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Zusammenfassung

In dieser Arbeit werden nichtlineare optische Effekte in den Flüstergallerie-
moden von Glas-Mikroresonatoren untersucht. Insbesondere werden opto-
mechanische Effekte, und die Erzeugung von Frequenzkämmen studiert.

Das in einem Resonator gespeicherte optische Feld koppelt über seinen
Strahlungsdruck an die mechanischen Freiheitsgrade der Resonatorwände.
Im Rahmen dieser Arbeit wurden optische Mikroresonatoren entwickelt, in
denen das in Flüstergalleriemoden gespeicherte Licht eine starke optomecha-
nische Kopplung an mechanische Moden mit besonders geringer Dissipation
und hoher Oszillationsfrequenz (30–120 MHz) aufweist.

Wir beobachten und analysieren den Effekt der dynamischen Rückwir-
kung, bei der der Strahlungsdruck die Bewegungsdynamik der mechanischen
Mode modifiziert. Insbesondere demonstrieren wir erstmalig, wie dieser Ef-
fekt dazu benutzt werden kann, eine mechanische Mode durch Laserlicht
abzukühlen. Die effektive Temperatur der mechanischen Mode wird dabei
durch die Messung von Positionsfluktuationen mithilfe optischer Interferome-
trie bestimmt. Am Schrotrausch-Limit werden dadurch Ungenauigkeiten von
1 ·10−18 m/

√
Hz erreicht, die unterhalb der erwarteten quantenmechanischen

Nullpunktsfluktuationen der mechanischen Mode liegen.
Wir demonstrieren die Laserkühlung erstmalig auch im “aufgelösten Sei-

tenband”-Regime, in dem die Photonenspeicherzeit wesentlich länger ist als
eine mechanische Oszillationsperiode, wie es zur Grundzustandskühlung er-
forderlich ist. Heizmechanismen technischer Natur werden durch die Ver-
wendung rauscharmer Laser und einer kryogenen Experimentumgebung un-
terdrückt. Damit wird die Okkupation der mechanischen Mode bis auf 〈n〉 =
63±20 Anregungsquanten reduziert. Es konnte auch gezeigt werden, dass die
interferometrische Positionsmessung eine nahezu ideale quanten-mechanische
Messung darstellt, mit einem Rückwirkung-Ungenauigkeits-Produkt nahe
dem Quantenlimit. Damit sind alle wesentlichen Bedingungen für die Be-
obachtung von Quanteneffekten in mesoskopischen Oszillatoren erfüllt.

In einer unabhängigen Serie von Experimenten wird die Kerr-Nichtlineari-
tät in Glas-Mikroresonatoren untersucht. Durch Vierwellen-Mischen entsteht
eine Kaskade von Seitenbändern zu einem Dauerstrichlaser. Die Linien dieses
diskreten Spektrums überspannen mehr als 500 nm. Die relative Abwe-
ichung der Linienfrequenzen von einem äquidistanten Kamm-Spektrum wird
in Präzisionsmessungen auf 7 ·10−18 beschränkt. Damit steht eine neuartige,
ultrakompakte Quelle für optische Frequenzkämme mit hohen Repetitions-
raten (80GHz–1 THz) zur Verfügung, mit möglichen Anwendungen in der
Astronomie und Telekommunikationstechnologie.
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Abstract

In this thesis, I report on the exploration of non-linear optical phenom-
ena in silica whispering gallery mode (WGM) microcavities. In particular,
optomechanical interactions, and the generation of optical frequency combs
due to the Kerr non-linearity of silica are investigated.

Radiation pressure couples the optical field stored in a microcavity to
mechanical degrees of freedom of its boundary. Our systematic survey of
the mechanical modes present in silica WGM microcavities has enabled engi-
neering devices which exhibit strong optomechanical coupling between high-
quality, radio-frequency (30–120 MHz) mechanical radial-breathing modes
and ultra-high finesse optical WGMs.

The finite build-up time of the intracavity field leads to complex dynam-
ics in the optomechanical interaction. We observe and analyze the effect
of dynamical backaction, in which the radiation-pressure force modifies the
dynamics of the mechanical mode. In particular, we demonstrate for the
first time, how this effect can be exploited to optically cool a mechanical
mode. Quantum-noise limited optical interferometry is employed for the
measurement of mechanical displacement fluctuations, from which the ef-
fective temperature of the mode is inferred. An imprecision at the level of
1 · 10−18 m/

√
Hz is reached, below the expected quantum mechanical zero-

point position fluctuations of the mechanical mode.
For the first time, we demonstrate laser cooling also in the “resolved-

sideband regime”, in which the optical photon storage time exceeds the me-
chanical oscillation period, as required for ground-state cooling. Technical
sources of heating are eliminated by using low-noise lasers, a 4He-cryogenic
environment for the experiment and suppressing laser absorption. Occupa-
tions down to 〈n〉 = 63 ± 20 mechanical excitation quanta are achieved in
this manner.

Simultaneously, we are able to assess the perturbation of the mechan-
ical mode due to the process of measurement (measurement backaction).
The optical techniques employed here are shown to operate in a near-ideal
manner according to the principles of Quantum Measurement, displaying a
backaction-imprecision product close to the quantum limit.

In an independent set of experiments, we show that the high intensities
circulating in silica WGM microcavities give rise to strong optical four-wave
mixing due to the material’s Kerr nonlinearity. Starting from a continuous-
wave pump laser, broad, discrete optical spectra are formed by a cascade
of optical sidebands to the pump. These “comb” spectra span more than
500 nm, and consist of lines spaced roughly by the cavity’s free spectral range.

An optical frequency comb based on a mode-locked laser is used as a
reference to determine the homogeneity of the microcavity comb lines’ spac-
ing in the frequency domain. The microcavity comb lines are found to be



equidistant at a relative level of 7 · 10−18, in spite of the presence of cavity
dispersion. We have therefore demonstrated a novel, ultracompact source of
optical frequency combs with applications in astronomy and telecommunica-
tion technology.
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optical Vernier spectroscopy. European (EP 06026763) and US (US
12/520577) patent applications, 2007.

[16] P. Del’Haye, T. Kippenberg, and A. Schliesser. Method and appara-
tus for optical frequency comb generation using a monolithic micro-
resonator. European (EP 07009067) and US (US 60.916045) patent
applications, 2007.



Contents

Danke iii

Zusammenfassung v

Abstract vii

List of publications ix

1 Silica microresonators: versatile vehicles for Quantum Op-
tics 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Properties of optical whispering gallery modes . . . . . . . . . 2

1.2.1 Mode shapes and resonance frequencies . . . . . . . . 2
1.2.2 Optical losses . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Fabrication of silica microtoroids . . . . . . . . . . . . . . . . 7
1.3.1 Photolithography and silica wet etch . . . . . . . . . . 7
1.3.2 Silicon dry etch . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Laser reflow . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Coupling to whispering gallery mode resonators . . . . . . . . 10
1.4.1 Fiber tapers . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Theoretical description of coupling . . . . . . . . . . . 12

1.5 Optical nonlinearities . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Thermal nonlinearity . . . . . . . . . . . . . . . . . . . 19
1.5.2 Raman nonlinearity . . . . . . . . . . . . . . . . . . . 23
1.5.3 Kerr nonlinearity . . . . . . . . . . . . . . . . . . . . . 24

2 Cavity optomechanics 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Theory of optomechanical interactions . . . . . . . . . . . . . 31

2.2.1 Classical description and elementary phenomena . . . 31
2.2.2 Formal framework: quantum Langevin equations . . . 39

2.3 Silica WGM resonators as optomechanical systems . . . . . . 41
2.3.1 Optical properties of WGM microresonators . . . . . . 42

xi



CONTENTS

2.3.2 Mechanical properties of WGM silica microresonators 43
2.3.3 Optomechanical coupling . . . . . . . . . . . . . . . . 57

2.4 Ultrahigh-sensitivity interferometric motion transduction . . . 64
2.4.1 Theoretical limits in displacement sensing . . . . . . . 64
2.4.2 Experimental techniques . . . . . . . . . . . . . . . . . 69
2.4.3 Observation and analysis of quantum and thermal noise 75

2.5 Observation of dynamical backaction . . . . . . . . . . . . . . 77
2.5.1 Optical spring and optical damping . . . . . . . . . . 78
2.5.2 Cooling by dynamical backaction . . . . . . . . . . . . 81
2.5.3 Radiation pressure versus thermal effects . . . . . . . 83

2.6 Resolved-sideband cooling . . . . . . . . . . . . . . . . . . . . 87
2.6.1 Ground state cooling: the atomic physics case . . . . . 88
2.6.2 Limitations of radiation-pressure cooling using dynam-

ical backaction . . . . . . . . . . . . . . . . . . . . . . 90
2.6.3 Resolved-sideband cooling of a silica microtoroid . . . 93
2.6.4 Direct sideband spectroscopy . . . . . . . . . . . . . . 99

2.7 Approaching the quantum ground state . . . . . . . . . . . . 101
2.7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . 102
2.7.2 Cooling towards the quantum ground state . . . . . . 112
2.7.3 Assessing measurement backaction . . . . . . . . . . . 114

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3 Generation of frequency combs in silica microresonators 125
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2 Physics of the comb generation process . . . . . . . . . . . . . 127
3.3 Verification of the comb components’ equidistance . . . . . . 129
3.4 Dispersion in toroidal microresonators . . . . . . . . . . . . . 133
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Constants, symbols and relations 137
A.1 Silica material constants . . . . . . . . . . . . . . . . . . . . . 137
A.2 Table of symbols . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3 Frequently used relations . . . . . . . . . . . . . . . . . . . . 139

B Calculations 141
B.1 Integrating displacement spectra . . . . . . . . . . . . . . . . 141
B.2 Noise transfer of a lossy cavity . . . . . . . . . . . . . . . . . 143

C Useful experimental techniques 147
C.1 Fiber loop cavity . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.2 Locking of the cooling laser . . . . . . . . . . . . . . . . . . . 149

Bibliography 151

xii



Chapter 1

Silica microresonators: versatile

vehicles for Quantum Optics

1.1 Introduction

For many years, whispering gallery modes in silica microspheres, created by
melting an optical fiber using intense mid-infrared laser radiation or a hydro-
gen torch, have been appreciated in the community of Quantum Optics for
their extraordinarily high optical quality factors exceeding 109 and a simul-
taneously microscopic mode volume [17–19], both of which are all-important
figures of merit for studies of non-linear optics [17, 20, 21], low-threshold
lasers [20,22–24], cavity quantum electrodynamics [25–27], or biophysical ap-
plications [28, 29]. However, these devices were not amenable to fabrication
techniques developed in microelectronics, which can provide parallel, pre-
cisely reproducible processing of many geometries, and potential integration
with other electrical or micromechanical functionality.

In an effort to combine the ultrahigh quality factors possible in silica
whispering gallery mode resonators, and a chip-based platform, the group
of Prof. Kerry Vahala at the California Institute of Technology developed a
process in which the preform for the resonator is lithographically defined into
a silica layer on top of a silicon wafer. The result of this development—the
invention of silica microtoroids [30–32]—has proven to be a most versatile
platform for experiments in Quantum Optics.

This chapter gives an elementary introduction to silica microresonators
(both spheres and toroids) used in this work. After introducing elementary
concepts required to describe the properties of WGMs in section 1.2, section
1.3 summarizes the fabrication process of silica microtoroids as it was car-
ried out in the cleanroom of Prof. Kotthaus’ group at Ludwig-Maximilians-
Universität, and in our labs at the Max-Planck-Institute of Quantum Optics
(MPQ). In section 1.4 the tapered-fiber coupling technique is introduced
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1. Silica microresonators: versatile vehicles for Quantum Optics

both theoretically and experimentally, and the linear optical properties of
fiber-coupled microtoroids produced in this work are shown. Finally, section
1.5 reviews the basic optical non-linear effects observed in the fabricated
resonators.

1.2 Properties of optical whispering gallery modes

Mie’s theory [33] of light scattering from spherical dielectric particles pre-
dicts sharp resonances for a number of optical wavelengths. They are due to
resonant optical modes within the spheres, in which the light orbits closely
to the sphere’s surface. In a simplified picture, light rays within the sphere,
incident on the dielectric-air interface under a shallow angle, can be thought
to repetitively bounce off the surface due to total internal reflection. If an
integer multiple of the light’s wavelength matches the (effective) pathlength
along the circumference, scattering is enhanced. For these modes, the term
“whispering gallery modes” (WGMs) was coined by an analogy to an acous-
tic phenomenon studied by Lord Rayleigh [34]: In the gallery of the 32-m
diameter dome of St. Paul’s cathedral in London, a word whispered against
the stone wall can be clearly conceived at the opposite side of the gallery.
Rayleigh explained this phenomenon by the fact that sound waves travel
close to the wall around the circumference of the dome.

In this work, silica WGM resonators as shown in figure 1.1 are used. Com-
pared to earlier studies with liquid droplets, silica resonators allow studying
a single localized resonator for extended amounts of time. Most of the studies
presented in this work were done with silica microtoroids. However, due to
their higher symmetry, spheres are more amenable to some of the theoretical
analysis to follow in this section. For moderate major/minor diameter ra-
tios, toroids deviate only slightly from the discussed predictions. For rigorous
discussion of the toroids’ properties, it is necessary to resort to numerics or
perturbation theory [35–41].

1.2.1 Mode shapes and resonance frequencies

To determine the optical resonance modes of a dielectric sphere of radius R
and refractive index n, the vectorial Helmholtz equation

∆ !E(!r) + k(r)2 · !E(!r) = 0 (1.1)

and !∇ · !E(!r) = 0 must be fulfilled, where !E(!r) is the electric field, and k
its wavenumber, with k(r) = nk0 inside the sphere and k(r) = k0 outside
the sphere. For a homogenous medium, the solutions for the field are well
known, and can be analytically calculated using Debye’s potentials [42]. For
a discussion at a greater level of detail, see for example references [43, 44].
In short, two classes of solutions, TE-modes and TM-modes can be derived

2



1.2 Properties of optical whispering gallery modes

a)

b)

c)

d)

Figure 1.1: Whispering gallery mode resonators used in this work. The light orbits along
the circumference of a silica microsphere (a), top view, b), side view) or silica microtoroid
(c), top view, d), side view) as indicated by the dotted red arrow in the top views (about
100 µm × 100 µm). The thin line is the silica taper used for coupling, as described in
section 1.4.

from the scalar Helmholtz equation which separates into a radial and an
orthoradial equation, and the corresponding fields read

!ETE
!,m(r, θ, ϕ) = E0

f!(r)
k0r

!Y m
! (θ, ϕ) (1.2)

!BTE
!,m(r, θ, ϕ) = − i

ck0

!∇× !ETE
!,m(r, θ, ϕ) (1.3)

and

!ETM
!,m(r, θ, ϕ) = − i

ck0n2
!∇× !BTM

!,m(r, θ, ϕ) (1.4)

!BTM
!,m(r, θ, ϕ) = − iE0

c
f!(r)
k0r

!Y m
! (θ, ϕ), (1.5)

where !Y m
! (θ, ϕ) is the vector spherical harmonic

!Y m
! (θ, ϕ) =

1
p

$($ + 1)
!∇Y m

! (θ, ϕ) × !r (1.6)
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1. Silica microresonators: versatile vehicles for Quantum Optics

derived from the standard scalar spherical harmonic functions,

Y m
! (θ, ϕ) =

s

2$ + 1
4π

($ − m)!
($ + m)!

P m
! (cos(θ))eimϕ, (1.7)

with the associated Lengendre functions P m
! . The radial dependence is es-

sentially described by the function f!(r), the solution of the Riccati-Bessel
equation

f!(r) =

8

<

:

nk0r j!(nk0r) =
q

πnk0r
2 J!+1/2(nk0r) for r < R

αk0r h!(k0r) = α
q

πk0r
2 H!+1/2(k0r) for r > R

(1.8)

where j! and h! (J! and H!) are the spherical (cylindrical) Bessel and Hankel
functions of the first kind, respectively and α is a real constant.

The continuity conditions of the fields at the boundary require

nk0R j!(nk0R) = αk0R h!(k0R) (1.9)

ns[nk0R j!(nk0R)]′ = α[k0R h!(k0R)]′ (1.10)

where the prime denotes the derivative of the function with respect to the
argument (nk0R on the left-hand-side, k0R on the right-hand side) and s =
+1 for TE-modes and s = −1 for TM-modes. These characteristic equations
not only determine the constant α, but also the resonant wavenumbers k0

and thus resonance frequencies ωc = ck0 of the WGM.
For each index $, equation (1.10) supports an infinite number of solutions

due to the oscillatory nature of the Bessel and Hankel functions. These
solutions may be enumerated with an index q. As it determines the number
of nodes of the electric field within the sphere, it is often referred to as
the radial mode number, in contrast to the polar mode number $ and the
azimuthal mode number m ∈ {−$, . . . , +$}. The modes which are usually
referred to as whispering gallery modes are modes with lowest q (few, or in
the largest part of the literature, no node within the sphere), and high $, with
|m| ∼ $. We emphasize that for a perfect sphere, the resonance frequency of
the WGM is independent of m, as the characteristic equation is independent
of m. In practice, residual eccentricity however lifts this degeneracy. In this
case, only the counterpropagating modes +m and −m remain degenerate.
Note that the TE and TM modes are physically distinct in that for TE
modes, the electric field points essentially in polar direction (along the unit
vector !eθ), and the magnetic field essentially in radial direction (along the
unit vector !er), and vice versa for TM modes. The mode shapes of the most
important WGMs in a sphere have been mapped in beautiful experiments
with a near-field probe [45,46].

For spheres, a number of useful approximations in the experimentally
relevant limit of high $ have been developed [44]. This can also be used to
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1.2 Properties of optical whispering gallery modes

obtain approximative solutions to the characteristic equations, to derive the
resonance frequencies of WGMs [38,47]. In this case, the resonance frequency
ν! of the fundamental mode with index $ is approximately given by

ν! =
c

2πnR

 

$ + 1/2 + η1

„
l + 1/2

2

«1/3

+ . . .

!

, (1.11)

where c is vacuum speed of light, n the refractive index, R the cavity radius
and −η1 the first zero of the Airy function (η1 ≈ 2.34).

Toroidal geometries, due to their reduced symmetry, are not amenable
to a closed-form analytical solution. However, both numerical simulation
using finite-element methods [35,36,39,40,48] and a perturbative analytical
approach [38,39] have been successfully used to derive the resonance frequen-
cies and mode shapes of toroids. For moderate inverse aspect ratios (ratio of
minor to major diameter) and minor diameters of several optical wavelengths,
toroids support fundamental modes with no nodes in radial and polar direc-
tion, similar to the fundamental modes with |m| = $ observed in spheres. In
this regime, toroids also exhibit quasi-TE and quasi-TM modes. In contrast
to spheres, however, the number of modes with nodes in the polar direction
is vastly reduced, which leads to a sparse resonance spectrum. For small
minor diameters of only a few wavelengths, the toroidal modes experience
a strong transverse confinement similar to a fiber taper, which alters both
resonance frequencies and mode volumes dramatically from the situation of
a sphere [35,36,39].

1.2.2 Optical losses

A perfect optical resonator would store light for infinite amounts of time. Due
to different loss mechanisms, the optical energy stored in a WGM decays over
a timescale τ or, alternatively at a rate

κ = 1/τ. (1.12)

The storage time τ is often expressed in the form of the resonator’s quality
factor, a crucial figure of merit in many applications of optical cavities, for
example as a laser cavity, for experiments in cavity quantum-electrodynamics
or cavity optomechanics. It is defined by comparing the photon storage time
τ with the oscillation period of the field in the cavity

Q ≡ τωc = ωc/κ (1.13)

where ωc is the optical resonance frequency of the cavity.
For silica microresonators, there are several sources of optical loss, all

of which reduce the cavity photon storage time τ . In particular, optical
absorption of the silica material, scattering in the bulk or at surface inhomo-
geneities, absorption by surface contaminants and radiative loss may reduce
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1. Silica microresonators: versatile vehicles for Quantum Optics

the cavity storage time. In addition, intentional coupling to a propagating
mode using, for example, a fiber taper as described below, leads to an addi-
tional reduction of storage time. Usually these losses are quantified by rates
τ−1
mat, τ−1

sca , τ−1
con, τ−1

rad and τ−1
ex , respectively, and the total loss rate is given by

κ = τ−1 = τ−1
mat + τ−1

sca + τ−1
con + τ−1

rad + τ−1
ex . (1.14)

The losses intrinsic to the resonator are often summarized to an intrinsic loss
rate

τ−1
0 = τ−1

mat + τ−1
sca + τ−1

con + τ−1
rad. (1.15)

and an intrinsic quality factor is defined with the corresponding contributions

Q−1
0 = (ωcτ0)

−1 = Q−1
mat + Q−1

sca + Q−1
con + Q−1

rad. (1.16)

Losses in ultraclean silica at visible and near-infrared wavelengths are
very low. A material-limited quality factor, given simply by Qmat = 2πn/αλ,
where α is the absorption coefficient with contributions from both absorption
and Rayleigh scattering, as high as ∼ 1010 at 633 nm has been predicted, and
values close to this limit have been observed [49]. For longer wavelengths,
silica absorption is even weaker, enabling Qmat of 1011 and more [50].

Radiation loss is due to insufficient light confinement by the curved sur-
face of the resonator. For the resonators used in this (and most other) work,
this loss mechanism is typically negligible. For example, for spheres with
diameters in excess of 20 µm, and toroids with major and minor diame-
ters of 60 µm and 2 µm, respectively, the radiative losses alone would allow
Qrad > 1011 in the visible and near-infrared wavelength range [35,39].

Another possible source of loss is scattering of light at residual surface
inhomogeneities [50]. During the reflow process, surface tension renders the
boundary of spheres or toroids nearly atomically smooth, however it has been
shown that redeposition of evaporated silica can lead to sub-wavelength sur-
face defects [36]. The surface-scattering limited quality factor is roughly
Qsca ∝ λ3/σ2B2, where σ is the root-mean-square surface roughness and B
the correlation length, which were measured to amount to 2 nm and 5 nm,
respectively, in a typical sphere [19]. The exact losses induced by such rough-
ness critically depend on the light intensity at the surface compared to the
total energy stored in the mode. Silica microtoroids with their small mode
volume have been observed to be scattering-loss limited at quality factors
of a few hundred million [51], while in silica spheres of larger diameter (e.g.
750 µm) quality factors up to 8 ·109 were reported [49], close to the estimated
limit by surface scattering Qsca [50].

As most experiments are conducted under ambient conditions, a very
important loss contribution comes from chemically adsorbed water at the
surface of the highly hygroscopic silica [19, 49, 51]. In particular for near-
infrared wavelengths close to 1.5 µm, where water absorption is strong, even
a monolayer of water molecules at the surface can lead to significant losses,
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1.3 Fabrication of silica microtoroids

leading to maximum quality factors of about 3 · 108 for a 60µm sphere [51].
Degradation of Qcon has been observed to occur on a timescale of about 100 s
and partial recovery using a 400◦C-bakeout was demonstrated [49].

1.3 Fabrication of silica microtoroids

In this section, the standard process to fabricate silica microtoroidal WGM
resonators, as implemented at Ludwig-Maximilians-Universität and the Max-
Planck-Institute of Quantum Optics is described.

1.3.1 Photolithography and silica wet etch

The starting material are undoped (resistivity > 0.2 Ωm) silicon wafers. On
the wafers’ (100)-surface a silicon oxide with a thickness of 1 to 3 µm has
been thermally grown, either by wet or dry oxidation. We obtained the wet
oxidized wafers from Virginia Semiconductor, while the dry oxidized samples
were generously provided by the semiconductor laboratory of the Max-Planck
Society (HLL, Munich). Using standard UV lithography techniques imple-
mented with a Karl Süss MJB 3 mask aligner, arrays of circular pads with
diameters ranging from 20 to 200 µm are transferred to a positive photoresist
(Shipley S-1813) spun on the SiO2 surface. After hardening, these resist pads
serve as etching mask in the subsequent step, in which all uncovered SiO2

is etched away using a buffered oxide etchant containing hydrofluoric acid in
the reaction

SiO2 + 6HF ! H2SiF6 + 2H2O. (1.17)

Only the silica protected by the photoresist remains on the Si surface. After
chemical removal of the resist, the wafer carries arrays of circular silica pads.
An example of such a pad is shown in figure 1.2. Note that the wedged rim
results from an isotropic underetch of the resist pad by the hydrofluoric acid.

The etched wafers are (protected against silicon spalls by an auxiliary
resist layer) cleaved into pieces of ca. 7mm×25mm containing 35 silica pads
each. The auxiliary resist is finally removed and the chips are thoroughly
cleaned, one by one, with acetone, isopropanol and deionized water. Op-
tionally, the chips can be cleaned in addition using ‘Piranha solution’ (i.e.
concentrated sulfuric acid and hydrogen peroxide) or an oxygen plasma to
remove all organic contaminants remaining from the lithographic process.

1.3.2 Silicon dry etch

For the confinement of light in the silica pads, the silicon substrate beneath
it must be at least partly removed in order to ensure a low-refractive index
surrounding to the part of the silica structure trapping the light. To this end,
an etching technique is employed, which etches silicon highly selectively, i.e.
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Si substrate

2 µm SiO
2 
layer

HF

Photoresist

XeF
2

10.6 µm XeF
2

(a) (b)

(c) (d) (e)

(b) (c) (d) (e)

Figure 1.2: Fabrication of silica microtoroids (see text for details). (a) Using standard
photolithography, disks are defined on a silicon wafer carrying a thin (1-3 µm) layer of
native oxide. The disks are transferred into the oxide by etching with buffered HF so-
lution. (b) After the resist is removed, the silica disks are underetched using gaseous
XeF2. It etches silicon selectively and isotropically, leaving a silica disk supported by
a rotationally symmetric silicon pillar. (c) Reflow with a CO2 laser beam melts the
free-standing part of the silica disk, and a toroidal rim is formed due to surface tension.
The pillar serves as a preform in this process, stopping the melting process due to its
excellent heat conductivity. (d) If desired, a second etch with XeF2 reduces the pillar di-
ameter further, leaving only a needle support of the silica structure. Bottom panels show
scanning-electron micrographs during various steps in the fabrication process (different
samples). Silica structures are marked with red false-coloring (scale bars are 20 µm).
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1.3 Fabrication of silica microtoroids

about 1000-times faster than silica, and isotropically. This technique [52] is
based on a surface reaction of fluor with silicon,

2XeF2 + Si → 2Xe↑ +SiF4 ↑ (1.18)

which proceeds via (i) non-dissociative adsorption of gaseous XeF2 on the
Si surface, (ii) dissociation of the adsorbate, (iii) reaction between adsorbed
F atoms and the Si surface, and (iv) desorption of the volatile products into
the gas phase.

In our lab, this reaction is implemented using an apparatus similar to the
one described in ref. [53]. Using a simple computer-controlled vacuum sys-
tem, the samples are subjected to repeated “pulses” of XeF2 gas sublimated
from a reservoir. The pressure of the gas in the etching chamber and the du-
ration of one pulse can be set by the control program, typical values are 400
Pa and 60 s. The etching rate is approximately constant, depends however
on the total area of the chip(s) etched in one run. A typical single-chip order
of magnitude is ∼ 1.5 µm per etching pulse with the parameters described
above. The resulting disk structures can themselves already support WGMs
with quality factors up to 5 · 107 [54,55].

1.3.3 Laser reflow

To eliminate residual roughness of the edge of the disk cavities, a laser reflow
process is applied to the disks [30]. A strong mid-IR laser beam (λ = 10.6 µm)
is applied to the disks one-by-one. Light at this wavelength is absorbed
very efficiently by even the thin silica disks (absorption depth ∼ 34 µm at
room temperature [56]). Together with the poor heat conductivity of silica
(∼ 1.4 W/K m), a pronounced temperature dependence of the extinction co-
efficient with a dramatic increase at higher temperatures [56] gives rise to a
thermal runaway process heating the silica rim above the melting tempera-
ture of silica at about 1650 ◦C. The central part of the disk remains nearly at
room temperature, as the supporting silicon pillar is transparent for mid-IR
light and provides an effective heat sink.

Once the disk periphery has contracted to a toroidal structure due to
surface tension, the absorption cross section of the rim is reduced, and be-
ing coupled more strongly to the silicon heat sink, the glass structure cools
below the melting point, even if the laser radiation is still incident. In this
manner, the reflow-process is self-terminating, producing toroids with a high
rotational symmetry provided by the silicon pillar preform.

In the setups we use at MPQ, the employed lasers (Synrad 48-1, and
Synrad 48-2, alternatively) are specified to emit a clean TEM00 mode (more
than 95% of the power is emitted in this mode) with a specified 1/e2-beam
diameter of 3.5 mm and full divergence angle of 4 mrad. At a distance of ca.
1.3 m, a convex f = 100 mm ZnSe lens is placed into the beam. According
to standard Gaussian beam optics, it is expected to produce a 2w0 = 230µm
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diameter waist in its focal plane, with the intensity I(x, y, z) obeying the
relation

I(x, y, z) =
2P

πw(z)2
e−2(x2+y2)/w(z)2 (1.19)

with w(z)2 = w2
0

`

1 + z2/z2
0

´

and z0 = w2
0π/λ. In the center of the focus, the

peak intensity amounts to about 4.8 kW/cm2 for a typical applied average
power of P = 1W. To vary the applied power, but also to flatten the trans-
verse intensity profile, it proved advantageous to move the toroids slightly
out of the focal plane (cf. figure 1.3).
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Figure 1.3: Setup used for the reflow of silica microtoroids. A 10W CO2-laser is fo-
cused using a ZnSe lens. The sample is placed on a mount close to the focal plane and
can be precisely positioned using micro-actuators. The sample can be viewed through
a microscope, the image of which is aligned to the laser beam. The silica disks are po-
sitioned one-by-one, and illuminated with the laser beam until they have the desired
toroidal shape. Inset shows the dependence of the laser peak intensity as a function of
the displacement of the sample from the focal plane.

1.4 Coupling to whispering gallery mode resonators

In this section, the coupling of light into and out of the whispering-gallery
modes will be described. Coupling is accomplished using tapered optical
fibers, via the overlap of the evanescent field of these waveguides and the
evanescent portion of the WGM. The main properties of these tapers and
their fabrication at MPQ will be reviewed. The theoretical approach used
to model the coupled waveguide-resonator system was adapted from H. A.
Haus [57,58].

1.4.1 Fiber tapers

Fiber tapers are produced by pulling single-mode optical fiber while heating it
with a hydrogen torch. As a result, the central part of the taper is essentially
a cylindrical silica rod with a diameter on the order of the light’s wavelength.
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1.4 Coupling to whispering gallery mode resonators

This rod is an optical waveguide due to the index contrast of silica and
the surrounding air (or vacuum). The modes of such a simple dielectric
cylindrical waveguide are well-known, and for small enough diameters 2R, the
waveguide supports only a single propagating mode. In transverse (radial)
direction, the field of this mode drops exponentially, over the characteristic
length γ−1

f , where [59]

γf = αf
K1(αfR)
K0(αfR)

, (1.20)

K0 and K1 being the modified Hankel functions of zero and first order, and

αf =
q

β2
f − k2n2

cl (1.21)

is obtained from the characteristic equation

kf
J1(kf R)
J0(kf R)

= αf
K1(αfR)
K0(αfR)

(1.22)

with zero and first order cylindrical Bessel functions J0 and J1. This yields
also the propagation constant βf together with

kf =
q

k2n2
f − β2

f , (1.23)

where nf and ncl are the refractive indices of the taper and the surrounding
material, respectively. Variation of the taper radius (which, in a coupling ex-
periment, can be simply achieved by displacing the taper along its symmetry
axis) enables continuous tuning of the propagation constant in the taper, in
order to match it with the propagation constant of the WGM of interest [59].
In this case, if the taper is approached tangentially to the WGM resonator,
the fields in the taper and WGM can remain in phase over the extended
interaction length (“phase matching”), enabling highly efficient coupling.

We have produced single-mode fiber tapers for various wavelengths be-
tween 633 nm and 1550 nm from standard single-mode fiber (mostly by Nu-
fern). The main part of the setup is shown in figure 1.4: Two clamps hold
the fiber above a torch, the flame of which is fed by pure hydrogen at a
controlled flow. Two high-quality translation stages symmetrically pull the
clamps apart. During the pulling, the transmission of test laser light at
the desired wavelength is continuously monitored. After several seconds of
pulling, transmission usually oscillates in time. This is due to multimode in-
terference: as long as the taper supports a second mode, which is also slightly
fed in the transition region between the core-cladding single mode fiber and
the cylindrical silica waveguide in the center, multimode interference leads
to a length-dependent transmission. Typically pulling is interrupted when
the second mode dies off.
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Reproducibly crafting low-loss (< 5%) tapers becomes increasingly chal-
lenging with decreasing wavelength. Position and size of the flame have to
be controlled, requiring a torch mounted on translation stages with sub-
millimetric reproducibility as well as a mass-flow-controller (MKS) for the
hydrogen flux and an environment protected from air currents. The pulling
speed must be precisely adjusted, in this case using computer-controlled
drivers of the translation stages (Newport MFA). Finally, the acrylate buffer
applied as a protection layer over the fiber cladding has to be completely
removed before applying the flame to the fiber. Mechanical stripping and
thorough wiping with a clean tissue and isopropanol are usually sufficiently
effective. For the shortest wavelengths, extending the heated region by mov-
ing the flame along the fiber during pulling (“flame brushing”) [60] proved
advantageous.

Translation stages

Microscope
objective

Clamps
Torch

Taper holder

Tapering
region

Figure 1.4: Setup used to craft tapered fibers. Two clamps, sliding on two rails of the
taper holder, hold a piece of stripped single-mode fiber above the flame of a hydrogen
torch. By symmetrically pulling apart the clamps using two translation stages, a fiber
taper is formed in the central region.

1.4.2 Theoretical description of coupling

Coupled-mode theory

The temporal dynamics and steady states of the coupled waveguide-resonator
system are most conveniently described by introducing the complex scalar
mode amplitude ã(t) [57, 58], which is normalized such that |ã(t)|2 is the
energy (or number of photons, just by rescaling by !ωl) stored in the WGM.
The electric field at some location !r0 of the WGM can be thought of as being
proportional to one of its quadratures, for example its real part. In general,
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1.4 Coupling to whispering gallery mode resonators

the electric field pattern can be written

!E(!r, t) ∝ Re (!v(!r) · ã(t)) , (1.24)

where the complex-valued !v(!r) accommodates the mode’s spatial and polar-
ization degrees of freedom. Using time reversal symmetry and energy con-
servation [57], the mode amplitude can be shown to follow a time evolution
according to

˙̃a(t) =
“

−iωc −
κ
2

”

ã(t) +
s̃in(t)√

τex
, (1.25)

where ωc is the mode’s resonance frequency, κ its total energy loss rate, τ−1
ex

its coupling rate to the waveguide mode and s̃in(t) the amplitude of the mode
in the fiber taper. It is normalized such that |s̃in(t)|2 is the power (or photon
flux) impinging on the coupling region.

Typically, the driving field oscillates harmonically in time at an angular
frequency ωl, that is1, s̃in(t) ≡ sin(t)e−iωlt. It is convenient to transform to
a rotating frame using ã(t) ≡ a(t)e−iωlt to obtain

ȧ(t) =
“

i∆ − κ
2

”

a(t) +
sin(t)√

τex
, (1.26)

where the detuning of the driving field (typically derived from a laser) with
respect to the cavity resonance frequency

∆ = ωl − ωc (1.27)

was introduced. It is positive (negative) for a laser with a frequency greater
(smaller) than the WGM resonance frequency, a situation that will be referred
to as blue-detuned (red-detuned).

For a constant drive amplitude sin(t) ≡ s̄in, setting the time derivative to
zero immediately yields the steady state solution for the mode amplitude2

ā =
1

−i∆ + κ/2
s̄in√
τex

. (1.28)

In this steady state, the power circulating in the cavity is given by

|s̄|2 =
|ā|2

τrt
=

1
τrt

1
∆2 + (κ/2)2

|s̄in|2

τex
= (1.29)

=
4ηc

τrtκ
1

1 + 4∆2/κ2
|s̄in|2 = 2ηc

F
π

1
1 + 4∆2/κ2

|s̄in|2, (1.30)

1The negative sign in the exponent was chosen to make the resulting discussion con-
gruent with the quantum mechanical formulation later in this work, coinciding with the
choice of Haus [58].

2Both ã(t) and a(t) will be referred to as mode amplitude in the following, as they
denote the same physical entity in two different frames.

13



1. Silica microresonators: versatile vehicles for Quantum Optics

a Lorentzian with full-width-half-max (FWHM) linewidth of the loss rate κ.
In the last line, the finesse

F =
free spectral range
resonance linewidth

=
τ−1
rt

κ/2π
=

c
nRκ

, (1.31)

τrt being the round-trip time of light in the cavity, was introduced together
with the coupling parameter

ηc =
τ0

τ0 + τex
. (1.32)

The importance of the finesse is immediately evident from (1.30): For a
symmetric cavity (ηc = 1/2), the enhancement of intracavity power compared
to launched power is |s̄/s̄in|2 = F/π on resonance ∆ = 0.

The transmitted light amplitude, i.e. the amplitude of the light emerging
from the fiber taper after the coupling region, can then be written as [57]3

sout(t) = sin(t) −
a(t)√
τex

(1.33)

which from (1.28) is

s̄out = s̄in − ā√
τex

=

=
τex − τ0 − 2iτexτ0∆
τex + τ0 − 2iτexτ0∆

s̄in =

=
(1 − 2ηc)κ/2 − i∆

κ/2 − i∆
s̄in (1.34)

in the steady state. The transmitted power (or photon flux) is in this case

|s̄out|2 =
(τex − τ0)

2 + (2τexτ0∆)2

(τex + τ0)2 + (2τexτ0∆)2
|s̄in|2 =

=

„

1 − (τexτ0)−1

(κ/2)2 + ∆2

«

|s̄in|2

=

„

1 − ηc(1 − ηc)κ
2

(κ/2)2 + ∆2

«

|s̄in|2, (1.35)

a Lorentzian dip of FWHM linewidth κ.

3Often, the sign of sout is chosen the opposite way, as in most cases it constitutes a
signal reflected from a cavity. For our geometry, the chosen sign convention is physically
more meaningful. In the limit of no coupling, sout must be equal to sin.
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Coupling regimes

A unique property of taper-coupled silica microresonators is that the coupling
strength can be continuously adjusted by tuning the taper-resonator gap.
This allows to access different coupling regimes [61]:

• undercoupled regime, in which the losses are dominated by intrinsic
losses of the cavity: τ−1

0 > τ−1
ex (ηc < 1/2). The magnitude of the field

coupled back from the resonator into the taper is smaller than the field
propagating in the taper.

• critical coupling, for which the intrinsic cavity loss rate and the coupling
rate to the fiber taper mode are equal: τ−1

0 = τ−1
ex (ηc = 1/2). For

critical coupling, a resonant field leaking back from the cavity and the
field propagating in the taper have equal magnitude but their phase is
shifted by π. This leads to zero power transmission of the system on
resonance.

• overcoupled regime, in which the coupling rate to the taper exceeds the
intrinsic loss rate τ−1

0 < τ−1
ex (ηc > 1/2). The magnitude of the field

coupled back from the resonator into the taper is larger than the field
propagating in the taper.

For applications in quantum optics, it is often desirable that the cavity
mode be mainly coupled to a single well-controlled spatial mode, through
which the light leaves the cavity. All other loss channels of the cavity admit
quantum vacuum into the cavity mode, often degrading the quality of a
measurement. In the case of fiber taper-coupling, the propagating mode to
which the cavity mode should be coupled is the fundamental mode of the
fiber taper. If the taper is approached to the cavity, the coupling rate to
this mode increases exponentially, τ−1

ex ∝ e−γfd, while the intrinsic loss rate
of the cavity τ−1

0 is constant, so for a small enough coupling gap, the cavity
mode can be coupled dominantly to the taper mode (overcoupled regime).
However, there may also be other loss channels mediated by the taper in the
vicinity of the cavity mode. In particular, light may couple to higher-order
modes in the taper, which later die off in the transition to the normal single-
mode fiber; or the presence of the taper may simply scatter part of the light
into free-space modes. The degree of overcoupling that can be reached by
bringing the taper closer to the cavity may thus be limited. Introducing the
rates τ−1

ho and τ−1
rad for the two taper-induced loss processes described above,

one may define the parameter of the ideality I of the coupler using

I =
τ−1
ex

τ−1
ex + τ−1

ho + τ−1
rad

. (1.36)

Fiber taper-coupled microresonators have been shown to exhibit idealities
of at least 99.97%, while simultaneously very strong overcoupling (τ−1

ex ∼
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104(τ−1
0 + τ−1

ho + τ−1
rad)) can be achieved if the diameter of the taper is chosen

appropriately [62].

Coupling of counter-propagating modes by scattering

As described in section 1.2, the counterpropagating modes in spheres (mode
numbers ±m) are frequency-degenerate, and the same applies to WGMs in
toroids for symmetry reasons. The propagation direction of the light in the
coupling taper therefore determines which mode is going to be excited. How-
ever, light scattering both in the bulk and at surface inhomogeneities can lead
to a significant population of the mode in which light orbits in the opposite
direction. This was observed early on in the research on microspheres [63],
and has been dedicated attention both in theory and experiment [50,64,65].

The basic features of this effect can be understood from a simple model
based on coupled mode theory [64]. If the two modes are coupled with a
coupling rate γ, the mode amplitudes of the pumped mode orbiting clock-
wise (cw) and the unpumped mode orbiting counter-clockwise (ccw) evolve
according to

ȧcw(t) = (i∆ − κ/2)acw(t) + i
γ
2

accw(t) +
sin(t)√

τex
(1.37)

ȧccw(t) = (i∆ − κ/2)accw(t) + i
γ
2

acw(t). (1.38)

In steady state, these equations are solved in a straightforward manner by

ācw =
1
2

„
1

κ/2 − i(∆ + γ/2)
+

1
κ/2 − i(∆ − γ/2)

«
s̄in√
τex

(1.39)

āccw =
1
2

„
1

κ/2 − i(∆ + γ/2)
− 1

κ/2 − i(∆ − γ/2)

«
s̄in√
τex

, (1.40)

evidently a resonance doublet. Under these conditions, the eigenmodes of the
system are superpositions of cw- and ccw-orbiting modes with a fixed phase
relation, that is, standing waves with a cos(mϕ)2 and sin(mϕ)2 azimuthal
intensity dependence.

Both a transmitted field

stra(t) = sin(t) −
acw(t)√

τex
(1.41)

and a reflected field

sref(t) = −accw(t)√
τex

(1.42)

may then be coupled back into the fiber.
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Figure 1.5: Measurement of optical linewidth and modal coupling rate of a toroidal mi-
croresonator using frequency modulation spectroscopy. Inset shows the full trace, with
the two signatures when a modulation sideband is scanned over the cavity resonance.
The modulation frequency (here 74.76 MHz) directly provides a calibration of the trace.
Measured in the undercoupled regime, the intrinsic linewidth of 1.1 MHz and a splitting
of 1.0 MHz can be extracted. At the wavelength λ = 968 nm, this corresponds to an
intrinsic quality factor of 3.1 · 108.

Figure 1.5 shows a resonance trace obtained from a toroid with a high
quality factor, and exhibiting also modal splitting. The data were taken in
the undercoupled regime, and the fit yields an intrinsic linewidth of τ−1

0 /2π =
1.1 MHz and a splitting of γ/2π = 1.0 MHz. To enhance the signal-to-noise
ratio, these data were taken using a frequency-modulation technique [43,66],
in which the incident laser is phase-modulated at a radio frequency Ωrf . The
detected photocurrent of a detector placed at the exit of the fiber taper is
demodulated at the same frequency, with the phase of the reference signal
adjusted in order to obtain the absorptive features shown in figure 1.5.

Note that the coupling conditions (undercoupled, critically coupled, over-
coupled) are also modified by the presence of strong modal splitting. In par-
ticular, reaching the critical coupling point, at which transmission vanishes
for resonant excitation, requires a coupling rate of τ−1

ex = τ−1
0

p

1 + τ 2
0 γ2 [64].

For this coupling strength, the reflected signal also gets maximized. Figure
1.6 shows the transmission and reflection of a toroid with a slightly more
pronounced modal splitting of τ0γ = 3.5.

To obtain these data, a laser at λ = 1500 nm was swept across the WGM
resonance repetitively. Both transmitted and reflected optical powers were
recorded as traces with a digital oscilloscope. A piezoelectric translation
stage was used to slowly approach the taper to the toroid. For each trace,
the position of the translation stage was recorded. In the data analysis, the
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Figure 1.6: Normalized optical transmission and reflection from two coupled counterprop-
agating WGM excited by a fiber taper. By approaching the taper, the coupling rate τ−1

ex
is slowly increased. The inset shows the simultaneously recorded optical resonance shift
as a function of coupling strength. See text for more details.

square magnitude of transmission (1.41) and reflection (1.42) were used as fit
models, with the steady-state amplitudes (1.39) and (1.40) of the two coun-
terpropagating modes. This allowed to deduce the coupling strength τ0/τex

as well as the normalized transmission (1 − 2κτ−1
ex /(γ2 + κ2))2 and reflec-

tion 4γ2τ−2
ex /(γ2 + κ2)2 from each trace. Interestingly, an optical resonance

frequency shift was also observed when the taper was approached. This is
due to the presence of the taper with its refractive index in the evanescent
field of the WGM. Figure 1.7 shows the dependence of the extracted cou-
pling strength on the taper position. An exponential dependence is clearly
observed, with a 1/e-characteristic length of ∼ 810 nm.

1.5 Optical nonlinearities

Silica WGM resonators concentrate high optical power in small volumes,
which leads to an enhancement of optical non-linearities: A typical 300,000-
optical finesse toroid of 60 µm major diameter already achieves circulating
intensities on the order of 100 MW/cm2 for launched powers below 50 µW.
Such intensities can easily drive optical nonlinearities. Due to the isotropic
nature of the amorphous silica, the lowest order nonlinearities which can
be observed are χ(3)-nonlinearities, specifically the Raman and Kerr effects,
which will be briefly discussed in the following. A much stronger effective
nonlinearity is borne by a thermal effect [17, 67, 68], which will be discussed
first.
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Figure 1.7: Coupling strength as a function of the fiber taper’s position (abscissa has an
arbitrary offset), when the taper is approached to the toroid. Red squares are data, and
the full blue line is an exponential fit with a 1/e-characteristic length of ∼ 810 nm.

1.5.1 Thermal nonlinearity

Due to absorption in the optical mode, the temperature of the torus changes
by an amount δT according to

ρcp
˙δT (!r, t) = k!∇2δT (!r, t) +

|a(t) · !v(!r)|2

τabs
, (1.43)

where τ−1
abs is the loss rate due to absorption, ρ is the density, cp is the

specific heat capacity, and k the thermal conductivity (for the numerical
parameters of fused silica, see appendix A.1), and !v(!r) accommodates the
field distribution of the mode, and is normalized such that

R

|!v(!r)|2dV = 1.
Now the time evolution of the WGM amplitude (1.25) is influenced by the
temperature of the structure, as its resonance frequency is a function of the
temperature distribution ωc ≡ ωc(δT (!r, t)).

The temperature-dependence of the resonance frequency can be due to
the change in refractive index or expansion of the structure. For a uniform
temperature distribution, the resonance frequency ωc should depend on the
temperature changes δT to first order as

ωc(T + δT ) ≈ ωc(T )

„

1 −
„

α +
1
n

dn
dT

«

δT

«

. (1.44)

With the parameters dn/dT ≈ 1.0 · 10−5 K−1 and α ≈ 5.5 · 10−7 K−1 (see
appendix A.1) a resonance frequency shift of −1.44 GHz/K is expected at
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1550 nm. For this wavelength, we have measured a tuning coefficient of
−1.28 GHz/K when heating the chip with a peltier element, and a feedback
controller to stabilize the temperature of the chip (figure 1.8). The deviation
may be due to insufficient thermalization of the silica disk, or slightly differ-
ent material parameters, which differ by up to 10% for various fabrication
processes [69], and are not precisely known for silica grown on silicon wafers.

If the temperature change is induced by absorption of light, one may
expect that the temperature distribution in an equilibrium situation (δ̇T =
˙̃a = 0) is not uniform. Rather, the mode volume—where absorption takes
place—can be assumed to be the hottest part, increasing even more the
relative contribution of the thermorefractive effect. For simplicity, we replace
this distribution δT (!r) by an effective temperature δT seen by the optical
mode, which is proportional to absorbed power,

δT =
β|ā|2

τabs
, (1.45)

and induces a resonance frequency shift according to (1.44). Finite-element
modeling suggests that for a typical toroid of 60 µm major diameter, and a
pillar diameter of 40 µm, β is on the order of 2 ·104 K/W (figure 1.8), a value
compatible with the measured shifts induced by absorption of a 1545 nm-
laser [51].

The temperature-dependent resonance frequency gives rise to a well-know
thermal bistability [17,51,67,68], as the steady-state equation for the WGM
amplitude

|ā|2 =
|s̄in|2/τex

`

ωl − ωc + ωc

`

α + 1
n

dn
dT

´

β|ā|2/τabs

´2
+ (κ/2)2

(1.46)

has three solutions for |ā|2 as soon as the threshold power of

Pthresh =
κ3τabsτex

3
√

3β
`

α + 1
n

dn
dT

´

ωc

(1.47)

is reached (compare section 2.2.1, where a similar bistability is discussed
in more detail). For typical parameters of a toroid (2τ−1

abs = 2τ−1
ex = κ =

2π · 3MHz, β = 2 · 104 K/W, ωc = 2π · 300 THz), the threshold is already
reached at ca. 50 nW, highlighting the experimental significance of this effect.
Figure 1.8 illustrates the resulting hysteretic behavior of the transmission of
a thermally nonlinear cavity.4

For many purposes, the temporal dynamics of the thermal effect are of
importance as well. They can be assessed by solving equation (1.43) with
the boundary conditions given by the shape of the silica structure.

4A movie [68] explaining the thermal nonlinearity is available at
http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-12-20-4742&seq=2
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Figure 1.8: Static thermal nonlinearity. (a) Tuning of the cavity resonance frequency
with externally controlled temperature. Circles are measured data, line is a fit. (b)
Temperature distribution in a 60 µm-diameter toroid and the surrounding air, in which
a power of 1 mW is deposited in the optical mode volume. (c) Hysteretic transmission
behavior for a laser power of 20Pthresh . If the laser is scanned down in frequency (blue
dashed line) it drags the cavity resonance down in frequency as well, and so stays resonant
for a larger range of detunings. If the laser is scanned up (red line), the cavity jumps
into resonance with the scanning laser while the laser is still red-detuned with respect to
the cold cavity resonance frequency.

For toroids and disks, the most important mechanism of heat removal
from the structure is by coupling to the silicon pillar. We may therefore
set up a simplified model, in which we only calculate δT (!r) within the silica
disk, and assume it to be zero in the region r < R1 above the pillar of radius
R1. Furthermore, we may simplify the source term by approximating the
optical mode with the edge of the silica disk of radius R and thickness d.
The problem is then symmetric in z and ϕ and, after Fourier transform, we
are left with the one-dimensional problem

ρcpiΩ δT (Ω, r) = k
1
r

∂
∂r

„

r
∂
∂r

«

δT (Ω, r) +
|ā|2

τabs

δ(r − R)
2πRd

. (1.48)
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To solve it, we introduce the abbreviations

z ≡ r/R (1.49)

z1 ≡ R1/R (1.50)

−λ2 ≡ ρcpiΩR2/k (1.51)

µ ≡ |ā|2

τabs

1
2πk d

(1.52)

δT̃ (λ, z) ≡ δT (Ω, r/R) (1.53)

and get the ordinary differential equation

−λ2δT̃ (λ, z) =
1
z

∂
∂z

„

z
∂
∂z

«

δT̃ (λ, z) + µδ(z − 1). (1.54)

The homogeneous solution to this problem is

δT̃h(λ, z) = c1J0(λz) + c2Y0(λz), (1.55)

and an inhomogeneous solution is given by

δT̃i(λ, z) =
µπ
2

(J0(λz)Y0(λ) − J0(λ)Y0(λz))Θ(z − 1), (1.56)

with the Heaviside step function Θ, and cylindrical Bessel functions of the
first (J0) and second kind (Y0). We assume the boundary conditions

δT̃ ′(λ, 1) = 0 (1.57)

δT̃ (λ, z1) = 0, (1.58)

that is, a thermally insulated rim of the silica disk, neglecting convective heat
transfer, and an unchanged temperature above the strongly conductive silicon
pillar. These constraints determine the constants c1 and c2. This yields, at
the rim of the disk, where the optical mode is located, a temperature of

δT̃ (λ, 1) =
µ
λ

J0(λz1)Y0(λ) − J0(λ)Y0(λz1)
J1(λ)Y0(λz1) − J0(λz1)Y1(λ)

. (1.59)

From a Taylor expansion of δT̃ (λ, 1)−1 in λ we obtain to lowest order in Ω

δT (Ω, R) ≈ δT0

1 + iΩ/Ω1
(1.60)

with

δT0 = − |ā|2

τabs

1
2πk d

ln(R1/R) (1.61)

Ω1 = − 4 ln(R1/R)
1 − (R1/R)2 + 2 ln(R1/R)(1 + ln(R1/R))

k
ρcpR2

. (1.62)
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1.5 Optical nonlinearities

For the static response (Ω → 0), a comparison with the simulation presented
in figure 1.8, with |ā|2/τabs = 1mW, d = 2 µm, R1 = 20 µm and R =
30 µm, yields δT (0, R) = 23 K, corresponding to β = 2.3 · 104 K/W, in good
agreement with the simulated value of β ≈ 2.0 · 104 K/W.

For high frequencies Ω . Ω1, the approximations above break down, as
the mode volume can no longer be assumed to have no extension in the radial
direction. Indeed, a second cutoff can be expected when the wavelength of
the thermal waves is on the order of the transverse extension of the WGM. A
simple estimate for this cutoff can be obtained by assuming that the WGM
has a transverse radius of r0, and approximating (1.43) with [67,70]

ρcp
˙δT = k

1
r2
0

δT +
|ā|2

τabs

1
2π2Rr2

0

, (1.63)

one obtains again a temperature response of the form δT ∝ (1 + iΩ/Ω2)−1,
and the second cutoff frequency is given by

Ω2 =
k

ρcpr2
0

, (1.64)

where r0 can be obtained from finite-element modeling or approximated by
r0 ≈ 1.8Rm−2/3 for fundamental modes in spheres, and in toroids for minor
diameters greater than several wavelengths [71]. Typical orders of magnitude
for silica toroidal WGM resonators are Ω1/2π ≈ 103 Hz and Ω2/2π ≈ 105 Hz,
in agreement with the measurements reported in section 2.5.3.

1.5.2 Raman nonlinearity

The high intensities circulating in WGM of silica resonators also give rise
to Raman gain in a frequency band about 13.2 THz below the frequency of
the laser pumping the WGM, due to the interaction of light with vibrational
modes in the silica structure. If the gain becomes large enough to exceed the
losses of a second WGM within this frequency band, self-sustained optical
oscillations set in. In a quantum picture, this process can be understood
as the nonlinear conversion of a pump photon into a vibrational phonon
and a photon at the lower “Stokes”-frequency. The strong light confinement
renders the pump power thresholds to achieve this so-called Raman lasing to
unprecedentedly low light levels < 100 µW, and can even lead to cascaded
oscillations, where several Raman sidebands are generated. The details of
this process in silica microresonators have been analyzed extensively in the
literature [20,21,32,72–74] and will not be discussed here. Figure 1.9 shows
an optical spectrum of a silica toroidal cavity pumped at a wavelength of
773 nm.
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Figure 1.9: Cascaded Raman scattering from a pump laser at a wavelength of 773 nm.

1.5.3 Kerr nonlinearity

The Kerr nonlinearity of silica induces an intensity-dependent refractive in-
dex n(I) = n + n2I , where n2 = 3 · 10−20 W/m2. As a consequence, a WGM
resonance frequency also depends on the launched power P = |sin|2 according
to

ωc(P ) ≈ ωc(0)

„

1 − n2

n
1

Aeff
2ηc

F
π

1
1 + 4∆2/κ2

P

«

, (1.65)

where Aeff is the effective cross-section of the mode. This effect can lead to
parametric gain and oscillation [3,7,75], which will be treated in more detail
in chapter 3, but also to optical bistability similar to the thermal bistability
discussed above. By suppressing the thermal bistability in a liquid helium
bath, this effect was also observed experimentally [76]. Due to its basically
instantaneous response, the Kerr effect can also be distinguished from the
slower thermal effect in experiments where the laser power is modulated at
high frequency [77]. Such an experiment will be described in section 2.5.3.
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Chapter 2

Cavity optomechanics

2.1 Introduction

The tails of comets always point away from the sun. Kepler, in the 17th cen-
tury, already conjectured from this observation that sunlight exerts a force
on particles in the comet tail. Some 250 years later, Maxwell’s theory of elec-
tromagnetic radiation put this conjecture on solid theoretical grounds, yet,
collecting experimental evidence for the fact that light carries momentum
has eluded even the most skilled experimentalists of that age. As a famous
example, Crookes attempted to construct a radiometer in which the transfer
of optical momentum makes a vane spin, now famous as the “light mill” (fig-
ure 2.1). After much debate, however, it was understood that the observed
rotation is mediated by the dilute gas in which the vane is kept [78]. True
radiation-pressure effects, in agreement with Maxwell’s predictions, were not
observed until the beginning of the 20th century, in more sophisticated ex-
periments carried out by Lebedew in Russia [79] and Nichols and Hull in the
United States [80–82].

The situation changed dramatically with the advent of lasers as highly
coherent light sources in the 1970ies. It was soon suggested to utilize the re-
sulting forces to manipulate the motion of mechanical objects in a controlled
manner. Hänsch and Schawlow [83] and also Wineland and Dehmelt [84,85]
proposed ways to use radiation pressure to freeze out the random motion of
atoms or ions (“laser cooling”), and Ashkin, Chu and coworkers conceived
techniques to trap neutral particles using optical forces [86,87]. In the decades
to follow, the implementation of these ideas lead to what can be considered a
true revolution in atomic physics, pivotal for discoveries such as Bose-Einstein
condensation and the development of the most precise frequency standards
available today.

On a fundamental level, these experiments have also soundly established
that the motion of laser-cooled atoms or ions oscillating in their trapping
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2. Cavity optomechanics

Figure 2.1: Radiometer used by Crookes around 1877. The pivoted vanes, each silvered
and blackened on one face, are free to revolve around the central axis. Crookes observed
that the vanes started to turn when illuminated by a strong light source. The origin
of the effect was not radiation pressure, it was mediated by the dilute gas still present
in the globe. In refined experiments by Lebedev in Russia and Hull in the US, effects
of radiation pressure on mechanical objects were observed at the beginning of the 20th

century. Image copyright Science Museum/SSPL, London.

potential can only be understood in quantum mechanical terms. For example,
quantum fluctuations of the cooling light give rise to the Doppler limit in
temperature [88]. Even more, if laser cooling to the quantum ground state
is achieved [89–91], optical manipulation can be used to generate such exotic
motional states as Fock or Schrödinger cat states [92].

It is a prime example of the enigmatic quantum-classical “boundary” that
such quantum effects have never been observed with more massive oscilla-
tors. But it has remained an open question whether this is a mere technical
challenge, or if yet unexplored mechanisms of decoherence give rise to this
transition. An important impetus for theoretical analysis of systems in which
radiation pressure acts on massive mechanical oscillators has come from the
community of gravitational astronomy—for a very practical reason. In order
to detect wobbles in space-time induced by gravitational waves, these scien-
tists conceived today’s most sensitive displacement meters: kilometer-scale
laser-driven interferometers, the mirrors of which are suspended as pendula
to isolate them from seismic and technical noise.
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Braginsky’s group at Moscow state university has played a particularly
pioneering role in this regard. Embedded eventually in a very general theory
of quantum measurements [93–96], they have developed a comprehensive un-
derstanding of optomechanical interactions as they occur in the fundamen-
tal building block of a gravitational wave observatory shown in figure 2.2:
Monochromatic light trapped in a high-finesse cavity (a Fabry-Perot res-
onator in this case) exerts radiation pressure on the massive end mirrors,
coupling their oscillatory motion to the light.

As early as 1967 Braginsky and coworkers recognized that radiation pres-
sure can change the dynamics of the mechanical degree of freedom, effectively
adding an optically induced viscous damping to the mirror motion. It was
also soon understood that this dynamical backaction [97–100] could be used
in principle to amplify or cool the motion of the mirror [101, 102], akin to
laser cooling of atoms. While this effect can still be understood in classical
terms, they also showed that true quantum effect gives rise to an unsur-
mountable sensitivity limit in displacement measurements of the mirror: For
high enough light powers, quantum fluctuations in radiation pressure start
to induce random motion in the mirror, masking the displacement to be de-
tected [94, 103, 104], an effect now referred to as the quantum backaction of
the measurement.

In the following years, optomechanical systems have attracted much at-
tention by theorists in the quantum optics community, resulting in a variety
of proposals exploring quantum effects in these systems. To mention just
a few examples, quantum non-demolition measurements of the light inten-
sity, or single quadratures of the mechanical displacement have been sug-
gested early on [93, 95, 105, 106], as well as the generation of narrow-band
squeezed light using the mechanical oscillator as an effective third-order-
nonlinearity [107, 108]. Later work has studied in great detail the possibil-
ity to generate non-classical states of motion [109], including superposition
states [110], entangled states of several oscillators [111–114], or motional
states entangled with optical degrees of freedom [115, 116]. As a special
quantum state, it has also been suggested to cool the mechanical degree of
freedom to its quantum ground state using cooling by dynamical backac-
tion [117–122],

Observing such effects, however, has been severely complicated by several
experimental challenges. First, optomechanical coupling by radiation pres-
sure is usually weak—the momentum transfer of a single reflected photon
changes the velocity of a (free) gram-scale mass by some 10−24 m/s only. At
the same time, the oscillator displacements associated with quantum effects
are typically on the scale of its zero-point fluctuations xZPF =

p

!/2mΩm,
where m and Ωm are its mass and the resonance frequency, respectively.
For gram-scale oscillators, such as a small mirror in an interferometer, this
is some ten orders of magnitude smaller than the fluctuations of a trapped
atom or ion—usually at the sub-attometer scale. While dedicated experi-
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2. Cavity optomechanics

Figure 2.2: Artist’s view of a generic optomechanical system: A Fabry-Perot resonator,
consisting of two mirrors trapping near-resonant monochromatic light. One of the mirrors
is mechanically compliant, here it is mounted on a spring and therefore constitutes a
mechanical harmonic oscillator.
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ments [123–126] have been approaching such sensitivities, another challenge
persists in all room-temperature experiments: Thermal noise tends to mask
quantum signatures as long as the thermal energy kBT largely exceeds the
energy scale !Ωm of a motional quantum (kB is the Boltzmann, and ! the
reduced Planck constant).

In recent years, the tremendous progress in micro- and nanofabrication
technologies has provided unprecedented opportunities to engineer novel me-
chanical devices. This potential has revived the interest in their quantum
properties [127]. In a joint effort of researchers from fields as diverse as
quantum optics, photonics, solid state and low-temperature physics, a vast
variety of new opto- and electromechanical systems have been recently devel-
oped and characterized. Aiming at the observation of strong opto-mechanical
coupling—mostly to ultimately observe quantum effects—they have formed
the research field of cavity (quantum) optomechanics [128, 129]. Table 2.1
summarizes the properties of optomechanical systems studied in the last ten
years, reflecting also the enormous parameter range covered.

Within this work, we have developed optomechanical systems based on
the silica whispering-gallery mode (WGM) resonators introduced in chap-
ter 1. Their compactly co-located high-quality optical and mechanical modes
render them a very favorable system for the study of radiation-pressure in-
duced optomechanical coupling. Indeed, we show in this work that basically
all experimental challenges for the observation of quantum effects can be
successfully tackled with this system. As an important precondition, it has
been possible for the first time to demonstrate radiation-pressure cooling
of a mesoscopic mechanical oscillator based on optically induced dynamical
backaction. Adapting, in addition, advanced quantum optical and cryogenic
techniques to this setting, we show experimentally that these systems are
capable of closely approaching fundamental quantum limits—both in terms
of the quality of the displacement sensitivity and the occupation of the me-
chanical oscillator.

In section 2.2, we first review basic theoretical concepts of optomechanics.
Both an intuitive approach to understand effects such as optomechanical
bistability and dynamical backaction, and a more formal approach based on
the quantum Langevin equations are introduced.

Section 2.3 summarizes the properties of silica WGM resonators from
the perspective of cavity optomechanics. Their optical properties are al-
ready described in chapter 1, so the attention is focused on their mechanical
properties. Using analytical calculations and finite-element modeling, spatial
shape, resonance frequencies and quality factors of the modes are analyzed.
A detailed understanding of mechanical dissipation is developed, studying its
dependence on temperature and geometry of the sample. This has allowed
the design of optimized microtoroids in which mechanical quality factors are
increased by more than an order of magnitude. Finally, the effective masses
of the mechanical modes in this 3-dimensional structure are discussed.
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2.2 Theory of optomechanical interactions

Several quantum optical techniques for quantum-limited phase measure-
ment of an optical field are introduced in section 2.4. The aim was to
demonstrate the capability to observe zero-point fluctuations of the mechan-
ical mode of interest. This is indeed possible with the extreme sensitivity
achieved (10−18 m/

√
Hz). Furthermore, signatures of several different ther-

mal noise mechanisms are observed, and their origin is investigated.
In section 2.5, we report on our experiments demonstrating radiation-

pressure induced laser cooling of a mechanical oscillator using dynamical
backaction. Together with two groups in Paris and Vienna, we have first
observed this long-anticipated effect in our Garching laboratory in 2006.
Subsequently, we have carefully studied its dependence on the character-
istic parameters of the optomechanical system. In particular, we have been
interested in the regime of long intracavity photon storage times compared
to the oscillation period of the mechanical oscillator.

This regime has attracted more interest as theoretical work predicted that
cooling the oscillator to its quantum mechanical ground state via dynamical
backaction is only possible under this condition. The results of our efforts to
implement an optomechanical system operating in this so-called “resolved-
sideband regime” are described in section 2.6. We demonstrated efficient
radiation-pressure cooling in this regime. Classical and quantum limitations
of laser cooling are discussed.

To reduce thermal noise even further, we have combined radiation pres-
sure cooling with cryogenic precooling. The implementation of fiber-taper
coupling and radiation-pressure cooling at cryogenic temperatures, and the
results of these experiments are described in section 2.7. By bringing the
mechanical oscillator close to its quantum ground state in these experiments,
we have also been able to assess the backaction of the optical displacement
detection. As a result we find that our optical measurement scheme performs
in a near-ideal manner in quantum mechanical terms.

Section 2.8 concludes this chaper, summarizing the results achieved, and
in section 2.9 we present ideas for future investigations using WGM res-
onators as optomechanical devices.

2.2 Theory of optomechanical interactions

2.2.1 Classical description and elementary phenomena

To begin the discussion of cavity optomechanics, it is useful to review some
basic underlying physical concepts and simple limiting cases. Consider the
generic optomechanical system depicted in figure 2.3a). The impinging field
sin(t) drives the cavity mode amplitude a(t) (cf. chapter 1). Part of the
boundary of this mode—in the simplest case, one of the end mirrors of a
Fabry-Perot cavity—is free to move, and its displacement is described by the
one-dimensional variable x(t). Irrespective of the spatial structure of both
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2. Cavity optomechanics

the optical mode and the mechanical displacement pattern, we assume that
the displacement x(t) shifts the resonance frequency of the optical mode in
a linear fashion,

ω′
c(t) = ωc + g0x(t), (2.1)

where ωc is the cavity resonance frequency for x = 0 and

g0 =
∂ω′

c

∂x
(2.2)

is the optomechanical coupling constant. For the cases depicted in figure 2.3,
g0 = −ωc/L for a Fabry-Perot cavity of length L, and g0 = −ωc/R for a
WGM resonator of radius R.

A moving cavity boundary

We will first discuss the effect of the moving boundary on the optical mode,
and neglect the backaction (radiation pressure) of the light. For a monochro-
matic pump wave s̄ine−iωlt, the resulting equation of motion for the intra-
cavity field amplitude reads

ȧ(t) =
“

−i (ωc + g0x(t))− κ
2

”

a(t) +
√

ηcκ s̄ine−iωlt. (2.3)

As one of the simplest cases, we analyze the response of the driven cavity
to a sinusoidal oscillation in the mechanical degree of freedom. For x(t) =
x0 sin(Ωmt), the solution for the mode amplitude reads

a(t) =
√

ηcκ s̄in

+∞X

n=−∞

inJn(β)

−i(ωl + nΩm − ωc) + κ/2
e−i(ωl+nΩm)t−iβ cos(Ωmt)

(2.4)

(a) (b)

x(t)

x(t)

sin(t)

sout(t)

a(t)

a(
t)

sin(t) sout(t)

Figure 2.3: Schematic of two generic geometries of optomechanical systems. (a) Linear
Fabry-Perot-type cavity with a movable mirror, pumped through a slightly transparent
mirror. (b) Whispering-gallery mode resonator pumped by evanescent coupling to a
waveguide. In both cases, an impinging field sin(t) drives the intracavity field a(t). The
cavity resonance frequency depends on the displacement x(t) of a cavity boundary from
its equilibrium position.
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2.2 Theory of optomechanical interactions

(a) (b)

Frequency

Figure 2.4: Response of a driven cavity to an oscillating end mirror (a), leading to a
buildup of anti-Stokes and Stokes sidebands at frequencies ωl+Ωm and ωl−Ωm, weighted
with the cavity Lorentzian (b).

after all transients have died off within a timescale of κ−1 [8]. Here, the Jn

are the Bessel functions of the first kind and β = g0x0/Ωm is the modulation
index. For small amplitudes x0, so that |β| / 1, the intracavity field can be
approximated to

a(t) ≈ a0(t) + a1(t) + O(β2) (2.5)

a0(t) =

√
ηcκ s̄in

−i∆ + κ/2
e−iωlt (2.6)

a1(t) =
g0x0

2

√
ηcκ s̄in

−i∆ + κ/2

„
e−i(ωl+Ωm)t

−i(∆ + Ωm) + κ/2
| {z }

anti-Stokes

− e−i(ωl−Ωm)t

−i(∆ − Ωm) + κ/2
| {z }

Stokes

«

.

(2.7)

Evidently, the moving boundary acts as a modulator, building up a pair of
sidebands a1 in the cavity, with weights proportional to the cavity Lorentzian
evaluated at the frequencies ωl + Ωm and ωl − Ωm for the upper and lower
sideband, respectively. These sidebands, schematically shown in figure 2.4,
are also often referred to as anti-Stokes and Stokes sidebands.

The presence of these sidebands corresponds to a modulation of the in-
tracavity stored energy |a(t)|2, and it is easy to show that

|a(t)|2 ≈ |a0(t)|2 + a0(t)a
∗
1(t) + a∗

0(t)a1(t) = (2.8)

=
ηcκ|s̄in|2

∆2 + (κ/2)2
(1+

g0x0

„
∆ + Ωm

(∆ + Ωm)2 + (κ/2)2
+

∆ − Ωm

(∆ − Ωm)2 + (κ/2)2

«

sin(Ωmt)+

g0x0

„
κ/2

(∆ + Ωm)2 + (κ/2)2
− κ/2

(∆ − Ωm)2 + (κ/2)2

«

cos(Ωmt)

«

.

(2.9)
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2. Cavity optomechanics

Figure 2.5: Phase lag φlag between the oscillation of the mechanical degree of freedom
and the stored optical energy (or circulating power) in the cavity, assuming g0 < 0. For
±∆ = Ωm $ κ the phase lag is exactly ∓π/2. The phase jump at ∆ = 0 is due to a zero
crossing of the oscillation amplitude of the stored optical energy.

The intracavity optical energy is modulated at the oscillation frequency Ωm,
however, the modulation does not necessarily occur in phase with the me-
chanical oscillation. In fact, the phase lag depends in a non-trivial manner on
the detuning ∆, oscillation frequency Ωm and the cavity buildup time κ−1,
a simple calculation yields

φlag = arg
`

g0∆(∆2 + (κ/2)2 − Ω2
m − iΩmκ)

´

, (2.10)

which is shown in figure 2.5. The quadrature component (∝ cos(Ωmt)), the
important role of which will soon become clearer, can become significant if the
cavity buildup time κ−1 is comparable or larger than the oscillation period
Ω−1

m . Both in-phase and quadrature component are shown in the parametric
plot in figure 2.6.

Radiation-pressure backaction: static phenomena

So far, only the effect of the mechanical on the optical degree of freedom has
been considered. However, the richness of optomechanical effects arises only
when the mutual coupling of optical and mechanical degrees of freedom is
taken into account. The physical origin of the “back-action” of light on the
movable cavity boundary is due to radiation pressure. In the simple case of a
Fabry-Perot cavity, the force arises from the momentum flips of the photons
reflected from the movable mirror, and thus

Frp(t) = |a(t)|2 c
2L

2!k =
|a(t)|2!ωl

L
= −!g0|a(t)|2, (2.11)

where !k with k = ωl/c is the momentum of the photons. Note that, for
convenience, we switched to normalization of |a(t)|2 to photon number now,
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2.2 Theory of optomechanical interactions

in phase

quadrature

Figure 2.6: In-phase and quadrature oscillation amplitude of the intracavity energy (or
circulating power) when the detuning is varied (colored curves). Different colors represent
different choices of the cavity linewidth κ, which was changed from Ωm/10 (green) to
10 Ωm (red) in logarithmic steps. In the blue curves, a fixed detuning was chosen (as
indicated by the labels), and the cavity linewidth was varied from Ωm/10 to 10Ωm.

and will pursue this consistently in this chapter. Equivalently, |sin(t)|2 now
denotes the photon flux impinging on the coupling region.

The relation Frp(t) = −!g0|a(t)|2 is actually generally valid, it also ap-
plies to the WGM resonators, as will be derived in section 2.3.3. If the cavity
boundary is free to move, the coupled equations describing the optomechan-
ical system will then read (in a frame rotating at the laser frequency)

ȧ(t) = (i(∆ − g0x(t)) − κ/2) a(t) +
√

ηcκsin(t) (2.12)

ẍ(t) + Γm ẋ(t) + Ω2
m x(t) = −!g0

|a(t)|2

meff
, (2.13)

where, for the mechanical oscillation, a resonance frequency Ωm, viscous
damping at a rate Γm, and an effective mass meff (cf. section 2.3.3) are
assumed. For a constant drive amplitude s̄in, these coupled nonlinear equa-
tions can be analyzed in a first step by looking for stable solutions a(t) = ā,
x(t) = x̄ in which all time derivatives (ȧ(t), ẋ(t), ẍ(t)) vanish, requiring si-
multaneously

ā =
1

−i(∆ − g0x̄) + κ/2

√
ηcκs̄in and (2.14)

meffΩ2
mx̄ = −!g0|ā|2. (2.15)

Equations (2.14) and (2.15) can be illustrated by understanding both of them
as functions mapping the displacement x̄ to an intracavity photon number
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2. Cavity optomechanics
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Figure 2.7: (a) Graphical representation of the self-consistent solutions of the coupled
equations (2.14) (red) and (2.15) (blue) for the intracavity optical energy |ā|2 and
the radiation-pressure induced displacement x̄ of the cavity radius. Intersections of
the curves indicate possible stable (full circles) and unstable (empty circles) solutions.
(b) Plot of numerical solutions for the power |ā|2/τrt circulating in the cavity and the
radiation-pressure induced displacement for typical parameters of a silica microtoroidal
optomechanical oscillator (R = 25 µm, κ = 2π 8MHz, Ωm = 2π 50MHz, meff = 20ng,
ωc = 2π 380THz, |s̄in|2 = 1 mW). The dashed line indicates the unstable solutions.
(c) The actual detuning ∆ − g0x̄ as a function of the detuning ∆ of the laser from the
undriven cavity resonance.

|ā|2, as shown in figure 2.7. The self-consistent, physically possible solutions
are given by the intersections of the two curves.1 Evidently, the system has
at least one solution for arbitrary parameters. For high enough powers or
finesse, and/or floppy enough mechanical oscillators, two additional solutions
are physically possible. The condition for their appearance is given by

|s̄in|2 ≥
√

3
9

Ω2
mmeffκ2

ηc!g2
0

, (2.16)

which is derived in a straightforward manner from the requirement that
the maximum slope 3

√
3|s̄in|2ηc|g0|/κ2 of the Lorentzian square modulus of

(2.14) must exceed the slope meffΩ2
m/!|g0| corresponding to (2.15). Above

this threshold, the optomechanical system displays a well-known bistable be-
havior, resulting, for example, in a hysteretic transmission behavior upon
the variation of the input power. This effect was observed in a pioneering
experiment [170] at the Max-Planck-Institute of Quantum Optics as early as
1983. Reports in the microwave domain followed soon thereafter [171].

Radiation-pressure backaction: dynamical effects

It is even more interesting to analyze the dynamical response of such a sys-
tem around an equilibrium (ā, x̄). As first pointed out by Braginsky and
co-workers decades ago [97, 100, 102], the dynamics of fluctuations around
the equilibrium do not only display new physical effects, but are also of ex-
perimental relevance, in particular in the most sensitive gravitational wave

1Note that the phase of the complex entity ā can always be adjusted to fulfill (2.14),
as it does not affect (2.15).
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2.2 Theory of optomechanical interactions

interferometers. Keeping with the simple illustrative approach of this section,
let us assume the system is in a stable equilibrium if a = ā and x = x̄ and
analyze the dynamics of small excursions δa(t) and δx(t) if a small external
force δF (t) is applied to the mechanical oscillator. Plugging a(t) = ā+ δa(t),
x(t) = x̄ + δx(t) into (2.12)–(2.13) and introducing the equilibrium detuning

∆̄ ≡ ωl − (ωc + g0x̄) (2.17)

one finds the linearized equations

δ̇a(t) = (+i∆̄ − κ/2)δa(t) − ig0ā δx(t)

(2.18)

meff

“

δ̈x(t) + Γm
˙δx(t) + Ω2

m δx(t)
”

= −!g0ā(δa(t) + δa∗(t)) + δF (t),

(2.19)

where (2.14) and (2.15) were used, and second-order terms ∝ δa(t)δx(t) or
∝ |δa(t)|2 were dropped, as we assume |δa| / |ā|. Furthermore, without loss
of generality, we have assumed real ā = ā∗, which can always be attained by
adjusting the (physically irrelevant) phase of the incoming driving wave s̄in.

This equation system is most easily solved in the frequency domain, by
applying a Fourier transformation to all involved time-dependent variables.2

One then obtains

−iΩδa(Ω) = (+i∆̄ − κ/2)δa(Ω) − ig0ā δx(Ω) (2.20)

−iΩδa∗(Ω) = (−i∆̄ − κ/2)δa∗(Ω) + ig0ā δx(Ω) (2.21)

meff

`

−Ω2 − iΓmΩ + Ω2
m

´

δx(Ω) = −!g0ā (δa(Ω) + δa∗(Ω)) + δF (Ω), (2.22)

where δa∗(Ω) = (δa(−Ω))∗ was used. Analogous to the introductory con-
siderations of a moving boundary, we now find that a non-zero displacement
amplitude δx(Ω) at Fourier frequency Ω induces anti-Stokes and Stokes side-
bands of amplitudes

δa(Ω) =
−ig0ā

−i(∆̄ + Ω) + κ/2
δx(Ω) (2.23)

δa∗(Ω) =
+ig0ā

+i(∆̄ − Ω) + κ/2
δx(Ω), (2.24)

respectively. As above, the intracavity energy gets modulated, but now we

2We choose the convention f(Ω) =
R +∞
−∞ f(t)e+iΩtdt.
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2. Cavity optomechanics

have to consider that this gives rise to an oscillating force,

δFrp(Ω) = −!g0ā (δa(Ω) + δa∗(Ω)) = (2.25)

= −!g2
0 ā2

„
∆̄ + Ω

(∆̄ + Ω)2 + (κ/2)2
+

∆̄ − Ω

(∆̄ − Ω)2 + (κ/2)2

«

δx(Ω)

+ i!g2
0 ā2

„
κ/2

(∆̄ + Ω)2 + (κ/2)2
− κ/2

(∆̄ − Ω)2 + (κ/2)2

«

δx(Ω)

(2.26)

The real and imaginary parts of the radiation pressure force in this repre-
sentation are easily identified as being due to the in-phase and quadrature
modulation of the circulating power in the cavity, which was derived above.
The additional force acting on the mechanical oscillator changes its dynam-
ical behavior, in particular its response to the external perturbation. This
effect is the essence of dynamical backaction.

Specifically, substituting (2.26) back into (2.22), one finds a modified
response of the oscillator to an external force,

δx(Ω) = χeff(Ω)δF (Ω) (2.27)

with the effective susceptibility χeff(Ω),

χeff(Ω)−1 = meff

„

−Ω2 − i(Γm + Γdba(Ω))Ω +

„

Ω2
m +

kdba(Ω)
meff

««

. (2.28)

The damping and spring constant induced by dynamical backaction are given
by

Γdba =
!g2

0 ā2

meffΩ

„
κ/2

(∆̄ + Ω)2 + (κ/2)2
− κ/2

(∆̄ − Ω)2 + (κ/2)2

«

(2.29)

kdba =
!g2

0ā
2

meff

„
∆̄ + Ω

(∆̄ + Ω)2 + (κ/2)2
+

∆̄ − Ω

(∆̄ − Ω)2 + (κ/2)2

«

. (2.30)

If the induced changes of the mechanical oscillator’s dynamics are small,
the oscillator still behaves as a damped harmonic oscillator with effective
damping and resonance frequency [1]

Γeff ≈ Γm +
!g2

0ā
2

meffΩm

„
κ/2

(∆̄ + Ωm)2 + (κ/2)2
− κ/2

(∆̄ − Ωm)2 + (κ/2)2

«

(2.31)

Ωeff ≈ Ωm +
!g2

0ā
2

2meffΩm

„
∆̄ + Ωm

(∆̄ + Ωm)2 + (κ/2)2
+

∆̄ − Ωm

(∆̄ − Ωm)2 + (κ/2)2

«

.

(2.32)
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2.2 Theory of optomechanical interactions

2.2.2 Formal framework: quantum Langevin equations

A more general formulation of optomechanical interactions than the simple
but illustrative considerations in the previous section is possible within the
framework of a quantum Langevin approach. This enables the full description
of the quantum dynamics of an optomechanical system. In particular, effects
related to the quantum nature of light can be treated in an adequate manner.

Hamiltonian of cavity optomechanics

Starting point of the analysis is a Hamiltonian formulation of a generic op-
tomechanical system put forward by Law [172]. If the mechanical oscillation
frequency is much smaller than the free spectral range of the cavity, so that
a only a single optical mode has to be considered, the system Hamiltonian
can be written as

Ĥ = Ĥmech + Ĥopt + Ĥint + Ĥdrive (2.33)

Ĥmech =
p̂2

2meff
+

1
2
meffΩ2

mx̂2 (2.34)

Ĥopt = !ωc

„

â†â +
1
2

«

(2.35)

Ĥint = !g0x̂ â†â (2.36)

Ĥdrive = i!
√

ηcκ
“

s̄inâ†e−iωlt − s̄∗inâe+iωlt
”

(2.37)

where x̂ and p̂ are the mechanical displacement and momentum operators,
and â† and â are the creation and annihilation operators of the considered
optical mode, i. e. n̂ = â†â is the intracavity photon operator, and corre-
spondingly, the drive amplitude s̄in is now normalized to photon flux at the
input of the cavity |s̄in|2 = Pin/!ωl. Evidently, this Hamiltonian reproduces
the optical resonance frequency shift upon mechanical displacement, as

Ĥopt + Ĥint = !(ωc + g0x̂) â†â, (2.38)

and simultaneously describes the radiation pressure force, with

Frp = −∂Ĥint

∂x̂
= −!g0â

†â. (2.39)

Quantum Langevin equations

From the Hamiltonian, the time evolution of the operators of interest can
be derived. In addition to the conservative dynamics described by (2.33),
dissipation of both the optical and mechanical modes, and the corresponding
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2. Cavity optomechanics

fluctuations are taken into account by the following set of quantum Langevin
equations (QLEs) [173] (in a frame rotating at ωl)

d
dt

â(t) =
“

+i∆ − κ
2

”

â(t) − ig0x̂(t)â(t) +
(s̄in + δŝin(t))√

τex
+

δŝvac(t)√
τ0

(2.40)

d
dt

x̂(t) =
p̂(t)
meff

(2.41)

d
dt

p̂(t) = −meffΩ2
mx̂(t) − !g0â

†(t)â(t) − Γmp̂(t) + δF̂th(t) (2.42)

where the noise terms δŝin, δŝvac, and δF̂th were introduced. They fulfill the
commutation relations [174]

[δŝin(t), δŝ
†
in(t

′)] = [δŝvac(t), δŝ
†
vac(t

′)] = δ(t − t′) (2.43)

and

〈δŝin(t)δŝ
†
in(t

′)〉 = 〈δŝvac(t)δŝ
†
vac(t

′)〉 = δ(t − t′) (2.44)

are the only non-zero correlators for the quantum vacuum entering the cavity
from its two ports: the one through which it is pumped (δŝin), and the second
port (δŝvac) representing all other loss channels. Here, zero thermal excitation
of the optical mode has been assumed. In order to adequately describe the
mirror undergoing Brownian motion the correlator of the mechanical driving
term can be shown [173] to have the form

〈δF̂th(t)δF̂th(t
′)〉 = !meffΓm

Z

e−iΩ(t−t′)Ω

„

coth

„
!Ω

2kBT

«

+ 1

«
dΩ
2π

(2.45)

As in the previous subsection, the QLEs are simplified in the first place
by considering static and the dynamical effects separately. To this end, the
unitary transformations â(t) = ā + δâ(t) and x̂(t) = x̄ + δx̂(t) with 〈δâ(t)〉 =
〈δx̂(t)〉 = 0 yields again the requirements (2.14)–(2.15) for the steady state
values of intracavity field amplitude ā and displacement x̄.

Dynamics of the fluctuations

If we assume (ā, x̄) to be known as a stable solution of the system (which
can, for example, be tested for using the Routh-Hurwitz criterion, see [107]),
we can derive the Heisenberg equation of motion for the fluctuations δâ, δâ†

and δx̂. Choosing again the phase of the input field s̄in such that ā is real
and positive, and assuming again a strong coherent drive

ā . 1 (2.46)
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2.3 Silica WGM resonators as optomechanical systems

it is possible to derive linearized quantum Langevin equations for the fluctu-
ations by dropping terms ∝ δâδx̂, δâ†δx̂ or δâ†δâ, yielding

d
dt

δâ(t) =
“

+i∆̄ − κ
2

”

δâ(t) − ig0āδx̂(t) +
δŝin(t)√

τex
+

δŝvac(t)√
τ0

(2.47)

d
dt

δâ†(t) =
“

−i∆̄ − κ
2

”

δâ†(t) + ig0āδx̂(t) +
δŝ†in(t)√

τex
+

δŝ†vac(t)√
τ0

(2.48)

d2

dt2
δx̂(t) + Γm

d
dt

δx̂(t) + Ω2
mδx̂(t) = − !g0

meff
ā
“

δâ(t) + δâ†(t)
”

+
δF̂th(t)
meff

(2.49)

where the Hermitian property δx̂(t) = δx̂†(t) was used. This set of equations
is most easily solved in the Fourier domain, and we obtain

`

−i(∆̄ + Ω) + κ/2
´

δâ(Ω) = −ig0āδx̂(Ω) +
δŝin(Ω)√

τex
+

δŝvac(Ω)√
τ0

(2.50)

`

+i(∆̄ − Ω) + κ/2
´

δâ†(Ω) = +ig0āδx̂(Ω) +
δŝ†in(Ω)
√

τex
+

δŝ†vac(Ω)√
τ0

(2.51)

meff

`

Ω2
m − Ω2 − iΓmΩ

´

δx̂(Ω) = −!g0ā
“

δâ(Ω) + δâ†(Ω)
”

+ δF̂th(Ω).

(2.52)

In the frequency domain,

〈δŝin(Ω)δŝ†in(Ω′)〉 = 2πδ(Ω + Ω′) (2.53)

〈δŝvac(Ω)δŝ†vac(Ω
′)〉 = 2πδ(Ω + Ω′) (2.54)

and

〈δF̂th(Ω)δF̂th[Ω′]〉 = 2πδ(Ω + Ω′)!meffΓmΩ

„

coth

„
!Ω

2kBT

«

+ 1

«

(2.55)

are the only non-zero correlators. Together with the input-output relations
for the fluctuations

δŝout(Ω) = δŝin(Ω) −
√

ηcκ δâ(Ω) (2.56)

δŝ†out(Ω) = δŝ†in(Ω) −
√

ηcκ δâ†(Ω) (2.57)

these equations constitute the theoretical description of the most important
effects in cavity optomechanics.

2.3 Silica whispering gallery-mode microresonators as
optomechanical systems

Before the experiments on optomechanics are discussed, in the following, the
most relevant properties of silica microtoresonators in the context of cavity
optomechanics will be discussed.
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2. Cavity optomechanics

2.3.1 Optical properties of WGM microresonators

The optical properties of silica microresonators were already discussed in
chapter 1. Here, only the properties relevant for the purposes of cavity
optomechanics are revised.

An essential precondition to render the weak effects of radiation pressure
experimentally accessible is a high finesse. In a cavity of finesse F , the
circulating power—and thus also the radiation pressure force—is enhanced
by a factor of ∼ F/π compared to the launched power. Silica microresonators
can achieve finesses on the order of 106 (cf. section 1.2), exceeding even the
best results achieved with Fabry-Perot cavities for cavity QED [19].

At the same time, in order to reveal dynamical effects of radiation-
pressure coupling, the photon storage time should be on the order of—or
ideally exceed—the period of the mechanical oscillator coupled to the res-
onator. In spite of the very short round-trip time of about 1 ps, the storage
time can amount to several hundreds of nanoseconds thanks to the high
finesse. This is about 10 times longer than the oscillation period of the me-
chanical modes in these devices. To ensure well-controlled optomechanical
interaction, the optical mode spectrum must be well understood. In most
experiments, light should only interact with one isolated optical mode. With
a free spectral range c/2πnR in the THz range, and an easy suppression of
higher-order transverse modes (at least for microtoroids), this requirement is
easily fulfilled.

Absorption of light in the resonator, as discussed in detail in subsection
1.5.1, leads to an increase of the temperature of the structure. This is im-
portant for experiments in optomechanics for a two-fold reason. First, a
temperature increase may be undesired for the observation of mechanical
oscillators in a low-energy state: If the whole structure heats up, the me-
chanical mode of interest will be thermalized to this bath on the timescale
of its intrinsic damping, usually much shorter than the timescale of the mea-
surements made. While at room temperature, even absorbed powers on the
order of 1 mW lead to relative temperature changes on the order of only 10%,
heating can be much more significant at cryogenic temperatures (cf. section
2.7).

Secondly, the temperature rise leads to a change in refractive index and
material expansion, resulting in an intracavity-power dependent frequency
shift. This effective optical nonlinearity gives rise to optical bistability, and in
particular, it renders one wing of the optical resonance dynamically unstable
against inevitable perturbations in the detuning of the laser with respect
to the WGM resonance. This effect is important for experiments, in which
the driving laser is detuned from the optical resonance, as required for the
observation of dynamical backaction [1]. It is noted here that due to the
inversion of the thermorefractive coefficient ∂n/∂T at ∼ 8K, it is the red
wing (ωl < ωc) which gets unstable at room temperature, while the blue
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2.3 Silica WGM resonators as optomechanical systems

wing (ωl > ωc) gets unstable at cryogenic temperatures.

2.3.2 Mechanical properties of WGM silica microresonators

The mechanical degree(s) of freedom coupled parametrically to the WGMs in
silica microresonators are simply given by the intrinsic acoustic modes of the
structure. Each of the eigenmodes can be viewed, to a good approximation, as
a damped harmonic oscillator, possibly driven by thermal or optical forces. In
the following, the nature of these modes, in particular, their eigenfrequency,
the damping mechanisms, (effective) mass, mode shapes, and coupling to the
optical degrees of freedom will be discussed.

Acoustic modes in silica microresonators

The deformation induced by acoustic modes is described by a vector field
!u(!r, t), which denotes the displacement of an (infinitesimally small) cubic
volume element at position !r and time t from its initial position. In an
isotropic homogenous medium, to which no external forces are applied, the
equation of motion for the displacement field reads [175]

ρ!̈u(!r, t) = (λ + µ)!∇(!∇ · !u(!r, t)) + µ!∇2!u(!r, t) (2.58)

where the density ρ and the Lamé constants

λ =
σE

(1 + σ)(1− 2σ)
(2.59)

µ =
E

2(1 + σ)
, (2.60)

with σ is Poisson’s ratio and E Young’s modulus, characterize the elastic
properties of the material.

While for an infinitely extended medium, a continuum of solutions for
(2.58) are obtained, for a finite-size body such as a silica sphere or toroid, the
boundary conditions lead to a discrete spectrum of solutions, so that the total
displacement !u(!r, t) can be decomposed into modes oscillating harmonically
at a set of frequencies Ωn,

!u(!r, t) =
X

n

!un(!r, t) =
X

n

cn(t)!u0
n(!r) =

X

n

c̄n!u0
n(!r)e−iΩnt, (2.61)

where cn(t) is the displacement amplitude of a mode with index n, Ωn its
eigenfrequency and !u0

n(!r) is the spatial displacement pattern of the mode,
normalized so that R

V
!u0

n(!r)!u0
n′(!r)d3r

R

V
d3r

= δnn′ . (2.62)

For more sophisticated geometries, such as a silica toroid supported by a
silicon pillar, it is difficult to obtain analytical solutions for the mode shapes
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and frequencies.3 In such a case, (2.58) with the corresponding boundary con-
ditions is solved using the finite-element method (FEM). As an illustrative
example, and to validate the accuracy of the FEM results, an analytical so-
lution available for spheres is developed in the following [5,179]. In spherical
coordinates, equation (2.58) is solved in a homogeneous medium by functions

!u(!r, t) = !∇φ0(!r, t) + !∇× !Φ1(!r, t) + !∇× !∇× !Φ2(!r, t) (2.63)

derived from a scalar potential φ0 and two vector potentials !Φ1 = (rφ1, 0, 0)
and !Φ2 = (rφ2, 0, 0) with

φq(!r, t) =
X

l,m

Aqnlm jl

„
Ωnlm

vq
r

«

Y m
l (θ, ϕ)e−iΩnlmt (2.64)

where q = 0, 1, 2, and jl is the spherical Bessel function, Y m
! is the spherical

harmonic function, v0 =
p

(λ + 2µ)/ρ is the longitudinal sound velocity, and

v1 = v2 =
p

µ/ρ is the transverse sound velocity with ρ material density. The
acoustic modes are characterized by an angular momentum mode number l
(l = 0, 1, 2, . . .), an azimuthal mode number m (−l ≤ m ≤ l) and a radial
mode number n (n = 1, 2, . . .). Here, n = 1 corresponds to the surface
mode, n ≥ 2 to inner modes and Ωnlm denotes the frequency of the vibration
characterized by the mode numbers (n, l, m).

We focus now on the fundamental spheroidal mode (n, l, m) = (1, 0, 0),
for higher-order modes, see [5] and references therein. In particular, the
displacement vector field is purely radial,

!u0
1,0,0(!r) = A0,1,0,0

sin(k1,0,0r) − k1,0,0r cos(k1,0,0r)

r2
!er, (2.65)

where k1,0,0 = Ω1,0,0/v0, A0,1,0,0 is a normalization constant, and !er the
radial unit vector. In the following, we drop the mode index (1, 0, 0) for better
legibility, and an index to a vector field now denotes one of its components
in a given coordinate system.

To determine the allowed values of k (and therefore Ω), the strain tensor

εij =
1
2

„
∂ui

∂xj
+

∂uj

∂xi

«

(2.66)

is evaluated in a spherical coordinate system. For the considered mode, all
non-diagonal elements vanish, and the diagonal elements read4

εrr =
∂ur

∂r
= c(t) A

(k2r2 − 2) sin(kr) + 2kr cos(kr)
r3

(2.67)

εθθ =
ur

r
= c(t) A

sin(kr) − kr cos(kr)
r3

(2.68)

εϕϕ =
ur

r
= c(t) A

sin(kr) − kr cos(kr)
r3

, (2.69)

3For simple cylinders, approximate solutions have been developed [176–178].
4For the definitions of the strain tensor in spherical coordinates see [175].
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2.3 Silica WGM resonators as optomechanical systems

where c(t) is the excitation amplitude of the mode. The stress is related to
the strain by Hooke’s law, which in a lossless isotropic medium is given by

σij = 2µεij + λδij

X

k

εkk (2.70)

so that in this case the stress tensor σij is diagonal as well,

σrr = c(t)A
((λ + 2µ)k2r2 − 4µ) sin(kr) + 4µkr cos(kr)

r3
(2.71)

σθθ = c(t)A
(λk2r2 + 2µ) sin(kr) − 2µkr cos(kr)

r3
(2.72)

σϕϕ = c(t)A
(λk2r2 + 2µ) sin(kr) − 2µkr cos(kr)

r3
. (2.73)

Eventually, the boundary conditions for a freely oscillating sphere of radius
R require that the stress is zero at its boundary (r = R), leading to

„

1 − 1
4

v2
0

v2
1

k2R2

«
tan(kR)

kR
− 1 = 0. (2.74)

For the parameters of fused silica, this equation is solved for kR = 2.4005 . . .
or

Ωm

2π
≈ 2280 m/s

R
, (2.75)

corresponding to a resonance frequency of 91.2 MHz for a 50- µm diameter
sphere. Finite element modeling [180] yields the same result within less than
1%.

Another interesting physical entity is the potential energy stored in the
deformation. It given by

U =
X

i,j

Z

V

1
2
σijεijd

3r. (2.76)

The diagonal form of strain and stress tensors again makes the analytical
evaluation of this integral simple, and yields

U ≈ 8.69 · 1011 J
m3

· R · x2 (2.77)

where x = !u(R, θ, ϕ) · !er = c(t)A(sin(kR) − kR cos(kR))/R2 is the radial
displacement of the boundary, with A ≈ 0.427R2 for silica. Figure 2.8 shows
displacement, strain, stress and strain energy density of a silica sphere when
the fundamental mode is excited. Results from analytic calculations and the
FEM agree very well.

Figure 2.9 compares experimentally measured resonance frequencies of
several silica microspheres with diameters between 30 and 100 µm with an-
alytical calculations. Again, very good agreement is obtained.
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Figure 2.8: The (n, l, m) = (1, 0, 0) mode of a silica sphere. Left panels show (from top
to bottom) the radial displacement 'u(r, θ, ϕ) · 'er , the strains εrr (green) and εθθ = εϕϕ

(blue), stresses σrr (green) and σθθ = σϕϕ (blue), and the strain energy density
1
2

P

ij σijεij . Symbols are results of finite-element modeling and lines are derived from
the analytical calculations, showing excellent agreement. The given magnitudes cor-
respond to a 50 µm-diameter sphere containing a total strain energy of kB(300 K)/2 .
The right panel shows the exaggerated displacement profile (original sphere outlined in
black), and magnitude (color coded) as well as the principal stresses (indicated by arrow
lengths).
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Figure 2.9: Resonance frequencies of silica microspheres for the (n, l) = (1, 0) (upper
branch) and (n, l) = (1, 2) (lower branch) spheroidal resonance modes [5]. Curves are ex-
pected resonance locations for free boundary conditions, following an inverse dependence
on the sphere radius with Ωm/2π ≈ 2280 m/s/R for the l = 0 and Ωm/2π ≈ 1580m/s/R
for the l = 2 mode. Symbols represent measured spheres. The panels on the right show
the corresponding displacement patterns as obtained from the FEM. The left and right
halves of the sphere show the displacement of the volume elements at two different times
separated by half the oscillation period.

Toroidal silica resonators, sitting on top of a silicon pillar, have fewer
symmetries than spheres. Such a structure must be parameterized (instead
of simply the radius in the case of a sphere) by several parameters, at least
by the major and minor radii of the silica torus, the radius of the silicon
pillar, the thickness of the silica disk, and the offset of the symmetry planes
of the disk and torus along the z-axis [181]. The shape of the silicon pillar is
assumed to be rotationally symmetric, and to constitute a quarter circle in
the r-z-plane. The radius of this circular arch is another degree of freedom,
but usually assumed to be similar to the difference of toroid and pillar radii
(figure 2.10) due to the isotropic nature of the silicon etch.

The complex boundary conditions (all surfaces free, except for the bot-
tom of the silicon pillar) render an analytical solution prohibitively difficult.
We therefore use a commercial finite-element software [180] to solve (2.58)

major radius

pillar radius

m
inor

radius

offset

d
is

k 
th

ic
kn

e
ssradius

Figure 2.10: Geometric parameters required to describe a sphere (right) and a toroidal
WGM resonator, where silica is shown in blue and silicon in grey.
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R
B

M

Figure 2.11: Displacement patterns of the 19 lowest-frequency modes (see text) of a
toroidal microresonator as calculated using the FEM, indicated both as the deformed
shape and in the color code (increasing displacement from dark blue to dark red). Mode
number 4 involves mainly torsional motion, which is illustrated by plotting the displace-
ment of originally parallel slices through the structure. Adapted from ref. [9].

on a discrete mesh consisting typically of more than 10,000 nodes which
are automatically distributed in the simulation volume. Simulations can be
run both assuming rotational symmetry for the modes, and in full three
dimensions. Figure 2.11 shows the obtained displacement patterns for the
19 lowest-frequency modes of a toroid of major radius 23.0 µm, pillar ra-
dius 13.23 µm, minor radius 2.63 µm, disk thickness 2 µm and no offset, in a
three-dimensional simulation. As shown in figure 2.12, the simulation can re-
produce the frequencies measured on a real toroid to a very high accuracy [9].
Indeed, the average deviation between measured and simulated frequency is,
on average, below 2%. This emphasizes the reliability of the FEM. Note
also that probing of the modal displacement patterns using a scanning probe
technique has confirmed the shape expected from simulations in an earlier
experiment [182].

Various mode families with qualitatively different displacement patterns
are recognized. Some modes involve mainly motion of the silicon pillar (num-
ber 6, 13 and 18 in figure 2.11) and are therefore irrelevant for the purpose of
cavity optomechanics. A torsional mode (number 4) is also observed, but it
couples only weakly to the optical modes (cf. section 2.3.3). Modes number
1, 3, 5, 7, 11 and 16 are characterized by an n-fold symmetry under rotation
by an angle π/n, where n = 1 . . . 6 in this case. These modes, sometimes
referred to as “crown” modes, involve mainly sinusoidal oscillation of the
toroid in the z-direction. They typically follow a quadratic dispersion rela-
tion, that is, their eigenfrequency is proportional to the square of the number
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Figure 2.12: Comparison of simulated and measured frequencies of a toroidal silica mi-
croresonator. The relative deviation is below 2% on average. Adapted from ref. [9].

of nodes along the circumference [9]. Also, for each mode in this family there
exists a frequency-degenerate second mode in which the positions of nodes
and antinodes are swapped. In measurements on real toroids, this degener-
acy is often lifted due to small deviations from perfect rotational symmetry
of the structure.

In the context of cavity optomechanics, the most interesting modes are the
ones with (nearly) radially symmetric displacement patterns (number 2, 8,
and 14). One usually distinguishes flexural modes, in which the displacement
is mainly along the z-axis (number 2 and 8), and the radial modes involving
mainly radial displacement. The most important mode is the fundamental
radial mode, the so-called radial breathing mode (RBM) with number 14 in
figure 2.11, since it couples most strongly to the optical WGM. The RBM in
the measured toroid has a frequency of 75.1 MHz, and usually lies between
30 and 120 MHz for typical toroidal geometries.

Mechanical dissipation

Apart from its eigenfrequency Ωm, the most important property of the RBM
is its damping rate. As in the case of the optical modes, different dissipation
mechanisms lead to a release of mechanical energy stored in the RBM to
other degrees of freedom. The mechanical damping rate Γm quantifies the
rate at which this takes place, and is again expressed in terms of a quality
factor

Qm = Ωm/Γm. (2.78)
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The different damping mechanisms all contribute to the total damping, and
the resulting quality factor can be written

Q−1
m = Q−1

gas + Q−1
clamp + Q−1

TLS + Q−1
other (2.79)

with contributions by surrounding gas (Q−1
gas), by clamping losses (Q−1

clamp),

by two-level systems (Q−1
TLS) and by other damping mechanisms (Q−1

other).
In the initial optomechanical experiments with silica microtoroids the me-

chanical quality factors were around 3,000 [1]. By replacing the surrounding
nitrogen gas with helium (which has lower viscosity η and molecular mass
M), the quality factors rose beyond 5,000, clearly indicating that the losses
were dominated by gas damping. From the known drag on a sphere oscillat-
ing in a viscous fluid [183] one can expect a scaling Qgas ∝ (ηpM)−1/2 in this
regime. Reducing the pressure p of the ambient gas should therefore raise
Qgas. Indeed, at pressures down to about 10mbar, in the so-called viscous
regime, the quality factor was observed to increase as Qgas ∝ p−1/2, while
for lower pressures, in the molecular regime, Qgas ∝ p−1 [6]. At pressures
below 1mbar, gas damping becomes irrelevant (Qgas . Qm) and the quality
factor is observed to converge towards a saturation value at lower pressures.
Among different toroids, there are significant variations in the range between
1,000 and 30,000 for this value. This is due to clamping losses, which strongly
depend on the geometry of the sample.

To study this effect more systematically, a toroidal resonator was under-
etched in several steps, to reduce the radius of the silicon pillar, and thereby
increase the relative undercut, which we define as

relative undercut = 1 − silicon pillar radius
silica toroid major radius

. (2.80)

The quality factors and resonance frequencies of the RBM of six toroidal
resonators on the chip were measured for each etching step (figure 2.13).
While the resonance frequency reduces monotonically, the quality factors
vary in a non-monotonous manner, with a distinct minimum for an undercut
of about 0.7.

A series of simulations with increasing undercut reveals that the resonance
frequencies of the RBM and a radially symmetric flexural mode are crossing
each other for this undercut, as they have a different undercut dependence.
However, the actual resonance frequencies of the structure exhibit an avoided
crossing. At the same time, the modal shapes of the RBM and flexural
mode hybridize in the crossing region. These two facts indicate normal mode
coupling between the RBM and the flexural mode.

To corroborate this conjecture experimentally, the undercut in a different
sample was again systematically increased. For each etching step, a highly
sensitive measurement technique (polarization spectroscopy, cf. section 2.4)
allowed the determination of the frequencies of both the RBM (ΩR) and the
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Figure 2.13: Normal mode coupling between the RBM and a flexural mode. Left panels:
Measured quality factors of the RBM of six samples on the same chip as a function of
relative undercut, and the resonance frequencies of one of the samples (dots). Lines in the
lower panel are results of simulations, and show not only the frequency of the RBM, but
also of radially symmetric flexural modes. In the region where the frequencies are similar,
for a relative undercut of ∼ 0.7, the quality factors are strongly reduced. Right panels:
Evidence of normal mode coupling between the RBM and a flexural mode in another
sample. The frequencies Ω± and quality factors Q± of the experimentally observed modes
(dots) can be reproduced using a model of two coupled harmonic oscillators (red and
blue lines). The frequencies and quality factors of the uncoupled modes, corresponding
to a pure RBM and flexural mode are assumed to depend only linearly on the relative
undercut (dashed lines). Adapted from [6].

adjacent flexural (ΩF) mode. Indeed, the measured frequencies and quality
factors can be simultaneously reproduced using a simple model of two coupled
harmonic oscillators, the intrinsic frequencies ΩR and ΩF and quality factors
QR and QF of which are linearly dependent on the undercut. The frequencies
Ω± and quality factors Q± of the new eigenmodes are given by

Ω± +
i
2

Ω±

Q±
=

1
2

(ΩR + ΩF) +
i
4

„
ΩR

QR
+

ΩF

QF

«

±

s
„

1
2

(ΩR + ΩF) +
i
4

„
ΩR

QR
− ΩF

QF

««2

+
g4
im

4ΩRΩF
(2.81)

where the intermode coupling gim is an adjustable parameter (figure 2.13).
The data in figure 2.13 can be fit using gim/2π = 14MHz. This rather strong
coupling is attributed to the asymmetry of the structure in the axial direction
due to both the offset of the toroid from the disk [181], and the fact that the
silicon pillar supports the disk only from below.

Summarizing the previous observations, we conclude that the admixture
of a flexural displacement pattern to the RBM reduces the quality factor of
the latter. This can be explained by noting that the flexural modes induce
axial displacement also in the region where the silica disk is supported by
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2. Cavity optomechanics

the silicon pillar. The periodic oscillation in axial direction launches acoustic
waves into the pillar, through which the energy of the mode is dissipated,
thereby deteriorating the quality factor.

This qualitative understanding is quantitatively supported by a simple
model [6], in which the acoustic energy loss is estimated as the power radiated
by a membrane of area Ap (area of the silicon pillar) oscillating with an axial
displacement ∆z(!r) at frequency Ωm

Pmech = vρΩ2
m

Z

Ap

|∆z(!r)|2 d2r, (2.82)

where v is the sound velocity and ρ density. For geometry parameters close
to the modal crossing, it was indeed found experimentally that

Qclamp ∝ ΩmEmech

Pmech
, (2.83)

where Emech is the total mechanical energy of the mode. Advantageously,
both Emech and Pmech can be simulated using FEM [6]. As an aside we note
that an expression similar to (2.82) and (2.83) was obtained in a rigorous
theoretical analysis based on a phonon tunneling approach [184]. To reduce
Pmech, two strategies are immediately evident: Either the clamping area
Ap is minimized, or the axial displacement ∆z(!r) in this region is reduced.
Minimizing the clamping area is possible, for example, by fabricating toroids
with a very strong undercut, as shown in figure 2.14, in which the silica disk
is supported by a “needle pillar” of sub-micrometric diameter [8].

Alternatively, by introducing spokes into the silica disk, it was possible to
strongly reduce the coupling of the radial motion to an axial displacement in
the clamping region [6]. Both presented approaches yield good results with
quality factors exceeding 30,000 at frequencies around 40 MHz [6,8].

In figure 2.15 we show an overview of mechanical quality factors achieved
in typical samples with different major diameters, all strongly undercut
(> 90%) and measured in vacuum. A clear trend to higher quality fac-
tors for bigger cavity sizes (and therefore lower frequencies) is observed. The
scatter in the data of neighboring toroids (with very similar reflow preform
and final pillar shapes) indicates that clamping losses depend sensitively on
geometry parameters. Finally, we note that we have consistently observed
higher quality factors in disks than in toroids. This is attributed to a re-
duced offset (figure 2.10) of the oscillating mass, which, in toroids, mediates
the coupling of the RBM to radially symmetric flexural modes with strong
dissipation to the pillar.

The highest quality factors which were experimentally achieved at room
temperature are Qm ∼ 50,000 above 20 MHz. For these structures however,
simulations clearly indicate Qclamp . Qm according to (2.83), so a different
dissipation mechanism must now be dominant. A strong temperature de-
pendence of the quality factor (allowing for values up to 80,000 at 110◦C)
suggests a temperature-dependent dissipation mechanism [6].
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2.3 Silica WGM resonators as optomechanical systems

a)

b)

Figure 2.14: Silica toroidal resonators with ultralow mechanical damping. a) Reduced
clamping loss by supporting the silica disk with a “needle” pillar. The central and right
panels show the tip of an intentionally broken pillar, which has a sub-micron diameter.
A quality factor of 30,000 is reached with such structures for a 40 MHz-RBM [8]. b)
Reducing clamping loss by engineering the axial displacement in the clamping region
using a “spokes” design. Such resonators achieved mechanical quality factors up to
32,000 at 38 MHz, and 50,000 at 24 MHz at room temperature [6].
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Figure 2.15: Overview of mechanical quality factors of the RBM measured in typical
toroids. Major diameters of the pre-reflow disk and the approximate resonance frequency
are indicated in the figure captions. Each bracket indicates the span within which the
mechanical quality factor was found in a pair of measurements, in which the probing
laser was red and blue detuned (dynamical backaction modifies the measured effective
mechanical quality factor in opposite directions in the two cases). Groups of brackets
belong to the same toroid. The last panel shows measurements taken on silica disks prior
to the reflow.
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2.3 Silica WGM resonators as optomechanical systems

Indeed, the intrinsic damping of acoustic excitations in glass is known to
follow a universal behavior observed in many amorphous solids [185]. This
effect is attributed to the coupling of strain fields to structural defects in
the material. While the microscopic nature of these defects is not precisely
known, it can be successfully modeled by a distribution of effective two-level
systems (TLS) with two stable equilibria, represented by a particle in an
asymmetric double-well potential [186]. These potentials are characterized
by the energy difference ∆ of the ground states in both potentials (the two
levels involved), and the height V of the energy barrier separating the two
wells as shown in figure 2.16. Oscillating strain fields associated with an
acoustic excitation modulate the energy difference ∆ between the two poten-
tial minima, and thereby couple to the TLS.

V

Figure 2.16: Double-well potential used to model the structural defects in glass. The
two individual wells (dashed lines) are usually assumed to be identical, but to have a
ground-state energy that differs by an energy ∆. The two stable equilibria are separated
by a barrier of height V .

To a very good approximation, the resulting Debye relaxation of acoustic
excitations leads to a quality factor given by [187]

Q−1
TLS =

γ2

ρv2kBT

Z +∞

−∞

Z +∞

0

P (∆, V ) sech2

„
∆

2kBT

«
Ωτ

1 + Ω2τ 2
dV d∆,

(2.84)
where γ = 1

2∂∆/∂ε is the change of the potential asymmetry as a function
of strain ε, ρ is the density, v sound velocity, and P (∆, V ) is the distribution
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of TLS in the energy parameters ∆ and V in the sense that P (∆, V )dV d∆
is a volume density of defects.

At room temperature, the relaxation between the two stable states is
dominated by thermally activated processes. The relaxation time is thus
given by an Arrhenius-type law

τ−1 = τ−1
0 e−V/kBT cosh

„
∆

2kBT

«

. (2.85)

Following the arguments given in reference [187], a sensible choice of the
distribution function P (∆, V ) yields eventually a quality factor of

Q−1
TLS = C · erf

„√
2kBT
∆c

«
1

kBT

Z ∞

0

„
V
V0

«−ζ

e−V 2/2V 2
0

Ωτ0eV/kBT

1 + Ω2τ 2
0 e2V/kBT

dV

(2.86)
reproducing the experimental data over four orders of magnitude in frequency
(11 kHz . . . 200 MHz) and two orders of magnitude in temperature (from a few
Kelvin to above room temperature) for the parameters V0 = (667±21) K ·kB,
ζ = 0.28 ± 0.03, log10(τ0/s) = −12.2 ± 0.18 and V0/∆c = 7.7 ± 0.7.

While usually measured as the attenuation of large-amplitude acoustic
waves in bulk material, the very same temperature dependence of the quality
factor was found for the RBM of spokes toroids with sufficiently low clamping
losses [11]. Figure 2.17 shows the measured quality factor of the RBMs of two
samples at frequencies of 36 and 63MHz. Simultaneously with the damping,
relaxation of the TLS also leads to a change in the sound velocity, giving
rise to a frequency shift of the mechanical modes, which is also shown in
figure 2.17. At temperatures above 10K, the damping can be accurately
described by the model in (2.86), with a peak damping at about 50 K leading
to a minimum quality factor of QTLS ≈ 500.

Below 10 K, the relaxation is dominated by tunneling processes between
the two equilibria [186, 189], instead of the thermally-activated relaxation.
The tunneling relaxation is responsible both for the low-temperature plateau
(Qm ≈ 1200 at 5 K) and the roll-off at very low temperatures with Q−1

TLS ∝
T 3/Ω. For completeness, we note that apart from damping via relaxation,
at sufficiently low temperatures, direct absorption of acoustic waves by the
TLS also leads to damping, which gets saturated at high enough amplitudes
[186,190].

Other damping mechanisms, as described by Qother, include thermoelastic
damping [191,192], damping by anharmonicity [187], and surface effects [193].
For silica microtoroids or spheres, these effects are individually estimated to
lead to limiting quality factors on the order of 105 or more. In particular
when operating the resonators at cryogenic temperatures—as required for
advanced experiments in cavity optomechanics—these damping mechanisms
can be safely neglected against the damping due to TLS.
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2.3 Silica WGM resonators as optomechanical systems

Figure 2.17: Quality factor of the RBMs of two samples which are dominated by the
damping due to coupling to structural defects in glass. Solid line is a fit using the model
(2.86), and the dashed lines are experimental data from an acoustic wave attenuation
experiment at 40 MHz [188]. The inset shows the relative frequency shift of the RBM
induced by the relaxation of TLS. Reprinted figure with permission from Arcizet et al.,
Physical Review A 80, 021803(R) (2009). Copyright 2009 by the American Physical
Society (reference [11]).

2.3.3 Optomechanical coupling

In order to describe optomechanical effects in the simple way of equations
(2.12) and (2.13), it is necessary to map the mechanical modes of interest to
an effective one-dimensional mechanical oscillator, described by a displace-
ment x, which parametrically modulates the optical resonance frequency
through a non-zero g0 = dωc/dx. For optomechanical devices which host
optical and mechanical modes with complex three-dimensional mode distri-
bution such as silica microtoroidal resonators (figure 2.18), this mapping can
be non-trivial.

Mapping to a scalar displacement

To formally describe this mapping, a weighting function !w(!r) is introduced,
mapping the displacement field u(!r, t) to a scalar displacement x according
to

x(t) =

Z

V

!w(!r) · !u(!r, t)d3r =
X

n

cn(t)

Z

V

!w(!r) · !u0
n(!r)d3r (2.87)

≡
X

n

cn(t)
˙

!w, !u0
n

¸

, (2.88)
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optical WGM mechanical RBM

Figure 2.18: Mode shapes of optical and mechanical modes in a silica microtoroidal res-
onator (FEM simulations), which have to be taken into account to quantify the strength
of optomechanical interaction.

where the decomposition of the displacement pattern !u as presented in eq.
(2.61) is used. For each mechanical mode, the overlap integral 〈!w, !u0

n〉 deter-
mines the relative strength of the transduction of the n-th mode amplitude
cn(t) into the optically sampled displacement x(t). The global normalization
of !w(!r) is, in principle, arbitrary, as it can be compensated by an adequate
choice of g0 = dωc/dx. For example, it can be chosen such that the displace-
ment of a particular part of one mode’s displacement pattern (such as the
antinode of a beam’s fundamental mode) directly corresponds to x [167].

For the most generic optomechanical systems, there are other obvious
choices. For example, for a Fabry-Perot cavity, the normalization is chosen
such that x corresponds to the center-of-mass mirror movement if it was
displaced as a whole. Thus, if the laser spot on a mirror at z = z0, which
contains the mechanical modes, is given by a rotationally symmetric Gaussian
with a waist of w0, the weighting function reads [100,194]

!w(!r) =
2

πw2
0

e−2r2/w2
0δ(z − z0)!ez. (2.89)

With this weighting function, the correct frequency shift is obtained using
the coupling constant g0 = −ωc/L, where L is the total length of the cavity.

In the case of silica WGM resonators, with their three-dimensional dis-
tributions of optical and mechanical fields, the calculation of the effective
displacement is more difficult. A sensible approximation may be obtained by
considering the mechanical displacement a perturbation, which does not mod-
ify the optical fields, but only displaces polarizable matter within the optical
field distribution. The resulting relative frequency shift equals the relative
change in the electromagnetic energy stored in the mode, as the number of
stored photons, each of energy !ωc, is conserved in the cavity [195]. The
resulting frequency shifts reads

δωc

ωc
=

δEem

Eem
=

R
1
2E2(!r)!∇ε(!r) · !u(!r)d3r

2
R

1
2E2(!r)ε(!r)d3r

(2.90)
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where E2(!r) is the squared magnitude of the electric field, and the factor 2 in
the denominator is due to the fact that equal amounts of energy are stored
in both the electric and magnetic fields. Note however that the magnetic
energy does not shift upon a displacement of the boundary, as the magnetic
permeability of glass is very close to unity. For a resonator made out of a
homogeneous dielectric material, the integral in the nominator is essentially a
surface integral over the boundary, as !∇ε(!r) is zero everywhere except for the
surface. We use the coupling constant g0 = −ωc/R, expressing the frequency
shift as a consequence of an effective radius change. One then finally obtains

!w(!r) = − R
Eem

· 1
2
E2(!r)!∇ε(!r). (2.91)

As (2.91) is difficult to evaluate in complex geometries, a useful approxima-
tion is given by

!w(!r) ≈ 1
2πR

δ(z − z0)δ(r − R)!er. (2.92)

where R is the major radius and z = z0 the plane of the equator of the
toroid. This weighting function essentially considers the transverse size of the
optical mode as negligibly small compared to the scales of the displacement
patterns, and the resulting displacement x corresponds to the change of the
cavity radius, which is sampled by the optical mode. In this work, (2.92) is
applied to derive the displacement induced by the excitation of a particular
WGM from the results of FEM simulations.

We finally note that in a dielectric resonator, it is important to also con-
sider strain-optical effects, that is, a strain-dependent refractive index leading
to additional resonance frequency shifts for a given excitation of the mechan-
ical mode. This effect was indeed found to dominate the optomechanical
coupling in a cryogenic sapphire microwave WGM resonator [196]. To assess
the relative contribution in silica WGM microresonators, we may use the
analytic expressions for the strain field (2.67)–(2.69) in a microsphere to cal-
culate the corresponding change in the refractive index as experienced by the
optical mode. Due to the homogeneity of the strain fields on the scale of the
optical mode cross section, it can be well approximated by just evaluating
the strain fields at the edge of the sphere using [197]

δ
`

n−2´

TE
= p2εrr + p1εθθ + p2εφφ (2.93)

δ
`

n−2´

TM
= p1εrr + p2εθθ + p2εϕϕ, (2.94)

where the required coefficients of the photo-elastic tensor are given by p1 =
0.121 and p2 = 0.270 [198]. This leads to an extra frequency shift by about
30% (TE modes) and 50% (TM modes), as compared to the shift induced
by the displacement of the boundary alone. Evaluation of the strain-optical
coupling in a toroid is not possible analytically. For typical torus geometries
as used in this work, however, we can extract an extra frequency shift by less
than 20% from FEM simulations, in agreement with an earlier estimate [181].
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Effective mass

As a global coupling coefficient g0 is used to quantify the coupling strength
of an effective displacement x to the resonance frequency ωc of the cavity, it
is necessary to absorb the different coupling strengths of different mechanical
modes into another parameter. This parameter is referred to as the effective
mass of the individual mechanical modes [194,199].

An operational definition of the effective mass of one particular mode
(labeled in the following with an index n) can be derived from its potential
energy Un which can be recast from (2.76) to

Un =
1
2
Mn Ωn (cn(t))2 (2.95)

using the free-boundary conditions [194] and the definition of the moving
mass

Mn =

Z

V

ρ|!u0
n(!r)|2d3r. (2.96)

As cn(t) is experimentally not accessible, we want to express the potential
energy in terms of the measured displacement of the mode,

xn(t) =

Z

V

!w(!r) · !un(!r, t)d3r = cn(t)
˙

!w, !u0
n

¸

, (2.97)

and therefore require

Un =
1
2
meff,n Ω2

n (xn(t))2. (2.98)

This immediately leads to the formal definition

meff,n ≡ Mn

〈!w, !u0
n〉2

. (2.99)

In practice, (2.98) is used to calculate the effective masses from experimental
data (where, for a given g0, x is directly measured, and Un ≈ kBT/2) or
FEM simulations, from which xn and Un can be simultaneously extracted.

The effective masses of the fundamental sphere modes can be calculated
analytically, as both the potential energy (2.77) and the resonance frequency
(2.75) as a function of the radius R are known, yielding the numeric relation
meff = 8470 kg/m3 ·R3 for silica, so about 30 ng for a 30 µm-diameter sphere.
The numerical values for the RBMs in silica microtoroids are slightly lower,
in the range of 3 to 20 ng for the typical dimensions used.
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Forces acting on the mechanical modes

To calculate the radiation pressure force acting on the mechanical modes, it
is necessary to assess the momentum transfer from the optical mode to the
dielectric medium. The fundamental starting point for such an analysis in a
complex geometry such as a silica WGM resonator is the flux of momentum
density of the electromagnetic field in the medium [200,201]

Tij = −EiDj − HiBj +
1
2
δij

 
X

k

EkDk +
X

k

HkBk

!

, (2.100)

where E, D, H and B denote the usual electric and magnetic fields, indices
i and j denote the cartesian components of vectors and tensors, and δij

is the Kronecker-delta. In vacuum, the entity Tij is usually referred to as

Maxwell’s stress tensor. The body force !f , that is, the force density acting
on the medium, is given by the divergence of this flux, plus a contribution
from a temporal change of the flux density

fi = −
X

j

∂Tij

∂xj
− ∂

∂t
1
c2

Si (2.101)

where
!S = !E × !H (2.102)

is the real-valued Poynting vector. With !D = ε !E and !B = µ !H we can write
this as

!f = −1
2

!E !E !∇ε − 1
2

!H !H !∇µ +

„
εµ

ε0µ0
− 1

«
1
c2

∂
∂t

( !E × !H) (2.103)

where Maxwell’s equations !∇ · !D = 0, !∇ · !B = 0, !∇ × !E = −µ∂!H/∂t and
!∇ × !H = +ε∂!E/∂t were used [200]. We will neglect in the following the
last term, the so-called Abraham force.5 Furthermore, we neglect the second
term due to the close-to-unity magnetic permeability of normal glass and
obtain finally

!f(!r) ≈ −1
2
E2(!r)2 !∇ε(!r). (2.104)

This body force can be recast to

!f(!r) = !w(!r)
Eem

R
≡ !w(!r)Frp (2.105)

using (2.91) and the scalar radiation pressure force from (2.39)

Frp = −g0
Eem

ω
. (2.106)

5The nature of this force has also remained a contentious issue for decades [201].
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2. Cavity optomechanics

Note that (2.105) also holds for the simplified assumptions leading to the
simplified weighting function (2.92): If all optical power is concentrated to
the rim of the toroid, an estimate for the force density can be derived from
a simple consideration: A line element R dϕ contains the fraction dϕ/2π
of the total number of Eem/!ω intracavity photons, where Eem is the total
electromagnetic energy stored in the resonator. Within the time nR dϕ/c,
each photon transfers a fraction of sin dϕ ≈ dϕ of its momentum !k to the
wall, yielding eventually

!f(!r) =
1

Rdϕ
dϕ
2π

Eem

!ω
!k dϕ

nR dϕ/c
δ(z − z0)δ(r − R)!er = !w(!r)

Eem

R
. (2.107)

Irrespective of the detailed form of the weighting function, the energy of
the mechanical system reads [194]

H =
X

n

1
2
Mn (ċn(t))2 +

1
2
MnΩ2

n (cn(t))2 − 〈!f, !u〉 (2.108)

where strain-optical effects are neglected for simplicity. This leads to the
following equations of motion for the mechanical mode amplitudes

c̈n + Ω2
ncn =

1
Mn

〈!f, !u0
n〉 (2.109)

or, in Fourier domain,

cn(Ω) =
1

Mn(Ω2
n − Ω2 − iΩΓn)

·
“

〈!f(Ω), !u0
n〉 + FT,n(Ω)

”

(2.110)

where the damping Γn and the corresponding fluctuational force FT have
been introduced as well. As only the projection xn of the excitation of the
mechanical mode is measured, one obtains

xn(Ω) = 〈!w, !u0
n〉cn(Ω) =

〈!w, !u0
n〉

Mn(Ωn − Ω2 − iΩΓn)
·
“

〈!f(Ω), !u0
n〉 + δFT,n(Ω)

”

=
〈!w, !u0

n〉2

Mn(Ωn − Ω2 − iΩΓn)

„

Frp(Ω) +
δFT,n(Ω)
〈!w, !u0

n〉

«

=
1

meff,n(Ωn − Ω2 − iΩΓn)

„

Frp(Ω) +
δFT,n(Ω)
〈!w, !u0

n〉

«

. (2.111)

The fluctuational thermal force δFT,n used here obeys

〈δFT,n(Ω)δFT,n(Ω′)〉 = 2πδ(Ω + Ω′)!MnΓmΩ

„

coth

„
!Ω

2kBT

«

+ 1

«

.

(2.112)
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2.3 Silica WGM resonators as optomechanical systems

However, an effective thermal force δFth,n is usually introduced, in which Mn

is replaced by meff,n. This directly reads to desired correlator (2.55). As a
consequence, the displacement fluctuations can be written as

xn(Ω) =
1

meff,n(Ωn − Ω2 − iΩΓn)
(Frp(Ω) + δFth,n(Ω)) (2.113)

in the Fourier domain. This is the very one-dimensional description used in
section 2.2.

As an illustration of the influence of the effective mass, figure 2.19 shows
the spectrum S̄xx(Ω) of the fluctuations of x =

P

n xn for a toroid driven by
thermal noise according to (2.113). Data were extracted from FEM simula-
tions for toroids the major radius of which has been continuously swept from
35 to 100 µm. Frequencies are a direct simulation result, and the effective
masses were extracted using (2.92). All quality factors were, for simplicity,
assumed to equal 5000. Clearly, the strong signature of the RBM can be dis-
cerned for its low effective mass, on top of the background of weaker flexural
modes. At a major diameter of ∼ 75µm, the avoided crossing discussed in
section 2.3.2 is also apparent.
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Figure 2.19: Color-coded displacement noise spectrum of a toroid with a 1 µm thick silica
disk, a 4 µm minor diameter, 90% undercut and a varying major diameter, as simulated
using FEM.
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2. Cavity optomechanics

2.4 Ultrahigh-sensitivity interferometric motion trans-
duction

As a first application, optomechanical coupling as present in WGM resonators
allows to monitor mechanical displacements using the optical degree of free-
dom. While in early work the separation of two resonators was measured in
this manner [202], we focus here on the measurement of displacements re-
lated to the internal mechanical modes of WGM resonators [9]. The principal
idea of such a measurement is illustrated in figure 2.20. In the following, the
theoretical limits, possible experimental implementations, and experimental
results will be presented.

whispering
gallery
mode

radial
breathing

mode

sin sout
~

0
.1

 m
m

x(t)a

Figure 2.20: High-sensitivity displacement sensing using optomechanical coupling. Left
panel: an input field sin is launched into the taper and resonantly coupled to the WGM.
The properties of the intracavity field a and the field sout coupled back to the fiber taper
are modified by the displacement x(t) of the RBM. Right panel: the launched field at
frequency ωl (green line) acquires a phase shift that depends on the mutual detuning
of laser and cavity resonance frequency (lower red curve, dashed red curve indicates
the WGM Lorentzian as a reference). If the displacement x(t) modulates the WGM
resonance frequency, the phase ϕ(t) of the emerging field sout is also modulated. This
phase modulation can be detected with quantum-limited sensitivity by comparison with
an optical phase reference.

2.4.1 Theoretical limits in displacement sensing

We first explore the theoretical limits in the sensitivity of the measurement,
and restrict ourselves to the simple case of resonant probing ∆̄ = 0 (for a more
general discussion, see section 2.7). In this case, the dynamical properties of
the mechanical oscillator are not affected by the presence of the light in the
cavity, that is Γdba = Ωdba = 0 in equations (2.29) and (2.30). Still, the light
can be used as a sensitive probe for the mechanical mode; in the following
we discuss the performance and theoretical limitations of this method.
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2.4 Ultrahigh-sensitivity interferometric motion transduction

Quantum noise

To analyze the fundamental quantum limits, we directly calculate from the
relations (2.50)–(2.57) the noise in the light field at the output

δŝout(Ω) = δŝin(Ω) −
√

ηcκ

−iΩ + κ/2

„

−ig0āδx̂(Ω) +
δŝin(Ω)√

τex
+

δŝvac(Ω)√
τ0

«

(2.114)
and analogous for δŝ†out(Ω). For resonant probing, the mean field at the
cavity output is real, and therefore the phase quadrature is directly given by

δq̂out(Ω) = i
“

−δŝout(Ω) + δŝ†out(Ω)
”

. (2.115)

For the symmetrized noise spectral density6 of the phase quadrature at the
output, defined by

S̄out
qq (Ω) =

1
2

`

Sout
qq (+Ω) + Sout

qq (−Ω)
´

(2.116)

with

2πδ(Ω + Ω′)Sout
qq (Ω) = 〈δq̂out(Ω)δq̂†out(Ω

′)〉 (2.117)

we get

S̄out
qq (Ω) = 1 +

4ā2g2
0ηcκ

Ω2 + (κ/2)2
S̄xx(Ω) (2.118)

with the correlators from (2.53)-(2.54). Evidently, the noise spectrum of
the phase quadrature contains information on the mechanical displacement
spectrum S̄xx, but also a background term (in this normalization, 1) which
is due to the quantum noise. This background constitutes the fundamental
imprecision of the measurement, and reads

Sim,qn
xx (Ω) =

Ω2 + (κ/2)2

4ā2g2
0ηcκ

(2.119)

if expressed as an equivalent displacement noise. In other words, the impreci-
sion is the apparent displacement noise measured in such an experiment, due
to the inevitable quantum noise in the measurement of the probing light’s
phase quadrature.

Recast to experimentally more accessible parameters, (2.119) determines
the smallest possible displacement δxmin(Ω) which can be measured using a
WGM resonator [9]

δxmin(Ω)√
∆f

=
q

S̄im,qn
xx (Ω) =

λ

16πFηc

p

Pin/!ωl

s

1 +

„
Ω

κ/2

«2

(2.120)

6Note that double-sided spectral densities are calculated in this chapter.
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2. Cavity optomechanics

where λ is the wavelength in the medium and ∆f the measurement band-
width. Written this way, the importance of high-finesse cavities is directly
evident: The smallest displacement that can be measured is roughly given by
the wavelength, divided by the cavity finesse and the square root of the num-
ber of photons accumulated in the measurement time (inverse bandwidth).
The term

p

1 + 4Ω2/κ2 is due to a less efficient transduction of the motion
into phase shift for Fourier frequencies beyond the cavity cutoff.

As an aside, we remark that the same result can be obtained by con-
sidering the classical transduction of a displacement into the phase of the
light exiting the cavity and comparing the result with the shot noise in the
measurement of the light phase [8]. Importantly, (2.119) and (2.120) are in-
dependent of particular strategy used to detect the light’s phase, as long as
it can be achieved in a quantum-limited manner. Two strategies to accom-
plish this, namely homodyne and polarization spectroscopy, are described in
section 2.4.2.

As first discussed by Braginsky [94], it is inevitable that the measurement
of the oscillator’s position disturbs it (“measurement backaction”). In the
case of an optomechanical system, this is due to the fluctuations of intracavity
radiation pressure [103], which can be written as

δF̂rp(Ω) = −!g0ā
“

δâ(Ω) + δâ†(Ω)
”

(2.121)

in (2.52). Again from the known correlators, we obtain here

S̄ba,qn
F F (Ω) =

ā2g2
0κ!

2

Ω2 + (κ/2)2
, (2.122)

if the input noise is again just quantum noise. In this case, the force noise
(2.122) is referred to as quantum backaction. Evidently, (2.119) and (2.122)
fulfill the quantum-mechanically required inequality in the imprecision-back-
action product [94]

S̄im,qn
xx (Ω) · S̄ba

F F (Ω) =
!

2

4ηc
≥ !

2

4
. (2.123)

By causing additional displacement fluctuations in the mechanical os-
cillator, backaction noise also impedes the determination of the oscillator’s
displacement. The total uncertainty in the measurement is therefore given
by

S̄tot
xx (Ω) = S̄im,qn

xx (Ω) + |χ(Ω)|2S̄ba,qn
F F (Ω), (2.124)

where

χ(Ω) =
1

meff(Ω2
m − Ω2 − iΩΓm)

(2.125)

is the susceptibility of the mechanical oscillator. Obviously, a tradeoff in
terms of the “strength” ∝ g2

0 ā2 of the measurement has to be made, as
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Figure 2.21: Quantum limits in the measurement of mechanical displacements (blue line).
For weak probing ā2 < ā2

SQL, measurement imprecision dominates the total uncertainty,

while for stronger probing ā2 > ā2
SQL, the noise in the mechanical oscillator induced

by quantum backaction dominates the uncertainty. For optimum measurements with
ā2 = ā2

SQL, the uncertainty is at the standard quantum limit S̄SQL
xx (Ωm) = !/meffΓmΩm.

Under laboratory conditions, thermal noise is additionally present (red line).

imprecision reduces, but backaction increases for “stronger” measurements
[103,104], as illustrated in figure 2.21. Optimum measurement conditions are
reached for

ā2 = ā2
SQL =

meffΓmΩm

2g2
0!κ

√
ηc

(Ω2
m + (κ/2)2), (2.126)

or, equivalently an input power of PSQL = !ωκā2
SQL/4ηc. In this case, one

obtains a total uncertainty of [9]

S̄SQL
xx (Ω) =

! |χ(Ω)|
√

ηc
=

!

meff

p

ηc((Ω2
m − Ω2)2 + Γ2

mΩ2)
, (2.127)

called the standard quantum limit [94,103] in the case ηc = 1. Its peak value
is calculated at Ωm,

S̄SQL
xx (Ωm) =

1
√

ηc

!

meffΓmΩm
. (2.128)

In this calculation we have explicitly considered the effect of the cou-
pling conditions to the cavity, which can—as a unique feature—be varied
continuously in the experiment by adjusting the gap between the coupling
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2. Cavity optomechanics

waveguide and the WGM resonator. The SQL is approached most closely in
the overcoupled limit τex / τ0. It is noteworthy that the fibre-taper coupling
technique to microtoroids can deeply enter this regime, and 100 · τex < τ0

(ηc = 99%) has been demonstrated [62].

Laser technical noise

The previous derivation deals with the fundamental sensitivity limits. A
frequent technical limitation is due to excess (beyond the fundamental) noise
of the laser used for probing. Frequency noise in the laser, characterized by
a power spectral density S̄ωω(Ω), correspond to a higher level of fluctuations
in the input phase quadrature,

S̄in
qq(Ω) = 1 +

4|s̄in|2

Ω2
S̄ωω(Ω), (2.129)

raising the background on top of which the displacement spectrum has to be
observed. Note also that most schemes to measure the phase of the light rely
on a phase reference. If this reference is noisy, because it is derived from the
same noisy laser, the imprecision in the displacement measurement is given
simply by

S̄im,fn
xx (Ω) =

S̄ωω(Ω)
g2
0

(2.130)

if the frequency noise overwhelms quantum noise in the measurement.

Thermorefractive noise

Another important source of noise potentially preventing the measurement of
mechanical displacements with quantum-limited sensitivity are fluctuations
of the resonance frequency of the WGM [203] which are not related to the
mechanical oscillators. For a dielectric resonator as silica microspheres or
-toroids, the dominant effect to be considered here are fluctuations of the
refractive index due to temperature fluctuations. At any finite mean tem-
perature T̄ , the actual average temperature TV in a volume V fluctuates
according to [204]

˙

(TV − T̄ )2
¸

=
kBT̄ 2

cpV ρ
, (2.131)

where ρ is the material density, and cp the specific heat capacity. This applies
in particular also to the mode volume, within which the WGM samples the
temperature-dependent refractive index.

To calculate the frequency spectrum of the resulting fluctuations, Go-
rodetsky and Grudinin [205] have used a Langevin approach, introducing
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2.4 Ultrahigh-sensitivity interferometric motion transduction

fluctuational driving terms into the dynamic equations of temperature diffu-
sion [206,207]. As a result, the imprecision due to thermorefractive noise in
a silica WGM resonator can be estimated to amount to

S̄im,tr
xx (Ω) = R2S̄δn/n(Ω) ≈

≈ kBT 2kR
π5/2n2ρ2c2

p

1√
d2 − b2

„
dn
dT

«2 Z +∞

0

q2e−
q2b2

2

D2q4 + Ω2

dq
2π

(2.132)

where k is heat conductivity, R the cavity radius, and d and b the transverse
mode dimensions. At low frequency (" 10MHz), this noise can dominate the
measurement imprecision (cf. section 2.4.3).

2.4.2 Experimental techniques

Homodyne spectroscopy

A commonly employed technique for quantum-limited phase measurement is
a balanced homodyne receiver [208], which has been used in earlier optome-
chanical experiments [125,126,209]. One possible adaptation of this technique
to the ring topology of a WGM resonator is shown in figure 2.22. The probing
(or signal) beam and a phase reference beam, referred to as the local oscilla-
tor (LO) are derived from the same laser, in this case a monolithic Nd:YAG
laser operating at λ = 1064 nm. This source exhibits quantum-limited am-
plitude and phase noise at Fourier frequencies Ω/2π # 5MHz and power
levels PLO + P " 5mW of interest. As tuning speed and range of this laser
are limited, it was found advantageous to use a home-built external-cavity
diode laser for pre-characterization of several samples until a suited toroid is
found. The probing beam is sent through the coupling taper and interacts
with the WGM of the studied toroid. The LO travels in the reference arm of
a Mach-Zehnder interferometer over the same distance. It is finally recom-
bined with the signal beam at a polarizing beam splitter (PBS1). Spatial
mode matching of the incident beams is enhanced by using single-mode fibre
as mode filter on the local oscillator. After spatial recombination, interfer-
ence is enforced using a retarder plate and another polarizing beam splitter
(PBS2).

As the relative phase of the two interfering beams is also subject to drifts
and fluctuations, due to, for example, temperature drift of the fiber in which
the reference beam propagates, active stabilization is necessary here. In one
possible implementation, this is accomplished by purposely introducing a
small polarization mismatch between the light in the taper region and the
either predominantly TE- or TM-like WGM modes of the microcavity. The
polarization component of the probing beam which does not interact with
the WGM resonance can then be used to stabilize the phase of the LO (see
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Figure 2.22: (a) Optical interferometric displacement transducer based on homodyne spec-
troscopy of light transmitted past the cavity (“µ-toroid”). The phase of the local oscilla-
tor is actively stabilized (“LO phase control”). Details are given in the text. PBS0-PBS3,
polarizing beam splitters. (b) Cross section through the fibre taper and the toroidal rim
in the coupling region. The polarization in the taper is slightly mismatched with the
polarization of the cavity mode. Thus only the part Ecav of the total field couples to
the WGM, the other component Elock can be used for the stabilization of the local os-
cillator phase. The components Ecav and Elock are separated in PBS1. (c) Signal in the
balanced receiver for a scanning local oscillator (dotted, blue) at low power, and for the
locked LO (red). The shown locked trace was recorded for about 5 seconds. (d) Typical
experimental error signal in the balanced receiver when the laser is scanned over a cavity
resonance with the local oscillator locked to the appropriate phase. Adapted from ref. [9].

70



2.4 Ultrahigh-sensitivity interferometric motion transduction

figure 2.22). In this case, a dispersive signal

h(∆) =
2ηcκ ∆

∆2 + (κ/2)2
√

PcavPLO, (2.133)

is obtained at the output of the balanced receiver comparing the other polar-
ization component (which is coupled to the WGM) with the LO. Here Pcav

and PLO are the powers of the probing and local oscillator beams and h(∆)
is the power difference measured between the two employed receivers. fig-
ure 2.22 shows an example of an experimental trace obtained when scanning
the laser detuning. Evidently, due to its dispersive shape, the d.c.-component
of this signal can be used to lock the laser frequency to the WGM resonance
frequency using electronic feedback.

In this way, the mean detuning can be stabilized to ∆̄ = 0 and with
∆ = ∆̄ − g0δx̂(Ω) the signal is directly given by

h∆̄=0(δx,Ω) ≈ −8ηcg0δx(Ω)
κ

s

PcavPLO

1 + (Ω/(κ/2))2
, (2.134)

where the reduced signal strength for Fourier frequencies Ω beyond the cavity
cutoff can be viewed as a consequence of the reduced buildup of intracavity
sidebands (2.7)7. For a strong local oscillator PLO . Pcav, the detection noise
is given by shot noise caused by the local oscillator beam, and the fluctuations
in the detected differential power are simply δh ≈

√
PLO !ωl. Comparison

with the signal (2.134) induced by displacements δx then directly give the
sensitivity (2.119).

Furthermore, as (2.133) evidently only depends on the mutual detuning
of laser and WGM resonance, frequency fluctuations of the laser are indis-
tinguishable from fluctuations due to mechanical displacement. In the case
of frequency noise of the laser, this leads directly to the imprecision de-
scribed by (2.130). On the other hand, an intentional frequency modulation
of controlled modulation depth of the laser can be utilized to calibrate the
measured signals: a frequency modulation of δω corresponds to a displace-
ment of amplitude g0δx, independent of the detuning and coupling condi-
tions8 [8, 124, 125, 205]. With the calibration at one particular modulation
frequency Ωmod, the measured spectra can be absolutely calibrated at all
Fourier frequencies, taking into account the reduced sensitivity beyond the
cavity cutoff at κ/2.

Polarization spectroscopy (Hänsch-Couillaud method)

A simplified setup may be obtained by copropagating the local oscillator in
the same spatial, but orthogonal polarization mode as compared to the signal

7A more detailed calculation is presented in the supplementary information of ref. [8].
8We emphasize that for this relation to be valid for arbitrary modulation frequencies,

it is necessary that the lengths of the two arms of the Mach-Zehnder interferometer are
equal.
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Figure 2.23: Optical interferometric displacement transducer based on polarization spec-
troscopy of light transmitted in the taper past the cavity (“µ-toroid”). (a) After phase
modulation with an electro-optic modulator, the polarization is prepared with a first
polarization control unit (PCU1). The cavity WGM defines signal and LO polarizations.
A second polarization control unit (PCU2) compensates for fibre birefringence. Polar-
ization analysis using a λ/4 plate and a polarizing beam splitter enforces interference of
the signal and LO fields. (b) Due to the polarization non-degeneracy of the WGM in the
cavity, only one polarization component of the light interacts with the mode. (c) Typical
error signal obtained when the laser is scanned over a cavity resonance. Adapted from
ref. [9].

beam [8]. Since the WGM modes have predominantly TE or TM character
and are not degenerate, this guarantees that the local oscillator is not affected
by the cavity. Due to common-mode rejection of many sources of noise in the
relative phase between signal and LO (for example, frequency noise in the
optical fibre), the passive stability is sufficiently enhanced to enable operation
without active stabilization (figure 2.23).

Enforcing interference between local oscillator and signal beams then cor-
responds to polarization analysis of the light (comprising both signal and LO)
emerging from the cavity. While novel in the present context of a tapered
fibre coupled microcavity, this is a well established technique to derive a dis-
persive error signal from the light reflected from a Fabry-Perot type reference
cavity, named after their inventors Hänsch and Couillaud [210].

If fiber birefringence is adequately compensated, the error signal reads

h(∆) =
2ηcκ ∆

∆2 + (κ/2)2
√

PcavPLO, (2.135)

identical to (2.133), and a typical trace is shown in figure 2.23(c). This is
used to lock the laser at resonance ∆̄ = 0 with a bandwidth of about 10 kHz.
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Calibration of the spectra may be performed as described in the previous
section.

While this approach obviously allows reducing the complexity of the ex-
periment, this arrangement proved more sensitive to slow temperature drifts
in the polarization mode dispersion of the fibres employed, due to the large
ratio of signal and LO powers, the magnitudes of which are only defined by
the polarization state of the light in the fibre taper region. Improved stability
may be obtained by reducing fibre length to its minimum of ca. 0.5m. For
reasons of flexibility and convenience, the actual fibre length totaled to sev-
eral meters in our experiment. Nonetheless, sensitivities of 10−18 m/

√
Hz are

achieved in toroids using this method [8]. The intrinsic polarization selectiv-
ity of WGM renders the introduction of an additional polarizer, mandatory
in the original implementation [210], obsolete. In an earlier experiment with
a Fabry-Perot cavity [134], the losses associated with an intracavity polar-
ization element limited the finesse, and therefore the attained sensitivity to
∼ 10−14 m/

√
Hz.

Frequency modulation spectroscopy (Pound-Drever-Hall method)

Another possible method to experimentally determine the detuning of laser
and WGM resonance is frequency modulation spectroscopy as introduced by
Pound, Drever and Hall [211] and discussed in great detail by Black [212].
Figure 2.24 shows a possible application of this scheme to WGM resonators.
The dispersive shape of the signal can be used to lock the laser to the WGM
resonance using electronic feedback. Fluctuations of the Pound-Drever-Hall
(PDH) signal beyond the feedback bandwidth then indicate fluctuations of
the WGM resonance frequency with respect to the laser frequency, and can
therefore be used to monitor displacements.

While both homodyne and polarization spectroscopy can attain the fun-
damental quantum-limited displacement sensitivity (2.119), the sensitivity of
the PDH method is reduced by a factor 1+ηc +(1−2ηc)

2/2J2
1 (β), where β is

the phase modulation depth and J1 a Bessel function of the first kind [213].
Note that even for a maximally overcoupled cavity with ηc → 1 this yields
2 + 1/2J2

1 (β). In practice, the displacement sensitivity using this method is
often limited by electronic noise in the detector. As essentially all light used
in this scheme interacts with the WGM (there is no phase reference beam
in a different spatial or polarization mode), the total power levels must be
kept low in order to prevent strong thermal nonlinearities. These light levels
(typically a few microwatts) are not sufficient to overwhelm the electronic
noise of broadband light receivers. If available at the particular wavelength
of interest, a low-noise optical amplifier such as an erbium-doped fiber am-
plifier (EDFA) can however ameliorate this drawback [11] at the expense of
a higher noise figure.
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Figure 2.24: Displacement measurement using the Pound-Drever-Hall method [211]. a)
The phase of the probing laser is phase-modulated at a radio-frequency of typically 50–
100 MHz using a fiber-coupled electro-optic modulator (EOM). After interaction with
the WGM, the detected signal is demodulated at the same frequency. The demodula-
tion quadrature is chosen by adjusting the phase ϕ of the radio-frequency wave. In the
simplest case, this can be accomplished by adjusting the length of the cable carrying the
signal. The demodulated signal is low-pass filtered at a bandwidth well below the mod-
ulation signal. The resulting signal “PDH” can be used to monitor the detuning of laser
and WGM resonance, and is also suited to electronically stabilize the laser frequency to
the WGM. In addition, the transmission “T” of the WGM can be directly monitored.
FPC, fiber polarization controller. b) Typical traces of transmission and PDH signals
obtained with a silica toroidal WGM upon a laser frequency scan in the presence of ther-
mal bistability. The satellite dips in the transmission signal appear when the modulation
sidebands are scanned over the WGM frequency.
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1

50

Frequency (MHz)

40302010

0.1

10

100
D

is
p
la

ce
m

e
n
t 
n
o
is

e
 s

p
e
ct

ra
l d

e
n
si

ty
 (

1
0

-1
8
 m

/H
z1

/2
)

ca
lib

ra
tio

n

Figure 2.25: Equivalent displacement noise measured in a ∼ 90 µm-diameter silica toroidal
cavity. Red, measured trace with laser coupled to a cavity resonance, including a peak
at 36 MHz due to phase modulation for calibration purposes. Gray, measured shot noise
with taper retracted from the cavity and black, detector noise. Models for mechanical
noise (orange line) and thermorefractive noise (green line), and sum of the two models
plus the shot noise background (blue line) are also shown. Adapted from ref. [9].

2.4.3 Observation and analysis of quantum and thermal noise

Figure 2.25 shows data obtained using homodyne spectroscopy on a toroid of
about 45 µm radius. As long as the taper is retracted from the WGM evanes-
cent field, quantum shot noise is observed to exceed the electronic detector
noise. Note that while the detected shot noise (due to the local oscillator)
is spectrally flat (white noise) to a good approximation, the equivalent dis-
placement noise plotted in figure 2.25 exhibits a calculated

p

1 + Ω2/(κ/2)2

frequency dependence beyond the cavity cutoff at κ/2 ≈ 2π · 17MHz due to
the Fourier frequency-dependent transduction (2.134).

Approaching the taper to the resonator, and locking the laser to the WGM
resonance, a substantially different spectrum is observed (figure 2.25). The
equivalent displacement noise is calibrated in absolute terms using an a priori
known phase modulation at 36MHz, as explained in subsection 2.4.2, taking
also the cavity cutoff into account. While the background due to quantum
measurement imprecision is at a level of 10−19 m/

√
Hz at low Fourier fre-

quency, a significantly higher equivalent displacement noise level is observed
when coupling the laser to the WGM.

The broad background particularly strong at low frequency can be quan-
titatively reproduced by the model for thermorefractive noise (2.132), when
no parameters except b and the absolute magnitude are adjusted by factors of
order 2. This is justified considering the approximations made in the deriva-
tion, and the incomplete knowledge on the transverse mode shape of the
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2. Cavity optomechanics

WGM probed in this experiment. We note here as an aside that thermore-
fractive noise, measured here for the first time in a toroidal microresonator,
is an important limitation for the generation of Kerr squeezing in these de-
vices [214].

On top of these backgrounds, a sparse spectrum of peaks is observed,
which are due to different mechanical modes in the spectrum. In this mea-
surement at room temperature, the thermal Langevin force largely dominates
over radiation pressure force fluctuations. Therefore, each individual mode
is driven by a random thermal force according to equation (2.113), and the
thermal displacement noise spectra of the individual modes add up to the
total measured equivalent displacement noise

S̄tot
xx (Ω) ≈ S̄im,qn

xx (Ω) + S̄im,tr
xx (Ω) +

X

n

|χn(Ω)|2S̄th,n
F F (Ω), (2.136)

where the symmetrized spectrum of the Langevin force is given, from (2.55),
by

S̄th,n
F F (Ω) = ! meff,n ΓnΩ coth

„
!Ω

2kBT

«

≈ 2meff,n Γn kBT, (2.137)

where the second relation is valid as long as kBT . !Ω for the frequencies
of interest.

Figure 2.26 shows another example of a highly sensitive measurement,
using the Hänsch-Couillaud technique in this case. Beyond the clear signa-
tures of the RBM at around 73MHz, fifteen other peaks related to mechanical
modes are observed. Zooms on the individual peaks reveal that some are split,
typically observed in modes whose degeneracy is lifted by residual asymme-
try of the sample. The mode frequencies can be reproduced very accurately
using finite element modeling; the peaks shown in this figure correspond to
the modes discussed in section 2.3.2 (cf. also figures 2.11 and 2.12).

Finally, in figure 2.27, a zoom on the signature of a RBM of a larger sam-
ple (R = 38 µm) is shown. The measurement achieves a signal-to-background
ratio of nearly 60 dB determined by measurement imprecision due to detec-
tion shot noise. This dynamic range exceeds the ratio

|χ(Ωm)|2S̄the
F F (Ωm)

S̄SQL
xx (Ωm)

≈ 2〈n〉. (2.138)

We can therefore conclude that the imprecision background, at a level of
1.1 am/

√
Hz, is below the standard quantum limit, calculated to S̄SQL

xx (Ωm) =
(2.2 am/

√
Hz)2 for this sample with Ωm/2π = 40.6 MHz, Γm/2π = 1.3 kHz

and meff = 10 ng. We emphasize however, that this does not imply that mea-
surements with a better total uncertainty than the standard quantum limit
are possible. Quantum backaction-induced fluctuations in the mechanical
displacement increase the position uncertainty, but are masked by thermal
noise in this measurement.
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Figure 2.26: Broadband displacement noise spectrum recorded using the Hänsch-
Couillaud technique (top panel). Zooms on the individual peaks (lower panels) reveal
the precise frequency and linewidth of the modes (scale bar corresponds to a 100 kHz
frequency span), some of which are split due to a lifted degeneracy. All observed peaks
could be attributed to mechanical modes using finite element modeling (section 2.3.2).
Adapted from ref. [9].

2.5 Observation of dynamical backaction

In contrast to the resonant probing scenario discussed in the previous section,
the dynamics of the mechanical oscillator get modified by radiation-pressure
backaction if the optical mode is pumped in a detuned manner. This so-called
“dynamical backaction” not only modifies the effective damping and spring
constant of the mechanical oscillators, but, as we will show in the following,
also leads to an energy exchange between optical and mechanical modes.

Predicted as early as the 1960ies by Braginsky [97], dynamical backac-
tion has been observed early on in mechanical devices coupled to microwave
resonators [98, 99, 215–217]. In the optical domain, dynamical backaction
induced by radiation pressure has been first observed by the Vahala group
in 2005 in the form of an oscillatory instability and studied in great de-
tail [181,218–221].

Here, we present a systematic study of dynamical backaction as observed
in silica microresonators, in particular its dependence on the relevant frequen-
cies κ, Ωm and ∆̄, and briefly introduce the oscillatory instability described
above. In the second part, we focus on the case of negative detuning ∆̄ < 0.
In this case, the light field extracts energy from the mechanical mode, leading
to the cooling of the latter. This effect was first reported by our group in
Garching [1] and groups in Paris [138] and Vienna [141]. Finally, we rule out
thermal nonlinearities as the origin of optomechanical interactions in silica
microtoroids.
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Figure 2.27: High sensitivity-measurement of the RBM of a larger sample using the
Hänsch-Couillaud technique. Orange circles represent measured data, revealing also the
signatures of two neighboring modes, dark red line is a Lorentzian fit. Blue circles are the
recorded measurement imprecision due to detection shot noise. An excellent signal-to-
background ratio of nearly 60 dB is attained, corresponding to a measurement imprecision
of 1.1 am/

√
Hz, which is well below the standard quantum limit at 2.2 am/

√
Hz.

2.5.1 Optical spring and optical damping

For a detuned optical pump, we have found in section 2.2.1 that the presence
of light modifies the dynamics of the mechanical degree of freedom when it
responds to an external force. In an intuitive picture, this can be understood
as the consequence of the in-phase and quadrature response of the radiation-
pressure force, when the mechanical oscillator is driven by the external force.
The same result is formally attained using the quantum Langevin approach.
Disregarding, in a first step, the quantum fluctuations of the light (δŝin =
δŝvac → 0)9, the radiation pressure force fluctuations in Fourier space read

δF̂rp(Ω) = i!g2
0 ā2 δx̂(Ω)

„
1

−i(∆̄ + Ω) + κ/2
− 1

+i(∆̄ − Ω) + κ/2

«

, (2.139)

equivalent to (2.26). As a consequence, the mechanical oscillator reacts to
the thermal Langevin force with the effective susceptibility already derived
in (2.28).

9This simplification is justified as long as the thermal Langevin force largely exceeds
force fluctuations due to the quantum nature of the light.
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2.5 Observation of dynamical backaction

To confirm these predictions, a series of measurements was taken using
the setup described in figure 2.28. A 980 nm-wavelength diode laser was
locked to a resonance of the silica microtoroid, using simply the transmission
signal as an error signal, from which an offset can be subtracted to control
the detuning. Moderate optical quality factors (Q < 107) and low optical
powers (Pin ∼ 200 µW) ensure that thermal nonlinearities are weak enough
to still allow stable locking.

Applying this procedure to both the red (∆̄ < 0) and blue (∆̄ > 0)
wing of the optical resonance by changing the sign of the error signal, a
detuning series can be recorded. From the transmission signal level with
the laser locked to the side of the fringe, the relative detuning ∆̄/κ can be
determined. At the same time, the fluctuations of the transmitted power,
as recorded by the spectrum analyzer, reflect the position fluctuations of the
mechanical modes.

Driven predominantly by the thermal Langevin force with its essentially
frequency-independent spectrum (2.137), the measured displacement spec-
trum directly reveals the effective susceptibility of the mechanical mode. It
is therefore possible to extract the effective damping and resonance frequency
of the mode using the fit model (2.28). Figure 2.29 shows the data obtained
from the 56.5 MHz-RBM of a silica microtoroid together with fits by the mod-
els (2.32) and (2.31). The measured changes in both damping and resonance
frequency agree well with expectation.

laser
toroid

FPC

feedback electronics

+
-

spectrum analyzer

oscilloscope

computer

transmission signal

offset voltage

lock
point

detuning

vo
lta

g
e

Figure 2.28: Schematic illustration of the setup used for the measurement of dynamical
backaction. A diode laser is locked to the side of the optical fringe by applying an
electronic, computer-controlled offset to the transmission signal. This differential signal
is used as an error signal in a feedback loop actuating the laser frequency by regulating
both the position of the grating in the laser cavity, and the current pumping the laser
diode. Once the laser is locked, the detuning is varied in small steps by adjusting the
electronic offset. For each detuning, a trace from the oscilloscope (to determine the actual
residual transmission) and a noise spectrum from the electronic spectrum analyzer are
taken. FPC, fiber polarization controller.

The resonance frequency shift is often referred to as “optical spring”
effect [222], as it originates from an optical restoring force proportional to
the displacement of the resonator. It is interesting to note that this optical
force can even exceed the natural restoring force of the mechanical oscillator,
and thereby totally dominate the mechanical resonance frequency [148]. For
silica microresonators, due to the stiffness of the structure, this is typically
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Figure 2.29: Linewidth (a–d) and mechanical resonance frequency shift (e–h) of the
mechanical mode as a function of relative laser detuning ∆̄/κ for optical resonance
linewidths κ/2π of about 207MHz (a,e), 127 MHz (b,f), 79MHz (c,g) and 42 MHz (d,h).
Dotted lines indicate the corresponding optical resonance Lorentzian, over which the
laser was tuned. Dashed blue lines marks a detuning equal to the mechanical oscillator’s
frequency of 56.5MHz and full lines are fits from the models for dynamical backaction.

not the case. In these devices however, another interesting effect occurs for
narrow optical resonances (κ < Ωm): in this case, the optical spring force
changes its sign for small detunings, turning a restoring into an anti-restoring
force and vice versa [1], an effect not observed in other systematic studies of
dynamical backaction [138,223].

The optically induced damping can provide both positive and negative
damping. For positive detuning ∆̄ > 0, the total damping can reach zero. In
this case, the mechanical mode, initially driven by thermal noise, starts to
oscillate regeneratively. Specifically, solving Γeff = 0 for a threshold power,
one obtains

Pthresh = Γm
∆̄2 + (κ/2)2

ηcκ
ωcmeffΩm

g2
0

×
„

κ/2

(∆̄ − Ωm)2 + (κ/2)2
− κ/2

(∆̄ + Ωm)2 + (κ/2)2

«−1

(2.140)

80



2.5 Observation of dynamical backaction

for this optically driven mechanical oscillation to occur. This effect, often
referred to as parametric oscillatory instability (POI), has been reported for
various systems, including silica microspheres [5] with mechanical modes at
up to GHz-frequencies [147]. For light powers largely exceeding the threshold,
nonlinearities neglected in the linearized models presented in this work lead
to complex behavior such as multistability [224] and chaos [225]. For an
in-depth theoretical discussion of the oscillatory instability, including also
quantum effects, we refer the reader to references [226,227].

As an aside we note that in the regime κ / Ωm = ∆̄ discussed in greater
detail in section 2.6, one finds the interesting relation

Pthresh = 4
√

ηcPSQL. (2.141)

This therefore universally relevant power scale (for both dynamical and quan-
tum backaction) is at the level of 30µW for typical parameters of silica mi-
crotoroids.

2.5.2 Cooling by dynamical backaction

As yet, we have only discussed the damping and resonance frequency of the
mechanical mode and its modification by dynamical backaction. However,
a major feature of light-induced damping is that it also changes the tem-
perature of the mechanical mode. To introduce the concept of a “mode
temperature”, let us first evaluate the amplitude of the displacement of a
specific mode, which is driven by the thermal Langevin force, by integrating
its noise spectrum over all Fourier frequencies

〈δx2〉 =

Z +∞

−∞

S̄xx(Ω)
dΩ
2π

=

Z +∞

−∞

|χ(Ω)|2S̄th
F F (Ω)

dΩ
2π

≈

≈
Z +∞

−∞

2meffΓmkBT
m2

eff ((Ω2 − Ω2
m)2 + Ω2Γ2

m)
dΩ
2π

. (2.142)

This integral can be evaluated using the residue theorem (cf. section B.1),
one obtains

1
2
meffΩ2

m〈δx2〉 =
1
2
kBT. (2.143)

We may turn this result around and use it to introduce the mechanical mode
temperature

Tm = meffΩ2
m〈δx2〉/kB. (2.144)

With this definition, if the mechanical mode is only driven by the Langevin
force, it ends up in thermal equilibrium with its environment, and Tm = T .
As an example, the root-mean-square (RMS) displacement 〈δx2〉1/2 of the
RBM of a silica microtoroid is typically a few tens of femtometers at room
temperature (figure 2.30).
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Figure 2.30: Real-time recording of the displacement of a 40.6-MHz RBM of a silica
microtoroid measured using the Hänsch-Couillaud technique. A 2 MHz-wide band was
filtered out of the displacement signal and selectively amplified to record the mechanical
trace (red line). The gray line is a background trace recorded with the taper retracted
from the cavity [8].

In the presence of detuned pumping, the mechanical susceptibility is mod-
ified due to dynamical backaction, the thermal Langevin force, however, is
not. If, therefore, the RMS displacement is calculated from the modified
spectrum

S̄xx(Ω) = |χeff(Ω)|2S̄th
F F (Ω) (2.145)

one obtains
1
2
meffΩ2

m〈δx2〉 ≈ 1
2

Γm

Γeff
kBT (2.146)

as long as the mechanical oscillator can be described with its frequency-
independent effective damping Γeff and resonance frequency Ωeff for not too
strong backaction effects10. The mode temperature of the mechanical oscil-
lator therefore is changed to

Tm =
Γm

Γeff
T =

Γm

Γm + Γdba
T. (2.147)

As for Γdba > 0 one has Tm < T the damping rate Γdba induced by dynamical
backaction is often referred to as the laser cooling rate.

Indeed it can be shown that Γdba is the rate with which energy is trans-
ferred from the mechanical resonator to the optical field. Returning, for
simplicity, to the example of a sinusoidally oscillating boundary considered
in section 2.2.1 (x(t) = x0 sin(Ωmt)), the cycle-averaged work done by the
mechanical oscillator on the optical field can be calculated to

Pdba = − 2π
Ωm

Z 2π/Ωm

0

Frp(t)ẋ(t)dt ≈ Γdba

„
1
2
meffΩ2

mx2
0

«

(2.148)

using only the elementary relations (2.9) and (2.11).
In very general terms, this cooling effect arises by coupling the mechan-

ical oscillator not only to the reservoir—constituted by all other mechanical
modes present in the device, the gas and thermal radiation field surrounding
it etc.—at room temperature, but also to the cooling laser field. Laser cooling
therefore disequilibrates the oscillator with the reservoir, and brings it into

10See e. g. [121] for more general calculations.
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2.5 Observation of dynamical backaction

a new equilibrium in which it is coupled both to the reservoir and the laser
field. This field possesses an effective temperature very close to zero (see
section 2.6 for the limitations), and acts as a “cold damper”, by introducing
dissipation, but only very little fluctuations to the mechanical mode.

We note here that the application of cold damping schemes has a long
history in physics, and has been successfully applied in systems as diverse as
electrometers and particle storage rings [228–230] (here often referred to as
“stochastic cooling”). Interestingly, cold damping has also been used to cool
a mechanical mode of a mirror in a pioneering 1999 experiment at Laboratoire
Kastler Brossel in Paris [130], and subsequently in many other experiments
[137, 144, 149, 150, 231]. However, these experiments all involve a complex
hybrid electronic/optical feedback loop, whereas the method presented here
relies solely on the intrinsic dynamics of radiation pressure.

In figure 2.31 we show cooling results obtained on the RBM of silica
microresonators at frequencies around 57MHz. In an experimental setup
essentially identical to the one described in figure 2.28, a 980-nm wavelength
diode laser was locked to the red wing of an optical resonance. Note that
as the thermal bistability (section 1.5.1) renders the red wing dynamically
unstable under laser or cavity frequency fluctuations, special care has to
be taken in the implementation of the feedback loop stabilizing the laser
frequency to a given detuning (see also appendix C.2 for more details).

As the launched laser power is increased, the total damping increases,
and correspondingly the width of the Lorentzian resonance. At the same
time, the temperature Tm of the mode is reduced by the optical pumping.
Panel (a) shows four traces for detuned pumping of a WGM mode with ∆̄ ≈
−κ/2 ≈ −25MHz. For the highest pump powers, the damping is increased
beyond 450 kHz, and the correspondingly reduced mode temperature is 11 K.
The other panels show a systematic power series, in which a different torus
was pumped at ∆̄ ≈ −0.7κ with powers between 20 and 200 µW.

2.5.3 Radiation pressure versus thermal effects

In many early experiments, the optomechanical interaction has been medi-
ated by thermal effects, sometimes referred to as “photothermal pressure”
instead of radiation pressure [135, 136, 141, 154, 232]. In the following we
present evidence for the fact that the optomechanical interaction in silica
microtoroids is strongly dominated by radiation pressure due to the high
(Ωm/2π # 50MHz) frequencies of the RBM.

Prior work on the radiation-pressure-induced parametric oscillatory insta-
bility has provided independent evidence that radiation-pressure dominates
the interaction between optical and mechanical modes [181,220] in this sys-
tem. For instance, it has been shown that the mechanical gain depends on
the cavity finesse. This observation demonstrates that radiation pressure is
responsible, since thermal forces only depend on the absorbed power and not
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Figure 2.31: Cooling of the RBM of silica microtoroids. (a) Noise spectra of the RBM
when a 50MHz-wide WGM resonance is pumped at ∆̄ ≈ −κ/2 with increasing power
(0.25 mW, 0.75, 1.25mW and 1.75mW). The extracted increased damping rates Γeff

correspond to mode temperatures Tm given in the legend. (b)–(e) Dependence of me-
chanical mode properties on the launched laser power (measured on the RBM of a dif-
ferent toroid). The linewidth Γeff and resonance frequency Ωeff vary linearly with input
power in this range, and both the noise power

R +∞
−∞ S̄xx(Ω)dΩ/2π ∝ Tm and the reso-

nance amplitude
p

S̄xx(Ωm) vary linearly with the inverse linewidth Γ−1
eff as expected.

Reprinted figures with permission from Schliesser et al., Physical Review Letters 97,
243905 (2006). Copyright 2006 by the American Physical Society (reference [1]).

on the cavity enhanced circulating power.
To theoretically estimate the forces due light absorption it is necessary

to study the coupling of mechanical and thermal waves (or modes) of the
structure. Thermodynamical considerations allow to derive the mutually
coupled differential equations for temperature and displacement distributions
[233], adding a coupling term proportional to the linear expansion coefficient
α to the heat diffusion equation (1.43) and the equations of motion of the
displacement field (2.58).

For small perturbations, we may however assume that the solutions of the
uncoupled system (α → 0) are still approximately valid, and heat transport is
still dominated by diffusion. In this case, the resulting temperature gradients
give rise to a thermoelastic body force [233]

!fte(!r) = −(3λ + 2µ)α !∇δT (!r) (2.149)

driving the mechanical modes (λ and µ are the Lamé constants). Importantly,
this body force depends on the gradient of the temperature distribution.

The effective scalar thermal force on a mechanical mode with a displace-
ment pattern !u0

n is determined by an overlap integral 〈!fte !u0
n〉. Due to the very

high mechanical resonance frequencies, the diffusion length for the temper-
ature distribution λD =

p

2k/cpρΩ becomes very short, for example about
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2.5 Observation of dynamical backaction

50 nm for Ω/2π = 50 MHz. If absorption takes place in the silica, we can
therefore conclude that the temperature distribution is essentially given by
the energy distribution of the optical mode, and the resulting temperature
modulation in the volume can be estimated at δT (Ω) ≈ 2Pabs/ΩcpρVmode,
typically " 10K/W for a typical 30 µm-radius toroid—a value confirmed by
finite element modeling of heat diffusion in such a geometry. Due to the
nearly symmetric temperature distribution in radial direction with respect
to the center of the optical mode, the overlap integral over the gradient of
the temperature distribution can be expected to yield only a small total
contribution. For a rough estimate, we may use

〈!fte !u0
n〉 ∝

Z

V

!∇δT (!r) !u0
n(!r)d3r ≈ |!u0

n(R)|2πRdm

Z R

R−dm

∂δT/∂rdr

≈ |!u0
n(R)|2πRdmδT (R), (2.150)

where dm / R is the transverse diameter of the optical mode. Using
δT (R)/Pabs ≈ 2K/W for the parameters described above (again confirmed

by FEM), we obtain 〈!frp !u0
n〉/〈!fte !u0

n〉 ≈ O(102). We note however that this
result depends on the exact location of the heat source (absorption may
also take place in a water or helium surface layer), and the cooling mecha-
nisms provided by a surrounding medium, effects presently investigated in
our group [234]. We also note that at cryogenic temperatures, thermoelastic
coupling is weaker as the expansion coefficient drops below 2 · 10−9 K−1 at
1.6 K [11,235].

At the experimental side, we have made response measurements [219] to
quantify the different nonlinearities—due to the thermal, Kerr and radiation-
pressure effects—encountered in silica microtoroids. To that end, two lasers
at different wavelengths (980 and 1550 nm in this case) are coupled to two
WGM resonances of a single toroid. One laser, referred to as the “pump”,
is amplitude modulated at a variable frequency Ω, while the other “probe”
laser is used to measured the response of the WGM frequency to the pump
laser power modulation. In the simplest case, this is accomplished by tun-
ing the probe laser to the wing of a WGM resonance, and measuring the
variation of its transmission at the same frequency Ω, most conveniently im-
plemented using a network analyzer. Care is taken to suppress direct optical
or electronic cross-talk of the pump modulation into this signal.

Figure 2.32 shows the result of such a measurement on a 29 µm-major ra-
dius toroid. Clearly, at low frequencies (Ω/2π < 1MHz), a strong modulation
of the probe WGM frequency is apparent. This is due to absorption of pump
light, and the consequent modulation of the temperature-dependent expan-
sion, and refractive index of the toroid material (cf. section 1.5.1). Above this
frequency, a plateau is observed in the response, due to the modulation of
the refractive index seen by the probe WGM, which varies with pump power
due to the non-linear refractive index of silica (Kerr effect, see section 1.5.3).
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Finally, around a mechanical resonance, a dispersive peak is observed. This
is due to the excitation of mechanical modes by the modulated pump power.

To fit the response, we use the model

δωprobe(Ω) = δωth(Ω) + δωK(Ω) + δωrp(Ω) (2.151)

with

δωth(Ω) = −ωc

„

α +
1
n

dn
dT

«„
β1

1 + iΩ/Ω1
+

β2

1 + iΩ/Ω2

«
2πnR

c
δPIC(Ω)

τabs
| {z }

δTeff (Ω)

(2.152)

δωK(Ω) = −ωc
n2

n
δPIC(Ω)

Aeff
(2.153)

δωrp(Ω) = g0χ(Ω)δFrp(Ω) =

= −ωc

R
1

meff(Ω2
m − Ω2 + iΓmΩ)

2πn
c

δPIC(Ω). (2.154)

For the thermal effect, we extract cutoff frequencies Ω1 ≈ 2π · 900Hz and
Ω2 ≈ 2π · 69 kHz. Furthermore, using the parameters of silica (cf. appendix
A.1) and R = 29 µm as well as Aeff ≈ 2.5 µm2, we can normalize all results
to the measured Kerr response. In this manner, we extract β1/τabs ≈ 1.8 ·
104 K/W/100 ns and β2/τabs ≈ 570 K/W/100 ns. All these parameters are
very well in the range expected for the thermal effects discussed in section
1.5.1.

The combination of the radiation-pressure and Kerr responses gives rise
to the dispersive signature around the mechanical resonance frequency: At
modulation frequencies slightly above the mechanical resonance, the mechan-
ical degree of freedom oscillates out of phase and therefore counteracts the
Kerr effect, which always reacts instantaneously to power changes. Further-
more, at the resonance frequency Ωm of the RBM we expect

˛
˛
˛
˛

δωrp(Ωm)
δωK(Ωm)

˛
˛
˛
˛
=

2πn2Aeff

Rn2ΓmΩmcmeff
≈ 240 (2.155)

with Γm = 15.7 kHz derived from the fit and the numerically determined
effective mass meff ≈ 15 ng, in very good agreement to the measured value of
260. The extrapolated thermal effect, in contrast, drops more than four or-
ders of magnitude below the observed mechanical displacement at Ωm (cf. fig-
ure 2.32). At mechanically non-resonant frequencies, this modulation would
be largely dominated by a thermorefractive effect as compared to thermoe-
lastic effects, as (dn/dT )/nα > 10. Even if enhanced by the mechanical
resonance, thermoelastic contributions may therefore be estimated at or be-
low the 10−2-level.

We finally note that thermally induced forces that may be related to the
identified thermal effects would be out of phase (by nearly π/2) with the
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2.6 Resolved-sideband cooling

driving pump laser modulation, since the relevant radio frequencies are well
beyond the thermal cutoff frequencies. As a direct consequence, the observed
interference effects between mechanical displacement and the Kerr-induced
modulation would form a single symmetric resonant peak, fundamentally
different to the observed dispersive shape. This again confirms the dominance
of radiation pressure in this system.
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Figure 2.32: Pump-probe type response measurements of the nonlinearities present in
toroidal silica microcavities. (a) Measured response (red dots) and fit (black line) mod-
eling a two-pole low-pass thermal nonlinearity and an instantaneous Kerr effect, which
becomes significant above 1 MHz. The data furthermore show a detector and cavity-
induced cutoff above 100 MHz as well as indication of mechanical resonances at 5.6 and
58 MHz, though not resolved. The green dashed line shows the extrapolation of the ther-
mal effects to higher frequencies and below the measurement background at about 0.1
(gray dots). All data are normalized to the fitted Kerr response. (b) Higher-resolution
data (red points) as recorded in the vicinity of the radial-breathing mechanical reso-
nance at ∼ 58 MHz. Full black line, model for the harmonic response plus a constant
background due to the Kerr effect. Black and blue dashed lines illustrate the individ-
ual contributions from the harmonic response and the Kerr effect, respectively. Green
dashed line indicates the extrapolated thermal response, and green dotted line the ex-
pected response if the thermally induced displacement was resonantly enhanced. All data
normalized to Kerr response.

2.6 Resolved-sideband cooling

The successful demonstration of cooling by dynamical backaction immedi-
ately raises the question of how strongly the temperature of the mechanical
oscillator can be reduced. A series of theoretical and experimental investiga-
tions revealed the fundamental [118, 119, 121, 122] and technical [8, 236, 237]
limitations of radiation-pressure cooling of mechanical oscillators. In essence
they showed that if all technical sources of heating are avoided, the quantum
fluctuations of the cooling light field provide a fluctuating force, driving the
oscillator to random motion and therefore compete with the laser cooling
effect. An advantageous ratio of these two effects can however be achieved in
the so-called resolved-sideband (RSB) regime, in which the mechanical oscil-
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lation frequency Ωm exceeds the cavity linewidth κ. In this case, cooling of
the mechanical oscillator to its quantum mechanical ground state is possible.

In the following, a brief outline of the required theoretical considerations
will be given after a motivation by well-known results from atomic physics. In
the main part of this section, experimental results—including the first demon-
stration of resolved sideband laser cooling of an optomechanical device—will
be presented.

2.6.1 Ground state cooling: the atomic physics case

The quantum mechanical expectation value of the energy of a harmonic me-
chanical oscillator of Ωm and mass meff is given by

〈Hmech〉 =
1
2

˙

p̂2
¸

meff
+

1
2
meffΩ2

m

˙

x̂2¸ = (2.156)

= !Ωm

„

〈n̂〉 +
1
2

«

(2.157)

where the phonon number operator n̂ = b̂†b̂ is given by the creation and
annihilation operators

b̂† =
1

2xZPF

„

x̂ − i
p̂

meffΩm

«

(2.158)

b̂ =
1

2xZPF

„

x̂ + i
p̂

meffΩm

«

(2.159)

with the so-called zero-point fluctuations

xZPF =

r

!

2meffΩm
, (2.160)

which are of the order of 100 am for typical silica microtoroidal resonators
(meff = 10 ng, Ωm/2π = 40 MHz).

The question raised by the cooling results presented in the previous sec-
tion is whether it is possible to reduce 〈Hmech〉 to levels comparable with
the ground-state energy !Ωm/2. In other words, is it possible to reach the
quantum ground state, in which the occupation number (the number of ex-
citation quanta, phonons) 〈n〉 reaches zero? In this case, deviations from
the classical cooling behavior described in the previous section are clearly
expected in order to prevent cooling to reach arbitrarily low energy states.

To answer this question, it is instructive to consider the results obtained
in the context of laser cooling of ions (or atoms) [83–85, 238]. Trapped in
a harmonic potential, these elementary particles constitute mechanical os-
cillators as well, their eigenfrequency Ωm being given by the tightness of
the trap. Lasers can be used to drive electronic transitions of energy !ω0
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2.6 Resolved-sideband cooling

Figure 2.33: Optical sideband cooling. Laser photons of energy !ωl = !(ω0 − Ωm) pref-
erentially induce “red-sideband” transitions |0, n〉 → |1, n − 1〉 (blue arrow) if they are
detuned from the carrier |0, n〉 → |1, n〉 (gray arrow) and blue sideband |0, n〉 → |1, n+1〉
(red arrow) transitions. As a consequence, the phonon occupation n of the mechanical
oscillator is reduced when the photon gets absorbed by the atom, or, in the optome-
chanical case, by the cavity. Re-emission of the photon (wavy lines), on average, does
not change the phonon occupation (neglecting recoil), so that a detuned laser provides
cooling. Figure from ref. [8].

and lifetime κ−1, and optical and mechanical degrees of freedom are coupled
by the Doppler shift of the optical resonance if the ion is moving, and the
momentum transfer of absorbed and emitted photons.

If the laser is detuned from the optical resonance, cooling can occur by
favoring the absorption of a photon only in conjunction with the annihilation
of a mechanical excitation quantum. Essentially, it is the phonon energy !Ωm

which makes up for the energy lack !(ω0 − ωl) of the incoming photon to
drive the electronic transition. If absorption takes place, the subsequently re-
emitted photon has an average energy of !ω0 (neglecting recoil). It therefore
carries away the additional energy of the phonon, and leaves the mechanical
oscillator in a state of lower excitation n (figure 2.33).

This method is usually referred to as optical sideband cooling: an ion
oscillating in its trap exhibits absorption sidebands at frequencies ω0 ± jΩm,
j ∈ N, very similar to the case of a cavity discussed in section 2.2.1. If
the laser is tuned to the red sideband at ω0 − Ωm, cooling transitions are
resonantly enhanced as shown in figure 2.33. The quantum theory of laser
cooling of trapped atoms or ions reveals that this method allows ground state
cooling 〈n〉 → 0 provided that Ωm . κ (neglecting recoil) [85, 238]. In this
case, the lowest average occupation that can be achieved is given by

〈n〉 =
κ2

16Ω2
m

. (2.161)

Interestingly, this result can also be viewed as being due to the competition
of the cooling effect of the detuned laser, due to an effective viscous force,
and a “heating” effect due to quantum fluctuations of the light beam, giving
rise to a fluctuating radiation-pressure force [88].
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2.6.2 Limitations of radiation-pressure cooling using dynam-
ical backaction

A similar analysis can be applied to cooling by dynamical backaction. To
assess the fundamental cooling limits, we consider the radiation pressure
force as it is obtained from the quantum Langevin equations:

δF̂rp(Ω) = i!g2
0 ā2 δx̂(Ω)

„
1

−i(∆̄ + Ω) + κ/2
− 1

+i(∆̄ − Ω) + κ/2

«

− !g0ā
δŝin(Ω)τ−1/2

ex + δŝvac(Ω)τ−1/2
0

−i(∆̄ + Ω) + κ/2

− !g0ā
δŝ†in(Ω)τ−1/2

ex + δŝ†vac(Ω)τ−1/2
0

+i(∆̄ − Ω) + κ/2
(2.162)

In essence, the expression in the first line correspond to quantum backaction
due to quantum fluctuations of the intracavity photon number, while the
expression on the second line is due to dynamical backaction (proportional
to the mechanical displacement). The latter force contribution, is usually
absorbed into the effective susceptibility χeff from (2.28), while the spectrum
of the force quantum fluctuations is calculated as
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2g2
0 ā2 κ

2

„
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using the known correlators for the input quantum noise. We have introduced
here the rates A− and A+, which can be shown to correspond to rates of
anti-Stokes and Stokes scattering events in which phonons are annihilated or
created [118,119,121,239].

The remaining energy stored in the mode after cavity cooling can be eval-
uated by integrating the mechanical displacement spectrum. This is possible
analytically if a hot mechanical reservoir !Ωm / kBT is assumed and the ef-
fective susceptibility still corresponds to a high-quality Lorentzian. Without
further proof we note here that this can be safely assumed case as long as
for the optomechanical coupling parameter

G = 2āg0xZPF (2.165)

one has |G| / κ. For higher values of G, hybridization of optical and me-
chanical modes set in, a regime treated in detail in [240, 241]. In the limits
Ωm, κ . G, Γm relevant to the work presented in the following, one eventually
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obtains [121]
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and therefore

〈n〉 ≈ Γm

Γeff

kBT
!Ωm
| {z }

nbath

+
A+

A− − A+
| {z }

nmin

(2.168)

for significant cooling A− . A+ . Γm (note also that in the considered
limits, equal amounts of energy are stored in potential and kinetic energy).

As a consequence, even for very strong cooling Γeff . Γm, the phonon
occupation cannot be reduced to arbitrarily low numbers, instead it is bound
by nmin. Two simple limits are derived depending on the ratio of mechanical
resonance frequency and optical cavity linewidth:

nmin ≈ κ
4Ωm

κ . Ωm unresolved sidebands (2.169)

nmin ≈ κ2

16Ω2
m

κ / Ωm resolved sidebands. (2.170)

Evidently, the ground state 〈n〉 → 0 can only be reached in the resolved-
sideband regime, where κ / Ωm. Due to the non-zero occupation nbath ≈
kBT/!Ωm when in equilibrium with the thermal bath, more stringent require-
ments arise in laboratory experiments. In particular, both κ > Γmnbath [240]
and Ωm > Γmnbath [119] are necessary to enable sufficiently high cooling rates
without being limited by the cavity decay rate or an effectively overdamped
mechanical resonator, respectively. Apart from these limits, it is desirable
to work with optical resonances as narrow as possible to enable ground state
cooling.

Another advantage of working in the resolved-sideband regime is that the
cooling rate increases monotonously for decreasing κ if all other parameters
are fixed. As shown in figure 2.34, if the detuning is chosen for optimum
cooling rate, the intracavity power reduces as the laser is effectively detuned
further from the WGM cavity resonance. This is advantageous to keep unde-
sired nonlinearities at a low level, but also to prevent heating effects due to
absorbed light. This effect is particularly relevant in cryogenic environments,
where small absorbed powers may already significantly alter the temperature
of the system, see section 2.7.3.

Finally, another technical imperfection in this cooling scheme may lead
to a limit in the attainable occupation number. If the cooling laser fre-
quency exhibits technical frequency noise, it is translated by the cavity into
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Figure 2.34: (a) Normalized cooling rate as a function of detuning and linewidth, for
a fixed mechanical resonance frequency Ωm assuming G < κ. Blue line indicates the
optimum detuning for a given cavity linewidth. (b) Normalized cooling rate (blue line)
and intracavity power (red line) as a function of linewidth for fixed Ωm, if the detuning
is kept at the optimum value.

a radiation pressure force noise. Laser frequency fluctuations S̄ωω(Ω), with
S̄in

qq(Ω) = 1 + 4|s̄in|2S̄ωω(Ω)/Ω2 lead to additional radiation-pressure force
fluctuations with the spectrum
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«

S̄ωω(Ω),

(2.171)
which can be derived from the intracavity fluctuations of the p-quadrature
(see appendix B.2). A lower limit for the occupation can then be estimated
by integration of the resulting displacement noise spectrum, taking into ac-
count the modified susceptibility of the mechanical oscillator (in particular its
damping Γdba ≈ Γeff , cf. equation (2.29). In the linear cooling regime [240],
the integrand is simply a Lorentzian, and we assume that the force noise is
approximately constant within the frequency band in which the mechanical
oscillator picks it up. Then one gets (cf. appendix B.1)

meffΩ2
m〈δx2〉 ≈

S̄ba,fn
F F (Ωm)

2meffΓdba
= S̄ωω(Ωm)

ā2|∆̄|
κΩm

| {z }

nfn

!Ωm. (2.172)

As will be discussed later, this result gets modified in the additional presence
of thermal noise [8], not taken into account in other discussions of frequency-
noise induced cooling limits which [236,237].
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2.6 Resolved-sideband cooling

2.6.3 Resolved-sideband cooling of a silica microtoroid

Implementing an optomechanical system which operates in the resolved-
sideband regime is advantageous to suppress the effects of nonlinearities and
absorption-induced heating present in most laboratory experiments. Fur-
thermore, the analysis at the quantum level has shown that this regime is
mandatory for cooling to the quantum ground state. It is interesting to
note that this finding is quite generally valid, and applies in an analogous
manner to a large class of systems in which a mechanical oscillator is cooled
by parametric coupling to physical systems as diverse as an ion [242], a
quantum dot [117], a Josephson qubit [243], a superconducting quantum in-
terference device (SQUID) [244], a superconducting single-electron transistor
(sSET) [245, 246], or a resonant electric circuit [151]. The excitations of all
these systems need to have a lifetime κ−1 exceeding the oscillation period
∼ Ω−1

m of the mechanical oscillator to enable ground-state cooling.

Experimental implementation of the resolved-sideband regime however
proves non-trivial: in a classical optomechanical system involving a Fabry-
Perot resonator, increasing the cavity length L in principle reduces κ, but
at the same time also the coupling strength g0 = −ωc/L. Also, it typically
increases the waist size of the beam, which may induce diffraction losses (and
therefore increase κ again) if, as it is typically the case, the micromechanical
oscillator constitutes one of the cavity mirrors. In an integrated system such
as silica microtoroids, increasing the cavity size (within the relevant range of
60 to 100 µm diameter) typically leads only to modest improvements of κ,
as the losses are dominated by absorption along the light propagation path.
In addition to the reduced coupling g0 = −ωc/R, the mechanical resonance
frequency of the RBM is reduced for bigger cavity size. The first experi-
ment demonstrating efficient resolved-sideband laser cooling was eventually
performed in 2008 with silica microresonators [8], while other systems, such
as superconducting microwave cavities [157] or Fabry-Perot resonators [164]
followed soon thereafter.

Figure 2.35 shows data obtained with a 47 µm-diameter toroid hosting
a RBM at Ωm/2π = 73.5 MHz. Using a first laser, the RBM is driven to
regenerative oscillations, by pumping a WGM in a blue-detuned manner,
leading to the well-known oscillatory instability [181, 218–221]. A second
laser, launched into the same tapered fibre, is used to probe a different,
high-Q WGM resonance of the oscillating toroid. Using optical filters to
extract only the transmission signal of the probe laser, the traces shown in
figure 2.35 are recorded if this laser is swept over the resonance.

Instead of a single dip, several dips are observed if the electronic signal is
filtered with a low-pass filter with a cutoff far below Ωm. From the intracavity
mode amplitude of the oscillating cavity (equation (2.7)) the low-frequency
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Figure 2.35: Steady-state transmission spectrum of a microtoroid when the mechanical
degree of freedom is excited to picometer-scale amplitude oscillations at its resonance
frequency of Ωm/2π = 73.5 MHz using an auxiliary laser. The linewidth of the resonances
corresponds to the optical decay rate of κ/2π = 3.2MHz, placing this device deeply into
the resolved sideband regime. Blue points are experimental data, and the red lines are
fits using the Bessel function expansion (eq. (2.173)) with β-parameters given in each
panel. Figure from ref. [8].

component of the transmitted power

|s̄DC
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κ2Jn(β)2
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!

|s̄2
in| (2.173)

is calculated [8], where Jn are the Bessel functions and β = g0x0/Ωm. From
fits using this model, it is possible to derive the amplitude x0 of the mechan-
ical oscillation to about 5.3, 8.3 and 9.9 pm for the three traces, respectively.
At the same time, these traces clearly show that the mechanical resonance
frequency Ωm—by which the Lorentzian dips are spaced—largely exceeds the
optical cavity linewidth κ. Indeed, the fits yield a resolved-sideband factor
Ωm/κ ≈ 23, due to the very high cavity finesse of 440,000.

For resolved-sideband cooling, the two lasers are used in a different way.
The cooling laser is tuned below the narrow WGM, to the lower sideband
at ∆̄ = −Ωm. The second laser is used to sensitively monitor mechanical
displacements and therefore tuned in resonance with a different WGM (fig-
ure 2.36). Using two completely independent laser sources helps to rule out
artifacts in the displacement measurements, due to potentially induced noise
correlations between the cooling beam and induced motion of the mechanical
oscillator, referred to as “squashing” in feedback cooling [150].

In this experiment, sensitive monitoring of mechanical motion is accom-
plished using the Hänsch-Couillaud technique described in section 2.4.2. As
shown in figure 2.37, a low-noise Nd:YAG laser is used for this purpose, which
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Figure 2.36: Scheme used for resolved-sideband cooling. The cooling laser at λ ≈ 980 nm
(green line) is tuned to the lower sideband (∆̄ = −Ωm) of a high-Q optical resonance.
Resonant anti-Stokes scattering into the cavity mode, at rate A− dominates over Stokes
scattering at rate A+. A second laser is tuned in resonance with a different WGM at
λ = 1064 nm, and used to monitor the mechanical displacements. Figure from ref. [8].

is locked to the line-center using feedback to a piezo pressing on the YAG
crystal. In order to lock the cooling laser to a detuning much larger than
the resonance linewidth κ, we use an experimental technique, in which the
signal obtained by frequency modulation spectroscopy [66] is used as an error
signal. Some technical details of this method are described in appendix C.2.

Figure 2.38 shows cooling results obtained with the 73.5 MHz-sample.
Note that due to the strongly detuned operation, only a fraction of about
∼ (4(Ωm/κ)2 + 1)−1 ≈ 5 × 10−4 of the launched power of 3mW, i. e. circa
1.5 µW, is coupled into the cavity. Nonetheless, very high cooling rates up to
Γdba/2π = 1.56 MHz can be achieved. The mode temperatures achieved with
this sample, however, remained above 20K, due to the modest mechanical
quality factor of about Qm = 2,100, and a heating mechanism described
below.

We have also recorded noise spectra of the mechanical oscillator by di-
rectly analyzing the transmitted power of the cooling laser (as explained in
section 2.5). Qualitatively the same behavior of the mechanical spectra is
observed when cooling, however with significantly worse signal-to-noise ratio.
This renders, for example, the determination of the mode temperature ex-
tremely difficult for strong cooling. Furthermore, for cooling laser powers on
the order of 3mW, significant deformations of the mechanical spectra from
their originally Lorentzian shape were observed. The particular shapes were
strongly dependent on the detuning and coupling conditions. Figure 2.39
shows one example in which a resonance doublet appeared. We note that
such an doublet would in principle be expected when entering the regime
of strong optomechanical coupling, in which optical and mechanical modes
hybridize [240,241].

To achieve lower mode temperatures, a second cooling run was initiated.
We used a larger toroid (radius R = 28µm) with a RBM at Ωm/2π =
40.6 MHz and Γm/2π = 1.3 kHz, corresponding to a very high mechanical
quality factor of 30,000. The broadband displacement spectrum recorded
with this sample using the Hänsch-Couillaud technique (cooling laser is off)
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Figure 2.37: Setup used to implement resolved-sideband cooling and high-sensitivity mon-
itoring of the RBM of silica toroidal microresonators. Two lasers are used, a diode laser
at 980 nm for cooling by tuning and locking it to the lower sideband of a high-Q WGM,
and a Nd:YAG laser at 1064 nm monitoring mechanical displacements using the Hänsch-
Couillaud technique. More details are given in the text. Figure from ref. [8].

is shown in figure 2.40. A displacement sensitivity at the 10−18 m/
√

Hz-level
is achieved. At low Fourier frequencies, the noise spectrum again reveals a
thermorefractive background already discussed in section 2.4.

The strong peaks observed at 14.96, 28.58 and 40.59 MHz can be assigned
to different radially symmetric modes in this sample. The latter peak belongs
to the RBM, which has an effective mass of about 10 ng. If the cooling laser is
tuned to the lower sideband of a κ/2π = 5.8 MHz-wide WGM, cooling of the
RBM is evident by the reduction of the RBM’s thermal noise (figure 2.40). It
is interesting to note that the thermal noise in the other radially symmetric
modes is not affected. In the resolved sideband regime, this is possible due to
the fact that the absorption sidebands of the individual mechanical modes do
not overlap, as they are as narrow as the optical resonance. Furthermore, we
note that effects analogous to “sympathetic cooling”—due to, for example a
preferential coupling of the RBM to other radially symmetric modes—is not
observed.

The mode temperature Tm of the RBM is subsequently evaluated by in-
tegrating the displacement noise spectrum S̄xx(Ω) (cf. section 2.5.2). The
lowest mode temperature obtained with this sample is Tm ≈ 11 K, corre-
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Figure 2.38: Displacement noise spectra of the RBM as recorded by the monitoring laser
with the cooling laser off (left panel), and running at a power of 2.7mW, when detuned
to the lower sideband (right panel). Cooling rates up to 1.6MHz can be achieved. Circles
are data points and lines Lorentzian fits. Figure from ref. [8].

sponding to a residual occupation of 〈n〉 ≈ 5900. As in the experiments
with the first sample, this is significantly above the value expected from the
high cooling rates, reaching up to Γdba/2π = 119 kHz with this sample. This
discrepancy is attributed to excess heating by the cooling laser’s frequency
noise.

Indeed, an independent measurement reveals frequency fluctuations of the
cooling laser at the level of

p

S̄ωω(Ωm) = 2π ·200 Hz/
√

Hz, a value consistent
with earlier measurements on the frequency noise at radio frequencies of a
grating stabilized diode laser [247]. For a finite bath temperature T , the
lowest occupation that can be attained can be estimated by

〈n〉 ≈
S̄ba,fn

F F (Ωm) + S̄th
F F (Ωm)

2meffΓdba
. (2.174)

In the resolved-sideband limit κ / Ωm, the force noise due to frequency
fluctuations from equation (2.171) simplifies to

S̄ba,fn
F F (Ωm) ≈ 4η2

c S̄ωω(Ωm)P 2
in

R2Ω4
m

, (2.175)

 

73 74

Frequency (MHz)

δ
x

 (
a

.u
.)

72 75

5

6

7

8

Figure 2.39: Resonance doublet observed in the power spectrum of the cooling laser for
strong cooling powers. See text for more information.
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Figure 2.40: Resolved-sideband cooling of the RBM of a microtoroidal oscillator. Top
panel shows a broadband displacement noise spectrum recorded using the Hänsch-
Couillaud technique (red trace). Gray trace is background trace with the fiber taper
retracted from the WGM near field. It is dominated by shot noise, its dependence on
Fourier frequency is due to the weaker transduction of displacement fluctuations to phase
fluctuations at Fourier frequencies beyond the cavity cutoff κ/2. The sensitivity is at the

10−18 m/
√

Hz-level. Insets show the displacement patterns of three radially symmetric
modes, with the corresponding strain indicated in the color code. The bottom panel
shows zooms on the displacement noise of these three modes, when the cooling laser is
off (red traces) and on (blue traces), at a detuning of ∆̄ = −Ωm. Clearly, only the RBM
mode (number 3) is affected. The lowest achieved occupation in these measurements was
〈n〉 ≈ 5900. Figure from ref. [8].
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and the cooling rate is approximately given by

Γdba ≈ 4g2
0 ā2x2

ZPF

κ
=

2g2
0ηcPin

meffωlΩ3
m

. (2.176)

As a consequence, the lowest temperature is obtained at a finite input power,
and one finds nmin ≈

p

2kBTmeffΓmS̄ωω(Ωm)/!|g0| [8]. For the parame-
ters of this experimental run, T = 300 K, meff = 10ng, Γm/2π = 1.3 kHz,
p

S̄ωω(Ωm)/Ω2
m ≈ 4µrad/

√
Hz, R = 38 µm, Ωm/2π = 40.6 MHz, ω/2π ≈

300 THz, one obtains nmin ≈ 5200, close to the lowest observed occupation
number.

2.6.4 Direct sideband spectroscopy

If the ground state of the mechanical oscillator is approached, it becomes in-
creasingly difficult to reliably measure its occupation number. For example,
if the method demonstrated here—using an independent motion transducer
based on an optical phase measurement—the requirements on its perfor-
mance are quite challenging. Even for a perfect implementation of such
a measurement, in which the standard quantum limit can be reached (cf.
section 2.4), the signal-to-noise ratio (SNR) at the mechanical resonance fre-
quency would be only equal to unity at the mechanical resonance frequency
when the resonator is in its ground state: for 〈n〉 → 0, the spectrum of
displacement fluctuation is expected to peak at a value of

S̄0
xx(Ωm) =

!

meffΓmΩm
(2.177)

which exactly equals S̄SQL
xx (Ωm).

We note that our experiment reaches an imprecision level close to the
SQL: For example, for the sample described above, we calculate

p

S̄0
xx(Ωm) ≈

2.2 am/
√

Hz, and routinely achieve imprecision noise at the same level (cf.
figure 2.40). However, as in most other experiments reporting similarly low
imprecision levels [158,248], backaction of these measurements is difficult to
quantify and may impede cooling to the quantum ground state.

As an alternative approach to measure the residual occupation number for
small 〈n〉, it has been suggested to directly monitor the individual motional
sidebands of the cooling laser [118]. In theory, the optical spectrum11 of the

11Note that here the high-Q approximation for the mechanical susceptibility was used,
((Ω2

m−Ω2)2−Ω2Γ2
eff )

−1 ≈ (4Ω2
m((Ω−Ωm)2+(Γeff/2)2))−1. We also emphasize that this

spectrum lies in the optical domain, instead of the RF-domain of the spectra discussed
previously.
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cooling laser light coupled back into the taper is described by

SΦΦ(ω) = ηc

„

δ(ω − ωl)

„
1
ηc

− (1 − ηc)κ
2

∆̄2 + (κ/2)2

«

s̄2
in

+
Γeff/(2π)

(ω − (ωl + Ωm))2 + (Γeff/2)2
A−〈n〉

+
Γeff/(2π)

(ω − (ωl − Ωm))2 + (Γeff/2)2
A+ (〈n〉 + 1)

«

, (2.178)

where Φ is the photon flux emerging from the cavity [118]. Next to the car-
rier at ωl, two sidebands are expected, their lineshape being given by the
effective susceptibility of the mechanical oscillator. Most notably, the spec-
trally integrated photon flux of the individual sidebands is given by A− 〈n〉
and A+ (〈n〉 + 1) for the upper and lower sidebands, respectively. As a conse-
quence, the sideband asymmetry, given initially by the asymmetry in A− and
A+, becomes balanced for sufficiently low 〈n〉. The change in the ratio of the
sideband amplitudes could therefore serve as a gauge of the occupation [118].

Accessing the individual sidebands in a measurement necessitates the abil-
ity to individually resolve them against the much stronger carrier signal at
the laser frequency. For typical parameters of an optomechanical experiment,
this is difficult, as in the RSB regime the power even in the resonantly en-
hanced upper sideband is weaker by ∼ 〈n〉g2

04η2
cx2

ZPF/Ω2
m ∼ 〈n〉O(10−9) than

the carrier, and the lower sideband is again weaker by a factor of κ2/16Ω2
m.

As a consequence, sufficient suppression of the carrier using a (single) filtering
cavity is hardly possible, as it would require sub-kHz cavity linewidth, which
could not even simultaneously collect all light in the sidebands (typically
Γeff/2π > 1 kHz).

An alternative way of individually resolving the sidebands is to use a
heterodyne technique. A similar technique has been demonstrated to enable
resolving motional sidebands12 of a laser-cooled ion [249]. In such an ex-
periment, the cooling light which couples back to the fiber taper is mixed
with a strong local oscillator beam at a different frequency ωl − ΩAOM with
ΩAOM > Ωm. Then the upper sideband, carrier, and lower sideband signals
are detected at the radio frequencies ΩAOM + Ωm, ΩAOM and ΩAOM − Ωm,
respectively.

Figure 2.41 shows the implementation and results of a proof-of-principle
experiment using this technique. When the laser is tuned close to resonance,
the motional sidebands have roughly the same amplitude, which are again
independently calibrated using a frequency-modulation technique. As 〈n〉 .
1, the residual asymmetry in this case is attributed to a finite detuning from
the WGM resonance. When the laser is further detuned, the asymmetry
becomes more pronounced, as A− . A+. In this experiment, an asymmetry

12Note however that only micro-motion sidebands could be detected for a cold ion. To
observe the secular motion, the ion was driven to large-amplitude oscillations in the trap.
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Figure 2.41: Heterodyne spectroscopy of the sidebands during cooling. (a) Experimental
setup, in which a frequency-shifted laser beam is used as a heterodyne local oscillator. (b)
Experimental results, showing the power spectral density of the differential photocurrent
recorded in the heterodyne receiver. Red points are recorded with the cooling laser close
to resonance, and blue points are recorded with a detuned cooling laser. Figure from
ref. [8].

of more than 15 dB is reached. Higher values could not be observed due to
the limited SNR. This limitation is due to the classical frequency noise of the
cooling laser, which could be shown to induce the relatively high background
noise level in this measurement.

We note however that his experiment was performed without actively
driving the motion of the mechanical oscillator——in contrast to an experi-
ment with trapped ions [249]. In our case, the oscillator is exclusively driven
by thermal noise. In that sense, this measurement technique reveals in a very
direct manner the physical process underlying cooling by dynamical backac-
tion: enhanced anti-Stokes scattering and suppressed Stokes-scattering.

2.7 Approaching the quantum ground state

The work presented in the previous sections has clearly demonstrated the
potential of resolved-sideband cooling. In the following, we present experi-
mental results in which this technique is successfully implemented to cool a
mechanical oscillator close to its quantum ground state, rivalling the results
achieved with nanoelectromechanical systems engineered for this purpose for
nearly a decade [127, 159, 246, 250, 251]. In our laboratory these results [10]
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2. Cavity optomechanics

were achieved by combining laser cooling with efficient cryogenic precool-
ing, a technique traditionally applied to nanoelectromechanical systems, but
novel in the context of optomechanics.

As a second crucial feature, the vastly superior displacement sensitivity of
our optomechanical system warrants the ability to monitor such an ultracold
oscillator at levels close to the amplitude of its zero-point fluctuations xZPF =
p

!/2meffΩm—in spite of the fact that its mass is more than 1000-times
higher than in typical nanomechanical systems.

Finally, considered from the perspective of quantum measurement, we are
able to assess the backaction of the measurement performed on the ultracold
oscillator. We will show that considering both imprecision and backaction of
our measurement, one can conclude that the optical displacement transduc-
tion performs in a near-ideal manner.

2.7.1 Implementation

From the theoretical considerations of the previous sections, we can summa-
rize the limits in cooling by dynamical backaction in the simple expression

〈n〉 ≥ Γm

Γm + Γdba

kBT
!Ωm

+ nfn +
A+

A− − A+
. (2.179)

Reaching 〈n〉 → 0 therefore requires low mechanical dissipation Γm, high
cooling rates Γdba, a low environment temperature T , high mechanical res-
onance frequency Ωm, low frequency noise Sωω(Ωm) ∝ nfn of the cooling
laser (or, more general, no technical noise of any kind), and operation in the
resolved-sideband regime to achieve low A+/(A− − A+) ≈ κ2/16Ω2

m.
After the optimization of the silica microtoroids for low dissipation, high

frequency and operation deeply in the resolved-sideband regime, and the
demonstration of very high cooling rates, the most significant performance
improvements are expected for operation in a cryogenic experiment, and us-
ing a cooling laser bare of any technical noise at the relevant radio frequen-
cies. In the following, we will briefly describe the implementation of these
two advances.

Cryogenic optomechanical experiment

For the successful cryogenic operation of an optomechanical cooling exper-
iment, it is important that the concrete technical implementation provides
a proper thermalization of the sample to the cryogen, even in presence of a
microwatt-scale heat load through residual light absorption in the sample.
This may be a non-trivial task, as strong thermal anchoring of the mechan-
ically compliant device would in many cases imply designs opposite to the
requirement of low clamping losses of the mechanical oscillator. For example,
the highest mechanical quality factors in silica microresonators were achieved
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2.7 Approaching the quantum ground state

with toroids held only on a sub-micrometric pillar [8], or suspended from sil-
ica spokes [6]. Therefore, heat transport from the region of the optical mode
in the torus to a heat sink below the silicon chip can be expected to be
prohibitively low.

For this reason, we chose to directly immerse the sample into the cryo-
gen, a dilute helium gas, similar to an early experiment with silica micro-
spheres [76] immersed in superfluid helium (figure 2.42). In contrast to other
cryogenic experiments with optical microcavities [142, 252], this allows us
to reliably thermalize the sample to the base temperature of the cryostat
(1.6 K). At the same time, due its low pressure (typically held in the range
0.1 mbar-50 mbar), and the increased intrinsic damping of the mechanical
mode due to two-level fluctuators (see section 2.3.2), the helium gas present
in the sample chamber does not induce significant damping of the mechanical
mode.

The employed commercial Optistat SXM cryostat (Oxford instruments)
implements such a cooling scheme by providing two completely independent
helium containers (cf. figure 2.42): A larger (V = 4.3 l), thermally insulated
reservoir contains liquid helium. From this reservoir, a rotary pump continu-
ously draws helium through a capillary contained in a copper block. During
this process, the helium evaporates and cools to temperatures down to 1.6 K.
The copper block has a large central bore (49mm diameter), and constitutes
part of the wall of the second helium container—a ca. 50 cm-long tube filled
with low-pressure helium gas. It therefore serves as a heat exchanger between
the cold He gas from the reservoir and the buffer gas in the central chamber
in which the sample is held. The temperature of the heat exchanger can
be continuously tuned by controlling the evaporation rate of the He using a
control valve. In addition, an electric heater in the copper block allows elec-
tronic temperature stabilization, and makes the whole temperature range up
to 300 K accessible.

Successful coupling to the WGM in the toroids requires a stable, micro-
meter-scale gap between the fiber taper and the edge of the toroid. Low
vibrations in the experimental assembly are therefore an important selection
criterion. The chosen system has successfully been operated in many labs for
the purpose of low-temperature scanning-probe microscopy—obviously very
vibration-sensitive applications. Both the suspension of the experimental
head from a ∼ 0.5 m-long metallic rod into the buffer gas, and our com-
pact head design (figure 2.42) indeed renders the cryogenic coupling setup
extremely stable [253]. Standard techniques to reduce the coupling of vibra-
tions from the running pumps (heavy masses on the transfer pipes between
cryostat and pump) are sufficient to eliminate vibrations to a degree that
they cannot be observed in any experimental signal. At the same time, this
cryostat allows convenient optical access from two orthogonal directions, pro-
viding both a side and top view of the silicon chip. Standard machine vision
products (Navitar 12×) with large working distance (∼ 9 cm) allow observa-
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Figure 2.42: Implementation of cryogenic cooling. Left panel: schematic drawing of the
employed buffer gas cryostat. Liquid 4He, kept in an isolated reservoir, evaporates when
pumped through a capillary (“heat exchanger”) and thereby cools low-pressure (0.1mbar-
50 mbar) 4He-gas in the sample space to temperatures down to 1.6K. However, a heater
can also be used to stabilize the temperature of the buffer gas to a different value in the
full range up to 300K. The experimental assembly (“head”) is directly immersed into
the buffer gas. Right panel: side (top) and bottom (bottom) view of the experimental
head. The coupling taper, glued to a glass taper mount, is fixed, while the position of the
chip containing the silica microresonators can be adjusted using stick-slip piezoelectric
actuators. Optical access from two orthogonal directions allows convenient addressing
the toroids on a chip, and precision positioning for coupling to the tapered fiber.
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tion of the coupling region with up to ×14-magnification. This is sufficient for
convenient control of the chip’s position, allowing to address various toroids
on the chip, and to fine-tune its position for well-controlled coupling via the
fixed fiber taper.

Preparation of a cryogenic cooling experiment includes two critical tasks:
selection of an adequate cooling sample and preparation of a fiber taper
mounted into the experiment. Sample preparation and testing proceeds along
the lines outlined in chapter 1. In particular, the resonators on the chip
are tested for high-Q WGM resonances allowing to enter the RSB regime
(κ < Ωm) and for low-mass, high-quality RBM modes. These measurements
are done in standard room-temperature coupling setups. If an adequate
sample is found, it is mounted into the cryogenic head.

The compactness of the cryogenic experiment renders the use of the bulky
metallic taper holders used during taper fabrication impossible. Instead, ta-
pers have to be transferred to a compact glass support made of a microscopy
glass slide which, importantly, features the same coefficient of thermal ex-
pansion as the taper. In that manner, the taper tension remains constant
during cooldown of the cryostat.

The fabrication and transfer of the fiber taper proceeds in several steps
which are illustrated in figure 2.43. After the standard fabrication procedure
in a hydrogen flame (cf. chapter 1) the taper, still in the fabrication holder, is
placed in an auxiliary testing setup. Here, a microtoroid is approached until
it touches the taper at its central position. If retracted again, the toroid
pulls the taper with it for a certain distance due to proximity forces. Using
a micrometer drive, the taper is strained by increasing the separation of the
clamps (“elongation” in figure 2.43), and the tests are repeated until the
distance over which the taper can be displaced by the toroid is in the range
of 10 µm. While not particularly quantitative, this simple test was found very
helpful in the delicate task to mount a well-strained taper into the cryostat:
sloppy tapers make coupling at low temperatures impossible, while too tightly
strained tapers are prone to rupture during cooldown. The glass support,
fabricated from a simple microscopy slide is then positioned underneath the
taper with a 3d-translation stage. The taper is glued to the support with UV-
hardening epoxy applied first on one side, hardened, and then on the other
side. Then the fiber is released from the metal holder and transferred to the
cryostat. We finally note that due to its reduced diameter and potentially
lower quality of the available single-mode fiber material, creating a cryogenic
fiber taper at shorter wavelength (e. g. 780 nm as in this work) is significantly
more difficult than at near-IR wavelengths (1.5 µm).

The slide carrying the taper is then mounted into the experimental head,
and the fiber ends are guided to the top of the sample insert and leave
the cryostat via a helium-tight feedthrough. We have achieved total optical
transmission through the cryostat up to 80% from fiber end to fiber end. A
toroid from the mounted sample can then be approached using the piezo-
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Figure 2.43: Five steps in the fabrication and transfer of a fiber taper to the compact glass
support used in the cryogenic experiments (left panel). After pulling the taper over the
flame of a hydrogen torch, its strain is tested using an auxiliary chip with microtoroids
(upper right graph). If properly strained, the glass support (prepared from a cover slide)
is positioned underneath the taper, and the fiber is glued to the support with an epoxy.
After hardening the epoxy with UV light, the metal clamps of the fabrication holder
are opened to release the taper now only held by the glass support (photograph bottom
right). It can then be mounted into the experimental head. See text for more details.

electric stick-slip actuators (Attocube systems) that carry the sample chip.
For testing purposes, and to check the correct alignment of the taper mount
(position, tilt), these experiments can also be done with the sample insert
(experimental head, suspension rod, and top vacuum flange) held outside the
cryostat.

To verify the effectiveness of the buffer gas, a sample with microtoroids,
and a coupling taper suited for 1550 nm-light was mounted into the cryostat.
The cryostat was cooled down, and the mode temperature of this sample’s
RBM was determined using a displacement measurement based on the PDH
technique (see section 2.4.2). To enhance the sensitivity, the weak probing
light (< 2µW) from the employed low-noise fiber laser (BASIK, Koheras)
was amplified using an erbium-doped amplifier after leaving the cryostat,
allowing to measure displacement spectra down to the base temperature of
the cryostat [11]. In figure 2.44, the mode temperature Tm extracted from the
calibrated spectra is shown to closely follow the temperature of the helium
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2.7 Approaching the quantum ground state

buffer gas down to about 1.8 K, or 〈n〉 ≈ 600. In spite of being exclusively
in contact with the cold helium gas, this 62 MHz-RBM could therefore be
thermalized to occupations which are, for lower frequency oscillators, often
only attainable in dilution refrigerator systems.
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Figure 2.44: Thermalization of the 62MHz-RBM of a silica microtoroid. The mode tem-
perature Tm follows the temperature of the helium buffer gas down to 1.8K, or 〈n〉 ≈ 600,
proving the effectiveness of the buffer gas cooling. Figure from ref. [10].

Cryogenic cooling of the silica microresonators implies severe modifica-
tions of the properties of these devices. As discussed already in section 2.3.2,
the mechanical quality factor critically depends on the temperature of the
structure, due to coupling of the mechanical modes to two-level systems in
the glass. In contrast, the change in the sound velocity, and therefore the
mechanical resonance frequencies, is a relatively weak effect at the O(10−2)-
level [11]. At the same time, the thermorefractive (dn/dT ) and thermoelastic
(α) coefficients are strongly modified. While α tends to zero at low temper-
atures (T < 2 · 10−9 K−1 at 1.6 K), the thermorefractive coefficient continu-
ously drops and changes sign at a temperature of about 8 K.13 The resulting
non-trivial temperature dependence of the optical resonance frequency gives
rise to interesting thermal multistability effects when an optical resonance
is probed using a laser powerful enough to heat the cavity above this tem-
perature [11]. In the context of the cooling experiments, it is important to
note that negative dn/dT implies that the red wing of an optical resonance is
dynamically self-stable, relaxing dramatically the requirements on the laser
frequency stability and locking speed when working red-detuned.

Optical system

For a cooling experiment with the aim of reaching very low occupation it is
mandatory to avoid excess backaction noise in the cooling laser beam, as this

13Note these observations [11] differ from a previous report [76].
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leads to a limit [8,236,237] in the cooling performance. The grating-stabilized
diode lasers employed in our previous cooling work was observed to exhibit
excess frequency noise (cf. section 2.6.3). One possible strategy to eliminate
this noise is to measure the noise using an independent, quiet cavity, and
fast feedback on the frequency of the laser using e. g. the diode laser current
as an actuator. Feedback with the required bandwidth exceeding 50 MHz
however is technically difficult, as few meters of cable alone would already
induce phase lags in the loop sufficient to render it ineffective.

As an alternative approach, a quiet cavity could be used in transmission
to filter out the noise. In this manner, reduction of phase noise by 85 dB has
been demonstrated at 1 MHz Fourier frequency [254]. However, the filtering
reduces the available power by more than a factor of 5, so that the remaining
available power of ∼ 2mW is problematically low for cooling experiments. At
the same time, the complex filtering setup derogates one important asset of a
grating-stabilized diode laser: its convenient, wide-range, and fast tunability.

For these reasons, we chose to use a solid-state pumped continuous wave
titanium-sapphire (Ti:S) laser (Matisse TX, Sirah Lasertechnik), which com-
bines very wide tunability (750 to 870 nm) with high output power (> 0.5 W)
and quantum-limited noise in both amplitude and phase at the relevant
Fourier frequencies. Figure 2.45 shows the schematic setup of this device.
The laser is pumped with up to 6W at 532 nm from a frequency-doubled
diode-pumped solid-state laser (Millenia, Spectra Physics). The frequency of
the laser is adjusted by a combination of intracavity filters: a Lyot birefrin-
gent filter narrows down the frequency range in which gain exceeds loss to a
few hundred GHz, and a thin and a thick etalon, with free-spectral ranges of
about 250 GHz and 20 GHz, respectively, single out one longitudinal mode of
the laser to oscillate. Once the desired laser mode oscillates, electronic feed-
back loops are used to lock the etalons to keep their transmission maximum
resonant with the laser mode. These loops are implemented by the controller
of the laser and can be adjusted on a computer using an USB-interface.

Two mirrors mounted on piezo-electric transducers can then be used to
fine-adjust the frequency of the laser. In particular, the “slow” transducer
allows frequency scans up to about 60 GHz. The “fast” transducer, together
with the intracavity electro-optic modulator, can be used for fast feedback
to the laser frequency. In normal operation, these actuators are employed
in a feedback-loop to lock the laser to an external, temperature-stabilized,
∼ 30 cm-long high-finesse (F ∼ 300) cavity via the PDH technique, in order
to eliminate low-frequency frequency noise of the laser, reducing the laser
linewidth to < 30 kHz. In this case, the laser frequency is controlled by
tuning the resonance frequency of the reference cavity, again by displacing a
cavity mirror mounted on a piezoelectric transducer.

The Ti:S laser can be tuned to arbitrary frequencies within its tuning
range, however, continuous scanning over the whole range is note possible,
as the various frequency selectors have to be readjusted if the laser has to be
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Figure 2.45: Layout of the Ti:S laser used for the cryogenic cooling experiments. The Ti:S
crystal in the ring cavity is pumped optically at 532 nm (green beam). In order to select
a single longitudinal mode within the tuning range of 750 to 870 nm, a Lyot filter, thick
etalon and thin etalon are used. A Faraday rotator, one reflection point lying outside the
plane of the rest of the cavity mode, and a number of Brewster-angled surfaces ensure
unidirectional lasing. The frequency of the laser is controlled by displacing cavity mirrors
using a fast, a slow piezo, as well as an intracavity electro-optic modulator.

tuned by more than about 30GHz. We therefore resort to a tunable external
cavity diode laser (DL) in Littman-Metcalf configuration (TLB-6300, New
Focus) for pre-characterization of the toroids (figure 2.46).

Once a well-suited WGM resonance is found with the DL, the Ti:S laser
is tuned close to the frequency of this resonance. For this purpose, the Ti:S
frequency is coarsely adjusted first, using a grating spectrograph. For the
subsequent fine-adjustment, it was found very useful to monitor the inter-
ference signal of the DL—scanning over a broader frequency range including
the WGM resonance—and the slowly tuning Ti:S laser. When the DL scans
through the Ti:S frequency, a transient interference signal is observed as long
as the difference frequency is within the bandwidth of the receiver (125 MHz).
This transient beat serves as a convenient marker of the Ti:S frequency, while
the standard transmission signal of the DL indicates the WGM resonance fre-
quency.

After the Ti:S has been tuned close to the WGM resonance, an optical
switch based on MEMS14-technology is used to switch to the Ti:S laser as
input to the experiment. The optical setup of the experiment corresponds
essentially to a homodyne measurement (figure 2.46). To achieve the highest
possible SNR, good interference contrast between the local oscillator and
signal beams is crucial. For this reason, identical collimators in both beams
are employed. Careful alignment then allowed to achieve interference contrast
up to 90% (figure 2.47).

The phase of the local oscillator is locked by using the DC-part of the
homodyne signal from the balanced receiver, forcing the average detected
differential photocurrent to zero for a phase measurement. Note that this
is slightly different to the technique described in 2.4.2, where an orthogonal
polarization component (in both signal and LO beams) was used to derive
the LO phase error signal. In this experiment, the length of the employed

14MEMS: microelectromechanical system
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Figure 2.46: Schematic of the setup used for resolved-sideband laser cooling in a cryogenic
environment. An external cavity diode laser (ECDL) is used for precharacterization of
the optical modes. When a suited WGM resonance is found, the Ti:S laser is tuned to
the frequency of the ECDL using the “diagnostics” optical output (see text). Then the
input to the experiment is switched to the Ti:S using a MEMS switch. The subsequent
optical setup is essentially a Mach-Zehnder interferometer, one arm of which contains
the cryostat with the taper coupled to the WGM in a microtoroid. For testing purposes,
the output of the taper can also directly be monitored by guiding the light to an aux-
iliary photoreceiver (dashed beam path). In normal operation, the transmitted light is
spatially overlapped with the local oscillator in a polarizing beam splitter cube, albeit
in orthogonal polarization modes. Projected into a different polarization basis using a
waveplate and another polarizing cube, the modes interfere, and the interference signal
is recorded with a balanced receiver. The phase of the local oscillator—and therefore
also the detected signal quadrature—is locked using the DC-signal from the balanced
receiver. The radio-frequency-part is sent to a spectrum analyzer to obtain the displace-
ment noise spectra, calibrated again by the frequency modulation of probing laser using
an elecro-optic modulator (EOM). Waveplates and polarizing beam splitter cubes are
used at various positions in the optical setup to adjust powers and polarizations of the
beams.
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Figure 2.47: Interference contrast of the homodyne receiver. “Signal” and “local oscilla-
tor” traces are recorded by manually rotating the last λ/2-waveplate in front of the last
polarizing beam splitter cube in steps of 10◦, with the other input beam blocked. For this
test, the powers in both beams are adjusted to yield a maximum signal of 400mV. If both
beams are opened, and the detection unit is properly aligned, a total signal amplitude
of 1440 mV, corresponding to 90% interference contrast, is recorded.
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Figure 2.48: Displacement noise spectra of the RBM of a silica microtoroid held at a tem-
perature of 2.4K. The power used to probe the RBM was about 3 µW (red trace), 10 µW
(green trace) and 100 µW (blue trace). Points are measured data, lines are Lorentzian
fits. Figure from ref. [10].

fibers renders this approach problematic due to apparent drifts in the po-
larization rotation in the fibers. Note also that it is necessary to match the
total length of the fibers in both arms of the interferometer (excluding the
potential propagation length in the toroid) in order to measure the correct
signal quadrature at all Fourier frequencies.

Figure 2.48 shows typical displacement spectra of the 65.3 MHz-RBM of
a silica microtoroid probed by homodyne spectroscopy with the Ti:S laser.
The sample is held in the cryostat, at a temperature of 2.4 K, corresponding
to 〈n〉 ≈ 770. Sensitivity at the 10−18 m/

√
Hz-level, as well as a SNR of

nearly 20 dB (in noise power) is achieved, in spite of a mechanical quality
factor which was as low as 540 in this case. Note that displacement noise
measured at resonance is the sum of the thermal noise in the mechanical
mode plus the imprecision background noise due to quantum noise in the
detection, which reduces at higher probing powers.
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Figure 2.49: Left panel: Mode temperature and occupation number of the RBM, mea-
sured using noise thermometry, versus the temperature of the buffer gas in the cryostat,
including a reference measurement at room temperature (red point). Green data points
are taken with the laser tuned to the optical resonance, so no optical cooling takes place.
When tuned to the lower mechanical sideband (inset), additional laser cooling is observed
(blue points). Panels on the right show a selection of displacement noise spectra, from
which the mode temperatures of the measurements were derived. Apart from the calibra-
tion peak these spectra also reveal a nearby second mechanical mode. Nonetheless, the
spectrum of the RBM can be well-fit with a Lorentzian (thin lies). Figure from ref. [10].

2.7.2 Cooling towards the quantum ground state

To demonstrate the performance of combined optical and cryogenic cooling,
we used a 52µm-diameter sample with a WGM of 5.5 MHz intrinsic decay
rate and 9 MHz mode splitting, loaded down to κ/2π ≈ 19 MHz using the
fiber taper, corresponding to a finesse of about 70,000. A room-temperature
reference measurement (figure 2.48) of its RBM at 65.2 MHz reveals an ef-
fective mass of 5.6 ng, in good agreement with the simulated value of 4.9 ng.
Note that the experimentally determined mass can only be as accurate as the
displacement calibration and the knowledge of the actual temperature of the
RBM is. We generally estimate the resulting systematic error to a level of
30%, arising from imperfections in the modulation scheme and temperature
changes induced by dynamical backaction or absorption-induced heating.

Using this effective mass, it is possible to derive the mode temperature
from subsequent displacement measurements during cooldown of the cryo-
stat. The results again confirm proper thermalization of the sample (fig-
ure 2.49), down to an occupation of 〈n〉 ≈ 550. For further cooling, the
Ti:S laser is tuned to the lower sideband at ∆̄ = −Ωm. The signal from the
homodyne receiver can still be used to measure mechanical displacements,
however, due to the detuned operation, the spectrum of the phase quadra-
ture now displays a more complicated dependence from the mechanical noise
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spectrum. In contrast to the expression (2.118) for ∆̄ = 0, we now obtain

S̄out
qq (Ω) = 1 +

4ā2g2
0ηcκ

∆̄2 + (2ηc − 1)2(κ/2)2
×

∆̄4 + 2∆̄2(2ηc − 1)(κ/2)2 + (2ηc − 1)2(κ/2)2((κ/2)2 + Ω2)

∆̄4 + 2∆̄2((κ/2)2 − Ω2) + ((κ/2)2 + Ω2)2
S̄xx(Ω),

(2.180)

where 1 again is due to quantum noise.
We emphasize that the transduction of a frequency modulation into S̄qq

has the same dependence on the relevant experimental parameters as the
transduction of displacements S̄xx, so that the calibration scheme remains
valid also in the detuned case. Rewriting (2.180) as a quantum-noise induced
imprecision in the displacement measurement one obtains

S̄im,qn
xx (Ω) =

∆̄2 + (2ηc − 1)2(κ/2)2

4ā2g2
0ηcκ

×

∆̄4 + 2∆̄2((κ/2)2 − Ω2) + ((κ/2)2 + Ω2)2

∆̄4 + 2∆̄2(2ηc − 1)(κ/2)2 + (2ηc − 1)2(κ/2)2((κ/2)2 + Ω2)
.

(2.181)

For κ . Γeff , which is typically in the case in the experiments presented
here, the spectral shape of this function can be assumed to be flat over the
frequency range of interest, and we find as a useful approximation

S̄im,qn
xx (Ωm) ≈ Ω2

m

4η2
cg2

0

!ω
Pin

(2.182)

in the resolved sideband regime (∆̄ = −Ωm . κ). It is noteworthy that this
value is only a factor of 4 higher than expected for resonant probing ∆̄ = 0
in this regime. However, in the resolved sideband regime, only a fraction of
∼ (κ/4Ωm)2 of the launched power is coupled to the cavity.

Figure 2.49 shows displacement spectra and corresponding mode tem-
peratures recorded during such a cooling run. As expected, the damping
of the mechanical modes is optically increased, when the laser is detuned
to ∆̄ = −Ωm. Note that for these experiments, active stabilization of the
laser frequency to the optical sideband of the WGM has not been necessary.
Instead, a second electronic spectrum analyzer was used to demodulate the
homodyne signal at the frequency Ωmod of the calibration modulation. As
expected from (2.181), this signal displays local maxima at ∆̄ = 0,±Ωmod.
After the laser is tuned to ∆̄ = −Ωm, the system is sufficiently stable dur-
ing the averaging of typically several tens of seconds (small drifts can be
manually compensated).

For the highest launched powers of ∼ 0.2 mW, the total damping rate
was increased to Γeff/2π = 370 kHz. At the same time, the mode temper-
ature was reduced to Tm = 200 ± 60mK, corresponding to an occupation
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of 〈n〉 = 63 ± 20 [10]. The error interval is due to potential calibration er-
rors in the displacement measurement and the determination of the effective
mass. This value is comparable to the lowest occupation achieved in nano-
electromechanical systems, yet those experiments have to rely more heav-
ily on advanced cryogenic machinery [246], and suffer from the insufficient
signal-to-noise ratio.

2.7.3 Assessing measurement backaction

The strong suppression of thermal noise in the measurements presented here
allows an interesting analysis of the data from the perspective of quantum
measurement. As discussed in section 2.4.1, fundamentally, the achieved to-
tal uncertainty in the measurement of the displacement of the mechanical
oscillator is limited by two effects: imprecision and backaction. The impreci-
sion in our experiment is given by detection shot noise, in the detuned case
discussed here it is described by equation (2.181).

On the other hand, the light used to measure the mechanical oscillator
exerts backaction on it. Inevitably, intracavity photon number fluctuations
give rise to a fluctuating force the spectrum of which can be derived to
read [10]

S̄ba,qn
F F (Ω) = !

2g2
0 ā2κ

∆̄2 + (κ/2)2 + Ω2

∆̄4 + 2∆̄2((κ/2)2 − Ω2) + ((κ/2)2 + Ω2)2
. (2.183)

These force fluctuations are usually referred to as quantum backaction, sim-
plifying to

S̄ba,qn
F F (Ωm) ≈ 2g2

0Pinηc!

ωΩ2
m

(2.184)

in the resolved-sideband regime (|∆̄| = Ωm . κ). Note that the spectra of
imprecision and backaction noise, as well as their possible correlation SxF (Ω)
reflect properties of the measurement device (the cavity pumped by a laser
field)—independent of the mechanical oscillator.

Other sources of measurement backaction include excess noise in the
intracavity photon number, which may arise from laser frequency fluctua-
tions [8,236,237]. This effect can be ruled out in this work as the employed
Ti:S is known to exhibit only quantum fluctuations at the Fourier frequencies
of interest. Another possible source of measurement backaction is heating of
the torus due to light absorption. This increases the temperature of the
structure, and raises the level of Langevin force fluctuations driving the me-
chanical oscillator.

A series of cooling measurements (figure 2.50) indeed reveals a devia-
tion from the simple relation (2.147), which can however be reproduced by
introducing a heating term

Tm =
Γm(T ′)

Γm(T ′) + Γdba
T ′, (2.185)
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Figure 2.50: Resolved-sideband cooling of two samples with frequencies of Ωm/2π =
65.1 MHz (left panel) and Ωm/2π = 121.7MHz (right panel). The graphs show the
mechanical linewidth Γeff (abscissa) versus the derived mode temperature Tm (ordinate)
during a cooling run. Open points correspond to measurements with the laser tuned close
to the optical resonance (no optical cooling), and filled points to measurements with the
laser tuned close to the lower sideband. When varying the power of the cooling laser,
both linewidth and mode temperature are changed. Deviation from the simple cooling
behavior (blue line) is attributed to an increase of the structures temperature (red dashed
line), taken into account in a more elaborate model (green dashed line). Scatter is due to
varying operation conditions, uncertainty in phonon occupation for each point is < 30%.
Figure from ref. [10].

with T ′ = T + ∆Tabs, where ∆Tabs is proportional to the power circulating
in the cavity. In addition, we have taken also the temperature dependence
of the mechanical damping Γm(T ′) into account. For the 65MHz-oscillator
below 2 K, with [11] dΓm/dT ≈ 2π16 kHz/K, we find a heating of about 5K
per Watt of circulating power. Similar values were extracted from studies
of optical multi-stability at low temperature at a wavelength of 1.5 µm, cor-
roborating the attribution of the observed backaction effect to laser-induced
heating.

A comparison with a second cooling run with a different sample with
Ωm/2π = 121.7 MHz and Qm = 2,200, but a broader WGM resonance with
κ/2π = 155 MHz emphasizes the importance of the resolved-sideband regime
for the efficiency of cooling in the presence of laser absorption: A significantly
more pronounced heating effect prevents reaching occupations below 〈n〉 =
100, in spite of the higher mechanical frequency (figure 2.50).

From the data of the 〈n〉 ≈ 63-cooling run we can now extract quanti-
tative values of the corresponding backaction force fluctuations. As a very
conservative upper limit, we may use the total thermal force fluctuations
S̄the

F F (Ω) = 2meffΓmkBT ′, and find a value of
p

S̄the
F F (Ωm) = 8 fN/

√
Hz. If we

consider only the temperature raise ∆Tabs caused by the laser absorption as
the backaction of the measurement, a lower value of

p

S̄ba
F F (Ωm) = 4 fN/

√
Hz

is found. In these assessments, we benefit from the low occupation which al-
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lows us to extract the effect of measurement backaction, as it large enough
to be observed on top of the background of the thermal noise.

It is interesting to compare these findings with fundamental limits. In-
deed, quantum mechanics imposes an inequality on imprecision and back-
action noise, which, for the particular case of an optical measurement of a
mechanical oscillator’s displacement, can be written as simple as

S̄im
xx(Ω) · S̄ba

F F (Ω) ≥ !
2

4
. (2.186)

This relation can be considered a manifestation of the Heisenberg uncertainty
principle in the context of continuous position measurement [94].

Taking the force noise extracted from our data, and the experimental
imprecision of

p

S̄im
xx(Ωm) ≈ 1.4 am/

√
Hz achieved in the same measurement,

an upper limit from the backaction-imprecision product of
q

S̄im
xx(Ωm) · S̄the

F F (Ωm) ≈ 220
!

2

is found. Considering only the absorption-induced heating as a backaction
mechanism, an even lower value of

q

S̄im
xx(Ωm) · S̄ba

F F (Ωm) ≈ 100
!

2

is found from our experiments. This is an order of magnitude lower than
the values achieved with nanomechanical oscillators cooled in dilution refrig-
erators: Readout with an atomic point contact [255] achieved a backaction-
imprecision product of 1700±400 !/2, while measurements using a sSET [246]
have achieved a value15 of ∼ 800 !/2.

2.8 Conclusion

In this chapter, we have reported on optomechanical interactions in high-
finesse optical whispering gallery mode resonators. Careful analysis and
understanding of these devices’ properties has allowed us to optimize their
performance for the purpose of cavity optomechanics. Among the various
systems now designed and studied in this context, they offer a unique combi-
nation of high-frequency (30–120 MHz), high-quality (Qm up to 80,000) me-
chanical modes and ultra-high finesse (intrinsic finesse F0 ≈ 0.9 ·106) optical
resonances. These key figures rival even the best optical cavities developed in
the context of cavity quantum electrodynamics [256] in terms of finesse, and
the mechanical quality factors of state-of-the art nano- and micromechanical
oscillators [246,257] in the same frequency range.

15Note that the number quoted in this manuscript, 15 !/2, is a theoretical estimate if
shot-noise limited detection was possible. As discussed in the supplementary information,
the actual imprecision noise in the experiment was 50-times higher [239, 246].
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Together with an intrinsically strong parametric coupling of optical and
mechanical degrees of freedom—with optical resonance frequency shifts of
typically more than 10 kHz per femtometer displacement—this has enabled
ultrasensitive optical monitoring of the mechanical mode. Adapting power-
ful tools from Quantum Optics as optical displacement meters limited only
by optical quantum noise, sensitivities at the level of 10−18 m/

√
Hz were

achieved [8, 9]. This experimentally demonstrated imprecision is below the
expected noise level associated with the zero-point fluctuations of the me-
chanical mode, a feat yet achieved only with much lighter nanomechanical
oscillators [239,246]. Reaching such a sensitivity is a crucial precondition for
the experimental verification of the concepts of Quantum Measurement in
the context of displacement measurements, such as quantum backaction and
the emergence of the standard quantum limit [94, 124, 127]. Furthermore,
this exquisite sensitivity may also be exploited to monitor nanomechanical
oscillators brought into the near-field of the cavity mode [9], such as sil-
icon nitride nanobeams or -membranes [12], graphene sheets or diamond
nanowires. Beyond mechanical effects, this sensitivity has allowed study-
ing fundamental thermal noise mechanisms, such as thermorefractive noise,
which are of interest for the application of silica microresonators as frequency
references [203, 258], as biophysical sensors [29, 259, 260] or for the proposed
demonstration of Kerr squeezing [75].

Due to the high-finesse, the dramatically enhanced intracavity radiation
pressure exerts a readily detectable force on the mechanical mode. This ef-
fect was directly measured in a “pump-probe”-type measurement, in which
the displacements induced by modulated radiation-pressure is probed with
a second laser. It was shown that the nonlinear cross-coupling of the two
light fields is strongly dominated by radiation pressure induced mechanical
displacement, and more than two orders of magnitude stronger than the
well-known Kerr effect [1]. Furthermore, radiation pressure has also been
shown to induce a modification of the dynamics of the mechanical mode,
changing both its effective spring constant (optical spring) and its damping
(amplification and cooling). Predicted as early as 1967 by Braginsky [97],
this dynamical backaction was systematically studied over a wide regime of
experimental parameters (detuning, photon storage time, mechanical oscilla-
tion period). Our experiments have demonstrated, for the first time, efficient
optical cooling of a mechanical mode induced by dynamical backaction, both
in the “Doppler” [1] and the resolved-sideband regime [8]. These techniques
are now widely employed in experiments which aim to demonstrate ground-
state cooling of a mechanical device (figure 2.51).

In our experiments, we have identified several important barriers on the
way towards this ultimate goal. Frequency noise of the driving electromag-
netic field, practically relevant in many systems [8,236,237], is shown here to
be eliminated by resorting to a quantum-noise limited laser system. Further-
more, much in contrast to trapped atoms or ions, even very high-Q macro-
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Figure 2.51: Cooling experiments performed in different laboratories around the globe,
including both experiments based on dynamical backaction and active feedback cooling.
The cooled oscillators span about 8 orders of magnitude in frequency. Open symbols in-
dicate the reservoir temperature of the experiments, distinguishing cryogenic from room-
temperature experiments. Full symbols indicate the lowest mode temperature achieved
when optomechnical cooling is applied. The dashed line indicates the temperature for
which !Ωm ≈ kBT . The individual results are described in references: AURIGA [160],
Cornell [41], IBM [150], IQOQI [141, 142, 164], JILA [157], LKB [130, 137, 138], LMU
[135, 154], MIT [148, 149], MPQ [1, 8, 10], NIST [151], Oregon [261], Stanford [231],
UCSB [144], UMD [246], UWA [156], Yale [152].

scopic oscillators are not very well isolated from their finite-temperature
environment. Fluctuating thermal forces thus compete with laser cooling,
limiting the occupancies achieved in room-temperature experiments to a few
thousand quanta (figure 2.51).

To overcome this limit, we have implemented resolved-sideband laser cool-
ing in a cryogenic environment [10]. The mechanical oscillator is cooled to
an occupation of 〈n〉 ≈ 63± 20. The optical detection scheme provides small
enough displacement imprecision to enable monitoring even such an ultra-
cold oscillator with appreciable signal-to-noise ratio. Even more, due to the
low occupation, we are able to extract an upper limit on the backaction of
the displacement measurement. The product of backaction and imprecision
noise lies only a factor of 100 above the fundamental quantum limit [94], and
constitutes the lowest value reported in the literature [239].

In conclusion, we have introduced an optomechanical system suited for
the exploration of quantum effects in mesoscopic mechanical oscillators, by
experimentally demonstrating (i) the possibility to monitor its displacements
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with an imprecision below the standard quantum limit, (ii) a combination
of cooling techniques based on radiation-pressure and standard cryogenics
capable of cooling the oscillator close to its quantum ground state, and (iii)
a near-ideal operation of the displacement transducer in the sense of quan-
tum measurement (imprecision-backaction product). Leveraging quantum
optical techniques, we have therefore established a route into the quantum
realm of mesoscopic oscillators, which previously was thought to be uniquely
accessible with nano-electromechanical systems [127].

2.9 Outlook

Notwithstanding such progress, true quantum effects of radiation pressure, or
a mechanical oscillator, have not been observed in any experiment today.16

Of the various theoretical proposals, it appears that cooling to the quantum
ground state, and the observation of quantum backaction are closest to being
possible with WGM microresonators. In the following, we briefly outline the
strategies pursued in our laboratory to achieve these goals, and, concluding
this chapter, point at other interesting optomechanical effects to explore.

The most severe antagonist to ground state cooling is the intrinsic damp-
ing Γm of the mechanical mode, coupling it to the environment at a finite
temperature T . This coupling tries to maintain the mode and the environ-
ment in thermal equilibrium, essentially feeding the power ΓmkB(T − Tm)
into the mechanical mode, which has to be continuously removed by laser
cooling. There are two obvious ways to reduce this load: reducing the envi-
ronment temperature T , and reducing the mechanical damping Γm. While
the former is a technical task, the latter exhibits complex dependence on
material, geometry and operation conditions.

In particular we have observed (sections 2.3.2 and 2.7.2) a strong increase
of the mechanical damping at cryogenic temperatures due to relaxation of
two-level systems (TLS) present in the silica material [11, 185]. This flaw
is known, however, to ameliorate at sufficiently low temperatures " 1 K, at
which the damping due to TLS rolls off with Γm ∝ Ωm/T 3. Thus, lowering
the operation temperature of the experiment may be expected to enhance
the cooling performance with a scaling up to T−4. For this reason, a 3He-
cryogenic system is presently tested in our laboratory. A base temperature of
600 mK, and significantly higher mechanical quality factors (> 104) than in
the 4He-cryostat were already measured. Resolved-sideband cooling, with the
cooling rates of 1.5MHz already demonstrated, would place a 70 MHz RBM
directly in the quantum ground state. A very crucial issue in this context,
however, is the suppression of heating by laser absorption, requiring very
high-quality samples and operation deeply in the resolved sideband regime.

16There are, however, experiments that could be considered “quantum simulations” of
mesoscopic mechanical oscillators—based on ultracold atoms [262, 263].
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Optical absorption could be reduced by using ultrapure crystalline mate-
rials for the WGM resonators. Indeed, pioneering work at the Jet Propulsion
Laboratory has demonstrated WGM resonators made of quartz [264], MgF2

and CaF2 [265] with optical quality factors up to 6 ·1010. Machining and pol-
ishing WGM resonators down to a diameter of 80 µm has also been achieved.
At the same time, the pristine crystalline structure avoids mechanical losses
due to two-level systems. At ∼ 100 kHz-frequencies, mechanical quality fac-
tors Qm # 108 were measured in bulk CaF2 samples, both at room and
cryogenic temperatures [266].

We have therefore started to explore the optomechanical properties of
crystalline WGM resonators in our laboratory. Several different geometries
were fabricated using a precision lathe and polished using diamond slurry. An
example of such a resonator is shown in figure 2.52. We have achieved optical
quality factors up to Q0 = 1.2 · 1010, corresponding to a linewidth of κ/2π =
24 kHz in a R = 1.8 mm resonator (intrinsic Finesse F0 = 760,000). We have
also produced an 800 µm-diameter, 100 µm thick disk and achieved Q0 ≈
109 (F0 = 400,000). Optical transduction techniques described in section
2.4 are used to measure mechanical modes in these structures, which are
typically found in the range between 0.5 and 5 MHz. The highest measured
mechanical quality factor was Qm = 136,000. Already an encouraging value,
there is strong evidence for this value to be still limited by clamping losses
which can be mitigated by a more suitable design and suspension of the
resonators. Furthermore, the rather high effective masses (around 600 µg)
and the slightly weaker optomechanical coupling (|g0|/2π ∼ 1.5 kHz/fm) call
for further miniaturization of the structures. For example, a 80 µm-diameter,
10 µm thick disk would possess meff = 90 ng and Ωm/2π = 63 MHz. If
Qm ∼ 108 can be reached, the power required to cool such a device from
T = Tm = 1.6 K to Tm ≈ !Ωm/kB is as low as 10 µW in the resolved-
sideband regime. Heating due to absorbtion is likely to be totally negligible
considering the optical quality of the crystals.

We finally point out that various crystalline materials may be amenable to
this approach, combining optomechanical coupling with yet other function-
ality. As an example, we have tested various polished diamond spheres, and
have observed WGMs with quality factors up to 3 · 106 in a 3 mm-diameter
sphere.

A somewhat opposite approach consists in decoupling optical and me-
chanical degrees of freedom. Keeping the silica WGM resonators as optical
cavities, but placing an external mechanical oscillator in the near-field of the
WGM allows independently engineered mechanical properties. For example,
light-weight (meff ≈ 1 pg) nanomechanical oscillators such as strained SiN
strings, have been demonstrated to enable Qm ≈ 106 at ∼ 1MHz-resonance
frequencies [267]. Placed in the near-field of a WGM, movement of the polar-
izable oscillator in the optical field gradient induces frequency shifts on the
order of |g0| ≈ 10MHz/nm, without inducing detectable optical loss of the
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Figure 2.52: Whispering gallery mode resonator made of calcium fluoride. The rims of the
protrusions support WGM with extreme photon storage times. Left panel is a photograph
of a 6mm-diameter prototype resonator produced at MPQ. Right panel shows a ringdown
trace for a critically coupled resonator. The ringdown time of 2.5 µs corresponds to an
intrinsic quality factor of 1.2 · 1010.

WGM. A measurement imprecision below the noise level associated with zero-
point fluctuations, and dynamical backaction induced by the optical dipole
force have been demonstrated with such a system in our laboratory [12].

These results are very encouraging for studies pertaining to the observa-
tion of quantum backaction. Usually masked by the much stronger thermal
noise, this effect may become detectable if the ratio S̄ba,qn

F F (Ωm)/S̄the
F F (Ωm) ≈

ā2g2
0κ!

2Ω−2
m /2meffΓmkT (assuming the limit Ωm # κ/2) approaches unity.

Leveraging the low mass and high quality factor available with nanomechan-
ical oscillators it appears feasible to approach this regime, with moderate
optical probing powers of ∼ 100 µW even at room temperature. To differenti-
ate the added noise induced by quantum backaction from potentially present
absorption induced heating, correlation measurements [133] or backaction
cancellation [132] between two oscillators with slightly different frequencies
may be employed.

As a last example of near-future research projects enabled by the progress
presented in this thesis is an investigation of the regime of strong optome-
chanical coupling [240] in the yet unexplored optical domain. As our analysis
shows, the strong—but tunable—coupling of the optical mode to the me-
chanical mode via the mean photon field ā gives rise to features very similar
to the effect of electromagnetically induced transparency (EIT) in atomic
physics [112,268].

The basic idea of such an experiment is illustrated in figure 2.53. The
strong field ā of the coupling (formerly “cooling”) laser oscillates at frequency
ωl = ωc − Ωm, and thereby couples the levels 2 ↔ 3 by processes in which a
phonon is removed upon the addition of a photon to the intracavity field (red-
sideband transitions). A second, very weak laser oscillating at ωp = ωl + Ω,
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Figure 2.53: Optomechanically induced transparency. Left: A coupling laser of frequency
ωl drives red sideband transitions between (sets of) levels 2 and 3, which differ both in
the number of optical and mechanical excitation quanta (each time a photon is added
to the coupling field, a phonon in the mechanical degree of freedom is removed). A
probing laser tuned close to the 1 → 3 transition of the unperturbed systems actually
interacts with a superposition of levels 2 and 3, leading to the opening of a transmission
window in the case of an optomechanical system. Right panel shows the resulting power
transmission of the probe laser through a taper-toroid system for ∆̄ = −Ωm versus
the detuning (Ω − Ωm)/2π of the probe laser. Numerical parameters are typical for
silica microtoroids, with Ωm/2π = 40 MHz, Γm/2π = 1.3 kHz, κ/2π = 5MHz, R =,
meff = 10ng, R = 40 µm and s̄2

in!ωl = 300 µW (red line) or s̄2
in!ωl = 0 µW (green line).

probes “carrier” transitions 1 ↔ 2, in which originally no phonons are added
or removed. Due to the strong optomechanical coupling induced by the
coupling field, it effectively interacts with a hybrid optomechanical resonance.
Similar to EIT, this hybridization opens up a tunable transmission window
for the probing laser at the center of the optical resonance. We therefore
refer to this effect as “optomechanically induced transparency”.

A simple model for this scheme can be set up directly from the Langevin
equation (2.50). Neglecting thermal and quantum noise for an elementary
analysis, one obtains for the (power) transmission of the probing laser

Tp =

˛
˛
˛
˛
1 − 1 + if(Ω)

−i(∆̄ + Ω) + κ/2 + 2∆̄f(Ω)
ηcκ

˛
˛
˛
˛

2

(2.187)

with

f(Ω) = !g2
0 ā2 χ(Ω)

i(∆̄ − Ω) + κ/2
. (2.188)

At a basic level, this effect can be understood from the fact that for ωp −
ωl = Ω ≈ Ωm, the beat of coupling and probing laser drives the mechanical
oscillator. The anti-Stokes field generated, in turn, from the coupling field
interferes with the incoming probing light.
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The formal analogy with atomic EIT is even more obvious in the limiting
case of: (i) a high-Q oscillator Ωm . Γm (ii) the resolved-sideband regime
Ωm . κ and (iii) the detuning ∆̄ = −Ωm. Using the abbreviation ∆′ ≡
Ω − Ωm one can then simplify the equation system to

`

−i∆′ + κ/2
´

δâ(Ω) = +ig0āδx̂(Ω) +
√

ηcκ δŝin(Ω) (2.189)

(−i∆′ + Γm)δx̂(Ω) = i
!g0ā

meffΩm
δâ(Ω) (2.190)

directly analogous to the EIT case [269], with the well-known solution

δâ(Ω) =
ηcκ

(−i∆′ + κ/2) +
2ā2g2

0x2
ZPF

i∆′+Γm

. (2.191)

Mechanical and optical oscillator play the role of two dipole transitions, where
a pump laser couples two of the involved three levels. As in EIT, the modifi-
cation of the transmission for the probe laser may be used for tuning optical
group velocities to generate slow or fast light [269–271], or, in designs hosting
large arrays of optomechanical systems, even storage of light in mechanical
states [272–274] may be envisioned.
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Chapter 3

Generation of frequency combs in

silica microresonators∗

3.1 Introduction

Optical frequency combs [275–277] provide equidistant frequency markers
across wide spectral regions of electromagnetic radiation from the infrared
to the extreme ultraviolet [278, 279]. T. W. Hänsch and coworkers have
realized in their early work on mode-locked lasers that the periodic pulse
train emitted by these devices intrinsically constitutes an optical frequency
comb in the spectral domain, which can be used to measure unknown optical
frequencies [280, 281]. Such an optical frequency comb is characterized by
only two degrees of freedom, its mode spacing fr and the carrier-envelope-
offset frequency fceo [282]. The mode spacing fr is directly given by the
pulse repetition rate, whereas fceo determines the frequency offset of the
comb teeth from integer multiples of the repetition rate. In time domain,
fceo describes the phase slippage rate of the pulse envelope with respect to
the carrier. The frequency of any comb line in the spectrum of a frequency
comb can therefore be written as

fm = fceo + mfr, (3.1)

where m is an integer.
As a consequence, the frequency of every comb tooth is uniquely deter-

mined by the experimentally controlled quantities fceo and fr. Any arbitrary
optical frequency within the spectrum of the comb may therefore by syn-
thesized. And, vice versa, any given optical frequency within this spectrum
can be phase coherently compared to the (typically radio-frequency) enti-
ties fceo and fr, which can in turn be referenced to today’s microwave time

∗The material presented in this chapter has also been published in reference [13], and
is reproduced here with permission from Taylor&Francis.
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3. Generation of frequency combs in silica microresonators

the development and practical use of time standards in the optical domain
if used as a clockwork mechanism, transducing the ∼ 1014 Hz-fast pace of an
optical primary oscillator to countable radio frequencies [276, 277, 285, 286].
Very recently, novel applications of frequency combs have also been devel-
oped in the domain of broadband, ultra-sensitive absorption spectroscopy as
employed, for example, for trace gas sensing [287–290].

The first attempts to compare the frequencies of radio-frequency (RF)
and optical electromagnetic radiation were based on many stages of aux-
iliary oscillators, whose frequency was multiplied using nonlinear radiation
mixers. Both at the National Bureau of Standards (NBS, now National In-
stitute of Standard and Technology, NIST) in Boulder, USA, and at the
Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany,
links between a Cs atomic clock reference and oscillators at optical frequen-
cies were established in this manner [291]. For the somewhat simpler task
of phase-coherently linking two optical frequencies, researchers at the Max
Planck Institute of Quantum Optics (MPQ) in Garching, Germany, had used
another approach: An optical frequency interval divider chain was imple-
mented using compact semiconductor lasers, bisecting the frequency gap in
several steps until a direct microwave signal could be measured [292]. For the
same purpose, Kourogi, in 1993, had already demonstrated [293] that narrow
optical frequency combs can be generated by inserting a phase modulator in-
side a cavity, into which resonant continuous wave laser radiation is injected.
This lead to the generation of a cascade of optical sidebands spaced by the
driving frequency of the phase modulator. Limited by the dispersion of the
cavity and phase modulator, combs generated in this way could span several
THz. This approach was refined in later research at the Joint Institute for
Laboratory Astrophysics (JILA) [294,295].

Frequency combs derived from mode-locked lasers have dramatically sim-
plified all of these tasks [282, 296]. For their practical use, however, it is
essential to measure and control both fr and fceo. The pulse repetition rate
fr can be measured by simply detecting the laser’s power with a fast pho-
todetector, the signal of which is directly modulated at fr and its harmonics.
Control of fr is possible by actuating the effective round-trip length of the
light pulse in the laser cavity. Measuring and locking the carrier-envelope off-
set frequency fceo is more challenging. A powerful technique devised for that
purpose is a non-linear interferometer (“f − 2f” interferometer) comparing
the frequency of one comb component with another comb component close
to twice the optical frequency of the first. Such a measurement, however,
requires an optical spectrum that spans a full octave. Only with the advent
of photonic crystal fibers which exhibited a zero dispersion wavelength in
the 800 nm-range, it became possible to broaden the output spectrum of a
Ti:Sapphire laser system to a full octave and thereby measure (and stabilize)
the carrier envelope offset frequency [283,284,286].
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3.2 Physics of the comb generation process

3.2 Physics of the comb generation process

An entirely novel comb generator based on the silica WGM cavities described
in chapter 1 was reported at the Max Planck Institute of Quantum Optics
in 2007. This has allowed a dramatic reduction in size and enabled access
to ultra-high repetition rates, exceeding 40 GHz, while normal mode-locked
lasers typically only offer rates below 1GHz. The approach is based on
the χ(3) nonlinearity of the device’s host material, giving rise to parametric
frequency conversion1. The cavities’ high optical finesse and small mode
volume make them uniquely suited for optical frequency conversion [298] due
to the significantly reduced threshold power for nonlinear optical processes.

Figure 3.1 illustrates the comb generation process. A high-Q (Q ∼ 108)
WGM resonance of a 75 µm-diameter toroidal microcavity is pumped with a
monochromatic laser in the 1550 nm-range at a power of about 60mW. Such
a power corresponds to an intracavity intensity of more than 1GW/cm2, and
thus far exceeds the threshold for parametric oscillations [75]. In this case,
a comb-like spectrum consisting of several bright emission lines spaced by
about 7 nm (cf. figure 3.1) is measured using an optical spectrum analyzer.
This spacing corresponds approximately to the cavity FSR

νFSR =
c

2πRneff
, (3.2)

with the cavity radius R and neff the effective refractive index. The observed
process is very efficient, generating strong (typically > 1mW or 0 dBm)
sidebands spanning several hundreds of nanometers of spectral width.

The underlying physical mechanism is a cavity-enhanced cascaded four-
wave mixing (FWM) process. It is mediated by the intensity-dependent
refractive index of silica as introduced in subsection 1.5.3. At low pump
powers this process gives rise to a single pair of signal and idler sidebands at
frequencies νS and νI , respectively. In a quantum picture, this corresponds
to the conversion of two pump photons into a pair of signal and idler photons,
and energy conservation requires νS +νI = νpump+νpump. If idler, signal and
pump frequencies all coincide with optical modes of the microresonator, this
mechanism is resonantly enhanced by the cavity. This effect was observed
both in silica microtoroidal resonators [75] and crystalline CaF2 WGM res-
onators [299] at very low thresholds (tens of µW). We have also been able
to generate frequency combs from the crystalline resonators introduced in
section 2.9.

At higher powers, the generation of sidebands can cascade via non-degen-
erate four-wave mixing among pump and first-order sidebands. This gives
rise to higher order sidebands, as shown in figure 3.1. Energy conservation
(for example, νpump+νI = νII +νS) again ensures that the difference of pump
and first-order sidebands |νpump − νI | = |νS − νpump| is exactly transferred

1This process has also been referred to as hyperparametric frequency conversion [297].
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3. Generation of frequency combs in silica microresonators

Figure 3.1: Frequency comb generation in an optical microresonator. (a) Optical mi-
crograph of a silica toroid employed for frequency comb generation, and a spectrum
measured at the output of the tapered optical fiber. The individual modes are approx-
imately spaced by the FSR (7 nm) of the cavity. Below the pump line at 1550 nm,
amplified spontaneous emission due to the employed erbium-doped fiber amplifier is also
observed. (b) Principle of the comb generation process, involving both degenerate (top
panel) and non-degenerate four-wave mixing (bottom panel) processes.

to all higher-order inter-sideband spacings. If the cavity exhibits a suffi-
ciently equidistant mode spacing, the frequencies of higher-order sidebands
remain resonant with the corresponding WGMs. The cavity then resonantly
enhances successive four-wave mixing to higher orders, leading to the gen-
eration of phase-coherent sidebands with equal spacing over a large spectral
range—an optical frequency comb. However, dispersion due to the cavity
geometry or material may render the cavity resonances non-equidistant (cf.
figure 3.2). If the resulting walk-off of the cavity modes from the oscillat-
ing sidebands therefore exceeds the WGMs’ linewidth, the broadening of the
comb ceases [299].

Dispersion in a microcavity arises from both its geometry and the intrinsic
dispersion of the resonator’s material. Advantageously, these two contribu-
tions can cancel if they are of similar magnitude but opposite sign. This
is indeed the case for silica WGM cavities in the 1550-nm spectral window.
Measurements have verified that the WGM of a cold cavity deviate by only
around 20 MHz from equidistance over a 100-nm span. This deviation is
still comparable to the width of slightly overcoupled WGM resonances as
typically used in this work. Furthermore, non-linear mode pulling (self- and
cross-modulation) can contribute to compensate residual dispersion [75].
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Figure 3.2: The role of dispersion in optical frequency comb generation. Cavity dispersion
renders the free spectral range (FSR) dependent on the optical frequency. As a conse-
quence, the cavity resonances (blue Lorentzians), are not equidistant in frequency space,
while the generated optical sidebands are. If the walk-off exceeds the WGMs’ linewidth,
the cavity enhancement of the four-wave mixing process is reduced. Therefore, uncom-
pensated cavity dispersion can eventually limit the comb bandwidth.

3.3 Verification of the comb components’ equidistance

Importantly, the FWM process could in principle produce pairs of signal/idler
sidebands which are only pair-wise equidistant but not mutually equidistant
as required for a comb. Therefore, it is necessary to verify the equidistance of
the lines in the generated spectrum. This can be accomplished by comparison
with another comb. At present, the most accurate references for optical
frequency differences are provided by optical frequency combs derived from
mode-locked femtosecond lasers [276,277,300]. In the following, we describe
two experiments in which the mode spacing of a microcavity frequency comb
is compared against such a femtosecond laser frequency comb to verify the
equidistance of the mode spacing [3].

Multiheterodyne spectroscopy [288] is a particularly convenient measure-
ment scheme for this purpose. For this technique, two light beams both
containing a large number of optical fields oscillating at discrete frequencies
(such as two frequency combs) are brought to interference on a beam splitter,
giving rise to power modulation (a beat) of the output beams at the various
difference frequencies of the incident modes. A single detector can record
all beats within its detection bandwidth simultaneously, and the beats can
be analyzed in the Fourier domain. If the two input fields are equidistant
frequency combs, the frequencies of the resulting beats are expected to be
equally equidistant, and the measured signal constitutes a “frequency comb”
in the RF domain. However, any deviation from equidistance—of either
input—is also directly apparent in this signal.

In our experiment (figure 3.3), we have used an erbium-fiber-based mode-
locked femtoscond laser [301] as a reference frequency comb. It emits a
spectrum containing modes at the frequencies fceo +nfr, with fr ∼ 100 MHz
and n ∼ 2× 106. If the spectrum emitted by a strongly pumped microcavity
constitutes a frequency comb, it can be written as ν0 + j ∆ν (j integer). In
order to measure the beat notes, the repetition rate of the reference comb has
to be adjusted properly such that a multiple of it is close to the microcavity
comb mode spacing, j0 fr ≈ ∆ν with an integer j0. If the microcavity comb
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3. Generation of frequency combs in silica microresonators

Figure 3.3: Verification of comb equidistance using the multiheterodyne technique (a) Ex-
perimental setup. The comb spectrum from the microresonator is combined with refer-
ence light from a fiber-laser frequency comb (FLFC) using a beat detection unit. ECDL,
external cavity diode laser; FLFS, femtosecond laser frequency comb; PBS, polarizing
beam splitter; HWP, half-wave retarder plate; QWP, quarter-wave retarder plate; PD,
photodiode; FFT, fast-Fourier transform analyzer; ESA, electronic spectrum analyzer.
Details are given in the text. (b) RF spectrum of the beats induced by nine simulta-
neously oscillating microcavity modes beating against reference comb modes. Adapted
from ref. [3].

is equidistant, the generated RF beat notes should also be equidistant, their
frequencies being given by f0 + k ∆f with ∆f = (∆ν mod fr) and k integer.

To generate the sideband cascade in the cavity, a 1550-nm external cavity
diode laser (ECDL) is coupled to a high-Q WGM of the microresonator using
a fiber taper (section 1.4), and the resulting frequency comb is coupled back
into the same tapered fiber. This output is split into several branches (not
shown in figure 3.3), and its total power, and optical spectrum are contin-
uously monitored. Another part of the output is fed into a beat detection
unit (BDU). In this optical setup, light from the microcavity comb and the
reference comb are first merged into the same spatial, but orthogonal polar-
ization modes using a polarizing beam splitter. A subsequent λ/2-retarder
plate and a second PBS enforce interference between the two input beams
with an adjustable power ratio of the input beams. After selecting a spectral
region of interest using a grating, the beam is sent to a ∼ 125 MHz-bandwidth
InGaAs-photoreceiver (Menlo Systems). The amplified photocurrent signal
is analyzed using a fast Fourier transform (FFT) or electronic spectrum ana-
lyzer. As discussed above, by adjusting the repetition rate fr of the reference
comb, the spacing ∆f of the resulting beats can be easily tuned to values as
low as ∼ 1MHz, so that all beat frequencies f0 + k ∆f of interest fall in the
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window between DC and fr/2.
In such a measurement, no deviation from equidistance of nine micro-

cavity comb lines spanning 50 nm (6.5 THz) can be found at the level of
5 kHz, limited by the acquisition time of the FFT analyzer (figure 3.3). This
corresponds to a relative deviation below 10−9, or 10−11 when referenced to
the optical carrier. Note that higher resolutions and signal-to-noise ratios
(SNRs) would in principle be possible with this method by simply extending
the measurement time. However, mutual fluctuations of the two free-running
combs preclude such improvements in practice.

To achieve higher measurement resolution, these fluctuations have to be
reduced. This can be accomplished by locking the ECDL generating the
microcavity comb to the reference comb using an offset lock. For this pur-
pose, a beat note between the ECDL and the closest reference comb mode is
detected in an auxiliary BDU. The phase of this RF beat is compared to a
stable RF signal at the offset frequency f0, which is obtained from a synthe-
sizer referenced to the MPQ in-house maser. The two RF signals are held in
phase by feeding back a correction signal on the frequency of the ECDL. On
times scales longer than the feedback loop’s response time, the frequency of
the pump laser is locked to the closest reference comb mode with an offset of
f0. To improve the measurement stability further, the repetition rate of the
reference comb is locked to around 100 MHz using standard techniques.

Much longer measurement runs, up to several hundreds of seconds have
been possible using these techniques without degradation of the beat sig-
nals due to mutual fluctuations. Precise measurement of the beat’s radio
frequencies on such time scales is most conveniently accomplished using RF
counters. Reliable counting requires a good SNR. Therefore each beat to
be counted was measured in a dedicated BDU, which could be individu-
ally optimized. The achieved SNR exceeding 30 dB in a 500-kHz band-
width proved sufficient, in spite of still lacking about 26 dB to the shot-noise
limit [302] of SNR 3 ηPrcm/hν RBW, for a detection efficiency η ∼ 0.5,
power of the reference comb mode beating with the microcavity Kerr comb
mode Prcm 3 50 nW, optical frequency ν 3 200 THz and detection band-
width RBW = 500 kHz.

At least three modes have to be measured simultaneously to verify the
equidistance of the microcavity comb (figure 3.4) [3]. The pump laser can
be considered as the first comb component; its offset to the closest reference
comb line is locked to f0. In two additional BDUs, two further microcavity
comb components are measured against the closest reference comb modes.
The counted beat frequencies f1 and f2, in this experiment, correspond to
microcavity comb lines at five and seven FSRs from the pump laser. To
quantify the maximum deviation from a perfectly equidistant mode spacing
consistent with the measured beat frequencies we can calculate the entity
ε = (f2 − f1)/(7 − 5) − (f1 − f0)/5, which should be zero for a perfectly
equidistant comb. To rule out technical artifacts, all counters were also
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3. Generation of frequency combs in silica microresonators

Figure 3.4: Verification of comb equidistance by counting three individual beats. (a)
Schematic of the setup, in which three independent BDUs are used. BDU1 is used for
the offset lock of the pump laser. BDU2 and BDU3 allow counting the beats of the 5th

and 7th sideband of the pump laser against reference comb modes. (b) Optical spectrum
of the microcavity comb measured in this experiment. Adapted from ref. [3].

referenced to the hydrogen maser and triggered by a common trigger signal.

In an alternative configuration of the RF electronics, even slightly more
accurate measurements could be made: Mixing the outputs of BDU2 and
BDU3 with the offset frequency f0, the frequencies f1 − f0 and f2 − f0 can
be obtained from analog RF mixers. By directly counting the frequency
ratio r = (f2 − f0)/(f1 − f0), the deviation ε can be simply derived from
ε = (r−7/5)·(f1−f0), where f1−f0 provides only a scale factor and needs not
to be known very accurately. The observed improvement of the measurement
results can be attributed to the reduced effect of trigger latencies in the
counters, possibly degrading the temporal overlap of the measurements.

Taking a large number of measurements in both the “two-counter” and
“frequency ratio” configurations, the deviation ε can be measured extremely
accurately. The results from a large data set in the two-counter-configuration
are shown in figure 3.5. The results of individual measurements of ε were
found to be normally distributed around a mean of (−0.91 ± 5.5) mHz with
a standard deviation of 322 mHz. Taking all recorded data sets into account,
with a total measurement time of several hours, the mean deviation from
equidistance could be bracketed to (−0.8±1.4) mHz [3]. This corresponds to
a deviation of the comb component’s frequency of only 7.3 × 10−18 relative
to the optical carrier, and 5.2 × 10−16 relative to the 2.1 THz span of the
measured microcavity comb lines.
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Figure 3.5: Deviation from equidistant mode spacing. (a) Statistics of the measurement
results for ε measured in a 1-s gate time. A normal distribution is found. (b) Allan
deviation for different gate times τ , displaying an approximately inverse square-root
dependence. Adapted from ref. [3].

3.4 Dispersion in toroidal microresonators

The resonant enhancement of four-wave mixing requires the microcavity fre-
quency comb modes to coincide in frequency with the high-Q whispering-
gallery modes of the microresonator. Therefore, the resonator’s dispersion is
of crucial importance to the generation of combs [75, 299, 303]. As already
discussed in the previous section, both the geometry of the resonator and its
material contribute to the total resonator dispersion.

To assess the contribution of resonator geometry to the variation of the
FSR, it is possible to approximate the resonances of a toroid by those of a
microsphere [39]. As discussed in section 1.2, the resonance frequency of the
fundamental mode ($ = |m|) of a microsphere is approximately given by [47]

ν! =
c

2πnR

 

$ + 1/2 + η1

„
$ + 1/2

2

«1/3

+ . . .

!

, (3.3)

where c is the vacuum speed of light, n the refractive index, R the cavity
radius and −η1 the first zero of the Airy function (η1 ≈ 2.34). As a conse-
quence, the variation of the free spectral range

∆νFSR = (ν!+1 − ν!) − (ν! − ν!−1) ≈
∂2ν!

∂$2
(3.4)

is given by

∆νFSR = − c
2πnR

· η1

18

„
$ + 1/2

2

«−5/3

≈ −0.41
c

2πnR
$−5/3 < 0. (3.5)
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The FSR reduces with increasing frequency, which corresponds to a negative
group velocity dispersion (GVD). If there was exclusively geometric disper-
sion, low frequency modes would exhibit a shorter round trip time than high
frequency modes (i. e. dispersion is normal). In an intuitive picture, this can
be understood as resulting from the fact that higher frequency modes are
located closer to the cavity boundary, making the classical optical trajectory
longer.

The refractive index of the silica constituting the resonator is a function
of frequency, and therefore of the mode number $, n ≡ n($). This leads to a
second contribution to dispersion and a consequent variation of the FSR of

∆νFSR ≈ ∂2

∂$2

„
c

2πn($)R
· $
«

≈ c2λ2

4π2n3R2
· GVD, (3.6)

where

GVD = −λ
c

∂2n
∂λ2

(3.7)

is the group velocity dispersion of the material.
The GVD of silica is well-known to change its sign in the 1300-nm wave-

length region from about −100 ps/(nm km) at 800 nm (normal dispersion) to
+20 ps/(nm km) at 1550 nm (anomalous dispersion). The positive GVD in
this wavelength region can cancel the geometric dispersion of silica microres-
onators to some extent as shown in figure 3.6. Taking into account both
geometric and material dispersion for microspheres of 80 µm and 160 µm
radius, a zero dispersion point occurs close to the operating wavelength of
1550 nm [3]. We finally note that finite element modeling of the optical
modes of silica microtoroids [36] suggests shorter resonance wavelengths for
the same mode number $. As a consequence, the zero dispersion points is ex-
pected to shift to shorter wavelengths in toroids as compared to spheres [304].
We anticipate that accurate, fast and reliable assessment and eventually en-
gineering of resonator dispersion will be a key ingredient to future research
pursuing the generation of ultra-broad optical frequency combs from mono-
lithic microresonators.

3.5 Conclusion

In this chapter, we have introduced a novel approach to the generation of
optical frequency combs. It is based on four-wave-mixing in optical microcav-
ities pumped only by a strong continuous-wave laser. Such a comb generator
is unique in several ways. Its compact size and reduced complexity bodes
well for full integration of the generator into a micro-photonic platform, po-
tentially including even the driving laser. Furthermore, as the approach does
not rely on the use of atomic or molecular resonances, the generation pro-
cess can be efficient over a wide frequency window, limited, in principle,
only by material absorption or dispersion. Owing to the large transparency
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3.5 Conclusion

Figure 3.6: Variation of the FSR of microsphere resonators of radii 40 µm and 80 µm,
due to geometric dispersion only (red curve) and taking both geometric and material
dispersion into account (blue curves). A zero-dispersion point occurs close to 1550 nm.

window of glass, frequency comb generation may be possible from the UV
into the intermediate infrared beyond 2 µm, and wider windows may even be
available in crystalline WGM resonators. Very importantly, monolithic mi-
croresonators enable the generation of frequency combs with ultra-high mode
spacing. Conventional femtosecond laser frequency combs are approaching
10 GHz repetition rates, but the corresponding cavity length of 3 cm is diffi-
cult to reduce further. Fiber-based mode-locked lasers generally operate at
even lower repetition rates. With the approach introduced here, very large
mode spacings in the range of 50 GHz up to 1 THz are accessible. This may
be crucial for applications in which the access to individual comb modes is
required, such as optical waveform synthesis, spectrometer calibration, direct
comb spectroscopy, or high capacity telecommunications.
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Appendix A

Constants, symbols and relations

A.1 Silica material constants

Refractive index (780 nm) [69] n=1.45
Intensity dependent refractive index n2=3 · 10−20 m2/W

Thermorefractice coefficient [69] dn/dT=10 · 10−6 K−1

Thermal expansion [69] α=0.55 · 10−6 K−1

Density [69] ρ=2203 kg/m3

Thermal conductivity [69] k=1.4 W/K m
Specific heat [69] cp=750 J/K kg
Young’s modulus E=73.1 GPa
Poisson ratio [69] σ=0.17

Longitudinal sound velocity v0=5970 m/s
Transverse sound velocity v1 = v2=3770 m/s

Lamé factor λ=16.1 GPa
Lamé factor µ=31.2 GPa
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A.2 Table of symbols

symbol meaning unit definition
ωl laser frequency rad/s
ωc cavity resonance frequency rad/s
∆ detuning rad/s
Q optical quality factor 1 (1.13)

Q0 intrinsic optical quality factor 1 (1.16)
κ optical linewidth (FWHM) rad/s (1.12)
F optical finesse 1 (1.31)
ηc coupling parameter 1 (1.32)
ā mean intracavity mode amplitude

√
1 (

√
J)

s̄in mean drive amplitude
p

1/s (
√

W)
xn(t) optically measured displacement of

mode n
m (2.97)

g0 optomechanical coupling rad/s/m (2.1)
G optomechanical coupling rate rad/s (2.165)

Ωm mechanical resonance frequency rad/s
Γm mechanical damping rate rad/s
Qm mechanical quality factor 1 (2.78)

xZPF zero-point fluctuations m (2.160)
meff effective mass kg (2.99)
Mn moving mass kg (2.96)

∆̄ equilibrium detuning rad/s (2.17)
$u displacement m

χ(Ω) mechanical susceptibility m/N (2.125)
χeff(Ω) effective mechanical susceptibility

induced by dynamical backaction
m/N (2.28)

Frp radiation pressure force N (2.39)
S̄XX(Ω) symmetrized noise spectrum of

quantity X
[X2]/Hz

S̄im
xx(Ω) apparent position noise (impreci-

sion)
m2/Hz

S̄ba
F F (Ω) backaction force noise N2/Hz

S̄the
F F (Ω) thermal (Langevin) force noise N2/Hz (2.137)

T sample temperature K
Tm mode temperature K (2.144)
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A.3 Frequently used relations

A.3 Frequently used relations

κ = τ−1
0 + τ−1

ex , ηc =
τ0

τ0 + τex
, τ−1

ex = ηcκ, τ−1
0 = (1 − ηc)κ

∆ = ωl − ωc

F =
c

nRκ

xZPF =

r

!

2meffΩm

S̄xx(Ωm) ≈ !

meffΓmΩm
· 2〈n〉

S̄th,n
F F (Ω) = ! meff ΓmΩ coth

„
!Ω

2kBT

«

≈ 2meff Γm kBT

Fourier transform of the entity X

X(Ω) =

Z +∞

−∞

X(t)e+iΩtdt

spectral resolution of fluctuations

SXX(Ω) = 2πδ(Ω + Ω′) 〈X(Ω)X(Ω′)〉

S̄XX(Ω) =
1
2

(SXX(+Ω) + SXX(−Ω))
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Appendix B

Calculations

B.1 Integrating displacement spectra

It is frequently required to integrate a mechanical displacement noise spec-
trum of Lorentzian shape in order to obtain the rms-displacement fluctuations
or the energy of the mode. As shown below, this can be accomplished in a
straightforward manner using the residue theorem. We assume in

〈δx2〉 =

Z +∞

−∞

S̄xx(Ω)
dΩ
2π

=

Z +∞

−∞

|χ(Ω)|2S̄F F (Ω)
dΩ
2π

(B.1)

that S̄F F (Ω) is sufficiently flat in the narrow frequency range where |χ(Ω)|2
is significant, and write

〈δx2〉 ≈ S̄F F (Ωm)
m2

eff

Z +∞

−∞

1
(Ω2

m − Ω2)2 + Γ2
mΩ2

dΩ
2π

. (B.2)

In order to apply the residue theorem, we replace the real integration variable
Ω by the complex number z and call a(z) = 1 and b(z) = (Ω2

m − z2)2 +Γ2
mz2.

The integrand f(z) = a(z)/b(z) is analytical in the entire upper half z-plane
and converges gleichmaessig to 0 in the upper half plane including the real
axis for |z| → ∞. Thus the integral along the half circle in the upper half
plane vanishes (Jordan’s lemma) and the integral along the real axis can be
calculated from the residues of the singularities in the upper half plane at

z1 =
1
2

“

+
p

4Ω2
m − Γ2

m + iΓm

”

(B.3)

z2 =
1
2

“

−
p

4Ω2
m − Γ2

m + iΓm

”

(B.4)

The residues can be calculated according to

Res

»
a(z)
b(z)

–

z=zk

=
a(zk)
b′(zk)

=
1

iΓm(4Ω2
m − Γ2

m) ∓ Γ2
m

√
4Ω2

m − Γ2
m

(B.5)
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and

2πi
X

k=1,2

Res

»
a(z)
b(z)

–

z=zk

= 2πi
2iΓm(4Ω2

m − Γ2
m)

−Γ2
m(4Ω2

m − Γ2
m)2 − Γ4

m(Ω2
m − Γ2

m)
=

=
π

Ω2
mΓm

(B.6)

so that

〈δx2〉 ≈ S̄F F (Ωm)
2m2

effΩ2
mΓm

. (B.7)

For the thermal noise Langevin force

S̄the
F F (Ω) = !meffΓmΩ coth

„
!Ω

2kBT

«

≈ 2kBTmeffΓm (B.8)

one gets

〈δx2〉 =
kBT

meffΩ2
m

(B.9)

as expected. Similarly, to spectrally integrate momentum fluctuations (to
calculate the kinetic energy) the integral

m2
eff〈δẋ〉2 ≈ S̄F F (Ωm)

Z +∞

−∞

Ω2

(Ω2
m − Ω2)2 + Γ2Ω2

dΩ
2π

, (B.10)

with a(z) = z2 and b(z) = (Ω2
m − z2)2 + Γ2

mz2 now yields the residues (the
singularities are the same)

Res

»
a(z)
b(z)

–

z=zk

=
a(zk)
b′(zk)

=
1

4iΓm
∓ iΓm√

−4Ω2
m + Γ2

m

(B.11)

so that with 2πi
P

k Res[zk] = π/Γm

m2
eff〈δẋ〉

2 ≈ S̄F F (Ωm)
2Γm

(B.12)

and

m2
eff〈δẋ〉2 ≈ kBTmeff (B.13)

for the thermal Langevin force.
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B.2 Noise transfer of a lossy cavity

B.2 Noise transfer of a lossy cavity

In the following we calculate the transduction of noise in the input quadra-
tures to noise in the output quadratures induced by an optical cavity. Start-
ing from the standard linearized quantum Langevin equations

`

−i(∆̄ + Ω) + κ/2
´

δâ[Ω] =
√

ηcκ δŝin[Ω] +
p

(1 − ηc)κ δŝvac[Ω] (B.14)
`

+i(∆̄ − Ω) + κ/2
´

δâ†[Ω] =
√

ηcκ δŝ†in[Ω] +
p

(1 − ηc)κ δŝ†vac[Ω] (B.15)

we write them, for convenience, in matrix form (omitting the frequency ar-
guments)

C∆̄,Ω,κ

„

δâ
δâ†

«

=
√

ηcκ

„
δŝin

δŝ†in

«

+
p

(1 − ηc)κ

„

δŝvac

δŝ†vac

«

(B.16)

with

C∆̄,Ω,κ =

„

−i(∆̄ + Ω) + κ/2 0
0 +i(∆̄ − Ω) + κ/2

«

(B.17)

Next we determine the phase angle of input and output mean fields (we chose
the intracavity mean field to be real): From (1.28) we have

s̄in =
−i∆̄ + κ/2

√
ηcκ

ā =

=
−i∆̄ + κ/2
p

∆̄2 + (κ/2)2
|s̄in| =: e−iθin |s̄in| (B.18)

while

s̄out = s̄in −
√

ηcκ ā =

=
−i∆̄ +

`
1
2 − ηc

´

κ
√

ηcκ
ā =

=
−i∆̄ +

`
1
2 − ηc

´

κ
q

∆̄2 +
`

1
2 − ηc

´2
κ2

|s̄out| =: e−iθout |s̄out| (B.19)

Note that the phase of the mean output field, with respect to which the
quadratures are defined, changes upon changing coupling conditions!

Using the general relation between quadrature and creation/annihilation
operators fluctuations for a mean field at angle θ

„

δŝ
δŝ†

«

=
1
2

„

e−iθ +ie−iθ

e+iθ −ie+iθ

«„

δp̂
δq̂

«

=: Mθ

„

δp̂
δq̂

«

(B.20)

we get
„

δâ
δâ†

«

= C−1
∆̄,Ω,κ

„
√

ηcκMθin

„

δp̂in

δq̂in

«

+
p

(1 − ηc)κM0

„

δp̂vac

δq̂vac

««

(B.21)
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Figure B.1: Quadrature rotation for noise at Ω = κ/3 (red), Ω = κ (green) and Ω = 3κ
(blue).

and using
„

δŝout

δŝ†out

«

=

„
δŝin

δŝ†in

«

−
√

ηcκ

„

δâ
δâ†

«

(B.22)

finally

„

δp̂out

δq̂out

«

= M−1
θout

“

I − ηcκ C−1
∆̄,Ω,κ

”

Mθin

„

δp̂in

δq̂in

«

−
p

(1 − ηc)ηcκM−1
θout

C−1
∆̄,Ω,κM0

„

δp̂vac

δq̂vac

«

(B.23)

where I is the identity matrix.

For the simplest case ηc = 1 one gets

M−1
θout

“

I − κ C−1
∆̄,Ω,κ

”

Mθin =

„

R11 R12

R21 R22

«

(B.24)

with

R11 = R22 =

“

∆̄2 + κ2

4

”2
−
“

∆̄2 − κ2

4

”

Ω2

“

∆̄2 + κ2

4

”“

∆̄2 +
`

κ
2 − iΩ

´2
” (B.25)

R12 = −R21 =
∆̄κΩ2

“

∆̄2 + κ2

4

”“

∆̄2 +
`

κ
2 − iΩ

´2
” (B.26)

see also [247]. This matrix actually rotates the quadratures by an angle
arctan(R12/R11) which is shown in figure B.1.
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This leads to

S̄out
pp = α1S̄

in
pp + α2S̄

in
qq (B.27)

S̄out
qq = α2S̄

in
pp + α1S̄

in
qq (B.28)

α1 =

„“

∆̄2 + κ2

4

”2
−
“

∆̄2 − κ2

4

”

Ω2

«2

“

∆̄2 + κ2

4

”“
κ2

4 + (∆̄ + Ω)2
”“

κ2

4 + (∆̄ − Ω)2
” (B.29)

α2 =
4∆̄2 κ2

4 Ω4

“

∆̄2 + κ2

4

”“
κ2

4 + (∆̄ + Ω)2
”“

κ2

4 + (∆̄ − Ω)2
” (B.30)
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The general case of arbitrary coupling conditions produces rather lengthy
expressions:

S̄out
pp =

“

β1S̄
in
pp + β2S̄

in
qq + β3S̄

vac
pp + β4S̄

vac
qq

”

/β5 (B.31)

S̄out
qq =

“

β2S̄
in
pp + β1S̄

in
qq + β4S̄

vac
pp + β3S̄

vac
qq

”

/β5 (B.32)

β1 = 16
“

4∆̄2 + (1 − 2ηc)κ
2

”2
Ω4 +

“

4∆̄2 + κ2
”2 “

4∆̄2 + (1 − 2ηc)
2κ2

”2

− 8
“

4∆̄2 + (1 − 2ηc)κ
2

” “

4∆̄2 + (2ηc − 1)κ2
” “

4∆̄2 + (2(ηc − 1)ηc + 1)κ2
”

Ω2

β2 = 256∆̄2η2
cκ2Ω2

“

(ηc − 1)2κ2 + Ω2
”

β3 = 4ηc(1 − ηc)κ
2

„

“

4∆̄2 + (2ηc − 1)κ2
”2

+ 4(1 − 2ηc)
2κ2Ω2

«

“

4∆̄2 + κ2
”

β4 = 64∆̄2ηc(1 − ηc)κ
2

“

(κ − ηcκ)2 + Ω2
” “

4∆̄2 + κ2
”

β5 =
“

4∆̄2 + κ2
” “

4∆̄2 + (1 − 2ηc)
2κ2

” “

4
`

∆̄ − Ω
´2 + κ2

” “

4
`

∆̄ + Ω
´2 + κ2

”

(B.33)

where
(β1 + β2 + β3 + β4)/β5 = 1 (B.34)

is easily verified.
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Appendix C

Useful experimental techniques

C.1 Fiber loop cavity

For many purposes (some applications are described below), simple, high-
Q reference cavities are a useful tool for the experiments described in this
work. Inspired by the toroid-taper geometry, we have frequently used so-
called fiber-loop cavities (FLCs). They are “set up” as easily as connecting
one output port of a standard fused coupler back to one input as shown in
figure C.1. The fiber loop then constitutes a low-finesse (F " 20), yet, due
to its significant length, reasonably high-Q (κ/2π ∼ 10 MHz) cavity. If the
fiber loop is kept quiet, such a cavity is stable enough for a number of simple
reference measurements.

Figure C.1 shows a trace recorded by slowly scanning a quiet laser over the
resonances of a FLC. Clean Lorentzian fringes are observed. By calibrating
the frequency axis, using a frequency modulation of the laser at a well-known
frequency, it was possible to derive the tuning coefficient (frequency shift vs.
applied control voltage) of the Ti:S laser. At the same time, the frequency
range over which mode-hop free scans are possible could be measured.

Another possible application is the calibration of the modulation depth
induced by a phase modulator. This is an important measurement, as a fre-
quency modulation induced by such a modulator later serves for the calibra-
tion of mechanical displacements. Phase-modulating the laser of frequency
ωl with a peak-to-peak modulation depth δϕ at a frequency Ωmod results in
an input amplitude

sin(t) = s̄in exp (i (ωlt − δϕ cos(Ωmodt))) =

=
+∞X

n=−∞

s̄in (−i)nJn(δϕ) exp (i (ωl + n Ωmod) t)

where Jn is the Bessel function of the first kind. This can be considered as
an infinite array of lasers, oscillating at frequencies ωl + nΩmod, with powers
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Figure C.1: Fiber loop cavity configuration (top) and narrow Lorentzian resonance fringes
(bottom left). Bottom right panel shows a measurement in which the laser was frequency-
modulated at 30MHz to induce sidebands to the resonances used for frequency calibra-
tion. In this manner, the the tuning coefficient of one of the frequency actuators in the
Ti:S laser was derived.

Pn ∝ E2
0Jn(δϕ)2. If only the average transmission is recorded, one simply

expects the sum of the transmitted powers of the individual sidebands

T (ωl) ∝

 

1 − ηc(1 − ηc)
X

n

Jn(δϕ)2
κ2

(κ/2)2 + (ωl + nΩmod − ωc)2

!

,

compare (1.35). Such transmission spectra (scanning the laser and its side-
bands at ωl + nΩmod through the cavity resonance at ωc) are recorded for
different RF-powers applied to the modulator. For each trace, the ratio of
the depth of the carrier and first sideband dips J0(δϕ)2/J±1(δϕ)2 can be
extracted by using the above fit model. It is expected to be a function of RF
power according to the dependence of the phase modulation amplitude

δϕ =

√
2
√

PRF · 50Ohm
Vπ

· π

One can thus extract Vπ from the measurement (Vπ is the voltage necessary
to induces a π-phase shift in the light field). Or, even more direct, extract
the proportionality coefficient λ = π

√
2 · 50 Ohm/Vπ with δϕ = λ

√
PRF.
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C.2 Locking of the cooling laser

Another useful application for FLCs is the measurement of high-Fourier
frequency frequency noise of a laser. For example, the laser can be locked
to the center of a fringe of the FLC using one of the techniques described in
section 2.4 with a feedback loop. Fluctuations in the error signal at Fourier
frequencies beyond the bandwidth of the (slow) feedback loop are due to laser
frequency fluctuations, and can be easily analyzed using a spectrum analyzer.
The recorded spectra can be again calibrated by effecting a known frequency
modulation on the laser using a phase modulator. For Fourier frequencies
beyond the cavity cutoff, the reduced sensitivity of this measurement method
has to be taken into account, however. Zhang et al. [247] describes another
possibility to determine laser frequency noise using a Fabry-Perot cavity,
which can easily be adapted to the virtually alignment-free FLCs.

C.2 Locking of the cooling laser

The experimental observation of cooling requires a negative detuning, and
therefore makes a stabilization of the laser frequency to the red wing of
the optical resonance necessary. Due to the strong thermal non-linearities,
reaching the bistability threshold for light powers well below a microwatt (see
section 1.5.1), this poses a significant experimental difficulty, as the red wing
is dynamically unstable under small fluctuations of laser or cavity frequency
fluctuations. To counteract this instability, a fast control loop to the laser
frequency was implemented. As described in figure 2.28, the detuning error
signal is directly derived from the residual transmission of the pump laser
through the taper. After applying an offset, the signal is split and sent to
two proportional-integral controllers (“lock-boxes”).

The error signal is pre-amplified with a low noise amplifier (DC-1 MHz),
the two outputs of which are fed to two custom-built proportional-integral
controllers with bandwidths on the order of 1 kHz and 1 MHz. Both con-
trollers allow to apply an offset to the error signal input, enabling continuous
variation of the control setpoint and thus detuning from line center. With-
out further amplification, the output of the slower controller is applied to
a piezoelectric element actuating the grating in the laser to tune the laser
emission frequency. For the compensation of fast fluctuations, the output
from the faster controller is applied to a field-effect transistor parallel to
the laser diode. The consequent temporary change of diode current leads to
the desired laser frequency adjustment via a temperature and carrier disper-
sion change. Laser emission power is affected only on the order of 5% and,
since the output of the fast controller is high-pass filtered (cut-off > 10 Hz),
remains unmodified on average.

To implement resolved-sideband cooling, the direct transmission signal
cannot be used as an error signal, as its slope is too flat far away from
the WGM resonance. Instead, a frequency modulation technique is used
(figure C.2). In essence, this scheme resembles the PDH method, including
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Figure C.2: Electronic feedback loop to stabilize the laser to the lower mechanical side-
band of a WGM resonance in the deeply resolved sideband regime. FET is a field effect
transistor controlling the current applied to the laser diode. See text for more informa-
tion.

frequency modulation of the cooling laser and subsequent demodulation of
the transmission signal at the modulation frequency. It is important however,
to choose a modulation frequency that differs from the mechanical resonance
frequency in order to avoid driving the oscillator with the beat of the laser
carrier and the modulation sideband in the cavity. In order to still be able to
lock to a detuning of precisely −Ωm, the phase of the demodulation reference
is adjusted to yield an absorptive, instead if dispersive shape (as is the case
for the PDH signal). For the high radio frequencies involved here, adjusting
this phase can be accomplished by simply changing the length of the cable
providing this signal. An error signal similar to the trace shown in figure
1.5 is then obtained, with positive and negative dips when a modulation
sideband is scanned through the resonance. Application of an appropriate
offset to this error signal then allows locking the upper modulation sideband
to the wing of the optical resonance. In this configuration, the laser carrier
is detuned by the mechanical resonance frequency, while the modulation
frequency differs from the mechanical resonance frequency by ∼ κ/2 . Γm,
so that the mechanical oscillator is not driven.
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