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Zusammenfassung

In dieser Arbeit untersuchen wir konvexe Unterkomplexe sphärischer Gebäude. Insbeson-
dere interessieren wir uns für eine Frage von J. Tits aus den 50er Jahren, die Zentrumsver-
mutung. Sie behauptet, dass ein konvexer Unterkomplex eines sphärischen Gebäudes ein
Untergebäude ist oder die Gebäude-Automorphismen, die den Unterkomplex erhalten,
einen gemeinsamen Fixpunkt besitzen.

Ein Beweis der Zentrumsvermutung für die Gebäude klassischen Typs (An, Bn und
Dn) wurde von B. Mühlherr und J. Tits in [MT06] gegeben. Der F4-Fall wurde von C.
Parker und K. Tent in einem Vortrag in Oberwolfach präsentiert [PT08]. Beide Argumente
verwenden kombinatorische Methoden aus der Inzidenzgeometrie. B. Leeb und der Autor
gaben in [LR09] differentialgeometrische Beweise für die Fälle F4 und E6 aus der Sicht der
Theorie metrischer Räume mit oberen Krümmungsschranken.

In dieser Arbeit wird der differentialgeometrische Zugang weiterentwickelt. Unser
Hauptresultat ist der Beweis der Zentrumsvermutung für Gebäude vom Typ E7 und E8,
deren Geometrie noch wesentlich komplexer ist. Insbesondere wird dadurch der Beweis
der Zentrumsvermutung für alle dicken sphärischen Gebäude abgeschlossen. Wir geben
auch einen kurzen differentialgeometrischen Beweis für die klassischen Typen. Schliesslich
zeigen wir noch, wie man die Fälle F4, E6 und E7 aus dem E8-Fall folgern kann.

Abstract

In this thesis we study convex subcomplexes of spherical buildings. In particular, we
are interested in a question of J. Tits which goes back to the 50’s, the so-called Center
Conjecture. It states that a convex subcomplex of a spherical building is a subbuilding or
the building automorphisms preserving the subcomplex have a common fixed point in it.

A proof of the Center Conjecture for the buildings of classical types (An, Bn and Dn)
has been given by B. Mühlherr and J. Tits in [MT06]. The F4-case was presented by C.
Parker and K. Tent in a talk in Oberwolfach [PT08]. Both approaches use combinatorial
methods from incidence geometry. B. Leeb and the author gave in [LR09] differential-
geometric proofs for the cases F4 and E6 from the point of view of the theory of metric
spaces with curvature bounded from above.

In this work we develop the differential-geometric approach further. Our main result
is the proof of the Center Conjecture for buildings of type E7 and E8, whose geometry
is considerably more complicated. In particular, this completes the proof of the Center
Conjecture for all thick spherical buildings. We also give a short differential-geometric
proof for the classical types. Finally, we show how the cases F4, E6 and E7 can be deduced
from the E8-case.
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Introduction

Buildings were first introduced by J. Tits in order to give geometric interpretations to
algebraic groups and the pattern of certain kinds of subgroups. In this work, we will
only consider buildings of spherical type. From the point of view of differential geometry
these can be thought of as a special kind of singular metric spaces with upper curvature
bound one in the sense of Aleksandrov. They are characterized by the property that
they contain many top-dimensional convex subsets isometric to unit round spheres, the
so-called apartments (see Section 1.3 for the formal definition). Spherical buildings occur
in Riemanninan geometry as boundaries at infinity of symmetric spaces of noncompact
type and play a prominent role in rigidity questions.

A spherical building carries a natural structure as a piecewise spherical polyhedral com-
plex. Its top-dimensional faces, the so-called chambers, are all isometric. Their isometry
type is called the model Weyl chamber. In this thesis we study closed convex subsets of
spherical buildings, which are also subcomplexes. In particular, we consider a conjecture
first proposed by J. Tits in the 50’s which is known as the Center Conjecture. It is now
formulated as follows (compare [MT06] and [Se05, Conjecture 2.8]).

Conjecture 1 (Center Conjecture). Suppose that B is a spherical building and that
K ⊆ B is a convex subcomplex. Then K is a subbuilding or the action StabAut(B)(K) y K
of the automorphisms of B preserving K has a fixed point.

A building automorphism is an isometry, which preserves the polyhedral structure of
the building. In particular, it induces an isometry of the model Weyl chamber, which may
be nontrivial. If it is trivial, the automorphism is type preserving. The isometries of the
model Weyl chamber can be identified with the symmetries of the Dynkin diagram.

A fixed point of the action StabAut(B)(K) y K is called a center of the subcomplex K.

Apparently, the first motivation of Tits for considering the Center Conjecture came
from algebraic group theory. Namely, he wanted to prove a result associating a parabolic
subgroup P to a unipotent subgroup U of a reductive algebraic group G [Ti62, Lemma
1.2]. This result is a direct consequence of the Center Conjecture. The desired parabolic
subgroup is obtained as the center of the fixed point set of the action U y B, where B is
the building associated to the group G. This result was later obtained by Borel and Tits
in [BT71] using other methods.
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In Geometric Invariant Theory a special case of the Center Conjecture is used to find
parabolic subgroups that are most responsible for the instability of a point (see [Mu65]).
This special case was proven by Rousseau [Rou78] and Kempf [Ke78].

From the point of view of metric geometry and CAT(1) spaces, a natural generalization
of Conjecture 1 is to drop the assumption of K being a subcomplex and consider arbitrary
closed convex subsets C ⊂ B. Such a subset C is a CAT(1) space itself. We can also forget
the ambient building and look for fixed points for the whole group of isometries Isom(C).

Conjecture 2. If C is a closed convex subset of a spherical building B, then C is a
subbuilding or the action Isom(C) y C has a fixed point.

Conjecture 2 was answered positively in [BL05] for the case dim(C) ≤ 2. The strategy
of their proof is basically to consider a smallest Isom(C)-invariant closed convex subset
Y ⊂ C and then prove that if Y is not a subbuilding, it has intrinsic radius ≤ π

2
(by intrinsic

radius of Y we denote the infimum of the radii of balls centered at Y and containing Y ).
If a CAT(1) space X has intrinsic radius ≤ π

2
, it was also shown in [BL05] that the set Z

of circumcenters of X is not empty and has radius < π
2
, in particular, Z ⊂ X has a unique

circumcenter and it is fixed by Isom(X). It follows that Isom(C) fixes a point in Y ⊂ C.

If C ⊂ B has intrinsic radius π then it must be a building (see [BL06]) and if it has
intrinsic radius ≤ π

2
, it satisfies the fixed point property asserted in Conjecture 2 as already

mentioned above. It is natural to ask if there are closed convex subsets between these two
possibilities or if Conjecture 2 is just a consequence of a more general “gap phenomenon”
(cf. [KL06, Question 1.5]).

Conjecture 3. If C is a closed convex subset of a spherical building B, then C is a
subbuilding or radC(C) ≤ π

2
.

If dim(C) ≤ 1, then it is easy see that Conjecture 3 holds, namely, a one-dimensional
convex subset is a building or a tree of radius ≤ π

2
. Another easy case is when the building

B is just a spherical Coxeter complex, i.e. B is a round sphere with curvature ≡ 1, then
C is also a round sphere with curvature ≡ 1 or it has intrinsic radius ≤ π

2
.

Unfortunately, we do not know more positive results for the Conjectures 2 and 3, other
than those mentioned above. Notice that we have the implications 3 ⇒ 2 ⇒ 1.

IfK is a convex subcomplex of a reducible building B = B1◦· · ·◦Bk, thenK decomposes
as a spherical join K = K1 ◦ · · · ◦ Kk where Ki ⊂ Bi is a convex subcomplex for i =
1, . . . , k. Thus, the Center Conjecture easily reduces to the case of irreducible buildings.
For irreducible buildings of classical type (i.e. An, Bn and Dn) the Center Conjecture was
shown in [MT06]. The F4-case was presented in a talk in Oberwolfach in [PT08]. The proof
uses the incidence-geometric realizations of the corresponding different types of buildings.

Our approach to these problems is of differential-geometric nature, using methods from
the theory of metric spaces with curvature bounded above. In Section 4.1 we give another
proof for the case of buildings of classical type from the point of view of comparison
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geometry. The cases of buildings of type F4 and E6 are settled in [LR09], we reproduce the
proofs with some minor modifications in Sections 4.3 and 4.4 for the sake of completeness.

The main result in this work is:

Theorem 4. The Center Conjecture 1 holds for spherical buildings of type E7 and E8.

We give first a direct proof of the E7-case in Section 4.5. The E8-case is proven in
Section 4.6, where we also give alternative proofs for the cases of buildings of type F4, E6

and E7 as consequences of the E8-case. The case of buildings of type H3 can be easily
treated with our methods (Section 4.2) or just be considered as a consequence of the main
result in [BL05]. Hence we have the following result.

Corollary 5. The Center Conjecture 1 holds for spherical buildings without factors of type
H4.

Our proofs of these results actually show a more general version of the Center Conjecture
(something between Conjecture 1 and 2 as far as group actions are concerned):

Corollary 6. If B is a spherical building without factors of type H4 and K ⊆ B is a
convex subcomplex, then K is a subbuilding or the action AutB(K) y K has a fixed point.

The automorphisms in AutB(K) are defined to be isometries of K preserving its poly-
hedral structure induced by B and such that the permutation of the labelling of its vertices
is induced by a symmetry of the Dynkin diagram of B. They need not be extendable to
automorphisms of B (see Section 1.3).

While any spherical Coxeter complex is a spherical building, not all spherical Coxeter
complexes occur as Coxeter complexes for thick spherical buildings ([Ti77]). Namely, there
are no thick spherical buildings of type H3 ( 21 35 ) and H4 ( 21 35 4), these being the only
cases. On the other hand, any spherical building has a canonical thick structure (depending
only on its isometry type) which results from restricting to a subgroup of the Weyl group
([Sch87], [KL98, Sec. 3.7]). The polyhedral structure thus obtained is (possibly) coarser.
The Center Conjecture is most natural when posed for thick spherical buildings, because
then K is a subcomplex of the natural polyhedral structure of B. In this case we have:

Corollary 7. The Center Conjecture 1 holds for all thick spherical buildings.

A completely different approach to the special case of the Center Conjecture for spheri-
cal buildings B associated to algebraic groups G and subcomplexes K which are fixed point
sets of the action of a subgroup H ⊂ G can be found in [BMR09]. They show that such
a subcomplex is a subbuilding or the action StabG(K) y K fixes a point. In [BMRT09]
this result is extended to the action StabAut(G)(K) y K.

We give now a short description of the structure of this work. In Chapter 1 we present
the definitions and known facts used in this thesis about CAT(1) spaces, spherical Coxeter
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complexes and spherical buildings. In Chapter 2 we study some geometric properties of the
different spherical Coxeter complexes. In Chapter 3 we gather some lemmata about convex
subcomplexes of buildings and isometric actions on them that will be used in the proofs
of the different cases of the Center Conjecture in Chapter 4. The Appendices collect all
the information on the spherical Coxeter complexes that is used to deduce the properties
in Chapter 2.



Chapter 1

Preliminaries

1.1 CAT(1) spaces

A complete metric space X is said to be a CAT(1) space if it is π-geodesic and the geodesic
triangles of perimeter less than 2π are not thicker than those in the round sphere with
curvature ≡ 1. The formal definition can be stated in several equivalent ways, we refer to
[BH99, Chapter II.1].

For two distinct points x, y in a CAT(1) space X at distance < π, we denote by xy the
unique segment connecting both points. Let m(x, y) denote the midpoint of the segment
xy. Two points at distance ≥ π are called antipodal.

The link ΣxX at a point x ∈ X is the space of directions at x with the angle metric. It
is again a CAT(1) space. If y 6= x and y is not antipodal to x, we denote with −→xy ∈ ΣxX
the direction at x of the segment xy.

A subset C of a CAT(1) space is called convex, if for any x, y ∈ C at distance < π the
segment xy is contained in C. A closed convex subset of a CAT(1) space is itself a CAT(1)
space. A closed ball of radius ≤ π

2
in a CAT(1) space is always convex. The closed convex

hull CH(A) of a subset A is the smallest closed convex subset containing A.

Let A be a subset of a CAT(1) space X and let x ∈ X. The radius of A with respect to
x is defined as rad(x,A) := sup{d(x, y)|y ∈ A} and the circumradius (or just radius) of A
in X is radX(A) = inf{rad(x,A)|x ∈ X}. For a closed convex subset C the radius radC(C)
is called the intrinsic radius of C. A point x ∈ CH(A), such that rad(x,A) = radCH(A)(A)
is called a circumcenter of A.

A classical result of comparison geometry states that a closed convex subset of a CAT(1)
space with intrinsic radius < π

2
has a unique circumcenter (see e.g. [BH99, Ch. 2, Prop.

2.7]).

For more information and properties of CAT(1) spaces we refer to [BH99].
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1.2 Coxeter complexes

A spherical Coxeter complex (S,W ) is a pair consisting of a round sphere S with curvature
≡ 1 together with a finite group of isometries W , called the Weyl group, generated by
reflections on great spheres of codimension one.

There is a natural structure of spherical polyhedral complex on S induced by W . The
spheres of codimension one, that are the fixed point sets of the reflections in W are called
the walls. The Weyl chambers are the closures of the connected components of S minus
the union of all the walls. A Weyl chamber is a convex spherical polyhedron. The Weyl
chambers are fundamental domains for the action of the Weyl group on S and therefore
isometric to the model Weyl chamber △mod := S/W . A root is a top-dimensional hemi-
sphere bounded by a wall. A singular sphere is an intersection of walls. The intersections
of a singular sphere and a Weyl chamber is called a face of the Weyl chamber. A vertex is a
0-dimensional face. A segment contained in a singular 1-sphere is called a singular segment.
The face spanned by a point is the smallest face containing it. The type of a point x ∈ S
is its image in the model Weyl chamber under the natural map θS : S → S/W = △mod.

The geometry of a spherical Coxeter complex (S,W ) can be encoded in a weighted
graph Γ, the so-called Dynkin diagram, as follows. The vertices of Γ correspond to the
codimension one faces of △mod. Two codimension one faces of △mod intersect with a
dihedral angle π

k
for k ≥ 2 an integer. Two vertices of Γ are connected by a simple edge if

the angle between the corresponding faces is π
k

for k = 3; they are connected by a double
edge, if k = 4; by a triple edge, if k = 6; and by an edge with label k, if k = 5, 7, 8, . . . . A
labelling by an index set I of the vertices of the Dynkin diagram induces a labelling of the
vertices of △mod, by giving a vertex v ∈ △mod the label of the vertex of Γ corresponding
to the face opposite to v. We say that a vertex in S is an i-vertex for i ∈ I, if its type in
△mod has label i.

The group Isom(△mod) is canonically identified with the group of symmetries of the
Dynkin diagram. An automorphism of (S,W ) is an isometry of S preserving its polyhedral
structure, that is, Aut(S,W ) is the normalizer of W in Isom(S). The group Aut(S,W )/W
can be canonically identified with the isometries of the model Weyl chamber △mod and
therefore also with the symmetries of the Dynkin diagram. Notice that the antipodal
involution of S is always an automorphism of (S,W ). The canonical involution of △mod is
the image of the antipodal involution under the identification mentioned above.

The rank of (S,W ) is the number of vertices of its Dynkin diagram. One can show
that rank(S,W ) = dim(S) + 1 if and only if W has no fixed points in S, equivalently,
if and only if diam(△mod) ≤ π

2
. In this case the Dynkin diagram determines △mod up

to isometry. Otherwise, rank(S,W ) < dim(S) + 1 and the Coxeter complex (S,W ) is
the spherical join of the spherical Coxeter complex with the same Dynkin diagram as
(S,W ) and dimension rank(S,W ) − 1, and a sphere of dimension dim(S) − rank(S,W ).
In this case diam(△mod) = π. If diam(△mod) = π

2
, then (S,W ) decomposes as a spherical

join of spherical Coxeter complexes, their Dynkin diagrams correspond to the connected
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components of the Dynkin diagram of (S,W ). Thus we say that a spherical Coxeter
complex (S,W ) is irreducible if rank(S,W ) = dim(S) + 1 and its Dynkin diagram is
connected. A Coxeter complex is irreducible if and only if diam(△mod) <

π
2
.

The irreducible spherical Coxeter complexes of rank n ≥ 3 have Dynkin diagrams of
type An, Bn, Dn (for n ≥ 4), H3, H4, F4, E6, E7 and E8 (see Appendix A, p. 83 for a
figure of the Dynkin diagrams).

Let x ∈ S and let σ be the face spanned by x. The link ΣxS decomposes as the
spherical join ΣxS ∼= Σxσ ◦ νxσ of the sphere Σxσ of directions tangent to σ and the
sphere νxσ of orthogonal directions. Suppose x′ ∈ S is another point spanning σ, we
can canonically identify νxσ and νx′σ by identifying parallel directions (in the Riemannian
sense), or equivalently, if c, c′ : [0, ǫ) → S are unit speed geodesics with c(0) = x, c′(0) = x′

and orthogonal to σ, we identify the directions ċ(0) and ċ′(0) if and only if the convex
hulls CH(σ ∪ {ċ(t)}) and CH(σ ∪ {ċ′(t)}) coincide near x and x′ for small t > 0. We can
therefore define the link ΣσS of σ in S as the identification space of the spheres νxσ for x ∈ S
spanning σ. It is again a spherical Coxeter complex with Weyl group Wσ := StabW (σ) and

model Weyl chamber △(ΣσS,Wσ)
mod

∼= Σσ△(S,W )
mod . Its Dynkin diagram can be obtained from

the Dynkin diagram of (S,W ) by deleting the vertices corresponding to the vertices of σ.

Consider a singular sphere s ⊂ S. Then s has a natural structure of Coxeter complex
induced by (S,W ) as follows. The induced Weyl group Ws ⊂ Isom(s) on s is the subgroup
generated by the reflections on s induced by isometries in W . Then (s,Ws) is a Coxeter
complex and we call it a Coxeter subcomplex of (S,W ). The polyhedral structure of (s,Ws)
is in general coarser than the one induced by the polyhedral structure of (S,W ). A singular
sphere s′ ⊂ s of codimension one in s is a wall of (s,Ws) if and only if for any top-
dimensional face in s′ (with respect to the polyhedral structure of (S,W )) the two top-
dimensional faces in s (again with respect to (S,W )) adjacent to it have the same type,

i.e. the same image in △(S,W )
mod .

Remark 1.2.1. The induced Weyl group Ws can be strictly smaller than the image of
StabW (s) → Isom(s) as shown in the following example.

Example 1.2.2. Consider the Coxeter complex of type E7 with the labelling
765432

1

of its Dynkin diagram. We find a singular 1-sphere s of type 13756137561 (see Section 2.6).
The induced Weyl group Ws is trivial, but the antipodal involution on s is induced by
isometries in StabW (s).

We refer to [GB71] and [KL98, Sec. 3.1, 3.3] for further information on spherical
Coxeter complexes.
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1.3 Spherical buildings

We refer to [AB08], [KL98] and [Ti74] for more information on spherical buildings. We
will consider spherical buildings from the point of view of CAT(1) spaces as presented in
[KL98].

A spherical building B modelled on a spherical Coxeter complex (S,W ) is a CAT(1)
space together with an atlas A of isometric embeddings S →֒ B (the images of these
embeddings are called apartments) with the following properties: any two points in B
are contained in a common apartment, the atlas A is closed under precomposition with
isometries in W and the coordinate changes are restrictions of isometries in W . The empty
set is considered to be a building.

The polyhedral structure of (S,W ) induces a polyhedral structure on the building B.
The objects (walls, roots,... ) defined for spherical Coxeter complexes can be defined for
the building B as the corresponding images in B.

A building is called thick if every wall is the boundary of at least three different roots.

Let a ⊂ B be an apartment and let σ ⊂ a be a Weyl chamber. There is a natural
1-Lipschitz retraction ρa,σ : B → a, such that ρa,σ|a = ida, defined as follows. For y ∈ B
let x ∈ σ be an interior point of σ not antipodal to y. Then ρa,σ(y) is the point in a, such

that d(x, y) = d(x, ρa,σ(y)) and −→xy =
−−−−−→
xρa,σ(y). For an apartment a′ containing σ, ρa,σ|a′ is

the unique isometry from a′ to a fixing σ pointwise.

There is also a natural 1-Lipschitz anisotropy map θB : B → △mod. It is characterized
by the property that for any chart ι : S → B we have θB ◦ ι = θS. If σ ⊂ ι(S) is any
chamber, then we also have θS ◦ ι−1 ◦ ρι(S),σ = θB. The anisotropy map restricts to an
isometry on any Weyl chamber. We define the type of a point in B as its image under
θB. As for Coxeter complexes, a labelling of the vertices of the Dynkin diagram of (S,W )
induces a labelling of the vertices of B.

The following proposition gives a criterion for the existence of a structure as a spherical
building on a CAT(1) space in terms of the anisotropy map (compare with [KL98, Prop.
3.5.1]).

Proposition 1.3.1 ([LR09, Prop. 2.2]). Let (Sn,W ) be a spherical Coxeter complex
and let X be a CAT(1) space with a structure of spherical polyhedral complex of dimension
n. Suppose that there is a 1-Lipschitz map θX : X → △mod = S/W , such that it restricts to
an isometry on any top-dimensional face of X. Suppose furthermore that any two points
of X lie in an isometrically embedded copy of S. Then X has a natural structure as a
spherical building modelled in (S,W ) with anisotropy map θX .

Proof. Let us call a top-dimensional face of X a chamber and an isometrically embedded
copy of S an apartment. By the assumptions, all chambers are isometric to △mod and the
apartments are tesselated by chambers. If σ1, σ2 are two adjacent chambers contained in
an apartment a, then the isometry (θX |σ2)

−1 ◦ θX |σ1 : σ1 → σ2 coincides with the reflection



1.3 Spherical buildings 9

at the common face of codimension one. It follows that the tesselation of a by chambers
coincides with the polyhedral structure of (S,W ), that is, there is an isometry ιa : S → a
with θX ◦ ιa = θS, which is unique up to precomposition with isometries in W . All these
isometries constitute an atlas and the compatibility of the charts is clear.

If x, x′ ∈ B lie in a common Weyl chamber σ, then the convex hull CH(x, x′, y) is a
spherical triangle for all y ∈ B (just consider the apartment containing y and σ).

Let x ∈ B and let σ be the face of B spanned by x. The link ΣxB decomposes as
the spherical join ΣxB ∼= Σxσ ◦ νxσ of the sphere Σxσ of directions tangent to σ and the
space νxσ of orthogonal directions to σ. If x′ ∈ B is another point spanning σ, then the
spaces νxσ and νx′σ are canonically isometric as follows. If c, c′ : [0, ǫ) → B are unit speed
geodesics with c(0) = x, c′(0) = x′ and orthogonal to σ, we identify the directions ċ(0)
and ċ′(0) if and only if there is a chamber τ containing c(t) and c′(t) for small t > 0 and
the directions ċ(0) and ċ′(0) are parallel in τ , equivalently, if and only if the convex hulls
CH(σ∪{ċ(t)}) and CH(σ∪{ċ′(t)}) coincide near x and x′ for small t > 0. We can therefore
define the link ΣσB of σ in B as the corresponding identification space. It has a structure as
a spherical building modelled on the spherical Coxeter complex (Σι−1(σ)S, StabW (ι−1(σ))),
where ι : S →֒ B is a chart with σ ⊂ ι(S).

For x ∈ B and sufficiently small ǫ > 0, the ball Bǫ(x) ⊂ B is canonically isometric to
the spherical cone of height ǫ over the link ΣxB. Thus, spherical buildings have a local
conicality property.

A building automorphism is an isometry preserving the polyhedral structure. We denote
by Aut(B) the group of automorphisms of B and by Aut0(B) ⊆ Aut(B) the subgroup of
type preserving automorphisms. An automorphism of B induces an isometry of the model
Weyl chamber △mod. This isometry is trivial if the automorphism is type preserving.
The quotient Aut(B)/Aut0(B) embeds as a subgroup of Isom(△mod). Notice that if the
building B is thick, then Aut(B) = Isom(B).

A convex subcomplex K is a closed convex subset of B which is a subcomplex with
respect to the polyhedral structure of B. Let AutB(K) denote the group of isometries of
K preserving the polyhedral structure of K induced by the polyhedral structure of B and
such that the permutation in the labelling of the vertices of K is induced by a symmetry of
the Dynkin diagram of B. Notice that the automorphisms in AutB(K) are not necessarily
extendable to automorphisms of B, as the following example shows. In particular, AutB(K)
is possibly a larger group than StabAut(B)(K).

Example 1.3.2. Let σ ⊂ B be a panel and let Kσ be the union of the Weyl chambers in B
containing σ. It is a convex subcomplex of B and AutB(Kσ) is the group of permutations
of the set of Weyl chambers containing σ. This group is very large if e.g. the set of Weyl
chambers containing σ is uncountable.

Although the automorphisms in AutB(K) must not be extendable to automorphisms
of B, the group AutB(K) depends on the ambient building B in the sense illustrated by
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the following example.

Example 1.3.3. Let B be a building of type F4 and let K ⊂ B be a convex subcomplex.
We can embed B in a building B̃ of type E8, such that the polyhedral structure of B
coincides with the structure induced by the polyhedral structure of B̃. The image of K
under this embedding is a convex subcomplex of B̃. Then Aut eB(K) is the possible smaller
subgroup of AutB(K) of type preserving automorphisms. (See Sections 2.4 and 4.6.1 for
more details.)

The simplicial convex hull of a subset A ⊂ B is the smallest convex subcomplex con-
taining A.

A subbuilding is a convex subcomplex K of a building B, such that any two points
in K are contained in a singular sphere s ⊂ K of the same dimension as K. The next
result justifies the term subbuilding, namely, a subbuilding carries a natural structure as
a spherical building induced by B. Its associated Coxeter complex can be described as
follows. Let s ⊂ K be a singular sphere of dimension dim(K) and let a ⊂ B be an
apartment containing s. If ι : S → a is a chart, then (ι−1(s),Wι−1(s)) is a Coxeter complex
unique determined up to isomorphism.

Proposition 1.3.4 ([LR09, Proposition 2.3]). The subbuilding K carries a natural
structure as a spherical building modelled on (ι−1(s),Wι−1(s)).

Proof. Let a ⊂ B be an apartment containing s and let σ ⊂ a be a chamber, such that
τ := σ ∩ s is a top-dimensional face of K. The retraction ρa,σ : B → a restricts to a
retraction ρs,τ : K → s of K in s. By Proposition 1.3.1 it suffices to give K a polyhedral
structure such that the map

K
ρs,τ−→ s→ ι−1(s) → ι−1(s)/Wι−1(s) = △(ι−1(s),W

ι−1(s))

mod (∗)

restricts to an isometry in each top-dimensional face of this polyhedral structure.

Let s′ ⊂ K be a singular sphere containing τ . We can pull back the polyhedral struc-
ture of the Coxeter complex (ι−1(s),Wι−1(s)) to s′ via the map ι−1 ◦ ρs,τ |s′ . We call this
structure the Coxeter polyhedral structure on s′. With this structure it is automatic that
the restriction of the map (∗) to s′ restricts to an isometry in each top-dimensional face of
s′. Thus it remains to show that the Coxeter polyhedral structures on all singular spheres
in K containing τ match and yield a polyhedral structure on K.

Consider the polyhedral structure of K induced by B (for short, we say w.r.t. B).
Let φ be a codimension one face of K w.r.t. B. We say that K branches along φ, if
K contains at least three distinct top-dimensional faces (w.r.t. B) τ1, τ2 and τ3 adjacent
to φ. By the convexity of K and because the τi are top-dimensional in K we conclude
that the unions τi ∪ τj are convex and contained in apartments. Let ιij : S → aij be
charts of apartments aij containing τi ∪ τj for i 6= j. We may choose these charts, so that
ι−1
12 (τ1) = ι−1

13 (τ1). This implies that ι−1
12 (τ2) = ι−1

13 (τ3) and in particular, θB(τ2) = θB(τ3).
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Analogously, θB(τ1) = θB(τ2). It follows that the τi have the same type, i.e. the same
image under θB.

Let s′ ⊂ K be a singular sphere containing τ . The discussion above implies that if K
branches along a codimension one face (w.r.t. B) φ ⊂ s′, then φ is contained in a wall of s′

with respect to the Coxeter polyhedral structure. This implies that the intersection of two
singular spheres s1, s2 ⊂ K containing τ intersect in a top-dimensional convex subcomplex
with respect to the Coxeter polyhedral structure, because any two top-dimensional faces
τi ⊂ si (again w.r.t. the Coxeter structure) either have disjoint interiors or coincide since K
cannot branch in the interior of τi. It follows that the Coxeter polyhedral structures on all
singular spheres in K containing τ match and give K the desired polyhedral structure.
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Chapter 2

Spherical Coxeter complexes

This section contains some geometric properties of spherical Coxeter complexes.

In our arguments later, we will need some information on singular spheres of codimen-
sion ≤ 2 in the different Coxeter complexes.

If the Coxeter complex (S,W ) is irreducible and its Dynkin diagram has no weights on
its edges, i.e. if it is of type An, Dn, E6, E7 or E8, then it is easy to see, that the Weyl
group acts transitively on the set of roots ([GB71, Proposition 5.4.2]). In particular all
walls (singular spheres of codimension 1) are equivalent modulo the action of W . If there
is more than one orbit of roots, then we define the type of a wall as the type of the center
of the corresponding root. Note that this definition is independent of which of both roots
we take.

A singular sphere of codimension 2 is the intersection of two different walls. We define
the type of a sphere of codimension 2 as the type of the circle spanned by the centers of
the corresponding roots.

We gather in the next sections some of the geometric properties of the different Coxeter
complexes. This information can be deduced from the data in the Appendix A.

2.1 The Coxeter complex of type An

For n ≥ 2 let (S,WAn
) be the spherical Coxeter complex of type An with Dynkin diagram

n−1 n1 2 . It has dimension n− 1.

The Dynkin diagram has only one symmetry, it exchanges the vertices i ↔ (n− i) for
i = 1, ..., [n

2
]. This symmetry corresponds to the canonical involution of the Weyl chamber

△An

mod. In particular, the antipodes of i-vertices are (n− i)-vertices for i = 1, ..., [n
2
].

The centers of the roots are the midpoints of edges of type 1n.

Let x ∈ S be a 1-vertex and x̂ the n-vertex antipodal to x. Any other vertex y 6= x, x̂
in S is adjacent either to x or x̂.
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2.2 The Coxeter complex of type Bn

For n ≥ 2 let (S,WBn
) be the spherical Coxeter complex of type Bn with Dynkin diagram

n−1 n1 2 3 . It has dimension n− 1.

The Dynkin diagram of type Bn for n ≥ 3 has no symmetries, therefore all automor-
phisms of (S,WBn

) are type preserving. If n = 2, the Dynkin diagram has one symmetry,
it exchanges the vertices 1 ↔ 2. The canonical involution of the Weyl chamber △Bn

mod is
trivial.

There are two orbits of roots under the action of the Weyl group. Their centers are
vertices of type n or n− 1 respectively.

2.3 The Coxeter complex of type Dn

For n ≥ 4 let (S,WDn
) be the spherical Coxeter complex of type Dn with Dynkin diagram

n−14
1

2

3 n. It has dimension n− 1.

The (n− 1)-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at a (n− 1)-vertex.

For n ≥ 5 the Dynkin diagram has one symmetry: it exchanges the vertices 1 ↔ 2
and fixes the others. This symmetry is induced by the canonical involution of the Weyl
chamber △Dn

mod if n is odd. If n is even, then the canonical involution is trivial. For n = 4
the Dynkin diagram has six symmetries, they permute the vertices 1, 2, 4 and fix the vertex
3.

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

• Distances between two n-vertices x and x′:

Distance Simplicial convex hull of segments xx′

0, π
π
2

singular segment of type n(n− 1)n

• Distances between two (n− 1)-vertices x and x′:
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Distance Simplicial convex hull of segments xx′

0, π

π
2

singular segment of type (n− 1)n(n− 1) for n ≥ 4/
singular segment of type (n− 1)(n− 3)(n− 1), if n ≥ 6;

4 4

1

2

, if n = 5.

singular segment of type 313 or 323, if n = 4.

π
3

(2π
3

)

n

n

n

n− 1 n− 1

n− 1

n− 2

n− 1 n− 1

n− 2 n− 2

π
3

2π
3

, if n ≥ 5;

if n=4, the simplicial convex hull of a segment xx′ of
length π

3
is 3-dimensional:

3
3

1

2

4
π
3

A segment xx′ of length 2π
3

consists of two segments of
length π

3
as above.

• Distances between two 1- (2)-vertices x and x′:

Distance Simplicial convex hull of segments xx′

arccos(n−4k
n

) for
k = 0, 1, . . . , [n

2
]

singular segment of type 1(2k + 1)1, (2(2k + 1)2 resp.)

• Distances between a 1- (2)-vertex x and a n-vertex y:

Distance Simplicial convex hull of segments xy
arccos( 1√

n
) singular segment of type 1n, (2n resp.)

arccos(− 1√
n
) singular segment of type 12n, (21n resp.)

The following properties of singular spheres in Dn can be easily seen in the vector space
realization of the Coxeter complex presented in Appendix A.

A wall in S contains a singular sphere of codimension 1 spanned by n − 2 pairwise
orthogonal n-vertices.

The convex hull of n−1 pairwise orthogonal n-vertices and their antipodes is a (n−2)-
sphere, but it is not a wall, in particular, it is not a subcomplex. Its simplicial convex hull
is S.
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If n ≥ 5 (n = 4) there are three (four) types of singular spheres of codimension 2. They
correspond to the two (three) types of segments connecting two (n−1)-vertices at distance
π
2

and the unique type of segments connecting two (n− 1)-vertices at distance π
3
. We say

that a sphere of the last type is a (n− 3)-sphere of type π
3
.

A singular sphere of codimension 2 always contains a singular (n− 5)-sphere spanned
by n− 4 pairwise orthogonal n-vertices.

Let h be a singular hemisphere of codimension 1 bounded by a singular (n− 3)-sphere
s. It is the intersection of a wall and a root bounded by a different wall. If n ≥ 6 and s is
of type (n− 1)n(n − 1) (or (n − 1)(n − 3)(n− 1)), then h is centered at a (n − 1)-vertex
x. The link Σxh in the Coxeter complex ΣxS of type Dn−2 ◦ A1 is a wall of type n (or
(n− 3)). If n ≥ 5 and s is of type π

3
, then h is centered at a point contained in a singular

segment of type n(n− 2), it is the midpoint of two (n− 1)-vertices at distance π
3
.

2.4 The Coxeter complex of type F4

Let (S,WF4) be the spherical Coxeter complex of type F4 with Dynkin diagram 32 41 .
It has dimension 3.

The Dynkin diagram has only one symmetry, it exchanges the vertices 1 ↔ 4 and
2 ↔ 3. The canonical involution of the Weyl chamber △F4

mod is trivial, in particular, the
antipodes of i-vertices are i-vertices.

There are two orbits of roots under the action of the Weyl group. Their centers are
vertices of type 1 or 4.

These are the one dimensional singular spheres in (S,WF4):

1

1 1

1

11

2

2

2

2

2

2

4

4 4

4

44

3

3

3

3

3

3

1

1

1

1

4

4 4

4

1 1

4

4

3 3

33

2 2

22

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

• Distances between two 1- (4-)vertices x and x′:

Distance Simplicial convex hull of segments xx′

0, π
π
3

singular segment of type 121 (434)
π
2

singular segment of type 141 (414)
2π
3

singular segment of type 12121 (43434)
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• Distances between a 1-vertex x and a 4-vertex y:

Distance Simplicial convex hull of segments xy
π
4

singular segment of type 14
π
2

singular segment of type 1324
3π
4

singular segment of type 1414

Consider now the following labelling for the Dynkin diagram of type F4:
76 82 .

With this labelling the Coxeter complex of type F4 can be considered as a Coxeter sub-

complex of the Coxeter complex (S,WE8) of type E8 with Dynkin diagram
8765432

1
.

It is a singular sphere S ′ spanned by a simplex σ of type 2678.

Let us verify first that S ′ is indeed tesselated by simplices of type 2678. Let i ∈
{2, 6, 7, 8} and let τi be the face of σ opposite to the vertex of type i. Let σi 6= σ be the
simplex in S ′ sharing the face τi. We just have to check that the vertex of σi opposite to the
face τi has type i for i = 2, 6, 7, 8. This can be seen by considering the Dynkin diagram of

the link in (S,WE8) of the face τi. For example, for Στ2S, it is 2 3 4
5

1
, and the antipodes

of 2-vertices in Στ2S are 2-vertices.

Finally, one has to check that the geometry of S ′ correspond to the geometry of F4.
Let λij be the edge in σ opposite to the edge in σ of type ij for i 6= j ∈ {2, 6, 7, 8}. The
1-sphere in Σλij

S spanned by the edge of type ij has geometry I2(m), where π
m

is the

angle between the faces τi and τj. For example, the 1-sphere in Σλ26S (of type
65432

1
)

spanned by an edge of type 26 has type 2626262. Thus, the angle between the faces τ2 and
τ6 is π

3
and the vertices of the Dynkin diagram of S ′ corresponding to vertices of type 2

and 6 are joined by a simple edge. By doing the same argument with the other edges of
σ, it is easy to verify that S ′ has F4-geometry: 76 82 .

2.5 The Coxeter complex of type E6

Let (S,WE6) be the spherical Coxeter complex of type E6 with Dynkin diagram
65432

1
.

It has dimension 5.

The 1-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at a 1-vertex.

The Dynkin diagram has one symmetry, namely, the one that exchanges the vertices
2 ↔ 6, 3 ↔ 5 and fixes the 1- and 4-vertices. It corresponds to the canonical involution of
the Weyl chamber △E6

mod. Therefore, the properties of i- and (8−i)-vertices for i = 2, 3, 5, 6,
are dual to each other.

These are the one dimensional singular spheres in (S,WE6):
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2

2

2

6

6

6 1 1

6

6

1

1

5

2

2

3

2 6

1

1

5

5

3

3

4

4

44

2

6

5

3

5

3

4

1
4

4

1
4

4

4

1

1

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

• Distances between two 1-vertices x and x′:

Distance Simplicial convex hull of segments xx′

0, π
π
3

singular segment of type 141

π
2

1 1

2

6
2π
3

singular segment of type 14141

• Distances between two 2- (6)-vertices x and x′:

Distance Simplicial convex hull of segments xx′

0
arccos(1

4
) singular segment of type 232 (656)

2π
3

singular segment of type 262 (626)

• Distances between a 2-vertex x and a 6-vertex y:

Distance Simplicial convex hull of segments xx′

π

arccos(−1
4
) singular segment of type 216

π
3

singular segment of type 26
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2.6 The Coxeter complex of type E7

Let (S,WE7) be the spherical Coxeter complex of typeE7 with Dynkin diagram
765432

1
.

It has dimension 6.

The Dynkin diagram for E7 has no symmetries, therefore all automorphisms of (S,WE7)
are type preserving.

These are the one dimensional singular spheres in (S,WE7):

6 6

2

2

3

33

4 4

44

37

7

7

7

2

2

6 6

1

11
2

1
2

77

4 4

2

2

11

1

55

5

1

5
7

7

5 5

6

6

1

1

3

3

7 7

4

4

5

5

5

5

4

4

3

3

2

2 2

2

22

3

3

3

33

2

2

2

2

6 6

66

6

6 6

6

6

4

4

4

44

4
6

The 2-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at a 2-vertex.

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

• Distances between two 2-vertices x and x′:

Distance Simplicial convex hull of segments xx′

0, π
π
3

singular segment of type 232
π
2

singular segment of type 262
2π
3

singular segment of type 23232

• Distances between two 7-vertices x and x′:
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Distance Simplicial convex hull of segments xx′

0, π
arccos(1

3
) singular segment of type 767

arccos(−1
3
) singular segment of type 727

• Distances between a 2-vertex x and a 7-vertex y:

Distance Simplicial convex hull of segments xy
arccos( 1√

3
) singular segment of type 27

π
2

singular segment of type 217
arccos(− 1√

3
) singular segment of type 2767

• Distances between a 2-vertex x and a 6-vertex y:

Distance Simplicial convex hull of segments xy
π
4

singular segment of type 26

arccos( 1
2
√

2
),

arccos(− 1
2
√

2
)

2

2

6
6

6

7 7

7

5

3

1

1 3

arccos(− 1
2
√

2
) arccos( 1

2
√

2
)

π
2

singular segment of type 276 /
singular segment of type 2436

3π
4

singular segment of type 2626

• Distances between two 1-vertices x and x′:



2.7 The Coxeter complex of type E8 21

Distance Simplicial convex hull of segments xx′

0, π

arccos(1
7
)

(arccos(−1
7
))

singular segment of type 121 (171) /

1

1

1 1

2

2

5

5

5
4

4 4

3

7

arccos(−1
7
) arccos(1

7
)

1

arccos(3
7
)

(arccos(−3
7
))

1 1

1

3

7

7
1

5

66

4

2

3

arccos(−3
7
) arccos(3

7
)

arccos(5
7
)

(arccos(−5
7
))

singular segment of type 141 (15251)

• Distances between two 1-vertices x and x′, such that the simplex containing
−→
xx′ in

its interior has no 1-, 2-, or 7-vertices:

Distance Simplicial convex hull of segments xx′

0, π
π
3

singular segment of type 646
2π
3

singular segment of type 64646

2.7 The Coxeter complex of type E8

Let (S,WE8) be the spherical Coxeter complex of typeE8 with Dynkin diagram
8765432

1
.

It has dimension 7.

The Dynkin diagram for E8 has no symmetries, therefore all automorphisms of (S,WE8)
are type preserving.

The 8-vertices are the vertices of root type. All hemispheres bounded by walls are
centered at an 8-vertex.

These are the one dimensional singular spheres in (S,WE8):
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8

8 8

8

2 2

22

8

8

8

8

8

8
7 7

77

7 7

2

2

2

22

2
66

6 6

66

7

7

7 7

44

4 4

4 4

44

6

6 6

6

2

2

22

55

5 5

5

55

5

1 1

11

8

8

6 6

66

7 7

77

22

8

8

33

3 3

11

1 1

77

2

2

4

44

4
3 3

33

7

77

7

5 5

8

8

1 1

11

2 2

22

33

8

8

4 4

44

5 5

55

3 3

33

6 6

8

8

55

5 5

6 6

66

1 1

11

4 4

We describe now the possible lengths and types (modulo the action of the Weyl group)
of segments between vertices. We list only the ones that we will need later.

• Distances between two 8-vertices x and x′:

Distance Simplicial convex hull of segments xx′

0, π
π
3

singular segment of type 878
π
2

singular segment of type 828
2π
3

singular segment of type 87878

• Distances between two 2-vertices x and x′:
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Distance Simplicial convex hull of segments xx′

0, π
arccos(3

4
) singular segment of type 232

π
3

singular segment of type 262

arccos(1
4
), arccos(−1

4
)

2

2

22

2

8 8

81

1

1

3
3

3

7

arccos(1
4) arccos(−1

4)

π/2
singular segment of type 282 /
singular segment of type 25152

2π
3

singular segment of type 26262
arccos(−3

4
) singular segment of type 21812

• The possible distances between two 7-vertices x and x′ are arccos(k
6
) for integer

−6 ≤ k ≤ 6. Here we will just need to describe the following segments:

Distance
Simplicial convex hull of segments

xx′
Comments

arccos(−1
6
)

8

8

8

8

8

7
7 7

7

7

7

7

7

7

2

2

6

6

6

x′x

8

8

8

8

8

2

2

2

7

77

7

77

6

6

8

8

8

8

2

2

2
3

3

1

1

7

7

x

x′

y′2

y′1
x′

y′1

y′2

x

y2

y1y2

y1
m

There are two types of seg-
ments xx′. The simplicial
convex hull C of xx′ is 2- or
3-dimensional, resp.
For the case dim(C) = 3,
we present two perspectives
from the front and from be-
hind of a larger polyhedron
C ′. It is the simplicial con-
vex hull of xx′ ∪ {y2, y

′
2}.

We describe ΣmC
′ below.

(†)

arccos(−1
3
)

singular segment of type 76867 /

7 7

7

7

2

8

8

1

1

6

6

6

4

3

5

3

1

x
x′

arccos(−2
3
) singular segment of type 7342437

We present here only the
segment xx′, such that the

simplex containing
−→
xx′ does

not contain 2- or 8-vertices.
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ΣmC
′:

2

2

2

7

7

7

3

3

1

6

6

7
1

−−→
mx′

−→mx −−→my1

−−→
my′2−−→my2

−−→
my′1

(†)
For a detailed description of the 3-
dimensional spherical polyhedra C and
C ′ we refer to Appendix A.7, p.93.

The possible lengths of segments xx′, such that π > d(x, x′) > π
2

and the simplex

containing the direction
−→
xx′ in its interior does not contain a 2- or 8-vertex, are only

arccos(−1
3
) and arccos(−2

3
).

• Distances > π
2

and < π between two 1-vertices x and x′, such that the simplex

containing
−→
xx′ in its interior has no 2-, 7- or 8-vertex:

Distance Simplicial convex hull of segments xx′

arccos(−3
8
)

1

1

1
1

4

4

1

6

6
5

5

5

5 5

5

22

8

arccos(−3
8
)

2π
3

singular segment of type 13831

arccos(−5
8
)

1
1

1

1

1

3

3

3

4

4
4

4

4

5

5

5
6

5

6

6

5

8

8

7

7

arccos(−5
8)

arccos(−7
8
) singular segment of type 1658561

• Distances > π
2

and < π between two 6-vertices x and x′, such that the simplex

containing
−→
xx′ in its interior has no 1-, 2-, 7- or 8-vertices:
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Distance Simplicial convex hull of segments xx′

arccos(−1
4
) singular segment of type 65856

2π
3

5

66

8
44

5

3 3

6 6

6

4

4 4

4

7 7

2π
3

arccos(−3
4
)

1

1

3 3

3

4
4

44

5

5

55

6 66

65

5

7

8

8

arccos(−3
4)

• Distances between a 2-vertex x and an 8-vertex y:

Distance Simplicial convex hull of segments xy
π
4

singular segment of type 28
arccos( 1

2
√

2
) singular segment of type 218

π
2

singular segment of type 2768
arccos(− 1

2
√

2
) singular segment of type 23218

3π
4

singular segment of type 2828

• Distances > π
2

between a 7-vertex x and an 8-vertex y:

Distance Simplicial convex hull of segments xy
5π
6

singular segment of type 787878
arccos(− 1√

3
) singular segment of type 72768

arccos(− 1
2
√

3
)

2 2

8

8

8

8 8

6

7

7 7

7
7x

y
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Chapter 3

Convex subcomplexes

In this section we will describe some general properties of convex subcomplexes of buildings,
as well as some results for buildings of specific types. These will be needed later in the
proof of the Center Conjecture.

Let K be a convex subcomplex of a spherical building B.

Let v ∈ ΣxK. We say that v is d-extendable, if there is a segment xy ⊂ K of length d
and so that v = −→xy. We also say that v is extendable to a segment xy.

We say that a point x ∈ K is interior in K, if the link ΣxK is a subbuilding of ΣxB.

Lemma 3.0.1. Let x1x2 ⊂ K be a segment. Suppose z is a point in the interior of the
simplicial convex hull of x1x2, which has an antipode ẑ ∈ K. Then xi has also an antipode
in K.

Proof. Let C be the simplicial convex hull of x1x2. Notice that C is contained in an
apartment and ΣzC is a sphere. Let γi ⊂ K for i = 1, 2 be the geodesic connecting z and
ẑ, such that the initial direction of γi at z is the antipode in ΣzC of −→zxi. Then xiz ∪ γi is
a geodesic of length > π. It is clear that γi contains an antipode of xi.

The following results give us conditions, under which K satisfies the conclusions of the
Center Conjecture 1.

The next Lemma puts together the results [LR09, Prop. 2.4, Lemma 2.5]. Compare
also [Se05, Thm. 2.2] and [KL98, Prop. 3.10.3].

Lemma 3.0.2. The following assertions are equivalent:

(i) K is a subbuilding of B,

(ii) every vertex of K has an antipode in K,

(iii) K contains a sphere of dimension equal to the dimension of K.
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Proof. The implication (i) ⇒ (ii) is clear.

(ii) ⇒ (iii). If dim(K) = 0, then K is a set of pairwise antipodal vertices and it
contains a 0-dimensional sphere. Suppose that the implication is true for subcomplexes of
dimension k and let K be a convex subcomplex of dimension k+1. Let x ∈ K be a vertex
and let ξ be a vertex of ΣxK. This implies that there is a vertex y ∈ K adjacent to x, such

that ξ = −→xy. Let ŷ ∈ K be an antipode of y. It follows that
−→
xŷ ∈ ΣxK is an antipode of

ξ. Hence all vertices in ΣxK have antipodes in ΣxK. Since dim(ΣxK) = k, it follows by
induction that ΣxK contains a sphere s of dimension k. Let x̂ ∈ K be an antipode of x.
Then s is the link at x of a (k + 1)-sphere S ⊂ K through x and x̂.

(iii) ⇒ (i). Let S ⊂ K be a top-dimensional sphere. First we proof the following
assertion: Any point x ∈ K has an antipode in S. If dim(K) = 0 the assertion is clear.
Suppose that the assertion is true for subcomplexes of dimension k and let K be a convex
subcomplex of dimension k+1. Let y ∈ S be any point. If y is antipodal to x, we are done.
Otherwise, consider the segment yx. By induction, the direction −→yx has an antipode in the
sphere ΣyS. So we can extend the segment yx in S to a geodesic of length π, and we have
found an antipode of x in S. Notice that the convex hull of a small neighborhood in S of
an antipode of x in S and x is a top-dimensional sphere through x. Let now x, y ∈ K be
two arbitrary points. We know that there is a top-dimensional sphere Sx ⊂ K containing
x. The same argument as above shows that there is a geodesic γ of length π connecting y
and an antipode ŷ ∈ Sx of y, and γ contains x. The convex hull of a small neighborhood of
ŷ in Sx and y is a top-dimensional sphere in K containing γ and in particular it contains
x and y. Hence K is a subbuilding.

The following result was stated in [LR09, Cor. 2.10] for convex subcomplexes, but
the proof works also for closed convex subsets. In [BL05] a more general result is shown,
namely, for an arbitrary CAT(1) space C of finite dimension and the action Isom(C) y C.
They also show, that under these hypothesis the set of circumcenters of C is nonempty.

Lemma 3.0.3. Let C ⊂ B be a closed convex subset. Suppose that radC(C) ≤ π
2

and
the set of circumcenters of C is nonempty, then the action StabAut(B)(C) y C has a fixed
point.

Proof. Let Z ⊂ C be the set of circumcenters of C. It clearly has diameter ≤ π
2
. Let z ∈ Z

and let A ⊂ Z be the StabAut(B)(C)-orbit of z. It also has diameter ≤ π
2
. We need the

following result.

Sublemma 3.0.4. Let Y ⊂ B be a subset containing points of only finitely many different
types and suppose that diam(Y ) ≤ π

2
. Then radB(Y ) < π

2
. In particular, CH(Y ) has a

unique circumcenter.

Proof. We use induction on the dimension of the building B. For dim(B) = 0 the assertion
is clear. Suppose now that B has dimension d > 0. Let y ∈ Y . Notice that d(y, y′) takes
only finitely many values for all y′ ∈ Y because Y contains points of finitely many different
types. It follows that if d(y, y′) < π

2
for all y′ ∈ Y then rad(y, Y ) < π

2
, so we are done.
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Otherwise the set Y ′ ⊂ ΣyB of directions
−→
yy′, where y′ ∈ Y has distance π

2
to y is

nonempty. Observe that Y ′ contains points of only finitely many different types, and that
diam(Y ) ≤ π

2
implies diam(Y ′) ≤ π

2
by triangle comparison. It follows by induction that

there is a direction ξ ∈ ΣyB, such that rad(ξ, Y ′) < π
2
. Again because d(y, y′) takes only

finitely many values for all y′ ∈ Y , we can choose an ǫ > 0 small enough, so that for the
point x in B at distance ǫ of y and −→yx = ξ, it holds rad(x, Y ) < π

2
.

End of proof of Lemma 3.0.3. By the sublemma it follows that A has radius < π
2

and
StabAut(B)(C) fixes the unique circumcenter of CH(A) ⊂ C.

Lemma 3.0.5 ([LR09, Cor. 2.12]). If K contains a singular sphere of dimension
dim(K) − 1, then K is a subbuilding or StabAut(B)(K) y K has a fixed point.

Proof. Let σ be a top-dimensional face of the singular sphere s of dimension dim(K) − 1
in K and let τ be a top-dimensional face of K containing σ. The convex hull of τ and s
is a top-dimensional hemisphere h ⊂ K. Let x ∈ h be the center of this hemisphere. If
rad(x,K) ≤ π

2
, then by Lemma 3.0.3, StabAut(B)(K) fixes a point in K. Otherwise, there

is a y ∈ K with d(x, y) > π
2
. By the same argument as in Lemma 3.0.2 ((iii) ⇒ (i)), we

find an antipode ŷ of y in the interior of h. The convex hull of a small neighborhood of ŷ
in h and y is a top-dimensional sphere in K, thus, K is a subbuilding by Lemma 3.0.2.

Remark 3.0.6. The Lemmata 3.0.3 and 3.0.5 remain true if we consider the action
AutB(K) y K instead of StabAut(B)(K) y K (actually for the action Isom(K) y K
by [BL05]). The proofs are exactly the same.

3.1 Convex subcomplexes of buildings of type Dn

In this section let L ⊂ B be a convex subcomplex of a building of type Dn for n ≥ 4. We

use the following labelling of the Dynkin diagram n−14
1

2

3 n.

Lemma 3.1.1. Let n = 4, i.e B is of type D4 and suppose that L contains a pair of
antipodal i-vertices and a pair of antipodal j-vertices for i 6= j and i, j ∈ {1, 2, 4}. Then it
contains a singular circle of type 1241241.

Proof. By the symmetry of the Dynkin diagram of type D4, we may assume w.l.o.g. that
i = 1 and j = 2. Let a, a′ ∈ L be the antipodal 1-vertices and let b, b′ ∈ L be the antipodal
2-vertices. If b lies on a geodesic γ connecting a and a′, then γ is of type 1421. The convex
hull of b′ and a small neighborhood of b in γ is the desired circle.
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4

42

2

2

3
a
′π

a
π

b

c

c
′

1 1

d
′

d

m

Let us suppose then, that d(a, b) + d(b, a′) > π. The
segments ba and ba′ are of type 241. Let c, c′ be the 4-vertices
on the segments ba and ba′, respectively. Let d, d′ be the 2-
vertices on the segments ac′ and a′c, respectively. Since c, c′

are adjacent to b, it follows that the segment cc′ is of type
434. Let m be the 3-vertex m(c, c′), then the segment mb′

is of type 3232. This implies that
−→
mb′ must be antipodal to−→

md or
−−→
md′. In particular b′ is antipodal to d or d′. Either

way, we find the desired circle, as above.

Remark 3.1.2. The proof of Lemma 3.1.1 shows that we can choose the circle in L to
contain the two antipodal i-vertices or the two antipodal j-vertices.

Lemma 3.1.3. If L contains a singular (n− 2)-sphere S (i.e. S is a wall) and x ∈ L is a
1-, 2- or n-vertex without antipodes in S, then ΣxL contains an apartment. In particular,
x is an interior vertex in L.

Proof. Let first x be an n-vertex. The sphere S contains n − 2 pairwise orthogonal n-
vertices and their antipodes. They span a singular (n− 3)-sphere S ′ ⊂ S. Since x has no
antipodes in S, then it must have distance π

2
to all these n-vertices, and h := CH(S ′, x) is

a (n − 2)-dimensional hemisphere centered at x. Put D3 := A3. The link ΣxB has type
Dn−1. Σxh is a (n− 3)-sphere spanned by n− 2 pairwise orthogonal (n− 1)-vertices. This
(n− 3)-sphere is not a subcomplex, its simplicial convex hull is an apartment contained in
ΣxL.

We may now assume w.l.o.g. that x is a 1-vertex. We prove the assertion by induction
on n. Let B be of type D3 with Dynkin diagram 31 2. In this case the 1-dimensional
sphere S contained in L ⊂ B is a circle of type 1312321. Since the 1-vertex x has no
antipodes in S, it must be adjacent to the 2-vertices in S and therefore it is also adjacent
to the 3-vertex between them. It follows that the convex hull CH(S, x) is a 2-dimensional
hemisphere with x in its interior. ΣxCH(S, x) is an apartment in ΣxL.

Let now B be of type Dn for n ≥ 4. Let y1, y2 ∈ S be two antipodal n-vertices. If
x lies on a geodesic of length π connecting y1 and y2, then the geodesic y1xy2 is of type
n21n. The link Σy1L is of type Dn−1. By induction it follows that Σ−→y1xΣy1L contains an
apartment, and therefore, ΣxL contains also an apartment.

2

21

1

1

3

y2
π

y1
π

x

n n

z1

z2

On the other hand, if d(x, y1) + d(x, y2) > π, then the
segments xyi are of type 12n. Let zi be the 2-vertex on
the segment xyi. Since zi is adjacent to yi we deduce that
z1 6= z2. Since the link ΣxL has type An−1, it follows that the
segment −→xz1

−→xz2 ⊂ ΣxL is of type 232. Again by the induction
hypothesis, Σ−−→yizi

Σyi
L contains an apartment, which in turn

implies that Σ−→xzi
ΣxL contains an apartment. In particular

the 2-vertices −→xzi are interior vertices in ΣxL. Thus, we can extend the segment −→xz1
−→xz2 to
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a geodesic in ΣxL of length π and type 232n. The convex hull of a small neighborhood in
ΣxL of the interior vertex −→xz1 and an antipode contains the desired apartment in ΣxL.

Lemma 3.1.4. Let n ≥ k ≥ 3. Suppose that L contains a singular (n − k)-sphere S
spanned by n − k + 1 pairwise orthogonal n-vertices. Assume also that L contains a 1-
vertex x and an antipode of x (of type 1 or 2 depending on the parity of n). Then L
contains a singular (n− k + 1)-sphere spanned by a simplex of type 1k(k + 1) . . . (n− 1)n.

Proof. We prove this again by induction on n. Let B be of type D3 := A3 with Dynkin
diagram 31 2, that is n = k = 3.

1

12

2

2

3
a
′π

a
π

b

c

3 3

d
′

d

m

c
′

The hypothesis in this case is that L contains a pair of an-
tipodal 3-vertices a, a′ and a pair of antipodal 1- and 2-vertices
b′, b, respectively. If b lies on a geodesic connecting a and a′,
then we find a circle of type 2321312 (compare with the proof of
Lemma 3.1.1). Otherwise, d(a, b) + d(b, a′) > π. The segments
ba and ba′ are of type 213. Let c, c′ be the 1-vertices on these
segments. It is clear that c 6= c′ and the segment connecting

them must be of type 131. Let m := m(c, c′). Since c and c′ are adjacent to b, it follows
that m is also adjacent to b. Let d, d′ be the 2-vertices in the segments of type 321 ac′ and
a′c. By considering the spherical triangles CH(a, c, c′) and CH(a′, c, c′), we see that d and
d′ are adjacent to m. The segment mb′ is of type 321. It follows that b′ must be antipodal
to d or d′ (either b′md or b′md′ is a geodesic of length π) and we find again a circle in L
spanned by a simplex of type 13.

The argument for the induction step is very similar. Let n ≥ 4. Let b, b′ be a pair of
antipodal n-vertices in the (n − k)-sphere S ⊂ L and let x′ be an antipode in L of the
1-vertex x. If b lies on a geodesic connecting x and x′, then this geodesic is of type 1n21,
1n12, 12n2 or 12n1 depending on the parity of n and if b is adjacent to x or x′. It follows
that ΣbL or Σb′L contains a 1-vertex and an antipode of it.

2

1 (2)n

n

n

x′πx
π

b

c

1 2 (1)

d′

d

m

c′

n-1

If d(x, b) + d(b, x′) > π, then the segment bx is of type
n21 and the segment bx′ is of type n12 or n21. Let c, c′ be
the vertices in the interior of the segments bx, bx′ and let d, d′

be the n-vertices on the segments c′x and cx′. Since c and d
are adjacent to x, then they are adjacent or cxd is a segment.
In this last case, c and c′ must be antipodal, but this cannot
happen, because they are adjacent to b. So c and d are adjacent.

This implies that the segment cc′ is of type 2(n − 1)1 or 2(n − 1)2. The (n − 1)-vertex
m := m(d, d′) = m(c, c′) is adjacent to b. It follows that the segment mb′ is of type
(n−1)n(n−1)n. Again we conclude that b′ is antipodal to d or d′. This implies that b′ lies
in a circle in L of type n21n21n or n21n12n. In particular Σb′L or ΣbL contains a 1-vertex
and an antipode of it. Suppose w.l.o.g. that it holds for ΣbL. It follows, that L contains
a circle spanned by a simplex of type 1n. So, if k = n, we are done. Suppose then, that
k ≤ n− 1.
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We have seen that the link ΣbL of type Dn−1 contains a 1-vertex and an antipode
of it. It also contains the singular (n − 1 − k)-sphere ΣbS spanned by n − k pairwise
orthogonal (n−1)-vertices. By the induction assumption, ΣbL contains a singular (n−k)-
sphere spanned by a simplex of type 1k(k + 1) . . . (n − 1). Hence, L contains a singular
(n− k + 1)-sphere spanned by a simplex of type 1k(k + 1) . . . (n− 1)n.

Remark 3.1.5. Lemma 3.1.1 is just the special version of Lemma 3.1.4 where n = k = 4.
If k = 3 in Lemma 3.1.4, then the conclusion is that L contains a wall.

Remark 3.1.6. The proof of Lemma 3.1.4 shows that if n = k, we can choose the 1-sphere
in L to contain the 1-vertex x (this is true in general, but it is less obvious from the proof).

3.2 Convex subcomplexes of buildings of type E6

In this section let L ⊂ B be a convex subcomplex of a building of type E6. We use the

following labelling of the Dynkin diagram
65432

1
.

Lemma 3.2.1. If L contains a singular 4-sphere S (i.e S is a wall) and x ∈ L is a 2 or
6-vertex without antipodes in S, then ΣxL contains an apartment. In particular, x is an
interior vertex in L.

Proof. By the symmetry of the Dynkin diagram for E6 it suffices to show it for a 2-vertex
x ∈ L. The wall S contains a pair of antipodal 2- and 6-vertices a and a′, respectively.

The link ΣaB (Σa′B) is of type D5 and Dynkin diagram 654
3

1
(2 3 4

5

1
). ΣaL and Σa′L

contain a singular 3-sphere ΣaS, respectively Σa′S. Suppose first that x lies on a geodesic
γ connecting a and a′. γ is of type 23216 or 2626. Since x has no antipodes in S, the vertex
−→ax of type 3 or 6 has no antipodes in ΣaS. It follows from Lemma 3.1.3, that Σ−→axΣaL
contains an apartment and this implies in turn, that Σ−→xaΣxL contains also an apartment.

Since
−→
xa′ ∈ ΣxL is antipodal to −→xa, this implies that ΣxL contains an apartment.

2

2

2

2

6

6

3

3

1

π

π

a a
′

c
′

x

c

On the other hand, if d(x, a) + d(x, a′) > π, then the seg-
ments xa and xa′ are of type 262 and 216. Let c be the 6-
vertex on xa and let c′ be the 1-vertex on xa′. c is adjacent to
a and c′ is adjacent to a′, therefore c and c′ cannot be adjacent
and since both are adjacent to x, it follows that the segment
−→xc−→xc′ is of type 631. It follows again from Lemma 3.1.3, that
Σ−→axΣaL and Σ−→

a′x
Σa′L contain a 3-sphere. This implies that

Σ−→xcΣxL and Σ−→
xc′

ΣxL contain a 3-sphere, in particular, −→xc and
−→
xc′ are interior vertices in

ΣxL. The segment −→xc−→xc′ is of type 631 and since
−→
xc′ is interior, it can be extended in ΣxL

to a segment of type 6316. This means that −→xc has an antipode in ΣxL implying that ΣxL
contains a 4-sphere as desired.
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Lemma 3.2.2. Suppose L contains 2-vertices x, x′, z, z′, w ∈ L and 6-vertices y, y′ ∈ L,
such that xyx′ and zy′z′ are segments of type 262 and ywy′ is a segment of type 626.
Assume further that y is not antipodal to z, z′ and y′ is not antipodal to x, x′. Then ΣwL

contains a singular 2-sphere containing −→wy and
−→
wy′ and spanned by a simplex of type 156.

In particular, ΣwL contains a singular circle of type 656565656 containing −→wy and
−→
wy′.

Proof.

2

2 2

2

26 6

x

y

x’

w
y’

z

z’

Notice that
−→
yy′ cannot be antipodal to −→yx or

−→
yx′ because

y′ is not antipodal to x, x′ and a segment of type 6262 has
length π. Since ΣyB is a building of type D5 with Dynkin di-

agram 2 3 4
5

1
the distances between 2-vertices are 0, π

2
, π, it

follows that d(
−→
yy′,−→yx) = d(

−→
yy′,

−→
yx′) = π

2
. Analogously, it holds

d(
−→
y′y,

−→
y′z) = d(

−→
y′y,

−→
y′z′) = π

2
.

26

2

w
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3

1

1

2

6

2

2 z

z’

y’y

x’

x
It follows that the convex hull CH(x, x′, y′) is the union of

the spherical triangles CH(x, y, y′) and CH(x′, y, y′). Hence
CH(x, x′, y′) is an isosceles spherical triangle with sides of type
262, 216 and 216. The link ΣwCH(x′, x, y′) is a singular circle
of type 6316136. This implies that the link Σ−→wyΣwL contains
a pair of antipodal 3-vertices and Σ−−→

wy′
ΣwL contains a pair of

antipodal 1-vertices. Analogously, considering the spherical tri-
angle CH(z, z′, y) we deduce that Σ−→wyΣwL also contains a pair

of antipodal 1-vertices and Σ−−→
wy′

ΣwL also contains a pair of antipodal 3-vertices. Recall that

Σ−→wyΣwB is a building of type D4 with Dynkin diagram 4

1

3 5

. We may apply Lemma 3.1.1

to conclude that Σ−→wyΣwL contains a circle of type 1351351. This implies that ΣwL contains
a singular sphere spanned by a simplex of type 156.

3.3 Convex subcomplexes of buildings of type E7

In this section let L ⊂ B be a convex subcomplex of a building of type E7. We use the

following labelling of the Dynkin diagram
765432

1
.

Lemma 3.3.1. If L contains a singular 5-sphere S (i.e. S is a wall) and x ∈ L is a
7-vertex without antipodes in S, then ΣxL contains an apartment. In particular, x is an
interior vertex in L.

Proof. The wall S contains a pair of antipodal 7-vertices a1, a2. The link Σai
B is of type

E6 with Dynkin diagram
65432

1
. Σai

L contains the wall Σai
S.



34 3. Convex subcomplexes

Suppose w.l.o.g. that d(x, a1) = arccos(−1
3
). Then the segment xa1 is of type 727.

Since x has no antipodes in S it follows that the 2-vertex −→a1x has no antipodes in Σa1S.
We apply now Lemma 3.2.1 to deduce that Σ−−→a1xΣa1L contains an apartment. This implies
in turn, that Σ−−→xa1

ΣxL contains an apartment. Therefore, if we find an antipode in ΣxL of
−→xa1, we are done. This is trivial if x lies on a geodesic connecting a1 and a2.

π

π

7 7

7

7

7
2

2

6

6

6

a1 a2

x Otherwise also d(x, a2) = arccos(−1
3
). We may argue as

above and conclude that Σ−−→xa2
ΣxL contains an apartment. In

particular −→xa2 is an interior vertex in ΣxL. Notice that the
segment connecting m(x, ai) for i = 1, 2 cannot be of type 232,
otherwise we find a curve of length < π connecting a1 and a2.
Therefore, the segment −→xa1

−→xa2 is of type 262. Since −→xa2 is
interior, we can extend the segment −→xa1

−→xa2 to a segment of type 2626 and length π in ΣxL.
We have found an antipode of −→xa1.



Chapter 4

The Center Conjecture

Let B be a spherical building and K ⊂ B a convex subcomplex. We say that K is a
counterexample to the Center Conjecture, if K is not a subbuilding and G := StabAut(B)(K)
has no fixed points in K.

From the Lemmata 3.0.2, 3.0.3 and 3.0.5 we can deduce some general properties of
convex subcomplexes K ⊂ B, which are counterexamples to the Center Conjecture:

1. If x ∈ K and y ∈ CH(G ·x), then there exists x′ ∈ G ·x, such that d(y, x′) > π
2
. This

is just Lemma 3.0.3 applied to CH(G · x). In particular, if x ∈ K, then there exists
x′ ∈ G · x, such that d(x, x′) > π

2
.

Another way to look at this is the following. If P is a property of vertices in K
invariant under the action of G, then for every point y in the convex hull of the
P -vertices, we can find a P -vertex x with d(x, y) > π

2
.

2. K contains no sphere of dimension dim(K) − 1.

3. If K has dimension ≤ 1 and is not a subbuilding, then by Lemma 3.0.2, it contains
no circles. It follows that K is a (bounded) tree and it has a unique circumcenter,
which is fixed by Isom(K). Hence, a counterexample K has dimension ≥ 2. By the
main result in [BL05] mentioned in the introduction, a counterexample has actually
dimension ≥ 3, but we do not use this fact in our proof.

Let A be the property of a point in K of not having antipodes in K. Let I be the
property of a point in x ∈ K of being interior, i.e. ΣxK is a subbuilding of ΣxB, or
equivalently, ΣxK contains a singular sphere of dimension dim(K) − 1.

Notice that an interior point in a counterexample K cannot have antipodes in K, that
is, I ⇒ A. Otherwise K would contain a singular sphere of dimension dim(K) and K
would be a subbuilding.
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4.1 The case of classical types

The Center Conjecture for buildings of classical types (An, Bn and Dn) was first proven by
Mühlherr and Tits in [MT06] using combinatorial methods and the incidence geometries
of the respective buildings. We present in this section a proof from the point of view of
CAT(1) spaces using methods of comparison geometry.

4.1.1 The An-case

Theorem 4.1.1. The Center Conjecture 1 holds for spherical buildings of type An.

Proof. Let K be a convex subcomplex of a spherical building B of type An for n ≥ 2
and suppose it is not a subbuilding. By Lemma 3.0.2, it follows that there are ver-
tices in K without antipodes in K. Let t1 = min { i | ∃ iA-vertex in K} and t2 =
max { i | ∃ iA-vertex in K}. Let xi ∈ K be a tiA-vertex for i = 1, 2.

Let t < t1 and suppose that there exists a t-vertex y ∈ K adjacent to x1. The minimality
of t1, implies that y has an antipode ŷ ∈ K. Notice that −→x1y is a t-vertex and the

antipode
−→
x1ŷ has type t′ < t1, because Σx1B is of type At1−1 ◦An−t1 and the vertices of the

Dynkin diagram of the At1−1-factor have labels 1, . . . , t1 − 1. It follows that the segment
x1ŷ ⊂ K has a t′-vertex z in its interior, and by Lemma 3.0.1 z cannot have antipodes in
K, contradicting the minimality of t1. Hence, x1 has no vertices of type t < t1 adjacent to
it, and analogously, x2 has no vertices of type t > t2 adjacent to it.

Consider the segment x1x2 embedded in the vector space realization of the Coxeter
complex of type An presented in Appendix A (we use the notation introduced there). We
may assume that x1 = vt1 and x1x2 ⊂ βt1 . It follows from the observation above, that
x1x2 ⊂ βt1(1, . . . , t1 − 1). If x2 = (a1, . . . , an+1) ∈ R

n+1, this implies that a1 = · · · = at1
and at1+1 ≤ · · · ≤ an+1. It follows that x2 is adjacent to x1 or

x2 = (t2, . . . , t2︸ ︷︷ ︸
t1

,−(n+ 1 − t2), . . . ,−(n+ 1 − t2)︸ ︷︷ ︸
t2

, t2, . . . , t2︸ ︷︷ ︸
n+1−t1−t2

).

Since there are exactly n+ 1 − t2 coordinates ai such that ai = t2, it follows in particular
that if x1 and x2 are not adjacent, then n + 1 − t2 ≥ t1. And since x1 is not antipodal to
x2, we have the strict inequality n+ 1 > t1 + t2.

Consider now the embedding of x1x2 such that x2 = vt2 and x2x1 ⊂ βt2 . The observation
above implies now, that x2x1 ⊂ βt2(t2 + 1, . . . , n + 1). If x1 = (b1, . . . , bn+1) ∈ R

n+1, this
implies that b1 ≤ · · · ≤ bt2 and bt2+1 = · · · = bn+1. It follows that x1 is adjacent to x2 or

x1 = (−(n+ 1 − t1), . . . ,−(n+ 1 − t1)︸ ︷︷ ︸
t1+t2−(n+1)

, t1, . . . , t1︸ ︷︷ ︸
n+1−t1

,−(n+ 1 − t1), . . . ,−(n+ 1 − t1)︸ ︷︷ ︸
n+1−t2

).

Since there are exactly t1 coordinates bi such that bi = −(n+1− t1), this implies that x1 is
adjacent to x2 or t1 ≥ n+1−t2, but this inequality contradicts the inequality above. Hence,
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x1 and x2 are adjacent and d(x1, x2) <
π
2
. It follows that rad(xi, { t3−iA-vert. in K }) < π

2

for i = 1, 2.

Let G := StabAut(B)(K) and H := StabAut0(B)(K), where Aut0(B) are the type pre-
serving automorphisms of B. If G = H, then the convex hull of the t1A-vertices is a
G-invariant subset of K with radius < π

2
. It follows that G fixes a point in K. Otherwise

there is an automorphism φ ∈ G − H. Since the Dynkin diagram for An has only one
symmetry, it follows that φ and H generate G and φ exchanges the vertices i↔ (n+1− i)
for i = 1, . . . , [n

2
].

φ(x1) is a (n + 1 − t1)A-vertex in K, hence n + 1 − t1 ≤ t2 by the maximality of t2.
φ(x2) is a (n + 1 − t2)A-vertex in K, therefore n + 1 − t2 ≥ t1 by the minimality of t1. It
follows that t1 + t2 = n+ 1 and therefore φ(x1) is a t2A-vertex.

Notice that G · x1 = H · x1 ∪ H · φ(x1) and rad(y,H · x1) <
π
2

for all y ∈ H · φ(x1),
because y is a t2A-vertex. Let c1 ∈ CH(H · x1) be the unique circumcenter of the convex
hull CH(H · x1), in particular, H fixes c1. Notice that rad(c1, H · φ(x1)) <

π
2
. It follows

that d(c1, c2) <
π
2

where c2 := φ(c1) is the circumcenter of CH(H · φ(x1)). Observe that
φ(c2) = φ2(c1) = c1 because φ2 ∈ H. This implies that φ preserves the segment c1c2 and H
fixes it pointwise. In particular, H and φ fix the point m(c1, c2). Hence G fixes the point
m(c1, c2) ∈ K.

4.1.2 The Bn-case

Theorem 4.1.2. The Center Conjecture 1 holds for spherical buildings of type Bn.

Proof. If n = 2, then the subcomplex has dimension ≤ 1 and we are done. So let K be a
convex subcomplex of a spherical building B of type Bn for n ≥ 3 and suppose it is not a
subbuilding. By Lemma 3.0.2, it follows that there are vertices in K without antipodes in
K. Let t = max { i | ∃ iA-vertex in K}.

Let x ∈ K be a tA-vertex. Suppose there is a t′-vertex y ∈ K adjacent to x for t′ > t.
It follows that y has an antipode ŷ ∈ K. Notice that ΣxB is of type Bt−1 ◦ An−t and the
Dynkin diagram of the An−t-factor has labels t+ 1, . . . , n. This implies that the direction−→
xŷ has type t′′ > t, in particular the segment xŷ contains a t′′-vertex z in its interior. By
Lemma 3.0.1, z must be an A-vertex, contradicting the maximality of t. Hence there are
no vertices of type > t in K adjacent to x.

Let x′ be another tA-vertex. Consider the segment xx′ embedded in the vector space
realization of the Coxeter complex of type Bn presented in Appendix A. We may choose
the embedding, so that x = vt = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

n+1−t

) and xx′ ⊂ βt The observation above

implies that xx′ ⊂ βt(t + 1, . . . , n). If x′ = (a1, . . . , an), this means that at = · · · = an.
If at = 1, then x = x′; if at = 0, then d(x, x′) = π

2
; and if at = −1, then x and x′ are

antipodal. Hence, d(x, x′) ≤ π
2
. It follows that the convex hull of the tA-vertices in K is a

G-invariant set with rad ≤ π
2
. Therefore, G fixes a point in K by Lemma 3.0.3.
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4.1.3 The Dn-case

Theorem 4.1.3. The Center Conjecture 1 holds for spherical buildings of type Dn.

Proof. Let K be a convex subcomplex of a spherical building B of type Dn for n ≥ 5.
Since D4 has more symmetries, this case will be treated separately. Suppose K is not a
subbuilding. By Lemma 3.0.2, it follows that there are vertices in K without antipodes in
K. Let t = max { i | ∃ iA-vertex in K}.

Suppose first that t ≥ 3. Then the set of tA-vertices is a G-invariant subset of K.

Let x ∈ K be a tA-vertex. Suppose there is a t′-vertex y ∈ K adjacent to x for t′ > t.
It follows that y has an antipode ŷ ∈ K. Notice that ΣxB splits a factor of type An−t and

its Dynkin diagram has labels t + 1, . . . , n. This implies that the direction
−→
xŷ has type

t′′ > t, in particular the segment xŷ contains a t′′-vertex z in its interior. By Lemma 3.0.1,
z must be an A-vertex, contradicting the maximality of t. Hence there are no vertices of
type > t in K adjacent to x.

Let x′ be another tA-vertex. Consider the segment xx′ embedded in the vector space
realization of the Coxeter complex of type Dn presented in Appendix A. Assume that
x = vt = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

n+1−t

) and xx′ ⊂ βt The observation above implies that xx′ ⊂

βt(t + 1, . . . , n). If x′ = (a1, . . . , an), this means that at = · · · = an. If at = 1, then
x = x′; if at = 0, then d(x, x′) = π

2
; and if at = −1, then x and x′ are antipodal. Hence,

d(x, x′) ≤ π
2
. It follows that the convex hull of the tA-vertices in K is a G-invariant set

with rad ≤ π
2
. Therefore, G fixes a point in K by Lemma 3.0.3.

Suppose now that t ≤ 2. If t = 1, then by the same argument as above, a 1A-vertex
cannot have vertices in K adjacent to it of type > 1. Hence K is 0-dimensional and we
are done in this case. Thus, t = 2. Let x ∈ K be a 2A-vertex. By the same argument, x
is adjacent to vertices in K only of type 1 and n. Suppose dim(K) > 1, otherwise we are
done. This implies that there are vertices y and z in K of type 1 and n, respectively, such
that x, y, z are vertices of a simplex σ. There is also a n-vertex ẑ ∈ K antipodal to z. The
convex hull CH(σ, ẑ) ⊂ K contains a 3-vertex adjacent to x. A contradiction.

Let K be a convex subcomplex of a spherical building B of type D4 and suppose that K
is a counterexample to the Center Conjecture. Suppose first, that K contains 3A-vertices.
Recall that the 3-vertices in D4 are the vertices of root type. The midpoint of a segment
connecting two 3-vertices at distance π

3
lies in the interior of a simplex of type 124 adjacent

to both 3-vertices. Since K is a counterexample, we can find x, x′ ∈ K 3A-vertices at
distance > π

2
, hence d(x, x′) = 2π

3
. The convex hull of the segment xx′ is 3-dimensional

and the 3A-vertex y1 = m(x, x′) is an interior vertex. Let y2 ∈ G · y1 be another 3I-vertex
at distance 2π

3
to y1. Since yi is interior, we can find zi ∈ K, with d(zi, yi) = π

6
, such that

−→yizi is antipodal to −−−→yiy3−i in Σyi
K for i = 1, 2. In particular z1y1y2z2 is a geodesic of length

π and z1 and z2 are antipodal. Notice that zi lies in the interior of a simplex of type 124.
It follows that K contains a 2-sphere, contradicting Lemma 3.0.5. Hence all 3-vertices in
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K have antipodes in K. Since K is a counterexample, there is a vertex w ∈ K without
antipodes in K. Suppose w.l.o.g. that w is of type 1. w cannot be adjacent to a 3-vertex in
K, in particular, w is the only 1-vertex in K, because two distinct nonantipodal 1-vertices
are joined by a segment of type 131. This implies that there are at most three A-vertices
in K. Therefore, the convex hull of the A-vertices in K is just a vertex, an edge, a segment
of type ijk or a simplex of type ijk for {i, j, k} = {1, 2, 4}. G fixes the unique circumcenter
of this set.

Remark 4.1.4. Our proof actually shows that in the case of classical types K is a sub-
building or the action of the group AutB(K) y K fixes a point (see 1.3 for definitions).

4.2 The H3-case

The Center Conjecture for buildings of type H3 is a direct consequence of the main result
of [BL05]. Nevertheless we give a direct proof as a preparation for the more complicated
arguments that are used in the other cases.

Recall that a building of type H3 is never thick ([Ti77]) and it is isometric to a suspen-
sion of a building of type I2(m) for m = 3, 5 or to a building of type A1 ◦A1 ◦A1 ([Sch87]).
However the H3-case does not follow directly from the case of buildings of classical type,
because a subcomplex of a building of type H3 does not have to be a subcomplex in its
thick structure.

We use following labelling of the Dynkin diagram of type H3: 21 35 .

The Weyl group of type H3 can be identified with the symmetry group of the icosahe-
dron. Thus, the polyhedral structure of (S2,WH3) correspond to the barycentric subdivi-
sion of a spherical icosahedron. The vertices of the icosahedron correspond to the vertices
of (S,WH3) of type 3, the midpoints of the edges of the icosahedron correspond to the
vertices of type 2 and the centers of the faces correspond to vertices of type 1. For the
vector space realization as in Appendix A we refer to [Co73, p. 53], where one can find
vectors representing the vertices of the Coxeter complex.

Theorem 4.2.1. The Center Conjecture 1 holds for spherical buildings of type H3.

Proof. LetK be a convex subcomplex of a buildingB of typeH3, which is a counterexample
to the Center Conjecture. In particular, dim(K) = 2 and therefore K contains vertices
of all types. First suppose that all 3-vertices in K have antipodes in K. Let x ∈ K be a
1-vertex and y ∈ K a 3-vertex adjacent to x. Let ŷ ∈ K be an antipode of y and consider
the geodesic γ of length π connecting y and ŷ through x. γ is singular of type 3121323.
The 3-vertex on the segment xŷ has an antipode in K and by Lemma 3.0.1 we conclude
that x also has an antipode in K. Thus all 1-vertices in K have antipodes in K and by
a similar argument the same holds for 2-vertices in K. This is a contradiction to the fact
that K is not a subbuilding.
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So K contains 3A-vertices. Since K is a counterexample, it contains 3A-vertices x, x′ ∈
K at distance > π

2
. After a simple examination of the barycentric subdivision of the

spherical icosahedron, we can conclude that the segment xx′ is singular of type 31213. Let
y ∈ K be the 2A-vertex m(x, x′). By the properties of a counterexample, there is another
3A-vertex z at distance > π

2
to y. It follows that the segment yz is singular of type 23123

or 21323. Recall that ΣyB is a building of type A1 ◦ A1. If yz is of type 21323, then
−→yz must be antipodal to at least one of the directions −→yx and

−→
yx′. This implies that z is

antipodal to x or x′, a contradiction. Hence yz is of type 23123. Let w be the 3-vertex on
the segment yz adjacent to y. The direction −→yz is the midpoint of a geodesic of type 131

connecting −→yx and
−→
yx′, in particular, −→yz is interior in ΣyK. This implies that w is interior

in K. Thus K contains 3I-vertices.

Let u1, u2 ∈ K be 3I-vertices at distance > π
2
, then as above, the segment u1u2 is

singular of type 31213 (recall that in a counterexample I ⇒ A holds). Since ui is interior
in K, we can find 2-vertices vi ∈ K for i = 1, 2, such that v1u1u2v2 is a segment of type
2312132 and length π. Again because u1 is interior in K, there are two different chambers
σ, σ′ ⊂ K containing the edge v1u1. The convex hull CH(σ, σ′, v2) ⊂ K is a 2-dimensional
hemisphere. This contradicts the properties of a counterexample.

4.3 The F4-case

A direct proof of the Center Conjecture for spherical buildings of type F4 can be found
in [LR09]. We present in this section basically the same proof with some minor changes.
The proof is divided in two steps. Let K be a convex subcomplex of a spherical building
B of type F4. The first step is to verify that it suffices to prove that K is a subbuilding or
the action StabAut0(B)(K) y K has a fixed point, where Aut0(B) are the type preserving
automorphisms of B (Lemma 4.3.1). In Section 4.6.1 we will see that the second step (to
show that K is a subbuilding or the action StabAut0(B)(K) y K has a fixed point) can also
be deduced from the case of buildings of type E8.

Lemma 4.3.1. If the action StabAut0(B)(K) y K has a fixed point, so does the action
StabAut(B)(K) y K.

Proof. Suppose there is an element φ ∈ StabAut(B)(K) − StabAut0(B)(K), otherwise there
is nothing to prove. Recall that the Dynkin diagram of type F4

32 41 has only one
symmetry. It follows that Aut(B)/Aut0(B) ∼= Z2 and φ exchanges the vertices of type
1 ↔ 4 and 2 ↔ 3.

Let L = K ∩ Fix(StabAut0(B)(K)) 6= ∅. It is a convex subcomplex, because if a type
preserving automorphism fixes a point, then it fixes the simplex spanned by it. Since
Aut0(B) is normal in Aut(B), it follows that L is StabAut(B)(K)-invariant. φ acts on L as
an involution because φ2 is type preserving and therefore the identity in L.

Let v ∈ L be a vertex. The vertices v, φ(v) ∈ L have different type and therefore they
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cannot be antipodal. It follows that m(v, φ(v)) is fixed by φ and StabAut0(B)(K), hence it
is fixed by StabAut(B)(K).

Theorem 4.3.2. The Center Conjecture 1 holds for spherical buildings of type F4.

Proof. LetK be a convex subcomplex of a building B of type F4, which is a counterexample
to the Center Conjecture. It follows from Lemma 4.3.1 that the action StabAut0(B)(K) y K
has no fixed points. We use the labelling 32 41 for the Dynkin diagram of type F4.

2

2

2 2

4

3

1

2

1

2 1 2 1

1

1

x2y1

y2

x1 z

w

Suppose first that K contains 1A-vertices and let
x1 ∈ K be a 1A-vertex. Since 1A is a StabAut0(B)(K)-
invariant property and StabAut0(B)(K) has no fixed
points, it follows that there is another 1A-vertex x2 ∈
K at distance > π

2
to x1. Hence d(x1, x2) = 2π

3
. The

midpoint y1 := m(x1, x2) is again a 1A-vertex, by
Lemma 3.0.1. Therefore we find again a 1A-vertex
y2 ∈ K at distance 2π

3
to y1. Notice that ∠y1(xi, y2) <

π for i = 1, 2 because y2 cannot be antipodal to xi.
We may assume w.l.o.g. that ∠y1(x1, y2) ≥ π

2
. Since

Σy1B is a building of type B3 with Dynkin diagram
32 4, this implies that ∠y1(x1, y2) = arccos(−1

3
) and this angle is of type 242. Let

z := m(x1, y1). The convex hull CH(z, y1, y2) is a spherical triangle because z and y1

lie in a common Weyl chamber. The segment zy2 is singular of type 24231. Let w ∈ K
be the 4-vertex on this segment. The convex hull CH(z, x1, y2) is also a spherical triangle.
Notice that ΣzB is a building of type A1◦A2 with Dynkin diagram 3 41 . This implies that
∠z(x1, y2) = ∠z(y1, y2) = π

2
. Hence the union of CH(z, y1, y2) and CH(z, x1, y2) is a convex

subcomplex. It coincides with the convex hull CH(x1, y1, y2), it is an isosceles spherical
triangle with sides of type 12121, 12121 and 121. The 4-vertex w lies in the interior of this
triangle and ΣwCH(x1, y1, y2) is a singular circle of type 121212121.

1

1

1

1

4

2

2

2

2

4

w
11

u u
′

x1

y1

Since w lies in the convex hull of the 1A-vertices in K, we
can find another 1A-vertex u at distance > π

2
to w. This im-

plies that d(w, u) = 3π
4

and the segment wu is of type 4141.
Notice that −→wu cannot have antipodes in ΣwK otherwise we
find an antipode of u in K. Recall that ΣwB is a building
of type B3 with Dynkin diagram 321 . It follows that −→wu is
orthogonal to the 1-vertices in ΣwCH(x1, y1, y2). This im-
plies that d(−→wu,ΣwCH(x1, y1, y2)) ≡ π

2
and the convex hull

CH(−→wu,ΣwCH(x1, y1, y2)) is a 2-dimensional hemisphere h centered at −→uw. In particular
Σ−→wuΣwK contains circle, i.e. an apartment. Let u′ be the 1-vertex on the segment wu
adjacent to w. It follows that Σ−−→

u′w
Σu′K and Σu′K contain an apartment. In particular, u′

is a 1I-vertex.

Sublemma 4.3.3. K contains no 1I-vertices.
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Proof. Suppose the contrary. There are 1I-vertices x1, x2 ∈ K with distance > π
2
. Clearly

I ⇒ A, therefore, d(x1, x2) = 2π
3

and the segment x1x2 is of type 12121. Since xi are
interior vertices. we can find 2-vertices yi ∈ K adjacent to xi and such that y1x1x2y2

is a geodesic of length π and type 2121212. The direction −−→yixi is an interior 1-vertex in
Σyi

K. Note that Σyi
B is a building of type A1 ◦ A2 and with Dynkin diagram 3 41 . It

follows that Σyi
K contains a top-dimensional hemisphere centered at −−→yixi. This implies

that K contains a hemisphere of dimension dim(K). A contradiction to the properties of
a counterexample.

End of proof of Theorem 4.3.2. It follows from Sublemma 4.3.3 that there are no 1A-
vertices in K. By duality, we can use the same argument to show that K contains no
4A-vertices. Observe that a 2A-vertex cannot be adjacent to a 1-vertex in K. Otherwise,
since all 1-vertex in K have antipodes, we find a geodesic in K of length π and of type
1212121 containing the 2A-vertex in its interior, contradicting Lemma 3.0.1. By a similar
argument, a 2A-vertex cannot be adjacent to a 4-vertex in K. Hence if K contains 2A-
vertices, it must have dimension ≤ 1, a contradiction. By duality, we conclude that K
contains no 3A-vertices. Thus, all vertices in K have antipodes in K. A contradiction to
Lemma 3.0.2.

Remark 4.3.4. Our proof actually shows that K is a subbuilding or the action of the
group AutB(K) y K fixes a point (see 1.3 for definitions).

4.4 The E6-case

The Center Conjecture for spherical buildings of type E6 has been proven directly in [LR09].
We present here basically the same proof just for completeness of this work. Later, in
Section 4.6.2, we give an alternative proof showing that the E6-case follows from the case
of buildings of type E8.

Let K be a convex subcomplex of a building B of type E6. Let G := StabAut(B)(K) and

H := StabAut0(B)(K). Recall that the Dynkin diagram of type E6

65432

1
has only one

symmetry. This symmetry exchanges the vertices 2 ↔ 6 and 3 ↔ 5 and fixes the vertices
1 and 4. It also follows that H is a normal subgroup of G of index ≤ 2.

Suppose K is a counterexample to the Center Conjecture.

Lemma 4.4.1. Le P be a H-invariant property defined for 2-and 6-vertices in K implying
A, P ⇒ A. Suppose K contains a 2P - (6P -)vertex x ∈ K. Then there exists another 2P -
(6P -)vertex x′ ∈ H · x with d(x, x′) = 2π

3
.

Proof. By the symmetry of the Dynkin diagram, it suffices to prove the case where x is a
2P -vertex.
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Since K is a counterexample there is a vertex y ∈ G · x at distance > π
2

to x. If y
is a 2-vertex, then d(x, y) = 2π

3
and we are done. So let us suppose that all 2-vertices in

H · x are at distance arccos(1
4
) to x. Hence y is a 6-vertex and d(x, y) = arccos(−1

4
). The

segment xy is of type 216. Let m := m(x, y) be the 1-vertex between x and y. Notice that
since y ∈ G · x, it follows that all 6-vertices in H · y are at distance arccos(1

4
) to y.

Sincem lies in the convex hull CH(G·x), we can find a vertex z ∈ G·x at distance> π
2

to
m. By duality, we may assume w.l.o.g. that z is a 2-vertex. Consider the triangle (x, y, z)
with side lengths d(x, y) = arccos(−1

4
), d(x, z) = arccos(1

4
) and d(z, y) ≤ arccos(−1

4
).

By triangle comparison with this triangle we conclude that d(z,m(x, y)) ≤ π
2
. That is,

d(z,m) ≤ π
2
. A contradiction.

Lemma 4.4.2. If K contains 2A-vertices, it also contains 2I-vertices.

Proof. Let M be the property of a 2-vertex (6-vertex) of being the midpoint of a pair of
6A-vertices (2A-vertices) at distance 2π

3
. By Lemma 3.0.1, M ⇒ A.

If K contains 2A-vertices, then by Lemma 4.4.1, it contains 6M -vertices and therefore
also 2M -vertices. Let x1 be a 2M -vertex between two 6M -vertices at distance 2π

3
. It

follows from Lemma 3.2.2 that Σx1K contains a circle c of type 656565656. Let x2 be
another 2M -vertex at distance 2π

3
to x1. Let y1 be the 6M -vertex between x1 and x2.

Notice that −−→x1x2 has no antipodes in Σx1K, otherwise there would be antipodes of x2 in

K. Recall that Σx1B is a building of type D5 with Dynkin diagram 654
3

1
. It follows

that −−→x1x2 has distance ≤ π
2

to the 6-vertices in c and therefore d(−−→x1x2, c) ≡ π
2
, because c

is the convex hull of its 6-vertices. Hence the convex hull CH(−−→x1x2, c) is a 2-dimensional
hemisphere centered at −−→x1x2. In particular Σ−−→x1x2

Σx1K
∼= Σ−−→y1x1

Σy1K contains a singular
circle of type 545454545. By Lemma 3.2.2 (and by duality of the vertices 2 ↔ 6, 3 ↔ 5),
the link Σy1K contains a circle of type 232323232. And in particular, Σ−−→y1x1

Σy1K contains a
pair of antipodal 3-vertices. We may apply now Lemma 3.1.4 to the building Σ−−→y1x1

Σy1B of
type D4 and the subcomplex Σ−−→y1x1

Σy1K to conclude that it contains a wall. This implies
that Σy1K contains a wall. Let y2 be another 6M -vertex at distance 2π

3
to y1. Notice

that −−→y1y2 has no antipodes in Σy1K, otherwise there would be antipodes of y2 in K. By
Lemma 3.1.3 applied to Σy1K (of type D5), it follows that −−→y1y2 is an interior vertex. This
implies that the 2-vertex m(y1, y2) is a 2I-vertex in K.

Lemma 4.4.3. K contains no 2I-vertices.

Proof. Suppose K contains a 2I-vertex x. Then since I ⇒ A, Lemma 4.4.1 implies that
there is another 2I-vertex x′ ∈ K at distance 2π

3
. Since x is interior in K, there is a 6-vertex

y ∈ K adjacent to x, such that −→xy is antipodal to
−→
xx′. But this implies that y is antipodal

to x′, a contradiction.

By duality, we have the corresponding results for 6-vertices in K. Thus combining the
previous two Lemmata, we obtain:
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Corollary 4.4.4. All 2- and 6-vertices in K have antipodes in K.

We can prove now that the other vertices in K also have antipodes in K

Lemma 4.4.5. K contains no 1A-vertices.

Proof. Suppose K contains a 1A-vertex x1 ∈ K. Then there is another 1A-vertex x2 ∈ K
at distance > π

2
to x1. Hence d(x1, x2) = 2π

3
and the segment x1x2 is singular of type 14141.

The midpoint y1 := m(x1, x2) is again a 1A-vertex. Let y2 ∈ K be another 1A-vertex at
distance 2π

3
to y1. Observe that ∠y1(xi, y2) < π for i = 1, 2 because y2 cannot be antipodal

to xi. We may suppose w.l.o.g. that ∠y1(x1, y2) ≥ π
2
. Recall that Σy1B is a building of

type A5 with Dynkin diagram 65432 . It follows that ∠y1(x1, y2) = arccos(−1
3
) and the

simplicial convex hull of the segment −−→y1x1
−−→y1y2 is a rhombus with vertices of type 2, 4, 6 and

4. In particular, Σy1K contains 2-vertices. Let w ∈ K be a 2-vertex adjacent to y1. Since
all 2-vertices in K have antipodes in K, we find a 6-vertex ŵ ∈ K antipodal to w. The
geodesic between w, ŵ through y1 is of type 21656. Thus there is a 6-vertex in the interior
of the segment y1ŵ ⊂ K. This 6-vertex also has an antipode in K, then by Lemma 3.0.1
y1 must have an antipode in K, a contradiction.

Lemma 4.4.6. K contains no 3A- or 5A-vertices.

Proof. By duality, it suffices to show that K contains no 3A-vertices. Observe first that
a 3A-vertex x cannot be adjacent to a 2-vertex in K. Otherwise, since all 2-vertices in K
have antipodes in K, we find a geodesic in K of length π and type 23216 containing x in
its interior. This contradicts Lemma 3.0.1. A similar argument shows that a 3A-vertex is
not adjacent to vertices of type 1 or 6. Suppose that x ∈ K is a 3A-vertex and let y ∈ G ·x
be at distance > π

2
to x. Then y is a vertex of type 3 or 5.

3

34
4

4
4

6

2

5

5

By the observation above −→xy is contained in an edge
in ΣxK of type 45. By considering this 2-dimensional
spherical bigon connecting a pair of antipodal 3- and 5-
vertices, we conclude that y must be a 3-vertex and xy is
of type 34243. Since all 2-vertices in K have antipodes

in K, this contradicts Lemma 3.0.1.

Lemma 4.4.7. K contains no 4A-vertices.

Proof. By a similar argument as in the beginning of the previous Lemma, we conclude that
a 4A-vertex in K cannot be adjacent to vertices in K of type 1, 2, 3, 5 or 6. It follows
that if K contains 4A-vertices, then it must have dimension 0. But this is not possible for
a counterexample.

We have shown so far that all vertices of a counterexample K have antipodes in K, by
Lemma 3.0.2, this contradicts the fact that K is not a subbuilding. This proves:

Theorem 4.4.8. The Center Conjecture 1 holds for spherical buildings of type E6.
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Remark 4.4.9. Our proof actually shows that K is a subbuilding or the action of the
group AutB(K) y K fixes a point (see 1.3 for definitions).

4.5 The E7-case

This section is devoted to give a direct proof of the Center Conjecture for buildings of type
E7. For a proof using the E8-case see Section 4.6.3.

Let K be a convex subcomplex of a spherical building B of type E7. Suppose that K
is not a subbuilding and the action of G := StabAut(B)K y K has no fixed points, i.e it is
a counterexample.

As in the previous cases, our strategy is to show that all the vertices ofK have antipodes
in K contradicting Lemma 3.0.2. First we focus our attention on the 7-vertices. The 7-
vertices have the smallest orbits in the Coxeter complex of type E7 under the action of the
Weyl group, this implies that the types of segments between 7-vertices are very simple.
Assuming that there are 7A-vertex in K we conclude that K also contains 2I-vertices
(Lemma 4.5.2). Since the 2-vertices are the vertices of root type in E7 it is easy to see that
K cannot contain 2I-vertices (Lemma 4.5.3). At this point it is quite simple to verify that
the vertices of the other types also have antipodes.

Lemma 4.5.1. Let P be a G-invariant property for 7-vertices implying A, P ⇒ A. Then
if K contains 7P -vertices, it also contains an equilateral spherical triangle with 7P -vertices
as vertices and side lengths arccos(−1

3
).

Proof. Since K is a counterexample, for a 7P -vertex x1 ∈ K, there is another 7P -vertex
x2 ∈ K with distance > π

2
, this implies d(x1, x2) = arccos(−1

3
). The segment x1x2 is of

type 727.

7

6 6
7

2

7

7

2
6

2

m

x1 x2

x3

By the properties of a counterexample, if m is the 2-vertex in
x1x2, then there must exist another 7P -vertex x3 ∈ K with dis-
tance > π

2
to m. Thus, d(m,x3) = arccos(− 1√

3
) and the segment

mx3 is of type 2767. Note that for i = 1, 2 holds 0 < ∠m(xi, x3) <
π, because x3 is not antipodal to xi. The building ΣmB is of type

D6 with Dynkin diagram 654
3

1

7, therefore ∠m(xi, x3) = π
2
. It

follows that the union of the two spherical triangles CH(xi,m, x3)
is an equilateral, spherical triangle as wanted.

Observe that the spherical triangle from Lemma 4.5.1 has a 7A-vertex in its center. Let
T be the property of being center of such a triangle with 7A-vertices as vertices. There is
the implication T ⇒ A.

Lemma 4.5.2. If K contains 7A-vertices, then it also contains 2I-vertices.
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Proof. Let υ ∈ K be a 7T -vertex (it exists, because of Lemma 4.5.1). Let t ⊂ K be the
equilateral, spherical triangle, whose center is υ. Then Συt ⊂ ΣυK is a singular 1-sphere
of type 2626262. Let α1, α2 and α3 be the 2-vertices in Συt and βi the 6-vertex in Συt
antipodal to αi.

7

6
7

2

7

7

2
6

2

6

w0

w′
0

x0

y0

x′
0

υ

m0

Since T ⇒ A, it follows from Lemma 4.5.1 that there
are 7T -vertices w0 and w′

0 in K such that the convex hull
CH(υ, w0, w

′
0) is an equilateral spherical triangle with 727-

sides.

Set x0 := −−→υw0, x
′
0 :=

−−→
υw′

0 and let y0 be the midpoint of
the segment x0x

′
0 in ΣυK. If m0 is the 2A-vertex between w0

and w′
0, then y0 = −−→υm0. Observe that the 6-vertex y0 has no

antipodes in ΣυK. Otherwise, the segment m0υ of type 2767
could be extended in K to a segment of type 27672 and length π, but the 2A-vertex m0

has no antipodes in K.

Note that the 6-vertex y0 cannot have distance < π
2

to all the 6-vertices βi ∈ Συt,
otherwise the circle Συt would be contained in a ball of radius < π

2
centered at y0, but

this cannot happen since diam(Συt) = π. So there is a 6-vertex y′0 ∈ {β1, β2, β3} with
d(y0, y

′
0) = 2π

3
. Let z0 and z′0 be the two 2-vertices in Συt adjacent to y′0. The segment y0y

′
0

is of type 626, let x1 be the 2-vertex on this segment. Let a0 be the vertex of the triangle
t ⊂ K, such that y′0 = −→υa0. The segment υa0 is of type 767. It is clear, that y′0 is not

antipodal to x0 = −−→υw0 or x′0 =
−−→
υw′

0, otherwise, a0 would be antipodal to w0 or w′
0.

It follows from Lemma 3.2.2 (for the vertices x0, x
′
0, y0, y

′
0, z0, z

′
0, x1) that Σx1ΣυK con-

tains a singular circle of type 656565656.

6 2
2

6

6
77

7 6
7

x1

y0

m0

a0
w1

υ

y
′
0

The convex hull CH(a0, υ,m0) is an isosceles, spher-
ical triangle. It follows, that there is a 7A-vertex w1 ∈
K on the segment a0m0 of type 7672, such that υw1 is
a segment of type 727 and x1 = −−→υw1, i.e. x1 ∈ ΣυK
is extendable to a segment of type 727. The proof of
Lemma 4.5.1 implies that there is another 7T -vertex
w′

1 ∈ K such that the convex hull CH(υ, w1, w
′
1) is a

spherical triangle with 727-sides.

Let n1 be the 2A-vertex on the segment υw1 and recall that Σn1B is a building of type

D5 with Dynkin diagram 654
3

1

7. The singular circle of type 656565656 in Σx1ΣυK ∼=
Σ−−→n1υΣn1K implies that Σn1K contains a 2-sphere Sn1 spanned by three pairwise orthogonal
7-vertices.
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7

6
7

2

7

7
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6

6

ξ1

w′
1

n1
ξ2

ν
ξi ∈ Sn1

Notice that
−−→
n1w

′
1 has no antipodes in Σn1K because w′

1 is

a 7A-vertex, in particular,
−−→
n1w

′
1 has distance ≤ π

2
to the 7-

vertices in Sn1 . This implies that d(
−−→
n1w

′
1, Sn1) ≡ π

2
, because

Sn1 is the convex hull of its 7-vertices. Hence CH(
−−→
n1w

′
1, Sn1)

is a 3-dimensional hemisphere centered at
−−→
n1w

′
1. Recall that

the segments between two orthogonal 7-vertices in a building

with Dynkin diagram 654
3

1

7 are of type 767. It follows that

Σ−−−→
n1w

′

1

CH(
−−→
n1w

′
1, Sn1) is a 2-sphere spanned by three pairwise

orthogonal 6-vertices. This implies in turn that Σ−−−→
w′

1n1
Σw′

1
K (of type 2 3 4

5

1
) contains a

2-sphere s spanned by three pairwise orthogonal 2-vertices. Notice that the 2-vertices in
the sphere s correspond to 2-vertices in Σw′

1
K, which are extendable to segments of type

727. Let ν :=
−−→
w′

1n1 ∈ Σw′

1
K.

We proceed now as above. Let t′ ⊂ K be the spherical triangle, whose center is w′
1 (as

described in the property T ). Then Σw′

1
t ⊂ Σw′

1
K is a singular 1-sphere of type 2626262.

Observe that ν has no antipodes in Σw′

1
K because n1 is a 2A-vertex. Then we find as above

a 6-vertex ζ ∈ Σw′

1
t′ at distance 2π

3
to ν. Let µ be the 2-vertex in the segment νζ of type

626. If the direction
−→
νζ has an antipode in the 2-sphere s, then ζ is antipodal to a 2-vertex

in Σw′

1
K, which is extendable in K to a segment of type 727. But this is not possible,

since ζ is extendable to a segment of type 767 with final point a 7A-vertex (a vertex of the

triangle t′). Recall that ΣνΣw′

1
B is a building of type D5 with Dynkin diagram 2 3 4

5

1
,

therefore
−→
νζ is orthogonal to the 2-vertices in s and the segments between these 2-vertices

and
−→
νζ are of type 232. It follows that d(

−→
νζ, s) ≡ π

2
and the convex hull CH(

−→
νζ, s) is

a 3-dimensional hemisphere centered at
−→
νζ. This implies that Σ−→

νζ
ΣνΣw′

1
K contains a 2-

sphere spanned by three pairwise orthogonal 3-vertices. Since Σ−→
νζ

ΣνΣw′

1
B is of type D4

with Dynkin diagram 4

1

3 5

, this 2-sphere is not simplicial, thus, its simplicial convex hull

is an apartment. Hence Σ−→
νζ

ΣνΣw′

1
K ∼= Σ−→µνΣµΣw′

1
K contains an apartment. This implies

that ΣµΣw′

1
K contains an apartment. We can argue as above (with x1 ∈ ΣυK) to see that

µ is extendable in K to a segment of type 727. Hence the 2-vertex on this segment is
interior in K.

Lemma 4.5.3. K contains no 2I-vertices.

Proof. Suppose the contrary. There are 2I-vertices x1, x2 ∈ K with distance > π
2
. Clearly

I ⇒ A, therefore, d(x1, x2) = 2π
3

and the segment x1x2 is of type 23232. Since xi are
interior vertices. we can find 3-vertices yi ∈ K adjacent to xi and such that y1x1x2y2 is a
geodesic of length π and type 3232323. The direction −−→yixi is an interior 2-vertex in Σyi

K.
Note that Σyi

B is a building of type A1 ◦ A5 and with Dynkin diagram 6542 1 7. It
follows that Σyi

K contains a top-dimensional hemisphere centered at −−→yixi. This implies
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that K contains a hemisphere of dimension dim(K). A contradiction to the properties of
a counterexample.

We conclude from Lemma 4.5.2 and Lemma 4.5.3:

Corollary 4.5.4. All 7-vertices in K have antipodes in K.

We can now address our attention to the other types of vertices in K.

Lemma 4.5.5. All 2-vertices in K have antipodes in K.

Proof. First observe that for a 2A-vertex x, the link ΣxK contains no 7-vertices. Otherwise,
suppose y ∈ K is a 7-vertex adjacent to x. By Corollary 4.5.4, we find an antipode ŷ ∈ K
of y. The segment xŷ is of type 2767, the 7-vertex on its interior also has an antipode in
K. A contradiction to Lemma 3.0.1.

2 2

22

2

3

3
3

3

3 3

6

4

3

x1
y

1 x2

y
2

w1

2

Assume K contains 2A-vertices. Since K is a coun-
terexample, there are 2A-vertices x1, x2 ∈ K at dis-
tance 2π

3
. The midpoint y1 of the segment x1x2 is also

a 2A-vertex, hence, there exists another 2A-vertex y2

with d(y1, y2) = 2π
3

. The 3-vertex −−→y1y2 cannot be an-
tipodal to the 3-vertices −−→y1xi. We may assume w.l.o.g.
that ∠y1(x1, y2) ≥ π

2
. Note that Σy1B is a building of

type D6 and with Dynkin diagram 654
3

1

7. It follows

that the segment −−→y1y2
−−→y1x1 has length arccos(−1

3
) and

is of type 363. The convex hulls CH(y1, y2,m(y1, x1))
and CH(x1, y2,m(y1, x1)) are spherical triangles. The

segment m(y1, x1)y2 is of type 36342. Since Σm(x1,y1)B is of type A1 ◦ A5 with Dynkin

diagram 6542 1 7, it follows that ∠m(x1,y1)(y1, y2) = ∠m(x1,y1)(x1, y2) = π
2
. Hence, the

convex hull CH(x1, y1, y2) is the union of the spherical triangles CH(y1, y2,m(y1, x1)) and
CH(x1, y2,m(y1, x1)), and it is an isosceles spherical triangle with sides of type 232, 23232
and 23232.

Let w1 be the 6-vertex on the interior of the triangle CH(x1, y1, y2). By Lemma 3.0.3,
we can find a 2A-vertex z1 ∈ K with distance > π

2
to w1, hence, with distance arccos(− 1

2
√

2
)

or 3π
4

. But the link Σz1K contains no 7-vertices, therefore d(w1, z1) = 3π
4

and the segment
w1z1 is of type 6262. Let w2 be the 6-vertex between w1 and z1. Let λ be the singular 1-
sphere Σw1CH(x1, y1, y2) of type 232323232. The 2-vertex −−→w1z1 has no antipodes in Σw1K
because z1 is a 2A-vertex. Note that the building Σw1B has type D5 ◦ A1 and Dynkin

diagram 2 3 4
5

1

7. It follows that −−→w1z1 has distance π
2

to the 2-vertices in λ. Thus, the

convex hull CH(λ,−−→w1z1) is a 2-dimensional hemisphere centered at −−→w1z1 and Σ−−−→w1z1Σw1K
contains a singular 1-sphere of type 343434343. This in turn implies that Σw2K contains
a 2-sphere s of type:
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2

2

2

2

3
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3
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3

2

Let again z2 ∈ K be a 2A-vertex with d(w2, z2) = 3π
4

. We see as above, that d(−−→w2z2, ·)|s ≡ π
2

and CH(−−→w2z2, s) =: h is a 3-dimensional hemisphere centered at −−→w2z2. The building

Σ−−−→w2z2Σw2B is of type D4 ◦ A1 and has Dynkin diagram 4

1

3 5
7. The 2-sphere Σ−−−→w2z2h

contains three pairwise orthogonal 3-vertices, hence, it is not a subcomplex. Its simpli-
cial convex hull is a 3-sphere. This means that Σ−−−→w2z2Σw2K contains a wall (which is an
apartment in the D4-factor, compare with the end of the proof of Lemma 4.5.2).

Let u be the 2A-vertex on the interior of the segment w2z2 of type 6262. It follows that
ΣuK contains a wall. Note that the building ΣuK is of type D6 and has Dynkin diagram

654
3

1

7. A wall in ΣuK must contain 7-vertices. A contradiction.

Lemma 4.5.6. All 1-vertices in K have antipodes in K.

Proof. The same argument as at the beginning of the proof of Lemma 4.5.5 shows that
1A-vertices are not adjacent to 2- or 7-vertices in K.

Suppose K contains 1A-vertices. Since K is a counterexample, there exist 1A-vertices
x, y ∈ K with distance > π

2
. The interior of the segment xy cannot contain 2- or 7-vertices,

the directions −→xy and −→yx do not span simplices with 2- or 7-vertices. It follows from the
table of types of segments between 1-vertices that d(x, y) = arccos(5

7
). A contradiction.

Lemma 4.5.7. All 6-vertices in K have antipodes in K.

Proof. First note again that a 6A-vertex has no adjacent vertices of type 1, 2 or 7 in K.

Suppose K contains 6A-vertices, then we find x1, x2 ∈ K 6A-vertices with distance
> π

2
and such that −−→x1x2 ∈ Σx1K is contained in a simplex of type 345. This implies that

d(x1, x2) = 2π
3

and x1, x2 are joined by a singular segment of type 64646. The midpoint
y of x1x2 is again a 6A-vertex. Let z be another 6A-vertex with d(y, z) = 2π

3
. Then

0 < ∠y(xi, z) < π for i = 1, 2, because z is not antipodal to xi.

4

4

44

3

3

2

1

15

Since ΣyK contains no vertices of type 1,2 or 7; the seg-
ments connecting the 4-vertices −→yxi and −→yz are contained in a
2-dimensional bigon. It follows that the segments −→yxi−→yz are of
type 434 and d(−→yxi,−→yz) < π

2
for i = 1, 2; but d(−→yx1,

−→yx2) = π.
This is a contradiction.
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Lemma 4.5.8. All 3-vertices in K have antipodes in K.

Proof. We can show again that a 3A-vertex is not adjacent to vertices of type 1, 2, 6 or 7
in K.

3 3

4

4

4 4

5
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2 3
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Suppose K contains 3A-vertices, then there exist two 3A-
vertices x, y ∈ K at distance > π

2
. The direction −→xy must be

contained in an edge of type 35. This implies that the segment
xy is contained in a 2-dimensional bigon. Then, this segment
must be of type 34243, but it contains a 2-vertex on its interior

and this 2-vertex has an antipode in K. A contradiction to Lemma 3.0.1.

Lemma 4.5.9. All 4- and 5-vertices in K have antipodes in K.

Proof. A vertex in K of type 4 or 5 without antipodes in K cannot have vertices of type
1, 2, 3, 6 or 7 in K adjacent to it. It follows that, if K contains 4A- or 5A-vertices, then
it has dimension ≤ 1. A contradiction.

We have shown in the previous lemmata that all vertices of a counterexample K have
antipodes, contradicting Lemma 3.0.2. This proves or main result:

Theorem 4.5.10. The Center Conjecture 1 holds for spherical buildings of type E7.

Remark 4.5.11. Our proof actually shows that K is a subbuilding or the action of the
group AutB(K) y K fixes a point (see 1.3 for definitions).

4.6 The E8-case

Let K be a convex subcomplex of a spherical building B of type E8, which is a counterex-
ample to the center conjecture.

Our strategy is as follows. We focus our attention mainly on the vertices of type 2 and
8. The 8-vertices are the vertices of root type and there are few possibilities for the types
of segments between 8-vertices. The 2-vertices have the second smallest orbit (after the
8-vertices) under the action of the Weyl group in the Coxeter complex of type E8. This
implies that the types of the segments between 2-vertices are still manageable. Another
reason to consider 2-vertices is that their links have a relatively simple geometry, they are
buildings of type D7. In these buildings, there is only one type of segments between two
distinct non-antipodal 8-vertices, namely 878, and it has length π

2
. First we want to prove

that K cannot contain 2- or 8-vertices, whose links contain spheres of large dimension.
This is achieved in the Lemmata 4.6.1-4.6.9. Then under the assumption of existence of
8A-vertices, we find 2- and 8-vertices in K, with links containing spheres of larger and
larger dimensions. This allows us to conclude that all 8-vertices in K have antipodes in K
(Corollary 4.6.17). At this point the hard work is already done. Finally we show that all
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other vertices in K must also have antipodes in K. This contradicts Lemma 3.0.2 and the
assumption that K is not a subbuilding.

We describe first some configurations of points of K, which will be used several times
during the argument.

Let P be a property of 8-vertices implying A (the property of not having antipodes in
K) and suppose there are 8P -vertices in K.

8 8 8

88

8

77

7

7

7 7

7

6

2

x1
x2

x3

y3

y2

z1

SinceK is a counterexample, there are 8P -vertices
x1, x2 ∈ K at distance > π

2
. Since they do not

have antipodes, it follows that d(x1, x2) = 2π
3

. Let
y3 := m(x1, x2), it is an 8A-vertex by Lemma 3.0.1.
Again there is an 8P -vertex x3 ∈ K, such that
d(y3, x3) = 2π

3
because y3 lies in the convex hull

of the 8P -vertices in K. Notice that, since xi are
8A-vertices, 0 < ∠y3(x3, xi) < π for i = 1, 2. We
may assume w.l.o.g. that ∠y3(x3, x1) ≥ π

2
. The link

Σy3B is a building of type E7 and with Dynkin di-

agram
765432

1
. It follows that ∠y3(x3, x1) =

arccos(−1
3
) and this angle is of type 727, i.e. the

segment −−→y3x1
−−→y3x3 ⊂ Σy3K is singular of type 727. The convex hulls CH(x3, y3,m(x1, y3))

and CH(x3, x1,m(x1, y3)) are spherical triangles, because y3 andm(x1, y3) (x1 andm(x1, y3),
respectively) are contained in a common Weyl chamber and therefore x3, y3 and m(x1, y3)
(x3, x1 and m(x1, y3), respectively) lie in a common apartment. The segment m(x1, y3)x3 is

of type 72768. Since Σm(x1,y3)B is of type E6 ◦A1 with Dynkin diagram
6542 3 8

1
, it fol-

lows that ∠m(x1,y3)(x1, x3) = ∠m(x1,y3)(x1, x3) = π
2
. Hence, the convex hull CH(x1, y3, x3) is

the union of CH(x3, y3,m(x1, y3)) and CH(x3, x1,m(x1, y3)), and it is an isosceles spherical
triangle with sides of type 878, 87878 and 87878. Let y2 := m(x1, x3) and z1 := (y2, y3).

We refer to this configuration of 8P -vertices as configuration ∗.

7

6 6
7

2

7

7

2
6

2

ξ3

ζ

ξ

ξ2

γ

Let now ξi := −−→x1xi for i = 2, 3 and ζ := −−→x1z1. Suppose
there is an 8-vertex x at distance π

3
to x1, let ξ := −→x1x. Assume

furthermore that d(ζ, ξ) = arccos(− 1√
3
), then the segment ξζ is

of type 7672. Recall that ξi is 2π
3

-extendable to 8A-vertices and
ξ is π

3
-extendable. Thus, d(ξ, ξi) < π for i = 2, 3. It follows that

∠ζ(ξ, ξi) = π
2

and d(ξ, ξi) = arccos(−1
3
) for i = 2, 3. Hence, the

convex hull CH(ξ, ξ2, ξ3) is the union of the spherical triangles
CH(ξ, ζ, ξi) for i = 2, 3. It is an equilateral spherical triangle
with sides of type 727. Let γ be the 7-vertex at the center of

this triangle.
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7
7

7

7

7

7

7

7

7

7

6

6

x1

x2

x3

w

z

y3

xFrom d(ξ, ξi) = arccos(−1
3
), it follows for i =

2, 3 that d(x, xi) = 2π
3

and the convex hulls CH(x1, x, xi)
are isosceles spherical triangles (compare with the
spherical triangle CH(x1, y3, x3) above). Let w :=
m(x, x2) be the 8A-vertex between x and x2. Then
by considering the triangle CH(x1, x, x2), we see
that ω := −−→x1w = m(ξ, ξ2). Let z := m(x1, w)
be the 2-vertex between x1 and w, then −→x1z =
m(ξ, ξ2). The angle ∠x1(z, x3) = arccos(− 1√

3
) is

of type 2767 (compare with the triangle CH(ξ, ξ2, ξ3)).
Notice that CH(z, x1, x3) is a spherical triangle,
this implies that d(z, x3) = 3π

4
.

8

8
8

8
8

8

7

7

7

7

7

7 7

7
6

6

2

x1

w

2 z
x3

v

The segment zx3 is of type 2828. Let v be the 8A-vertex
on the segment zx3 adjacent to z. Recall that x3 is an 8A-
vertex. Then x3 cannot be antipodal to w, thus d(x3, w) = 2π

3

and ∠z(x3, x1) = ∠z(x3, w) = π
2
. Recall also that d(x3, y3) =

d(x3, x) = 2π
3

, therefore ∠z(x3, y3) = ∠z(x3, x) = π
2
. The con-

vex hulls CH(x3, x1, w) and CH(x3, y3, x) are isosceles spher-
ical triangles with sides of type 87878, 87878 and 828.

The convex hull in ΣzK of the 8-vertices −→zx, −→zx1
−→zy3

−→zw and −→zv is a 2-dimensional
singular hemisphere h centered at −→zv. Let s ⊂ ΣzB be a singular 2-sphere containing h

and let x̂3 be an 8-vertex in B, such that it is adjacent to z and
−→
zx̂3 is the antipode of −→zv in

s. It follows that x̂3 is antipodal to x3 in B. The convex hull in B of x3, x̂3, x, x1, y3, w is a
3-dimensional spherical bigon connecting x3 and x̂3, with edges x3αx̂3 for α ∈ {x, x1, y3, w}
of type 8787878. It follows that the convex hull CH(x1, x, w, y3, x3) is a (3-dimensional)
spherical convex polyhedron in K obtained by truncating this spherical bigon. Notice that
the 7-vertex γ at the center of the triangle CH(ξ, ξ2, ξ3) ⊂ Σx1K is 2π

3
-extendable in K to

the 8-vertex m(x3, w).

We refer to this configuration in K as configuration ∗∗.

Lemma 4.6.1. K contains no 8I-vertices.

Proof. Suppose the contrary. There are 8I-vertices x1, x2 ∈ K with distance > π
2
. Clearly

I ⇒ A, therefore, d(x1, x2) = 2π
3

and the segment x1x2 is of type 87878. Since xi are
interior vertices, we can find 7-vertices yi ∈ K adjacent to xi and such that y1x1x2y2 is a
geodesic of length π and type 7878787. The direction −−→yixi is an interior 8-vertex in Σyi

K.

Note that Σyi
B is a building of type E6 ◦ A1 and with Dynkin diagram

6542 3 8

1
. It

follows that Σyi
K contains a top-dimensional hemisphere centered at −−→yixi. This implies

that K contains a hemisphere of dimension dim(K). A contradiction to the properties of
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a counterexample.

Lemma 4.6.2. K contains no 8-vertices x, such that ΣxK contains a singular 5-sphere,
i.e. a wall.

Proof. Let x1 be an 8-vertex, such that Σx1K contains a singular 5-sphere S1. Clearly,
by Lemma 3.0.5, x1 is an 8A-vertex. Let x2 ∈ G · x1 be at distance 2π

3
to x1. Σx2K

contains a singular 5-sphere S2. If −−−→xix3−i has an antipode in Si for i = 1, 2, then there are
7-vertices yi ∈ K adjacent to xi, such that y1x1x2y2 is a geodesic of length π. The midpoint
z := m(x1, x2) is again an 8A-vertex and it is the center of a 6-dimensional hemisphere
h ⊂ K (cf. proof of Lemma 4.6.1). In particular, ΣzK contains the 5-sphere Σzh and the
7-vertices in this sphere are all π

2
-extendable. Let z′ ∈ G · z be at distance 2π

3
to z. Since

z′ is an 8A-vertex and the 7-vertices in Σzh are π
2
-extendable, we deduce that

−→
zz′ has no

antipodes in Σzh. It follows from Lemma 3.3.1 that Σ−→
zz′

ΣzK contains an apartment and
that Σ−→wzΣwK contains an apartment for the 8-vertex w := m(z, z′). It follows that ΣwK
contains also an apartment, contradicting Lemma 4.6.1. We may therefore assume w.l.o.g.
that −−→x1x2 has no antipodes in S1. Using again Lemma 3.3.1 we conclude that ΣzK contains
an apartment. Again a contradiction.

Lemma 4.6.3. K contains no 2-vertices x, such that ΣxK contains an apartment.

Proof. Let x be such a 2-vertex in K. Then there is another 2-vertex x′ ∈ G ·x at distance
> π

2
to x. Notice that x, x′ are interior vertices in K.

Case 1: d(x, x′) = arccos(−3
4
). The segment xx′ is of type 21812. Since x is interior,

the direction
−→
xx′ is also interior in ΣxK. It follows that the 8-vertex m(x, x′) must be

interior in K, contradicting Lemma 4.6.1.

8 8

2 2 2

2

66

6 6
7

Case 2: d(x, x′) = 2π
3

. The segment xx′ is of type 26262.

Recall that ΣxB is of typeD7 with Dynkin diagram
1

3 4 5 6 7 8
.

Since x is interior and K is top-dimensional, then ΣxK is a
building of type D7 and we can find an 8-vertex y ∈ K ad-
jacent to x and such that ∠x(y, x

′) > π
2
. Then ∠x(y, x

′) = arccos(− 1√
3
) and it must be

of type 8676. Since the triangle CH(y, x, x′) is spherical, it follows that d(y, x′) = 3π
4

and
the segment yx′ is of type 2828. The 8-vertex in the interior of this segment must be an
interior vertex. A contradiction to Lemma 4.6.1.

2
2

2
88

8

7
1

1

3

Case 3: d(x, x′) = arccos(−1
4
). The simplicial convex hull of

the segment xx′ is 2-dimensional and contains 8-vertices y, y′ ∈
K adjacent to x, x′. Let z ∈ K be an 8-vertex adjacent to x,
such that zxy is a segment of type 828. Then d(z, x′) = 3π

4
.

Again a contradiction as in Case 2 above.

Lemma 4.6.4. K contains no 7-vertices x, such that ΣxK contains an apartment.
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Proof. Suppose there is such a 7-vertex x ∈ K and let y ∈ K be an 8-vertex. If d(x, y) = 5π
6

,
then the segment xy is of type 787878 and we would find interior 8-vertices in K. If
d(x, y) = arccos(− 1√

3
), then the segment xy is of type 72768 and we would find interior

2-vertices contradicting Lemma 4.6.3. So, d(x, y) ≤ arccos(− 1
2
√

3
).

Let y1, y2 ∈ K be 8-vertices adjacent to x, such that y1xy2 is a segment of type 878.
Let x′ ∈ G · x with d(x, x′) > π

2
. Then d(x′, yi) ≤ arccos(− 1

2
√

3
) and triangle comparison

with the triangle (x′, y1, y2) implies that d(x, x′) ≤ arccos(−1
3
).

Case 1: d(x, x′) = arccos(−1
3
). If the segment xx′ is singular of type 76867, then the

8-vertex m(x, x′) is interior, contradiction. If the segment xx′ has 2-dimensional simplicial
convex hull C, then there is an 8-vertex y ∈ C adjacent to x or x′. Since x, x′ are in the same
G-orbit, we may suppose w.l.o.g. that y is adjacent to x. Let y′ ∈ K be another 8-vertex
adjacent to x and such that yxy′ is a segment of type 878. Then d(x′, y′) = arccos(− 1√

3
)

and this case cannot occur by the above.

Case 2: d(x, x′) = arccos(−1
6
). Let C be the simplicial convex hull of the segment xx′.

If C is 2-dimensional, there are 8-vertices y, y′ ∈ C ⊂ K adjacent to x and x′ respectively.
Let z ∈ K be an 8-vertex adjacent to x and such that zxy is a segment of type 878. Define
z′ analogously. Then d(x′, z) or d(x, z′) = arccos(− 1√

3
), which is not possible.

If C is 3-dimensional, there is an 8-vertex m ∈ C, such that the segments mx and
mx′ are of type 867 and ∠m(x, x′) = arccos(−3

4
). Since x, x′ are interior vertices, there

exist 2-vertices u, u′ ∈ K, such that mxu and mx′u′ are segments of length π
2

and of type
8672. ∠m(x, x′) = arccos(−3

4
) implies that π > d(u, u′) ≥ arccos(−3

4
). Hence d(u, u′) =

arccos(−3
4
).

2

2

2

8

8

7 7

6 6

1 1

The segment uu′ is of type 21812 and CH(m,u, u′) is a (non-
simplicial) spherical triangle with a 2-vertex u′′ := m(m,m(u, u′)) in
its interior. This implies that the segment xu′′ can be extended in
K beyond u′′. In particular u′′ is an interior 2-vertex contradicting
Lemma 4.6.3.

Lemma 4.6.5. K contains no 2-vertices x, such that ΣxK contains a singular 5-sphere
S, i.e. a wall.

Proof. Suppose there is such an x ∈ K. Let y ∈ K be an 8-vertex. If d(x, y) = 3π
4

, then
the segment xy is of type 2828. Let y′ be the 8-vertex between x and y. The link ΣxK is
of type D7 and contains a wall, then Lemma 3.1.3 implies that Σy′K contains at least a
singular 5-sphere, contradicting Lemma 4.6.2. So d(x, y) ≤ arccos(− 1

2
√

2
) for all 8-vertices

y ∈ K.

Let x′ ∈ G · x with d(x, x′) > π
2
. It also holds d(x′, y) ≤ arccos(− 1

2
√

2
) for all 8-vertices

y ∈ K.
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1 1

Case 1: d(x, x′) = arccos(−3
4
). The segment xx′ is of

type 21812. Let y1, y2 ∈ K be 8-vertices adjacent to x, such
that y1xy2 is a segment of type 828. These vertices can be
found, because ΣxK contains a wall. We may assume that
∠x(y1, x

′) ≥ π
2
. This implies that the angle ∠x(y1, x

′) =
arccos(− 1√

7
) and it is of type 831, because ΣxB is a building of type D7. CH(y, x, x′) is

a spherical triangle, therefore we can compute that d(y1, x
′) = 3π

4
. A contradiction to the

observation above.

Case 2: d(x, x′) = 2π
3

. As in Lemma 4.6.3 (Case 2) we see that d(
−→
xx′, S ′) ≡ π

2
, where

S ′ ⊂ S is the 4-sphere spanned by the 8-vertices in S. Otherwise, there would be an

8-vertex y adjacent to x, such that −→xy ∈ S and d(
−→
xx′,−→xy) > π

2
. This would imply that

d(x′, y) = 3π
4

.

The segments in ΣxK of length π
2

connecting the 6-vertex
−→
xx′ and an 8-vertex ∈ S ′ are

of type 658. This implies that Σ−→
xx′

ΣxK contains a 4-sphere spanned by five pairwise
orthogonal 5-vertices, but this is impossible in a building of type D4 ◦ A2 with Dynkin

diagram 4

1

3 5
7 8.

Case 3: d(x, x′) = arccos(−1
4
). Let y be the 8-vertex adjacent to x contained in the

simplicial convex hull of xx′. −→xy cannot have antipodes in ΣxK. Otherwise there is an
8-vertex z ∈ K, such that zxy is a segment of type 828 and as in Lemma 4.6.3 (Case 3), we
see that d(x′, z) = 3π

4
. It follows from Lemma 3.1.3, that −→xy is interior in ΣxK (i.e. its link

contains an apartment). Then the 7-vertex m(x, x′) must be interior (its link Σm(x,x′)K
contains an apartment). A contradiction to Lemma 4.6.4.

Lemma 4.6.6. K contains no 7-vertices x, such that ΣxK contains a wall S of type 1,
that is, a wall containing a pair of antipodal 8-vertices.

Proof. We proceed exactly as in the proof of Lemma 4.6.4. Recall that ΣxB is of type
E6 ◦ A1. Suppose there is such an x ∈ K and let y ∈ K be an 8-vertex. If d(x, y) = 5π

6
,

then the segment xy is of type 787878. The direction −→xy has an antipode in S, therefore the
link Σy′K of the 8-vertex y′ on the segment xy adjacent to x contains a wall, contradicting
Lemma 4.6.2. If d(x, y) = arccos(− 1√

3
), then the segment xy is of type 72768. Lemma 3.2.1

implies that −→xy has an antipode in S or Σ−→xyΣxK contains an apartment. In both cases the
link ΣzK of the 2-vertex z on the segment xy adjacent to x contains a wall. A contradiction
to Lemma 4.6.5. So, d(x, y) ≤ arccos(− 1

2
√

3
).

Let y1, y2 ∈ K be 8-vertices adjacent to x, such that y1xy2 is a segment of type 878.
Let x′ ∈ G · x with d(x, x′) > π

2
. Then d(x′, yi) ≤ arccos(− 1

2
√

3
) and triangle comparison

with the triangle (x′, y1, y2) implies that d(x, x′) ≤ arccos(−1
3
).

Case 1: d(x, x′) = arccos(−1
3
). If the segment xx′ is singular of type 76867, then

Lemma 3.2.1 implies that the 6-vertex
−→
xx′ has an antipode in S or Σ−→

xx′
ΣxK contains an

apartment. Either way, the link in K of the 8-vertex m(x, x′) contains a wall, which is not
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possible by Lemma 4.6.2. The case, where the segment xx′ has 2-dimensional simplicial
convex hull C, follows as in the proof of Lemma 4.6.4.

Case 2: d(x, x′) = arccos(−1
6
). Let C be the simplicial convex hull of the segment xx′.

If C is 2-dimensional, we argue as in the proof of Lemma 4.6.4.

If C is 3-dimensional (see Section 2.7 for a description of C), there is an 8-vertex
m ∈ C, such that the segments mx and mx′ are of type 867 and ∠m(x, x′) = arccos(−3

4
).

C contains also 8-vertices y1, y
′
1 adjacent to x, x′ respectively. Let y2 ∈ K be an 8-vertex

adjacent to x and such that y2xy1 is a segment of type 878. Define y′2 analogously. Then
the angle ∠m(x, y′2) is of type 6727 (compare with ΣmC

′ in Section 2.7). This implies that
d(x, y′2) = arccos(− 1

2
√

3
).

2

8

8

8

6
7

7
7x

y′2

m

y1

If the 6-vertex −→xm has no antipodes in S, then it follows from
Lemma 3.2.1 that Σ−→xmΣxK contains an apartment, i.e. −→xm is inte-
rior in ΣxK. In particular the link ΣwK of the 7-vertex w in the
interior of the simplicial convex hull of xy′2 contains an apartment.

A contradiction to Lemma 4.6.4. It follows that −→xm,
−−→
x′m have an-

tipodes in the walls S ⊂ ΣxK, respectively S ′ ⊂ Σx′K. Therefore,
there exist 2-vertices u, u′ ∈ K, such that mxu and mx′u′ are segments of length π

2
and

of type 8672. ∠m(x, x′) = arccos(−3
4
) implies that π > d(u, u′) ≥ arccos(−3

4
). Hence

d(u, u′) = arccos(−3
4
).

2

2

2

8

8

7 7

6 6

1 1

It follows that the segment uu′ is of type 21812 and CH(m,u, u′) is a
(non-simplicial) spherical triangle. The segment mm(u, u′) has length
π
2

and therefore it has type 828. The 2-vertex u′′ := m(m,m(u, u′)) lies
in the interior of the spherical triangle CH(m,u, u′).

2

2

2

7

7

7

3

3

1

6

6

7
1

−−→
mx′

−→mx −−→my1

−−→
my′2−−→my2

−−→
my′1

−−→
mu′′

Consider the link of m. Since −→xm has an antipode in
the wall S ⊂ ΣxK, it follows that Σ−→mxΣmK contains a
wall. The link Σ−→mxΣmB is of type D5 ◦ A1. The wall in
Σ−→mxΣmK contains a wall in the D5-factor. The direction

ξ :=
−−−−→−→mx−−→my′1 is a 1-vertex in Σ−→mxΣmK. By Lemma 3.1.3

we conclude that the A4-factor of ΣξΣ−→mxΣmK contains at
least a wall. Taking spherical join with the directions to

the 7-vertices −−→my2 and −−→my1 we find a wall in ΣξΣ−→mxΣmK. This implies that Σ−−→
mu′′

ΣmK

contains at least a wall. Since
−−→
mu′′ is extendable, it follows that Σu′′K contains a wall.

But this contradicts Lemma 4.6.5.

In a special case we can also exclude 8-vertices, whose links contain a 3-sphere:

Lemma 4.6.7. K contains no 8A-vertices x, such that ΣxK contains a singular 3-sphere
S with the following properties: S contains a pair of antipodal 2-vertices ξ1, ξ2, such that
ΣξiS is a singular 2-sphere spanned by three pairwise orthogonal 7-vertices. Furthermore,
all 7-vertices in S are π

3
-extendable to 8A-vertices.
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Notice that all 7-vertices in S are adjacent to ξi for some i = 1, 2. Indeed, a segment in
ΣxK (of type E7) connecting a 2- and a 7-vertex at distance ≤ π

2
is of type 27 or 217. This

last segment cannot occur between ξi and a 7-vertex in S because ΣξiS does not contain
1-vertices. Observe also, that the link ΣλS of a 7-vertex λ ∈ S contains a singular circle of

type 2626262: suppose w.l.o.g. that λ is adjacent to ξ1, then
−→
ξ1λ is contained in a circle in

Σξ1S of type 767676767. In particular Σ−→
λξ1

ΣλS contains a pair of antipodal 6-vertices. It

follows that the antipodal directions
−→
λξ1 and

−→
λξ2 are contained in a singular circle in ΣλS

of type 2626262.

Proof of Lemma 4.6.7. Suppose there are such 8A-vertices. Let x1, x2, x3 ∈ K be such
8A-vertices as in configuration ∗, and let Sxi

⊂ Σxi
K denote the corresponding 3-spheres

in their links. Let y3, z1 ∈ K be as in the notation of the configuration ∗. Suppose that
there is a 7-vertex ξ ∈ Sx1 ⊂ Σx1K, such that d(ξ, ζ) = arccos(− 1√

3
) for ζ := −−→x1z1. The

segment ξζ is of type 7672. By assumption, there exists an 8A-vertex x ∈ K, such that
d(x1, x) = π

3
and −→x1x = ξ. Under these circumstances we obtain the configuration ∗∗. We

use the same notation as in the configuration ∗∗. Let αi ∈ Σx3K for i = 1, . . . , 4 be the
directions −−→x3x1,

−→x3x,
−−→x3w and −−→x3y3. Let β := −→x3z. Then the 7-vertices αi are adjacent to

the 2-vertex β. And the directions
−→
βαi lie on a circle κ of type 767676767 contained in

ΣβΣx3K.

7 7

7

7

7

7

6

6

6

6

6

2λ

α1

α3

α2

α4

β
γ

Suppose again that there is a 7-vertex λ in the 3-sphere Sx3 ⊂
Σx3K, such that d(β, λ) = arccos(− 1√

3
). So the segment βλ is of

type 2767. Recall that the 7-vertices αi are 2π
3

-extendable and
λ is π

3
-extendable to an 8A-vertex, so they cannot be antipodal.

It follows that ∠β(λ, αi) = π
2

and d(αi, λ) = arccos(−1
3
). The

segments αiλ are of type 727. Let γ ∈ Σx3K be the 7-vertex
on the interior of the segment βλ. Then γ is the center of an
equilateral spherical triangle CH(λ, α1, α3) with sides of type

727. We are now in the situation of the configuration ∗∗ (compare with the triangle
CH(ξ, ξ2, ξ3) in the definition of the configuration ∗∗). It follows that γ is 2π

3
-extendable.

7

6 6
7

2

7

7

2
6

2

αi+2

λ

−→αi
−−→αi+2

αi

β

γ

The convex hull CH(κ,
−→
βλ) is a 2-dimensional hemisphere

centered at
−→
βλ. Hence, Σ−→

βλ
ΣβΣx3K (of type 654

3

1
) con-

tains a circle of type 656565656. This is equivalent to Σ−→
λβ

ΣλΣx3K

(of type 2 3 4
5

1
) containing a circle of type 232323232. Note

that the 2-vertices on this circle correspond to the 2-vertices
m(λ, αi) ∈ Σx3K (consider the equilateral spherical triangles

CH(λ, αi, αi+2) with sides of type 727). Let −→αi :=
−→
λαi ∈

ΣλΣx3K.

Recall that the link ΣλSx3 contains a circle c of type 2626262 and notice that
−→
λβ cannot

be antipodal to any of the 2-vertices on this circle: otherwise, we find a 7-vertex in the
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3-sphere Sx3 antipodal to γ. This cannot happen, because γ is 2π
3

-extendable and the

7-vertices in Sx3 are π
3
-extendable to 8A-vertices. It is also clear that

−→
λβ cannot have

distance < π
2

to the three 6-vertices on the circle c, otherwise c would be contained in a

ball centered at
−→
λβ with radius < π

2
, but this is not possible since diam(c) = π.

6

2

2

2

2

2

3

3

3

3

2

2

−→
λβ6η

δ1

δ2

−→α1

−→α2

−→α3

−→α4

µ

Therefore we can find a 6-vertex η on the circle c ⊂ ΣλSx3 ,

such that d(η,
−→
λβ) ≥ π

2
. Hence, d(η,

−→
λβ) = 2π

3
and the segment

η
−→
λβ is of type 626. Let µ := m(η,

−→
λβ). Let also δ1, δ2 be the

two 2-vertices in the circle c ⊂ ΣλΣx3K adjacent to η.

We have already seen, that
−→
λβ cannot be antipodal to δi.

This implies that ∠η(δi, µ) = π
2

and these angles are of type 232.

It follows that Σ−→ηµΣηΣλΣx3K (of type D4:
4

1

3 5

) contains a

pair of antipodal 3-vertices. On the other hand, if η is antipodal
to some −→αi , then αi ∈ Σx3K has an antipode in Sx3 , but this cannot happen either,
because αi is 2π

3
-extendable in K. Therefore ∠−→

λβ
(µ,−→αi) = π

2
and these angles are of type

232. It follows that Σ−−→
−→
λβµ

Σ−→
λβ

ΣλΣx3K contains a singular circle of type 343434343. This in

turn implies, that Σ−→ηµΣηΣλΣx3K contains a singular circle of type 141414141, because the

antipode of a 3- (4)-vertex in ΣµΣλΣx3K, of type 654
3

1
, adjacent to

−→
µ−→
λβ is a 1- (4)-vertex

adjacent to −→µη. We apply now Lemma 3.1.4 to conclude that Σ−→ηµΣηΣλΣx3K contains a
wall. Hence ΣµΣλΣx3K contains a wall.

6 2
2

6

6
77

7 6
7

λ

µ
η

λ′

γ

β
υ

Let λ′ ∈ Sx3 be the 7-vertex at distance arccos(1
3
) to

λ, so that
−→
λλ′ = η. By considering the spherical triangle

CH(λ, λ′, β) ⊂ Σx3K we deduce that µ is arccos(−1
3
)-extendable

in Σx3K. Let υ be the 2-vertex in Σx3K adjacent to λ with−→
λυ = µ. It follows that ΣυΣx3K contains a wall.

8 8

8

88

7

7

7

7

7
67

2

x3

x′′

x′

λ′

γ

υ

Recall that γ is 2π
3

-extendable and let x′′ ∈ K be an

8-vertex with d(x3, x
′′) = 2π

3
and

−−→
x3x

′′ = γ. Since λ′ ∈
Sx3 , it is π

3
-extendable. Let x′ ∈ K be an 8-vertex, so that

d(x3, x
′) = π

3
and

−−→
x3x

′ = λ′. Consider the spherical triangle
CH(x3, x

′′, x′). One sees that υ is π
2
-extendable in K, thus

we have found a 2-vertex in K, whose link contains a wall,
contradicting Lemma 4.6.5.

So it follows that d(β, λ) ≤ π
2

for all 7-vertices λ ∈ Sx3 . Since Sx3 is the convex hull
of the 7-vertices contained in it, this implies that d(β, Sx3) ≡ π

2
and s := ΣβCH(β, Sx3)

is a 3-sphere. Let θ ∈ Sx3 ⊂ Σx3K be a 2-vertex, so that ΣθSx3 is a 2-sphere spanned by
three pairwise orthogonal 7-vertices (compare with the description of the 3-sphere Sx3).
The segment θβ is of type 262.
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Notice that d(β, Sx3) ≡ π
2

implies that d(
−→
θβ,ΣθSx3) ≡ π

2
. It follows that Σ−→

θβ
ΣθCH(β, Sx3)

(subset of a building of type 4

1

3 5
7) is a 2-sphere. Notice that in the building ΣθΣx3B of

type
1

3 4 5 6 7
; two 7-, 6-vertices at distance π

2
are joined by a segment of type 756. This

implies that Σ−→
θβ

ΣθCH(β, Sx3) is spanned by three pairwise orthogonal 5-vertices. Such

a 2-sphere in the Coxeter complex of type 4

1

3 5

is not a subcomplex, thus, its simplicial

convex hull is a 3-sphere. Therefore the 3-sphere s ⊂ ΣβΣx3K is not a subcomplex and
its simplicial convex hull is a wall. Recall that β ∈ Σx3K is π

2
-extendable in K, hence,

there are 2-vertices in K, with links containing a wall. We have now a contradiction to
Lemma 4.6.5.

It follows that our first assumption, that there is a 7-vertex ξ ∈ Sx1 ⊂ Σx1K, such that
d(ξ, ζ) = arccos(− 1√

3
) cannot occur. Thus, d(ζ, Sx1) ≡ π

2
and repeating the previous argu-

ment, we can see that ΣζΣx1K contains a wall. Hence, Σz1K contains a wall, contradicting
again Lemma 4.6.5.

Lemma 4.6.8. Let x ∈ K be a 2-vertex, such that ΣxK contains a singular 4-sphere S
of type 757 or π

3
. Then, the 8-vertices in S ⊂ ΣxK are not π

2
-extendable and there are no

8-vertices in K at distance 3π
4

to x. In particular, x is a 2A-vertex, and all 8-vertices in S
are directions to 8A-vertices in K adjacent to x.

Proof. Suppose there is an 8-vertex in S that is π
2
-extendable. This means that there is a

2-vertex y ∈ K at distance π
2

to x, such that the segment xy is of type 282 and −→xy ∈ S.
In particular Σ−→xyΣxS is a singular 3-sphere. This implies for the 8-vertex z := m(x, y),
that its link ΣzK contains a 4-sphere. By Lemma 4.6.1, dim(K) ≥ 6. In particular, ΣxK
contains a 5-dimensional hemisphere h bounded by S.

The hemisphere h is the intersection of a wall and a root in a building of type D7 with

Dynkin diagram
1

3 4 5 6 7 8
. Recall the description of hemispheres of codimension 1 in

Section 2.3. If S is of type 757, then h is centered at a 7-vertex α and Σαh is a wall of
type 5. In particular Σαh contains a pair of antipodal 8-vertices. If S is of type π

3
, then

h is centered at point contained in the interior of an edge of type 86. In particular, the
8-vertex of this edge is contained in h. In both cases h contains an 8-vertex η in its interior
(notice that this is not true for a hemisphere bounded by a singular 4-sphere of type 787).
It is clear that d(η,−→xy) = π

2
and the segment is of type 878. The midpoint ζ := m(η,−→xy)

is also in the interior of h, and in particular, ΣζΣxK contains a wall of type 5, that is, a
wall containing a pair of antipodal 8-vertices.
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2 2

8

8

7
7

6

yx z

ζ

w Let w ∈ K be the 8-vertex in K adjacent to x with η = −→xw. Then
if we consider the spherical triangle CH(x, y, w), we see that ζ is
extendable to a segment of type 276 inK. Therefore we find 7-vertices
in K, whose links in K contain a wall of type 1. A contradiction to
Lemma 4.6.6.

So the 8-vertices in S ⊂ ΣxK are not π
2
-extendable. In particular,

x is a 2A-vertex. Otherwise we find an antipode x̂ ∈ K of x and a segment connecting x
and x̂ with initial direction an 8-vertex in S is of type 28282. It follows that the 8-vertices
in S are 3π

4
-extendable. A contradiction.

Let u ∈ K be an 8-vertex adjacent to x, such that −→xu ∈ S and suppose that u has an
antipode û ∈ K. Let c be the segment connecting u and û through x. It is of type 82828.

Since the direction
−→
xû has an antipode in S, namely −→xu, it follows that the 8-vertex

−→
xû

lies in a sphere S ′ ⊂ ΣxK of the same type as S. Hence
−→
xû cannot be π

2
-extendable, but

the segment xû is of type 2828. A contradiction. Thus, all 8-vertices in S are directions
to 8A-vertices in K adjacent to x.

8

7

7

7

7

7

7 7

7
6

6

2

2 x
z

8A
8A

8A

8A

8A

w

For the second assertion, suppose there is an 8-vertex
z ∈ K with d(x, z) = 3π

4
. Since all 8-vertices in S corre-

spond to 8A-vertices in K, the 8-vertex −→xz must be orthog-
onal to the 8-vertices in S. In both cases (of type 757 or π

3
),

S contains a singular 2-sphere spanned by three pairwise
orthogonal 8-vertices (cf. Section 2.3). This implies that
Σ−→xzΣxK contains a 2-sphere spanned by three pairwise or-
thogonal 7-vertices. Let w be the 8-vertex in xz adjacent

to x. Recall that x is a 2A-vertex, therefore w is an 8A-vertex. Then ΣwK contains a
3-sphere as described in the statement of Lemma 4.6.7. It also follows that the 7-vertices
in this sphere are π

3
-extendable to 8A-vertices, contradicting Lemma 4.6.7.

Lemma 4.6.9. K contains no 2-vertices x, such that ΣxK contains a singular 4-sphere S
of type π

3
.

Proof. Let x be such a 2-vertex. It follows from Lemma 4.6.8 that x is a 2A-vertex and
rad(x, 8-vert. in K) ≤ arccos(− 1

2
√

2
). As in the proof of Lemma 4.6.5, we deduce that

diam(G · x) ≤ 2π
3

. Let x′ ∈ G · x with d(x, x′) = diam(G · x).
Case 1: diam(G · x) = 2π

3
. The segment xx′ is of type 26262. As in the proof of

Lemma 4.6.3 we deduce that the 6-vertex
−→
xx′ has distance π

2
to the 8-vertices in S. If S ′ ⊂ S

is the 3-sphere spanned by the 8-vertices in S, then d(
−→
xx′, S ′) ≡ π

2
. It follows that Σ−→

xx′
ΣxK

(of type 4

1

3 5
7 8) contains a 3-sphere spanned by four pairwise orthogonal 5-vertices, this

sphere is an apartment in the D4-factor. Let y := m(x, x′). Then the link Σ−→yxΣyK (again

of type 4

1

3 5
7 8) contains also an apartment in the D4-factor. This is a 3-sphere spanned
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by a simplex of type 1345. This implies that the link ΣyK contains a singular 4-sphere Sy

spanned by a simplex of type 13456. Hence Sy is of type π
3

and the 6-vertices −→yx, −→yx′ are
orthogonal to the 3-sphere S ′

y ⊂ Sy spanned by the 8-vertices in Sy. To see this consider
the vector space model of the Coxeter complex of type D7 introduced in the Appendix A.
The sphere Sy can be identified with the sphere {x5 = x6 = x7} ∩ S6 ⊂ R

7 and S ′
y, with

the sphere {x5 = x6 = x7 = 0} ∩ S6. A 5-vertex in S ′
y is of the form (±1, . . . ,±1, 0, 0, 0)

and a 6-vertex orthogonal to this sphere must be of the form (0, . . . , 0,±1,±1,±1). Hence,
a 5-vertex in S ′

y and a 6-vertex orthogonal to S ′
y are connected by a segment of type 536

or 516.

As in the beginning of the proof, we obtain that rad(y, 8-vert. in K) ≤ arccos(− 1
2
√

2
)

and diam(G · y) ≤ 2π
3

. We assume again that diam(G · y) = 2π
3

and let y′ ∈ G · y have
distance 2π

3
to y. It follows as above, that Σ−→

yy′
ΣyK contains an apartment in the D4-factor.

Let ξ, ξ′ ∈ S ′
y be antipodal 5-vertices. The vertices −→yx, −→yx′, ξ and ξ′ lie on a singular

circle of type 635161536 contained in Sy. The link ΣξΣyB is of type A3 ◦ A3 and has
Dynkin diagram 876143 . Notice that ΣξS

′
y is an apartment in the second A3-factor.

Therefore the second factor in the spherical join splitting of ΣξΣyK is a subbuilding.

Since rad(y, 8-vert. in K) ≤ arccos(− 1
2
√

2
), this implies as above that d(

−→
yy′, S ′

y) ≡ π
2
. In

particular, d(
−→
yy′, ξ) = π

2
and the direction

−→
ξ
−→
yy′ must be orthogonal to the 2-sphere ΣξS

′
y.

Recall that this sphere is an apartment in the second A3-factor. Thus
−→
ξ
−→
yy′ must lie on the

143 -factor of ΣξΣyK.

5

5

1

1

1

1

66

3

3

7
6 8

4

4

ξ

ξ′

−→
yx′−→yx −→

yy′

It follows from this that the segments ξ
−→
yy′ and ξ′

−→
yy′ must

be of type 536 or 516. Further, since d(ξ,
−→
yy′) + d(ξ′,

−→
yy′) =

d(ξ, ξ′) = π, the segments are of the same type. Observe also,

that
−→
yy′ cannot be antipodal to −→yx or

−→
yx′, otherwise the 2A-

vertex y′ would be antipodal to x or x′. Suppose w.l.o.g. that the

segments ξ
−→
yy′ξ′ and ξ

−→
yx′ξ′ are of type 51615. This implies that

the segment ξ−→yxξ′ is of type 53635. Since
−→
yy′ is not antipodal to

−→yx, then the directions
−→
ξ−→yx and

−−→
ξ
−→
yy′ of type 3 and 1, respectively,

cannot be antipodal, thus, they are adjacent (recall that these directions lie in a building

of type 143 ). This implies that the segment −→yx−→yy′ has length arccos(1
3
) and is of type

676. It also follows that
−→
yy′ lies on a segment of length π and type 67686 connecting −→yx

and
−→
yx′. Therefore, the segment

−→
yx′

−→
yy′ has length arccos(−1

3
) and is of type 686. Hence,

Σ−→
yy′

ΣyK contains antipodal 7- and 8-vertices, that is, it contains a wall in the A2-factor.

Together with the apartment in the D4-factor (compare with the beginning of Case 1), this
implies that the link Σ−→

yy′
ΣyK contains a wall. It follows that the link in K of the 2-vertex

m(y, y′) contains a wall, contradicting Lemma 4.6.5.

Thus, diam(G · y) = arccos(−1
4
) and by relabeling y by x we have reduced the possi-
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bilities to the following case.

Case 2: diam(G ·x) = arccos(−1
4
). The simplicial convex hull C of xx′ is 2-dimensional.

Let y, y′ ∈ C be the 8-vertices adjacent to x and x′, respectively. If −→xy has an antipode in
ΣxK, then there would be an 8-vertex in K at distance 3π

4
to x′, but this is not possible (cf.

proof of Lemma 4.6.3). It follows that d(−→xy, S ′) ≡ π
2
, where S ′ ⊂ S is the 3-sphere spanned

by the 8-vertices in S. Σ−→xyCH(−→xy, S ′) is a 3-sphere spanned by four pairwise orthogonal
7-vertices.

Let w ∈ C be the 7-vertex m(x, x′) and let x′′ ∈ G · x with d(w, x′′) > π
2
. The possible

distances between 2- and 7-vertices in the Coxeter complex of type E8 are of the form
arccos(− k

2
√

6
) for k an integer (this can be deduced from the table of 2- and 7-vertices in

Appendix A.7). Notice that d(x,w) = d(w, x′) = arccos( 3
2
√

6
). Triangle comparison for the

triangle (x, x′, x′′) and diam(G · x) ≤ arccos(−1
4
) imply that d(x′′, w) = d(x′′,m(x, x′)) ≤

arccos(− 1√
6
). If d(w, x′′) = arccos(− 1√

6
), then by rigidity, CH(x, x′, x′′) is an equilateral

spherical triangle with side lengths arccos(−1
4
). In particular d(x, x′′) = arccos(−1

4
) and

∠x(x
′, x′′) > π

2
.

If d(w, x′′) = arccos(− 1
2
√

6
), we may assume w.l.o.g. that ∠w(x, x′′) ≥ π

2
. This implies

that d(x, x′′) ≥ arccos(−1
8
), i.e. d(x, x′′) = arccos(−1

4
). Again by triangle comparison

and ∠w(x, x′′) ≥ π
2

we want to see that CH(x,w, x′′) must be a spherical triangle: let

x̃, x̃′′ be 2-vertices and let w̃ be a 7-vertex in the Coxeter complex of type E8, such that
d(x̃, w̃) = d(x,w) = arccos( 3

2
√

6
), d(w̃, x̃′′) = d(w, x′′) = arccos(− 1

2
√

6
) and ∠w(x, x′′) =

∠w̃(x̃, x̃′′). By triangle comparison, d(x̃, x̃′′) ≤ d(x, x′′) = arccos(−1
4
), but since the angle

∠w̃(x̃, x̃′′) = ∠w(x, x′′) ≥ π
2
, then d(x̃, x̃′′) > π

2
. It follows that d(x̃, x̃′′) = arccos(−1

4
) =

d(x, x′′) and by rigidity CH(x,w, x′′) is a spherical triangle. We can now compute that
∠x(x

′, x′′) = arccos(− 1
15

) > π
2
.

2

2

2

8

8

8

8

7

7

1

1

1

1x
x′

x′′

y′z

z′

y

w

Let C ′ be the 2-dimensional simplicial convex hull of xx′′

and let z, z′ ∈ C ′ be the 8-vertices adjacent to x and x′′. By
considering the spherical triangle CH(x, x′, y), we can compute
∠x(y, x

′) = arccos( 3√
15

) < π
4
. Then we can see that, if −→xy = −→xz, it

follows ∠x(x
′, x′′) < π

2
, thus −→xy 6= −→xz. They cannot be antipodal

either, because −→xy has no antipodes in ΣxK (compare with the
beginning of Case 2). Hence, the segment −→xy−→xz has length π

2

and is of type 878.

Let ξ ∈ ΣxK be the 7-vertex m(−→xy,−→xz). Notice that as for
−→xy, it also holds d(−→xz, S ′) ≡ π

2
. This implies that the convex

hull of S ′ and the segment −→xy−→xz is isometric to the spherical join S ′ ◦ −→xy−→xz. In particular,

d(ξ, S ′) ≡ π
2
. Notice that in a building of type D7 with Dynkin diagram

1

3 4 5 6 7 8
, a 7-

and an 8-vertex at distance π
2

are joined by a segment of type 768. It follows that ΣξΣxK

(of type
1

3 4 5 6 8
) contains a 3-sphere spanned by four pairwise orthogonal 6-vertices.

This 3-sphere is not simplicial, and its simplicial convex hull is an apartment in the D5-
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factor of ΣξΣxK. Since {−→xy,−→xz} is an apartment in the A1-factor of ΣξΣxK, it follows
that ΣξΣxK contains an apartment. In particular ξ is an interior 7-vertex in ΣxK.

We can also see, that if both 1-vertices
−→
xy′ and

−→
xz′ are adjacent to ξ, then ∠x(x

′, x′′) < π
2
,

because in this case d(ξ,−→xw) = d(ξ,
−→
xx′′) = arccos(2

√
2√

15
) < π

4
(just consider the spheri-

cal triangle CH(−→xy,−→xw, ξ) with sides d(−→xy,−→xw) = arccos( 3√
15

), d(−→xy, ξ) = π
4

and angle

∠−→xy(
−→xw, ξ) = arccos( 1√

6
)).

8 8

3

1

−→
xy′

7

1 ζ

ξ −→xz−→xy

−→xw

Therefore w.l.o.g.
−→
xy′ is not adjacent to ξ, but since both are

adjacent to −→xy, the angle ∠−→xy(ξ,
−→
xy′) must be of type 731, because

Σ−→xyΣxB is of type D6 with Dynkin diagram
1

3 4 5 6 7
. Now recall

that ξ is an interior vertex in ΣxK, this implies that we can find
a 1-vertex ζ ∈ ΣxK, so that

−→
xy′
−→xyζ is a segment of type 181.

Thus, the link Σ−→xyΣxK (of type D6) contains a pair of antipodal
1-vertices and a 3-sphere spanned by four pairwise orthogonal 7-
vertices (compare with the beginning of Case 2). We can apply

Lemma 3.1.4 to see that Σ−→xyΣxK contains a wall. By Lemma 3.1.3, Σ−−→
−→xy−→xw

Σ−→xyΣxK contains
at least a wall. This implies that Σ−→xwΣxK contains a wall and ΣwK contains a wall of type
1, contradicting Lemma 4.6.6.
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8
8

8
8

8

7

7

7

7

7

7 7

7
6

6

2

2

x

x1

x2

Let x ∈ K be an 8A-vertex. We say that x has the
property T , if there is no spherical triangle in K with
8A-vertices x, x1 and 8-vertex x2, with side lengths
d(x, xi) = 2π

3
, d(x1, x2) = π

2
, and such that the direc-

tion −→xx2 is 2π
3

-extendable to an 8A-vertex in K. This
last assumption is fulfilled if e.g. x2 is also an 8A-
vertex.

Let x1, x2, x3 ∈ K be 8T -vertices as in configuration ∗. If ∠y3(x3, x2) = arccos(1
3
), then

the simplicial convex hull of y3, x3,m(y3, x2) is a spherical triangle with vertices x3, y3, x
′
2

and sides y3x3, x3x
′
2 and x′2y3 of type 87878, 828 and 878, respectively, and m(y3, x2) =

m(y3, x
′
2). It follows that the simplicial convex hull of x1,m(y3, x2), x3 is a spherical triangle

in K as ruled out by the property T , hence the property T implies that ∠y3(x3, xi) =
arccos(−1

3
) and d(x3, xi) = 2π

3
for i = 1, 2. Thus, ∠xi

(xi−1, xi+1) = arccos(−1
3
)) for i = 1, 2

(the indices to be understood modulo 3) and these angles are of type 727. Let y1 :=
m(x2, x3) and y2 := m(x1, x3). Then it also follows that d(xi, yi) = 2π

3
for i = 1, 2.

Consider the vertices x1, x3, x2, y2, then we are again in the situation of the configuration
∗ (just exchange the indices 2 ↔ 3). It follows as above that ∠y2(x2, x3) = arccos(−1

3
)

because x1 is an 8T -vertex. This implies that ∠x3(x1, x2) = arccos(−1
3
) as well, and this

angle is of type 727.

The convex hulls CH(xi, yj, xj) for distinct i, j = 1, 2, 3 are isosceles spherical triangles
with sides of type 87878, 87878 and 878. This implies d(yi, yi+1) = π

2
and the segments
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yiyi+1 are of type 828. The intersection CH(xi, yi+1, xi+1)∩CH(xi, yi−1, xi−1) is the spher-
ical triangle CH(xi, yi−1, yi+1) with sides of type 878, 878 and 828. In particular the
8-vertices m(xi, yi) are pairwise distinct.

Observe that the 2-vertices −−→y3y2,
−−→y3y1 ∈ Σy3K are adjacent to the antipodal 7-vertices

−−→y3x1,
−−→y3x2, respectively. This implies that d(−−→y3y2,

−−→y3y1) ≥ arccos(1
3
) > π

3
, thus d(−−→y3y2,

−−→y3y1) ≥
π
2
. On the other hand, triangle comparison for the triangle (y1, y2, y3) implies d(−−→y3y2,

−−→y3y1) ≤
π
2

and it follows that this triangle is rigid, i.e. the convex hull CH(y1, y2, y3) is an equilat-
eral spherical triangle with sides of type 828. Let zi := m(yi, yi−1). Notice that zi does not
lie on the segment xiyi of type 87878. Let w be the 7-vertex at the center of the triangle
CH(y1, y2, y3) and consider the spherical triangles CH(xi, zi, yi) for i = 1, 2, 3 with sides of
type 82, 2768 and 87878. Notice that w is the 7-vertex on the segments ziyi. It follows that
w is adjacent to the 8A-vertices m(xi, yi) for i = 1, 2, 3 and in particular, ΣwK contains
three pairwise antipodal 8-vertices.
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We say that an 8T -vertex x ∈ K has the property T ′, if rad(zi, {8-vert. in K}) ≤
arccos(− 1

2
√

2
) for i = 1, 2, 3 and for any such configuration of vertices x1, x2, x3 ∈ G · x.

Lemma 4.6.10. K contains no 8T ′-vertices.

Proof. Suppose there are 8T ′-vertices. We use the notation as in the definition of the
property T ′. Let w be the center of the triangle CH(y1, y2, y3).

Let u ∈ K be an 8-vertex. Then for some i = 1, 2, 3, ∠w(zi, u) ≥ π
2
. Suppose w.l.o.g.

that it holds for i = 1. If d(w, u) = 5π
6

, then −→wu is an 8-vertex and ∠w(z1, u) = π
2
.

It follows that d(u, z1) = 3π
4

, but this contradicts the definition of the property T ′. If
d(w, u) = arccos(− 1√

3
), then −→wu is a 2-vertex and ∠w(z1, u) = 2π

3
. It follows again that

d(u, z1) = 3π
4

. Hence, d(w, u) ≤ arccos(− 1
2
√

3
) for all 8-vertices u ∈ K and as in the

beginning of the proof of Lemma 4.6.4 we deduce by triangle comparison that if w′ ∈ G ·w,
then d(w,w′) ≤ arccos(−1

3
). We may also choose w′, so that d(w,w′) > π

2
.

Case 1: d(w,w′) = arccos(−1
3
). If the segment ww′ is singular of type 76867, then for

some i = 1, 2, 3, ∠w(yi, w
′) = 2π

3
and this angle is of type 626. It follows that d(w′, yi) =
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arccos(− 1√
3
), a contradiction. If the simplicial convex hull of ww′ is 2-dimensional, we can

argue as in the proof of Lemma 4.6.4 (Case 1) to see that this case is not possible either.

Case 2: d(w,w′) = arccos(−1
6
). The argument in the proof of Lemma 4.6.4 (Case 2)

rules out the case where ww′ has a 2-dimensional simplicial convex hull.
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77
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w

w′

v′2

v′1

v2

v1
m

It remains to show that the case where the simplicial convex
hull C of ww′ is 3-dimensional is not possible either. Let v1, v

′
1 ∈

C be the 8-vertices adjacent to w and w′, respectively. Notice
that they are 8A-vertices, otherwise an antipode of e.g. v1

in K would have distance 5π
6

to w; but this cannot happen.
Recall that there is an 8-vertex m ∈ C, such that mw and mw′

are segments of type 867 and ∠m(w,w′) = arccos(−3
4
). Let

v2 ∈ K be an 8A-vertex adjacent to w and so that v1wv2 is a
segment of type 878. We can choose v2 to be one of the 8A-
vertices m(xi, yi). Define v′2 analogously. Then the convex hulls

CH(m, v1, v2) and CH(m, v′1, v
′
2) are equilateral spherical triangles with sides of type 878.

2

2

2

7

7

7

3

3

1

6

6

7
1

−−→
mw′

−−→mw −−→mv1

−−→
mv′2−−→mv2

−−→
mv′1

η

ξ

ξ′

We want now to consider the convex hull C ′ := CH(C, v2, v
′
2).

The link ΣmC is a 2-dimensional spherical quadrilateral

with vertices −−→mw, −−→mv1,
−−→
mw′ and

−−→
mv′1. Notice that −−→mv2

−−→mw−−→mv1

and
−−→
mv′2

−−→
mw′−−→mv′1 are segments of type 767. It follows that

CH(ΣmC,
−−→mv2,

−−→
mv′2) is a bigon connecting the antipodal

7-vertices −−→mv2 and
−−→
mv′2. Then d(v2, v

′
2) = 2π

3
and m =

m(v2, v
′
2), in particular, m is an 8A-vertex. Let ξ, ξ′ ∈

ΣmC
′ be the 2-vertices m(

−−→
mv′1,

−−→mv2) and m(−−→mv1,
−−→
mv′2). Let η be the 2-vertex m(−−→mv1,

−−→
mv′1).

The convex hulls CH(v1, v2, v
′
2) and CH(v′1, v

′
2, v2) are spherical triangles with sides of type

878, 87878 and 828.

Since m ∈ K is contained in the convex hull of the 8T ′-vertices, it is also contained
in the convex hull of the 8T -vertices. We can find another 8T -vertex u1 ∈ K, such that
d(m,u1) = 2π

3
. Notice that the 8A-vertex u1 cannot be antipodal to v2 or v′2, in particular,

∠m(u1, v2),∠m(u1, v
′
2) < π. Suppose w.l.o.g. that ∠m(u1, v2) ≥ π

2
. Then ∠m(u1, v2) =

arccos(−1
3
) and d(u1, v2) = 2π

3
. CH(v2,m, u1) is an isosceles spherical triangle (as in the

configuration ∗) with a 2-vertex z in its interior. Recall that d(w, u1) ≤ arccos(− 1
2
√

3
).

This implies that ∠v2(w, u1) ≤ arccos(1
3
). This angle cannot be 0, because ∠v2(m,w) =

arccos(1
3
) and ∠v2(m,u1) = arccos(−1

3
). Thus ∠v2(w, u1) = arccos(1

3
) and it is of type 767.

CH(−−→v2w,
−−→v2m,

−−→v2u1) is then a spherical triangle with sides of type 767, 767 and 727. In
particular w is adjacent to the 2-vertex z.
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−→
mz

−−→
mv2

−−→
mu1

7 72

6

7

−−→
mw

−−→
mv1

This consideration implies in the link ΣmK that −→mz and −−→mw are
adjacent. Suppose that the segment −−→mv1

−−→mu1 is of type 727. This
implies that the angle ∠−−→mv1(

−−→mu1, ξ
′) is of type 262. It follows that

the segment −−→mu1ξ
′ is of type 7672. Hence, d(u1,m(v′2, v1)) = 3π

4
and

CH(v1, v
′
2, u1) is a spherical triangle with sides 87878, 87878 and

828. But this contradicts the definition of the property T for u1.
Therefore the segment −−→mv1

−−→mu1 is of type 767.

If ∠m(u1, v
′
2) = arccos(−1

3
) we argue analogously and conclude that the segment

−−→
mv′1

−−→mu1

is of type 767. If ∠m(u1, v
′
2) = arccos(1

3
) we see as above that d(−−→mu1, ξ) ≤ π

2
, oth-

erwise we violate the property T for u1. Using triangle comparison with the triangle

(ξ,−−→mu1,
−−→
mv′2) (or using the convexity of the ball centered at −−→mu1 with radius π

2
) we see

that d(
−−→
mv′1,

−−→mu1) ≤ arccos(1
3
). Since −−→mv1

−−→mu1 is of type 767, then −−→mu1 6= −−→
mv′1. Thus,

d(
−−→
mv′1,

−−→mu1) = arccos(1
3
) and the segment

−−→
mv′1

−−→mu1 is of type 767 also in this case. It

follows that CH(
−−→
mv′1,

−−→mv1,
−−→mu1) is a spherical triangle with sides 767, 767 and 727. In

particular −−→mu1 is adjacent to η.

We have shown so far that any 7-vertex in ΣmK that is 2π
3

-extendable to an 8T -vertex

in K must be adjacent to η and the segments connecting it with −−→mv1 and
−−→
mv′1 are of type

767.

Let r1 := m(m,u1) ∈ K and let u′2 ∈ K be an 8T -vertex with d(r1, u
′
2) = 2π

3
. Since u1

is an 8T -vertex, the angle ∠r1(m,u
′
2) cannot be of type 767. Hence, it is of type 727. If

the angle ∠r1(u1, u
′
2) is also of type 727, then set u2 := u′2.
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Otherwise, let u2 ∈ K be another 8T -vertex, so that
d(u2,m(r1, u

′
2)) = 2π

3
. Again, because u′2 is an 8T -vertex,

the angle ∠m(r1,u′2)(r1, u2) is of type 727. In particu-
lar d(r1, u2) = 2π

3
and again ∠r1(m,u2) is of type 727.

We want to see now, that ∠r1(u1, u2) is also of type
727. Suppose that ∠r1(u1, u2) is of type 767. Then

CH(−−→r1u2,
−−→r1u1,

−−→
r1u

′
2) is a spherical triangle with sides of

type 767, 767 and 727. In particular −−→r1u1 is adjacent to

δ := m(−−→r1u2,
−−→
r1u

′
2), this means that the segment δ−−→r1m

is of type 2767. Notice that this is the configuration ∗∗
for the vertices r1, u

′
2, u2,m. This implies that CH(r1, u2,m(m,u′2)) is a spherical triangle

with vertices of type 8A and sides of type 87878, 87878 and 828 and u2 could not be an
8T -vertex, a contradiction.



4.6 The E8-case 67
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Thus ∠r1(u1, u2) is of type 727. This implies that d(u1, u2) =
2π
3

and ∠u1(m,u2) is of type 727. Let u3 ∈ K be the 8A-vertex
m(u1, u2), then ∠u1(m,u3) is of type 727 and this implies that
d(m,u3) = 2π

3
. Observe that u3 is not necessarily an 8T -vertex.

Notice that −−→mu1
−−→mu2 is of type 727 and recall that −−→mui is ad-

jacent to η for i = 1, 2. It follows that η = m(−−→mu1,
−−→mu2).

In particular η is π
2
-extendable in K. Consider the triangles

(m,u1, u3) and (m,u2, u3), then by triangle comparison, it follows
that ∠m(u1, u3),∠m(u2, u3) ≤ arccos(1

3
) and since ∠m(u1, u2) =

arccos(−1
3
), this implies that, ∠m(u1, ui) = arccos(1

3
) and −−→mu3

−−→mui is of type 767 for i = 1, 2.
Hence, CH(−−→mu1,

−−→mu2,
−−→mu3) is a spherical triangle with sides of type 767, 767 and 727. In

particular, −−→mu3 is adjacent to η as well.

Write −→η⋆ :=
−−→
η−→m⋆ ∈ ΣηΣmK, where ⋆ is any vertex in K adjacent to m, so that−→m⋆ ∈ ΣmK is adjacent to η.
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5

−→ηv1

−→ηu2

−→ηu1

−→
ηv′1

−→ηu3

The 7-vertices −→ηv1,
−→
ηv′1,

−→ηu1 and −→ηu2 are the 7-vertices
of a circle c ⊂ ΣηΣmK of type 767676767, because as seen
above, −→ηui for i = 1, 2 is the midpoint of a geodesic of length

π connecting −→ηv1 and
−→
ηv′1, and −→ηui are antipodal for i = 1, 2.

From the construction above we see that d(−→ηu3,
−→ηui) = π

2

for i = 1, 2 (the segments −→ηu3
−→ηui are of type 767). Suppose

−→ηu3 is antipodal to −→ηv1. This would imply that the segment
−−→mu3

−−→mw ⊂ ΣmK is of type 7316 and therefore d(−−→mu3,
−−→mw) >

π
2

(compare with the figure for ΣmC
′ above). Consider now

the triangle (w,m, u3), it has sides d(m,w) = arccos( 1√
3
), d(m,u3) = 2π

3
and angle

∠m(w, u3) >
π
2
. It follows that d(w, u3) > arccos(− 1

2
√

3
), which is not possible. Hence,

d(−→ηu3,
−→ηv1) = d(−→ηu3,

−→
ηv′1) = π

2
. Therefore −→ηu3 is the center of a 2-dimensional hemisphere

in ΣηΣmK bounded by c.

Let r3 := (m,u3) ∈ K and let u′4 ∈ K be another 8T -vertex, so that d(r3, u
′
4) = 2π

3
.

Recall that u3 is not necessarily an 8T -vertex, therefore we cannot conclude directly that
∠r3(m,u

′
4) is of type 727. If ∠r3(m,u

′
4) is actually of type 727, then set u4 := u′4.
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u4
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Otherwise (i.e. if ∠r3(m,u

′
4) is of type 767), let u4 ∈ K be

an 8T -vertex, so that d(u4,m(r3, u
′
4)) = 2π

3
. Then, since u′4 is

an 8T -vertex, the angle ∠m(r3,u′4)(r3, u4) must be of type 727.
This implies that d(r3, u4) = 2π

3
and the angle ∠r3(u4, u

′
4) is of

type 727. It follows that ∠r3(m,u4) is of type 727, otherwise
(as in the argument above for u2) we find the configuration ∗∗
and CH(u3, u4,m(r3, u

′
4)) is a spherical triangle with sides of type

87878, 87878 and 828, contradicting the property T for u4. From
this we conclude that d(m,u4) = 2π

3
and ∠m(u3, u4) is of type 727.

Recall that −−→mu4 must be adjacent to η. This implies that −→ηu4 is antipodal to −→ηu3.
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Thus, ΣηΣmK (of type D6) contains a singular 2-sphere spanned by 3 pairwise or-

thogonal 7-vertices. Recall that it also contains a pair of antipodal 3-vertices
−→
ηξ and

−→
ηξ′.

Lemma 3.1.4 implies that ΣηΣmK contains a 3-sphere spanned by a simplex of type 1567.
Since η is π

2
-extendable in K, we have found a 2-vertex in K, whose link contains a 4-sphere

spanned by a simplex of type 15678. This 4-sphere is of type π
3

(this can be easily seen in
the vector space realization of the Coxeter complex of type Dn presented in Appendix A).
A contradiction to Lemma 4.6.9.
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2
Let B3 be the property of an 8A-vertex x ∈ K, such that ΣxK

contains a singular 2-sphere with B3-geometry 7 26 , and such that
all the 7-vertices in this sphere are π

3
-extendable.

Consider the configuration ∗∗ and notice that the 8-vertex v on the segment zx3 (of
type 2828) adjacent to z is an 8B3-vertex.

Another similar way of finding 8B3-vertices is the following. Let x1, x2, x3, x4 ∈ K be
8A-vertices adjacent to a 2-vertex y, so that CH(xi) is a 2-dimensional spherical quadri-
lateral with sides xixi+1 of type 878. Let x ∈ K be an 8-vertex at distance 3π

4
to y. Since

the xi are 8A-vertices, it follows that ∠y(x, xi) = π
2
. This implies that Σ−→yxΣyK contains

a singular circle of type 767676767. Let z be the 8-vertex in yx adjacent to y. Then
ΣzK contains a 2-sphere with B3-geometry 7 26 . Considering the spherical triangles
CH(x, xi, xi+2), we see that the 7-vertices in this 2-sphere are π

3
-extendable. Hence z is an

8B3-vertex.
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Consider now the definition of the property T ′. The 2-vertices zi are centers of 2-
dimensional spherical quadrilaterals as described above. In particular, if there are no 8B3-
vertices in K, then it follows from the observation above, that rad(zi, {8-vert. in K}) ≤
arccos(− 1

2
√

2
) for i = 1, 2, 3. Hence, if K contains no 8B3-vertices, it follows that the

property T implies the property T ′.

Recall that our strategy is to find spheres of large dimension in the links of vertices of
type 2 or 8. Notice that we have made the first step in this direction:

Corollary 4.6.11. If K contains 8A-vertices, then it contains 8-vertices, whose links in
K contain a singular circle.
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Proof. If K contains 8B3-vertices, we are done. Otherwise, 8T ⇒ 8T ′, and Lemma 4.6.10
implies that there are no 8T -vertices in K. In particular, we find a spherical triangle in K
with sides of type 87878, 87878 and 828. The link in K of the 8-vertex in the interior of
this triangle contains a singular circle.

Now we find 8-vertices, such that their links contain singular 2-spheres.

Lemma 4.6.12. If K contains 8A-vertices, then it also contains 8B3-vertices.

Proof. Suppose that K contains 8A-vertices but no 8B3-vertices. Then, 8T ⇒ 8T ′ and
Lemma 4.6.10 implies that there are no 8T -vertices in K.
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Hence, there are 8A-vertices x0, y0 ∈ K and an 8-vertex
z0 ∈ K, so that T0 := CH(x0, y0, z0) is a spherical triangle
with sides of type 87878, 87878 and 828; where y0z0 is the
side of type 828 (as in the definition of the property T). Let
x1 ∈ K be the 8A-vertex on the segment x0m(y0, z0) (of type
8282) adjacent to the 2-vertex m(y0, z0). Since x1 is not an
8T -vertex, we can find 8-vertices y1, z1 ∈ K as vertices of

a spherical triangle T1 := CH(x1, y1, z1) as above. Define xi, yi, zi ∈ K and Ti ⊂ K
inductively. Let wi be the 2A-vertex m(xi, xi+1).

If ξ ∈ Σxi
K is a π

3
-extendable 7-vertex and d(ξ,−−−→xixi+1) = arccos(− 1√

3
), then we are

in the setting of the configuration ∗∗ because −−→xiyi and −−→xizi are both 2π
3

-extendable to
8A-vertices (definition of the property T ). This implies that there are 8B3-vertices in K,
contradicting our assumption. Hence, −−−→xixi+1 has distance ≤ π

2
to all π

3
-extendable 7-vertices

in Σxi
K. Notice also that d(−−−→xixi−1,

−−→xiyi) and d(−−−→xixi−1,
−−→xizi) are both ≤ π

2
, otherwise wi−1

would have distance 3π
4

to the 8-vertex yi or zi and we would find an 8B3-vertex on the
segment wi−1yi (wi−1zi).
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−−→x1y0

−−→x1w1

−−→x1x0

−−→x1z0

From these observations it follows, that −−→x1w1 has distance
≡ π

2
to the circle Σx1T0 of type 727672767. This implies that

Σ−−−→x1w1
Σx1K (of type 654

3

1

7) contains a singular circle of

type 161416141. It also contains the pair of antipodal 7-vertices
ξ :=

−−−−→−−−→x1w1
−−→x1y1 and ξ′ :=

−−−−→−−−→x1w1
−−→x1z1.

Since d(−−→x1x0,
−−→x1y1), d(

−−→x1x0,
−−→x1z1) ≤ π

2
and d(−−→x1x0,

−−→x1w1) = π
2
, it follows from triangle

comparison that d(−−→x1x0,
−−→x1y1) = d(−−→x1x0,

−−→x1z1) = π
2
, because the triangle (−−→x1x0,

−−→x1y1,
−−→x1z1)

must be rigid. Let ζ :=
−−−−→−−−→x1w1

−−→x1x0. Then the segments ζξ and ζξ′ have length π
2

and are of
type 657.
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Sublemma 4.6.13. Σ−−−→x1w1
Σx1K contains a singular circle of type 756575657. This circle

contains the vertices ξ, ξ′ and ζ.

Proof. Let ζ ′ ∈ Σ−−−→x1w1
Σx1K be the 6-vertex in the circle of type 161416141 antipodal to ζ.

If d(ξ, ζ ′) = π
2
, then ζξζ ′ is a geodesic of type 65756. In particular,

−→
ξζ has an antipode

in ΣξΣ−−−→x1w1
Σx1K and we find the desired circle. If d(ξ, ζ ′) > π

2
, then the segment ξζ ′ is of

type 7676.
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ξ′

ζ ζ ′

τ1

ρ

ψτ2

ξ Let ρ be the 5-vertex on the segment ζξ and let ψ be the
7-vertex on the segment ξζ ′ adjacent to ζ ′. Consider the
geodesics cρ and cψ of length π connecting ζ and ζ ′ through
ρ and ψ. Let τ1 be the 7-vertex at the center of cρ and
τ2 be the 7-vertex in cψ adjacent to ζ. Then ρ and τ2 are

adjacent because ΣζΣ−−−→x1w1
Σx1K is of type 4

1

3 5
7. ξ cannot

be adjacent to the 6-vertex at the center of cψ, otherwise
it would have distance 3π

4
to ζ. Thus, the intersection of

the segments ξζ ′ and cψ is the segment ψζ ′. Considering
the spherical triangle CH(ρ, ξ, ψ) with sides of type 57,

767 and 7565, it follows that ξ is adjacent to the 6-vertex m(τ1, τ2) on the segment ρψ. In
particular, ξ′ must be antipodal to at least one of τ1 or τ2. Since τ2 is adjacent to ζ and
d(ζ, ξ′) = π

2
, then ξ′ cannot be antipodal to τ2. It follows that ξ′ and τ1 are antipodal. Let

finally c be the geodesic connecting τ1 and ξ′, so that the initial direction coincides with−−→
τ1ζ

′. Then the initial direction of c at ξ′ is antipodal to
−→
ξ′ζ and we can find the desired

circle.

Continuation of proof of Lemma 4.6.12.

7 7

6

6

5

55

5

5

3

3

1

1

4 4

ζ

ξ ξ′

α1

s The link ΣζΣ−−−→x1w1
Σx1K (of type 4

1

3 5
7) contains a pair of an-

tipodal 5-vertices
−→
ζξ and

−→
ζξ′ and a pair of antipodal 1-vertices.

We apply Lemma 3.1.1 and Remark 3.1.2 to conclude that ΣζΣ−−−→x1w1
Σx1K

contains a singular circle of type 5135135 with
−→
ζξ and

−→
ζξ′ on it. It

follows now from Sublemma 4.6.13 that Σ−−−→x1w1
Σx1K contains a sin-

gular 2-sphere s containing the vertices ζ, ξ and ξ′. Therefore Σx2K
contains a singular 3-sphere S containing the singular circle Σx2T1.
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We investigate below which 7-vertices in S are π
3
-extendable. Clearly the 7-vertices in

Σx2T1 ⊂ S are π
3
-extendable.

Let α1, α2 ∈ s be the 3-vertices adjacent to ζ and recall that ζ is π
2
-extendable (to

−−→x1x0) in Σx1K. This implies that αi is π
3
-extendable to a segment of type 232 in Σx1K.

Therefore, we find 7-vertices β1, β2 ∈ S at distance π
2

to −−→x2w1 which are π
3
-extendable in

K (compare with the figure below).

2

2

2 6

33

−−→x1w1
−−→x1x0

αi

ζ
2 2

8

8

1
1

8

7

x1 w1 x2

βi

2

3αi

The segment α1α2 ⊂ Σx1w1Σx1K is of type 363 with midpoint the 6-vertex ζ, this
implies that the angle ∠−−−→x2w1

(β1, β2) is of type 161 and this implies in turn, that the segment
β1β2 ⊂ Σx2K is of type 727. Let γ ∈ S be the 2-vertex m(β1, β2).

8 8
2

2

2

6

6

76 6

x1 w1
x2

γ

2

w0

ζ
2 2

5

5

6

1

1

7

7

β2

β1

−−→x2w1 γ

Let ζ2 :=
−−−−→−−−→x2w2

−−→x2x1 . We can use the same argument as above to see that Σζ2Σ−−−→x2w2
Σx2K

contains a singular circle of type 5135135. We want to prove next that it also contains a
pair of antipodal 7-vertices.

Sublemma 4.6.14. The link Σζ2Σ−−−→x2w2
Σx2K contains a pair of antipodal 7-vertices.

Proof. Notice again that d(−−→x2w2,Σx2T1) ≡ π
2
, in particular, d(−−→x2w2,

−−→x2w1) = π
2
.
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2 2

1

6

5

5

7

7

1

2

6

β2

β1

−−→x2w2

ζ ′
2

ζ2

−→γ
γ

−−→x2w1

−→
β1

−→
β2

Recall also from the beginning of the proof Lemma 4.6.12
that d(−−→x2w2, βi) ≤ π

2
, because βi is π

3
-extendable. This

implies that d(−−→x2w2, γ) ≤ π
2

and ∠−−−→x2w1
(−−→x2w2, γ) ≤ π

2
.

Let ζ ′2 :=
−−−−→−−−→x2w1

−−−→x2w2,
−→
βi :=

−−−−→−−→x2w1βi and −→γ :=
−−−→−−→x2w1γ. We

have already seen that d(ζ ′2,
−→
βi ) ≤ π

2
and d(ζ ′2,

−→γ ) ≤ π
2
.

Furthermore, it follows from triangle comparison, that if

d(ζ ′2,
−→γ ) = π

2
, then d(ζ ′2,

−→
βi ) = π

2
for i = 1, 2.

Notice that the link Σζ2Σ−−−→x2w2
Σx2K contains a pair of

antipodal 7-vertices if and only if Σζ′2
Σ−−−→x2w1

Σx2K contains
a pair of antipodal 7-vertices. The latter is what we will

show.

π

2

π

2

≤ π

2

7 7

5 5

5 5

6

6

65 5
δ2

−→γ

δ1

ζ ′2

σ

Let δ1, δ2 ∈ Σ−−−→x2w1
Σx2K be the two 7-vertices in Σ−−−→x2w1

Σx2T1

and recall that the 2-sphere Σ−−−→x2w1
S contains a singular circle of

type 756575657 containing the vertices δ1, δ2 and −→γ (this is just
the circle in Σ−−−→x2w1

Σx2K corresponding to the circle in Σ−−−→x1w1
Σx1K

from the Sublemma 4.6.13 containing ξ, ξ′ and ζ). Let σ be the
6-vertex in this circle antipodal to −→γ . Further, we know that
d(ζ ′2, δi) = π

2
, because d(−−→x2w2,Σx2T1) ≡ π

2
. If ζ ′2 has an antipode

in the 2-sphere Σ−−−→x2w1
S, then −−→x2w2 has an antipode in S. But this

is impossible, since −−→x2w2 =
−−−−−−−→
x2m(y2, z2) and m(y2, z2) ∈ K is a

2A-vertex at distance 3π
4

to x2. Hence π
2
≥ d(ζ ′2,

−→γ ) > 0 and d(ζ ′2, σ) < π.

Notice that Σ−−−→x2w1
Σx2B is a building of type D6 and Dynkin diagram 654

3

1

7. The

distances between 6-vertices are 0, π
3
, π

2
, 2π

3
and π. The link Σζ′2

Σ−−−→x2w1
Σx2K is of type

4

1

3 5
7, thus two distinct 7-vertices in this link must be antipodal.

7

7

7

66

6

6

5

5 5
6−→γ σ

ζ ′2

Case 1: d(ζ ′2,
−→γ ) = π

3
. Since d(ζ ′2, σ) < π, it follows that

−→γ ζ ′2σ is a geodesic of length π. Its simplicial convex hull is 2-
dimensional and contains two 7-vertices adjacent to ζ ′2. It follows
that Σζ′2

Σ−−−→x2w1
Σx2K contains a pair of antipodal 7-vertices.

1 6

3

ζ ′2
−→
βi

7
tiCase 2: d(ζ ′2,

−→γ ) = π
2

and the segment ζ ′2
−→γ is of type 646. In this

case, we know that d(ζ ′2,
−→
βi ) = π

2
for i = 1, 2. Thus, CH(

−→
β1,

−→
β2, ζ

′
2) is

an isosceles spherical triangle with side lengths π
2
, π

2
and arccos(−1

3
).

The simplicial convex hull of the segment ζ ′2
−→
βi contains a 7-vertex ti

adjacent to ζ ′2 and to
−→
βi for i = 1, 2. If t1 = t2, then t1 is adjacent to

−→
βi

for i = 1, 2. It follows that t1 is also adjacent to −→γ = m(
−→
β1,

−→
β2). This

means that d(−→γ , t1) = d(t1, ζ
′
2) = π

4
. Since d(ζ ′2,

−→γ ) = π
2
, ζ ′2t1

−→γ must be a geodesic. This
contradicts the fact that the segment ζ ′2

−→γ is of type 646. Hence, t1 6= t2 and Σζ′2
Σ−−−→x2w1

Σx2K
contains a pair of antipodal 7-vertices.
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Case 3: d(ζ ′2,
−→γ ) = π

2
and the segment ζ ′2

−→γ is of type 676. If d(ζ ′2, σ) = π
2

then −→γ ζ ′2σ is
a geodesic of length π and of type 67676. If d(ζ ′2, σ) = 2π

3
, then the segment ζ ′2

−→γ contains
a 7-vertex adjacent to ζ ′2 at distance π

4
to −→γ and the simplicial convex hull of the segment

ζ ′2σ contains a 7-vertex adjacent to ζ ′2 at distance π
2

to σ. It follows that ζ ′2 is adjacent to
two different 7-vertices. Thus, Σζ′2

Σ−−−→x2w1
Σx2K contains a pair of antipodal 7-vertices.

End of proof of Lemma 4.6.12. We know now that Σζ2Σ−−−→x2w2
Σx2K (of type 4

1

3 5
7) contains

a singular circle of type 5135135 and a pair of antipodal 7-vertices. Hence, it contains a
singular 2-sphere (the spherical join of the singular circle and the pair of antipodal 7-
vertices). Since ζ2 has an antipode in Σ−−−→x2w2

Σx2K, this implies that Σ−−−→x2w2
Σx2K contains

a 3-sphere spanned by a simplex of type 1567. This in turn implies that Σw2K contains
a singular 4-sphere spanned by a simplex of type 15678. This sphere is of type π

3
as can

be verified by considering the vector space realization of the Coxeter complex of type Dn

presented in Appendix A. We get a contradiction to Lemma 4.6.9 finishing the proof of
the lemma.

Lemma 4.6.15. K contains no 8B3-vertices.

Proof. We want to show first that an 8B3-vertex has the property T . Suppose x1 ∈ K is
an 8B3-vertex and let x2, x3 ∈ K be 8-vertices as in the configuration ∗. Suppose further,
that x3 is an 8A-vertex and that −−→x1x2 is 2π

3
-extendable to an 8A-vertex. To prove that x1

has the property T , we have to show that CH(x1, x2, x3) is not a spherical triangle. Let
S ⊂ Σx1K be the singular 2-sphere from the definition of the property B3. Let ζ := −−→x1z1

and ξi := −−→x1xi for i = 2, 3, as in the notation of the configuration ∗.
Suppose there is a 7-vertex ξ ∈ S, such that d(ζ, ξ) = arccos(− 1√

3
). The segment ζξ is

of type 2767. Since ξ is π
3
-extendable in K and ξi is 2π

3
-extendable to an 8A-vertex, ξ is not

antipodal to ξi for i = 1, 2. It follows that CH(ξ, ξ2, ξ3) is an equilateral spherical triangle
sides of type 727. Let γ be the 7-vertex in ζξ adjacent to ζ. γ is the center of the spherical
triangle CH(ξ, ξ2, ξ3). It follows from the configuration ∗∗, that γ is 2π

3
-extendable to an

8A-vertex in K.

ΣξS is a singular circle of type 2626262. Notice that
−→
ξζ =

−→
ξγ is not antipodal to any

2-vertex in this circle, otherwise we could find in S an antipodal 7-vertex to γ, but this

is not possible, since γ is 2π
3

-extendable to an 8A-vertex in K. On the other hand,
−→
ξζ

cannot have distance < π
2

to all the 6-vertices in this circle, so let η be a 6-vertex in ΣξS,

so that d(η,
−→
ξζ) = 2π

3
and let δi ∈ ΣξS be the 2-vertices adjacent to η. Let µ := m(η,

−→
ξζ).

(Compare with the configuration in the proof of Lemma 4.6.7.)
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6

2

2

2

6η

δ1

δ2

µ

2

2

−→
ξζ

−→
ξξ2

−→
ξξ3

Since
−→
ξζ is not antipodal to δi, it follows that ∠η(δi,

−→
ξζ) = π

2

and these angles are of type 232. Similarly, we see that η cannot

be antipodal to
−→
ξξi because ξi has no antipodes in S. Thus, by

Lemma 3.2.2 applied to this configuration in ΣξΣx1K we conclude
that ΣµΣξΣx1K contains a singular 2-sphere spanned by a simplex
of type 156. The same argument as in the proof of Lemma 4.6.7 (p.
58) shows that µ is extendable in Σx1K to a segment of type 727 and
the 2-vertex on this segment is extendable in K to a segment of type

828 (this uses that γ ∈ Σx1K is 2π
3

-extendable and the 7-vertices in S are π
3
-extendable).

This produces a 2-vertex in K, whose link contains a 4-sphere spanned by a simplex of
type 15678. This singular 4-sphere is of type π

3
, a contradiction to Lemma 4.6.9.

From this, it follows that ζ has distance ≤ π
2

to all the 7-vertices in S. Since S is
the convex hull of its 7-vertices, it follows that d(ζ, S) ≡ π

2
. Hence ΣζΣx1K contains the

2-sphere s := ΣζCH(ζ, S). The segments connecting ζ with the 2-vertices of S are of
type 262, the segments connecting ζ with the 7-vertices of S are of type 217 and since the
6-vertices in S are midpoints of segments of type 767 in S, this implies that the segments
connecting ζ with the 6-vertices of S are of type 2436. Since the sphere S has B3-geometry
7 26 , it follows that s has B3-geometry 61 4 . ΣζΣx1K also contains the two antipodal

7-vertices
−−−→
ζ−−→x1xi for i = 2, 3.

Sublemma 4.6.16. Let L ⊂ B be a convex subcomplex of a building of type D6 with

Dynkin diagram 654
3

1

7. Suppose L contains a singular 2-sphere S with B3-geometry
61 4 and also a pair of antipodal 7-vertices. Then L contains a 3-sphere spanned by a

simplex of type 1467.

Proof. Let a, a′ ∈ L be the antipodal 7-vertices and let b, b′ be antipodal 1-vertices in
S ⊂ L. By Lemma 3.1.4 and Remark 3.1.6, it follows that L contains a circle of type
7317317 through b and b′. In particular ΣbL contains a pair of antipodal 7- and 3-vertices.
ΣbS is a singular circle of type 6464646. So, it will suffice to show that under these
circumstances ΣbL contains a 2-sphere spanned by a simplex of type 467 (notice that such
a sphere is also spanned by a simplex of type 346):

6

6

6

4

4

4

7 3

5

5

Let d, d′ ∈ ΣbL be the antipodal 3- and 7-vertices, respectively. Let c ∈ ΣbS be a
4-vertex and let c′ the 6-vertex in ΣbS antipodal to c. If c is adjacent to d, then dcd′ is a
geodesic of type 3437 and ΣcΣbL contains a pair of antipodal 3-vertices. If c is adjacent
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to d′, then dcd′ is a geodesic of type 3547 and ΣcΣbL contains a pair of antipodal 5- and
7-vertices.

3

34

4

7

5

4

d d′

e

e′f

f ′

c

σ

Otherwise the segments cd and cd′ are of type 453 and 437
respectively. Let e be the 5-vertex in cd and let e′ be the 3-vertex
in cd′. Let also f be the 4-vertex on the segment e′d (of type 343)
and let f ′ be the 4-vertex on the segment ed′ (of type 547). Notice
that since e, e′ are adjacent to c, then e is adjacent to e′. It follows
that e is adjacent to f and e′ is adjacent to f ′. Let σ be the edge

ee′. The link ΣσΣbB is of type 6 74 ; and the direction
−→
σc′ is of type 4. It follows that c′

is antipodal to f or f ′ and c′ is contained in a circle in ΣbL of type 7673437 or 3657453.
This implies that Σc′ΣbL contains a pair of antipodal 7-vertices or a pair of antipodal 3-
and 5-vertices. This means for ΣcΣbL, that it contains a pair of antipodal 3-vertices or a
pair of antipodal 5- and 7-vertices.

Recall that ΣcΣbS consists of a pair of antipodal 6-vertices. ΣcΣbB is of type A1 ◦ A3

with Dynkin diagram 763 5 . If ΣcΣbL contains a pair of antipodal 3-vertices, then it
contains a circle of type 63636. This implies that ΣbL contains a 2-sphere spanned by a
simplex of type 364 as desired. If ΣcΣbL contains a pair of antipodal 5- and 7-vertices, then
we apply Lemma 3.1.4 (for n = k = 3) to the A3-factor of ΣcΣbB and conclude that ΣcΣbL
contains a circle of type 7675657. We get again the 2-sphere in ΣbL as we wanted.

End of proof of Lemma 4.6.15. Sublemma 4.6.16 implies that ΣζΣx1K contains a 3-sphere
spanned by a simplex of type 1467. Recall the notation of the configuration ∗. Let u be the
8-vertex m(x3, y3). x1z1u is a segment of type 828. Then, it follows that Σz1K contains a
singular 4-sphere spanned by a simplex of type 14678. This sphere is of type 757 (to verify
this, one can consider the vector space realization of Dn in Appendix A). Lemma 4.6.8
implies that the segment x1u cannot be extended beyond u in K. This implies in turn,
that CH(x1, x2, x3) cannot be a spherical triangle. In particular x1 must be an 8T -vertex.
i.e. 8B3 ⇒ 8T .

Let now x1, x2, x3 be 8B3-vertices as in the definition of the property T ′. Our argument
above shows that Σzi

K contains a 4-sphere of type 757 for i = 1, 2, 3. We apply again
Lemma 4.6.8 and see that rad(zi, {8-vert. in K}) ≤ arccos(− 1

2
√

2
) for i = 1, 2, 3. Hence,

x1 is an 8T ′-vertex. A contradiction to Lemma 4.6.10.

If we combine the Lemmata 4.6.12 and 4.6.15 we obtain the following result, which is
the main step towards the proof of Theorem 4.6.24.

Corollary 4.6.17. All 8-vertices in K have antipodes in K.

Now we proceed to prove that the other vertices in K must also have antipodes in K.
We use the information about types of segments between vertices in the Coxeter complex
of type E8 listed in Section 2.7.

Lemma 4.6.18. All 2-vertices in K have antipodes in K.
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Proof. First note that a 2A-vertex x ∈ K cannot be adjacent to an 8-vertex in K. Oth-
erwise let y ∈ K be an antipode of the 8-vertex adjacent to x. The segment xy is of type
2828. This in not possible due to Lemma 3.0.1 and 4.6.17.

Suppose there is a 2A-vertex x ∈ K. There exists x′ ∈ G · x with d(x, x′) > π
2
. From

the observation above it follows, that d(x, x′) 6= arccos(−1
4
). d(x, x′) cannot be arccos(−3

4
)

either, because in this case the midpoint of the segment xx′ is an 8-vertex. It follows
that d(x, x′) = 2π

3
and the segment xx′ is of type 26262. Let y := m(x, x′), it is also a

2A-vertex. Therefore we can find y′ ∈ G · y with d(y, y′) = 2π
3

. Suppose w.l.o.g. that
∠y(x, y

′) ≥ π
2
. Then d(x, y′) > π

2
, thus d(x, y′) = 2π

3
. This implies by triangle comparison,

that ∠y(x, y
′) ≤ arccos(−1

3
).

6 6 6

6

7

7

8

5

4

4 4

arccos(−1

3
)

arccos(1

3
)

If ∠y(x, y
′) = arccos(−1

3
), then either this angle is of type 686,

which is not possible because K contains no 8-vertex adjacent to

y; or the simplicial convex hull of the segment −→yx−→yy′ contains a 7-

vertex adjacent to −→yx. The segment connecting −→yx and
−→
yx′ through

this 7-vertex is of type 67686. This cannot happen either. Hence,
∠y(x, y

′) = π
2
. It follows that ∠y(x

′, y′) ≥ π
2

and we conclude analo-
gously that ∠y(x

′, y′) = π
2
.

6 6
6

3

3

5

5

1

1

π
2

π
2

Let γ ⊂ ΣyK be the geodesic connecting −→yx and
−→
yx′ through−→

yy′. The simplicial convex hull of γ is either 3-dimensional, in which

case the direction
−−−→−→yx−→yy′ spans a simplex of type 578 and in par-

ticular, ΣyK contains 8-vertices, but this is not possible; or it is

2-dimensional and it contains a pair of 1-vertices adjacent to
−→
yy′.

Let z := m(y, y′) and let w be the 6-vertex m(y, z). The segment
joining −→wy and −→wz through the 1-vertex adjacent to −→wy is of type 2152. It follows that −→zy
is adjacent to a 5-vertex. The geodesic connecting −→zy and

−→
zy′ through this 5-vertex is of

type 65856, but z is a 2A-vertex and ΣzK cannot contain 8-vertices.

Lemma 4.6.19. All 7-vertices in K have antipodes in K.

Proof. Considering the singular circles in E8, we observe again that a 7A-vertex cannot
be adjacent to 2- or 8-vertices in K. Suppose K contains 7A-vertices, then there exist
7A-vertices x1, x2 ∈ K at distance > π

2
. There are two types of segments x1x2 of length

> π
2

and so that the simplices containing −−−→xix3−i in their interiors have no 2- or 8-vertices.
They are of type 76867 and 7342437. These segments have a vertex of type 2 or 8 in their
interiors, which yields a contradiction.

Lemma 4.6.20. All 1-vertices in K have antipodes in K.

Proof. Suppose x is an 1A-vertex in K. Then x cannot be adjacent to 2-, 7- or 8-vertices
in K. Let x′ ∈ G ·x be another 1A-vertex at distance > π

2
to x. It follows that the simplex

spanned by the direction
−→
xx′ has no 2-, 7- or 8-vertices. There are four possible types of
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segments xx′. If d(x, x′) = arccos(−3
8
), then the simplicial convex hull of xx′ contains an

8-vertex adjacent to x′. If d(x, x′) = 2π
3

or arccos(−7
8
), then the midpoint of xx′ is an

8-vertex. If d(x, x′) = arccos(−5
8
), then the midpoint of xx′ is a 7-vertex. This is not

possible by Lemma 3.0.1. Hence, there are no 1A-vertices in K.

Lemma 4.6.21. All 6-vertices in K have antipodes in K.

Proof. Let x be a 6A-vertex. By the previous lemmata and according to the list of singular
1-spheres in the Coxeter complex of type E8, x cannot be adjacent to vertices of type 1,
2, 7 or 8. There exists another 6A-vertex x′ ∈ K at distance > π

2
to x. It follows

that the direction
−→
xx′ span a simplex with no 1, 2, 7 or 8-vertices. Hence d(x, x′) ∈

{arccos(−1
4
), 2π

3
, arccos(−3

4
)}. In the first case the midpoint of xx′ is an 8-vertex and in

the third case, it is a 7-vertex. In the second case the simplicial convex hull of xx′ contains
an 8-vertex adjacent to x′. A contradiction.

Lemma 4.6.22. All 3-vertices in K have antipodes in K.

Proof. Observe, that a 3A-vertex is not adjacent to a vertex of type 1, 2, 6, 7 or 8.

1

2

3 3

3

3

3

4

4

4

4

5

5

5

6

6

7

7

8

x

If K contains 3A-vertices, then it contains at least two

distinct 3A-vertices x, x′. Then
−→
xx′ is contained in an edge

of type 45. Consider the bigon in the Coxeter complex of
type E8, which is the convex hull of a simplex of type 345
and the antipode of the 3-vertex of this simplex. We see

that there are only three possibilities for the type of the segment xx′. In one of them, the
midpoint of xx′ is a 2-vertex; and in another possibility, it is an 8-vertex. The simplicial
convex hull of xx′ for the last possibility contains an 8-vertex adjacent to x′. We obtain
again a contradiction to Lemma 3.0.1.

Lemma 4.6.23. All 4- and 5-vertices in K have antipodes in K.

Proof. A vertex in K of type 4 or 5 without antipodes in K cannot have vertices of type
1, 2, 3, 6, 7 or 8 in K adjacent to it. It follows that, if K contains 4A- or 5A-vertices, then
it has dimension ≤ 1. A contradiction.

We have shown in the previous lemmata that all vertices of a counterexample K have
antipodes in K, contradicting Lemma 3.0.2. This proves our main result:

Theorem 4.6.24. The Center Conjecture 1 holds for spherical buildings of type E8.

Remark 4.6.25. Our proof actually shows that K is a subbuilding or the action of the
group AutB(K) y K fixes a point (see 1.3 for definitions).
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4.6.1 A proof for the F4-case using the E8-case

Theorem 4.6.26. The Center Conjecture 1 holds for spherical buildings of type F4.

Proof. Let K be a convex subcomplex of a spherical building B of type F4 and suppose
it is not a subbuilding. By Lemma 4.3.1, we just have to show that StabAut0(B)(K) has a
fixed point in K.

For this proof we use following labelling of the Dynkin diagram of type F4:
76 82 .

With this labelling the Coxeter complex of type F4 can be considered as a subcomplex of the

Coxeter complex (S,WE8) of type E8 with Dynkin diagram
8765432

1
(cf. Section 2.4).

Let B̂ = B ◦S3, where S3 denotes the unit sphere in R
4. Then B̂ is a spherical building

of dimension 7. From the observation above, it follows that B̂ carries a natural structure
of a building of type E8, and B ⊂ B̂ can be viewed as a subbuilding. The polyhedral
structure of B (as a building of type F4) coincides with the one induced by the polyhedral

structure of B̂ (as a building of type E8). In particular, K is a subcomplex of B̂.

Notice that Aut0(B) = Aut bB(B) (cf. Remark 4.6.25). Then by the Center Conjec-
ture for buildings of type E8 (Theorem 4.6.24) and the Remark 4.6.25, it follows that
Aut bB(K) y K has a fixed point. In particular, StabAut0(B)(K) ⊂ Aut bB(K) also fixes a
point in K.

Remark 4.6.27. Notice that the subgroup (AutB(K))0 of AutB(K) of type preserving
automorphisms is also a subgroup of Aut bB(K). Thus our proof of Theorem 4.6.26 actually
shows that K is a subbuilding or (AutB(K))0 y K has a fixed point. The proof of
Lemma 4.3.1 can be used without changes to show that K is a subbuilding or AutB(K) y

K has a fixed point.

4.6.2 A proof for the E6-case using the E8-case

Theorem 4.6.28. The Center Conjecture 1 holds for spherical buildings of type E6.

Proof. Let K be a convex subcomplex of a spherical building B of type E6 and suppose
that K is not a subbuilding.

Let κ be a circle of radius 1 with the structure of the spherical Coxeter complex of type
I2(6) with labelling of its Dynkin diagram 7 8. Let p1, p2 be a pair of antipodal 7-vertices
in κ.

8

8

8

8

8

8
7 7

77

7 7 p2p1
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Consider the spherical join B̂ := B ◦ κ. There is a natural embedding B →֒ B̂ so we
can regard B as a subset of B̂. Let K̂ := K ◦ κ ⊂ B̂.

Let Bpi
:= Σpi

(B ◦ {pi}) ⊂ Σpi
B̂ for i = 1, 2. Then Σpi

B̂ = Bpi
◦ Σpi

κ and we have

isometries B
ρi→ Bpi

defined by ρi(v) := −→piv. Let Kpi
:= Σpi

(K ◦ {pi}) ∼= K.

Let B1
ρ→ B2 be the isometry that sends a direction ξ ∈ Σp1(B ◦ {pi}) to the initial

direction at p2 of the geodesic connecting p1 and p2 with initial direction ξ at p1. Then
ρ = ρ−1

1 ◦ ρ2.

Recall that the link of a 7-vertex in the Coxeter complex of type E8 is a Coxeter
complex of type E6 ◦ A1. We consider the building Bp1 of type E6 with the labelling of
vertices induced by the labelling of B and the isometry ρ1. With this labelling, a chart
(S5,WE6) →֒ Bp1 of the building Bp1 induces a chart (S7,WE8) →֒ B̂, giving B̂ a structure
of spherical building of type E8, where the induced polyhedral structure of κ coincides with
its structure as Coxeter complex of type I2(6). The labelling of the vertices of Bp2 induced

by this building structure in B̂ can be obtained from the one induced by ρ2 by exchanging
the labels 2 ↔ 6, 3 ↔ 5 and fixing 1 and 4.

As an example, we present the E8-structure of a 2-dimensional hemisphere {v}◦κ ⊂ B̂,
where v is a 2-vertex of B:

8

88

7 7

8 8

77

8

77
7

7

7

7

7

7

7

7

7

8

8

8

2

2

2

6

6

6

6p1

v of type 2

p2

Notice that there is a natural isomorphism Aut0(Bp1)
∼= FixatorAut( bB)(κ) between the

type preserving automorphisms of Bp1 and the automorphisms of B̂ fixing κ pointwise.

It extends to an embedding Aut(Bp1)
ι→֒ StabAut( bB)(κ), where the image of a non type

preserving automorphism of Bp1 restricted to κ is the antipodal involution antκ of κ. In
particular, ι(ϕ)(p1) = p2 for a non type preserving automorphism ϕ ∈ Aut(Bp1), hence
ι(ϕ) induces an isometry Bp1 → Bp2 . This isometry is type preserving and coincides with
ρ ◦ ϕ : Bp1 → Bp2 . This means that the image ι(Aut(Bp1)) acts on Bp1 via ι(ϕ)|Bp1

, if
ϕ ∈ Aut(Bp1) is type preserving; and via ρ−1 ◦ (ι(ϕ)|Bp1

), if ϕ ∈ Aut(Bp1) is not type

preserving. The embedding ι restricts to an embedding G := StabAut(Bp1)(Kp1)
ι→֒ G′ :=

StabAut( bB)(K̂).

There is an isometry φ0 of B̂ that rotates κ an angle of 2π
3

and preserves every 2-

dimensional hemisphere bounded by κ. The restriction of φ0 to an apartment a ⊂ B̂ is the
composition of the reflections on two walls orthogonal to two 8-vertices in κ at distance π

3
.



80 4. The Center Conjecture

It follows that φ0 is an automorphism of B̂ and φ0 ∈ G′.

We apply now the Center Conjecture for buildings of type E8 (Theorem 4.6.24) to

K̂ ⊂ B̂. Since K is not a subbuilding, then K̂ cannot be a subbuilding. It follows that
G′ fixes a point x ∈ K̂. But since φ0 ∈ G′ and φ0 has no fixed points in κ, it follows that
x 6∈ κ. This implies that ι(G) preserves the 2-dimensional hemisphere h ⊂ K̂ bounded by
κ and containing x. Hence, it preserves the geodesic γ connecting p1 and p2 contained in
h. It follows that ι(G) y Kp1 fixes the initial direction of γ at p1.

Remark 4.6.29. Notice that the embedding G →֒ G′ in the proof of Theorem 4.6.28
extends to an embedding AutBp1

(Kp1) →֒ Aut eB(K̃). Then by Remark 4.6.25, the proof
actually shows that K is a subbuilding or the action of the group AutB(K) y K fixes a
point.

4.6.3 A proof for the E7-case using the E8-case

Theorem 4.6.30. The Center Conjecture 1 holds for spherical buildings of type E7.

Proof. It can be deduced from the E8-case as follows: Let K ⊂ B be a convex subcomplex
of a spherical building of type E7. Suppose that K is not a subbuilding. Let B̃ be the
suspension of B, i.e. the spherical join of B and a 0-sphere {p1, p2}. There is a natural

embedding B →֒ B̃, so we can consider B as a subset of B̃. Notice that the map v 7→ −→piv
for v ∈ B ⊂ B̃ is an isometry B ∼= Bpi

:= Σpi
B̃. Let K̃ ⊂ B̃ be the suspension of K and

let Kpi
:= Σpi

K̃ ∼= K.

Recall that the link of an 8-vertex in the Coxeter complex of type E8 is a Coxeter
complex of type E7. Hence a chart (S6,WE7) →֒ Bp1 of the building Bp1 induces a chart

(S7,WE8) →֒ B̃, giving B̃ a structure of spherical building of type E8, where p1 and p2 are
8-vertices.

Observe that there is a natural isomorphism Aut(Bp1)
∼= StabAut( eB)(p1). The embed-

ding Aut(Bp1) →֒ Aut(B̃) restricts to an embedding G := StabAut(Bp1)(Kp1) →֒ G̃ :=

StabAut( eB)(K̃).

There is an isometry φ0 of B̃ that exchanges the points p1 ↔ p2 and preserves the
geodesics connecting p1 and p2. The restriction of φ0 to an apartment of B̃ is the reflection
on the wall orthogonal to p1, p2. Hence φ0 is an automorphism of B̃ and φ0 ∈ G̃.

We apply now the Center Conjecture for buildings of type E8 (Theorem 4.6.24) to the

building B̃ and the convex subcomplex K̃. Since K is not a subbuilding, then K̃ is not a
subbuilding either. It follows that G̃ fixes a point x ∈ K̃ and since φ0 ∈ G̃, this fixed point
cannot be p1 or p2. The image of G in G̃ fixes x, p1 and p2, hence it fixes pointwise the
geodesic γ ⊂ K̃ through x connecting p1 and p2. Therefore, the action G y Kp1

∼= K has
a fixed point −→p1x ∈ Kp1 .
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Remark 4.6.31. Notice that the embedding G →֒ G̃ in the proof of Theorem 4.6.30
extends to an embedding AutBp1

(Kp1) →֒ Aut eB(K̃). Then by Remark 4.6.25, the proof
actually shows that K is a subbuilding or the action of the group AutB(K) y K fixes a
point.
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Appendix A

Vector-space realizations of Coxeter
complexes

In this appendix we present a vector space realization of the irreducible spherical Coxeter
complexes. The information on the root systems can be found in [GB71, Ch. 5]. The
orders of the irreducible Weyl groups can be found in [GB71, p. 80].

We consider the spherical Coxeter complex (Sn−1,W ) embedded in R
n as the unit

sphere. Let {ei}ni=1 denote the canonical base of R
n.

The root system of a Coxeter complex (S,W ) is the set of (unit) vectors orthogonal to
the hyperplanes inducing the reflections in W . The elements of the root system are called
root vectors.

A subset F of the root system is called a base if there is a vector v ∈ R
n such that

〈r, v〉 6= 0 for all root vectors r, and F is minimal with respect to the property that any
root vector r, such that 〈r, v〉 > 0, can be written as a linear combination of elements in
F with nonnegative coefficients. The fundamental root vectors are the elements of a given
base of the root system. The fundamental Weyl chamber of (S,W ) is △ := △̄ ∩ S, where
△̄ is the intersection of the half spaces 〈ri, ·〉 ≥ 0, where r1, . . . , rn are the fundamental
root vectors. △̄ is a fundamental domain for the action of W in R

n.

Let vi be the vertex of △ opposite to the face determined by 〈ri, ·〉 = 0. We say that a
vertex of (S,W ) is of type i, if it lies on the orbit W · vi.

We use the following labelling of the Dynkin diagrams of the irreducible spherical
Coxeter complexes:
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I2(m) 1 2m H3
21 35

An
n−1 n1 2 H4

21 35 4

Bn, n ≥ 3 n−1 n1 2 3 E6

65432

1

Dn, n ≥ 4 n−14
1

2

3 n E7

765432

1

F4
32 41 E8

8765432

1

Recall, that the link ΣvS of a vertex x ∈ S is a spherical Coxeter complex with Weyl
group StabW (v) and with Dynkin diagram obtained from the Dynkin diagram of (S,W )
by deleting the vertex with label corresponding to the type of v.

The antipodal involution v 7→ −v is type preserving for the spherical Coxeter complexes
of type I2(m) (m even), Bn (n ≥ 3), D2n (n ≥ 2), H3, H4, F4, E7 and E8. It exchanges
the types 1 ↔ 2 in I2(m) for m odd; the types i↔ (n+ 1− i), for i = 1, . . . , [n

2
] in An; the

types 1 ↔ 2, in D2n+1, n ≥ 2 and the types 2 ↔ 6 and 3 ↔ 5 in E6.

Suppose xy is an edge of S of type ij. By deleting the vertex with label j from the
Dynkin diagram of (S,W ), we obtain the Dynkin diagram of (ΣyS, StabW (y)). We can
easily read off this Dynkin diagram which type the antipode of −→yx in ΣyS has. Say it
has type k, then the edge xy extends to a segment of type ijk. Repeating this proce-
dure and taking into account the lengths of the different types of segments (which can be
deduced from the description of the fundamental Weyl chamber), we can determine the
different singular 1-spheres in S. A similar consideration can be used to determine the
2-dimensional singular bigons bounded by singular segments and with it the 2-dimensional
singular spheres.

To determine the different types of segments modulo the action of the Weyl group
connecting a vertex of type i with a vertex of type j, it suffices to compute the vertices of
type j in the spherical bigon βi := CH(△, v̂i) ⊂ S, where v̂i is the vertex antipodal to vi.

The bigon βi can be described by the set of inequalities {〈rl, ·〉 ≥ 0}l 6=i.
More generally, suppose we want to determine the different types of segments connecting

a vertex x of type i and a vertex y of type j, such that the vertices of the simplex in ΣxS
spanned by the direction −→xy are not of type i1, . . . , ik 6= i. Then, it suffices to compute
the vertices of type j in the spherical bigon βi(i1, . . . , ik) := CH(△(i1, . . . , ik), v̂i). Here,
△(i1, . . . , ik) denotes the face of the fundamental Weyl chamber △, which does not contain
the vertices vi1 , . . . , vik .

The bigon βi(i1, . . . , ik) can be described by the set of (in)equalities

{〈rl, ·〉 ≥ 0}l 6=i,i1,...,ik , {〈rl, ·〉 = 0}l=i1,...,ik .

Given a table listing the j-vertices in the bigon βi, this list can be verified as follows.
First, we have to check that the vertices listed indeed are of type j and are contained in
βi. Next we notice that βi is a fundamental domain for the action StabW (vi) y S. For a
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j-vertex x in the list, let σx be the face of △ spanned by the initial part of the segment vix.
Then the orbit StabW (vi) · x has cardinality |Stabw(vi)|/|StabW (σx)|. Since the stabilizers
are again Weyl groups of spherical Coxeter complexes, their orders can be found in the table
in [GB71, p. 80]. It remains to verify that the union of the orbits StabW (vi) · x exhausts

all the j-vertices in S, that is, we have to check that
∑

x in the list

|StabW (vi)|
|StabW (σx)| = |W |

|StabW (vi)| .

A.1 An

Let n ≥ 2. The Weyl group WAn
of type An is the finite group of isometries of R

n ∼=
{x1 + · · · + xn+1 = 0} ⊂ R

n+1 generated by the reflections at the hyperplanes orthogonal
to the fundamental root vectors:

ri = ei+1 − ei for 1 ≤ i ≤ n

The fundamental Weyl chamber △ can be described by the inequalities:

x1

(1)

≤ x2

(2)

≤ . . .
(n)

≤ xn+1.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:

1-vertex: v1 ( −n, 1, 1, . . . , 1, 1, 1 )
2-vertex: v2 ( −(n−1), −(n−1), 2, . . . , 2, 2, 2 )

...
...

...
(n− 1)-vertex: vn−1 ( −2, −2, −2, . . . , −2, n−1, n−1 )

n-vertex: vn ( −1, −1, −1, . . . , −1, −1, n )

The Weyl group WAn
acts on R

n+1 by permutations of the coordinates.

A.2 Bn

Let n ≥ 2. The Weyl group WBn
of type Bn is the finite group of isometries of R

n generated
by the reflections at the hyperplanes orthogonal to the fundamental root vectors:

r1 = e1, ri = ei − ei−1 for 2 ≤ i ≤ n

The fundamental Weyl chamber △ can be described by the inequalities:

0
(1)

≤ x1

(2)

≤ x2

(3)

≤ . . .
(n)

≤ xn.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:
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1-vertex: v1 ( 1, 1, 1, . . . , 1)
2-vertex: v2 ( 0, 1, 1, . . . , 1)
3-vertex: v3 ( 0, 0, 1, . . . , 1)

...
...

...
(n− 1)-vertex: vn−1 ( 0, . . . , 0, 1, 1)

n-vertex: vn ( 0, . . . , 0, 0, 1)

The Weyl group WBn
acts on R

n by permutations of the coordinates and change of
signs.

A.3 Dn

Let n ≥ 4. The Weyl group WDn
of type Dn is the finite group of isometries of R

n generated
by the reflections at the hyperplanes orthogonal to the fundamental root vectors:

r1 = e1 + e2, ri = ei − ei−1 for 2 ≤ i ≤ n

The fundamental Weyl chamber △ can be described by the inequalities:

−x2

(1)

≤ x1

(2)

≤ x2

(3)

≤ . . .
(n)

≤ xn.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:

1-vertex: v1 ( 1, 1, 1, . . . , 1)
2-vertex: v2 (−1, 1, 1, . . . , 1)
3-vertex: v3 ( 0, 0, 1, . . . , 1)

...
...

...
(n− 1)-vertex: vn−1 ( 0, . . . , 0, 1, 1)

n-vertex: vn ( 0, . . . , 0, 0, 1)

The Weyl group WDn
acts on R

n by permutations of the coordinates and change of
signs in an even number of places.

A.4 F4

The Weyl group WF4 of type F4 is the finite group of isometries of R
4 generated by the

reflections at the hyperplanes orthogonal to the fundamental root vectors:

r1 = −1

2
(1, 1, 1, 1), r2 = e1, r3 = e2 − e1, r2 = e3 − e2.
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The fundamental Weyl chamber △ can be described by the inequalities:

x1 + · · · + x4

(1)

≤ 0 ; 0
(2)

≤ x1

(3)

≤ x2

(4)

≤ x3.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:

1-vertex: v1 ( 0, 0, 0,−1)
2-vertex: v2 ( 1, 1, 1,−3)
3-vertex: v3 ( 0, 1, 1,−2)
4-vertex: v4 ( 0, 0, 1,−1)

We list now the orbits of the vertices of △ under the action of the Weyl group (modulo
the following elements of the Weyl group: permutations and change of signs). We give
representing vectors for the vertices.

1-vertices ( 1, 0, 0, 0), 1
2
( 1, 1, 1, 1)

2-vertices ( 1, 1, 1,−3), ( 2, 2, 2, 0)

3-vertices ( 0, 1, 1,−2)

4-vertices ( 0, 0, 1,−1)

This list can be verified by checking that the vertices listed indeed lie on the orbit W ·vi
and there are as many as |WF4 |/|StabWF4

(vi)|.
We describe in the following table the 1- and 4-vertices x in β1. Let σ be the face of

Σv1△ containing −→v1x in its interior.

x d(x, v1) Type of σ

1-vertices
x 6= v1, v̂1

1
2
( 1, 1, 1,−1)
( 0, 0, 1, 0)
1
2
( 1, 1, 1, 1)

π
3
π
2
2π
3

2
4
2

4-vertices x
( 0, 0, 1,−1)
( 0, 1, 1, 0)
( 0, 0, 1, 1)

π
4
π
2
3π
4

4
3
4

A.5 E6

The Weyl group WE6 of type E6 is the finite group of isometries of R
6 ∼= {(x1, . . . , x8) ∈

R
8 | x6 = x7 = x8} generated by the reflections at the hyperplanes orthogonal to the
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fundamental root vectors:

r1 =
1

2
(1, 1, 1,−1,−1,−1,−1,−1), ri = ei − ei−1 for 2 ≤ i ≤ 5; .

and r6 =
1

2
(1, 1, 1, 1,−1, 1, 1, 1).

The fundamental Weyl chamber △ can be described by the inequalities:

x4+x5+· · ·+x8

(1)

≤ x1+x2+x3 ; x1

(2)

≤ x2

(3)

≤ . . .
(5)

≤ x5 ; x5

(6)

≤ x1+· · ·+x4+x6+x7+x8.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:

1-vertex: v1 ( 1, 1, 1, 1, 1,−1,−1,−1)
2-vertex: v2 (−3, 3, 3, 3, 3,−1,−1,−1)
3-vertex: v3 ( 0, 0, 3, 3, 3,−1,−1,−1)
4-vertex: v4 ( 1, 1, 1, 3, 3,−1,−1,−1)
5-vertex: v5 ( 3, 3, 3, 3, 9,−1,−1,−1)
6-vertex: v6 ( 3, 3, 3, 3, 3, 1, 1, 1)

We list now the orbits of the 1- and 2-vertices of △ under the action of the Weyl
group (modulo the following elements of the Weyl group: permutations of the first five
coordinates and change of sign in an even number of places in the first five coordinates).
We give representing vectors for the vertices. The 6-vertices are just the antipodes of the
2-vertices.

1-vertices ( 1, 1, 1, 1, 1,−1,−1,−1), (−1, 1, 1, 1, 1, 1, 1, 1),
( 0, 0, 0, 2, 2, 0, 0, 0).

2-vertices (−3, 3, 3, 3, 3,−1,−1,−1), ( 0, 0, 0, 0, 3, 1, 1, 1),
( 0, 0, 0, 0, 0,−1,−1,−1).

This list can be verified by checking that the vertices listed indeed lie on the orbit
WE6 · v2 and there are as many as |WE6|/|WD5 | = 33.

We describe in the following table the 1-vertices x in β1. Let σ be the face of Σv1△
containing −→v1x in its interior.

x d(x, v1) Type of σ

1-vertices
x 6= v1, v̂1

( 0, 0, 0, 2, 2, 0, 0, 0)
(−1, 1, 1, 1, 1, 1, 1, 1)
(−1,−1,−1, 1, 1, 1, 1, 1)

π
3
π
2
2π
3

4
26
4
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We describe in the following table the 2- and 6-vertices x in β2. Let σ be the face of
Σv2△ containing −→v2x in its interior.

x d(x, v2) Type of σ

2-vertices x 6= v2
( 3,−3, 3, 3, 3,−1,−1,−1)
( 3, 0, 0, 0, 0, 1, 1, 1)

arccos(1
4
)

2π
3

3
6

6-vertices x 6= v̂2
( 3, 3, 3, 3, 3, 1, 1, 1)
( 3, 0, 0, 0, 0,−1,−1,−1)

π
3

arccos(−1
4
)

6
1

A.6 E7

The Weyl group WE7 of type E7 is the finite group of isometries of R
7 ∼= {(x1, . . . , x8) ∈

R
8 | x7 = x8} generated by the reflections at the hyperplanes orthogonal to the fundamental

root vectors:

r1 =
1

2
(1, 1, 1,−1,−1,−1,−1,−1), ri = ei − ei−1 for 2 ≤ i ≤ 6

and r7 =
1

2
(1, 1, 1, 1, 1,−1, 1, 1).

The fundamental Weyl chamber △ can be described by the inequalities:

x4 +x5 + · · ·+x8

(1)

≤ x1 +x2 +x3 ; x1

(2)

≤ x2

(3)

≤ . . .
(6)

≤ x6 ; x6

(7)

≤ x1 + · · ·+x5 +x7 +x8.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:

1-vertex: v1 ( 1, 1, 1, 1, 1, 1,−2,−2)
2-vertex: v2 (−1, 1, 1, 1, 1, 1,−1,−1)
3-vertex: v3 ( 0, 0, 1, 1, 1, 1,−1,−1)
4-vertex: v4 ( 1, 1, 1, 3, 3, 3,−3,−3)
5-vertex: v5 ( 1, 1, 1, 1, 3, 3,−2,−2)
6-vertex: v6 ( 1, 1, 1, 1, 1, 3,−1,−1)
7-vertex: v7 ( 1, 1, 1, 1, 1, 1, 0, 0)

We list now the orbits of the 2- and 7-vertices of △ under the action of the Weyl
group (modulo the following elements of the Weyl group: permutations of the first six
coordinates, change of sign in an even number of places in the first six coordinates and
simultaneous change of sign of the last two coordinates). We give representing vectors for
the vertices.
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1-vertices ( 1, 1, 1, 1, 1, 1,−2,−2), ( 0, 0, 0, 2, 2, 2, 1, 1),
( 1, 1, 1, 1, 1,−3, 0, 0).

2-vertices (−1, 1, 1, 1, 1, 1,−1,−1), ( 0, 0, 0, 0, 0, 0, 2, 2),
( 0, 0, 0, 0, 2, 2, 0, 0).

6-vertices ( 1, 1, 1, 1, 1, 3,−1,−1), ( 0, 0, 0, 0, 2, 2, 2, 2),
( 0, 0, 0, 0, 0, 4, 0, 0), ( 0, 0, 2, 2, 2, 2, 0, 0).

7-vertices ( 1, 1, 1, 1, 1, 1, 0, 0), ( 0, 0, 0, 0, 0, 2, 1, 1).

This list can be verified by checking that the vertices listed indeed lie on the orbits
WE7 · vi and there are as many as |WE7|/|StabWE7

(vi)|.
We describe in the following table the 2-vertices x in β2. Let σ be the face of Σv2△

containing −→v2x in its interior.

x d(x, v2) Type of σ

2-vertices
x 6= v2, v̂2

( 1,−1, 1, 1, 1, 1,−1,−1)
( 2, 0, 0, 0, 0, 2, 0, 0)
( 2,−2, 0, 0, 0, 0, 0, 0)

π
3
π
2
2π
3

3
6
3

We describe in the following table the 2- and 7-vertices x in β7. Let σ be the face of
Σv7△ containing −→v7x in its interior.

x d(x, v7) Type of σ

2-vertices x
(−1, 1, 1, 1, 1, 1,−1,−1)
( 0, 0, 0, 0, 0, 0,−2,−2)
(−1,−1,−1,−1,−1, 1,−1,−1)

arccos( 1√
3
)

π
2

arccos(− 1√
3
)

2
1
6

7-vertices
x 6= v7, v̂7

( 0, 0, 0, 0, 0, 2, 1, 1)
(−2, 0, 0, 0, 0, 0, 1, 1)

arccos(1
3
)

arccos(−1
3
)

6
2

We describe in the following table the 1-vertices x in β1. Let σ be the face of Σv1△
containing −→v1x in its interior.

x d(x, v1) Type of σ

1-vertices
x 6= v1, v̂1

( 0, 0, 0, 2, 2, 2,−1,−1)
( 0, 0, 0, 2, 2, 2, 1, 1)
(−2, 0, 0, 0, 2, 2, 1, 1)
( 1, 1, 1, 1, 1, 1, 2, 2)
(−1,−1, 1, 1, 1, 1, 2, 2)
(−1,−1,−1,−1, 1, 1, 2, 2)
(−1, 1, 1, 1, 1, 3, 0, 0)
(−3, 1, 1, 1, 1, 1, 0, 0)

arccos(5
7
)

arccos(1
7
)

arccos(−1
7
)

arccos(−1
7
)

arccos(−3
7
)

arccos(−5
7
)

arccos(3
7
)

arccos(1
7
)

4
47
25
7
37
5
26
2
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We describe in the following table the 2- and 6-vertices x in β6. Let σ be the face of
Σv6△ containing −→v6x in its interior.

x d(x, v6) Type of σ

2-vertices x

(−1, 1, 1, 1, 1, 1,−1,−1)
( 1, 1, 1, 1, 1,−1,−1,−1)
( 1, 1, 1, 1, 1,−1, 1, 1)
(−1,−1, 1, 1, 1,−1,−1,−1)
( 0, 0, 0, 0, 1,−1, 0, 0)
(−1, 0, 0, 0, 0,−1, 0, 0)

π
4

arccos( 1
2
√

2
)

π
2
π
2

arccos(− 1
2
√

2
)

3π
4

2
17
7
3
57
2

6-vertices
x 6= v6, v̂6

( 1, 1, 1, 1, 3, 1,−1,−1)
(−1, 1, 1, 1, 3,−1,−1,−1)
( 0, 0, 0, 2, 2, 0,−2,−2)
( 0, 2, 2, 2, 2, 0, 0, 0)
(−3, 1, 1, 1, 1,−1,−1,−1)
( 0, 0, 0, 0, 2,−2,−2,−2)
( 0, 0, 2, 2, 2,−2, 0, 0)
(−1, 1, 1, 1, 1,−3,−1,−1)
(−1, 1, 1, 1, 1,−3, 1, 1)
(−1,−1,−1, 1, 1,−3,−1,−1)
( 0, 0, 0, 0, 0,−4, 0, 0)

arccos(3
4
)

arccos(1
4
)

π
3
π
3
π
2
π
2
π
2

arccos(−1
4
)

2π
3
2π
3

arccos(−3
4
)

57
257
4
27
2
15
37
127
27
4
17

A.7 E8

The Weyl group WE8 of type E8 is the finite group of isometries of R
8 generated by the

reflections at the hyperplanes orthogonal to the fundamental root vectors:

r1 =
1

2
(1, 1, 1,−1,−1,−1,−1,−1) and ri = ei − ei−1 for 2 ≤ i ≤ 8.

The fundamental Weyl chamber △ can be described by the inequalities:

x4 + x5 + · · · + x8

(1)

≤ x1 + x2 + x3 ; x1

(2)

≤ x2

(3)

≤ x3

(4)

≤ . . .
(8)

≤ x8.

Next we exhibit an element representing the vertices of the fundamental Weyl chamber
△, i.e. elements of R

+ · vi:
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1-vertex: v1 (−1,−1,−1,−1,−1,−1,−1,−1)
2-vertex: v2 (−3,−1,−1,−1,−1,−1,−1,−1)
3-vertex: v3 (−2,−2,−1,−1,−1,−1,−1,−1)
4-vertex: v4 (−5,−5,−5,−3,−3,−3,−3,−3)
5-vertex: v5 (−2,−2,−2,−2,−1,−1,−1,−1)
6-vertex: v6 (−3,−3,−3,−3,−3,−1,−1,−1)
7-vertex: v7 (−1,−1,−1,−1,−1,−1, 0, 0)
8-vertex: v8 (−1,−1,−1,−1,−1,−1,−1, 1)

We list now (modulo the following elements of the Weyl group: permutations of the
coordinates and change of sign in an even number of places) the orbits of the vertices of
△ of type 1, 2, 6, 7, 8 under the action of the Weyl group. We give representing vectors
for the vertices.

1-vertices (−1,−1,−1,−1,−1,−1,−1,−1), 1
2
(−5, 1, 1, 1, 1, 1, 1, 1),

1
2
( 3, 3, 3, 1, 1, 1, 1, 1), ( 0, 0, 0, 1, 1, 1, 1, 2).

2-vertices (−3,−1,−1,−1,−1,−1,−1,−1), ( 2, 2, 2, 2, 0, 0, 0, 0),
( 4, 0, 0, 0, 0, 0, 0, 0).

6-vertices (−3,−3,−3,−3,−3,−1,−1,−1), ( 6, 2, 2, 2, 0, 0, 0, 0),
( 4, 4, 4, 0, 0, 0, 0, 0), (−5, 3, 3, 1, 1, 1, 1, 1),
( 4, 4, 2, 2, 2, 2, 0, 0).

7-vertices (−1,−1,−1,−1,−1,−1, 0, 0), ( 2, 1, 1, 0, 0, 0, 0, 0),
1
2
(−3, 3, 1, 1, 1, 1, 1, 1).

8-vertices (−1,−1,−1,−1,−1,−1,−1, 1), ( 2, 2, 0, 0, 0, 0, 0, 0).

This list can be verified by checking that the vertices listed indeed lie on the orbits
WE8 · vi and there are as many as |WE8|/|StabWE8

(vi)|.
We describe in the following table the 2- and 8-vertices x in β2. Let σ be the face of

Σv2△ containing −→v2x in its interior.
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x d(x, v2) Type of σ

2-vertices
x 6= v2, v̂2

( 1,−3,−1,−1,−1,−1,−1, 1)
( 0,−2,−2,−2,−2, 0, 0, 0)
( 1,−3,−1,−1,−1,−1,−1, 1)
( 1,−1,−1,−1,−1,−1,−1, 3)
( 2,−2,−2,−2, 0, 0, 0, 0)
( 3,−1,−1,−1,−1,−1,−1, 1)
( 3,−1,−1,−1,−1, 1, 1, 1)
( 4, 0, 0, 0, 0, 0, 0, 0)

arccos(3
4
)

π
3

arccos(1
4
)

π
2
π
2

arccos(−1
4
)

2π
3

arccos(−3
4
)

3
6
38
8
5
18
6
1

8-vertices x

(−1,−1,−1,−1,−1,−1,−1, 1)
( 1,−1,−1,−1,−1,−1,−1,−1)
( 1,−1,−1,−1,−1,−1, 1, 1)
( 2,−2, 0, 0, 0, 0, 0, 0)
( 2, 0, 0, 0, 0, 0, 0, 2)

π
4

arccos( 1
2
√

2
)

π
2

arccos(− 1
2
√

2
)

arccos(3π
4

)

8
1
7
3
8

We describe in the following table the 7-vertices x in β7, such that d(x, v7) = arccos(−1
3
)

or arccos(−1
6
), and the 8-vertices x in β7, such that d(x, v7) >

π
2
. Let σ be the face of Σv7△

containing −→v7x in its interior.

x d(x, v7) Type of σ

7-vertices x

( 0, 0, 0, 0, 0, 2,−1,−1)
( 0, 0, 0, 0, 1, 1,−2, 0)
1
2
(−1, 1, 1, 1, 1, 1,−3,−3)
( 0, 0, 0, 0, 0, 1,−2, 1)
1
2
(−3, 1, 1, 1, 1, 1,−3,−1)
( 0, 0, 0, 0, 0, 1,−2,−1)

arccos(−1
3
)

arccos(−1
3
)

arccos(−1
3
)

arccos(−1
6
)

arccos(−1
6
)

arccos(−1
6
)

6
58
12
68
28
168

8-vertices x
( 1, 1, 1, 1, 1, 1,−1, 1)
(−1, 1, 1, 1, 1, 1,−1,−1)
( 0, 0, 0, 0, 0, 2,−2, 0)

arccos(−
√

3
2

)
arccos(− 1√

3
)

arccos(− 1
2
√

3
)

8
2
68

In order to make it easier to verify the table above, we present the complete table in
Appendix B.

We want to describe the simplicial convex hull C of the segment v7x for the 7-vertex x =
(0, 0, 0, 0, 0, 1,−2,−1), for this we present first a larger 3-dimensional spherical polyhedron,
namely the tetrahedron C ′ := CH(v8, y, u8, y

′), where y = (−1,−1,−1,−1,−1,−1, 1,−1),
u8 = (0, 0, 0, 0, 0, 0,−2,−2) and y′ = (0, 0, 0, 0, 0, 2,−2, 0). Notice that v7 = m(v8, y) and
x = m(y′, u8). C

′ is a subcomplex with four 2-dimensional faces: the triangles CH(v8, y, y
′),

CH(z, y, y′), CH(y, u8, v8) and CH(y′, u8, v8). The figures illustrate the tetrahedron C ′

from the front and from behind.
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8

8

8

8

8

2

2

2

7

77

7

77

6

6

v7

x

y′

v8
m

u8

v6 8

8

8

8

2

2

2
3

3

1

7

7

y′

v7

y

v8

1
v1

u6

y

u8

x

u1

x = ( 0, 0, 0, 0, 0, 1,−2,−1)
y = (−1,−1,−1,−1,−1,−1, 1,−1)
m = (−1,−1,−1,−1,−1, 1,−1,−1)
y′ = ( 0, 0, 0, 0, 0, 2,−2, 0)
u1 = (−1,−1,−1,−1,−1, 1,−5,−1)
u6 = (−1,−1,−1,−1,−1, 3,−5,−3)
u8 = ( 0, 0, 0, 0, 0, 0,−2,−2)
m(u8, v8) =

(−1,−1,−1,−1,−1,−1,−3,−1)

7

8

87
1 3

6

m

v7
u8

v6

v1

7

8

87
1 3

6

m

x v8

u6

u1

The triangles CH(v8,m, x) and CH(v7,m, u8)
are 2-dimensional subcomplexes. If we cut
C ′ along these triangles, we obtain a con-
vex subcomplex C ′′ := CH(v7, v8, x, u8,m).
It has six 2-dimensional faces: the tri-
angles
CH(m, v7, u8), CH(m,x, v8), CH(m, v7, v8),
CH(m,x, u8), CH(v7, v8, u8) and CH(x, u8, v8). Recall that the direction −→v7x spans the
168-face in Σv7△, this implies that v1, v6 and v8 are contained in the simplicial convex hull
C of v7x. We can also see that the direction −→xv7 spans the 168-face with vertices −→xu1,

−→xu6

and −→xu8. In particular, u8 ∈ C. Considering the triangle CH(v7,m, u8) we deduce that
also m ∈ C. It follows that C = C ′′. The next figure shows the link ΣmC

′.

2

2

2

7

7

7

3

3
6

6

7
1

−→mx

−−→mv7 −−→mv8

−−→
my′−→my

−−→mu8

−−−−−−−→
mm(u8, v8)

−−→mv1 1
−−→mu1

We describe in the following table the 8-vertices x in β8. Let σ be the face of Σv8△
containing −→v8x in its interior.

x d(x, v8) Type of σ

8-vertices
x 6= v8, v̂8

(−1,−1,−1,−1,−1,−1, 1,−1)
(−2, 0, 0, 0, 0, 0, 0,−2)
( 0, 0, 0, 0, 0, 0, 2,−2)

π
3
π
2
2π
3

7
2
7

We describe in the following table the 7-vertices x in β7(2, 8) with d(x, v7) >
π
2
. Let σ

be the face of Σv7△(2, 8) containing −→v7x in its interior.
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x d(x, v7) Type of σ
7-vertices
x 6= v7, v̂7

( 0, 0, 1, 1, 1, 1,−1,−1)
( 0, 0, 0, 0, 0, 2,−1,−1)

arccos(−2
3
)

arccos(−1
3
)

3
6

In order to make it easier to verify the table above, we present the complete table in
Appendix B.

We describe in the following table the 1-vertices x in β1(2, 7, 8) with d(x, v1) >
π
2
. Let

σ be the face of Σv1△(2, 7, 8) containing −→v1x in its interior.

x d(x, v1) Type of σ

1-vertices
x 6= v1, v̂1

1
2
(−1,−1,−1,−1, 1, 3, 3, 3)
(−1,−1, 1, 1, 1, 1, 1, 1)
1
2
(−1,−1, 1, 1, 1, 3, 3, 3)

1
2
( 1, 1, 1, 1, 1, 3, 3, 3)

arccos(−3
8
)

2π
3

arccos(−5
8
)

arccos(−7
8
)

56
3
36
6

In order to make it easier to verify the table above, we present the complete table in
Appendix B.

We describe in the following table the 6-vertices x in β6(1, 2, 7, 8) with d(x, v6) >
π
2
.

Let σ be the face of Σv6△(1, 2, 7, 8) containing −→v6x in its interior.

x d(x, v6) Type of σ

6-vertices
x 6= v6, v̂6

( 0, 0, 0, 0, 6,−2,−2,−2)
( 0, 0, 2, 4, 4,−2,−2,−2)
( 1, 1, 3, 3, 5,−1,−1,−1)

arccos(−1
4
)

2π
3

arccos(−3
4
)

5
34
35

Let us verify this last table. By considering the following 2-dimensional bigons, we can
see that if there are 6-vertices missing in the table above, they must lie in the interior of
β6(1, 2, 7, 8).

5

66

8 44
5

3 3

6 6

6

4

4 4

4
7 7

1

1

3 3

3

4
4

44

5

5

55

6 66

65

5

7

8

8

1

1

4 4

4

44
77

66

65

5
8

6

1

43

5

A 6-vertex x in the interior of β6(1, 2, 7, 8) should satisfy

x4 + x5 + · · · + x8
(1)
= x1 + x2 + x3 ; x1

(2)
= x2

(3)
< x3

(4)
< x4

(5)
< x5 ; x5 > x6

(7)
= x7

(8)
= x8.
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In particular, we have four different values x2 < x3 < x4 < x5. Hence, x cannot be a
permutation of (±4,±4,±4, 0, 0, 0, 0, 0).

If x is obtained from (−3,−3,−3,−3,−3,−1,−1,−1) by permutations of the coordi-
nates and change of sign in an even number of places, then x1 = x2 = −3, x3 = −1, x4 = 1
and x5 = 3. By the equalities (1), (2), (7) and (8), it follows that x6 = −11

3
, which is not

possible.

If x is obtained from (±6,±2,±2,±2, 0, 0, 0, 0) by permutations of the coordinates,
then (x2, x3, x4, x5) = (−6,−2, 0, 2), but x1 = x2 = −6 is not possible; or (x2, x3, x4, x5) =
(−2, 0, 2, 6). In this case the equalities (1), (2), (7) and (8) imply x6 = −4, which is not
possible.

If x is obtained from (−5, 3, 3, 1, 1, 1, 1, 1) by permutations of the coordinates and change
of sign in an even number of places, then x2 ∈ {−5,−3,−1}. x1 = x2 = −5 is not possible.
x2 = −3 implies (x1, x2, x3, x4, x5) = (−3,−3,−1, 1, 5) and equalities (1), (2), (7) and
(8) imply x6 = −13

3
. This is again impossible. x2 = −1 implies (x1, x2, x3, x4, x5) =

(−1,−1, 1, 3, 5) and equalities (1), (2), (7) and (8) imply x6 = x7 = x8 = −3, which cannot
happen.

If x is obtained from (±4,±4,±2,±2,±2,±2, 0, 0) by permutations of the coordinates,
then (x1, x2, x3, x4, x5) = (−4,−4,−2, 0, 2) or (−2,−2, 0, 2, 4). In both cases the equalities
x6 = x7 = x8 cannot be satisfied.

So we have verified that β6(1, 2, 7, 8) contains no 6-vertices in its interior and therefore
our table is complete.



Appendix B

More information about E8

In this section, we complete some tables given in Appendix A.7. Although this information
is not directly used in the proof of our main result, we present it here in order to make it
easier to verify the tables in Appendix A.7.

The next table lists the 7-vertices x in β7 with d(x, v7) ≥ π
2
. The vertices marked with

* are the ones at distance = π
2

to v7. Let σ be the face of Σv7△ containing −→v7x in its
interior. Let σx be the face of △ spanned by the initial part of the segment v7x.

x
Type of

σ
|StabWE8

(v7) · x| =
|StabWE8

(v7)|
|StabWE8

(σx)|

( 1, 1, 1, 1, 1, 1, 0, 0) |WE6||WA1|/(|WE6||WA1 |) = 1

( 0, 0, 1, 1, 1, 1,−1,−1) 3
|WE6||WA1 |/(|WA1||WA4||WA1 |) =

216

* 1
2
(−1,−1,−1, 1, 1, 1,−3,−3) 4

|WE6||WA1|/(|WA2 ||WA1||WA2||WA1 |) =
720

( 0, 0, 0, 0, 0, 2,−1,−1) 6 |WE6||WA1|/(|WD5||WA1 |) = 27
1
2
( 1, 1, 1, 1, 1, 1,−3, 3) 8 |WE6||WA1 |/|WE6| = 2

1
2
(−1, 1, 1, 1, 1, 1,−3,−3) 12 |WE6||WA1|/(|WA4 ||WA1|) = 432
( 0, 1, 1, 1, 1, 1,−1, 0) 28 |WE6||WA1|/|WD5 | = 54

1
2
(−3, 1, 1, 1, 1, 1,−3,−1) 28 |WE6||WA1|/|WD5 | = 54
( 0, 0, 0, 0, 1, 1,−2, 0) 58 |WE6||WA1|/(|WA4 ||WA1|) = 432
( 0, 0, 0, 0, 0, 1,−2, 1) 68 |WE6||WA1|/|WD5 | = 54

1
2
( 1, 1, 1, 1, 1, 3,−3, 1) 68 |WE6||WA1|/|WD5 | = 54
( 0, 0, 0, 0, 0, 1,−2,−1) 168 |WE6||WA1 |/|WA4| = 864

* (−1, 0, 0, 0, 0, 1,−2, 0) 268 |WE6||WA1|/|WD4 | = 540
1
2
(−1, 1, 1, 1, 1, 3,−3,−1) 268 |WE6||WA1|/|WD4 | = 540

Notice that since the antipode v̂7 of v7 is also a 7-vertex, then the number of 7-vertices
in S at distance ≤ π

2
to v7 is the same as the number of 7-vertices in S at distance ≥ π

2

to v7. It follows that the number of 7-vertices in S is two times the number of 7-vertices
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in S at distance ≤ π
2

to v7 minus the number of 7-vertices at distance = π
2

to v7. With
this observation and the one at the end of the introductory section of Appendix A, we can
verify the correctness of the list above: 2(1 + 216 + 720 + 27 + 2 + 432 + 54 + 54 + 432 +

54 + 54 + 864 + 540 + 540) − 720 − 540 = 6720 =
|WE8

|
|StabWE8

(v7)| = #{7- vertices in S}.

The next table lists the 8-vertices x in β7 with d(x, v7) ≥ π
2
. The vertices marked with *

are the ones at distance = π
2

to v7. Let σ be the face of Σv7△ containing −→v7x in its interior.

x Type of σ
* ( 0, 0, 0, 0, 0, 0,−2,−2) 1

(−1, 1, 1, 1, 1, 1,−1,−1) 2
( 1, 1, 1, 1, 1, 1,−1, 1) 8

* ( 0, 0, 0, 0, 0, 0,−2, 2) 8
( 0, 0, 0, 0, 0, 2,−2, 0) 68

The next table lists the 1-vertices x in β1 with d(x, v1) ≥ π
2
. The vertices marked with *

are the ones at distance = π
2

to v1. Let σ be the face of Σv1△ containing −→v1x in its interior.

x Type of σ |StabWE8
(v1) · x| =

|StabWE8
(v1)|

|StabWE8
(σx)|

( 1, 1, 1, 1, 1, 1, 1, 1) |WA7|/|WA7 | = 1
1
2
(−5, 1, 1, 1, 1, 1, 1, 1) 2 |WA7|/|WA6 | = 8
(−1,−1, 1, 1, 1, 1, 1, 1) 3 |WA7|/(|WA1 ||WA5|) = 28

* (−1,−1,−1,−1, 1, 1, 1, 1) 5 |WA7|/(|WA3 ||WA3|) = 70
1
2
( 1, 1, 1, 1, 1, 3, 3, 3) 6 |WA7|/(|WA2 ||WA4|) = 56
(−2, 0, 0, 0, 1, 1, 1, 1) 25 |WA7|/(|WA2 ||WA3|) = 280

1
2
(−1, 1, 1, 1, 1, 1, 1, 5) 28 |WA7|/|WA5| = 56

1
2
(−1,−1, 1, 1, 1, 3, 3, 3) 36 |WA7 |/(|WA1||WA2||WA2 |) = 560

1
2
(−3,−3, 1, 1, 1, 1, 1, 3) 38 |WA7|/(|WA1 ||WA4|) = 168
( 0, 0, 0, 1, 1, 1, 1, 2) 48 |WA7|/(|WA2 ||WA3|) = 280

1
2
(−1,−1,−1, 1, 1, 1, 1, 5) 48 |WA7|/(|WA2 ||WA3|) = 280

1
2
(−1,−1,−1,−1, 1, 3, 3, 3) 56 |WA7|/(|WA2 ||WA3|) = 280

1
2
(−1,−1,−1,−1,−1, 1, 1, 5) 68 |WA7|/(|WA4 ||WA1|) = 168

* (−2,−1, 0, 0, 0, 1, 1, 1) 236 |WA7|/(|WA2||WA2 |) = 1120
1
2
(−3,−1, 1, 1, 1, 1, 3, 3) 237 |WA7|/(|WA3 ||WA1|) = 840

1
2
(−3,−1,−1,−1, 1, 1, 3, 3) 257 |WA7|/(|WA2 ||WA1||WA1|) = 1680
(−1, 0, 0, 0, 1, 1, 1, 2) 258 |WA7|/(|WA2||WA2 |) = 1120
(−1,−1, 0, 0, 0, 1, 1, 2) 368 |WA7|/(|WA2 ||WA1||WA1|) = 1680

* (−1,−1,−1, 0, 0, 0, 1, 2) 478 |WA7|/(|WA2||WA2 |) = 1120

We can verify this table as we did with the table above: 2(1+8+28+70+56+280+56+
560+168+280+280+280+168+1120+840+1680+1120+1680+1120)−70−1120−1120 =

17280 =
|WE8

|
|WA7

| = #{1- vertices in S}.
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