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1 Summary  

Activity-dependent plasticity of postsynaptic structures has been intensely studied in 

recent years, but to date presynaptic morphological plasticity remains poorly 

understood. In my thesis, I set out to investigate the structural and cellular mechanisms 

of structural plasticity of axonal varicosities, the morphological specializations of 

presynaptic terminals. To this end, I investigated the role of protein synthesis and 

degradation for presynaptic structural plasticity in hippocampal neurons under baseline 

conditions and during the induction of functional synaptic plasticity. To study the link 

between structural and functional plasticity on the single synapse level, I investigated 

the ability of stable and dynamic axonal varicosities to form functional synapses. 

Combining time lapse two-photon imaging and electrophysiological recordings in 

organotypic hippocampal slices, I investigated the effects of pharmacological blockade 

of protein synthesis and protein degradation on the gain and loss (turnover) of axonal 

varicosities during baseline conditions and long-term depression (LTD), a well-studied 

experimental model of synaptic plasticity. Moreover, I simultaneously surveyed the 

dynamics of a fluorescently tagged presynaptic marker protein (VGluT-1) and the 

morphological plasticity of volume-labeled axonal varicosities.  

I observed that pharmacologically blocking either protein synthesis or proteasome-

dependent protein degradation impaired the LTD-induced turnover of axonal 

varicosities, while leaving their turnover during baseline conditions unaffected. Distinct 

types of morphological dynamics mediated the structural plasticity of axonal varicosities, 

and LTD-induction selectively influenced their de novo growth and straight loss, while it 

did not affect other forms of their structural dynamics. In further experiments, I 

demonstrated that more than 90% of morphologically identified varicosities colocalized 

with a presynaptic marker protein, and the majority of dynamic axonal varicosities 

accumulated the synaptic marker within four hours after their appearance. Conversely, 

most of the observed examples did not contain the synaptic marker protein prior to their 

disassembly.  
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The data in this thesis indicate that the size of axonal varicosities can be regulated 

gradually or step-wise by distinct types of structural plasticity. Furthermore, the results 

imply the use and recycling of preexisting proteins for the turnover of presynaptic 

structures under baseline conditions. This finding is in agreement with the existence of a 

pool of presynaptic proteins that may be shared amongst multiple varicosities. 

Moreover, my data indicate the requirement for additional - yet unknown - factors that 

are necessary for LTD-induced presynaptic structural plasticity.  

Colocalization of a synaptic marker protein with axonal varicosities indicates that most 

stable varicosities represent functional presynaptic release sites, and that dynamic 

varicosities can rapidly acquire the potential to form functional synapses. The results 

suggest that morphological changes temporally bracket functional changes, i.e. synaptic 

marker proteins accumulate after the formation of new varicosities and disappear before 

the disassembly of existing varicosities. In summary, my thesis provides novel insights 

into the structural and cellular mechanisms of presynaptic plasticity as well as into its 

functional consequences. 
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2 Introduction 

2.1 Synaptic plasticity 

Learning and memory refers to the ability of the brain to encode, store and retrieve 

information. It is widely believed that this striking capability relies on the plastic nature of 

the neuronal network that allows the brain to adapt and rewire itself in response to 

experience. Patterns of synaptic activity can persistently modify the strength of synaptic 

transmission (synaptic strength) in an input-specific manner in a phenomenon termed 

synaptic plasticity. The concept of synaptic plasticity was first introduced by Donald 

Hebb nearly 60 years ago: ‘When an axon of cell A is near enough to excite cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic 

changes takes place in one or both cells such that A’s efficiency, as one of the cells 

firing B, is increased’ (Hebb 1949). However, it took more than twenty years until the 

first experimental evidence of synaptic plasticity was provided experimentally. In 1973, 

Bliss and Lømo discovered that high synaptic activity can result in a persistent increase 

of synaptic strength, a phenomenon refered to as long-term potentiation (LTP) (Bliss 

and Lomo 1973). LTP proved to have a functionally opposing counterpart: Long-term 

depression (LTD), the activity-dependent, input-specific decrease of synaptic strength 

(Lynch 1977). LTP and LTD are the most extensively studied experimental paradigms of 

synaptic plasticity and occur in a wide range of species. Indeed, most synapses studied 

in the brain so far have the ability to undergo LTP and LTD (Cooke and Bliss 2006), and 

a large body of data reports their importance for learning and memory in vivo. To date, 

LTP and LTD are believed to be cellular correlates of learning and memory. 

2.1.1  Long-term depression 

LTD refers to the decrease of synaptic strength as result of neuronal activity. It is input-

specific, cooperative and associative, thereby fulfilling the most important characteristics 

of a memory storage and learning mechanism (Kemp and Manahan-Vaughan 2007). 

LTD is found in at least six subforms that are not mutually exclusive: electrically and 
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chemically induced, homosynaptic and heterosynaptic, and N-methyl-d-aspartate 

receptor (NMDAR) dependent and NMDAR independent LTD (Kemp and Manahan-

Vaughan 2007). Homosynaptic LTD refers to a depression of the synaptic pathways at 

which the plasticity was induced, whereas heterosynaptic LTD modifies synapses that 

were inactive during plasticity induction. Initially, LTD was discovered in its 

heterosynaptic form, when LTP-inducing stimuli delivered to one hippocampal pathway 

elicited LTD in a separate, unstimulated pathway (Lynch 1977). This heterosynaptic 

LTD was also reported in the dentate gyrus in vivo a few years later (Levy and Steward 

1979). The first presumed evidence of homosynaptic LTD followed in 1980, when 

synaptic depression was induced by low-frequency stimulation (Barrionuevo, Schottler 

et al. 1980). However, this finding was misleading as it referred to depotentiation, the 

functional reversal of previously potentiated synapses to baseline levels after LTP. 

Depotentiation differs from LTD as it exclusively occurs at recently potentiated 

synapses, cannot be induced at naive synapses and engages different molecular 

mechanisms than LTD. The first evidence of homosynaptic de novo LTD was finally 

reported more than 10 years later in the hippocampus and in the visual cortex (Dudek 

and Bear 1992; Mulkey and Malenka 1992; Kirkwood and Bear 1994).  

Regarding the great variety of LTD types that can vary amongst different neurons, it 

may be useful to refer to LTD as a general class of cellular and synaptic phenomena 

(Malenka and Bear 2004). When discussing its induction, expression and functional role 

it is thus necessary to define at which specific synapse LTD is studied.  

2.1.2  LTD induction and expression in CA1 of the hippocampus 

Amongst other brain areas, LTD can be expressed in the hippocampus at the synapses 

of presynaptic CA3 and postsynaptic CA1 neurons. This form of LTD advanced to be 

the most intensively studied type of LTD in the forebrain, and its mechanistic 

understanding is probably the most detailed (Malenka and Bear 2004). It is NMDAR 

dependent an requires the stimulus-induced activation of NMDARs during postsynaptic 

depotentiation (Dudek and Bear 1992; Dudek and Bear 1993). NMDAR dependent LTD 

is typically induced by a prolonged repetitive synaptic stimulation, referred to as low-

frequency stimulation (LFS) at 0.5 to 5 Hz for a duration of 600 to 900 stimuli (Dudek 
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and Bear 1992). As the optimal protocol is variable and depends on factors including 

animal age or the recent history of synaptic and cellular activity (Abraham and Bear 

1996; Bear and Abraham 1996), protocols of repeated paired pulses (Lee, Takamiya et 

al. 2003) or pairing protocols that couple pre- and postsynaptic activity are also used for 

its induction. All mentioned protocols converge in activating NMDAR and lead to Ca2+ 

influx into the postsynaptic neuron (Mulkey and Malenka 1992). The required Ca2+ 

concentration can also be provided by other sources such as by intracellular stores or 

via experimental postsynaptic Ca2+ uncaging (Yang, Tang et al. 1999). The quantitative, 

temporal and spatial characteristics of postsynaptic Ca2+ concentration provides a 

critical molecular switch in synaptic plasticity, as different kinetics of its influx leads to 

LTP instead of LTD. Ca2+ influx triggers Calmodulin-dependent kinase II (CamKII) and a 

serine / threonine phosphatase cascade that includes Protein Phosphatase 1 (PP1) and 

its substrates Protein Kinase A and C (PKA and PKC). Changes of synaptic 

transmission efficacy are ultimately achieved by posttranslational modifications and 

removal of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors at 

the postsynaptic density (PSD), resulting in a reduced steady-state of AMPA receptors 

and reduced synaptic transmission (Carroll, Lissin et al. 1999; Lüscher, Xia et al. 1999). 

Numerous studies have investigated the cellular and molecular postsynaptic expression 

mechanism of LTD and dissected the essential and modulating postsynaptic pathways 

of LTD induction. In contrast to postsynaptic mechanisms, little presynaptic changes 

have been found to date, and NMDAR dependent LTD at the CA3-CA1 synapse is 

thought to be mostly independent of presynaptic molecular changes.   

With regards to this study, it is important to highlight that the CA3-CA1 synapse can 

also express NMDAR independent LTD. In NMDAR independent LTD, the required 

Ca2+ signal arises from sources such as voltage-gated Ca2+ channels (VGCCs) or 

through release from intracellular stores by activation of metabotrophic glutamate 

receptors. It is independent of protein synthesis, can be expressed homosynaptically or 

heterosynaptically and includes a presynaptic contribution (Abraham, Mason-Parker et 

al. 2006; Pöschel and Manahan-Vaughan 2007). For example, it is accompanied by 

changes in paired-pulse ratio (PPR), traditionally interpreted as changes in the 

presynaptic release probability (Nosyreva and Huber 2005), and other presynaptically 
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caused effects include an increase in the failure rate of evoked postsynaptic currents 

(EPSCs) and changes in the coefficient of variation of EPSCs (Fitzjohn, Palmer et al. 

2001; Anwyl 2006). Along the same lines, a lack of postsynaptic changes has been 

observed in this form of LTD (Rammes, Palmer et al. 2003). However, the induction 

protocols and target synapse of NMDAR dependent and NMDAR independent LTD 

substantially differ. While NMDAR dependent LTD is typically induced by LFS, NMDAR 

independent LTD is induced by application of DHPG (Dihydroxyphenylglycine) or paired 

pulses (Snyder, Philpot et al. 2001). Moreover, while NMDAR dependent LTD is 

expressed at CA3-CA1 and other synapses, NMDAR independent LTD is typically 

found in the dentate gyrus. The present study induces LTD by LFS at the CA3-CA1 

synapse, and thus focuses on homosynaptic, NMDAR dependent LTD.   

2.1.3  Physiological relevance of LTD in learning and memory 

The bidirectional nature of synaptic plasticity is to date widely accepted as a generally 

implemented cellular mechanism in memory formation (Bear and Abraham 1996). The 

importance of LTD becomes obvious not only by its ubiquitous expression, but also by 

its different functional relevance across the various brain areas. In general, the 

physiological consequence of synaptic plasticity is closely linked to the function of the 

brain area itself. To better understand the physiological relevance of hippocampal LTD, 

it is thus helpful to discuss it within context of the physiological role of the hippocampus.  

The hippocampus plays a well-documented role in spatial memory (S.J.Y. Mizumori 

1999; Leutgeb, Leutgeb et al. 2005; Kjelstrup, Solstad et al. 2008) as well as in novelty 

detection (Lisman and Grace 2005) and for object-place associations (Buffalo, 

Bellgowan et al. 2006). The hippocampus generates necessary input information for the 

formation of semantic-like memory in the neocortex (Miyashita 2004) and is involved in 

episodic memory in humans, linking an event to space and time (Shrager, Bayley et al. 

2007). To this end, LTD in the hippocampus is particularly important in spatial learning 

and in forming a cognitive spatial map (Kemp and Manahan-Vaughan 2007). First 

indications that LTD plays a role in spatial learning derived from comparative studies of 

LTD and LTP in genetically modified animals and from studies about the influence of 

novel environments on LTD and LTP. Whereas novel empty space reinforces the 
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expression of LTP in the CA1 area, presenting an environment that contains novel 

objects reinforces LTD (Kemp and Manahan-Vaughan 2005; Lemon and Manahan-

Vaughan 2006). Conversely, presenting empty space impairs LTD, and the presentation 

of novel objects impairs LTP. The role of LTD on spatial learning and in the storage of 

spatial information is further supported by a LTD-impaired knock-out mouse (Etkin, 

Alarcón et al. 2006). As recent evidence arises that the multiple distinct memory tasks 

performed in the hippocampus are region specific (Kemp and Manahan-Vaughan 2007), 

LTD may exert different physiological functions depending on the hippocampal region 

where it is expressed. In summary, hippocampal LTD plays a role in spatial memory, 

novelty detection (Vianna, Alonso et al. 2000) and object constellations within an 

environment (Manahan-Vaughan and Braunewell 1999). Encompassing a broader view, 

one can speculate that hippocampal LTD is associated with any ‘event’ that is linked to 

a spatial location.  

2.1.4 Protein synthesis and synaptic plasticity 

While the molecular mechanisms that underlie the induction synaptic plasticity have 

been intensely investigated, the mechanisms involved in its maintenance remain rather 

poorly understood. Both NMDAR dependent LTD and LTP are two-stage processes that 

can be discriminated by their sensitivity to protein synthesis blockade. LTP and LTD 

induction trigger biochemical cascades that result in modifications of AMPA receptor 

numbers in postsynaptic spines. These processes are sufficient to induce and establish 

the first, early stage of LTP or LTD and are presumably exerted directly at the activated 

synapses in a locally restricted and input-specific fashion. The second, late stage of 

LTD and LTP is characterized by the synthesis of new proteins that consolidate the 

acquired functional changes. Late-LTP and late-LTD (L-LTP and L-LTD) require, by 

definition, protein synthesis and last for hours and days (Malenka, Nicoll et al. 1999). 

Protein synthesis is caused by a local Ca2+ rise at the time of plasticity induction that 

triggers a synapse-to-nucleus signaling cascade involving molecules like Calmodulin 

(CaM), MAP kinases, Ras and cAMP (Frey, Huang et al. 1993; Kandel 2001; Saha and 

Dudek 2008). The cascade activates transcription factors like CREB and other 

transcription factors that in turn lead to transcription and translation of immediate early 
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genes including c-fos, Homer 1b, Arc and BDNF (Miyashita, Kubik et al. 2008). In 

addition to initiating transcription, plasticity induction also directly regulates local 

translation of mRNA into protein in dendrites and spines (Bramham and Wells 2007). 

Expression of constitutively active forms of transcription factors can facilitate the 

consolidation of LTP to L-LTP (Barco, Alarcon et al. 2002; Miyashita, Kubik et al. 2008). 

Conversely, blockade of protein synthesis at the time of plasticity induction blocks the 

maintenance of LTP (Krug, Lössner et al. 1984; Frey, M et al. 1988; Abraham and 

Williams 2008), and specific manipulations of the protein synthesis machinery or knock-

down approaches of transcription factors such as CREB block both L-LTP and certain 

forms of memory (Bourtchuladze, Frenguelli et al. 1994).  

Like for LTP, multiple evidence for a protein-synthesis dependent late phase has also 

been derived for LTD. Studies in the cerebellum reported that application of protein 

synthesis inhibitors prevent L-LTD (Linden 1996), and these findings have been 

extended to hippocampal slice cultures and in the hippocampus of freely moving rats 

(Manahan-Vaughan, Kulla et al. 2000; Sajikumar and Frey 2003). Interestingly, 

inhibition of transcription instead of translation does not inhibit L-LTD, suggesting that 

mRNAs are already present in the neuron, and  maybe even in the dendritic tree or at 

the spine.  

It was long time postulated that once synaptic plasticity is established, it is independent 

of protein synthesis (Huang, Nguyen et al. 1996). However, it has recently been 

described that L-LTP is sensitive to protein synthesis under conditions of ongoing 

synaptic activity. While L-LTP is unaffected by protein synthesis blockade without 

ongoing test pulse stimulation, L-LTP destabilizes when the test pulses are continued 

during protein synthesis blockade (Fonseca, Nägerl et al. 2006). This finding indicates 

that synaptic activity during LTP maintenance utilizes proteins necessary for LTP 

stabilization, and that their depletion without replenishment leads to LTP decay.  

The process of LTP and LTD consolidation strikingly parallels the consolidation of 

memory formation (Dudai 2002), where establishing new memories proceeds in phases 

and the received information is processed via short-term memory into long-term 

memory. The initial consolidation depends on protein synthesis, and once long-term 
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memory is established it becomes insensitive to protein synthesis blockade. However, 

when memories are retrieved they become labile again and must undergo a renewed 

consolidation, called reconsolidation (Nader, Schafe et al. 2000; Dudai 2004; Dudai and 

Eisenberg 2004; Morris, Inglis et al. 2006).  

The importance of protein synthesis and up-regulation of immediate early genes for 

late-phase LTP and LTD has been intensively studied on the postsynaptic side. In 

contrast, it is elusive if a parallel process exists on the presynaptic side, and the 

requirement of presynaptic gene products in L-LTP and L-LTD awaits further study.    

2.1.5 Protein degradation and synaptic plasticity 

Akin to protein synthesis, protein degradation has been shown to critically regulate 

synaptic plasticity. Most proteins of eukaryotic cells and neurons are degraded by a 

highly conserved biochemical pathway that is composed of multiple regulatory and 

catalytic proteins, the ubiquitin proteasome system (UPS). UPS-mediated protein 

degradation is a multi-step process (Figure 2-1) that consists of activating ubiquitin and 

conjugating it with the target protein, elongating the ubiquitin chain at the target 

molecule, recruiting the protein to the proteasome and finally degrading the protein (Yi 

and Ehlers 2007).   

The degradation process depends on the activity of the ubiquitin ligases E2, E3 and E4 

that mediate initiation and elongation of the ubiquitin chain and are counteracted by 

deubiquitinating enzymes (DUBs) which cleave ubiquitin molecules from targeted 

proteins. The length of the ubiquitin chain provides an important threshold that regulates 

the fate of the target proteins: Before a critical chain length is reached, the ubiquitination 

process is fully reversible, while a longer chain irreversibly results in protein  

degradation by the proteasome.  
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Protein degradation critically regulates synaptic plasticity. Blocking protein degradation 

by the application of the proteasome inhibitors lactacystin or MG132 severely impairs L-

LTP (Zhao, Hegde et al. 2003; Fonseca, Vabulas et al. 2006; Karpova, Mikhaylova et al. 

2006). Fonseca et al. also showed that both protein synthesis and degradation are 

required to establish long-term synaptic changes, as L-LTP is blocked by protein 

synthesis or degradation inhibitors but rescued by inhibiting both processes 

simultaneously. The data indicates that only a proper balance of synaptic proteins 

allows the consolidation of LTP, and ‘freezing’ the composition of postsynaptic proteins 

Figure 2-1: The ubiquitin proteasome system (UPS)  

Neuronal proteins can undergo ubiquitination by enzymes of the ubiquitin proteasome system. Target 

proteins can be reversibly ubiquitinated by ubiquitinating enzymes or deubiquitinating enzymes (DUBs). 

Monoubiquitinated membrane proteins can undergo endocytosis, while polyubiquitinated species become 

degraded by the proteasome. 
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by preventing both sides of protein turnover rescues LTP. For LTD, the requirement for 

UPS-mediated protein degradation has also been investigated, but yet comparably little 

is known about the effect of the UPS on LTD. So far, only one study in the literature 

reports that blocking the proteasome abolishes a pairing-induced form of LTD 

(Colledge, Snyder et al. 2003), but this finding has not yet been extended to other 

protocols of LTD induction.   

In addition to altering synaptic plasticity, the ubiquitin proteasome system also mediates 

other cellular processes. When discussing the effect of blocking protein degradation, it 

should be thus kept in mind that other neuronal and synaptic functions may also be 

affected. For example, mono-ubiquitination of membranous proteins such as ion 

channels, G protein coupled receptors, and receptor tyrosine kinases mediates 

endocytosis (Mori, Claessonwelsh et al. 1995; Shenoy, McDonald et al. 2001). 

Furthermore, the UPS is important in neuronal development, as pharmacological 

inhibition of the proteasome leads to irresponsiveness of Xenopus laevis axonal growth 

cones to extracellular guidance cues and compromises the formation of new growth 

cones in transsected neurons (Campbell and Holt 2001). A proper balance of 

ubiquitination and deubiquitiation events is critical for proper synaptogenesis in 

Drosophila melanogaster, and further studies reveal a role of the UPS in synapse 

elimination (Verma, Chierzi et al. 2005). In mammals, proteasomal degradation is 

involved in the regulation of spine size by degrading a regulator of spine growth during 

development (Pak, Yang et al. 2001), and in mature neurons inhibition of the 

proteasome elevates presynaptic vesicle recycling while leaving the release rate and 

amount of release unaffected (Willeumier, Pulst et al. 2006), indicating an increase in 

the  presynaptic vesicle pool. Interestingly, the effect is independent of protein synthesis 

and relies on synaptic activity. On the postsynaptic side, activity-dependent remodeling 

of the PSD composition requires the proteasome (Ehlers 2003), which affects half-life, 

intracellular trafficking and localization of synaptic receptors and scaffolding molecules 

like PSD-95 and Shank. An elevation of synaptic activity doubles the number of 

ubiquitinated postsynaptic proteins and the proteasome itself is presumably 

redistributed to synapses upon activity (Bingol and Schuman 2006).  
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2.2 Structural plasticity 

Activity-dependent changes in synaptic strength are thought to be a cellular mechanism 

for learning and memory. Not surprisingly, the neuronal network does not only 

functionally, but also morphologically reshape upon synaptic plasticity. For example, the 

addition of new synapses may be required to further increase neuronal connectivity in 

learning and memory. Conversely, downscaling of weak synapses may result in a loss 

of synaptic function and possibly also in the loss of the non-functional synaptic 

structures. By these and other means, morphological plasticity potentially enables the 

neuronal network to maintain flexibility and adaptivity. 

Synaptic structure and function are closely connected in the hippocampus. Postsynaptic 

terminals of glutamatergic synapses are located in spines in approximately a one-to-one 

ratio (Nimchinsky, Sabatini et al. 2002), and presynaptic terminals are localized also in 

approximately a one-to-one ratio in axonal varicosities (boutons) that appear as bulbus-

like swellings along the axons. These overall stoichiometric relationships are especially 

important as they allow for drawing conclusions from structure to function, but taking a 

closer look, it is important to highlight that these relationships are less stringent on the 

level of single synapses. While some spines may not bear a PSD, others may have two 

functional connections to presynaptic terminals. Conversely, axonal varicosities can 

contain two release sites and postsynaptic partners, or not be opposed to a 

postsynaptic partner at all.  

Structural dynamics follow general, genetically encoded principles as well as activity-

dependent mechanisms. The vast majority of morphological dynamics, synapse growth 

and elimination during development, is mediated by genetically encoded molecular cues 

and by general activity patterns (Holtmaat, Trachtenberg et al. 2005). Most spines in 

vivo remain transient after development and are influenced by synaptic activity. Recent 

studies provide insight into the functional consequences of structural plasticity at the 

single synapse level, and the correlation and causal dependence of structural and 

functional changes is currently subject of intensive studies (Alvarez and Sabatini 2007). 
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2.2.1 Postsynaptic structural plasticity 

The advent of new imaging techniques enabled a series of studies that substantially 

advanced the knowledge about structural plasticity. The majority of them focused on 

postsynaptic spines, small protrusions along the dendritic tree that harbor postsynaptic 

terminals. Spines are highly dynamic in vivo and in vitro, and their plasticity is highly 

regulated by genetic guidelines and synaptic activity (Grutzendler, Kasthuri et al. 2002; 

Trachtenberg, Chen et al. 2002; Majewska and Sur 2003; Holtmaat, Trachtenberg et al. 

2005). The global spine formation pattern during development follows genetic outlines, 

and the rate of spine formation remains constant for most of the postnatal life in mice. In 

contrast, the rate of synapse elimination is developmentally regulated, which leads to a 

net loss of synapses in juvenile mice that slows down in adult mice (Grutzendler, 

Kasthuri et al. 2002; Holtmaat, Trachtenberg et al. 2005). In more mature networks, 

synaptic activity predominantly regulates the morphological plasticity of spines including 

their size, shape and total numbers.  

At first, synaptic activity regulates the size of dendritic spines. Spine size is stronlgy 

related to synaptic function as it scales with size of the PSD, number of AMPA receptors 

and size of AMPA receptor currents (Harris and Stevens 1989; Matsuzaki, Ellis-Davies 

et al. 2001; Matsuzaki, Honkura et al. 2004). New protrusions that have not yet formed 

synapses are smaller than persistent spines (Knott, Holtmaat et al. 2006), and LTP 

induction leads to an approximately twofold volume increase of spines (Matsuzaki, 

Honkura et al. 2004). Activity-dependent changes of spine size have been investigated 

both in vitro and in vivo and in a variety of LTP protocols (Lang, Barco et al. 2004; 

Matsuzaki, Honkura et al. 2004; Kopec, Li et al. 2006), and the dynamic nature of spine 

sizes hints to ongoing functional plasticity of the respective spine (Zuo, Lin et al. 2005). 

The link between synaptic function and spine size has been well established so that 

spine enlargement has been lately used as readout for the potentiation status of single 

synapses (Harvey, Yasuda et al. 2008).   

The molecular pathways that link structural and functional spine plasticity have been 

intensely studied, and LTP induction has been reported to trigger the increase in spine 

size via CamKIIα, Ras and actin remodeling (Fischer, Kaech et al. 2000; Fukazawa, 
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Saitoh et al. 2003; Zito, Knott et al. 2004; Holtmaat, Trachtenberg et al. 2005). Synaptic 

insertion of AMPA receptors is required for spine enlargement both in hippocampal slice 

cultures and in vivo, and  spine enlargement in turn leads to AMPA receptor insertion 

(Kopec, Li et al. 2006; Matsuo, Reijmers et al. 2008). However, synaptic insertion of 

AMPA receptors is not sufficient to drive structural plasticity and, conversely, the 

functionality of AMPA receptors, crucial for LTP expression, is not required for LTP-

driven spine enlargement (Kopec, Real et al. 2007). These data indicate that although 

postsynaptic structural and functional plasticity are tightly linked, their expression 

mechanisms diverge, and that they can be expressed independently.  

While an increase in spine size has been observed for LTP, the opposite effect, spine 

shrinkage, has been reported  for LTD (Nägerl, Eberhorn et al. 2004; Zhou, Homma et 

al. 2004), and is accompanied by actin remodeling and changes in the number of AMPA 

receptors (Snyder, Philpot et al. 2001; Okamoto, Nagai et al. 2004; Nosyreva and Huber 

2005). The cascades which lead to structural and functional plasticity have recently 

been elucidated, and while the first part of the LTD-signaling cascade is shared 

amongst structural and functional plasticity – both require NMDAR activation and 

Calcineurin activity – the downstream pathways involve different molecular players. 

Spine shrinkage depends on  Cofilin activation, whereas functional changes require PP-

1 activity (Zhou, Homma et al. 2004), indicating that functional and structural LTD, 

though intimately connected, do not necessarily mirror each other. 

Beside changes in spine size, the shape and number of spines also change in response 

to synaptic activity. LTP in hippocampal slices leads to the outgrowth of new spines 

(Engert and Bonhoeffer 1999), and ultimately to the formation of new synapses (Nägerl, 

Kostinger et al. 2007). This in vitro findings have been extended to in vivo studies, 

where spinogenesis in the cortex is enhanced by experience (Trachtenberg, Chen et al. 

2002; Holtmaat, Wilbrecht et al. 2006) and followed by synapse formation (Knott, 

Holtmaat et al. 2006). In LTD, the converse effect of spine removal and synapse 

elimination has been reported (Nägerl, Eberhorn et al. 2004; Zhou, Homma et al. 2004). 

Also, the number of bifurcating spines and perforated synapses is increased by LTP 

(Harris, Jensen et al. 1992; Toni, Buchs et al. 2001), but these structures remain 
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comparably rare and may represent transient stages of changing the presynaptic 

partners. 

2.2.2 Presynaptic structural plasticity 

In contrast to postsynaptic structural plasticity, much less is known about presynaptic 

structural changes. Recently, the spontaneous plasticity of presynaptic axonal 

varicosities, the morphological specializations that contain the presynaptic terminals, 

has been investigated (Toni, Buchs et al. 2001; Krueger, Kolar et al. 2003; Konur and 

Yuste 2004; Deng and Dunaevsky 2005) and revealed a substantial degree of plasticity 

in vitro and in vivo (De Paola, Holtmaat et al. 2006; Majewska, Newton et al. 2006; 

Stettler, Yamahachi et al. 2006). The few studies addressing activity-dependence of 

structural plasticity observed different effects, ranging from no effect to an increase in 

the mobility or an increase in the number of axonal varicosities (De Paola, Arber et al. 

2003; Nikonenko, Jourdain et al. 2003; Umeda, Ebihara et al. 2005). Lately, Becker et 

al. have reported that LTD increases presynaptic structural plasticity (Becker, Wierenga 

et al. 2008) by elevating the gain and loss (turnover) of axonal varicosities. Intriguingly, 

the elevated turnover leaves the total numbers of axonal varicosities unchanged, while 

the number of varicosity-spine contacts of CA3-CA1 neurons is decreased. Although it 

remains yet elusive how a higher varicosity turnover contributes to a decrease in CA3-

CA1 connectivity and synaptic transmission, different scenarios provide possible 

explanations. For example, LTD induction may increase the fraction of axonal 

varicosities that target non-CA1 neurons, e.g. inhibitory interneurons, or LTD induction 

may increase the number of varicosities without postsynaptic partner. Further studies 

will be required to elucidate this phenomenon and to amend the knowledge about the 

physiological role of presynaptic structural plasticity.  

2.2.3 Axonal varicosities and synaptic vesicles  

Presynaptic terminals of hippocampal CA3 neurons are located in 1-2 µm long and 

about 1 µm wide bulbus-shaped axonal varicosities that are distributed en-passant 

along axons. They are composed of multiple different proteins (Li and Jimenez 2008) 

which can be grouped by their function in synaptic vesicle proteins, active zone 
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molecules, scaffolding molecules and trans-synaptic adhesion molecules (McAllister 

2007). At a chemical synapse, a presynaptic terminal is opposed to a postsynaptic 

terminal, forming a synaptic cleft in which the neurotransmitter is released by the 

presynaptic neuron and detected by the postsynaptic neuron. The assembly and 

stability of the synaptic cleft is mediated by trans-synaptic adhesion molecules, and the 

presynaptic terminal itself is characterized by the presence of hundreds to thousands of 

synaptic vesicles (SVs) that can fuse and release their neurotransmitter content into the 

synaptic cleft. Scaffolding molecules form the cytosceletal matrix of the presynaptic 

terminal and active zone proteins regulate the neurotransmitter release at the active-

zone into the synaptic cleft.  

Neurotransmitter secretion is a circular process that involves the release of transmitter 

into the synaptic cleft and the regeneration of synaptic vesicles (Ziv and Garner 2004) 

(Figure 2-2). A depolarizing axonal action potential of the presynaptic neuron that 

arrives at the presynaptic terminal can initiate the fusion of a synaptic vesicle with the 

active zone membrane and the discharge of neurotransmitter into the synaptic cleft. 

After exocytosis, the synaptic vesicle proteins become recycled and are retrieved by 

clathrin-mediated endocytosis. They reform vesicles which acidify and must be refilled 

with neurotransmitter to become available for the next round of exocytosis. The uptake 

of neurotransmitter to presynaptic vesicles in hippocampal excitatory neurons is 

conferred by vesicular glutamate transporters (VGluTs). VGluT proteins are essential for 

refilling synaptic vesicles with glutamate and for neurotransmitter release in 

glutamatergic -excitatory - synapses (Jean-Luc Boulland 2004). In the hippocampus, 

VGluT-1 is the predominant isoform of VGluT proteins at the CA3-CA1 synapse. 
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2.2.4 Assembly of axonal varicosities 

The formation of presynaptic terminals can be described as the assembly of presynaptic 

proteins to an axonal area where pre- and postsynaptic neurons form a contact. The 

majority of studies on presynaptic assembly focused neurons in a developmental stage, 

when the gross of synapse formation takes place. It has been shown that the 

presynaptic molecules constituting axonal varicosities are present in neurons before 

most synapses have formed (Fletcher, Cameron et al. 1991; Rao, Kim et al. 1998). 

Figure 2-2: Presynaptic vesicles and vesicular glutamate transporters  

Presynaptic terminals are located in axonal varicosities along CA3 axons. They contain numerous 

synaptic vesicles (SVs) that can release neurotransmitter into the synaptic cleft. Upon release, the 

vesicles get retrieved via endocytosis and must be refilled with the neurotransmitter by vesicular 

glutamate transporters (VGluT). Adapted from Richmond (Richmond 2007). 
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Multi-molecular transport packets represent the assembly units of axonal varicosities 

before and during synaptogenesis and are recruited to sites of axodendritic contact with 

rapid dynamics (Shapira, Zhai et al. 2003). The content of these transport packets is 

heterogeneous, and at least two different types have been investigated in detail: STVs 

(Synaptic vesicle proteins transport vesicles), which transport synaptic vesicle proteins, 

and PTVs (piccolo transport vesicles), which transport active zone proteins. (Zhai, 

Vardinon-Friedman et al. 2001; Sabo, Gomes et al. 2006). PTVs have a homogenous 

molecular content and appear as 80 nm dense-core particles, while STVs have a more 

heterogenous appearance that ranges from pleiomorphic, tubo-vesicular organelles 

(Ahmari, Buchanan et al. 2000) to PTV like small clusters (Kraszewski, Mundigl et al. 

1995). Both types of transport packets exhibit a rapid and bidirectional movement along 

axons in young neurons and divide or coalesce with each other, delivering material for 

the formation of axonal varicosities. Many laboratories have reported that transport 

packets can already display important functional presynaptic properties such as vesicle 

cycling (Kraszewski, Mundigl et al. 1995; Krueger, Kolar et al. 2003) and the capability 

to release glutamate even before axodendritic contact (Sabo, Gomes et al. 2006).  

Besides investigating preclustered assembly units, few studies so far have addressed if 

single molecules can appear at the axonal varicosity in a continous fashion (Shapira, 

Zhai et al. 2003; Gerrow, Romorini et al. 2006). While STV and PTV studies favor a 

quantal assembly of proteins, critical presynaptic constituents like SNAP-25 and 

syntaxin are difficult to model by quantal insertion, and further evidence supports the 

dynamic and continous exchange of single molecules amongst presynaptic sites 

(Tsuriel, Geva et al. 2006).  

If the mechanisms of axonal varicosity formation in developing neurons also apply in 

mature neurons, when most synapses are already formed, is still not fully clear. The 

present data so far reports multiple possible mechanisms for presynaptic terminal 

formation in mature neurons. Portions of presynaptic terminals can be mobilized and 

contribute to varicosity formation (Krueger, Kolar et al. 2003), and single molecules can 

be dynamically exchanged (Tsuriel, Geva et al. 2006). Which - if any - mechanism 
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predominates in mature neurons remains elusive to date. Also, if the findings in 

dissociated cultures hold true in functional neuronal networks or in vivo is still elusive. 

2.2.5 Synapse formation and disassembly 

Synapse formation includes pre- and postsynaptic synaptogenesis as well as the 

initialization and stabilization of an axodendritic contact. The initial contact formation 

and stabilization of glutamatergic synapses is mediated by the outgrowth of axonal or 

dendritic filipodia (Ahmari, Buchanan et al. 2000), of which a subset stabilizes and forms 

nascent synapses (Ziv and Smith 1996; Sabo, Gomes et al. 2006). Although current 

models of synapse formation imply that axodendritic contacts can be established 

anywhere along the axon, little experimental evidence supports this hypothesis, and 

contact and varicosity formation may alternatively occur at predefined sites along the 

axon. Two recent reports favor the latter hypothesis, with one of the reports 

documenting that predefined, distinct axonal sites enable the pausing of presynaptic 

STVs and stabilize dendritic filopodia (Sabo, Gomes et al. 2006) and the second study 

reporting that stable sites of postsynaptic scaffold protein accumulation correlate with 

the formation of presynaptic terminals (Gerrow, Romorini et al. 2006). Further data 

along these lines describe that preexisting axonal varicosities may be a specific target 

for spine outgrowth, as many young spines contact preexisting axonal varicosities that 

are already making synapses with other presynaptic partners. This finding supports the 

hypothesis that young spines can compete for already present presynaptic varicosities 

(Knott, Holtmaat et al. 2006; Toni, Teng et al. 2007).  

Although synapse disassembly is a crucial process to refine neuronal circuitry (Shatz 

and Stryker 1978; Trachtenberg, Chen et al. 2002; Goda and Davis 2003; Nägerl, 

Eberhorn et al. 2004; Zhou, Homma et al. 2004), little conclusive knowledge about 

synapse disassembly exists. As mentioned before, LTD can trigger synapse 

disassembly (Bastrikova, Gardner et al. 2008), but the temporal and causal sequence of 

events remain elusive, especially for central nervous system (CNS) synapses. At the 

neuromuscular junction of the periphal nervous system, however, it has been shown 

that presynaptic receptor endocytosis precedes the loss of presynaptic terminals 

(Akaaboune, Culican et al. 1999). In the CNS, the importance of the complement 
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cascade in synapse disassembly has been recently described (Stevens, Allen et al. 

2007), but still little is known about cellular and molecular aspects of synapse 

disassembly.   
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2.3 Objectives of this study 

Structural plasticity is a hallmark of the brain, and it allows to modify neuronal circuits in 

development, learning and memory. Since the recent development of novel imaging 

techniques allows the observation of morphological changes in neuronal networks with 

high temporal and spatial resolution, numerous studies have investigated structural 

plasticity and its link to functional synaptic plasticity. To this end, the effect of the 

experimental learning paradigms LTD and LTP on structural plasticity has been 

intensely studied (Engert and Bonhoeffer 1999; Toni, Buchs et al. 1999; Nägerl, 

Eberhorn et al. 2004; Zhou, Homma et al. 2004; Knott, Holtmaat et al. 2006; Nägerl, 

Kostinger et al. 2007; Bastrikova, Gardner et al. 2008). Most reports so far have 

focused on postsynaptic spines, whereas the changes of presynaptic axonal varicosities 

has only recently been elucidated (De Paola, Arber et al. 2003; Konur and Yuste 2004; 

Umeda, Ebihara et al. 2005; De Paola, Holtmaat et al. 2006; Stettler, Yamahachi et al. 

2006). Therefore, the cellular and structural mechanisms that underlie presynaptic 

structural plasticity remain mostly unknown to date. While the building blocks for 

nascent synapses are intensively studied in developing neurons (Ahmari, Buchanan et 

al. 2000; McAllister 2007), the assembly units of axonal varicosities in mature neurons 

remain mostly elusive. Moreover, while protein synthesis and degradation are required 

for the functional expression of LTP and LTD (Frey, M et al. 1988; Colledge, Snyder et 

al. 2003; Sajikumar and Frey 2003; Karpova, Mikhaylova et al. 2006), their role in 

presynaptic structural plasticity remains unknown to date.   

To this end, I set out to investigate the presynaptic structural plasticity of axonal 

varicosities of CA3 hippocampal neurons. Using time lapse two-photon imaging 

together with electrophysiological recordings in organotypic slices, I studied the 

assembly units of axonal varicosities and their distinct types of presynaptic structural 

plasticity. Furthermore, I tested if the turnover of axonal varicosities requires the acute 

synthesis and degradation of proteins or if it can rely on preexisting proteins. Similarly, I 

tested the requirement of protein synthesis and degradation for LTD-induced structural 

plasticity. Finally, I observed the functional status of stable and dynamic presynaptic 
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axonal varicosities by testing for their colocalization with a presynaptic marker protein 

VGluT-1-Venus. By this means, my thesis aims for contributing to the current 

knowledge about structural and cellular mechanisms of presynaptic structural plasticity, 

and about the link between structural and functional presynaptic plasticity. 
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3 Material and Methods 

3.1 Material  

3.1.1  Equipment 

Microscopy instruments Supplier 

Mira-Verdi Laser System Coherent, Santa Clara, CA 

Mai Tai Laser System Coherent, Santa Clara, CA 

Electro-optical modulator Polytec, Waldbronn, Germany 

Bandpass filter HQ525/50 LOT Oriel, Darmstadt, Germany 

Bandpass filter HQ590/55 LOT Oriel, Darmstadt, Germany 

Dichroic mirror HQ572LP LOT Oriel, Darmstadt, Germany 

Dichroic mirror CH-700DCXR2638 LOT Oriel, Darmstadt, Germany 

Inverted microscope IX70 Olympus, Hamburg, Germany 

Scanhaed Yanus II TILL Photonics, Gräfelfing, Germany 

Water-immersion objective, 40x, NA1.2 Zeiss, Oberkochen, Germany 

Photomultiplier Tubes R6357 Hamamatsu, Herrsching, Germany 
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Software Supplier 

ImageJ NIH, Bethesda, MD 

Macbiophotonics ImageJ Macbiophotonics, CA  

Matlab R2007B Math Works, Natick, MA 

LabView 8.3 National Instruments, Austin, TX 

 

Other equipment Supplier 

Picospritzer Parker Hannifin Corp, Fairfield, NJ 

Perfusion Pump, Minipulse peristaltic Gilson, Middletown, WI 

  

Electrophysiology instruments Supplier 

A/D converter PCI-6052 National Instruments, Austin, TX 

Amplifier axopatch 200B  Axon Instruments, Foster City, CA 

Stimulus Isolator A360 World Precision Instruments, Sarasota, FL 

Glass capillaries, thin wall, outer diameter 
1.5 mm World Precision Instruments,Sarasiota, FL 

Silver wire 0.5 mm World Precision Instruments, Sarisota, FL 
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3.1.2 Chemicals 

Artificial cerebrospinal fluid (ACSF) Supplier 

CaCl2*2H2O Merck, Darmstadt, Germany 

Glucose (C6H12O6) Merck, Darmstadt, Germany 

HEPES Sigma, Munich, Germany 

Trolox (6-Hydroxy-2,5,7,8-
tetramethylchroman-2-carbon acid) Sigma, Munich, Germany 

KCl Merck, Darmstadt, Germany 

K-Gluconate (C6H11KO7) Sigma, Munich, Germany 

Mg2+-ATP Sigma, Munich, Germany 

MgCl2 Merck, Darmstadt, Germany 

NaCl Merck, Darmstadt, Germany 

NaHCO3 Merck, Darmstadt, Germany 

NaH2CO3 Merck, Darmstadt, Germany 

Pyruvate (C3H4O3) Sigma, Munich, Germany 
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Culture media and other solutions Supplier 

BME (basal medium) Sigma, Munich, Germany 

Cytosine β-arabino-furanoside 
hydrochloride Gibco, Karlsruhe, Germany 

5-Fluorodeoxyuridine Sigma, Munich, Germany 

Hanks balanced salt solution (HBSS) Gibco, Karlsruhe, Germany 

Horse serum Invitrogen, Karlsruhe, Germany 

Kaliumdihydrophosphate (KH2PO4) Merck, Darmstadt, Germany 

Kynurenic acid Invitrogen, Karlsruhe, Germany 

L-Glutamine Invitrogen, Karlsruhe, Germany 

Magnesiumsulfate (MgSO4) Merck, Darmstadt, Germany 

Sodiumhydroxide (NaOH) Merck, Darmstadt, Germany 

Uridine Sigma, Munich, Germany 
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3.1.3 Media 

Artificial cerebrospinal fluid (ACSF) 

ACSF was prepared fresh at the day of experiment. It contained 126 mM NaCl, 2.5 mM 

KCl, 2.5 mM CaCl2, 1.3 mM MgCl2, 20 mM Glucose, 1.25 mM NaH2PO4, 26 mM 

NaHCO3, 1 mM Pyruvate and 1 mM Trolox. It was continuously perfused with Carbogen 

(95% O2, 5% CO2) to maintain pH 7.4. 

Intracellular solution  

Internal solution for patching single cells in VGluT-1 experiments contained 120 mM K-

Gluconate, 10mM KCl, 20 mM HEPES, 5 mM NaCl, 12 mM Mg2+-ATP, was adjusted to 

300 mOsm and pH 7.2 by adding NaOH and sterile filtered.  

Preparation medium  

The medium for preparing Gähwiler cultures contained 2.5mM CaCL2, 5.05 mM D-

Glucose, 4.96 mM KCL, 0.22mM KH2PO4, 1 mM Kynurenic acid, 1.03 mM MgCL2, 0.28 

MgSO4, 136.89 mM NaCl, 2,7mM NahCO3, 0.87 mM NaH2PO4. It was adjusted to      

pH 7.2 and sterile filtered. 

Gähwiler culture medium 

The culture medium for maintaining Gähwiler cultures contained 50% (v/v) BME, 25% 

(v/v) horse serum, 25% (v/v) HBSS, 1 mM L-Glutamine, 5 mg/ml Glucose and was 

sterile filtered. 

3.1.4 Fluorescent dyes 

Dye Concentration [mM] Supplier 

Alexa fluor 568 hydrazide 0.5 Invitrogen, Karlsruhe, Germany 

Calcein red-orange AM ester 0.5 Invitrogen, Karlsruhe, Germany 
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3.2 Methods 

3.2.1 Organotypic hippocampal slice cultures  

Hippocampal slices were prepared from C57 BL/6J according to the Gähwiler method 

(Gahwiler, 1981). Alternatively, hippocampal slices were prepared from knock-in VGluT-

1-Venus mice (Courtesy of Etienne Herzog, Max Planck Institute for Experimental 

Medicine, Göttingen, Germany) for VGluT-1-Venus experiments. 

In brief, mice of both sexes were decapitated at postnatal day 5-7, the two hippocampi 

isolated and cut into transversal slices of 400 µm thickness. After cutting, the slices 

were kept at 4°C for 30 minutes to allow regeneration of the tissue. Then, single slices 

were embedded in a plasma clot on glass cover slips, and addition of thrombin induced 

coaglutination within the following 30 to 45 minutes. Slices were incubated in Gähwiler 

medium and stored in single tubes, using a roller incubator at a temperature of 35°C. 

Two days after preparation, mitosis inhibitor was added to the medium for 24 hours to 

stop further proliferation of glia cells within the slices. Gähwiler medium was partially 

renewed every three to four days for a total of 10 to 20 days of culturing period. Before 

the experiments, slice cultures were transferred into a recording chamber and 

continuously perfused with artificial cerebrospinal fluid (ACSF) at a perfusion rate of      

1 ml/min. Temperature was maintained at 35°C, and the solution was continuously 

perfused with Carbogen (95% O2, 5% CO2) to maintain pH 7.4. 

3.2.2 Two-photon microscopy 

Time-lapse image stacks were acquired using a custom-built 2-photon laser scanning 

microscope (Figure 3-1). The excitation light from a Mira-Verdi laser system (Coherent, 

Santa Clara, CA) or a Mai Tai laser system (Newport Spectra Physics, Darmstadt 

Germany) was routed through a laser scanhead (Yanus II, TILL Photonics, Gräfelfing, 

Germany), a dichroic mirror (LOT Oriel, Darmstadt, Germany) and a 40x, 1.2 NA water-

immersion objective (Zeiss, Oberkochen, Germany) mounted on an inverted IX70 

microscope (Olympus, Hamburg, Germany).  



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Custom-built two-photon setup  

Schematic drawing of the two-photon microscope and electrical circuit. The two-photon microscopy 

enables the acquisition of images (PC imaging), and the electrical circuit enables the recording of field 

potentials (PC electrophysiology). Details are described in the text. 

For morphology experiments in chapter 4.1, the Mira-Verdi laser system was tuned to a 

wavelength of λ=790 nm. For VGlut-1-Venus experiments in chapter 4.2, the Mai Tai 

laser was used at λ=910 nm. The power of the excitation light was adjusted before 
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every experiment by an electro-optical modulator (Polytec, Waldbronn, Germany) and 

kept constant during the experiments. The emitted fluorescence was split by a dichroic 

mirror (LOT Oriel) into red and green fluorescence, filtered by adequate bandpass filters 

(LOT Oriel), and detected by two external photomultiplier tubes (R6357, Hamamatsu, 

Herrsching, Germany). Image acquisition was performed by a custom-programmed 

software (LabVIEW 8.2, National Instruments, Austin, TX). 

Labeling and imaging parameters 

For imaging presynaptic morphology, CA3 pyramidal cells were loaded via extracellular 

bolus loading. Calcein red-orange AM (Invitrogen, Karlsruhe, Germany) was diluted in 

ACSF to 0.5 mM final concentration, loaded into a freshly prepared glass micropipette 

(Havard Apparatus, MA, USA), connected to a Picospritzer (Parker Hannifin 

Corporation, Fairfield, NJ, USA) and placed in the middle of the cell body layer of the 

CA3 area. The dye was injected into the tissue by applying gentle and brief pressure 

pulses (5 to 15 ms, 10 psi) every 15 seconds for 60 to 90 minutes, and dye injection 

was stopped when about 40 to 80 CA3 neurons were intensely labeled. The 

concentration of Calcein red-orange AM equilibrated in the distal parts of neuronal 

processes with a delay of 30 minutes after completion of the loading procedure. It then 

remained constant for the remaining experiment (4-5 hours). 

For VGluT-1-Venus experiments, one or two single CA3 pyramidal neurons were 

intracellularly loaded for 2-3 min via a patch pipette containing 0.5 mM Alexa Fluor 568 

dissolved in internal solution. The labeling of patch-loaded cell equilibrated with 10 

minutes delay and then remained constant for the rest of the experiment (4-5 hours).  

Image stacks were acquired with a dwell time of 5 µs / pixel without frame averaging, 

and a constant pixel resolution of 136.7 nM / pixel in all experiments. The imaged x-y 

dimensions varied between 140 and 210 µm. 3D stacks consisted of z layers with a 

constant step size of 0.5 µm and a variable numbers of z-planes (20-99). Image stacks 

were acquired every 30 min.  
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3.2.3 Electrophysiology  

Field excitatory postsynaptic potentials (fEPSPs) were recorded from the cell body layer 

in the area of CA1 pyramidal neurons, close to or overlapping with the imaging area. 

CA3 pyramidal neurons were stimulated by 0.2 ms current pulses from a stimulus 

isolator using a glass micropipette filled with 3 M NaCl, immobilized at the tip by      

0.5% agarose. Stimulus strength ranged from 12 to 50 µA and was adjusted to elicit 

fEPSPs at 60% of the maximal amplitude, ranging from 0.5 to 3 mV. fEPSPs were 

recorded by an ACSF-filled glass micropipette connected to an Axopatch 200B amplifier 

(Axon Instruments, Foster City, CA), an A/D converter (PCI-6025E, 16 and 12bit, 

National Instruments) and a custom-programmed acquisition software (LabVIEW 7.2). 

Test pulses for pre-baseline and baseline were acquired every 15 s (0.067 Hz). Before 

the start of an experiment, pre-baseline recordings were taken until fEPSPs had 

reached stable amplitudes for 30 minutes. Then, the recordings of the experiments 

started with test pulses that continued throughout the experiment. For LTD-experiments, 

the stimulation protocol was changed to low frequency stimulation (LFS) after 45 

minutes of experiment. The LFS protocol consisted of 900 pulses delivered at 1 Hz and 

started after electrophysiological recordings of 45 min, when two image stacks were 

taken. After LFS, the stimulation continued with test pulses for the rest of the 

experiment. 

3.2.4 Pharmacology 

For pharmacological experiments, anisomycin (Ani) and lactacystin (lacta) were bath-

applied for one or four hours. Anisomycin was dissolved at 7.5 mM in H20, stored at 4°C 

and used within 3 weeks. Before the experiment, the solution was diluted into ACSF to 

a final concentration of 7.5 µM. Lactacystin was dissolved in DMSO / 20% pluronic acid, 

stored at  -20°C and further diluted to 2 µM (0.04% DMSO) in ACSF before the 

experiments. The perfusion ACSF was replaced with ACSF containing the 

pharmacological reagents for the duration of application as indicated in the individual 

experiments. All bath solutions were used once and were not recycled during or after 

perfusion. 
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3.2.5 Simultaneous two-photon imaging, electrophysiological 

recordings and pharmacological blockade 

Hippocampal Gähwiler cultures were transferred to an imaging chamber and 

experiments commenced with normal ACSF containing no pharmaka. A population of 

CA3 neurons was labeled by extracellular bolus loading as described in 3.2.2. 

Subsequently, the loading pipette was exchanged with the stimulation electrode. Under 

two-photon visual guidance, the stimulation electrode was placed in the middle of the 

labeled CA3 cell population to achieve maximal overlap of labeled and stimulated cells. 

Also under visual guidance, a CA1 area suitable for imaging and electrophysiological 

recordings was identified, a recording electrode was placed and electrophysiological 

recordings performed as described in 3.2.3. After fEPSPs of stable amplitudes were 

obtained for 30 minutes, stimulus strength was adjusted to 60% and the experiment was 

started (Figure 3-2).  

 

 

 

 

 

 

 

 

At the beginning of the experiment, pharmacological application, baseline recordings 

and imaging started simultaneously. Therefore, the perfusing solutions were exchanged 

(if applicable) and the experimental electrophysiological recordings were started 

together with the first 3D two-photon imaging stack. In case of LTD-inducing 

experiments, LFS was applied 45 minutes after beginning of the experiments and when 

Figure 3-2: Experiment outline  

Temporal sequence of imaging, electrophysiology and application of pharmacological inhibitors. Details 

are described in the text. 
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the second imaging stack was completed. After 1 hour, when LFS stimulation was 

completed, test pulses were resumed and drug-containing ACSF was switched back to 

normal ACSF. Test pulses and image acquisition every 30 minutes was continued 

throughout the experiment. 

3.2.6 Blind electrophysiological experiments 

Blind electrophysiological experiments were performed similar to the experiments 

described in 3.2.5. Hippocampal Gähwiler cultures were placed into an imaging 

chamber and were perfused with ACSF containing no pharmacological reagents. 

Anisomycin, lactacystin or no reagent was added into a separate ACSF by a third 

person in the absence of the researcher. Stimulation and recording electrodes were 

placed and test-pulses were applied every 15 seconds to record a pre-baseline. When 

the elicited fEPSPs maintained stable amplitudes for 30 minutes, the ACSF solutions 

were exchanged and experimental recordings commenced. 45 minutes later, low-

frequency stimulation was applied to induce LTD, and 15 minutes later (after 60 minutes 

total experiment time), the ACSF solution was changed back to ACSF containing no 

pharmacological reagents. 

3.2.7 VGluT-1-Venus experiments 

For VGluT-1-Venus experiments, VGluT-1-Venus hippocampal Gähwiler cultures were 

transferred to an imaging chamber and perfused with ACSF at 35°C. One or two cells 

were patch-filled with Alexa 568 hydrazide as described in 3.2.1. Subsequently, the 

loading pipette was exchanged with the stimulation electrode, a recoding electrode was 

placed in CA1 and extracellular stimulation with test-pulses every 15 seconds were 

performed as described. Under visual guidance, an area in CA1 containing labeled 

axons was selected for two-photon imaging and immediately thereafter, the first 3D two-

photon imaging stack was acquired. In total, nine imaging stacks were taken over four 

hours in 30 minutes intervals. In some cases, LFS was applied 45 minutes after 

beginning of the experiment. 
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3.2.8 Analysis and Statistics 

Image analysis 

3D (x, y, z) image stacks were processed and analyzed using ImageJ (NIH, Bethesda, 

MD). To reduce noise, images were filtered with a Gaussian blur or a Median algorithm 

in ImageJ. Within each experiment, three to ten axons were analyzed over a length of 

60 - 160 µm. Within the whole image stacks, axons that were located within 5 - 20 z 

layers (2.5-10 µm) were selected. The corresponding z-layers containing the axon were 

projected as maximum intensity projection. For each time point, the projected axons 

were straightened using the straightener tool of ImageJ, and all time points were 

combined into a kymograph, with the axons stretching horizontally and the time coded 

vertically. On the basis of this kymographs, varicosity turnover was analyzed blindly in 

respect to the experimental condition and the direction of time. Varicosity turnover was 

assessed by eye, and results of the researcher were in some cases blindly double 

checked by a different person. 

Analysis of electrophysiological recordings 

Single fEPSPs recorded with the Labview software were analyzed offline with a custom-

made analysis software (Labview 7.2). Recordings were filtered with a 400 hz longpass 

filter and the maximal amplitudes of the fEPSPs were measured. Temporal filtering was 

performed by averaging four fEPSPs to a single average of 1/minute. The baseline 

100% value was calculated according to the amplitudes of the first 30 minutes of 

fEPSPs within the experiments. The experiments were only subjected to analysis when 

they displayed stable electrical properties during the four hour recording period. For 

experiments on baseline varicosity turnover, the fEPSP amplitudes were not allowed to 

decline to less than 80% of the average amplitudes of the baseline. For low-frequency 

stimulation, experiments that failed to display the functional properties of LTD or the 

properties obtained in the series of blind experiments, were also discarded. 
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Statistics 

Data are reported as means ± SEM (standard error of the mean) unless stated 

otherwise. The statistical significance of the electrophysiological effects was calculated 

over the whole length of the experiments. One or two-tailed, unpaired t-tests were 

performed on groups of 15 minutes of the temporally filtered data (1 / min). For imaging 

data, varicosity turnover was assessed per axon, and turnover rate was normalized to 

four hours and 100 µm. Pharmacological conditions were assessed by comparing the 

groups of axons with one- or two-tailed, unpaired t-tests (Excel software) or a single-

factor ANOVA (Matlab software). The following significance levels were applied: Error 

probability p < 0.05 (*),  p < 0.01 (**) and p < 0.001 (***). 



36 
 

4  Results 

In this thesis, I investigated the structural and cellular mechanisms of baseline and 

activity-dependent presynaptic structural plasticity and its potential for altering synaptic 

transmission. In chapter 4.1, I examined effects of acute protein synthesis and 

degradation blockade on baseline and LTD-induced structural dynamics of presynaptic 

varicosities. In chapter 4.2, I investigated the functional status of presynaptic varicosities 

using the synaptic marker protein VGluT-1-Venus. 

4.1 Protein synthesis and degradation regulate activity-
dependent presynaptic structural plasticity 

To date, little is known about the cellular mechanisms that govern the structural 

plasticity of presynaptic axonal varicosities. Therefore, I set out to investigate structural 

and cellular mechanisms of activity-dependent presynaptic morphological plasticity in 

CA3 hippocampal neurons. Using time lapse two-photon imaging together with 

electrophysiological recordings in organotypic slices, I examined the morphological 

characteristics of presynaptic varicosity assembly and disassembly. Moreover, I tested 

the effects of pharmacological blockade of protein synthesis and protein degradation on 

the plasticity of axonal varicosities under constitutive conditions and during LTD.  

4.1.1 Monitoring structural dynamics of axonal varicosities together 
with functional properties of CA3-CA1 synapses 

I combined two-photon time-lapse microscopy and electrophysiological extracellular 

field recordings within the same experiments to simultaneously visualize morphological 

varicosity turnover and functional properties at CA3-CA1 synapses (Figure 4-1). To 

observe the turnover of axonal varicosities at CA3 axons (Schaffer collaterals), a 

population of CA3 cells in organotypic Gähwiler cultures was morphologically labeled 

using a cell-permeable AM-ester (Calcein red-orange AM) that was applied by pressure 

injection into the CA3 area.   
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The labeled cell population of neighboring CA3 neurons typically consisted of 40 to 80 

cells per experiment (Figure 4-1 A). CA3 axons were readily discernable in CA1 and 

formed axonal varicosities, presumably innervating unlabeled postsynaptic target CA1 

cells (B, C). Single axons were selected for image analysis (see methods), and all 

individual time points were assembled side by side in a kymograph where the structural 

changes of single varicosities were easy to follow over time (Figure 4-2 D). 

  

Figure 4-1: Visualizing Schaffer collateral axons and axonal varicosities in hippocampal Gähwiler 
slices by two-photon imaging 

A population of CA3 cells was morphologically labeled by pressure-pulse injection of a cell-permeable 

morphological tracer (Calcein red-orange AM). Axons and axonal varicosities were readily discernable in 

CA1. (A) Labeled CA3 population. (B) Axons of cells in (A) in the CA1 area, potentially contacting 

unlabeled postsynaptic neurons and forming axonal varicosities. (C) Close up of axonal varicosities.   

(D) Intensity plot marking axonal varicosities. (E) Schematic overview. Scale bars: (A) 20 µm. (B) 10 µm. 

(C) 5 µm. 
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To prevent the analysis from a possible bias of the researcher, all further analyses were 

performed blindly regarding the time and the experimental conditions. In the 

kymographs, axonal varicosities as well as other axonal volumes were readily visible 

along the axons and were selected by size and stability criterions. Axonal varicosities 

that were gained or lost during the experiment are referred to as ‘plastic’ or ‘dynamic’ 

axonal varicosities. All axonal varicosities had to exceed a minimum size of 0.376 µm2, 

and their two dimensional projection characteristically included an area of 0.94 ± 0.03 

µm2, while their fluorescence intensity typically exceeded the axon intensity 7.79 ± 0.3 

times the standard deviation of axon intensity (n = 10 axons, 164 varicosities). Axonal 

varicosities had to be detectable for at least two consecutive time points (30 min), either 

at the beginning or at the end of the experiment. The latter criterion was chosen 

according to the recent finding of Becker et al. that new varicosities exhibit action-

potential dependent voltage-gated Ca2+ entry into varicosities after approximately 30 

minutes, indicating their potential for neurotransmitter release (Becker, Wierenga et al. 

2008). Moreover, axonal varicosities had to remain at the same location along the axon 

Figure 4-2: Analysis of varicosity turnover 

To analyze varicosity turnover, single axons were selected, spatially isolated, projected in two dimensions 

and straightened. All time points were aligned into a kymograph.  (A) Single axon. (B) Overlay of selected 

axons and straightening curve (C) Axon in (B), straightened. (D) Example kymograph. Scale bars:   

(A) 10 µm. (B) 10 µm. (C) 5 µm. (D) 5 µm. 
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(± 0.04 µm / 4 hours). Structures that fulfilled the same size criteria as axonal 

varicosities but were not stably localized were classified as axonal volumes. Axonal 

volumes displayed an average relocalization of 1.9 ± 0.08 µm per experiment, and a 

average maximum velocity of 1.18 ±  0.07 µm between single time points. To ensure the 

correct identity of the axonal volumes, all structures that relocated more than 4 µm 

within the experiment were not subjected to analyses.  

To simultaneously assess the synaptic transmission of the labeled synapse population, I 

performed extracellular field stimulation of the labeled CA3 cell population. A stimulation 

electrode was placed into the center of the dye-loaded CA3 neurons, and cells were 

stimulated with test pulses (see methods for details). To ensure a highest possible 

overlap of labeled and stimulated cells, placing of the stimulation electrode was 

performed under two-photon guidance and targeted the center of the labeled CA3 

population. The electrical stimulation of presynaptic cells evoked postsynaptic field 

potentials in CA1 (fEPSPs, Figure 4-3). Field potentials displayed typical amplitudes of 

0.5 - 2 mV and remained stable, yet displayed a progressive decline during the 

experiment which is consistently reported in electrophysiological field recordings (Frey, 

M et al. 1988; Sajikumar and Frey 2003; Fonseca, Nägerl et al. 2004; Abraham, Mason-

Parker et al. 2006; Fonseca, Nägerl et al. 2006; Fonseca, Vabulas et al. 2006). 

 
 
 
  
Figure 4-3: Electrophysiological recordings in the CA1 area of hippocampal Gähwiler cultures 

The labeled CA3 population was stimulated extracellularly, and resulting postsynaptic responses 

(fEPSPs) of CA1 cells were measured. fEPSPs document stable recordings. (A) Overview. (B) Example 

recordings of a control stimulation (grey) and LTD stimulation (black). Inset: Example fEPSP.  
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4.1.2  Distinct types of structural dynamics  

To characterize the remodeling of axonal membranes in morphological plasticity, I 

surveyed the characteristics of assembly and disassembly of axonal varicosities under 

baseline conditions. Therefore, I labeled hippocampal CA3 neurons in organotypic slice 

cultures and simultaneously recorded postsynaptic field potentials (fEPSPs) within the 

CA1 area as described before. I analyzed the time course of the positions and sizes of 

discernible axonal varicosities and axonal volumes on individual axons. Consistent with 

previous reports, axonal varicosities appeared and disappeared spontaneously at 

roughly similar rates, their net number remaining largely constant (Deng and Dunaevsky 

2005; Becker, Wierenga et al. 2008). I could observe distinct types of structural changes 

which frequently led to the gain or the loss of axonal varicosities (Figure 4-4).  

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4-4: Distinct types of structural dynamics contributed to varicosity turnover 

Varicosities emerged by de novo formation, by dividing or by relocalization of axonal volumes. Likewise, 

they disappeared by straight loss, by merging or by relocalization of axonal volumes. (A) Time-lapse  

examples. (B) Relative fractions. Scale bars: 2µm. 
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New varicosities emerged by de novo formation, reflecting the straight appearance of a 

bulbus-shaped structure on a dim axonal site, either rapidly reaching a stable size or 

continuously growing over hours (Figure 4-4). Furthermore, axonal varicosities also 

emerged by relocalization processes, which either appeared as splitting of an existing 

varicosity into two or by stabilization of motile axonal volumes into a stable axonal 

varicosity. Likewise, I detected varicosities that disappeared by straight loss of the 

structure or by relocalization processes, that reflected the merging of existing 

varicosities or the dispersion of existing varicosities into smaller volumes. In addition, 

small or transient changes in the size and position of axonal volumes were also visible 

that did not affect the number of axonal varicosities and were therefore excluded from 

analysis.  

To assess how important the various types of structural rearrangements are for the loss 

or gain of axonal varicosities, I determined how often each type could be observed. De 

novo formation was frequently responsible for the appearance of a varicosity (69%), 

while relocalizations were responsible for the formation of the remaining 31% of new 

varicosities. Likewise, more axonal varicosities disappeared by straight loss (67%) than 

by relocalizations (33%)(Table 1).  

 

 

Table 1: Relative fractions of the different types of varicosity turnover 

In summary, I here report that the turnover of presynaptic varicosities in mature 

hippocampal networks was mediated both by relocalization of axonal volumes and by 

de novo formation and straight loss. The two processes provided distinct mechanisms 

that both contributed to the turnover of axonal varicosities. Relocalizations were 

suggestive for the use of preexisting material for the assembly of axonal varicosities, 

and the recycling of their constituents upon their disassembly. It was therefore of 

interest to test if varicosity turnover can rely on use and recycling of preexisting 

material, or alternatively, if it requires the acute synthesis or degradation of proteins.
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4.1.3  Effect of protein synthesis and degradation on baseline 
structural plasticity of axonal varicosities 

To test whether the synthesis of new proteins is required for the structural plasticity of 

axonal varicosities under baseline conditions, I carried out time lapse experiments in the 

presence of the drug anisomycin, which specifically inhibits the translation of mRNA into 

proteins. This allowed me to investigate whether the structural turnover of axonal 

varicosities can occur in the absence of protein synthesis. To this end, I bath applied 

anisomycin for one hour at the beginning of the experiment and analyzed how the loss 

and gain of varicosities was affected. At the same time I carried out field potential 

recordings to monitor the strength of synaptic transmission between CA3 and CA1 

pyramidal neurons. The latter assured that synaptic transmission remained unaltered 

during the experiment and documented the healthy condition of the investigated 

neuronal population. 

Interestingly, the structural dynamics were unaffected when protein synthesis was 

blocked for one hour, irrespective of whether the time window I analyzed was restricted 

to the period of pharmacological blockade or was extended by a few hours (Figure 4-5, 

Table 2).  

 

 

 

 

 

 

  
Figure 4-5: Varicosity turnover was unchanged by pharmacological blockades after one or four 
hours 

The application of anisomycin or lactacystin for one hour did not alter presynaptic turnover, irrespective 

when the turnover of axonal varicosities was assessed. (A) Varicosity turnover after 1 hour. (B) Varicosity 

turnover after 4 hours. ns: not significant.  
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Table 2: Turnover of axonal varicosities were unchanged after one and four hours 

 

New varicosities formed and existing ones disappeared at the same rates as under 

control, drug-free conditions indicating that new varicosities can emerge during acute 

blocade of protein synthesis. Moreover, the relative contributions by the distinct types of 

structural plasticity also did not change significantly, indicating that both processes, 

relocalization and de novo gain, remain unimpaired. (Figure 4-6 and Table 3). Likewise, 

baseline synaptic responses were unaltered under these conditions, which is consistent 

with previous reports about the effects of protein synthesis blockade on synaptic 

transmission (Figure 4-6. fEPSP amplitudes after two hours as % of baseline: 92.77 ± 

1.86% for control, n=4, 102.49 ± 5.2 % for anisomycin, n=4. P (control/anisomycin):      

p = 0.17) (Frey, M et al. 1988; Sajikumar and Frey 2003; Fonseca, Vabulas et al. 2006).  

Table 3: Baseline structural dynamics were independent of protein synthesis and degradation 
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Figure 4-6: Baseline structural dynamics were independent of protein synthesis and degradation  

Application of anisomycin (ani) or lactacystin (lacta) for one hour did not alter synaptic transmission, and 

turnover of axonal varicosities remained unchanged. (A) Electrophysiological recordings. Application of 

pharmacological inhibitors is depicted by the horizontal bars. (B) Illustrative examples of varicosity 

turnover. (C) Loss and gain of presynaptic varicosities. Dark colored fraction within each bar represents 

the relocalization-mediated turnover. ns: not significant. Scale bar: 5 µm. 
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To test the role of protein degradation via the ubiquitin-proteasome system for the 

structural plasticity of axonal varicosities, I repeated the experiments in the presence of 

lactacystin, a specific and irreversible blocker of the proteasome. I counted the numbers 

of varicosities gained and lost and quantified the contributions by the different structural 

mechanisms. As for anisomycin, I did not detect any appreciable changes in the 

structural dynamics of axonal varicosities, neither with regards to the numbers of gained 

or lost varicosities, nor with regards to the types of structural plasticity (Figure 4-6 

and Table 3). Moreover, I did not observe any changes in baseline synaptic responses 

under conditions of blockade of protein degradation (Figure 4-6. fEPSP amplitudes after 

two hours as % of baseline: 92.77 ± 1.86% for control conditions, n=4, 102.5 ± 8.5 % for 

lacta, n=6. P (control/lacta): p = 0.23) which is also consistent with previous reports 

(Colledge, Snyder et al. 2003; Sajikumar and Frey 2003; Fonseca, Vabulas et al. 2006).  

Taken together, these data demonstrate that synaptic structures can be built without the 

need for new proteins and suggest the use of preexisting proteins for the formation of 

new varicosities. Conversely, the results show that axonal varicosities can be 

disassembled in the absence of protein degradation, which indicates that the varicosity 

constituents remain within the axon. Moreover, the fraction of the distinct mechanisms 

that contribute to varicosity turnover remained by large unaltered, indicating that all 

types of morphological plasticity are independent of protein synthesis and protein 

degradation under baseline conditions.  

4.1.4  LTD-induced presynaptic structural plasticity 

A recent study in this laboratory has demonstrated that the structural dynamics of 

axonal varicosities is upregulated by the induction of LTD in CA3 - CA1 synapses in 

organotypic hippocampal slice cultures (Becker, Wierenga et al. 2008). I wanted to 

confirm these data and to determine by which structural mechanisms the elevation of 

varicosity turnover is achieved. To this end, I stimulated CA3 pyramidal neurons by 

extracellular stimulation using a low-frequency stimulation protocol (LFS: 900 pulses at 

1 Hz). As expected, LFS induced robust LTD, which I monitored in parallel with the time 

lapse experiments (Figure 4-7. fEPSPs after two hours as % of baseline: LTD: 68.2 ± 

4.6.  P (LTD/baseline): p < 0.001, n = 4 control; p (LTD/control): p < 0.01, n = 4).  
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Structural dynamics were analyzed by counting the numbers of gained and lost axonal 

varicosities before and after LTD induction. LTD induction significantly enhanced the 

rate at which varicosities were gained and lost over a four hour period (Figure 4-7 

and Table 4), which is consistent with the previous study from Becker et al. (Becker, 

Wierenga et al. 2008).  

In addition, I determined the relative contributions by the distinct types of structural 

plasticity to the varicosity turnover. Notably, whereas LTD induction significantly 

increased the turnover of axonal varicosities by de novo gain and straight loss, the 

varicosity turnover by volume relocalization did not increase significantly after the 

induction of LTD (Table 4). Accordingly, the fraction of varicosities that were assembled 

by volume relocalization declined from 30% to 26%, while the fraction of varicosities that 

disappeared as a result of volume relocalization dropped from 33% to 22%. 

Table 4: LTD enhanced the turnover of axonal varicosities 

 

Taken together, the data confirm that LTD enhances both gain and loss of axonal 

varicosities. They indicate that the LTD-induced increase in turnover can mostly be 

accounted for by de novo gain and straight loss of axonal varicosities. Moreover, it 

suggests that relocalization processes are differently regulated and not affected by 

synaptic plasticity. 
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Figure 4-7: LTD induction enhanced plasticity of presynaptic axonal varicosities  

Low frequency stimulation resulted in robust LTD and elevated both gain and loss of presynaptic axonal 

varicosities. (A) Electrophysiological recordings. LTD induction is indicated by the black bar. (B) 

Illustrative examples of varicosity turnover. (C) Loss and gain of presynaptic varicosities. Dark colors 

within each bar represent the relocalization mediated turnover. Scale bar: 5 µm. 
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4.1.5  Effect of protein synthesis and degradation on activity-
dependent turnover of axonal varicosities  

Blocking protein synthesis and degradation has been reported to impair functional 

synaptic plasticity, but it remained unknown if protein synthesis and degradation also 

influence LTD-associated structural plasticity. To examine this question, I started out by 

verifying the functional effects of protein synthesis or blockade inhibition under blind 

experimental conditions, and then proceeded to test the effect of protein synthesis and 

degradation blockade in further experiments.  

Effects of blocking protein synthesis and protein degradation on the functional 
expression of LTD 

It has been well established that blocking protein synthesis and degradation at the time 

of plasticity induction blocks expression of the late phase of LTP, and that protein 

synthesis  blockade impairs the expression of LTD (Frey, M et al. 1988; Sajikumar and 

Frey 2003; Fonseca, Vabulas et al. 2006; Karpova, Mikhaylova et al. 2006). Intriguingly 

only one study thus far has evidenced that blocking protein degradation impairs LTD 

(Colledge, Snyder et al. 2003). To verify the reported effects, I performed a set of blind 

experiments under my experimental conditions. I stimulated CA3 pyramidal neurons by 

LFS and applied either anisomycin or lactacystin for one hour during LFS at the 

beginning of the experiment. The results confirm that application of anisomycin blocked 

the expression of LTD, as consistent with the literature. In contrast, application of 

lactacystin did not alter the level or the time course of LTD expression as compared to 

LTD without drug application (Figure 4-8). 
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Effects of blocking protein synthesis and protein degradation on the LTD-
dependent structural plasticity 

To test whether proteins must be produced for the expression of LTD-induced structural 

plasticity of axonal varicosities, I examined the effects of blocking protein synthesis on 

LTD-induced structural plasticity. Therefore, I repeated the LTD experiments described 

in 4.1.4 in the presence of anisomycin and analyzed the structural dynamics by counting 

the numbers of gained and lost axonal varicosities before and after LTD induction. My 

electrophysiological recordings confirmed that anisomycin blocked the expression of 

LTD in the analyzed experiments. In contrast to the case of baseline turnover of axonal 

varicosities, where anisomycin affected neither their gain nor their loss, I observed that 

anisomycin substantially impacted the LTD-induced increase in turnover of axonal 

varicosities (Figure 4-9 and Table 5).  

  

Figure 4-8: Functional expression of LTD was blocked by anisomycin, but not by lactacystin 

Application of anisomycin for one hour blocked the expression of LTD, while application of lactacystin did 

not. In the graph, amplitudes of fEPSPs are plotted over time. LTD induction is indicated by the black bar, 

the duration of drug application is indicated by the yellow and green bars. 
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Figure 4-9: LTD-induced presynaptic structural plasticity depended on protein synthesis and 
degradation 

The application of anisomycin or lactacystin blocked the LTD-specific varicosity turnover. (A) Electro-

physiological recordings. Application of pharmacological inhibitors are depicted as colored bars, LTD 

induction as black bar. (B) Examples of varicosity turnover. (C) Loss and gain of varicosities. Dark colors 

within each bar represent the relocalization mediated turnover. Scale bar: 5 µm. 
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Table 5 Effects of protein synthesis and degradation blockade on LTD-induced presynaptic 
structural plasticity 

 

Interestingly, blocking protein synthesis around the time of LTD-induction significantly 

reduced the LTD-associated loss of axonal varicosities to a level which was 

indistinguishable from the loss observed under baseline conditions. While anisomycin 

effectively prevented the LTD-induced increase in the loss of varicosities, its effect on 

the gain of axonal varicosities was less pronounced, reducing it slightly (by 13.6%) if 

anisomycin was present for one hour, and by 17.7% if anisomycin was present for the 

whole duration of the experiment (4h). However, neither effect reached significance. In 

summary, the presented data reports that anisomycin blocked the functional expression 

of LTD and impaired the LTD-induced enhancement of varicosity loss.  

To check whether anisomycin treatment affects structural changes other than de novo 

formation and straight loss of axonal varicosities, I counted the number of varicosities 

that were assembled or lost due to relocalization of axonal volumes (Figure 4-9 

and Table 5). Interestingly, the number of axonal varicosities that disappeared in this 

manner was remained by large unchanged, indicating that blocking protein synthesis 

did not primarily affect relocalization processes. 
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I then used the drug lactacystin to examine the role of protein degradation for LTD-

associated structural plasticity. In marked contrast to the finding that lactacystin did not 

impair functional plasticity, lactacystin completely blocked the LTD-induced increase in 

turnover of axonal varicosities, indicating that LTD levels can be maintained even 

though LTD-induced increases in the turnover of axonal varicosities are blocked. 

(Figure 4-9 and Table 5).  

Next, I analyzed whether inhibiting protein degradation affected the number of 

varicosities that were created or lost due to volume relocalization (Figure 4-9 and Table 

5). In contrast to the LTD-induced increase in the turnover of axonal varicosities 

involving de novo formation and straight loss, this type of structural plasticity was not 

affected by lactacystin treatment. These results suggest that volume-mediated structural 

plasticity reflect distinct cell biological mechanisms that are not affected by functional 

plasticity. 

Taken together, these data report that baseline structural plasticity was independent 

from protein synthesis and degradation, whereas the LTD-specific turnover depended 

on the two processes. Furthermore, they reveal that about a third of all varicosity 

turnover was mediated by relocalization processes that were not altered by synaptic 

plasticity or pharmacological treatments. The presented data suggests that preexisting 

material can be used to form axonal varicosities, and that varicosity material can be 

retained after varicosity disassembly. Furthermore, they report the induction and 

maintenance of functional LTD without elevated loss of axonal varicosities during 

blockade of  protein degradation. 
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4.2 Detection of the synaptic marker VGluT-1-Venus at static 
and dynamic presynaptic axonal varicosities 

While it has recently been investigated how the formation of postsynaptic dendritic 

spines leads to synaptogenesis in synaptic plasticity, little is known about the formation 

of presynaptic terminals in dynamic axonal varicosities. To this end, I set out to 

characterize the functional status of morphologically identified stable and dynamic 

axonal varicosities. I monitored the presynaptic marker content of presynaptic axonal 

varicosities in CA3 hippocampal neurons using time-lapse microscopy.  

To examine if axonal varicosities comprise the potential of forming functional synapses, 

I monitored their content of an essential and specifically localized presynaptic protein. I 

used VGluT-1 (Vesicular Glutamate transporters) as synaptic marker, as Vesicular 

Glutamate Transporters are specifically localized to presynaptic terminals and essential 

for synaptic transmission of glutamatergic neurons (Bellocchio, Reimer et al. 2000; 

Wojcik, Rhee et al. 2004). VGluT proteins colocalize with glutamate-filled synaptic 

vesicles at presynaptic terminals, and they reliably label sites of neurotransmitter 

release. Moreover, their amount scales with synaptic strength (Wilson, Kang et al. 2005; 

Takamori 2006). VGluT-1 is the predominant isoform of glutamate transporters in 

mature CA3 and CA1 hippocampal neurons. For this reasons, VGluT-1 strongly implies 

the potential of axonal varicosities to release neurotransmitter and serves as synaptic 

marker in my experiments. Importantly, the localization of VGluT-1 to axonal varicosities 

cannot provide prove of presynaptic function or of the presence of a postsynaptic 

partner.  

In this chapter of my thesis, I examined the localization of VGluT-1-Venus to 

morphologically identified axonal varicosities. To this end, I used time-lapse two-photon 

imaging of knock-in VGluT-1-Venus mice - a courtesy from Etienne Herzog, Max Planck 

Institute for Experimental Medicine in Göttingen, Germany - in combination with acute 

labeling of CA3 neurons with a morphological marker. In addition to monitoring stable 

axonal varicosities, I investigated the VGluT-1-Venus content of dynamic axonal 

varicosities during structural plasticity.  
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4.2.1 VGluT-1-Venus localizes to presynaptic varicosities 

The VGluT-1-Venus knock-in mouse line I employed in my experiments expresses 

VGluT-1 fused to the fluorophor Venus under the endogenous promoter, resembling the 

endogenous conditions of VGluT-1 expression. However, the mouse line was recently 

generated and the expression of VGluT-1-Venus had not been fully characterized so 

far. Therefore, I set out to characterize the VGluT-1-Venus expression and to test if the 

mouse line provides a suitable tool for investigating VGluT-1 dynamics.  

To this end, I characterized the localization and specificity of VGluT-1-Venus expression 

in hippocampal Gähwiler cultures using two-photon microscopy of knock-in VGluT-1-

Venus mice in combination with acute labeling of CA3 neurons with morphological 

volume markers. In the first set of experiments, I performed bolus loading of Calcein 

red-orange AM in VGluT-1-Venus hippocampal cultures. I sequentially excited and 

monitored the two fluorophors Calcein-red orange AM and Venus to detect the 

morphology of CA3 neurons and VGluT-1-Venus, respectively.  

I observed that not all Gähwiler cultures from the homozygous VGluT-1-Venus mice 

displayed a detectable VGluT-1-Venus fluorescence at 15-20 days in vitro. The 

expression levels in all VGluT-1-Venus expressing cultures were high over all areas of 

the slices (n = 16 slices, Figure 4-10). Only these cultures were used to perform the 

experiments. 

The non-overlapping two-photon excitation spectra of Calcein and Venus required a 

sequential excitation of the fluorophors, which resulted in a small lateral displacement of 

the two single-color image stacks (~2-5 µm). This displacement was caused by 

chromatic aberrations, specific properties of the laser beam alignments as well as by a 

slow drift of the slice in the imaging chamber that occurred between the imaging 

sessions. It was manually corrected by aligning the image stacks to prominent 

structures in the slice that were visible in both emission channels (Figure 4-10). 
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Figure 4-10: VGluT-1-Venus exhibited a dense and punctate expression in knock-in VGluT-1-
Venus mice  

Imaging Calcein red-orange AM labeled hippocampal CA3 neurons in VGluT-1-Venus mice Gähwiler 

cultures. The two fluorophors Calcein and Venus were sequentially excited, and the displacement of the 

two channels was corrected manually. VGluT-1-Venus exhibited a punctate and dense staining that did 

not overlap with labeled CA3 cell somata. Left panel: Overview. Right panel: close up. Top: CA3 

population. Middle: VGlut-1-Venus. Bottom: Overlay. Scale bars: 10 µm. 
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In all experiments, the VGluT-1-Venus fluorescence (green channel) was detectable 

throughout CA3 and CA1 in a punctated fashion. Individual puncta appeared either as 

small oval shapes with a major diameter of 0.61 ± 0.02 µm, a minor diameter of 0.51 ± 

0.01 µm and a volume of 0.13 µm3 ± 0.07 µm3 (n = 66), or as larger, complex shaped 

formations. The larger formations were suggestive of two or more adjacent structures 

localized in close vicinity, beyond the optical resolution of the microscope. 

The density of the VGluT-1-Venus puncta was high, on average 42.2 ± 3.05 VGluT-1 

puncta per 100 µm3 (n = 10 slices), which is in the range of the density of presynaptic 

terminals in rat cortex (Own experiments: 4.2 ± 0.3 * 108 puncta / mm3, n = 10 slices. 

Literature: 2 – 40 * 108 synapses / mm3). In contrast, some oval-shaped areas of a 

major diameter of 28.83 ± 0.69 µm and a minor diameter of 12.58 ± 0.34 µm (n = 16) 

exhibited no staining at all. A subset of theses structures exhibited Calcein red-orange 

AM fluorescence (red channel), clearly indicating morphologically labeled CA3 cell 

bodies. Given the similarity of shape, orientation and parallel arrangement of the oval 

structures, the data strongly suggest that also most other unlabeled oval structures 

represent cell bodies. The data is in agreement with the reported absence of 

presynaptic specializations and VGluT-1 aggregations in cell somata (Takamori, Rhee 

et al. 2001). In summary, the visualized VGluT-1-Venus distribution of hippocampal 

Gähwiler cultures of VGluT-1-Venus knock-in mice was in agreement with the expected 

endogenous VGluT-1 distribution.  

Next, I examined the VGluT-1-Venus expression in axons and axonal varicosities of 

Schaffer collaterals. In the previous experiments, the displacement of the different 

fluorescence channels could be sufficiently aligned manually, as only larger structures 

were colocalized, but this post-hoc alignment was not accurate enough for correlations 

of axonal varicosities and VGluT-1-Venus on the sub-micrometer level. I therefore 

replaced Calcein red-orange AM with Alexa 568, a morphological marker that is 

excitable at the same wavelength as Venus. For each experiment, one or two CA3 

neurons were patch-filled with Alexa 568 and gave rise to multiple stained axons in CA1 

(red channel,Figure 4-11).  

 



57 
 

  

Figure 4-11: Alexa 568 labeled axons and endogenous VGluT-1-Venus were simultaneously 
detectable 

A single CA3 neuron was patch-filled with Alexa 568 which can be excited simultaneously to VGluT-1-

Venus, and its multiple axons were detectable in CA1. VGluT-1-Venus label colocalized with axons and 

spared out oval structures indicative of CA1 cell bodies. Top: Alexa 568 labeled axons. Middle: VGluT-1 

Venus. Bottom: Overlay. Scale bars: 10 µm. 
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VGluT-1-Venus (green channel) was expressed in the same punctuate pattern in CA1 

as in CA3, again sparing out oval structures (major diameter: 17.68 ± 0.64 µm, minor 

diameter: 11.7 ± 0.44 µm n=16). Colocalization of VGluT-1-Venus and the 

morphological marker Alexa 568 (red channel) revealed that 90.4% of all 

morphologically detected axonal varicosities contained VGluT-1-Venus fluorescence (n= 

337 varicosities, 6 experiments, Figure 4-12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-12: Morphologically identified axonal varicosities colocalized with VGluT-1-Venus  

CA3 cells were patch-filled with Alexa 568 and imaged on the VGluT-1-Venus mice background. 

Colocalization of axonal varicosities and VGluT-1-Venus was performed on single sections, revealing that 

90.4 % of all identified axonal varicosities were VGluT-1-Venus positive. Top left: Alexa 568 labeled axon 

and axonal varicosities. Middle left: VGluT-1-Venus. Bottom left: Overlay. Right: Summary, fraction of 

VGluT-1-Venus positive and negative axonal varicosities. Scale bars: 5 µm. 
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Given the high density of the VGluT-1-Venus label, it was expected that a fraction of 

axonal varicosities colocalized with VGluT-1-Venus due to random fluorescence 

overlap. To test for this number of varicosities that were VGlut-1-Venus positive by 

chance, one color channel of a data set was rotated by 180°. This control was analyzed 

in parallel with the non-rotated data in a blind fashion (Figure 4-13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the original data set, 85.0% of all axonal varicosities colocalized with VGluT-1, while 

the colocalization in the rotated data set was 40.0%. The results indicate the specificity 

of the label, yet also a relatively high by-chance colocalization, likely caused by the high 

density of the VGluT-1-Venus label.  

In some areas of the neuropil the punctuate VGluT-1-Venus labeling was enriched, 

assembling to tubes with an inner diameter ranging from 0.52 µm to 1.35 µm (average: 

Figure 4-13: Comparison of specific versus by-chance colocalization confirmed the specificity of 
the VGluT-1-Venus label 

To control for unspecific colocalization, a single data set was analyzed after correct overlay of the two 

fluorescent channels (“experiment”, left bars) and after rotation of one channel (“control”, right bars) In the 

experiment, 85.0% of axonal varicosities colocalized, while in the control, only 40.0% colocalized. The 

colocalization of the control conditions was non-specific and caused by a high density of the VGluT-1-

Venus label that overlaped with varicosities by chance. Experiments were analyzed blind regarding the 

condition. 
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0.94 µm ± 0.06 µm, n=16.Figure 4-14). The steric organization of VGluT-1-Venus 

suggests the sheathing of a round, branched structure in the center of the tube. 

Speculatively, the presynaptic structures possibly target postsynaptic excitatory 

dendrites or inhibitory neuronal processes. However, I never detected a labeled CA3 

dendrite within the tubular structure, and the postsynaptic partners remained unknown.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-14: VGluT-1-Venus was occasionally enriched in tubular structures  

VGluT-1-Venus puncta formed tubular structures of 0.94 ± 0.06 µm diameter, indicative of surrounding a 

neuronal process. Scale bar: 10 µm. 
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In summary, the experiments thus far document that VGluT-1-Venus fluorescence is 

easily detectable, specifically localizes to axonal varicosities and corresponds to the 

expression pattern of the endogenous VGluT-1 protein.  

4.2.2 VGluT-1-Venus accumulates at newly formed axonal varicosities 

To functionally contribute to network activity, the formation of an axonal varicositiy must 

be completed by proteins that enable their proper functionality. Recent experiments 

such as Calcium imaging provided first evidence that new axonal varicosities can 

rapidly gain the potential for Calcium influx, a crucial signaling step for mediating the 

release of glutamate filled synaptic vesicles (Becker, Wierenga et al. 2008). However, 

these experiments lacked information about the synaptic vesicle content itself. To date, 

the functional status of dynamic axonal varicosity remains mostly unknown. To expand 

the current knowledge, I set out to investigate the content of a synaptic marker protein 

at dynamic axonal varicosities. 

To this end, I monitored the presence of VGluT-1-Venus at newly generated 

varicosities, and tested for VGluT-1-Venus localization prior to varicosity disassembly. 

Using time-lapse two-photon microscopy of VGluT-1-Venus knock in Gähwiler cultures 

and morphologically labeled CA3 axons, I followed the structural plasticity of individual 

axonal varicosities in combination with VGluT-1-Venus over the time course of four 

hours. The approach allowed to investigate if dynamic varicosities acquire VGluT-1-

Venus up to four hours after their morphological assembly, or if they remain without the 

synaptic marker protein. 

I observed that a fraction of newly formed varicosities colocalized with VGluT-1-Venus 

while other new axonal varicosities did not (Figure 4-15). Out of 38 dynamic varicosities, 

55.3% (n=21) were VGluT-1-Venus positive at the end of the four hour imaging period, 

while 44.7% (n = 17) were VGluT-1-Venus negative. 
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Importantly, both values represent only estimates that include a systematic level of 

uncertainty: The number of VGluT-1-Venus negative varicosities may be an 

overestimation as they can contain VGluT-1 on sub-threshold levels. On the other hand, 

a fraction of VGlut-1-Venus positive axonal varicosities may be caused by non-specific 

colocalization with the VGluT-1-Venus fluorescence. However, given the ratio of specific 

vs. unspecific staining that was obtained in 4.2.1 and the low numbers of VGluT-1-

Venus prior to varicosity formation (see next paragraph), the high numbers of 

Figure 4-15: A fraction of new axonal varicosities contained VGluT-1-Venus after four hours 

Time lapse imaging of VGluT-1-Venus and morphology of axonal varicosities. While a fraction of new 

axonal varicosities had acquired VGluT-1-Venus at the end of the imaging period, others did not. Left two 

panels: Example new varicosity where VGluT-1-Venus had accumulated after four hours. Right two 

Panels: Example new varicosity where no VGlut-1-Venus was detectable after four hours. Rows from top 

to bottom: Morphological stain of varicosities (Alexa 568); VGluT-1-Venus; Overlap; Intensity plot: 

Fluorescence intensity of morphology (red) and VGluT-1 (green) along the axon. Scale bars: 5 µm. 
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varicosities that colocalized with VGluT-1-Venus clearly indicate that a remarkable 

fraction of the newly generated varicosities contain synaptic vesicles.  

Next, I tested for the fraction of axonal varicosities where VGluT-1-Venus fluorescence 

was present in the axonal area prior to varicosity formation. In 8 % off all cases (3 of 38 

observations) VGluT-1-Venus was detectable before and after varicosity formation. This 

small fraction of observations was, speculatively, caused by by-chance correlation of 

VGluT-1 and axonal varicosities, which appeared to be much lower than in 4.2.1. By 

demonstrating the absence of VGluT-1-Venus fluorescence in the majority of all 

observations (92%, 35 of 38 observations), my results strongly indicate that the 

formation of axonal varicosities was most often not preceded by VGluT-1 Venus 

accumulation. However, obtaining more overall events and comparing the colocalization 

numbers to the by-chance colocalization of the present data set would be required to 

further validate this hypothesis. 

The presented data indicates that newly formed axonal varicosities can rapidly (< 4h) 

acquire the synaptic marker VGluT-1-Venus. It moreover suggests that VGluT-1-Venus 

typically accumulates not prior, but predominantly during or after the morphological 

varicosity formation. However, the experiments so far could not clarify the time course 

of VGluT-1-Venus accumulation. To further temporally resolve the VGluT-1-Venus 

acquisition, I performed time lapse experiments with 30 minutes imaging intervals and 

characterized the time course of two example axonal varicosities. In one case, the 

newly formed varicosity was VGluT-1-Venus positive, and in a second case the newly 

formed varicosity was VGluT-1-Venus negative (Figure 4-16). 
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Figure 4-16: VGluT-1-Venus accumulated at new varicosities after their initial volume formation 

Time-lapse experiments of newly assembled axonal varicosities with 30 min imaging intervals. Upper 

panels: Example axonal varicosity. VGluT-1-Venus accumulated with a one hour delay to the appearance 

of the varicosity volume. Lower panel: Example varicosity.VGluT-1-Venus did not accumulate at the new 

varicosity after 1.5 hours. Per panel: Top: morphological marker Alexa 568. Middle: VGluT-1-Venus. 

Bottom: Overlay. Arrows indicate the accumulation of VGluT-1-Venus at varicosities. Scale bars: 5 µm. 
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In the first example, the axonal area where the varicosity formed did not contain 

detectable VGluT-1-Venus levels at the beginning of the experiment. After two hours of 

experiment, the varicosity volume appeared in the red fluorescence channel as 

displayed by the morphological volume marker Alexa 568. After three hours, VGluT-1-

Venus became detectable at the newly formed axonal varicosity. Thus, the increase in 

volume marker fluorescence preceded the accumulation of VGluT-1-Venus by one hour 

(Figure 4-16), suggesting that volume formation preceded the accumulation of 

glutamate-filled synaptic vesicles. The data is in agreement with the observation 

described earlier in this chapter, where after four hours a fraction of varicosities 

contained VGluT-1-Venus, and it suggests that the formation of morphological volume 

can precede the accumulation of the synaptic marker protein. 

In the second example, the new axonal varicosity was detectable by the volume marker 

after three hours of imaging. Again, the respective axonal area did not contain 

detectable levels of VGluT-1-Venus before varicosity formation. In contrast to the first 

example, this axonal varicosity neither comprised VGluT-1-Venus at the end of the four 

hour imaging session nor at any time point in between, suggesting that synaptic 

vesicles did not accumulate at the varicosity until the end of the experiment. 

Interestingly, the examined varicosity appeared later than the varicosity before, and it 

remained possible that it acquired VGluT-1-Venus yet with similar kinetics as the first 

example. Notebly, both axonal varicosities did not comprise VGluT-1-Venus 

fluorescence before varicosity formation, which is consistent with the previous 

experiments in this chapter and suggests that the volume formation precedes the 

accumulation of the synaptic marker.  

In summary, the data infer that a fraction of newly formed axonal varicosities can rapidly 

acquire synaptic vesicles after their formation. Despite low numbers of observations, the 

findings favor the hypothesis that varicosity formation precedes the accumulation of the 

synaptic marker VGluT-1-Venus, and it disfavors the hypothesis that morphological 

varicosity formation typically follows the accumulation of VGluT-1-Venus.  
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4.2.3 VGluT-1-Venus content of instable axonal varicosities 

While to date few knowledge is available about the functional status of newly generated 

axonal varicosities, even less is known about the functional capacity of axonal 

varicosities shortly before their disassembly. A former study had reported functional 

calcium transients in new varicosities, but the technical properties of calcium imaging 

had thus far not allowed to investigate calcium transients in disassembling varicosities 

(Becker, Wierenga et al. 2008).  

I aimed to test if instable axonal varicosities contain a synaptic marker protein prior to 

their disassembly. To address this question, I analyzed the previous VGluT-1-Venus 

time lapse experiments for axonal varicosities that were disassembled, benefiting from 

the ability to retrospectively identify instable axonal varicosities and to sample relatively 

high varicosity numbers within the experiments. Most imaging data was obtained in two-

timepoint experiments (Figure 4-17).  
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Figure 4-17: VGluT-1-Venus content of disassembling axonal varicosities 

Time lapse imaging of VGluT-1-Venus and axonal varicosities that were disassembled within the four 

hour imaging period. Six out of seven varicosities did not contain detectable VGluT-1-Venus levels within 

4 hours before their disassembly. Left column: varicosity at the beginning of the experiment (0h). Right 

column: varicosity at the end of the experiment (4h). Rows from top to bottom: morphological varicosity 

fluorescence, VGluT-1-Venus fluorescence; Overlay; Intensity plot: fluorescence intensity of morphology 

(red) and VGluT-1-Venus fluorescence (green) along the axon. Scale bar: 5 µm. 
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I detected seven varicosity loss events, and in six out of seven cases the axonal 

varicosity did not contain detectable amounts of VGluT-1-Venus at the beginning of the 

experiment. Despite low numbers, the data report that synaptic markers were not 

always maintained until the disassembly of the varicosity volume. It would be interesting 

to clarify in further time-lapse experiments if the axonal marker disappeared prior to 

assembly, or if it was never present at the disassembled varicosity. However, I did not 

yet obtain a detailed time course of a varicosity disassembly.  

In my experiments, I observed the dynamics of a VGlut-1-Venus negative axonal 

varicosity in a detailed time course experiment with 30 minutes imaging intervals (Figure 

4-18).  

 

 

  

Figure 4-18:A VGluT-1 negative axonal varicosity exhibited unstable properties in detailed time-
lapse 

Time lapse experiment of VGluT-1-Venus and the morphology of an example axonal varicosity. The 

respective varicosity was selected as an example of a VGluT-1-Venus negative varicosity, and was then 

analyzed in a detailed time course. The varicosity temporarily disappeared between 2h and 3.5h. Rows 

from top to bottom: morphological marker fluorescence, VGluT-1-Venus fluorescence; Overlay. Scale bar: 

5 µm. 
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In the example, the morphological maker (red channel) showed the presence of the 

axonal varicosity simultaneous with a lack of VGluT-1-Venus (green channel) at the 

beginning and the end of the experiment. Surprisingly, the morphological structure was 

not detectable in intermediate time points (2h - 3.5h), revealing that the regarded 

morphological volume of the varicosity was transient. In parallel, VGluT-1-Venus was 

not detectable at any time point of the experiment. The data provide an example that a 

transient varicosity did not contain detectable levels of VGluT-1-Venus. It would be of 

interest to investigate if the same finding also applies for other transient varicosities. 

The data is in agreement with the hypothesis that the accumulation of a synaptic marker 

protein requires the stable presence of the morphological varicosity volume.  

In summary, despite the few numbers of observations (n=7), the results suggest that 

axonal varicosities that undergo disassembly typically did not contain an accumulation 

of synaptic markers. They either lost the synaptic markers before the morphological 

shrinkage or they never contained them.  

4.2.4 VGluT-1-Venus content of merging axonal varicosities 

In the first part of my thesis I reported the reorganization of preexisting axonal material 

as important mechanism for axonal varicosity turnover. It was therefore of interest to 

investigate if merging and dividing axonal varicosities contain the synaptic marker 

VGluT-1-Venus, and if VGluT-1-Venus relocalizes in parallel to the volume 

relocalization. I obtained one example of two merging axonal varicosities in a detailed 

time course experiment (Figure 4-19).  
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In the figure, the morphological marker Alexa 568 depicts the existence of two individual 

varicosities at the beginning of the experiment. After one and 1.5 hours, the two 

varicosities had reached an intermediate stage where they were inseparably close to 

each other, yet still formed two individual fluorescent peaks. After three and 3.5 hours 

the varicosities had merged into one morphological structure displaying only one center 

of maximal fluorescence, which spread out again at the end of the experiment (4 h).  

The morphological relocalization was paralleled by the relocalization of the VGluT-1-

Venus accumulations. At the first time point, each varicosity colocalized individually with 

VGluT-1-Venus. At the intermediate stage of 1 and 1.5 hours, VGluT-1-Venus was 

Figure 4-19: Merging of two varicosities was accompanied by merging of individual VGluT-1-Venus 
puncta 

Time lapse experiment of VGluT-1-Venus and morphology of an axonal varicosity. Two varicosities, each 

containing a single VGluT-1-Venus punctum, merged into a single varicosity after three hours. In parallel, 

the VGluT-1-Venus puncta also reorganized via an intermediate stage into a single VGluT-1-Venus 

accumulation. Rows from top to bottom: morphological varicosity fluorescence, VGluT-1-Venus; Overlay. 

Scale bar: 5 µm. 
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detectable in three close but distinct accumulations within this intermediate structure, 

while no VGluT-1-Venus resided in the axonal area where the axonal varicosities had 

previously been localized. Paralleling this, the VGluT-1-Venus fluorescence had 

concentrated in one larger accumulation at the center of the merged varicosities. 

Finally, after 4 hours the fluorescence was detectable again as multiple puncta. The 

data describe that the merging of two varicosities can occur in parallel to simultaneous 

relocalizations of synaptic vesicles. It suggests that merging of two varicosities can be 

accompanied by the merging of the individual synaptic vesicle pools, recycling 

preexisting synaptic constituents. However, if this example represents a general 

mechanism and if varicosities that relocalize over larger distances also contain synaptic 

markers during traffic requires further testing.   
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5 Discussion 

Activity-dependent changes of synaptic connectivity provide an important cellular 

mechanism for learning and memory. Since the advent of new imaging techniques in 

recent years allowed to investigate morphological dynamics in physiological networks, 

structural plasticity and its link to synaptic functionality have been intensively studied. 

While most studies concentrated on morphological changes of postsynaptic spines, little 

is known about presynaptic structural plasticity of axonal varicosities, the morphological 

specializations of presynaptic terminals. The underlying cellular mechanisms of baseline 

and activity-dependent presynaptic structural plasticity remain mostly unknown to date, 

and the potential of dynamic axonal varicosities to form functional synapses remains by 

large elusive. To this end, I set out to characterize structural and cellular mechanisms of 

presynaptic axonal varicosities and to investigate the synaptic marker content of stable 

and dynamic axonal varicosities.  

In my thesis, I used a combination of time-lapse two photon imaging, 

electrophysiological recordings and pharmacology in organotypic hippocampal cultures 

to observe different types of structural dynamics and to investigate the effect of protein 

synthesis and degradation blockade on baseline and plasticity-associated varicosity 

turnover. By time-lapse imaging VGluT-1-Venus mouse line hippocampal cultures I 

observed the synaptic marker protein VGluT-1-Venus content of stable and dynamic 

axonal varicosities. 

I report that distinct types of morphological dynamics contributed side by side to the 

turnover of axonal varicosities. De novo formation and straight loss provide means to 

gradually adapt presynaptic size, and relocalization processes allow to step-wise 

change presynaptic structures. The data showed that new varicosities could emerge 

without acute protein synthesis, and that varicosities could disassemble without protein 

degradation, implying the use and recycling of varicosity proteins from a preexisting 

pool of varicosity constituents. In contrast to baseline turnover, plasticity-induced 

turnover of axonal varicosities required the synthesis and degradation of proteins, 

indicating the need for additional presynaptic factors. 90 % of all stable varicosities 
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colocalized with a synaptic marker protein, and a considerable fraction of dynamic 

varicosities acquired the synaptic marker within four hours after their appearance. The 

results suggest the functionality of axonal varicosities and that a subset of dynamic 

varicosities can rapidly acquire the potential to exert presynaptic function. Moreover, the 

reported data indicate that structural volume dynamics typically precede the 

accumulation of the synaptic marker protein. In summary, my thesis provides novel 

insights into cellular mechanisms and functional consequences of structural plasticity. 

5.1 Dependence of presynaptic structural plasticity on 
protein synthesis and degradation  

5.1.1 Distinct types of morphological dynamics of axonal varicosities 

The experiments in this thesis describe that formation of new axonal varicosities can be 

mediated by distinct types of structural dynamics. De novo formation and straight loss 

referred to the growth and shrinkage of bulbus-shaped axonal varicosities on a much 

dimmer stretch of axon, whereas relocalization of axonal volumes referred to the 

rearrangements of visible clusters that fulfilled the size criteria of axonal varicosities but 

displayed a higher mobility. De novo formation and straight loss enable the gradual 

adaptation of the size of axonal varicosities, and relocalization processes can provide 

an intriguing mean to change presynaptic size in defined steps. Axonal volumes divided 

and coalesced with other motile volumes or presynaptic stable varicosities, rapidly 

altering their size, or stabilized as whole entity to form a presynaptic varicosity. It has 

been reported that the size of axonal varicosities strongly correlates with the size of the 

synaptic vesicle reserve pool and synaptic strength (M. B. L. Yeow 1991; Pierce and 

Mendell 1993), and thus fusion and fission of volumes possibly provide mechanisms to 

rapidly modulating the functional strength of presynaptic terminals. The relocalization 

processes also included the slow merging or dividing of neighboring axonal varicosities, 

indicative of merging their individual synaptic protein content. It would be interesting to 

monitor if structural relocalizations are accompanied by the relocalizations of 

presynaptic marker proteins to further answer this questions. While I provide an 
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intriguing example in 4.2.4 that indeed a functional marker relocalizes together with 

morphology, this question awaits further study.  

In addition to rapidly altering presynaptic size of axonal varicosities, the motile volumes 

may themselves represent functional units. It has been reported that axonal volumes 

that split from pre-exisiting varicosities as well as motile transport vesicles can undergo 

depolarization-dependent synaptic vesicle release. (Kraszewski, Mundigl et al. 1995; 

Dai and Peng 1996; Krueger, Kolar et al. 2003). It would be interesting to experimentally 

test if the motile axonal volumes display functional properties, e.g. by synaptic vesicle 

proteins fused to pH-sensitive pHluorins, Calcium imaging or other synaptic markers.  

It is currently subject of research if motile volumes stabilize randomly along the axon or 

if they preferentially stabilize at predefined sites. For developing neurons, the existence 

of predefined sites along axons has been reported, where STVs (synaptic vesicle 

protein transport vesicles) preferentially pause and form varicosities (Sabo, Gomes et 

al. 2006). A couple of observations within my data-set go in line with this hypothesis, as 

they are suggestive for predefined sites: For example, I detected the salutatory moving 

and pausing of axonal volumes, and the repeated stabilization of an axonal volume at 

the same axonal site. In some instances, the same axonal site was subject of varicosity 

loss, also suggesting a predefined site. (Figure 5-1).  However, the examples remained 

rare occasions.  

 

 

 

 

 

 

 

 

Figure 5-1: Suggestive examples of predefined pause sites along axons 

Kymographs of time series of volume relocalizations and varicosity turnover. The axon stretches along 

the x- axis, time is represented on the y axis. (A) Saltatory movement. An axonal volume moves laterally 

and stabilized intermittently. (B) Repetitive visit of a varicosity at the same axonal site before 

stabilization. (C,D,E) The loss of a varicosity was followed by the gain of a varicosity at the same axonal 

site. Scale bars: 5 µm.  
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The bidirectional translocation, splitting and merging behavior of axonal volumes is in 

agreement with studies on synaptic vesicle protein transport vesicles (STVs) and 

piccolo-basson transport vesicles (PTVs) in developing neurons (Kraszewski, Mundigl 

et al. 1995; Dai and Peng 1996; Nakata, Terada et al. 1998; Ahmari, Buchanan et al. 

2000; Zhai, Vardinon-Friedman et al. 2001; Shapira, Zhai et al. 2003; Sabo, Gomes et 

al. 2006). However, despite the similarity in behavior, it remains unknown if the detected 

volumes resemble particles similar to STVs or PTVs. Rearrangements of clustered 

volumes are reported to be predominant mechanism for assembling nascent synapses 

(Kraszewski, Mundigl et al. 1995; Shapira, Zhai et al. 2003; Ziv and Garner 2004), but 

their contribution to presynaptic formation has only rarely been described (Krueger, 

Kolar et al. 2003). Other reports proposed exchange processes on the single molecule 

level to regulate the presynaptic protein content (Tsuriel, Geva et al. 2006). My 

experiments extend the current knowledge by reporting the two processes side-by-side 

in mature networks and under physiological conditions.  

It is possible that the volume rearrangements reported in my thesis underestimate the 

actual number of rearrangements and that the imaging rate of one frame per 30 minutes 

temporally undersamples. To assure the same identity of the volume between imaging 

sessions, I included only volumes with a maximum velocity of 4 µm / 30 min, a rate that 

is considerably slower than the velocity reported for mobile STV and PTVs between 

pause sites (0.1-1 µm/sec). (Kraszewski, Mundigl et al. 1995; Nakata, Terada et al. 

1998; Ahmari, Buchanan et al. 2000; Kaether, Skehel et al. 2000; Ziv and Garner 2004). 

It is thus possible that I only observed a slow subpopulation of all motile axonal volumes 

and thus underestimate the contribution of relocalization processes. However, I had 

also performed experiments with faster imaging rates on VGluT-1-Venus Gähwiler 

cultures (1 image / 5 minutes) where I did not detect a higher amount or a faster rate of 

relocalizations (data not shown). The difference between my observed velocity and the 

velocity of PTVs and STVs can potentially be explained by their pausing behaviour. As 

the total velocity of varicosities is likely dominated by the number of pauses and pause 

duration, it is possible that changing the pausing behavior leads to an overall slower 

motility of axonal volumes.  
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5.1.2 Dependence of baseline turnover on protein synthesis and 

degradation 

To investigate cellular mechanisms of axonal varicosity turnover, I tested the effect of 

acute protein synthesis and degradation blockade on the loss and gain of varicosities. 

My experiments reveal that turnover of axonal varicosities was independent from acute 

protein synthesis and degradation. As the rates of gain and loss remain unaltered 

during acute protein synthesis and degradation blockade, the data indicates that new 

varicosities can emerge without the generation of new proteins, and that axonal 

varicosities can disassembly without degrading proteins. Also, the relative fractions of 

the distinct turnover types remained unchanged, indicating that none of the required 

protein synthesis or degradation. The data infers that the constituents for axonal 

varicosities preexisted before their formation and that they can persist after their 

disassembly, implying a shared pool of presynaptic varicosity proteins.  This hypothesis 

is substantiated by reports that single molecules and synaptic vesicles can be shared 

amongst synapses (Chi, Greengard et al. 2001; Darcy, Staras et al. 2006; Tsuriel, Geva 

et al. 2006). Alternatively, it would also be possible that presynaptic constituents directly 

recycle without contributing to a ‘buffering’ pool. However, the loss of an axonal 

varicosity was not always accompanied by the gain of another varicositiy in the same 

axon and vice versa, and varicosity turnover was not balanced within single axons, 

arguing against this hypothesis. Moreover, the presynaptic turnover rates were 

maintained during acute blockade of protein synthesis or degradation for one or four 

hours, suggesting that the available protein pool is large and stable enough to persist 

even when it is not replenished for longer periods. The hypothesis of a presynaptic 

protein pool leads to new hypotheses. For example, a shared pool of proteins may lead 

to competition amongst synapses for the same proteins - a similar mechanism has been 

reported on the postsynaptic side (Fonseca, Nägerl et al. 2004). 

I document that gain and loss of axonal varicosities remains unchanged during protein 

synthesis and degradation blockade, arguing against the possibility that the constituents 

of varicosities are acutely synthesized or degraded at the site of the dynamic varicosity. 

The data is in agreement that local synaptic translation has been reported in many 
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cases for postsynaptic densities, but not for presynaptic axonal varicosities (Martin 

2004; Martin and Zukin 2006; Schuman, Dynes et al. 2006; Bramham and Wells 2007). 

The presented data argue against the requirement of acute presynaptic local protein 

synthesis and degradation for baseline varicosity turnover. 

Neuronal viability during blockade of protein synthesis and degradation 

The aim of my baseline experiments was to observe a constitutive varicosity turnover 

that corresponds to a functionally stable neuronal population without net changes in 

synaptic transmission. I therefore subjected all experiments to strong quality criterions 

to assure neuronal healthiness and unchanged electrical properties. First, all 

experiments with unstable electrophysiological properties were discarded, and I 

included only those baseline experiments where synaptic transmission remained 

greater than 80% of the initial values. This decline in synaptic transmission has been 

frequently reported (Frey, M et al. 1988; Fonseca, Nägerl et al. 2004; Fonseca, Nägerl 

et al. 2006; Fonseca, Vabulas et al. 2006; Becker, Wierenga et al. 2008). Second, I 

excluded experiments that exhibited morphological signs of degradation, such as axon 

blebbing or axon disintegration. Third, the age of the slice cultures was chosen 

accordingly to monitor a functional mature network with stable transmission properties. 

At this age (10-20 days in vitro), the gross of synapse formation has already taken place 

and the neuronal population is intact and healthy. In my experiments, the turnover of 

synapses is nearly balanced, with a net increase of 0.5 synapses / 100 µm and 

corresponding to what has been reported in this culture system before (Becker, 

Wierenga et al. 2008).  To ensure that neuronal viability was not impaired by the 

pharmacological treatments, I applied the pharmacological inhibitors for a duration of 

one hour, a treatment that has been frequently performed without affecting neuronal 

viability (Sajikumar and Frey 2003; Fonseca, Nägerl et al. 2004; Fonseca, Vabulas et al. 

2006; Fioravante, Liu et al. 2008). Furthermore, the simultaneous field recordings within 

the same experiments reassured the healthiness of the neuronal population. 

Conversely, the duration of pharmacological inhibitor application has already been 

reported to be effective in hippocampal slices (Fonseca, Vabulas et al. 2006).  
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In summary, the data of this chapter strongly implies that baseline turnover is 

independent of protein synthesis and degradation and relies on the recycling of 

presynaptic material. It suggests the existence of a presynaptic protein pool for baseline 

presynaptic structural plasticity.  

5.1.3 LTD-induced turnover of axonal varicosities 

The presented data confirmed previous findings that LTD induction enhances varicosity 

turnover. Until recently, the effect of functional synaptic plasticity on presynaptic axonal 

varicosities had remained elusive, but it was intuitively hypothesized that LTD would 

lead to a loss of presynaptic varicosities, paralleling postsynaptic spine plasticity 

(Nägerl, Eberhorn et al. 2004). Surprisingly, a recent study from this laboratory reported 

that the induction of LTD enhanced both assembly and disassembly of varicosities 

without reducing their total numbers (Becker, Wierenga et al. 2008). The data of my 

thesis provide an important confirmation of the previous findings from Becker et al. and 

extend them by reporting that not all types of turnover are activity-dependent: While de 

novo gain and straight loss are significantly enhanced by LTD, relocalization processes 

remain largely unaffected. It is possible that de novo gain and straight loss are regulated 

differently than relocalization processes. However, it is also possible that the lower 

numbers of relocalizations in combination with a high variance of the data mask an 

effect, and further testing would be required to fully answer this question.  

5.1.4 Dependence of LTD-induced turnover on protein synthesis and 

degradation 

The data of this thesis reports that ubiquitin-dependent protein degradation was not 

required for LFS-induced LTD, which is in marked contrast to a report in the literature 

(Colledge, Snyder et al. 2003), where comparable concentrations of lactacystin in acute 

slices abolished LTD. However, while the effect of protein synthesis on LTD is widely 

established, the effect of protein degradation has not been reproduced in the literature 

thus far, and my experiments are in agreement with unpublished findings of Schuman et 

al. Colledge et al. used a different LTD-inducing protocol (intracellular pairing of pre- 

and postsynaptic potentials) as well as a similar yet different experimental system which 
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potentially explains the diverging results. However, my data put a general requirement 

of protein degradation for LTD into question.  

5.1.5 Dependence of LTD-induced turnover on protein synthesis and 

degradation 

It has previously been demonstrated that blocking protein synthesis or protein 

degradation impairs functional synaptic plasticity without affecting baseline transmission 

(Frey, M et al. 1988; Sajikumar and Frey 2003), but it remained unknown if the two 

processes are also important for plasticity-induced presynaptic structural dynamics. The 

presented data reports that protein synthesis and degradation critically regulate the 

LTD-induced turnover of presynaptic varicosities and imply that LTD-induced 

presynaptic structural plasticity involves the active regulation of cellular processes. 

While the constitutive turnover can rely on a pool of presynaptic proteins, the plasticity-

induced turnover requires synthesis and degradation of novel factors, implying the need 

for presynaptic structural plasticity factors which distinguish plasticity-specific turnover   

from baseline turnover. A similar concept has already been established for postsynaptic 

neurons, where protein synthesis of plasticity factors is required for the stable 

expression of functional and structural synaptic plasticity (Frey and Morris 1997; 

Steward and Worley 2001; Bramham and Helen 2007). I here report that a similar 

requirement of protein synthesis and degradation exists for presynaptic structural 

plasticity. While it was elucidated for the postsynaptic side that plasticity factors must 

exert their functions directly at the postsynaptic spine (Bramham, Worley et al. 2008), it 

remains unknown if the presynaptic proteins are required also locally, or if they affect 

cell-wide mechanisms.  

I report that the effects of protein synthesis and degradation blockade are complex and 

indirect, and blocking protein degradation abolished not only the loss, but also the gain 

of varicosities, documenting that blocking protein synthesis does not only acts on 

degrading but also on assembling varicosities. Conversely, blocking protein synthesis 

had a prominent effect on the disassembly of varicosities. Both findings indicate that the 

processes are involved in upstream mechanisms that affect both sides of turnover. 
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Notably, the blockade of protein synthesis only partially reduced the plasticity-

dependent gain of presynaptic varicosities, and this incomplete effect was not caused 

by the duration of anisomycin application, as similar experiments with four hours of 

anisomycin application yielded identical results. Although the cause of the partial 

reduction remains elusive, it is not surprising with regards to the indirect role of protein 

synthesis and degradation on structural plasticity. Also, turnover levels do not 

completely break down but return to the constitutive turnover levels, indicating no 

interference between baseline and activity-dependent structural plasticity. This 

independence may enable the selective modulation of presynaptic structures in synaptic 

plasticity without altering the baseline properties of the hippocampal network.  

This thesis provides data about the functional expression of LTD without an elevated 

loss of axonal varicosities. In my experiments, functional LTD was induced and 

maintained for two hours while the structural turnover was abolished. However, I 

detected an increase of fEPSP sizes at the end of some experiments, possibly caused 

by the intrinsic experimental variability. Further experiments would be required to clarify 

this instability. However, I here report that LTD is induced and maintained for two hours 

without the corresponding loss of presynaptic axonal varicosities. The data highlights 

the question if structural plasticity contributes to the functional expression of the ongoing 

synaptic plasticity or if it rather contributes to the potential of the network for future 

plasticity. The results indicate that the loss of synaptic structures is not required for the 

current expression of LTD. 

5.1.6 Functionality of axonal varicosities 

In my thesis, I visualized the assembly and disassembly of presynaptic varicosities 

along Schaffer collateral axons that are indicative of presynaptic terminals. Several lines 

of evidence suggest that the majority of axonal varicosities represent functional 

presynaptic specializations: First, presynaptic specializations of Schaffer collaterals are 

localized in axonal varicosities (Palay 1956), and I carefully opted for structures that 

resembled the reported morphology (Ziv and Garner 2004). Second, a recent study 

within this laboratory that engaged the same labeling and detection techniques 

demonstrated that 89% and 80% of all axonal varicosities colocalized with the 
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presynaptic marker proteins Synapsin and VGluT-1, respectively (Becker, Wierenga et 

al. 2008). This study also confirmed the presence of the presynaptic constituents on the 

ultrastructural level and confirmed a Ca2+ concentration rise associated with action 

potential firing in presynaptic varicosities, an important functional criterion for 

presynaptic function. Finally, in the second chapter of the results, I report that 90.4% of 

all morphologically identified varicosities colocalized with VGluT-1-Venus fluorescence, 

a strong indicator for potentially functional synapses.  

While the given data strongly imply the synaptic identity for the total population of 

axonal varicosities, the synaptic nature of dynamic varicosities remains more elusive, 

and I addressed this aspect in further detail in the second part of the results. To select 

potentially functional varicosities, I only subjected those varicosities to analysis that 

were stably localized (movements less than 1 µm / h) for at least 30 minutes (two 

consecutive time points). I excluded the more mobile structures as stable localization is 

an essential prerequisite for synaptic transmission, because synapse formation requires 

a stable physical contact between presynaptic varicosity and postsynaptic spine. This 

contact must be established and requires the alignment of presynaptic active zone and 

the postsynaptic density before proper functioning. The formation of a postsynaptic 

density has been described to be completed within 30 minutes (Nikonenko, Jourdain et 

al. 2003), and Becker et al. have shown that the majority of new varicosities exhibit Ca2+ 

transients 30 minutes after their initial appearance (Becker, Wierenga et al. 2008). 

Finally, it has also been reported that newly formed varicosities can become release-

competent within this time (Friedman, Bresler et al. 2000), and an even faster time 

course was indicated by Krueger et al. (Krueger, Kolar et al. 2003).  

In summary, different lines of experimental evidence indicate that my analysis considers 

axonal varicosities that are likely to represent functional presynaptic specializations. 

Nevertheless, it remains an open and important question if dynamic varicosities are 

functional and contribute to a functional synapse with a postsynaptic partner.  
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5.2 Functional status of static and dynamic axonal 
varicosities investigated by VGluT-1-Venus time-lapse 
imaging 

The contribution of morphological plasticity of postsynaptic spines to the formation of 

functional synapses has recently been investigated (Knott, Holtmaat et al. 2006; Nagerl, 

Kostinger et al. 2007), but the functional status of dynamic presynaptic varicosities 

remained largely unknown to date. As the development of novel microscopy and 

labeling techniques since recently allows to study presynaptic structural turnover in 

combination with functional indicators of presynaptic terminals in physiological 

networks, I set out to better understand the functional status of static and dynamic 

axonal varicosities. In the second part of my thesis, I performed time lapse two photon  

microscopy of a novel knock-in mouse line in combination with acute labeling of 

morphological structures to simultaneously monitor presynaptic morphology and the 

dynamics of VGluT-1-Venus (Vesicular glutamate transporter 1 - Venus) which served 

as synaptic marker in my experiments. The presented data contribute to the current 

knowledge by describing that a considerable fraction of new varicosities rapidly (< 4h) 

acquired the synaptic marker protein that indicates the potential for presynaptic function. 

The observations strongly suggest that formation of morphological varicosity volumes in 

the axon typically precedes accumulation of VGluT-1-Venus, and conversely, that 

VGluT-1-Venus accumulation is lost prior to varicosity disassembly. These data provide 

novel insights into the potential of dynamic axonal varicosities to become functional, and 

document the time course and sequence of presynaptic assembly by time-lapse 

imaging in physiological networks. I report that VGluT-1-Venus accumulations can 

coalesced in parallel with the fusion of morphological volumes, indicating that functional 

constituents of synaptic varicosities can undergo recycling and that fusion of axonal 

varicosity potentially alters synaptic function. The presented data links structural 

dynamics to functional changes and enhances the understanding of functional 

consequences of structural plasticity. Finally, the results describe the VGluT-1-Venus 
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knock-in mouse as a well-suited system for the simultaneous investigation of 

presynaptic structure and a presynaptic marker protein with single synapse resolution.  

5.2.1 VGluT-1-Venus as synaptic marker  

To investigate the synaptic protein content of axonal varicosities and to better 

understand their functional status, I combined morphological volume labeling of CA3 

axons with monitoring a synaptic marker protein. As the physiological significance of 

this approach critically relies on the employed synaptic marker, it was initially tested to 

what extent VGluT-1-Venus was adequate for the intended use. Several lines of 

evidence confirm that VGluT-1-Venus specifically and reliably labeles presynaptic sites 

and serves as a strong indicator for presynaptic functionality.  

First, endogenous VGluT-1 protein has been reported as a synaptic maker: VGluT-

1confers glutamate uptake into synaptic vesicles in presynaptic terminals (Takamori, 

Rhee et al. 2000) and is specifically localized to glutamate-filled synaptic vesicles in 

presynaptic terminals. VGluT-1 is the prevalent isoform of vesicular glutamate 

transporters in the hippocampus (Fremeau, Troyer et al. 2001; Takamori, Rhee et al. 

2001) and essential for synaptic transmission of CA3 neurons. The total amount of 

VGluT-1 is thought to determine the amount of glutamate release from a single synaptic 

vesicle, determining the quantal size of synaptic neurotransmitter release (Wilson, Kang 

et al. 2005). Vesicular glutamate transporters are thought to be the most reliable way of 

visualizing sites of glutamate release (Takamori 2006). Therefore, VGlut-1 is a strong 

indicator for the presence of glutamate-filled synaptic vesicles at presynaptic sites. 

However, as a small fraction of hippocampal neurons partially or exclusively expresses 

VGluT-2 (Wojcik, Rhee et al. 2004; Etienne Herzog 2006), it remains possible that a 

small fraction of functional varicosities within my experiments do not contain VGluT-1. 

Although VGluT-1 strongly indicates the presence of synaptic vesicles at presynaptic 

sites, it cannot prove neurotransmitter release or presynaptic functionality, and it does 

not convey information about the presence of an opposed postsynaptic partner. 

Next, the presented two-photon data strongly suggest that the VGluT-1-Venus 

expression resembled the expression of the endogenous VGluT-1 protein. VGluT-1-
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Venus was expressed throughout all areas of the Gähwiler cultures in a punctate 

manner. The density of VGluT-1-Venus puncta corresponds with reported synaptic 

density in rat cortex, and the size of individual puncta is slightly smaller than the size of 

individual synaptic terminals within my experimental system (Figure 4-12). The 

observation of larger and complex shaped structures is likely due to the resolution limit 

of the microscope (0.37 µm in x / y dimension and 1.38 µm in z dimension at the 

present setup). The detection of complex structures is therefore in agreement with the 

narrow distribution of presynaptic terminals in the tissue. The expression pattern is 

devoid of oval structures that are strongly suggestive of pyramidal cell bodies by their 

size, shape and parallel arrangement, and Calcein-AM clearly identified a subset of oval 

structures as CA3 somata. Thus, the expression pattern is in line with the reported 

absence of VGluT-1 in the cell soma (Wojcik, Rhee et al. 2004).  

Finally, I report that 90.4 % of all morphologically labeled presynaptic terminals 

colocalized with VGluT-1-fluorescence, indicating its specific localization to presynaptic 

varicosities. In summary, the detected VGluT-1-Venus expression is consistent with the 

expression pattern of the endogenous protein. Nevertheless, a thorough comparison of 

VGluT-1-Venus expression and the endogenous protein by biochemical means will be 

essential to further test the applicability of the experimental system to mark functional 

presynaptic sites.  

Taken together, the function and localization of endogenous VGluT-1 in combination 

with the physiological expression pattern of VGluT-1-Venus strongly indicates that 

VGluT-1-Venus serves as synaptic marker. VGluT-1 primarily reports on the glutamate 

content of synaptic vesicles and the quantal strength of synaptic transmission. 

Moreover, it strongly indicates the size of the present synaptic vesicle pool, correlates to 

the strength of the synapse and documents the potential for synaptic function without 

proving functionality or conveying information about the apposed postsynaptic partner.    

5.2.2  VGluT-1-Venus content of stable axonal varicosities 

I report that a high fraction (90.4%) of all morphologically identified axonal varicosities 

colocalized with VGluT-1-Venus fluorescence, suggesting their potential for 
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functionality. The data is in line with previous reports that almost all varicosities of 

mature neurons comprise presynaptic molecular specializations and are functional 

(Palay 1956; Yao, Qi et al. 2006). Importantly, the reported numbers of the analysis are 

estimates that are influenced by intrinsic and methodological characteristics and 

possibly include false positive or false negative counts. First, the detection thresholds 

during image analysis may not detect weakly labeled structures or include non-

specifically overlapping structures. To estimate the number of unspecific colocalization, 

a comparison of specific versus rotated data was performed. The results clearly indicate 

that the majority of puncta are specifically localized as opposed to the rotated data that 

yielded a much lower colocalization. Still, a comparison of rotated versus non-rotated 

data will be required to validate the obtained data for each separate image analysis. 

Next, intrinsic properties may also lead to false negative counts, for example if only few 

synaptic vesicles are present as presumed for nascent synapses during development or 

for small synapses (Palay 1956; Ahmari, Buchanan et al. 2000). Their emitted 

fluorescence may remain below the sensitivity of the microscopy system. It thus cannot 

be excluded if the VGluT-1-Venus negative fraction contains subthreshold amounts of 

VGluT-1-Venus. It would furthermore be interesting to test to what extend the VGluT-1-

Venus containing presynaptic vesicles represent release competent presynaptic sites or 

functional synapses. Technically challenging experiments such as FM staining within 

Gähwiler cultures or simultaneous presynaptic stimulation and postsynaptic Calcium-

imaging would be required to address this question. Finally, I report the accumulation of 

VGluT-1 as tube-like structures, suggesting the dense accumulation around 

postsynaptic dendrites. It would be interesting to clarify if the postsynaptic partner is 

excitatory or inhibitory.  

In summary, the experiments report that the vast majority of morphologically identified 

presynaptic varicosities contain the synaptic marker VGluT-1-Venus, indicating their  

potential for functionality. This finding is in line with multiple previous reports that the 

vast majority of axonal varicosities represent presynaptic terminals (Palay 1956; M. B. 

L. Yeow 1991; Tsuriel, Geva et al. 2006; Yao, Qi et al. 2006; Becker, Wierenga et al. 

2008). More importantly, it strongly indicates that the morphologically identified axonal 
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varicosities in the first part of my thesis indeed represent potentionally functional 

presynaptic specializations. 

5.2.3 VGluT-1-Venus content of newly assembled axonal varicosities 

To date, it remains largely unknown how generation of axonal varicosities relates to 

synaptogenesis or to the formation of functional presynaptic terminals in mature 

networks (for review see (Ziv and Garner 2004)). The results of this thesis contribute to 

the current knowledge by documenting that a substantial fraction of axonal varicosities 

can rapidly acquire synaptic markers and by suggesting that the acquisition of this 

marker is delayed to the formation of the morphological volume. 

In my experiments, 55% of all newly formed varicosities rapidly (<4h) acquired 

detectable levels of VGluT-1-Venus fluorescence (21 of 38 observations). The observed 

VGluT-1-Venus puncta were typically smaller than the VGluT-1 fluorescence of 

neighboring varicosities. As the amount of VGluT-1 scales with the amount of 

neurotransmitter per synaptic vesicle release (Takamori, Rhee et al. 2000; Wilson, Kang 

et al. 2005), the results are in agreement with the hypothesis that newly formed 

presynaptic terminals were weaker than stable synapses. The data corresponds with 

reports that newly formed varicosities are substantially smaller than stable varicosities 

(Becker, Wierenga et al. 2008) and that the size of presynaptic varicosities positively 

correlates with the size of the synaptic vesicle pool (Pierce and Mendell 1993). Further 

experiments over longer imaging periods may be helpful to determine if the low VGluT-

1-Venus expression reflects a transient and growing state. Along the same lines, it 

remains to be tested if the VGluT-1-Venus negative varicosities proceed to acquire 

VGluT-1-Venus or if they remain VGluT-1 negative and thus probably non-functional. 

The majority of experiments sampled only two time points, and thus it is possible that 

the 55% of VGluT-1-Venus containing varicosities represent an older and more mature 

population than the remaining 45%. Moreover, I also document that 92% of all new 

varicosities initially did not contain detectable levels of VGluT-1-Venus. This data 

strongly imply that VGluT-1 is typically not accumulated at the axonal site prior to 

varicosity formation. It suggest a model where the formation of the morphological 

volume precedes the accumulation of synaptic markers, consistent with reports that the 
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building of well-formed active zones and the accumulation of synaptic vesicles at 

nascent presynaptic sites is typically delayed by 2 to 3 hours (Ahmari, Buchanan et al. 

2000; Friedman, Bresler et al. 2000). I present two detailed time-lapse examples of 

assembling varicosities that further support this hypothesis. In one example, VGluT-1-

Venus accumulated at the newly formed varicosity with a delay of 1 to 1.5 hours. In the 

other example, VGluT-1-Venus did not accumulate until the end of the imaging period. 

Interestingly, it remains possible that the second varicosity would have acquired VGluT-

1-Venus with a similar time course, later than the last imaging time point. Further 

extending the time-lapse experiments and obtaining more detailed time courses would 

allow to clarify the time course of synaptic marker accumulation, as well as the fraction 

of potentially functional new varicosities.    

In summary, the data strongly infer that a subset of dynamic varicosities can acquire the 

potential for functionality. This finding intimately links structural and functional plasticity 

and highlights the importance of my previous findings on dynamic varicosities in the first 

part of my thesis. Also, it suggests a model that accumulation of functional markers 

follows the morphological dynamics. 

5.2.4 VGluT-1-Venus content of instable axonal varicosities 

To date, the knowledge about the functional status of axonal varicosities destined for 

disassembly remains very limited. This gap of knowledge is possibly due to 

experimental difficulties that prohibited to identify in advance the presynaptic structures 

that will be disassembled. The VGluT-1-Venus mouse system allows to simultaneously 

monitor high numbers of axonal varicosities and to retrospectively identify instable 

varicosities, and thus overcomes this difficulty.  

In this thesis, I provide preliminary data about the functional status of instable axonal 

varicosities prior to their disassembly by documenting a few examples of axonal 

varicositiy loss (n=7). I report that in six out of seven observations the axonal varicosity 

did not comprise VGluT-1 accumulation before disassembly, and in no observation 

VGluT-1 was retained in the axonal area at detectable amounts. The data are in 

agreement with reports that synaptic vesicle accumulations are typically found outside 
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of bulbus-shaped axonal varicosities, not along the axon itself (Pierce and Mendell 

1993; Kraszewski, Mundigl et al. 1995). Likewise, I observed a VGluT-1 negative 

varicosity that revealed instable properties in the detailed time lapse analysis whereas I 

never observed an instable axonal varicosity that instantly obtained VGluT-1-Venus. 

Despite low numbers, the observations of varicosity loss are in agreement with the 

hypothesis that VGluT-1-Venus is typically lost prior to varicosity disassembly and that a 

stable localization of morphological volume is required for VGluT-1 accumulation. 

Further increasing the number of observations and obtaining further time-lapse data will 

be required to strengthen this hypothesis. Furthermore, it would be interesting to resolve 

if the loss of VGluT-1-Venus is correlated to a loss of capability for neurotransmitter 

release. While it is possible that synaptic function is lost before morphological 

disintegration, it remains also possible that the axonal area of varicosity loss retains few 

but sufficient synaptic vesicles for neurotransmitter release. (Ahmari, Buchanan et al. 

2000; Krueger, Kolar et al. 2003). 

Finally, the observation of the parallel merging processes of two axonal varicosities and 

two individual VGluT-1-Venus puncta is a suggestive example that relocalization of 

morphological volumes can be accompanied by relocalization of synaptic markers. If 

this hypothesis held true, it would highlight the importance of merging and dividing 

processes for rapidly regulating presynaptic strength. Moreover, it supports the 

hypothesis of sharing and recycling of presynaptic constituents amongst synapses (Chi, 

Greengard et al. 2001; Tsuriel, Geva et al. 2006; Levitan 2008).  

In summary, the results support a model that morphological volume assembly of 

presynaptic varicosity precedes the acquisition of functional synaptic markers, and 

likewise that the disassembly of the morphological volume is delayed to the loss of 

functional markers. Further experiments along the same lines will be required to test if 

the observed examples represent general mechanisms.     
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6 Conclusion and outlook  

Activity-dependent changes of neuronal circuitry are thought to provide the key to 

understanding the cellular mechanisms of learning and memory. Advances in live-cell 

imaging techniques, notably two-photon microscopy, have permitted the study of the 

structural correlates of synaptic plasticity under physiological conditions at single 

synapse resolution. In my thesis, I provide novel insights into the phenomenology and 

mechanisms of structural plasticity of presynaptic axonal varicosities in CA3 

hippocampal neurons.  

I report that distinct types of structural dynamics contribute to the plasticity of axonal 

varicosities, indicating the potential to gradually or step-wise change the size of 

presynaptic structures.  

My thesis provides novel data that the baseline turnover of axonal varicosities is 

independent of protein synthesis and degradation, implying that preexisting plasticity 

proteins are used and recycled during presynaptic structural plasticity. This finding is in 

agreement with the existence of a common pool of preexisting proteins that may be 

shared amongst presynaptic terminals. Moreover, the dependence of LTD-induced 

presynaptic structural plasticity on protein synthesis and degradation suggests the need 

for additional factors that mediate activity-dependent presynaptic structural plasticity. 

The finding strikingly parallels the existence of postsynaptic plasticity factors and may 

lead to formulating a new concept of yet unknown presynaptic rules of synaptic 

plasticity. Future experiments will be required for testing the functional consequence of 

presynaptic structural plasticity factors.  

Next, my experiments demonstrate that functional plasticity can be induced without an 

elevated loss of presynaptic varicosities, meaning that structural plasticity of axonal 

varicosities is not required for LTD expression. The data raise the question if dynamic 

axonal varicosities contribute to the expression of present LTD or if they become 

functionally relevant in future synaptic plasticity.  
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By providing evidence for the functional status of dynamic axonal varicosities, the 

results of this thesis amend the current knowledge about the functional relevance of 

structural plasticity. My observations show that new axonal varicosities can rapidly 

acquire a synaptic marker, strongly suggesting their potential for presynaptic 

functionality. The data indicates that morphological assembly of axonal varicosities 

typically precedes the accumulation of synaptic markers and, conversely, that synaptic 

markers are lost prior to varicosity disassembly. In other words, the presence of the 

morphological structure temporally encloses the existence of synaptic markers and well-

formed presynaptic terminals, possibly providing the basis for their formation.  

My experiments highlight the potential of the genetically engineered VGluT-1-Venus 

mouse model to investigate the molecular assembly of dynamic synaptic structures on 

the level of single synapses. Combining this model with other methods such as pH-

sensitive fluorescent molecules, split-GFP and calcium imaging is bound to shine new 

light on the link between morphological and functional synaptic plasticity.  
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