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1. Einleitung

1.1. HIV-Epidemiologie

Seit der Erstbeschreibung des Krankheitsbildes AIDS im Jahre 1981 (Centers of Disease Control 

1982) und der Entdeckung des Retrovirus HIV-1 im Jahr 1983 (Barré-Sinoussi 1983) und HIV-2 im 

Jahr  1986  (Clavel  1986)  als  auslösenden  Erregern  schreitet  die  Krankheit  trotz  aller 

wissenschaftlicher Bemühungen um Heilungsmöglichkeiten noch immer fort. Mit der Verleihung 

des Nobelpreises für Medizin im Oktober 2008 an die französischen Virologen Luc Montagnier und 

Françoise Barré-Sinoussi für ihre Entdeckung des HI-Virus rückte die Progredienz der Pandemie 

einmal  mehr  in  das  Blickfeld  der  Öffentlichkeit.  Präventionsmaßnahmen,  die  Erforschung  des 

viralen Replikationszyklus sowie die Entwicklung neuer antiretroviraler Behandlungsmöglichkeiten 

nehmen  deshalb  unverändert  einen  hohen  Stellenwert  in  der  Medizin  ein.  Die  medizinische 

Bedeutung und die volkswirtschaftliche Tragweite der HIV-Infektionskrankheit kann anhand einiger 

epidemiologischer  Daten  leicht  ermessen  werden.  So  sind  alleine  in  der  Bundesrepublik 

Deutschland zum Ende des Jahres 2008 geschätzte 63500 Menschen mit HIV infiziert. 10500 von 

ihnen leben bereits mit AIDS. Seit 2001 steigt die HIV-Inzidenz von Jahr zu Jahr kontinuierlich an. 

In  Bayern  leben  9500  Personen  mit  einer  HIV-Infektion  (Robert-Koch-Institut,  „HIV/AIDS  in 

Bayern (Stand: Ende 2008)“ bzw. „HIV/AIDS in Deutschland (Stand: Ende 2008)“). Die globale 

Bedeutung  wird  ersichtlich  aus  Schätzungen  der  Weltgesundheitsorganisation  (WHO)  zum Juli 

2008. Danach lebten weltweit etwa 33 Millionen HIV-positive Menschen bei einer Zahl von etwa 

2,7 Millionen Neuinfektionen im Jahr 2007. Der Hauptfokus der Pandemie liegt überwiegend in 

bevölkerungsreichen  und  strukturschwachen  Regionen  Afrikas,  Süd-  und  Südostasiens  sowie 

Lateinamerikas.  Durch  die  Bemühungen  zur  verbesserten  Betreuung  HIV-Infizierter  sowie  zur 

Bereitstellung antiretroviraler Medikamente in den HIV-Krisengebieten konnte das Fortschreiten der 

Krankheit  in  vielen Fällen verzögert  werden.  Dennoch ist  beispielsweise Simbabwe das einzige 

südafrikanische Land, in dem die Prävalenz der Immunschwächekrankheit im erwachsenen Teil der 

Bevölkerung  zurückgegangen  ist  (UNAIDS;  Bild  1).  Auch  ist  die  weiter  ansteigende  Zahl  an 

Neuinfektionen besorgniserregend. 
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Bild 1) UNAIDS 2008, Anzahl an HIV-Infizierten weltweit (bearbeitet)

1.2. Die HIV-Replikation

Die Identifizierung des HI-Virus als Auslöser von AIDS stand am Anfang der Entwicklung von 

Behandlungsmöglichkeiten  gegen  die  Infektionskrankheit.  Die  Suche  nach  therapeutischen 

Ansatzpunkten  ging  dabei  stets  auch  mit  der  immer  präziseren  Erforschung  der 

pathophysiologischen Zusammenhänge zwischen Erreger  und menschlichem Organismus  einher. 

Dies schloss Kenntnisse immunologischer Vorgänge genauso ein wie Einblicke in das virale Genom 

(Liu 1997). Vor allem aber ist das immer genauere Verständnis des viralen Replikationszyklus eine 

unerlässliche Basis für die Entwicklung antiretroviraler Medikamente. 

1.2.1. Der virale Replikationszyklus

Der  Entwicklungszyklus  des  Virus  (Bild  2)  besteht  im  Wesentlichen  aus  dem  Eintritt  in  die 

Wirtszelle,  der  Replikation  des  viralen  Genoms  und  der  Freisetzung  und  Reifung  infektiöser 

Viruspartikel.  Für  den  Eintritt  des  Virus  in  die  humane  Wirtszelle  bindet  zunächst  das  virale 

Hüllprotein gp120 an den zellulären Oberflächenrezeptor CD4, daneben sind weitere Proteine wie 

CXCR4  oder  CCR5  als  Korezeptoren  beteiligt.  Wechselseitige  Interaktionen  bewirken  eine 

Konformationsänderung und damit  analog einer  Schnappfeder  die  Bindung an die  Zielzelle.  Es 

kommt zur Membranfusion (Rubbert, www.hiv.net). Dann ergießt sich die virale RNS in das Innere 

der humanen Zelle, was als „uncoating" bezeichnet wird. Die nun folgende reverse Transkription ist 

der  wesentliche  Schritt,  um  die  Umwandlung  der  HIV-RNS  in  replikationsfähige  DNS  zu 

bewerkstelligen. Das hierfür verantwortliche Enzym, die Reverse Transkriptase (RT), bewirkt die 

Transkription zu einer doppelsträngigen DNS, welche das Virusgenom enthält. Diese wird durch die 
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virale Integrase in den Zellkern aufgenommen und in das Genom der Wirtszelle eingebaut. Erst 

nach  Aktivierung  durch  Zytokine  werden  Virusgene  transkribiert,  so  dass  Struktur-  und 

Regulationsproteine  exprimiert  und Vorläuferproteine  der  späteren  infektiösen  Virionen gebildet 

werden können. Durch Spaltung dieser sog. Präkursormoleküle werden im Rahmen des "assembly" 

durch das zweite essenzielle virale Enzym, die Protease (PR), die viralen Proteine zu pathogenen 

Partikeln zusammengebaut. Bei der Loslösung dieser Virionen von der Wirtszelle, dem "budding", 

werden zelluläre und viruskodierte Proteine in die Virushülle eingebaut. Anschließend kommt es 

extrazellulär zu einer Reifung der Erreger.

Bild 2) Der HIV-Replikationszyklus (nach Weiss 2000): 

1. Anlagerung an CCR5/CXCR4. 2. Fusion mit der Zellmembran. 3. Eintritt in die Zelle. 4. Reverse 
Transkription. 5. Transport in den Zellkern. 6. Integration des DNS-Provirus. 7. Transkription der 
RNS. 8. Export der RNS aus dem Zellkern. 9. Translation und „Processing“. 10. Membrantransport. 
11. „Assembly“. 12. „Budding“. 13. Reifung. 

1.2.2. Die Virusenzyme und ihr Aufbau

Im  Replikationszyklus  des  HI-Virus  nehmen  Reverse  Transkriptase  und  Protease  eine 

Schlüsselposition  ein.  Das  erstgenannte  Enzym  ermöglicht  es  dem  Erreger,  seine  RNS  durch 

Übersetzung in DNS mit der Wirts-DNS kompatibel zu machen und zu replizieren. Die Protease 

verarbeitet  die  Virusproteine  nach  ihrer  Translation  und  übernimmt  den  Zusammenbau  zu 
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funktionsfähigen, pathogenen Partikeln. Im Folgenden soll eine kurze Übersicht über die Strukturen 

der beiden Virusenzyme gegeben werden. 

Die Reverse Transkriptase (Bild 3a) ist ein Heterodimer, enthält zwei Untereinheiten und hat eine 

Länge von 560 Aminosäuren. Die p66-Untereinheit umfasst die Codons 1 bis 300 des Enzyms und 

enthält die aktiven Zentren von Polymerase und RNAseH. Ihr Polypeptid-Rückgrat ähnelt in seiner 

räumlichen Anordnung Fingern und Handfläche (Codons 1 bis 235) sowie Daumen einer rechten 

menschlichen Hand (Calmy 2004; Clavel 2004). Die zweite Untereinheit, p51, ist hingegen nicht 

enzymatisch  aktiv,  sondern  dient  als  eine  Art  Baugerüst  des  Enzyms.  Resistenz-relevante 

Mutationen entstehen hauptsächlich in "Daumen" und restlichen "Fingern" von p66.

Bild 3a) Struktur der HIV-1-Reversen Transkriptase (nach Clavel 2004):
Heterodimer, bestehend aus 2 Untereinheiten: p66 enthält das aktive Zentrum, 
p51 ist nicht direkt an der Polymerisation beteiligt. Gelb markiert NRTI-relevante 
Mutationen, blau NNRTI-relevante Mutationen. Rot markiert ist das aktive Zentrum.

Die  Protease (Bild  3b)  als  zweites  HIV-Schlüsselenzym  ist  ein  Homodimer,  weist  also  zwei 

strukturell  identische  Untereinheiten  auf.  Diese  bestehen jeweils  aus  99  Aminosäuren  und sind 

nicht-kovalent  aneinander  gebunden.  Das  aktive  Zentrum  erkennt  verschiedene  Polypeptid-

Sequenzen  und  verarbeitet  sie  zu  funktionsfähigen  viralen  Proteinen  inklusive  der  Enzyme 

Integrase, reverse Transkriptase und Protease selbst. An einem der Berührungspunkte der beiden 

Untereinheiten  bildet  das  Enzym eine  flexible,  klappenartige  Struktur;  diese  "flap" umfasst  die 

Codons 44 bis 56 und bedeckt das aktive Zentrum nach der Substrat-Bindung (Chen 1994; Shafer, 

"Genotypic testing for HIV-1 Drug Resistance (2003)“). Mutationen können je nach Lokalisation 

die  Kinetik  des  Enzyms  ändern  und  dadurch  seine  Funktionsfähigkeit  positiv  oder  negativ 
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beeinflussen,  können  aber  auch  die  Bindung  von  antiretroviralen  Medikamenten  mindern  oder 

hemmen. 

Proteaseinhibitor bindet an          „Flaps“
das aktive Zentrum

Abbildung 3b) Struktur des Protease-Dimers (nach Clavel 2004): 
Abgebildet sind die beiden Untereinheiten des Protease-Homodimers, mit 
denen ein Proteaseinhibitor (Ritonavir) über das aktive, Substrat-bindende 
Zentrum verbunden ist. Korrespondierende Stellen sind für die eine Unter-
einheit rot und die andere blau markiert. 
Beispiel: Met 46 und Met 46 korrespondieren miteinander.

1.3. HIV-Therapie

Nach Infektion mit HIV ist eine Eradikation des Erregers aus dem menschlichen Körper derzeit 

nicht möglich. Vorherrschendes Therapieziel bei infizierten Patienten ist daher die weitestgehende 

Supprimierung der Viruslast unter die laborchemisch nachweisbare Grenze. Die Unterbrechung des 

viralen Replikationszyklus ist für dieses Ziel die derzeit wichtigste therapeutische Strategie. Jede 

der  beschriebenen  Entwicklungsstufen  birgt  die  Möglichkeit,  durch  gezielte  Blockade  die 

Vermehrung  des  Virus  zu  hemmen.  Aus  der  intensiven  Erforschung  dieser  Replikationsschritte 

ergaben  sich  deshalb  immer  wieder  auch  neue  therapeutische  Ansatzmöglichkeiten.  Daneben 

werden  auch  immunmodulatorische  Substanzen  auf  ihre  Wirksamkeit  bei  der  HIV-Infektion 

untersucht.

Die wichtigsten antiretroviralen Substanzklassen sind Inhibitoren der Reversen Transkriptase sowie 

der  Protease.  Seit  im  Jahr  2003  das  erste  Medikament  einer  anderen  Wirkstoffklasse,  der 

Fusionshemmstoff  T-20,  erprobt  wurde,  fanden mit  dem Korezeptorantagonisten Maraviroc und 
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dem  Integrasehemmer  Raltegravir  im  Jahr  2007  zwei  neue  Wirkstoffklassen  Eingang  in  die 

antiretrovirale Therapie. 

1.3.1. Nukleosid- und Nukleotid-artige Reverse Transkriptase Inhibitoren (NRTI)

Das  erste  antiretrovirale  Medikament,  Zidovudin  (AZT),  wurde  im Jahre  1986 zugelassen  und 

zeigte  erstmals  einen  nachweisbaren  klinischen  Erfolg  bei  der  Behandlung  HIV-Infizierter 

(Hardman 1998). Es gehört zur Substanzklasse der Reverse Transkriptase Inhibitoren (RTI), die bis 

zur Einführung der Proteaseinhibitoren im Jahr 1995 die einzigen Medikamente zur Behandlung der 

HIV-Infektion  waren.  Dabei  unterscheidet  man  generell  nukleosidische  oder  nukleotidische 

Reverse-Transkriptase-Inhibitoren (NRTI), die in die wachsende virale DNS eingebaut werden und 

als falsche Bausteine zum Kettenabbruch führen, von nicht-nukleosidischen RTI (NNRTI), welche 

die  Konformation  des  Virusenzyms  verändern  und  auf  diese  Weise  seine  Funktionsfähigkeit 

beeinflussen.

Die  NRTI  imitieren  die  für  die  Elongation  der  wachsenden  proviralen  DNS-Kette  benötigten 

Desoxynukleosid-Triphosphate. Ihnen fehlt jedoch als wesentlicher Unterschied zu den natürlich 

vorkommenden Nukleotiden eine Hydroxylgruppe, wodurch sich keine 3'-5'-Phosphodiesterbindung 

ausbilden kann, der Anbau weiterer Substrate verhindert und der Kettenabbruch eingeleitet wird. Es 

kommt zum Arrest der viralen DNS-Synthese. 

Alle  zugelassenen  NRTI  sind  sog.  Prodrugs,  müssen  also  zunächst  von  zellulären  Kinasen 

phosphoryliert werden, ehe sie dem Enzym als Substrat dienen können. Dabei unterscheidet man 

Nukleotidanaloga,  also Wirkstoffe,  die bereits  eine Phosphorgruppe aufweisen und somit  noch 

zweifach  phosphoryliert  werden  müssen,  von  Nukleosidanaloga,  bei  denen  eine  Dreifach-

Phosphorylierung erfolgen muss (Kasper 2005).

Aktuell sind sechs Substanzen als  Nukleosidanaloga  zur antiretroviralen Therapie zugelassen. In 

chronologischer Reihenfolge ihrer Zulassung gehören hierzu neben Zidovudin (AZT; Zulassung 

1987) Didanosin (ddI; 1991), Stavudin (d4T; 1996) Lamivudin (3TC; 1996), Emtricitabin (FTC; 

2003) und Abacavir (ABC; 2004). Zalcitabin (ddC), wurde als dritter NRTI 1992 zugelassen, aber 

im  Juni  2006  wegen  seiner  schwachen  Wirksamkeit  und  starker  Nebenwirkungen  vom  Markt 

genommen  (Hoffmann,  „HIV.net  2007“;  Kasper  2005).  Als  einziges  Nukleotid-Analogon ist 

Tenofovir (TDF) seit 2001 zugelassen (Gallant 2006).

1.3.2. NNRTI

Die etablierten nicht-nukleosidischen RTI wurden 1996 bis  1998 zugelassen und sind eine sehr 

heterogene  Substanzklasse.  Sie  hemmen  die  reverse  Transkriptase  von  HIV-1  durch  nicht-
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kompetitive allosterische, d.h. direkte Bindung, was zu einer Konformationsänderung des Enzyms 

und einer Behinderung der Replikation führt (Shafer, "Genotypic testing for HIV-1 Drug Resistance 

(2003)").  Eine  Phosphorylierung  der  Wirkstoffe  ist  nicht  nötig,  um ihre  selektive  Wirkung  zu 

entfalten. Bisher in Gebrauch waren Delavirdin (DLV), Efavirenz (EFV) und Nevirapin (NVP). Die 

hydrophobe  NNRTI-Bindungsstelle  veränderte  sich  im  Laufe  der  Virus-Evolution  in  deutlich 

größerem Maße als  die  Nukleotid-Kopplungsstelle,  so dass  beispielsweise die  HIV-1-Gruppe O 

sowie  HIV-2  resistent  sind  gegen  die  meisten  Medikamente  aus  dieser  Substanzklasse.  In 

Monotherapie führen NNRTI zu rascher Resistenzentwicklung binnen Wochen und sind deshalb 

immer mit Präparaten anderer Substanzklassen zu kombinieren. 

Etravirine  (Intelence bzw.  TMC125)  wurde  am  18.  Januar  2008  als  neuer  NNRT-Inhibitor 

zugelassen.  In  vitro  zeigte  sich  die  Substanz  auch  gegen  NNRTI-resistente  Stämme  (inklusive 

Mutationen der  Positionen 100, 103 und 188)  wirksam. Die Zulassung beschränkt  sich auf  die 

Kombinationstherapie mit anderen Wirkstoffen (FDA 2008).

1.3.3. Proteaseinhibitoren (PI)

Um aus den einzelnen transkribierten Vorläufermolekülen funktionsfähige Proteine zu bilden, ist für 

das  Virus  die  Protease  essenziell.  1995  wurden  die  ersten  Hemmstoffe  dieses  Enzyms  für  die 

Therapie zugelassen, die antiretrovirale Therapie damit um eine neue Substanzklasse erweitert und 

eine Kombination verschiedener Medikamentenklassen möglich. 

Der Großteil der zugelassenen PI gehört zu den peptidomimetischen Inhibitoren. Sie ahmen die 

Peptidstruktur der natürlichen Substrate der Protease nach. Erfährt das aktive Zentrum unter dem 

Selektionsdruck der PI eine Konformationsänderung, kann das Virus allerdings gegen eine ganze 

Substanzklasse resistent  werden.  Hoffnung gibt  hier  die Entwicklung neuerer Medikamente,  die 

nicht-peptidisch das Virusenzym blockieren. 

In der Reihenfolge ihrer Zulassung zählen Saquinavir (SQV; Erstzulassung 1995), Indinavir (IDV; 

1996), Ritonavir (RTV; 1996), Nelfinavir (NFV; 1998) und Amprenavir (APV; 2000) zu den ersten 

Proteaseinhibitoren;  es  folgten  Lopinavir/Ritonavir,  ein  Kombinationspräparat  (LPV;  2001), 

Atazanavir  (2004)  und  Fosamprenavir  (FPV;  2004).  Letzteres  ersetzte  als  Weiterentwicklung 

Amprenavir.

Ritonavir  verstärkt  die  Wirkung  anderer  Proteaseinhibitoren,  indem  es  durch  Hemmung  des 

Cytochrom-P450-Enzym-Systems  den  Abbau  anderer  Pharmaka  inhibiert  und  dadurch  ihren 

Wirkspiegel erhöht („Boosterung“). Darunavir ist ein neuer Proteaseinhibitor, der in Studien eine 

sehr  gute  Wirkung  auch  bei  resistenten  Viren  zeigte.  Im  Juni  2006  wurde  die  Substanz  in 
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Kombination mit Ritonavir in den USA zugelassen, in Deutschland im Februar 2007 (Aschoff 2007; 

Lode 2007).

Als erste Substanz einer neuen Generation von Proteaseinhibitoren wurde Ende 2005 Tipranavir 

in  Europa  zugelassen.  Als  wesentlicher  Unterschied  zu  den  älteren  Medikamenten  besitzt  die 

Substanz keine peptid-ähnliche Struktur und ist damit der erste nicht-peptidische PI. Aufgrund einer 

guten Wirksamkeit auch bei multiresistenten Virusstämmen ist Tipranavir ein wichtiger Bestandteil 

der sog. Salvage-Therapie (Poppe 1997).

1.3.4. Neu entwickelte Substanzen

Neben  Hemmstoffen  der  viralen  Protease  und  Reversen  Transkriptase  bieten  sich  auch  andere 

Phasen des Infektions- und Replikationswegs des Erregers als therapeutische Ansatzpunkte an. Zu 

den neuesten antiretroviralen Wirkstoffen zählen dementsprechend Substanzen, die die Bindung des 

Virus  an  den  Rezeptor  oder  an  Korezeptoren  der  Zielzelle  behindern  oder  die  Fusion  der 

Membranen stören. Sie werden, je nach Wirkmechanismus, als Attachment-Inhibitoren, Korezeptor-

Antagonisten oder Fusionsinhibitoren bezeichnet. Der Fusionsinhibitor Enfuvirtide (T-20) wurde als 

erstes Präparat einer neuen Wirkstoffklasse im Jahr 2003 für die Therapie zugelassen (Gulick 2003), 

2007 folgte der Korezeptorantagonist Maraviroc. Mit Zulassung von Raltegravir Ende 2007 wurde 

erstmals ein Hemmstoff der Integrase für die antiretrovirale Therapie etabliert (Hoffmann C. 2008).

Bei der Fusion von Virus- und Zellmembran spielen die sog. heptad-repeat-(HR-) Domänen des 

HIV-Oberflächenproteins gp41 eine wesentliche Rolle.  Durch Bindung an eine dieser Regionen, 

HR1, verhindert  Enfuvirtide (T-20) die Annäherung der Membranen von Virus und Zielzelle und 

damit die Fusion. T-20 ist additiv zur normalen hochaktiven antiretroviralen Therapie (HAART) 

zugelassen. Es wird von einer relativ schnellen Resistenzentwicklung berichtet, die aber mit einer 

reduzierten viralen Fitness einhergeht (Lazzarin 2003; Stanfield-Oakley 2003; Menzo 2004; Thole 

2008). Daneben gibt es wenige wirkliche  Neuerungen unter den Fusionsinhibitoren. So wird an 

neueren Substanzen wie TRI-1144 und Sifuvirtide geforscht. Die neuesten Wirkstoffe aus dieser 

Substanzklasse,  sog.  "small  molecule"-Fusionsinhibitoren,  sollen  oral  verfügbar  sein.  Ihre 

antiretrovirale Wirksamkeit wird näher erprobt. 

Überdies  wird  an  Molekülen  geforscht,  welche  die  Bindung  des  Virus  an  die  Zellrezeptoren 

verhindern,  sog.  Anlagerungs-  oder  Attachment-Inhibitoren.  Der  CD4-Rezeptor  wird  durch 

verschiedene Mechanismen blockiert. TNX-355 wirkt beispielsweise als monoklonaler Antikörper, 

bindet an CD4 und induziert offenbar eine Konformationsänderung, so dass die weitere Bindung an 
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CCR5  und  CXCR4  behindert  wird.  BMS-488043  als  weiteres  Beispiel  bindet  spezifisch  und 

reversibel an das HIV-Oberflächenprotein gp120 (Norris 2006; Hanna 2004).

Eine  weitere  Wirkstoffklasse  stellen  die  Korezeptorantagonisten  dar.  HI-Viren  benutzen  meist 

entweder  sog.  CCR5-  oder  CXCR4-Korezeptoren  für  das  Eindringen  in  die  Zelle.  Die 

entsprechenden Virusvarianten nennt man R5- oder X4-Viren. Daneben gibt es aber auch Viren mit 

einer Affinität zu beiden Korezeptoren oder auch Mischpopulationen. Zu Beginn der HIV-Infektion 

herrschen meist R5-Viren vor, beim Fortschreiten der Krankheit kommt es meist zu einem Wechsel 

zu den virulenteren X4-Viren. CCR5- oder CXCR4-Antagonisten machen sich mit verschiedenen 

Mechanismen die beschriebene Bindung an Korezeptoren als Wirkungsstelle zu nutze. 

So blockiert der  CCR5-Antagonist Maraviroc (=Celsentri)  als synthetischer Ligand  den CCR5-

Korezeptor  und  verhindert  die  Infektion  mit  CCR5-tropen  Viren.  Im  August  2007  wurde  die 

Substanz von den US-amerikanischen Gesundheitsbehörden und im September 2007 auch in der 

Europäischen Union zugelassen. Sie ist in der Anwendung bisher auf die Kombinationstherapie bei 

vortherapierten  Patienten  mit  multiresistenten  Virusstämmen  beschränkt  (European  Medicines 

Agency  2007).  Resistenzen  werden  bereits  berichtet;  so  bewirken  Mutationen  an  der 

Interaktionsstelle  des  Hüllproteins  mit  den Rezeptoren eine volle  Resistenz  (Fätkenheuer  2005; 

Flepp 2008; Antiviral Drugs Advisory Commitee 2007). 

Ein  weiterer  CCR5-Hemmstoff,  Vicriviroc,  wird  derzeit  in  klinischen  Studien  getestet.  Nach 

Boosterung  mit  Ritonavir  zeigte  sich  eine  Senkung  der  Viruslast.  Die  Substanz  Pro-140,  ein 

monoklonaler  Antikörper  gegen  CCR5,  durchläuft  Phase-II-Studien  und  scheint  eine  gewisse 

Wirksamkeit  zu haben.  Ein  allgemeines  Problem der  CCR5-Antagonisten könnte allerdings  der 

Wechsel der R5-Viren zum CXCR4-Korezeptor zu sein, der mit einer rascheren Progression der 

Krankheit vergesellschaftet ist (Connor 1997, Gulick 2006, Murga 2006).

Gegen CXCR4, den zweiten Korezeptor, wurden weniger Substanzen entwickelt als gegen CCR5. 

Mit AMD 11070 als Monotherapeutikum konnte beispielsweise in klinischen Studien eine Senkung 

der Viruslast erreicht werden (Wong R. 2007). 

Die Integrase als drittes Schlüsselenzym des HIV-Replikationszyklus gewinnt derzeit immer mehr 

Relevanz als therapeutischer Ansatzpunkt. Sie ist essenziell für die Integration der Virus-DNS in die 

DNS der Wirtszelle. Unter anderem können Bindung der DNS, Prozessierung, Strangtransfer und 

Lückenreparatur  als  Ansatzpunkte  für  eine  gezielte  Unterbrechung  dieses  Replikationsschrittes 

dienen.  Bislang gilt  die Integrase als Virus-eigenes Enzym, da sie in menschlichen Zellen nicht 
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nachgewiesen  werden  konnte.  Deshalb  lässt  die  Hemmung  des  Enzyms  ein  günstiges 

Nebenwirkungsprofil  erwarten  (Lataillade  2006).  Als  erstes  Medikament  dieser  Substanzklasse 

wurde Raltegravir (= Isentress) am 21. Dezember 2007 in der europäischen Union zugelassen. In 

Phase-III-Studien wirkte der Integrasehemmer breit gegen R5- und X4-trope HI-Viren des Typs 1 

und  sogar  gegen  HIV-2.  In  Studien  zeigte  sich  bei  Patienten  mit  langjähriger  HAART  unter 

Behandlung  mit  Raltegravir  ein  deutlicher  Abfall  der  Viruslast,  allerdings  wurde  eine  schnelle 

Resistenzentwicklung  beobachtet  (Hoffmann  C.  2008;  Steigbigel  2007;  Deutsche  AIDS-Hilfe 

2006). 

Ebenfalls zu den relativ neu entdeckten antiretroviralen Wirkmechanismen gehört die Hemmung der 

Reifung. Diese Maturations- oder Reifungsinhibitoren greifen spät im viralen Replikationszyklus 

ein  und  hemmen  die  Knospung  neuer  Viren.  Für  die  Substanz  Bevirimat  (PA-457)  konnte 

nachgewiesen werden, dass sie die Umwandlung des Kapsid-Vorläufer-Proteins in das reife Kapsid-

Protein  verhindert  und  dadurch  unreife,  nicht-infektiöse  Viren  entstehen  lässt.  Es  befindet  sich 

derzeit  in  klinischen  Studien  (Li  2003,  Martin  2008).  Ein  weiterer  Maturationshemmstoff  ist 

UK-201844; die pharmakologischen Eigenschaften werden in Studien geprüft (Blair 2007).

1.3.5. Hochaktive antiretrovirale Therapie (HAART)

Ziel einer jeden antiretroviralen Therapie ist, das Fortschreiten der Infektion so lange wie möglich 

hinauszuzögern. Dazu gehört u.a. eine Senkung der Viruslast unter die Nachweisgrenze, also 20-50 

zirkulierenden  Kopien  pro  ml  Blut.  Schemata  zur  antiretroviralen  Therapie  werden  von  den 

Fachgesellschaften regelmässig veröffentlicht und aktualisiert (Yeni 2002, Hammer 2006). 

Mit Einführung der Proteaseinhibitoren 1995 und in den Folgejahren der NNRTI etablierte sich 

schnell eine Kombinationstherapie, bestehend aus 2 bis 3 verfügbaren Medikamenten, die auch als 

hochaktive antiretrovirale Therapie (HAART) bezeichnet wird. Der optimale Zeitpunkt für einen 

Therapiebeginn  wird  fortwährend  diskutiert  und  ein  früher  Medikamenteneinsatz  gegen  einen 

späten  abgewogen.  Die  Deutsche  AIDS-Gesellschaft  (DAIG)  empfiehlt,  bei  HIV-assoziierten 

Manifestationen mit der Behandlung zu beginnen, da die Symptome positiv beeinflusst werden und 

die  Erkrankung  langsamer  fortschreitet  (Deutsche  AIDS-Gesellschaft  [DAIG],  2008).  Als 

Initialbehandlung wird analog den amerikanischen Richtlinien entweder zu einem Proteaseinhibitor 

oder einem NNRTI in Kombination mit zwei NRTI geraten (AIDSinfo, "Guidelines for the Use of 

Antiretroviral  Agents  in  HIV-1  Infected  Adults  and  Adolescents,  January  29,  2008").  Eine 

„Boosterung“ des verwendeten Proteaseinhibitors (PI) mit einer niedrigen Dosis Ritonavir erhöht 
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meist die Wirksamkeit und vermindert die Resistenzentwicklungsrate. 

Die  Indikation  für  eine  sog.  "Rettungs"- (engl.  salvage)  Therapie  wird uneinheitlich  gestellt. 

Letztlich handelt es sich um verschiedene Behandlungstrategien bei Therapieversagen, sei es bei 

Fehlschlagen im zweiten Therapieversuch, bei mangelnder Wirksamkeit aller Substanzklassen oder 

auch  beim  Auftreten  multipler  Resistenzen  gegen  mindestens  zwei  der  drei  gängigen 

Wirkstoffklassen.  Integrasehemmer,  Korezeptorantagonisten,  Attachment-  und 

Virusreifungsinhibitoren geben auch hier Grund zur Hoffnung.

1.4. Mutationen und Resistenzentwicklung

Seit  im  Rahmen  der  HAART  eine  Kombinationstherapie  antiretroviraler  Medikamente  aus 

verschiedenen  Substanzklassen  möglich  ist,  hat  sich  die  durchschnittliche  Überlebensrate  der 

infizierten  Patienten  signifikant  verbessert  (Pallela  1998).  Allerdings  besteht  durch  natürlich 

auftretende,  aber  auch  durch  im  Rahmen  der  Therapie  entstandene  Mutationen  eine  sehr 

unterschiedliche Empfindlichkeit der Viren auf manche Wirkstoffe. 

1.4.1. Mutationen

Die Entstehung von Mutationen ist stark mit der Virusreplikation gekoppelt. Einerseits entstehen 

durch einen von Natur aus hohen Produktionsumsatz täglich etwa 10 Milliarden Viruspartikel neu, 

so  dass  trotz  einer  vergleichsweise  kurzen  Überlebenszeit  infizierter  Zellen  ein  Gleichgewicht 

zwischen  ihrer  Elimination  und  einer  Neuinfektion  besteht.  Zum  anderen  weist  die  reverse 

Transkriptase eine hohe Fehlerrate auf, da ihr u.a. die Fähigkeit zum gleichzeitigen Korrekturlesen 

fehlt (Perelson 1996, Roberts 1988). Durch Anhäufung proviraler Varianten und Vermischung des 

genetischen Materials verschiedener Virusarten kommt es zu einer großen genetischen Variabilität. 

Neben  infektiösen,  funktionsfähigen  Viren  und  Virusvarianten  entstehen  solche,  die  zu  einer 

Vermehrung nicht mehr in der Lage sind. Schon wenige Monate nach Primärinfektion haben sich 

unzählige  verschiedene  Virusarten  gebildet,  die  sog.  Quasi-Spezies.  Einzelne  Varianten  können 

angesichts des durch medikamentöse Therapie und Immunantwort des menschlichen Organismus 

ausgeübten Selektionsdrucks einen Vorteil besitzen und zur vorherrschenden Spezies selektioniert 

werden (Clavel 2004, Drake 1993/1999). 

In verschiedenen Studien wurde eine hohe Prävalenz primärer Resistenzmutationen festgestellt. In 

Europa fanden sich im Rahmen der CATCH-Studie zwischen 1996 und 2002 bei etwa 10% der 

Neuinfektionen Mutationen (Wensing 2005), in US-amerikanischen Studien wurden sogar Raten 

um 14% bei vorher unbehandelten Patienten bzw. neu diagnostizierter Patienten beschrieben (Ross 
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2004,  Truong  2006).  Das  Robert-Koch-Institut  wies  im  Zeitraum  1996  bis  2005  unter 

Studienteilnehmern  einen  Anteil  von  14%  primär  resistenten  HI-Viren  nach  (Bartmeyer, 

www.rki.de).  Regionen,  in  denen eine  stärkere Durchmischung der  Bevölkerung stattfindet  und 

guter Zugang zu antiretroviralen Medikamenten besteht, sind vermehrt  betroffen, wie Daten aus 

amerikanischen  Großstädten  belegten  (Little  2002).  Insgesamt  ergeben  sich  für  die  Prävalenz 

primärer Resistenzen Häufigkeiten zwischen 9 und 23 Prozent (Wolf 2008). 

Die  Weltgesundheitsorganisation  definiert  als  Resistenz die  Fähigkeit  des  HI-Virus,  in  der 

Gegenwart antiretroviraler Substanzen durch Mutationen seine Gestalt zu verändern und sich zu 

reproduzieren,  so  dass  die  Medikamentenwirkung  herabgesetzt  ist  (vgl. 

Weltgesundheitsorganisation (WHO), http://www.who.int/hiv/topics/drugresistance/en/index.html). 

Eine  primäre  Resistenz besteht  vor  Therapiebeginn  und  bezeichnet  im  strengen  Sinne  eine 

genetisch  fixierte  Eigenschaft  des  HI-Virus,  die  es  vermindert  empfindlich  gegenüber  einem 

Medikament oder einer ganzen Substanzklasse macht. Eine sekundäre Resistenz entsteht hingegen 

im Rahmen der medikamentösen Therapie. 

Einige Virus-Typen oder -Subtypen sind von Natur aus wenig oder nicht empfänglich gegenüber 

antiretroviralen  Substanzen,  beispielsweise  HIV-2  gegenüber  den  meisten  nicht-nukleosidischen 

Reverse-Transkriptase-Inhibitoren (Shafer 1997, Palmer 1998, Descamps 1998, Witvrouw 1999). 

1.4.2. Resistenzmechanismen und Substanz-spezifische Mutationen

Neben primären Resistenzen bewirkt eine antiretrovirale Therapie durch verschiedenartige, oft für 

eine  Medikamentenklasse spezifische Mechanismen eine  Selektionierung resistenter  Subspezies. 

Zur  Resistenz  gegenüber  nukleotidischen  oder  nukleosidischen  Reverse-Transkriptase-

Inhibitoren  tragen zwei Hauptmechanismen bei. Die sog.  sterische Inhibition  betrifft meist das 

aktive Zentrum des Enzyms und beeinträchtigt den Einbau falscher Bausteine, also den zentralen 

Wirkmechanismus  der  NRTI.  Daneben  kann  eine  Gruppe  von  Mutationen,  die  so  genannten 

Thymidin-Analoga-Mutationen  ("TAM"),  mittels  Phosphorolyse zur  Entfernung  der 

Nukleosidanaloga  aus  der  terminierten  DNS-Kette  führen.  Sie  wurden  zuerst  nach  Gabe  der 

Thymidin-Analoga  Zidovudin  und Stavudin  beobachtet,  können aber  gleichzeitig  zur  Resistenz 

gegen beinahe alle Nukleosidanaloga führen, so dass häufig auch der Begriff "Nukleosidanaloga-

Mutationen"("NAM") verwendet wird. Dazu gehören u.a. M41L, D67N, K70R, L210W, T215Y 

und K219Q (Clavel 2004). 
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Nicht-nukleosidische  Reverse-Transkriptase-Inhibitoren  haben  normalerweise  eine  starke 

Affinität  zu  einer  hydrophoben  "Tasche"  in  der  Nähe  des  katalytischen  Zentrums  der  RT.  Die 

NNRTI  beeinträchtigen  die  sterische  Flexibilität  des  Enzyms  und  blockieren  damit  die  DNS-

Synthese.  Durch  Mutationen  im  Bereich  dieser  Tasche  ist  die  Medikamentenbindung  stark 

vermindert. 

Resistenzmutationen  gegenüber  Protease-Inhibitoren kann  man  grob  in  Haupt- ("major 

mutations")  und  Neben- ("minor  mutations")  Mutationen einteilen.  Unter  Hauptmutationen 

versteht  man  chronologisch  zuerst  auftretende  oder  das  aktive  Zentrum  ("substrate  cleft") 

betreffende  Mutationen.  „Substrate  cleft“-  Mutationen  vermindern  durch  Austausch  von 

Aminosäuren im katalytischen Bereich die Bindungsaffinität zwischen PI und aktivem Zentrum. 

Nebenmutationen  sind  meist  später  entstanden oder  an  anderen Positionen lokalisiert  wie den 

Enzymklappen (Stanford University HIV Drug Resistance Database, „Sequence Analysis Program, 

Version  4.2.5„).  „Flap  mutations“,  also  Strukturänderungen  der  Protease-Klappen  und  v.a.  der 

Klappenspitzen beeinträchtigen die Flexibilität, die nötig ist, um Ein- und Austritt der Substrate zu 

regulieren. Somit wird den PI der Zugang zum aktiven Zentrum und damit ihrer Bindungsstelle 

verwehrt. Oft sind zusätzlich zu „substrate cleft“- und „flap“- auch an anderen Orten lokalisierte 

Mutationen  nötig,  damit  die  Resistenz  manifest  wird.  Dies  wurde  mancherorts  als  genetische 

Barriere  der  Medikamentenresistenz  bezeichnet  (Shafer,  „Genotypic  testing  for  HIV-1  Drug 

Resistance (2003)“).

1.4.3. Virale Fitness

Mutationen können sich unterschiedlich auf die virale Replikationskapazität auswirken. Unter dem 

darwinistischen Druck der antiretroviralen Therapie entstandene seltene Mutationen einer Virus-

Subpopulation können zwar einen selektiven Vorteil darstellen, oft bewirken sie aber neben einer 

Medikamentenresistenz  auch eine verminderte  Replikationsfähigkeit  und damit  reduzierte  virale 

Fitness.  Diese  beschreibt  im  Wesentlichen  der  Fähigkeit  des  Virus,  sich  in  die  menschlichen 

Zielzellen effektiv einzuschleusen und das Virusgenom zu verbreiten. Eine verminderte Fitness liegt 

meist  dann vor,  wenn Schlüsselpositionen essenzieller  Virusproteine  betroffen  sind.  Manche so 

entstandenen  Funktionsausfälle  der  viralen  Enzyme  können  zwar  durch  kompensatorische 

Mutationen teilweise ausgeglichen werden, dennoch ist die Replikationskapazität meist grundlegend 

vermindert (Bleiber 2001; Deeks 2001; Turner 2004). Andernorts wurde als wesentlicher Faktor für 

die virale Fitness die "robustness" (engl. für „Zähigkeit“) und damit die Fähigkeit eines Proteins 

18



beschrieben, Substitutionen im Genom zu tolerieren (Parera 1996). 

1.5. Resistenztestung

Mutationen, die zu Strukturänderungen von Zielproteinen antiretroviraler Substanzen und damit zur 

Resistenz führen, lassen sich entsprechend im Virus-Genom nachweisen. Allgemein existieren zwei 

Methoden zur Bestimmung von Resistenzmutationen: 

Bei  der  phänotypischen  Resistenztestung  wird  die  Empfindlichkeit  des  Virus  gegenüber 

verschiedenen  Pharmaka  direkt  ausgetestet,  indem  man  unter  Medikamenteneinwirkung  die 

Replikationsfähigkeit  in  einer  Zellkultur  bestimmt  und  diese  mit  der  Fitness  des  Wildtyps 

vergleicht. Bei  genotypischen Resistenztests  werden Mutationen analysiert,  die mit Resistenzen 

assoziiert werden. Die erhobenen Daten werden mit Hilfe von Algorithmen interpretiert,  die auf 

klinischen  Beobachtungen,  in-vitro-Studien  sowie  Vergleichsstudien  zwischen  Genotyp  und 

phänotypischer Resistenz basieren, so dass ein virtueller Phänotyp erstellt werden kann.

Empfohlen  wird  die  Durchführung  eines  Resistenztests  u.a.  vor  Beginn  einer  antiretroviralen 

Ersttherapie, bei Therapieversagen oder im Falle einer Schwangerschaft (AIDSinfo 2008; Deutsche 

AIDS-Gesellschaft,  "Deutsch-Österreichische  Leitlinien  zur  antiretroviralen  Therapie  der  HIV-

Infektion (Stand September 2008").

1.6. Virus-Subtypen und Resistenzentwicklung

Es  existieren  allgemein  zwei  verschiedene  HIV-Typen  und  mehrere  Subtypen.  Weltweit  am 

häufigsten  kommt  HIV-Typ  1  vor,  der  sich  wiederum  in  drei  unterschiedliche  Hauptgruppen 

unterteilen  lässt.  In  über  99% der  Fälle  liegt  –  als  die  größte  Gruppe  -  M ("major")  vor;  die 

selteneren Gruppen O ("outlying") und N ("new") lassen sich hauptsächlich in Afrika nachweisen. 

Die Gruppe M besteht wiederum aus verschiedenen Subtypen (A-D, F-H, J, K) und Mischformen. 

Der HIV-1-Subtyp B kam in Amerika, Europa, Japan und Australien lange Zeit am häufigsten vor. 

Deshalb ist  die Unterteilung in B- und Non-B-Viren vielerorts  noch gebräuchlich.  Letztere sind 

jedoch im Zuge der Pandemisierung für immer mehr Neuerkrankungen verantwortlich und machen 

etwa 25% aller Neuinfektionen in Europa aus. C ist der häufigste Non-B-Subtyp und für ca. 50% 

aller weltweiten Infektionen verantwortlich. Im Rahmen von Globalisierung und Migration kommt 

es jedoch vermehrt zur Bildung neuer Mischformen ("circulating recombinant forms", CRF). Die 

Los-Alamos-Datenbank listet bereits über 40 CRF auf mit stetig wachsender Zahl (Leitner, "HIV-1 

Subtype and Circulate Recombinant Form (CRF) Reference Sequences"; Burke 1997; Taylor B.S. 

2008; Wainberg 2004). HIV-Typ 2 ist wesentlich seltener und lässt sich in sechs Subtypen (A-F) 
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unterteilen. 

Verschiedene  Besonderheiten  der  einzelnen  HIV-Subtypen  machen  ihre  Bedeutung  in  der 

antiretroviralen Diagnostik und Therapie deutlich. So basieren die gängigen Resistenzalgorithmen 

auf Erfahrungen mit  Subtyp-B-Viren.  Non-B-Viren können aber natürliche Polymorphismen mit 

unterschiedlichem Einfluss auf die Resistenzentwicklung aufweisen. Gleichzeitig entwickeln Viren 

verschiedenen  Subtyps  teilweise  unter  der  gleichen  medikamentösen  Therapie  verschiedene 

Mutationen. 

Beispielsweise bedeutete die Existenz von Y181C bzw. Y181I (RT) bei der HIV-1-Gruppe O und 

allen  HIV-2-Stämmen  eine  Primärresistenz  gegenüber  NNRTI,  der  Subtyp  F  blieb  hingegen 

weitgehend sensibel gegenüber dieser Substanzklasse. Subtyp-C-Viren wiesen bei Exposition mit 

Efavirenz  die  Schlüsselmutation  V106M  auf,  Subtyp-B-Viren  nicht.  In  verschiedenen  Studien 

wurde  bei  Subtyp-C-Isolaten  eine  deutlich  frühere  Resistenzentwicklung  gegenüber  NNRTI 

beschrieben als bei Subtyp B-Isolaten (Loemba 2002; Snoeck 2006; Wainberg 2004). 

Diese genetische Diversität der HIV-Stämme geht mit einer deutlich unterschiedlichen Sensitivität 

bzw. Resistenz gegenüber antiretroviralen Substanzen einher, was von großer Bedeutung für die 

Therapie der Infektionskrankheit ist. Analysen des Virus-Subtyps werden daher für die Abschätzung 

der Effektivität und die Neuentwicklung antiretroviraler Wirkstoffe in der Zukunft eine große Rolle 

spielen (Taylor B.S. 2008).

1.7. Resistenztestung im Max von Pettenkofer-Institut

Die weltweit größte HIV-Referenzdatenbank ist die Los Alamos Datenbank, die Ende 2007 etwa 

229451 Sequenzen enthielt (Kuiken 2008). Im Vergleich dazu verzeichnete im März 2009 die "HIV 

Drug Resistance Database" der Stanford University etwa 106660 Sequenzen und 43790 Individuen 

(Shafer, "Summary Statistics", Stand 02.03.2009). Beide Datenbanken speisen sich aus Einträgen 

verschiedenster Institutionen aus unterschiedlichen Ländern. Viele Studien zu Resistenzentwicklung 

und Mutationen des HI-Virus beziehen sich auf die Datenbanken von Los Alamos oder Stanford 

University, verwenden aber auch eigene Datenbanken. So wies eine HIV-Datenbank der Universität 

Siena im Jahr 2002 etwa 1930 Patienten auf; Wildtyp-Sequenzen als Kontrollgruppe wurden von 

der Stanford HIV Drug Resistance Database bezogen. Das kanadische British Columbia Centre for 

Excellence in HIV/AIDS in Vancouver umfasste im gleichen Jahr knapp 4300 RT-Sequenzen von 

über 1600 Patienten (Romano 2002; Saracino 2006). 

Im  Max von  Pettenkofer-Institut für  Hygiene  und  Mikrobiologie  (MvP) werden  seit  1996 

genotypische HIV-Resistenztests durchgeführt. Die eingegangenen Patientenproben stammen zum 
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Großteil  aus  einzelnen  Kliniken  des  Klinikums  der  Ludwig-Maximilians-Universität  München 

(LMU).  Haupteinsender  sind  die  Medizinischen  Kliniken  und  Polikliniken,  die  Kliniken  für 

Gynäkologie  und  Dermatologie  der  LMU  sowie  das  Klinikum  der  Technischen  Universität 

München und das Städtische Krankenhaus München-Schwabing. Die getesteten Patienten stammen 

überwiegend aus dem gesamten Großraum München. Allein von 2000 bis Mitte des Jahres 2004 

wurden  etwa  1300  Patienten-Proben  sequenziert  und  genotypisch  auf  mögliche 

Medikamentenresistenzen getestet. Bedenkt man, dass in Bayern bis Ende des Jahres 2004 etwa 

3200 HIV-Erstdiagnosen gestellt wurden – 2008 wurde über 9500 HIV-infizierte Personen berichtet 

-  liegt  dem  MvP  eine  vergleichsweise  große  Menge  an  Virussequenzen  vor.  Bezüglich  der 

Patientenzahl  weist  die  MvP-Datenbank eine  ähnliche  Größe  bei  gleichwohl  geringerer  Anzahl 

enthaltener Sequenzen auf wie die Datenbanken aus Siena und Vancouver.

2. Zielsetzung

Die  vergleichsweise  große  und  repräsentative  Anzahl  an  Resistenz-getesteten  HIV-Sequenzen 

weckte den Wunsch, die gewonnenen Informationen in einer Datenbank zusammenzufassen, um sie 

weiteren  Untersuchungen  zugänglich  zu  machen.  Bis  dahin  wurden  die  Virusenzyme  Reverse 

Transkriptase  und  Protease  sequenziert  und  dann  eine  genotypische  Resistenz-Analyse 

durchgeführt. Die Ergebnisse wurden mit Probennummer versehen und gespeichert, während das 

sequenzierte  Virusgenom jahrgangsweise  auf  externen  Datenträgern  gesichert  wurde.  Bei  dieser 

herkömmlichen  Verfahrensweise  waren  Zugriffe  auf  die  HIV-Sequenzierungs-Daten  oft 

umständlich. 

Ziel  dieser  Dissertation  war  es  daher,  eine  HIV-Sequenz-Datenbank  im  MvP aufzubauen,  die 

Zugriffe  auf  die  vorhandenen  RT-  und  Protease-Sequenzen  über  das  interne  wissenschaftliche 

Netzwerk  erlaubte,  den  vollen  Informationsgehalt  der  vorhandenen  Proben  gewährleistete  und 

unterschiedliche Analysen der enthaltenen Daten ermöglichte. Hierzu gehörten u.a. die Häufigkeit 

einzelner Mutationen,  Mutationswege sowie Kombinationen von Mutationen unter dem Einfluss 

antiretroviraler Substanzen.

3. Material und Methoden

3.1. Ausgangsdaten

Zum Aufbau der Datenbank wurden Sequenzen ab Januar 2000 bis zum Oktober 2004 verwendet, 

um so einen großen Informationsgehalt zu erzielen und gleichzeitig die neuen Möglichkeiten mit 

einem limitierten Umfang austesten  zu  können.  Über  diese Dissertation  hinaus  soll  jedoch das 
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langfristige Ziel  sein,  alle Resistenzdaten, die seit  Beginn der Testungen im Jahr 1996 im MvP 

ermittelt wurden, auch in die Datenbank aufzunehmen. 

Insgesamt wurden im angegebenen Zeitraum 1326 Reverse-Transkriptase- (RT-) und 1286 Protease- 

(PR-) Sequenzen erfasst. Im Jahr 2000 waren es 468 (RT) bzw. 438 (PR), 2001 267 (RT) bzw. 265 

(PR), 2002 270 bzw. 260, 2003 217 bzw. 219 und im Jahr 2004 bis Ende Oktober 104 Sequenzen. 

Davon konnten im Fall der RT nur 1259 und der Protease 1245 Sequenzen verwendet werden, da in 

einigen Fällen Qualität oder Länge für eine weitere Bearbeitung nicht ausreichten. 

Im gewählten Zeitraum wurden 817 (RT) bzw. 801 (PR) verschiedene Patienten getestet und in die 

Datenbank  aufgenommen.  Die  Patientendaten waren  im  wissenschaftlichen  Netz  des  MvP 

verfügbar  und  enthielten  Namen,  Vornamen  und  Geburtsdatum  sowie  Information  über  das 

einsendende Institut. Daneben fand sich ein Verweis auf die vom MvP zugewiesene Probennummer. 

Aus Gründen der Anonymität wurden in der MvP-Datenbank Informationen, die auf die Identität 

des Patienten schließen ließen, verschlüsselt.

3.2. Sequenzierung der Patientenproben und Weiterverarbeitung

Für die Erzeugung der Datenbank wurde auf bereits vorhandene Sequenzdaten zurückgegriffen, die 

im Rahmen des normalen Resistenztestungsbetriebs entstanden. 

Aus  den  mit  Hilfe  der  Fluoreszenz-Sequenzierung  nach  Sanger  gewonnenen  DNS-Strängen 

(Sanger 1977) wurden  Elektropherogramme generiert. Den Elektropherogramm-"peaks" wurden 

die entsprechenden Basen Adenin, Thymin, Guanin und Cytosin zugeordnet, so dass Basenabfolgen 

entstanden. Im normalen Testbetrieb des MvP wurde ein Alignment an die international verbreitete 

Referenzsequenz  des  Wildtyp-Virusisolats  "HXB2" durchgeführt  (Leitner,  "Sequence Database - 

Tools  -  LOCATE  -  HIV  Sequence  locator  tool").  Programme  wie  ADRA  ("Antiviral  Drug 

Resistance Analysis") der Los Alamos Drug Resistance Database, das "HIVdb Sequence Analysis 

Program" der Universität Stanford oder das deutsche Programm "geno2pheno" ermöglichten dann 

die  gewünschten  Resistenzanalysen  (Leitner,  "Sequence  Database  -  Tools  -  ADRA -  ADRA: 

Antiviral  Drug  Resistance  Analysis";  Shafer,  "HIVdb  Program:  Sequence  Analysis";  Altmann, 

"geno2pheno"). 

Allen  Sequenzdaten  wurde  zur  späteren  Identifikation  die  "MvP_ID" als  achtstellige 

Probennummer des Max von Pettenkofer-Instituts zugewiesen. An der ersten Position steht in den 

Jahren 2000 bis 2003 "A", ab dem Jahr 2004 "V". Gefolgt wird der Anfangsbuchstabe von der 

22



zweistelligen  Jahreszahl,  beispielsweise  "00" für  das  Jahr  2000.  Dann folgt  eine  chronologisch 

vergebene  fünfstellige  Nummer.  Eine  Sequenz  vom  Beginn  des  Jahres  2001  könnte  daher 

"A0103523" lauten, eine vom Ende des Jahres 2004 "V0423167". 

Die Speicherung der Daten erfolgte in einem FASTA-ähnlichen Format innerhalb der ABI-Prism-

Software. Das FASTA-Format ist ein textbasiertes  Datenspeicherungsformat zur Darstellung der 

Primärstruktur von Nukleinsäuren und Proteinen. Die Daten beginnen in der 1. Zeile mit einem „>“-

Zeichen,  gefolgt  vom Namen.  In  den  nächsten  Zeilen  folgt  die  betreffende  Nukleinsäure-  oder 

Aminosäuresequenz,  codiert  als  Abfolge  einzelner  Buchstaben,  mit  60  Zeichen  pro  Zeile.  Die 

Codierung  der  Sequenzen  erfolgt  mit  Hilfe  des  international  gültigen  IUB-  bzw.  IUPAC-Code 

(National Center for Biotechnology Information; IUPAC/IUB). 
Tabelle 3a-c: IUPAC-Code für Aminosäuren und Nukleinsäuren:
3a) Basen:

IUPAC-Code Base

A Adenin

C Cytosin

G Guanin

T Thymin

U Uracil

3b) Degenerierte Basen:
IUPAC-Code Basen

R Purine (Adenin oder Guanin)

Y Pyrimidine (Cytosin oder Thymin/Uracil)

M Cytosin oder Adenin (Amino-Gruppe sowohl bei Adenin als 
auch bei Cytosin an analogen Positionen)

K Thymin/Uracil oder Guanin (Keto-Gruppe an analogen 
Positionen)

W Thymin/Uracil oder Adenin ("weak", also schwache 
Wasserstoffbrückenbindung zwischen A und T)

S Cytosin oder Guanin ("strong", also starke 
Wasserstoffbrückenbindung zwischen C und G)

B Nicht A (Cytosin, Thymin/Uracil oder Guanin)

D Nicht C (Adenin, Thymin/Uracil oder Guanin)

H Nicht G (Adenin, Thymin/Uracil oder Cytosin)

V Nicht T/U (Adenin, Cytosin oder Guanin)

N Any (alle möglichen Basen, d.h. Adenin, Cytosin, Guanin oder 
Thymin/Uracil)

3c) Aminosäuren:
IUPAC-Code 
(1 Buchstabe)

IUPAC-Code (3 Buchstaben) Aminosäure

A Ala Alanin
R Arg Arginin

N Asn Asparagin

D Asp Aspartat

C Cys Cystein
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Q Gln Glutamin

E Glu Glutamat

G Gly Glycine

H His Histidin

I Ile Isoleucin

L Leu Leucin

K Lys Lysin

M Met Methionin

F Phe Phenylalanin

P Pro Prolin

S Ser Serin

T Thr Threonin

W Trp Tryptophan

Y Tyr Tyrosin

V Val Valin

B Asx Aspartat oder Asparagin

Z Glx Glutamat oder Glutamin

X Xaa Jede beliebige Aminosäure

3.3. Erstellung einer HIV-Datenbank

Die  neu  zu  erstellende  Datenbank  sollte  einen  einfachen  Zugang  zu  den  auf  externen 

Speichermedien gesicherten Sequenzierungs-Daten der beiden Virusenzyme Reverse Transkriptase 

und  Protease  ermöglichen  und  einen  möglichst  großen  Informationsgehalt  aufweisen,  weshalb 

Nukleinsäure-  und  Aminosäure-Sequenzen  eingeschlossen  wurden.  Neben  der  „MvP_ID“  als 

Probennummer  sollte  eine  anonymisierte  Patientenkennung  („Pat_ID“)  Rückschluss  darüber 

zulassen, ob Proben vom gleichen oder von verschiedenen Patienten stammten.

Die  Tabellen  "RT_fastalike"  und  "Prot_fastalike"  enthalten  die  jeweils  etwa  1300  Reverse-

Transkriptase- und Protease-Sequenzen im "FASTA-like"-Format. Um einzelne Codons sowohl auf 

Nukleinsäure- als auch auf Proteinebene analysieren zu können, umfasst die Datenbank die nach 

Tripletts  geordneten  Nukleinsäuresequenzen  ("rt_tripletts"  und  "prot_tripletts")  und  die 

translatierten  Aminosäuresequenzen  ("aa_RT"  bzw.  "aa_Prot").  Für  einen  maximalen 

Informationsgewinn  und  eine  optimale  Abrufbarkeit  der  Daten  wurde  jeder  Position  der 

entsprechenden  Sequenz  eine  eigene  Spalte  innerhalb  der  Tabelle  zugewiesen.  Die  Tabellen 

"Pat_ID_RT" und "Pat_ID_Prot" ermöglichen eine Zuordnung der Probenkennung „MvP_ID“ zur 

Patientenkennung "Pat_ID". 

Die geplante HIV-Resistenzdatenbank machte zuerst einen Import der gewünschten Datensätze in 

der  für  spätere  Analysen  geeigneten  Form  nötig.  Die  hauptsächlichen  Anforderungen  für  das 
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Datenbankformat  waren  eine  gute  Zugänglichkeit  und  Abrufbarkeit,  eine  möglichst  effektive 

Datenverwaltung  und  die  Option  einer  späteren  Erweiterung,  benutzerfreundliche  und  flexible 

Programmierbarkeit, Anpassbarkeit an die speziellen Erfordernisse einer HIV-Datenbank sowie die 

Kompatibilität mit verschiedenen Hilfsprogrammen.

Als Skript-Programmiersprache wurde das Plattform-unabhängige Open-Source-Programm "php" 

und  als  Datenbank-Management-System  "MySQL"  gewählt.  Die  Datenbank  wurde  mit  dem 

kombinierten Programm "php MyAdmin" in der Version 2.9.1.1. generiert; es enthält "MySQL" in 

der Version 4.0 bzw. später 4.0.25 sowie "php" in der Serverversion 5.1. (Stand: August 2007). Für 

die Anpassung der vorliegenden Daten, den Import des Dateninhaltes in die Datenbank und die 

Erstellung von Hilfsprogrammen wurde die flexible Programmiersprache "Perl" verwendet. 

MySQL  ist  ein  relationales  Datenbankverwaltungssystem  und  gehört  zu  den  gebräuchlichsten 

Datenbanksystemen. Innerhalb des Systems können mehrere Datenbanken erstellt werden, in denen 

wiederum Tabellen  angelegt  werden können,  deren  Art  unterschiedlich  sein  kann und nur  vom 

gebrauchten Betriebssystem limitiert wird. MySQL bietet eine einfache Anpassung an die speziellen 

Bedürfnisse der jeweiligen Datenbank, ist an jedes Betriebssystem anpassbar und ermöglicht eine 

optimale  Koordination  der  spezifischen  Datenabfragen.  Die  verteilte  Transaktionsfähigkeit 

verhindert  eine  Blockade  bei  gleichzeitigem  Zugriff.  Befehle  werden  zwar  lokal  in  der 

Abfragesprache MySQL, im sog. "Client", eingegeben. Vom Datenbankserver können dann aber 

ganze  Abfolgen  von  Befehlen  ausgeführt  werden,  so  dass  der  Informationsaustausch  zwischen 

Client und Server optimiert ist (Wikipedia, "MySQL"; MySQL AB Firmenhomepage; Taylor A.G. 

2001; Reese 2003).

Php  ist  eine  Skriptsprache  zur  Erstellung flexibler  Internetanwendungen.  Sie  wird  server-seitig 

interpretiert, d.h. die Informationen werden zunächst an einen sog. Interpreter auf dem Webserver 

gesendet, der sie verarbeitet und dann erst an den "Client", den Webbrowser, schickt. So sind nur die 

generierten Daten für den Betrachter einsehbar. Die HIV-Datenbank benötigt daher keine direkte 

Verbindung zum Client. Nachteil ist, dass jede neue Aktion einzeln erfasst werden muss und der 

Interpreter den Quelltext bei jedem Aufruf neu überprüft und übersetzt. Die Vorteile von Php neben 

seiner  offenen  Zugänglichkeit  als  "OpenSource"-Programm  sind  aber  sicherlich  das  einfache 

Sammeln von Formulardaten sowie die dynamische Generierung von Webinhalten,  so dass eine 

optimale Kompatibilität mit SQL ermöglicht wird. Ein weiterer wesentlicher Vorteil ist die breite 
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Unterstützung aller gängigen Betriebssysteme, der meisten Webserver und Datenbankformate und 

besonders  die  hervorragende  Kompatibilität  mit  MySQL.  Im vorliegenden  Falle  ist  damit  eine 

einheitliche  Verwaltung  der  Datenbank  gewährleistet,  gerade,  da  im  MvP  verschiedene 

Betriebssysteme mit unterschiedlich zueinander kompatiblen Programmen aufeinander abgestimmt 

werden müssen. Zudem ist es aufgrund der umfangreichen Textverarbeitungsmöglichkeiten optimal 

geeignet, um die IUPAC- bzw. IUB-codierten Nuklein- und Aminosäuresequenzen zu verwalten und 

diesbezüglich Daten zu im- und exportieren (Wikipedia, "PHP"; Php-Firmenhomepage). 

PhpMyAdmin ist eine frei verfügbare Anwendung zur Verwaltung von MySQL-Datenbanken. Die 

Administration erfolgt mit einem Webbrowser und ermöglicht eine Datenbankverwaltung auch auf 

fremden Rechnern innerhalb eines Netzwerkes oder über das Internet. Derzeit kann es Datenbanken, 

Tabellen und Inhaltsfelder  kreieren und bearbeiten,  alle  SQL-Befehle  ausführen sowie Daten in 

vielen Formaten exportieren (Wikipedia, "PHPMyAdmin"). Die HIV-Sequenzdatenbank des MvP 

kann daher berechtigten Nutzern von intern und extern Zugriff bieten. 

Aufgrund  der  großen  Menge  an  Sequenzen,  die  in  die  neue  Datenbank  aufgenommen  werden 

sollten,  und  der  Verwendung  unterschiedlicher  Betriebssysteme  und  Datenformate  erschien  die 

Verwendung von  Hilfsprogrammen  als sinnvolle Lösung, um den Arbeitsprozess zu erleichtern. 

Diese sollten das Einspeisen der Sequenzen in  die Datenbank erleichtern,  einen Zugriff  auf die 

vorhandenen Sequenzen und deren Bearbeitung ermöglichen und aus den so gewonnenen Daten 

eine  Tabelle  kreieren  können.  Unabdingbar  war  eine  Kompatibilität  mit  "phpMyAdmin"  und 

verschiedenen anderen Programmen.  Zu diesem Zweck wurde  "Perl"  verwendet,  eine flexible, 

intuitive  Programmiersprache,  die  für  praktische,  problemorientierte  Anwendungen  entwickelt 

wurde. Sie zeichnet sich durch eine schnelle und einfache Programmierbarkeit, ein breites Angebot 

verschiedener  Formulierungen  und  Lösungswege  für  ein  Problem  sowie  die  Möglichkeit, 

objektorientierte  und  funktionelle  Befehle  zu  kombinieren,  aus.  Merkmale  komplexerer 

Textstrukturen, z.B. ein Vergleich von Ähnlichkeiten oder Unterschieden der enthaltenen Zeichen, 

können mit Perl leicht untersucht werden. Insbesondere die Möglichkeiten, Daten in Textform zu 

verarbeiten, sowie die Möglichkeit zu einer Verknüpfung unterschiedlicher Systemstandards waren 

bei der Erstellung der HIV-Datenbank hilfreich.  (Wikipedia, "Perl"; Wall, 2001; Hoffmann P.E., 

2002).

Somit waren die Voraussetzungen für eine einfach zugängliche Plattform gegeben, die die im MvP 

vorhandenen  Betriebssysteme  und  Datenformate  unterstützte,  optimale  Datenverwaltung  und 
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-sicherheit ermöglichte und mit ihrer Flexibilität verschiedene Datenanalysen unterstützte.

3.4. Import der Sequenzierungsdaten in die Datenbank

Die große Anzahl an Patientenproben war zwar in Hinblick auf die Repräsentativität der Datenbank 

von Vorteil, machte ihre Erstellung aber auch sehr zeitaufwendig. Die vorhandenen Sequenzen aus 

den Jahren 2000 bis 2003 waren auf externen Medien, diejenigen aus dem Jahr 2004 auf einem 

Macintosh-Rechner  gespeichert  und  dementsprechend  nur  mit  der  Macintosh-kompatiblen  ABI-

Prism-Software  abrufbar.  Um  die  Sequenzen  mit  anderen  Programmen  bearbeiten  zu  können, 

mussten sie demnach in ein allgemein lesbares Format gebracht werden. 

Da die Dateiformate von Macintosh, Word und Linux nur ungenügend kompatibel sind, bedarf es 

zum  Datentransfer  eines Formats, das die Buchstabenabfolgen der Sequenzierungsdaten für alle 

Betriebssysteme  lesbar  macht.  Diese  Voraussetzung  erfüllt  das  Txt-Format,  ein  auf  ASCII 

basierendes  Standard-Textformat.  Eine  Darstellung  ist  durch  das  Macintosh-Programm "Simple 

Text" und auf dem PC durch "Wordpad" möglich. 

Die Nukleinsäuresequenzen aus dem Jahr 2004 konnten direkt vom Macintosh-Rechner abgerufen 

werden.  Die Sequenzen aus anderen Jahren wurden neu auf eine Macintosh-Benutzeroberfläche 

geladen und mit der ABI-Prism-Software geöffnet. Jede Datei wurde manuell geöffnet, dann - in 

voneinander getrennten Schritten für die beiden Enzyme - die Nukleinsäuresequenz markiert und 

schließlich zusammen mit der „MvP_ID“ in eine einfache Textdatei kopiert. In dieser Form war der 

Zugriff über ein Linux- und Windows-Betriebssystem möglich. 

Zu Beginn der Resistenztestungen wurden im Institut für die reverse Transkriptase drei, später dann 

zwei  Unterabschnitte  des  Enzyms  als  Strang und  Gegenstrang sequenziert.  Um eine  möglichst 

eindeutig definierte Nukleinsäuresequenz zu erstellen, mussten die Stränge zu einem Gesamtstrang 

aneinandergefügt  werden  und  dieser  dann  manuell  extrahiert  werden.  Dies  wurde  durch  die 

teilweise sehr unterschiedliche Qualität der sequenzierten Stränge erschwert. Einige unvollständige 

oder qualitativ minderwertige Sequenzen wurden deshalb nicht in die Datenbank aufgenommen.

Die  verwertbaren  Sequenzen  lagen  nun  mit  „MvP_ID“  und  Zeichenfolge  in  einem  FASTA-

ähnlichen Format vor. Mit Hilfe der Intranet-Formulare der Perl-Übertragungsprogramme "rt.pl" 

bzw.  „prot.pl"  wurden  die  Daten  in  die  dafür  vorgesehenen  Tabellen  „RT_fastalike“  und 

„Prot_fastalike“ eingespeist  (Obermeier,  "Einleseformular  für  Nukleinsäuresequenzen"),  die 

entsprechend die "MvP_ID", ein Textfeld mit der Nukleinsäureabfolge und schließlich fakultativ 

Patientenkennung  „Pat_ID“  und  Datum enthalten.  Als  Grundlage  der  HIV-Datenbank  im  MvP 
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ermöglichten beide Tabellen erstmals eine gezielte Abfrage bestimmter Mutationen. Limitierend war 

jedoch die Darstellung der DNS-Sequenz als fortlaufende Buchstabenabfolge. Um die Sequenzen in 

eine  übersichtliche  und einfach  zu  analysierende  Form zu  bringen und parallel  Zugriff  auf  die 

Aminosäurenabfolgen der  beiden Virusenzyme zu haben,  war  es  nötig,  eine Translation der  im 

"fastalike"-Format gespeicherten Daten durchzuführen.

3.5. Umgang mit Patientendaten

Durch Integration einer Patientenkennung in die Datenbank sollten mehrere Proben eines Patienten 

als  zusammengehörig  erkennbar  sein,  Informationen  über  zeitliche  Abfolgen  von  Mutationen 

innerhalb eines HIV-Infizierten gewonnen und damit umfassendere Fragestellungen bezüglich des 

individuellen Resistenzstatus geklärt werden können. Da ein möglichst einfacher Zugang zur HIV-

Datenbank auch von fremden Rechnern mit entsprechender Berechtigung gewährleistet sein sollte, 

musste  die  Patientenidentität  aus  Gründen des  Datenschutzes  verschlüsselt  werden.  Zu diesem 

Zweck  wurde  das  Verschlüsselungsprogramm  "Pat-IDX" in  "Perl" programmiert.  Die  im 

Rahmen des regulären Diagnostik-Betriebs erhobenen Patientendaten wurden manuell eingegeben, 

mit  Hilfe  des  Kodierungsalgorithmus  in  einem  10-stelligen  Code  verschlüsselt  und  als 

Patientenkennung „Pat_ID“ wiedergegeben. Diese enthält Bestandteile von Geburtsdatum, Vor- und 

Nachnamen und zusätzliche  Ziffern,  eine  ähnliche  Kodierung,  wie sie  auch vom Robert-Koch-

Institut  in  Berlin  verwendet  wird.  „MvP_ID“ und dazugehörige „Pat_ID“ wurden in  zwei  neue 

Tabellen,  „Pat_ID_RT“  und  „Pat_ID_Prot“,  integriert,  welche  eine  nach  Patienten  getrennte 

Auswertung möglich machten.

3.6. Weiterverarbeitung der Sequenzierungsdaten

Da später  auch Übergänge zwischen Mutationen  und das  gleichzeitige  Vorliegen  verschiedener 

Quasi-Spezies  erfasst  werden  sollten,  musste  auf  gängige  Translationsprogramme  verzichtet 

werden,  deren  Nachteil  in  einem  Informationsverlust  bei  der  Übersetzung  mehrdeutiger,  sog. 

degenerierter  Basen  lag.  Hieraus  ergeben  sich  mehrere  theoretische  Möglichkeiten,  sie  in 

Aminosäuren  zu  übersetzen.  Die  Translationsprogramme  der  Los  Alamos  Datenbank  und  des 

Europäischen  Bioinformatischen  Instituts  (Leitner,  "Sequence  Database  -  Tools  -  Translate"; 

European  Bioinformatics  Institute  (EBI),  "EMBOSS  transeq")  setzten  beispielsweise  bei 

Mehrdeutigkeit eines Codons einen Platzhalter ein und ignorierten ihn bei der Weiterverarbeitung 

der  Sequenz.  Programme  wie  das  Sequence  Analysis  Programm  der  Stanford  HIV-Database 

hingegen berücksichtigte Codons mit degenerierten Basen, ließen aber durch ihr spezielles Format 
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keinen weiteren Export dieser Daten zu (Shafer, "HIVseq Program: Sequence Analysis). 

3.6.1. Degenerierte Basen

Degenerierte Basen in den Elektropherogrammen entstehen dann, wenn das zugrunde liegende 

Elektropherogramm  keine  klar  definierte  Spitze  (englisch  "peak")  anzeigt  oder  mehr  als  ein 

Ausschlag vorhanden ist. Ein Elektropherogramm besteht einerseits aus der Fluoreszenzintensität in 

der Ordinate und der Gel-Laufstrecke, d.h. der Nukleinsäureposition, in der Abszisse. Abstand und 

Höhe der Elektropherogramm-Spitzen (englisch „peaks“) sowie An- und Abstieg und Breite des 

Fluoreszenzintervalls  ergeben  einen  sog.  Konfidenzwert.  Bei  der  Interpretation  des 

Elektropherogramms wird die jeweilige Base durch den höchsten Konfidenzwert an ihrer Position 

definiert. Liegt der Peak innerhalb eines Konfidenzintervalls, kann man ihm normalerweise exakt 

eine eindeutige Nukleinsäure zuordnen. Ansonsten ist er mehrdeutig (Bild 4), so dass alternative 

Interpretationsmöglichkeiten existieren. Die Entscheidung für eine der vorliegenden Möglichkeiten 

würde die andere Option verwerfen und gleichzeitig einen Informationsverlust darstellen. 

Bild 4) Elektropherogramm: Pfeilspitze markiert eine mehrdeutige Position. Das Analyseprogramm
markiert die Nukleinsäure-Position mit dem Zeichen "N" (obere Bildleiste).
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3.6.2. Informationserhalt durch IUPAC-Code

Um solche Informationen dennoch weitestgehend zu erhalten, entwickelte die International Union 

of Pure and Applied Chemistry (IUPAC) bzw. die International Union of Biochemistry IUB den 

IUPAC- (bzw. IUB-) Code, der sich für Nuklein- und Aminosäuren anwenden lässt. Der Code legt 

eindeutig fest, wie viele und welche Möglichkeiten für eine degenerierte Base in Frage kommen. Da 

sich hierdurch unzählige Permutationen ergeben können, ist die IUPAC-Codierung sicherlich nicht 

für die alltägliche Resistenzdiagnostik geeignet. In der MvP-Datenbank war jedoch beabsichtigt, auf 

alle  vorhandenen  Informationen  zugreifen  und  deshalb  für  degenerierte  Basen  alle  denkbaren 

Alternativen erfassen zu können. Im Idealfall sollte sich deren Zahl dann später durch die natürliche 

Redundanz des genetischen Codes – verschiedene Basentripletts können die gleiche Aminosäure 

codieren – und durch Eliminierung von Stopp-Codons reduzieren lassen. Ein Vergleich mit anderen 

Sequenzen  innerhalb  der  Datenbank  konnte  helfen,  die  Plausibilität  einiger  Permutationen 

einzuschätzen.

3.6.3. Bewahren eines maximalen Informationsgehalts

Ein  eigenes,  neu  programmiertes  Translations-Programm sollte  dabei  helfen,  auch  degenerierte 

Basen bei  der Translation zu berücksichtigen.  Zur  Fehlerkorrektur wurden zunächst  mit  Hilfe 

eines neu entwickelten Perl-Programms die vorhandenen Basen-Sequenzen auf Fehler überprüft: 

Sequenzen, denen essenzielle Motive wie die der aktiven Zentren von RT bzw. PR fehlten oder die 

ein Stopp-Codon enthielten, wurden nochmals neu in die Tabelle eingelesen und erneut kontrolliert. 

Waren sie immer noch fehlerhaft, so wurden sie aus der Datenbank entfernt. Von 26 betroffenen PR-

Sequenzen konnten 20 korrigiert werden, sechs wurden gelöscht. Zehn RT-Sequenzen wurden aus 

der Datenbank entfernt. 

Die  so  erhaltenen  Nukleinsäure-Sequenzen  konnten  allerdings  weiterhin  unterschiedliche 

Startpunkte oder technisch bedingte Lücken in ihrem Strang aufweisen, was bei der Translation zu 

einer für weitere Analyse fatalen Verschiebung des Leserasters und einer erhöhten Fehlerrate geführt 

hätte. Durch Anpassung der Basenabfolgen an eine Referenzsequenz, ein sog. Alignment, sollten 

solche potentiellen Fehlerquellen eliminiert werden. Hierzu wurde mit Hilfe des Skripts "seqret" des 

Programmpakets EMBOSS (EBI, "EMBOSS seqret") zunächst das FASTA-like-Format, also der 

durchlaufende  Text  ohne  Zeichenbegrenzung  für  jede  Zeile,  in  das  FASTA-Format  mit 

Zeichenbegrenzung umgewandelt. Die Sequenzen wurden dann mittels des Translationsprogramms 

"Transseq" (EBI, "EMBOSS transseq") in Aminosäuren übersetzt unter Erstellung mehrerer sog. 

Frames,  von  denen  wiederum  der  jeweils  beste  ("right  frame")  ausgewählt  wurde.  Allerdings 
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wurden nicht eindeutig definierte Positionen mit dem Platzhalter „x“ versehen. Damit wurden die 

Sequenzen  nun  auf  Aminosäure-Ebene  mit  Hilfe  des  EMBOSS-Programms  „needle“  an  die 

entsprechende  Referenzsequenz  des  hxb2-Subtyp-B-Virus  angeglichen  (EBI,  "EMBOSS  align 

needle"). Dies entspricht einem sog.  globalen Alignment nach Needleman-Wunsch (Wikipedia, 

"Sequenzalignment").

Die entstandenen Aminosäure-Sequenzen waren zwar auf Fehler überprüft und in ihrem Leseraster 

weitestgehend  angeglichen.  Dennoch  waren  die  Informationen  über  mehrdeutige  Codons  durch 

Platzhalter deutlich limitiert. Deshalb erfolgte eine Rückübersetzung in alignierte Nukleinsäuren, 

die  im  Rahmen  der  IUPAC-Codierung  noch  alle  Informationen  enthielten.  Die  Tabellen 

„rt_fastalike“ und „prot_fastalike" wurden entsprechend aktualisiert. Von ihnen ausgehend konnten 

jetzt  im  richtigen  Raster  alle  weiteren  Schritte  unternommen  werden,  um  unter  vollem 

Informationserhalt eine Translation durchzuführen. 

Als nächster Schritt wurde die als zusammenhängende Zeichenabfolge gespeicherte Nukleinsäure-

Sequenz mit Hilfe eines Perl-Programms in Basentripletts unterteilt. In den zwei neuen Tabellen 

"rt_triplett" und "prot_triplett" wurde jedem Codon eine eigene Spalte zugeordnet und an manchen 

Positionen auch Platz für Insertionen gelassen. Dies betraf die PR-Positionen 21, 34, 35, 40, 91, 94 

und die RT-Positionen 67 bis 69. „rt_triplett“ enthielt 1249, „prot_triplett“ 1239 Sequenzen. Die 

Tabellen ermöglichten bereits einfache Mutationsabfragen. 

Das  im Rahmen dieser  Dissertation neu in  Perl  entwickelte  Translationsprogramm  "dna2aa" 

übernahm  nun  die  Translation  der  Basentripletts.  Das  Programm  wandte  einen  speziellen 

Translationsalgorithmus  auf  die  enthaltenen  Sequenzen  an,  welcher  bei  Auftreten  degenerierter 

Basen alle im Sinne des IUPAC-Codes möglichen Kombinationsmöglichkeiten berücksichtigte. Für 

jede  denkbare  Permutation  auf  Nukleinsäure-Ebene  wurden  die  sich  daraus  ergebenden 

Basentripletts dargestellt und in die ihnen entsprechende Aminosäure übersetzt. Entsprechend der 

Informationsredundanz  der  DNS  konnte  es  dabei  vorkommen,  dass  sich  aus  zwei  oder  mehr 

verschiedenen  Codons  eine  einzige  Aminosäure  ergab;  im  Idealfall  war  nun  im  Idealfall  eine 

ursprünglich  mehrdeutige  Position  nach  Translation  eindeutig  definiert.  Als  Beispiel  sei  eine 

beliebige,  nach  IUPAC-Kriterien  codierte  Nukleinsäure-Sequenz  genannt,  die  an  verschiedenen 

Positionen  die  Tripletts  „TWG",  „MGA“  und  „YTA“  enthält  (Tabelle  4).  Viele  Programme 

übersetzten  bei  der  Translation  die  degenerierte  Base  mit  einem  Platzhalter  (z.  B.  „?“  beim 

Programm „transeq“  des  EMBOSS-Programmpakets).  Das  neu entwickelte  Programm „dna2aa“ 

berechnete  nun  die  sich  ergebenden  Kombinationsmöglichkeiten,  verhinderte  einen 

Informationsverlust und ermöglichte im vorliegenden, konstruierten Idealfall die Beschränkung auf 
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eine eindeutig definierte Aminosäure. Beim Triplett „TWG“ ergeben sich für „W“ („weak“, d.h. mit 

einer  „schwachen“  Wasserstoffbrückenbindung)  als  mögliche  Nukleinsäuren  Thymin  (T)  oder 

Adenin (A) und damit die möglichen Codons „TAG“ (Stopp-Codon) oder „TTG“ (Leucin). Da ein 

Stopp-Codon  zum Kettenabbruch  führen  und  somit  die  Replikation  beenden  würde,  kann  von 

diesen zwei Möglichkeiten nur Leucin als sinnvolle Lösung betrachtet werden. „MGA“ lässt als 

Nukleinsäuren Cytosin (C) oder Adenin zu – beide weisen eine Aminogruppe („M“ für Amino) auf. 

„CGA“ und „AGA“ codieren beide für Arginin, so dass die Position eindeutig definiert werden 

kann.  Ähnliches  gilt  für  „YTA“,  wo  „Y“  für  die  Pyrimidinbasen  Thymin  und  Cytosin  stehen. 

Sowohl „CTA“ als auch „TTA“ codieren für Leucin, so dass durch die IUPAC-Codierung auch hier 

eine eindeutige Bestimmung der Aminosäure möglich war. 

Auch wenn die gewählten Beispiele sicherlich den Idealfall darstellen und eine solche Reduktion 

auf eine eindeutige Aminosäure nicht immer möglich ist, so vermag „dna2aa“ doch einen drohenden 

Informationsverlust durch Angabe aller denkbaren Aminosäure-Möglichkeiten zu umgehen und eine 

gewisse  Einschränkung  der  Auswahl  zu  bewirken.  Dies  lässt  sich  gezielt  nutzen,  indem 

beispielsweise an Enzympositionen mit nur geringer Variabilität die Plausibilität der angegebenen 

Aminosäuren unterschiedlich gewichtet wird. Die Mehrdeutigkeit an einer Position kann aber auch 

als  Ausdruck verschiedener  HIV-Subspezies  gewertet  werden,  was  bezüglich Mutationsabfolgen 

und  Resistenzentwicklung  wertvolle  Informationen  liefert.  Die  so  entstandenen  Aminosäure-

Sequenzen wurden in die Tabellen „aa_Prot“ und „aa_RT“ bzw. erweitert um die Patientenkennung 

in „Prot_aa_patmvp“ und „RT_aa_patmvp“ eingefügt.

Tabelle 4) Beispiele für degenerierte Basen: Basentripletts „TWG“, „MGA“ und „YTA“. Das Translationsprogramm 

"dna2aa" ermöglicht im Idealfall eine Reduktion der möglichen Permutationen. „TWG“ lässt sich auf „Leucin“, „MGA“ 

auf „Arginin“ und „YTA“ ebenfalls auf „Leucin“ reduzieren. 

Beispiel 1 Beispiel 2 Beispiel 3
Basentriplett TWG MGA YTA

Programm „transeq“ ? (Platzhalter) ? (Platzhalter) ? (Platzhalter)

IUPAC-Code W = A oder T M = A oder C Y = C oder T

Permutationen TAG, TTG AGA, CGA CTA, TTA

Programm „dna2aa“ Stopp-Codon; Leucin Arginin Leucin
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3.7. Struktur der neu geschaffenen MvP-HIV-Datenbank

Die Tabellen „rt_fastalike“ und „prot_fastalike", „rt_triplett“ und „prot_triplett“ sowie  „aa_Prot“ 

und „aa_RT“ bilden die  Basisdaten der HIV-Sequenz-Datenbank und ermöglichen eine gezielte 

Analyse von Mutationen auf DNS- und Protein-Ebene. Mit „Pat_ID_RT“ und „Pat_ID_Prot“ ist 

eine Zuordnung von Probennummer und Patientenkennung möglich. 

Dank  des  PHPMyAdmin-Datenbankformats  konnten  verschiedenen  Inhalte  als  erweiterte 

Datensätze miteinander kombiniert werden. Die Tabellen „aa:Prot_patient“ sowie „aa_RT_patient“ 

enthalten beispielsweise für jeden Patienten die Zahl der im zugeordneten Proben sowie für jedes 

Codon die Art und Anzahl der Permutationen. Sie erlauben einen Überblick über die Stabilität oder 

Variabilität an bestimmten Positionen. "aa_RT_just_1" und "aa_Prot_just_1" enthalten Daten von 

Patienten,  die nur mit  einer Sequenz vertreten sind, während "RT_4_more" bzw. "Prot_4_more" 

Patienten mit vier oder mehr Proben zuzuordnen sind. Insbesondere zur Analyse von Veränderungen 

innerhalb des HIV-Genoms während des Krankheitsverlaufs ergeben sich hieraus Informationen.

3.8. Auswertungen - Hilfsmittel und Anwendungsmöglichkeiten

Die  SQL-Struktur  der  Datenbank ermöglichte  gezielte  Abfragen  etwa bezüglich  der  Häufigkeit 

einzelner Mutationen, so dass beispielsweise das Auftreten relevanter Mutationen, wie sie von der 

Stanford-Database  angegeben  werden,  analysiert  werden  konnte  (Stanford  University  Drug 

Resistance  Database,  "Resistance  Notes").  Zur  Archivierung  der  Mutationen  wurde  Excel  im 

Programm-Paket  von Windows  2000 verwendet.  Das  Tool  "Mutation  Profiles"  erlaubte  es,  die 

Häufigkeiten mit denen der Stanford Database zu vergleichen (Stanford University Drug Resistance 

Database, "Mutation Profile").

Zur Überprüfung der Subtypen wurden die abgefragten Probennummern in das Assistenzprogramm 

"getfasta"  (Obermeier,  "getlistv2")  exportiert,  mit  dessen  Hilfe  die  Sequenzen  im  fasta-Format 

extrahiert  und  in  das  Resistenzanalyseprogramm  "GRADE"  eingespeist  (HIV  GRADE  e.V.) 

wurden.

Die  Anwendungs-  und  Abfragemöglichkeiten der  Datenbank  sind  zahlreich  und  würden  den 

Rahmen  dieser  Dissertation  sprengen.  Aus  diesem Grunde  werden  im Folgenden  exemplarisch 

einige  relevante  Anwendungen  gezeigt,  in  dem Wissen,  dass  die  Datensätze  beliebig  erweitert 

werden können und weitere Analysen jederzeit möglich sind. 
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4. Ergebnisse

Als ein Anwendungsbeispiel  wurde untersucht,  wie oft  in  der MvP-HIV-Sequenz-Datenbank an 

ausgewählten  Positionen  Abweichungen  vom  Wildtyp-Virus  vorlagen.  Darüber  hinaus  wurden 

mittels Analyse des Auftretens von Mutationen in chronologischer Reihenfolge Rückschlüsse auf 

sog.  Mutationspfade  gezogen.  Außerdem  galt  ein  besonderes  Augenmerk  einigen  bevorzugt 

miteinander  in  Kombination  auftretenden  Mutationen.  Zusätzliche  Interpretationsmöglichkeiten 

zum Auftreten von Mutationen in Abhängigkeit  vom Subtyp ergaben sich aus einer Analyse der 

Virus-Subtypen.

4.1. Prävalenz häufiger Mutationen

Die HIV-Datenbank enthält die Positionen 1 bis 99 der Virus-Protease und 1 bis 334 der Reversen 

Transkriptase.  Es  wurden  Enzympositionen  untersucht,  für  die  eine  Assoziation  mit 

Arzneimittelresistenzen  nachgewiesen  oder  zumindest  stark  vermutet  wurde.  Dies  geschah  in 

Anlehnung  an  die  aktualisierten  Informationen  der  ANRS,  der  Stanford  University  HIV Drug 

Resistance Database, der International AIDS Society-USA Drug Resistance Mutations Group oder 

anderer Organisationen (ANRS AC 11 Resistance Group; Stanford University, "Mutation Profile"; 

Johnson 2007 und 2008). Bei der Auswertung der Häufigkeit bestimmter Aminosäuren innerhalb 

der MvP-Datenbank wurden nur relevante Positionen berücksichtigt. 

An  den  entsprechenden  Codons  wurde  die  Mutationshäufigkeit  (Mut.)  allgemein  und  ihre 

Veränderung vom Jahr 2000 bis Oktober 2004 analysiert. An mehrdeutigen Positionen wurde die 

Redundanz der Sequenzen durch Auflistung aller Möglichkeiten berücksichtigt. In manchen Fällen 

beinhaltete eine solche Permutation sowohl die Aminosäure des Wildtyps als auch Abweichungen 

davon.  Bei  der  Auswertung  wurden  deshalb  bei  der  Mutationshäufigkeit  diejenigen  Sequenzen 

berücksichtigt,  die  an  der  betreffenden  Position  definitiv  keinen  Wildtyp  aufwiesen.  Durch 

Ausschluss solcher unklarer Fälle erklären sich die geringere relative Häufigkeit und damit die an 

Hundert fehlenden Prozent.

4.1.1. MvP-Datenbank

In die Analyse NRTI-assoziierter Mutationen wurden die RT-Codons 41, 44, 65, 67, 69, 70, 74, 

75,  115,  151,  184,  210,  215,  219  und  227  eingeschlossen  (Tabelle  1a  –  NRTI-assoziierte 

Mutationen). Äußerst selten fanden sich Mutationen an den Enzympositionen 65 (Mut.: 2,1%; WT: 

97,8%), Codon 75 (Mut.: 6,2%; WT: 93,5%), Codon 115 (Mut.: 0,7%; WT: 99,2%), Codon 151 

(Mut.: 1,8%; WT: 98,2%) sowie Codon 227 (Mut.: 1,1%; WT: 98,7%). An den RT-Positionen 184 

34



(Mut.:  41,5%; WT: 57,6%) und 215 (Mut.:  42,6%; WT: 56,7%) kamen annähernd gleich viele 

mutierte Varianten wie Wildtyp-Viren vor .

Hinsichtlich Veränderungen in der Mutationsrate im Laufe der Jahre zeigte sich bei den NRTI nur 

wenig Dynamik. An den Positionen 67, 69, 70, 74 und 210 schwankte die Mutationsfrequenz nur 

wenig, an den Stellen 75, 115, 151, 184, 219 und 227 war sie nahezu konstant. Bei M41 (Jahr 2000: 

60,3%; Jahr 2004: 80,8%) sowie weniger ausgeprägt bei E44 (2000: 86,3%; 2004: 95,2%) und T215 

(2000:  53,1%;  2004:  68,9%)  ließen  sich  vermehrt  Wildtyp-  und  weniger  mutierte  Viren 

verzeichnen, während an Codon 65 von 2000 bis 2004 eine deutliche Zunahme an Mutationen zu 

beobachten war (Mut. 2000: 0,5%; 2002: 0,7%; 2003: 5,5%; 2004: 9,6%). 

Insertionen an Position 69 waren in der Datenbank nur selten zu finden. Nur je ein Patient wies dort 

in den Jahren 2000 bis 2002 die Insertionen G bzw. C auf. 

Eine große  Variationsbreite  an Aminosäuren  fand sich an den  Positionen 67,  69,  70,  75  sowie 

besonders ausgeprägt an den Codons 210, 215 und 219. Dagegen mutierte K65 fast ausschließlich 

zu K65R, Y115 nur zu Y115F und Q151 zu Q151M. 

Hinsichtlich  NNRTI-assoziierter Mutationen  wurden die Codons 100, 101, 103, 106, 181, 188, 

190, 225 und 230 analysiert (Tabelle 1b – NNRTI-assoziierte Mutationen). Insgesamt ergaben 

sich in der MvP-Datenbank hier deutlich weniger Abweichungen vom Referenzvirus als bei den 

NRTI-assoziierten Mutationen. Die RT-Codons 100 (L100: 96,4%), 106 (V106: 96,3%), 188 (Y188: 

96,5%),  225 (P225:98,6%)  und 230  (M230:  99,5%)  wiesen  fast  nur  Wildtyp  auf.  Etwas  mehr 

Abweichungen zeigten sich bei K101 (WT: 89,6%), Y181 (WT: 85,5%) und G190 (WT: 88,5%). 

Über die Jahre zeigten sich allenfalls kleinere Schwankungen der Mutationsrate.

Eine  geringe  Variationsbreite  an  Aminosäuren  wurde  an  den  Codons  100,  225  und  230 

nachgewiesen (L100I:  3,2%, Intermediärtyp 100IL: 0,2%; L100V: 0,1%; Intermediärtyp 225HP: 

0,1%; P225H: 1,3%; Intermediärtyp 230IM: 0,2%; M230L: 0,3%). 

Bei den Proteaseinhibitor-assoziierten Mutationen wurden die Codons 10, 13, 16, 20, 24, 30, 32, 

33, 35, 36, 41, 43, 46 bis 48, 50, 53, 54, 58, 60, 62, 63, 69, 71, 73, 74, 77, 82, 83 bis 85 sowie 88 

und 90 untersucht (Tabelle 2 – PI-assoziierte Mutationen). An den meisten dieser Stellen wurden 

äußerst niedrige Mutationsraten gefunden. Eine Rate zwischen 6 und 10% fand sich bei den Codons 

60  (Mut.:  8,8%),  73  (Mut.:  9,0%)  und  84  (Mut.:  8,1%).  Zwischen  2  und  6%  Gesamt-

Mutationshäufigkeit. wiesen die Positionen 16 (Mut.: 5,3%), 30 (Mut.: 2,9%), 32 (Mut.: 2,5%), 43 

(Mut.: 5,5%), 47 (Mut.: 2,3%), 48 (Mut.: 4,0%), 53 (Mut.: 3,3%), 58 (Mut.: 4,5%) sowie 85 (Mut.: 
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2,6%) und 88 (Mut.: 3,5%) auf. Fast ausschließlich Wildtyp lag vor an den Codons 24 (WT: 98,9%), 

50 (WT:  98,5%) und 83 (WT: 99,0%). Ein nahezu ausgeglichenes Verhältnis zwischen Wildtyp-

Viren und mutierten Varianten ließ sich an Codon 36 nachweisen (WT M36: 57,6%; Mutanten: 

40,8%).  Codon  63  erwies  sich  als  äußerst  polymorphe  Protease-Position  (Referenz-Virus  L63: 

24,6%; Polymorphismen: 74,9%). 

Beispiele für eine zunehmende Mutationsfrequenz über die Jahre sind die Codons 13 (Mut. Jahr 

2000: 22,6%; 2004: 37,0%), 41 (Mut. Jahr 2000: 31,7%; 2004: 52,4%), Codon 47 (Mut. Jahr 2000: 

0,7%; 2004: 3,9%), 60 (Mut. Jahr 2000: 7,2%; 2004: 13,6%) und 69 (Mut. Jahr 2000: 18,8%; 2004: 

35,9%). An Codon 48 konnte eine vermehrte Tendenz zugunsten des Wildtyps festgestellt werden 

(Mut. Jahr 2000: 6,7%; 2004: 2,9%). 

Hinsichtlich der Vielfalt gab es je nach Lokalisation innerhalb des Enzyms deutliche Unterschiede. 

I13 mutierte beispielsweise fast ausschließlich zu I13V (I13V: 28,5%; Intermediärtyp 13IV: 0,7%; 

I13A: 0,3%), D30 bei niedriger Mutationsrate meist zu D30N (D30N 2,8%; Intermediärtyp 30ND 

und D30Y: Je 0,1%). An Codon 35 war E35D die häufigste Variante (E35D: 32,9%; E35N: 1,1%; 

E35A/K/Q/V:  Je  0,1%).  I47 veränderte  sich meist  zu  I47V (I47V:  2,3%;  Intermediärtyp 47MI: 

0,2%), I50 zu I50V (I50V: 1,1%); Intermediärtyp 50IMV/I50L: Je 0,1%) und I62 zu I62V (I62V: 

28,1%; Intermediärtypen 62IV bzw. 62MI: 1,1% bzw. 0,1%). Ebenso veränderte sich Isoleucin an 

den Stellen 84 und 85 bevorzugt zu Valin (I84V: 7,9%; I85V: 2,5%). Dagegen mutierte Leucin an 

Codon 90 zu Methionin (L90M: 24,8%), ohne dass an anderen Positionen wie L10, L24, L33 oder 

L63 eine ähnliche Tendenz zu beobachten war. Eine große Variationsbreite an Mutationen fand sich 

an den PR-Codons 20, 54, 63, 69 und 71. 

Die Ergebnisse gaben einen Überblick über das in der MvP-Datenbank erfasste Patientengut in den 

Jahren 2000 bis 2004. 

4.1.2. Vergleich mit der Stanford HIV Drug Resistance Database

Die erhobenen Daten wurden mit denen der größeren Stanford University HIV Drug Resistance 

Database verglichen, um Aussagen über mögliche regionale Unterschiede treffen zu können. Die 

Anwendung "RT Mutation Profile" bzw. "Protease Mutation Profile" gab einen Überblick über die 

Häufigkeit  und  Art  von  Mutationen  bei  Patienten  ohne  antiretrovirale  Behandlung  sowie  mit 

mindestens einem NRTI, NNRTI oder PI (Stanford University, "Mutation Profile").

Analog zur MvP-Datenbank fanden sich hinsichtlich  NRTI-assoziierter Mutationen  auch in der 

Stanford Datenbank nur selten Mutationen an den Codons 65 (MvP: 2,1%; Stanford: 1,4%), 75 
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(MvP: 6,2%; Stanford 2,9%), 115 (MvP: 0,7%; Stanford: 0,6%), Codon 151 (MvP: 1,8%; Stanford: 

1,2%)  und  227  (MvP:  1,1%;  Stanford:  0,3%).  An  einigen  Positionen  gab  es  jedoch  auch 

Unterschiede zu beobachten, beispielsweise an den RT-Codons 41 (Mut. MvP: 31,9%; Stanford: 

16,4%), 44 (Mut.  MvP: 10,9%; Stanford: 4,5%), 67 (Mut.  MvP: 30,2%; Stanford: 16,4%), 184 

(Mut. MvP: 41,5%, Stanford: 21,4%), 210 (Mut. MvP: 22,2%, Stanford: 11,0%) und 215 (Mut. 

MvP: 42,6%, Stanford: 22,4%). Insertionen an Codon 69 traten in etwa gleich selten auf (MvP: 

1,2%; Stanford: 0,6%).

NNRTI-assoziierte Mutationen tauchten in der MvP-Datenbank fast durchgängig häufiger auf als 

in der Stanford HIV Database. Dies ließ sich an den RT-Codons 101 (Mut. MvP: 9,6%; Stanford: 

4,2%), 103 (Mut. MvP: 24,9%; Stanford: 11,8%), 181 (Mut. MvP: 13,6%; Stanford: 5,5%), 188 

(Mut. MvP: 3,4%; Stanford: 1,6%), 190 (Mut. MvP: 10,9%; Stanford: 4,0%) und 225 (Mut. MvP: 

1,3%;  Stanford:  0,7%)  beobachten.  Allerdings  zeigten  sich  in  der  Gruppe  der  vorbehandelten 

Patienten  in  der  Stanford-Datenbank  mehr  Abweichungen  vom  Wildtyp  als  in  den  MvP-

Datensätzen.  Zwei der untersuchten Codons wiesen in beiden Datenbänken nur den Wildtyp oder 

eine einzige Mutation und damit eine geringe Variationsbreite auf, so L100 mit Mutation L100I und 

P225 mit  P225H. In der  MvP-Datenbank kam an Codon 230 nur  M230L mit  äußerst  geringer 

Häufigkeit vor (0,3%), während in der Stanford-Datenbank immerhin auch M230ILV beobachtet 

wurden.  K101N kam nur  in  den  amerikanischen  Daten,  K101A und K101V nur  in  den  MvP-

Sequenzen vor. V106I, Y181C, Y188L und G190A waren in beiden Datenbanken die häufigsten und 

beinahe  einzigen  Mutationen  an  ihren  jeweiligen  Positionen.  K103DHI,  V106G  und  Y188DF 

fanden sich nur im Münchner Patientengut. 

Innerhalb der Stanford HIV-Datenbank gab es bei den  PI-assoziierten Mutationen  Unterschiede 

zwischen  unbehandelten  und  vorbehandelten  Patienten.  Ohne  Therapieerfahrung  fanden  sich 

häufiger Abweichungen vom Referenzvirus an den Codons 13 (I13V; ohne Vortherapie:  37,1%; 

vorbehandelt: 32,0%), 16 (G16E; ohne Vortherapie: 8,1%; vorbehandelt: 4,7%), 36 (M36I; ohne 

Vortherapie:  54,0%;  vorbehandelt:  45,9%),  41  (R41K;  ohne  Vortherapie:  58,6%;  vorbehandelt: 

31,8%) und 69 (H69K; ohne Vortherapie: 45,2%; vorbehandelt: 12,5%). An manchen Positionen 

war  die  Mutationsfrequenz  in  der  Stanford-Datenbank  höher  als  in  der  MvP-Datenbank, 

beispielsweise an PR-Codon 24 (Mut. MvP: 0,9%; Stanford: 3,7%). 

In  den  MvP-Sequenzen  fielen  hauptsächlich  an  Positionen  mit  geringer  Variationsbreite  an 

Aminosäuren  einige  seltene  Polymorphismen  auf,  die  in  der  amerikanischen  Datenbank  nicht 

genannt  und  allenfalls  von  wenigen  Autoren  in  Zusammenhang  mit  der  Verabreichung 
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antiretroviraler Medikamente interpretiert wurden. G16Q trat beispielsweise in der MvP-Datenbank 

mit  einer  Häufigkeit  von 0,1% auf und wurde in  Zusammenhang mit  Nelfinavir-Exposition als 

seltene  Mutations  beschrieben  (Stanford  University  Drug  Resistance  Database, 

http://hivdb.stanford.edu/cgi-bin/GetPRIsolateData.cgi?IsolateID=7917).  Die  Stanford-Datenbank 

führte außerdem zum Zeitpunkt  der Auswertungen D30Y (Mut.  MvP: 0,1%) nicht  auf,  in  einer 

Publikation wurde sie als primäre PI-Resistenzmutation beschrieben (Brenner 2000). Ähnliches galt 

für  Mutationen  an  Codon  32:  V32A  wurde  zwar  als  "major  mutation"  mit  einer 

Resistenzentwicklung assoziiert (Yang 2005), V32G und V32E wurden jedoch nicht genannt (MvP: 

Je 0,1%). Q58K (Mut. MvP: 0,1%) wurde bei einem mit HIV-2 infizierten Patienten aus Afrika 

gefunden,  D60G  in  einem  Isolat  eines  unbehandelten  Patienten  (Pieniazek  2004;  Stanford 

University,  Sequence  Reference).  I62T (MvP:  0,2%)  wurde  üblicherweise  als  Polymorphismus 

interpretiert,  aber aufgrund einer deutlichen lokalen Häufung auch als  molekularer Marker einer 

Epidemie von Subtyp B-Viren in Venezuela beschrieben; I62L (MvP: 0,1%) wurde eine deutlich 

eingeschränkte Enzymfunktion zugeschrieben (Bouchard 2007; Parera 2007). N83I wurde mit einer 

verminderten Substratbindung der Protease assoziiert, die Bedeutung von N83H und N83Y (MvP: 

Je  0,2%) wurde nicht  weiter  untersucht  (O´Loughlin  2006).  Für N83T (MvP: 0,1%) wurde bei 

Subtyp-B-Viren eine Resistenz gegenüber Nelfinavir postuliert (Gonzalez L.M. 2004). I85N (MvP: 

0,1%) ließ  sich  außerhalb  der  MvP-Datenbank in  einem brasilianischen Virusisolat  nachweisen 

(Tanuri 1999). An Codon 90, wo L90M als vorherrschende Resistenzmutation beschrieben wurde, 

fanden sich in der Datenbank die seltenen Polymorphismen L90I, L90S, L90W (MvP: Je 0,1%) und 

L90V (MvP: 0,2%). 90V wurde im Rahmen einer Studie über seltene Mutationen bei Non-B-Viren 

in  einem Isolat  beschrieben,  war im MvP-Patientenkollektiv jedoch dem Subtyp B zuzuordnen. 

L90IS  wurde  bei  einem  Patienten  unter  Indinavir-Therapie  beschrieben  (Holquín  2004, 

Vasudevachari 1999, Zhang 1997). In der MvP-Datenbank wies die 90S-positive Protease-Sequenz 

den Subtyp D auf.

4.2. Sequentielles Auftreten von Mutationen unter antiretroviraler Therapie

Die nach dem Zeitpunkt der Sequenzanalyse vergebene MvP_ID kann dabei helfen, in der MvP-

Datenbank zeitliche Zusammenhänge bei der Entstehung von Mutationen zu erkennen. Als sog. 

Schlüsselmutationen  sind  manche  von  ihnen  stark  mit  einer  antiretroviralen  Substanz  oder 

Substanzklasse  assoziiert.  Hinweise  darauf  können  das  Neuauftreten  einer  vorher  nicht 

beschriebenen oder das vermehrte Auftreten einer vorher seltenen Mutation kurz nach Zulassung 

eines neuen Medikaments sein. 
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Exemplarisch  wurden  Tenofovir  und  Atazanavir,  die  beide  zwischen  2000  und  Oktober  2004 

zugelassen wurden, sowie die etablierte Substanz Zidovudin (AZT) untersucht. 

Tabelle 5) Sequentielles Auftreten von Mutationen unter antiretroviraler Therapie
Tabelle 5a) TDF und K65R

Gesamt 2000 2001 2002 2003 2004
[%] 2,36 0,99 0 0 8,51 5,88

K65R 13 2 0 0 8 3

Sequenzen 
(absolut)

550 203 91 111 94 51

Tabelle 5b) AZT und M41L
Gesamt 2000 2001 2002 2003 2004

[%] 27,32 35,96 25,72 21,82 24,47 13,73

M41L 150 73 23 24 23 7

Sequenzen 
(absolut)

549 203 91 110 94 51

Tabelle 5c) Atazanavir und I50L
Gesamt 2000 2001 2002 2003 2004

[%] 0,17 0 0 0 0 1,96

I50L 1 0 0 0 0 1

Sequenzen 
(absolut)

560 212 92 103 102 51

4.2.1. Tenofovir und die Mutation K65R

Tenofovir (TDF) ist ein nukleotidischer Reverse-Transkriptase-Inhibitor (NRTI) und wurde in den 

USA im Oktober 2001 sowie in Deutschland im Februar 2002 zugelassen (AIDSinfo, "AIDSinfo 

Drug Database"; Lode, http://www.zct-berlin.de/tabellen/virust_retro.html). Als Schlüsselmutation 

für  TDF  fand  man  die  RT-Mutation  K65R,  die  zu  intermediärer  Resistenz  gegen  TDF  und 

Überempfindlichkeit  für  AZT  führt  (Shafer,  "Antiretroviral  drug  summary:  Tenofovir  (TDF; 

Viread)"). In der MvP-Datenbank ließ sich bei 13 von 550 Sequenzen eine Mutation nachweisen 

(=2,36%), wobei ausnahmslos K65R vorlag (Tabelle 5a). Im Jahr 2000 wiesen 2 von 203 (=0,99%) 

Sequenzen K65R auf; die Mutation trat dann erst wieder im Jahr 2003 bei 8 von 94 (=8,51%) und 

2004 bei 3 von 51 Sequenzen (=5,88%) auf. 

4.2.2. Zidovudin (AZT) und die Mutation M41L

Der NRTI Zidovudin (AZT) wurde als  erstes antiretrovirales  Medikament  1987 zugelassen und 

zeigt  exemplarisch die  Persistenz  von Mutationen bei  Langzeittherapie.  Schon früh wurde  eine 

Assoziation zwischen der Mutation M41L, die zu den Thymidin-Analoga-Mutationen (TAM) zählt, 

und  einer  AZT-Therapie  gefunden  (Bächi,  www.hiv.ch;  Shafer,  "Antiretroviral  drug  summary: 

Zidovudine  (ZDV; Retrovir)").  Bei  151 von 549 Sequenzen (=27,5%) aus  der  MvP-Datenbank 
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traten überhaupt Mutationen an RT-Codon 41 auf; 150 von ihnen (150/151 Sequenzen = 99,3%) 

zeigten M41L (Tabelle 5b). 

4.2.3. Atazanavir (PI) und Mutation I50L

Der  Protease-Inhibitor  Atazanavir  wurde  erstmals  im März  2004  in  der  EU zugelassen  (Lode, 

„Atazanavir - ein neuer Proteaseinhibitor zur einmal täglichen Gabe“). Als Schlüsselmutation wurde 

I50L beschrieben. In der MvP-Datenbank ließ sich am PR-Codon 50 bei 1221 von 1239 Sequenzen 

der  Wildtyp  Isoleucin  nachweisen,  was  einer  Häufigkeit  von  98,5%  entsprach  (Tabelle  5c). 

Entsprechend niedrig war die Mutationsfrequenz (1,5%). In den Jahren 2000 bis 2003 war I50L 

nicht in der Datenbank zu finden und konnte erstmals im Oktober 2004 nachgewiesen werden. 

4.3. Einfluss neu beschriebener HIV-1-RT-Mutationen auf die Resistenz

Die neu entstandene MvP-Datenbank erlaubt außerdem einen Vergleich mit anderen Datenbanken, 

so dass Ergebnisse mit denen anderer Arbeitsgruppen verglichen und so Aussagen über regionale 

Unterschiede  getroffen  werden können.  Dies  soll  am Beispiel  einer  Studie  aus  dem Jahr  2006 

gezeigt werden: Eine italienische Forschungsgruppe unter  Saracino beschrieb über 10 Positionen 

der Reversen Transkriptase, welche bis zum Jahr 2005 in der Liste der International AIDS-Society 

(IAS)  nicht  aufgeführt  worden waren  und damit  nicht  als  Resistenz-relevant  eingestuft  wurden 

(Saracino 2006). Untersucht wurden 102 Patienten ohne und 226 mit antiretroviraler Behandlung. 

Es  wurden  ausschließlich  Sequenzen  verwendet,  für  die  sowohl  genotypische  Daten  als  auch 

phänotypische  Testergebnisse  vorlagen.  Untersucht  wurden  Abweichungen  der  Aminosäure-

Sequenzen  von  einer  HIV-1-Consensus-Sequenz,  die  bei  mindestens  4%  der  in  die  Studie 

eingeschlossenen  Patienten  auftraten.  Es  wurden  neue,  vorher  nicht  als  Resistenz-relevante 

Mutationen gefunden, die mit einer verminderten Empfindlichkeit gegenüber NRTI (u. a. K20R, 

T39A, K43EQN, E203KD, H208Y, D218E) oder NNRTI (K101EQP, H221Y, K223EQ, L228HR) 

einher  gingen.  Aufgrund der  Vielzahl  an Variablen  konnte  die  postulierte  Assoziation  zwischen 

Mutation  und  Resistenz  in  multivariaten  Analysen  zwar  nicht  bestätigt  werden;  auch  wurde 

aufgrund  der  limitierten  Patientenzahl  eine  mögliche  Fehlbewertung  an  einzelnen  Positionen 

eingeräumt.  Dennoch zeigte sich in vorangegangenen univariaten Analysen eine Assoziation der 

genannten Mutationen mit einer verminderten NRTI- bzw. NNRTI-Empfindlichkeit. Deshalb kamen 

die Autoren zu dem Schluss, dass diese vor Veröffentlichung der Studie im Jahr 2006 von der IAS 

nicht aufgeführten Mutationen mit antiretroviraler Therapie und mit NRTI- bzw. NNRTI-Resistenz 

assoziiert seien.
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Um eine Aussage darüber treffen zu können, ob die Mutationen der zehn genannten RT-Positionen 

auch außerhalb des  italienischen Patientenguts  in  mindestens  4% der  Fälle  auftraten und damit 

relevant  waren,  wurden  die  entsprechenden  Positionen  innerhalb  von  Stanford-  und  MvP-

Datenbank untersucht. Außerdem wurde analysiert, ob die Mutationen - als mögliches Indiz für ein 

Therapie-assoziiertes Auftreten -  im Laufe der Jahre in  der MvP-Datenbank vermehrt  auftraten. 

Gleichzeitig  ließ  sich  mit  Hilfe  der  Stanford-Datenbank  die  Prävalenz  der  entsprechenden 

Mutationen bei  Patienten mit  und ohne antiretrovirale Therapie  vergleichen und auch auf diese 

Weise  ein  möglicher  Zusammenhang  der  neu  beschriebenen  Resistenzmutationen  mit  der  HIV-

Therapie überprüfen. Traten die Mutationen in der MvP-Datenbank auf, so wurde außerdem der 

Subtyp  der  jeweiligen  Sequenz  untersucht;  kamen  vermehrt  Non-B-Subtypen  vor,  musste  die 

Möglichkeit  eines  natürlichen  Polymorphismus  an  dieser  Position  in  Betracht  gezogen werden. 

Tabelle  6  (Anhang,  Tabelle  6  –  Neu  beschriebene  Mutationen)  fasst  die  Ergebnisse  der 

Datenabfragen zusammen. 

Für Mutationen an  Codon 20 wurde in der italienischen Studie eine signifikante Assoziation mit 

NRTI-Resistenzen  postuliert.  In  der  MvP-Datenbank  stieg  die  Mutationshäufigkeit  an  dieser 

Position bis zum Jahr 2004 auf 21% an. 130 Sequenzen mit K20R wiesen Subtyp B und 47 einen 

Non-B-Subtyp auf, darunter je zwei Sequenzen mit den Subtypen CRF02_AG, F oder K, fünf mit 

Subtyp C, 11 mit G-, 12 mit CRF01_AE- und 13 mit A-Subtyp. In der Stanford-Datenbank kam die 

Mutation am häufigsten bei Subtyp-B-Viren vor; dazu gehörten 228 Patienten ohne RTI-Erfahrung, 

349 mit NRTI- und 310 mit NNRTI-Behandlung. 

Die relative Häufigkeit von T39A nahm von 15% im Jahr 2000 auf 27% (2003) bzw. 24% (2004) 

zu.  In  der  Stanford-Datenbank  fand  sich  ein  Unterschied  zwischen  behandlungsnaiven  und 

vorbehandelten Patienten:  Ohne Vortherapie  kam die  Mutation  bei  Non-B- (174 Patienten)  und 

Subtyp-B-Viren (103 Patienten) ähnlich häufig vor. In der Gruppe mit NRTI-Behandlung war T39A 

deutlich bei Non-B-Viren seltener (55 Patienten) und bei Subtyp-B-Viren häufiger (234 Patienten; 

Shafer,  "HIVseq  Program:  Mutation  List  Analysis").  Im  italienischen  Patientengut  wurde  eine 

Resistenz v.a. gegenüber D4T, AZT und ABC festgestellt. In der MvP-Datenbank ließen sich RT-

Sequenzen mit T39A meist dem Subtyp B zuordnen (72,2%) und in über einem Viertel der Fälle 

einem Non-B-Subtyp (Subtyp A: 4,0%; C: 2,4%; D: 3,2%; F: 10,3%; G: 1,6%; K und CRF01_AE: 

Je 0,8%; CRF02_AG: 4,8%). 

Die relative Häufigkeit von K43EQN nahm in der MvP-Datenbank kontinuierlich ab (Jahr 2000: 

14%; 2004: 10%); K43E ließ sich am häufigsten nachweisen. Auch hier zeigten sich Unterschiede 

hinsichtlich der verschiedenen Virus-Subtypen: K43Q und N traten in der Stanford-Datenbank in 
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der Gruppe ohne Vorbehandlung nur in Zusammenhang mit Subtyp CRF02_AG und ansonsten nur 

bei Patienten mit Therapieerfahrung auf. Ungeachtet der Vorbehandlung kam K43E bevorzugt bei 

Viren des Subtyps CRF01_AE vor (ohne Vortherapie: 384 Patienten; NRTI-Therapie: 186 Patienten; 

NNRTI-Therapie: 107 Patienten). In der MvP-Datenbank zeigte sich K43N (20 von 20 Sequenzen) 

und K43Q (45 von 46 Sequenzen; Ausnahme: 1 Sequenz mit  Subtyp G) fast ausschließlich bei 

Subtyp-B-Viren. Hingegen hatten etwa ein Viertel aller Sequenzen mit K43E ebenfalls den Subtyp 

CRF01_AE (25,8%); die übrigen Sequenzen wiesen dennoch Subtyp B auf (Subtyp B: 69,7%; Non-

B: 30,3%). 

Die  Häufigkeit  von  E203KD schwankte  zwischen  minimal  7,8%  und  maximal  10,4%.  Die 

Stanford-Datenbank listete bei  Therapie-naiven Patienten fast ausschließlich E203D als Mutation 

auf,  allerdings  selten.  E203K  kam  nur  bei  Patienten  mit  RTI-Behandlung  vor.  In  der  MvP-

Datenbank hatten Sequenzen mit Nachweis von E203KD meist Subtyp B (E203K: 89,9%; E203D: 

85,4%); Non-B-Viren schienen eine eher untergeordnete Rolle zu spielen (E203K: 10,1%, davon 

Subtypen A, F, K in je 2,5% und G bzw. CRF02_AG in 1,3% d.F.; E203D: Subtyp C in 4,9%, 

Subtypen A, F, K, CRF01_AE in 2,4% d.F.).

Auch  H208Y wurde von der Saracino-Arbeitsgruppe als Resistenz-relevante Mutation angesehen. 

Ihre relative Häufigkeit nahm von 6,2% (2000) auf 8,4% (2001) zu und fiel im Jahr 2004 wieder ab 

(7,0%).  In  der  amerikanischen  Datenbank  wurde  H208Y nur  bei  Patienten  mit  Vorbehandlung 

nachgewiesen, v.a. bei Subtyp B (NRTI-Therapie: 140 Patienten; NNRTI-Therapie: 175 Patienten) 

und seltener bei Subtyp F (NRTI-Therapie: 4 Patienten; NNRTI-Therapie: 8 Patienten). Ähnliches 

ließ sich in der MvP-Datenbank nachweisen: 95,4% der Sequenzen wiesen Subtyp B auf, nur 3,5 % 

der Sequenzen zeigten Subtyp F und 1,2% Subtyp K.

Die  Häufigkeit  von  D218E nahm  bis  zum  Jahr  2004  zu  (Jahr  2000:  4,3%;  2004:  8,8%)  bei 

abnehmender  Probenzahl.  In  der  Stanford-Datenbank  wies  nur  1  Patient  ohne  Vorbehandlung 

D218E auf (Subtyp G), ansonsten war die Mutation nur bei Personen mit antiretroviraler Therapie 

zu  finden,  insbesondere  zusammen  mit  Subtyp  CRF01_AE  (NRTI:  12  Patienten;  NNRTI:  13 

Patienten) und B (NRTI: 115 Patienten; NNRTI: 132 Patienten). In der MvP-Datenbank fand sich 

die Mutation in 76,8% der Fälle in Kombination mit Subtyp B und in immerhin 23,2% d. F. mit 

einem anderen Subtyp (Subtypen D und F: Je 5,8%; Subtyp CRF01_AE: 4,4%; Subtyp A: 2,9%; 

Subtypen C, G, CRF01_AG: Je 1,5%). 

In der Studie wurden Mutationen der RT-Codons 101, 221, 223 und 228 als Resistenz-relevant und 

NNRTI-assoziiert eingestuft. An Codon 101 betrug die Mutationshäufigkeit in der MvP-Datenbank 
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etwa  10%  (118  von  1226  Sequenzen),  bei  94  dieser  Sequenzen  (80%)  ließ  sich  K101EPQ 

nachweisen.  K101E  kam  bei  56  Sequenzen  vor,  darunter  6  mit  Subtyp  C,  je  1  mit  Subtyp 

CRF01_AE,  D,  F  und  G  sowie  46  mit  Subtyp  B.  In  der  Stanford-Datenbank  wurde  K101P 

ausschließlich bei Patienten mit  NNRTI-Behandlung aufgelistet und kam häufiger bei Subtyp-B-

Viren (Subtyp B: 26 Patienten; Non-B-Subtyp: 9 Patienten) vor. In der Münchner Datenbank wiesen 

alle  3  K101P-positiven  Sequenzen den Subtyp B auf.  K101Q ließ  sich nur  bei  7  Non-B-Viren 

nachweisen, alle anderen zählten ebenfalls zu Subtyp B.

Die Mutationsfrequenz an RT-Position 221 betrug in der MvP-Datenbank etwa 4% (51 von 1239 

Sequenzen).  Dabei  fand sich in  98% der  Fälle  H221Y;  die  Häufigkeit  der  Mutation  nahm nur 

intermittierend im Jahr 2003 auf 5,2% zu und schwankte ansonsten um 3% (Jahr 2000: 3,3%; 2004: 

3,0%)  ab.  In  der  Stanford-Datenbank  zeigte  sich  H221Y  gehäuft  bei  Patienten  mit  NNRTI-

Behandlung (157 Patienten; Subtyp B: 114 Patienten; Non-B-Viren: 43 Patienten). Nur ein einziger 

Patient ohne bzw. mit NRTI-Vorbehandlung wies hier H221Y auf (ohne Therapie: Subtyp F; NRTI-

Therapie: Subtyp F). In der MvP-Datenbank zeigten 74% der H221Y-positiven Sequenzen Subtyp B 

auf und entsprechend 26% einen Non-B-Subtyp (Subtyp C: 8%; G: 6%; A: 4%; D, F, CRF01_AE 

und CRF02_AG: Je 2%). 

An Codon 223 betrug die Mutationsrate ebenfalls etwa 4% (49 von 1238 Sequenzen), wovon etwa 

80% die Mutationen K223EQ aufwiesen. In der MvP-Datenbank schwankte die Häufigkeit beider 

Mutationen zwischen 3,4% (2000) und 5,2% (2001), eine Zunahme bis zum Jahr 2004 zeigte sich 

nicht (3,9%). In der Stanford-Datenbank kamen die Mutationen nur bei vorbehandelten Patienten 

vor, am häufigsten in Kombination mit dem Subtyp B (K223E: 33 Patienten; K223Q: 50 Patienten 

unter NNRTI). Selten lag auch Subtyp CRF01_AE vor (K223E: 3 Patienten, K223Q: 5 Patienten 

unter  NNRTI).  In  der  MvP-Datenbank  kamen  K223EQ  fast  ausschließlich  bei  Subtyp  B  vor 

(K223E: 16 Sequenzen mit Subtyp B [88,9%], 2 mit Subtyp K [11,1%]; K223Q: 20 Sequenzen mit 

Subtyp B [95,2%], 1 mit Subtyp F [4,8%]). 

Das Münchner Patientenkollektiv  wies für das RT-Codon 228 eine Mutationsfrequenz von 11% 

(136 von 1230 Sequenzen) auf, davon fast ausschließlich L228HR (134 von 136 Sequenzen). Von 

2000 bis  2002 schwankte die  relative  Häufigkeit  der  Mutation um 10%, nahm zum Jahr  2003 

deutlich  zu  (15,6%) und fiel  2004 leicht  ab (12,6%).  Die Stanford-Datenbank listete  nur  bei  4 

Patienten ohne Vorbehandlung L228H auf (Subtyp F: 3 Patienten; G: 1 Patient), während L228HR 

unter NNRTI-Therapie bei fast allen Subtypen deutlich häufiger vorlag, v.a. bei Subtyp B (L228H: 

178 Patienten; L228R: 86 Patienten unter NNRTI-Therapie). 86,7% der MvP-Sequenzen mit L228H 

wiesen Subtyp B auf,  13,3% einen anderen  Subtyp (Subtypen A,  C,  D,  CRF02_AG: Je  2,7%; 
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Subtypen  F,  CRF01_AE:  Je  1%).  Etwa  drei  Viertel  der  MvP-Sequenzen  zeigten  L228R  in 

Kombination mit Subtyp B (75,4%), ein Viertel andere Subtypen (Subtyp C: 7,0%; Subtyp F: 8,8%; 

Subtypen G, K: Je 1,8%; Subtyp CRF01_AE: 5,3%). 

4.4. Resistenzpfade

Neben der Analyse einzelner Mutationen, die oft Therapie-assoziiert auftreten, zu einem selektiven 

Vorteil  für  das  betroffene  Virus  führen  und  eine  verminderte  Empfindlichkeit  gegenüber 

antiretroviralen Substanzen bewirken können, ist gerade die Interaktion verschiedener Mutationen 

und  die  Reihenfolge  ihres  Auftretens  bis  hin  zur  Resistenzentwicklung  von  Interesse.  Das 

Verständnis  solcher  Mutationsabfolgen  kann  dazu  beitragen,  Resistenzmechanismen 

nachzuvollziehen und Therapiestrategien zu verbessern. Die neu aufgebaute Datenbank ermöglicht 

es vor diesem Hintergrund durch die große Anzahl enthaltener Sequenzen und durch longitudinale 

Patientendaten  aus  knapp  fünf  Jahren,  solche  Resistenzpfade  zu  analysieren.  Als 

Anwendungsbeispiele  wurden  Mutationsabfolgen  gewählt,  die  unter  Therapie  des  seit  1987 

etablierten  NRTI  Zidovudin  (AZT)  beobachtet  worden  waren  (Boucher  1992).  AZT-assoziierte 

Mutationen  werden  zu  den  Thymidin-Analoga-Mutationen  (TAM)  bzw.  wegen  häufiger 

Kreuzresistenzen  zu  fast  allen  anderen  Nukleosid-Analoga  auch  zu  den  Nukleosid-Analoga-

Mutationen (NAM) gezählt. 

Man unterscheidet  bei  den TAM zwei  Resistenzpfade,  den sog.  klassischen Pfad (Larder  1989, 

Kellam 1992, Hooker 1996) und den Multinukleosid-Resistenzpfad (Shafer 1994, Shirasaka 1995, 

Schmit 1996, Zaccarelli 2004). Zum ersteren gehören die Mutationen M41L, D67N, K70R, L210W, 

T215Y/F und K219 Q/E, welche zur Resistenz gegenüber AZT und auch d4T führen. Zum zweiten 

Mutationspfad  zählt  man  V75I,  F77L,  F116Y und  Q151M,  welche  zu  multiplen  Resistenzen 

gegenüber  nukleosidischen  und  nicht-nukleosidischen  Reverse  Transkriptase  Inhibitoren  führen. 

Insertionen und Deletionen in der Region der Enzym-"Finger"-Subdomäne können ebenfalls zur 

Resistenzbildung beitragen. Betrachtet man den klassischen Resistenzpfad, so findet sich als erste 

Mutation meist  K70R oder T215FY (Winters 1998, Hirsch 2000/2008, Beerenwinkel 2005). Oft 

folgen andere Mutationen in typischer Reihenfolge. Liegt zuerst T215Y oder F vor, dann treten als 

nächstes  häufig  M41L auf  und  später  L210W,  E44D  und  V118I.  Dieser  215-41-Pfad  wird  im 

Folgenden  Mutations-Ast  1  genannt.  Ähnliches  gilt  für  K70R,  eine  Mutation,  auf  die  gehäuft 

K219E/Q, D67N und T69D/N folgen. Dieser 70-219-Pfad soll im Weiteren als Mutations-Ast 2 

bezeichnet werden. 

Klassischerweise  wird  bei  der  Entwicklung  von  TAM  eine  Divergenz  der  Resistenzpfade 
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beschrieben, so dass zunächst entweder T215FY oder K70R entstehen, beide Schlüsselmutationen 

aber nicht gleichzeitig auftreten sollten. In der Stanford-Datenbank ließen sich dennoch über 1150 

Sequenzen isolieren, bei denen K70R und T215F in Kombination vorlagen (Shafer, "NRTI Mutation 

Pattern & Susceptibility"). Auch in der MvP-Datenbank fanden sich 62 Sequenzen mit dem Muster 

K70R-T215F und 48 mit K70R-T215Y. 105 Sequenzen wiesen K70R, aber weder T215F noch Y 

auf. 315 T215Y-positive und 34 T215F-positive Sequenzen zeigten K70R nicht. Dennoch fanden 

sich  typische  Beispiele  für  die  beschriebenen  Mutations-Äste  (Tabelle  7  –  Klassischer 

Resistenzpfad). 

Als Beispiele für Mutations-Ast 1 wurden zwei Patienten ausgewählt (Tabelle 7b). Bei Patient 1 

konnten  insgesamt  4  Proben  sequenziert  werden.  In  den  Jahren  2000  und  2001  wies  er 

ausschließlich T215Y auf, während im Jahr 2002 M41L und L210W hinzukamen. Patient 2 war mit 

5 Sequenzen vertreten. Im Jahr 2000 ließen sich bereits die Mutationen T215Y, M41L und L210W 

nachweisen, 2002 zeigte sich zusätzlich die Mutation E44D, die sich im Laufe des Jahres 2003 

wieder zurückbildete. Eine erneute Testung im Juli 2003 ergab T215S, im September des gleichen 

Jahres entwickelte der Patient erneut die Mutationen T215Y, M41L und L210W. 

Für den Mutations-Ast 2 ließen sich drei passende Beispiele finden (Tabelle 7c): Patient 3 wies in 

den vier vorliegenden Sequenzen aus den Jahren 2000 bis 2002 die Ausgangsmutation K70R auf 

sowie 219KE als  Intermediärtyp zwischen Wildtyp und Mutation.  Indem bei  der Erstellung der 

MvP-HIV-Datenbank die Ambiguität von Positionen mit degenerierten Basen beibehalten worden 

war, gelang die Erfassung solcher Übergangsformen. Patient 4 zeigte bei erster Testung im Jahr 

2000 die Mutation T69M, die bislang nicht als Resistenz-relevant beschrieben wurde und sich bei 

zweiter Testung im selben Jahr bereits nicht mehr fand. 2001 trat K70R auf, später folgte K219E, 

während an Position 67 sowohl Wildtyp (Aspartat, D) als auch Asparagin (N) beobachtet werden 

konnten. Hier fand wiederum der Übergang zur Resistenzmutation statt, der sich mit Auftreten der 

ersten drei Mutationen des Astes 2, K70R, K219E und D67N, bis zum Jahr 2003 vollends vollzogen 

hatte. Patient 5 wies die Ast-2-typischen Mutationen K70R, K219E und auch T69D auf. Im Jahr 

2003 kam es zur Mutation D67S, welche bislang in den offiziellen Resistenzalgorithmen nicht als 

relevant beschrieben wurde (Johnson 2008). 

Tabelle 7 - Klassischer Resistenzpfad
Tabelle 7 a) Chronologische Reihenfolge der Ast-1- und Ast-2-Mutationen
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Klassischer Mutationsweg
Mutationen in chronologischer Reihenfolge 1. 2. 3. 4. 5.
Ast 1 T215 Y/F M41L L210W E44D V118I

Ast 2 K70R K219 Q/E D67N T69D/N



Tabelle 7 b) Patient 1 und 2: Beispiele für Ast-1-Mutationen (Reihenfolge durch Ziffern gekennzeichnet)

Tabelle 7 c) Patienten 3-5: Beispiele für Ast-2-Mutationen (Ziffern kennzeichnen die Reihenfolge des Auftretens)

4.5. Kombinationen von Mutationen

Auch  ohne  Berücksichtigung  ihres  zeitlichen  Auftretens  existieren  charakteristische  Mutations-

Muster,  die  sich  für  Diagnostik  und  Therapie  der  HIV-Infektion  nutzen  lassen.  Die  Analyse 

bestimmter Kombinationen von Mutationen und ihrer Auswirkung auf virale Fitness und Resistenz 

könnte die Entwicklung antiretroviraler Wirkstoffe oder Therapieschemata vorantreiben, die durch 

gezielte Induktion einzelner oder kombinierter Mutationen die Funktionsfähigkeit beeinträchtigen.

Vor diesem Hintergrund wurden für Reverse Transkriptase und Protease Mutationen untersucht, die 

zusammen  auftraten.  So  wurde  für  die  RT-Mutationen  L100I  und  K103N ein  gehäuftes 

gemeinsames  Auftreten  unter  Therapie  mit  Efavirenz  beschrieben,  wodurch  sich  die 
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Reihenfolge des Auftretens 2. 3. 1.
Patient 1
Mutationen M41L E44D D67N T69DN K70R V118I L210W T215FY K219QE
Sequenz 1 (2000) M E D T K V L Y K
Sequenz 2 (2000) M E G T K V L Y K
Sequenz 3 (2002) L E D T K V W Y K
Sequenz 4 (2002) L E D T K V W Y K

Reihenfolge des Auftretens 2. 4. 3. 1.
Patient 2
Mutationen M41L E44D D67N T69DN K70R V118I L210W T215FY K219QE
Sequenz 1 (2000) L E D T K V W Y K
Sequenz 2 (2002) L D D T K V W Y K
Sequenz 3 (2003) L E D T K V W Y K
Sequenz 4 (2003) M E D T K V L S K
Sequenz 5 (2003) L E D T K V W Y K

Reihenfolge des Auftretens 1. 2.
Patient 3
Mutationen M41L E44D D67N T69DN K70R V118I L210W T215FY K219QE
Sequenz 1 (2000) M E D T R V L T K
Sequenz 2 (2000) M E D T R V L T K
Sequenz 3 (2001) M E D T R V L T K
Sequenz 3 (2002) M E D T R V L T KE

Reihenfolge des Auftretens 3. 1. 2.
Patient 4
Mutationen M41L E44D D67N T69DN K70R V118I L210W T215FY K219QE
Sequenz 1 (2000) M E D T K V L T K
Sequenz 2 (2000) M E D T K V L T K
Sequenz 3 (2001) M E D T R V L T K
Sequenz 4 (2001) M E DN T R V L T E
Sequenz 5 (2003) M E N T R V L T E

Reihenfolge des Auftretens 3. 4. 1. 2.
Patient 5
Mutationen M41L E44D D67N T69DN K70R V118I L210W T215FY K219QE
Sequenz 1 (2000) M E D D R V L T E
Sequenz 2 (2002) M E D D R V L T E
Sequenz 3 (2003) M E S D R V L T E
Sequenz 4 (2004) M E S D R V L T E



Medikamentenresistenz signifikant erhöhte (HIV Resistance Web, "Mutation and Drug Data - Non 

Nucleoside Reverse Transcriptase Inhibitors"). In der MvP-Datenbank zeigten die Isolate von 25 

Patienten (25/801 Patienten = 3,1%) eine Mutation an Codon 100, davon 21 L100I (21/801 =2,6%). 

Bei  262 Patienten  zeigten  sich  an  Position  103 Abweichungen vom Wildtyp Lysin (262/801 = 

32,7%), bei 217 von ihnen lag K103N vor (=27,1%). 20 der 21 L100I-positiven Sequenzen wiesen 

gleichzeitig auch K103N auf, was eine Häufigkeit von 95,2% ergibt (Tabelle 8a). 

Patienten [%]
Alle Mutationen an 
Position 100

25 3,12

L100I 21 2,61

Alle Mutationen an 
Position 103

262 32,67

K103N 217 27,06

L100I + K103N 20 2,49
Tabelle 8a) L100I und K103N (RT): 21 (von 801 Patienten) zeigten 

     L100I, 20 von ihnen (=95,24%) in Kombination mit K103N. 

Auch für die RT-Mutationen E203K und D67N wurde ein gemeinsames Auftreten beschrieben; die 

Mutationen wurden auch von der italienischen Arbeitsgruppe unter Saracino (vgl. Kapitel 4.3) als 

Resistenz-relevant  eingestuft.  Bei  einer  Gesamtzahl  von  785  wiesen  45  Patienten,  also  5,7%, 

E203K auf,  so dass  dies  eine eher  seltene Variante  darstellte.  Die allgemeine Mutationsrate  an 

diesem Codons betrug in  der MvP-Datenbank 10,8%. Dagegen lag bei  208 Patienten (=26,5%) 

D67N vor, insgesamt 243 (=31,0%) wiesen eine beliebige Mutation an dieser Stelle auf. Von den 45 

Sequenzen mit E203K zeigten immerhin auch 25 D67N, was für diese Kombination eine Häufigkeit 

von etwa 56% ergibt (Tabelle 8b). 

Patienten [%]
Alle Mutationen an 
Position 203

85 10,82

E203K 45 5,73

Alle Mutationen an 
Position 67

243 30,96

D67N 208 26,51

E203K + beliebige 
Mutation an Position 67

30 3,82

E203K + D67N 25 3,18
Tabelle 8b) E203K und D67N (RT): 45 (von 785 Patienten) zeigten E203K,

30 von ihnen zusätzlich eine beliebige Mutation an Position 67 
auf, davon 25 D67N (=55,6%).

Daneben wurde untersucht, wie oft  E203K  mit verschiedenen  TAM  gemeinsam auftrat (Tabelle 

8c). 37 der 45 Patienten (82,2%) mit E203K zeigten eine Mutation an Codon 215, meistens lag 
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T215Y oder F vor. M41L kam 32 Mal vor (=71,1%), L210W trat neben anderen Varianten bei 29 

Sequenzen auf (=64,4%). Ebenso häufig ließ sich E203K kombiniert mit Mutationen an Codon 219 

nachweisen (29/45 = 64,4%), E44L (bzw. andere Aminosäuren an Codon 44) dagegen in nur 35,6% 

(16/45 Patienten) und K70R in 28,9% der Fälle (13/45 Patienten). 

E203K plus Patienten Häufigkeit [%] E203K + zusätzliche Mutation
Beliebige 
Mutation an 
Position 41

32 4,08 71,11

M41L 32 4,08 71,11

Beliebige 
Mutation an 
Position 44

16 3,28 35,56

E44D 10 2,05 22,22

Beliebige 
Mutation an 
Position 70

13 2,68 28,89

K70R 13 2,68 28,89

Beliebige 
Mutation an 
Position 210

31 6,39 68,89

L210W 29 5,98 64,44

Beliebige 
Mutation an 
Position 215

37 7,62 82,22

T215F 5 1,03 11,05
T215Y 30 6,19 66,67

Beliebige 
Mutation an 
Position 219

29 5,98 64,44

K219Q 8 1,65 17,78
K219E 4 0,82 8,89

Tabelle 8c) E203K und TAM (RT): Gesamtzahl 785 Patienten, davon 45 mit E203K

Bei der Protease schienen Mutationen der Codons 41 und 69 bevorzugt in Kombination miteinander 

aufzutreten.  H69K und  R41K wurden mancherorts als natürlich vorkommende Polymorphismen 

v.a. bei Subtyp A und C beschrieben. In der MvP-Datenbank konnte bei 313 von 800 Patienten eine 

Mutation an Codon 41 nachgewiesen werden (39,1%), 292 davon waren zu Lysin (R41K; 292/800 = 

36,5%) mutiert; H69K trat seltener auf (153/800 = 19,1%). Zusammen mit anderen Abweichungen 

an  Codon  69  lag  der  Anteil  bei  24,6%  (197/800).  Von  den  153  Patienten  mit  H69K  zeigten 

allerdings 131 zusätzlich R41K (=85,6%; Tabelle 8d). H69K ging in 91% der Fälle mit einem Non-

B-Subtyp (Subtyp B: 9%; A: 18,5%; C: 23,0%; CRF02_AG: 24,8%; CRF01_AE: 18,5%; K, G, J: 

Zusammen 6,4%). R41K kam in 41,6% der Fälle bei Subtyp B vor (Subtyp A: 10,1%; C: 10,3%; D: 

5,1%; CRF02_AG: 12,9%; CRF01_AE: 9,7%; F: 6,9%; G, K: Zusammen 3,4%). Bei Vorliegen von 
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R41K und H69K kam Subtyp B nur in einer Sequenz vor (0,5%), die Kombination war ansonsten 

vor allem mit den Subtypen A und CRF01_AE (jeweils 21,0%) sowie C (23,1%) und CRF02_AG 

(27,2%) assoziiert. Die Subtypen K (2,6%) und G (4,6%) kamen seltener vor.

Patienten [%]
Beliebige Mutation an 
Position 41

313 39,13

R41K 292 36,5

Beliebige Mutation an 
Position 69

197 24,63

H69K 153 19,13

R41K + H69K 131 16,38
Tabelle 8d) R41K und H69K (PR): 153 (von 800) Patienten zeigten 

H69K, davon 131 zusätzlich R41K (=85,62%).

4.6. Subtypisierung

Gängige  Sequenzanalyse-Programme  wie  das  "HIVSeq  Program"  der  Stanford  University, 

"geno2pheno" und "GRADE" greifen oft auf Algorithmen von Stanford HIV-Datenbank (Stanford 

University  Drug  Resistance  Database,  http://hivdb.stanford.edu/pages/links.html),  ANRS 

(www.hivfrenchresistance.org)  oder  der  Universität  Leuven  (Van  Laethem,  2002;  Katolieke 

Universiteit  Leuven,  http://www.rega.kuleuven.be/cev)  zurück.  Die  HIV-typische  genetische 

Diversität in Form von Subtypen und Mischformen stellt allerdings eine zunehmende medizinische 

und  pharmakologische  Herausforderung  dar  (Taylor  B.S.  2008),  die  in  der  Resistenztestung 

vermehrt berücksichtigt werden muss. Da die getesteten Sequenzen meist mit einem Referenz-Virus 

des  Subtyps  B verglichen und Abweichungen davon als  Mutationen bezeichnet  werden,  finden 

natürliche  Polymorphismen  in  der  Praxis  oft  zu  wenig  Beachtung.  Solche  Subtyp-spezifischen 

Variationen  können  mit  einer  primären  Resistenz  gegenüber  antiretroviralen  Substanzen 

einhergehen, so dass  Therapieschemata, die sich hauptsächlich an Subtyp B-Viren orientieren, in 

diesem Falle nicht geeignet sind. In diesem Zusammenhang wurde die Prävalenz der verschiedenen 

Virus-Subtypen  im  MvP-Patientenkollektiv  und  in  der  Stanford-HIV-Datenbank  verglichen. 

Letztere enthält als wichtige Zusatzinformation auch eine Auflistung der enthaltenen Subtypen. Als 

Anwendungsbeispiel wurden außerdem die Subtypen von RT-Sequenzen mit Mutationen an Codon 

39 untersucht. 

4.6.1. Prävalenz verschiedener Subtypen in der MvP-Datenbank

Zunächst  wurden die  enthaltenen Sequenzen durch  das  Resistenztestungs-Programm „GRADE“ 

subtypisiert.  Von insgesamt 1246 RT-Sequenzen in der MvP-Datenbank konnten 1237 verwertet 
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werden,  der  Subtyp  von  neun  Sequenzen  konnte  aufgrund  größerer  Lücken  nicht  eindeutig 

bestimmen. 976 der 1237 verwertbaren Proben (=79%) zeigten Subtyp B, 261 einen Non-B-Subtyp 

(=21%). Davon waren am häufigsten die Subtypen A und C nachweisbar (je 3,9%), knapp gefolgt 

von AE (3,5%) und G (3,0%). Die Prävalenz der Subtypen F, AG und D betrug 2,4%, 2,1% und 

1,7%; selten war Subtyp K vertreten (0,6%), bei einer Sequenz fand sich Subtyp J. 

4.6.2. Prävalenz verschiedener Subtypen in der Stanford Datenbank

Da die MvP-Datenbank keine Aussage über die Therapie-Erfahrung des Patientenkollektivs zuließ, 

wurde  die  Prävalenz  der  verschiedenen  Subtypen  mit  den  Daten  der  Stanford-HIV-Datenbank 

verglichen (Shafer, "HIVseq Program: Mutation List Analysis“). Zum Zeitpunkt der Abfrage im Jahr 

2007  wurden  13349  Patienten  aufgelistet,  wovon  6329  keine  Vortherapie  mit  Reverse-

Transkriptase-Inhibitoren hatten und 4154 NRTI- bzw. 2866 NNRTI-Erfahrung hatten. Ungeachtet 

der Vorbehandlung wurde für den Subtyp B eine Prävalenz von ca. 60% errechnet, was etwa 7962 

Sequenzen entsprach, und für alle Non-B-Subtypen eine Häufigkeit von etwa 40%. Davon waren 

Subtyp C mit 12,5% und CRF01_AE mit 8,2% am häufigsten, A und CRF02_AG mit 5,4% bzw. 

5,1% in etwa gleich oft vertreten, gefolgt von G (3,6%), D (3,2%) und F (2,3%). 

Berücksichtigte man die Vortherapie, so ergaben sich deutliche Unterschiede. Bei den RTI-naiven 

Patienten war B mit 43% zwar der häufigste Subtyp, insgesamt überwogen aber die Non-B-Viren 

mit  57%. Bei Vortherapie mit  NRTI und auch NNRTI zeigte sich aber mit  82% bzw. 64% eine 

deutliche Dominanz des Subtyps B gegenüber Non-B mit 18% bzw. 36%. 

4.6.3. Polymorphismen an RT-Codon 39

Nach  dieser  allgemeinen  Subtypisierung  der  Sequenzen  wurde  untersucht,  ob  manche 

Abweichungen  vom  Wildtyp  bevorzugt  bei  bestimmten  Subtypen  auftreten.  Zu  diesem  Zweck 

wurde das RT-Codon 39 überprüft, das in den gebräuchlichen Resistenzlisten nicht als relevante 

Position geführt wurde. In einer spanischen Studie aus dem Jahr 2004, die bei HIV-Patienten aus der 

ehemaligen  Sowjetunion  Resistenz-assoziierte  Mutationen mit  den genetischen Polymorphismen 

des Virus verglich (Vazquez de Parga, 2004), wurde unter anderem die Mutation T39K beschrieben. 

Dies deckt sich mit Beobachtungen am Max von Pettenkofer-Institut, wonach die Mutation gehäuft 

bei  Non-B-Viren auftritt.  Um diese Hypothese verifizieren und quantifizieren zu können, wurde 

innerhalb  der  MvP-Datenbank  nach  Patienten  gesucht,  in  deren  RT-Sequenzen  Mutationen  am 

Codon 39 enthalten sind (Bild 5 a-e, Bild 6 a-e). Zunächst wurden T39K und T39E betrachtet, bei 

denen eine besondere Assoziation mit Non-B-Subtypen vermutet wurde. 
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In der  MvP-Datenbank fanden sich  36  Sequenzen mit  T39K,  also  Lysin ("K"),  wovon 28 den 

Subtyp CRF01_AE aufwiesen (=77,8%;  Bild 5a). Die Subtypen A und G kamen jeweils dreimal 

(=je 8,3%), B und C einmal (=je 2,8%) vor. Bei 35 von 36 Sequenzen, also mit einer Häufigkeit von 

97%, lag ein Non-B-Subtyp vor und nur in einem von 36 Fällen Subtyp B. Die Stanford-Datenbank 

listete insgesamt 1322 Patienten mit T39K auf (1322/17289 Sequenzen = 7,6%). Davon kam Subtyp 

B mit einer relativen Häufigkeit von 3,0% (39/1322) vor, 1283 Isolate hatten einen anderen Subtyp 

(1283/1322 = 97,0%). Analog zum MvP-Patientenkollektiv war CRF01_ AE die häufigste Unterart 

mit einer im Vergleich leicht geringeren Häufigkeit von 74,6% (986/1322). Subtyp A war hier mit 

8,7% (115/1322), C mit 6,1% (81/1322) vertreten, gefolgt von G mit 3,1% (41/1322) und AG mit 

2,6% (35/1322). D und F kamen seltener vor (je ca. 1%) (Bild 5b). 

Als nächster Schritt wurde – bei Nachweis von T39K - die Verteilung der Subtypen abhängig von 

der Therapieerfahrung untersucht. CRF01_AE kam in allen drei Gruppen am häufigsten vor: Ohne 

Vorbehandlung fand sich der Subtyp mit einer Häufigkeit von 75,4%, häufiger unter NRTI-Therapie 

(82%) und seltener unter NNRTI-Therapie (63,5%). 

In der RTI-naiven Patientengruppe folgten nach CRF01_AE mit deutlichem Abstand die Subtypen A 

(8,7%), C (6,9%), G (3,8%) und AG (3,7%), D und F (0,6% bzw. 0,9%) wurden nur ausnahmsweise 

nachgewiesen (Bild 5c). 

Bei  den  Patienten  mit  NRTI-Vorbehandlung waren  neben Subtyp CRF01_AE nur  B (22/233  = 

9,4%) und A (9/233 = 3,9%) erwähnenswert. Die Subtypen C, G (je 1,7%), F (0,9%) und D (0,4%) 

kamen sehr selten vor, CRF02_AG trat nicht auf (Bild 5d).

Eine ähnliche Verteilung ergab sich bei  den NNRTI-behandelten Patienten: CRF01_AE war am 

häufigsten, mit 13,7% Häufigkeit folgte Subtyp A. B und C (je 7,8%) kamen seltener vor (Bild 5e). 
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         Bild 5a) T39K: Subtypen (MvP, alle Sequenzen)     Bild 5b) T39K: Subtypen (Stanford, alle Sequenzen)
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       Bild 5e) T39K: Subtypen (Stanford, NNRTI-Therapie)

Die Beobachtung, dass  T39E gehäuft bei Non-B-Viren vorkommt, ließ sich mit Hilfe der MvP-

Datenbank verifizieren:  40 RT-Sequenzen wiesen  T39E  auf,  wovon der Anteil  an Non-B-Viren 

überwog (38/40=95,0%) und fast alle den Subtyp C aufwiesen (37/40 = 92,5%). Subtyp B kam mit 

einer Häufigkeit von 5,0% (2/40) vor, Subtyp F bei einer Sequenz (Bild 6a). 

Zum Abfragezeitpunkt lagen in der Stanford HIV Drug Resistance Database 2074 Sequenzen mit 

T39E  vor  (2074/17289  Sequenzen  =  12%),  wobei  der  Anteil  von  Non-B-Subtypen  98,9% 

ausmachte  (2052  von  2074  Sequenzen;  Bild  6b).  Subtyp  B war  mit  22  von  2074  Sequenzen 

vergleichsweise selten vertreten (= 1,1%). Subtyp C dominierte analog zum MvP-Patientenkollektiv 

(1966/2052 = 94,8%) und machte 95,8% aller Non-B-Sequenzen aus. Subtyp CRF01_AE kam in 

etwa 3% der Fälle vor (64/2074 ), A (0,4%), D (0,2%) sowie F und G (je ca. 0,1%) deutlich seltener.

Berücksichtigte man die Vortherapie der Patienten, dann fand sich weder in der RTI-naiven noch in 

der NRTI-behandelten Gruppe eine Sequenz mit Subtyp B. Einzig nach NNRTI-Therapie ließen sich 

22  Sequenzen  mit  Subtyp  B  nachweisen  (22/522  =  4,2%)  gegenüber  500  Non-B-Sequenzen 

(=95,8%).  Subtyp  C  hatte  unter  den  Therapie-naiven  Patienten  eine  Prävalenz  von  etwa  96% 

(1283/1335 Isolate) und kam nach Behandlung mit NNRTI etwa gleich häufig, nach NRTI-Therapie 
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etwas seltener vor (NRTI: 201/217 = 92,6%; NNRTI: 482/500 = 96,4%). Als zweithäufigster Subtyp 

konnte  CRF01_AE  bei  RTI-naiven  und  NNRTI-behandelten  Patienten  ungefähr  gleich  häufig 

nachgewiesen werden (RTI-naiv: 12/1335 = 0,9%; NNRTI: 6/500 = 1,2%), mit NRTI etwas häufiger 

(6/217 = 2,8%). Die Subtypen AG und F erschienen erst nach medikamentöser Therapie. Subtyp D 

tauchte bei NRTI-Behandlung nicht auf (Bild 6 c – e).
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5. Diskussion

Anhand  einiger  Beispiele  soll  das  breite  Spektrum  an  Anwendungsmöglichkeiten  der  neu 

geschaffenen  MvP-HIV-Datenbank  gezeigt  werden.  Mit  Hilfe  der  Datenbank  gelang  es 

beispielsweise,  die  Häufigkeit  einzelner  Mutationen  und  Mutationsmuster  bei  Virus-Isolaten  zu 

untersuchen.  Das  relativ  große  Einzugsgebiet  -  der  Großraum  München  -  und  die  Größe  der 

Datenbank trugen zu einer repräsentativen Betrachtung der erhobenen Daten bei. Die Ergebnisse der 

MvP-Datenbank wurden mit  denen der  heterogeneren und umfangreicheren Stanford University 

HIV  Drug  Resistance  Database  verglichen,  um  auf  mögliche  regionale  Besonderheiten  der 

Datensätze aufmerksam zu werden. Das Format der Münchner Datenbank bot dabei den Vorteil, die 

Entwicklung einzelner Mutationen über einen definierten Zeitraum beobachten zu können. 

5.1. Prävalenz häufiger Mutationen

In der  MvP-Datenbank kam es  an  manchen RT-Positionen relativ  selten  zu  NRTI-assoziierten 

Mutationen,  so  an  den  Codons  65,  75,  115,  151  und  227  (Tabelle  1a  -  NRTI-assoziierte 

Mutationen). An Position 65 lässt sich exemplarisch nachvollziehen, warum die Mutationsfrequenz 

hier  niedrig und die  Bandbreite  an Mutationen gering ist.  Kommt es durch Mutation zu einem 

Ladungsverlust  des  positiv  geladenen  Lysin,  welches  im  Normalfall  an  der  Bindung  von 

Nukleotiden beteiligt ist, so nimmt - außer im Falle von K65R - die Funktionsfähigkeit des Enzyms 

ab  (Garforth  2007).  Die  Fitness  des  Wildtyp-Virus  ist  damit  am höchsten;  mit  Ausnahme von 

Arginin (K65R) können andere Mutationen dem selektiven Druck nicht standhalten und werden 

ausselektioniert. 

MvP-  und  Stanford-Datenbank  zeigten  an  vielen  RT-Codons  ein  ähnliches  Spektrum  an 

Aminosäuren.  Besonders  an  den  Stellen  210,  215  und  219  ließen  sich  jedoch  im  Münchner 

Patientenkollektiv  einige  von  Stanford  nicht  aufgeführte  Varianten  nachweisen,  beispielsweise 

L210Y (Frequenz: 0,3%), L210V (0,2%), L210G und L210E (je 0,1%),  T215S (0,9%), T215H und 

T215L (je 0,2%) und schließlich K219G und K219D (0,2%). L210Y wurde als Polymorphismus bei 

Viren  der  Subgruppe  O  beschrieben,  eine  vermehrte  Resistenzneigung  konnte  jedoch  nicht 

festgestellt  werden  (Vergne  2000).  L210V  und  G  wurden  in  Zusammenhang  mit  einer 

multiresistenten  Virusvariante  gebracht  (Blankson  2005).  T215S  und  H  zählt  man  zu  den 

transitionalen Mutationen, die den Übergang zu einer Resistenzmutation markieren. Oft sind sie ein 

Zeichen  eines  hohen  Selektionsdrucks  durch  die  antiretroviralen  Medikamente  und  zeigen  die 

Entstehung resistenter Varianten an, z.B. T215Y (Shafer, "Genotype-Phenotype Discordances; Wong 
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J.  1997).  K219G  konnte  in  einer  Studie  über  Thymidin-Analoga-Mutationen  und  Zidovudin-

Resistenz nachgewiesen werden (García-Lerma 2004). Diese seltenen Mutationen kommen in der 

MvP-Datenbank  allerdings  kaum vor.  Um ihre  Rolle  zur  Resistenz-Entwicklung  und  mögliche 

Zusammenhänge mit verschiedenen Subtypen zu erfassen, bedarf es weitergehender Studien.

An  einigen  Enzym-Positionen  traten  in  der  MvP-Datenbank  Mutationen  häufiger  als  in  der 

Stanford-Datenbank auf,  beispielsweise an den  Codons  41 (MvP:  31,9%;  Stanford:  16,4%),  44 

(MvP: 10,9%; Stanford: 4,5%), 67 (MvP: 30,2%; Stanford: 16,4%), 184 (MvP: 41,5%, Stanford: 

21,4%), 210 (MvP: 22,2%, Stanford: 11,0%) und 215 (MvP: 42,6%, Stanford: 22,4%). Fast alle 

dieser Mutationen gehören zu den Nukleotid-Exzisions-Mutationen und sind mit einer Resistenz 

gegenüber Zidovudin (AZT) assoziiert. M184V hingegen ist - trotz high-level-Resistenz gegenüber 

3TC  -  verbunden  mit  einer  erhöhten  Empfindlichkeit  gegenüber  AZT,  D4T  und  TDF  (HIV 

Resistance  Web,  "Mutation  and  Drug Data:  Nucleoside  Reverse  Transcriptase  Inhibitors").  Bei 

Berücksichtigung der unterschiedlichen Patientengruppen in der Stanford-Datenbank kamen diese 

Mutationen im MvP-Patientenkollektiv ähnlich häufig vor wie in der amerikanischen Gruppe mit 

NRTI-Vorbehandlung.  Dies  mag damit  zusammen hängen,  dass  das  Münchner  Patientengut  vor 

allem  aus  ebenfalls  unter  Therapie  stehenden  HIV-Infizierten  besteht  und  keine  Gruppe  ohne 

Vortherapie existiert wie in den US-amerikanischen Daten. Ob ein Grund für die unterschiedlichen 

Häufigkeiten  in  beiden  Datenbanken  auch  an  anderen  Therapieschemata  liegt,  kann  aus  den 

vorliegenden  Daten  nicht  geschlossen  werden.  Dass  gerade  die  erwähnten  AZT-assoziierte 

Mutationen in den USA seltener auftreten, könnte an der längeren Therapie-Erfahrung und früherem 

Wechsel des Therapie-Regimes im dortigen Patientengut liegen und im Umkehrschluss auf eine 

vergleichsweise  längere  Behandlung  mit  althergebrachten  Substanzen  im  Münchner 

Patientenkollektiv  deuten.  Zur  Klärung solcher  Fragestellungen wäre  eine  Ergänzung der  MvP-

Datenbank um medizinische Informationen wie Art und Dauer der medikamentösen Behandlung 

sowie Krankheitsverlauf für die Zukunft sinnvoll.

Betrachtet  man  die  NNRTI-assoziierten  Mutationen  (vgl.  Tabelle  1b  -  NNRTI-assoziierte 

Mutationen) innerhalb der Stanford HIV Drug Resistance Database und vergleicht insbesondere die 

Mutationshäufigkeit bei unbehandelten und vortherapierten Patienten, so ist gut nachzuvollziehen, 

dass  unter  dem  Selektionsdruck  antiretroviraler  Pharmaka  in  einem  weitaus  größeren  Maße 

Mutationen auftreten. Ausnahmen sind K101R (mit Vortherapie: 1,2%; unbehandelt: 0,8%), K103R 

(mit Vortherapie: 1,8%; unbehandelt: 1,4%) und V106I (mit Vortherapie: 2,0%; unbehandelt: 1,7%). 

Genannte Mutationen scheinen also eine häufige Normvariante zu sein; möglicherweise sind sie 
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sogar  mit  einem  anderen  Virus-Subtyp  assoziiert.  Mutationen  an  Codon  103  wiesen  in 

entsprechenden Studien unterschiedliche Resistenzmuster auf. So scheint K103H zwar selten zu 

sein,  jedoch die  Wirksamkeit  aller  NNRTI deutlich zu  reduzieren (Harrigan 2005).  Für  V106G 

wurde zusammen mit G190V eine vermehrte Resistenz gegenüber Efavirenz beschrieben (McColl 

2004), Y188F und Y188D wurden mit einer NNRTI-Resistenz in Verbindung gebracht (Elion 2006; 

Frater  2001;  Richman  1994;  Sato  2006).  Neben  medizinischen  Informationen  wären  in  diesen 

Fällen  Informationen  zum  jeweiligen  Subtyp  ebenfalls  eine  sinnvolle  Ergänzung  der  MvP-

Datenbank und sollten für künftige Analysen einbezogen werden.

Auch bei  den NNRTI-assoziierten Mutationen ist  in  der MvP-Datenbank die  Mutationsfrequenz 

höher  als  in  der  Stanford-Datenbank.  Möglicherweise  sind  aufgrund  der  geringeren  Anzahl  an 

Sequenzen im MvP und einer größeren Streuung die Häufigkeitsangaben falsch hoch, so dass die 

amerikanischen Ergebnisse vielleicht eher die wahren Werte erreichen. Hauptsächlich dürfte aber - 

wie bei den NRTI - dieser Unterschied dadurch zustande kommen, dass die Stanford-Datenbank 

einen  hohen  Anteil  an  unbehandelten  Patienten  aufweist;  so  ist  hier  die  Mutationsrate  bei 

behandelten Patienten höher als im Münchner Patientengut. 

Die Codons 100 und 225 weisen in den MvP- wie auch den Stanford-Daten nur ausnahmsweise eine 

Mutation auf und dann mit einer nur geringen Variabilität. Ähnliches gilt für Codon 230, für das nur 

wenige Fälle von Mutationen beschrieben sind, die dann aber zu hochgradiger Resistenz führen. 

Gründe für die niedrige Mutationsfrequenz könnten in einer gewissen genetischen Stabilität liegen, 

so  dass  Spontanmutationen  weniger  häufig  auftreten  und  im  Falle  einer  Mutation  die 

Replikationsfähigkeit des Virus stark vermindert wäre. Unter dem selektiven Druck könnten sich 

fittere  Viren  ohne  dieses  Mutationsmuster  durchsetzen,  was  die  geringe  Mutationsfrequenz  an 

diesen Codons erklärt. 

Bei  der  Analyse  PI-assoziierter  Mutationen fanden  sich  in  der  Stanford-Datenbank  einige 

Sequenzen mit  Abweichungen vom Wildtyp-Virus,  ohne  dass  die  Patienten  mit  antiretroviralen 

Substanzen  vorbehandelt  gewesen  wären.  Zudem  kamen  diese  Mutationen  in  der  PI-naiven 

Patientengruppe  häufiger  vor  als  unter  PI-Therapie.  An  diesen  Positionen  muss  deshalb  davon 

ausgegangen werden, dass Virusstämme existieren, für die diese Abweichungen vom Referenzvirus 

den  Normaltyp  darstellen.  Für  H69K  wurde  beispielsweise  in  einer  Studie  mit  afrikanischen 

Virusisolaten gezeigt, dass sich die Struktur der Protease für die Subtypen A, C und B unterscheidet 

und H69K hauptsächlich bei Viren der Subtypen A und C als natürlicher Polymorphismus vorkam 

(Velazquez 2001). 
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Im Gegensatz  zu  den  NNRTI-assoziierten  Mutationen,  wo  sich  die  Häufigkeiten  in  den  MvP-

Datensätzen und in der vorbehandelten Untergruppe der Stanford-Datenbank ähneln, tauchen bei 

der Protease in den vorliegenden Datensätzen wesentlich seltener Abweichungen vom Wildtyp auf 

(Tabelle 2 - PI-assoziierte Mutationen). Möglicherweise wurden die Patienten der amerikanischen 

Datenbank vermehrt und länger mit Proteaseinhibitoren behandelt, so dass die Mutationsfrequenz 

dort größer ist als im MvP-Patientengut. Ein konkreter Vergleich würde auch hier Informationen 

über  die  HIV-Therapie  erforderlich  machen.  Daneben  wird  in  Zeiten  zunehmender 

Resistenzbildungen und Bildung neuer Virusstämme deutlich, dass in Bezug auf die Wirksamkeit 

von  Medikamenten  und  hinsichtlich  der  immer  detaillierteren  Algorithmen  gängiger 

Resistenztestungsprogramme  die  unterschiedlichen  Virus-Subtypen  zunehmend  berücksichtigt 

werden müssen.

5.2. Sequentielles Auftreten von Mutationen unter antiretroviraler Therapie

Die neu aufgebaute MvP-Datenbank ermöglicht eine einfache Abfrage einzelner Enzympositionen 

hinsichtlich der zeitlichen Abfolge von Mutationen unter medikamentöser Therapie. Dennoch sind 

mit den Ergebnissen keine allgemeingültigen Aussagen möglich. Hierzu fehlen Informationen über 

die Vortherapie der betreffenden Patienten, außerdem stützen sich die Erkenntnisse auf nur wenige 

Sequenzen  im  Vergleich  zu  größeren  Datenbanken  wie  der  Los-Alamos-  oder  Stanford-HIV-

Datenbank. 

Dennoch  lassen  sich  in  der  MvP-Datenbank  gewisse  Beobachtungen  zu  einem  sequentiellen 

Auftreten von Mutationen unter antiretroviraler Therapie machen. Nach Ersteinsatz von Tenofovir 

(TDF) kann man beispielsweise einen plötzlichen Anstieg in der Häufigkeit der Schlüsselmutation 

K65R  beobachten.  Nachdem  TDF  Anfang  des  Jahres  2002  zum  ersten  Mal  in  Deutschland 

eingesetzt wurde und K65R im darauf folgenden Jahr eine stark erhöhte Inzidenz zeigt, nämlich 

8,51%  im  Vergleich  zu  0,99%  im  Jahr  2000,  ist  eine  Korrelation  zwischen  Ersteinsatz  des 

Medikaments Tenofovir und Mutation möglich. Ein ähnlicher Zusammenhang wird in der deutsch-

französischen  TEDDI-Studie  beschrieben,  in  der  Wirksamkeit  und  Resistenzentwicklung  von 

Tenofovir in Kombination mit Didanosin (ddI) und Lamivudin (Efavirenz) überprüft wurden. 25% 

der 39 beobachteten Patienten zeigten bereits nach 12 Wochen ein Therapieversagen. K65R wurde 

hier neben L74V/I und NNRTI-Mutationen als mitverantwortliche Resistenzmutation identifiziert 

(Van Lunzen 2005). Die anhand der MvP-Datenbank gemachte Beobachtung stützt  sich auf nur 

wenige  Sequenzen  und  ist  daher  nur  begrenzt  aussagekräftig.  Gleichwohl  lassen  die  bekannte 

Assoziation  von Medikament  und Schlüsselmutation  und die  Aussagen der  TEDDI-Studie  eine 
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zeitliche Korrelation plausibel erscheinen. 

Für Zidovudin (AZT) wird schon lange M41L als Schlüsselmutation beschrieben. Insgesamt ergibt 

sich in der MvP-Datenbank eine Auftretenswahrscheinlichkeit von 27,3% (150 von 549). Betrachtet 

man  die  Entwicklung  über  die  Jahre  hinweg,  so  gibt  es  keine  großen  Veränderungen  in  der 

Mutationsrate. Aufgrund der hohen Assoziation der Mutation mit AZT liegt die Vermutung nahe, 

dass  die  entsprechenden Patienten  unter  Langzeittherapie  mit  diesem altbewährten  Medikament 

oder mit Stavudin (d4T) standen. Letzteres wird ebenfalls mit M41L in Verbindung gebracht. Die 

Abnahme von 36,0% im Jahr 2000 auf 25,7% im Jahr 2001 lässt sich möglicherweise durch den 

vermehrten Einsatz alternativer antiretroviraler Substanzen in den letzten Jahren erklären. Ähnliches 

ist für die Veränderung vom Jahr 2003 zu 2004 anzunehmen, in der sich die Prävalenz der Mutation 

fast halbierte (Jahr 2003: 24,5%; 2004: 13,7%). Diese Entwicklung entspricht einem Trend in den 

Industrieländern, auf AZT als initiales Medikament der HAART zu verzichten. M41L taucht auch 

häufig in Kombination mit anderen TAM auf.

Der Protease-Inhibitor Atazanavir wird mit I50L als Schlüsselmutation in Verbindung gebracht und 

wurde  ansonsten  einzig  unter  Therapie  mit  Amprenavir  beschrieben  (HIV  Resistance  Web, 

"Mutation and Drug Data: Protease Inhibitors"). Ein zeitlicher Zusammenhang zwischen Ersteinsatz 

von Atazanavir und I50L ist angesichts der beschriebenen hohen Assoziation möglich, bei Nachweis 

einer einzigen Sequenz mit den MvP-Daten allerdings nur bedingt zu objektivieren. In allen drei 

Beispielen  sollten  weitere,  aktuellere  Sequenzen  und  auch  andere  Datenbanken  herangezogen 

werden, um den postulierten Zusammenhang mit höheren Fallzahlen zu untermauern.

5.3. Einfluss neu beschriebener HIV-1-RT-Mutationen auf die Resistenz

Im Vergleich der von Saracino erhobenen Daten mit der MvP- und der Stanford-Datenbank lassen 

sich  Aussagen  über  die  Prävalenz  der  erwähnten  Mutationen  und  ihre  Assoziation  mit 

antiretroviraler  Therapie  und  Subtyp  treffen.  Die  italienische  Forschungsgruppe  verglich  dabei 

Sequenzen  mit  einem  Referenz-Virus  des  Subtyps  B,  berücksichtigten  mögliche  natürliche 

Polymorphismen  von  Non-B-Subtypen  dabei  jedoch  nicht.  In  der  MvP-Datenbank  weisen 

Sequenzen mit den neu als Resistenz-relevant beschriebenen Mutationen großenteils den Subtyp B 

auf, allerdings treten beispielsweise D218E, H221Y oder K223EQ mit jeweils etwa 6%, 4% bzw. 

3% Prävalenz  selten auf.  Die klinische Relevanz  der  10 Positionen bezüglich  Resistenzbildung 

muss deshalb unterschiedlich beurteilt werden. 

Die Mutation K20R ist in der MvP-Datenbank bei 15% der Sequenzen vorhanden und kommt vor 

allem zusammen mit  Subtyp  B,  allerdings  auch  bei  Viren  anderen  Subtyps  vor.  Die  Stanford-
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Datenbank zeigt, dass zwar auch RTI-naive Patienten die Mutation aufweisen, dass die Häufigkeit 

von K20R aber in der Patientengruppe mit NRTI-Behandlung höher ist. Somit kommt die Mutation 

relevant häufig vor und eine Assoziation mit HAART scheint nachvollziehbar, was die Daten der 

italienischen  Studie  bestätigt.  Die  fehlende  statistische  Signifikanz  in  der  multivariaten  Studie 

könnte sich durch eine gehäufte Prävalenz von K20R auch bei Non-B-Subtypen erklären. 

Auch  T39A scheint  ausreichend  häufig  in  der  MvP-Datenbank  vorzukommen  (10%).  Die 

entsprechenden Sequenzen zeigen vermehrt Subtyp B, aber in einem Viertel der Fälle auch andere 

Subtypen,  v.a.  Subtyp  F.  Bei  Patienten  mit  antiretroviraler  Therapie  ist  die  Zahl  an  Viren  des 

Subtyps  B  mehr  als  doppelt  so  hoch  als  ohne  Vorbehandlung,  Non-B-Subtypen  sind  dagegen 

deutlich seltener. Die MvP-Sequenzen weisen die Mutation im Jahr 2004 häufiger auf als im Jahr 

2000.  Da  T39A auch  ohne  Vorbehandlung  und  bei  Non-B-Viren  nachzuweisen  ist,  ist  zwar 

insgesamt entsprechend den italienischen Ergebnissen eine Assoziation der Mutation mit  NRTI-

Therapie und Subtyp B anzunehmen; zu einem gewissen Teil scheint T39A aber auch als natürlicher 

Polymorphismus bei Non-B-Viren vorzukommen.

Die Mutationen K43EQN wurden in der italienischen Studie mit Resistenz gegenüber AZT und d4T 

assoziiert. K43Q und N sind in der MvP-Datenbank vergleichsweise selten (3,8% bzw. 1,7%) und 

erfüllen  damit  die  Kriterien  der  italienischen Studie  für  eine  relevante  Mutation  nicht.  K43QN 

kommt im Münchner Patientenkollektiv gehäuft in Kombination mit Subtyp B vor. In der Stanford-

Datenbank kommen die Mutationen in der RTI-naiven Patientengruppe nur bei Viren des Subtyps 

CRF02_AG vor, wobei sich K43E ungeachtet der Vorbehandlung bevorzugt bei Subtyp CRF01_AE 

finden  lässt,  während  in  der  MvP-Datenbank immerhin  ein  Viertel  der  Sequenzen  CRF02_AG 

aufweisen  gegenüber  knapp  70% mit  Subtyp  B.  Die  von  Saracino postulierte  Bedeutung  von 

K43EQN für eine NRTI-Resistenz mag zwar gelten, dennoch zeigt die Stanford- und im Falle von 

K43E auch die MvP-Datenbank eine starke Assoziation mit  dem Non-B-Subtyp CRF02_AG, so 

dass hier ein natürlicher Polymorphismus wahrscheinlich und die Relevanz im Hinblick auf Subtyp-

B-assoziierte Arzneimittelresistenzen zweifelhaft ist. 

In der MvP-Datenbank kommt E203K mit einer Häufigkeit von 6,3% vor. Trotz einem bevorzugten 

Auftreten von E203KD bei Viren des Subtyps B und einem wahrscheinlichem Zusammenhang mit 

der antiretroviralen Therapie – E203K ist in der Stanford-Datenbank selten und nur nach NRTI-

Therapie  nachzuweisen  –  ist  angesichts  der  geringen  Häufigkeit  die  Relevanz  für  die 

Resistenztestung unklar.

Auch  H208Y ist  in  der  MvP-Datenbank mit  knapp 7% nicht  häufig anzutreffen.  Die Mutation 

kommt in  der  Stanford-Datenbank allerdings  nur bei  behandelten Patienten und fast  immer bei 
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Subtyp B vor; allenfalls Subtyp F scheint in vernachlässigbar kleiner Fallzahl mit der Mutation in 

Zusammenhang zu stehen.  Die postulierte  Assoziation von H208Y mit  antiretroviraler  Therapie 

scheint also wahrscheinlich. 

Mit  6%  ist  D218E in  der  MvP-Datenbank  ebenso  selten  vertreten;  dennoch  legen  die 

amerikanischen Daten einen deutlichen Zusammenhang zwischen der Mutation und antiretroviraler 

Therapie nahe. D218E scheint hier außerdem bevorzugt bei Subtyp B vorzukommen. Daneben lässt 

sich die Mutation in der Stanford-Datenbank ungeachtet der Vortherapie nur bei Subtyp CRF01_AE 

nachweisen, in der MvP-Datenbank hingegen auch in etwa 23% der Fälle bei anderen Subtypen. 

Insgesamt  schien  also  zumindest  bei  Subtyp  B  analog  der  Hypothese  der  italienischen 

Forschungsgruppe  eine  klinische  Relevanz  von  D218E  wahrscheinlich.  Das  Münchner 

Patientenkollektiv unterscheidet sich an dieser Position von dem der Stanford-Datenbank. 

Seit dem Jahr 2007 beschreiben die gängigen Resistenzalgorithmen Mutationen an RT-Codon 101 

als Resistenz-relevant, so dass sich hinsichtlich  K101EPQ  die früheren Ergebnisse der Saracino-

Arbeitsgruppe bereits  bestätigt  haben.  Für K101E wird eine niedriggradige Resistenz gegenüber 

allen  NNRTI beschrieben,  K101P führte  in  einer  Studie  aus  dem Jahr  2006  zu  einer  deutlich 

reduzierten Medikamentenempfindlichkeit (Parkin 2006). In der MvP-Datenbank sind K101Q und P 

mit einer Häufigkeit von insgesamt 2,9% und 0,2% äußerst selten, K101E kommt mit 4,6% etwas 

häufiger vor. Alle drei Mutationen sind hauptsächlich mit Subtyp B assoziiert.

RT-Position 221 zeigt in der MvP-Datenbank eine niedrige Mutationsrate, in über 95% der Fälle 

liegt  keine  Abweichung  vom  Wildtyp-Virus  vor.  Als  beinahe  einzige  Mutation  kann  H211Y 

nachgewiesen  werden,  deren  Auftretenswahrscheinlichkeit  über  die  Jahre  kaum Schwankungen 

zeigt. In der Stanford-Datenbank kommt die Mutation zwar selten, aber bei Patienten mit NNRTI-

Behandlung  häufiger  vor.  Analog  zur  MvP-Datenbank  weisen  die  H211Y-positiven  Sequenzen 

mehrheitlich Subtyp B auf, allerdings liegt in 26% der Fälle ein Non-B-Subtyp vor. Eine Therapie-

Assoziation  im  Sinne  der  italienischen  Studie  kann  nachvollzogen  werden;  da  die  Mutation 

insgesamt selten ist und ein nicht unwesentlicher Teil der entsprechenden Sequenzen einen Non-B-

Subtyp aufweist, von den wenigen H221Y-positiven Sequenzen also nur ein Teil Subtyp B zeigt, 

könnten hier natürliche Polymorphismen eine Rolle spielen. 

Die  Arbeitsgruppe  um  Saracino beschrieb  eine  Assoziation  von  K223EQ mit  einer  Resistenz 

gegenüber Efavirenz (EFV). Insgesamt betrachtet sind Mutationen am RT-Codon 223 sowohl in der 

MvP- als auch in der Stanford-Datenbank selten, wobei hauptsächlich K223E und Q vorkommen. 

Beide Datenbanken führen K223EQ fast ausschließlich in Zusammenhang mit Subtyp B auf, so 
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dass eine Therapie-Assoziation mit NNRTI wahrscheinlich ist. In einer Studie aus dem Jahr 2007 

wurde inzwischen für die beiden Mutationen eine starke Assoziation mit NNRTI-Therapieversagen 

festgestellt  (Ceccherini-Silberstein  2007),  was  trotz  seltenem  Auftreten  von  K223EQ  die  von 

Saracino postulierte Relevanz bezüglich einer Resistenzentwicklung bestätigt.

L228HR kommt  in  der  MvP-Datenbank im Jahr  2004 mit  12,6% Auftretenswahrscheinlichkeit 

häufiger vor als im Jahr 2000. In der Stanford-Datenbank treten beide Mutationen gehäuft in der 

Patientengruppe mit NNRTI-Vorbehandlung auf und stehen meist in Verbindung mit Subtyp B, was 

auch hier die Ergebnisse der Arbeitsgruppe um Saracino zu bestätigen scheint.

5.4. Resistenzpfade

Bei der Forschung über HIV-Resistenzen und die pathophysiologischen und molekularbiologischen 

Grundlagen  ist  auch  die  zeitliche  Abfolge  von  Mutationen  von  Interesse.  Durch  eine  Art 

Mutationsstammbaum lassen sich Mutationswege oft bis zur Entwicklung einer Resistenzmutation 

verfolgen. Dabei wird häufig eine Divergenz beschrieben, so dass entweder der eine oder der andere 

Pfad eingeschlagen wird mit jeweils typischer Mutationsabfolge. Theoretisch sollte das Virus dann 

nicht  Mutationen verschiedener  Mutationswege gleichzeitig  aufweisen.  Vor  diesem Hintergrund 

wurde  als  weiteres  Anwendungsbeispiel  die  hochrelevante  Gruppe  der  Thymidin-Analoga-

Mutationen untersucht. 

Die MvP-Datenbank weist insgesamt nur äußerst wenige Sequenzen auf, bei denen eine typische 

Divergenz  der  Mutationspfade  vorliegt.  Gründe  hierfür  dürften  einerseits  die  Heterogenität  des 

Münchner  Patientenguts  sein,  zum  anderen  unterschiedliche,  nicht  nur  auf  AZT  oder  andere 

Thymidinanaloga  beschränkte  Therapieschemata,  die  sich  in  einem gemischten  Mutationsprofil 

widerspiegeln. Gerade durch die Größe der MvP-Datenbank finden sich dennoch einige Sequenzen, 

die "klassische" Resistenzpfade zeigen (Tabelle 7 - Klassischer Resistenzpfad).

Anhand des Beispiels von Patient 2 sieht man nicht nur die typische Abfolge, sondern auch, dass die 

Mutationsentwicklung ein äußerst dynamischer, multifaktorieller Prozess ist, bei dem sich ein Virus 

mit Resistenz-Mutation wieder zum Wildtyp-Virus zurückbilden kann und umgekehrt.  Insgesamt 

zeigen die analysierten Sequenzen der beschriebenen fünf Patienten typische Abfolgen von HIV-

Resistenzmutationen.  Da  die  Ast-1-  oder  Ast-2-Mutationen  an  räumlich  benachbarten  Codons 

auftreten, erklärt sich ein ähnlicher Effekt beider Mutationsabfolgen auf die NRTI-Anbindung an die 

Reverse Transkriptase (Leitner, "HIV Database Drug Resistance Site Viewer"). 

Würde  ein  Virus  unter  dem  Druck  einer  medikamentösen  Therapie  einen  divergierenden 

Mutationspfad einschlagen, der keine kompensatorischen Ausweichmutationen zulässt, könnte es in 
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eine Art replikative Sackgasse manövriert  werden, was die Suche nach solchen Resistenzwegen 

auch aus  therapeutischem Aspekt  sinnvoll  macht.  Angesichts  von Komplexität  der  molekularen 

Wechselwirkungen innerhalb der  Virusproteine,  hoher  Mutationsrate  und genetischer  Flexibilität 

von  HIV wird  sich  ein  Behandlungsschema,  welches  diese  Aspekte  der  Resistenzentwicklung 

berücksichtigt, kaum praktisch umsetzen und etablieren lassen.

5.5. Kombinationen von Mutationen

Mögliche Erklärung für das gehäufte gemeinsame Auftreten mancher Mutationen sind eine direkte 

Nachbarschaft  der  betroffenen  Codons  oder  eine  räumliche  Annäherung  innerhalb  der 

dreidimensionalen  Enzymstruktur.  Manche  Mutationen,  z.B.  die  erwähnten  Thymidin-Analoga-

Mutationen,  führen  zu  Resistenzen  gegenüber  einzelnen  antiretroviralen  Medikamenten  oder 

gegenüber einer ganzen Substanzklasse,  so dass deren Wirksamkeit  sinkt  und die virale  Fitness 

entsprechend zunimmt. Bei manchen Kombinationen potenziert  sich das Ausmaß  der jeweiligen 

Wirkungsabschwächung. T215YF beispielsweise verursacht alleine eine 10- bis 16-fache und in 

Kombination mit M41L eine 64-fache Resistenz (HIV Resistance Web, "Mutation and Drug Data - 

Nucleoside Reverse Transcriptase Inhibitors"). Im Falle des Multinukleosid-Resistenzpfads liegt bei 

Vorliegen Q151M eine 10- bis 20-fache AZT-Resistenz vor, die in Kombination mit V75I, F77I und 

F116Y auf das Hundertfache ansteigt. Die Suche nach derartiger Kombinationen von Mutationen 

bringt deshalb wichtige Erkenntnisse für die Resistenzforschung. Da die MvP-Datenbank zwar die 

Abfrage  von  Mutationsmustern  ermöglicht,  aber  einiger  Zusatzinformationen  entbehrt,  ist  es 

sinnvoll, bei der Interpretationen der gewonnenen Daten Informationen der Stanford-Datenbank wie 

Vorbehandlung,  Häufigkeit  von  Mutationen  und  Ausmaß  der  Resistenzen  einzubeziehen.  Die 

beschriebenen  RT-  und  Protease-Positionen  sollen  in  diesem  Rahmen  vor  allem  als 

Anwendungsbeispiele für die Datenbank gelten (Tabelle 8-Mutationskombinationen). 

Bei der Mutation E203K macht der Wechsel der elektrischen Ladung von Glutamat zu Lysin eine 

Rolle in der Resistenzentwicklung nachvollziehbar. Wenn zusätzlich eine Mutation an Position 67 

vorliegt,  so  ist  dies  in  unserer  Datenbank  fast  ausschliesslich  D67N.  Mit  25  von  45  E203K-

positiven Sequenzen kommt die Mutation zwar nur in etwas mehr als  der Hälfte  der Fälle vor 

(56%),  angesichts  des  sonst  eher  seltenen Auftretens  von E203K scheint  eine Assoziation  aber 

möglich. Gleiches gilt für einige TAM: In der MvP-Datenbank kann die Mutation beispielsweise 

gehäuft  in Kombination mit  T215Y/F nachgewiesen werden, so dass auch hier eine Korrelation 

möglich erscheint, wenn auch im Rahmen einer Studie aus dem Jahr 2003 keine explizite positive 

Korrelation zwischen E203K und T215Y/F festgestellt worden ist (Gonzales, 2003). Für E44D und 
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K70R ist ein Zusammenhang zwar nicht auszuschließen, angesichts einer eher geringen Häufigkeit 

ist ihr gemeinsames Auftreten jedoch eher als zufällig anzusehen. 

Bezüglich der Kombination aus den RT-Resistenzmutationen  L100I und K103N kann die in der 

Literatur beschriebene starke Assoziation anhand der im Rahmen dieser Dissertation gewonnenen 

Daten  nachvollzogen  werden;  ähnliche  Resultate  fanden  sich  auch  innerhalb  der  Stanford-

Datenbank (Shafer, "NNRTI Mutation Pattern & Susceptibility").

Die  Kombination  der  Protease-assoziierten  Mutationen  H69K und R41K kommt  in  der  MvP-

Datenbank mit etwa 85% Häufigkeit vor, was eine Assoziation plausibel macht. In der Literatur 

werden beide Mutationen als natürlich vorkommende Polymorphismen bei Subtyp-A- und -C-Viren 

beschrieben. Dies lässt sich anhand der MvP-Daten zeigen: Bei Vorliegen von H69K und R41K 

weisen bis auf eine einzige Sequenz mit Subtyp B (=0,5%) alle Protease-Sequenzen einen Non-B-

Subtyp auf (=99,5%), darunter hauptsächlich die Subtypen A, C oder die Mischformen CRF01_AE 

und CRF02_AG. 

5.6. Subtypisierung

Angesichts zunehmender Resistenzen und der Ausbildung verschiedener, teilweise neuer Subtypen 

müssen  regionale  Unterschiede  in  den  Virusstämmen  ebenso  wie  lokale  Häufungen  von 

Resistenzmutationen  berücksichtigt  werden.  Informationen  zu  den  Virus-Subtypen  wurden  bei 

Erstellung der MvP-Datenbank noch nicht berücksichtigt, sind aber bei vielen Auswertungen und 

Anwendungsbeispielen einbezogen (Bild 5a-e, Bild 6a-e).

5.6.1. Prävalenz verschiedener Subtypen

Sowohl  im  MvP-  als  auch  im  Stanford-Patientengut  lässt  sich  am  häufigsten  der  Subtyp  B 

nachweisen,  gefolgt  von Subtyp C.  Dessen Prävalenz  beträgt  in  der  MvP-Datenbank allerdings 

3,9% gegenüber 12,5% innerhalb der Stanford-Sequenzen. Im Münchner Patientenkollektiv liegt A 

mit ebenfalls 3,9% gleich häufig vor, gefolgt von CRF01_AE (3,5% der Fälle). Die amerikanischen 

Patienten sind hingegen in ca. 8,2% der Fälle mit Subtyp CRF01_AE und in 5,4% der Fälle mit 

Subtyp A infiziert. Da in den Haupt-Endemiegebieten allerdings Infektionen mit Subtyp C mit einer 

Häufigkeit von über 50% vorherrschen und die Infektion mangels optimaler Therapiemöglichkeiten 

rascher progredient ist als in Nordamerika und Europa, wo Subtyp B dominiert, werden in Zukunft 

in  zunehmenden  Maße  Behandlungsstrategien  nötig  sein,  die  auf  Virusstämme  mit  Subtyp  C 

ausgerichtet bzw. regional angepasst sind .
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5.6.2. Spezielle Polymorphismen an RT-Codon 39

Die Abfrage der MvP-Datenbank bestätigt die Beobachtung, dass T39K bevorzugt bei Non-B-Viren 

nachgewiesen werden kann. Bei 35 von 36 entsprechend mutierten Sequenzen liegt nicht Subtyp B 

vor,  ein ähnliches Ergebnis findet sich in der Stanford-Datenbank. Am häufigsten kommt dabei 

T39K zusammen mit Subtyp CRF01_AE vor (MvP: Ca. 78%; Stanford: 75%). CRF02_AG und G 

sind  bei  Therapie-unerfahrenen,  Subtyp  C  hingegen bei  NNRTI-behandelten  Patienten  häufiger. 

Subtyp B kommt in der RTI-naiven Patientengruppe nicht vor.

Ein  ähnliches  Ergebnis  lässt  sich  für  T39E  beobachten.  95%  aller  RT-Sequenzen  mit  dieser 

Mutation weisen einen Non-B-Subtyp auf (38/40), davon fast  ausschließlich Subtyp-C (37/40 = 

92,5%). Auch in der Stanford-Datenbank dominieren in diesem Zusammenhang Subtyp-C-Viren 

(1966/2074 Sequenzen = 94,8%), in über 98,9% der Fälle liegt nicht Subtyp B vor (2052/2074 

Sequenzen). 

Zusammengefasst muss also davon ausgegangen werden, dass am RT-Codon 39 bei Nachweis der 

Aminosäuren Lysin oder Glutamat diese Abweichung vom Wildtyp-Virus einen Polymorphismus 

eines von B verschiedenen Subtyps darstellt und keine Resistenz im klassischen Sinne vorliegt. 

Außerdem zeigt sich einmal mehr die Relevanz von Informationen über den Virus-Subtyp. Eine 

künftige  Erweiterung  der  MvP-Datenbank  um  die  Subtypen  würde  das  Spektrum  an 

Anwendungsmöglichkeiten deshalb sinnvoll ergänzen. 

6. Zusammenfassung

Im Rahmen  dieser  Doktorarbeit  wurde  eine  HIV-Sequenz-Datenbank  programmiert.  Sie  enthält 

1326 Reverse-Transkriptase- und 1286 Protease-Sequenzen, die von Januar 2000 bis Oktober 2004 

im  Max  von  Pettenkofer-Institut  (MvP)  getestet  wurden.  Mit  Hilfe  eines  neu  entwickelten 

Translations-Programms  konnten  auch  an  nicht  eindeutig  definierten  Codons  alle 

Kombinationsmöglichkeiten  berücksichtigt  werden.  Die neu entstandene Datenbank erlaubt  eine 

Vielzahl an Abfragen, wovon einige im Rahmen dieser Dissertation gezeigt werden.

Vergleicht man beispielsweise die Prävalenz häufiger Resistenz-Mutationen innerhalb der MvP-

Datenbank  mit  den  Daten  der  Stanford  HIV Drug  Resistance  Database,  so  ist  im  Münchner 

Patientengut für die  Reverse Transkriptase (RT) die Mutationsrate allgemein höher. Nimmt man 

innerhalb  der  Stanford-Datenbank  nur  die  Patientengruppe  mit  antiretroviraler  Behandlung  als 

Grundlage, so ist die Prävalenz NRTI-assoziierter Mutationen in beiden Datenbanken ähnlich. Ein 

hoher Anteil entsprechend therapierter Patienten ist deshalb für die MvP-Datenbank anzunehmen. 
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Die MvP-Protease-Sequenzen zeigen insgesamt eine niedrigere Mutationsrate als die der Stanford-

Datenbank. 

Unter dem selektiven Druck antiretroviraler Medikamente kann ein  sequentielles Auftreten von 

Mutationen beobachtet werden. So nimmt in der MvP-Datenbank nach dem deutschen Ersteinsatz 

von Tenofovir (TDF) im Jahr 2002 die Häufigkeit der TDF-assoziierten Mutation K65R von 0,99% 

auf 8,51% zu; eine Assoziation wird durch ähnliche Resultate im Rahmen der europäischen TEDDI-

Studie  bestätigt.  Die  seltene  Mutation  I50L,  die  als  Schlüsselmutation  des  im  März  2004  in 

Deutschland zugelassenen Protease-Inhibitors  Atazanavir gilt, findet sich in der MvP-Datenbank 

erstmals  im  Oktober  2004.  Auch  hier  ist  ein  Zusammenhang  zwischen  Neueinführung  eines 

Medikaments und der Schlüsselmutation wahrscheinlich. 

Mit Hilfe der Münchner Datenbank konnten außerdem an 10 RT-Positionen Abweichungen vom 

Wildtyp überprüft werden, die in einer im Jahr 2006 veröffentlichten Studie (Saracino 2006) als 

neue Resistenz-relevante Mutationen  eingestuft  worden waren (NRTI-assoziiert:  K20R, T39A, 

K43EQN,  E203KD,  H208Y  und  D218E;  NNRTI-assoziiert:  K101EQP,  H221Y,  K223EQ  und 

L228HR).  Im  Vergleich  mit  der  MvP-  und  Stanford-Datenbank  lassen  sich  die  Ergebnisse 

großenteils nachvollziehen, jedoch muss in einigen Fällen von einem nicht unwesentlichen Anteil 

natürlicher  Polymorphismen  ausgegangen  werden.  So  sind  K43EQN  in  MvP-  und  Stanford-

Datenbank gehäuft mit Subtyp CRF01_AE bzw. CRF02_AG vergesellschaftet, auch T39A, D218E 

und H211Y kommen häufig bei Non-B-Viren vor.

Bei  der  Entwicklung  von  Resistenzen  gegenüber  RTI  scheinen  Mutationspfade  eine  Rolle  zu 

spielen.  Anhand  der  MvP-Datenbank  wurden  zwei  Mutations-„Äste“  des  sog.  klassischen 

Resistenzpfads  untersucht,  der  als  wichtiger  Faktor  bei  der  Entstehung von Thymidin-Analoga-

Mutationen (TAM) gilt.  Eine strikte  Divergenz des Mutationspfads  in  zwei  Äste  kommt in  der 

Datenbank  nur  vereinzelt  vor.  Die  typische  Abfolge  von  Mutationen  (Ast  1:  T215FY,  M41L, 

L210W, E44D und V118I; Ast 2: K70R, K219EQ, D67N und T69 DN) lässt sich anhand einiger 

Patienten demonstrieren, in deren Sequenzen sich entweder Ast-1- oder Ast-2-Mutationen finden. 

Teilweise können auch Übergangsformen beobachtet werden. 

Bestimmte  Kombinationen  von  Mutationen  treten  gehäuft  miteinander  auf,  wodurch  sich  die 

Resistenzrate  der  Einzelmutationen  gegenseitig  potenziert.  In  der  MvP-Datenbank  tritt 

beispielsweise die seltene RT-Mutation L100I (Häufigkeit: 2,6%) in über 95% der Fälle zusammen 

mit K103N auf, was eine Assoziation sehr wahrscheinlich macht. Bei Nachweis der RT-Mutation 

E203K (Häufigkeit:  5,7%)  findet  sich  außerdem bei  56% der  entsprechenden  Sequenzen  auch 

D67N, in 82% der Fälle liegen Mutationen an Codon 215 vor. Über 85% der Protease-Sequenzen 
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mit H69K weisen gleichzeitig R41K auf, es besteht hier eine starke Assoziation mit den Subtypen A 

und C.

Die  verschiedenen  Subtypen  und  Mischformen  des  Virus  stellen  eine  große  Herausforderung 

hinsichtlich HIV-Therapie und Resistenztestung dar. In der MvP- und Stanford-Datenbank finden 

sich hauptsächlich Sequenzen des Subtyps B (Häufigkeit: 79% bzw. 60%), der weltweit am meisten 

verbreitete Subtyp C kommt deutlich seltener vor (4% bzw. 12,5%). Anhand beider Datenbanken 

lässt sich zeigen, dass die RT-Mutationen T39K bzw. T39E fast ausschließlich mit einem Non-B-

Subtyp assoziiert sind. T39K kommt vornehmlich bei Subtyp CRF01_AE (78%), T39E bei Subtyp 

C (92,5%) vor.  Beide Mutationen müssen also als  natürliche Polymorphismen bei Non-B-Viren 

gedeutet und als solche in modernen Resistenzalgorithmen berücksichtigt werden.

Mit den genannten Beispielen sollen die vielfältigen Anwendungsmöglichkeiten der neu etablierten 

HIV-Sequenzdatenbank  gezeigt  werden.  Wünschenswert  wäre  eine  künftige  Erweiterung  um 

Subtypen und medizinische Informationen wie Viruslast, CD4-Zahl und Medikation. Idealerweise 

sollten auch Virussequenzen aus anderen Jahren sowie weitere Therapie-relevante Abschnitte des 

viralen Genoms einbezogen werden.
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7. Abkürzungsverzeichnis

3TC: Lamivudin

ABC: Abacavir

ANRS: Agence nationale de recherches sur le sida et les hépatites virales 

APV. Amprenavir

AZT: Zidovudin

CRF: Circulating Recombinant Forms (= zirkulierende rekombinante Formen)

d4T: Stavudin

DAIG: Deutsche AIDS Gesellschaft

d. F.: Der Fälle

ddC: Zalcitabin

ddI: Didanosin

ddNTP: Didesoxynukleotidtriphosphate

DLV: Delavirdin

dNTP: Desoxy-Nukleotidtriphosphate

EBI: European Bioinformatics Institute

EFV: Efavirenz

FPV: Fosamprenavir

FTC: Emtricitabin

HAART: Hochaktive, antiretrovirale Therapie

HIV: Human Immunodeficiency Virus (= HI-Virus)

HR: Heptad-repeat-Domänen

IDV: Indinavir

IUB: International Union of Biochemistry

IUPAC: International Union of Pure and Applied Chemistry

LPV: Lopinavir

Mut.: Mutationshäufigkeit

MvP: Max von Pettenkofer-Institut

NAM: Nukleosidanaloga-Mutationen

N Engl J Med: The New England Journal of Medicine

NFV: Nelfinavir

NRTI: Nukleosidischer Reverser Transkriptase Inhibitor
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NNRTI: Nicht-nukleosidischer Reverser Transkriptase Inhibitor

NVP: Nevirapin

PCR: Polymerase-Chain-Reaction (= Polymerase-Kettenreaktion)

PNAS: Proceedings of the National Academy of Sciences of the United States of  

America

PR: Protease

PRI: Protease-Inhibitor

RKI: Robert-Koch-Institut

RT: Reverse Transkriptase

RTI: Reverse-Transkriptase-Inhibitor

RTV: Ritonavir

SQV: Saquinavir

TAM: Thymidin-Analoga-Mutationen

TDF: Tenofovir

WHO: World Health Organisation

WT: Wildtyp

Positionen innerhalb der Aminosäure-Sequenz von RT oder PR werden wie folgt abgekürzt:

1. Der 1. Buchstabe steht für die Aminosäure des Wildtyps;

2. Die Zahl zeigt das betreffende Codon an;

3. Der Buchstabe nach der Zahl steht für die tatsächlich vorliegende(n) Aminosäure(n); 

4. Kommen mehrere Mutationen an einem Codon in Frage, folgen auf die Codon-Position die 

IUPAC-Bezeichnungen dafür.

Beispiel: K223EQ bedeutet, dass "K" (Lysin) an Position 223 als Wildtyp vorliegt und dass "E" 

(Glutamat) und "Q" (Glutamin) die Mutationen an diesem Codon darstellen.
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10. Anhang

Tabelle 1 a) NRTI-assoziierte Mutationen:
Teil  1 -  In  den  Zeilen  der  Tabelle  sind  für  jede  untersuchte  Mutations-relevante  RT-Position 
verwertbare Sequenzen („Gesamtzahl Sequenzen“), Sequenzen mit Wildtyp (z.B. „M41“, „K65“ 
etc.), maximal („mögliche Mutationen“) und minimal („definitive Mutationen“) möglicher Anteil 
mutierter Sequenzen aufgeführt. Damit werden mehrdeutige Positionen, die sowohl die Aminosäure 
des Wildtyps als auch andere enthalten, berücksichtigt. In den Spalten sind absolute und relative 
Häufigkeit der entsprechenden Sequenzen aufgeteilt nach Jahr bzw. Gesamtzeitraum enthalten.
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Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Anzahl Sequenzen 1249 424 251 268 201 104

Position Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
M41
mögliche Mutationen 396 33,03 154 39,69 78 32,37 87 32,95 57 28,36 20 19,23
definitive Mutationen 383 31,94 148 38,14 77 31,95 82 31,06 56 27,86 20 19,23
M41 803 66,97 234 60,31 163 67,63 177 67,05 144 71,64 84 80,77
Gesamtzahl Sequenzen 1199 100,00 388 100,00 241 100,00 264 100,00 201 100,00 104 100,00

E44
mögliche Mutationen 135 11,26 53 13,66 26 10,79 33 12,50 18 8,96 5 4,81
definitive Mutationen 131 10,93 53 13,66 25 10,37 31 11,74 17 8,46 5 4,81
E44 1064 88,74 335 86,34 215 89,21 231 87,50 183 91,04 99 95,19
Gesamtzahl Sequenzen 1199 100,00 388 100,00 241 100,00 264 100,00 201 100,00 104 100,00

K65
mögliche Mutationen 26 2,16 2 0,52 1 0,41 2 0,75 11 5,47 10 9,62
definitive Mutationen 25 2,08 2 0,52 0 0,00 2 0,75 11 5,47 10 9,62
K65 1176 97,84 386 99,48 240 99,59 265 99,25 190 94,53 94 90,38
Gesamtzahl Sequenzen 1202 100,00 388 100,00 241 100,00 267 100,00 201 100,00 104 100,00

D67
mögliche Mutationen 381 31,78 120 31,09 93 38,59 79 29,70 63 31,34 26 25,00
definitive Mutationen 362 30,19 114 29,53 87 36,10 72 27,07 63 31,34 26 25,00
D67 818 68,22 266 68,91 148 61,41 187 70,30 138 68,66 78 75,00
Gesamtzahl Sequenzen 1199 100,00 386 100,00 241 100,00 266 100,00 201 100,00 104 100,00

T69
mögliche Mutationen 143 11,90 44 11,34 22 9,13 34 12,73 29 14,43 14 13,46
definitive Mutationen 134 11,15 40 10,31 22 9,13 30 11,24 28 13,93 14 13,46
T69 1059 88,10 344 88,66 219 90,87 233 87,27 172 85,57 90 86,54
Gesamtzahl Sequenzen 1202 100,00 388 100,00 241 100,00 267 100,00 201 100,00 104 100,00

K70
mögliche Mutationen 244 20,30 72 18,56 61 25,31 44 16,48 44 21,89 23 22,12
definitive Mutationen 228 18,97 68 17,53 59 24,48 34 12,73 44 21,89 23 22,12
K70 958 79,70 316 81,44 180 74,69 223 83,52 157 78,11 81 77,88
Gesamtzahl Sequenzen 1202 100,00 388 100,00 241 100,00 267 100,00 201 100,00 104 100,00

L74
mögliche Mutationen 135 11,23 35 9,02 26 10,79 39 14,61 28 13,93 7 6,73
definitive Mutationen 122 10,15 31 7,99 25 10,37 31 11,61 28 13,93 7 6,73
L74 1067 88,77 353 90,98 215 89,21 228 85,39 173 86,07 97 93,27
Gesamtzahl Sequenzen 1202 100,00 388 100,00 241 100,00 267 100,00 201 100,00 104 100,00

V75
mögliche Mutationen 78 6,49 22 5,67 18 7,47 16 5,99 13 6,47 9 8,65
definitive Mutationen 74 6,16 20 5,15 17 7,05 16 5,99 13 6,47 9 8,65
V75 1124 93,51 366 94,33 223 92,53 251 94,01 188 93,53 95 91,35
Gesamtzahl Sequenzen 1202 100,00 388 100,00 241 100,00 267 100,00 201 100,00 104 100,00

Y115
mögliche Mutationen 10 0,80 0 0,00 3 1,20 0 0,00 4 1,99 3 2,88
definitive Mutationen 9 0,72 0 0,00 2 0,80 0 0,00 4 1,99 3 2,88
Y115 1236 99,20 421 100,00 248 98,80 268 100,00 197 98,01 101 97,12
Gesamtzahl Sequenzen 1246 100,00 421 100,00 251 100,00 268 100,00 201 100,00 104 100,00

Q151
mögliche Mutationen 22 1,76 8 1,89 3 1,20 3 1,12 4 1,99 4 3,85
definitive Mutationen 22 1,76 8 1,89 3 1,20 3 1,12 4 1,99 4 3,85
Q151 1227 98,24 416 98,11 248 98,80 265 98,88 197 98,01 100 96,15
Gesamtzahl Sequenzen 1249 100,00 424 100,00 251 100,00 268 100,00 201 100,00 104 100,00



Tabelle 1a) NRTI-assoziierte Mutationen (Teil 1, Fortsetzung)

Teil  2 –  Für  jedes  untersuchte  Codon  sind  vorkommende  Mutationen  und  Permutationen 
mehrdeutiger Positionen aufgelistet, jeweils mit absoluter und relativer Häufigkeit pro Jahr bzw. 
Gesamtzeitraum.
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M184
mögliche Mutationen 530 42,43 177 41,75 109 43,43 108 40,30 90 44,78 46 44,23
definitive Mutationen 518 41,47 170 40,09 108 43,03 104 38,81 90 44,78 46 44,23
M184 719 57,57 247 58,25 142 56,57 160 59,70 111 55,22 58 55,77
Gesamtzahl Sequenzen 1249 100,00 424 100,00 251 100,00 268 100,00 201 100,00 104 100,00

L210
mögliche Mutationen 282 22,65 117 27,79 57 22,71 60 22,39 35 17,41 13 12,62
definitive Mutationen 276 22,17 117 27,79 55 21,91 56 20,90 35 17,41 13 12,62
L210 963 77,35 304 72,21 194 77,29 208 77,61 166 82,59 90 87,38
Gesamtzahl Sequenzen 1245 100,00 421 100,00 251 100,00 268 100,00 201 100,00 103 100,00

T215
mögliche Mutationen 538 43,28 197 46,90 123 49,00 112 41,79 74 37,00 32 31,07
definitive Mutationen 530 42,64 196 46,67 122 48,61 106 39,55 74 37,00 32 31,07
T215 705 56,72 223 53,10 128 51,00 156 58,21 126 63,00 71 68,93
Gesamtzahl Sequenzen 1243 100,00 420 100,00 251 100,00 268 100,00 200 100,00 103 100,00

K219
mögliche Mutationen 339 27,34 102 24,40 81 32,40 75 27,99 55 27,50 26 25,24
definitive Mutationen 327 26,37 97 23,21 79 31,60 70 26,12 55 27,50 26 25,24
K219 901 72,66 316 75,60 169 67,60 193 72,01 145 72,50 77 74,76
Gesamtzahl Sequenzen 1240 100,00 418 100,00 250 100,00 268 100,00 200 100,00 103 100,00

F227
mögliche Mutationen 16 1,30 4 0,97 5 2,01 4 1,49 1 0,50 2 1,94
definitive Mutationen 14 1,14 4 0,97 5 2,01 2 0,75 1 0,50 2 1,94
F227 1216 98,70 408 99,03 244 97,99 264 98,51 198 99,50 101 98,06
Gesamtzahl Sequenzen 1232 100,00 412 100,00 249 100,00 268 100,00 199 100,00 103 100,00

Codon mit Wildtyp Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen (Gesamt) 1249 424 251 268 201 104

M41
Sequenzen an Pos. 41 1199 389 241 264 201 104

M41L 381 30,50 148 34,91 75 29,88 82 30,60 56 27,86 20 19,23
ML 11 0,88 4 0,94 1 0,40 5 1,87 1 0,50 0 0,00
IM 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
!L 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00

KTRM 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
!SWL 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00

- 50 4,00 35 8,25 10 3,98 4 1,49 0 0,00 0 0,00

E44 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 44 1199 388 241 264 201 104

E44D 88 7,05 39 9,2 13 5,18 21 7,84 10 4,98 5 4,81
A 42 3,36 13 3,07 12 4,78 10 3,73 7 3,48 0 0,00

ED 2 0,16 0 0 0 0,00 1 0,37 1 0,50 0 0,00
EA 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00
KE 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00

DAGV 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
- 50 4,00 36 8,49 10 3,98 4 1,49 0 0,00 0 0,00

K65 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 65 1202 388 241 267 201 104

K65R 25 2,00 2 0,47 0 0,00 2 0,75 11 5,47 10 9,62
KN 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00
- 47 3,76 36 8,49 10 3,98 1 0,37 0 0,00 0 0,00

D67 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 67 1199 386 241 266 201 104

D67N 318 25,46 104 24,53 78 31,08 62 23,13 53 26,37 21 20,19
D67G 30 2,40 7 1,65 7 2,79 7 2,61 6 2,99 3 2,88
ND 17 1,36 5 1,18 5 1,99 7 2,61 0 0,00 0 0,00
S 5 0,40 0 0 1 0,40 0 0,00 3 1,49 1 0,96
E 4 0,32 3 0,71 1 0,40 0 0,00 0 0,00 0 0,00
H 4 0,32 0 0 0 0,00 2 0,75 1 0,50 1 0,96

DG 2 0,16 1 0,24 1 0,40 0 0,00 0 0,00 0 0,00
SG 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00

- 50 4,00 38 8,96 10 3,98 2 0,75 0 0,00 0 0,00
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T69 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 69 1202 388 241 267 201 104
Insertion Codon 69

Insert. 69.01 8 0,64 1 0,24 1 0,40 1 0,37 5 2,49 0 0,00
Insertion C 6 0,48 1 0,24 1 0,40 1 0,37 3 1,49 0 0,00
Insertion S 1 0,08 0 0 0 0,00 0 0,00 1 0,50 0 0,00
Insertion A 1 0,08 0 0 0 0,00 0 0,00 1 0,50 0 0,00

Insert. 69.02 8 0,64 1 0,24 1 0,40 1 0,37 5 2,49 0 0,00
Insertion G 6 0,48 1 0,24 1 0,40 1 0,37 3 1,49 0 0,00
Insertion A 2 0,16 0 0 0 0,00 0 0,00 2 1,00 0 0,00

T69 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 69 1202 388 241 267 201 104

T69 D 57 4,56 25 5,9 7 2,79 9 3,36 11 5,47 5 4,81
T69 N 47 3,76 7 1,65 11 4,38 14 5,22 9 4,48 6 5,77
T69 S 16 1,28 2 0,47 2 0,80 3 1,12 7 3,48 2 1,92

ND 5 0,40 1 0,24 1 0,40 3 1,12 0 0,00 0 0,00
TA 4 0,32 3 0,71 0 0,00 1 0,37 0 0,00 0 0,00
A 3 0,24 1 0,24 1 0,40 0 0,00 0 0,00 1 0,96
G 3 0,24 2 0,47 0 0,00 1 0,37 0 0,00 0 0,00
NT 3 0,24 1 0,24 0 0,00 2 0,75 0 0,00 0 0,00
I 1 0,08 0 0 0 0,00 0 0,00 1 0,50 0 0,00

M 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
DA 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
TI 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
TS 1 0,08 0 0 0 0,00 0 0,00 1 0,50 0 0,00
- 47 3,76 36 8,49 10 3,98 1 0,37 0 0,00 0 0,00

K70 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 70 1202 388 241 267 201 104

K70R 215 17,21 66 15,57 56 22,31 32 11,94 41 20,40 20 19,23
KR 12 0,96 3 0,71 1 0,40 8 2,99 0 0,00 0 0,00
E 4 0,32 0 0 0 0,00 0 0,00 2 1,00 2 1,92
S 4 0,32 1 0,24 2 0,80 1 0,37 0 0,00 0 0,00
G 2 0,16 0 0 1 0,40 1 0,37 0 0,00 0 0,00
T 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00

KE 2 0,16 0 0 1 0,40 1 0,37 0 0,00 0 0,00
N 1 0,08 0 0 0 0,00 0 0,00 0 0,00 1 0,96

KREG 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
KTRI 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00

- 47 3,76 36 8,49 10 3,98 1 0,37 0 0,00 0 0,00

L74 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 74 1202 388 241 267 201 104

L74V 92 7,37 20 4,72 21 8,37 22 8,21 24 11,94 5 4,81
I 29 2,32 10 2,36 4 1,59 9 3,36 4 1,99 2 1,92
IL 5 0,40 2 0,47 1 0,40 2 0,75 0 0,00 0 0,00
VL 5 0,40 2 0,47 0 0,00 3 1,12 0 0,00 0 0,00
IVL 3 0,24 0 0 0 0,00 3 1,12 0 0,00 0 0,00
IV 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
- 47 3,76 36 8,49 10 3,98 1 0,37 0 0,00 0 0,00

V75 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 75 1202 388 241 267 201 104

V75M 33 2,64 9 2,12 9 3,59 8 2,99 6 2,99 1 0,96
I 25 2,00 7 1,65 3 1,20 4 1,49 6 2,99 5 4,81
T 9 0,72 3 0,71 3 1,20 2 0,75 0 0,00 1 0,96
A 2 0,16 0 0 2 0,80 0 0,00 0 0,00 0 0,00
L 2 0,16 0 0 0 0,00 0 0,00 0 0,00 2 1,92
S 2 0,16 1 0,24 0 0,00 0 0,00 1 0,50 0 0,00
IV 2 0,16 1 0,24 1 0,40 0 0,00 0 0,00 0 0,00
TA 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
IMV 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00

EAGV 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
- 47 3,76 36 8,49 10 3,98 1 0,37 0 0,00 0 0,00

Y115 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 115 1246 421 251 268 201 104

Y115F 9 0,72 0 0 2 0,80 0 0,00 4 1,99 3 2,88
YF 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00
- 3 0,24 3 0,71 0 0,00 0 0,00 0 0,00 0 0,00



Tabelle 1 a) NRTI-assoziierte Mutationen (Teil 2 - Fortsetzung)

88

Q151 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 151 1249 424 251 268 201 104

Q151M 22 1,76 8 1,89 3 1,20 3 1,12 4 1,99 4 3,85

M184 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 184 1249 424 251 268 201 104

M184V 491 39,31 162 38,21 102 40,64 98 36,57 83 41,29 46 44,23
I 27 2,16 8 1,89 6 2,39 6 2,24 7 3,48 0 0,00

MV 10 0,80 6 1,42 1 0,40 3 1,12 0 0,00 0 0,00
IM 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00
- 0 0,00 0 0 0 0,00 0 0,00 0 0,00 0 0,00

L210 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 210 1245 421 251 268 201 104

L210W 251 20,10 106 25 49 19,52 50 18,66 33 16,42 13 12,50
F 13 1,04 5 1,18 3 1,20 5 1,87 0 0,00 0 0,00

WL 5 0,40 0 0 1 0,40 4 1,49 0 0,00 0 0,00
Y 4 0,32 2 0,47 1 0,40 1 0,37 0 0,00 0 0,00
M 2 0,16 2 0,47 0 0,00 0 0,00 0 0,00 0 0,00
S 2 0,16 1 0,24 1 0,40 0 0,00 0 0,00 0 0,00
V 2 0,16 1 0,24 0 0,00 0 0,00 1 0,50 0 0,00
E 1 0,08 0 0 0 0,00 0 0,00 1 0,50 0 0,00
G 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00
!L 1 0,08 0 0 1 0,40 0 0,00 0 0,00 0 0,00
- 4 0,32 3 0,71 0 0,00 0 0,00 0 0,00 1 0,96

T215 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 215 1243 420 251 268 200 103

T215Y 383 30,66 158 37,26 80 31,87 77 28,73 52 25,87 16 15,38
F 96 7,69 27 6,37 28 11,16 18 6,72 16 7,96 7 6,73
S 11 0,88 3 0,71 2 0,80 2 0,75 2 1,00 2 1,92
E 10 0,80 2 0,47 6 2,39 1 0,37 1 0,50 0 0,00
I 9 0,72 0 0 2 0,80 2 0,75 0 0,00 5 4,81
C 7 0,56 3 0,71 2 0,80 0 0,00 1 0,50 1 0,96
D 3 0,24 1 0,24 1 0,40 1 0,37 0 0,00 0 0,00

NTYS 3 0,24 0 0 0 0,00 3 1,12 0 0,00 0 0,00
H 2 0,16 0 0 0 0,00 0 0,00 2 1,00 0 0,00
L 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00

TA 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00
TI 2 0,16 0 0 1 0,40 1 0,37 0 0,00 0 0,00

YC 2 0,16 1 0,24 1 0,40 0 0,00 0 0,00 0 0,00
V 1 0,08 0 0 0 0,00 0 0,00 0 0,00 1 0,96
IF 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
IV 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
LF 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
TS 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
YF 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
A 0 0,00 0 0 0 0,00 0 0,00 0 0,00 0 0,00
G 0 0,00 0 0 0 0,00 0 0,00 0 0,00 0 0,00
N 0 0,00 0 0 0 0,00 0 0,00 0 0,00 0 0,00
- 6 0,48 4 0,94 0 0,00 0 0,00 1 0,50 1 0,96

K219 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 219 1240 418 250 268 200 103

K219Q 150 12,01 45 10,61 36 14,34 29 10,82 27 13,43 13 12,50
E 65 5,20 18 4,25 13 5,18 15 5,60 14 6,97 5 4,81
N 61 4,88 20 4,72 15 5,98 13 4,85 11 5,47 2 1,92
R 36 2,88 11 2,59 10 3,98 9 3,36 3 1,49 3 2,88

KE 5 0,40 3 0,71 1 0,40 1 0,37 0 0,00 0 0,00
H 4 0,32 2 0,47 2 0,80 0 0,00 0 0,00 0 0,00

KQ 4 0,32 1 0,24 0 0,00 3 1,12 0 0,00 0 0,00
G 3 0,24 1 0,24 1 0,40 0 0,00 0 0,00 1 0,96
W 3 0,24 0 0 1 0,40 2 0,75 0 0,00 0 0,00
D 2 0,16 0 0 1 0,40 0 0,00 0 0,00 1 0,96

KR 2 0,16 1 0,24 1 0,40 0 0,00 0 0,00 0 0,00
T 1 0,08 0 0 0 0,00 0 0,00 0 0,00 1 0,96

ED 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
KN 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
NS 1 0,08 0 0 0 0,00 1 0,37 0 0,00 0 0,00
- 9 0,72 6 1,42 1 0,40 0 0,00 1 0,50 1 0,96

F227 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 227 1232 412 249 268 100,00 199 103

L 14 1,14 4 0,97 5 2,01 2 0,75 1 0,50 2 1,94
LF 2 0,16 0 0 0 0,00 2 0,75 0 0,00 0 0,00
- 17 1,38 12 2,91 2 0,80 0 0,00 2 1,01 1 0,97



Tabelle 1 b) NNRTI-assoziierte Mutationen:
Teil 1 - Verwertbare Sequenzen („Gesamtzahl Sequenzen“), Sequenzen mit Wildtyp (z.B. „M41“, 
„K65“ etc.), maximal („mögliche Mutationen“) und minimal („definitive Mutationen“) möglicher 
Anteil mutierter Sequenzen, geordnet nach Jahren.
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Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Anzahl Sequenzen 1249 424 251 268 201 104

Position Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
L100
Mögliche Mutationen 44 3,59 12 2,93 6 2,46 11 4,12 8 3,98 7 6,73
Definitive Mutationen 40 3,26 8 1,96 6 2,46 11 4,12 8 3,98 7 6,73
L100 1182 96,41 397 97,07 238 97,54 256 95,88 193 96,02 97 93,27
Gesamtzahl Sequenzen 1226 100,00 409 100,00 244 100,00 267 100,00 201 100,00 104 100,00

K101
Mögliche Mutationen 127 10,35 37 9,05 27 11,02 27 10,11 27 13,43 9 8,65
Definitive Mutationen 118 9,62 35 8,56 27 11,02 21 7,87 26 12,94 9 8,65
K101 1100 89,65 372 90,95 218 88,98 240 89,89 174 86,57 95 91,35
Gesamtzahl Sequenzen 1227 100,00 409 100,00 245 100,00 267 100,00 201 100,00 104 100,00

K103
Mögliche Mutationen 318 25,87 118 28,78 58 23,58 66 24,72 48 23,88 28 26,92
Definitive Mutationen 306 24,90 113 27,56 57 23,17 60 22,47 48 23,88 28 26,92
K103 911 74,13 292 71,22 188 76,42 201 75,28 153 76,12 76 73,08
Gesamtzahl Sequenzen 1229 100,00 410 100,00 246 100,00 267 100,00 201 100,00 104 100,00

V106
Mögliche Mutationen 46 3,72 15 3,61 10 4,03 15 5,60 4 1,99 2 1,92
Definitive Mutationen 40 3,23 13 3,13 9 3,63 12 4,48 4 1,99 2 1,92
V106 1191 96,28 400 96,39 238 95,97 253 94,40 197 98,01 102 98,08
Gesamtzahl Sequenzen 1237 100,00 415 100,00 248 100,00 268 100,00 201 100,00 104 100,00

Y181
Mögliche Mutationen 181 14,49 55 12,97 41 16,33 40 14,93 32 15,92 13 12,50
Definitive Mutationen 170 13,61 49 11,56 38 15,14 38 14,18 32 15,92 13 12,50
Y181 1068 85,51 369 87,03 210 83,67 228 85,07 169 84,08 91 87,50
Gesamtzahl Sequenzen 1249 100,00 424 100,00 251 100,00 268 100,00 201 100,00 104 100,00

Y188
Mögliche Mutationen 45 3,60 6 1,42 6 2,39 19 7,09 9 4,48 5 4,81
Definitive Mutationen 43 3,44 6 1,42 5 1,99 18 6,72 9 4,48 5 4,81
Y188 1204 96,40 418 98,58 245 97,61 249 92,91 192 95,52 99 95,19
Gesamtzahl Sequenzen 1249 100,00 424 100,00 251 100,00 268 100,00 201 100,00 104 100,00

G190
Mögliche Mutationen 144 11,53 55 12,97 27 10,76 29 10,82 23 11,44 10 9,62
Definitive Mutationen 136 10,89 51 12,03 27 10,76 25 9,33 23 11,44 10 9,62
G190 1105 88,47 369 87,03 224 89,24 239 89,18 178 88,56 94 90,38
Gesamtzahl Sequenzen 1249 100,00 424 100,00 251 100,00 268 100,00 201 100,00 104 100,00

P225
Mögliche Mutationen 17 1,38 7 1,69 2 0,80 6 2,24 1 0,50 1 0,97
Definitive Mutationen 16 1,29 6 1,45 2 0,80 6 2,24 1 0,50 1 0,97
P225 1219 98,62 407 98,31 248 99,20 262 97,76 200 99,50 102 99,03
Gesamtzahl Sequenzen 1236 100,00 414 100,00 250 100,00 268 100,00 201 100,00 103 100,00

M230
Mögliche Mutationen 6 0,49 2 0,49 3 1,20 1 0,37 0 0,00 0 0,00
Definitive Mutationen 4 0,33 1 0,25 2 0,80 1 0,37 0 0,00 0 0,00
M230 1221 99,51 406 99,51 246 98,80 267 99,63 201 100,00 101 100,00
Gesamtzahl Sequenzen 1227 100,00 408 100,00 249 100,00 268 100,00 201 100,00 101 100,00
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Position (Wildtyp) Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen (Gesamt) 1249 424 251 268 201 104

L100
Sequenzen an Pos. 100 1226 409 244 267 201 104

L100I 39 3,18 7 1,71 6 2,46 11 4,12 8 3,98 7 6,73
IL 3 0,24 3 0,73 0 0,00 0 0,00 0 0,00 0 0,00
V 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00

X (alle Aminosäuren) 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
- 23 1,88 15 3,67 7 2,87 1 0,37 0 0,00 0 0,00

K101 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 101 1227 409 245 267 201 104

K101E 56 4,56 20 4,89 10 4,08 10 3,75 11 5,47 5 4,81
Q 35 2,85 13 3,18 9 3,67 4 1,50 6 2,99 3 2,88
H 9 0,73 0 0,00 3 1,22 2 0,75 4 1,99 0 0,00
R 8 0,65 1 0,24 2 0,82 2 0,75 2 1,00 1 0,96

KE 6 0,49 2 0,49 0 0,00 4 1,50 0 0,00 0 0,00
A 3 0,24 0 0,00 0 0,00 2 0,75 1 0,50 0 0,00
P 3 0,24 1 0,24 1 0,41 0 0,00 1 0,50 0 0,00

KQ 2 0,16 0 0,00 0 0,00 1 0,37 1 0,50 0 0,00
V 1 0,08 0 0,00 0 0,00 0 0,00 0 0,00 1 0,96

EA 1 0,08 0 0,00 1 0,41 0 0,00 0 0,00 0 0,00
ED 1 0,08 0 0,00 1 0,41 0 0,00 0 0,00 0 0,00
KN 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00
QP 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00

- 22 1,79 15 3,67 6 2,45 1 0,37 0 0,00 0 0,00

K103 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 103 1229 410 246 267 201 104

K103N 280 22,78 105 25,61 51 20,73 56 20,97 43 21,39 25 24,04
R 15 1,22 4 0,98 5 2,03 2 0,75 2 1,00 2 1,92

KN 9 0,73 4 0,98 1 0,41 4 1,50 0 0,00 0 0,00
NS 3 0,24 1 0,24 1 0,41 0 0,00 1 0,50 0 0,00
H 2 0,16 0 0,00 0 0,00 0 0,00 2 1,00 0 0,00

KNRS 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00
D 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
I 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
Q 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00
S 1 0,08 0 0,00 0 0,00 0 0,00 0 0,00 1 0,96

KR 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00
RS 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00

NTSI 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
T 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00
- 20 1,63 14 3,41 5 2,03 1 0,37 0 0,00 0 0,00

V106 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 106 1237 415 248 268 201 104

V106I 24 1,94 9 2,17 4 1,61 9 3,36 2 1,00 0 0,00
A 10 0,81 4 0,96 4 1,61 1 0,37 0 0,00 1 0,96
M 5 0,40 0 0,00 1 0,40 1 0,37 2 1,00 1 0,96
AV 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00
IV 2 0,16 0 0,00 0 0,00 2 0,75 0 0,00 0 0,00
G 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00

MV 1 0,08 0 0,00 1 0,40 0 0,00 0 0,00 0 0,00
IVL 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00

- 12 0,97 9 2,17 3 1,21 0 0,00 0 0,00 0 0,00

Y181 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 181 1249 424 251 268 201 104

Y181C 166 13,29 48 11,32 38 15,14 36 13,43 31 15,42 13 12,50
YC 10 0,80 5 1,18 3 1,20 2 0,75 0 0,00 0 0,00

I 3 0,24 1 0,24 0 0,00 1 0,37 1 0,50 0 0,00
IF 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00
NY 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
- 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00
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Y188 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 188 1249 424 251 268 201 104

Y188L 34 2,72 5 1,18 5 1,99 14 5,22 6 2,99 4 3,85
H 4 0,32 1 0,24 0 0,00 1 0,37 1 0,50 1 0,96
C 2 0,16 0 0,00 0 0,00 2 0,75 0 0,00 0 0,00
D 1 0,08 0 0,00 0 0,00 0 0,00 1 0,50 0 0,00
F 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00

HL 1 0,08 0 0,00 0 0,00 0 0,00 1 0,50 0 0,00
!Y 1 0,08 0 0,00 1 0,40 0 0,00 0 0,00 0 0,00

HLYF 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00
- 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00

G190 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 190 1249 424 251 268 201 104

G190A 119 9,53 44 10,38 24 9,56 18 6,72 23 11,44 10 9,62
S 12 0,96 5 1,18 2 0,80 5 1,87 0 0,00 0 0,00

GA 7 0,56 3 0,71 0 0,00 4 1,49 0 0,00 0 0,00
RS 2 0,16 1 0,24 0 0,00 1 0,37 0 0,00 0 0,00
E 1 0,08 0 0,00 1 0,40 0 0,00 0 0,00 0 0,00
R 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00

AS 1 0,08 0 0,00 0 0,00 1 0,37 0 0,00 0 0,00
RG 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
C 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00
Q 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00
T 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00
V 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00
- 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0 0,00

P225 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 225 1236 414 250 268 201 103

P225H 16 1,29 6 1,45 2 0,80 6 2,24 1 0,50 1 0,97
HP 1 0,08 1 0,24 0 0,00 0 0,00 0 0,00 0 0,00
- 13 1,05 10 2,42 1 0,40 0 0,00 1 0,50 1 0,97

M230 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 225 1227 408 249 268 201 101

M230L 4 0,33 1 0,25 2 0,80 1 0,37 0 0,00 0 0,00
IM 2 0,16 1 0,25 1 0,40 0 0,00 0 0,00 0 0,00
- 22 1,79 16 3,92 2 0,80 0 0,00 3 1,49 1 0,99

Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Anzahl Sequenzen 1239 416 251 255 214 103

Position Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
L10
Sequenzen an Pos. 10 1239 416 251 255 214 103
mögliche Mutationen 439 35,43 155 37,26 77 30,68 99 38,82 68 31,78 40 38,83
definitive Mutationen 429 34,62 148 35,58 76 30,28 97 38,04 68 31,78 40 38,83
L10 800 64,57 261 62,74 174 69,32 156 61,18 146 68,22 63 61,17
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

I13
Sequenzen an Pos. 13 1239 416 251 255 214 103
mögliche Mutationen 366 29,54 96 23,08 73 29,08 81 31,76 77 35,98 39 37,86
definitive Mutationen 357 28,81 94 22,6 70 27,89 77 30,2 77 35,98 39 37,86
I13 873 70,46 320 76,92 178 70,92 174 68,24 137 64,02 64 62,14
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

G16
Sequenzen an Pos. 16 1239 416 251 255 214 103
mögliche Mutationen 73 5,89 21 5,05 8 3,19 21 8,24 18 8,41 5 4,85
definitive Mutationen 66 5,33 20 4,81 8 3,19 17 6,67 16 7,48 5 4,85
G16 1166 94,11 395 94,95 243 96,81 234 91,76 196 91,59 98 95,15
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100
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K20
Sequenzen an Pos. 20 1239 416 251 255 214 103
mögliche Mutationen 306 24,7 91 21,88 58 23,11 70 27,45 61 28,5 26 25,24
definitive Mutationen 293 23,65 88 21,15 57 22,71 61 23,92 61 28,5 26 25,24
K20 933 75,3 325 78,13 193 76,89 185 72,55 153 71,5 77 74,76
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

L24
Sequenzen an Pos. 24 1239 416 251 255 214 103
mögliche Mutationen 14 1,13 4 0,96 3 1,2 3 1,18 3 1,4 1 0,97
definitive Mutationen 11 0,89 3 0,72 3 1,2 2 0,78 3 1,4 0 0
L24 1225 98,87 412 99,04 248 98,8 252 98,82 211 98,6 102 99,03
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

D30
Sequenzen an Pos. 30 1239 416 251 255 214 103
mögliche Mutationen 37 2,99 10 2,4 8 3,19 10 3,92 6 2,8 3 2,91
definitive Mutationen 36 2,91 10 2,4 8 3,19 9 3,53 6 2,8 3 2,91
D30 1202 97,01 406 97,6 243 96,81 245 96,08 208 97,2 100 97,09
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

V32
Sequenzen an Pos. 32 1239 416 251 255 214 103
mögliche Mutationen 34 2,74 6 1,44 6 2,39 12 4,71 8 3,74 2 1,94
definitive Mutationen 31 2,5 5 1,2 6 2,39 10 3,92 8 3,74 2 1,94
V32 1205 97,26 410 98,56 245 97,61 243 95,29 206 96,26 101 98,06
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

L33
Sequenzen an Pos. 33 1239 416 251 255 214 103
mögliche Mutationen 99 7,99 18 4,33 11 4,38 32 12,55 31 14,49 7 6,8
definitive Mutationen 96 7,75 17 4,09 11 4,38 30 11,76 31 14,49 7 6,8
L33 1140 92,01 398 95,67 240 95,62 223 87,45 183 85,51 96 93,2
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

E35 Gesamtzeitraum Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 35 1239 416 251 255 214 103
mögliche Mutationen 434 35,03 137 32,93 93 37,05 93 36,47 74 34,58 37 35,92
definitive Mutationen 429 34,62 132 31,73 93 37,05 93 36,47 74 34,58 37 35,92
E35 805 64,97 279 67,07 158 62,95 162 63,53 140 65,42 66 64,08
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

M36
Sequenzen an Pos. 36 1239 416 251 255 214 103
mögliche Mutationen 525 42,37 146 35,1 108 43,03 112 43,92 110 51,4 49 47,57
definitive Mutationen 505 40,76 142 34,13 106 42,23 98 38,43 110 51,4 40 38,83
M36 714 57,63 270 64,9 143 56,97 143 56,08 104 48,6 54 52,43
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

R41
Sequenzen an Pos. 41 1239 416 251 255 214 103
mögliche Mutationen 462 37,29 142 34,13 93 37,05 86 33,73 87 40,65 54 52,43
definitive Mutationen 446 36 132 31,73 93 37,05 80 31,37 87 40,65 54 52,43
R41 777 62,71 274 65,87 158 62,95 169 66,27 127 59,35 49 47,57
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

K43
Sequenzen an Pos. 43 1239 416 251 255 214 103
mögliche Mutationen 73 5,89 28 6,73 15 5,98 14 5,49 12 5,61 4 3,88
definitive Mutationen 68 5,49 26 6,25 15 5,98 11 4,31 12 5,61 4 3,88
K43 1166 94,11 388 93,27 236 94,02 241 94,51 202 94,39 99 96,12
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

M46
Sequenzen an Pos. 46 1239 416 251 255 214 103
mögliche Mutationen 193 15,58 69 16,59 33 13,15 42 16,47 34 15,89 15 14,56
definitive Mutationen 186 15,01 65 15,63 32 12,75 41 16,08 33 15,42 15 14,56
M46 1046 84,42 347 83,41 218 86,85 213 83,53 180 84,11 88 85,44
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

I47
Sequenzen an Pos. 47 1239 416 251 255 214 103
mögliche Mutationen 31 2,5 3 0,72 6 2,39 11 4,31 7 3,27 4 3,88
definitive Mutationen 29 2,34 3 0,72 6 2,39 9 3,53 7 3,27 4 3,88
I47 1208 97,5 413 99,28 245 97,61 244 95,69 207 96,73 99 96,12
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

G48
Sequenzen an Pos. 48 1239 416 251 255 214 103
mögliche Mutationen 54 4,36 30 7,21 9 3,59 9 3,53 3 1,4 3 2,91
definitive Mutationen 50 4,04 28 6,73 8 3,19 9 3,53 2 0,93 3 2,91
G48 1185 95,64 386 92,79 242 96,41 246 96,47 211 98,6 100 97,09
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100
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I50
Sequenzen an Pos. 50 1239 416 251 255 214 103
mögliche Mutationen 18 1,45 1 0,24 3 1,2 10 3,92 3 1,4 1 0,97
definitive Mutationen 15 1,21 1 0,24 3 1,2 7 2,75 3 1,4 1 0,97
I50 1221 98,55 415 99,76 248 98,8 245 96,08 211 98,6 102 99,03
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

F53
Sequenzen an Pos. 53 1239 416 251 255 214 103
mögliche Mutationen 44 3,55 18 4,33 3 1,2 10 3,92 9 4,21 4 3,88
definitive Mutationen 41 3,31 17 4,09 3 1,2 8 3,14 9 4,21 4 3,88
F53 1195 96,45 398 95,67 248 98,8 245 96,08 205 95,79 99 96,12
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

I54
Sequenzen an Pos. 54 1239 416 251 255 214 103
mögliche Mutationen 186 15,01 51 12,26 34 13,55 47 18,43 39 18,22 15 14,56
definitive Mutationen 181 14,61 50 12,02 34 13,55 43 16,86 39 18,22 15 14,56
I54 1053 84,99 365 87,74 217 86,45 208 81,57 175 81,78 88 85,44
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

Q58
Sequenzen an Pos. 58 1239 416 251 255 214 103
mögliche Mutationen 60 4,84 16 3,85 9 3,59 14 5,49 14 6,54 7 6,8
definitive Mutationen 56 4,52 14 3,37 9 3,59 12 4,71 14 6,54 7 6,8
Q58 1179 95,16 400 96,15 242 96,41 241 94,51 200 93,46 96 93,2
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

D60
Sequenzen an Pos. 60 1239 416 251 255 214 103
mögliche Mutationen 115 9,28 31 7,45 23 9,16 26 10,2 21 9,81 14 13,59
definitive Mutationen 109 8,8 30 7,21 23 9,16 22 8,63 20 9,35 14 13,59
D60 1124 90,72 385 92,55 228 90,84 229 89,8 193 90,19 89 86,41
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

I62
Sequenzen an Pos. 62 1239 416 251 255 214 103
mögliche Mutationen 369 29,78 127 30,53 58 23,11 92 36,08 55 25,7 37 35,92
definitive Mutationen 354 28,57 126 30,29 55 21,91 82 32,16 54 25,23 37 35,92
I62 870 70,22 289 69,47 193 76,89 163 63,92 159 74,3 66 64,08
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

L63
Sequenzen an Pos. 63 1239 416 251 255 214 103
mögliche Mutationen 934 75,38 315 75,72 187 74,5 202 79,22 156 72,9 74 71,84
definitive Mutationen 928 74,9 315 75,72 186 74,1 198 77,65 155 72,43 74 71,84
L63 305 24,62 101 24,28 64 25,5 53 20,78 58 27,1 29 28,16
Gesamtzahl Sequenzen 1239 100 416 100 251 100 255 100 214 100 103 100

H69
Sequenzen an Pos. 69 1238 415 251 255 214 103
mögliche Mutationen 294 23,75 78 18,8 64 25,5 58 22,75 57 26,64 37 35,92
definitive Mutationen 294 23,75 78 18,8 64 25,5 58 22,75 57 26,64 37 35,92
H69 944 76,25 337 81,2 187 74,5 197 77,25 157 73,36 66 64,08
Gesamtzahl Sequenzen 1238 100 415 100 251 100 255 100 214 100 103 100

A71
Sequenzen an Pos. 71 1238 415 251 255 214 103
mögliche Mutationen 282 22,78 98 23,61 50 19,92 63 24,71 52 24,3 19 18,45
definitive Mutationen 271 21,89 93 22,41 48 19,12 59 23,14 52 24,3 19 18,45
A71 956 77,22 317 76,39 201 80,08 192 75,29 162 75,7 84 81,55
Gesamtzahl Sequenzen 1238 100 415 100 251 100 255 100 214 100 103 100

G73
Sequenzen an Pos. 73 1238 415 251 255 214 103
mögliche Mutationen 113 9,13 44 10,6 20 7,97 23 9,02 21 9,81 5 4,85
definitive Mutationen 112 9,05 44 10,6 19 7,57 23 9,02 21 9,81 5 4,85
G73 1125 90,87 371 89,4 231 92,03 232 90,98 193 90,19 98 95,15
Gesamtzahl Sequenzen 1238 100 415 100 251 100 255 100 214 100 103 100

T74
Sequenzen an Pos. 74 1238 415 251 255 214 103
mögliche Mutationen 142 11,47 55 13,25 25 9,96 29 11,37 24 11,21 9 8,74
definitive Mutationen 140 11,31 53 12,77 25 9,96 29 11,37 24 11,21 9 8,74
T74 1096 88,53 360 86,75 226 90,04 226 88,63 190 88,79 94 91,26
Gesamtzahl Sequenzen 1238 100 415 100 251 100 255 100 214 100 103 100

V77
Sequenzen an Pos. 77 1237 415 251 255 214 102
mögliche Mutationen 295 23,85 106 25,54 56 22,31 59 23,14 53 24,77 21 20,59
definitive Mutationen 283 22,88 104 25,06 55 21,91 51 20 52 24,3 21 20,59
V77 942 76,15 309 74,46 195 77,69 196 76,86 161 75,23 81 79,41
Gesamtzahl Sequenzen 1237 100 415 100 251 100 255 100 214 100 102 100
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V82
1236 414 251 255 214 102

mögliche Mutationen 177 14,32 65 15,7 29 11,55 39 15,29 31 14,49 13 12,75
definitive Mutationen 167 13,51 59 14,25 28 11,16 37 14,51 30 14,02 13 12,75
V82 1059 85,68 349 84,3 222 88,45 216 84,71 183 85,51 89 87,25
Gesamtzahl Sequenzen 1236 100 414 100 251 100 255 100 214 100 102 100

N83
1235 414 251 254 214 102

mögliche Mutationen 12 0,97 6 1,45 1 0,4 4 1,57 1 0,47 0 0
definitive Mutationen 9 0,73 4 0,97 1 0,4 3 1,18 1 0,47 0 0
N83 1223 99,03 408 98,55 250 99,6 250 98,43 213 99,53 102 100
Gesamtzahl Sequenzen 1235 100 414 100 251 100 254 100 214 100 102 100

I84
1235 414 251 254 214 102

mögliche Mutationen 104 8,42 35 8,45 17 6,77 23 9,06 22 10,28 7 6,86
definitive Mutationen 100 8,1 34 8,21 17 6,77 21 8,27 21 9,81 7 6,86
I84 1131 91,58 379 91,55 234 93,23 231 90,94 192 89,72 95 93,14
Gesamtzahl Sequenzen 1235 100 414 100 251 100 254 100 214 100 102 100

I85
1234 414 250 254 214 102

mögliche Mutationen 36 2,92 11 2,66 8 3,2 7 2,76 6 2,8 4 3,92
definitive Mutationen 32 2,59 8 1,93 8 3,2 6 2,36 6 2,8 4 3,92
I85 1198 97,08 403 97,34 242 96,8 247 97,24 208 97,2 98 96,08
Gesamtzahl Sequenzen 1234 100 414 100 250 100 254 100 214 100 102 100

N88
1233 413 250 254 214 102

mögliche Mutationen 44 3,57 11 2,66 12 4,8 10 3,94 7 3,27 4 3,92
definitive Mutationen 43 3,49 10 2,42 12 4,8 10 3,94 7 3,27 4 3,92
N88 1189 96,43 402 97,34 238 95,2 244 96,06 207 96,73 98 96,08
Gesamtzahl Sequenzen 1233 100 413 100 250 100 254 100 214 100 102 100

L90
1231 412 249 254 214 103

mögliche Mutationen 318 25,83 122 29,61 64 25,7 59 23,23 53 24,77 21 20,39
definitive Mutationen 311 25,26 120 29,13 61 24,5 57 22,44 53 24,77 21 20,39
L90 913 74,17 290 70,39 185 74,3 195 76,77 161 75,23 82 79,61
Gesamtzahl Sequenzen 1231 100 412 100 249 100 254 100 214 100 103 100

Sequenzen an Pos. 82

Sequenzen an Pos. 83

Sequenzen an Pos. 84

Sequenzen an Pos. 85

Sequenzen an Pos. 88

Sequenzen an Pos. 90

Codon mit Wildtyp Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzenanzahl 1239 416 251 255 214 103

L10
Sequenzen an Pos. 10 1239 416 251 255 214 103

L10I 289 23,33 114 27,4 54 21,51 54 21,18 42 19,63 25 24,27
V 89 7,18 22 5,29 15 5,98 28 10,98 13 6,07 11 10,68
F 40 3,23 9 2,16 7 2,79 7 2,75 13 6,07 4 3,88
IL 6 0,48 5 1,2 0 0 1 0,39 0 0 0 0
IV 6 0,48 0 0 0 0 6 2,35 0 0 0 0
IF 2 0,16 0 0 0 0 2 0,78 0 0 0 0
VL 2 0,16 0 0 1 0,4 1 0,39 0 0 0 0
M 1 0,08 1 0,24 0 0 0 0 0 0 0 0
R 1 0,08 1 0,24 0 0 0 0 0 0 0 0

VF 1 0,08 1 0,24 0 0 0 0 0 0 0 0
ILF 1 0,08 1 0,24 0 0 0 0 0 0 0 0
ILV 1 0,08 1 0,24 0 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0

I13 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 13 1239 416 251 255 214 103

I13V 353 28,49 91 21,88 70 27,89 76 29,8 77 35,98 39 37,86
IV 9 0,73 2 0,48 3 1,2 4 1,57 0 0 0 0
A 4 0,32 3 0,72 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

G16 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 16 1239 416 251 255 214 103

G16E 51 4,12 16 3,85 7 2,79 13 5,1 10 4,67 5 4,85
A 12 0,97 1 0,24 1 0,4 4 1,57 6 2,8 0 0

EG 7 0,56 1 0,24 0 0 4 1,57 2 0,93 0 0
R 2 0,16 2 0,48 0 0 0 0 0 0 0 0
Q 1 0,08 1 0,24 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0



Tabelle 2) PI-assoziierte Mutationen (Teil 2 - Fortsetzung)

95

K20 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 20 1239 416 251 255 214 103

K20I 102 8,23 29 6,97 23 9,16 17 6,67 23 10,75 10 9,71
R 89 7,18 21 5,05 16 6,37 23 9,02 20 9,35 9 8,74
M 34 2,74 15 3,61 4 1,59 8 3,14 6 2,8 1 0,97
T 33 2,66 14 3,37 6 2,39 5 1,96 6 2,8 2 1,94
V 25 2,02 5 1,2 5 1,99 7 2,75 4 1,87 4 3,88

KR 6 0,48 2 0,48 0 0 4 1,57 0 0 0 0
L 4 0,32 1 0,24 2 0,8 0 0 1 0,47 0 0
E 2 0,16 1 0,24 0 0 0 0 1 0,47 0 0

KM 2 0,16 0 0 1 0,4 1 0,39 0 0 0 0
KT 2 0,16 0 0 0 0 2 0,78 0 0 0 0

KTR 2 0,16 0 0 0 0 2 0,78 0 0 0 0
IV 1 0,08 1 0,24 0 0 0 0 0 0 0 0
ML 1 0,08 0 0 1 0,4 0 0 0 0 0 0
NK 1 0,08 1 0,24 0 0 0 0 0 0 0 0
RM 1 0,08 0 0 0 0 1 0,39 0 0 0 0
TI 1 0,08 1 0,24 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

L24 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 24 1239 416 251 255 214 103

L24I 8 0,65 1 0,24 3 1,2 2 0,78 2 0,93 0 0
F 3 0,24 2 0,48 0 0 0 0 1 0,47 0 0
IL 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0

IVL 1 0,08 0 0 0 0 0 0 0 0 1 0,97
- 0 0 0 0 0 0 0 0 0 0 0 0

D30 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 30 1239 416 251 255 214 103

D30N 35 2,82 9 2,16 8 3,19 9 3,53 6 2,8 3 2,91
Y 1 0,08 1 0,24 0 0 0 0 0 0 0 0

ND 1 0,08 0 0 0 0 1 0,39 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0

V32 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 32 1239 416 251 255 214 103

V32I 27 2,18 4 0,96 6 2,39 8 3,14 7 3,27 2 1,94
GV 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0
A 1 0,08 0 0 0 0 1 0,39 0 0 0 0
E 1 0,08 0 0 0 0 0 0 1 0,47 0 0
G 1 0,08 1 0,24 0 0 0 0 0 0 0 0
IV 1 0,08 0 0 0 0 1 0,39 0 0 0 0

EAG 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

L33 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 33 1239 416 251 255 214 103

L33F 59 4,76 4 0,96 9 3,59 19 7,45 23 10,75 4 3,88
I 18 1,45 5 1,2 2 0,8 5 1,96 5 2,34 1 0,97
V 15 1,21 6 1,44 0 0 4 1,57 3 1,4 2 1,94
IV 3 0,24 1 0,24 0 0 2 0,78 0 0 0 0
LF 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0
M 1 0,08 1 0,24 0 0 0 0 0 0 0 0
IL 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

E35 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 35 1239 416 251 255 214 103

E35D 408 32,93 128 30,77 87 34,66 88 34,51 70 32,71 35 33,98
N 14 1,13 1 0,24 4 1,59 4 1,57 3 1,4 2 1,94
G 3 0,24 0 0 2 0,8 0 0 1 0,47 0 0
E! 2 0,16 2 0,48 0 0 0 0 0 0 0 0
ED 2 0,16 2 0,48 0 0 0 0 0 0 0 0
A 1 0,08 1 0,24 0 0 0 0 0 0 0 0
K 1 0,08 1 0,24 0 0 0 0 0 0 0 0
Q 1 0,08 0 0 0 0 1 0,39 0 0 0 0
V 1 0,08 1 0,24 0 0 0 0 0 0 0 0

EAG 1 0,08 1 0,24 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

M36 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 36 1239 416 251 255 214 103

M36I 476 38,42 136 32,69 101 40,24 91 35,69 100 46,73 48 46,6
L 15 1,21 2 0,48 2 0,8 3 1,18 8 3,74 0 0
IM 14 1,13 1 0,24 1 0,4 12 4,71 0 0 0 0
V 9 0,73 4 0,96 2 0,8 2 0,78 1 0,47 0 0
IV 3 0,24 0 0 1 0,4 1 0,39 1 0,47 0 0
T 2 0,16 0 0 0 0 1 0,39 0 0 1 0,97

IML 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0
M 1 0,08 0 0 0 0 1 0,39 0 0 0 0
ML 1 0,08 1 0,24 0 0 0 0 0 0 0 0
MV 1 0,08 0 0 1 0,4 0 0 0 0 0 0
RM 1 0,08 1 0,24 0 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0
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R41 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 41 1239 416 251 255 214 103

R41K 435 35,11 126 30,29 93 37,05 79 30,98 85 39,72 52 50,49
KR 9 0,73 3 0,72 0 0 6 2,35 0 0 0 0
N 7 0,56 2 0,48 0 0 1 0,39 2 0,93 2 1,94
RI 7 0,56 7 1,68 0 0 0 0 0 0 0 0
I 4 0,32 4 0,96 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

K43 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 43 1239 416 251 255 214 103

K43R 38 3,07 16 3,85 11 4,38 2 0,78 6 2,8 3 2,91
T 24 1,94 6 1,44 3 1,2 9 3,53 5 2,34 1 0,97
E 2 0,16 1 0,24 0 0 0 0 1 0,47 0 0
N 2 0,16 2 0,48 0 0 0 0 0 0 0 0

KN 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0
I 1 0,08 1 0,24 0 0 0 0 0 0 0 0
Q 1 0,08 0 0 1 0,4 0 0 0 0 0 0

KR 1 0,08 0 0 0 0 1 0,39 0 0 0 0
KT 1 0,08 1 0,24 0 0 0 0 0 0 0 0

KNE 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

M46 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 46 1239 416 251 255 214 103

M46I 113 9,12 41 9,86 22 8,76 21 8,24 18 8,41 11 10,68
L 70 5,65 24 5,77 10 3,98 17 6,67 15 7,01 4 3,88
IM 4 0,32 3 0,72 0 0 0 0 1 0,47 0 0
V 3 0,24 0 0 0 0 3 1,18 0 0 0 0

ML 3 0,24 1 0,24 1 0,4 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

I47 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 47 1239 416 251 255 214 103

I47V 29 2,34 3 0,72 6 2,39 9 3,53 7 3,27 4 3,88
MI 2 0,16 0 0 0 0 2 0,78 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

G48 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 48 1239 416 251 255 214 103

G48V 40 3,23 25 6,01 7 2,79 4 1,57 2 0,93 2 1,94
M 4 0,32 0 0 1 0,4 3 1,18 0 0 0 0
R 2 0,16 2 0,48 0 0 0 0 0 0 0 0
S 2 0,16 0 0 0 0 1 0,39 0 0 1 0,97

GV 2 0,16 1 0,24 1 0,4 0 0 0 0 0 0
E 1 0,08 1 0,24 0 0 0 0 0 0 0 0
I 1 0,08 0 0 0 0 1 0,39 0 0 0 0

RG 1 0,08 1 0,24 0 0 0 0 0 0 0 0
GAV 1 0,08 0 0 0 0 0 0 1 0,47 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0

I50 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 50 1239 416 251 255 214 103

I50V 14 1,13 1 0,24 3 1,2 7 2,75 3 1,4 0 0
L 1 0,08 0 0 0 0 0 0 0 0 1 0,97
IV 1 0,08 0 0 0 0 1 0,39 0 0 0 0
MI 1 0,08 0 0 0 0 1 0,39 0 0 0 0

MIV 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

F53 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 53 1239 416 251 255 214 103

F53L 35 2,82 15 3,61 3 1,2 5 1,96 9 4,21 3 2,91
Y 3 0,24 2 0,48 0 0 0 0 0 0 1 0,97

YSC 3 0,24 0 0 0 0 3 1,18 0 0 0 0
CF 1 0,08 0 0 0 0 1 0,39 0 0 0 0
LF 1 0,08 0 0 0 0 1 0,39 0 0 0 0
SF 1 0,08 1 0,24 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

I54 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 54 1239 416 251 255 214 103

I54V 109 8,8 35 8,41 19 7,57 26 10,2 21 9,81 8 7,77
L 31 2,5 6 1,44 3 1,2 8 3,14 10 4,67 4 3,88
M 24 1,94 3 0,72 8 3,19 7 2,75 5 2,34 1 0,97
T 9 0,73 5 1,2 2 0,8 0 0 1 0,47 1 0,97
S 5 0,4 0 0 2 0,8 2 0,78 1 0,47 0 0
IV 3 0,24 0 0 0 0 3 1,18 0 0 0 0
A 2 0,16 1 0,24 0 0 0 0 0 0 1 0,97
MI 1 0,08 0 0 0 0 1 0,39 0 0 0 0
TI 1 0,08 1 0,24 0 0 0 0 0 0 0 0
VL 1 0,08 0 0 0 0 0 0 1 0,47 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

Q58 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 58 1239 416 251 255 214 103

Q58E 55 4,44 13 3,13 9 3,59 12 4,71 14 6,54 7 6,8
EQ 3 0,24 2 0,48 0 0 1 0,39 0 0 0 0
K 1 0,08 1 0,24 0 0 0 0 0 0 0 0

QH 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0
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D60 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 60 1239 416 251 255 214 103

D60E 106 8,56 29 6,97 22 8,76 22 8,63 19 8,88 14 13,59
ED 5 0,4 1 0,24 0 0 3 1,18 1 0,47 0 0
N 2 0,16 1 0,24 1 0,4 0 0 0 0 0 0
G 1 0,08 0 0 0 0 0 0 1 0,47 0 0

NHD 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

I62 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 62 1239 416 251 255 214 103

I62V 348 28,09 125 30,05 55 21,91 79 30,98 52 24,3 37 35,92
IV 14 1,13 1 0,24 3 1,2 9 3,53 1 0,47 0 0
M 3 0,24 0 0 0 0 2 0,78 1 0,47 0 0
T 2 0,16 0 0 0 0 1 0,39 1 0,47 0 0
L 1 0,08 1 0,24 0 0 0 0 0 0 0 0
MI 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0

L63 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 63 1239 416 251 255 214 103

L63P 668 53,91 230 55,29 146 58,17 129 50,59 115 53,74 48 46,6
T 74 5,97 15 3,61 15 5,98 23 9,02 12 5,61 9 8,74
S 52 4,2 24 5,77 5 1,99 12 4,71 7 3,27 4 3,88
A 44 3,55 14 3,37 8 3,19 15 5,88 6 2,8 1 0,97
Q 33 2,66 11 2,64 2 0,8 7 2,75 7 3,27 6 5,83
V 11 0,89 3 0,72 0 0 4 1,57 2 0,93 2 1,94
H 9 0,73 5 1,2 1 0,4 0 0 2 0,93 1 0,97

CF 8 0,65 4 0,96 0 0 2 0,78 1 0,47 1 0,97
M 5 0,4 0 0 4 1,59 0 0 0 0 1 0,97
PL 5 0,4 0 0 0 0 4 1,57 1 0,47 0 0
E 3 0,24 1 0,24 1 0,4 0 0 0 0 1 0,97
I 3 0,24 1 0,24 1 0,4 0 0 1 0,47 0 0

AP 3 0,24 1 0,24 0 0 2 0,78 0 0 0 0
R 2 0,16 0 0 1 0,4 0 0 1 0,47 0 0

DVH 2 0,16 2 0,48 0 0 0 0 0 0 0 0
G 1 0,08 1 0,24 0 0 0 0 0 0 0 0
N 1 0,08 1 0,24 0 0 0 0 0 0 0 0

EQ 1 0,08 0 0 0 0 1 0,39 0 0 0 0
HY 1 0,08 0 0 0 0 1 0,39 0 0 0 0
IV 1 0,08 0 0 1 0,4 0 0 0 0 0 0
PS 1 0,08 0 0 0 0 1 0,39 0 0 0 0
TP 1 0,08 1 0,24 0 0 0 0 0 0 0 0
TS 1 0,08 1 0,24 0 0 0 0 0 0 0 0

EAQ 1 0,08 0 0 0 0 0 0 1 0,47 0 0
QHL 1 0,08 0 0 1 0,4 0 0 0 0 0 0
TIA 1 0,08 0 0 0 0 1 0,39 0 0 0 0
TPA 1 0,08 0 0 1 0,4 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0

H69 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 69 1238 415 251 255 214 103

H69K 228 18,42 52 12,53 52 20,72 44 17,25 51 23,83 29 28,16
N 31 2,5 14 3,37 5 1,99 7 2,75 2 0,93 3 2,91
Q 12 0,97 2 0,48 3 1,2 3 1,18 1 0,47 3 2,91
R 10 0,81 4 0,96 1 0,4 1 0,39 2 0,93 2 1,94
Y 10 0,81 5 1,2 3 1,2 2 0,78 0 0 0 0
L 1 0,08 0 0 0 0 0 0 1 0,47 0 0
S 1 0,08 0 0 0 0 1 0,39 0 0 0 0

KR 1 0,08 1 0,24 0 0 0 0 0 0 0 0
- 1 0,08 1 0,24 0 0 0 0 0 0 0 0

A71 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 71 1238 415 251 255 214 103

A71V 187 15,11 69 16,63 31 12,35 41 16,08 36 16,82 10 9,71
T 72 5,82 22 5,3 16 6,37 17 6,67 11 5,14 6 5,83
I 11 0,89 2 0,48 1 0,4 1 0,39 4 1,87 3 2,91

AV 5 0,4 2 0,48 1 0,4 2 0,78 0 0 0 0
TA 4 0,32 3 0,72 0 0 1 0,39 0 0 0 0
L 1 0,08 0 0 0 0 0 0 1 0,47 0 0

AP 1 0,08 0 0 0 0 1 0,39 0 0 0 0
TIA 1 0,08 0 0 1 0,4 0 0 0 0 0 0

- 1 0,08 1 0,24 0 0 0 0 0 0 0 0

G73 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 73 1238 415 251 255 214 103

G73S 70 5,65 30 7,23 10 3,98 14 5,49 13 6,07 3 2,91
T 31 2,5 9 2,17 7 2,79 7 2,75 6 2,8 2 1,94
A 7 0,57 4 0,96 1 0,4 1 0,39 1 0,47 0 0
C 2 0,16 1 0,24 1 0,4 0 0 0 0 0 0
ST 1 0,08 0 0 0 0 0 0 1 0,47 0 0

KNT 1 0,08 0 0 0 0 1 0,39 0 0 0 0
STG 1 0,08 0 0 1 0,4 0 0 0 0 0 0

- 1 0,08 1 0,24 0 0 0 0 0 0 0 0
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T74 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 74 1238 415 251 255 214 103

S 92 7,43 36 8,67 16 6,37 16 6,27 18 8,41 6 5,83
A 24 1,94 10 2,41 5 1,99 3 1,18 3 1,4 3 2,91

T74P 18 1,45 6 1,45 3 1,2 6 2,35 3 1,4 0 0
E 3 0,24 0 0 0 0 3 1,18 0 0 0 0
TS 2 0,16 2 0,48 0 0 0 0 0 0 0 0
K 1 0,08 0 0 1 0,4 0 0 0 0 0 0
!S 1 0,08 1 0,24 0 0 0 0 0 0 0 0
AS 1 0,08 0 0 0 0 1 0,39 0 0 0 0
- 1 0,08 1 0,24 0 0 0 0 0 0 0 0

V77 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 77 1237 415 251 255 214 102

V77I 278 22,47 104 25,06 54 21,51 50 19,61 49 22,9 21 20,59
IV 10 0,81 2 0,48 1 0,4 6 2,35 1 0,47 0 0
L 4 0,32 0 0 0 0 1 0,39 3 1,4 0 0

ILV 2 0,16 0 0 0 0 2 0,78 0 0 0 0
- 2 0,16 1 0,24 0 0 0 0 0 0 1 0,98
T 1 0,08 0 0 1 0,4 0 0 0 0 0 0

V82 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 82 1236 414 251 255 214 102

V82A 99 8,01 37 8,94 17 6,77 22 8,63 17 7,94 6 5,88
I 29 2,35 8 1,93 6 2,39 5 1,96 7 3,27 3 2,94
F 15 1,21 4 0,97 2 0,8 3 1,18 2 0,93 4 3,92
T 10 0,81 6 1,45 1 0,4 2 0,78 1 0,47 0 0
C 7 0,57 2 0,48 3 1,2 2 0,78 0 0 0 0
IV 6 0,49 3 0,72 2 0,8 1 0,39 0 0 0 0
- 3 0,24 2 0,48 0 0 0 0 0 0 1 0,98

GA 2 0,16 2 0,48 0 0 0 0 0 0 0 0
GV 2 0,16 2 0,48 0 0 0 0 0 0 0 0
G 1 0,08 1 0,24 0 0 0 0 0 0 0 0
L 1 0,08 0 0 0 0 0 0 1 0,47 0 0
M 1 0,08 1 0,24 0 0 0 0 0 0 0 0
S 1 0,08 0 0 0 0 1 0,39 0 0 0 0

AS 1 0,08 0 0 0 0 1 0,39 0 0 0 0
AV 1 0,08 1 0,24 0 0 0 0 0 0 0 0

GAV 1 0,08 0 0 1 0,4 0 0 0 0 0 0

N83 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 83 1235 414 251 254 214 102

- 4 0,32 2 0,48 0 0 1 0,39 0 0 1 0,98
N83H 2 0,16 0 0 1 0,4 1 0,39 0 0 0 0

I 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0
Y 2 0,16 1 0,24 0 0 1 0,39 0 0 0 0
D 1 0,08 0 0 0 0 0 0 1 0,47 0 0
S 1 0,08 1 0,24 0 0 0 0 0 0 0 0
T 1 0,08 1 0,24 0 0 0 0 0 0 0 0
NI 2 0,16 2 0,48 0 0 0 0 0 0 0 0

NSI 1 0,08 0 0 0 0 1 0,39 0 0 0 0

I84 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 84 1235 414 251 254 214 102

I84V 97 7,85 31 7,49 17 6,77 21 8,27 21 9,81 7 6,86
IV 4 0,32 1 0,24 0 0 2 0,79 1 0,47 0 0
- 4 0,32 2 0,48 0 0 1 0,39 0 0 1 0,98
C 1 0,08 1 0,24 0 0 0 0 0 0 0 0
L 1 0,08 1 0,24 0 0 0 0 0 0 0 0
M 1 0,08 1 0,24 0 0 0 0 0 0 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0

I85 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 85 1234 414 250 254 214 102

I85V 31 2,51 8 1,93 8 3,2 6 2,36 5 2,34 4 3,92
- 5 0,41 2 0,48 1 0,4 1 0,39 0 0 1 0,98

IV 3 0,24 3 0,72 0 0 0 0 0 0 0 0
N 1 0,08 0 0 0 0 0 0 1 0,47 0 0
NI 1 0,08 0 0 0 0 1 0,39 0 0 0 0

N88 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 88 1233 413 250 254 214 102

N88D 34 2,76 8 1,94 8 3,2 9 3,54 5 2,34 4 3,92
S 7 0,57 1 0,24 4 1,6 1 0,39 1 0,47 0 0
- 6 0,49 3 0,73 1 0,4 1 0,39 0 0 1 0,98
H 1 0,08 1 0,24 0 0 0 0 0 0 0 0
Y 1 0,08 0 0 0 0 0 0 1 0,47 0 0

ND 1 0,08 1 0,24 0 0 0 0 0 0 0 0

L90 Mutationen Gesamt Gesamt (%) 2000 2000 (%) 2001 2001 (%) 2002 2002 (%) 2003 2003 (%) 2004 2004 (%)
Sequenzen an Pos. 90 1231 412 249 254 214 102

L90M 305 24,78 118 28,64 59 23,69 56 22,05 52 24,3 20 19,61
- 8 0,65 4 0,97 2 0,8 1 0,39 0 0 1 0,97

ML 6 0,49 1 0,24 3 1,2 2 0,79 0 0 0 0
V 3 0,24 1 0,24 1 0,4 1 0,39 0 0 0 0
I 1 0,08 0 0 1 0,4 0 0 0 0 0 0
S 1 0,08 0 0 0 0 0 0 1 0,47 0 0
W 1 0,08 1 0,24 0 0 0 0 0 0 0 0
WL 1 0,08 1 0,24 0 0 0 0 0 0 0 0



Tabelle 6 – Prävalenz neu beschriebener Resistenz-relevanter Mutationen nach Saracino:
Für  die  entsprechende  RT-Positionen  sind  jeweils  die  Häufigkeit  des  Wildtyps,  der  neu 
beschriebenen Resistenz-Mutation, aller Mutationen und aller verwertbarer Sequenzen („Sequenzen 
gesamt“)  angegeben.  „Mischformen“  berücksichtigen  Sequenzen,  die  durch  degenerierte  Basen 
nicht eindeutig definiert sind und sowohl dem Wildtyp als auch einer Mutation entsprechen könnte.
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Position 20 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 944 83,47 301 85,03 190 81,55 206 83,40 166 85,13 80 79,21
K20R 179 15,83 51 14,41 39 16,74 39 15,79 29 14,87 21 20,79
Alle Mutationen 180 15,92 51 14,41 40 17,17 39 15,79 29 14,87 21 20,79
„Mischformen“ 7 0,62 2 0,56 3 1,29 2 0,81 0 0,00 0 0,00
Sequenzen gesamt 1131 100,00 354 100 233 100,00 247 100,00 195 100,00 101 100,00

Position 39 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 934 77,96 325 83,76 184 76,35 200 75,76 145 72,14 79 75,96
T39A 126 10,52 31 7,99 27 11,20 27 10,23 30 14,93 11 10,58
Alle Mutationen 252 21,04 59 15,21 56 23,24 57 21,59 55 27,36 25 24,04
„Mischformen“ 12 1,00 4 1,03 1 0,41 7 2,65 1 0,50 0 0,00
Sequenzen gesamt 1198 100,00 388 100 241 100,00 264 100,00 201 100,00 104 100,00

Position 43 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1024 85,40 327 84,28 205 85,06 220 83,33 177 88,06 94 90,38
K43E 89 7,42 27 6,96 23 9,54 23 8,71 13 6,47 3 2,88
K43Q 46 3,84 17 4,38 7 2,90 11 4,17 7 3,48 4 3,85
K43N 20 1,67 10 2,58 2 0,83 4 1,52 1 0,50 3 2,88
K43E/Q/N 155 12,93 54 13,92 32 13,28 38 14,39 21 10,45 10 9,62
Alle Mutationen 163 13,59 56 14,43 35 14,52 40 15,15 22 10,95 10 9,62
„Mischformen“ 12 1,00 5 1,29 1 0,41 4 1,52 2 1,00 0 0,00
Sequenzen gesamt 1199 100,00 388 100 241 100,00 264 100,00 201 100,00 104 100,00

Position 203 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1097 87,97 372 87,94 221 88,05 232 86,57 178 88,56 93 90,29
E203K 79 6,34 30 7,09 21 8,37 17 6,34 12 5,97 6 5,83
E203D 41 3,29 17 4,02 5 1,99 11 4,10 6 2,99 2 1,94
E203K/D 120 9,62 40 9,46 26 10,36 28 10,45 18 8,96 8 7,77
Alle Mutationen 140 11,23 47 11,11 29 11,55 31 11,57 23 11,44 10 9,71
„Mischformen“ 10 0,80 4 0,95 1 0,40 5 1,87 0 0,00 0 0,00
Sequenzen gesamt 1247 100,00 423 100 251 100,00 268 100,00 201 100,00 103 100,00

Position 208 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1147 92,05 393 93,13 230 91,63 244 91,04 183 91,04 96 93,20
H208Y 87 6,98 24 5,69 20 7,97 20 7,46 16 7,96 7 6,80
Alle Mutationen 92 7,38 26 6,16 21 8,37 22 8,21 16 7,96 7 6,80
„Mischformen“ 7 0,56 3 0,71 0 0,00 2 0,75 2 1,00 0 0,00
Sequenzen gesamt 1246 100,00 422 100 251 100,00 268 100,00 201 100,00 103 100,00

Position 218 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1170 94,13 401 95,48 233 92,83 254 94,78 187 93,50 94 91,26
D218E 70 5,63 18 4,29 17 6,77 14 5,22 12 6,00 9 8,74
Alle Mutationen 70 5,63 18 4,29 17 6,77 14 5,22 12 6,00 9 8,74
„Mischformen“ 3 0,24 1 0,24 1 0,40 0 0,00 1 0,50 0 0,00
Sequenzen gesamt 1243 100,00 420 100 251 100,00 268 100,00 200 100,00 103 100,00
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Position 101 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1099 89,64 372 90,95 218 88,98 240 89,89 174 86,57 95 91,35
K101E 56 4,57 20 4,89 10 4,08 10 3,75 11 5,47 5 4,81
K101Q 35 2,85 13 3,18 9 3,67 4 1,50 6 2,99 3 2,88
K101P 3 0,24 1 0,24 1 0,41 0 0,00 1 0,50 0 0,00
K101EQP 94 7,67 34 8,31 20 8,16 14 5,24 18 8,96 8 7,69
Alle Mutationen 118 9,62 35 8,56 27 11,02 21 7,87 26 12,94 9 8,65
„Mischformen“ 9 0,73 2 0,49 0 0,00 6 2,25 1 0,50 0 0,00
Sequenzen gesamt 1226 100,00 409 100,00 245 100,00 267 100,00 201 100,00 104 100,00

Position 221 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1182 95,40 401 95,93 239 95,60 251 93,66 191 95,50 100 97,09
H221Y 50 4,04 14 3,35 10 4,00 14 5,22 9 4,50 3 2,91
Alle Mutationen 51 4,12 14 3,35 11 4,40 14 5,22 9 4,50 3 2,91
„Mischformen“ 6 0,48 3 0,72 0 0,00 3 1,12 0 0,00 0 0,00
Sequenzen gesamt 1239 100,00 418 100,00 250 100,00 268 100,00 200 100,00 103 100,00

Position 223 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1186 95,80 401 96,16 237 94,80 255 95,15 194 97,00 99 96,12
K223E 18 1,45 5 1,20 6 2,40 3 1,12 2 1,00 2 1,94
K223Q 21 1,70 8 1,92 4 1,60 6 2,24 3 1,50 0 0,00
K223EQ 39 3,15 13 3,12 10 4,00 9 3,36 5 2,50 2 1,94
Alle Mutationen 49 3,96 14 3,36 13 5,20 12 4,48 6 3,00 4 3,88
„Mischformen“ 3 0,24 2 0,48 0 0,00 1 0,37 0 0,00 0 0,00
Sequenzen gesamt 1238 100,00 417 100,00 250 100,00 268 100,00 200 100,00 103 100,00

Position 228 Gesamt [%] 2000 [%] 2001 [%] 2002 [%] 2003 [%] 2004 [%]
Wildtyp 1087 88,37 370 90,02 222 89,16 237 88,43 168 84,42 90 87,38
L228H 76 6,18 27 6,57 13 5,22 12 4,48 19 9,55 5 4,85
L228R 58 4,72 13 3,16 12 4,82 13 4,85 12 6,03 8 7,77
L228HR 134 10,89 40 9,73 25 10,04 25 9,33 31 15,58 13 12,62
Alle Mutationen 136 11,06 41 9,98 26 10,44 25 9,33 31 15,58 13 12,62
„Mischformen“ 7 0,57 0 0,00 1 0,40 6 2,24 0 0,00 0 0,00
Sequenzen gesamt 1230 100,00 411 100,00 249 100,00 268 100,00 199 100,00 103 100,00
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