
 

 

Cell proliferation and cell survival  

in the dentate gyrus of adult mice  

under naturalistic conditions 

Dissertation 

 an der Fakultät für Biologie 

der Ludwig-Maximilans-Universität München 

 

vorgelegt von 

Ariane Santoso 

München, Dezember 2006 



 

 

1. Gutachter: Prof. Dr. York Winter 

2. Gutachter: Prof. Dr. George Boyan 

 

Tag der mündlichen Prüfung: 12. Oktober 2009 

 



Table of Contents 

3 

Table of Contents 

 ABBREVIATIONS..................................................................................................................5 

 SUMMARY ..............................................................................................................................6 

 ZUSAMMENFASSUNG.........................................................................................................8 

 GENERAL INTRODUCTION.............................................................................................10 

 AIMS OF THIS THESIS ......................................................................................................18 

 CHAPTER 1 INDIVIDUALLY DOSED ORAL DRUG ADMINISTRATION TO 

SOCIALLY-LIVING TRANSPONDER-TAGGED MICE BY A WATER 

DISPENSER UNDER RFID CONTROL.............................................................................20 

1 ABSTRACT ...........................................................................................................................20 

2 INTRODUCTION ...................................................................................................................21 

3 METHODS ............................................................................................................................22 

4 RESULTS..............................................................................................................................25 

5 DISCUSSION .........................................................................................................................28 

6 REFERENCES .......................................................................................................................30 

 CHAPTER 2 NEUROGENESIS IN ADULT MICE IS NOT ENHANCED IN A 

NATURALISTIC ENVIRONMENT BUT ONLY BY UNNATURAL 

LOCOMOTION......................................................................................................................33 

1 ABSTRACT ...........................................................................................................................33 

2 INTRODUCTION ...................................................................................................................34 

3 MATERIALS AND METHODS ................................................................................................40 

3.1 GENERAL METHODS.....................................................................................................40 

3.2 EXPERIMENTAL DESIGN ...............................................................................................45 
3.2.1 Simple environment and exploration and learning in a complex environment ...45 
3.2.2 Locomotion types: wheel versus plane ................................................................48 
3.2.3 Persistence of enhanced cell proliferation following running activity ................49 

4 RESULTS..............................................................................................................................50 

4.1 BEHAVIOR ...................................................................................................................50 

4.2 BRDU-POSITIVE CELLS ................................................................................................53 

5 DISCUSSION .........................................................................................................................56 

5.1 CELL PROLIFERATION AND SURVIVAL ARE AFFECTED IN AN ENRICHED, BUT 

NOT IN A NATURALISTIC ENVIRONMENT.......................................................................57 

5.2 METHODICAL CONSIDERATIONS ..................................................................................63 

5.3 CONCLUSIONS..............................................................................................................64 

6 REFERENCES .......................................................................................................................65 

 CHAPTER 3 CELL PROLIFERATION AND BEHAVIOR: INSIGHTS.....................71 

1 INTRODUCTION ...................................................................................................................71 

2 EXPERIMENTS .....................................................................................................................73 



Table of Contents 

4 

2.1 CELL PROLIFERATION IN THE NATURALISTIC ENVIRONMENT WITH BRDU 
INJECTIONS ..................................................................................................................73 

2.2 ORAL APPLICATION OF BRDU IN A NECTAR-FEEDING BAT (GLOSSOPHAGA 

SORICINA) ....................................................................................................................74 

2.3 CLASSIFICATION AND DISTRIBUTION OF BRDU-LABELED CELLS..................................76 

2.4 BEHAVIOR IN THE COMPLEX ENVIRONMENT ................................................................80 

2.5 RECOVERY FROM A 7 HOUR SHIFT OF LIGHT-DARK CYCLE ...........................................84 

2.6 RUNNING IN WHEELS AND TUBES AD LIBITUM AND LIMITED TO 1000 M ......................86 

2.7 PRESENCE OF AN IMMOBILIZED RUNNING WHEEL ........................................................88 

3 DISCUSSION .........................................................................................................................89 

4 REFERENCES .......................................................................................................................92 

 GENERAL DISCUSSION ....................................................................................................95 

Oral BrdU administration is a suitable alternative to BrdU injections............................95 
Cell proliferation in a naturalistic environment is not enhanced by exploration or 
spatial learning ................................................................................................................95 
Pro-proliferative effect of physical activity is transient and strongly depends on 
activity level ....................................................................................................................97 
Conclusion.......................................................................................................................98 
Outlook............................................................................................................................98 
References .......................................................................................................................99 

 APPENDICES ......................................................................................................................101 

APPENDIX A METHODICAL DETAILS ..................................................................................101 

A.1 ANIMALS AND TREATMENTS ......................................................................................101 

A.2 CAGES .......................................................................................................................104 

A.3 TREATMENTS AND PARAMETERS IN THE SIMPLE AND COMPLEX ENVIRONMENT.........109 

A.4 THE HISTOLOGICAL PROCEDURE ................................................................................113 

A.5 QUANTIFICATION OF BRDU-LABELED CELLS .............................................................122 

A.6 REFERENCES ..............................................................................................................127 

APPENDIX B FIGURES AND TABLES.....................................................................................128 

B.1 INDEX OF FIGURES .....................................................................................................128 

B.2 INDEX OF TABLES.......................................................................................................129 

B.3 CONTENT OF CD-ROM .............................................................................................130 

 THANKS TO........................................................................................................................131 

 CURRICULUM VITAE......................................................................................................132 

 



Abbreviations 

5 

Abbreviations 

App  Appendix 

BrdU  5-bromo-2'-deoxyuridine 

BW  Body weight 

CCD  Charge-coupled device 

dd  Dorsodorsal blade of DG 

dv  Dorsoventral blade of DG 

DG  Dentate gyrus 

EB  Eye blink conditioning 

GCL  Granule cell layer 

hi  Hilus 

IMA  Integrated morphometry analysis 

i.d.  Inner diameter 

i.p.  Intraperitoneal 

LD  light-dark 

MWM  Morris water maze 

n  Sample size 

o.d.  Outer diameter 

pAB  Primary antibody 

PIT  Passive Integrated Transponder 

PT  Post-treatment time 

RFID  Radio frequency identification 

RT  Room temperature 

sAB  Secondary antibody 

SD  Standard deviation 

SEM  Standard error of the mean 

SGZ  Subgranular zone 

ve  Ventral DG
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Summary 

Throughout life, new cells are generated in the mammalian brain and incorporated 

as functional neurons in the networks of the olfactory bulb and the dentate gyrus (DG) of 

the hippocampal formation. So far proliferation and survival rates of newly generated cells 

in the adult DG have been investigated in commonly used and rather simple behavioral 

experiments like the Morris water maze, fear and trace conditioning, a running wheel and 

small enriched environments. Some of these studies gave evidence for an influence of 

single factors on neurogenesis, like physical activity, complexity of environment or 

associative learning. Results from laboratory experiments cannot directly be translated into 

the natural situation, because the relevance of these factors for animals in the wild is 

different from that for animals under laboratory conditions. Additionally, naturally an 

animal lives under a combination of several factors. Hence, we cannot derive the relevance 

of adult neurogenesis for wild-living animals from these studies. 

The aim of this study was to examine neuronal plasticity in a naturalistic 

environment with respect to factors that have the capability to influence neurogenesis 

separately and under laboratory conditions. 

Therefore, I compared cell proliferation and survival of newborn cells in DG of 

adult mice at different complexity levels of a naturalistic environment. Large enclosures 

equipped with computer-controlled water dispensers represented an environment near to 

nature, in which physical activity and exploration were possible and required. Foraging 

behavior was the basis for the investigation of the role of associative learning under 

naturalistic conditions. The extensive automation of the setup allowed for maximum 

avoidance of disruptions and interference of mouse behavior by the experimenter. With 

respect to this aspect, a new method for oral application of the proliferation marker BrdU 

via computer-controlled dispensers was established. 

In a naturalistic environment, mice expressed distinct exploratory behavior and 

optimized their foraging following the variation of water dispenser qualities. Surprisingly, 

neither exploring novel water resources nor spatial learning of positions of profitable 

resources lead to a change in the rate of neurogenesis. From the finding, that running 

induced a marked increase of proliferation rate when performed in a running wheel but not 

when performed in a naturalistic environment, the question arose if the type physical 

activity is critical. 

The comparison of running in a wheel with running in plane showed that the 

proliferation rate is independent from type of locomotion but strongly correlates with the 
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extent of running activity. The pro-proliferative effect of running occurs acute and persists 

for at least 3, but not more than 5 days. 

Wheel running acts as a reliable promoter of cell proliferation in mice, but also 

represents a rather unnatural form of physical activity. Motivation for exercise as well as 

extent of exercise differ substantially between running wheel and natural locomotion. The 

results of this work indicate that the relevance of adult neurogenesis for natural behavior 

should be valuated with caution. In everyday life, the lifelong production of new cells in 

DG seems to function for the maintenance of a certain amount of neuronal resources rather 

than for the situational production of new neurons.
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Zusammenfassung 

Im Säugetiergehirn werden lebenslang neue Zellen gebildet, die als funktionelle 

Neurone hauptsächlich in das Netzwerk des Riechhirns und des Gyrus dentatus (dentate 

gyrus, DG) der Hippokampusformation eingebaut werden. Bisher umfassten Studien über 

Zellproliferation und Überlebensrate der neugebildeten Zellen im adulten DG meist 

gebräuchliche und einfache Verhaltensexperimente unter Standard-Laborbedingungen wie 

das Morris Wasser Labyrinth, Angst- und Spurenkonditionierung, Laufradaktivität oder 

angereicherte Käfighaltung. Der Einfluss einzelner Faktoren, wie physische Aktivität, 

Komplexität der Umwelt oder assoziatives Lernen auf die adulte Neurogenese wurde in 

einigen dieser Untersuchungen nachgewiesen. Die Ergebnisse aus Laboruntersuchungen 

können aber nicht direkt auf die Situation in der Natur übertragen werden, da diese 

Faktoren in der Natur eine andere Relevanz für die Tiere haben als unter 

Laborbedingungen. Zusätzlichen wirkt natürlicherweise eine Kombination mehrerer 

Faktoren auf das Tier. Die Relevanz der adulten Neurogenese für wildlebende Tiere kann 

also aus diesen Studien nicht direkt abgeleitet werden. 

Das Ziel dieser Arbeit war es, die neuronale Plastizität in einer naturgetreuen 

Umgebung zu untersuchen unter Berücksichtigung der Faktoren, die einzeln und unter 

Laborbedingungen Neurogenese beeinflussen können. 

Dazu wurden Zellvermehrung und –überlebensrate im DG adulter Mäuse bei 

verschiedenen Stufen von reizarmen und naturnahen Umgebungsbedingungen verglichen. 

Große Gehege, ausgestattet mit computergesteuerten Wasserspendern, repräsentierten eine 

naturalistische Umgebung, in der physische Aktivität und Explorationsverhalten möglich 

und gefordert waren. Das Nahrungssuchverhalten war die Grundlage für die Erforschung 

der Rolle von assoziativem Lernen unter naturgetreuen Bedingungen. Die weitgehende 

Automatisierung des Setups ermöglichte dabei in hohem Maße, Störungen und 

Beeinflussungen des Verhaltens der Mäuse durch den Experimentator zu vermeiden. In 

diesem Zusammenhang wurde auch eine neue Methode zur oralen Gabe des 

Proliferationsmarkers BrdU mithilfe computergesteuerter Tränken etabliert. 

In der naturalistischen Umgebung zeigten die Mäuse ausgeprägtes 

Explorationsverhalten und optimierten ihr Nahrungssuchverhalten, wenn die Qualität der 

Wasserspender variiert wurde. Erstaunlicherweise führten weder die Erkundung neuer 

Wasserressourcen noch das Positionslernen rentabler Ressourcen zu einer Veränderung der 

Neurogeneserate. Die Feststellung, dass Laufen zwar im Laufrad, aber nicht in naturnaher 
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Umgebung eine deutliche Zunahme der Proliferationsrate verursacht, führte zu der Frage, 

ob die Art und Weise der physischen Aktivität dafür entscheidend ist. 

Bei dem Vergleich von Laufen im Laufrad mit Laufen in einer Ebene zeigte sich, 

dass die Rate der Zellproliferation unabhängig ist von der Art des Laufens, aber stark 

korreliert mit dem Ausmaß der Laufaktivität. Der proliferationsfördernde Effekt des 

Laufens tritt akut auf und hält nach Laufradentzug mindestens 3, aber nicht länger als 5 

Tage an. 

Das Laufradlaufen ist für Mäuse zwar ein zuverlässiger Proliferationspromotor, stellt 

aber eine unnatürliche Variante physischer Aktivität dar. Sowohl die Motivation für die 

Bewegung, als auch deren Ausmaß unterscheiden sich im Laufrad erheblich von 

natürlichem Laufen. Die Ergebnisse dieser Arbeit deuten darauf hin, dass die Relevanz der 

adulten Neurogenese für natürliches Verhalten vorsichtig bewertet werden sollte. Im Alltag 

erfüllt die Bildung neuer Zellen im DG demnach vermutlich eher die Funktion, stets ein 

gewisses Maß an neuronalen Ressourcen aufrechtzuerhalten, als situationsbedingt neue 

Neurone zu produzieren.
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General Introduction 

History of adult neurogenesis 

Traditionally, the brain has been thought of as a structure with limited regenerative 

potential. It was believed that new cells are produced only during embryonic stages and 

that structural changes in the adult central nervous system (CNS) are limited to the loss of 

neurons. 

In the 1960s, first doubts arose about the total lack of regeneration capacity in the 

adult brain. Joseph Altman demonstrated post-natal genesis of brain cells in the rat 

(Altman, Das 1965). He used tritiated thymidine ([3H]-thymidine), a radiochemical that is 

incorporated into newly formed DNA, to label proliferating cells and autoradiographic 

techniques to visualize the labeled cells. This new method allowed for labeling of 

proliferating cells and their progeny as well as for determination of their time and place of 

birth. Altman's concept of adult neurogenesis has been ignored or dismissed for several 

years. One reason for the disregard of Altman's findings might be that the available 

methods were not adequate to prove that newborn cells are neurons rather than glia cells. 

With the implementation of electron microscopy, Kaplan and Hinds (1977) could confirm 

that those [3H]-thymidine labeled cells in the brain actually exhibit characteristics of 

neurons like dendrites and synapses. Later on, Nottebohm and colleagues showed that 

neurogenesis in the dorsomedial striatum of adult canaries correlates with song learning 

(Goldman and Nottebohm, 1983). The rediscovered theory of adult neurogenesis disclosed 

a substantial range of research and was subject of a growing amount of studies during the 

following years. Demonstrations of adult neurogenesis in non-mammalian vertebrates like 

fish, lizards or birds (Zupanc and Zupanc, 1992; Lopez-Garcia et al., 1988; Nottebohm, 

1985) were readily accepted, but the relevance for the mammalian brain remained 

questionable. Further methodical developments contributed to the final establishment of 

neurogenesis on the adult mammalian brain.  

The implementation of the synthetic thymidine analogue 5-bromo-3’-deoxyuridine 

(BrdU) was an important advancement in neurogenesis research. Similar to [3H]-

thymidine, BrdU is incorporated into the DNA of proliferating cells during mitosis. In 

contrast to [3H]-thymidine, autoradiography is redundant because BrdU labeled cells can 

be visualized using immunohistochemical techniques. Another advantage of BrdU is that 

labeled cells can be accurately assessed for quantity and quality. A quantitative analysis of 

newly generated cells can be done using stereological counting technique. To define the 
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phenotypes newborn cells, confocal microscopy can be used to show unequivocal double 

labeling of BrdU-labeled cells with cell type-specific markers (Fig. 1). Gage and his 

colleagues were the first to use BrdU labeling and confocal microscopy in a study of adult 

neurogenesis in rodents (Kuhn et al., 1996; Kempermann et al., 1997). To this day, 

labeling of dividing cells using BrdU and immunohistochemistry is the prevalent method 

for the visualization and investigation of adult neurogenesis. 

 

Figure 1: Some new cells in the adult rodent and primate brain have neuronal 
characteristics. Top panel, Confocal image of a cell (arrow) in the anterior cortex of an 
adult rat double-labeled with NeuN (green nuclear and cytoplasmic stain; a marker for 
mature neurons) and BrdU (red nuclear stain; a marker of DNA synthesis). The image is 
rotated in orthogonal planes (x, y, z) to verify double labeling throughout its extent. The rat 
was perfused 3 weeks after the BrdU injection. From Gould and Gross (2002). 

Currently, it has become generally accepted that new neurons are produced in the 

brain of adult mammals, and adult neurogenesis has been identified in a variety of species 

including rats (Kaplan and Hinds, 1977), mice (Kempermann et al., 1998), hamsters 

(Huang et al. 1998), voles (Amrein et al., 2004), squirrels (Barker et al., 2005), tree shrews 

(Gould et al., 1997), New World primates (Marmoset monkeys, Gould et al., 1998), Old 

World primates (Macaques, Gould et al., 1999) and humans (Eriksson et al., 1998). 

Cell proliferation in the mammalian CNS 

In invertebrates, proliferative activity has been found in one of the main associative 

centers of several species of Orthoptera and Coleoptera, the mushroom bodies, and in 

structures of the olfactory pathway of decapod crustaceans. In non-mammalian vertebrates, 

proliferative areas have been identified at or near the surface of the ventricular and 

paraventricular systems, in the optical tectum of goldfish and in the telencephalon of 

lizards and turtles. High rates of cell proliferation in the lizard brain have been found in the 

olfactory bulb, the nucleus spericus and in the medial cortex that has homology with the 
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dentate gyrus (DG) of mammals (for review see Cayre et al., 2001). In birds, discrete 

regions have been identified in the walls of the lateral ventricles where new cells are 

generated, which then migrate into several areas of the telencephalon, especially in the 

high vocal center, a nucleus involved in song production (Goldman and Nottebohm, 1983). 

In mammals, adult neurogenesis occurs in two distinct brain regions: in the olfactory 

bulb (OB) and in the dentate gyrus (DG) of the hippocampal formation.  The origin of the 

newborn cells in the OB are neural progenitor cells in the anterior part of the 

subventricular zone (SVZ). The SVZ is a narrow zone of tissue within the wall of the 

lateral ventricles in the forebrain. The progeny of the proliferating SVZ cells migrate along 

the so-called rostral migratory stream (RMS) into the OB. There, the new cells 

differentiate into periglomerular interneurons and granule cells (Lois and Alvarez-Buylla 

1993) that become synaptically integrated into the existing circuit (Carleton 2003). 

In adult hippocampal neurogenesis, neural progenitors are located in the subgranular 

zone (SGZ) that is a small ribbon along the border between the granule cell layer of the 

DG and the hilus. In the SGZ these progenitor cells proliferate and give rise to immature 

neurons. Many of these newly generated cells die between the first and second week after 

they are born. The surviving neurons then migrate into the molecular layer (Kempermann 

et al., 2003). Within four weeks, they send axons to the CA3 region to form mossy fibers 

and project dendrites to the outer molecular layer (Hastings and Gould, 1999; Seri et al., 

2001; van Praag et al., 2002). During this period, the newly generated neurons become 

electrically active and capable of firing action potentials. Electrophysiological studies have 

shown that these newborn granule neurons start to receive synaptic inputs from the cortex 

within four to six weeks after birth, appearing to become functionally integrated in the 

circuit (van Praag et al., 2002). The complexity and density of their dendritic spines 

continue to grow for at least several months. 

The formation of new neurons in the dentate gyrus of the hippocampus throughout 

adulthood has not only been demonstrated in rodents but also in humans (Erikkson et al., 

1998). As many as 250,000 new neurons are incorporated into the rodent dentate gyrus 

every month, that corresponds to 6% of its total cell number (Cameron and McKay, 2001). 

Neurogenesis: A multi-step process 

The generation of neurons during adulthood differs from embryonic neurogenesis. In 

the adult brain, new cells of all developmental stages are found. In contrast to the 

systematic and highly organized process during development, neurogenesis in the adult is a 
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flexible and individualized progression. To become a new neuron in the adult brain four 

main steps have to be passed: 

1) cell proliferation 

2) migration 

3) differentiation 

4) survival 

An increase or decrease in cell proliferation does not necessarily mean that the number of 

neurons is increases or decreased. The migration of a new cell from its site of division to 

its target area is also an important part of the process, because only when located at the 

right place the cell can be properly integrated into the existing network. Until this time 

point it is not certain that the cell becomes a neuron at all. A newborn cell can either 

become a neuron or an astrocyte and the fate determination decides on the final function of 

the cell. Last, but not least, the survival or the elimination of newly formed cells ascertain 

the overall outcome of this process.    

The mechanisms that regulate each step and the whole progression are just beginning 

to be elucidated. The prevailing view is that adult neuronal stem cells are astrocyte-like 

cells, characterized by expression of the glial fibrillary acidic protein (GFAP, Doetsch et 

al., 1999; Seri et al., 2001). These nesting-positive stem cells probably divide 

asymmetrically producing one stem cell and one proliferative neuroblast, also termed 

progenitor cell (Kempermann et al., 2004). The finding that these nestin-positive but 

GFAP-negative progenitor cells occur in two subtypes, positive or negative for immature 

neuronal marker doublecortin (DCX), indicates a lineage determination at this stage of 

neurogenesis (Kronenberg et al., 2005). The progenitor cells migrate a long or short 

distance towards their target area. Finally, the progenitor cells exit the cell cycle and reach 

a transient postmitotic stage in which cells are selected for long-term survival, the terminal 

maturation takes place and network connections are established. Those cells that mature to 

neurons are characterized by the expression of the neuron-specific nuclear protein (NeuN). 

Not all newly produced cells become neurons. A part of them becomes glia cells and 

another substantial dies before complete maturation. The proportions of newborn cells that 

had become neurons and glia cells, respectively, cannot be generally specified because 

these rates depend on the methods used, like specificity of markers or age of cells. 

However, neurons account for the most part of surviving newborn cells with proportions 

given between 60 % (Kempermann et al., 1997a) and 93 % (Biebl. et al., 2000). The 

amount of matured cells that can finally be integrated into the network is strongly 

dependent on the survival rate of new cells. A substantial part of cells dies after birth and 
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before maturation, as indicated by an increased amount of apoptotic cells in proliferative 

brain regions (Biebl et al. 2000) and the definite decrease of BrdU-labeled with time. 

Kempermann et al. (2003) have shown that the number of BrdU-labeled cells considerably 

decreases within 4 weeks after division and remains stable thereafter. Cell death affects the 

amount of cells available for full maturation and consequently, cell survival is a decisive 

aspect of neurogenesis. 

In the multi-step process of neurogenesis, each of these steps has to be passed 

through to result in functional and integrated new neurons. As each of these steps 

comprises a complex subset of factors, processes and interactions to work, it is obvious 

that neurogenesis is regulated and can be influenced by a variety of factors. 

Regulation of neurogenesis 

Since it is accepted that the adult brain is capable of renewing cells, together with the 

understanding of the process itself the investigation of the factors that regulate 

neurogenesis are of great value. The following section will give an overview of factors that 

have been found to influence the rate of neuron production. This list is not intended to be 

exhaustive, but it implies that is difficult to deeply understand all correlations that might 

contribute to adult neurogenesis. However, some of these factors led to the design of the 

experiments described in this dissertation and will be discussed in more detail in the 

discussion section of Chapter 2. 

Molecular regulators 

Growth factors are proteins that stimulate cell proliferation and differentiation. 

Consequently, a variety of growth factors were studied and found to be involved in the 

regulation of adult neurogenesis. Epidermal growth factor (EGF), fibroblast growth factor 

(FGF), insulin-like growth factor (IGF), nerve growth factor (NGF), vascular endothelial 

growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) are only examples 

for the regulators in this class (for review see Hagg 2005 and Lehmann et al. 2005). An 

integrative study of Cao and colleagues (Cao et al. 2004) showed that the vascular 

endothelial growth factor (VEGF) not only stimulated neurogenesis in the adult rat DG but 

can also be associated with improved cognition in standard learning tasks. Furthermore, the 

data show that the increase on cell proliferation induced by an enriched environment can 

be completely blocked by inhibiting VEGF expression. 

Neurotransmitter like glutamate, serotonine, acetylcholine and nitric oxide appear 

be also able to influence cell proliferation and differentiation. Cooper et al. (2004) showed 
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that the rate of neuron production in the rat DG declined following lesion of the 

cholinergic forebrain which projects to the DG. In contrast, unilateral lesion of the 

entorhinal cortex, the major glutamatergic input into the hippocampus, resulted in an 

increased number of newborn cells in the DG on the lesioned side compared to the control 

side (Cameron et al. 1995). The assumption of transmitter system involvement in cell 

production is further supported by studies that showed alteration in the cell proliferation 

rate following treatment with NMDA (N-Methyl-d-Aspartate) or NMDA receptor 

antagonists (Cameron et al. 1995 and 1998,  Gould et al. 1997, Nacher et al. 2001). 

Hormones have been shown to interact with cell proliferation for both adrenal 

steroids and estrogen. Estrogen acts as stimulator on proliferation. The effect of estrogen 

removal by ovariectomy is a decrease of proliferating cells in the rat DG and can be 

reversed by estrogen replacement. Although female rats temporary produced more cells 

than males during proestrus, this difference between genders did not persist in the long-

term (Tanapat et al. 1999). Corticosteroids act as suppressor on proliferation. Removal of 

circulating corticosteroids by adrenalectomy results not only in an increased number of 

newborn cells (Cameron & Gould 1994) but also in an increased number of new neurons 

(Gould et al. 1992). Since corticosteroid levels influence the rate of adult neurogenesis, it 

has been considered that they might play an important role in the age- and stress-related 

reduction of cell production (see respective sections below). However, the circadian 

fluctuations of corticosterone levels have been shown to have no effect on proliferation 

rate (Ambrogini et al. 2002).   

Systemic and environmental regulators 

The genetic background has been shown to contribute to differences in proliferative 

activity in adult brains. The baseline level of cell proliferation varies between different 

species of wild-living rodents (Amrein et al. 2004a) as well as between different inbred 

strains of laboratory mice (Kempermann & Gage 2002). 

With age, neurogenic activity declines but still persists as shown for rats (Kuhn et al., 

1996), mice (Kempermann et al., 1998), wild-living rodents (Amrein et al. 2004), monkeys 

(Gould et al., 1999a) and humans (Erikkson et al. 1998). Since aging is characterized by 

increasing levels of corticosteroids, it has been suggested that these hormones might 

contribute to the age-related decline of neurogenesis. Further support of this assumption 

was provided by Cameron & McKay (1999) who showed that the decline can be prevented 

by reducing the corticosteroid levels in aged rats. 
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Stress can suppress cell production and neurogenesis. The impact of stress has been 

investigated in studies using various types of stressful experiences, including male-male 

encounters in tree shrews (Gould et al. 1997), resident-intruder model in marmoset 

monkeys (Gould et al. 1998), immobilization of rats in restraining tubes (Vollmayr et at. 

2003, Bain et al. 2004) or exposure of rats to predator, i.e. fox, odor (Tanapat et al., 2001). 

All types of stressful experiences lead to an decreased number of newborn cells in the adult 

DG.  

Stressful experiences are known to activate the hypothalamic-pituitary adrenal (HPA) axis, 

thus leading to an increased level of circulating glucocorticoids, which have a suppressing 

effect on cell proliferation and neurogenesis. 

Enrichment of environment seems to influence proliferation and neurogenesis rate. 

“Enriched environments” are used to provide more natural housing conditions and are 

implemented by adding various things like toys, tunnels and running wheels to enlarged 

laboratory cages for rats and mice. Most of the studies report enhanced survival of 

newborn cells and increased neurogenesis in animals that lived in an enriched environment 

(Kempermann et al., 1997b; Kempermann et al., 1998b; Ehninger & Kempermann, 2003; 

Brown et al., 2003; Nilsson et al., 1999), but regarding the rate cell proliferation there are 

contradicting reports. However, some studies could not find an increased survival rate 

following enriched housing (Kempermann et al. 2002, Kozorovitskiy & Gould, 2004). 

Physical activity is a strong stimulator for cell proliferation in the DG. Most of the 

studies screened, reported that cell proliferation and survival are significantly increased in 

the DG of rats and mice that voluntarily used a running wheel (e.g. Eadie et al., 2005; 

Kronenberg et al., 2005; van Praag et al., 1999a). Even physical exercise that is considered 

to be less voluntary for rodents, like treadmill running, lead to an increased proliferation 

rate (Kim et al. 2002, Ra et al. 2002), whereas swimming lead to increased proliferation in 

rats (Ra et al. 2002) but had no effect in mice (Van Praag et al 1999a).  

Learning and memory processes might potentially be associated with adult 

neurogenesis. Although a causality remains to be proven, several correlations support the 

view that neurogenesis might be involved in specific cognitive functions. 

The hippocampus is one of the two prominent brain regions where adult neurogenesis 

takes place and this region is well defined in the context of learning and memory. 

Likewise, in the second prominent region with marked neurogenesis, the olfactory bulb, it 

has been shown that in mice living in an odor-enriched environment (containing several 

different odors), the amount of newborn neurons is significantly increased and, 

furthermore, this increase is accompanied by a longer and stronger olfactory memory 
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(Reochefort et al. 2002). In consideration of the decline of cognitive abilities with age, it is 

noteworthy that likewise hippocampal neurogenesis decreases with age (Kuhn et al. 1996, 

Amrein et al. 2004b). Furthermore, indications for the age-dependent cognitive decline can 

be reduced by restoring neurogenesis in older animals (Cameron et al. 1999, Kempermann 

et al. 1997, Kempermann et al. 2002b). Kempermann et al. (1997) showed that living in an 

enriched environment lead to increased neurogenesis and improved spatial learning 

performance in the Morris water maze task. Specific learning tasks can enhance 

hippocampal neurogenesis (Gould et al. 1999b) and toxicologic blocking of cell 

proliferation has been observed to impair performance in a hippocampal-dependent 

learning task (Shors et al. 2001). 

The causal and functional relationship between learning and neurogenesis is not yet 

evidenced and there are some studies that, moreover, demonstrate a lack of relationship. 

Seasonal variations in spatial memory processing do not correlate with cell proliferation or 

total number of neurons in the DG of grey squirrels (Lavenex et al. 2000). Two studies in 

rats confirmed the age-dependent reduction of cell proliferation, but showed that this 

reduction does not predict the age-related impairment in a spatial learning task (Merrill et 

al., 2003; Bizon & Gallagher, 2003). 

The last-named factors, environmental enrichment, physical activity and learning 

play a major role in the experiment described in Chapter 2 of this dissertation and are 

discussed in more detail in the corresponding section. 
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Aims of this Thesis 

Overall goal 

Summarizing previous findings, cell proliferation in the adult brain is influenced by a 

complex array of factors. However, the functional significance of the ability to produce 

new neurons throughout life remains unclear. Obviously, adult neurogenesis is linked to 

behavioral patterns. The fundamental question is when and to which extent is this process 

relevant for animal and hence, possibly human nature? We know that environment, 

physical activity and learning can correlate with adult neurogenesis under standardized 

laboratory conditions. But since we are not yet able to quantify newborn cells in living 

animals, we cannot observe neurogenesis under real natural conditions.  

Therefore, the approach of the present study was to provide both, conditions that 

reflect more natural behavior and methods that result in reliable neurobiological data. 

Thus, the aim of this study was to investigate adult neurogenesis in mice living in a 

naturalistic environment and facing naturalistic conditions involving exploration, learning 

and physical activity. 

Specific aims 

Identification and quantification of newborn cells requires labeling of these cells. 

The proliferation marker 5-bromo-2'-deoxyuridine (BrdU) is well established and used in 

the majority of neurogenesis studies. BrdU is commonly administered via intraperitoneal 

or intravenous injections. The procedure, including catching, retaining and injecting, does 

not only mean intervention but also might cause stress in animals. Taking into account that 

stress is one of the factors that can diminish cell proliferation, it is worthwhile to look for a 

method that reduces stress to a minimum. 

As a first step, I aimed in the development of a method of BrdU administration that 

provides at once 

1) a minimum of intervention by the experimenter 

2) the opportunity to apply precise dosages to individuals of a group 

3) reliable BrdU labeling of proliferating cells 

4) reproducible numbers of labeled cells. 

The computer-controlled artificial flowers with RFID device, constructed and well 

established in the laboratory of York Winter for studies in nectar-feeding bats (see Winter 
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and Stich, 2005), provided a useful basis to this approach described in Chapter 1.  

 

Since many studies have shown that the production of new cells in the mammalian 

hippocampus is influenced by a variety of conditions created in the laboratory, I wanted to 

ask the question whether these findings are transferable to the natural behavior of mice. 

Environmental enrichment, physical activity and learning play a role in adult neurogenesis, 

at least when considered separately under laboratory conditions. All of these factors are 

naturally part of an animal’s life and I was interested whether these factors affect cell 

proliferation in the adult brain when considered from a more integrated point of view.  

The approach was to digress from the standard methods of behavioral experiments 

and to construct conditions in the laboratory that allow for reproducible investigation of 

natural-like behavior. Chapter 2 describes the experiments that examined the extent of cell 

production in mice 

1) living in a naturalistic environment, experiencing explorative and spatial 

learning tasks 

2) living in a frugal, but spacious environment compared to mice living in 

standard laboratory cages. 

As a continuation of these experiments, we wanted to go into further detail regarding 

the role of physical activity as a pro-proliferative factor. Running in a running wheel has an 

indisputable positive impact on cell production in rodents. But does wheel running reflect 

natural movement and is the effect on cell proliferation comparable? In the second set of 

experiments, described in Chapter 2, I investigated two types of physical activity in mice, 

running in a wheel and running on flat ground, and their influence on the rate of cell 

production. 

 

The experiments conducted within this thesis were not only based on rarely explored 

hypotheses. We also used methods that lacked established experience in their application 

in the given context. Along with the new method of oral application of BrdU, which is 

described in detail in Chapter 1, the setup of the semi-natural environment including the 

automated water dispensers were applied to rodents for the first time and also physical 

activity in mice on flat ground has not yet been investigated to this extent. Chapter 3 

describes a set of additional experiments that were designed in order to, firstly, clarify 

some fundamental questions in the run-up to the experiments of Chapter 1 and 2 and, 

secondly, confirm reliability of our results achieved in these Chapters.
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Chapter 1  

Individually dosed oral drug administration to 

socially-living transponder-tagged mice by a water 

dispenser under RFID control 

published in:  Journal of Neuroscience Methods 153, 208-213 (2006). 

1 Abstract  

The sensitivity of behavioral and physiological parameters to even mildly stressful 

experiences such as drug injections creates a need for alternative methods. We have 

established a method of stress-free administration of drugs via drinking water that allows 

multiple, individually specific and exact dosages, even for socially housed animals. The 

drug solution is supplied by a dispenser with automated volume control. Animals are PIT 

microchip-tagged with RFID transponders and identified in realtime at the water port. 

Computer control permits preprogramming of individual reward quantities so that drug 

administration is terminated after an individual has collected its daily dose. For our 

experiments, the substance 5-bromo-2'-deoxyuridine (BrdU) was given as a marker of 

proliferating cells that we quantified in the hippocampus of adult mice. Experimental 

groups received BrdU either via intraperitoneal injections or orally via the water 

dispensers. Immunohistochemical staining of BrdU-positive cells was of the same quality 

after oral administration as after injection. BrdU-positive cells did not differ statistically in 

cell numbers. Thus, water dispensers under transponder control allow the individual and 

stress-free application of drugs even to group-living animals without disturbing their 

behavior. This is useful where a complex temporal protocol of application is required, and 

for phenotyping experiments combining behavioral tests with neural, cellular or molecular 

analyses.  

 

Keywords: Neurogenesis; RFID; Microchip; Transponder; PIT tag; Injection; Oral 

application; Drinking water
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2 Introduction  

Behavioral experiments ideally should have the human factor replaced by machine 

control. This is one consequence of the carefully standardized three-sites study of 

genetically identical mice by Crabbe and co-workers (Crabbe et al., 1999; Wahlsten et al., 

2003c) where significant variation in behavioral responses of experimental groups under 

identical protocol was attributed to uncontrolled effects of human interaction. One type of 

human–animal interaction are drug injections that are potentially stressful. In this report, 

we describe an alternative to injection that is based on the oral application of drugs by a 

computer-operated system. We developed this method for the study of neurogenesis, where 

the extended labeling of cells may require multiple injections. Adult neurogenesis in the 

dentate gyrus of the hippocampal formation is often investigated with respect to behavioral 

parameters, because it is supposed to depend on, among other things, learning (Gould et 

al., 1999; Shors et al., 2002) and social interactions (Gould et al., 1998). One approach to 

the investigation of adult neurogenesis requires labeling of dividing cells with a 

proliferation marker, such as 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog. In 

contrast to KI-67, an endogenous proliferation marker, the effect of BrdU is transient, 

which allows the evaluation of the response of proliferating cells to stimuli in the context 

of cognition or learning (Kee et al., 2002). Application is usually done by one or several 

intraperitoneal injections. Although proliferation rate is not diminished by injection 

procedure (Kee et al., 2002), an alternative for experiments involving behavioral tests and 

learning experiments would be highly desirable. One approach suggested for animal 

models of medical disorders (Schleimer et al., 2005) is oral intake. However, a major 

difficulty of oral drug application is controlling dosage. Dosage may be estimated in 

retrospect from oral uptake after ad libitum presentation of the drug solution (Jecker et al., 

1997; Bennewith et al., 2002). This, however, is unsuitable in cases where predefined 

individual doses are required, e.g. for quantification of labeled cells, and especially where 

animals are kept together as a social group within their home-cage. Another alternative, 

capsule application (Pasloske et al., 1999) is unsuitable for small rodents. Hand-feeding 

provides controlled dosage for each individual of a group, but significant time has to be 

spent in training of animals and in the administration procedure (Schleimer et al., 2005). 

Since liquid delivery with precise reward control is possible (Mitz, 2005) we developed a 

method that combines both controlled liquid delivery and drug administration. It is based 

on three elements: the drug is supplied as an aqueous solution from a computerized liquid 

dispenser providing small amounts of liquid each time the animal comes to drink. 
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Secondly, animals are microchip-tagged with RFID transponders or PIT (Passive 

Integrated Transponder) tags which allows individual identification during visits at the 

feeder equipped with a radio-frequency identification device (RFID). Thirdly, computer 

control of the liquid dispenser permits preprogramming of individual delivery quantities. 

This allows drug administration to be terminated after an individual has collected its daily 

dose. Thus, precise dosages of drugs can be applied, the method is stress-free by avoiding 

handling and surgery, and it leaves social interactions undisturbed by permitting individual 

application even to individuals living socially in a group, through transponder 

discrimination. In the following, we describe the method and provide an example 

demonstrating that detection of newborn cells in the dentate gyrus of the hippocampus of 

mice, after BrdU-labeling through water uptake or i.p. injections, is unaffected by the 

method of application 

3 Methods 

3.1 Animals and housing 

Adult female CD-1 mice (n = 10) from the departmental breeding colony (Biocenter, 

University of Munich, Germany) were used in the experiment. The animals were housed in 

standard laboratory cages either separately (n = 4) or in groups of three individuals per 

cage (n = 6) with free access to food in a 12:12 h light:dark cycle. At the beginning of the 

experiments, the mice were between 9 and 11 weeks old, weighing 31.5 ± 2 g. One week 

before BrdU application, sterilized industrial transponders encapsulated in biocompatible 

glass (2.1 mm × 12 mm, 0.09 g, Unique, Sokymat) were injected under isoflurane 

anesthetic subcutaneously ventral to the left shoulder using an injector (Trovan) with self-

inserted transponders. 

3.2 Computer-controlled water dispenser 

The liquid dispenser that we used is suitable for any solution. It functions by a 

computer-switched solenoid pinch valve (AscoJoucomatic W295A112-12VDC, Rueil 

Malmaison Cedex, France) for flow control through a 55-shore silicone tube measuring 3.2 

mm o.d. and 1.6 mm i.d. (Fig. 1A, see Winter and Stich, 2005). By use of a pinch valve the 

drug remains within the tube and does not contaminate the interior of the valve. This 

permits the exchange of solution and tubes without the risk of carrying over drugs between 

different applications. Access to the water port was restricted to a single mouse by a 
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Perspex entry cylinder of 35 mm inner diameter and 60 mm in length (Fig. 1). Each visit at 

the dispenser opening was recorded by an infra-red photosensor. A circular transponder 

antenna placed around this cylinder permitted individual identification while a 

transponder-tagged mouse was at the water port. We used a generic, industry standard 

radio frequency identification (RFID) reader suitable for Unique/EM4102-compatible 

transponders. We can easily adapt the system for Trovan, Destron, Biomedic, Datamarsor 

ISO transponders. Communication of the reader with the host computer was via an RS232 

serial connection. The settings of the computer program allowed us to control single-

release volumes of liquid as well as the total number of such single releases available to 

any individual. The amount of liquid dispensed depended on the opening duration of the 

magnetic pinch valve, which was calibrated beforehand. To avoid the continuous release of 

rewards, an individual had to leave the water dispenser for at least ten seconds before a 

subsequent visit was rewarded. 
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Figure 1: Computer-controlled water dispenser for water supply and BrdU administration: 
(1) liquid reservoir (luer-lock syringe), (2) silicone tube, (3) solenoid pinch valve, (4) liquid 
port with infrared photosensor, (5) transponder antenna and (6) Perspex cylinder. 

3.3 BrdU application  

Animals received 100 µg 5-bromo-2'-deoxyuridine (BrdU, Sigma, Germany) per 

gram body weight daily for four consecutive days. One group (injection group, n = 4) was 

injected with BrdU dissolved in 0.9% NaCl solution (10 mg/ml), the second group (oral 

group, n = 6) received BrdU dissolved in drinking water (2.2 mg/ml). Both treatments with 

BrdU started with the beginning of the activity phase after lights off. To facilitate 

acceptance of the BrdU-water solution this was sweetened (1.6% Cyclamate/Saccharine, 

Huxol, Germany) and, in addition, the oral group was water-deprived 2 h prior to BrdU 

application. BrdU solution was released in amounts of 140 or 160 µl per single visit. To 
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obtain a total volume of 1.4 ml one mouse had to visit the dispenser 9 or 10 times. Once an 

animal had reached this number, further visits did not lead to any more liquid release. 

However, the dispenser continued to operate until each animal of the group had been given 

its daily dose. Thereafter, the BrdU solution was replaced with regular, unsweetened water 

released in smaller amounts of 100 µl per single visit. The injection group always had free 

access to a water bottle. 

3.4 Tissue preparation 

One day after final BrdU administration the animals were deeply anesthetized with 

pentobarbital (160 µg/g body weight, i.p.) and transcardially perfused with 4% 

paraformaldehyde in 0.1 M phosphate buffer. Brains were removed, postfixed over night in 

the fixative and immersed in 30% sucrose in 0.1 M phosphate buffer for at least 24 h for 

cryoprotection. After shock-freezing in Isopentane at -55 .C brains were cut into 40 µm-

thick coronal sections on a cryostat (Leica). The sections were stored at -20 .C in 

cryoprotectant containing 44% glycerol, 8.6% sucrose, 6.9 mM MgCl2·6H2O in 0.05 M 

phosphate buffer. 

3.5 Immunohistochemistry 

Free-floating sections were incubated in 0.6% H2O2 in 10 mM phosphate-buffered 

saline solution containing 0.1% Triton X-100 (PBS/T) at room temperature (RT) for 30 

min. to block endogenous peroxidase. For DNA-denaturation, free-floating sections were 

incubated in 2 N HCl at 37°C for 1 h followed by several rinse-steps in 0.1 M boric acid 

buffer (pH 8.5). Sections were incubated with the primary antibody, a monoclonal mouse 

anti-BrdU (1:400, Roche Diagnostics) overnight at 4°C, then for 2 h at RT with 

biotinylated goat anti-mouse secondary antibody, followed by incubation with avidin-

biotin-peroxidase complex (ABC Elite, Vector Laboratories) at RT for 1 h. For staining 

reaction, sections were treated with 0.03% Diaminobenzidine (DAB) as chromogen, 100 

mM NiSO4×6H2O and 0.003% H2O2. Between all steps, sections were rinsed several times 

in PBS/T. Additionally a mouse-on-mouse kit (M.O.M., Vector Laboratories) was used to 

reduce background staining. Sections were mounted on gelatin-coated slides, air-dried and 

cover slipped with DePeX (Serva, Germany). 
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3.6 Quantification 

The number of BrdU-positive cells was assessed 1 day after the last BrdU 

administration. BrdU-positive cells were counted in every sixth 40 µm-thick brain section 

(240 µm interval) throughout the granule cell layer of the dentate gyrus in one randomly 

chosen hemisphere. Hemispheres had previously been shown not to differ in cell count 

(Mann–Whitney, T39 = 1565, p = 0.97, unpublished). Photomicrographs were taken with a 

CCD-camera (SPOT RT, Diagnostic Instruments) via a microscope (Axioskop, Zeiss) and 

analyzed using MetaMorph software (Visitron). Single pictures were combined digitally 

using a computer-controlled XY-translation stage (Märzhäuser, Germany) together with an 

image-stitching software module (Meta-Morph) to obtain a composite picture of the 

structure. Regions of interest were outlined by tracing the well-defined border between 

granule cell layer (GCL) and hilus according to a stereotaxic mouse atlas (Paxinos and 

Franklin, 2001). The subgranular zone (SGZ) was defined as a 20 µm ribbon at the hilus 

side of the border line. Points within the GCL, SGZ and hilus that conformed to predefined 

criteria, i.e. minimum/maximum area, were counted, subject to manually set gray level 

thresholds. The number of counted cells was multiplied by 6 to provide an estimate for the 

total number of BrdU-positive cells per dentate gyrus. All data shown are mean values ± 

S.E.M. 

4 Results  

4.1 Integration of oral BrdU application into natural behavior 

Behavioral analysis was performed with data from one group of our socially-housed 

mice with oral BrdU administration (n = 3) using visits at the water dispenser as an 

indicator of activity. Mice ingested 9.2 ± 0.7 ml of water daily from visiting the water 

dispenser 85 ± 7 times, as measured for 3 days prior to BrdU administration (control 

condition). Activity started shortly after lights off and consumption rose to a peak of 0.9 

ml/h during the first half of the dark phase (Fig. 2A). During the dark phase, water uptake 

was significantly higher than during the light phase (paired t-test, t = 4.92, d.f. = 8, P < 

0.05). Small standard errors indicate that mice living in a group synchronized their activity 

phases. 

The procedure for one BrdU injection took about half a minute per animal, whereas 

BrdU treatment via drinking water lasted several minutes to hours (see Fig. 3). On average, 

a single individual in the oral group needed 166 ± 22 min (range 25–295 min, Fig. 3) to 
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ingest 1.4 ml BrdU solution from nine visits at the dispenser. As with regular water uptake, 

mice started drinking BrdU solution shortly after lights off (Fig. 2). There was no 

difference between control and BrdU condition in the oral group with regard to general 

behavior pattern, for example activity distribution over light and dark phases (ANOVA, 

F(1,10) = 0.23, p = 0.64), or between the total amount of daily water uptake between control 

conditions (9.2 ± 0.7 ml) and BrdU administration (9.7 ± 0.7 ml, ANOVA, F(1,13) = 0.28, 

p = 0.6). 

While it needed a fraction of a second to release one drop of solution through the 

valve to the feeder opening, the mice stayed on average for 19.1 s (±4.5 s at 160 µl) with 

their heads within the water dispenser opening. This extended time spent at the feeder port 

makes it highly likely that all solution released was quantitatively licked up and thus 

imbibed by the animals. 
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Figure 2: Daily water uptake by mice. (A) Water uptake during regular maintenance (data 
from n = 3 individuals over 3 days ± S.E.M.). (B) Uptake of BrdU solution (black symbols) 
from the beginning of dark phase (13:00 h) and water uptake (white symbols) before and 
after BrdU administration. Regular drinking water availability in B commenced after all 
individuals had ingested their daily doses of BrdU (means ± S.E.M. from three mice over 4 
days). Top bar indicates experimental light (white) and dark phases (black). 



Results Chapter 1 

27 

0.0

0.5

1.0

1.5

0.0

0.5

1.0

C
um

ul
at

iv
e 

co
ns

um
pt

io
n 

(m
l)

0.0

0.5

1.0

Minutes after start
0 60 120 180 240 300

0.0

0.5

1.0

day 1

day 4

day 3

day 2

 

Figure 3: Time course of cumulative uptake of BrdU solution from automatic dispenser by 
three transponder-tagged individuals on days 1–4 of BrdU treatment. Symbols designate 
three different individuals, dashed line indicates the cumulative limit of daily dose (1.4 ml 
BrdU solution). 

4.2 Effect of BrdU treatment on BrdU-positive cells 

Histological appearance of the sections (Fig. 4A and B) and single cells (Fig. 4C and 

D) did not differ between oral group and injection group. In addition, intensity of DAB-

stained cells, measured as ratio of cell average gray value to threshold value, was not 

different between groups (ANOVA, F(1,4) = 2.409, p = 0.2). The estimated total numbers of 

BrdU-positive cells per dentate gyrus hemisphere averaged across animals were 1371 ± 

165 (injected) and 1107 ± 156 (oral), which did not differ statistically between treatments 

(t-test, t = 1.13, d.f. = 8, P = 0.29; Levene test for equal variance, P = 0.891). 
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Figure 4: Photomicrographs of BrdU-positive cells in the dentate gyrus of mice after BrdU 
injections (A, C) or oral BrdU administration (B, D). C and D show details from A and B 
(rectangles). GCL: granule cell layer, SGZ: subgranular zone. Scale bar = 100 µm (A, B) 
and 20 µm (C, D). 

5 Discussion 

5.1 Functionality of oral BrdU administration 

Histological results show that oral application of BrdU is highly suitable for the 

study of cell proliferation in laboratory animals. Overall histological appearance of 

sections and single cells, and also quantified intensities of DAB-stained cells, did not differ 

between oral group and injected group. The equality of variance between groups indicates 

the same reliability of quantification after both treatments. It is well known that numbers of 

labeled BrdU cells depend on the dose administered (Cameron and McKay, 2001). Such 

dosage, of course, can be adapted to experimental requirements because comparability and 

relative changes of cell counts within a study are often more important than absolute 

numbers. In our results, cell counts appeared to be slightly higher in mice after injection as 

compared to oral BrdU administration. However, even this difference, which may easily be 

caused by differences in unknown details of uptake kinetics, was not statistically 
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significant. The time needed for BrdU to reach detectability is about 10 min; rapid DNA 

labeling continues for 40 min but then continued incorporation at low levels persists only 

for 4–8 h after a single injection (Nowakowski et al., 2002). This short duration of activity 

is often countered by applying BrdU several times during a single day or over several 

consecutive days (Kempermann et al., 2003; Lu et al., 2003; Holmes et al., 2004). Larger 

numbers of cells are thereby labeled, or the effect of cyclic events such as the female 

estrogen cycle is eliminated. Attempting to provide such extended labeling via drinking 

water, however, is not easy. BrdU can be toxic and different strains of mice may respond 

differently to the same dosage. A two-week ad libitum administration of BrdU in drinking 

water at 20 mg per day (as compared to the 3 mg used here), for example, proved lethal to 

B6 mice (Jecker et al., 1997). For such requirements, the application of BrdU by an 

automated water dispenser provides an obvious advantage. Defined and limited doses of 

BrdU can be applied within predetermined time windows within a day and this can be 

repeated over several day-periods. For extended applications, a BrdU dispenser can be 

programmed to alternate with a second dispenser providing regular water. No experimenter 

intervention is required, even for more complicated protocols of drug application. Thus, 

the extended duration of oral BrdU administration without animal handling should 

facilitate the labeling of a larger cohort of dividing cells over a longer time interval. 

5.2 Oral administration of drugs with individual dosage even in socially-

living animals  

Computer control of liquid release permits the experimental variation of parameters 

such as delivery volume per visit, timing of liquid availability, or total quantity released. In 

combination with individual transponder-tagging, each parameter can be specified on an 

individual basis even for a whole group sharing a single dispenser. Behavior of animals as 

recorded by the computer through visits at the dispenser was undisturbed during the whole 

experimental episode. Administration of BrdU via the dispenser had no influence on 

behavioral patterns, measured as activity over the day. The controlled water dispenser can 

be integrated into behavioral experiments without itself affecting the animals. With two 

dispensers, any temporal schedule of regular water versus drug administration can be 

realized on an individual basis. 

One remaining concern may be precision of dosage, as this method lacks the 

certainty of a clean injection. However, we do not think this to be critical for many 

applications (see also Mitz, 2005). We provided only very small droplets of drug solution 



References Chapter 1 

30 

during each drinking event, 140 or 160 µl. From our experience the volume of a single 

bolus could be reduced even further to a droplet of 20 µl. Mice made considerable efforts 

to imbibe all solution by licking the water port for 10 s or longer. This makes it unlikely 

that spillage of drug solution will be a serious source of error. The high degree of 

automation reduces the need for an experimenter to be present. Behavioral experiments run 

undisrupted because handling of animals is not required. We consider this feature to be 

highly relevant in view of the troubling findings of the carefully standardized three-sites 

study by Crabbe and co-workers (Crabbe et al., 1999; Wahlsten et al., 2003c). Here, 

matched groups of genetically identical mice subjected to identical procedures produced 

large variation in the results of several behavioral assays. Differences in animal handling 

by the staff and movements of the workers are among the potential variables held 

responsible for this outcome (Wahlsten et al., 2003c; Lathe et al., 2004). A machine-

controlled environment circumvents the problematic human factor. 

Our system can be adapted to various experimental designs and animal species. We 

have successfully used multiple dispensers within a single home-cage, or distributed within 

a larger experimental arena representing an artificial habitat for mice. This highly 

automated system is suitable for any experiments with liquids used as reward or in 

experiments in which drug application is required. For phenotyping experiments 

combining near-natural behavioral tests with neural, cellular, or molecular analyses this 

method should prove to be highly useful. 

Appendix A. Contact information for suppliers  

Complete units can be obtained through Animal Cognition Systems  

http://www.animal-cognition-systems.com.  
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Chapter 2  

Neurogenesis in adult mice is not enhanced in a 

naturalistic environment but only by unnatural 

locomotion 

1 Abstract 

Throughout life, new cells are generated in the mammalian brain and incorporated as 

functional neurons in the networks of the olfactory bulb and the dentate gyrus (DG) of the 

hippocampal formation. So far, proliferation and survival rates of newly generated cells in 

the adult DG have been investigated in rather simple behavioral experiments like the 

Morris water maze, fear and trace conditioning, a running wheel and small enriched 

environments. In the present approach, cell proliferation and survival in the DG of adult 

mice were compared under different levels of poor and naturalistic conditions: 1) living in 

a large room (11.5 m2) poor in stimuli with one computer-controlled water dispenser, 2) 

exploring a large (15.9 m2), novel and complex room equipped with 11 of these dispensers, 

3) spatial learning in this complex room, 4) running in a running wheel and 5) running in 

plane implemented by a tube system. Mice in large rooms lived socially in groups and 

received water exclusively via computer-controlled dispensers. In order to keep animals 

undisturbed as far as possible, administration of the proliferation marker BrdU was 

accomplished orally via one of the dispensers dissolved in drinking water (see Santoso et 

al., J Neurosci Meth 2006). The results showed that mice in our naturalistic environment 

optimize their feeding behavior when dispenser qualities are changed and therefore learned 

and remembered the locations of high quality dispensers. However, cell proliferation and 

survival in the DG of adult mice were unaffected by i) living in a room poor in stimuli with 

much space for exercise, ii) exploring a novel complex naturalistic environment and iii) 

associative learning in a naturalistic environment. The only condition that led to a 

considerable increase in the number of newly generated cells was the running wheel 

condition. Additionally, the present results indicate that the influence of physical activity 

on cell proliferation is independent from locomotion type when comparing wheel and in 

plane running, but strongly correlates with the amount of running activity. Furthermore, 

our results showed that the pro-proliferating effect of running persists for at least 3 but not 

longer than 5 days after withdrawal of the running wheel. Thus, we suggest that cell 
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proliferation in the adult DG is strongly correlated to running activity and not correlated to 

the complexity of  associative learning in a naturalistic environment. 

2 Introduction 

The production of new cells in the mammalian brain throughout life has been 

documented in a variety of species, including rodents (Gould et al., 1992; Luskin, 1993; 

Kempermann et al., 1997a), primates (Gould et al., 1999c; Bernier et al., 2002) and 

humans (Eriksson et al., 1998). Newborn cells in limited numbers have been detected in 

several brain regions, for example in the amygdala (Bernier et al., 2002), hypothalamus 

(Fowler et al., 2002) and neocortex (Gould et al., 1999c), but their origin is still unknown. 

Only two regions of the adult brain are known to act as proliferative zones that sustain 

producing new cells. Progenitor cells of the subventricular zone (SVZ), a narrow tissue 

zone within the walls of the lateral ventricles, generate cells that migrate along the so-

called rostral migratory stream into the olfactory bulb (Luskin, 1993). The second 

neurogenic region is the subgranular zone (SGZ) of the dentate gyrus (DG) in the 

hippocampal formation, where new cells are produced that partly become functional 

neurons in the granule cell layer (GCL) of the DG (van Praag et al., 2002; Carlen et al., 

2002). A part of the newborn cells undergoes apoptosis shortly after birth (Biebl et al., 

2000) and not all of the surviving cells express neuronal markers, i.e. differentiate into 

neurons. The different stages of this process, proliferation, survival and differentiation, are 

not implicitly dependent from each other and, therefore, can be regulated separately (see 

Prickaerts et al., 2004). Adult neurogenesis in the DG is influenced by a variety of factors 

(reviewed in Lehmann et al., 2005). Several intrinsic factors, including growth factors, 

neurotransmitters (Cameron et al., 1998) and hormones (Gould et al., 1992; Ambrogini et 

al., 2002; Tanapat et al., 1999) are supposed to influence cell proliferation and 

neurogenesis in the adult brain. Genetic background and age also play a role in baseline 

hippocampal neurogenesis (Bizon & Gallagher, 2003; Kempermann et al., 1997a) and, 

furthermore, determine the sensibility of neurogenesis to environmental challenges 

(Kempermann et al., 1998a; Kronenberg et al., 2005; van Praag et al., 2005). 

Concerning the functional relevance of adult neurogenesis, external regulators are of 

great importance. A great deal of research has been done on the response of hippocampal 

plasticity following different behavioral features. Stressful experiences can diminish cell 

proliferation regulated by NMDA-receptor activation and elevated glucocorticoid levels 

(for review see Gould & Tanapat, 1999). In particular, severe stress induced according to a 

resident-intruder model in marmoset monkeys (Gould et al., 1998), by male-male 
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encounters in tree shrews (Gould et al., 1997) or by exposure of rats to fox odor (Tanapat 

et al., 2001) resulted in a rapid decrease of cell production in the DG. Beneficial effects on 

adult neurogenesis have been reported for the enrichment of housing but, unfortunately, 

not all studies investigating this condition agree with each other (Table 1). The majority of 

studies reported an increased number of surviving cells, but no difference in cell 

proliferation in the DG of animals living in an enriched environment compared to the DG 

of controls (Kempermann et al., 1997b; Kempermann et al., 1998b; Ehninger & 

Kempermann, 2003; Brown et al., 2003; Nilsson et al., 1999). However, environmental 

enrichment was associated with an increase of hippocampal cell proliferation in the 

129/SvJ mouse strain (Kempermann et al., 1998a) or after long-term enrichment in old 

mice (Kempermann et al., 2002). A higher number of new neurons without a concomitant 

increase of proliferation rate reveals an enhanced survival rate and, hence, a survival 

promoting effect of environmental enrichment. But interestingly, Kempermann et al. 

(2002) and Kozorovitskiy and Gould (2004) did not find an increased number of surviving 

new cells at all in enriched living animals compared to control animals. 

Table 1: Overview of reported effects of environmental enrichment on cell proliferation and 
survival of newborn cells in the dentate gyrus (DG). Enriched environments could include 
a running wheel (wheel +) and additional food (add. food +) or not (-). Duration specifies 
the time period that animals (species) lived in their respective environment. In some 
studies, animals were trained in the Morris water maze task (MWM) following BrdU 
treatment. 

Enrichment 
(wheel/ 
add. food) 

Duration Species 
First 
BrdU- 
injection 

Effect on 
proliferation 

Effect on 
survival 

Tests Reference 

Large cage 
(+/-) 

12 and 42 
days 

Mouse 
(C57BL/6) 

Day 1 → ↑ - (van Praag et al., 1999b) 

Large cage 
(+/+) 

40 and 68 
days 

Mouse 
(C57BL/6) 

Day 40 → ↑ MWM 
(Kempermann et al., 1997; 
1998b) 

Large cage 
(+/+) 

6 month 
 
3 month 

Mouse 
(C57BL/6) Month 5 

→ 
 

↑ 

↑ 
 

↑ 
MWM 

(Kempermann & Gage, 
1999) 

Large cage 
(-/+) 

4 and 8 
weeks 

Rat 
(Sprague- 
Dawley) 

Day 26  → ↑ MWM (Nilsson et al., 1999) 

Large cage 
(+/-) 

12 and 43 
days 

Mouse 
(C57BL/6) 

Day 1  → ↑ - (Brown et al., 2003) 

Large cage 
(-/-) 

40 days 
Mouse 
(C57BL/6) 

Day 30 → ↑ - 
(Ehninger & Kempermann, 
2003) 

Large cage 
(+/+) 

40 days 
Mouse 
(129/SvJ) 

Day 28 ↑ ↑ MWM (Kempermann et al., 1998a) 

Large cage 
(+/n.s.) 

105 days 
Mouse 
(129/SvJ) 

Day 102 ↑  - (Meshi et al., 2006) 

Large cage 
(+/-) 

10 month 
Mouse 
(C57BL/6) 

Month 9 ↑ → - (Kempermann et al., 2002) 

Preweaning 
Small box 

14 days, 
15-60 min/d 

Mouse pups 
(C57BL/6) 

Month 3 → → - (Kohl et al., 2002) 

Visible borrow 
system (-/-) 

21 days 
Rat 
(Sprague- 
Dawley) 

Day 4  → - 
(Kozorovitskiy & Gould, 
2004) 

  

The role of the hippocampus in learning and memory processing together with the 

occurrence of neurogenesis in this specified region suggests an active role of new neurons 



Introduction Chapter 2 

36 

in memory formation. Indeed, some factors regulating neurogenesis in a positive (running, 

environmental enrichment) or a negative (stress, age) manner, in parallel enhance or impair 

learning performance, respectively (see Gould et al., 1999d). Commonly used behavioral 

tests for the investigation of learning in the laboratory are, among others, the Morris water 

maze and contextual fear conditioning. In the water maze task, rodents have to find a 

submerged platform in a water basin. The reports of adult neurogenesis following water 

maze training vary from increased (Gould et al., 1999a) to unaffected (van Praag et al., 

1999b) and even decreased (Ambrogini et al., 2004) amounts of newborn cells (Table 2). 

Gould et al. (1999a) found an enhancement of plasticity in the DG specific to 

hippocampus-dependent learning. Training in hippocampal-dependent tasks in a Morris 

water maze and in trace eyeblink conditioning led to an increased number of surviving 

cells, whereas non-hippocampal-dependent tasks did not. In contrast, Van Praag et al. 

(1999b) observed equal numbers of newborn and surviving cells in mice trained in a water 

maze task compared to control mice. Yet, Ambrogini et al. (2004) reported a reduction of 

surviving cells after water maze training. In the fear conditioning paradigm, animals 

received an aversive unconditioned stimulus (foot shock) and expressed conditioned fear 

responses when placed in the conditioning chamber, because the chamber acts as 

conditioned stimulus. This hippocampus-dependent paradigm has no effect on the survival 

rate of newborn cells and, furthermore, diminishes the production of new cells in the DG 

of rats (Pham et al., 2005). In turn, the formation of new neurons is not essential for 

accomplishment of the water maze task and the fear conditioning process, because specific 

blocking of cell proliferation with the toxin methylazoxymethanolacetate (MAM) did not 

impair the performance in these tasks (Shors et al., 2002). 



Introduction Chapter 2 

37 

Table 2: Overview of reported effects of learning on cell proliferation and survival of 
newborn cells in the dentate gyrus (DG). Morris water maze task (MWM), eyeblink 
conditioning (EB), fear conditioning or social transmission of food preference were applied 
as learning tasks under hippocampus-dependent (+) or –independent (-) conditions. The 
time point of BrdU treatment is given with respect to the training period. 

Learning task 
Hippocampus-
dependency 

Species BrdU-injections 
Effect on 

proliferation 
Effect on  
survival 

Reference 

MWM place 
EB trace 
MWM cue 
EB delay 

+ 
+ 
- 
- 

Rat 
(Sprague- 
Dawley) 

7 days before   

↑ 
↑ 
→ 
→ 

(Gould et al., 1999) 

MWM + 
Mouse 
(C57BL/6) 

at start → → 
(van Praag et al., 
1999c) 

MWM + 
Rat 
(Fisher) 

direct after  → (Merrill et al., 2003) 

MWM place 
MWM cue 

+ 
- 

Rat 
(Sprague- 
Dawley) 

8 days before  ↓ 
→ 

(Ambrogini et al., 2004) 

contextual fear 
conditioning  

+ 
Rat 
(Sprague- 
Dawley) 

direct after or  
10 days before ↓ → (Pham et al., 2005) 

Social 
transmission of 
food preference 

+ 
Rat 
(Long  
Evans) 

8-13 days before → 
↑ (1 d training) 
↓ (2 d training) 

(Olariu et al., 2005) 

Learning task 
Hippocampus-
dependency 

Species BrdU-injections 
Effect on learning 

performance 
Reference 

EB trace 
EB delay 

+ 
- 

Rat 
(Sprague- 
Dawley) 

2-6 days before ↓ 
→ 

(Shors et al., 2001) 

MWM 
Context. fear 
Trace fear 

+ 
+ 
+ 

Rat 
(Sprague- 
Dawley) 

2-6 days before 

Proliferation 
blocked 

→ 
→ 
↓ 

(Shors et al., 2002) 

  

Indisputable is the influence of physical activity on cell proliferation and 

neurogenesis, because the literature agrees about the substantial pro-proliferating effect of 

running in a running wheel in rodents (Eadie et al., 2005; Kronenberg et al., 2005; van 

Praag et al., 1999a; 2005, Table 3). Therefore, it has to be mentioned that physical activity 

is a factor that is integrated in environmental enrichment as well as in maze learning tasks. 

Literally, this is the case if running wheels are a part of the enriched environment 

(Kempermann et al., 1997b; 1998a; 1998b; Brown et al., 2003; van Praag et al., 1999b). 
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Table 3: Overview of reported effects of physical activity on cell proliferation and survival of 
newborn cells in the dentate gyrus (DG). The time point of BrdU treatment is given with 
respect to the training period (Duration). In some studies animals had to perform the Morris 
water maze task (MWM) during the training period and Stranahan et al. (2006) tested mice 
living socially in groups and housed individually. 

Locomotion 
type 

Duration Species 
BrdU- 
injections 

Effect on 
proliferation 

Effect on 
survival 

Tests Reference 

Wheel 2-3 weeks 
Rat 
(Sprague- 
Dawley) 

end ↑  - (Eadie et al., 2005) 

Wheel 
3 days 

10 days 
32 days 

Mouse 
(C57BL/6) 

end 
↑ 
↑ 
→ 

 - (Kronenberg et al., 2005) 

Wheel 9 days 
Mouse 
(C57BL/6) 

none 
(Ki-67) ↑  - 

(van der Borght et al., 
2006) 

Wheel 1.5-4 month 
Mouse 
(C57BL/6) 

start  ↑ MWM 
(van Praag et al., 1999a; 
2005) 

Wheel 21 days 
Mouse 
(C57BL/6) 

end ↑ ↑ - (Kitamura et al., 2003) 

Wheel 7-28 days 
Mouse 
(C57BL/6) 

light phase 
lights off 
dark phase 

→ 
→ 
↑ 

→ 
→ 
↑ 

- (Holmes et al., 2004) 

Wheel 40 days 
Mouse 
(Hsd:ICR) 

start  ↑ MWM (Rhodes et al., 2003) 

Wheel 

11 days 
11 days 

3-24 days 
48 days 

Rat 
(Sprague- 
Dawley) 

start 
start 
end 
end 

↑ 
↓ 
→ 
↑ 

 

grouped 
individually 
individually 
individually 

(Stranahan et al., 2006) 

Wheel 
9 days 

24 days 
Rat 
(SHR) 

end ↑ 
↓ 

 - (Naylor et al., 2005) 

Treadmill 7 days 
Rat 
(Sprague- 
Dawley) 

start ↑  - (Kim et al., 2002) 

Treadmill 
Swimming 

4 days 
Rat 
(Sprague- 
Dawley) 

end ↑ 
↑ 

 - (Ra et al., 2002) 

Wheel 
Swimming 

12-40 days 
Mouse 
(C57BL/6) 

start ↑ 
→ 

↑ 
→ 

- (van Praag et al., 1999b) 

  

The literature provides some evidence that cell proliferation and neurogenesis in the 

mammalian DG are a form of plasticity that contributes to cognitive function and is 

sensitive to a variety of internal and external factors. Conflicting results, even when 

standardized methods were used, reflect the difficulty of making general predictions about 

the functional role of neurogenesis, because results strongly depend on the specific 

condition or task and its execution. However, the investigation of specific features is 

important for understanding the mechanisms of adult neurogenesis, but does not 

conclusively give evidence about the involvement of cell production in the context of 

natural behavior.  

Our approach concerned the interaction of three of the previously named factors as 

they occur in a natural context. Naturally, behavior involves physical activity, exploration 

of novel objects or environments and associative learning for remembering profitable 

feeding locations. Therefore, we enunciated the following hypotheses on the effect of these 

factors on cell proliferation and survival: 

I) Cell proliferation and survival is stimulated solely by physical activity. Physical 

activity plays a major role in the behavior of animals. Adult neurogenesis increases with 
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voluntary exercise and in an enriched environment, which includes the facility for high 

levels of activity. 

II) Neurogenesis is involved in the processing of new, spatial information. The 

increase of cell proliferation following running in a running wheel (e.g. van Praag et al., 

1999b) is not caused by physical activity per se, but rather by actualization of the cognitive 

map in the brain. Running induces the need for map actualization because usually 

locomotion is associated with cognitive information that is processed with involvement of 

neuronal plasticity in DG (see Jacobs & Schenk, 2003). Hence, adult hippocampal 

neurogenesis is influenced by the processing of new spatial information that is required, 

exemplarily, for exploring a novel environment. 

III) Neurogenesis occurs in association with hippocampus-dependent learning and is 

amplified when associative learning is required. Cell proliferation and neurogenesis serve 

as neuronal substrate for learning and memory processes in hippocampal-dependent 

learning tasks (see Gould et al., 1999a).  

In order to test these hypotheses with respect to a natural context, we designed 

experiments to be conducted in a semi-natural environment. This computer-controlled 

environment provided much space to move, social interaction and undisturbed behavior. 

By confronting mice with this condition as a novel environment and the challenge of 

adopting foraging behavior by varying dispenser qualities, we emulated situations that 

mice have to cope with in nature. The aim of this study was to investigate the response of 

cell proliferation and survival rate to natural-like situations in a semi-naturalistic 

environment. Therefore, groups of mice lived in a large impoverished enclosure with one 

computer-controlled water dispenser or a naturalistic environment represented by a large 

enclosure containing obstacles and 10 computer-controlled water dispensers. This 

naturalistic environment either was new to animals or challenged optimal foraging 

behavior. Hypothesis I would be corroborated if proliferation increases in all conditions 

compared to controls, because physical activity occurs irrespective of environmental 

complexity or behavioral task. Hypothesis II would be corroborated if enhancement of 

neurogenesis is highest in mice exploring the novel complex environment. In this case, the 

impoverished environment would have no effect on proliferation and survival rate and 

associative learning in the complex environment would have no or only a small effect due 

to the processing of spatial information about changing locations of profitable water 

dispensers. Hypothesis III would be corroborated if the highest increase of neurogenesis 

occurs in mice expressing associative learning by memorizing profitable water locations in 

the complex environment. In this case, the impoverished environment would again have no 
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effect on proliferation and survival rate. Exploring the novel environment would have no 

or only a small effect due to the processing of spatial information of dispenser locations in 

the novel environment. 

Additionally, we further examined the role physical activity on cell proliferation in 

order to associate this prominent feature with behavior in a naturalistic environment. 

Therefore, we investigated the duration of persistence of the enhanced proliferation rate 

induced by running wheel activity and controlled for the influence of locomotion type by 

opposing wheel running, a rather unnatural form of locomotion, and running in plane as 

natural form.  

All mice received the proliferation marker 5-bromo-2’-deoxyuridine (BrdU) to evaluate the 

number of newborn cells in DG. 

3 Materials and methods 

3.1 General methods 

Experiments were conducted to examine the effect of different environmental and 

behavioral conditions on cell proliferation and survival of newborn cells in the 

hippocampus. Therefore, the following general methods were applied to all experimental 

groups. Exceptions and additional methods are described for each experiment below. 

3.1.1 Animals 

All subjects of this study were mice from the outbred stock CD-1. We used only 

females, because male mice show territorial behavior. This, on the one hand could have 

affected learning experiments that were conducted in grouped living mice. On the other 

hand, stress in subordinate males decreases adult hippocampal neurogenesis (Gould et al., 

1997). At the beginning of experiments, mice were between 8 and 11 weeks old, weighing 

27.3 g (± 2.9 SD). During all experiments, mice had free access to food. Animals sharing 

one or more computer controlled water dispensers were labeled with transponders for 

individual identification. Therefore, sterilized transponders encapsulated in biocompatible 

glass (2.1 mm × 12 mm, 0.09 g, Unique, Sokymat) were injected under isoflurane 

anesthetic subcutaneously between the shoulder blades using an injector (Trovan). 

For detailed information about animals and general animal treatment see Appendix 

(A.1). 
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3.1.2 Water dispensers 

Computer-controlled water dispensers were designed for the controlled delivery of 

water to individuals living together in a group (see Santoso et al., 2006). The main 

components of the dispenser were a photoelectric barrier, a transponder-reading device and 

a tube system for liquid conduction (see Figure 1). When entering the dispenser, the 

transponder tagged mouse interrupted the photoelectric barrier. Followed by identification 

of the individual by the reading device, opening of the magnetic pinch valve that controlled 

the silicon tube was actuated. The water released (20 - 160 µl single volume) was licked 

off the liquid port. The opening duration of the valve (40 - 600 ms) determined the volume 

of water released and was predefined according to the experimental protocol for each 

specific dispenser. Dispensers were blocked (10 to 60 sec.) for subsequent visits of the 

same individual at the same dispenser to avoid permanent water release. Input parameters, 

i.e. interruptions of photoelectric barrier and transponder-IDs were recorded and output 

parameters, for example the time point of visit and opening duration of valves, were 

computer-controlled using a self-written program (Versuch by Y. Winter). For technical 

details of computer-controlled dispensers see Winter & Stich (2005).  

For cage experiments, one or two dispensers were mounted to the cage and directly 

accessible to mice. For experiments in large enclosures (see 3.1.3), water dispensers were 

fixed to the ceiling of the room about 80 cm above the floor. Each dispenser was accessible 

for mice by a 1 m long rope that was fixed to the floor at one end and to the dispenser entry 

at the other end.  

3.1.3 Naturalistic and simple environment 

The naturalistic environment was designed to provide much space for locomotion, 

environmental enrichment and the facility to investigate and use mouse behavior based on 

foraging activity. Therefore, a large enclosure with an area of 15.9 m2 (5.92 × 2.81 m with 

a 1.64 × 0.47 m recess) was bounded by a 72 cm high metal wall. This complex room 

(Figure 5, right) contained 11 water dispensers and 11 obstacles in terms of opaque, 20 cm 

high plastic plates of different lengths (20, 40 and 80 cm). 

The simple room (Figure 5, left) was designed to provide much space for locomotion 

similar to the complex room, but in contrast, this room was poor in stimuli. Therefore, a 

second large enclosure with an area of 11.5 m2 (5.0 × 2.3 m), bounded by a 72 cm high 

metal wall, contained only one dispenser in the middle of the room. 
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In both rooms, a standard laboratory cage without cover served as home cage and 

was freely accessible for mice via ramps and holes in the cage wall. Cleaning papers, paper 

rolls and cartons were provided as nest-building material. 

 

Figure 5: Schematic of the simple (left) and complex (right) room. A 72 cm high metal wall 
bound the rooms. Dispensers 1 to 11 were distributed over the complex room (15.9 m2) and 
dispenser 12 was placed in the middle of the simple room (11.5 m2). 11 opaque plastic 
plates of different lengths (20, 40 or 80 cm) and 20 cm in height served as obstacles in the 
complex room. 

3.1.4 Running wheels and running tubes 

A running wheel with a diameter of 14.5 cm was fixed up to the wire mesh lid of a 

standard laboratory cage. Recording of wheel revolutions by a photoelectric barrier 

allowed for the measure of distance and velocity of running. Furthermore, the maximum 

running distance could be limited through computer-controlled activation of a motorized 

lock mechanism (for details see app. A.2.2). 

For the investigation of running in plane, one cage was equipped with two U-shaped 

tubes, each 4.3 m in length. One end of both tubes was fixed to the cage and a swinging 

wicket combined with a photoelectric barrier recorded every pass from cage to tube and 

vice versa. A dispenser at the other end of each tube provided the water delivery. The two 

dispensers released water alternating, i.e. once a mouse had received water at one dispenser 

it had to run 8.6 m through both tubes to obtain water at the other dispenser (for detail see 

Appendix A.2.1).  
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3.1.5 BrdU 

5-bromo-2’-deoxyuridine (BrdU, Sigma, Germany) is a cell proliferation marker that 

incorporates into DNA during cell cycle. BrdU treatment always started at the beginning of 

the dark phase, i.e. the activity phase of the animals. 

For oral application, BrdU was dissolved in sweetened (1.6 % Cyclamate/Saccharine, 

Huxol, Germany) drinking water (2.2 mg/ml). Oral administration of BrdU was applied to 

avoid disruption of animals as far as possible and was previously described in Santoso et 

al. (2006). Animals received daily doses of 100 µg BrdU per g body weight (BW) on 4 

consecutive days via one automatic water dispenser. During BrdU treatment, no other 

water source was available. Depending on the different tube systems in the experiments, a 

release volume of 110 to 160 µl per single visit required 9 to 13 visits at the dispenser to 

ingest the daily total volume of 1.3 to 1.6 ml BrdU solution. Once an animal had reached 

its cumulative dose, following visits did not lead to further liquid release. As soon as all 

individuals had ingested their daily dose of BrdU conditions of the respective experimental 

group applied. The dispensers for BrdU administration were the same that delivered 

regular drinking water during experiments (except for the complex room, in which the 

BrdU dispenser was excluded from the experiment). Prior to BrdU treatment, water was 

removed from the tube system and the tubes were filled with BrdU solution. When BrdU 

treatment was completed, BrdU solution was replaced by drinking water after thorough 

rinsing of the tubes with water. Animals were killed one day after BrdU treatment to 

investigate cell proliferation (post-treatment time PT = 1) or 28 days after BrdU treatment 

for the investigation of cell survival (PT = 28). 

For intraperitoneal injections, BrdU was dissolved in 0.9 % NaCl (10 mg/ml) and 

filtered sterile at 22 µm. Mice in the complex environment and the associated control mice 

were injected with single doses of 50 µg BrdU/g BW on 4 consecutive days once a day and 

were killed 28 days after the last day of BrdU treatment (PT = 28). Mice in cages with 

running tubes or wheels and their associated control mice (3.2.2) received 3 BrdU 

injections per day (50 µg/g BW per single dose) with 4-hour intervals between injections. 

Repeated injections were applied to circumvent potential fluctuations of the number of 

proliferating cells due to circadian rhythm or different distribution of running activity over 

the day. These mice were perfused one day after the last day of BrdU treatment (PT = 1). 

To determine the duration of the persistence of enhanced cell proliferation (3.2.3), mice 

received one BrdU injection (100 µg/g BW) and were killed 24 hours later (PT = 1). 
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3.1.6 Tissue preparation 

Animals were deeply anesthetized by an intraperitoneal injection of pentobarbital 

(160 µg/g BW) and transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate 

buffer (see app. A.4.1). Brains were removed, postfixed over night in the fixative and 

immersed in 30 % sucrose in 0.1 M phosphate buffer for at least 24 h for cryoprotection. 

After embedding in 15 % gelatin, brains were cut into 40 µm-thick coronal sections (see 

app. A.4.2) on a cryostat (Leica). Brain sections were stored at −20°C in cryoprotectant 

containing 44 % glycerol, 8.6 % sucrose and 6.9 mM MgCl2×6 H2O in 0.05 M phosphate 

buffer until further processing. 

3.1.7 Immunohistochemistry 

Free-floating sections were incubated in 0.6 % H2O2 in 10 mM phosphate-buffered 

saline solution containing 0.1 % Triton X-100 (PBS/T) at room temperature (RT) for 

30 min. to block endogenous peroxidase. For DNA-denaturation, free-floating sections 

were incubated in 2 N HCl at 37°C for 30 min. followed by several rinse-steps in 0.1 M 

boric acid buffer (pH 8.5). Sections were incubated with the primary antibody, a 

monoclonal mouse anti-BrdU (1:400, Roche Diagnostics) overnight at 4°C, then for 2 h at 

RT with biotinylated goat anti-mouse secondary antibody, followed by incubation with an 

avidin-biotin-peroxidase complex (ABC Elite, Vector Laboratories) at RT for 1 h. For the 

staining reaction, sections were treated with 0.03 % Diaminobenzidine (DAB) as 

chromogen, 100 mM NiSO4 × 6H2O and 0.003 % H2O2. Between all steps, sections were 

rinsed several times in PBS/T. Additionally, a mouse-on-mouse kit (M.O.M, Vector 

Laboratories) was used to reduce background staining. Sections were mounted on gelatin-

coated slides, air-dried and cover slipped with DePeX (Serva, Germany). The 

immunohistochemical procedure is described in detail in the Appendix (A.4.3). 

3.1.8 Data analysis 

BrdU-positive cells were counted in every sixth 40 µm-thick brain section (240 µm 

interval) throughout the dentate gyrus (DG) in one randomly chosen hemisphere. 

Photomicrographs were taken with a CCD-camera (SPOT RT, Diagnostic Instruments) via 

a microscope (Axioskop, Zeiss) and analyzed using MetaMorph software (Visitron). Single 

pictures were combined digitally using a computer-controlled XY-translation stage 

(Märzhäuser, Germany) together with an image-stitching software module (MetaMorph) to 

obtain a composite picture of the structure. Regions of interest within DG were outlined by 

tracing the well-defined border between granule cell layer (GCL) and hilus according to a 
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stereotaxic mouse atlas (Paxinos & Franklin, 2001). The subgranular zone (SGZ) was 

defined as 20 µm wide ribbon at the hilus side of the borderline. Points within the GCL 

and SGZ that conformed to predefined, standardized criteria, i.e. minimum/maximum area, 

were counted, subject to manually set gray level thresholds. The number of counted cells 

was multiplied by 6 to provide an estimate for the total number of BrdU-positive cells per 

DG. For a complete description of this quantification method, refer to App. A.5. 

3.1.9 Statistical analysis 

All data shown are means ± SEM. Statistical tests were performed using SigmaStat 

(Systat Software, Inc.). According to experimental design one-, two- or three-way 

ANOVAs with Fisher’s LSD for post-hoc tests were performed.  

3.2 Experimental design 

3.2.1 Simple environment and exploration and learning in a complex environment 

This experiment was conducted to investigate cell proliferation and survival in the 

dentate gyrus of adult mice under different environmental conditions. Beyond classical 

setups for an enriched environment (Kempermann et al., 1997b; van Praag et al., 1999b), 

our experimental setup consisted of large enclosures containing one or more automatic 

dispensers as described above. As main advantages of this setup, animals had much space 

for free and voluntary movements and experiments ran computer controlled to a great 

extent. Hence, stressful disturbance by the experimenter, due to handling for example, 

were reduced to a minimum. A stress free social environment was provided using groups 

of 3 to 8 individuals in each experiment. Overall, 39 female CD-1 mice from the 

departmental breeding colony (Dept. of Biology, University of Munich, Germany) were 

used in this experiment. Animals were divided into 5 groups and subjected to the following 

experimental treatments (Table 4, Figure 6). 

3.2.1.1 Simple environment (SIM) 

Group SIM (n = 8) lived socially together in the simple environment described 

above, which was characterized by much space for voluntary movements but poorness in 

stimuli. Mice in the simple environment group were allowed to move freely in this large 

enclosure with a frugal equipment including only a freely accessible home cage and one 

dispenser in the center of the room (for dispenser attributes refer to app. A.3.1). A water 

bottle was available in addition to the dispenser at start of the experiment and was removed 

on day 3. BrdU treatment started on day 6 and was applied on 4 consecutive days. 3 mice 
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were sacrificed on day 10 (PT = 1) and the 5 remaining animals lived in the room for 

additional 4 weeks (PT = 28). 

3.2.1.2 Exploration in the complex environment (EXP) 

The task of group EXP was to explore a novel complex environment. Therefore, this 

group (n = 8) was placed in the complex environment described above. All 10 dispensers 

were equal in quality, i.e. released the same amount of water (see app. A.3.2). Prior to the 

start of the experiment in the complex room, the environment was unknown to the animals. 

For the first 6 days, mice were housed in a special cage containing one dispenser accessible 

via a rope to accustom animals to the functioning of the water dispenser. The first 4 days in 

the novel environment were concomitantly the 4 days of BrdU application. 3 mice were 

sacrificed on day 10 (PT = 1) and the 5 remaining animals lived in the complex room 

under constant conditions for additional 4 weeks (PT = 28). 

3.2.1.3 Learning in the complex environment (LRN) 

A central aspect of group LRN was the challenge of learning and remembering 

locations in a complex environment. This group (n = 8) lived in the same complex 

environment as group EXP. In the learning task, mice were confronted with varying 

combinations of dispensers with changing qualities. One criterion of differentiation was the 

amount of water per visit. Therefore, one half of the dispensers was of high quality, i.e. 

released the twofold amount of water per visit as the low quality dispensers. Another 

criterion was the steadiness of water release. Therefore, one half of the dispensers released 

constantly the same amount of water per visit, whereas the remaining dispensers randomly 

varied between high and low amounts. The mean value of water released at variable 

dispensers equaled the water amount at constant dispensers. The distribution pattern of 

different dispenser attributes was varied at regular intervals to keep animals at challenge 

(see app. A.3.3). These conditions were applied to separate groups, one group of 6 mice 

with PT = 28 (MG 2) and one group of 3 mice with PT = 1 (MG 2-1d). 
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Table 4: Experimental groups, their conditions (task and environment) and 
number of individuals (N). All mice received BrdU (100 µg/g BW) orally on 
4 days and were killed one (PT = 1) or 28 (PT = 28) days after the last 
dose of BrdU. 

Group  Task Environment Posttreatment 
time (PT) 

N 

SIM simple environment 11.5 m2 room, 1 feeder 1 d 

28 d 

3 

5 

EXP exploration in  
complex environment 

15.9 m2 room, 
11 feeders, obstacles 

1 d 

28 d 

3 

5 

LRN learning in  
complex environment 

15.9 m2 room, 
11 feeders, obstacles 

1 d 

28 d 

3 

5 

CON control standard cage 1 d 

28 d 

5 

6 

RUN positive control, 
running 

standard cage with 
running wheel 

1 d 4 

 
 

3.2.1.4 Standard laboratory conditions (CON) 

The control group (CON, n = 11) was housed in groups of 3 or 5 individuals together 

in a standard laboratory cage containing one water dispenser. Water delivery via one 

computer-controlled dispenser was provided ad libitum.  

3.2.1.5 Running in a running wheel ad libitum (RUN) 

As running in a running wheel has a well-documented pro-proliferative effect (e.g. 

Brown et al., 2003; van Praag et al., 1999b), this condition served as a positive control. The 

appropriate group RUN (n = 4) was placed socially together in one standard laboratory 

cage containing one automatic dispenser and one running wheel. Mice were allowed to use 

the running wheel unrestricted during the experiment. 
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Figure 6: Experimental design for the investigation of the role of different environmental 
conditions on cell proliferation and survival. Grey areas indicate phases of accustoming 
animals to automatic feeders prior to start of experimental conditions (white areas). 
Control group lived in a standard cage (CON), positive control group in a cage containing 
a running wheel (RUN), simple environment group in an impoverished enclosure (11.5 m2) 
with one automatic dispenser (SIM), exploration group in an enclosure (15.9 m2) with 11 
automatic dispensers as novel complex environment (EXP) and learning group in the 
complex environment with learning tasks (LRN). Mice received BrdU (100 µg/g BW) orally 
on 4 consecutive days. Arrows indicate BrdU treatment and hatched bars the time point of 
perfusion. 

3.2.2 Locomotion types: wheel versus plane 

The aim of this experiment was to investigate the effect two different types of 

locomotion on hippocampal cell proliferation in a quantitative manner. The two 

locomotion types were represented by physical activity either in a running wheel or in 

running tubes. Physical activity was not permitted ad libitum, but limited to fixed running 

distances, determined prior to experiments according to protocol. 30 female CD-1 mice 

(Charles River Laboratories, Germany) were used in this experiment. Single mice were 

kept individually in the experimental cages. In each cage, two automatic dispensers 

provided water supply in an alternating manner. Animals were randomly assigned to 

running wheel exercise group WHE (n = 18) or running tube exercise group TUB (n = 6). 

WHE mice were kept in a cage equipped with a running wheel (see app. A.2.2). TUB mice 

were kept in a cage connected to its two dispensers through two tubes, each 4.3 m in length 

(see app. A.2.1). Control group (CON) consisted of 6 mice in standard cages without 

running wheel (n = 3) or containing an immobilized wheel (n = 3). With respect to the fact 

that the presence of a locked running wheel has no effect on the number of new born cells 

(see app. 2.7), CON was treated as consistent group. Running distances were limited to 

values with respect to the lowest individual ad libitum distances measured in a pre-

experiment (3365 m for WHE and 1006 m for TUB, see app. 2.6). Daily running distances 

were limited to 250, 500, 1000, 2000 or 4000 m in the running wheel (n = 3 for each 
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distance) and 400 m (n = 3) or 800 m (n = 2) in the running tubes. Once a mouse had 

covered its pre-defined distance, the wheel was automatically locked and the tube entries 

were blocked, respectively. One group of WHE mice was allowed to run ad libitum (n = 3) 

in a permanently unlocked running wheel.  

3.2.3 Persistence of enhanced cell proliferation following running activity 

In order to examine if and how long the enhancement of cell proliferation induced by 

running wheel activity persists, mice had free access to a running wheel on 4 consecutive 

days. At the beginning of the dark phase on day 5, the running wheel was completely 

removed. Cell proliferation then was analyzed at different time points with respect to 

removal of the running wheel. 23 female CD-1 mice (Charles River Laboratories, 

Germany) were used in this experiment. Mice were separately placed in a cage containing 

a running wheel and had free access to food and water from a bottle. Animals were 

intraperitoneally injected with one single dose of BrdU (100 µg/g BW). Time point of 

injection was either on the last day of wheel running (t = 0) or on day 1 (t = 1), day 

3 (t = 3) or day 6 (t = 6) after removal of the running wheel (Figure 7). Animals were 

perfused 1 day after BrdU injection. 

 

Figure 7: Experimental design for the investigation of the persistence of enhanced cell 
proliferation induced by running wheel activity. Running wheels indicate the 4 days with 
free access to a running wheel. Syringes indicate the different time points of BrdU 
injection, on the last day with access to running wheel (d = 0) or 1 (d = 1), 3 (d = 3) and 
6 (d = 6) days after withdrawal of running wheel, respectively. Animals were killed one day 
after the BrdU injection (100 µg/g BW). 
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4 Results 

4.1 Behavior 

4.1.1 Exploration and learning 

The assumption for this experiment was that two experimental groups, EXP and 

LRN, attended tasks that possibly affect cell proliferation in the adult dentate gyrus. Group 

EXP had to explore a novel complex environment and group LRN had to learn and 

memorize dispenser locations. Computer recorded events of dispenser visits were used to 

analyze the behavior of individuals of the groups. Behavior of mice during the 4 days of 

BrdU treatment was of special interest because proliferating cells were labeled within this 

period. 

In group EXP, BrdU was applied on the first 4 days in the novel complex 

environment to detect proliferating cells during explorative behavior. On day 1 in the novel 

environment, animals had visited 6 dispensers and gained a number of 9 out of 

10 dispensers found until day 4 (Figure 8A). On the 3rd and 4th day, mice visited 

significantly more dispensers than on day 1 (RM-ANOVA with post-hoc, p < 0.001). 

Mice in group LRN were already accustomed to the complex environment at the time 

of BrdU application and had to find and remember positions of high quality dispensers. 

The learning curve (Figure 8B) shows the portion of visits at high quality dispensers from 

the first 20 dispenser visits of each day. Choices of high quality dispensers rose from 

59 ± 4 % on day 1 to 75 ± 4 % on day 4 (F(3,15) = 5.8, p < 0.01). On day 3 and 4, the portion 

of visits at high quality dispensers was significantly greater than on day 1 and significantly 

above the 50 % chance level (RM-ANOVA with post-hoc, p < 0.01). Behavioral analysis 

of experimental days without BrdU treatment, including reactivity of mice to changes of 

high and low dispenser locations and  risk sensitivity,  is described in the Appendix 

(A.2.4). 
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Figure 8: Dispenser visits of mice in the complex environment during the 4 days of BrdU 
treatment. A) Cumulative number of dispensers visited by mice of group EXP. The first 4 
days in the complex environment represent the phase of exploration. Data contain a total 
of 1710 visits of 8 mice (mean ± SEM). B) Learning curve of group LRN (n = 5). 
Percentage of visits at high quality dispensers from the first 20 feeder visits of each day. 
One half of the 10 dispensers provided 60 µl water per single visit (high quality), the other 
half only 20 µl per single visit (low quality). Distribution of high and low quality dispensers 
was new to animals at day 1. 

4.1.2 Locomotion activity 

This experiment was designed to investigate potential differences between two 

different types of locomotion in mice, running in a running wheel (WHE) and running in 

plane (i.e. in tubes, TUB). The velocity and the time spent in running for each predefined 

distance were used to characterize both types of locomotion. WHE mice that were allowed 

to run ad libitum in the running wheel covered a distance of 9668 ± 371 m per day. They 

spent 8.0 ± 0.6 hours per day in the running wheel. 
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Table 5: Locomotion activity of mice running either in running tubes (TUB) or in a running 
wheel (WHE) and numbers of BrdU-positive cells per dentate gyrus in these groups and 
the control group in the standard cage (CON). Mice received 3 BrdU injections per day 
(50 µg/g BW each) on 4 consecutive days. Data are means with SEM in parenthesizes. 

Treatment Distance 
(m) 

Velocity 
(m/min) 

Duration 
(min) 

BrdU-positive 
cells 

TUB 400 17.0 (2.8) 32   (5) 1947 (446) 

 800 19.7 (2.9) 47 (11) 1911 (429) 

WHE 250 15.0 (1.5) 15   (1) 2004 (493) 

 500 17.0 (0.6) 27   (2) 2226 (609) 

 1000 18.2 (0.3) 50   (1) 1792 (488) 

 2000 17.9 (1.9) 92   (7) 2522 (528) 

 4000 20.1 (1.4) 174 (12) 3442 (689)«  

  ad libitum 16.0 (1.0) 477 (34) 4298 (618)«  

CON    1302 (322) 
«  significant difference (p<0.01) from control group CON  

 

Table 5 summarizes the results of this experiment. The time animals spent running, 

i.e. the duration of running, was correlated to the distance run in both groups, strongly in 

WHE (r = 0.97, p < 0.001, Figure 9A) and weakly in TUB (r = 32, p < 0.05). The velocity 

of locomotion (Figure 9B) was irrespective of the distance run in both groups, TUB 

(18.8 ± 1.5 m/min, p > 0.5) and WHE mice (18.3 ± 1.1 m/min, p > 0.3). Comparison of 

WHE and TUB showed that these treatments did not differ in the characteristics of 

locomotion. There was no difference between WHE and TUB mice in running duration 

(F(1,17) = 0.009; p > 0.9) or velocity of running (F(1,17) = 0.11; p > 0.7). 
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Figure 9: Characterization of exercise in running wheels (WHE) and running tubes (TUB) 
in association with running distance. A) The running duration, i.e. the time mice spent in 
running, could be predicted by the distance in WHE (p < 0.01) and TUB mice (p < 0.05). 
B) The running velocity was independent from locomotion type (WHE or TUB, p > 0.7) and 
distance (p > 0.3). Data are means ± SEM. 

4.2 BrdU-positive cells 

4.2.1 Simple environment, exploration and learning 

The number of surviving newborn cells (PT = 28 d) was significantly lower than the 

number of proliferating cells (PT = 1 d, Three-way ANOVA, F(1,30) = 5.27; p < 0.05), 

independently from the environmental condition (group × PT, F(2,30) = 1.75, p > 0.15). In 

SGZ, significantly more BrdU-positive cells were present compared to GCL 

(F(1,30) = 8.1; p < 0.01). After a post-treatment time of 28 days, the ratio of cells in SGZ to 

cells in GCL on average was 49:51 %, compared to 71:29 % after 1 d (see Table 6). Hence, 

the distribution of newborn cells among SGZ and GCL depends on post-treatment time 

(PT) as indicated by a strong interaction between these factors (layer × PT, F(1,30) = 13.68; 

p < 0.001, see also Chapter 3, 2.3).  
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Table 6: Numbers of BrdU-positive cells per dentate gyrus (DG) and percentages of BrdU-
positive cells in subgranular zone (SGZ) and granule cell layer (GCL) of DG for each group 
and their post-treatment times (PT). Data are means with SEM in parenthesizes. 

Group name PT No. of cells 
DG total 

% of cells 
SGZ 

% of cells 
GCL 

SIM 1 d 
28 d 

490   (173) 
513   (202) 

78.5 (3.0) 
53.7 (5.1) 

21.5 (3.0) 
46.3 (5.1) 

EXP 1 d 
28 d 

708   (118) 
486   (143) 

77.2 (0.5) 
54.2 (3.5) 

22.8 (0.5) 
45.8 (3.5) 

LRN 1 d 
28 d 

922    (92) 
485    (69) 

65.1 (1.7) 
40.3 (4.3) 

34.9 (1.7) 
59.7 (4.3) 

CON 1 d 
28 d 

904   (113) 
585   (200) 

63.8 (1.3) 
n/a 

36.2 (1.3) 
n/a 

RUN 1 d 5268   (429) «  78.0 (1.2) 22.0 (1.2) 
«  significant difference (p<0.001) from all other groups  

 

Cell counts were not significantly different between experimental groups SIM, EXP 

and LRN (F(3,23) = 1.1; p > 0.36, Figure 10Β and Table 6). Furthermore, numbers of BrdU-

positive cells in all experimental groups were statistically similar compared to control 

group in the standard cage (CON). In the positive control group, mice in cages with access 

to a running wheel (RUN), the amount of newly generated cells was approximately 6-fold 

higher compared to mice in standard cages (CON) and also considerably higher compared 

to all other groups (F(4,29) = 106; p < 0.001, Figure 10A and Table 6).  
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Figure 10: Numbers of BrdU-positive cells per dentate gyrus one day (black bars) and 28 
days (white bars) after BrdU administration for the different treatments: control group 
(CON), simple environment group (SIM), exploration group (EXP), learning group (LRN) 
and positive control in a cage containing a running wheel (RUN). Mice received BrdU 
(100µg/g BW) orally on 4 consecutive days. Bars shown in B are the same as in A but 
with RUN excluded. Data are means ± SEM. 
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4.2.2 Locomotion types: Wheel versus plane 

The amount of BrdU-positive cells was not different between mice running in wheels 

(WHE) and mice running in tubes (TUB, two-way ANOVA, F(1,22) = 0.68, p > 0.5). With 

respect to running distance, cell counts were significantly different (p < 0.05). Covering a 

distance of 4000 m or greater, when running ad libitum, lead to a significant increase of 

BrdU-labeled cells compared to control mice (CON, p < 0.01, Table 5). An interaction 

between the factors (distance × locomotion type) could not be analyzed because of 

insufficient data for TUB at greater distances. However, the number of newborn cells in 

the dentate gyrus was strongly correlated to the distance run (F(1,28) = 29.5; p < 0.001, 

Figure 11).  
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Figure 11: Scatter plot of BrdU-positive cells in dependence from running distance. Mice 
ran manually limited distances in a running wheel (WHE) or in running tubes (TUB). 
Control mice (CON) had no facility for locomotion. The number of newborn cells was 
significantly correlated with the distance run (p < 0.001). 

4.2.3 Persistence of enhanced cell proliferation following running activity 

The aim of this experiment was to identify the duration of the persistence of 

enhanced cell proliferation caused by wheel running. Therefore, the running wheel was 

removed following 4 days of free access to the wheel. The number of newborn cells was 

acquired on the last day of the running period (d = 0) as well as 1, 3 and 6 days after wheel 

withdrawal. As indicated in Figure 12, by the 4th day of voluntary wheel running (d = 0) 

the number of BrdU-positive cells was 2.5-fold higher than in mice without access to a 

running wheel (CON, p < 0.01). Following removal of the running wheel, the number of 

newborn cells was increased after 1 day (p < 0.05) and still elevated after 3 days 

(p < 0.001) compared to CON. After 6 days without access to a running wheel, the level of 
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cell proliferation was significantly lower than on day 0 and day 3 (p < 0.05). Additionally, 

the level of cell proliferation on day 6 after wheel withdrawal was not different from 

control condition (p > 0.2).  
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Figure 12: Numbers of BrdU-positive cells in DG of control mice (CON) and mice with free 
access to a running wheel on 4 consecutive days. The running wheel was removed on 
day 5 (d = 0). BrdU (100 µg/g BW) was applied on the same day (d = 0), day 1 (d = 1), 
day 3 (d = 3) or day 6 (d = 6) after removal of the running wheel, respectively. ‹  indicates 
significant difference (p < 0.05) compared to CON (a) and to d = 6 (b). 

5 Discussion 

The hypotheses, stated above, about the influence of physical activity, exploration 

and associative learning on cell proliferation and survival of newborn cells in the context 

of a naturalistic environment, have been rebutted by the results of the present experiment. 

Physical activity had no effect on neurogenesis under naturalistic conditions regardless of 

the level of environmental complexity (hypothesis I). Processing new spatial information 

as it is required when exploring a novel, complex environment had no influence on cell 

proliferation or survival rate (hypothesis II). Furthermore, associative learning in terms of 

optimizing foraging behavior by remembering profitable water locations had no effect on 

the formation or preservation of new cells (hypothesis III). The present data indicate that 

enhancement of the proliferation rate in the DG is solely affected by running in a running 

wheel. This effect is dose-dependent, occurs rapidly after stimulation and persists for a 

relatively short period of 3 to 6 days after stimulus (wheel) withdrawal. The assumption is 

that the pro-proliferative effect of locomotion in a running wheel results from a type of 

exercise that differs from any behavior occurring in nature. The strong correlation between 

activity level, i.e. the running distance, and proliferation rate indicates that the amount of 

physical activity is the most influential feature for hippocampal cell proliferation.  
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5.1 Cell proliferation and survival are affected in an enriched, but not in a 

naturalistic environment 

The complex, naturalistic environment in which mice of group EXP and LRN lived 

the present experiment did not promote cell proliferation or survival of newborn cells in 

the DG. Assuming that our conditions represent a kind of enrichment, we have to discuss 

this negative result with respect to the characteristics of an enriched environment. Per 

definition, an enriched environment is a combination of complex inanimate and social 

stimulation (see van Praag et al., 2000). An enlarged cage containing various objects like 

tunnels, toys and nesting materials, commonly represents the implementation of these 

requirements. Additionally, these objects are changed or switched regularly to challenge 

exploration and spatial navigation and mice or rats are housed in groups together to allow 

for social interactions. Thus, our naturalistic environment, in terms of grouped-living mice 

in a large enclosure containing dispensers, obstacles, a home cage and nesting material, 

accomplished the crucial characteristics of an enriched environment.  

Mice in the complex environment of the present study showed exploratory behavior 

and learned positions of high quality dispensers. However, neither of these behavioral 

patterns led to a change in cell proliferation or survival rate in the DG. Regarding our 

complex environment as an enriched environment, this is in contrast to several studies 

reporting a promoting effect of an enriched environment on cell proliferation and survival 

in the hippocampus, although the results of previous studies were not consistent (van Praag 

et al., 2000). A great deal of studies indicates that environmental enrichment can influence 

different aspects of adult neurogenesis. Therefore, the assumption is that changes in cell 

proliferation and neurogenesis result from other factors than environmental enrichment 

itself. Physical activity and learning, both part of an enriched environment, are factors that 

have been shown to influence separately cell proliferation and survival (see below). 

Interestingly, in many studies the enriched environment contained a running wheel (Brown 

et al., 2003; Kempermann et al., 1997b; Kempermann et al., 1998a; 1998b; van Praag et 

al., 1999b) and in some studies animals were trained on a learning task during or after 

enrichment (Kempermann et al., 1997b; 1998a; 1998b; Kempermann & Gage, 1999; 

Nilsson et al., 1999; Bruel-Jungerman et al., 2005). The paradigm of our experiment differs 

from previous studies in at least 4 fundamental aspects: i) We used the outbred strain CD-1 

in contrast to the most commonly used inbred mouse strains C57BL/6 or 129/Sv. ii) We 

exposed laboratory mice to a large room in contrast to an enlarged cage and we demanded 

foraging behavior. These conditions might have induced stress in mice. iii) We considered 
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foraging at dispensers of different quality as a spatial learning task in contrast to 

standardized learning tasks like water maze or fear conditioning. iv) Physical activity in 

our naturalistic environment took place in the context of exploration and foraging rather 

than to the treat of exercise like in a running wheel. The question that prompted the present 

study was, whether an environment that provides the opportunity for more natural-like 

behavior would yield a similar effect on hippocampal cell proliferation as enrichment (e.g. 

Kempermann et al., 1997b), physical activity (e.g. van Praag et al., 1999b) and learning 

(e.g. Gould et al., 1999a, b) have been shown to. Surprisingly, the answer to this question 

was no. Therefore, in the following paragraphs we are going to discuss, how this result can 

be interpreted with regard to the differences mentioned above. 

5.1.1 The role of genetic background 

Genetic effects on mouse behaviors like locomotor activity, anxiety and spatial 

navigation are well documented (see Crabbe et al., 1999). The outbred strain CD-1 exhibits 

comparatively higher levels of novelty exploration in a Y-maze than inbred strains 

BALB/c, DBA/2 and C57BL/6 (Dellu et al., 2000). The investigation of exploratory 

behavior in an open-field paradigm supported this result and, additionally, showed that 

female CD-1 mice reacted more aggressive towards conspecific intruders and expressed 

lower levels of anxiety (Parmigiani et al., 1999). Therefore, regarding the behavioral tasks 

of our experiment, CD-1 mice were suitable subjects. To the best of our knowledge, so far 

no experiments have been done using CD-1 outbred mice with respect to adult 

neurogenesis, except for one. Kempermann et al. (1997a) included CD-1 mice in their 

comparative study on hippocampal cell proliferation and neurogenesis, which revealed 

significant differences between 4 mouse strains. The volume of the granule cell layer 

(GCL) as well as the total number of granule cells of the adult DG was higher in CD-1 

mice compared to C57BL/6, 129/SvJ and BALB/c mice. Whereas the portion of surviving 

cells that differentiate into neurons was similar for all strains (~60%), strains differed in 

proliferation and survival rates. In the DG of CD-1 mice, the proliferation rate was lower 

than in C57BL/6 mice, but the survival rate was higher than in 129/SvJ mice. In particular, 

the two latter strains are interesting because it turned out that an enriched environment is 

associated with increased cell proliferation in 129/Sv mice (129/SvEv: Meshi et al., 2006; 

129/SvJ: Kempermann et al., 1998a), but not in C57BL/6 (Kempermann et al., 1997a; 

1998b; Brown et al., 2003), whereas survival rate was enhanced by enrichment in both 

strains. However, the response of hippocampal plasticity to enrichment could not be 

predicted by CGL volume or by baseline proliferation (Kempermann et al., 1998a). 
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Although inheritable traits seem to influence the dynamic changes in the hippocampus, it is 

unlikely that they are causal for the negative results of the present experiment, because 

others features, like running in a running wheel, affected cell proliferation in CD-1 mice to 

a comparable extent or even stronger than in C57BL/6 mice (van Praag et al., 1999b). 

Experiments that test CD-1 mice in commonly used setups, i.e. a large cage with toys or in 

a water maze learning task, are required to link this strain to the reported environmental 

effects on adult neurogenesis in other strains. 

5.1.2 The role of stress 

In order to prevent social stress, we used only females in our experiments, because 

they show less territorial behavior and are less aggressive than males (Parmigiani et al., 

1999). Generally, we designed our experiment with a focus on avoidance of stress for the 

animals. Therefore, we reduced interruptions by the experimenter to a minimum by using 

an automated, computer-controlled setup. Additionally, by applying BrdU orally via 

drinking water, stressful handling of animals was unnecessary at all, except for the capture 

immediately before sacrifice. However, it might be possible that the experimental 

apparatus we used in the present experiment induced stress in mice due to size or novelty 

of the rooms. In this case, a pro-proliferative effect might have been suppressed by stress. 

Particularly, the simple impoverished environment (SIM) might represent an unpleasant 

situation for mice. A free accessible home cage was provided in one edge of the large 

enclosure (11.5 m2) to avoid stress due to permanent exposure to an open field. Yet, mice 

were obliged to cross an open field from their cage to the only water source in the middle 

of room. However, the amount of daily water uptake and body weight at the end of the 

experiment were similar between group SIM (5.0 ± 0.3 ml/d and 29.7 ± 1.8 g, respectively) 

and the other groups (ANOVA, F(3,212) = 1.6; p > 0.18 and F(3,8) = 1.7; p > 0.24, 

respectively). These are gross measures of bodily adaptation, but also indicators for stress 

(Magarinos et al., 1996). However, the number of BrdU-positive cells in group SIM one 

day after BrdU administration was half the amount of newborn cells in the control group. 

Although this difference was not significant, this indicates that living in a large exposed 

room that lacks further stimuli diminishes cell proliferation. In this case, it is notable that 

this trend was not present at 4 weeks after BrdU application, indicating that this stress-

induced effect affects cell proliferation rather than the survival of newborn cells. A trend 

for a reduction of the number of proliferating cells was not observed in groups EXP and 

LRN that lived in the naturalistic environment. This environment per se is unlikely to 

induce stress in mice and behavioral observation revealed no indicators for a stress 
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response. At the 4 days of BrdU administration, group LRN was already habituated to the 

environment as indicated by stable body weight, daily water consumption and running 

distance. During this critical period, mice of group EXP explored the novel naturalistic 

environment. The novelty of the situation may serve as a stressful experience, but we 

assume that this had been a moderate form of stress, because exploration behavior was 

voluntary and not forced. Again, observation of behavior as well as recorded data of 

dispenser visits indicated that mice were habituated to the environment on the second day 

of the experiment.  

Stress that resulted in a rapid decrease of proliferating cells in previous studies was 

induced by rather severe stressing experiences (Tanapat et al., 2001; Gould et al., 1997; 

1998; Mitra et al., 2006). In contrast, Kozorovitskiy and Gould (2004) allowed rats to 

establish a dominance hierarchy in a semi-naturalistic environment for 3 days that led to an 

increased number of newborn cells in the DG of dominant animals. However, a stress-

induced reduction of cell proliferation in subordinate rats was not observed. This indicates 

that adult neurogenesis is influenced by acute and severe stress, but not implicitly by all 

stressful experiences an animals has to cope with. Therefore, the absence of an effect on 

cell proliferation and survival in the naturalistic environment should not be interpreted a 

stress-induced reduction or suppression of cell proliferation. 

5.1.3 The role of learning 

The results of the present experiment indicate that learning in terms of discovering 

and remembering the spatial distribution of high quality dispensers does not affect cell 

proliferation or survival in the DG of mice. After training in a Morris water maze 

neurogenesis has been shown to increase (Gould et al., 1999a), decrease (Ambrogini et al., 

2004) or to remain unchanged (van Praag et al., 1999b). These contradicting results are 

certainly due to methodical discrepancies between the studies. The measure of BrdU-

labeled cells in association with learning is highly sensitive to the timing and duration of 

BrdU application as well as to the learning paradigm (see Prickaerts et al., 2004). 

Regarding the time point and duration of BrdU administration, we followed a paradigm 

that should have detected a change in cell proliferation or survival. Firstly, mice received 

daily BrdU doses just before the learning phase in the complex environment and were 

killed 24 hours after the last dose of BrdU. This manner is comparable to Lemaire et al. 

(2000), who applied BrdU on 3 days just before water maze training and therewith found 

an increased cell proliferation in trained rats compared to controls. Secondly, a survival 

promoting effect of learning is assumed to be detected if BrdU is applied before rather than 
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during water maze training (Gould et al., 1999a). In the present study, mice received BrdU 

during their learning period, but we kept at challenging spatial learning in mice by 

changing the locations of high quality dispensers repeatedly during the survival period. 

Thus, if we failed to detect changes in the survival rate due to learning during BrdU 

treatment, then we at least should have detected changes due to the learning phases in the 

subsequent weeks. The more important consideration refers to the learning task is itself. 

The task in our naturalistic environment is based on the demand of spatial cognition to 

optimize foraging behavior. Thus, mice were confronted with a task that similarly occurs 

in a natural environment. The importance of considering the ecological relevance of 

learning tasks has been mentioned elsewhere (Gerlai & Clayton, 1999; Vyssotski et al., 

2002) and one should keep this in mind when interpreting data from laboratory 

experiments.  

In addition to the methodical discrepancies that might have contributed to 

contradicting results in learning tasks, one should take into account factors that might 

interfere with each other and with learning. Stress acts as a negative regulator of 

hippocampal cell proliferation (Gould et al., 1997; Tanapat et al., 2001) and might be 

induced by the confrontation with foot shocks in the conditioning chamber and with water 

in the water maze, which is an aversive component for mice. Physical activity acts as a 

positive regulator of cell production (Ra et al., 2002; van Praag et al., 1999b) and is also 

part of the water maze task. Thus, learning can hardly be measured in isolation of other 

factors. Another problem regarding these specific learning tasks is that different training 

paradigms lead to different results. One explanation for the results of Van Praag et al. 

(1999b), who found no effect of water maze training on the survival of new neurons, was 

that probably too few learning trials were given to animals with two instead of four (Gould 

et al., 1999b) trials per day. Olariu et al. (2005) applied a more natural form associative 

learning task (social transmission of food preference, STFP) that resulted in an increase of 

BrdU-labeled cells following one day of training, but a decrease following two days of 

training. Training, in terms of trials per day, were not part of our learning task, because 

animals were allowed to explore and remember the places of high quality dispensers for 

several days before switching the positions. Therefore, the present results support the 

interpretation that continued repetition of similar training events produce no or a negative 

effect on cell survival (Olariu et al., 2005). However, many studies demonstrate that 

conclusions about a correlation between learning and neurogenesis should be drawn with 

respect to the specific paradigm that has been tested. The focus in our experiment was to a 

smaller extent spatial learning per se. Our aim was to provide a naturalistic environment 
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including the demand for exploiting resources, which includes spatial navigation and 

learning. The present results indicate that this natural form of learning in the context of a 

naturalistic environment is not associated with adult neurogenesis.  

5.1.4 The role of physical activity 

The present result of the positive control group (RUN) further substantiates the 

tremendous pro-proliferative effect of running in a running wheel. We also demonstrated 

that the exercise-induced increase of cell proliferation is an acute and transient effect. 

4 days of voluntary wheel running are sufficient for a more than two-fold increase in cell 

proliferation that persists for at least 3 days and is finally lost after 6 days. An earlier study 

found that the pro-proliferative effect is lost after 3 weeks (Kitamura et al., 2003). Thus, 

we narrowed the time window of this decrease process. Furthermore, our data indicate that 

this process is rather rapid (3 to 6 days) than gradually and not similar to the neurogenic 

response to seizures that persist for up to 2 weeks (Parent et al., 1997). One may argue that 

an increase of BrdU-labeled cells might result from an enhanced efficiency of BrdU 

incorporation due to the exercise-induced increase of cerebral blood flow, cerebral blood 

volume or permeability of the blood-brain-barrier. Invalidating this concern, 

immunostaining of the endogenous cell cycle marker Ki-67 for additional identification of 

proliferating cells revealed that a running-induced increase of Ki-67-stained cells occurs 

similar to that observed by BrdU-labeling (Eadie et al., 2005; Stranahan et al., 2006). 

Physical activity played a major role in the complex environment used our experiment, 

because the large enclosure provided much space for exercise and, furthermore, exercise 

was required to imbibe a sufficient amount of water. The recording of dispenser visits 

enabled us to calculate the distance one mouse had covered minimally per day. This is only 

a rough estimate of exercise, because mice moved much more in the complex environment 

than only from dispenser to dispenser. However, or just because of that, a calculated daily 

distance of 137.7 ± 58.7 m (Mean ± SD) supports the personal observation that mice were 

highly active in the naturalistic environment. Considering that exercise in groups EXP and 

LRN was considerably more intensive compared to control mice in a laboratory cage, it 

was surprising that not even this aspect led to an increase of cell proliferation. The question 

arose whether the type of locomotion may be crucial for the impact of physical activity on 

cell proliferation, i.e. is running in a wheel different from running on flat ground? The 

result of our experiments indicates that this is not true. More precisely, the crucial feature 

for increasing the rate of cell proliferation is the amount of exercise in terms of running 

distance (or duration). Additionally, we showed that the increase in new born cells is not 
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associated with the intensity of running in terms of running velocity, because velocity was 

independent from running type (TUB or WHE) and distance. The distance run and the 

number of BrdU-positive were strongly correlated when mice ran in a wheel but no 

correlation was observed in mice running in tubes. This difference could be due to the few 

data available for tube running mice. Unfortunately, we were not able to collect data from 

mice running greater distances in running tubes, because even if unrestricted, mice did 

rarely succeed in running more than 1500 m per day. However, considering both, tube and 

wheel running, the comparison between comparable categories of running distance, i.e. 

below 2000 m, revealed no difference in cell counts between distances or type of running. 

This indicates that even in the running wheel a minimal distance has to be covered to 

induce an increase in cell proliferation. We are not supposed to declare a precise value, 

because of the small sample size in this experiment. However, the conclusion is that mice 

running in plane, i.e. in tubes, a naturalistic environment or probably in their natural 

habitat, do not reach activity levels of mice running in a running wheel and therefore do 

not show an activity-induced increase of cell production. 

5.2 Methodical considerations 

5-bromo-2’-deoxyuridine (BrdU) is a well-established marker of cell proliferation 

and incorporates into DNA during the S-Phase of the cell cycle. More precisely, BrdU 

incorporates into any cell that synthesizes DNA and therefore it cannot be excluded, that 

also cells undergoing DNA-repair appear as BrdU-positive cells (Nowakowski & Hayes, 

2000). However, Cooper-Kuhn and Kuhn (2002) argue that development of BrdU-labeled 

cells can be traced by double labeling with markers for immature or mature neurons and 

irradiation drastically reduces the number BrdU-positive cells although DNA-repair is 

increased. Thus, the authors conclude that DNA-repair does not represent a major source 

of BrdU labeling. One concern that has to be mentioned is the potential toxicity of BrdU to 

cells and animals (see Jecker et al., 1997). However, in adult rodents neither daily doses of 

up to 600 µg BrdU per gram body weight (Cameron & McKay, 2001) nor long-term oral 

administration of BrdU (Jecker et al., 1997) affect birth or survival of cells and the 

behavior or health of animals. In the present study, we used a daily dose of 100 µg BrdU 

per gram body weight, which is assumed to be non-toxic. Cameron and McKay (2001) 

mentioned that this dose yields an underestimation of the real number of proliferating cells 

in the dentate gyrus (DG), because at this dosage only a portion of cells in S-phase are 

detected. However, this issue is unlikely to be a problem for studies comparing different 
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groups of animals that were given the same doses of BrdU as it is the case in the present 

study.  

Within the scope of this thesis we did not further investigate the development and 

differentiation of newborn cells as it is commonly done in the literature. By double-

labeling of BrdU-positive cells with neuron and glia specific markers (e.g. NeuN and 

GFAP, respectively) the phenotype of newborn cells can be identified and cell types can be 

quantified using stereological analysis. In the literature the percentage values for new 

neurons and glia cells vary between studies. Kempermann et al. (1998b) for example 

reported that from surviving (4 weeks) newborn cells 41 % were neurons and 16 % were 

glia cells. Van Praag et al. (1999a) found 89 % neurons and only 3 % glia cells. However, 

the data in the literature are consistent in the finding that more newborn cells in the DG 

differentiate into neurons than into glia cells. Furthermore, it is suggested that neuron to 

glia ratio does not considerably change depending on conditions applied as it has been 

shown for environmental enrichment compared to control conditions (Kempermann et al., 

1998b). Therefore, we assume that the surviving cells (4 weeks after BrdU) are neurons to 

a greater part than glia in all groups investigated indicating the formation of new neurons. 

However, since we did not identify cell types by specific labeling our results here refer to 

survival of newborn cells and are not conclusively applicable to neurogenesis. 

We found no differences in the number of BrdU-positive cells between mice living in 

a standard laboratory cage (CON), a frugal large enclosure (SIM) or in a complex, 

naturalistic environment (EXP and LRN). One may argue that application of BrdU via the 

drinking water could be an inappropriate method for this purpose, because of uncontrolled 

uptake of BrdU solution or insufficient incorporation of BrdU. To treat of this issue, we 

demonstrated in a previous study that computer-controlled oral administration of BrdU is a 

reliable alternative to BrdU injections (Santoso et al., 2006; Chapter 1). Furthermore, in the 

positive control group of this experiment (mice with access to a running wheel, RUN), the 

number of proliferating cells was dramatically increased. 

5.3 Conclusions 

Under naturalistic conditions cell proliferation and survival are unaffected by 

exploration behavior, learning and physical activity. The present study opens up a novel 

and important perspective for the question of the functional relevance of adult 

neurogenesis. We are far from understanding the benefits of producing new neurons 

throughout life. The fact that this process is sensitive to various factors, at least in the 
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laboratory, and the assumption that hippocampal cell loss in association with diseases like 

depression and Alzheimer could be prevented or adjusted by adult neurogenesis, 

necessitate further investigation of this topic. However, adult neurogenesis in healthy 

subjects living in their natural environment perhaps should be considered as a stable 

process that is relatively insensitive for the impacts of "everyday life". 
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Chapter 3  

Cell proliferation and behavior: Insights 

1 Introduction 

Considering adult neurogenesis under naturalistic conditions means to carefully keep 

in mind both, the neurobiological and the behavioral aspects of an experiment. Hence, 

before and during conducting the experiments described in Chapter 2 several questions 

arose. Some of these questions were crucial for the reliability of the results, others 

concerned details that might be marginal for the experiment itself but nevertheless were of 

interest for as additional details supporting an integrated view on the topic. 

One fundamental question was whether the administration of BrdU via the drinking 

water, described in Chapter 1, was a proper method for labeling cells in the brains of mice 

even when living in a semi-natural environment. Accurate dosing and the time point of 

BrdU application are crucial aspects for cell labeling. In contrast to the use of BrdU 

injections, it was a challenge to warrant both for each individual of a mouse group freely 

moving in a naturalistic environment. To show the achievement of this objective, we 

compared in experiment 2.1 our results of Chapter 24.2.1) with BrdU labeling using BrdU 

injections instead of oral application under similar conditions. 

The new method we established in Chapter 1 of this thesis would become even more 

important if we could show that it is not restricted to the use in laboratory mice but is also 

applicable for different animal species. The nectar-feeding bat Glossophaga soricina 

(Phyllostomidae) is a routinely used subject in the ecological studies in the laboratory of 

York Winter. The specialized cognitive abilities of these flower bats, that are necessary to 

locate and remember profitable resources, indicate that spatial learning and memory play 

an important role these animals (Winter & Stich, 2005). Furthermore, the hippocampus, a 

brain region involved in spatial memory formation, is substantially larger in size in nectar-

feeding bats than in allied insectivorous species (Baron et al., 1996). Therefore, knowing 

the role of adult neurogenesis in these animals could be an important step to come up to the 

still unanswered question of the functionality of this phenomenon. Within the scope of this 

thesis, in experiment 2.2 we addressed the question whether our method of automated oral 

BrdU administration is in principle also applicable to this animal species. 

In experiment 2.3 we analyzed the characteristics of the BrdU labeled cell in terms of 

distribution within the DG and clustering. This information allowed us to further 
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accommodate our results to the well-established data of cell proliferation and migration 

from the literature. 

A few standard tests are commonly used in the literature to investigate learning 

behavior and its impact on adult neurogenesis (see Chapter 2, tab.2). Our semi-natural 

setup was a new approach to this topic. So far, there was no experience on learning based 

on foraging behavior of mice in this environment. Therefore, it was essential to first 

observe and evaluate the behavior of mice in this setup before analyzing the cell counts in 

relation to the behavior. The aim of experiment 2.4 was to first quantify general behavior 

patterns of mice in the simple and semi-natural environment (see Chapter 2) in terms of 

activity by analyzing dispenser visits. Secondly, and more important, we wanted to show 

that learning and exploration occur in this environment in a way that qualifies for being a 

reliable basis for the related neurobiological analysis.  

An incidental concern arose when moving the mice from the departmental animal 

husbandry to the experimental setup since we thereby shifted the light-dark (LD) cycle. A 

day-night shift of several hours results in a variety of physiological symptoms, also known 

as jet lag, and has been linked to changes of gene expression in the suprachiasmatic 

nucleus (Nagano et al., 2003; Reddy et al., 2002). Hippocampal cell proliferation is 

constant over the day (Ambrogini et al., 2002) and unaffected by sleep deprivation (van der 

Borght et al., 2006), but whether a shift of the LD cycle affects cell proliferation has not 

been investigated so far. In order to prevent potential jet lag effects, we observed and 

analyzed in experiment 2.5. the activity pattern of mice following a LD shift of 7 hours. 

The results of this experiment gave an estimation of the time needed for mice to accustom 

to the new LD, which consequently should be provided for acclimatization before starting 

studies in a  new environment.  

The running wheel is commonly used in rodents to investigate divers effects of 

physical activity. The assumption that wheel running has to be seen as an unnatural type of 

locomotion with self-rewarding and addictive effects (see Sherwin, 1998) led to further 

questions we wanted to address. Firstly, to compare the proliferative effects of two types of 

running, i.e. in a wheel versus in plane, we analyzed beforehand the activity under both 

conditions (experiment 2.6). Secondly, because of the prominent effect of wheel running 

on cell proliferation, we wanted to know whether simply the presence of a running wheel 

might influence the number of newborn cells (experiment 2.7).   

Since the aims and types of these experiments are multifaceted, in the following 

section each of these issues is addressed separately by enunciating the purpose of the 

question, describing the methodical approach and finalizing with results and conclusions. 
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2 Experiments 

2.1 Cell proliferation in the naturalistic environment with BrdU injections 

Purpose 

The most commonly used method for investigating the response of the cell 

proliferation and survival rate to behavioral or environmental changes is by injecting BrdU 

intraperitoneally (Gould & Gross, 2002). We demonstrated in a previous study that the 

administration of BrdU via the drinking water in computer-controlled dispensers is a 

suitable alternative to BrdU injections (Santoso et al., 2006). However, the procedure of 

BrdU uptake by oral application extends to several hours compared to injections that are 

completed within a few seconds. In particular, the effects of living in an enriched 

environment or learning might depend on this discrepancy. Since there are no experience 

values with this method, the aim of the following analysis was to get an indication for the 

functionality of oral BrdU application in our naturalistic setup. We therefore repeated parts 

of the experiment described in Chapter 2 (3.2.1), but used BrdU injections instead of oral 

BrdU application.  

Methods 

The conditions of this experiment correspond to the groups CON and LRN in 

Chapter 2 (3.1.3), except that mice received BrdU not orally but via i.p. injections. 

12 female CD-1 mice were divided into two groups. 6 mice were housed in a standard 

laboratory cage (CON) and 6 mice lived in a large enclosure (15.9 m2) containing a home 

cage, 11 automatic dispensers and 11 obstacles of different lengths (LRN). The dispenser 

qualities (amount of water released), were changed every 5-7 days to provide animals a 

variable distribution of different resources. Mice received one intraperitoneal injection of 

BrdU dissolved in 0.9 % NaCl (10mg/ml) on 4 consecutive days (50 µg BrdU/g BW) at the 

beginning of the dark phase. 28 days after the last dose of BrdU animals were 

transcardially perfused with 4 % paraformaldehyde. Because a part of the animals was 

used for different analyses, only 2 mice from CON and LRN were used for counting BrdU-

labeled cells in the dentate gyrus. 

Result and conclusions 

Four weeks after the BrdU injections, the numbers of BrdU-labeled cells in the DG 

of mice were not significantly different between mice housed in a standard cage (CON) 

and mice living in the complex environment (LRN; Two-way ANOVA, F(1,9) = 0.05; 
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p > 0.8, see Fig. 1). Furthermore, there was no statistical difference in cell counts after 

BrdU injections compared to oral BrdU administration (F(1,9) = 0.69; p > 0.4). 
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Figure 13: Numbers of BrdU-labeled cells in the dentate gyrus of mice housed in standard 
cages (CON) or in a complex naturalistic environment (LRN). Mice received BrdU orally 
via the drinking water (oral administration, data from 5.2.1) or via i.p. injections 
(50 µg BrdU/g BW) and were killed 4 weeks later. Data are means ± SEM. 

Environmental enrichment, in terms of an enlarged cage containing running wheels, 

toys and tunnels, induces an increase in the number of surviving new cells but not in the 

number of proliferating cells compared to control conditions (Brown et al., 2003; 

Kempermann et al., 1997). Therefore, we analyzed only the number of cells that survived 

for 28 days and did not compare the number of proliferating cells (i.e. 1 day after BrdU 

application). Although the sample size is very small, the insignificant dispersion of the 

values in mice injected with BrdU points to reproducibility of this result. The present result 

confirms our previous finding that oral BrdU application yields reliable labeling of new 

cells with results comparable to BrdU injections (Santoso et al., 2006). Furthermore, the 

data verify that living in a naturalistic environment does not affect adult neurogenesis. 

2.2 Oral application of BrdU in a nectar-feeding bat (Glossophaga 

soricina) 

Purpose 

The administration of BrdU in exact doses via drinking water by computer-controlled 

dispensers is a suitable method to detect proliferating cells in mice without disturbing their 

behavior (Santoso et al., 2006). In order to test the applicability of this method to other 

species, we applied it here to the nectar-feeding bat Glossophaga soricina 

(Phyllostomidae). The following experiment was designed to investigate whether a flower 
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bat would accept a BrdU-solution for the stress-free labeling of proliferating cells via oral 

application. 

Methods 

Subject of this experiment was one adult male long-tongued bat Glossophaga 

soricina (Phyllostomidae) that was bred in captivity. The climatic conditions of the 

housing and experimental room were approximately 23°C and 60 % humidity. The diet 

consisted of dry pollen and 1.5 ml of Nektar Plus (Nekton, Pforzheim, Germany) and 

NutriComp (B. Braun, Melsungen, Germany) dissolved in water. The experimental cage is 

described in detail in Winter & Stich (2005). In brief, the cage (w×h×d: 0.7 × 2.0 × 1.5 m) 

was equipped with a basket attached to the ceiling for clinging and two computer-

controlled dispensers attached to the rearward wall. The water dispensers were similar to 

those described before (Chapter 2, 3.1.2) except that they contained no transponder reading 

device. The dispensers released 45 µl of a 17 % sugar solution (fructose, glucose and 

saccharose in equal parts) per visit. During 11 days of acclimation, the bat had additionally 

free access to a small bowl of 17 % honey water. BrdU was dissolved in the sugar solution 

(0.23 mg BrdU/ml) and presented in one of the two dispensers for 8 consecutive days, 

whereas the other dispenser released pure sugar water. BrdU solution was swapped 

between the two dispensers every other day. To ingest the daily dose of 

50 µg BrdU/g body weight the bat (body weight: 11.5 g) had to visit the BrdU-dispenser 

46 times. Daily BrdU treatment started at the beginning of the active phase of the bat, i.e. 

at lights off (12:12 h light:dark cycle). The bat was sacrificed 59 days after the last dose of 

BrdU and the brain processed similar to the description in the Appendix (A.4).  

Result and conclusion 

During the whole experiment in the cage, the bat visited the two dispensers on 

average 943 (± 328 SD) times per day receiving 14.1 (± 3.4 SD) ml of liquid. During BrdU 

treatment, the dispenser visits were not evenly distributed over the two dispensers. A two-

way ANOVA revealed a difference in the number of dispenser visits according to 

dispenser contents (sugar water vs. BrdU solution; F(1,12) = 12.3; p < 0.01) and the 

dispenser itself (dispenser 1 vs. dispenser 2; F(1,12) = 7.7; p < 0.05, see Fig. 2A). When both 

dispensers released sugar water to similar amounts, the bat visited dispenser 2 more often 

than dispenser 1 (t-test; p < 0.01, see Fig. 2B). From this data, we can assume that the bat 

developed a preference for one of the two dispensers regardless of the presence of BrdU. 
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Figure 14: Numbers of visits of one bat at the two dispensers in the experimental cage. 
A) Dispenser visits during BrdU treatment. BrdU solution (black bars) was provided daily 
rotational by one of the dispensers while the other one released pure sugar water (gray 
bars). B) Dispenser visits during 48 days with pure sugar water provided by both 
dispensers to equal amounts (20 µl per visit). Data are means ± SD and * indicate 
significant differences (p < 0.05). 

The bat distinguished between pure sugar water and sugar water containing BrdU 

independently from a dispenser preference, indicated by the lack of interaction between 

contents and dispenser (contents × dispenser; p > 0.7). However, the bat was allowed to 

freely choose a dispenser and nevertheless ingested the daily dose of BrdU within a few 

hours. Therefore, the bat seemed to perceive the taste of BrdU but, hence, does not avoid 

it. As conclusion, the computer-controlled dispensers are a suitable apparatus for oral 

application of drugs even in nectar-feeding bats. 

We found no BrdU-labeled cells in the dentate gyrus (DG) of the bat.  

2.3 Classification and distribution of BrdU-labeled cells 

Purpose 

Within the scope of this thesis, the differentiation of newborn cells was not analyzed 

since we concentrated on the quantification of proliferating and surviving cells. However, 

labeling those cells allowed for collecting additional information about the distribution and 

classification of newborn cells. Proliferating cells commonly appear in clusters (Ambrogini 

et al., 2002; Auvergne et al., 2002; Nixon & Crews, 2004; Tada et al., 2000) and surviving 

cells partly migrate from the subgranular zone (SGZ) into the granule cell layer (GCL, see 

Kempermann et al. 2003). Appearance of cell clusters and the distribution of BrdU labeled 

cells within the DG allowed us to link our data to the process of adult neurogenesis without 

verifying neurons per se with neuronal markers. 
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Methods 

The integrated morphometry analysis (IMA) function in MetaMorph recorded for 

each point several attributes (see Table 16). The data gave information about shape, size, 

position and gray shade of the cells. Additionally, in the course of quantification (see 

App. A.5) information about the position of each cell within the DG was retained. In order 

to describe the attributes of newborn cells, all cells recorded from 89 animals were 

analyzed according to their characteristics ascertained by IMA. 

Results and conclusion 

A total of 27775 cells were included in this analysis. Figure 15 shows the distribution 

of new born cells 1 day and 4 weeks after BrdU administration with respect to DG region, 

i.e. dorsodorsal (dd) blade, dorsoventral (dv) blade, ventral DG (ve) and hilus (hi) and DG 

layer, i.e. granule cell layer (GCL) and subgranular zone (SGZ). The majority (87.9 %) of 

BrdU-labeled cells was located in the dorsal part of DG with slightly more cells in the dd 

blade (47,6 %) than in the dv blade (41.4 %). A small portion of new cells was found in the 

hilus (12.2 %) and in the ventral part of the DG (3.0 %). The portions of cells were 

significantly different between the regions (Two-way ANOVA, F(3,424) = 929.1, p < 0.001) 

and were also different comparing 1 day post-treatment time (PT) to 4 weeks PT 

(F(4,424) = 4.2, p < 0.05). A significant interaction between region and PT (F(3,424) = 13.4, 

p < 0.001) indicates that the distribution of cells over DG regions changed in dependence 

of PT. In the dd blade of DG, the portion of BrdU-positive was independent from PT, 

whereas in the dv blade of the DG the portion of cells that survived 4 weeks was smaller 

than the portion of newborn cells in this region (p < 0.001). In exchange, more cells were 

found in the ventral DG and hilus after 4 weeks than after 1 day (p < 0.001). However, the 

main region of adult neurogenesis is surely the molecular layer including the dd and dv 

blade of DG. BrdU-labeled cells were significantly unequally distributed among DG layers 

GCL and SGZ (Two-way ANOVA, F(1,194) = 155.1, p < 0.001). The interaction layer × PT 

(F(1.194) = 194.5, p < 0.001) indicates that cell portions in GCL and SGZ are dependent 

from the time of survival after BrdU treatment. Proliferating cells at 1 day PT were located 

mostly in the SGZ, whereas after 4 weeks surviving cells were evenly distributed among 

SGZ and GCL. 
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Figure 15: Distribution of BrdU-positive cells within the dentate gyrus 
(DG) 1 day (left charts) and 4 weeks (right charts) after the last dose of 
BrdU. Upper charts show portions of cells (%) distributed among DG 
regions, the dorsodorsal (dd) and dorsoventral (dv) blade, the ventral 
DG (ve) and the hilus (hi). Lower charts show cell distribution among 
DG layers, the granule cell layer (GCL) and the subgranular zone 
(SGZ). 

BrdU-positive cells were on average 22.2 µm2 (± 8.6 SD) in size. The comparison of 

cell sizes between the regions of DG showed that cells in hi were significantly smaller than 

cells in the dorsal DG (dd and dv, p < 0.001). 85 % of the objects were single cells and 

15 % were cell clusters of 2 or more cells indicated by a standard area count >1. These 

clusters were located to the major part in SGZ (78 %) and only 3.7 % were found in the 

hilus. Clusters were composed of more cells when located in SGZ compared to GCL 

(p < 0.001) and at PT = 1 compared to PT = 28 (p < 0.001, Figure 4). The interaction 

between these two parameters (layer × PT, F(2,27768) = 13.5, p > 0.001) indicates that the 

difference in cluster size between DG layers changes with time elapsed after BrdU 

treatment. 



Experiments Chapter 3 

79 

Posttreatment time (PT)

1 day 28 days

S
ta

nd
ar

d 
ar

ea
 c

ou
nt

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7
GCL
SGZ

‹
a

‹
a,b

 

Figure 16: Cluster size in granule cell layer (GCL) and subgranular zone (SGZ) 1 day and 
28 days after BrdU treatment, respectively. A cluster corresponds to objects with a 
standard area count > 2. ‹  indicate significance (p < 0.001) compared to same layer at 
PT = 28 days (a) and compared to GCL at PT = 1 day (b). Data are means ± SEM. 

Our findings fit quite well into the few previous descriptions of clustering and 

distribution of newborn cells. As demonstrated in this experiment, during proliferation (i.e. 

1 day after BrdU treatment) labeled cells often appear in clusters of 2-3 cells (Tada et al., 

2000). Clusters are predominantly located in the SGZ of the DG (Auvergne et al., 2002) 

and no clusters have been found in the hilus (Ambrogini et al., 2002). 

New cells in the hilus seem to play a minor role because former studies have shown 

that factors influencing cell proliferation had no effect on the numbers of new cells in this 

region (Bizon & Gallagher, 2003; Merrill et al., 2003; Nilsson et al., 1999). The ventral 

part of DG is difficult to acquire because of its small size. The probability that the ventral 

DG appears in a series of every 6th brain section is relatively small. The change of 

distribution of BrdU-positive cells in the dd and dv blades among post treatment times has 

been stated to be of limited relevance by Kempermann et al. (2003) because of its high 

variability over different time points. However, this publication shows, in agreement to our 

results, a tendency of more labeled cells in the dorsal blade compared to the ventral blade. 

Another consent is the proportion of labeled cells in the SGZ (more than 70 % at 1 day 

after BrdU treatment) that becomes smaller with time while more labeled cells are located 

in GCL (4 weeks compared to 1 day after BrdU treatment), reflecting the migration of 

maturating cells. We conclude that the pool of newborn cells labeled in our studies did 

undergo the well-established process of cell proliferation and neurogenesis and we 

therefore can make at least cautious assumptions on neurogenesis without having 

visualized neurons. 
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2.4 Behavior in the complex environment 

Purpose 

Learning and exploration are complex behaviors that are expedient to be investigated 

using standardized test for reproducibility. However, we approached this topic from a 

different perspective that focused on close-to-nature conditions rather than on 

standardization since there is no experience with rodents in this type of experiment. 

Nevertheless, we claimed from our data to be reliable and reproducible as well and 

therefore wanted to describe the behavior, in general, but particularly concerning learning 

and exploration, of mice in our experimental setup in more detail. 

Methods 

Therefore, the behavior of groups of mice (SIM, EXP and LRN) was analyzed in 

terms of dispenser visits when mice were introduced to experimental setup in order to give 

an estimate about the reactivity to the novel environment. Group LRN (two separate 

groups of mice: MG 2 and MG 2-1d; see Chapter 2, 3.2.1.3) challenged two different 

learning tasks based on foraging behavior in the naturalistic environment. Firstly, mice had 

to distinguish between dispensers of high an low quality. The 10 dispensers were randomly 

split into two groups of 5 with high and low quality, respectively. The amount of water 

released at high quality dispensers was at least twice the amount of low quality dispensers. 

This distribution pattern was inverted every few days or daily (see App. A.3). Secondly, 

mice could choose between dispensers releasing reliably a constant amount of water 

(constant dispensers) and dispensers releasing either a high or a low amount with a 50 % 

probability each (variable dispensers). The average amount of water released at variable 

dispensers was similar to the release volume of constant dispensers. 

Results and conclusions 

In the simple, impoverished environment (SIM) mice visited the dispenser in the 

middle of the room on average 35 hours following the introduction to the room (range: 

21-71 hours, Figure 17). Mice in group EXP visited the first dispenser in the novel 

environment on average 6 hours after setting them into the room (range: 3 - 9 hours). In 

group LRN mice needed on average 15 hours until the first dispenser visit following the 

setting into the naturalistic environment (range: 1 - 54 hours). There are big individual 

differences in the latency for the first dispenser visit. The smallest variance has been 

observed in group EXP (SD = 0.7 hours). One explanation is that group EXP lived in a 

special cage outside the room to accustom to the function of water dispensers prior to start 
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of the experiment. At the time of release into the naturalistic environment, all of the 

animals were already aware of the relevance and handling of dispensers. This could also be 

the reason for the short latencies to the first dispenser visit. In group SIM, mice needed 

significantly longer to visit the dispenser for the first time than mice in groups EXP and 

LRN (ANOVA with post-hoc, p < 0.01). Group SIM was exposed to a large empty room 

with only one dispenser in the middle. This environment seems to represent a situation that 

induces anxiety in mice. The measure of latency to enter an exposed area and the duration 

spent in its center is a commonly used method to investigate anxiety-related behavior 

(Binder et al., 2004). Therefore, the long latencies for the first dispenser visit in group SIM 

could be an expression of the natural reaction to an unfamiliar large and exposed room. 
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Figure 17: Time to the first visit of each mouse at any dispenser at the start of the 
respective experiment. SIM = simple environment, EXP = exploration in the complex 
environment, LRN = learning in the complex environment. 

Mice living in the complex environment that contained 10 dispensers covered a 

minimal distance of 146 m (± 64 SD) and 112 m (± 28 SD) in the LRN and EXP condition, 

respectively. On average mice visited dispensers 108 (± 64 SD) times per day (maximum 

343 times). 

The first learning task in group LRN challenged mice to find and remember 

profitable water dispensers (high quality) that provide twice the amount of water per visit 

than the less profitable dispensers (low quality). Within the first 4 days, mice increasingly 

visited high quality dispensers more frequently than low quality dispensers (Figure 18, see 

also Chapter 2, 4.1.1). In both LRN groups (MG 2, Figure 18A and MG 2-1d, Figure 18B), 

the portion of visits at high quality dispensers was significantly different from chance level 

(50 %) on day 3 and 4 (and day 2 for MG 2-1d) in contrast to the first days (Bonferroni, 

p < 0.05). The changing of dispenser qualities, i.e. inverting of the distribution pattern of 

high and low quality dispensers, lead to an abrupt impairment of performance. In MG 2, 
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the portion of choices of high quality dispensers decreased to 48 % following pattern 

inverting (Figure 18, day 56) and was significantly smaller compared to the earlier days 

(RM-ANOVA with post hoc, p < 0.001). During 6 days of daily pattern change mice 

exceeded chance level only on two days to 72 and 64 % choices of high quality dispensers 

(day 59 and 61, Figure 18A). In MG 2-1d the performance of mice was not impaired after 

the first pattern inverting on day 15, but significantly impaired to 47 % choices of high 

quality dispensers after the second one on day 20 (p < 0.001, Figure 18B). The day before 

the first inverting, the portion of choices of high quality dispensers was smaller than the 

first 4 days for unknown reasons. This might be an explanation for the lack of a 

performance impairment in this case. However, performance improved significantly on the 

second day after inverting dispenser qualities (p < 0.05). 
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Figure 18: Optimal foraging in the naturalistic environment. Portions of choices of high 
quality dispensers of all visits in group LRN. One half of the 10 dispensers in the room 
released twice the amount of water per visits (high quality) than the other half (low quality). 
A) MG 2 (n = 6). From experimental day 56 on the distribution pattern of high and low 
quality dispensers was inverted daily. B) MG 2-1d (n = 3). The pattern was inverted on 
day 15 and 20. 

In the second learning task, mice could choose between constant dispensers that 

released a fix amount of water per visit and variable dispensers that released a high or low 

amount of water in irregular rotation. In group MG 2-1d mice visited constant and variable 

dispensers by chance during the 5 days of this condition (Figure 19B). In contrast, mice in 

MG 2 showed a preference for variable dispensers (Figure 19A). Choices for variable 

dispensers were significantly different from chance level at all days except for day 66 and 

67 (p < 0.05). The present data can not give evidence about risk sensitivity of mice because 

of the different result in the two groups tested. However, risk avoidance as would be 

expected when animals face variation in food amounts delivered (see Kacelnik & Brito e 
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Abreu, 1998) was not clearly observed here. In contrast, one group was risk prone for the 

amount of water released. 
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Figure 19: Risky foraging behavior in the naturalistic environment. Portions of choices of 
variable dispensers from all visits in group LRN. One half of the 10 dispensers in the room 
released a constant amount of water per visit (constant) and the other half released 
randomly a high or low amount (variable). A) MG 2 (n = 6). B) MG 2-1d (n = 3).  

The present results indicate that foraging behavior of mice in terms of optimal 

foraging at water dispensers reflects a suitable basis for studies of learning tasks, provided 

that appropriate dispenser attributes are chosen carefully.  

2.5 Recovery from a 7 hour shift of light-dark cycle 

Purpose 

The 12:12h light-dark (LD) cycle in the laboratories in which experiments took place 

was different from the circadian rhythm at the animal husbandry (lights off at 19:00h). We 

used a nocturnal species and therefore shifted the experimental light-dark cycle backwards 

in order to fit the activity phase of mice to that of humans. In the present experiments, 

lights were turned off at 10:00 h (MG 7-, 8-,9-, 10-, 11-, 12, 13-, 14-1d), 12:00 h (MG 1, 

2), 13:00 h (MG 2-1d, 6, 6-1d) or 16:00 h (MG 4, 4-1d, 5, 5-1d), corresponding to a 9, 7, 6 

and 3 hour delay of the LD cycle, respectively. Exemplarily, behavioral data of one group 

of mice during the first days under new LD conditions were analyzed with respect to 

general activity in terms of dispenser visits to get an estimate of the duration of the 

recovery from a jet lag. 
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Methods 

Mice of MG 2 (LRN, n = 6) were transponder tagged on the day of arrival from the 

animal husbandry (see Table 7). The very next day mice were placed in the complex 

environment containing 10 water dispensers (see Chapter 2, 3.1.3, Fig. 5). The number of 

visits at the dispensers, summed up for all individuals, was used as a measure for general 

activity during 8 consecutive days. The standard designation for LD cycles refers to the 

Zeitgeber time (ZT), where ZT = 0 corresponds to the time point of lights on. In the 

present experiment lights off (ZT = 12) was at 12:00 h, which represents a 7 hour delay of 

LD cycle. Because mice had also to accustom to the novel form of water delivery via 

dispensers, they had access to a regular water bottle during the first night. 

Result and conclusion 

The total number of dispenser visits rose from 6 ± 3 on day 1 to a maximum of 

111 ± 15 on day 6. The numbers of visits were significantly different between the days 

(Two-way RM-ANOVA, F(7,35) = 52.6, p < 0.001). A strong interaction of day × light 

phase (F(7,35) = 11.7, p < 0.001) indicates that the distribution of visits over dark and light 

period changes over the days. There was no difference in the frequency of dispenser visits 

between light and dark phase during the first 4 days (Fisher's LSD post-hoc, p > 0.08). 

From day 5 on, mice were significantly more active during the dark period than during the 

light phase (p < 0.01, Figure 20). These data indicate that mice steadily adapt to a 7 hour 

delaying shift of LD cycle and adjust their active phase to the new cycle. This process 

seems to require at least 5 days.  
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Figure 20: Activity during the first 8 days following a 7 hour delaying shift of light-dark 
cycle. Black bars represent the numbers of dispenser visits of 6 mice measured in 
30 min. intervals. Zeitgeber time (ZT) 0 denotes the time point of lights on (24:00 h) in the 
new cycle. White background represents light phase and the dark phase is highlighted in 
gray. The upper horizontal bar shows the light (white) and dark (black) phases of the 
original cycle (lights on at 7:00 h). 

In conclusion of this analysis all animals in the following experiments were allowed 

to accustom to changing clocks for at least one week (7 days) before starting behavioral 

testing. Consequently, it is assumed that any effect of jet lag on cell proliferation, if 

existent, can be excluded for the subjects in the present studies. 

 

2.6 Running in wheels and tubes ad libitum and limited to 1000 m  

Purpose 

The investigation of cell proliferation in association with two different locomotion 

types, running in a running wheel and in plane (Chapter 2, 4.2.2), was conducted by 

limiting running distances to several values. In order to define appropriate distances for 

mice it was necessary to know their running behavior under unrestricted conditions. 

Methods 

11 CD-1 mice were divided into 3 groups. Group WHE (n = 4, MG 8-1d) ran in 

running wheels, TUB (n = 4, MG 9-1d) ran in running tubes and control group CON 

(n = 3, MG 10-1d) lived in a standard laboratory cage without running opportunity. Single 

mice were placed in their respective cage containing a running wheel (WHE, see 

App. A.2.2 ) and two dispensers or running tubes with two dispensers at the tube ends 

(TUB, see App. A.2.1) or nothing but one dispenser (CON). During the first days in the 
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experimental cages, mice were allowed to accustom to the apparatus and the alternating 

water release at the two dispensers (see App. A.2). Running wheels were present right 

from start of the experiment, whereas running tubes were attached to the cage of TUB mice 

when animals coped with visiting dispensers alternating (after 2-4days). All mice were 

allowed to run unlimited in their respective apparatus for at least 4 days, except for one 

WHE mouse that was limited to a distance of 2000 m during this period. Following this, 

running distances were limited to 1000 m per day for both groups. Because TUB mice 

needed more time to cover this distance than WHE mice and activity should be similarly 

distributed over the day, the 1000 m were allocated in three portions (250 + 250 + 500 m) 

for WHE mice. Therefore, wheels were unlocked at 10:00 h (beginning of the dark phase), 

locked when 250 m were achieved, unlocked at 13:00 h, locked when another 250 m were 

achieved and unlocked at 18:00 h until final locking after additional 500 m. On the last 4 

days of the experiment (total duration 10 – 18 days), mice received BrdU orally via the 

dispensers with a daily dose of 100 µg/g bodyweight under maintenance of limited running 

conditions.  

Results and conclusions 

Mice running ad libitum in a running wheel covered on average a distance of 

8325 ± 870 m per day during the first 7 days in their apparatus (range: 197 - 16656 m). The 

distances were not statistically different between the days (RM ANOVA, F(6,12) = 2.85, 

p = 0.06), but tended to increase from day 1 to day 5 (Figure 21A). Mice running unlimited 

in running tubes covered on average a distance of 1608 ± 139 m per day during the first 5 

days (range: 347 - 2512 m). The distance run was significantly shorter on day 1 than on 

each of the following days (RM ANOVA with post hoc, p < 0.01). 

The first day with the respective locomotion facility seemed to be needed for 

familiarization, because running distances were greater and leveled off from day 2 on in 

WHE and TUB mice, although this is statistically confirmed only for running tubes. The 

minima of running distance in both conditions occurred on the first day. With respect to 

running distances from day 2 on, mice ran at least 3365 m in wheels and 1006 m in tubes. 

These values were used as reference distances for the investigation of activity dependent 

cell proliferation in the two locomotion types (Chapter 2, 3.2.2). 

The amount of proliferating cells was statistically not different between groups (One-

way ANOVA, p = 0.06). Data showed a trend for cell numbers in TUB mice to be similar 

to control mice, whereas the number of BrdU-labeled cells (Figure 21B) was higher in DG 
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of mice running 1000 m in running wheels than in mice running the same distance in tubes 

and control mice.  
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Figure 21: Results of pre-experiment running wheels (WHE) vs. running tubes (TUB). 
A) Running distances during the first days under the respective conditions. Mice were 
allowed to run ad libitum. B) Numbers of proliferating cells in mice running in wheels 
(WHE) or tubes (TUB) and in control mice without locomotion (CON). During BrdU 
treatment, the running distance was limited to 1000 m per day. Data are means ± SEM. 

These data indicate that wheel running itself affects hippocampal cell proliferation 

rather than the higher level of activity that occurs in wheels compared to locomotion in 

plane. This is in contrast to our results of Chapter 2 (4.2.2) and to previous reports (Holmes 

et al. 2004). The time course of this experiment held the risk, that the period of ad libitum 

locomotion before limiting the daily distance to 1000 m, could have influenced the cell 

proliferation rate. This assumption is supported by the results of the experiment concerning 

the persistence of increased cell proliferation following wheel running in the present study 

(Chapter 2, 4.2.3). We suggest that the days of ad libitum exercise before limiting the 

distance to 1000 m led to an increase of cell proliferation rate that overlapped the 

proliferation rate during the following days of limited exercise.  

2.7 Presence of an immobilized running wheel 

Purpose 

The running wheel takes an exceptional position because proofs of its pro-

proliferative effect are numerous and consistent. On the other side wheel running has to be 

seen as an unnatural type of locomotion with self-rewarding and addictive effects (see 

Sherwin, 1998). In association with the comparison of locomotion in wheels vs. tubes (2.6 
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and Chapter 2, 3.2.2) the question arose whether simply the presence of a running wheel 

without exercise in it could alter the rate of cell proliferation. 

Methods 

The control group of the experiment comparing activity dependent cell proliferation 

in wheel and tube running mice (Chapter 2, 3.2.2) was divided into two subgroups. In one 

group (CON-, n = 3), mice were individually placed in standard cages, whereas mice of the 

second control group (CON+, n = 3) were placed individually in cages containing an 

immobilized running wheel. Mice lived in the respective cages for 8 days and were 

injected with BrdU (50 mg/g BW) during the last 4 days with 3 injections per day in 4 hour 

intervals between injections (see Chapter 2, 3.1.5). 

Result and conclusion 

The number of BrdU-labeled cells in the DG (1170 ± 130 SEM for CON- and 1434 

± 514 SEM for CON+) was not different between control mice with and without a running 

wheel (t-test, p = 0.65). These data indicate that the presence of a locked running wheel 

that cannot be used for running is inconsequential for cell proliferation. Although mice 

used the immobilized wheel for climbing, this kind of enhanced physical activity is 

assumed to have no effect on the cell proliferation rate. 

 

3 Discussion 

The experiments described in this chapter were conducted to endorse that our 

experimental methods are reproducible and that our results in the previous chapters are in 

general comparable to data in the literature. That the method of oral BrdU administration is 

a reliable and useful method for labeling proliferating cells has been illustrated in 

Chapter 1. This was further verified by the results of experiment 2.1. where we used BrdU 

injections instead of oral administration in mice living in the naturalistic environment 

facing the learning task. Furthermore, those results support the conclusion made in 

Chapter 2 of this thesis, that mice living in the naturalistic environment do not produce 

more new cells than mice under standard laboratory conditions, in fact independently from 

the method of BrdU administration.  

By applying this methodology to a nectar-feeding bat in experiment 2.2 we 

demonstrated that oral BrdU administration, as well as the automated setup used, are easily 

transferable to a wide range of subject species. This method might open novel possibilities 

for experimental designs in behavioral studies involving drug application. Since only one 
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subject was used in this experiment, we cannot present universally valid statements. 

However, our bat showed a preference for one of two dispensers and this species has been 

demonstrated to have preferences for specific corners of an more complex array of 64 

dispensers (Winter & Stich, 2005). The observation of a complete lack of BrdU-labeled 

cells in the bat’s dentate gyrus what somewhat surprising. But the lack of adult 

neurogenesis in the DG of Glossophaga soricina was also reported by Kaiser (2005) and 

Lipp (personal communication) who applied also BrdU injections and, additionally,  

endogenous proliferation markers. The assumption is that this species does not or only at 

low rates produce new granule cells, in contrast to all mammalian species investigated so 

far, including laboratory rodents (Nilsson et al., 1999; van Praag et al., 1999), wild-living 

rodents (Amrein et al., 2004), even primates (Gould et al., 1999a) and humans (Eriksson et 

al., 1998).   

The detailed analysis of the distribution of new born cells, described in experiment 

2.3 does not yield new findings. But that the distribution and clustering of the BrdU 

labeled cells in our study are comparable to other published data showed that labeling, 

counting and analyzing procedures coincide with the methods used in other laboratories. 

The aim of experiment 2.4 was to verify the behavioral tests applied to the subjects 

in the semi-natural environment with respect to learning and memory process. Here, the 

paradigm of risky foraging seems to be less solid since the results were inconsistent with 

one another. Further verification is needed to show how far the theory of risky foraging 

behavior (see Kacelnik & Brito e Abreu, 1998) is applicable to mice since the group size of 

the present experiment was too small to make definite conclusions. In contrast, the 

dispenser quality, i.e. amount of water released, has been shown to be a reliable attribute to 

induce optimal foraging behavior in mice. Experiments in rodents, using a similar 

paradigm that is based on locations of water dispensers, revealed this task as a proper 

method for investigation cognitive behavior including hippocampus-dependent spatial 

learning (Galsworthy et al., 2005). The setup used in this publication was a standard rat 

cage containing two computer-controlled water dispensers in each corner of the cage and 

the subjects had to distinguish between corners with water-releasing and disabled 

dispensers, respectively. This setup differs from the experimental design of the present 

theses in two major aspects: the environment is rather homecage-like than semi-natural and 

the learning task is simplified in terms of 4 corners for the choice between correct (water) 

or incorrect (no water). We aimed at more naturalistic conditions by applying a spacious 

naturalistic distribution of dispensers and demanding optimization of foraging behavior 

rather than correct choices. However, both setups are, in principle, based on a similar 
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concept (location of water dispensers) and we therefore assume that both are similarly 

implementable to experiments investigating spatial learning and memory tasks. 

Before starting our experiments, we applied a minimum acclimatization period of 

one week in our experimental room to all subjects after relocation from the animal 

husbandry. The results from experiment 2.5 brought us to this precaution, since this time 

was required for mice to adopt their circadian rhythm to the new light-dark cycle as 

indicated by the dispenser visit activity.  A jet lag might cause not only behavioral but also 

physiological changes and, additionally, there is a possibility that cell proliferation rates 

might vary with circadian phases (Holmes et al. 2004). Considering this, it was important 

for us, and should be considered in general, to assure exclusion of potential jet leg effects 

on both, behavior and number of newborn cells. 

The objective of experiments 2.6 and 2.7 was to characterize the properties of a 

running wheel in order to precise our statements on physical activity in general as well as 

with respect to the naturalistic environment. Our results support the assumption that wheel 

running reflects a special rather than a natural type of locomotion in rodents (see Sherwin, 

1998). Although only the presence of a running wheel itself does not play a role, as shown 

in experiment 2.7, the extent of activity in a wheel is substantially higher in a wheel than 

under different conditions like on a treadmill (Ra et al., 2002; Kim et al., 2002), in tunnel 

systems (Eayrs, 1954) or in tubes (experiment 2.6 of the present study). Our results 

indicate that the intensity of exercise is the decisive factor for an increase of the cell 

proliferation rate. Consequently, the strong pro-proliferative effect of physical activity, as 

demonstrated in numerous studies including the present work, results from the high 

activity level in the running wheels used in those experiments. Nevertheless, running 

wheels are an important and effective tool for investigating physical activity and its effects. 

But once more, our results call attention to potential discrepancies between laboratory 

conditions and their transferability to the real-life situation.  

In summary, this chapter provides a few approaches that should be further 

investigated in order to consolidate the data given. Nevertheless, they point to important 

aspects to consider in behavioral experiments, particularly in the context of adult 

neurogenesis, including the method of drug application and the type of behavioral 

conditions (learning and running). Furthermore, this chapter might give new impulses to 

future research with respect to animal behavior as well as neurobiological processes, in 

particular when combining both in neuroecological studies. 
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General discussion 

This thesis aimed at the investigation of adult neurogenesis in mice under natural-

like conditions in order to get an idea of the functional relevance of this phenomenon. The 

focus was on the development and application of a novel approach to the question whether 

and to which extent behavior is related to changes in cell production rates in the adult 

mouse brain.  

Oral BrdU administration is a suitable alternative to BrdU injections 

As a first step, we developed a method, which allows for reliable labeling of  

proliferating cells in the mouse brain while reducing disruption of animal behavior to a 

minimum. Chapter 1 demonstrates that the use of automated liquid dispensers is 

particularly suitable for the application of the proliferation marker BrdU. Furthermore, we 

showed that this method of oral BrdU administration yields appropriate results that are 

comparable to the results following the commonly used method of BrdU injections. 

The preference for administration via injections in almost all studies so far surely 

results from the fast and simple application of this method. If the time point of BrdU 

incorporation is crucial, e.g. when investigating the time course (e.g. Hayes & 

Nowakowsky, 2002) or time points (e.g. Chapter 2, 3.2.3) of proliferation, injections are 

still the method of choice because oral uptake can hardly be limited in time. However, oral 

BrdU application can still be optimized in order to solve this disadvantage. Further 

experiments using different doses of BrdU and alternative solution liquids could help to 

enhance the flexibility, precision and applicability of this method.  

Cell proliferation in a naturalistic environment is not enhanced by exploration or spatial 

learning 

We adopted and applied the novel method of oral BrdU administration to the semi-

natural environment and thereby demonstrated in Chapter 2 (4.2.1) and 3 (2.1) its 

suitability for complex behavioral studies. Under naturalistic conditions, reflected by social 

living in groups, voluntary movements in a spacious room, there was no impact of physical 

activity, explorative behavior or learning on cell proliferation. Neither exploration of a 

novel complex environment nor spatial learning in this environment led to a change of 

proliferation rate in the dentate gyrus of mice. This finding was confirmed by applying 

BrdU via both routes, orally and by injections. Paradigms of explorative and learning 

behavior have been shown to be accepted and implemented by animals as the behavioral 

analyzes in Chapters 2 (4.1.1) and 3 (2.4) revealed. Not even the higher level of physical 
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activity that was provided and excited by this environment induced an increase of cell 

production. Thus, we can conclude that the naturalistic environment had no influence as a 

whole. 

The imitation of natural conditions in the laboratory is difficult because it is a matter 

of definition what factors are the determining ones for “natural”. Of course, our naturalistic 

setup cannot reflect a natural habitat, but some, to our definition, crucial factors were 

implemented. These were: much space for voluntary movement, enrichment by obstacles, 

ropes and cages, social interaction as well as common behavior like nest building and 

foraging. The one condition that is named naturalistic environment here, combines several 

aspects that have been shown to influence adult neurogenesis when considered separately. 

But even when considered as separate factors, the paradigms “environmental enrichment” 

and “learning” led to results that could not give a conclusive picture of their impact. 

Table 1 illustrates the contradicting results summarized over publications where similar 

enriched conditions (enlarged cage containing toys and tunnels) caused an increase in cell 

proliferation and survival (Kempermann et al., 1998a), only in proliferation (Kempermann 

et al., 2002; Meshi et al., 2006) or only in survival (e.g. Kempermann et al., 1997b; Brown 

et al., 2003). No change in neurogenesis could be found in one of the rare studies using 

different conditions like a visible borrow system (Kozorovitskiy & Gould, 2004). To 

establish a relation between adult neurogenesis and learning, seems to be even more 

difficult as the overview of previous results in table 2 shows. With regards to important 

aspects like hippocampus-dependency or type of learning task, there seems to be no 

explanatory pattern in the findings of increased (e.g. Gould et al., 1999), unchanged (e.g. 

Merrill et al., 2003) or even decreased (e.g. Ambrogini et al., 2004) numbers of surviving 

newborn cells in correlation with learning.  

As with all essentially negative results, we cannot draw any strong conclusions about 

why no effects were seen and whether under different circumstances an effect might have 

been found. On the other hand, one might also learn from negative results. Possibly, the 

lack of effect here might be due to the interaction of conditions, which separately influence 

cell proliferation in opposed ways. For example, competition between socially living 

animals or the exposed situation in our spacious environments could have had a stress 

related diminishing effect (see Kozorovitskiy & Gould, 2004), while the physical activity 

and learning task per se would have induced an increase in proliferation.  

The present experiments are hardly comparable to previous studies in this field 

because the environment, as well as the learning task applied here, is quite different and 

was not used in this context before. Additionally, the small sample size of animals used in 
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this study does not allow for conclusive interpretation of the results. However, we do not 

doubt that we at least opened a new perspective on adult neurogenesis that is worthy of 

attention and further examination. 

Pro-proliferative effect of physical activity is transient and strongly depends on activity 

level 

The present results of Chapter 2 (4.2.2, 4.2.3) and 3 (2.6, 2.7) are consistent with all 

previous reports of the remarkable pro-proliferative effect of physical activity in a running 

wheel (see table 3). However, our further investigations on this issue indicate that this 

effect is transient and strongly depends on the amount of activity. The activity level that is 

needed to induce an increase of cell production is easily reached in a running wheel, but 

seems not to be achieved in different types of locomotion. Neither verifiable activity in a 

tube system nor in the spacious complex environment led to an increased number of 

newborn cells. 

The running wheel is the most commonly used apparatus for studying physical 

activity and its use is reasonable for investigating exercise-induced effects and their 

mechanisms. However, one should keep in mind that wheel running is a distinct behavior 

that is not directly comparable to normal locomotion (reviewed in Sherwin, 1998). The 

high motivation for using a running wheel (Sherwin, 1996) and the self-reinforcing virtue 

of wheel running (Sherwin, 1998) are characteristics that stand out from other types of 

locomotion. Additionally, consistent with the present data, former studies reported that 

distances covered in a running wheel are conspicuously higher than distances run on a 

treadmill (Collier & Hirsch, 1971) and in a tunnel system (Eayrs, 1954). Therefore, wheel 

running is no substitute for planar locomotion and conclusions from wheel running-

induced effects should be drawn carefully referring to activity under natural conditions. 

Yet, only few studies investigated the association between exercise and hippocampal cell 

proliferation using other apparatuses than running wheels. Rats running on a treadmill had 

more newborn cells than sedentary controls (Ra et al., 2002; Kim et al., 2002). The 

calculation of distances covered by rats in these studies resulted in amounts (200 - 540 m) 

that had no effect on proliferation in our experiments. Two aspects could be responsible for 

the discrepancy between these results. Firstly, the results might be due to species-specific 

differences of plasticity. Restraint stress, for example, induced a decrease in the number of 

newborn cells in rats, but an increase in mice (Bain et al., 2004). Swimming, as another 

type of locomotion, led to an increased proliferation rate in rats (Ra et al., 2002), but not in 

mice (van Praag et al., 1999b). Secondly, although running velocity is not associated with 
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cell proliferation in a running wheel, as demonstrated in the present study, it might play a 

role in planar locomotion. The treadmill exercise-induced increase of new born cells 

became smaller with increasing intensity in terms of predefined velocities (Ra et al., 2002). 

When rats ran at the maximum of 22 m/min on the treadmill, cell proliferation rate was 

equal to controls. The average velocity performed by mice in the present study 

(17.6 ± 0.6 m/min) fits well into that category. 

Conclusion 

We do not want to contradict previously published studies since each of the factors 

investigated, including enriched environment, learning and locomotion, has been shown to 

have some impact on cell proliferation and neurogenesis, at least if considered separately 

under standardized laboratory conditions. It is worth knowing how cell production can be 

stimulated, especially when considering the possible use of single factors for medical 

purposes in the field of neurodegenerative diseases. Nevertheless, our results show that one 

should not directly conclude from those experiments to the functional relevance of 

naturally occurring neurogenesis. 

Outlook 

We are far from understanding the regulatory factors and processes of adult 

neurogenesis in every detail and the functional relevance of this phenomenon still remains 

unclear.  

Physical activity seems to play a major role as pro-proliferating factor and it would 

be of high interest whether activity induces an increase in cell proliferation also in other 

species than rodents. Studies with controlled activity in other mammals like cats, dogs or 

primates could uncover whether the prominent effect found in wheel-running in rodents is 

really dependent on the level of activity. Accurate tracing of animal movements by e.g. 

video analysis could give more detailed information about the characteristics of activity 

outside running wheels and therefore provide for deeper insights into the effects of natural 

motion on cell proliferation and neurogenesis. 

Of special interest for the relevance of adult neurogenesis in real live are studies in 

wild-living animals. The possibilities of such studies are presently limited by methodical 

requirements, e.g. the need for sacrificing animals. A comparison of net neurogenesis rates 

between individuals classified according to pre-defined characteristics like age or sex 

could bring more insight into effects of e.g. corticosteroids and hormones. Furthermore, 

comparing individuals showing different levels of physical activity in their natural 
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environment could answer the question whether cell proliferation is still activity dependent 

in natural movement. 

To get an idea of the importance of neurogenesis for spatial memory performance, 

more inter-species comparisons would be helpful. In case neurogenesis is correlated to 

hippocampal-dependent learning and memory, this should be reflected in a difference in 

neurogenesis rates of related species with differing needs for spatial memory, due to e.g. 

varied foraging strategies or different availability of resources. 
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Appendices 

Appendix A Methodical details 

A.1 Animals and treatments 

All subjects used in this work were female CD-1 mice. This outbred stock origins 

from a group of Swiss mice that served as progenitors of this stock. Two male and seven 

female albino mice derived from a non-inbred stock in the laboratory of the Centre 

Anticancereux Romand, Lausanne, Switzerland were brought to the United states by Clara 

Lynch in 1926 and arrived at Charles River laboratories in 1959 (Rice & O'Brien, 1980). In 

contrast to inbred mouse strains, CD-1 mice are genetically heterogeneous and the genetic 

variation is very similar to estimates from wild populations. 

Animals were obtained from the departmental breeding colony (LMU Biocenter, 

Munich, Germany) or from Charles River Laboratories (Sulzheim, Germany). At the 

animal husbandry of LMU Biocenter (Munich, Germany), mice were housed in standard 

cages type III (see A.2) with maximum 7 mice per cage. Following monogamous mating 

(one male and one female) mothers and their litter changed cages with maximum 2 

mothers per cage. 3 weeks after birth, young mice were weaned and siblings housed 

together in one cage. At Charles River Laboratories mice were kept in standard cages type 

III with maximum 30 mice per cage. For mating males and females were put together in a 

mating ratio of 1:10 for 3 weeks and subsequently pregnant females changed cages (8 per 

cage). 4 mothers lived together with 50 pups until weaning after 3 weeks. 

On arrival, mice were placed in cages within the experimental room to habituate to 

the light:dark cycle obtained during the following experiments. During the acclimatization 

period, the groups of mice were placed in standard laboratory cages (type III) for small 

groups of 3 to 6 individuals or in larger cages (type IV, 59.5 × 38 × 20 cm, area 1820 cm2) 

for groups of 8 to 12 individuals (MG 11-, 12-, 13-1d) with free access to food and water. 

The duration of acclimatization time varied between 4 and 28 days (see Table 7, 'Start of 

experiment'). For experiments with grouped-living mice that shared water dispensers, 

individuals were labeled by injecting transponders during acclimatization period (Table 7, 

'Transponder injection'). Therefore, mice were anesthetized with isoflurane and sterilized 

transponders encapsulated in biocompatible glass (2.1×12 mm, 0.09 g, Unique, Sykomat) 

were injected subcutaneously between the shoulder blades using an injector (Trovan). This 

procedure was completed within approximately 1 minute and mice recovered rapidly from 
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anesthesia and surgery. In all experiments with separately housed mice, we forbore 

transponder tagging. 

Mice had always free access to food (compressed pellets, complete diet for rat and 

mouse husbandry, ssniff GmbH, Soest, Germany). Access to drinking water via a water 

bottle or dispensers was free except for mice with oral BrdU administration. During the 

days of BrdU treatment, those mice were water deprived for 2 to 6 hours prior to the start 

of BrdU delivery. Drinking water in bottles and dispenser reservoirs was refreshed every 3 

days. 

The first day in the respective experimental environment, e.g. the complex room or a 

cage containing a running wheel, is called 'start of experiment' and 'end of experiment' is 

the day of perfusion (Table 7). Mice were on average 10 weeks old (± 2 SD, range: 7-16 

weeks), weighing 28.2 g (± 3.9 SD, range: 20.8 - 41.6 g) at start of experiment and 13 

weeks old (± 4 SD, range: 8-31 weeks) weighing 28.3 g (± 4.4 SD, range: 20 - 39.9 g) at 

the end of experiment. 
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Table 7: Overview of animal treatments. The nomenclature of individuals (animal-ID) 
contained species abbreviation (MM = Mus musculus), year and sequential number. 
Group-ID is the sequential number of experimental groups including the suffix "-1d" for 
groups with a post treatment time (PT) of one day (i.e. killed one day after the last dose 
of BrdU) in contrast to groups without suffix with a PT of 28 days. Individuals lived in their 
experimental housing condition (for details see 4.1.3) separately or in groups of several 
individuals simultaneously. CD-1 mice were born in and obtained from the departmental 
breading colony of the LMU (Biocenter, Munich) or Charles River Laboratories. Day 0 
represents the date of arrival at the experimental room for acclimatization to light:dark 
cycle. Acclimatization period ended at start of experiment, i.e. the first day under 
experimental conditions. Days of transponder injection, start and end of experiment 
and start of BrdU treatment are given with respect to day 0. Age and body weight of 
mice are given for the first (start) and last (end) day of experiment, respectively. Mice 
received BrdU via intraperitoneal injections (i.p.) or orally via drinking water (oral) with the 
given single doses on one day or on 4 consecutive days. From a total of 127 animals, 5 
mice were excluded from analysis of BrdU-positive cells because histological staining 
procedure failed to label cells (*). 6 mice were used for other analyses than BrdU labeling 
(§) and the BrdU cell count of one mouse was excluded as outlier (#). 
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MM 03-26 35.7 §
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MM 03-05 01.02.03 08.05.03 0 0 95 28 127 127 16 31 29.3 §
MM 03-08 32.5 §
MM 03-09 29.5 §
MM 03-10 27.5 32.3
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MM 03-23 27.7 34
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MM 04-08 26.8 29
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MM 04-10 26.4 24
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MM 04-42 32.6 32.7
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MM 05-12 31.9 32

MG 0

MG 1

CON control cage

MG 5-1d 7

MG 2

MG 2-1d

MG 3
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LRN learning complex room
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MG 4-1d

MG 5

6 01.06.03

LRN learning complex room 3 03.02.04

10.11.03

LMU 08.09.03 -- 7 i.p. 507 28 39 32 4 1

6 LMU 7 7 76 28

15 19

108 107 8 23 i.p. 50 4 1

LRN learning complex room 6 15.07.03 LMU 15.09.03 0 1 49 28 81 75 9 19 oral 100 4 1

LMU 13.04.04 2 6 41 1 46 40 11 16 oral 100 4 1

CON control cage 6 01.10.03 LMU 01.12.03 0 9 14 28 46 37 10 15 oral 100 4 1

EXP exploration complex room 8/5 10.11.03 LMU 11

LMU

20.01.04 0 6 28 43 37 11 16 oral 100 4 1
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CON control cage 3 LMU oral

36

1
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26 19 10 12 oral 100 4
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MM 05-33 19.04.05 02.07.05 13 23 28 15 12 14 32.5 38.8
MM 05-39 10.08.05 30.09.05 4 10 15 11 8 9 27.3 28
MM 05-28 28.03.05 24.05.05 21 33 38 17 10 13 32.2 29.9
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MM 05-45 running wheel 500m 22.8 26.3
MM 05-46 running wheel 1000m 23.7 25.6
MM 05-47 running wheel 2000m 24.4 24
MM 05-48 running wheel 4000m 25 25.5
MM 05-50 running wheel 0m 25.4 24.3
MM 05-51 running wheel 250 m 24.5 25
MM 05-52 running wheel 500 m 23.9 24.4
MM 05-53 running wheel ad lib. 23.7 24
MM 05-55 running wheel ad lib. 22.9 23.7
MM 05-56 running wheel 4000m 23.2 23.8
MM 05-57 running wheel 1000m 23 21.2
MM 05-58 running wheel 250m 22.6 22.7
MM 05-60 running wheel 2000m 21.4 22
MM 05-61 running wheel 500m 22.8 20.2
MM 05-62 running wheel 0m 22.9 21.9
MM 05-63 running wheel 1000m 20.8 20
MM 05-65 running wheel 250m 28.4 26.1
MM 05-66 running wheel ad lib. 29 27
MM 05-67 running wheel 4000m 28.5 25.4
MM 05-68 running wheel 2000m 27.6 26.5
MM 05-70 without running wheel 25.4 24
MM 05-71 without running wheel 29.6 27.4
MM 05-72 without running wheel 28 27
MM 05-73 running wheel 0m 27.2 25.7
MM 05-49 running tubes 400m 13.09.05 5 18 23 18 8 10 24.3 24.3
MM 05-54 running tubes 800m 20.09.05 22 25 30 8 9 10 25.4 22.6
MM 05-59 running tubes 400m 12.10.05 8 11 16 8 7 8 22.5 22.6
MM 05-64 running tubes 400m 19.10.05 15 18 23 8 7 8 23.4 22.4
MM 05-69 running tubes 400m 19.10.05 7 10 15 8 8 9 29.3 26.5
MM 05-74 running tubes 800m 26.10.05 14 18 23 9 8 9 27 25.4
MM 06-01 18 11 8 9 26.3 24.6
MM 06-02 18 11 8 9 27.4 26
MM 06-03 18 11 8 9 26.8 23.4
MM 06-04 18 11 8 9 26 22.8
MM 06-06 25 14 9 10 26.2 24.4
MM 06-07 25 14 9 9 26.7 24.5
MM 06-08 25 14 9 9 24.7 25
MM 06-09 19 8 9 9 28.2 26.6
MM 06-11 24 9 9 10 29.2 27.8
MM 06-12 24 9 9 10 27.2 26.5
MM 06-13 24 9 9 10 25.2 24.2
MM 06-14 23 8 9 10 26.7 27.5
MM 06-16 31.01.06 19 22 27 8 10 10 23.2 23.5
MM 06-23 19 14 9 10 26
MM 06-24 19 14 9 10 25.1
MM 06-25 16 11 9 10 23.4 22
MM 06-26 16 11 9 10 27.5 25.4
MM 06-27 17 8 9 10 26.8 25.1
MM 06-28 17 8 9 10 26.4 27.3
MM 06-29 18 9 9 10 24.6
MM 06-30 18 9 9 10 23.6
MM 06-05 7 13 18 11 8 9 25.9 25.5
MM 06-10 11 16 21 10 9 9 28.2 26.3
MM 06-15 15 21 26 11 9 10 23.8 24
MM 06-31 5 11 16 11 9 10 26.3 26
MM 06-32 9 14 19 10 9 10 25.4
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513.09.05
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28.03.0602.02.06
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24.11.05

09.12.05

03.11.05

26.10.05

11.12.05

02.02.06

11.12.05
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oralLMU -- 1

-- 1 oral

100 4 1

100 4 1

TUB running tubes 1000m cage + tubes 1

1 oralWHE running wheel 1000m cage + wheel 1

100 1 1

100 1 1

CON control cage 1
Charles 
River 
Laboratories

-- i.p.

4 3

PER running wheel ad lib. cage + wheel 1
Charles 
River 
Laboratories

-- 1 i.p.

4 3

TUB cage + tubes 1
Charles 
River 
Laboratories

-- 1 i.p. 50

4 1

WHE cage + wheel 1
Charles 
River 
Laboratories

-- 1 i.p. 50

1001 28.03.05 LMU 24.05.05

MG 14-1d

MG 12-1d

MG 13-1d

MG 11-1d

30

16

23

CON control cage

MG 8-1d

MG 9-1d

MG 10-1d

1018 823

8 7 8

8 9

 

A.2 Cages 

All cages used in the experiments were standard laboratory cages type III 

(42.5 × 26.6 × 15 cm, area 810 cm2) covered with stainless wire lids (7 mm wire spacing). 

Water bottle and food were placed on the lid outside the cage, but accessible for mice from 

inside. The cage bottoms were covered with wooden shavings as bedding material 

(Dehner, Germany) and cleaning papers, paper rolls and cartons were added as nest-

building material.  
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A.2.1 Cage with running tubes 

In order to investigate the role of locomotion type, running in a running wheel was 

opposed to running in plane. For the latter type of locomotion, a standard cage was 

equipped with tubes in which a mouse could move from one tube end to the other end 

(Figure 22). The motivation to run through the tubes was provided by water delivery at the 

tube ends. Therefore, two holes (about 5 cm in diameter) were cut next to each other into 

the short wall of the cage. A 2 m long polypropylene high-temperature resistant (HT)-pipe 

DN 50 (50 mm i.d.) was mounted to each of the holes. To this pipe, a second HT-pipe, 2 m 

in length, was connected via two orthogonal plug-in sockets resulting in a U-shaped tube 

with a total length of 4.3 m that started from each of the holes. At the end of each tube, a 

water dispenser was fixed by clamps. Lockable swinging doors with light barriers 

connected the cage and each of the tubes. Locking worked by a motorized lever arm fixed 

above the door and allowed passing from tube to cage, but inhibited entering the tube from 

the cage. Once the tube entries and consequently access to water were blocked, a third 

dispenser, fixed to the sidewall of the cage, was activated and provided further water 

delivery. 

 

Figure 22: Cage with running tubes. 

The registration of each door pass and dispenser visit allowed for the recording and 

control of the distance covered by mice in this tube system. By numeration door 1 

corresponded to the tube leading to dispenser 4 and door 2 to the tube leading to 

dispenser 3. 

The two water dispensers at the tube ends released water in a alternating manner, i.e. 

once a mouse had received water at one dispenser, it had to run 8.6 m (2 × 4.3 m) through 
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both tubes to get water at the other dispenser. Thus, the running distance dt in m was 

calculated from 

dt = number of dispenser visits × 8.6 m. 

For analysis of running velocity, events were assessed as relevant if a tube entry 

event (result sheet "Nr_d_Einheit" = 1 or 2, Table 8) was directly followed by a dispenser 

visit (result sheet "Nr_d_Einheit" = 4 or 3, respectively) or vice versa. The duration 

between door and dispenser event represents the time needed to get from one tube end to 

the other one. Thus, the duration in seconds (result sheet "Tür2_Tränke 3 (s)" and 

"Tür1_Tränke4 (s)") was calculated by subtracting the corresponding time points of the 

respective events (result sheet "Uhrzeit"). The running velocity vt in m/s (result sheet 

"Geschwindigkeit2") for each of the two tubes was calculated from 

vt = 4.3/duration. 

Because mice did not always run straight from one tube end to the other, but also 

stayed within a tube for a while, events were only included in velocity calculation if the 

duration was less than 60 seconds. 
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Table 8: Exemplary extract from a result sheet of an experiment with running tubes (MM 
05-54, 12-1d). "Vers-Tag" is the day of experiment, "Rechnerzeit" shows the date/time 
information in excel format, "Datumzeit" is the respective date/time information with the 
associated milliseconds in "Datumzeit_ms", "Funktionstyp" indicates the activated unit 
(1=dispenser, 17=door) with the specification of unit number in "Nr_d_Einheit" (dispenser 
3 and 4, door 1 and 2), "Info_Code"=1 stands for input information, "Wert1_Dauer" is the 
duration of the event in ms, "Wert2" shows the opening duration of dispenser valves in ms 
(output), "Uhrzeit" is the time of day extracted from "Datumzeit", "Tür2_Tränke3 (s)" is the 
duration in s the mouse needed from door 2 to dispenser 3 and vice versa, 
"Tür1_Tränke4" shows the same for door 1 and dispenser 4 and "Geschwindigkeit2" is the 
calculated running velocity in m/s. Columns that have been calculated manually are 
highlighted in gray in contrast to data created automatically (white). 

Vers-
Tag 

Rechner-
zeit 

Datumzeit Datum-
zeit_ms 

Funktions-
typ 

Nr_d_ 
Einheit 

Info_
Code 

Wert1_
Dauer 

Wert2 Uhrzeit Tür2_ 
Tränke3 

(s) 

Tür1_ 
Tränke4 

(s) 

Geschwin-
digkeit2 

2 40930040 26.11.05 11:22:10 40 1 4 1 174 0     

2 40951950 26.11.05 11:22:31 950 17 1 1 3083 0 11:22:31   21 0.20 

2 40978462 26.11.05 11:22:58 462 17 2 1 1449 0 11:22:58    

2 40993960 26.11.05 11:23:13 960 1 3 1 200 300 11:23:13 15  0.29 

2 41058936 26.11.05 11:24:18 936 17 1 1 2205 0 11:24:18    

2 41083640 26.11.05 11:24:43 640 1 4 1 4672 300 11:24:43  25 0.17 

2 41095527 26.11.05 11:24:55 527 1 4 1 282 0 11:24:55    

2 41114886 26.11.05 11:25:14 886 1 4 1 497 0 11:25:14    

2 41116996 26.11.05 11:25:16 996 1 4 1 361 0 11:25:16    

2 41282544 26.11.05 11:28:02 544 17 1 1 42456 0 11:28:02   166  

2 41285796 26.11.05 11:28:05 796 17 1 1 1889 0 11:28:05    

2 41296321 26.11.05 11:28:16 321 1 4 1 874 0 11:28:16  11 0.39 

2 41347198 26.11.05 11:29:07 198 17 1 1 2855 0 11:29:07   51 0.08 

2 41349003 26.11.05 11:29:09 3 17 2 1 304044 0 11:29:09    

2 41396309 26.11.05 11:29:56 309 1 3 1 189 300 11:29:56 47  0.09 

2 41467126 26.11.05 11:31:07 126 17 2 1 3760 0 11:31:07  71   

2 41810433 26.11.05 11:36:50 433 17 1 1 1799 0 11:36:50    

2 41824954 26.11.05 11:37:04 954 1 4 1 5255 300 11:37:04  14 0.31 

 
 

A.2.2 Cage with running wheel 

One metal running wheel (14.5 cm in diameter) per cage was fixed up to the wire 

mesh lid. In group RUN (MG 7-1d) 4 mice shared one running wheel and one water 

dispenser. Transponder tagged individuals were identified when visiting the dispenser, but 

there was no control for the use of the running wheel in terms of individual identification. 

The dispenser was plugged through a matching hole in the cage wall and therefore was 

easily accessible for animals. 

For the rest of experiments including a running wheel (MG 8-, 11-, 13-1d), a device 

for recording and controlling wheel revolutions was added. Therefore, a photoelectric 

barrier was fixed to the side of the wire mesh that recorded every passing of the wheel 

brace. Hence, wheel revolutions and consequently running distance as well as running 

velocity could be calculated. The running wheel was controllable by a motorized lever arm 

fixed up above the wheel at the wire mesh lid (Figure 23). Once the number of wheel 

revolutions reached a predefined value, the lever arm lowered between the wheel wires and 

thereby locked the wheel. 
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Figure 23: Cage with running wheel. 

One wheel revolution corresponds to two interruptions of the light barrier (brace on 

both sides of the wheel center). Sensor signals were counted and merged to one event if the 

time interval between two signals did not exceed 500 ms (result sheet 'Wert2', Table 9). 

The number of revolutions of one event results from the number of sensor signals divided 

by 2. For analysis of running distance and velocity, only events containing more than 5 

signals were included in order to compensate for signals elicited by swinging of the wheel 

rather than by running activity. The running distance dw in m was calculated from  

dw = number of revolutions × 2πr = number of revolutions × 0.455 m 

with r = wheel radius (0.0725 m). 

The running velocity in revolutions per second (result sheet "Umdrehungen/s) for 

each event was calculated by dividing the number of revolutions by the duration of the 

event (result sheet 'Wert1_Dauer'). The velocity vw in m/s (result sheet 

"Geschwindigkeit (m/s)") was calculated from 

vw = revolutions/s × 2πr = revolutions/s × 0.455 m. 

Summing up the event durations (Result sheet "Wert2") gave an estimate of the time 

spent in running per day. Drinking water was delivered by a water bottle (MG 13-1d) or 

via two dispensers (MG 8-, 11-1d). In the latter case, the two dispensers released water in 

an alternating manner in order to provide comparable conditions for tube and wheel 

running mice. 
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Table 9: Exemplary extract from a result sheet of an experiment with running wheels 
(MM 05-60 to 63, 11-1d). Three cages, each containing one wheel and two dispensers, 
were controlled simultaneously. Columns equal those from tube experiments (Table 8) 
with the following exceptions. In "Funktionstyp" unit 17 (= door) was replaced by 16 
(= wheel), in "Nr_d_Einheit" units are numbered 1,2 and 3 (wheels) and 1,2,3,4,5 and 6 
(dispensers) and "Wert2" additionally indicates the number of wheel sensor signals. 
Manually calculated values (highlighted in gray) were "Umdrehungen/s" (revolutions per 
s = "Wert2"/2), "Geschwindigkeit (m/s)" ("Wert1_Dauer"/revolutions per s) and 
"Tiernummer" which results from unit numbers ("Nr_d_Einheit"). 

Vers-
Tag 

Rechner-
zeit 

Datumzeit Datum-
zeit_ms 

Funktions-
typ 

Nr_d_ 
Einheit 

Info_
Code 

Wert1_
Dauer 

Wert2 Uhrzeit Umdre-
hungen/s 

Geschwin-
digkeit 
(m/s) 

Tier-
nummer 

6 37227699 14.12.05 10:20:27 699 1 5 1 192 350 10:20:27     3 

6 37230810 14.12.05 10:20:30 810 1 5 1 9819 0 10:20:30     3 

6 37293412 14.12.05 10:21:33 412 16 2 1 71306 89 10:21:33 0.62 0.28 2 

6 37368639 14.12.05 10:22:48 639 16 2 1 110433 162 10:22:48 0.73 0.33 2 

6 37400841 14.12.05 10:23:20 841 16 1 1 45947 51 10:23:20 0.55 0.25 1 

6 37448180 14.12.05 10:24:08 180 16 1 1 2509 2 10:24:08 0.40   1 

6 37451029 14.12.05 10:24:11 29 16 1 1 31093 38 10:24:11 0.61 0.28 1 

6 37479562 14.12.05 10:24:39 562 16 2 1 45175 67 10:24:39 0.74 0.34 2 

6 37482435 14.12.05 10:24:42 435 16 1 1 26883 34 10:24:42 0.63 0.29 1 

6 37509469 14.12.05 10:25:09 469 16 1 1 7891 10 10:25:09 0.63 0.29 1 

6 37517933 14.12.05 10:25:17 933 16 1 1 15240 18 10:25:17 0.59 0.27 1 

6 37534280 14.12.05 10:25:34 280 16 2 1 23752 31 10:25:34 0.65 0.30 2 

6 37539987 14.12.05 10:25:39 987 16 1 1 15647 21 10:25:39 0.67 0.31 1 

6 37556521 14.12.05 10:25:56 521 16 1 1 10016 12 10:25:56 0.60 0.27 1 

6 37558078 14.12.05 10:25:58 78 16 2 1 8896 13 10:25:58 0.73 0.33 2 

6 37566725 14.12.05 10:26:06 725 16 1 1 89907 129 10:26:06 0.72 0.33 1 

6 37567211 14.12.05 10:26:07 211 16 2 1 13492 20 10:26:07 0.74 0.34 2 

6 37581664 14.12.05 10:26:21 664 16 2 1 6556 8 10:26:21 0.61 0.28 2 

 
 

A.3 Treatments and parameters in the simple and complex environment 

A.3.1 Group SIM – simple environment (MG 5/MG 5-1d) 

In the simple environment on single water dispenser was placed in the middle of the 

room. The amount water of water released per single visit was 144 µl during the first 5 

days of the experiment and reduced to 35 µl for the remaining period (Table 10). The 

dispenser was locked for subsequent visits of the same individual for 5 seconds during the 

first 5 days and for 1 minute during the rest of the experiment. 

Table 10: Dispenser attributes for group SIM in the simple environment containing one 
dispenser. 

From 
day 

To 
day Dispenser attributes 

1 5 Dispenser number 12  

  release volume (µl) 144  
  opening duration (ms) 200  
  lock duration [s] 5  

6 37 Dispenser number 12  

  release volume (µl) 35  
  opening duration (ms) 100  
  lock duration [s] 60  

Oral BrdU administration from day 6 to 9 (dispenser 12, 144 µl, 200 ms, 5s) 
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A.3.2 Group EXP – exploration in the complex environment (MG 4/MG4-1d) 

In order to present the complex room as novel environment, mice of group EXP were 

allowed to accustom to the function of water dispensers in a special cage prior to start of 

the experiment. This cage contained one dispenser attached to the wall and raised about 

80 cm above the ground of the cage. Mice reached the dispenser via a rope fixed in the 

middle of the cage floor. During the 6 day in this cage water release volume was 

successively reduced from 85 µl to 35 µl per visit with a lock duration of 10 seconds for 

visits of the same individual (Table 11). In the complex environment, the 10 dispensers 

were of same quality, releasing about 50 µl per visit with 1 minute lock duration between 

visits of the same individual. Dispenser no. 5 was used for oral BrdU application and 

therefore excluded from the complex environment. 

Table 11: Dispenser attributes for group EXP in the complex environment containing 11 
dispensers. On days 1 to 6 mice were accustomed to the function of the water dispensers 
in a special cage containing 1 dispenser accessible via a rope. Day 7 was the first day in 
the complex environment with 10 dispensers of equal quality. Dispenser 5 was used 
exclusively for BrdU administration. 

from 
day 

to 
day  

Dispenser attributes 
           

1 2 Dispenser number 12           

  release volume (µl) 85           

  opening duration (ms) 200           
  lock duration [s] 10           

3 5 Dispenser number 12           

  release volume (µl) 65  Special cage with one dispenser and rope    
  opening duration (ms) 150           
  lock duration [s] 10           

5 6 Dispenser number 12           

  release volume (µl) 35           

  opening duration (ms) 100           
  lock duration [s] 10           

7 38 Dispenser number 1 2 3 4 5 6 7 8 9 10 11 

  release volume (µl) 52 48 50 52  46 52 52 40 56 48 
  opening duration (ms) 130 100 120 120  110 100 100 110 110 100 
  lock duration [s] 60 60 60 60  60 60 60 60 60 60 

Oral BrdU administration from day 7 to 10 (dispenser 5, 160 µl, 250 ms, 5 s)     

 
 



Treatments and parameters in the simple and complex environment Appendix A 

111 

A.3.3 Group LRN – learning in the complex environment 

Mice in the complex environment facing a learning task were two temporally 

separated groups, one with a post-treatment time (PT) of 1 day (MG 2-1d) and one with a 

PT of 28 days (MG 2). The dispenser attributes for both groups were as follows: 

MG 2 

During the first days in the complex environment all dispensers were of equal 

quality, releasing about 120, 50 or 25 µl per visit with equal amounts at a time and 

30 seconds lock duration for subsequent visits of the same individual at the respective 

dispenser (Table 12). On day 43 the first learning task started. Dispensers were divided 

into two groups characterized by distinct qualities (20 µl for low quality and 60 ml for high 

quality). Following 13 days under this condition the pattern of high and low quality 

dispensers was inverted, i.e. dispensers that were previously of high quality (Pattern A) 

were now of low quality (Pattern B) and vice versa. The pattern was inverted daily for 6 

days followed by two days of pattern inverting every 3 hours. On day 65 the second 

learning task was introduced in which mice had to distinguish between constant and 

variable dispensers for 8 days. Therefore, one half of the dispensers released a unvarying 

amount of water (40 µl per visit, constant), whereas in the other half each dispenser 

released high (70 µl) and low (20 µl) amount in irregular sequence (variable). During the 

last 2 days of this period dispenser no. 5 was added to the room again and released sugar 

water instead of pure water in order to induce competition between individuals for this 

attractive dispenser. Result of behavioral analysis are described in app. 2.4. 
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Table 12: Dispenser attributes for group LRN (PT = 28) in the complex environment 
containing 11 dispensers. Until day 42, all dispensers were of equal quality. From day 43, 
the first day of BrdU treatment, there were 2 types of dispensers: high (italicized) and low 
quality (day 43 - 64) or risky (italicized) and constant (day 65 - 73). Dispenser 5 was used 
for BrdU administration (day 43 - 46) and as competition dispenser (day 71 - 73), but 
excluded from all other conditions. 

from 
day 

to 
day  

Dispenser attributes            Dispenser quality 

1 3 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

8 10 release volume (µl) 130 120 118 144 128 130 126 132 120 116 128 equal quality 
14 16 opening duration (ms) 250 200 200 250 200 200 200 200 200 200 200  
21 26 lock duration [s] 30 30 30 30 30 30 30 30 30 30 30  
28 31              
35 38              

4 7 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

11 13 release volume (µl) 52 48 50 52 48 46 52 52 40 56 48 equal quality 
17 20 opening duration (ms) 130 90 110 120 100 100 100 100 100 110 90  
32 34 lock duration [s] 30 30 30 30 30 30 30 30 30 30 30  

39 42 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 24 26 24 24 24 24 26 24 22 26 22 equal quality 
  opening duration (ms) 70 90 100 70 70 60 90 80 60 100 50  
  lock duration [s] 30 30 30 30 30 30 30 30 30 30 30  

43 55 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 23 64 61 24  24 64 71 26 51 23 high - low quality 

  opening duration (ms) 70 120 130 70  60 120 110 60 120 50 Pattern A 
  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

56 57 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 60 20 20 60  60 20 20 60 20 60 high - low quality 

  opening duration (ms) 140 60 70 130  110 60 50 130 60 110 Pattern B 
  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

57 61 Pattern inverting every day Pattern A <-> Pattern B 

62 64 Pattern inverting every 3 hours Pattern A <-> Pattern B 

65 73 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 10 
70 

10 
70 

10 
70 

40  40 40 40 10 
70 

40 10 
70 

risky - constant 

  opening duration (ms) 50 
150 

40 
140 

40 
140 

100  95 90 80 40 
140 

100 30 
140 

 

  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

71 73 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 10 
70 

10 
70 

10 
70 

40 10 40 40 40 10 
70 

40 10 
70 

risky - constant 

  opening duration (ms) 50 
150 

40 
140 

40 
140 

100 30 95 90 80 40 
140 

100 30 
140 

+ competition dispenser 
filled with sugar water 

  lock duration [s] 90 90 90 90 30 90 90 90 90 90 90  

Oral BrdU administration from day 43 to 46 (dispenser 5, 154 µl, 250 ms, 5 s)  

MG 2-1d 

The principle of learning task in the complex environment in this group was similar 

to the conditions in group MG 2 described above. During the first 9 days, the 10 dispensers 

were of equal quality (60 µl per visit), followed by a period with 5 high (80 µl) and 5 low 

(20 µl) quality dispensers for 4 days and pattern inverting (Pattern A and B) two times 

after 4 days. Inverting of the high-low quality pattern daily and every 3 hours was not 

applied to this group. Dispenser no. 5 was added as competition dispenser releasing sugar 

water for the last 3 days of the experiment. 
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Table 13: Dispenser attributes for group LRN (PT = 1) in the complex environment 
containing 11 dispensers. Until day 9, all dispensers were of equal quality. From day 10 
there were 2 types of dispensers: high (italicized) and low quality (day 10 - 23) or risky 
(italicized) and constant (day 24 - 39). Dispenser 5 was used for BrdU administration and 
as competition dispenser (day 36 - 39), but excluded from the rest of conditions. 

from 
day 

to 
day  

Dispenser attributes            Dispenser quality 

1 9 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 61 61 58 65  56 50 69 71 50 65 equal quality 

  opening duration (ms) 120 110 130 110  130 110 120 130 110 120  

  lock duration [s] 10 10 10 10  10 10 10 10 10 10  

10 10 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 32 33 34 35  34 50 69 71 64 65 high - low quality 

  opening duration (ms) 80 70 90 70 0 90 110 120 130 130 120  
  lock duration [s] 60 60 60 60  60 60 60 60 60 60  

11 14 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 22 25 24 19  23 71 86 83 76 87 high - low quality 

  opening duration (ms) 60 60 70 50 0 70 150 150 150 150 150 Pattern A 

  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

15 19 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 82 77 70 80  100 20 19 22 19 25 high - low quality 

  opening duration (ms) 150 130 150 130  200 60 50 60 60 60 Pattern B 
  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

20 23 Pattern inverting            Pattern A 

24 28 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 50 25 
92 

50 19 
80 

 23 
100 

50 19 
86 

48 20 
80 

46 
risky - constant 

  opening duration (ms) 100 60 
150 

110 50 
130 

 70 
200 

110 50 
150 

100 50 
120 

90  

  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

29 39 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 22 
82 

47 
92 

24 
106 

49 
80 

 49 
100 

20 
80 

48 
86 

21 
83 

50 25 
87 all risky 

  opening duration (ms) 60 
150 

90 
150 

70 
200 

90 
130 

 120 
200 

60 
150 

90 
150 

30 
150 

110 60 
150 

 

  lock duration [s] 90 90 90 90  90 90 90 90 90 90  

36 39 Dispenser number 1 2 3 4 5 6 7 8 9 10 11  

  release volume (µl) 50 25 
92 

50 19 
80 

50 23 
100 

50 19 
86 

48 20 
80 

46 
all risky 

  opening duration (ms) 100 60 
150 

110 50 
130 

 70 
200 

110 50 
150 

100 50 
120 

90 + competition dispenser 
filled with sugar water 

  lock duration [s] 90 90 90 90 90 90 90 90 90 90 90  

Oral BrdU administration from day 36 to 39 (dispenser 5, 160 µl, 250 ms, 5 s) 

  

A.4 The histological procedure 

All buffers and solutions used are listed below (A.4.4). 

A.4.1 Perfusion 

The perfusion is the method of choice to fix tissue with minimal damage or loss of 

cells. During transcardially perfusion, the cardiovascular system is used to rinse out blood 

by an isotonic NaCl solution and then flush the circuit with the fixative. The perfusion 

apparatus basically consisted of a flexible-tube pump and a tube with a canula at the 

delivery end. Three-way stopcocks allowed for the control which of the solutions flowed 
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from their bin to the pump. Precisely, a lethal dose of pentobarbital (160 µg/g body weight) 

was injected intraperitoneally to euthanize the animal. Within approximately 3 minutes the 

mouse was pain-free and fixed to the plate of the perfusion apparatus by plasticine. The 

thorax was opened and after removing the pericardium, the left ventricle was penetrated 

with the canula. Immediately after opening the right atrium by a cut, the pump was turned 

on. First, the mouse was perfused with a 0.9 % NaCl solution (containing sodium nitrite for 

inhibition of coagulation) for 3 to 4 minutes to remove blood from the system. 

Subsequently the tissue was fixed by perfusion with 4% paraformaldehyde in 0.1M 

phosphate buffer (PB) for 30 to 49 minutes. A successful fixation was identifiable already 

during this process by stiffening of the body. The animal was decapitated and the brain was 

warily removed from the skull. For the following immersion fixation (postfix), the 

meninges were detached and the brain was put into the fixative for 4 to 24 hours. In order 

to prevent the tissue from damage due to freezing (cryoprotection), the brain was then 

immersed in 30 % sucrose in 0.1 M PB for at least 24 hours. During this cryoprotection, 

liquid is withdrawn from the tissue that would produce freezing artifacts. 

A.4.2 Sectioning 

The brain was embedded into a block of gelatin to allow for sectioning in a straight 

plane. For this purpose the brain was placed in a special provision, a perplex box, and 

aligned by small pins through the bottom of the box. When the brain laid in the right 

position, it was fixed by cover piece with another pin. The pins did not prick into the 

tissue, but clamped the brain in the right position within the box. The box was then filled 

with warm, molten gelatin and put into icebox for a few minutes until the gelatin hardened. 

After unhinging the block from the box it was quick-frozen in isopentane (2-methylbutane) 

at –55°C for 90 seconds and then, with the caudal plain down, stuck to the object holder of 

the cryostat (Leica) using Tissue-tek compound at the freezing station of the cryostat. At 

a object temperature of –25 to –18°C (chamber temperature: -18 to –15°C) the block was 

firstly trimmed to the rostral end of the olfactory bulbs and from there cut into 40 µm thick 

coronal sections up to the caudal end of the cortex. All sections were collected and 

transferred into vials containing 0.1 M PB according to the following allocation sequence: 

Each single section was placed in one vial, beginning from the upper left vial of a 24-vial 

plate in horizontal direction to the lower right vial and from there starting again at the 

upper left vial of the same plate. Consequently, the 4 vials of each column of the plate 

contained a set of every 6th brain section. The sections were either instantly processed or 

stored in cryoprotectant at –20°C. 
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A.4.3 Immunostaining of BrdU 

Theoretical background of the immunohistochemical procedure 

The immunohistochemical detection of BrdU-labeled cells was based on a two-step 

indirect method. This method involves an unlabeled primary antibody (pAB) that reacts 

with the tissue antigen and a labeled secondary antibody (sAB) that reacts with the pAB. 

The advantage of this method is the sensitivity due to signal amplification because several 

sAB can react with different antigenic sites on the pAB. For BrdU labeling, we used a 

monoclonal mouse anti-BrdU as pAB. This antibody was produced from a single clone of 

cells and reacts with only a single antigenic determinant of the antigen (monoclonal) and 

origins from mouse cells. The sAB was made in goat, reactive to heavy and light chains of 

mouse IgG and conjugated with biotin (biotinylated goat anti-mouse). The biotin 

conjugation is essential for the enzymatic staining reaction we used, the ABC (Avidin-

Biotin Complex) method. This method is based on the very high affinity of avidin for 

biotin and the enzymatic oxidation of Diaminobenzidine (DAB). More precisely, the 

enzyme horseradish peroxidase (HRP) is conjugated with biotin that, in turn, forms an 

irreversible complex with avidin. When this avidin-biotin-enzyme complex is added to the 

tissue, it binds with its free avidin binding sites to the biotin of the sAB. The enzymatic 

staining reaction is the catalysis of the substrate hydrogen peroxide (H2O2) in the presence 

of the electron donor DAB via the peroxidase activity of HRP. DAB is called chromogen, 

because it coverts by oxidation into a brown colored product that is insoluble in organic 

solvents. 

The original procedure of BrdU-staining 

Free-floating sections were rinsed in 10 mM phosphate buffered saline containing 

0.1 % Triton (PBS/T) two times for 5 min. each (2×5'). Triton® X-100 is a detergent used 

for permeabilizing cell membranes. If stored in cryoprotectant, the sections previously had 

to be slowly defrosted at 4°C for several minutes, followed by half an hour at room 

temperature (RT) and were then rinsed 5×5' in PBS/T. In order to block endogenous 

peroxidase, which could interfere with the enzymatic staining reaction, sections were 

incubated in 0.3 % hydrogen peroxide (H2O2) in PBS/T at RT. This process is based on the 

inactivation of an enzyme by the excess of substrate in absence of an electron donor 

(chromogen). After rinsing in PBS/T (5×5'), the sections were incubated at 37°C (warming 

cupboard) for 30 min. in 2 N hydrochloric acid (HCl, pH 1) for antigen retrieval, i.e. DNA-

denaturation. Two rinse steps (2×5') with 0.1 M borate buffer (pH 8.5) for the 

neutralization of the acid were followed by further rinsing with PBS/T (3×5'). The 
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incubation of sections in a blocking solution is required in order to prevent unspecific 

background staining that is caused by unspecific binding of the specific immune sera by 

hydrophobic and electrostatic forces to certain sites within tissue sections. These sites were 

blocked by the proteins of normal serum from the same species the sAB stems from 

(normal goat serum, NGS). Bovine serum albumin (BSA) served as additional protein 

block. Therefore, sections were incubated in blocking solution containing 3 % NGS and 

3 % BSA in PBS/T for one hour at RT. Following 2×5' rinsing sections were incubated 

with the pAB, a mouse anti-BrdU antibody. The required antibody dilution of 1:400 was 

obtained by pipetting 2.5 µl mouse anti-BrdU (Roche Diagnostics) per 1 ml 3% NGS in 

PBS/T. The incubation continued over night (approx. 20 hours) at 4°C. Following 5×5' 

rinsing in PBS/T sections were incubated with the sAB for 2h at RT. Therefore, one ml of 

3% NGS in PBS/T contained 5 µl biotinylated goat anti-mouse (1:200, Vector 

Laboratories). Before expiry of incubation time, the avidin-biotin complex (ABC) had to 

be prepared following the instructions of the package insert of ABC-kit (Vector 

Laboratories), i.e. adding 5 µl of solution A and solution B to each ml PBS/T. Sections 

were rinsed 5×5' in PBS/T followed by incubation in ABC solution at RT for 1 hour. 

Rinsing steps of 5 min. were done two times in PBS/T followed by 3 times in acetate-

imidazole buffer (pH 7.2). Sections then were pre-incubated in 0.03 % DAB in acetate-

imidazole buffer. This chromogen solution contained in addition 100mM Nickel(II)-sulfate 

(NiSO4) for enhancement and bluish coloring of the signal. The enzymatic staining 

reaction started immediately after adding 0.003 % H2O2 (10 µl of 30 % H2O2 per 100 ml) 

to the chromogen solution and was stopped by transferring the sections into acetate-

imidazole buffer. The time point of stopping the reaction had to be determined by 

observation according to the appropriate staining intensity (max. 5 min.). After thorough 

rinsing in acetate-imidazole buffer (2×5') and PBS/T (5×5') sections were mounted on 

slides. The slides were previously coated with gelatin for a better adhesion of the sections 

on the slide. The mounted sections air-dried over night and then dehydrated through an 

ascending series of alcohol (70 %, 2 × 96 %, 2 × 100 % ethyl alcohol) by immersing slides 

at each step for 2 min. The alcohol was replaced by immersion of slides 3×3 min. in 

xylene. Finally, the slides were cover-slipped with the xylene-soluble mounting medium 

DePeX (Serva) and allowed to harden for at least 3 days. 

Optimizing the histological procedure 

The original procedure was used according to commonly described methods in the 

literature (e.g. Gould et al., 1999a). However, this protocol led to unsatisfactory results 
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with string background staining and weakly stained cells. We therefore applied a set of 

variations to the procedure that were assumed to reduce background and enhance BrdU-

labeling (Table 14). The procedures were similar to that described above except for the 

stated additions or modifications. 

The first assumption was that the strong background staining resulted from 

insufficient blocking of endogenous peroxidase activity. Therefore, the sections were 

incubated in cold methanol at 4°C for 15 min. for additional peroxidase blocking (Table 

14, A). This treatment had no effect on background or intensity of the BrdU-staining. 

Table 14: List of variations applied to the original immunohistochemical procedure. 
Reduced background and/or enhanced cell labeling were rated as positive result (+), 
whereas no change or impaired staining were rated as negative result (-). The methodical 
modifications that resulted in enhanced staining quality were included in the standard 
protocol of immunohistochemical BrdU-staining. 

Method Result 

A) Additional pre-treatment with cold methanol (15 Min.) for blocking endogenous peroxidase - 

B) Tris-buffered saline (TBS) instead of PBS - 

C) Increased H2O2 concentration from 0,3% to 0,6% for blocking endogenous peroxidase + 

D) Rat anti-BrdU instead of mouse anti-BrdU - 

E) 50% formamide/2xSSC (sodium chloride, sodium citrate) for DNA-denaturation - 

F) Increased incubation time of 2N HCl from 30 to 60 Min. for DNA-denaturation + 

G) Sheep anti-BrdU with rabbit anti-sheep instead of mouse and goat anti-mouse - 

H) Method according to Hierck et al. (1994): Complex of primary and secondary antibody instead of two-step 
antibody reaction - 

I) F(ab)2-fragment secondary antibody, specific binding to Fc-fragment of the primary mouse anti-BrdU - 

J1) Mouse-on-mouse Kit (M.O.M., Vector) according to fabricator instructions and 
J2) diluted 

+ 
+ 

  

The second test included 4 columns of one BrdU-injected mouse. For all columns 

Tris-buffered saline (TBS) was used instead of PBS (B) and the concentration of H2O2 for 

blocking endogenous peroxidase activity was doubled, from 0.3% to 0.6% (C). Two 

columns were incubated with mouse anti-BrdU (Roche) as primary antibody and two with 

rat anti-BrdU (Accurate Chemical, D). One column of each antibody type was treated with 

50% formamide/2×SSC (Sodium chloride + Sodium citrate) for 2 hours at 65°C in the 

warming cupboard (E). This treatment was used for DNA-denaturation in addition to HCl 

treatment. The comparison of the columns showed that rat pAB revealed no better results 

than mouse pAB and that there is no difference between the columns depending on 

formamide/SSC treatment. Generally, in all columns, background staining was still present 

but BrdU-labeled cells were well identifiable. That this improvement was rather due to the 
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increased H2O2 concentration than to the use of TBS has been confirmed in subsequent 

experiments in which PBS was replaced TBS again. Therefore, to block endogenous 

peroxidase activity a concentration of 0.6% H2O2 was used in all subsequent histological 

procedures. 

In another test condition, DNA-denaturation was further modified by extending the 

incubation time of HCl treatment from 30 to 60 minutes (F). This variation led to a more 

intense staining of BrdU-labeled cells and was therefore integrated in the standard staining 

protocol. 

The assumption that severe background and insufficient BrdU-staining was due to 

improper antibodies or the problem of using mouse antibody on mouse tissue led to the 

following four approaches. 

Firstly, we applied a pAB raised in sheep instead of mice (sheep anti-BrdU; DPC 

Biermann GmbH, Germany) followed by incubation with a sAB raised in rabbit 

(biotinylated rabbit anti-sheep; Vector laboratories) in order to avoid using mouse anti-

BrdU on mouse tissue (G). In sections treated with this combination, background staining 

was almost absent but cell staining was unspecific, because all cell bodies of the DG were 

stained. This was probably due to unspecific labeling of the pAB as totally absent staining 

in the negative control (without pAB) indicated. 

Secondly, Hierck et al. (1994) presented a modification of the indirect detection 

method for the use of mouse antibodies on murine tissue that should completely eliminate 

background staining. According to the methods described by the authors, we allowed the 

pAB (mouse anti-BrdU) to complex with the sAB (biotinylated goat anti-mouse) over 

night at 4°C. Therefore, we prepared an antibody solution containing 1 µl pAB, 1 µl sAB, 

20 µl NGS and 10 µl normal mouse serum (MGS) per 1 ml PBS/T the day before starting 

the histochemical procedure (H). Standard immunohistochemical protocol was then 

applied with incubation of sections in the antibody solution over night at 4°C. In contrast to 

Hierck et al. (1994), this method did not work at all for staining BrdU-labeled cells, 

because sections were totally unstained. 

Thirdly, Lu and Partridge (1998) demonstrated that background staining can be 

reduced by using only F(ab')2 fragments as sAB because an elevated background is, at least 

partly, due to binding of Fc fragments of the sAB to endogenous Fc receptors or other 

tissue components. Following this approach, we replaced the standard sAB by biotinylated 

F(ab')2 fragments of anti-mouse IgG that specifically binds to mouse IgG Fc fragments 

(Biomol, Germany; I). To different columns of the same BrdU-injected animal, we applied 

the Mouse-on-mouse kit (M.O.M., Vector laboratories) to circumvent the problem of using 
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mouse antibody on mouse tissue (J). M.O.M. was applied following the instructions of the 

fabricator (J1) and by integrating M.O.M. in the standard immuno protocol pure or diluted 

(J2). The F(ab')2 fragments used as sAB resulted in reduced background but labeled cells 

were not identifiable. In contrast, in all sections treated with M.O.M., background was 

moderate and labeled cells were clearly visible except for the 1:4 dilution of M.O.M. 

The ultimate protocol for immunostaining of BrdU (Table 15) included all 

modifications, which led to a positive result in terms of reduced background staining and 

optimal perceptibility of BrdU labeling. In summary, these were the incubation in 0.6% 

H2O2, the incubation in HCl for 60 min. and the M.O.M. kit diluted at a ratio of 1:3. To 

compensate for the dilution of M.O.M. sAB concentration biotinylated goat anti-mouse 

(1:266) was added to the sAB solution. 

Table 15: Schedule of the immunohistological procedure for staining BrdU-labeled cells. 

Treatment Substance Incubation 

H2O2-treatment 0.6% H2O2 in 10 mM PBS/T 30´ 

Rinse 10 mM PBS/T 5 x 5´ 

DNA-denaturation 2 N HCL 60´, 37°C 

Neutralization 0.1 M Borate buffer, pH 8.5 2 x 5´ 

Rinse 10 mM PBS/T 3 x 5´ 

Block    M.O.M. Blocking reagent 60' 

Rinse 10 mM PBS/T 2 x 5´ 

M.O.M Protein concentrate M.O.M. Diluent 5´ 

Primary Antibody 

Anti-BrdU (mouse) 1:400 

M.O.M. Diluent ≈ 20 h, 4°C 

Rinse 10 Mm PBS/T 5 x 5´ 

Secondary Antibody 

M.O.M. anti-mouse reagent + 

biotin. goat anti-mouse 1:266 

M.O.M. Diluent 2 h 

Rinse 10 mM PBS/T 5 x 5´ 

Avidin Biotin Complex ABC-Kit in 10mM PBS/T 1 h 

Rinse 10mM PBS/T 2 x 5´ 

Rinse Acetate-Imidazole buffer/T 3 x 5´ 

DAB-preincubation 0.03% DAB/Acetate/Imidazole/Triton/Ni 10´ 

DAB-reaction + 0.003% H2O2  

Rinse Acetate-Imidazole buffer/T 2 x 5´ 

Rinse 10mM PBS/T 5 x 5´ 
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A.4.4 Buffers and solutions 

Rinsing solution for perfusion, pH 7.4 (0.07 M NaNO2, 0.150 M NaCl) 

§ 5 g Sodium nitrite (NaNO2) 

§ 8.5 g Sodium chloride (NaCl) 

§ 1000 ml A. dest. 

8 % Paraformaldehyde solution  

§ 80 g Paraformaldehyde (CH2O)n 

§ 1000 ml A. dest. 

4 % Paraformaldehyde in 0.1 M PB 

§ 500 ml 8% Paraformaldehyde solution 

§ 250 ml 0.4M PB 

§ 250 ml A. dest. 

Gelatin for embedding (15 % Gelatin, 30 % Saccharose) 

§ 15 g Gelatin (baker-grade) 

§ 30 g Saccharose  

§ 100 ml A. dest. 

Gelatin for coating slides (0.4 % Gelatin, 2 mM CrK(SO4)2) 

§ 0.88 g Gelatin Bloom 300 (gel strength) 

§ 0.106 g Potassium chromium(III) sulfate (CrK(SO4)2) 

§ 200 ml H2O 

Cryoprotectant (8.6 % Saccharose, 7 mM Magnesium chloride, 0.05 M PB, 44 % glycerol) 

§ 8.56 g Saccharose 

§ 0.14 g Magnesium chloride hexahydrate (MgCl2 × 6H2O) 

§ 50 ml 0.1 M PB 

§ 50 ml 87 % Glycerol 

0.4 M Phosphate buffer (PB), pH 7.4 

§ 368 ml Solution A: 27.38 g Potassium-di-hydrogenphosphate (KH2PO4) in 500 

ml A.dest.  

§ 1400 ml Solution B: 85.17 g Di-sodium hydrogenphosphate (Na2HPO4) in 1500 

ml A. dest. 
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0.1 M PB, pH 7.4 

§ 250 ml 0.4 M PB 

§ 750 ml A. dest. 

10 mM Phosphate buffered saline (PBS/T; 0.15 M Sodium chloride, 0.1 % Triton), pH 7.4 

§ 50 ml 0.4 M PB 

§ 1950 ml A. dest. 

§ 17 g NaCl 

§ 2 ml Triton X-100 

0.1 M Borate buffer, pH 8.5 

§ 3.09 g Boric acid (H3BO3) 

§ 500 ml A. dest. 

§ NaOH for pH adjustment 

0.2 M Imidazole, pH 9.2 

§ 13.6 g Imidazole (C3H4N2) 

§ 1000 ml A. dest. 

1 M Sodium acetate, pH 7.2 

§ 82 g Sodium acetate (41 g NaCH3COO) 

§ 1000 ml A. dest. 

Acetate-imidazole buffer (0.175 M Sodium acetate, 0.01 M Imidazole, 0.05 % Triton), pH 

7.2 

§ 175 ml 1 M Sodium acetate  

§ 50 ml 0.2 M Imidazole 

§ 500 µl Triton X-100 

§ 775 ml A. dest. 

§ Pure acetic acid for pH adjustment 
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DAB solution (0.03 % DAB, 0.125 M Sodium acetate, 0.01 M Imidazole, 0.1 M Nickel 

sulfate, 0.05 % Triton, 0.003 % H2O2), pH 6.5 

§ 30 mg DAB  

(3,3'-diaminobenzidine tetrahydrochloride, (NH2)2C6H3C6H3(NH2)2 × 4HCl) 

§ 2.63 g Nickel sulfate (NiSO4) 

§ 12.5 ml 1 M Sodium acetate 

§ 5 ml 0.2 M Imidazole 

§ 50 µl Triton X-100 

§ 100 ml A. dest. 

0.1 M Tris-buffered saline (0.15 M NaCl), pH 7.4 

§ 12.1 g Trizma  

§ 8.5 g NaCl 

§ 1000 ml A. dest. 

§ HCl for pH adjustment 

50 % formamide / 2 × SSC (0.3 M NaCl, 0.03 M Na3C6H5O7)  

§ 50 ml 99 % Formamide 

§ 50 ml 2 × SSC (17.5 g NaCl and 8.8 g Sodium citrate (Na3C6H5O7) in 1000 ml 

A. dest.) 

A.5 Quantification of BrdU-labeled cells 

The DAB-stained sections were analyzed with a light-optical microscope 

(Axioskop2, Zeiss) extended by a CCD (charge-coupled device)-camera (Spot RT color, 

Diagnostic instruments) and a XYZ-automated stage (Märzhäuser) that was controlled by a 

modular control device (Ludl Electronic Products). Together with Metamorph software 

(Visitron), this setup allowed for generating a composite picture of a structure or whole 

brain section by stitching single pictures. The region of interest, the dentate gyrus (DG), 

was identified according to a stereotaxic mouse atlas (Paxinos & Franklin, 2001). BrdU-

labeled cells were counted in a series of every 6th brain section throughout the DG in one 

randomly chosen hemisphere or in both hemispheres. In the latter case, data from one of 

the hemispheres were chosen at random after counting to be factored into analysis. 

A.5.1 Photographing brain sections 

At first, the microscope was adjusted to the Köhler illumination in order to prevent 

diffused light and to illuminate the preparation brightly, evenly and only within the 
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required area. Therefore, the object slide was placed on the stage and focused using the 

10× or 20× objective lens at maximum illumination, i.e. with the aperture diaphragm quite 

open and the condenser at the upper stop. When the object was in focus, the field 

diaphragm was closed and the condenser moved down until the edge of the field 

diaphragm appears as sharp image. After centering the field diaphragm, it was opened until 

the edge was just outside the field of view. 

All photographs were taken as 12-bit monochrome (grayscale) images. A flatfield 

correction was performed prior to taking pictures to assure an even background. Therefore, 

this process was proceeded at a clean position of the slide without tissue to define the white 

background. 

At a position where the region of interest was in the field of view, exposure times of 

the camera were adjusted. Modification of illumination intensity and, if required, 

application of a neutral gray filter were used to achieve an exposure time that should not 

exceed 100 ms. Once the illumination and filter settings were appropriate, the optimal 

exposure time was computed by MetaMorph for each section to compensate for different 

levels of brightness among sections. All images were taken using the auto-focus function 

in order to avoid differences between images due to subjective defined focus. Therefore, 

cells within the DG were roughly focused and the z-value memorized as point of origin. 

The auto-focus proceeded by taking several (2 to 6) pictures in each z-direction from the 

origin with 2 µm intervals and selecting automatically the sharpest one. 

For composed pictures, multiple images were acquired automatically with auto-

focus. The step size in µm and the direction (+ or -) the motorized stage had to move was 

predefined depending on the objective used (5×: x/y = 2131/-1598 µm; 10×: 1066/-

799 µm; 20×: 533/-499 µm). The step size included a 10 % overlap of adjacent images for 

accurate stitching of the single images. Following the definition of step size and picture 

size (n columns × n rows of single images), the single images were photographed 

automatically in horizontal zigzag order beginning at the upper left image (start point). The 

resulting stack of single images was calibrated according to the objective used and 

automatically stitched together by MetaMorph stitch stack or montage function. The 

nomenclature of the pictures, for example MM 05-09_S2207_HipL, was composed of the 

species (MM, mus musculus), year of processing (2005), serial number of the animal (9), 

column number (S2 = "Säule" 2), number of slide (2), number of section on the slide (7) 

and region of interest (HipL = left DG). 
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A.5.2 Counting BrdU-labeled cells 

BrdU-labeled cells were counted semi-automatically, i.e. following the manual 

marking of regions in which to count and manual setting of definitions what to count, the 

MetaMorph analyzing tool counted cells automatically. In each picture, regardless if single 

or stitched image, the regions of interest were manually outlined. The aim of this outlining 

was to get information from counted cells about their location within the DG. Therefore, a 

line (multi-line tool) was drawn along the well-defined border between granule cell layer 

(GCL) and hilus at each, the dorsodorsal (dd) and dorsoventral (dv), blade of the DG 

(Figure 24A). Rectangular segments of 100 µm length were created along the lines. 

Rectangles in GCL direction were 50 µm wide, to cover the area of GCL and rectangles in 

hilus direction were 20 µm wide to cover the area of the subgranular zone (SGZ, Figure 

24B and C). The SGZ was defined as a ribbon along the borderline between GCL and hilus 

with a width corresponding to two cell body diameters (approx. 20 µm). GCL segments 

were corrected for the actual extent of the GCL and the hilus was traced along the inner 

border of SGZ segments (trace-region tool, Figure 24D). Therefore, counted cells were 

automatically assigned to layer (GCL, SGZ or hilus) and blade (dd or dv). 

Cell counting based on the detection of areas characterized by a certain shape, size 

and minimum gray value. The minimum gray value (threshold) depended on intensity of 

background and BrdU-staining and was therefore defined for each section separately. The 

criterion for setting the threshold was to cover a maximal area of labeled cells and 

concomitant a minimal area of background staining (Figure 24D). The threshold gray value 

finally applied to the image was logged for each section. 

Areas beyond the threshold were stated as cells if they were at least 20 µm2 in size 

and had a shape factor > 0.6. The shape factor, calculated by 4 × π × area/(perimeter)2, has 

a value between 0 and 1 that represents how closely the shape is to a circle (1 = perfect 

circle). The predefined standard area of a single cell (30 µm2) was used by MetaMorph to 

determine the number of single cells contained in a cluster of cells recorded as one large 

area (standard area count). 

The Integrated Morphometry Analysis (IMA) tool automatically recorded all areas 

according to gray threshold and morphological criteria within the predefined segments and 

logged the data to a respective excel sheet (see Table 16). 
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Table 16: Data logged by IMA (Integrated morphometry analysis) for each recorded 
object. Description of the column titles (Measure) of the IMA LOG-files. 

Measure Description 

Image Name name of image file 

Region Name location of the object, e.g. dd(SGZ) 

Object # serial number of this object 

Area area of the object in µm2 

Standard area count amount of standard areas (30 µm2) that fit into the area of the object, integer 

Centroid X x-coordinate of the centroid of the object 

Centroid Y y-coordinate of the centroid of the object 

Shape factor values 0-1, roundness of the object  

Mean radius average distance from centroid to all points along the edge of the object 

Average gray value average of the pixel grayscale values that are contained in the object 

Total gray value sum of the pixel grayscale values that are contained in the object 
 

A.5.3 Analysis of the measurements 

Raw data files containing the IMA measurement data (*_LOG_Measure.xls) were 

edited to analyze numbers of BrdU-labeled cells and saved separately 

(*_Ergebnistabelle.xls). An excel macro extracted the information about animal, 

hemisphere and region from the columns "Image name" and "Region name". Numerical 

region names were renamed as "Hi" (hilus), because the trace-line that outlined the hilus 

had no name and occurred as number in "Region names". Each row in the LOG file 

represented one object. If the area of an object was equal or smaller than the predefined 

standard area (standard area count = 1), this object corresponds to one cell. If the area of an 

object was larger than the standard area (standard area count ≥ 2) the object was assumed 

as cell cluster and multiplied by the value of the standard area count. Additionally, 

morphological data were corrected for the single cell analysis by dividing area and mean 

radius, each by the standard area count (columns "Area_one" and "Radius_one"). The 

analysis of cell numbers was accomplished by an excel macro (verteil.xlm) and results 

were multiplied by 6 to provide an estimate of the total number of BrdU-positive cells per 

DG. 
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Figure 24: Processing images for the semi-automatical counting of BrdU-labeled cells in 
the dentate gyrus (DG). A) Trace lines along the border between granule cell layer (GCL) 
and hilus (Hi) at the dorsodorsal (dd) and dorsoventral (dv) blade of the DG. B) 
Rectangular segments (100 µm in length) created along the trace lines in both directions 
cover the area of GCL (50 µm wide) and SGZ (20 µm wide), respectively. C) Segments 
corrected for the actual extent of the GCL. D) In the thresholded image, red areas 
represent objects with a gray value above threshold. Arrows indicate objects above gray 
threshold that were counted as cells according to their size and shape. 
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B.3 Content of CD-ROM 

Folder File(s) Contents

Bilder Figures and photos
Daten\
    Originaldateien\
       csv-Dateien\ *******.csv Raw data from apparatuses (dispenser, wheels, tubes)
       LOG-Dateien\ MG *******_LOG.xls Raw data from MetaMorph (thresholds and IMA-measures)
    Tagesdaten\ Tagesdaten_MG***.xls Summaries of parameters and daily behavioral analyses

Tagesauswertung_11Tränken_8Mäuse. Template sheet of daily behavioral analysis
    Makros\ HistoDaten.xlm Macro for compilation of LOG-files

Univeral.xls Macro for compilation of csv-files
Verteil.xlm Macro for analysis

    Auswertung\
       Verhaltensdaten\ Auswertung_MG****.xls Behavioral analyses of mouse groups

Alle Gruppen_Auswertung Verhalten.xls Summary of behavioral data from all groups
Fledermaus_BrdU.xls Behavioral analysis of the bat
Statistik_Verhalten.doc Statistical analyses of behavior: learning, exploration, 

       Zellzahlen\ MG *******_Ergebnistabelle.xls Analyses of cell counts of mouse groups
Zelleigenschaften.xls Analyses of cell characteristics
Zufallszahlen.xls Definition of randomly chosen hemispheres
Zusammenfassung_Zellzahlen.xls Summary of cell counts from all groups
Statistik_Zellen.doc Statistical analyses of cell counts, characteristics and 

distribution
Dokumente\ Auswertung_MetaMorph***.doc Manual for cell quantification and screen shots

Immunoprotokoll_BrdU.doc Standard protocol for BrdU staining
Plots\ Bat_Plots.jnb Bat experiment: dispenser visits

Jetlag.JNB MG 2: First days after shift of light:dark cycle, dispenser 
Trinkverhalten MG 6-1d.JNB MG 6-1d: Dispenser visits over the day (with/without BrdU)
Verhalten_11tr.JNB MG 2, 4, 5: Time to first dispenser visit, learning, exploration
WHE-TUB 1.JNB MG 8-, 9-1d: Running distance in wheel and tubes (ad lib.)
WHE-TUB.jnb MG 11-, 12-, 13-1d: Running distance, velocity and cell 
Zelleigenschaften_alle.JNB All cells: Characteristics and distribution
Zellzahlen_11tr.JNB MG 2(-1d), 4(-1d), 5(-1d), 6(-1d), 7-1d: Cell counts 
Zellzahlen_11tr-Injektion.JNB MG 0, 1, 2, 6: Cell counts
Zellzahlen_Persistence.JNB MG 13-1d: Cell counts

Tabellen\ Datenbank Versuchstiere.mdb Database containing all individuals and treatments
Schnitt-Präparate.xls List of histological preparations (brain sections)
Tiere.xls List of mouse groups
Übersicht Verhalten.xls Overview of experimental design and parameters
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