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Descent being on my view the hidden bond of connexion which  

naturalists have been seeking under the term of the natural system.  

On this view we can understand how it is that, in the eyes of most  

naturalists, the structure of the embryo is even more important  

for classification than that of the adult. 

(Charles Darwin: The Origin of Species, 1859) 

 

 

Diversity of opinion about a work ... shows  

that the work is new, complex, and vital. 

(Oscar Wilde: The Picture of Dorian Gray, 1890) 
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SUMMARY. This work comprises detailed studies by scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), fluorescence staining combined with 

confocal laser scanning microscopy (CLSM), as well as serial sectioning analyses and 

reconstruction techniques to elucidate the development of the larval and adult musculature of 

several basal representatives of the molluscan classes Polyplacophora, Bivalvia, Scaphopoda, 

and Gastropoda. Special reference is given to the shell musculature. In addition, aspects of the 

myo-anatomy of adult Solenogastres are reconsidered. A further part of this study deals with 

scaphopod shell morphogenesis and expression of the homeobox gene engrailed (en), in order 

to gain insights regarding the scaphopod-bivalve relationship. The results enable far reaching 

conclusions regarding the evolution and the phylogeny of the Mollusca.  

 

Solenogastres 

TEM analysis of adult Solenogastres revealed a mesenchymate body wall musculature 

which consists of outer ring, intermediate diagonal, and inner longitudinal muscles and 

resembles the condition of other worm-shaped taxa. The ventrally inter-crossing dorso-ventral 

musculature, which is diagnostic for the Mollusca, is arranged in multiple serial units along 

the anterior-posterior body axis. 

 

Polyplacophora 

During development, the chiton larva undergoes an intermediate stage in which the 

dorso-ventral musculature is serially arranged as in adult Solenogastres. The concentration 

into seven (and later eight) functional shell plate muscle units is a secondary condition which 

takes place after metamorphosis. Thus, assumptions of a primarily "segmented" (i.e. annelid-

like) character of the polyplacophoran shell plate musculature are rejected. In addition, the 

anterior (i.e. pre-trochal) body region of chiton larvae shows a muscular grid which is lost at 

metamorphosis and resembles the body wall musculature of adult aplacophoran 

(Solenogastres + Caudofoveata) molluscs. Both, the multiple seriality of the dorso-ventral 

muscles and the apical muscle grid are regarded as ontogenetic recapitulation of the basal 

molluscan condition which is fully expressed in the adult body plan of Solenogastres. This 

infers a non-segmented, worm-shaped ancestor at the base of molluscan evolution. 

The existence of a larval ring-shaped muscle that underlies the prototroch cells 

(prototroch muscle ring) is a shared feature of polyplacophoran, gastropod, and bivalve larvae 

(see below) and suprataxic homology of this organ is proposed.  
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Bivalvia 

Besides a rather complicated set of larval retractor muscles, the veligers of 

autobranchs (i.e. all Bivalvia except the Protobranchia, the latter with a test-cell larva) exhibit 

a distinct prototroch muscle ring similar to chitons and gastropods. Both systems are entirely 

larval and are resorbed during metamorphosis. 

 

Scaphopoda 

The general ontogeny and especially myogenesis in the dentaliid scaphopod Antalis 

entalis proceeds much more direct than in polyplacophorans or gastropods. Accordingly, 

distinct larval muscle systems are lacking. However, the paired cephalic and pedal retractors 

both form additional fibers which project into the region of the prototroch and are lost at 

metamorphosis. The existence of a distinct, paired cephalic retractor system, which is also 

found in the basal gastropod and cephalopod bauplan but not in the Bivalvia, suggests a clade 

comprising the Scaphopoda and Gastropoda + Cephalopoda. This is strengthened by 

expression data of the homeobox gene engrailed, which plays a significant role in molluscan 

shell formation. While two dorso-lateral centers of engrailed expression, which correspond to 

the two centers of initial shell calcification, are found in early bivalve veligers, engrailed is 

exclusively found in mantle margin cells surrounding the single anlage of the embryonic 

scaphopod shell. In contrast to bivalves, the scaphopod shell is thus formed from a single 

center of calcification, and a scaphopod-bivalve sistergroup relationship is therefore rejected.  

 

Gastropoda 

Primitive gastropods, such as the patellogastropods Patella vulgata and Patella 

caerulea, show one pair of asymmetrically positioned larval retractor muscles which have 

distinct insertion sites at the embryonic shell. Another strict larval muscle system is the 

prototrochal muscle ring. All these muscle are lost before, during, or shortly after 

metamorphosis. Parts of the adult mantle musculature as well as the muscles of the cephalic 

tentacles are formed prior to metamorphosis, while the buccal musculature is of entire post-

metamorphic origin. 

The process of gastropod ontogenetic torsion is mainly caused by muscular activity of 

the larval retractors, while the adult shell musculature arises after the completion of torsion. 

Thus, ontogenetic torsion is regarded as an entirely larval process inferring that the 

arrangement of the adult shell musculature - which can often be reconstructed by muscle scars 
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on fossilized shells - is not indicative for the question whether paleozoic univalved molluscs 

were torted or not.  

 

 

1. INTRODUCTION 

 

Until this study, molluscan myogenesis has been widely neglected by zoologists and 

developmental biologists alike. The only detailed data hitherto available were recruited from 

bivalves (Hatschek 1880, Meisenheimer 1901, Cragg 1985, Cragg and Crisp 1991) and from 

the basal gastropods Haliotis (Crofts 1937, Degnan et al. 1997, Page 1997), Polinices (Page 

1998), and Patella (Smith 1935, Crofts 1955). However, most of these works acquired data 

from very few developmental stages, leaving most aspects of larval and early juvenile muscle 

morphogenesis obscure. This together with often limited methodology led to contradicting 

results regarding muscle development in gastropods. Thus, Crofts (1937, 1955) and most 

followers (e.g., Bandel 1982) regarded at least parts of the larval shell musculature as direct 

ontogenetic precursors of the adult shell musculature in Haliotis and Patella, rendering both 

systems as homologous, while Smith (1935) argued in favor of independent larval retractor 

systems in Patella. In the late 90s, Page (1997) and Degnan et al. (1997) rejected Crofts' 

earlier findings for Haliotis by demonstrating independence of larval and adult muscle 

systems in this genus. The data of Smith (1935), however, have not been re-investigated 

since, but are crucial for inferring the basal gastropod (myo-) groundplan, because Patella is a 

member of the most basal gastropod taxon, the Patellogastropoda (see Haszprunar 1988, 

Ponder and Lindberg 1997). Accordingly, patellogastropod myogenesis is reinvestigated in 

order to elucidate whether genuine larval retractors are basal for the Gastropoda and, if so, 

maybe for all Conchifera (Monoplacophora + Bivalvia + Scaphopoda + Gastropoda + 

Cephalopoda) or even Testaria (Conchifera + Polyplacophora).  

The Polyplacophora show numerous characters that are considered plesiomorphic for 

the Mollusca, e.g., a chitinous cuticle with calcareous spicules, lack of jaws, a cord-like 

tetraneuran nervous system, and bipectinate ctenidia (gills). In addition, several organ systems 

are serially repeated along their anterior-posterior axis, such as the shell plates, dorso-ventral 

shell plate muscles, ctenidia, the pedal commissures, and the latero-pedal connectives of the 

nervous system (see, e.g., Wingstrand 1985). This has led to the still popular hypothesis that 

chitons, and thus the entire Mollusca, may have a primary annelid-like segmented ancestor, 

proposing a direct sister-group relationship of annelids and molluscs (Götting 1980, Ghiselin 
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1988, Lake 1990, Nielsen 1995, Scheltema 1996; but see Russell-Hunter, 1988). Such an 

assumption, however, infers either a secondarily acquired worm shape (e.g., Edlinger 1989) or 

evolution by progeny of the aplacophoran taxa Solenogastres and Caudofoveata as proposed 

by Scheltema (1993). The bauplan of the Solenogastres, indeed, shows multiple seriality of 

the dorso-ventral musculature and the famous aplacophoran "larva of Pruvot" was described 

as bearing seven shell plate rudiments, similar to the anlagen of the first seven shell plates in 

late chiton larvae (Pruvot 1890, 1892). However, alternative theories suggest that 

aplacophorans have retained the original basal (i.e. non-segmented) molluscan bauplan (e.g., 

Boettger 1955, Salvini-Plawen 1969, 1980, 1981, 1991, Salvini-Plawen and Steiner 1996). 

This hypothesis assumes successive concentration of an ancestral aplacophoran-like serially 

arranged dorso-ventral musculature which consequently led to a final, single pair of (shell) 

retractors in gastropods and cephalopods. Accordingly, this theory regards the Polyplacophora 

with their eight sets of paired shell plate muscles as an intermediate stage of dorso-ventral 

muscle concentration, thus linking the aplacophoran clades Solenogastres and Caudofoveata 

to the Conchifera. However, due to the lack of recent ontogenetic data on aplacophoran 

development, this interpretation remains problematic. In order to provide new data for this 

discussion, which is directly associated with the question regarding basal features of the 

molluscan bauplan, investigation of the muscle morphogenesis in the Polyplacophora 

appeared crucial.  

Aside from the aplacophorans and the tryblidians (i.e. extant Monoplacophora), the 

Scaphopoda are the least known molluscan class regarding any aspect of ontogeny. In fact, 

except for mere sketch drawings (Lacaze-Duthiers 1857, Kowalevsky 1883) and few (though 

detailed) experimental cell lineage analyses (Dongen and Geilenkirchen 1974, 1975; Dongen 

1976), no recent data on their development (especially organogenesis) are available. Thus, 

their larval muscle anatomy remains unknown, and especially the question whether 

scaphopods bear a specific, independent larval musculature, as found in bivalves (Hatschek 

1880, Meisenheimer 1901, Cragg 1985, Cragg and Crisp 1991; see also Fig. 1 herein), 

remains unclear. In addition, general scaphopod ontogeny is crucial for the traditionally 

proposed but recently questioned direct scaphopod-bivalve sistergroup relationship, which 

was based on the assumption that both taxa possess a primarily bivalved shell, which, during 

larval development, fuses ventrally in the Scaphopoda. This led to the current text book 

version of a scaphopod-bivalve clade, the Diasoma, which was first proposed by Runnegar 

and Pojeta (1974). While a bipartite early shell anlage has been clearly demonstrated for the 

Bivalvia (e.g., Waller 1981), this assumption remains purely hypothetical for the Scaphopoda. 
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Investigation of scaphopod shell morphogenesis should thus yield significant insights 

regarding the Diasoma concept. Recently, Moshel et al. (1998) and Jacobs et al. (2000) 

showed that the homeobox gene engrailed, which has been sequenced from all testarian 

classes except the Tryblidia (Wray et al. 1995), seems to play an important role in early shell 

development of gastropods, bivalves, and chitons. It seemed thus very likely that combined 

analyses of scaphopod muscle and shell organogenesis (together with engrailed expression 

data) would provide a new base for the discussion of molluscan phylogenetics as a whole.  

 

 

2. MATERIALS AND METHODS 

 

A brief overview of the species investigated and the methods applied is given in Table 

1. For detailed descriptions, see the relevant appendices.  

 
Table 1. List of species investigated and methods applied. CLSM - confocal laser scanning microscopy in 
combination with fluorescence staining of F-actin; en - staining of the engrailed transcript; LM - light 
microscopy analysis of serial semithin sections; SEM - scanning electron microscopy; TEM - transmission 
electron microscopy. 
----------------------------------------------------------------------------------------------------------------- 
CLASS/     stages investigated  Methods applied Appendix 
Species   larval   juvenile   adult  
 
SOLENOGASTRES 
Dondersia sp.   -    -      +  TEM      I 
 
CAUDOFOVEATA  
Chaetoderma nitidulum + (few)   -      -  CLSM      IV 
 
POLYPLACOPHORA 
Mopalia muscosa,  +    +      -  CLSM, SEM, TEM    II 
Chiton olivaceus  +    +      -  CLSM, SEM, TEM    II 
 
TRYBLIDIA 
Laevipilina antarctica -    -      +  TEM      I 
 
BIVALVIA 
unidentified   +    -      -  CLSM      Review 
 
SCAPHOPODA 
Antalis entalis   +    +      -  CLSM, LM, en,    III, IV 
        SEM, TEM  
 
GASTROPODA 
Patella caerulea,  +    +      -  CLSM, SEM     V, VI, VII 
Patella vulgata  +    -      -  CLSM, SEM     V, VI 
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3. RESULTS 

 

3.1. General remarks and terminology (see also Appendix I) 

 

An overview on all larval and adult muscle systems which are found in the Mollusca is 

given in Appendix I. In this review, emphasis is lain on the main focus of this thesis, namely 

the development of the individual muscle systems of selected species of the molluscan classes 

Polyplacophora, Bivalvia, Scaphopoda, and Gastropoda. In addition, the first detailed SEM 

analysis of scaphopod larval and early juvenile development is provided along with a gene 

expression pattern analysis of the homeobox gene engrailed in relation to scaphopod shell 

development. Ages of specimens are given in hours post fertilization (hpf), hours post 

metamorphosis (hpm), or days post metamorphosis (dpm).  

The prototroch of basal, lecithotrophic molluscan larvae corresponds ontogenetically 

and phylogenetically to the velum of more derived planktotrophic forms (higher Bivalvia and 

Gastropoda). Thus, the terms "prototroch (muscle) ring" and "velar (muscle) ring" should be 

regarded as structures belonging to the same, homologous organ.  

Shell terminology follows Haszprunar et al. (1995). Accordingly, tryblidians, basal 

bivalves, scaphopods, and basal gastropods show a distinct embryonic shell (protoconch I) 

which is directly followed by the adult shell (teleoconch) with different shell sculpture. 

Certain gastropod taxa (e.g., Caenogastropoda and Heterobranchia) as well as autobranch 

Bivalvia show an additional, intermediate shell stage, the larval shell (protoconch II). In 

planktotrophic species, this shell type is often ornamented and thus easily distinguishable 

from the embryonic and the adult shell. For a more detailed definition and discussion on the 

subject, see Appendix III and V.  

This review provides a summary of the results given in Appendix I-VII. These data are 

cited according to the following example: IV: 2B, p. 103 = Appendix IV, Fig. 2B, page 103. 

 

3.2. Myogenesis in Polyplacophora (Appendix II) 

 

Myogenesis was investigated in the two chiton species Chiton olivaceus Spengler, 

1797 and Mopalia muscosa Gould, 1846, and followed the same developmental patterns and 

chronology. Myogenesis in Mopalia starts at 74 hpf (II: 1A, 2A, p. 61-62) with the dorsal 

anlagen of the prototroch muscle ring and the first two myocytes of the putative rectus 

muscle, which are situated more ventrally. Slightly later, the delicate, paired longitudinal 
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muscle appears ventro-laterally on both sides of the larva and starts to extend post-trochally 

(II: 2A right, p. 62). On the ventral side, the anlage of the dorso-ventral musculature becomes 

visible. At this stage, the first ring muscles of the pre-trochal muscle grid become visible on 

the dorsal and ventral side (II: 2B, p. 62). 

Subsequently, new myocytes of the rectus muscle differentiate laterally on both sides, 

which results in a bilaterally symmetrical muscular system. The newly formed fibrils diverge 

towards the anterior pole of the larva and only the two earliest formed fibers mark a strict 

anterior-posterior axis through the animal. In addition, ring muscles are formed in the pre-

trochal region, which form a muscular meshwork around the fibers of the rectus muscle (II: 

2C-F, p. 62; 3A, p. 64). This "apical grid" is engulfed laterally by a circular muscle that later 

becomes the ventral enrolling muscle. In the post-trochal body region, transversal muscle 

fibers are formed underneath each putative shell plate just dorsal of the fibers of the rectus 

muscle (II: 2C-F, p. 62; 3B, p. 64).  

At around 129 hpf, the rectus muscle forms a predominant, dorsal, longitudinal unit 

which extends antero-laterally. The apical grid surrounds the pre-trochal body part as a three-

dimensional muscular net which consists of outer ring and inner diagonal muscle fibers and 

encircles the rectus muscle. The prototroch ring is a solid band of muscle fibers located 

directly underneath the prototrochal epithelium. Laterally, the enrolling muscle encircles all 

other muscle systems and forms a border against the outer mantle. The ventro-lateral 

longitudinal muscle pair lies more ventral and medial to the latter muscle and consists of two 

distinct muscle strands that do not contact each other anteriorly. This ventro-lateral 

longitudinal muscle interconnects on both sides with the dorso-ventral musculature via 

numerous short muscle fibers (II: 2D-E, p. 62). The dorso-ventral musculature appears as a 

multiple repetition of minute myofibrils that intercross in the pedal region (II: 2D-F, p. 62).  

During metamorphosis, the larval prototroch muscle ring and the apical muscle grid 

degenerate (II: 2G-H, p. 62). The buccal musculature arises immediately after metamorphosis 

and consists of numerous fibers that insert on the first shell plate. The former distinct, dorso-

ventral shell plate muscle fibers start to concentrate (II: 2G, p. 62), and ten days after 

metamorphosis, the paired shell plate muscle bundles have differentiated under each shell 

plate. Additionally, the radular retractor muscles, which insert on the second shell plate, are 

formed on both sides of the rectus muscle (II: 2H, p. 62). The paired ventral longitudinal 

muscle persists through metamorphosis. The circular enrolling muscle is already functional in 

early juvenile animals (i.e. at one day after metamorphosis, see II: 2G, p. 62), enabling the 

animal to protect its soft body parts on the ventral side if separated from the substratum. 
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The myofibrils of the dorsal rectus muscle undergo considerable rearrangement during 

larval life and especially at metamorphosis: their strong anterior divergence ceases (II: 2C-F, 

p. 62), and after metamorphosis all fibers follow a strict longitudinal anterior-posterior 

orientation. (II: 2A-B, G, p. 62). 

Fine structural analyses revealed the smooth character of most larval and adult chiton 

muscle systems (II: 3, p. 64), except for the obliquely striated buccal musculature.  

 

3.3. Larval development and shell formation in Scaphopoda (Appendix III) 

 

Herein, the first SEM study of the larval and early post-metamorphic development 

of a scaphopod - Antalis entalis (Jeffreys, 1869) - is presented. In addition, the expression 

pattern of the homeobox gene engrailed is analyzed.  

Early larvae are poorly differentiated with the prototroch cilia being not yet fully 

developed and the prototroch cells not arranged in the three parallel rows as found in 

individuals aged 32 hpf or older (III: 1A-B, p. 81). The post-trochal area consists only of a 

small cluster of cells. From approximately 35 hpf onwards, dramatic morphological 

transformations occur (III: 1C-I, p. 81): The prototroch is subsequently reduced and is 

finally recognized as a narrow band of ciliated cells only (III: 1F-I, p. 81). The larval apical 

organ is completely lost prior to metamorphosis (III: 1C, E-G, p. 81). The post-trochal area 

starts to grow and at 39 hpf the calcified, single primordium of the embryonic shell is 

formed. Likewise, the anlagen of the foot and the mantle become visible (III: 1D, p. 81). 

The formation of the mantle and the embryonic shell starts dorsally and both structures 

grow in anterior and ventral direction. At 64 hpf the mantle and the embryonic shell are 

ventrally closed. The successive calcification of the protoconch in dorso-ventral direction 

and its anterior growth until metamorphic competence is indicated by the suture, the 

ventral fusion line of the embryonic shell (III: 1H-I, p. 81). The surface of the protoconch 

is completely smooth, without any distinct growth lines. The foot anlage appears as a 

symmetrical hump on the ventral side but remains non-functional until metamorphic 

competence (III: 1D-E, p. 81).  

Larvae induced at 94 hpf or later performed metamorphosis within two hours. 

During metamorphosis, the prototroch is lost and the paired anlage of the first captacula 

(anterior tentacles) is formed dorso-laterally in the cephalic region of the juvenile (III: 2A-

B, p. 82). The foot differentiates and develops its characteristic three-lobed morphology, 

which is retained through adulthood. Accordingly, the animal switches from a planktic 
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free-swimming to a benthic creeping-burrowing locomotion. Only the anterior tip of the 

predominant central lobe of the foot is ciliated (III: 2, p. 82). The formation of the 

protoconch stops at the onset of metamorphosis and the adult shell (teleoconch), which 

shows striking growth lines but lacks a suture, is generated. These differences enable easy 

distinction of the protoconch and the teleoconch in the post-metamorphic juvenile 

scaphopod (III: 2D, p. 82). 

 

3.4. Engrailed expression in Scaphopoda (Appendix III) 

 

The engrailed transcript is first localized in early trochophores at the age of 28.5 

hpf, where it is expressed in two unequally sized cell clusters of the dorsal ectoderm. The 

much larger anterior cluster consists of approximately 15 cells which are arranged in a 

semi-circle just behind the prototroch around the putative anlage of the embryonic shell 

field. The second cluster of about three cells is situated more posteriorly (III: 3A, p. 85). 

Slightly later, engrailed is found in cells surrounding the anlage of the embryonic shell, 

which has started to differentiate between the two former engrailed clusters (III: 3B, p. 

85). During subsequent development, engrailed expressing cells form the margin towards 

the outer mantle epithelium (III: 3C-E, 4, p. 85). The gross morphology of the shell field 

and the pattern of engrailed expression clearly reflect the primary univalved character of 

the protoconch (III: 4, p. 85). After ventral closure of the mantle and the embryonic shell 

field, the protoconch is fully established and the engrailed expressing cells are found 

around both the anterior and the posterior edges of the shell field (III: 5A-B, E, p. 86).  

In 80.5 hpf old specimens engrailed is also found in a few cells of the body mass 

which probably belong to the adult nervous system (III: 5C-D, p. 86). At metamorphic 

competence, engrailed expression disappears at the margins of the protoconch. In contrast, 

expression is now found in several body regions, e.g., in the anterior region of the putative 

cephalic ganglia, in two centers of the mid-body, the foot, and in the visceral mass (III: 6, 

p. 87).  

At 61 hours after metamorphosis engrailed expression is restricted to a few cells 

that contribute to the adult cerebral ganglion (III: 7, p. 87). All other former expression 

sites remain without signal. Engrailed is not expressed in cells that are involved in 

teleoconch formation (cf. III: 2D, p. 82; 7, p. 87). In individuals aged 13 days post 

metamorphosis no engrailed expressing cells were found. 
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3.5. Myogenesis in Scaphopoda (Appendix IV) 

 

Muscle development in Antalis starts at around 50 hpf in two dorso-laterally 

positioned, bilaterally symmetrically arranged regions (cf. IV: 1A, p. 101; 2A, p. 103). 

Slightly later, these anlagen have differentiated into fibers of the putative paired cephalic and 

pedal retractors which run dorsally from their posterior shell attachment site into the mid-

body region (IV: 2B, p. 103). After ventral closure of the protoconch, the pedal retractor 

fibers project ventrally into the foot hump and interconnect with the newly formed myocytes 

of the pedal plexus. In contrast, the cephalic retractors run in anterior direction towards the 

mantle fold. Both retractors show additional fibers which penetrate the prototroch area and 

serve as prototroch retractor muscles (IV: 2C, p. 103). These muscle portions, however, are 

not independent but are connected to either the cephalic or the pedal retractors. No prototroch 

muscle ring is present in Antalis larvae. At metamorphic competence, the buccal musculature, 

which is represented by a muscular ring encircling the region of the foregut, and the laterally 

situated mantle retracting fibers have started to form (IV: 2D, p. 103).  

During metamorphosis the prototroch retracting muscle fibers are resorbed (IV: 2E, p. 

103). The foot musculature (pedal plexus) starts to arrange. Its middle piece consists of 

circular, longitudinal, and diagonal fibers which form a three-dimensional muscular 

meshwork (IV: 2G-H, p. 103). From their posterior dorso-lateral shell attachment sites, the 

pedal retractors run slightly more dorsal and more lateral to the cephalic retractors into the 

mid-body of the juvenile until they reach the buccal muscle ring. (IV: 2H-I, p. 103). From the 

inner sides of this ring, both foot retractor muscles run in ventral direction into both sides of 

the foot and form the lateral longitudinal muscle bundles of the foot (IV: 2K-L, p. 103). The 

distinct cephalic retractors run from their postero-dorsal origin in anterior direction until they 

reach the buccal ring, which they cross dorsally, and insert in the buccal region of the animal 

(cf. IV: 1C, p. 101; 2H, p. 103).  

Anatomically, the central (main) lobe of the anterior part of the foot mainly consists of 

outer circular and inner longitudinal muscle fibers with occasionally present diagonal 

myocytes (IV: 3B, D-E, p. 105). The two lateral lobes consist of few diagonal, several 

longitudinal, and additional circular muscle fibers (IV: 3B, E, p. 105), while the middle piece 

and the foot basis are formed by a muscular grid of longitudinal and intercrossing diagonal 

muscles (IV: 3B, F, p. 105). The musculature of the captacula starts to form several days after 

metamorphosis and develops rapidly, leaving little space for a distinct captacular cavity (IV: 

2L, p. 103; 3, p. 105). Ultrastructural analyses show that all identified larval muscle systems 
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in Antalis entalis, including the prototroch retracting fibers and the juvenile buccal 

musculature, are smooth (IV: 4, p. 106).  

 

3.6. Myogenesis in Bivalvia (previously unpublished data) 

 

 Numerous specimens of unidentified bivalve veliger larvae were obtained by plankton 

toes in order to determinate the complete myo-anatomy of autobranch larvae. These studies 

show that, aside from the previously identified complex larval velum retractor systems, a 

specific velum muscle ring is present in autobranchs (Fig. 1A-B). Both muscle systems are 

lost during metamorphosis and the anterior and posterior adductor muscles, which are already 

present and functional in the late veliger stages (Fig. 1B), form the major adult shell muscle 

system. The velum ring resembles those of polyplacophorans (see above) and gastropods (see  

below). 
 

 
Fig. 1. Unidentified bivalve (autobranch) larvae showing the complicated larval retractor system (lr) with 
numerous anteriorly branching muscle fibers (marked with asterisks in B) which insert at the velum muscle ring 
(vr). The existence of such a velar ring (vr) in autobranchs, similar to those of polyplacophorans and gastropods, 
is new to science. The adult pedal retractor (pr) and adductor muscles (ad) are already well developed in late 
veligers. Anterior faces upwards. A. Relaxed specimen. B. Specimen with velum retracted into the mantle cavity. 
 

 

3.7. Myogenesis in Gastropoda (Appendix V, VI) 

 

Since the Patellogastropoda represent the most basal gastropod taxon, they are the 

ideal taxon for studying the larval gastropod myo-groundplan. Herein, two species, Patella 
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vulgata L. and Patella caerulea L., were investigated and showed only minor differences in 

their general ontogeny as well as regarding muscle development.  

The anlage of the main larval retractor, which is characterized by several fine, dorsally 

situated muscle fibers, is the first recognizable muscle structure (V: 1A-B, 2A-B, p. 127-128). 

Slightly later, the velar muscle ring, which consists of several spindle-like muscle cells, forms 

(V: 1C, p. 127). In the next stage, the main larval retractor consists of two portions: the dorsal 

and more central portion runs as a dense bundle into the apical area, whereas the smaller 

ventral and lateral portions run into the pedal region (V: 1D, 2C, p. 127-128). Moreover, two 

additional muscle systems are visible for the first time, namely the accessory larval retractor, 

situated ventro-terminally, and the pedal muscle plexus, which consists of a yet weak and 

irregular muscular grid (V: 1D, p. 127). Prior to torsion the main larval retractor shows a 

distinct insertion area at the embryonic shell slightly left to the center of the visceral hump of 

the larva (V: 1E, 2D, p. 127-128). Seen from posterior, the accessory larval retractor is 

attached right of the main larval retractor to the embryonic shell. In Patella vulgata, three 

myocytes of the accessory larval retractor run into the mantle margin and one reaches the 

anterior pedal region, while in Patella caerulea several fibers project into the mantle and velar 

region but not into the foot.  

After torsion is completed the insertion area of the main larval retractor is placed to 

the upper left of that of the accessory larval retractor (V: 3-5, p. 130-132; VI: 1, 3, p. 146) but 

most of the fibers of the main larval retractor are situated on the right side. The larval 

operculum is associated with two thin, symmetrical muscle fibers which curve upwards from 

the posterior end of the foot into the ventral region of the larva (V: 6A, p. 133). These fibers 

form the anlagen of the left and right adult shell muscles. Subsequently, these fibers form 

distinct, laterally placed insertion areas at the shell (V: 3B-D, p. 130; 4A-D, p. 131; 6B, p. 

133). During late larval development two new, longitudinal muscle fibers become visible in 

the mantle region and are positioned dorsally of the accessory larval retractor. Towards 

metamorphosis the fibers of the accessory larval retractor degenerate and its insertion area at 

the protoconch is lost. Two additional, transversal muscle fibers occur at the apical mantle 

margin (V: 4D, 5A-D, 6B-C, p. 131-133). The musculature of the cephalic tentacles arises de 

novo and consists of two longitudinal, cross-bridged fibers.  

Prior to metamorphosis the two adult shell muscles grow in size and volume and 

increasingly interconnect with the fibers of the pedal plexus (V: 4A, p. 131; 6A, p. 133). The 

main larval retractor remains prominent, whereas the accessory larval retractor degenerates 

(V: 5A-B, 6B-D, p. 132-133). Eventually, the accessory larval retractor loses its insertion area 
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at the protoconch. The adult shell muscles become predominant and the pedal plexus is 

continuously elaborated (V: 5C-D, p. 132). The velum ring disappears simultaneously with 

the reduction of the prototroch at metamorphosis, while the longitudinal and transversal 

mantle fibers are retained through metamorphosis (V: 5A-B, 6B-D, p. 132-133). This is also 

true for the main larval retractor in early postmetamorphic stages, whereas the accessory 

larval retractor is completely reduced immediately after metamorphosis. The first anlage of 

the buccal musculature becomes visible between the bases of the tentacular muscle systems 

(V: 5C, p. 132). Finally, the main larval retractor is lost and the buccal apparatus forms the 

most prominent anterior muscle system of the juvenile animal (V: 5D, 6D, p. 132-133; VI: 1, 

p. 146). 

In Patella, the fibers of both the main and the accessory larval retractor are obliquely 

striated (Wanninger et al. 1999), whereas the velar and pedal system as well as the adult shell 

musculature are smooth. All larval and adult shell muscles insert at the shell via so-called 

tendon cells which are characterized by a high density of actin filaments within the cytoplasm. 

 

3.8. Torsion in Patellogastropoda (Appendix VI, VII) 

 

In Patella caerulea, ontogenetic torsion started between 32 and 39 hpf at a rearing 

temperature of 20-22°C. In the pretorsional larva the foot lies on the same side as the mantle 

fold (VI: 2, p. 146; VII: 1A1-A3, p. 161). At the onset of torsion the operculum, the 

embryonic shell, and both asymmetrically positioned, contractile larval shell muscles are 

already well developed (VII: 1A1, E1 insets, p. 161-162). Both muscles contract 

simultaneously every 30 seconds. Since the foot still lies between the mantle fold and the 

prototroch, retraction of the cephalopedal region of the larval body into the embryonic shell is 

not yet possible. Instead, the embryonic shell acts antagonistically against the activity of the 

larval shell muscles, which results in a clockwise movement of the head/foot region relative to 

the visceral portion. These muscular contractions are followed by slow, gradual pumping 

movements of the foot, which causes transportation of body fluid from the visceral part into 

the pedal region of the animal. After 30 seconds the next series of muscular contractions 

occurs, followed by hydraulic movements and so on. 30 minutes after the onset of torsion, 45° 

of the 180° twist are performed. (VII: 1A1-A4, p. 161). 30 minutes later, 90° of torsion is 

achieved (VII: 1C1-C4, p. 162) and a further half hour on, 135° of rotation is reached (VII: 

1D1-D4, p. 162). About two hours after the onset of torsion all specimens have completed the 

180° twist. The foot with its attached operculum is now situated on the opposite side of the  
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mantle fold (VI: 3, p. 146; VII: 1E1-E4, p. 162). Only from this stage onwards, retraction of 

the larval body into the embryonic shell is possible.  

The formation and growth of the larval operculum starts in late pretorsional larval 

stages and thus occurs independently of the ontogenetic torsion process (VI: 2, p. 146; VII: 

1A1-A3, p. 161).  

 

 

4. DISCUSSION 

 

4.1. General notes 

 

The results presented herein are the first detailed comparative account of molluscan 

muscle development and were obtained by a combination of various methodologies such as 

fluorescence F-actin labeling, confocal microscopy, serial sectioning, and electron 

microscopy. This and the fact that muscle morphogenesis was followed from its onset through 

metamorphosis in basal Polyplacophora, Scaphopoda, Gastropoda, and, partly, in Bivalvia are 

the main innovations of this work and provide significant insights regarding molluscan 

ontogeny and phylogeny. In addition, results on scaphopod shell development may revive the 

discussion of scaphopod relationships in the Mollusca.  

It is important to be aware of several serious handicaps when discussing the 

phylogenetic significance of the various features of molluscan ontogeny. First of all, data for 

the most basal molluscan taxa Solenogastres and Caudofoveata as well as for basal 

conchiferans (Tryblidia, i.e. extant monoplacophorans) are still either entirely missing or were 

obtained several decades ago (Pruvot 1890, 1892, Baba 1938, 1940, Thompson 1960). This 

makes conclusions about basal ontogenetic characters for the Mollusca or the Conchifera 

quite speculative. This uncertainty increases because the molluscan sister taxon still remains 

unknown (Haszprunar 1996, 2000, Waller 1998). In addition, basal Bivalvia (protobranchs) 

undergo larval development via a derived larval type, the so-called test cell or pericalymma 

larva. Only higher bivalves (autobranchs) show a typical, planktotrophic veliger-type larva. 

Thus, conclusions regarding basal bivalve development is likewise problematic. Cephalopod 

ontogeny is generally highly derived and thus provides little information for the discussion of 

conchiferan or even general molluscan development.  
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4.2. Myo-anatomy and muscle development 

 

Since the main focus of this work is to deduce phylogenetic and evolutionary 

conclusions for the Mollusca and their possible outgroups, only muscle systems relevant for 

these questions are discussed here. 

 

4.2.1. Larval muscle systems 

Two distinct, genuine larval muscle systems, namely the larval shell retractors and the 

prototroch (= velum) muscle ring, have been identified in some of the molluscan taxa 

investigated.  

Larval retractor muscles, which are characterized by distinct shell insertion areas and 

an oblique striation pattern, have been found in several planktotrophic bivalve taxa (Hatschek 

1880, Meisenheimer 1901, Cragg 1985, Cragg and Crisp 1991). However, the presence of 

such retractors in the bivalve groundplan remains debatable. On the one hand, this is due to 

the phenomenon that basal bivalves (protobranchs) show a derived larval development (see 

above), the myo-anatomy of which is still unknown. The main bivalve larval type, a 

planktotrophic veliger-like larva, is only found in the otherwise more derived autobranch taxa 

such as mytilids, ostreids, or heterodonts. These larvae have a well defined velum and larval 

retractor muscles (see Fig. 1), but this might be apomorphic for the Autobranchia.  

The existence of one, strongly asymmetric pair of larval retractor muscles has been 

demonstrated for all of the major basal gastropod taxa (patello-, veti-, and caenogastropods) 

(Degnan et al. 1997, Page 1997, 1998, and herein, V: p. 119-141; VI: p. 142-150) as well as 

heterobranchs (Page 1995). Muscular activity of these retractors has been shown to be a main 

cause of gastropod ontogenetic torsion, the major autapomorphy of the class Gastropoda (VII: 

p. 151-171). These findings clearly indicate that asymmetric larval retractors are a basal 

feature of the gastropod larval bauplan. 

For inference of the basal condition within the entire Mollusca regarding the presence 

of larval retractors, only the polyplacophorans, scaphopods, and gastropods provide relevant 

data, because the conditions in the Tryblidia, Caudofoveata, and Solenogastres still remain 

obscure (see above). The Polyplacophora and Scaphopoda lack distinct larval retractors (see 

above and II: p. 56-75; IV: p. 75-95), while they are present in autobranch bivalves (Fig. 1) 

and gastropods (Degnan et al. 1997, Page 1997, 1998, and herein, V: p. 119-141; VI: p. 142-

150). Applying the parsimony principle and proposing larval retractors as part of the ancestral 

bivalve bauplan, the evolutionary origin of larval retractor muscles at the interface of the 
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Bivalvia versus Scaphopoda, Gastropoda, and Cephalopoda (inferring secondary loss in the 

Scaphopoda and Cephalopoda) is equally parsimonious than their twice independent 

evolution in the Bivalvia and the Gastropoda (cf. IV: 5, p. 109). A correlation of the 

expression of larval retractors and planktotrophy can be ruled out, since the basal, larval 

retractor bearing gastropod taxa all show entirely lecithotrophic larval stages.  

The second larval muscle system, the prototroch muscle ring, renders similar problems 

regarding its evolutionary origin. To date, it has been found in the Polyplacophora (II: p. 56-

74), Bivalvia (Fig. 1), and basal Gastropoda (Degnan et al. 1997, Page 1997, 1998, V: p. 119-

141; VI: p. 142-150), but not in the Scaphopoda (IV: p. 96-118). According to the parsimony 

principle, these data suggest its evolution at the polyplacophoran-conchiferan interface 

(secondary loss in the Scaphopoda), but due to missing data for the aplacophorans and the 

tryblidians, this issue requires further investigation.  

 

4.2.2. Adult muscle systems 

Body wall musculature 

Many authors nowadays believe that the aplacophoran taxa Solenogastres and 

Caudofoveata form the most basal molluscan classes, with the Solenogastres being the earliest 

offshoot of the phylum (Haszprunar 2000 and IV: 5, p. 109; but see, e.g., Scheltema 1996, or 

Edlinger 1989, 1991 for recent contrary view). Both taxa have a three-layered body wall 

musculature which consists of outer ring, intermediate diagonal, and inner longitudinal 

muscles (Salvini-Plawen 1969, 1972, Scheltema et al. 1994, and herein, I: p. 40-55), similar 

to other worm shaped taxa such as annelids or nemertines. This worm-like gross morphology 

is regarded basal for the Mollusca (Salvini-Plawen 1991, Haszprunar 1992, 2000). 

Functionally, this body wall musculature is necessary in these taxa to maintain a stable body 

shape against the pressure of the inner body fluid. In polyplacophoran larvae, a similar worm 

grid is found in the pre-trochal region (II: p. 56-74). Anatomically, this meshwork resembles 

the aplacophoran body wall musculature. Together with large parts of the pre-trochal body 

region, this muscle grid is lost in the chiton larva during metamorphosis. It appears probable 

that the apical muscle grid of the chiton larva likewise serves to maintain the shape of the 

anterior body region until it is reduced at metamorphosis. Thus, structurally and functionally, 

the chiton worm grid can be regarded as a relic of the body wall musculature of a proposed 

worm shaped molluscan ancestor and homologous to the aplacophoran body wall 

musculature. Its reduction during chiton metamorphosis and its complete absence in the 
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Conchifera (note that the larval condition in tryblidians is still unknown) is probably due to 

the introduction of a body stabilizing "exoskeleton", the shell (plates) (see IV: p. 96-118).  

 

Dorso-ventral (shell) musculature 

Regarding the arrangement of the molluscan dorso-ventral musculature, the 

Polyplacophora represent a link between the aplacophoran and the conchiferan condition (IV: 

p. 96-118). While the Solenogastres (and the anterior part of certain Caudofoveata) show 

numerous serially repeated dorso-ventral muscle fibers along their anterior-posterior axis, the 

conchiferans are characterized by concentrated and numerically reduced shell muscles (see I: 

p. 40-55; II: p. 56-74; IV: p. 96-118). In chiton larvae, the development of the dorso-ventral 

musculature undergoes an initial stage of multiple seriality, which corresponds to the situation 

found in adult Solenogastres. Considerable time after metamorphosis, these fibers concentrate 

into seven (and later eight) paired muscle bundles which insert on both sides of each shell 

plate (II: p. 56-74). This demonstrates that the typical eight-seriality of the adult dorso-ventral 

shell musculature of chitons is a secondary condition. Thus, the serial organization of the 

adult shell plate musculature in the Polyplacophora is not indicative for deriving chitons or 

the entire Mollusca from a metameric, segmented, annelid-like ancestor.  

Considering the data on the molluscan body wall and the dorso-ventral musculature, 

two evolutionary trends within the Mollusca become obvious: The evolution of protective 

epidermal structures from calcareous spicules (Solenogastres and Caudofoveata) via shell 

plates (Polyplacophora) to a uni- or bivalved shell (Conchifera) coincides with a subsequent 

concentration and numeric reduction of the dorso-ventral (shell) musculature and with a 

complete loss of the original body wall musculature (see above and IV: 5, p. 109).  

 

Buccal musculature 

Extant and fossil tryblidians and polyplacophorans show distinct buccal (= radula) 

retractor muscles (Wingstrand 1985, Fig. 2 herein, as well as I: p. 40-55; II: 2H, p. 62). This 

paired muscle - like other components of the buccal musculature - contains myoglobin, in 

contrast to all remaining muscles which bear hemoglobin or hemocyanine (Terwilliger and 

Read 1970, Graham 1973, Nisbet 1973, herein, I: p. 40-55). Both, the cephalic retractor of 

scaphopods, gastropods, and cephalopods and the buccal retractor of polyplacophorans and 

tryblidians are situated inwards of the dorso-ventral musculature (Fig. 2), but only the latter 

muscle inserts directly at the buccal cartilage, thus mainly serving as a radula retracting 

system. Accordingly, it is clearly distinct from the cephalic retractor which is not associated 
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with the buccal cartilages. Instead, the cephalic retractor projects into the dorsal part of the 

cephalic region and serves as a true "head" retracting system (Lang 1900, Wells 1988, herein, 

IV: p. 96-118). Unfortunately, the buccal retractors are often misinterpreted as cephalic 

retractors, especially in fossil monoplacophorans where they leave striking muscle scars (e.g., 

Harper and Rollins 2000: fig. 2). However, a comparison of the surface of the muscle scars of 

the buccal retractor and the cephalic retractor reveals a spotted scar-type for the tryblidian and 

polyplacophoran buccal retractor, while the patellogastropod cephalic retractor leaves a much 

more homogeneous imprint (Fig. 2).  

 

 
Fig. 2. Shell insertion sites of the dorso-ventral musculature (large, black filled areas), the radula retractors 
(dotted arrows), the buccal musculature (bm), and the cephalic retractors (full arrows) in early juvenile 
Polyplacophora (A), fossil Tryblidia (B), and Patellogastropoda (C); all dorsal view. In Polyplacophora and 
Tryblidia, the radula retractors (dotted arrows) and the buccal muscles (bm) show distinct, spotted shell insertion 
areas. These muscles insert within the cephalic epithelium in gastropods, thus leaving no shell scars. Gastropods, 
however, have genuine cephalic retractors (full arrows), which are situated adjacent to the anterior portion of the 
dorso-ventral muscles. A. Chiton olivaceus, juvenile specimen aged 13 days after metamorphosis with dorso-
median rectus muscle (re) and seven pairs of differentiated dorso-ventral shell muscles. The eighth pair is formed 
later in development. After phalloidin-stained specimen in II: 2H, p. 62. B. Muscle scars of fossil Pilina unguis. 
After Wingstrand (1985). C. Adult Patella caerulea showing anterior pallial line (pl, i.e. insertion sites of mantle 
retractor muscles). After Stützel (1984). 
 

 

Cephalic retractors  

Within the Mollusca, gastropods and cephalopods alone have a free, movable head 

(Salvini-Plawen and Steiner 1996; but see Waller 1998, who interpreted the scaphopod buccal 

cone as a similar free movable head structure). All "head-less" classes, however, do have a 
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distinct "cephalic region" which is characterized by a buccal apparatus (which is secondarily 

lost in the Bivalvia) and distinct cerebral ganglia with a commissure. So far, adult (i.e., post-

metamorphic) cephalic retractors were only reported for gastropods and cephalopods (Lang 

1900, Wells 1988, Salvini-Plawen and Steiner 1996, Haszprunar 2000). However, Lacaze-

Duthiers (1857) already stated that one of the two retractor pairs in juvenile Dentalium 

projects into the antero-dorsal region of the animal, close to the mouth, but he misleadingly 

interpreted this muscle as a mantle retractor. The analysis presented herein (IV: p. 96-118) 

shows that the fibers of the true mantle retractor insert much more anteriorly (i.e. closer to the 

buccal apparatus) and are loosely arranged rather than forming a solid muscle bundle (cf. IV: 

2E, H, p. 103 and Lacaze-Duthiers 1857: pl. 9, fig. 2). It seems most likely that the 

"rétracteurs ... du manteau" described by Lacaze-Duthiers (1857) is indeed the distinct, 

independent scaphopod cephalic retractor as presented herein (cf. IV: 2, p. 103).  

Because of positional, structural (smooth), and functional similarities, the cephalic 

retractor system of scaphopods, gastropods, and cephalopods is regarded as suprataxic 

homologous and synapomorphic for a clade comprising Scaphopoda and Gastropoda + 

Cephalopoda. This hypothesis is supported by the fact that unequivocal apomorphies for an 

earlier proposed scaphopod-bivalve clade (Diasoma; see Runnegar and Pojeta 1974) are 

entirely lacking (Waller 1998, Haszprunar 2000, herein, III: p. 75-95).  

 

Enrolling muscles 

The body plan of solenogastres, caudofoveates, and polyplacophorans includes a 

laterally positioned enrolling muscle system (Salvini-Plawen 1972, Wingstrand 1985, herein, 

I: p. 40-55; II: p. 56-74). Salvini-Plawen (1972) proposed homology of the aplacophoran and 

the polyplacophoran enrolling muscles and the tryblidian pedal ring muscle. However, 

fluorescence staining analyses of the musculature in chiton larvae and early juveniles 

diagnosed this muscle as a single, circular organ in chitons (II: p. 56-74), while it is paired in 

adult Caudofoveata and Solenogastres (Salvini-Plawen 1972). Thus, the aplacophoran 

enrolling muscles probably arose as strengthened parts of the longitudinal body-wall 

musculature (Salvini-Plawen 1972). In contrast, it is formed as an entirely independent system 

in the Polyplacophora (II: p. 56-74). These data argue against a proposed homology of 

aplacophoran and polyplacophoran enrolling muscles, but studies on aplacophoran muscle 

ontogeny are needed for final clarification.  
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Foot musculature and functionality 

The foot musculature (pedal plexus) is formed in late larval stages of scaphopods and 

gastropods (IV: p. 96-118; V: p. 119-141), but could not be detected through polyplacophoran 

early juvenile development (II: p. 56-74).  

Functionally, the foot of most basal gastropod (and nearly all polyplacophoran) taxa 

serves as a locomotory organ on mainly hard bottom substrates. Thus, a ciliary gliding sole is 

usually the major organ for gastropod movement. In contrast, many bivalves and scaphopods 

use the foot as a burrowing rather than a gliding organ. Consequently, specific mechanisms, 

which are reflected in the anatomy of these taxa, evolved (see Kier 1988 for details). One of 

the two different functional and micro-anatomical modes of the molluscan foot is the so-

called muscular-hydrostat system, which is based on antagonistic muscle activity. Such a 

system is characterized by a complex three-dimensional muscular pattern, which usually 

leaves little or no space for a hemolymphic cavity and is generally found in body appendages 

that require fast movements such as the cephalopod arms (for the capture of prey) or the squid 

mantle (for producing the jet propulsion) (Trueman 1980, Kier 1988). The second type, a 

hydraulic system, is based on a combination of hemolymphatic pressure (for relaxation) and 

muscular activity (for contraction). This is usually found in body regions which produce a 

steady force, such as the burrowing foot of many bivalves or the body and tentacles of 

pulmonate gastropods (Trueman 1966, 1967). Thus, a distinct and often wide lumen is present 

in these organs. The scaphopod bauplan expresses both foot types in the two primary subtaxa 

(Steiner 1992a). While the elongation of the foot of Gadilida is caused by hydraulic pressure 

alone, its counterpart in the Dentaliida stretches by combined hydraulic and muscular-

hydrostat activities (Steiner 1992a, but see Morton 1959 and Trueman 1968 for an alternative 

view and IV: p. 96-118 for extensive discussion). The present study on juvenile Antalis 

entalis (see IV: 2G-L, p. 103; 3A-C, p. 105) shows the high complexity and thickness of the 

foot wall and the pedal plexus in combination with a relative small pedal hemocoel, as already 

described by Plate (1892). In contrast, gadiliids show a much bigger foot lumen and weaker 

longitudinal foot muscles (Steiner 1992a). According to Kier and Smith (1985) and Kier 

(1988), this demonstrates that muscle antagonism is the main driving force for dentaliid foot 

expansion, while hydraulic activities, similar to those in bivalves, are regarded as the main 

driving force for foot protraction in gadilids.  

The question whether the dentaliidan muscular-hydrostat system or the gadilidan 

combined muscular retraction and hydraulic expansion system is basal for the Scaphopoda 
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remains unsolved because scaphopod phylogeny as a whole is still unclear (Steiner 1992b, 

1996, Reynolds 1997, Reynolds and Okusu 1999). 

 

The musculature and functionality of the cephalic tentacles  

The cephalic tentacles of gastropods and scaphopods, named "captacula" in the latter 

taxon, are both cerebrally innervated (Salvini-Plawen 1981, Ivanov 1991) and develop from 

cells of the cephalic region (III: 2, p. 82). This identifies them both as cephalic derivatives and 

they are thus considered homologous. Homology with the arms of cephalopods, however, is 

still uncertain. The captacula of Antalis have very narrow hemolymphic spaces and prominent 

longitudinal retractors in combination with a dense muscular grid (IV: 2K-L, p. 103; 3G-H, p. 

105), indicating that their extension is based on a similar muscle antagonist system as found 

in the foot. The same mechanism is generally found in the arms of cephalopods and the 

cephalic tentacles of prosobranch gastropods and is therefore considered basal for the 

Gastropoda (I: p. 40-55). In the cephalic tentacles of euthyneuran gastropods, however, 

muscular and hydraulic activities are combined (see Kier 1988).  

 

4.3. Shell development in the Mollusca and comparative engrailed expression patterns  

 

Early development of conchiferan embryonic shells starts with an initial stage of 

shell field invagination (Kniprath 1981). This is followed by shell field evagination and the 

migration of the shell secreting cells towards the mantle edge (Kniprath 1981, Waller 

1981, Moore 1983). In Antalis, engrailed is expressed in these cells of the mantle margin 

that secrete the embryonic shell. During its entire morphogenesis, the embryonic shell of 

Antalis remains univalved. These data are in accordance with the first and to date sole 

studies by Lacaze-Duthiers (1857) and Kowalevsky (1883) and disprove an earlier 

hypothesis proposed by Runnegar and Pojeta (1974), which comprised the Scaphopoda and 

Bivalvia to a supertaxon Diasoma. This idea was based on the unproved assumption that 

the scaphopod shell undergoes an early ontogenetic bilobed stage, which herein is shown 

to be not the case (see above and III: p. 75-95).  

Recent studies showed that the homeobox gene engrailed is involved in shell 

(plate) and spicule formation in chitons, bivalves, and gastropods (Moshel et al. 1998, 

Jacobs et al. 2000). The present work shows that engrailed is expressed in mantle margin 

cells of Antalis that secrete the protoconch but not in cells that contribute to teleoconch 

formation. This indicates that the genetic backgrounds that underlie protoconch and 
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teleoconch formation are different and therefore both organs may not be considered 

homologous (see III: p. 75-95). A comparison of engrailed expression patterns in bivalves 

and scaphopods clearly demonstrates the differences of early protoconch formation in both 

taxa. In bivalves, protoconch formation starts with two centers of calcification (Kniprath 

1981, Waller 1981) which correspond to two distinct clusters of engrailed positive cells 

(Jacobs et al. 2000). In contrast, the scaphopod embryonic shell field is a single structure 

which is surrounded by marginal engrailed expressing cells (III: p. 75-95). This expression 

pattern supports the SEM observation of a unipartite scaphopod shell. Consequently, the 

Diasoma concept should be abandoned and, based on data regarding scaphopod muscle 

development (see above and IV: p. 96-118), the Scaphopoda are more likely the sister 

taxon of the Gastropoda + Cephalopoda rather than of the Bivalvia (cf. Haszprunar 2000 

and IV: 5, p. 109).  

In addition to protoconch morphogenesis, engrailed plays an important role in 

nervous system patterning in at least scaphopod (III: p. 75-95) and probably 

polyplacophoran molluscs (Jacobs et al. 2000), as well as in annelids (e.g., Shain et al. 

2000), arthropods (e.g., Abzhanov and Kaufman 2000), echinoderms (Lowe and Wray 

1997), and chordates (e.g., Patel et al. 1989, Holland et al. 1997, Hanks et al. 1998). This is 

regarded as its basal function within the Bilateria (Lowe and Wray 1997). Further 

independent gain-of-function events of engrailed include compartment formation in 

annelids and arthropods ("segmentation gene"; see Kornberg 1981, Lans et al. 1993, De 

Robertis 1997, Dahmann and Basler 1999, Abzhanov and Kaufman 2000, Marie and 

Bacon 2000), skeletogenesis in echinoderms (Lowe and Wray 1997) and molluscs (Moshel 

et al. 1998, Jacobs et al. 2000, this work), maybe gametogenesis in sea urchins (Dolecki 

and Humphreys 1988), and limb development in vertebrates (Loomis et al. 1996, Logan et 

al. 1997, Hanks et al. 1998). Thus, comparative gene expression pattern analyses of 

engrailed demonstrate the high evolvability and plasticity of gene functions during animal 

evolution.  
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5. CONCLUSIONS 

 

The data presented herein enable significant conclusions regarding molluscan 

evolution:  

 

(1) The ancestral condition of the molluscan myo-groundplan include a 3-layered body 

wall musculature and multiple sets of serially arranged and ventrally intercrossing dorso-

ventral muscle fibers as expressed in the recent Solenogastres and partly in the Caudofoveata 

and the polyplacophoran larva.  

(2) Morphogenesis of the dorso-ventral shell plate musculature in Polyplacophora 

undergoes an initial stage of multiple seriality. The 8-metamerism as found in the adult is a 

secondary condition which thus contradicts earlier hypotheses which tried to derive 

polyplacophorans and the entire Mollusca from an annelid-like segmented ancestor. 

(3) Due to the introduction of a stable exoskeleton (shell [plates]), the body wall 

musculature is lost and the dorso-ventral musculature is subsequently concentrated and 

numerically reduced within the Conchifera.  

(4) Specific larval retractor systems, which are lost before, during, or shortly after 

metamorphosis, belong to the groundplan of the Gastropoda. 

(5) Torsion in gastropods is originally an entirely larval process which is mainly 

caused by muscular activity of the asymmetric larval retractor muscles. 

(6) In addition to its basal function in the Bilateria as a nervous system patterning 

gene, engrailed plays a significant role in (embryonic) shell (plate) and spicule formation in 

Polyplacophora, Bivalvia, Scaphopoda, and Gastropoda and most probably generally in the 

Mollusca. 

(7) In contrast to the Bivalvia, the scaphopod shell is univalved throughout ontogeny.  

(8) The existence of distinct cephalic retractors suggests a novel clade which 

comprises the Scaphopoda and the Gastropoda + Cephalopoda. The Diasoma concept is thus 

abandoned.
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Abstract. The evolutionary history of the various molluscan muscle systems reflects drastic 

modifications and reductions as well as true innovations. No less than eight main and 

independent muscle systems of the Mollusca are described and, based on the current 

understanding of molluscan phylogeny, their evolutionary histories are outlined. 

New data on the myogenesis of the Polyplacophora by means of fluorescence-staining and 

image analysis by Confocal Laser Scanning Microscopy show that the pre-oral region 

recapitulates a "worm-grid", and that the dorso-ventral musculature passes a stage of multiple 

seriality as found in adult Solenogastres. Old and new data on bivalves and recent studies on 

primitive gastropods provide clear evidence that the larval musculature of both groups (and 

thus possibly of all conchiferans) is entirely independent from the adult condition. 

The growth of shell-inserted muscles always necessitates substantial renewal of myocytes 

which is still poorly understood. Though very promising for phylogenetic purposes, the 

understanding of the developmental genetics of the various molluscan muscle systems is still 

in their infancy. 

 

INTRODUCTION 

 

All biological systems can and should be studied and understood from two major points of 

view: both eco-functional and historical-phylogenetic aspects have in principle the same value 

and necessity. This is also very true for the various muscle systems in the Mollusca (e.g., Kier 

1988; Salvini-Plawen 1988).  

Because of the high importance for the extensive fossil record of molluscs, most studies on 

molluscan muscle systems focused on the various shell muscles, the scars of which are 

regularly retained and often represent the only traces of the animal's soft body. Shell muscles 

include the so-called dorso-ventral musculature or the pedal retractors or the spindle muscle 

respectively, the various adductor systems particularly in bivalves, and (rarely) the mantle 

retractor system in various conchiferan taxa. In addition, there are several thorough studies on 

the functional morphology as well as on comparative aspects of the buccal system in various 

molluscan taxa (e.g., Starmühlner 1969; Graham 1973; Nisbet 1973; Deimel 1982; 

Wingstrand 1985; Nixon 1988). However, such comparative studies have been rarely used as 

data bases for phylogenetic considerations (but see, e.g., Sasaki 1998) and are largely missing 

even in certain major groups such as Solenogastres or Scaphopoda. 
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The progress in phylogenetic methodology and theoretical foundation during the last decades 

finally has led to testable trees for several molluscan classes1 (eg., Haszprunar 1988; Salvini-

Plawen and Steiner 1996; Steiner 1996; Reynolds 1997; Ponder and Lindberg 1997; Waller 

1998; Reynolds and Okusu 1999) as well as for Mollusca as a whole (Salvini-Plawen and 

Steiner 1996; Haszprunar 1996, 2000). These basic phylogenetic analyses allow now to "tell 

the tree" also with respect to the various molluscan muscle systems.  

Up to recently ontogenetic aspects of molluscan musculature have been solely based on light 

microscopical data, which are usually superficial and (sometimes) even inaccurate. Modern 

methodological progress, particularly fine-structural studies and fluorescence staining 

procedures, enable a much more detailed framework of embryonic and larval musculature. It 

will be shown that these data sets have strong implications for theories on the evolution of the 

various muscle system within the Mollusca.  

Thus, the present contribution provides a review on the various molluscan muscle systems 

concerning their evolutionary history as well as ontogenetic aspects in order to provide a 

better understanding for these crucial organ systems. Certain general aspects of muscle 

development and growth are added. 

 

COMPARATIVE ANATOMY AND PHYLOGENY 

 

Body wall musculature  

There is little doubt that the molluscan ancestor had worm-like appearance and accordingly 

was provided with a layer of body wall musculature consisting of outer ring, intermediate 

oblique and inner longitudinal fibers (e.g., Salvini-Plawen 1991; Haszprunar 1992b). Among 

the extant Mollusca the aplacophoran taxa Solenogastres and Caudofoveata alone have 

retained these original body wall muscles (Fig. 1A). The Solenogastres alone still exhibit the 

molluscan-diagnostic gap above the gliding sole, whereas Caudofoveata have secondarily lost 

this sole and show strong elaboration of the longitudinal fibers for burrowing activity in soft 

sediments. 

Secondary "worms" have repeatedly evolved within the conchiferan classes namely in 

bivalves (e.g., ship-worms) and in various gastropod lines, particularly in opisthobranchs, 

where genus names like Pseudovermis or Helminthope perfectly reflect this type of external 

                                                                 
1We use here the category "class" in the traditional sense, but want to make clear that we regard 

categories as pure expression of relative hierarchy without any meaning for importance, diversity or age.   
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appearance. Detailed studies on these clearly secondary body wall muscle systems have not 

been outlined up to now. 

Whereas most molluscs extend their body or its appendages mainly by means of 

haemolymphic pressure, prosobranch gastropods and cephalopods are provided with a so-

called muscular hydrostatic system similar to the vertebrate tongue. Here, extension of the 

body as a whole or of its appendages is provided by muscular contraction and thus much 

faster than by haemolymphic pressure (e.g., Kier 1988). However, euthyneuran Gastropoda 

have reestablished the original type of body extension by haemolymphic pressure.  

 

Buccal musculature  

Although there are several thorough and comparative studies concerning the anatomy of the 

buccal musculature in Mollusca, detailed assumptions on phylogenetic steps and direct 

homologies are rare and are restricted to smaller groupings (e.g., Sasaki 1998). An exception 

concerns once more Polyplacophora and Tryblidia, where Wingstrand (1985) thoroughly 

pointed out that even details of the buccal musculature agree in the neopilinids Neopilina and 

Vema and the polyplacophoran Acanthopleura. A specific buccal retractor occurring in both 

groups has a highly significant shell scar and is thus also detectable in the fossil record: This 

 
Fig. 1. TEM: (A) Cross section through the body wall musculature of the solenogaster Dondersia sp. with outer 
ring (rm), intermediate diagonal (dm) and inner longitudinal fibers (lm) below the epidermis (ep) and its basal 
matrix (arrows). Arrowheads mark the presence of hemidesmosomes of the myocytes; bs - blood sinus. (B) 
Cross section of the buccal muscles of the neopilinid Laevipilina antarctica showing myocytes with few 
mitochondria (mi) and distinct patterns of myofibrillar arrangement (Z-stripes) being surrounded by cells of the 
glio-interstitial system with large vesicles (gi). Scale bars = 5 mm. 
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muscle scar has spotted appearance and is situated immediately inwards of the most anterior 

bundle of the dorso-ventral shell muscles. 

The buccal musculature of molluscs with stereoglossate radula (i.e., a simple rasp; 

Polyplacophora, Tryblidia, Patellogastropoda) also shows cytological-physiological 

deviations from regular muscle cells. There is myoglobin (e.g., Terwilliger and Read 1970; 

Graham 1973; Nisbet 1973) resulting in a bloody red appearance in the living animal.  In 

addition, many buccal muscles are cross-striated (e.g., Nisbet 1973; Haszprunar and Schaefer 

1997; Fig. 1B). 

 

Dorso-ventral musculature (shell muscles) (Fig. 2) 

Because of its nearly overall presence in shelled forms the dorso-ventral musculature has 

received most interest by malacologists. Most authors agree that the original state of this 

organ system was a non-individualized, multiple seriality of dorso-ventral fibers, a condition, 

which is solely retained in Solenogastres and (anteriorly) in certain Caudofoveata. The medio-

ventral inter-crossing of the innermost fibers is diagnostic for Mollusca and contradicts all 

attempts of direct homologization with dorso-ventral muscle fibers of any supposed outgroup. 

The conditions in Polyplacophora and Tryblidia (Neopilinida) require specific discussion. In 

these taxa the dorso-ventral shell musculature is organized in two times eight 

(Polyplacophora) or eight (Tryblidia) pairs of muscles each of which appears even as an 

individual homologue (Wingstrand 1985). Thus, at this point of molluscan evolution there is 

serial homology among the various muscle pairs in a single animal and suprataxic homology 

when for instance the seventh muscle bundle between a chiton and Neopilina or is compared 

(see Haszprunar (1992a) for a discussion of homology types). Whereas the eight-pattern in the 

Polyplacophora is directly understood by the presence of eight shell plates, the same condition 

in the "mono-placophoran" Tryblidia is generally accepted as an example of recapitulation 

(e.g., Salvini-Plawen 1981; but see below).  

The basic phylogenetic assumption of concentration of the dorso-ventral musculature from a 

multiple seriality to a set of eight bundles is supported by two lines of evidence: (1) Among 

the Bivalvia there is further reduction in the number of retained dorso-ventral muscles (i.e., 

pedal retractors) from originally five to six to finally three pairs. Further reduction (or 

concentration) occurs in the remaining conchiferan classes: Scaphopoda show one or two 

pairs of shell muscles (pedal retractors). Cephalopoda and Gastropoda are provided with a 

single pair or the retained (post-torsional) left "spindle" muscle plus an additional pair of head 

retractors, the latter are considered to be a synapomorphy of both taxa correlated with the  
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Fig. 2. Most parsimonious tree of the Mollusca (after Haszprunar 2000) with schematic expression of the dorso-
ventral and head musculature of each terminal taxon. 
 

 

formation of a freely moveable head. Unfortunately, there is yet no evidence to individualize 

the retained muscle bundles compared with the polyplacophoran-tryblidian stage respectively 

to trace which of the original eight pairs are retained. (2) Myogenesis of the shell muscles in 

the Polyplacophora recapitulates a multiple serial stage (see below).  

Secondary subdivision of shell muscles occur in various gastropod taxa particularly in limpets 

with U-shaped shell muscles. In all cases investigated a single pair or a single left muscle is 

present earlier in ontogeny (e.g., Wanninger et al. 1999a, b; see below). 

 

Mantle retractor system (pallial line) 

Contrary to the aculiferan taxa, all shelled conchiferans show a specific muscle system to 

contract the outer mantle. This system is most prominent in the Bivalvia, where its usually 

continuous scar-line is often named the "pallial line". Tryblidia and certain early bivalves 

(e.g., the early Cambrian Pojetaia runnegari; cf. Runnegar and Bentley 1983) show separated 

bundles of this muscular system. In limpet-like gastropods (e.g., Patella) a "pallial line" is 
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most obvious in the anterior part of the shell, but the retractor system in fact surrounds the 

whole animal, and its scar line is situated adjacent to the outer border of the U-shaped shell 

muscle.  

 

Muscular layer of the gut 

Rarely mentioned or even figured (e.g., Haszprunar and Schaefer, 1997), the molluscan gut is 

generally provided with a distinct muscular layer forming a grid with longitudindally and 

transversally orientated muscle fibers. Aside from the ciliation of the gut this musculature is 

responsible for the transport of the food. Contrary to eucoelomate animals (Echiura, 

Sipuncula, Annelida, Phoronida, Brachiopoda, Deuterostomia), where the muscular layer of 

the gut is always formed by the inner wall of the coelom, the gut musculature of the Mollusca 

has nothing to do with any coelomatic cavity (Salvini-Plawen and Bartolomaeus 1995). 

 

Extra-ocular eye muscles of Cephalopoda 

As recently reviewed by Budelmann et al. (1997) Cephalopoda alone show a highly complex 

system of extra-ocular muscles which produce eye-ball movements. There are distinct 

differences in the arrangement of these muscles between Nautilus, Decabrachia and 

Octopoda, and many muscles can be individually homologized.  

 

Adductor systems  

Contrary to all muscle systems described above adductor systems are a matter of convergence 

within the Mollusca and are correlated with the functional necessity to close a bivalved shell. 

Certain opisthobranchs (Akera, Ascobulla, Cylindrobulla, and bivalved sacoglossans) show a 

single, more or less centrally placed adductor muscle (e.g., Kawaguti and Yamasu 1960a, b), 

and this muscle might be a synapomorphic character of the mentioned taxa or a 

symplesiomorphic feature of all Sacoglossa (Mikkelsen 1996, 1998; Jensen 1996).  

There is little doubt that a dimyarian (anterior-posterior) adductor muscle system is a 

synapomorphic character of the Bivalvia. Likewise doubtless, however, is the multiple shift 

towards anisomyar and finally monomyar conditions within the various bivalvian clades, 

where usually the posterior adductor is retained (Yonge 1953). 

 

Enrolling muscles 

Enrolling muscles have been described for Solenogastres, certain Caudofoveata, and all 

Polyplacophora. Salvini-Plawen (1981, 1985) considered these muscles and the ring muscle 
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in the foot of Neopilindae as true homologues. However, this view is problematic and can 

only partly be supported. 

There is no doubt that the enrolling muscles of Solenogastres and Caudofoveata are a 

specialized, latero-ventral part of the longitudinal layer of the body wall musculature. Thus, 

direct homology appears possible, although direct evidence (versus parallelism) by 

ontogenetic data is still missing. Homologization of the enrolling muscle of the 

Polyplacophora with those of the aplacophoran taxa seems improbable, although the 

innervation of both systems emerges from the lateral (visceral) cords. However, recent studies 

on the myogenesis of the chiton Mopalia muscosa revealed that the enrolling muscle is in 

principle a ring-system independent of the original body wall muscle grid, and that the 

enrolling function is provided by the transverse stiffness of the shell-plates. Therefore the 

enrolling muscle is more likely considered as an autapomorphy of the Polyplacophora. 

Whereas the enrolling muscle of Solenogastres, Caudofoveata, and Polyplacophora is laterally 

(viscerally) innervated, the ring muscle in the foot of neopilinids is a pedal organ. In particular 

the positional comparison with the enrolling muscle of the Polyplacophora, where the muscle 

lies outwards of the circumpedal mantle cavity clearly contradicts hypotheses of a direct 

homology, although both muscle represent a ring system (see above). 

 

MYOGENESIS IN THE MOLLUSCA 

 

Methodological progress 

Recent applications of staining procedures of actin filaments for muscular microanatomy plus 

new methods concerning the visualization (e.g., Confocal Laser Scanning Microscopy) of 

such preparations have caused remarkable progress in the understanding of molluscan 

myogenesis.  

 

Myogenesis in Polyplacophora 

Preliminary data on the myogenesis of the polyplacophoran species Mopalia muscosa 

revealed several features with high significance for phylogenetic considerations: (1) The 

anterior, pretrochal part of the chiton trochophore-like larva shows a muscular grid similar to 

the body-wall musculature of worm-like organisms such as turbellarian flatworms (Fig. 3A) . 

Based on the molluscan tree, where the two aplacophoran taxa with such body wall muscles 

are basally placed (Haszprunar 2000; Fig. 2), we regard this feature as a recapitulative event 

of the original body wall musculature. (2) The fibers of the dorso-ventral muscles occur 
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simultaneously, contradicting once more earlier suggestions of a segmented nature of 

Mollusca. (3) The dorso-ventral muscles first show multiple seriality (Fig. 3A) with later 

concentration into  distinct bundles (Fig. 3B). Again this can be reasonably interpreted as 

direct recapitulation of the phylogenetic transition from the aplacophoran to the 

polyplacophoran (testarian) level of molluscan evolution. (4) The enrolling muscle occurs 

early in ontogeny as does its counterpart, the dorso-longitudinal musculus rectus (Fig. 3A, B). 

Being a circular system rather than a longitudinal one as in the aplacophoran taxa and because 

of its entire independence from the "worm-grid", homology with the enrolling muscle of the 

latter groups appears improbable. These data are part of a forthcoming study on chiton 

myogenesis (Wanninger and Haszprunar in prep.). 

 
 

 
Fig. 3. Myogenesis in the polyplacophoran Mopalia muscosa  by means of FITC-conjugated phalloidin 
fluorescence preparations and Confocal Laser-Scanning Microscopy (CLSM). (A) Ventral view of a late 
trochophore-stage with an anteriorly placed muscular grid (agr), a prototrochal ring (ptr), the multiple serial 
dorso-ventral fibers (dvm), the ventro-lateral longitudinal muscle (vlm), and the ring-system of the enrolling 
muscle (em). (B) Dorsal view of an early juvenile with buccal muscles (bm), the dorso-median rectus muscle 
(re), a distinct ventro-lateral muscle (vlm), concentrated bundles of dorso-ventral muscles (dvm), and the 
enrolling muscle (em). Scale bars = 50 mm. 
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Myogenesis in Gastropoda and Bivalvia  

Several recent studies have contributed to our understanding of gastropod myogenesis. Page's 

(1997) fine-structural studies on larval muscles of Haliotis kamtschatkana, the whole-mount 

preparations of metamorphic Haliotis rufescens by Degnan et al. (1997), and combined 

studies on the myogenesis in Patella species (Wanninger et al. 1999a, b) agree in that there 

exists a distinct larval shell musculature which is entirely independent from that of the adult 

animal (Fig. 4). Accordingly, there is no ontogenetic homology (cf. Haszprunar 1992a) 

between any larval or adult shell muscle(s), and also the ontogenetic torsion process in 

gastropods has nothing to do with any pattern of the adult musculature (Wanninger et al. 

2000). 

 
Fig. 4. Myogenesis in the limpet Patella caerulea by means of FITC-conjugated phalloidin fluorescence 
preparations and Confocal Laser-Scanning Microscopy (CLSM). Lateral view from the right of a late larva 
showing an operculum (op), the main (mlr) and the accessory (alr) larval retractor, the right shell muscle (rsm), 
the pedal plexus (pp), and the velum ring (vr). Note the separated insertion areas of the larval retractors (mlr, alr) 
and of the adult shell muscle (rsm). Scale bars = 50 mm. 
 

 

Although current data are still very scarce, there is good evidence that different clades of 

higher gastropods differ with respect to myogenesis and the nature of their larval main 

retractor (spindle muscle): Whereas the larval retractor is the original (obliquely striated) 

larval shell muscle in planktotrophic larva of nudibranchs (Page 1995), the later 

planktotrophic veliger of the caenogastropod Polinices lewisii already has the (smooth) adult 
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spindle muscle. This clear difference suggests polyphyly of the planktotrophic mode of 

development in higher gastropods, but more data are needed to confirm this assumption. 

There are no very recent data on the myogenesis of bivalves. However, thorough studies by 

means of light (e.g., Meisenheimer 1901) or electron microscopy (e.g., Cragg 1985; Cragg 

and Crisp 1991) again show a distinct, at least partly striated, larval shell musculature (mainly 

a velum retractor system consisting of several bundles) which is entirely independent of the 

(smooth) adult pedal retractors. Since the ontogeny of cephalopods is highly derived and 

because data on the myogenesis of Scaphopoda and Tryblidia are highly incomplete or still 

entirely missing, it is currently unclear whether or not the character "specific larval shell 

muscles" occurred independently in Gastropoda and Bivalvia or is a synapomorphy of 

(higher?) Conchifera. 

Although the data presented by Degnan et al. (1997) provided a first insight into the 

developmental genetics of molluscan (gastropod) musculature, our understanding of the 

epigenetic system concerning the larval and adult muscles is still in its infancy. 

 

Muscular growth 

It is largely overlooked or ignored by authors that regular growth of shell-inserted muscles 

always necessitates substantial renewal of myocytes, since the region of the muscle scar 

cannot be directly moved or shifted. Consequently, simple growth of the animal causes the 

resorption or modification of myocytes at the inner edge of the respective insertion area (line) 

and the constant production of new muscle fibers at its outer margin. It is still unknown 

whether this renewal process takes place by invading and differentiating stem-cells or is the 

result of direct cell division of the already differentiated myocytes in situ. 

Because of this highly dynamic process throughout the animal's life - most molluscs grow 

until their death - it is very improbable that a muscle can "survive" phylogenetically, if there 

is no functional need for it. Accordingly, the combination of a highly complicated shell 

musculature with a very simple shell in the Tryblidia remains an enigma worth future studies. 
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CONCLUSIONS 

 

Recent progress in molluscan phylogenetics enables a clearer and better framework for the 

understanding of the evolution of the various muscle systems by "telling the tree". In addition, 

modern studies on myogenesis provided very useful insights in myo-phylogeny. However, 

concerning developmental genetics or the cytological dynamics of muscular growth, we have 

just begun to understand molluscan musculature. 

 

 

ACKNOWLEDGEMENTS 

 

We want to thank Dr. Bernhard Ruthensteiner (Zoologische Staatssammlung München) for 

collecting and breeding of Patella. We are grateful to Timo Zimmermann (Zoological 

Institute LMU München) for technical help concerning Confocal Laser Scanning Microscopy. 

Alenka Kerin (same institute) produced the sections for TEM-studies, Marianne Müller 

(ZSM) provided photographic help. The study was financially supported by a grant of the 

German Science Foundation (DFG: HA2598/1-3) to G.H. 



Appendix I                                                            Molluscan muscle systems in development and evolution 52 

REFERENCES 

 

Budelmann, B.U.; Schipp, R.; Boletzky, S. v., 1997: Cephalopoda. In: Harrison, F.W.; Kohn, 

A.J. (eds), Microscopic Anatomy of Invertebrates, Vol. 6A: Mollusca II. John Wiley 

& Sons, New York. pp. 119-414. 

Cragg, S.M., 1985: The adductor and retractor muscles of the veliger of Pecten maximus (L.) 

(Bivalvia). J. Moll. Stud. 51, 276-283. 

-- ; Crisp, D.J., 1991: The biology of scallop larvae.  In: Shumway, S. E. (ed): Biology, 

Ecology and Aquacultur of Scallops. Elsevier, Amsterdam. pp 75-132. 

Degnan, B.M.; Degnan, S.M.; Morse, D.E., 1997: Muscle specific regulation of tropomyosin 

gene expression and myofibrillogenesis differs among muscle systems examined at 

metamorphosis of the gastropod Haliotis rufescens. Develop. Genes Evol. 206, 464-

471. 

Deimel, K., 1982: Zur Ableitung des Radulapparates der Chaetodermatidae (Mollusca, 

Caudofoveata). Z. Zool. Syst. Evolutionsforsch. 20, 177-187. 

Graham, A., 1973: The anatomical basis of function in the buccal mass of prosobranch and 

amphineuran molluscs. J. Zool. 169, 317-348. 

Haszprunar, G., 1988: On the origin and evolution of major gastropod groups, with special 

reference to the Streptoneura. J. Moll. Stud. 54, 367-441. 

-- , 1992a: The types of homology and their significance for evolutionary biology and 

phylogenetics. J. Evol. Biol. 5, 13-24. 

-- , 1992b: The first molluscs - small animals. Boll. Zool. 59, 1-16. 

-- , 1996: The Mollusca: Coelomate turbellarians or mesenchymate annelids? In: Taylor, J., 

(ed), Origin and Evolutionary Radiation of the Mollusca, Oxford Univ. Press, Oxford. 

pp. 1-28. 

-- , 2000: Is the Aplacophora monophyletic? A cladistic point of view. Amer. Malac. Bull. (in 

press). 

-- , G.; Schaefer, K., 1997: Monoplacophora. In: Harrison, F.W.; Kohn, A.J. (eds), 

Microscopic Anatomy of Invertebrates, Vol. 6B: Mollusca II. John Wiley & Sons, 

New York. pp. 415-457. 

Jensen, K., 1996: Phylogenetic systematics and classification of the Sacoglossa (Mollusca, 

Gastropoda, Opisthobranchia). Phil. Trans R. Soc. Lond. B 351, 91-122. 

Kawaguti, S.; Yamasu, T., 1960a: Electron microscopic study on the adductor muscle of a 

bivalved gastropod, Tamanovalva limax. Biol. J. Okayama Univ. 6, 61-69. 



Appendix I                                                            Molluscan muscle systems in development and evolution 53 

-- ; -- , 1960b: Formation of the adductor muscle in a bivalved gastropod, Tamanovalva limax. 

Biol. J. Okayama Univ. 6, 133-139. 

Kier, W.M., 1988: The arrangement and function of molluscan muscle. In: Trueman E.R.; 

Clarke, M.R., (eds), The Mollusca. Vol. 11: Form and Function. Acad. Press, London. 

pp. 211-252. 

Mikkelsen, P.M., 1996: The evolutionary relationships of Cephalaspidea s.l. (Gastropoda: 

Opisthobranchia): a phylogenetic analysis. Malacologia 37, 375-442. 

--, 1998: Cylindrobulla and Ascobulla in the Western Atlantic (Gastropoda,Opisthobranchia): 

Systematic review, description of a new species, and phylogenetic reanalysis. Zool. 

Scr. 27, 49-71. 

Meisenheimer, J. 1901. Entwicklungsgeschichte von Dreissensia polymorpha Pall. Z. wiss. 

Zool. 69, 1-137, pls. 1-13. 

Nisbet, R.H., 1973: The role of the buccal mass in the trochid. Proc. Malac. Soc. Lond. 40, 

435-468. 

Nixon, M., 1988: The buccal mass of fossil and recent Cephalopoda. In: Clarke, M.R.; 

Trueman, E.R., (eds), The Mollusca. Vol. 12: Paleontology and Neontology of 

Cephalopods. Acad. Press, London. Pp. 103-122. 

Page, L.R., 1997: Larval shell muscles in the abalone Haliotis kamtschatkana. Biol. Bull. 193, 

30-46. 

-- , 1998: Sequential devlopmental programmes for retractor muscles of a caenogastropod: 

reappraisal of evolutionary homologues. Proc. R. Soc. Lond. B 265, 2243-2250. 

Ponder, W.F.; Lindberg, D.R., 1997: Towards a phylogeny of gastropod molluscs: An 

analysis using morphological characters. Zool. J. Linn. Soc. 119, 83-265. 

Reynolds, P.D., 1997: The phylogeny and classification of Scaphopoda (Mollusca): an 

assessment of current resolution and cladistic reanalysis. Zool. Scr. 26, 13-21. 

--; Okusu, A., 1999: Phylogenetic relationships among families of the Scaphopoda 

(Mollusca). Zool. J. Linn. Soc. 126, 131-154. 

Runnegar, B.; Bentley, C., 1983: Anatomy, ecology and affinities of the Australian Early 

Cambrian bivalve Pojetaia runnegari. J. Paleontol 57, 73-92. 

Salvini-Plawen, L. v., 1981: On the origin and evolution of the Mollusca. In: Origine dei 

Grande Phyla dei Metazoi. Atti dei Convegni Lincei (Roma) 49, 235-293. 

-- , 1985: Early evolution and the primitive groups. In: Trueman, E.R.; Clarke, M.R., (eds), 

The Mollusca. Vol. 10: Evolution. Acad. Press, London. pp. 59-150. 



Appendix I                                                            Molluscan muscle systems in development and evolution 54 

-- , 1988: Annelida and Mollusca - a prospectus. In: Westheide W, Hermans CO (eds): The 

Ultrastructure of Polychaeta. Microfauna Marine 4, 383-396. 

-- , 1991: Origin, phylogeny and classification of the phylum Mollusca. Iberus "1990" 9, 1-33. 

-- ; Bartolomaeus. T. 1995: Mollusca: mesenchymata with a "coelom". In: Lanzavecchia G., 

Valvassori R.; Candia-Carrnevali M.D., (eds), Body cavities: Function and Phylogeny. 

Mucci Editore, Modena. Pp. 75-92. 

-- ; Steiner, G., 1996: Synapomorphies and plesiomorphies in higher classification of 

Mollusca. In: Taylor, J., (ed), Origin and Evolutionary Radiation of the Mollusca. 

Oxford Univ. Press, Oxford. pp. 29-51.  

Sasaki, T., 1998: Comparative anatomy and phylogeny of the recent Archaeogastropoda. 

Univ. Mus. Univ. Tokyo, Bull. 38, 1-223. 

Scheltema, A.H.; Tscherkassky, M.; Kuzirian, A.M., 1994: Aplacophora. In: Harrison, F.W.; 

Kohn, A.J. (eds), Microscopic Anatomy of Invertebrates, Vol. 5: Mollusca I. John 

Wiley & Sons, New York. pp. 13-54. 

Starmühlner, F., 1969: Die Gastropoden der madegassischen Binnengewässer. Malacologia 8, 

1-434. 

Steiner, G., 1996: Suprageneric phylogeny in Scaphopoda. In: Taylor, J., (ed), Origin and 

Evolutionary Radiation of the Mollusca. Oxford Univ. Press, Oxford. pp. 329-335. 

Terwilliger, R.C.; Read, K.R.H., 1970. The radular muscle myoglobins of the amphineuran 

mollusks Katherina tunicata Wood, Cryptochiton stelleri Middendorff, and Mopalia 

muscosa Gould. Intern. J. Biochem. 1, 281-291. 

Waller, T.R., 1998. Origin of the class Bivalvia and a phylogeny of major groups. In: 

Johnston, P.A.; Haggard, J.W., (eds), Bivalves, an Eon of Evolution. Univ. Calgary 

Press, Calgary. pp. 1-45. 

Wanninger, A.; Ruthensteiner, B.; Lobenwein, S.; Salvenmoser, W.; Dictus, W.J.A.G.; 

Haszprunar, G., 1999a: Development of the musculature in the limpet Patella 

(Mollusca, Patellogastropoda). Develop., Genes & Evol. 209, 226-238. 

Wanninger, A.; Ruthensteiner, B.; Dictus, W.J.A.G.; Haszprunar, G., 1999b: The 

development of the musculature in the limpet Patella with implications on its role in 

the process of ontogenetic torsion. Intern. J. Invertebr. Reprod. & Develop. 36, 211-

215. 

Wanninger, A.; Ruthensteiner, B.; Haszprunar, G., 2000: Torsion in Patella caerulea 

(Mollusca, Patellogastropoda): ontogenetic process, timing, and mechanisms. 

Invertebr. Biol. (in press). 



Appendix I                                                            Molluscan muscle systems in development and evolution 55 

Wingstrand, K.G., 1985: On the anatomy and relationships of recent Monoplacophora. 

Galathea Report 16, 1-94, pls. 1-12. 

Yonge, C.M. 1953: The monomyarian condition in the Lamellibranchia. Trans. R. Soc. 

Edinburgh 62, 443-478. 

 



 56 

APPENDIX II 
 

 

 

Chiton myogenesis: Perspectives for the development and evolution of 

larval and adult muscle systems in molluscs 
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Abstract. We investigated muscle development in two chiton species, Mopalia muscosa and 

Chiton olivaceus, from embryo hatching until ten days after metamorphosis. The anlagen of 

the dorsal longitudinal rectus muscle and a larval prototroch muscle ring are the first 

detectable muscle structures in the early trochophore-like larva. Slightly later, a ventro-

laterally situated pair of longitudinal muscles appears, which persists through metamorphosis. 

In addition, the anlagen of the putative dorso-ventral shell musculature and the first fibers of a 

muscular grid, which is restricted to the pre-trochal region and consists of outer ring and inner 

diagonal muscle fibers, are generated. Subsequently, transversal muscle fibers form 

underneath each future shell plate and the ventro-lateral enrolling muscle is established. At 

metamorphic competence, the dorso-ventral shell musculature consists of numerous serially 

repeated, intercrossing muscle fibers. Their concentration into seven (and later eight) 

functional shell plate muscle bundles starts after the completion of metamorphosis. The larval 

prototroch ring and the pre-trochal muscle grid are lost at metamorphosis. 

The structure of the apical grid and its atrophy during metamorphosis suggest ontogenetic 

repetition of (parts of) the original body-wall musculature of a proposed worm-shaped 

molluscan ancestor. Moreover, our data show that the "segmented" character of the 

polyplacophoran shell musculature is a secondary condition, thus contradicting earlier 

theories that regarded the Polyplacophora (and thus the entire phylum Mollusca) as primarily 

eumetameric (annelid-like). Instead, we propose an unsegmented trochozoan ancestor at the 

base of molluscan evolution. 

 

INTRODUCTION 

 

Adult polyplacophorans show a complicated system of eight sets of paired dorso-ventral shell 

muscles that correspond to the eight distinct shell plates in the adult animal. In addition, a 

ventro-laterally positioned circular enrolling muscle, an unpaired dorsal longitudinal "rectus" 

muscle, the buccal apparatus, and transversal and oblique muscles underneath each shell plate 

are present (see, e.g., Sampson, 1895; Plate, 1897; Henrici, 1913; Wingstrand, 1985). Despite 

numerous detailed studies on the anatomy of the adult polyplacophoran musculature, no data 

on its ontogenetic development exist until today. Several recent papers (Page, 1995, 1997a,b, 

1998; Degnan et al., 1997; Wanninger et al., 1999a,b) as well as earlier studies (e.g., 

Meisenheimer, 1901; Smith, 1935; Crofts, 1937, 1955; Cole, 1938; Anderson, 1965; Smith, 

1967; Cragg, 1985; Cragg and Crisp, 1991) showed that specific larval retractor systems do 

exist in several gastropod and bivalve clades. These data raise the question whether the 
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existence of independent larval retractor(s) may either be (syn)apomorphic for the entire 

phylum Mollusca, solely for the Conchifera, or evolved independently within the several 

molluscan taxa. In order to answer this question, knowledge of the polyplacophoran condition 

is crucial. 

The Polyplacophora have retained numerous characters that are considered plesiomorphic for 

the Mollusca, e.g., a chitinous cuticle with calcareous spicules, lack of jaws, bipectinate 

ctenidia, and a cord-like tetraneuran nervous system with a suprarectal commissure and serial 

pedal commissures. Therefore, they are phylogenetically regarded as either generally 

primitive (Scheltema, 1996) or as linking the aplacophoran clades Solenogastres and 

Caudofoveata to the Conchifera (Monoplacophora, Gastropoda, Cephalopoda, Bivalvia, 

Scaphopoda) (Boettger, 1955; Salvini-Plawen, 1980; Salvini-Plawen and Steiner, 1996). 

However, the prominent feature of seriality of shell plates, muscles, and ctenidia has often 

been and still is used to argue in favor of a primary segmented molluscan ancestor (Götting, 

1980; Ghiselin, 1988; Lake, 1990; Nielsen, 1995; but see Russell-Hunter, 1988). 

In order to solve the question of an independent larval musculature and to provide new data 

for the discussion of the "segmentation problem" in the Mollusca, we analyzed the ontogeny 

of the shell plate musculature in two chiton species, Chiton olivaceus and Mopalia muscosa, 

by means of fluorescence staining of F-actin as well as by scanning and transmission electron 

microscopy. 

 

MATERIALS AND METHODS 

 

Animal cultures 

Adult specimens of Chiton olivaceus Spengler 1797 were collected on the rocky shore near 

the STARESO marine station in Calvi/Corsica. Individuals of both sexes spawned during the 

evening after collection. The eggs were rinsed in sea water and fertilized immediately. 

Embryos and larvae were kept in glass dishes at 24-27°C. 

Breeding of the mossy chiton, Mopalia muscosa Gould 1846, was carried out at the Friday 

Harbor Laboratories/WA, USA. Adult individuals were found near Argyle Creek, San Juan 

Island, and transported to the laboratory, where some of them immediately released gametes. 

After insemination, the embryos and larvae were maintained in Millipore-filtered seawater 

(MFSW) in small custard dishes within a temperature range of 10-12°C. To avoid bacterial or 

fungal infection, 60 mg penicillin and 50 mg streptomycin were added per liter MFSW. 
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Metamorphosis was induced by adding either small rocks covered with encrusting corralline 

red algae or stones from which adult specimens had been removed to the culture dishes with 

metamorphic competent larvae. Thus, most animals induced at the age of 215 hours post 

fertilization (hpf) or older settled at the bottom of the culture dish within a few hours after the 

rocks had been added and the first metamorphosed animals were found at 24-48 hours after 

induction (cf. Leise, 1986; Strathmann and Eernisse, 1987). Juveniles were cultured until ten 

days after metamorphosis, bearing seven well developed shell plates but still lacking the 

eighth plate. 

 

F-actin staining 

Animals were relaxed by adding drops of 7% MgCl2 to the MFSW and fixed overnight at 4°C 

in 4% paraformaldehyde in 0.1M PBS with 10% sucrose. Late larval and juvenile stages were 

decalcified in 2% EDTA for two hours prior to staining. Staining of filamentous F-actin was 

performed with Oregon Green 488 phalloidin (Molecular Probes) and followed the detailed 

description of Wanninger et al. (1999a). Analyses were done using confocal laser scanning 

microscopy (CLSM) on a Leica DM IRBE microscope with Leica TCS NT software. 

 

Scanning and transmission electron microscopy 

Relaxation (see above), fixations and all further preparations and analyses exactly followed 

the procedures described by Wanninger et al. (1999a). 

 

RESULTS 

 

General remarks 

Myogenesis followed the same chronological patterns in Chiton olivaceus and Mopalia 

muscosa. However, due to lower rearing temperatures, the timing of development was more 

synchronous and could be followed more easily in Mopalia muscosa. Thus, the data presented 

herein were obtained from Mopalia cultures under the conditions mentioned above, if not 

stated otherwise.  

Please note that herein the term "trochophore" is used in the broad sense as proposed by 

Rouse (1999), which characterizes all spiralian larval types that bear a prototroch and thus 

defines the taxon Trochozoa.  
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Myogenesis 

In Mopalia muscosa, hatching of the embryos starts at around 21 hpf at 10-12°C. The first 

myocytes are formed at 74 hpf (Figs. 1A, 2A). Dorsally, myogenesis starts with the anlagen 

of the prototroch muscle ring and the first two myocytes of the putative rectus muscle, which 

arise along the median body axis underneath the prototroch and ventrally cross the prototroch 

muscle ring (Fig. 2A left). A yet delicate, paired longitudinal muscle appears ventro-laterally 

on both sides of the larva and starts to extend post-trochally (Fig. 2A right). Relative to the 

rectus muscle, the myocytes of the prototroch ring are situated more dorsally. During 

subsequent development, the fibers of the prototroch muscle ring and the ventro-lateral 

longitudinal muscles gain strength and the two myofibrils of the rectus muscle grow both 

towards the anterior and the posterior pole of the larva. Ventrally, the anlage of the dorso-

ventral musculature becomes visible and the fibers of the ventro-lateral longitudinal muscle 

pair start to expand into the pre-trochal region. At this stage, the first ring muscles of the pre-

trochal muscle grid become visible on the dorsal and ventral side (Fig. 2B). 

These muscle systems grow subsequently. New myocytes of the rectus muscle are formed 

laterally on both sides, resulting in a bilaterally symmetrical, prominent muscular system. 

However, these newly formed fibrils strongly diverge towards the anterior pole of the larva 

with only the two earliest formed fibers marking a strict anterior-posterior axis through the 

animal by running parallel to each other along the middle of the larval body. In addition, ring 

muscles extend throughout the whole pre-trochal region and form a muscular meshwork 

around the fibers of the rectus muscle (Figs. 2C-D, 3A-B, 4A). This "apical grid" is engulfed 

laterally by a still weak, circular muscle that later becomes the ventral enrolling muscle. In the 

post-trochal body region, transversal muscle fibers are formed that are situated immediately 

underneath the epithelium of each putative shell plate, i.e., dorsal of the fibers of the rectus 

muscle (Figs. 2C-D, 3A-B, 4B). 

As larval development proceeds, proportions of the larval body plan change, resulting in an 

elongated post-trochal area relative to the pre-trochal region at metamorphic competence (cf. 

Figs. 1A-C, 2, 3A-B). The anlagen of the putative first seven shell plates are already present 

in the late trochophore larva. In both species, Mopalia muscosa (Fig. 1B-C) and Chiton 

olivaceus (not shown), the anlage of the first plate (head valve) extends into the pre-trochal 

region. 
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Fig. 1. SEM of the larval development of Mopalia muscosa . A. Early trochophore-like larva at the beginning of 
myogenesis with well defined prototroch (pt) and apical tuft (at), lateral view. Age: 74.25 hpf. B. Late 
trochophore, dorso-lateral view. Note the pre-trochally extending anlage of the first shell plate (I) and the post-
trochal transversal dorsal depressions of the subsequent shell fields (arrowheads). The foot (ft) and mantle fold 
(mf) start to form. Age: 142 hpf. C. Late trochophore during metamorphosis, lateral view. Note the partially shed 
prototroch (pt). Age: 240 hpf. D. Early juvenile, approximately 2 days after metamorphosis with 7 well 
developed shell plates (I-VII), dorsal view. 
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Fig. 2. Myogenesis in Mopalia muscosa , CLSM. Each pair of fluorescence images shows a dorsal (left) and a 
ventral (right) view of the respective developmental stage. Ages are given in hours post fertilization (hpf) or days 
post metamorphosis (dpm) at 10-12°C. Asterisks mark the mouth opening. A. Early trochophore stage, showing 
the first 2 fibers of the dorsal rectus muscle (re), fine myofibrils of the prototroch ring (ptr) and the paired 
ventro-lateral longitudinal muscle (vlm). Age: 74.25 hpf (left), 82.25 hpf (right). B. The fibers of the rectus 
muscle (re) and ventro-lateral longitudinal muscle (vlm) elongate and the first anlagen of the apical grid (agr) 
and the dorso-ventral (shell) musculature (dvm) are formed. Age: 86.25 hpf (left), 93 hpf (right). C. Further 
differentiation of all muscle systems; the enrolling muscle (em) and transversal myofibrils (tm) in the region of 
the putative shell plates start to form. Age: 108 hpf (left), 96 hpf (right). D-F. Subsequent development of all pre-
metamorphically occurring muscle systems until metamorphic competence. Note the 3-dimensional apical grid 
(agr) in the pre-trochal area and the prominent ventro-lateral longitudinal muscles (vlm). Age: 129 hpf (D, left), 
142 hpf (D, right), 161.15 hpf (E, left and right), 239.75 hpf (F, left and right). G-H. Post-metamorphic juvenile 
stages at 1 dpm (G) and 10 dpm (H). The buccal musculature (bm) forms soon after metamorphosis and attaches 
at the first shell plate. The rearrangement of the dorso-ventral shell muscles (dvm) into paired functional units 
has started in G (cf. their relative position to the weakly stained rims of the first 7 shell plates), but is fully 
achieved only in later stages (H). The radula retractors (rr) are the last muscles to be formed. Note the still 
prominent staining of the ventral longitudinal muscles (vlm). 
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At around 129 hpf, the various muscle systems have reached an intermediate stage of 

differentiation: the rectus muscle forms a predominant, dorsal, longitudinal unit and extends 

antero-laterally, while the apical grid surrounds the pre-trochal body part as a three-

dimensional muscular net, consisting of distinct outer ring and inner diagonal muscle fibers. 

This network encircles the fibers of the rectus muscle, and some of them bifurcate at their 

anterior end. The prototroch ring is a solid band of muscle fibers located directly underneath 

the prototroch. In addition, a layer of post-trochal transversal myofibrils is found under each 

of the seven shell plates, which have already started to calcify. Laterally, the enrolling muscle 

encircles all other muscle systems, forming a border against the outer mantle. The ventro-

lateral longitudinal muscle pair lies more ventral and medial to the latter muscle and consists 

of two distinct muscle strands that do not form anterior contact. This ventro-lateral 

longitudinal muscle interconnects on both sides with the dorso-ventral musculature via 

numerous short muscle fibers (Figs. 2D, 3A). The dorso-ventral musculature appears as a 

multiple repetition of minute myofibrils that intercross in the pedal region (Figs. 2D, 3A-B). 

During subsequent larval (i.e., pre-metamorphic) development from approximately 145 hpf 

until metamorphic competence at around 210-215 hpf the only major changes regarding 

myogenesis are the growing number of myofibrils and the increasing thickness of the muscle 

bundles of the respective muscle systems (Fig. 3A-B). At metamorphic competence (Figs. 1C, 

3B), all muscles show a bright fluorescent signal, indicating that no muscular atrophy has 

taken place so far (cf. Fig. 3A-B). 

During metamorphosis, the larval prototroch muscle ring and the apical muscle grid 

degenerate (Fig. 3C-D). The buccal musculature arises immediately after metamorphosis and 

consists of numerous fibers that insert symmetrically on the first shell plate. The former 

distinct, delicate dorso-ventral muscle fibers start to concentrate (Fig. 3C), and ten days after 

metamorphosis, the paired shell muscle bundles are already differentiated under each shell 

plate. Additionally, the radular retractor muscles are formed. They insert on the second shell 

plate and are situated on both sides of the rectus muscle (Fig. 3D). The paired ventral 

longitudinal muscle persists in the juvenile animal, although it has not yet been described for 

any adult polyplacophoran species (see Discussion). The circular enrolling muscle is already 

functional in early juvenile animals (i.e., at one day after metamorphosis, see Fig. 3C), 

enabling the animal to protect its soft body parts on the ventral side if separated from the 

substratum. 

The myofibrils of the dorsal rectus muscle undergo considerable rearrangement during larval 

life and especially at metamorphosis: their strong anterior divergence ceases (cf. Figs. 2C-D, 
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3A-B) and after metamorphosis all fibers follow the longitudinal anterior-posterior orientation 

of the first two myocytes, which are still situated on the medio-dorsal line of the animal (cf. 

Figs. 2A-B, 3C). 

 

Ultrastructure of muscle systems 

Nearly all larval and adult muscle systems in Mopalia muscosa and Chiton olivaceus are 

smooth (Fig. 4) except for the obliquely striated buccal musculature. Tendon cells, which 

form the shell attachment junctions of various gastropod shell muscles (see Page, 1995, 1998; 

Wanninger et al., 1999a) and contain a high density of F-actin fibers, were not found in the 

larvae of the two polyplacophoran species investigated. The outer ring muscles of the apical 

grid and the post-trochal transversal muscles under the shell plates lie dorsad of the rectus 

muscle (Fig. 4A-B). 

 

 
Fig. 3. Ultrastructure of several smooth muscle systems in larvae of Mopalia muscosa . Dorsal side faces 
upwards in A and B and to the right in C. A. Longitudinal section of the apical area of a late trochophore stage. 
The myocytes of the ring musculature (rm, with its adjacent nucleus (nu)) of the apical muscle grid lie directly 
underneath the basal membrane (arrowheads) of the dorsal epidermis (ep), thus engulfing the fibers of the rectus 
muscle (re). B. Longitudinal section of the post-trochal region of the same specimen as in A, with intraepithelial 
neural projection (ne). The transversal muscle fibers (tm), which underlie each shell plate, are ventrally bordered 
by the rectus muscle (re) while the basal membrane (arrowheads) of the dorsal epidermis (ep) lies on their dorsal 
side. C. Longitudinal section of the smooth larval prototroch muscle ring (ptr). 
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DISCUSSION 
 

General notes on polyplacophoran larval development 

As in many animal taxa with a biphasic life cycle, the transition from a free-swimming larval 

to a benthic juvenile stage involves dramatic changes of their gross morphology. In the 

Polyplacophora, the dorso-ventral axis flattens considerably and the post-metamorphic 

juvenile chiton becomes typically oval shaped. At the same time, the animal sheds its 

prototroch cells and parts of the pre-trochal area are lost (Fig. 1). 

As shown on SEM micrographs of earlier studies on Lepidochitona thomasi (Eernisse, 1988: 

fig. 7C; Eernisse and Reynolds, 1994: fig. 5A) and confirmed by our observations on Mopalia 

muscosa and Chiton olivaceus (see above), the first shell plate extends pre-trochally, thus 

contradicting former statements on the sole post-trochal origin of all shell plates in the 

Polyplacophora (Kniprath, 1980; Eernisse and Reynolds, 1994). This raises doubts on the 

homology of the polyplacophoran shell plates and the conchiferan shell, since the latter is 

entirely of post-trochal origin and position (Kniprath, 1981) and because shell (plate) 

secretion is different in conchiferan and polyplacophoran larvae (Haas, 1981). Moreover, 

shell plate ontogeny in the Polyplacophora does not show a stage of shell field invagination as 

found in the Conchifera (Kniprath, 1981). The very gradual and, compared to gastropods and 

bivalves, slow establishment of the eventual juvenile body plan seems to be a general feature 

in polyplacophoran ontogeny. This is indicated by the fact that organs like gills, aesthetes, and 

the final shell plate are usually formed weeks after metamorphosis. On the other hand, several 

larval structures such as protonephridia and larval eyes are carried over into the post-

metamorphic stage (Heath, 1904; Grave, 1932; Creese, 1986; Strathmann and Eernisse, 1987: 

p. 213). 

Recent studies on the myogenesis in the Gastropoda (Page, 1995, 1997a,b, 1998; Degnan et 

al., 1997; Wanninger et al., 1999a,b) as well as earlier works on several bivalves 

(Meisenheimer, 1901; Smith, 1935; Crofts, 1937, 1955; Cole, 1938; Anderson, 1965; Smith, 

1967; Cragg, 1985; Cragg and Crisp, 1991) and the data presented herein, allow a comparison 

of the various muscle systems and the mechanisms involved in molluscan myogenesis. 

 

The prototroch muscle ring 

As in the basal gastropod Patella (Wanninger et al., 1999a), both polyplacophoran species 

investigated show a smooth muscular ring (see Fig. 4C) that is situated directly underneath 

the ciliated prototroch cells and that is lost during metamorphosis. These positional, 

structural, and ontogenetic similarities in both groups suggest supraspecific homology of this 
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larval muscle system for the Gastropoda and the Polyplacophora. No similar structure has yet 

been described for either higher planctotrophic gastropod larvae with a much more 

complicated velum or any bivalve. Thus, it may be a molluscan plesiomorphy that is 

conserved only in some of the basal lecithotrophic molluscan larvae that possess a "simple" 

prototroch rather then a highly specialized and complicated velum. 

 

Polyplacophoran vs. aplacophoran enrolling muscles 

The data presented herein raise doubts on the homology of the enrolling muscles of chitons 

and aplacophoran molluscs as proposed by Salvini-Plawen (1972). The enrolling muscle in 

the Polyplacophora clearly represents a single circular muscle system, while it is 

longitudinally paired in adult Caudofoveata and Solenogastres (Salvini-Plawen, 1972). In 

addition, the enrolling muscle is a strengthened part of the longitudinal body-wall 

musculature in the aplacophoran taxa, but an independent system in chitons. However, data 

on the myogenesis in aplacophorans are necessary to finally solve this problem. 

The fate and function of the paired ventral longitudinal muscle in Mopalia muscosa and 

Chiton olivaceus, which is retained in the juvenile animal (see Fig. 3D), remains enigmatic. 

Since it has not been found in any of the numerous detailed anatomical studies of adult 

chitons, it is very likely that this muscle disappears during subsequent development. 

Functionally, it may support the still relatively weak enrolling muscle, although its early 

ontogenetic appearance seems to contradict this hypothesis. 

 

Larval and adult shell (plate) muscles 

Larval velar and mantle retractor muscles that disappear through or shortly after 

metamorphosis are common throughout the Gastropoda (e.g., Smith, 1935; Smith, 1967; 

Fretter, 1972; Bonar and Hadfield, 1974; Page, 1995, 1997a, 1998; Degnan et al., 1997; 

Wanninger et al., 1999a,b) and are also found in several bivalves (Meisenheimer, 1901; 

Cragg, 1985; Cragg and Crisp, 1991). The absence of such larval shell muscles in the 

Polyplacophora indicates that they are probably not a part of the ancestral molluscan bauplan, 

although a secondary loss at the base of the polyplacophoran line cannot be completely ruled 

out. The restriction of larval retractor systems to those molluscan taxa that possess a 

protective shell in the early larval stages suggests co-evolution of larval retractors and a 

functional larval or heterochronically shifted adult shell. Thus, the presence of specific larval 

retractor system(s) neither seems to be characteristic for the entire Mollusca, nor for the 

Testaria (Polyplacophora + Conchifera), but may be so for the Conchifera. However, 
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preliminary data on the myogenesis in Scaphopoda (pers. obs.) makes independent evolution 

of larval retractors in gastropods and bivalves equally possible. 

Compared to the conditions found in gastropods and bivalves (see Meisenheimer, 1901; 

Cragg, 1985; Cragg and Crisp, 1991; Page, 1995, 1997a,b, 1998; Wanninger et al., 1999a,b), 

the formation of the adult shell musculature in the Polyplacophora shows striking differences. 

In free-swimming larvae of several gastropod and bivalve taxa, the adult shell muscles arise 

after the functional establishment of the larval retractor systems. In these groups, the adult 

shell musculature is formed very fast (in basal gastropods after the completion of torsion) and, 

with the exception of steady growth, does not undergo major morphological rearrangement 

during its ontogeny. In Mopalia and Chiton, however, their generation and ultimate functional 

arrangement appears as a much more gradual process starting in the early trochophore-like 

larva with continuous elaboration until considerable time after metamorphosis (see Fig. 3). 

 

The dorso-ventral musculature and the "segmentation problem" 

The polyplacophoran dorso-ventral musculature, inserting on the shell plates in post-

metamorphic animals, starts to form as numerous distinct, serially repeated muscle fibers 

along the whole post-trochal larval body. The adult morphological and functional 

arrangement in seven (and later eight) sets of paired shell muscles is clearly a secondary 

condition that starts after the completion of metamorphosis. The latter condition is thus not 

indicative for a proposed segmented bauplan in chitons as previously proposed (e.g., Götting, 

1980; Lake, 1990). Instead, these findings argue in favor of recapitulation as proposed by 

Salvini-Plawen (1969, 1981), who regarded the shell (plate) musculature as having evolved 

from serially arranged dorso-ventral muscle fibers as found in adult Solenogastres. 

Accordingly, the testarian shell muscles evolved by subsequent concentration of such fibers, a 

condition which can still be traced ontogenetically in the recent Polyplacophora (see above). 

Recently, gene expression pattern analyses of the homeobox gene engrailed, which is 

involved in arthropod segment formation, showed that this gene plays an important role in 

embryonic shell morphogenesis in gastropods (Moshel et al., 1998), bivalves (Jacobs et al., 

2000), and scaphopods (Wanninger, pers. obs.) as well as in shell plate and spicule formation 

in polyplacophorans (Jacobs et al., 2000). Thus, the serial expression of engrailed in seven 

transversal stripes in the dorsal ectoderm of late chiton larvae reflects the function of 

"exoskeleton" formation of this gene in molluscs rather than proving their annelid-like 

"segmented" character.  
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Microanatomical and ontogenetic studies on the partly paedomorphic monoplacophoran 

Micropilina arntzi (Haszprunar and Schaefer, 1997) also suggest a non-segmented body plan 

for the Monoplacophora, mainly because the ontogenetic formation of several organ systems 

such as ctenidia and gonads occurs from posterior to anterior, not vice versa as in the 

Annelida. The fundamental differences regarding the coelomic conditions in the Annelida and 

the Mollusca support this hypothesis: the coelomic cavities in the Mollusca are restricted to 

two sacs, one around the heart (pericardial cavity) and one enclosing the gonad, while they 

appear as multiple paired sacs along the anterior-posterior axis of the Annelida, which defines 

true segmentation or eumetamerism. Comparative analyses of the ontogeny of these 

epithelially lined cavities even suggest their diphyletic origin between molluscs and the 

eucoelomate taxa, thus making the possibility of secondary loss of segmentation within the 

Mollusca very improbable (see Salvini-Plawen and Bartolomaeus, 1995). In addition, most 

authors nowadays (e.g., Salvini-Plawen and Steiner, 1996) consider the aplacophoran taxa 

(i.e., Solenogastres and Caudofoveata) as most basal clades of the Mollusca, and neither their 

adult body plan nor ontogenetic data on the Solenogastre Neomenia carinata (Thompson, 

1960) show any trace of eumetamerism in these groups. 

 

The ancestral condition: from worm to mollusc 

The adult dorso-ventral musculature of the Mollusca, which intercrosses just dorsal of the foot 

sole, is phylogenetically distinct from that of all other phyla. Thus, the molluscan dorso-

ventral musculature can be regarded as apomorphic for the phylum (e.g., Salvini-Plawen, 

1980; Haszprunar, 1988; Haszprunar and Wanninger, 2000). Platyhelminthes, however, also 

express dorso-ventral muscles different from that of molluscs and distinct from the typical 

worm-like body-wall musculature (Tyler and Rieger, 1999). The body-wall musculature of 

worm-shaped groups like annelids, platyhelminths, or nemerteans mainly consists of three 

layers of ring, diagonal, and longitudinal muscles (e.g., Rieger et al., 1994; Reiter et al., 1996; 

Hooge and Tyler, 1999). The Solenogastres and Caudofoveata are the only major molluscan 

taxa which express in their adult body plan a three-layered body-wall musculature similar to 

the phyla mentioned above (Salvini-Plawen, 1972, 1981; Scheltema et al., 1994; Haszprunar 

and Wanninger, 2000). Our results suggest that the fibers of the apical muscle grid in the 

chiton larva may be vestiges of such body-wall muscles of a proposed worm-shaped 

molluscan ancestor. Due to the evolution of protective larval and adult shells in the 

Conchifera, the original body-wall muscles were completely reduced in this clade. Instead, the 

conchiferans elaborated the dorso-ventral musculature as the main adult shell muscle system 
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(note that gastropods and bivalves possess distinct larval retractors which are independent of 

the adult shell muscles; see above). Indeed, all gastropods with a planctonic veliger stage 

investigated so far show a larval shell and larval retractor systems early in development, but 

no "worm-like" body-wall muscles are present. In cases of shell reduction, however, a 

secondary "worm body" is found (e.g., nudibranchs, slugs, ship-worms). The Polyplacophora, 

which are phylogenetically situated at the interface of the primary worm-shaped 

aplacophorans and the Conchifera, lack a distinct larval shell and the adult shell plates are not 

protective before metamorphosis, but relics of such ancestral body-wall muscles (i.e., the 

apical grid) are present. However, in both chiton species investigated, Mopalia muscosa and 

Chiton olivaceus, longitudinal muscles were not observed in the apical grid. Thus, it seems 

that the longitudinal fibers are replaced by the diverging rectus muscle fibers in the chiton 

larva, which is indicated by the fact that after metamorphosis (i.e., after the loss of the apical 

grid) the rectus muscle appears as a solid median band of parallel longitudinal myocytes. 

However, the question whether this is a result of myofibrillar rearrangement and/or cell death 

of these fibers remains open. Accordingly, two evolutionary pathways appear equally 

possible: (1) assuming recapitulation of an ancestral body-wall musculature, the longitudinal 

fibers of the apical grid are completely lost in the Polyplacophora, or (2) the original 

longitudinal muscles are modified and contribute to (parts of) the rectus muscle. The latter 

assumption infers that at least parts of the rectus muscle are homologous to the longitudinal 

body-wall muscles of aplacophoran molluscs (see Salvini-Plawen, 1972). For further insights, 

ontogenetic data on the myogenesis of aplacophoran molluscs and the cytological 

mechanisms on the myofibrillar rearrangement of the rectus muscle fibers during chiton 

metamorphosis are crucial. 

The transversal muscle fibers under the shell plates are most likely a polyplacophoran 

apomorphy which co-evolved with the shell plates. The strictly transversal character 

throughout their ontogenetic development makes a derivation from the body-wall ring 

muscles of a molluscan ancestor unlikely. 

 

CONCLUSIONS 

 

Myogenesis in the Polyplacophora involves several mechanisms in the transition from the 

larval planctonic to the juvenile benthic life style: (1) Degeneration of larval muscle systems 

(prototroch muscle ring, apical grid, and probably the paired ventral longitudinal muscle), (2) 

de novo generation of the buccal musculature including the paired radular retractors after 
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metamorphosis, and (3) gradual morphological rearrangement of the dorso-ventral shell 

musculature and the dorsal rectus muscle. The cytological mechanisms and epigenetic 

background of these muscular dynamics, however, remain unknown but are highly promising 

for future studies. 

Our study supports the concept that that the "segmented" character of the adult 

polyplacophoran shell musculature is a secondary condition, contradicting previous attempts 

to derive the Polyplacophora (and the entire phylum Mollusca) from a primarily segmented 

stem species. The data currently available suggest their descent from an unsegmented, non-

eucoelomate trochozoan ancestor (cf. Haszprunar, 1996). 
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The role of engrailed in larval development and shell formation of the tusk-

shell, Antalis entalis (Mollusca, Scaphopoda) 

 

 

 

 

Published in: Evolution and Development: in press. 

 

 

 

 

 

 



Appendix III                                                                      shell formation and engrailed in a scaphopod 76 

Abstract. This study presents the first detailed account of the larval and early post-

metamorphic development of a scaphopod species, Antalis entalis, since 1883. Special 

reference is given to the role of engrailed in the formation of the embryonic (protoconch) and 

adult shell (teleoconch). We found that in the trochophore-like larva engrailed is expressed in 

shell secreting cells at the margin of the protoconch close to the mantle edge. During 

metamorphosis the growth of the protoconch and engrailed expression along its margin stop 

and the teleoconch starts to form. After metamorphosis engrailed is mainly expressed in cells 

of the putative central nervous system.  

These data suggest a different genetic background regarding protoconch and teleoconch 

formation in the Scaphopoda and possibly all Conchifera, thus inferring a different 

evolutionary origin of both organs. The single anlage of the scaphopod protoconch contradicts 

earlier hypotheses of a monophyletic taxon Diasoma (Scaphopoda + Bivalvia) which has been 

mainly based on the assumption of a primarily bilobed shell in both taxa.  

Comparative data on engrailed expression patterns suggest nervous system patterning as the 

basic function of engrailed in the Bilateria. However, there are several independent gain-of-

function events, namely segment compartmentation in the Annelida and Arthropoda, 

protoconch, shell plate, and spicule formation in the Mollusca, skeletogenesis in the 

Echinodermata, and limb formation in vertebrates. These findings provide further evidence 

that homologous genes may act in very different pathways of bilaterian body plan formation 

in various animal phyla.  

 

INTRODUCTION 

 

Conchiferan Mollusca (i.e., Monoplacophora, Gastropoda, Cephalopoda, Bivalvia, 

Scaphopoda) undergo several ontogenetic stages of shell formation. In the trochophore- or 

veliger-like free-swimming or intracapsular larva, a so-called embryonic shell (protoconch I, 

also named prodissoconch I in bivalves) is secreted by an embryonic shell field (see Kniprath 

1981). This protoconch ontogenetically precedes the adult shell (teleoconch), which starts to 

form after metamorphosis and usually keeps growing until the individual dies, thus showing 

typical growth lines which allow its distinction from the embryonic shell (e.g., Hadfield and 

Strathmann 1990, Wanninger et al. 1999a). Certain caenogastropods (formerly meso- and 

neogastropods) and bivalves show an additional shell stage, the larval shell (protoconch II or 

prodissoconch II in bivalves), which is often ornamented and occurs in the differentiated 
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veliger larva after the establishment of the protoconch I and prior to teleoconch 

morphogenesis (e.g., Bandel 1975, Haszprunar et al. 1995, Morse and Zardus 1997).  

While there is little doubt about supraspecific homology of the conchiferan embryonic as well 

as adult shells, their direct ontogenetic homology (see Haszprunar 1992 for definition) 

remains questionable. Despite their structural differences, all 3 shell stages are formed by 

similar cells (or their progenitors) that at first invaginate (thus forming the "shell gland") and 

later evaginate (forming the "shell field"), which argues in favor of direct ontogenetic 

homology of all 3 shell stages (see Kniprath 1981 for extensive review). However, other 

authors (Thiriot-Quievreux 1972, Haszprunar et al. 1995) regarded the "shell field" (sensu 

Kniprath 1981; referred to as "shell gland" by Haszprunar et al. 1995), which secretes the 

embryonic shell, as morphologically distinct from the mantle margin that produces the larval 

and adult shell, thus rendering embryonic and adult shells as of independent evolutionary 

origin. 

Recently, it has been shown that the homeobox gene engrailed, which is known to play an 

important role in neurogenesis and segment formation in annelids and arthropods (e.g., 

Morata and Lawrence 1975, Weisblat et al. 1980, Kornberg 1981, Fjöse et al. 1985, Weisblat 

et al. 1988, Patel et al. 1989, Wedeen and Weisblat 1991, Lans et al. 1993, Abzhanov and 

Kaufman 2000, Shain et al. 2000, Marie and Bacon 2000), is involved in the development of 

the embryonic shell in gastropods and bivalves as well as in shell plate and spicule formation 

in polyplacophorans (Moshel et al. 1998, Jacobs et al. 2000). To date, these remain the only 

molecular approaches to resolve the genetic background that underlies molluscan shell 

formation. Since the analyses on gastropods and bivalves exclusively focused on protoconch I 

morphogenesis, no comparative data on embryonic and adult molluscan shell development are 

available. In order to shed new light on the homology hypothesis of the embryonic and adult 

molluscan shell, we analyzed the gene expression pattern of the homeobox gene engrailed in 

larval and early juvenile stages of the scaphopod Antalis entalis.  

The Diasoma concept proposed by Runnegar and Pojeta (1974, Pojeta and Runnegar 1985) 

comprises the Scaphopoda and the Bivalvia as direct sister taxa, mainly based on the 

assumption that both clades possess a primarily bivalved shell. While this unquestionably 

holds true for the Bivalvia, the only thorough studies on scaphopod ontogeny, dating from the 

19th century, stated an unpaired origin of the scaphopod shell (Lacaze-Duthiers 1857, 

Kowalevsky 1883). In the light of recent cladistic analyses, which argue in favor of a close 

relationship of Scaphopoda and Gastropoda + Cephalopoda, rather than Scaphopoda + 
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Bivalvia (Waller 1998, Haszprunar 2000), the present study also contributes to the question of 

the sister-group-relationships of the Scaphopoda.  

 

MATERIALS AND METHODS 

 

Animals 

Adult Antalis entalis (Jeffreys, 1869) were collected from about 30 m depth by SCUBA 

diving off the Atlantic coast near Roscoff, France during July 1999. The specimens were 

transported to the laboratory of the Station Biologique de Roscoff and were kept in running 

seawater on a layer of coarse shell gravel from the native habitat. To induce spawning, single 

individuals were placed in small petri dishes containing Millipore filtered seawater (MFSW) 

without substratum and treated with repeated temperature shocks by alternating incubations 

for 1-2 hours at 4°C and 25°C, respectively. Freshly released eggs were rinsed in MFSW, 

transferred to small glass dishes, and immediately inseminated. To avoid bacterial or fungal 

infections, 50 mg streptomycin sulfate and 60 mg penicillin G were added per liter MFSW to 

the cultures with free-swimming larvae. The water was changed daily (see Wanninger et al. 

1999b). In culture dishes containing post-metamorphic animals, antibiotics were omitted and 

the water changes reduced to once every 2-3 days, to allow microbial growth as food resource 

for the juveniles.  

Metamorphosis was very effectively induced by adding single pieces of shell gravel from the 

substratum of the adult habitat to the cultures. All cultures were kept within a temperature 

range of 17.5°C-19.5°C.  

 

Scanning electron microscopy (SEM) 

Specimens were fixed in intervals of 3-4 hours from hatching until metamorphic competence, 

as well as 3, 7, 41, 61 hours after metamorphosis (hpm) and 13 days after metamorphosis 

(dpm). From 24.5 hours post fertilization (hpf) onwards, larvae were anaesthetized by adding 

drops of 7% MgCl2 prior to fixation. Late larval and post-metamorphic stages were immersed 

in 3.5% MgCl2 for up to 15 minutes to assure full relaxation.  

Fixation was carried out in 2 different ways. For better tissue preservation, a solution of 4 % 

glutaraldehyde in 0.2M sodium cacodylate buffer with 0.1M NaCl and 0.35M sucrose was 

used as primary fixative. After 3 washes of 15 minutes in 0.2M sodium cacodylate buffer with 

0.1M NaCl and 0.35M sucrose, the specimens were postfixed with 1% OsO4 in 0.2M sodium 
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cacodylate buffer with 0.3M NaCl for 2 hours, followed by 3 washes (15 minutes) in 0.2M 

sodium cacodylate buffer with 0.3M NaCl.  

Alternatively, larval and post-metamorphic stages were fixed in 1% OsO4 in distilled water to 

avoid decalcification of the embryonic and juvenile shells.  

Subsequently, all samples fixed for SEM were dehydrated in an acetone series, critical point 

dried, sputter coated with gold, and observed with a Philips XL 20 SEM. 

 

Staining of the engrailed protein 

After relaxation, the specimens were fixed in 4% paraformaldehyde in 0.1M phosphate buffer 

solution (PBS) for 2-6 hours at room temperature or over night at 4°C. After 3 washes of 10-

15 minutes in PBS, the animals were stored in PBS with 0.1% sodium azide (NaN3) at 4°C. 

All further treatments were carried out at room temperature, except where stated otherwise. 

Specimens aged 42.5 hpf or older were decalcified in 2% EDTA for up to 1 hour. This was 

followed by 3 washes (15 minutes each) in PBS containing 0.4% Triton X-100 (PBT) and by 

incubation in the blocking agent (PBT with 5% normal goat serum [Jackson 

ImmunoResearch], and 0.2% bovine serum albumin [Sigma]; blocking-PBT) for 1 hour.  

The engrailed protein was detected by using a monoclonal antibody raised against the 4D9 

transcript (Mab4D9) as primary antibody, which was obtained from the Developmental 

Studies Hybridoma Bank, University of Iowa, USA. This antibody has been shown to 

selectively bind to the engrailed protein of chitons, bivalves, and gastropods (Moshel et al. 

1998, Jacobs et al. 2000), and the existence of an engrailed homologue in scaphopods has 

been described earlier (Wray et al. 1995). The probes were incubated in a 1:5 dilution of the 

Mab4D9 in blocking-PBT over night (18-24 hours) at 4°C. After 3 washes (10-15 minutes) in 

PBT, the specimens were transferred into the undiluted secondary antibody solution 

(EnVision+ HRP goat anti-rabbit, DAKO Diagnostika) for 5 hours. 3 additional washes in 

PBT were followed by the staining reaction (5-20 minutes), which was done using a 3,3’-

Diaminobenzide (Sigma FastTM, Sigma) solution which contained 0.07% nickel-

ammoniumsulfate. After 3 washes in PBS and one change in distilled water, the specimens 

were dehydrated in a graded ethanol series, cleared in a 2:1 solution of benzyl benzoate and 

benzyl alcohol (BBA), and mounted on glass slides. Negative controls were carried out by 

omitting either incubation in the primary or the secondary antibody and yielded no signal.  

For fluorescence counter-staining of cell nuclei, the staining reaction was followed by 3 

washes in PBT, with 2 drops of 4’,6-Diamidino-2-phenylindole (DAPI, Sigma) added (2-3 

minutes). After dehydration and clearing, DAPI stained specimens were mounted in BBA 
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containing 0.1% n-propylgallate to reduce bleaching. The preparations were viewed under a 

Leica DM RBE microscope equipped with an epifluorescence unit and the pictures recorded 

using a digital imaging system (Kappa DX 30). 

 

RESULTS 

 

Terminology 

Regarding shell and shell field/shell gland terminology, we use the definitions as mentioned 

in the introductory section (see also Kniprath 1981, Haszprunar et al. 1995, Morse and Zardus 

1997, Wanninger et al. 1999a). Since the existence of a distinct larval shell (protoconch II) in 

Antalis can neither be confirmed nor completely be ruled out (see below), we use the neutral 

term "protoconch" for the pre-metamorphic shell in Antalis. In the figures of early larvae of 

Antalis entalis, with still ventrally open mantle and embryonic shell field, the region of the 

anlage of the embryonic shell is indicated by "α". The apical organ defines all pretrochal cells 

bearing cilia that contribute to the apical ciliary tuft. 

 

Larval development and formation of the embryonic shell (protoconch) 

The embryos of Antalis entalis start hatching at around 17-19 hours post fertilization (hpf) 

and about half an hour later the first free-swimming larvae are observed in the water column. 

However, the prototroch cilia are not yet fully developed and the prototroch cells are not 

arranged in the typical 3 parallel rows as found in slightly older individuals (cf. Fig. 1A, B). 

The cells of the apical organ are already distinct and bear numerous long, fine cilia, which 

form the apical ciliary tuft. The post-trochal area is hardly differentiated and consists of a 

small cluster of cells. At 32 hpf the prototroch is fully established and the pre-trochal area 

remains predominant relative to the still poorly differentiated post-trochal region (Fig. 1B). 

From approximately 35 hpf onwards, dramatic morphological transformations occur until 

metamorphic competence, which is achieved at 94 hpf (Fig. 1C-I). The size of the prototroch 

cells ceases and, from around 54 hpf onwards, the prototroch is recognized as a narrow band 

of ciliated cells which encircles the anterior region of the animal (Fig. 1F-I). The reduction of 

the larval apical organ starts at around 35 hpf and is indicated by its atrophying ciliated cells 

(Fig. 1C, E, F, G). Considerable time before metamorphic competence, the apical organ, 

including its neural components (Wanninger, pers. obs.), is completely lost. This feature will 

be dealt with in greater detail elsewhere.  
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Fig. 1. Larval development of Antalis entalis, SEM, anterior faces upwards. (A) Early trochophore immediately 
after hatching, with prominent apical organ (ao) and not yet fully established prototroch (pt); dorsal view. Inset: 
posterior view showing blastopore (asterisk). Age: 20.5 hpf. (B) Trochophore with symmetrical prototroch (pt) 
and large apical organ (ao) with apical ciliary tuft (act). Asterisk marks the mo uth opening; ventral view. Age: 
32 hpf. (C) Larva with differentiating post-trochal region. The prototroch (pt) and apical organ (ao) start to 
decline; ventral view. Age: 36.75 hpf. (D) Larva with bilobed foot (ft) anlage with distinct midline (stippled 
arrow) and embryonic shell field (α). Arrowheads point to the margin of the embryonic shell field, arrow marks 
the future posterior mantle opening ["pavillon", see Lacaze-Duthiers (1857), Steiner (1991)]; ventro-lateral right 
view. Inset: Postero-dorsal view. Age: 48.5 hpf. (E and F) Larvae with growing embryonic shell field (α), mantle 
epithelium (me) and decreasing apical organ (ao); ventral (E) and lateral right view (F). Age: 54 hpf. (G) Slightly 
older specimen; ventral view. Age: 62 hpf. (H and I) Larva prior to (H) and at metamorphic competence (I). 
Note the ventrally closed mantle and protoconch (pro) with distinct ventral fusion line (suture; su), as well as the 
completely reduced apical organ. Both ventro-lateral right view. Age: 74.5 hpf (H) and 95 hpf (I). 
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Fig. 2. Post-metamorphic juveniles of Antalis entalis, SEM, anterior faces upwards. (A) Early juvenile at 7 hours 
post metamorphosis (hpm), showing the paired anlage of the captacula (ca), and the foot (ft) with apical ciliation. 
Decalcified specimen, thus the anterior mantle fold (mf) and the mantle epithelium (me) are visible. Lateral right 
view. (B) 61 hpm old individual, decalcified, dorso-lateral right view with buccal cone (bc) bearing the paired 
anlage of the captacula (ca). (C and D) Juveniles at 13 dpm. Note the 3-lobed foot (ft). (C) Decalcified, lateral 
right view. (D) Specimen showing the distinct protoconch (pro) with suture (su), and the teleoconch (tel) bearing 
numerous growth lines. Ventro-lateral left view. 
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In contrast, the post-trochal area starts to expand posteriorly, and at 39 hpf the calcified, 

single primordium of the embryonic shell is visible under polarized light (not shown). 

Likewise, the anlagen of the foot, the mantle, and the embryonic shell field become visible by 

SEM (Fig. 1D). The formation of both, the mantle epithelium and the embryonic shell field, 

starts dorsally and both structures grow in anterior and ventral direction. At 64 hpf the first 

specimens with ventrally closed mantle and embryonic shell are found. The successive 

calcification of the protoconch in dorso-ventral direction and its anterior growth until 

metamorphic competence is indicated by the suture, the ventral fusion line of the embryonic 

shell (Fig. 1H, I). The surface of the protoconch is completely smooth, without any distinct 

growth lines.  

The foot anlage appears as a symmetrical hump on the ventral side, consisting of 2 equally 

sized halves which are separated by a distinct midline (Fig. 1D, E). The foot increases its 

length but remains non-functional until metamorphic competence. In late larvae, it is 

completely buried in the mantle cavity which is formed by the ventrally closed mantle 

epithelium (Fig. 1H, I).  

 

Metamorphosis and early post-metamorphic development 

Larvae induced at 94 hpf or later performed metamorphosis within 2 hours at a rate of almost 

100% in all cultures. The major morphological changes from the larval to the early juvenile 

body plan were completed within these 2 hours from induction.  

During metamorphosis, the prototroch is lost and the paired anlage of the first captacula 

(anterior tentacles of the adult for the capture of prey) is formed dorso-laterally in the cephalic 

region of the juvenile (Fig. 2A, B). The foot differentiates and develops its characteristic 

three-lobed morphology, which is retained through adulthood. Accordingly, the animal 

switches from a planctic free-swimming to a benthic creeping-burrowing locomotion. The  

anterior tip of the predominant central lobe of the foot is densely ciliated and forms the foot 

sole, while its lateral sides lack ciliation (Fig. 2A-D). The formation of the protoconch stops 

at the onset of metamorphosis and the adult shell (teleoconch) is generated. In contrast to the 

embryonic shell, the teleoconch is gradually secreted by marginal cells of the anterior mantle 

epithelium, leaving striking growth lines in posterior-anterior direction. Due to this different 

mode of shell formation, the adult shell lacks a suture. These differences enable easy 

distinction of the both shell types in the post-metamorphic juvenile scaphopod (Fig. 2D). 
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Engrailed expression during larval and early juvenile life 

The engrailed transcript is first localized in early trochophores aged 28.5 hpf. 

Morphologically, no distinct shell field is recognized by that time. Engrailed is expressed in 2 

unequally sized clusters of cells of the dorsal ectoderm. The much larger anterior cluster 

consists of approximately 15 cells which are arranged in a semi-circle just behind the 

prototroch around the putative anlage of the embryonic shell field. The second engrailed 

positive cluster is formed by a mere 3 cells, situated close to the posterior pole of the larva 

(Fig. 3A). Slightly later, engrailed is found in cells surrounding the anlage of the embryonic 

shell (protoconch), which has now started to differenciate between the 2 former engrailed 

clusters (Fig. 3B: α). During subsequent development, the embryonic shell field expands 

ventro-laterally with engrailed expressing cells forming the margin towards the outer mantle 

epithelium (Figs. 3C-E, 4). The ventral view of young trochophores shows engrailed positive 

cells at the left and right lateral margins of the not yet ventrally closed embryonic shell field, 

flanking the centrally positioned anlage of the foot (Figs. 3E, 4B). Figure 4 combines the 

findings of the engrailed expression pattern and larval morphogenesis in trochophorae prior to 

the ventral closure of the mantle and the embryonic shell field. Both, the gross morphology of 

the shell field and the pattern of engrailed expression, clearly reflect the primary univalved 

character of the protoconch (Fig. 4C). After ventral closure of the mantle and the embryonic 

shell field, the protoconch is established and the engrailed expressing cells are found around 

both the anterior and the posterior edges of the shell field (Fig. 5A, B, E).  

In 80.5 hpf old specimens the engrailed protein is also found in a few single cells of the body 

mass (Fig. 5C, D, arrows). Although we were not able to clearly identify these cells in situ, 

preliminary data on the neurogenesis in Antalis entalis suggest that they are part of the 

developing adult nervous system. At metamorphic competence the morphogenesis of the 

protoconch is complete and the shell stops growing. Likewise, engrailed expression 

disappears at the margins of the shell field. In contrast, expression in the cells of the larval 

body increases and is now found in several body regions, namely in the anterior region of the 

putative cephalic ganglia which form the adult central nervous system (Fig. 6C, stippled 

arrow), in 2 centers of the mid-body (Fig. 6A, C, arrows), the foot (Fig. 6B, C), and in a cell  

cluster of the visceral mass, which probably forms the anlage of the adult visceral ganglion 

(Fig. 6D, white arrow).  
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Fig. 3. Engrailed expression in early trochophorae, anterior faces upwards. (A) Dorsal view of a larva with first 
detectable signal at 28.5 hpf. Note both, the large cell cluster (arrows), situated just behind the apical region with 
apical organ (ao) and prototroch (pt), and the smaller posterior cluster (arrowhead). (B) Dorsal view at 32 hpf 
with expression around the early anlage of the embryonic shell field (α). (C-E) Expression pattern in 39 hpf old 
larvae. (C) Dorsal view. En positive cells are localized at the anterior and posterior border of the embryonic shell 
field (α). (D) Lateral right view. (E) Ventral view showing 3 en expressing cells on each side of the ventral 
margin of the embryonic shell field (arrows) which flanks the anlage of the foot (ft). 

 
Fig. 4. Patterning of engrailed expression (white dots) plotted on SEM's of 48.5 hpf (A and C) and 54 hpf (B and 
D) old larvae with ventrally open anlage of the embryonic shell (α). The localization of en positive cells is 
exclusively found at the interface of the embryonic shell field (α) and the adjacent mantle epithelium. See also 
Figs. 1D-F, 3C-E. (A) Ventro-lateral right view, (B) ventral view, (C) postero-dorsal view, (D) lateral right view. 
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At 61 hours after metamorphosis, engrailed expression is restricted to few cells that 

contribute to the adult cerebral ganglion (Fig. 7, arrow). All other regions, where the 

transcript was formerly found, remain without signal. Engrailed is not expressed in cells that 

are involved in teleoconch (adult shell) formation (cf. Figs. 2D, 7). We did not find any 

engrailed expressing cells in individuals aged 13 days post metamorphosis. 

 

 
Fig. 5. Engrailed expression in larvae with fully developed protoconch (pro) at 72.5 hpf (A, B, E) and 80.5 hpf 
(C and D). Anterior faces upwards in A-D and to the left in E. (A) Lateral left view showing the signal in cells at 
the anterior and posterior margin of the protoconch (pro; pt – prototroch). (B) Ventral view of a retracted 
specimen, indicating that en is also found at the edges of the suture (su) (arrow). (C and D) Ventro-lateral left 
view (C) and lateral right view (D) with the first signal in cells located in the central (C and D, arrows) and 
visceral (C, stippled arrow) body region. (E) Specimen counter-stained with DAPI to illustrate the relative low 
number of en positive cells (dark spots, arrows) compared to fluorescent nuclei (bright spots) of non-expressing 
cells; lateral left view.  
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Fig. 6. Localization of engrailed in metamorphic competent larvae (age: 100 hpf), anterior faces upwards. Scale 
bar refers to A-C and equals 200 µm in D. (A) Dorsal view showing few en positive cells at the anterior edge of 
the protoconch, as well as in the visceral mass (vm) and the central body region (arrows; pt - prototroch). (B) 
Ventral view of a specimen with en expressing cells in the foot (ft). (C) Lateral right view revealing expression 
in the foot (ft), in the anlage of the adult cephalic ganglion (stippled arrow), and in the visceral mass (vm) 
(arrow). (D) Lateral left view showing a close-up of the visceral body region (vm) with en positive cell cluster 
(white arrow) and a single remaining en expressing cell at the posterior margin of the protoconch (black arrow).  

Fig. 7. Post-metamorphic individual at 61 hpm, lateral left view, anterior faces upwards. En expression is 
restricted to a few number of cells situated in the region of the adult cephalic ganglion (arrow). No expression in 
either the foot (ft) or the visceral mass (vm). ca – anlage of the adult captacula.  
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DISCUSSION 

 

General scaphopod development  

The prototroch of Antalis entalis consists of 3 rows of large ciliated cells, which arrange some 

time after hatching and continuously move towards each other, but are retained until the onset 

of metamorphosis (Fig. 1). This is in accordance with Kowalevsky (1883) and Cather and 

Verdonk (1979), but differs from earlier results by Lacaze-Duthiers (1857: pl. 7), who 

observed 6 initial rows of ciliated cells which are subsequently reduced to a single row in late 

larvae. Compared to larvae of other molluscan clades (see, e.g., Nielsen 1995), Antalis shows 

a unique type of molluscan prototroch, thus reflecting the high phenotypic plasticity of 

molluscan “trochophores”. The foot develops from a primarily bi-lobed hump, similar to the 

early pedal anlage of gastropods (see, e.g., Patten 1886, Arnolds et al. 1983, Damen and 

Dictus 1996: fig. 1E, Wanninger et al. 2000). Its 3-lobed functional appearance is obtained 

before or slightly after metamorphosis (cf. Fig. 2 herein and Lacaze-Duthiers 1857: pl. 7, fig. 

8), with the ciliated foot sole being restricted to the anterior-most tip of the central foot lobe 

(Fig. 2). Contrary to the gastropod cephalic tentacles, the scaphopod cephalic captacula are of 

entire post-metamorphic origin (cf. Fig. 2 herein and Lacaze-Duthiers 1857: p. 236 and pl. 8, 

fig. 2). 

 

Shell formation 

It has been shown earlier for nearly all major conchiferan groups, that embryonic shell 

formation starts with an initial stage of shell field invagination (see Kniprath 1981). 

Functionally, this has been explained by the fact that only the cells that are situated at the 

edge of the embryonic shell field are able to secrete the organic matrix and the periostracum, 

which need to be formed prior to calcification. By invagination of the shell field, these cells 

are brought closely together to avoid the formation of a hole during the earliest phase of 

calcification (Ziegler 1885, Kniprath 1977, 1979, 1981). After evagination, the shell forming 

cells migrate laterally and eventually become situated at the mantle edge (Kniprath 1981, 

Waller 1981, Moore 1983). As in gastropods and bivalves (Hadfield and Strathmann 1990, 

Morse and Zardus 1997, Wanninger et al. 1999b), the surface of the scaphopod protoconch is 

relatively smooth compared to the teleoconch which shows distinct growth lines (Fig. 2D; see 

also Engeser et al. 1993 for similar findings in fossilized Scaphopoda). In contrast to 

lecithotrophic Gastropoda and Bivalvia, we found that the scaphopod protoconch undergoes 
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significant growth until metamorphic competence, which is thus not formed “at once” as in 

the former clades (e.g., Haszprunar et al. 1995).  

We found engrailed being expressed in the cells of the shell field and, later, in the cells of the 

mantle margin which contribute to protoconch formation. During its entire morphogenesis, 

the shell remains univalved in Antalis entalis. These data not only coincide with the original 

data on scaphopod shell formation (Lacaze-Duthiers 1857, Kowalevsky 1883), but also with 

the findings of Moshel et al. (1998) on engrailed expression in the gastropod Ilyanassa 

obsoleta. In contrast, after invagination of the single shell field, bivalve embryonic shell 

(prodissoconch I) formation starts with 2 centers of calcification, which are separated by an 

uncalcified ridge which later becomes the hinge (Kniprath 1981, Waller 1981). Gene 

expression pattern analyses revealed engrailed positive cells in both calcification centers and 

in the putative shell hinge area (Jacobs et al. 2000). These results strongly argue in favor of a 

primary univalved (embryonic) shell as plesiomorphic for the Conchifera, while a secondary 

bivalved shell is regarded as apomorphy for the Bivalvia. Thus, and because of the results of 

recent cladistic analyses (Waller 1998, Haszprunar 2000), we propose to abandon the 

Diasoma concept. The lack of engrailed expression in cells that form the teleoconch indicates 

different genetic mechanisms being involved in embryonic and adult shell morphogenesis, 

which should thus not be regarded (ontogenetic) homologous.  

 

Comparative expression patterns of engrailed  

As in annelids (e.g., Shain et al. 2000), arthropods (e.g., Abzhanov and Kaufman 2000), 

echinoderms (Lowe and Wray 1997), and chordates (e.g., Patel et al. 1989, Holland et al. 

1997, Hanks et al. 1998), the homeobox gene engrailed appears to play a role in the 

neurogenesis of the adult central nervous system in the Scaphopoda. In annelids and 

arthropods, engrailed and its homologues also serve as “compartment” genes by being 

involved in segment formation (Kornberg 1981, Lans et al. 1993, De Robertis 1997, 

Dahmann and Basler 1999, Abzhanov and Kaufman 2000, Marie and Bacon 2000). 

Aside from the present study, the only expression data on engrailed in the Mollusca are 

provided by Moshel et al. (1998) and Jacobs et al. (2000). Wray et al. (1995) showed that 

engrailed homologues are also present in the Cephalopoda. In this taxon, however, engrailed 

was only found in the basal, external shell bearing Nautilus, while Loligo, with reduced, non-

mineralized internal shell (gladius), lacks an engrailed homologue altogether. These findings, 

in combination with our data, allow the assumption that engrailed was part of a set of genes 

present in the ancestral testarian (Conchifera + Polyplacophora; cf. Haszprunar 2000) 
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bauplan, required to form shell (plates?). Furthermore, the results presented herein indicate 

that engrailed only contributes to the formation of the conchiferan protoconch but not to the 

adult shell. However, future detailed investigations of basal bivalve, polyplacophoran, and 

especially aplacophoran taxa should significantly enhance phylogenetic insights regarding 

shell morphogenesis and shell homologies in the Mollusca.  

Gene expression pattern analyses in deuterostomes revealed additional functional innovations 

of engrailed. In echinoderms, engrailed is also involved in the formation of the calcitic, 

ectodermal endoskeleton (Lowe and Wray 1997). Moreover, in the sea urchin Tripneustes 

gratilla, the engrailed transcript has also been found in the coelomocyte as well as in the 

ovary and testis of adult individuals, but not in early embryonic or larval stages, suggesting 

regulative functions of engrailed during gametogenesis (Dolecki and Humphreys 1988). 

Finally, one of the 2 vertebrate engrailed homologues (en-1) appears to play an important role 

in limb development (Loomis et al. 1996, Logan et al. 1997, Hanks et al. 1998).  

 

In summary, the available data suggest that the basic function of engrailed in the bilaterian 

ancestor was to regulate (adult) neurogenesis, a feature that has been conserved throughout 

the Bilateria (cf. Lowe and Wray 1997). However, engrailed shows several independent 

functional innovations, which at least include segment compartmentation in annelids and 

arthropods, biomineralization in molluscs and echinoderms, limb development in vertebrates, 

and maybe gametogenesis in sea urchins. Thus, engrailed may serve as an example which 

demonstrates the evolvability and plasticity of gene functions during evolution. Accordingly, 

the co-expression of orthologous genes in organs of species of different phyla alone can not 

solve the question whether or not these organs are indeed homologous (see Abouheif et al. 

1997).  
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APPENDIX IV 
 

 

 

Muscle development in Antalis entalis (Mollusca, Scaphopoda) and its 

significance for scaphopod relationships 
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Abstract. We applied fluorescence staining of F-actin, confocal laser scanning microscopy, 

as well as light microscopy, SEM, and TEM to examine myogenesis in larval and early 

juvenile stages of the tusk-shell, Antalis entalis. Myogenesis follows a strict bilateral 

symmetrical pattern without distinct larval muscle systems. The paired cephalic and foot 

retractors appear synchronously in the early trochophore-like larva. In late larvae, both 

retractors form additional fibers which project into the anterior region, thus enabling 

retraction of the larval prototroch. These fibers, together with the prototroch, disappear during 

metamorphosis. The anlagen of the putative foot musculature, mantle retractors, and buccal 

musculature are formed in late larval stages. The cephalic captacula and their musculature are 

of post-metamorphic origin. Development of the foot musculature is dramatically pronounced 

after metamorphosis, which results in a dense muscular grid consisting of outer ring, 

intermediate diagonal, and inner longitudinal fibers. This is in accordance with the proposed 

function of the foot as a burrowing organ based on muscle-antagonistic activity. The existence 

of a distinct pair of cephalic retractors, which is also found in basal gastropods and 

cephalopods, as well as new data on scaphopod shell morphogenesis and recent cladistic 

analyses, indicate that the Scaphopoda may be closer related to the Gastropoda and 

Cephalopoda rather than to the Bivalvia.  

 

INTRODUCTION 

 

At the beginning of the 21st century, the traditional proposal of a direct bivalve-scaphopod 

relationship still remains controversal (Waller, 1998; Haszprunar, 2000). Despite the lack of 

clear syn-apomorphies, the Scaphopoda have traditionally been comprised with the Bivalvia, 

especially since Runnegar and Pojeta (1974) proposed the Diasoma concept. This hypothesis 

was based on the assumption of a primarily bi-lobed shell in both groups. Recently, 

Wanninger and Haszprunar (2001a) rejected such a taxon by revealing an entire univalved 

character of the scaphopod shell during development of the tusk shell, Antalis. So, if the 

"Diasoma" fail, where in the molluscan tree and according to which syn-apomorphies should 

the Scaphopoda be placed?  

With molecular methodologies rapidly improving during the last 15 years, questions 

regarding animal phylogeny were tackled on a comparative genetic level. While the first 

molecular trees of the animal kingdom yielded results that were mostly in complete 

discordance with the morphological ones, improvement of both, molecular techniques and 

data processing (e.g., computer analysis software), led to fascinating alternatives to the 
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current believes of animal relationships (e. g., Field et al., 1988; Yang, 1996; Aguinaldo et al., 

1997; Ruiz-Trillo et al., 1999). In the course of this phylogenetic renaissance, ontogenetic 

data were increasingly considered useful for phylogenetic analyses. This created the currently 

booming field of evolutionary developmental biology (evo-devo), which revived the 

Haeckelian tradition of the 19th century. While, in the dawn of evo-devo, data generation 

mainly concentrated on revealing gene homologies, comparative gene expression pattern 

analysis is the current state of the art. Focusing on these sub-cellular criteria, however, data 

regarding morphological aspects of developmental biology are still innumerous, although 

these have produced highly relevant insights in the mechanisms of animal evolution and 

phylogeny (Eernisse et al., 1992; Nielsen, 1995; Salvini-Plawen and Bartolomaeus, 1995; 

Ponder and Lindberg, 1997; Haszprunar and Wanninger, 2000; Wanninger et al., 2000; 

Wanninger and Haszprunar, 2001a, b). In the framework of an extensive comparative study 

on muscle development in the Mollusca, we applied fluorescence labeling of F-actin 

combined with confocal laser scanning microscopy and computer image analysis, as well as 

SEM and TEM, in order to elucidate the developmental mechanisms which underlie 

molluscan myogenesis. New data sets on muscle morphogenesis may answer developmental, 

phylogenetic, and eco-functional questions in the Mollusca and their possible outgroups.  

In this paper, we present the first data on muscle development in a scaphopod, Antalis entalis 

(Jeffreys, 1869), and their implications for phylogenetic considerations within the Mollusca. 

Special reference is given to the scaphopod-bivalve question, the sister-group relationship of 

which has recently been questioned (Waller, 1998; Haszprunar, 2000; Wanninger and 

Haszprunar, 2001a). In addition, a comprehensive review of the current state of knowledge 

regarding molluscan myogenesis is provided.  

 

MATERIALS AND METHODS 

 

Animals 

Adult Antalis entalis (Jeffreys, 1869) were collected from 30m depth along the Atlantic 

coast near Roscoff, France during July 1999. Single individuals were placed in petri dishes 

and spawning was induced by alternating incubations at 4°C and 25°C. Embryos, larvae, 

and juveniles were cultured at 17.5°C-19.5°C in Millipore filtered seawater (MFSW) with 

50 mg streptomycin sulfate and 60 mg penicillin G added per litre to avoid bacterial or 

fungal infections. Metamorphosis was induced by addition of pieces of shell gravel from 
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the substratum of the adult habitat to the cultures. For further details see Wanninger and 

Haszprunar (2001a). 

 

F-actin labeling and confocal laser scanning microscopy (CLSM) 

A detailed description of the protocol for F-actin staining is given in Wanninger et al. (1999a). 

In brief, animals were relaxed by addition of 7% MgCl2 to the MFSW and fixed for 4 hours at 

room temperature in 4% paraformaldehyde in 0.1M phosphate buffer (PBS), followed by 3 

washes in the same buffer. For F-actin labeling, the specimens were incubated in PBS with 

0.2% Triton X-100 (PBS-T) for 1 hour and stained in a 1:40 dilution of Oregon Green 488 

phalloidin (Molecular Probes) in PBS-T (1 hour). After 3 washes in PBS whole-mount 

preparations were obtained by mounting the stained specimens in Vecta Shield (Vector) 

antifade mounting medium on glass slides. For digital image generation CLSM was 

performed by using a Leica DM IRBE microscope with Leica TCS NT software. 

 

Scanning electron microscopy (SEM) 

After relaxation, standard protocols were applied as described by Wanninger and 

Haszprunar (2001a). To preserve the delicate protoconch, larvae were fixed in 1% OsO4 in 

distilled water. For better tissue conservation, 4% glutaraldehyde in 0.2M sodium 

cacodylate buffer with 0.1M NaCl and 0.35M sucrose was applied for several hours, 

followed by 3 washes in the same buffer, post-fixation in 1% OsO4 in 0.2M sodium 

cacodylate buffer with 0.3M NaCl (2 hours), and 3 final washes in 0.2M sodium 

cacodylate buffer with 0.3M NaCl. 

All SEM samples were dehydrated in an acetone series, critical point dried, sputter coated 

with gold, and observed with a Philips XL 20 SEM. 

 

Sectioning, light microscopy (LM) and transmission electron microscopy (TEM) 

Animals were fixed as described for SEM, dehydrated in a graded ethanol series, and 

embedded in low viscosity resin (Spurr, 1969). For LM, ribboned semi-thin serial sections 

were obtained with glass knives and stained with methylene-blue-azure II (Richardson et 

al., 1960). These sections were analyzed using a Leica DM RBE microscope and relevant 

pictures recorded with a Kappa DX 30 digital imaging system. For TEM, ultra-thin 

sections were cut with diamond knives, stained with uranyl-acetate and lead-citrate (see 

Reynolds, 1963), and investigated using a Philips CM 10 TEM. 

 



Appendix IV                                                                          Muscle development in a scaphopod 100 

RESULTS 

 

General outline of scaphopod larval development 

A detailed description of scaphopod larval and post-metamorphic development is given by 

Wanninger and Haszprunar (2001a). Thus, we only refer to the main developmental stages 

herein, which are summarized in figure 1. Around 2 days after hatching, the anlage of the foot 

is clearly visible and the mantle epithelium has started to differentiate. However, the lateral 

mantle edges have not yet ventrally fused. Although this represents a quite early stage of the 

lecithotrophic trochophore-like larva, the cells of the apical organ have already started to 

decay (Fig. 1A). During subsequent development, the mantle and the protoconch (embryonic 

shell secreted by mantle margin cells) fuse ventrally, leaving a characteristic median ventral 

fusion line (suture) on the embryonic shell. The whole animal grows in anterior direction until 

metamorphic competence (Fig. 1B). During metamorphosis, the larval prototroch is shed, the 

protoconch stops growing, and the typical features of the adult scaphopod body plan such as 

teleoconch (adult shell), 3-lobed foot with ciliated tip of the central lobe, cephalic captacula, 

and buccal apparatus start to form (Fig. 1C). These and all other organ systems are 

continuously elaborated and the juvenile starts feeding several days after metamorphosis (Fig. 

1D).  

 

Myogenesis 

Muscle development in Antalis starts at around 50 hours post fertilization (hpf). By this time, 

the mantle epithelium and the protoconch have already started to develop, but are still 

ventrally open (cf. Figs. 1A, 2A). Two dorso-laterally positioned, F-actin positive regions are 

stained in the posterior third of the larval body. These areas are bilaterally symmetrically 

arranged and the anlagen of the putative head and foot retractors are not yet distinctive (Fig. 

2A). Slightly later, both retractors have started to form distinct fibers. The myofibrils of the 

putative pedal retractors run dorsally from their posterior shell attachment site into the mid-

body region. The anlagen of the cephalic retractors, likewise situated in the dorsal area, 

continue into the anterior third of the larval body and consist of fewer fibers than the foot 

retractor (Fig. 2B). After ventral closure of the protoconch, the pedal retractor fibers project 

ventrally into the foot rudiment and interconnect with the newly formed myocytes of the 

pedal plexus. In contrast, the cephalic retractors run in anterior direction towards the mantle 

fold. Both, the pedal and the cephalic retractors show additional fibers which penetrate the 

prototroch area thus serving as prototroch retractor muscles (Fig. 2C). 
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Fig. 1. Larval and early juvenile development of Antalis entalis, SEM, anterior faces upwards. A, C, D, 
decalcified, B with intact protoconch (pro). (A) Larva with the ventrally open mantle, thus the foot (ft) visible. 
Note the already degenerating apical organ (ao) and prototroch (pt). Age: 62 hours post fertilization (hpf), 
antero-ventral view. (B) Metamorphic competent specimen showing ventral fusion line (suture, su) of the 
embryonic shell (protoconch, pro). Age: 95 hpf, ventro-lateral right view. (C) Early juvenile with well developed 
foot (ft) and visceral body including mantle epithelium (me) and mantle fold (mf). The anlagen of the buccal 
cone (bc) and captacula (ca) are visible. Age 7 hours post metamorphosis, dorso-lateral right view. (D) Later 
juvenile with prominent visceral body region. Age: 13 days post metamorphosis, dorsal view. 
 

 

However, these muscle portions are not independent but are connected to either the cephalic 

or the pedal retractors. No prototroch muscle ring is present during the entire larval 

development of Antalis. At metamorphic competence, 2 additional muscle systems have 

emerged, namely the buccal musculature, which is represented by a muscular ring which 

encircles the region of the foregut in the anterior-most third of the larval main body, and the 

mantle retracting fibers, which start to develop laterally on both sides (Fig. 2D). The latter 

muscles consist of a left and right yet little differentiated cluster of muscle cells. The fibers of 

the buccal ring run just ventral to the cephalic retractor and at the inner side of the mantle 

retractor muscles.  

Due to the morphological changes at metamorphosis, which include shedding of the larval 

prototroch (see Fig. 1), the prototroch retracting muscle projections of the pedal and cephalic 

retractors are resorbed. In contrast, the mantle retractors have started to arrange antero-
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laterally (Fig. 2E). Both the pedal and cephalic retractors increase in thickness, with the pedal 

retractors forming the most prominent muscle system in the early juvenile scaphopod (Fig. 

2F, G). The foot musculature (pedal plexus) starts to arrange post-metamorphically and at 

around 60 hours post metamorphosis (hpm) its middle piece consists of circular, longitudinal, 

and diagonal fibers which form a 3-dimensional muscular grid. The musculature of the 3-

partite anterior part of the foot is not yet fully differentiated (Fig. 2G, H). Due to the anterior 

growth of the animal the mantle retractor muscles increase in length and the buccal 

musculature is continuously elaborated. The shell attachment sites of both the pedal and the 

cephalic retractors lie dorso-laterally just anterior to the posterior shell opening (porus). From 

here, the pedal retractors run slightly more dorsal and more lateral to the cephalic retractors 

into the mid-body of the juvenile, until they reach the buccal muscle ring. (Fig. 2H, I). From 

the inner sides of this ring, both foot retractor muscles run in ventral direction into both sides 

of the foot, thus forming the lateral longitudinal myofibrils which penetrate the whole length 

of the foot (Fig. 2K, L). The cephalic retractors run from their postero-dorsal origin in anterior 

direction until they reach the buccal ring, which they cross dorsally. Then, they continue 

slightly ventrally into the buccal region of the animal (cf. Fig. 1C, 2H).  

The structural differentiation of the foot musculature is best recognizable in whole mount 

fluorescence preparations and cross-sections of juveniles aged several days after 

metamorphosis (Figs. 2K, L, 3). The central (main) lobe of the anterior part mainly consists of 

outer circular and inner longitudinal muscle fibers with only occasionally present diagonal 

myocytes (Fig. 3B, D, E). The 2 lateral lobes bear few diagonal, several longitudinal, and 

additional circular muscle fibers, with which they are connected to the central foot lobe (Fig. 

3B, E). In contrast, the middle piece (which we define as the region extending from the basis 

of the 2 lateral lobes back to the slightly broadened foot basis) and the foot basis are formed 

by a dense muscular meshwork, which mainly consists of longitudinal and intercrossing 

diagonal muscles (Fig. 3B, F). Although the captacula start to form during or immediately 

after metamorphosis (cf. Fig. 1C), their musculature starts to develop several days after 

metamorphosis (dpm). However, in the oldest specimens investigated (13 dpm), the captacula 

muscles were already able to retract the captacula into the mantle cavity (Figs. 2L, 3). Cross- 

sections of the 2 pairs of captacula in 13 dpm old specimens illustrate their strongly 

developed musculature which hardly leaves space for a distinct captacular cavity. (Fig. 3G, 

H). 
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Fig. 2. CLSM micrographs of myogenesis in Antalis entalis, anterior faces upwards. (A-D) Developmental 
sequence from the first detectable signal until metamorphic competence. (A) Earliest, paired anlage of the 
putative retractors in the dorso-posterior region of the larva (arrows) (pt, prototroch). Age: 53 hpf, dorsal view. 
(B) The pedal retractors (pr) and cephalic retractors (cr) have started to form distinct muscle fibers. Age: 62 
hpm, lateral left view. (C) The pedal retractors (pr) run into the foot and interconnect with the pedal plexus (pp) 
but also form fibers that project into the anterior region of the prototroch (pt) ("prototrochal projections of the 
pedal retractor", ppr). The more delicate cephalic retractors (cr) run along the dorsal mantle edge with their 
distinct prototrochal projections (pcr) also inserting in the prototrochal region. Age: 90 hpf, lateral left view. (D) 
Specimen showing both retractor systems (pr, cr) as well as the early anlagen of the mantle retractors (mr) and 
the buccal muscle ring (bm), both situated in the region behind the mantle fold (mf). Age: 95 hpf (metamorphic 
competent), dorsal view. (E-H) Juveniles aged several hours post metamorphosis (hpm) until 2.5 days post 
metamorphosis (dpm). (E) Early juvenile with shed prototroch, lost prototrochal muscle projections, and 
retracted foot, showing the close proximity of both retractor systems (pr, cr). Age: 5 hpm, dorsal view. (F) 
Relaxed specimen demonstrating the independence of the pedal retractors (pr) and cephalic retractors (cr). Note 
the pedal plexus (pp) which starts to elaborate. Age: 9 hpm, dorso-lateral left view. (G) Specimen that illustrates 
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the absolute and relative thickness of the pedal (pr) and cephalic retractors (cr) as well as the muscular 
meshwork of the foot (pp). Age: 42 hpm, lateral right view. (H) Overview of all muscles in an early juvenile. 
Relative to the pedal retractors (pr), the cephalic retractors (cr) lie closer to the dorsal mid-line of the animal. 
Posteriorly, the cephalic retractors (cr) start slightly more ventrally of the pedal retractors (pr), run in anterior 
direction until the reach the buccal muscle ring (bm), bend again ventrally and insert in the cephalic region. The 
pedal retractors (pr) run dorsally until they reach the buccal muscle ring (bm), from where they project laterally 
into both sides of the foot. Age: 61 hpm, dorsal view. (I-L) 13 dpm old specimens. (I) Dorsal view, showing the 
increasing dominance of the pedal retractors (pr) relative to the cephalic retractors (cr). (K) Lateral right view. 
Note the right pedal retractor (pr) running laterally into the foot, as well as the fine, slender mantle retracting 
fibers (mr), the well developed musculature of the cephalic captacula (ca), and the massive foot musculature 
(pp). (L) Ventral view which illustrates the meshwork-like myo-pattern of the pedal plexus (pp), the relative 
position of the captacula (ca) in the juvenile body, and the penetration sites of the pedal retractors (pr) into the 
foot basis. 
 

 

Ultrastructure 

All identified muscle systems in Antalis entalis are smooth (i.e., non-striated) (Fig. 4). This is 

also true for the prototrochal projections of the cephalic and the foot retractors and for the 

buccal musculature.  

 

DISCUSSION 

 

Molluscan muscle systems and their phylogenetic significance 

 

Until recently, molluscan myogenesis has received little to no attention for phylogenetic 

considerations. New data on the muscle development in basal gastropods (Degnan et al., 

1997; Page, 1997, 1998; Wanninger et al. 1999a, b), Nudibranchia (Page, 1995), pulmonates 

(Ruthensteiner, pers. comm.), Polyplacophora (Wanninger and Haszprunar, 2001b), and 

Scaphopoda (this paper), as well as earlier works on bivalves (Hatschek, 1880; Meisenheimer, 

1901; Cragg, 1985; Cragg and Crisp, 1991) enable a broad comparison across the Mollusca, 

especially since their adult myo-anatomy is fairly well known (cf. Table 1).  

 

Body wall and dorso-ventral (shell) musculature 

It is now widely accepted that the aplacophoran taxa Caudofoveata and Solenogastres form 

the most basal molluscan classes, with the Solenogastres being probably the earliest offshoot 

of the phylum (Haszprunar, 2000; Fig. 5 herein). Their numerous plesiomorphic characters 

include multiple, serially repeated dorso-ventral muscle fibers and a 3-layered body wall 

musculature which consists of outer ring, intermediate diagonal, and inner longitudinal 

muscles (Salvini-Plawen, 1969, 1972; Scheltema, 1993; Scheltema et al., 1994; Haszprunar 

and Wanninger, 2000; cf. also Table 1). 
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Fig. 3. The myo-anatomy of juvenile Antalis entalis specimens as revealed by SEM, fluorescence staining of F-
actin, and serial semi-thin cross sections. Boxed areas are enlarged in B and C, stippled lines mark the sectioning 
planes of D-I. All images obtained from 13 dpm old specimens. Orientation is with anterior up in A-C and with 
ventral up in D-I. (A) SEM (left, ventro-lateral right view) and CLSM (right, ventral view) image to illustrate the 
position of the body regions shown in B-I. (B) Anterior tip of the foot with numerous longitudinal muscle fibers 
(open arrowheads), circular muscles (arrows), and few diagonal myocytes (full arrowheads). Note the similar 
patterning in the central (main) foot lobe and the left (ll) and right lateral lobes (rl). (C) Detail of the central foot 
region revealing the typical pattern due to the predominant signal of the diagonal muscle fibers (full 
arrowheads). The longitudinal muscles (open arrowheads) are mainly visible in the lateral foot regions. (D-I) 
Serial cross sections of different body regions along the antero-posterior axis. All sections are slightly shifted to 
the right. (D) Central lobe in the anterior, ciliated (ci) region with anterior-most part of the right lateral lobe (rl). 
The diagonal (full arrowheads), longitudinal (open arrowheads), and circular muscle fibers (arrow) are loosely 
arranged leaving a small lumen in the foot tip (mv, epidermis with microvilli). (E) Area at the basis of the lateral 
lobes (rl, ll), showing that circular muscle fibers (arrows) connect the lateral lobes to the central main foot part. 
(F) Section in the region where the foot (ft) is already buried in the mantle cavity (mc), slightly anterior of the 
captacula. The foot musculature is very densely packed, leaves no space for a distinct cavity, and contains 
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massive diagonal (full arrowheads) and longitudinal muscle bundles (open arrowheads). Note the relatively thick 
mantle epithelium (me). (G) Section in the anterior foregut (fg) region, where the pedal retractors (pr; here only 
right one visible) project into the foot. Note the 2 pairs of captacula (ca) with numerous cell nuclei and muscle 
bundles but without lumen. (H) Section through the region of the cerebral commissure (cc) and the radula (r), 
revealing the large, multi-chambered radula bolsters (rb), which are embedded in the surrounding buccal 
musculature (bm). (I) The posterior body area is characterized by a spacious mantle cavity (mc) and by a body 
cavity which bears the paired pedal retractors (pr) (and cephalic retractors, which are not distinguishable by 
semi-thin section analysis; cf. Fig. 2) and the hindgut (hg).  
 
 

 
Fig. 4. Ultrastructure of muscle systems of a juvenile specimen (13 dpm). (A) Longitudinal section 
demonstrating the smooth character of the pedal retractor fibers (pr). (B) Cross section in the region of the buccal 
cone showing myofibers of the cephalic retractor (asterisks) which are situated between the dorsal mantle 
epithelium (me; with outer microvillous border, mv) and a more ventrally positioned ganglion (ga) of the central 
nervous system (nu, nucleus; rh, rhogocyte). Boxed area is enlarged in C. (C) Detail of cross section of cephalic 
retractor fibers (asterisks).  
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Table 1. Major currently available data regarding the occurrence of the main muscle systems in the various classes of the Mollusca.  
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
    "worm-like" larval  prototroch/ adult  number of sets of  Reference 
    body wall retractors velum ring cephalic  adult dorso-ventral  
CLASS    musculature     retractors (shell) muscles  
 
SOLENOGASTRES  + (adult)       ?    ?    -  multiple   Salvini-Plawen, 1985;  

Scheltema, 1993;  
               Scheltema et al., 1994; 

Haszprunar and Wanninger, 2000 
 

CAUDOFOVEATA  + (adult)       ? (-)    ? (-)    -  reduced, several in Salvini-Plawen, 1972, 1985; 
            anterior body region Scheltema et al., 1994; 
               Wanninger, pers. obs. 
 
POLYPLACOPHORA  + (larva,       -    +    -  8 (formed by   Wanninger and Haszprunar, 2001b 
    pre-trochal)       multiple, serially   
            arranged fibers)  
TRYBLIDIA   -       ?    ?    -  8   Lemche and Wingstrand, 1959; 
               Wingstrand, 1985; 
               Haszprunar and Schaefer, 1997a, b 
 
BIVALVIA   - (+ secondary          Hatschek, 1880; 

in ship worms)      +    + (basal ?)   -  3-8   Meisenheimer, 1901; 
               Cragg, 1985;  

Cragg and Crisp, 1991; 
               Wanninger, pers. obs. 
 
SCAPHOPODA   -       -    -    + (1 pair) 1-2   Steiner, 1992a; 
               this paper 
 
GASTROPODA   - (+ secondary      +    +    + (1 pair) 1   Wanninger et al., 1999a, b; 
    in slugs)           Degnan et al., 1997; 

Page, 1995, 1997, 1998; 
               Ruthensteiner, pers. comm. 
 
CEPHALOPODA  -       (-)    (-)    + (1 pair) 1 ("depressor  Lang, 1900; 
            infundibuli")  Wells, 1988 
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These are the main features which are correlated their "worm-like" gross morphology, and 

although the molluscan sister-phylum still needs to be determined (Haszprunar, 1996, 2000; 

Waller, 1998), these data imply a "worm-shaped" ancestor at the base of molluscan phylogeny 

(see also Haszprunar and Wanninger, 2000). Regarding the evolution of the molluscan 

musculature, Wanninger and Haszprunar (2001b) showed that the Polyplacophora represent a 

link between the aplacophoran worm shape and the conchiferan condition of concentrated and 

numerically reduced shell muscles (Table 1, Fig. 5). Evidence for this is twofold. First, there 

is a "worm grid" in the pre-trochal region of the chiton larva, which is regarded as ontogenetic 

recapitulation of the ancestral body wall musculature as found in adult aplacophorans. 

Second, the development of the dorso-ventral musculature undergoes an initial stage of 

multiple seriality which corresponds to the situation in adult Solenogastres, thus rendering the 

typical chiton-like 8-metamerism of the adult dorso-ventral shell musculature a secondary 

condition. Since larval stages of the Tryblidia (monoplacophorans) are still unknown, the 

question whether these relics are ontogenetically present in basal conchiferans remains 

speculative. Despite this, the data currently available clearly suggest a link of 2 evolutionary 

trends within the Mollusca, which can be traced from the basal aplacophoran to the derived 

gastropod-cephalopod condition. These are the evolution of protective epidermal structures – 

the homology of which still being uncertain - from calcareous spicules (Solenogastres and 

Caudofoveata) via shell plates (Polyplacophora) to a univalved shell (Conchifera; the bivalve 

shell represents an apomorphy for the Bivalvia, see Wanninger and Haszprunar, 2001a), 

which coincides with a subsequent concentration and numeric reduction of the dorso-ventral 

shell musculature. Additionally, with the functional innovation of a stable "exoskeleton" 

(shell), the 3-layered, ancestral body wall musculature, important in the aplacophorans for 

maintaining the body shape as antagonist against the body pressure, lost its original function 

and disappeared in the Conchifera (Fig. 5).  

 

Other muscle systems and the scaphopod-bivalve relationship 

A recent overview on all muscle systems present in the Mollusca is given by Haszprunar and 

Wanninger (2000). Here, we focus on the ontogenetically and phylogenetically most relevant 

ones, i.e., the larval retractor systems, the prototroch/ velum muscle ring, and the adult 

cephalic retractors (cf. Table 1). Larval retractor muscles, which are characterized by distinct 

shell insertion areas and an (oblique) striation pattern, have been found in certain 

planctotrophic bivalve taxa more than 100 years ago (Hatschek, 1880; Meisenheimer, 1901; 

Cragg, 1985; Cragg and Crisp, 1991). 
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Fig. 5. Phylogenetic tree of the Mollusca (after Haszprunar, 2000) as inferred from the currently available data 
sets including the new data on myogenesis. Thus, a typical worm-shaped ancestor with 3-layered body wall 
musculature and serially repeated dorso-ventral muscles, as found in adult Solenogastres and Caudofoveata as 
well as in larvae of the Polyplacophora, is part of the ancestral molluscan bauplan. The introduction of a distinct 
cephalic retractor system at the base of the scaphopod-gastropod-cephalopod line is diagnostic for such a 
supertaxon and contradicts the earlier proposed Diasoma concept which comprised the Scaphopoda and the 
Bivalvia ("Diasoma") as sister taxon of the Gastropoda and Cephalopoda ("Cyrtosoma"). The evolutionary origin 
of larval retractors and the velum/ prototroch muscle ring remain phylogenetically ambiguous due to the lack of 
data for the Solenogastres, Caudofoveata, and Tryblidia and because of the derived development of the 
Cephalopoda (see text).  
 

 

However, the presence of such retractors in the bivalve groundplan remains debatable since 

the basal Bivalvia (protobranchs) show a lecithotrophic test-cell larva, which is nowadays 

considered a derived larval type diagnostic for protobranchs, with their larval myo-anatomy 

still being unknown. Since the larval condition in the Tryblidia, Caudofoveata, and 

Solenogastres remains obscure and the cephalopod development is highly derived, only the 

polyplacophorans, scaphopods, and gastropods provide data relevant for discussion. The lack 

of distinct larval retractors in the Polyplacophora and Scaphopoda - the prototrochal muscle 

projections of which are smooth and lack distinct shell insertion sites, see above - and their 
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presence in the basal gastropod bauplan (Degnan et al., 1997; Page, 1997, 1998; Wanninger et 

al., 1999a; see also Table 1) makes their evolutionary origin at the interface of the Bivalvia 

versus Scaphopoda, Gastropoda, and Cephalopoda (inferring secondary loss in the 

Scaphopoda) equally parsimonious with their twice independent evolution in the Bivalvia and 

the Gastropoda (cf. Fig. 5). A similar problem occurs regarding the phylogenetic origin of the 

velar/ prototrochal muscle ring, which is found in the Polyplacophora, (basal ?) Bivalvia, and 

all Gastropoda with a larval stage, including Nudibranchia (Page, 1995) and pulmonates 

(Ruthensteiner, pers. comm.), but not in the Scaphopoda (Table 1). Applying the parsimony 

principle at the current state of knowledge, the available data suggest its evolution at the 

polyplacophoran-conchiferan interface (secondary loss in the Scaphopoda), but due to the 

missing data for numerous taxa (see above), especially the aplacophorans and tryblidians, this 

issue requires further investigation.  

Until this study, the existence of adult (i.e., post-metamorphic) cephalic retractors were only 

reported for the Gastropoda and Cephalopoda (Salvini-Plawen and Steiner, 1996; Haszprunar, 

2000). However, Lacaze-Duthiers (1857: pp. 233-234 and pl. 9, fig. 2) already stated that one 

of the 2 retractor pairs in juvenile Dentalium projects into the antero-dorsal region of the 

animal close to the mouth ("... où il s’unit au corps en arrière de la bouche." [p. 233]). Despite 

this and the illustration in his plate 9, fig. 2, which indicates the insertion of this muscle 

within the buccal cone, he interprets this muscle as a mantle retractor ("... rétracteurs ... du 

manteau." [p. 233]). However, as outlined above, the dentaliid mantle retracting system 

origins much more anteriorly (close to the buccal apparatus) and consists of numerous loosely 

arranged muscle fibers rather then a solid muscle bundle (cf. Fig. 2E, H herein and Lacaze-

Duthiers, 1857: pl. 9, fig. 2). 

It is important to note that all other Mollusca, although lacking a free movable head which is 

apomorphic for gastropods and cephalopods (Salvini-Plawen and Steiner, 1996; but see 

Waller, 1998, who interpreted the scaphopod buccal cone as a similar free movable head 

structure), do, however, have a distinct "cephalic region". This is characterized by a buccal 

apparatus (which is secondarily lost in the Bivalvia) and distinct cerebral ganglia with 

commissure. Herein, we demonstrate that the Scaphopoda show an independent, paired 

retractor system, which projects into the dorsal region of the buccal cone but is not associated 

with the buccal cartilages (Figs. 1, 2C). In contrast to gastropods, where the cephalic 

retractors are of entire post-metamorphic origin (cephalopods lack a truly larval stage; see 

above), these muscles start forming very early in scaphopod development and appear 

synchronously with the foot retractors. This reflects the more direct character of larval 
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development in scaphopods compared to polyplacophorans, bivalves, or gastropods, and it 

seems likely that the origin of the cephalic retractors has been heterochronically shifted into 

the early larval stages in scaphopods. However, the presence of larval protonephridia in post-

metamorphic juveniles already bearing the adult excretory system (Ruthensteiner et al., 2001) 

demonstrate that the ontogeny of Antalis comprises mechanisms of accelerated as well as 

delayed development (note also the pre-metamorphic anlage of the cephalic tentacles in 

gastropods versus the post-metamorphic origin of the captacula in scaphopods; Fig. 2C and 

Wanninger and Haszprunar, 2001a).  

Because of positional, structural, and functional similarities, we regard the cephalic retractor 

system as suprataxic homologous and thus diagnostic for a supertaxon comprising 

Scaphopoda and Gastropoda + Cephalopoda. The lack of definite apomorphies for a diasome 

clade (Waller, 1998; Haszprunar, 2000; Wanninger and Haszprunar, 2001a) strengthens this 

hypothesis.  

 

Functionality of the scaphopod foot and captacula 

 

The main features of the current believes regarding functional anatomy of the molluscan foot 

is reviewed and updated in Kier (1988). Generally, there are 2 ways of how animal 

appendages may function. One is by a so-called muscular-hydrostat system, which 

exclusively relies on antagonistic muscle activity and thus requires a complex and often 

massive 3-dimensional myo-pattern which usually leaves little or no space for hemolymphic 

cavities. Such systems are often found in body regions which require fast movements such as 

the cephalopod arms (for the capture of prey) or the squid mantle for producing the jet 

propulsion (Trueman, 1980; Kier, 1988). In contrast, a pure hydrostatic system, which is 

based on a combination of hemolymphatic pressure (for relaxation) and muscular activity (for 

contraction), is found in body regions which produce a steady force, such as the burrowing 

foot of many bivalves (Trueman, 1966, 1967), or in organs that do not require fast expansion 

movements, such as the cephalic tentacles of euthyneuran gastropods. Thus, a distinct and 

often wide lumen is present in these organs. In scaphopods, both foot types are expressed, 

following scaphopod phylogenetic classification in the 2 sub-classes Gadilida and Dentaliida 

(Steiner, 1992a). Accordingly, the elongation of the gadilidan foot is caused by hydraulic 

pressure alone, while its dentaliidan counterpart, with stronger longitudinal foot muscles and a 

general smaller pedal sinus relative to the foot wall, is said to stretch by combined hydraulic 

and muscular-hydrostat activities (see Steiner, 1992a for details). These results are in striking 
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contrast to those of Morton (1959) and Trueman (1968), who concluded that purely hydraulic 

mechanisms are responsible for foot and captacula protraction in Dentalium entalis (=Antalis 

entalis). However, whole mount preparations of juvenile Antalis entalis (Figs. 2G-L, 3A-C) as 

well as semi-thin cross sections of several regions along the foot (Fig. 3D-G herein; Steiner, 

1992a: fig. 3) show the high complexity and thickness of the 3-dimensional muscular 

meshwork of the foot wall in combination with a relative small pedal hemolymphic cavity 

especially in the mid-part of the foot of Antalis. These results are in accordance with an earlier 

study by Plate (1892), who found that the dentaliidan foot bears a 3-layered musculature 

consisting of outer ring, intermediate diagonal, and exceptional massive inner longitudinal 

muscles, thus significantly limiting the volume of the foot lumen, while several gadilidan 

species investigated show a much smaller foot wall-foot lumen ratio, mainly due to relatively 

weak longitudinal foot muscles (Steiner, 1992a). According to the muscular-hydrostat system 

(Kier and Smith, 1985; Kier, 1988), this clearly demonstrates that muscle antagonism is likely 

to play a significant role in the expansion of the dentaliidan foot while hydraulic activities, 

similar to those in bivalves, are regarded as the main driving force for gadilidan foot 

protraction. The cephalic captacula of Antalis, too, lack a distinct hemolymphic cavity but 

possess massive longitudinal retractors (Fig. 3G, H), indicating that their extension is also 

based on a muscle antagonist system as found in the foot. Thus, the captacula of Antalis, both 

in anatomy and function, resemble the arms of cephalopods and the cephalic tentacles of 

prosobranch gastropods, but differ from the euthyneuran cephalic tentacles or the bivalve 

siphons, which combine muscular and hydraulic activities (see Kier, 1988). Ontogenetically, 

the gastropod tentacles pre-date the captacula of Antalis, since the former are already formed 

in the late veliger larva (e.g., Wanninger et al., 1999a), while the scaphopod captacula are of 

entire post-metamorphic origin (Wanninger and Haszprunar, 2001a). 

The question whether the dentaliidan muscular-hydrostat system or the gadilidan combined 

muscular retraction vs. hydraulic expansion system represents the basal scaphopod condition 

remains unsolved, also because scaphopod phylogeny as a whole is still unclear (Steiner, 

1992b, 1996; Reynolds, 1997; Reynolds and Okusu, 1999). 
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CONCLUSIONS 

 

The current data on molluscan myogenesis enable significant conclusions regarding the 

evolution of the Mollusca:  

 

(1) The ancestral condition of the molluscan myo-groundplan include a 3-layered body wall 

musculature and multiple sets of serially arranged and ventrally intercrossing dorso-ventral 

muscle fibers as expressed in the recent Solenogastres and partly in the Caudofoveata and the 

polyplacophoran larva.  

(2) Due to the introduction of a stable exoskeleton (shell [plates]), the body wall musculature 

is lost and the dorso-ventral musculature is subsequently concentrated and numerically 

reduced within the Conchifera.  

(3) Dentaliid scaphopods show a muscular-hydrostat system in their foot and captacula as 

found in Gastropoda and Cephalopoda but not in Bivalvia.  

(4) The existence of distinct cephalic retractors proposes a novel supertaxon comprising the 

Scaphopoda and the Gastropoda + Cephalopoda.  
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On the muscle development in the limpet Patella (Mollusca, 

Patellogastropoda) 

 

 

 

 

Published as parts of the article "Development of the musculature in the limpet Patella 

(Mollusca, Patellogastropoda)" in: Development, Genes, and Evolution 209 (1999): 226-

238. 
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Abstract. Whole mount technique using fluorescent-labelled phalloidin for actin staining and 

confocal laser scanning microscopy as well as semithin serial sectioning, SEM and TEM were 

applied to investigate the ontogeny of the various muscular systems during larval 

development in the limpets Patella vulgata L. and Patella caerulea L. In contrast to earlier 

studies, which described a single or two larval shell muscles, the pretorsional trochophore-like 

larva shows no less than four different muscle systems, namely the asymmetrical main 

head/foot larval retractor muscle, an accessory larval retractor with distinct insertion area, a 

circular prototroch/velar system, and a plexus-like pedal muscle system. In both Patella 

species only posttorsional larvae are able to retract into the shell and to close the aperture by 

means of the operculum. Shortly after torsion the two adult shell muscles originate 

independently in lateral positions, starting with two fine muscle fibres which insert at the 

operculum and laterally at the shell. During late larval development the main larval retractor 

and the accessory larval retractor become reduced and the velar muscle system is shed. In 

contrast, the paired adult shell muscles and the pedal muscle plexus increase in volume, and a 

new mantle musculature, the tentacular muscle system, and the buccal musculature arise. 

Because the adult shell muscles are entirely independent from the various larval muscular 

systems, several current hypotheses on the ontogeny and phylogeny of the early gastropod 

muscle system have to be reconsidered. 

 

INTRODUCTION 

 

The origin and homologies of larval and adult shell muscles in gastropods have been a matter 

of debate for over a century. Because earlier studies (Smith 1935; Crofts 1937, 1955) have 

considered the larval shell muscles as being primarily responsible for ontogenetic torsion (but 

see Bandel (1982) for contrary view), these questions are intimately associated with the 

problem of origin and definition of the class Gastropoda as a whole. Up to recently most 

authorities have held that there is continuity and thus direct ontogenetic homology (see 

Haszprunar (1992) for definition) between the main larval retractor muscle(s) and (one of) the 

adult shell muscle(s) in gastropods (Table 1). 

In Patella vulgata, Smith (1935) identified two asymmetrically positioned larval shell 

muscles which were described as being independent of the two symmetrical adult shell 

muscles, the latter finally forming a horse-shoe shaped organ consisting of several distinct 

muscle bundles being interrupted by blood sinuses to the mantle. Anderson (1965) described 

similar conditions in lottiid patellogastropods. 
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The fundamental paper by Crofts (1937) on the ontogeny of the zeugobranch vetigastropod 

Haliotis tuberculata and her second big contribution (Crofts 1955) on haliotids, patellids and 

trochids have become the main data-basis for most hypotheses on this subject. Her data on 

Haliotis tuberculata suggest that the main larval retractor is continued by the adult left shell 

muscle. The data from the second contribution by Crofts (1955), where muscle ontogenesis in 

haliotids, patellids and trochids were described, were taken for granted by Fretter & Graham 

(1962; Fretter 1969) and remained nearly undisputed until recently. Unfortunately, notable 

counter-evidence such as Smith's (1967) study on the shelled opisthobranch Retusa obtusa, 

where the adult shell (columellar) muscle arises independently from the larval musculature, 

has been ignored by most subsequent authors (but see Ponder & Lindberg 1997).  

Contrary to Crofts (1955), Bandel (1982) claimed a continuity between the main larval 

retractor and the (left) adult shell muscle in trochids. Haszprunar (1985) showed on the basis 

of shell muscle innervation, that the typical spindle muscle of Trochidae, Caenogastropoda 

and Heterobranchia is homologous to the left shell muscle of primitive gastropod taxa. 

However, more recent investigations (Voltzow 1987, 1996; Collins 1996; Page 1997b) have 

expressed serious doubts on the correctness and accuracy of the original data of Crofts (1937, 

1955) and Bandel (1982). Indeed, in particular Crofts' (1955) data on the patellids Patella 

vulgata and Patina (= Helcion) pellucida are more than doubtful: her figure 17 clearly does 

not show Patella vulgata as stated in the legend, but because of the papillate cephalic 

tentacles certainly figures a vetigastropod (probably Haliotis). Since this latter study compiled 

data from nearly 20 years, this strongly indicates that certain data were confused. The original 

data on vetigastropods (Haliotis and Trochidae) have also been questioned recently. By 

applying fluorescence dyes and confocal laser scanning microscopy, Degnan et al. (1997) 

showed that the larval musculature of Haliotis rufescens is much more complicated than 

previously stated. Moreover, the larval retractor muscle of Haliotis is not continued by the 

(posttorsionally left) adult shell muscle as formerly stated. Similar results on Haliotis 

kamtschatkana were provided by Page (1997a) based on TEM-studies. 

During the last decade most authorities have accepted that the Patellogastropoda (formerly 

Docoglossa) - and not the zeugobranch Vetigastropoda as formerly believed - are the earliest 

extant offshoot of the Gastropoda (Golikov and Starobogatov 1975; Haszprunar 1988; Ponder 

and Lindberg 1997). Aside from the classic ontogenetic studies by Patten (1886), Boutan 

(1899), and Smith (1935), only scarce data were provided by Dodd (1955), Fretter and 

Graham (1962, 1976), Kessel (1964), Anderson (1965), and Rao (1975) on various 

patellogastropod species. However, there is no recent detailed account on the morphogenesis 
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of any patellogastropod limpet, whereas the early development and cell-lineage of Patella 

vulgata have been investigated in detail by applying modern methods (e.g., van den Biggelaar 

1977; Serras and Speksnijder 1991, Damen and Dictus 1994a, b, 1996; Dictus and Damen 

1997). Haszprunar (1988) stated that shell and muscular features of patellogastropods might 

be primitive for Gastropoda, whereas Ponder and Lindberg (1997) regarded them as derived. 

Therefore, and because of the clear evidence for erroneous data provided by Crofts (1955), 

Patella is a preferred aim to reinvestigate muscular ontogenesis. The present contribution 

aims to present original data on the muscular development in patellid limpets based on new 

and more powerful methodologies in order to provide a more accurate data-basis for 

discussion. The process of ontogenetic torsion in Patella will be described in detail elsewhere 

(Wanninger et al. in prep.). 

 

MATERIALS AND METHODS 

 

Culture and breeding of Patella 

Because the breeding season of the protandric hermaphrodite Patella vulgata extends from 

mid October to mid April, living Patella vulgata were collected in October 1992 and 1996 on 

the rocky shore near Roscoff (Bretagne, France) and transferred to the University of Utrecht. 

There, the animals were kept alive in large tanks with natural seawater at 15 to 16°C until 

April of the following year. Larvae were cultured at different temperatures from 13 to 18°C. 

The breeding season of Patella caerulea extends from mid December to at least September 

(personal observations of spontaneous spawning), artificial fertilization is possible throughout 

the year. Living animals were collected in March, May and July 1997 at intertidal rocks in the 

Northern Adriatic Sea (near Trieste or Rovinj) and transferred to the Zoological State 

Collection Munich, where they were kept alive over several months with artificial seawater at 

21°C ± 1°C. 

All fertilization and culture procedures were carried out in Millipore-filtered sea water 

(MPFSW) (pore size 1.2 µm in P. vulgata, 0.45 µm in P. caerulea). Following van den 

Biggelaar (1977), the gonads of ripe animals were dissected for artificial insemination. Eggs 

were treated with alkaline sea water (pH = 8.9 by addition of drops of NH4OH) for 1 to 7 

minutes before fertilization to induce the egg ripening process, followed by 1 hour of stirring. 

Sperm of two or three males was diluted in MPFSW until the suspension became fully clear, 

the agility of sperm cells was confirmed under the microscope before insemination. For 
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fertilization 10 to 20 drops of the sperm suspension were used per liter MPFSW containing 

eggs. Stirring the eggs before and after insemination proved very helpful. 

Larval cultures were kept in MPFSW with 50 mg streptomycin and 60 mg penicillin per liter 

MPFSW to minimize microbial or fungal infection. 800 ml beakers provided with the airlift-

droplet stirrer system (Strathmann 1987) and flat bowls (diameter: 19 cm) with a magnetic 

stirrer at slow speed were alternatively used as culture vessels. For live observations larvae 

were either studied under a stereo microscope or, mounted on hollow grinding slides, in a 

compound microscope, which enabled more detailed observations. 

Some larvae of Patella caerulea underwent spontaneous metamorphosis from 170 hours post 

fertilization (hpf) onwards. To increase the metamorphic rate, substratum from the aquarium 

of the adults or adult animals themselves were added to the cultures. Larvae settled on the 

walls of the culture vessels, where the metamorphosed juveniles fed on developing algal films 

growing on the culture vessel wall. In Patella vulgata two specimens underwent spontaneous 

metamorphosis. 

 

Scanning electron microscopy (SEM) 

For SEM, larvae were fixed in 4% glutaraldehyde in 0.2M sodium cacodylate buffer with 

0.1M NaCl and 0.35M sucrose added for osmolarity. Posttorsional stages were relaxed by 

adding drops of 7.14% (0.75M) MgCl2 prior to fixation. Fixed larvae were treated with 1% 

OsO4 in 0.2M (3.2%) sodium cacodylate buffer with 0.3M NaCl for 2 hours, dehydrated in an 

acetone series, critical point dried, sputter coated, and observed with a Philips XL 20 SEM.  

 

Actin staining and examination 

For actin staining procedures larvae were relaxed as described above. Fixation was done by 

4% paraformaldehyde in 0.1M (1.07% Na2HP04 + 0.28% NaH2PO4; pH 7.3) phosphate-buffer 

solution (PBS), 10% sucrose was added for osmolarity. Alternatively, a fixation of 2% 

paraformaldehyde in 0.085M PBS with 10% sucrose containing 15% saturated picric acid 

solution (modified from Stefanini et al. (1967)) was applied with equal results. Because of the 

gradual transformation of F-actin into G-actin, larvae cannot be stored in these fixations 

longer than approximately four weeks. If necessary the mineralized shell was decalcified in a 

2% EDTA solution (Romeis 1989) for 1-2 hours or over night, which did not effect the 

further staining procedure. 

Phalloidin is known to bind to F-actin in fixed material (Wulf et al. 1979) and can be coupled 

with fluorescent dyes to make muscle structures visible. Here we followed mainly the 
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protocols of Serras and Speksnijder (1991) and Rieger et al. (1994): The fixative was removed 

by rinsing with 0.05M PBS with 10% sucrose (3 steps of 10 minutes each), then the 

specimens were treated in 0.01M buffer with 0.2% Triton X-100 (PBS-T) for 60 minutes to 

make tissues permeable to staining. Staining was done using Rhodamine phalloidin 

(Molecular Probes, R-415), BODIPY R6G phalloidin (Molecular Probes, B-7491), or Oregon 

Green 514 phalloidin (Molecular Probes, O-7465). Larvae were incubated in the dark for 50-

60 minutes in one unit of the dyes dissolved in 200 µl PBS-T. This was followed by three 

times 10 minutes rinsing in 0.01M PBS. Finally, larvae were mounted on regular glass slides 

in Vectashield mounting medium (Vector, H-1000) and sealed. Samples could be stored up to 

6 months in a deep freezer without bleaching. The preparations were observed using 

epifluorescence or confocal laser scanning microscopy (CLSM). Epifluorescence was carried 

out on a Reichert Polyvar microscope where photographs were made. CLSM proved to be 

necessary for later developmental stages because of the high complexity of the muscle 

system. It was performed with a Leica TCS NT system mounted on a Leica DM IRBE inverse 

microscope. Laser light with wave lengths of 518 nm (BODIPY) and, with better results, 488 

nm (Oregon green) was used. Optical sections with a distance of 1 µm (Z-series) were 

generated and digitally processed (Leica TCS NT software) to so-called "average projections" 

and stereo pairs of whole specimens. 

 

RESULTS 

 

General remarks 

The prototroch of Patella and other primitive gastropods corresponds ontogenetically and 

phylogenetically to the velum of higher Gastropoda. Therefore we use "velar ring" instead of 

the more puristic "prototrochal ring" for the respective musculature. 

Shell terminology follows Haszprunar et al. (1995): Primitive ("archaeo-") gastropod taxa 

(Patellogastropoda, Vetigastropoda, Cocculinida, Neomphalida) have an embryonic shell 

(protoconch I: more or less simultaneously calcified by the epithelium of the visceral hump 

only) which is directly followed by the adult shell (teleoconch: successively produced by the 

pleurally innervated mantle margin). Caenogastropoda (formerly meso- and neogastropods) 

and Heterobranchia (certain former mesogastropods plus Euthyneura) show in addition to the 

embryonic shell an often distinctly structured larval shell (protoconch II: successively built by 

the pleurally innervated mantle margin). 
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Herein we describe development from the morphological (dorsal-ventral) point of view. The 

anterior-posterior axis is defined by the apical organ and the tip of the protoconch opposite to 

the apical organ. The dorso-ventral axis is perpendicular to the anterior-posterior axis and 

runs through the tip of the foot. 

 

Outlines of development 

Throughout larval development, when actively swimming, the larvae move in spiral lines by 

means of the compound cilia of the prototroch. The orientation of the swimming larva is with 

the apical tuft upside (Figs. 1-3A). Larvae do not feed. Larval development of Patella vulgata 

and Patella caerulea is very similar. The timing of development strongly depends on 

temperature; relevant data given below refer to hours post fertilization (hpf) in Patella 

caerulea (unless otherwise indicated), as we cultured this species at a single constant 

temperature. Larvae start swimming at 8 to 9 hpf. This trochophore-like larva differentiates 

into an early veliger forming a foot with operculum and an embryonic shell (i.e. protoconch I, 

see above for terminology). The shell is formed between 15 and 20 hpf; the operculum first 

becomes visible 33 hpf at the posterior foot surface. Torsion (the clockwise turn of the 

visceral portion relative to the head-foot portion) takes place between 36 and 41 hpf. Between 

torsion and the phase of metamorphic competence, several larval (e.g., epipodial tentacles) 

and adult (e.g., creeping sole, mantle cavity, buccal apparatus, cephalic tentacles) structures 

are differentiated, part of which are prerequisites for post-metamorphic juvenile life. By the 

end of the larval phase animals are capable of both swimming and creeping. Metamorphosis is 

defined by the morphological event of reduction (shedding) of the velum. We found the first 

post-metamorphic animals at the age of 170 hpf. Metamorphic competence, however, may 

have preceded that timing. Because metamorphosis is rather linked to a stimulus than to 

timing, we could only estimate the post-metamorphic "age" of individual specimens. In 

Patella the beginning of post-metamorphic development is characterized by the loss of the 

operculum and epipodial tentacles, the forward growth of the mantle margin and the 

production of the limpet-shaped teleoconch. This leads to a permanent covering of the head 

and a strongly widened pallial cavity. 

 

Pretorsional development of the muscular system 

Both species show close similarities so that a common description of the ontogeny is 

provided. Differences will be mentioned where they occur. 
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In whole mounts of both Patella species the main larval retractor becomes visible first (Figs. 

1A, 2A). It is represented by several fine muscle fibres which run along the dorsal side. In 

addition, the anlage of the velar (muscle) ring is represented by two bright spots at the left and 

right side in the apical area. 

A few hours later the trochophore-like larva has further differentiated the prototroch which 

consists of a single row of cells, the borders of which are well visible through the actin-

staining (see Serras and Speksnijder (1991) for more details). In Patella vulgata 4 spindle-like 

muscle cells (6 in P. caerulea) of the main retractor muscle, each with several muscle fibres, 

are clearly visible (Figs. 1B, 2B).  

Again slightly later (Fig. 1C) the foot (ft) is formed as a bulge at the ventral (by definition, see 

above) side of the larva. Dorsally on the left side 5 to 6 muscle cells of the main larval 

retractor are visible. Apically the velar ring becomes fully developed, consisting now of 

several spindle-like muscle cells. The cell borders of the prototroch cells are still clearly 

stained (omitted in Fig. 1C). In the next stage (Figs. 1D, 2C) the foot has become more 

prominent and the mantle fold can be detected behind the foot. Now the main larval retractor 

consists of two portions: the dorsal and more central portion runs as a quite dense bundle into 

the apical area, whereas the smaller ventral and lateral portions run into the pedal region. The 

velar muscle system is a prominent ring. Two further muscular systems can be detected for 

the first time: the accessory larval retractor, starting with 3 longitudinal fine muscle cells in a 

(morphologically) ventro-terminal position (upper terminal in life position), and the pedal 

muscle plexus, consisting of a weak and irregular muscular grid (Fig. 1D). During the next 14 

to 15 hours all four muscular systems increase in volume and prominence. Prior to torsion 

(Figs. 1E, 2D) the main larval retractor shows a distinct insertion area at the embryonic shell 

slightly to the right of the visceral hump of the larva. In P. vulgata 6 muscle cells (Fig. 1E: I-

VI) are clearly visible: The first bundle of peripheral fibres to the left bends towards the pedal 

region but does not reach it, the 4 more central fibre bundles run and spread into the apical 

area, the far right fibres again bend downwards and run into the foot. The accessory larval 

retractor shows a small but distinct insertion area slightly posterior to that of the main larval 

retractor and consists of 4 cells, 3 of them running along the dorsal mantle and spreading into 

the mantle margin, plus an additional one reaching the pedal region anteriorly. The main 

larval retractor of P. caerulea consists of 9 separate muscle fibres, with 7 projecting into the 

velar region while the most dorsal pair runs into the foot. The accessory retractor of this 

species is formed by 6 myocytes, 4 of which reach into the mantle, while 2 fibres run towards 

the velar ring, one at its dorsal, one at its ventral pole.  
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Fig. 1. Patella vulgata, semi-diagrammatic, myogenesis in the early larval phase. A-E. lateral view from the 
right. A.-B. Early trochophore-like larva. C. Trochophore-like larva with anlage of foot. D. Early veliger.  
E. Veliger at the onset of torsion. F. Veliger at the end of torsion (dorso-lateral view). Abbreviations: I-VI - 
muscle fibres of main larval retractor; A - anterior, at - apical (ciliary) tuft, alr - accessory larval retractor, D - 
dorsal, ep - episphere, ft - foot, hy - hyposphere, mf - mantle fold, mlr - main larval retractor, P - posterior, pc - 
prototroch cells, pp - pedal plexus, pt - prototroch, V - ventral, vr - velum (muscle) ring. Scale bar = 100 µm. 
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Fig. 2. Patella vulgata, epifluorescence micrographs, pretorsional larval stages, culture temperature: 13°C. 
A.-B. Trochophore-like larva, 48 / 51 hpf. C. Early veliger, 54 hpf. D. Veliger shortly before the onset of  
torsion, 73 hpf. Abbreviations: alr - accessory larval retractor, mlr - main larval retractor, pp - pedal plexus, 
pt - prototroch, vr - velum  (muscle) ring.Scale bar = 25 µm. 
 

 

In both species the velar ring is still prominent, the pedal plexus has become significantly 

stronger and shows two bilaterally symmetrical centres of muscle fibres. Until this stage, 

larvae are unable to retract into the shell. If disturbed they close the compound cilia of the 

prototroch, stop swimming and sink to the ground.  
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Posttorsional development of musculature in Patella vulgata 

After torsion is completed (Fig. 1F) the muscle conditions are as follows: The whole system 

of the main larval retractor is twisted within itself. Whereas the insertion area of the main 

larval retractor is placed to the upper left of that of the accessory larval retractor, the fibres of 

the main larval retractor seem to be situated mainly on the right side (morphological and 

physiological) of the larval body. The very right fibre of the main larval retractor runs 

ventrally into the foot. The arrangement of muscle fibres of the accessory larval retractor, the 

velar ring and the pedal plexus have not been affected by torsion. 

When torsion is completed the operculum is present at the dorso-posterior surface of the foot - 

its formation already starts prior to torsion. It is associated with two thin, symmetrical muscle 

fibres curving upwards from the posterior end of the foot in a half-circle into the ventral 

region of the larva (see P. caerulea in Fig. 6A). These laterally positioned muscle fibres are 

the anlagen of the left and right shell muscles. Later on, when the fibres of the main larval 

retractor arrange in pairs (see below), the number of these fibres significantly increases and 

the two symmetrical muscles ("left and right shell muscle" of Smith 1935) form distinct, 

laterally placed insertion areas at the shell (see P. caerulea in Figs. 3B-D, 4A-D, 6B). 

During late larval development the conditions of the larval musculature change as follows: 

The 6 myocytes of the main larval retractor arrange in pairs forming 3 muscle bundles. 2 of 

these lead from the insertion area in the right posterior part of the larva straight into the 

head/velar region, the third, very right one forms a connection with the pedal plexus. 

However, the latter plexus does not directly insert at the operculum. 

The accessory larval retractor ("ventral retractor muscle" of Smith 1935) consists of 4 muscle 

cells. 3 of these reach the mantle fold, the fourth terminates in the anterior part of the pedal 

muscle plexus, where it contacts the muscular grid. During posttorsional larval life 2 new, 

separate muscle fibres, which run dorsally of the accessory larval retractor, become visible. 

Towards metamorphosis the fibres of the accessory larval retractor degenerate and its 

insertion area at the protoconch is lost, whereas two new, circular and transversal muscle 

fibres occur at the apical mantle margin (compare P. caerulea in Figs. 4D, 5A-D, 6B-C). The 

pedal muscle plexus remains quite constant throughout late larval development, as does the 

velar ring. The future musculature of the cephalic tentacles arises as an independent system. It 

consists of two longitudinal, cross-bridged fibres and resembles a rope-ladder. 
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Fig. 3. Patella caerulea, A. light micrograph of a living larva after completion of torsion (39 hpf). Scale bar = 25 
µm. B.-D. SEM micrographs of posttorsional larvae (93 hpf). Scale bar = 25 µm. B. lateral view from the right, 
C. ventro-lateral view from posterior end, D. ventro-lateral view from the left. Abbreviations: act - apical ciliary 
tuft, alr - accessory larval retractor, et - epipodial tentacle, ft - foot, lsm - left shell muscle, mf - mantle fold, mlr - 
main larval retractor, op - operculum, pt - prototroch, rsm - right shell muscle, sh - shell.  
 

 

Development of musculature in Patella caerulea from torsion to metamorphic 

competence  

The two shell muscles rapidly increase in size and volume, both originally consisting of two 

main bundles (Figs. 4A, 6A). 

Contrary to Patella vulgata, the main larval retractor of P. caerulea consists of 4 pairs of 

muscle bundles plus one additional single muscle fibre. Three of these paired bundles insert at 

the velar ring. The fourth, most ventral bundle, reaches the apical part of the foot with one of 

its fibres also connecting to the ventral part of the velar muscle ring (Fig. 6A-B). The 

accessory larval retractor of Patella caerulea consists of 6 muscle cells (instead of 4 in P. 

vulgata). Four of these reach the mantle fold region, the fifth runs dorsally of the main larval 

retractor, the sixth terminates ventrally in the velar region. There is no connection with  
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Fig. 4. Patella caerulea, myogenesis, CLSM, posttorsional larval stages. A. 75 hpf, B. 80,5 hpf, C. 101,5 hpf, D. 
123,5 hpf. Abbreviations: alr - accessory larval retractor, lmf - longitudinal mantle fibers, lsm - left shell muscle, 
mf - mantle fold, mlr - main larval retractor, op - operculum, pp - pedal plexus, rsm - right shell muscle, te - 
cephalic tentacle, tmf - transversal mantle fibers, vh - visceral hump, vr - velum (muscle) ring. Scale bar = 100 
µm. 
 

 

the foot. Slightly later, there are again several (i.e. more than 2 as in P. vulgata) separate 

longitudinal muscle fibres dorsal to the accessory larval retractor, and also the 2 above-

mentioned transversal fibres do occur (Figs. 4D, 5A, 6B). 

Both shell muscles are thicker now and interconnect increasingly with the fibres of the pedal 

plexus. This significantly raises the ability of larvae to promptly retract into the protoconch if 

disturbed. 
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Fig. 5. Patella caerulea, myogenesis, CLSM, near metamorphic competence to juvenile. A. Late veliger, 147 
hpf. B.-D. Juvenile with increasingly differentiated muscle system, approximately one to five days after 
metamorphosis. A, C, D. Lateral view from the right side. B. dorso-lateral view from slightly left (therefore alr 
to the left of mlr). Abbreviations: alr - accessory larval retractor, bm - buccal musculature, ft - foot, lmf - 
longitudinal mantle fibers, lsm - left shell muscle, mlr - main larval retractor, op - operculum, pp - pedal plexus, 
rsm - right shell muscle, te - cephalic tentacle, tm - musculature of cephalic tentacle, tmf - transversal mantle 
fibers, vh - visceral hump, vr - velum (muscle) ring. Scale bar = 100 µm. 
 

 

Muscular development towards and after metamorphosis in Patella caerulea 

Towards metamorphosis the main larval retractor remains quite prominent, whereas the 

accessory larval retractor degenerates (the fluorescence staining becomes relatively weaker) 

and its fibres become more and more inhomogeneous (Figs. 5A-B, 6B-C). Finally, the latter 

system loses its insertion area at the posterior protoconch so that it is no longer able to retract 

the animal. By contrast, the paired shell muscles become predominant (Figs. 5C-D), each 

showing a large insertion area at the lateral shell. Continuously newly formed fibres of the left 

and right shell muscle as well as several strands of the pedal muscle plexus run into the 
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juvenile's apical region, interconnecting the pedal and anterior muscle systems (Figs. 5C-D). 

The fibres of the pedal plexus also stain more and more intensively and keep growing 

dorsally. The fibres of the tentacular musculature likewise connect to the pedal plexus 

(omitted in Fig. 6C).  

The velum ring disappears simultaneously with the reduction of the prototroch at 

metamorphosis (Figs. 5A-B, 6B-C). 

The longitudinal and transversal mantle fibres remain after metamorphosis as does the main 

larval retractor in early postmetamorphic stages, whereas the accessory larval retractor 

becomes reduced. A first anlage of the future buccal musculature becomes visible between the 

bases of the tentacular muscle systems (Fig. 5C). Eventually, the main larval retractor loses its 

insertion area at the shell and is finally completely resorbed, while the buccal apparatus forms 

the most prominent anterior muscle system of the juvenile animal (Fig. 5D).  

 

 
Fig. 6. Patella caerulea, semi-diagrammatic, myogenesis from posttorsional veliger to juvenile. A. Posttorsional 
veliger, 75 hpf. B. Late veliger, 145 hpf. C. Postmetamorphic juvenile, approximately one day after 
metamorphosis. D. Postmetamorphic juvenile, approximately five days after metamorphosis. Abbreviations: alr - 
accessory larval retractor, bm - buccal musculature, e - eye, lmf - longitudinal mantle fibers, mlr - main larval 
retractor, op - operculum, pp - pedal plexus, rsm - right shell muscle, tm - musculature of cephalic tentacle, tmf - 
transversal mantle fibers, vr - velum (muscle) ring. Scale bar = 100 µm. 
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DISCUSSION 

 

General remarks 

The combination of SEM, semithin sectioning, TEM, and specific F-actin staining by 

fluorescence-labelled phalloidin allows more accurate and detailed data on muscle 

development than classic light microscopy of living animals or of paraffin sections could 

provide. Rather than to blame earlier authors, who in many respects did marvellous work 

indeed, we want to point out the main inconsistencies and errors in earlier descriptions which 

could be cleared up based on combined approaches and available better methodology (see 

Table 1, Fig. 8). 

 

Patellogastropoda 

Concerning Patellogastropoda the data provided by Smith (1935) on Patella vulgata and also 

(much less detailed) by Anderson (1965) on three species of Lottiidae are much more accurate 

and correct than those by Crofts (1955) on Patella vulgata and Patina pellucida. The latter 

author failed to detect the second main larval shell muscle with an insertion area proper, the 

accessory larval retractor, and also obviously confused later stages with those of a 

vetigastropod (probably Haliotis), resulting in erroneous statements on the origin of the adult 

shell muscles. Unfortunately, the latter view - and not Smith’s (1935) correct data on the 

independent origin of the adult shell muscles - was used by Fretter and Graham (1962, 1994) 

in their classic work on British prosobranch molluscs and so have become the standard 

version. 

The present study provides clear evidence of the independent origin of the adult shell muscles 

in two respects: (1) The insertion areas of the adult shell muscles are entirely independent 

from those of the main and accessory larval muscles. (2) As in Haliotis kamtschatkana (cf. 

Page 1997a: figs. 11, 17, 19) the larval shell muscles are obliquely striated (not cross striated 

as erroneously stated by Page), whereas the adult shell muscles are smooth (Wanninger et al. 

1999). 

It is difficult to evaluate the significance of the differences in muscle development between 

Patella vulgata and Patella caerulea, because detailed data on other patellogastropod species 

are missing. It seems likely, however, that the general pattern, i.e., four distinct larval muscle 

systems and independent adult shell muscles, is characteristic for all patellogastropods, and 

that the exact numbers of muscle cells differ between species. 
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Vetigastropoda 

Whereas the earlier reports by Crofts (1937, 1955) and Bandel (1982) are inaccurate (see 

above), recent investigations by means of electron microscopy and specific staining 

procedures have provided new insights and proved both earlier authors to be wrong. Page 

(1997a) clearly demonstrated two larval shell muscles, Degnan et al. (1997) show the velar 

and pedal muscle systems in their figures. Both studies provide evidence that, in contrast to 

Crofts (1937, 1955) and Bandel (1982), the adult shell muscles occur independently as shown 

by Smith (1935) and herein for Patella. However, according to Page (1997a), the position of 

the insertion area of the adult left shell muscle is close to that of the main larval retractor. It 

remains to be shown whether or not this last feature occurs generally in Eogastropoda (all 

gastropods except Patellogastropoda; cf. Ponder and Lindberg 1997), or is a vetigastropod 

(haliotid) synapomorphy. 

As in Patella species, there are differences in the number of myocytes between species of 

Haliotis: whereas both Haliotis tuberculata (Crofts 1937) and Haliotis rufescens (Degnan et 

al. 1997) show 6 myocytes in the main larval retractor, this muscle consists of 8 myocytes in 

Haliotis kamtschatkana (Page 1997a). Similar differences might occur among trochid species. 

 

Higher gastropods 

The innervation pattern of the adult shell muscles provides clear evidence that the original left 

shell muscle becomes (accompanied by multiple reduction of the right shell muscle) the sole 

spindle muscle in gastropod evolution (Haszprunar 1985, 1988). The relationship to the 

spindle muscle of the veliger larva of higher gastropods is less clear, however. Two 

conditions are possible: (1) The larval spindle muscle of caenogastropod or heterobranch 

larvae is the remaining main larval retractor, or (2) the larval spindle muscle is the preformed 

adult shell muscle. Because of the obliquely striated nature of the larval shell muscle in 

nudibranchs (Page 1995) the first version is to be preferred for Nudibranchia, whereas 

caenogastropod conditions are still equivocal, since the fine structure of the larval spindle 

muscle is unknown. 

 

 

 

 

 

 



Appendix V                                                                                                    Muscle development in Patella 136

 
Fig. 7. Patella caerulea, diagrammatic sequence of myogenesis. The thickness of shaded areas indicates the 
relative prominence of individual muscle systems. Metamorphic competence and hours post metamorphosis are 
estimated.  
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Table 1. Comparison of descriptions of muscle development in patello- and vetigastropods (chronological 
arrangement) 
----------------------------------------------------------------------------------------------------------------- 
 
Species / Family   
(Reference) Larval muscles Adult shell muscles 
PATELLOGASTROPODA:   
   
Patella vulgata 
(Smith 1935) 

"dorsal retractor muscle" (mlr) 
"ventral retractor muscle" (alr) 

both shell muscles (lsm, rsm) 
originate independently from 
all larval muscles 

   
Patella vulgata, 
Helcion pellucida 
(Crofts 1955) 

"larval retractor" (mlr) 
"ventral portion of larval retractor" 
(alr?) 

mlr + alr become left shell 
muscle, right shell muscle 
(rsm) is newly formed 

   
3 Lottiidae 
(Anderson 1965) 

"two columella muscles" 
(mlr + alr) 

no data 

   
Patella vulgata, 
Patella caerulea 
(this paper) 

main larval retractor (mlr), 
accessory larval retractor (alr), 
velar muscle system (vr), 
pedal muscle plexus (pp) 

both shell muscles (lsm, rsm) 
originate independently from 
all larval muscles 

   
VETIGASTROPODA:   
   
Haliotis tuberculata 
(Crofts 1937) 

"larval retractor" (mlr) mlr becomes left shell muscle; 
right shell muscle (rsm) is 
newly formed 

   
Calliostoma zizyphinum 
(Crofts 1955) 

"larval retractor" (mlr) mlr degenerates; 
"right"/spindle muscle (rsm) is 
newly formed 

   
4 Trochidae 
(Bandel 1982) 

"right retractor muscle" (mlr) 
"left retractor muscle" (alr) 

mlr becomes the left/spindle 
muscle; 
alr degenerates 

   
Haliotis kamtschatkana 
(Page 1997a) 

"larval retractor" (mlr) 
"accessory larval retractor" (alr) 

adult shell muscles (lsm, rsm) 
originate independently from 
all larval muscles 

   
Haliotis rufescens 
(Degnan et al. 1997) 

"dorsal and ventral portion of 
larval retractor" (mlr; alr?) 
not named (vr) 
not named (pp) 

right shell muscle (rsm) is 
newly formed 
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CONCLUSIONS 

 

Recent investigations based on various new methodologies and approaches have revealed the 

following general pattern of muscle ontogenesis in primitive Gastropoda (Patello- and 

Vetigastropoda) (Fig. 8): 

(1) There are four different larval muscle systems, the anlagen of which occur already in the 

pretorsional larva: the main larval retractor, the accessory retractor muscle, the velar muscle 

system, and the pedal muscle plexus. Both the main and accessory larval retractors have 

distinct insertion areas at the embryonic shell. 

(2) The accessory larval retractor and the velar ring degenerate with metamorphosis, the main 

larval retractor becomes reduced and finally lost during early juvenile life, whereas the pedal 

plexus continues into the adult animal. In Patella and Haliotis the adult shell muscles 

originate entirely independently from the larval musculature. 

(3) At least parts of the (adult) transversal and longitudinal mantle musculature occur prior to 

metamorphosis and are continued and elaborated during juvenile and adult life.  

(4) The musculature of the cephalic tentacles originates independently from all other muscles 

prior to metamorphosis, the buccal muscle system occurs after metamorphosis. 
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Muscle development and ontogenetic torsion in the limpet Patella 

(Mollusca, Patellogastropoda) 

 

 

 

 

Published as parts of the article "The development of the musculature in the limpet 

Patella with implications on its role in the process of ontogenetic torsion" in: 

Invertebrate Reproduction and Development 36 (1999): 211-215. 
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Abstract. Scanning electron microscopy (SEM) and confocal laser scanning microscopy 

(CLSM) after using a fluorescent dye for filamenteous actin revealed 4 distinct muscle 

systems in the pretorsional larvae of Patella, i.e. the velum ring, the pedal plexus and the 

main and accessory larval retractors. After torsion, 2 adult (i.e. left and right) shell muscles 

arise independently from all larval muscles. In addition, tentacular as well as adult mantle and 

buccal musculature are formed during subsequent development. Both larval retractors and the 

velum ring are lost during or shortly after metamorphosis, while the pedal plexus, left and 

right (adult) shell muscles, tentacular, mantle and the buccal musculature continue in the adult 

animal. These findings, together with observations of living larvae, strongly support the 

theory that muscular and hydraulic activity are primarily responsible for the process of 

ontogenetic torsion. Shell formation in Patella caerulea includes an unsculptured, 

symmetrical embryonic shell (protoconch I) as well as the successively mineralized 

juvenile/adult limpet-shaped teleoconch. Considering the Patellogastropoda as the earliest 

offshoot of the class Gastropoda (see below), we regard the following 3 conditions as basal 

for gastropods: (1) the adult shell muscles arise independently from the larval shell 

musculature, (2) ontogenetic torsion is a primarily larval process, (3) the embryonic shell is 

symmetrically shaped - asymmetrical/helicoid conditions of the adult shell in higher 

gastropods are independent from the ontogenetic torsion process. 

 

INTRODUCTION 

 

Torsion, a counter-clockwise rotation of the visceropallium relatively to the cephalopodium, 

is the major apomorphy of the class Gastropoda and thus defines the group as a whole (e.g., 

Haszprunar 1988, Falniowski 1993). Its ontogenetic process has been a matter of debate for 

over a century (see recent review by Falniowski 1993). Although some earlier works (e.g., 

Smith 1935, Crofts 1937, 1955) consider larval shell muscles as being primarily responsible 

for this dramatic morphological twist during larval ontogeny, they strongly contradict each 

other concerning the genesis of both larval and adult musculature (cf. Wanninger et al. 1998). 

Due to this fact and because of much more powerful methodologies available today, the main 

aim of this paper is to present new data on the myogenesis in the limpet Patella, a member of 

the Patellogastropoda, which today is considered the most basal gastropod clade (Haszprunar 

1988, Ponder and Lindberg 1997). In addition, observations on the torsion process in Patella 

caerulea are discussed, with special reference to the identified larval and adult muscles and 
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their putative role in this process. For detailed features on both topics, see elsewhere 

(Wanninger et al. 1998, in prep.).  

 

MATERIALS AND METHODS 

 

Animal cultures and breeding 

For a detailed description, see Strathmann (1987) and Wanninger et al. (1998). The addition 

of a diluted sperm suspension to mature eggs marks the point of fertilization, to which the age 

(hours post fertilization, hpf) of larvae is referred. 

 

SEM  

Preparation of larvae and juveniles was done according to routine protocols (Bouin`s or 

glutaraldehyde fixative, cf. Wanninger et al. 1998 for details). To prepare shells for SEM, 

animals were relaxed, killed with distilled water and subsequently macerated in saturated 

NaClO. After that, shells were transferred into 70% and 100% acetone, air dried, mounted on 

SEM stubs and sputter coated (for details see Hadfield and Strathmann 1990). All SEM 

observations were done with a Philips XL 20 SEM. 

 

Actin staining and confocal laser scanning microscopy (CLSM) 

Preparations followed the detailed descriptions of Serras and Speksnijder (1991), Rieger et al. 

(1994) and Wanninger et al. (1998). Briefly, animals were relaxed and fixed in 0.1M 

phosphate-buffered 4% paraformaldehyde (PFA) with 10% sucrose added, or, alternatively, in 

0.1M phosphate buffered 2% PFA with 15% saturated picric acid and 10% sucrose. If 

necessary, preparations were decalcified in 2% EDTA. Next, specimens were treated with 

0.2% Triton X-100 in 0.01M phosphate buffer ("PBS-T") to permeabilize tissues. Finally, 

Oregon Green 514 phalloidin (1 unit in 200 µl PBS-T; Molecular Probes) was applied for F-

actin staining. Specimens were mounted on glass slides in Vectashield medium (Vector), 

sealed, and stored at -20°C. Whole mounts were studied using a Reichert Polyvar 

epifluorescence microscope or, preferably, a confocal laser scanning microscope (Leica DM 

IRBE) with Leica TCS NT software. 
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RESULTS 

 

General remarks 

Both in Patella vulgata L. and Patella caerulea L., muscle development as well as shell 

formation and ontogenetic torsion in many respects follow the same developmental patterns. 

A study with detailed features on differences between both species, especially concerning 

myogenesis, is published elsewhere (Wanninger et al. 1998).  

 

Myogenesis 

The main larval retractor is the first muscle to arise in early pretorsional larvae, followed by 

the velar muscle ring, the pedal plexus and the accessory larval retractor (Fig. 1A, 2). Both 

retractors represent the larval shell musculature, which is completely resorbed some time after 

metamorphosis (Fig. 1B). Despite this, the pedal plexus stays functional in the juvenile/adult 

stage, forming a more and more complex 3D muscle grid. The velum ring is lost during 

metamorphosis, when the ciliated prototroch cells are shed off.  

Immediately after torsion, both (i.e. left and right) adult shell muscles are formed (Fig. 1B, 3). 

They insert laterally at both sides of the shell, bend forwards in a half circle and reach into the 

pedal region. Thus, their insertion areas are entirely different from those of the larval 

retractors. Moreover, both larval and adult shell muscles can be identified at the same time in 

(late) veligers (Fig. 1A, 3) and show obliquely striated (larval shell muscles) versus smooth 

(adult shell muscles) conditions (Wanninger et al. 1998). The left and right shell muscles form 

the U-shaped muscle of the adult animal. Well after torsion the cephalic tentacles appear (Fig. 

1A, 3), together with their rope-ladder like musculature (Fig. 1B). Both structures remain 

present in the adult animal.  

In metamorphic competent larvae the first fibres of the adult mantle musculature arise 

(longitudinal and transversal mantle fibres). It is not until metamorphosis is completed, that 

the first anlage of the adult buccal musculature can be identified (Fig. 1B).  

 

The process of ontogenetic torsion 

The exact timing of the beginning of ontogenetic torsion strongly depends on the temperature 

in the culture vessels (herein 20-22°C during cultivation; however, during live observations 

under the microscope, the temperature might have increased for about 2 hours). In this paper 

only a few aspects on ontogenetic torsion in relation to muscular activity are given, rather 

than a quantitative analysis of the torsion process itself. A paper dealing with this special 

problem is in preparation.  
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Fig. 1. Patella caerulea, myogenesis in posttorsional larval and juvenile stages, all CLSM. A - Posttorsional 
veliger at 80.5 hpf, lateral view. B - Juvenile with larval shell muscles completely lost, approx. 5 days after 
metamorphosis, lateral view. Abbreviations: alr - accessory larval retractor, bm - buccal musculature, lmf - 
longitudinal mantle fibers, lsm - left shell muscle, mf - mantle fold, mlr - main larval retractor, op - operculum, 
pp - pedal plexus, rsm - right shell muscle, te - cephalic tentacle, tm - musculature of cephalic tentacle, tmf - 
transversal mantle fibres, vh - visceral hump, vr - velum (muscle) ring. Scale bars: 50 µm. 
 

 
Fig. 2. Patella caerulea, posttorsional veliger    Fig. 3. Patella caerulea, veliger at the end of torsion (80.5  
(32.25 hpf), lateral view, SEM. Abbreviations:    hpf), ventral view, SEM. Abbreviations: alr - accessory 
act - apical ciliary tuft, alr - accessory larval    larval retractor, ft - foot, lsm - left shell muscle, mlr - main 
retractor, ft - anlage of foot, mf - mantle fold,    larval retractor, op operculum, pt - prototroch, rsm - right 
mlr - main larval retractor, op - operculum,     shell muscle, te - cephalic tentacles. Scale bar: 50 µm. 
pt - prototroch. Scale bar: 50 µm. 
 

 

Individuals observed alive started torsion at about 36-39 hpf. By this time the operculum is 

already well developed (Fig. 2). In Patella caerulea the full 180° rotation only takes about 2 

hours and is carried out in one single phase with a constant speed (i.e. there is no "slow" and 

"fast" phase, see Discussion). Thus, every 45° twist takes about 30 minutes. During the whole 

time both larval retractors contract cramp-like every 30 seconds, followed by peristaltic 



Appendix VI                                                                                Muscle development and torsion in Patella 147

movements ("pumping") of the foot. Despite this, animals are not able to retract fully into the 

shell until torsion is completed.  

 

Shell formation 

In Patella caerulea the embryonic shell (protoconch I) is formed at about 15-20 hpf. It is 

symmetrical, unsculptured (Fig. 4) and shows simultaneous calcification by the epithelium of 

the visceral hump (Bandel 1982). In primitive gastropod groups (including Patellogastropoda) 

the embryonic shell is directly followed by the adult teleoconch, which is not formed at a 

continuous speed, and therefore shows areas of different intensity of calcification (Fig. 4). 

Lateral clefts on both sides of the embryonic shell, as described for Vetigastropoda (Bandel 

1982, Page 1997a), are lacking. Obviously, in Patella caerulea the right part of the juvenile 

teleoconch undergoes faster growth than its left counterpart (Fig. 4).  

 

 
Fig. 4. Patella caerulea, embryonic shell (protoconch I) followed by adult shell (teleoconch), approx. 1.5 days  
after metamorphosis, antero-dorsal view, SEM. Abbreviations: pro I - protoconch I (i.e. embryonic shell), tel - 
teleoconch (i.e. adult shell). Scale bar: 50 µm. 
 

 

DISCUSSION 

 

The present study supports Smith (1935), who already described the independent origin of 

larval and adult shell muscles in Patella vulgata, although he identified the accessory larval 

retractor ("ventral retractor muscle") not until torsion is completed. In contrast, Crofts' (1955) 

statement of only one larval retractor, which continues in the adult animal where it forms the 

left shell muscle, has to be rejected. Recent data on other gastropod taxa - especially the 

slightly higher evolved Haliotis (Vetigastropoda) (Degnan et al. 1997, Page 1997b) - show 

similar conditions concerning the indepence of larval and adult shell muscles, which are 

regarded as a basal condition in gastropods. In Haliotis, the main larval retractor degenerates 
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too, but its insertion area is replaced by that of the left adult shell muscle. This may mark a 

trend among higher gastropods, where the adult shell muscle(s) might successively replace 

their larval precursors. However, data on the myogenesis in higher gastropods are scarce, so 

further conclusions in this field remain hypothetic. 

Earlier descriptions of the ontogenetic torsion process of various gastropod families 

(Patellidae, Acmaeidae, Haliotidae, Trochidae) indicate, that the duration of the 180° rotation 

might range from 3 minutes (Boutan 1899) to 200 hours (Crofts 1937, 1955). Nevertheless, 

nearly all authors found a different time span for both 90° phases: whereas Crofts (1937, 

1955) and Underwood (1972) observed a quick first and a slow second 90° twist, Smith 

(1935) describes a slow first and a quick second phase. According to these authors, the quick 

phase is caused by muscular activity of the larval retractors, while the slow phase is due to 

differential cell growth. However, the results presented here (continuous contraction during a 

constantly quick rotation process) indicate, that hydraulic as well as muscular activity of both 

larval shell muscles are the sole inducers of ontogenetic torsion at least in patellid limpets. 

Thus, the condition of ontogenetic torsion as a primarily larval process - with no major adult 

(muscle) structures being involved - can be regarded as basal for the class Gastropoda.  
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APPENDIX VII 
 

 

 

The ontogeny, timing, and mechanisms of the torsion process in Patella 

caerulea (Mollusca, Patellogastropoda) 

 

 

 

 

Published as parts of the article "Torsion in Patella caerulea (Mollusca, 

Patellogastropoda): ontogenetic process, timing, and mechanisms" in: Invertebrate 

Biology 119 (2000): 177-187. 
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"On ne peut actuellement affirmer que cette torsion 

a lieu dans tous les cas avec la même rapidité ... " 

["One can actually not propose that this torsion 

occurs with equal speed in every case ... "] 

Louis Boutan (1902: 243). 
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Abstract. Torsion is a process in gastropod ontogenesis where the visceral body portion 

rotates by 180° relative to the head/foot region. We investigated this process in the limpet 

Patella caerulea by using light microscopy of living larvae, as well as scanning electron 

microscopy (SEM) of larvae fixed during the torsion process. The completion of the 180° 

twist takes considerably less time in larvae of Patella caerulea than previously described for 

other basal gastropod species. At a rearing temperature of 20--22°C, individuals complete 

ontogenetic torsion within 2 hours. Furthermore, the whole process is monophasic, i.e. carried 

out at a constant speed, without any evidence of distinct "fast" or "slow" phases. Both larval 

shell muscles --- the main and the accessory larval retractor --- are already fully contractile 

before the onset of torsion. During the torsion process both retractors perform cramp-like 

contractions approximately every 30 seconds, which are followed by hydraulic movements of 

the foot. However, retraction into the embryonic shell occurs only after torsion is completed. 

The formation of the larval operculum is entirely independent from ontogenetic torsion and 

starts before the onset of rotation, as does the mineralization of the embryonic shell. The 

reported variability regarding the timing (mono- versus biphasic; duration) of torsion in basal 

gastropod species precludes any attempt to interpret these data phylogenetically. 

The present findings indicate that the torsion process in Patella caerulea, and probably 

generally in basal gastropods, is primarily caused by contraction of the larval shell muscles in 

combination with hydraulic activities. In contrast, the adult shell musculature, which is 

independently formed after torsion is completed, does not contribute to ontogenetic torsion in 

any way. Thus, fossil data relying on muscle scars of adult shell muscles alone appear 

inappropriate to prove torted or untorted conditions in early Paleozoic univalved molluscs. 

Therefore, we argue that paleontological studies dealing with gastropod phylogeny require 

data other than those based on fossilized attachment sites of adult shell muscles. 

 

INTRODUCTION 

 

Although the ontogeny of gastropod torsion --- a counter-clockwise 180° rotation of the 

visceropallium relative to the cephalopodium and the key apomorphy of the class --- has been 

studied for over a century (e.g., Amaudrut 1898; Boutan 1899; Drummond 1902; Robert 

1902; Smith 1935; Crofts 1937, 1955; Régondaud 1961; Underwood 1972; Bandel 1982; 

Voltzow 1987, 1996; Page 1997b), remarkably few detailed investigations about its exact 

timing as well as its possible (biomechanical) cause(s) exist until today. Nevertheless, there 

have been extensive discussions about its phylogenetic significance throughout the past 
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decades (e.g., Lang 1891; Pelseneer 1892; Grobben 1899; Boutan 1902; Naef 1911; Garstang 

1928; Crofts 1937, 1955; Morton 1959; Ghiselin 1966; Underwood 1972; Giusti 1981; 

Pennington and Chia 1985; Edlinger 1988a; Haszprunar 1988, 1989; Falniowski 1993). 

Moreover, paleontological studies in malacology have tried to reveal whether adult shell 

muscle attachment sites, represented by "muscle scars" on fossilized adult molluscan shells or 

steinkerns, once belonged to already torted gastropod molluscs, or whether these animals 

were yet untorted and either possible gastropod ancestors or members of Paleozoic gastropod 

sister clades (Wenz 1940; Knight 1947; Rollins and Batten 1968; Runnegar and Pojeta 1974; 

Runnegar 1981; Yochelson and Gil Cid 1984). Recently, new light was shed on this subject 

by Page (1997a, b) and Wanninger et al. (1999a, b), who showed that the larval shell muscles, 

which are fully contractile before torsion, are completely resorbed towards or shortly after 

metamorphosis (i.e. a long time after torsion has already been completed) in basal Patello- 

and Vetigastropoda. In contrast, the adult shell musculature arises de novo after the 

completion of torsion. Therefore, muscle scars on fossilized adult shells or steinkerns are 

inadequate to identify the respective specimen as an ancient torted gastropod mollusc. 

According to literature data, the time span covered by the torsion process ranges very widely, 

namely from 2--3 minutes in both a patello- and a vetigastropod (Boutan 1899) to as much as 

200 hours in a vetigastropod (Crofts 1937, 1955) (Table 1). The hypotheses held by the 

various authors about the main cause(s) of this ontogenetic twist show similar variability. The 

most popular ones are differential growth, often used to explain a slow torsion process, and 

muscular activity, held responsible for quick rotational phases (cf. Table 1). Because of the 

new data on the myogenesis in Patella vulgata and Patella caerulea (Wanninger et al. 

1999b), as well as to evaluate the significance of the torsion process for the paleontological 

record, its ontogeny was studied in veligers of the limpet Patella caerulea Linnaeus 1758, a 

member of the most basal gastropod taxon, the Patellogastropoda (see, e.g., Haszprunar 1988; 

Ponder and Lindberg 1997). 

 

MATERIALS AND METHODS 

 

Animal culture and breeding 

Procedures were described in detail by Wanninger et al. (1999b). Presumably adult specimens 

of Patella caerulea with shell diameters of 30 mm and more were collected from intertidal 

rocks in the Northern Adriatic Sea near Trieste or Rovinj and transferred to the Zoological 

States Collections Munich (ZSM), where they were kept alive in artificial seawater.  
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Table 1. The process of ontogenetic torsion in Patello- and Vetigastropoda. Note (1) the great variation in time (due to different species and/or author) described as required to 
perform the 180° twist, (2) the different observations concerning a biphasic torsion process, and (3) the different hypotheses given by the authors to explain its biomechanical 
cause(s).  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Species/TAXON  Time span for the  2 distinct phases?  Proposed (main) cause(s)   Temperature 
[Reference]   whole 180° twist  (0°--90°/90°--180°)   
 
PATELLOGASTROPODA 
Patella caerulea  2 hrs    no; torsion is a monophasic the asymmetrical larval   20°--22°C 
[this paper]          process within 2 hours    retractors plus hydraulic  
               activity of the foot 
Patella vulgata   40--50 hrs   0°--90°: 30--40 hrs  not exactly determined, but   no data  
[Smith 1935]       90°--180°: about 10 hrs    differential growth and activity  
        ("next few hours")     of larval retractors are involved 
Patella vulgata  36--45 hrs   0°--90°: 10--15 hrs  activity of larval retractor;    no data  
[Crofts 1955]       90°--180°: 26--30 hrs  mainly differential growth; pedal  
               musculature assists torsion 
Patella vulgata  48 hrs    no data    no data, but "retractors of larval   12.5°+/-0.5°C 
[Dodd 1955]              shell are present" at the onset of  
               torsion 
Patina (=Helcion) pellucida no data (similar  0°--90°: no data (similar as in Patella vulgata    no data 
[Crofts 1955]      to Patella vulgata?)     to Patella vulgata?) 

90°--180°: 26--30 hrs  as in Patella vulgata 
           (as in Patella vulgata) 
Cellana radiata  18 hrs    no data    no data      26°+/-1°C 
[Rao 1975] 
Acmaea virginea  2--3 min   no data    antagonism between foot   no data  
[Boutan 1899]              and visceral hump 
Acmaea testudinalis   ”less than one hour”  no data    no data      12.1°+/-0.5°C 
[Kessel 1964]    
Notoacmaea petterdi  ≤17 hrs (cf. Figs. 3--4) no data    no data, but "neither ... nor mus-  20°C 
[Anderson 1965]             cular activity... are observed  
               during this time" 
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Table 1 (continued) 
 
Patelloida alticostata  ”towards the end   no data    no data      20°C 
[Anderson 1965]     of the second day” 
 
VETIGASTROPODA 
Haliotis tuberculata  2--3 min   no data    antagonism between foot   no data  
[Boutan 1899]              and visceral hump 
Haliotis tuberculata  about 200 hrs   0°--90°: 3--6 hrs  contraction of larval retractor;   no data 
[Crofts 1937, 1955]             operculum might mechanically  
               support the beginning of torsion; 
        90°--180°: about 200 hrs mainly differential growth; pedal  
               musculature assists the progress  
               of torsion 
Haliotis kamtschatkana no data    0°--90°: no data  no data, but "larval retractor ...   12°C 
[Voltzow 1987]     (about 24 hrs?)     (3--6 hrs as in Crofts?)    appears fully functional before, 
        90°--180°: 18 hrs     during, and after the torsion process"  
Haliotis kamtschatkana 20 hrs    no; each phase   probably differential growth, but  12°--13°C 
[Page 1997b]       takes 10 hrs      "a possible role for muscles ...  
               can not be excluded" 
Margarites helicinus  0.5--1.5 days   no data    no data      7°--9°C 
[Holyoak 1988a] 
Trochus striatus 
(plus 5 other Trochidae) 6--8 hrs   no data    no data      no data 
[Robert 1902] 
Trochus niloticus  no data    0°--90°: 4 hrs   no data      27°--30°C 
[Heslinga 1981]      90°--180°: no data  no data   
Gibbula cineraria  48 hrs    0°--90°: 8 hrs   "contraction of the larval retractor";  12°C 
[Underwood 1972]      90°--180°: 40 hrs  "differential growth of different 
               parts of the shell" 
Calliostoma zizyphinum 36 hrs    0°>90°: 4 hrs   activity of larval retractor;   no data 
[Crofts 1955]       >90°--180°: 32 hrs  mainly differential growth; pedal  
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Table 1 (continued) 
 
               musculature assists torsion  
Calliostoma ligatum  1.5 days   no data    no data      7°--9°C 
[Holyoak 1988b] 
4 Trochidae   no data    no data    differential growth of the epi-  no data 
[Bandel 1982]              thelium of the visceral hump; 
               no muscular activity involved 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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The gonads of ripe animals were obtained by dissection, all further fertilization as well as 

culture and breeding procedures were carried out in Millipore-filtered artificial seawater. Both 

larvae and adults were kept at a temperature of 20--22°C, i.e., within the range of the ambient 

seawater temperature in the field (15--25°C) during the reproductive season of Patella 

caerulea. 

 

Live observations  

Frequent fertilizations were carried out throughout 1997 and during spring 1998. The earliest 

onset of torsion occurred at 32 hours post fertilization (hpf). Accordingly, specimens were 

observed individually from 32 hpf onwards, either under a stereo microscope or --- for exact 

determination of their torsion state --- on a depression slide under a compound microscope 

(Leica DM RBE). The whole 180° rotation was studied individually in about 60 specimens. 

 

Scanning electron microscopy (SEM) 

All specimens were relaxed by adding drops of 7.14% MgCl2-solution prior to fixation. 

Larvae were fixed either in 4% glutaraldehyde in 0.2M sodium cacodylate buffer with 0.1M 

NaCl and 0.35M sucrose and postfixed with 1% OsO4 in 0.2M sodium cacodylate buffer with 

0.3M NaCl for 2 hours (see Wanninger et al. 1999b) or, preferably, in hot (30--60°C) Bouin's 

fluid. The latter fixative causes homogeneous shrinking of the prototrochal cilia, which 

prevents major parts of the animal (e.g. foot, operculum, mantle fold) from being covered 

with them during preparation. This provided a better overview of the general morphology of 

larvae at the cost of detailed epithelial structure which was better preserved by the 

glutaraldehyde-osmium fixation. Approximately 50 to 120 individuals were fixed in intervals 

of 15 minutes between 32 hpf and 40.5 hpf. Fixed specimens were dehydrated in an acetone 

series (Bouin's fixed specimens: 70% to 100%, glutaraldehyde-osmium fixed specimens: 30% 

to 100%), critical point dried, mounted on SEM stubs and sputter coated. Observations were 

carried out using a Philips XL 20 SEM. 

 

RESULTS 

 

General notes 

(1) All orientations refer to Wanninger et al. (1999b), with the foot defining the ventral side. 

This implies that the positions of the mantle fold and the mantle cavity change from the 

pretorsional ventral to the posttorsional dorsal side due to the 180° rotation of the head/foot 



Appendix VII                                                                                                    Torsion in Patella caerulea 

 

159 

relative to the visceral portion. In the following, posttorsional orientation is given unless 

otherwise indicated. 

(2) For definition of torsion stages, see Fig. 1A3--E3. For better understanding, the whole 

180° twist is divided into steps of 45° movements. This results in rotation stages of 0° 

(pretorsional), 45°, 90°, 135° and 180° (posttorsional). In vivo, however, torsion occured as a 

monophasic, gradual process in Patella caerulea, not as single ”pulses” of rotation (see 

below). The torsion angle (α) is defined by 2 imaginary projection lines (Y, Z): line Y runs 

through the anterior tip of the mantle fold (arrow) and the most posterior point of the larva's 

visceral hump (X). Line Z marks the connection of the axis through the operculum with X, the 

point where both lines (Y and Z) meet, thus forming the torsion angle α. 

 

The torsion process in Patella caerulea 

In the lecithotrophic larvae of Patella caerulea, ontogenetic torsion started between 32 and 39 

hours post fertilization (hpf) (T=20--22°C). Individuals which remained completely untorted 

beyond 40 hpf seemed to be misdeveloped and most of them died during subsequent 

development. However, certain untorted, free swimming veligers, which had obviously 

retarded development, could be found in the culture dishes even several days after the first 

individuals had already metamorphosed. All specimens which underwent torsion proved 

healthy at least until they reached metamorphic competence (i.e. at around 170 hpf, see 

Wanninger et al. 1999b). In the pretorsional larva the foot lies on the same side as the mantle 

fold and is situated between the prototroch and the opening of the mantle cavity (Fig. 1A1-

A3). 

At the onset of torsion the operculum and the calcified embryonic shell are already well 

developed and both larval shell muscles are fully contractile. Their attachment sites on the 

embryonic shell (protoconch I, see Haszprunar et al. 1995, Wanninger et al. 1999b for 

definition) are asymmetrical, with the main larval retractor inserting posterior of the visceral 

hump while the accessory larval retractor meets the shell at the posttorsional ventral side of 

the larva (Fig. 1A1, E1 insets). Seen from a postero-dorsal angle, the accessory larval 

retractor is situated on the lower right side of the main larval retractor (Fig. 1A3, B3--B4, C3-

-C4, D3--D4, E3--E4). Both muscles perform simultaneous contractions approximately every 

30 seconds. These occur cramp-like, starting with 1 powerful contracting movement which is 

usually followed by several less powerful contractions. Due to the fact that the foot still lies 

between the mantle fold and the prototroch, retraction of the cephalopedal region of the larval 

body into the embryonic shell is not yet possible. Instead, the embryonic shell seems to act 
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antagonistically against the activity of the larval shell muscles, resulting in a clockwise 

movement of the head/foot region relative to the visceral portion. In morphological terms 

(ventral side defined by the foot remains constant) the visceral hump rotates counter-

clockwise to the head/foot. The muscular contractions are followed by slow, gradual 

"pumping" movements of the larval foot. Light microscopical observations of larvae in vivo 

show, that body fluid is peristaltically transported from the visceral part to the pedal region of 

the animal, which causes the foot to swell and become elongated. After 30 seconds the next 

series of muscular contractions occurs, followed by hydraulic movements and so on. 

30 minutes after the onset of torsion, an angle of 45° exists between the Y- and Z-Lines (Fig. 

1A1--A4; note that in B3--E3 and B4--E4 the foot is represented by the position of the 

operculum which is attached to the posterior part of the foot). Due to its circular structure the 

region of the prototroch misleadingly seems to be unaffected by torsion, while, seen from the 

larva's posterior end, the foot performs a clockwise twist relative to the visceropallium (Fig. 

1). Another 30 minutes later, the axis of the operculum (Z-Line) runs perpendicular to the Y-

Line through the mantle tip (Fig. 1C1--C4). Thus, the posttorsional dorsal opening of the 

mantle cavity is visible for the first time (Fig. 1C1). However, retraction into the embryonic 

shell remains impossible until completion of the full 180° twist. A further half hour later, 135° 

of rotation is achieved (Fig. 1D1--D4). About 2 hours after the onset of torsion all specimens 

have completed the 180° twist. The foot with its attached operculum lies on the opposite side 

of the mantle fold, which is now located on the dorsal side of the larva (Fig. 1E1--E4). 

 

The larval operculum and shell muscles during torsion 

Besides the dramatic morphological change caused by the 180° twist itself, other 

developmental progresses can be recognized during the torsion process (Fig. 1). The foot 

grows steadily and is prominent after the completion of torsion. The formation and growth of 

the larval operculum occurs independently of the ontogenetic torsion process, since opercular 

formation starts in late pretorsional larval stages (Fig. 1A1--A3). Moreover, opercula equal in 

size to those of regularly torted specimens are formed by (misdeveloped?) larvae even if they 

remain untorted for several days, i.e. when regular specimens have already reached 

metamorphic competence. 
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Fig. 1. Ontogeny of the torsion process in Patella caerulea. Far left (1) and far right (4) columns present SEM images of the 180° twist of the cephalopodium relative to the 
visceropallium. The inner columns (2, 3) provide semidiagrammatic drawings according to the adjacent SEM pictures. The view in columns (1) and (2) is lateral from the right, in 
columns (3) and (4) postero-dorsal (with respect to the posttorsional morphological orientation). Torsion is described as the subsequent establishment of a 180° angle between 2 
imaginary projected lines (Y;  Z), which both meet at the most posterior pole (X) of the larva's visceral hump (vh). This gives rise to the torsion angle α, which develops from 0° 
in the pretorsional state (A1--A4) to 180° at the completion of torsion (E1--E4). Note that both larval shell muscles, the main (mlr) and accessory larval retractor (alr), are well 
developed and functional at the onset of torsion (A1--A3; alr not yet formed in A4). A1--A4. Pretorsional larvae at the onset of torsion (A1--A3); larva in A4 has slightly retarded 
development compared to the specimens in A1--A3, thus lacking the operculum (op). Instead, the foot (ft) is visible (age: A1. 36.5 hpf., A4. 33 hpf). B1--B4. Larvae at 45° of 
torsion (age: B1. 32.75 hpf., B4. 36 hpf.). C1--C4. Half torted veligers at 90° of torsion (age: C1. 35.25 hpf., C4. 35 hpf.). D1--D4. 135° of torsion achieved (age: D1. 38.25 hpf., 
D4. 36.25 hpf). E1--E4. Torsion completed, foot (ft) and operculum (op; arrowhead marks the outer point of its median axis) are situated opposite the mantle fold (arrow) (age: 
E1. 38 hpf., E4. 35.5 hpf). Insets in A1 and E1 show light microscopy photographs of pre- (A1) and posttorsional (E1) larvae in vivo. Note the asymmetrical attachment sites of 
both larval retractors. Further abbreviations: act - apical ciliary tuft, mc - mantle cavity, pt - prototroch. Scale bars equal 25 µm for each column. 
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Both larval shell muscles, the main larval retractor and the accessory larval retractor, insert at 

the embryonic shell and penetrate the visceral hump. Prior to torsion, the trunk of the main 

larval retractor is a short, relatively thin muscle (Fig. 1A1--A4). Yet, the accessory larval 

retractor is hardly recognizable in SEM examinations and its shell attachment site is only 

represented by a small bulge emerging from the epithelium of the visceral hump (compare 

Figs. 1A1 and 1A3: the latter specimen is slightly younger and has not yet reached the stage 

where torsion starts. Thus, the operculum and the accessory larval retractor are not as clearly 

detectable by SEM in Fig. 1A3 as they are in Fig. 1A1). However, at the onset of torsion, both 

larval retractors are fully contractile and insert at the embryonic shell (see Fig. 1A1 (inset) 

and Wanninger et al. 1999b). During torsion both muscles grow in length and diameter. When 

the total 180° rotation is completed, both larval shell muscles have reached their maximum 

size, ready to retract the animal into the shell, which can now be closed with the larval 

operculum. 

 

DISCUSSION 

 

General notes 

Developmental timing strongly depends on the temperature under which organisms are 

maintained. In the present study we document ontogenetic torsion in Patella caerulea under 

controlled laboratory conditions. Our results provide evidence about possible ontogenetic 

mechanisms for that process in basal gastropods. Comparing these findings with previous 

studies (see Table 1), it is important to note (a) the different temperatures under which the 

larvae were cultured, and (b) the various gastropod species investigated, showing major 

differences concerning their general development, e.g. intracapsular development or brooding 

in trochids (see Hickman 1992) versus a free swimming larval stage in patellogastropods 

(Wanninger et al. 1999b). Those kinds of factors strongly influence larval ontogeny as a 

whole, including the process of ontogenetic torsion. 

 

Causes of ontogenetic torsion: old and new data 

A brief overview of major accounts on the torsion process in several patello- and 

vetigastropod species and its hypothetical cause(s) is given in Table 1. Some of the more 

detailed studies divide the 180° twist into 2 distinct phases (0°--90° and 90°--180°) of which 

either the first 90° proceed quicker than the second 90° (e.g., Crofts 1937, 1955; Underwood 

1972), or vice versa (e.g., Smith 1935). Other publications lack information about a mono- or 



Appendix VII                                                                                                    Torsion in Patella caerulea 

 

164 

biphasic torsion process and provide only general information about the time taken for the 

entire 180° rotation (e.g., Boutan 1902; Robert 1902; Dodd 1955; Rao 1975). Only a few 

cases of a clearly monophasic torsion process have thus far been reported (Page 1997b; this 

study). Moreover, the total amount of time taken for the complete 180° rotation differs 

remarkably among species and even within a single species: while Boutan (1899) observed an 

extremely quick 180° twist in individuals of Haliotis tuberculata (2--3 minutes), Crofts (1937, 

1955) reports it as lasting 200 hours in the same species. Furthermore, the latter author states 

a biphasic process with a short first phase and a long second phase of approximately 200 

hours. According to Voltzow (1987), who only refers to the second phase of an obviously 

observed biphasic process in larvae of Haliotis kamtschatkana, this second half is completed 

in no more than 18 hours. In contrast, Page (1997b) describes a monophasic torsion process in 

the same species which takes only 20 hours in toto, although the culturing temperature (12°--

13°C) was similar to that in Voltzow's (1987) investigation (12°C). Equally contradictory data 

are given for Patella: Smith (1935) observed a slow first and a rapid second phase in 

specimens of Patella vulgata, while the reverse is stated in Crofts' (1955) work on the same 

species. However, both authors widely agree with Dodd (1955) regarding the total time of 

about 40 hours taken for the completion of the whole 180° twist (see Table 1 for details). This 

is in striking contrast to the results presented here, demonstrating a much more rapid 

completion of torsion in Patella caerulea (2 hours), which is carried out monophasically (i.e. 

at a constant speed). It is difficult to evaluate the differences between these data, since many 

of the earlier studies lack information on the rearing temperature of the larvae. Thus, the very 

different values on the timing of torsion reported by Dodd (1955) for Patella vulgata 

(T=12.5°+/-0.5°C) and herein for Patella caerulea (T=20°--22°C) might be due to the 

different temperatures of maintenance and/or the different species of both investigations. 

Results concerning the onset of torsion in both papers also support this idea: while Dodd 

(1955) marks the start of torsion at 72 hpf in larvae of Patella vulgata, the present data reveal 

its onset at 32-39 hpf. However, there is a remarkable discrepancy between the 2 species 

concerning the relation of the onset of torsion to its duration (72 hpf : 40 hrs in Patella 

vulgata versus 32 hpf : 2 hrs in Patella caerulea). 

Despite the high variability of data on the duration of the torsion process, the hypotheses on 

its main causes closely resemble each other: muscular activity (of the larval shell muscles) is 

said to be responsible for quick rotational phases, while slower movements are caused by 

differential growth. The exception is Boutan (1902), who stated that the extraordinarily quick 

torsion process in Acmaea virginea and Haliotis tuberculata (2--3 minutes) is the result of an 
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antagonism of the foot and the visceral hump. Due to the new data based on live observations 

as well as SEM investigations, we regard the following mechanisms as driving forces of the 

ontogenetic torsion process in Patella caerulea: 

 

(1) The activities of both larval shell muscles (main and accessory larval retractor) primarily 

cause the rotation of the cephalopodium relative to the visceropallium. This is mainly 

achieved by short but intense contractions of these 2, asymmetrically crossing muscles. The 

recent detailed study of Wanninger et al. (1999b) on the myogenesis in Patella vulgata and 

Patella caerulea supports this view by showing that most myofibrils running into the 

cephalopedal region of the larva belong to the main larval retractor, while the majority of the 

fibers of the accessory larval retractor terminate in the mantle fold. Thus, in combination with 

their asymmetrically situated attachment sites, both larval retractors form a powerful, 

antagonistic muscular system. Due to their resorption during or shortly after metamorphosis 

(Wanninger et al. 1999b), their main functions are (a) to cause torsion and (b) to retract 

posttorsional individuals into the embryonic shell. 

 

(2) Both juvenile/adult shell muscles arise after the completion of torsion and are entirely 

independent of the larval retractors (see Wanninger et al. 1999b). Thus, they do not contribute 

to the ontogeny of torsion, and all hypotheses based on this assumption (e.g., Edlinger 1988a, 

b; Edlinger and Gutmann 1997) should be abandoned. Accordingly, the torsion process is 

regarded as a primarily larval feature (see Wanninger et al. 1999a). 

 

(3) Hydraulic activities presumably play a second major role in the ontogeny of torsion. This 

is achieved by the active pumping of body fluid into the anterior part of the foot, which 

apparently results in an increased hydrostatic pressure in this body region. Thus, the 

movement of the foot relative to the mantle fold --- initiated by the muscular contractions --- 

is supported. 

 

(4) The already calcified embryonic shell probably serves as an antagonist against the 

contracting movements of the larval retractors and thus supports the torsion process. 

 

(5) Differential growth seems to play a role only insofar as it apparently fixes the newly 

gained relative position of the head/foot to the visceral hump. 
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Timing of ontogenetic torsion and its phylogenetic significance 

Considering the great differences in the timing of torsion among various gastropod taxa, the 

highly heterogeneous character of the ontogeny of torsion becomes obvious (Table 1). Thus, 

we regard phylogenetic conclusions about any hypothetical general pattern of the timing of 

torsion as impossible. Instead, it can be concluded that ontogenetic torsion has been highly 

modified within various gastropod clades since its first (phylogenetic) occurrence. However, 

the various features of the torted veliger appear to be highly constant between the different 

taxa of basal gastropods (Patellogastropoda, Neritaemorphi, Vetigastropoda). In contrast, the 

actual process and in particular the timing of torsion appear highly variable among gastropod 

taxa, "building similar animals in different ways" (Raff 1996: 211). To gain further insight in 

this developmental phenomenon, future investigations should focus on the genetic basis of 

ontogenetic torsion in basal gastropods. 

 

Shell muscle data and the fossil record 

It is widely accepted today that the Patellogastropoda (formerly Docoglossa) are the most 

basal clade of the Gastropoda (see Golikov and Starobogatov 1975; Haszprunar 1988; Ponder 

and Lindberg 1997). Recent data presented by Page (1997a, b) for the basal vetigastropod 

Haliotis kamtschatkana, and by Wanninger et al. (1999a, b) for Patella vulgata and Patella 

caerulea, agree that the 2 larval retractors are (at least partly, see Page 1997a) resorbed prior 

to or shortly after metamorphosis, while the adult shell musculature arises de novo after the 

completion of torsion. 

The arrangement of fossilized (adult) muscle scars on molluscan shells or steinkerns is 

commonly used to infer whether or not an early univalved mollusc was torted (see, e.g., Wenz 

1940; Knight 1947; Rollins and Batten 1968; Runnegar and Pojeta 1974; Dzik 1981; 

Runnegar 1981; Yochelson and Gil Cid 1984; Peel 1991a, b; among others). However, these 

attempts have also been severely criticized by Yochelson (1978). Other authors tried to solve 

this problem by taking asymmetrically coiled adult shell forms as a major proof for torsion 

(but see Linsley and Kier 1984). Since torsion is the key apomorphy of the Gastropoda (see 

Haszprunar 1988; Falniowski 1993), these features are crucial for the understanding of both 

early conchiferan phylogeny and gastropod origin. The present study as well as Wanninger et 

al. (1999a, b) show that ontogenetic torsion is neither related to adult shell shape nor to the 

activity or arrangement of adult shell muscles. In contrast, similarly shaped adult shells and 

adult musculature can house animals of very different bauplans (compare, e.g., the serial shell 

musculature of adult tryblidiidans with the multiple bundles of the U-shaped adult shell 
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muscle of patellogastropods). Moreover, different shells and muscles may house very similar 

animals, e.g. Lepeta-Propilidium, Clypeosectus-Pseudorimula, Pyramidellidae-Amathinidae. 

Thus, as far as the fossil record is concerned, the present paper supports Yochelson (1978: 

178), who concluded: "Let me say once again that it is impossible to determine whether an 

extinct form has undergone torsion." This is at least true for fossils that provide no more 

information than fossilized attachment sites of adult shell muscles. 

 

The monophyly of torsion 

Recent papers by Page (1997a) on Haliotis kamtschatkana and Wanninger et al. (1999b) on 

Patella caerulea and Patella vulgata show striking similarities in the larval shell musculature 

of basal veti- and patellogastropods. This is especially true for the asymmetrically situated 

attachment sites of both larval retractors as well as for ultrastructural data: in all 3 species the 

larval shell muscles are obliquely striated while the adult shell musculature shows smooth 

conditions. Furthermore, the latter muscles arise independent of the larval retractors. These 

findings in combination with the identical anatomical consequences caused by the torsion 

process (see Haszprunar 1988) strongly suggest monophyly of torsion in gastropods (see also 

Ponder and Lindberg 1997). However, due to the heterogeneity of its ontogenetic process 

(timing) among various taxa (see Table 1), phylogenetic conclusions of torsion based on 

ontogenetic data alone remain problematic. 
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ZUSAMMENFASSUNG 
 

 

Die vorliegende Arbeit beinhaltet detaillierte Studien über die Ontogenese larvaler 

Muskelsysteme bei Mollusken mittels Rasterelektronenmikroskopie, 

Transmissionselektronenmikroskopie, Fluoreszenzfärbungen in Kombination mit konfokaler 

Laserscanningmikroskopie, sowie Analysen histologischer Semidünnschnitt-Serien in 

Verbindung mit Rekonstruktionenstechniken. Es wurden diverse Vertreter der 

Polyplacophora, Bivalvia, Scaphopoda und Gastropoda bearbeitet, sowie die Adultmuskulatur 

der basalsten Mollusken, der Solenogastres, neu untersucht. Zur Klärung der 

Verwandtschaftsverhältnisse der Scaphopoda wurden zusätzlich die Schalenentwicklung und 

die Expression des Homeoboxgens engrailed in Antalis entalis analysiert. Die gewonnenen 

Erkenntnisse ermöglichen bedeutende Schlußfolgerungen bezüglich der Evolution und 

Phylogenie der Mollusca. 

 

Solenogastres 

Adulte Solenogastres besitzen eine aus äußeren Ring-, mittleren Diagonal- und 

inneren Längsmuskeln bestehende Körperwandmuskulatur, die derjenigen anderer 

wurmförmiger Taxa ähnelt. Die für Mollusken charakteristische, sich ventral überkreuzende 

Dorsoventralmuskulatur zeigt eine multiple, serielle Anordnung entlang der 

Körperlängsachse.  

 

Polyplacophora 

 Polyplacophoren (Chitonen) weisen in späten Larvalstadien eine Serialität der 

Dorsoventralmuskulatur auf, welche an die Situation in adulten Solenogastres erinnert. Die 

Konzentration dieser Muskeln auf sieben und später acht Schalenplatten-Muskelpaare ist 

sekundärer Natur und erfolgt erst nach der Metamorphose. Theorien, welche von einer 

annelidenartigen Segmentierung der Polyplacophora ausgehen, können deshalb nicht aufrecht 

erhalten werden. Darüber hinaus findet sich im prätrochalen Körperbereich der 

Chitonenlarven ein der Körperwandmuskulatur adulter Aplacophoren (Solenogastres + 

Caudofoveata) ähnliches Muskelgitter, welches bei den Polyplacophoren während der 

Metamorphose verloren geht. Dieses larvale Muskelgitter sowie die Serialität der 

Dorsoventralmuskulatur werden als Rekapitulation des ursprünglichen (und in adulten 

Solenogastres weitgehend vorherrschenden) Molluskenbauplanes in der Ontogenese der 
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Polyplacophora interpretiert. Daraus ergibt sich das Postulat eines wurmförmigen und 

unsegmentierten Körpers an der Basis der Mollusken-Phylogenie.  

 Wie bei den Bivalvia und den Gastropoden (siehe unten), so findet sich auch in 

Polyplacophorenlarven ein Prototroch-Muskelring, welcher als homolog für diese Taxa 

angesehen wird. 

 

Bivalvia 

Neben etlichen larvalen Retraktormuskeln besitzen die Veligerlarven autobrancher 

Muscheln (d.h. aller Bivalvia außer der Protobranchia, welche eine "Hüllglockenlarve" 

aufweisen) den bereits erwähnten Prototroch-Muskelring. Sowohl die Larvalretraktoren als 

auch der Prototrochring sind rein larvale Systeme, welche im Zuge der Metamorphose 

vollständig reduziert werden.  

 

Scaphopoda 

Die Ontogenese und die Myogenese des Dentaliiden Antalis entalis laufen wesentlich 

direkter ab als bei Polyplacophoren oder Gastropoden und eigenständige larvale 

Muskelsysteme fehlen völlig. Die einzige Ausnahme bilden den Prototroch retrahierende 

Muskelfasern, welche aber keine eigene Schalenansatzstelle bilden, sondern mit den jeweils 

paarigen Kopf- und Fußretraktoren assoziiert sind. Die Existenz eines Kopfretraktorsystems 

kann als Synapomorphie für ein Taxon Scaphopoda + (Gastropoda + Cephalopoda) 

angesehen werden. Dies wird unterstützt durch Analysen des Genexpressionsmusters von 

engrailed, welches eine entscheidende Rolle bei der Schalenbildung von Mollusken spielt: In 

frühen Stadien von Bivalvialarven wird engrailed in den beiden Anlagen der zweiklappigen 

Embryonalschale exprimiert, wohingegen es bei Antalis in Zellen, die das einteilig angelegte 

embryonale Schalenfeld umgeben, nachgewiesen werden kann. Diese Unterschiede 

widersprechen fundamental einem direkten Schwestergruppenverhältnis der Bivalvia und 

Scaphopoda. 

 

Gastropoda 

 Ursprüngliche Gastropoden, wie die hier untersuchten Vertreter der Patellogastropoda, 

Patella vulgata und Patella caerulea, besitzen ein Paar asymmetrischer larvaler 

Schalenmuskeln mit jeweils eigener Schalenansatzstelle, sowie einen Prototroch-Muskelring. 

All diese Muskelsysteme werden unmittelbar vor, während, oder kurz nach der 

Metamorphose resorbiert. Sowohl die adulte Mantel- als auch die Tentakelmuskulatur werden 
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zumindest teilweise vor der Metamorphose angelegt, während die gesamte Buccalmuskulatur 

erst in frühen Juvenilstadien nachzuweisen ist.  

 Der Torsionsprozeß wird bei basalen Gastropoden in erster Linie durch 

Muskelaktivität der larvalen Schalenmuskeln verursacht. Im Gegensatz dazu wird die adulte 

Schalenmuskulatur erst nach Vollendung der Torsion gebildet. Dementsprechend kann der 

ontogenetische Ablauf der Torsion als rein larvaler Prozeß angesehen werden. Daraus ergibt 

sich, daß die Anordnung der adulten Schalenmuskulatur - welche oft als Abdruck auf fossilen 

Schalen erhalten ist - nicht zur Klärung der Frage herangezogen werden kann, ob ein 

bestimmter einschaliger, paläozoischer Mollusk tortiert war, und damit der Klasse der 

Gastropoda zuzurechnen ist.  
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