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Zusammenfassung

In dieser Arbeit untersuchen wir konvexe Unterkomplexe sphérischer Gebaude. Insbeson-
dere interessieren wir uns fiir eine Frage von J. Tits aus den 50er Jahren, die Zentrumsver-
mutung. Sie behauptet, dass ein konvexer Unterkomplex eines spharischen Gebaudes ein
Untergebéaude ist oder die Gebdude-Automorphismen, die den Unterkomplex erhalten,
einen gemeinsamen Fixpunkt besitzen.

Ein Beweis der Zentrumsvermutung fiir die Gebdude klassischen Typs (A4,, B, und
D,,) wurde von B. Miihlherr und J. Tits in [MTO06] gegeben. Der Fj-Fall wurde von C.
Parker und K. Tent in einem Vortrag in Oberwolfach prasentiert [PT08]. Beide Argumente
verwenden kombinatorische Methoden aus der Inzidenzgeometrie. B. Leeb und der Autor
gaben in [LR09] differentialgeometrische Beweise fiir die Félle Fy und Eg aus der Sicht der
Theorie metrischer Raume mit oberen Kriimmungsschranken.

In dieser Arbeit wird der differentialgeometrische Zugang weiterentwickelt. Unser
Hauptresultat ist der Beweis der Zentrumsvermutung fiir Gebdude vom Typ E; und Esg,
deren Geometrie noch wesentlich komplexer ist. Insbesondere wird dadurch der Beweis
der Zentrumsvermutung fiir alle dicken spharischen Gebaude abgeschlossen. Wir geben
auch einen kurzen differentialgeometrischen Beweis fiir die klassischen Typen. Schliesslich
zeigen wir noch, wie man die Falle F}, Eg und E; aus dem FEjg-Fall folgern kann.

Abstract

In this thesis we study convex subcomplexes of spherical buildings. In particular, we
are interested in a question of J. Tits which goes back to the 50’s, the so-called Center
Congecture. It states that a convex subcomplex of a spherical building is a subbuilding or
the building automorphisms preserving the subcomplex have a common fixed point in it.

A proof of the Center Conjecture for the buildings of classical types (A, B, and D,,)
has been given by B. Miihlherr and J. Tits in [MTO06]. The Fj-case was presented by C.
Parker and K. Tent in a talk in Oberwolfach [PT08]. Both approaches use combinatorial
methods from incidence geometry. B. Leeb and the author gave in [LR09] differential-
geometric proofs for the cases Fy and Fg from the point of view of the theory of metric
spaces with curvature bounded from above.

In this work we develop the differential-geometric approach further. Our main result
is the proof of the Center Conjecture for buildings of type E; and FEg, whose geometry
is considerably more complicated. In particular, this completes the proof of the Center
Conjecture for all thick spherical buildings. We also give a short differential-geometric
proof for the classical types. Finally, we show how the cases F}y, Fs and E; can be deduced
from the Eg-case.
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Introduction

Buildings were first introduced by J. Tits in order to give geometric interpretations to
algebraic groups and the pattern of certain kinds of subgroups. In this work, we will
only consider buildings of spherical type. From the point of view of differential geometry
these can be thought of as a special kind of singular metric spaces with upper curvature
bound one in the sense of Aleksandrov. They are characterized by the property that
they contain many top-dimensional convex subsets isometric to unit round spheres, the
so-called apartments (see Section for the formal definition). Spherical buildings occur
in Riemanninan geometry as boundaries at infinity of symmetric spaces of noncompact
type and play a prominent role in rigidity questions.

A spherical building carries a natural structure as a piecewise spherical polyhedral com-
plex. Its top-dimensional faces, the so-called chambers, are all isometric. Their isometry
type is called the model Weyl chamber. In this thesis we study closed convex subsets of
spherical buildings, which are also subcomplexes. In particular, we consider a conjecture
first proposed by J. Tits in the 50’s which is known as the Center Conjecture. It is now
formulated as follows (compare [MTO06] and [Se05, Conjecture 2.8]).

Conjecture 1 (Center Conjecture). Suppose that B is a spherical building and that
K C B is a convex subcomplex. Then K is a subbuilding or the action Stabaup)(K) ~ K
of the automorphisms of B preserving K has a fixed point.

A building automorphism is an isometry, which preserves the polyhedral structure of
the building. In particular, it induces an isometry of the model Weyl chamber, which may
be nontrivial. If it is trivial, the automorphism is type preserving. The isometries of the
model Weyl chamber can be identified with the symmetries of the Dynkin diagram.

A fixed point of the action Stabau(p)(K) ~ K is called a center of the subcomplex K.

Apparently, the first motivation of Tits for considering the Center Conjecture came
from algebraic group theory. Namely, he wanted to prove a result associating a parabolic
subgroup P to a unipotent subgroup U of a reductive algebraic group G [Ti62, Lemma
1.2]. This result is a direct consequence of the Center Conjecture. The desired parabolic
subgroup is obtained as the center of the fixed point set of the action U ~ B, where B is
the building associated to the group . This result was later obtained by Borel and Tits
in [BT71] using other methods.
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In Geometric Invariant Theory a special case of the Center Conjecture is used to find
parabolic subgroups that are most responsible for the instability of a point (see [Mu65]).
This special case was proven by Rousseau [Rou78] and Kempf [KeT78§].

From the point of view of metric geometry and CAT(1) spaces, a natural generalization
of Conjecture|l is to drop the assumption of K being a subcomplex and consider arbitrary
closed convex subsets C' C B. Such a subset C'is a CAT(1) space itself. We can also forget
the ambient building and look for fixed points for the whole group of isometries Isom(C).

Conjecture 2. If C' is a closed convexr subset of a spherical building B, then C' is a
subbuilding or the action Isom(C) ~ C has a fized point.

Conjecture 2 was answered positively in [BLO05| for the case dim(C) < 2. The strategy
of their proof is basically to consider a smallest Isom(C)-invariant closed convex subset
Y C C and then prove that if Y is not a subbuilding, it has intrinsic radius < 7 (by intrinsic
radius of Y we denote the infimum of the radii of balls centered at ¥ and containing Y').
If a CAT(1) space X has intrinsic radius < 7, it was also shown in [BL05] that the set Z
of circumcenters of X is not empty and has radius < 7, in particular, Z C X has a unique
circumcenter and it is fixed by I'som(X). It follows that Isom(C') fixes a point in Y C C.

If C' C B has intrinsic radius 7 then it must be a building (see [BLO06]) and if it has
intrinsic radius < 7, it satisfies the fixed point property asserted in Conjecture 2 as already
mentioned above. It is natural to ask if there are closed convex subsets between these two
possibilities or if Conjecture|2 is just a consequence of a more general “gap phenomenon”

(cf. [KL06, Question 1.5]).

Conjecture 3. If C' is a closed convexr subset of a spherical building B, then C is a
subbuilding or radc(C) < 7.

If dim(C') <1, then it is easy see that Conjecture [3 holds, namely, a one-dimensional
convex subset is a building or a tree of radius < 7. Another easy case is when the building
B is just a spherical Coxeter complex, i.e. B is a round sphere with curvature = 1, then
C'is also a round sphere with curvature = 1 or it has intrinsic radius < 7.

Unfortunately, we do not know more positive results for the Conjectures|2 and (3, other
than those mentioned above. Notice that we have the implications 3| = 2 = 1.

If K is a convex subcomplex of a reducible building B = Bjo---0By, then K decomposes
as a spherical join K = Kjo---0 K, where K; C B; is a convex subcomplex for ¢ =
1,...,k. Thus, the Center Conjecture easily reduces to the case of irreducible buildings.
For irreducible buildings of classical type (i.e. A,, B, and D,,) the Center Conjecture was
shown in [MT06]. The Fy-case was presented in a talk in Oberwolfach in [PT08]. The proof
uses the incidence-geometric realizations of the corresponding different types of buildings.

Our approach to these problems is of differential-geometric nature, using methods from
the theory of metric spaces with curvature bounded above. In Section [4.1| we give another
proof for the case of buildings of classical type from the point of view of comparison
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geometry. The cases of buildings of type F,; and Fjg are settled in [LR09], we reproduce the
proofs with some minor modifications in Sections 4.3/ and 4.4/ for the sake of completeness.

The main result in this work is:

Theorem 4. The Center Conjecture 1 holds for spherical buildings of type FEr and Fg.

We give first a direct proof of the Er;-case in Section 4.5. The FEg-case is proven in
Section |4.6, where we also give alternative proofs for the cases of buildings of type Fjy, Eg
and FE7 as consequences of the Fg-case. The case of buildings of type Hs can be easily
treated with our methods (Section [4.2)) or just be considered as a consequence of the main
result in [BLO5]. Hence we have the following result.

Corollary 5. The Center Conjecture!1 holds for spherical buildings without factors of type
H,.

Our proofs of these results actually show a more general version of the Center Conjecture
(something between Conjecture[l and 2| as far as group actions are concerned):

Corollary 6. If B is a spherical building without factors of type Hy and K C B is a
convex subcomplex, then K is a subbuilding or the action Autg(K) ~ K has a fized point.

The automorphisms in Autg(K) are defined to be isometries of K preserving its poly-
hedral structure induced by B and such that the permutation of the labelling of its vertices
is induced by a symmetry of the Dynkin diagram of B. They need not be extendable to
automorphisms of B (see Section 1.3).

While any spherical Coxeter complex is a spherical building, not all spherical Coxeter
complexes occur as Coxeter complexes for thick spherical buildings ([Ti77]). Namely, there
are no thick spherical buildings of type Hs (1=2-3) and Hy (3223 %), these being the only
cases. On the other hand, any spherical building has a canonical thick structure (depending
only on its isometry type) which results from restricting to a subgroup of the Weyl group
([Sch87], [KL98, Sec. 3.7]). The polyhedral structure thus obtained is (possibly) coarser.
The Center Conjecture is most natural when posed for thick spherical buildings, because
then K is a subcomplex of the natural polyhedral structure of B. In this case we have:

Corollary 7. The Center Conjecture|l holds for all thick spherical buildings.

A completely different approach to the special case of the Center Conjecture for spheri-
cal buildings B associated to algebraic groups GG and subcomplexes K which are fixed point
sets of the action of a subgroup H C G can be found in [BMR09]. They show that such
a subcomplex is a subbuilding or the action Stabg(K) ~ K fixes a point. In [BMRT09]
this result is extended to the action Stabauq)(K) ~ K.

We give now a short description of the structure of this work. In Chapter|l we present
the definitions and known facts used in this thesis about CAT(1) spaces, spherical Coxeter
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complexes and spherical buildings. In Chapter 2/ we study some geometric properties of the
different spherical Coxeter complexes. In Chapter 3 we gather some lemmata about convex
subcomplexes of buildings and isometric actions on them that will be used in the proofs
of the different cases of the Center Conjecture in Chapter 4. The Appendices collect all
the information on the spherical Coxeter complexes that is used to deduce the properties
in Chapter



Chapter 1

Preliminaries

1.1 CAT(1) spaces

A complete metric space X is said to be a CAT(1) space if it is m-geodesic and the geodesic
triangles of perimeter less than 27 are not thicker than those in the round sphere with
curvature = 1. The formal definition can be stated in several equivalent ways, we refer to
[BH99, Chapter II.1].

For two distinct points z,y in a CAT(1) space X at distance < 7w, we denote by zy the
unique segment connecting both points. Let m(z,y) denote the midpoint of the segment
xy. Two points at distance > 7 are called antipodal.

The link ¥, X at a point z € X is the space of directions at x with the angle metric. It
is again a CAT(1) space. If y # z and y is not antipodal to z, we denote with 7y € ¥, X
the direction at x of the segment zy.

A subset C' of a CAT(1) space is called conver, if for any x,y € C at distance < 7 the
segment zy is contained in C'. A closed convex subset of a CAT(1) space is itself a CAT(1)
space. A closed ball of radius < 7 in a CAT(1) space is always convex. The closed convex
hull CH(A) of a subset A is the smallest closed convex subset containing A.

Let A be a subset of a CAT(1) space X and let x € X. The radius of A with respect to
x is defined as rad(z, A) := sup{d(z, y)|y € A} and the circumradius (or just radius) of A
in X is radx(A) = inf{rad(z, A)|x € X}. For a closed convex subset C' the radius rads(C)
is called the intrinsic radius of C'. A point x € C'H(A), such that rad(x, A) = radcp(a)(A)
is called a circumcenter of A.

A classical result of comparison geometry states that a closed convex subset of a CAT(1)
space with intrinsic radius < 7 has a unique circumcenter (see e.g. [BH99, Ch. 2, Prop.

2.7)).

For more information and properties of CAT(1) spaces we refer to [BH99).



6 1. Preliminaries

1.2 Coxeter complexes

A spherical Cozeter complex (S, W) is a pair consisting of a round sphere S with curvature
= 1 together with a finite group of isometries W, called the Weyl group, generated by
reflections on great spheres of codimension one.

There is a natural structure of spherical polyhedral complex on S induced by W. The
spheres of codimension one, that are the fixed point sets of the reflections in W are called
the walls. The Weyl chambers are the closures of the connected components of S minus
the union of all the walls. A Weyl chamber is a convex spherical polyhedron. The Weyl
chambers are fundamental domains for the action of the Weyl group on S and therefore
isometric to the model Weyl chamber Aoq == S/W. A root is a top-dimensional hemi-
sphere bounded by a wall. A singular sphere is an intersection of walls. The intersections
of a singular sphere and a Weyl chamber is called a face of the Weyl chamber. A vertexis a
0-dimensional face. A segment contained in a singular 1-sphere is called a singular segment.
The face spanned by a point is the smallest face containing it. The type of a point x € S
is its image in the model Weyl chamber under the natural map g : S — S/W = A,04-

The geometry of a spherical Coxeter complex (S, W) can be encoded in a weighted
graph I', the so-called Dynkin diagram, as follows. The vertices of I' correspond to the
codimension one faces of A\,,,q. Two codimension one faces of A,,,s intersect with a
dihedral angle 7 for k > 2 an integer. Two vertices of I are connected by a simple edge if
the angle between the corresponding faces is 7 for k = 3; they are connected by a double
edge, if k = 4; by a triple edge, if K = 6; and by an edge with label k, if K =5,7,8,.... A
labelling by an index set I of the vertices of the Dynkin diagram induces a labelling of the
vertices of A\,,.q, by giving a vertex v € A\, the label of the vertex of I' corresponding
to the face opposite to v. We say that a vertex in S is an i-vertex for ¢ € I, if its type in
N oq has label 1.

The group Isom(A,,04) is canonically identified with the group of symmetries of the
Dynkin diagram. An automorphism of (S, W) is an isometry of S preserving its polyhedral
structure, that is, Aut(S, W) is the normalizer of W in I'som(S). The group Aut(S, W)/W
can be canonically identified with the isometries of the model Weyl chamber A,,,; and
therefore also with the symmetries of the Dynkin diagram. Notice that the antipodal
involution of S is always an automorphism of (S, W). The canonical involution of /\ .4 is
the image of the antipodal involution under the identification mentioned above.

The rank of (S, W) is the number of vertices of its Dynkin diagram. One can show
that rank(S,W) = dim(S) + 1 if and only if W has no fixed points in S, equivalently,
if and only if diam(Ameq) < 5. In this case the Dynkin diagram determines N pod UP
to isometry. Otherwise, rank(S,W) < dim(S) + 1 and the Coxeter complex (S, W) is
the spherical join of the spherical Coxeter complex with the same Dynkin diagram as
(S, W) and dimension rank(S,W) — 1, and a sphere of dimension dim(S) — rank(S, W).
In this case diam(Qpoq) = 7. If diam(Lpoq) = 5, then (S, W) decomposes as a spherical
join of spherical Coxeter complexes, their Dynkin diagrams correspond to the connected
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components of the Dynkin diagram of (S,W). Thus we say that a spherical Coxeter
complex (S, W) is arreducible if rank(S,W) = dim(S) + 1 and its Dynkin diagram is
connected. A Coxeter complex is irreducible if and only if diam(Ap.q) < 5.

The irreducible spherical Coxeter complexes of rank n > 3 have Dynkin diagrams of
type An, B, D, (for n > 4), H3, Hy, Fy, Es, E; and FEg (see Appendix A p. 83 for a

figure of the Dynkin diagrams).

Let x € S and let ¢ be the face spanned by x. The link .S decomposes as the
spherical join »,S = ¥,0 o v,0 of the sphere ¥,0 of directions tangent to ¢ and the
sphere v,0 of orthogonal directions. Suppose ' € S is another point spanning o, we
can canonically identify v,0 and v, o by identifying parallel directions (in the Riemannian
sense), or equivalently, if ¢, ¢ : [0,¢) — S are unit speed geodesics with ¢(0) = z, ¢(0) = 2
and orthogonal to o, we identify the directions ¢(0) and ¢(0) if and only if the convex
hulls CH(o U {¢(t)}) and CH(o U{&(t)}) coincide near x and z’ for small ¢ > 0. We can
therefore define the link ¥,S of ¢ in S as the identification space of the spheres v,0 for z € S
spanning o. It is again a spherical Coxeter complex with Weyl group W, := Staby (¢) and
model Weyl chamber Ag;’ds’w”) = EUASéZV). Its Dynkin diagram can be obtained from
the Dynkin diagram of (S, W) by deleting the vertices corresponding to the vertices of o.

Consider a singular sphere s C S. Then s has a natural structure of Coxeter complex
induced by (S, W) as follows. The induced Weyl group W C Isom(s) on s is the subgroup
generated by the reflections on s induced by isometries in W. Then (s, W) is a Coxeter
complex and we call it a Cozeter subcomplex of (S, W'). The polyhedral structure of (s, W)
is in general coarser than the one induced by the polyhedral structure of (S, W). A singular
sphere s’ C s of codimension one in s is a wall of (s, W) if and only if for any top-
dimensional face in s’ (with respect to the polyhedral structure of (S, W)) the two top-

dimensional faces in s (again with respect to (S,W)) adjacent to it have the same type,
(5;W)

i.e. the same image in A" 7.

Remark 1.2.1. The induced Weyl group W, can be strictly smaller than the image of
Staby (s) — Isom(s) as shown in the following example.

2 3 45 6 7

Example 1.2.2. Consider the Coxeter complex of type F; with the labelling 1

of its Dynkin diagram. We find a singular 1-sphere s of type 13756137561 (see Section[2.6).
The induced Weyl group Wy is trivial, but the antipodal involution on s is induced by
isometries in Staby (s).

We refer to [GB71] and [KL98, Sec. 3.1, 3.3] for further information on spherical
Coxeter complexes.
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1.3 Spherical buildings

We refer to [ABO8], [KL98] and [Ti74] for more information on spherical buildings. We
will consider spherical buildings from the point of view of CAT(1) spaces as presented in
[KL9g].

A spherical building B modelled on a spherical Coxeter complex (S, W) is a CAT(1)
space together with an atlas A of isometric embeddings S — B (the images of these
embeddings are called apartments) with the following properties: any two points in B
are contained in a common apartment, the atlas A is closed under precomposition with
isometries in W and the coordinate changes are restrictions of isometries in W. The empty
set is considered to be a building.

The polyhedral structure of (S, W) induces a polyhedral structure on the building B.
The objects (walls, roots,... ) defined for spherical Coxeter complexes can be defined for
the building B as the corresponding images in B.

A building is called thick if every wall is the boundary of at least three different roots.

Let a C B be an apartment and let ¢ C a be a Weyl chamber. There is a natural
1-Lipschitz retraction p,, : B — a, such that p,,|, = id,, defined as follows. For y € B
let € o be an interior point of o not antipodal to y. Then p,(y) is the point in a, such

— = ’ .. .
that d(z,y) = d(x, pur(y)) and 2y = xp,»(y). For an apartment o’ containing o, p, o|e is
the unique isometry from a’ to a fixing o pointwise.

There is also a natural 1-Lipschitz anisotropy map 0g : B — /\,,0q. It is characterized
by the property that for any chart ¢« : S — B we have 0 01 = 0. If 0 C «(S) is any
chamber, then we also have fg o0 :7! o pus),e = Op. The anisotropy map restricts to an
isometry on any Weyl chamber. We define the type of a point in B as its image under
0p. As for Coxeter complexes, a labelling of the vertices of the Dynkin diagram of (S, W)
induces a labelling of the vertices of B.

The following proposition gives a criterion for the existence of a structure as a spherical
building on a CAT(1) space in terms of the anisotropy map (compare with [KL98, Prop.
3.5.1]).

Proposition 1.3.1 ([LR09, Prop. 2.2]). Let (S™,W) be a spherical Cozeter complex
and let X be a CAT(1) space with a structure of spherical polyhedral complex of dimension
n. Suppose that there is a 1-Lipschitz map 0x : X — Dpoq = S/W, such that it restricts to
an isometry on any top-dimensional face of X. Suppose furthermore that any two points
of X lie in an isometrically embedded copy of S. Then X has a natural structure as a
spherical building modelled in (S, W) with anisotropy map Ox.

Proof. Let us call a top-dimensional face of X a chamber and an isometrically embedded
copy of S an apartment. By the assumptions, all chambers are isometric to A,,,q and the
apartments are tesselated by chambers. If 0,09 are two adjacent chambers contained in
an apartment a, then the isometry (0x/|s,) ' 00x|,, : 01 — 03 coincides with the reflection
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at the common face of codimension one. It follows that the tesselation of a by chambers
coincides with the polyhedral structure of (S, W), that is, there is an isometry ¢, : S — a
with fx o, = 6g, which is unique up to precomposition with isometries in W. All these
isometries constitute an atlas and the compatibility of the charts is clear. O]

If 2,2’ € B lie in a common Weyl chamber o, then the convex hull CH(z,2’,y) is a
spherical triangle for all y € B (just consider the apartment containing y and o).

Let z € B and let ¢ be the face of B spanned by x. The link ¥, B decomposes as
the spherical join ¥,B = Y¥,0 o v,0 of the sphere ¥,0 of directions tangent to ¢ and the
space v,o of orthogonal directions to o. If 2’ € B is another point spanning o, then the
spaces o and v,0 are canonically isometric as follows. If ¢, : [0,€) — B are unit speed
geodesics with ¢(0) = z, ¢(0) = 2’ and orthogonal to o, we identify the directions ¢(0)
and ¢/(0) if and only if there is a chamber 7 containing ¢(¢) and ¢(¢) for small t > 0 and
the directions ¢(0) and ¢(0) are parallel in 7, equivalently, if and only if the convex hulls
CH(ocU{¢(t)}) and CH(cU{c (t)}) coincide near x and 2’ for small ¢ > 0. We can therefore
define the link 3, B of ¢ in B as the corresponding identification space. It has a structure as
a spherical building modelled on the spherical Coxeter complex (X,-1(,)S, Stabw (¢ (0))),
where ¢ : S — B is a chart with o C ¢(.5).

For x € B and sufficiently small ¢ > 0, the ball B.(x) C B is canonically isometric to
the spherical cone of height € over the link ¥,B. Thus, spherical buildings have a local
conicality property.

A building automorphism is an isometry preserving the polyhedral structure. We denote
by Aut(B) the group of automorphisms of B and by Autg(B) C Aut(B) the subgroup of
type preserving automorphisms. An automorphism of B induces an isometry of the model
Weyl chamber A,,,q. This isometry is trivial if the automorphism is type preserving.
The quotient Aut(B)/Auty(B) embeds as a subgroup of Isom(A,.q). Notice that if the
building B is thick, then Aut(B) = Isom(B).

A convex subcomplexr K is a closed convex subset of B which is a subcomplex with
respect to the polyhedral structure of B. Let Autg(K) denote the group of isometries of
K preserving the polyhedral structure of K induced by the polyhedral structure of B and
such that the permutation in the labelling of the vertices of K is induced by a symmetry of
the Dynkin diagram of B. Notice that the automorphisms in Autg(K') are not necessarily
extendable to automorphisms of B, as the following example shows. In particular, Autp(K)
is possibly a larger group than Stabau s (k).

Example 1.3.2. Let 0 C B be a panel and let K, be the union of the Weyl chambers in B
containing o. It is a convex subcomplex of B and Autp(K,) is the group of permutations
of the set of Weyl chambers containing . This group is very large if e.g. the set of Weyl
chambers containing ¢ is uncountable.

Although the automorphisms in Autg(K) must not be extendable to automorphisms
of B, the group Autp(K) depends on the ambient building B in the sense illustrated by



10 1. Preliminaries

the following example.

Example 1.3.3. Let B be a building of type Fy and let K C B be a convex subcomplex.
We can embed B in a building B of type Eg, such that the polyhedral structure of B
coincides with the structure induced by the polyhedral structure of B. The image of K
under this embedding is a convex subcomplex of B. Then Autz(K) is the possible smaller
subgroup of Autg(K) of type preserving automorphisms. (See Sections 2.4/ and [4.6.1 for
more details.)

The simplicial convexr hull of a subset A C B is the smallest convex subcomplex con-
taining A.

A subbuilding is a convex subcomplex K of a building B, such that any two points
in K are contained in a singular sphere s C K of the same dimension as K. The next
result justifies the term subbuilding, namely, a subbuilding carries a natural structure as
a spherical building induced by B. Its associated Coxeter complex can be described as
follows. Let s C K be a singular sphere of dimension dim(K) and let a C B be an
apartment containing s. If ¢ : S — a is a chart, then (¢7'(s), W,-1(,)) is a Coxeter complex
unique determined up to isomorphism.

Proposition 1.3.4 ([LR09, Proposition 2.3]). The subbuilding K carries a natural
structure as a spherical building modelled on (v7(s), W,~15)).

Proof. Let a C B be an apartment containing s and let ¢ C a be a chamber, such that
T := 0 N s is a top-dimensional face of K. The retraction p,, : B — a restricts to a
retraction ps, : K — s of K in s. By Proposition 1.3.1 it suffices to give K a polyhedral
structure such that the map

. (s), W _
K 2n s L_l(s) — L_l(s)/bel(s) = Afnod( W1 (%)

restricts to an isometry in each top-dimensional face of this polyhedral structure.

Let s C K be a singular sphere containing 7. We can pull back the polyhedral struc-
ture of the Coxeter complex (17'(s), W,-1(5)) to s’ via the map ¢™! o p,|s. We call this
structure the Coxeter polyhedral structure on s’. With this structure it is automatic that
the restriction of the map (%) to s’ restricts to an isometry in each top-dimensional face of
s’. Thus it remains to show that the Coxeter polyhedral structures on all singular spheres
in K containing 7 match and yield a polyhedral structure on K.

Consider the polyhedral structure of K induced by B (for short, we say w.r.t. B).
Let ¢ be a codimension one face of K w.r.t. B. We say that K branches along ¢, if
K contains at least three distinct top-dimensional faces (w.r.t. B) 7y, 7o and 73 adjacent
to ¢. By the convexity of K and because the 7; are top-dimensional in K we conclude
that the unions 7; U 7; are convex and contained in apartments. Let ¢;; : S — a;; be
charts of apartments a;; containing 7; U 7; for ¢ # j. We may choose these charts, so that
112 (71) = t13 (71). This implies that 115 (72) = ¢35 (73) and in particular, Op(72) = 05(73).
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Analogously, 0p(m) = 0p(m). It follows that the 7; have the same type, i.e. the same
image under 0.

Let ' C K be a singular sphere containing 7. The discussion above implies that if K
branches along a codimension one face (w.r.t. B) ¢ C &', then ¢ is contained in a wall of &’
with respect to the Coxeter polyhedral structure. This implies that the intersection of two
singular spheres s1, s C K containing 7 intersect in a top-dimensional convex subcomplex
with respect to the Coxeter polyhedral structure, because any two top-dimensional faces
7; C s; (again w.r.t. the Coxeter structure) either have disjoint interiors or coincide since K
cannot branch in the interior of 7;. It follows that the Coxeter polyhedral structures on all
singular spheres in K containing 7 match and give K the desired polyhedral structure. [
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Chapter 2

Spherical Coxeter complexes

This section contains some geometric properties of spherical Coxeter complexes.

In our arguments later, we will need some information on singular spheres of codimen-
sion < 2 in the different Coxeter complexes.

If the Coxeter complex (S, W) is irreducible and its Dynkin diagram has no weights on
its edges, i.e. if it is of type A,, D,, Es, E7 or Eg, then it is easy to see, that the Weyl
group acts transitively on the set of roots ([GB71, Proposition 5.4.2]). In particular all
walls (singular spheres of codimension 1) are equivalent modulo the action of W. If there
is more than one orbit of roots, then we define the type of a wall as the type of the center
of the corresponding root. Note that this definition is independent of which of both roots
we take.

A singular sphere of codimension 2 is the intersection of two different walls. We define
the type of a sphere of codimension 2 as the type of the circle spanned by the centers of
the corresponding roots.

We gather in the next sections some of the geometric properties of the different Coxeter
complexes. This information can be deduced from the data in the Appendix [A.

2.1 The Coxeter complex of type A,

For n > 2 let (S, W4, ) be the spherical Coxeter complex of type A,, with Dynkin diagram

120710 Tt has dimension n — 1.

The Dynkin diagram has only one symmetry, it exchanges the vertices i < (n — i) for

i =1,...,[5]. This symmetry corresponds to the canonical involution of the Weyl chamber
A2 Tn particular, the antipodes of i-vertices are (n — i)-vertices for i = 1, ..., [5]-

The centers of the roots are the midpoints of edges of type 1n.

Let x € S be a 1-vertex and T the n-vertex antipodal to x. Any other vertex y # x, 7=
in S is adjacent either to = or 7.
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2.2 The Coxeter complex of type B,

For n > 2 let (S, Wpg, ) be the spherical Coxeter complex of type B,, with Dynkin diagram

1.2 3.0 Tt has dimension n — 1.

The Dynkin diagram of type B, for n > 3 has no symmetries, therefore all automor-
phisms of (S, Wp, ) are type preserving. If n = 2, the Dynkin diagram has one symmetry,
it exchanges the vertices 1 «» 2. The canonical involution of the Weyl chamber Af{;d is
trivial.

There are two orbits of roots under the action of the Weyl group. Their centers are
vertices of type n or n — 1 respectively.

2.3 The Coxeter complex of type D,

For n > 4 let (S, Wp,) be the spherical Coxeter complex of type D,, with Dynkin diagram
1
2>3=—‘3---”-i-". It has dimension n — 1.

The (n — 1)-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at a (n — 1)-vertex.

For n > 5 the Dynkin diagram has one symmetry: it exchanges the vertices 1 < 2
and fixes the others. This symmetry is induced by the canonical involution of the Weyl
chamber Aﬁ’;d if n is odd. If n is even, then the canonical involution is trivial. For n =4
the Dynkin diagram has six symmetries, they permute the vertices 1, 2, 4 and fix the vertex
3.

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

e Distances between two n-vertices z and '

Distance Simplicial convex hull of segments zx’
0,7

5 singular segment of type n(n — 1)n

e Distances between two (n — 1)-vertices x and z’:
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Distance Simplicial convex hull of segments xx’
0,

singular segment of type (n — 1)n(n — 1) for n > 4/
singular segment of type (n —1)(n—3)(n—1), if n > 6;

S

! ‘ifn=5.
singular segment of type 313 or 323, if n = 4.
N ne2
n— ‘%M’ -1
Tl ifn > 5
i n 3 n_1 n i
T ‘
3 3
if n=4, the simplicial convex hull of a segment zz" of
/o length % is 3-dimensional:
3 ()

A segment zz’ of length %” consists of two segments of
length % as above.

e Distances between two 1- (2)-vertices = and z”:

Distance Simplicial convex hull of segments xx’
n—4k
Zrci:%s(l w) [fff]” singular segment of type 1(2k + 1)1, (2(2k + 1)2 resp.)
=U L .. 5

e Distances between a 1- (2)-vertex x and a n-vertex y:

Distance Simplicial convex hull of segments xy
arccos(\/iﬁ) singular segment of type 1n, (2n resp.)
arccos(—\/iﬁ) singular segment of type 12n, (21n resp.)

The following properties of singular spheres in D,, can be easily seen in the vector space
realization of the Coxeter complex presented in Appendix [A.

A wall in S contains a singular sphere of codimension 1 spanned by n — 2 pairwise
orthogonal n-vertices.

The convex hull of n — 1 pairwise orthogonal n-vertices and their antipodes is a (n — 2)-
sphere, but it is not a wall, in particular, it is not a subcomplex. Its simplicial convex hull

is S.
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If n > 5 (n = 4) there are three (four) types of singular spheres of codimension 2. They
correspond to the two (three) types of segments connecting two (n — 1)-vertices at distance

5 and the unique type of segments connecting two (n — 1)-vertices at distance §. We say
that a sphere of the last type is a (n — 3)-sphere of type %.

A singular sphere of codimension 2 always contains a singular (n — 5)-sphere spanned
by n — 4 pairwise orthogonal n-vertices.

Let h be a singular hemisphere of codimension 1 bounded by a singular (n — 3)-sphere
s. It is the intersection of a wall and a root bounded by a different wall. If n > 6 and s is
of type (n — 1)n(n — 1) (or (n — 1)(n — 3)(n — 1)), then h is centered at a (n — 1)-vertex
x. The link ¥,k in the Coxeter complex 3,5 of type D,_2 o Ay is a wall of type n (or
(n—3)). If n > 5 and s is of type %, then h is centered at a point contained in a singular

segment of type n(n — 2), it is the midpoint of two (n — 1)-vertices at distance .

2.4 The Coxeter complex of type F}

Let (S, Wg,) be the spherical Coxeter complex of type Fy with Dynkin diagram & 23 .

It has dimension 3.

The Dynkin diagram has only one symmetry, it exchanges the vertices 1 <« 4 and
2 < 3. The canonical involution of the Weyl chamber Af,fod is trivial, in particular, the
antipodes of i-vertices are i-vertices.

There are two orbits of roots under the action of the Weyl group. Their centers are
vertices of type 1 or 4.

These are the one dimensional singular spheres in (S, Wg,):

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

e Distances between two 1- (4-)vertices x and z’:

Distance Simplicial convex hull of segments zx’
0,7

singular segment of type 121 (434)
singular segment of type 141 (414)
singular segment of type 12121 (43434)

SN SETE]
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e Distances between a 1-vertex x and a 4-vertex y:

Distance Simplicial convex hull of segments xy
T singular segment of type 14
5 singular segment of type 1324
‘%” singular segment of type 1414

Consider now the following labelling for the Dynkin diagram of type F: 2 &7 8

With this labelling the Coxeter complex of type Fj can be considered as a Coxeter sub-

2 3 45 6 7 8

complex of the Coxeter complex (S, Wg,) of type Eg with Dynkin diagram *— R
It is a singular sphere S’ spanned by a simplex o of type 2678.

Let us verify first that S’ is indeed tesselated by simplices of type 2678. Let ¢ €
{2,6,7,8} and let 7; be the face of o opposite to the vertex of type i. Let o; # o be the
simplex in S’ sharing the face 7;. We just have to check that the vertex of o; opposite to the
face 7; has type ¢ for i = 2,6,7,8. This can be seen by considering the Dynkin diagram of

the link in (S, Wg,) of the face 7;. For example, for X5, it is ?—LK:, and the antipodes
of 2-vertices in X,,.S are 2-vertices.

Finally, one has to check that the geometry of S’ correspond to the geometry of Fj.
Let A;; be the edge in ¢ opposite to the edge in o of type ij for i # j € {2,6,7,8}. The

™

l-sphere in ¥, S spanned by the edge of type ij has geometry I>(m), where - is the

2 3 4 5 6

angle between the faces 7; and 7;. For example, the 1-sphere in 3,,,5 (of type " 1 )

spanned by an edge of type 26 has type 2626262. Thus, the angle between the faces 7, and
7¢ is 5 and the vertices of the Dynkin diagram of S’ corresponding to vertices of type 2
and 6 are joined by a simple edge. By doing the same argument with the other edges of

o, it is easy to verify that S’ has Fj-geometry: 2 87 8

2.5 The Coxeter complex of type Ej

2 3 4 5 6

Let (S, Wg,) be the spherical Coxeter complex of type Eg with Dynkin diagram .
It has dimension 5.

The 1-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at a 1-vertex.

The Dynkin diagram has one symmetry, namely, the one that exchanges the vertices

2 < 6, 3 < 5 and fixes the 1- and 4-vertices. It corresponds to the canonical involution of
the Weyl chamber AZ6 |~ Therefore, the properties of i- and (8 —1)-vertices for i = 2,3, 5,6,

mod*
are dual to each other.

These are the one dimensional singular spheres in (.S, Wg,):
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We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

e Distances between two 1-vertices x and 2’

Distance Simplicial convex hull of segments zx’
0,7
z singular segmzent of type 141
2
6
%’T singular segment of type 14141

e Distances between two 2- (6)-vertices  and z”:

Distance Simplicial convex hull of segments zx’
0

arccos() singular segment of type 232 (656)
%’r singular segment of type 262 (626)

e Distances between a 2-vertex x and a 6-vertex y:

Distance Simplicial convex hull of segments xx’
T
arccos(—7) singular segment of type 216
z singular segment of type 26
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2.6 The Coxeter complex of type E;

Let (S, Wg.,) be the spherical Coxeter complex of type £7 with Dynkin diagram 23‘14._._1_5._*3_2
It has dimension 6.

The Dynkin diagram for E; has no symmetries, therefore all automorphisms of (S, Wg.)
are type preserving.

These are the one dimensional singular spheres in (S, Wg,):

The 2-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at a 2-vertex.

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

e Distances between two 2-vertices x and z':

Distance Simplicial convex hull of segments xx’
0,7
3 singular segment of type 232
7 singular segment of type 262
27” singular segment of type 23232

e Distances between two 7-vertices x and z':
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Distance Simplicial convex hull of segments zx’
0,7

arccos(%) singular segment of type 767

arccos(—%) singular segment of type 727

e Distances between a 2-vertex x and a 7-vertex y:

Distance

Simplicial convex hull of segments xy
singular segment of type 27

arccos( \/ig )

singular segment of type 217

s
2

singular segment of type 2767

arccos(— \/Lg)

e Distances between a 2-vertex x and a 6-vertex y:

Simplicial convex hull of segments xy

Distance

singular segment of type 26

us

4

arccos( ﬁi )
arccos(— ﬁi)

[E— arccos(—ﬁ) [ arccos(ﬁ) —
singular segment of type 276 /

singular segment of type 2436
singular segment of type 2626

~[g] woln

e Distances between two 1-vertices x and 2’
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Distance Simplicial convex hull of segments xx’
0,
singular segment of type 121 (171) /
1
arccos(1)
(arccos(—2))
F— arccos(—1) —— arccos(l) —
arccos(2)
(arccos(—2))
—  arccos(—2) ——arccos(2)—
arccos(7) singular segment of type 141 (15251)
(arccos(—2)) & & M

e Distances between two 1-vertices z

—
and 2/, such that the simplex containing zz’ in

its interior has no 1-, 2-, or 7-vertices:

Distance Simplicial convex hull of segments xx’
0,7
z singular segment of type 646
2?” singular segment of type 64646

2.7 The Coxeter complex of type Eg

2 3 4 5 6 7 8

Let (S, Wg,) be the spherical Coxeter complex of type Fg with Dynkin diagram )

It has dimension 7.

The Dynkin diagram for Eg has no symmetries, therefore all automorphisms of (S, Wg,)

are type preserving.

The 8-vertices are the vertices of 7o
centered at an 8-vertex.

ot type. All hemispheres bounded by walls are

These are the one dimensional singular spheres in (.S, Wg,):
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We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

e Distances between two 8-vertices x and 2’

Distance Simplicial convex hull of segments xx’
0,7
z singular segment of type 878
5 singular segment of type 828
%’r singular segment of type 87878

e Distances between two 2-vertices x and 2’
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Distance Simplicial convex hull of segments xx’
0,
arccos(3) singular segment of type 232

s

z singular segment of type 262

2

3

arccos(), arccos(—1)
Lalrccos(i) i arccos(—1) f
/2 singular segment of type 282 /
singular segment of type 25152
21 :
5 singular segment of type 26262
arccos(—2) singular segment of type 21812

e The possible distances between two 7-vertices x and z’ are arccos(%) for integer
—6 < k < 6. Here we will just need to describe the following segments:

Simplicial convex hull of segments

Distance Comments

There are two types of seg-
ments za’. The simplicial
convex hull C of za’ is 2- or
3-dimensional, resp.

For the case dim(C) = 3,
we present two perspectives
from the front and from be-
hind of a larger polyhedron
C’. Tt is the simplicial con-
vex hull of zz' U {y9, y5}.
We describe ¥,,,C" below.

()

arccos(—%)

arccos(—3)
We present here only the
segment xx’, such that the
arccos(—%) singular segment of type 7342437 & ' —

simplex containing xx’ does
not contain 2- or 8-vertices.
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e Distances >

(1)

For a detailed description of the 3- )
dimensional spherical polyhedra C' and "
C" we refer to Appendix A.7, pl93.

The possible lengths of segments zz’, such that 7 > d(x,2") > 7 and the simplex
é

containing the direction xx’ in its interior does not contain a 2- or 8-vertex, are only

arccos(—3) and arccos(—3).

Distances > 7 and < 7 between two l-vertices x and 2, such that the simplex

—
containing xx’ in its interior has no 2-, 7- or 8-vertex:

Distance Simplicial convex hull of segments zx’

arccos(—2)

27

3

5
arccos(—z)
" arccos(—3) |

arccos(—£) singular segment of type 1658561

T

and < 7 between two 6-vertices x and z’, such that the simplex

o

—
containing xx’ in its interior has no 1-, 2-, 7- or 8-vertices:



2.7 The Coxeter complex of type Ejy

25

Distance

Simplicial convex hull of segments xx’

arccos(—7)

singular segment of type 65856

)

arccos(—

o

e Distances between a 2-vertex x and an 8-vertex y:

Distance Simplicial convex hull of segments xy
T singular segment of type 28
arccos(ﬁi) singular segment of type 218

singular segment of type 2768

singular segment of type 23218

singular segment of type 2828

e Distances > 7 between a 7-vertex x and an 8-vertex y:

Distance

Simplicial convex hull of segments xy

51

6

singular segment of type 787878

arccos(— \/Lg)

singular segment of type 72768

arccos(—ﬁg)
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Chapter 3

Convex subcomplexes

In this section we will describe some general properties of convex subcomplexes of buildings,
as well as some results for buildings of specific types. These will be needed later in the
proof of the Center Conjecture.

Let K be a convex subcomplex of a spherical building B.

Let v € ¥, K. We say that v is d-extendable, if there is a segment xy C K of length d
and so that v = z7). We also say that v is extendable to a segment xy.

We say that a point x € K is interior in K, if the link ¥, K is a subbuilding of ¥, B.
Lemma 3.0.1. Let x129 C K be a segment. Suppose z is a point in the interior of the

simplicial convex hull of x1xs, which has an antipode z € K. Then x; has also an antipode
n K.

Proof. Let C' be the simplicial convex hull of xyzy. Notice that C' is contained in an
apartment and Y,C is a sphere. Let v; C K for ¢ = 1,2 be the geodesic connecting z and
z, such that the initial direction of 7; at z is the antipode in »,C' of zz,. Then z;2 U v; 18
a geodesic of length > 7. It is clear that ~; contains an antipode of x;. O]

The following results give us conditions, under which K satisfies the conclusions of the
Center Conjecture/1.

The next Lemma puts together the results [LR09, Prop. 2.4, Lemma 2.5]. Compare
also [Se05, Thm. 2.2] and [KL98, Prop. 3.10.3].

Lemma 3.0.2. The following assertions are equivalent:

(i) K is a subbuilding of B,
(ii) every vertex of K has an antipode in K,

(111) K contains a sphere of dimension equal to the dimension of K.



28 3. Convex subcomplexes

Proof. The implication (i) = (i7) is clear.

(17) = (igi). If dim(K) = 0, then K is a set of pairwise antipodal vertices and it
contains a 0-dimensional sphere. Suppose that the implication is true for subcomplexes of
dimension k and let K be a convex subcomplex of dimension £+ 1. Let z € K be a vertex
and let € be a vertex of ¥, K. This implies that there is a vertex y € K adjacent to x, such

that ¢ = zy. Let § € K be an antipode of . It follows that :z:—yA> € X, K is an antipode of
€. Hence all vertices in ¥, K have antipodes in ¥,K. Since dim(X,K) = k, it follows by
induction that ¥, K contains a sphere s of dimension k. Let ¥ € K be an antipode of x.
Then s is the link at = of a (k + 1)-sphere S C K through z and 7.

(13i) = (i). Let S C K be a top-dimensional sphere. First we proof the following
assertion: Any point x € K has an antipode in S. If dim(K) = 0 the assertion is clear.
Suppose that the assertion is true for subcomplexes of dimension k and let K be a convex
subcomplex of dimension k+1. Let y € S be any point. If y is antipodal to x, we are done.
Otherwise, consider the segment yx. By induction, the direction 2 has an antipode in the
sphere ¥,S. So we can extend the segment yx in S to a geodesic of length 7, and we have
found an antipode of x in S. Notice that the convex hull of a small neighborhood in S of
an antipode of x in S and x is a top-dimensional sphere through z. Let now z,y € K be
two arbitrary points. We know that there is a top-dimensional sphere S, C K containing
x. The same argument as above shows that there is a geodesic « of length 7 connecting y
and an antipode iy € S, of y, and 7 contains z. The convex hull of a small neighborhood of
y in S, and y is a top-dimensional sphere in K containing + and in particular it contains
x and y. Hence K is a subbuilding. O

The following result was stated in [LR09, Cor. 2.10] for convex subcomplexes, but
the proof works also for closed convex subsets. In [BLO5] a more general result is shown,
namely, for an arbitrary CAT(1) space C of finite dimension and the action I'som(C) ~ C.
They also show, that under these hypothesis the set of circumcenters of C' is nonempty.

Lemma 3.0.3. Let C C B be a closed conver subset. Suppose that radc(C) < § and
the set of circumcenters of C is nonempty, then the action Stabaup)(C) ~ C has a fized
point.

Proof. Let Z C C be the set of circumcenters of C'. It clearly has diameter < 7. Let z € Z
and let A C Z be the Stabaup)(C)-orbit of z. It also has diameter < 7. We need the
following result.

Sublemma 3.0.4. LetY C B be a subset containing points of only finitely many different
types and suppose that diam(Y) < 5. Then radg(Y') < 5. In particular, CH(Y') has a
unique circumcenter.

Proof. We use induction on the dimension of the building B. For dim(B) = 0 the assertion
is clear. Suppose now that B has dimension d > 0. Let y € Y. Notice that d(y,y’) takes
only finitely many values for all ¥’ € Y because Y contains points of finitely many different
types. It follows that if d(y,y’) < § for all ' € Y then rad(y,Y) < 7, so we are done.
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Otherwise the set Y/ C X, B of directions y—>y’ , where y € Y has distance 7 to y is
nonempty. Observe that Y’ contains points of only finitely many different types, and that
diam(Y) < 7 implies diam(Y') < § by triangle comparison. It follows by induction that
there is a direction ¢ € ¥, B, such that rad(§,Y”’) < 5. Again because d(y,y’) takes only
finitely many values for all ¢ € Y, we can choose an € > 0 small enough, so that for the

point x in B at distance € of y and yz = &, it holds rad(z,Y) < 5 O

End of proof of Lemma|3.0.3. By the sublemma it follows that A has radius < Z and

2
Stabauyp)(C) fixes the unique circumcenter of CH(A) C C. O

Lemma 3.0.5 ([LR09, Cor. 2.12]). If K contains a singular sphere of dimension
dim(K) — 1, then K is a subbuilding or Stabauys)(K) ~ K has a fized point.

Proof. Let o be a top-dimensional face of the singular sphere s of dimension dim(K) — 1
in K and let 7 be a top-dimensional face of K containing ¢. The convex hull of 7 and s
is a top-dimensional hemisphere h C K. Let x € h be the center of this hemisphere. If
rad(z, K) < 7, then by Lemma 3.0.3, Stabay.p)(K) fixes a point in K. Otherwise, there
is a y € K with d(x,y) > 5. By the same argument as in Lemma [3.0.2 ((iii) = (i)), we
find an antipode ¥ of y in the interior of h. The convex hull of a small neighborhood of
in h and y is a top-dimensional sphere in K, thus, K is a subbuilding by Lemma(3.0.2. [

Remark 3.0.6. The Lemmata [3.0.3 and [3.0.5/ remain true if we consider the action
Autp(K) n K instead of Stabaupy(K) ~ K (actually for the action I'som(K) ~ K
by [BL05]). The proofs are exactly the same.

3.1 Convex subcomplexes of buildings of type D,

In this section let L C B be a convex subcomplex of a building of type D,, for n > 4. We
1
. . . . 3 4 n-1n
use the following labelling of the Dynkin diagram 2:>-—~ .

Lemma 3.1.1. Let n = 4, i.e B s of type Dy and suppose that L contains a pair of
antipodal i-vertices and a pair of antipodal j-vertices fori # j andi,j € {1,2,4}. Then it
contains a singular circle of type 1241241.

Proof. By the symmetry of the Dynkin diagram of type D4, we may assume w.l.o.g. that
i=1and j = 2. Let a,a’ € L be the antipodal 1-vertices and let b, b’ € L be the antipodal
2-vertices. If b lies on a geodesic v connecting a and o', then ~ is of type 1421. The convex
hull of & and a small neighborhood of b in v is the desired circle.
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Let us suppose then, that d(a,b) + d(b,a’) > m. The
segments ba and ba’ are of type 241. Let ¢, ¢ be the 4-vertices
on the segments ba and ba’, respectively. Let d,d be the 2-
vertices on the segments ac’ and a’c, respectively. Since ¢, ¢
are adjacent to b, it follows that the segment cc’ is of type
434. Let m be the 3-vertex m(c, c’)_,> then the segment mb/

is of type 3232. This implies that mb’ must be antipodal to
—

md or md. In particular b is antipodal to d or d’. Either
way, we find the desired circle, as above. [l

Remark 3.1.2. The proof of Lemma [3.1.1/ shows that we can choose the circle in L to
contain the two antipodal ¢-vertices or the two antipodal j-vertices.

Lemma 3.1.3. If L contains a singular (n —2)-sphere S (i.e. S is a wall) and v € L is a
1-, 2- or n-vertex without antipodes in S, then XL contains an apartment. In particular,
x 15 an interior vertex in L.

Proof. Let first © be an n-vertex. The sphere S contains n — 2 pairwise orthogonal n-
vertices and their antipodes. They span a singular (n — 3)-sphere S’ C S. Since x has no
antipodes in S, then it must have distance 7 to all these n-vertices, and h := CH(S', r) is
a (n — 2)-dimensional hemisphere centered at z. Put D3 := As. The link ¥,B has type
D, 1. ¥,his a (n — 3)-sphere spanned by n — 2 pairwise orthogonal (n — 1)-vertices. This
(n — 3)-sphere is not a subcomplex, its simplicial convex hull is an apartment contained in
3.L.

We may now assume w.l.o.g. that x is a 1-vertex. We prove the assertion by induction
on n. Let B be of type D3 with Dynkin diagram 13 2. In this case the 1-dimensional
sphere S contained in L C B is a circle of type 1312321. Since the 1-vertex x has no
antipodes in 9, it must be adjacent to the 2-vertices in S and therefore it is also adjacent
to the 3-vertex between them. It follows that the convex hull CH (S, z) is a 2-dimensional
hemisphere with z in its interior. ¥,C'H(S,z) is an apartment in ¥, L.

Let now B be of type D,, for n > 4. Let y,y2 € S be two antipodal n-vertices. If
x lies on a geodesic of length 7 connecting 1; and ys, then the geodesic yixy, is of type
n2ln. The link ¥, L is of type D,_;. By induction it follows that ;23 L contains an
apartment, and therefore, 3, L contains also an apartment.

On the other hand, if d(z,y1) + d(x,y2) > m, then the
segments xy; are of type 12n. Let z; be the 2-vertex on
the segment xy;. Since z; is adjacent to y; we deduce that
21 # 2z9. Since the link 3. L has type A,,_1, it follows that the
segment T2z C Y.L s of type 232. Again by the induction
hypothesis, ;=% L contains an apartment, which in turn
implies that ;23, L contains an apartment. In particular
the 2-vertices 7z, are interior vertices in ¥, L. Thus, we can extend the segment zz;z25 to
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a geodesic in X, L of length 7 and type 232n. The convex hull of a small neighborhood in
¥, L of the interior vertex rz; and an antipode contains the desired apartment in £,L. [

Lemma 3.1.4. Let n > k > 3. Suppose that L contains a singular (n — k)-sphere S
spanned by n — k + 1 pairwise orthogonal n-vertices. Assume also that L contains a 1-
verter x and an antipode of x (of type 1 or 2 depending on the parity of n). Then L
contains a singular (n — k + 1)-sphere spanned by a simplex of type 1k(k+1)...(n — 1)n.

Proof. We prove this again by induction on n. Let B be of type D3 := A3 with Dynkin
diagram 1 2 2 that isn =k = 3.

The hypothesis in this case is that L contains a pair of an-
tipodal 3-vertices a,a’ and a pair of antipodal 1- and 2-vertices
b',b, respectively. If b lies on a geodesic connecting a and a',
then we find a circle of type 2321312 (compare with the proof of
Lemma [3.1.1). Otherwise, d(a,b) + d(b,a’) > m. The segments
ba and ba’ are of type 213. Let ¢, ¢ be the 1-vertices on these
segments. It is clear that ¢ # ¢ and the segment connecting
them must be of type 131. Let m := m(c, ). Since ¢ and ¢ are adjacent to b, it follows
that m is also adjacent to b. Let d,d’ be the 2-vertices in the segments of type 321 ac’ and
a’c. By considering the spherical triangles C'H(a, ¢, ') and CH(d/, ¢, '), we see that d and
d' are adjacent to m. The segment mb’ is of type 321. It follows that &' must be antipodal
to d or d (either bYmd or b'md’ is a geodesic of length 7) and we find again a circle in L
spanned by a simplex of type 13.

The argument for the induction step is very similar. Let n > 4. Let b,b' be a pair of
antipodal n-vertices in the (n — k)-sphere S C L and let 2’ be an antipode in L of the
1-vertex . If b lies on a geodesic connecting x and 2/, then this geodesic is of type 1n21,
1n12, 12n2 or 12nl depending on the parity of n and if b is adjacent to x or 2. It follows
that X, L or ¥y L contains a 1-vertex and an antipode of it.

If d(xz,b) + d(b,2’) > m, then the segment bz is of type
n21 and the segment bz’ is of type n12 or n2l. Let ¢, ¢ be
the vertices in the interior of the segments bz, bz’ and let d, d’
be the n-vertices on the segments ¢’z and cx’. Since ¢ and d
are adjacent to x, then they are adjacent or cxd is a segment.
In this last case, ¢ and ¢’ must be antipodal, but this cannot
happen, because they are adjacent to b. So c and d are adjacent.
This implies that the segment cc’ is of type 2(n — 1)1 or 2(n — 1)2. The (n — 1)-vertex
m = m(d,d) = m(c,) is adjacent to b. It follows that the segment mb’ is of type
(n—1)n(n—1)n. Again we conclude that ¥ is antipodal to d or d’. This implies that ¢’ lies
in a circle in L of type n21n21n or n21n12n. In particular ¥y L or 3, L contains a 1-vertex
and an antipode of it. Suppose w.l.o.g. that it holds for >, L. It follows, that L contains
a circle spanned by a simplex of type 1n. So, if & = n, we are done. Suppose then, that
k<n-1.
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We have seen that the link »,L of type D,,_; contains a 1-vertex and an antipode
of it. It also contains the singular (n — 1 — k)-sphere ¥,S spanned by n — k pairwise
orthogonal (n — 1)-vertices. By the induction assumption, ¥, L contains a singular (n — k)-
sphere spanned by a simplex of type 1k(k 4+ 1)...(n — 1). Hence, L contains a singular
(n — k + 1)-sphere spanned by a simplex of type 1k(k+1)...(n — 1)n. O

Remark 3.1.5. Lemma[3.1.1]is just the special version of Lemma3.1.4 where n = k = 4.
If £ =3 in Lemma/3.1.4, then the conclusion is that L contains a wall.

Remark 3.1.6. The proof of Lemma 3.1.4 shows that if n = k, we can choose the 1-sphere
in L to contain the 1-vertex x (this is true in general, but it is less obvious from the proof).

3.2 Convex subcomplexes of buildings of type FEj

In this section let L. C B be a convex subcomplex of a building of type Eg. We use the

2 3 4 5 6

following labelling of the Dynkin diagram -

Lemma 3.2.1. If L contains a singular 4-sphere S (i.e S is a wall) and x € L is a 2 or
6-verter without antipodes in S, then ¥, L contains an apartment. In particular, x is an
interior vertex in L.

Proof. By the symmetry of the Dynkin diagram for Fjy it suffices to show it for a 2-vertex
x € L. The wall S contains a pair of antipodal 2- and 6-vertices a and d', respectively.

The link ¥, B (X4 B) is of type D5 and Dynkin diagram j>‘3—§—§ (?—9—‘<i) Y.L and X,/ L

contain a singular 3-sphere X,5, respectively ¥, S. Suppose first that = lies on a geodesic
~ connecting a and a’. v is of type 23216 or 2626. Since x has no antipodes in S, the vertex
az of type 3 or 6 has no antipodes in $,5. It follows from Lemma [3.1.3, that 3,L
contairﬁ> an apartment and this implies in turn, that X3, L contains also an apartment.

Since za’ € ¥, L is antipodal to zd, this implies that ¥, L contains an apartment.

On the other hand, if d(z,a) 4+ d(z,a’) > m, then the seg-
ments xa and xa’ are of type 262 and 216. Let ¢ be the 6-
vertex on xa and let ¢ be the 1-vertex on za’. ¢ is adjacent to
a and ¢ is adjacent to a’, therefore ¢ and ¢’ cannot be adjacent
and since both are adjacent to x, it follows that the segment

x_é:(:_c7 is of type 631. It follows again from Lemma[3.1.3] that
Y.L and Y=Yy L contain a 3-sphere. This implies that

—
Y=, L and 2—>,; L contain a 3-sphere, in particular, z¢ and zc’ are interior vertices in

— —

¥, L. The segment z¢acd is of type 631 and since xc’ is interior, it can be extended in 3, L
to a segment of type 6316. This means that z¢ has an antipode in 3, L implying that ¥, L
contains a 4-sphere as desired. O
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Lemma 3.2.2. Suppose L contains 2-vertices x,x',z,2',w € L and 6-vertices y,y € L,
such that xyx' and zy'Z' are segments of type 262 and ywy' is a segment of type 626.
Assume further that y is not antipodal to z, 7z a%y’ is mot antipodal to x,x'. Then XL

contains a singular 2-sphere containing wy and wy' and spanned by a szmplex of type 156.

In particular, ¥, L contains a singular circle of type 656565656 containing wi and wy'.

Proof.

- — : — -
Notice that yy’ cannot be antipodal to yx or yz’ because
Yy is not antipodal to x,2’ and a segment of type 6262 has
length 7. Since ¥, B is a building of type D5 with Dynkin di-

agram ?—f’—‘-‘< the distances between 2-vertices are 0, 7,7, it

follows that d(yy L) = d(yy ,yx) = 7. Analogously, it holds
A I
dly'y,y'z) = d(y'y,y'?') = 3.

It follows that the convex hull CH (z,2’,y’) is the union of
the spherical triangles CH(z,y,y’) and CH(z',y,y’). Hence
CH(x,2',y') is an isosceles spherical triangle with sides of type
262, 216 and 216. The link X,CH (2',x,y’) is a singular circle
of type 6316136. This implies that the link 333, L contains
a pair of antipodal 3-vertices and Y= YL contalns a pair of
antipodal 1-vertices. Analogously, considering the spherical tri-
angle CH(z, 2',y) we deduce that Xz, L also contains a pair
of antipodal 1-vertices and E—E L also contains a pair of antipodal 3-vertices. Recall that

YzXw B is a building of type Dy with Dynkin diagram \!/ We may apply Lemmal3

to conclude that Y%, L contains a circle of type 1351351. This implies that ¥, L contains
a singular sphere spanned by a simplex of type 156. O]

3.3 Convex subcomplexes of buildings of type FE-

In this section let L C B be a convex subcomplex of a building of type E;. We use the

2 3 4 5 6 7

following labelling of the Dynkin diagram P

Lemma 3.3.1. If L contains a singular 5-sphere S (i.e. S is a wall) and x € L is a
T-vertex without antipodes in S, then Y.L contains an apartment. In particular, x is an
interior vertex in L.

Proof. The wall S contains a pair of antipodal 7-vertices aq,as. The link ¥, B is of type

3 4 5 6

Es with Dynkin diagram ’_‘_I_‘_' 34, L contains the wall 3,,S.
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Suppose w.l.o.g. that d(z,a;) = arccos(—%). Then the segment xa; is of type 727.
Since x has no antipodes in S it follows that the 2-vertex a;z has no antipodes in g, S.
We apply now Lemma 3.2.1 to deduce that ¥;7>,, L contains an apartment. This implies

in turn, that ¥z5; ¥, L contains an apartment. Therefore, if we find an antipode in ¥, L of

xray, we are done. This is trivial if x lies on a geodesic connecting a; and as.

Otherwise also d(z,ay) = arccos(—%). We may argue as
above and conclude that X3, L contains an apartment. In
particular zTas is an interior vertex in ¥,L. Notice that the
segment connecting m(x,a;) for i = 1,2 cannot be of type 232,
otherwise we find a curve of length < 7 connecting a; and a,.
Therefore, the segment Tajzas is of type 262. Since Tas is
interior, we can extend the segment za;zas to a segment of type 2626 and length 7 in ¥, L.
We have found an antipode of zaj. n




Chapter 4

The Center Conjecture

Let B be a spherical building and K C B a convex subcomplex. We say that K is a
counterexample to the Center Conjecture, if K is not a subbuilding and G' := Stab ) (K)
has no fixed points in K.

From the Lemmata [3.0.2, 3.0.3 and [3.0.5/ we can deduce some general properties of
convex subcomplexes K C B, which are counterexamples to the Center Conjecture:

1. If r € K and y € CH(G - ), then there exists 2’ € G -z, such that d(y,2") > 7. This
is just Lemma applied to CH(G - z). In particular, if z € K, then there exists
v' € G -z, such that d(x,2') > 7.

Another way to look at this is the following. If P is a property of vertices in K
invariant under the action of GG, then for every point y in the convex hull of the
P-vertices, we can find a P-vertex x with d(z,y) > 7.

2. K contains no sphere of dimension dim(K) — 1.

3. If K has dimension < 1 and is not a subbuilding, then by Lemma 3.0.2] it contains
no circles. It follows that K is a (bounded) tree and it has a unique circumcenter,
which is fixed by Isom(K). Hence, a counterexample K has dimension > 2. By the
main result in [BL05] mentioned in the introduction, a counterexample has actually
dimension > 3, but we do not use this fact in our proof.

Let A be the property of a point in K of not having antipodes in K. Let I be the
property of a point in x € K of being interior, i.e. ¥,K is a subbuilding of ¥,.B, or
equivalently, ¥, K contains a singular sphere of dimension dim(K) — 1.

Notice that an interior point in a counterexample K cannot have antipodes in K, that

is, I = A. Otherwise K would contain a singular sphere of dimension dim(K) and K
would be a subbuilding.
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4.1 The case of classical types

The Center Conjecture for buildings of classical types (A,, B, and D,,) was first proven by
Miihlherr and Tits in [MT06] using combinatorial methods and the incidence geometries
of the respective buildings. We present in this section a proof from the point of view of
CAT(1) spaces using methods of comparison geometry.

4.1.1 The A, -case
Theorem 4.1.1. The Center Congjecture!1 holds for spherical buildings of type A,.

Proof. Let K be a convex subcomplex of a spherical building B of type A, for n > 2
and suppose it is not a subbuilding. By Lemma 3.0.2, it follows that there are ver-
tices in K without antipodes in K. Let t; = min{ ¢ | 3 iA-vertex in K} and t, =
max { i | 3 iA-vertex in K}. Let x; € K be a t;A-vertex for i =1, 2.

Let t < t; and suppose that there exists a t-vertex y € K adjacent to ;. The minimality
of t;, implies that y has an antipode § € K. Notice that 27y is a t-vertex and the
—

antipode x1y has type t’ < tq, because ¥, B is of type A, _1 0 A,,_;, and the vertices of the
Dynkin diagram of the A;, _;-factor have labels 1,...,¢; — 1. It follows that the segment
21y C K has a t’-vertex z in its interior, and by Lemma 3.0.1] z cannot have antipodes in
K, contradicting the minimality of ;. Hence, x; has no vertices of type t < t; adjacent to
it, and analogously, x5 has no vertices of type t > t5 adjacent to it.

Consider the segment x;z5 embedded in the vector space realization of the Coxeter
complex of type A,, presented in Appendix A (we use the notation introduced there). We
may assume that z; = v, and z122 C (. It follows from the observation above, that
11T C By, (1,...,t1 —1). If 23 = (ay,...,a,41) € R™ this implies that a; = -+ = ay,
and ay, 41 < -+ < apqq. It follows that z5 is adjacent to x; or

To = (tg,...,tg,—(n—l— 1 —tz),,—(n—l—l —tg),tQ,...,tg).
——— — V ———
t1 to n+1—t1—to

Since there are exactly n 4+ 1 — t5 coordinates a; such that a; = t, it follows in particular
that if x; and x5 are not adjacent, then n + 1 — ¢, > ¢;. And since x; is not antipodal to
Zo, we have the strict inequality n + 1 > ¢ + 5.

Consider now the embedding of z1 25 such that x9 = vy, and xex; C (;,. The observation
above implies now, that zoz; C By, (ta +1,...,n+1). If 21 = (by,...,byy1) € R™L this

implies that b; < --- < b, and by, 11 = -+ = by41. It follows that x; is adjacent to x5 or
r1=(—Mn+1—-2t),....—(n+1—=1%1),t1,..., 81, —(n+1—=121),....,—(n+1—11)).
L= (k1) L)ty Lo t). (04 1)
t1+t27(n+1) n+1—t; n+l—tsy
Since there are exactly t; coordinates b; such that b; = —(n+1—t;), this implies that x; is

adjacent to x9 or t; > n+1—ts, but this inequality contradicts the inequality above. Hence,
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r1 and z; are adjacent and d(x1,x2) < 5. It follows that rad(z;, { t3_;A-vert. in K'}) < 5
fori=1,2.

Let G := Stabawyp)(K) and H := Stabauw,)(K), where Auty(B) are the type pre-
serving automorphisms of B. If G = H, then the convex hull of the t; A-vertices is a
G-invariant subset of K with radius < 7. It follows that G fixes a point in K. Otherwise
there is an automorphism ¢ € G — H. Since the Dynkin diagram for A,, has only one
symmetry, it follows that ¢ and H generate G and ¢ exchanges the vertices i <> (n+1—1)

fori=1,...,[5]

¢(x1) is a (n + 1 — t1)A-vertex in K, hence n + 1 — t; < ¢y by the maximality of t,.
¢(z2) is a (n + 1 — ty) A-vertex in K, therefore n 4+ 1 — to > ¢; by the minimality of ;. It
follows that ¢, + to = n + 1 and therefore ¢(x;) is a tyA-vertex.

Notice that G -2y = H - 21 U H - ¢(x1) and rad(y, H - 1) < § for all y € H - ¢(x1),
because y is a tyA-vertex. Let ¢; € CH(H - 1) be the unique circumcenter of the convex
hull CH(H - z1), in particular, H fixes ¢;. Notice that rad(ci, H - ¢(z1)) < 5. It follows
that d(ci,ca) < § where ¢y := ¢(c1) is the circumcenter of CH(H - ¢(x1)). Observe that
d(cy) = ¢*(c1) = c1 because ¢* € H. This implies that ¢ preserves the segment cicy and H
fixes it pointwise. In particular, H and ¢ fix the point m(cy, c2). Hence G fixes the point
m(c1, o) € K. O

4.1.2 The B,-case
Theorem 4.1.2. The Center Congecture|1| holds for spherical buildings of type B,.

Proof. If n = 2, then the subcomplex has dimension < 1 and we are done. So let K be a
convex subcomplex of a spherical building B of type B,, for n > 3 and suppose it is not a
subbuilding. By Lemma[3.0.2} it follows that there are vertices in K without antipodes in
K. Let t = max{ i | 3 iA-vertex in K}.

Let x € K be a tA-vertex. Suppose there is a t'-vertex y € K adjacent to x for ' > t.
It follows that y has an antipode ¥ € K. Notice that X,B is of type B;_; o A,,_; and the
Dynkin diagram of the A,_;-factor has labels ¢t + 1,...,n. This implies that the direction
x—@)\ has type t” > t, in particular the segment z7 contains a t’-vertex z in its interior. By

Lemma[3.0.1) z must be an A-vertex, contradicting the maximality of t. Hence there are
no vertices of type >t in K adjacent to x.

Let 2’ be another tA-vertex. Consider the segment zz’ embedded in the vector space
realization of the Coxeter complex of type B,, presented in Appendix|A. We may choose

the embedding, so that z = v, = (0,...,0,1,...,1) and xz’ C ; The observation above
1—t
n+1-—
implies that za’ C Gi(t +1,...,n). If 2’ = (a4,...,a,), this means that a; = -+ = a,.
If a, = 1, then = 2’ if a, = 0, then d(z,2) = §; and if @, = —1, then z and 2’ are

antipodal. Hence, d(z,2") < 7. It follows that the convex hull of the tA-vertices in K is a
G-invariant set with rad < 7. Therefore, G fixes a point in K by Lemma O
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4.1.3 The D,-case

Theorem 4.1.3. The Center Conjecture|1 holds for spherical buildings of type D,,.

Proof. Let K be a convex subcomplex of a spherical building B of type D, for n > 5.
Since D, has more symmetries, this case will be treated separately. Suppose K is not a
subbuilding. By Lemma|(3.0.2, it follows that there are vertices in K without antipodes in
K. Let t = max{ i | 3 iA-vertex in K}.

Suppose first that ¢ > 3. Then the set of tA-vertices is a G-invariant subset of K.

Let € K be a tA-vertex. Suppose there is a t'-vertex y € K adjacent to x for ¢’ > t.
It follows that y has an antipode iy € K. Notice that X, B splits a factor of type A,_; and
its Dynkin diagram has labels ¢ 4+ 1,...,n. This implies that the direction 9c_;/g>\ has type
t"” > t, in particular the segment xy contains a t”-vertex z in its interior. By Lemma[3.0.1}
z must be an A-vertex, contradicting the maximality of ¢. Hence there are no vertices of
type >t in K adjacent to z.

Let 2’ be another tA-vertex. Consider the segment xx’ embedded in the vector space
realization of the Coxeter complex of type D, presented in Appendix [A. Assume that

x =y = (0,...,0,1,...,1) and xz2’ C [ The observation above implies that za’ C
1—t
n+1-—
Gt +1,...,n). If 2’ = (ai,...,a,), this means that a; = -+ = a,. If a; = 1, then
r = ';if ay = 0, then d(x,2') = 7; and if a; = —1, then 2 and 2’ are antipodal. Hence,

d(z,2") < 7. Tt follows that the convex hull of the tA-vertices in K is a G-invariant set
with rad < 7. Therefore, G fixes a point in K by Lemma/3.0.3.

Suppose now that t < 2. If t = 1, then by the same argument as above, a 1A-vertex
cannot have vertices in K adjacent to it of type > 1. Hence K is 0-dimensional and we
are done in this case. Thus, t = 2. Let x € K be a 2A-vertex. By the same argument, x
is adjacent to vertices in K only of type 1 and n. Suppose dim(K) > 1, otherwise we are
done. This implies that there are vertices y and z in K of type 1 and n, respectively, such
that x,y, z are vertices of a simplex o. There is also a n-vertex z € K antipodal to z. The
convex hull CH(o,2) C K contains a 3-vertex adjacent to x. A contradiction.

Let K be a convex subcomplex of a spherical building B of type D4 and suppose that K
is a counterexample to the Center Conjecture. Suppose first, that K contains 3A-vertices.
Recall that the 3-vertices in Dy are the vertices of root type. The midpoint of a segment
connecting two 3-vertices at distance % lies in the interior of a simplex of type 124 adjacent
to both 3-vertices. Since K is a counterexample, we can find z,2’ € K 3A-vertices at
distance > %, hence d(z,2’) = Z. The convex hull of the segment zz’ is 3-dimensional
and the 3A-vertex y; = m(x,z’) is an interior vertex. Let y, € G - y; be another 3/-vertex
at distance %’T to y1. Since y; is interior, we can find 2; € K, with d(z;,y;) = %, such that
y;2; is antipodal to y;yz_; in 3, K for i = 1,2. In particular ;3,922 is a geodesic of length
7 and z; and 2z, are antipodal. Notice that z; lies in the interior of a simplex of type 124.
It follows that K contains a 2-sphere, contradicting Lemma [3.0.5. Hence all 3-vertices in
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K have antipodes in K. Since K is a counterexample, there is a vertex w € K without
antipodes in K. Suppose w.l.o.g. that w is of type 1. w cannot be adjacent to a 3-vertex in
K, in particular, w is the only 1-vertex in K, because two distinct nonantipodal 1-vertices
are joined by a segment of type 131. This implies that there are at most three A-vertices
in K. Therefore, the convex hull of the A-vertices in K is just a vertex, an edge, a segment
of type ijk or a simplex of type ijk for {4, j, k} = {1,2,4}. G fixes the unique circumcenter
of this set. [

Remark 4.1.4. Our proof actually shows that in the case of classical types K is a sub-
building or the action of the group Autp(K) ~ K fixes a point (see[1.3]for definitions).

4.2 The Hs-case

The Center Conjecture for buildings of type Hj is a direct consequence of the main result
of [BLO05|. Nevertheless we give a direct proof as a preparation for the more complicated
arguments that are used in the other cases.

Recall that a building of type Hj is never thick ([Ti77]) and it is isometric to a suspen-
sion of a building of type I5(m) for m = 3,5 or to a building of type A; 0 A; 0 A; ([Sch87]).
However the Hs-case does not follow directly from the case of buildings of classical type,
because a subcomplex of a building of type Hz does not have to be a subcomplex in its
thick structure.
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We use following labelling of the Dynkin diagram of type Hj:

The Weyl group of type Hj can be identified with the symmetry group of the icosahe-
dron. Thus, the polyhedral structure of (S%, Wy,) correspond to the barycentric subdivi-
sion of a spherical icosahedron. The vertices of the icosahedron correspond to the vertices
of (S, Wpg,) of type 3, the midpoints of the edges of the icosahedron correspond to the
vertices of type 2 and the centers of the faces correspond to vertices of type 1. For the
vector space realization as in Appendix [Al we refer to [Co73, p. 53], where one can find
vectors representing the vertices of the Coxeter complex.

Theorem 4.2.1. The Center Conjecture |1 holds for spherical buildings of type Hs.

Proof. Let K be a convex subcomplex of a building B of type Hs, which is a counterexample
to the Center Conjecture. In particular, dim(K) = 2 and therefore K contains vertices
of all types. First suppose that all 3-vertices in K have antipodes in K. Let x € K be a
1-vertex and y € K a 3-vertex adjacent to x. Let §y € K be an antipode of y and consider
the geodesic v of length 7 connecting y and gy through z. ~ is singular of type 3121323.
The 3-vertex on the segment xy has an antipode in K and by Lemma 3.0.1 we conclude
that = also has an antipode in K. Thus all 1-vertices in K have antipodes in K and by
a similar argument the same holds for 2-vertices in K. This is a contradiction to the fact
that K is not a subbuilding.
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So K contains 3A-vertices. Since K is a counterexample, it contains 3A-vertices z, 2’ €
K at distance > 7. After a simple examination of the barycentric subdivision of the
spherical icosahedron, we can conclude that the segment zz' is singular of type 31213. Let
y € K be the 2A-vertex m(x,z’). By the properties of a counterexample, there is another
3A-vertex z at distance > 7 to y. It follows that the segment yz is singular of type 23123

or 21323. Recall that ¥,B is a building of type A; o A;. If yz is of type 21323, then
—

y%Z must be antipodal to at least one of the directions yz and y2’. This implies that z is
antipodal to x or x’, a contradiction. Hence yz is of type 23123. Let w be the 3-vertex on
the segment yz adjggant to y. The direction yZ is the midpoint of a geodesic of type 131

connecting yz and yz', in particular, yZ is interior in >, K. This implies that w is interior
in K. Thus K contains 3/-vertices.

Let ui,up € K be 3[-vertices at distance > 7, then as above, the segment ujuy is
singular of type 31213 (recall that in a counterexample I = A holds). Since u; is interior
in K, we can find 2-vertices v; € K for ¢ = 1,2, such that viujusvs is a segment of type
2312132 and length 7. Again because u; is interior in K, there are two different chambers
0,0’ C K containing the edge viu;. The convex hull CH (0,0’ ,v5) C K is a 2-dimensional

hemisphere. This contradicts the properties of a counterexample. O]

4.3 The F)-case

A direct proof of the Center Conjecture for spherical buildings of type Fy can be found
in [LR09]. We present in this section basically the same proof with some minor changes.
The proof is divided in two steps. Let K be a convex subcomplex of a spherical building
B of type F}j. The first step is to verify that it suffices to prove that K is a subbuilding or
the action Stabau,sy(K) ~ K has a fixed point, where Auto(B) are the type preserving
automorphisms of B (Lemma [4.3.1). In Section [4.6.1 we will see that the second step (to
show that K is a subbuilding or the action Staby,p)(K) ~ K has a fixed point) can also
be deduced from the case of buildings of type Eg.

Lemma 4.3.1. If the action Stabay,s)(K) ~ K has a fizxed point, so does the action
StabAut(B)(K) ~ K.

Proof. Suppose there is an element ¢ € Stabayypy(K) — Stabau,p)(K), otherwise there
is nothing to prove. Recall that the Dynkin diagram of type F; + 223 ¢ has only one
symmetry. It follows that Aut(B)/Auty(B) = Zs and ¢ exchanges the vertices of type
1< 4 and 2« 3.

Let L = K N Fiz(Stabau,p) (K)) # 0. It is a convex subcomplex, because if a type
preserving automorphism fixes a point, then it fixes the simplex spanned by it. Since
Auty(B) is normal in Aut(B), it follows that L is Stabay(p) (K )-invariant. ¢ acts on L as
an involution because ¢? is type preserving and therefore the identity in L.

Let v € L be a vertex. The vertices v, ¢(v) € L have different type and therefore they
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cannot be antipodal. It follows that m(v, ¢(v)) is fixed by ¢ and Stabu,s)(K), hence it
is fixed by Stabaup)(K). O

Theorem 4.3.2. The Center Conjecture 1 holds for spherical buildings of type Fy.
Proof. Let K be a convex subcomplex of a building B of type F}, which is a counterexample

to the Center Conjecture. It follows from Lemma/4.3.1 that the action Stabau,(p) (/) ~ K
has no fixed points. We use the labelling + 22 ¢ for the Dynkin diagram of type F}.

T Suppose first that K contains 1A-vertices and let

. . 1 € K be a 1A-vertex. Since 1A is a Stabau,(p)(K)-
I invariant property and Stabaut,py(K) has no fixed
points, it follows that there is another 1A-vertex xy €
K at distance > 7 to x;. Hence d(zy,z2) = %’r The
midpoint y; = m(zy,x) is again a 1A-vertex, by
Lemma Therefore we find again a 1A-vertex
Yo € K at distance 2?“ to y1. Notice that Z,, (x;, y2) <
7w for i« = 1,2 because ys cannot be antipodal to x;.
We may assume w.lo.g. that Z, (z1,y2) > 5. Since

Y2 1 Y, B is a building of type B; with Dynkin diagram
2.3 ¢ this implies that Zy (x1,52) = arccos(—3) and this angle is of type 242. Let
z := m(x1,y1). The convex hull CH(z,y,y2) is a spherical triangle because z and 1

lie in a common Weyl chamber. The segment zy, is singular of type 24231. Let w € K
be the 4-vertex on this segment. The convex hull CH (z, x1, ) is also a spherical triangle.
Notice that X, B is a building of type A; 0 A; with Dynkin diagram * 32, This implies that
Z.(21,y2) = Z:(y1,y2) = 5. Hence the union of CH (z, y1,y2) and CH (z, x1,¥2) is a convex
subcomplex. It coincides with the convex hull CH (x1,y1,ys2), it is an isosceles spherical
triangle with sides of type 12121, 12121 and 121. The 4-vertex w lies in the interior of this
triangle and ¥,,C'H(x1,y1,y2) is a singular circle of type 121212121.

1 Since w lies in the convex hull of the 1A-vertices in K, we

'y y, can find another 1A-vertex u at distance > 7 to w. This im-

o i plies that d(w,u) = ?jf and the segment wu is of type 4141.

u u 0 Notice that wi cannot have antipodes in £,/ otherwise we
! 4 ! , find an antipode of u in K. Recall that ¥,B is a building

of type Bs with Dynkin diagram : 22. It follows that wu is
orthogonal to the 1-vertices in 3, C'H(x1,41,y2). This im-
' plies that d(wt, £, CH(21,y1,92)) = Z and the convex hull
CH(wt, ¥, CH(z1,y1,v2)) is a 2-dimensional hemisphere h centered at ww. In particular
YuXwK contains circle, i.e. an apartment. Let u' be the 1-vertex on the segment wu
adjacent to w. It follows that Y=Yy K and Xy K contain an apartment. In particular, u’

is a 1/-vertex.

Sublemma 4.3.3. K contains no 11-vertices.



42 4. The Center Conjecture

Proof. Suppose the contrary. There are 1/-vertices x1, 7, € K with distance > 7. Clearly
21

I = A, therefore, d(xy,72) = 5 and the segment z,z; is of type 12121. Since z; are
interior vertices. we can find 2-vertices y; € K adjacent to x; and such that yjzix2y-
is a geodesic of length 7 and type 2121212. The direction y;z; is an interior 1-vertex in
¥, K. Note that ¥, B is a building of type A; o Ay and with Dynkin diagram + 2 2 It
follows that X, K contains a top-dimensional hemisphere centered at yix;. This implies
that K contains a hemisphere of dimension dim(K). A contradiction to the properties of

a counterexample. [l

End of proof of Theorem [4.3.2. It follows from Sublemma 4.3.3 that there are no 1A-
vertices in K. By duality, we can use the same argument to show that K contains no
4 A-vertices. Observe that a 2A-vertex cannot be adjacent to a 1-vertex in K. Otherwise,
since all 1-vertex in K have antipodes, we find a geodesic in K of length 7 and of type
1212121 containing the 2A-vertex in its interior, contradicting Lemma 3.0.1l By a similar
argument, a 2A-vertex cannot be adjacent to a 4-vertex in K. Hence if K contains 2A-
vertices, it must have dimension < 1, a contradiction. By duality, we conclude that K
contains no 3A-vertices. Thus, all vertices in K have antipodes in K. A contradiction to

Lemma 3.0.2. ]

Remark 4.3.4. Our proof actually shows that K is a subbuilding or the action of the
group Autp(K) ~ K fixes a point (see 1.3 for definitions).

4.4 The Eg-case

The Center Conjecture for spherical buildings of type Fg has been proven directly in [LR09].
We present here basically the same proof just for completeness of this work. Later, in
Section [4.6.2, we give an alternative proof showing that the Ejg-case follows from the case
of buildings of type Esg.

Let K be a convex subcomplex of a building B of type Eg. Let G := Stabaup)(K) and

2 3 4 5 6

H := Stabau,s)(K). Recall that the Dynkin diagram of type Eg " has only one

symmetry. This symmetry exchanges the vertices 2 < 6 and 3 <> 5 and fixes the vertices
1 and 4. It also follows that H is a normal subgroup of G of index < 2.

Suppose K is a counterexample to the Center Conjecture.

Lemma 4.4.1. Le P be a H-invariant property defined for 2-and 6-vertices in K implying
A, P = A. Suppose K contains a 2P- (6P-)vertex x € K. Then there exists another 2P-

(6P-)vertex &' € H - x with d(z,z') = & .

Proof. By the symmetry of the Dynkin diagram, it suffices to prove the case where x is a
2 P-vertex.
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Since K is a counterexample there is a vertex y € G - x at distance > 7 to z. If y
is a 2-vertex, then d(z,y) = ?” and we are done. So let us suppose that all 2-vertices in
H -z are at distance arccos(;) to . Hence y is a 6-vertex and d(z,y) = arccos(—3). The
segment xy is of type 216. Let m :=m(x,y) be the 1-vertex between z and y. Notice that

since y € G - x, it follows that all 6-vertices in H -y are at distance arccos(3) to y.

Since m lies in the convex hull CH(G-x), we can find a vertex z € G- at distance > 7 to
m. By duality, we may assume w.l.o0.g. that z is a 2-vertex. Consider the triangle (z,y, 2)

with side lengths d(z,y) = arccos(—1), d(z,z) = arccos(3) and d(z,y) < arccos(—3).
By triangle comparison with this triangle we conclude that d(z,m(z,y)) < 7. That is,

d(z,m) < 7. A contradiction.

Lemma 4.4.2. If K contains 2A-vertices, it also contains 21-vertices.

Proof. Let M be the property of a 2- Vertex (6- vertex) of being the midpoint of a pair of
6A-vertices (2A4-vertices) at distance 2°. By Lemma 3.0.1, M = A.

If K contains 2A-vertices, then by Lemmam it contains 6 M-vertices and therefore
also 2M-vertices. Let x; be a 2M-vertex between two 6M-vertices at distance %’T It
follows from Lemma [3.2.2 that ¥, K contains a circle ¢ of type 656565656. Let x5 be
another 2M-vertex at distance %’T to x1. Let y; be the 6M-vertex between x; and xs.

Notice that x1z2 has no antipodes in >, K, otherwise there would be antipodes of x5 in
3
K. Recall that ¥,, B is a building of type D; with Dynkin diagram l}—‘?—@. It follows

that Tx4 has distance < 5 to the G-vertices in ¢ and therefore d(z123,¢) = 5, because ¢
is the convex hull of its 6-vertices. Hence the convex hull CH(z1x3,c) is a 2-dimensional
hemisphere centered at z7x5. In particular Yo K = Yy Xy, K contains a singular
circle of type 545454545. By Lemma[3.2.2] (and by duality of the vertices 2 <+ 6, 3 < 5),
the link ¥, K contains a circle of type 232323232. And in particular, X773, K contains a
pair of antipodal 3-vertices. We may apply now Lemma/(3.1.4 to the building X573, B of
type Dy and the subcomplex Y223, K to conclude that it contains a wall. This implies
that ¥, K contains a wall. Let y» be another 6M-vertex at distance 2% to y;. Notice
that y1y5 has no antipodes in ¥, K, otherwise there would be antipodes of y, in K. By
Lemma/3.1.3 applied to ¥, K (of type Ds), it follows that y,ys is an interior vertex. This

implies that the 2-vertex m(y;,ys2) is a 2[-vertex in K. O

Lemma 4.4.3. K contains no 21-vertices.

Proof. Suppose K contains a 2[-vertex x. Then since I = A, Lemma [4.4.1 implies that

there is another 2/-vertex 2’ € K at distance 2& 3 Smce x is interior in K, there is a 6-vertex

y € K adjacent to z, such that 7y is antipodal to :mc . But this implies that y is antipodal
to 2/, a contradiction. O

By duality, we have the corresponding results for 6-vertices in K. Thus combining the
previous two Lemmata, we obtain:
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Corollary 4.4.4. All 2- and 6-vertices in K have antipodes in K.

We can prove now that the other vertices in K also have antipodes in K

Lemma 4.4.5. K contains no 1A-vertices.

Proof. Suppose K contains a 1A-vertex 1 € K. Then there is another 1A-vertex zo € K
at distance > 7 to x;. Hence d(xy,z9) = %” and the segment x5 is singular of type 14141.
The midpoint y; := m(zq,x2) is again a 1A-vertex. Let yo, € K be another 1A-vertex at
distance %’T to y;. Observe that Z,, (z;,y2) < 7 for i = 1,2 because y, cannot be antipodal
to x;. We may suppose w.l.o.g. that Z, (z1,%2) > 5. Recall that ¥, B is a building of
type As with Dynkin diagram 23 4 % 8. It follows that Z,, (x1,y2) = arccos(—3) and the
simplicial convex hull of the segment y;7141y5 is a rhombus with vertices of type 2, 4, 6 and
4. In particular, 3, K contains 2-vertices. Let w € K be a 2-vertex adjacent to y;. Since
all 2-vertices in K have antipodes in K, we find a 6-vertex w € K antipodal to w. The
geodesic between w, w through v, is of type 21656. Thus there is a 6-vertex in the interior
of the segment y;w C K. This 6-vertex also has an antipode in K, then by Lemma 3.0.1
y1 must have an antipode in K, a contradiction. [l

Lemma 4.4.6. K contains no 3A- or bA-vertices.

Proof. By duality, it suffices to show that K contains no 3A-vertices. Observe first that
a 3A-vertex x cannot be adjacent to a 2-vertex in K. Otherwise, since all 2-vertices in K
have antipodes in K, we find a geodesic in K of length 7 and type 23216 containing x in
its interior. This contradicts Lemma|(3.0.1. A similar argument shows that a 3A-vertex is
not adjacent to vertices of type 1 or 6. Suppose that z € K is a 3A-vertex and let y € G-«
be at distance > 7 to x. Then y is a vertex of type 3 or 5.

By the observation above z7 is contained in an edge
in X, K of type 45. By considering this 2-dimensional
spherical bigon connecting a pair of antipodal 3- and 5-
vertices, we conclude that y must be a 3-vertex and zy is
of type 34243. Since all 2-vertices in K have antipodes
in K, this contradicts Lemma[3.0.1. O

Lemma 4.4.7. K contains no 4A-vertices.

Proof. By a similar argument as in the beginning of the previous Lemma, we conclude that
a 4A-vertex in K cannot be adjacent to vertices in K of type 1, 2, 3, 5 or 6. It follows
that if K contains 4A-vertices, then it must have dimension 0. But this is not possible for
a counterexample. [l

We have shown so far that all vertices of a counterexample K have antipodes in K, by
Lemma [3.0.2, this contradicts the fact that K is not a subbuilding. This proves:

Theorem 4.4.8. The Center Conjecture 1 holds for spherical buildings of type Eg.
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Remark 4.4.9. Our proof actually shows that K is a subbuilding or the action of the
group Autp(K) ~ K fixes a point (see1.3|for definitions).

4.5 The FE;-case

This section is devoted to give a direct proof of the Center Conjecture for buildings of type
E7. For a proof using the Eg-case see Section[4.6.3.

Let K be a convex subcomplex of a spherical building B of type E7. Suppose that K
is not a subbuilding and the action of G := Stabau s/ ~ K has no fixed points, i.e it is
a counterexample.

As in the previous cases, our strategy is to show that all the vertices of K have antipodes
in K contradicting Lemma [3.0.2. First we focus our attention on the 7-vertices. The 7-
vertices have the smallest orbits in the Coxeter complex of type E7 under the action of the
Weyl group, this implies that the types of segments between 7-vertices are very simple.
Assuming that there are 7A-vertex in K we conclude that K also contains 2/-vertices
(Lemma4.5.2). Since the 2-vertices are the vertices of root type in Ey it is easy to see that
K cannot contain 2/-vertices (Lemmal4.5.3). At this point it is quite simple to verify that
the vertices of the other types also have antipodes.

Lemma 4.5.1. Let P be a G-invariant property for T-vertices implying A, P = A. Then

if K contains 7TP-vertices, it also contains an equilateral spherical triangle with 7P-vertices

as vertices and side lengths arccos(—3).

Proof. Since K is a counterexample, for a 7P-vertex x; € K, there is another 7P-vertex
7y € K with distance > T, this implies d(z;,75) = arccos(—1). The segment z,z5 is of
type 727.

27 3

By the properties of a counterexample, if m is the 2-vertex in
Ty T1T, then there must exist another 7P-vertex z3 € K with dis-
tance > 7 to m. Thus, d(m,x3) = arccos(—\/ig) and the segment

maxs is of type 2767. Note that for ¢ = 1,2 holds 0 < Z,,,(z;, x3) <
7, because x3 is not antipodal to z;. The building ¥, B is of type

3
Dg with Dynkin diagram 1:>4-—§—§—Z, therefore £, (z;,x3) = 5. It

follows that the union of the two spherical triangles C H (x;, m, z3)
is an equilateral, spherical triangle as wanted. O]

Observe that the spherical triangle from Lemma|4.5.1/has a 7A-vertex in its center. Let
T be the property of being center of such a triangle with 7TA-vertices as vertices. There is
the implication T' = A.

Lemma 4.5.2. If K contains 7TA-vertices, then it also contains 21-vertices.



46 4. The Center Conjecture

Proof. Let v € K be a TT-vertex (it exists, because of Lemma [4.5.1). Let t C K be the
equilateral, spherical triangle, whose center is v. Then Xt C ¥,K is a singular 1-sphere
of type 2626262. Let aq, as and a3 be the 2-vertices in X,t and (; the 6-vertex in Xt
antipodal to «;.

Since T' = A, it follows from Lemma that there Ty 2
are 7T-vertices wy and w( in K such that the convex hull v 7 W0
CH (v, wp,w;) is an equilateral spherical triangle with 727- 6
sides. x| ’ !

— — . .

Set xg = vwy, xp = vw], and let yy be the midpoint of 2 5 UL
the segment zozy in X, K. If mg is the 2A-vertex between wy
and w), then yo = vmg. Observe that the 6-vertex yo has no 7
antipodes in ¥, K. Otherwise, the segment mgv of type 2767 wy

could be extended in K to a segment of type 27672 and length 7, but the 2A-vertex my
has no antipodes in K.

Note that the G-vertex yo cannot have distance < 7 to all the 6-vertices §; € X.t,
otherwise the circle ¥,¢ would be contained in a ball of radius < 7 centered at yo, but
this cannot happen since diam(3,t) = m. So there is a 6-vertex y,, € {1, 2, f3} with
d(yo,y4) = 2. Let 2o and z{, be the two 2-vertices in X, adjacent to yg. The segment yoy,
is of type 626, let z; be the 2-vertex on this segment. Let ay be the vertex of the triangle

t C K, such that 3, = vag. The segment wvaq is of type 767. It is clear, that g} is not
—_
antipodal to zy = vwy or xj, = vw), otherwise, ag would be antipodal to wy or wj.
It follows from Lemma [3.2.2] (for the vertices g, x5, Yo, Yo, 20, 2, 1) that 3, ¥, K con-
tains a singular circle of type 656565656.

The convex hull C'H (ag, v, mg) is an isosceles, spher-
! 7 ical triangle. It follows, that there is a 7A-vertex wy €
yém K on the segment aymy of type 7672, such that vw; is
6 . 2my @ segment of type 727 and z; = 171)_{, ie. 1 € Y, K
is extendable to a segment of type 727. The proof of
W Lemma [4.5.1 implies that there is another 77-vertex
! 6 7w1 w) € K such that the convex hull CH (v, wy,w]) is a
spherical triangle with 727-sides.

Let n; be the 2A-vertex on the segment vw; and recall that ¥, B is a building of type
3
D5 with Dynkin diagram 1:>4~—§—‘3—Z. The singular circle of type 656565656 in 3, ¥, K =

Yirp2n, K implies that 3, K contains a 2-sphere .S, spanned by three pairwise orthogonal
7-vertices.
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Notice that 7Tw’1> has no antipodes in ¥, K because w] is
a TA-vertex, in particular, 77@0{ has distance < 7 to the 7-
vertices in S,,. This implies that d(?Tw’l},Sm) = 7, because
Sy, is the convex hull of its 7-vertices. Hence CH (7?10’1> ,Sny)

——
is a 3-dimensional hemisphere centered at mjw). Recall that
the segments between two orthogonal 7-vertices in a building

3
: : : 4 5 6 7
with Dynkin diagram 1>—»—¢—~ are of type 767. It follows that

—_—
Y—CH (nqwy, Sn,) is a 2-sphere spanned by three pairwise
n ’UJl

orthogonal 6-vertices. This implies in turn that Eﬁzwi K (of type g—03—‘«‘<:) contains a

2-sphere s spanned by three pairwise orthogonal 2-vertices. Notice that the 2-vertices in
the sphere s correspond to 2-vertices in ¥,/ K, which are extendable to segments of type

—_—
727. Let v = win, € S K.

We proceed now as above. Let ¢ C K be the spherical triangle, whose center is w] (as
described in the property T'). Then Yt C Xy K is a singular 1-sphere of type 2626262.
Observe that v has no antipodes in ¥,,; K because n; is a 2A-vertex. Then we find as above
a 6-vertex ¢ € X1’ at distance %’r to v. Let p be the 2-vertex in the segment v( of type

626. If the direction V_é has an antipode in the 2-sphere s, then ( is antipodal to a 2-vertex
in ¥, K, which is extendable in K to a segment of type 727. But this is not possible,
since ( is extendable to a segment of type 767 with final point a 7A-vertex (a vertex of the

triangle ¢'). Recall that ¥,%,/ B is a building of type D5 with Dynkin diagram ?—§—‘<i,

H
therefore v( is orthogonal to the 2-vertices in s and the segments between these 2-vertices

and 1/_5 are of type 232. It follows that d(y_é,s) = 7 and the convex hull C’H(V_é,s) is

—)
a 3-dimensional hemisphere centered at v(. This implies that %—31,3,, K contains a 2-
sphere spanned by three pairwise orthogonal 3-vertices. Since ZzEwaiB is of type Dy

3 5
with Dynkin diagram \‘i/', this 2-sphere is not simplicial, thus, its simplicial convex hull
1

is an apartment. Hence EV—&Z,,EU,&K = Y22y, K contains an apartment. This implies
that 3,3, K contains an apartment. We can argue as above (with z, € ¥,K) to see that
i is extendable in K to a segment of type 727. Hence the 2-vertex on this segment is
interior in K. O

Lemma 4.5.3. K contains no 21-vertices.

Proof. Suppose the contrary. There are 2/-vertices x1, 72 € K with distance > 7. Clearly
I = A, therefore, d(z1,2) = 2?” and the segment xiz5 is of type 23232. Since z; are
interior vertices. we can find 3-vertices y; € K adjacent to x; and such that y;x1z9y, is a
geodesic of length 7 and type 3232323. The direction ;z; is an interior 2-vertex in XK.
Note that ¥, B is a building of type A; o A5 and with Dynkin diagram 2 + ¢ % ¢ 7. Tt

follows that X,, K contains a top-dimensional hemisphere centered at y:z;. This implies
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that K contains a hemisphere of dimension dim(K). A contradiction to the properties of
a counterexample. O

We conclude from Lemma 4.5.2) and Lemma [4.5.3:

Corollary 4.5.4. All 7T-vertices in K have antipodes in K.

We can now address our attention to the other types of vertices in K.

Lemma 4.5.5. All 2-vertices in K have antipodes in K.

Proof. First observe that for a 2A-vertex x, the link ¥, K contains no 7-vertices. Otherwise,
suppose y € K is a 7T-vertex adjacent to x. By Corollary 4.5.4, we find an antipode y € K
of y. The segment zy is of type 2767, the 7-vertex on its interior also has an antipode in
K. A contradiction to Lemma 3.0.1.

X, Assume K contains 2A-vertices. Since K is a coun-

3 2 terexample, there are 2A-vertices x1,xo € K at dis-
tance %’r The midpoint y; of the segment z;x5 is also

a 2A-vertex, hence, there exists another 2A-vertex ys

with d(y1,42) = %’r The 3-vertex yiy5 cannot be an-

tipodal to the 3-vertices yiz;. We may assume w.l.o.g.

that Z,, (21,12) > 5. Note that ¥, B is a building of

type Dg and with Dynkin diagram j>ugg It follows

that the segment yiy5y12; has length arccos(—%) and
is of type 363. The convex hulls C'H (yy,y2, m(y1, 1))
and CH(x1,ys, m(y1,21)) are spherical triangles. The

segment m(yi, 1)y is of type 36342. Since X, 4,)B is of type A; o A5 with Dynkin

diagram 2 14 s ¢ 7, it follows that Zpe,4)(1,¥2) = Zimgar)(T1,92) = 5. Hence, the
convex hull CH (z1,y1,y2) is the union of the spherical triangles C'H (y1, y2, m(y1, 1)) and
CH(x1,y2, m(y1,71)), and it is an isosceles spherical triangle with sides of type 232, 23232

and 23232.

Let wy be the 6-vertex on the interior of the triangle C'H (z1,y1,y2). By Lemma
we can find a 2A-vertex z; € K with distance > 7 to wy, hence, with distance arccos(—ﬁi)

3

or 3T, But the link ., K contains no 7-vertices, therefore d(wy, z;) = 2* and the segment
wi 2y is of type 6262. Let wy be the 6-vertex between w; and z;. Let A be the singular 1-
sphere X, CH (21, y1,92) of type 232323232. The 2-vertex ws z; has no antipodes in X, K
because z; is a 2A-vertex. Note that the building ¥, B has type D5 o A; and Dynkin

diagram 3—9—‘-‘<: !, It follows that w;z; has distance § to the 2-vertices in A. Thus, the

convex hull CH (A, wyz1) is a 2-dimensional hemisphere centered at wyz; and Ygz 32, K

contains a singular 1-sphere of type 343434343. This in turn implies that >, K contains
a 2-sphere s of type:
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Let again z € K be a 2A-vertex with d(wy, z5) = ?jf. We see as above, that d(w,z3,-)|s = 5
and C'H(wyz3,s) =: h is a 3-dimensional hemisphere centered at wyz3. The building

w222

3 5
Y5 2w, B is of type Dy o Ay and has Dynkin diagram \T/ !, The 2-sphere Y 5h
1

contains three pairwise orthogonal 3-vertices, hence, it is not a subcomplex. Its simpli-
cial convex hull is a 3-sphere. This means that ¥z, K contains a wall (which is an
apartment in the D,-factor, compare with the end of the proof of Lemma :

Let u be the 2A-vertex on the interior of the segment wqz5 of type 6262. It follows that

Y. K contains a wall. Note that the building X, K is of type Dg and has Dynkin diagram
3
l:>‘i_§_§_2. A wall in ¥, K must contain 7-vertices. A contradiction. O

Lemma 4.5.6. All 1-vertices in K have antipodes in K.

Proof. The same argument as at the beginning of the proof of Lemma 4.5.5 shows that
1 A-vertices are not adjacent to 2- or 7-vertices in K.

Suppose K contains 1A-vertices. Since K is a counterexample, there exist 1A-vertices
x,y € K with distance > 7. The interior of the segment xy cannot contain 2- or 7-vertices,
the directions 7 and y do not span simplices with 2- or 7-vertices. It follows from the
table of types of segments between 1-vertices that d(z,y) = arccos(2). A contradiction. O

Lemma 4.5.7. All 6-vertices in K have antipodes in K.

Proof. First note again that a 6A-vertex has no adjacent vertices of type 1, 2 or 7 in K.

Suppose K contains 6A-vertices, then we find x1,29 € K 6A-vertices with distance
> 7 and such that T1wy € ¥, K is contained in a simplex of type 345. This implies that
d(z1,22) = & and 21, 22 are joined by a singular segment of type 64646. The midpoint
y of x1x9 is again a 6A-vertex. Let z be another 6A-vertex with d(y,z) = %” Then
0 < Z,(z,2) < for i =1,2, because z is not antipodal to z;.

3 4 2 Since X, K contains no vertices of type 1,2 or 7; the seg-
. . —_— —_ . .
‘2 ments connecting the 4-vertices yx; and yZz are contained in a
4 “y 4 2-dimensional bigon. It follows that the segments yz;y% are of
51 type 434 and d(yz;, y2) < 5 for i = 1,2; but d(yzi,yzs) = .
3 This is a contradiction. O
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Lemma 4.5.8. All 3-vertices in K have antipodes in K.

Proof. We can show again that a 3A-vertex is not adjacent to vertices of type 1, 2, 6 or 7
in K.

Suppose K contains 3A-vertices, then there exist two 3A-
vertices x,y € K at distance > 7. The direction Ty must be
contained in an edge of type 35. This implies that the segment
2y is contained in a 2-dimensional bigon. Then, this segment
must be of type 34243, but it contains a 2-vertex on its interior
and this 2-vertex has an antipode in K. A contradiction to Lemma 3.0.1. O]

Lemma 4.5.9. All 4- and 5-vertices in K have antipodes in K.

Proof. A vertex in K of type 4 or 5 without antipodes in K cannot have vertices of type
1,2, 3,6 or 7in K adjacent to it. It follows that, if K contains 4A- or 5A-vertices, then
it has dimension < 1. A contradiction. O

We have shown in the previous lemmata that all vertices of a counterexample K have
antipodes, contradicting Lemma 3.0.2. This proves or main result:

Theorem 4.5.10. The Center Conjecture|1 holds for spherical buildings of type Ex.

Remark 4.5.11. Our proof actually shows that K is a subbuilding or the action of the
group Autp(K) ~ K fixes a point (see 1.3 for definitions).

4.6 The Eg-case

Let K be a convex subcomplex of a spherical building B of type Eg, which is a counterex-
ample to the center conjecture.

Our strategy is as follows. We focus our attention mainly on the vertices of type 2 and
8. The 8-vertices are the vertices of root type and there are few possibilities for the types
of segments between 8-vertices. The 2-vertices have the second smallest orbit (after the
8-vertices) under the action of the Weyl group in the Coxeter complex of type Eg. This
implies that the types of the segments between 2-vertices are still manageable. Another
reason to consider 2-vertices is that their links have a relatively simple geometry, they are
buildings of type D7. In these buildings, there is only one type of segments between two
distinct non-antipodal 8-vertices, namely 878, and it has length 7. First we want to prove
that K cannot contain 2- or 8-vertices, whose links contain spheres of large dimension.
This is achieved in the Lemmata 4.6.144.6.9. Then under the assumption of existence of
8 A-vertices, we find 2- and 8-vertices in K, with links containing spheres of larger and
larger dimensions. This allows us to conclude that all 8-vertices in K have antipodes in K
(Corollary [4.6.17). At this point the hard work is already done. Finally we show that all
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other vertices in K must also have antipodes in K. This contradicts Lemma and the
assumption that K is not a subbuilding.

We describe first some configurations of points of K, which will be used several times
during the argument.

Let P be a property of 8-vertices implying A (the property of not having antipodes in
K) and suppose there are 8 P-vertices in K.

T9 Since K is a counterexample, there are 8 P-vertices

7 s T1,T2 € K at distance > 7. Since they do not
have antipodes, it follows that d(x1,22) = & . Let

y3 := m(xq, T2), it is an 8 A-vertex by Lemma 3.0.1.

Again there is an 8P-vertex x3 € K, such that

d(ys,z3) = %’r because y3 lies in the convex hull

of the 8 P-vertices in K. Notice that, since x; are
8A-vertices, 0 < 2, (x3,2;) < m for i = 1,2. We

may assume w.l.o.g. that Z,,(z3,71) > 7. The link

Yy, B is a building of type E7 and with Dynkin di-

agram e j = It follows that Ly (x3,21) =
arccos(—%) and this angle is of type 727, i.e. the
segment y3x1ysrs C 2, K is singular of type 727. The convex hulls CH (x3, y3, m(x1,y3))
and C'H (z3, 1, m(xq,ys3)) are spherical triangles, because y3 and m(z1,y3) (x1 and m(z1,y3),
respectively) are contained in a common Weyl chamber and therefore x3, y3 and m(z1,ys)

(23, z1 and m(z1,y3), respectively) lie in a common apartment. The segment m(z1, y3)xs is
2 3 4 5 6

of type 72768. Since ¥,,(4, 4,) B is of type Eg o Ay with Dynkin diagram '_'_11_‘_' '8, it fol-
lows that £z, ,ys) (1, 23) = Lin(erys) (71, 23) = 5. Hence, the convex hull CH (x1,ys, z3) is
the union of CH (x5, y3, m(x1,ys3)) and CH (z3, 1, m(x1,ys3)), and it is an isosceles spherical
triangle with sides of type 878, 87878 and 87878. Let yo := m(x1,x3) and 21 := (y2, y3).

We refer to this configuration of 8 P-vertices as configuration .

5€ Let now & := xiz; for i = 2,3 and ¢ := x12;. Suppose
there is an 8-vertex x at distance 3 to xy, let  := T1t. Assume
& & furthermore that d(¢,€) = arccos(—\/ig), then the segment £C is

! of type 7672. Recall that &; is 2?“—extendable to 8 A-vertices and
¢ is Z-extendable. Thus, d(¢,&;) < 7 for i = 2,3. It follows that

2 6 2 Ze(€,&) =% and d(, &) = arccos(—3) for i = 2,3. Hence, the
convex hull CH (&, &, &3) is the union of the spherical triangles

§7 CH(&, ¢, &) for i = 2,3. Tt is an equilateral spherical triangle
with sides of type 727. Let v be the 7-vertex at the center of

this triangle.
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From d(,&;) = arccos(—3), it follows for i =
2,3 that d(z, z;) = 2 and the convex hulls CH (21, z, x;)
are isosceles spherical triangles (compare with the
spherical triangle C'H(x1,ys, x3) above). Let w := X1
m(z, x2) be the 8 A-vertex between x and xo. Then
by considering the triangle C'H(x1,x,z3), we see
that w == 7w = m(,&). Let z := m(z,w)
be the 2-vertex between x; and w, then 7,2 =
m(&,&). The angle £, (z,x3) = arccos(—\/ig) is
of type 2767 (compare with the triangle C H (€, &3, &3)).

Notice that CH(z,z1,x3) is a spherical triangle,

The segment zx3 is of type 2828. Let v be the 8 A-vertex
on the segment zxs adjacent to z. Recall that x3 is an 8A-

this implies that d(z,z3) = 27
vertex. Then z3 cannot be antipodal to w, thus d(z3, w) = %’r

<P
‘? and Z.(x3,21) = Z.(23,w) = 5. Recall also that d(xs,ys) =

s\ )

4»‘» (z3,2) = 2, therefore Z.(x3,y3) = Z.(x3,2) = 5. The con-

! Q\ vex hulls CH (x3, 21, w) and CH(x3,ys, ) are isosceles spher-
: . s ical triangles with sides of type 87878, 87878 and 828.

The convex hull in ¥,K of the 8-vertices 22, zz; zys zw and 20 is a 2-dimensional
singular hemisphere h centered at z0. Let s C £,B be a singu_}lar 2-sphere containing h

U

and let 73 be an 8-vertex in B, such that it is adjacent to z and z£3 is the antipode of z0 in
s. It follows that z3 is antipodal to 3 in B. The convex hull in B of x3, T3, 2, x1,y3, w is a
3-dimensional spherical bigon connecting x3 and 3, with edges xzazs; for o € {x, 1, y3, w}
of type 8787878. It follows that the convex hull CH(x1,z,w,ys,x3) is a (3-dimensional)
spherical convex polyhedron in K obtained by truncating this spherical bigon. Notice that
the 7-vertex v at the center of the triangle C'H (&, &,,&3) C X, K is %’T—extendable in K to
the 8-vertex m(zs, w).

We refer to this configuration in K as configuration .

Lemma 4.6.1. K contains no 81-vertices.

Proof. Suppose the contrary. There are 8/-vertices 1,7, € K with distance > 7. Clearly

I = A, therefore, d(xy,z5) = %’r and the segment x;z, is of type 87878. Since x; are

interior vertices, we can find 7-vertices y; € K adjacent to z; and such that y;x1291, is a
geodesic of length 7 and type 7878787. The direction y;z; is an interior 8-vertex in X, K.
8

2 3 4 5 6

Note that X, B is a building of type s o A; and with Dynkin diagram ) It

follows that X,, K contains a top-dimensional hemisphere centered at y;z;. This implies
that K contains a hemisphere of dimension dim(K). A contradiction to the properties of
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a counterexample. O]

Lemma 4.6.2. K contains no 8-vertices x, such that X, K contains a singular 5-sphere,
.e. a wall.

Proof. Let x; be an 8-vertex, such that X, K contains a singular 5-sphere S;. Clearly,
by Lemma [3.0.5, 27 is an 8A-vertex. Let x5 € G - x; be at distance 2% to zy. XK
contains a singular 5-sphere S,. If Z;25_; has an antipode in S; for i = 1,2, then there are
T-vertices y; € K adjacent to x;, such that y;z122y is a geodesic of length 7. The midpoint
z = m(x1,xs) is again an 8A-vertex and it is the center of a 6-dimensional hemisphere
h C K (cf. proof of Lemma4.6.1). In particular, ¥, K contains the 5-sphere ¥,k and the

7-vertices in this sphere are all F-extendable. Let 2’ € G - z be at distance %“ to z. Since

' is an 8A-vertex and the 7-vertices in ¥.h are F-extendable, we deduce that z—>z’ has no
antipodes in X, h. It follows from Lemma [3.3.1 that ¥—3,K contains an apartment and
that 3723, K contains an apartment for the 8-vertex w := m(z, 2’). It follows that ¥, K
contains also an apartment, contradicting Lemma/4.6.1. We may therefore assume w.l.0.g.
that z;25 has no antipodes in S;. Using again Lemma/3.3.1/we conclude that ¥, K contains
an apartment. Again a contradiction. O

Lemma 4.6.3. K contains no 2-vertices x, such that ¥, K contains an apartment.

Proof. Let x be such a 2-vertex in K. Then there is another 2-vertex ' € G- x at distance
> 5 to x. Notice that x, 2" are interior vertices in K.

Case 1: d(x,a') = arccos(—2). The segment xza’ is of type 21812. Since z is interior,

—
the direction zz’ is also interior in ¥, K. It follows that the 8-vertex m(z,2’) must be
interior in K, contradicting Lemma [4.6.1.

Case 2: d(z,2') = 2. The segment z2’ is of type 26262.

2
Recall that 3, B is of type D7 with Dynkin diagram i:>4—’5—’6—‘7—~E i EB N
Since x is interior and K is top-dimensional, then ¥, K is a , ‘
building of type D; and we can find an 8-vertex y € K ad- 2 & 2 2
s 1

jacent to x and such that Z,(y,2') > 5. Then Z,(y,2') = arccos(—jg) and it must be

of type 8676. Since the triangle C'H(y, x, ') is spherical, it follows that d(y, ') = ‘%” and
the segment yx’ is of type 2828. The 8-vertex in the interior of this segment must be an
interior vertex. A contradiction to Lemma [4.6.1.

Case 3: d(z,2") = arccos(—1). The simplicial convex hull of
the segment 2’ is 2-dimensional and contains 8-vertices y,y’ € 2 1
K adjacent to x,2’. Let z € K be an 8-vertex adjacent to x,
such that zzy is a segment of type 828. Then d(z,2') = 2%, 4 S
Again a contradiction as in Case 2 above. [ 2

Lemma 4.6.4. K contains no 7-vertices x, such that ¥, K contains an apartment.
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_ 5w

Proof. Suppose there is such a 7-vertex € K and let y € K be an 8-vertex. If d(z,y) = 7,
then the segment zy is of type 787878 and we would find interior 8-vertices in K. If
d(z,y) = arccos(—\%), then the segment xy is of type 72768 and we would find interior

2-vertices contradicting Lemma So, d(z,y) < arccos(—ﬁ).

Let y1,y2 € K be 8-vertices adjacent to x, such that y;xy, is a segment of type 878.

Let 2’ € G -z with d(x,2') > 7. Then d(z',y;) < arccos(—ﬁg) and triangle comparison

with the triangle (z',y1, y2) implies that d(z,2") < arccos(—3).

Case 1: d(z,2') = arccos(—%). If the segment zz’ is singular of type 76867, then the
8-vertex m(x, z’) is interior, contradiction. If the segment zz’ has 2-dimensional simplicial
convex hull C', then there is an 8-vertex y € C adjacent to x or z’. Since z, 2’ are in the same
G-orbit, we may suppose w.l.o.g. that y is adjacent to x. Let 3y € K be another 8-vertex
adjacent to x and such that yxy' is a segment of type 878. Then d(z',y’) = arccos(—\/ig)

and this case cannot occur by the above.

Case 2: d(z, ') = arccos(—3). Let C be the simplicial convex hull of the segment za’.

If C' is 2-dimensional, there are 8-vertices vy, 3’ € C' C K adjacent to x and 2’ respectively.

Let z € K be an 8-vertex adjacent to x and such that zzy is a segment of type 878. Define
1

2" analogously. Then d(a’, z) or d(z,2") = arccos(—jg), which is not possible.

If C is 3-dimensional, there is an 8-vertex m € (', such that the segments mz and
ma’ are of type 867 and Z,,(z,2') = arccos(—3). Since z,2’ are interior vertices, there
exist 2-vertices u,u’ € K, such that mzu and ma'u’ are segments of length 7 and of type
8672. Ly (x,2') = arccos(—2) implies that 7 > d(u,u') > arccos(—2). Hence d(u,v') =
arccos(—32).

The segment uu' is of type 21812 and C'H(m,u,u’) is a (non-
simplicial) spherical triangle with a 2-vertex u” := m(m, m(u,«’)) in
its interior. This implies that the segment zu” can be extended in
K beyond u”. In particular «” is an interior 2-vertex contradicting
Lemma 4.6.3. O

Lemma 4.6.5. K contains no 2-vertices x, such that ¥X,.K contains a singular 5-sphere
S, i.e. a wall.

Proof. Suppose there is such an x € K. Let y € K be an 8-vertex. If d(z,y) = ?jf, then
the segment zy is of type 2828. Let ' be the 8-vertex between x and y. The link X, K is
of type D7 and contains a wall, then Lemma 3.1.3/ implies that ¥,,K contains at least a
singular 5-sphere, contradicting Lemma[4.6.2. So d(z,y) < arccos(—ﬁi) for all 8-vertices
y € K.

Let 2’ € G - x with d(z,2) >
y € K.

ol

. It also holds d(z',y) < arccos(—ﬁi) for all 8-vertices
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Case 1: d(x,2') = arccos(—3). The segment xz’ is of s 2
type 21812. Let y1,y, € K be 8—3/ertices adjacent to z, such .\8
that yi1xy, is a segment of type 828. These vertices can be "
found, because >, K contains a wall. We may assume that ‘\
Zy(y1,2") > 5. This implies that the angle Z,(y;,2") = 2 1 8 1 2
arccos(—%) and it is of type 831, because 3, B is a building of type D;. CH(y,z,2’) is

a spherical triangle, therefore we can compute that d(y;,2') = %”. A contradiction to the
observation above.

Case 2: d(z,2') = %. As in Lemma [4.6.3 (Case 2) we sce that d(:@,S’) = 7, where

S’ C S is the 4-sphere spanned by the 8-vertices ﬂ S. Otherwise, there Woul2d be an
8-vertex y adjacent to x, such that zj € S and d(zz’,77) > 5. This would imply that
d(z',y) = %Tﬂ' .

The segments in 3, K of length 7 connecting the 6-vertex zaz’ and an 8-vertex € S are
of type 658. This implies that Zz—m;ExK contains a 4-sphere spanned by five pairwise
orthogonal 5-vertices, but this is impossible in a building of type D4 o Ay with Dynkin

3 5

. 4 7 8
diagram Y —
1
1

Case 3: d(z,2") = arccos(—7). Let y be the 8-vertex adjacent to = contained in the
simplicial convex hull of x2’. Zy cannot have antipodes in ¥,K. Otherwise there is an
8-vertex z € K, such that zxy is a segment of type 828 and as in Lemmal4.6.3 (Case 3), we
see that d(2/, z) = 2. It follows from Lemmal[3.1.3, that zy is interior in $, K (i.e. its link
contains an apartment). Then the 7-vertex m(x, ") must be interior (its link 3, oK

contains an apartment). A contradiction to Lemma [4.6.4. O

N

Lemma 4.6.6. K contains no 7T-vertices x, such that X, K contains a wall S of type 1,
that is, a wall containing a pair of antipodal S-vertices.

Proof. We proceed exactly as in the proof of Lemma [4.6.4. Recall that X,B is of type
FEg o Ay. Suppose there is such an x € K and let y € K be an 8-vertex. If d(z,y) = %”,
then the segment zy is of type 787878. The direction zy has an antipode in S, therefore the
link ¥,/ K of the 8-vertex y’ on the segment xy adjacent to z contains a wall, contradicting

Lemmal4.6.2. If d(z,y) = arccos(—\/ig), then the segment xy is of type 72768. Lemma/3.2.1]

implies that zg has an antipode in S or Y72, K contains an apartment. In both cases the
link ¥, K of the 2-vertex z on the segment xy adjacent to x contains a wall. A contradiction
to Lemmal4.6.5. So, d(z,y) < arccos(—ﬁg).

Let y1,y2 € K be 8-vertices adjacent to x, such that y;xys is a segment of type 878.

Let o' € G - x with d(z,2") > 7. Then d(2',y;) < arccos(—ﬁg) and triangle comparison

with the triangle (z',y1,12) implies that d(z,2’) < arccos(—3).
Case 1: d(x,2') = arccos(—3z). If the segment xz’ is singular of type 76867, then

—
Lemma 3.2.1 implies that the 6-vertex xx’ has an antipode in S or 2—>,IC contains an
apartment. Either way, the link in K of the 8-vertex m(x, z’) contains a wall, which is not
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possible by Lemma [4.6.2. The case, where the segment zz’ has 2-dimensional simplicial
convex hull C| follows as in the proof of Lemma [4.6.4.

Case 2: d(z, ') = arccos(—%). Let C be the simplicial convex hull of the segment za’.
If C' is 2-dimensional, we argue as in the proof of Lemma 4.6.4!

If C is 3-dimensional (see Section 2.7/ for a description of C'), there is an 8-vertex
m € C, such that the segments maz and ma’ are of type 867 and Z,,(z,z’) = arccos(—%).
C' contains also 8-vertices y,y; adjacent to x,z’ respectively. Let y, € K be an 8-vertex
adjacent to x and such that y,zy; is a segment of type 878. Define y5, analogously. Then

the angle Z,,(z,vy5) is of type 6727 (compare with X,,C" in Section 2.7). This implies that
d(w,y,) = arccos(—5 =)

sm If the 6-vertex zm has no antipodes in S, then it follows from
7 Lemma [3.2.1 that ¥, K contains an apartment, i.e. zm is inte-

syé rior in ¥, K. In particular the link ¥, ,K of the 7-vertex w in the

T interior of the simplicial convex hull of zy} contains an apartment.

-

A contradiction to Lemma [4.6.4] It follows that zm, ?77_)1 have an-
tipodes in the walls S C 3, K, respectively S’ C ¥, K. Therefore,
there exist 2-vertices u,u’ € K, such that mru and mz'u’ are segments of length 7 and
of type 8672. L (x,2’) = arccos(—2) implies that 7 > d(u,u') > arccos(—32). Hence

d(u, ') = arccos(—2).

8y1

It follows that the segment uu’ is of type 21812 and C' H (m, u,u’) is a
(non-simplicial) spherical triangle. The segment m m(u,u’) has length
% and therefore it has type 828. The 2-vertex u” := m(m, m(u,u’)) lies
in the interior of the spherical triangle CH (m,u,u’).

Consider the link of m. Since zm has an antipode in
the wall S C Y,.K, it follows that ¥=z3,, K contains a
wall. The link 523, B is of type D5 o A;. The wall in
Y=, K contains a wall in the Ds-factor. The direction

B
£ = mamy, is a l-vertex in ¥7Y,,K. By Lemma 3.1.3
we conclude that the Ay-factor of ¥¢X57z3,, K contains at
least a wall. Taking spherical join with the directions to
the 7-vertices my; and my; we find a wall in YeXg X, . This implies that X—%,, K

—_—
contains at least a wall. Since mu” is extendable, it follows that ¥, K contains a wall.
But this contradicts Lemma O

In a special case we can also exclude 8-vertices, whose links contain a 3-sphere:

Lemma 4.6.7. K contains no 8 A-vertices x, such that ¥, K contains a singular 3-sphere
S with the following properties: S contains a pair of antipodal 2-vertices &1, &, such that
¢, S is a singular 2-sphere spanned by three pairwise orthogonal 7-vertices. Furthermore,

all T-vertices in S are %-eaztendable to 8 A-vertices.
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Notice that all 7-vertices in .S are adjacent to &; for some ¢ = 1,2. Indeed, a segment in
Y. K (of type E7) connecting a 2- and a 7-vertex at distance < 7 is of type 27 or 217. This
last segment cannot occur between §; and a 7-vertex in S because Y¢,S does not contain
1-vertices. Observe also, that the link 3,5 of a 7-vertex A € S_c>ontains a singular circle of
type 2626262: suppose w.l.o.g. that A is adjacent to &;, then & A is contained in a circle in
¢, S of type 767676767. In particular 2@2 A9 contains a pair of antipodal 6-vertices. It

follows that the antipodal directions )E) and )@ are contained in a singular circle in X, S
of type 2626262.

Proof of Lemma 4.6.7. Suppose there are such 8A-vertices. Let x1,22,25 € K be such
8A-vertices as in configuration *, and let S,, C ¥, K denote the corresponding 3-spheres
in their links. Let y3,2; € K be as in the notation of the configuration *. Suppose that
there is a T-vertex £ € S,, C X, K, such that d(&,() = arccos(—\%) for ¢ := z12;. The
segment £( is of type 7672. By assumption, there exists an 8A-vertex z € K, such that
d(x1,z) = % and r11 = £, Under these circumstances we obtain the configuration **. We
use the same notation as in the configuration **. Let a; € ¥,,K for i = 1,...,4 be the

directions x3xq, 32, rsw and x3y3. Let B := x3Z. Then the 7-vertices «; are adjacent to

the 2-vertex 3. And the directions 6_oz; lie on a circle k of type 767676767 contained in
Y K.

a Suppose again that there is a 7-vertex A in the 3-sphere S,, C

" o Y., K, such that d(5, \) = arccos(—%). So the segment (A is of

Y v type 2767. Recall that the 7-vertices «a; are 2%—extendable and
7 R ) A is -extendable to an 8 A-vertex, so they cannot be antipodal.
7 It follows that Z3(A,oy) = § and d(a;, A) = arccos(—3). The

R segments a; A\ are of type 727. Let v € Y., be the 7-vertex

as  on the interior of the segment SA. Then « is the center of an

equilateral spherical triangle C'H (A, oy, a3) with sides of type

727. We are now in the situation of the configuration #x (compare with the triangle
CH(&,&,&3) in the definition of the configuration xx). It follows that ~ is 2?’r—extendable.

The convex hull CH (k, ﬁ_)>\) is a 2-dimensional hemisphere
T4 3 4 5 6
centered at SA. Hence, Xz¥s¥,, K (of type l>—¢—~) con-
tains a circle of type 656565656. This is equivalent to E/\—éE)\Eng

(of type ?—§—<j) containing a circle of type 232323232. Note
that the 2-vertices on this circle correspond to the 2-vertices
m(A, ;) € ¥, K (consider the equilateral spherical triangles
CH(\, oy, i) with sides of type 727). Let o := /\—a:- €
$25,, K.

Recall that the link ¥, S,, contains a circle ¢ of type 2626262 and notice that /\_é cannot
be antipodal to any of the 2-vertices on this circle: otherwise, we find a 7-vertex in the
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3-sphere S,, antipodal to . This cannot happen, because 7 is 2%-extendable and the

N
7-vertices in S, are Z-extendable to 8A-vertices. It is also clear that A3 cannot have
distance < 7 to the three G-vertices on the circle ¢, otherwise ¢ would be contained in a

ﬂ
ball centered at A3 with radius < 7, but this is not possible since diam(c) = 7.

0 = Therefore we can find a 6-vertex 1 on the circle ¢ C ¥X,.5,,,
2 y — —
L _, such that d(n, A\B) > 7. Hence, d(n, \3) = 2% and the segment
9 —
n 3 it 77)\—3 is of type 626. Let u := m(n, AB). Let also 07,09 be the
6 : A two 2-vertices in the circle ¢ C ¥ A2z X adjacent to 7.
M 3
027 We have already seen, that )\—é cannot be antipodal to 9;.
, b ,_,  Thisimplies that Z,(d;, ) = 5 and these angles are of type 232.

O a3 3 5

It follows that ¥7;3,3,3,,K (of type Dy: \‘i/) contains a
1

pair of antipodal 3-vertices. On the other hand, if 7 is antipodal
to some a, then «a; € Y., K has an antipode in S,,, but this cannot happen either,

because «; is %’r—extendable in K. Therefore Z)Tﬂ»(u, ;) = 5 and these angles are of type

232. It follows that ZﬁEﬁE A2z, X contains a singular circle of type 343434343. This in
turn implies, that X533, 3,3, K contains a singular circle of type 141414141, because the

3 —
antipode of a 3- (4)-vertex in 3,33, K, of type l>‘1—5o—§, adjacent to uxg is a 1- (4)-vertex

adjacent to ). We apply now Lemma [3.1.4 to conclude that VXA, K contains a
wall. Hence X333, K contains a wall.

A Let N € S,, be the T-vertex at distance arccos(z) to

,

n m A, so that )W = 1. By considering the spherical triangle

] , CH(\N,B) C Xy K we deduce that p1is arccos(—3)-extendable
Wﬁ in ,, K. Let v be the 2-vertex in »,,K adjacent to A with
X 2 o = . It follows that 3,3, K contains a wall.

Recall that v is 2?—extendable and let ©” € K be an 23 4

. 8 8

8-vertex with d(xs,z") = %’T and zzz” = . Since X € .

Sus, it is Z-extendable. Let 2’ € K be an 8-vertex, so that i v - \Us .
d(w3,2") = % and a_:;;’ = ). Consider the spherical triangle \M/x”
CH(z3,2",2"). One sees that v is J-extendable in K, thus !

we have found a 2-vertex in K, whose link contains a wall, S 7 ;

contradicting Lemma 4.6.5.

So it follows that d(3,\) < & for all 7-vertices A € S,,. Since S,, is the convex hull
of the 7-vertices contained in it, this implies that d(f3,S,;) = § and s := XgCH(3, S,,)
is a 3-sphere. Let 6 € S,, C ¥,,K be a 2-vertex, so that ¥yS,, is a 2-sphere spanned by
three pairwise orthogonal 7-vertices (compare with the description of the 3-sphere S,,).

The segment 6 is of type 262.
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2
3 5

(subset of a building of type \‘i/' 7) is a 2-sphere. Notice that in the building ¥y, B of

1

Notice that d((3, S,,) = % implies that d(Q—é, 2950,) = 5. 1t follows that X735 CH (5, S,)

type i:>5—§—'6—~7; two 7-, 6-vertices at distance § are joined by a segment of type 756. This
implies that EQ—BX}QCH (8, Sys) is spanned by three pairwise orthogonal 5-vertices. Such

3 5

a 2-sphere in the Coxeter complex of type \‘i/ is not a subcomplex, thus, its simplicial

1
convex hull is a 3-sphere. Therefore the 3-sphere s C ¥3X,, K is not a subcomplex and
its simplicial convex hull is a wall. Recall that 8 € X, K is F-extendable in K, hence,
there are 2-vertices in K, with links containing a wall. We have now a contradiction to
Lemma[4.6.5.

It follows that our first assumption, that there is a 7-vertex £ € S, C 3,, K, such that
d(&,¢) = arccos(——%) cannot occur. Thus, d((, S,,) = Z and repeating the previous argu-

V3 2
ment, we can see that Y¢>,, K contains a wall. Hence, X, K contains a wall, contradicting
again Lemma L

Lemma 4.6.8. Let x € K be a 2-vertex, such that ¥,K contains a singular 4-sphere S
of type 757 or 5. Then, the 8-vertices in S C XK are not 5-extendable and there are no
8-vertices in K at distance ?jf to x. In particular, x is a 2A-vertex, and all 8-vertices in S

are directions to 8 A-vertices in K adjacent to x.

Proof. Suppose there is an 8-vertex in .S that is f-extendable. This means that there is a
2-vertex y € K at distance § to x, such that the segment xy is of type 282 and Ty € S.
In particular ¥zX,S is a singular 3-sphere. This implies for the 8-vertex z := m(z,y),
that its link 3, K contains a 4-sphere. By Lemma[4.6.1] dim(K) > 6. In particular, ¥, K

contains a 5-dimensional hemisphere h bounded by S.

The hemisphere h is the intersection of a wall and a root in a building of type D; with
Dynkin diagram :>f—'5—‘6—‘7—'5 Recall the description of hemispheres of codimension 1 in
Section [2.3. If S is of type 757, then h is centered at a 7-vertex a and X,h is a wall of
type 5. In particular ¥,h contains a pair of antipodal 8-vertices. If S is of type %, then
h is centered at point contained in the interior of an edge of type 86. In particular, the
8-vertex of this edge is contained in h. In both cases h contains an 8-vertex 7 in its interior
(notice that this is not true for a hemisphere bounded by a singular 4-sphere of type 787).
It is clear that d(n,zy) = Z and the segment is of type 878. The midpoint ¢ := m(n, Zy)
is also in the interior of h, and in particular, XX, K contains a wall of type 5, that is, a
wall containing a pair of antipodal 8-vertices.
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Let w € K be the 8-vertex in K adjacent to x with 7 = zw. Then
if we consider the spherical triangle C'H(x,y,w), we see that ( is
extendable to a segment of type 276 in K. Therefore we find 7-vertices
in K, whose links in K contain a wall of type 1. A contradiction to
2 8 > Lemma [4.6.6.

So the 8-vertices in S C X, K are not -extendable. In particular,

x is a 2A-vertex. Otherwise we find an antipode ¥ € K of x and a segment connecting x

and Z with initial direction an 8-vertex in S is of type 28282. It follows that the 8-vertices
3

in S are T—extendable. A contradiction.

Let u € K be an 8-vertex adjacent to x, such that zii € S and suppose that u has an
antipode u € K. Let ¢ be the segment connecting u and % through z. It is of type 8282&5

H
Since the direction zu has an antipode in S, namely zu, it follows that the 8-vertex zu
—)

lies in a sphere S" C ¥, K of the same type as S. Hence 2u cannot be 7-extendable, but
the segment zu is of type 2828. A contradiction. Thus, all 8-vertices in S are directions
to 8A-vertices in K adjacent to x.

For the second assertion, suppose there is an 8-vertex
z € K with d(z,z) = 3. Since all 8-vertices in S corre-
spond to 8 A-vertices in K, the 8-vertex 22 must be orthog-
onal to the 8-vertices in S. In both cases (of type 757 or %),
S contains a singular 2-sphere spanned by three pairwise
orthogonal 8-vertices (cf. Section [2.3). This implies that
Y722, K contains a 2-sphere spanned by three pairwise or-
thogonal 7-vertices. Let w be the 8-vertex in zz adjacent
to . Recall that = is a 2A-vertex, therefore w is an 8A-vertex. Then X,K contains a
3-sphere as described in the statement of Lemma [4.6.7. It also follows that the 7-vertices

in this sphere are Z-extendable to 8A-vertices, contradicting Lemma 4.6.7. [

Lemma 4.6.9. K contains no 2-vertices x, such that X, K contains a singular 4-sphere S
of type 3.

Proof. Let x be such a 2-vertex. It follows from Lemma [4.6.8/ that x is a 2A-vertex and
rad(z,8-vert. in K) < arccos(—ﬁﬁ). As in the proof of Lemma [4.6.5, we deduce that

diam(G - z) < 2. Let 2/ € G -z with d(z,2") = diam(G - z).

Case 1: diam(G - ©) = Z. The segment za’ is of type 26262. As in the proof of

Lemma|4.6.3 we deduce that the 6-vertex a? has distance 7 to the 8-verticesin S. If S’ C S
—
is the 3-sphere spanned by the 8-vertices in S, then d(z2', S") = 7. It follows that Y= K

3 5

(of type \‘i/' %) contains a 3-sphere spanned by four pairwise orthogonal 5-vertices, this
1
sphere is an apartment in the Dy-factor. Let y := m(z,2’). Then the link Xz ¥, K (again

3 5

of type \‘r 2-?) contains also an apartment in the D,-factor. This is a 3-sphere spanned
1
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by a simplex of type 1345. This implies that the link ¥, K contains a singular 4- sphere Sy

spanned by a simplex of type 13456. Hence S, is of type % and the 6-vertices Y, yx are
orthogonal to the 3-sphere S| C S, spanned by the 8- Vertlces in S,. To see this consider
the vector space model of the Coxeter complex of type D7 introduced in the Appendix [A.
The sphere S, can be identified with the sphere {z5 = 26 = 27} N1 S® C R" and S}, with
the sphere {z5 = x5 = 7 = 0} N S% A 5-vertex in S}, is of the form (+£1,...,£1,0,0,0)
and a 6-vertex orthogonal to this sphere must be of the form (0,...,0,+1,+1,41). Hence,
a 5-vertex in S and a 6-vertex orthogonal to S; are connected by a segment of type 536
or 516.

As in the beginning of the proof, we obtain that rad(y, 8-vert. in K) < arccos(— 2\[)

and dzam(G y) < Z. We assume again that diam(G - y) = % and let y € G -y have

dlstance T toy. It follows as above, that ZAE K contains an apartment in the Dy-factor.

Let £,&" € S;, be antipodal 5-vertices. The vertices YT, yx , & and &' lie on a singular
circle of type 635161536 contained in S,. The link ¥, B is of type Az o A3 and has
Dynkin diagram 34 % ¢ 1 2 Notice that XS] is an apartment in the second As-factor.
Therefore the second factor in the spherical join splitting of Y3, K is a subbuilding.

_ﬁ
Since rad(y, 8-vert. in K) < arccos(— 2\[) this implies as above that d(yy', ;) = 5. In

™

H
particular, d(yy’,§) = 5 and the direction fyy must be orthogonal to the 2-sphere %¢S;.

—
Recall that this sphere is an apartment in the second As-factor. Thus &4/ must lie on the
34 1 -factor of XX, K.

It follows from this that the segments {yy and & yy must

be of type 536 or 516. Further, since d(¢, yy) +d(¢, yy)
&, ¢ ) = m, the segments are of the same type Observe also,

that yy cannot be antipodal to yz or yaz otherwise the 2A-
vertex v’ Wo_ul>d be antlpodal to x or 2’. Suppose w.l.o.g. that the

segments &yy'E’ and {yxf are of type 51615 This implies that

the segment yaé’ is of type 53635 Since yy is not antipodal to
y, then the directions § yx and § yy' of type 3 and 1, respectively,
cannot be antipodal, thus, they are adjacent (recall that these directions lie in a building
of type 3 4 1). This 1mphes that the segment ya:yy has length arccos( ) and is of type
676. It also follows that yy lies on a segment of length 7 and type 67686 connecting yx

and yx Therefore, the segment yw yy has length arccos(——) and is of type 686. Hence,
Eyy — 3, K contains antipodal 7- and 8-vertices, that is, it contains a wall in the A,-factor.

Together with the apartment in the Dy-factor (compare with the beginning of Case 1), this
implies that the link Z@E;EyK contains a wall. It follows that the link in K of the 2-vertex

m(y,y’) contains a wall, contradicting Lemma [4.6.5.
Thus, diam(G - y) = arceos(—i) and by relabeling y by x we have reduced the possi-
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bilities to the following case.

Case 2: diam(G-xz) = arccos(—1). The simplicial convex hull C of z2’ is 2-dimensional.
Let v,y € C be the 8-vertices adjacent to x and 2/, respectively If 7y has an antipode in
Y. K, then there would be an 8-vertex in K at distance 37 °F to 2, but this is not possible (cf.
proof of Lemma 4.6.3). It follows that d(zy, S") = 5, where S’ C S is the 3-sphere spanned
by the 8-vertices in S. X5 CH(zy,S’) is a 3-sphere spanned by four pairwise orthogonal
T-vertices.

Let w € C be the 7-vertex m(z,2') and let 2” € G - x with d(w, ") > 7. The possible
distances between 2- and 7-vertices in the Coxeter complex of type Eg are of the form
arccos(—#) for k& an integer (this can be deduced from the table of 2- and 7-vertices in

Appendix A.7). Notice that d(z,w) = d(w, 2") = arccos(; f> Triangle comparison for the

triangle (z,2', 2") and diam(G - z) < arccos(—3) imply that d(z”,w) = d(z”,m(z,2")) <
arccos(—\%). If d(w,z") = arccos(—\%), then by rigidity, CH(x,2’,2"”) is an equilateral
spherical triangle with side lengths arccos(—%). In particular d(z,z") = arccos(—3) and
Lo(2',2") > .

If d(w,z") = arccos(—ﬁg), we may assume w.l.o.g. that Z,(z,2"”) > 7. This implies
that d(z,2”) > arccos(—3), i.e. d(z,2”) = arccos(—}). Again by triangle comparison
and Z,(z,2") > § we want to see that CH(z,w,z"”) must be a spherical triangle: let
#,x" be 2-vertices and let W be a 7-vertex in the Coxeter complex of type Eg, such that
d(z,w) = d(z,w) = arccos(;’[) d(w,z") = d(w,2") = arccos(——) and Z,(z,2") =
o 95) By triangle comparison, d(z,z") < d(z,z") = arccos(— 4), but since the angle
( a") = Ly(x,2") > %, then d(i,2") > Z. It follows that d(%,2") = arccos(—1) =
") and by rlgldlty CH(x,w,x") is a spherical triangle. We can now compute that
x

w
T
T,
,T
',a") = arccos(—£) > I

Ly (.7:

Let C’ be the 2-dimensional simplicial convex hull of zz”
and let 2,2/ € C' be the 8-vertices adjacent to x and 2”. By
considering the spherical triangle CH (z,2',y), we can compute
Loy, ") = arccos(r) < Z. Then we can see that, if 7y = 2, it
follows Z, (', 2") < 7, thus 77 # 4. They cannot be antipodal
either, because Zy has no antipodes in ¥, K (compare with the
beginning of Case 2). Hence, the segment zyz? has length 3
and is of type 878.

Let £ € ¥,K be the 7-vertex m(zy, z%). Notice that as for
zy, it also holds d(z2,S5’) = Z. This implies that the convex
hull of S" and the segment zyz# is isometric to the spherical join S’ o zyz2. In particular,

d(&,S") = 5. Notice that in a building of type D; with Dynkin diagram >§—'5—'L'7—<E, a -

and an 8- Vertex at distance 7 are joined by a segment of type 768. It follows that 33, K

(of type j>‘—§—'6 8) contains a 3-sphere spanned by four pairwise orthogonal 6-vertices.
This 3-sphere is not simplicial, and its simplicial convex hull is an apartment in the Ds-
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factor of XX, K. Since {Zy, 7%} is an apartment in the A;-factor of XX, K, it follows
that X¢>, K contains an apartment. In particular £ is an interior 7-vertex in >, K.

— —
We can also see, that if both 1-vertices zy’ and 22" are adjacent to §, then Z, (', 2") < 7,

. . — —,7 242 T/ . .
because in this case d(§, zw) = d(&,zx") = arccos(2=) < T (just consider the spheri-

V15 1
cal triangle C'H(zy,zw,¢) with sides d(zy, zw) = arccos(\/%), d(xy, &) = 7 and angle
Lz (T0,€) = arccos(\/ig)).
H
;—7 Therefore w.l.o.g. z7/ is not ﬂjacent to &, but since both are
Y adjacent to 7y, the angle Zz(& zy') must be of type 731, because

Y2, B is of type Dg with Dynkin diagram j>5—§—‘6—~7 Now recall

—
v — that £ is an interior vertex in X, K, this implies that we can find
x_?js U7 4 Lvertex ¢ € ¥,.K, so that ?y'x—f/c is a segment of type 181.
Thus, the link XY, K (of type Dg) contains a pair of antipodal

e 1-vertices and a 3-sphere spanned by four pairwise orthogonal 7-

vertices (compare with the beginning of Case 2). We can apply
Lemma/3.1.4 to see that ¥z, K contains a wall. By Lemma/[3.1.3, Y==Y. K contains
at least a wall. This implies that Y5>, K contains a wall and >, K contains a wall of type
1, contradicting Lemma 4.6.6. O

Let x € K be an 8A-vertex. We say that x has the
property T, if there is no spherical triangle in K with
8A-vertices x,x; and 8-vertex xy, with side lengths

8
d(z,x;) = 2, d(21,22) = 5, and such that the direc- ‘b
tion Ty is 2?”—extendauble to an 8A-vertex in K. This 7 ‘} <
last assumption is fulfilled if e.g. x5 is also an 8A-
vertex. !

Let x1, x, x5 € K be 8T-vertices as in configuration *. If £, (23, z2) = arccos(%), then
the simplicial convex hull of ys, x3, m(ys, z2) is a spherical triangle with vertices 3, y3, 5
and sides ysxg, w3y and zhys of type 87878, 828 and 878, respectively, and m(ys, z2) =
m(ys, x4). It follows that the simplicial convex hull of z1, m(ys, x2), 23 is a spherical triangle
in K as ruled out by the property 7', hence the property 7' implies that Z,,(x3,x;) =
arccos(—3) and d(x3, x;) = & for i = 1,2. Thus, Z,, (-1, x;11) = arccos(—3)) for i = 1,2
(the indices to be understood modulo 3) and these angles are of type 727. Let y; :=
m(xa, x3) and yo := m(z1,x3). Then it also follows that d(z;,y;) = %’r for i = 1,2.
Consider the vertices 1, x3, T2, y2, then we are again in the situation of the configuration
% (just exchange the indices 2 < 3). It follows as above that Z,(z2,z3) = arccos(—3)
because 1 is an 8T-vertex. This implies that Z,, (1, 22) = arccos(—3) as well, and this
angle is of type 727.

The convex hulls CH (z;,y;, x;) for distinct 4, j = 1,2, 3 are isosceles spherical triangles
with sides of type 87878, 87878 and 878. This implies d(y;,yi+1) = 5 and the segments
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yiyi+1 are of type 828. The intersection C'H (z;, Yi+1, Tiv1) NCH (x4, yi—1,x;—1) is the spher-
ical triangle C'H (z;,yi—1,yi+1) with sides of type 878, 878 and 828. In particular the
8-vertices m(z;, y;) are pairwise distinct.

Observe that the 2-vertices yzys, y3y1 € 2y KK are adjacent to the antipodal 7-vertices
Y321, Y32, respectively. This implies that d(yzys, ysy1) > arccos(3) > %, thus d(ysy2, ysy1) >
Z. On the other hand, triangle comparison for the triangle (y1, y2, y3) implies d(y3y3, yzy1) <
% and it follows that this triangle is rigid, i.e. the convex hull CH (y1,12,ys3) is an equilat-
eral spherical triangle with sides of type 828. Let z; := m(y;,y;—1). Notice that z; does not
lie on the segment x;y; of type 87878. Let w be the 7-vertex at the center of the triangle
CH (y1,v2,ys) and consider the spherical triangles CH (x;, z;, y;) for i = 1,2, 3 with sides of
type 82, 2768 and 87878. Notice that w is the 7-vertex on the segments z;y;. It follows that
w is adjacent to the 8 A-vertices m(x;,y;) for i = 1,2,3 and in particular, ¥,K contains
three pairwise antipodal 8-vertices.

Hp)

We say that an 8T-vertex x € K has the property T', if rad(z;, {8-vert. in K}) <
arccos(—%) for ¢ = 1, 2,3 and for any such configuration of vertices z1, xo,23 € G - x.

Lemma 4.6.10. K contains no 8T"-vertices.

Proof. Suppose there are 87"-vertices. We use the notation as in the definition of the
property T". Let w be the center of the triangle C'H (y1, y2, y3).

Let u € K be an 8-vertex. Then for some i = 1,2,3, Z,(z;,u) > 5. Suppose w.lo.g.

that it holds for ¢ = 1. If d(w,u) = 3, then wd is an 8-vertex and Z,(z1,u) = Z.

It follows that d(u,z) = 2%, but this contradicts the definition of the property 7". If

d(w,u) = arccos(—\/%;)), then wi is a 2-vertex and Z,(z,u) = Z. It follows again that
d(u,z1) = 2. Hence, d(w,u) < arccos(—ﬁg) for all 8-vertices u € K and as in the

beginning of the proof of Lemmal4.6.4 we deduce by triangle comparison that if w’ € G - w,
then d(w,w’) < arccos(—3). We may also choose ', so that d(w,w’) > Z.

Case 1: d(w,w') = arccos(—z). If the segment ww' is singular of type 76867, then for

some i = 1,2,3, Z,(y;,w') = %’r and this angle is of type 626. It follows that d(w’,y;) =
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arccos(—\%), a contradiction. If the simplicial convex hull of ww’ is 2-dimensional, we can
argue as in the proof of Lemma 4.6.4 (Case 1) to see that this case is not possible either.

Case 2: d(w,w’) = arccos(—z). The argument in the proof of Lemma [4.6.4 (Case 2)

6
rules out the case where ww’ has a 2-dimensional simplicial convex hull.

It remains to show that the case where the simplicial convex
hull C of ww' is 3-dimensional is not possible either. Let vy, v] €
C' be the 8-vertices adjacent to w and w’, respectively. Notice
that they are 8A-vertices, otherwise an antipode of e.g. v
in K would have distance %” to w; but this cannot happen.
Recall that there is an 8-vertex m € C', such that mw and mw’
are segments of type 867 and Z,,(w,w') = arccos(—2). Let
vy € K be an 8A-vertex adjacent to w and so that viwuvsy is a
segment of type 878. We can choose vy to be one of the 8A-
vertices m(z;,y;). Define v} analogously. Then the convex hulls
CH (m,vy,vy) and C'H(m, v}, vy) are equilateral spherical triangles with sides of type 878.

We want now to consider the convex hull C" := CH(C, vq, v}). mo,
The link ¥,,C is a 2-dimensional spherical quadrilateral S

— —
with vertices mw, mo1, mw’ and mv}. Notice that mvsmuwmuy
—_— 7

and mvimw'mu] are segments of type 767. It follows that mu,

CH(X,,C, muvy, muvh) is a bigon connecting the antipodal
7-vertices muv; and m—vé> Then d(ve,vh) = 2 and m =
m(vq, vy), in particular, m is an 8A-vertex. Let £, & €

. - — ., — L
Y C" be the 2-vertices m(muv}, mvy) and m(muvy, mvj). Let n be the 2-vertex m(muy, mv}).
The convex hulls CH (vq, ve, v4) and C'H (v}, v}, v9) are spherical triangles with sides of type
878, 87878 and 828.

Since m € K is contained in the convex hull of the 87"-vertices, it is also contained
in the convex hull of the 8T-vertices. We can find another 8T-vertex u; € K, such that
d(m,uy) = 2?” Notice that the 8 A-vertex u; cannot be antipodal to vy or v4, in particular,

Lin(u1,v2), L (u1,vy) < w. Suppose w.lo.g. that Z,,(u1,v2) > 5. Then Z,(uy,v2) =
arccos(—3) and d(uy,v2) = 3. CH(vy,m,uy) is an isosceles spherical triangle (as in the

configuration *) with a 2-vertex z in its interior. Recall that d(w,u;) < arccos(—ﬁg).

This implies that Z,,(w,u;) < arccos(s). This angle cannot be 0, because Z,,(m,w) =
arccos(3) and Z,,(m,uy) = arccos(—3). Thus Z,,(w,u;) = arccos(3) and it is of type 767.
C H (03w, Uami, v3uy ) is then a spherical triangle with sides of type 767, 767 and 727. In

particular w is adjacent to the 2-vertex z.
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7 muy This consideration implies in the link ¥,, ' that m2 and mw are

., adjacent. Suppose that the segment muvimu; is of type 727. This

mw implies that the angle /iy (mug, &) is of type 262. It follows that

‘ the segment mu;¢’ is of type 7672. Hence, d(u1, m(vh,v1)) = 2 and

n_%v_% T m‘zz—l’ CH (vy,v5,uy) is a spherical triangle with sides 87878, 87878 and

828. But this contradicts the definition of the property T' for wu;.
Therefore the segment mvimu, is of type 767.

—

If £, (uy, vh) = arccos(—3) we argue analogously and conclude that the segment mu{mu;
is of type 767. If Z,(u1,vh) = arccos(z) we see as above that d(mui,€) < 5, oth-
erwise we violate the property T for u;. Using triangle comparison with the triangle

—
(§, muy, mvy) (or using the convexity of the ball centered at mu; with radius 7) we see

— —=
that d(mv}, mu;) < arccos(i). Since moimuy is of type 767, then muj # mvj. Thus,
—
3) and the segment muvjmu; is of type 767 also in this case. It
—_
follows that C'H(muv}, mvi,muj) is a spherical triangle with sides 767, 767 and 727. In

particular muy is adjacent to 7.

—
d(muvy, muy) = arccos(

We have shown so far that any 7-vertex in X, K that is 2%—extendable to an 8T-vertex

—
in K must be adjacent to 7 and the segments connecting it with mv; and mv) are of type
767.

Let r := m(m,u;) € K and let uy € K be an 8T-vertex with d(ry, uj) = 2. Since u,
is an 8T-vertex, the angle Z, (m,u}) cannot be of type 767. Hence, it is of type 727. If
the angle £, (uy, u}) is also of type 727, then set uy := uj.

Otherwise, let uy € K be another 8T-vertex, so that
d(uz, m(ry,ub)) = Z. Again, because u) is an 8T-vertex,
the angle Z,(, ) (11, u2) is of type 727. In particu-
lar d(ri,u2) = % and again Z,,(m,us) is of type 727.
We want to see now, that 2, (uj,us2) is also of type

727. Suppose that 2, (uj,us) is of type 767. Then
CH (m, UL, riub) is a spherical triangle with sides of
type 767, 767 and 727. In particular ru; is adjacent to

§ = m(ﬂ—@,@)? this means that the segment d7,m
is of type 2767. Notice that this is the configuration x
for the vertices rq, ub, us, m. This implies that C'H (ry, ug, m(m,u))) is a spherical triangle
with vertices of type 8A and sides of type 87878, 87878 and 828 and uy could not be an
8T-vertex, a contradiction.
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Thus Z,, (uy,uz) is of type 727. This implies that d(uy,uy) =
2 and Z,, (m,us) is of type 727. Let ug € K be the 8A-vertex
m(uy, us), then 2, (m,us) is of type 727 and this implies that
d(m,u3) = %” Observe that ug is not necessarily an 87 -vertex.
Notice that muimus is of type 727 and recall that mu; is ad-
jacent to n for i = 1,2. It follows that n = m(mu;, mus).
In particular n is F-extendable in K. Consider the triangles
(m,uy,us) and (m, ug, uz), then by triangle comparison, it follows
that £, (u1,us), Zn(us, ug) < arccos(z) and since Zp,(uy, ug) =
arccos(—3), this implies that, Z,, (u;, u;) = arccos(3) and muzmu; is of type 767 for i = 1,2.
Hence, C' H (mui, mus3, mugz) is a spherical triangle with sides of type 767, 767 and 727. In

particular, mug is adjacent to n as well.

Write % = nmx € XX, K, where x is any vertex in K adjacent to m, so that
— . .
m#* € Y, K is adjacent to 7.

The 7-vertices vy, n—vi, nu; and nus are the 7-vertices
of a circle ¢ C ¥,3,, K of type 767676767, because as seen
above, nu; for i = 1,2 ii:che midpoint of a geodesic of length
7 connecting 7v; and nv), and fu; are antipodal for i = 1, 2.

From the construction above we see that d(qus,nu;) = 2

for i = 1,2 (the segments nusnu; are of type 767). Suppose
nus is antipodal to 77v7. This would imply that the segment
muzmw C ¥, K is of type 7316 and therefore d(mus, mw) >

7 (compare with the figure for ¥,,C" above). Consider now

the triangle (w,m,u3), it has sides d(m,w) = arccos(\/ig), d(m,us) = % and angle
L(w,uz) > 5. It follows that d(w,us) > arccos(—ﬁg), which is not possible. Hence,

N
d(ius, nv1) = d(qus,nvy) = 5. Therefore 7ju3 is the center of a 2-dimensional hemisphere
in X,%,, K bounded by c.

Let 73 := (m,u3) € K and let vy € K be another 8T-vertex, so that d(rs,u}) = 2.
Recall that ug is not necessarily an 87-vertex, therefore we cannot conclude directly that

Lys(m,uly) is of type 727. If Z,,(m,u)}) is actually of type 727, then set uy := u}.

Otherwise (i.e. if Z.,(m,u}) is of type 767), let uy € K be
an 8T-vertex, so that d(ug,m(rs,u})) = 25. Then, since u} is
an 8T-vertex, the angle Zp,(y;u)(73,us) must be of type 727.
This implies that d(rs,us) = 3 and the angle Z,,(uq,u}) is of
type 727. It follows that Z,,(m,uy) is of type 727, otherwise
(as in the argument above for uy) we find the configuration xx
and C'H (ug, ug, m(rs,u)y)) is a spherical triangle with sides of type
87878, 87878 and 828, contradicting the property T for uy. From
this we conclude that d(m, us) = & and 2, (us, uq) is of type 727.

Recall that mus must be adjacent to n. This implies that nuy is antipodal to 7us.




68 4. The Center Conjecture

Thus, 3,%,,K (of type Dg) contains a singular 2-sphere spanned by 3 pairwise or-

thogonal 7-vertices. Recall that it also contains a pair of antipodal 3-vertices 77—5 and 77—57 .
Lemma 3.1.4 implies that 3, %,, K contains a 3-sphere spanned by a simplex of type 1567.
Since 7 is §-extendable in K, we have found a 2-vertex in K, whose link contains a 4-sphere
spanned by a simplex of type 15678. This 4-sphere is of type 7 (this can be easily seen in
the vector space realization of the Coxeter complex of type D,, presented in Appendix/A)).

A contradiction to Lemma 4.6.9. O]
Let B3 be the property of an 8A-vertex x € K, such that X, K a

contains a singular 2-sphere with Bs-geometry &2 2 and such that ¢ ;

all the 7-vertices in this sphere are Z-extendable. .

7 7

Consider the configuration #* and notice that the 8-vertex v on the segment zxj3 (of
type 2828) adjacent to z is an 8 Bs-vertex.

Another similar way of finding 8 B3-vertices is the following. Let z1, 2o, 23,24 € K be
8 A-vertices adjacent to a 2-vertex y, so that C'H(x;) is a 2-dimensional spherical quadri-
lateral with sides x;x;,1 of type 878. Let x € K be an 8-vertex at distance %’T to y. Since
the x; are 8A-vertices, it follows that Z,(z,2;) = 5. This implies that ¥zX, K contains
a singular circle of type 767676767. Let z be the 8-vertex in yz adjacent to y. Then
¥.K contains a 2-sphere with Bs-geometry £=8 2. Considering the spherical triangles
CH(x,z;,:12), we see that the 7-vertices in this 2-sphere are Z-extendable. Hence z is an

8 Bs-vertex.

Consider now the definition of the property 7’. The 2-vertices z; are centers of 2-
dimensional spherical quadrilaterals as described above. In particular, if there are no 8 B3-
vertices in K, then it follows from the observation above, that rad(z;, {8-vert. in K}) <
arccos(—=1=) for i = 1,2,3. Hence, if K contains no 8Bs-vertices, it follows that the

22
property 7" implies the property T".

Recall that our strategy is to find spheres of large dimension in the links of vertices of
type 2 or 8. Notice that we have made the first step in this direction:

Corollary 4.6.11. If K contains 8 A-vertices, then it contains S-vertices, whose links in
K contain a singular circle.
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Proof. If K contains 8 Bs-vertices, we are done. Otherwise, 81" = 87", and Lemma
implies that there are no 8T-vertices in K. In particular, we find a spherical triangle in K
with sides of type 87878, 87878 and 828. The link in K of the 8-vertex in the interior of
this triangle contains a singular circle. O]

Now we find 8-vertices, such that their links contain singular 2-spheres.

Lemma 4.6.12. If K contains 8 A-vertices, then it also contains 8 Bs-vertices.

Proof. Suppose that K contains 8 A-vertices but no 8 Bs-vertices. Then, 87 = 87" and
Lemma[4.6.10/ implies that there are no 87-vertices in K.

Hence, there are 8 A-vertices xg,7y9 € K and an 8-vertex
2o € K, so that Ty := CH(xg,yo,20) is a spherical triangle
with sides of type 87878, 87878 and 828; where ypzy is the
side of type 828 (as in the definition of the property T). Let
x1 € K be the 8A-vertex on the segment zom(yo, z0) (of type
8282) adjacent to the 2-vertex m(yo, z0). Since x; is not an
8T-vertex, we can find 8-vertices y;,2; € K as vertices of
a spherical triangle 77 := CH(x1,y1,21) as above. Define z;,y;,2; € K and T; C K
inductively. Let w; be the 2A-vertex m(x;, z;41).

If £ € ¥, K is a 3-extendable 7-vertex and d(§, z;7;,1) = arccos(—\/ig), then we are

in the setting of the configuration s* because z,y; and z;z, are both 2?”-extemdable to
8 A-vertices (definition of the property 7"). This implies that there are 8 Bs-vertices in K,
contradicting our assumption. Hence, z;2;,; has distance < 7 to all Z-extendable 7-vertices
in ¥,, K. Notice also that d(z;z;_1,z;5;) and d(Z;2;,_1, 7;2;) are both < 7, otherwise w;_,
would have distance ?jf to the 8-vertex y; or z; and we would find an 8Bs-vertex on the
segment w;_1Yy; (w;_12;).

From these observations it follows, that zjw; has distance
= 5 to the circle X, Ty of type 727672767. This implies that

3
Y=Y, K (of type l}—‘?—‘i—z) contains a singular circle of

T1wq
type 161416141. It also contains the pair of antipodal 7-vertices

e ——s d /I 5
f = riwiziyr all 5 = r1wir12].

Since d(z120, 11y1), d(7120, 7121) < § and d(z120, 1wy) = 7, it follows from triangle

comparison that d(z17g, 711y1) = d(x170, 7121) = 7§, because the triangle (z1zo, 71y1, Z121)
must be rigid. Let ¢ := mwizzs. Then the segments (£ and (¢’ have length 7 and are of
type 657.
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—
7 L1Y1

7T —
X121

Sublemma 4.6.13. Y3, K contains a singular circle of type 756575657. This circle

riwi
contains the vertices &, £ and (.

Proof. Let (' € ¥z, K be the 6-vertex in the circle of type 161416141 antipodal to (.

Tiwi

If d(&,¢") = 5, then (£’ is a geodesic of type 65756. In particular, 5—5’ has an antipode
in ¥¢X g5 2., K and we find the desired circle. If d(, (') > 7, then the segment £(’ is of

T1wi

type 7676.

Let p be the 5-vertex on the segment (£ and let ¢ be the
7-vertex on the segment £(’ adjacent to (/. Consider the
geodesics ¢, and ¢y, of length 7 connecting ¢ and ¢’ through
p and ¢. Let 7, be the 7-vertex at the center of ¢, and
Ty be the 7-vertex in ¢, adjacent to ¢. Then p and 7 are

3 5
adjacent because XYz 2., K is of type \‘r !, & cannot
1,

be adjacent to the 6-vertex at the center of ¢, otherwise
it would have distance ‘% to (. Thus, the intersection of
the segments £¢" and ¢, is the segment ¢¢’. Considering
the spherical triangle C'H(p,&,1) with sides of type 57,
767 and 7565, it follows that £ is adjacent to the 6-vertex m(m, 72) on the segment pi. In
particular, ¢ must be antipodal to at least one of 71 or 75. Since 7 is adjacent to ¢ and
d(¢,€') = %, then & cannot be antipodal to 7,. It follows that {’ and 7, are antipodal. Let
finally ¢ be the geodesic connecting 77 and &', so that the initial direction coincides with

—_ —
71¢’. Then the initial direction of ¢ at £’ is antipodal to £¢ and we can find the desired
circle. O

Continuation of proof of Lemma 4.6.12.

3 5

The link ¥ X577%,, K (of type \‘i/ !) contains a pair of an-
1

tipodal 5-vertices & and {? and a pair of antipodal 1-vertices.
We apply Lemma/3.1.1 and Remark[3.1.2 to conclude that ¢ Xz 2, K

contains a singular circle of type 5135135 with C_f) and (—{’ on it. It
follows now from Sublemma 4.6.13 that ¥z ; %, K contains a sin-

gular 2-sphere s containing the vertices (, £ and &¢’. Therefore ¥, K
contains a singular 3-sphere S containing the singular circle 3,,7}.
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We investigate below which 7-vertices in S are Z-extendable. Clearly the 7-vertices in
¥z, Ty C S are F-extendable.

Let a1,y € s be the 3-vertices adjacent to ¢ and recall that ¢ is F-extendable (to
M) in Y, K. This implies that «; is -extendable to a segment of type 232 in ¥, K.
Therefore, we find 7-vertices 31,3, € S at distance 7 to Tow; which are z-extendable in
K (compare with the figure below).

The segment ayae C Xy 4, 2, K is of type 363 with midpoint the 6-vertex ¢, this
implies that the angle Zz (01, (2) is of type 161 and this implies in turn, that the segment

T2W1

B1Ps C X, K is of type 727. Let v € S be the 2-vertex m(f5, B2).

Let (3 := muwsmzr . We can use the same argument as above to see that ¥, X753, K
contains a singular circle of type 5135135. We want to prove next that it also contains a
pair of antipodal 7-vertices.

Sublemma 4.6.14. The link ¥¢, Y5032, K contains a pair of antipodal 7-vertices.

T2W2

Proof. Notice again that d(zws;, X;,71) = 5, in particular, d(zyws, Towi) = 7.
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Recall also from the beginning of the proof Lemma4.6.12

that d(zpws,3;) < 7, because (3; is F-extendable. This

implies that d(zaws,v) < § and Zgg(vows,y) < 3.
— -t e
Let ¢} := muimus, f; = Tawif; and 7 := Towiy. We
H
have already seen that d(¢}, %) < % and d(¢5,7) < Z.
Furthermore, it follows from triangle comparison, that if

/! =7\ _ T / - T .
d( 25 ’7) =9 then d(Cga /62) =3 fori=1,2.
Notice that the link ¥¢, ¥575;3,, K contains a pair of

T2W2

antipodal 7-vertices if and only if ¥ 3z7»%,, K contains

a pair of antipodal 7-vertices. The latter is what we will

show.
Let 41,02 € Xmg Xa, K be the two 7-vertices in Xgzm2,,Th

and recall that the 2-sphere ¥ S contains a singular circle of

type 756575657 containing the vertices 81, d, and 73 (this is just
the circle in X373, K corresponding to the circle in X3, K
from the Sublemma containing &, ¢ and (). Let o be the
6-vertex in this circle antipodal to 7. Further, we know that
d(¢},6;) = Z, because d(z2ws, X,,T1) = . If ¢} has an antipode

in the 2-sphere Y75, then xow; has an antipode in S. But this

. . . . —_— B E— .
is impossible, since Tows = xom(ya, 22) and m(ysz, 22) € K is a
2A-vertex at distance 2 to 5. Hence Z > d(¢4,7) > 0 and d(¢}, o) < .

T2wW1

3
Notice that ¥—=Y,, B is a building of type Dg and Dynkin diagram l>‘1—5—§—z. The

distances between 6-vertices are 0, Z, T, 2T and 7. The link Yy Vg 2y K 18 Of type

» 3) 20 73
3 5

'ﬁ/ !, thus two distinct 7-vertices in this link must be antipodal.
1

Case 1: d(¢5,7) = %. Since d(¢},0) < m, it follows that

7 (4o is a geodesic of length 7. Its simplicial convex hull is 2-
dimensional and contains two 7-vertices adjacent to (5. It follows

that ¢ Yz Y,, K contains a pair of antipodal 7-vertices.

T2wW1

Case 2: d(¢5, ™) = Z and the segment (57 is of type 646. In this t;

case, we know that d((}, E) = § for i = 1,2. Thus, C’H(E), E,Cé) is 3 ,
. . . . . T T 1 v S92
an isosceles spherical triangle with side lengths 7, 7 and arccos(—3). ! 6

The simplicial convex hull of the segment QE contains a 7-vertex t;

adjacent to ¢, and to E fori =1,2. If t; = to, then ¢, is adjacent to E ’

for i = 1,2. It follows that ¢, is also adjacent to 7 = m(E, ﬁ_;) This

means that d(7,t) = d(t1,¢) = %. Since d(¢5, ) = 2, (4t1Y must be a geodesic. This
contradicts the fact that the segment (}7 is of type 646. Hence, t; # t5 and Ve Vg Ly K
contains a pair of antipodal 7-vertices.
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Case 3: d(¢},7) = 5 and the segment G is of type 676. If d(¢y, 0) = 5 then N (o is
a geodesic of length 7 and of type 67676. If d({},0) = %’r, then the segment (47 contains
a 7-vertex adjacent to (; at distance § to 7 and the simplicial convex hull of the segment
(bo contains a 7-vertex adjacent to CQ at distance § to o. It follows that ¢ is adjacent to
two different 7-vertices. Thus, 3¢ Y530, K contalns a pair of antipodal 7-vertices. [

T2W1

5

3
End of proof of Lemma|4.6.12. We know now that ¥, X =mY,, K (of type \‘r ) contains
1

a singular circle of type 5135135 and a pair of antipodal 7-vertices. Hence, it contains a
singular 2-sphere (the spherical join of the singular circle and the pair of antipodal 7-
vertices). Since ¢, has an antipode in X733, K, this implies that Y5 z;3,, K contains
a 3-sphere spanned by a simplex of type 1567. This in turn implies that 3, K contains
a singular 4-sphere spanned by a simplex of type 15678. This sphere is of type % as can
be verified by considering the vector space realization of the Coxeter complex of type D,
presented in Appendix We get a contradiction to Lemma [4.6.9 finishing the proof of

the lemma. O

Tows

Lemma 4.6.15. K contains no 8 Bsz-vertices.

Proof. We want to show first that an 8 B3-vertex has the property T'. Suppose z; € K is
an 8 Bs-vertex and let x5, x3 € K be 8-vertices as in the configuration *. Suppose further,
that z3 is an 8A-vertex and that zyzs is 2g’r—extendable to an 8 A-vertex. To prove that z;
has the property T', we have to show that C'H(x1, x5, x3) is not a spherical triangle. Let
S C ¥, K be the singular 2-sphere from the definition of the property Bs. Let ¢ := 772,
and & := Tz, for i = 2,3, as in the notation of the configuration .

Suppose there is a 7-vertex £ € S, such that d(C €)= arccos(—%) The segment (£ is
of type 2767. Since § is Z-extendable in K and §; i is ZX_extendable to an 8 A-vertex, £ is not
antipodal to &; for i = 1 2. It follows that CH (¢, &, 53) is an equilateral spherical triangle
sides of type 727. Let v be the 7-vertex in (€ adjacent to (. ~ is the center of the spherical
triangle C'H (€, &s,&3). It follows from the configuration sx, that v is 2” -extendable to an
8A-vertex in K.

Y¢S is a singular circle of type 2626262. Notice that f_é = f—’; is not antipodal to any
2-vertex in this circle, otherwise we could find in S an antipodal 7-vertex to ~y, but thls
is not possible, since 7 is 2; extendable to an 8A-vertex in K. On the other hand, f{’
cannot have distance < 7 to all the 6-vertices in this circle, so let 1 be a 6-vertex in 255

so that d(n,f_&) =2 and let 0; € ¥¢S be the 2-vertices adjacent to n. Let pu = m(n, é()
(Compare with the conﬁguratlon in the proof of Lemma [4.6.7.)
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5, & Since 5_5 is not antipodal to d;, it follows that 47(51,5_@“)) =z
’ ’ and these angles are of type 232. Similarly, we see that n cannot
be antipodal to £_§; because §; has no antipodes in S. Thus, by

", . “5_5 Lemma 3.2.2 applied to this configuration in 33, K we conclude
H that X,%¢>,;, K contains a singular 2-sphere spanned by a simplex

of type 156. The same argument as in the proof of Lemma4.6.7 (p.

5 "¢¢, 158) shows that i is extendable in 3, K to a segment of type 727 and

the 2-vertex on this segment is extendable in K to a segment of type
828 (this uses that v € ¥, K is 2?’T—ex‘cemdable and the 7-vertices in S are 3-extendable).
This produces a 2-vertex in K, whose link contains a 4-sphere spanned by a simplex of

type 15678. This singular 4-sphere is of type %, a contradiction to Lemma (4.6.9.

From this, it follows that ¢ has distance < 7 to all the 7-vertices in S. Since S is
the convex hull of its 7-vertices, it follows that d(¢,S) = 5. Hence XX, K contains the
2-sphere s := X.CH((,S). The segments connecting ¢ with the 2-vertices of S are of
type 262, the segments connecting ¢ with the 7-vertices of S are of type 217 and since the
6-vertices in S are midpoints of segments of type 767 in .S, this implies that the segments
connecting ¢ with the 6-vertices of S are of type 2436. Since the sphere S has Bs-geometry
zs 2 it follows that s has Bs-geometry L4 2. 3.3, K also contains the two antipodal

T-vertices (xix; for i = 2, 3.

Sublemma 4.6.16. Let L. C B be a convex subcomplex of a building of type Dy with
3
. . 4 5 6 7 . . .
Dynkin diagram e Suppose L contains a singular 2-sphere S with Bs-geometry

L2 8 and also a pair of antipodal T-vertices. Then L contains a 3-sphere spanned by a
simplex of type 1467.

Proof. Let a,a’ € L be the antipodal 7-vertices and let b, be antipodal 1-vertices in
S C L. By Lemma [3.1.4 and Remark 3.1.6, it follows that L contains a circle of type
7317317 through b and o'. In particular 3, L contains a pair of antipodal 7- and 3-vertices.
S is a singular circle of type 6464646. So, it will suffice to show that under these
circumstances Y, L contains a 2-sphere spanned by a simplex of type 467 (notice that such
a sphere is also spanned by a simplex of type 346):

Let d,d" € Y¥,L be the antipodal 3- and 7-vertices, respectively. Let ¢ € 3,5 be a
4-vertex and let ¢’ the 6-vertex in 3,5 antipodal to c. If ¢ is adjacent to d, then ded' is a
geodesic of type 3437 and .3, L contains a pair of antipodal 3-vertices. If ¢ is adjacent
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to d’, then ded' is a geodesic of type 3547 and XX, L contains a pair of antipodal 5- and
T-vertices.

Otherwise the segments cd and cd' are of type 453 and 437
respectively. Let e be the 5-vertex in c¢d and let €' be the 3-vertex
in cd'. Let also f be the 4-vertex on the segment €'d (of type 343)
and let f’ be the 4-vertex on the segment ed’ (of type 547). Notice
that since e, e’ are adjacent to ¢, then e is adjacent to ¢’. It follows
that e is adjacent to f and € is zﬁgacent to f’. Let o be the edge
ee¢’. The link ¥,¥,B is of type ¢ £ 7; and the direction oc is of type 4. It follows that ¢
is antipodal to f or f’ and ¢ is contained in a circle in ¥, L of type 7673437 or 3657453.
This implies that ¥.Y,L contains a pair of antipodal 7-vertices or a pair of antipodal 3-
and 5-vertices. This means for ¥.X, L, that it contains a pair of antipodal 3-vertices or a
pair of antipodal 5- and 7-vertices.

Recall that ¥.3,S consists of a pair of antipodal 6-vertices. .3, B is of type A; o As
with Dynkin diagram 2 2¢ 1. If .3, L contains a pair of antipodal 3-vertices, then it
contains a circle of type 63636. This implies that >, contains a 2-sphere spanned by a
simplex of type 364 as desired. If 3.3, L contains a pair of antipodal 5- and 7-vertices, then
we apply Lemma 3.1.4 (for n = k = 3) to the As-factor of 3.3, B and conclude that 3.3, L
contains a circle of type 7675657. We get again the 2-sphere in ¥, as we wanted. O]

End of proof of Lemma 4.6.15. Sublemma [4.6.16 implies that X%, K contains a 3-sphere
spanned by a simplex of type 1467. Recall the notation of the configuration *. Let u be the
8-vertex m(xs,ys). T1z1u is a segment of type 828. Then, it follows that ., K contains a
singular 4-sphere spanned by a simplex of type 14678. This sphere is of type 757 (to verify
this, one can consider the vector space realization of D,, in Appendix [A). Lemma
implies that the segment x;u cannot be extended beyond w in K. This implies in turn,

that C'H (1, x2, x3) cannot be a spherical triangle. In particular x; must be an 87-vertex.
i.e. 8B = &T.

Let now x1, x5, x3 be 8 Bs-vertices as in the definition of the property 7”. Our argument
above shows that ¥, K contains a 4-sphere of type 757 for « = 1,2,3. We apply again
Lemma 4.6.8 and see that rad(z;, {8-vert. in K}) < arccos(—ﬁ) for i = 1,2,3. Hence,
27 1s an 8T"-vertex. A contradiction to Lemma 4.6.10! O

If we combine the Lemmata [4.6.12/ and [4.6.15 we obtain the following result, which is
the main step towards the proof of Theorem 4.6.24.

Corollary 4.6.17. All 8-vertices in K have antipodes in K.

Now we proceed to prove that the other vertices in K must also have antipodes in K.

We use the information about types of segments between vertices in the Coxeter complex
of type Ejg listed in Section

Lemma 4.6.18. All 2-vertices in K have antipodes in K.
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Proof. First note that a 2A-vertex © € K cannot be adjacent to an 8-vertex in K. Oth-

erwise let y € K be an antipode of the 8-vertex adjacent to x. The segment zy is of type
2828. This in not possible due to Lemma [3.0.1 and [4.6.17.

Suppose there is a 2A-vertex x € K. There exists 2’ € G - v with d(z,2’) > 7. From
the observation above it follows, that d(x, z') # arccos(—3). d(z, ') cannot be arccos(—2)
either, because in this case the midpoint of the segment zz’ is an 8-vertex. It follows

that d(z,2’) = 2° and the segment 2’ is of type 26262. Let y := m(z, '), it is also a
2A-vertex. Therefore we can find ¢y € G -y with d(y,y) = %’r Suppose w.l.o.g. that

Zy(z,y') > 5. Then d(z,y') > 5, thus d(z,y') = % . This implies by triangle comparison,

that Z,(z,y’) < arccos(—3).

If Z,(x,y') = arccos(—3), then either this angle is of type 686,
which is not possible because K contains no 8—V€£1]_)6X adjacent to

y; or the simplicial convex hull of the segment yZyy’ Coit)ains a 1-

vertex adjacent to yZ. The segment connecting yZ and ya’ through
this 7-vertex is of type 67686. This cannot happen either. Hence,

Zy(x,y') = 5. It follows that Z,(2',y') > § and we conclude analo-
gously that Z,(2',y') = 7.

|
1 arccos(—3) '
arccos|(;

3)

—
s 5 . Let v C X, K be the geodesic connecting yz and yz’ through
—
. @ . yy'. The simplicial convex hull of v is either 3-dimensional, in which
| | =
A 5 | case the direction yzyy spans a simplex of type 578 and in par-

ticular, Y, K contains 8-vertices, but this is not possible; or it is

2-dimensional and it contains a pair of 1-vertices adjacent to y—g7 .
Let z := m(y,y’) and let w be the 6-vertex m(y, z). The segment
joining w7y and w? through the 1-vertex adjacent to wy is of type 2152. It follows that zy
is adjacent to a 5-vertex. The geodesic connecting z7 and ,5; through this 5-vertex is of
type 65856, but z is a 2A-vertex and ¥, K cannot contain 8-vertices. [l

Lemma 4.6.19. All T-vertices in K have antipodes in K.

Proof. Considering the singular circles in Eg, we observe again that a 7A-vertex cannot
be adjacent to 2- or 8-vertices in K. Suppose K contains 7A-vertices, then there exist
7A-vertices w1,z € K at distance > 7. There are two types of segments x12; of length
> 7 and so that the simplices containing T;75_; in their interiors have no 2- or 8-vertices.
They are of type 76867 and 7342437. These segments have a vertex of type 2 or 8 in their
interiors, which yields a contradiction. O]

Lemma 4.6.20. All 1-vertices in K have antipodes in K.

Proof. Suppose x is an 1A-vertex in K. Then z cannot be adjacent to 2-, 7- or 8-vertices
in K. Let 2’ € G-z be another 1A-vertex at distance > 7 to x. It follows that the simplex

H
spanned by the direction zz’ has no 2-, 7- or 8-vertices. There are four possible types of
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segments za’. If d(x,2") = arccos(—32), then the simplicial convex hull of 2z’ contains an
/

8-vertex adjacent to z’. If d(z,2") = %’r or arccos(—%), then the midpoint of zz’ is an
8-vertex. If d(x,a') = arccos(—2), then the midpoint of za’ is a 7-vertex. This is not
possible by Lemma [3.0.1. Hence, there are no 1A-vertices in K. [l

Lemma 4.6.21. All 6-vertices in K have antipodes in K.

Proof. Let x be a 6A-vertex. By the previous lemmata and according to the list of singular
1-spheres in the Coxeter complex of type FEg, x cannot be adjacent to vertices of type 1,
2, 7 or 8. There exists another 6A-vertex ' € K at distance > 7 to x. It follows

—
that the direction zz’ span a simplex with no 1, 2, 7 or 8-vertices. Hence d(x,z’) €

{arccos(—7), 3, arccos(—3)}. In the first case the midpoint of za’ is an 8-vertex and in

1
the third case, it is a 7-vertex. In the second case the simplicial convex hull of zz’ contains

an 8-vertex adjacent to z’. A contradiction. [l

Lemma 4.6.22. All 3-vertices in K have antipodes in K.

Proof. Observe, that a 3A-vertex is not adjacent to a vertex of type 1, 2, 6, 7 or 8.

If K contains 3A-vertices, then it contains at least two

distinct 3A-vertices x, x’. Then a? is contained in an edge
of type 45. Consider the bigon in the Coxeter complex of
type Eg, which is the convex hull of a simplex of type 345
and the antipode of the 3-vertex of this simplex. We see
that there are only three possibilities for the type of the segment zz’. In one of them, the
midpoint of zz’ is a 2-vertex; and in another possibility, it is an 8-vertex. The simplicial
convex hull of zx’ for the last possibility contains an 8-vertex adjacent to x’. We obtain
again a contradiction to Lemma [3.0.1l O

Lemma 4.6.23. All 4- and 5-vertices in K have antipodes in K.

Proof. A vertex in K of type 4 or 5 without antipodes in K cannot have vertices of type
1,2, 3,6, 7or8in K adjacent to it. It follows that, if K contains 4A- or 5A-vertices, then
it has dimension < 1. A contradiction. O

We have shown in the previous lemmata that all vertices of a counterexample K have
antipodes in K, contradicting Lemma 3.0.2. This proves our main result:

Theorem 4.6.24. The Center Conjecture 1| holds for spherical buildings of type Eg.

Remark 4.6.25. Our proof actually shows that K is a subbuilding or the action of the
group Autp(K) ~ K fixes a point (see 1.3/ for definitions).
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4.6.1 A proof for the Fj-case using the Fg-case
Theorem 4.6.26. The Center Conjecture|l holds for spherical buildings of type Fj.

Proof. Let K be a convex subcomplex of a spherical building B of type F, and suppose
it is not a subbuilding. By Lemma [4.3.1, we just have to show that Stabay,(s) (/) has a
fixed point in K.

For this proof we use following labelling of the Dynkin diagram of type Fy: 2 &7 8

With this labelling the Coxeter complex of type F can be considered as a subcomplex of the

2 3 4 5 6 7 8

Coxeter complex (5, W) of type Eg with Dynkin diagram == 7= (cf. Section .

Let B = BoS3, where % denotes the unit sphere in R*. Then B is a spherical building
of dimension 7. From the observation above, it follows that B carries a natural structure
of a building of type Eg, and B C B can be viewed as a subbuilding. The polyhedral
structure of B (as a building of type F}) coincides with the one induced by the polyhedral
structure of B (as a building of type Eg). In particular, K is a subcomplex of B.

Notice that Auty(B) = Autz(B) (cf. Remark 4.6.25). Then by the Center Conjec-
ture for buildings of type Fg (Theorem [4.6.24) and the Remark [4.6.25, it follows that
Aut5(K) ~ K has a fixed point. In particular, Stabay,s)(K) C Autgz(K) also fixes a
point in K. ]

Remark 4.6.27. Notice that the subgroup (Autg(K))y of Autp(K) of type preserving
automorphisms is also a subgroup of Autz(K). Thus our proof of Theorem[4.6.26 actually
shows that K is a subbuilding or (Autp(K))y ~ K has a fixed point. The proof of
Lemmal4.3.1 can be used without changes to show that K is a subbuilding or Autg(K) ~
K has a fixed point.

4.6.2 A proof for the EFg-case using the FEg-case

Theorem 4.6.28. The Center Conjecture 1 holds for spherical buildings of type Eg.
Proof. Let K be a convex subcomplex of a spherical building B of type Fg and suppose
that K is not a subbuilding.

Let x be a circle of radius 1 with the structure of the spherical Coxeter complex of type
I5(6) with labelling of its Dynkin diagram 7 & Let p;, ps be a pair of antipodal 7-vertices
in K.
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Consider the spherical join B := Bo k. There is a natural embedding B — B so we
can regard B as a subset of B. Let K := Kok C B.

Let By, := X,,(Bo{p:}) C Epié for « = 1,2. Then Epié = B,, o X,,x and we have
isometries B %% B,, defined by p;(v) := p;v. Let K, := %, (K o {p;}) = K.

Let By % B, be the isometry that sends a direction ¢ € %, (B o {p;}) to the initial
direction at p, of the geodesic connecting p; and p, with initial direction & at p;. Then
p=pi'ops

Recall that the link of a 7-vertex in the Coxeter complex of type Fy is a Coxeter
complex of type Eg o A;. We consider the building B,, of type E; with the labelling of
vertices induced by the labelling of B and the isometry p;. With this labelling, a chart
(S®, Wg,) < B,, of the building B, induces a chart (S7, Wg,) — B, giving B a structure
of spherical building of type Eg, where the induced polyhedral structure of s coincides with
its structure as Coxeter complex of type I5(6). The labelling of the vertices of B, induced
by this building structure in B can be obtained from the one induced by ps by exchanging
the labels 2 < 6, 3 < 5 and fixing 1 and 4.

As an example, we present the Eg-structure of a 2-dimensional hemisphere {v}or C B ,
where v is a 2-vertex of B:

8
v of type 2

Notice that there is a natural isomorphism Auto(B,,) = Fizator 4,5 (k) between the

type preserving automorphisms of B, and the automorphisms of B fixing k pointwise.

It extends to an embedding Aut(B,,) < Stab . (r), where the image of a non type
preserving automorphism of B, restricted to « is the antipodal involution ant, of k. In
particular, ¢(¢)(p1) = p2 for a non type preserving automorphism ¢ € Aut(B,,), hence
() induces an isometry B, — B,,. This isometry is type preserving and coincides with
pow : By — By, This means that the image ((Aut(B,,)) acts on B,, via i(p)|s,,, if
¢ € Aut(B,,) is type preserving; and via p~'o (t(¢)|s, ), if ¢ € Aut(B,,) is not type
preserving. The embedding ¢ restricts to an embedding G := S’tabAut(Bm)(Kpl) 4G =
Stab gy (K).

There is an isometry ¢y of B that rotates k an angle of %” and preserves every 2-

dimensional hemisphere bounded by . The restriction of ¢g to an apartment a C B is the

composition of the reflections on two walls orthogonal to two 8-vertices in « at distance .
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It follows that ¢q is an automorphism of B and oo € G

We apply now the Center Conjecture for bu1ld1ngs of type Eg (Theorem [4.6.24) to
K C B. Since K is not a subbuilding, then K cannot be a subbuilding. It follows that
G’ fixes a point = € K. But since ¢o € G’ and ¢ has no fixed points in , it follows that
x ¢ k. This implies that ¢(G) preserves the 2-dimensional hemisphere h C K bounded by
k and containing x. Hence, it preserves the geodesic v connecting p; and p, contained in
h. It follows that «(G) ~ K, fixes the initial direction of v at p;. ]

Remark 4.6.29. Notice that the embedding G — G’ in the proof of Theorem [4.6.28
extends to an embedding Autp, (Kj,) — Autz(K). Then by Remark [4.6.25, the proof
actually shows that K is a subbuilding or the action of the group Autp(K) ~ K fixes a
point.

4.6.3 A proof for the F;-case using the FEg-case

Theorem 4.6.30. The Center Conjecture 1 holds for spherical buildings of type Ex.

Proof. Tt can be deduced from the Fg-case as follows: Let K C B be a convex subcomplex
of a spherical building of type F;. Suppose that K is not a subbuilding. Let B be the
suspension of B, i.e. the spherical join of B and a O—sphere {p1,p2}. There is a natural
embedding B — B so we can consider B as a subset of B. Notice that the map v +— D0
forve BC Bis an isometry B & B, = ), B Let K C B be the suspension of K and
let K, =%, K 2 K.

Recall that the link of an 8-vertex in the Coxeter complex of type FEg is a Coxeter
complex of type E7. Hence a chart (S®, Wg,) < B,, of the building B,, induces a chart
(ST, Wg,) — B , giving B a structure of spherical building of type Eg, where p; and p, are
8-vertices.

Observe that there is a natural isomorphism Aut(B,,) = Stab ,,, 5 (p1). The embed-
ding Aut(B,,) — Aut(B) restricts to an embedding G = Stabau(s,, ) (Kp,) — G =
StabAut(E) (K)

There is an isometry ¢ of B that exchanges the points p; <> po and preserves the
geodesics connecting p; and py. The restriction of ¢ to an apartment of B is the reflection
on the wall orthogonal to py, ps. Hence ¢q is an automorphism of B and ¢y € G.

We apply now the Center Conjecture for buildings of type Es (Theorem ml) to the
building B and the convex subcomplex K. Since K is 'not a subbuilding, then K is not a
subbuilding either. It follows that G fixes a point z € K and since oo € G, this fixed point
cannot be p; or p;. The image of G in G fixes x, p1 and po, hence it fixes pointwise the
geodesic v C K through x connecting p; and p,. Therefore, the action G ~ K,,, = K has
a fixed point pi17 € K, . n
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Remark 4.6.31. Notice that the embedding G — G in the proof of Theorem 4.6.30

extends to an embedding Autp, (K,,) — Autz(K). Then by Remark [4.6.25, the proof

actually shows that K is a subbuilding or the action of the group Autp(K) ~ K fixes a
point.
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Appendix A

Vector-space realizations of Coxeter
complexes

In this appendix we present a vector space realization of the irreducible spherical Coxeter
complexes. The information on the root systems can be found in [GB71, Ch. 5]. The
orders of the irreducible Weyl groups can be found in [GB71, p. 80].

We consider the spherical Coxeter complex (S™ ', W) embedded in R™ as the unit
sphere. Let {e;}" , denote the canonical base of R™.

The root system of a Coxeter complex (S, W) is the set of (unit) vectors orthogonal to
the hyperplanes inducing the reflections in W. The elements of the root system are called
root vectors.

A subset F' of the root system is called a base if there is a vector v € R™ such that
(r,v) # 0 for all root vectors r, and F' is minimal with respect to the property that any
root vector r, such that (r,v) > 0, can be written as a linear combination of elements in
F with nonnegative coefficients. The fundamental root vectors are the elements of a given
base of the root system. The fundamental Weyl chamber of (S,W) is A := A NS, where
A is the intersection of the half spaces (ri,+) > 0, where rq,...,r, are the fundamental
root vectors. A is a fundamental domain for the action of W in R".

Let v; be the vertex of A opposite to the face determined by (r;,-) = 0. We say that a
vertex of (S, W) is of type i, if it lies on the orbit W - v;.

We use the following labelling of the Dynkin diagrams of the irreducible spherical
Coxeter complexes:



84 A. Vector-space realizations of Coxeter complexes

IQ(m) 1,2 H3 152 3
A 1 2 n-1n H4 152 3 4
n * . ¢ . ¢ . . .

Recall, that the link »,5 of a vertex x € S is a spherical Coxeter complex with Weyl
group Staby (v) and with Dynkin diagram obtained from the Dynkin diagram of (S, W)
by deleting the vertex with label corresponding to the type of v.

The antipodal involution v +— —uv is type preserving for the spherical Coxeter complexes
of type Iy(m) (m even), B, (n > 3), Dy, (n > 2), Hs, Hy, Fy, E; and Fg. It exchanges
the types 1 <= 2 in Iy(m) for m odd; the types i «» (n+1—1i), fori=1,...,[5] in A,; the
types 1 <= 2, in Dy, 1, n > 2 and the types 2 «<» 6 and 3 < 5 in Fj.

Suppose xy is an edge of S of type ij. By deleting the vertex with label j from the
Dynkin diagram of (S, W), we obtain the Dynkin diagram of (3,5, Stabw (y)). We can
casily read off this Dynkin diagram which type the antipode of yz in 2,5 has. Say it
has type k, then the edge xy extends to a segment of type ijk. Repeating this proce-
dure and taking into account the lengths of the different types of segments (which can be
deduced from the description of the fundamental Weyl chamber), we can determine the
different singular 1-spheres in S. A similar consideration can be used to determine the
2-dimensional singular bigons bounded by singular segments and with it the 2-dimensional
singular spheres.

To determine the different types of segments modulo the action of the Weyl group
connecting a vertex of type ¢ with a vertex of type j, it suffices to compute the vertices of
type j in the spherical bigon f; := CH(A,v;) C S, where v; is the vertex antipodal to v;.

The bigon f; can be described by the set of inequalities {(r, ) > 0}4;.

More generally, suppose we want to determine the different types of segments connecting
a vertex x of type ¢ and a vertex y of type j, such that the vertices of the simplex in 2,5
spanned by the direction zi are not of type iy,...,i; # i. Then, it suffices to compute
the vertices of type j in the spherical bigon 3;(iy, ..., i) := CH(A(iy, .. .,ix),0;). Here,
A(iy,. .., i) denotes the face of the fundamental Weyl chamber A, which does not contain
the vertices v;,, ..., v;,.

The bigon (i1, ..., i) can be described by the set of (in)equalities
{<Tl7 > Z O}l#i,ih...,ik; {<Tl7 > = 0}[:1'1,...,ik~

Given a table listing the j-vertices in the bigon ;, this list can be verified as follows.
First, we have to check that the vertices listed indeed are of type j and are contained in
B;. Next we notice that (; is a fundamental domain for the action Staby (v;) ~ S. For a
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j-vertex x in the list, let o, be the face of /A spanned by the initial part of the segment v;z.
Then the orbit Staby (v;) - « has cardinality |Stab,,(v;)|/|Stabw (0,)|. Since the stabilizers
are again Weyl groups of spherical Coxeter complexes, their orders can be found in the table
in [GB71, p. 80]. It remains to verify that the union of the orbits Staby (v;) - © exhausts

all the j-vertices in S, that is, we have to check that . % o ‘lgfsé’v"v‘/((;’;))n = Sta‘b‘x‘(w)l.
x 1n e 11s

Al A,

~Y

Let n > 2. The Weyl group Wy, of type A, is the finite group of isometries of R" =
{z1 4+ + xpy1 = 0} C R™ generated by the reflections at the hyperplanes orthogonal
to the fundamental root vectors:

r;=¢é€+ —e forl<i<n

The fundamental Weyl chamber /\ can be described by the inequalities:

1) (2) (n)
T S xp <L < Ty

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
A, i.e. elements of RT- v;:

1-vertex: Uy ( -n, 1, 1, ..., 1, 1, 1)
2-vertex:  wvy  ( —(n—1), —(n—-1), 2, ..., 2, 2, 2)
(n —1)-vertex:  wv,—1 ( -2, -2, =2, ..., =2, n—1, n—1)
n-vertex: v, -1, -1, -1, ..., -1, -1, n)

The Weyl group Wy, acts on R"*! by permutations of the coordinates.

A.2 B,

Let n > 2. The Weyl group Wp, of type B,, is the finite group of isometries of R™ generated
by the reflections at the hyperplanes orthogonal to the fundamental root vectors:

r=e, =6 —e¢e_1for2<i<n

The fundamental Weyl chamber /A can be described by the inequalities:

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
A, i.e. elements of Rt v;:
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l-vertex: v ( 1,1,1,...,1)
2-vertex: Vg ( 0,1,1,...,1)
3-vertex: w3 ( 0,0,1,...,1)
(n — 1)-vertex: v, (0,...,0,1,1)
n-vertex: v, ( 0,...,0,0,1)

The Weyl group Wp, acts on R™ by permutations of the coordinates and change of
signs.

A3 D,

Let n > 4. The Weyl group Wp_ of type D, is the finite group of isometries of R" generated
by the reflections at the hyperplanes orthogonal to the fundamental root vectors:

r=e +e, ri=¢—¢e_1for2<i<n

The fundamental Weyl chamber /A can be described by the inequalities:

o @ B (@
—Ty < a1 <@g < ... < @y,

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
A, ie. elements of RT- v;:

l-vertex: v ( 1,1,1,...,1)
2-vertex: Uy (-1,1,1,...,1)
3-vertex: w3 ( 0,0,1,...,1)
(n — 1)-vertex: v, ( 0,...,0,1,1)
n-vertex: v, ( 0,...,0,0,1)

The Weyl group Wp, acts on R" by permutations of the coordinates and change of
signs in an even number of places.

A4 F

The Weyl group Wy, of type Fj is the finite group of isometries of R* generated by the
reflections at the hyperplanes orthogonal to the fundamental root vectors:

7’12—5(17171,1), o =€, T3=€x—€1, Tgy=~€3— €2



A.5 Eg 87

The fundamental Weyl chamber /A can be described by the inequalities:

(1) 2 B @
T+ +xy <05 0< 2 <2y <.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
A, i.e. elements of Rt v;:

1-vertex: v;

)

2-vertex: v
3-vertex: vs
4-vertex: vy

Y

0,-1
, 1,3
1, -2
1,1

NN N TN
O O = O
O~~~ O

) )

We list now the orbits of the vertices of /A under the action of the Weyl group (modulo
the following elements of the Weyl group: permutations and change of signs). We give
representing vectors for the vertices.

1-vertices (1, 0, 0, 0), (1,1, 1, 1)
2-vertices (1, 1, 1,-3), (2 2 2 0
3-vertices (0, 1, 1,-2)
4-vertices (0, 0, 1,-1)

This list can be verified by checking that the vertices listed indeed lie on the orbit W - v;
and there are as many as |Wp,|/[Stabw,, (v;)].

We describe in the following table the 1- and 4-vertices x in 3;. Let o be the face of
Y, A containing 017 in its interior.

x d(z,vy) Type of o

(01, 1, 1,-1) z 2

_ . 2 ) ) ) 3
i;’fr;lcgs (0, 0, 1, 0) z 4
b (1,01, 1, 1) i 2
(0, 0, 1,—1) z 4
4-vertices x (0, 1, 1, 0) 5 3
(0,0 1, 1) & 4

A5 Fg

The Weyl group Wg, of type Ej is the finite group of isometries of R® = {(xy,...,23) €
R® | z¢ = w7 = xg} generated by the reflections at the hyperplanes orthogonal to the
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fundamental root vectors:

1 .
ry = 5(1, L,1,-1,-1,-1,—-1,-1), 7 =€ —e;_1 for2<i<5;.

1
and = 5(1,1,1,1,-1,1,1,1).

The fundamental Weyl chamber /A can be described by the inequalities:

(1) 2 G (5) (6)
Toataxs5+---+x3 < x1+T9+73 T L2 <X ... < x5 Ty < 14+ x4+x6+T7+28.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
A, i.e. elements of R*- v;:

1-vertex: vy
2-vertex: vqy
3-vertex: vs
4-vertex: vy
H-vertex: vs
6-vertex: vg

Y Y

Y Y )

Y Y

I b )

1,-1,—-1,—

3,—1,—1,—

37_17_17_

3,—1,—1,—

9,~1,-1,—
1, 1

) ) Y

?

?

Y 37

Y Y

1, 1
-3, 3
0, 0
1, 1,
3, 3
3, 3

NN N TN TN N
W W W W
Lo Lo W W W

Y Y Y Y Y

We list now the orbits of the 1- and 2-vertices of A under the action of the Weyl
group (modulo the following elements of the Weyl group: permutations of the first five
coordinates and change of sign in an even number of places in the first five coordinates).
We give representing vectors for the vertices. The 6-vertices are just the antipodes of the
2-vertices.

lvertices (1, 1, 1, 1, 1,-1,-1,-1), (=1, 1, 1, 1, 1, 1, 1, 1),
(0,0 0 2 2 0 0 0
2-vertices (=3, 3, 3, 3, 3,—1,—1,-1), (0 0 0 0, 3 1, 1, 1),

3
(0,0 0 0 0-1,—-1,—1).

This list can be verified by checking that the vertices listed indeed lie on the orbit
W, - v2 and there are as many as |Wg,|/|[Wp.| = 33.

We describe in the following table the 1-vertices x in ;. Let o be the face of ¥, A
containing 014 in its interior.

| . | d(@,v) | Typeofo
. (0,0 0,2 2 0, 0, 0) 3 .

i_:rzflcq?s (-1, L, 1, L, 1, 1, 1, 1) 2 2
1,01 (-1,-1,-1, 1, 1, 1, 1, 1) %ﬂ 4
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We describe in the following table the 2- and 6-vertices x in 35. Let o be the face of
YA\ containing Uo in its interior.

x d(z,vq) Type of o
. 3,-3, 3, 3, 3,—1,—1,-1) arccos(: 3
2-vertices x # v (3,-3, 3 3, L
R e R ;
: : -~ ) ) ) ) 3
6-vertices z 7 & (3 0 0, 0, 0,—1,—1,-1) arccos(—i 1

A.6 FE;

The Weyl group Wg. of type E7 is the finite group of isometries of R” & {(zy, ..

.,[L’g) S

R® | 27 = zg} generated by the reflections at the hyperplanes orthogonal to the fundamental

root vectors:

1
=511 -1 -1 -1, -1, 1),

The fundamental Weyl chamber /A can be described by the inequalities:

1)

JI4+.I5+"'+$8 S $1+I2+l’3;

and

1
T = 5(1, 1,1,1,1,—-1,1,1).

(2)

®3)
Ilgl’gé...

(7)

Ti:ei—ei_1f0r2§i§6

T < T+t x5 a7+ 8.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber

A, i.e. elements of RT- v;:

1-vertex:
2-vertex:
3-vertex:
4-vertex:
5-vertex:
6-vertex:
7-vertex:

U1
V2
U3
V4
Us
Vg
U7

e N N N NN NN

)

e e e e R e

)

)

e e e e R e

)

)

— = = = = e

)

)

e e e

)

)

=W W= =

)

]'7
]"
17
3,
3,
37
1

)

—2,
—1,
—1,
-3,
—2,
—1,

0

9

)
)
)

3)

2)

1)

0)

2
1
1

We list now the orbits of the 2- and 7-vertices of /A under the action of the Weyl
group (modulo the following elements of the Weyl group: permutations of the first six
coordinates, change of sign in an even number of places in the first six coordinates and
simultaneous change of sign of the last two coordinates). We give representing vectors for

the vertices.
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1-vertices (1 1, 1, 1, 1, 1,
1 1,-3,

2-vertices (—1 1
(0,0 0 0 2 2

6-vertices (1, 1, 1, 1, 1,
( 07 07 07 ) ) 47
7-vertices (1 1, 1, 1, 1, 1,

, —

-2, -2

)7

0, 0, 2
0, 0, 0,
0, 0, 0,
0, 2, 2
0, 0, O,

2, 1, 1),
0, 2, 2),
2, 2, 2),
2, 0, 0)
2, 1, 1)

This list can be verified by checking that the vertices listed indeed lie on the orbits

W, - v; and there are as many as |Wg,|/|Stabw,,_ (vi)].

We describe in the following table the 2-vertices = in (3.

contalning voX 1n 1ts interior.

Let o be the face of ¥,,A

| x d(z,v5) | Typeofo
. (L1, 1, 1, 1, 1,1, T 3
i“;fztlcf}f (2 0,0, 0 0 2 0, z 6
5 ( 27_27 07 07 07 07 07 2% 3

We describe in the following table the 2- and 7-vertices x in (7.

3, /\ containing vz in its interior.

Let o be the face of

x d(z,vr) Type of o
(-1, 1, 1, 1, 1, 1,-1,-1) arccos(\%) 2
2-vertices x (0, 0, 00 0, 0, 0,—-2,-2) 5 1
(-1,-1,-1,—-1,—-1, 1,-1,-1) arccos(—\%) 6
7-vertices (0 0 0 0, 0, 2 1, 1) arccos(%) 6
x # vy, U7 (-2, 0, 0, 0, 0, 0, 1, 1) arccos(—%) 2

We describe in the following table the 1-vertices = in (3.

containing v 1n 1ts 1nterior.

Let o be the face of ¥, A

T d(z,vy) Type of o
(0, 0, 0, 2, 2, 2,—1,-1) arccos(%) 4
(0, 0, 00 2, 2 2 1, 1) arccos(z) 47
(=2, 0, 0, 0, 2, 2, 1, 1) arccos(—1) 25
1-vertices (1, 1, 1, 1, 1, 1, 2, 2) arccos(—z) 7
T # v, 0 (-1,-1, 1, 1, 1, 1, 2, 2) arccos(—é) 37
(-1,-1,-1,—-1, 1, 1, 2, 2) arccos(—2) 5
(=1, 1, 1, 1, 1, 3, 0, 0) arccos(%) 26
(=3, 1, 1, 1, 1, 1, 0, 0) arccos(z) 2
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We describe in the following table the 2- and 6-vertices x in 4. Let o be the face of
YA containing Ve in its interior.

T d(x,ve) Type of o

(=1, 1, 1, 1, 1, 1,—1,—1) z 2

E 1, 1, 1, 1, 1,—1,—1,—1? arccos(,5) 17

. 1, 1, 1, 1, 1,-1, 1, 1 z 7
2-vertices x (—1,—1, 1, 1, 1,—1,—1,—1) z 3
(0,0 0, 0 1,-1, 0, 0) | arccos(—55) 57

(-1, 0, 0, 0, 0,—1, 0, 0) 8 2

(1, 1, 1, 1, 3, 1,-1,-1) arccos(3) 57

(-1, 1, 1, 1, 3,—-1,—-1,-1) arccos() 257

(0,0 0 2 2 0-2-2) z 4

(0, 2 2 2 2 0, 0 0 z 27

. (=3, 1, 1, 1, 1,-1,-1,-1) z 2
2';‘3?? (0, 0, 0, 0, 2,-2 -2 -2) x 15
6,76 (0, 0, 2 2 2-2 0, 0) z 37
(-1, 1, 1, 1, 1,-3,—-1,-1) arccos(—1) 127

(-1, 1, 1, 1, 1,-3, 1, 1) & 27

(-1,-1,-1, 1, 1,-3,—1,—1) e 4

(0, 0 0 0, 0,-4, 0, 0) arccos(—2) 17

A.07 E8

The Weyl group Wiy, of type Fg is the finite group of isometries of R® generated by the
reflections at the hyperplanes orthogonal to the fundamental root vectors:

1
r = 5(1, 1,1,-1,-1,—-1,—1,—-1) and r; = ¢; — €;_1 for 2 <i < 8.
The fundamental Weyl chamber /A can be described by the inequalities:

(1) 2 6 @ (8)
Tyt s+ tag <zt astwy; wp < xp<a3<...< g

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
A, i.e. elements of Rt v;:
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1-vertex: vy
2-vertex: vq
3-vertex: vs
4-vertex: vy
5-vertex: vs
6-vertex: vg
7-vertex: vy
8-vertex: vg

)

-

N e R e N
| |
= o N OT N W
| |
== W N Ot~
| |

I

o= W0 N Ot ==
I

o= W N W =

[ e A
— =W R W =
e et e e
| [ I

—_ O = = W

We list now (modulo the following elements of the Weyl group: permutations of the
coordinates and change of sign in an even number of places) the orbits of the vertices of
A of type 1, 2, 6, 7, 8 under the action of the Weyl group. We give representing vectors
for the vertices.

1-vertices (-1,-1,-1,-1,—-1,-1,—1,—-1), (=5 1, 1, 1, 1, 1, 1, 1),
%( 37 37 37 ]'7 ]'7 ]'7 ]" 1)’ ( 07 Y Y ]'7 ]'7 ]'7 17 2)
2-vertices (=3,—-1,—-1,-1,—-1,-1,-1,-1), (2 2 2 2 0 0, 0, 0),

6-vertices (-3,-3,-3,-3,-3,—1,—1,—1), (6, 2 2 2 0, 0 0, 0),
(4, 4, 4, 0, 0, 0, 0, 0), (=5, 3, 3, 1, 1, 1, 1, 1),
(4, 4, 2, 2, 2, 2, 0, 0).

7-vertices (-1,-1,-1,-1,—1,—1, 0, 0), (2 1, 1, 0, 0, 0, 0, 0),
(=3, 3,1, 1, 1, 1, 1, 1)

8-vertices (-1,—-1,—-1,-1,—-1,-1,-1, 1), (2 2 0 0, 0, 0, 0, 0).

This list can be verified by checking that the vertices listed indeed lie on the orbits
Wiy - v; and there are as many as |Wpgy|/|Stabw,, (vi)].

We describe in the following table the 2- and 8-vertices x in 35. Let o be the face of
YA\ containing Vo in its interior.
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x d(z,vs) Type of o
(1,-3,-1,—-1,-1,—-1,-1, 1) arccos(2) 3
(0,-2,-2,-2,—2, 0, 0, 0) u 6
(1,-3,-1,—1,—-1,-1,—-1, 1) arccos() 38
2-vertices ( 1,-1,-1,-1,-1,-1,-1, 3) 5 8
x#v%@ ( 27_27_27_27 07 07 07 O) % 5
( 3,-1,-1,—-1,—-1,—-1,-1, 1) arccos(—7) 18
( 3,-1,-1,—-1,-1, 1, 1, 1) & 6
(4 0, 0, 0, 0, 0, 0, 0) arccos(—%) 1
(-1,-1,—-1,—-1,-1,—1,—1, 1) z 8
(1,-1,-1,-1,-1,—-1,—1, 1) arccoi(ﬁi) 1
8-vertices x (1,-1,-1,-1,-1,—-1, 1, 1) 5 7
(2-2 0, 0, 0,0, 0, 0) | arccos(—55) 3
(2 0 0, 0 0, 0, 0, 2) arccos(‘%”) 8

We describe in the following table the 7-vertices « in 37, such that d(z, v7) = arccos(—3)
or arccos(—3), and the 8-vertices « in 37, such that d(z,v7) > 5. Let o be the face of ,,A
containing v7Z in its interior.

x d(z,vr) Type of o
(0, 0,0 00 0, 0, 2,—1,-1) arccos(—z) 6
(0, 0, 0, 0, 1, 1,=-2, 0) arccos(—%) 58
(-1, 1, 1, 1 1,-3,-3) arccos(—z) 12
-~ : 2 ) ) ) ) ) ) ) 3

T-vertices & (0, 0, 00 0,0 00 1,=-2, 1) arccos(—%) 68
(=3, 1, 1, 1, 1, 1,-3,-1) arccos(—§) 28
(0, 0, 0, 0, 0, 1,—-2,—1) arccos(—z) 168
(1, 1, 1, 1, 1, 1,-1, 1) | arccos(—%) 8

8-vertices z (-1, 1, 1, 1, 1, 1,-1,-1) | arccos(—z) 2
( 07 07 07 Oa 07 2a _2a O) arccos(—ﬁg) 68

In order to make it easier to verify the table above, we present the complete table in
Appendix B.

We want to describe the simplicial convex hull C' of the segment v7x for the 7-vertex z =
(0,0,0,0,0,1,—2,—1), for this we present first a larger 3-dimensional spherical polyhedron,
namely the tetrahedron C' := CH (vg,y, us,y’), where y = (—-1,-1,—-1,—-1,—1,—1,1, —1),
ug = (0,0,0,0,0,0,—2,—2) and v’ = (0,0,0,0,0,2,—2,0). Notice that v; = m(vs,y) and
x =m(y',ug). C"is asubcomplex with four 2-dimensional faces: the triangles C'H (vs, y,v’),
CH(z,y,y"), CH(y,us,vs) and CH(y',ug,vs). The figures illustrate the tetrahedron C’
from the front and from behind.
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The triangles C' H (vg, m, x) and CH (v7,m,ug)  m m
are 2-dimensional subcomplexes. If we cut " 8 u 8
C" along these triangles, we obtain a con- 6 7 06 7
vex subcomplex C” := C'H (vq, v, x, ug, m).
It has six 2-dimensional faces: the tri- 7 —5 7 * 0
v7 13 8 x 13 8
angles vy Uy

CH(m,v7,us), CH(m,x,vs), CH(m, v, vg),

CH(m,x,ug), CH(vy,vs,ug) and CH(z,ug,vs). Recall that the direction v7# spans the
168-face in X, A, this implies that vy, v and vg are contained in the simplicial convex hull
C' of v;z. We can also see that the direction zvs spans the 168-face with vertices zuy, Tug
and zug. In particular, ug € C. Considering the triangle C'H (v7, m,ug) we deduce that
also m € C. It follows that C'= C”. The next figure shows the link X,,C".

We describe in the following table the 8-vertices x in Fs. Let o be the face of X, A
containing vs# in its interior.

| x | d(z,vs) | Typeof o
. (—1,—1,-1,-1,-1,—1, 1,-1) T 7
i“;fztlcgs (-2, 0, 0, 0, 0, 0, 0,-2) z 2
878 (0, 000, 0, 0, 0, 2,—2) I 7
We describe in the following table the 7-vertices x in (37(2,8) with d(x,v7) > 7. Let o

be the face of ¥,,A(2,8) containing v77 in its interior.
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‘ x ‘ d(z,v7) ‘ Type of o
7-vertices (0, 0 1, 1, 1, 1,—-1,-1) arccos(—%) 3
T # U7, U7 (0 0,0, 0 0, 2-1,-1) arccos(—3) 6

In order to make it easier to verify the table above, we present the complete table in
Appendix B.

We describe in the following table the 1-vertices x in 31(2,7,8) with d(z,v;) > 7. Let
o be the face of ¥, A(2,7,8) containing v17 in its interior.

v d(x,v1) Type of o
s(-1,-1,-1,-1, 1, 3, 3, 3) arccos(—3) 56
1-vertices (-1,-1, 1, 1, 1, 1, 1, 1) 2?” 3
T # 1, 01 s(-1,-1, 1, 1, 1, 3, 3, 3) arccos(—32) 36
%( L, 1, 1, 1, 1, 3, 3, 3) arccos(—%) 6

In order to make it easier to verify the table above, we present the complete table in
Appendix B.

We describe in the following table the 6-vertices x in 34(1,2,7,8) with d(z,vs) > 7.
Let o be the face of $,,A(1,2,7,8) containing vg7 in its interior.

‘ x ‘ d(z, vg) ‘ Type of o
. (0, 0, 0, 0, 6,—2,-2,-2) arccos(—7) 5
6';6”16‘15 0, 0, 2, 4, 4,-2,-2,-2) 2 34
7 Ve Vo (1, 1, 3, 3, 5 —1,—1,—1) arccos(—3) 35

Let us verify this last table. By considering the following 2-dimensional bigons, we can
see that if there are 6-vertices missing in the table above, they must lie in the interior of

Bes(1,2,7,8).

A 6-vertex z in the interior of (1,2, 7,8) should satisfy

(1) 2 G @ 6 (n 8
Ty+T5+ -+ x8 = T1 + X9 + T3 ; Tl =Ty < T3 < Ty < T ; Ts > Tg = Ty = Tg.
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In particular, we have four different values zo < 23 < x4 < x5. Hence, x cannot be a
permutation of (+4,+4,4+4,0,0,0,0,0).

If z is obtained from (-3, -3, —-3,—-3,—-3,—1,—1,—1) by permutations of the coordi-
nates and change of sign in an even number of places, then 1 =29 = =3, 23 = -1, 24, = 1
and x5 = 3. By the equalities (1), (2), (7) and (8), it follows that 2 = —%, which is not
possible.

If z is obtained from (£6,+2,4+2,+2,0,0,0,0) by permutations of the coordinates,
then (xq,x3, 24, x5) = (—6,—2,0,2), but ;7 = x5 = —6 is not possible; or (zs, x3, x4, T5) =
(—2,0,2,6). In this case the equalities (1), (2), (7) and (8) imply x¢ = —4, which is not
possible.

If x is obtained from (—5,3,3,1,1,1,1, 1) by permutations of the coordinates and change

of sign in an even number of places, then z5 € {—5, -3, —1}. 21 = 29 = —5 is not possible.
xe = —3 implies (x1,x9, w3, 24,25) = (—3,—3,—1,1,5) and equalities (1), (2), (7) and
(8) imply zg = —%. This is again impossible. z5 = —1 implies (x1, z9, T3, 24, T5) =

(—1,-1,1,3,5) and equalities (1), (2), (7) and (8) imply z¢ = 7 = x5 = —3, which cannot
happen.

If = is obtained from (+4,+4,+2 +2 42 42 0,0) by permutations of the coordinates,
then (x1, o, x3, x4, 75) = (—4,—4,—2,0,2) or (=2,—2,0,2,4). In both cases the equalities
Te = X7 = xg cannot be satisfied.

So we have verified that (4(1,2,7,8) contains no 6-vertices in its interior and therefore
our table is complete.
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More information about FEjg

In this section, we complete some tables given in Appendix/A.7. Although this information
is not directly used in the proof of our main result, we present it here in order to make it
easier to verify the tables in Appendix |A.7.

The next table lists the 7-vertices z in #; with d(x,v7) > 5. The vertices marked with
* are the ones at distance = 7 to v;. Let o be the face of ¥,,A containing V77 in its
interior. Let o, be the face of /A spanned by the initial part of the segment v;x.

Type of |Stabyp, (v7)]
z ya ‘St@bWES (v7) - x| = —|StabW§:(Ux)\
(1 1, 1, 1, 1, 1, 0, 0) (Wl [Way | /(W [[Wa,|) =1
( 07 07 17 17 1) 17_17_1> 3 ‘WEGHWAI’/<|VI;T16HWA4HWAID -
* %(_17_17_17 1, 1, 17_37_3) 4 |WE6||WA1|/(|W1;22‘(|)WA1||WA2||WA1|> =
( 07 07 07 07 07 27_17_1) 6 |WE6||WA1|/<|WD5||WA1|) =27
%( L 1, 1, 1, 1, 1,-3, 3) 8 |WE6||WA1|/|WE6| =2
%<_1> 17 17 17 17 17_37_3) 12 |WE6HWA1‘/(‘WA4HWA1|> =432
( o, 1, 1, 1, 1, 1,—-1, 0) 28 |WE6||WA1|/|WD5| =54
%<_37 17 17 17 17 17_37_1) 28 |WE6HWA1’/|WD5‘ =54
(0, 0, 0,0 1, 1,-2, 0) 58 (Wea [Wal/(IWa,[[Wa,|) = 432
( 0, 0, 0, 0, 0, 1,-2, 1) 68 |WE6||WA1|/|WD5| =54
%( 17 17 17 17 17 37 _37 1) 68 ‘WE6HWA1’/|WD5‘ =54
( 07 07 07 07 07 17 _27 _1) 168 |WE6||WA1|/|WA4| = 864
* (=1, 0, 0, 0, 0, 1,=2, 0) 268 (W |[Wa,|/IWp,| = 540
%(_17 17 17 17 17 37 _37 _1) 268 |WE0||WA1|/|WD4| = 540

Notice that since the antipode v7 of v; is also a 7-vertex, then the number of 7-vertices
in S at distance < 7 to vy is the same as the number of 7-vertices in S at distance > 7
to v7. It follows that the number of 7-vertices in S is two times the number of 7-vertices
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in S at distance < 7 to v; minus the number of 7-vertices at distance = 7 to v;. With
this observation and the one at the end of the introductory section of Appendix A| we can
verify the correctness of the list above: 2(1 + 216 + 720 + 27 + 2 + 432 + 54 + 54 4 432 +

54 + 54 + 864 + 540 + 540) — 720 — 540 = 6720 = 55 — 447 vertices in S}.

|Stabw g (v7)]

The next table lists the 8-vertices x in 37 with d(z,v7) > 7. The vertices marked with *
are the ones at distance = 7 to v7. Let o be the face of 3,, A containing U7% in its interior.

x Type of o

*

)

)

*

) )

) )

0 0,-2,-2

-1 1,-1,-1
1, , 1,—-1, 1
0 0,-2, 2
0 2,-2

OO = = O

0
1
o1
0
0

OO = = O
OO = = O

AN AN AN N N

Y Y Y Y Y

The next table lists the 1-vertices x in 4 with d(z,v1) > 7. The vertices marked with *
are the ones at distance = 7 to v1. Let o be the face of Y, A containing 017 in its interior.

Stab v1
x Type of o |Stabwy, (v1) - x| = ;#M
( L 17 L L L L L 1) |WA7|/|WA7|:1
(=5, 1, 1, 1, 1, 1, 1, 1) 2 (WA, |/|[Wa| =8
(=1,-1, 1, 1, 1, 1, 1, 1) 3 (War |/ ([Way [[Wa,|) = 28
*(=1,-1,-1,-1, 1, 1, 1, 1) 5 W, |/ (|Way|[Was|) = 70
(1 1,1, 1, 1, 3, 3, 3) 6 (W, |/ (IWa,||Wa,|) = 56
(=2, 0, 0, 0, 1, 1, 1, 1) 25 (War |/ (IWay | [Wa,|) = 280
(=1, 1, 1, 1, 1, 1, 1, 5) 28 |Wa,|/|[Wa,| = 56
%(—1,—1, L, 1, 1, 3, 3, 3) 36 W, |/ (IWa, |[|Wa, | [Wa,|) = 560
5(=3,-3, 1, 1, 1, 1, 1, 3) 38 (W, l/(IWa,|[Wa,|) = 168
(0,0 0 1, 1, 1, 1, 2 48 (W, |/ (IW 4, | [Was|) = 280
(-1,-1,-1, 1, 1, 1, 1, 5) 48 (W |/ (IWa,|[Wa,|) = 280
s(=1,-1,-1,-1, 1, 3, 3, 3) 56 (WA, |/ (|Wa,|[Wa,|) = 280
%(—1,—1,—1,—1,—1, 1, 1, 5) 68 W, |/ (|Wa,|[Wa,]) =168
* (=2,-1, 0, 0, 0, 1, 1, 1) 236 (W |/ (|Wa,||[Wa,|) = 1120
3(=3,-1, 1, 1, 1, 1, 3, 3) 237 (WA, |/ (|Wa,|[Wa,|) = 840
-3,-1,-1,-1, 1, 1, 3, 3) 257 (W, |/ (W, | |Wa,||[Wa,|) = 1680
(-1, 0, 0, 0, 1, 1, 1, 2 258 (WA |/ (IW 4, |[Wa,|) = 1120
(=1,-1, 0, 0, 0, 1, 1, 2) 368 (W, |/ (W, | |[Wa,[[Wa,|) = 1680
¥ (=1,-1,—-1, 0, 0, 0, 1, 2 A78 (Wa |/ (W, ||[Wa,|) = 1120

We can verify this table as we did with the table above: 2(148+28+70+564280+56-+
560+168+280+280+280+168+1120+840+1680+1120+1680+1120) —70—1120—1120 =

17280 = }vaji} — #{1- vertices in S}.
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