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INTRODUCTION 

Normal and Malignant Hematopoiesis 

The human body produces a large number of various kinds of cells during the course of a 

lifetime. For instance, blood is composed of red blood cells, white blood cells and platelets. 

Blood cell production is a continuous process, keeping the body metabolism constant during 

stress or illness or trauma. This process of blood cell production and homeostasis is called 

hematopoiesis (Figure 1). In humans, this process begins in the yolk sac in the first weeks of 

embryonic development. Between 3rd and 7th month of gestation, stem cells migrate to the 

fetal liver and then to the spleen where these two organs play a major role in hematopoiesis. 

Later on, the bone marrow (BM) becomes the major hematopoietic organ and hematopoiesis 

ceases in the liver and spleen. Malfunctioning of normal hematopoietic development can lead 

to malignancies like myelo-proliferative disorders, leukemia, aplastic anaemia, lymphoma, 

myelodysplasia, and inborn errors of metabolism (Weissman et al., 2001). Leukemia results 

from the deregulation of the normal hematopoietic system due to the acquisition of mutations 

in hematopoietic progenitors and is characterized by the accumulation of immature blasts that 

fail to differentiate (Figure 2). Based on the natural course, leukemia can be subdivided into 

acute and chronic leukemia. Evidence shows that many pathways that are deregulated in 

cancer may also regulate normal stem cell development (Domen et al., 1998). Other signalling 

pathways associated with oncogenesis, such as the Notch, Sonic hedgehog (Shh) and Wnt 

signalling pathways are also involved in the regulation of normal hematopoietic cell self 

renewal(Taipale and Beachy, 2001).  

 

Acute leukemia is a heterogeneous disease that occurs due to genetic alterations like 

translocations involving oncogenes and transcription factors, activation of signal transduction 

pathways and alterations of growth factor receptors. However, many in vivo models have 

postulated that the development of cancer is a stepwise process where somatic mutations give 

rise to a transformed clonal population. One of the most characterized leukemia types is acute 

myeloid leukemia (AML) which accounts for about 30% of all adult leukemias (Parkin, 2001; 

Parkin et al., 2001a; Parkin et al., 2001b). 
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Figure 1: Hematopoietic and progenitor cell lineages:  

The hematopoietic hierarchy consists of the hematopoietic stem cells (HSC), the multipotent progenitors (MPPs) 

and the more downstream progenitors, the common myeloid and the common lymphoid progenitor (CMP and 

CLP) respectively. Collectively, these give rise to all the mature cells of the hematopoietic lineage (Passegue et 

al., 2003). 

AML 

AML is characterized by the accumulation of large numbers of myeloid blasts arrested at 

varying stages of differentiation. AML cell populations are quite heterogeneous and the 

heterogeneity is due to the fact that malignant cells have divergent differentiation capacity and 

that most probably different target cells are transformed in different patients. In addition, for 

the leukemic clone to eventually become dominant, changes that confer a proliferative or self 

renewal advantage must occur. A common feature to all AML cases is an arrest in 

differentiation leading to an accumulation of more than 20% blast cells in the bone marrow 

(Gilliland and Tallman, 2002).  

The leukemia stem cell concept 

Every functional specialized mature blood cell is derived from a common blood cell termed 

the hematopoietic stem cell (HSC). In 1961, Till and McCulloch reported the existence of 

HSCs for the first time as a population of clonogenic bone marrow cells capable of generating 

myelo-erythroid colonies in spleen of lethally irradiated mice which could also be re-
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transplanted into secondary recipients (Spangrude et al., 1988).  Since then, a lot of progress 

has been made in the identification and functional, biochemical and immunophenotypic 

characterization of the HSC population. One of the defining characteristics of HSCs is the 

ability to self-renew as well as to differentiate into the multiple cell types that constitute the 

blood system, a process termed pluripotency. The self-renewal of HSCs can be symmetrical, 

thereby producing two daughter HSCs, or asymmetrical, resulting in one daughter HSC and 

one differentiated cell.  As HSCs mature from the long-term self-renewing pool to MPPs, they 

progressively lose their potential to self-renew but become more mitotically active. Enriched 

human stem/progenitor cell populations show telomere shortening with age as do mouse LT-

HSCs that undergo many divisions during serial transplantation (Allsopp et al., 2001). Normal 

hematopoietic development is critically dependent on a tightly regulated balance between 

their self renewal and differentiation properties. Perturbations in this balance can result in 

leukemia or other hematological malignancies (Warner et al., 2004) (Figure 2).  

 

Normal HSC GMPCMP

LSC

Granulocyte

Monocyte

AML BLAST

Self Renewal Initial Differentiation Terminal Differentiation

Block in DifferentiationSelf Renewal

Normal HSC GMPCMP

LSC

Granulocyte

Monocyte

AML BLAST

Self Renewal Initial Differentiation Terminal Differentiation

Block in DifferentiationSelf Renewal  
Figure 2: Schematic diagram illustrating the stages of hematopoiesis during normal and leukemic phases. 

In normal hematopoiesis the HSCs which have self renewal capacity initially differentiate into common myeloid 

progenitors and granulocyte-monocyte progenitors (CMP/GMP) finally producing monocytes and granulocytes 

whereas during hematopoietic malignancies like AML, leukemic stem cells (LSC) which have the same 

properties of HSCs like self renewal have a block in their differentiation leading to blast cell population. 

(Adapted from Rosenbauer et al., 2005). 

 

There are two models of tumor propagation. One model, termed the stochastic model, 

assumes that all malignant cells give rise to daughter cells with identical tumorigenic 

properties. The other model, termed the cancer stem cell (CSC) model, proposes that not all 

cells within the tumor are malignant but only a defined subset of these neoplastic cells can 

give rise to the bulk tumor {Wang, 2005 #9165}. Recent studies have demonstrated that the 

CSC hypothesis holds true in several human tumors (Al-Hajj et al., 2003; Passegue et al., 
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2003; Singh et al., 2003). Studies on leukemia have led the way in the characterization of the 

CSC. Since leukemic stem cells (LSC) share stem cell characteristics with normal HSCs, it is 

believed that both these cells are critically controlled by a set of genes like Wnt (Jamieson et 

al., 2004a; Jamieson et al., 2004b),  JunB (Passegue et al., 2004), Bmi1 (Lessard and 

Sauvageau, 2003), Hox family (Antonchuk et al., 2002; Sauvageau et al., 1995), Notch family 

(Karanu et al., 2000; Varnum-Finney et al., 2000). The derivation of LSCs from HSCs 

depends on the transforming events due to which the stemness of these cells is preserved 

during transformation (Cozzio et al., 2003; Huntly and Gilliland, 2004). Since LSCs have 

several properties of HSCs like self renewal, proliferation and quiescence, these are the cells 

which are prone to transforming mutations and generation of leukemia. In contrast, although 

the common progenitors lose the property of self renewal, they could still be the targets for 

mutation through various other oncogenic pathways and re-gain self renewal property (Cozzio 

et al., 2003; Huntly and Gilliland, 2004). Mutations affecting the genetic stability of the stem 

pool could then induce a secondary mutation which also leads to disease progression. In this 

case HSCs  would act as cells of origin of the tumor or pre-LSCs and then the LSCs would be 

the highly leukemogenic transformed progenitors. The identification of the cell of origin then 

becomes the most important aspect in several malignancies and designing treatment strategies 

that aim at eliminating these cells would be of primary importance.  

Identification of LSCs 

It has become possible to identify leukemic stem cells due to emerging techniques like long 

term in vitro culture assays, bone marrow transplantation models, and immunophenotyping 

assays. In addition to the regular karyotyping procedures, these assays are useful tools in 

assigning the leukemic properties. Several studies based on the above assays could show that 

AML LSCs have self renewal properties, a biological property of normal HSC, and also are 

characterized by multipotency, quiescence, and undergoing proliferation (Bonnet and Dick, 

1997; Guan et al., 2003). They differ from normal cells by their deregulated proliferation.  A 

rare population of CD34+CD38- could induce leukemia in a SCID and NOD/SCID mouse 

model, indicating that these cells could be leukemia initiating cells, whereas the CD38+ and 

Lin+ fraction of cells, containing committed progenitors, did not generate leukemia. (Bhatia et 

al., 1997; Kondo et al., 2003; Terstappen et al., 1991) Further refining of immunophenotype 

showed that LSCs are CD34+CD38-CD90-IL-3R+CD71–HLA-DR–CD117– (Blair et al., 1997; 

Jordan et al., 2000).  Recent work using human CML samples revealed that LSCs can 
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originate from either normal HSCs or progenitor cells, depending on whether patients in 

chronic phase or blast crisis were analyzed (Blair et al., 1997; Jamieson et al., 2004a; 

Jamieson et al., 2004b). This was also demonstrated by different groups by targeting different 

AML specific oncogenes in highly purified progenitor cells, showing that downstream 

progenitors could also offer targets for oncogenic transformation in AML (Cozzio et al., 

2003; Huntly and Gilliland, 2004, 2005)  One way in which this could be possible is the 

initiation of a stem cell program in these transformed cells (Krivtsov and Armstrong, 2007). 

The generation of murine leukemia models allows the characterization of the mechanisms 

leading to transformation. In addition, it offers a valuable tool to identify and characterize the 

tumor propagating cells providing insights for the design of therapeutic strategies. 

Mechanisms of transformation in AML 

An AML is defined by the presence of more than 20 % leukemic blasts  in the bone marrow 

(Gilliland and Tallman, 2002). According to the classification from the World Health 

Organization (WHO), molecular lesions are taken into account in classifying AML (Harris et 

al., 1999). Based on this, certain genetic and epigenetic alterations are associated with specific 

AML sub-types. Of the genetic alterations, chromosomal translocations, deletions, 

amplifications and inversions of chromosomal segments are common. In addition, mutations 

in several protein coding genes also have been reported in a significant proportion of AML 

such as the FLT3 and KIT tyrosine kinases and the nucleophosmin gene NPM1. Interestingly, 

more than 80% of myeloid leukemias have been attributed to, or associated with, one or more 

specific molecular lesions (Pandolfi, 2001). One of the conventional methods for identifying 

leukemia is karyotyping which enables the detection of some of the chromosomal deletions, 

inversions or translocations. Based on karyotyping, acute leukemias are classified as aberrant 

or non-aberrant karyotype. Aberrant karyotype constitutes 52% of all aberrations and 

comprises balanced (25%) and unbalanced (27%) chromosomal aberrations as illustrated in 

Table 1. t(8;21), inv(16) and t(15;17) are balanced karyotypes. Unbalanced aberrations 

include 5q-, 17q-, -5 and AML with complex karyotypes (Hiddemann et al., 2003). Normal 

karyotype includes NPM mutations (62%), FLT3 length mutations (35%), MLL-tandem 

duplications and CEBPα mutations (Table 1).  
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  Genes Morphological association Incidence 
Translocations/inversions       
t(8;21)(q22;q22) AML1;ETO M2 with Auer rods 6% 
inv(16)(p13q22) CBFB;MYH11 M4Eo 7% 
t(15;17)(q22;q11-21) PML;RARA M3/M3v 7% 
t(9;11)(p22;q23) MLL;AF9 M5 2% 
t(6;11)(q27;q23) MLL;AF6 M4 & M5 ~1% 
inv(3)(q21q26) EVI1;RPN1 M1, M4, M6, M7? ~1% 
t(6;9)(p23;q34) DEK;NUP214 M2, M4 ~1% 
Chromosomal imbalances       
+8 … M2, M4 & M5 9% 
-7/7q- … No FAB preference 7% 
-5/5q- … No FAB preference 7% 
-17/17p- TP53 No FAB preference 5% 
-20/20q- … No FAB preference 3% 
9q- … No FAB preference 3% 
+22 … M4, M4Eo 3% 
+21 … No FAB preference 2% 
+13 … M0, M1 2% 
+11 MLL1 M1, M2 2% 
Complex Karyotype   10% 
Normal Karyotype     44% 
 

Table 1: Common chromosomal aberrations in AML (Adapted from Estey and Dohner, 2006). 

Chromosomal translocations  

A detailed study on translocations has thrown light on the transcriptions factors involved in 

leukemia. Many of these rearrangements involve genes encoding transcription factors that 

have been shown to play an important role in hematopoietic lineage development. Thus, 

alteration of the transcriptional machinery appears to be a common mechanism leading to 

arrested differentiation (Pandolfi, 2001; Tenen, 2003) (Figure 3). One of the most common 

chromosomal translocations is the t(8;21) translocation which is present in 12% of AML 

subtype M2 (Speck and Gilliland, 2002). A detailed analysis of the t(8;21) translocation led to 

identification of the AML1 gene, a hematopoietic transcription factor on chromosome 21 

(Miyoshi et al., 1991)and belonging to the core binding factor (CBF) family.  
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Figure 3: Schematic representation of chromosomal translocations. 

Chromosomal translocations result in the exchange of chromosomal arms of same or different chromosomes 

(Rabbitts and Stocks, 2003).  

The CBF family of transcription factors and AML1 

The core binding factors (CBFs) are heterodimeric transcription factors which activate and 

repress transcription of key regulators of growth, survival and differentiation pathways. These 

are frequent targets of mutations and re-arrangements in human AMLs and ALLs. The CBF 

family consists of three distinct DNA binding CBFα units: RUNX1, RUNX2, RUNX3 and a 

common non DNA binding CBFβ subunit that is encoded by CBFB.  RUNX1 or AML1 was 

the first mammalian CBF gene to be cloned. All RUNX proteins contain a runt homology 

DNA binding domain at the N-terminus which is highly homologous to the drosophila Runt 

protein which is involved in segmentation and sex determination (Romana et al., 1995). 

Runx1 (and by extension Cbfβ) is required for the differentiation of definitive hematopoietic 

progenitors and HSCs from a hemogenic endothelium in the mouse embryo (Miyoshi et al., 

1991; Mukouyama et al., 2000). Besides the RUNT domain AML1 also contains a 

transactivation domain (Meyers et al., 1995) and a nuclear matrix attachment signal (NMTS) 

(Zeng et al., 1998).  Mutations in the AML1 gene were shown to be associated with a number 

of malignant and premalignant conditions including acute myelogenous leukemia, childhood 

acute lymphocytic leukemia, familial platelet disorder, and myelodysplastic syndromes 

(Speck and Gilliland, 2002). AML1 is involved in many different chromosomal 

translocations, the most common ones being t(8;21)(q22;q22) (Downing et al., 1993; Erickson 

et al., 1992) and inv(16)(p13;q22) (Nucifora et al., 1993) which account for approximately 

25% of adult AML. The t(12;21)(p13;q22) translocation is observed in 20–25% of pediatric 
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ALL (Liu et al., 1993). The AML1 gene generates three different spliced isoforms, AML1a, 

AML1b, and AML1c, where AML1a differs from AML1b and AML1c by the lack of C-

terminus (Miyoshi et al., 1995). 

ETO 

ETO (also called MTG8 or CBFA2T1) is best known as the fusion partner of AML1 in 

leukemia carrying the t(8;21) translocation (Miyoshi et al., 1993). The ETO gene is located on 

chromosome 8q22. Earlier studies have revealed that ETO interacts with nuclear co-repressor 

proteins and have shown that these interactions enable it to play a critical role as 

transcriptional repressor by interacting with co-repressors like NCOR, SMRT, Sin3 and 

various other HDACs. It also acts as a negative regulator of AML1 transcriptional regulation 

(Gelmetti et al., 1998; Lutterbach et al., 1998; Wang et al., 1998) 

AML1-ETO  

AML1-ETO was first reported by Janet D. Rowley in a leukemic patient. It is associated with 

nearly 40% of cases of FAB-M2 AML. It is also observed in approximately 6% of AML M1 

and, seldom present in AML M0, M4, M5, and other myeloproliferative syndromes (1990; Lai 

et al., 2005) (Figure 4). Cloning of the breakpoint regions of various chromosomal 

translocations has resulted in extensive studies on some transcription factors as fusion 

partners like AML1-ETO. The resulting fusion yields 177 amino acids (a.a) of AML1 with its 

N-terminal region containing the Runt domain (RHD) and 575 amino acids of the entire 

reading frame of ETO (Figure 5). Due to its similarities with drosophila nervy proteins, ETO 

has four domains named nervy homology domains (NHR1-4). It has 50% to 70% sequence 

homology with the drosophila homologue. The NHR1 domain is also known as TAF domain 

and resembles the TATA binding associated factors in humans as well as drosophila 

(TAF110) (Erickson, 1994) which indicates its role as a transcription factor. NHR2 is known 

as ‘Hydrophobic Heptad Repeats’ (HHR) essential for hetero- and homodimerizations 

(Gelmetti, 1998). NHR3 contains predicted coiled-coil structure (Minucci et al., 2000) and 

NHR4 myeloid-Nervy-DEAF1 homology domain (MYND) with two predicted zinc-finger 

motifs which are involved in protein–protein interaction ((Erickson et al., 1994; Gross and 

McGinnis, 1996). Moreover, structure–function analyses have revealed the NHR2 and NHR4 

domains of ETO to be crucial for the activity of AML1–ETO in cellular assays, suggesting a 
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possible role for N-CoR or SMRT in repression by the oncoprotein (Gelmetti et al., 1998; 

Lutterbach et al., 1998). 

 

 
 

Figure 4: Karyogram of a t(8;21) translocation. 

(Source: http://knm1.ibe.med.uni-muenchen.de/tumorzytogenetik/index.html)  
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Figure 5: Domain structure of AML1, ETO and Fusion protein AML1-ETO. 

Schematic diagram of the structure of AML1, ETO and the fusion gene AML1-ETO with functional domains 

involved in transcriptional activity. The AML1 gene has a distal VWRPY a.a site which is deleted when it fuses 

with ETO. The fusion gene forms a 754 a.a protein which has Runt domain at its N-terminal region on AML1 

and ZNF domain at the C-terminal region  
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Two-hit model of leukemogenesis 

A lot of the commonly occurring leukemia-associated fusion genes have been shown to be 

insufficient for transformation. In human leukemia, there are numerous cases in which a 

chromosomal translocation, co-expressed with an activating mutation or with an aberrant 

expression of proto-oncogenes, is detected. These observations favour a pathogenic model of 

the AML, in which the interaction of at least two different groups of genetic alterations are 

necessary for disease development (Gilliland, 2002) (Figure 6). This concept is supported by 

experimental data, which show that the fusion gene AML1-ETO alone is not sufficient, but 

can cooperate with unknown additional genetic alterations in order to induce leukemia. In a 

conditionally expressing AML1-ETO mouse model, only mice which had been treated 

additionally with the mutagen ENU developed AML, while the non treated group showed 

only minimal hematopoietic abnormalities (Higuchi et al., 2002). A very similar observation 

was reported with an hMRP8-AML1-ETO transgenic mouse model and a murine retroviral 

AML1-ETO model (de Guzman et al., 2002; Yuan et al., 2001). AML1-ETO co-expressed 

with tyrosine kinase FLT3-LM (Schessl, 2005) or Wilms tumour (WT1), a proto-oncogene 

could induce full blown leukemia (Nishida et al., 2006) in murine bone marrow 

transplantation models. Similarly, the TEL/PDGFRβ fusion gene cooperates with AML1/ETO 

in inducing AML in mice (Grisolano et al., 2003). These data clearly show that additional 

cooperating mutations are crucial for the pathogenesis of one the most frequent sub-types of 

AML.The translocation t(15;17) PML-RARA, commonly found in acute pro-myelocytic 

leukemias, is known to co-operate with BCL2 (Wuchter et al., 1999) or with activating FLT3 

mutations (Kelly et al., 2002; Reilly, 2002) in inducing leukemia. Similarly, deregulation of 

Hox genes also results in leukemogenesis and Hox co-factor Meis1 is believed to be involved 

in accelerating leukemogenesis like in HoxA9 mediated leukemia (Alcalay et al., 2005). 

Meis1 also upregulates FLT3 in AML models of HOXA9 and NUP98-HOX (Palmqvist et al., 

2006; Wang et al., 2005). The characterization of cooperating mutations is not only important 

for the understanding of the pathogenesis of these frequently occurring subtypes of leukemia, 

but also important for the development of purposeful therapies, since eradication of the 

leukemic clone can be attained only by a combination of innovative therapies and by 

antagonizing the oncogenic power of multiple genetic alterations. In this project we sought to 

analyze whether AML1-ETO can also collaborate with a HOX gene co-factor to induce 

leukemia in a murine model. The latter part of the project deals with the identification of 

leukemic stem cells in our murine leukemia model. 
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Figure 6: Diagram showing class I mutations and Class II mutations. 

The Class I mutations which are involved in proliferation and Class II mutations which result in impaired 

differentiation cooperate with each other in inducing leukemia (Speck and Gilliland, 2002). 

Leukemogenicity of AML1-ETO  

Several lines of evidence suggest that translocation of AML1-ETO is alone not sufficient to 

induce leukemia. Murine models in AML1-ETO, FLT3-LM, WT1, and ICSBP deficient mice 

showed that mice transplanted with AML1-ETO did not succumb to leukemia (de Guzman et 

al., 2002; Nishida et al., 2006; Schessl et al., 2005; Schwieger et al., 2002). Recently it has 

been shown in a mouse model that a truncated form caused by a frame shift mutation that 

leads to an additional exon resulting in deletion of C-terminal region of AML1-ETO protein, 

is able to induce AML on its own (Yan et al., 2006). In another case, a 50-bp frame shift 

deletion in exon 2 of ETO was reported in a patient with M2 leukemia carrying 

t(8;21)(q22;q22). This deletion leads to the disruption of the open reading frame and the 

formation of a 31-residue truncated protein, having only 7 a.a residues in common with ETO 

of a full length fusion transcript (Lasa et al., 2002).  The C-terminal region of ETO contains 

the MYND domain, comprising highly conserved zinc-finger-like protein motifs, and 

interacting with co-repressor proteins. It has been found that, instead of the MYND domain, 

an alternative last exon of MTG8 encoding 27 amino acids in-frame is expressed naturally in 

human adult testis and in several leukemia cell lines (Kozu et al., 2005). This type of 
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alternative splicing also occurred in the AML1-MTG8 fusion gene at high levels in leukemia 

cell lines with t(8;21) as well as in blast cells of leukemia patients with t(8;21).  

Hox genes and Hox co-factors 

The clustered Hox families of homeobox genes are evolutionarily highly conserved genes that 

act as key regulators of positional identity along the anterior–posterior body axis of animal 

embryos (Krumlauf, 1994). These genes contain a 61 a.a. helix-turn helix DNA binding 

domain which has been identified to play an important role in segmental patterning during 

embryogenesis as well as cell proliferation and differentiation during normal hematopoiesis 

(Thorsteinsdottir et al., 1997) and their deregulation leads to severe hematological 

malignancies. Hox genes belong to a family of transcription factors that contains 39 members 

clustered on four chromosomes (Krumlauf, 1994; McGinnis and Krumlauf, 1992). These Hox 

genes play a crucial role in pattern formation and tissue identity during embryogenesis. 

Homeobox (HB) genes are classified into 2 classes: class I includes clustered HB (HOX) 

genes, recognized for their role in anterio-posterior patterning during embryogenesis, while 

the class II divergent HB (non-HOX) genes are dispersed throughout the genome. These 

genes are believed to have arisen from gene duplication and have 13 paragroups which are 

further organized into 4 clusters (A-D) (Owens and Hawley, 2002). In normal hematopoiesis 

HOX genes of groups A and B are expressed in CD34+ cells and are down regulated when the 

CD34+ cells progress towards committed erythroid and myeloid progenitors (Sauvageau et al., 

1994). HoxB4 is one of the important Hox genes which play a defined role in hematopoiesis. 

It is expressed in both primitive human and murine hematopoietic cells and it has been shown 

that overexpression of HoxB4 promotes HSC expansion both in vivo and in vitro without 

inducing leukemia (Antonchuk et al., 2002; Sauvageau et al., 1995). A recent report suggests 

that overexpression of HOXB4 induced leukemia in canines and macaques whereas those 

transplanted with empty vector did not show any signs of disease (Zhang et al., 2008). Several 

experiments performed by overexpressing Hox genes like Hoxa9, Hoxa10, Hoxb3, Hoxb6 or 

Hoxb8 showed growth advantage of retrovirally targeted cells and induction of long latency 

leukemia in transplanted mice (Fischbach et al., 2005; Kroon et al., 1998; Sauvageau et al., 

1997; Thorsteinsdottir et al., 1997). These results strongly indicate that deregulated Hox 

genes can induce leukemic transformation. 
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HOX co-factors are itself homeobox genes belonging to the so called TALE (Three Amino 

Acid Extension Loop) family. These co-factors differ from HOX proteins in possessing an 

additional three amino acids between α motifs 1 and 2. HOX genes generally bind to Hox co-

factors like PBX, Meis1 and PREP1/KNOX1 proteins in order to increase the specificity of 

the target sequence and for additional stability. In many experimental models co-expression 

of these TALE homeobox genes with HOX genes rapidly induces leukemia, whereas 

overexpression of the TALE members alone does not lead to any disease. In the following 

section Meis1 will be described in detail. 

Myeloid Ectopic Integration Site 1 (Meis1)  

Hox co-factors of the three amino acid loop class have been shown to interact directly with 

Hox proteins due to DNA binding affinity (Moens and Selleri, 2006) and are related to the 

PBX family (Burglin, 1997). In general, Hox proteins from paralogous groups 1–10 interact 

physically with PBX1, while those from paralogous groups 9–13 interact with MEIS1 (Shen 

et al., 1997)). At the N-terminal region, Meis1 has two α-helicase motifs which act as PBX 

biding sites and homeodomain at the c-terminal region (figure 12). Meis1 and PBX1 interact 

through these Meinox domains M1 and M2 (Mann and Affolter, 1998). Meis1 proteins co-

operatively bind DNA with ABD-B class HOX proteins of groups 9 and 10 (Shanmugam et 

al., 1999). 

 

It has been shown that Meis1 is required for establishing definitive HSCs in the embryo and is 

expressed in the aorta-gonad-mesonephros (AGM) mesenchyme in the hemogenic embryonic 

arterial endothelium and it is relevant to the Runx1 expressing populations (Azcoitia et al., 

2005). As in the case of Hox genes, the expression level of Meis1 in hematopoietic system 

corresponds to the differentiation stage. Meis1 is highly expressed in HSCs and the expression 

levels decreases in progenitors and committed lineages (Pineault et al., 2002). 

 

Meis1 was first observed as a transcript located at a site of common retroviral integrations in 

BXH2 mice (Moskow et al., 1995) and has been reported to be non-leukemogenic when 

expressed alone (Kroon et al., 1998) but to show transforming activity when fused to the 

transactivating domain of VP16 (Mamo et al., 2006). Meis1 along with HOXA9 and HOXA7 

is expressed in a vast majority of AML (Golub et al., 1999). In murine bone marrow 

transplantation models, Meis1 synergizes with different Hox genes and accelerates the onset 
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of AML. For example Meis1 collaborates with NUP98-HOXA9 (Kroon et al., 2001), NUP98-

HOXD13 (Pineault et al., 2003) or HOXB6 (Fischbach et al., 2005) in accelerating AML. 

 

In human leukemogenesis, MEIS1 has been identified as a putative collaborative gene in 

acute lymphocytic leukemias with the t(4;11) abnormality, where both MEIS1 and HoxA9 are 

upregulated (Imamura et al., 2002; Rozovskaia et al., 2001). Meis1 forms the most frequent 

cooperating protein with HoxA9 in inducing leukemia with a poor prognosis (Golub et al., 

1999). 

 

Meis1 WT COOH HD

1 272 334 39068 106 135 189

M1 M2Meis1 WT COOH HD

1 272 334 39068 106 135 189

M1 M2
 

 

Figure 7: Domain structure of Meis1. 

Meis1 is 390 amino acid protein with alpha helicase motifs at the N-terminal end and homeodomain region at the 

C-terminal region. 
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MATERIALS 

Chemicals and Reagents 

Agarose (Sigma) 

Acetic acid (Sigma) 

Calcium chloride (Sigma) 

Chloroform (Sigma) 

Dextran sulphate (Sigma) 

DNAzol (GIBCO/BRL) 

EDTA (Sigma) 

Ethidium bromide (Sigma) 

Formamide (Sigma) 

Fetal bovine serum (PAN) 

Glycine  (Sigma) 

Giemsa (Merck) 

Hydrochloric acid (Merck) 

Isopropanol   (Merck) 

Methocult M 3434 (Stemcell Technologies) 

May-Grunwald’s Eosin (Merck) 

Protamine sulfate (Sigma-Aldrich) 

Quikchange XL site-directed Mutagenesis Kit (Stratagene) 

Sodium chloride (Sigma) 

Sodium hydroxide (Sigma) 

Sodium dodecyl sulphate (Sigma) 

Skimmed milk (Sigma) 

Trizma base (Sigma) 

Trizol (GIBCO/BRL) 

5-Fluorouracil (Medac) 

ThermoScript RT-PCR Kit (Invitrogen) 

Megaprime DNA labeling system (Amersham) 

dNTP mix: 10 mM each of dATP, dTTP, dCTP and 

dGTP 
(Invitrogen) 
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GFX PCR DNA gel band elution (Amersham) 

Microspin S-300 HR columns (Amersham) 

ECL Western blotting analysis system (Amersham) 

Antibodies 

Name Company Label Dilutions used 

Gr-1 BD Pharmingen, Heidelberg PE/APC 1:500 

CD11b (Mac1) BD Pharmingen, Heidelberg PE/APC 1:800 

Sca-1 BD Pharmingen, Heidelberg PE 1:150 

Ter119 BD Pharmingen, Heidelberg PE 1:150 

B220 BD Pharmingen, Heidelberg PE/APC 1:200 

CD4 BD Pharmingen, Heidelberg PE 1:150 

CD19 BD Pharmingen, Heidelberg PE 1:200 

CD117 (c-kit) BD Pharmingen, Heidelberg APC 1:500 

CD8 BD Pharmingen, Heidelberg APC 1:150 

GFP Molecular Probes Inc., OR  1:5000 

Anti-His Invitrogen, Carlsbad, CA HRP 1:3000 

Goat Anti-mouse  Invitrogen, Carlsbad, CA HRP 1:2000 

Cytokines 

mIL3 (Tebu-bio) 

mIL6 (Tebu-bio) 

mSCF (Tebu-bio) 

Enzymes 

EcoRI, XhoI, HpaI (New England Biolabs) 

T4 DNA Ligase (New England Biolabs) 

DNA Polymerase: Platinum Taq DNA polymerase kit (Invitrogen) 
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DNaseI: DNase I DNA inactivating enzyme kit Invitrogen) 

Stock solutions and buffers 

5-Fluorouracil: 50 mg/ml stock solution Medac, Hamburg, Germany. Working solution was 

6 ml of the above solution mixed with 4 ml of phosphate buffered saline. 

 

Avertin solution: Stock solution was prepared by adding 15.5 ml tert-amyl alcohol to 25 

grams Avertin (2-2-2 Tribromoethanol), both procured from (Sigma-Aldrich, St. Louis, MO) 

and dissolved overnight. For working solution, 0.5 ml stock solution was added to 39.5 ml of 

cell culture grade phosphate buffered saline (PBS) and dissolved with a magnetic stirrer.  

 

Calcium chloride solution for transfection: 2.5 M CaCl2 (Sigma-Aldrich, St. Louis, MO) 

solution in water 

 

Denaturation solution: 1.5M NaCl, 0.5N NaOH 

 

Erythrocyte lysis buffer: 0.8% NH4Cl with 0.1 mM EDTA (Stem Cell Technologies, 

Vancouver, Canada). 

 

Formalin: 4% solution of formaldehyde (Sigma-Aldrich, St. Louis, MO) in water. 

 

Giemsa: Giemsa’s azure eosin methylene blue solution modified. (Merck KGaA, Darmstadt, 

Germany) 

 

HEPES-Buffered Saline: (HBS) (Invitrogen, Carlsbad, CA). 

 

May-Gruenwald: May-Gruenwald’s Eosin-Methylene blue solution for microscopy (Merck 

KGaA, Darmstadt, Germany) 

 

Pre-hybridization solution: Dissolve 0.2g skimmed milk and 2.0g dextran sulphate in 17ml 

water and add 6ml 20x SSC, 2ml formamide, 1ml 20% SDS and 80µl 500mM EDTA  
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20x SSC: Dissolve 3M sodium chloride and 0.3M sodium citrate in 800 ml de-ionized water 

and adjust pH to 7.0 and make up the volume to one liter 

 

Telleyesnickzky’s solution: 450 ml absolute ethanol + 25 ml glacial acetic acid + 25 ml 

formaldehyde. 

Consumables 

Cell strainer: BD Falcon 40 μm Nylon strainer for macerating the spleen and filtering the 

tissue (BD Biosciences, Palo Alto, CA) 

 

Cell Scrapers: 25 cm sterile cell scrapers (Sarstedt, Newton, NC) 

 

Cell culture pipettes: (2, 5, 10 and 25 ml): Sterile disposable pipettes (Corning Inc., Corning, 

NY) 

 

Cell culture plates and dishes: Sterile 96 well, 24 well, 6 well plates (Sarstedt, Numbrecht, 

Germany) 100 mm x 20 mm dishes for adherent cells (Corning Inc., Corning, NY), and Petri 

dishes for suspension cells (Becton Dickinson Labware, Franklin Lakes, NJ) 150 mm x 20 

mm dishes for adherent cells (Greiner Bione, Frickenhausen, Germany). 

 

Cytospin slides: Marienfield pre-cleaned twin frosted slides for fixing single cell suspensions 

and blood smears (Marienfield, Lauda-Königshofen, Germany). 

 

Cytospin filter cards: ThermoShandon thick white 5991022 filter cards for cytospins 

(Histocom AG, Zug, Switzerland). 

 

Sterile Syringes: BD Plastipak 1 ml syringe (BD Biosciences, Palo Alto, CA) for injection of 

cells in mice and Kendall Monoject 3 ml syringes (Tyco Healthcare, UK) for bone marrow 

flushing and plating of CFCs. The stubs of 3 ml syringes were used to macerate the spleens of 

mice. 
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Sterile needles: 0.5 x 25 mm for injection of cell in mice i.v. and 0.55 x 25 mm (BD 

Microlance, Drogheda, Ireland) for bone marrow aspiration from living mice and flushing of 

bone marrow from extracted bones. 16-gauge bunt-end needles were used for dispensing and 

plating Methocult (CFC) media (Stem Cell Technologies, Vancouver, Canada). 

 

Heparinized capillaries: (Microvette CB 300) plastic capillaries containing Lithium heparin 

for collection of blood (Sarstedt, Numbrecht, Germany). 

 

Filtration units: Millex syringe driven filter units 0.22 μm and 0.45 μm filters (Millipore, 

Billerica, MA). 

Oligonucleotides 

All nucleotides were synthesized by Metabion AG, Martinsried, Germany.  

Oligonucleotide Sequence 5´ to 3´ 

ApMSCV For CAG CCC TCA CTC CTT CTC TA 

ApMSCV Rev CTT GAC GAG CAT TCC TAG 

AML1-ETO 2.2 For ATG CGT ATC CCC GTA GAT GC 

AML1-ETO 2.2 Rev CTA GCG AGG GGT TGT CTC TAT G 

AML1-ETO FL For GCC CCA ACT TCC TCT GCT C 

AML1-ETO FL Rev GGG TTC CCG GGG TGG TTG A 

AML1-ETO BR For ATG ACC TCA GGT TTG TCGGTC G 

AML1-ETO BR Rev TGA ACT GGT TCT TGG AGC CTC CT  

Meis1 FL For ATG GAG TAG GCA TCC CCT CCA CG 

Meis1 FL Rev CAT GCC CAT ATT CAT GCC CAT TCC 

β-2microglobin mouse TGC TAT CCA GAA AAC CCC TC 

β-2 microglobin  CGG CCA TAG TGT CAT GCT TA 

LM-PCR-GFP-A ACTTCAAGATCCGCCACAAC 

Nested Linker Primer TACGAGAATCGCTGTCCTCTCCTT 

Vectorette_primer CGAATCGTAACCGTTCGTACGAGAATCGCT

LM-PCR-GFP-C ACATGGTCCTGCTGGAGTTC 
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Primers for V-DJH and DJH recombination  

Oligonucleotide  Sequence 5´ to 3´  

VH 7183  CGGTACCAAGAASAMCCTGTWCCTGCAAATGASC  

VH 558  CGAGCTCTCCARCACAGCCTWCATGCARCTCARC  

VH Q52  CGGTACCAGACTGARCATCASCAAGGACAAYTCC  

JH 3  GTCTAGATTCTCACAAGAGTCCGATAGACCCTGG  

C-mu-5’  TGGCCATGGGCTGCCTAGCCCGGGACTT  

C-mu-3’  GCCTGACTGAGCTCACACAAGGAGGA  

B rec chk fw1  ACGTCGACTTTTGTSAAGGGATCTACTACTGT  

B rec chk fw2  ACGTCGACGCGGASSACCACAGTGCAACTG  

B rec chk rev  GGGTCTAGACTCTCAGCCGGCTCCCTCAGGG  

Plasmids 

MIG/MIY: Murine stem cell virus derived vector. A bi-cistronic vector with an internal 

ribosomal entry site (IRES) and an EGFP or EYFP cassette 3’ of the IRES) (kindly provided 

by Prof. Dr. R.K. Humphries, Vancouver, Canada). 

 

pCDNA6/V5-His: Mammalian expression vector used for tagging genes (Invitrogen, Carlsbad, 

CA). 

 

pEGFP-C1: Mammalian expression vector used for tagging genes as a C-terminal fusion to 

EGFP protein (Clontech, Ca).  

 

Ecopac: A packaging vector coding for the gag, pol, and env viral proteins. 

Molecular weight markers 

1 kb ladder, 1 kb plus ladder and 100 bp ladder (Invitrogen, Carlsbad, CA) 
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Cell and tissue culture 

Mammalian cell lines 

293T (human embryonic kidney cell line) 

GP+E86 (mouse fibroblast cell line) 

NIH 3T3 (mouse fibroblast cell line) 

Media and supplements 

 

Methylcellulose media: Methocult 3434 for the culture of myeloid CFC assays and 

Methocult 3630 for the pre-B CFC assays (Stem Cell Technologies, Vancouver, Canada). 

 

Media: Dulbecco’s Modified Eagle’s Medium (DMEM) 4,5 g/l glucose, l-glutamine, sodium 

pyruvate and 3,7 g/l NaHCO3 (PAN biotech GmbH, Aidenbach, Germany) 

 

Fetal Bovine Serum (FBS): 0,2 μm-filtered mycoplasma screened (PAN biotech GmbH, 

Aidenbach, Germany) 

 

Dulbecco’s phosphate buffered saline (DPBS): without magnesium and calcium, sterile 

filtered (PAN biotech GmbH, Aidenbach, Germany) 

 

Trypsin–EDTA: 1x in HBS without calcium and magnesium with EDTA (Invitrogen, 

Carlsbad, CA) 

  

Penicillin/Streptomycin: Antibiotic solution with 10,000 u/ml Pen G sodium and 10,000 

μg/ml Streptomycin sulfate in 0,85% saline. Used 5 ml per 500 ml medium bottle (Invitrogen, 

Carlsbad, CA) 

 

Murine cytokines: mIL3, mIL6, mSCF, (lyophilized) (Tebu-bio, Offenbach, Germany) 

 

Ciprofloxacin: Ciprofloxacin 400 solution, (Bayer AG, Leverkusen, Germany) 
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Instruments 

DNA Cross linker (GS Gene linker BIO-RAD) 

Fluorescence Activated Cell Sorting (BD FACSVantage SE System) 

Flox Cytometry (BD FACS Calibur System) 

Cytospin (Cytospin 2 Shandon) 

Microscope (Leitz Diavert Inverted Microscope Ernst 

Leitz Wetzlar GmbH) 

quantitative PCR Cycler TaqMan 7900HT, instrument serial No: 

201381 

Patient samples 

Mononuclear cells prepared from diagnostic bone marrow or peripheral blood (PB) samples 

from 48 adult AML patients were analyzed. The AML cases were classified according to the 

French-American-British criteria and the World Health Organization classification (Varela et 

al., 1985). The study was approved by the ethics committees of all participating institutions, 

and informed consent was obtained from all patients before they entered the study in 

accordance with the Declaration of Helsinki (http://www.wma.net/e/policy/b3.htm). As a 

control, bone marrow mononuclear cells (BM MNCs; CellSystem, St Katharinen, Germany) 

from healthy individuals were analyzed. Cytomorphology, cytochemistry, cytogenetics, and 

molecular genetics were applied in all cases. 

Mice 

Parental strain mice were bred and maintained at the GSF animal facility. Donors of primary 

BM cells were > 12-week-old (C57Bl/6Ly-Peb3b x C3H/HeJ) F1 (PebC3) mice and 

recipients were > 8–12 week old (C57Bl/6J x C3H/HeJ) F1 (B6C3) mice. 

http://www.wma.net/e/policy/b3.htm
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METHODS 

Patient samples 

cDNA was prepared from BM or PB samples of  48 AML1-ETO patients. AML1-ETO 

patients with either secondary mutations (n=22) and those negative for any mutation (n=26), 

were selected for real-time PCR. 

Cloning of constructs 

For retroviral gene transfer into mouse bone marrow (BM) cells, different gene products were 

subcloned into the multiple cloning site of the modified MSCV 2.1 vector (Pineault et al., 

2003), upstream of the internal ribosomal entry site (IRES) and the enhanced green or yellow 

fluorescent protein (GFP/YFP) gene. As a control the MIG vector was used.  

 

LTR LTRMeis1 IRES YFP

LTR LTRAML1/ETO IRES GFP

LTRLTR IRES GFP

 
 

Figure 8a: Schematic diagram of constructs. 

AML1-ETO, Meis1, EGFP and AML1-ETO mutants were cloned into the multiple cloning sites of the modified 

MSCV 2.1 vector upstream of the internal ribosomal entry site (IRES) and the enhanced green or yellow 

fluorescent protein (GFP/YFP) gene. 

 

The AML1-ETO (AE) cDNA was kindly provided by S.W.Hiebert (Vanderbilt University 

School of Medicine, Nashville, Tennessee, USA).This 2.2Kb gene has been subcloned by 

blunt end ligation into the Hpa I site in the multiple cloning site (MCS) of the MIG vector. 

The AE mutants ΔTAF, ΔHHR, Δ540 were also provided by S.W.Hiebert (Vanderbilt 

University School of Medicine, Nashville, Tennessee, USA) and subcloned into MSCV 

vector. The dead mutant AE L148D construct was generated by using the QuickChange Site-

Directed Mutagenesis Kit (Stratagene) according to the manufacturer’s instructions. 
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The Meis1 (Myeloid Ectopic Integration Site 1) construct was kindly provided by Dr. Keith 

Humphries (Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British 

Columbia, Canada.). The 1.2kb Meis1 gene was sub-cloned into the multiple cloning sites 

(MCS) of the MIG vector using the enzymes EcoRI and Xho1. 

 

 
Fig 8b. Protein expression of AML1-ETO and Meis1: Protein expression of AML1-ETO and Meis1 were 

observed by immunoblotting of the whole protein lysate. Protein was made from the AML1-ETO transfected on 

NIH 3T3 cell line and untransfected NIH 3T3 cell line as negative control. Similarly protein expression for 

Meis1 was performed from the Meis1 GP+E86 cell line used for transduction of murine bone marrow. As a 

negative control, a GP+E86 cell line transduced with the empty vector EGFP was used. 

Preparation of high titre stable virus producing cell lines 

A total of 1.2x 106 293T cells were plated in a 15 cm dish and on the following day used for 

transient transfection. Medium was changed 4 hours prior to the transfection. 30 µg plasmid 

DNA of the gene of interest, and the retroviral packaging construct Ecopac were added to 

sterile water (to make up a total volume of 1 ml) and 100 µl 2.5M CaCl2 was added drop wise 

to the water-DNA mixture. This was added slowly to a tube containing 1 ml sterile HBS (pH 

7.2). After gentle mixing and incubating at room temperature for 3-4 minutes, this mixture 

was added drop wise to the 15 cm dish. The dish was carefully placed in a 37°C incubator. 

The medium was changed after about 12 hours. The virus conditioned medium (VCM) was 

collected from the cells every 12 hours and filtered with a 0.45 µm Millipore filter and stored 

as VCM at –80°C for later use or used directly to transduce GP+E86 fibroblasts or murine 

bone marrow.  
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5x104 GP+E86 fibroblasts were plated into 6 well plates one day prior to retroviral 

transduction. For transduction, 500 µl or 1 ml of fresh or frozen VCM from transfected 293T 

cells was layered on top GP+E86 cells with the addition of 10 µg/ml protamine sulphate. 

Fresh medium was added to the cells after 4 hours and the transduction procedure was 

repeated every 12 hours for four times. The cells were expanded for two days after final 

transduction to allow the GFP expression. GFP expressing cells were sorted using the 

fluorescence activated cell sorter (FACS), propagated and used as stable virus producing cell 

lines to transduce murine bone marrow. The following cell lines were prepared using this 

method: E86-GFP, E86-AML1-ETO, E86-Meis1, E86-AML1-ETO∆TAF, E86-AML1-

ETO∆540, E86-AML1-ETO L148D.  

 

In some cases where viral titres of bulk cell lines were low, single cells were sorted into 96 

well plates and after expansion their viral titres are determined on NIH-3T3 cells. Clones 

producing highest titres were expanded, frozen and used for experiments.  

Titration was performed by plating 2x105 NIH3T3 cells per well in 6 well plates and layering 

them with 500 µl VCM the next day with the addition of 10 µg/ml protamine sulphate. Fresh 

medium was added after 3-4 hours to stop transduction. This was performed every 12 hours 

(thrice totally). Two days following transduction with VCM, cells were analyzed for GFP 

expression at the FACS Calibur.  
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Figure 9: Schematic diagram of Bone marrow transplantation model. 

5-FU treated BM was transduced with the gene of interest and sorted after 48hrs for GFP positive cells. Sorted 

cells were used for in vitro or in vivo experiments. GFP+ cells were injected into mice and the engraftment 
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levels of these mice were checked every four weeks. Furthermore, BM from leukemic mouse was transplanted 

into secondary recipients. 

Retroviral transduction of primary bone marrow 

Parental strain mice were bred and maintained at the GSF animal facility. Donors of primary 

BM cells were > 8-wk-old (C57BL/6Ly-Pep3b x C3H/HeJ) F1 (PepC3) mice. The mice were 

fed with autoclaved chow and supplied with drinking water containing ciprofloxacin and 

acetic acid and housed in individually vented cage systems. 150 milligrams of 5-Fluorouracil 

(5-FU) was injected per kg of mouse body weight to eliminate cycling cells and to enrich for 

hematopoietic progenitor cells (Figure 9). On the fifth day following 5-FU injection, these 

mice were sacrificed and their femurs and tibia flushed with serum-supplemented medium to 

obtain bone marrow cells. This bone marrow cells were pre-stimulated by culturing for 2 days 

in a cytokine cocktail (10 ng/ml mIL-6, 6 ng/ml mIL-3 and 100 ng/ml murine stem cell 

factor) in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 15% FBS. On 

day 3, transduction was performed by layering the bone marrow cells on top of adhered 

GP+E86 cell lines (co-culture). The cell lines were irradiated for 40cGy and  plated on 

adherent 150 mm x 20 mm dishes one day prior to the transduction. 10 µg/ml protamine 

sulphate was always added to the medium during viral transduction. On day 5, following 

transduction for two days, bone marrow was removed gently but completely without 

disturbing the adhered monolayer of the GP+E86 cell line. Bone marrow was cultured in 

DMEM 15% FBS and 2 more days were allowed for GFP expression. On day 7, GFP positive 

cells were sorted by FACSVantage and used for bone marrow transplantation or for in vitro 

culture (Figure 9). Bone marrow was always cultured in DMEM 15% FBS medium 

supplemented with 10 ng/ml mIL-6, 6 ng/ml mIL-3 and 100 ng/ml murine stem cell factor.  
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Figure 10: Experimental design of bone marrow transplantation. 

This is a representation of the experimental set of mice from the AML1-ETO, Meis1 and the EGFP arms. 

Following cohorts of mice were injected: AML1-ETO+ Meis1 (17), AML1-ETO (n=10), Meis1 (n=10). 

Bone marrow transplantation and assessment of mice 

Recipients were >8 to 12 wk old (C57BL/6J x C3H/HeJ) F1 (B6C3) mice. These mice were 

lethally irradiated (850 cGy) a few hours prior to receiving BM transplants. Transduced BM 

or BM from leukemic mice was injected with or without addition of mock transduced or non-

transduced bone marrow cells intravenously into the tail vein of mice using a sterile 0.5 x 25 

mm needle. Mice were assessed periodically for signs of leukemic symptoms by blood 

withdrawal from the tail vein using sterile scalpels and bone marrow aspiration from the tibia 

of anaesthetized animals or by the observance of symptoms that included crouching, frizzled 

body hair, paleness in the feet, heavy breathing and disturbed gait. Mice were considered 

moribund when one of these symptoms was starkly visible. In this study BM cells transduced 

with AML1-ETO, Meis1 and the EGFP arms were injected into mice as shown in figure 10.  

 

For secondary, 1x106 bone marrow cells from a leukemic primary were injected with the 

addition, to each mouse, of 1x106 bone marrow cells from a syngenic wild type mouse (non-

transduced mock cells).  
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Moribund mice were sacrificed by CO2 asphyxiation and BM was aspirated as described 

before. Spleens were dissected and macerated to produce single cell suspensions and 

peripheral blood was drawn with a sterile 0.5 x 25 mm needle by puncturing the heart 

immediately after sacrificing the mice. Red blood cell (RBC) lysis for peripheral blood, bone 

marrow and spleen cells was performed by incubating the cells in ammonium chloride buffer 

for 10 minutes at room temperature.  
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Exp. No. Gene No cells Tx Mock* 

3944b AE+Meis1 2.00x105 3.00 x105 

3944a AE+Meis1 2.00x105 3.00 x105 

3912 AE+Meis1 1.25 x105 3.00 x105 

3912#2 AE+Meis1 1.25 x105 3.00 x105 

3933 AE+Meis1 unsorted - 

3933 #4 AE+Meis1 unsorted - 

3933 #2 AE+Meis1 unsorted - 

3918#2 AE+Meis1 1.30 x105 5.00 x105 

3974#2 AE+Meis1 unsorted - 

3974#3 AE+Meis1 unsorted - 

4406B AE+Meis1 1.00 x105 3.00 x105 

4406B#2 AE+Meis1 1.00 x105 3.00 x105 

4441A AE+Meis1 unsorted - 

4525 AE+Meis1 5.00 x104 3.00 x105 

4441B#2 AE+Meis1 unsorted - 

4441A#3 AE+Meis1 unsorted - 

4323 AE+Meis1 unsorted - 

4696 AE+Meis1 unsorted - 

4415#1 AEΔTAF+Meis1 1.2x106 - 

4415#2 AEΔTAF+Meis1 1.2x106 - 

4415#3 AEΔTAF+Meis1 1.2x106 - 

4571A#1 AEΔTAF+Meis1 1.2x106 - 

4571A#1 AEΔTAF+Meis1 1.2x106 - 

4585#1 AE148D+Meis1 1.0x106 - 

4585#2 AE148D+Meis1 1.0x106 - 

4585#3 AE148D+Meis1 1.0x106 - 

4757#1 AE148D+Meis1 3.0x106 - 

4757#1 AE148D+Meis1 3.0x106 - 

4757#1 AE148D+Meis1 3.0x106 - 

4664#1 AE148D 1.0x106 - 

4664#2 AE148D 1.0x106 - 
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4664#3 AE148D 1.0x106 - 

4664#4 AE148D 1.0x106 - 

4768#1 AEΔTAF 2.0x106 - 

4768#2 AEΔTAF 2.0x106 - 

 4768#3 AEΔTAF 2.0x106 - 

4768#4 AEΔTAF 2.0x106 - 

4768#5 AEΔTAF 2.0x106 - 
 

Table 2: Injection of transduced and mock bone marrow in AML1-ETO+ Meis1, AEΔTAF+Meis1, 

AE148D+Meis1, AE148D, AEΔTAF. Mice transplanted with unsorted cells were injected with a total of 

1.0x106  cells.  *Mock indicates mock-transduced GFP negative BM cells. Tx=transplanted. 

 

Exp. No. Primary/secondary Gene No cells Tx 

4519 1° Meis1 4.40 x105 

4638 1° Meis1 1.00 x106 

4638#2 1° Meis1 1.00 x106 

4638#3 1° Meis1 1.00 x106 

4638#4 1° Meis1 1.00 x106 

4638#5 1° Meis1 1.00 x106 

4752A 1° MIG 5.00 x105 

4752A#2 1° MIG 5.00 x105 

4760 1° MIG 5.00 x105 

4760#2 1° MIG 6.00 x105 

4760#3 1° MIG 6.00 x105 

4760#4 1° MIG 6.00 x105 

4760#5 1° MIG 6.00 x105 

4747 1° AE 5.00 x105 

4747#2 1° AE 5.00 x105 

4747#3 1° AE 5.00 x105 

4747#4 1° AE 5.00 x105 

4747#5 1° AE 5.00 x105 
 

Table 3: Injection of transduced and mock AML1-ETO, Meis1 and empty vector cells into lethally 

irradiated mice. Tx=transplanted. 
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Exp. No. Primary/secondary gene no cells Tx NT 

4155#1 2° (3918#2) AE+Meis1 1.00 x106 1.00E+06 

4155#2 2°(3918#2) AE+Meis1 1.00 x106 1.00E+06 

4155#3 2°(3918#2) AE+Meis1 1.00 x106 1.00E+06 

4155#4 2°(3918#2) AE+Meis1 1.00 x106 1.00E+06 

4700 2° (4525) AE+Meis1 1.00x106 1.00 x106 

4700#2 2° (4525) AE+Meis1 1.00 x106 1.00 x106 

4828 2° (4323#3 SP) AE+Meis1 1.20 x106 1.00 x106 

4828#2 2° (4323#3 SP) AE+Meis1 1.20 x106 1.00 x106 

4828#3 2° (4323#3 SP) AE+Meis1 8.00 x105 1.00 x105 

4828#4 2° (4323#3 SP) AE+Meis1 8.00 x105 1.00 x105 

 
Table 4: Tabular representation of the number of cells injected into each mouse. NT indicates non 

transduced GFP-negative cells from a syngenic healthy mouse. Tx=transplanted. 

FACS analysis of murine cells 

Single cell suspensions of cells were stained with various fluorescence-conjugated antibodies. 

Staining was performed in PBS with the fluorescence-conjugated antibodies using a 1: 200 

dilution for each antibody. Samples were incubated at 4°C for 20 minutes and subsequently 

washed with PBS to remove excess antibody. Cells were centrifuged and after decanting the 

supernatant, resuspended in FACS buffer (2% fetal bovine serum and 2 µg/ml propidium 

iodide in phosphate-buffered-saline). Antibodies used for FACS were labelled with 

phycoerythrin for Gr-1, CD11b (Mac1), Sca-1, Ter119, CD4, CD19, and allophycocyanin 

conjugated CD11b (Mac-1), CD117 (c-kit), B220, and CD8. Fluorescence was detected using 

a FACS Calibur flow cytometer and analyzed using the CellQuest software. Dead cells were 

gated out by high PI staining and forward light scatter. 
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Ex vivo proliferation and CFC assays 

Cell proliferation was assessed in DMEM supplemented with 15% FBS 10 ng/ml mIL-6, 6 

ng/ml mIL-3 and 100 ng/ml murine stem cell factor (standard medium). Quantification of 

clonogenic progenitors was performed by plating cells in methylcellulose supplemented with 

cytokines (Methocult M3434). Replating was performed every week in appropriate dilutions.  

Cytospin preparations and Wright-Giemsa staining 

Cytospins of single cell suspensions were performed by resuspending cells in PBS at a 

concentration of 2-6x 105 cells per 200 µl and this volume was introduced into the cytospin 

apparatus. The cells were permanently fixed on glass slides by centrifugation at 500 rpm for 

10 minutes and subsequently air-dried. Modified Wright Giemsa staining was performed by 

immersing the slides in an undiluted solution of May-Grunwald stain for 5 minutes followed 

by immersion of slides in 1:50 diluted Giemsa stain for 1 hour. Slides were dipped in water to 

remove excess stain between the two staining steps and after the staining procedure and air-

dried for observance under the inverted light microscope.  

 

For histological analysis, the peritoneum of sacrificed leukemic mice was dissected so as to 

expose all organs (as shown in figure 11) and most of the blood drained by cutting the 

peritoneal artery and absorbing the blood with a tissue paper. The mice were fixed in an 

aqueous solution of formaldehyde (10% v/v) and sections of selected organs were prepared 

and hematoxylin-eosin stained using standard protocols.  

 

 
 

Figure 11: Photographic representation of fixing of diseased mouse for histopathology.  
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RNA and genomic DNA isolation and cDNA preparation 

The TRIzol method for RNA isolation described by the manufacturer was used to extract 

RNA with the addition of 1 ml of TRIzol solution per million cells. Equal amounts of RNA as 

quantified by a spectrophotometer were added to each reaction (in a set) used for cDNA 

preparation for the semi-quantitative PCRs. Each sample was treated with DNaseI for 

prevention of genomic DNA contamination in cDNA samples. This was performed for each 

sample prior to cDNA preparation according to the manufacturer’s instructions. 

 

Genomic DNA was isolated from a minimum of 1x107 cells for Southern blotting from 

various murine organ cells using the DNAZOL reagent and the protocol for the same 

according to the manufacturer. Genomic DNA for the V-DJ and D-J PCRs was isolated using 

the DNeasy mini kit using supplied methods. Genomic DNA was resuspended in sterile water 

and quantified using a spectrophotometer after proper dissolution.  

 

cDNA was prepared from DNaseI treated RNA. First-strand cDNA synthesis was done with 

ThermoScript kit. In a 20 µl reaction volume, 1 µg RNA and 1 µg of oligo (dT) were mixed 

to a final volume of 11 µl and incubated 10 minutes at 70°C. Then, 4 µl of 5 X first-strand 

buffer, 2 µl of DTT 0.1 mol/L, 1 µl of 10 mmol/L deoxynucleoside triphosphate mix, and 2 µl 

of ThermoScript reverse transcriptase were added. The sample was incubated 1 hour at 42°C 

and used for PCRs.  

Southern blot analysis 

Southern blot analysis to assess proviral integration was performed by isolating DNA from 

bone marrow, spleen and peripheral blood of leukemic mice using DNAzol reagent as 

recommended by manufacturer. Southern blot was performed using standard protocols. DNA 

was digested with EcoRI, which cuts the proviral DNA once, to release a fragment specific to 

the proviral integration site. To check the full-length integration, DNA was digested with Nhe 

I, which cuts in the long terminal repeats (LTRs) to release the proviral genome. After 

digestion DNA was loaded on a 0.7% agarose gel with 0.5 µg/ml ethidium bromide. After 

electrophoresis, the DNA was depurinated by soaking the gel in 0.2 N HCL for 8 minutes, 

and subsequently for 45 minutes in denaturation buffer. After denaturation, the DNA was 
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transferred on zeta-Probe GT membrane by capillary action in a 10X transfer buffer. Cross-

linking of the DNA with the membrane was done by incubating the membrane at 150 mjoule 

in a UV gene linker. The probe used was a 700 bp GFP fragment, which was digested out 

from the pEGFP-C1 plasmid and labeled with α-32P dCTP using Megaprime DNA labeling 

system. Probe was purified using Microspin S-300 HR columns. Hybridization was done with 

α-32P GFP labeled overnight at 620C. After two rounds of washing the membrane was dried, 

covered with a plastic film and put in a cassette for exposure of the film. The film was put on 

the membrane in a dark room and the exposure was done at variable exposing times between 

48 hours and one week, depending on the visualization signal observed.  

Western blotting (Immunoblotting)  

Sample preparation and cell lysis (total cell extract)  

Proof of protein expression was performed using E86 AML1-ETO and Meis1 cell lines. The 

cells were lysed using 150 µl RIPA buffer with fresh added protease inhibitors and detached 

using a cell culture scraper. The cells with RIPA buffer were transferred to an Eppendorf 

microcentrifuge tube and mixed by inversion for 30 minutes at 4°C. After the 

homogenization, the sample was centrifuged at 14000 rpm for 30 minutes. After 

centrifugation, the supernatant was transferred to a new Eppendorf tube and either frozen at -

80°C, or kept on ice for determination of protein concentration. As a control, 293T cells from 

an 80% confluent 15 mm cell culture dish (between 5 and 10x 107 cells) were transiently 

transfected with 10 µg of AML1-ETO and Meis1. Lysates were prepared using the method 

described above.  

Determination of protein concentration 

The method used for measuring the protein concentration was the Bradford method. The 

assay is based on the observation that the absorbance maximum for an acidic solution of 

Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein 

occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, causing 

a visible color change. The assay is useful since the extinction coefficient of a dye-albumin 

complex solution is constant over a 10-fold concentration range. The protein concentration of 

the sample was determined by comparison to values obtained for the measure of the known 
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range of protein standards. The protein standard used was Bovine Serum Albumin (BSA). Six 

different albumin concentrations (2.5 µg, 5 µg, 10 µg, 15µg, 20µg and 25µg) were diluted in 

distilled water to a final volume of 800 µl. One microliter of cell lysate was diluted in distilled 

water for the measure. 200 µl of Protein Assay solution was added to the tubes. The tubes 

were incubated at RT for 15 minutes and the content was further transferred to polystyrol 

cuvettes. A determination of the standard curve of the spectrophotometer with distilled water 

and the protein standards was done using the specific program for protein in the 

spectrophotometer. The sample was measured following the standard curve determination.  

SDS PAGE of cell extracts 

Total cell extract (TCE) proteins were separated on a denaturing gel consisting of 8% Tris-

glycine gel was used and a 5% stacking gel. The concentration of the separation gel was 

chosen considering the sizes of wt AML1-ETO protein (94kDa) and Meis1 (about 53 kDa) as 

indicated in molecular protocols ((Sambrook and Gething, 1989). The sample was 

homogenized and diluted 1:1 with 2x loading buffer and heated in a boiling water bath for 10 

minutes. 80 µg protein was loaded on each gel lane. The electrophoresis was performed 

under100 v for 1hour and 30 minutes in the cold room at 4
o
C.  

Protein blotting 

After the electrophoresis, the gel was taken from the cassette and washed once with TBS. For 

the blotting, the wet system was used. To permit a better transfer of large molecular weight 

proteins as AML1-ETO, Meis1, with a predicted size of about 94kDa, and 53kDa, a PVDF 

membrane was chosen. The membrane was wetted in methanol for 30 seconds, rinsed in 

distilled water and equilibrated in transfer buffer for 10 minutes. The system was assembled 

putting a sponge on the bottom of the sandwich (in contact to the negative pole), a 0.8 mm 

filter paper in contact to the sponge, and the gel over the paper. A 10 ml pipette was used to 

eliminate the eventually formed air bubbles. On the membrane, another filter paper was put, a 

second sponge and the chamber was closed. The PVDF membrane was oriented to the 

positive pole to permit the protein (negatively charged) to migrate from the gel to the 

membrane (on the positive pole). The transfer system was submitted to constant amperage of 

250 milliamp for 4 hours at 4°C with agitation. The observation of the high molecular weight 

proteins of the pre-stained protein standard on the membrane was an indicator of successful 

transfer.  
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Protein detection on the blotting membrane with HRP-marked antibodies 

The antibody-detection of protein was performed following the instructions of the antibody’s 

supplier. After the transfer, the membrane was blocked to prevent non-specific binding of 

antibodies to the membrane by incubating with BlottA buffer for one hour at room 

temperature or overnight at 4°C in constant shaking. The membrane was further washed once 

with TBS for five minutes and incubated with the primary antibody at 1:1000 dilution in 

BlottoA overnight. The concentration used for the antibodies was adjusted according to the 

intensity and background. After incubation with the primary antibody, the membrane was 

washed three times with TBS with 0.05% Tween-20 (TBST). The secondary antibody 

conjugated with Horse Radish Peroxidase (HRP) was diluted 1:2000 in BlottoA and put on 

the membrane for 45 to 90 minutes incubation at room temperature. The membrane was 

rinsed with distilled water, washed again tree times with TBST and once with TBS for 5 

minutes under agitation. To detect the antibodies on the membrane a commercial 

chemiluminescence kit was used according to the manufacturer’s instructions. After washing, 

the ECL detection solution was put on the membrane for 90 seconds. The membrane was 

dried, covered with a plastic film and put in a cassette for exposure of the film. The film was 

put on the membrane in a dark room and the exposure was done at variable exposing times 

between 15 seconds and 10 minutes, depending on the visualization signal observed.  

Polymerase chain reactions (PCRs) 

Quantitative PCR 

Meis1 expression was assayed by the TaqMan real-time quantitative polymerase chain 

reaction (RQ-PCR) method in total human bone marrow (BM), and AML1-ETO patient 

samples. Meis1 and FLT3 probes were used from Applied Biosystems (Foster City, CA; assay 

IDs: Meis1, Hs00180020_m1; FLT3, Hs00975657_m1). Quantification of Meis1 expression 

was performed by RQ-PCR with Applied Biosystems primers. For normalization, the TATA 

binding protein (TBP) gene was used. Reactions were with 1.0 µL of cDNA in a total reaction 

volume of 20 µL by using an ABI PRISM 7900 Sequence Detection System (Applied 

Biosystems). 
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PCR to check gene expression in mice 

PCR was performed to check the expression of AMLl-ETO and Meis1 in leukemic mouse 

BM, spleen and PB. All the cDNA and genomic DNA samples were initially amplified for 

house keeping genes like β-2 microglobin and then with gene specific primers for AML1-

ETO, Meis1 etc. Additionally, AML1-ETO expresssion was detected by breakpoint PCR and 

Meis1 expression by primers flanking the MIG vector MCS. 

PCR for V-D-J recombination status 

D-JH rearrangements in the Ig locus were detected by a PCR strategy employing two upstream 

degenerate primers binding 50 of the DFL/DSP element or the DQ52 element. The reverse 

primer was complementary to a binding site downstream of the JH4 segment. All three 

primers were used in a single PCR reaction in a multiplex PCR and the following reaction 

used in germ line configuration, the DQ52 and JH4A primers will amplify the 2.15-kb germ 

line fragment. D-JH1, D-JH2, D-JH3, and D-JH4 rearrangements involving DFL, DSP, or DQ52 

elements will be detected by the emergence of bands of ~1.46, ~1.15, ~0.73, and ~0.20 kb, 

respectively. The amplification protocol was an initial denaturation at 94°C for 1 minute 

followed by 35 cycles of 1 minute at 94°C, 1 minute at 60°C, and 1 minute 45 seconds at 

72°C. Final extension was carried out at 72°C for 10 minutes. The concentration of genomic 

DNA taken was always between 20-300 ng/µl.  

 

The PCR assay for V to D-J rearrangement employs three degenerate primers oligo 

nucleotides (each in separate reactions) homologous to the conserved framework region 3 

(FR3) sequences of the three VH gene families (VH 7183, VH558 and VH Q52) and the JH 

reverse primer. This results in amplified VDJ rearrangements of ~1,058, ~741, or ~333 

nucleotides. Wild-type murine spleen genomic DNA was used as a positive control and 

genomic DNA from the myeloid cell line 32D as a rearrangement negative control. PCR was 

carried out after an initial denaturation step of 94°C for 4 min for 35 cycles with 94°C for 1 

minute, 60°C for 1 minute and 72°C for 1 minute 45 seconds. Final extension was carried out 

for 7 minutes at 72°C. All PCR products were evaluated on a 1.5% agarose gel by gel 

electrophoresis.  
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Identification of retroviral integration sites 

The identification of the genomic integration sites of the retroviral constructs by Bubble PCR 

[1]. For the determination of the retroviral integration sites, a linker mediated (LM)-PCR was 

performed (Schessl et al., 2005). Aliquots of the cell lysates from leukemic mice were 

digested with PstI (New England Biolabs), and the fragments were then ligated overnight at 

room temperature to a double stranded bubble linker prior to performing a first PCR (PCR-A) 

on 10 μl (one-tenth) of the ligation product using a linker-specific Vectorette primer and an 

LTR-specific primer. The bubble linker contains a 30-nucleotide non-homologous sequence 

in the middle region that prevents binding of the linker primer in the absence of minus strand 

generated by the LTR-specific primer. A 1 μl aliquot of the PCR-A reaction (one-fifteenth) is 

then used as a template for a second nested PCR (PCR-B) using an internal LTR-specific 

primer and the same linker-specific vectorette primer as it is used in PCR-A. 10 μl (one-half) 

of the final PCR-B product is then separated by electrophoresis using 2% agarose TAE gel. 

Individual bands are excised, purified and then cloned into PCR2.1 before sequencing the 

integration site of the retrovirus.  

Statistical analysis 

Data were evaluated by using the t-test for dependent or independent samples (Microsoft 

EXCEL). Differences with P values < 0.05 were considered statistically significant. For 

calculations of frequency of leukemia propagating cells, the L-Calc software was used. Cell 

numbers were entered as doses, the number of mice per cohort as test and the number of mice 

dead as the response for the frequency calculation. 
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RESULTS 

Expression of Meis1 in AML1-ETO positive patient samples 

We analyzed 39 AML1-ETO positive AML samples harbouring various other mutations like 

C-KITD816, FLT3-LM, FLT3D835, NRAS codon 12/13/61 etc. These samples were 

analysed for MEIS1 expression using qRT-PCR probes. The expression levels were compared 

with normal human bone marrow. Samples were normalized with the house keeping gene 

TBP. Most of the 39 samples along with Kasumi, a t(8;21) positive cell line, showed a low 

expression of MEIS1. However, three samples expressed comparably high levels of MEIS1. 

After normalization with the house keeping gene TBP, t(8;21) cases and Kasumi showed 

average ΔCT values of 8.47 and 10.33 respectively, whereas normal bone marrow cells 

showed a ΔCT value of 1.11. The data are shown in Fig. 12. The higher expression of MEIS1 

in t(8;12) positive samples did not correlate with the presence of other cooperating mutations 

such as FLT-LM or CKITD816. Furthermore, there was no correlation between high MEIS1 

expression and poorer treatment outcome in these samples. 
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Figure 12: Quantification of MEIS1 expression in AML1-ETO patients by qRT-PCR.  

The expression levels of MEIS1 in patients with AML1-ETO translocation. The expression level of the gene is 

inversely correlated with the ΔCT value. (nHuBM= Normal Human BM, CD34+= Normal BM CD34+) 
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Transplantation of mice with BM transduced with AML1-ETO (AE) and 

Meis1 

Mice were injected with bone marrow cells expressing AML1-ETO, Meis1, EGFP or AML1-

ETO together with Meis1. Transplanted mice were monitored for symptoms like pale legs, 

lethargic, breathing problems and frizzled body hair. Moribund mice were then sacrificed for 

further analysis. Peripheral blood, spleen and bones were taken from these mice and were 

subjected to cell count like RBCs, WBCs from blood, spleen and bone marrow. Before 

crushing the spleen parameters like weight, length and width were calculated. After taking the 

values of all these hematological parameters the cells from blood, spleen and bone marrow 

were checked for engraftment levels by analyzing for GFP positive cells. Various organs of 

the mice were fixed with formalin and sent for histopathology. Sacrificed mice transplanted 

with EGFP, Meis1 and AE showed median BM engraftment levels of 35% ± 27.8, 67% ± 

13.6 and 56% ± 11.1 respectively. The AML1-ETO+Meis1 mice showed significantly higher 

levels of engraftment (median = 93% ±3) sacrificed between 27 to 384 days (n=14) as 

compared to AE (p<0.03) sacrificed between 90 to 262 days (n=3), Meis1 (p<0.02) sacrificed 

between 312 to 465 days (n=3) and EGP (p<0.001) sacrificed between 90 to 272 days (n=3). 

A representative picture of engraftment in BM, spleen and PB of mice transplanted with 

Meis1+AE transduced cells is shown in Figure 13. 
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Figure 13: AML1-ETO+Meis1 mice were highly engrafted in BM, SP and PB. Diseased mice were 

sacrificed and analyzed with flow cytometry to check the engraftment levels of transplanted cells in BM, spleen 

and PB. This figure shows a representative plot of AE + Meis1 mouse that was analyzed for both YFP (Meis1) 

and GFP (AML1-ETO) fluorescence.  
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Survival curves of transplanted mice 

The survival of transplanted mice was monitored for 400 days. Mice injected with bone 

marrow transduced with EGFP (n= 7), Meis1 (n=10) or AML1-ETO (n=10) remained free 

from disease 365 days after transplantation. However, mice injected with both AML1-ETO 

and Meis1 (n=14) transduced BM cells died within a range of 27 to 384 days with a median 

latency of 102 days (Figure 14). Pathological examination revealed death due to leukemia or 

myeloproliferative syndrome (MPS). Secondary mice transplanted with BM derived from 

leukemic AE+Meis1 mice died after a median latency of 57 days. 
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Figure 14: Kaplan–Meier survival curves of mice transplanted with BM cells expressing AML1-ETO 

(n=10), Meis1 (n=10), control EGFP (n=7) and Meis1+ AML1-ETO (n=14).  

The curve also includes the survival of secondary recipient mice (n=10), transplanted with BM from leukemic 

primary Meis1+ AML1-ETO mice.  

Characterization of diseased mice 

WBC and RBC counts 

Examination of the peripheral blood of mice injected with BM cells transduced with AML1-

ETO + Meis1 showed hyperleukocytosis with a very high number of WBCs and low RBC 

counts when compared to control mice. The RBCs showed a decrease in number and the 

WBC count was significantly increased with Meis1+AML1-ETO transplanted mice (mean 
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8.59 x 108/ml ±4.86 and WBC’s with 9.00 x 107/ml±1.51) compared to control mice (mean 

5.72x106/ml±2.91 and 5.21+09/ml±1.93) as shown in Table 5.  

Exp. No. Gene WBC RBC 

3944b AE+Meis1 4.00 x 106 1.00x109 

3944a AE+Meis1 4.00x106 7.50x108 

3912#2 AE+Meis1 2.60x107 1.00x109 

3933  AE+Meis1 5.00x07 2.00x109 

3933 #2 AE+Meis1 3.00x07 2.50x108 

3918#2 AE+Meis1 2.10x08 3.50x108 

4525 AE+Meis1 1.70x107 1.25x109 

4441A#3 AE+Meis1 5.00x107 1.00x109 

4441A AE+Meis1 2.25x107 6.00x108 

4323#3 AE+Meis1 6.50x107 5.00x108 

4696 AE+Meis1 5.12x08 7.50x108 

4752B#1 AE 2.35x107 1.2x109 

4752B#5 AE 1.60x107 7.00x109 

4747#2 AE 1.30x107 8.00x109 

4638#5 Meis1 8.50x106 7.20x109 

4638#1 Meis1 1.10x107 6.50x109 

4519 Meis1 7.00x106 5.35x109 

4760#2 EGFP 7.00x106 5.50x109 

4752A EGFP 1.10x107 4.50x109 

4760#1 EGFP 5.00x106 5.25x109 
 

Table 5: Table showing the hematological parameters of various mice. 

Pathology of transplanted mice 

Moribund mice were sacrificed and examined for pathological signs by autopsy. Macroscopic 

examination revealed marked splenomegaly in the mice transplanted with AE+Meis1 BM 

cells with numerous colonies on the spleen. A list of spleen weight and size is depicted in  

Table 6. 
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Exp. No. Gene Weight (in mg) Size (in mm) 

3944b AE+Meis1 296 20x5 

3944a AE+Meis1 300 20x6 

3912#2 AE+Meis1 232 20x5 

3933 (2610) AE+Meis1 410 21x6 

3933 (1609)#4 AE+Meis1 250 20x5 

3933 (1411)#2 AE+Meis1 117 16x4 

3918#2 AE+Meis1 400 26x4 

4406B#2 AE+Meis1 270 20x3 

4155 AE+Mesi1 373 22x4 

4155#2 AE+Mesi1 321 20x5 

4323#3 AE+Mesi1 348 22x4 

4696 AE+Mesi1 603 29x6 

4441A#3 AE+Mesi1 300 25x4 

4525 AE+Mesi1 290 22x3 

4760#1 EGFP 167 15x4 

4760#2 EGFP 135 14x3 

4752A EGFP 52.2 13x4 

4519 Meis1 126 10x1 

4638#5 Meis1 131 13x4 

4638#1 Meis1 60 13x2 

4747#2 AE 223 18x3 

4752B#1 AE 400 27x5 

4752B#5 AE 260 23x6 

 

Table 6: Table showing spleen weight and size of the transplanted mice.  

 

For histopathological examination, sacrificed mice were fixed by immersing in 4% buffered 

formalin solution. Histopathological analyses of various organs revealed severe blast 

infiltration. The hematopoietic organs like bone marrow, spleen, liver, lymphnodes of these 

mice demonstrated perivascular infiltration with leukemic cells. Positivity for 

myeloperoxidase (MPO) and chloracetate esterase (CAE) confirmed the myeloid nature of the 
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cells. Additional immuno-histological staining to detect myeloid or lymphoid nature of blasts, 

revealed the presence of lymphoid blasts in a subset of mice. 

 
Figure 15: Histological analysis of different organs of a representative leukemic AML1-ETO + Meis1 

mouse. 

Bone marrow, lymph nodes, kidneys and lungs (Giemsa staining,) of the analyzed animals show infiltration with 

blast cells.  

 

Morphological examination of infiltrating cells in the hematopoietic organs bone marrow, 

spleen and peripheral blood was performed by cytospin preparation and May-Grunwald-

Giemsa staining. Representative cytospin preparations shown in figure 16 depict immature 

blast cells in BM and spleen of mice transplanted with Meis1+AML1-ETO transduced BM 

cells. 
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Bone Marrow 

ALL AML 

 
Figure 16: Determination of disease by the morphological analysis. 

May-Grunwald-Giemsa–stained cytospin preparations of cells isolated from the bone marrow of AML1-

ETO+Meis1 mice shows a number of large immature blast cells in both AML and ALL phenotypes. 

 

The morphology, immunohistochemistry and the blast count in the bone marrow of diseased 

mice revealed three distinct categories of disease in these mice: out of 14 mice analysed a) 3 

mice had developed a lethal myeloproliferative syndrome (MPS) with low blast counts 

(<20%). The myeloproliferative disease was not transplantable into secondary recipients. b) 7 

mice suffered from AML with more than 20% blasts in the bone marrow (median= 24 ± 3.5 

blasts/100 cells in BM). The BM of the leukemic mice with AML was hypercellular and 

occupied by immature myeloblasts with finely reticulated chromatin, 2 or more nucleoli, gray-

blue cytoplasm, and delicate and azurophilic cytoplasmatic granules. c) 3 mice developed 

ALL with very high blast counts in the BM (median= 69±7.9 blasts/100 cells in BM).  

 

 

Mouse Nr. Exp.No. 
Retroviral 

construct 

% PB 

Blasts 

% BM 

Blasts 

% Spleen 

Blasts 
Diagnosis 

#1 4752A EGFP 0 1 0 No disease 

#2 4760 EGFP 0 3 1 No disease 

#3 4519 Meis1 0 0 0 No disease 

#4 4638 Meis1 0 1 0 No disease 

#5 4747#2 AESCS 0 1 0 No disease 

#6 4752B#5 AESCS 0 6 3 No disease 
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#7 3944B AE+Meis1 22 20 21 AML 

#8 3944a AE+Meis1 15 15 19 MPS 

#9 3933#1 AE+Meis1 19 21 NA MPS 

#10 3933#2 AE+Meis1 NA NA NA MPS 

#11 3933#4 AE+Meis1 NA NA NA ALL 

#12 4323#3 AE+Meis1 75 84 72 ALL 

#13 3918#2 AE+Meis1 75 63 71 ALL 

#14 4525 AE+Meis1 66 43 75 AML 

#15 4696 AE+Meis1 ND ND ND AML 

#16 3912#2 AE+Meis1 22 31 29 AML 

#17 4406B AE+Meis1 32 78 81 AML 

#18 4441A#1 AE+Meis1 ND ND ND AML 

#19 4441B#2 AE+Meis1 81 75 83 AML 

 
Table 7: Blast percentage of mice transplanted with AML1-ETO+Meis1, EGFP, Meis1 and AML1-ETO. 

Number of blast cells in bone marrow, spleen and peripheral blood of diseased mice and control mice engrafted 

with Meis1, AML1-ETO and EGFP cells.  

Immunophenotyping of transplanted mice  

Flow cytometry of surface antibody expression of BM, spleen and PB of AML1-ETO+Meis1 

transplanted mice showed that a) seven out of 13 mice characterized as MPS and AML 

showed 70% of their cells co-expressing Gr-1+ and Mac1+ (mean=84.7%±9.39 in BM); three 

mice belonging to the AML group expressed the c-Kit marker in a high proportion of cells 

(mean = 80.78±11.8% in BM) with very few cells being positive for myeloid markers 

(mean=11.2±9.9 in BM). b) Three mice developed ALL leukemia with high percentage of the 

cells expressing both the Mac1+ surface marker and the lymphoid associated B220 antigen 

(mean = 40.16±19.9%). 
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Figure 17: Immunophenotype of cells isolated from the bone marrow of mice that received transplants.  

Expression of the myeloid markers Gr-1 and Mac-1 and the lymphoid marker B220 on cells isolated from the 

bone marrow of different representative animals that received transplants of BM cells transduced with AML1-

ETO+Meis1. The proportion of positive cells within the EGFP+ or EYFP+ compartment is indicated. The plots 

show representative FACS profiles from BM cells of mice with different types of leukemia in comparison with 

cells from GFP control animals, with indication of the proportion of positive cells within the GFP+/YFP+ 

compartment.  

Transplantation of secondary recipient mice 

The self-renewal properties of leukemic cells derived from AML1-ETO+Meis1 transduced 

cells were tested by transplantation into lethally irradiated secondary recipients.  All recipient 

mice transplanted with 1x106 of cells from leukemic mice developed leukemia and died with 

latencies between 27 and 80 days (median = 57 days; Table 7 & Figure 14). The secondary 

recipients showed the same disease as the primary mice. 
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Exp. No Gene 
Cells 

transplanted 
Mock 

Days of 

survival 
Disease 

4155#1 AE+Meis1 1.00 x106 1.00x106 27 ALL 

4155#2 AE+Meis1 1.00 x106 1.00 x106 27 ALL 

4155#3 AE+Meis1 1.00 x106 1.00 x106 26 ALL 

4155#4 AE+Meis1 1.00 x106 1.00 x106 26 ALL 

4700#1 AE+Meis1 1.00 x106 1.00 x106 80 AML 

4700#2 AE+Meis1 1.00 x106 1.00 x106 80 AML 

4828#1 AE+Meis1 1.20 x106 1.00 x106 58 ALL 

4828#2 AE+Meis1 1.20 x106 1.00 x106 58 ALL 

4828#3 AE+Meis1 8.00 x105 1.00 x106 57 ALL 

4828#4 AE+Meis1 8.00 x105 1.00 x106 57 ALL 

 

Table 8 List of secondary mice. 

Mice transplanted with leukemic cells from primary mice into secondary recipients developed aggressive 

leukemia with a median latency of 57 days.  Mice with exp.nos 4155, 4700, 4828 were transplanted with primary 

leukemic BM cells from exp.nos 3918, 4525, 4323.  

Southern blot analysis of the proviral integration pattern in leukemic cells 

from AML1-ETO+ Meis1 mice 

In order to check the clonality of the disease in AE+Meis1 transplanted mice, we performed 

Southern blot analysis. For this, DNA from BM cells derived from leukemic mice was 

digested with EcoRI, which cuts once within the proviral sequence and once within the 

integrated locus, and was subjected to electrophoresis and hybridization with EGFP probes. 

We observed several bands of different sizes and intensities of proviral integration signals in 

the different hematopoietic organs such BM, spleen and PB, indicating oligoclonal nature of 

the disease (Figure.18). 
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Figure 18. Southern blotting shows multiple integrations of the provirus in diseased mice. 

Southern blot analyses of genomic DNA of bone marrow, spleen, peripheral blood from a primary mice and a 

secondary recipient to detect clonal proviral integrations. DNA was digested with EcoRI, which cuts once in the 

proviral sequence, and blots were hybridized to a GFP/YFP probe.  

Frequency of clonogenic cells in leukemic mice - Colony Forming Units 

(CFU) 

Cells isolated from BM, spleen and PB of AE+Meis1 leukemic mice and control mice were 

plated in methylcellulose assays. Compared to the control, cells derived from AE+Meis1 

leukemic mice showed increased proliferative and replating potential (Figure 19). The mean 

frequency of clonogenic cells in the BM of AE+Meis1 (with AML phenotype) mice was 

55.58±40.43 CFU/1x104 (N=3) input cells and 220.3±16.63 in BM of AE+Meis1 (with ALL 

phenotype) (N=2) for the BM as compared to 13.3±8.5 CFU/1x104 input cells for the EGFP 

control (N=3). Replating the primary CFC into secondary CFC yielded 1831±809 CFU/1x104 

input cells in the AE+Meis1(with AML) and 4475±2925 CFU/1x104 input cells  in the 

AE+Meis1(with ALL) arm as compared to 6.6±3.0 CFU/1x104 in the EGFP control (N=3). 

Tertiary CFC assays derived from replating of secondary CFC showed 3991±862 CFU/1x104 

in the AE+Meis1(with AML) and 5000±0 CFU/1x104 in the AE+Meis1(with ALL) arm as 

compared to 1CFU/1x104 in the EGFP control. 
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Figure 19 The bar graphs of ex-vivo assay of bone marrow cells isolated from mice transplanted with 

Meis1+AML1-ETO and EGFP. 

The colonies in the methylcellulose dishes were counted every 7 days and were serially replated from the 

primary CFCs cells.  

IgH D-J rearrangements can be detected in myeloid populations of cells 

with AML1-ETO/Meis1 positive ALL 

Leukemic mice were partly characterized by expression of both myeloid and lymphoid 

antigen (Figure 20A). This finding prompted investigations of the IgH rearrangement status in 

the different types of leukemias: whereas all AML cases as well as one analyzed MPD case 

showed germline configuration, all the ALL cases were positive for IgH D-JH rearrangements 

as shown in Table 9 (Figure 20B). 

AM
L

A
LL

M
PS

positive24.675.9694.398.2320.8310.9923#3

positive33.100.5087.551.4742.101.9318#2 

positve62.7264.7267.2471.3074.6993.2433#2

negative10.196.0115.2498.6498.4098.9044a#1

negative7.043.157.8368.9975.0076.9633#1

negativeNDND6.0287.0789.7890.1044b#1

negative35.3625.1732.6680.6694.8085.3612#2

ND39.2027.2934.9579.7294.1683.8312#1

IgH DJ 
rearrangement

Mac1+B220+ 
(%)

Gr1+B220+ 
(%)B220+ (%)

Gr1+Mac1 
(%)Mac1+  (%)Gr1+    (%)Exp.No.

positive24.675.9694.398.2320.8310.9923#3

positive33.100.5087.551.4742.101.9318#2 

positve62.7264.7267.2471.3074.6993.2433#2

negative10.196.0115.2498.6498.4098.9044a#1

negative7.043.157.8368.9975.0076.9633#1

negativeNDND6.0287.0789.7890.1044b#1

negative35.3625.1732.6680.6694.8085.3612#2

ND39.2027.2934.9579.7294.1683.8312#1

IgH DJ 
rearrangement

Mac1+B220+ 
(%)

Gr1+B220+ 
(%)B220+ (%)

Gr1+Mac1 
(%)Mac1+  (%)Gr1+    (%)Exp.No.

AM
L

A
LL

M
PS

positive24.675.9694.398.2320.8310.9923#3

positive33.100.5087.551.4742.101.9318#2 

positve62.7264.7267.2471.3074.6993.2433#2

negative10.196.0115.2498.6498.4098.9044a#1

negative7.043.157.8368.9975.0076.9633#1

negativeNDND6.0287.0789.7890.1044b#1

negative35.3625.1732.6680.6694.8085.3612#2

ND39.2027.2934.9579.7294.1683.8312#1

IgH DJ 
rearrangement

Mac1+B220+ 
(%)

Gr1+B220+ 
(%)B220+ (%)

Gr1+Mac1 
(%)Mac1+  (%)Gr1+    (%)Exp.No.

positive24.675.9694.398.2320.8310.9923#3

positive33.100.5087.551.4742.101.9318#2 

positve62.7264.7267.2471.3074.6993.2433#2

negative10.196.0115.2498.6498.4098.9044a#1

negative7.043.157.8368.9975.0076.9633#1

negativeNDND6.0287.0789.7890.1044b#1

negative35.3625.1732.6680.6694.8085.3612#2

ND39.2027.2934.9579.7294.1683.8312#1

IgH DJ 
rearrangement

Mac1+B220+ 
(%)

Gr1+B220+ 
(%)B220+ (%)

Gr1+Mac1 
(%)Mac1+  (%)Gr1+    (%)Exp.No.

 
Table 9 IgH Rearrangements in AML1-ETO/Meis1 positive leukemias. 
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Figure 20 Analysis of IgH DJ rearrangement in different subpopulations of an ALL mouse. 

A) Spleen cells of AML1-ETO/Meis1 positive ALL co-expressed both Gr-1+Mac-1+(MM)/B220+ markers. B) 

The subpopulations B220+/MM-, B220+/MM+, B220-/MM+ were sorted and analysed for DJ rearrangement. 

The myeloid cell line 32D showed germline configuration and served as a control. Normal spleen CD19+/B220+ 

cells served as a control for DJ rearrangements.  

The B220+ population has the highest frequency of leukemia propagating 

cells  

Since the B (B220+/Gr-1-/Mac-1-), B/M (B220+/Gr-1+Mac-1+) and myeloid marker MM 

(B220-/Gr-1+Mac-1+) subpopulations were present in all ALL cases, we determined the 

frequency of the leukemia propagating cell (LPC)  in each of the highly purified sub-

populations by limiting-dilution secondary transplantation assays. These assays determined 

the frequency of LPC as 1 in 211 in the B population and 1 in 2,765 cells in the B/M 

population, whereas no LPC were detectable in the MM population (Table 10). This 
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demonstrates that the B220+/MM- population in the leukemic mice contains the highest 

number of cells that are able to propagate leukemia in transplanted mice, hereby supporting 

the argument that these are the leukemic stem cell candidates in AML1-ETO+Meis1 induced 

ALL. 

 

Cell 
Number 

B No. of 
leukemic 
mice 

Median 
Latency

B/M No. of 
leukemic 
mice 

Median 
Latency

M/M No. of 
leukemic 
mice 

Median 
Latency

  tested     tested     tested     

50,000 3 3 37 1 1 45 0 0 0 

10,000 2 2 39 4 4 45 4 0 0 

1,000 4 4 43.5 4 1 61 4 0 0 

100 3 1 68 4 0 0 4 0 0 

 
Table 10: Frequency of leukemia propagating cells. 

The median latency of mice injected with subpopulations sorted for MM and B220 markers with various 

dilutions. Mice injected with higher dilutions of B+ population- and B+/MM+ succumbed to leukemia whereas 

those with B-/MM+ did not show any leukemia. B:(B220+/Gr-1-/Mac-1-), B/M: (B220+/Gr-1+Mac-1+) and 

myeloid marker MM:(B220-/Gr-1+Mac-1+) subpopulations  

Identification of retroviral integration sites in diseased mice 

To analyze whether proviral integration might play a role in the development of leukemia in 

transplanted mice 22 retroviral integration sites were subcloned and sequenced from 3 

leukemic mice; all 10 sites were unique, and thus there was no indication of a common 

integration site associated with the leukemic transformation. Moreover, most of these sites 

were intergenic or not linked to known genes as shown in Table 11. The remaining sites were 

within introns in a 5′ to 3′ orientation and most likely led to gene knock down rather than 

activation. One of the mice showed integration at the genomic region between Hoxb5 and 

Hoxb4, as well as other multiple integrations targeting hypothetical proteins. 
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Exp. No Disease No.of clones seq. Chromosome Gene
3933#1 AML 5 4b1 intron, 9 Transducin like enhancer protien3 and ribosomal protien p1

4b2 9 hypothetical
4b3 4 polyhomeotic like-2 (binds with bmi1)
4b4 4 hypothetical
5b3 9 hypothetical

3933 #4 AML 4 1a2 intron, 5 hypothetical
2a1 intron, 5 hypothetical
2a3 intron,4 hypothetical
2a4 intron,17 hypothetical

3918#2 ALL 13 7d2 Chromosome. 11 Hoxb4,Hoxb5

8d2 Chromosome, 8 ringfinger protien

8d3 Chromosome, 17 luc7 holog like

8d4 Chromosome,13 semaphorin

9d2 Chromosome, 15 brain abundant membrane attached signal protien

9d4 Chromosome, 15
10d1 Chromosome, 15
10d2
10d3
10d4
11d1
12d4
13d4

 
 Table 11: List of integration sites of leukemic mice: 

LM-PCR analysis revealed the integration sites of various AML1-ETO+Meis1 mice that developed AML.   

AML-ETO L148D mutant does not induce leukemia when co-expressed 

with Meis1 

After these initial results demonstrating a co-operation between Meis1 and AML1-ETO in 

inducing leukemia in vivo, we aimed at analyzing the functional relevance of various domains 

for A-E induced leukemia. We subcloned AML1-ETO mutants such as AML1-ETO L148D 

(inactivating the DNA binding domain) in which the leucine (L) residue at the DNA binding 

region of AML1 was substituted with aspartic acid (D) (Figure 22) (kind gift from 

S.W.Hiebert). When bone marrow cells expressing AML1-ETO L148D and Meis1 were 

injected into mice there was no incidence of leukemia development upto an observation 

period of 365 days (N=5) in these mice, similar to mice transplanted with BM expressing the 
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L148 construct  alone (n=5) (Figure 23). Thus, an intact AML1 DNA binding domain is 

critical for AML1-ETO to collaborate with Meis1. 

L148D

ΔTAF/NHR1

AML1-ETO
1 87 264

RHD NHR1 NHR2 NHR3

752420177

1 264

RHD NHR1 NHR2 NHR3

752420L148D

RHD NHR2 NHR3

NHR4

NHR4

NHR4

1 87 177

L148D

ΔTAF/NHR1

AML1-ETO
1 87 264

RHD NHR1 NHR2 NHR3

752420177

1 264

RHD NHR1 NHR2 NHR3

752420L148D

RHD NHR2 NHR3

NHR4

NHR4

NHR4

1 87 177  
 

Figure 21: Structure function analysis of the hematopoietic activity of AML1-ETO. 

AML1-ETO mutants were generated and functionally tested by co-expressing them with Meis1BM expressing 

the AML1-ETO L148D mutant and Meis1 (n=5) as well as BM expressing AML1-ETOL148D alone (n=5) were 

transplanted into mice. In addition mice were transplanted with AML1-ETO ΔTAF plus Meis1 (n=4) or AML1-

ETO ΔTAF alone (n=3). 

AML1-ETO ΔTAF/NHR1 is critical in inducing leukemia 

Another mutant of AML1-ETO made by deleting the TAF domain of the ETO region (277-

344 amino acids of AML1-ETO [AML1-ETO ΔTAF]; Figure 22)was subcloned into the MIG 

vector (Lutterbach et al., 1998). We injected BM cells transduced with AML1-ETO ΔTAF 

and Meis1 together into lethally irradiated mice. Interestingly, the mutant strongly 

collaborated with Meis1 in inducing AML. These mice showed high BM leukemic 

engraftment with a median latency of leukemia of 112 days ranging from 112 to 153 days 

(Figure 23). This shows that the TAF domain has functional relevance in the normal 

hematopoiesis.  
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Figure 22: Survival curve of mice transplanted with AML1-ETO L148D and AML1-ETO ΔTAF. 

Mice transplanted with AML1-ETO L148D+ Meis1 (N=5) and AML1-ETO L148D (N=5) alone did not disease 

whereas mice transplanted with AML1-ETO ΔTAF along with Meis1 (N=4) developed AML with a median 

latency of 112 days. Mice injected with AML1-ETO, Meis1 or EGFP alone also did not show any leukemia. 

Detection of spliced variants of AML1-ETO in diseased mice 

In order to check the expression of AML1-ETO and Meis1 transcripts in transplanted mice, we 

performed RT-PCR analysis of RNA derived from sacrificed leukemic mice using different 

sets of primers (Figure 24). Whereas Meis1 expression was detectable in the BM cells by RT-

PCR, we failed to detect any PCR product with primers designed to detect full length AML1-

ETO, but got positive results using primers spanning the breakpoint region of AML1-ETO. 

To investigate this further, we performed genomic PCR on BM samples of diseased mice. The 

genomic DNA PCR showed alternatively spliced fusion transcripts of AML1-ETO in all mice 

tested (Figure 25). Sequencing of the PCR products confirmed spliced fusion transcripts. 

These mice predominantly showed truncated AML1-ETO at the region of the TAF domain 

caused by an in-frame deletion of sequences in the TAF domain. This spliced variant could 

collaborate with Meis1 to cause AML in transplanted mice as described before.   
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Figure 23: RT-PCR showing expression of AML1-ETO and Meis1 in mice co-expressing both. 

RT-PCR to determine the expression of AML1-ETO and Meis1: PCR was performed using the AML1-ETO 

specific primers spanning the break point region and for Meis1 expression with Meis1 specific primers. 

Expression of both genes was confirmed by sequencing the PCR product in all experiments shown. 

Normalization was performed with the housekeeping gene ß2-microglobin. E86 AML1-ETO cell line (AECL), 

Meis1 cell line (Meis1CL)  
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Figure 24: PCR showing different spliced variants of AML1-ETO in transplanted mice.  

PCR from genomic DNA to determine the spliced variants using AML1-ETO specific primers, the AML1-ETO 

plasmid served as control (AEP).  

 

We then performed PCR to detect alternatively spliced variants in human AML. We screened 

14 patients with t(8;21) by RT-PCR and sequencing. Novel spliced variants were detected in 
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most of the patient samples analysed (Figure 26). One variant which occurred due to a frame 

shift mutation resulting in an extra exon 9 (AML1-ETO9a) which leads to a C-terminal 

deletion, the other variant being an out of frame deletion of 243 bp in the ETO region 

immediately after few amino acids of its N-terminal region leading to the disruption of c-

terminal region of ETO. The variants are depicted schematically in Figure 27. These results 

underline the importance of studying spliced variants in leukemogenesis in t(8;21) cases. 
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Figure 25: RT-PCR determining splicing in AML1-ETO positive patients. 

An RT-PCR was performed to determine the splicing variants in AML1-ETO patients. PCR products were run on 

1% agarose gel, the bands were purified and sequenced yielding 3 different variants. 
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Figure 26: Schematic representation of spliced variants of AML1-ETO observed in t(8;21) positive 

patients. 
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DISCUSSION 

AML results from the malignant transformation of self renewing pluripotent HSC or their 

progenitors which acquire the self renewing program of stem cells. However, AML is a 

heterogeneous disorder, in which non-random, somatically acquired chromosomal 

abnormalities are the most commonly observed genetic irregularities (Buske and Humphries, 

2000; Rowley, 1999). The genes which are most commonly affected by chromosomal 

translocations in AML patients are transcription factors which normally play a crucial role in 

hematopoietic differentiation. The t(8;21) translocation is one of the common translocations 

identified in leukemia and fuses chromosome 8q22 to chromosome 21q22 leading to the 

formation of the AML1-ETO fusion gene. Although this translocation is found in around 12% 

AML cases(Downing, 1999; Nucifora and Rowley, 1995), and more than 40% of AML M2 

subtype (Bitter et al., 1987), it was demonstrated in various experimental models that AML1-

ETO is not able to induce leukemia on its own (Rhoades et al., 2000; Yuan et al., 2001). The 

fact that AML1-ETO alone is not leukemogenic is further supported by findings that non-

leukemic AML1-ETO expressing progenitor cells can be isolated from healthy individuals as 

well as AML patients in remission, which suggests that additional mutations in these AML1-

ETO–positive progenitors are necessary for the transformation into leukemia-initiating cells 

(Miyamoto et al., 2000; Nucifora et al., 1993). Recently published data  from our lab and 

others demonstrate that AML1-ETO collaborates with secondary mutations such as FLT3-LM 

(Schessl et al., 2005), TEL/PDGF R (Grisolano et al., 2003) and WT1 (Nishida et al., 2006), 

to rapidly induce leukemia. However, as FLT3-LM is present in only 8.1% of patients with 

AML1-ETO rearrangement (Schessl et al., 2005) it could be that there are several other 

secondary oncogenic events involved in the induction of leukemia in AML1-ETO positive 

patients. Several lines of evidences exist that MEIS1, a Hox co-factor which plays an 

important role in hematopoiesis (Pineault et al., 2002), is highly upregulated in MLL-related 

leukemias (Wong et al., 2007). Additionally, the importance of MEIS1 in human 

leukemogenesis is underscored by the finding that it is frequently up-regulated in primary 

AML and ALL samples (Imamura et al., 2002; Rozovskaia et al., 2001). In this thesis we 

therefore sought to assess the role of Meis1 as a collaborative gene of AML1-ETO. 

Meanwhile it has been shown that Meis1 plays an important role in accelerating leukemia in 

Hox gene mediated leukemogenesis when co-expressed with Hoxa9, Hoxa7, and NUP98-Hox 

fusion genes (Kroon et al., 1998; Lawrence et al., 1999; Pineault et al., 2002). We found that 

MEIS1 was expressed in a subset of AML1-ETO positive AML samples with a level of 
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expression similar to that of normal human bone marrow. Thus, in order to study the 

functional significance of t(8;21) in leukemogenesis and its possible collaboration with Meis1 

overexpression as a secondary event, we co-expressed the AML1-ETO fusion gene with 

Meis1. Expression of both these genes together but not alone, led to the induction of acute 

leukemias with various phenotypes. The reason that these mice showed different disease types 

could be due to the fact that different cell types have been targeted, as already shown in the 

AML1-ETO+FLT3-LM model where the fusion gene and FLT3 collaborate in inducing 

myeloid, B-cell and T-cell leukemia (Schessl et al., 2005).  

 

Mice injected with Meis1 transduced bone marrow cells did not show any sign of 

hematopoietic perturbation or development of disease, demonstrating that Meis1 on its own is 

non-leukemogenic, confirming previous observations (Kroon et al., 1998). In addition mice 

transplanted with BM expressing AML1-ETO alone also did not develop leukemia but 

showed increased spleen size. It has been already reported that expression of AML1-ETO in 

HSC induces non-lethal long latency myeloproliferation (Fenske et al., 2004). It is also known 

that AML1-ETO inhibits the differentiation of myeloid progenitors, resulting in an increase in 

their replating ability and expansion of clonogenic myeloid progenitors in vitro ((Higuchi et 

al., 2002; Okuda et al., 1998) and induced myelodysplasia in vivo, in which immature 

myeloid cells were significantly increased in the BM and spleen (de Guzman et al., 2002; 

Fenske et al., 2004; Grisolano et al., 2003). These results indicated that AML1-ETO–

expressing hematopoietic progenitors remained responsive to normal in vivo homeostatic 

controls, were at pre-leukemic stages, and required additional genetic mutations or events to 

gain full leukemic transformation. In our mouse model co-expression of Meis1 with AML1-

ETO readily transformed hematopoietic progenitor cells resulting in acute leukemia, 

indicating that Meis1 over expression could be one of the additional oncogenic events 

required.  

 

Perturbation of hematopoiesis by expression of AML1-ETO results in an increase in the 

replating capacity of murine clonogenic progenitors (Higuchi et al., 2002). Similarly, in our 

model the ex-vivo analysis of BM, spleen and PB from diseased mice using methylcellulose 

CFU assays could show colonies formed of tightly aggregated cell clusters that were entirely 

composed of immature myeloblasts. Successful serial replating of these cultures proved that 

blast cells expressing both AML1-ETO and Meis1 are highly clonogenic and showed 

replating capacity. In comparison to EGFP control mice, the clonogenic potential of cells 
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derived from leukemic mice were increased manifold. Southern blot analyses confirmed the 

oligoclonal nature of the disease in mice, indicating that the combination of AML1-ETO and 

Meis1 is highly leukemogenic. Insertional mutagenesis mediated by integration of the 

retroviral construct could potentially constitute an oncogenic event (Kustikova et al., 2005). 

To rule out the role of insertional mutagenesis in our model, we analyzed the genomic DNA 

from BM samples of leukemic mice. Analyses of the diseased mice showed integration into 

intragenic regions or introns of genes, more likely resulting in their knock down than in their 

activation except one mouse in which we found intergenic integrations between Hoxb4 and 

Hoxb5. 

 

In order to study the role of AML1-ETO domains, we did functional studies of AML1-ETO 

mutants with regard to their collaborative potential with Meis1. To test the relevance of the 

AML1 DNA binding domain in this respect, mice were transplanted with AEL148D (with a 

point mutation in the DNA binding region of AML1) together with Meis1: none of the mice 

developed disease. These data are in line with published data showing that this mutant lacks 

the ability to collaborate with FLT3-LM (Schessl et al., 2005) or TEL/PDGFRβ (Grisolano et 

al., 2003) to induce leukemia. The PCR analysis of AML1-ETO in mice transplanted with 

AML1-ETO + Meis1 transduced BM cells showed truncated AML1-ETO variants with an in-

frame deletion of the TAF domain (also called NERVY homology region 1) of ETO. The 

TAF domain has been shown to be critical for the E protein silencing by ETO (Plevin et al., 

2006). It has also been reported that this domain is responsible for protein-protein interaction 

with N-CoR (nuclear receptor co-repressor) (Lausen et al., 2004) When we co-expressed 

ΔTAF mutant with Meis1, it resulted in AML suggesting that this domain is dispensable and 

not important in AML1-ETO induced pathogenesis.  

  

Another important observation in our study was the occurrence of a significant number of 

cells in ALL mice displaying both myeloid as well as lymphoid markers (B220+ and Mac-1+ 

Gr-1+), and a considerable cell population that displayed only lymphoid markers 

(B220+/Mac-1-/Gr-1-). Since the cell populations observed here showed expression of a B-

lymphoid associated marker we investigated the presence of IgH genomic rearrangements by 

PCR. Indeed we found that all three cell fractions were positive for the genomic DJ 

rearrangements. In order to determine the presence of a hierarchy in the leukemic cell 

population, we performed leukemic CRU assay in one of these ALL mice to determine the 

frequency of leukemia initiating cell in various cell populations. The frequency of leukemia 
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initiating cell as assessed by the transplantability of leukemia was significantly higher in the 

B220+/Mac1-/Gr1- fraction as compared to the other two fractions (B220+/myeloid marker+ 

and the B220-/ myeloid marker+).  

 

The fact that myeloid leukemias and leukemias with high c-kit marker expression were 

frequently observed in our models recapitulates previous observations from other murine 

models of AML1-ETO positive leukemia (Nishida et al., 2006; Schessl et al., 2005; Yan et 

al., 2006). In other mice, we saw that lymphoid markers were expressed in addition to 

myeloid markers as mentioned above. There could be multiple reasons for the presence of 

these lymphoid marker expressing cells in our AML1-ETO/Meis1 mice. One possible 

explanation is that AML in some of our mice is propagated by a leukemia-initiating cell with 

lymphoid characteristics similar to the already published data with the leukemogenic CALM-

AF10 fusion gene (Deshpande et al., 2006). An alternative possibility could be that aberrant 

lymphoid marker expression is initiated in the leukemic cells of the AML1-ETO/Meis1 mice. 

It is worth noting here that a high percentage of AML1-ETO positive AMLs show lymphoid 

marker expression. It would be interesting to identify the LSC in these human leukemias to 

identify whether these AMLs derive, as in some of our mice, from a lymphoid marker 

expressing LSC. This would have important therapeutic implications for the design of LSC 

specific drugs in these leukemias. 

 

This thesis also describes the presence of certain spliced variants of AML1-ETO. It is known 

from published data that AML1-ETO splicing occurs resulting in variants which play role in 

inducing leukemia. Characterization of some t(8;21) patients showed deletions at the 5’end 

region of ETO encompassing from 260kb to 2Mb (van de Locht et al., 1994). Similarly, in a 

t(8;21) patient with M2 subtype, it was observed that the reading frame of the transcript was 

disrupted due to a 50bp frame shift mutation (Godon et al., 2002; Lasa et al., 2002; van de 

Locht et al., 1994). These results show that AML1-ETO undergoes splicing events resulting in 

isoforms which might lead to pathogenesis. In our model, some leukemic mice showed 

spliced variants along with full length AML1-ETO. The most frequent variant we observed 

was the in-frame deletion of TAF domain resulting in truncation of AML1-ETO. When we 

screened patients positive for t(8;21) translocation for spliced variants we observed two 

different variants in almost all the samples except those with complete remission. Both 

variants observed in patients were expressed along with full length AML1-ETO and it has 

been already shown that one of the variant (AML1-ETO9a) induces leukemia on its own in 
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mouse models (Yan et al., 2006). These results suggest that spliced variants of AML1-ETO 

may induce leukemia and that these variants itself could also act as one of the cooperating 

oncogenic partners for full-length AML1-ETO in these patients.  

Taken together, the data of this theses provide the first functional evidence of a leukemogenic 

collaboration of the translocation AML1-ETO with the Hox gene co-factor Meis1, extending 

our knowledge about the biology of one of the most frequent subtypes of human AML 
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SUMMARY 

One of the most common features of leukemia is the formation of reciprocal chromosomal 

rearrangements often leading to the formation of aberrant fusion genes. Even though several 

of these fusion genes have been shown to directly contribute to malignancy, there is ample 

evidence to indicate the requirement of additional oncogenic events in leukemias involving 

these fusion genes. AML1-ETO, a product of the t(8;21) translocation is one of the common 

and recurrent fusion genes observed in AML. In some of the AML1-ETO positive AML, 

other co-operating mutations like mutations in various receptor tyrosine kinases such as FLT-

3, c-KIT and NRAS have been reported. However most of the AML1-ETO patients do not 

harbor any mutations in these genes suggesting that there are several other unknown partner 

genes involved in t(8;21) mediated leukemias. The identification of these additional co-

operating mutations is necessary for the development of therapeutic strategies for t(8;21) 

associated leukemias. Meis1 is a Hox co-factor which plays an important role in accelerating 

leukemia mediated by several leukemogenic Hox genes and HOX gene fusions such as 

HOXA9 and the fusion gene NUP98-HOXD13. Considering its importance in 

leukemogenesis, we sought to determine if this homeobox gene can also collaborate with 

leukemia associated non-Hox fusion proteins to induce leukemogenesis. Therefore, the aim of 

this thesis was to determine whether the homeobox gene Meis1 can also collaborate with 

AML1-ETO in inducing leukemia.  

 

In summary we could show that AML1-ETO and Meis1 could induce leukemia when 

expressed in tandem, but not alone, in bone marrow cells. Acute leukemias with various 

phenotypes such as AML, ALL and myeloproliferative disease could be observed in different 

mice which was confirmed by characteristic features of perturbed hematological parameters, 

splenomegaly, and a high percentage of cells expressing myeloid markers in AML and 

lymphoid marker B220 in ALL. These leukemias were also transplantable as assessed by 

secondary transplantation. Moreover, immuno-histochemical staining and morphology of the 

cells demonstrated the presence of blast cells in hematopoietic organs of the diseased mice 

unlike the control mice. Moreover, ex vivo analyses of cells from AML1-ETO+Meis1 

transplanted leukemic mice showed that these cells were serially replatable, thereby indicating 

high clonogenic potential. In AML1-ETO+/Meis1+ ALL developing in transplanted mice, the 

leukaemia propagating cell displayed a B220+/MM-  phenotype. 
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In conclusion, we demonstrated for the first time that the commonly occurring chromosomal 

translocation AML1-ETO induces acute leukemia in collaboration with Meis1, a Hox gene 

co-factor, in the murine bone marrow transplantation model. 
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ZUSAMMENFASSUNG 

Ein wesentliches Merkmal von Leukämien besteht im Auftreten von reziproken 

Translokationen, die oftmals zur Bildung von Fusionsproteinen führen. Obwohl bereits eine 

direkte Beteiligung einiger dieser Fusionsproteine an der Entstehung von Leukämien gezeigt 

werden konnte, bestehen vielseitige Hinweise auf die Mitwirkung weiterer onkogener 

Ereignisse an der Entstehung der Leukämie. AML1-ETO, resultierend aus der Translokation 

t(8;21), ist eines der am häufigsten beobachteten Fusionsproteine bei der AML. In einigen 

Fällen von AML1-ETO positiver AML wurden kooperierende Mutationen, unter anderem in 

verschiedenen Rezeptortyrosinkinasen wie FLT3, c-KIT und RAS, gefunden. Jedoch besitzt 

die überwiegende Mehrheit an AML1-ETO positiven Patienten keine derartige Mutationen, 

was für eine Beteiligung weiterer, noch unbekannter Gene an der t(8;21) assoziierten 

Leukämie spricht. Die Identifizierung dieser kooperierenden Mutationen ist grundlegend für 

die Entwicklung neuer therapeutischer Strategien zur Behandlung der t(8;21) assoziierten 

Leukämie.  

 

In Leukämien, welche durch leukämogene Hox-Gene sowie Hox-Fusionsgene wie HOXA9-

Fusionen oder NUP98-HOXD13 ausgelöst werden, spielt der Hox-Kofaktor Meis1 eine 

bedeutende Rolle in der Beschleunigung des Krankheitsverlaufes. Auf Grund der 

Bedeutsamkeit dieses Homeobox-Gens in der Leukämogenese stellte sich uns die Frage, ob 

Meis1 gleichermaßen mit leukämogenen, Nicht-Hox-Fusionsprotein, kooperiert. Ziel dieser 

Arbeit war es daher zu untersuchen, in wie weit das Homeobox-Gen Meis1, zusammen mit 

AML1-ETO, an der Induktion von Leukämie beteiligt ist.  

 

Während die Expression eines dieser Gene allein keinen Effekt zeigt, konnten wir nachweisen 

dass eine gemeinsame Expression beider Gene in Knochenmarkzellen Leukämie induziert. 

Erkrankte Mäuse zeigten phänotypische Merkmale von AML, ALL und myeloproliferativer 

Erkrankung, die durch charakteristische Kennzeichen wie veränderte hämatologische 

Parameter, Splenomegalie und der Expression von myeloiden Markern in AML bzw. von 

lymphoiden Markern in ALL bestätigt wurden. Die Transplantabilität der Leukämien wurde 

durch sekundäre Transplantationen belegt. Desweiteren konnte mittels 

immunohistochemicher Färbung und Morphologie der Zellen ein Vorhandensein von Blasten 

in den hämatopoetischen Organen der erkrankten Mäusen nachgewiesen werden. Ex vivo 

Anlaysen von Zellen AML1-ETO + Meis1 transplantierter Mäuse zeigten das Vorhandensein 
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eines hohen klonogen Potentials. Die leukämie-propagierende Zelle in der AML1-ETO+ 

/Meis1+ ALL zeigte einen B220+/MM- Phänotyp. 

 

Zusammenfassend konnten wir erstmalig zeigen, dass die häufig auftretende chromosomale 

Translokation AML1-ETO in Kollaboration mit dem Hox-kofaktor Meis1 in der Lage ist im 

Maus-Modell Leukämie zu induzieren. 
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NEOPLASIA

Overexpression of CDX2 perturbs HOX gene expression in murine progenitors
depending on its N-terminal domain and is closely correlated with deregulated
HOX gene expression in human acute myeloid leukemia
Vijay P. S. Rawat,1,2 Silvia Thoene,1,2 Vegi M. Naidu,1,2 Natalia Arseni,1,2 Bernhard Heilmeier,1 Klaus Metzeler,1

Konstantin Petropoulos,1,2 Aniruddha Deshpande,1,2 Leticia Quintanilla-Martinez,3 Stefan K. Bohlander,1,2

Karsten Spiekermann,1,2 Wolfgang Hiddemann,1,2 Michaela Feuring-Buske,1,2 and Christian Buske1,2

1Department of Medicine III, Klinikum Grosshadern and 2Clinical Cooperative Group (CCG) Leukemia, National Research Center for Environment and Health
(GSF), Munich; and 3Institute of Pathology, GSF, Neuherberg, Germany

The mechanisms underlying deregula-
tion of HOX gene expression in AML are
poorly understood. The ParaHox gene
CDX2 was shown to act as positive up-
stream regulator of several HOX genes. In
this study, constitutive expression of Cdx2
caused perturbation of leukemogenic Hox
genes such as Hoxa10 and Hoxb8 in
murine hematopoietic progenitors. Dele-
tion of the N-terminal domain of Cdx2
abrogated its ability to perturb Hox gene
expression and to cause acute myeloid
leukemia (AML) in mice. In contrast inacti-

vation of the putative Pbx interacting site
of Cdx2 did not change the leukemogenic
potential of the gene. In an analysis of
115 patients with AML, expression levels
of CDX2 were closely correlated with de-
regulated HOX gene expression. Patients
with normal karyotype showed a 14-fold
higher expression of CDX2 and deregu-
lated HOX gene expression compared
with patients with chromosomal translo-
cations such as t(8:21) or t(15;17). All
patients with AML with normal karyotype
tested were negative for CDX1 and CDX4

expression. These data link the leukemo-
genic potential of Cdx2 to its ability to
dysregulate Hox genes. They furthermore
correlate the level of CDX2 expression
with HOX gene expression in human AML
and support a potential role of CDX2 in
the development of human AML with aber-
rant Hox gene expression. (Blood. 2008;
111:309-319)

© 2008 by The American Society of Hematology

Introduction

In recent years, substantial progress has been made in understand-
ing the biology of acute myeloid leukemia (AML). One of the
pathogenetic hallmarks of AML are chromosomal translocations
generating leukemogenic fusion genes that often act as aberrant
transcription factors.1 The second key genetic characteristics in
AML are mutations, particularly those found in patients with
normal karyotype and affecting the receptor tyrosine kinase FLT3
or the nucleophosmin protein (NPM1). Beside these structural
genetic changes, large-scale gene expression analyses of cDNA
samples from patients with AML have demonstrated that deregu-
lated expression of nonaltered genes characterizes many AML
cases. The most prominent example for this is the deregulated
expression of homeobox genes in AML.2-4 Homeobox genes form a
highly conserved family of transcription factors known to be key
regulators of normal hematopoietic stem cell and progenitor
development.5 Several studies have demonstrated that aberrant
HOX gene expression profoundly perturbs normal murine and
human hematopoietic development and causes leukemia in mice.5-9

The aberrant expression of homeobox genes such as HOXA9 and
HOXA10 is strongly associated with certain AML subtypes charac-
terized by MLL fusion genes, NPM1 mutations (NPMc�), and by
more rare translocations such as the translocation t(10;11)(p13q14)
generating the CALM-AF10 fusion gene.4,10-13 All together, deregu-
lated homeobox gene expression characterizes more than every

third case of AML. So far, it is largely unknown how the aberrant
expression of homeobox genes is initiated in the malignant clone.
In cases with 11q23 chromosomal translocations, it is thought that
aberrant function of the MLL gene, a known positive upstream
regulator of HOX gene expression, is responsible for the perturbed
expression of these key regulatory genes of early hematopoietic
development.14 In contrast, the aberrant HOX gene expression in
patients with AML with normal karyotype and NPM1 mutation is
not well understood.15 In particular, the patients with NPMc� AML
demonstrate that aberrant HOX gene expression cannot be just
explained by the stage of differentiation at which the leukemic
clone is arrested: NPMc� patients are CD34� in more than 95% of
patients, and represent therefore a cell stage in which HOX genes
are normally silenced.8,16

Another gene family critically involved in Hox gene regulation
is the family of the so-called ParaHox genes, comprising the
different “caudal-related homeobox genes” such as CDX1, CDX2,
and CDX4, and the GSH2 homeobox gene.17 Several experimental
systems have demonstrated that loss of Cdx2 causes homeotic
alterations and posterior shifts in Hox expression domains,18 and
that consensus-binding sites for the 3 Cdx homologs are present in
the promoters of multiple Hox genes.19-22 Expression of Cdx2 is
tightly restricted to intestinal development in the adult.23 Aberrant
expression of CDX2 is associated with intestinal metaplasia,24,25
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Barrett epithelium,26 and gastric carcinoma.27 It was previously
demonstrated in a single patient with AML carrying the transloca-
tion t(12;13)(p13;q12) that this translocation can induce ectopic
expression of CDX2 in adult hematopoietic cells beside the
expression of the ETV6-CDX2 fusion gene generated by the
translocation.28 We have previously shown in a murine leukemia
model that the ectopic expression of the Cdx2 and not the
ETV6-CDX2 fusion gene is the key transforming event in this type
of leukemia.29

We now demonstrate that the ParaHox gene Cdx2 dysregulates
expression of leukemogenic Hox genes such as Hoxa10 or Hoxb8
in murine hematopoietic progenitors. Furthermore, we show that
loss of the ability of Cdx2 to perturb Hox gene expression by
deletion of its N-terminal transactivation domain is paralleled by
the inability of the gene to induce AML in vivo. We extended our
analyses to human patients with AML and demonstrate that high
expression levels of CDX2 were closely associated with HOX gene
dysregulation in human AML.

Methods

Patient samples

Mononuclear cells prepared from diagnostic bone marrow or peripheral
blood (PB) samples from 115 adult patients with AML were analyzed. The
AML cases were classified according to the French-American-British
criteria and the World Health Organization classification.30 The study was
approved by the ethics committees of all participating institutions, and
informed consent was obtained from all patients before they entered the
study in accordance with the Declaration of Helsinki (http://www.wma.net/
e/policy/b3.htm). As a control, bone marrow mononuclear cells (BMMCs;
CellSystem, St Katharinen, Germany) from healthy individuals were
analyzed. Cytomorphology, cytochemistry, cytogenetics, and molecular
genetics were applied in all cases as described.

Cytogenetics, FISH analysis, and molecular analysis

Cytogenetic analyses were performed using standard techniques. For
fluorescence in situ hybridization (FISH), commercially available AML1-
ETO, PML-RARa, MLL-AF4, MLL-AF9, MLL-AF10, MLL-AF6, CBF�-
MYH11, or BCR-ABL probes were used according to the manufacturer’s
instructions (Vysis, Bergisch-Gladbach, Germany).31,32

Microarray

Affymetrix HGU-133 A and B microarrays (Santa Clara, CA) were used to
compare the expression of HOX genes in clinical specimens from patients
with various subtypes of AML and in normal human bone marrow samples.
The expression of 22 genes from the HOX gene cluster, represented by
29 different probesets on the microarrays, were analyzed. RNA extraction,
cDNA preparation, in vitro transcription, hybridization, and microarray
scanning were performed according to standard protocols as recommended
by Affymetrix and as published previously.33 Data analysis was performed
using the R 2.4.0 software package (www.R-project.org) and routines from
the biostatistics software repository “Bioconductor.”34 Raw microarray data
were normalized using the variance stabilizing normalization (vsn) proce-
dure,35 and probe-set expression values were calculated by the median
polish method. For the comparison between normal bone marrow and AML
specimens with normal karyotype and unmutated nucleophosmin gene,
empirical P values and the local false discovery rate for each gene were
calculated using the successive exclusion procedure implemented in the
Twilight software package.36 To visualize the differences in HOX gene ex-
pression, a heatmap showing the expression of the 22 selected genes (29 pro-
besets) in 75 clinical samples was constructed. Unsupervised hierarchic cluster-
ing using Euclidean distances was performed to group patient samples
according to the similarity of their HOX gene expression profiles.

Quantitative PCR and LM-PCR

Expression of CDX1, CDX2, and CDX4 was assayed by the TaqMan
real-time quantitative polymerase chain reaction (RQ-PCR) method in total
human bone marrow (BM), cord blood cells and mouse BM subpopula-
tions. CDX1, CDX2, and CDX4 primer and probes were used from Applied
Biosystems (Foster City, CA; assay IDs: CDX1, Hs00156451 m1; CDX2,
Hs01078080 m1; and CDX4, Hs01085517 m1). Quantification of CDX2
expression was performed by RQ-PCR with Applied Biosystems primers.
For normalization, the TATA binding protein (TBP) gene was used.
Reactions were run in triplicates with 2.5 �L of cDNA in a total reaction
volume of 20 �L by using an ABI PRISM 7900 Sequence Detection System
(Applied Biosystems).

For quantification of Hox gene expression in vitro, 5-FU murine BM
progenitors were transduced with MSCV-Cdx2-IRES-EYFP, MSCV-�N-
Cdx2-IRES-EGFP, or MSCV-IRES-EGFP. After transduction, EGFP� or
EYFP� cells were cultured in Dulbecco modified Eagle medium (DMEM)
supplemented with 15% fetal bovine serum (FBS), IL-3, IL-6, and stem cell
factor (SCF) for 24 hours. Expression levels of HOX genes were determined
by the RQ-PCR method as described (Applied Biosystems), and fold
expression was determined by the r�CT method. For the linker-mediated
PCR (LM-PCR), integrated long-terminal repeats (LTRs) and flanking
genomic sequences were amplified and then isolated using a modification of
the bubble LM-PCR strategy as previously described.13,37

cDNA constructs and retroviral vectors

The cDNA of Cdx2 was kindly provided by D. G. Gilliland (Division of
Hematology/Oncology, Harvard Medical School, Boston, MA) and
N. Cross (Department of Hematology, Hammersmith Hospital, London,
United Kingdom). Cloning strategies and retroviral vectors were used as
described before.29

Flow cytometry and histology

Immunophenotypic analysis of murine single-cell suspensions was per-
formed as previously described.13 Antibodies used for fluorescence-
activated cell sorting (FACS) were labeled with phycoerythrin for
Gr1, CD11b (Mac1), Sca-1, Ter119, CD4, CD19, and allophycocyanin-
conjugated CD11b (Mac-1), CD117 (c-kit), B220, and CD8 (BD Pharmin-
gen, Heidelberg, Germany). For histologic analyses, sections of selected
organs were prepared and stained at the Academic Pathology Laboratory
(GSF, Munich, Germany) using standard protocols as previously de-
scribed.29 Photographs from cytospins and colony formation were taken
with an Axiovert 135 microscope (Zeiss, Goettingen, Germany), Plan-
Neofluar 5�/0.15 NA, equipped with a CoolSNAP camera (Photometrics,
Tucson, AZ). Openlab software (Improvision, Coventry, United Kingdom)
was used for image processing. Histologic section images were acquired
using a Hitachi camera HW/C20 (Hitachi, Tokyo, Japan) installed in a Zeiss
Axioplan microscope (Zeiss, Jena, Germany) using Intellicam software
(Matrox Electronic Systems, Middlesex, United Kingdom). Plan-Neofluar
10�/0.30 NA, 20�/0.50 NA, and 40�/0.75 NA objectives as well as a Plan
Apochromat 63�/1.40 oil objective were used. Images were processed
using Adobe Photoshop (Adobe Systems, San Jose, CA).

In vitro assays

GP� E86 cells, NIH 3T3 cells, and 293T cells were grown in DMEM
medium with 10% FBS and 1% penicillin/streptomycin (pen/strep) in a
humidified incubator at 37°C and 5% CO2 (complete medium). Primary
murine BM cells were plated in complete medium consisting of DMEM
supplemented with 15% FBS, 1% pen/strep, 6 ng/mL IL-3, 10 ng/mL IL-6,
and 100 ng/mL SCF (Tebu-bio, Offenbach, Germany). IL-3–dependent cell
populations from leukemic Cdx2 mice were cultured in vitro in RPMI 20%
FBS supplemented with IL-3 (10 ng/mL). Differentiation of clonogenic
progenitors was analyzed by plating cells in methylcellulose supplemented
with cytokines (primary colony-forming cell [CFC] assays, 500 input cells
per dish; Methocult M3434; StemCell Technologies, Vancouver, BC).
Serial CFC assays were performed by replating appropriate aliquots of cells
obtained by harvesting all of the cells present in the previous CFC assay.
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Mice and retroviral infection of primary BM cells

Primary mouse BM cells were transduced as previously described.29 For
transduction of Cdx2, W167A-Cdx2 and �N-Cdx2 cells were cocultured in
complete medium with irradiated (40 Gy from a 137Cs �-radiation) Cdx2,
W167A-Cdx2, and �N-Cdx2 producer cells. All transductions were
performed with the addition of 5 �g/mL protamine sulfate.

BM transplantation and assessment of mice

Following transduction, cells were cultured in complete medium for
48 hours. After this, lethally irradiated (0.80 Gy) mice were given
transplants of highly purified EYFP�/EYFP� cells alone (2.5-3 � 105 cells
per mouse transduced with Cdx2 and W167A-Cdx2, 4-5 � 105 cells per
mouse transduced with �N-Cdx2) without helper cells (FACSVantage;
Becton Dickinson, San Jose, CA). Lethally irradiated secondary recipients
(0.80 Gy) were injected with 106 BM cells from a primary diseased mouse
with an equal number of nontransduced BM cells from a syngenic normal
animal.

Statistical analysis

Data were evaluated using the t test for dependent or independent samples
(SPSS, Chicago, IL). Differences with P values less than .05 were
considered statistically significant.

Results

Cdx2-induced up-regulation of Hox gene expression depends
on its N-terminal transactivation domain

As Cdx2 was shown to function as a positive HOX gene upstream
regulator, it was analyzed whether ectopic expression of Cdx2
induced up-regulation of Hox genes in murine hematopoietic
progenitor cells. For this, Hox gene expression in murine progeni-
tor cells isolated from 5-fluorouracil (5-FU)–treated bone marrow
was determined by quantitative PCR (qPCR) 24 hours after
successful retroviral transduction of the cells with the MSCV-Cdx2-
IRES-EYFP or the MSCV-IRES-EGFP (control) constructs. Be-
fore the qPCR analysis, cells were highly purified by expression of
EYFP or EGFP. Ectopic Cdx2 expression induced significant
up-regulation of Hox genes with leukemogenic potential such as
Hoxb3, Hoxb6, and Hoxb8 or Hoxb9, Hoxa10, Hoxb5, and Hoxa7.
In contrast, Hoxb4 or Hoxd13 did not show any major changes in
their expression levels (Figure 1A). Thus, these results indicated
that ectopic CDX2 is able to up-regulate expression of leukemo-
genic Hox genes in adult hematopoietic progenitors after a short
time interval. Furthermore, we also analyzed whether ectopic Cdx2
expression would alter Hox gene expression in the progeny of
clonogenic progenitors performing CFC assays in vitro: in compari-
son with the EGFP control, primary colonies derived from Cdx2-
transduced progenitors showed substantial up-regulation of leuke-
mogenic Hox genes such as Hoxa7, Hoxa9, Hoxa10, Hoxb6, and
Hoxb8 (Figure 1B).

It was then tested whether deletion of this domain would affect
the ability of Cdx2 to deregulate Hox gene expression. Retroviral
expression of the �N-Cdx2 mutant lacking the N-terminal transac-
tivation domain (1 amino acid [aa]–179 aa) did not induce
up-regulation of Hoxb8, Hoxa9, and Hoxa10 in contrast to
nonmutated Cdx2. Furthermore, deletion of the N-terminal domain
clearly limited the ability of Cdx2 to up-regulate expression of Hox
genes such as Hoxa7, Hoxa9, and Hoxb3, whereas the expression
of the nonleukemogenic Hox genes Hoxb4 and Hoxd13 were not
changed by both Cdx2 constructs compared with the control
(Figure 1A,B).

The transforming potential of Cdx2 is associated with its ability
to perturb Hox gene expression

To analyze whether the transforming potential of Cdx2 would
correlate with its ability to perturb Hox gene expression in normal
hematopoietic progenitor cells, serial replating and in vivo transplan-
tation assays were performed with murine BM progenitor cells
expressing Cdx2, �N-Cdx2, or EGFP alone. Cells were highly
purified based on EGFP or EYFP expression before plating into
methylcellulose. In the first CFC assay, expression of Cdx2 resulted
in a significantly higher number of colonies compared with EGFP
(138 � 18 vs 65 � 11 per 500 initially plated cells, respectively;
n 	 8; P 
 .02) and a significantly higher yield of cells generated
per 500 initially plated cells (2.2 � 106 � 4.4 � 105 vs
1.6 � 105 � 5.2 � 104; n 	 5; P 
 .01; Figure 2A,B). Further-
more and in contrast to the control, colonies expressing Cdx2 were
serially replatable (at second CFC assay 14 000 � 2403 vs 374 � 14
EGFP; n 	 8; P 
 .002) with a significant higher yield of cells
compared with the control (4.5 � 108 � 1.8 � 108 vs
7.4 � 106 � 4.0 � 106 EGFP; n 	 8; P 
 .001; Figure 2A,B).
After 3 rounds of replating, on average 60% (� 10%) of the
Cdx2-expressing colonies were classified as CFU blasts (Figure

Figure 1. Aberrant expression of Cdx2 up-regulates Hox gene expression in
murine bone marrow progenitors. (A) Fold expression levels of Hox genes in
murine BM progenitors induced by ectopic expression of Cdx2 or the �N-Cdx2
mutant (�N) referred to the expression level in BM progenitors transduced with the
EGFP control vector 48 hours after the end of transduction. (B) Fold expression levels
of Hox genes in primary colonies expressing Cdx2, �N-Cdx2, or the empty control
vector (EGFP). The fold expression was calculated by the r�CT method based on the
expression level of the Hox genes in cells transduced with the EGFP control.
*Expression of Hoxb6 and Hoxb8 were not detectable in EGFP control cells. Error
bars indicate the standard deviations (SD).
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2C). This was confirmed by cytospin preparations of colonies
demonstrating a primitive myelomonoblastic morphology of the
clonogenic cells (Figure 2D). Immunophenotypic characterization
of cells at that time point documented coexpression of the myeloid
markers Gr1 and Mac1 in 70% (� 10%) of the cells (n 	 3) and
positivity for Sca-1 in 50% (� 7%) of the cells, respectively,
confirming the primitive phenotype of the colonies (Figure 2E).
Cells isolated from tertiary CFC assays showed unlimited growth
in liquid culture supplemented with IL-3. In order to test the
leukemic potential of cells isolated from tertiary CFC assays,
lethally irradiated mice received transplants of 1 � 106 (n 	 4): all
the mice developed AML after a median latency time of 8 weeks
(data not shown). Thus, ectopic Cdx2 expression conferred leuke-
mogenic properties to hematopoietic progenitors after serial replat-
ing in vitro.

Although in the primary CFC assay expression of �N-Cdx2 in
hematopoietic progenitor cells increased the colony number and
the yield of cells compared with the EGFP control (97 � 4 vs
65 � 11 EGFP per 500 initially plated cells, respectively; n 	 5;
P 
 .03), N-terminal deletion resulted in a significant loss of
hematopoietic activity compared with Cdx2 (97 � 4 vs 138 � 18;
n 	 8; P 
 .01; Figure 2A). In addition, hematopoietic progenitors
expressing the N-terminal deleted mutant did not achieve any serial
replating capacity after the first round of replating or leukemogenic
potential after propagation in methylcellulose as observed for
ectopic Cdx2 expression (Figure 2B). Taken together, these data
indicated that loss of the transforming activity of Cdx2 in vitro was
paralleled by its loss to up-regulate expression of leukemogenic
Hox genes.

To confirm the crucial role of the N-terminal transactivation
domain for AML development in vivo, murine hematopoietic
progenitors constitutively expressing Cdx2 or �N-Cdx2 were
highly purified by EYFP� or EGFP� expression, respectively, and
injected into lethally irradiated recipient mice directly after sorting
(2.5-3 � 105 cells per mouse transduced with Cdx2 and W167A-
Cdx2, 4-5 � 105 cells per mouse transduced with �N-Cdx2). Mice
that received transplants of BM cells expressing Cdx2 became

moribund after a median of 116 days (n 	 25) after transplantation
(Figure 3). Furthermore, inactivation of the putative Pbx-
interacting site of Cdx2 (W167A-Cdx2 mutant) did not change the
phenotype or the time until disease development significantly
(median latency time, 172 days; n 	 14; Figure 3). All the mice
showed elevated peripheral white blood cell count, suffered from
splenomegaly, and were anemic. More detailed hematologic analy-
ses demonstrated that the animals had developed AML with a high
percentage of blasts in BM, spleen and PB (Table 1). Histologic
sections demonstrated infiltration of myeloid blasts in multiple
nonhematopoietic organs, including the testis. Immunohistochem-
istry showed positivity of the blasts for myeloperoxidase and
chloracetate esterase (Figure 4) and negativity for B220 and CD3
(data not shown), indicating the myeloid nature of the blast
population. Immunophenotypic characterization of PB, BM, and
spleen in diseased mice confirmed the predominance of myeloid
Mac1� and Gr-1� cells and the reduction of lymphoid cells
compared with the EGFP control mice (Figure 5; Table 1). Analysis
of the clonality of the disease by Southern blotting demonstrated

Figure 2. Cdx2 confers self-renewal properties to
murine 5-FU BM progenitors. (A) Serial replating capac-
ity of BM progenitors constitutively expressing Cdx2,
�N-Cdx2, or the empty control vector (EGFP). (B) Yield
of cells generated in the serial replating assays of BM
progenitors constitutively expressing Cdx2, �N-Cdx2, or
the empty control vector (EGFP). (C) Morphology of
colonies obtained from Cdx2-, �N-Cdx2–, and EGFP-
expressing BM cells in replating assays. (D) Blast mor-
phology of cells after the fourth replating (May-Grunwald-
Giemsa–stained cytospin preparations). (E) Coexpression
of the myeloid markers Gr1 and Mac1 on Cdx2� cells
obtained from the fourth round of replating. p indicates
plating. Error bars indicate SD.

Figure 3. Survival of mice that received transplants. Survival curves of mice that
received transplants of BM cells expressing Cdx2 (n 	 25), the W167A-CDX2 mutant
(n 	 14), or the �N-Cdx2 mutant (n 	 13). The control group received transplants of
BM infected with the EGFP control retrovirus (n 	 10). The survival time of secondary
recipient mice that received transplants of BM from diseased primary animals from
the Cdx2 or W167A-CDX2 cohort is indicated. Tx indicates transplantation.
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different intensities and patterns of proviral signals in the different
hematopoietic organs consistent with an oligoclonal nature of the
disease (Figure S1, available on the Blood website; see the
Supplemental Materials link at the top of the online article).
Sequencing of retroviral integration sites (n 	 9; 3 independent
transplantation experiments) in the diseased mice that received
transplants of BM cells expressing Cdx2 or W167A-Cdx2 did not
show any recurrent integration sites, arguing against insertional
mutagenesis as a key factor in this disease model (Table 2).

In contrast, mice transplanted with hematopoietic progenitor
cells expressing the �N-Cdx2 (n 	 13) did not develop any disease
in 11 of 13 patients (Figures 3-5; Table 1). A total of 2 mice
developed AML after a very long latency time of 365 and 400 days
after transplantation (Figure 3). To exclude that �N-Cdx2 per-
turbed hematopoiesis without obvious clinical symptoms, 3 mice
without disease manifestations were killed 120 days after transplan-
tation. Engraftment with �N-Cdx2–positive cells was 90% (� 10%)
at that time point. There were no signs of splenomegaly, and the
histopathology of the organs showed a normal tissue architecture
(Figure 4). Moreover, cytospin preparations from BM and spleen
showed differentiated myeloid and lymphoid cells, and immunophe-
notyping did not demonstrate a myeloid infiltration in the spleen as
seen in mice that received transplants of Cdx2 or the W167A
mutant (Figures 4,5). In summary, these experiments indicated that
deletion of the N-terminal transactivation domain of Cdx2 elimi-

nates its ability of the protein to dysregulate Hox gene expression
and to transform hematopoietic progenitors in vitro and in vivo.

CDX2 is highly expressed in patients with AML with normal
karyotype

As the experimental data in the murine system suggested that
ectopic expression of CDX2 is linked to dysregulated HOX gene
expression in AML, we focused on patients with normal karyotype
and NPM1 mutation (NPMc� AML), previously shown to aber-
rantly express HOX genes12 (Table S1). We confirmed these data
using oligonucleotide microarray analysis and extended these
findings to the patient group with normal karyotype without the
NPM1 mutation (NPMc�). A total of 24 patients with normal
karyotype, 12 patients with NPMc� AML and 12 patients with
NPMc� AML, was analyzed. Patients with normal karyotype and
NPM1 mutation were characterized by aberrant expression of
multiple HOXA cluster genes such as HOXA10, HOXA9, and
HOXA7, and HOXB cluster genes such as HOXB5 and HOXB6
(Figure 6A-B). However, patients with NPMc� AML with normal
karyotype also showed dysregulated HOX gene expression com-
pared with patients with AML expressing the PML-RARA (n 	 20)
or AML1-ETO (n 	 20) fusion gene or compared with normal
healthy donors (n 	 11).

Table 1. Hematologic parameters of experimental mice

Retroviral
construct

Mice
analyzed,

no.

Median day
of killing
(range)

Mean RBC,
�109/mL
(� SD)

Mean WBC,
� 106/mL (� SD)

Mean spleen
weight, mg (� SD)

BM, %
blasts
(� SD)

Spleen,
% blasts (� SD)

PB, %
blasts
(� SD)

Lymphoid/
myeloid

ratio in PB

EGFP 6 123.5 (85-127)* 5.67 (� 0.93) 3.37 (� 2.61) 156 (� 59)† 0 0 0 5:1

Cdx2 15 111 (37-229) 1.22 (� 0.43) 22.87 (� 14.68) 546 (� 195) 45 (� 15) 38 (� 15) 18 (� 10) 2:1

W167A 6 128.5 (46-381) 0.93 (� 0.35) 33.5 (� 32.25) 516 (� 233) 50 (� 12) 34 (� 9) 27 (� 2) 2:1

�N-Cdx2 3 330 (309-350) 4.4 (� 0.75) 5.3 (� 1.42) 210 (� 90) 6 0 0 4:1

*A total of 4 of 6 healthy EGFP mice were killed for analysis. A total of 2 of the 6 control mice were analyzed by bone marrow biopsy and bleeding.
†Average weight from 4 EGFP mice.

Figure 4. Histology of mice that received transplants. Immunohistologic analyses of different organs of a representative leukemic Cdx2 or W167A-Cdx2 mouse compared
with a healthy animal from the �N-Cdx2 cohort. The spleen (Giemsa staining, �640) of the analyzed Cdx2 and W167A-Cdx2 animals shows an infiltration with blast cells in
contrast to the �N-Cdx2 animal that received a transplant. The liver of the Cdx2 and W167A-Cdx2 mice demonstrates perivascular infiltration with leukemic cells. Positivity for
myeloperoxidase (MPO) and chloracetate esterase (CAE) confirmed the myeloid nature of the cells (�100 and �400). May-Grunwald-Giemsa–stained cytospin preparations
of cells isolated from the spleen (�640) or BM (�1000) of �N-Cdx2 mice that received transplants show mature lymphoid and myeloid cells, respectively. LN indicates lymph
node; RP, red pulp; WP, white pulp; and CAE, chloracetate esterase.
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We performed unsupervised hierarchic clustering using the
expression levels of 21 genes from the HOX gene cluster in the
64 patient samples and 11 healthy controls: in this analysis, all
12 NPMc� AML samples with normal karyotype and 9 of the
12 NPMc� samples with normal karyotype formed 1 main cluster.
The other main cluster consisted of all the samples with t(8;21) or
t(15;17) translocations, the 11 normal bone marrow samples, and
the 3 NPMc� samples with normal karyotype, which had shown no
perturbation of HOX gene expression (Table S1). Of note, only 1 of
the 21 patients with AML with normal karyotype showed an
up-regulation of the MLL gene, which is known to be an upstream
regulator of HOX genes (Figure 6A).

As AML with normal karyotype separated from the other
cytogenetic AML subgroups by their pattern of HOX gene expres-
sion, we analyzed expression of CDX2 and other members of the
CDX gene family in normal human and murine hematopoietic cells
and different AML subgroups using quantitative PCR. CDX1,
CDX2, and CDX4 were not detectable in normal human BM
(n 	 3), CD34� human BM (n 	 3), and human cord blood cells
(n 	 2). We also could not detect the CDX2 transcript in human
CD34�/CD38�, CD34�/CD38�, and CD34�/CD38� BM cells
from healthy donors in up to 45 cycles of qRT-PCR (n 	 3). Cdx1
and Cdx2 were also not detectable in murine samples, whereas
Cdx4 was expressed in murine BM and splenic cells as previously

reported39 (Table S2; n 	 3). A total of 71 patients with normal
karyotype (AML NPMc� 	 45 patients; NPMc� 	 26 patients)
was analyzed for CDX2 expression. Of the patients with NPMc�

AML, 89% showed aberrant expression of CDX2 as did 88% of the
patients without the NPM1 mutation (Figure 7A; Tables 3, S1).
Sequencing of the complete coding region of CDX2 in 5 patients
with NPMc� AML did not show any mutations or deletions. To test
whether FLT3 mutation would affect expression levels of CDX2 in
the patients with normal karyotype, we analyzed the 4 subgroups
characterized by NPM1 mutation with our without FLT3 mutation
(AML NPMc� � FLT3 mutation) and the NPMc� patients with or
without FLT3 mutation (AML NPMc� � FLT3 mutation): as
illustrated in Table 4 there was no major difference in the
expression level between the different patient cohorts.

We extended this analysis to 44 patients with abnormal
karyotype and detected aberrant CDX2 expression in 64% (28 of
44) of the patients: 12 of 24 patients with the translocation
t(8;21)(q22;q22), 10 of 10 patients with the translocation t(15;
17)(q22;q11), 3 of 4 patients with inv16, and 3 of 6 patients with
MLL-associated translocations showed expression of CDX2 (Fig-
ure 7B; Tables 3, S1).

Importantly, when the expression level of the CDX2 was
compared between patients with AML with normal and abnormal
karyotypes, there was a more than 14-fold higher expression level

Figure 5. Immunophenotype of cells isolated from the spleens of mice that received transplants. Expression of the myeloid markers Gr1 and Mac1 and the lymphoid
marker B220 on cells isolated from the spleen of representative animals that received transplants of BM cells transduced with different constructs as indicated. The proportion
of positive cells within the EGFP� or EYFP� compartment is indicated.

Table 2. Identity of retroviral integration sites in diseased mice

No. Gene Description
Genomic
location

Experimental group
(mouse no.)

1 Intron of A930004K21Rik between exons 2 and 3 NA 2E5 3438 B1

2 Intron of D930015E06Rik between exons 26 and 27 NA 3F1 3432 B1

3 Intergenic region NA 11B1.3 3998 B3

4 Intron of PhC2 between exons 8 and 9 �Polycomb� group (PcG) genes 4D2.2 3998 B3

5 Intergenic region NA 2B 3998 B4

6 Intron of Armc2 between exons 1 and 2 NA 10B2 3478 B2-1

7 Intergenic region Armadillo repeat containing 2 6A3.3* 3478 B2-2

8 Intron of Pag1 between exons 1 and 2

Phosphoprotein associated with glycosphingolipid-enriched

microdomains 1; pag1 3A1* 3478 B2-3

9 Exon 1 of Pigb Phosphatidylinositol glycan, class b 9D 4057A

NA indicates not applicable.
*Identified in or near regions (�50 kb) described as common integration sites (CISs) in the Retrovirus Tagged Cancer Gene database.38
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Figure 6. Hierarchic clustering of CDX2-positive AML samples according to HOX gene expression. (A) Unsupervised hierarchic clustering according to HOX gene
expression demonstrates HOX gene deregulation in patients with normal karyotype with or without NPM1 mutation compared with samples with abnormal karyotype or normal
bone marrow samples. The red arrows highlight the boundary between the 2 main clusters. The genes and samples were permutated. (B) Expression of individual HOX genes
in CDX2-positive AML samples with normal and abnormal karyotype. Log expression levels of 6 different HOX genes in 75 clinical samples are shown in box-and-whisker plots.
Expression was determined by Affymetrix HGU-133 A and B microarrays. The plots show the normalized expression values in normal BM samples (n 	 11), AML with t(8;21)
(n 	 20), AML with t(15;17) (n 	 20), and AML with normal karyotype with (n 	 12) and without NPM1 mutation (n 	 12). The bar indicates the median expression levels and
the box shows the 25th and 75th percentiles, while the whiskers show the maximum and minimum values. Outliers (values that are more than 1.5 interquartile ranges above the
75th or below the 25th percentile) are represented by open circles.
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in the patient group with normal karyotype (n 	 42) compared
with the group with aberrant karyotype (n 	 28)(Ø�CT 8.23 vs
Ø�CT 11.66, respectively; P 
 .001). A total of 3 NPMc� patients
with normal karyotype showed the same low level of expression of
CDX2 (range, �CT 10.55-11.55) as patients with AML with
aberrant karyotype. Of note, these were the same 3 patients shown
before to have no perturbation of HOX gene expression and thereby
fall into the same cluster as patients with AML with t(8;21) or
t(15;17) according to HOX gene expression.

When the CDX2 expression level was analyzed in the different
cytogenetic subgroups of patients with aberrant karytoype, patients
characterized by expression of the AML1-ETO, PML-RARA, and
CBF�-Myh11 showed uniformly low expression levels. Interest-
ingly, the 3 patients with MLL fusion, a subgroup known to be
characterized by HOX gene dysregulation, showed a higher expres-
sion of CDX2 compared with the t(8;21) or t(15;17) cytogenetic
subgroups. These data indicated that high expression levels of
CDX2 are associated with HOX gene dysregulation in AML. To
analyze whether expression of other members of the CDX gene
family might be associated with HOX gene dysregulation in
patients with normal karyotype, we determined transcription of
CDX1 and CDX4 in 23 patients of this AML subgroup: in contrast
to CDX2, CDX1 and CDX4 were not detectable in any of the
patients tested, pointing to a key role of CDX2 in this patient group.

Discussion

Leukemias are initiated by a minor fraction of leukemic stem
cells (LSCs) that have maintained or reacquired the capacity for
indefinite proliferation through accumulated genetic alterations
mutations and/or epigenetic changes.40 Aberrant expression of
homeobox genes, detectable in more than every third case of
AML, is thought to contribute to the infinite self-renewal
properties of LSCs. The molecular mechanisms that mediate
aberrant HOX gene expression in leukemias are known only for
a minority of cases, namely those involving rearrangements of

specific HOX genes or rearrangements of the trithorax group
gene MLL.14,39,41-43 In this study, we now demonstrate that the
Cdx2 gene is able to up-regulate several HoxA and HoxB cluster
genes such as Hoxa5, Hoxa7, Hoxa9, Hoxa10, or Hoxb8; Hoxb6
and Hoxb3 previously have been shown to induce AML in mice
or perturb normal hematopoietic development.7,44-48 Interest-
ingly, Cdx2 did not change the expression of Hox genes with no
reported leukemogenic potential such as Hoxb4 or Hoxb13,
suggesting that Cdx2 is able to perturb in particular expression
of Hox genes with transforming potential. Our findings are
consistent with data in nonhematopoietic cells that documented
the ability of Cdx genes to alter Hox gene expression pat-
terns.49-51 The ability of Cdx2 to dysregulate Hox gene expres-
sion was clearly dependent on its N-terminal transactivation
domain. This is in line with data that previously showed that the
N-terminal transactivation domain, in contrast to the portion
C-terminal of the homeodomain, is necessary for transcriptional
activation of downstream target genes such as Hox genes and
directly interacts with the transcriptional cofactor CBP.52-54

Furthermore, it was shown that deletion of the N-terminal
transactivation domain did not only abrogate the ability of Cdx2
to perturb Hox gene expression, but also eliminated the transform-
ing activity of the gene in vitro and in vivo. Particularly in serial
replating assays, considered to be a surrogate test for the
self-renewal of hematopoietic progenitors, the N-terminally
deleted mutant did not transfer infinite self-renewal properties to
transduced progenitor cells as observed for Cdx2. Furthermore
and in contrast to the �N mutant, Cdx2-expressing cells
acquired leukemia-initiating potential in mice that received
transplants after serial replating. This clear difference in the
transforming potential between Cdx2 and its N-terminal deleted
mutant was further confirmed by BM transplantation assays,
showing rapid development of AML in mice that received
transplants of Cdx2 in contrast to mice that received transplants
of BM cells expressing the �N mutant. Inactivation of the
putative Pbx-interacting site in Cdx2, however, did not change
the transforming potential of the gene. These findings parallel
data on the transforming activity of Cdx4: deletion of its
N-terminal transactivation domain but not the inactivation of the

Table 4. Expression level of CDX2 in patients with AML and normal
karyotype

AML-NK subgroup
analysis

Average �CT

(� SD)

NPM�/FLT3� 8.26 (� 2.84)

NPM�/FLT3� 7.74 (� 2.27)

NPM�/FLT3� 7.27 (� 2.91)

NPM�/FLT3� 7.18 (� 2.48)

NK indicates normal karyotype; and FLT3, FLT3 mutation.

Figure 7. Quantification of CDX2 expression in pa-
tients with AML by RQ-PCR. (A) Expression levels of
CDX2 in patients with AML with a normal karyotype with
(NPMc�) or without NPM1 mutation (NPMc�) or (B) in
different AML subgroups with abnormal karyotype. A total
of 115 samples were analyzed. The number of patients
who were positive for CDX2 expression and were there-
fore evaluated for expression levels are indicated. �CT

values were obtained by normalization for the housekeep-
ing gene TBP; the mean values (� SD) are shown. The
expression level of the gene is inversely correlated with
the �CT value.

Table 3. Ectopic expression of CDX2 in patients with AML

Patient group
Samples tested for

CDX2 transcript, no.
CDX2-positive
samples, no.

Positive
samples, %

NK, NPM1c� 45 40 89

NK, NPM1c� 26 23 88

AML1-ETO 24 12 50

PML-RAR
 10 10 100

MLL fusions 6 3 50

inv16 4 3 75

Percentage of patients positive for CDX2.
NK indicates normal karyotype.
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putative Pbx interacting site resulted in loss of its hematopoietic
activity and ability to perturb Hox gene expression.39 Like Cdx2,
Cdx4 up-regulated leukemogenic Hox genes such as 5�-located
HoxA cluster genes or HoxB cluster genes such as Hoxb3 or
Hoxb8.39 Taken together, these data indicate that the key role of
the N-terminal transactivation domain for the alteration of Hox
gene expression is conserved between the different Cdx family
members. However, in the murine BM transplantation model,
Cdx4 had a comparably low leukemogenic potential compared
with Cdx2, with only half of the animals developing AML after a
long-latency time of 300 days after transplantation.39 The reason
for this is not yet understood, but it is interesting to note that in
contrast to Cdx2, Cdx4 also up-regulated Hox genes such as
the nonleukemogenic Hoxb4. Therefore, it might be that
ectopic expression of Cdx2 induces a more pronounced shift
toward the expression of 5�-located leukemogenic Hox genes
compared with Cdx4.

Strikingly, in human AML, high CDX2 expression levels were
clearly correlated with perturbed HOX gene expression: whereas
ectopic expression of CDX2 was detected in AML subtypes with
our without aberrant HOX gene expression, high transcript levels of
the HOX upstream regulator were closely associated with HOX
gene dysregulation. This was in particular demonstrated for the
large group of patients with AML and normal karyotype indepen-
dent of their NPM1 mutational status, counting for 50% of all
patients with human AML. These patients had a more than 14-fold
higher expression of CDX2 compared with t(8;21)- or t(15;17)-
positive patients. The association of high CDX2 expression and
HOX gene perturbation was further underlined by the finding that
the 3 NPMc� patients with low CDX2 expression did not show
HOX gene perturbation and fell into the same group as the t(8;21)-
or t(15;17)-positive patients with AML when unsupervised cluster-
ing according to HOX gene expression was performed. Of note, in
our study, expression of other members of the CDX gene family
were not associated with dysregulated HOX gene expression in
human AML with normal karyotype, as all 23 samples tested were
negative for expression of CDX1 and CDX4. In a recent report,
Bansal et al detected expression of CDX4 in 3 of 16 patients with
AML and normal karyotype, indicating that expression of CDX4
can occur in this AML subtype, but at low frequency.39

Taking the well-known role of Cdx2 as an upstream regulator
of Hox genes and the close correlation between high expression
levels of CDX2 and HOX gene perturbation in human AML into
account, it is intriguing to speculate that the initiation of high
CDX2 expression levels might be a key step in the development
of AML with aberrant HOX gene expression. This concept
would provide a model for the biology of the large group of
patients suffering from AML with normal karyotype. Particu-
larly in the NPMc� patients, which are more than 95% CD34�,
induction of HOX gene dysregulation by high expression levels
of CDX2 would be an intriguing explanation, because in this
AML subtype aberrant HOX gene expression cannot be ex-
plained by the accumulation of CD34� myeloid blasts, which
also express high levels of multiple Hox genes during normal
hematopoiesis. Our data are in line with a most recent report that
also analyzed the role of ectopic CDX2 in human AML55: based
on the observation that high-level amplification of the CDX2
locus can occur in patients with AML with complex karyotype,
patients with AML with aberrant and normal karyotypes were
evaluated for ectopic CDX2 expression. As in our data set, the
vast majority of patients with normal karyotype or translocation
t(15;17) showed ectopic expression of CDX2. In contrast to

our data, in which 12 of the 24 patients with AML1-ETO
were negative for CDX2, 8 of the 10 patients reported by
Scholl et al were positive. Consistent with the presented data,
this report also documented that expression levels substantially
vary between different genetically defined AML subgroups, but
did not correlate CDX2 expression levels with HOX gene
deregulation in AML.

Of note, in the report by Scholl et al, Cdx2 was able to up-regulate
HoxB8 transcript levels, although to a much lesser extent compared with
the up-regulation of HoxB8 observed in this study. Furthermore, the
authors did not see any change in expression of leukemogenic HoxA
cluster genes such as HoxA9. In addition, Hox genes associated with
leukemogenesis such as HoxA10 or HoxB3 were even down-regulated
compared with the control.55 In contrast, this study could demonstrate
that Cdx2 expression is associated with up-regulation of leukemogenic
Hox genes in the murine experimental system as well as in patients with
AML. Interestingly, recent data described up-regulation of HOXA9,
HOXA2, and HOXA7 after stable transfection of the esophageal
squamous epithelial cell line HET1A with CDX2, and increased CDX2
and HOX gene expression in primary tissues of patients with esophageal
cancer.51,56 This suggests that CDX2-induced up-regulation of leu-
kemogenic HOX genes might be a common mechanism in the
development of cancer.

However, despite the intriguing correlation between the expres-
sion levels of CDX2 and perturbed HOX gene expression in human
AML, it is still uncertain to which extent the observed deregulation
of this gene family is caused by CDX2: thus, although the transcript
levels of CDX2 were comparable between NPMc� and NPMc�

patients, there was generally a higher expression level of individual
HOX genes in patients with the NPM1 mutation. Therefore, other
not-yet-defined mechanisms might be responsible for HOX gene
perturbation in these patients. Another aspect is that CDX2 most
probably is not exerting its transforming activity solely through
induction of aberrant HOX gene expression. Another key question
is how the ectopic expression of CDX2 is induced in human AML.
Analyses of the promoter region of CDX2 in patients with AML did
not show any mutations or hypomethylation as an explanation for
the aberrant expression of the gene.55 Another possible explanation
could be that constitutive activation of upstream regulators of
CDX2 would induce high expression levels of the gene in human
AML. It was shown that Cdx genes are upstream regulated by the
Wnt/�-catenin signaling pathway, the retinoic acid signaling path-
way, and the FGF pathway.57-59

Taken together, our data underline that aberrant expression of
CDX2 is widespread in human AML. In addition, they show that
high expression of this gene closely correlates with aberrant HOX
gene expression in patients with AML, supporting a model in
which CDX2 plays an important role in the development of AML
with dysregulated HOX gene expression.
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Transformation by Oncogenic Mutants and Ligand-Dependent
Activation of FLT3Wild-type Requires theTyrosine
Residues 589 and 591
SridharVempati,1,2 Carola Reindl,1,2 UllaWolf,1,2 Ruth Kern,1,2 Konstantin Petropoulos,1,2

Vegi M. Naidu,1,2 Christian Buske,1,2 Wolfgang Hiddemann,1,2 TobiasM. Kohl,1,2

and Karsten Spiekermann1,2,3

Abstract Purpose: Mutations in the receptor tyrosine kinase FLT3 are found in up to 30% of acute
myelogenous leukemia patients and are associated with an inferior prognosis. In this study,
we characterized critical tyrosine residues responsible for the transforming potential of active
FLT3-receptor mutants and ligand-dependent activation of FLT3-WT.
Experimental Design:We performed a detailed structure-function analysis of putative
autophosphorylation tyrosine residues in the FLT3-D835Ytyrosine kinase domain (TKD)mutant.
All tyrosine residues in the juxtamembrane domain (Y566,Y572,Y589,Y591,Y597, and Y599),
interkinase domain (Y726 andY768), andCOOH-terminal domain (Y955 andY969) of the FLT3-
D835Y construct were successively mutated to phenylalanine and the transforming activity
of these mutants was analyzed in interleukin-3-dependent Ba/F3 cells. Tyrosine residues critical
for the transforming potential of FLT3-D835Y were also analyzed in FLT3 internal tandem dupli-
cationmutants (FLT3-ITD)and the FLT3 wild-type (FLT3-WT) receptor.
Result:The substitution of the tyrosine residues by phenylalanine in the juxtamembrane, interki-
nase, and COOH-terminal domains resulted in a complete loss of the transforming potential of
FLT3-D835Y-expressing cells which can be attributed to a significant reduction of signal
tranducer and activator of transcription 5 (STAT5) phosphorylation at the molecular level. Rein-
troduction of single tyrosine residues revealed the critical role ofY589 andY591in reconstituting
interleukin-3-independent growth of FLT3-TKD-expressing cells. Combined mutation of Y589
and Y591 to phenylalanine also abrogated ligand-dependent proliferation of FLT3-WTand the
transforming potential of FLT3-ITD-with a subsequent abrogation of STAT5 phosphorylation.
Conclusion:We identified two tyrosine residues,Y589 andY591, in the juxtamembrane domain
that are critical for the ligand-dependent activation of FLT3-WTand the transforming potential of
oncogenic FLT3 mutants.

FLT3 is a member of the class III protein receptor tyrosine
kinase family (RTK) that is characterized by five extracellular
immunoglobulin-like domains, a juxtamembrane domain
(JM), and two protein tyrosine kinase domains (TKD) split by

an interkinase domain (IK; ref. 1). The class III receptors also
include KIT, FMS, platelet-derived growth factor receptor-a
(PDGFRA), and platelet-derived growth factor receptor-h
(PDGFRB). Binding of FLT3 ligand (FL) to its receptor induces
dimerization, phosphorylation, and subsequent activation of
downstream signaling pathways such as signal tranducer and
activator of transcription 5 (STAT5), Ras/mitogen-activated
protein kinase (MAPK), and phosphatidylinositol 3-kinase/AKT
(2–6). FLT3 has been shown to play an important role in
normal hematopoiesis and is highly expressed in CD34+

hematopoietic progenitor cells (2, 7–9).
Activating mutations of FLT3 are found in 30% of patients

with acute myelogenous leukemia (AML) and are associated
with an inferior clinical outcome (10–12). FLT3 internal
tandem duplications (FLT3-ITD) represent one of the most
frequent genetic alterations and occur in f20% to 25% of
patients. These mutations have a variable length resulting in
an elongated FLT3 protein with constitutive kinase activity
and are associated with higher leukocyte counts at diagnosis
(13). A second class of FLT3 mutations primarily occurs at
the highly conserved residue D835 in the TKD and is present
in 7% to 8% of all patients with AML (14, 15).
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We and others have recently shown that FLT3-ITD mutants
enhance the proliferative potential of hematopoietic progenitor
cells and collaborate with fusion oncogenes, such as the
AML1-ETO or PML-RARa oncoproteins, to induce AML in vivo
(16, 17). FLT3 selective tyrosine kinase inhibitors are currently
in clinical trials for combined treatment with conventional
chemotherapy (18, 19). Nevertheless, the underlying mecha-
nism of transformation that is exerted by constitutively
activated FLT3 remains elusive.

In the present study, we performed a detailed structure-
function analysis of FLT3-TKD and FLT3-ITD receptor mutants
to characterize the molecular mechanisms of FLT3-induced

transformation. We identified two tyrosine residues, 589 and
591, in the juxtamembrane region of FLT3 that are indispensable
for the transforming potential of both FLT3-ITD and FLT3-TKD
mutants and ligand-dependent activation of FLT3 wild-type
(FLT3-WT).

Materials andMethods

Reagents and cell lines. Low-passage murine Ba/F3 cells were
obtained from the Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (Braunschweig, Germany) and maintained in
RPMI 1640 with 10% fetal bovine serum and 10% WEHI conditioned

Fig. 1. SuccessiveY!F substitutions in the FLT3-TKDmutant indicate the critical role ofY589 andY591for the transforming potential of mutated FLT3. A, overview of
Y!Fmutations created in the FLT3-TKD-D835Yconstruct.B, Ba/F3 cells stably transducedwith FLT3-WT, FLT3-D835Y, D835Y-KD, D835Y-F1to D835Y-F8were seeded
at a density of 4 � 104/mL in the absence or presence of IL-3.Viable cells were counted after 72 h by trypan blue exclusion.The proliferation of cells in the presence of IL-3
was defined as100% (control). SE of three independent experiments are shown.C, long-termproliferation assay of Ba/F3 cells expressing FLT3-WT, FLT3-D835Y, D835Y-F1
to D835Y-F8, D835Y-4F. Cells (4 � 104/mL) were seeded and counted every 3 d for13 d.To avoid overgrowth, cells were split every 3 d.The proliferation of FLT3-TKD-
expressing cells was defined as100% (control). SE of three independent experiments are shown.The FLT3-D835Y-kinase dead (KD) mutant was used as a negative
control.
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medium as a source of murine interleukin-3 (IL-3) when indicated.
Recombinant human FL was purchased from Promokine and recom-
binant murine IL-3 from Biosource (Solingen, Germany).

DNA constructs and vectors. The FLT3-ITD-W51 construct contains a
7–amino acid duplicated sequence (REYEYDL) inserted between
amino acids 601 and 602 of human FLT3-WT, and the FLT3-ITD-
NPOS contains a 28–amino acid duplicated sequence (CSSDNEY-
FYVDFREYEYDLKWEFPRENL) inserted between amino acids 611 and
612 of FLT3-WT(17). The FLT3-TKD carries substitution (point
mutation) of aspartic acid to tyrosine at position 835 of FLT3-WT. All
FLT3 constructs were subcloned in the MSCV-IRES-EYFP retroviral
expression vector (kindly provided by R.K. Humphries, The Terry Fox
Laboratory, British Columbia Cancer Agency, Vancouver, Canada).

In vitro site directed mutagenesis, DNA sequencing, and nomenclature.
Point mutations were introduced into FLT3-WT cDNA, FLT3-ITD
(FLT3-W51 and FLT3-NPOS), and FLT3-TKD by site-directed muta-
genesis using the QuickChange kit from Stratagene as described
previously (20). The correct sequence of all constructs was confirmed
by complete nucleotide sequencing. Mutants with successive single
tyrosine residues at the FLT3-D835Y background were named F1 to
F8 (Fig. 1A), the mutant 4F contains four tyrosine-to-phenylalanine
(Y!F) mutations in the JM domain (YF589/591/597/599). FLT3-
D835Y-kinase dead (KD) indicates the mutant containing the K644R
mutation leading to the complete loss of kinase activity as described
previously (16). Mutations in the JM domain of FLT3-W51 and FLT3-
NPOS were named according to the modified positions. All modi-
fications of FLT3-ITD constructs were done in the wild-type, not the
duplicated, DNA stretch (Fig. 3A).

Expression of CD135 by flow cytometry. Determination of FLT3
expression by FACS analysis was carried out as described previously
(20).

Cell proliferation of Ba/F3 cells and assessment of apoptotic cell death

by flow cytometry. IL-3-dependent Ba/F3 cells stably expressing the
indicated constructs were seeded at a concentration of 4 � 104/mL in
the presence or absence of IL-3 and FL as described previously (21).
Assessment of apoptotic cells was carried out by Annexin V/7-
aminoactinomycin D staining as recommended by the manufacturer
(Annexin V-phycoerythrin apoptosis detection kit; Becton Dickinson)
using a FACSCalibur flow cytometer (Becton Dickinson).

Antibodies. The following antibodies were used: anti-FLT3 antibody
(SantaCruz), anti-phosphorylated STAT5-Tyr694 (NewEnglandBiolabs),
anti-STAT5 (Santa Cruz), anti-pY (Santa Cruz), anti-phosphorylated
p44/42 MAPK (New England Biolabs), and anti-p44/42 MAPK (New
England Biolabs).

Transient transfection of 293 cells and stable transduction of Ba/F3
cells (22), immunoprecipitation and Western blot analysis (22), and
GST pull-down (23) were done as described previously.

Results

Structure-function analysis of successive Y!F mutations in the
FLT3-TKD background. In a screening approach to study the
contribution of single tyrosine residues to the transforming
potential of the FLT3 receptor, we successively mutated the
tyrosine residues 566, 572, 589, 591, 597, 599, 725, 768, 955,
and 969 of the intracellular domain of FLT3-TKD-D835Y to
phenylalanine and named the constructs as D835Y-F1 to
D835Y-F8 and D835Y-4F (Fig. 1A). The tyrosine residues in
TKD1 (Y630, Y688, Y693, Y696, and Y702) and TKD2 (Y793,
Y842, Y865, Y874, Y889, Y899, Y913, and Y919) are likely to be
indispensable for the enzyme function as shown previously for
the related KIT receptor (24); hence, these residues were not
mutated. IL-3-dependent Ba/F3 cells were retrovirally trans-
duced with the indicated constructs (F1-F8 and 4F) and stable
expression was confirmed by CD135 staining as described in

Materials and Methods (data not shown). The transduced cell
lines were characterized by short-term and long-term prolifer-
ation assays. In short-term proliferation assays, the cell lines
carrying constructs D835Y-F1 (Y597F and Y599F) or D835Y-F2
(Y572F, Y597F, and Y599F) showed comparable or even
increased proliferation rates compared with cell lines expressing
the parental FLT3-TKD construct after IL-3 withdrawal for
72 h (Fig. 1B). In detail, the proliferation rates were 90%
(D835Y-F1) and 117% (D835Y-F2) compared with cells
expressing FLT3-TKD-D835Y (74%; Fig. 1B). The cell lines
expressing the D835Y-F3 construct showed a significantly
reduced proliferation after 72 h, suggesting that substitution
of Y589 and Y591 impaired the transforming potential
of FLT3-TKD (Fig. 1B). All the cell lines that harbor the
substitutions of Y589 and Y591 (D835Y-F3 to D835Y-F8)
showed a reduced transforming potential of 2.7% to 25.7%
(Fig. 1B). The lowest transforming potential was observed in cell
lines expressing D835Y-4F (data not shown) and D835Y-F8
(Fig. 1B). The effect was even more pronounced in long-
term proliferation assays as cell lines expressing constructs
D835Y-F3 to D835Y-F8 and D835Y-4F showed a very low
transforming potential or completely died after 10 days in

Fig. 2. Y589 andY591mediate the phosphorylation of STAT5 and resistance to
apoptotic cell death in FLT3-D835Y-expressing cells. A, D835Y-F1to D835Y-F3,
FLT3-D835Y, FLT3-WT, or mock-transduced cell lines were starved for 24 h in the
presence of 0.3% fetal bovine serum. Crude cell lysates were immunoprecipitated
with STAT5 antibody, separated by SDS-PAGE, and blotted on a nitrocellulose
membrane. Blots were then incubated with anti-phospho tyrosine antibody,
stripped, and reblotted with anti-STAT5 antibody. B, Ba/F3 cell lines transduced
with D835Y-F1to D835Y-F8, D835Y-4F, unmanipulated FLT3-D835Yor
FLT3-WTwere cultured in the presence or absence of IL-3 for 48 h and stained
with AnnexinVand 7-aminoactinomycin D.The percentage of apoptotic cells was
determined by FACS analysis.
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culture, whereas the transforming potential of cell lines
expressing D835Y-F2 did not significantly differ from cells
expressing FLT3-TKD (Fig. 1C). Next, we analyzed the phos-
phorylation status of FLT3. Cells expressing FLT3-D835Y-F3
to FLT3-D835Y-F7 showed a successive reduction of the
amount of phosphorylated FLT3 when compared with cells
expressing nonmanipulated FLT3-TKD-D835Y (Supplementary
Fig. S1), whereas no FLT3 phosphorylation was observed in
D835Y-F8.

FLT3-TKD mutants carrying the Y!F substitutions of 589 and
591 show reduced STAT5 phosphorylation and increased apoptotic
cell death. An important downstream signaling pathway of
activated FLT3 is the STAT5 pathway. STAT5 has been shown to
contribute essentially to the transforming potential of the
activated FLT3 receptor in vitro and in vivo (25–27). To
investigate the activation of the STAT5 signaling pathway, we
prepared crude cell lysates of serum-starved Ba/F3 cells
transduced with either vector control (mock), FLT3-WT, FLT3-
D835Y, D835Y-F1, D835Y-F2, and D835Y-F3. Immunopreci-
pitated STAT5 was analyzed with specific antibody against
phosphotyrosine (pY). We could clearly show that the

expression of D835Y-F3 did not show any phosphorylation
of STAT5 compared with FLT3-TKD-D835Y, which is in
accordance with the proliferation data (Fig. 2A). Conversely,
the level of phosphorylated STAT5 was higher in the D835Y-F2
mutant that showed enhanced proliferation when compared
with FLT3-D835Y (Fig. 2A).

Having shown that Y589 and Y591 play an important role in
the transforming potential and STAT5 phosphorylation of FLT3-
TKD mutants, we next analyzed the cell lines expressing D835Y-
F1 to D835Y-F8, D835Y-4F, FLT3-TKD-D835Y, and D835Y-KD
for resistance to apoptotic cell death after 48 h in the absence of
IL-3. The apoptotic rate was lowest in the D835Y-F1 (7.9%) and
D835Y-F2 (5.6%), whereas the highest levels were observed in
D835Y-F7 (40%) and D835Y-F8 (32%) cells (Fig. 2B). FLT3-WT
and D835Y-KD were used as positive controls and showed an
apoptotic rate, of 60% and 80%, respectively. In all experiments,
IL-3-stimulated cells were used as negative controls.

Re-mutation of residues F589 and F591 to tyrosine reconstitutes
the transforming potential of the FLT3-D835Y-F8 mutant. To
extend the finding that Y589 and Y591 play an important role
in the transforming potential of FLT3-TKD, single or combined

Fig. 3. Re-mutation of both the residues 589 and 591from F!Y
reconstitutes the transforming potential of the D835Y-F8 mutant. A,
overview of phenylalanine to tyrosine re-mutations at the FLT3-D835Y-F8
background. B, Ba/F3 cells expressing the FLT3-D835Y, D835Y-F8,
F8-F566Y, F8-F572Y, F8-F589Y, F8-F591Y, F8-FF589/91YY, or
mock-transduced cells were seeded at a density of 4 � 104/mL in the
absence or presence of IL-3.Viable cells were counted after 72 h by
trypan blue exclusion.The growth of cells with IL-3 was defined as100%
(control). SE of three independent experiments is indicated.
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phenylalanine residues were re-mutated to tyrosine in the
D835Y-F8 mutant (Fig. 3A). Reintroduction of tyrosine at
amino acid 566 (F8-F566Y) or amino acid 572 (F8-F572Y)
induced only negligible IL-3-independent proliferation rates
of 3.6% and 1.2%, respectively, when compared with unma-
nipulated FLT3-TKD-D835Y (Fig. 3B). In contrast, the reintro-
duction of tyrosine residues at amino acid 589 (F8-F589Y) or
amino acid 591 (F8-F591Y) led to a partial reconstitution of
the transforming potential of the mutated FLT3 receptor by

30% and 42%, respectively (Fig. 3B). Reintroduction of
tyrosine at positions 589 and 591 (F8-FF589/591YY) com-
pletely reconstituted the transforming potential of the D835Y-
F8 mutant (Fig. 3B).

Single Y!F mutations of Y589, Y591, or Y597 in the FLT3-
ITD background do not reduce the transforming potential. To
further characterize the roles of tyrosine residues 589 and
591 in the FLT3-ITD receptor, single Y!F mutations were
introduced at amino acid 589 (FLT3-ITD-Y589F) or amino acid

Fig. 4. Functional analysis of the role of
tyrosine residuesY589,Y591,Y597, and
Y599 in the FLT3-ITD background.
A, overview of Y!F mutations generated
in the FLT3-ITD background. B, Ba/F3 cells
expressing the FLT3-W51, FLT3-W51-
Y589F or FLT3-W51-Y591F, FLT3-W51-
Y597F, or mock-transduced cells were
seeded at a density of 4 � 104/mL in the
absence or presence of IL-3.Viable cells
were counted after 72 h by trypan blue
exclusion.The proliferation of cells with IL-3
was defined as100% (control). SE of three
independent experiments is indicated.C and
D, FLT3-ITDmutants were stably expressed
in Ba/F3 cells and analyzed as described
in B.
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591 (FLT3-ITD-Y591F) in the FLT3-ITD-W51 and FLT3-ITD-
NPOS constructs (Fig. 4A). All manipulations were done in the
wild-type, not in the duplicated DNA stretch. As shown in
Fig. 4B and D, cell lines expressing FLT3-ITD-Y589F or FLT3-
ITD-Y591F showed no significant reduction of their trans-
forming potential after IL-3 withdrawal when compared with
unmanipulated FLT3-ITD cells. To extend this finding that
single substitutions of tyrosine residues have no effect on
transforming potential of FLT3-ITD-expressing cells, we gener-
ated another Y!F substitution mutant at amino acid 597
(FLT3-W51-Y597F; Fig. 4B). Cells expressing FLT3-ITD-Y597F
show a comparable transforming potential to unmanipulated
FLT3-ITD-W51 by phenylalanine.

Combined substitution of both Y589 and Y591 abrogates by
phenylalanine the transforming potential of FLT3-ITD. As
single Y!F mutants of amino acids 589, 591, and 597 had
no effect on the transforming potential of FLT3-ITD-express-
ing cells, we generated a variety of double substitution
mutants of JM domain tyrosine residues 589, 591, 597, and
599: FLT3-W51-YY589/591FF, FLT3-W51-YY589/597FF, and
FLT3-W51-YY589/599FF in addition to FLT3-W51-YY591/
597FF, FLT3-W51-591/99FF, and FLT3-W51-YY597/599FF
(Fig. 4A). In proliferation assays, Ba/F3 cells expressing
FLT3-W51-YY589/591FF were unable to proliferate in the
absence of IL-3 (Fig. 4C). Except for FLT3-W51-YY597/599FF
cell lines expressing W51-YY589/597FF, W51-YY589/599FF,
W51-YY591/597FF, or W51-YY591/99FF showed a significant
reduction in the transforming potential by 58% to 82%
when compared with unmanipulated FLT3-ITD-W51 cells
(Fig. 4C). Substitution of both Y589 and Y591 with
phenylalanine (FLT3-NPOS-YY589/591FF) in a structurally
different ITD (FLT3-ITD-NPOS) induced a phenotype identical
to FLT3-W51-YY589/591FF-expressing cells (Fig. 4D).

Western blot analysis revealed a slight reduction of FLT3
phosphorylation in FLT3-W51-YY589/591FF cells when com-
pared with FLT3-ITD-W51 cells (Supplementary Fig. S1).

Double Y!F substitution mutants of 589, 591, 597, and 599
show reduced activation of STAT5 and MAPK pathways. To
investigate the activation of the STAT5 signaling pathway, we
prepared whole-cell lysates of serum-starved Ba/F3 cells
transduced with either vector control (MIY) or FLT3-WT,
FLT3-ITD-W51, FLT3-W51-Y589F, FLT3-W51-Y591F, FLT3-
W51-Y597F, FLT3-W51-YY589/591FF, FLT3-W51-YY589/
597FF, FLT3-W51-YY589/599FF, FLT3-W51-YY591/597FF,
FLT3-W51-591/99FF, or FLT3-W51-YY597/599FF. Single Y-F
substitution and FLT3-ITD-W51-expressing cells showed com-
parable levels or slightly reduced levels (FLT3-W51-Y591F) of
phosphorylated STAT5. The double substitution mutants FLT3-
W51-YY589/591FF, FLT3-W51-YY589/599FF, FLT3-W51-
YY591/597FF, and FLT3-W51-591/99FF showed reduced STAT5
phosphorylation. FLT3-W51-YY597/599FF and FLT3-W51-
YY589/597FF showed a slightly reduced STAT5 phosphoryla-
tion, when compared with nonmanipulated FLT3-ITD-W51 or
single Y!F substitution mutants (FLT3-W51-Y589F, FLT3-
W51-Y591F, and FLT3-Y597F) cells (Fig. 5A).

Cells expressing FLT3-W51-YY589/599FF, FLT3-W51-YY591/
597FF, and FLT3-W51-591/99FF showed a transforming
potential of f20% but did not show any STAT5 phosphory-
lation. To further analyze this phenomenon, we measured
MAPK phosphorylation, another important downstream sig-
naling pathway of the activated FLT3 receptor. Analysis of the
lysates by immunoblotting with a specific antibody against
phosphorylated MAPK showed that all the cells with double
Y!F substitution mutants, except FLT3-W51-YY589/591FF,
showed phosphorylation of MAPK but at a reduced rate
compared with nonmanipulated FLT3-ITD-W51 or single
Y!F substitution mutant cells (Fig. 5B).

These results show that the residues Y589 and Y591 play
an important role in STAT5 and MAPK activation by the
FLT3-ITD receptor.

Y589 and Y591 are indispensable for ligand-dependent
signaling of the FLT3-WT receptor. Because combined Y!F
mutations of Y589 and Y591 had severe effects on the
transforming potential of FLT-TKD and FLT3-ITD expressing
cells, we analyzed the role of Y589 and Y591 in the signaling
properties of the FLT3-WT receptor. We generated the Y!F
substitution mutant of both Y589 and Y591 (FLT3-WT-YY589/
591FF) in FLT3-WT (Fig. 6A). Overexpression of FLT3-WT-
YY589/591FF did not induce any IL-3-independent growth, but
proliferation was totally abrogated in the presence of FL when
compared with cells expressing FLT3-WT (Fig. 6B).

Discussion

In contrast to the studies published to date on structural
motifs critical for the transformation mediated by FLT3 mutant
receptors (28–30), our study presents data not only on FLT3-
WT but also on FLT3-TKD and FLT3-ITD receptor mutants.
Because the structure of the JM domain is altered by the
insertion of an ITD (31), the study was focused on a FLT3
receptor with an activating mutation in the TKD domain that
allows the analysis of all critical tyrosine residues. During the
course of our experiments, we identified amino acids Y589 and
Y591 as critical residues for the transformation exerted by FLT3-
TKD. The essential role of tyrosine residues YY589/591 in
mediating transformation was then confirmed in ITD mutants
and the FLT3-WT receptor.

Fig. 5. Y589 and Y591play an important role in the phosphorylation of
STAT5 and MAPK pathways of FLT3-ITD. A and B, FLT3 constructs expressing
cells were starved for 24 h in the presence of 0.3% fetal bovine serum. Crude
cell lysates were subjected to Western blot analysis with an anti-phospho
STAT5 or phospho-MAPK antibody, stripped, and reblotted with anti-STAT5
or MAPK antibody.
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Our results indicate that a combined Y!F substitution of
amino acids Y597, Y599, and Y572 in FLT3-TKD (F1 and F2)
induce a higher proliferation rate in IL3-deprived Ba/F3 cells
compared with unmanipulated FLT3-TKD (Fig. 1B and C). The
FLT3 crystal structures shows that amino acids Y572 and Y599
are the only two tyrosine residues that form a tight pocket in
FLT3 and might be responsible for maintenance of the inactive
state of FLT3-WT (31). This finding is also in line with
previous reports on the homologous Y533 in KIT showing the
negative regulatory function of this residue (32). Mutation of
Y533 (Y572 in FLT3) to alanine in wild-type KIT led to
spontaneous phosphorylation of the receptor. The lack of
phenolic hydroxyl oxygen in Y!F substituted 572 and 599
probably disrupts the interactions formed by these amino
acids and therefore could account for the increased trans-
forming potential of D835Y-F1 and D835Y-F2 compared with
FLT3-TKD-D835Y.

Our results clearly show that BalF3 cell lines carrying FLT3-
TKD constructs with Y!F substitution of Y589 and concom-
itantly Y591 (D835Y-F3-F8 and D835Y-4F) lead to a reduced
transforming potential in short-term cultures and total loss of
transforming potential in long-term cultures (Fig. 1B and C). To
determine whether loss of FLT3 phosphorylation results in
concomitant loss of transforming potential, we analyzed the
FLT3 phosphorylation in FLT3-TKD-D835Y mutants. All the
mutants D835Y-F3 to D835Y-F7 with little or no transforming
potential in short-term and long-term assays exhibited FLT3
phosphorylation but at a reduced level when compared with
nonmanipulated FLT3-TKD-D835Y (Supplementary Fig. S1).
There was a total lack of phosphorylation in D835Y-F8 mutant
in which all tyrosines in the JM, Ki and C-terminal region were
mutated. The loss of the transforming potential in mutants
D835Y-F3 and D835Y-4F, even in the presence of FLT3
phosphorylation, suggests that Y589 and Y591 act as docking
sites for downstream signaling molecules.

Y589 and Y591 have been shown to be conserved in the
related tyrosine kinases KIT (Y568, Y570; ref. 33), PDGFRA,
(Y572, Y576; refs. 34, 35), and PDGFRB (Y579;Y581; ref. 36),
and substitution of homologous residues with phenylalanine
in these RTK’s reduced their kinase activity (37–41). Previous
studies on PDGFRB have shown that Y579 and Y581 homo-
logous to Y589 and Y591 in FLT3 bind STAT5 (36). STAT5 is an
important downstream signaling pathway of FLT3 and phos-
phorylated STAT5 has been detected in blasts of 20% to 80% of
patients with AML (42–45). Our data clearly show that Y589
and Y591 play an important role in STAT5 autophosphoryla-
tion and apoptosis. All cell lines expressing activated FLT3 with
Y!F substitutions of both Y589 and Y591 showed reduced
STAT5 phosphorylation and an increased rate of apoptotic cell
death after cytokine withdrawal (Fig. 2A and B). Our data is in
contradiction to a recent report by Rocnik et al., in which no
difference in the STAT5 phosphorylation was observed between
FLT3-TKD-D835Y and FLT3-D835Y-YY589/591FF (29). A
possible explanation for this discrepancy might be the use of
different cell culture systems, like the usage of 32D cells by
Rocnik et al. instead of Ba/F3 cells and starving of the cells for
only 4 h, compared to 24 h starvation period in this report.
STAT5 has been shown to induce the expression of the
antiapoptotic protein BCL-xL (46) thereby protecting the cells
from apoptosis (47). D835Y-F1 and D835Y-F2 cells showed
high levels of phosphorylated STAT5 corresponding to a low

rate of apoptosis after IL-3 withdrawal (5-8%). In contrast, the
D835Y-F7 and D835Y-F8, which showed no STAT5 autophos-
phorylation (data not shown), displayed a higher apoptotic rate
after IL-3 withdrawal (32-40%; Fig. 2B).

To further confirm the role of Y589 and Y591 for the
transforming potential of FLT3-TKD, we re-mutated single
phenylalanine residues to tyrosine in the D835Y-F8 back-
ground (Fig. 3A). Single re-mutation of 566 or 572 (F8-F566Y
or F8-F572Y) did not induce any significant IL-3-independent
proliferation in BalF3 cells. The reintroduction of tyrosine at
amino acid 589 (F8-F589Y) or amino acid 591 (F8-F591F)
partially reconstituted the transforming potential of the D835Y-
F8 mutant to 30% to 42% (Fig. 3B). Interestingly, reintroduc-
tion of tyrosines at both 589 and 591 (F8-FF589/591YY) totally
reconstituted the transforming potential of the D835Y-F8
mutant. These results suggest that Y589 and 591 are two
critical amino acids for the transforming potential of FLT3-
TKD. FLT3 phosphorylation studies in the F8-F589Y, F8-F591Y,
and FLT3-FF589/F591YY showed weak FLT3 phosphorylation
(data not shown). This result points to a role of Y589 and Y591
as docking sites for downstream signaling molecules indepen-
dent of FLT3 phosphorylation.

Next, we analyzed the role of Y589 and Y591 for the trans-
forming potential of FLT3-ITD mutants in Ba/F3 cells. Single
Y!F mutation of 589 (ITD-Y589F) and 591 (ITD-Y591F) in
two structurally different FLT3-ITDs (W51/NPOS) did not
significantly affect the transforming potential of cell lines
expressing these constructs (Fig. 4B and D). However, Y!F
substitution of both Y589 and Y591 (ITD-YY589/591FF) totally

Fig. 6. Substitution of bothY589 andY591by phenylalanine abrogates the
ligand-dependent activation of FLT3-WT in Ba/F3 cells. A, overview ofY!F
substitutions of both 589 and 591generated in FLT3WT. B, Ba/F3 cells expressing
the FLT3-WT, FLT3-WT-YY589/591FF, or mock-transduced cells were seeded
at a density of 4� 104/mL in the absence or presence of IL-3 or FL (60 ng/mL).
Viable cells were counted after 72 h by trypan blue exclusion.The proliferation of
cells with FL was defined as100% (control). SE of three independent experiments
is indicated.
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abolished the transforming potential of FLT3-ITD (Fig. 4C
and D). Our data are discrepant to the results published by
Kiyoi et al., where a FLT3-ITD carrying Y589, Y591 Y597, and
Y599 mutated to phenylalanine did not show any difference in
the transforming potential in 32D cells when compared with
nonmanipulated FLT3-ITD (28). However, a similar study by
Rocnik et al. in 32D cells expressing the mutant FLT3-ITD-
YY589/591FF showed a reduced transforming potential when
compared with nonmanipulated FLT3-ITD (29). To address
these discrepancies, we expressed the mutants FLT3-ITD-W51/
NPOS, FLT3-W51-YY589/591FF and NPOS-YY589/591FF in
32D cells. No factor-independent growth was observed in 32D
cells expressing FLT3-W51/FNPOS-YY589/591FF confirming
our data observed in Ba/F3 cells (Supplementary Fig. S2).
Moreover, our results are in line with the study by Rocnik et al.
reporting that transplanted mice with bone marrow cells
carrying a FLT3-ITD-YY589/591FF construct showed no differ-
ence in survival comparedwithmice transplanted with FLT3-WT-
expressing bone marrow. In contrast, transplantation with
FLT3-ITD-transduced bone marrow cells led to a lethal myelo-
proliferative disease with short latency (29).

Next, we analyzed other combinations of tyrosine residues
in the JM domain responsible for the transforming potential of
FLT3-ITD. Hence, we analyzed the effect of Y!F sub-
stitution of different combinations of JM domain tyrosines
(30) (Y589, Y591, Y597, and Y599). Cell lines expressing
FLT3-W51-YY589/597FF, FLT3-W51-YY589/599FF, FLT3-W51-
YY591/597FF, and FLT3-W51-591/99FF conferred a low
transforming potential (Fig. 4C). FLT3-W51-YY597/599FF-
expressing cells did not show an impaired IL-3-independent
growth. These results were further supported by analyses of
STAT5 phosphorylation (Fig. 5A). We observed a slightly
reduced STAT5 phosphorylation in the cells expressing FLT3-
W51-Y591F mutant when compared with FLT3-W51-Y589F,
FLT3-W51-Y597F, and nonmanipulated FLT3-ITD-W51 (Fig.
5A). This observance could be explained by a recent study, in
which in vitro mapping of autophosphorylated tyrosine sites
in FLT3-ITD revealed Y591 as the sole autophosphorylated
site in the JM domain. Also, Y591 along with Y589 were
reported to be the putative binding sites for STAT5 in another
study (29).

In accordance with the proliferation data, cell lines express-
ing FLT3-W51-YY589/591FF showed no STAT5 phosphoryla-
tion. Cell lines expressing FLT3-W51-YY589/597FF and FLT3-
W51-YY597/599F showed a reduced STAT5 phosphorylation

when compared with unmanipulated FLT3-ITD (Fig. 5A).
Surprisingly, cell lines expressing FLT3-W51-YY589/599FF,
FLT3-W51-YY591/597FF, and FLT3-W51-591/99FF, which
showed transforming potential of f20%, did not show any
STAT5 phosphorylation (Fig. 5A). Therefore, we further
analyzed phosphorylation of MAPK, another important FLT3
downstream signaling molecule. All the cells expressing double
Y!F substitution mutants of FLT3-ITD-W51, except FLT3-
W51-YY589/591FF, showed MAPK phosphorylation but at
lower rate compared with unmanipulated FLT3-ITD cells (Fig.
5B). These results suggest that combination of amino acid
residues Y589 and Y591 in FLT3-ITD is important for STAT5
and MAPK phosphorylation, whereas residues Y597 and Y599
might be important for the structural maintenance of FLT3-
ITD for STAT5 recruitment. Furthermore, these results suggest
that multiple signaling pathways play a role for transformation
of cells by FLT3 mutants. To analzse the mechanism of STAT5
phosphorylation, we performed coimmunoprecipitation assays
and GST pull-down of FLT3 with SH2 domain of STAT5. We
could not detect any direct interaction of STAT5 with FLT3 or
FLT3 mutants (data not shown). In line with the proliferation
data, FLT3-ITD-W51 showed an interaction with the SH2
domain of Src, whereas the FLT3-W51-YY589/591FF showed
no interaction (Supplementary Fig. S3). In GST pull-down
experiments, we confirmed direct interaction of STAT5 with
Src-SH2 domain (Supplementary Fig. S3). Recent studies have
shown the interaction of Src kinases with Y589 of FLT3-WT
(30). Src kinases direct the phosphorylation of STAT5 (48).
These data show that Y589 binds Src kinases, which can
interact with an activated STAT5.

Y!F substitution of both 589 and 591 in the FLT3-WT back-
ground (FLT3-WT-YY589/591FF) totally abrogated the pro-
liferation of Ba/F3 cells upon stimulation with FL (Fig. 6B)
indicating that Y589 and Y591 in FLT3-WT are essential for FL-
mediated proliferation.

In conclusion, we have identified Y589 and Y591 as the
critical tyrosine residues required for STAT5 signaling and for
the transforming phenotype of active FLT3-receptor mutants
and FL-mediated proliferation of FLT3-WT.
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Because of the widespread phenomenon of patrilocality, it is hypothesized that Y-chromosome variants tend to be
more localized geographically than those of mitochondrial DNA (mtDNA). Empirical evidence confirmatory to this
hypothesis was subsequently provided among certain patrilocal and matrilocal groups of Thailand, which conforms to
the isolation by distance mode of gene diffusion. However, we expect intuitively that the patterns of genetic
variability may not be consistent with the above hypothesis among populations with different social norms governing
the institution of marriage, particularly among those that adhere to strict endogamy rules. We test the universality of
this hypothesis by analyzing Y-chromosome and mtDNA data in three different sets of Indian populations that follow
endogamy rules to varying degrees. Our analysis of the Indian patrilocal and the matrilocal groups is not confirmatory
to the sex-specific variation observed among the tribes of Thailand. Our results indicate spatial instability of the
impact of different cultural processes on the genetic variability, resulting in the lack of universality of the
hypothesized pattern of greater Y-chromosome variation when compared to that of mtDNA among the patrilocal
populations.

Citation: Kumar V, Langstieh BT, Madhavi KV, Naidu VM, Singh HP, et al. (2006) Global patterns in human mitochondrial DNA and Y-chromosome variation caused by spatial
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Introduction

The genetic patterns in human societies are often fashioned
by their cultural practices. For example, it has been
hypothesized that due to widespread phenomenon of patri-
locality (a pattern of residence where the female spouse after
marriage resides in the in-law’s house) Y-chromosome
variants tend to be more localized geographically than those
of mitochondrial DNA (mtDNA) and the autosomes, and
therefore high degree of inter-population genetic differences
have been observed for the Y chromosome compared to the
mtDNA [1–4]. Due to movement of females in patrilocal
groups, the mtDNA diversity is assumed to be high within the
populations and low between the populations, whereas the Y-
chromosome diversity will be relatively low within the groups
and high between the groups. This pattern is expected to be
reversed in case of the matrilocal groups (a pattern of
residence where the males after marriage reside in the in-
law’s house). Empirical evidence confirmatory to this hypoth-
esis was subsequently provided by Oota et al. [5] among the
three patrilocal and three matrilocal groups of Thailand. They
found genetic diversity to be strikingly correlated with
residence patterns suggesting the role of sex-specific patterns
of migration in influencing the genetic patterns. In contrast,
few other studies at the regional scale [6–8] show similar levels
of differentiation for maternal and paternal lineages. There-
fore, the patterns of genetic diversity at the local level may not
reflect at the global scale, which is essentially an artifact of the
sum total of differing local patterns. Concurrently, in a global
survey, Wilder et al. [9] could not detect the signature of a

higher inter-population migration rate for females than for
males. This is interpreted as due to lack of geographic stability
of the behavioral customs of individual populations necessary
to influence global genetic patterning. The norms governing
the institution of marriage vary enormously among human
populations of different regions or cultures [10–12], and
different forms of social organization can impact patterns and
levels of genetic diversity [13,14]. Therefore, the universality
of the above hypothesis, i.e., the pattern of genetic variation
vis-à-vis the residence pattern of spouses, is in question.
Implicit in the above hypothesis is the assumption that the

population boundaries are permeable, permitting male/
female spouses to move across their respective populations
and become part of the gene pool of the new population to
which the other spouse belongs. Only in such a scenario can
the expectations of the above hypothesis hold, either in
patrilocal or matrilocal societies. This situation, broadly
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speaking, approximates to isolation by distance mode of gene
diffusion. On the other hand, for populations bound by rigid
endogamy rules with their boundaries absolutely imperme-
able, neither patrilocality nor matrilocality can make any
difference to their genetic variability, be it Y-chromosome or
mtDNA, since the movement is restricted to within a
population. The Indian subcontinent with its unique pop-
ulation structure and strictly defined endogamous castes,
tribes, and religious groups is a case in point (Figure 1). The
marriage interactions are restricted within an endogamous
population consisting of the number of exogamous units/
clans between which marriages take place. We directly test
the universality of the hypothesis delineated above and
attempt to assess the spatial stability of the local cultural
processes necessary to influence global patterning in two
stages. In the first stage, we analyzed Y-chromosome short
tandem repeat (Y-STR) and mtDNA hyper variable segment 1
(HVS1) sequence data from two groups of Indian tribes,
comprised of five populations each, belonging to a broad
linguistic family and with similar socio-economic status. The
genetic data were obtained from the same set of populations
and individuals making it appropriate for comparison. The
populations included in this study are Maram, Khynriam,
Pnar, Bhoi, and WarKhasi, the five matrilocal Khasi tribes of
Meghalaya in the Northeastern part of India; and Asur,
Bhumij, Kharia, Munda, and Santhal, the five patrilocal
Mundari tribes of Eastern India, who along with the
matrilocal Khasis, belong to the broad Austro-Asiatic
linguistic family. At the second stage, to gauge the consistency
in the genetic patterns within broad regional or cultural
context, the same set of genetic data were generated on the
five Dravidian language-speaking patrilocal caste populations
from Andhra Pradesh (Akutota, Kapu, Panta, Pokanati, and
Vanne) of Southern India and compared with the Austro-
Asiatic matrilocal tribes.

The structure of populations considered in this study is
characterized by numerous endogamous groups cohabiting as
islands with no or negligible gene flow between them.
Therefore, as the marital boundary of each population is
impermeable, we intuitively expect that the pattern of genetic
variability may not strictly follow the expectations of the
aforesaid hypothesis, either in patrilocal or matrilocal

groups. All three groups of populations have contiguous
geographic distribution in their respective areas, which
provide opportunity for exchange of mates, if the social
norms permit, thus providing ideal study frame.

Figure 1. Schematic Representation of Indian Population Structure

Characterized by Movement of Spouses Only within but Not among the

Endogamous Groups

Each circle represents a population and its size represents the hierarchy.
While the populations until the breeding isolates are all endogamous,
the exogamous units refer to clans/lineages within a breeding isolate/
population.
DOI: 10.1371/journal.pgen.0020053.g001
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Synopsis

In most human societies, women traditionally move to their
husband’s home after marriage, and these societies are thus
‘‘patrilocal,’’ but in a few ‘‘matrilocal’’ societies, men move to their
wife’s home. These social customs are expected to influence the
patterns of genetic variation. They should lead to a localization of
male-specific Y-chromosomal variants and wide dispersal of female-
specific mitochondrial DNA variants in patrilocal societies and vice
versa in matrilocal societies. These predicted patterns have indeed
been observed in previous studies of populations from Thailand.
Indian societies, however, are endogamous, so marriage should
always take place within a population, and these different patterns
of genetic variation should not build up. The authors have now
analyzed ten patrilocal and five matrilocal Indian populations, and
find that there is indeed little difference between the patrilocal and
matrilocal societies. The authors therefore conclude that patterns of
genetic variation in humans are not universal, but depend on local
cultural practices.



Results

Within-group mtDNA diversity (Figure 2) is similar (Mann-
Whitney U test, p ¼ 0.690) for matrilocal Khasi tribes (0.975)
versus patrilocal Mundari tribes (0.962), although the mean
within-group Y-chromosome diversity of patrilocal Mundari
tribal groups (0.954) is significantly lower (Mann-Whitney U
test, p¼ 0.008) when compared with matrilocal Khasi (0.995).
However, when we compare the patrilocal Dravidian caste
groups with the matrilocal Khasi tribes we found similar and
non-significant difference in the level of within-group
diversity for both mtDNA (p ¼ 0.056) and Y-chromosome (p
¼ .095). The average values of genetic distance (Table 1)
reflecting inter-group diversity (although smaller for mtDNA
and larger for Y-chromosome among patrilocal Mundari
groups than for matrilocal Khasi groups) are not statistically
significantly different. Likewise, the average genetic distances
in the Dravidian patrilocal groups are smaller for mtDNA and
larger for Y-chromosome but not significantly so when
compared with the matrilocal Khasi groups.

The index of probability of identity, which gives a
quantitative measure of haplotype sharing between a pair of
populations, further suggests, as against the hypothesis, that

the degree of Y-chromosome haplotype sharing (Table 2),
although not significant, is substantially higher among the
patrilocal Mundari groups when compared with the Matrilo-
cal Khasi tribes, whereas the degree of mtDNA haplotype
sharing is almost identical for both groups. On the other hand,
we observe a very low level of mtDNA haplotype sharing
among the patrilocal Dravidian groups compared with the
matrilocal Khasi groups, while the level of Y-chromosome
haplotype sharing is similar for both the groups. As per the
hypothesis, a relatively lower degree of mtDNA haplotype
sharing and greater degree of Y-chromosome haplotype
sharing is expected among the matrilocal groups compared
with the patrilocal groups. Overall, the results are not
consistent with the universality of the hypothesis in question.

Discussion

The foregoing analysis of the results does not reflect higher
migration rate of females and males, respectively, in the
patrilocal and matrilocal populations, suggesting that the
pattern of residence of the spouses has no bearing on the
mtDNA and Y-chromosome variability in the populations, in
which sex-specific migrations implicit in the hypothesis are

Figure 2. Haplotype Diversity in mtDNA (Green) and Y-STR (Pink) and Their Mean (Shaded Bar) in Five Dravidian and Five Austro-Asiatic Patrilocal and

Five Austro-Asiatic Matrilocal Populations

From left to right, the Dravidian patrilocal groups (mtDNA sample size and Y-STR sample size) are Akhutota (32, 21), Kapu (22,16), Panta (37, 21),
Pokanati (59, 25), and Vanne (32, 23); the Austro-Asiatic matrilocal groups are Maram (72, 58), Khynriam (95, 82), Pnar (69, 40), Bhoi (34, 30), and
WarKhasi (31, 23); the Austro-Asiatic patrilocal groups are Asur (30, 28), Bhumij (40, 39), Kharia (21, 13), Munda (23, 23), and Santhal (39, 38).
DOI: 10.1371/journal.pgen.0020053.g002

Table 1. Average Genetic Distance and Their Standard Error Based on mtDNA HVS1 and Y-STR among the Matrilocal and Patrilocal
Groups

Genetic

Distances

Patrilocal

(Austro-Asiatic; Mundari)

Average 6 SE

Matrilocal

(Austro-Asiatic; Khasi)

Average 6 SE

Patrilocal

(Dravidian)

Average 6 SE

Mann-Whitney U Test

(p: Two-Taileda)

Mundari

versus Khasi

Dravidian

versus Khasi

Rst (Y-STR) 0.100 6 0.002 0.055 6 0.001 0.114 6 0.003 0.123 0.474

DA (mtDNA) 0.128 6 0.103 0.200 6 0.095 0.142 6 0.087 0.165 0.971

Genetic distances (dA and Rst) and SE, based on 1,000 bootstrap replicates, were calculated using MEGA (http://www.megasoftware.net/mega3/mega.html) and RSTCALC (http://helios.
bto.ed.ac.uk/evolgen/rst/rst.html).
aCalculated on the basis of genetic distance matrices.
SE, standard error.
DOI: 10.1371/journal.pgen.0020053.t001
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confined within the endogamous groups and do not usually
transect the caste/tribal boundaries. However, a weak and non-
significant trend of greater inter-group variation in Y-
chromosome and lower variation in mtDNA in case of
patrilocal groups, and greater mtDNA and lower Y-chromo-
some inter-group variation in matrilocal groups, which is
consistent with the hypothesis, is observed. Nevertheless, the
magnitude of differences, either intra- or inter-population
observed in our study, are substantially smaller than what has
been observed byOota et al. [5] in Thailand, despite a relatively
small number of samples and populations. The non-significant
differences in the mean values of the genetic distances could
have been due to two reasons: (1) either to small sample size;
hence lacking sufficient power to correctly reject the null
hypothesis, or (2) to small number of Y-STRs, which may not
have adequate resolution. Therefore, we calculated power of
the Mann-Whitney U test for the given sample sizes in the
study and the results suggest that the test has . 99% power,
even at alpha ¼ 0.001, both for mtDNA and Y-chromosome.
Additional analysis based on 15 Y-STRs suggests, contrary to
the hypothesis, that the average genetic distance among the
patrilocal groups was quite low (0.0469 6 0.0009), albeit non-
significantly (p¼ 0.1), as compared with the matrilocal groups
(0.1024 6 0.0024). Therefore, the hypothesized correlation of
genetic diversity with the sex-specific migration patterns may
not be applicable to the Indian situation, although it is
observed elsewhere in certain populations whose marital
boundaries are probably permeable.

One of the questions raised by Wilder et al. [9] is the extent
to which local cultural practices influence genetic patterns at
the regional and global scale. The groups we have considered
in the present study have different cultural norms governing
the rules of marriages compared to those studied by Oota et
al. [5]; hence we find variation in the genetic patterns. Even
within India, we find variation in the pattern depending on
whether we compare the matrilocal Khasi tribes with the
patrilocal Mundari tribal groups or with the patrilocal
Dravidian caste groups. For example, the index of probability
of identity shows very low values for both mtDNA and Y-
chromosome haplotype sharing among the Dravidian castes
when compared with the Austro-Asiatic tribes, either
Mundari or Khasi (Table 2). This pattern is observed because
the caste populations of India are considered to follow
endogamy very strictly; hence their marital boundaries are
highly rigid compared with the marital boundaries of the
Indian tribes, particularly from Northeast India, suggesting
the impact of varying cultural practices pertaining partic-

ularly to marriage, resulting in variable genetic patterns.
Results of our study taken together with the previous studies,
that have [6–8] or have not [1,3–5] detected sex-specific
migration, suggest that the local cultural processes do not
have spatial stability required to influence global patterning.
Perhaps due to this, Wilder et al. [9] did not observe higher
migration rates of females vis-à-vis males at the continental
level, although most of the populations of the world follow
patrilocality [15]. Therefore, the hypothesis of greater Y-
chromosome vis-à-vis mtDNA variability due to patrilocality
is not universal, as it can only be selectively applicable to
populations with cultural norms that permit inter-group
marriages; not to, for example, highly endogamous Indian
populations. Pertinent to this are the two recent large-scale
Indian studies [16,17] wherein the lack of spatial structure in
the quantitative biological variables—anthropometry and
dermatoglyphics— and traditional genetic markers was
inferred to be consistent with population structure charac-
terized by numerous endogamous groups cohabiting as
islands with no or negligible gene flow between them; the
monotonic decline in the spatial autocorrelation expected
under the model of contiguous diffusion of genes is not
evident in those data.

Materials and Methods

Blood samples from 636 individuals belonging to 15 populations
were obtained for the above populations during 2000–2003 with
informed written consent; DNA was extracted. The names of the
populations along with their sample size are given in Figure 2. We
analyzed 350 base pairs of the HVS1 of the mtDNA control region
corresponding to positions 16050–16400 and six Y-STR loci (DYS19,
DYS389I, DYS389b, DYS390, DYS391, and DYS393). Allele length for
DYS389b was obtained by subtracting the allele length of DYS389I
from DYS389II. The HVS1 sequences have been submitted to
GenBank and are also available from the authors, as are the Y-STR
data. To measure within-group variability we estimated haplotype
diversity [18] for the HVS1 sequences and Y-STR haplotypes (Table
S1), and calculated dA distances [19] for the HVS1 sequences using the
number of different sites model, and RST for the Y-STR haplotypes
[20] as measures of between-group diversity. Further, we computed
an index of probability of identity [21], which gives a quantitative
measure of haplotype sharing between a pair of populations. To
ascertain, for the given sample sizes, that the test has enough power at
alpha ¼ 0.05– 0.001, we computed power required for the Mann-
Whitney U test. For this purpose, we decreased the sample sizes by
15% and used this sample size to compute power required for a t-test.
This rule is based on the lower bound for the asymptotic relative
efficiency (ARE) of the Mann-Whitney U test versus the t-distribution,
which is 0.864. This says that no matter what the distribution is, the
ARE of the Mann-Whitney U test can never be worse than 0.864 for a
reasonable broad class of probability distributions. Inverting that
gives an increase in the sample size by a factor of 1.157, and therefore
the sample sizes were reduced by 15% [22]. To increase the

Table 2. Index of Probability of Identity Based on mtDNA HVS1 and Y-STR among the Patrilocal and Matrilocal Groups

Genetic

Markers

Patrilocal

(Austro-Asiatic;

Mundari) Average

Matrilocal

(Austro-Asiatic;

Khasi) Average

Patrilocal

(Dravidian)

Average

Mann-Whitney U Test

(p: Two-Tailed)

Mundari versus

Khasi

Dravidian versus

Khasi

Y-STR 0.0116 0.0023 0.0011 0.260 0.029

mtDNA 0.0132 0.0117 0.0031 0.626 0.045

DOI: 10.1371/journal.pgen.0020053.t002
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resolution, in addition to the six Y-STRs, we typed nine more Y-STRs
(DYS388, DYS426, DYS437, DYS438, DYS439, DYS447, DYS448,
DYS460, and H4; Table S2) in three populations each of Mundari
patrilocal groups (Bhumij, Munda, and Santhal) and Khasi matrilocal
groups (Khynriam, Maram, and Pnar) and recomputed genetic
distances based on 15 Y-STR loci.

Supporting Information

Table S1. Y-Chromosome Haplotypes Based on Six Y-STRs for 15
Populations

Found at DOI: 10.1371/journal.pgen.0020053.st001 (946 KB DOC).

Table S2. Y-Chromosome Haplotypes Based on Nine Y-STRs for Six
Populations

Found at DOI: 10.1371/journal.pgen.0020053.st002 (387 KB DOC).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov) accession numbers for
the sequence discussed in this paper are HVS1 (AY72095–AY721592).
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