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1 Einleitung 

 

1.1 Ziele der Arbeit 

Das Glioblastoma multiforme ist der häufigste maligne hirneigene Tumor beim 

Erwachsenen. Wegen seiner ausgeprägten Invasivität und Aggressivität ist seine 

Prognose infaust. Konventionelle Therapiekonzepte wie Operation, Radiatio und 

Chemotherapie bewirken nur eine marginale Verlängerung der Überlebenszeit. 

Daher sucht man derzeit nach neuen Therapieansätzen wie beispielsweise der 

zellbasierten Gentherapie. Hierbei soll das Glioblastom zusätzlich zur konventio-

nellen Therapie mit Hilfe gentechnisch veränderter zellulärer Vektoren lokal 

bekämpft werden.  

Vielversprechende Kandidaten für eine zellbasierte Gentherapie des 

Glioblastoms sind die humanen mesenchymalen Progenitorzellen des Knochen-

marks (hMSC). Sie zeigen in-vitro und in-vivo einen ausgeprägten glioblastom-

induzierten Tropismus. Zudem sind sie einfach in der Handhabung, weil sie leicht 

zu gewinnen, in Kultur zu vervielfältigen und anschließend autolog zu 

transplantieren sind. Die Hintergründe der gezielten Migration und die biologischen 

Wechselwirkungen zwischen hMSC und Glioblastomzellen sind bislang allerdings 

kaum verstanden. Die Kenntnis dieser Wechselwirkungen ist aber essentielle 

Voraussetzung für die zukünftige Verwendung von hMSC als therapeutische 

Vektoren beim Menschen. 

In Vorarbeiten konnte bereits die migrationsfördernde Wirkung von Vascular 

Endothelial Growth Factor (VEGF-A) auf hMSC nachgewiesen werden (Schichor et 

al., 2006). Die promigratorische Wirkung von VEGF-A alleine war aber um einiges 

schwächer als die von glioblastomkonditioniertem Medium. Deshalb schluss-

folgerten wir, dass an der Vermittlung der glioblastomgerichteten Migration der 

hMSC noch andere Chemokine beteiligt sein müssen. Mit vorliegender Arbeit 

sollen deshalb jene von den Glioblastomen produzierten Chemokine, welche 
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(neben VEGF-A) einen migrationsfördernden Effekt auf hMSC haben, identifiziert 

werden. 

 Zur Beantwortung dieser Fragestellung wurden folgenden Untersuchungen 

durchgeführt: 

- Migrationsassays mit der Boyden Kammer, wobei zunächst einige bekannte 

glioblastomassoziierte Kandidaten (Interleukin-8, Neurotrophin-3, Transforming 

Growth Factor Beta 1, Glial Cell Line-derived Neurotrophic Factor, Epidermal 

Growth Factor, Platelet-derived Growth Factor, Brain-derived Neurotrophic Factor, 

Human Ciliary Neurotrophic Factor) auf ihre migrationsfördernde Wirkung auf 

hMSC getestet wurden, 

- Migrationsassays mit der Boyden Kammer, wobei die in Schritt 1 positiv 

getesteten Chemokine im glioblastomkonditioniertem Medium durch Zusatz 

spezifischer Antikörper neutralisiert wurden, um die funktionelle Bedeutung dieser 

Chemokine für die glioblastomgerichtete Migration zu beweisen, 

- Nachweis der Expression der entsprechenden Chemokinrezeptoren auf der 

Oberfläche der hMSC mittels Immunfluoreszenzfärbungen, 

- Quantifikation der Sekretion der entsprechenden Chemokine durch die 

Glioblastomzellen mittels Enzyme-linked Immunosorbent Assays (ELISA). 

Die in dieser Arbeit durchgeführte Identifizierung der am glioblastominduzierten 

Tropismus beteiligten Chemokine ist ein wichtiger Schritt hin zur Etablierung 

zellbasierter Strategien in der Therapie des Glioblastoms. In Kombination mit 

bewährten Therapieschemata soll dies zukünftig zu einem längeren Überleben der 

an Glioblastom erkrankten Patienten führen.  
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1.2 Glioblastom 

 

1.2.1 Epidemiologie 

Die Inzidenz intrakranieller Tumore in Deutschland beträgt bei Männern etwa 

3500 und bei Frauen etwa 2900 pro Jahr (Becker et al., 1997). Das Glioblastom 

hat daran einen Anteil von 22.6% (Davis et al., 1999). Damit ist das Glioblastom 

bei Erwachsenen der häufigste hirneigene maligne Hirntumor. Das durch-

schnittliche Erkrankungsalter liegt zwischen 50 und 70 Jahren (Remmele et al., 

1995). 

 

1.2.2 Ätiologie 

Ätiologisch kann man die Glioblastome in drei Gruppen unterteilen. Von der 

hereditären Form werden die primäre und die sekundäre Form unterschieden. 

Während die primäre Form sich de novo entwickelt, entsteht das sekundäre 

Glioblastom aus einem bereits vorhandenen, niedrigmalignen Gliom. Am 

häufigsten ist hierbei die Entstehung eines Glioblastoms aus einem Astrozytom. 

Seltener kann man auch die sekundäre Malignisierung eines Oligodendroglioms 

beobachten (Schlegel et al., 2001). Manche Autoren beschreiben auch die 

Entwicklung eines Glioblastoms aus einem Ependymom (Burger, 1990). 

 

1.2.3 Histologie 

Das Glioblastom gehört zur Gruppe der Gliome. Diese Gruppe wird je nach 

Ursprungsgewebe weiter unterteilt in eine astrozytäre, eine oligodendrozytäre und 

eine ependymale Reihe sowie Mischformen hieraus. Nach der derzeitig gültigen 

WHO-Klassifikation für intrakranielle Tumore werden die Gliome zusammen mit 

den anderen Tumoren neuronaler Herkunft unter dem Überbegriff „Tumore des 

neuroepithelialen Gewebes“ zusammengefasst. In der histologischen Gradierung 
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kann man niedrigmaligne Gliome (WHO Grad I und II) von der anaplastischen 

Form (WHO Grad III) abgrenzen. Das hochmaligne Glioblastom entspricht dem 

WHO Grad IV und wird der astrozytären Reihe zugeordnet (Kleihues et al., 2002). 

Hierbei ist das wichtigste Unterscheidungskriterium zu einem anaplastischen 

Astrozytom (WHO Grad III) die flächenhafte Nekrose des Tumors. Außerdem 

findet man eine sogenannte „bunte Schnittfläche“ mit Zysten, Blutungen und 

Tumorzerfallshöhlen, die ihm auch die Bezeichnung „Glioblastoma multiforme“ 

eingebracht hat. Die Gruppe der Glioblastome kann man laut WHO-Klassifikation 

in die Varianten Riesenzellglioblastom, kleinzelliges Glioblastom, Gliosarkom und 

Glioblastom mit sarkomatöser Komponente unterteilen. Histologisch kann man das 

seltene Rundzellglioblastom von der fusiformen und der multiformen Form ab-

grenzen (Zülch et al., 1986). 

 

 

 

Abbildung 1: Glioblastom (Astrozytom) WHO Grad IV. Histologisches Präparat mit typischen 

strichförmigen Nekrosen (Hämatoxylin-Eosin-Färbung)(A). MRT transversale Schnittführung, nach 

Kontrastmittel (B). 
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1.2.4 Klinik 

Klinisch ist die Gruppe der Glioblastome gut von anderen Hirntumoren 

abzugrenzen. Dies liegt an ihrem raschen Größenwachstum mit konsekutiv 

fortschreitender Hirndrucksteigerung und den dadurch bedingten typischen 

Symptomen wie Persönlichkeitsverfall und schließlich Bewusstseinstrübung bis 

zum Koma. Als Frühsymptomatik können epileptische Anfälle auftreten. Später 

kommen dann frühmorgendlicher Kopfschmerz begleitet von Übelkeit und 

Erbrechen sowie fokale Symptome wie Paresen, Sehstörungen oder Aphasien 

hinzu (Berghoff et al., 1962). 

 

1.2.5 Therapie und Prognose 

Unbehandelt hat das Glioblastom eine Prognose im Bereich von wenigen 

Wochen. Derzeitiger Standard bei der Behandlung eines Glioblastoms ist die 

möglichst vollständige Resektion des kontrastmittelaufnehmenden Tumors mit 

nachfolgender Strahlentherapie und konkomitanter sowie adjuvanter Therapie mit 

Temozolomid, einem neuen Imidazotetrazin-Derivat. Unter dieser kombinierten 

Behandlung wird eine Steigerung der 2-Jahres-Überlebensrate auf 26% im 

Vergleich zu 10% bei alleiniger Strahlentherapie erreicht. Die mediane 

Überlebenszeit beträgt 15 versus 12 Monate, das progressionsfreie Überleben 7.2 

versus 5 Monate (Stupp et al., 2005).  

 

1.2.5.1 Chirurgische Therapie 

Die Bedeutung der operativen Radikalität für die Prognose des Glioblastoms 

gehört zu den fortdauernden Kontroversen der chirurgischen Neuroonkologie. 

Nach neuer Studienlage ist die radikale makroskopische Komplettresektion des 

Tumors die Therapie der ersten Wahl (Stummer et al., 2002). Durch Anwendung 

neuer Verfahren wie der intraoperativen Fluoreszenzdiagnostik mit 5-

Aminolävulinsäure kann intraoperativ das Glioblastomgewebe besser sichtbar 
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gemacht und gezielt reseziert werden (Stummer et al., 2000). Trotz dieser und 

anderer etablierter Techniken wie Neuronavigation oder kortikaler Stimulation wird 

bei dem Versuch, den Tumor vollständig zu resezieren, jedoch auch immer 

gesundes Gewebe geschädigt. Potentielle neurologische Ausfälle, vor allem wenn 

sie Werkzeugleistungen betreffen, beschränken deshalb die operative Radikalität 

(AWMF-Leitlinien, 2005).  

 

1.2.5.2 Strahlentherapie 

Die adjuvante Strahlentherapie in Dosierungen von 54 - 60 Gy, nach Möglichkeit 

60 Gy (1.8 - 2 Gy-Fraktionen), gehört zur Standardtherapie des Glioblastoms 

(Laperriere et al., 2002). Zielvolumenkonzept, Bestrahlungstechnik, Gesamtdosis 

und Fraktionierung werden im Wesentlichen durch die Ausbreitungscharakteristik 

des Tumors, die Dosiswirkungsbeziehung des Glioblastomgewebes sowie die 

Strahlenempfindlichkeit benachbarter Risikostrukturen bestimmt. Die Therapie 

erfolgt perkutan mit Hilfe individuell angepasster Maskenfixationssysteme, um die 

Reproduzierbarkeit und Positioniergenauigkeit der Bestrahlungsfelder zu erhöhen 

(Kortmann et al., 1998). Die Verlängerung der medianen Überlebenszeit durch 

diese Therapie beträgt etwa sechs Monate (AWMF-Leitlinien, 2005). Bei älteren 

Patienten kann eine akzelerierte hyopfraktionierte Strahlentherapie mit 30 - 45 Gy 

in 3 Gy-Fraktionen erfolgen. Diese palliative Strategie führt zu einer verkürzten 

Behandlungsdauer der Patienten. 

 

1.2.5.3 Chemotherapie 

Die Chemotherapie hat lange Zeit eine untergeordnete Rolle in der Behandlung 

des Glioblastoms gespielt. Auch durch verschiedenste Schemata, welche vor allem 

in der Rezidivtherapie eingesetzt wurden, konnte jeweils nur eine marginale 

Verlängerung der medianen Überlebenszeit erreicht werden. Bisher dominierten 

die Nitrosoharnstoffe (ACNU, BCNU, CCNU) aufgrund ihrer Lipidlöslichkeit und 
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wurden vor allem in der multimodalen Rezidivtherapie angewendet. So zum 

Beispiel das PCV-Schema mit Procarbazin 60mg/m² p.o. D8 - D21, CCNU 

110mg/m² p.o. D1 und Vincristin 1.4mg/m² i.v. D8 und D29 für sechs bis acht Wo-

chen (AWMF-Leitlinien, 2005). 

Nach neuester Studienlage wird eine begleitende und adjuvante Chemotherapie 

mit Temozolomid zusätzlich zur Strahlentherapie als Primärtherapie des Glio-

blastoms empfohlen. Als Schema hat sich Temozolomid 150 - 200mg/m²  p.o. an 

D1 - D5 alle vier Wochen etabliert (AWMF-Leitlinien, 2005). In der Studie hat sich 

weiterhin gezeigt, dass molekulargenetische Faktoren bei der Effektivität  

alkylierender Substanzen (wie beispielsweise Temozolomid) eine ausschlag-

gebende Bedeutung einnehmen. So profitierten vor allem jene Patienten von einer 

Therapie mit Temozolomid, welche eine Methylierung des Promotors des O6-

Methylguanin-DNA-Methyltransferase-Gens (MGMT) aufweisen. MGMT ist ein 

DNA-Reparaturenzym, das die durch Temozolomid induzierten Alkylierungen 

repariert und dessen Expression durch die Methylierung der Promoterregion 

negativ reguliert wird. Die Methylierung der Promoterregion von MGMT war ein 

unabhängiger, günstiger prognostischer Faktor (Hegi et al., 2005).  

Neoadjuvante Chemotherapien zeigen bei Glioblastomen bislang keinen 

Behandlungsvorteil (Grossmann et al., 2003). 

 

1.2.5.4 Lokale Therapieverfahren 

In experimentellen Ansätzen werden zur Schonung des gesunden Gewebes  in 

der Therapie des Glioblastoms lokale Therapieverfahren angewendet. Dazu 

gehören zum Beispiel die Radionuklidtherapie unter Verwendung von implantierten 

Kathetern. Daneben kann im Rahmen einer Operation eine lokale Chemotherapie 

mit BCNU-freisetzenden Polymeren (BCNU-Wafer) zum Einsatz kommen. 
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1.2.5.5 Probleme der konventionellen Therapie 

Trotz der oben genannten Fortschritte bleiben die bisherig erzielten 

Therapieergebnisse bei der Behandlung des Glioblastoms äußerst unbefriedigend. 

Selbst nach vollständiger Tumorresektion gefolgt von postoperativer Radiatio und 

adjuvanter Chemotherapie mit Temozolomid sind diese Tumore bislang nicht 

kurativ behandelbar (Dunn et al., 2003; Stupp et al., 2005).  

Die kurze Überlebenszeit bei der Diagnose Glioblastom hat mehrere Gründe. 

Die chirurgische Therapie sieht sich folgenden Problemen gegenüber: Zum einen 

sind Glioblastome häufig frontotemporal im tiefen Marklager der Großhirn-

hemisphären lokalisiert und damit schwer zugänglich. Zum anderen befinden sie 

sich häufig primär in eloquenten Hirnarealen, so dass eine operative Entfernung 

nicht ohne Verursachung oder Verschlechterung eines fokalneurologischen 

Defizits möglich ist. Außerdem besitzen Glioblastomzellen die Eigenschaft, sich 

vom primären Tumorverband zu lösen und diffus in das umliegende Nerven-

gewebe einzuwachsen. Dort bilden sie Mikrosatelliten, welche weder intraoperativ 

noch kernspintomographisch sicher von dem umliegenden gesunden Nerven-

gewebe abzugrenzen sind (Black et al., 1997). Dies ist der Hauptgrund für die 

hohe Rezidivquote, auch nach makroskopisch vollständiger chirurgischer Resek-

tion. Zudem sind Glioblastome hochmaligne Tumore, welche durch eine patho-

logische Gefäßneubildung mit defekter Blut-Hirn-Schranke charakterisiert sind.  

Der klinische Verlauf nach der Resektion wird durch das biologische Verhalten 

der Tumorzellen und die Ansprechrate auf Radiatio und Chemotherapie bestimmt. 

Dabei sehen sich Radiatio und Chemotherapie verschiedenen Schwierigkeiten 

gegenüber. Zum einen weisen Glioblastome einen hohen Anteil primär 

chemoresistenter Zellpopulationen auf. Zum anderen ist die Passage der 

Chemotherapeutika aus dem Blut in das Gewebe durch die Blut-Hirn-Schranke 

erschwert. Diese weist zwar in der Umgebung der meisten Glioblastome 

Störungen auf, die jedoch so inhomogen sind, dass die gleichmäßige 

Erreichbarkeit aller Tumorareale für die Chemotherapie nicht erwartet werden 

kann. Ein weiteres Problem stellt die gegenüber dem normalen Hirngewebe häufig 
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reduzierte Perfusion des Tumorareals dar. Zudem besteht bei Glioblastomen eine 

verminderte Oxygenierung und eine lange Zellzykluszeit. Die für eine erfolgreiche 

Therapie benötigten Dosen der Therapeutika würden zu inakzeptablen toxischen 

systemischen Plasmaspiegeln führen. Eine Erhöhung der Strahlendosis würde 

durch Nekrose und Ödem einen unannehmbaren Gewebeschaden und neuro-

logische Defizite verursachen (Black et al., 1997).  

 

1.2.5.6 Experimentelle Therapiekonzepte 

Aufgrund der oben aufgeführten Schwierigkeiten bei der konventionellen 

Therapie des Glioblastoms wurde in den letzten Jahren die Aufmerksamkeit auf die 

interventionelle molekulare Neuroonkologie gerichtet. 

Hierbei wird versucht, die entarteten Glioblastomzellen spezifisch auf mole-

kularer Ebene anzugreifen. In Kombination mit herkömmlichen Behandlungs-

methoden kann dies zu einer Maximierung des Therapieerfolges führen. Hierbei 

werden zahlreiche unterschiedliche Ansätze verfolgt, von denen im Folgenden 

einige kurz beschrieben werden. 

 

1.2.5.6.1 „Targeted“-Therapie 

Zahlreiche Signalwege, die zur Proliferation und zum Überleben von Tumoren 

beitragen, werden über Wachstumsfaktoren wie Epidermal Growth Factor (EGF) 

und ihre Rezeptoren vermittelt (Jendrossek et al., 2003). Da Glioblastome den 

Rezeptor für EGF überexprimieren, stellt die Verwendung von Tyrosinkinase 

Inhibitoren wie Gefitinib einen vielversprechenden Ansatz dar (Kesari et al., 2006). 

Derzeit befindet sich die Kombination aus dem Platelet-derived Growth Factor 

(PDGF)-Rezeptor Inhibitor Imatinib in Kombination mit dem Chemotherapeutikum 

Hydroxyurea in der klinischen Prüfung. 
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1.2.5.6.2 Hemmung der Angiogenese 

In diesem Ansatz wird versucht, die für das Wachstum des Glioblastoms 

notwendige gesteigerte Angiogenese auf molekularer Ebene zu unterbinden. Eine 

Möglichkeit ist hierbei die Blockade des für die Angiogenese essentiellen VEGF-A 

(Fong et al., 1999). Eine andere Möglichkeit ist die intratumorale Langzeit-

applikation von Endostatin, einem potenten antiangiogenetisch wirksamen Protein 

(Joki et al., 2001). Auch antiangiogenetische Ansätze wie beispielsweise die 

Verwendung des oralen Endothelin-A-Rezeptorantagonisten Atrasentan befinden 

sich derzeit in der klinischen Prüfung (Phuphanich et al., 2008).  

 

1.2.5.6.3 Lokale Immuntherapie 

Bei der lokalen Immuntherapie wird versucht, das körpereigene Immunsystem 

für die Bekämpfung des Tumors zu stimulieren. Durch die lokale Anwendung der 

Immuntherapie soll zum einen das gesunde Gewebe geschont, und zum anderen 

die Blut-Hirn-Schranke überwunden werden. 

Eine Methode der Immuntherapie ist die unspezifische Stimulation des lokalen 

Immunsystems des Gehirns. Hierbei werden immunmodulatorische Chemokine 

wie zum Beispiel Interleukin-2 (IL-2) entweder prä-, oder postoperativ stereo-

taktisch in den Tumorsitus appliziert (Merchant et al., 1992). 

Eine andere Methode ist die intratumorale Applikation von autologen 

Lymphozyten. Bei dieser Methode, die als lokale adaptive Immuntherapie be-

zeichnet wird, werden zunächst Lymphozyten aus dem peripheren Blut gewonnen. 

Diese werden dann ex-vivo stimuliert und daraufhin reimplantiert. Die Stimulation 

erfolgt hier beispielsweise durch IL-2 (Barba et al., 1989). 

Die sogenannte passive Immuntherapie stellt eine weitere Methode der lokalen 

Immuntherapie dar. Dabei werden gegen Tumorantigene gerichtete Antikörper in 

den Tumorsitus injiziert, um das umgebende Immunsystem zu stimulieren. Es 

werden hierbei unter anderem Antikörper gegen Tenascin verwendet. Dieses 
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Protein wird von Glioblastomzellen im Vergleich zum umgebenden Gewebe 

überexprimiert (Bigner et al., 1998). 

 

1.2.5.6.4 Gentherapie 

Neben den oben angeführten experimentellen Therapiekonzepten kommt für die 

Behandlung des Glioblastoms die Anwendung von Gentherapie in Frage (Alavi et 

al., 2001). Darunter versteht man den Versuch, Zielgene mit Hilfe eines Vektors in 

Zellen des an Glioblastom erkrankten Individuums einzubringen. Mit Hilfe der 

Gentherapie sollen die etablierten Therapien in ihrer Effektivität gesteigert werden.  

Zu den Zielgenen gehören sowohl Gene, die wie p53 die Apoptose der 

Tumorzellen induzieren, als auch solche, die den Körper zu einer effektiveren 

Immunantwort gegen den Tumor anregen sollen (Li et al., 1999; Ali et al., 2004). 

Daneben wird auch versucht, Inhibitoren der Angiogenese wie Angiostatin in die 

Zielzellen einzubringen (Ma et al., 2002). Die Art der Zielzellen variiert je nach 

Forschungsrichtung von den Glioblastomzellen selbst über Immunzellen zu 

Endothelzellen. Weiterhin sollen mit Hilfe der Gentherapie selektiv Tumorzellen mit 

konditional zytotoxischen Genen transfiziert werden. Hierbei wird in die Tumor-

zellen ein Enzym wie die Thymidinkinase eingebracht. Dieses Enzym aktiviert nun 

ein Prodrug wie Ganciclovir spezifisch in der Tumorzelle zu einer toxischen 

Substanz (Nestler et al., 2004).  

Während es in-vitro zahlreiche Möglichkeiten gibt, die Zielzellen mit den 

Zielgenen zu transfizieren, eignen sich hierfür im klinischen Bereich vor allem 

virale Vektoren. Dazu gehören neben Retroviren wie dem Moloney-Murine-

Leukemia-Virus und dem HIV-1-based Lentiviral-Vektor auch die Adenoviren (Ali et 

al., 2005).  

Trotz vielversprechender Erfolge der Gentherapie in klinischen Studien gibt es 

einige gravierende Schwierigkeiten. Zum einen ist  zurzeit das Ausmaß des Gen-

transfers und der Genexpression allgemein noch gering, weshalb oft hohe Dosen 
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des Vektors benötigt werden. Dies wirft sicherheitstechnische Bedenken auf, da 

durch hohe Dosen vermehrt entzündliche Reaktionen auftreten können. Darüber 

hinaus muss auch die Dauer der Genexpression und damit die Wirkdauer optimiert 

werden. Diese kann durch unspezifischen Einbau des Gens oder immunologische 

und entzündliche Reaktionen gegen das Genprodukt oder das Gen stark beein-

trächtigt sein. Antikörperbildung gegen virale Vektoren kann zum Beispiel ihre 

wiederholte Anwendung verhindern. Zum anderen birgt die Verwendung viraler 

Vektoren Risiken wie das Auftreten vermehrungsfähiger Vektoren, die Etablierung 

neuer Virusstämme oder die Neubildung eines Tumors. Die hier aufgeführten 

Schwierigkeiten erklären die aktuelle intensive Suche nach neuen Vektoren wie 

zum Beispiel Stammzellen.  

 

1.3 Stammzellen 

 

1.3.1 Neurale Stammzellen in der Therapie des Glioblastoms 

Aufgrund der oben beschriebenen Limitierung konventioneller Konzepte 

versucht man in letzter Zeit in der Therapie des Glioblastoms neue Wege zu 

beschreiten. Hierbei soll das Glioblastom mit Hilfe gentechnisch veränderter 

zellulärer Vektoren lokal bekämpft werden. Diese zellulären Vektoren sollten die 

Fähigkeit besitzen, die disseminiert im gesunden Gewebe liegenden 

Glioblastomzellen aufzuspüren. Dadurch bringen sie die Therapeutika unter 

Schonung des gesunden Gewebes direkt zu den Glioblastomzellen. Solche 

potentielle zelluläre Vektoren für die Therapie von Glioblastomen sind Stamm-

zellen. 

Da der Begriff „Stammzelle“ in der Literatur nicht einheitlich verwendet wird, 

sollen an dieser Stelle die Begriffe noch einmal definiert werden. Unter einer 

totipotenten Stammzelle versteht man eine solche Zelle, aus der sich ein 

kompletter lebender Organismus entwickeln kann. Aus einer pluripotenten Stamm-
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zelle hingegen können zwar noch alle Zelllinien (auch die des Nervensystems) 

entstehen, jedoch nicht mehr die Trophoblasten der Plazenta. Pluripotente Stamm-

zellen sind gleichbedeutend mit Embryonalen Stammzellen (ESC), deren Potential 

für eine klinische Anwendung bereits vielfach untersucht worden ist. So zum 

Beispiel für die Herstellung von Hauttransplantaten oder die Erzeugung von 

Dopamin bei der Behandlung des Morbus Parkinson (Shamblott et al., 1998; 

Cohen et al., 2006; Rodriguez-Gomez et al., 2007). Die meisten Stammzellen 

fallen jedoch unter den Begriff der multipotenten Stammzelle. Jene Stammzellen  

werden meistens durch das Organ definiert, in dem sie in-vivo beobachtet werden 

und von dem sie abstammen. Ihr Potential, sich durch entsprechende Stimuli in 

unterschiedliche Zelllinien auszudifferenzieren, ist aktuell Schwerpunkt zahlreicher 

Forschungen. Diese Stammzellen werden auch als adulte Stammzellen bezeich-

net. 

Unter Neuralen Stammzellen (NSC) versteht man Stammzellen, die folgende 

drei Kriterien aufweisen: Sie können sich in neurales Gewebe ausdifferenzieren 

oder stammen vom Nervensystem ab, sie besitzen die Fähigkeit zur Selbst-

erneuerung und sie können sich in andere Zelllinien mittels asymmetrischer Zell-

teilung ausdifferenzieren (Gage, 2000). Im adulten Gehirn findet man NSC in der 

subventrikulären Zone, im Bulbus olfactorius oder im Hippocampus. 

NSC besitzen unter gewissen physiologischen und pathologischen Umständen 

migratorische Eigenschaften. So wurde unter anderem nach einem Schlaganfall 

die Migration von NSC nachgewiesen. Dies legt die Vermutung nahe, dass 

oxidativer Stress und traumatisch verändertes Hirngewebe im Allgemeinen einen 

Einfluss auf die Migration von NSC haben (Arvidsson  et al., 2002). 

Es wurde beobachtet, dass NSC einen ausgeprägten Tropismus zu Glio-

blastomzellen aufweisen. Wenn sie direkt in das Tumorbett implantiert werden, 

verteilen sie sich durch die gesamte Neoplasie und weisen sogar die Fähigkeit auf, 

einzelne verstreut liegende Tumorzellen „aufzuspüren“. Selbst nach Implantation in 

die kontralaterale Hemisphäre wandern NSC gezielt in das Tumorbett ein (Aboody 

et al., 2000). NSC, die ex-vivo mit dem Prodrug-Aktivierungsenzym Cytosin-
 18



desaminase transfiziert worden sind, zeigen dieselben migratorischen Eigen-

schaften (Huber et al., 1994). Dies führt nach einer Behandlung mit Fluorocytosin 

zu einer verlängerten Lebenszeit im experimentellen Glioblastommodell (Aboody et 

al., 2000). Auch in anderen Forschungsansätzen konnten bei der Verwendung 

genetisch modifizierter NSC bedeutende tumorhemmende Effekte aufgezeigt 

werden. NSC produzierten je nach Ansatz Interleukin-4 (IL-4), Interleukin-12 (IL-

12) oder den Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL) 

(Benedetti et al., 2000; Ehtesham et al., 2002; Ehtesham et al., 2002). 

Trotz dieser vielversprechenden Ergebnisse besitzen NSC zwei große 

Nachteile. Die Gewinnung adulter NSC gestaltet sich aufgrund der dafür 

notwendigen neurochirurgischen Operation als technisch äußerst schwierig. 

Dagegen bringt die Verwendung embryonaler NSC neben immunologischen 

Risiken vor allem eine schwerwiegende ethische Problematik mit sich. Deshalb ist 

man dazu übergegangen, nach alternativen Zelllinien zu suchen. Diese sollten 

ähnliche Eigenschaften wie NSC aufweisen, aber unproblematischer in der Hand-

habung sowie ethisch unbedenklich sein.  

 

1.3.2 Humane mesenchymale Progenitorzellen des Knochenmarks in der 
Therapie des Glioblastoms 

Im Knochenmark findet man neben den hämatopoetischen Progenitorzellen 

(HSC) auch zahlreiche undifferenzierte Stromazellen. Eine Subpopulation dieses 

heterogenen Zellpools wird als hMSC bezeichnet. Im Knochenmark unterstützen 

hMSC die Proliferation und Differenzierung der hämatopoetischen Progenitor-

zellen. HMSC sind multipotente Zellen, dass heißt sie können in Abhängigkeit vom 

jeweiligen biochemischen Milieu sowohl in-vitro, also auch in-vivo, zu vollkommen 

unterschiedlichen Zelltypen differenzieren. So können sie sich in der ent-

sprechenden Umgebung nicht nur mesenchymal (Knochen-, Knorpel-, Muskel-, 

Band-, Gefäßzellen), sondern auch ektodermal (unter anderem neuronale Zellen) 

differenzieren (Pittenger et al., 1999; Jiang et al., 2002; Prockop, 1997). HMSC 
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können außerdem nach verschiedenen Gewebeverletzungen aus dem 

Knochenmark mobilisiert werden. Nach einem Herzinfarkt (Shake et al., 2002; 

Barbash et al., 2003), nach einem Schlaganfall (Ji et al., 2004; Wang et al., 2002) 

und nach einer Knochen-, beziehungsweise Knorpelverletzung (Murphy et al., 

2003) wurde diese Mobilisierung der hMSC aus dem Knochenmark bereits 

nachgewiesen. Die Fähigkeit, bei Bedarf aus dem Knochenmarkpool in unter-

schiedliche Organe (unter anderem Herz und zentrales Nervensystem) einzu-

wandern und dort zu verschiedenen Zelltypen auszudifferenzieren, begründet das 

derzeitige große Interesse verschiedener Fachrichtungen, hMSC im Rahmen 

neuer Therapiestrategien nutzbar zu machen. 

HMSC haben gegenüber NSC einige entscheidende Vorteile. Zum einen sind 

sie im Gegensatz zu adulten NSC sehr einfach zu gewinnen. Dies geschieht 

mittels einer Knochenmarksaspiration, welche einen Standardeingriff darstellt. 

HMSC sind dann leicht aus dem gewonnenen Aspirat zu isolieren und 

anschließend in Kultur zu vermehren (Colter et al., 2000). Danach können sie mit 

Hilfe bekannter Techniken genetisch verändert werden (Conget et al., 2000). 

Außerdem können sie nach Gewinnung und Kultur autolog transplantiert werden, 

was eine Immunsuppression und die damit verbundenen Risiken unnötig macht. 

Auch scheinen hMSC an sich immunmodulatorische Eigenschaften zu haben und 

damit hypoimmunogen zu sein (Di Nicola et al., 2002; Le Blanc, 2006). Im 

Gegensatz zu zum Beispiel viralen Vektoren oder ESC bergen sie damit eine 

geringere Gefahr einer entzündlichen Reaktion des Empfängergewebes.  

HMSC zeigen wie NSC eine gerichtete Migration zu Glioblastomen, sowohl 

nach intrakranieller, als auch nach intravasaler Injektion (Nakamizo et al., 2005). 

Zudem üben Interferon-ß (IFN-ß) oder Interleukin-2 (IL-2) produzierende hMSC 

einen hemmenden Einfluss auf Glioblastomzellen in-vitro und in-vivo aus und 

führen damit zu einer verlängerten Überlebenszeit im Tiermodell (Nakamura et al., 

2004). Ihre Verwendung ist im Gegensatz zur Verwendung embryonaler NSC 

ethisch unproblematisch. 
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 Diese Erkenntnisse machen hMSC zu möglichen Vektoren für die Gentherapie 

und die spezifische lokale Chemotherapie von Glioblastomen und damit zu einer 

vielversprechenden Alternative zu sowohl ESC als auch NSC (Nakamizo et al., 

2006; Nakamura et al., 2004; Schichor et al., 2006). 

 

1.4 Chemokine 

Um hMSC in Zukunft für alternative Therapiestrategien nutzbar zu machen, 

müssen zunächst die biochemischen Wechselwirkungen zwischen Glio-

blastomzellen und hMSC untersucht werden. Die zugrunde liegenden 

Mechanismen sind größtenteils noch unverstanden. Eine zentrale Frage dabei ist, 

welche Chemokine die Mobilisierung und die Migration der hMSC vermitteln. Die 

Identifizierung und Evaluation jener Chemokine, welche die Migration der hMSC 

zum tumorös veränderten Gewebe beeinflussen, ist Inhalt dieser Arbeit. Der 

Auswahl der zu untersuchenden Chemokine wurden zwei Überlegungen 

zugrundegelegt. 

Zum einen gibt es in der Literatur zahlreiche Hinweise darauf, dass hMSC bei 

hypoxischen Gewebeschäden wie Myokardinfarkt oder Schlaganfall mit Hilfe von 

angiogenetischen Faktoren aus dem Knochenmark in das periphere Blut mobi-

lisiert werden und in das geschädigte Gewebe migrieren (Wang et al., 2002; Price 

et al., 2003). In vorausgegangenen Experimenten unserer Arbeitsgruppe wurde 

zudem die chemotaktische Wirkung von VEGF-A auf die Migration der hMSC 

nachgewiesen (Schichor et al., 2006). VEGF-A fördert die Mitose von Gefäß-

endothelzellen und nimmt dadurch eine Schlüsselstellung in der Regulation der 

Angiogenese ein. Außerdem scheint es einen entscheidenden Beitrag zur Neo-

vaskularisation von Glioblastomen zu leisten (Alvarez et al., 1992). Deswegen 

wurden als mögliche Kandidaten für die Vermittlung der Migration der hMSC 

solche Chemokine ausgewählt, die wie Interleukin-8 (IL-8), Transforming Growth 

Factor beta 1 (TGF-ß1), EGF oder PDGF eine Rolle in der Angiogenese spielen 

(Koch  et al., 1992; Üki  et al., 1992; Vlodavsky et al., 1990). 
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Zum anderen wurde die chemotaktische Wirkung von Neurochemokinen wie 

Brain-derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), Glial Cell Line-

derived Neurotrophic Factor (GDNF) und Human Ciliary Neurotrophic Factor 

(CNTF) auf die Migration der hMSC getestet. Diese Chemokine werden in 

Glioblastomen überexprimiert (Hamel et al., 1993; Wiesenhofer et al., 2000; Weis 

et al., 1999). Zudem stimulieren sie die Migration unterschiedlicher Zelltypen wie 

beispielsweise glatter Gefäßmuskelzellen, Neuronen und Gliazellen (David et al., 

1993; Lewin et al., 1996). Diese physiologischen Funktionen machen sie zu 

möglichen Kandidaten für die Vermittlung der Migration der hMSC. Im Folgenden 

werden die biologischen Wirkungen der getesteten Chemokine kurz dargestellt. 

 

1.4.1 Interleukin-8 

IL-8 gehört zur Familie der alpha Chemokine. Es ist ein proinflammatorisches 

Chemokin, welches in zahlreichen entzündlichen Prozessen des Körpers eine 

wichtige Rolle spielt. IL-8 wirkt chemotaktisch nicht nur auf neutrophile, sondern 

auch auf eosinophile und basophile Granulozyten sowie auf T-Zellen. Außerdem 

vermittelt es zahlreiche andere proinflammatorische Wirkungen wie zum Beispiel 

die Adhäsion neutrophiler Granulozyten an die Oberfläche von Endothelzellen. 

Zahlreiche Zellen können IL-8 produzieren (neben Monozyten, Makrophagen, T-

Zellen, Chondrozyten, Fibroblasten und Endothelzellen auch viele Tumorzelllinien) 

(Baggiolini et al., 1989). Daneben spielt IL-8 eine wichtige Rolle bei der 

Angiogenese von malignen Tumoren, insbesondere bei der des Glioblastoms 

(Koch et al., 1992). In neueren Studien wurde zudem nachgewiesen, dass sich die 

Expression von IL-8 proportional zum Malignitätsgrad von Gliomen verhält 

(Kargiotis et al., 2006).  
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1.4.2 Transforming Growth Factor Beta 1 und Glial Cell Line-derived 
Neurotrophic Factor 

TGF-β ist der Oberbegriff für eine Anzahl sich in gewissen Peptidsequenzen 

unterscheidender Chemokine. Dazu gehört neben TGF-β1, TGF-β2, TGF-β1.2, 

TGF-β3, TGF-β4, TGF-β5 auch GDNF.  

TGF-β1 ist ein polypeptidischer Wachstumsfaktor. Fast alle bisher untersuchten 

Säugetierzellen weisen einen spezifischen Rezeptor für TGF-β1 auf, seine Effekte 

auf die verschiedenen Zellarten sind hierbei jedoch unterschiedlich. Während das 

Chemokin auf Zellen mesenchymalen Ursprungs stimulierend wirkt, hat es auf 

neuroektodermale und epitheliale Zellen einen inhibitorischen Effekt (Miyazono et 

al., 1992). In malignen Zellen kommt es zu einer Überproduktion von TGF-β1. Dies 

führt durch Neovaskularisation zu einem verstärkten Wachstum des 

Tumorgewebes (Üki et al., 1992). TGF-β1 wirkt außerdem als autokriner 

Wachstumsfaktor auf Glioblastome (Jennings et al., 1998). 

Für GDNF wurde eine Wirkung auf das Überleben und die Reifung 

verschiedener Neurone des peripheren und zentralen Nervensystems 

nachgewiesen. Dazu gehören neben den Purkinjezellen, den Motoneuronen und 

den sympathischen Neuronen auch die Dopamin-produzierenden Neurone des 

Mittelhirns (Hou et al., 1996). In Glioblastomen kommt es zu einer massiven 

Überexpression dieses Chemokins, was zu einer gesteigerten Proliferation des 

Tumorgewebes führt (Wiesenhofer et al., 2000). 

 

1.4.3 Epidermal Growth Factor 

EGF gehört zu einer größeren Familie von Wachstumsfaktoren mit zahlreichen 

biologischen Wirkungen. So wird zum Beispiel die Proliferation und Differenzierung 

von mesenchymalen und epithelialen Zellen über EGF vermittelt. Außerdem besitzt 

EGF eine chemotaktische Wirkung auf Fibroblasten und Epithelzellen (Carpenter, 

1985). Der Rezeptor für EGF wird zudem auf Glioblastomzellen überexprimiert und 
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korreliert positiv mit der Malignität des Tumors (Kesari et al., 2006). In-vivo konnte 

zudem nachgewiesen werden, dass EGF unter anderem auf die Angiogenese und 

die Ausdifferenzierung von Epithelien wirkt. Dies geschieht durch Unterstützung 

der Mitose der Gefäßepithelzellen (Dunn et al., 2000). 

  

1.4.4 Platelet-derived Growth Factor 

Obwohl PDGF vor allem in Megakaryozyten produziert wird, schütten auch 

zahlreiche andere Zellarten wie zum Beispiel Fibroblasten, Gliazellen und 

Astrozyten dieses Chemokin aus. Zudem wirkt PDGF möglicherweise als 

autokriner Wachstumsfaktor auf Gliome (Hermanson et al., 1992). Auch scheint 

das Chemokin eine entscheidende Rolle in der Neoangiogenese von Tumoren zu 

spielen. Neben seiner neuromodulatorischen Wirkung auf das Nervengewebe 

wurde auch eine potente chemotaktische Wirkung von PDGF auf hämatopoetische 

Zellen und mesenchymale Zelllinien  nachgewiesen (Westermark et al., 1993). 

 

1.4.5 Neurotrophin-3 und Brain-derived Neurotrophic Factor 

NT-3 und BDNF gehören zur Familie der Neurotrophine. Diese Chemokine 

spielen eine Rolle in der Entwicklung und Differenzierung von Nervenzellen, 

sowohl im peripheren als auch im zentralen Nervensystem. Auch scheinen sie bei 

der Regeneration von Nervengewebe eine Rolle zu spielen. Ihre Wirkung auf das 

Gewebe ist in vielen Bereichen additiv (Barde, 1990). BDNF und NT-3 werden in 

großem Maße von Glioblastomzellen sezerniert, allerdings besitzen sie keine 

promitotische Wirkung auf die malignen Zellen. Dies legt die Vermutung nahe, 

dass ihre Rolle in diesem Prozess eher parakrin als autokrin zu werten ist (Hamel 

et al., 1993). 
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1.4.6 Human Ciliary Neurotrophic Factor 

CNTF ist strukturell verwandt mit den Chemokinen IL-11 und IL-6. Dieses 

Chemokin scheint eine überlebensfördernde Wirkung auf unterschiedliche 

Nervenzellen zu haben. Dazu gehören unter anderem die Neurone in 

sympathischen Ganglien, die sensiblen Hinterhornneurone des Rückenmarks und 

Neurone im Hippocampus. Außerdem verhindert seine Ausschüttung die 

Axondegeneration nach Durchtrennung eines Nerven (David et al., 1993). CNTF 

wird von Glioblastomzellen vermehrt gebildet (Weis et al., 1999). 

Das genaue Verständnis der dem glioblastominduzierten Tropismus zugrunde 

liegenden Wechselwirkungen zwischen hMSC und Tumorzellen ist Voraussetzung 

für die Entwicklung hMSC-basierter Ansätze in der Therapie des Glioblastoms. 

Diese könnten zukünftig in Kombination mit bewährten Therapieschemata zum 

verlängerten Überleben der an Glioblastom erkrankten Patienten beitragen. 
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2 Material und Methoden 

 

2.1 Zellen 

 

2.1.1 Zellkultur 

Sowohl für die hMSC, als auch für die verwendeten Tumorzelllinien wurden 

dieselben Methoden der Zellkultur verwendet.  

Die Zellen wurden in einem Standardbrutschrank (37° Celsius, 5% CO2-Anteil, 

100% Luftfeuchtigkeit) aufbewahrt.  

Zur Herstellung des Nährmediums wurde α-modified-essential-medium (α-MEM) 

mit 20% fetalem Kälberserum (FBS), 100U/ml Penicillin, 0.1mg/ml Streptomycin 

und 2mM L-Glutamin versetzt (20% α-MEM). Die Zellen wuchsen in Zellkultur-

flaschen der Größe 185cm², 80cm² oder 25cm² in einer Konzentration von 400 

Zellen/cm². Das Medium wurde jeden zweiten Tag gewechselt. Sobald die Zellen 

subkonfluent waren, wurden sie mit Hanks Balanced Salt Solution, 0.25% Trypsin, 

1mM EDTA und unter Zuhilfenahme eines Zellschabers vom Boden der Zellkultur-

flaschen gelöst. Nach drei Minuten wurde die Wirkung des Trypsins mit serum-

haltigem α-MEM gestoppt und diese Suspension anschließend bei 400g für zehn 

Minuten zentrifugiert. Danach wurde der Überstand verworfen und das Zellpellet 

mit  20% α-MEM resuspendiert.  

Die Zellzahl wurde mit Hilfe einer Neubauerkammer bestimmt. Die Zellen aus 

dem repräsentativen Aliquot von 1ml wurden dazu vierfach mit Trypanblau 0.4% 

verdünnt. Hierfür wurden 10µl aus dem Aliquot entnommen und mit 40µl 

Trypanblau vermischt. Daraufhin wurden die in vier Quadranten sichtbaren Zellen 

unter dem Mikroskop (10x) ausgezählt. Die Konzentration der Zellen wurde darauf-

hin mittels folgender Formel berechnet: 
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Konzentration Zellen (Zellen/ml) = Ergebnis x Volumen Aliquot x Verdünnungsfaktor x 104 

Die Zellen wurden dann in einer Dichte von 400 Zellen/cm² in eine neue 

Zellkulturflasche gegeben. Die neue Flasche der Größe 185cm² wurde wieder mit 

20ml α-MEM befüllt und in den Brutschrank gelegt. Für die Zellkulturflaschen der 

Größen 80cm² und 25cm² wurden jeweils 10ml, beziehungsweise 5ml α-MEM ver-

wendet. 

Die nicht unmittelbar für die Versuche verwendeten Zellen wurden bei -195° 

Celsius in flüssigem Stickstoff eingefroren. Dazu wurden die Zellen zunächst wie 

oben beschrieben von der Zellkulturflasche gelöst und ausgezählt. Daraufhin 

wurden sie in einer Konzentration von jeweils 1x106 Zellen/ml 1:10 mit 20% α-MEM 

verdünnten Dimethylsulfoxid (DMSO) resuspendiert und in Einfrierröhrchen ge-

geben. 

Zum Auftauen der Zellen wurde der Inhalt der Röhrchen zunächst zehnfach mit  

20% α-MEM verdünnt und für zehn Minuten bei 400g zentrifugiert. Das Zellpellet 

wurde daraufhin mit 20% α-MEM  resuspendiert, die Zellen ausgezählt und in einer 

Konzentration von 400 Zellen/cm² in Zellkulturflaschen gegeben. 

Die verwendeten Materialien, Geräte und Reagenzien mit Typ-, und Hersteller-

bezeichnungen sind jeweils am Ende eines Unterpunktes tabellarisch aufgeführt. 
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Material Typ Firma Sitz 

Autoklav Varioklav 400 H+P Labortechnik Oberschleißheim, Dtld. 

Brutschrank Hera Cell Kendro Langenselbold, Dtld. 

Einfriergerät Cryo Nalge Nunc 

International 

Wiesbaden, Dtld. 

Einfrierröhrchen 1.8ml Nalge Nunc 

International 

Wiesbaden, Dtld. 

Gefrierschrank -80° Celsius Nalge Nunc 

International 

Wiesbaden, Dtld. 

Kühl-, und Gefrierschrank 4° Celsius, -20° Celsius Siemens München, Dtld. 

Kulturflaschen 25cm², 80cm², 185cm² Nalge Nunc 

International 

Rochester, USA 

Mikroskop CK40 Olympus Hamburg, Dtld. 

Pipetten/Pipettenspitzen 10, 20, 100, 200, 1000ml Eppendorf Hamburg, Dtld. 

Pipettierhilfe Pipetus- Akku Hirschmann 

Laborgeräte 

Eberstadt, Dtld. 

Reaktionsgefäße 1.5ml Eppendorf- Cups Eppendorf Hamburg, Dtld. 

Reaktionsgefäße 15ml, 50ml Falcon Becton Dickinson Franklin Lakes, USA 

Sicherheitswerkbank Hera Safe Kendro Langenselbold, Dtld. 

Stickstofftonne BT 55 Air Liquide Düsseldorf, Dtld. 

Zählhilfe Neubauerkammer Brand Wertheim, Dtld. 

Zellschaber BD Falcon BD Biosciences Bedford, USA 

Zentrifuge Rotanta Hettich Laborapparate Bäch, Schweiz 

 

Tabelle 1: Materialen und Geräte für die Zellkultur 
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Material Typ Firma Sitz 

D-Glutamin  ≥ 98% (TLC) Sigma-Aldrich Steinheim, Dtld. 

Dimethylsulfoxid reinst Merck Darmstadt, Dtld. 

Fetales bovines Serum Heat Inactivated, Non-

USA origin, sterile-

filtered, cell culture 

tested  

Sigma-Aldrich Steinheim, Dtld. 

Hanks Balanced Salt Solution Modified Sigma-Aldrich Steinheim, Dtld. 

Penicillin/ Streptomycin 100x Sigma-Aldrich Steinheim, Dtld. 

Rohmedium Minimal Essential 

Medium Eagle  

Sigma-Aldrich Steinheim, Dtld. 

Trypanblau 0.4% Trypan Blue Sigma-Aldrich Steinheim, Dtld. 

Trypsin 0.25% Trypsin- EDTA Sigma-Aldrich Steinheim, Dtld. 

 

Tabelle 2: Reagenzien für die Zellkultur 

 

2.1.2 Gewinnung und Isolierung der hMSC 

Die für die Versuche benötigten hMSC wurden aus nicht verwertbarem 

Restmaterial von Knochenmarkspenden gewonnen. Dafür wurde das individuelle 

Einverständnis jedes Spenders und ein Votum der Ethikkommission zur Verwen-

dung der hMSC eingeholt. 

Zur Aufbereitung wurden die Beutel und das zugehörige Filtersystem der 

Knochenmarkspende zunächst mit 100ml 20% α-MEM gespült und das gewon-

nene Material über einem Zellsieb mit einer Porengröße von 70μm gefiltert. Die 

mononukleären Zellen wurden aus dem Knochenmarkmaterial mittels der Ficoll 
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Dichte Gradient-Methode isoliert. Bei dieser Methode wurde Histopaque 

verwendet, eine Lösung die aus Polysucrose und Natrium-Diatrizoat besteht und 

bei 25° Celsius eine Dichte von 1.077g/ml aufweist. Die Präparation bei 

Raumtemperatur begann damit, dass 15ml Histopaque in ein 50ml Zentri-

fugenröhrchen pipettiert wurden. Darüber wurden vorsichtig 30ml Knochenmark-

material geschichtet und anschließend für 35 Minuten bei 400g zentrifugiert (siehe 

dazu auch Abbildung 2).  

 

 

 

Abbildung 2: Ficoll Dichte Gradient-Methode. Nach Zentrifugation bildet sich eine Flüssigkeitsäule 

mit vier Schichten, die ihrer Dichte und ihrem spezifischen Gewicht nach wie skizziert angeordnet 

sind. 

 

Die Schicht mit den mononukleären Zellen wurde daraufhin in ein neues Gefäß 

gegeben, mit gleicher Menge an 20% α-MEM vermischt und anschließend für zehn 

Minuten bei 400g zentrifugiert. Der Überstand wurde verworfen und der Wasch-

schritt noch zweimal wiederholt. Anschließend wurden die Zellen in der Neubauer-

kammer ausgezählt. Die mononukleären Knochenmarkzellen wurden daraufhin zu 

einer Konzentration von 1x106 Zellen/25cm²  in Zellkulturflaschen eingebracht und 

48 Stunden bei 37° Celsius bebrütet. Nach Wechseln des Mediums waren nur 

noch hMSC in den Flaschen, weil diese sich im Gegensatz zu den anderen 
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mononukleären Zellen an den Plastikboden der Zellkulturflaschen adhärieren, eine 

typische fibroblastenähnliche Morphologie aufweisen und unter Zusatz von FBS 

proliferieren. Die Populationsverdopplungszeit betrug 33 Stunden. Wenn die Zellen 

nach circa sechs bis acht Tagen subkonfluent waren, wurden sie wie oben 

beschrieben gesplittet und in einer Konzentration von 400 Zellen/cm² in neue 

Zellkulturflaschen aufgeteilt. Für die Experimente wurden Zellen der Passagen 

zwei bis fünf verwendet.  

 

Material Typ Firma Sitz 

Histopaque 1.077g/ml Sigma-Aldrich Steinheim, Dtld. 

Zellsieb 70μm Becton Dickinson Franklin Lakes, USA 

 

Tabelle 3: Materialien und Reagenzien für die Ficoll Dichte Gradient-Methode 

 

2.1.3 Gewinnung von glioblastomkonditioniertem Medium 

Es wurden für die Versuche die humanen Glioblastomlinien  U-373, U-251 und 

MZ-54 verwendet. Die Zellen (je 1x106 in 75cm² Zellkulturflaschen) wurden mit 

10% α-MEM kultiviert, bis sie zu 80% konfluent waren. Je 1x106 Zellen wurden 

daraufhin für 48 Stunden mit serumfreiem α-MEM bebrütet, der Überstand wurde 

abpipettiert und zehn Minuten bei 400g zentrifugiert. Das Zellpellet wurde 

verworfen und der so gewonnene zellfreie Überstand wurde dann als glioblastom-

konditioniertes Medium für die Versuche verwendet. Die Aliquots der konditio-

nierten Medien wurden bei –20° Celsius aufbewahrt. 
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2.2 Fluorescence Activated Cell Sorting-Analyse 

Die Durchflusszytometrie (FACS-Analyse) ist die am häufigsten verwendete 

Methode der Immunphänotypisierung. Dabei wird die Expression verschiedener 

Antigene auf der Oberfläche von Zellen analysiert. Dadurch kann dann ein 

Rückschluss auf die Zugehörigkeit der untersuchten Zellen zu einer bestimmten 

Zellreihe gezogen werden. 

Um sicherzustellen, dass mit der weiter oben beschriebenen Ficoll Dichte 

Gradient-Methode die gewünschten hMSC gewonnen wurden, wurde an drei 

verschiedenen Proben eine FACS-Analyse durchgeführt. Dazu wurden die Zellen 

zunächst wie weiter oben beschrieben von der Zellkulturflasche gelöst und 

ausgezählt. Anschließend wurde eine Zellsuspension der Konzentration 2x105 

Zellen/200μl hergestellt. Die Aliquots wurden dann für zwanzig Minuten mit 

Fluorochrom-konjugierten Antikörpern (anti-CD 11b, anti-CD 14, anti-CD 31, anti-

CD 34, anti-CD 44 und anti-CD 105) auf Eis inkubiert. Danach wurden die Zellen 

dreimal mit Phosphate Buffered Saline (PBS)  gewaschen. Die Analyse der 

fixierten Zellen erfolgte mit einem FACScan Flow Cytometer. Die Daten aus  

100 000 Ereignissen wurden dann unter Verwendung der Cell Quest Software 

analysiert. 
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Material Typ Firma Sitz 

Antikörper 

 

anti-CD 11b, anti-CD 14, anti-

CD 31, anti-CD 34, anti-CD 

44, anti-CD 105 

Becton Dickinson Franklin Lakes, USA 

FACS Kit Phosflow Starter Kit Pharmingen San Diego, USA 

FACS Software Cell Quest Software  Becton Dickinson Franklin Lakes, USA 

PBS  Dulbecco’s Phosphate 

Buffered Saline 

Sigma-Aldrich Steinheim, Dtld. 

Zytometer FACScan Flow Cytometer  Becton Dickinson Franklin Lakes, USA 

 

Tabelle 4: Materialen und Reagenzien für die FACS-Analyse 

 

2.3 Migrationsassay 

Für die Migrationsversuche wurde eine 48-Well Chemotaxiskammer 

(modifizierte Boyden Kammer) verwendet. Mittels der Boyden Kammer wurde die 

Zellmigration der hMSC unter Stimulierung verschiedener chemotaktisch 

wirksamer Agenzien im Vergleich zur Negativkontrolle bestimmt. Als Chemotaxis 

bezeichnet man die gerichtete Bewegung von Zellen entlang eines Konzentrations-

gradienten von Chemotaxinen. 

Die modifizierte Boyden Kammer besteht aus drei Komponenten, dem Boden, 

welcher 48 Vertiefungen in zwölf mal vier Reihen aufweist, einer Gummidichtung 

und einer Deckplatte. Gummidichtung und Deckplatte zeigen analog dem Boden 

48 durchgehende Aussparungen. 

Es wurden 1x106 hMSC pro Versuch eingesetzt. Die Zellen wurden wie oben 

beschrieben mit Trypsin-EDTA vom Flaschenboden entfernt und in serumfreiem α-
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MEM suspendiert. Die Testproben waren serumfreies α-MEM als Negativkontrolle 

und 20% α-MEM als Positivkontrolle, die zu testenden Wachstumsfaktoren 

suspendiert in serumfreiem α-MEM und das glioblastomkonditionierte Medium (der 

serumfreie Überstand der Glioblastomlinien U-373, U-251 und MZ-54).  

Zuerst wurden die entsprechenden Testproben in einer Menge von jeweils 30μl 

in die unteren Wells der Boyden Kammer gegeben. Zwischen Boden und 

Gummidichtung wurde dann ein Polycarbonat-Filter mit einer Porengröße von 8μm 

platziert, durch welchen die hMSC migrieren mussten. Danach wurden jeweils 50μl 

der suspendierten hMSC in die oberen Wells der Boyden Kammer eingefüllt. In 

jedem Well befand sich dann eine Menge von 5x104 hMSC. Anschließend wurde 

die Kammer mit sechs Schrauben fest verschlossen. Nach dem Befüllen wurde die 

Kammer für die Dauer der Migration (vier Stunden) bei 37° Celsius in einer 5% 

CO2 enthaltenden Wasserdampfatmosphäre inkubiert. In dieser Zeit wanderten die 

Zellen vom oberen Kompartiment entlang des Chemotaxisgradienten durch den 

Polycarbonat-Filter. Anschließend wurde der Filter entfernt und die den oberen 

Wells zugewandte Seite dreimal mit PBS gewaschen, um die nicht durch den Filter 

migrierten hMSC zu entfernen. 

Nach Lufttrocknen der Filtermembran wurden jene Zellen mit Methanol fixiert, 

die durch die Poren auf die untere Hälfte der Boyden Kammer gewandert waren. 

Diese wurden dann mittels Hämacolor-Färbeset gefärbt und unter dem 

Lichtmikroskop ausgezählt (siehe dazu Abbildung 3). Dabei wurden in 40x 

Vergrößerung jeweils alle gewanderten Zellen pro Well ausgezählt. Jede 

Versuchsreihe wurde doppelt angesetzt und dreimal wiederholt.  
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Abbildung 3: Makroskopische Ansicht einer Filtermembran mit migrierten und eingefärbten hMSC. 

Von links nach rechts: Positivkontrolle, hMSC+IL-8, hMSC+NT-3, hMSC+TGF-β1, hMSC+MZ-54, 

hMSC+U-373, hMSC+U-251, Negativkontrolle 

 

Um die Ergebnisse der unterschiedlichen Migrationsversuche vergleichen zu 

können, wurde ein Migrationsindex (MI) nach folgender Formel errechnet:  

MI = Ergebnis Probe / Ergebnis Nullprobe 

Die Versuche wurden mit folgenden Chemokinen durchgeführt: EGF (50ng/ml, 

5ng/ml, 0.5ng/ml), TGF-β1 (10ng/ml, 1ng/ml, 0.1ng/ml, 0.01ng/ml), IL-8 (1μg/ml, 

0.1μg/ml, 30ng/ml, 3ng/ml, 0.3ng/ml), BDNF (100ng/ml, 10ng/ml, 1ng/ml), NT3 

(100ng/ml, 10ng/ml, 1ng/ml), CNTF (50ng/ml, 5ng/ml, 0.5ng/ml), PDGF (50ng/ml, 

5ng/ml, 0.5ng/ml) und GDNF (50ng/ml, 5 ng/ml, 0.5ng/ml).  

Außerdem wurde die chemotaktische Wirkung von glioblastomkonditionierten 

Medien der Zelllinien U-373, U-251 und MZ-54 untersucht. Schließlich wurde die 

chemotaktische Wirkung der glioblastomkonditionierten Medien nach Neutrali-

sierung der Chemokine TGF-β1, NT-3 und IL-8 analysiert und mit der Wirkung der 

jeweiligen nativen glioblastomkonditionierten Medien verglichen. Diese wurden 

dafür jeweils 30 Minuten lang mit spezifischen monoklonalen Antikörpern gegen 

humanes NT-3 (5μg/ml), IL-8 (5μg/ml) und TGF-β1 (100μg/ml) präinkubiert und 

anschließend die Migrationsversuche durchgeführt. 
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Um die Ergebnisse besser vergleichen zu können, wurde wiederum ein 

Migrationsindex (MI) errechnet. Dabei diente das glioblastomkonditionierte Medium 

ohne die neutralisierenden Antikörper als Kontrolle:  

MI = Ergebnis Probe / Ergebnis Kontrolle 

 

Material Typ Firma Sitz 

Färbelösung Hämacolor Merck Darmstadt, Dtld. 

Filter 8μm Neuro Probe Inc. Gaithersburg, USA 

Glasobjektträger, 

Deckgläser 

26 x 76 mm Menzel Braunschweig, Dtld. 

Methanol Pro analysi Merck Darmstadt, Dtld. 

Migrationskammer Boyden Kammer Neuro Probe Inc. Gaithersburg, USA 

Mikroskop Fluoreszenz B60 Olympus Hamburg, Dtld. 

 

Tabelle 5: Materialien und Reagenzien für das Migrationsassay 
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Material Typ Firma Sitz 

Chemokin BDNF Sigma-Aldrich Steinheim, Dtld. 

Chemokin CNTF Sigma-Aldrich Steinheim, Dtld. 

Chemokin GDNF Sigma-Aldrich Steinheim, Dtld. 

Chemokin IL-8 Sigma-Aldrich Steinheim, Dtld. 

Chemokin NT-3 Sigma-Aldrich Steinheim, Dtld. 

Chemokin PDGF Sigma-Aldrich Steinheim, Dtld. 

Chemokin TGF-β1 Sigma-Aldrich Steinheim, Dtld. 

monoklonale AK Anti-IL-8, Anti-TGF-β1 Sigma-Aldrich Steinheim, Dtld. 

monoklonaler AK Anti-NT-3 R&D Systems Minneapolis, USA 

 

Tabelle 6: Chemokine und Antikörper 

 

2.4 Enzyme-linked Immunosorbent Assay 

Das Enzyme-linked Immunosorbent Assay (ELISA) ist ein immunologisches 

Nachweisverfahren, das auf einer enzymatischen Farbreaktion basiert. Mit Hilfe 

dieser Methode können zum Beispiel Proteine in Proben nachgewiesen werden. 

Hierbei macht man sich die Eigenschaft spezifischer Antikörper zu Nutze, sich an 

den nachzuweisenden Stoff zu binden. Jene Antikörper sind mit einem Enzym 

gekoppelt. Die durch das Enzym katalysierte Reaktion dient als Nachweis für das 

Vorhandensein des untersuchten Proteins. 

Um nachzuweisen, dass die von uns verwendeten Glioblastomzellen die 

Chemokine IL-8, TGF-β1 und NT-3 produzieren, wurde einmalig ein jeweiliger 
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ELISA durchgeführt. Mit dieser Methode wurden die Konzentrationen jener 

Chemokine in den glioblastomkonditionierten Medien der Zelllinien MZ-54, U-373 

und U-251 bestimmt. Dabei wurden die Anwendungshinweise der Hersteller 

befolgt. Vor Beginn der Messung wurde die benötigte Anzahl an Microplates-

streifen in den vorgegebenen Rahmen der 96-Well-Mikrotiterplatte eingespannt. 

Nach dem Prinzip des „Sandwich Enzym Immunoassay“ war der für das zu 

messende Chemokin spezifische, monoklonale coating-Antikörper bereits an den 

Boden der Wells gebunden. Durch Zugabe der glioblastomkonditionierten Medien 

beziehungsweise des Standards band sich das darin enthaltene Chemokin 

daraufhin an diesen spezifischen Antikörper. In den Standardproben befand sich 

eine Verdünnungsreihe bekannter Mengen des zu messenden Chemokins, mit 

deren Hilfe am Ende eine Kalibrierungskurve zur Chemokinmengenbestimmung 

der glioblastomkonditionierten Medien erstellt werden konnte. Während der 

Inkubationszeit von zwei Stunden bei Raumtemperatur band der Antikörper in den 

Wells nun das gesamte zu messende Chemokin. Dann wurden alle ungebundenen 

Substanzen mit Hilfe eines Waschpuffers abgewaschen und dieser Schritt dreimal 

wiederholt. Anschließend wurde ein mit einer Peroxidase verknüpfter, polyklonaler 

Antikörper gegen das zu messende Chemokin dazu pipettiert. Wie schon zuvor, 

wurde die Messplatte zwei Stunden inkubiert und wiederum viermal gewaschen, 

um die nicht gebundenen Antikörper zu entfernen. Schließlich wurde in jedes Well 

Peroxidase-spezifisches Substrat pipettiert, wobei je nach Chemokinmenge und 

somit veränderter Antikörperkonzentration ein unterschiedlich intensiver Farb-

umschlag entstand. Nach zwanzig Minuten wurde diese Reaktion mit Hilfe einer 

Stopplösung beendet.  

Zur Berechnung des Chemokingehaltes der Proben wurden in einem Photo-

meter bei 570nm Wellenlänge die Extinktionen aller Proben gemessen. Mit Hilfe 

der bekannten Chemokin-Standardkurven konnte somit der Gehalt des ent-

sprechenden Chemokins in den Plasmaproben berechnet werden. 
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Material Typ Firma Sitz 

ELISA IL-8, TGF-β1 R&D Systems Minneapolis, USA 

ELISA NT-3 Raybiotech Inc. Norcross, USA 

Photometer UVM 340 Deelux Labortechnik  Gödenstorf, Dtld. 

 

Tabelle 7: Materialien und Reagenzien für das ELISA 

 

2.5 Immunfluoreszenzfärbung 

Als Immunfluoreszenzfärbung wird eine Methode bezeichnet, mit der Proteine 

(wie beispielsweise Chemokinrezeptoren) mit Hilfe von Antikörpern sichtbar ge-

macht werden. Dabei wird im ersten Schritt ein spezifischer Antikörper 

(Primärantikörper) auf die zu untersuchenden Zellen aufgebracht. In einem zweiten 

Schritt wird ein Antikörper aufgetragen, der sich gegen den ersten Antikörper 

richtet. Es ist der sogenannte Sekundärantikörper, welcher mit einem Fluoreszenz-

farbstoff gekoppelt ist. Die Detektion erfolgt mithilfe eines Fluoreszenzmikroskops. 

Mittels Immunfluoreszenzfärbung wurden die Chemokinrezeptoren für IL-8, 

TGF-β1 und NT-3 auf der Oberfläche der hMSC nachgewiesen. Dafür wurden die 

hMSC zunächst zwanzig Minuten mit 4% Paraformaldehyd behandelt und damit 

fixiert. Danach wurde für eine Stunde eine Lösung aus Triton X und Ziegenserum 

hinzugegeben. Damit wurde eine Permeabilisierung der Zellmembran erreicht und 

zudem wurden die unspezifischen Bindungsstellen blockiert. Als nächstes wurden 

die entsprechenden Primärantikörper (CXCR1, TGF-β-RII und TrkC) hinzugegeben 

und für zwei Stunden inkubiert. Darauf schloss sich ein Waschschritt an. 

Anschließend wurden TRITC-konjugierte Sekundärantikörper hinzugegeben und 

30 Minuten lang inkubiert. Als letztes wurden die Zellkerne der hMSC mit 

Diamidiophenylindol (DAPI) eingefärbt. Alle Bilder wurden mit Hilfe eines 
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Fluoreszenzmikroskops, welches mit einer Digitalkamera ausgestattet ist, ge-

wonnen.   

 

Material Typ Firma Sitz 

Diamidiophenylindol  10 ng/ml Invitrogen Karlsruhe, Dtld. 

Fluoreszenzmikroskop Vision Zeiss Hallbergmoos, Dtld. 

Paraformaldehyd Pro analysi Merck Darmstadt, Dtld. 

Primärantikörper (IgG Maus) CXCR1, TGF-β-RII, 

TrkC 1:200 

Sigma-Aldrich Steinheim, Dtld. 

Sekundärantikörper (Ziege) TRITC konjugiert 

1:200 

Jackson 

Immunoresearch 

West Grove, USA 

Software KS 300 Zeiss Hallbergmoos, Dtld. 

Triton X-100 0.3% Sigma-Aldrich Steinheim, Dtld. 

Ziegenserum 10% Dako Glostrup, Dänemark 

 

Tabelle 8: Materialien und Reagenzien für die Immunfluoreszenzfärbung 

 

2.6 Statistik 

Für die statistische Auswertung der Migrationsversuche wurden die ANOVA- 

Varianzanalyse und der Dunnett’s Test verwendet. Für die Neutralisationsversuche 

wurde der Student’s t-test verwendet. Unterschiede wurden ab einer Irrtums-

wahrscheinlichkeit p < 0.05 als signifikant, ab p < 0.01 als hochsignifikant an-

gesehen. Für die statistischen Berechnungen wurden die Programme Excel und 

Prism4 verwendet. 
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Programm Firma Sitz 

Excel Microsoft Redmond, USA 

Prism4 GraphPad Software San Diego, USA 

 

Tabelle 9: Programme für die Statistik 
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3 Ergebnisse 

Im folgenden Kapitel werden die Ergebnisse der durchgeführten Versuche 

dargestellt. Ziel dieser Doktorarbeit war die Identifizierung jener Chemokine, 

welche den glioblastominduzierten Tropismus der hMSC vermitteln. 

 

3.1 Charakterisierung der hMSC  

In diesem Versuchsabschnitt sollte nachgewiesen werden, dass die in den 

Migrationsversuchen verwendeten mononukleären Zellen hMSC waren. Hierfür 

wurde mittels der FACS-Analyse eine phänotypische Charakterisierung der ver-

wendeten Zelllinien durchgeführt. Dies erfolgte an drei der Spenderproben, welche 

auch für die Versuche eingesetzt wurden. 

HMSC werden hier definiert als mononukleäre Zellen, welche die folgenden 

Kriterien aufweisen: 

- Sie sind positiv für die Oberflächenmarker CD 105 und CD 44, während sie für 

andere Marker mononukleärer Zelltypen des Knochenmarks wie CD 11b, CD 14, 

CD 31 und CD 34 negativ sind. 

- In Zellkultur zeigen sie eine typische fibroblastenähnliche Morphologie, sind 

adhärent am Flaschenboden und zeigen (anders als beispielsweise Endothel-

zellen) eine Proliferation unter FBS. 

Mit der Ficoll Dichte Gradient-Methode werden mononukleäre Zellen isoliert. Im 

Knochenmark befinden sich neben hMSC noch zahlreiche andere mononukleäre 

Zellen, welche eine den hMSC ähnliche Morphologie und Funktion aufweisen. 

Dieser Versuchsabschnitt dient zum Nachweis, dass die mit der oben genannten 

Methodik  isolierten mononukleären Zellen hMSC sind. 

CD 34 wird auf hämatopoetischen Stammzellen (HSC) exprimiert, CD 11b auf  

Makrophagen  und Monozyten, CD 14 auf Monozyten und CD 31 auf 
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Endothelzellen. Wie in Abbildung 4 ersichtlich, waren die mittels FACS-Analyse 

untersuchten Zellen sowohl positiv für CD 105 (99%) als auch für CD 44 (95%), 

während sie für CD 11b, CD 14, CD 31 und CD 34 negativ waren.  

Diese Ergebnisse stimmen mit denen anderer Arbeitsgruppen hinsichtlich der 

phänotypischen Charakterisierung der hMSC überein (Reyes et al., 2001; Conget 

et al., 1999; De Ugarte et al., 2003). Somit konnte bestätigt werden, dass mit der 

verwendeten Methodik hMSC aus dem Knochenmarkaspirat isoliert wurden. 

 

Abbildung 4: Ergebnisse der FACS-Analyse. Die untersuchten Zellen waren positiv für die 

Oberflächenmarker CD 44 und CD 105, während sie für CD 14, CD 11b, CD 31 und CD 34 negativ 

waren. 
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3.2 Migration der hMSC 

 

3.2.1 Identifizierung der Kandidatenchemokine 

Ziel des nachfolgend beschriebenen Versuchsabschnittes war es, aus dem Pool 

der vorausgewählten Kandidatenchemokine jene zu identifizieren, welche die 

Migration von hMSC signifikant beeinflussen. Hierfür wurden die Chemokine EGF, 

TGF-β1, IL-8, BDNF, NT-3, CNTF, PDGF und GDNF auf ihre chemotaktische 

Wirkung auf hMSC hin untersucht. Hierzu wurde mit dem weiter oben 

beschriebenen modifizierten Boyden Kammer Assay gearbeitet. In Abbildung 5 ist 

ein Filter der Boyden Kammer nach Migration und Einfärbung der hMSC zu sehen. 

 

 

Abbildung 5: Mikroskopische Ansicht einer Filtermembran mit migrierten und eingefärbten hMSC. 

Zu erkennen sind die Poren der Filtermembran sowie zahlreiche spindel-, bis sternförmig 

ausgezogene hMSC, welche größtenteils untereinander vernetzt sind. 

 

Die entsprechenden Chemokine wurden in ihrer jeweiligen, in der Literatur 

beschriebenen Wirkungskonzentration eingesetzt (Mukaida et al., 1992; 
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Gospodarowicz et al., 1987; Huang et al., 1986; Beckmann et al., 1988; Barnard et 

al., 1990; Carpenter et al., 1985; Rosenthal et al., 1990; Schroder et al., 1987; Eide 

et al., 1993; Airaksinen et al., 2002). Bei unklarer Signifikanz der Ergebnisse 

wurden zusätzlich 1:10 Verdünnungsreihen des entsprechenden Chemokins 

ausgetestet. In Abbildung 6 sind die erzielten Resultate grafisch dargestellt. 

Um die Ergebnisse der unterschiedlichen Migrationsversuche vergleichen zu 

können, wurde ein Migrationsindex (MI) nach folgender Formel errechnet: 

 MI = Ergebnis Probe / Ergebnis Nullprobe  

EGF wurde in den Konzentrationen 50ng/ml, 5ng/ml und 0.5ng/ml eingesetzt 

und zeigte im Vergleich zur Negativkontrolle keine signifikante Wirkung auf die 

Migration der hMSC (MI = 1.1). Ebenso wenig hatten GDNF (5ng/ml) (MI = 0.7), 

CNTF (5ng/ml) (MI = 0.6), BDNF (10ng/ml) (MI = 1.3) und PDGF (5ng/ml)  

(MI = 1.1) einen signifikanten migrationsfördernden Effekt.  

Da IL-8 zwei physiologische Wirkungsbereiche aufweist, wurde es in den 

Konzentrationen 1μg/ml, 0.1μg/ml und 3ng/ml ausgetestet. Die Konzentrationen 

von TGF-ß1 und NT-3 waren 0.1ng/ml beziehungsweise 10ng/ml. IL-8 zeigte in 

einer Konzentration von 3ng/ml einen Migrationsindex von 1.7, während TGF-ß1 

und NT-3 einen Migrationsindex von jeweils 2.0 aufwiesen. Damit zeigten diese 

drei Chemokine, wie in Abbildung 6 ersichtlich, einen im Vergleich zur Negativ-

kontrolle signifikant gesteigerten Effekt auf die Migration der hMSC. Der stärkste 

chemotaktische Effekt wurde durch glioblastomkonditioniertes Medium erzielt und 

variierte zwischen den einzelnen Tumorzelllinien. So betrug der Migrationsindex 

bei U-373 4.2, bei U-251 4.8 und bei MZ-54 5.3.  
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Abbildung 6: Ergebnisse der Migrationsversuche. Mit den glioblastomkonditionierten Medien 

wurde der stärkste chemotaktische Effekt erzielt. Signifikante Ergebnisse wurden zudem bei den 

Chemokinen TGF-β1, NT-3 und IL-8 beobachtet. Die Chemokine EGF, PDGF, CNTF, BDNF und 

GDNF zeigten keine promigratorische Wirkung auf hMSC. Balken: Migrationsindices, Fehlerbalken: 

Standardabweichung, ein Stern: p < 0.05, zwei Sterne: p < 0.01. 

 

3.2.2 Konzentrationsabhängige Migration der hMSC 

Inhalt dieses Versuchabschnittes war die Frage, ob die migrationsfördernde 

Wirkung der Chemokine IL-8, TGF-ß1 und NT-3 auf die hMSC konzentrations-

abhängig ist. Hierfür wurden die entsprechenden Chemokine in 1:10 Verdünnungs-

reihen eingesetzt, wobei die Maximalkonzentration jeweils die zehnfache der in der 

Literatur beschriebenen physiologischen Wirkungskonzentration war. Die ver-

wendeten Konzentrationen waren für IL-8 30ng/ml, 3ng/ml und 0.3ng/ml; für TGF-

β1 1ng/ml, 0.1ng/ml und 0.01ng/ml und für NT-3 100ng/ml, 10ng/ml und 1ng/ml. 
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Wie in Abbildung 7 ersichtlich, zeigten alle drei untersuchten Chemokine einen 

signifikanten, konzentrationsabhängigen chemotaktischen Effekt auf die hMSC. 

Während bei IL-8 und NT-3 der maximale Effekt erst bei der höchsten Kon-

zentration von 30ng/ml beziehungsweise 100ng/ml erzielt wurde, zeigte sich dieser 

bei TGF-ß1 bereits bei einer Konzentration von 0.1ng/ml. Hierbei war der maxi-

male Migrationsindex bei TGF-ß1 2.0, bei NT-3 2.2 und bei IL-8 2.3. In der 

höchsten Verdünnungsstufe zeigte keines der Chemokine einen signifikanten 

migrationsfördernden Effekt im Vergleich zur Negativkontrolle (IL-8: MI = 1.3,  

TGF-β1: MI = 1.3, NT-3: MI = 1.4). 
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Abbildung 7: Ergebnisse der konzentrationsabhängigen Migrationsversuche mit den Chemokinen 

IL-8, TGF-β1 und NT-3. Für alle drei getesteten Chemokine war der chemotaktische Effekt auf  

hMSC konzentrationsabhängig. Während  bei IL-8 und NT-3 der maximale chemotaktische Effekt 

erst in der höchsten Konzentration erzielt wurde, zeigte sich dieser bei TGF-β1 bereits in der 

physiologischen Wirkkonzentration (TGF-β1: MI = 2.0,  IL-8: MI = 2.3, NT-3: MI = 2.2). Balken: 

Migrationsindices, Fehlerbalken: Standardabweichung, ein Stern: p < 0.05, zwei Sterne: p < 0.01. 

 

3.2.3 Immunfluoreszenzfärbung 

In den vorausgegangenen Versuchsabschnitten wurde die migrationsfördernde 

Wirkung der Chemokine IL-8, TGF-ß1 und NT-3 auf hMSC nachgewiesen. Ziel 

dieses Versuchsabschnittes war die Darstellung der Rezeptoren jener Chemokine 

auf der Oberfläche der hMSC mittels Immunfluoreszenzfärbung.  
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Wie in Abbildung 8 ersichtlich, zeigten so gut wie alle hMSC eine starke 

Expression des IL-8 Rezeptors CXCR1. Ebenso exprimierte die Mehrheit der 

hMSC den NT-3 Rezeptor TrkC sowie den TGF-β1 Rezeptor TGF-β-RII. Als 

Negativkontrolle diente eine Färbung ohne Zusatz eines Primärantikörpers. Somit 

konnte erstmals gezeigt werden, dass hMSC spezifische Rezeptoren für IL-8, 

TGF-β1 und NT-3 exprimieren. 

 

Abbildung 8: Nach Immunfluoreszenzfärbung zeigen sich auf der Oberfläche der hMSC die 

Rezeptoren CXCR1 (A), TGF-β-RII (B) sowie TrkC (C). Bild D zeigt die Negativkontrolle ohne 

vorherige Anwendung des Primärantikörpers. Originalvergrößerung (A)und (B) x 200, (C) und  

(D) x 400. 
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3.2.4 ELISA 

Ziel dieses Versuchsabschnittes war der Nachweis der Produktion der 

Chemokine IL-8, NT-3 und TGF-β1 durch Glioblastomzellen. Hierfür wurde mittels 

ELISA die Konzentration der Chemokine IL-8, NT-3 und TGF-β in den 

konditionierten Medien der Glioblastomlinien U-251, U-373 und MZ-54 bestimmt.  

Wie in Tabelle 10 ersichtlich, produzierten alle drei Glioblastomlinien die 

untersuchten Chemokine in relevanten Mengen, obgleich die Konzentrationen 

zwischen den einzelnen Zelllinien erheblich variierten. Die in der Literatur 

beschriebene physiologische und von uns in den Versuchen verwendete 

Wirkungskonzentration ist für IL-8 3ng/ml, für TGF-β1 0.1ng/ml und für NT-3 

10ng/ml. 

 

 IL-8 (ng/ml) TGF-β1 (ng/ml) NT-3 (ng/ml) 

U-251 1.02 3.10 13.21 

U-373 6.46 1.15 6.67 

MZ-54 11.68 2.59 8.01 

 

Tabelle 10: Ergebnisse der ELISAs. Die in den glioblastomkonditionierten Medien nachgewiesenen 

Konzentrationen der Chemokine stimmten mit den in den Migrationsversuchen verwendeten 

Konzentrationen überein. 

 

3.2.5 Neutralisationsversuche 

Dieser letzte Versuchsabschnitt hatte zum Inhalt, die funktionelle Bedeutung der 

Chemokine IL-8, TGF-β1 und NT-3 für den chemotaktischen Effekt von 

glioblastomkonditioniertem Medium auf hMSC nachzuweisen. Hierfür wurden 

Neutralisationsexperimente mit spezifischen Antikörpern für die drei Chemokine 

durchgeführt. Die chemotaktische Wirkung des glioblastomkonditionierten Medi-
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ums wurde hierfür jeweils vor und nach Zugabe des entsprechenden Antikörpers 

verglichen.   

Um die Ergebnisse besser vergleichen zu können, wurde wiederum ein 

Migrationsindex (MI) errechnet. Dabei diente das konditionierte Medium ohne die 

neutralisierenden Antikörper als Kontrolle:  

MI = Ergebnis Probe / Ergebnis Kontrolle 

Im Vergleich mit nicht behandeltem glioblastomkonditioniertem Medium kam es 

bei allen drei Chemokinen nach Neutralisierung zu einer bedeutenden Abnahme 

der Migration der hMSC (siehe Abbildungen 9 - 11). Im Falle von IL-8 war die Ab-

nahme der chemotaktischen Wirkung bei den Glioblastomlinien U-373 und  

MZ-54 statistisch signifikant. Wie in Abbildung 9 ersichtlich, verringerte sich der 

Migrationsindex jeweils auf 0.6. Auch bei der Tumorzelllinie U-251 zeigte sich eine 

Abnahme der chemotaktischen Wirkung durch Neutralisierung von IL-8. Diese war 

jedoch mit einem Migrationsindex von 0.7 aufgrund der Standardabweichung 

statistisch nicht signifikant. Interessanterweise zeigte diese Zelllinie im ELISA die 

geringste Produktion von IL-8.  
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Abbildung 9: Ergebnisse der Neutralisierungsver che mit IL-8. Bei den Tumorzelllinien U-373 und 

MZ-54 führte die Neutralisation von IL-8 zu einer Abnahme des Migrationsindex auf 0.6. Bei U-251 

verringerte sich die Migration der hMSC auf MI = 0.7. Balken: Migrationsindices, Fehlerbalken: 

Standardabweichung, ein Stern: p < 0.05, zwei Sterne: p < 0.01. 

 

Durch Neutralisierung von TGF-β1, beziehungsweise NT-3 zeigte sich bei allen 

untersuchten Glioblastomlinien eine statistisch signifikante Abnahme des Migra-

tionsindex im Vergleich zur Kontrolle ohne Neutralisierung. Bezüglich TGF-β1 kam 

es bei U-373 zur Abnahme des Migrationsindex auf 0.5, bei MZ-54 auf 0.6 und bei 

U-251 auf 0.7 (siehe Abbildung 10). Wie in Abbildung 11 ersichtlich, verringerte 

sich bei NT-3 der Migrationsindex für U-251 und U-373 auf jeweils 0.7, für MZ-54 

auf 0.6. 

 

su
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Abbildung 10: Ergebnisse der Neutralisierungsversuche mit TGF-β1. Die Migration der hMSC 

nahm nach Zugabe des neutralisierenden Antikörpers bei allen drei glioblastomkonditionierten 

Medien signifikant ab (U-251: MI = 0.7, U-373: MI = 0.5, MZ-54: MI = 0.6). Balken: 

Migratio 01. 

 

nsindices, Fehlerbalken: Standardabweichung, ein Stern: p < 0.05, zwei Sterne: p < 0.
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Abbildung 11: Ergebnisse der Neutralisierungsversuche mit NT-3. Nach Zugabe des 

neutralisierenden Antikörpers nahm die Migration der hMSC bei allen untersuchten Tumorzelllinien 

signifikant ab (U-251: MI = 0.7, U-373: MI = 0.7, MZ-54: MI = 0.6). Balken: Migrationsindices, 

Fehlerbalken: Standardabweichung, ein Stern: p < 0.05, zwei Sterne: p < 0.01. 

 

Die durch die vorliegende Arbeit gewonnenen Erkenntnisse zeigen  auf, dass 

die Chemokine IL-8, TGF-β1und NT-3 einen signifikanten migrationsfördernden 

Effekt auf hMSC besitzen. Inwiefern dies im Kontext des glioblastominduzierten 

Tropismus der hMSC einzuordnen ist, soll in der folgenden Diskussion erläutert 

werden. 
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4 Diskussion 

Für die schlechte Prognose des Glioblastoms gibt es mehrere Gründe. Zum 

einen weisen diese Tumore eine ausgeprägte Invasivität auf. Einzelne maligne 

Zellen lösen sich vom Tumorzellverband und wachsen weit bis in das gesunde 

Gewebe vor. Dies ist der Hauptgrund für die hohe Rezidivquote auch nach 

makroskopisch vollständiger chirurgischer Resektion. Zum anderen sind die 

Möglichkeiten einer gezielten und lokalen Therapie dieser Tumorsatelliten bislang 

aufgrund fehlender geeigneter Vektoren eingeschränkt.  

In der Literatur gibt es zahlreiche Berichte, dass neben NSC und HSC auch 

MSC einen starken glioblastominduzierten Tropismus aufweisen. Dies macht sie 

zu aussichtsreichen Kandidaten für ihre Verwendung als zelluläre Vektoren in der 

Therapie des Glioblastoms (Nakamizo et al., 2005; Aboody et al., 2000; Tabatabai 

et al., 2005). Dies liegt daran, dass hMSC gegenüber NSC einige entscheidende 

Vorteile besitzen. Zum einen sind sie mittels Knochenmarksaspiration sehr einfach 

zu gewinnen und im Anschluss zu isolieren (Colter et al., 2000). Da hMSC extrem 

proliferativ sind, können sie zudem leicht vermehrt und anschließend autolog 

transplantiert werden. Das macht die mit erheblichen Nebenwirkungen belastete 

Immunsuppression unnötig. Außerdem weisen hMSC immunmodulatorische 

Eigenschaften auf. So schwächt ihre Anwesenheit beispielsweise die graft-versus-

host Reaktion bei der allogenen Transplantation von HSC ab (Chung et al., 2004). 

Ein zusätzlicher Pluspunkt der hMSC ist die Tatsache, dass ihre Verwendung, im 

Gegensatz zur Verwendung von ESC, ethisch unproblematisch ist.  

Allerdings ist über den genauen molekularen Mechanismus des glioblastom-

induzierten Tropismus der hMSC bisher wenig bekannt. Um hMSC zukünftig in der 

Therapie des Glioblastoms einsetzen zu können, ist das genaue Verständnis der 

Wechselwirkungen zwischen hMSC und Glioblastomzellen nötig. Es wird vermutet, 

dass die Migration der hMSC ähnlich derer der HSC über lösliche Polypeptide, 

sogenannte Chemokine vermittelt wird. Welche Chemokine jedoch genau an dem 

Prozess beteiligt sind, war bislang unklar.  
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Die pathologischen Vorgänge, welche bei einem Gewebeuntergang stattfinden, 

führen zu Veränderungen im biochemischen Milieu des Körpers. Dies verursacht in 

den hMSC eine veränderte Regulation der Transkription und damit eine Anpas-

sung dieser Zellen an die neuen Aufgaben und die veränderte Umgebung. So 

verläuft die Mobilisierung der hMSC aus dem Knochenmark in das periphere Blut 

und die darauf folgende Einwanderung jener Zellen in das entsprechende Gewebe 

schrittweise über Veränderungen der Zellen auf molekularer Ebene. An diesem 

komplexen Prozess ist eine Vielzahl unterschiedlicher Chemokine und Rezeptoren 

beteiligt (Korbling et al., 2003). So wurde herausgefunden, dass hMSC zahlreiche 

Chemokinrezeptoren wie CCR1, CCR4, CCR7, CCR9, CCR10, CXCR1, CXCR2, 

CXCR3, CXCR4, CXCR5, CXCR6, CX3CR1 und c-met funktionell auf ihrer 

Oberfläche exprimieren. Über diese Rezeptoren scheint die Migration der hMSC zu 

Stellen des Gewebeuntergangs hin vermittelt zu werden. Die Migration wird dabei 

gezielt gerichtet, je nachdem über welchen Rezeptor der Signalweg läuft. Hierbei 

sind die Rezeptoren CXCR5, CCR7, CXCR4 und CCR10 mit der Migration der 

hMSC in sekundäre Lymphorgane assoziiert. Dieser Prozess wird auch als 

„Homing“ bezeichnet. CCR4 und CCR10 sind mit dem Homing der hMSC in die 

Haut assoziiert, während über CCR10 zugleich auch die Migration jener Zellen in 

die Speicheldrüsen und in den Dünndarm vermittelt wird. Die Rezeptoren CXCR3, 

CCR5 und CCR1 sind in die Vermittlung von Entzündungsprozessen involviert 

(von Lüttichau et al., 2005; Sordi et al., 2005; Honczarenko et al., 2006). Die 

Migration von hMSC zu Orten des ischämischen Hirnschadens wird wahrscheinlich 

zumindest teilweise über das Monozyten-Chemoattraktives Protein-1 (MCP-1), das 

Macrophage Inflammatory Protein-1 alpha (MIP-1a) und IL-8 vermittelt (Wang et 

al., 2002). CXCR1 und CXCR2 sind Rezeptoren für IL-8, ihre Expression auf 

hMSC spricht für eine Rolle dieses Chemokins im Prozess des Homings jener 

Zellen (Ringe et al., 2007). Ponte et al. beobachteten, dass viele Chemokine nach 

vorheriger Inkubation der hMSC mit TNF-α wirksamer waren als ohne Inkubation. 

Dies legt die Schlussfolgerung nahe, dass die Mobilisierung der hMSC und ihre 

Migration zu Stellen des Gewebeuntergangs vom systemischen Entzündungs-

zustand des Körpers abhängig ist. Der Transduktionssignalweg, welcher über die 
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Stimulation von Wnt/ β-Catenin vermittelt wird, könnte eine Schlüsselstellung in der 

Vermittlung der Migration und Gewebeinvasion der hMSC einnehmen (Neth et al., 

2006). Über diesen Signalweg, an dessen Ende sich der Transkriptionsfaktor β-

Catenin im Zellkern anhäuft, werden zudem die Proliferation und die Erhaltung der 

Pluripotenz von HSC und MSC vermittelt (Reya et al., 2002; De Boer et al., 2004).  

Es ist schon länger bekannt, dass physiologische Prozesse nach einem 

traumatischen, ischämischen oder entzündlichen Gewebeschaden die Mobilisation 

und Migration der hMSC und die darauf folgende Geweberegeneration vermitteln 

(Shake et al., 2002; Barbash et al., 2003; Ji et al., 2004; Wang et al.; Murphy et al., 

2003). In der vorliegenden Arbeit konnte nachgewiesen werden, dass humane 

Glioblastomzellüberstände in-vitro einen starken chemotaktischen Effekt auf hMSC 

besitzen. Die Neutralisation von VEGF-A, einem Chemokin welches von Glio-

blastomzellen überexprimiert wird, führt zu einer signifikanten Abnahme dieses 

chemotaktischen Effektes (Schichor et al., 2006). Die chemotaktische Wirkung wird 

jedoch nicht vollkommen blockiert. Deshalb wurde die Hypothese formuliert, dass 

neben VEGF-A noch zahlreiche andere von den Gliomblastomzellen sezernierte 

Chemokine an der tumorvermittelten Migration der hMSC beteiligt sind. Die 

vorliegenden Untersuchungen belegen, dass die Chemokine IL-8, TGF-β1 und NT-

3 in-vitro eine chemotaktische Wirkung auf hMSC haben. Für EGF, BDNF, CNTF, 

PDGF und GDNF konnte diese migrationsfördernde Wirkung dagegen nicht nach-

gewiesen werden. Die Ergebnisse unserer Arbeit legen somit nahe, dass im Falle 

des Glioblastoms weniger die unspezifische Entzündungsreaktion des umlie-

genden Gewebes als vielmehr die Tumorzellen selbst die Migration der hMSC 

vermitteln. 

Neben VEGF-A werden auch IL-8, TGF-β1 und NT-3 von Glioblastomen 

überexprimiert (Charalambous et al., 2005; Desbaillets et al., 1999; Hamel et al., 

1993; Platten et al., 2001). Die Hypoxie, welche vor allem im Zentrum der Tumor-

masse der Glioblastome WHO Grad IV vorherrscht, führt zu einem weiteren 

Anstieg der VEGF-A, IL-8 und TFG-β1 Expression. Dies geschieht zum Teil über 

die Aktivierung des Transkriptionsfaktors Hypoxie-induzierbarer Faktor-1 (HIF-1) 
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(Kargiotis et al., 2006). Alle vier Chemokine stellen zudem Schlüsselchemokine in 

der Vermittlung der Tumorneoangiogenese dar. Dies führt zu der Schluss-

folgerung, dass die Vermittlung von sowohl Angiogenese als auch glioblastom-

induzierter Migration der hMSC über ähnliche Signalwege erfolgen (Kargiotis et al., 

2006; Donovan et al., 1995; Brat et al., 2005).  

HIF-1 und eines seiner Zielgene, VEGF-A, spielen eine entscheidende Rolle in 

der Vermittlung des Wachstums und der Metastasierung von Glioblastomen. 

VEGF-A bindet an zwei spezifische Rezeptoren (VEGF-R1, VEGF-R2), welche mit 

dem p38 MAPK Signalweg  und dem Protein Kinase C/ Raf-MEK-MAP Kinase 

Signalweg verbunden sind. Über diese Signalwege erfolgt eine starke Aktivierung 

der Mitose und der Chemotaxis von sowohl Endothelzellen als auch NSC 

(Kargiotis et al., 2006). Neben der enzymatischen Degradation der Basalmembran 

sind die Migration und Proliferation von Endothelzellen mit anschließender Tubus-

formation als die wichtigsten Schritte der Angiogenese anzusehen. Durch seine 

promitotische Wirkung auf Endothelzellen stellt VEGF-A somit einen wesentlichen 

Induktor der Gefäßneubildung dar. 

IL-8 vermittelt seine Wirkung durch die Bindung an den CXCR-1 Rezeptor. Sein 

Expressionsniveau korreliert positiv mit dem Malignitätsgrad von Gliomen. IL-8 hat 

eine starke chemotaktische Wirkung auf Leukozyten und kann die Angiogenese 

unabhängig von VEGF-A induzieren (Kargiotis et al., 2006).  

Neben VEGF-A und IL-8 scheint auch TGF-β1 eine entscheidende Rolle in der 

Pathogenese von Glioblastomen zu spielen. So fördert es die Tumorprogression 

durch Verstärkung der Motilität und Invasivität der Glioblastomzellen und durch 

Suppression des Immunsystems des Betroffenen. Außerdem beeinflusst TGF-β1 

die Proliferation und Differenzierung zahlreicher Zelllinien, welche in der Angio-

genese eine Rolle spielen. Durch seinen Einfluss wird die Expression von αvβ3 

Integrin und von Matrix-Metallo Proteinase-2 in Endothelzellen gesteigert. Dadurch 

wird die Endothelzellmigration und Formation von Blutgefäßen erleichtert (Kargiotis 

et al., 2006).  
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Durch seine Bindung an den TrkC Rezeptor, zu dem es höchste Affinität besitzt, 

vermittelt NT-3 nicht nur die Proliferation und Differenzierung von Neuronen, 

sondern auch die Migration von glatten Muskelzellen und Gliazellen (Donovan et 

al., 1995). Obwohl die exakten molekularen Mechanismen noch nicht vollkommen 

verstanden sind, wird eine autokrine und/ oder parakrine Rolle der über-

exprimierten Neurotrophine und ihrer spezifischen Rezeptoren bei der Patho-

genese von Glioblastomen vermutet (Hamel et al., 1993).  

Wie oben ausgeführt spielen die in der vorliegenden Arbeit identifizierten 

Chemokine eine Schlüsselrolle sowohl in der Promotion der Tumorangiogenese 

als auch in der Vermittlung des glioblastominduzierten Tropismus der hMSC. Somit 

liegt die Hypothese nahe, dass hMSC in dem Prozess der Tumorangiogenese eine 

aktive Rolle spielen. Dieser Beitrag der hMSC könnte auf zwei Arten erfolgen. 

Entweder direkt durch Differenzierung der hMSC in Endothelzellen, Perizyten oder 

glatte Muskelzellen oder indirekt durch Differenzierung in „unterstützende“ 

Stromazellen. Diese Stromazellen könnten entweder eine Wirkung auf die 

extrazelluläre Matrix ausüben und/ oder die Migration, Invasion oder Proliferation 

von Endothel und/ oder glatten Gefäßmuskelzellen beeinflussen. Für eine 

Beteiligung der MSC in angiogenetischen Prozessen sprechen mehrere aktuelle 

Publikationen. In einem Hundemodell eines chronisch ischämischen 

Herzversagens wurde nachgewiesen, dass MSC von dem hypoxischen Myokard 

angezogen wurden und sich zu Endothelzellen und glatten Muskelzellen 

ausdifferenzierten. Dies führte zu einer dichteren Gefäßversorgung des Herzens 

(Silva et al., 2005). Andererseits scheinen MSC, die von einer fokalen zerebralen 

Ischämie angezogen werden, das funktionelle Outcome durch indirekte Effekte wie 

die Verhinderung von Vernarbung und Apoptose und die Förderung der 

Angiogenese durch die Sekretion von zahlreichen Chemokinen und Wachstums-

faktoren zu verbessern (Li et al., 2005; Chen et al., 2003). Außerdem wurde 

herausgefunden, dass MSC die proangiogenetische Wirkung von VEGF-A in 

einem in-vitro Kokultur Assay verstärken (Tille et al., 2002). Wenn man all diese 

Ergebnisse auf das Glioblastommodell überträgt, könnten die hMSC entweder 
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direkt oder indirekt eine wichtige Rolle in der Tumorangiogenese des Glioblastoms 

spielen.  

Aufgrund unserer Ergebnisse liegt deshalb die Schlussfolgerung nahe, dass die 

Kombination aus jeglicher hMSC-basierter Therapie mit antiangiogenetischen 

Strategien (wie zum Beispiel VEGF-A-Rezeptorantagonisten) nicht vielver-

sprechend ist, da die Antagonisierung des angiogenetischen Potentiales einen 

negativen Einfluss auf die Migration der hMSC haben könnte.  

Wegen ihres starken glioblastominduzierten Tropismus und ihrer leichten 

Handhabung stellen hMSC vielversprechende Vektoren für genbasierte Strategien 

in der Therapie des Glioblastoms dar. Der Beitrag der hMSC zu den patho-

logischen Veränderungen im Gehirn eines Patienten mit Glioblastom ist aber noch 

weithin unverstanden. Es müssen zukünftig noch zahlreiche in-vitro und  

in-vivo Studien unternommen werden, um die genauen Interaktionen zwischen 

hMSC und Glioblastomen zu verstehen. Zudem gilt es zu klären, ob und wenn ja, 

in welchem Rahmen hMSC einen Beitrag zur Angiogenese der Glioblastome 

leisten und damit möglicherweise selber einen tumorwachstumsfördernden Effekt  

haben könnten. 

Gegen die hier erwähnte Hypothese des entweder direkten oder indirekten 

Beitrages der hMSC zur Tumorangiogenese und Tumorprogression sprechen 

mehrere Literaturquellen. So konnten Nakamura et al. einen antitumorösen Effekt 

von GFP-markierten, aber ansonsten unveränderten MSC in einem Rattenmodell 

nachweisen. Es wurde vermutet, dass dieser Effekt auf die Sekretion von Nerve 

Growth Factor (NGF) und/ oder Angiopoetin-1 (Ang-1) durch die MSC 

zurückzuführen ist. Dies führt dann in der Konsequenz zu einer Induktion der 

Differenzierung und damit zu einer Inhibition des Tumorwachstums. Andererseits 

könnte der beobachtete antitumoröse Effekt auch durch eine Verbesserung der 

Blut-Hirn-Schranke durch die MSC bedingt sein (Nakamura et al., 2004).  

Zum Thema der tumorinduzierten Migration von Progenitorzellen finden sich 

zahlreiche publizierte Arbeiten mit teilweise widersprüchlichen Forschungs-
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ergebnissen. Während in Vorarbeiten unserer Arbeitsgruppe ein starker chemo-

taktischer Effekt von VEGF-A auf hMSC nachgewiesen werden konnte, 

postulierten Nakamizo et al., dass EGF, PDGF und SDF-1, aber nicht VEGF-A 

oder bFGF die Schlüsselmediatoren des glioblastominduzierten Tropismus der 

hMSC seien (Schichor et al., 2006; Nakamizo et al., 2005). Diese Ergebnisse 

wiederum widersprechen denen der vorliegenden Arbeit, in denen kein 

chemotaktischer Effekt von PDGF und EGF auf hMSC beobachtet werden konnte. 

Während unsere Arbeitsgruppe eine starke Expression des IL-8 Rezeptors  

CXCR-1 auf der Oberfläche der hMSC darstellen konnte, wurde von Honczarenko 

et al. keine Expression dieses Rezeptors auf den hMSC nachgewiesen 

(Honczarenko et al., 2006). Honczarenko beobachtete stattdessen eine starke 

Expression des SDF-1 Rezeptor CXCR-4, was wiederum von einer anderen 

Arbeitsgruppe nicht bestätigt werden konnte (von Lüttichau et al., 2005). Die hier 

genannten widersprüchlichen Ergebnisse könnten durch eines der Hauptprobleme 

der Arbeit mit hMSC bedingt sein: Diese Zelllinie ist bisher noch nicht gut 

charakterisiert. Vermutlich verbirgt sich unter dem Begriff „mesenchymale 

Stammzellen des Knochenmarks“ eine Anzahl verschiedener Subpopulationen von 

Progenitorzellen, deren Unterscheidung anhand der gängigen Methoden bislang 

noch nicht etabliert ist. In der vorliegenden Arbeit wurden hMSC definiert als 

mononukleäre Zellen des Knochenmarks, welche für die Oberflächenmarker CD 

105 und CD 44 positiv sind, während sie für  CD 11b, CD 14, CD 31 und CD 34 

negativ sind. Zudem wiesen sie in Zellkultur die Kriterien Adhäsion an den 

Zellflaschenboden, typische fibroblastenähnliche Morphologie und Proliferation 

unter FBS auf. In anderen Arbeitsgruppen wurden zur Charakterisierung der hMSC 

andere Methoden angewendet. Während einige Arbeitsgruppen hMSC rein 

phänotypisch anhand eines Expressionsmusters von Oberflächenmolekülen defi-

nierten (Mansilla et al., 2006), wurden hMSC anderenorts auch zusätzlich hin-

sichtlich ihres genetischen Profils und ihrer zytochemischen Eigenschaften 

charakterisiert (Luz et al., noch nicht veröffentliche Ergebnisse; Dominici et al., 

2006). Zudem sind neben der Art der Isolation auch die Zellkulturbedingungen 

ausschlaggebend für die Subpopulation der hMSC, die unter den gegebenen 
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Rahmenbedingungen vorzugsweise proliferiert. So scheint zum Beispiel die Art 

und der Inhalt des verwendeten FBS eine entscheidende Rolle auf die Proliferation 

einer bestimmten Subpopulation zu spielen.  

Um diese Probleme in Zukunft vermeiden zu können, müssen hMSC besser 

definiert und die Methoden der Isolation, Kultur und Charakterisierung 

standardisiert werden. Dafür sind hMSC-spezifische Oberflächenmarker und 

bessere Kenntnisse über die einzelnen im Knochenmark vorhandenen Sub-

populationen der Progenitorzellen notwendig.  

Die in dieser Arbeit dargestellten Erkenntnisse wurden durch Beobachtungen  

in-vitro gewonnen. Ob diese Mechanismen auch in-vivo Bestand haben, kann erst 

durch Tierversuche bestätigt werden. Auch müssen mittels in-vivo Experimenten 

die Risiken einer genbasierten Therapiestrategie hinreichend untersucht werden. 

So könnte es zum Beispiel für den Fall, dass hMSC direkt in die pathologischen 

Blutgefäße einwandern, bei der Verwendung von mit einem „suicide gene“ 

transfizierten hMSC zu starken Blutungen kommen. Deshalb müssen noch 

zahlreiche in-vitro und vor allem in-vivo Assays unternommen werden, um die 

genauen Interaktionen zwischen hMSC und Glioblastomzellen besser verstehen zu 

können. Erst Langzeitstudien werden die Sicherheit der Verwendung von hMSC 

als zelluläre Vektoren in der Therapie des Glioblastoms abschließend klären 

können. 

Das Wissen um die Chemokine, die den chemotaktischen Effekt der 

Glioblastomzellen auf hMSC vermitteln, hat einen konkreten Verwendungsansatz. 

Der Erfolg einer jeden zellbasierten Gentherapie hängt hauptsächlich von der 

Effektivität ab, mit der die transfizierten Zellen in das Tumorgewebe eingebracht 

werden können. Unselektierte hMSC stellen, wie weiter oben beschrieben, einen 

heterogenen Zellpool dar. Deshalb könnte die Effektivität einer hMSC-basierten 

Gentherapie wahrscheinlich durch eine Präselektion der hMSC gesteigert werden. 

Diese Selektion könnte zum Beispiel anhand der Identifizierung der Expression der 

Chemokinrezeptoren VEGF-R, CXCR-1, TGF-ß-R und TrkC durchgeführt werden. 

Über diese Rezeptoren wird nach unseren Ergebnissen der glioblastominduzierte 
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Tropismus der hMSC vermittelt. Außerdem könnte durch die Analyse des 

partikulären Chemokinexpressionsprofils der unterschiedlichen Tumorproben wo-

möglich die „beste“ hMSC Subpopulation eines jeden individuellen Patienten 

gefunden werden. Auch somit könnte mittels einer Präselektion der hMSC einem 

durch Variieren des Chemokinexpressionsprofils begründeten Fehlschlagens der 

Therapie vorgebeugt werden. Um für die klinische Verwendung relevante Erkennt-

nisse zu schaffen, müssen in Zukunft noch in-vivo Studien über die Effektivität von 

unselektierten versus präselektierten hMSC unternommen werden. 
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5 Zusammenfassung 

Das Glioblastoma multiforme ist ein maligner hirneigener Tumor mit einer 

bislang infausten Prognose. Humane mesenchymale Progenitorzellen des 

Knochenmarks (hMSC) zeigen in-vitro und in-vivo einen ausgeprägten glioblastom-

induzierten Tropismus. Sie sind einfach in der Handhabung, weil sie leicht zu 

gewinnen, in Kultur zu vervielfältigen und anschließend autolog zu transplantieren 

sind. Diese Eigenschaften machen hMSC zu vielversprechenden Kandidaten für 

eine zellbasierte Gentherapie des Glioblastoms.  

Die molekularen Mechanismen, welche zu der gerichteten Migration der hMSC 

hin zu den Glioblastomzellen führen und die biologischen Wechselwirkungen 

zwischen Stammzellen und Tumorzellen sind bisher kaum verstanden. Um erste 

Einblicke in diese Wechselwirkungen zu erlangen, wurden im Rahmen des 

vorliegenden Promotionsvorhabens in-vitro Untersuchungen zu den Grundlagen 

des glioblastominduzierten Tropismus von hMSC durchgeführt. Die Fragestellung 

befasste sich insbesondere damit, welche Chemokine an der Vermittlung der 

glioblastomgerichteten Migration von hMSC beteiligt sind.  

Hierzu wurden Migrationsversuche mit einer modifizierten Boyden Kammer 

durchgeführt, wobei zunächst einige bekannte glioblastomassoziierte Chemokin-

kandidaten (IL-8, NT-3, TGF-ß1, EGF, CNTF, GDNF, PDGF und BDNF) getestet 

wurden. Eine signifikante chemotaktische Eigenschaft auf hMSC wurde hierbei für 

IL-8, TGF-ß1 und NT-3 beobachtet. Die promigratorische Wirkung dieser drei 

Chemokine erwies sich hierbei als konzentrationsabhängig. Im Weiteren wurde 

nachgewiesen, dass die bekannte chemotaktische Wirkung von glioblastom-

konditioniertem Medium auf hMSC durch die Zugabe von IL-8, TGF-ß, beziehungs-

weise NT-3 neutralisierenden Antikörpern signifikant reduziert wird. Somit konnte 

funktionell nachgewiesen werden, dass diese Chemokine tatsächlich eine Rolle 

beim glioblastominduziertem Tropismus der hMSC spielen. Ergänzend wurde 

mittels Immunfluoreszenzfärbung die Expression der entsprechenden Chemokin-
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rezeptoren auf den hMSC nachgewiesen und die Sekretion der Chemokine durch 

die Glioblastomzellen mittels ELISA quantifiziert. 

Aus Vorarbeiten unserer Arbeitsgruppe ist bekannt, dass auch VEGF-A eine 

chemotaktische Wirkung auf hMSC besitzt. Wie VEGF-A werden auch IL-8, TGF-

ß1 und NT-3 von Glioblastomen überexprimiert. Zudem wird über diese 

Chemokine die Neoangiogenese jener Tumore vermittelt. Dies führt zu der Hypo-

these, dass Glioblastome die Migration der hMSC aus dem peripheren Blut in das 

Tumorgebiet über angiogenetische Signalwege vermitteln. Damit könnten hMSC 

an dem Prozess der Angiogenese des Glioblastoms beteiligt sein. 

Ein genaues Verständnis des möglichen Beitrages von hMSC zum 

Glioblastomwachstum ist eine unabdingbare Voraussetzung für ihre mögliche 

klinische Anwendung als gentherapeutische Vektoren beim Menschen. Deshalb 

müssen zukünftig neben weiteren in-vitro vor allem in-vivo Studien mit Langzeit-

beobachtungen im Tiermodell durchgeführt werden. In diesen Studien sollten die 

Auswirkungen einer Transplantation nativer hMSC einerseits und genetisch 

modifizierter therapeutischer hMSC andererseits auf das Glioblastomwachstum 

untersucht werden. Die vielversprechenden Ergebnisse der bisher vorliegenden 

Arbeiten lassen hoffen, dass in nicht allzu ferner Zukunft eine bessere Therapie für 

Patienten mit Glioblastom gefunden werden kann. 
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7 Anhang 

 

7.1 Abkürzungsverzeichnis 

AWMF Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften 

ACNU Nimustin 

AK Antikörper 

Ang-1 Angiopoetin-1 

BCNU Carmustin 

BDNF Brain-derived Neurotrophic Factor 

CCNU Lomustin 

CNTF Human Ciliary Neurotrophic Factor 

CO2 Kohlenstoffdioxid 

DAPI Diamidiophenylindol 

DMSO Dimethylsulfoxid 

DNA Desoxyribonucleinsäure 

EDTA Ethylendiamintetraacetat 

EGF Epidermal Growth Factor 

ELISA Enzyme-linked Immunosorbent Assay 

ESC Embryonale Stammzelle 

FACS Fluorescence Activated Cell Sorting 

FBS Fetales bovines Serum 

FGF Fibroblast Growth Factor 

GDNF Glial Cell Line-derived Neurotrophic Factor 

GFP Grünes fluoreszierendes Protein 

GY Gray 

HIF-1 Hypoxie-induzierbarer Faktor-1 

hMSC humane mesenchymale Stammzellen 

HSC Hämatopoetische Stammzelle 

IFN-β Interferon beta 
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IL Interleukin 

MCP-1 Monozyten-Chemoattraktives Protein-1 

MGMT O6-Methylguanin-DNA-Methyltransferase 

MI Migrationsindex 

MIP-1a Macrophage Inflammatory Protein-1 alpha 

NGF Nerve Growth Factor 

NSC Neurale Stammzelle 

NT-3 Neurotrophin-3 

PBS Phosphate Buffered Saline 

PCV Procarbazin, Lomustin, Vincristin 

PDGF Platelet- derived Growth Factor 

RT-PCR Reverse-Transkriptase Polymerase Kettenreaktion 

SCF Stem Cell Factor 

SDF-1 Stromal Cell-derived Factor-1 

TGF- β1 Transforming Growth Factor beta 1 

TNF-α Tumor-Nekrose-Faktor alpha 

TRAIL Tumor Necrosis Factor-related Apoptosis Including Ligand 

VEGF-A Vascular Endothelial Growth Factor 

WHO Wold Health Organization 

α- MEM α-Minimal Essential Medium 
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