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Summary

Histone modifications are crucial for gene expression patterns and silencing and thus for the 

identity of the cell. This identity is transmitted from one cell generation to the next and consequently 

histone modification patterns have to be stably maintained during replication. On the other hand 

histone modifications need to be flexible to adjust the chromatin structure.

A histone modification mark in the context of transcription elongation is H3K36 methylation. 

Dimethylation of H3K36 accumulates adjacent to promoter regions whereas trimethylation is 

found at the 3´end of active genes. This thesis research shows a stepwise methylation process for 

H3K36 emphasizing on a state specific regulatory potential for H3K36 methylation. 

Moreover this thesis research used a Drosophila assembly extract to dissect maturation processes 

during and after chromatin assembly. It was found that H4 is acetylated at K5 and K12 prior to 

deposition onto DNA and during chromatin maturation these acetylation marks are erased. At the 

same time H4 is monomethylated at K20 by Pr-Set7. In addition it was shown that dl(3)MBT is in 

a complex with dRpd3 and binds to the monomethylation mark of H4K20. The histone deacetylase 

dRpd3 removes the acetylation marks at H4K5 and H4K12. The deacetylation of H4K5 and H4K12 

can be blocked when using SAH that inhibits methylation of H4K20.

Furthermore this thesis research sought to determine the kinetics by which newly synthesized 

histones adapt to the modification pattern of the parental histones. Therefore a novel technique was 

established where newly synthesized histones and their modification patterns can be distinguished 

from the parental ones by means of mass spectrometry. Histone modification patterns in HeLa 

cells were compared from old and new histones beyond one cell cycle. In conclusion investigated 

acetylation patterns from new histones adjusted within less than two hours to the parental state. 

However, the kinetics of investigated methylation patterns to reestablish the modification pattern 

from old to new histones was diverse 

Summary
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Zusammenfassung

Histon Modifikationen sind für die Genexpression und für das Stilllegen der Gene ausschlaggebend 

und somit auch für die Identität der Zelle. Diese Identität wird von einer Zellgeneration zur 

nächsten übertragen und deshalb müssen die Profile der Histon Modifikationen während der 

Replikation erhalten bleiben. Auf der anderen Seite müssen Histon Modifikationen flexibel sein, 

um die Chromatin Struktur anzupassen.

Eine Histon Modifikation im Zusammenhang mit der Elongation der Transkription ist die 

Methylierung von H3K36. Dimethylierung von H3K36 häuft sich in der Nähe des Promoters an 

während Trimethylierung am 3`Ende der aktiven Gene gefunden wird. Die vorliegende Studie 

zeigt eine schrittweisen Methylierung von H3K36 und unterstreicht das Potential der H3K36 

Methylierung abhängig vom Methylierungsgrad.

Desweiteren wurde in dieser Arbeit ein Drosophila Extrakt benutzt, um die Reifung des 

Chromatins während und nach des Zusammenbaus zu analysieren. Es wurde gefunden, dass vor 

dem Zusammenbau des Chromatins H4 an K5 und K12 acetyliert ist und während der Reifung 

des Chromatins werden diese Acetylierungen gelöscht. Gleichzeitig wird H4 mit Hilfe von Pr-Set7 

an K20 monomethyliert. Zusätzlich konnte gezeigt werden, dass dl(3)MBT sich im Komplex mit 

dRpd3 befindet und an die Monomethylierung von H4K20 bindet. Die Histon Deacetylase dRpd3 

löscht die Acetylierungen von H4K5 and H4K12. Die Deacetylierung von H4K5 und H4K12 kann 

durch SAH blockiert werden, das die Methylierung von H4K20 inhibiert.

Ausserdem untersucht diese Studie die Kinetik, die neu synthetisierte Histone benötigen, um 

die parentalen Profile der Histon Modifikationen zu adaptieren. Dazu wurde eine neue Technik 

etabliert, so dass neu synthetisierte Histone inklusive ihrer Modifikationen von parentalen 

Histonen mit Hilfe von Massenspektrometrie unterschieden werden können. Es wurden die 

Modifikationsmuster von alten und neuen Histonen über einen Zellzyklus hinweg verglichen. Das 

Fazit ist, dass Acetylierungsmuster von neuen Histonen weniger als zwei Stunden benötigen, um 

sich an das parentale Muster anzupassen. Jedoch war die Kinetik der neuen Histone bezüglich der 

Wiederherstellung der parentalen Methylierungsmuster sehr unterschiedlich.

Zusammenfassung
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Introduction

Epigenetics1.1 

The term “epigenetics” was coined by Conrad Waddington in 1942 (Waddington 1942) and 

defined the interaction between genes and their products that bring the phenotype into being 

(Goldberg et al. 2007). In 1987 Holiday specified “epigenetics” for situations where changes in DNA 

methylation resulted in changes in gene activity (Holliday 2006). As the most common definition 

today, “epigenetics” refers to the study of inheritable changes in gene expression patterns caused 

by events other than changes in the sequence of the DNA (Probst et al. 2009). These epigenetic 

changes are stable during cell division and are transferred from one generation to the next. Thus a 

specific gene expression pattern is maintained contributing to the cell`s identity. The identity of the 

cell changes in the process of cellular differentiation and epigenetic changes are essential to guide 

from totipotency to a fully differentiated cell (Boyer, Mathur et al. 2006). The fate of any given cell 

is determined by epigenetic mechanisms. Each cell type in an organism has its own epigenetic 

signature that depicts genotype, developmental history and environmental influences and in the 

end leads to the phenotype of the organism (Morgan et al. 2005). Various cell types, including 

neurons, muscle cell and lymphocytes, derive from a fertilized oocyte all carrying the same DNA 

sequence but are obviously distinct from each other. Once acquired a certain identity it is important 

for a cell to remember its status. This memory effect is provided by epigenetic information (Ng et 

al. 2008). A failure in memory resulting in abrogation of proper gene expression could promote 

diseases by altering differentiation concepts or silencing tumor suppressor genes (Gargiulo et al. 

2009). Key signatures that regulate cellular memory include DNA methylation, histone variants, 

chromatin binding proteins, positional information, higher order structures, nuclear RNA and 

posttranslational histone modifications-all acting on the chromatin template (Figure 1).

Chromatin1.2 

Eukaryotic cells harbor a nucleus of just 10 μm in diameter in which approximately 2 m of genomic 

DNA is stored. Since the DNA needs to fit into the nucleus and at the same time be accessible, 

organisms have established ways of packaging DNA into chromatin (Felsenfeld et al. 2003). 

Chromatin is a highly dynamic structure consisting of DNA and its associated proteins. The basic 
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building block of chromatin is the nucleosome, which consists of two copies of each of the core 

histone: H2A, H2B, H3 and H4 (Kornberg 1974). Around this histone octamer approximately 147 

base pairs of DNA are wrapped in 1.65 superhelical, left handed turns (Luger et al. 1997). Detailed 

molecular analysis of how the histone protein octamer is structured and the intermolecular 

interactions between the DNA and the core histones stemmed from crystal structure studies of the 

nucleosome (Luger et al. 1997). The four core histones are small basic proteins that are composed of 

an N-terminal tail, a C-terminal tail and a globular domain. The globular domain consists of three 

α helices connected by two flexible loops and is referred to as the histone fold domain (Luger et 

al. 1997). The histone fold allows histones to dimerize head to tail in a handshake manner (Arents 

et al. 1995). The relatively unstructured histone tails are easily accessible as they are protruding 
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Figure 1: Key signatures in 
epigenetics. DNA is wrapped 
around a histone octamer 
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the basic repetitive unit of 
chromatin. The DNA can 
be methylated on cytosine 
residues and histone can be 
posttranslational modified by 
for example methylation or 
acetylation. These modifica-
tions either alone or in com-
bination (histone code) can 
be read by chromatin bind-
ing proteins that process the 
information further on. Even 
more complex information 
is stored in the nucleosome 
when histone variants are 
present. Nucleosomal arrays 
are folded into higher order 
chromatin structures and 
potentially linked with non 
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outward from the nucleosome. A variety of posttranslational modification of the tails have been 

described (Imhof 2003; Fischle, Wang, and Allis 2003b; Kouzarides 2007), however little is known 

about the conformation of the histone tails and the exact nature of DNA interaction. In crosslinked 

dinucleosomes the N-terminal tails of H2A and H2B interact with the DNA of the neighboring 

nucleosome in contrast to the N-terminal tails of H3 and H4 that only exhibit intranucleosomal 

interactions (Zheng et al. 2003; Wang et al. 2006).

Two nucleosome core particles are separated by the linker DNA, varying in length from 10 to 80 

base pairs. Where the linker DNA enters and exits the nucleosome histone, H1 is able to bind 

forming the so called chromatosome. H1 is larger than the core histones and consists of a globular 

domain and extended N- and C-terminal tails. Histone H1 participates in nucleosome positioning 

or spacing and formation of the higher-order chromatin structure (Ramakrishnan 1997; Widom 

1998; Thomas 1999; Maier et al. 2008).

The heterogeneous entity enables chromatin to be packed in several levels starting with a formation 

known as the 11 nm fiber based on its approximate diameter. The fiber comprises repeating units 

of the nucleosome core and linker DNA separating the individual units (Kornberg 1974). This 

configuration called “beads on a string” results in a 5 to 10 fold compaction. However, chromatin 

in living cells consists rather in a more condensed form. To increase the condensation, chromatin 

is packed into a fiber with the diameter of 30 nm (Marsden et al. 1979). The exact folding of this 

fiber is still controversial (Bednar et al. 1998; Robinson et al. 2006). Several different models have 

been proposed to describe the details of how the 30 nm fiber is organized. Two favorable classes of 

models have been described, the “one-start” and the “two-start” models. In the “one-start” models, 

the 30 nm fiber resembles a solenoid wherein the nucleosomes are spooled around a central axis 

with 6-8 nucleosomes per turn and bent linker DNA. On the contrary, the “two-start” models favor 

straight linker DNA and nucleosomes form a “zigzag” loop that either twists or supercoils (Dorigo 

et al. 2004; Schalch et al. 2005; Routh et al. 2008). The 30 nm fibers compacts the DNA 50 fold. 

Little is known about further compaction processes resulting in a condensed mitotic chromosome 

1.5 μm in diameter (Belmont 2006). Despite the little knowledge about how it is compacted, the 

function of the mitotic chromosome is well studied. This structure allows an accurate segregation 

of the identical copies of the genome and ensures a precise transfer to each daughter cell (Swedlow 

et al. 2003).
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Historically, light-microscopy studies have revealed at least two types of chromatin: heterochromatin 

that stays condensed after cell division and euchromatin that decondenses during interphase (Grewal 

et al. 2002; Elgin et al. 2003; Maison et al. 2004). Euchromatin can either be actively transcribed or 

repressed whereas heterochromatin is commonly defined as transcriptionally repressed appearing in 

large units at the centromers and telomers (Grewal et al. 2007). Heterochromatin can be subdivided 

into constitutive and facultative heterochromatin. Constitutive heterochromatin remains condensed 

during the entire lifespan of a cell whereas facultative heterochromatin has the potential to convert 

between heterochromatin and euchromatin (Craig 2005). The transcriptional status of a gene can 

also be determined by its spatial position. In the nucleus individual chromosomes occupy distinct 

regions known as the chromosome territories. On the surface of the territories often actively 

transcribed genes are found. Territories are separated by interchromatin compartments containing 

the machinery for nuclear functions (Cremer et al. 2001; 2006).

Histone modifications1.3 

Chromatin is a highly dynamic structure and must keep the balance between being folded as much 

as needed and being accessible whenever necessary to cope with genome templated processes such 

as replication, transcription and DNA repair. The functional state of chromatin is partially regulated 

through posttranslational modifications (PTMs) of histones (Jenuwein et al. 2001) (Figure 2). 

Thereby these modifications are involved in regulating the gene expression. Numerous types of 

histone modifications exist and they divide into two groups. To the first group belong acetylation 

of lysines, phosphorylation of serines and threonines and methylation of arginines and lysines as 

they convey small chemical groups. Second, there are larger peptides such as ubiquitination and 

SUMOylation of lysines and ADP-ribosylation of glutamic acid (Imhof 2003; Fischle, Wang and 

Allis 2003b).

There are several mechanisms how histone posttranslational modifications can influence chromatin. 

First, histones and their modifications can alter the chromatin structure and thus regulate DNA 

accessibility (Imhof et al. 1997). For example acetylated histones correlate with a more open 

chromatin structure. Secondly, PTMs on histones facilitate the binding of a protein to chromatin 

by creating a specific binding site. A classic example is that methylated H3K9 serves as binding 



22

Introduction

platform for HP1 (Heterochromatin protein 1) (Lachner et al. 2001; Grewal et al. 2007). Thirdly, 

modified histones may impede the binding of a factor to chromatin such as phosphorylated H3S10 

inhibits the binding of HP1 to methylated H3K9 (Fischle et al. 2003a, 2005; Johansen et al. 2006).

Figure 2: Histone modification map of H3 and H4. Most common sites of acetylation (ac), methylation 
(me) and phosphorylation (P) on histone H3 and H4 and their corresponding enzymes are depicted. Figure 
adapted from Abcam.
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Acetylation1.3.1 

Acetylation of lysines within the histone tails has an important role in transcription. Genetic studies 

in S. cerevisiae revealed that upon depletion of the histone tails or substitution of H4K5, 8 and 

12 to arginines gene activation was affected (Durrin et al. 1991). This correlates acetylation with 

transcriptionally active chromatin (Hebbes et al. 1994). Setting the acetylation mark is catalyzed 

by histone acetyltransferases (HAT) and the first of which was isolated in 1996 in Tetrahymena 

(Brownell et al. 1996). The isolated enzyme was homologous to the yeast Gcn5 (General control 

non-derepressible) a known transcriptional adaptor in S. cerevisiae that was found to interact with 

transcriptional activators. Depending on the substrate specificity and cellular localization histone 

acetyltransferases can be categorized in either type A or type B. Type A acetyltransferases are 

localized in the nucleus and modify histones incorporated into chromatin. On the contrary type 

B acetyltransferases are located in the cytoplasm and acetylate only free histones (Parthun 2007). 

The sole representative so far identified of type B acetyltransferases is Hat1 and is found to mediate 

acetylation on H4K5 and K12 (Kleff et al. 1995; Parthun et al. 1996). Acetylation is a reversible 

mark and histone deacetylases (HDAC) are enzymes that remove acetyl groups from an acetylated 

amino acid. The first histone deacetylase was also identified in 1996 from cow protein extracts 

and discovered to be a homologue of yeast Rpd3 (reduced potassium dependency-3) (Taunton 

et al. 1996). The current model is that activators that are bound to DNA attract HATs to transfer 

acetyl groups while repressors bind HDACs to remove acetyl groups resulting in alterations of the 

chromatin template and thus in gene regulation. 

Histone acetyltransferases are highly diverse and reside in a variety of multiprotein complexes. 

At least three main HAT families exist. First the GNAT (Gcn5 related N-acetyltransferase) family 

includes Gcn5, Hat1 and PCAF (Dyda et al. 2000). The second family is called MYST, an acronym 

for its founding members Morf, Ybf2, Sas2 and Tip60 (Utley et al. 2003). Both families are highly 

conserved from yeast to men. Another yet less conserved family is called p300/CBP named for the 

two proteins p300 and CBP (Giordano et al. 1999; Bannister et al. 1996). Some HATs also possess 

specific domains known as bromodomains that enable the enzymes to bind to acetylated histones 

(Zeng et al. 2002).

The numerous HDAC enzymes that remove acetyl groups from histones are categorized into 
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four groups: Type I. Type II, Type III or Sir2 related enzymes and Type IV. Only the third group 

needs NAD as a cofactor to catalyze the removal of the acetyl group. HDACs are usually found in 

several multisubunit complexes. The deacetylase Rpd3 is found in the Sin3 complex as well as the 

Mi-2/NuRD complex (Yang et al. 2008). Rpd3 comprises a N-terminal deacetylase domain and a 

C-terminal tail. The activity of HDACs can be reversible inhibited by small compounds such as 

sodium butyrate (NaBu) or Trichostatin A (TSA). TSA, a hydroxamic acid is a fermentation product 

of Streptomyces and selectively inhibits HDACs from Type I and II by binding to the catalytic 

domain of the enzyme (Yoshida et al. 1990). NaBu, a short chain fatty acid is the byproduct of an 

aerobic bacterial fermentation and occurs naturally in the body. The inhibition potential is less 

efficient compared to TSA. Noteworthy, HDAC inhibitors have therapeutic potential for treating 

cancer and other diseases by changing epigenetic pathways (Gallinari et al. 2007).

Methylation1.3.2 

Methylation on histones can either occur on lysines (K) or arginines (R). At the moment there are 

at least 24 sites of lysines and arginines discovered on histones with the potential to be methylated. 

On the ε-amino groups of lysines one (me1), two (me2) or three (me3) methylgroups can be added 

whereas the guanidino nitrogen atoms of arginines can only be mono- or dimethylated (Zhang et 

al. 2001). The combinatorial effect of sites and methylation grade allows a complex alteration of 

the nucleosome properties and therefore a high potential to regulate important processes within 

the nucleus. Methylation is associated both with transcriptional repression as well as activation 

(Jenuwein et al. 2001).

Methyltransferases are grouped in three distinct protein families the PRMT1 (Protein arginine 

methyltransferase 1) family (catalyzing arginine methylation), the SET-domain family and the 

non-SET domain proteins DOT1/DOT1L (Ng et al. 2002). The SET domain was first identified in 

three Drosophila proteins: Suppressor of position effect variegation 3-9, SU(VAR)3-9; Enhancer 

of zeste, E(Z) and Trithorax, Trx (Jones et al. 1993; Tschiersch et al. 1994; Stassen et al. 1995). The 

first lysine methyltransferase SUV39H was identified in 2000 and specifically methylates lysine 9 

on the N-terminal tail of H3 (Rea et al. 2000). By now several methyltransferase and their sites of 

modification have been identified (Kouzarides 2007). In all cases the methyl donor is S-Adenosyl 
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methionine (SAM) and is converted during the methylation reaction to S-Adenosyl homocysteine 

(SAH). There are six well characterized methylation sites on histones: H3 (K4, K9, K27, K36, 

K79) and H4K20. Methylation at H3K4, K36 and K79 is mostly coupled with active transcription 

(Ruthenburg et al. 2007; Lee et al. 2007; Steger et al. 2008) whereas the H3K9, K27 and H4K20 

trimethylation is linked to transcriptional repression (Ebert et al. 2006). To carry out downstream 

effects several proteins are known to bind specific to methylation sites. Binding proteins comprise 

one of the four domains: the chromodomain, the tudor domain, the PHD (Plant  homeodomain) 

finger domain or the WD40-repeat domain (Martin et al. 2005; Wysocka et al. 2006). Lysine histone 

methylation is one of the most stable epigenetic mark and different biological processes can be 

attributed depending on the position of the methylation mark.

H3K361.3.2.1 

In yeast all H3K36 methylation states are mediated by the histone methyltransferase Set2. This 

enzyme preferentially binds to RNA polymerase II being phosphorylated at Ser-2 within the 

C-terminal domain (CTD) (Li et al. 2003; Meinhart et al. 2005). As a result of this interaction, 

Set2 is directed to active genes. Especially at the 3`end of active genes methylation of H3K36 is 

enriched and it is associated with proper elongation of RNA polymerase II through the coding 

region (Schaft et al. 2003; Krogan et al. 2003; Bannister et al. 2005). The RNA polymerase needs 

acetylated nucleosomes, resulting in an accessible chromatin structure, to progress through 

the coding regions. During transcription inappropriate initiation of transcription needs to be 

prevented. Therefore H3K36 serves as a binding motif for the recruitment of histone-deacetylase 

activity Rpd3 (Carrozza et al. 2005). Structural studies have shown the molecular details of how 

the Eaf3 (Esa1 associated factor 3) subunit of Rpd3 binds histone H3 methylated at lysine K36 (Xu 

et al. 2008). Eaf3 is also a subunit of the histone acetylase NuA4 (nucleosome acetyltransferase of 

histone H4) and therefore plays an important role in controlling histone acetylation patterns that 

in the end distinguishes between coding regions and promoters (Reid et al. 2004). Joshi et al could 

show that Eaf3 mediates deacetylation of coding regions by interaction of the chromodomain of 

Eaf3 and methylated H3K36 (Joshi et al. 2005). In mammals other proteins besides Set2 have been 

shown to possess methyltransferase activity for H3K36 such as the NSD1 protein. Until now little 

is known about the exact regulation of this site, the interplay between the levels of methylation and 

the proteins needed to orchestrate.
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H3K91.3.2.2 

The first discovered lysine HMT was the human SUV39H containing a SET domain and known to 

methylate H3K9 (Rea et al. 2000). Methylation of H3K9 is mostly associated with transcriptionally 

inactive chromatin (Schotta et al. 2002; Peters et al. 2003) but is also found in transcribed regions of 

active genes (Vakoc et al. 2005). Different methylation states (me1, me2 or me3) are found within 

different regions of the genome suggesting various functions of H3K9 methylation (Ebert et al. 2004). 

H3K9 di-and trimethylation is involved in pericentromeric heterochromatin formation (Ebert et al. 

2004, 2006). For this formation additional proteins are needed, first SUV39H methylating histone 

H3 at K9 creating a binding site for the second protein involved, HP1 (heterochromatin protein 

1) that is able to bind via its chromodomain to di- and trimethylated H3K9 (Bannister et al. 2001; 

Lachner et al. 2001). After the initiation site has been introduced, heterochromatin can spread by 

the binding of SUV39H to HP1 that in return leads to more methylation of H3K9 resulting in a self 

enforcing loop (Maison et al. 2004).

H3K271.3.2.3 

H3K27 methylation is found in euchromatin at gene loci as well as at pericentromeric heterochromatin 

and at the inactive X in mammals (Heard 2005). The enzyme that has been shown to mediate H3K27 

methylation is EZH2 (Enhancer of Zeste homolog 2) or its homologues (Czermin et al. 2002; Cao 

et al. 2002). It can add up to three methyl groups on this residue and H3K27 trimethylation is 

currently considered to be the prevailing state involved in biological functions in vivo (Kotake et al. 

2007; Boyer, Plath, et al. 2006; Fouse et al. 2008). EZH2 in humans or E(Z) in flies is a SET domain 

containing protein and found in the Polycomb repressive complex 2 (PRC2) (Czermin et al. 2002). 

One of the functions of PRC2 is the silencing of differentiation genes by altering chromatin folding 

(Grimaud et al. 2006). A well known target are the HOX genes controlling segmentation during 

development in Drossophila. PRC2 and its catalytic subunit EZH2 is conserved throughout species 

(Holdeman et al. 1998) suggesting to be a well established strategy for gene silencing that uses 

H3K27 methylation as a repressing mark. Besides PRC2 also PRC1 (Polycomb repressive complex 

1; 2) is able to bind to the H3K27 methylation mark. However, PRC2 is required for PRC1 binding 

to methylated H3K27 (Fischle, Wang, Jacobs, et al. 2003; Min et al. 2003). Genome wide studies 
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have discovered more than 1000 silenced genes that are co-occupied by PRC1, PRC2 and H3 K27 

trimethylation (Bracken et al. 2006). 

H4K201.3.2.4 

H4K20 can be mono- di – or trimethylated in vivo. Pr-Set7/SET8 specifically monomethylates 

histone H4 at lysine 20 in Drosophila or human cells respectively (Nishioka et al. 2002; Fang et al. 

2002). The same lysine is di- and trimethylated by other histone methyltransferases: Suv4-20h1 

and Suv4-20h2 (Schotta et al. 2004, 2008). The enzymes for all three methylation sites share a 

common SET domain, known to be a conserved motif in most lysine directed HMTs. But Pr-

Set7 lacks Pre- and Post SET domains that were thought to be essential for the activity of HMTs 

showing that these domains are not absolutely required for HMT activity (Fang et al. 2002). Pr-

Set7 is so far only identified in higher eukaryotes but not in yeast. A Pr-Set7 null mutation in 

Drosophila melanogaster linked the methyltransferase to gene silencing and suggested that H4K20 

monomethylation by Pr-Set7 is essential for mitosis (Karachentsev et al. 2005). Increased expression 

of Pr-Set7 during S phase is followed shortly by an increase in H4K20 monomethylation during 

S phase (Tardat et al. 2007; Jørgensen et al. 2007). During S phase Pr-Set7 is expressed at a high 

level (Tardat et al. 2007) and interacts directly with PCNA (Proliferating cell nuclear antigen) via a 

PIP box. Defective interaction results in a faulty S phase progression (Jørgensen et al. 2007; Huen 

et al. 2008) arguing for a cell cycle dependent function of Pr-Set7 and H4K20 monomethylation. 

H4K20 mono- and trimethylation is low in abundance throughout the cell cycle and the majority 

of H4K20 is dimethylated. Newly synthesized H4 becomes rapidly dimethylated (Pesavento et 

al. 2008). The different methylation states fulfill different functions in the cell: Dimethylation is 

able to recruit different DNA repair factors (Botuyan et al. 2006). Trimethylation of H4K20 is 

enriched in pericentromeric heterochromatin (Schotta et al. 2008). In contrast, monomethylation 

is associated with active genes linking this methylation state to transcription (Barski et al. 2007). 

But the mark was also found to be associated with inactive X chromosome in undifferentiated 

ES cells suggesting a role in gene silencing (Kohlmaier et al. 2004). Methylation of H4K20 was 

suggested to inhibit acetylation at H4K16 (Nishioka et al. 2002). These two marks were first shown 

to be mutually exclusive. However, in contrast to this proposal recent studies revealed that the two 

marks are regulated independently (Pesavento et al. 2008). Pesavento el al. could show in HeLa cells 
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by mass spectrometry analysis that the two marks are not mutually exclusive neither under normal 

regulation in vivo nor when hyperacetylation is induced artificially.

Demethylation1.3.3 

Histone modifications are dynamic in order to cope with the needs of the cell. Methylation 

marks of either lysine or arginine residues are removed by different enzymes. In human and 

mice methylarginine can be converted to citrulline by peptidylarginine deiminase (PADI). The 

first identified lysine specific demethylase LSD1 (Lysine-specific demethylase 1) removes methyl 

groups using FAD (flavin adenine dinucleotide) as a cofactor with specificity towards mono- 

and dimethylation at H3K4. Metzger et al. could show that LSD1 demethylates mono- and 

dimethylation of H3K9, hence promoting gene activation (Metzger et al. 2005). A chromatin 

associated transcriptional repressor (Co-REST) is required as a cofactor for the demethylation (Shi 

et al. 2004). Interestingly, demethylation activity is reduced in the presence of HDAC inhibitors 

thus linking demethylase and deacetylase activity (Lee et al. 2006). Another group of demethylases 

was found containing a common catalytic Jumonji-C (JmjC) domain distinct from LSD1. The 

JmjC domain requires iron (Fe(II)) and α-ketoglutarate as cofactors to perform an oxidative 

demethylation reaction (Klose, Kallin, et al. 2006). Demethylase enzymes from the JmjC class are 

able to remove mono-, di- and trimethylation marks from H3K36, H3K9, H3K27 and H3K4 (Shi 

et al. 2004; Klose, Yamane, et al. 2006; Xiang et al. 2007) leaving important marks such as H3K79 

and H4K20 for which no demethylase activity has been identified yet.

Histone code1.4 

There is a variety of histone modifications existing and still emerging. Many of them are linked to 

a specific process with DNA as the template. It has been proposed that the combination of different 

histone modifications results in a “histone code”, which specifies patterns of gene expression. 

This may create a second level besides the genetic code and adds an additional complexity to the 

information potential (Jenuwein et al. 2001; Turner 2002).
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The code could be a simple binary code where a certain histone modification is either linked to 

gene activation or repression and also influencing other modification for further processes. As 

described above certain modifications possess the tendency for either a transcriptionally “on” or 

“off ” state. Inconsistent with the binary code theory some modifications are involved in opposing 

chromatin states. For example phosphorylation of H3S10 is found at high level in mitotic cells and 

associated with chromosome condensation. But it also correlates with active genes and euchromatic 

regions suggesting different roles for the same modification (Johansen et al. 2006). A more general 

consideration of the histone code proposes that posttranslational histone modifications attract 

different “writers” and “readers” mostly being chromatin binding proteins. Depending on the writer 

and reader a distinguishable signal transduction pathway is initiated resulting in a specific process. 

Schreiber and Bernstein proposed that multiple histone modifications mediate signal switches and 

act analogous to signal transduction pathways of receptor tyrosine kinases (Schreiber et al. 2002). 

The signal transduction pathway in the nucleus could start by recruiting a HAT that acetylates the 

H3 tail. This newly formed binding site is then able to recruit other enzymatic activities and thus 

propagating the initial signal. They suggest that positive feedback is provided by proteins containing 

chromo- and bromodomains such as HP1 interacting with Su(var)3-9 and H3K9 methylation. 

The counteracting influence of H3S10 and H3K9 methylation can be described as an example 

of negative feedback (Schreiber et al. 2002). In 2004 Henikoff and colleagues also questioned the 

existence of the histone code since no templated machinery has been identified so far to propagate 

histone modifications during replication (Henikoff et al. 2004). They postulated that the histone 

code is not inherited during replication but rather during transcription. Accordingly, replication 

merely provides an approximate distribution of old and new histones on the daughter strands. 

The specificity of chromatin states is caused by nucleosomal replacement during transcription 

with replication independent histone variants. The H3 replacement variant H3.3, for example, is 

deposited throughout the cell cycle. Outside S phase H3.3 is deposited mostly with euchromatin 

leading to the proposal that H3.3 marking active chromatin (Henikoff et al. 2004). The histone 

code hypothesis and epigenetic inheritance still remain to be further investigated.
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Replicating chromatin1.5 

Chromatin packages DNA in the nucleus and controls the expression of genes. This crucial structure 

must be accurately copied to the two daughter strands during replication to maintain information 

beyond just DNA sequence (Nakatani et al. 2006; Ng et al. 2008). This epigenetic inheritance can 

be divided into three major parts. At first the nucleosomes on the parental strand are disassembled 

which allows the replication machinery to access the DNA. Then the disrupted histones are 

transferred behind the replication fork with the help of chaperones and finally the histones- old and 

new- assemble onto the DNA daughter strands to rebuild chromatin in an orchestrated manner 

(Figure 4).

Disassembly of parental nucleosomes1.5.1 

When the replication fork approaches, parental nucleosomes are disrupted ahead of the fork and 

the nucleosomal octamer is split into two H2A-H2B dimers and a (H3-H4)2 tetramer (Tagami et al. 

2004; Corpet et al. 2009; Probst et al. 2009). Still unclear is the cause of the disruption and whether 

the replication fork alone drives the disruption or whether additional factors such as chromatin 

remodeling complexes or chaperones are involved. Chaperones could immediately accept histones 

from disrupted nucleosomes and could assist the “old” histones to the daughter strands. The H2A-

H2B chaperone complex FACT (Facilitates chromatin transcription) was identified in association 

with MCM (Minichromosome maintenance) proteins (Tan et al. 2006), which constitute a helicase 

with DNA unwinding activity in front of the replication fork thus linking FACT to replication 

(Gambus et al. 2006). Another histone chaperone CAF1 (Chromatin assembly factor 1) which is 

specific for H3-H4 (Verreault et al. 1996) is known to interact with a variety of proteins including 

PCNA and ASF1 (Anti silencing factor 1) that allows the recruitment of CAF1 to the replication 

fork (Moggs et al. 2000; Mello et al. 2002, 2001). ASF1 is also associated with the MCM helicase 

(Groth et al. 2007). When CAF1 activity is reduced severe replication defects, S phase arrest and 

delayed chromatin assembly occur (Song et al. 2007). Structurally, CAF1 consists of three subunits: 

p180, p105 and p55 in Drosophila and p150, p60 and p48 in humans. The second smallest subunit is 

known to interact with ASF1 another H3-H4 histone chaperone thereby acting together in histone 
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deposition (Groth et al. 2005, 2007, 2009). 

The interaction of histone chaperones with MCM proteins suggest that chaperones play a key role 

in disrupting parental nucleosomes and potentially transfer them onto the nascent DNA after the 

fork.

Relocation of parental histones1.5.2 

To limit the length of exposure of naked DNA, parental nucleosomes are assembled into chromatin 

as soon as the DNA emerges out of the replisome. There are three common models of distributing 

parental nucleosomes on the two daughter 

strands (Figure 3) (Jackson et al. 1975, 1985; 

Probst et al. 2009; Groth 2009). First of all the 

parental histones could, in almost the same 

manner as DNA and its methylation marks, 

deposited in a semi conservative way (Tagami 

et al. 2004). Dimers of parental histones 

distribute evenly onto each daughter strand 

and dimers of newly synthesized histones 

complement the nucleosome. This results 

in a “hemimodified” nucleosome where the 

Figure 3: Inheritance of histones at the fork. 
Three different possibilities for the distribution of 
parental histones are depicted. A) If the histones 
are inherited in a semi conservative manner, then 
the nucleosomes after the fork are reconstituted 
equally from old and new histones. B) The conser-
vative way of histone distribution implies that one 
daughter strand is exclusively associated with old 
histones and the other strand with only new his-
tones. C) Dispersive histone distribution results in 
a random sequence of old and new nucleosomes.

A) semi conservative

B) conservative

C) dispersive

new histonesold histones
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old histones and their modification pattern serve as a template to guide the new histones to the 

appropriate modification pattern. Another possibility is that the distribution of the new versus 

the old histones follows an asymmetric order where the pre-existing histones all assemble on one 

daughter DNA molecule whereas the newly synthesized associate with the other daughter strand. To 

achieve identically daughter strands in terms of histone modifications interstrand communication 

is necessary. This way of segregating parental and new histones could initiate changes in cell fate 

and allow reshaping the cells` identity. In the last hypothetical model both old and new histones 

are assembled randomly onto the daughter strands (Russev et al. 1982). Histone modification 

pattern are copied from neighboring nucleosomes so that no epigenetic information is lost. This 

method of restoring histone modification patterns from one nucleosome to its neighboring sounds 

ideal for repetitive sequences where long arrays of nucleosomes carry the same marks. However, 

this cannot be applied to chromatin stretches with highly dynamic modification patterns or when 

single histone modifications are important. 

Theoretically it is also possible that all three models described above occur in nature depending on 

the needs of the cell. There are instances where an exact copy of the chromatin state is necessary 

and chromatin reorganization leads to catastrophic events within the organism such as cancer 

(Grønbaek et al. 2007). However, one could also envision that a blank template is needed in order 

to change the cell fate (Welstead et al. 2008). A combination of the different ways allows the cell to 

cope with the environment in an either static or dynamic way (Groth et al. 2007, 2009; Probst et 

al. 2009).

Deposition of newly synthesized histones1.5.3 

DNA doubles during replication as so has the amount of histones. Canonical core histones are 

synthesized during S phase and the exit of the S phase results in a rapid decrease in histone mRNA 

levels (Marzluff et al. 2002). Newly synthesized histones are escorted by chaperones such as CAF1 

and ASF1 and carry a conserved combination of acetylation marks (Ridgway et al. 2000; Groth 

et al. 2007). Histone H4 is preacetylated at lysine 5 and 12 and the mark is removed quickly after 

chromatin assembly and chromatin can mature (Sobel et al. 1995; Loyola et al. 2006). In yeast 
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H3K56 also serves as a predeposition mark (Masumoto et al. 2005; Das et al. 2009). However, the 

acetylation patterns of H3 differ from species to species suggesting that the charge state of H3 is 

more important for further assembly than acetylation on a specific site. Chromatin assembly can 

be divided in several consecutive steps. H3 and H4 are assembled followed by the addition of two 

H2A-H2B dimers and in the end the linker histone H1 is added on the chromatin fiber (Benson 

et al. 2006). Once chromatin is reestablished after the replication fork chromatin and especially its 

modification pattern may mature with the help of chromatin binding proteins.

Chromatin maturation1.5.4 

On the replication fork PCNA can serve as a docking station for various chromatin binding 

proteins (Figure 4). For example PCNA is able to recruit histone deacetylase activity (Milutinovic 

et al. 2002), chromatin remodeling activity (Poot et al. 2004), DNA methyltransferase 1 (Dnmt1) 

(Chuang et al. 1997) and also the lysine methyltransferase Pr-set7 (Huen et al. 2008). A model for 

Figure 4: Chromatin at the 
replication fork. Ahead of 
the moving fork nucleosomes 
are disassembled so that the 
DNA sequence can be ac-
cessed. Then the parental his-
tones are relocated behind the 
replication fork and the fully 
nucleosome density is com-
pleted by the deposition of 
newly synthesized histones. 
PCNA serves as a common 
platform for chromatin bind-
ing proteins

Disassembly

PCNA

HDAC PR-SET7
CAF1

Relocation

Deposition

?

new histonesold histones
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targeting the replication fork to chromatin assembly and maturation would be that PCNA recruits 

CAF1 and thereby newly synthesized histones carrying several acetylation marks. At the same time 

PCNA delivers histone deacetylases to remove the predeposition marks and histone modifying 

enzymes such as Pr-Set7 to set the new marks (Moldovan et al. 2007). The individual steps of how 

chromatin maturation is configured are still to be discovered.



35

Objective

Objective1.6 

Chromatin encounters different cellular processes and needs to be able to react adequately without 

losing its epigenetic information. This flexibility and at the same time stability is obtained by 

mechanisms including histone modifications. The aim of this work was to gain more insight how 

histone modification patterns are regulated in detail especially how the patterns are established and 

maintained during replication, chromatin assembly and transcription. 

Part I: Localized H3K36 methylation states define histone H4K16 acetylation during 

transcriptional elongation in Drosophila

During transcription elongation H3K36 methylation is the only mark to be enriched in the 3´end 

of active genes. However, little was known about the state specific regulation of K36 methylation. 

The aim of the first part of this thesis was to verify by means of mass spectrometry a stepwise 

methylation process for methylation on H3K36 that was found in Western blot analysis by our 

collaborator Oliver Bell.

Part II: Monomethylation of H4K20 facilitates chromatin maturation

Shortly after histones being deposited onto DNA chromatin is assembled. Yet in vivo events of 

chromatin maturation happen quite fast and thus are difficult to investigate. Therefore an in vitro 

approach, using a Drosophila extract that is able to assemble DNA into chromatin, is conducted in 

this thesis research to dissect the dynamics of histone modifications and their binding proteins in 

detail before and after chromatin assembly. 

Part III Establishment of histone modifications after chromatin assembly

Newly synthesized histones posses differential modification patterns when compared to parental 

histones. However, the detailed kinetics by which the modification patterns are reestablished on 

the new histones is still unknown. In this thesis research a novel technique (pulsed stable isotope 

labeling with amino acids) was established and applied to investigate the kinetics by which newly 

synthesized histones adjust to the modification pattern of the parental histones.





Materials and Methods2. 

37



38

Materials and Methods

Materials2.1 

Technical devices2.1.1 

Description Supplier
-20°C Freezer Liebherr
26°C Incubator Bachofer
37°C Incubator/ bacteria Memmert
37°C Incubator/ cells Thermo scientific
4°C Fridge Liebherr
-80° Freezer GFL
Agarose gel chamber repair shop of Adolf-Butenandt-Institute
Autoclave (Varioklav) H+P
Balances Sartorius
Cell counter Casy Cell Counter, Innovatis
Centrifuges Eppendorf Centrifuge 5417C

Eppendorf miniSpin
Heraeus; Kendro (Biofuge pico),  
Heraeus; Kendro (Cryofuge6000i),  
Sorvall; Kendro (RC6PLUS)
Thermo; Multifuge 3L
Sigma; 3-18
Heraeus; Cryofuge 6000i
Beckman; Ultracentrifuge (LE-80K)

FACS FACSCanto, Beckton Dickinson
FPLC Amersham Biosciences
French press ThermoSpectronic
Geiger counter Bachofer
Gel documentation system Peqlab
Homogenisator Schütthomgen
Hood HeraSafe, Thermo Scientific
Imaging system LI-COR
Incubation shaker Infors Multitron
Microscope (TC) Leica DMIL
Microwave LG
MilliQ-water Millipore
pH-meter inoLab pH 720
Pipetboy Brand
Pipettes Gilson
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Power supply BioRad (Pac 300), Pharmacia
Proteingel chamber (Novex Mini Cell) Invitrogen
Rotating wheel neoLab
Shaker Roth
Sonifier Branson
Spectrophotometer Nanodrop ND1000, Peqlab
Thermocycler MWG Biotech 
Thermomixer (compact) Eppendorf
Vortex Genie 2TM Bachofer
Water bath (thermomix 1420) B. Braun
Western blot apparatus BioRad

Chemicals and consumables2.1.2 

Unless otherwise stated, all common chemicals are purchased in analytical grade from Merck.

Description Supplier
1.5 ml and 2 ml micro centrifuge tubes Eppendorf
15 ml and 50ml tubes Sarstedt
250 ml Centrifuge tubes Corning
Agarose SeaKem® ME Biozym
Ampicillin Roth
Bacto Agar BD
Bacto Tryptone BD
Barrier food wrap Saran
Bradford Reagent BioRad
BSA 98% Sigma
BSA purified NEB
Cellculture flasks Greiner
Concentration tubes Microsep 30K Omega 
Coomassie G250 Serva
Cryovials Roth
dCTP, dGTP, bio dATP, bio dUTP Invitrogen
Dialysis membrane Spectra/Por, Roth
DMSO Sigma
dNTP mix NEB



40

Materials and Methods

DTT Roth
Dynabeads M280-Straptavidin Dynal
EDTA Sigma
EGTA Sigma
Ethidium bromide Sigma
FACS tubes BD
FCS dialyzed Sigma
Filter paper Whatman 3MM Whatman
Filter tips Roth
Filter unit Nalgene, 0.2 μm filter holes
Glass pipettes 5 ml and 10 ml Hirschmann®
Glassware Schott
Glycogen Roche
HEPES Roth
Hiload 16/60 Superdex 200 gel filtration 
column

GE Healthcare

IPTG Roche
Kilobasebinder Dynal
Laboratory film Parafilm®
NP40 Sigma
Orange G Sigma
Pasteur pipettes Brand
PCR-reaction tubes 0.2 ml Biozym
Penicillin/ Streptomycin Sigma
Petridishes and tissue culture plates Greiner, Sarstedt
Pipette tips Gilson, Brand
PMSF Sigma
Propidium iodide Sigma
Protein gel cassettes (disposable) Invitrogen
Quick spin columns (Sephadex 50) Roche
Random primer Promega
Rotiphorese Acrylamid-Bisacrylamidmix Roth
S-Adenosyl (methyl 3H)-L-methionine Amersham Biosciences
SAH Sigma
SDS Serva
Sodium butyrate Sigma
SP-Sepharose column (5ml) GE Healthcare
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ß-Mercaptoethanol Sigma
Syringes and accessories Roth
TEMED Roth
Thymidine Sigma
Tris Invitrogen
Triton X-100 Sigma
Trypsin/EDTA (TC) PAA
TSA Sigma
Tween 20 Sigma
Yeast extract Difco

Kits and enzymes2.1.3 

Description Supplier
Klenow Roche
Maxi- and Midiprep kit Qiagen
M-MuLV RT + buffer Fermentas
MNase Sigma
Proteinase K Genaxxon
Restriction endocucleases NEB
RNase A Roche
RNeasy kit Qiagen
SILAC kit Invitrogen
Taq polymerase NEB

Plasmids2.1.4 

pET3cH2A, pET3cH2B, PET3cH3 and pET3cH4 according to (Morales et al. 2004).

pAI61 according to (Eskeland et al. 2007).



42

Materials and Methods

Media2.1.5 

Media for 2.1.5.1 E. coli

Luria-Bertani (LB) medium
1.0% (w/v) Bacto-Tryptone
1.0% (w/v) NaCl
0.5% (w/v) Bacto-Yeast extract
→ Adjust the pH to 7.0 with 10 M NaOH
The medium was autoclaved for 20 min at 120°C and after cooling down to 60°C the 
appropriate antibiotics was added. For preparing plates the LB medium was mixed with 1.5% 
agar.

SOB medium
2% (w/v) Bacto-Tryptone
10 mM NaCl
0.5% (w/v) Bacto-Yeast extract
2.5 mM KCl
10 mM MgCl2*
→ Adjust the pH to 7.0 with 10 M NaOH
* add before use
The medium was sterilized in an autoclave for 20 min at 120°C.

Media for HeLa cells2.1.5.2 

a) Growth medium

DMEM Glutamax medium (PAA) was supplemented with 50 U/mL Penicillin, 50 μg/mL 

Streptomycin and 10% heat inactivated FCS. Heat inactivation was performed for 20 min in a 

waterbath at 56 °C. 

b) SILAC medium

Preparation of SILAC medium was performed according to Invitrogen´s instructions. 1 l dialyzed 

DMEM was supplemented with 100 mg L-lysine and 100 mg either unlabeled L-arginine (R0 

SILAC) or isotopically labeled L-12C6 15N4-arginine/ L-13C6 15N4-arginine (R4/10 medium). Prepared 



43

Materials and Methods

medium was filtered and 10% of dialyzed, heat inactivated FCS, 50 U/mL Penicillin and 50 μg/mL 

Streptomycin was added. The medium was aliquoted and stored at 4 °C. 

Antibiotics2.1.6 

Name Concentration of the stock solution Working concentration
Ampicillin 100 mg/ml (1000x) in H2O 100 μg/ml
Chloramphenicol 34 mg/ml (1360x) in Ethanol 25 μg/ml
Kanamycin 10 mg/ml (1000x) in H2O 10 μg/ml
Tetracyclin 5 mg/ml (500x) in Ethanol 10 μg/ml

Antibodies2.1.7 

Primary antibodies2.1.7.1 

Name Supplier Dilution
αdl(3)MBT E. Kremmer 1:1000
αH4K20me1 Abcam 1:1000
αdRpd3 R. Steward 1:1000

Secondary antibodies2.1.7.2 

Name Supplier Dilution
Goat-αrabbit Licor (680nm) 1:5000
Goat-αmouse Licor (680nm) 1:5000

E. coli strains2.1.8 

Strain Genotype Supplier
DH5α F- Φ80dlacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17 

(rK 
-, mK

+) phoA supE44 λ- thi-1 gyrA96 relA1 (Hanahan 
1983) 

Genentech

BL21 (DE3) pLysS B F- dcm ompT hsdS(rB
-mB

-) gal λ(DE3) (studier and moffatt 
1986)

Stratagene

XL1 Blue recA1 end A1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F´proAB lacIqZΔM15 Tn 10 (Tet r)]

Stratagene
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DNA and protein markers2.1.9 

Name Supplier
1 kb DNA marker NEB
123 bp ladder Invitrogen
DNA 100 bp ladder NEB
peqGOLD Protein Marker IV, II Peqlab
smart ladder Eurogentec

Protease inhibitors2.1.10 

Name Supplier
Aprotinin Gennaxon
Leupeptin Gennaxon
Pepstatin (in EtOH) Gennaxon
PMSF Sigma
β-glycerolphosphate Sigma

Mass spectrometry material2.1.11 

Description Supplier
0.2 ml tubes, strips of 8 (mass spec) Nunc
0.5 ml tubes Eppendorf LoBind
Acetonitrile Sigma
Ammoniumbicarbonate Sigma
AspN Roche
Formic acid Sigma
H20 HPLC grade Merck
Hydrophobic plate Applied Biosystems
MALDI-TOF Voyager-DE TM, Applied Biosystems
Propionic acid Merck
QSTAR Applied Biosystems
Speed vac Eppendorf
TFA Merck
ZipTips Millipore μC18
α-cyano-4-hydroxycinnamic acid Sigma
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Bioinformatic tool2.1.12 

Device Software
FACS FACSDIVA, FlowJo
MALDI-TOF Voyager, Data explorer, Manuelito
Orbitrap Bioworks, Xcalibur, Peaks, Mascot, Maxquant
QSTAR Analyst

Methods 2.2 

Microbiology methods2.2.1 

Preparation of competent cells2.2.1.1 

E. coli bacteria from glycerol stocks were streaked out on LB plates and incubated o/n at 37°C. 

From this plate one colony was used to grow a 3 ml LB preculture o/n at 37°C. The next day 1 

ml of the preculture was transferred into 500 ml LB medium and grown to an OD at 600 nm 

of 0.6. The culture was cooled on ice for 10 min and then centrifuged (15 min, 4000 rpm, 4°C, 

Heraeus Cryofuge 6000i). After centrifugation the supernatant was discarded and the cell pellet 

was carefully resuspended in 200 ml ice cold TBPI. Cells were incubated on ice for 5 min and 

afterwards the centrifugation step was repeated. The pelleted cells were then gently resuspended in 

20 ml ice cold TBPII. Aliquots of 200 μl were snap frozen in liquid nitrogen, and stored at -80°C. 

An efficiency of 107 cfu/μg was achieved using this preparation.

TBPI
30 mM KAcetate
100 mM KCl
10 mM CaCl2

50 mM MnCl2

15% (v/v) glycerol 
→ filter 0.2 μm, keep at 4°C

TBPII
10 mM PIPES pH 6.5
75 mM CaCl2

10 mM KCl
15% (v/v) glycerol 
→ filter 0.2 μm, keep at 4°C
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Plasmid transformation2.2.1.2 

Plasmid DNA was added to 200 μl chemically competent cells that had been thawed on ice. The cell 

suspension was left on ice for 45 min, and then heat-shocked for 45 sec at 42°C and immediately 

chilled on ice for 5 min. 500 μl of SOB medium was added and the cells were incubated for 45 min 

at 37°C in a shaking incubator at 700 rpm (Thermomixer). Transformed cells were plated on LB 

agar plates supplemented with the appropriate antibiotics and incubated for 12 to 16 h at 37°C.

Isolation of Plasmid DNA from 2.2.1.3 E. coli

a) Miniprep

Small amounts of plasmid DNA were extracted from E. coli by alkaline lysis (Birnboim et al. 1979). 

LB medium (3 ml) supplemented with the appropriate antibiotics was inoculated with colonies 

picked from an agar plate of freshly transformed bacteria. The cultures were grown o/n at 37°C 

shaking at 200 rpm (Infors Multitron). Half of each o/n culture was transferred in a 1.5 ml reaction 

tube and centrifuged (10 min, 9000 rpm, RT, Eppendorf 5417C). The pelleted bacteria were 

resuspended in 250 μl P1 to destabilize the bacterial membrane. Afterwards the bacterial suspension 

is lysed by adding 250 μl P2. The tubes are immediately inverted 5 times to mix the components 

and left at RT for 5 min. The lysis was stopped by adding 350 μl P3 followed by inverting again for 

5 times and then incubating on ice for 10 min. Precipitated proteins and the chromosomal DNA 

was sedimented by centrifugation (10 min, 13000 rpm, RT, Eppendorf 5417C). The supernatant 

corresponding to the plasmid DNA was transferred in a new 1.5 ml tube. 600 μl of isopropanol was 

added and the sample incubated on ice for 30 min and then centrifuged (20 min, 13000 rpm, 4°C, 

Eppendorf 5417C). The pelleted plasmid DNA was washed with 70% ethanol and recentrifuged 

(5 min, 13000 rpm, 4°C, Eppendorf 5417C) in case the DNA pellet becomes dislodged during the 

washing step. The supernatant was discarded and the pellet air dried. The dried pellet was taken up 

in 25 μl TE.
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P1

50 mM Tris pH 8.0

10 mM EDTA

100 μg/ml RNase A 

P2

200 mM NaOH

1% (w/v) SDS

P3

3 M KAcetate pH 5.1

b) Midiprep

To obtain larger amounts of plasmid DNA, 200 ml of LB medium including the appropriate 

antibiotics was inoculated with a single colony of an agar plate holding freshly transformed bacteria. 

The culture was incubated o/n at 37°C at 180 rpm (Infors Multitron). in a shaker. The bacteria 

was transferred into 250 ml Corning tubes and pelleted by centrifugation (10 min, 4000 rpm, RT, 

Heraeus Cryofuge 6000i). The further isolation of the plasmid DNA was done with Qiagen Plasmid 

Midiprep Kit according to the manufacturer`s instructions.

Nucleic acid methods2.2.2 

Storage of DNA2.2.2.1 

DNA was stored in TE buffer at -20°C

TE buffer

10 mM Tris pH 8.0

1 mM EDTA

DNA quantification2.2.2.2 

DNA concentration was quantified by measuring the absorbance at the wavelength of 260 nm in 

a UV spectrophotometer. One absorbance unit at 260 nm corresponds to a concentration of 50 μg 

DNA/ml. The purity of the DNA can be judged by the ratio A(260 nm)/ A(280 nm) and should lie 

between 1.8 and 2.0. Lower values indicate protein contamination (Sambrook et al. 2000).
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Agarose gel electrophoresis2.2.2.3 

Agarose gel electrophoresis was performed to separate linear DNA fragments by size (Sambrook et 

al. 2000). The smaller the fragments for analysis the higher the percentage of agarose solution was 

used ranging from 0.8 to 2% (w/v) in 1x TBE buffer. The agarose solutions were brought to boil 

in a microwave and were allowed to cool down to approximately 50°C. Then ethidium bromide 

was added to a final concentration of 1 μg/ml prior to pouring the solution into the gel chambers. 

After an adequate solidification of the gel, running buffer (1x TBE) was added. Before loading the 

samples onto the gel they were mixed with 5x loading dye. The electrophoresis was performed with 

10 V/cm gel length and smart ladder, 1 kb ladder or 123 bp ladder served as a size standard. The 

DNA was visualized by UV light (254-366 nm) since the complex of DNA and ethidium bromide 

is triggered to fluoresce. Gels were documented with the help of a gel documentary system.

1x TBE

90 mM Tris

90 mM Boric acid

2 mM EDTA

5x loading dye

50% (v/v) Glycerol

5 mM EDTA

0.3% (w/v) Orange G

Restriction digest2.2.2.4 

Buffer conditions and temperatures for incubation were used as suggested by the manufacturer. 

Usually 1 U of the enzyme was applied for 1 μg DNA and incubated for 2–3 h. The reaction products 

were analyzed by agarose gel electrophoresis.

Polymerase Chain Reaction (PCR)2.2.2.5 

PCR was used to amplify DNA fragments and conducted according to Sambrook et al. For a 

standard reaction 10 ng of template DNA, 200 pmol of each primer, 200 μM dNTPs, 1 Unit of the 

appropriate DNA polymerase and the adequate 10x buffer for the polymerase were used (Sambrook 

et al. 2000). The final volume of 25 μl was added up with ddH2O. The amplification of the DNA 

fragments was controlled by agarose gel electrophoresis.
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Reaction Temperature [°C] Time
Initial Denaturation 94 2 min 1x
Denaturation 94 1 min

}Annealing 50 30 sec 25x
Elongation 72 1 min/kb
Final Elongation 72 10 min 1x

RT PCR2.2.2.6 

RNA was extracted from snap-frozen HeLa cell pellets using RNeasy kit according to the 

manufacturer‘s manual and dissolved in RNase-free water. Total RNA concentration was quantified 

using a spectrophotometer. Reverse transcription was primed with 250 μg of random primers with 

1 μg of total RNA per sample at 70°C for 5 min. The samples were then incubated with 20 U 

MuLV in 20 μl of buffer containing 1000 μM dNTP and manufacturer’s RT buffer for 10 min at 

25 °C, then heated up to 37 C for 1 h, 70 C for 10 min, chilled on ice and frozen at -20°C. PCR 

reaction was conducted with the following primers H3.2 (5’-GCTACCAGAAGTCCACGGAG 

and 5’-GATGTCCTTGGGCATAATGG) and 18S (5’-TTGTTGGTTTTCGGAACTGAGG and 5’-

CATCGTTTATGGTCGGAACTACG). 

Tissue culture methods2.2.3 

Cultivation of HeLa cells2.2.3.1 

HeLa cells (classical adherent cervix carcinoma cells) were kept in DMEM medium in 15 cm dishes 

in a 37°C incubator with a humidified atmosphere of 5% CO2. Cells were split in a sterile hood 

every 2 to 3 days in a ratio 1:3 or 1:4 then moved to a new dish and provided with fresh medium in 

a total volume of 20 ml in order to keep cell density to 2-8x 105 cells/ml. Cells were counted using 

the CasyCounter according to the manufacturer´s manual. Every two month a new frozen cell 

stock was thawn.
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Harvesting of HeLa cells2.2.3.2 

Growth medium was discarded using a vacuum pump and harvesting solution was added on top 

of the adherent HeLa cells. After 5 min of incubation at 37°C the trypsinized cells were detached by 

pipetting the harvesting solution up and down. The cell suspension was transferred in a 15 ml tube, 

centrifuged (3 min, 1200 rpm, RT, Thermo Multifuge) and washed with sterile PBS.

1x Harvesting solution

0.1% (w/v) trypsin

0.04% (w/v) EDTA

in sterile PBS

1x PBS

136 mM NaCl

2.7 mM KCl

4 mM Na2HPO4

1.7 mM KH2PO4 

→ adjust pH to 7.4

Storage of HeLa cells2.2.3.3 

To 5x 106 cells in 1ml DMEM medium, DMSO was added dropwise to a final concentration of 

7.5%. The cell suspension was transferred to 1.5 ml freezing vials and gently cooled down to -80°C 

using a freezing box encased with an isopropanol jacket. The frozen cells were stored in liquid 

nitrogen (-196°C). To utilize cells in culture, they were quickly thawn in a 37°C waterbath, washed 

twice with medium (3 min, 1200 rpm, RT, Thermo Multifuge) and seeded in a 15 cm dish for 

further culturing.

Synchronization of HeLa cells2.2.3.4 

For G1/S phase synchronization a double thymidine block was used. Therefore 2x 105 HeLa 

cells/ml were seeded in 6 well plates and cultured for 24 h at 37°C in R0 SILAC medium. Thymidine 

was added to a final concentration of 2 mM and incubation was maintained for 16 h. The block 

was released by exchanging the thymidine-containing medium with R0 culture medium. Cells 

were grown for 9 h before adding again thymidine of 2 mM final concentration for further 16h 

to synchronize the HeLa cells at the G1/S border. The arrest was finally released by refeeding cells 
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with thymidine-free R4 SILAC medium to allow cell cycle progression. Whenever indicated 10 mM 

NaBu was added directly into the medium and cells were washed twice with PBS before transferring 

cells into medium without NaBu. Cells were maintained in a 

37°C incubator with a humidified atmosphere of 5% CO2.

SILAC labeling (Stable isotope labeling with 2.2.3.5 
amino acids in cell culture)

We used three different SILAC DMEM media; R0 SILAC 

(L-arginine), R4 (L-12C6 15N4-arginine) and R10 (L-13C6 15N4-

arginine). HeLa cells were synchronized at the G1/S border 

in R0 SILAC medium and released into cell cycle in R4 SILAC 

medium in order to label all newly synthesized histones 

(Figure 5). For all pulse chase experiments (pSILAC) we fed 

synchronized cells with R4 SILAC medium for 6 h and chased 

with R10 SILAC medium. All materials for SILAC labeling 

were purchased from Invitrogen and prepared according to 

the manufacturer`s instructions.

Flow cytometric analysis of the cell cycle2.2.3.6 

For FACS analysis, cells (1 x 106) were harvested, washed 

twice in PBS followed by fixation in 70% ethanol at -20°C 

for a minimum of 1h. Fixed cells were washed in PBS and 

incubated with 100 μg/ml RNase A in PBS for 30 min at 37°C. 

Afterwards, propidium iodide to a final concentration of 

50 μg/ml was added and the cells were incubated at 37°C for 30 

minutes. Samples were stored at 4°C in the dark until analysis 

on BD Biosciences FACSCanto. A minimum of 10,000 cells 

was counted and the raw data was analyzed and histograms 

plotted using FlowJo software.

Synchronize

light aa R0

heavy aa R4

2h 6h
12h

Acid extraction of histones

Digestion with trypsin

Quantitation by MS

Figure 5: Pulsed SILAC. Sche-
matic view of SILAC labeling of 
HeLa cells and further prepara-
tion procedure.
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Protein methods2.2.4 

Protein quantification 2.2.4.1 

Protein concentrations were determined using the BioRad Protein Assay according to the 

manufacture`s instruction. BSA (Bovine serum albumin) was used as a protein standard (Bradford 

1976). 

SDS-Polyacrylamid-Gelelectrophoresis (SDS-PAGE)2.2.4.2 

Denaturing SDS-Polyacrylamid-Gels were used to separate protein mixtures. This method is based 

on a discontinuous electrophoresis. One gel consists of a resolving gel ranging from 8–15% and a 

5% stacking gel that was poured one after another in disposable gel cassettes. Per gel 6 ml separation 

gel and 2 ml stacking gel was used. After complete polymerization of the gel it was placed into a 

chamber filled with SDS running buffer. The protein samples were mixed with Laemmli buffer and 

denatured for 5 min at 95°C before applying on the gel. Protein markers were used to determine the 

molecular weight of the samples. Proteins were separated at 200 V for 1 h. Afterwards the gel was 

further processed either by Coomassie staining or Western blotting.

Separation gel (18%)

0.9 ml H2O

3.6 ml acrylamid mix (30/0.8)

1.5 ml 1.5 M Tris PH8.8

30 μl 20% (w/v) SDS

30 μl 20% (w/v)APS

3 μl TEMED

Stacking gel (5%)

1.4 ml H2O

340 μl acrylamid mix (30/0.8)

250 μl 1 M Tris pH 6.8

10 μl 20% (w/v)SDS

10 μl 20% (w/v) APS

2 μl TEMED
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SDS Running buffer

25 mM Tris

190 mM glycine

0.1% (w/v) SDS

4 x Laemmli buffer

200 mM Tris pH 6.8

8% (w/v) SDS

40% (v/v) glycerol

0.2% (w/v) bromphenol blue 

4.2% (v/v) β-Mercaptoethanol

Coomassie staining2.2.4.3 

The separation gel was shaken for 30 min in fixing/ staining solution on a shaker at RT. To destain 

the gel was placed into destain solution with a tissue placed aside to bind the excess dye. After 

achieving the desired level of colouration the gel is documented and dried on a 3 MM Whatmann 

for 2 h at 80°C in a gel drier. 

For mass spectrometry analysis gels were documented and proteins were cut out with a clean scalpel 

and stored in 0.2 ml tubes with 100 μl of ddH2O at 4°C until further analysis.

fixing/ staining solution

50% (v/v) methanol

10% (v/v) acetic acid

0.25% (w/v) Coomassie Brilliant Blue (G-250)

destaining solution

10% (v/v) acetic acid

Western blotting2.2.4.4 

SDS PAGE of protein samples was performed as described above. The gel was removed from the 

electrophoresis apparatus and soaked for 2 min in 1 x Western blot buffer as well as two 3MM 

Whatmann papers and two sponges. A nitrocellulose membrane (8 cm x 6.5 cm) was appropriately 

labeled and pre-wet in Western blot buffer. The blotting sandwich was assembled in the following 

order: grey bottom support (facing the negative electrode), 1 sponge, 1 piece of 3MM paper, 

equilibrated gel, membrane, 1 piece of 3MM paper, 1 sponge, clear top support (facing the positive 

electrode). The assembly was transferred to the blotting apparatus, which was filled with 1 x 
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Western blot buffer and an ice block for cooling. The proteins were transferred to the membrane 

by electrophoresis at 400 mA for 1.5 h at 4°C. After transfer the gel was Coomassie stained to 

determine the blotting efficiency. The membrane was blocked in 5% (w/v) milk in 1x PBS Tween 

for 1 h at RT on a shaker. Subsequently it was incubated with the primary antibody in 5% (w/v) 

milk in PBS Tween for 1 h at RT or o/n at 4°C on a shaker. After three washing steps (10 min each) 

in PBS Tween the membrane was incubated with the fluorescently labeled secondary antibody 

again for 1 h at RT while shaking. The blot was washed again as above and detected protein was 

documented and quantifies with an Odyssey system from Li-Cor (Towbin et al. 1979).

1x PBS

136 mM NaCl

2.7 mM KCl

4 mM Na2HPO4

1.7 mM KH2PO4 

→ adjust pH to 7.4 with HCl

1x PBS Tween

1x PBS

0.1% (v/v) Tween 20

Western blot buffer

25 mM Tris

192 mM glycine

0.02% (w/v) SDS

15% (v/v) methanol

Histone extraction2.2.4.5 

HeLa cell pellets were redissolved in 0.4 N HCl in a total volume of 0.5 ml per 1 x 106 cells and 

rotated for a minimum of 1 h at 4°C. After centrifugation at 13000 rpm (Eppendorf 5417C) for 

30 min the supernatant was dialyzed at 4°C against 100 mM ice-cold acetic acid for 3 times 1 h 

using 6000-8000 MWCO. The sample was concentrated using a speed vac and redissolved in SDS-

loading buffer and applied on a SDS-PAGE gel for further analysis. 
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 MALDI-TOF analysis2.2.4.6 

Histones were separated by SDS-PAGE 18%. G250 Coomassie blue stained bands were excised and 

destained with 50 mM ammonium bicarbonate in 50% (v/v) ACN (Acetoniltrile) for 30 min at 37°C. 

After washing the gel pieces with HPLC grade water, histones were chemically modified by treating 

with 2 μl propionic anhydride (100%) and 48 μl of ammonium bicarbonate (1M) at 37°C. After 1 h 

the modified histones were washed with HPLC grade water and digestions were carried out at 37°C 

overnight with 200 ng sequencing grade trypsin according to the manufacturer`s manual. Digestion 

products were collected and the gel pieces were acid extracted in addition with 25 mM ammonium 

bicarbonate and afterwards with 5% (v/v) formic acid. The pooled digestions were concentrated 

using a speed vac and redissolved in 0.1% (v/v) TFA (Trifluor acetic acid). Afterwards the samples 

were desalted with ZipTip μC18 according to the manufacturer’s instructions and directly eluted 

onto the target plate with a saturated solution of α-cinnamic acid in 0.3 (v/v) TFA and 50% (v/v) 

ACN. The target plate was loaded into a Voyager DE STR spectrometer and analyzed. Peptide mass 

fingerprint was analyzed in positive reflector mode (Bonaldi et al. 2004; Villar-Garea et al. 2008).

Settings for peptide mass fingerprint (pmf)
Accelerating voltage 20000 V
Grid voltage 66%
Mass range 500 -2000 Da
Laser intensity 800-1200

Quantification of MALDI signals.2.2.4.7 

To determine all modifications occurring on histones the Manuelito software was used. Spectra 

were processed and analyzed with the Data Explorer software. For quantification the integrated 

area of the peaks was used with a signal to noise ratio of 2. The sum of the area from all peaks 

(monoisotopic) derived from a single peptide was defined as 100 percent. Charts were drawn in 

Excel.
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Tandem MS2.2.4.8 

Cut gel pieces were destained with 50 mM ammonium bicarbonate in 50% (v/v) ACN for 30 min at 

37°C. After washing the gel pieces with HPLC grade water, histones were chemically modified by 

treating with 2 μl propionic anhydride (100%) and 48 μl of ammonium bicarbonate (1M) at 37°C. 

After 1 h the modified histones were washed with HPLC grade water and digestions were carried 

out at 37°C overnight with 200 ng sequencing grade trypsin according to the manufacturer`s 

manual. Digested peptides were collected and the gel pieces were acid extracted in addition with 

25 mM ammonium bicarbonate and afterwards with 5% (v/v) formic acid. Digestions were pooled 

and concentrated using a speed vac and next redisolved in 0.1% (v/v) TFA. Afterwards the samples 

were desalted with Ziptip μC18 according to the manufacturer’s instructions and loaded into 

needle for nanospray. For protein identification samples were directly used for nanospray-ESI-MS/

MS, collision-induced spectra were recorded on a QSTAR XL mass spectrometer with manually 

adjusted collision energies. The resulting spectra were interpreted manually via Manuelito and 

Analyst.

AspN digest2.2.4.9 

Cut out gel pieces were washed with HPLC grade water and destained with 50 mM ammonium 

bicarbonate in 50% (v/v) ACN for 30 min at 37°C. After 1 h the modified histones were washed 

with HPLC grade water and digestions were carried out at 37°C overnight with 40 ng sequencing 

grade AspN according to the manufacturer`s manual. Digestion products were collected and the 

gel pieces were acid extracted in addition with 25 mM ammonium bicarbonate and afterwards with 

5% (v/v) formic acid. The pooled digestions were concentrated using a speed vac and redisolved 

in 0.1% (v/v) TFA. Afterwards the samples were desalted with ZipTip μC18 according to the 

manufacturer’s instructions and directly eluted onto the target plate with a saturated solution of 

α-cinnamic acid in 0.3 (v/v) TFA and 50% (v/v) ACN. The target plate was loaded into a Voyager 

DE STR spectrometer and analyzed. Peptide mass fingerprint was analyzed in positive reflector 

mode as described before.
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Chromatin methods2.2.5 

Preparation of chromatin assembly extract from 2.2.5.1 Drosophila embryos

From twelve cages Drosophila embryos 0 to 90 min after egg laying were collected in a fine sieve. 

The collection was rinsed with tap water and transferred in embryo wash buffer on ice to stop 

further development. After four successive collections resulting in approximately 50 ml packed 

embryos, the pooled harvest was dechorionated. The ice cold wash buffer was exchanged with wash 

buffer at RT. The volume was adjusted to 200 ml and 60 ml of 13% (v/v) hypochlorite was added. 

The embryos were stirred vigorously for 3 min, immediately transferred into the collection sieve, 

and rinsed with tap water for 5 min. The embryos were settled in 200 ml of wash buffer for about 

5 min and then the supernatant including the chorions was discarded. Repeated settlings were 

conducted: one in 0.7% (w/v) NaCl and one in extract buffer at 4°C. Temperature of 4°C was kept 

for all further processing. The embryo suspension was transferred in a 60-ml glass homogenizer on 

ice for about 15 min and the volume of settled embryos was determined. The supernatant except 

2 ml was discarded and the embryos were subjected to homogenization by one stroke at 3000 

rpm and ten strokes at 1500 rpm with a drilling pestle. To the homogenated embryos additional 

3.5 mM MgCl2 was added to increase the total MgCl2 concentration to 5 mM. The homogenate 

was subjected to centrifugation for 10 min at 10000 rpm in a SS34 rotor (Sorvall RC6PLUS) to 

separated nuclei away. The supernatant was further processed by centrifugation for 2 h at 45,000 

rpm (Beckman ultracentrifuge LE-80K) in an SW 56 rotor and collected with a syringe, avoiding 

the top lipid layer. Aliquots of 800 μl were transferred in 1.5 ml tubes and flash frozen in liquid 

nitrogen and stored at -80°C. Protein concentrations were determined as described above (Becker 

et al. 1992).
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Embryo wash 

0.7% (w/v) NaCl

0.05% (v/v) Triton X-100

Extract buffer

10 mM HEPES pH 7.6

10 mM KCI

1.5 mM MgCl2

0.5 mM EGTA

10% (v/v) glycerol

10 mM ß-glycerophosphate*

1 mM DTT*

0.2 mM PMSF*

→ * add fresh before use

Preparation of biotinylated DNA2.2.5.2 

First 500 μg of the plasmid PAI61 was digested with mix 1: 14 μl of Sac I (20,000 U/ml) in a total 

volume of 750 μl containing 75 μl BSA (1 μg/ μl), 75 μl 10x NEB buffer and x μl ddH20. Digestion 

was carried out for 3 h at 37°C. Every hour the tube was vortexed. 1 μl of the digestion mix was 

analyzed on an agarose gel to confirm proper linearization. Then a second digestion was carried 

out by adding 10 μl Xba I (20,000 U/ml) to the digestion mix 1 as well as additional 5 μl of BSA 

(1 μg/ μl), 5 μl 10x NEB buffer 2, 7.5 μl NaCl (5 M) and 22.5 μl ddH20. The mixture was incubated 

for 3 h at 37°C. The DNA was precipitated by adding 85 μl of sodiumacetate pH 5.3 (3 M) and 

700 μl isopropanol. The sample was mixed and incubated on ice for 30 min. The 1.5 ml tube was 

centrifuged for 30 min at 13000 rpm at 4°C (Eppendorf 5417C). The supernatant was discarded and 

the pellet washed with 70% ethanol, dried and redisolved in 30 μl 10x NEB buffer 2 and x μl ddH2O. 

For the biotinylation reaction 80 mM dCTP, 80 mM dGTP, 3 mM dUTP biotinylated, 3 mM dATP 

biotinylated and 10 U Klenow was added. The final volume of the reaction was 300 μl. The sample 

was incubated for 2 h at 37°C before the Klenow enzyme was heat inactivated for 20 min at 70°C. 

To remove all nucleotides that have not been incorporated 3 sepharose G50 columns were used. 

The columns were centrifuged twice (1 min, 1000 rpm, 4°C, Sigma 3-18) and the flow through 

discarded. To each column 100 μl of the sample was applied and centrifuged for 2 min at 2000 rpm 

(Sigma 3-18) at 4°C. The flow through was collected and the DNA concentration determined.
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Chromatin assembly on immobilized DNA2.2.5.3 

Per reaction 2 μg DNA (PAI61) was immobilized to 0.6 μg paramagnetic streptavidin coated beads. 

Beads were washed with 2 M Dynawash and to the packed beads the DNA was added as well as 1x 

volume of TE and 2x volume of kilobasebinder. Samples were incubated for 1 h at RT on a metal-

free rotating wheel and then washed three times with 1 M Dynawash and three times with TE. After 

the extensive washing, beads were blocked with BSA (1.5 μg/ μl) in EX100 for 30 min at RT on a 

rotating wheel. Then beads were washed with EX-NP40. At time point zero immobilized DNA on 

beads was mixed with 160 μl assembly extract (DREX) together with an ATP regenerating system 

(McNap) and the total volume increased to 240 μl with EX100. The reaction was conducted by 

rotating for 1-6 h at 26°C. The assembly reaction was stopped and either subjected to micrococcal 

nuclease digestion or mass spectrometry (Sandaltzopoulos et al. 1994).

1 M Dynawash

10 mM Tris HCl pH 8

1 mM EDTA

1 M NaCl

2 M Dynawash

10 mM Tris HCl pH 8

1 mM EDTA

2 M NaCl

EX100

10 mM HEPES pH 7.6

100 mM NaCl

1.5 mM MgCl2

0.5 mM EGTA

10% (v/v) glycerol

1 mM DTT*

0.2 mM PMSF*

→ * add fresh before use

EX-NP40

10 mM HEPES pH 7.6

1.5 mM MgCl2

0.5 mM EGTA

10% (v/v) glycerol

0.05% (v/v) NP-40
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McNap

3mM ATP

30 mM creatine phosphate

10 μg creatine kinase / ml

3 mM MgCl2

1 mM DTT

a) Micrococcal nuclease digestion

Immobilized chromatin was washed once with EX100 and twice with EX300. Beads were 

resuspended in 240 μl EX100/MgGl2 (5 mM). The digestion was started by adding 360 μl MNase 

mix. After 30, 60 sec and 3 min the reaction was stopped by taking out 200 μl from the mixture 

and immediately transferring into a new tube containing 50 μl stop solution. After adding 20 μg of 

RNase A the samples were incubated for 30 min at 37°C. Then 50 μg of Proteinase K and SDS (final 

concentration 0.015%) were added and the samples were incubated for at 37°C. After 3 h the DNA 

solution was subjected to precipitation by adding 20 μg glycogen, adjusting the salt concentration 

with ammonium acetate (2 M final concentration) and adding 0.6 volumes of ice-cold ethanol. 

After mixing, the solution was incubated for 30 min at -20°C and afterward centrifuged (30 min, 

13000 rpm, 4°C, Eppendorf 5417C). The pelleted DNA was washed with 70% ethanol and then air 

dried. The DNA was redissolved in 1x loading dye and analyzed by gel electrophoresis.

MNase Sigma: 500 U lyophilized vial was resuspended in 850 μl EX50 buffer and aliquoted in 50 μl 

aliquots: Concentration is 50 U /μl (Boerhinger units).

MNase mix

5 mM CaCl2

2.5 U MNase

in EX100

5x loading dye

50% (v/v) Glycerol

5 mM EDTA

0.3% (w/v) Orange G

b) Mass spectrometry and Western blot

The chromatin was subjected to several washes: 1x EX100, 2x EX500/300, 1x EX100 and then 
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resuspended in 1x Laemmli, boiled for 5 min at 95°C. Proteins are separated on an 18% SDS gel 

either cut out for mass spectrometry or further analyzed by Western blotting.

EX300

10 mM HEPES pH 7.6

300 mM NaCl

1.5 mM MgCl2

0.5 mM EGTA

10% (v/v) glycerol

1 mM DTT*

0.2 mM PMSF*

→ * add fresh before use

EX500

10 mM HEPES pH 7.6

500 mM NaCl

1.5 mM MgCl2

0.5 mM EGTA

10% (v/v) glycerol

1 mM DTT*

0.2 mM PMSF*

→ * add fresh before use

Expression and purification of 2.2.5.4 Drosophila histones

Every individual core histone was transformed in BL21(DE3)pLys using 1 μg of pET-histone 

expression plasmid. The transformation mix was directly added to 200 ml LB and incubated for 

1 h at 37°C before adding the appropriate concentration of ampicillin and chloramphenicol. After 

incubating o/n 20 ml of the preculture was transferred to 10x 500 ml LB containing the appropriate 

antibiotics. The bacterial growth was monitored until OD595 reached a value of 0.6. An aliquot of 

500 μl was taken for testing the expression and the histone expression as induced by adding IPTG 

to a final concentration of 1 mM for 2 h. A second aliquot of 500 μl was taken and OD595 was 

determined. The remaining culture was centrifuged (4000 rpm, 20 min, RT, Heraeus Cryofuge 

6000i) and the pellet frozen down at -20°C. To test the expression the equal number of cells from 

samples before and after the induction was loaded on an 18% SDS gel.

In order to prepare inclusion bodies the bacterial pellet was resuspended with 15 ml wash buffer 

and homogenized by pipetting up and down with a 25 ml plastic pipette. The homogenate was 

subjected to the French press (3-6 runs at 1000 psi) and afterwards to sonification (5 min, pulse 5 

sec on/ 5 sec off, 70% amplitude). The sample was centrifuged in a SS 34 rotor (Sorvall RC6 PLUS) 

for 20 min at 18000 rpm at 4°C. The pellet was washed with 40 ml triton-wash buffer and again 
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centrifuged as before. Then two more consecutive washes were conducted with 40 ml wash buffer 

without triton X-100 and the pellet containing the inclusion bodies frozen at -20°C for at least 30 

min. 

Then the inclusion bodies needed to be unfolded. Therefore 1 ml DMSO and 25 ml unfolding 

buffer were added to the pellet and homogenized with a 5 ml plastic pipette. For 1 h the mixture 

is rotated on a wheel at RT to allow unfolding of inclusion bodies and then spun in a SS34 rotor 

(Sorvall RC6 PLUS) for 20 min, 18000 rpm at 4°C. The supernatant is dialyzed against 3x 1 l of 

Sau 200 at 4°C (6-8000 MW cut off). The dialyzed fraction was centrifuged (SS34, 10 min, 18000 

rpm, 4°C) to remove undissolved material and histones were purified via a SP Sepharose column, 

washed with 25 ml Sau200 and eluted with a gradient of Sau600. Fractions are analyzed on a 18% 

SDS gel and pooled according to the purity of the fractions. Histone pools were dialyzed against 3x 

1 l of ddH20, the concentration was determined (OD276 / ε 276 * MW) and 4 mg aliquots were flash 

frozen and stored in -80°C (Luger et al. 1999).

Wash buffer

50 mM Tris pH 7,5 

100 mM NaCl   

1 mM EDTA pH 8,0

5mM β-mercapto EtOH*

0.2 mM PMSF*

→ * add fresh before use

Triton wash buffer

as wash buffer

1% (v/v) Triton X-100

Unfolding buffer

7 M guanidium

20 mM Tris pH 7.5

10 mM DTT

→ prepare freshly

SAU 200

7 M Urea

20 mM sodiumacetate pH 5.2

200 mM NaCl

1 mM EDTA pH 8

5 mM ß-mercapto EtOH

→ prepare freshly
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MW ε276 (cm/M)
H2A 11.960 4050
H2B 13.774 6070
H3 15.273 4040
H4 11.236 5400

Octamer reconstitution2.2.5.5 

Lyophilized recombinant histones were dissolved in unfolding buffer with a final concentration 

of 2 mg/ml. H3 and H4 were mixed in an equimolar ratio, whereas H2A and H2B were added 

with an 20% excess. The histone mix was dialyzed 3 times against 1 l of refolding buffer at 4°C. 

Precipitations were removed by a centrifugation step (SS34, 5000 rpm, 10 min, 4°C). The supernatant 

was concentrated to approximately 2 ml in concentration tubes (SS34 rotor, 7900 rpm, 30 K cut 

off, 4°C, approximately 20 min). The concentrated sample was purified over a gel filtration column 

(Hiload Superdex 200). The column was equilibrated to refolding buffer, the flow rate set to 1 ml/

min and 1 ml fractions were collected. The fractions were analyzed on an 18% SDS gel and suitable 

fractions containing stoichiometric histone octamers were frozen in 50% (v/v) glycerol at -20 °C 

after determining the octamer concentration ( A276 = 0.45 for 1 mg/ml) (Luger et al. 1999; Morales 

et al. 2004).

Refolding buffer

2 M NaCl

10 mM Tris pH 7.5

1 mM EDTA

5 mM ß-mercapto EtOH*

→ * prepare freshly

Chromatin assembly by salt dialysis2.2.5.6 

A usual assembly reaction contained 500 μg DNA (PAI61) to which 600 μg of recombinant octamers 

were added as well as 60 μg BSA, 2 M NaCl, 10 mM Tris pH 8 filled up with ddH20 to a total volume 
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of 500 μl. The mixture was transferred in a dialyzing membrane with a cut off of MW 6000-8000. 

The filled membrane was placed in 200 ml DB2000 (high salt) to where continuously 1.8 l DB50 

(low salt) was pumped for approximately 12 h at a speed of 2.5 ml/min.

To check the correct assembly of chromatin an MNase digest was performed. To 20 μl salt assembled 

nucleosomes 17 μl MNase mix was added and mixed well. The digestion was stopped after 20, 60 

and 120 sec by transferring 12 μl to a tube ready prepared with 5 μl stop solution. To each tube 20 μg 

RNase A was added and incubated for 30 min at 37°C. Then 50 μg Proteinase K was added for 1 h at 

37°C. For precipitation 20 μg glycogen was added, salt concentration adjusted with ammonium 

acetate (2 M final concentration) and 0.6 volumes of ice-cold ethanol was added. After mixing, the 

solution was incubated for 30 min at -20°C and afterward centrifuged (30 min, 13000 rpm, 4°C, 

Eppendorf 5417C). The pelleted DNA was washed with 70% ethanol and then air dried. The DNA 

was redissolved in 1x Orange G and analyzed by gel electrophoresis.

DB50

50 mM NaCl

10 mM Tris pH 8

1 mM EDTA

1mM β-mercapto EtOH

0.01% (v/v) NP40

DB2000

2M NaCl

10 mM Tris pH 8

1 mM EDTA

1mM β-mercapto EtOH

0.01% (v/v) NP40

Stop solution

4 % SDS

100 mM EDTA

HMT assay2.2.5.7 

10 μl chromatin from 880 ng DNA that was salt assembled to chromatin, was used as a substrate. 

0.5 μg/μl BSA, 50 mM DTT, HMTase buffer and 50 ng of enzyme (PrSet7) was added and filled up 

with water to a total volume of 20 μl per reaction. Additionally 1 μCi S-Adenosyl (methyl 3H)-L-

methionine is added and the samples are incubated for 1h at 30°C. The total reaction was spotted 

on a p81 filter, dried and washed 3 times 5 min in 1x HMTase buffer. The filter papers were dried 



65

Materials and Methods

and the amount of incorporated 3H-methyl groups was measured by a scintillation counter in cpm. 

When using SAH the indicated concentration was added to the HMT assay. 

1x HMTase buffer

12.5 mM Tris pH 7.8

2.5 mM MgCl2

50 mM NaCl
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Results3.1 

Major progress has been made towards identifying key player imposing epigenetic marks and the 

processes involved in epigenetic inheritance meaning stably transmitting epigenetic information and 

in epigenetic reversibility allowing the cell to adjust to its needs. Key signatures are posttranslational 

histone modifications that are thought to create specific chromatin structures. These structures 

posses various functions in DNA packaging, gene expression or gene silencing and they have to 

cope with the challenge to be reversible and just as well stable inheritable. This dual function is 

regulated by histone modifications. Histone marks act alone or in a combinatorial manner and 

are set and removed coordinately. Notably, site specific marks correlate well with particular 

biological functions including transcriptional elongation or chromatin maturation and they need 

to be copied during DNA replication from parental histones to newly synthesized histones. In this 

thesis specific histone modifications and the assigned biological function were investigated. First, 

a stepwise pathway for H3K36 methylation involved in transcriptional elongation was described. 

Second, kinetics of H4K20 monomethylation and its interaction partners were explored and linked 

to chromatin maturation. And at last, the kinetics of inheritance of histone modification patterns 

during replication was dissected.
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H3K36 methylation during transcription3.1.1 

H3K36 trimethylation has been shown to be enriched towards the 3´end of active genes. To better 

understand the connection of chromatin and transcriptional elongation, it is essential to understand 

how H3K36 trimethylation is regulated. Therefore H3K36 methylation was characterized in 

Drosophila. In this study, H3K36 methylation was analyzed in terms of distribution, regulation 

and read out. It is the only known modification so far associated with elongation of transcription 

(Bannister et al. 2005; Barski et al. 2007). When dissecting the regulatory pathway of methylation 

at this site, it became clear that methylation marks are added in a stepwise manner, where two 

different enzymes are involved. 

Oliver Bell, Christiane Wirbelauer, Marc Hild, Annette N.D. Scharf, Michaela 

Schwaiger, David M. MacAlpine, Frederic Zilberman, Stephen P. Bell, Axel Imhof, Dan 

Garza, Antoine H. F. M. Peters and Dirk Schübeler. Localized H3K36 methylation states 

define histone H4K16 acetylation during transcriptional elongation in Drosophila. 

EMBO, 2007 Dec 12; 26 (24): 4974-84.

Declaration of contribution to “Localized H3K36 methylation states define histone 

H4K16 acetylation during transcriptional elongation in Drosophila”: The study was 

initiated by Dirk Schübeler and Oliver Bell. I contributed and prepared Figure 3E, wrote 

the corresponding figure legends and material and method section. The manuscript was 

written by Dirk Schübeler. The final version of the manuscript was revised with the help of 

Axel Imhof and me.



Localized H3K36 methylation states define histone
H4K16 acetylation during transcriptional
elongation in Drosophila

Oliver Bell1, Christiane Wirbelauer1,
Marc Hild2, Annette ND Scharf3, Michaela
Schwaiger1, David M MacAlpine4,6,
Frédéric Zilbermann1, Fred van Leeuwen5,
Stephen P Bell4, Axel Imhof3, Dan Garza2,
Antoine HFM Peters1 and Dirk Schübeler1,*
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Post-translational modifications of histones are involved in

transcript initiation and elongation. Methylation of lysine

36 of histone H3 (H3K36me) resides promoter distal at

transcribed regions in Saccharomyces cerevisiae and is

thought to prevent spurious initiation through recruit-

ment of histone-deacetylase activity. Here, we report sur-

prising complexity in distribution, regulation and readout

of H3K36me in Drosophila involving two histone methyl-

transferases (HMTases). Dimethylation of H3K36 peaks

adjacent to promoters and requires dMes-4, whereas tri-

methylation accumulates toward the 30 end of genes and

relies on dHypb. Reduction of H3K36me3 is lethal in

Drosophila larvae and leads to elevated levels of acetyla-

tion, specifically at lysine 16 of histone H4 (H4K16ac). In

contrast, reduction of both di- and trimethylation de-

creases lysine 16 acetylation. Thus di- and trimethylation

of H3K36 have opposite effects on H4K16 acetylation,

which we propose enable dynamic changes in chromatin

compaction during transcript elongation.

The EMBO Journal (2007) 26, 4974–4984. doi:10.1038/

sj.emboj.7601926; Published online 15 November 2007
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Introduction

Nucleosomal packaging provides a barrier for protein binding

to DNA and for the processivity of DNA and RNA poly-

merases. Changes in chromatin structure involve ATP-depen-

dent remodeling of nucleosomes and numerous post-

translational modifications of histones (Felsenfeld and

Groudine, 2003). Depending on the modification and the

targeted residue, these alterations can affect sequence acces-

sibility for DNA-binding proteins or create recognition mod-

ules for effector proteins with defined functions (Jenuwein

and Allis, 2001; Peters and Schubeler, 2005). Indeed, chro-

matin modifications appear involved in all steps of transcrip-

tion, such as initiation, elongation and termination (Sims

et al, 2004). A large body of work links histone H3 modifica-

tions, such as lysine 4 methylation and lysine 9 and 14

acetylation to RNA polymerase recruitment at the promoter.

Recent genome-wide studies revealed that these active mod-

ifications are present at transcribed genes, yet occur prefer-

entially at the promoter and adjacent downstream regions.

This suggests a shared chromatin profile consisting of several

histone tail modifications involved in early events of tran-

scription (Robert et al, 2004; Schubeler et al, 2004; Pokholok

et al, 2005; Barski et al, 2007).

Although extensive knowledge exists on promoter-proxi-

mal events, less is known about the cross talk between the

elongating polymerase and chromatin. Several chromatin-

associated proteins are implicated in aiding transcriptional

elongation. Some affect histone acetylation (Wittschieben

et al, 1999; Winkler et al, 2002), whereas others show

nucleosomal remodeling or histone chaperone activity

(Belotserkovskaya et al, 2003; Kaplan et al, 2003; Mason

and Struhl, 2003; Morillon et al, 2003). These findings

suggest that nucleosomes are acetylated and mobilized dur-

ing transcriptional elongation. Moreover, high levels of tran-

scription cause nucleosomal displacement, leading to

reduced nucleosomal density, which in metazoa appears to

be compensated in part by depositing nucleosomes that

contain the variant histone H3.3 (Lee et al, 2004; Mito et al,

2005; Schwartz and Ahmad, 2005; Wirbelauer et al, 2005).

Thus, although chromatin opening is required for gene

activation at promoters, transcription itself causes chromatin

disruption, which appears to be compensated by reestablish-

ing a compact chromatin state.

Methylation of lysine 36 of histone H3 (H3K36me) is the

only covalent histone modification reported to be enriched in

the 30 end of active genes (Bannister et al, 2005; Kizer et al,

2005; Pokholok et al, 2005; Rao et al, 2005; Barski et al, 2007;

Mikkelsen et al, 2007). Therefore, understanding the regula-

tion of this modification is likely to shed light on the interplay

between chromatin and transcriptional elongation. In S.

cerevisiae, all lysine 36 methylation is mediated by Set2

histone methyltransferase (HMTase), which is directed to

active genes through interaction with elongation-competent

RNA polymerase II (Krogan et al, 2003; Li et al, 2003;

Xiao et al, 2003; Kizer et al, 2005). In turn, Set2-methylated

nucleosomes signal for cooperative binding of two sub-

units of the Rpd3S complex (Li et al, 2007a), resulting in
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recruitment of histone-deacetylase activity to the body of

active genes (Carrozza et al, 2005; Joshi and Struhl, 2005;

Keogh et al, 2005). Thus, H3K36 methylation has been

proposed to be involved in the maintenance of repressive

chromatin structure. Indeed, loss of Rpd3 recruitment by

deletion of SET2 results in an increase of spurious intragenic

initiation events (Carrozza et al, 2005; Li et al, 2007b). This

supports a function for H3K36me in compensating for tran-

scription-coupled disruption and hyperacetylation of chroma-

tin, which otherwise could unmask cryptic promoters.

However, because deacetylation interferes with transcrip-

tional initiation, mechanisms need to be in place to ensure

that H3K36me-mediated HDAC recruitment does not occur in

vicinity of active promoters.

Little is known about potentially different chromosomal

distributions or functions of the mono-, di- or trimethylated

states of H3K36. Interestingly, two recently identified histone

demethylases in the human genome have been shown to

demethylate either preferentially H3K36me2 (Tsukada et al,

2005) or H3K36me3 (Klose et al, 2006; Whetstine et al, 2006)

opening the possibility of enzymatically regulated differential

turnover of H3K36 methylation states.

To investigate function and regulation of this residue in a

higher eukaryote, we have characterized H3K36 methylation

in Drosophila melanogaster. We show that dimethylation and

trimethylation of H3K36 have distinct chromosomal localiza-

tion, and we suggest that these methylation states rely on

separate HMTases. Importantly, we find that H3K36 methyla-

tion states show antagonistic cross talk to H4 acetylation

at lysine 16 (H4K16ac), which has been shown to directly

influence packaging of higher-order chromatin (Dorigo et al,

2003; Shogren-Knaak et al, 2006).

These findings suggest opposing functions for H3K36

methylation states in Drosophila to regulate chromatin acet-

ylation and presumably compaction during transcriptional

elongation in higher eukaryotes.

Results

Global distribution of H3K36 di- and trimethylation

in Drosophila cells

To address if H3K36me associates with repressive or permis-

sive chromatin in metazoa, we determined the nuclear loca-

lization of H3K36me2 and H3K36me3 in Drosophila Kc cells.

Similar to other euchromatic marks such as H3K4 methyla-

tion (Wirbelauer et al, 2005), both H3K36 methylation states

are largely excluded from the transcriptionally inert hetero-

chromatin but are highly enriched in the transcriptionally

active euchromatic regions of the nucleus (Figure 1A).

This nuclear localization reflects the presence of both

H3K36 methylation states at active genes, as we find both

enriched at the ectopically expressed histone variant H3.3

(Figure 1B). H3.3 is deposited at active genes, which are

subject to transcription-coupled nucleosomal displacement

events (Mito et al, 2005; Schwartz and Ahmad, 2005;

Wirbelauer et al, 2005). This confirms previous observations

by mass spectrometry of endogenous H3.3 in Drosophila

Kc cells (McKittrick et al, 2004) and suggests that both

H3K36 methylation states are enriched at sites of active

transcription.

To investigate the chromosomal distribution of lysine 36

methylation, we performed chromatin-immunoprecipitation

(ChIP) using antisera specific for H3K36me2 or H3K36me3.

DNA from enriched chromatin was compared to input chro-

matin by comparative hybridization to a DNA microarray

representing chromosome 2L of the Drosophila genome in a

2 kb tiling resolution (MacAlpine et al, 2004; Schubeler et al,

2004). In addition, we determined the chromosomal distri-

bution of H3K4me3, which we and others have previously

shown to occur promoter proximal at active genes (Bernstein

et al, 2005; Pokholok et al, 2005; Wirbelauer et al, 2005). The

resulting distribution on chromosome 2L confirms these

previous studies, as we find preferential enrichment of

H3K4me3 at the 50 end of active genes (Figure 1C and D).

H3K36me3, in contrast, shows a different localization, as it is

highly enriched toward the 30 end of active genes as pre-

viously reported for S. cerevisiae (Pokholok et al, 2005). The

distribution of H3K36me2 with preferential distribution to-

ward the 50 end is remarkably different, although this dis-

tribution is less pronounced than that of H3K4me3 (Figure 1C

and D). Together, this chromosome-wide analysis revealed

different distributions of di- and trimethylated lysine 36, with

trimethylation localizing toward the 30 end and dimethylation

being adjacent to the promoter.

Before proceeding with further analysis, we confirmed the

specificity of the antibodies. We did not detect cross-reactivity

against different methylation states of H3K36 when tested

against peptides, suggesting that both antibodies are selective

for either the di- or trimethylated state of this residue

(Supplementary Figure 1A). We note that not all tested

commercial antibodies showed equally high levels of discri-

mination in this assay (Supplementary Figure 1A), which

might explain why a differential distribution of di- and

trimethylation of H3K36 has not been reported previously.

To test for potential cross-reactivity to regions of histone H3

outside of the peptides used, we tested both antibodies

against ectopically expressed H3.3 in which H3K36 had

been mutated to alanine. This point mutation leads to a

loss of detection for each antibody (Supplementary Figure

1B), indicating that both are specific for defined H3K36

methylation states in the context of full-length histone H3.

Next, we determined the distribution of H3K36 methyla-

tion states at a subset of genes using real-time PCR (RT–PCR)

and previously published amplicons with a spatial resolution

of approximately 750 bp (as compared to over 2000 bp of the

microarray) (Wirbelauer et al, 2005). This enabled us to

relate the observed enrichments to our existing datasets of

other histone tail modifications, RNA polymerase II (RNA-Pol

II) and the replacement histone H3.3 (Wirbelauer et al, 2005).

This analysis confirmed that H3K36me3 is biased toward the

30 end of active genes (Figure 2A and B). It also verified a

different distribution for H3K36me2, as this mark was most

abundant at a region between the 50 peak of H3K4me3 and

the 30 peak of H3K36me3 (Figure 2B). The observed distribu-

tion is not cell line-specific, as similar results were obtained

at the same set of genes in a second Drosophila cell line, SL2

(data not shown).

We conclude that three chromatin signatures can be dis-

tinguished along active genes based on H3 tail modifications.

A promoter-proximal region of high H3K4 methylation, an

intermediate region characterized by a peak in H3K36me2

and a further 30 region characterized by high H3K36me3.

Thus, different K36 methylation states mark discrete regions

of transcribed genes.
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Two proteins mediate H3K36 methylation in Drosophila

To gain further insights into the underlying enzymatic reg-

ulation and function, we sought to identify the proteins

responsible for H3K36 methylation based on homology to

the SET domain sequence of the single H3K36 HMTase in S.

cerevisiae (Set2) (Supplementary Figure 2A). We performed

an RNAi screen against putative HMTases and used bulk

analysis of H3K36me2 and H3K36me3 levels by western blot

as a readout for loss of function. This identified two SET

domain-containing proteins (CG4976 and CG1716)

(Figure 3A) that upon knockdown showed reduced levels of

H3K36 methylation (Figure 3B and D). Thus, we find that at

least two putative HMTases are involved in H3K36 methyla-

tion in flies. To ensure specificity of the RNAi, we raised

specific antibodies against both proteins (see Material and

methods), which confirmed efficient protein reduction upon

addition of dsRNA (Figure 3C). We named CG1716 as

‘Drosophila Hypb’ (dHypb) based on homology to the

human HMTase HYPB (Sun et al, 2005). CG4976, in contrast,

shows homology to the nuclear-receptor-binding SET-do-

main-containing protein (NSD) family of SET domain pro-

teins (Supplementary Figure 2B) and has previously been

annotated as Drosophila Mes-4 (dMes-4) based on its simi-

larity to a SET domain-containing protein in the C. elegans
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genome. In worms, Mes-4 is required for H3K36 methylation

at autosomes in early embryo and is necessary for germline

viability (Bender et al, 2006).

When we compared the levels of di- versus trimethylation

of H3K36 upon reduction of dHypb or dMes-4, we noted a

striking difference. RNAi against dMes-4 reduces di- and

trimethylation, suggesting that the activity of this enzyme is

required for both methylation states (Figure 3D). Knockdown

of dHypb, in contrast, results in the downregulation of

trimethylation alone, whereas levels of dimethylation slightly

increase. This result is in disagreement with the recent study

that reported reduction of dimethylation following RNAi

knockdown of CG1716 in flies (Stabell et al, 2007).

However, we point out that the authors relied for detection

on an antibody that we found cross-reactive with trimethy-

lated lysine 36 peptide (Supplementary Figure 1A), possibly

accounting for this discrepancy.

To validate the differential effects on lysine 36 methylation

by an antibody-independent approach, we analyzed histones

isolated from either control or RNAi-treated cells by mass

spectrometry. We compared the levels of H3K27 and H3K36

methylation within the peptides comprising amino acids

27–40 of histone H3. To determine the changes in methyla-

tion of H3K36, we analyzed the mono-, di- and trimethylated

isoforms and measured the levels of H3K36 methylation

relative to the methylation at H3K27 by nanospray MS/MS

(see Materials and methods). This confirmed the downregu-

lation of both di- and trimethylation of H3K36 upon loss of

dMes-4, whereas loss of dHypb reduced trimethylation alone

(Figure 3E). In addition, we observed a modest increase of

K36me2 in the dHypb knockdown in line with the results

obtained by western blot; however, the low abundance of

K36me2 relative to K27me2 precludes a robust quantification.

dHypb is essential for fly development

To examine whether changes in H3K36 methylation states

would influence organismal development, we generated

transgenic fly lines harboring an RNAi construct complemen-

tary to either dMes-4 or dHypb message under the control of a

GAL4-inducible promoter (see Materials and methods).

Transcription of the respective RNAi construct was triggered

by crossing in a fly strain that expresses the GAL4 activator

ubiquitously under the control of the tubulin promoter.

Induction of the dMes-4 RNAi construct led to a detectable
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reduction of target mRNA (Figure 3F), yet only in a subset of

fly lines. Those with reduced expression of dMes-4 mRNA

showed a decrease of both K36me2 and K36me3 at larval

stages, confirming the results from cell culture (Figure 3G). In

the case of dHypb, induction of the RNAi transgene efficiently

reduced dHypb mRNA (Figure 3F) and led to decreased levels

of H3K36me3, confirming the results in cultured cells (Figure

3G and D). Moreover, postzygotic depletion of dHypb levels

was lethal at the larvae–pupae transition with 100% pene-

trance observed in multiple independent integration sites of

the RNAi construct (see Materials and methods) in agreement

with a recent report (Stabell et al, 2007). We conclude that

reducing HMTase levels in flies mirror the chromatin effects

seen in cultured cells and that a strong reduction of dHypb is

lethal, suggesting that dHypb-mediated H3K36me3 is essen-

tial for development.

dHypb shows HMTase activity at histone H3 in vitro

To test the enzymatic activity of both enzymes in vitro, we

expressed fragments containing pre-SET, SET and post-SET

domains as GST-tagged fusion proteins using Baculovirus

infection of insect cells (Supplementary Figure 3B).

Recombinant proteins were purified and incubated with

radioactively labeled SAM as methyldonor and histones

purified from calf thymus as a substrate. HMTase activity

was reproducibly detected for dHypb by measuring radio-

active incorporation into histones. Subsequent gel separation

of labeled products revealed that dHypb methylates prefer-

entially histone H3 (Figure 4A). Unlike dHypb, dMes-4 dis-

played only weak activity under various conditions tested

(data not shown). Although this might reflect the lack of

necessary cofactors, it precluded us from further defining

dMes-4 activity in vitro.
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To gain insights into dHypb specificity, we incubated

recombinant full-length protein with nuclear extracts from

yeast strains that lack K4me, K36me and K79me of histone

H3 or K4me and K79me only (Figure 4B and Material and

methods). Subsequent western blotting revealed a dHypb-

dependent increase in di- and trimethylation of lysine 36, yet

only when supplied with yeast chromatin positive for mono-,

di- and trimethylation of H3K36 (Figure 4B). In contrast, no

methylation was detected in mutant extracts deficient for any

lysine 36 methylation. Whereas these results demonstrate
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separated by SDS–PAGE and incorporated radioactivity measured by exposure to film. The lower panel displays Coomassie-stained SDS–PAGE
gel and serves as loading control. Recombinant dHypb-SET shows HMTase activity to histone H3 in this assay. (B) dHypb methylates H3K36
in vitro. Western blot analysis displays H3K36 di- and trimethylation levels of HMTase assay with recombinant full-length dHypb using mutant
yeast nuclear extracts deficient for H3K4me, K36me and K79me (DSET2, DSET1, DDOT1) or K4me and K79me (wt SET2, DSET1, DDOT1) as a
substrate. A dHypb-dependent increase of di- and trimethylation is obtained only with chromatin substrate from wt SET2 strain, suggesting that
dHypb requires premethylated lysine 36 substrate for its activity. (C) Western blot analysis of Drosophila Kc-overexpressing dHypb shows a
specific increase in trimethylation. A similar experiment with full-length dMes-4 in Kc cells did not reveal robust changes in H3K36 methylation
(data not shown). (D) ChIP analysis using antibodies generated against endogenous dMes-4 and dHypb along the body of two active genes
(CG6137 and CG5686) and one inactive gene (CG3324). Shown is average and standard deviation from at least three independent repeats.
X-axis reflects the base-pair position relative to the transcriptional start site. Y-axis reflects enrichment (bound/input normalized to an
intergenic control). (E) dMes-4 and dHypb define distinct methylation states in Kc cells. Levels of H3K36 methylation states in RNAi and
control cells were compared with ChIP followed by RT–PCR analysis. Shown is the ratio of H3K36me enrichments (fold change, Y-axis) of RNAi
over control cells relative to the position from the transcription start site (X-axis) of two actively transcribed genes. RNAi against dHypb leads
to a reduction of H3K36me3 in the coding region with a coinciding increase of H3K36me2 predominantly toward the 30 end. Loss of dMes-4
leads to a reduction of both H3K36me2 and H3K36me3.
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that dHypb mediates H3K36 methylation in vitro, they also

indicate that its activity relies on the presence of premethy-

lated lysine 36 substrate.

To address if a similar specificity can be observed in vivo,

we ectopically expressed dHypb in Drosophila Kc cells. Upon

overexpression, we found only H3K36me3 levels to be in-

creased (Figure 4C and Supplementary Figure 3C), which is

in agreement with the reduction of trimethylation observed

upon knockdown of dHypb.

In conclusion, we found that dHypb methylates H3K36

in vitro, yet requires premethylated lysine 36 substrate for

its activity. Combined with the specific changes of trimethy-

lation observed in vivo, our results suggest that dHypb is

responsible for the trimethylated state of lysine 36 in

Drosophila.

dMes-4 and dHypb localize at sites of H3K36

methylation at active genes

As both dMes-4 and dHypb show distinct effects on

H3K36me2 and H3K36me3 upon knockdown in vivo, we

asked if both act at the same genes. To test for chromosomal

binding, we carried out ChIP using antibodies specific for

endogenous dMes-4 or dHypb and quantified enrichments by

RT–PCR. This revealed that both enzymes colocalize to

actively transcribed genes, while being absent from an in-

active gene (Figure 4D). The distributions of both HMTases

are largely overlapping, with highest relative abundances

downstream of the promoter at sites of di- and trimethylation

of H3K36 (compare Figure 2A).

H3K36 methylation states occur enzyme-specific at

individual genes

To test if recruitment of either enzyme mediates defined

methylation states, we reduced the level of either one of the

two enzymes by RNAi and determined the local effect on

H3K36me by ChIP analysis at individual genes. Reduction of

dHypb at selected genes results in reduced presence of

trimethylation and coincident increase of dimethylation

(Figure 4E). This finding suggests that the slight upregulation

of bulk H3K36me2 levels detected by western blot and mass

spectrometry (Figure 3D and E) reflects an increase at intra-

genic regions, which are trimethylated in untreated cells. In

contrast, reduction of the endogenous levels of dMes-4 coin-

cides with a decrease of both H3K36me2 and H3K36me3 not

only in bulk (Figure 3D), but also at individual genes

(Figure 4E). One possible interpretation of these results is

that both enzymes act consecutively at the same set of genes

to mediate distinct patterns of di- and trimethylation of

H3K36.

Specific cross talk between H4 lysine 16 acetylation

and H3K36 methylation states

In S. cerevisiae, H3K36 methylation has been reported to

recruit an HDAC-containing complex, resulting in deacetyla-

tion of the 30 end of actively transcribed genes (Carrozza et al,

2005; Joshi and Struhl, 2005; Keogh et al, 2005). No direct

comparison between localization of di- and trimethylation

of H3K36 has been reported in budding yeast; however, loss

of the only H3K36 methylase Set2 results in hyperacetylation

of both histones H3 and H4 within reading frames (Carrozza

et al, 2005; Joshi and Struhl, 2005; Keogh et al, 2005).

We therefore examined whether H3K36 methylation in

flies shows a similar cross talk to histone acetylation and

whether the di- and trimethylated states of H3K36 in

Drosophila have separate functions in this pathway.

Reduction of H3K36 trimethylation by dHypb knockdown in

female Kc cells resulted in significant upregulation of bulk

levels of H4 acetylation at lysine 16 (Figure 5A). Although

this hyperacetylation is reminiscent of global hyperacetyla-

tion reported in yeast SET2 mutants (Carrozza et al, 2005;

Joshi and Struhl, 2005; Keogh et al, 2005; Li et al, 2007b), it
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appeared to be specific for H4K16, as no change was detected

at other lysine residues tested (Figure 5A and Supplementary

Figure 3A). In contrast, reduction of H3K36 di- and trimethy-

lation upon knockdown of dMes-4 had the inverse effect, as

acetylation at lysine 16 of histone H4 was globally decreased.

Together, these data reveal a cross talk between methylation

of H3K36 and acetylation of H4 in D. melanogaster, however,

in a more intricate way than what has been reported for S.

cerevisiae. Notably, the knockdown of dMes-4 resulted in the

reduction of both di- and trimethylation similar to a SET2

mutant, yet it did not result in increased H4 acetylation,

which appears to require decline of trimethylation in the

presence of dimethylation.

Next, we measured H4K16ac by ChIP to test if changes in

global levels reflect acetylation differences at genes that lose

H3K36me after HMTase knockdown. In untreated Kc cells,

H4K16 acetylation peaked at the promoter and was present to

a lesser extent throughout coding regions (Supplementary

Figure 5). After knockdown of dHypb, H4K16ac increased at

sequences that showed reduced levels of H3K36 trimethyla-

tion. In contrast, acetylation decreased at chromosomal posi-

tions, which also had reduced di- and trimethylation after

dMes-4 RNAi (Figure 5B). These results are in agreement

with bulk changes observed by western blot analysis.

Importantly, the acetylation changes occur preferentially at

H4K16, as other residues tested in ChIP appear unaffected

(H3K9/K14ac, H4K8ac, H4K12ac; Supplementary Figure 4

and data not shown).

We conclude that H3K36me2 and H3K36me3 inversely

influence H4K16 acetylation at transcribed regions in the

Drosophila genome.

Discussion

In this study, we provide a comprehensive analysis of the

distribution and regulation of the only described chromatin

modification associated with transcriptional elongation in D.

melanogaster. Our results suggest a novel regulatory pathway

involving two enzymes, different localization of di- and

trimethylation of H3K36 and cross talk of these methylation

states to acetylation of lysine 16 of histone H4 (Figure 6A and

B), a modification previously shown to prevent formation of

compact chromatin.

Spatially defined H3K36 methylation states

Analogous to previously described euchromatic histone mod-

ifications, di- and trimethylation of H3K36 are enriched at

transcribed genes; yet both show unique distributions down-

stream of 50-biased modifications such as H3K4me (Bernstein

et al, 2005; Pokholok et al, 2005; Wirbelauer et al, 2005).

H3K36me3 peaks in the 30 end, whereas H3K36me2 shows an

intermediate distribution (Figure 6A). A previous analysis of

H3K36me2 and H3K36me3 in chicken erythrocyte genes did

not deduce a differential distribution; however, only two

genes were compared (Bannister et al, 2005). Thus, whereas

the actual conservation of H3K36 methylation patterns in

other metazoa needs to be tested, the spatial and functional

differences that we report for Drosophila might be shared by

eukaryotes that encode multiple H3K36 methylases.

We, furthermore, note that despite the topographic differ-

ences between H3K36me2, H3K36me3 and H3K4me3, all

tested modifications are equally enriched at the replacement

histone H3.3 (Figures 1B and 6A and Wirbelauer et al, 2005).

This is in agreement with our previous observation that the

distribution of this variant histone throughout coding regions

does not mirror the complex pattern of underlying tail

modifications (Wirbelauer et al, 2005).

Two enzymes mediate H3K36 methylation states

The consequences of protein knockdown suggest that dMes-4

is required for dimethylation and that dHypb mediates tri-

methylation (Figure 3D and E). This model is supported by

the in vitro activity of dHypb (Figure 4A and B) and localiza-

tion of both enzymes to the same genes (Figure 4D). Thus, a

stepwise mechanism for lysine 36 methylation seems plau-

sible in which dMes-4 mediates dimethylation, which is

substrate for dHypb-mediated trimethylation. Methylation-

state-specific HMTases have been described for H3K76 in-

volved in cell-cycle regulation of Trypanosoma brucei (Janzen

et al, 2006). Our findings suggest similar enzyme specificity

for H3K36 methylation at active genes. As such, it is different

from the regulation of H3K4 methylation, where trimethyla-

tion depends on the presence of cofactors (Steward et al,

2006). We also note that both H3K4 di- and trimethylation

peak at the 50 end, whereas H3K36 di- and trimethyla-

tion mark distinct intragenic regions, which supports a dif-

ferential recruitment of the HMTases along the transcribed

gene (Figure 6). The absence of lysine 36 methylation at the

promoter might reflect acetylation at this residue (H3K36ac),

which has recently been reported in S. cerevisiae. In yeast,

Gcn5-dependent H3K36 acetylation predominantly localizes

to active promoters and inversely correlates with methyla-

tion, suggesting that its presence precludes methylation from

the 50 end of the transcription unit (Morris et al, 2006).

Work in budding yeast suggests that targeting of Set2

involves physical interaction with the phosphorylated CTD

of RNA polymerase II via a Set2 Rpb1 interacting (SRI)
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domain (Kizer et al, 2005). Indeed, domain prediction algo-

rithms identify a similar SRI domain in the C-terminal region

of dHypb (Figure 3A), and a recent study reports physical

interaction with hyperphosphorylated RNA polymerase

(Stabell et al, 2007). Moreover, loss of Set2 leads to elevated

levels of histone acetylation similar to a loss of dHypb.

Together, these observations suggest that targeting of

H3K36me3 involves interaction with elongating RNA poly-

merase and that dHypb is the functional Drosophila equiva-

lent to yeast Set2.

dMes-4, in contrast, shows homology to human and

mouse NSD1, WHSC1 (also referred to as NSD2 or MMSET)

and WHSC1-L (NSD3) (Supplementary Figure 2B). This

family of NSDs has been implicated in several human malig-

nancies, including protein fusions in cancer (Jaju et al, 2001;

Wang et al, 2007). Moreover, haploinsufficiency of NSD1

causes Sotos syndrome, a neurological disorder (Kurotaki

et al, 2002). NSD1 has been reported to methylate H3K36

in vitro (Rayasam et al, 2003) and to interact with transcrip-

tion factors (Huang et al, 1998). It is conceivable that the

mammalian NSD class of proteins shares activity and

function that we report for dMes-4.

Cross talk of H3K36 methylation states to histone

acetylation suggests opposing roles in regulating

chromatin compaction on autosomes

Our results indicate that, in metazoa, di- and trimethylation

of H3K36 exert different effects on the level of histone

acetylation throughout coding regions (Figure 6B).

Reduction of trimethylation coincides with specific upregula-

tion of H4 acetylation. This trans-histone effect on acetylation

is reminiscent of the phenotype of a SET2 deletion in budding

yeast (Carrozza et al, 2005; Joshi and Struhl, 2005; Keogh

et al, 2005). Here, we show that, in Drosophila, upregulation

occurs preferentially at lysine 16, a residue that plays

a particular role in chromatin compaction, as in vitro and

in vivo evidence established that its acetylation is sufficient

to prevent formation of higher-order structure (Corona et al,

2002; Dorigo et al, 2003; Shogren-Knaak et al, 2006). This

points toward a function of H3K36me3 in mediating a more

compact chromatin structure at the 30 end of Drosophila

genes either actively by recruiting an HDAC in analogy to

yeast or passively by interfering with the acetylation of

H4K16.

In light of these results, it is unexpected that reduction

of di- and trimethylation of H3K36 through knockdown of

dMes-4 does not increase H4 acetylation. Hence, the increase

of dimethylation in the dHypb knockdown is required for

hyperacetylation of H4, indicating that dimethylation has a

function distinct from trimethylation and possibly recruits an

H4K16 HATactivity. The HAT MOF has been shown in human

cells to be responsible for H4K16ac (Smith et al, 2005; Taipale

et al, 2005) and is assumed to be present in various com-

plexes. Interestingly, human MOF has recently been shown to

interact with the H3K4 methylases MLL (Dou et al, 2005),

suggesting that parallel chromatin pathways can recruit

H4K16 acetylation to different regions along the gene.

Together, our results suggest that H3K36 methylation

states regulate acetylation levels of H4K16 at transcribed

genes. Such opposing behavior provides a rationale for

independent regulation by dMes-4 and dHypb and, moreover,

could justify regulated demethylation of this residue. Indeed,

histone demethylases specific for H3K36me2 (Tsukada et al,

2005) and H3K36me3 (Whetstine et al, 2006) have recently

been described in the human genome, making a scenario of

precise targeting and removal of individual H3K36 methyla-

tion states possible. Such network of setting and reverting-

defined K36 methylation states with opposing effects on

chromatin structure could be utilized to mediate cycles of

chromatin opening and compaction that coincide with pas-

sage of the polymerase. If this is indeed the case, this could

facilitate dynamic chromatin changes to temporarily allow

polymerase passage or access for RNA-processing activities

involved in splicing, termination or transport.

Materials and methods

ChIP and RT–PCR
ChIPs of histone modifications and PCR quantifications were
carried out as described (Wirbelauer et al, 2005). Minor modifica-
tions and further details are provided in Supplementary data.

Microarray hybridization and analysis
Input and antibody-bound DNA were separately amplified and
labeled as described (Schübeler et al, 2004), except using indirect
labeling via aminoallyl-modified nucleotides. Labeled DNA was co-
hybridized to a chromosomal tiling array representing chromosome
2L of the Drosophila genome in a 2 kb tiling resolution as described
(MacAlpine et al, 2004). Two repeats (including dye swap) starting
from independent ChIP experiments were carried out. After
hybridization and washing, slides were scanned (Axon) and
fluorescent reads were analyzed according to the standard normal-
ization and filtering criteria in the GenePix software package
(Axon). Repeats showed high reproducibility (H3K4me3 R¼ 0.98,
H3K36me2 R¼ 0.91, H3K36me3 R¼ 0.92), so that average value
from two experiments could be used in further analysis. Complete
datasets are available at GEO database (accession number
GSE9414).

Antibodies
A detailed description of purchased and generated antibodies is
provided in Supplementary data.

Mass spectrometry
A total of 5–10 pmol of acid-extracted histones were separated by
SDS–PAGE. Coomassie blue-stained bands corresponding to histone
H3 were excised and subjected to chemical modification to derive
free amino groups of lysine residues (Greiner et al, 2005).
Digestions were carried out overnight with sequencing-grade
trypsin (Promega, Madison, WI, USA), according to the manufac-
turer’s protocol. MALDI spectra were acquired (Bonaldi et al, 2004)
for identification and determination of global changes. To compare
methylation levels of H3K27 and H3K36, doubly charged peptides
of H3 containing amino acids 27–40 to collision-induced decay were
subjected to fragmentation and fragment spectra were analyzed in a
Q-STAR XL mass spectrometer. For quantification, the relative
intensities of the y8 and the y9 fragment ions that either carried
methyl groups (K36me) or not (K27me) were compared.

Preparation of Kc cell nuclei and SDS–PAGE western blot
analysis
Detailed protocols are provided in Supplementary data.

Fly strains and transgenes
Details are provided in Supplementary data.

HMTase assays
Detailed protocols are provided in Supplementary data.

Note added in proof
During the review of this manuscript, Larschan et al reported that
H3K36 trimethylation mediated by dHypb has an additional
function for dosage compensation of the male X-chromosome in
Drosophila.
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Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).

Acknowledgements

We thank Elena Aritonovska for assistance, Tianke Wang for
sharing unpublished results, FMI core facilities for generation of
antisera (Susanne Schenk) and peptide synthesis (Franz Fischer),
Michael Rebhahn for support in bioinformatics, Floor Frederiks for

help with yeast strains, members of the Schübeler lab for advice
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Histone modifications play an important role in shaping chromatin structure. Here, we describe the use of
an in vitro chromatin assembly system from Drosophila embryo extracts to investigate the dynamic changes of
histone modifications subsequent to histone deposition. In accordance with what has been observed in vivo, we
find a deacetylation of the initially diacetylated isoform of histone H4, which is dependent on chromatin
assembly. Immediately after deposition of the histones onto DNA, H4 is monomethylated at K20, which is
required for an efficient deacetylation of the H4 molecule. H4K20 methylation-dependent dl(3)MBT associa-
tion with chromatin and the identification of a dl(3)MBT-dRPD3 complex suggest that a deacetylase is
specifically recruited to the monomethylated substrate through interaction with dl(3)MBT. Our data demon-
strate that histone modifications are added and removed during chromatin assembly in a highly regulated
manner.

All DNA in a eukaryotic cell is assembled into chromatin to
fit it into the restricted nuclear space and to organize the
genome (29, 56). As the DNA content of a cell doubles during
S-phase of the cell cycle, the cell has to provide sufficient
histone molecules to package the newly replicated DNA into
chromatin. This is achieved mainly by a coupling of histone and
DNA synthesis (37). The progression of the DNA replication
machinery disrupts the nucleosome in front of the replication
fork, which is then reassembled onto the newly synthesized
DNA strands in a random manner (15, 20). The remaining
gaps are subsequently filled up with newly translated histone
molecules, leading to a mosaic pattern of new and old histone
octamers (2, 21). This process is assisted by the action of
nuclear chaperones, which bind to the histones before deposi-
tion (14, 34). The newly deposited histones are more loosely
associated with the DNA than the bulk histones and mature
slowly into a more stable chromatin structure. Assembly is
achieved via an ordered deposition of H3 and H4, followed by
the binding of H2A/H2B dimers and finally the interaction of
the linker histone H1 with the chromatin fiber (19–22, 49).
Posttranslational modifications of histone molecules are

generally considered to play an important role during the es-
tablishment and maintenance of chromatin structures. The
combination of histone modifications has been proposed to

constitute a “histone code” (23, 55), which is involved in the
maintenance of epigenetic information. However, it is unclear
how histone modifications are replicated during cellular divi-
sion and DNA repair when newly translated histones are de-
posited onto the DNA.
Modification marks can be stably maintained through mul-

tiple mitotic divisions (3, 23, 30, 55). However, for most histone
modifications, the molecular mechanisms that regulate this
maintenance have so far remained elusive. A key aspect of this
maintenance or reestablishment of modification patterns is the
precise copying of histone modification patterns from the pa-
rental histone to the newly synthesized ones. As the newly
synthesized histones carry a specific histone modification pat-
tern that is distinct from the histones found within chromatin
(32), this copying not only involves a deposition of particular
marks but also the removal of others. Newly synthesized his-
tone H4 is acetylated at position K5 and K12 (5, 32, 50).
Recently, a class II histone deacetylase (HDAC) activity
(Thd2) has been isolated that specifically deacetylates the rep-
lication-dependent H4 modifications in Tetrahymena ther-
mophila (48). Thd2 localizes specifically to the micronucleus of
the ciliate and is involved in chromatin maturation, which
further demonstrates the importance of the deacetylation for
chromatin fiber formation. Histone H3 is acetylated mainly at
K9 and K14 in HeLa cells and at K14 and 23 in Drosophila
cells, suggesting a lower degree of conservation of the H3
acetylation sites (7, 32, 50). This acetylation pattern is rapidly
removed when histones are deposited. In the case of H4,
deacetylation happens within minutes, making the analysis of
the diacetylated H4 isoform during chromatin assembly diffi-
cult (5, 40).
In order to get a better understanding of the processes that

occur during histone deposition, we performed a detailed,
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time-resolved analysis of histone modifications during chroma-
tin assembly. The use of an in vitro assembly system allows a
precise analysis of the turnover of histone H4 modification
during histone deposition, which is difficult to analyze in vivo
due to its low half-life. We find that deacetylation is nonproc-
essive in that either the acetyl group at K12 or the one at K5
is removed from the H4 molecule independently of each other.
After deposition, H4 is rapidly monomethylated at K20, which
facilitates the subsequent deacetylation through the recruit-
ment of a complex containing dl(3)MBT and the deacetylase
dRpd3.

MATERIALS AND METHODS

Antibodies and immunoblotting. Polyclonal anti-dl(3)MBT antibody was
raised in rabbits coinjected with three unrelated specific peptides (P1, PSGED
KTRSTQKNNKQNTSASC; P2, YFERPLYDRPGRRPSAC; and P3, CLPEQS
QTNGYKTDHDQELS; Peptide Specialty Laboratories). For generation of
monoclonal anti-dl(3)MBT antibodies, rats were immunized with either peptide
P1 or P3 (antibodies MBT P1 6E6 and MBT P3 8F10, both isotype immuno-
globulin G1) (see above). Anti-glutathione S-transferase (anti-GST) antibody
was produced in rats. Anti-dRpd3 and anti-dHDAC3 antibodies were generous
gifts from J. Müller and B. Turner, respectively. Monoclonal mouse anti-FLAG
M2 antibody is commercially available (Sigma). For immunoblotting, proteins
were transferred onto a polyvinylidene difluoride membrane (Roth), probed with
the indicated antibodies, detected with enhanced chemiluminescence-labeled
secondary antibodies, and detected using the ImmobilonWestern kit (Millipore).

Chromatin assembly extract (Drosophila assembly extract [DREX]). Zero to
90 min after egg laying, Drosophila embryos were rinsed in water and allowed to
settle into embryo wash buffer (0.7% NaCl, 0.05% Triton X-100) on ice to arrest
further development. After four successive collections, the pooled harvest was
dechorionated. The wash buffer was decanted and replaced with wash buffer at
room temperature, and the volume was adjusted to 200 ml. After the addition of
60 ml of 13% hypochlorite, the embryos were stirred vigorously for 3 min, poured
back into the collection sieve, and rinsed extensively with tap water. Then they
were allowed to settle in 200 ml of wash buffer for about 3 min, after which the
supernatant (containing the chorions) was aspirated off. Two more settlings were
performed, one in 0.7% NaCl and one in extract buffer (10 mMHEPES [pH 7.6],
10 mM KCl, 1.5 mM MgCl2, 0.5 mM EGTA, 10% glycerol, 10 mM 3-glycero-
phosphate, 1 mM dithiothreitol [DTT], and 0.2 mM phenylmethylsulfonyl fluo-
ride [PMSF], added freshly) at 4°C. The embryos in extract buffer were settled in
a 60-ml glass homogenizer on ice for about 15 min, and the volume of the packed
embryos was estimated. The supernatant was aspirated, and the embryos were
homogenized by one complete stroke (3,000 rpm) and 10 strokes at 1,500 rpm
with a pestle connected to a drill press. Homogenate was supplemented with an
additional 3.5 mM MgCl2 from a 1 M MgCl2 stock solution and quickly mixed
(final MgCl2 concentration, 5 mM). Nuclei were pelleted by centrifugation for 10
min at 10,000 rpm in an SS34 rotor (Sorvall). The supernatant was clarified by
centrifugation for 2 h at 45,000 rpm (190,000 � g) in an SW 56 rotor (Beckman)
and collected with a syringe, avoiding the floating layer of lipids. Aliquots (300 to
500 �l) were frozen in liquid nitrogen. Protein concentrations were determined
with the Bradford assay, using bovine serum albumin (BSA) as the standard (4).

Chromatin assembly on immobilized DNA. One microgram of rRNA was
immobilized onto 0.3-mg paramagnetic streptavidin beads (Dynal) in EX100
buffer (10 mM HEPES [pH 7.6], 100 mM NaCl, 1.5 mM MgCl2, 0.5 mM EGTA,
10% [vol/vol] glycerol, 0.2 mM PMSF, 1 mM DTT) and, after being washed
extensively, blocked for 30 min with BSA (1.75 �g/�l) in EX100. The DNA on
the beads was concentrated on a magnetic concentrator (Dynal) and resus-
pended in a total volume of 240 �l containing 80 �l DREX and ATP regener-
ating system (3 mM ATP, 30 mM creatine phosphate, 10 �g creatine kinase/ml,
3 mM MgCl2, and 1 mM DTT). Whenever indicated, TSA was added in a total
concentration of 50 nM sodium butyrate in a final concentration of 2 mM, and
S-adenosyl-homocystein (SAH) was added as stated. The reaction mixture was
rotated at 26°C for the denoted time period in order to reconstitute chromatin.
After extensively washing the chromatin with EX500 (10 mM HEPES [pH 7.6],
500 mM NaCl, 1.5 mM MgCl2, 0.5 mM EGTA, 10% [vol/vol] glycerol, 0.2 mM
PMSF, 1 mM DTT), it was subjected to mass spectrometry, micrococcal diges-
tion, or Western blotting.

Expression and purification of recombinant proteins. dl(3)MBT cDNA was
obtained from the Berkeley Drosophila Genome Project (clone no. LD05287).
This sequence was used for generation of a vector expressing FLAG-tagged

dl(3)MBT [pPac-FLAGdl(3)MBT] (9) by PCR (details available upon request).
For generation of a stable S2 line, cells (8 � 106) cultured at 26°C in Schneider’s
Drosophila medium (10% fetal bovine serum; Sigma) were cotransfected with 20
�g pPacFLAG-dl(3)mbt and 1 �g pPuro (a kind gift from E. Izaurralde) using
calcium phosphate transfection according to standard procedures. Two days
posttransfection, cells were selected for 4 to 6 weeks using 5 �g/ml puromycin
(Sigma), clones were picked and expanded, and expression was verified by West-
ern blotting. For baculovirus-mediated expression, FLAG-tagged dl(3)MBT and
a FLAG-tagged construct containing the three MBT domains were cloned into
pVL1392. Virus production and protein purification have been previously de-
scribed (10). A construct containing the three MBT domains of dl(3)MBT was
cloned into pGex4T1 by PCR (details available upon request). Expression and
purification of GST fusion proteins were performed following standard proce-
dures.

Histone purification and nucleosome assembly by salt dialysis. Recombinant
histones or histones purified from Drosophila embryos (native histones) were
expressed, purified, and reconstituted into octamers as described previously (12)
Chromatin was reconstituted by salt dialysis overnight at 4°C using NaCl con-
centrations of 2 M to 0.1 M.

HDAC assay.HDAC assays were performed as described before (10). In some
reactions, 500 �M TSA was added.

Immunoprecipitations. Four hundred micrograms of S2 nuclear extract was
incubated with 50 �l monoclonal antibodies in a final volume of 350 �l phos-
phate-buffered saline for 2 h at 4°C with rotation. Five microliters of Protein G
beads (GE Healthcare) was added, and incubation was continued for 1 h. Fol-
lowing extensive washing with phosphate-buffered saline, beads were used im-
mediately for HDAC assays (see above). FLAG immunoprecipitations (FLAG-
IP) were carried out with S2 nuclear extracts (400 �g total protein) and 5 �l
anti-FLAG agarose (Sigma) in a total volume of 400 �l FLAG-IP buffer (25 mM
HEPES [pH 7.6], 12.5 mM MgCl2, 0.1 mM EDTA [pH 8.0], 10% glycerol, 0.1%
NP-40, 150 mM NaCl). Incubation was performed for 3 h at 4°C with rotation.
After being extensively washed with FLAG-IP, buffer beads were either used
immediately in HDAC assays or analyzed by Western blotting. In some experi-
ments prior to immunoprecipitation, nuclear extracts were incubated for 30 min
with ethidium bromide (50 �g/ml).

Mass spectrometry. Histones were separated by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE). Coomassie blue-stained bands
were excised. Digestions were carried out overnight with 200 ng sequencing
grade trypsin (Promega); in this case, histones were chemically modified before-
hand by being treated with propionic anhydride to convert free amino groups to
propionic amides of lysine residues. In order to purify the peptides from the
contaminating salts or acrylamide, the peptide solution was passed over a pipette
tip containing small amounts of C18 reversed phase material (ZipTip; Millipore).
After three 10-�l wash steps with 0.1% trifluoroacetic acid, the bound peptides
were eluted with 1 �l of prepared matrix solution (saturated �-cyanohydroxy-
cinnamic-acid [Sigma] dissolved in 50% acetonitril [vol/vol], 0.3% trifluoroacetic
acid [vol/vol]) directly onto the target plate. Samples were air dried to allow
cocrystallization of the peptides and the matrix. The target plate was loaded
in a Voyager DE STR spectrometer, and spectra were analyzed using the
in-house-developed software Manuelito. For tandem mass spectrometry (MS-
MS), collision-induced decay spectra were recorded on a Q-Star XL instru-
ment with manually adjusted collision energies. Fragment spectra were
interpreted manually.

Methyltransferase activity. Assays were carried out in 25 �l of methyltrans-
ferase buffer (50 mM Tris-HCl [pH 8.0], 0.5 mM DTT) containing the indicated
substrate and 500 nCi S-adenosyl-(methyl-3H)-L-methionine (25 �Ci/ml) (Amer-
sham) as the methyl donor. Reactions were stopped by spotting 20 �l on P81
filter paper. Filter papers were then washed three times for 10 min in 50 mM
carbonate buffer (pH 9.2) and dried, and 3H incorporation was measured by
scintillation counting.

Micrococcal nuclease digestion. Chromatin from 2 �g DNA was resuspended
in EX100 containing 5 mM CaCl2 and 100 Boehringer units of MNase (Sigma).
After 30, 90, and 300 s at room temperature, the digestion was stopped by adding
4% SDS and 100 mM EDTA. The suspension was subjected to RNase A and
proteinase K treatment, and precipitated DNA was separated onto a 1.3%
agarose gel. A 123-bp ladder (Invitrogen) was used as a size marker.

Nuclear extract preparation. Nuclear extracts from S2 cells were prepared as
described previously (35).

Peptide pull-down assay. H4 peptides comprising amino acids 16 to 25 with
K20 that were either unmodified or mono-, di-, or tri-methylated were coupled
to SulfoLink coupling gel (Pierce) via a C-terminal cysteine according to the
manufacturer’s protocol. Immobilized peptides were preblocked with 1 �g/�l
BSA in binding buffer (25 mM Tris [pH 8.0], 150 mM NaCl, 2 mM EDTA, 0.5%
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NP-40) for 1 h at 4°C. Recombinant GST-3MBT or FLAG-tagged 3MBT were
incubated with preblocked immobilized peptides for 2 h at 4°C in binding buffer
with agitation. After extensive washing with binding puffer, peptide-bound pro-
tein was analyzed by Western blotting.

RESULTS

In order to determine the kinetics of histone modifications
during chromatin assembly, we used a well-characterized S-150
chromatin assembly extract (4) prepared from early Drosophila
embryos. This extract can be used to assemble large fragments
of DNA into an ordered nucleosomal array that closely resem-
bles the chromatin structure observed in vivo (6). For our
experiments, we used an array of nucleosome positioning se-
quences derived from the sea urchin 5S rRNA gene (16). The
linearized DNA was biotinylated and subsequently immobi-
lized using magnetic streptavidin beads (4, 12) (Fig. 1a). Al-
though the histone deposition is very fast and occurs within the
first hour (4) (Fig. 1b), properly spaced chromatin can be
detected only after 4 to 5 h of assembly, as judged by micro-
coccal nuclease digestion (Fig. 1c). Histones carry specific
modifications before deposition onto chromatin in vivo (5, 14,
32), which are rapidly removed after they have been loaded
onto DNA. Therefore, we tested whether we could observe
similar modification kinetics in the in vitro assembly system.
In accordance with the modifications that were observed on

storage histones in Drosophila and Xenopus embryos early in
development (7, 11, 46), histone H4 is found acetylated at the
N terminus in a mainly diacetylated form in the extract that we
used for assembly (Fig. 2a). We mapped the position of the two
acetyl groups to positions K5 and K12 using MS/MS (Fig. 2c).
In order to investigate the dynamic changes of histone modi-
fications, chromatin was isolated at various times during as-
sembly and the modification patterns were analyzed by mass
spectrometry and Western blotting. As seen in vivo and in the
Xenopus assembly system (46), the diacetyl form of H4 is

deacetylated during chromatin assembly. Interestingly, the
deacetylation is relatively slow, with a half-time of 150 min for
the diacetylated form as measured by mass spectrometry and
Western blotting (Fig. 2b and data not shown). The deacety-
lation is not a rapid processive event, as we see an intermediate
accumulation of the monoacetylated form (Fig. 2b).
In addition to that, we do not observe a preferred order of

deacetylation, as acetyl groups are removed from K5 and K12
with similar kinetics independently of each other (data not
shown). The deacetylation is inhibited by the addition of
HDAC inhibitors, such as sodium butyrate or TSA, suggesting
that class I or class II HDAC activity is targeted to the newly
assembled chromatin (Fig. 2d; compare to Fig. 2b for a 0-h
time point). During longer assembly times, we do observe
some residual deacetylation in the presence of TSA and bu-
tyrate, albeit with a much lower efficiency (Fig. 2d). No signif-
icant deacetylation occurs when the extract is incubated for the
same time in the absence of DNA, showing that the process
of assembly is essential for the removal of the acetyl groups
(Fig. 2b).
We next wondered whether additional modifications would

influence the deacetylation of H4K5 and H4K12. The only
methylation that we observed on any histone within the 6 h of
chromatin assembly is a monomethylation of H4 at lysine 20.
This methylation is strictly dependent on the assembly of H4
into chromatin, as it is not detected in H4 isolated from the
assembly extract prior to the addition of DNA (Fig. 3b, lane 1).
Monomethylation of H4K20 in H4 increases during assembly
as judged by mass spectrometry and Western blotting (Fig. 3).
We do not observe a further methylation of H4 during chro-
matin assembly, leading to di- or trimethylated forms.
The key monomethylase specific for H4 is PR-SET7 (43). As

the enzyme is clearly present in DREX, as judged by Western
blotting (data not shown), we hypothesized that this enzyme is
responsible for the modification in the extract. In order to

FIG. 1. DREX-mediated chromatin assembly. (a) Scheme of chromatin reconstitution protocol. The DNA used for chromatin assembly is a
linearized biotinylated fragment containing 12 repeats of a 5S nucleosome positioning sequence. Two micrograms of DNA bound to paramagnetic
beads was reconstituted into chromatin for 1 to 6 h at 26°C using 80 �l DREX. (b) Corresponding histones stained with Coomassie blue. When
boiling streptavidin-coated beads, a strongly stained streptavidin band appeared at the same molecular weight as H4. It is therefore labeled
H4/streptavidin. (c) Micrococcal nuclease digestion pattern of the reconstituted chromatin. M, lanes containing the 123-bp ladder as a molecular
weight marker; MNase, micrococcal nuclease.
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better study the Drosophila PR-SET7 enzyme, we expressed
the full-length protein in bacteria and studied its enzymatic
properties (Fig. 4). The recombinant PR-SET7 enzyme is a
very efficient nucleosomal methyltransferase but only poorly
methylates recombinant H4 when it is not within a nucleo-
somal context (Fig. 4a and b). As it methylates preacetylated
H4 in our system, we tested whether PR-SET7 may methylate
chromatin that is acetylated on K5 and 12 preferentially. In
order to do this, we fully acetylated H4 on positions 5 and 12

using a recombinantly expressed yHAT1 enzyme (38), assem-
bled it into chromatin, and investigated its ability to serve as a
substrate for PR-SET7. Consistent with the substrate require-
ments of the human enzyme, we do not find an effect on the
methylation efficiency after acetylation at positions 5 and 12 in
vitro (Fig. 4c and d).
The dependency of PR-SET7 on the presence of nucleo-

somal DNA and the fact that the enzyme does not distinguish
between differentially acetylated substrates let us conclude that

FIG. 2. Dynamics of modifications on H4 peptide 4-17 during DREX assembly. (a) Top, sequence of H4 peptide 4-17; bottom, time course
analysis of H4 peptide 4-17 by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis. Chromatin was reconstituted as
described above. The reconstitution was stopped after 1, 2, 3, 4, 5, and 6 h, chromatin attached to paramagnetic beads was washed, and histones
were separated by 18% SDS-PAGE. H4 was cut out and subjected to mass spectrometric analysis. (b) Quantification of MALDI-TOF data that
are shown in panel a. As a control, DREX was incubated at 26°C without DNA for 0 h or 6 h and labeled as �DNA 0 h/6 h. unmod, unmodified;
ac, acetylation. (c) MS-MS spectra generated from the diacetylated peak from 1 h DREX assembly. (d) Quantification of MALDI-TOF analysis.
HDAC inhibitors were added to the chromatin assembly reaction, and H4 was analyzed as described above. TSA, trichostatin A; Na-butyrate,
sodium butyrate.

60 SCHARF ET AL. MOL. CELL. BIOL.

 at U
niversitaetsbibliothek M

uenchen on M
arch 30, 2009 

m
cb.asm

.org
D

ow
nloaded from

 



PR-SET7 senses the proper nucleosome assembly rather than
the acetylation state of the histone.
In order to study the effect of monomethylation on the

process of histone modification maturation, we used SAH to
inhibit methyltransferase activity during chromatin assembly.
SAH is the reaction product of all methyltransferases that use
SAM as cofactors and acts as a competitive inhibitor. In order
to test which concentration to use in the assembly reaction, we
first analyzed whether PR-SET7 could indeed be inhibited by
SAH. In vitro methyltransferase assays showed that a concen-
tration of 500 �g/ml very efficiently inhibits PR-SET7 (Fig. 5a).
When we used SAH in an assembly, we could indeed reduce
the level of monomethylation in a concentration-dependent
manner (Fig. 5b and d, top). However, we did not observe a
major difference in chromatin spacing or in the level of chro-
matin assembly as judged by nuclease digestion (Fig. 5c).
When we determined the degree of H4 deacetylation of

untreated chromatin with the SAH-treated chromatin, we
found a substantially increased level of H4 acetylation when
monomethylation is inhibited by SAH, arguing for a decrease
in acetylation efficiency in the presence of SAH (Fig. 5d, bot-
tom). This was not due to an inhibition of HDAC’s presence in

the assembly extract, as the overall levels of HDAC activity in
the extract did not decrease (Fig. 5e). Therefore, we wondered
whether a specific deacetylase may be targeted to the monom-
ethylated chromatin in order to ensure efficient deacetylation.
We first tested the hypothesis that the most abundant deacety-
lase in the extract, dRpd3, may preferentially deacetylate a
premethylated peptide. However, we did not observe a signif-
icant increase in the HDAC activity of recombinant dRpd3
when a K20-methylated H4 peptide was used as substrate (Fig.
5f). Another possible explanation for our observation could be
that the deacetylase responsible for the removal of the acetyl
groups from K5 and K12 after chromatin assembly is brought
to methylated H4 by an additional targeting factor. However,
HDAC complexes identified to date lack domains capable of
binding methylated H4K20. One of the domains that binds
monomethylated H4K20 in vitro is the MBT domain (28, 31,
54). Drosophila sp. have three genes that code for MBT-con-
taining proteins SCM, dSMBT, and dl(3)MBT. Mutations in
SCM and dSfmbt result in homeotic transformations, whereas
mutations in dl(3)MBT show effects on the cell cycle, such as
a block in mitosis (58). The cell cycle phenotype displayed by
dl(3)MBT mutants is consistent with a role in chromatin as-

FIG. 3. H4 becomes monomethylated at K20 after assembly. (a) Chromatin was assembled as shown before using DREX. Corresponding
histones were separated by 18% SDS-PAGE and then digested with AspN prior to mass spectrometric analysis. Also shown is a comparison of
posttranslational modifications of the H4 peptide 20-23 1 h (top) and 4 h (bottom) after the assembly reaction. (b) Western blot analysis of kinetics
of H4K20me1. H3 is serving as a loading control. M, molecular weight marker; �H3, anti-H3; �H4K20me1, anti-H4K20me1.
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sembly. Moreover, similar phenotypes have been observed in
neuroblasts that are deficient for PR-SET7 (43).
We wondered whether dl(3)MBT might be recruited to

chromatin during assembly. To check this, we used an antibody
that specifically recognizes the dl(3)MBT protein and observed
an efficient recruitment of this protein to in vitro-assembled
chromatin similar to the monomethylation of H4K20 (Fig. 6a).
We then verified that the MBT domains of dl(3)MBT can
indeed bind to methylated histone H4 tails in vitro. We incu-
bated a GST fusion containing the three dl(3)MBT MBT do-
mains with immobilized histone H4 peptides. As has been
shown previously for the human orthologue, the dl(3)MBT
MBT domains bound to histone H4 tails in this assay and
displayed a strong preference for mono- and dimethylated
H4K20 (54) (Fig. 6b). The MBT domains of dl(3)MBT bound
more strongly to tails with a methylated K20 residue than to
the unmodified tail (Fig. 6b, compare lanes 2 to 5). In contrast
to human hl(3)MBTL1 (31), dl(3)MBT bound with increased

affinity to all three methylated H4K20 peptides with an en-
hanced affinity for H4K20me1 and H4K20me2. To exclude the
possibility that a posttranslational modification may influence
dl(3)MBT’s ability to distinguish between the differentially
methylated peptides, we also expressed FLAG-tagged MBT
domains using a baculoviral expression system. Binding studies
using the protein expressed in a eukaryotic system did not
differ significantly from the bacterially expressed protein (Fig.
6b, compare top and bottom). These results suggest that
dl(3)MBT has the potential to specifically associate with
H4K20-methylated H4 tails during chromatin assembly. We
then investigated if dl(3)MBT associates with HDAC activity.
We generated an S2 line stably expressing FLAG-tagged
dl(3)MBT. Anti-FLAG immunoprecipitates were generated
from this line and control S2 cells and subjected to HDAC
assays in vitro (Fig. 6c, top). Whereas immunoprecipitation
from control extracts yielded only background HDAC activity,
immunoprecipitates from FLAG-tagged dl(3)MBT-containing

FIG. 4. PR-SET7 needs nucleosomes as a substrate. (a) Recombinant dPR-SET7 was cloned into a pMyb vector, expressed in bacteria, purified
over chitin affinity chromatography according to the manufacturer’s instructions (New England Biolabs), and assayed for HMTase activity on
different substrates. The histogram shows the radioactivity incorporated. rec. nuc., recombinant nucleosomes; rec. octamer, recombinant octamer.
(b) Autoradiography of the experiment described for panel a. (c) Methylation of recombinant nucleosomes and nucleosomes acetylated at K5 and
K12 by dPR-SET7. (d) Autoradiography of the experiments described for panel c.
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FIG. 5. Deacetylation of H4K5/K12 is dependent on H4K20 monomethylation. (a) A histone methyltransferase assay was performed in the presence
and absence of SAH with and without PR-SET7. (b) Quantification of Western blot analysis. Chromatin was reconstituted for 3 h using DREX treated
with and without SAH. Chromatin was washed, separated on an 18% protein gel, blotted to a nitrocellulose membrane, and detected with H4K20me1
antibody. H3 was used as a loading control. (c) Micrococcal digestion pattern of the reconstituted chromatin incubated with or without SAH. M, lanes
containing the 123-bp ladder as a molecular size marker. (d) Chromatin was assembled for 4 h. Histones were separated by 18% SDS-PAGE and then
digested with trypsin prior to mass spectrometric analysis. Top two panels, comparison of unmodified H4K20 and monomethylated K20 peak of
chromatin treated with or without SAH (shown is the peptide 20-23) (Fig. 3); bottom twopanels, comparison of acetylation ratios of peptide 4-17 of chromatin
that has been treated with and without SAH. (e) HDAC assay using 5 �l of chromatin assembly extract in the presence of either 500 �M TSA or 500 �g/ml
SAH. (f) Deacetylation of an in vitro-acetylated peptide containing amino acids 9 to 29 of H4 carrying a methylation or no modification at K20.
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FIG. 6. Binding of dl(3)MBT to chromatin is inhibited by SAH, and dl(3)MBT is found in a complex with dRpd3. (a) After chromatin was
reconstituted using DREX, bound dl(3)MBT was detected byWestern blotting. (b) Immobilized H4 peptides (amino acids 16 to 25) were incubated with
recombinant baculovirally expressed FLAG-3MBT (top) or recombinant GST-3MBT expressed in bacteria (bottom). Binding of GST- and FLAG-tagged
proteins was analyzed by immunoblotting using anti-GST and anti-FLAG antibodies. unmod, unmodified H4 16-25 peptide; me1, me2, and me3, H4
peptide mono-, di-, and tri-methylated at K20; control, beads without peptide. (c, top) HDAC assays were performed with anti-FLAG immunoprecipi-
tates (IP �Flag) from nuclear extracts of S2 cells (mock) and an S2 line stably expressing FLAG-tagged dl(3)MBT [Flag-dl(3)MBT]. Immunoprecipi-
tations were carried out in the absence or presence of ethidium bromide (EtBr), and HDAC reactions were performed with or without TSA as indicated
(middle and bottom). Anti-FLAG immunoprecipitates were analyzed by Western blotting for the presence of Flag-dl(3)MBT, dRpd3, and dHDAC3 as
indicated. Ten percent of nuclear extracts were loaded as input. (d) HDAC assays were performed with immunoprecipitates obtained with a mixture of
twomonoclonal anti-dl(3)MBT antibodies (at a ratio of 1:1), anti-GST antibody, or no antibody (beads only) (top), and S2 nuclear extract was precipitated with
dl(3)MBTantibody (bottom). Immunoprecipitationswere subjected toWestern blotting using anti-dRpd3 and anti-dl(3)MBTantibody as shown. (e)Chromatin
was reconstituted for a specific time and treated with or without SAH (500 �g/ml). The reconstitution was stopped after 15 and 45 min. Chromatin attached to
beads was washed (100 mM NaCl) and separated by 18% SDS-PAGE. dl(3)MBT and dRPD3 were detected by a polyclonal antibody.
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extracts had robust HDAC activity. To rule out that association
of HDAC activity was a result of spurious coprecipitation of
HDAC-containing chromatin fragments, immunoprecipita-
tions were carried out in the presence of ethidium bromide to
dissociate protein-DNA interactions. Ethidium bromide had
no significant effect on dl(3)MBT-associated HDAC activity.
Immunoprecipitated HDAC activity was sensitive to inhibition
by TSA, suggesting that it was due to a class I HDAC. We
therefore probed immunoprecipitates for the presence of the
class I HDACs dRPD3 and dHDAC3 by Western blotting
(Fig. 6c, middle and bottom). dRPD3 specifically coprecipi-
tated with FLAG-tagged dl(3)MBT, and this interaction was
not affected by the presence of ethidium bromide, confirming
that it is due to a protein-protein interaction. In contrast,
dHDAC3 could not be detected in the immunoprecipitates
(Fig. 6c, bottom).
In order to verify that endogenous dl(3)MBT associates with

HDAC activity (Fig. 6d, top), we immunoprecipitated S2 ex-
tracts with dl(3)MBT antibodies. Indeed, HDAC activity was
precipitated by the dl(3)MBT but not by the control antibody.
In addition, immunoprecipitation of dl(3)MBT coprecipitated
endogenous dRPD3 (Fig. 6d, bottom).
Taken together, these results demonstrate that dl(3)MBT

forms a complex with the HDAC dRPD3. In order to finally
test whether this interaction and hence the recruitment might
be responsible for the efficient deacetylation of newly assem-
bled chromatin, we investigated the recruitment of dl(3)MBT
and dRpd3 to chromatin during assembly. By using specific
antibodies against dl(3)MBT and dRpd3, we could see an
increase in dl(3)MBT and dRpd3 binding to chromatin with
increasing assembly time (Fig. 6e, lanes 2 and 4). However,
when the monomethylation of H4K20 was inhibited, this re-
cruitment was greatly reduced (Fig. 6e, compare lanes 2 and 4
with lanes 1 and 3), suggesting a model in which the monom-
ethylation of H4K20 indeed facilitates the recruitment of the
deacteylase by virtue of its interaction with dl(3)MBT, thereby
assisting the maturation of histone modifications during chro-
matin assembly.

DISCUSSION

In this work, we use an in vitro chromatin assembly system to
recapitulate and dissect the changes in histone modifications
during chromatin assembly. We find that H4 histone molecules
carrying a diacetyl mark at K5 and K12 assemble onto DNA
added to a Drosophila embryo extract. Histone H4 is monom-
ethylated at K20 immediately after histone deposition. A can-
didate enzyme for carrying out this methylation is PR-SET7,
which we show to (mono)methylate H4K20 within nucleo-
somal substrates. Concomitantly with H4K20 monomethyla-
tion, dl(3)MBT associates with chromatin. This is then fol-
lowed by the removal of the two acetyl groups of H4. The three
MBT domains of dl(3)MBT have the capacities to bind meth-
ylated H4K20 in vitro, and the full-length protein forms a
complex with the HDAC dRPD3 in vivo. Our results strongly
support a model of stepwise maturation of histone marks,
which may help to guarantee the fidelity of chromatin assem-
bly.
Lysine methylation within histone tails has been suggested to

be a key player during epigenetic inheritance. However, in

contrast to the methylation of H3, methylation of H4 has not
been so clearly associated with transcriptional regulation (30,
41, 60). The mapping of H4 species methylated at K20 gave
somewhat confusing results. Whereas H4K20me3 is a rare
modification that has been clearly associated with transcrip-
tionally silent chromatin (45), most H4 molecules carry a di-
methyl mark in the model systems analyzed so far (7, 39, 40,
59). H4K20me1, on the contrary, has been reported to be
enriched within promoter and coding regions of active genes
(52) as well as inactive regions of the genome (47). Further-
more, the monomethyl mark has been suggested to play a role
in chromatin assembly rather than transcriptional regulation,
which is based mainly on observations made on PR-SET7, the
methyltransferase that is responsible for H4K20 monomethy-
lation in mammalian cells (57) and in Drosophila cells (27).
The enzyme localizes to the replication fork (53) and is re-
quired for S-phase progression (24). Furthermore, H4K20me1
levels have been shown to increase during late S- and G2-phase
(13, 40, 42). Recent findings also show that H4K20 (mono)m-
ethylation not only plays a role during chromatin assembly
during S-phase but is also involved in the regulation of DNA
repair. In the fission yeast Schizosaccharomyces pombe, the
methyltransferase that methylates H4K20, SET9, is required
for an efficient targeting of a known checkpoint protein crb2 to
sites of DNA damage, thereby mediating cell cycle arrest (44).
A lack of H4K20me1 also leads to the accumulation of DNA
breaks and cell cycle arrest before the entry into mitosis in
mammalian and Drosophila tissue culture cells (18, 43). The
arrest seems to be initiated by a G2/M checkpoint, as the lack
of PR-SET7 induces the activation of the checkpoint kinase
ATM (18). The role of H4K20me1 in repair processes is fur-
ther confirmed by the fact that the simultaneous mutation of
the Drosophila checkpoint gene ami1 strongly increases the
survival rate of PR-SET7 mutant larvae (43).
Our results strongly support the idea that the monometh-

ylation of K20 within H4 plays a crucial role during chromatin
assembly by marking the fully assembled nucleosome after
histone deposition. Recombinant dPR-SET7 methylates H4
only after it has been assembled into a nucleosome, which is
consistent with the observations that have been made on mam-
malian PR-SET7 (13, 36). The fact that the enzymatic activity
as well as the expression of PR-SET7 is highly regulated during
different phases of the cell cycle (18, 53) suggests that the
methylation of H4 after nucleosome assembly might have an
important regulatory function that has to be tightly controlled.
The effects of histone methylations are thought to be medi-

ated by Tudor domain-containing factors (33). One of these
factors that has been shown to bind a peptide carrying
H4K20me1 is l(3)MBT, which has been suggested to act as a
chromatin lock to stabilize a higher-order chromatin structure
(25, 54). Other factors that bind to H4K20me are p53BP1 and
crb2, which mediate key processes in DNA repair (8). Our
findings that dl(3)MBT interacts with the HDAC and is re-
cruited to newly assembled chromatin via a mechanism depen-
dent on H4K20me1 could explain why H4K20me1 has been
mapped to transcriptionally active as well as inactive regions.
Both cellular processes, DNA synthesis and transcription, in-
volve a disruption of chromatin structure and are often accom-
panied by a de novo histone assembly (1, 14, 17). We show that
the monomethylation of H4K20 is a very early step after dep-
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osition that stimulates the recruitment of a complex of
dl(3)MBT and dRpd3 immediately after nucleosome forma-
tion. The association of the complex greatly facilitates the
deacetylation of the newly deposited histones. The effect we
observe is clearly a kinetic effect, as we eventually observe
deacetylation even in the absence of any monomethylation,
which is very likely due to the abundance of HDAC enzymes in
the extract. In this light, it is interesting that the kinetics of K12
deacetylation after deposition have been shown to differ when
comparing early and late-replicating chromatin (51). It will be
interesting to investigate whether this is due to the different
degrees of monomethylation of H4.
Chromatin has a very high rate of disruption and reassembly

at transcriptionally active genes, which may explain the fact
that the monomethyl mark can be found at transcriptionally
active promoters (52). However, the HDAC recruitment after
nucleosome assembly may at the same time lead to a removal
of acetyl groups from histones at these promoters, leading to
transcriptional repression (25) if the primary signal of gene
activation (such as the binding of a transcription factor) is
gone. This may explain the contradictory results of H4K20me1
mapping data.
Given that we are using linear DNA fragments and a de

novo assembly system, it may well be that our in vitro system
mimics repair-coupled chromatin assembly and that the
monomethylation is part of a mechanism that governs histone
modifications during chromatin repair. Based on our in vitro
observations and the reported in vivo data, we suggest that the
monomethylation mark may indeed function as an important
step to ensure the proper establishment of histone modifica-
tion marks during and after assembly. In this light, it is also
interesting that H4K20 monomethylated histones have been
found in a non-chromatin-bound histone pool in Drosophila S2
cells (26), which may contain the H4 molecules that are ejected
during RNA transcription and repair.
Based on our experiments, we would argue that, at least in

the Drosophila system, the kinetics of H4K5ac and H4K12ac
deacetylation are controlled by PR-SET7-mediated H4K20
methylation. It will be an interesting task for the future to
analyze how the PR-SET7 activity is regulated in vivo in re-
sponse to cellular stress and what downstream factors play a
role in sensing improper chromatin assembly.
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Histone modifications during chromatin assembly in vivo

Histone modifications during chromatin assembly 3.1.3 in vivo

When a cell replicates, not only the DNA must double but also the amount of histones. Each cell 

receives the identical sequence of DNA reflecting the genetic code. A second code, the epigenetic 

code is thought to be established by epigenetic regulators such as histone modifications. Therefore, 

it is essential to copy the histone modifications from the parental cell to the daughter cell. Newly 

synthesized histones carry specific predeposition patterns that are subjected to fundamental 

changes after chromatin is reassembled behind the replication fork. Different ways of depositing 

new and old histones after replication have been described in the introduction. But independent 

of how deposition is conducted, the timeframe is restricted to one cell cycle. So before the next 

cell cycle starts the entire information encoded in posttranslational histone modifications has to 

be transferred to the daughter cell. Given the number of modification sites it is very likely that not 

all modifications are inherited immediately after chromatin assembly. It is of great interest to study 

the kinetics how new histones adjust to the modifications of the old histones. Here, we analyzed old 

and new modification patterns by applying a newly established technique (pSILAC) and it resulted 

in a detailed map of the individual steps of chromatin maturation. 
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ABSTRACT

Every cell has to duplicate its entire genome during
S-phase of the cell cycle. After replication, the newly
synthesized DNA is rapidly assembled into chroma-
tin. The newly assembled chromatin ‘matures’ and
adopts a variety of different conformations. This dif-
ferential packaging of DNA plays an important role
for the maintenance of gene expression patterns
and has to be reliably copied in each cell division.
Posttranslational histone modifications are prime
candidates for the regulation of the chromatin struc-
ture. In order to understand the maintenance of
chromatin structures, it is crucial to understand
the replication of histone modification patterns. To
study the kinetics of histone modifications in vivo,
we have pulse-labeled synchronized cells with
an isotopically labeled arginine (15N4) that is 4Da
heavier than the naturally occurring 14N4 isoform.
As most of the histone synthesis is coupled with
replication, the cells were arrested at the G1/S
boundary, released into S-phase and simultaneously
incubated in the medium containing heavy arginine,
thus labeling all newly synthesized proteins.
This method allows a comparison of modification
patterns on parental versus newly deposited his-
tones. Experiments using various pulse/chase
times show that particular modifications have con-
siderably different kinetics until they have acquired
a modification pattern indistinguishable from the
parental histones.

INTRODUCTION

The packaging of DNA into chromatin plays a crucial role
in regulating its accessibility for RNA polymerases and
transcription factors. The level of chromatin condensation
is dependent on the differentiation state of a cell, ranging
from a hyper-dynamic, highly accessible structure in

embryonic stem cells (1,2) to a less accessible more con-
densed form in senescent cells (3). The posttranslational
modification of histones can alter the properties of chro-
matin fibers and is therefore a prime candidate to mediate
the stable inheritance of chromatin structures. The histone
code hypothesis (4,5) is further supported by genome-wide
mapping studies of histone modifications (6,7), which
show a high degree of correlation between particular his-
tone modifications and RNA–Pol II occupancy. Based on
these data, a complex set of modifications has been pos-
tulated to stably mark specific regions of the genome with
regard to their further activity. Experiments in yeast (8),
however, suggest that a putative histone code may reflect
a relatively simple binary signal (9). An alternative model
to explain the generation of complex histone modification
patterns has been put forward by Schreiber and Bernstein
who suggested that histone modifications function similar
to modification networks involving receptor tyrosine
kinases (10).
In order to distinguish between an inheritable histone

code and the generation of modification patterns in
response to external signals, it is crucial to investigate
the histone modifications that occur during and immedi-
ately after histone deposition. During S-phase, newly
synthesized and parental histones are distributed ran-
domly on the two daughter strands (11,12) resulting in a
dispersive replication of histone modification patterns
(13). Newly synthesized histones have a distinct modifica-
tion pattern (14,15) that matures after assembly into a
pattern similar to the one observed on parental histones
(16–18). As the histone modifications are considered to
be causal for the maintenance of particular chromatin
structures (5), mechanisms have to exist that allow a faith-
ful copying of modification patterns from ‘old’ paternal
histones to new ones. It is striking that many enzymes that
catalyze a posttranslational modification of histones also
carry domains known to bind to modified histone mole-
cules or interact with factors containing such a domain
(19–24). These domains could target histone-modifying
or demodifying enzymes to particular regions within the
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genome by recognizing a modification pattern on the ‘old’
histones and copying it to the new ones.
The kinetics with which the modifications are copied

from old histones to the new ones may define the time
frame during which a given cell is susceptible for incoming
signals and therefore its epigenetic plasticity. We investi-
gated the kinetics of how fast modification patterns on new
histones resemble the one on old ones by pulsed stable
isotope labeling with amino acids in cell culture
(pSILAC) and mass spectrometric analysis of histones. In
accordance with previously published work, we observed a
rapid adjustment of lysine acetylation patterns within the
first 2 h after deposition (14,25,26). In contrast to this rapid
acetylation and deacetylation, the methylation of lysine
residues requires much more time to become indistinguish-
able from the old histones. In fact some of the modification
patterns on newly incorporated histones remain different
through most of the next cell cycle after deposition indicat-
ing that the histone code needs one full cell cycle in order to
become fully re-established. Our findings have a major
implication in our view for how histone modification
marks may mediate epigenetic inheritance.

EXPERIMENTAL PROCEDURES

Synchronization of HeLa cells

For G1/S-phase synchronization, a double thymidine
block was used. Therefore, HeLa cells were seeded and
cultured for 24 h at 378C in the R0 SILAC medium
(Invitrogen). Thymidine (Sigma) was added to a final
concentration of 2mM and incubation was maintained
for 16 h. The block was released by exchanging the
thymidine-containing medium with the R0 culture
medium. The cells were grown for 9 h before adding thy-
midine again to 2mM final concentration for further 16 h
to synchronize the HeLa cells at the G1/S border. The
arrest was finally released by refeeding the cells with the
thymidine-free R4 SILAC medium (Invitrogen) to allow
cell cycle progression. Whenever indicated, 10mM NaBu
was added directly into the medium and the cells were
washed twice with PBS before transferring them into the
medium without NaBu. The cells were maintained in a
378C incubator with a humidified atmosphere of 5% CO2.

SILAC labeling

We used three different SILAC DMEM media: R0 SILAC
(L-arginine), R4 (L-12C6

15N4-arginine) and R10 (L-13C6
15N4-arginine). HeLa cells were synchronized at the G1/S
border in the R0 SILAC medium and released into the cell
cycle in the R4 SILAC medium in order to label all newly
synthesized histones. For all pulse-chase experiments, we
fed the synchronized cells with the R4 SILAC medium for
6 h and chased with the R10 SILAC medium. All materials
for SILAC labeling were purchased from Invitrogen and
prepared according to the manufacturer’s instructions.

Flow cytometric analysis of the cell cycle

For fluorescence activated cell sorting (FACS) analysis,
the cells (1� 106) were harvested, washed twice in PBS
followed by fixation in 70% ethanol at �208C for a

minimum of 1 h. Fixed cells were washed in PBS and
incubated with 100 mg/ml of RNase A in PBS for 30min
at 378C. Afterward, propidium iodide (Sigma) to a final
concentration of 50 mg/ml was added and the cells were
incubated at 378C for 30min. The samples were stored
at 48C in the dark until analysis on BD Biosciences
FACSCanto. A minimum of 10 000 cells were counted,
and the raw data were analyzed and histograms plotted
using the FlowJo software.

RT–PCR

RNA was extracted from snap-frozen HeLa cell pellets
using the RNeasy kit (Qiagen) according to the manufac-
turer’s manual and dissolved in RNase-free water. Total
RNA concentration was quantified using a spectrophot-
ometer (Peqlab, Nanodrop). Reverse transcription was
primed with 250 mg of random primers (Promega) with 1
mg of total RNA per sample at 708C for 5min. The sam-
ples were then incubated with 20U MuLV in 20 ml of
buffer containing 1000 mM dNTP and manufacturer’s
RT buffer for 10min at 258C, then heated up to 378C
for 1 h, 708C for 10min, chilled on ice and frozen at
�208C. PCR reaction was conducted with the following
primers: H3.2 (50-GCTACCAGAAGTCCACGGAG,
50-GATGTCCTTGGGCATAATGG) and 18S (50-TTGT
TGGTTTTCGGAACTGAGG, 50-CATCGTTTATGGT
CGGAACTACG).

Histone extraction

The cell pellets were redissolved in 0.4N HCl in a total vol-
ume of 0.5ml per 1� 106 cells and centrifuged for a min-
imum of 1 h at 48C. After centrifugation at 13 000 rpm for
30min, the supernatant was dialyzed at 48C against
100mM ice-cold acetic acid for three times for 1 h using
6–8000 MWCO. The sample was concentrated using a
speed vac and redissolved in SDS-loading buffer and
applied to a SDS–PAGE gel for further analysis.

MALDI-TOF analysis

Histones were separated by 18% SDS–PAGE. G-250
Coomassie blue stained bands were excised and destained
with 50mM ammonium bicarbonate in 50% ACN
(Sigma) for 30min at 378C. After washing the gel pieces
with HPLC grade water, histones were chemically modi-
fied by treating with 2 ml propionic anhydride (Sigma) and
48 ml of ammonium bicarbonate (1M) at 378C. After 1 h,
the modified histones were washed with HPLC grade
water and digestions were carried out at 378C overnight
with 200 ng of sequencing grade trypsin (Promega)
according to the manufacturer’s manual. Digestion pro-
ducts were collected and the gel pieces were acid extracted
in addition with 25mM ammonium bicarbonate and after-
ward with 5% formic acid. The pooled digestions
were concentrated using a speed vac and redissolved
in 0.1% TFA. Afterward, the samples were desalted
with ziptip mc18 (Millipore) according to the manufac-
turer’s instructions and directly eluted onto the target
plate with a saturated solution of a-cinnamic acid in
0.3% TFA and 50% ACN. The target plate was loaded
into the Voyager DE STR spectrometer (Applied
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Biosystems) and analyzed. Peptide mass fingerprint cov-
ered the mass range from 500–2000 amu.

Quantification of MALDI signals

To determine all modifications occurring on histones, the
Manuelito software was used. Spectra were processed and
analyzed with the Data Explorer software (Applied
Biosystems). For quantification, the integrated area
of the peaks was used with a signal-to-noise ratio of 2.
The sum of the area from all peaks derived from a single
peptide was defined as 100%. Charts were drawn in Excel.

RESULTS

Pulse labeling can be used to mark newly synthesized
histones

Most of the new histones that are incorporated during
replication are synthesized during S-phase [(27) and
Figure 1B and C]. To study the dynamics of histone mod-
ifications on the newly synthesized histones in comparison
to the parental histones, we designed a method to selec-
tively label new histones by isotopic labeling (Figure 1A).
To do this, we arrested HeLa cells at the G1/S boundary
using a double thymidine block (28) and verified the cell
cycle arrest using fluorescence-activated cytometry
(Figure 1B). After removal of the block, the cells
were placed into the labeling medium containing isotopi-
cally labeled arginine (15N4). To control the correct
replication-dependent synthesis of histone mRNA, we
analyzed RNA at different times after removal of the
cell cycle block (Figure 1C). As cells went into S-phase,
the amount of histone H3.2 mRNA (29) increased sub-
stantially indicating that the histone mRNA synthesis is
not affected by the heavy medium. Isotopically labeled
histones also accumulate with a kinetic similar to the
mRNA (Figure 1D). We measured the total level of incor-
poration by comparing the integrated peak areas of H3
and H4 peptides that were not modified in our samples
[H3 64–69, m/z=844.5 (light) or 848.5 (heavy) and
H4 68–78, m/z=1346.7 (light) or 1350.7 (heavy)]. A
continuous labeling during the first 8-h postrelease
resulted in a continuous increase in the histone synthesis.
Theoretically, one would expect the level of incorporation
to be 50% assuming that the total amount of histones is
doubled and that all newly synthesized histones incorpo-
rate exclusively labeled arginine. In our experiments, the
labeling efficiency is �40% of all H3 and H4 molecules
(Figure 1D). This discrepancy may either be due to the
fact that (i) not all cells enter S-phase after synchroniza-
tion (Figure 1B), (ii) not all histones are incorporated into
chromatin or that (iii) residual pools of light arginine are
used in HeLa cells to synthesize new histone molecules. To
quantify the latter, we measured the incorporation of
heavy arginine in the H3 peptide containing amino acids
41–49. This peptide has the sequence YRPGTVALR,
which is not cleaved by trypsin after R42 and therefore
contains two arginines. It can get singly or doubly labeled
depending on the amount of light arginine still present
in the cell (Supplemental Figure S1). We do get a low
level of singly labeled peptide of �5%, suggesting that

�5% of all arginines used for the histone synthesis are
in fact derived from endogenous amino-acid pools.

Histone acetylation

One of the best-known modifications on histones is
the acetylation of lysines, which is considered to lead to a
more open and hence to a more active chromatin structure
(30). Histones are acetylated at specific sites before deposi-
tion (14,15), which get deacetylated after histone assembly
(16,18,25). We wanted to determine, whether our analysis
would allow us to dissect the process of acetylation and
deacetylation coupled with histone deposition in vivo.
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Therefore, we compared the levels of lysine acetylation on
newly synthesized histones with that on old histones. When
histones were analyzed 6 h after the release into S-phase, we
observed a small but reproducibly an increased proportion

of the diacetylated isoform in the new histones (Figure 2C).
As free H4 is exclusively diacetylated before deposition
(14,15,25), this increased level of diacetylated H4 reflects
the higher percentage of pre-deposition forms with the pool

A

CB

old histones
new histones

0 h

NaBu

6 h4 h 8 h

50

60

10

20

30

40

0

70

F

cell synchronisation 
in G1/S phase,
release in S phase
in R4 SILAC medium

unmodified 3ac2ac1ac

50

10

20

30

40

0

6 h
old histones

0 h

NaBu

D

71-4 aa 4
H editpep latot fo 

%

71-4 aa 4
H editpep latot fo 

%

50

60

10

20

30

40

0
unmodified 3ac2ac1ac

E

old histones
new histones

new histones

0 h

NaBu

6 h4 h

71-4 aa 4
H editpep latot fo 

%

unmodified 3ac2ac1ac

+/- NaBu NaBu

S G2/M

6 h4 h 8 h0 h

G1S

6 h0 h

G1

2n1c 2n2c

S-phase progression +SoBu

release

2h after release

4h after release

6h after release

8h after release

reb
mun llec

Ma s s (m /z )

0

1 0 0

%
In

te
n

s
it

y

15081445 1457.6 1495.4

1.7E+4

1494
unmod “old”1480

1ac “old”

1466
2ac “old”

1452
3ac “old”

*

*

*

*

unmodified 3ac2ac1ac

71-4 aa 4
H editpep latot fo 

%

50

60

10

20

30

40

0

70

old histones
new histones

0 h 6 h

Figure 2. Deacetylation of H4 peptide 4–17 happens fast. (A) Scheme of pulse-chase experiments including 10mM sodium butyrate treatment. Sodium
butyrate (NaBu) was added either at the time of release for 6 h or for a shorter period of time (2 h) during S-phase. (B) FACS analysis of synchronized
HeLa cells treated with sodium butyrate harvested at 0, 2, 4, 6 and 8 h after release. (C) Acetylation patterns of H4 peptide 4–17
(GKGGKGLGKGGAKR) of ‘old’ (R0) and ‘new’ (R4) histones after 6 h after a release into G1/S-phase. Error bars indicate the SEM from three
independent biological experiments. 1ac, monoacetylation; 2ac, diacetylation; 3ac, triacetylation. (D) Comparison of acetylation patterns of ‘old’ and
‘new’ histones after 6 h of NaBu treatment. Left: quantification; right: MALDI-TOF spectrum; asterisk indicates peaks of ‘new’ histones. (E) Comparing
acetylation patterns of ‘old’ and ‘new’ histones when treating for 2 h with NaBu without additional chase or with an additional 2 h chase (F).

4 Nucleic Acids Research, 2009



of new histones. In order to get an estimate of how quickly
the pre-deposition markers disappear, we used the broad-
range deacetylase inhibitor sodium butyrate (NaBu)
(Figure 2A).When treating the cells with NaBu throughout
the labeling period, we observed an increase in acetylation
on the old as well as on the new histones, suggesting that
histone acetyltransferases as well as histone deacetylases do
not distinguish between old and new histones. However,
whereas NaBu treatment leads to similar amounts of all
acetylated isoforms among old histones [mono-, di- and
triacetylated; tetraacetylated H4 could not be analyzed by
MALDI-TOF due to an overlap of the heavy peptide H4ac4
(4–17) with an unmodified H4 peptide], in the case of the
new histones, H4ac2 is the most abundant isoform
(Figure 2D). This was not due to a NaBu-induced delay
of the cell cycle, as treated cells entered S-phase approxi-
mately at the same rate as untreated ones (compare
Figures 1B and 2B). Besides the enrichment of the diacety-
lated H4, we also saw a strong increase in the triacetylated
form of the newH4molecules, suggesting that a subsequent
acetylation that follows incorporation is independent of a
deacetylation event at the other residues (Figure 2D). This
acetylation occurs very likely at K16, as this is the major
acetylation site in human cells (31), and the diacetylated
deposition form of H4 is acetylated at K5 and K12 (14–
17). WhenNaBu was added 4 h after the start of the histone
synthesis, we observed a substantial increase in the mono-
acetylated and the unmodified forms of new H4 suggesting
that the pre-deposition modifications are removed within
<2 h after assembly (Figure 2E). The higher percentage of
diacetylated H4 on the new histones compared to the old
ones is very likely due to the ongoing assembly at 4–6 h,
after the beginning of S-phase. If, after treatment, the his-
tones were incubated for another 2 h in the absence of
NaBu, the acetylation patterns become indistinguishable
between the old and new histones (Figure 2F). In summary,
we conclude from the analysis of acetylation kinetics of new
and old histones that the acetylation is rapidly adjusted to
equalize the modification patterns between old and new
histones. Due to the high turnover of acetyl groups (32),
the pattern of acetylation does not seem to be well suited to
confer stable epigenetic memory. Moreover, as acetylation
events occur independent from each other, we have no
evidence for a regulated establishment of a specific modifi-
cation pattern that is based on distinct pre-existing modi-
fications. This is in agreement with what has been
previously described in yeast (33) and human cells (8).

Histone methylation

In contrast to acetylation, the methylation of lysine resi-
dues on histone tails has been suggested to constitute a
major factor in the establishment and inheritance of stable
chromatin states (4,5,34). We therefore wondered whether
the methylation of histones might show a different behav-
ior than acetylation. We focused our studies mainly on the
most prominent methylations on H3 and H4 (K4, 9, 27,
36 and 79 on H3 and K20 on H4). In contrast to the highly
dynamic lysine acetylation, lysines on the histone tails
of newly synthesized histones are methylated with a
much slower kinetic. When we compared the methylation

levels of H3 and H4 after 6 h of pSILAC labeling, we
observed a striking difference in modification patterns
between old and new histones (Figure 3). As the cells
progress through the cell cycle, methylation patterns on
new histones gradually adopt those on the old histones.
This is most obvious for the methylation of lysine 20
within histone H4 (Figure 3A). On newly synthesized H4
molecules, K20 is usually not modified (15,16) and
becomes monomethylated after incorporation into chro-
matin (16,26). This is in sharp contrast to the methylation
pattern on the pre-existing H4 molecules that are mainly
dimethylated at K20 (Figure 3A).
We observed a similar difference for the methylation on

the H3 tail. Like in the H4 molecule, the replication-
dependent H3 variants are not methylated to a measurable
extent before incorporation (15,16). We concentrated our
analysis on K9, K27, K36 and K79, as these have been
suggested to play important roles during the inheritance of
epigenetic states (5,34). In contrast to yeast cells, most of
the H3 molecules remain unmodified at K79 in human cells
(35,36). This makes it difficult to quantitatively
compare the methylation levels of K79 on old and new
histones. However, we observed a small but discernible
difference between old and new histones with regard
to K79 methylation. Interestingly, we saw more dimethyla-
tion of K79 on the new histones at 6 h after synthesis,
whereas the old histones contain a higher percentage
of monomethylated K79 (Figure 3B). The other lysines
that carry methyl groups within H3 are K4, K9, K27 and
K36. We limited our analysis on K9, K27 and K36, as
the peptide containing K4 (3–8) gave only a very weak
signal and appeared to be mostly unmodified in new as
well as in old histones. Like H4K20me, the differences
in methylation levels between old and new histones 6 h
after the release into S-phase were clearly visible
(Figure 3C and D). In the case of H3K9, the degree of
mono- or dimethylation was considerably lower in the
new histones when compared to the old ones and a large
percentage of the new H3 molecules were still unmodified
at that time point (Figure 3D). As we used MALDI-
TOF for quantification, we could not distinguish bet-
ween trimethylation and acetylation of the peptide, but
based on earlier experiments (15) we suggest that most of
the peptides contributing to this mass carry an acetyl group
at K14. The methylation profiles of the peptides carrying
K27 and K36 that were derived from the old and new
histones are shown in Figure 3D and also show a marked
difference between the two histone types. In contrast to
the methylation at K9, we observed a higher percentage
of monomethyation of this peptide, which was predo-
minantly due to monomethylation at K27 (data not
shown). Interestingly, within the first 6 h after release,
this monomethylation does not seem to get further methy-
lated to the trimethyl state on the new histones, and we do
not observe a strong trimethylated peptide, which is the
predominant one in the pre-existing histones (Figure 3D).
In light of recent reports that show a localization of the
main H3K27-specific histone methyltransferase EZH2
to sites of replication (37), the rapid monomethylation of
H3K27 is very likely a product of the enzyme bound to
replication foci.
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Pulse chase labeling to follow histone modifications over
one cell cycle

Our findings that the methylation patterns of lysine resi-
dues does not adopt the identical modification patterns
immediately after deposition prompted us to ask how
long it would take until the two modification patterns
become indistinguishable. To do this, we pulse labeled
the newly synthesized histones for 6 h using heavy arginine
(R4) and subsequently chased the culture using super-
heavy arginine (R10). This procedure is crucial for the
analysis as it prevents the interference of histones incor-
porated at late S-phase, outside S-phase or during the next
S-phase. As for R4 labeling, we measured incorporation
by quantifying the peptides H364–69 and H468–78 (Figure 4
shows only the quantification of the H3 peptide; a repre-
sentative spectrum is shown in Figure 4C). As the HeLa
cells partly lost their synchrony during the second cell
cycle, the incorporation of R10 into histones is not as
clearly restricted to a defined time window but increases
over the whole analysis time (Figure 4B). Therefore, we
focused our analysis on the comparison between the old
pre-existing histones and the ones incorporated during the
first 6 h of S-phase. The samples were taken every 4 h after
the end of the labeling period until the end of the follow-
ing S-phase as judged by FACS analysis (�30 h after
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release from the G1/S block). During this time, we only
see minor changes in the global methylation patterns of
the old histones arguing for a relatively stable marking
system (Figure 5A, left panels). The methylation patterns
of the newly synthesized histones on the contrary change
slowly during the course of one cell cycle (Figure 5A, right
panels). Similar to what had been reported before (26),
H4K20 gets transiently monomethylated after deposition
and subsequently dimethylated. At the beginning of the
next S-phase, the H4K20 methylation levels of the new

histones are very similar to the old ones (Figure 5B).
This situation is slightly different in the case of the peptide
containing H3K27 and K36, where a dimethylation tran-
siently peaks during G2/M after which the amount of
K27/36me2 declines and the trimethylated peak increases
(Figure 5A, bottom right panel). As in the case of
H4K20me, the methylation of K27/36 is adjusted to the
pattern of the parental histones during the following G1,
such that it is very similar to the parental one at the begin-
ning of the next S-Phase (Figure 5B).
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DISCUSSION

Histone modifications are considered to constitute a
second (epi)genetic code that operates to establish distinct
chromatin structures and maintain them throughout sev-
eral cell divisions. In order for this to happen, the histone
modifications on the pre-existing old histones have to
be copied on the newly deposited histones, which have a
fundamentally different modification pattern when placed
onto DNA (15,18). It has been shown that histone
modifications indeed change during the cell cycle (38).
However, no distinction has been made with regard
to modifications present on old and new histones except
for H4 (26). In order to investigate the mechanisms and
the kinetics of modification pattern inheritance, we used
a pulsed SILAC labeling technique that enabled us
to selectively label the newly synthesized histones and
subsequently compare modifications on old and new his-
tones. In agreement with previous results (32), we found
that the acetylation of histones is highly dynamic and
regulated by a tight equilibrium of acetyltransferases
and deacetylases. The situation is different in the case of
the observed methylations. For all lysines investigated
(except H3K79), we observed a transient peak in the
monomethylated isoform, suggesting that the mono-
methylation is put onto the histones either at or immedi-
ately after histone deposition. Several histone
methyltransferases have been shown to interact with the
replication machinery (37,39,40) where they probably cat-
alyze the monomethylation of histones (41,42). This early
burst of monomethylation is followed by a relatively slow
progression to higher levels of methylation. This is in
accordance with earlier observations, which suggest that
monomethylation occurs first and may indeed be a pre-
requisite for further methylations (16,43). This is espe-
cially interesting in the case of H3K27, where the
methylase EZH2 is responsible for all degrees of methyla-
tion. The stepwise methylation suggests a highly regulated
progression from lower to higher methylated forms. Such
a regulation of the generation of higher methylation states
has been reported for several HMT complexes, where his-
tone-binding subunits are required to achieve these states
(44,45). The trimethylated forms are much better binding
partners for the structural proteins HP1 and Polycomb
(46-48) that are thought to condense chromatin by pre-
venting nucleosome remodelers from acting on them (49).
It is therefore tempting to speculate that the slow tri-
methylation on newly deposited histones prevents a pre-
mature chromatin condensation and allows chromatin to
adopt a structure that is more susceptible for external
signals. This window of opportunity could allow cells to
stably shift their gene expression profile when they are
exposed to changing external signals, such as stem cells
leaving their specific niche. On the other hand, the methy-
lation state could also provide a means for the cell to
detect the cellular age, as trimethylated isoforms will
increase when senescent cells do not undergo continuous
cell division (3,50). Especially, as no demethylase has been
characterized so far that is able to remove methyl groups
from H4, H4K20 may have an exquisite function in mea-
suring cellular age (26).

We and others (26) have analyzed the modification
kinetics in immortalized human cells (HeLa) of a tumori-
genic origin. Many tumor cells have a markedly different
histone modification pattern when compared to normal
cells (51). This has to be taken into account when interpret-
ing our data. It will be interesting to see whether primary
cells have a similar kinetic or whether the fast replication
of tumor cells may in fact prevent the cells from fully repli-
cating the epigenome, which could in fact explain the epi-
genetic instability that is frequently observed in tumors.
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Discussion3.2 

H3K36 methylation during transcription3.2.1 

Stepwise regulation has been described before for H3K76 (K76 equates to K79 in other organisms) 

in Trypanosoma brucei (Janzen et al. 2006). This unicellular parasitic protozoan has two homologs of 

DOT1 (A and B) that catalyzes di- and trimethylation of H3K76, respectively. DOT1A is essential for 

viability and dimethylation occurs only in mitosis. Whereas trimethylation is detected throughout 

the cell cycle and the absence of DOT1B does not affect viability (Janzen et al. 2006). Moreover, 

H4K20 methylation is also regulated in a stepwise manner. Monomethylation is catalyzed by Pr-

Set7/Set8 exclusively and Suv4-20h1 and Suv4-20h2 are the methyltransferases for H4K20 di- and 

trimethylation (Schotta et al. 2004; Pesavento et al. 2008). Increasing the methylation degree in a 

stepwise manner adds additional regulation possibilities. Only when reaching a specific condition 

the next methyl group is added or removed. However, when the cascade of methylation is disrupted 

the final cell fate cannot be obtained. 

The H3K36 specific methyltransferase dMes-4 is required for dimethylation whereas trimethylation 

is mediated by dHypb. Knockdowns of dMes-4 and dHypb affected the global methylation levels 

of H3K36. Specifically, reduction of dHypb resulted in a decrease of H3K36 trimethylation and at 

the same time in an increase of dimethylation. Knockdown of dMes-4 reduced the levels of di- as 

well as trimethylation of H3K36. This was shown by Western blot analysis and confirmed by mass 

spectrometry using MS/MS analysis in order to determine specifically the modified residue and 

exclude antibody cross reactivity when Western blotting. 

One way how histone modifications can convey their biological signal is by recruiting specific 

binding factors. Several proteins binding to methylated histone tails containing the chromodomain 

as a binding motif (Daniel et al. 2005). MSL3, a component of the MSL (male specific lethal) complex, 

also contains a chromodomain. The MSL complex is required for dosage compensation of the X 

chromosome in Drosophila. The MSL3 homolog in yeast is the Eaf3 protein and it was identified 

to interact via its chromodomain with H3K36 trimethylation (Joshi et al. 2005). The Drosophila 
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MSL3 protein is highly conserved and also contains an N-terminal chromodomain (Koonin et al. 

1995). A recent study by Larschan et al. demonstrated that the MSL complex is recruited to active 

genes on the X chromosome by the interaction of H3K36 trimethylation and MSL3 (Larschan 

et al. 2007). For a comparative ChIP-chip analysis chromodomain deletion mutants as well as 

targeted point mutation mutants were created. The results of the high resolution analysis revealed 

that the chromodomain mutants fail to bind most of the genes on the X chromosome (Sural et al. 

2008). Sural et al also suggest that the spreading of dosage compensation is mediated by the MSL3 

chromodomain.

Different methylation states of H3K36 lead to either increasing or decreasing levels of H4K16 

acetylation on autosomes. Dimethylation of H3K36 increases H4K16 acetylation whereas 

trimethylation is associated with reduction of H4K16 acetylation levels. A speculative scenario 

would be that dimethylation is recruiting MOF, a H4K16 HAT activity (Akhtar et al. 2000; Taipale 

et al. 2005) to the region. This would fit to previous described studies where MOF interacts 

with MLL, a H3K4 methyltransferase (Dou et al. 2005). By controlling hyperacetylation di- and 

trimethylation states of H3K36 possess opposing effects towards chromatin accessibility. Open 

and closed chromatin structures are needed during cycles of transcription (Gregory et al. 1998). 

Especially acetylation of H4K16 is known to have an impact on higher order chromatin structure 

and to influence the binding of non-histone proteins. Interestingly, chromatin compaction by ISWI, 

a remodeling ATPase is restricted by H4K16 acetylation, as well as the remodeling ability of ACF is 

inhibited when H4K16 acetylation is present (Corona et al. 2002; Clapier et al. 2002; Shogren-Knaak 

et al. 2006). This site specific function of H4K16 acetylation to counteract chromatin compaction in 

combination with its dependency of a specific H3K36 methylation state supports the histone code 

hypothesis. It would be of great interest to investigate further mechanisms by which acetylation in 

combination with methylation exerts its role in transcription.
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H4K20 monomethylation during chromatin assembly3.2.2 

To study chromatin assembly a cell free extract was used that derived from early D. melanogaster 

embryos. Embryogenesis in Drosophila is unique since cleavage results in a syncytium. First cells 

surrounded by plasma membranes are formed after an approximate accumulation of 5000 nuclei. 

At the end of embryogenesis heterochromatin becomes strongly visible at the apical pole of early 

blastoderm nuclei (Rudolph et al. 2007). An extract from preblastoderm embryos contains the 

maternal pool of histones and assembly factors that assembly DNA into nucleosomal arrays. This 

very stable and efficient system is particularly useful to investigate chromatin assembly mechanism 

in vitro (Becker et al. 1992; Eskeland et al. 2007). However, the reconstituted chromatin lacks linker 

histone H1 (Becker et al. 1992). Therfore, in early Drosophila development H1 is not involved 

in chromatin condensation. But studies from early embryogenesis suggest that HMG-D (high 

mobility group proteins), an abundant chromosomal protein, serves as substitute for linker histone 

H1 (Ner et al. 2001). Maybe also other essential factors are substituted or even missing since the 

analysis of histone modifications on H3 and H4 unveiled only H4K20 to be methylated. Previous 

studies using HeLa cells have revealed that also H3K9 methylation exists prior to deposition (Loyola 

et al. 2006). It is difficult to compare organisms since the profiles of histone modifications differ 

significantly from unicellular eukaryotes to mammals (Garcia et al. 2007). In contrast to HeLa 

cells this present study detected no H3K9 methylation, neither before assembly nor after assembly. 

Possibly, methylation on H3K9 is needed prior to deposition in order to spread the mark during 

chromatin maturation. Another explanation could be that targeting of Su(var)3-9 to chromatin is 

inactive or inhibited in the extract. To address these questions further experiments could include 

adding candidate targeting factors to the assembly reaction or add premethylated nucleosomes. 

In contrast to methylation, acetylation patterns obtained before and after assembly are in agreement 

with previous studies. H4 is deposited in a diacetylated form (Sobel et al. 1995; Chang et al. 

1997) and the removal of the acetyl marks starts after assembly in a constant manner. Taddei and 

colleagues suggest that deacetylation takes less than one hour (Taddei et al. 1999) but the results 

of this study observe a gradual deacetylation at least over six hours. We conclude that the in vitro 

system is reliable in terms of what happens but the kinetics is shifted.

In this work and also in other studies (Pesavento et al. 2008) it was demonstrated that H4K20 
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is monomethylated right after chromatin assembly (Figure 6). The functions of H4K20 

monomethylation are still vague. Studies on H4K20 reported monomethylation associated with the 

promoter region of a repressed reporter system (Vaquero et al. 2004) and also with Xist expression 

in ES cells and labels the initiation of X inactivation (Kohlmaier et al. 2004). On the contrary 

H4K20 monomethylation is also found at promoter and coding regions of active gene and complies 

with hyperacetylation (Talasz et al. 2005). This present work suggests H4K20 monomethylation to 

have a role in chromatin assembly.

Pr-Set7, the monomethyltransferase of H4K20 (Nishioka et al. 2002; Xiao et al. 2005) localizes 

to the replication fork and is essential for S phase progression (Tardat et al. 2007; Jørgensen et al. 

2007). Together with the fact that Pr-Set7 only acts on nucleosomal substrates, being consistent 

with studies in mammalian (Fang et al. 2002), this also supports the assumption that at least one 

function of H4K20 monomethylation is to label newly synthesized H4 immediately after chromatin 

assembly. With this mark one could distinguish between old and new H4 since old histones H4 

are predominantly dimethylated and no demethylase found so far impacts on H4K20. This mark 

could then be important for assembly and coordinated chromatin maturation during cell cycle. 

Previous studies also observe a cell cycle dependent change in Pr-Set7 expression and also in the 

corresponding histone mark with an increase at late S/G2 and a peak in M phase (Houston et al. 

2008; Pesavento et al. 2008; Oda et al. 2009). To summarize this, newly synthesized H4 is deposited 

onto chromatin during S phase and becomes monomethylated at lysine 20 at late S/G2 phase. During 

G1 phase levels drop due to a conversion to di- or trimethylation.

Methylation marks recruit a diverse array of proteins such as Tudor domain containing factors 

classified as the “Royal family” (Maurer-Stroh et al. 2003). One of these factors is l(3)MBT that 

has been shown to bind, via a conserved malignant brain tumor motif, H4K20 monomethylated 

peptides (Li et al. 2007) and compacts nucleosomal arrays to promote a higher order chromatin 

structure (Trojer et al. 2007). This present study describes the interaction of dl(3)MBT and dRpd3. 

The recruited HDAC may also assist in establishing higher order chromatin by the removal of 

acetyl groups.

The importance of Pr-Set7 and thus H4K20 monomethylation is stressed by recent mouse studies 

where embryonic lethality is observed in Pr-Set7/Set8 knockout mice (Oda et al. 2009). Oda and 
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colleagues can link DNA damage and cell 

cycle delay to the lack of Pr-Set7. Pr-Set7 

RNAi cells show an increase in DNA damage 

as well as aberrant centrosomes (Houston 

et al. 2008). However, it was recently shown 

that Pr-Set7 is also able to methylate p53. So 

it can be assumed that the association with 

DNA damage is due to altered functions of 

p53 (Shi et al. 2007). So it will be to further 

studies to discover the still unknown proteins 

that can be methylated by Pr-Set7.

Cell differentiation is controlled by 

transcriptional mechanisms and epigenetic 

modifications. A recent study revealed a 

link between H4K20 monomethylation 

and adipocyte differentiation. Pr-Set7/

Set8 is upregulated thus increasing H4K20 

monomethylation levels during adipogenesis 

and the knockdown of Pr-Set7/Set8 represses 

adipocyte differentiation (Wakabayashi et 

al. 2009). The authors conclude that Pr-Set7/Set8 coordinately regulates adipocyte differentiation 

through histone modifications. This finding provides yet another role of H4K20 monomethylation 

in vivo.

Preliminary studies have shown in the context of DREX assembly that inhibition of H4K20 

monomethylation by SAH not only inhibits the deacetylation of the predeposition marks but also 

the dissociation kinetic of CAF1 is altered (Figure 7). Without inhibitor CAF1 stays associated with 

chromatin for less than 60 minutes but under addition of SAH CAF1 remains bound to chromatin 

for more than three hours. It would be interesting to investigate which mechanisms trigger the 

chaperone to abide with chromatin or to dissociate from chromatin.

Me

l(3)MBT

Rpd3
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Me
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Figure 6: Chromatin maturation. Newly synthesized 
H4 is acetylated at K5 and K12 and associated with the 
histone chaperone CAF-1. Upon nucleosome assembly, 
H4 is monomethylated at K20, that serves as a binding 
site for l(3)MBT. Rpd3 is in a complex with l(3)MBT 
and deacetylates H4K5 and K12.
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Preliminary proteomics experiments were done, analyzing all proteins bound to chromatin again 

with or without treating the samples with SAH after three hours of assembly. Upon inhibition with 

SAH Pr-Set7 was found whereas in the control no Pr-Set7 was identified. This suggests that Pr-Set7 

briefly interacts with chromatin and can only be trapped to chromatin when monomethylation of 

H4K20 is inhibited. However, these proteomics experiments need to be repeated and analysis of 

chromatin of different time points after assembly could reveal additional information about the 

dynamics of chromatin assembly factors.

Figure 7: Monomethylation of H4K20 triggers dissociation of CAF1. Western blot analysis of kinetics of 
CAF1 subunit p105 (A) and subunit p55 (B) with and without inhibition of H4K20 monomethylation by 
SAH.
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Histone modifications during chromatin assembly3.2.3  in vivo

To be able to compare old and new histones and its associated modifications a pulsed SILAC labeling 

technique was used that selectively labeled new histones (Scharf, Barth, et al. 2009). Analysis by 

means of mass spectrometry (Bonaldi et al. 2004) made it possible to compare modification pattern 

from old versus new histones in the same spectrum. Using pulsed SILAC for investigating the 

inheritance of histones has several advantages. First no radioactive material is needed as it was 

for the pulse chase experiments from Jackson (Jackson et al. 1975). These studies were also not 

powerful enough to analyze individual histone modification patterns and no direct comparison 

old versus new histones was possible. In the recent years genomewide arrays revealed valuable 

information about histone modification patterns however a direct comparison old versus new 

histones is not feasible (Robyr et al. 2003). Thus pulsed SILAC is an elegant method to use when 

comparing the modification patterns of old and new histones. 

The amount of DNA and tightly coupled the amount of histones (Marzluff et al. 2002) doubles 

during S phase expecting 50% old and 50% new histones after one round of S phase. To test this, 

tumor cells (HeLa) were synchronized and labeled during S phase and further on. RT PCR results 

as well as MALDI TOF results showed preferential labeling between two and six hours post 

release into S phase. A total maximum of 43% incorporation efficiency is reached after 12 hours of 

labeling. Reasons for the discrepancy between expected and observed incorporation may be due 

to an endogenous stored pool of R0 arginine that is incorporated before the exogenous supply. To 

test the amount of endogenously stored R0 arginine, peptide aa41 to 49 of histone H3 was analyzed 

since it contained two arginines resulting from the lacking ability of trypsin to digest before a 

proline. The amount of peptides containing one R0 and one R4 labeled arginines reflects the amount 

of the stored pool. Only six percent of the total peptides show a combination of R0 and R4 labeled 

arginines arguing for a low abundance of stored arginine within the cell. But these six percent 

explain part of the difference between measured and calculated incorporation efficiency. Another 

possible explanation for not reaching the expected 50% is that upon the release of the thymidine 

block not all cells recover and thus hesitate to start into S phase. In the FACS profiles a very small 

pool of cells arrest in G1 phase and do not enter S phase as it was also observed in previous studies 

(Bostock et al. 1971).
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Analysis of histone modifications was solely performed using MALDI TOF. This technique allows 

determining the mass of a peptide and conclusion can be drawn about the modification state of the 

peptide. However, from the mass alone the exact position of the modification cannot be deduced. 

For peptides containing multiple modifiable residues tandem MS is suggested to map the specific 

site of the modification (Villar-Garea et al. 2008). 

Furthermore propionic anhydride treatment was used for the analysis. This chemical modification 

procedure is needed to achieve analyzable peptide fragment after the tryptic digest. However, when 

using the anhydride treatment it cannot be distinguished between acetylation and trimethylation 

as both masses create overlapping peaks. To assign a mass to either acetylation or trimethylation 

tandem MS should be used in further experimental analysis.

When using SILAC additional overlapping peaks were created. Therefore it was not possible to 

analyze the four times acetylation state of peptide aa4 to 17 of the newly synthesized histones as 

this peak overlaps with the unmodified peptide aa56 to 67 of H4. However, the incidence that all 

four lysines (K5, 8, 12, 16) are acetylated at the very same time is rare.

Consistent with previous studies (Chestier et al. 1979) a highly dynamic acetylation pattern was 

detected thus proofing the experimental setup to be correct. In this study peptide aa4 to 17 on 

H4 was analyzed. Six hours post release the modification pattern of old and new histones are 

indistinguishable and most peptides are unmodified. However, it is known that lysine 5 and 12 on H4 

are acetylated prior to chromatin assembly (Sobel et al. 1995) and the deacetylation is important for 

chromatin maturation (Annunziato et al. 1983). Taddei and colleagues defined a time window of 20 

to 60 minutes where deacetylation occurs (Taddei et al. 1999). To omit deacetylation a deacetylase 

inhibitor sodium butyrate was applied. The diacetylated form can be visualized when sodium 

butyrate is applied simultaneously with the release. Further experiments using sodium butyrate at 

different time points and for different duration revealed a dynamic equilibrium of acetylation and 

deacetylation. Also the fact that deacetylation occurs fast was verified with pulsed SILAC.

On the contrary methylation patterns show slow dynamics. It takes longer than the 60 minutes 

shown for deacetylation until the new histones resemble old histones in terms of modification 

marks. After six hours post release methylation on H4K20 is strikingly different when comparing 

old and new histones. Old histones are mainly dimethylated but new histones preferentially show 
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the monomethylated mark. Previous studies have shown a cell cycle regulated manner of H4K20 

methylation starting in an unmethylated state prior to deposition, followed by an immediate increase 

of monomethylation and then ending in a dimethylated form rather than the rare trimethylated 

state (Pesavento et al. 2008; Scharf, Meier, et al. 2009). Judging from the pulsed SILAC results 

H4K20 requires more than 20 hours in a stepwise manner to adjust the modification patterns 

from old to new. The kinetics for the individual methylation states differ so that monomethylation 

is observed very rapidly whereas further methylation states require more time. It was also shown 

that monomethylation is needed as a substrate for the enzymes responsible for setting the di- 

and trimethylation mark (Schotta et al. 2008). In the line with methylation kinetics on K20 the 

establishment of K27/K36 and K9/16 methylation on the new histones is also observed in a stepwise 

manner and also requires almost one entire cell cycle. For K36 on H3 a stepwise methylation 

manner involving different enzymes has also been shown in the study by Bell et al. (Bell et al. 

2007). It is tempting to speculate that the stepwise methylation and its different kinetics are caused 

by the different recruitment manners of the appropriate methyltransferase. So is Pr-Set7/Set8 the 

monomethylase of H4K20 brought by PCNA to the replication fork and is able immediately after 

chromatin assembly to set the methylation mark thus supporting the fact that monomethylation 

occurs fast on K20. The recruitment of the enzymes mediating di- and trimethylation seem to be 

obtained outside S phase. However, this argument holds not true for H3K27 methylation as the 

same enzyme EZH2 is responsible for all three methylation states. Another possibility to explain 

the stepwise methylation and the long methylation process is that the cell creates a window of 

opportunity. During this window only histone modifications are set that allow an accessible 

chromatin structure. The cell is now able to easily process external signals and just before the start 

of the next cell cycle further methylation degrees are added allowing chromatin to mature to its 

condensed sate. Interestingly, no demethylase for H4K20 is found so far. Therefore it would be an 

advantage for the cell to postpone permanent marks as long as possible in order to be flexible to the 

environment as long as possible. 

For future experiments changing the synchronization technique should be considered. The 

common method of a double thymidine block is a simple way to synchronize cells but it may lead 

to metabolism perturbation and may affect the progression trough the cell cycle. A more elaborate 

method is counterflow centrifugal elutriation, where cells are separated according to their cell size 

and sedimentation density thus resulting in different pools of cells in different cell cycle stages. 
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This method is devoid from external supplementation thereby adding no additional stress on the 

individual cells (Banfalvi 2008).

In this study HeLa cells were used as the only cell line to be analyzed. However, many tumor cells 

carry abnormal modification pattern (Fraga et al. 2005). It would be of great interest to explore 

the modification behavior in a non tumor derived cells such as primary cell lines and compare 

the results with the obtained in this study. Maybe inaccurate inheritance of histone modification 

pattern as a consequence of a rapid replication time in tumor cells is responsible for genomic and 

epigenetic instability typically considered as a hallmark of cancer (Sieber et al. 2003).

The timing of DNA replication during S phase of the cell cycle and gene transcription is coordinated 

and replication timing, histone acetylation and transcription was profiled throughout the Drosophila 

genome by a recent study of Schwaiger et al. H4K16 acetylation was shown to be enriched at 

initiation zones (Schwaiger et al. 2009). Since now the technique of pulsed SILAC is established 

for comparing old and new histones, it would be interesting to alter labeling times. By shortening 

the labeling time to less than 6 h one could dissect modifications associated with early replicating 

chromatin. Also interesting would be the labeling of late replicating chromatin solely and of course 

the comparison of late versus early replicating chromatin whether and how the establishment of 

histone modifications are different.
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General outlook3.2.4 

All DNA mediated processes have to cope with chromatin and given the fact that histone 

modifications are key players in controlling the structure and function of the chromatin fiber, it is of 

great importance to understand how histone modifications are regulated and organized. Especially 

interesting is the inheritance of histone modifications since defined patterns of gene expression and 

silencing, are needed for cell survival. To ensure such epigenetic inheritance, it is clear that complex 

mechanisms operate during replication. Besides histone modifications there are also other factors 

involved in epigenetic inheritance that can be found in early replicating chromatin. An elegant 

technique to specifically investigate newly replicated chromatin is “click chemistry”. When using 

click chemistry, a base analog is incorporated during replication similar to BrdU labeling. But 

instead of using an antibody for further processing, the modified base is “clicked” to a linker that 

can be coupled to either a fluorophor or biotin. The latter can then be isolated with streptavidin 

coated beads (Salic et al. 2008; Speers et al. 2004). This technique of labeling newly replicated 

chromatin and the possibility to isolate associated chromatin binding proteins could shed more 

light in the mechanisms of epigenetic inheritance. Even more powerful could be the combination 

of click chemistry and thus labeling newly replicated chromatin and pSILAC that allows specific 

labeling of newly synthesized histones to discover the mechanisms by which the cells identity is 

definded.

Annette N.D. Scharf und Axel Imhof. Replikation des Chromatins-dispersiv statt semi-

konservativ? BIOspektrum, September 2007.
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Vergleicht man eine menschliche Leberzelle mit einer Muskelzelle, so ist
die gespeicherte Erbinformation in Form von DNA bei beiden Zelltypen
identisch. Dennoch erfüllen Leber- und Muskelzelle unterschiedliche Auf-
gaben im Körper und exprimieren dazu unterschiedliche Gene. Wie kann
man sich dieses Phänomen erklären?

ó Schon seit Anfang des letzten Jahrhun-
derts wurde der Verpackung der DNA eine
wichtige regulatorische Rolle zugeschrieben.
Bereits vor fast 80 Jahren hat Emil Heitz auf
eine Diskrepanz zwischen der physikalischen
und der genetischen Karte von Chromsomen
der Taufliege Drosophila melanogaster hin-
gewiesen (Abb. 1). Heitz konnte in Moosen
zeigen, dass sich unterschiedliche Bereiche
des Chromatins während des Zellzyklus
unterschiedlich verhalten, was zur Etablie-
rung der Begriffe Euchromatin für das sich
verändernde und Heterochromatin für das
stets kondensiert bleibende Chromatin führ-
te. Bereits damals hat Heitz auf die, wie er es
nannte, genetische Passivität des Hetero-
chromatins hingewiesen[1]. Nach den Beob-
achtungen von Heitz dauerte es jedoch noch
weitere 40 Jahre, bis die molekulare Grund-
struktur des Chromatin, das Nukleosom, cha-
rakterisiert werden konnte[2]. Dieser funda-
mentale Baustein beinhaltet doppelsträngige
DNA mit einer Länge von 147 Basenpaaren,
die um ein Oktamer aus Proteinen, die His-
tone, gewunden ist. Ein Oktamer besteht aus
jeweils zwei Molekülen der Kernhistone H2A,
H2B, H3 und H4[3]. Nukleosomen, die durch
den fortlaufenden DNA-Faden miteinander
verbunden sind, werden oft als „Perlenkette“
mit einer Größe von 11 nm dargestellt, die
sich erst durch den Einbau des Linker-His-
tons H1 sowie die posttranslationalen Modi-
fikationen von Kernhistonen zu einer spiral-
förmigen Struktur mit einem Durchmesser
von 30 nm faltet. Höhere Stufen der Kom-
paktierung bis hin zum mitotischen Chro-
mosom unterliegen dem Zusammenspiel wei-
terer Proteine.

Wie werden nun bestimmte Chromatin-
strukturen, wie das Heitz’sche Eu- bezie-
hungsweise Heterochromatin oder das inak-
tive X-Chromosom in weiblichen Säugerzel-
len, etabliert? Die vollständige Sequenzierung
von ganzen Genomen und die damit einher-
gehenden Möglichkeiten, die Eigenschaften
bestimmter Bereiche des Chromatins „genom-
weit“ zu untersuchen, erlaubten eine sehr viel
genauere und detailliertere Charakterisie-
rung des Chromatins, als dies noch zu Zei-
ten von Emil Heitz der Fall war. So stellte sich
heraus, dass z. B. große Bereiche im Genom
durch DNA-Methylierung stillgelegt werden
können[4], was durch bestimmte posttransla-
tionale Modifikationen von Histonen[5] oder
den Einbau von Histonvarianten[6] und Chro-
matin-bindenden Proteinen noch weiter ver-
stärkt wird.

Histon-Modifikationen, Bausteine des
Zellgedächtnisses
Besonders den Histon-Modifikationen wird
derzeit große Bedeutung bei der Ausbildung
von definierten Chromatinstrukturen zuge-
messen. Viele sequenzspezifisch DNA-bin-
dende Faktoren sind in der Lage, Chromatin-
modifizierende Enzyme an dem jeweiligen
Genlokus zu rekrutieren und dort ein spezi-
fisches Modifikationsmuster, einen Histon-
Code[7], zu etablieren. Dieses Muster kann
dann, so die Hypothese, von Chromatin-asso-
ziierten Proteinen ausgelesen werden, die
ihrerseits wiederum eine typische Chroma-
tinstrukur induzieren. Acetylierte Nukleoso-
men kennzeichnen so zum Beispiel offene
Chromatinstrukturen, die von der Trans-
kriptionsmaschinerie abgelesen werden kön-
nen, während Histone, die an bestimmten
Lysinresten mehrfach methyliert sind, still-
gelegte Chromatinbereiche zu markieren
scheinen.

Die Verteilung von Heterochromatin und
Euchromatin wird klonal vererbt, das heißt,
dass eine bestimmte Struktur, nachdem sie
einmal gebildet wurde, über mehrere Zellge-
nerationen hinweg vererbt werden muss.
Während jedoch über die Erzeugung von kom-
plexen Histon-Modifikationen schon relativ
viel bekannt ist, wird die Aufrechterhaltung

Histonmodifikationen

Replikation des Chromatins –
dispersiv statt semikonservativ?

˚ Abb. 1: Zeichnungen von E. Heitz von Chromosomensätzen unterschiedlicher Drosophila-
Unterarten (nach[1]). Besonders auffällig sind das Vorhandensein jeweils eines stark verkürzten
Chromosoms in der Mitte sowie die unterschiedliche Dicke innerhalb eines Chromosoms (chro-
mosomale Längsdifferenzierung).



von definierten Modifikationsmustern auf
den Histonen bei der Verdopplung des Chro-
matins noch wenig verstanden. Während der
Replikation muss sich eine einmal etablierte
Chromatinstruktur mitsamt ihren teilweise
hochkomplexen Modifikationen der Heraus-
forderung zweier elementarer Prozesse stel-
len. Zum einen müssen die bereits auf der
DNA existierenden Nukleosomen auf die neu
entstandene DNA transferiert werden, zum
anderen muss der aufgrund der Replikation
erhöhte Bedarf an Nukleosomen durch neu
synthetisierte Histone gedeckt werden. Wäh-
rend der S-Phase besteht also die Gefahr,
dass bereits etablierte Chromatinstrukturen
entweder durch den Einbau neu syntheti-
sierter Histone oder durch die Entfernung von
strukturbildenden Nicht-Histon-Proteinen des
Chromatins verändert wird. Viele experi-
mentelle Beobachtungen zeigen jedoch, dass
genau das nicht der Fall ist und die Unter-
schiede im Chromatin erstaunlich präzise epi-
genetisch, also nicht an die DNA-Sequenz
gekoppelt, vererbt werden. Um diesem Phä-
nomen der Vererbung von Chromatinstruk-
turen auf den Grund zu gehen, haben wir
uns mit den Histon-Modifikationen während
des Zusammenbaus von Chromatin aus neu
synthetisierten Histonen und DNA genauer
beschäftigt.

Einbau neu synthetisierter Histone
Mit Fortschreiten der Replikationsgabel wer-
den die bereits vorhandenen Nukleosomen
von der DNA entfernt. Allerdings ist es unklar,
ob die Bewegung der DNA-Synthesemaschi-
nerie alleine für diesen Vorgang ausreichend
ist oder ob zusätzliche Faktoren eine Rolle

spielen. RNAi-Experimente zeigten, dass ATP-
abhängige Chromatin-remodelers für die DNA-
Replikation unerlässlich sind[8]. Zur Wieder-
verwertung der bereits vorher vorhandenen
Histone werden Histon-Chaperone benötigt[9].
Solche Hilfsproteine interagieren mit Histo-
nen, fördern den langsamen Transfer der basi-
schen Histone auf die DNA und verhindern
damit die Bildung eines Histon-DNA-Aggre-
gats. H2A-H2B-Dimere assoziieren zum Bei-
spiel mit FACT1, einem hoch konservierten
Histon-Chaperon, welches interessanterweise
auch die Transkription stimuliert. Das His-
ton-Chaperon CAF-12, bestehend aus drei
Untereinheiten, ist mit den Histonen H3 und
H4 assoziiert und erleichtert den Einbau die-
ser Histone in das Chromatin. Die bestehen-
den Histone werden in zufälliger Art und
Weise hinter der Replikationsgabel verteilt
und neu synthetisierte Nukleosomen füllen
die Lücken auf[10]. Die Replikation des Chro-
matins oder zumindest der Histone und der
Information, die sie tragen, erfolgt also im
Gegensatz zur DNA-Replikation dispersiv
statt semikonservativ.

Es stellt sich nun die Frage, wie die epige-
netische Information bei der Verdopplung der
DNA vererbt wird. Theoretisch können die
bereits vorher vorhandenen Histone und ihre
Modifikationen als Blaupause dienen und
somit die Information auf die neu syntheti-
sierten Histone kopieren.

Bestimmen bestehende Histon-
Modifikationen das Schicksal des neu
synthetisierten Chromatins?
In Zusammenarbeit mit der Arbeitsgruppe
von Genevieve Almouzni am Institut Pasteur
in Paris konnten wir zeigen, dass neu syn-
thetisierte Histone H3 und H4 sich durch ein
spezifisches Modifikationsmuster auszeich-
nen, das sich deutlich von dem der elterlichen
Histone unterscheidet[11]. Neu synthetisier-
tes H4 besitzt evolutionär konservierte Ace-
tylierungen an Lysin 5 und 12, die von der
Histon-Acetyl-Transferase HAT1 übertragen
und zeitnah nach Replikationsende von His-
ton-Deacetylasen wieder entfernt werden. Ver-
glichen mit der transienten Acetylierung ist
die Halbwertszeit der Histon-Methylierung
deutlich länger[12]. Jedoch hat die Isolierung
von mehreren Histon-Demethylasen die bis-
herige Ansicht, dass Histon-Methylierung
eine irreversible und damit hervorragend zur
Vererbung von Chromatinstrukturen geeig-
nete Modifikation ist, zunichte gemacht. Die
einzige Methylierung an neu synthetisierten
Histonen scheint eine Methylierung am
Lysin 9 im H3-Molekül zu sein. Alle weiteren
Methylierungen von Histonen finden erst
nach Einbau in das Chromatin statt. Es ist gut
möglich, dass diese ursprünglichen Modifi-
kationen von Enzymen erkannt werden, die
auf dem Level der Nukleosomen ihre Akti-
vität ausüben und dadurch das endgültige
Modifikationsstadium beeinflussen. Bereits
beim Einbau der Histone während der Repli-
kation scheinen also schon die Weichen für
bestimmte Chromatinstrukturen gelegt zu
werden. So ist es zum Beispiel schon seit län-
gerem bekannt, dass Histon-H3-Varianten in
unterschiedlichen Bereichen des Chromatins
zu finden sind. Während das replikationsab-
hängig exprimierte H3.1-Molekül in allen
Bereichen des Chromatins, also auch dem
Heterochromatin, zu finden ist, haben wir die
replikationsunabhängig synthetisierte Vari-
ante H3.3 hauptsächlich in aktiv transkri-
bierten Bereichen gefunden. Die beiden Vari-
anten unterscheiden sich jedoch nur in weni-
gen Aminosäuren und das für die Synthese
von stillgelegtem Heterochromatin so wich-
tige Lysin 9 (K 9) wird in beiden Varianten
gefunden. Wir stellten uns daher die Frage,
warum die Trimethylierung von Lysin 9 als
Signatur des Heterochromatins fast nie in
Nukleosomen, die H3.3 enthalten, nachweis-
bar ist, oft jedoch in H3.1-Nukleosomen. Die
Enzyme, die für die Methylierung von Lysin
9 in Säugerzellen verantwortlich sind –
SETDB13, SUV3-9H1 und -H24, G9a5, ESET6 –

˚ Abb. 2: Stufenmodel der Etablierung und Vererbung posttranslationaler Histon-Modifikationen
am Beispiel von H3K9. Monomethyliertes H3.1 ist sensitiv für Suv39 und kann an K9 (Lysin 9) tri-
methyliert werden. Im Gegensatz dazu ist H3.3 auf K9 acetyliert beziehungsweise dimethyliert
und kann nicht weiter methyliert werden (Copyright Elsevier).

1 Facilitates chromatin transcription
2 Chromatin assembly factor 1
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sind alle in vitro in der Lage, sowohl H3.1
als auch H3.3 zu methylieren. Eine mög-
liche Erklärung für diese Beobachtung
liefert jedoch ein Vergleich der verschie-
denen H3-Varianten, jeweils vor und nach
dem Einbau in Chromatin. So findet man,
dass H3.1 am Lysin 9 zunächst nur mono-
methyliert ist, dann von der Heterochro-
matin-spezifischen Methyltransferase
SUV39H1 trimethyliert wird und somit
vermutlich zur Bildung des Heterochro-
matins beiträgt. Dagegen wird H3.3
bereits vor dem Einbau an Lysin 9 ace-
tyliert und dimethyliert, was eine nach-
folgende Trimethylierung von Lysin 9 ver-
hindert und somit schon frühzeitig die
Ausbildung von Heterochromatin in den
H3.3-enthaltenden Bereichen unterbin-
det[11].

Epigenetische Lesezeichen
Epigenetische Ereignisse ermöglichen
es, über die Ebene der DNA hinaus
zusätzliche Informationen zu kodieren.
Wenn man den DNA-Code mit den Buch-
staben eines Buchs vergleicht, dann wür-
de dem Chromatin die Rolle der Inhalts-
angabe und des Registers zukommen. In
vielen Nachschlagewerken ist eine gute
Gliederung der Schlüssel für das Auffin-
den von Informationen und bestimmt
daher den Nutzwert des Werks. Die der-
zeitige Forschung steht noch an den
Anfängen, die genauen Vorgänge wäh-

rend der Chromatin-Assemblierung zu
verstehen. Wir hoffen, dass unsere Arbei-
ten einen Beitrag zum Verständnis des
Kopiermechanismus der Chromatin-
struktur und damit zur epigenetischen
Vererbung liefern können. ó
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Abbreviations

Ac Acetylation
ACN Acetonitrile
ADP Adenosindiphosphate
ASF1 Antisilencing function 1
ATP Adenosintriphosphate
bp Basepairs
BSA Bovine serum albumin
CAF1 Chromatin assembly factor 1
Co-REST Corepressor to REST
CTD C-terminal domain
DMSO Dimethylsulfoxide
DNA Desoxyribonucleic acid
dNTP Desoxyribonucleotidetriphosphate

DREX Drosophila embryonic extract
Drosophila Drosophila melanogaster
DTT Dithiothreitrol
E(Z) Enhancer of zeste
E.coli Echerichia coli
EDTA Ethylendiamintetraacetate
EGTA Ethylenglycol-bis(2-aminoethyl)-N,N,N´,N`-tetraacetic acid
ES cells Embryonic stem cells
EtBr Ethidiumbromide
EtOH Ethanol
EW Embryo wash
EX Extraction buffer
EZH2 Enhancer of Zeste homolog 2
FACS Fluorescence activated cell sorting
FACT Facilitates chromatin transcription
FAD Flavin adenine dinucleotide
Fe Ferrum
FPLC Fast protein liquid chromatography
Gcn5 General control non-derepressible
GNAT Gcn5 related N-acetyltransferase
H3, H4, H2A, H2B, H1 Histones
HAT Histone acetyltransferase
HDAC Histone deacetylase
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Abbreviations

HeLa cells Henrietta Lacks cells
HEPES (N-(2-Hydroxyethyl)piperazine-H´-(2-ethanesulfonic acid)
HMG High mobility group proteins
HMT Histone methyltransferase
HP1 Heterochromatin protein 1
IPTG 1-isopropyl-ß-D-1-thiogalacto-pyranoside
JmjC Jumonji C
K Lysine
kb Kilobase
l(3)MBT Lethal(3)malignant brain tumor-like 3
LSD1 Lysine-specific demethylase 1
MALDI-TOF Matrix Assisted Laser Desorption/Ionisation
MCM Mini-Chromosome Maintenance
Me Methylation
Mi-2/NuRD Mi-2/nucleosome remodeling and deacetylase
MNase Micrococcal nuclease
MW Molecular weight
MWCO Molecular weight cut off
MYST Morf, Ybf2, Sas2 and Tip60
NaBu Sodiumbutyrate
NAD Nicotinamid-adenin-dinucleotid
NSD1 Nuclear receptor-binding, su(var), enhancer-of-zeste and tritho-

rax domain-containing protein 1
NuA4 nucleosome acetyltransferase of histone H4
OD Optical density
P Phosphorylation
PADI Peptidylarginine deiminase
PAGE Polyacrylamide gel electrophoresis
PBS Phosphate buffered saline
PCAF p300/CBP-associated Factor
PCNA Proliferating cell nuclear antigen
PCR Polymerase chain reaction
PHD Plant homeodomain
PMSF Phenylmethanesulfonyl fluoride
PRC1/2 Polycomb repressive complex 1/2
PRMT1 Protein arginine methyltransferase 1
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Abbreviations

PTM Posttranslational modification
R Arginine
RNA Ribonucleic acid
Rpd3 Reduced potassium dependency
rpm Revoltations per minute
RT Room temperature
S Serine
S. cerevisiae Saccharomyces cerevisiae
SAH S-Adenosyl-L-homocysteine
SAM S-Adenosyl methionine
SDS Sodiumdodecylsulfate
SILAC Stable isotope labeling with amino acids in cell culture
Su(var) Suppressor of position-effect variegation
SUMO Small ubiquitin-related modifier
TC Tissue culture
TEMED N,N,N’,N’-Tetramethylethylenediamine
TFA Trifluor acetic acid
Tris Tris(hydroxymethyl)aminomethane
Trx Trithorax
TSA Trichostatin A
v/v Volume per volume
w/v Weight per volume
α Anti, alpha
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