic text held by the organization
in the form of e‐mail, database records, documents on file shares and the like.

The differences between search in an enterprise environment and search in the
Internet have been analyzed in [Fagin et al. 2003]. Fagin et al. mention six main
differences which affect search: The qualitative linkage structure, the macro level

Chapter 2 Search for information

36

structure, spam, the search context, the answer set size, and the search engine
friendliness. Next, each point is briefly outlined.

Difference 1: Qualitative linkage structure
Comparing solely the hypertext structure of an intranet to the structure of the
WWW will reveal significant differences [Fagin et al. 2003; Xue et al. 2003]. While in
both cases a collection of interlinked documents is present, the way pages are linked
differs.

In the Internet, the linkage‐structure is generated democratically. According to
[Surowiecki 2004], the “collective solution”, i.e. the average guess of a group,
outperforms the individual guesses in approximately 98% of cases. Hence, the
paradigm of the popularity vote exploited by link‐analysis algorithms like PageRank
can be applied.

In intranets however, this paradigm fails. Here, links between documents reflect
something fundamentally different. First, they are often generated by a few
employees with special privileges. Second, documents are created to deliver
information and not to draw as much attention as possible. Third, links do not reflect
a document’s relevancy. Indeed, in a company the manifestation of the linkage
structure often corresponds to the organization’s departmental structure. Therefore,
a link pointing to a document can not be considered as a recommendation.

Consequently, search approaches which work well for the Internet might not deliver
the expected ranking performance for the hypertext part of an intranet.

Difference 2: Macro level structure
In [Broder et al. 2000] the macroscopic structure of the Web is described by four
pieces. At the heart, the Internet consists of a giant strongly connected component
(SCC). Every page in the SCC can reach any other page of the SCC along directed links.
The second and third pieces are called IN and OUT. IN contains all pages that can
reach the SCC, but no page from the SCC can reach IN pages. OUT contains all pages
that cannot reach the SCC, but SCC pages can reach OUT. The last piece is TENDRILS.
These are pages which cannot reach the SCC and cannot be reached by the SCC.

In [Fagin et al. 2003], a study of IBMs macro level intranet structure was conducted.
While the intranet contains the same pieces (SCC, IN, and OUT) as the Web, the
distribution of the sizes differs. Most notably, the SCC of IBMs intranet is much
smaller than the SCC of the Web. IBM’s intranet had 10% of its pages in the SCC
while the Web has 30% of its pages in the SCC. Consequently, if we assume that the
hyperlink structure of other intranets has similar differences, we can conclude that
PageRank does not work very well in intranets.

Difference 3: Spam
Spam is a well known problem of today’s Web. This phenomenon does not exist in
an intranet, i.e. intranets can be regarded as spam‐free [Fagin et al. 2003]. Workers
encounter a high social pressure in delivering good results, i.e. in showing colleagues

Search in an intranet environment

37

their professional capabilities at work. By doing so, they can speed up their career.
The incentives are thus high not to create spam in a private network. As a
consequence several ranking heuristics (cf. Chapter 2.6; anchor‐text, URL depth, etc.)
which can’t be applied in the Internet are applicable in intranets. As an example,
consider the hyperlink’s anchor‐text heuristic stating that “a page p is more relevant
for a query q if the words in q are part of a hyperlink that points to page p”. This is a
dangerous criterion in the Internet because spammers can easily misuse this to get
their pages ranked higher. In intranets however this danger is not an issue.

Difference 4: Search context
Another difference between search in the Internet and search in a corporate
environment concerns the user’s context or points of view. In the Internet the only
contextual information which is usually available is the location of the searcher and
maybe his preferences derived from past actions. In intranets however, the available
contextual information is much richer. Departments, projects, and group
memberships are just a few examples. Therefore, considering the user’s context at
query time has a much bigger relevance in intranets (Chapter 5).

Difference 5: Answer set size
Queries in intranets have often only a small set of correct answers. At first glance
this seems to make search in intranets easier than in the Web as the number of
pages to be ranked is considerably smaller. However, the drawback is the inability to
identify the correct answer page. Having only a few or a single answer page means
that the searcher has to use notions and terms that match the vocabulary of the
document. If he uses synonyms or more general / specific search terms he might not
find the desired document. In the Web this problem is mitigated due to the
informational equivalence of many different answer pages.

Difference 6: Search engine friendliness
The heterogeneity of platforms and formats makes intranets less search‐engine
friendly [Fagin et al. 2003]. Database driven portals for example generate multiple
views based on the database content. Often, the views contain temporarily
generated hyperlinks to other layout styles, or to actions such as deletion, insertion,
and modification. In case a crawler would follow these kinds of links it could lead to
unexpected behavior such as modification of database entries.

Search engine friendliness is also an issue in the Internet. Otherwise, there would
not be so much active research in the area of Semantic Technologies (Chapter 4)
which aims at making data machine‐interpretable. At least, in the Internet it suffices
to support a few formats so that large parts of the content are covered. This is in
contrast to intranets. In intranets, many different search engine friendly interfaces –
targeting many different formats – are required in order to achieve an acceptable
coverage of the content.

2.5.2 Open issues in intranet search
In this section, we outline open issues encountered in intranet search. In [Hawking
2004] several open problems are mentioned such as defining a test collection,

Chapter 2 Search for information

38

effective ranking, search in e‐mail and media files, and exploiting the search context.
Next, we briefly describe the most relevant ones.

Issue 1: Defining an enterprise search test collection
Having an appropriate test collection for performance evaluations is without any
doubt very important and can be considered a must have for the investigation of the
other problems. An enterprise test suite should contain a realistic mix of different
data types like websites, file shares, xml, etc. Creating such a test collection for
different enterprises, i.e. different expert environments, is a difficult task.

Issue 2: Effective ranking over heterogeneous enterprise collections
Results from distinct sources (web pages, e‐mails, database entries, file shares,
desktop, etc.) are ideally combined into a single list using an appropriate ranking
formula. However, due to the heterogeneity of the file types (structured entries vs.
unstructured entries or linked entries vs. non linked entries), the used languages,
and the targeted domain, this is a difficult task. Indeed, company employees could
benefit from a search tool which includes “all information sources”, i.e. any internal
and external sources a user can access. However, building such a portal becomes a
difficult task due to the ranking issue.

Issue 3: Estimating relevancy for documents which are not part of a web
Many sources (e.g. file shares, e‐mails and databases) are missing key evidence
factors for document relevancy (Chapter 2.6) which were successfully applied in Web
search. For instance, link analysis or anchor text evidence can’t be applied.
Therefore, finding other evidence as a support to text similarity is an open and
important problem.

Issue 4: Exploiting search context within enterprise searches
Search could be greatly improved if the search context was known. Restaurant
search e.g. can benefit from location based context. Similarly, other queries could be
expanded with context if rich user profiles were supplied. The main issue here is how
to extract context information and how to aggregate the various contextual aspects.
In this thesis we will analyze how context can be extracted and incorporated into the
search process (Chapter 6).

Issue 5: Providing effective search over continuous media
Media collections ranging from audio & video to time‐series data (e.g. mass spectra)
become more and more important in enterprises. It is assumed that in future a lot of
collections will become interlinked and accessible by means of a web browser. At
least by then, the ability to search media collections will become very important.
Hence, search techniques for continuous media must be developed.

The previous list is of course not complete and many other problems exist. Another
issue which is particularly important in context of companies is security. In a
corporate environment strong security settings are applied to data repositories like
file shares, databases, applications, or web portals. The problems caused by security
settings are twofold. On the one hand, a search engine must natively support the

Search in an intranet environment

39

security settings of the indexed data in order to be deployed. On the other hand, a
user won’t find the information he is looking for if the security access rules forbid it.
Therefore, security is to some extent comparable with the Deep Web problem of
search on the Web.

As mentioned in the second issue, enterprise collections are heterogeneous, i.e.
search in databases or xml is also relevant. The next section describes briefly how
search in such structured sources differs from search in unstructured sources.

2.5.3 Search in structured sources
So far, this thesis used the term “search” as a notion for search in unstructured
sources, i.e. search in free‐form natural language text records. As a matter of fact,
we focus our work particularly on unstructured records because the need of finding
information in these is particularly large (Chapter 5). Nonetheless, structured sources
are a very important source of knowledge within corporate environments. Indeed,
professional search is also about querying structured sources (databases), which
often hold huge quantities of relevant data.

In structured sources information is stored according to a given schema. In case of
relational databases [Codd 1970] the “reality” is modeled in tables. Tables have a
defined set of columns with a defined data type and they can have relations to other
tables. Databases have thus precise “semantics” while text documents are often
incomplete or ambiguous. For instance, databases are using common data types like
person name (a string value) or telephone number (a numeric value). In a free‐form
natural language text however, there is no structural information which explicitly
tells us that a text snippet represents a person’s name or a telephone number.

A key difference between structured sources and unstructured sources is the way
information or data is accessed. In case of databases the user’s “information need”
has to be formulated precisely, i.e. which tables and columns should be queried, how
should the data be joined, etc. The answers produced are therefore exact matches to
the query, and they lack a ranking by relevance. This and other differences between
Data Retrieval and Information Retrieval are listed in Table 2‐3.

Table 2‐3: Data Retrieval vs. Information Retrieval after [Van Rijsbergen 1979]

 Data Retrieval Information Retrieval
Matching Exact match Partial match, best match
Inference Deduction Induction
Model Deterministic Probabilistic
Classification Monothetic Polythetic
Query language Artificial Natural
Query specification Complete Incomplete
Items wanted Matching Relevant
Error response Sensitive Insensitive

Despite the fact that data retrieval enables complex queries, an IR style for accessing
structured sources is often desirable. The latter enables fast querying without the
need to know the database’s schema. An issue of this approach is how to display a
summary of a matched data entry. The value of a single table entry has in general no

Chapter 2 Search for information

40

meaning. It is the context, i.e. the data type and the relationships to other entities
which give meaning to the single entry. As an example consider a project database
having the two tables projects(name, id) and milestones(project_id, description,
date). If someone searches for “project kick‐off” he might find a hit in the
“description” column of the milestones table. Nevertheless, without the context, he
neither knows which project is meant nor the date of the kick‐off. Therefore, an
answer must contain all relevant relationships in order to be useful for a searcher.
Particularly with regard to enterprise applications, like customer relationship
management which embed large quantities of business logic, search results must be
displayed in context.

2.5.4 Enterprise search engines
There is a broad spectrum of enterprise search engines available on the market,
varying from low end solutions to high end, i.e. industrial strength, solutions. In this
section we will focus on the latter: major vendors offering high end products, which
go beyond simple search. Their capabilities include amongst others federated search,
text categorization and clustering, fact and entity extraction, taxonomy creation and
management, information presentation, and personalization services.

Evaluating and comparing the search products on the market is a difficult task. First,
scientific investigations of the vendors’ search solutions are barely available. Second,
we can not afford (due to limited resources) to evaluate each product. Therefore, we
use the product sheets available on the vendors’ website and a report conducted by
the Gartner group [Andrews 2009] as the primary source of information.

Gartner analyzed vendors offering mid to high‐end search tools. They created a so
called “Magic Quadrant for Information Access Technology” (Fig. 2‐5) into which the
vendors have been classified using a custom evaluation criteria [Andrews 2009]. The
quadrants are: leaders, challengers, niche players, and visionaries.

Fig. 2‐5: Gartner’s magic quadrant of information access

Search in an intranet environment

41

Leaders are characterized as having a high architectural flexibility, providing
developers with the tools to tune relevancy settings and customize their solutions,
and they have enough depth to serve as platform vendors such that their software
can be used to solve most information access problems.

The challengers’ quadrant is characterized by vendors who have enough resources to
penetrate the information access technology market effectively. In contrast to the
leaders quadrant however, they lack the vision to address all information access
opportunities. Further, enterprise search is not their core source of revenue.
Nevertheless, Gartner says that any of the challengers could emerge as leaders
within 24 months if they invest the necessary resources.

Visionaries are characterized by having insightful approaches and flexible
architectures. However they lack financial resources to provide future strength. No
vendor is listed in this quadrant for 2009.

Niche players have specialized on a certain issue and lack the breadth to satisfy a
wide variety of projects.

We are not going to describe each vendor of the “Magic Quadrant”. Rather we
restrict to the search solutions offered by Microsoft (which acquired FAST in 2008),
IBM, Autonomy (which acquired Verity in 2005), Endeca, Vivisimo, Google,
Fabasoft/Mindbreeze, and Recommind. The focus is thus set on the leader’s
quadrant. In addition, the open source search engine Lucene will be discussed,
because it is a highly customizable search tool for mid to high‐end solutions.

Next, we will give a comparison of the strength and weakness of the mentioned
search solutions.

Microsoft is a global software company having presence in most countries. Its FAST
Search product can give recommendations (content‐based and collaborative‐based
filtering; cf. Chapter 3.2) about unknown content to users. Hence, they expose the
“long tail” [Anderson 2006] (less popular) content to the user. Success of those
recommendations is stored for future reference. Personalization can establish
multiple profiles for individuals based on time of day or location. Technically, they
demonstrated the ability to handle extremely large data sets and heavy traffic,
including installations with "spikes" of over 1,000 queries per second and multi‐
terabyte corpora. FAST can index a broad variety of content sources.

IBM has a broad spectrum of products for information access including a free
product developed with Yahoo, a basic enterprise edition, an edition with
significantly advanced capabilities for deployment in vertical sectors, and an offering
to fuse search and business intelligence (IBM Content Analyzer). IBM has sales and
support presence in many world regions and a particular facility with non‐textual
multimedia and content analytics. They are also investing efforts into “social search”,
i.e. determining relevance by considering user interactions and contributions. IBM

Chapter 2 Search for information

42

does not exploit users’ search history or explicit status in an organization as means of
determining the relevancy of results.

Autonomy has the ability to index a broad spectrum of content. They are also
capable of providing large scale installations exceeding a petabyte of data. Further,
they also provide deep user profiling, including users' search histories, explicit roles,
behavior in day‐to‐day authoring, and interactions with external and internal
information sources. The downsides of using Autonomy are their high prices
compared to other vendors and the lack of support.

Endeca's connector family gives it a particularly broad capability to index from a
variety of content sources. These include manufacturing applications to which few, if
any, other vendors connect. Additionally, Endeca has a unique search federation
connector strategy that extends its reach through enterprises in an innovative
fashion. Endeca records user searches, navigational behavior and the intersection of
the two, providing a unique perspective on users' past choices and unusually rich
user profiles. This information can be combined with explicit profile data from
enterprise‐established permissions and privilege lists. Endeca has a particular facility
with action‐oriented content analytics, such as analysis models covering a broad
spectrum of user behaviors and textual analytics (including concept extraction). Its
recommendation and document summarization engines are claimed to be especially
effective.

Vivisimo puts its clustering capabilities into foreground. Clustering enables search
results to be put into topical categories. A significant number of index connectors
allows for a variety of content sources. Vivisimo is also stressing their capabilities in
“social search”. They have a simple pricing model based on corpus volume or
document count which makes it easy to predict costs. Compared with the other
Leaders, Vivisimo's financial resources are fairly limited.

Google Search Appliance has a strong brand due to its popularity in Web search. In
enterprise search they offer support for over 200 file formats and they are able to
handle large scale installations. Another capability is the adjustment of the
document part relevance. One could e.g. specify whether the abstract is considered
more relevant than the rest of the document. In the latest version they have also
added support for role‐based personalization, in which administrators can adjust the
ranking of results for certain user groups. However, they have no investment in
exploiting users’ historical behavior. While Google Search Appliance offers almost no
adjustment to the local environment, its biggest strength is that it is a ready to use,
out‐of‐the‐box search engine. Further, customers benefit from a simple pricing
model.

Fabasoft/Mindbreeze offer strong content analytics and federation capabilities with
connectors for a variety of content sources. The system supports different relevancy
models which are applied to specific types of queries. Further, the system offers
“guided navigation”, a term shaped by Endeca. Guided navigation means that search
results are grouped e.g. by time, type, origin, etc. Hence, an overview of the result

Search in an intranet environment

43

set is generated by the system. They have a simple pricing model based on user
count. It provides a predictable initial cost base. Fabasoft/Mindbreeze offers only
limited user profiling.

Recommind is unusually good at using statistical analysis to extract meaning from
documents. They have various categorization features where documents can be
categorized into taxonomies. They are also able to generate a taxonomy from
existing content.

Lucene, an open source project of the Apache foundation, is not listed in Gartner’s
magic quadrant because they are no commercial entity. Lucene at its core includes
an API for index and search functionality. There is a large user community which
actively and continuously develops Lucene, extensions, and other open source
products on top of it (e.g. Solr). Due to its popularity many developers know the
project and have specialized on customizing and implementing Lucene‐based
solutions in companies. In contrast to proprietary search solutions, a company using
Lucene is not dependent of a vendor and its price policy. That is why Lucene is a
cost‐effective option for companies which want to build their custom made search
solution from scratch. It is expected that in future more companies will build their
search tools on top of Lucene.

This section has introduced several high‐end search engines for the enterprise.
According to the vendors’ product brochures, a rich repertoire of functionality is
offered by their respective search engines so that finding information should be a
piece of cake. Interestingly, studies like IDC’s “The High Cost of Not Finding
Information” as well as several in‐house studies conducted at Roche (Chapter 5)
disagree. In fact, they point out that search engines still do not deliver satisfying
results to professionals.

Maybe this is because existing tools do only partially cover the working hypotheses
defined in Chapter 1.2. Hence, essential quality characteristics of a professional
search tool might be implemented insufficiently or not at all.

The first hypothesis (“Professional searchers prefer to access all sources via one
single entry point”) is considered by most industrial strength search tools and usually
implemented using a federated search approach. The difference is in the degree of
pre‐defined connectors.

The second hypothesis (“Professional searchers require a role‐specific ranking of
results”) on the other hand is considered only by few vendors. Personalization
services based on some primitive form of user profiling is offered for instance by
Google Search Appliance and Endeca. Others such as Autonomy claim to offer a
much richer and deeper profiling.

The third hypothesis (“Guided navigation is relevant for professional search”) is also
only considered by some vendors. Interestingly, the approach by which guided
navigation is implemented differs. Some rely on clustering (e.g. Vivisimo) which

Chapter 2 Search for information

44

usually delivers ad‐hoc categories, others rely on text categorization, and yet others
rely on pre‐defined metadata (e.g. FAST by Microsoft).

The fourth and last hypothesis (“A company’s knowledge is instrumental for
professional search”) is usually ignored by commercial solutions.

Wrapping it up, there is not one vendor which covers all aspects. Most products fail
due to a support for role‐specific ranking of search results, information extraction
(for guided navigation), and most importantly exploitation of a priori knowledge.
However, the biggest issue is that even though some aspects are covered, no
information is provided about their effectiveness. A key question which thus remains
unanswered is “which principles improve the effectiveness of finding information
and which do not”.

Answering this question and determining which principles work is a key contribution
of this thesis. Because the commercial entities lack customization to the specific
needs of a professional search environment, we decided to conduct our research
based upon Lucene, which offers so much flexibility and extensibility (Chapter 7.1.1).

2.6 Evidence for document relevance
The relevance of a document can be based on various sources of evidence. So far, we
already introduced the well‐established tf‐idf metric, which is based on text
similarity, and additionally metrics based on link analysis such as PageRank. This
section completes the previous metrics as it gives a brief introduction to several
other sources of evidence.

Scoring metrics, i.e. evidence for document relevancy, can be classified into two
groups: query dependent evidence and query independent evidence. Query
dependent evidence means that the relevancy of documents depends on the query.
The tf‐idf metric e.g. falls into this category. Query independent evidence is a static
value which is associated with a document. Having such a static value associated
with each document, enables to calculate a document’s relevancy without providing
a query. The PageRank value e.g. is a query independent metric. Similarly, a metric
which scores recent documents higher than older ones, is a query independent
metric, because it relies on the document’s last modification date to calculate
relevancy – a static value which is query independent.

In theory, any two scoring schemas could be combined. In practice however, this is
not always the case. Combining for instance two contradictory metrics, like one
scoring new documents high with one scoring old documents high, will result in no
useful ranking.

In [Craswell et al. 2005] three methods for combining query independent evidence
with a query dependent baseline are discriminated: rank‐based, language modeling
prior, and relevance score adjustment. In the first approach, the baseline score and
the query independent scores are transformed into two rankings. The merged score
is computed based solely on the items’ position, i.e. on the order of the items. A

Evidence for document relevance

45

benefit of this approach is that power law scores can be combined with linear scores
without introducing a potential bias towards a few pages having a very large score
and the majority of pages having no score. This method could be e.g. applied to
combine the PageRank’s power law distributed scores with the tf‐idf scores. In the
second approach, a prior is calculated for each item which is then combined with the
language modeling probability by multiplication. The last approach uses a linear
combination of the baseline score and the static score to calculate the ranking of
results:

∑
=

×+×=
n
1i ii0 SimMetricaeSimBaselinaScore , where ∑ =j j 1a .

The ai factors control the influence of each metric on the final score. In our case
evidence is combined using the relevance score adjustment method (Chapter 6.5).

Next, we give an overview of query (in)dependent evidence factors (Table 2‐4). The
list is based on the factors published in [Fagin et al. 2003; Westerveld et al. 2002]
and displays the most common evidence factors. While there are many sources of
evidence, the difficult task is to choose amongst these and combine them in a proper
way. Next, we discuss each type of evidence and its applicability in intranets.

Table 2‐4: Query (in)dependent evidence factors.
+: applicable, ‐: not applicable, o: applicable if the institution’s

privacy policy allows the usage of personal data

Source Evidence Applicable in intranets
Full text +
Meta fields +
Structural information +

Content

Anchor text +
IP address o
Cookies o
Session o
Location o
User o

Context

Security o
Date of creation +
Last modification +

Time

Last access +
PageRank ‐
InDegree ‐

Link information

Citations ‐
URL length + URL information
URL depth +
Click‐through data + Implicit feedback
Time +
Rating o
Tagging o
Semantics o

Explicit feedback

Preferences o

2.6.1 Content evidence
Content evidence covers any information which can be gathered from the indexed
object, like full text, meta fields (e.g. author, subject, etc.), structural information

Chapter 2 Search for information

46

(e.g. headings, abstracts, etc.), and anchor text. The full‐text content of objects is a
de‐facto standard source for relevance ranking, used by almost all search engines.

Data provided in meta fields is often considered to be of higher quality than data in
full text content. If for instance the query word “NASA” is found once in the “title”
meta field of a document d1 and the same word is also found once in the full text
content of a document d2, then d1 is considered more relevant than d2.

Similar to meta fields, text within certain structural parts of documents is considered
more relevant. A document’s headings for instance, give a good summary of the
chapter’s content. Therefore, if a word is matched in both, a heading and in a regular
paragraph, the match in the heading should be considered more relevant. However,
this principle can only be applied if the pre‐defined headings are used. In case
custom formats (like a 14 point italic font) are applied, an automatic detection of
headings becomes very difficult. In the worst case, relevance could thus only be
adjusted based on coarse structural information such as font size and font emphasis
(bold, italic, and underlined).

Links occurring in a document could also be described as part of structural evidence.
However, we decided to separate links from regular structural text properties as they
are only common within HTML documents. The label of a link, in the following
referred to as anchor text, gives valuable information about the target’s content and
should thus be considered as evidence when ranking results [Craswell et al. 2001;
Eiron & McCurley 2003; Fagin et al. 2003; Fujii 2008; Westerveld et al. 2002]. In
other words: An anchor’s text is like a tag, giving a good summary of the target’s
content. In the Internet this assumption might be dangerous due to spammers.
Though, this is not the case for intranets because these are considered spam free.
Nonetheless, the applicability of such methods is low in intranets due to the low
availability of links within regular office documents.

2.6.2 Context evidence
Context evidence such as IP address, cookies, session, location and user id are often
used by adaptive systems to adjust the ranking of results. Common examples
encountered in Web search engines are so called location based services. People
who search at Google for “Greek restaurants” for instance are shown restaurants
from their area. The location is automatically deduced by mapping the client’s IP
address to the geological position. Arguably, this assumption makes sense in most of
the cases.

In contrast to the Web, the usage of context evidence in a company depends highly
on their privacy policy. The problem is that most systems relying on this kind of
evidence need to some extent user data in order to work (Chapter 3).

2.6.3 Time evidence
Timestamps are an important part of many information objects. Typically, the
relation between a timestamp and an information objects reflects an event which

Evidence for document relevance

47

occurred at the specified time. Common events are creation, modification, and
deletion of objects.

News, blogs, e‐mails, discussion groups, and document management systems are
just a few areas, where timestamps give us information about the time an item was
created, modified or deleted. Depending on the domain, time has an important role
when searching for information. In case of news, scientific literature and the like, the
majority of people are mostly interested in the latest articles. For instance, a
searcher might only be interested in the latest news about “NASA”. This knowledge
is often incorporated in a search engine’s ranking heuristic, i.e. the text similarity
score is combined with a recency score. While this assumption might be valid for the
majority, it ignores people who are looking for older news. In the running example, a
searcher might not be interested in the current missions of NASA but in the first
space missions.

A better approach would be to consider the distribution of relevant documents over
time (such as the date a news article was first published). According to [Li & Croft
2003] there are three types of queries. The first query type has a uniform
distribution of relevant documents over time (e.g. elections in the U.S.). The second
query type favors very recent documents (e.g. the current oil crisis) and the third
query type has most relevant documents within a specific period in the past (e.g.
World War II). Based on these query types, the authors of [Li & Croft 2003]
developed a query language model and conducted an evaluation versus TREC1 ad‐
hoc title queries. Their method outperforms the baseline models. In particular, it
outperforms the linear combination (text similarity + recency) method used by most
commercial search engines. However, a major drawback of this approach remains: in
order to be useful in large scale, queries must be automatically categorized into
time‐based queries.

2.6.4 Hyperlink evidence
Link information became one of the most important sources of evidence for ranking
results in the WWW. Algorithms such as PageRank and HITS revolutionized the
search experience (Chapter 2.4.1). As we discussed in Chapter 2.5.1, this kind of
evidence is not very useful in the hypertext part of intranets due to structural
differences. Further, other file formats (PDF, Word, Excel, etc.) usually lack a
comparable linkage structure. Instead, citation links are often encountered such as
bibliography references. In order to extract and interpret such bibliography links we
would need to apply text analysis. Because there are barely explicit URLs in non‐
HTML documents and because extracting citations with Natural Language Processing
(NLP) techniques is a difficult task, we do not consider this kind of evidence in this
thesis.

2.6.5 URL evidence
A URL contains valuable query‐independent information for the ranking of search
results [Fagin et al. 2003]. The length of a URL could indicate the authority of a page.

1 Text REtrieval Conference (TREC); Publishes test collections for various tasks; http://trec.nist.gov/

Chapter 2 Search for information

48

If two pages have similar content, then the page with the shorter URL has probably a
higher authority than the other. Similar, the depth of an URL (the nr. of slash “/”
characters) could be related to the authority. Pages located at the top can be
considered more general than pages located in deeper hierarchies.

2.6.6 Feedback evidence
Implicit feedback describes evidence which can be gathered through observation of
a user’s interaction with the search engine. The extracted evidence can be query
dependent as well as query independent. A naïve heuristic would be to score a
document the higher the more often it was accessed. A more “clever” version would
be to regard the accessed documents in context. One option would be to use the
query as the context [Joachims 2002; Radlinski & Joachims 2005; Xue et al. 2004]. If a
document is often accessed in context of a query, then it is more relevant than
others, but only in this context. Another option would be to use the user’s context
(interest, preferences, location, etc.). If a document is often clicked by searchers with
a common context, then this document is more relevant than others for their
context.

Closely related to implicit feedback is explicit user feedback. In contrast to the
previous approach, explicit feedback is usually of a higher quality but not as
abundant as implicit data. Explicit information can be e.g. demographic information,
personal interests, research area, project team memberships, rating of items, etc.
The data can be used in just the same manner as is done with implicit feedback, i.e.
either as query dependent or query independent evidence.

Both types of feedback evidence are introduced in detail in Chapter 3.

2.7 Precision and recall
Precision and recall are widely used performance measures which are also applied in
this thesis to determine the performance of various components. Most important for
us is their usage in information retrieval and in text categorization. In the former, the
measures are used to evaluate the retrieval performance of search engines. In the
latter, the measures are used to evaluate the classification performance. A definition
of precision and recall is given next.

Definition 2‐14: Precision
Let R be the set of relevant documents and let A be the answer set of a query.
Precision is defined as the percentage of relevant answers among all answers.

A ARecisionPr ∩
=

The definition of precision was given using two auxiliary sets R and A, which were
defined so that precision in information retrieval is explained. Nonetheless, the
formula stays exactly the same if we consider precision in text categorization. We
merely replace R by the set of documents which belong to the positive class and A
by the set of documents which were labeled to belong to the positive class. Hence, in

Precision and recall

49

text categorization precision is the number of correctly classified items divided by
the number of all items labeled as belonging to the positive class.

Definition 2‐15: Recall
Let R be the set of relevant documents and let A be the answer set of a query. Recall
is the fraction of relevant documents which have been retrieved.

R ARcallRe ∩
=

Empirical studies show that precision and recall are often in a relationship: If the
precision increases, the recall declines and vice versa (Fig. 2‐6). In terms of
information retrieval this means that if we have a retrieval function which is tuned
towards high recall (for instance by incorporating synonyms and taxonomies) the
precision will be low due to many false positives hits.

Fig. 2‐6: Precision – Recall trade off graph

While the previously described precision‐recall trade off always holds, the slope of
the curve varies from system to system. The difference is the strength of the
relationship between the two. In the default case, the area in which both, precision
and recall have high values is small (red curve in Fig. 2‐6). In a good case, the area is
higher (blue curve in Fig. 2‐6).

In IR, reference collections (e.g. the TREC collection) are often employed to
determine the performance of retrieval algorithms. A reference collection consists of
a set of text documents and a set of narrative information needs. A group of
specialists mark the relevant documents for each information need.

In order to conduct the evaluation, the information needs are converted into
queries. Then, the retrieval algorithms are executed on each query and the answers
are compared with the expected answers. The performance is usually expressed
based on 11 standard recall levels, i.e. the precision is calculated for the recall levels

Chapter 2 Search for information

50

of 0%, 10%, …, 100%. Often, the precision‐recall curves are averaged over multiple
queries to yield a representative result.

The usage of precision and recall is straightforward for small collections where all
documents are known. In the Web however, the maximum recall of a query can’t be
determined because the total amount of correct answers is not known. Precision and
recall are therefore problematic measures for the Web.

51

Chapter 3

Adaptation in Information Retrieval

“The only true wisdom consists in knowing that you know nothing.
And in knowing that you know nothing, that makes you the smartest of all.”

Socrates (469 BC – 399 BC)

3.1 User modeling..51
3.2 Personalized search ...54
3.3 Recommender systems..62
3.4 Algorithms for recommender systems ..64
3.5 Discussion...67

The steady growth of accessible information in the Web as well as in corporate
environments confronts users with new challenges. Adaptive techniques seem to be
a promising solution for coping with the prevailing information overload. Essentially
adaptive techniques conduct the difficult task of providing only the relevant
information for a user’s specific interests. This chapter gives an overview of
fundamental concepts in the area of adaptive systems. We begin with user modeling,
continue with personalization of search results, and then address recommender
systems. Finally, we discuss several aspects of applying adaptive systems in
corporate environments.

3.1 User modeling
In literature, the term user modeling is used for describing the investigation of user
models. User models are used to represent a user’s characteristics. Personalized,
adaptive systems infer from the model a user’s preferences, so that actions, services,
user interfaces, etc. are adjusted accordingly. Software systems which adapt to the
user’s information needs are called “adaptive systems”. These are clearly
distinguished from “adaptable systems”, in which a user can adapt the system
manually to his needs [Jameson 2003]. Adaptive systems try to automatically detect
the user’s needs and to self‐adjust to an individual. We follow the definition of user
adaptive systems given by [Thompson et al. 2004].

Definition 3‐1: Personalized, user adaptive system [Thompson et al. 2004]
Personalized, user adaptive systems obtain preferences through interactions with
users, keep summaries of these preferences in a user model, and utilize this model
to adapt themselves to generate customized information or behavior.

Chapter 3 Adaptation in Information Retrieval

52

User‐adaptive systems rely on user models and user profiles for customizing the
system to the individual. Next, we give a definition of our understanding of user
models and user profiles.

Definition 3‐2: User model
A user model describes generic characteristics of users, relevant to their interaction
with the system. It is an abstract representation of user properties and preferences
which is used to adjust a system’s actions and services accordingly. A user model also
generates and maintains user profile instances.

Definition 3‐3: User Profile
A user profile is an instantiation of a user model for an individual user. It contains the
personal properties and preferences of the individual.

Fig. 3‐1 shows a user model and its relations to the user profiles. In the user model, a
hierarchical structure is depicted, which represents the captured information
content (i.e. properties and preferences). Currently, no standard format for user
models exists. Therefore user models’ content and format is highly application‐
dependent, leading to a low re‐usability across systems. The user model applied in
context of this thesis will be based on ontologies (cf. Chapter 4 and Chapter 6). The
ontology provides a semantic structure for storing information about individuals and
it enables to conduct logical inferences based on rules, i.e. deciding which actions
the adaptive system should take.

Fig. 3‐1: Relationships between a user model and user profiles

The following chapter gives an overview of user model types. Then, applications of
user modeling in the context of IR are discussed.

3.1.1 User model types
[Thompson et al. 2004] distinguish five types of user models: individual user models
or stereotypical user models, information content of models, explicit or implicit user
model data acquisition, handcrafted or learned models, and short‐term or long‐term
models. Next, we briefly outline each point.

User modeling

53

Difference 1: Individual user models vs. stereotypical user models
So far, when we talked about user models, we implicitly referred to individual user
models, i.e. a model, generating user profiles for individuals. However, these are not
the only type of models. The second type is called “stereotype user model” [Rich
1979]. In contrast to the “individual user model”, a stereotype model targets user‐
roles, like “biologist” or “computer scientist”. A stereotype user profile is thus shared
between several individuals. For instance, all workers of a company which have an
education in biology might share the stereotype “biologist”. Stereotype models are
thus an abstract form of user models. Adaptive systems employing stereotype user
models are trying to adjust the system to the interests of a social community sharing
a stereotype. Inherent to the design, stereotype user models provide a higher
anonymity than individual user models but lack the high precision provided by
individual models. Therefore a good balance between generality and precision must
be found when stereotype user modeling is applied.

Difference 2: Information content of user models
The information represented in a user model depends on the application. In principle
any kind of information, from simple to complex objects can be stored. A user model
can store for instance personal information (name, location, bank account,
education, social network contacts, …), user behavior (clicked items, viewed items,
bought items, time, …), device information (display, connection, …), preferred
settings (file format, screen resolution, …), device information (display, connection,
…), goal, current task, information need, required information depth, previously
gained experience, previously gained knowledge, etc.

Difference 3: Explicit vs. implicit data acquisition
As indicated in the introduction, a key issue in adaptive systems is the retrieval of
user preferences. We can distinguish two basic techniques: explicit requests and
implicit measures. Explicit methods require the user to actively give information
about himself to the system, e.g. by answering online‐surveys, by rating items of
interest, etc. Unfortunately people often feel it as a burden to explicitly state their
preferences [Avery & Zeckhauser 1997]. Therefore, implicit methods are often
employed instead. Implicit methods try to infer a user’s preferences by observation,
e.g. by analyzing which objects a user visits, how long he investigates the objects,
how his navigation patterns are and so forth. The analysis of implicit data is often
conducted by means of Web usage mining, i.e. the extraction of patterns from Web
logs. An overview of Web mining methods for personalization is given in [Eirinaki &
Vazirgiannis 2003]. The decision of using either explicit or implicit data for user
profiling also influences a user model’s fluctuation. Explicit data acquisition is good
for static models, while implicit data acquisition is good for dynamic models. The
statement is justified by the necessity to keep dynamic models up‐to‐date. Arguably,
constantly asking a user about his preferences is an impractical approach.

Difference 4: Handcrafted vs. learned models
User models can either be created automatically or manually. An automatic creation
of user models can be conducted by means of Machine Learning (ML) [Mitchell

Chapter 3 Adaptation in Information Retrieval

54

1997]. ML uses any user specific (implicit or explicit) data like explicit item ratings or
implicit click‐through data in order to create a user profile for the individual. The
benefit of this approach is the ability to adjust over time: user profiles are updated
based on newly collected data. However, the automatic approach suffers from the
cold‐start problem, i.e. the adaptive system does not immediately work for new
users because the ML algorithm has not enough data to create a user profile.
Manually created user models do not have this drawback. Though, the manual work
required by this approach is a drawback. The creation of user profiles, which is done
by domain experts, takes time as well as the adjustment of user profiles due to
changes in interests.

Difference 5: Durability of user models
The amount of time a user profile is valid can vary from system to system. In one
case, a profile might be only used for a single session while in another case a profile
might be used for a lifetime. The first is referred to as short‐term models and the
second as long‐term models. E‐commerce (online stores) usually applies long‐term
models. Amazon for instance, stores the history of ordered products for the lifetime
of a user’s account. An important issue in long‐term models is the information half‐
life. If a model does not adjust properly over time, it will not be able to match the
user’s true information needs. As a consequence, Amazon might give bad
recommendations for customers who change their purchase behavior. Just imagine a
student, who buys many books about linear algebra to prepare for an exam. Later,
he might still receive recommendations for math books even though he is not
interested anymore. Short‐term models don’t have this drawback. However, they are
ignorant to past events, possibly missing important aspects of user behavior.

In context of this thesis, we prefer stereotype user models over individual user
models due to the inherent privacy issues (Chapter 3.5). Data acquisition is done by
means of explicit methods. The main data sources are administrative databases,
which contain user preferences such as involved projects, applications or research
areas. Such data is not only available at Roche but in any other major company.
Regarding the decision between handcrafting a user model and learning, we decided
to handcraft the user model. The benefit is that the cold‐start problem is
circumvented, effectively providing more incentives for the usage of the prototype.
Hence, our user model is a short‐term model as past events are not considered.

3.2 Personalized search
The prelude part of this thesis started amongst others with a discussion of the
implications of information overload on a user’s search experience. A key conclusion
was that the one‐size‐fits‐all approach applied by most search engines is not suitable
for professional search.

In this section we will discuss promising techniques of personalized search which try
to overcome the limitations of the one‐size‐fits‐all approach. Personalized search
aims at adapting the results of a search engine to the information needs of the
individual, based on some user model and some context of their activity. This is in

Personalized search

55

contrast to traditional search engines which return the same result list regardless of
who submitted the query.

Next, we introduce personalized search approaches – an area of active research
which recently also gained interest among search engine vendors.

3.2.1 Personalization process types
Personalization can affect the search process in three distinct phases [Micarelli et al.
2007; Pitkow et al. 2002]: a) personalization as part of the retrieval process (native
personalized search engine), b) personalization based on re‐ranking, and c)
personalization based on query modification. In each case, user modeling is the
major component needed in order to provide personalized results (cf. Fig. 3‐2).

Fig. 3‐2: Types of personalization processes. The user profile can occur during the retrieval process (a),
a‐posteriori in a re‐ranking step (b), or a priori in a query modification step (c).

User
Profile

Personalized
Search Engine

Query

Personalized
Results Re‐ranking

Query

Personalized
Results

Search Engine

Results

Query
Modification

Query

Personalized
Results

Personalized
Query

Search Engine

User
Profile

User
Profile

(a) (b) (c)

Native personalized search engines (Fig. 3‐2 (a)) do directly integrate the
personalization components into the ranking process. As such they are the most
likely type to provide quick query response as well as a good personalization
performance. However, the extra computational costs caused by personalization
may limit its usage in scenarios where high‐traffic spikes are common and delivering
answers within a second is a must.

Personalization based on re‐ranking (Fig. 3‐2 (b)) is in its first steps similar to
common search tools, except that the returned results are not delivered to the user
but to an adaptation module sitting between the original search engine and the user.
The adaptation module re‐ranks the results according to the user’s profile. The
personalized results are then shown to the user. A key issue of this approach is
speed, which usually is considerably slower compared to the other two
personalization processes. Two common approaches to mitigate the speed issue, is
a) to limit re‐ranking to the top‐k results and b) to consider only the result snippets
of the search results instead of the whole full text content. Personalization based on
re‐ranking can be implemented server‐side or client‐side. Usually a client‐side

Chapter 3 Adaptation in Information Retrieval

56

implementation is preferred because it allows richer user profiles. Indeed, having
client‐side software allows capturing additional metrics beyond simple click‐through
data, such as accessed URLs, time spent, movement of scroll bars, etc. Therefore
personalization accuracy is expected to deliver good results.

Personalization based on query modification (Fig. 3‐2 (c)) is the last variant. The basic
idea is to take the original query and modify it in such a way that a personalized
query is obtained which reflects well the user’s information needs. For instance if a
user is looking at a series of pages about cars and then searches for “jaguar”, the
adaptive system may expand the query with the terms “automobile” or “car” to
exclude false positive hits (“jaguar”, the animal). Search is then conducted with the
personalized query. The retrieval procedure is thus the same as in the case of a non‐
personalized scenario. In effect, retrieval speed is not affected by personalization.
The downside of this approach is that ranking can only be affected by means of
query modification, i.e. it is limited by the expressiveness of the search engine’s
query language. Fine‐granular personalization of search results might thus not be
possible.

In our concept we are going to apply personalization based on query modification
(Chapter 6). Using a native personalized search engine was not considered, because
we decided to use Lucene, which does not offer such services. Further, making
Lucene’s internal ranking process personalized is a much higher effort than using
either a re‐ranking or a query‐modification approach. Initially, we even used a re‐
ranking approach. However, the considerable drop in retrieval speed was not
acceptable so that in the end, we decided to use a query‐modification approach.
Because Lucene’s query language is quite powerful (it offers term boosting,
document boosting, etc.) we are able to achieve similar effects as in the case of re‐
ranking but with de facto no performance drawbacks.

3.2.2 Methods for personalized search
The previous section gave an overview of personalized search and it outlined that
the user profile is an integral part of personalized search. Learning and keeping the
user profile updated requires feedback data which can be either implicit or explicit.
As a matter of fact, most applications in the area of personalized search are based on
implicit feedback data because people are usually reluctant in providing explicit
information [Avery & Zeckhauser 1997].

In [Micarelli et al. 2007] six types of personalized search approaches are
distinguished: Personalization based on 1) the current context, 2) the search history,
3) rich user models, 4) collaborative approaches, 5) result clustering, and 6) on
hypertextual data. In addition to the six types distinguished in [Micarelli et al. 2007],
we define a seventh type denoted as “personalization based on the working
context”. We briefly outline each type next.

The idea of the first type, “personalization based on the current context” is to infer a
user’s context based on his current activity. In particular, implicit data such as
currently viewed documents, viewed emails, and open web pages are taken into

Personalized search

57

account in order to predict a user’s information needs. It requires thus various log
data from the desktop which is gathered by monitoring the user’s activities. Hence,
client side software has to be installed in order to monitor the activities. A system
implementing this approach is e.g. Watson [Budzik et al. 2001]. Because distributing
and maintaining client side software in a corporate environment is related with
much higher efforts than in the case of server side software, we do not further
investigate such methods in the context of this thesis.

The second type, “personalization based on search histories” is based on the
exploitation of the user’s search history – a rich source of implicit data, consisting of
information such as past queries, browsed pages, and selected results. Search history
data can be easily recorded on the server side without the need to install any client
side software. The convenience of this data source resulted in many publications
investigating this type of personalization. Because of its popularity we are going to
discuss personalization based on search histories in more detail in the following
section.

The third type, “personalization based on rich user models” makes use of implicit
and explicit feedback. Basically, the user supplies additional explicit feedback to the
system by voting on the relevance of retrieved results. The additional data allows a
richer representation of the user’s information needs. Research in this area made
often use of semantic networks to store concepts of a domain and the associations
between them [Asnicar & Tasso 1997; Gentili et al. 2003; Micarelli & Sciarrone 2004].
While explicit feedback enables without any doubt better personalization, it has the
drawback that each user must invest time in building his profile. In the light of the
time constraints present in a corporate environment, we do not expect such
approaches to be accepted by the professional user community. Therefore, we do
not further consider this type of personalization in this thesis.

The fourth type, “personalization based on collaborative approaches” is about
personalized recommendations. A common approach is for instance the application
of social filtering algorithms. Here, the neighborhood of a searcher is identified. The
neighborhood consists of users which are predicted to share a similar interest as the
searcher. Having identified similar users, recommendations are given to the searcher
based on his neighborhood. The recommendations typically include items which are
known by his neighbors but not by the searcher. Recommender systems are
introduced in more detail in Chapter 3.3.

The fifth type, “personalization based on clustering” is not a personalization
approach in which the system re‐orders or recommends search results. Rather,
results are clustered depending on the given query so that a user can slice and dice
through the result set. The personalization lies thus in the ability of the user to
influence the browsing experience. Systems offering such an approach are for
instance Vivisimo (Chapter 2.5.4) and their Web application Clusty2. A frequently
mentioned drawback of search results clustering is that the cluster labels as well as

2 http://clusty.com

Chapter 3 Adaptation in Information Retrieval

58

the cluster hierarchy are ad‐hoc. The problem is that both are determined
automatically. In effect, labels as well as the hierarchy might differ significantly when
the result set changes. Further, cluster labels might be named odd and the hierarchy
might not be structured intuitively. This can confuse users. Therefore, we do not
consider clustering in this thesis but classification (Chapter 6.3). Classification has the
advantage that the categories are precisely defined a priori and that the class
hierarchy is static. A personalized browsing of search results is achieved by enabling
facetted navigation on the classification hierarchy.

The sixth type, “personalization based on hypertextual data” is particularly about
personalization in the Web. The idea is to extend existing hyperlink‐based algorithms
(Chapter 2.4) by incorporating a user’s preferences into the algorithms. In [Qiu & Cho
2006] for instance, a personalized version of the TopicSensitivePageRank [Haveliwala
2003] is described. Currently, we do not consider this type of personalization as
relevant for intranet environments. First, the hypertext part of intranets differs from
the Internet and thus methods based up on this structure might not yield the
expected performance. Second, the majority of content in the investigated
department is not located in the hypertext part (Chapter 5).

The seventh type, “personalization based on the working context” enables a
personalized view of the search results based on the environment the user is
working in. Particularly, information such as the employee’s current research
activity, involved projects, involved groups, department (task and area of the
department), and the educational background is employed in the user profile. This
kind of information is usually available in every larger corporation in form of
administrative databases. This demographic data enables domain experts to define
the adaptation for certain user stereotypes. This kind of adaptation is static, as the
user model is not updated by a feedback mechanism. However, such a feedback loop
could be incorporated by considering the search histories of a stereotype. We
investigate personalization based on the user’s working context in detail in the core
part of this thesis (Chapter 6.4, Chapter 6.5.2, and Chapter 8.3.3).

Finally we want to mention, that there are of course various hybrid approaches
making use of multiple personalization types. In [Sugiyama et al. 2004] e.g., the user
preferences are not only determined by the search history but also by means of
collaborative filtering (i.e. users with a similar interest).

3.2.3 Personalized search based on the search history
The search history contains all past search actions of a user. The user model typically
contains queries, query‐clicked item pairs (click‐through data), and timestamps.
Users can benefit from search histories in two ways: First, if they know they have
seen an item in the past they can re‐find it by searching the history. Second, click‐
through data can be used by search engines to fine‐tune the ranking of results. The
latter must not necessarily be used to personalize results but can also be used
regardless of the searcher so that results which have been once selected by a
searcher are boosted for future similar searches. As such we are going to discuss two
use‐cases of the search history. In this section, we describe how the search history

Personalized search

59

can help to personalize search results. In the following section, we briefly discuss
how the search history can be used to fine tune the ranking of results in a non‐
personalized environment.

Approaches exploiting the search history can be distinguished in online approaches
and offline approaches. In the first case, the user profile is updated immediately. In
the latter case, search history data is first collected and then processed in a distinct
step (e.g. over night) before the user profile is updated. The benefit of applying an
offline approach is that more complex algorithms can be implemented.

In [Raghavan & Sever 1995] an online approach is described which is based on
matching current queries with past queries. Past queries as well as selected results
are stored in a database. In case a significant similar past query to the current query
is found, the past results associated with the query are proposed to the user. The
challenge is to correctly identify similar past queries – a difficult task due to the short
nature of queries and the inherent synonymy and polysemy problem.

In [Bharat et al. 1998] a personalized Web‐based news paper system is described.
They also make use of term‐term similarity. Instead of comparing short queries
however, they collect a set of keywords from articles in which the user shows a
significant interest (measured by implicit metrics such as selected articles, time spent
reading an article, movement of scroll bars, etc.). These keywords are then stored
and weighted in the user’s profile. The weighting of the keywords depends on the
occurrence of the keywords in the viewed articles, i.e. the more often a keyword
occurs in the set of viewed articles, the higher the keyword’s weighting in the profile.
Search results are re‐ranked at query time by boosting articles containing keywords
of the user’s profile. The importance of an article is not only determined by the fact
that a keyword of the user profile occurs but also by the weighting of the keyword in
the profile. In addition to that, searchers have the freedom to adjust the level of
personalization by moving a slider. Notice, even though the described system is web‐
based it does not entirely run on the server‐side. Indeed, the news‐reading client is
implemented in a Java‐Applet. However, such a system could nowadays be easily
implemented entirely server‐side.

The previous two approaches are based on keyword similarity and suffer thus by the
synonymy and polysemy problem. Several papers [Liu et al. 2004; Middleton et al.
2004; Pretschner & Gauch 1999; Speretta & Gauch 2005] have been published which
circumvent this issue by capturing a user’s interest in terms of higher‐level topics
instead of individual keywords. In other words, each document is classified into a
topic taxonomy and the interests of a user into a specific topic is stored in his profile.
In case of the World Wide Web, the taxonomy of the Open Directory Project is
usually applied. The user profiles are updated similarly to term‐term approaches, i.e.
the topics of the pages a user visits are stored in his profile. The difference is that
instead of keywords, topics and the interest strength into these are stored.

Topic‐based personalization of search results is done as follows. After transmitting a
query, a result profile is calculated for the documents. The result profile contains the

Chapter 3 Adaptation in Information Retrieval

60

mapping of the documents into topics. Given the result profile and the user profile, a
conceptual match (reflects how well the topics of the results match the topics the
user is interested in) between the two is calculated. The conceptual match is finally
linearly combined with the native similarity score of the search engine so that the
final relevance score is obtained:

() RankConceptual1NativeRankFinalRank α−+α=

The influence of the conceptual rank on the final score can be manipulated by
adjusting the parameter alpha. The closer to 1, the more importance has the native
rank, and the closer to 0, the more importance has the conceptual rank.

Even though the described approach is shared by the various topic‐based
approaches at the core, there are differences. The topics for instance, are captured
in some cases by regular taxonomies and in other cases by ontologies. Ontologies
have the advantage of offering stronger semantics. Ontology‐based personalization
approaches are discussed in the next chapter, after having introduced the
foundations of semantic technologies. Another difference concerns the method by
which a document is assigned into a topic: manual vs. automatic. A further
difference related to the classification is that some methods allow a document to
have multiple categories while others consider at most one topic per document.
Last, we want to point out that also the construction and the representation of the
user profile may differ from one approach to the next.

A completely different approach is taken by the CubeSVD algorithm [Sun et al. 2005].
The CubeSVD method targets the user space, the query space, and the document
space as well as their associations, i.e. user associations, query associations, and
document associations. In order to do so, they analyze the search history and extract
click‐through triples, i.e. {user, query, viewed document}. Given these triples they
perform a higher‐order singular value decomposition of the triples so that they
receive quadruples, i.e. {user, query, viewed document, weight}. The output
captures the latent factors that govern the relationships among users, queries, and
documents. Compared to other standard methods, CubeSVD achieves encouraging
search results. However, the offline computation of the higher‐order singular value
decomposition is quite expensive. Another benefit of CubeSVD is that it can be
applied also in non‐web environments as long as three‐way relations exist.

Personalization algorithms have already found their way in several general all‐
purpose search engines. A popular example of a search engine which is based on the
search history is Google’s personalized search. Google exploits past page views and
immediately updates the user profile using an online approach. Unfortunately there
are no details known about the performance of their algorithm. Further, the public
knowledge about their approach is limited to the information filed in their patent
application [Zamir et al. 2005].

Personalized search

61

3.2.4 Adaptation of search results based on the search history
The search history can be also used to adapt search results regardless of the current
searcher. This kind of adaptation is thus neither user‐specific nor stereotype‐specific,
as it affects all users the same based on their common search and clicking behavior.

In [Joachims 2002] an approach is described which uses feedback data to learn the
relative order of result items. Joachims conducted an eye‐tracking study in which he
analyzed how people read a search engine’s results. The study revealed some
interesting patterns which he formulated into preference rules. For example, if in
context of a query, the third item is clicked but not the first and the second, then the
third item is considered more relevant than the first two. This and similar rules have
been used to optimize a meta‐search engine.

In [Xue et al. 2004] click‐through data is used to introduce more accurate metadata
for web pages and to improve search performance. Each clicked page receives the
query terms as metadata. Using a neighborhood approach, metadata is also
introduced to related, so called co‐visited, pages. As a result, documents whose
metadata match parts of the query terms are ranked higher due to the tf‐idf
measure.

Because the investigation of this thesis is conducted in a corporate environment, it
does not surprise that privacy concerns arise in case of personalized search. Hence,
prior to the investigation of personalization approaches based on the search history,
we first verify whether non‐personalized adaptation of search results based on the
search history does significantly improve information retrieval (Chapter 8.3.2). The
method we are going to apply and evaluate corresponds to the naïve feedback
mechanism described in the paper by Xue et al. (Chapter 6.4.3).

3.2.5 Other applications of personalized search
The adjustment of search results is usually just one piece of the features which
revolve around user modeling. Current personalized search tools like iGoogle3 or
LeapTag4, offer a large selection of profile based features such as: Social search,
search history, personalized advertisement, data privacy, location‐based services,
and recommendation.

Social search (e.g. WikiaSearch5 or Google’s SearchWiki) is a recent Web 2.0 trend in
search engines. The idea is to let people re‐arrange and annotate a search engine’s
result items. Re‐arrangement enables a user to explicitly determine a new order of
result items in context of a query. Consequently, reused queries will show the items
in the modified order. Annotations enable users to attach any kind of textual
information to a result item. [Noll & Meinel 2007] describe a personalization
approach based solely on annotations, i.e. social bookmarking and tagging: Search
results which are bookmarked or tagged are ranked higher than other results.
Because the feedback can be shared, individuals can benefit from the crowd’s re‐

3 http://www.google.com/ig
4 http://www.leaptag.com/
5 http://search.wikia.com/

Chapter 3 Adaptation in Information Retrieval

62

ranking and annotation activities. In essence, the more people participate in social
search the better the improvement over traditional search engines. A user model in
social search will store explicit data such as annotations and preference information
(e.g. Web page Pi is more relevant than Web page Pj in context of a query q).

Personalized advertisement provides context‐dependent ads to individuals and is
widely used in e‐commerce and in the search engine market (e.g. Google and
Yahoo!). The technology is often provided by commercial marketing companies such
as DoubleClick6 Inc. DoubleClick collects and stores implicit user information in their
database. The identification of users is usually conducted by means of cookies. The
user profile is then used by DoubleClick’s affiliated sites to decide which
advertisement to show to the visitor. In case no user‐profile is available, displayed
commercials are often selected depending on the visitor’s location, i.e. IP address.

User profiling often raises concerns about privacy. Indeed, Web surfers are often
tracked by various cookies (such as those from DoubleClick) without their knowledge
and explicit approval. However, there are also many portals which support the
management of user profiles. In case of personalized search tools, such a feature
allows users to toggle the recording of the search history, or to delete recorded data.
Further, the modification of other explicit data is possible.

Recommendations have been made popular by Amazon’s “People who bought this
book were also interested in these books” feature. Similarly, this technology can be
implemented in search engines. Instead of bought books, recommendations are
given based on clicked items and transmitted queries.

3.3 Recommender systems
Recommender systems are a special type of adaptive systems. They are designed to
assist users by guiding them in a personalized way through complex information
landscapes and their vast amount of options [Burke 2002]. In contrast to
personalization of search results, recommender systems usually explicitly show the
user the suggestion instead of applying adaptation unobtrusively. It is thus much
more transparent to the user that he gets information from the system. [Burke 2002]
distinguishes five basic techniques in recommender systems: Collaborative filtering,
content‐based filtering, demographic‐based filtering, utility‐based filtering,
knowledge‐based recommender systems and hybrid‐based recommenders.

Collaborative filtering is the most mature technique and nowadays used by many
commercial systems (e.g. Amazon or eBay). The main idea of this approach is to let
people rate objects (e.g. products of an online store) and let the system detect
commonalities between users based on their ratings. New recommendations of
previously unseen items are then generated based on inter‐user comparisons. The
object ratings are usually stored in a user profile. Collaborative recommender
systems can be memory‐based or model‐based. In the first case, users are directly
compared with each other using correlation or other measures. In the second case, a

6 http://www.doubleclick.com

Recommender systems

63

model derived from the rating history is used for making recommendations. A
variety of learning techniques have been used by model‐based recommenders, such
as neural networks, latent semantic indexing and Bayesian networks. The advantage
of collaborative filtering is that no machine‐readable representation of the objects
being recommended is required. Content‐based filtering for instance requires this.
The limitations are that a history of user ratings is needed, that new objects will not
be recommended as long as they are not rated by others, and that changes in user
preference are barely detectable.

Content‐based recommendation systems take the opposite approach compared to
collaborative filtering. Here, a profile is learned based on the features present in the
objects a user has rated and not based on inter‐user comparisons. The features used
for calculating the similarity depends on the object type (e.g. pictures, video, text,
etc.). In case of text objects, the features are word terms and the vector space model
can be used to calculate similarity for correlation purposes. The profile is built by
means of a learning method such as neural networks, decision trees, etc. Both,
collaborative‐based and content‐based filtering, produce long‐term models which
are updated as more evidence about a user’s preferences is observed. A limitation of
the content‐based approach is that object features are required for calculating the
clusters. First, not all objects have good features for this task. For instance, a movie
store might have only the genre metadata for calculating recommendations – a very
coarse dimension. Second, because the filtering is based only on the content and not
on user feedback, the quality of objects and thus the relevancy of recommendations
are unknown. Indeed, automatically extracting an item’s quality from its features
(e.g. from a publication’s text content) is usually not a feasible task.

Demographic‐based recommenders classify users into demographic classes based on
their personal attributes. It is therefore essential that users provide personal
information about their preferences. The information for categorization can be
gathered with surveys or by the usage of machine learning algorithms which analyze
user profiles. Given the demographic data, the recommender system can identify
demographically similar users to extrapolate e.g. from their ratings or purchases in
case of e‐commerce. Thus, demographic‐based recommenders are similar to
collaborative recommenders as both form “people‐to‐people” correlations, but use
different data for doing so. The benefit of the demographic‐based approach is that
no history of user ratings is required. However, if users refuse to give sufficient
demographic information, no highly personalized recommendation can be achieved.

Utility‐based recommendation systems predict the value of items to each individual
user on the basis of a model of the user’s preferences. The relevancy of an item for a
user is calculated by a user specific utility function. In effect, not only object features
and user features can be incorporated into the utility function, but also other
attributes such as delivery time of a product or vendor reputation. As a result a user
profile might contain a utility function which prefers fast delivery regardless of the
vendor’s reputation. This approach uses a short‐term model because no long‐term
generalizations about users are done.

Chapter 3 Adaptation in Information Retrieval

64

Knowledge‐based recommender systems (or “Editor’s choice” method) provide
suggestions based on reasoning over a knowledge base (KB). A KB can be used to
model arbitrary objects, their attributes and their relationships (Chapter 4). Here, the
KB contains the domain knowledge and the user profiles. In essence, the KB contains
the user‐item preference information. Based on the KB, a reasoning engine can give
recommendations to a user. For example let us assume the recommender system
knows about furniture and their semantic relationships (e.g. “part of” or
“complements”). Let “table” and “chair” be two different furniture. If a customer
buys a dining room table, the recommender system would suggest to buy chairs
next. A regular recommender system might continue suggesting tables to the
customer. Incorporating the semantic relationships into the recommendation
process is a key feature of this approach. Knowledge‐based recommenders often
employ case‐based reasoning methods. The benefits of this approach are that similar
to utility‐based methods non‐product features can be employed, preference changes
can be adjusted easily, and that no rating history is required. The limitations of this
approach are that knowledge‐engineering is required and that the knowledge is
static, i.e. the system does not learn.

Any recommender system, which uses more than one of the previously mentioned
approaches, is called a hybrid‐based recommender system. Hybrid approaches try to
combine the basic methods in such a way, that the overall recommendation
performance is improved, while mitigating the disadvantages of the individual
approaches. Table 3‐1 gives an overview of how the basic approaches can be
combined.

Table 3‐1: Overview of hybrid‐based filtering approaches

Method Description
Weighted A recommendation is computed by the weighted sum of

each recommender system
Switching Recommendation techniques are switched depending on

the current situation
Mixed Recommendations from different systems are presented

at the same time
Cascade One recommender refines the recommendations given by

another
Feature augmentation Output from one technique is used as an input feature to

another recommender

Feature
combination

Meta‐level The model learned by one recommender is used as input
to another

3.4 Algorithms for recommender systems
This chapter gives a brief overview of recommendation algorithms for demographic‐
based, content‐based and collaborative‐based filtering. Utility‐based as well as
knowledge‐based approaches are omitted as both are highly application‐dependent.
The first requires a function to be defined, which differs from one use‐case to the
other. The latter operates on a knowledge‐base, whose structure and content
(relationships, facts and rules) differs from one application to the other. A specific
application of semantic‐based adaptive systems is e.g. described in [Henze et al.
2004].

Algorithms for recommender systems

65

The discussion of the algorithms presented in this chapter are restricted to two
classes, namely memory‐based algorithms and model‐based algorithms [Breese et al.
1998]. We begin with the discussion of memory‐based algorithms, which operate
over the entire database of users, items and user‐item relations. Then, we discuss
model‐based algorithms, which use the database to learn a user model. The user
model is used by the recommender to predict items of interest to the user.

3.4.1 Memory-based algorithms
Memory‐based algorithms can be characterized by three steps. First, a similarity
function is defined, for detecting similar items or users. Second, the k‐nearest
neighbors are calculated, to limit the computational costs of determining
recommendations. Depending on the considered recommendation technique, the
neighbors can be either users or items. For instance, in user‐based collaborative
filtering, users are correlated, while in item‐based collaborative filtering, items are
correlated. Third, a prediction function is used to calculate the most relevant
recommendations.

Fig. 3‐3: Principles of recommender systems. A black arrow represents the interest (e.g. rating or
purchase) of a user for an item (A, B or C). Features of users and items are denoted by “<…>”. A red
arrow marks correlated users or items. The green arrow represents the predicted recommendation

for the active user (bold). After [Kim & Seoul 2006].

<R‐D2, Proj‐B>

<R‐D1, Proj‐A>

A

B

C

A

B

C

<books,golf>

<music,art>

<books,golf>

A

B

C

<R‐D1, Proj‐A>

A

B

C

c) Collaborative: user‐based d) Collaborative: item‐based

b) Content‐baseda) Demographic‐based

In demographic‐based recommenders, the task is to find users with a similar profile,
i.e. with a similar feature vector (Fig. 3‐3 a). In principle any demographic data (such
as age, gender, location, etc.) could be used to calculate the similarity of two users.
In the following example, we consider two persons demographically similar, if they
have approximately the same age and if they work in related departments. We thus
define the similarity function sim(a,u) between a user a and u as follows:

Chapter 3 Adaptation in Information Retrieval

66

() () ()

() () () () ()

() () ()
() ()uDeptaDept uDeptaDeptu,asim otherwise1 0uAgeaAge ifuAgeaAge 1u,asim

u,asimu,asimu,asim

Department
Age

DepartmentAgecDemographi

∪
∩

=





 >−

−=

+=

The similarity age is simply defined as the inverse of the age difference. The set
Dept(u) contains the department d in which user u is working, and all superior
departments of d. The department similarity is thus defined as the normalized
number of common top‐level departments. The final similarity function is obtained
by a linear combination of both demographic metrics. Given the similarity function,
the k‐nearest neighbors of the active user are determined, in the following denoted
by the set U. In the last step, the prediction function is defined as the weighted
average of the ratings ra,i of a user a for an item i:

() ()u,asimw and ,wwri,aP cDemographiu,aUu u,aUu u,ai,a
==

∑
∑

∈

∈

In this case, the weights wa,u reflect in the demographic similarity of two users.

In content‐based recommenders, the task is to find items with features similar to the
known preferred items (Fig. 3‐3 b). In case the items are scientific publications, the
text content of the abstracts could be used as feature vectors, i.e. index term
vectors. In effect, similarity between items could be calculated using the cosine
similarity measure (as introduced in Chapter 2). Let I be the set of all items, and let
ra,j be the rating of the active user a for an item j. Further, let wi,j be the cosine
similarity of two items (e.g. abstracts). Then, the prediction function is defined as:

() ()j,isimw and ,wwri,aP Vectorj,iIj j,iIj j,ij,a
==

∑
∑

∈

∈

In user‐based collaborative filtering the task is to find highly correlated users, given
explicit user ratings or transaction data (Fig. 3‐3 c). Correlated users are determined
by using the Pearson correlation function. The Pearson correlation ranges in [‐1;+1].
A value of 1 represents perfect correlation, a value close to 0 indicates no
correlation, and a value of ‐1 means that the data is inversely correlated. Let ru,i be
the rating of a user u for an item i. Then, the weighting wa,u is defined as follows:

Discussion

67

()
() ()

()()
() ()∑∑

∑

∈∈

∈

−−

−−
=

σσ
=

Ij
2uj,uIj

2aj,a
Ij uj,uaj,au,a rrrr rrrrua u,acovw

The prediction function can be defined as the weighted average of the user ratings:

()
()
∑

∑

∈

∈

−
+=

Uu u,aUu u,aui,ua w wrrri,aP

Item‐based collaborative filtering is very similar to content‐based filtering. The
difference is that items are correlated and not users (Fig. 3‐3 d). Hence, the task is to
find items that are highly correlated with the known preferred items. The similarity
function used can be the Pearson correlation or the vector similarity.

3.4.2 Model-based algorithms
In model‐based algorithms, a probabilistic user model is learned based on user‐item
preferences, user features, or item features. The learned model is then used to
predict items of interest to the user. Given the model, i.e. the previously gained
knowledge about the user a, the system calculates the expected rating values ra,i of
previously unseen items i:

() ()∑
∈

∈=== Rk aj,ai,ai,ai,a kIj,r|krobPrrEP

In order to learn a probabilistic model, several machine learning approaches can be
applied, such as decision trees, neural networks, cluster models, Bayesian networks,
etc. These approaches are not covered here. However, the interested reader should
refer to [Breese et al. 1998] for a discussion of cluster models and Bayesian
networks in the context of collaborative filtering.

User models can be updated iteratively by constantly observing the user’s
interaction with the system. Let P be a user profile, and let D be a document a user
observed. Then, the user profile is updated as follows:
 DPP' β+α=

The parameter alpha controls the diminishing of the existing interests and the
parameter beta determines the relative importance of the viewed item. The latter
parameter could be e.g. a user’s rating of a publication he just read.

3.5 Discussion
Most of the previously introduced methods would fit well into a professional search
tool. For instance it would be convenient, if recommendations (such as scientific

Chapter 3 Adaptation in Information Retrieval

68

articles) are given for the current research topics. Similarly, a ranking of results tuned
towards the information needs of professional searchers would be welcome. The
question however is, which of the state‐of‐the‐art approaches are most suitable for
professional search in a corporate intranet environment. Several key aspects
revolving around this question, such as privacy and feedback sparsity, are discussed
next.

Personalization heavily relies on user profiles so that especially in companies, privacy
issues arise. The following policies describe options of how to abate them. Most
importantly, the works council and the users have to be informed about the stored
data. Keeping the profiles transparent is also crucial. Users should have the
possibility to view their profiles and eventually delete data they do not want to be
stored. A third approach is anonymization. This could be achieved by applying
personalization on the group level instead of the individual. Here, roles, tasks,
projects, etc. are pre‐defined and the user can select between them in a multiple‐
choice manner (Chapter 6.4). Depending on the groups a user has subscribed to, the
information portal is adjusted. Given that a set of users belong to a common group,
their actions will contribute to changes of the group profile. Thus, in group
recommenders, the system tries to fulfill the needs of all group members by
maximizing the average member‐satisfaction. While this approach guarantees a high
anonymity, it has several drawbacks: (a) the initial choice of the proper groups is
difficult, (b) group members whose interests have drifted away gain a poor
personalization and (c) personalization can't be as accurate as applied on an
individual level.

Sparsity, i.e. the low density of “people‐item” and “people‐people” correlations, is
another issue in adaptive systems and mainly affects collaborative filtering
approaches. Sparsity is influenced by three factors: the number of items, the number
of people, and the frequency of contributed feedback data. In the Internet,
especially in e‐commerce, these numbers can be beneficial. Amazon for instance, has
over 2.3 million books and approx. 50 million visitors per month [Anderson 2006;
Wikipedia 2009]. These are very good conditions for providing recommendations
based on past purchases. In particular not only the popular items can be targeted
but also the long tail, i.e. books which are sold rarely. This picture is quite different
when looking at intranet environments. First, the amount of people employed by a
single company is by several orders of magnitudes smaller than the amount of
people having access to the Internet. Second, the amount of data in intranets usually
surpasses the number of workers. This discrepancy is especially large in
pharmaceutical companies, which have hundreds of different data repositories.
Third, only few data sources are frequently accessed, while the majority of data
sources is barely accessed (Chapter 5). Hence, we expect the ratio of feedback per
document to be very low with a bias towards popular items.

Under such circumstances collaborative filtering will not be able to work well
[Herlocker et al. 2004; Konstan et al. 1997] and should thus be only applied with
care. Regarding approaches which use feedback data for ranking purposes the
conclusion is twofold. On the one hand, most items will have no feedback data. On

Discussion

69

the other hand, we can expect the popular items to gain feedback data relatively
fast. In essence, the usage of a feedback based re‐ranking algorithm might improve
performance [Hawking et al. 2006].

The sparsity could be reduced if generalized concepts instead of individual users and
objects are considered. For instance, one could organize people into interest groups
such as the educational background “molecular biologists” or the research area
“humanization of antibodies”. Then, the collaborative process could be applied to
the group level instead of the individual. In just the same manner, objects could be
organized into concept classes. In case of text documents, they could be organized
into a topic hierarchy like “meeting note” or “experimental results of antibody
humanization”.

The other types of recommender systems, i.e. content‐based, demographic‐based,
utility‐based, knowledge‐based and hybrid‐based are not or barely affected by the
previously described sparsity issue. Indeed, particularly the demographic‐based
approach could benefit from a company’s a priori knowledge about its employees. A
company usually has a rich source of administrative data of the staff. The database
can contain a user’s name, department, contact details (phone number, e‐mail,
office location, site …), educational background (biology, chemistry, statistics,
bioinformatics …), involved projects, involved teams, research area, etc. This
information is ideally suited to bootstrap a recommender system. Of course, the
amount of stored data varies from one institution to the other, but a minimal set of
administrative data can be expected to be available everywhere.

Knowledge‐based approaches could also be applied very well in intranet
environments. A company has a defined area of expertise, i.e. they operate in a
closed domain. Parts of the domain could be modeled into a knowledge base which
could contain information about a company’s jargon, research processes, or any
other domain topic. The investment of building such a knowledge base could be
high. However, it might pay of in the long term if the time spent for finding
information is significantly reduced. As a valuable byproduct, the company gains a
better consciousness of the skills and interests of the employees. As outlined in
Chapter 1 (“in‐house knowledge significantly improves ranking of results”), this is a
key hypothesis which is examined in this thesis. In our case, the knowledge base is
represented by F‐Logic ontologies (Chapter 4). For this purpose we create several
ontologies which describe the professional context of the investigated department at
Roche (Chapter 6). In particular, we introduce an adaptation ontology which
represents the user model. User interests are linked to domain concepts by means of
rules (e.g. a rule might state that a user is interested in documents about antibody
humanization projects). The modeled knowledge is used by a search engine to adjust
the ranking of results. In Chapter 8 we give an evaluation of the knowledge‐base
approach. In particular, we examine the performance improvement over the
baseline (vector space model) approach.

71

Chapter 4

Semantic Technologies

“The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.”

Albert Einstein (1879 – 1955)

4.1 Semantic Web ..71
4.2 F‐Logic ..78
4.3 Semantic technologies in Information Retrieval ...82
4.4 Semantic technologies in life sciences...85

Semantic technologies enable machines to understand information, and thus to
reason on information. They also provide the lingua franca for communication and
exchange of information between systems. The functionality of existing applications
could therefore be enhanced in many ways if semantic technologies were used.
Search for information could be improved by providing rich metadata for media and
content. Consequently information could be discovered easier and viewed in the
appropriate context. Semantic technologies could also be used to provide common
access wrappers for the integration of disparate systems. Further, discovery and
composition of web services could be improved by providing rich metadata
descriptors.

We begin this chapter with an introduction to the Semantic Web, and its official
language standards. Then, F‐Logic is introduced, which is a de‐facto industry
standard for semantic information systems. Following that, an overview of the state
of the art in Ontology‐based Information Retrieval is given. Finally, semantic
technologies in life sciences are discussed, because the life sciences are considered a
driving force of the Semantic Web.

4.1 Semantic Web
Today’s Web content is made for human consumption. Computers do not
understand the meaning, i.e. the semantics, of content in the Web. For instance, it is
a difficult task for computers to recognize the different meaning of “It always rains
on Mondays” and “It might rain on Mondays”. Only humans are able to fully
combine and properly interpret information from web pages.

Chapter 4 Semantic Technologies

72

The vision of the Semantic Web [Berners‐Lee et al. 2001; Berners‐Lee & Fischetti
1999] is to represent Web content in a form that can be processed by machines.
Ideally, if large portions of Web content are machine readable, intelligent software
systems can reason about the data. Indeed, with a Semantic Web and intelligent
software on top, we would have an Intelligent Web. Sophisticated services would
become possible, such as agents, which would be able to arrange appointments
between patients and doctors. Of course, the vision of a large scale Intelligent Web is
still utopian. However, the first steps towards such an Intelligent Web are taken by
the Semantic Web community.

The Semantic Web is not a new Web but an extension of the World Wide Web. The
idea is to extend existing Web content with metadata in such a way that it
seamlessly integrates into today’s Web. A seamless integration means that both,
humans and machines would be able to understand the content.

The Semantic Web is propagated by the World Wide Web Consortium (W3C), an
international standardization body for the Web. In order to enrich Web content with
metadata, the W3C released several recommendations for Semantic Web modeling
languages (RDF, RDFS, and OWL). RDF (Resource Description Framework) is a
language for describing information on the Web, RDFS (RDF Schema) is a primitive
ontology language and OWL (Web Ontology Language) is a full‐fledged ontology
language for describing classes and their relationships. The modeling languages are
implemented in layers of several technologies as can be seen in Fig. 4‐1. The benefit
of a layered approach is that people can begin adopting standards without having to
wait for the entire Semantic Web layers to be fully implemented. Further, it can
enable downward compatibility. In order to do so, software which fully supports one
layer, should also support information from any lower layer. For instance, OWL
aware agents should be able to understand RDF(S) information.

Fig. 4‐1: Semantic Web layers

Unicode URI

XML + NS + xmlschema

RDF + RDF Schema

Ontology vocabulary

Logic

Proof

Trust

Digital
Signature

selfdescriptive
document

data

rules

data

The Unicode and URI layers build the fundament of the Semantic Web layer cake.
The first makes sure that international characters sets are used and the second
makes sure that objects can be identified. The next layer consists of XML, namespace
and schema definitions. It makes sure that Semantic Web standards can be
integrated with current XML based standards. The RDF layer is used for writing
simple statements about Web resources. RDF Schema provides a primitive modeling

Semantic Web

73

framework for defining vocabularies. The ontology layer builds on top of RDF(S) and
enables the definition of classes and complex relations between them. The logic
layer enables the writing of application‐specific rules for reasoning. The Proof layer
executes the rules, i.e. the actual deductive process is done here. Further, it
represents proofs in Web languages and validates proofs. The Digital Signature layer
is used to prove the authenticity and to detect modifications in documents. The top
layer, Trust, is used to test whether to trust the given proof or not. [Koivunen &
Miller 2001]

The current Semantic Web stack, as shown before, is currently debated and an
alternative version is shown in Fig. 4‐2 [Antoniou & Van Harmelen 2008].

Fig. 4‐2: Alternative Semantic Web layers

In contrast to the classic Semantic Web layer, the ontology layer is split into two
alternatives: the standard Web ontology language (OWL) and a rule‐based language.
This opens the ontology layer to non W3C recommendations like F‐Logic. The second
layer which has been added is the Description Logic Programs (DLP) layer. DLP is the
intersection of OWL and Horn logic, so that it can serve as a common foundation for
the ontology layer. As long as only the DLP part is used for modeling ontologies, an
OWL ontology can be mapped with no loss of information to an F‐Logic ontology and
vice versa.

4.1.1 Resource Description Framework (RDF)
The fundamental modeling language of the Semantic Web is the Resource
Description Framework [Klyne & Carroll 2004] which is a recommendation of the
W3C since 2003. Using RDF, statements about Web resources like a document’s title
or an author’s main writings can be formulated. The notion “Web resource” is not
restricted to retrievable resources. In fact, it is sufficient if a resource is identifiable.
For instance, database entries and user preferences are identifiable resources but
not Web accessible resources. As indicated, a key idea of RDF is that any resource
has a global identifier, i.e. a Uniform Resource Identifier or short URI, which
represents the resource. In case of the Web, URLs (which is a special type of URIs)

Chapter 4 Semantic Technologies

74

are often used as identifiers. Even though URLs are used as identifiers, they are
allowed to point to arbitrary addresses which might not even exist in the WWW.

RDF is a formal language with a defined syntax, grammar and precise model‐
theoretic semantics [Hayes 2004]. The semantic foundation provides meaning to RDF
statements by applying an interpretation function. The interpretation function can
make only few inferences as almost no implicit information is available from RDF
statements. RDF statements alone have thus no semantic meaning. They are just a
bunch of words and sentences which the machine can’t interpret. Only if a
vocabulary is defined, can the RDF statements be interpreted. The W3C currently
recommends two such languages, namely RDF Schema and OWL, which will be
introduced in the next chapters.

Before going on with the basic concepts of RDF, we give a brief example of an RDF
graph (Fig. 4‐3) which uses URIs to represent a simple statement: “There is a Person
identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller,
whose email address is em@w3.org, and whose title is Dr.” [Manola & Miller 2004].
In an RDF graph, statements are displayed as nodes and arcs. Nodes are used to
represent resources, and a directed arc is used for the properties, pointing from the
resource to its property‐value. Regarding the Semantics, every RDF graph is true
because contradictions are not expressible in an RDF model and thus every RDF
graph becomes satisfiable [Hayes 2004].

Fig. 4‐3: An RDF graph describing Eric Miller [Manola & Miller 2004].

http://www.w3.org/People/
EM/contact#Person

mailto:em@w3.org

Eric
Miller

Dr.

http://www.w3.org/1999/
02/22‐rdf‐syntax‐ns#type

http://www.w3.org/2000/10/
swap/pim/contact#fullName

http://www.w3.org/2000/10/
swap/pim/contact#mailBox

http://www.w3.org/2000/10/
swap/pim/contact#personalTitle

http://www.w3.org/People/
EM/contact#me

The RDF graph depicted in Fig. 4‐3 contains several fundamental concepts of RDF. It
shows resources (e.g. “.../contact#me”), properties (e.g. “.../contact#fullName), and
their composition into statements. The latter is very important, as it illustrates how
small pieces of information (single statements like “…/contact#me” has the name
“Eric Miller”) can be aggregated into a larger knowledge base (merged set of
statements). In this example, four sub‐statements are aggregated to receive the
contact information of a person.

Semantic Web

75

RDF statements are triples which consist of a “subject”, a “predicate”, and an
“object” – just like in natural language sentences. The subject is the resource about
which a statement is given. The predicate describes the property of the resource,
and the object is the value of the property.

Subjects can be an identified resource (a resource with a URI) or an unidentified
resource, referred to as blank node. A blank node is a node that is not a URI
reference or a literal (data value). Blank nodes are used in RDF when structured
information needs to be captured.

Predicates can be only identified resources. Hence, blank nodes and literals are not
allowed. Predicates describe relations between subjects and objects, like
“hasFullName”, “hasMailBox”, “hasPersonalTitle”, etc.

Objects can be any element, i.e. an identified resource, a blank node, or a literal.
Literals are atomic data values (e.g. numbers or strings). RDF defines only the generic
XML Literal. However, XML Schema data types can also be used, so that a rich
repertoire of standard XML data types becomes available. Often, additional
operations are defined for typed literals such as subtraction or multiplication. An
overview of the various kinds of literals can be found in [Klyne & Carroll 2004].

The RDF abstract data model can be serialized in various formats: RDF/XML [Becket
2004b], N‐Triples [Becket 2004a], Turtle [Becket 2007] and N3 [Berners‐Lee 2006].
RDF/XML is the official W3C format which is designed for computers, while the other
formats are characterized by a lot of syntactic sugar to simplify readability.
Namespaces for instance can be easily abbreviated by means of prefixes when using
the Turtle notation. The Turtle notation of the statement “John is 24 year old male”
illustrates this:

@prefix ns: <http://www.mydomain.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ns:John ns:gender ns:male .
ns:John ns:age “24”^^xsd:number.

RDF also supports reification of statements, i.e. statements about statements can be
modeled – a feature which is very useful, especially in context of the Web. This
mechanism could be used in discussion groups, where users want to refer to an
existing statement. Another feature of RDF is the support of containers and
collections by which resources can be grouped into bags and lists.

4.1.2 RDF Schema (RDFS)
RDF Schema [Brickley & Guha 2004] was designed to provide the vocabulary for RDF.
RDFS can be used to create new classes, sub‐classes, class‐memberships of
resources, properties (including domain and range restriction), and sub‐properties. It
can thus structure RDF resources by creating simple ontologies. RDFS is not only
used to define new vocabularies but also for the basic RDF and RDFS vocabulary.

Chapter 4 Semantic Technologies

76

An overview of all RDFS primitives is given in Table 4‐1. A class for instance, is a
named term and members are defined using rdf:type. A new class named car is
created by “:Car rdf:type rdfs:Class” and Ferrari is added as a member of this class by
“:Ferrari a :Car” (N3 notation).

Table 4‐1: RDF Schema primitives

Category Type Description
rdfs:resource The class of all resources.
rdfs:Class Defines a set (the class of all classes).
rdfs:Literal The class of all literals.
rdf:Property Defines a predicate.

Core Classes

rdf:Statement Defines reified statements.
rdf:type Relates a resource to its class.
rdfs:subClassOf Relates a class to its super‐class.
rdfs:subPropertyOf Relates a property to a super‐property.
rdfs:domain Defines the domain of a property. Every

resource which has this property is an
instance of the domain class.

Core Properties

rdfs:range Defines the range of a property. The
values of a property are instances of the
range class.

rdfs:comment Provide comments to resources.
rdfs:label The label of a resource.
rdfs:seeAlso A reference to another resource.

Utility Properties

rdfs:isDefinedBy A subproperty of rdfs:seeAlso and relates
a resource to its definition.

The interplay between RDF and RDFS is illustrated in Fig. 4‐4. The ontology consists
of a Person which subsumes the classes Man and Woman. Further, a hasSon
property is defined which relates the Person class and the Man class.

Fig. 4‐4: Sample RDF(S) graph.

subClassO
f subClassOf

range
type

type

The resources Abraham and Isaac are instances of the class Man, and Sarah is an
instance of the class Woman. Due to the subclass relationship, all instances are also
members of the class Person. The hasSon predicate sets the resources Abraham and
Isaac as well as Sarah and Isaac in relationship.

Semantic Web

77

The RDF Schema Semantics defines several simple inference rules [Hayes 2004]. One
such rule is the type propagation rule:

P rdfs:subPropertyOf R .
IF
A P B.
THEN
A R B.

The property is thus inherited. This rule is very similar to the inference rule for sub‐
class relationships. Another example is the type inference rule. Given:

P rdfs:domain D.
P rdfs:range R.

The above statement says that the predicate P relates values from the class D to
values from the class R. D and R must not be disjoint or distinct. The following
inference can then be done:

IF
P rdfs:domain D.
and
x P y.
THEN
x rdf:type D.

The range is defined with an analog rule. We restrict to the given examples and
advise the interested reader to look into the official RDFS Semantics or in the books
[Allemang & Hendler 2008; Antoniou & Van Harmelen 2008].

RDF(S) was designed to operate in a large scale Internet environment in which
anyone can say anything about any topic (AAA). The AAA principle is a consequence
of the Semantic Web’s open world framework (cf. next section) which does not
assume that all information about a resource is available. Therefore, anyone can
make inconsistent assertions as no constraints exist. Thus, everything in RDF is
satisfiable so that it becomes possible to compare apples and oranges. As a result,
applications employing RDF(S) must be able to deal with such conflicts. The benefit
of the AAA approach is its scalability: Distributed RDF/XML statements can be
combined into a giant RDF(S) knowledge base, which captures the viewpoints and
opinions of millions of people. Something like this would not be possible with XML,
because XML aims at giving complete and well‐formed information for an
application.

4.1.3 Web Ontology Language (OWL)
The Web Ontology Language (OWL) is recommended by the W3C and it is based on
RDF(S) [McGuinnes & Van Harmelen 2004]. It has the three building blocks: classes
(similar to RDFS classes), individuals (similar to RDFS objects), and roles (similar to

Chapter 4 Semantic Technologies

78

RDFS properties). However, OWL goes well beyond RDFS in terms of expressiveness.
Hence, not only simple hierarchies can be modeled but also classes and their
relationships can be axiomatically defined, resulting in ontologies which give “an
explicit and formal specification of a conceptualization” [Gruber 1993].

OWL comes in three different versions: Lite, DL, and Full (Table 4‐2). OWL Lite is the
simplest version which has a lot in common with RDFS. In contrast to RDFS, modeling
of simple constraints is possible. OWL DL maximizes the expressiveness of the
ontology language while maintaining tractability. The abbreviation DL stands for
Description Logic, indicating its roots. OWL Full is a highly expressive language.
However, due to the expressiveness of the language, complete reasoning is not
possible anymore. In fact, with OWL Full one has all freedom of RDF including self‐
modification. OWL DL may be considered as an extension of OWL Lite and OWL Full
an extension of OWL DL, i.e. OWL Lite Œ OWL DL Œ OWL Full.

Table 4‐2: OWL language features

OWL Fragment Features
(sub)classes, individuals
(sub)properties with domain and range restriction

RDFS
subset

conjunction
(in)equality
0/1 Cardinality restrictions
Datatypes
Inverse, transitive, and symmetric properties

OWL Light

Domain restrictions: HasValue, someValuesFrom, allValuesFrom
Negation
Disjunction
Full cardinality

OWL DL

Enumerated types
Allow meta‐classes (i.e. a class can be an instance of another class) etc. OWL Full
Object properties and datatype properties are not disjoint

OWL, like RDF and RDF Schema, makes the open world assumption (OWA). The OWA
means that we cannot assume something doesn’t exist until it is explicitly stated that
it does not exist. In other words, because something hasn’t been stated to be true, it
cannot be assumed to be false — it is assumed that the knowledge just hasn’t been
added to the knowledge base.

OWL does not have a unique name assumption (UNA), i.e. just because two names
are different does not mean they refer to different individuals. In OWL it must be
explicitly stated that two individuals having different names are the same.

OWL does not support property chaining (no rule chaining, no composition),
arithmetic operations, string operations, partial imports of other ontologies,
definitions of views, and procedural attachments.

4.2 F-Logic
Frame‐Logic or F‐Logic [Kifer et al. 1995] is a formal language for knowledge
representation which combines several structural concepts of object‐oriented and

F‐Logic

79

frame based languages. As a result it supports features such as classes, complex
objects, inheritance, polymorphism, methods, modularization, meta‐reasoning,
rules, queries, etc. Actually, F‐Logic stands in the same relationship to the object‐
oriented paradigm, as classical predicate calculus stands to relational algebra. F‐Logic
has a model theoretic semantics as well as a sound and complete resolution‐based
proof theory.

We restrict this chapter in describing only the aspects of F‐Logic which are relevant
for this thesis and use examples for introducing F‐Logic. For a comprehensive
description of F‐Logic (which is beyond the scope of this thesis), the interested
reader should refer to the original paper in [Kifer et al. 1995].

4.2.1 The is-a hierarchy
Fig. 4‐5 shows a hierarchy of classes and individual objects. Solid arrows represent
subclass‐relationships and dotted arrows represent class membership of an instance.

Fig. 4‐5: An exemplary class hierarchy with instances

Man

abrahamisaac

Woman

sarah

Person

The is‐a‐hierarchy of the running example is expressed with is‐a‐F‐atoms and
subclass‐F‐atoms in F‐Logic as:

abraham:Man.
isaac:Man.
sarah:Woman.
Woman::Person.
Man::Person.

In F‐Logic syntax, the “:” character is used to denote class membership and “::” is
used to represent the subclass‐relationship. For instance, the statement
“abraham:Man” states that “abraham” is a member of the class “Man”, and the
statement “Man::Person” states that “Man” is a sub‐class of “Person”.

Classes in F‐Logic are reified, i.e. they belong to the same domain as individuals.
Both, classes and objects, are represented using id‐terms. Hence, classes and objects
are not discriminated; they can be manipulated in the same language, enabling the
usage of a class as a member of another class or as a sub‐class of another class.

4.2.2 The object base
Relationships between objects are represented by attributes and methods using
signature‐F‐atoms. A signature‐F‐atom declares methods for a class and gives type

Chapter 4 Semantic Technologies

80

restrictions to parameters and results. Consider for instance the signature of the
running example:

Person[name => xsd#string].
Person[father =>> Man].
Person[son =>> Man].
Person[ancestor =>> Person].

The first line states that the single valued attribute “name” is defined for members of
the class “Person” and that the result object has the data type “xsd#string”. The
second and third lines define the multi‐valued methods “father” and “son” for
members of the “Person” class, and result objects are restricted to members of the
“Man” class. The last line defines a method for ancestors. The above signature can
be written compactly by combining multiple F‐atom statements into an F‐molecule:

Person[name => xsd#string; father =>> Man; son =>> Man; ancestor =>> Person].

Attributes and methods can be overloaded, i.e. methods having the same object
name can be used by instances of different classes. For instance we could declare the
same attribute “name” to the class “Car”:

Car[name=>xsd#string].

Using the signature of the “Person” class we can now define instance level
statements:

isaac[father‐>abraham].
isaac[son‐>>{jacob,esau}].

The first line states that “abraham” is the “father” of “isaac”, and the second line
states that “jacob” and “esau” are the sons of “isaac”. Notice that curly brackets
have been used in the second line to enclose the multi‐valued attribute.

4.2.3 Rules and queries
In F‐Logic rules are used to describe relationships between existing facts and for
deducing new facts from existing ground facts. The rules consist of a rule body and a
rule head which are separated syntactically by a left‐handed arrow “<‐“. The rule
body can be an arbitrary logical formula consisting of P‐atoms or F‐molecules which
are combined by one of these connectives: OR, NOT, AND, <‐, ‐>, and <‐>. Variables
in the rule body are quantified either existentially or universally. Every variable
which occurs in the rule head must also occur in a positive F‐atom or P‐atom of the
rule body.

FORALL X,Y X[ancestor‐>>Y] <‐ X[father‐>Y].
FORALL X,Y X[ancestor‐>>Y] <‐ EXISTS Z X[father‐>Z] AND Z[ancestor‐>>Y].

F‐Logic

81

The first line states that if Y is the father of X, then Y is an ancestor of X. The second
line extends the definition of ancestor by applying recursion. It states that, if an
object Z exists who is the father of X, and if Y is the ancestor of Z, then Y is also the
ancestor of X. In case the “ancestor” and “father” methods are overloaded the above
rule might also apply to other classes. Therefore, it would make sense to explicitly
state the class of X, Y, and Z.

Queries are very similar to rules. In fact the only difference is that queries have an
empty head. For instance, the following query retrieves all ancestors of all persons:

FORALL X, Y <‐ X:Person[ancestor‐>>Y].

All variables which fulfill the precedence are bound and returned:

X Y
isaac abraham
jacob isaac
esau isaac
jacob abraham
esau abraham

A rule in F‐Logic is stratified if it does not contain a stratification‐relevant cycle over a
negation. Further, the semantics of F‐Logic statements are defined by the well‐
founded semantics [Van Gelder et al. 1991], i.e. if an answer can’t be deduced the
affected variables are set to unknown.

Regarding the semantics of F‐Logic, they are based on the semantics of first‐order‐
logic, i.e. F‐Logic statements are transformed into logic programs: F‐molecules are
transformed into F‐atoms, and F‐atoms are transformed into predicates (P‐atoms).

4.2.4 F-Logic vs. OWL-DL
In contrast to the object oriented approach taken by F‐Logic, the official W3C
ontology language OWL uses a property‐based approach for describing ontologies,
i.e. roles and classes are used for classifying instances. Further, F‐Logic uses the
closed world assumption (CWA). In CWA the default negation used is “negation as
failure”, i.e. facts which are not explicitly stated are assumed not to hold. OWL on
the other hand uses the open world assumption. Thus, if new knowledge is added in
OWL, previous conclusions are not changed. Another difference is that F‐Logic uses
the UNA, i.e. two individuals with different names denote different individuals. Just
like deciding whether CWA or OWA is the better choice, also deciding on UNA vs.
non‐UNA depends on the use case. As a general rule, in closed domains, like
companies, using the CWA and UNA is probably the better choice in most of the
cases. In open domains like the Web, on the other hand, OWA and non‐UNA are
probably the better choice.

In contrast to OWL‐DL, F‐Logic programs, i.e. query‐answering, are not decidable.
However, retaining decidability limits the expressiveness of OWL. For instance, it is

Chapter 4 Semantic Technologies

82

impossible in OWL to capture relationships between a composite property and
another property (e.g. “parent” and “brother” properties and the “uncle” property)
[Horrocks 2005]. This and other expressions can be modeled with the F‐Logic rule
language.

In F‐Logic both, classes and instances are modeled as first‐order‐logic (FOL) terms
while OWL‐DL models instances as FOL‐terms and classes as FOL‐predicates.

Similarly to OWL, F‐Logic does also support namespaces. Arithmetic operations,
comparisons, aggregations and other tasks which are not well suited to be described
by rules are integrated by means of built‐ins, i.e. external programs which can be
referenced by means of P‐atoms.

Last but not least, F‐Logic is not an official ontology standard like OWL‐DL.
Nevertheless, F‐Logic can be used as an alternative modeling language for semantic
information. F‐Logic is for example implemented in OntoBroker, a Java‐based
software product of the Ontoprise7 company.

4.3 Semantic technologies in Information Retrieval
Traditional Information Retrieval systems ignore the semantics of indexed content
and supplied queries. For instance, if a user searches for vehicles, a document about
cars won’t be retrieved because the IR system does not understand that a car is a
subclass of vehicle. However, if the IR system would “understand” the content’s
meaning, such queries would give better results in terms of precision and recall. In
fact, it is a goal of the Semantic Web vision to significantly improve search for
information by adopting semantic technologies into the IR process.

4.3.1 State of the art
Nowadays, the combination of IR and semantic technologies is actively investigated
by scientists. We discriminate three research areas in semantic‐based IR:

1. Search in formal ontologies
2. Domain ontologies as a support for document search
3. Ontology‐based adaptation in IR

The first research area investigates retrieval and ranking of facts from ontologies,
and the conceptualization of a user’s information needs [Stojanovic 2005]. The
retrieval process starts with an “ideal” query which is used to retrieve “ideal” results
from a formal ontology. An “ideal” query is a formal, ontology‐based query such as
SPARQL [Prud'hommeaux & Seaborne 2009], which has precise semantics. A user’s
information needs are thus ideally expressed in such a query. Given the “ideal”
query, a Boolean search model is used to search a formal ontology, containing non‐
redundant and non‐ambiguous pieces of information. The search result contains all
tuples which satisfy the query. Because the query is “ideal”, the results are assumed
to have a precision of 100%. Hence, there is no notion of approximate answers and
the only concern is the ranking of results (ontological instances) by relevance.

7 http://www.ontoprise.de

Semantic technologies in Information Retrieval

83

Therefore, semantic search can be viewed as a data retrieval task (Chapter 2.5.3) in
contrast to an information retrieval task.

For real‐world corpora this approach is currently utopian as the majority of
information is in unstructured text documents [Castells et al. 2007]. The problem of
formalizing this knowledge on a large‐scale is unsolved. Replacing the documents by
formal knowledge bases is not feasible – for humans – because a written text
document has another quality than a couple of facts buried in an ontology. A better
way to deal with this issue is to extend existing unstructured sources with formal
knowledge, as proposed by the Semantic Web vision. Regarding the construction of
formal ontologies, at latest when the properties of individuals are filled with string
values, unstructured information is created again. This time however, hidden in an
ontology. Last but not least, the average user will not be up to the task of
formulating an “ideal” query in terms of using a formal query language. Several
studies, which examined the search behavior of users, show that the large majority
relies on a few keywords for describing their information needs [Silverstein et al.
1999]. Boolean operators and other features such as advanced search forms are
barely used. With this in mind, the argument of achieving a precision of 100% gets
quite weak.

The second research area investigates ways and means for combining the benefits of
ontologies with traditional information retrieval approaches [Castells et al. 2007].
Here, the focus is set on documents and not on knowledge bases. This has several
consequences: First, queries are not formulated using a formal ontology language.
Second, results cannot be expected to be 100% precise. Third, returned results are
text documents (possibly including semantic annotations) and not formal ontology
facts. The role of the ontology is reduced to a mere mean for improving the retrieval
performance by providing additional metadata to unstructured text documents. The
metadata or annotations can be gathered manually or automatically. In [Castells et
al. 2007] annotations were used to relate documents with domain concepts. The
automatic annotation algorithm employed by them uses several heuristics which are
outlined in their paper.

In their approach two indexes are created: An annotation index, where the
documents’ annotations are stored, and a classic document index, where the
documents’ content is stored. Queries are transmitted to both indexes and the
returned results are merged using a linear combination. Of course, in order to query
the annotation ontology, the keyword query has to be transformed into a formal
ontology query language like SPARQL. The transformation is done automatically. In
this step, special attention has to be paid as the keyword’s intended meaning must
be matched as good as possible by the transformed query. Otherwise, precision and
recall could drop significantly. The transformed query is used to find matching
documents in the annotation ontology while the original keyword query is used to
find matching documents in the document index. As already written, both results are
merged, achieving the final ranking of results. [Castells et al. 2007] has shown that
the combined approach (annotation ontology + document index) is on average
better than the single usage of either of them. The user‐centric view is a big

Chapter 4 Semantic Technologies

84

advantage of this approach, because average users can benefit from semantic
technologies without the need to learn a formal query language.

Thesauri / taxonomy based IR systems are a relaxed form of the previously described
research. Such methods have already been applied before the announcement of the
Semantic Web standards. The typical usage of a thesaurus (e.g. WordNet [Miller et
al. 1990]) is query expansion. Here, query terms are expanded with their synonyms,
super‐ or sub‐concepts, yielding a higher recall.

The third research area is about ontology‐based recommender systems [Middleton
et al. 2004]. Middleton et al. focus their research on the scientific community and
their need for relevant scientific literature. In their approach two ontologies are
employed: A research topic ontology and a user profile ontology. The first ontology is
used to classify scientific publications into research topics. The classification is done
automatically by means of a trained machine learning algorithm. The second
ontology stores the user profiles, i.e. the persons’ current interests in research
topics. The interests are gained by tracking viewed publications and their ontological
topics. Using a hybrid approach, consisting of collaborative filtering and content‐
based filtering, recommendations are given to the users. In addition to previously
seen items, the recommendation algorithm exploits the hierarchical topic ontology:
50% of a user’s interest in a class is inherited to its super‐class. Therefore, broader
recommendations can be given. Another benefit of using ontologies for user profiling
is the ability to employ external knowledge bases. These can help to bootstrap the
recommender system, i.e. to reduce the cold‐start problem.

4.3.2 Discussion
Search in formal ontologies is currently not relevant for pharmaceutical research.
First of all, formal ontologies are not used yet in industry, i.e. data is not stored in
ontologies but rather in databases or in unstructured sources. Further, users would
be required to use a formal language for querying the data. However, workers of the
pharmaceutical industry are not computer scientists, but biologists and chemists.
Hence, access and usage of such a formal language must be circumvented by means
of a user friendly interface. We believe, however, that in a long‐term, formal
ontologies can become quite important in pharmaceutical research, e.g. in the area
of pathway analysis, where thousands of facts and rules define if and how a
molecule interacts with another one.

Domain ontologies to support document search seem to be a promising approach as
a mid‐term solution. Data in form of unstructured text documents is available in
abundance as text documents are the primary mean of capturing knowledge. While
creating a domain ontology for structuring knowledge is feasible, annotating the
documents is an issue. Because it requires time and effort, users could be reluctant
to contribute manual annotations. Therefore, metadata is ideally created by an
automatic approach. If the automatic annotation gives reasonable results, we
believe that such an approach could improve IR in professional search. For instance,
an automatic annotator could classify documents by topics: in a pharmaceutical
company e.g. disease areas.

Semantic technologies in life sciences

85

Ontology‐based adaptation is also a promising approach for dealing with the
heterogeneity of the information space. A portal with adaptation capabilities such as
a recommender system for context‐dependent literature, or a dynamic filtering of
irrelevant sources at query time, or even the context‐dependent adjustment of
search results could be very relevant for pharmaceutical companies, especially for
researchers.

4.4 Semantic technologies in life sciences
Health care and life sciences (HCLS) are often considered as one of the most affine
areas for semantic technologies. Researchers believe that semantic technologies
could lead to a significant improvement in terms of data integration, data retrieval,
and generation of new knowledge by means of reasoning. Indeed, the amounts of
data created in HCLS during the last decades and the need to handle these amounts
are beyond comparison. In the beginnings, most data was generated by sequencing
projects, like the Human Genome Project8. Today, the majority of the data is created
by experiments, such as multi‐parallel chip experiments for gene expressions,
proteins, metabolites, etc.

4.4.1 State of the art
The HCLS information landscape on the Web is probably best characterized as a
clustered space of heterogeneous data having a low degree of semantic connectivity
and an impressive growth rate. The problem of heterogeneity has been recognized
early, so that nowadays dozens of controlled vocabularies are available for
maintaining a common jargon across different databases. The controlled
vocabularies are usually taxonomies in which domain specific concepts are
described. The Open Biomedical Ontologies9 (OBO) is a portal for HCLS ontologies
that includes amongst others the popular Gene Ontology10. Most ontologies of the
OBO Foundry are not in a Semantic Web format. Indeed, the Semantic Web format is
not officially supported by OBO. The only effort towards Semantic Web standards
conducted so far is the re‐factoring of existing ontologies, so that mapping to
Semantic Web ontology languages can be done easier. Taxonomies such as those in
OBO are widespread. “Real ontologies” (which go beyond simple taxonomies) as
propagated by the Semantic Web however, are still the exception.

Most research projects, which adopted semantic technologies in HCLS, focused on
the need to integrate and analyze data across databases, applications and
communities [Cheung et al. 2009]. Probably the biggest issue in integrating HCLS
databases is the fact that most bioinformatics resources are in the Deep Web
[Vandervalk et al. 2009]. Hence, the URI‐centric Semantic Web approach to address
a resource by a URL can’t be applied in HCLS, because the data only exists if
requested by means of a query form. A common approach to deal with this issue is
to build Semantic Warehouses, i.e. to create RDF dumps of databases using arbitrary
URIs. Doing so requires the original data to be converted to RDF (in case it is not

8 http://www.genome.gov/10001772
9 http://www.obofoundry.org
10 http://www.geneontology.org

Chapter 4 Semantic Technologies

86

available in this format) and because cross‐references are missing, the resource‐
references must be rewritten to an invented, warehouse‐specific URI scheme
[Vandervalk et al. 2009]. As a consequence, common entities across different
warehouses have different URIs, so that integration and mapping between resources
becomes an issue. Another problem of Semantic Warehousing is that queries are
limited to a fixed set of databases. Ad‐hoc queries across random databases are not
possible.

The Semantic Warehouse approach is used for instance by the Bio2RDF11 project,
which tries to make in a short term as much data as possible available in RDF format.
In the long term various data sources are integrated, enabling SPARQL queries.

4.4.2 Discussion
Wrapping it up, HCLS has still a long way to go until semantic technologies bring the
expected improvements in terms of integrating the information landscape in the
Web. Similarly, semantic technologies in industrial pharmaceutical research and
development are creeping. In‐house databases are either not integrated at all or if
they are, a warehousing approach is used. Ontologies as a canonical schema for
federated database integration are not yet used.

Regarding the usage of unique identifiers, the issues encountered on the Web can be
mapped to the problems encountered in intranets. In addition, life science
companies have their own and unique jargon for chemicals, molecules and
compounds. The in‐house jargon can differ significantly from the names used in the
Web. Therefore, it is common, that external vocabularies are mapped to in‐house
terms. In fact, the usage of ontologies (e.g. the GeneOntology) at Roche and
probably in other pharmaceutical companies as well, is restricted to controlling the
professional jargon, i.e. the terminology used within the company.

[Cheung et al. 2009] expect that Semantic Web technologies will be further adopted
by industry and academic research and development, with a focus on linking data
across silos. We share this view, but we believe that only when semantic
technologies are an established and widely recognized technology in industry, will
global pharmaceutical companies adopt them. Until then, most open issues will be
solved pragmatically, namely on a syntactic rather than a semantic level.

11 http://bio2rdf.org

87

Part III

Core

89

Chapter 5

Characteristics of professional search in pharmaceutical
research

“Never regard your study as a duty, but as the enviable opportunity to learn to know
the liberating influence of beauty in the realm of the spirit for your own personal joy
and to the profit of the community to which your later work belongs.”

Albert Einstein (1879 – 1955)

5.1 Evaluation of the initial situation in the department investigated89
5.2 Quality characteristics of a professional search tool...................................96

Professional search has other aims than general search, as has been already
indicated in Chapter 2.4.3, where general and specialized search engines were
introduced. The purpose of this chapter is to provide an understanding of the needs
of professional searchers. In order to gain this knowledge, we conducted an
evaluation of the initial situation in a specific department of Roche, namely
Pharmaceutical Research in Penzberg, Germany, having several hundred employees.
The evaluation is the foundation for deducing the requirements for a professional
search tool in pharmaceutical research. Although the user needs recognized from
the evaluation are specific to employees of Roche, we argue at the end of this
chapter that the deduced requirements do well convey to other domains.

5.1 Evaluation of the initial situation in the department
investigated

A researcher at Roche is faced with an overwhelmingly large amount of disparate
internal and external data. Internal sources are intranet web pages, file shares,
databases and applications, while external sources are all freely accessible Internet
pages as well as licensed portals (e.g. literature databases). Because of the diversity
of sources and due to the variety of navigation and search tools, searchers can get
easily into trouble while trying to find their way through the information jungle (Fig.
5–1).

Chapter 5 Characteristics of professional search in pharmaceutical research

90

Fig. 5‐1: Typically, an employee having a specific information need is confronted with five main
sources of data, each having countless data records.

In advance of describing the various user studies conducted at Roche, we first give a
description of each source. The focus will be set on in‐house data, i.e. the Internet as
a source of information will not be discussed, as the Chapter 2.4.3 provided already
some ideas of relevant search engines in the context of life sciences. The internal
sources are described in terms of structure and content. In addition, specific issues
regarding search for information are outlined.

5.1.1 Intranet web
The intranet web, i.e. the hypertext part of the intranet, provides information about
departments, projects, administrative procedures, and a variety of domain specific
knowledge. Further, it gives access to web‐based applications, database portals, and
web‐based document management systems. The hypertext structure manifests in
large parts Roche’s organizational structure (Chapter 2.5.1). Departments belonging
to a common area and site (e.g. pharmaceutical research in Penzberg) are usually
bundled in an intranet web portal. Within such a portal, access to departments is
enabled by navigating the organizational structure – a hierarchical tree arranging
departments into sub‐, super‐departments and groups. Typically, a department
provides information about offered services, its members and their expertise.
Alongside departmental‐driven intranet portals, there are also portals which focus
on a specific domain of interest. The “Bioinformatics” portal for instance,
enumerates domain experts and gives access to applications as well as life sciences
databases.

The web site of the Pharmaceutical Research department in Penzberg (in the
following denoted as PRPZ‐WebSite) contains in total approximately 1.1k accessible
files. A small number, given that globally the Pharmaceutical area has over 130k
pages.

Evaluation of the initial situation in the department investigated

91

Fig. 5‐2: Distribution of file types on the PRPZ‐WebSite.

Among these 1.1k intranet web files, the majority are in HTML format (Fig. 5–2). The
remainders are office documents and images. Office documents are often about site
maps, manuals, SOPs, forms, organization charts, etc. Most images depict persons
and are used to list a department’s employees.

A key disadvantage of the intranet web is the thin coverage by intranet web search
engines. First, despite the fact that the pharmaceutical division and diagnostic
division are part of one organization, they use different search engines12 which
ignore the sources of the other division. A meta‐search engine providing access to
both divisions does not exist. Hence, a searcher must know in advance in which
division the required information is located. Second, the seed pages are not
complete, i.e. intranet web pages which are not part of the common web sites (e.g.
wikis known only by a small group of people) are often omitted. A searcher might
thus not find a relevant answer page. Third, deep intranet web pages such as
database portals are not indexed and thus not searchable.

Another issue is the lack of metadata. In effect, neither full‐text search over
metadata nor semantic search based on metadata is available. Consider for instance
the structure of intranet portals. Even though many of them are organized by the
departmental structure, this knowledge is not explicitly expressed in a semantic
language. Similarly, the description of departmental expertise and a lot of other
information is only encoded in human readable form. As a result, queries like “mass
spectrometry experts working in the bioinformatics department” are not supported.

5.1.2 File shares
File shares are an important mean of storing and sharing information within and
between departments at Roche. File shares correspond to intranet web portals and
are structured in a similar fashion. A typical file share contains an “organization” or a
“project” top‐level branch. The “organization” branch is structured according to the
organizational structure, i.e. the folder structure reflects the hierarchical

12 This will change towards the end of 2009

Chapter 5 Characteristics of professional search in pharmaceutical research

92

departmental structure. The “projects” branch, on the other hand, contains project
related subfolders, where relevant data from several departments is consolidated.

The amount of stored information differs from one file share to another. In the case
of the Pharmaceutical Research Penzberg the file share (in the following denoted as
PRPZ‐Share) comprises about 600k files. The distribution of the most common file
types on the PRPZ‐Share is displayed in Fig. 5–3.

Fig. 5‐3: File type distribution on the PRPZ‐Share.

The file shares’ content ranges from office documents to device generated data.
Office documents are often about meetings, SOPs (Standard Operation Procedure),
lab device descriptions, experiments, projects, scientific studies, etc. Device
generated data are usually images (e.g. Gel Electrophoreses pictures), ASCII data,
sequence files, etc. Typical document formats of the share are Word, PDF or E‐Mail.
In addition, many Excel files exist which often encapsulate protocols and analyses of
experiments conducted in labs. The plain text files usually contain sequences of
genes or proteins. PowerPoint presentations cover a diverse range of different
scientific as well as administrative topics. Approximately one third of the files are
images. The images depict schematic illustrations of biological processes, gel
electrophoresis experiments, and charts generated by lab devices. Beside the listed
file types there are a couple of other file formats which are not displayed in the
chart. The reason is that they are either irrelevant for user consumption (e.g.
technical files generated by lab devices) or they are too few to be displayed properly
(e.g. MS Project files and reference databases).

While the intranet web of Roche is dominated by two search engines having a
relatively large coverage of their areas, file shares lack a common search tool. We
could identify two reasons causing this: Security and technical issues.

Enabling access to a share from other areas is a matter of trust. Indeed, only a small
minority of documents (like patents, contracts or salaries) should be highly secured
while the majority could have relaxed security settings. However, the reality is
differently. In general people from one area have only access to their own file share

Evaluation of the initial situation in the department investigated

93

and not to others. Only few employees have access to multiple file shares and in case
they can access another share, their read rights are restricted to a small sub‐branch.

While security restrictions are alleviated, technical barriers need to be surmounted
too. The file shares do not have a common security schema. Therefore, a user must
be assigned to many different groups in order to have read access to more than one
share. However, due to a limitation13 of the ActiveDirectory, a single user can be
assigned only to 1,015 security groups. In effect, giving a user full access to two
shares is impossible because the total amount of groups would be higher than
allowed.

Similar to the intranet web, file shares do also lack metadata. In particular, it would
be useful if the folder structure would be represented by an ontology. Then, a
semantic search by concepts and relationships would be enabled. Creating such an
ontology should be feasible, because people usually label folders so that the content
beneath it is described well. Further, the relationship of folder and sub‐folder has
also an implicit meaning to the user. The concept of a folder structure is thus related
to ontologies having a taxonomical character. The difficulty however is that folder
names are barely re‐used and that the relations between folders are not explicit.

5.1.3 Databases and applications
Databases are typically used to store large amounts of business relevant information.
The in‐house databases are closely coupled with their corresponding applications.
The applications are used to collect data automatically from lab devices or as a mean
for manual data input. In addition, they also provide functionality for searching and
browsing the data. What an application understands by “search” and “browse”
though, differs from one implementation to the next. In once case it can be a form
driven application where an exact search is done, in another case full text search
with query term suggestion might be implemented, and so forth.

Currently, discovering databases and efficiently retrieving information from them is
not trivial. There is no directory listing all databases, security schemas are tight, and
the content of databases is neither described nor interlinked by means of ontologies.
Therefore, no software tool for ad‐hoc queries across multiple databases exists.

While the first two points (directory of databases and security) could be solved
“rather easily”, the last point (integration by means of ontologies) requires a much
higher effort. Nevertheless, this effort could pay‐off as can already be seen in the
company’s Bioinformatics area. There, the GeneOntology together with synonym
lists of gene names enabled the linkage and integration of various databases. The
gained benefit in terms of search performance is very good considering the fact, that
only a few columns (GeneOntology Terms and gene names) have been interlinked.

In chemistry, database integration is much more difficult. A key problem is the
naming of the chemicals. First, the name of a compound used within a company is

13 http://support.microsoft.com/kb/328889

Chapter 5 Characteristics of professional search in pharmaceutical research

94

heterogeneous and additionally often different from the name by which it is
merchandised. Second, IUPAC14 (a standard nomenclature for chemicals) names are
long and complex. Third, a chemical can have more than one valid IUPAC name.
Search for chemicals is thus usually done by means of structure rather than names: A
chemists describes a substructure which is then used to find similar chemicals.

Beside the in‐house databases, Roche has several licensed databases from third
party companies, like patent databases or journal databases. Access to these is
granted to an employee after a registration procedure. Alternatively, an employee
has the possibility to ask the local library to do a professional inquiry for him.
Librarians usually incorporate a large amount of licensed literature databases in their
search process in order to achieve the coverage.

5.1.4 Search engine usage on the PRPZ-WebSite – A log file analysis
The web portal of the Pharmaceutical Research division in Penzberg is the default
homepage for several hundred employees. In order to determine its effectiveness in
retrieving information we conducted a log file analysis measuring the relative usage
of the search engines accessible via the portal. We monitored the six search engines
available on the PRPZ‐WebSite over a period of one month in 2007, resulting in
29,053 logged queries. Four of the six search tools are in‐house: Google Search
Appliance, FAST, and a telephone book application. Google’s Search Appliance is
used to index the local PRPZ‐Share having approximately 600k files. The FAST search
engine indexes most web pages of the Pharmaceutical division at Roche. These are
approximately 130k web pages. Last but not least, the telephone book application is
a simple web interface which enables full text search on the company’s telephone
book. The three public domain sources linked from the local homepage are Google,
Wikipedia and PubMed. The relative access to each of the six search engines is
depicted in Fig. 5–4.

Fig. 5‐4: Usage of search engines linked from the PRPZ‐WebSite.
Data logged over a period of one month in 2007.

14 http://www.iupac.org/

Evaluation of the initial situation in the department investigated

95

The results show that external sources are used more than in‐house sources.
Particularly Google remains unchallenged. Without any doubt, this is due to its
ranking performance and maybe due to its search performance in databases like
PubMed, US patents, Wikipedia, etc. On the other hand, we were surprised about
the low usage of the Google Search Appliance indexing the PRPZ‐Share containing
most relevant documents (Chapter 5.1.2). We assume that the main reasons for its
low usage were the additional manual log‐in procedure and a poor ranking of results.
We conclude that people located the files by means of the Windows Explorer, i.e.
navigation of the folder structure, rather than by search.

5.1.5 Empirical studies of information acquisition
Parallel to the log file analysis, two independent studies [Maßun 2008; Mühlbacher
2008] were conducted with the goal to determine how and which information
employees at Roche access.

Approximately 80 employees participated in the survey described in [Mühlbacher
2008], which targets the use of scientific information sources by scientists. The
interviewees claim to use approximately 2 different sources for retrieving
information. 67.50% additionally state to rely mainly on standard tools for retrieving
information. In detail, 94% use Google, 71% use PubMed, 65% use MicroPatent and
41% use SciFinder. Even though the previously conducted log file analysis does not
completely match the information sources mentioned by Mühlbacher’s participants,
we can at least see a similar tendency in our results: A few search engines are heavily
used while the majorities are less used. Although the majority of the scientists
claimed to use Google, 31% of them emphasized that they use it only for trivial
searches. In fact, Google is felt as the least reliable tool regarding scientific
information especially compared to PubMed and internally licensed databases.
Nonetheless, the majority (75%) of the participants declared that they are in general
satisfied with their search results in Google, as well as in literature databases.

Advanced search capabilities are only used by a minority of the interviewees. The
Boolean operators AND / OR are quite important and frequently used by
participants. The NOT operator on the other hand is considered irrelevant. Search
refinement by author and year are also considered important. Refinements by article
type, journal as well as sorting by year are used moderately.

Mühlbacher also asked the participants’ assumption about the coverage of various
search engines. Approximately 50% of the scientists believe that Google indexes the
entire WWW – a wrong assumption. Regarding PubMed and other databases, the
majority assumes that it indexes only a subset of the Web – a correct assumption.
Interestingly, only one third of the participants combine a variety of search tools for
their inquiries. This supports the previous result, that only a few search engines are
used by scientists at the risk of getting only a partial coverage of the relevant
information.

Mühlbacher’s study is about search in scientific information sources. These are in
particular freely accessible or licensed external sources. The study reported in

Chapter 5 Characteristics of professional search in pharmaceutical research

96

[Maßun 2008] on the other hand, targets mainly the internal sources. 15 employees
participated in the questionnaire. Her main findings revolve around information
access, storage, and search.

Many participants complained about information structure in the intranet. In detail,
they agreed that too many repositories exist and that they are not sure where to
store information. Further, they complained about deep folder hierarchies resulting
in “lost” files. According to them, most information is stored in E‐Mail, departmental
file shares, or personal shares. Public folders, intranet web, local disk, document
management systems, and SharePoint are barely used for content creation and
storage. In fact, only 10% of the documents at Roche are stored in a document
management system. In addition, participants complained that there is no overview
of available tools and their functionality, making helpful tools barely known. In the
same context some complained about many isolated software solutions which lack a
common platform.

Regarding search for information, several participants mentioned that search
performance is poor and that intranet search needs to be improved. In this context
they also complained about the fact that search for synonyms is not supported.
Further, data redundancy and the inability to express custom views on information
objects were mentioned as problems.

5.2 Quality characteristics of a professional search tool
The results of the previous studies suggest that professional search has only little in
common with general search. In fact, professional search differs in various aspects
from public search. Based on the similarities as well as the differences derived from
the studies, we hypothesized on several quality characteristics of professional search
tools. The architecture of a professional search tool which incorporates the
characteristics mentioned below is described in Chapter 6.

5.2.1 One single entry point
Why are Google, Yahoo! & co. so successful? A reason is their good coverage of a
large part of the web. As a consequence, they perform well on databases like
PubMed, public patent databases and Wikipedia. This binds users to such public
search engines: Google & co. became for many a main entry point, even for
specialized information. Public search engines can be compared to shopping malls
that bring a variety of goods in a variety of shops under one roof, thus making
shopping simple and a comfortable experience – especially for people with limited
time. With public search engines, information seems just one mouse click away.
Professional search does not differ in this respect from public search. Especially in
the workplace, users rarely have time to gather information from different places.
This is time consuming and error prone because integrating the gathered
information is done with little, if at all, help from the systems.

5.2.2 Role-specific ranking
Public search engines reflect the “wisdom of crowds” [Surowiecki 2004]. This wisdom
is relevant to professional search as well. In the introduction (Chapter 1.1) we

Quality characteristics of a professional search tool

97

mentioned an exemplary search for “polycythemia vera” at Google. The top ranked
web pages for that query are surely not irrelevant to researchers. However,
depending on the specific interests of a researcher, other pages about “polycythemia
vera” might deserve higher ranks. Thus, a professional search agent should have a
ranking reflecting as well as possible professional interests.

It is worth stressing that, to some extent, this also applies to public search: Search
engines like Google and Yahoo! have recognized it and offer so‐called personalization
services [Pitkow et al. 2002; Tachau 2007]. In specific areas, like book selling,
personalization is an important success factor. Amazon’s recommendations for
example, based on prior buys and formerly visited offers, are very appreciated by its
customers: it is convenient to receive “purchase recommendations” for newly
published books.

However, there are two interesting differences in this respect between public and
professional search. First, public search is about the “wisdom of the crowd”, that is,
what is generally known or acknowledged in a society. Professional search, in
contrast, should reflect as much as possible the professional groups. Indeed, it is
beneficial that professional users share the wisdom of their “professional crowd”:
The information relevant to an expert in the treatment of “polycythemia vera” is
relevant to others as well. Furthermore, if in a company “polycythemia vera” points
to “department C”, then this department is relevant to a company’s worker
searching for “polycythemia vera”. Second, while personalization in a strict sense
might be appropriate for public search services, it is rarely appropriate for
professional search. In addition, privacy considerations are important to the success
of professional search engines. Thus, while personalization is often useful for public
search, adaptation to a group is preferable for professional search. In the following,
adaptation will be used in this sense, sometimes called “group personalization”.

5.2.3 Guided navigation
In order to be effective, professionals need to know where information can be found
and which software tools exist. According to the introduced studies though, this is
exactly the area where they lack support. They loose track of previously stored
information and they have difficulties to discover new information due to the vast
amount of different tools and repositories available in the intranet.

While the previously proposed “one single entry point” would be already a great
support to solve this issue, we believe that it will not suffice. Imagine a search engine
which is capable of indexing the entire intranet, containing billions of data records.
Further, imagine that the company has office sites all over the world. In effect, a
searcher will be confronted with two striking problems. First, in a global company it
is likely that queries produce myriads of heterogeneous answer pages, i.e. many files
have a high similarity to the query. In effect, the ranking of results is turned ad
absurdum. Second, different sites might use a different jargon. At Roche for instance,
a drug might be named differently depending in which development stage it is. If the
searcher is not aware about the different jargon he might not be able to find the
appropriate answer page.

Chapter 5 Characteristics of professional search in pharmaceutical research

98

A promising way to deal with these issues is guided navigation (also called faceted
navigation). In guided navigation, answer pages are sorted into predefined
categories which can be used by the searcher to further drill down search results.
This helps if a searcher receives too many heterogeneous answer pages, and it helps
if he is not well aware about the targeted search domain

5.2.4 Exploit existing knowledge
The point of using search engines is to find information which is not necessarily well
organized. As [Weinberger 2007] puts it, with search engines, everything can be
classified in the “miscellaneous” category of traditional classification systems.
Companies are especially prone to large “miscellaneous”, that is, non‐catalogued
data. Indeed, their primary concern is not to catalogue data. Thus, professional
search should harness a company’s electronic data, to exploit as much as possible
the hidden “company’s wisdom”. This raises the question: What data is worth
considering? Three answers can be given: Everything, ontologies, and logs.

Everything: A search agent can be deployed on all possible data – and it should.
Indeed, there are no reasons to exclude any available data because all data might
help uncover interesting relationships. Hence, a company’s organizational structure,
project relevant literature, etc. should all be incorporated in a professional search
agent.

Ontologies: At the workplace, people use all sorts of ontology‐like data: controlled
vocabularies, taxonomies, thesauri and of course, more and more full‐fledged
ontologies modeling the knowledge of specific domains.

Logs: A rich source of knowledge is buried in the logs of software applications. Of
particular importance are the search logs from which one can extract associations
between queries and subsequently selected documents: (query, selected document)
pairs. The query can be used as a tag assigned by the user to the selected document.
In the following, such a tag is referred to as “implicit tag”. Before selecting an item
from a search agent’s result set, users read the short items’ description and select
the item that seems most relevant to their query [Joachims et al. 2007]. Thus, (query,
selected document) pairs can be expected to be of high quality. Moreover, this
quality can be expected to grow as time passes. Indeed, search queries are in general
not posed only once [Rose & Levinson 2004], for discovering unknown resources
(informational queries), but also again and again for coming back to known resources
(navigational queries).

5.2.5 Professional search beyond research and development
Arguably, professional search in research and development reflects well the needs of
professional search in general. There is only a difference in degrees: degrees of
specialization (work in research and development in general leads to a higher
specialization than work elsewhere) and degree of data coverage (a scientist might
need more data sources than a producing engineer). Thus, conceiving a professional

Quality characteristics of a professional search tool

99

search agent, deploying and evaluating its performance in a controlled and
systematic way seems to be a promising way to investigate professional search.

101

Chapter 6

An ontology-based information retrieval approach for
professional search

“The most likely way for the world to be destroyed, most experts agree, is by
accident. That’s where we come in; we’re computer professionals. We cause
accidents.”

Nathaniel Borenstein (1957 –)

6.1 Beyond traditional search for information ..101
6.2 Ontologies ..105
6.3 Assigning metadata to “unstructured” text documents108
6.4 Search results adaptation ..119
6.5 Weighting document relevance...124
6.6 Discussion and related work..129

Previously we identified that one single entry point, role‐specific ranking of search
results, guided navigation, and exploitation of existing knowledge are reasonable
approaches to a professional search tool. This chapter presents an ontology‐based
information retrieval (OBIR) approach which meets the listed characteristics.

We begin this chapter by giving a brief overview of our concept for OBIR as well as
the targeted information sources. Details about each part are then given in the
subsequent chapters as follows. First, the ontology concepts are introduced because
these play a central role for the entire study. Second, classification as a mean of
automatically gathering metadata is discussed. In this context we compare the two
paradigms knowledge engineering (KE) and machine learning (ML). Third, we present
our KE procedure for achieving a role‐based ranking of results. In addition, the
incorporation of log‐based feedback algorithms for improving the ranking of results
is discussed. Last, we outline how the weighting of document relevance is computed.

The chapter ends with a brief discussion of the introduced concepts.

6.1 Beyond traditional search for information
Common search tools do not meet the requirements of professional searchers. They
do not target all sources which are relevant for professionals, they do not offer role‐
based adaptation nor guided navigation, and finally they do not exploit existing in‐
house knowledge.

Chapter 6 An ontology‐based information retrieval approach for professional search

102

The incorporation of the listed features (Chapter 5.2) in a professional search tool
bares the potential to resolve these issues. Especially the enrichment of existing data
with metadata by means of semantic technologies could help to improve search and
navigation. For instance, keyword‐based search could be extended by concept‐based
search, and review of search results could be supported by pre‐defined taxonomies,
and so forth.

Next, we outline the corner stones of such an OBIR approach at a glance. Following
that, we describe for which information sources our OBIR approach has been
optimized, tested, and evaluated.

6.1.1 Key approaches
Two key characteristics of professional search are guided navigation and adaptation.
Semantic technologies could enable a comprehensible navigation experience to the
user as it could exploit and display all kind of relationships between the objects.
Similarly, if semantic data about the searcher and the document corpus exists,
adaptation of the result ranks would become possible. However, even though
semantic technologies already exist since a couple of years now, keyword‐based
search is still the state‐of‐the‐art in most search engines. The reason is that most
information available is in form of unstructured text. An automatic conversion of
unstructured text into a conceptualized ontology (Fig. 6‐1) is a difficult task [Reeve &
Han 2005]. Therefore, rather than conducting a complete conversion of unstructured
text we merely do a partial conversion, i.e. we restrict to the extraction of a few
business relevant concepts.

Fig. 6‐1: Assigning metadata to “unstructured” text.

Facet

Literature Document

Scientific Paper Patent

Biomedical Entity

Disease Therapeutic Area

Biological Object Target Protein

Department Project

Cell Biology

Person

Molecular Biology

Protein A,
designed in
experiment X
has …

ProjABCHerTumor B‐cell

Annotator

hasMember
worksIn

hasMember
worksIn

isPartOfProject
isAboutTherapeuticArea

The conversion is done by means of an annotator which scans the document and
decides based on pre‐defined or learned rules to which concept a given text
document belongs. The pre‐defined topics and relations of the ontology are used to
offer guided navigation (faceted navigation).

Beyond traditional search for information

103

We use named entity recognition (NER) [Nadeau & Sekine 2007], machine learning,
and knowledge engineering so as to partially convert unstructured text into
structured metadata. Fig. 6‐2 illustrates this process in context of a search index. In
the first step, the data repository is crawled and the processed text is stored in the
index. In the second step, the text index is scanned by an annotator which
automatically extracts metadata. The extracted annotations are also stored in the
index. Deploying the metadata together with the text into the index enables search
by means of the information retrieval and the data retrieval paradigm (Chapter
2.5.3). The details of the annotator, i.e. the classification process, are described in
Chapter 6.3. Notice that KE and ML are two distinct classification approaches. In KE
an expert manually formulates the categorization rules while in ML the machine
automatically learns how to categorize a document based on a pre‐categorized
training set. A performance comparison between the two is given in Chapter 8.2.
There, we also show to which degree a classification improvement can be achieved
by expanding the raw text with natural language processing (NLP) techniques.

Fig. 6‐2: Converting “unstructured” text into structured metadata.

Another key feature of professional search is a role‐based ranking of results. The
adaptation process is described in Fig. 6‐3. Basically, after a user has transmitted a
query, the adaptation‐module adjusts the query by boosting the searcher’s context
as well as by boosting the relevance of documents which are usually accessed in
context of the query (Chapter 3.2). Finally, the search engine returns the adapted
ranking of results.

Fig. 6‐3: Role‐based adaptation of the ranking of results.

As indicated beforehand, adaptation of search results is done by means of a
knowledge base (KB) and a log‐based method (Chapter 6.4). The KB contains
preference rules, which are written by a knowledge‐engineer. In particular, existing

Chapter 6 An ontology‐based information retrieval approach for professional search

104

administrative knowledge about an employee – such as his research area – is
expressed by means of rules, resulting in statements like: “User A is interested in
cancer research”. The log‐based approach on the other hand tracks the “queries‐
clicked document” pairs. This click‐through history is used to boost the rank of
documents which are often clicked in context of a given query.

Hence, the KB approach requires manual engineering of the preferences, while the
log‐based approach learns automatically the user’s preferences by relying solely on
past searches. At first sight, the log‐based approach seems to be superior to the KB
approach, because it constantly evolves in contrast to the static KB. However, one
should consider that the KB does not suffer by the cold start problem, i.e. it works
immediately while the log‐based approach works only if sufficient log data is
available. It is thus straightforward to do a linear combination of the rankings
delivered by each method, effectively mitigating the disadvantages of each.

The last principle (one single entry point access to the information landscape) can be
fulfilled in two ways. The first approach is to build a search engine covering all data
of concern – and to offer only this search agent. Clearly, this is rarely feasible. Why
not use specialized search agents that already exist, like search engines for technical
literature or other fields? The second approach is that of federated search also
known as meta search engines [Selberg & Etzioni 1997]. A meta search engine
forwards queries to several search engines and aggregates their answers. This
aggregation can be done in two ways: First by merging lists of answers relying on
more or less sophisticated ranking functions or by presenting side by side the
answers of the different search engines. Meta search engines have several
advantages: They exploit existing search engines and they can relatively easily
accommodate new ones; as a consequence, they hold the promise of a good
coverage of the information space.

Therefore, our approach will follow the “meta search” approach using a side by side
representation. By combining this with semantic annotations, guided navigation and
adapted ranking of results a promising concept for professional search is achieved.

6.1.2 Targeted sources
Based on the studies conducted in the investigated Roche departments and on the
feasibility of integrating the sources, we decided to consider the following
information sources to study the validity of the hypothesized principles for
professional search (Chapter 5; Table 6‐1): PRPZ‐Share (the file share of the
pharmaceutical research area in Penzberg), PRPZ‐WebSite (the web site of the
pharmaceutical research area in Penzberg), several in‐house databases, TagIt (a
Roche tagging application for internal and external data), PubMed, DMOZ, and
Wikipedia.

We are aware that this selection is far from complete. Indeed, many internal sources
like intranet web portals, shares, and databases from other areas are missing.
However, we argue that the selection suffices to investigate whether “one single
entry point” is appropriate for professional search. Our selection contains a mix of

Ontologies

105

popular sources and less popular ones, so that we can test whether people prefer
accessing the sources directly or via an integrated view.

Table 6‐1: Overview of the examined features, the corresponding sources on which the features are
evaluated, and the methods applied.

Feature Evaluation on source(s) Method
One single entry point PRPZ‐Share, PRPZ‐WebSite,

TagIt, PubMed, six in‐house
databases, Wikipedia, DMOZ

Meta‐search using side‐by‐side
presentation of search results

Adaptation of search results PRPZ‐Share, PRPZ‐WebSite Ontologies; Knowledge‐based;
Log‐based

Guided Navigation PRPZ‐Share, PRPZ‐WebSite,
Application DB

Ontologies; Knowledge‐
engineering; Machine Learning;
Natural Language Processing

The other approaches (adaptation and guided navigation) are only analyzed in
context of the PRPZ‐Share and PRPZ‐WebSite. First, these are among the most
frequently used sources of the investigated departments. Second, the demand to
improve search on these sources is high. Third, enriching external sources with
metadata is more difficult due to the heterogeneity of the professional jargon used
as well as the inability to easily map to in‐house databases. As a consequence
classification and adaptation are also more challenging. Therefore, we investigate
metadata extraction, classification, and adaptation only in context of the mentioned
in‐house sources.

6.2 Ontologies
In total, three ontologies are used to conceptualize the professional information
space as well as the knowledge about it: classification, annotation, and adaptation.
The classification ontology describes the overall topic of a text document while the
annotation ontology is used to capture various concepts appearing within a text
document. The adaptation ontology models a user’s interests, i.e. it describes which
topics a user is interested in and which not. In effect, ranking of results is adjusted
according to the searcher’s role in the company.

6.2.1 Classification ontology
The classification ontology models text documents and their properties. The central
class of the classification ontology is thus Document (Fig. 6‐4). A Document is
identified by its URI. The URI also serves as a pointer to the document’s location.
Because we are in a corporate environment, we also included access control lists
(ACLs; expressing access rights) in the model. The hasACL property thus tells which
groups are allowed to view the document. Furthermore, a document is described by
means of the classes Entity, Project, Department, and Classification.

The class Entity captures concepts (like person, organization, date, etc.), which occur
within a document’s full text content or within a document’s URI. Because this class
is imported from the annotation ontology, we do not discuss it here but in the
following section.

Chapter 6 An ontology‐based information retrieval approach for professional search

106

The class Project as well as Department are introduced to reflect a document’s
organizational embedding. In a research environment e.g., documents are often
written as part of a project. Therefore, a document can be set in relation to a project
by using the hasProject property. Similarly, the fact that a document is created in a
certain department can be expressed by the belongsToDepartment property.

The class Classification is applied to specify the topic of a document. The class has
various pre‐defined subclasses into which a document can be categorized. An
overview of the topics is given in Chapter 6.3.1.

Arguably, the modeled classes and their relations to documents are rather generic.
Projects as well as departments are encountered in every larger institution. Further,
a document’s content is not arbitrary but about a certain topic. Variations occur
merely on the instance level – different institutions have different projects,
departments, and document topics.

Fig. 6‐4: Excerpt of the classification ontology. Classes in gray are filled when reading the document
from the source. The blue relationships are determined by means of named entity recognition. The

green relationships are determined by reasoning or by machine learning.

Entity

Document

ClassificationDepartmentProject

hasContent
Entity

hasTopicbelongsToProject
belongsTo

Department

String String

hasURI hasACL

Entity

hasURIEntity

hasFileType

String

nn

1

n11111

The belongsToProject and belongsToDepartment relations are determined solely by
means of rule‐based reasoning. The hasTopic property of a document on the other
hand is determined either by means of KE or ML. The details of each classification
approach are discussed in Chapter 6.3.

Wrapping it up, the purpose of the classification ontology is to capture additional
metadata of a document.

6.2.2 Annotation ontology
The annotation ontology (Fig. 6‐5) provides a structure for describing and capturing
named entities occurring within unstructured text. A named entity represents a pre‐
defined category (such as persons, organizations, etc.) into which atomic elements of
text are classified. The automatic classification of text elements into pre‐defined
categories is denoted as named entity recognition (NER). Before describing the
applied NER pipeline in Chapter 6.3.3, we continue with the description of the
ontology and the entity types to be recognized.

Ontologies

107

Fig. 6‐5: Excerpt of the annotation ontology, displaying classes and their relationships. The given
entity types are used as features to annotate whole documents.

The main class of the ontology is Entity and it has three important properties:
startPos, endPos, and value. The parameter startPos is a numeric value which marks
the first character position of the classified text element. The parameter endPos
marks in just the same manner the last character position. The parameter value
simply stores the classified text elements as a string. Having defined these attributes,
we are now able to store the entity annotations of any text and their position in the
original text document.

The named entities are used as features for the classification of whole documents
into pre‐defined topics. In addition the extracted entities could be used to improve
guided navigation. Determining which entities are relevant and which not depends
on the considered domain. In our case we distinguish the following types of entities:
TimeStamp, Person, Department and Tag – all descendants of the class Entity. The
class TimeStamp represents a temporal entity and it is further subdivided into Year,
HourMinutes, and Date. By Year we understand any four digit number. HourMinutes
represents the time of a day, and Date refers to a text snippet consisting of a year, a
month and a day. The class Person refers – as the name suggests – to a person. The
class Department represents a department or group of the organization. Arguably,
these are quite generic entity types which might also be applied in other
environments.

The last entity type we consider is Tag. The class Tag does not represent a traditional
concept; rather it is a collection for various concepts identified by one ore more
words. Therefore, a text passage is annotated with the type Tag if it matches the
name of the predefined Tag instances. For example, ProjectPhase – a subclass of Tag
– has among others the predefined instance Pre‐Clinical. Thus, in Fig. 6‐5 the word
“pre‐clinical” is annotated as a ProjectPhase entity. Additionally a Tag can have a set
of synonyms. The instance Pre‐Clinical for example has the synonyms “P0” and
“Phase 0” – these are common abbreviations in the medical sector.

Chapter 6 An ontology‐based information retrieval approach for professional search

108

6.2.3 Adaptation ontology
The adaptation ontology encapsulates the user model (Chapter 3.1). The model
describes the characteristics of a searcher and it is applied to adjust the ranking of
search results. An illustration of the classes and properties used in the user model is
given in Fig. 6‐6.

Fig. 6‐6: Excerpt of the adaptation ontology.

The class Person represents a user and his properties. A user is characterized by his
identity (userid), the projects he is involved, his departments, and his access control
list memberships. Given these facts, reasoning is applied to deduce the person’s
interests into specific document properties, i.e. index fields. The class IndexField
represents the link between the ontology and the index fields of the search engine.
In fact, the index fields cover all Document properties of the classification ontology.
Therefore, we are able to model a searcher’s interests in projects, departments, and
specific document topics. The interests in an index field together with the interest
strength are used to adjust the ranking of results accordingly. For instance we could
formulate a rule stating that a searcher is mostly interested in the “Bioinformatics”
area. As a consequence, for any search, documents belonging to this topic will be
ranked higher. Chapter 6.4 outlines the rule‐based adaptation approach in detail.

6.3 Assigning metadata to “unstructured” text documents
In this section we describe the process by which unstructured text is enriched with
metadata. We examine the assignment of metadata to unstructured text by means
of two paradigms: knowledge engineering (KE) and machine learning (ML). In KE, a
set of rules is defined which encodes an expert’s knowledge on how to classify a
document into a given category. In ML, an inductive process automatically builds a
classifier by learning from a set of pre‐classified documents [Mitchell 1997;
Sebastiani 2002]. The reader might wonder why we evaluate a KE approach
considering the fact that it is barely used since the ML paradigm has become popular
in the early nineties. The main reason is the availability of semantic technologies. It
would be convenient to apply rule languages of semantic frameworks for

Assigning metadata to “unstructured” text documents

109

categorization purposes. Anyone could see and adjust the classification rules if
necessary. Further, users would be able to understand why a document was
categorized into a certain topic due to the explicit nature of rules. Beside this, we are
interested to determine if the approach is feasible and at which costs a KE approach
can provide better classification rules than ML. In this context we are also interested
to find out which method to use for which type of document. The task of assigning
metadata to “unstructured” text is conducted for the ~600k files located on the
PRPZ‐Share and PRPZ‐WebSite.

6.3.1 Considered document classes
In a thorough analysis of the document corpus we identified several types of
documents and organized them in a taxonomy (Fig. 6‐7). Notice that this taxonomy is
not complete. It merely represents the most common types. For the proof of
concept we decided to reduce the identified classes to a small subset which we
assume to be the most relevant classes for the professional users in the considered
Roche departments. The subset reads as follows: Department, Project, Agenda,
Memo, Minutes, Standard Operating Procedure, Portfolio, and Pre‐Clinical Study.
Next, we give an informal definition of each class of the final subset.

Fig. 6‐7: Excerpt of the classification ontology. The grayed classes are detected by the classifier, while
white classes are not considered in context of this thesis.

Meeting Documents

Agenda

Memo

Minutes

Classification

Standard Operating Procedure

Assays

Cell Cultivation

IT Procedures

Instruction

Safety

Lab Device

Manual

Product SheetControlling

Order

Literature

Scientific Paper

Thesis

Protocol

Experiment Results

Instruction

Quality Assurance

Portfolio

Competitor

PRI

TPI

Report

Assay Qualification

Bioanalytical

Evaluation

Method Development

Status Report

Pre‐Clinical Study

Validation

Document

Department Project

isA

belongsToProjectbelongsToDepartment

hasTopic

isA isA

Department: The department which published the document.

Project: The project to which the document is highly related.

Chapter 6 An ontology‐based information retrieval approach for professional search

110

Agenda: A meeting agenda is a list of activities in the order in which they are to be
taken up, beginning with the call to order and ending with adjournment. It usually
includes one or more specific items of business to be considered. It may, but is not
required to, include specific times for one or more activities.

Memo: A short note (a memorandum) about something, for the record.

Minutes: Minutes are the instant written record of a meeting or hearing. They often
give an overview of the structure of the meeting, starting with a list of those present,
a statement of the various issues before the participants, and each of their responses
thereto.

Standard Operating Procedure (SOP): A set of instructions constituting a directive,
covering those features of operations which lend themselves to a definite, step‐by‐
step process of accomplishment.

Portfolio: A collection of investments (projects) all owned by the same individual or
organization.

Pre‐Clinical Study: A pre‐clinical study report about a Roche compound having a
registered Roche number.

6.3.2 Text representation
Prior to discussing details of the KB and ML approach for text classification, we
outline how text will be represented. Text representation – as part of the IR process
– was already covered in Chapter 2. In content categorization, text is represented in
just the same manner, namely as a word vector with specific weights. IR and text
categorization share also many common steps in the text processing pipeline which
is used to obtain the final word vector. Passing an input text through a chain of
different analyzers (Fig. 6–8) reduces complexity and redundancy. In effect,
classification performance can be improved in terms of precision, recall, and time.

Fig. 6‐8: Text processing pipeline.

The initial step is the tokenization of sentences into single terms. Applying a lower
case filter and a stop word filter next, reduces complexity while loosing almost no
relevant information. Stemming can further reduce word density – at the cost of
losing potential relevant information. The last step, feature expansion, is the only
step which adds additional information to the input data. In our case we apply NER
as the method for feature expansion, i.e. we determine the concepts of the tokens.

Having applied the filters, the next question is how to weight the output, i.e. the
word vector. Again, the same measures as in the case of IR can be applied. We could
thus use a Boolean metric, a tf measure, or any tf*idf measure (Chapter 2.2.3).

Assigning metadata to “unstructured” text documents

111

Notice that our text representation (choice of filters / term weighting) is different for
the KB and ML method (cf. Chapter 6.3.4 and Chapter 6.3.6).

Next, we briefly outline how NER performs the feature expansion.

6.3.3 Named Entity Recognition
Initially we considered the usage of the Stanford Named Entity Recognizer15 (based
on ML) for detecting entities of the type Person. However, we were not satisfied with
the precision and recall levels, given that we invested a considerable amount of
effort in providing large quantities of training data (hundreds of manually annotated
documents) to the Stanford NER algorithm. Therefore, we decided to switch to a list
based approach. The person list is obtained by dumping all employee names (about
10,000 names) from the administrative database. Given the list, the annotator scans
the text in a case‐insensitive mode and marks recognized elements accordingly. A
minor difficulty is that there are syntactical variations in the way names are
abbreviated and in the order of surname and forename. The name “John Public” for
instance, might be written as “J. Public”, “Public, John”, “Public, J.”, etc. Therefore,
we perform a scan for all relevant syntactical variants.

The entities of type Tag are processed in a similar fashion except that syntactic
variants are explicitly captured in the synonym attribute of the class Tag.

Annotation of the entity Department is also based on a vocabulary list. The
department names are extracted from the organizational chart which is encoded in
an ontology. The ontology not only contains the department names but also their
hierarchical organization. We can thus obtain the super‐departments using the
implicit is‐a relationship. In contrast to the previous approaches, annotation does not
target the full‐text content but a file’s security settings (Chapter 6.4.1) and URI. From
our experience at Roche, at least one of them can be mapped well to the
department names. Mapping is done using a combination of regular expressions
(which might differ from one division to the next) and string matching. In case of the
investigated department, the departments are extracted from the folder names.
Hence, the annotator would extract the department “TR‐IB” from the following URI
“//SERVER/TR‐IB organization/misc.doc”. Using the is‐a relationship of the ontology
we additionally obtain the departments “TR‐I” and “TR”.

A different approach is taken for the entities inheriting from TimeStamp. Here,
regular expressions are used to describe the patterns of Date, Year and
HourMinutes. The regular expressions for detecting these are given next.

A list with month names in English and German language
longMonthNames =
 "(January|February|March|April|June|July|August|” +
 “September|October|November|December|Januar|Februar|März” +
 “|April|Juni|Juli|August|September|Oktober|November|Dezember)"

15 http://nlp.stanford.edu/software/CRF‐NER.shtml

Chapter 6 An ontology‐based information retrieval approach for professional search

112

A list with abbreviated month names in English and German language
shortMonthNames =
 "(Jan|Feb|Mar|Mär|Apr|May|Mai|Jun|Jul|Aug|Sep|Sept|Oct|Okt|Nov|Dec |Dez)"

Date: Pattern matching numerical dates, e.g. 21.1.81
 "\\b(^|\\s)([1‐9]|0[1‐9]|[12][0‐9]|3[01])\\." +
 "([1‐9]|0[1‐9]|1[012])\\." +
 "((19|20)\\d\\d|\\d\\d)\\b"

Date: Pattern matching numerical dates, e.g. 1981/01/21
 "\\b(19|20)\\d\\d[‐ /.]" +
 "(0[1‐9]|1[012])[‐ /.]" +
 "(0[1‐9]|[12][0‐9]|3[01])\\b"

Date: Pattern matching medium length dates, e.g. 21. Jan. 81
 "\\b(0[1‐9]|[12][0‐9]|3[01])[\\.,]?\\s{0,5}" +
 "(" + shortMonthNames + "\\.?|" + longMonthNames + "),?\\s{0,5}" +
 "((19|20)\\d\\d|\\d\\d)\\b"

Date: Pattern matching medium length dates, e.g. Jan 21 1981
 "\\b(" + shortMonthNames + "\\.?|" + longMonthNames + "),?\\s{0,5}" +
 "(0[1‐9]|[12][0‐9]|3[01])([\\.,]\\s{0,5}|\\s{1,5})" +
 "((19|20)\\d\\d|\\d\\d)\\b"

Date: Pattern matching long date formats, e.g. January 21st 1981
 "\\b(" + longMonthNames + "),?\\s{0,5}" +
 "((1|21|31)st|(2|22)nd|(3,23)nd|(2?[4‐9]|1[0‐9]|30)th)(,\\s{0,5}|\\s{1,5})" +
 "((19|20)\\d\\d|\\d\\d)?\\b"

Year: Pattern matching a numerical year, e.g. 1981
 "(19|20)\\d\\d"

HourMinutes: Pattern matching a day time, e.g. 5.00 a.m.
 "(^|\\s)((?s)\\b([0‐2]?\\d[:\\.][0‐5]\\d\\s*” +
 “(AM\\W|A.M.\\W|PM\\W|P.M.\\W|am\\W|a.m.\\W|pm\\W|p.m.\\W)?)” +
 “(\\p{Punct}\\s|\\s|$))|" +
 "((?s)\\b([0‐2]?\\d\\s*” +
 “(AM\\W|A.M.\\W|PM\\W|P.M.\\W|am\\W|a.m.\\W|pm\\W|p.m.\\W)” +
 “(\\p{Punct}\\s|\\s|$)))"

6.3.4 Classification using a knowledge-engineering approach
In a knowledge‐engineering classification approach (Fig. 6‐9) the first step is to
create a taxonomy into which the documents are classified. Then, a knowledge
engineer formulates rules based on the words which typically occur in the
corresponding document category. For instance, a domain expert might define a
simple rule for classifying literature documents such as: If the words “abstract”,
“references”, and “keywords” appear in the text, then classify the input as a
literature document. While this example is quite trivial it illustrates the basic
approach in which the domain expert encodes his knowledge into classification rules.
In reality, more words as well as their order should be considered.

Having defined the topic taxonomy and the rules, the next step revolves around
processing the input document. Computational time of reasoning can get significant

Assigning metadata to “unstructured” text documents

113

if huge amounts of facts have to be considered. Therefore, we consider only the
extracted features of the text and their position in the original text. Working with
features not only reduces the number of terms but also the amount of rules. For
instance, by referring to the entity Year in a rule we save the work of specifying all
kind of variants like 2008, 2009, etc.

Fig. 6‐9: KB classification pipeline.

One should keep in mind that F‐Logic does not support fuzzy rules, i.e. a document
belongs to a topic or it does not – there is no notion of maybe. Of course one could
simulate this behavior by wrapping the rules in a meta‐interpreter supporting the
association of certainty factors to rules and facts [Schocken & Finin 1987]. However,
this would add an additional layer of complexity. On the one hand, knowledge
engineers must additionally define certainty factors to their rules, making modeling
more difficult than it already is. On the other hand, computational time would get
considerable if the rules are wrapped in a meta‐interpreter. Moreover, the
evaluation in Chapter 8 suggests that the added complexity is not worth the
expected performance boost, and probably would neither be necessary in many
other professional contexts as well.

Last, we want to outline, that despite the restriction to extracted features, the
amount can get very large (over 10,000 entities) for a large document. To circumvent
this, we restrict per default to the first 10,000 facts. This number is not arbitrary but
was determined by examining the present corpus. A key observation was that the
first three pages suffice to categorize a document. Thus, we determined the average
number of words which could be observed on the first three pages and then defined
an upper bound. Of course, in case the key characteristics of a document are not at
the beginning but in the middle or towards the end of the text, then this heuristic
can not be applied anymore.

6.3.5 Classification rules
In this chapter we present the classification rules for the topics Department, Project,
Agenda, and Portfolio (Fig. 6‐7). The rules for Minutes and Memo documents are
omitted as these are very similar to the rules for classifying Agenda documents. The

Chapter 6 An ontology‐based information retrieval approach for professional search

114

categories SOP and Pre‐Clinical Study are not classified by means of rules due to the
complexity of finding a common set of terms with a high enough discriminative
power. Hence, these are merely classified by means of ML as described in the
subsequent section. Prior to the definition of the classification rules, we discuss four
auxiliary rules.

The rules for deducing the properties belongsToProject and belongsToDepartment of
a Document (cf. Fig. 6‐4) are simple auxiliary rules. They just map the according
Entity from the relationship hasURIEntity so that access is eased. The only restriction
is to select the project or department from the deepest level. The reason behind this
heuristic is the assumption that the deepest folder has the highest association with a
file’s content. Because of their simplicity we omit these rules and continue with the
text categorization rules.

The third auxiliary rule, denoted “foundParticipants”, is used to detect so called
participants – these are text passages in which the word “participant” (or its
synonyms “attendee”, “presenters”, etc.) is closely followed by a person name.

Rule: foundParticipants

FORALL aDocument, anEntity, Type, S, E, M
 aDocument[#hasParticipants‐>true]

 aDocument:#Document AND
 aDocument[#hasEntity‐>>anEntity] AND
 (anEntity:Type
 OR
 (unify(anEntity, #Participants) and unify(Type, #Participants))) AND
 #Participants:#Other AND
 anEntity[#startPos‐>S;#endPos‐>E] AND
 matchEntityPattern(aDocument, anEntity, Type, S, E,
 sequence(#Participants,15,#Person), M).

The rule foundParticipants uses two built‐in functions named matchEntityPattern
and sequence to detect whether the entity Participant is in a maximal distance of 15
characters to the entity Person. If this is the case, the attribute hasParticipants of the
document is set to true. Ideally, the character distance should be only 1. However,
the conversion of the various document formats to flat text produces sometimes
special characters which can’t be excluded from the stream. Therefore, the distance
was set to 15 characters.

The fourth auxiliary rule, denoted “foundGroupOfPersons”, detects group of
persons, i.e. text snippets in which several person names appear. This rule makes use
of the same built‐in functions as the previous one. It sets the attribute
hasGroupOfPersons to true, if five entities of type Person occur within a subsequent
distance of 150 characters. Again, this value should be 1. The distance had to be
increased due to the conversion of tables into flat text. In case person names occur
below each other in a table, it doesn’t imply that they will be also next to each other
in the flat text. Indeed, the conversion of tables to flat text is problematic, because

Assigning metadata to “unstructured” text documents

115

the cell order is sometimes broken. Therefore, we had to increase the distance to
150 characters, so that we cover these problematic situations.

Rule: foundGroupOfPersons

FORALL aDocument, anEntity, Type, S, E, M
 aDocument[#hasGroupOfPersons‐>true]

 aDocument:#Document AND
 aDocument[#hasEntity‐>>anEntity] AND
 anEntity: Type AND
 anEntity[#startPos‐>S;#endPos‐>E] AND
 matchEntityPattern(aDocument, anEntity, Type, S, E,
 sequence(#Person,150,#Person,150,#Person,150,#Person,150,#Person), M).

Another auxiliary rule is “foundEventTime”. This rule sets the property hasEventTime
of the document to true, if a snippet is found where the token “begin” or “start” is
immediately followed by an entity of the type HourMinutes. The F‐Logic version of
the rule is omitted because it is very similar to the foundParticipants rule.

Having defined these auxiliary rules, we are now able to list the first classification
rule, denoted classificationAgend, which is used to classify agenda documents.

Rule: classificationAgenda

FORALL anEntity, S, aDocument
 aDocument[#hasTopic‐>>#Agenda]

 aDocument:#Document AND
 aDocument[#hasEntity‐>>anEntity] AND
 aDocument[#fileType‐>>".doc"] AND
 (aDocument[#hasParticipants‐>>true]
 OR
 aDocument[#hasGroupOfPersons‐>>true]) AND
 aDocument[#hasEventTime‐>>true] AND
 #Agenda:#Classification AND
 anEntity:#Entity AND
 unify(anEntity,#Agenda) AND
 #Agenda:#Other AND
 #Agenda[#startPos‐>>S] AND
 less(S,250.0).

A Document is classified into the category Agenda, if the file extension is “doc”, and
if the tag‐entity Agenda occurs within the first 250 characters of the text and if an
event time has been found. Further the document must have either participants or a
group of persons. Putting it less formal, an agenda document is a document which
contains the word “agenda” on the first lines, a list of participants and a time on
which the meeting occurs. Finally, the file format must be MS Word. The limit of 250
characters was determined by observing several agenda documents. By doing so we
noticed that the word “agenda” usually occurs at the beginning.

The rule for classifying documents into the Portfolio category targets only
PowerPoint files. Further, these must contain at least one tag‐entity Project. Other

Chapter 6 An ontology‐based information retrieval approach for professional search

116

requirements are that an entity Year occurs, and that all ProjectPhase entities
appear. Notice, that the detection of a Project as well as assuring that all project
phases have been found is done by auxiliary rules which are omitted here.

Rule: classificationPortfolio

FORALL aPhase, anEntity, S, aDocument, aYear, aProj, nrPhases
 aDocument[#classification‐>>#Portfolio]

 aDocument:#Document AND
 aDocument[#hasEntity‐>>anEntity] AND
 aDocument[#fileType‐>>".ppt"] AND
 aDocument[#foundProject‐>>aProj] AND
 aDocument[#countPhases‐>>nrPhases] AND
 #Portfolio:#Classification AND
 anEntity:#Entity AND
 unify(anEntity,aYear) AND
 aYear:#Year AND
 aYear[#startPos‐>>S] AND
 aPhase:#Phase AND
 xcount(a,aPhase,aPhase,nrPhases).

6.3.6 Classification using Machine Learning
Machine learning is about algorithms that automatically improve their performance
(i.e. their ability to predict) with experience. In ML two learning paradigms can be
distinguished: supervised learning and unsupervised learning. Supervised learning
algorithms are able to generalize from labeled examples and to identify core
characteristics. Unsupervised learning methods do not need any examples, i.e. they
decide autonomously which objects should be grouped together. Text categorization
is a supervised learning task [Sebastiani 2002]. Consequently, the learning success
strongly depends on the quality of the provided examples, i.e. is the data
representative, is it complete, etc.

The learning algorithms work on a fixed set of features (attributes). Therefore, the
first step, after a training set has been defined, is to process the text accordingly (Fig.
6‐10). We apply the text analysis pipeline given in Chapter 6.3.2. The word vector
weights are calculated by one of the following approaches: Boolean, tf, and tf*idf. An
evaluation of which method works best is given in Chapter 8.2.

The following “feature selection” step can be applied to reduce the dimensionality of
the data. Doing so results in less data needed for the learning process, it avoids
overfitting for conventional learning methods, and reduces execution time of the
learning algorithm, while the classification accuracy remains approximately the
same. The task is thus to identify the most useful features for learning, i.e. to remove
irrelevant and redundant features. There are two common approaches for feature
selection: wrappers and filters. Wrappers evaluate the worth of feature sets by
applying the learning algorithm. In effect they are optimized for the particular
learning algorithm and are therefore less general, i.e. if other learning algorithms are
to be used, the wrapper must be re‐run. Filters on the other hand evaluate the worth
of feature sets by using heuristics. In contrast to wrappers they execute much faster.

Assigning metadata to “unstructured” text documents

117

Overviews and surveys of feature selection methods are given in [Brank & Grobelnik
2002; Joachims et al. 1998; Rogati 2002; Sebastiani 2002].

Fig. 6‐10: ML pipeline for learning a model.

In the next step, the features are processed by a learning algorithm, which
effectively creates concept descriptions (knowledge) from the training data.
Nowadays, many different classifiers exist: Naïve Bayes [Domingos & Pazzani 1997],
decision tree classifiers [Safavian & Landgrebe 1991], decision rule classifiers [Cohen
& Singer 1999], Bayesian networks [Heckerman 1999], nearest neighbor [Dasarathy
1990], support vector machines (SVM) [Cortes & Vapnik 1995], etc. In literature,
SVM are considered as the state‐of‐the‐art approach for classifying text documents
[Joachims et al. 1998]. The reason is that SVM can handle well a high dimensional
(many words) and sparse input space (document vectors contain only few entries
which are non‐zero) as is the case in text classification. Therefore, we decided to use
SVM with a linear kernel (i.e. K(x,y)=<x,y>) for the learning task. Testing is done
using a 10‐fold cross validation. The learned model is then evaluated in terms of
precision and recall by means of a separate test‐set.

Choosing SVM for learning also influences the previous feature selection step.
Interestingly, the study given in [Joachims et al. 1998] reports that SVM are very
robust even in the presence of numerous features. Another result of the study is that
the majority of features are useful for text classification. The studies reported by
[Brank & Grobelnik 2002; Rogati 2002] even show, that feature selection has no
improvement or even degrades SVM performance. Therefore, it is disputed whether
to use feature selection methods (such as chi‐square) in combination with SVM or
not. We decided to skip the feature selection step. Nevertheless, we still restrict the
total number of words per class to the 1,000 most frequent words. We did not see
the requirement to increase the number of features beyond 1,000 per class because
classification performance did not increase significantly by doing so.

Chapter 6 An ontology‐based information retrieval approach for professional search

118

Our classification pipeline (Fig. 6‐11) begins with the text processing and feature
selection of the unclassified document. Then, two classification models are applied
linearly. The first model separates noise (documents which do not belong to any of
the pre‐defined categories) from signal. The second model categorizes the signal into
the learned classes. Using two models reduces the complexity for the learner.
Further, they can be fine‐tuned for their specific task.

Fig. 6‐11: Classification pipeline.

In Chapter 8.2, we give a detailed evaluation of our ML pipeline for the investigated
dataset. There, we give the size of the used training and test set. Further, we
compare which document weighting schema gives the best results and the impact of
named entity expansion on precision and recall. Last, we compare the performance
of ML to that of KE.

6.3.7 Discussion
In this sub‐chapter we discussed the problem of assigning metadata to unstructured
text. Because manual annotations do not scale well with large datasets we decided
to adopt an automatic approach. In this connection, we compare the KE and ML
paradigms for enriching unstructured documents with metadata. Both have their
advantages and disadvantages. In the KB approach, a knowledge engineer has to
manually codify the domain knowledge, while in the ML approach a training and test
set needs to be specified.

Text categorization provides the foundation for faceted navigation. Further, it also
enables search result adaptation (cf. next section).

Search results adaptation

119

6.4 Search results adaptation
Adaptation of search results is about adjusting the ranking of result items to the
user’s assumed interests (Chapter 3.2). In our concept we focus on adaptation
methods (“role‐specific ranking”) which do not require the storage of any person
related information. It is thus particularly suited for companies. Indeed, laws and the
work council often prohibit the explicit storage and processing of person related
data, as they could be misused to track an employee’s activities.

We begin this sub‐chapter by introducing our knowledge‐based adaptation method,
which adjusts ranking of search results to the user’s working‐context. The working‐
context is extracted form “explicit” data sources by means of rules (encoded in the
adaptation ontology). Then, we give a brief prospect of advanced user roles.
Following that, we outline the log‐based adaptation method of choice, which fine‐
tunes the ranking of results. The method uses anonymous “implicit” click‐through
data which is gathered by monitoring the users’ search activities. In the last section,
we discuss how knowledge‐based and log‐based adaptation could be aggregated so
that we obtain self‐adaptive “roles” shared by several individuals.

The details of how the inferred user interests as well as the interest strength are
incorporated into a search engine are not given here. Rather, this topic is discussed
in Chapter 6.5, which deals with the relevancy weighting of search results.

6.4.1 Knowledge-based adaptation
The knowledge‐based adaptation method to be introduced is based on context
evidence (Chapter 2.6). A key question is thus how to obtain context information?

The answer is “administrative databases”, and especially the security groups they
manage. The groups are used to control access to files, applications, etc. within the
corporate network. Access control is typically enabled by matching the security
groups of the source to the groups the employee is a member of. Security groups are
of special value, because a) they are not created randomly but are usually well
structured and b) security groups exist in every enterprise.

Access control lists (ACLs; i.e. security groups), are for instance created to hold all
members of a department, a project or of an application. Knowing the semantics of
the group’s syntax is thus the key, to obtain the context of files as well as the
working context of employees. Next, we illustrate the ACL syntax used at Roche.

Structure encoding permissions to departmental data. Determined by the “_ORG_” infix.
<GLOBAL_AREA>_<LOCATION>_<AREA>_ORG_<DEPARTMENT>_<PERMISSION>

Structure encoding permissions to project related data. Determined by the “_PRJ_” infix.
<GLOBAL_AREA>_<LOCATION>_<AREA>_PRJ_<PRJNAME>_<PERMISSION>

The tags represent the following information
<GLOBAL_AREA>: “Pharmaceutical Research” or “Diagnostics”
<LOCATION>: The mnemonic of the city or site, e.g. “PZ” denoting Penzberg
<AREA>: The mnemonic of the local area, e.g. “TR” denoting “Pharmaceutical Research”,

Chapter 6 An ontology‐based information retrieval approach for professional search

120

<DEPARTMENT>: The mnemonic of the department, e.g. “TR‐IB” denoting “Bioinformatics”
<PRJNAME>: The controlled name of the new medicine project, e.g. “Herceptin”
<PERMISSION>: “C” representing a change permission, or “R” denoting a read only permission

The knowledge about the ACLs’ semantics enables us to model the interest of a user
into certain organizational areas (Fig. 6‐12). We could thus state that users are
interested in the projects in which they are involved, i.e. we would create a rule
which filters the ACLs encoding an interest into a project. The reasoning engine
would thus determine the preferred ACLs, which in effect are associated to a set of
documents, of which we assume the user is interested in.

Fig. 6‐12: Inferring a user’s assumed interests.

Preferred ACL groupsUse
r’s

 ACL g
ro

ups

We capture the pre‐defined user interests – i.e. the user model – in an ontology. The
interests are expressed by means of rules which denote specific interest strength
into files belonging to specific security groups. The default interest strength of a user
is set to 1 – the neutral point of user interest. Therefore, a value below 1 indicates a
disinterest and a value above 1 indicates an interest.

We define three different interest rules. The first rule models a user’s interest in files
of the department he is working in. The second rule models a user’s interest in files
of his division (e.g. Pharma Research or Pharma Technical Development). The third
rule models a user’s interest into files belonging to projects he is involved in. Notice
that in the rules, we explicitly refer to groups denoting change permissions. While a
read permission can be assigned to numerous persons, change permissions are only
given to the creators (i.e. responsible persons) of a file.

Instead of giving the F‐Logic code of the rules, we illustrate the rules by means of a
graph. In the text categorization chapter we had to use code instead of figures due
to the difficulty of visualizing rules having OR connectives. An F‐Logic graph is read as
follows. An ellipse represents a concept, a square a value, a rectangle a built‐in
function. Lines connect concepts and values. A label on a line denotes a relation. A
round circle on a line denotes a comparison, such as equality. The green colored
graph is the head of the rule, while the gray colored part is the body. Negation is
marked by a red background.

Search results adaptation

121

The first rule, “interestInDepartment”, reads as follows (Fig. 6‐13): If a person is a
member of an organizational ACL which belongs to the area of pharmaceutical
research, and if this ACL contains the department the user is working in, then the
person’s interest strength into this ACL has a value of 1.35.

Fig. 6‐13: Rule “interestInDepartment”

The second rule, “interestInArea” (Fig. 6‐14), is very similar to the previous rule. The
only difference is that the rule targets all organizational ACLs from TR which do not
belong to his department. Further, we set the interest strength to 1.1.

Fig. 6‐14: Rule “interestInArea”

Chapter 6 An ontology‐based information retrieval approach for professional search

122

The third and last rule, “interestInProject”, reads as follows (Fig. 6‐15): If a person is
member of a project ACL which belongs to the area of pharmaceutical research, then
the person’s interest strength into this ACL has a value of 1.4.

Fig. 6‐15: Rule “interestInProject”

Person

Interest

ACL_CHANGE

1.4

ACL_CHANGE regexp(".*_TR_PRJ_.*_[Cc]$",?aVar,?C)

=

has
Inte

re
st

=

interestStrength

value =

=

=

The interest strength numbers have been carefully chosen by trial and error. An
explanation of how these numbers manifest in the ranking of results is given towards
the end of this chapter.

6.4.2 Advanced user roles
The administrative databases enable us to define more adaptation rules than just the
previously given examples. We could define user roles which reflect typical work
areas of the company such as “Molecular Biology”, “Bioinformatics”, “Lab Worker”,
“Manager”, “Fermentation”, etc. Further, we could arrange the roles into a
hierarchical structure (e.g. an ontology), so that the associations between them are
reflected. Employees would be automatically assigned into a role based on existing
administrative information. For instance, a user receives the role “Manager” if he is
the head of several sub‐groups.

While all of this is feasible so far, the problem occurs when defining the interests of a
role. In order to associate documents with these roles we not only need to know the
organizational embedding of a document, which can be extracted from its ACLs, but
also the content it is about. Then, we could define interest rules such as “A Manager
is interested in Portfolio documents”, “A Bioinformatician is interested in documents
about Gene Sequences”, or “An employee working in Controlling is interested in
Accounting documents”. Further, we could define disinterests like “A Manager is not
interested in Lab Device Manuals”. Hence, we need to know the topic of a document
and ideally the entities occurring in it. Creating the ontology containing all the topics
and defining preferences for roles can be done with “little” effort. However,

Search results adaptation

123

engineering the categorization rules or creating a ML training and test set for each
topic is a very time‐consuming task. Developing a classifier for each topic is thus out
of the scope of this thesis. Therefore, we can only verify the idea for the selected
rules and topics.

6.4.3 Log-based adaptation
Log‐based adaptation of search results has already been introduced in Chapter 2.6.6
and Chapter 3.2.4. Log‐based methods keep track of the user’s actions. In particular,
they store the implicit click‐through data of a user’s query session in order to adjust
the ranking of search results. The main idea reads as follows: If a document is often
accessed in context of a query, then it is more relevant than others, but only in
context of the query. This principle can be applied because people usually do not
click at random on search results but instead, people read the search result
summaries before clicking [Joachims 2002]. The idea of associating queries with
clicked documents is described in [Xue et al. 2004] as the “naïve algorithm”.

Technically, the algorithm works as follows. Initially, the index contains two fields, a
CONTENT field in which the full‐text of the document is stored and a FEEDBACK field
in which the click‐through feedback is stored – per default this field is empty. If a
searcher transmits a query and if he selects an answer, the query term is added to
the FEEDBACK field. In the example shown in Fig. 6‐16, the query term “ELISA” is
added to the FEEDBACK field of the clicked document d3. Subsequent clicks are
treated analogous, i.e. if a second click under the same setting occurs, the FEEDBACK
field would contain the text “ELISA ELISA”. In future searches, document d3 will be
implicitly ranked higher due to the tf*idf measure. The more clicks, the more often
the query word is written into the FEEDBACK field, and in effect the higher the tf
value and thus the text similarity. This click‐through method thus provides query‐
dependent evidence for the ranking of search results.

Fig. 6‐16: Incorporating click‐through feedback into the document index.

d1

...

d3

click

CONTENT: „The ELISA …“
FEEDBACK:

“ELISA“

d2

d3

Search ResultsQuery

Index before Feedback

CONTENT: „ELISA …“
FEEDBACK:

d2

CONTENT: „… ELISA …“
FEEDBACK:

d1

CONTENT: „The ELISA …“
FEEDBACK: „ELISA“

d3

CONTENT: „ELISA …“
FEEDBACK:

d2

CONTENT: „… ELISA …“
FEEDBACK:

d1

Index after

Whether such a log‐based approach has any benefits in a small intranet environment
is disputed. The main problem is the discrepancy between the corpus size and the
number of users, i.e. clicks. Chapter 8 gives an empirical study of whether the log‐
based approach has any advantages over the baseline ranking.

Next, we outline extensions of the naïve log‐based method by incorporating context
information from the classification and adaptation ontology.

Chapter 6 An ontology‐based information retrieval approach for professional search

124

6.4.4 Extending knowledge-based adaptation with implicit feedback
The knowledge‐based adaptation and the log‐based adaptation methods have
strength and weaknesses. The KB method works instantly as it is based on
demographic data. However, the described KB is unable to learn by observation. The
log‐method on the other hand needs a certain amount of previously observed log‐
data in order to be effective. Further, it initially suffers by the cold‐start problem
because no log data is available.

In order to resolve these issues, we do a linear combination of both, i.e. the
relevancy votes of each are linearly combined (cf. next section). Doing so still lets an
issue unresolved, namely the fact that in a company the ratio of log data to the
number of indexed documents will improve only slowly. The ratio could be improved
if the feedback data wouldn’t be stored only for one document but for many. This
could be achieved if a method similar to [Pretschner & Gauch 1999] would be
applied. Instead of considering only the clicked document, the FEEDBACK field would
be updated for all documents which share the same topic. Of course to be effective,
the clicked document must still retain the highest score, while the other documents
should gain a lower score. This could be regulated by introducing an additional
feedback field which has a lower relevance than the main FEEDBACK field.

The suggested method could not only be applied to the topic of a document but also
to the user’s role. For instance, one could add an additional feedback field denoted
FEEDBACK_ROLE which stores the role of the person who clicked the document. The
role would encode information such as department and projects of the searchers
who clicked.

With the last two methods we would effectively expand the amount of reached
documents and people.

6.5 Weighting document relevance
The text similarity measure (cf. 2.2.2) is without a doubt one of the most important
methods for determining a document’s relevancy given a query. Alongside, a number
of other evidence factors exist which are more or less successful in improving the
retrieval performance (cf. 2.6). Most noteworthy in our context are the previously
introduced context‐based and feedback‐based evidence factors.

The introduced context‐based ranking method is a query‐independent evidence
factor because the documents are scored according to their similarity with the
searcher’s context. Therefore, the method could be considered user‐dependent. A
user‐dependent evidence factory implies that, depending on the current searcher a
document is considered relevant or not. Because context‐based adaptation is query‐
independent it must thus rely upon text similarity in order to achieve a query‐
dependent similarity ranking. Context is thus an additional evidence factor (just like
PageRank) which reflects the overall interest for the searcher. Consequently, special
care has to be taken when combining the text similarity measure with the context‐
based similarity score. On the one hand, if context is stressed too much, a query will
not have any influence on the ranking of results. On the other hand, if context is

Weighting document relevance

125

barely stressed, context will have no influence on the ranking of results. A good
balance has thus to be achieved. We configured the parameters in such a way, that
text similarity has the strongest influence on the ranking while context applies only
subtle adjustments.

In contrast, feedback evidence is a query‐dependent evidence factor. Therefore,
adjusting this factor is a less sensitive task because it affects much fewer documents
than the context based method.

We begin this section by introducing the computation of the similarity function.
Then, we give an analysis of how the context‐based evidence factor affects the
ranking of results.

6.5.1 Similarity function
Let “John Q. Public” be an employee of Roche. According to his user profile (Fig. 6‐
17) he is a member of the “TR‐IB” department, i.e. the bioinformatics department of
pharmaceutical research in Penzberg. Further, the reasoning engine has deduced
that he has two interests. Both interests are modeled as interests into documents
having a specific security group. The first interest targets the ACL
“PR_PZ_TR_ORG_TR‐IB_C”, which denotes the interest into files from the
bioinformatics department. The interest strength is set to a value of “1.35”. The
second interest targets the ACL “PR_PZ_TR_ORG_TR‐IT_C”, i.e. documents from the
technical informatics department. The interest strength is set to “1.1”. Hence, the
profile says that the user has a very strong interest in files from the bioinformatics
department, a strong interest in files from the technical informatics department, and
a normal interest in all other files.

Fig. 6‐17: User profile example of a person.

Let’s assume next, that the user “John Q. Public” is transmitting a query named
“ELISA” to the system. In the first step, the query is modified in such a way that it

Chapter 6 An ontology‐based information retrieval approach for professional search

126

targets the index’s full text field, namely the CONTENT field. In addition the query
term is set to a boost factor of 1.0, denoted by the “^” character. The role of the
boost factors are explained later. For now it suffices to know that a boost factor of
1.0 is the neutral point. A higher value means the term has more importance and a
lower value means that the term is less important. In the subsequent step, the
processed query is expanded by the context of the searcher, i.e. the preferred ACLs
are written into the query and boosted accordingly. The query expansion continues
with the last step, in which the FEEDBACK field is incorporated. Here, the query
terms are simply written again and weighted accordingly. The process is illustrated
next:

Step 1: Input query q and user u
q=”ELISA”, u=”John Q. Public”

Step 2: Query pre‐processing
q CONTENT:”ELISA”^1

Step 3: Context expansion
q CONTENT:”ELISA”^1
 ACL:” PR_PZ_TR_ORG_TR‐IB_C”^1.35
 ACL:” PR_PZ_TR_ORG_TR‐IT_C”^1.1

Step 4: Feedback expansion
q CONTENT:”ELISA”^1
 ACL:” PR_PZ_TR_ORG_TR‐IB_C”^1.35
 ACL:” PR_PZ_TR_ORG_TR‐IT_C”^1.1
 FEEDBACK:”ELISA”^2.0

So far, we have described how a user’s query is expanded, so that it not only targets
the document index field CONTENT, but also the fields ACL and FEEDBACK.

The raising question is how to incorporate the index fields and the boosting factors
into the scoring function. Incorporating the index fields is straightforward. We simply
apply the term weighting schema (cf. 2.2.3) of choice for each field. Then, the
individual weighting factors are summed up. Following that, the boost factors are
incorporated by multiplication. Assuming that we use a tf‐idf schema, boosting is
done as follows:
 iij,ij,i boostidftfw ××=

Finally, the ranking scores are computed using the cosine similarity function.

6.5.2 The context’s influence on the ranking of results
Even though the methodology of knowledge‐based adaptation has been outlined in
Chapter 6.4.1, no details have been given about how context influences the ranking
of results. Therefore, we outline next how our configuration of the user model
influences the ranking of results. In order to do so, we define four representative
keyword queries which are benchmarked against an index covering the PRPZ‐Share.

Weighting document relevance

127

The benchmark is conducted with the author’s user profile and has thus the context
of an informatics worker in pharmaceutical research.

The benchmark results of the four queries “minutes”, “agenda”, “glycation
antibody”, and “MyGene” (a human gene; not to be disclosed), are summarized in
Fig. 6‐18 and Table 6‐2. Next, we discuss the results of each query.

Fig. 6‐18: Each column illustrates the distribution of the similarity score of a different query. The blue
graphs denote the baseline ranking, i.e. the default VSM and the red graphs denote the context‐

boosted ranking. The gray line marks the median position / score.

The first query, “minutes”, is used to retrieve so called “minutes” documents. These
are template‐based documents whose content give a short summary of a meeting.
As a result of this query we get a total of 19,163 hits of which 3.41% are from the
searcher’s context. Further, hits are found across the majority of departments.
Looking at the position – score diagram depicted in Fig. 6‐18, we see that the curve
has a very low decay. In fact all documents within the top 100 are “minutes”
documents and can thus be considered relevant. This observation is supported by
the mean similarity score of 0.79. We receive such a high score as this document
type is common across several departments and because the majority is based on a
common template. Even though in the original baseline ranking not a single

Chapter 6 An ontology‐based information retrieval approach for professional search

128

document from the searcher’s context occurs in the top 100, adaptation pushes 8
documents from the user’s context into the top 10. Context evidence has here a
rather strong influence and separation effect on the ranking, because the similarity
curve has a very low decay. Hence, a slight boost by context evidence suffices to
push an item from the end of the result list towards the front.

The second query, “agenda”, is very similar to the previous one. In just the same
manner, the intention is to retrieve template‐based documents. In contrast to
“minutes”, “agenda” documents do not summarize the decisions taken in a meeting
but they list the topic to be discussed in the session. When searching for “agenda”
we get 5,177 hits. This is slightly less than before because not every meeting has an
agenda. Nonetheless, the amount of hits matching the searcher’s context is almost
the double with a value of 7.77%. The position‐score curve has a low decay. Only
between position 10 and 20 we can observe a high slope. The reason is that the first
documents have the word agenda in their path name which gives them a
considerable boost in similarity compared to the others. The mean similarity in the
top 100 of the baseline ranking has a value of 0.65. This high value indicates that
relevant documents are also listed towards the end of the list. In contrast to the
previous query, 46 items are from the searcher’s context in the top 100. The items
from the searcher’s context are clearly separated from the others if context boosting
is applied.

The query “glycation antibody” is very different from the previous queries as only
few documents have a high similarity, while the majority has a low similarity. The
mean similarity value of 0.4 supports this. The decay of the similarity curve is thus
much stronger. In total 7.51% of the hits are from the searcher’s context. In the top
100 only 4 documents are from the searcher’s context. Applying context adaptation
shifts 3 documents from the user’s context into the top 10, but has beside this no
major influence on the ranking of results.

Table 6‐2: Statistics of result distribution for each sample query.

 minutes agenda glycation
antibody

MyGene

Total hits 19,100 5,177 346 4,601
Total nr. of hits from the
searcher’s context

654 or
3.41%

399 or
7.77%

26 or
7.51%

146 or
3.17%

Nr. of hits from the
searcher’s context in
top‐100

0 46 4 5 Baseline
ranking

Nr. of hits from the
searcher’s context in
top‐10

0 0 0 2

Context
ranking

Nr. of hits from the
searcher’s context in
top‐10

8 10 3 5

The query “MyGene” has an even stronger decay of the similarity score than the
previous query. The mean similarity value is 0.38. In total 3.17% of the hits are from
the searcher’s context. In the top 100, 5 documents are from the searcher’s context.
Applying adaptation results in a decrease of the mean similarity value to 0.3. The

Discussion and related work

129

reason for this is that in the top 10 of the baseline ranking, 2 items are already from
the searcher’s context. Hence, if the items, which have already a high score, are
boosted, then the difference to the items which do not belong to the searcher’s
context gets even larger.

We have demonstrated the effect of context based ranking using four different
queries. The examples cover two types of queries, namely queries where the
similarity score has a low decay and queries where the similarity score has a strong
decay. Wrapping it up, context boosting is configured in such a way that it has a
strong effect on queries having many similar result items, and that it has a subtle
effect on queries having only few result items with a high text similarity.

6.6 Discussion and related work
In this chapter we have shown the concepts of a professional search tool which
incorporates the quality features outlined in Chapter 5. We introduced three
ontologies which build the “semantic glue” between various parts of the described
concept. In detail, they provide the structure for capturing entities appearing within
a text document as well as the topic of a document. Further, they provide the
foundation for user modeling so that context‐based adaptation of search results is
enabled. The ontologies are filled with facts by copying existing data from databases
into the ontology, by logical inference, and by means of ML and NER.

Interestingly, most parts of the ontologies are in the strict sense only taxonomies, i.e.
only few concepts are defined by means of rules. In this respect we could have also
used OWL to describe the classes and their relationships. However, modeling the F‐
Logic rules into OWL would not be feasible. First, OWL has no variables. In effect,
modeling becomes difficult, because there is not a “thing” one can refer to. Instead
everything has to be described by means of axioms. Second, OWL uses the open
world assumption – a paradigm which is good for the Internet but not for closed
intranet environments. Third, there is no option for integrating built‐in functions in
order to externalize calculations which are not suitable to logics.

Regarding relevancy ranking of documents, we incorporated three evidence factors:
text similarity based on the tf‐idf measure, user context, and search history. These
factors were combined by trial and error until the best parameter setting was found.
Other evidence factors such as URI length / depth are not incorporated. Similarly, we
do not incorporate a document’s recency into the ranking of results. Instead the user
has the freedom to decide between a ranking by relevance or by date. In future, we
might incorporate the timestamp of documents into the ranking process. When
doing so, we would apply a knowledge‐based approach. In particular, we would
encode the relevant time period of common queries in the KB. For instance, we
could define a rule which strongly stresses recency if the user is looking for
documents of type agenda.

In Chapter 4.3.1 we discriminated three research areas in OBIR: “Search in formal
ontologies”, “Domain ontologies as a support for document search”, and “ontology‐
based adaptation in IR”. The first research area is not covered by our OBIR approach.

Chapter 6 An ontology‐based information retrieval approach for professional search

130

Instead we focus on the second and third area. Our OBIR concept is a mixture of
“domain ontologies as a support for document search” and “ontology‐based
adaptation”.

Our approach has some overlaps with the approach described in [Castells et al.
2007]. They use in just the same manner ontologies to capture the metadata of
documents. In particular documents can be categorized into pre‐defined topic
taxonomies such as DMOZ. In contrast to our approach they use a simple method
based on word‐occurrence to determine whether a document belongs to a certain
topic or not. This can be compared to some extent with the annotation of the entity
type Tag conducted in our system. However, we use the entities extracted only as a
mean to gather features on which ML or KB text categorization is applied. This
additional layer is not described by Castells et al. However, they mention that such
an extension would be possible. Another key difference is that we do not transform
the initial queries into a rule‐based query language such as RDQL. Instead we keep all
relevant data in the index and just expand queries to other fields of the index.
Therefore, we can use the default VSM without applying any major changes. The last
difference is that we offer context‐based adaptation while Castells et al. do not.

In [Middleton et al. 2004] an ontology‐based recommender system is described. The
main difference to our approach is that we use adaptation to adjust the ranking of
results and not to provide recommendations. A commonality of the two approaches
is that both make use of a topic ontology into which documents are classified. In the
case of Middleton, a sub‐branch of the DMOZ ontology is used. In this respect they
benefit double. First, they do not need to create a taxonomy for their classification
task. Second, they can use pre‐categorized samples as a training set and can thus
circumvent the time‐intensive task of creating a training and test set, respectively.
This is another difference to our work. External ontologies can usually not be applied
as is to the corporate environment. Hence, existing ontologies need to be adjusted
or even created from scratch (as was the case in this research). Similarly, creating a
training set is a task which comes up in every domain.

The following chapter describes the technical details of the prototype YASA, which is
the result of implementing the concepts and features described in this chapter.

131

Chapter 7

The professional search agent prototype YASA

“The difference between a great design and a lousy one is in the meshing of the
thousand details that either fit or don't, and the spirit of the passionate intellect that
has tied them together, or tried. That's why programming on the basis of ‘lists of
features’ is a doomed and misguided effort. The features can be thrown together, as
in a garbage can, or carefully laid together and interwoven in elegant unification, as
in APL, or the Forth language, or the game of chess.”

Ted Nelson (1937 –)

7.1 Implementation decisions ...131
7.2 Architecture of YASA..134
7.3 Discussion...139

YASA (Your Adaptive Search Agent) is the result of implementing the features and
concepts outlined in the previous chapters. It is a prototype of a professional search
agent which is made available to scientists in the Pharmaceutical Research division of
Roche in Penzberg, Germany. About 400 employees have access to the pilot.

This chapter is organized as follows. First, we describe the implementation decisions
taken in YASA, i.e. which components have been used for which part of the system.
Second, we describe YASA’s architecture. Then, we finish the chapter with a brief
discussion.

7.1 Implementation decisions
The first thing we decided was to use Java as the main programming language for
developing YASA. Java is platform‐independent and more importantly, it enables us
to access a large repertoire of public domain software libraries. Another central
decision was to make YASA available as a web application (deployed on Apache
Tomcat16) rather than a stand‐alone application. Thereby, users as well as developers
profit. Users benefit because no client software needs to be installed – they can
access YASA from every standard Roche computer using the web browser.
Developers benefit by reduced maintenance costs as updates and patches need only
to be applied to one central system.

16 http://tomcat.apache.org/

Chapter 7 The professional search agent prototype YASA

132

Chapter 6 described in detail the architectural components of a professional search
tool. The mentioned key technologies were information retrieval, semantic
technologies, natural language processing, and machine learning. Given that these
technologies are already applied since several years or even decades, software
developers had enough time to develop full‐fledged frameworks which cover many
parts of the mentioned areas. Not only commercial software packages have been
shaped in the past but also many public domain solutions. Therefore, we do not re‐
invent the wheel but rather incorporate existing solutions into our professional
search architecture. The following sections give an overview of existing libraries and
frameworks on which YASA depends.

7.1.1 Search engine: Lucene
YASA builds upon and extends the Lucene search engine. Lucene provides basic
indexing and retrieval functionality and is published by the Apache foundation. Using
Lucene instead of a commercial search application (c.f. 2.5.4) has several
advantages. First, it does not require a commercial license and regular updates are
provided by the community at no costs. Second, the Java source code as well as a
comprehensive technical documentation of Lucene is available online. Third,
extensions can be easily built on top. Fourth, developers for Lucene are much more
likely to cause less costs compared to developers of commercial search engines.

Compared to other search engines, Lucene has a fast retrieval time and a low index
size (approximately 25% of the original corpus size). The high compression of the
index comes at the cost of indexing time, which takes considerably longer compared
to others [Middleton & Baeza‐Yates 2007]

Because the positive aspects outweigh, we decided to use Lucene as the search
engine on which the prototype was built.

7.1.2 Semantic web middle-ware: OntoBroker
In Chapter 4.2.4 we compared F‐Logic with OWL and concluded that F‐Logic is better
suited for companies due to its closed world assumption, unique naming
assumption, and due to its support for rules. F‐Logic is distributed commercially by
the company Ontoprise, and implemented in the product OntoBroker – a semantic
web middle‐ware. A framework for ontology modeling is provided by the OntoStudio
environment. Since the beginning of 2009, OWL is also supported by OntoBroker and
OntoStudio, respectively. Arguably this is a convenient feature as it mitigates
potential transition problems.

Another important aspect is that F‐Logic can be extended rather easily by means of
so called “built‐ins”. These are Java routines which can be accessed from F‐Logic by
means of function names. This is particularly useful if computations need to be
conducted which are not well suited for reasoning algorithms. In Chapter 6 we
showed some F‐Logic snippets in which built‐ins were used. In our rules, we use e.g.
built‐ins to determine if a sequence of entities occurs within a maximal distance of
each other – a computationally expensive task if done in F‐Logic but a cheap task if
done in Java.

Implementation decisions

133

The last point regards access to OntoBroker’s functionality. All communication is
done by means of the WebService interface. OntoBroker is thus only loosely coupled
with YASA. A disadvantage of using a WebService is the overhead produced by
wrapping all communications in XML. While the milliseconds lost during wrapping
have no impact for ad‐hoc requests, they sum up quite fast if requests are sent
frequently. The latter is the case when crawling and annotating the documents. This
was also a reason to limit text categorization to the first 10,000 entities (c.f. 6.4).

7.1.3 Text analysis platform: UIMA
For the implementation of the NLP tasks, we considered two platforms: GATE
(General Architecture for Text Engineering) and UIMA (Unstructured Information
Management Architecture). GATE17 is provided by the Natural Language Processing
Research Group of the University of Sheffield since 1995. GATE is a widely accepted
and a heavily used toolkit for Text Mining. UIMA18 was first developed and published
by IBM Research in 2005 before it was re‐published in 2008 under the hood of the
Apache foundry. UIMA particularly focuses on performance and scalability, i.e. the
analysis of large volumes of unstructured information to discover new knowledge.

Both software architectures are based on Java (UIMA additionally provides a C++
Framework) and they enable developing and deploying of text mining applications.
Indeed, the processing pipeline architecture of UIMA is similar to GATE. The software
architecture of UIMA specifies interfaces for components, data (documents), and
representations. A particular strength is the possibility to aggregate analysis engines
(a component that analyzes text and infers information about them) recursively by
composing them from other analysis engines. Wiring and configuration of the
analysis engines is done by means of XML files – a convenient feature.

The key difference to GATE is that UIMA uses strongly typed features. In GATE on the
other hand, annotations can have any features with any values. Arguably, being able
to specify input types and output types of an annotator is beneficial. In particular,
typed annotations fit perfectly with ontologies, as these are also strongly typed.
Despite the fact that UIMA has not been around so long as GATE, there are already a
considerable amount of UIMA compatible annotators available in the public domain.
Further, several third‐party annotators have been integrated. For instance, the
Stanford Named Entity Recognizer – a statistical annotator – is integrated19 in UIMA.
There are even efforts to integrate GATE into UIMA. Therefore, the choice of using
UIMA or GATE was strongly pushed towards UIMA as it seems to be the upcoming
standard for NLP tasks.

7.1.4 Machine learning platform: WEKA
WEKA (Waikato Environment for Knowledge Analysis) is a software platform for ML
developed at the University of Waikato. It is written in Java and distributed under
the GNU Public License. The main features offered are: data pre‐processing,

17 http://gate.ac.uk/
18 http://incubator.apache.org/uima/
19 http://www.florianlaws.de/

Chapter 7 The professional search agent prototype YASA

134

classification and regression, clustering, association rule mining, attribute selection,
evaluation, and data visualization. A particular strength of WEKA is the amount of
implemented filters and algorithms as well as the ease by which the various
components can be combined in a process pipeline.

Because of the rich features WEKA provides, its performance, and its usage in the
scientific domain we decided to use WEKA as the machine learning platform.

7.2 Architecture of YASA
Having introduced the components YASA is using, we now go into the details of its
architecture. YASA makes use of a multi‐tier architecture (Fig. 7‐1), which consists of
a presentation layer, an action layer, a service layer, and an adaptation layer.

Fig. 7‐1: Multi‐tier architecture of YASA’s search & retrieval part.

Presentation Layer

Action Layer

Service Layer

Applications TagIt Wikipedia PubMed DMOZ
Telephone

Book
Lucene

Adaptation Layer

The presentation layer is realized using Stripes20 (a presentation framework for
building web applications), JSP (Java Server Pages) together with CSS (Cascading
Style Sheets). AJAX is used for fetching data, like the total number of results or
tagged documents, asynchronously.

The action layer contains all the “ActionBeans” from the Stripes framework.
ActionBeans are responsible for handling actions that are coming from the client
(search requests, refine search, export results, etc.) by delegating calls from the
client to the service layer.

The service layer stands in the middle between the user’s requests and the sources
containing the data. Basically, it delegates the search request to each source and
then returns the results. In case the queried source supports guided navigation, then
facets are also returned. Currently, faceted navigation is provided by the source

20 http://www.stripesframework.org/

Architecture of YASA

135

“Applications”, and by YASA’s local index. Communication with the sources is done
by means of WebServices, direct HTTP requests, or by means of direct API calls.

The adaptation layer builds the bridge to YASA’s internal index. In particular, the
current user is delegated to OntoBroker so that his context is returned. Given the
searcher’s working context, the initial query is adjusted so that the user’s assumed
interests are reflected. The expanded query is then transmitted to the index and the
results are fetched.

YASA consists of two parts (Fig. 7‐2). The first part contains the index and annotation
functionality, which enables YASA to create a full‐text & metadata index of
documents located in databases, file shares, and intranet web sites. The built‐in
indexer is used to scan local sources of Pharma Research in Penzberg, i.e. a workflow
database, a plasmid database, a hardware inventory database, the PRPZ‐Share, and
the PRPZ‐WebSite. The second part of YASA contains the search & retrieval
functionality. The core components of this part are the GUI, the service layer, and
the adaptation layer. The service layer delegates queries and results between the
sources and the GUI. The adaptation component adjusts the ranking of results for
the sources indexed by YASA.

Fig. 7‐2: The components of YASA.

Indexer Search & Retrieval

File Shares

Data Adapter

Lucene (Indexer)

Crawler

Annotation

UIMA

WEKA

Ontologies

Rules

YASA Index

Service LayerAdaptation

User Profile

Rules

Ontologies GUI

IntranetDatabases

Applications

Lucene (Searcher)

TAGITTelephone
Book

Next, we discuss some key components of YASA in more detail, namely the data
connectors, the crawler, the annotator, the GUI, the service layer, and the interfaces
of the searchable sources.

7.2.1 Data adapter
The data adapter of YASA enables access to databases, file shares, and intranet web
sites. The content of files is parsed with the help of several third party tools such as
the Apache POI21 and the Apache PDFBox22 libraries. In effect, we are able to parse

21 http://poi.apache.org/

Chapter 7 The professional search agent prototype YASA

136

plain text files, all MS Office formats, PDF files, and the metadata of various image
file formats.

Integrating databases requires several issues to consider. First, a user with read
permissions is required so that a connection to the database can be established.
Second, the tables and relations to be indexed must be specified. Third, the database
columns must be mapped to fields known in YASA. Fourth, the text processing
pipeline (e.g. tokenization) should be configurable for each database column, i.e.
index field. Fifth, the view of result items must be defined. The value of a single
database cell is useless without its context, i.e. its relations to other columns. Sixth,
the security settings must be defined, i.e. who is allowed to view the items and who
is not. Indeed, this a big issue because database systems do not have a common
schema of how to store security settings. Inherent to this problem is the inability of
database systems to incorporate the security schema of the operating system.

In order to solve these problems, database sources crawled by YASA are described
using XML files. Such an XML configuration file typically contains connection
parameters, select statements, field mappings, view settings and global security
settings. XML files are also used to manage the fields used in YASA. In particular, new
fields can be added dynamically, and it can be specified how they should be
processed (i.e. which text processing methods to use) and how they should be
displayed in the search results. YASA parses the XML files and then takes the
required actions. XML is not always the cleanest way to represent domain
knowledge. Indeed, the mapping of “database columns” to “index fields” would be
better expressed in an ontology. However, at the time the DB module was
developed, we had not yet licensed the semantic web middle‐ware OntoBroker so
that a pragmatic approach was chosen. In future, we will migrate to an ontology‐
based mapping approach.

The file shares are accessed by means of the samba networking protocol. Because
the Java Development Kit v6 does not support this protocol, we had to use a third
party component named JCIFS23. This is an open source library which implements the
samba networking protocol. In addition it enables us to extract the files’ security
permissions – an information on which adaptation heavily relies.

The integration of the local web site was – except one minor issue – straightforward.
The PRPZ‐WebSite contains a common frame across all pages, which provides links
for navigating the content. This frame posed a problem for search: if e.g. the frame
contains the word “antibody” and a user searches for the term “antibody”, then all
pages of the web site would be returned because all pages share the same frame.
Arguably, this is not what a user expects. Therefore, we developed a filter by which
layout frames could be removed. The exclusion of the surrounding frame removes
potential false positive hits.

22 http://incubator.apache.org/pdfbox/
23 http://jcifs.samba.org/

Architecture of YASA

137

7.2.2 Crawler
The crawlers are executed sequentially, i.e. the file share is scanned first, then the
web site, and finally the databases. In addition we have two other crawling routines.
The first one scans the log data and extracts the relevant information so that the
FEEDBACK fields of the index can be updated accordingly (c.f. 6.4.3). The second
crawler scans the index and updates the metadata in case the annotators, i.e. the
classification rules or the learned models change. This might be the case if new
document topics are incorporated.

In order to improve crawling speed, the file shares as well as the web pages, are
scanned in parallel using multiple threads. This way the available network bandwidth
is used more efficiently.

The crawling process can be scheduled to run in a certain interval. In our case
crawling runs once a day, starting at night – a period in which we expect the lowest
network traffic.

7.2.3 Annotator
The annotation module communicates with UIMA, WEKA, and OntoBroker. The full‐
text content is passed first to UIMA which extracts the entities. These are then either
transmitted to the OntoBroker so that the knowledge‐based classification can be
conducted or they are transmitted together with the full text to WEKA so that
categorization based on machine learning is done. In case annotations could be
extracted they are transmitted back to the indexer.

The annotation functionality of UIMA is encapsulated in a web service, so that other
applications can also benefit from the annotators. Similarly, OntoBroker is accessed
by means of a web service interface. Only WEKA is directly accessed by means of a
local API call.

7.2.4 Indexer and searcher
The Lucene indexer receives the full‐text content (if available) and all metadata
information which could be extracted from the documents. This data is then written
to the index. YASA keeps three separate indexes – one for each type of source
(database, file share, intranet web) – so that maintenance costs (index optimization,
index updates) are reduced. Separating the indexes does not involve any serious
disadvantages. Indeed, one could even merge the results of all three indexes
seamlessly, because the same ranking algorithms are applied on all of them.

7.2.5 Graphical user interface
The graphical user interface of YASA consists of five sections which are described
next (Fig. 7‐3). The top of the GUI contains the query input box. Below that, the
section “Tagged Documents” is located. Here, search results from Roche’s tagging
application (TagIt) are displayed. A result answer in this pane consists of the
document’s title, its URL, and the assigned tag labels.

Chapter 7 The professional search agent prototype YASA

138

The section below the “Tagged Documents” pane is split into two. The left hand side
contains various filters for the result items displayed on the right hand side. The
upper filter pane, named “Select source”, is used to restrict results to a certain
source. The lower filter pane, named “Refine search”, offers several facets by which
results can be sliced and diced. The visibility of a facet depends on the result set and
on the selected source. The displayed results in the “Indexed Documents” pane are
updated depending on the selected filters. Because of the heterogeneity of the
sources, the amount of information displayed in the result pane varies. In case of file
shares, information such as the document’s name, its author, the department to
which it belongs, and its topic are displayed. In case the selected source is a
database, the displayed information might be completely different. Search results in
the “Tagged Documents” and “Indexed Documents” pane can be sorted by relevance
or by date using descending and ascending order, respectively.

Fig. 7‐3: Screenshot of YASA’s search interface.

YASA also provides image search, which can be reached from the very top. Image
search is structured similarly to document search. A difference is that result items
consists of thumbnail picture previews instead of text snippets.

The user interface is also the place in which the user’s interactions with the system
are tracked. In particular, transmitted queries as well as selected result answers are
recorded. In addition anonymous information is stored, such as the department and
involved projects of the searcher.

Discussion

139

7.2.6 Service layer
The service layer contains the client‐side code for querying the sources YASA
(databases file shares, web sites), Applications, TagIt, Wikipedia, PubMed, and
DMOZ. Each of the sources is made accessible by a remote interface, i.e. they offer
at least a method by which the data can be queried. The DMOZ interface additionally
offers a method for retrieving facets. The remote interface can be a simple CGI
interface as is the case for PubMed and Wikipedia, or it can be a web service
interface as is the case for TagIt, Applications, and DMOZ. Only the index of YASA is
accessed by a local API interface using Lucene’s searcher module.

The external sources (Wikipedia, PubMed and DMOZ) are mirrored in‐house in order
to prevent confidential information from leaking to the public. The mirrors are
updated once a month. The PubMed mirror was already available when YASA was
developed. The Wikipedia and DMOZ mirrors on the other hand had to be
implemented from scratch. Similarly, the services for the sources Applications and
TagIt have been implemented while YASA was under development.

All services except TagIt make use of Lucene in order to index their data. In contrast,
TagIt does not have a full‐text index but merely a database driven search
functionality. This solution is not optimal in terms of information retrieval. First, no
ranking by text similarity is provided and second, word variants are missed at search
due to the lack of stemming. The first issue is handled by sorting tags by the number
of times a tag has been assigned to a URL, and the second issue is simply ignored.

Arguably, the service layer is a place where overhead is created because queries are
transmitted blindly to every source. Indeed, it would be better if we knew which
sources are relevant for the query and which not. Then, we could restrict result
fetching to the relevant sources only. In context of this thesis we did not investigate
this issue. However, we believe this would be an interesting research field, especially
if the number of considered sources is large.

Another service which is neither depicted in Fig. 7‐1 nor in Fig. 7‐2 is the Feedback
service. This service provides an interface for storing and querying log data. The
service is called from the GUI (using AJAX technology) each time a user is searching,
navigating, or selecting a query. The service is also called during the crawling process
in order to update the FEEDBACK fields in YASA’s index.

7.3 Discussion
We introduced YASA, a domain‐aware complement to standard search engines.
YASA gives access to multiple sources, it offers role‐specific ranking of results, and it
exploits a company’s knowledge, i.e. existing metadata and log data to improve
several aspects of search for information.

YASA applies a federated search approach in which search results of the sources are
not merged but rather displayed separately. Using this approach for achieving a one
single entry point has several implications. First, we circumvent the problem of

Chapter 7 The professional search agent prototype YASA

140

merging search results from heterogeneous sources [Hawking 2004]. Second,
federation is not a highly scalable solution.

On the one hand, federation increases the network traffic because search requests
are transmitted to each source. On the other hand, relying on third‐party search
services means that an accurate result list cannot be built until all services have
returned their answers. Consequently, the speed at which the results are displayed
depends on the response time of the slowest search service. In fact, we have to
admit that we can already notice short delays until the results from PubMed, DMOZ,
Wikipedia, and TagIt are returned.

Despite these issues, we argue that YASA’s approach is feasible because YASA
incorporates relatively few external search services. Indeed, the frequently queried
internal sources (databases, file shares, web sites; Chapter 8.1.1) are indexed by
YASA itself so that no overhead is produced. Nonetheless, merging and displaying
results from databases, file shares, and web sites is not trivial. Therefore, we do not
yet offer a unified view across all sources.

In the annotation as well as the adaptation components, web services are used for
communication purposes. Because the services are remote and because data needs
to be wrapped into an XML data exchange format, a certain amount of latency
occurs. During annotation this latency can sum up considerable. Nonetheless, a user
does not notice this because indexing is done offline in the background. In case of
adaptation of search results – which is online – the latency is also not noticeable
because a single request takes only a few milliseconds.

Another aspect concerns the search interface. Per default, a keyword based search
approach is applied, in which most indexed fields are queried. Additionally, a user
can refine search results by using the GUI’s refine search options. Further, advanced
users can directly restrict the search scope by using YASA’s advanced query syntax.
The query “AUTHOR:John” e.g. would restrict search to the index field AUTHOR.

The last issue we want to discuss concerns the usage of text processing on corpora
containing more than one language. Indeed, on the PRPZ‐Share we can find
documents in German language, English language, and even documents written in
both languages: 21% of the documents are in German, 54% of the documents are in
English, and 25% of the documents contain a mix of English and German sentences.
Considering this distribution and especially the large amount of documents using
both languages, we created our text processing pipeline as follows. Tokenization is
done with the Porter Stemmer – we thus ignore the German language in this step at
the risk of obtaining wrong stems. Stop word removal is done for both languages, i.e.
we incorporate a stop list consisting of German as well as English words. Arguably,
performance could be improved if we would use a German word tokenization
algorithm for the 21% documents written in German language. However, doing so
would have added more complexity to the system. Even though we renounced on
this step in the prototype, it could be added in future releases if necessary.

141

Chapter 8

Evaluation

“A theory is something nobody believes, except the person who made it. An
experiment is something everybody believes, except the person who made it.”

Albert Einstein (1879 – 1955)

8.1 Usage, access, query, and session statistics ..141
8.2 Text categorization performance ..150
8.3 Retrieval performance evaluation using click‐through data155
8.4 Controlled experiments ...161
8.5 Discussion...176

This chapter presents empirical results obtained by evaluating the YASA prototype in
the professional context of research and development. The analysis is focused on
determining which of the principles implemented in YASA bring a significant
improvement in professional search. We performed online as well as offline
evaluations of the system. Online evaluations (observational studies) were
conducted by recording the click‐through data. Offline evaluations were done by
means of controlled experiments. The online evaluation has the advantage that a lot
of data can be captured to insignificant costs. However, guessing but not knowing
the user’s intention, the interpretation of results could be misleading. The offline
evaluation on the other hand does not have this disadvantage. However, only few
persons can be convinced to participate in such studies.

We begin this chapter by giving general statistics about YASA in the deployed
context. In particular, we analyze how the usage of YASA and other search engines
changed with time. Further, we provide an analysis of the query sessions in YASA.
Following that, we focus on the text categorization performance. Then, the retrieval
performance is evaluated. Next, the results of controlled experiments are shown
which target various aspects of the prototype. Finally, we conclude the chapter by
giving a wrap‐up and interpretation of the obtained results.

8.1 Usage, access, query, and session statistics
This section examines several aspects of the search engine prototype YASA and its
usage within the investigated departments. We start by investigating how the usage
of search engines on the PRPZ‐WebSite has changed since 2007. Then, we focus on
the prototype YASA: First, we examine which sources are primarily accessed by the

Chapter 8 Evaluation

142

scientists; Second, we conduct statistics about individual queries; Third, query
duplicates are investigated; Fourth, the characteristics of query sessions are
outlined; Fifth, click statistics are given.

All statistics are based on log data which were mostly gathered between January ’09
and June ’09. Prior to the calculation of the statistics, we pre‐processed the log‐data
so that the queries have a canonical form. In particular, all queries were lowercased,
special characters were removed, and queries were split into terms using a
whitespace tokenizer. Further, query terms were paired with any given operators
(AND, OR, and NOT) and ordered alphabetically. The last step could be done because
the term sequence has no influence on the result set produced by YASA.

Before proceeding, we give some general statistics about YASA’s index. The index
contains approximately 675k documents (Table 8‐1). Most documents are located on
the PRPZ‐Share having about 670k files. The PRPZ‐WebSite and the indexed
databases contain only 1.7k documents and 4k records, respectively.

On the PRPZ‐Share we counted in total about 96M distinct terms. The total is
extremely large because it includes also non‐dictionary words such as arbitrary
numbers (e.g. “1234”). A filter counting only the words from the dictionary was not
applied. The language of the files distribute as follows: Approximately 50% of the
documents are written in English, 20% are written in German and the rest contain a
mix of sentences written in both languages.

Table 8‐1: YASA index statistics in July ‘09.

Language Nr. of
Documents /

Records

Nr. of Terms
(in CONTENT

field)
de en mixed

PRPZ‐Share 669,745 95,953,036 21% 54% 25%
PRPZ‐WebSite 1,753 39,950 19% 51% 30%
Databases 4,048 ‐ ‐ ‐ ‐

8.1.1 Changes in the search engine usage on the PRPZ-WebSite – A log file
analysis

In Chapter 5 we conducted an initial analysis regarding the IR situation in the
investigated departments. Amongst others we investigated in 2007 the usage of
search engines linked from the local web site of Pharmaceutical Research in
Penzberg (Fig. 5‐4). Since then, the access profile changed significantly (Fig. 8‐1). First
of all, the number of search engines linked on the PRPZ‐WebSite raised from six
search tools in 2007 to eight search tools until the mid of 2008. The additionally
linked search engines are the prototype YASA, the online dictionary Leo (English‐
German), and a search engine targeting the Diagnostics division of Roche. The tool
“Google search appliance” is not listed anymore as its license was discontinued after
the introduction of YASA.

Google’s web search is still the most frequently accessed tool in the investigated
departments, followed by the in‐house telephone book. While access to the

Usage, access, query, and session statistics

143

telephone book remained about the same, access to the search engine Google
dropped by approximately 10%. The most likely reason is that the search engine Leo
is now directly accessible from the PRPZ‐WebSite. Prior, workers were used to reach
the dictionary by transmitting the navigational query “leo” to Google – as could be
observed from the logs in 2008. Further, we assume that another reason might be
due to YASA’s integration of DMOZ, which covers parts of the Internet. The usage of
the search engines targeting the pharmaceutical intranet web pages and the
diagnostics intranet web pages has not changed significantly. Similarly, access to
Wikipedia remained about the same. The usage of PubMed however, grew slightly.
The most significant change occurred in the search engine which originally targeted
the PRPZ‐Share. In the past, Google’s Search Appliance had a fraction of only 0.3%.
YASA on the contrary, which has replaced Google Search Appliance, has reached a
quota of 11.9% – a significant increase.

Fig. 8‐1: Usage of search engines linked from the PRPZ‐WebSite.
Data logged over a period of 6 month (Jan ‘09 – June ‘09).

The first version of the prototype YASA was introduced in January 2008. At that time
YASA’s functionality was very limited: Search was only possible on the PRPZ‐Share
and adaptation was merely applied based on the searcher’s departmental
background. In March 2008, we introduced the first prototype to approximately 40
scientists from Pharmaceutical Research in Penzberg. As a result the usage number
grew significantly in that month (Fig. 8‐2). In the subsequent month more and more
functionality was integrated. Most notably, in July 2008, we expanded the coverage
of the PRPZ‐Share to the patents department and in 2009 we indexed all of the
PRPZ‐Share including secured folders. In January 2009 an increased usage of YASA
could be observed. Eventually this is because of the inclusion of the previously not
searchable secured folders. Wrapping it up, the usage of YASA grew steadily the
more principles were implemented and the more workers heard about the tool.

Chapter 8 Evaluation

144

Fig. 8‐2: Number of queries transmitted to YASA per month.
Data logged over a period of 18 month (Jan ‘08 – June ‘09).

The diagram displaying the query‐per‐hour distribution (Fig. 8‐3) follows the typical
pattern of the workday. At about 8 o’clock a large increase can be observed, which
has a local minima at noon due to lunch, before it decays the later the hour gets. The
peak usage of about 10 queries per hour is reached at 11 o’clock.

Fig. 8‐3: Average number of queries per hour.
Data logged over a period of 18 month (Jan ‘09 – June ‘09).

8.1.2 Access of sources within YASA
In order to gather information about access to sources within YASA, we traced
source access over a period of three month in 2009 (Fig. 8‐4). The vast majority of
queries (91.3%) target the PRPZ‐Share. The sources PRPZ‐WebSite and PubMed have
a similar access of 2.4% and 2.7%, respectively. DMOZ and Wikipedia are barely
queried as is reflected by their access frequency of about 0.4%. The database sector
has a fraction of 2.9%. Here, most requests target the telephone book (71.8%) – a
similar observation to that in Fig. 8‐1. The software application repository is the
second most frequently accessed database having a fraction of 18.1%. The databases

Usage, access, query, and session statistics

145

Phasis (Pharmaceutics animal study information system), TheraPS (workflow
database), HWI (hardware inventory), and Plasmid are barely accessed by means of
YASA. Their low usage was expected. The telephone database and the application
database contain information which is freely accessible by all searchers and which is
relevant to most employees. In contrast, access to the other databases is often
restricted and they contain very specific information which is only relevant to a
minority of the staff. Hence, our observation reflects well the access distribution to
the sources.

Fig. 8‐4: Query distribution on sources within YASA.
Data logged over a period of 3 month (Apr ’09 – June ’09)

In addition to the queries we also logged the clicks, i.e. the document access
frequency, for some sources (Fig. 8‐5). We excluded databases from the click
statistics because only few databases offer clickable links. Even though, the database
“Applications” does usually offer clickable links to the intranet homepage of the
listed application, there are still some entries which do not have a homepage
associated. Similarly, for the databases “Telephone Book”, “Phasis”, “TheraPS”,
“HWI”, and “Plasmid” there are no clickable links available. Instead, all relevant
information is displayed with the result item. Indeed, offering links would be a
convenient feature especially for databases which are highly related to applications
such as “Phasis”, “TheraPS”, and “Plasmid”. A hyperlink which would open the

b) Databases

a) Overview

Chapter 8 Evaluation

146

selected item in context of the application would be a convenient feature. However,
the respective applications lack this linkage functionality.

The statistics for the selected sources (i.e. the non‐database sources) shows that
most document requests (89.3%) target the PRPZ‐Share. The remaining 11.7%
percent are partitioned amongst Tagged Documents, DMOZ, PubMed, Wikipedia,
and PRPZ‐WebSite. The source “Tagged Documents” is the leader of this minority
having a frequency of 6.2%. Following that, PubMed as well as PRPZ‐WebSite have
an access frequency of about 2%. The least targeted items are results from Wikipedia
(0.3%) and DMOZ (0.1%).

Fig. 8‐5: Click distribution of sources within YASA.
Data logged over a period of 6 month (Jan ’09 – June ’09).

8.1.3 Statistics concerning individual queries
During the log period in 2009 we recorded a total of 6,897 distinct queries which
have been transmitted to YASA. The average query has 1.69 terms. Most queries
have either one term (56%) or two terms (29%). Hence, the number of terms used in
a query is usually small, even though occasionally queries with up to 30 terms could
be observed (Table 8‐2).

Table 8‐2: Number of terms per query.

Queries having 1 term 56.0%
Queries having 2 terms 29.4%
Queries having 3 terms 9.9%
Queries having >3 terms 4.7%
Max terms per query 30
Avg. terms per query 1.69

Concerning the Boolean operators (AND, OR, and NOT) we could observe that these
are merely used in 0.45% of the queries (Table 8‐3). Further, we could observe that if
operators are applied, most searchers use only one operator, very rarely two, and
never more than two operators. This result is in contrast to the empirical study
conducted by Mühlbacher, which suggests that Boolean operators are considered
quite important by scientists at Roche (Chapter 5.1.5).

Usage, access, query, and session statistics

147

Table 8‐3: Number of Boolean operators per query.

0 operators in query 99.55%
1 operator in query 0.43%
2 operators in query 0.02%
>2 operators in query 0%
Max operators in query 2
Avg. operators per query 0.0045

Facets on the other hand are used considerably more often. Indeed, users are
refining search results by means of guided navigation in 10.2% of the searches (Fig.
8‐6). The “File format” facet is the most used aspect by which documents are filtered
(57.9%). Indeed, the file format is a very good tool to filter results by spreadsheets
(presumably experimental results), presentations, and full‐text documents. The
second most frequent facet is “Department” (28.4%). The “Year / Month” facet is the
third most prevalent aspect (8.9%) by which results are filtered. The “Project” and
“Category” facets are used least with a frequency of 2.2% and 2.6%, respectively.
The most often accessed topic is “Minutes”, followed by “Agenda”, “Portfolio” and
“Study Report”. Notice, that the facet “Category” was introduced only recently in
June. We assume that its usage is biased due to many people who have tested this
new functionality. Therefore, the given statistics might not reflect well the facet’s
future usage statistics.

Fig. 8‐6: Usage of facets. Data logged over a period of 6 month (Jan 09 – June 09).

8.1.4 Statistics concerning query duplicates
Query duplicates are queries which are transmitted more than once to YASA (Table
8‐4). The top 20 queries submitted to YASA are a mix of project names, person
names, and technical terms. The top queries are not listed in this thesis due to
confidentiality reasons. On average, each query is transmitted 1.32 times to the
system. The top query was executed 59 times. The vast majority of queries (86.4%)
was transmitted only once to the system. The remaining 13.7% of the queries are
transmitted more than once. Queries which are transmitted more than three times
are quite rare (3.4%).

Table 8‐4: Statistics of query duplicates.

Query occurs 1 time 86.4%
Query occurs 2 times 7.7%
Query occurs 3 times 2.5%
Query occurs >3 times 3.4%
Max query frequency 59
Avg. query frequency 1.32

Chapter 8 Evaluation

148

8.1.5 Statistics concerning query sessions
We define a query session as a sequence of queries in which two consecutive queries
occur within a maximal distance of 10 minutes. The majority of query sessions
(72.3%) consist of only one query (Table 8‐5). Sessions having two queries are
encountered in 14.8% of the cases. Sessions having more than two queries are less
frequently. A session contains on average 1.64 queries. These results suggest that
query sessions are simple. The most complex session consists of 43 queries.

Table 8‐5: Queries per session.

1 query per session 72.3%
2 queries per session 14.8%
3 queries per session 5.8%
>3 queries per session 7.1%
Max queries per session 43
Avg. queries per session 1.64

Another session statistics we consider, concerns the number of result pages viewed
per session (Table 8‐6). In YASA, 10 result items are maximally displayed on the
screen. In order to view more, the page navigation has to be used. The results show
that on average a searcher looks at 1.18 result pages per session. Searchers view
only one result page for the vast majority of the queries (91.8%). Observations of
query sessions in which two, three, or more pages are viewed, are considerably less
frequently. The maximum number of result pages viewed in a query was 31.

Table 8‐6: Result pages of queries viewed per session.

1 result page per query 91.8%
2 result pages per query 4.6%
3 result pages per query 1.6
>3 result pages per query 2.0%
Max result pages per query 31
Avg. result pages per query 1.18

We also examine how terms are modified within a query session (Table 8‐7). The
following types of modifications are distinguished: deletion, insertion, complete
change, and other modifications. We count a “deletion” if from one query to the
subsequent query no other changes could be observed except the deletion of terms.
In just the same way we count an “insertion”. A modification of the type “complete
change” is counted if none of the original query terms can be observed. Last, the
type “other modifications” covers all other cases such as queries in which terms are
deleted and added in one step. Given these types, we observed that in most
sessions, the queries are completely modified (69.8%). Only in 12.4% (1.5%) of the
queries are new terms (facets) inserted. A generalization of queries (i.e. deletion of
term) occurred in 3% of the query sessions. 14.8% of the modifications could not be
classified into any of the given types.

Usage, access, query, and session statistics

149

Table 8‐7: Term modifications per query session.

Terms deleted 3.0%
Terms inserted
(Facets inserted)

12.4%
(1.5%)

Terms completely changed 69.8%
Other modifications 14.8%

8.1.6 Statistics concerning click statistics
Click statistics are about the amount of accessed documents per query (i.e. the
number of mouse clicks). Because some sources do not require to open a document
after the query is transmitted (e.g. in databases the result is displayed on the
screen), we restrict for the following statistics to data from the PRPZ‐Share. Further,
we had to remove the baseline of queries which were intended for other sources.
The problem is that per default the initial query is transmitted to the PRPZ‐Share
even though the searcher might be interested in results from another source. Hence,
eliminating the baseline was necessary. The processed results read as follows (Table
8‐8). In 57.7% of the queries, no item is selected. In 25% of the queries only one
document is accessed. Two documents are accessed in 8.4% of the queries, and
three documents only in about 4% of the queries. The maximal observed clicks for a
query is 42. On average a searcher clicks 0.87 times per query.

Table 8‐8: Clicks per query.

0 clicks per query 57.7%
1 click per query 25.0%
2 clicks per query 8.4%
3 clicks per query 3.9%
>3 clicks per query 5.0
Max clicks per query 42
Avg. clicks per query 0.87

8.1.7 Discussion
Several of the previously shown statistics have also been conducted in a study which
targeted a large query log of the search engine AltaVista [Silverstein et al. 1999]. The
analysis was conducted about 10 years ago in 1999. Arguably, this is a long time
period so that search behavior might have changed significantly: First, search
algorithms have improved since then; Second, much more people are using the
Internet since then. Nevertheless, we compare the results obtained within the Roche
intranet with the results published by Silverstein et al., because we have not found a
similar and more recent study.

According to Silverstein’s analysis, operators are used in approximately 20% of the
searches. This is in contrast to our results, in which operators are de facto not used.
Regarding query duplicates, Silverstein reports that 27% of the queries transmitted
to AltaVista are duplicates. In our case, only 14% of the queries transmitted to YASA
are duplicates. This suggests that the searchers at Roche do often search for
previously unseen information (informational queries). This result reflects well the
fact that YASA is deployed in a research department: Research is a highly dynamic
field in which the interests might change fast. The results of the session statistics are
quite similar. In Silverstein, 2.02 queries are transmitted on average per session.

Chapter 8 Evaluation

150

These are a bit more queries compared to the average number of 1.64 transmitted
queries in YASA. Further, the average number of viewed result pages is slightly lower
in YASA (1.18) compared to AltaVista (1.39). Regarding the query modifications, the
results of the two studies vary significantly. Most notable is the fact, that a complete
query change is detected about double the frequent in YASA as in AltaVista.

The statistics related to the indexed databases have to be interpreted with care
because very few queries have been transmitted to these. Indeed, database
integration is done technically as a proof of concept, but it lacks important features
which attract people to search these sources. In particular, a link to the related
application would be convenient. Further, an automatic generation of statistics
(displayed in histograms, graphs, etc.) based on the retrieved results would generate
an additional value for the searcher.

8.2 Text categorization performance
This section compares the text categorization performance of the KE (knowledge
engineering) and ML (machine learning) approach (Chapter 6.3). In order to manually
identify classification rules for the KE approach as well as to automatically learn a ML
model, a training‐set is defined. The performance of each method is determined by
measuring precision and recall on a pre‐defined test‐set.

In case of the ML method we also examine which text representation (binary text
frequency vs. tf‐measure, feature‐expansion vs. no feature‐expansion, etc.) works
best, i.e. has the highest precision and recall, for the investigated document corpus.

8.2.1 Training and test set
The available data – consisting of an input vector (documents) and an answer vector
(class) – is separated into two sets of examples: a training set and a test set. The
training set is used to form the learned hypothesis (determine its parameters) while
the test set is used to evaluate the accuracy of the hypothesis (holding the
parameters constant) [Mitchell 1997]. Performance on the training set tells us only
that the learning algorithm is able to memorize the given examples. It is not an
indicator for the performance on unseen data. Therefore, the separate test set is
supplied.

The training and test set are stratified, i.e. sampling is done so that the relative
proportions of each class are about the same in both sets (Table 8‐9). The training
set of step 1 (noise filtering) consists of 2,549 manually annotated documents and
the test set consists of 179 documents. In step 2 (topic classification) we have a total
of 1,963 documents in the training set and 100 documents in the test set. Arguably,
the test set of step 2 is with only 100 samples at its minimum. We decided not to
build a larger test set due to the small amount of portfolio documents which are
available in the category “Portfolio”.

Text categorization performance

151

Table 8‐9: Training‐ and test‐set.

 Category Training‐Set Test‐Set
Signal 1,835 130
Noise 714 49

Step 1

 2,549 179
Agenda 625 35
Minutes 275 13
Memo 321 12
Portfolio 46 6
SOP 243 14
Pre‐Clinical Study Report 453 20

Step 2

 1,963 100

8.2.2 Optimization of the ML text classifier
The aim of this section is to determine which text representation works best for the
chosen SVM learning approach (Chapter 6.3.2; cf. Fig. 6‐8). The initial step of the text
processing pipeline is tokenization which splits the text into individual tokens using a
whitespace tokenizer. Next, a lower case filter is applied so that complexity is
reduced while almost no significant information is lost. Tokenization and lower case
filtering are always applied, i.e. we focus on testing a) which term weighting schema
(binary, term frequency, and inverse document frequency) gives the best results, b)
whether eliminating stop words and stemming improves performance, and c)
whether feature expansion with named entities brings any improvement.

The performance is measured on the training set of step 2 (topic classification) using
a stratified 10‐fold cross validation. Notice that optimization creates a bias on the
training set. Therefore, we ignore the test set during optimization so that an
unbiased performance estimate is received afterwards.

In order to evaluate the performance we consider the following statistics: precision
and recall (Chapter 2.7), as well as the kappa statistics. The kappa statistics [Agresti
2002] measures the strength of agreement between two observers. In our case it is
the agreement between the SVM’s model output and the expected answer as
supplied in the training set. The value of kappa is the higher the stronger the
agreement is. Kappa equals 1.0 when there is perfect agreement and it equals 0
when the agreement equals that expected by chance. Negative values occur when
agreement is weaker than expected by chance – but this rarely happens. The kappa
statistics thus shows the performance in one number. Alternatively one could use
the F‐measure, which calculates the arithmetic mean of precision and recall.

The results are summarized in Table 8‐10. Using solely a binary word weight (i.e. a
value of 1 if the word occurs in the text and a value of 0 if the word does not occur)
delivers already good results. The classification accuracy is improved by
approximately 1% if the term frequency measure is used. In particular, the kappa
statistics improves from 0.92 to 0.93 as does the precision from 93.93% to 94.48%.

Chapter 8 Evaluation

152

Combining the term frequency with the inverse‐document‐frequency does not
significantly improve performance. Therefore, we decided to use only the term
frequency for calculating the term weights.

Eliminating stop words from the text also improved classification performance by
about 1%. The amount of correctly classified instances rose from 94.84% to 95.74%.

Stemming on the other hand had a negative impact on performance as the
performance dropped by about 1%.

The incorporation of feature expansion improved performance only slightly. The
percentage of correctly classified instances grew by 0.06% while the kappa statistics
did not change.

We also examined how text classification performs if just the extracted features are
considered. Interestingly, it performs quite well, suggesting that the KE approach
which is based only on features could compete with the ML approach.

Table 8‐10: Text categorization performance for different text processing pipelines (whitespace
tokenization and lower case filtering was always applied). Optimization was conducted on the training

set using a stratified 10‐fold cross validation so that no bias on the test set evaluation is introduced.

 Binary
word
count

TF TF*IDF TF
+Stop words
elimination

TF
+Stop words
eliminiation
+Stemming

TF
+Stop words
elimination
+Features

Just
features
using TF

Correctly
Classified
Instances

93.93% 94.84% 94.89% 95.74% 94.89% 95.80% 90.35%

Incorrectly
classified
instances

6.07% 5.16% 5.11% 4.26% 5.11% 4.20% 9.65%

Kappa
statistics

0.92 0.93 0.93 0.95 0.93 0.95 0.88

Wrapping it up, the applied text processing pipeline consists of a whitespace
tokenizer, a lower case filter, stop word elimination, and feature expansion. Term
weights are calculated using the term frequency measure. This pipeline is also
applied for the step 1 (noise filtering) classification task.

8.2.3 Knowledge engineering vs. machine learning
From now on the test set is used for evaluation.

The ML classifier performs very well in both classification tasks (Table 8‐11). The
percentage of correctly classified instances is 96.65% for step 1 and 95% for step 2.
The kappa statistics is 0.92 for step 1 and 0.94 for step 2.

Text categorization performance

153

Table 8‐11: ML Classification performance of step 1 and step 2.

 Step 1 Step 2
Correctly Classified Instances 96.65% 95.0%
Incorrectly classified instances 3.35% 5.0%
Kappa statistics 0.92 0.94

The confusion matrix shows that the classifier of step 1 misclassified signal as noise
in five cases (Table 8‐12). The reverse relation is much less prevalent as only one
such case could be observed during validation.

Table 8‐12: Confusion matrix of ML step 1.

classified as ‐> a b
a = Noise 48 1
b = Signal 5 125

In case of step 2, the confusion matrix shows that most misclassifications revolve
around documents of the type Minutes (Table 8‐13). This was expected, because
even for a human annotator the classes Agenda, Memo, and Minutes are not always
clearly separable. The reason is their similar structure. Further, people sometimes
use the term “agenda” when referring to a document of type Minutes and vice versa.

Table 8‐13: Confusion matrix of ML step 2.

classified as ‐> a b c d e f
a = Agenda 34 0 0 0 1 0
b = Memo 1 11 0 0 0 0
c = Minutes 2 1 10 0 0 0
d = Portfolio 0 0 0 6 0 0
e = SOP 0 0 0 0 14 0
f = Pre‐clinical
study report

0 0 0 0 0 20

Now that we have shown the performance of ML, we next compare its performance
to the KE approach. The classification performance of the KE approach and the ML
approach are summarized in Table 8‐14. Regarding step 1 (the separation of signal
and noise), our results show, that both, the KE approach and the ML approach, have
a precision of about 1.0 for classifying “Signal”. The recall however, is quite different
as the KE approach has a recall level of 0.72 while the machine learning approach has
a recall value of 0.96. Hence, ML outperforms the KE approach in step 1. Similarly, in
step 2 the ML approach performs better on average than the KE approach. In detail,
for documents of type Agenda the ML method should be chosen as it provides the
better harmonic mean of precision and recall. In contrast, documents of type Memo
are better categorized by the KE approach. In just the opposite manner, the ML
approach provides a better performance for documents of the type Minutes.
Portfolio documents are classified perfectly by both approaches. The last two
categories, SOP and pre‐clinical study report, can only be classified by the ML
method as no corresponding rules have been provided.

The main reason why the ML method outperforms the KB method is that the latter
provides a lower recall level. Nonetheless, this result was expectable because the

Chapter 8 Evaluation

154

rules have been engineered very strictly so that no false positive hits are returned. It
is also due to the fact that we can not express per se fuzziness in the rules. In
addition it would also be quite awkward to express rules such as “The term ‘project’
must occur with a frequency of 0.23 in the document”, leading the idea of human
readable and interpretable domain knowledge ad absurdum.

Table 8‐14: Performance comparison between KB and ML.

KB ML
Precision Recall Precision Recall

Signal 1.0 0.72 0.99 0.96 Step 1
Noise 0.58 1.0 0.91 0.98
Agenda 1.0 0.72 0.92 0.97
Memo 0.92 1.0 0.92 0.92
Minutes 1.0 0.62 1.0 0.77
Portfolio 1.0 1.0 1.0 1.0
SOP ‐ ‐ 0.93 1.0

Step 2

Pre‐Clinical
Study Report

‐ ‐ 1.0 1.0

8.2.4 Discussion
The results show that both methods perform quite well on the considered document
categories (Chapter 6.3.1). However, the ML approach performs on average better
than the KE approach. Further, KE is only feasible for documents which have a
precise structure. Otherwise, defining the classification rules becomes a tedious task
for the human domain expert so that ML should be preferred. Another reason which
speaks in favor of ML is the faster execution time – in our case it was the factor 10
faster than KE. Nonetheless, the applied SVM algorithm lacks the convenient
explanation feature a rule‐based approach offers: it is difficult to understand why a
SVM decides to classify a document into a specific class.

Because the considered documents could be classified accurately, we assume that
the other categories of the classification ontology can be classified with a similar
performance. Defining a training‐ and test set for the other categories is the task of
future work. In addition, the ML parameters, i.e. the SVM kernel, could be further
optimized.

Not yet implemented, but arguably an important feature, would be the
incorporation of feedback into the classification process. In principle one could offer
the users two buttons in YASA by which they could vote if the document was
classified correctly or not. We could even offer the possibility to label unclassified
documents so that the training set is expanded. In both cases, the votes should be
treated with care. Contradictions such as the re‐classifications of documents relevant
for the support vectors could lead to a significant impact on the classification
performance. Regarding the current usage of YASA, we suggest that feedback votes
are collected and manually asserted. In case the usage grows further, we suggest
collecting votes and automatically applying the feedback as soon as a certain
threshold of feedback has been reached.

Retrieval performance evaluation using click‐through data

155

8.3 Retrieval performance evaluation using click-through data
The goal of this evaluation is to estimate the retrieval performance of the ranking
algorithms (Chapter 6.4) supplied in the prototype. First, we analyze if incorporating
knowledge‐based adaptation (Chapter 6.4.1) improves retrieval performance over
Lucene’s baseline ranking. Second, we test whether log‐based adaptation (Chapter
6.4.3) brings any performance improvement over the baseline ranking. In the
following, we denote Lucene’s baseline ranking algorithm as (B; Baseline). The
knowledge‐based adaptation approach is denoted by (BC; Baseline with context),
and the log‐based adaptation method is denoted by (BF; Baseline with log‐based
feedback). Notice that Lucene’s baseline ranking (B) is based on the vector space
model introduced in Chapter 2.2.2.

Traditionally, retrieval performance is evaluated by expert judgment using precision
and recall. While evaluation by experts provides a great quality it has the major
drawback that the availability of experts does not scale well with large and dynamic
repositories. First, the more data is indexed, the more data must be evaluated.
Second, the more a repository fluctuates (page modifications, deletions and
insertions) the more frequently evaluations must be conducted. A common
approach to deal with these issues is to focus manual assessment on the top
documents, as these are considered to contain the most important hits.

Alternatively, evaluation of retrieval performance can be conducted by means of log
data, as is for example described in [Joachims 2003]. The idea is to use implicit
feedback gathered by observing clicking behavior. Such click‐through data is
collected as follows: A user types a query into a search interface and the query is
sent to the search engine. Then, a ranking is returned and the user selects the item
of interest. The selection, i.e. the association between a query and a clicked item is
recorded. This principle is used by [Joachims 2003] to compare ranking of results.

Two rankings are merged similar to a zipper (Fig. 8‐7). If a user types a query into a
search interface, the query is sent to both search engines. Then, the ranked results
of both search engines are merged and the results are returned to the user. Finally, a
result is selected and recorded. From the logs we can see which ranking algorithm
provided the hit and thus conclude a preference towards one or the other algorithm.

Fig. 8‐7: Merging the results of two different retrieval functions.
Clicked items are marked with a star.

Chapter 8 Evaluation

156

In order to prevent a bias towards any ranking algorithm, the first item is selected at
random. Thus, in one case the zipping begins with algorithm A and in the other case
it begins with algorithm B. In case of Fig. 8‐7, the zipping begins with the results from
algorithm B. In case duplicates are encountered at any position, the merging
continues with the next item of the current ranking list. Notice that if two different
ranking algorithms are applied on the same index, it is likely that the result set is
identical and that only the order of the items differs. Therefore, when recording the
clicks on the merged result list, the items’ position in the original rankings must also
be tracked. In the given example, the searcher clicked item C on position 1 and item
D on position 3. Because of the assumption, that a user scans the results from top to
bottom, we can conclude that he has seen item A and item B of algorithm A as well
as item C and item D of algorithm B. The number of items which a user would have
seen in the original list is determined by taking the position of the last clicked item,
dividing the value by two and rounding it up. In our case, the last position on the
merged set was 3, and thus the number of items viewed in the original ranking was
2. Because item C as well as item B occurs within the top two of algorithm B but not
of algorithm A we count two votes for algorithm B and zero votes for algorithm A.

Joachims also conducted an evaluation in which he compared the click‐through
approach with the judgment of experts. The results of the click‐through data were
found to closely follow the relevance judgments [Joachims 2003]. Thus, according to
this study, the click‐through approach gives meaningful information about the
quality of two retrieval functions.

8.3.1 Design
The method’s idea of using implicit feedback for evaluation enabled us to conduct
the experiment online without the user’s awareness. We implemented a merging
algorithm as described in [Joachims 2003] into YASA. The user interface remained
unchanged – only the ranking algorithm was replaced by the merged version.
Therefore, users were not able to deduce by which algorithm an item was retrieved.

The data collected in our experimental setup is discrete and ordinal: for each query
we have the total numbers of clicks on items from algorithm A and B. Therefore, the
popular Student’s t‐test [Gosset 1908] should not be applied as it is designed for
continuous data having a normal distribution. A suitable test is the Wilcoxon signed‐
rank test [Sidney 1957; Wilcoxon 1945] as it involves the comparison of differences
between measurements. In contrast to the t‐test it does not require an assumption
about the distribution.

Further, we also conduct McNemar’s test [McNemar 1947] which requires even less
assumptions than the Wilcoxon signed rank test.

The null hypothesis H0 is defined as “no preference towards a ranking algorithm”.
The alternative hypothesis H1 is defined as “there is a preference towards one of the
ranking algorithms”. Further, we use a 95% confidence level for verifying / falsifying
a hypothesis.

Retrieval performance evaluation using click‐through data

157

8.3.2 Baseline ranking vs. baseline ranking with feedback
The logs supplied to the (BF) algorithm were collected since the introduction of the
prototype, i.e. over a period of about 18 months. The log repository of the PRPZ‐
Share contained in July ’09 feedback data for 11,664 documents. Nonetheless, not all
data could be used during the evaluation period. Log‐data is coupled to a document
by a mere URL. Therefore, if the URL changes (deletion, movement to another folder,
or renaming), then the log data becomes worthless. After removing all dead links a
total of 7,481 documents containing feedback data remained (Table 8‐15). Arguably,
35% of dead links is a considerable amount. For the future it would thus be wise to
track documents not only by a URL but also by means of a hash key so that
document movement, renaming, and modification can be tracked.

The average number of clicks per feedback document is 1.17. In contrast, the
average number of clicks per document (on the entire corpus of the PRPZ‐Share) is
0.013. Similarly, the log data comprises only 3,598 different terms – this is only
0.004% of the total PRPZ‐Share vocabulary size. The amount of feedback gathered
for the PRPZ‐Share is thus quite small, making the application of the (BF) ranking
approach a challenge.

Table 8‐15: Size of the PRPZ‐Share logs at the time the analysis was conducted.

Number of
documents with
feedback data

Total number of
clicks

Avg. clicks per
document
(feedback

corpus)

Avg. clicks per
document

(entire PRPZ‐
Share corpus)

Size of feedback
vocabulary

(nr. of terms)

7,481 8,781 1.17 0.013 3,598

The experiment (comparing the baseline algorithm with the feedback enhanced
baseline algorithm) was conducted over a period of one month in July ’09. During
this period a total of 940 click‐through entries originating from 475 queries have
been recorded for evaluation. Queries which have no clicks are ignored so that an
average number of 1.97 clicks per query are counted. As already outlined, the
available feedback data is sparse. Nonetheless, we counted 75 queries (or 15%) for
which feedback data was available. The other 400 queries contained no feedback
data so that (B) and (BF) delivered the same ranking of results.

An illustration of the collected data is shown in Fig. 8‐8. The mere eye can’t see any
significant preference towards one or the other ranking algorithm.

Chapter 8 Evaluation

158

Fig. 8‐8: Click distribution of (B) and (BF)

A comparison of the frequency distribution of (B) and (BF) does also not provide any
visual evidence towards a preference of a ranking algorithm (Fig. 8‐9). The figure
shows the amount of clicks on items from (B) and (BF) grouped by the total number
of clicks per query. The frequencies are almost identical for (B) and (BF).

Fig. 8‐9: Frequency of clicks per query of (B) and (BF)

The Wilcoxon signed‐rank test returns a p‐value of 0.382. Thus, given a confidence
level of 0.95 we can not decline H0. Similarly, the McNemar statistics returns a p‐
value of 1.0, so that H0 can not be declined. Hence, neither a preference of the
searchers towards the baseline ranking, nor towards the baseline ranking with
feedback can be detected.

8.3.3 Baseline ranking vs. baseline ranking with context
The analysis conducted here is based on log data which was collected over a period
of three weeks in May ‘09. A total of 568 click‐through entries originated from 293
queries are recorded. Thus, we encountered on average 1.93 clicks per query.

The data used for evaluation is visualized in Fig. 8‐10. The mere eye can’t detect any
preference towards a ranking algorithm when looking at the picture.

Retrieval performance evaluation using click‐through data

159

Fig. 8‐10: Click distribution of (B) and (BC) after removal of duplicates

The frequency distribution of (B) and (BC) (Fig. 8‐11) on the other hand shows a
slight tendency at least for queries having only one click. In this case, items from (BC)
are preferred to items from (B). For queries having two or more clicks, almost no
difference can be observed.

Fig. 8‐11: Histogram of clicks per query of (B) and (BC) after removal of duplicates

The Wilcoxon signed‐rank test returns a p‐value of 0.832 and the McNemar test
returns a p‐value of 0.23. Therefore, at a 0.95 confidence level we can not conclude
that H1 holds and thus H0 can not be declined. In other words, no statistical
significant preference towards any ranking algorithm can be detected.

8.3.4 Discussion
In the first experiment we compared (B) with (BF). The main finding is that no
significant preference towards (B) or (BF) could be detected. In fact, they performed
almost the same.

A key question is: How much feedback data do we need so that (BF) outperforms
(B)? This question can’t be answered easily because it depends on the repository. For
some repositories, few feedback data could suffice while others might require much
more. Actually, [Hawking et al. 2006] investigated exactly this issue. They examined

Chapter 8 Evaluation

160

if the ranking of results can be improved in small scale web‐search by feedback data,
and how much feedback data is needed to achieve a significant improvement. Their
finding was that small amounts of log data can improve performance. However, the
amount of log data required is strongly dependent on the query type. The authors
discriminate “popular queries” (frequently executed queries), and “sitemap queries”
(queries are derived from a website’s sitemap; the entries become queries and the
links become the corresponding best answer). Given a “stock exchange” repository,
consisting of 2.2x104 pages, as few as 4000 clicks (i.e. 0.18 clicks per page) are
sufficient to reach an asymptotic limit of improvement. For sitemap queries
however, it takes over 1x105 clicks to reach an asymptotic point and the quality is
still less than for popular queries.

Sitemap queries can not be applied for the file shares and are thus not considered.
Popular queries on the other hand can be applied. In order to verify if an
improvement can be achieved, we re‐run the experiment (B) vs. (BF) and restricted
the evaluation to popular queries. In particular, we considered only queries which
have been transmitted at least 5 times. In effect, only 28 queries remained. Despite
the restriction to popular queries no significant improvement could be observed, i.e.
the hypothesis H0 can still not be declined.

Hawking et al. demonstrated a substantial improvement over the baseline for
popular queries if logs are exploited. Based on their findings, they assumed that the
greatest potential gain lies in non‐web environments such as the PRPZ‐Share. In our
study we were not able to detect any significant improvement in non‐web
environments. The main problem is without a doubt the small click per document
ratio having a value of 0.013. It is likely that at least ten times more log data is
needed in order to see a significant improvement over the baseline.

Consider the fact that the repository is constantly growing and that during the period
of one year, a click per document ratio of only 0.013 has been achieved. Further,
assume that the amount of employees stays constant. Then, it is questionable if the
ratio will ever reach a level which suffices to see a significant improvement. The
question is why do we observe this discrepancy at all? We believe it is due to the
hierarchical organizational structure of the company. On the one hand, the majority
of data is produced by employees who conduct the experiments (such as lab
workers). On the other hand, the majority of data is consumed by the decision
makers (i.e. the group and department leaders). Because there are about ten times
fewer consumers (department leaders) than producers (lab workers) and because
research is a highly dynamic area, the ratio will probably always have a low value.
We can thus conclude that log‐based feedback, as a method for improving ranking
performance, is not well suited for similar professional environments.

Regarding the second experiment, no statistical significant preference towards
ranking algorithm (B) or (BC) could be observed. Just the tendency could be detected
that people accessing only one document within a query, are slightly more often
clicking on items from (BC) than from (B).

Controlled experiments

161

Indeed, our assumption that people prefer results from their context than others
might be wrong. However, we believe this is unlikely because the adaptation was
tuned so that only similar hits are separated (Chapter 6.5.2). Another reason might
be that adaptation has only rarely a strong effect on the rankings. This would be the
case if the returned results have a similarity curve with a strong decay. Investigation
of the query logs could give valuable information about the nature of the similarity
profiles. This is to be investigated as part of future work.

Last, we want to stress that a wrong parameter setting might be the reason why no
significant performance improvement of (BF) or (BC) over the baseline could be
observed. Indeed, even though we fine‐tuned the ranking parameters by trial and
error it might not be what the average searcher expects. An automatic optimization
of the parameters would be possible. For instance, one could do a search over the
parameter space and test for which settings the ranking of the clicked items are
improved. Conducting such an optimization is also part of future work.

8.4 Controlled experiments
In this section we describe several controlled experiments in order to verify various
aspects such as

a) is search for information preferred over browse for information,
b) are facets (i.e. classification) helpful, and
c) is one single entry‐point to internal & external information helpful

All these goals revolve around the following hypothesis: “A significant improvement
in satisfying the scientists’ information needs is achieved by the approaches
implemented in the YASA prototype”. In order to test the hypothesis a task‐based
evaluation of the YASA prototype is conducted. A task‐based evaluation is an
evaluation method in which test persons are given a couple of tasks which they have
to accomplish. The data collected during task processing is used to conclude whether
the hypothesis is valid or not.

Next, the evaluation process and methodology will be described, which are similar to
[Franz et al. 2008]. Then, the test persons are introduced. Following that the
developed tasks and the test system are described. Finally, the evaluation is
conducted and the results are presented.

8.4.1 Evaluation process and methodology
The evaluation process consists of the three phases: briefing, observation, and
feedback. In the first phase each test person is briefly introduced to the test system
and to the evaluation procedure. This step is very important in order to remove any
bias caused by (un)experienced users. In the second phase, the users are not given
any assistance and we just observe how they solve the given tasks. In the last phase
subjective feedback is gathered from the test persons in form of questionnaires.

In order to evaluate the prototype we use the goal question metric (GQM) paradigm
[Basili et al. 1994]. The GQM paradigm is a top‐down approach (Fig. 8‐12) which
allows evaluating the quality of specific processes and products of a software
system. First, a goal is defined for an object which can be product deliverables,

Chapter 8 Evaluation

162

product specifications, processes, or resources. Then, a set of questions are
formulated, which characterize the object of measurement. Finally, a metric is
associated with every question in order to get a quantitative measurement. The data
on which the metrics are applied can be objective or subjective.

Fig. 8‐12: Hierarchical structure of the GQM model

In our case, the goal is formulated as “a significant improvement in satisfaction of
the scientists’ information need”. The questions revolving around this goal are about
effectiveness (how many tasks are completed?), about efficiency (how fast are the
tasks completed?), and about satisfaction (how pleased are the users with the
prototype?). In Table 8‐16 an overview of the used goal, questions, methods, and
metrics is given.

Table 8‐16: Goal, questions, methods and metrics

Goal Question Method Metric
How effective can users
complete the tasks?

Objective Success Rate

Execution time How efficient can users
complete the tasks?

Objective
Mouse movement
Questionnaire

A significant
improvement in
satisfying the scientists’
information needs.

How satisfied are users with
the systems?

Subjective
Interview

The metrics can be distinguished in objective and subjective methods. Effectiveness
and efficiency are evaluated using objective methods, while user satisfaction is
evaluated using subjective questionnaires and interviews.

The evaluation process consists of three phases (Fig. 8‐13). In the first phase
(briefing) the test person is introduced to the test system.

In the second phase (observation) we determine whether the participants solve the
objective tasks more efficiently using conventional tools or YASA. Because we expect
only few employees to volunteer for the evaluation, we let each test person conduct
the objective tasks twice: once using conventional tools and once using YASA. The
test persons were aware about this procedure. In order to exclude a bias in the
sequence of used tools we randomly split the test persons into two groups. The first
group must begin with conventional tools (any state of the art tool except YASA) and
then YASA, while the second group uses the tools in reverse order. By letting two
groups solve the tasks using the opposite tool order, we might not only exclude any
potential bias but also detect interesting relationships. For instance it might be that

Controlled experiments

163

if the objective tasks are first conducted with YASA, the tasks are solved much faster
with conventional tools than vice versa.

In the third phase (feedback), the user is given a questionnaire whose purpose is to
capture the subjective opinion about the prototype’s applied principles.

Fig. 8‐13: Evaluation process overview.

Typically, a scientist at Roche has only little time. For that reason, a test person
should finish the evaluation process in an average time of 30 minutes. The tasks and
questionnaire (Chapter 8.4.3) will therefore be designed so that the three phases
stick to the following time slots: The introduction to the test system in phase 1 is
done in 5 minutes; the objective tasks of phase 2 should be finished in 20 minutes;
and the questionnaire of phase 3 should be done in 5 minutes.

8.4.2 Test persons
We asked 20 persons of the Roche Pharma Research department of Penzberg to
participate in our evaluation. The persons were selected so that a representative
distribution is achieved. We asked employees from various departments for their
participation in the user study. In particular, the participants work in departments
such as “Protein Engineering”, “Biological Screening”, “Oncology Discovery”, “Cell
Biology”, “Molecular Biology”, “Patent Division”, “Statistics”, “Bioinformatics”, and
“Informatics”.

Among the 20 participants, there were 19 employees (including 6 group leaders) and
one student. The highest academic degrees distribute as follows among them (Table

Chapter 8 Evaluation

164

8‐17): a bachelor degree is owned by 1 test person, a diploma by 3 persons, and a
Ph.D. by 15 participants.

Regarding the participants’ profession (Table 8‐18), we counted 6 biologists and 4
chemists. The areas bioinformatics, informatics, and statistics were represented by
three participants in each case.

The majority of the participants, i.e. 16 persons, had used YASA before while the
others used YASA during the evaluation for the first time.

Table 8‐17: Educational background of participants.

Education Amount
Bioinformatics 3
Biologist 6
Chemist 4
Informatics 3
Statistics 3
Student 1

Table 8‐18: Academic degree

Highest academic degree Amount
Bachelor 1
Diploma 3
Ph.D. 15
Other 1

8.4.3 Designing the tasks
We created a total of 6 different tasks for the observation phase (Table 8‐19). The
developed tasks are retrieval tasks, i.e. the test persons have to look up some
information. Depending on the task one or more answers can be valid. The main
focus was to create a realistic set of heterogeneous tasks which reflects well typical
queries on the present corpus. We decided to accomplish this by careful examining 3
month of log data. In a next step we slightly modified the observed queries while
maintaining the query type. For instance, we noticed that people often look up
project related information. As a result we created task number 5 in which project
related information must be gathered.

Table 8‐19: List of tasks. *: Baseline task. #: A gene name not to be disclosed.

Task ID Description
(*) 1 Find a Wikipedia article about Herceptin

2 Find the location and phone number of the company’s medical doctor
at Roche in Penzberg

3 Get the full text of a publication named: A Breast Cancer Risk Haplotype
in the Caspase‐8 Gene

4 Find a location with literature (publications, presentations, posters)
about YASA (Your Adaptive Search Agent)

5 Find the main folder on the PRPZ‐Share where literature (studies,
reviews, etc.) about MyGene# (also known as ‐‐‐) is consolidated

6 Find the intranet homepage of the application “Prous Integrity”

Controlled experiments

165

In addition to the 6 objective tasks we also ask the test persons to participate in a
questionnaire. While the tasks were used to determine the performance of YASA
compared to conventional tools, the questionnaire aimed at determining quality
characteristics which can’t be captured well by mere numbers. Therefore, we
formulated 39 questions (Table 8‐20) which cover the quality of the objective tasks,
various aspects of search, and several details about YASA – especially faceted
navigation and source integration. Further, we acquired some demographic data of
the test persons.

Table 8‐20: List of questions used in the questionnaire.

Question
Category

ID Question Rating Scale

1 Working on the previous tasks was tedious /
cumbersome

IsoMetrics Objective Tasks

2 The previous tasks correspond to task types that I
also need to do for my work

IsoMetrics

3 Which tool would you use first to access internal
information?

Pharma Search; Dia
Search; Windows
Explorer; TagIt; YASA;
Other

4 Which search engine would you use first to find
external information?

Google; Yahoo; Bing!;
PubMed; TagIt; Other

General

5 Why would you choose a search engine? Just a habbit, I like
the layout; Size of the
repository; Quality of
search results; Speed;
Other

6 Have you used YASA before? yes; no
7 How often do you use YASA per week? 9+, 6‐8, 3‐5,

1‐2,0
8 Search results in YASA are relevant to my query IsoMetrics
9 I prefer search results from my department IsoMetrics
10 I often use YASA to find documents of other groups

or departments in Pharma Research
IsoMetrics

11 The time it takes for the search engine to return its
information is too long

IsoMetrics

12 The user interface of YASA is intuitive IsoMetrics

YASA General

13 I immediately find what I am looking for IsoMetrics
14 The refine search options (facets) help me to find the

information I need
IsoMetrics

15 The my files facet is helpful IsoMetrics
16 The file format facet is helpful IsoMetrics
17 The year and month facets are helpful IsoMetrics
18 The project facets are helpful IsoMetrics
19 The department facet is helpful IsoMetrics
20 The category facet is helpful IsoMetrics
21 I would like to have more refine search options IsoMetrics

YASA Facets

22 I do not find information faster using facets IsoMetrics

Chapter 8 Evaluation

166

23 It is useful to have access to internal & external
information from one search tool

IsoMetrics

24 The integration of Tagged Documents into YASA is
useful

IsoMetrics

25 I actively use TagIt for my personal information
management

IsoMetrics

26 The integration of PubMed into YASA is useful IsoMetrics
27 The integration of Applications into YASA is useful IsoMetrics
28 The integration of Wikipedia into YASA is useful IsoMetrics
29 The integration of the Internet catalogue is useful IsoMetrics
30 The integration of the Telephone Book is useful IsoMetrics
31 The integration of the PRPZ‐WebSite is useful IsoMetrics
32 The integration of databases is useful IsoMetrics
33 The integration of the PRPZ‐Share is useful IsoMetrics
34 Would you like to be able to search your personal U‐

Drive with YASA as well?
IsoMetrics

YASA
Integration

35 Would you like to be able to search other areas such
as Pharma Technical Development as well?

IsoMetrics

36

What is your profession?

Biologist; Chemist;
Informatics;
Bioinformatics;
Statistics; Student;
Other

37
What is your highest academic degree?

Bachelor; Master;
Diploma; Ph.D.; Other

38 Is finding information part of your daily work? yes; no

User

39
How experienced do you consider yourself regarding
search for information?

Novice; Advanced
beginner; Competent;
Proficient; The Expert

The questionnaire is mainly conducted using the IsoMetrics [Gediga & Hamborg
1999] usability inventory which is a summative as well as formative approach in
software evaluation. Each question is assessed using a 5 point rating scale, starting
from 1 (“predominantly disagree”) to 5 (“predominantly agree”). In addition a “no
opinion” field is supplied to reduce arbitrary answers. Beside the IsoMetrics, we
make use of various multiple‐choice answer lists, such as yes / no.

Finally, the users were allowed to make free comments about the prototype and the
principles used.

8.4.4 Test system
At Roche, desktop computers and laptops are supplied by a single vendor. Further, a
common office and desktop environment is employed. This setup has the benefit,
that hardware and software systems are very homogenous. Workers can thus easily
switch machines without the need to get accommodated to a new system. We
recognize this fact and decided to build up our test system on top of a regular Roche
desktop computer. The only difference to an out‐of‐the‐box system is that some
extra software is installed for conducting the evaluation and monitoring purposes.

Controlled experiments

167

This extra software is called “EasyEval”. The purpose of EasyEval is twofold. On the
one hand side it provides the objective tasks of the second phase (observation) to
the user. On the other hand it monitors the user’s activities.

The tasks are presented sequentially to the current user. He has to press start when
he starts processing a task and he has to press stop when he has finished a task.
Once a task has been completed, the user can’t go back, i.e. the EasyEval application
is unidirectional.

The elapsed time for each task to finish is measured and recorded. In addition we
measure the mouse movement in pixels. We did not find any other useful metrics to
be considered. Measuring the number of “windows switches” for instance does not
make sense because in one case (conventional tools) the participants can use any
tool and could thus freely switch between applications while in the other case they
are forced to use only one tool (YASA).

8.4.5 Conducting the evaluation
At the beginning of an experiment session the user is briefly introduced to the
evaluation procedure. In order to make the user feel comfortable with the test
system we start EasyEval with a demo of two tasks so that the participant can see
how the actual test will proceed. During this demo they are also introduced to YASA
regardless of their prior knowledge about it. Regarding the conventional tools, we
briefly point out which options exist but do not further introduce all of them as we
consider those as a part of their daily work. Conventional tools are e.g. the windows
file explorer, mail, Google, the PRPZ‐WebSite, other intranet search engines, etc.

In addition, we also point out that we do not set an explicit time limit for the
objective tasks. Hence, participants have to decide on their own how much time they
are willing to invest for answering a query.

After the introduction, we randomly assign a user to a group (cf. Fig. 8‐13). During
the observation phase, the user is not given any assistance so that any bias is
avoided. Once the observation phase is finished, we conduct the questionnaire with
the participant. During the questionnaire we give feedback in case the participant
does not understand the meaning of a question.

8.4.6 Results of the observation phase
In the observation phase, the test persons have to provide an answer to the
objective tasks. The given answers might be wrong and must therefore be handled
accordingly. We decided to penalize wrong or missing answers by introducing a
threshold value. Arguably, the choice of a threshold value could influence the results.
It should thus not be set to high as otherwise wrong answers might bias the results
significantly.

In order to find a good threshold, we examined the distribution of the time metrics
and the mouse movement metric, respectively. We observed that the maximum
time to successfully finish a task was 540 seconds. In fact only one event could be

Chapter 8 Evaluation

168

observed in which test persons needed longer than 500 seconds to provide the
correct answer to a task. The second slowest time was 440 seconds. Therefore, we
set the threshold value to 500 seconds, i.e. wrong answers as well as correct answers
which needed more time than the given threshold are set to 500 seconds. Similarly,
the maximal mouse movement of a correct answer was about 900,000 pixels. Hence,
we set the threshold value to 1 million pixels.

The percentages of wrong answers per task are summarized in Table 8‐21. Task 1
“Find a Wikipedia article…” and task 3 “Get the full text of a publication named…”
can be considered as easy tasks because every participant solved them correctly.
Similarly, task 6 “Find the intranet homepage of the application…” is an easy task as
almost all participants provided the correct answer. Task 2 “Find the location and
phone number of the company’s medical doctor…” is of medium difficulty because
15% of the test persons were not able to solve it using conventional tools and using
YASA. Task 4 “Find a location with literature […] about YASA…” and task 5 “Find the
main folder […] where literature […] about MyGene is consolidated” are arguably
difficult tasks. In case of task 4, 35% of the participants were not able to find the
correct answer using conventional tools. With YASA the fraction of wrong answers is
30%. Regarding task 5, 60% of the test persons provided a wrong answer if
conventional tools were used. However, only 20% of the answers were wrong in case
YASA was applied.

Table 8‐21: Fraction of wrong answers per task.

Wrong answers using
conventional tools

Wrong answers using
YASA

Task
ID

relative absolute relative absolute
1 ‐ ‐ ‐ ‐
2 15% 3 15% 3
3 ‐ ‐ ‐ ‐
4 35% 7 30% 6
5 60% 12 20% 4
6 5% 1 ‐ ‐

Next, we investigate whether the tasks can be answered faster (time metric) after
they have been solved once. In case this effect can be observed, we are also
interested whether it occurs for both, YASA and conventional tools.

The results show that the tasks are finished considerably faster with YASA if they
were previously answered with conventional tools (Group 1; Table 8‐22). The reverse
effect can not be observed (Group 2). We can thus conclude that if results have been
found with conventional tools first they can be found much faster with a search
engine. On the other hand, finding an answer with YASA does not help to find the
same answer faster with conventional tools.

The total performance result reads as follows: On average (median) a participant
needs 117 (64) seconds to answer a question with YASA and 173 (85) seconds to
answer a question with conventional tools (Table 8‐22).

Controlled experiments

169

Table 8‐22: Influence of the order (Group 1 vs. Group 2) on the performance.

 Group 1
(Conventional ‐>YASA)

Group 2
(YASA ‐> Conventional)

Total

 Conventional YASA YASA Conventional Conventional YASA
Average 169.42 90.38 143.87 177.20 173.31 117.13
Median 85.0 59.50 76.50 85.0 85.0 63.50

The observed performance data (time to finish a task; mouse movement) can be
thought of as a random sample of a larger population. Our observation is thus a
reflection of the unobservable underlying probability density function, according to
which a large population is distributed. Using statistics we are able to estimate the
density function based on the observed data, so that we can plot the probability of
obtaining a certain performance value. Next, we provide the estimated density plot
for the recorded time performance as well as mouse movement performance.

Fig. 8‐14: Density plot of the execution time.
The red curve represents conventional tools and the blue curve represents YASA.

Fig. 8‐15: Density plot of the mouse movement.

The red curve represents conventional tools and the blue curve represents YASA.

The estimated density plot displayed in Fig. 8‐14 illustrates the performance
advantage of YASA over conventional tools. There are considerably more tasks which

Chapter 8 Evaluation

170

are answered faster with YASA than with conventional tools. At about 500 seconds,
there is a small peak due to the wrong answers which pile‐up. The estimated density
plot of the mouse movement (Fig. 8‐15) shows a similar distribution, indicating a
better performance of YASA compared to conventional tools.

We were also interested in the effects of various unknown variables like: “Does the
used tool significantly influence the results?”, “Does the task have an influence on
the performance?”, or “Is the performance of the applied tool dependent on the
considered task?”.

In order to answer these questions, we set up a linear model with the factors
“TaskID” (objective task identifier), “Tool” (YASA or conventional), “Person” and the
interactions “TaskID*Tool”, “Person*Tool”, and “Person*TaskID”. The factor
“Person” and its interactions are defined as random effects on the performance, i.e.
we are not interested in the performance of individual persons. Rather, we are
interested in the influence of the task, the influence of the tool, and in the influence
of the task on a specific tool. In a mathematical formula, the model could be
expressed as follows (random effects are not marked):

ε+λ+ϕ+φ
+γ+β+α= TaskID*ToolTaskID*PersonTool*Person PersonTaskIDToolModel

The parameters α, β, γ, φ, ψ, λ, and ε are determined by fitting the mixed model
using the popular REML (restricted maximum likelihood) method [Harville 1977]. The
calculated fit has a root mean squared error of 98.12 seconds. In light of the model’s
simplicity and purpose we accept this size of noise.

The results of the fixed effect tests are summarized in Table 8‐23. The task, the tool,
as well as their combination have a statistically significant effect on the performance
even on the 99.9% confidence level.

Table 8‐23: Fixed Effect Tests using the F‐test. Statistical significant values are marked by *.

Source Degree of freedom Probability > F
Task ID 5 <.0001*
Tool 1 0.0014*
Task ID * Tool 5 <.0001*

Table 8‐24 gives the detailed results for each task. Consider for instance the
influence of the chosen tool used to answer the tasks. In case conventional tools are
used, the average time to solve a task is 28.1 seconds slower as the mean. Hence, if
YASA is used, the average time to solve a task is 28.1 seconds faster. Summing it up,
the difference between YASA and conventional tools is on average 56.2 seconds.

Table 8‐24: Parameter estimates. The estimates tell how much slower (positive values) or faster
(negative values) the performance is on average depending on the task, tool, or task*tool

combination. Significance is determined using the t‐test. Statistical significant effects are marked by *.

Term Estimate Std Error Probability > |t|
Task ID[1] ‐104.17 21.21 < .0001*
Task ID[2] ‐1.82 21.21 0.9319

Controlled experiments

171

Task ID[3] ‐59.7 21.21 0.0059*
Task ID[4] 99.29 21.21 < .0001*
Task ID[5] 137.41 21.21 < .0001*
Task ID[6] ‐71.01 21.21 0.0012*
Tool[Conventional] 28.1 7.5 0.0014*
Tool[YASA] ‐28.1 7.5 0.0014*
Task ID[1]*Tool[Conventional] ‐29.6 14.16 0.0393*
Task ID[2]*Tool[Conventional] ‐28.84 14.16 0.0445*
Task ID[3]*Tool[Conventional] ‐37.47 14.16 0.0095*
Task ID[4]*Tool[Conventional] 10.61 14.16 0.4557
Task ID[5]*Tool[Conventional] 93.33 14.16 < .0001*
Task ID[6]*Tool[Conventional] ‐8.03 14.16 0.572
Task ID[1]*Tool[YASA] 29.6 14.16 0.0393*
Task ID[2]*Tool[YASA] 28.84 14.16 0.0445*
Task ID[3]*Tool[YASA] 37.47 14.16 0.0095*
Task ID[4]*Tool[YASA] ‐10.61 14.16 0.4557
Task ID[5]*Tool[YASA] ‐93.33 14.16 < .0001*
Task ID[6]*Tool[YASA] 8.03 14.16 0.572

Task number 1 is a baseline task and the estimated model confirms this. In case YASA
is used to answer the question, the average time to answer the question is 2*(‐
28.1+29.6)=3 seconds slower than conventional tools. This difference is insignificant
so that we can say that YASA as well as conventional tools deliver the same
performance for task number 1.

The strongest effect of the chosen tool is observed for the difficult task number 5: In
case YASA is applied to solve this task, the average time to provide an answer is
reduced by approximately 242.86 seconds (Fig. 8‐16 and Fig. 8‐17). This estimate is
highly significant because the p‐value is less than 0.0001.

Fig. 8‐16: Prediction profile. The left picture shows the estimated average execution time of a task in
case conventional tools are used. The right picture shows the average execution time for task number

5 and its dependence on the used tool.

Chapter 8 Evaluation

172

Fig. 8‐17: Prediction profile. The left picture shows the estimated average execution time of a task in
case YASA is used. The right picture shows the average execution time for task number 5 and its

dependence on the used tool.

8.4.7 Results of the feedback phase
We first show the results of the questions which were quantified by IsoMetrics.
Then, we show the results of the questions which were quantified by other metrics.
The reason is that the IsoMetrics are numeric and can thus be processed differently
than the other metrics using categories which can not be mapped to numeric values.

Fig. 8‐18 summarizes the results of questions using the IsoMetrics. Notice that in
case “No opinion” was selected by a user, the respective question is ignored for the
following statistics.

Working on the objective tasks in the observation phase was on average not
considered as tedious (QID 1; short for Question ID 1). Further, participants agree
that the tasks correspond to task types that they typically do in their work (QID 2).

Regarding the quality of search results in YASA, the participants strongly agree that
search results are relevant to their query (QID 8). QID 9 and QID 10 are coupled as
the first one asks whether the user prefers search results from the department he is
working in and the second one asks whether he often searches for information in
other departments. The average answers for both questions suggest that people
slightly prefer to search in other departments than in their own. However, the
standard deviation is rather high suggesting a controversial point of view. The
answers to questions 11 (notice: negated question), 12, and 13 show that people are
satisfied with the speed, the user interface, and the search result quality of YASA.

Considering the usage of facets, the analysis shows that people strongly agree that
facets help them to find information faster with YASA (QID 14) – this result is
supported by the control QID 22. The importance of the individual facet is disputed.
The “my files” facet (restricts results to documents the searcher has created) for
instance is mediocre and has a high standard deviation (QID 15). The “file format”

Controlled experiments

173

facet (restricts results to a certain document format) is considered as highly relevant
(QID 16). The “year” and “month” facets (restrict search results by date) have a
similar average value and standard deviation as the “my files” facet – it is thus only
slightly agreed that they are important (QID 17). The “project”, “department”, and
“category” facets are all agreed to be important having a relatively low standard
deviation (QID 18, 19, and 20). Whether more facets are needed is disputed by the
participants (QID 21): the average rating shows a tendency towards disagreement –
however, the standard deviation is high.

The integration of internal and external information in one search tool is strongly
agreed to be helpful (QID 23). The integration of Tagged Documents into YASA is also
considered relevant by most participants (QID 24). Interestingly, most test persons
state that they do not use TagIt actively but rather consume existing tags passively
(QID 25). The integration of PubMed, Applications, Wikipedia, DMOZ, Telephone
Book, PRPZ‐WebSite, and databases is on average agreed to be important (QID 26,
27, 28, 29, 30, 31, and 32). The integration of the PRPZ‐Share is strongly considered
to be important as indicated by a high average score and a very small standard
deviation (QID 33). Interestingly, the integration of the U‐Drive – the private
document repository of a user – is highly disputed: the average score shows a slight
preference to disagree and the standard deviation is very large (QID 34). The
demand to be able to search other areas within the corporate environment beside
Pharma Research is very strong (QID 35).

Fig. 8‐18: Questionnaire results for questions using IsoMetrics (scale from 1 to 5). The blue points
represent the average value and the black error lines represent one standard deviation.

Next, we present the results of the questions which used a metric different to
IsoMetrics. Fig. 8‐19 displays a summary of the respective results. The majority of
the participants (90%) agree that YASA is the first tool they would use to access
internal information (QID 3) followed by the Diagnostics search engine in the second
place (10%). For external information (QID 4) the majority (90%) would first use
Google, followed by PubMed and TagIt on second place (5% each). Being asked why
they would choose a search engine (QID 5), approximately half of the test persons

Chapter 8 Evaluation

174

(55%) selected speed as the most important point. Quality of search results is
considered most relevant by a fifth of the persons (20%). Regarding the usage of
YASA per week (QID 7) the picture is twofold: Approximately 40% use YASA six or
more times per week, while approximately 45% use it up to five times per week –
15% stated not to use YASA.

90% of the participants stated that finding information is part of their daily work
(QID 38). Regarding their search experience, 60% feel they are competent, 25%
proficient, 10% advanced beginner, and 5% to be the expert.

Fig. 8‐19: Results for questions 3, 4, 5, 7, 38, and 39.

We finish this section with a discussion of the comments which have been given at
the end of the questionnaire. Three participants were quite enthusiastic about the
possibilities YASA offers and they wrote the following comments:

Controlled experiments

175

“Thank you very much for the great work –
without YASA I have had lost a lot of time of my life!”

“Now that I have seen how easy YASA is to use and how user friendly it is;

I found it to be much easier to find internal information.”

“Learned about YASA and find out advantages for my daily life”

Critics have been mentioned especially concerning the tagged documents section
(which integrates results from TagIt). People complained about dead links, slow
result fetching, and the quality of the tags. The first issue could be handled by
automatically checking whether the respective link is not reachable over a certain
period of time. The second issue could also be solved by optimizing the respective
service. The last issue is due to the fact that tags are mainly provided by people from
the diagnostics division rather than workers from pharmaceutical research.

People also complained about a missing auto correction feature for queries. Another
source of complain was the integration of the telephone book. In particular, people
are missing navigation support in order to easily browse the telephone results by
department.

8.4.8 Results interpretation
The user study shows that on average, YASA outperforms conventional tools for the
given objective tasks – which according to the participants represent well the task
types they need to do for their daily work.

Simple queries such as the lookup query of a Wikipedia article or a specific
publication are answered similarly fast with YASA as with conventional tools. Indeed,
the integration of sources such as Wikipedia, PubMed, or the company’s telephone
book does not necessarily imply that search requests can be answered faster
compared to the direct access of the tools. Rather, the benefit is the ability to access
all sources from one user interface. A second advantage is that people must know
only the address of YASA and not of all specialized tools – this is especially useful
once more database sources are integrated.

We could also observe that people sometimes needed more time to solve the tasks
with YASA because they expected to receive a merged result list. It thus took a while
until they understood that the appropriate source, such as the telephone book,
needs to be selected prior to receiving the respective results. This suggests on the
one hand, that the current layout might not be optimal. On the other hand, it
suggests that a merged result list would be better suited, because it frees the user of
manually selecting the appropriate source. However, the difficulty is to merge the
different result rankings properly and to combine distinct types of results in one user
interface (database results for instance are rendered differently than results from
text documents).

Chapter 8 Evaluation

176

In contrast to simple queries, YASA outperforms conventional tools significantly in
case difficult queries need to be answered such as task number 5. Here, searchers
clearly benefit from the automatic categorization of documents into facets like
departments, projects, and categories. The questionnaire also outlines that the
facets offered by YASA are helpful to the users and that they cover the most
important aspects for the daily work. Nonetheless, we assume that a refinement of
the document category facet beyond Agenda, Minutes, Memo, Portfolio, etc. could
be beneficial a) for extending the adaptation of search results and b) for persons
who are not well aware of the present information landscape.

Our current configuration of “role‐based adaptation of search results” seems to be
suboptimal according to the average ratings of QID 9 and QID 10. These indicate that
some people prefer results from their department while others do not. In order to
tackle this problem, we could expose the user model to the searcher, so that he can
adjust the preferences as he wishes. Or alternatively, we could automatically learn a
user’s profile from past searches. However, this requires personal log‐data to be
stored (a privacy issue in corporations; cf. [Kobsa 2007]) and it requires a minimum
search activity in order to be applicable.

We were a bit surprised that the choice of tool has no significant influence on task 4
(“Find […] literature […] about YASA”) and interpret the result as follows. We could
observe that the test persons often provided the intranet URL of YASA and the web
help page of YASA as an answer. This indicates that they were not fully aware about
the question’s intention: Namely, to provide a folder on the PRPZ‐Share or an
Internet URL, where documents about YASA are bundled. We further assume this is
due to the fact, that the respective PRPZ‐Share folder is not categorized as a project.
Indeed, we categorize only medicine projects from Pharma Research and not any IT‐
related projects. The incorporation of non‐medicine projects is thus the target of
future work.

8.5 Discussion
In this chapter we evaluated the prototype YASA using online and offline evaluations.
The data used to conduct the evaluation originated from query logs, monitoring logs,
and from questionnaires. Logs were used to determine the usage characteristics of
YASA as well as of other tools, and also to verify YASA’s ranking performance. The
monitoring logs obtained from the user study were used to evaluate the
performance of YASA compared to conventional tools. Finally, the questionnaire
allowed us to capture the user opinion about general search aspects and about the
principles applied in YASA.

One of the first results we obtained was that YASA is one of the most frequently used
tools in Pharmaceutical Research in Penzberg, to access internal information.
Further, it was shown that YASA’s usage is still growing.

An analysis of YASA’s query logs showed that the vast majority of queries (89%)
target the PRPZ‐Share. Similarly, the results of the questionnaire also point out that
the PRPZ‐Share is the most important source. This suggests that enough incentives

Discussion

177

(e.g. quality of search results, faceted navigation, etc.) are given in order to access
the PRPZ‐Share by means of YASA.

Regarding the other sources however, the results of the query log analysis and the
questionnaire do not agree well. While the query logs indicate that these are barely
used, the answers to the questionnaire indicate that their integration is useful.

In case of PubMed we can identify two main reasons: user habit and speed of
information retrieval (cf. Fig. 8‐19; QID 5). Indeed, people might just be used to
access the source directly or via Google. Regarding speed, people might get results
faster if they use Google because the results often point directly to the full‐text
content of the article. Conducting the same search in YASA, people first transmit the
query, then select PubMed as the source, and then they select a result item, from
where another two clicks are necessary in order to receive the full text (these two
clicks are part of the official order procedure for publications and can not be
circumvented). Arguably, the workflow could be faster. Further, incentives such as
faceted navigation are missing.

Regarding the low usage of databases we already argued in Chapter 8.1.2 and
Chapter 8.1.7 that the access restriction and the prototypical implementation are
reasons for the relatively low usage.

The investigation of the query logs revealed that queries and query sessions are
quite simple: only few terms are used in a query, Boolean operators are de facto not
used, and facets are used in about 10% of the searches. We can thus conclude, that
experts barely require Boolean operators to find the information they seek. Rather,
they use simple keyword queries in combination with faceted navigation in order to
slice and dice the data.

Faceted navigation is enabled by the automatic categorization of text documents. In
this thesis we compared two classification approaches: KE (knowledge engineering)
and ML (machine learning). Even though both approaches delivered good results, on
average ML clearly outperformed KE in terms of precision and recall. In particular,
we recommend applying KE only if the documents have a simple and clear structure
which can easily be described by means of rules. The usage of KE enables domain
experts to explicitly encode their domain knowledge and the users benefit from the
possibility to receive an automatic explanation of why a certain document was
classified into the respective category.

The analysis of the ranking algorithms revealed that neither log‐based adaptation
nor rule‐based adaptation delivered any significant improvement over the baseline.

In case of the log‐based approach we were not able to detect a performance
difference because of the small click per document ratio of 0.013. It is maybe due to
the nature of research (which mostly requires the latest knowledge as was also
demonstrated by the fact that 86% of the logged queries were unique) that the click
ratio did not rise significantly in the investigated departments. We can thus conclude

Chapter 8 Evaluation

178

that the simple log‐based feedback approach we investigated in this thesis is not
suited for the investigated context as well as for similar environments.

Rule‐based adaptation on the other hand seemed to have failed due to wrong
assumptions. The questionnaire results pointed out that people do not have a clear
opinion whether they prefer results from their own context or from others (cf. Fig. 8‐
18; QID 9 and QID 10). They support thus the results from our ranking comparison in
which no significant difference to the baseline algorithm could be detected. In effect,
we need to revise our approach of a rule‐based adaptation of search results. We see
two directions which we could follow: a) let the user customize his preferences or b)
cluster the users by departments and projects and let the adaptive system
automatically adjust preferences by means of feedback (cf. Chapter 6.4.4). In the
latter case, we have to determine whether such an approach would yield enough
feedback data in the investigated environment.

179

Part IV

Conclusion

181

Chapter 9

Summary and future work

“The more we learn about the world, and the deeper our learning, the more
conscious, clear, and well‐defined will be our knowledge of what we do not know, our
knowledge of our ignorance. The main source of our ignorance lies in the fact that
our knowledge can only be finite, while our ignorance must necessarily be infinite.”

Karl Popper (1902 – 1994)

9.1 Summary ..181
9.2 Lessons learned..183
9.3 Future work..184
9.4 Outlook...186

Within a few years search engines have become the method of choice for accessing
and retrieving information. This phenomenon is not only observable in the Web but
also in large corporate intranet environments. Even though search engines have
existed now for several years, recent studies show that search for information,
especially in enterprise environments, is still a challenge: 1) information is clustered
over multiple sources, 2) search engines apply a “one‐size‐fits‐all” approach ignoring
the needs of the individual, 3) users are given no guidance through the information
space, 4) general search engines are ignorant to a company’s existing knowledge.
These are exactly the issues which we have tried to address in this thesis using
techniques from information retrieval, adaptive systems, the semantic web, and
machine learning. Carefully selected methods which are based on the given
technologies have been implemented in the prototype YASA and their performance
was measured in the research department of Roche in Penzberg.

9.1 Summary
In the preliminary part, we have presented the background of this thesis: the
challenges in professional search, the foundation of the broad field of information
retrieval, the role of adaptive systems in prevailing information overload, and the
promises and current state of semantic technologies.

The chapter about information retrieval started with the historical evolution of the
field. Then, the information retrieval (IR) process was introduced focusing on the
widely used vector space model. We also discussed text processing as this step is not
only important for IR but also for text categorization. Having introduced the basics of

Chapter 9 Summary and future work

182

IR as well as Web search, we discussed next the current state of the art in intranet
search. At the end of the chapter we focused on evidence for deducing a document’s
relevancy.

The following chapter introduced the basics of adaptive systems. We focused
predominantly on user modeling and listed applications of adaptive systems in the
area of information retrieval (i.e. personalized search).

The third and last background chapter surveyed the state of the art in semantic
technologies. Special focus was put on the combination of semantic technologies
and information retrieval as well as the application of semantic technologies in the
health care and life sciences sector.

In the core part, we started by giving an analysis of the current situation of search for
information in the investigated department at Roche in Penzberg. The review was
based on a log‐file analysis and two empirical studies. The results point out that the
present information landscape is complex and that scientists are not satisfied with
the performance of existing search tools. Given this preliminary analysis we then
suggested several quality characteristics a professional search tool should follow:
One single entry point, role‐specific ranking of search results, guided navigation, and
exploitation of a priori knowledge.

Given these quality characteristics we described a concept of an ontology‐based
information retrieval approach which was implemented in the prototype YASA (Your
Adaptive Search Agent). YASA enabled us to conduct several empirical studies in
order to conclude which of the characteristics are most important for a professional
search tool.

Ontologies are an integral part of our concept: They are used to capture a
document’s annotations such as entities occurring in the text, the document’s
overall topic, as well as its organizational embedding; and ontologies are also used to
describe the user model used during the adaptation process.

The automatic annotation of documents is a key task because the additional
metadata is crucial for the adaptation of search results as well as for guided
navigation. Therefore, we investigated two paradigms of augmenting documents
with metadata: knowledge engineering and machine learning. Despite the fact, that
machine learning is nowadays the most used method for text categorization, we had
a special interest in comparing it to the knowledge engineering approach because
the latter enabled us to explicitly encode domain knowledge and because it
seamlessly integrates with the applied semantic web framework.

General search tools mostly use a “one‐size‐fits‐all” approach which does not deliver
optimal results in a professional environment. Therefore, we apply and compare two
methods in YASA for achieving a role‐specific ranking of search results: Knowledge‐
based adaptation and log‐based adaptation. In the first case, a priori knowledge
about the searcher’s context is exploited. The background knowledge is encoded by

Lessons learned

183

rules which complement the ontologies. The rules express what interests to infer
and how to weight them. In addition to the rule‐based adaptation approach we also
apply a log‐based approach which is based on past searches. The charm of the latter
is its ability to automatically adjust document relevance as new click events are
observed. Finally, we pointed out how adaptation of search results could be
extended in case the majority of the indexed documents are assigned to a topic.

We have investigated the proposed quality characteristics by deploying YASA in the
research environment of a large pharmaceutical company, namely Roche in
Penzberg, Germany. The overall results show that YASA – and the integrated
principles as a whole – is a success. Even though the usage is already considerable
compared to other search engines we can still observe an increase.

The evaluation of the ranking algorithms revealed that a significant improvement
over the baseline ranking could neither be achieved by the usage of a log‐based
feedback method nor by knowledge‐based adaptation. A discussion of the reasons
why both approaches have failed was given in the respective chapters.

Comparing the two approaches, knowledge engineering and machine learning, for
text categorization showed that machine learning is on average better than
knowledge engineering – especially if the recall levels are considered. However, the
latter approach still performed quite well, so that a final judgment can only be given
in light of the context. In case the considered document type has a clear structure
and if it is important to explicitly encode the classification rules, then knowledge
engineering is the way to go. Otherwise, we suggest using machine learning.

Regarding the exploitation of existing in‐house knowledge we could demonstrate
that this principle significantly improves a search engine’s quality. In one case,
namely the role‐based adaptation, the application of in‐house knowledge failed –
maybe because the applied model was too vague. However, in case of text
categorization, i.e. the classification of documents into projects and departments, we
obtained a different result. The log‐usage analysis as well as the user study shows
that these aspects of faceted navigation are highly important for the users.

9.2 Lessons learned
Research in the area of adaptation has so far mostly targeted adaptation services for
specific types of contents such as news and e‐commerce (e.g. online book selling
shops). Further, research regarding the personalization of search results mainly
focused on implicit feedback methods which exploit click‐through log data.

Context‐based search (i.e. adaptation of search results based on the working context
of a user) as investigated in this thesis, has not yet been well studied in research. The
reason is that such investigations require quite complex systems. YASA is such a
system. Its major scientific benefit thus is that it made possible research in context‐
based search in the first place. This thesis is a first step for research in this direction.
So what are the more specific findings of this new research enabled by YASA?

Chapter 9 Summary and future work

184

At the beginning of this research project we started empty‐handed: No formal
ontology modeling the knowledge domain of Pharmaceutical Research was available.
In fact, there was not even a taxonomy‐like structure which described frequently
used concepts and their relationships. For that reason, we had to build upon
unstructured free‐text documents. This is a serious issue, because the ability to
extend search by symbolic knowledge representation approaches such as those of
the semantic web (RDF/S, OWL, F‐Logic, etc.) is limited by the quality of the indexed
content. This was the case in this research project.

Interestingly, our results show that this wide‐spread limitation can be compensated
to a large degree by using automatic metadata extraction techniques like those
compiled in Chapter 6.3 of this thesis.

Indeed, we were able to extract large quantities of metadata from free‐text
documents. Amongst others, we can extract the department to which a document
belongs, the project to which it is related, and a range of topics. We are aware that
such an automatic extraction does not yield optimal quality: extracted metadata may
be erroneous and more importantly, the metadata is not semantically rich.

Indeed, the ontologies describing the metadata are not complex but have large
similarities to taxonomies. Despite the “sparse semantics” offered by the ontologies
(cf. 6.2), we applied faceted navigation and context‐based personalization (cf. 6.4) on
top of them. The relevance of semantics for professional search is reflected well by
the fact that the integrated facets have a simple semantic structure: Even though
simple, it is a success (cf. 8.5). Hence, YASA shows that context‐based search benefits
greatly from semantics.

We can thus conclude, that already a small bit of semantics goes a much longer way
than one would have expected. Further, it seems to be worthwhile to intensify
research on including even more semantics.

9.3 Future work
Our study opens many possibilities for future work. In particular, several issues which
could not be targeted or were not comprehensively considered in this work can be
further investigated. In just the same manner, new or improved approaches can then
be analyzed and evaluated. Next, we discuss several areas of future work.

In the previous section we argued that even though we have not implemented a lot
of semantics into YASA, it makes already a significant difference. A key question is
therefore how to integrate more semantics?

The most apparent solution is to add further metadata by means of automatic
classification. However, automatically extracting metadata from unstructured
documents is related with errors. We are thus not able to produce 100% accurate
metadata by means of automatic approaches. We could simply tolerate these errors
as long as the error rate is low or we could enable a human feedback cycle so that
any detected errors are eliminated.

Future work

185

Alternatively, the applied semantics could be expanded by extending the knowledge
base, i.e. the ontologies. For instance, we could add more relationships to the
concepts. These relationships could connect distinct concepts and they could extend
search and navigation options at query time.

Another area of future work concerns the integration of internal and external
information into one search tool which resulted in an inconclusive picture at the end
of this thesis. While the query logs show a low access to various sources, the
questionnaire suggests something different (Chapter 8). In case of internet sources
the most probable reasons are a) that people access the respective sources slightly
faster using Google and b) the searchers’ habit of how information is accessed. In
case of intranet sources we see the biggest challenges in integrating the databases –
which in the current state of the implementation, do not offer a significant value for
searchers. We therefore suggest focusing on in‐house databases for future work. In
particular, there are several databases which co‐exist and which are usually only
accessible by means of individual applications. In case all these databases would be
integrated, connected and if an appropriate visualization of the data would be
offered then a huge impact could be achieved in this sector.

Wolfram Alpha24 and Google squared25 are examples of such a “database of
everything”, in which data from distinct sources are connected and integrated in a
novel way. For instance, a search for a city within Wolfram Alpha typically causes the
tool to gather data about the population from databases, calculate statistics and to
render the results in a convenient way. Achieving this “database of everything”
implies a lot of work. Not only must all relevant knowledge about the data and their
relationships be captured but also definitions of how to render the data, how to rank
the data, etc. While a general methodology for achieving this goal might be found,
the concrete implementation would be different for each domain. Further, issues
such as data curation (how to correct errors in databases?) and citation (how to cite
data) must also be addressed in this context.

Related to the integration of information sources into YASA is the question of how
well YASA scales if it is deployed to other areas. Indeed, users would benefit
significantly if they were able to search other areas as well. In fact, there is already
ongoing work in order to deploy YASA also in the division of Pharmaceutical
Technical Development – a division closely related to Pharmaceutical Research in
Penzberg. Once this is accomplished and in case it is a success, it would be appealing
to extend YASA to a global scale, i.e. to integrate data from other sites as well. In this
respect it would also be interesting to verify how role‐based adaptation performs on
a global scale rather than on a local scale.

Another area of future work is the extension of text categorization to further topics.
On the one hand, we would be able to improve log‐based feedback by associating

24 http://www.wolframalpha.com
25 http://www.google.com/squared

Chapter 9 Summary and future work

186

the feedback data with a document’s topic instead of the individual document – the
click‐through data would thus be generalized to the documents’ topics. On the other
hand, users would benefit from a richer set of guided navigation topics. In this
context it would also be interesting to investigate if YASA’s users can be involved into
the categorization process. In particular, we could offer a voting button by which
users could correct misclassifications or even suggest new topics. The collected
feedback could be added as new training samples to the machine learning algorithm
(either automatically or after a manual review‐process) so that the model is adjusted
accordingly.

The current knowledge‐based adaptation approach did not deliver the expected
results, i.e. it did not outperform the baseline ranking. Prior to applying major
changes to the rules, we suggest to first leave them as is and to only conduct an
automatic fine‐tuning of the parameters (the weights which control a rule’s influence
on the ranking of search results). The fine‐tuning could be done by optimizing on
past query logs. In case this procedure fails one could still leave to the user the
choice of setting the search context. Alternatively, a group‐based adaptation
approach could be applied in which the log data is associated with the searcher’s
role. However, doing so requires the storage of person‐related logs. This must first
be approved by the company’s work council.

Even though YASA was fine‐tuned for Roche, we believe that the applied principles
as well as the main findings are transferable to other domains. We can not prove this
statement without conducting an explicit evaluation within a different context.
However, the statement is based on the following assumptions: other large
corporations have a similar complex intranet environment; effective search of in‐
house information is also an issue in other companies; in‐house knowledge such as
administrative databases, project lists, and controlled vocabularies is also available in
other companies. Therefore, we would only need to adjust the company specific
parts, i.e. the topics of the classification ontology, the classification models, and the
rules. Regarding feedback‐based adaptation we expect the results to be similar for
environments in which a similar user‐to‐document‐ratio exists as in our case.
However, if this ratio shifts towards more users vs. fewer documents, then we
expect the feedback‐based adaptation to outperform the baseline. Transferring the
performance results of the role‐based adaptation to other companies is not possible
because other companies will have a different set of adaptation rules. However, we
expect guided navigation as well as the incorporation of in‐house knowledge into the
classification processes to play a role of similar relevance in other companies.

9.4 Outlook
A final outlook and personal opinion might be appropriate at the end of this thesis.

Today’s enterprise environments are characterized by an information space in which
large quantities of data are stored in form of unstructured text. I don’t see this to
change fundamentally in the future because written text is the way to preserve
knowledge.

Outlook

187

Considering this statement in light of the steadily growing information quantities,
the need for semantic search tools and personalization services becomes eminent.
These approaches have the ability to improve a machine’s understanding of the
user’s information need (which is such a highly fuzzy notion) by incorporating
semantics and context. Indeed, the relevance of a document not only depends on
the query and the document corpus but also on the context. The rising question is
thus, how to permanently enrich unstructured text as well as the search process with
semantics so that context‐based search is made possible? Notice, that this question
is also relevant for other content types such as images which are e.g. often used to
sketch patents or to render small molecules. Being able to search these effectively is
thus similar important.

This work made use of statistics, logical inference, and heuristics in order to classify
unstructured text. However, these methods share a common drawback. They do not
automatically adjust to changing environments as encountered in companies:
projects change, departmental hierarchies are undergoing steady adjustments due
to internal re‐structuring, existing document topics shift their focus, new topics are
added due to new trends in research, etc. In effect, the characteristics of each
category undergo steady changes so that the classification models must be adjusted.
The required adjustments may vary greatly depending on the considered class. In
case of departments for instance, it would suffice to simply update the
organizational hierarchy in the ontology. In case of topic classifications on the other
hand, new training data must be provided potentially causing a considerable effort.

Without a doubt, this poses a serious challenge if context‐based search is to be
applied on the corpus of large corporations. This is particularly true for resources
drawn from the Internet. It remains to be seen if other approaches, possibly based
on human computation [Von Ahn & Dabbish 2004] in which the computational
ability of humans solve problems computers cannot, could mitigate the issue. For the
time being we have enough to do by coping with those problems for which
approaches exist, that at least look promising. Hopefully, this thesis is a useful
contribution towards solving some of these issues.

189

Bibliography

Agresti, A., 2002, Categorical Data Analysis, Second Edition ed., John Wiley & Sons,
Hoboken, NJ, USA.

Allemang, D. & Hendler, J., 2008, Semantic Web for the Working Ontologist: Effective
Modeling in RDFS and OWL, Morgan Kaufmann, Burlington, MA, USA.

Anderson, C., 2006, The long tail: Why the future of business is selling less of more,
Hyperion, New York, NY, USA.

Andrews, W., Gartner Magic Quadrant for Information Access, Gartner Inc. Retrieved
7 October, 9 A.D., from
http://mediaproducts.gartner.com/reprints/microsoft/vol7/article2/article2.html.

Antoniou, G. & Van Harmelen, F., 2008, A Semantic Web Primer, 2nd Edition ed., The
MIT Press, Cambridge, MA, USA.

Asnicar, F. A. & Tasso, C., 1997, 'ifWeb: A prototype of user modelbased intelligent
agent for document filtering and navigation in the world wide web', in Proceedings
of the Workshop on Adaptive Systems and User Modeling on the World Wide Web
(UM97), Sardinia, Italy, pp. 3‐12.

Avery, C. & Zeckhauser, R., 1997, 'Recommender systems for evaluating computer
messages', Communications of the ACM, 40, (3) pp. 88‐89.

Baeza‐Yates, R. & Ribeiro‐Neto, B., 1999, Modern information retrieval, Addison‐
Wesley, Harlow, England.

Bailey, J., Zhang, C., Budgen, D., Charters, S., & Turner, M., 2007, 'Search Engine
Overlaps: Do they agree or disagree?', in Proceedings of the Second International
Workshop on Realising Evidence‐Based Software Engineering, Minneapolis, MN, USA,
IEEE Computer Society, Washington, DC, USA, p. 2.

Basili, V., Caldiera, G., & Rombach, H. D., 1994, 'The Goal Question Metric Paradigm,
Encyclopedia of Software Engineering', in Encyclopedia of Software Engineering, vol.
Volume 1 J. J. Marciniak, ed., John Wiley & Sons, New York, NY, USA, pp. 528‐532.

Becket, D., RDF Test Cases, W3C. Retrieved 10 March, 2009a, from
http://www.w3.org/TR/rdf‐testcases/#ntriples.

190

Becket, D., RDF/XML Syntax Specification, W3C. Retrieved 10 March, 2009b, from
http://www.w3.org/TR/rdf‐syntax‐grammar/.

Becket, D., Turtle ‐ Terse RDF Triple Language, Retrieved 10 March, 2009, from
http://www.dajobe.org/2004/01/turtle/.

Berners‐Lee, T., A readable language for data on the Web, W3C. Retrieved 10 March,
2009, from http://www.w3.org/DesignIssues/Notation3.

Berners‐Lee, T. & Fischetti, M., 1999, Weaving the Web: The original design and
ultimate destiny of the World Wide Web by its inventor, HarperCollins, New York, NY,
USA.

Berners‐Lee, T., Hendler, J., & Lassila, O., 2001, 'The semantic web', Scientific
American, 284, (5) p. 35.

Bharat, K., Kamba, T., & Albers, M., 1998, 'Personalized, interactive news on the
web', Multimedia Systems, 6, (5) pp. 349‐358.

Boolean algebra, Encyclopædia Britannica, Encyclopædia Britannica Online.
Retrieved 23 October, 2008, from
http://www.britannica.com/EBchecked/topic/73621/Boolean‐algebra.

Brank, J. & Grobelnik, M., 2002, 'Interaction of feature selection methods and linear
classification models', in Proceedings of the ICML‐02 Workshop on Text Learning,
Sydney, Australia, Forthcoming.

Breese, J. H., Heckerman, D., & Kadie, C., 1998, 'Empirical Analysis of Predictive
Algorithms for Collaborative Filtering', in Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, Madison, WI, Morgen Kaufmann, San Francisco,
CA, USA.

Brickley, D. & Guha, R. V., RDF Vocabulary Description Language 1.0: RDF Schema,
W3C. Retrieved 10 March, 2009, from http://www.w3.org/TR/rdf‐schema.

Brin, S. & Page, L., 1998, 'The anatomy of a large‐scale hypertextual Web search
engine', in Computer Networks and ISDN Systems, Elsevier, Amsterdam, pp. 107‐117.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins,
A., & Wiener, J., 2000, 'Graph structure in the Web', Computer Networks, 33, (1‐6)
pp. 309‐320.

Budzik, J., Hammond, K.J., & Birnbaum, L., 2001, 'Information access in context',
Knowledge‐Based Systems, 14, (1‐2) pp. 37‐53.

Burke, R., 2002, 'Hybrid Recommender Systems: Survey and Experiments', User
Modeling and User‐Adapted Interaction, 12, (4) pp. 331‐370.

191

Castells, P., Fernandez, M., & Vallet, D., 2007, 'An Adaptation of the Vector‐Space
Model for Ontology‐Based Information Retrieval', IEEE Transactions on Knowledge
and Data Engineering, 19, (2) pp. 261‐272.

Cheung, K.H., Prud'hommeaux, E., Wang, Y., & Stephens, S., 2009, 'Semantic Web for
Health Care and Life Sciences: a review of the state of the art', Briefings in
Bioinformatics, 10, (2) pp. 111‐113.

Codd, E.F., 1970, 'A relational model of data for large shared data banks',
Communications of the ACM, 13, (6) pp. 377‐387.

Cohen, W. W. & Singer, Y., 1999, 'A simple, fast, and effective rule learner', in
Proceedings of the sixteenth national conference on Artificial intelligence, American
Association for Artificial Intelligence, Menlo Park, CA, USA, pp. 335‐342.

Cortes, C. & Vapnik, V., 1995, 'Support‐Vector Networks', Machine Learning, 20, (3)
pp. 273‐297.

Craswell, N., Hawking, D., & Robertson, S., 2001, 'Effective site finding using link
anchor information', in Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, New Orleans, LA,
USA, ACM, New York, NY, USA, pp. 250‐257.

Craswell, N., Robertson, S., Zaragoza, H., & Taylor, M., 2005, 'Relevance weighting for
query independent evidence', in Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, Salvador,
Brazil, ACM, New York, NY, USA, pp. 416‐423.

Dasarathy, B.V., 1990, Nearest neighbor (NN) norms: NN pattern classification
techniques, IEEE Computer Society Press, Los Alamitos, CA.

Domingos, P. & Pazzani, M., 1997, 'On the optimality of the simple Bayesian classifier
under zero‐one loss', Machine Learning, 29, (2) pp. 103‐130.

Eirinaki, M. & Vazirgiannis, M., 2003, 'Web mining for web personalization', ACM
Transactions on Internet Technology, 3, (1) pp. 1‐27.

Eiron, N. & McCurley, K. S., 2003, 'Analysis of anchor text for web search', in
Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in information retrieval, Toronto, Canada, ACM, New York, NY, USA, pp.
459‐460.

Fagin, R., Kumar, R., McCurley, K. S., Novak, J., Sivakumar, D., Tomlin, J. A., &
Williamson, D. P., 2003, 'Searching the workplace web', in Proceedings of the 12th
international conference on World Wide Web, Budapest, Hungary, ACM, New York,
NY, USA, pp. 366‐375.

Feldman, S. & Sherman, C., 2004, 'The High Cost of Not Finding Information', KM
World, 13, (3).

192

Fox, C., 1989, 'A stop list for general text', ACM SIGIR Forum, 24, (1‐2) pp. 19‐21.

Fox, C., 1992, 'Lexical analysis and stoplists', in Information retrieval: data structures
and algorithms, W. B. Frakes & R. Baeza‐Yates, eds., Prentice‐Hall, Inc., Upper Saddle
River, NJ, USA, pp. 102‐130.

Fox, E., Betrabet, S., Koushik, M., & Lee, W., 1992, 'Extended boolean models', in
Information retrieval: data structures and algorithms, W. B. Frakes & R. Baeza‐Yates,
eds., Prentice‐Hall, Inc., Upper Saddle River, NJ, USA, pp. 393‐418.

Frakes, W. B., 1992, 'Stemming algorithms', in Information retrieval: data structures
and algorithms, W. B. Frakes & R. Baeza‐Yates, eds., Prentice‐Hall, Inc., Upper Saddle
River, NJ, USA, pp. 131‐160.

Franz, T., Scherp, A., & Staab, S., Does a Semantic Desktop Facilitate Your Daily
Tasks?, University of Koblenz‐Landau. Retrieved 17 September, 2009, from
http://kola.opus.hbz‐nrw.de/volltexte/2008/334/.

Fujii, A., 2008, 'Modeling anchor text and classifying queries to enhance web
document retrieval', in Proceeding of the 17th international conference on World
Wide Web, Beijing, China, ACM, New York, NY, USA, pp. 337‐346.

Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A.,
Streeter, L. A., & Lochbaum, K. E., 1988, 'Information retrieval using a singular value
decomposition model of latent semantic structure', in Proceedings of the 11th
annual international ACM SIGIR conference on Research and development in
information retrieval, Grenoble, France, ACM, New York, NY, USA, pp. 465‐480.

Gediga, G. & Hamborg, K. C., 1999, 'IsoMetrics: An usability inventory supporting
summative and formative evaluation of software systems', in Proceedings of HCI
International 99 on Human‐Computer Interaction: Ergonomics and User Interfaces,
Munich, Germany, Lawrence Erlbaum Associates Inc, Hillsdale, NJ, USA, pp. 1018‐
1022.

Gentili, G., Micarelli, A., & Sciarrone, F., 2003, 'Infoweb: An adaptive information
filtering system for the cultural heritage domain', Applied Artifical Intelligence, 17, (8‐
9) pp. 715‐744.

Gillies, J. & Cailliau, R., 2000, How the Web Was Born: The Story of the World Wide
Web, Oxford University Press, New York, NY, USA.

Gosset, W.S., 1908, 'The probable error of a mean', Biometrika, 6, (1) pp. 1‐25
Retrieved 18 September 9 A.D., from
http://biomet.oxfordjournals.org/cgi/content/citation/6/1/1.

Gruber, T.R., 1993, 'A translation approach to portable ontology specifications',
Knowledge acquisition, 5, (2) pp. 199‐220.

193

Harville, D.A., 1977, 'Maximum likelihood approaches to variance component
estimation and to related problems', Journal of the American Statistical Association,
72, (358) pp. 320‐338.

Haveliwala, T.H., 2003, 'Topic‐sensitive pagerank: A context‐sensitive ranking
algorithm for web search', IEEE Transactions on Knowledge and Data Engineering,
15, (4) pp. 784‐796.

Hawking, D., 2004, 'Challenges in enterprise search', in Proceedings of the 15th
Australasian database conference ‐ Volume 27, Dunedin, New Zealand, Australian
Computer Society, Inc., Darlinghurst, Australia, pp. 15‐24.

Hawking, D., Rowlands, T., & Adcock, M., 2006, 'Improving rankings in small‐scale
web search using click‐implied descriptions', Australian Journal of Intelligent
Information Processing Systems.ADCS 2006 special issue, 9, (2) pp. 17‐24.

Hayes, P., RDF Semantics, W3C. Retrieved 10 March, 2009, from
http://www.w3.org/TR/rdf‐mt/.

Heckerman, D., 1999, 'A tutorial on learning with Bayesian networks', Learning in
Graphical Models.

Henze, N., Dolog, P., & Nejdl, W., 2004, 'Reasoning and ontologies for personalized e‐
learning in the semantic web', Educational Technology & Society, 7, (4) pp. 82‐97.

Henzinger, M.R., Motwani, R., & Silverstein, C., 2002, 'Challenges in web search
engines', ACM SIGIR Forum, 36, (2) pp. 11‐22.

Herlocker, J.L., Konstan, J.A., Terveen, L.G., & Riedl, J.T., 2004, 'Evaluating
collaborative filtering recommender systems', ACM Transactions on Information
Systems, 22, (1) pp. 5‐53.

Heydon, A. & Najork, M., 1999, 'Mercator: A scalable, extensible Web crawler',
World Wide Web, 2, (4) pp. 219‐229.

Horrocks, I., 2005, 'Owl rules, ok?', in W3C Workshop on Rule Languages for
Interoperability, Washington, DC, USA.

Jacso, P., 2008, 'Google Scholar revisited', Online Information Review, 32, (1) pp. 102‐
114.

Jameson, A., 2003, 'Adaptive interfaces and agents', in The human‐computer
interaction handbook: fundamentals, evolving technologies and emerging
applications, J. A. Jacko & A. Sears, eds., Lawrence Erlbaum Associates Inc., Hillsdale,
NJ, USA, pp. 305‐330.

Joachims, T., 2002, 'Optimizing Search Engines using Clickthrough Data', in
Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, Edmonton, Alberta, Canada, ACM, New York, NY, USA,
pp. 133‐142.

194

Joachims, T., 2003, 'Evaluating retrieval performance using clickthrough data', in Text
Mining, J. Franke, G. Nakhaeizadeh, & I. Renz, eds., Physica / Springer, pp. 79‐96.

Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., & Gay, G., 2007,
'Evaluating the accuracy of implicit feedback from clicks and query reformulations in
Web search', ACM Transactions on Information Systems, 25, (2).

Joachims, T., Nedellec, C., & Rouveirol, C., 1998, 'Text categorization with Support
Vector Machines: Learning with many relevant features', in Machine Learning: ECML‐
98, Chemnitz, Germany, Springer Berlin / Heidelberg.

Jones, K. S., 1999, 'What is the role of NLP in text retrieval?', in Natural Language
Information Retrieval, T. Strzalkowski, ed., Kluwer Academic Publishers, Dordrecht,
Netherlands, pp. 1‐24.

Kifer, M., Lausen, G., & Wu, J., 1995, 'Logical foundations of object‐oriented and
frame‐based languages', Journal of the ACM, 42, (4) pp. 741‐843.

Kim, J. & Seoul, K., 2006, 'What is a recommender system', in Proceedings of
Recommenders06.com, pp. 1‐21.

Kleinberg, J., 1999, 'Authoritative Sources in a Hyperlinked Environment', Journal of
the ACM, 46, (5) pp. 604‐632.

Klyne, G. & Carroll, J. J., Resource Description Framework (RDF): Concepts and
Abstract Syntax, W3C. Retrieved 10 March, 2009, from http://www.w3.org/TR/rdf‐
concepts/.

Kobsa, A., 2007, 'Privacy‐Enhanced Web Personalization', in The Adaptive Web:
Methods and Strategies for Web Personalization, vol. 4321 P. Brusilovsky, A. Kobsa,
& W. Nejdl, eds., Springer Berlin / Heidelbeg, pp. 628‐670.

Koivunen, M. R. & Miller, E., W3C Semantic Web Activity, W3C. Retrieved 17
September, 2009, from http://www.w3.org/2001/12/semweb‐fin/w3csw.

Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., & Riedl, J., 1997,
'GroupLens: applying collaborative filtering to Usenet news', Communications of the
ACM, 40, (3) pp. 77‐87.

Langville, A.N. & Meyer, C.D., 2006, Google's Pagerank and Beyond: The Science of
Search Engine Rankings, Princeton University Press, Princeton, New Jersey, USA.

Lee, J. H., 1995, 'Combining multiple evidence from different properties of weighting
schemes', in Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval, Seattle, Washington, USA, ACM,
New York, NY, USA, pp. 180‐188.

Li, X. & Croft, W. B., 2003, 'Time‐based language models', in Proceedings of the
twelfth international conference on Information and knowledge management, New
Orleans, LA, USA, ACM, New York, NY, USA, pp. 469‐475.

195

Liu, F., Yu, C., & Meng, W., 2004, 'Personalized web search for improving retrieval
effectiveness', IEEE Transactions on Knowledge and Data Engineering, 16, (1) pp. 28‐
40.

Manola, F. & Miller, F., RDF Primer, W3C. Retrieved 10 March, 2009, from
http://www.w3.org/TR/rdf‐primer/.

Maßun, M. 2008. Collaborative Information Management in Enterprises. University
of Regensburg.

McGuinnes, D. L. & Van Harmelen, F., OWL Web Ontology Language Overview, W3C.
Retrieved 10 March, 2009, from http://www.w3.org/TR/owl‐features.

McNemar, Q., 1947, 'Note on the sampling error of the difference between
correlated proportions or percentages', Psychometrika, 12, (2) pp. 153‐157.

Micarelli, A., Gasparetti, F., Sciarrone, F., & Gauch, S., 2007, 'Personalized search on
the World Wide Web', in The Adaptive Web: Methods and Strategies for Web
Personalization, vol. 4321 P. Brusilovsky, A. Kobsa, & W. Nejdl, eds., Springer Berlin /
Heidelbeg, pp. 195‐230.

Micarelli, A. & Sciarrone, F., 2004, 'Anatomy and empirical evaluation of an adaptive
web‐based information filtering system', User Modeling and User‐Adapted
Interaction, 14, (2‐3) pp. 159‐200.

Middleton, C. & Baeza‐Yates, R., A comparison of open source search engines,
Universitat Pompeu Fabra Department of Technologies. Retrieved 1 January, 2009,
from http://wrg.upf.edu/WRG/dctos/Middleton‐Baeza.pdf.

Middleton, S.E., Shadbolt, N.R., & De Roure, D.C., 2004, 'Ontological user profiling in
recommender systems', ACM Transactions on Information Systems, 22, (1) pp. 54‐88.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K.J., 1990, 'WordNet: An on‐
line lexical database', International journal of lexicography, 3, (4) pp. 235‐244.

Miller, S., Information‐seeking Behaviour of Academic Scientists in the Electronic Age,
a Literature Review, Canadian Research Knowledge Network. Retrieved 30 March,
2009, from http://www.cnslp.ca/initiatives/evaluation/LitReview‐SusanMiller.pdf.

Mitchell, T., 1997, Machine Learning, McGraw‐Hill.

Mühlbacher, S. 2008. Scientific Information Literacy in Enterprises. University of
Regensburg.

Nadeau, D. & Sekine, S., 2007, 'A survey of named entity recognition and
classification', Linguisticae Investigationes, 30, (1) pp. 3‐26.

Najork, M. A., Zaragoza, H., & Taylor, M. J., 2007, 'Hits on the web: how does it
compare?', in Proceedings of the 30th annual international ACM SIGIR conference on

196

Research and development in information retrieval, Amsterdam, Netherlands, ACM,
New York, NY, USA, pp. 471‐478.

Noll, M. G. & Meinel, C., 2007, 'Web Search Personalization Via Social Bookmarking
and Tagging', in The Semantic Web, Busan, Korea, Springer Berlin / Heidelberg, pp.
367‐380.

Page, L., Brin, S., Motwani, R., & Winograd, T., The pagerank citation ranking:
Bringing order to the web, Stanford InfoLab. Retrieved 17 September, 2009, from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768.

Pitkow, J., Schntze, H., Cass, T., Cooley, R., Turnbull, D., Edmonds, A., Adar, E., Breuel,
T., Methodology, T., & Directions, R.F., 2002, 'Personalized search', Communications
of the ACM, 45, (9) pp. 50‐55.

Porter, M., 1980, 'An Algorithm for Suffix Stripping Program', Program, 14, (3) pp.
130‐137.

Pretschner, A. & Gauch, S., 1999, 'Ontology Based Personalized Search', in
Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence, Chicago, IL, USA, IEEE Computer Society, Washington, DC, USA, pp. 391‐
398.

Prud'hommeaux, E. & Seaborne, A., SPARQL Query Language for RDF, The World
Wide Web Consortium. Retrieved 23 March, 2009, from http://www.w3.org/TR/rdf‐
sparql‐query/.

Qiu, F. & Cho, J., 2006, 'Automatic identification of user interest for personalized
search', in Proceedings of the 15th international conference on World Wide Web,
Edinburgh, Scotland, ACM, New York, NY, USA, pp. 727‐736.

Radlinski, F. & Joachims, T., 2005, 'Query chains: learning to rank from implicit
feedback', in Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, Chicago, Illinois, USA, ACM, New York, NY, USA,
pp. 239‐248.

Raghavan, V. V. & Sever, H., 1995, 'On the reuse of past optimal queries', in
Proceedings of the 18th annual international ACM SIGIR conference on Research and
development in information retrieval, Seattle, WA, USA, ACM, New York, NY, USA,
pp. 344‐350.

Reeve, L. & Han, H., 2005, 'Survey of semantic annotation platforms', in Proceedings
of the 2005 ACM symposium on Applied computing, Santa Fe, New Mexico, ACM,
New York, NY, USA, pp. 1634‐1638.

Rich, E., 1979, 'User modeling via stereotypes', Cognitive Science, 3, (4) pp. 329‐354.

Robertson, S., 2004, 'Understanding inverse document frequency: on theoretical
arguments for IDF', Journal of Documentation, 60, pp. 503‐520.

197

Robertson, S.E. & Jones, S., 1976, 'Relevance Weighting of Search Terms', Journal of
the American Society for Information Science, 27, (3) pp. 129‐146.

Robertson, S. E. & Walker, S., 1994, 'Some simple effective approximations to the 2‐
Poisson model for probabilistic weighted retrieval', in Proceedings of the 17th annual
international ACM SIGIR conference on Research and development in information
retrieval, Dublin, Ireland, Springer‐Verlag New York, Inc., New York, NY, USA, pp. 232‐
241.

Robertson, S.E., Walker, S., & Beaulieu, M., 2000, 'Experimentation as a way of life:
Okapi at TREC', Information Processing and Management, 36, (1) pp. 95‐108.

Rogati, M., 2002, 'High‐performing feature selection for text classification', in
Proceedings of the eleventh international conference on Information and knowledge
management, McLean, Virginia, USA, ACM, New York, NY, USA, pp. 659‐661.

Rose, D. E. & Levinson, D., 2004, 'Understanding user goals in web search', in
Proceedings of the 13th international conference on World Wide Web, New York, NY,
USA, ACM, New York, NY, USA, pp. 13‐19.

Safavian, S.R. & Landgrebe, D., 1991, 'A survey of decision tree classifier
methodology', IEEE Transactions on Systems, Man, and Cybernetics, 21, (3) pp. 660‐
673.

Salton, G., Fox, E.A., & Wu, H., 1983, 'Extended Boolean information retrieval',
Communications of the ACM, 26, (11) pp. 1022‐1036.

Salton, G., Wong, A., & Yang, C.S., 1975, 'A vector space model for automatic
indexing', Communications of the ACM, 18, (11) pp. 613‐620.

Schocken, S. & Finin, T., 1987, 'Prolog Meta‐Interpreters for Rule‐Based Inference
Under Uncertainty', Information Systems Working Papers Series.

Sebastiani, F., 2002, 'Machine learning in automated text categorization', ACM
computing surveys, 34, (1) pp. 1‐47.

Selberg, E. & Etzioni, O., 1997, 'The MetaCrawler architecture for resource
aggregation on the Web', IEEE Expert, 12, (1) pp. 11‐14.

Sidney, S., 1957, 'Nonparametric statistics for the behavioral sciences', The Journal of
Nervous and Mental Disease, 125, (3) p. 497.

Silverstein, C., Marais, H., Henzinger, M., & Moricz, M., 1999, 'Analysis of a very large
web search engine query log', in ACM SIGIR Forum, ACM, New York, NY, USA, pp. 6‐
12.

Singhal, A., 2001, 'Modern information retrieval: A brief overview', IEEE Data
Engineering Bulletin, 24, (4) pp. 35‐43.

198

Singhal, A., Buckley, C., & Mitra, M., 1996, 'Mitra. M.(1996) Pivoted document length
normalization', in Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, Zurich, Switzerland, ACM,
New York, NY, USA, pp. 21‐29.

Singhal, A., Choi, J., Hindle, D., Lewis, D., & Pereira, F., 1999, 'At&t at TREC‐7', in
Proceedings of the Seventh Text REtrieval Conference (TREC‐7), NIST Special
Publication, pp. 239‐252.

Smirnov, I., Overview of Stemming Algorithms, DePaul University. Retrieved 27
November, 2008, from http://the‐smirnovs.org/info/stemming.pdf.

Sormunen, E. 2000. A Method for Measuring Wide Range Performance of Boolean
Queries in Full‐text Databases. University of Tampere.

Speretta, M. & Gauch, S., 2005, 'Personalized search based on user search histories',
in Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web
Intelligence, France, IEEE Computer Society, Washington, DC, USA, pp. 622‐628.

Spink, A., Jansen, B.J., Blakely, C., & Koshman, S., 2006, 'A study of results overlap
and uniqueness among major web search engines', Information Processing and
Management, 42, (5) pp. 1379‐1391.

Steele, R., 2001, 'Techniques for specialized search engines', in Proceedings of
Internet Computing '01, Las Vegas, NV, USA.

Stojanovic, N. 2005. Ontology‐based Information Retrieval: Methods and Tools for
Cooperative Query Answering.

Sugiyama, K., Hatano, K., & Yoshikawa, M., 2004, 'Adaptive web search based on
user profile constructed without any effort from users', in Proceedings of the 13th
international conference on World Wide Web, New York, NY, USA, ACM, New York,
NY, USA, pp. 675‐684.

Sun, J. T., Zeng, H. J., Liu, H., Lu, Y., & Chen, Z., 2005, 'CubeSVD: a novel approach to
personalized Web search', in Proceedings of the 14th international conference on
World Wide Web, Chiba, Japan, ACM, New York, NY, USA, pp. 382‐390.

Surowiecki, J., 2004, The wisdom of crowds: Why the many are smarter than the few
and how collective wisdom shapes business, economies, societies, and nations,
Doubleday Books.

Tachau, J., Analysis of Three Personalized Search Tools in Relation to Information
Search: iGoogle, LeapTag, and Yahoo! MyWeb, University of Oregon, Portland,
Oregon, USA. Retrieved 25 June, 2009, from
https://scholarsbank.uoregon.edu/xmlui/handle/1794/7661?show=full.

199

Thompson, C.A., Goker, M.H., & Langley, P., 2004, 'A personalized system for
conversational recommendations', Journal of Artificial Intelligence Research, 21, pp.
393‐428.

Turtle, H., 1994, 'Natural language vs. Boolean query evaluation: a comparison of
retrieval performance', in Proceedings of the 17th annual international ACM SIGIR
conference on Research and development in information retrieval, Dublin, Ireland,
Springer‐Verlag New York, Inc., New York, NY, USA, pp. 212‐220.

Turtle, H. & Croft, W. B., 1989, 'Inference networks for document retrieval', in
Proceedings of the 13th annual international ACM SIGIR conference on Research and
development in information retrieval, Brussels, Belgium, ACM, New York, NY, USA,
pp. 1‐24.

Van Gelder, A., Ross, K.A., & Schlipf, J.S., 1991, 'The well‐founded semantics for
general logic programs', Journal of the ACM, 38, (3) pp. 619‐649.

Van Rijsbergen, C.J., 1979, Information retrieval, Butterworth‐Heinemann, Newton,
MA, USA.

Vandervalk, B.P., McCarthy, E.L., & Wilkinson, M.D., 2009, 'Moby and Moby 2:
Creatures of the Deep (Web)', Briefings in Bioinformatics, 10, (2) pp. 114‐
128http://bib.oxfordjournals.org/cgi/content/abstract/10/2/114.

Von Ahn, L. & Dabbish, L., 2004, 'Labeling images with a computer game', in
Proceedings of the SIGCHI conference on Human factors in computing systems,
Vienna, Austria, ACM, New York, NY, USA, pp. 319‐326.

Weinberger, D., 2007, Everything is miscellaneous: The power of the new digital
disorder, Henry Holt, New York, NY, USA.

Westerveld, T., Hiemstra, D., & Kraaij, W., 2002, 'Retrieving Web Pages Using
Content, Links, URLs and Anchors', in TREC 2001: tenth text retrieval conference,
Gaithersburg, MD, National Institute of Standards and Technology, Gaithersburg,
MD, USA, pp. 663‐672.

Wikipedia, Amazon.com, Retrieved 17 April, 2009, from
http://en.wikipedia.org/wiki/Amazon.com.

Wilcoxon, F., 1945, 'Individual comparisons by ranking methods', Biometrics Bulletin
pp. 80‐83.

Wilkinson, R. & Hingston, P., 1991, 'Using the cosine measure in a neural network for
document retrieval', in Proceedings of the 14th annual international ACM SIGIR
conference on Research and development in information retrieval, Chicago, IL, USA,
ACM, New York, NY, USA, pp. 202‐210.

Wong, S. K. M., Ziarko, W., & Wong, P. C. N., 1985, 'Generalized vector spaces model
in information retrieval', in Proceedings of the 8th annual international ACM SIGIR

200

conference on Research and development in information retrieval, Montreal, Quebec,
Canada, ACM, New York, NY, USA, pp. 18‐25.

Xue, G. R., Zeng, H. J., Chen, Z., Ma, W. Y., Zhang, H. J., & Lu, C. J., 2003, 'Implicit link
analysis for small web search', in Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in information retrieval, Toronto,
Canada, ACM, New York, NY, USA, pp. 56‐63.

Xue, G. R., Zeng, H. J., Chen, Z., Yu, Y., Ma, W. Y., Xi, W. S., & Fan, W. G., 2004,
'Optimizing web search using web click‐through data', in Proceedings of the
thirteenth ACM international conference on Information and knowledge
management, Washington, DC, USA, ACM, New York, NY, USA, pp. 118‐126.

Yee, K. P., Swearingen, K., Li, K., & Hearst, M., 2003, 'Faceted metadata for image
search and browsing', in Proceedings of the SIGCHI conference on Human factors in
computing systems, Ft. Lauderdale, FL, USA, ACM, New York, NY, USA, pp. 401‐408.

Zamir, O., Korn, J.L., Fikes, A.B., & Lawrence, S.R., 2005, 'Personalization of played
content ordering in search results', Patent US 2005/0240580 A1.

Zobel, J. & Moffat, A., 1998, 'Exploring the similarity space', ACM SIGIR Forum, 32, (1)
pp. 18‐34.

201

List of Figures

Fig. 2‐1: Information retrieval process. ...15
Fig. 2‐2: Query processing..19
Fig. 2‐3: A vector space matrix consisting of document vectors (vertical) and term
vectors (horizontal)..20
Fig. 2‐4: Illustration of two 2‐dimensional vector spaces..20
Fig. 2‐5: Gartner’s magic quadrant of information access ..40
Fig. 2‐6: Precision – Recall trade off graph ..49
Fig. 3‐1: Relationships between a user model and user profiles.................................52
Fig. 3‐2: Types of personalization processes. The user profile can occur during the
retrieval process (a), a‐posteriori in a re‐ranking step (b), or a priori in a query
modification step (c). ...55
Fig. 3‐3: Principles of recommender systems. A black arrow represents the interest
(e.g. rating or purchase) of a user for an item (A, B or C). Features of users and items
are denoted by “<…>”. A red arrow marks correlated users or items. The green arrow
represents the predicted recommendation for the active user (bold). After [Kim &
Seoul 2006]. ...65
Fig. 4‐1: Semantic Web layers..72
Fig. 4‐2: Alternative Semantic Web layers...73
Fig. 4‐3: An RDF graph describing Eric Miller [Manola & Miller 2004].74
Fig. 4‐4: Sample RDF(S) graph..76
Fig. 4‐5: An exemplary class hierarchy with instances ..79
Fig. 5‐1: Typically, an employee having a specific information need is confronted with
five main sources of data, each having countless data records.90
Fig. 5‐2: Distribution of file types on the PRPZ‐WebSite. ..91
Fig. 5‐3: File type distribution on the PRPZ‐Share. ..92
Fig. 5‐4: Usage of search engines linked from the PRPZ‐WebSite. Data logged over a
period of one month in 2007. ..94
Fig. 6‐1: Assigning metadata to “unstructured” text...102
Fig. 6‐2: Converting “unstructured” text into structured metadata.103
Fig. 6‐3: Role‐based adaptation of the ranking of results. ..103
Fig. 6‐4: Excerpt of the classification ontology. Classes in gray are filled when reading
the document from the source. The blue relationships are determined by means of
named entity recognition. The green relationships are determined by reasoning or by
machine learning..106
Fig. 6‐5: Excerpt of the annotation ontology, displaying classes and their
relationships. The given entity types are used as features to annotate whole
documents. ..107
Fig. 6‐6: Excerpt of the adaptation ontology. ..108

202

Fig. 6‐7: Excerpt of the classification ontology. The grayed classes are detected by the
classifier, while white classes are not considered in context of this thesis.109
Fig. 6‐8: Text processing pipeline...110
Fig. 6‐9: KB classification pipeline..113
Fig. 6‐10: ML pipeline for learning a model. ..117
Fig. 6‐11: Classification pipeline...118
Fig. 6‐12: Inferring a user’s assumed interests. ...120
Fig. 6‐13: Rule “interestInDepartment”...121
Fig. 6‐14: Rule “interestInArea”...121
Fig. 6‐15: Rule “interestInProject” ...122
Fig. 6‐16: Incorporating click‐through feedback into the document index...............123
Fig. 6‐17: User profile example of a person...125
Fig. 6‐18: Each column illustrates the distribution of the similarity score of a different
query. The blue graphs denote the baseline ranking, i.e. the default VSM and the red
graphs denote the context‐boosted ranking. The gray line marks the median position
/ score. ... 127
Fig. 7‐1: Multi‐tier architecture of YASA’s search & retrieval part.134
Fig. 7‐2: The components of YASA. ..135
Fig. 7‐3: Screenshot of YASA’s search interface. ...138
Fig. 8‐1: Usage of search engines linked from the PRPZ‐WebSite. Data logged over a
period of 6 month (Jan ‘09 – June ‘09). ...143
Fig. 8‐2: Number of queries transmitted to YASA per month. Data logged over a
period of 18 month (Jan ‘08 – June ‘09). ...144
Fig. 8‐3: Average number of queries per hour. Data logged over a period of 18 month
(Jan ‘09 – June ‘09)...144
Fig. 8‐4: Query distribution on sources within YASA. Data logged over a period of 3
month (Apr ’09 – June ’09) ..145
Fig. 8‐5: Click distribution of sources within YASA. Data logged over a period of 6
month (Jan ’09 – June ’09). ..146
Fig. 8‐6: Usage of facets. Data logged over a period of 6 month (Jan 09 – June 09).147
Fig. 8‐7: Merging the results of two different retrieval functions. Clicked items are
marked with a star. ..155
Fig. 8‐8: Click distribution of (B) and (BF) ..158
Fig. 8‐9: Frequency of clicks per query of (B) and (BF) ..158
Fig. 8‐10: Click distribution of (B) and (BC) after removal of duplicates159
Fig. 8‐11: Histogram of clicks per query of (B) and (BC) after removal of duplicates159
Fig. 8‐12: Hierarchical structure of the GQM model ...162
Fig. 8‐13: Evaluation process overview..163
Fig. 8‐14: Density plot of the execution time. The red curve represents conventional
tools and the blue curve represents YASA...169
Fig. 8‐15: Density plot of the mouse movement. The red curve represents
conventional tools and the blue curve represents YASA...169
Fig. 8‐16: Prediction profile. The left picture shows the estimated average execution
time of a task in case conventional tools are used. The right picture shows the
average execution time for task number 5 and its dependence on the used tool. ..171

203

Fig. 8‐17: Prediction profile. The left picture shows the estimated average execution
time of a task in case YASA is used. The right picture shows the average execution
time for task number 5 and its dependence on the used tool.172
Fig. 8‐18: Questionnaire results for questions using IsoMetrics (scale from 1 to 5).
The blue points represent the average value and the black error lines represent one
standard deviation. ..173
Fig. 8‐19: Results for questions 3, 4, 5, 7, 38, and 39. ...174

204

List of Tables

Table 2‐1: Sample corpus consisting of three different documents. The document
index terms are the result of stop‐word removal and Porter’s stemming algorithm. 18
Table 2‐2: Overview of term weighting components. Let N be the number of
documents in the collection, and let T be the number of terms in the collection.
Further, let t be a term, let d be a document, let wi be the weight of term i, and let
occt,d refer to the number of times term t occurs in document d. Further, let dft be
the number of documents in which term t occurs. Then, the term weighting
components can be defined as follows. ..23
Table 2‐3: Data Retrieval vs. Information Retrieval after [Van Rijsbergen 1979]39
Table 2‐4: Query (in)dependent evidence factors. +: applicable, ‐: not applicable, o:
applicable if the institution’s privacy policy allows the usage of personal data45
Table 3‐1: Overview of hybrid‐based filtering approaches ...64
Table 4‐1: RDF Schema primitives ...76
Table 4‐2: OWL language features...78
Table 6‐1: Overview of the examined features, the corresponding sources on which
the features are evaluated, and the methods applied..105
Table 6‐2: Statistics of result distribution for each sample query.............................128
Table 8‐1: YASA index statistics in July ‘09. ...142
Table 8‐2: Number of terms per query..146
Table 8‐3: Number of Boolean operators per query. ..147
Table 8‐4: Statistics of query duplicates. ...147
Table 8‐5: Queries per session...148
Table 8‐6: Result pages of queries viewed per session. ..148
Table 8‐7: Term modifications per query session..149
Table 8‐8: Clicks per query...149
Table 8‐9: Training‐ and test‐set..151
Table 8‐10: Text categorization performance for different text processing pipelines
(whitespace tokenization and lower case filtering was always applied). Optimization
was conducted on the training set using a stratified 10‐fold cross validation so that
no bias on the test set evaluation is introduced. ..152
Table 8‐11: ML Classification performance of step 1 and step 2.153
Table 8‐12: Confusion matrix of ML step 1..153
Table 8‐13: Confusion matrix of ML step 2..153
Table 8‐14: Performance comparison between KB and ML.154
Table 8‐15: Size of the PRPZ‐Share logs at the time the analysis was conducted. ...157
Table 8‐16: Goal, questions, methods and metrics ...162
Table 8‐17: Educational background of participants...164
Table 8‐18: Academic degree ..164

205

Table 8‐19: List of tasks. *: Baseline task. #: A gene name not to be disclosed.164
Table 8‐20: List of questions used in the questionnaire..165
Table 8‐21: Fraction of wrong answers per task. ..168
Table 8‐22: Influence of the order (Group 1 vs. Group 2) on the performance........169
Table 8‐23: Fixed Effect Tests using the F‐test. Statistical significant values are
marked by *. ..170
Table 8‐24: Parameter estimates. The estimates tell how much slower (positive
values) or faster (negative values) the performance is on average depending on the
task, tool, or task*tool combination. Significance is determined using the t‐test.
Statistical significant effects are marked by *. ..170

206

Abbreviations

ACL Access Control List
DB Database
HCLS Health Care & Life Sciences
ID Identifier
idf inverse document frequency
IR Information Retrieval
KB Knowledge Base
KE Knowledge Engineering
LSI Latent Semantic Indexing
ML Machine Learning
NER Named Entity Recognition
NLP Natural Language Processing
OBIR Ontology‐based Information Retrieval
OWL Web Ontology Language
PRPZ Pharmaceutical Research Penzberg
QID Query Identifier
RDF Resource Description Framework
RDFS Resource Description Framework Schema
R&D Research & Development
SCC Strongly Connected Component
SOP Standard Operating Procedure
SVM Support Vector Machine
tf term frequency
URL Uniform Resource Locator
URI Uniform Resource Identifier
VSM Vector Space Model
WWW World Wide Web
YASA Your Adaptive Search Agent

207

Publications of the author related to this thesis

A. Kohn, F. Bry, S. Klostermann, and A. Manta, 2007, ‘Concepts for an Intelligent
Information Portal in Pharmaceutical Research’, in Proceedings of the I‐Semantics '07
conference, Graz, Austria.

A. Kohn, F. Bry, and A. Manta, 2008, ‘Exploiting a Company’s Knowledge: The
Adaptive Search Agent YASE’, in Proceedings of the I‐Semantics '08 conference, Graz,
Austria.

A. Kohn, F. Bry, and A. Manta, 2008, ‘Professional Search: Requirements, Prototype
and Preliminary Experience Report’, in Proceedings of the IADIS International
Conference WWW/Internet 2008, Freiburg, Germany.

208

Curriculum Vitae

Name Alex Kohn

Date of birth 21.01.1981
 in Timişoara, Romania

Nationality German

E‐Mail alex.kohn@pms.ifi.lmu.de

1987 – 1992 Elementary school

1992 – 2000 Secondary school at the Lion‐Feuchtwanger‐Gymnasium
 in Munich

2001 – 2006 Study of Bioinformatics at the Ludwig‐Maximilians‐
 University / Technical University of Munich.

Since 2006 Doctoral student at the Ludwig‐Maximilians‐University,

department of computer science, in collaboration with
Roche, department of Pharma Research Scientific
Informatics, Penzberg, Germany

