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The geoglyphs of Palpa and Nasca in southern Peru have been considered one of 

the greatest mysteries of archaeology (Aveni 1990). Thousands of lines, cleared fields and 

figures were carved on flat plateaus in the desert, the so=called pampas, during the Paracas 

and Nasca cultures (800 BC = 650 AD). The geoglyphs of Palpa have been studied in detail 

with archaeological methods since 1997 by the Nasca = Palpa Project (Reindel and Grün 

2006). In the framework of this project, the first prospection with geophysical methods in 

the pampa was conducted in 2003 (Fassbinder and Reindel 2005). During the following 

field seasons five geoglyph sites in the vicinity of Palpa were chosen that had previously 

been documented through a combined field survey and analysis of high resolution aerial 

images (Lambers 2006). Since the geoglyphs of Palpa and Nasca have been declared the 

UNESCO World Heritage, the best non=destructive technique of site exploration to detect 

and map possible features beneath the trapezoids, turned to be the magnetic prospecting. 

So far, magnetometry has rarely been used for archaeological surveying in South 

America. As the magnetic inclination in Palpa is less than 3° and the intensity of the total 

Earth’s magnetic field hardly exceeds 25.000 Nanotesla, the highly sensitive total field 

caesium magnetometer (Scintrex SmartMag SM4G=Special), to be used during fieldwork, 

needed to be adapted to these conditions. In addition, geochemical processes forming iron 

oxides in soil, which usually cause clear magnetic anomalies, could not be expected there 

because of the lack of precipitation. On the contrary, due to the shallow inclination of the 

Earth’s magnetic field, simple anomalies created more complicated patterns, which were 

difficult to interpret. To overcome this problem and to enhance the visibility of magnetic 

data, two sensors were arranged in a horizontal gradiometer configuration. The application 

of the magnetometer in such an arrangement, in combination with magnetic total field data, 

allowed to enhance the visibility of archaeological features in a region close to the magnetic 



Abstract 

Page II 
 

equator. This enabled to trace the older geoglyphs that had been obliterated during the 

gradual surface clearing carried out on the same sites in Nasca times.  

The present study reports on the results of the magnetic prospecting on five large 

geoglyph complexes located on the pampas to the north, east, west and south of Palpa. 

Most of these places were in use during several centuries and developed in time (Lambers 

2006). The sites were enlarged or remodelled, which led to the destruction of older lines by 

the trapezoids. During their construction the stones between the existing lines were 

removed, which efficiently wiped out the older lines from the surface. The magnetic images 

clearly revealed the course of those lines on all five investigated sites. 

It is believed that the older lineal geoglyphs are visible in the magnetograms due to 

their heavily compacted surface, which was caused by people frequently walking over them 

in the course of ritual activity taking place on geoglyph sites. This compaction destroyed the 

vesicular horizon of exposed loess sediments and its remanent magnetization. On the 

contrary, the large trapezoids constructed later did not confine movement of people over 

them, so their surface is generally less compacted. For this reason, the older lines are visible 

in the magnetograms even though their cleared surface resembles that of the trapezoids. 

 Apart from the geoglyphs, the magnetic measurements showed anomalies that 

may be interpreted as traces of buildings, postholes, pits or other man=made structures. The 

relation of these features to the geoglyphs has been also investigated.  

In conclusion, the magnetic surveying not only shed new light on the development 

of large geoglyph complexes over time but also on the understanding of the Paracas and 

Nasca cultures and the history of the region in general. Without destruction and excavation, 

magnetometry has thus proven to be a powerful method for studying geoglyph stratigraphy. 
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Chapter 1 

 

Introduction 

 
 
 

 

1.1. PREFACE 

 
Magnetic investigations have long been a source of productive interaction between 

archaeology and geophysics (Aitken 1974). Together with resistivity survey they are one of 

the earliest applications of geophysical prospecting and are nowadays well established as a 

standard method for archaeology (Linington 1970). Although numerous techniques of 

geophysical surveying have been applied to site exploration, it was magnetometry that 

happened to be the most important way in which physics has been involved in 

archaeological research. Such fusion formed a new scientific area, which essentially grew 

out of the numerous interdisciplinary studies involving highly sophisticated technical 

methods for detecting and mapping otherwise not accessible archaeological features. This 

relatively new science, frequently termed as archaeological prospecting, has well developed 

into a separate scientific discipline with its own specialities, in which almost all the 

techniques were initially derived from methods used in geological geophysical prospecting 

and conventional aerial survey (Scollar et al. 1990). This combination of archaeology, aerial 

photography, remote sensing, and geophysics has been accurately described by Anthony 

Clark (1990): 

 
                   […] archaeological prospecting, which can be uncomfortable and tedious, 

is the romance and enduring excitement of this peculiarly civilized detective work – 

restoring to visibility the settlements of long=forgotten people who also knew our lands, 

by means of technology beyond their dreams. (Clark 1996)  
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1.2. FOREWORD TO THE PROJECT 
 

The geoglyphs of Palpa/Nasca are the geometrical and biomorphic figures drawn 

on the desert surface by pre=Columbian cultures in Southern Peru (Figure 1.1; compare 

Chapter 2). They have been studied in detail with archaeological methods since 1997 by the 

Nasca = Palpa Project (Reindel and Grün 2006) supported by the Swiss=Lichtenstein 

Foundation for Archaeological Research Abroad (SLSA) and the German Federal Ministry 

of Education and Research (BMBF). In the framework of the sponsoring program “NTG – 

New Scientific Methods and Technologies in Humanities”, the first prospecting with 

geophysical methods has been conducted in the year 2003 (Fassbinder and Reindel 2005) 

as a result of the cooperation between Bavarian State Department of Monument and Sites 

(BLfD Munich) and the German Archaeological Institute, Commission for Archaeology of 

Non=European Cultures (KAAK DAI Bonn).  

 

 

Figure 1.1Figure 1.1Figure 1.1Figure 1.1. Reloj Solar (Sun Dial) = geoglyph complex located on the southern slope of Cresta de Sacramento, 
north of Palpa; source – DAI: http://www.dainst.org/index_593_de.html 

 

Since the geoglyphs of Palpa and Nasca have been declared a UNESCO World 

Heritage site, the geophysical prospecting was the only none=destructive technique of site 

exploration apart from aerial archaeology, and the main tool to detect and map possible 

unknown features beneath the lines and trapezoids. Therefore, during the following field 
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seasons, in joint effort with BLfD, geophysicists from the Department of Earth and 

Environmental Sciences of the Ludwig Maximilian University Munich, have measured 

approximately 60 Ha of studied project territory covering entirely five foremost geoglyph 

complexes.  

 

1.3. OBJECTIVES AND MAIN TASKS 

 
The general aim of the Nasca – Palpa project was the study of the cultural and 

palaeoenvironmental history of the Palpa region on the Peruvian southern coast. By means 

of surveying, mapping, excavations and geoarchaeological research, a systematic 

documentation of the cultural heritage (among others geoglyphs) was pursued to establish a 

basis for scientific investigation of the cultural history. Various survey and dating methods 

and technologies were developed, enhanced, as well as tested under different conditions. 

Through the applications of these methods, archaeologists and natural scientists cooperated 

closely working on the reconstruction of life and environment of the past cultures of the 

region (http://www.dainst.org/index_593_de.html on 21.03.2008).  

 

Most of the geoglyph complexes were in use during several centuries and grew 

considerably over time, new drawings were frequently added and existing ones enlarged or 

remodelled. In this process, large trapezoids often covered older lines. During their 

construction the stones of the desert pavement between the existing lines were removed, 

making the older lines invisible on the surface. Therefore, the major objective was:  

 

o the detection and interpretation of obliterated archaeological structures 

within the trapezoidal figures, in particular the disclosure of the course of 

the previous linear patterns. 

 
The enhancement of the magnetic sensitivity of the measuring device in relatively 

unfavourable geophysical conditions on Peruvian sites, in addition to the improvement of 

the fieldwork methods for further application in Europe, became the main technical aim.     

It was based on the identification of the differences in the measurements of the 

archaeological anomalies on the example of these two unlike environments. From the 

archaeological point of view, the most important reason of geophysical contribution was the 

assistance in systematic documentation of cultural heritage and recognition of the complete 
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chronology of the Peruvian southern coast. This was coupled with the primary goal of the 

project – the preservation of one of the most important South American archaeological 

monument complexes.  

In order to achieve the given objectives, a number of tasks had to be completed in 

due course of the considered research activities. The most important ones are briefly 

summarized as follows:  

 

o Improvement of the new magnetometer system for archaeological 

prospecting, which implied the further development of the commercial 

geophysical device (Scintrex Smartmag SM4G) for data collection in the 

field. It was combined with the adjustment of the instrument to the 

archaeological applications in the region of geomagnetic inclination close 

to the limits of operating zone of the apparatus (2° to 86° based on the 

specifications of CS3 sensor, Scintrex, Ltd.). 

o Development of new digital image processing techniques for the more 

precise and accurate interpretation of magnetic anomalies (for information 

on magnetic anomalies see Chapter 4.4). 

o Assessment of the specific measurement conditions in Peru (in comparison 

to Europe) and resulting dissimilarities in the size and shape of anomalies 

due to the shallow inclination of the local geomagnetic field. 

o Application of the caesium magnetometer to the geoglyphs and execution 

of series of measurements on site, covering most significant complexes in 

the vicinity of Palpa, during several annual field campaigns. 

o Study of the archaeological setting of Paracas and Nasca cultures and the 

geoglyphs background, for the better understanding of archaeological 

structures on site and resulting variations in magnetic images. 

o Data processing and visualisation work on the collected data set using 

series of highly developed computer programs. 

o Interpretation by the combination of geophysical results with the 

archaeological knowledge. 
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Chapter 2 

 

Palpa Geoglyphs and Their 
Archaeological Setting 

 
 

 

 
The Geoglyphs of Nasca and Palpa in southern Peru have been considered one of 

the greatest mysteries of archaeology (Aveni 1990). Over an area of several hundred square=

kilometers, on flat plateaus called "pampas", ancient civilizations have carved an array of 

over thousand geometrical and biomorphic figures of varying size and precision into the 

earth. Lines several kilometers long, rectangles and trapezoids several hectars large, human 

figures on hillsides, and huge depictions of animals and plants were drawn on the desert 

surface already in prehispanic times during the Paracas and Nasca cultures (800 BC = 650 

AD) (Grün et al. 2000; Sauerbier and Lambers 2003; Lambers 2006) (Table 2.1). 

Unfortunately, the understanding of geoglyphs has been hindered for a long time 

by the lack of an accurate documentation (Sauerbier and Lambers 2003). Ever since the 

first report in 1927 by Peruvian archaeologist Toribio Mejía Xesspe, serious archaeological 

investigations have by far been outnumbered by unscientific interpretations. Additionaly,  

the whole Palpa area of the Nasca basin and the geoglyphs located in its close proximity 

have been largely ignored by archaeological researchers, although they are comparable in 

quality and complexity to the better known ones on the Nasca pampa. There has also been 

a lack of public interest in them and little or no protection, although they are part of the 

same cultural phenomenon (Lambers 2006). For those reasons as well as for the fact that in 

this area geoglyphs are located close to densely settled zones along the valley floors, which 

makes it an easier place to study the relationships between two classes of cultural remains 

(Lambers 2006), the Palpa region was chosen as the new area of interdisciplinary geoglyph 

investigation. 
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The Nasca drainage provide many suitable spots to place geoglyphs. It is restricted 

by the foothills of the Andes to the northeast and by the coastal mountain range to the 

southwest. This unique topographic feature which led to the development of a large basin 

and later a vast sediment plain (Chapter 3.3 – Geographical and Geological Setting), proved 

to be crucial for the creation of these remarkable drawings. 

In order to construct a geoglyph on flat plateaus, darkly oxidized stones of the 

natural desert pavement were removed and heaped along the border of the cleared area, 

thereby revealing a bright layer of sand and silt standing out in strong contrast to the 

surrounding undisturbed surface. Piling the dark stones up at another place considerably 

enhanced the contrast in color and brightnest between the original and altered surface 

(Lambers 2006).  

 

 
 

Figure 2.1Figure 2.1Figure 2.1Figure 2.1. Geoglyph complex along the northern edge of the Nasca pampa  
(black line – Panamerican Highway); source NASA 

 

When geoglyphs were constructed, the underlying sandy deposits were exposed 

allowing the silty elements together with humidity to develop a thin crust on top of the layer. 

It prevented a wind erosion and permitted the preservation of the geoglyphs. Moreover,     

as the Atacama Desert between northern Chile and southern Peru is one of the driest areas 

of the Earth (see Chapter 3.2 – Climatic Conditions), hardly any precipitation reaches the 
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desert floor, thus erosion by water runoff has been rare for centuries. For that reason and 

due to the development of the crusty layer, the enigmatic Nasca Lines have survived almost 

unaltered and are easily visible today. 

The predominant kind of prehispanic geoglyph found on the large flat plateaus is a 

cleared area often in trapezoidal or rectangular form (Figure 2.1). It is usually accompanied 

by lines running straight or bending several times, forming zig=zags, meanders or spirals. 

Biomorphic figures constitute the smallest fraction of the whole corpus, but at the same time 

they are the most famous designs. A common feature of the geoglyphs is that they occur 

together in complexes, often crosscutting each other, with older geoglyphs obliterated by 

more recent ones. The new drawings were added to existing ones in such a way that older 

geoglyphs were not build over, but rather incorporated into the group. They are therefore 

the result of several working steps: lateral enlargements, repeated surface clearing and 

redrawing on the same place (Lambers 2006). This makes the older geoglyphs not visible 

for majority of the ground archaeological techniques as well as for the aerial imaging. Thus, 

a powerful geophysical method had to be applied in order to trace previously obliterated 

patterns (see Chapter 5 – Methodology).  

 

Date Period Archaeological culture Phase 
 

1532 AD Late Horizon Inca  
1400 AD Late Intermediate Period Ica/Chincha  
1000 AD Middle Horizon Wari  
600 AD 
450 AD 
250 AD 

Early Intermediate Period Nasca 
Late 

Middle 
Early 

1 BC  Initial Nasca  
200 BC 
400 BC 
600 BC 

Early Horizon Paracas 
Late 

Middle 
Early 

800 BC Initial Period   
1800 BC Archaic   

    

Table 2.1Table 2.1Table 2.1Table 2.1. Chronology and the cultural history of the Nasca basin (dates based on preliminary results of the 
Nasca – Palpa Project); after Lambers (2006). 

 

Although it is commonly assumed that most of these earth drawings have been 

produced by the Nasca people that emerged out of the preceding Paracas culture (Table 

2.1), the purpose of the geoglyphs for a long time has remained unclear. Many hypotheses 
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have been put forward by reputable Nasca researches like: Paul Kosok (1965), Maria Reiche 

(1976), Anthony Aveni (1990), Peris Clarkson (1990), Gary Urton (1990), Heleine 

Silverman (1990), David Johnson (1990), David Browne (1992), Maria Rostworowski 

(1993), Johan Reinhard (1996), Aurelio Rodriquez (1999), as well as by those less 

renowned. As a result there exist more than twenty of theories offering explanations. Those 

acceptable ones may be classified into the following categories (Aveni 1990): 

 

o Solar, star or moon calendar and astronomy, 

o Indicators for underground water, irrigation and agriculture. 

o Ceremonial practices, mountain or fertility cult, 

o Geometry and artistic expression, 

o Movement, communication, transportation. 

 

The variety of different patterns and figures is so large that it is hard to believe that 

these drawings did serve just one specific purpose (Aveni 1990). Nevertheless, as the 

archaeological excavations uncovered broken pottery and ample evidence of offerings and 

sacrifices, including guinea pigs, corn, crayfish and Spondylus seashells from thousand 

kilometres away, it seems that the sites had mainly a religious function (Reindel et al. 2003; 

Curry 2007). As some of the project archaeologists declare: “they were locations, not 

pictures”. Concerning the chronology of the geoglyphs, they are believed of having been 

created in a period of 1000 years (Table 2.1). Over such a long time, cultural change can be 

expected to affect their construction, use, perception and physical manifestation. Thus, the 

presented theories have to be improved by adding the time depth (Lambers 2006).  

The geoglyph chronology from Palpa region relies mainly on the relative datings 

using the stratigraphic relationships of specified geoglyphs along with the classification of 

associated ceramics, as well as direct chronometric datings obtained using scientific 

methods (e.g. optically stimulated luminescence measurements or accelerator mass 

spectrometry radiocarbon dating) (Greilich et al. 2004, Kadereit et al. 2007). Available 

chronological evidence from Palpa suggests that the earliest geoglyphs date to the Early 

Horizon (Table 2.1), although the precise starting date remains unclear. Geoglyph related 

activity is in any case present in Late Paracas and increases in Initial Nasca, reaching its 

peak in the Early Nasca period. Afterwards it decreases continuously through Middle and 

Late Nasca, and finally ceases during the Middle Horizon (Lambers 2006). 
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Unfortunately, the most frequent geoglyph types on which geophysical prospecting 

was performed, the straight lines and trapezoids, have no chronological relevance since they 

cover the whole time span of the geoglyph phenomenon (Lambers 2006). In general, 

geoglyph variety was greatest in the Early Nasca period when all kinds of geoglyphs were 

made and used. Antropomorphic figures, probably the earliest ones, were typical until Early 

Nasca, when spirals, biomorphic figures, and different line types coexisted with trapezoids 

and rectangles. Later diversity was reduced to certain line types and areal forms. By Late 

Nasca times, only straight and meandering lines and large areal geoglyphs had survived. 

Thus, these types were not only common forms throughout all phases of geoglyph creation, 

but represented also the standard to which the geoglyph repertoire was finally reduced 

(Lambers 2006). 

The construction and use of the geoglyphs and their associated structures were not 

separated, but were considered as parts of an integrated whole. Many groups of people 

were involved in geoglyph related activity over a long period of time. The following kinds of 

activity, summarized by Lambers (2006), could be recognized on the geoglyphs of Palpa: 

 

o Construction and remodelling of geoglyphs and stone structures, 

o Walking on lineal geoglyphs and around stone structures, 

o Placing and breaking of pots on or along borders of lines and trapezoids, 

o Placing of vessels, field crops, shells, and other objects on stone structures, 

o Erection of wooden posts on trapezoids close to the stone structures, 

sometimes accompanied by placing of offerings in the excavated pit. 

o Food consumption and placing, 

o Cleaning and maintenance of geoglyphs, 

o Burying of stone structures at the end of their use. 

 

The precise documentation of these well defined activities related to geoglyphs is 

particularly important for the correct understanding of the origin of anomalies measured by 

geophysical means. As indicated in due course of this study (see Chapter 4.5), the repetitive 

geoglyph walking resulting in heavy compaction of line surfaces, as well as vessel and pot 

placing along with erection of wooden posts, could have been the crucial activities for later 

applicability of magnetic methods on site.  
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Chapter 3 

 

Area of Research 

 
 
 

 

3.1. LOCATION 

 
 The Palpa and Nasca geoglyphs are located in the Peruvian costal plain, which is 

high arid plateau that stretches around 50 km between the towns of Nasca and Palpa on the 

Pampas de Jumana in Peru. The geoglyphs are situated approximately 400 km south of the 

capital Lima and cover about 450 km2 of the desert territory (see figures 3.1, 3.2 and 3.3).  

 

 

    

Figure 3.1Figure 3.1Figure 3.1Figure 3.1. Map of the Ica Region (Southern Peru)  
(SLSA Zürich; DAI Bonn) 

Figure 3.2Figure 3.2Figure 3.2Figure 3.2. Satellite photograph of  the Provinces of 
Palpa and Nasca (Southern Peru) (SLSA Zürich; 

DAI Bonn) 

  



Chapter 3 – Area of Research 

                       Page 11 
 

 The desert itself occupies a strip along the southern Pacific coast of Peru extending 

from the shoreline 20=100 km inland to the secondary ridges of the Andes Mountains. 

There, in the Provinces of Palpa and Nasca, the world’s largest concentration of ground 

drawings is located. For the purposes presented in Chapter 2, the area of research was 

carefully selected in the close surroundings of the city of Palpa (Figure 3.4).  

Figure 3.3Figure 3.3Figure 3.3Figure 3.3. Shaded relief map of Peru (source: http://www.lib.utexas.edu/maps/peru.html on 15.02.2008); 
changed by the author; green circle – area of research. 
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Figure 3.4Figure 3.4Figure 3.4Figure 3.4. Area of research; red circles represent 5 measured geoglyph complexes surrounding the modern 
city of Palpa (green circle): A – PP01=36 Llipata, B – PV67A=15/16 Yunama, C – PV67A=47 Sacramento,  
D – PV67B=55 Carapo and E – PP01=49 San Ignacio; source Depto. Ica, Peru; SLSA Zürich, ETH Zürich;  

K. Lambers (2006); changed by the author. 
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 Palpa itself is a modern settlement situated in the broad valley formed by Rio Palpa 

and Rio Viscas. Both rivers flow to the southeast until their junction with Rio Grande shortly 

thereafter, which is the only waterway of the whole drainage system having its perennial 

runoff to the Pacific Ocean. On the slopes and plateaus stretching along the rivers a vast 

geoglyph concentration can be found. In the present study a thorough investigation of five 

main complexes was made. During the several field campaigns within the years 2003 and 

2007, the main geoglyph plateaus, which are presented in chronological order below, were 

covered by means of geophysical prospecting (see Figure 3.4 and Table 3.1): 

 

o PP01=36 (PAP379) located on Pampa de Llipata (to the south of Palpa),   

o PV67A=15/16 (PAP64) laying on Cresta de Sacramento (to the north), 

o PV67A=47 (PAP51A) situated on Cresta de Sacramento (to the north), 

o PV67B=55 (PAP283A) placed on Cerro Carapo (to the east), 

o PP01=49 (PAP365) being part of Pampa de San Ignacio (to the south). 

 

 Site name Project name Official name 
A. Llipata PAP379 PP01=36 
B. Yunama PAP64 PV67A=15/16 
C. Sacramento PAP51A PV67A=47 
D. Carapo PAP283A PV67B=55 
E. San Ignacio PAP365 PP01=49 

 

Table 3.1Table 3.1Table 3.1Table 3.1. The geoglyph nomenclature within the area of research. 

 

3.2 CLIMATIC CONDITIONS OF COASTAL PERU AND THEIR 
               INFLUENCE ON PRE=COLUMBIAN CULTURES 

 

 The combination of tropical latitude, various mountain ranges, topography 

variations, Humboldt – cold ocean current that flows north=west along the western coast of 

South America and El Nino – temperature fluctuations in surface waters of the eastern 

Pacific Ocean, give Peru a large diversity of climatic conditions. One of the most significant 

climatic factors is El Nino. In normal circumstances, when El Nino does not occur, winds 

blowing in a westerly direction along the equator concentrate a warm surface water in the 

western part of the Pacific with the sea surface temperatures about 8°C higher and cool 

temperatures near South America. The diminishing of easterly winds during El Nino and 

weakening of the Humboldt current allows the temperatures of waters along the coast of 
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Peru to raise, what creates warmer than usual conditions along the whole coast of South 

America (Enfield 1987; Trenberth 1997; http://www.pmel.noaa.gov/tao/elnino/nino=

home.html on 28.02.2009). This fact have important consequences for weather not only in 

Peru but around the whole globe as well.  

 For the reason of Peruvian climatic diversity, only the geographical region of the 

country, in which the geoglyphs are located, will be briefly summarized. 

 The study area near Palpa belongs to the hyperarid northern Atacama desert 

(Mächtle et al. 2009). The desert is influenced by two climatic systems. The cold upwelling of 

the Peruvian coast causes the coastal desert, and produces fog. In the austral winter months 

the fog often crosses the Cordillera de la Costa, covers the Ica – Nasca Depression and 

reaches the Andean footzone at 600 – 1200 m above sea level. The aridity can be briefly 

interrupted by prominent El Nino events in the austral summer months, when the upwelling 

activity is reduced or interrupted. However, for the study area, even in the case of El Nino 

rains, the Pacific influence mainly affects the coastal range and not the basin, where 

geoglyphs are located (Eitel et al. 2005, Mächtle et al. 2009).  

 In contrary to these claims, Hesse and Baade (2007) argue that there are Nasca 

lines that do show signs of water flowing over them or that have even been dissected by run=

off. They presume that the reason why most of the lines and figures remain virtually 

unaffected is that they are placed ‘high and dry’. They were carved to the flattest and highest 

parts of the pediment plains – in places where they are not affected by run=off from higher 

catchments and upslope areas, where run=off is not concentrated and does not reach 

destructive shear stress. It is believed that as recently as in 1998, El Nino related rainfall 

caused damage to some geoglyphs (Aveni 2000), thus, according to Hesse and Baade 

(2007), El Nino is the only known phenomenon that has been shown to cause pronounced 

rainfall in the study area.  

 However, as research of Eitel et al. (2005) confirm, to the east, the coastal desert 

merges into the semi arid ecosystem of the Andes. During the humid season (November – 

May), Amazonian monsoonal thunderstorms can cross the Cordillera Occidental and reach 

the uppermost catchments of the rivers. Even if El Nino rains should occur along the coast 

of southern Peru, it should be kept in mind that the Paracas – Nasca civilization was settled 

in the footzone of the Andes – in the eastern Atacama, leeward of the Cordillera de la 

Costa. This mountain range protected the settlement area of the Pre=Columbian cultures 
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from catastrophic El Nino rains. Thus, in the Nasca – Ica region, the deep cultural changes 

of Pre=Columbian civilizations were not caused by catastrophic run=off of El Nino events, but 

by a shifting eastern desert margin due to the changing monsoonal influence (Eitel et al. 

2005, Mächtle et al. 2006; Mächtle et al. 2009). 

  
3.3 GEOGRAPHICAL AND GEOLOGICAL SETTING 

 
 In southern Peru (at Palpa latitude) the desert zone is much broader than further 

north and reaches 90km in width. This is caused by an existence of coastal mountains – 

Cordillera de la Costa. This unique range is 170 km long and reaches 1500 m in altitude. 

To the east, a 20 km broad basin, the Ica – Nasca Depression, with heights between 150 

and 500 m, separates the Cordillera de la Costa from the Andean Cordillera Occidental, 

which exceeds 4000 m above sea level. The footzone of the Andes together with the large 

Pleistocene pediments belong to the eastern part of the desert as well (Eitel et al. 2005, 

Mächtle 2007; Eitel et al. 2009).  

 

 

 

Figure 3.5Figure 3.5Figure 3.5Figure 3.5. Geological map of the study area; red circles – prospected geoglyph locations; Carta Geologica del 
Peru (Mapa Geológico del Caudrángulo de Palpa) Ministerio de Energia y Minas, Instituto Geológico Minero y 
Metalúrgico, 1994 (source: http://www.ingemmet.gob.pe/form/plantilla01.aspx?opcion=27 on 24.04.2007); 
modified by the author.  
 

 The Cordillera de la Costa is formed by Palaeozoic igneous rocks and Mesozoic to 

Tertiary sedimentary layers. The geomorphology there is dominated by large scarplands and 
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steep rocky cliffs. The Ica – Nasca Depression, formed by Tertiary and Quaternary tectonics 

is a NW – SE oriented rift, which contains Tertiary terrigeneous and marine sediments. The 

eastern part contains large Pleistocene pediments, which form the transition zone to the 

Cordillera Occidental. The pediments are alluvial deposits (Figure 3.5) composed of sands 

of different grain size, small to middle=sized stones and rocks, and large boulders. On their 

surfaces, where the geoglyphs are created, the loose sand between the stones has been 

blown away by wind erosion, leaving behind a thin, but dense layer of gravels called desert 

pavement. Its stones are dark=coloured due to oxidised weathering crusts. The pavement is 

underlain by a silty yellow layer of roughly 30 cm thickness, with a weakly cemented 

vesicular horizon. It contains significantly much carbonate (4,2%) and sulphur (0,8%), which 

comes together with the weak calcareous and gypseous cementation of the vesicular layer. 

The sulphur originates from marine sources, transported as an aerosol to the Atacama. 

Together with dissolved terrigenous carbonate, it infiltrated with fog and sporadic rains into 

the uppermost sections of the soil. The silt layer belongs to the upper part of the pediments 

and represents, together with the desert pavement, the final pedimentation process. The 

succeeding dissection of the pediments led to the formation of the river oases and the 

quebradas, which are autochthonous dry valley systems. With the formation of river oases 

the pediments became relic forms (Eitel et al. 2005; Mächtle 2007; Lambers 2006; Eitel et 

al. 2009).  
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Chapter 4 

 

Basics of Magnetism in Reference to  
Archaeological Prospection 

 
 

 

In due course of this work various topics of geo= and rock magnetism in regard to 

archaeological research have been presented. Thus, the explanation of several conceptions 

of Earth’s and rock magnetism have had to be given. Chapter 4 briefly reviews those which 

are crucial for understanding the functionality of magnetic method for archaeology.  

 

4.1. MAGNETIC FIELD OF THE EARTH 

 
Iron constitutes about six percent of the Earth’s crust, but little of it is readily 

apparent. Most of it is dispersed through soils, clays and rocks as chemical compounds 

which are very weakly magnetic. Redistributions of some of these compounds and 

transformations of others into more magnetic forms, created patterns of anomalies in the 

Earth’s magnetic field, invisible to a compass but detectable with sensitive magnetometers 

(Clark 1990). Those magnetic anomalies, caused among others by archaeological 

structures, are localised effects superimposed on the normal magnetic field of the Earth. 

Consequently, knowledge of the behaviour of the geomagnetic field is necessary both in the 

reduction of magnetic data to a suitable datum and in the interpretation of the resulting 

anomalies.  

The geomagnetic field is caused by a westward current flowing in the liquid outer 

core of the Earth, organized by the Earth’s spin, and generated by a gravitational accretion 

process at the core=mantle boundary (Campbell 1997). When represented by the field of a 

theoretical magnetic dipole at the centre of the Earth inclined at about 11,5° to the axis of 

rotation, it is geometrically not complex, however, it exhibits irregular variations in both 
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orientation and magnitude with latitude, longitude and time. In order to illustrate the 

magnetic field vector, the use is made of descriptors known as the geomagnetic elements. 

The magnitude of the magnetic vector is given by the field strength “F”. It has a vertical 

component “Z” and a horizontal component “H” in the direction of the magnetic north and 

its direction is defined by two angles (Figure 4.1 left): the declination “D” is the angle 

between the magnetic meridian while the inclination “I” is the angle at which the magnetic 

vector dips below the horizontal (Lowrie 1997). In the northern hemisphere the magnetic 

field generally dips downward towards the north and becomes vertical at the north magnetic 

pole (Figure 4.1 right). In the southern hemisphere the dip is generally upwards towards the 

north. The line of zero inclination approximates the geographic equator, and is known as 

the magnetic equator. The field varies in strength from about 30000 nT in equatorial 

regions to about 60000 nT at the poles (see on=line magnetic field values of NGDC for more 

detail – http://www.ngdc.noaa.gov/geomagmodels/IGRFWMM.jsp). 

 

            
 

Figure 4.1Figure 4.1Figure 4.1Figure 4.1. The elements of the Earth’s magnetic field (left) and the dipole approximation of the geomagnetic 
field (right) (source http://radbelts.gsfc.nasa.gov/outreach/Radbelts0.html on 15.02.2009).  

 

 

4.2 MAGNETIC SUSCEPTIBILITY AND MAGNETIC MINERALS 

 
Magnetic susceptibility is a measure of the ease with which the material can be 

magnetized (Thompson and Oldfield 1986). It is a very convenient parameter for the simple 

non=destructive measurement which may be performed fast in the field. Therefore it is often 

ideal in reconnaissance studies before magnetic surveying is applied on site. It helps to 
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identify the type of material and the amount of iron=bearing minerals present (Evans and 

Heller 2005). Most common rock=forming minerals exhibit a very low values of this physical 

parameter, thus rocks and sediments owe their magnetic character to the generally small 

proportion of magnetic minerals that they contain. There are several geochemical groups 

which provide such minerals:  

 

o Iron oxides – possess solid solution series of magnetic minerals from 

magnetite (Fe3O4) to ulvőspinel (Fe2TiO4). Hematite (αFe2O3), another iron 

oxide, is common in soils and sediments of environmental significance. 

Another important mineral of this group which widely occurs in soils is 

maghemite (γFe2O3). Its chemical formula is identical to that of hematite, 

but the crystal structure is different (Cornell & Schwertmann 1996; Evans 

& Heller 2005).  

o Iron oxyhydroxides – only goethite (αFeOOH) is magnetically significant. 

Some of the others, such as ferrihydrite (5Fe2O3·9H2O) or lepidocrocite 

(γFeOOH) are noteworthy because they may undergo chemical changes to 

produce hematite and maghemite (Cornell & Schwertmann 1996; Dunlop 

& Özdemir 1997; Evans & Heller 2005) (see Chapter 4.5). 

o Iron sulphides – provide among others the magnetic mineral pyrrhotite 

which is a minor constituent of rocks and whose magnetic susceptibility is 

dependent on its actual composition. The second significant mineral of this 

group is greigite (Fe3S4) which is known to occur widely in many 

sedimentary environments (Berner 1967, Dell 1972, Stanjek et al. 1994; 

Evans & Heller 2005). 

o Iron carbonate – this group has one iron mineral, siderite (FeCO3), which 

is common in carbonate sediments. It often forms by direct precipitation 

from water, and by oxidation processes may form magnetite, maghemite 

and hematite. Once created, these magnetic minerals play a significant role 

in the carbonate=rich environments, like silty layers of Peruvian pediment 

deposits (Ellwood et al. 1986; Dunlop & Özdemir 1997; Okrusch & 

Matthes 2005) (see Chapters 3.3 and 4.5). 
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The most important terrestrial magnetic minerals are iron oxides (Dunlop and 

Özdemir 1997). By far the most common is magnetite, however, by oxidation, it frequently 

forms maghemite. Although it is the size, shape and dispersion of grains that affect its 

magnetic character, it is reasonable to classify the magnetic behaviour of rocks and 

sediments according to their overall magnetite/maghemite content. Sedimentary deposits, 

like those in which Peruvian geoglyphs were carved, are considered as non=magnetic unless 

they contain a significant amount of iron oxides in the heavy mineral fraction (Linington 

1970; Dunlop and Özdemir 1997).  

From a geological viewpoint, where magnetic anomalies are observed over 

sediment covered areas, the anomalies are generally caused by an underlying igneous or 

metamorphic basement, or by intrusions. Sometimes the anomalies of igneous geology itself 

may be strong enough to mask the anomalies from archaeological features (Aitken 1974). 

Nevertheless, by the use of gradiometer mode of the magnetometer system (Chapter 5.2), 

geological input can be easily eliminated and the archaeological contribution emphasized. 

However, the chance of detection of this archaeological contribution at Palpa and Nasca 

may to the large extent depend on the geology, present in the form of fanglomeratic 

deposits of the pediment plains (Chapter 3.3).         

 

4.3 MAGNETIC REMANENCE 
 

The small concentration of ferrimagnetic minerals in a rock or sediment gives it 

the ability to acquire a remanent magnetization. The unprocessed remanence of a rock is 

called its natural remanent magnetization (NRM) (Dunlop and Özdemir 1997) and it refers 

to a natural sample before any laboratory experiments have been conducted on it. As this 

term reflects unawareness concerning the sample history (Evans and Heller 2005), being 

more specific, it is useful to employ detailed types of remanent magnetization. Lowrie 

(1997) differentiates remanence to the one acquired at or close to the time of the rock 

formation and calls it primary magnetization, and the one acquired at a later time, which is 

a secondary magnetization. A remanence acquired by cooling from an elevated 

temperature is known as a thermoremanent magnetization (TRM) (Thellier and Thellier 

1959), and is the most important type of the former group concerning remanence of 

igneous and high=grade metamorphic rocks (Lowrie 1997). The other type falling into the 

same group is called a depositional remanent magnetisation (DRM) and is due to the 
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alignment of magnetic particles during sedimentation and eventual lithification in the 

presence of the Earth’s magnetic filed (Dunlop and Özdemir 1997; Evans and Heller 

2005). As the latter mostly contributes to the general understanding and interpretation of 

magnetic anomalies on studied Peruvian sites, which is described in due course of this 

work, this type of remanence will be explained in more detail.  

In DRM the alignment of the magnetic particles starts when they are suspended in 

the water column and ends at the stage of dewatering and consolidation of the sediment. 

During settling the particles are oriented by the ambient magnetic field, however, water 

currents disturb this alignment, giving rise to a declination error. Elongated particles tend 

to be oriented horizontally producing too shallow inclination, while the pressure of 

overlying sediments results in compaction, which can cause further directional errors. The 

DRM is finally fixed in sedimentary rocks during diagenesis (Telford et al. 1976; Dunlop 

and Özdemir 1997; Lowrie 1997; Evans and Heller 2005). A modified form of DRM is the 

post=depositional remanent magnetization (pDRM). It relies on the fact that small grains of 

magnetic minerals in pores in the sediment are in the water suspension and may be also 

oriented by the magnetic field (Telford et al. 1976; Lowrie 1997).    

In the secondary magnetization group are chemical remanent magnetization 

(CRM) and isothermal remanent magnetization (IRM). The former occurs when the 

magnetic minerals undergo chemical changes or when new minerals are formed (Telford et 

al. 1976; Dunlop and Özdemir 1997; Lowrie 1997). Some examples for this phenomenon 

are presented in Chapter 4.5. The latter (IRM) is induced in a rock sample by placing it in a 

magnetic field at constant temperature and usually refers to laboratory procedures. It can 

also arise in a nature, for example in the lightning strikes (Maki 2005), producing rare, high=

amplitude anomalies in magnetometer readings, which are illustrated in the following 

chapters of this work.   

 
4.4. MAGNETIC ANOMALIES ON ARCHAEOLOGICAL SITES 
 

The successful application of magnetometers to archaeological exploration 

depends on the existence of a distinguishable magnetic anomaly associated with a site of 

archaeological importance (Breiner 1965). However, the existence of contrasts in the 

magnetic properties of materials forming an archaeological site, is only one factor in the 

production of magnetic anomalies. Additionaly, there are also problems of the consistency 
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of materials, of the correlation of contrasts with archaeological features, of size, shape and 

depth of the features and of the overall distribution and complexity of the features and 

deposits (Linington 1970). Thus, the origin of magnetic anomalies in archaeological settings 

is rather complex. The main possibilities, summarized by Evans and Heller (2005) and 

complemented by the author are presented below: 

 

o Enhanced susceptibility by burning and fermentation (Le Borgne 1955; Le 

Borgne 1960; Tite and Mullins 1971; Mullins 1977), 

o Bacterial magnetite from magnetotactic bacteria (Fassbinder et al. 1990), 

o Residual, magnetically enhanced ash (McClean and Kean 1993), 

o Thermoremanent magnetization of in situ material (Canti and Linford 

2000), 

o Mechanical destruction of NRM of the sediment (Fassbinder 1994), 

o Other manmade differences of magnetic susceptibility (Le Borgne 1955), 

o Different pedogenic processes (insignificant on the geoglyphs of Palpa and 

Nasca) (Fassbinder and Gorka 2007), 

o Lightning magnetization (Maki 2005; Fassbinder and Gorka 2007). 

o Wind separation of magnetic minerals (Fassbinder and Gorka 2009). 

 

While the range of magnetic properties is important, actual variations in the 

measured field only occur if sufficiently large contrasts are present. Therefore, the types of 

archaeological features, in which the contrast is likely to occur, have been summarized after 

the classification of Linington (1970) and supplemented by the author : 

 
1. Features formed of material that is more magnetic than its surroundings: 
   

o Features cut down into the natural rock – pits and ditches cut in 

sedimentary rocks and filled with soil or occupation debris, 

o Areas of intense heating – kilns, furnaces, ovens and hearths where the 

bulk of material is undisturbed, 

o Constructional features – formed from bricks, tiles, volcanic rocks or any 

other magnetic material. 

o Areas of ritual activity – deposits with enhanced susceptibility, the primary 

structure of which has been compacted. 
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2. Features formed of material that is less magnetic than its surroundings: 
 

o Features cut out of magnetic deposits – tombs and in certain cases soil 

filled features in volcanic and other highly magnetic rocks, 

o Constructional features – built of sedimentary rocks or other non=magnetic 

material, especially if the adjacent deposits contain a fair proportion of 

occupation soil and debris. 

o Areas of ritual activity – deposits, the natural remanence of which has been 

destroyed (i.e. by intensive and multiple walking).  

 
3.  Features where the confusion is likely: 
 

o Features cut in soil layers or entirely within other archaeological deposits. 

o Complex constructional features especially on sites having several periods. 

o Features refilled with the same material that was removed during the 

excavation. 

o Features the material of which is physically the same as the surroundings. 

 
The shape and nature of any anomaly depends on the value of the Earth’s field at 

the concerned geographical location. In archaeological surveying two aspects of the field are 

important: its magnitude and direction. The magnitude is often needed in connection with 

the use of the surveying instrument, and the direction of the field is more important in 

determining the anomaly shape. Normally this direction is referred to the inclination “I”. 

Because of this directional property of the Earth’s field all anomalies tend to be 

asymmetrical. This asymmetry is most marked in a magnetic north – south direction while it 

disappears for the magnetic east – west profiles across the anomaly. Thus, although profiles 

in both direction usually need thorough consideration, that in magnetic north – south 

course is of more practical value (Linington 1970).  

The anomaly for an inclination equal to 60° is a typical for the regions of greatest 

present interest. The north – south profile of the anomaly is shown in Figure 4.2 (left) and 

the main points summarized after Aitken (1974) are presented below: 

 

o The maximum of the anomaly lies to the south of the source (northern 

hemisphere), the displacement is approximately one third of the depth of 

the source. 



Chapter 4 – Magnetic Prospecting and Its Archaeological Aspects 

Page 24 
 

o The separation between two points at which the anomaly has half its 

maximum value, is equal to the depth of the source.  

o The extreme of the reverse anomaly is 10% of the maximum, and lies one 

depth unit to the north of the source (northern hemisphere). 

o The anomaly is very small (less than 2%) at distances greater than 3 times 

the source distance. 

 

 

 

Figure 4.2Figure 4.2Figure 4.2Figure 4.2. Idealized shape of anomaly in the total magnetic field intensity from a dipole source at different 
geomagnetic latitudes; left in Europe – the angle of dip is taken to be approx. 60°; right in Palpa at up to 3°, 
idealized to magnetic equator 0°. The horizontal scale represents a north – south traverse through the centre 
of anomaly in units of burial depth (violet square – anomaly source), vertical scale – anomaly strength as a 
deviation from the normal field strength (horizontal line of the coordinate system). 

 

This description of the simple magnetic anomaly is limited to the situation existing 

in Europe and other northern areas where the inclination lies between 50° and 80° 

(Linington 1970) or 60° – 70° according to Aitken (1974). Moving from the north magnetic 

pole to the equator, changes occur in the shape of the anomalies as the field direction 

ranges from vertical at the pole to horizontal at the magnetic equator (Clark 1996).        

Such situation may be observed in Peru, where at the latitude of Palpa and Nasca, the angle 

of dip hardly exceeds 3° (Figure 4.2 right). It gives entirely different shape of the anomaly, 

which could be compared to the west – east anomaly profile of 50° – 80° zone, but with the 

polarity reversed. It means that the whole anomaly appears to be mostly negative with no 
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displacement in any direction. There are two positive peaks of the size of up to 10% of the 

reverse anomaly, which in this case is dominant and has its maximum directly above the 

source. This can seem rather confusing for interpretation at first, as the feature of higher 

magnetic material than its surroundings appears to give an anomaly corresponding to a 

decrease in magnetism (Linington 1970), but bearing in mind reversed polarity, the 

interpretation of anomalies should not be too difficult. However, the complexity arises with 

two maxima, which in case of dense linear structures, which are common for studied 

Peruvian sites, produce additional ‘shade lines’ and make the analyses much more 

problematical (compare Chapter 5.3).   

 
4.5. SOIL MAGNETISM ON ARCHAEOLOGICAL SITES 
 

The changes in magnetic intensity across an archaeological site are due to natural 

variations in thickness of topsoil and the activities of man (Aitken 1974). Topsoil is normally 

more magnetic than the underlying subsoil or bedrock (Le Borgne 1965), from which it has 

been derived, so that excavated features silted or backfilled with topsoil produce a well=

defined positive magnetic signal. Conversely, less magnetic material intruding into the 

topsoil can be detectable by a subtractive effect which gives a negative signal (Aitken 1974; 

Clark 1996). That suggests that any intervention in soil produces a magnetic anomaly which 

can be measured above ground. As already stated before, the contrast in magnetic 

susceptibility and remanent magnetization between the structure and the adjacent 

undisturbed soil enables the detection of single archaeological features such as posts, 

palisades, stone structures, ditches, pits, kilns or fireplaces. Depending on the type of the 

soil, the enrichment of magnetic minerals in a trace of a post or palisade may enhance the 

magnetic susceptibility by 2 – 50 times and increase the magnetic remanence by 5 – 20 

times (Fassbinder and Stanjek 1993). Man made fire or natural fire may produce a much 

higher increase. The caesium magnetometer enables the detection of anomalies caused by 

each single post in the adjacent soil, but the detectability of an archaeological anomaly is a 

rather complicated function of the sensitivity of the instrument, sampling density and soil 

properties (Fassbinder and Irlinger 1999). 

Under moderate conditions humus and plough soils are normally fairly magnetic 

especially where long periods of cultivation have occurred. Occupation soils and deposits 

are normally even more magnetic. Under tropical and very humid conditions it is possible 
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that the magnetisation will be smaller which can be also true for uncultivated soils and those 

where serious leaching or soil exhaustion has occurred. In this cases the soil magnetism may 

become very small (Linington 1970).   

 

4.5.1 MAGNETIC ENHANCEMENT MECHANISMS 

 
The higher magnetic susceptibility of the uppermost centimetres of soils is due to 

the enrichment of ferromagnetic minerals in topsoil (Le Borgne 1955; Tite & Mullins 1971; 

Mullins 1977). The enhancement is due to the formation of maghemite and magnetite by 

different processes (Le Borgne 1955; Tite and Mullins 1971, Mullins 1977; Loveley et al. 

1987; Maher & Taylor 1989; Fassbinder et al. 1990). The explanation given is in terms of 

the conversion of iron oxide in the soil from the very weakly magnetic hematite, which exists 

in “raw” soils and rocks, to the form of maghemite, which has a susceptibility greater by two 

orders of magnitude. The conversion proceeds by reduction to magnetite and subsequent 

re=oxidation. Two possible mechanisms have been proposed (Mullins 1977):  

 

o Fermentation (Le Borgne, 1955) – which occurs at ordinary temperatures 

and is favoured by humid anaerobic conditions suitable for oxidation, 

o Burning (Le Borgne, 1960) – which is an effect of fire ground clearing by 

burning as a part of ancient methods of cultivation. 

 

Of the two enhancement mechanisms, it is assumed that the burning is 

predominant. However, as the research of Fassbinder and Stanjek (1993) showed, hematite 

does not have to be present in soils or it is not always likely that natural or anthropogenic 

fires would achieve soil temperatures able to reduce it to magnetite (Evans & Heller 2005). 

Instead, four alternative maghemite=forming processes have been proposed:  

 

o Oxidation of magnetite inherited from parent material (Mullins 1977), 

o Dehydratation of lepidocrocite (Mullins 1977), 

o Dehydratation of goethite (Longworth and Tite 1977; Yapp 1983), 

o Oxidation of siderite (Housen et al. 1996). 

 

The magnetic enhancement can also occur in the lack of fires and without any 

lithogenic magnetite inherited from the parent material due to the occurrence of ultrafine 

magnetite grains of the bacterial origin (Loveley et al. 1987; Fassbinder and Stanjek 1993).  
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4.5.2 SOIL MAGNETISM ON GEOGLYPH SITES 

 
For the reason that the areas were never subjected to any irrigation systems and 

because of the deficiency in precipitation, no geochemical processes resulting in the new 

formation of iron oxides in soil could have been expected there. Given that the extreme 

aridity (see Chapter 3.2) is unfavourable for the fermentation processes as well as for other 

magnetic enhancements of surface soils (Thompson and Oldfield 1986), and due to the 

absence of burning activities on geoglyphs, most of the processes producing magnetic 

minerals in soil seem not to be substantial there (Fassbinder and Reindel 2005).  

The exception, however, could be the oxidation of siderite to maghemite, which 

favoured by high temperatures, is common for carbonate=rich sediments (Mullins 1977; 

Evans and Heller 2005). It is followed by the general fact that calcareous soils (see Chapter 

3.3) are conducive to maghemite formation (Mullins 1977), therefore, the magnetic signal 

from the pediment desert soil could be explained by the oxidation of this mineral, as well as 

by the presence of magnetic components of parental material which was brought in as a 

part of the original airfall loess (Evans and Heller 2005).  

Even if those processes indeed occurred, the soil conditions are still understood to 

be unfavourable for geophysical prospecting. Fortunately, the lack of interfering effects of 

extraneous iron on site, such as horseshoes, power lines, buried pipes, wire=netting and iron 

fencing, allowed the studied lineal geoglyphs to become perfectly visible in the resulting 

magnetograms.  

It is believed that the visibility is due to the delicate structure of the vesicular desert 

subsoil, which was destroyed on the exposed lines by people frequently walking over them in 

the course of ritual activity taking place on geoglyph sites (Gorka et. al 2007). It is unlike the 

horizon below the desert pavement, the intact structure of which shows that people avoided 

walking outside the figures (Eitel et al. 2005). Furthermore, the large trapezoids constructed 

later did not confine movement of people over them either, so their surface is generally less 

compacted. This is why the older lines are visible in the magnetograms even though their 

cleared surface resembles that of the trapezoids (Gorka et al. 2007).  

In conclusion, it is assumed that the heavily compacted vesicular layer under the 

lines led to the total destruction of remanent magnetization of deposits, giving the 

measurable signal in the shape of the magnetic anomaly. However, in some cases, the same 
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intensive and multiple walking process might have led to the susceptibility enhancement, 

acquired by the denser concentration of magnetic particles in the compacted deposit’s 

structure. Additionally, the enrichment of magnetic minerals by wind separation might have 

contributed to the detection of magnetic anomalies on lines as well. 

 
4.6. TIME VARIATIONS IN THE EARTH’S MAGNETIC FIELD 
 

In the discussion of magnetic anomalies the Earth’s magnetic field was taken as 

being constant. Unfortunately this is not true as small scale time variations occur both in 

intensity and direction. These variations are often of the same order of size as the measured 

anomalies produced by archaeological features, and thus cannot be ignored. From the point 

of view of practical surveying two elements are of importance: diurnal variations and the 

effect of magnetic storms (Linington 1970). In addition, there is a variety of much faster 

types of variations usually referred to as micropulsations. These can introduce an 

uncertainty in individual instrument readings and are a serious difficulty on sites for which 

the soil properties permit detection of very weak anomalies, and for which a high sensitive 

instrument, like caesium magnetometer is being used (Aitken 1974).   

The effect that must be compensated in the first place is diurnal variation. In a 

simple form it is the variation in the intensity of the geomagnetic field at the Earth’s surface 

during the course of a day, and is found to vary depending on the geographical latitude. The 

change in the field is normally most rapid during the early morning and late afternoon when 

the magnetic field intensity decreases soon after sunrise, reaching a minimum at noon, and 

increases during the afternoon and night. However, especially on magnetically disturbed 

days, the pattern can show a wide range of behaviour. Whereas throughout the winter the 

overall variation may amount to only 5 nT, which is barely significant, during the summer it 

may reach 50 nT and cannot be ignored. This variation is too irregular to allow readings to 

be corrected by some generalized formula. The best solution is to make simultaneous 

measurement at the fixed reference point or to use a gradiometer type of an instrument. A 

simpler alternative is to complete the survey of each area in a time short enough for a 

variation to be negligible. However, there are magnetic storm days, associated with strong 

sunspot activity, on which surveying is only possible if a reference detector or a gradiometer 

is used. Such storms differ both in duration and size. While changes of 1000 nT have been 

recorded, especially towards the equator, normal storms reach about 100 nT. The most 
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intensive ones may last for several days, the smaller storms are normally shorter and usually 

last a few hours (Linington 1970; Aitken 1974; Lowrie 1997; http://www.geophysik.uni=

muenchen.de/observatory/geomagnetism).  

 

For the measurements in Peru, the linear changes in the daily variation of the 

geomagnetic field were reduced to the mean value of the 40 m sampling profile and 

alternatively to the mean value of all data of a 40 m grid. Here it was assumed that the 

variation of the Earth’s magnetic field during one profile length of 40 meters (approximately 

25 – 30 seconds of measuring time) follows a linear increase or decrease of the intensity. 

Therefore, it is possible to eliminate this variation for each profile line simply by a reduction 

to the mean line value. Alternatively, in magnetically quiet periods, it is also useful to 

calculate the mean value of the whole 40 x 40 m square. This avoids the disappearance of 

linear structures parallel to one profile. To create discrete field values a resampling program 

(see Chapter 5.2) setting data to 25 x 25 cm was used. By the whole procedure the 

difference between the measurement of magnetometer probes and the theoretically 

calculated mean value of the Earth‘s magnetic field was obtained. The intensity difference 

gave the apparent magnetic anomaly, which was influenced by the magnetic properties of 

the archaeological structure, soil magnetism and geology. In order to cancel the natural 

micro=pulsations and high frequency disturbances of the Earth’s magnetic field, a band pass 

filter in the hardware of the magnetometer processor was used (Fassbinder and Irlinger 

1999; Becker 1999; Fassbinder et al. 2007, Gorka et al. 2007; Fassbinder and Gorka 2009) 

(see Figure 5.8 and compare Chapter 5.2). 
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5.1. INSTRUMENTATION AND SAMPLING PROCEDURE 

 

  The principle of the magnetic prospection survey is based on the measurement of 

the total magnetic field or its gradient in a certain direction. The presence of the magnetic 

anomalies can be related to the presence of bodies that differ from their surrounding, in 

terms of their magnetic properties. For geophysical prospecting in archaeology the 

sensitivity, speed and spatial resolution are required (Becker 1999). However, since 

Palpa/Nasca geoglyphs has become the UNESCO World Heritage Site, the protection of 

the monument seems to be an equally important factor. While other near=surface 

geophysical methods such as the electrical resistivity profiling, ground penetrating radar or 

electromagnetic surveying may be assumed to be slow and/or invasive techniques in this 

area, due to the intense site preservation policy, magnetometry in contrary suits best the 

purpose of protection, being an excellent tool for the fast location of underground structures 

without destruction. While proton precession magnetometers are limited in speed and 

fluxgate gradiometers in sensitivity (see Figure 5.9), especially applied at most of the low 

susceptibility contrast sites (Becker 1999), caesium magnetometers become significant, 

regarding the speed of high resolution data acquisition and the ability to survey areas that 

are inaccessible to other methods.  

Since fluxgate gradiometers measure the vertical component of the geomagnetic 

field, which near the geomagnetic equator is very low, thus the application of this instrument 

to geoglyphs of Palpa might have been rather ineffective. Hence, the principle of operation 

of only proton precession and optically pumped magnetometers will be briefly described.   
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The proton magnetometer exploits the nuclei of hydrogen atoms, which as a result 

of spinning are magnetized and behave as small bar magnets. The design of the proton 

detector is based on the polythene bottle containing a proton=rich liquid (Hall 1962). The 

bottle is surrounded by the coil, through which a DC current is passed, so that it acts as an 

electromagnet aligning the protons parallel with its axis. When the current is switched off, 

the protons turn to align with the ambient magnetic field, generating a small AC voltage in 

the coil, which now becomes a detector. The frequency of this current, which is measured, is 

exactly proportional to the strength of the magnetic field (Aitken 1974; Clark 1990).  

 

Figure 5.1Figure 5.1Figure 5.1Figure 5.1. Caesium magnetometer 
sensor: caesium is pumped from a caesium=vapour 
lamp (far right) through the circular polarizer and a 
plastic condensing lens into an absorption cell 
(center). Coil around cell sets up a fluctuating 
magnetic field. Some of the energy of the beam is 
absorbed to pump atoms in cell to higher energy 
levels; the rest passes through the absorption cell and 
is measured by the photocell at far left (description 
after Bloom 1960; changed by the author)  

 

   
 

The function of caesium optically pumped magnetometer is analogous to the 

proton detector, but more complex. The sensor is a glass cell containing caesium vapour. 

The polarized and filtered light from the caesium vapour lamp is passed through the glass 

cell and to the photocell. The light causes the electrons in the vapour to undergo the energy=

level transitions (Breiner 1965). When the atoms are irradiated with the light beam, 

electrons in one of the lower energy states are excited by photons and rise to the higher 

state. Because some photons are absorbed, the beam of light is dimmed and the photocell 

detects it. The electrons in the higher state almost immediately fall back to one of the two 

lower states with the chance that it may drop back to the state that cannot absorb light. 

Eventually, nearly all of the electrons end up there and the vapour, which is then completely 

pumped, is relatively transparent to light. If the radio=frequency fluctuating field, parallel to 

the light path, is applied to the glass cell by means of a coil around it, it causes the electrons 

to shuttle from one of the lower energy states to the other, undoing the optical pumping. As 

a result, the vapour again absorbs light. The exact energy required to do this, thus radio 

frequency, depends on the strength of the magnetic field. The radio frequency and optical 
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effects combine to give a particularly sharp resonance, and it is this resonance the optically 

pumped magnetometer exploits. If the field strength is known, the resonance serves as a 

measure of the radio frequency, and conversely, if the frequency is known, it can be used to 

determine the Earth’s magnetic field (Bloom 1960; Lenz 1990, Clark 1990). 

In the proton magnetometer a resolution of up to 0,1 nT is achievable, however, 

the two=stage polarization=measurement mode makes it slow and less adapted to the rapid 

gathering of high density information required in archaeological prospecting. It is unlike the 

optically pumped magnetometers, which with the advantage of generating a continuous 

signal, are several times faster than their proton counterparts. Additionally, the sensitivity of 

0,01 nT, which derives from the high precession frequencies, make small signals much 

easier to measure than with the proton principle (Aitken 1974; Clark 1990). 

 

 

Figure 5.2Figure 5.2Figure 5.2Figure 5.2. The complete Scintrex® SMARTMAG SM4G gradiometer kit consisting of magnetometer sensors 
with cables, sensor electronics, readout unit (SMARTMAG console), battery belt and additional accessories 

(source: Scintrex, Ltd.)
 

 

 

The Scintrex® SMARTMAG SM4G (Figure 5.2) is an optically pumped caesium 

vapour magnetometer for scalar measurement of the Earth’s magnetic field. Due to its high 

sensitivity of 0,01 nT, excellent gradient tolerance, high cycling rates, fast response and low 

susceptibility to the electromagnetic interference, it has been chosen and successfully used 

by the geophysicists of the Bavarian State Department of Monuments and Sites (BLfD) 
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since the instrument for the first time has become available on the market in 1996 (Becker 

1999). The success in subsequent use of the apparatus by the BLfD geophysical prospection 

team, among others in Yemen, Italy, Egypt, Syria, Iraq, South Siberia and Bavaria (see ref. 

Fassbinder and Irlinger 1999) encouraged to the further application of SMARTMAG on the 

geoglyphs of Palpa and Nasca in Southern Peru. 

Beforehand, the hard= and software of the instrument has been modified and 

adapted to archaeological applications. The frame of the device (see Figures 5.3 and 5.4) 

was redesigned in the laboratory of the Bavarian State Department of Monuments and Sites 

and rebuilt in the workshop of the Geophysics Institute, LMU Munich. The whole apparatus 

was rearranged and reset in order to cope with the innovative methods of data acquisition 

in the new environments. For the field survey, sensor holders have been placed at one end 

of the 2 metre long wooden frame, at the other end of which the electronic package was 

carried. The batteries were slung around the operator’s waist while the SMARTMAG 

console was hanged at the height of worker’s abdomen, enabling observation of readings 

during the measurement (see Figures 5.5 and 5.6). 

 
 

  

 

 

Figures 5.3 and 5.4Figures 5.3 and 5.4Figures 5.3 and 5.4Figures 5.3 and 5.4. The new SMARTMAG SM4G magnetometer frame construction providing effortless  
set=up in the field and unproblematic transportation to the measurement area. 

 

In one man carried equipment construction the so called duo=sensor configuration 

was chosen in order to reach a maximum speed of prospection combined with the highest 

possible sensitivity (Becker 1997). Two sensors were arranged horizontally, measuring the 

total intensity of the geomagnetic field and its gradient at two parallel tracks. They were 

moved along the 40 meter profile of the grid (40 x 40 meters) in a zigzag mode with a 

constant sensor height of 0,3 meter above the ground (Figures 5.5, 5.6, 5.7 and 5.8). In the 

WALKMAG (walking magnetometer) mode, data were acquired and recorded at the rate of 
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10 readings per second in the 0,5 meter separated traverses and 0,25 meter subsequently 

resampled intervals, as one walked at a steady pace along the survey line. Every five meters 

a station marker was triggered by pressing a single button in order to automatically assign 

the coordinates to the recorded data. The sampling speed of the magnetometer allowes to 

measure a profile in less than 30 seconds, what gave the possibility to finish one square in 

approximately 30 minutes and complete an hectare (200,000 samples) in 4 to 6 hours with 

a spatial resolution of 10 –15 cm at normal to fast walking speed (Fassbinder and Irlinger 

1999, Becker 1999). Because of the low geographical latitude a tilt correction of the probes 

of about 45° was necessary (see Figure 5.5).  

 

 

Figure 5.5Figure 5.5Figure 5.5Figure 5.5. Field measurement in Palpa, southern Peru; March 
2006; magnetic sensors’ correction 45°.  

 

 

 

Figure 5Figure 5Figure 5Figure 5.7.7.7.7. Simplified sketch of the measurement procedure; 
buried archaeological object generates the anomalous field 
producing the magnetic anomaly which can be measured by 
the sensitive magnetometer; field’s inclination ca. 60°. 

 

 

FiguFiguFiguFigure 5.6.re 5.6.re 5.6.re 5.6. Field measurement in Palpa in 
March 2006; walking along the survey lines. 

 
 
 
 

 
 

Figure 5.8Figure 5.8Figure 5.8Figure 5.8. Measurement grid and survey 
walking pattern. 
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5.2. DATA ACQUISITION AND PROCESSING 
  

Fast moving sensor systems need special procedures for data acquisition and 

processing. The base for high sensitive magnetic prospecting is the complete reduction of 

the natural and technical temporal geomagnetic variations (micro=pulsations, diurnal 

variations, powerlines, etc.) by measuring the difference between two sensors (Becker 1999) 

(Figure 5.8 and 5.9). According to Breiner (1965) the caesium magnetometer can be 

utilized successfully in such a differential mode, through the use of two sensors, one fixed 

and one mobile, connected together by a cable. In this so called variometer mode, a mobile 

sensor is moved across the area and the difference between it and a fixed reference sensor 

is recorded. The micro=pulsations sensed by two sensors located within a given distance of 

each other are almost identical, therefore the only change that is observed is due to the 

anomalies below the ground traversed by the mobile sensor. Another variation of this 

differential scheme is the use of both sensors as mobile instruments connected together on 

the wooden frame. This configuration is usually termed a gradiometer, as it actually 

measures the difference of the two intensities over the distance between them. Even better 

cancellation of micropulsations is achieved with this arrangement and the long cable link 

between the sensors, which may cause many problems under the rough surface conditions, 

is eliminated. The most important aspect however is that the gradiometer additionally filters 

out some of the background magnetic anomalies that originate in the deeper underlying 

geological strata (Breiner 1965; Becker 1999).  

 

So far, magnetometry has rarely been used in South America for archaeological 

prospecting. As the magnetic inclination at Palpa is roughly 3° and the intensity of the total 

Earth’s magnetic field hardly ever reaches 25.000 nT, the measuring equipment needed a 

further adaptation to the new conditions. For the reason of ideal compensation of the outer 

geomagnetic variations as well as the advantage of the system which can be operated as one 

man carried application, which eliminates the necessity of separation the sensor and data 

storage units (Becker 1999), the caesium magnetometer Scintrex® SMARTMAG SM4G=

Special was adjusted in a gradiometer mode and as such for the first time applied to the 

geoglyphs of Palpa and Nasca. Due to the flat inclination, the magnetic sensors were 

arranged in a horizontal configuration, in order to enhance the visibility of magnetic data by 
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measuring the largest difference between two sensors aligned along the main course of the 

geomagnetic field.  

 

   
 

Figure 5.9Figure 5.9Figure 5.9Figure 5.9. Temporal variations of the geomagnetic field; A = During a 60 second field measurement a linear 
decrease of about 0.3 nT is observed (top); while drift is removed (bottom), particular data present a 0.06 nT 
difference; B = in the gradiometer mode geomagnetic variations are reduced by the measurement of the 
difference between two magnetic sensors in the FM36 fluxgate gradiometer by Geoscan Research (top) and in 
the SM4 Gradiometer system by Scintrex (bottom) (Figure by Neil Linford, per. com). 

 

After the readings of the magnetic field intensity have been taken and the necessary 

time corrections have been made, a further mathematical treatment of readings became an 

equally important task. For this study, all obligatory data computations have been completed 

in the interactive digital image processing techniques, by the use of highly developed graphic 

and processing programmes listed below:  

 

o Geoplot 3.00, Geoscan Research, UK 

o ArcheoSurveyor, DW Consulting, The Netherlands 

o Self=made pre=processing software of BLfD and English Heritage 

o Surfer 8, Golden Software, USA 

o ArcGIS, ESRI Geoinformatik GmbH, Germany 

o Procart, Condata GmbH, Germany 

o AutoCAD, Autodesk Inc., USA 

o AirPhoto, Irvin Scollar, Germany 

o WuMap, CNRS, France 

o Corel Draw/Photo Paint, Corel Corporation, Canada 

o Adobe Photoshop CS, Adobe Systems, USA 

 
 

A B 
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For image processing the magnetometer readings (Figure 5.11) were typically 

imported to ArcheoSurveyor (Figure 5.10) or Geoplot and then converted into the 100 

greyscale values ranging from 0 (black) to 99 (white). Any disturbances and disorders in the 

imported pictures were corrected by special digital image processing techniques, the result 

of which was the clearer and smoother representation of the magnetogram even for the raw 

data. The most frequently used procedures for the processing of the studied data set, based 

on the ArcheoSurveyor (DW Consulting 2006), are summarized as follows:  

 

o Clipping – this technique replaces all values in the current layer outside the 

specified minimum and maximum. The process is used to remove extreme 

data values, which force the display to show all values in the centre of the 

histogram in the same colour thus hiding fine details. Excluding these 

values allows the details to show through. 

 

 
 

Figure 5.10Figure 5.10Figure 5.10Figure 5.10. Screenshot of the ArcheoSurveyor version 2200 (DW Consulting) during the 
processing of the Peruvian test site Estequerilla (west of Palpa). 

 

o DeStripe – it is used to equalise differences between the grids, which can be 

caused by directional effects inherent to magnetic instrument, instrument 

drift or orientation, delays between surveying adjacent grids or changes in 

the instrument set=up during the survey. 

o Interpolate – increases the resolution of the selected area or survey by 

generating an extra data point between every existing pixel. It is usually 
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carried out as late as possible in the sequence of processes, as many of 

them depend on the original traverse data for their calculations. 

o DeSpike – is typically used to remove spikes caused by small surface iron 

anomalies, which are generally the result of modern metal rubbish in the 

topmost layers. 

o DeDrift – corrects for the drift in the readings taken by the instrument 

allowing for zigzag data collection method. 

 

 

 

 

 

 

 

 

 

 

 

 

    
Figure 5.11Figure 5.11Figure 5.11Figure 5.11. Scintrex SMARTMAG 
SM4G magnetometer data set. The 
XYZ data format is compatible with the 
processing software written by DW 
Consulting and Geoscan Research.  
This format contains a header section 
with the information about the 
job/grid/line numbers, date of survey, 
operator name, sampling rate, 
bandwidth and senor separation. Data 
is placed into columns: X, Y, Total Field  
Sensor 1, Total Field Sensor 2, Time, 
Gradiometer. 

     

 

o Wallis – applies locally adaptive contrast enhancement to the surveys that 

display a pronounced slope across the area. This slope results in large 

portions of the survey being too “dark” and other areas too “light”, which 

make it very difficult to further process of the data without removing 

significant features.  

o Deslope – corrects the errors seen in magnetometer data caused by large 

metal objects near a survey area. The process also corrects changes of the 

Earth’s magnetic field in time. 
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o DeStagger – compensates for data collection errors caused by the operator 

starting recording of each traverse to soon or too late. It shifts each traverse 

forwards (and/or backwards) by a specified number of intervals. 

o Strech Traverse – compensates for data collection errors caused by the 

operator walking to slow or fast. It stretches (and/or compresses) the end 

point of each traverse by a specified number of intervals, adjusting all the 

points in between by a proportional amount. 

o High/Low Pass Filter –removes high or low frequency components in a 

survey. Low Pass calculates the mean of all the values within the specified 

window and replaces the centre value with the mean, while High Pass 

subtracts this mean from the centre value (ArcheoSurveyor program version 

202X, DW Consulting 2006).   

 

5.3. PRESENTATION AND INTERPRETATION OF RESULTS 

 

5.3.1 PRESENTATION OF RESULTS 

 
When a successful detection technique is applied to the survey of an appreciable 

area of an archaeological site, the presentation and analysis of the readings obtained is a 

serious task (Aitken 1974). After the filtering procedures, contrast enhancements and false 

colour transformations (Fassbinder and Becker 1999) have been completed, the next step 

which arises is an interpretation of the results in terms of possible archaeological features. 

For the satisfactory interpretation of readings, an adequate technique of the data display has 

to be applied. Various methods for data presentation have been used throughout the years, 

for example a succession of symbols each expressing a given strength of disturbance, 

contours, isometric drawings or random dots having a density proportional to the 

disturbance strength (Aitken 1974). Nowadays a digital image processing of the data allows 

a visualization of the measurement in a high resolution shading technique (Scollar et al. 

1990; Fassbinder and Becker 1999), which is a primary display method and the most 

common procedure for the appearance of results for this work. It presents the data as a 

‘map’ of the survey area using colours or greyscales to indicate the relative strength of the 

signal at each measurement point. Two shading modes are possible:  
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o Block – each measurement point colours a rectangular block whose size is 

determined by the measurement intervals, 

o Graduated shade – calculates a continuously interpolated value for every 

pixel (DW Consulting 2006). 

 

The alternate method for data presentation is a trace view. It presents the data as a 

trace or graph line for each traverse, which is displayed down the screen to provide a 3D=

like visualisation of the survey area. The real 3D model, as another presentation technique, 

converts the values in the current layer into relative heights, while the relief mode displays 

the survey as if it was 3D surface lit from an angle. This presentation can be effective for 

highlighting features in a survey which has a changing background signal level or slope. For 

all 3D or 3D=like display modes a sun position and the vertical scale can be applied, 

enhancing the visual effect, and therefore improving the interpretation procedure.  

The special mode is a delta view, which is specifically designed to display the 

difference between any two layers as a simple shade plot using currently selected colour 

palette. By comparing two layers, the result of a process or set of processes can be seen, 

which gives the possibility to detect when the archaeology is being accidentally removed by 

possible over=processing of the data (DW Consulting 2006).  

Although magnetic images are presented usually in the various shading techniques, 

which is also the common procedure for this work, the ultimate interpretation is always 

based on analysis of all possible display techniques studied separately.  

 

5.3.2 INTERPRETATION OF RESULTS 

 
In the interpretation of survey results, it is essential to know the strength and shape 

of the anomaly produced by the given type of the feature (Aitken 1974). As the magnetic 

conditions for the data collection in Peru are completely different from those in Europe, one 

has to be extremely careful in interpretation, in order not to make mistakes resulting from 

the shallow inclination of the geomagnetic field and consequently from the different shape 

of anomalies (compare Chapter 4.4). Therefore, the methods for interpreting the results of 

the magnetic survey are very important. Unfortunately, the complexity of many 

archaeological sites leads to an equal complexity in the magnetic results. Hence, much of 

the interpretation is rather a qualitative process based more on experience than on theory. 
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Even so, certain common factors, summarized by Linington (1970) and presented below, 

can be recognised:  
 

1. Gaining an idea of the types of archaeological features and deposits, which 

determine the range and type of occurring magnetic anomaly. The information 

includes:    
 

o Whether significant magnetic contrasts is likely to be present, 

o How magnetic anomalies represent significant archaeological features, 

o The type and size of anomaly produced by each feature, which includes 

whether the anomaly is positive or negative, 

o The amount of overlap that occurs between anomalies and the possible 

range of complexity of the results. 
 

2. Checking for the possible presence of any sources of magnetic interference. 

3. Estimation of the anomaly shift which, as mentioned before, occurs to the 

south of the feature in northern hemisphere. This means that the features lie 

to the north of the anomalies. Two possible procedures are suggested: 
 

o For single anomalies the shift can be approximated from the assumed 

depth of the feature, 

o For complex sites the compensation might be done by shifting the 

magnetic pattern as a whole, using an average value for the depth of the 

deposit. 
 

4. Identification of two parts of the single magnetic anomaly (main maximum 

and  smaller subsidiary minimum). During the interpretation, the latter should 

never be mistaken for the anomaly from another feature. 

5. Assessment of the width of the anomalies, which in the absence of severe 

overlapping effects, depends both on the width and depth of the features. The 

deeper the feature, the wider the anomaly, however, a wide anomaly might be 

also produced by a relatively shallow feature extended horizontally. In contrast, 

the narrow or sharply varying anomalies are only produced by shallow 

features. This enables the surface and near surface interferences, especially 

from fragments of iron, to be distinguished from those arising from deeper 

archaeological features (Linington 1970). 
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As a conclusion, it must be stressed that magnetic surveying, with all its possibilities 

and complexities, is mainly a matter for specialists, and therefore an adequate background 

of both the scientific and archaeological aspects is necessary (Linington 1970). As Becker 

(1999) states, the final result is usually based on the combination of several prospection and 

survey methods like: aerial photography, field walking, topographic surveying, digital terrain 

modelling and finally geophysical prospecting. Additionally, if possible, archaeological test 

excavations may be concentrated on specific areas for answering questions, which should 

give best possible information about the site.  

 

5.4. COMMON LABORATORY PROCEDURES IN THIS WORK 

 
 For this study, the entire processing and interpretation work has been completed in 

the geophysical laboratory at the Bavarian State Department of Monuments and Sites 

(BLfD Munich). The processing has been done using previously described commercial 

software (see Chapter 5.2). All findings were digitized using Procart tablet for data collection 

from the hardcopy printouts. Images have been studied and analysed under the supervision 

of experienced geophysicists and interpreted in cooperation with the project archaeologists 

from the German Archaeological Institute (DAI Bonn). For the scrupulous interpretation, 

magnetograms of both total field and gradiometer modes have been printed on Din A0 

paper format and examined from various perspectives and viewpoint angles with different 

lighting positions and sources. Additionally, for each site, 3D visualisations have been 

generated in Surfer 8 (Golden Software) and analysed similarly to 2D hardcopy printouts. 

As a support, different colour palettes, lighting positions, projection angles and vertical 

scales have been applied. This was of great assistance in finding the linear patterns in the 

magnetic images, although Din A4 figures, presented in the following chapters, do not 

precisely illustrate it, due to the limitations of the small format. For that reason, the present 

volume has been supplemented by the high resolution magnetograms in digital form to be 

found on the attached CD=ROM disc.  
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Chapter 6 

 

Results of geophysical prospecting on site 
PP01=36 “Llipata” 

 
 

 

 
The site PP01=36 occupies the south=western part of the Pampa the Llipata, south 

of Palpa. Although it is situated far from the modern settlements, a football field that was 

earlier used by children from neighbouring villages has been located exactly atop of the 

plateau. This modern feature has severely damaged parts of several geoglyphs. The site is 

composed of the main trapezoid, the spiral, and a series of flanking lines which are situated 

both to the north and south of the cleared area (Figure 6.2). At the south=western end of the 

complex, several lines, which seemingly existed prior to the trapezoid, can be recognized. 

They had presumably reached the very north=eastern end of the site, before they were 

removed together with the underlying zigzag line by the subsequent construction of the 

trapezoid. The remains of the zigzag line frequently reach the edge of the plateau, covering 

the furthest available parts of the site. It is due to the natural topography and shape of the 

area which enforces the arrangement and layout of the whole complex. Also the axis of the 

trapezoid follows the natural, northeast – southwest direction of the site. 

The large trapezoid from site PP01=36 was the first geoglyph that was measured in 

total using geophysical methods in March 2004 (Figure 6.1, see also Figure 3.4). Apart from 

a number of test measurements in 2003, it was the first complete investigation of the whole 

geoglyph complex by means of magnetic prospecting (Fassbinder and Reindel 2005). As the 

soil conditions on those Peruvian monuments are understood to be unfavourable for 

geophysical prospecting (compare Chapter 4.5), this first measurement seemed not to bring 

much into the general understanding of the whole complex at the time. The results, 
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however, were unexpected which encouraged the team to the further development of the 

measurement techniques and to enlargement of the survey territory. 

 

 

Figure 6.1Figure 6.1Figure 6.1Figure 6.1. Orthophoto of the geoglyph site PP01=36 from the Pampa de Llipata, south of Palpa;  
K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland 

 

The magnetic investigation on site PP01=36 amounts to 640 x 200 m (Figures 6.3 

and 6.4), which makes 58 survey squares of 40 x 40 m grid. The whole measurement was 

completed during the second field campaign, but the final laboratory data processing and 

interpretation work has been finished much later, in 2008, after completion of all sites. 

Analysing the magnetic image of the total field measurement (Figure 6.3), a large number of 

archaeological anomalies that might be ascribed to traces of pits, small fireplaces and 

postholes could be recognized. Although at the first glance the magnetogram is dominated 
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by the sediment geology, more specific analyses reveal the remains of archaeological 

structures as well (Fassbinder and Reindel 2005).  

 

 

Figure 6.2Figure 6.2Figure 6.2Figure 6.2. Detailed map of the geoglyph site PP01=36 from the Pampa de Llipata, south of Palpa; by K. 
Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland 

 

The most remarkable features, however, are the exceptionally strong star=shaped 

anomalies (up to ± 700 nT), which presumably originate from lightning strikes (Figure 6.5). 

These extraordinary features, the source of which is a lightning=induced isothermal 

remanent magnetization (LIRM) (compare Chapter 4.3) can be found in a large quantity on 

all investigated Peruvian sites. This fact is a noteworthy phenomenon given that only on 

very infrequent occasions LIRM has been the source of the magnetic signal on other 

archaeological sites, elsewhere in the world, measured by the BLfD geophysicist so far.  

LIRM usually occurs within a few meters of a lightning strike, where the magnetic field 
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created by the lightning discharge current imparts a secondary magnetization, overprinting 

the natural remanent magnetization (NRM) of the materials in the immediate vicinity.         

A lightning overprint is recognizable by its extreme intensity compared to the NRM that it 

replaces. There is usually no variation in magnetic mineral concentration, grain size, or 

composition between the LIRM samples and undisturbed soil as well as no fusion or high 

temperature discoloration of the soil may be observed (Maki 2005). For that reason, no 

diversity have been found by the numerous measurements of the magnetic susceptibility 

with a handheld Kappa Bridge SM30 meter (ZH Instruments, Czech Republic). Some of 

these star=shaped anomalies show only two strong 10 meter long dipole variations while the 

others extend over a length of 60 meters and have up to five dipole branches originating 

from one specific point (Fassbinder and Gorka 2007). Irrespective of their exact shape and 

length, they introduce a difficulty rather than assistance since they obliterate parts of the 

archaeological record and thus eliminate the possibility of interpretation of some portions of 

the magnetograms.  

Nevertheless, these frequently occurring anomalies might be used as the indicators 

for climate change in the past. Although today’s lightning occurrence rate in South America 

is understood to be high (see global distribution of lightnings based on the NASA 

observations:  http://thunder.msfc.nasa.gov/images/HRFC_AnnualFlashRate_cap.jpg), the 

coastal region of Peru, where the geoglyphs are located, is nowadays characterized by the 

low annual flash rates. Therefore, in the past, different climatic conditions must have 

prevailed. This is also confirmed by archaeological findings as well as geomorphological and 

palaeoenvironmental investigations mainly based on the studies of loess deposits in the 

Palpa region (for more information see Mächtle et al. 2009; Eitel et al. 2004; Mächtle et al. 

2006; Mächtle 2007; Eitel et al. 2009).  

Although LIRM structures are the dominant features in the total field magnetic 

image, the remains of archaeological structures may be recognised as well. This, however, 

as the features are frequently faint, needs a more detailed look into the image, analysing 

magnetograms in different dynamic scales as well as applying diverse colour palettes and 

view modes. Some of the archaeological features found by magnetometry have been already 

known as they are clearly visible both from the air and from the ground perspective as well 

as they were excavated prior to the geophysical surveying. Recognized structures are traces 

of buildings, often dating to later phases such as Late Intermediate Period (see Table 2.1), 
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and two types of stone platforms: elongated ones on the edge of the plateaus and 

rectangular ones located at the ends of the cleared trapezoidal areas. Stone platforms are of 

the great interest as they were created together with geoglyphs and supposedly served 

together. Several of them, well preserved ones, were completely or partially excavated in 

order to determine their construction technique, age, function and relationship with the 

drawings. While low, elongated platforms apparently were built at the beginning or during 

the construction process of adjoining geoglyphs, only a few of rectangular ones were 

created at the same time as the geoglyphs. Furthermore, several of them show clear 

indications of later alterations which means that the structures were used in a long time 

period. Activity related to the platforms was the placing of maize cobs, ceramic vessels, 

seashells, and other materials on top of them. They may also have been used to stand on, 

but there is little evidence to support this idea (Lambers 2006). Holes up to 60 cm deep 

situated near the platforms suggest masts or poles several meters tall that served as 

orientation points during the construction process of the trapezoids. Other, shallower holes 

might have supported canopy=like roofs (Reindel et al. 2003; Curry 2007). The levelled and 

compacted ground around the structures indicates the frequent presence of people close to 

them. Compared to lineal geoglyphs, many of which are compacted along their whole 

course, the trapezoids are compacted, most likely by human activity, only around the 

platforms. Both the compaction and the traces of wooden posts can be distinguished in the 

total field magnetic image (Figure 6.3) as well as in the horizontal gradiometer one (Figure 

6.4). It must be stressed, however, that all the listed archaeological structures can be 

recognized due to the prior knowledge of their approximate location. Otherwise, it would be 

extremely difficult to find them after the analyses of the magnetograms alone, because of the 

presence of many similar anomalies in the magnetic image which originate from the 

geology rather than archaeology. To differentiate them based on the anomaly shape and 

intensity alone is an unachievable task.  

Fortunately, this is not true for the linear features, which being the main target of 

the magnetic surveying, form obvious and clearly identifiable patterns. That is why, from the 

whole range of the archaeological structures, only linear ones have been interpreted and 

presented in the following magnetograms. The rest have been largely ignored given that 

magnetometry had no contribution to their discovery. It is noteworthy, however, that they 

were detected and are present in the magnetic images as well. 
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Figure 6.8Figure 6.8Figure 6.8Figure 6.8. Magnetogram of the site PP01=36 “Llipata” superimposed on the orthophoto of the same area; 
Caesium SmartMag SM4G – Special applied in the duo=sensor configuration. Sampling rate 12,5 x 50 cm 
interpolated to 25 x 25 cm, grid size 40 x 40 meter, dynamics +/=20 nT, Earth’s magnetic field ca. 25.000 nT; 
orthoimage by K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland. 

 

In order to enhance the visibility of magnetic data, two sensors were arrayed in a 

horizontal gradiometer configuration (compare Chapter 5.2). To optimise the results it was 

necessary to set up a layout of the grid along the axis of the plateau and to position the 

probes in the same manner as it was used before in the total field mode. This enabled the 

recalculation of all former measurements as a differential mode. The application of the 

magnetometer in such an arrangement, in combination with the results of the total field 

magnetic data, enabled the crucial data enhancement to visualize so far undetected 

archaeological features. This allowed to trace older lines that had been obliterated during 

the construction of the larger trapezoids in the same place.  
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Figure 6.6 represents the interpretation of linear structures of both magnetic 

images in relation to aerial photographs of the geoglyph complex on site PP01=36. The red 

lines marked with the symbols  and  correspond to the major linear structures in this 

location. Those are the boundaries of the trapezoid and the nearest parallel flanking lines on 

the north=western side of the cleared area. Those lines are clearly visible in aerial images and 

magnetometry only confirmed their exact location. It is noteworthy however that as the line 

 is an obvious south=eastern border of the trapezoid, in case of figure , magnetometry 

revealed three parallel stripes of anomalies, the very internal of which could be ascribed to 

the trapezoid margin, while the other two stand for the mentioned flanking lines. One of the 

most remarkable results on site, however, is the green line . It is a 500 m long structure, 

parallel to the set of lines  within a distance of 40 m in the trapezoid’s interior direction, 

right in the middle of the cleared area. Although the line is only partially visible for 

photogrammetric means, which leaves its verification in the sphere of assumption, it can be 

easily traced and confirmed by magnetometry. The location and the course of the line itself 

suggests that it might have been the first line on the plateau and/or served as an orientation 

strip during the construction of the trapezoid. However, judging from the similar structures 

on other investigated sites, the line presumably determined the previous edge of the cleared 

area, which was subsequently enlarged to the contemporary form.  

On the south=eastern side of the trapezoid several further lines can be recognized. 

While the lines  and  can already be identified analysing orthoimages, two green lines 

marked with number  are the structures found only by the interpretation of the 

gradiometer magnetogram. Both of them, together with mentioned  and , constitute the 

south=eastern cluster of flanking lines. Those lines together with previously described ,  

and  form the major linear design of the site.  

Apart from it, a number of secondary lines may be distinguished. In the Figure 6.6 

they are marked with the black hatched lines. Into this subclass fall lines  and , where 

former are identified by the total field measurement alone, while the later appear only in the 

gradiometer image. They are the elements of one of the first drawings on site, existing 

before the huge trapezoid was constructed. The most distinctive aspect is their direction, 

which is, depending on the line, approximately at an angle of 30° – 70° to the course of the 

north=western trapezoid margin. This together with the exact comparison with aerial images 

suggest that the most of those lines form the previously described zigzag line (see Figures 
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6.1, 6.2), which now, after magnetic analysis, could be in several places delineated on its 

whole extent, covering so far undetected fractions under the cleared area. The small parts of 

lines  and , however, do not match the zigzag stripe and therefore form the separate 

remains of some other previous lines, which presumably existed prior to trapezoid as well.   

The last part of the interpretation image (Figure 6.6) make lines ,  and . 

Those are supplementary lines of further category which are difficult to find in the magnetic 

images as they are generated by weak anomalies and naturally overprinted by the strong 

ones. Supposedly, they were narrow and/or not frequently walked on lines, which emerge 

only as faint variations of the geomagnetic field. However, as they are still noticeable, they 

supplement the whole image of the site. The location of lines  by the trapezoid margin 

implies the assumption that, despite inaccurate parallelism, they might have been traces of 

previous phases of the trapezoid construction, similarly to line . Unfortunately, it is not so 

clear regarding lines . Their direction is dissimilar to the main course of the other lines, 

which places the interpretation in the area of uncertainty. Small parts of them, however, can 

be found in the orthoimages outside the cleared area at the north=western side of the 

trapezoid (see Figures 6.1, 6.2). If so, that causes the lines  to be prolonged structures 

extended far until the very south=eastern side, but still enclosed in the trapezoidal area and 

therefore not visible for aerial photography. It is true also for lines  which lay entirely 

within the borders of trapezoid. They were detected exclusively by geophysical means and 

their direction, matching the course of the flanking lines ,  and , may suggest some 

association with them. As far as the spiralled structure is concerned (Figures 6.1, 6.2), it is 

only partially visible in magnetic images. Such situation has been found also on other 

investigated sites and will be presented in due course of this study.  
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Chapter 7 

 

Results of geophysical prospecting on site 
PV67A=15/16 “Yunama” 

 
 

 

The geoglyph complex PV67A=15/16 is located to the west of Palpa, on a slightly 

inclined plateau over the river plain, halfway up to the southern hillside of the Cresta de 

Sacramento (Fassbinder et al. 2007) (Figure 7.1, see also Figure 3.4).  

According to Lambers (2006) geoglyph sites on hillsides usually lack the complexity 

of sites on plateaus, since drawings are usually more separated from each other. 

Alternatively, they are more difficult to date in terms of relative and absolute chronology, 

since erosion has usually destroyed their stratigraphic sequence. Moreover, datable ceramics 

associated with geoglyphs on hillsides is not so frequently found as on plateaus. However, 

the placement of different geoglyph types on slopes indicates that the site was strongly 

developed in time. The anthropomorphic figures, which are the earliest features, are usually 

located on the steepest parts of the slopes. Most other types of the geoglyphs come from all 

periods, from Initial Nasca to Late Nasca (Table 2.1) and cannot be dated only on the basis 

of shape. Lineal geoglyphs originate from the common point on the edge of the plateau or 

they branch from the main line running downhill. Trapezoids, which are significantly smaller 

than those on plateaus, are located on the lower parts of slopes, where the inclination of the 

terrain is lower (Lambers 2006). Similarly to their plateau counterparts, they are flanked by 

meandering lines and/or spirals.  

The most remarkable illustration of geolgyph complexes on sloped terrain makes 

the famous Reloj Solar (Sun Dial) (Figure 1.1) placed on Cresta de Sacramento. However, 

the site PV67A=15/16 (Yunama), which is located on the southern flank of the same ridge, 

also serves as an excellent example, although it is much more destroyed.  
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Figure 7.1Figure 7.1Figure 7.1Figure 7.1. Orthophoto of the geoglyph site PV67A=15/16 from the Cresta de Sacramento, west of Palpa;  
K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland 

 
 

Apart from a series of smaller geoglyphs, the site PV67A=15/16 is dominated by a 

large trapezoid (geoglyph 52) (Figure 7.2), which is approximately 400 m long. Close to its 

narrow end, it crosses a diagonally oriented, earlier meandering line 55, which together with 

parallel (56), originally formed the northern part of the complex. Subsequently, by removing 
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the stones of the desert pavement between two lines, the initial drawing was converted into 

a huge cleared rectangle (57) (Fassbinder et al. 2007; Lambers 2006). Further alteration of 

the complex was the lateral enlargement of trapezoid 52 on its northwestern side (Lambers 

2006). 
 

 
    

Figure 7.2Figure 7.2Figure 7.2Figure 7.2. Detailed map of the geoglyph site PV67A=15/16 from the Cresta de Sacramento; the geoglyph 
assemblage with a stratigraphical sequence of different phases of construction and reworking drawn after an 

aerial photograph; K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland 
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All drawings in this area, similarly to the other complexes, were first mapped with 

photogrammetric means. This basic documentation was then revised and complemented by 

on=site field observations carried out by archaeologists from the German Archaeological 

Institute. This part of the fieldwork encompassed detailed description of each geoglyph 

together with the recording of associated finds, the registration of the stratigraphic sequence 

of the geoglyphs, and trench excavations (Reindel et al. 2003). Eventually, a magnetometric 

prospection was undertaken (Fassbinder et al. 2007).  

The surveying, carried out entirely in September 2004, was the second, after 

Llipata, large=area magnetic measurement of the whole geoglyph complex on the Peruvian 

desert. The investigation area approximates 440 x 220 m, in which 45 survey squares were 

placed. The site is strongly disturbed by modern footpaths and the frequent presence of goat 

herds pastured in the neighbouring quebrada. Therefore, many features in magnetic images 

are overprinted by this modern record and thus difficult to interpret. The detailed analyses of 

both resulting magnetograms (Figure 7.3 and 7.4) show that the trapezoid 52 has a different 

geological background than the rectangle 57. The granite rocks, abundant on the southern 

part of the site have the highest magnetic susceptibilities, which in magnetogram typically 

show up as a magnetic dipoles, making interpretation more difficult (Fassbinder et al. 2007; 

Fassbinder and Gorka 2009). The area of the rectangular geoglyph 57, free of granite rocks, 

is much more limited to small magnetic anomalies and so the magnetic image much better 

exposes concerning geoglyph construction elements. The magnetometer data show 

dynamics of +/= 20 nT and thus significantly differ from the Llipata (PP01=36) values 

(Fassbinder and Gorka 2007). Only on the topographically more to the edge exposed 

trapezoid 52, typical strong LIRM anomaly occurs. Unlike the other sites, the total field 

measurement alone gives surprisingly high=quality results, reducing the gradiometer mode 

image to the fine supplement outcome. It may be due to the localisation of the whole 

complex on the hillside and thus to resulting differences in geological background. Yet, it 

has to be stressed that the gradiometer image, similarly to all other sites, constitutes the 

major product on which the most important part of the interpretation work is based. 

Furthermore, this type of survey usually better reflects the constructional arrangements 

made of stone, known already from Llipata site.  

Correspondingly, on site PV67A=15/16, during the archaeological fieldwork, two 

stone structures have been localised on the narrow end of the trapezoid 52, where several 
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geoglyphs (52, 55/56, 57) meet. Moreover, a single larger structure, close to the wide base 

of the drawing, was also found (Lambers 2006). Despite the fact that two former ones are 

not placed exactly on its central axis, but shifted a little bit in north=west direction, this typical 

combination of structures indicates that they were build as part of the trapezoid. Two looted 

stone heaps on the narrow end are nearly rectangular platforms used to deposit offerings of 

ceramic vessels, field crops, Spondylus shells, and fragments of crawfish. In between the 

platforms, the remains of a wooden post were found. Judging from the depth of buried 

remains it probably reached high above the ground. On the other end of the trapezoid, the 

bigger construction was excavated, which revealed that in the early stage it contained a 

room before it was converted into the platform as well. The remains of several smaller 

wooden posts associated with the first building stage were also found. Ceramics recovered 

from the platforms date to all phases of the Nasca era, indicating the use of the site between 

1 BC and 600 AD. The location and stratigraphy of the stone structures show that although 

they are integrated part of the whole complex, they were built after the original construction 

of the trapezoid. Such sequence has been observed on other sites as well (Lambers 2006; 

Fassbinder et al. 2007).  

Besides stone structures and traces of mentioned wooden posts, both magnetic 

images of the total field measurement (Figure 7.3) as well as the gradiometer one (Figure 

7.4) revealed some regular anomalies indicating the presence of other constructional 

elements on site. Some of the structures may be ascribed to the remains of buildings, usually 

from later archaeological periods, the anomalies of others suggest the occurrence of pits. 

Some of them have been previously found by archaeological excavations and magnetometry 

only confirmed their presence on site. In the magnetic image they are difficult to trace and 

might be easily misinterpreted, however, since they usually possess equal intensities, they 

demonstrate similar constructional practices. It is confirmed with the fact that they are filled 

in the same way with the material of higher magnetic susceptibility such as burnt objects or 

pottery sherds (Fassbinder et al. 2007; Fassbinder and Gorka 2009). 

The intensity itself is a frequently used technique during the interpretation process.         

It assists in finding regularities in setting of anomalies by the identification of equal values 

and allows to distinguish desirable archaeological structures from the confounding modern 

constructions as well as from the geological background and strong lightning magnetization. 

It was one of the fundamental tools used on PV67A=15/16 and other Peruvian sites.  
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Figure 7.7Figure 7.7Figure 7.7Figure 7.7. Magnetogram of the site PV67A=15/16 “Yunama” superimposed on the orthophoto of the same 
area; Caesium SmartMag SM4G – Special applied in the duo=sensor configuration. Sampling rate 12,5 x 50 
cm interpolated to 25 x 25 cm, grid size 40 x 40 meter, dynamics +/= 7 nT, Earth’s magnetic field ca. 25.000 
nT; orthoimage by K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland. 

 

Except some mentioned stone assemblies, the interpretation work on site PV67A=

15/16, likewise other complexes, was concentrated mainly on linear structures. They are 
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the most important features and predominate types of prehispanic geoglyphs found on the 

large flat plateaus (compare Chapter 2). The final interpretation result represent Figures 7.5 

and 7.6, however, in case of site PV67A=15/16, for the first time the supplementary 3D=like 

visualisation (Figure 7.8) was made.  

 

 

Figure 7.8Figure 7.8Figure 7.8Figure 7.8. Magnetogram of the Total Field measurement on site PV67A=15/16 in a 3D=like visualisation seen 
from SW at the view angle 24°; Caesium SmartMag SM4G – Special applied in the duo=sensor configuration. 
Sampling rate 12,5 x 50 cm interpolated to 25 x 25 cm, grid size 40 x 40 meter, dynamics +/= 7 nT in colour 
spectrum values from green to blue; Earth’s magnetic field ca. 25.000 nT; top of the image pointing NE. 

 

The red and black lines marked with the symbols  and  (Figure 7.6) correspond 

to the only remains of the trapezoid 52 that were found in both magnetic images. This 

scarceness is due to the mentioned high magnetic susceptibilities of granite rocks. In this 

case, the aerial photography clearly prevailed over the magnetic prospecting, seeing that 

more features could have been recognised by photogrammetric means. However, the line  

makes an outstanding result alone, since it confirms the presence of the inner structure, 

which could have served as a trapezoid margin, before it was enlarged to the present form.  

   The lines  to  compose the rectangular area 57. While the line  is an 

obvious northern boundary of the trapezoid, clearly limited by heaped stones, the southern 
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fraction is fragmentally obscure and not so understandable. Whereas the aerial photography 

proves the existence of the meandering line 55 on the south=eastern border, the geophysics 

verifies those results with analogue lines ,  and . However, as lines  and  could be 

indeed the residual fragments of the regarded meandering feature, the lineal anomaly  

might be either the part of the same structure or an additional south=eastern trapezoid 

margin. Analysing the magnetogram superimposed on the aerial image (Figure 7.7), the 

latter seems to be logical as the feature  occurs slightly to the south of the line 55.  

The superimposed images make up an excellent tool for exact location of magnetic 

anomalies in terrain and for evaluation of differences in aerial and geophysical means.        

The method relies on overlying the magnetogram on orthoimage with a varying level of 

transparency, which gives a fine possibility to identify new findings and compare them with 

the previous results. In such a way the line  suggests the occurrence of the south=eastern 

border, which in comparison to carved meandering line is a heaped feature created by 

deposition of material removed from the mentioned line or from the whole rectangular 

area. If so, the line  reveals no bright layer of sand and silt, which could contrast with the 

surrounding surface, and therefore is not as strong visible for photogrammetric techniques 

as the lines  and . Although the line  undoubtedly belongs to the same meandering 

feature as line , it is formed only by a faint anomaly, which not evidently match any visible 

lineal structure in an aerial image. The line , marked black in Figure 7.6, could be 

therefore classified either as a newly found branch of the meandering feature 55 or only as a 

reverse anomaly of the line  (see Chapter 4.4 and 5.3). The latter seems to be reasonable 

as both structures occur close to each other.   

The other meandering structure on site makes the line 56 (Figure 7.2), which in 

interpretation image (Figure 7.6) is presented by a series of lines marked with number . 

This feature is a similar drawing to the described lines  and , however, it has a slightly 

different course, approximately 3 = 4° closer to the north – south direction. Although it is 

difficult to determine if both features constitute the one continuous structure or form two 

different patterns, it is obvious that they were created at the same time and existed together, 

before they were transformed into the huge rectangular area 57. Some parts of the line  

are not visible in magnetic images, as the whole complex is strongly destroyed by goat’s 

pathways that cross the site in several places. For that reason the continuity of the line is 

only assumed. Generally, the line  matches its photogrammetric equivalent 56 and 
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consists of five parallel lines, which indeed form one meandering structure, judging from 

several linking curves, observed on orthoimages. Those curves, oriented 90° to the course of 

the lines, have not been detected by magnetometry, what in effect makes a noteworthy 

result, described in more detail by the way of partially discerned spirals on site PV67A=47 

“Sacramento” (Chapter 8).  

   From the hillside above the rectangle 57, a straight line  runs in north=eastern 

direction towards the set of lines . It is cut by the northern section of them, which would 

suggest that the line  is older. However, as the stratigraphic relation with rectangle 57 was 

not clear on the basis of evidence from surface observations and aerial images alone, 

magnetometry helped to resolve this question by revealing a continuation of line  beneath 

the north=eastern part of the rectangular geoglyph 57 (green line in Figure 7.6). The line 

points directly to one of the mentioned stone platforms at the narrow end of trapezoid 52 

and ends up in a pit (Fassbinder et al. 2007). This is one of the most remarkable results on 

site, demonstrating the clear relation of stone structures with the drawings. The similar 

relation reveals line , which as the transition drawing between meandering features  and 

, also aims the same stone platform. More significant, however, is the detection of line , 

the course of which is parallel and lays 30 – 35 m to the south of the line . The presence 

of this most likely multiple but fragmentary line, found in a gradiometer image, utterly 

changes the conception of discussed line . It may no longer be regarded as a single line 

pointing the stone platform, but as a trapezoid margin, which together with line , delimits 

an early stage rectangle running down the hill in SW – NE direction. This geoglyph crosses 

the northern part of the whole complex and ends up far beyond hitherto assumed cleared 

area borders. Additionally, with the rectangle 57 and the trapezoid 52 as well as with the 

meandering lines  and , it has one common point laying precisely on line . The exact 

location of this point matches previously described stone platform, which in this case earns 

an additional meaning and becomes the most significant point of the whole complex.  

On site PV67A=15/16 a wooden scraper, presumably used for flattening and 

cleaning the linear geoglyphs, was found. Since the 14C dating revealed the age of the tool 

for around 1300 AD, the time period in which the geoglyphs were in use, may be assumed 

to be longer than it was previously believed. It must be noted, however, that at this time, all 

constructional activities have been already abandoned and only actions of cleaning and 

preservation maintained (Fassbinder et al. 2007). 
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Chapter 8 

 

Results of geophysical prospecting on site 
PV67A=47 “Sacramento” 

 
 

 

 The site PV67A=47 occupies the central part of the main plateau of Cresta de 

Sacramento above the famous Reloj Solar geoglyphs (Figure 1.1) on the southern slope of 

the ridge. Although the eastern end of the complex has been destroyed by a Late 

Intermediate Period site (Table 2.1) already in prehispanic times, its location close to the 

tourist point over Reloj Solar has led to regular presence of people on the main geoglyphs 

and consequently to the further destruction. Additionally, although the site is located far 

from the main roads, many parts of it have been marked by modern car tracks. Fortunately, 

the preserved amount of drawings is enough for the detailed study of the development of 

this significant geoglyph complex (Lambers 2006).  

The one of the earliest geoglyphs constructed on site was the zigzag line (183) 

(Figure 8.3), which linking the neighbouring site on the same plateau, crosses the free space 

between them and immerses under the later constructions on site. The zigzag line, which 

dominated the site at the beginning, was afterwards accompanied by several isolated straight 

lines (184 and 205) and the second line of the same shape (203). Both were subsequently 

covered by the large trapezoid (189), on which the ceramics date to the early phases of the 

Nasca period (Lambers 2006). Two spirals (206, 208) on the northern edge of the site were 

constructed at the same time, just like several lineal geoglyphs (190, 193, 202) flanking the 

main trapezoid. The S=shaped spiral (206), remodelled during later constructional activities 

to 207, was created at the same time as the aeral geoglyph (196). By Middle Nasca times, 

several lineal geoglyphs were added on the southern side of the main trapezoid (195, 199=

201) and on its western end (187). The spirals on its northern side were partially cut or 
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covered by several lines (191, 210) as well as one of the smallest registered trapezoids (209). 

Additionally, the narrow end of the central trapezoid (189), was converted into a large 

rectangle (213). In Late Nasca times, the largest trapezoid on Cresta de Sacramento (188) 

has been constructed. It cuts through most of the existing lines and the trapezoid 189 at an 

angle. According to Lambers (2006), it was oriented in the way that it made the best use of 

the remaining free space on both sides of the central complex of geoglyphs. Additionally, 

close to its narrow end, the trapezoid partially covered unfinished areal geoglyph with sherds 

of later archaeological phases on it. The presence of Late Intermediate Period findings on 

this part of the site, is probably due to the construction of buildings from this phase, which is 

the evidence for later activities on site, not related to the drawings. For that reason, later 

alterations of the site will not be described further. For more information about the complex 

arrangement and constructional sequences on site PV67A=47 see Lambers (2006).  

 

The magnetic prospecting, accomplished throughout the September 2005, was the 

largest, in terms of an area coverage, geophysical investigation carried out on the Peruvian 

geoglyphs. The measurement, reaching 720 x 240 m, contains 79 complete and shortened 

survey squares, which makes the investigation on site PV67A=47 the foremost achievement 

in large=area magnetic surveying in Peru. Moreover, the density of drawings, the variety of 

geoglyph repertoire as well as its complex stratigraphical sequence, places the site atop of 

the most important assemblages of the region. Therefore, also the geophysical investigation 

was believed to bring the most spectacular results of all sites. Likewise other complexes,       

it was possible to detect pits and older lines beneath the trapezoidal areas. The diversity of 

forms, however, allowed for the first time to identify new shapes, which so far has not been 

detected by magnetic methods on the previously measured locations. The site PV67A=47 is 

particularly rich in spiral elements, which concentrated on the northern side of the main 

trapezoid (Figures 8.1 to 8.3), form an extraordinary pattern, supplementing the whole 

assemblage. Although pits were found also in the centre of the spiral, the spiral itself has 

turned out to be visible only partially in the total field magnetic image (Figure 8.4). The 

visibility was best in the west – east oriented parts, which fading away towards north and 

south, disappeared entirely in the north – south course. The similar result was also observed 

on site PV67A=15/16, regarding undetected curves of meandering lines (see Chapter 7).  
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Figure 8.1Figure 8.1Figure 8.1Figure 8.1. Orthophoto of the geoglyph site PV67A=47; Cresta de Sacramento, north of Palpa (upper);  
Figure 8.2Figure 8.2Figure 8.2Figure 8.2. Interpretation of geoglyphs on site PV67A=47 (lower); K. Lambers; Institute of Geodesy and 

Photogrammetry, ETH Zürich, Switzerland 
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Figure 8.3Figure 8.3Figure 8.3Figure 8.3. Detailed map of the geoglyph site PV67A=47 from the Cresta de Sacramento; the geoglyph 
assemblage with a stratigraphical sequence of different phases of construction and reworking drawn after 
aerial photograph (Figure 8.1); K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich 

 

 

In both cases the visibility was due to the asymmetry of magnetic anomalies, which 

is most marked in a magnetic north – south direction while it disappears for the magnetic 

east – west profiles across the anomaly (Linington 1970) (see Chapter 4.4). Although 

profiles in magnetic north – south course are of more practical value, for operative reasons, 

the grid was usually oriented after the long axis of the plateau, which not always matched 

the geographical north – south direction. Therefore, the visibility, especially in gradiometer 

images, might have been affected by the traverse orientation, which was additionally 

influenced by the shallow inclination of the geomagnetic field. The small angle of dip might 

have had an enormous effect on the shape of magnetic anomalies over some parts of spirals 

and other skewed structures, making them invisible for magnetic site exploration techniques. 

Given that the curves on site PV67A=15/16 match precisely the course of undetected spiral 

parts on PV67A=47, and that both sites were measured in similar northeast – southwest 

direction, the suggestion that the visibility was dependant on the layout and the geographical 

orientation of the magnetometer survey grid, has confirmation in both magnetic 
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measurements. Nevertheless, it must be stressed that the visibility is a complex function of 

the anomaly shape, geomagnetic inclination and the grid orientation.  

 

    
 

Figure 8.4Figure 8.4Figure 8.4Figure 8.4. Magnetogram of the spiral structures on site PV67A=47 “Sacramento”; A – Total Field 
measurement with Caesium SmartMag SM4G – Special applied in the duo=sensor configuration; sampling 
density 12,5 x 50 cm interpolated to 25 x 25 cm, dynamics +/=10 nT; B – recalculated Gradiometer image of 
the same structure; sampling increment 12,5 x 100 cm interpolated to 25 x 25 cm; dynamics +/=18 nT; grid 
size 40 x 40 meter;  Earth’s magnetic field ca. 25.000 nT 
 

The partially discerned spirals from Sacramento not only forced the discussion on 

the cause of their fragmentary visibility but also for the first time originated the idea of the 

new application of the total field magnetometer in a horizontal gradiometer configuration. 

For this purpose it was not necessary to re=measure the entire area, but to use a previous 

twin sensor arrangement for a gradient recalculation. Although the following outcome, 

regarding spirals, proved to be only to some extent satisfactory (Figure 8.4), the result for 

the rest of the site was astounding. The geoglyphs which were not visible for a single total 

field sensors have been converted into the clear anomalies in the gradiometer mode. 

The only disadvantage of gradiometer data reprocessing was the twofold reduction 

of resolution in the traverse direction. The distance between two neighbouring lines fell from 

0,5 m to 1 m, as one=line=march did not provide values of two sensors, but the gradient 

between them. Nevertheless, after resampling and interpolation or in some cases following 

application of Graduated Shade technique (see Chapter 5.3), gradiometer images were 

obtained, which offer much better results than their total field counterparts. It must be 

stressed, however, that plenty of structures were discovered only in the total field mode. 

A B 
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On site PV67A=47, similarly to the previously measured locations, a low stone 

platform is situated on the edge of the flat terrain and overlooks the Palpa valley. It is 

located on the southern end of a roughly rectangular cleared area (196), and is oriented 

southwest – northeast, following the general direction of the Sacramento ridge. It has an 

elongated shape and is composed of six chambers of roughly equal size organized in the 

irregular row (Lambers 2006). Unfortunately, in the magnetometer images it is hard to 

identify due to its constructional characteristics. The chambers are outlined by a single row 

of boulders standing vertically in the soil, and are additionally filled with gravel composed of 

stones of different size. According to Lambers (2006), the structures were constructed in a 

simple manner using only materials available on the spot, thus both the outline and the 

filling consist of the same material that forms the surrounding desert pavement. Therefore, 

the magnetic contrast may be too low in order to differentiate the structures from the 

adjoining stone layer. It is opposite to the heaped trapezoid borders, which shaped by 

identical material, are formed by relatively high piles of stones, giving in such a way a strong 

record in a shape of the positive magnetic anomaly. This, in fact, makes a noteworthy 

phenomenon, given that the stones used to construct the platforms were most likely 

gathered simultaneously, when a new geoglyph was constructed and its borders were 

formed. As far as  the position of the structures is concerned, Lambers (2006) declares that 

they are usually found on the edges of high plateaus, so both the valley and the geoglyph 

sites can be viewed from these points. Without the platforms the trapezoids cannot be seen 

from the valley floor.  

At first glance total field magnetic images (Figures 8.5 and 8.6) are dominated by 

strong, known from the other sites, LIRM structures. As in previous cases, they form dipole 

star=shaped patterns irregularly distributed on site. On the Sacramento ridge, however, this 

phenomenon is particularly pronounced. The LIRM anomalies here occur in a quantity, that 

has never been observed so far, and their dimensions frequently exceed the size of similar 

structures measured on the other sites (Figure 8.13). It is most likely due to the strong 

exposition of the whole ridge which makes an easy target for the strikes. However, it may 

also support the idea that lightning strikes could have been attracted by archaeological 

structures such like pylons or posts, which on this site might have been frequently erected. 

Besides LIRM anomalies, the linear structures as well, markedly demonstrate more 

complicated patterns, as the site was strongly remodelled over time. Due to this complexity, 
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the interpretation work has been divided and presented as two separate figures (8.10 and 

8.11). The former is concentrated on structures recorded by magnetometry, but visible also 

for aerial imaging, while the latter presents features detected exclusively by geophysical 

prospecting of the site. The additional outcome constitutes a 3D=like visualisation (Figure 

8.12), on which a supplementary interpretation work was based.   

 

FigFigFigFigure 8.12ure 8.12ure 8.12ure 8.12. Magnetogram of the Total Field measurement on site PV67A=47 in a 3D=like visualisation seen 
from W at the view angle 20°; Caesium SmartMag SM4G – Special applied in the gradiometer mode. 
Sampling rate 12,5 x 100 cm interpolated to 25 x 25 cm, grid size 40 x 40 meter, dynamics +/= 13 nT in 
colour spectrum values from green to blue; Earth’s magnetic field ca. 25.000 nT; top of the image pointing E. 
 

Among the dense cluster of lines on site PV67A=47, number  and  (Figure 

8.10) compose the most elementary structures recognized in magnetic images. Apart from 

the LIRM features, they create the strongest magnetic anomalies on site and are effortlessly 

distinguishable even in the total field measurement (Figure 8.5). Both structures constitute 

the margins of two main trapezoids, which crosscutting each other in an oblique direction, 

form one of the most recognizable geoglyph complexes in the Palpa region. Lines marked 

with the symbol , which delimit trapezoid 189 (Figure 8.3), do not follow the straight 
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course, but are slightly bent inwards, which is particularly pronounced close to the narrow 

end of the trapezoid. Moreover, the north=western margin looses its continuity, which might 

be due to the transition to the large rectangular area (213). The lines , demarcating 

trapezoid 188, on the other hand, run straight, being at the same time one of the longest 

straight features of the whole complex. Although they cross several older lines ( ,  and 

), the anomalies caused by them are apparent and comprehensible. In addition to them, a 

supplementary line  (Figure 8.11) has been found. It is located between the trapezoid 

borders , running parallel to the southern margin. Judging from the similar structures 

found on the other sites, the line  can be classified as a former cleared area boundary. It 

existed until the enlargement phase, after which it was wiped out, making it invisible for the 

conventional aerial photography techniques. The magnetometry, however, yet again proved 

its existence in the past and defined its exact location in the field. 

 

Figure 8.13Figure 8.13Figure 8.13Figure 8.13. Star=shaped magnetic anomaly 
from site PV67A=47 “Sacramento” caused by 
the lightning induced remanent magnetisation; 
Caesium SmartMag SM4G – Special applied in 
duo=sensor configuration; Sampling rate 12,5 x 
50 cm interpolated to 25 x 25 cm, grid size 40 x 
40 meter, dynamics +/= 250 nT in 99 greyscale 
values from black to white; Earth’s magnetic field 
ca. 24.000 nT 

 

 

  The most complicated cluster on site compose lines , which form a group of 

lineal geoglyphs, flanking the main trapezoid from its south=eastern side. They are 

exceptionally difficult to interpret, as they occur close to each other. The anomalies of 

neighbouring lines are therefore in an immediate proximity, which in effect causes an 

overlap of reverse anomalies (see Chapter 4.4) in the magnetic image. This all forms an 

assembly of parallel stripes, the coexistence of which, even with the help of aerial 

photographs, is hard to understand. For that reason, even obvious anomalies, like those 

caused by the lines  (Figure 8.11), have been classified only as a possible features and 

therefore marked black. However, as it was found by the photogrammetry, the whole 

assemblage , likewise similar features on the other complexes, is in fact a meandering 
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structure, which possibly is continued under the trapezoid 189. Unfortunately, this could not 

have been confirmed neither by aerial imaging nor the magnetic prospecting, since the later 

construction of two huge trapezoids 188 and 189 utterly obscured the previously created 

features. It is therefore not obvious if the lines , which form on the north=western side of 

the trapezoid 189 the analogous flanking arrangement, are together with lines  the one 

continuous meandering structure. The existence of two diverging lines , which were 

detected on the south=western part of the trapezoid 189, might be the evidence answering 

this question. As the remnants of discovered mentioned lines, located exactly in between 

features  and , seem to be the perfect link between them, the continues structures 

beneath the trapezoidal cleared areas is a probable eventuality. Moreover, as the magnetic 

surveying further verifies, the lines  are not only joined to their northern counterparts , 

but also to the additional flanking structures on this side of the trapezoid, which are the lines 

 and . What's more, the single line , which lays close to and matches the course of the 

mentioned  and , could also fall into this group. However, as it is outlined by the faint 

and unclear anomaly, such assumption is questionable.  

On the contrary, two parallel lines , being the prolongation of previously 

described lines , with reference to magnetic prospecting, constitute one of the best results 

on site. Although their existence was generally assumed, the actual magnetic confirmation 

was needed. It was also important in terms of method’s potentiality, since it yet again 

provided evidence for capabilities of geophysical techniques in archaeology. In that way, 

lines , obliterated by the construction of trapezoid 189, could have been identified, 

delineated and coupled with  (Figure 8.8 and 8.11). 

The longest linear structures on site PV67A=47 are the lines  (ca. 700 m) (Figure 

8.11). These two perfectly parallel features run from south=east to north=west, crossing 

almost the entire plateau, inclusive of the large part of the trapezoid 188. Their direction, 

however, slightly differs from the course of the main axis of the trapezoid, swerving several 

degrees to the north in the trapezoid’s narrow end area (Figure 8.8). Consequently, it is 

hard to determine, if mentioned lines has anything in common with the trapezoid, 

particularly given that they are built by the weak magnetic anomalies, distinguishable only in 

the certain angles and projection plains of 3D view. Although their direction is similar to the 

most northerly located lines  (Figure 8.10), the lack of evidence denies any relation to 

them. In addition, lines  seem to represent the special form of linear structures, emerging 
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from or fading away in the curves of spirals 206 and 207 (Figure 8.3). Furthermore, it is 

hard to verify the stratigraphic correlation of lines  with any other drawing on site.  

The last pair of apparent structures found by magnetic prospecting make green 

lines  and  (Figure 8.8 and 8.11). The former are built by two parallel anomalies located 

in the south=western part of the plateau, in the vicinity of previously described stone 

platforms, while the latter are placed in the opposite end, close to the apex of trapezoid 188. 

Lines  run in the unique direction (close to north – south), not frequently observed on site 

PV67A=47, whereas the lines , precisely reflect the course of cleared area margins , 

forming a similar trapezoidal contour. Although both  and  have approximately 150 – 

200 m in length, compared to the whole assemblage reaching 720 m, they are rather short 

for an appropriate assessment of their function. Presumably, the later constructions on site 

destroyed parts of them, what at present excludes the right judgements and makes the final 

conclusion not viable. This is a frequent problem on all investigated sites, to which magnetic 

prospecting, although usually supportive, not always makes the complete solution. As it 

proves, some lines, regrettably, have been erased forever and cannot be reconstructed by 

any sophisticated technique now.  

However, occasionally a very weak structures, which in the network of stronger 

magnetic anomalies should not be visible, can be surprisingly found. Such situation occurs 

on site PV67A=47, where questionable lines , together with , form a relatively dense 

system of lines. Both of them are built by extremely feeble anomalies, which in the rich maze 

of hitherto described stronger ones, are particularly difficult to locate. Besides Sacramento, 

such netting of secondary lines was successfully found on the similar investigated plateau – 

Carapo (see Chapter 9). On both sites the lines form a cluster, which does not fit to any 

known plan of site arrangement and design. Consequently, project archaeologists find them 

highly unlikely and doubtful. However, as some of them certainly form part of the first 

drawings on site, the mentioned zigzag lines 183 and 203, the author decided to add them 

to the whole ensemble (Figure 8.9 and 8.11).   
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Results of geophysical prospecting on site 
PV67B=55 “Carapo” 

 
 

 

This site PV67B=55 occupies the western foothills of the ridge between Río Palpa 

and Río Viscas (Figure 9.1) and is the only plateau on the Carapo ridge, which could be 

compared to the large flat surfaces on Cresta de Sacramento and Pampa de San Ignacio. 

Although it is located closer to Río Viscas, the site is accessible only from Río Palpa through 

the narrow path on the slope, also covered by geoglyphs. From the south, the steep scarp 

separates it from the Viscas valley, providing relatively well protection for the geoglyphs, 

since no cars have access to the plateau. However, likewise Sacramento, constructions built 

during Late Intermediate Period (see Table 2.1), among them walled enclosures, graves, 

and a ditch, slightly damaged the central trapezoid of the site (Lambers 2006).  

Similarly to the Yunama and Sacramento sites, the first geoglyphs constructed on 

Carapo were several narrow straight lines distributed on different parts of the plateau 

(among others 595, 599, 612, 613, 615, 620, 624) (Figure 9.3 and 9.4). According to 

Lambers (2006) the associated ceramics date these lines as well as the construction of the 

angular spiral (596) and the large meandering line (593) to the Early Nasca. Roughly at the 

same time, the first large trapezoid of the site (605) was started but never finished. The 

stratigraphic position of two large zigzag lines crossing the plateau shows that they also were 

constructed in the same phase, cutting several earlier geoglyphs. Although a large group of 

geoglyphs dates to that period, a continued use of the site in Middle Nasca times was also 

observed. Then the new geoglyphs were added to the complex, among them several 

shapeless ones (592, 597, 598, 602) and probably some lineal. The large trapezoid 591 that 

dominates the southern half of the site was also constructed during Middle Nasca times, 
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covering the series of earlier geoglyphs. In that way, in Middle Nasca times, the large part of 

the free space on the plateau was already covered by the drawings (Lambers 2006). 

The magnetic surveying on Carapo, similarly to other investigated sites, followed 

the photogrammetric mapping, which provided support for selection the prospecting area. 

As the northern part of plateau is in detail identified by aerial archaeology, the geophysical 

research on site, carried out in April 2006, was concentrated exclusively on its southern 

fraction, covered by the rectangular cleared area. Even so, it still reached 560 x 160 m, in 

which 42 complete or shortened survey squares were placed.  

Here again, both total field and gradiometer images (Figure 9.5 and 9.6) are 

dominated by anomalies originating from lightning strikes. However, they are not so 

frequent, wide=ranging and evident as on Sacramento. This contrast may be due to the 

differences in site exposition, given that Carapo is slightly covered from the east by the 

range of hills and from the south by low heaps towering above the scarp. Therefore,           

in contrary to Sacramento, Carapo seems to be better shielded from the lightning strikes. 

Moreover, different magnetic properties of geological background are responsible for 

limited LIRM anomalies as well. Since the geoglyphs of Carapo, unlike other complexes,  

are placed on the cretaceous bedrock with the thinner layer of quaternary alluvial deposits 

(see Chapter 3.3) the ground properties that transmit and maintain the lightning=induced 

magnetic record may simply differ from Sacramento sites.  

Besides LIRM features, in magnetic images dominates huge, 100 m long anomaly 

originating from Late Intermediate Period ditch. Although from archaeological viewpoint 

the result may seem uninteresting as it derives from the later cultural phase than the 

investigated one, for geophysics, it makes a considerable outcome regarding the anomaly 

nature. Despite the fact that the function of the ditch is unknown, its measurement confirms 

the differences in shape of anomalies according to magnetic inclination. Whereas ditches 

measured in Europe almost always reflect as positive anomaly, since the refilling material is 

frequently more magnetic than adjacent deposits, in Peru the maxima and minima are 

reversed, giving the negative image of the similar structure (see Chapter 4.4). On Carapo, 

quite the opposite, the ditch revealed positive characteristics, but it was never refilled with 

any material. Therefore, the anomaly has its source in destroyed remanent magnetization of 

sediment and carry a positive signal because of the near=equator reversed polarity.  
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Figure 9.1Figure 9.1Figure 9.1Figure 9.1. Orthophoto of the geoglyph site PV67B=55; Cerro Carapo, east of Palpa (upper);  
Figure 9.2Figure 9.2Figure 9.2Figure 9.2. Interpretation of drawings on site PV67B=55 (lower); after K. Lambers; ETH Zürich 
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Figure 9.3 and 9.4Figure 9.3 and 9.4Figure 9.3 and 9.4Figure 9.3 and 9.4. Detailed maps of the geoglyph site PV67B=55 from Cerro Carapo; geoglyph assemblage 
with stratigraphical sequence of different phases of construction and reworking drawn after aerial photograph 
(Figure 9.1) by K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich  
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Although the survey grid on Carapo, similarly to previously measured sites, was for 

practical reasons still oriented after the long axis of the plateau, a layout of the traverse lines 

as close as possible to the east – west direction was made. Such arrangement has been 

developed after test measurements on small Estequerilla site, located in the Rio Palpa valley, 

at the footsteps of Sacramento ridge, close to Yunama geoglyphs. The surveying, carried out 

in March 2006, not only confirmed the assumption of a horizontal gradiometer potential, 

which was supposed during measurements on site PV67A=47, but also revealed certain grid 

arrangement necessities: 
 

o Firstly, the total field surveying, which was performed in the north – south 

direction, exposed some negative aspects of this configuration. At low 

latitudes close to the geomagnetic equator, sensors arrayed with 

electronics parallel to the geomagnetic field, unfavourably changed the 

signal to noise ratio, producing interference, which formed a problematic 

striping in the total field magnetic image,  

o Secondly, given that the angle of dip is exceptionally low, the gradient 

between two sensors is bigger when it is measured in a horizontal plain,  

o Finally, for the precise gradient calculation both sensors had to be arrayed 

along the course of the geomagnetic field.  

 

In order to apply tested arrangements, it was essential to set up a layout of the grid 

and to keep the probes tilted in the north – south direction, walking at the same time along 

the west – east arranged traverses (Figure 9.5). Such exact ordination was met only on San 

Ignacio site (see Chapter 10), while on Carapo it was as near as the plateau elongation let. 

 
    
    
    
    
    
    
    
    
    
    
    
Figure 9.5Figure 9.5Figure 9.5Figure 9.5. Traverse layout and 
magnetometer grid arrangement 
on Peruvian geoglyph complexes 
Carapo and San Ignacio. 
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Similarly to previously presented sites, on Carapo, the red lines marked with the 

symbols  and  correspond to the major linear structures in this location. The features  

are the margins of the rectangular cleared area and create the strongest magnetic anomalies 

on site. While the north=western border can be effortlessly distinguishable even in total field 

measurement (Figure 9.6), the south=eastern one is only partially visible, as it runs close to 

the heaps on which Late Intermediate Period site is located. The construction of the site has 

presumably damaged several drawings, inclusive of a part of the south=eastern margin, what 

was confirmed by the aerial images as well (Figure 9.1). The north=western border, on the 

other hand, runs through the total length of the measurement area, forming one of the best 

preserved features of the whole complex. Likewise the edges of Sacramento main trapezoid, 

it does not follow the straight course, but is slightly bent, acquiring the shape of a slight arc.  

 Following the already know pattern, structures  compose the long meandering 

line, which deriving from an angular spiral, flanks the trapezoid from its north=western side. 

The spiral itself was not covered by magnetic surveying, since it is located to the north of the 

furthest measured traverses. That is why, the partial visibility, known from Sacramento, 

could not have been assessed here. Alternatively, the central part of line  is not evident in 

magnetic images nor it is noticeable for aerial imaging. It is due to the damage caused by 

the construction of Late Intermediate Period ditch and modern cavities on site. Therefore,  

its continuity is only assumed as well as is its occurrence under the trapezoid. Here however, 

with the answer comes the magnetic prospecting, revealing a parallel cluster of structures . 

The direction of structures differs slightly from the course of the trapezoid margins as well as 

from the meandering line . This is particularly visible in most northerly located parts as 

well as in additional branches, for example line , which on the other hand matches the 

direction of . Therefore, since the line  does not reveal the ideal parallelism either, the 

newly discovered features  can be interpreted as the continuation of line , especially 

given that the arrangement of both structures resembles the similar constructions on other 

sites, particularly on Sacramento.  

An equally interesting feature constitute the partially obliterated line . Similarly to 

structures , it is located within the trapezoid area, being the parallel feature to its south=

eastern margin. This, after comparison with the analogous lines from the other sites, allows 

the assumption that the line  could be the previous trapezoid boundary, before  took its 

place at the time of trapezoid enlargement.  
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Not really understood is the occurrence of lines . As they are close and parallel to 

the assemblage  they may indicate some association with them, however, their proximity 

to the scarp as well as their shortness does not permit an adequate explanation. Conversely, 

the set of lines , constitute the cluster, to which the satisfactory clarification can be found. 

Opposite to  and , they are not located within the trapezoid borders, but cut them and 

the meandering line  in an oblique direction. Most likely they were one of the initial 

drawings on site as they resemble the course of the first lines 595, 615 and the unfinished 

trapezoid 605 (Figures 9.3 and 9.4). Some of them might be the prolongation of mentioned 

lines, while the other may constitute newly discovered features, particularly in the area of 

trapezoid 591. 

In addition to described primary features, the dense netting of secondary lines , 

 and  has been found (Figure 9.11). Most frequently they run north – south or northeast 

– southwest (lines ), however, other directions approximating northwest – southeast (lines 

) or nearly west – east (lines ) are also present. Correspondingly to site PV67A=47, they 

are formed by exceptionally weak anomalies, reflecting particularly narrow obliterated lines. 

As already mentioned in Chapter 8, they do not fit to any known plan of site arrangement 

and design, therefore from the archaeological point of view, as the resulting finding, they are 

rather poor. Magnetically however, they again reveal the potential of geophysical methods, 

concerning, among others, the sensitivity and resolution of used magnetometer system. 

Although for archaeology their occurrence as a part of the advanced drawing concept for 

ceremonial practices or geometric expression can be doubtful, still they may portray the 

broad movement activities, transportation and communication patterns. This, however, as it 

is not the area of geophysical expertise, will not be discussed further.  
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Chapter 10 

 

Results of geophysical prospecting on site 
PP01=49 “San Ignacio” 

 
 

 

The site PP01=49 occupies the entire Pampa de San Ignacio and archaeologically 

constitutes the largest geoglyph complex of the whole investigated area. Separated by Rio 

Palpa and Rio Viscas valley as well as the modern city of Palpa, it forms the counterpart to 

Cresta de Sacramento. From the north it is framed by the slope descending towards Palpa 

while from the south it reaches the first dry valley floors. Five trapezoids placed on the site 

form an approximately two kilometres long assemblage. The magnetometer prospecting 

area of 320 x 240 m covered only the central part of it, from where all drawings seem to 

diverge and the most interesting structures were believed to find. Therefore, the site PP01=

49 is the only complex from the Palpa region that has not been measured entirely. Firstly,   

it was due to the size of the survey area, which did not allow to complete the measurement 

in one field campaign and secondly to the financial supplies of the project, which headed at 

the time towards the end. Thus, the site PP01=49, should be understood as supplementary 

area only and in that way it is treated in the present study.  

As already mentioned, the whole site is composed of five main trapezoids, the 

longest of which is extended over an area of two kilometres (Figure 10.1). It is elongated 

northeast – southwest, which matches the main course of the whole plateau. The four other 

trapezoids, remarkably smaller, cut the central one in oblique directions, supplementing the 

whole complex in cleared area forms. Similarly to other sites, meandering and flanking lines, 

at the sides of some of the trapezoids, can be recognized. However, they do not form 

already known patterns, but seem to occur somehow irregularly in comparison to the other 

complexes. Straight lines are common forms and cut the plateau in all directions. Some of 
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them occur individually, while the other form parallel clusters. Smaller trapezoids as well as 

unfinished ones are quite frequent and one can find rare spiral forms between them. This all 

compose already known pattern of an exceptional size, which magnetically was measured in 

April 2007. The investigation was limited to 37 survey squares and covered the central part 

of the territory. 

 

 

Figure 10.1Figure 10.1Figure 10.1Figure 10.1. Orthophoto of the geoglyph site PP01=49 from the Pampa de San Ignacio, south of Palpa;  
K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland 

 

To take the full advantage of the newly developed magnetometer system, an exact 

layout of the grid with the traverse lines in the east – west direction, for the first time was 

made. Such arrangement was possible since the layout was no longer restricted by the 

orientation of the ridge. To the west of the survey area it covered the plain reaching the 

edge of the plateau and enclosed the measurements of the stone platforms on the very 

border of the terrain. To the east it arrived at the main crossing point of the trapezoids, 

including two unfinished ones and a double spiral (Figure 10.2). Straight lines supplement 

the ensemble crossing the terrain in all directions. Since the survey area constitutes only the 

small fraction of the larger site, all magnetic anomalies of the linear structures cannot be 

interpreted exclusively on the basis of this little portion. Conversely, in order to find 

correlation with the other drawings from the same plateau, they have to be compared to the 
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aerial image of the whole site and so further interpreted. The trapezoidal forms, which form 

a complicated overlaying pattern, are relatively good visible even in aerial photographs. 

Contrary to other complexes, the relic margins are well preserved, still forming the clear 

heaped boundaries. This not only helps archaeologists to track the stratigraphic sequence, 

but also serves the geophysicists as a strong anomaly signal in magnetic images.  

 

 

Figure 10.2Figure 10.2Figure 10.2Figure 10.2. Orthophoto of the survey area on site PP01=49 from the Pampa de San Ignacio, south of Palpa;  
K. Lambers, Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland 

 

The one of the most remarkable findings on site are uncompleted trapezoids.     

On San Ignacio they are particularly well preserved, carrying the record of constructional 

development. On their surface the numerous heaps of stones may be observed, revealing 

the ongoing building process. This finding evidently documents the creation technique, 

which is believed to be fitting for major trapezoidal and rectangular forms. Following this 

assumption it can be stated that numerous cleared areas were converted from two parallel 

or approaching lines by repeated surface clearing between them. In the first stage the stones 

were picked up and placed in more or less regular piles, which subsequently were removed, 

exposing the underlying yellowish silt over the whole area. Some of the heaps, however, for 

some reason, had not been removed, allowing the study of constructional techniques now.    
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Figure 10.3 and 10.4Figure 10.3 and 10.4Figure 10.3 and 10.4Figure 10.3 and 10.4. Magnetograms of the site PP01=49 “San Ignacio” located on Pampa de San Ignacio; 
south of Palpa; measurement in the Total Field Mode (upper) and the Gradiometer Mode (lower) with 
dynamics approx. +/= 19 nT and +/= 18 nT respectively; SMARTMAG SM4G=Special in twin sensor 
configuration; sampling density 50 x 12,5 cm and 100 x 12,5 cm, interpolated to 25 x 25 cm, resolution 
increased by ‘Graduated Shade’ function; Earth’s magnetic field ca. 25000 nT; grid size 40 x 40 m  
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Figure 10.5 and 10.6Figure 10.5 and 10.6Figure 10.5 and 10.6Figure 10.5 and 10.6. Interpretation of linear structures (red, green and black) on site PP01=49 “San Ignacio”  
ploted on the Gradiometer Mode magnetogram; SMARTMAG SM4G=Special in duo=sensor configuration; 
dynamics approx. +/= 18 nT in 99 greyscale values from black to white (with transparency factor 50%), 
sampling density 100 x 12,5 cm, interpolated to 25 x 25 cm, resolution increased by ‘Graduated Shade’ 
function; Earth’s magnetic field ca. 25000 nT; grid size 40 x 40 m;  
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Figure 10.7Figure 10.7Figure 10.7Figure 10.7 and 10.8. and 10.8. and 10.8. and 10.8. Interpretation of the geoglyph complex on site PP01=49 “San Ignacio” located on 
Pampa de San Ignacio, south of Palpa; red, green and black lines represent ancient linear structures found by 
geophysical prospecting combined with aerial photography; grid size 40 x 40 m; numbers  =  and   =  
correspond to the  documented set of lines (see description in text). 
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The outcome of magnetic prospecting on site PP01=49 is presented in figures 10.3 

and 10.4, while the interpretation in figures 10.5 to 10.8. Likewise other complexes, on San 

Ignacio, most of the information has been obtained from the gradiometer magnetogram, 

whereas the total field image, served as a significant supplementation. Naturally, the aerial 

photographs acquired with photogrammetric means, provided a comparative illustration. 

The red lines marked with the symbol  represent the boundaries of two main 

trapezoids. Taking into consideration their actual size, the magnetically detected portion 

constitutes only a small part of the real length of these structures. Obliquely to them, from 

the west, two smaller trapezoids marked with symbols  and , meet the main ones, jointly 

forming the major cleared feature on the measured territory. This, together with the straight 

line  compose the best visual pattern, formed at the same time by strongest magnetic 

anomalies. For aerial photography detectable are also lines ,  and , which outline two 

additional trapezoids on site, as well as some of the lines , particularly those running in 

north – south direction. As far as lines  and  are concerned, it is hard to determine 

which one actually defines the additional trapezoid. Aerial imaging would suggest the layout 

of the main structure with its apex directed eastwards, while magnetic prospecting implies 

the occurrence of opposite oriented feature or even arrangement with two trapezoids.  

The rest of the identified structures, which are presented in Figures 10.7 and 10.8, 

were detected exclusively by geophysical means. Similarly to the other sites, most of them 

are located within the trapezoid borders. Lines number  are the typical structures of that 

type. Known already from other complexes, they run parallel along the trapezoid margins 

, in the middle of the cleared area. Compared to similar  and , which course is less 

regular, lines  might be interpreted as a trapezoid margins shaped in gradual surface 

clearing. Such assumption is questionable for , ,  or even  due to the mentioned 

irregularity. Those lines, despite location within cleared area borders, run in various 

directions, none of them exactly matching the course of the structures, in which they are 

incorporated. This, together with the inconvenience of the small section measurement, 

greatly impedes their exact interpretation. The same concern the rest of identified structures. 

No matter if they are freely running dashed lines  and  or reflecting the direction of the 

trapezoid alongside which they occur lines ,  and , or eventually short and hard in 

classification lines ,  and . All of them lack the broader viewpoint of the large 

surveying territory. Therefore, irrespective of the quantity of structures present in one 
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magnetic image, the apparent conclusion appears, that the smaller the measurement area 

is, the less information one can get from it. Thus, for the accurate and truthful interpretation 

work, particularly in such a territorially extensive locations, possibly the widest perspective is 

required. Hence, it is essential that any geophysical prospecting performed on geoglyphs of 

Palpa/Nasca, covers as much of the survey territory as it is achievable, especially if the 

research is not supported by other investigation techniques. It is therefore important that the 

particular lines may be correlated with their counterparts from the outside of the 

measurement area as well as from the utterly other locations. Consequently, the geophysical 

measurements on several different complexes is a prerequisite for the proper understanding 

of the one individual site. 
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Chapter 11 

 

Synopsis 

 
 
 

 

For the successful realization of defined objectives, a number of tasks have had to 

be completed in due course of the considered research activities. Throughout the project, 

techniques from the various scientific disciplines, among them geophysical prospecting, 

have been applied for archaeology, which considerably helped to get the understanding of 

one of the most mysterious monuments on Earth. It is believed that not only archaeology 

profited from the technical support, but all employed disciplines used this interdisciplinary 

collaboration opportunity to earn new ideas and broaden own perspectives, also for future 

applications. Certainly, magnetometry has taken the advantage of the cooperation, gaining 

the inspiration for the innovative data acquisition techniques as well as for the processing 

and interpretation methods. The final outcome of the geophysical contribution to the 

project, has been briefly summarized and presented below:  

 
 

1. The new magnetometer system for archaeological prospecting based on the commercial 

instrument Scintrex Smartmag SM4G=Special has been developed and applied to the 

geoglyphs in the vicinity of the modern city of Palpa, Southern Peru. The apparatus has 

been arranged in a twin=sensor configuration for double speed of prospection with a 

spatial resolution of 0,25 m/0,5 m. Two sensors have worked parallel, measuring the 

total intensity of the geomagnetic field. Additionally, the horizontal gradient between 

them has been calculated, which in combination with the total field data turned out to be 

the most suitable configuration for the detection of obliterated patterns in the region 

close to the geomagnetic equator.  
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2. Five main complexes surrounding Palpa have been measured completing 790 km of 

walking profile and 60 Ha of scanned territory. Through the combination of modern 

data acquisition, processing and interpretation techniques, the older stratigraphic layers 

of the geoglyph constructional phases have been detected. In the course of research 

activities, numerous drawings, obliterated by the later construction of trapezoids, have 

been found and their exact location has been given. The number of other archaeological 

structures, among them traces of buildings, stone platforms, posts, pits and ditches, have 

been identified. 

3. By the location of obliterated patterns, magnetometry assisted in the verification of the 

relative chronology of geoglyphs. It has also played a significant role in the systematic 

documentation of the cultural heritage of the region. Although magnetometry proved to 

be an important tool for finding the buried past, some of the archaeological structures 

on geoglyphs have been regrettably erased forever and cannot be reconstructed by any 

sophisticated technique now. 

4. The new digital image processing techniques have been developed and applied to the 

raw data set. Among standard procedures presented in Chapter 5.2, the development 

included horizontal gradient recalculation of the total field data. The improvement of the 

processing software for the support of Scintrex SMARTMAG data has been made and 

the innovative interpretation methods such as “gradual transparency image overlay”, 

“equal intensity value identification” and “3D visualisations” have been employed. For 

the precise interpretation of territorially extensive sites, it has been confirmed, that the 

widest possible perspective, in terms of large area coverage, is required. If possible, the 

support based on other investigation techniques is valued. Hence, the comparison of the 

resulting magnetograms with the aerial images obtained by the photogrammetric means 

has been made. 

5. The novel techniques for the reduction of daily variations of the geomagnetic field based 

on the profile and grid mean value recalculation have been used. The sensitivity of the 

measuring device by the introduction of the horizontal gradiometer system has been 

enhanced and the fieldwork methods for further applications have been improved. The 

new layout of the survey grid with the probes lined in the north – south direction and the 

west – east arranged traverses has been tested and ever since applied to the sites 

measured worldwide. 
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6. The measurement conditions in Peru in comparison to Europe have been assessed and 

resulting dissimilarities in size and shape of magnetic anomalies have been recognized. 

The origin of anomalies in Peruvian archaeological settings has been distinguished. 

 

 The accomplishment of specified objectives and tasks was possible by the correct 

understanding of the relations between them and the systematic realisation of defined work. 
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Chapter 12 

 

Last Word and Conclusions  
 

 
 

 

The magnetic prospecting method relies on the fact that almost all common soils 

reveal the enhancement of magnetic minerals in the topsoil (Fassbinder 1994). The 

occurrence of small sized and small scale magnetic anomalies measured ca. 30 cm above 

the surface, can be ascribed both to magnetic enhancement and remanence forming 

processes (Le Borgne 1955). The former may occur due to the enrichment of magnetic 

minerals in the archaeological features, the latter appears as a result of remanence building 

or destruction. As the southern Peruvian coast is one of the driest regions in the word, with 

the precipitation of less than 5 mm per year, it was necessary to verify not only all processes 

responsible for the formation of magnetic minerals in topsoil but also the types of remanent 

magnetizations. For the archaeological interpretation of the magnetic field data it was 

therefore crucial to understand the pathways of magnetic minerals formation as well as the 

type and origin of different remanent magnetizations (Fassbinder and Gorka 2009).  

Given that the areas, on which the trapezoidal geoglyphs are located, were never 

subjected to any irrigation fields, no geochemical processes responsible for the formation of 

new magnetic minerals in the topsoil were observed. Additionally, the geoglyphs were never 

used as a settlement site, hence, the pedogenic processes producing magnetic minerals in 

topsoil by the use of fire could be also excluded there. Therefore, the magnetic anomalies 

found by the magnetic prospecting are believed to be mainly remanence based. Following 

this assumption, the older lines that are visible in the magnetic images are detectable due to 

the destroyed remanence of the soil beneath the line by the heavy compaction of the dessert 

vesicular horizon. This occurred simply by intensive and multiple walking on the lines in the 
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course of ritual activity taking place on geoglyph sites. On the other hand, the same ritual 

procedure might have led to the enhancement in magnetic susceptibility of deposits, the 

primary structure of which has been condensed. Enrichment of magnetic minerals by wind 

separation may have contributed to the detection of magnetic anomalies on lines as well. 

The anomalies found over pits are made by the backfilling with the higher magnetic 

materials. These could be the magnetic remains of fireplaces or the accumulation of 

offerings such as pottery sherds.  

The total field magnetometry combined with the development of the horizontal 

gradiometer system proved to be the most suitable configuration for detection of structures 

near the geomagnetic equator. The development of the new magnetometer arrangement 

not only revealed previously obliterated lines as well as other hitherto unknown features 

beneath the surface, but also gave a better archaeological understanding of the sites. All 

discoveries have been achieved by non=destructive geophysical methods and may therefore 

serve as an important archaeological tool for the further research on this extraordinary 

UNESCO World Heritage site. Apart from the new data acquisition techniques, the 

common processing tools and innovative interpretation methods have been developed and 

applied. Combined interpretation included total field and horizontal gradiometer data 

analyses, supplemented by the study of 3D images and aerial photographs.  

Apart from the described archaeological structures, the most remarkable features 

are the extreme magnetic anomalies of lightning strikes. The detection of these structures in 

the desert may also contribute to the understanding of a changing climate. Although at the 

first glance they may seem to be insignificant for archaeology, it should be mentioned that 

strikes could have been attracted by archaeological constructions such like pylons or posts, 

which were also excavated on geoglyph sites.  

While an excavation and a magnetic prospection are both a matter of discovery, in 

case of studied Peruvian geoglyphs, the latter is recommended as a tool for mapping the 

archaeological sites. While the effect of an excavation is a total destruction of the 

monument, magnetic prospection leads to similar results without devastation. Obviously 

magnetometry does not provide the archaeological artefacts, and therefore cannot serve as 

a dating method, but since Palpa/Nasca geoglyphs are the UNESCO World Heritage Site, 

magnetometry suits best the purpose of protection, being an excellent tool for the fast 

location of underground structures without destruction.  
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