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Zusammenfassung

Die Suche nach extra-solaren Planeten hat in den letzten Jahren einen enormen Aufschwung
erlebt. So ist die Zahl der gefundenen Planeten bereits auf 331 angewachsen (Stand: 20.3.2009).
Beinahe ẅochentlich werden neue Detektionen bekanntgegeben. Nicht zuletzt dasstarkeöffentliche
Interesse motiviert immer mehr Astronomen, neue Beobachtungsprojekte zustarten und sich an der
Planeten-Suche zu beteiligen.
Direktes Abbilden von extra-solaren Planeten ist extrem schwierig, da in den meisten F̈allen der
Mutterstern den Planeten um Grössenordnungen̈uberstrahlt. Zus̈atzlich ist aufgrund der großen
interstellaren Entfernungen der scheinbare Abstand von Stern und Planet sehr klein, was ein direktes
Abbilden erschwert. Es wird deshalb eine Vielzahl von indirekten Methoden angewandt, um
extra-solare Planeten zu finden. Eine Sonderstellung hat dabei die Transit-Methode, bei der die
Helligkeit eines Sterns auf periodische Schwankungen untersucht wird, die von einem vor dem Stern
vorbeiziehenden Begleiter verursacht werden. Solche Transit-Planeten haben den Vorteil, dass aus
der Messung des Helligkeitsabfalls während der Bedeckung ihr Radius und damit auch die Dichte
bestimmt werden kann. Transit-Planeten erlauben außerdem einen Einblickin die Zusammensetzung
ihrer Atmospḧare. Auf der Suche nach erdähnlichen Planeten oder gar nach Hinweisen auf Leben
außerhalb des Sonnensystems sind Transit-Planeten deshalb die vielversprechendsten Ziele. Daran
ankn̈upfend thematisiert die vorliegende Arbeit verschiedene Aspekte der Suche nach extra-solaren
Planeten mit der Transit-Methode.
Im einleitenden ersten Kapitel werden die erfolgreichsten Methoden der Suche nach extra-solaren
Planeten vorgestellt. Außerdem werden die für die folgenden Kapitel erforderlichen Formalismen
zusammengefasst.
Das zweite Kapitel behandelt das pre-OmegaTranS-Projekt, eine photometrische Suchkampagne am
2.2m-Teleskop in LaSilla/Chile. Das Ziel dieses Projekts ist die Identifikation neuer Transit-Planeten.
Insgesamt wurden dazu 16000 Sterne auf periodische, für Transit-Planeten charakteristische Hel-
ligkeitsschwankungen untersucht. Vier Kandidaten wurden gefunden,von denen einer (POTS-C1b)
sehr aussichtsreich ist. Es handelt sich dabei um einen Begleiter eines massearmen Hauptreihen-
Sterns, der die Größe von Jupiter besitzt. Alle Indizien weisen auf eine tatsächliche planetare
Natur des Kandidaten hin. Derzeit laufen Vorbereitungen zu dessen Besẗatigung mit Hilfe von
photometrische und spektroskopische Nachbeobachtungen.
Kapitel 3 beschreibt einen solchen Prozess der Bestätigung eines Transit-Kandidaten am Beispiel von
OGLE2-TR-L9. Mit Hilfe von spektroskopischen Nachbeobachtungenkonnte die Masse des Kan-
didaten auf 4.5 Jupiter-Massen bestimmt werden. Zusätzliche photometrische Nachbeobachtungen
lassen keinen Zweifel an der planetaren Natur des Kandidaten. OGLE2-TR-L9 ist mit einem Radius
von 1.6 Jupiter-Radien größer als von Planeten-Aufbau-Modellen erwartet. Diverse Mechanismen
wurden vorgeschlagen, um diese Beobachtung zu erklären, die bereits an einer Reihe von anderen
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Transit-Planeten gemacht wurde. Im Vergleich zu den 56 anderen bisher gefundenen Transit-Planeten
umkreist OGLE2-TR-L9 den heißesten und am schnellsten rotierenden Stern.
In diesem Jahr wird Pan-Planets, ein Transit-Projekt am PanSTARRS-Teleskop des Haleakala-
Observatoriums auf Hawaii beginnen. Das Teleskop ist ausgerüstet mit der gr̈oßten CCD Kamera,
die bisher gebaut wurde. Mit jeder Aufnahme werden sieben Quadratgrad auf 1,4 Milliarden
Pixeln abgebildet. Im Rahmen dieser Arbeit wurden detaillierte Simulationen durchgef̈uhrt, um die
Beobachtungsstrategie von Pan-Planets zu optimieren und die Anzahl derPlaneten zu bestimmen,
die gefunden werden können (Kapitel 4). Dabei wurde festgestellt, dass bei vorgegebenerBeobach-
tungszeit, eine hohe Anzahl von Feldern zu mehr Detektionen führt. Außerdem werden kurze
Beobachtungsblöcke von 1h gegen̈uber 3h pro Nacht bevorzugt. Gemäß den Simulationen können
im ersten Jahr insgesamt 25 Planeten der Größe von Jupiter gefunden werden. Pan-Planets ist damit
eines der aussichtsreichsten Transit-Projekte in der naheliegenden Zukunft.
Die in dieser Arbeit erlangten Erfahrungen auf dem Gebiet der Transit-Suche sind sehr wichtig für alle
zukünftigen Planeten-Projekte an der Universitäts-Sternwarte der LMU. Zahlreiche Kollaborationen
wurden bereits iniziiert, um in Zukunft in gesteigertem Maße an der Detektionund Charakterisierung
von extra-solaren Planeten teilzuhaben.



Chapter 1

Introduction

In the Solar System we know eight planets. The four rocky planets Mercury, Venus, Earth and Mars
are orbiting the Sun in the inner region whereas the more massive gaseous planets Jupiter, Saturn,
Uranus and Neptune are located in the outer region. All orbits are coplanar (∆ i ≤ 4◦) and have very
low eccentricities. For a very long time, the Solar System was the only known planetary system. One
could therefore only speculate about the existence or frequency of extra-solar planets:

• “There cannot be more worlds than one!” (Aristoteles, 384-322 B.C.)

• “There are infinite worlds, both unlike and like this world of ours (...) we haveto think of living
creatures in all of these worlds.” (Epikur 341-270 B.C.)

• “Innumerable suns exist. Innumerable earths revolve around these - Living beings inhabit these
worlds.” (Giordano Bruno 1548-1600)

The situation changed with the discovery of the first extra-solar planets in the 90s of the last century.
Astronomers found planetary systems that are very different from the Solar System. Highly eccentric
orbits, gaseous planets in close-in orbits (so called “Hot Jupiters”) and,last but not least, the large
number of planets had a high impact on the development of better planet formation and evolution
theories. The discoveries have helped us to get a better understanding of the history of the Solar
System although many puzzles still remain unsolved.
In §1.1 we provide a definition for an extra-solar planet. We outline the theory ofplanet formation in
§1.2. Methods that are use for the detection of extra-solar planets are introduced in§1.3. We focus on
the radial velocity and transit methods that are used in this work. In§1.4 we review the current status
of extra-solar planet searches.§1.5 explains follow-up strategies that need to be done in order to
confirm candidates that were detected with the transit method. The large variety of detailed follow-up
studies that can be done for transiting planets are presented in§1.6. Finally, we adress the questions
of whether extra-solar planets could be places for the development of life(§1.7) and what this means
for our own place in the big picture of the universe.
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1.1 Definition: Planet

In 2006 the International Astronomical Union (IAU) defined that in our Solar-System a planet is a
celestial body that...

• ...is in orbit around the Sun, ...

• ...has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a
hydrostatic equilibrium (nearly round) shape, and...

• ...has cleared the neighborhood around its orbit (IAU, 2006).

As a result of this definition, Pluto was no longer a planet. Because it has not cleared the surrounding
area of its orbit, Pluto is now considered to form a new class of dwarf planets together with Ceres.
For extra-solar planets a similar definition is applied although the exoplanet, ofcourse, does not orbit
the Sun but any other star in the Universe. ”Free-floating planets” whichdo not orbit any star are also
being discussed1.
In addition to the three criteria above, an extra-solar planet must satisfy a fourth one that limits its mass
to about 13MJup and discriminates it from a Brown Dwarf. Brown Dwarfs do fusion of Deuterium,
where a Deuterium particle and a proton unite to form a3He particle (Chabrieret al., 2000)2. Above
65 MJup and core temperatures of about 2 million Kelvin the fusion of Lithium starts. Thetransition
from Brown Dwarfs to H-burning main-sequence stars is at around 75-80MJup.
The naming convention for extra-solar planets is such that the fist planet detected in a system gets the
suffix ’b’, the second ’c’, and so on. E.g. the name of the first planet found in the 51 Peg system is
51 Peg b.

1.2 Planet Formation Theory

The theory of planet formation has changed a lot in the last decade. On theone hand, driven by the
increasing number of extra-solar planet detections, on the other hand, due to an advance in computer
technology that has enabled more and more precise simulations. However, many aspects of planet
formation are still not understood and heavily under debate.
The formation of planets is strongly coupled to the process of star formation which starts with a
collapsing molecular cloud. At the end of the fragmentation process, the gasforms disks around the
young proto-stars due to angular momentum conservation. For Solar metallicity, a proto-planetary
disk is assumed to carry∼1% of heavy elements (dust grains and condensed elements). Fig. 1.1
shows two proto-planetary disks that were observed with the Hubble-Space-Telescope in the Orion
nebula. The absorption by the dust in the disks is clearly visible against the bright background.
In the beginning, the dust is uniformly distributed and strongly coupled to the gas in the disk. Planet
formation theories have to describe the growth of small dust particles with sizes of a fewµm to
planets with diameters of more than 100 000 kilometers, a growth of 14 orders of magnitude in size
and 42 orders of magnitude in mass!

1 in the early stages of formation, planets could be ejected out of their systems due to gravitational interactions with other
planets; note, however, that such free-floating planets are very difficult to detect (see below)
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Figure 1.1: Proto-planetary disks in the Orion nebula.

Currently, two main processes of planet formation are being discussed, the core-accretion/gas-capture
(GCCA) model (Pollacket al., 1996; Ruden, 1999) and the disk instability (DI) mechanism (Boss,
1997) which will be discussed in the following.

1.2.1 The core-accretion/gas-capture model

As the name suggests, the CAGC model describes the formation of planets in twosteps. In the
core-accretion phase, the sticky dust grains grow in two body collisions and settle to a thin layer in
the midplane of the disk. Ongoing collisions lead to further growth up to bodies of the size of about
1km - which are called planetesimals. This phase is comparatively short andhappens on timescales
of a few thousand rotation periods of the disk.
Planetesimals are big enough to decouple from the surrounding gas, therefore they move approx-
imately with Keplerian speed on circular orbits around the proto-star. Due to inelastic collisions,
the planetesimals grow further. The focusing effect of gravity is increasing the collision cross
section (Safronov, 1972). The bigger the planetesimal is, the stronger itattracts smaller neighboring
planetesimals and the faster it grows. This accelerated process is called runaway growth. After about
106 years (Aarsethet al., 1993; Weidenschillinget al., 1997), only the biggest bodies are left: rocky
planetary cores, that comprise most of the heavy elements of the disk.
In the second phase of the CAGC model, the still growing rocky proto-planets find themselves in a
dissolving gaseous disk. When a planetary core reaches about 10 Earth masses, its gravitational force
is strong enough to bind Hydrogen and the rocky core begins to attract gas from the surrounding disk.
This process starts slowly and becomes very efficient as soon as the massof the gaseous envelope is
comparable to the mass of the core. The core-accretion phase ends whenthe disk is cleared by either
the accretion process itself or the increasing luminosity of the proto-star in thecenter that dissolves
the gas.
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The CAGC model explains well the observed increase of planet frequency with metallicity (Fischer
& Valenti (2005), see below). A higher metallicity implies a larger amount of dustparticles which
can form planetary cores more easily. Also the composition of Jupiter and Saturn with cores between
10 and 20 Earth masses (Saumon & Guillot, 2004; Militzeret al., 2008) is consistent with the CAGC
model. However, there is one big problem which is the time scale. Observationsshow, that the
characteristic lifetime of a proto-planetary disk is only a few 106 years (Haischet al., 2001). After
that, no gas is left that could be accreted by the planetary cores. According to the CAGC model, the
main core-accretion phase and the early gas-capture take substantially longer than 107 years.
One explanation could be that the core-accretion process is speeded-up by vortices in the disk that
form due to perturbations generated by infall onto the disk (Barranco & Marcus, 2000) or due to
hydrodynamic instabilities (Lovelaceet al., 1999; Klahr & Bodenheimer, 2003).

1.2.2 The disk instability model

An alternative model for the formation of gaseous planets is the disk instability (DI) model which has
been proposed by Kuiper (1951) and reviewed by Boss (1997). A proto-stellar disk becomes unstable
against perturbations if the following parameter (Toomre, 1964) is of order unity or less:

Q = csκ/πGΣ (1.1)

wherecs is the local speed of sound,κ is the epicyclic frequency at which a fluid element oscillates
when perturbed from circular motion andΣ is the surface density. If, in addition, the cooling time
scale of the disk is shorter than the orbital time scale, fragmentation of the disk into planets is possible
(Gammie, 2001). Both requirements indicate that the DI mechanism is favored only at relatively large
distances from the star.
Detailed 3-dimensional hydrodynamic simulations were carried out by several groups (e.g. Boss
(2002), Mej́ıaet al. (2003) or Mayeret al. (2002)). The results have shown, that the DI mechanism is
able to form planets on a very short time scale on the order of 1 000 years.However, the amount of
mass needed is at the high end of the observed range of disk masses (Bodenheimer, 2004).
Boley (2009) concludes that DI is the most likely mechanism responsible forthe formation of planets
in orbits wider that 100 AU whereas the CAGC model better explains the formation of planets in
orbits closer than 100 AU.

1.2.3 Orbital evolution of extra-solar planets

Although the CAGC and DI model can explain the formation of rocky and gaseous planets, the
distribution of orbital parameters of extra-solar planets brought up several questions which have been
adressed by orbital evolution models that include planet-planet and planet-disk interactions.
The formation of close-in Jupiter-sized planets with periods of a few days that were detected with the
radial velocity and transit method (see below) cannot be explained by the CAGC or DI models. At
small distances from the star, the disk is too hot and the amount of gas available is not sufficient to
build Jupiter-sized planets. Hot Jupiters must have formed further out in the proto-planetary disk and
then migrated inwards due to planet-disk interactions (Ward, 1997).
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Type I migration

Already during the core-accretion phase, a proto-planet excites density waves in a disk through
Lindblad and corotation resonances. As a reaction, it experiences a torque by each excited wave
(Goldreich & Tremaine, 1979). Lindblad resonances, located interior to the planet, result in positive
torques while outer Lindblad resonances exert negative torques. A non-zero net torque from both
sides causes a radial orbital migration of the planet, known as type I migration(Tanakaet al., 2002).
The time scale of this process is very short (∼ 105 years) causing the planet to eventually move
into the star before it could start capturing the surrounding gas (Korycansky & Pollack, 1993). To
avoid this, some mechanism must be responsible for stopping or at least slowing down the inward
migration.
Nelson (2005) argues that in a turbulent disc migration occurs stochastically with inwards and
outwards phases which could decelerate the migration. Also departures from the linear regime for
planets with masses of∼10-20 MEarth could reduce the inward migration (Massetet al., 2006).
Recent studies have shown that including non-isothermal effects in the simulations can also stop type
I migration and even result in an outward migration (Paardekooper & Mellema,2006; Kley & Crida,
2008).

Type II migration

After the planet has reached a mass of about 1MJup, it can induce the formation of a gap in
the disk. The orbital evolution of the planet is then strongly coupled to the viscous evolution of the
disk in which the outward angular momentum transfer continues. The planet takes up the momentum
flow from the inner disk and releases it to the outer disk. If the two processes do not balance, the
planet migrates inwards and essentially follows the material of the inner disk asit evolves towards the
star (Linet al., 1996; Papaloizouet al., 2007). Fig. 1.2 shows the time evolution of a Jupiter-sized
planet as it evolves towards the star under type II migration.
Type II migration is generally used to explain the location of Hot Jupiters. However, as in the case of
type I migration, it remains to be explained which process is halting the orbital decay of the planet to
avoid the planet to fall into the star. Several mechanisms have been proposed such as tidal interaction
with the star and interaction with the stellar magnetosphere (Linet al., 1996) or mass-loss of the
planet overflowing its Roche-lobe due to the strong heating caused by irradiation (Trilling et al.,
1998).
However, extra-solar planets were found at a large range of semi-majoraxes (see below) which
suggests, that type II migration has to stop not only very close to the star butalso at larger separations.
A possible explanation could be the dissipation of the disk during the migration process (Trilling
et al., 2002). Alternatively, the planets that we observe today might only be the last of a larger number
of planets that have been formed in the proto-stellar disk and subsequentlymigrated into the star (the
last of the Mohicans principle, Lin (1997)).
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Figure 1.2: Time evolution in units of orbital periods of the disk surface density and orbital radius
a gap-forming planet with initial mass of 1 MJup (taken from Nelsonet al. (2000)). After 7 000
revolutions, the planets mass has grown to 3.5 MJup under the assumption of maximal accretion. The
circle around the planets indicates its Roche-lobe.

Type III migration

A third migration mechanism is being discussed which is induced by coorbital torques exerted
on the planet by material flowing through the orbit. Type III migration can assist or retard type II
migration (Masset & Papaloizou, 2003; Artymowicz, 2004).
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Orbital circularization and tidal locking

Strong tidal interaction with the central star circularize the orbits of close-in planets. Mat-
sumuraet al. (2008) found the median eccentricity of all planets with semi-major axes smaller than
0.1 AU to be as low as 0.013. From the nearly-circular orbits they conclude,that tidal circularization
occurs on a relatively short time scale.
When a migrating planet approaches the host star, its rotation is slowed downdue to the tidal
interactions. This effect is a strong function of the planet-star separation(∼r−6, Goldreich &
Soter (1966)) and leads to a synchronous rotation3. A direct consequence of the tidal-locking is a
temperature gradient between day- and night-side of the planet. However, Knutsonet al. (2007)
derived a temperature map of the transiting planet HD189733b with a minimum temperature of
973±33 K and a maximum temperature of 1212±11 K indicating that energy from the irradiated
day-side is efficiently redistributed throughout the atmosphere (see§1.6).
The reduced rotation rate has also severe implications for the planetary magnetic moment (due to a
weaker dynamo-effect). Tidally locked planets are assumed to have comparatively weak magnetic
fields and small magnetospheres which in turn can cause an enhanced particle loss (Grießmeieret al.,
2004).

Resonant orbits

In multi-planet systems, the orbital parameters are changing in time due to mutual gravita-
tional interactions. Already during the core-accretion phase, elastic scattering leads to a transfer of
angular momentum between proto-planets (Levisonet al., 1998). In the later stages, the interaction
is driven by the migration of giant planets. In an extreme case close encounters could even cause
planets to be ejected from the system.
Planet-disk interaction and orbital migration can trap planets in resonant orbits (Snellgroveet al.,
2001; Kleyet al., 2004). Several systems of this type were found such as the 2:1 resonant planets
around Gliese 876 (Marcyet al., 2001) or the 3:1 resonant planets around 55 Cancri (McArthuret al.,
2004).
Planet-planet interaction can also explain the eccentricity distribution of extra-solar planets detected
with the radial velocity method (see below) showing that stable highly eccentricorbits are a possible
outcome of long-term dynamical evolution (Fordet al., 2003; Juríc & Tremaine, 2008).

1.3 The Search For Extra-Solar Planets

Many different techniques are used to search for extra-solar planets. Fig. 1.3 shows a diagram of
various methods indicating the minimum planetary mass each method is sensitive to. The graph is
taken from Perryman (2000) and has been updated.
In this chapter, we discuss the most successful planet detection methods indetail putting emphasis on
the radial velocity and transit techniques that are used in this work.

3 e.g. the Moon performs a synchronous rotation with respect to the Earth
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1.3.1 Imaging

Direct detection of extra-solar planets is extremely difficult. Due to the large interstellar distances,
the angular separation of an extra-solar planet and its host star is very small. In addition, an enormous
brightness contrast complicates the detection. In the visual wavelength range the cool planet has very
little thermal emission and we only see the light of the star that is reflected on the planet’s surface.
E.g. for Jupiter and Sun, the brightness contrast in the is on the order of 10−9. In the infrared the
brightness contrast decreases to∼ 10−4, because in this spectral region the planet shines brighter
(due to thermal emission) and the star is fainter.
In regular ground-based observations, the turbulent atmosphere of the Earth results into a broad
distribution of a star’s light on the detector (known as point-spread-function or PSF). Due to the
small angular distance and the high brightness contrast, the star completely outshines its companion.
In order to make the faint and close planet visible, adaptive optics have to be used to enhance the
resolution of an image. A very powerful instrument in this respect is NACO4 (Lenzenet al., 2003;
Roussetet al., 2003) mounted on the VLT which has been successfully used to image several planet
candidates.
Until today, 11 objects in the transition region between planets and Brown Dwarfs have been found
with direct imaging. Proving that each star and its companion form a common proper motion pair,
it has been ruled out that the faint planet candidates are actually background sources. In Fig. 1.4
we show the images of four planet candidates. Table 1.1 lists the parameters of all candidates found
so far. The mass of each candidate can only be determined from its spectrum and brightness using
evolutionary models. The problem with this method is that applying different models results in a
large range of possible masses. Therefore, the real nature of most candidates is very controversial.
The semi-major axes of the orbits of directly imaged planets are generally verylarge (with exception
of SCR 1845) which facilitated the detection. Beta Pic b has the smallest angularseparation to its
host star (0.41 arcseconds). All systems are quite young. Since youngplanets gain gravitational
energy during the contraction phase, they shine brighter and are therefore easier to detect.
Direct imaging of analogs to our Solar System is presently not possible. Improvements are expected
from ground based infrared interferometry and from upcoming space missions that will use interfero-
metric and/or coronographic approaches.

4 short for NAOS-CONICA: Nasmyth Adaptive Optics System - High Resolution Near-Infrared Camera
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Figure 1.4: Planet candidates detected by direct imaging.

planet host semi-major axis distance mass age reference

2M 1207 b M8 55 AU 70 pc 4 MJup 8 Myr Chauvinet al. (2004)
CT Cha b K7 440 AU 165 pc 17MJup 2 Myr Schmidtet al. (2008)

UScoCTIO 108 b M7 670 AU 145 pc 14MJup 5.5 Myr Kashyapet al. (2008)
SCR 1845 b M8.5 >4.5 AU 3.9 pc >8.5MJup >0.1 Gyr Biller et al. (2006)

AB Pic b K2 275 AU 46 pc 13.5MJup 30 Myr Chauvinet al. (2005)
GQ Lup b K7eV 103 AU 140 pc 21.5MJup 1 Myr Neuḧauseret al. (2005)

β Pic b A6V 8 AU 19.3 pc 8 MJup 6 Myr Okamotoet al. (2004)
HR 8799 b A5V 68 AU 39.4 pc 7 MJup 60 Myr Maroiset al. (2008)
HR 8799 c A5V 38 AU 39.4 pc 10MJup 60 Myr Maroiset al. (2008)
HR 8799 d A5V 24 AU 39.4 pc 10MJup 60 Myr Maroiset al. (2008)

Fomalhaut b A3V 115 AU 7.7 pc 3 MJup 200 Myr Kalaset al. (2005)

Table 1.1: Parameters of all planet candidates detected by direct imaging.
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1.3.2 The microlensing method

If a foreground star in the Milky Way moves directly in front of a background star (e.g. located
in the bulge of the Milky Way or in the Large Magellanic Cloud), the light of the background star
is deflected due to space-time curvature and two images become visible (see Fig. 1.5). However,
the large distances to the lens and the source makes the separation of the two images too small to
be resolved (µ-arcseconds). Nevertheless, a net magnification of the background star (photometric
microlensing) and a shift of the center of light of the combined image (astrometric microlensing) can
be observed.

Figure 1.5: Light deflection caused by a gravitational lens (taken from http://de.wikipedia.org).

In case of a point mass lens and a point source, the exact progressionof the symmetric and achromatic
mircolensing amplification can be described with a Paczynski curve (see Fig. 1.6). Typical timescales
for microlensing events are a few days to weeks - depending on the mass ofthe lensing star and the
impact parameter. If the lensing foreground star has one or more planets,the microlensing event
light curve may deviate from its symmetric shape and show additional featuresthat can be quite
complicated (see Fig. 1.7).

Figure 1.6: Light Curve of microlensing event with a planet. The symmetric Paczynski curve is
interrupted on a short timescale due to a planetary companion of the lens star.
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The chance for a source to be lensed by a foreground star is relativelylow. About one in a million
stars into the direction to the center of the Milky Way is lensed at a time. However,due to the
high density of stars, almost always a few events are visible. Two projects, the Optical Gravitation
Lensing Experiment (OGLE, Udalski (2003)) and the Microlensing Observations in Astrophysics
project (MOA, Abeet al. (2004)) developed early warning systems which produce almost a thousand
microlensing alerts per year. In case an event shows anomalies, which could be attributed to
planetary companion of the lens, it is being followed-up with a high temporal resolution by large
collaborations such as the Microlensing Follow-Up Network (µFun, Yooet al. (2004)) or the joint
venture between Probing Lensing Anomalies NETwork (PLANET, Dominiket al. (2002)) and
RoboNet (Tsapraset al., 2009). If enough observations are available, a complete modeling of the
system by least-square-fitting of the light curve reveals the projected distance of the planet to the star
and the planet’s mass. Due to the specific geometry, microlensing towards the Galactic Bulge is most
sensitive to planets with orbital separations of a few AU.
So far, seven planets have been found with the microlensing method. Table 1.2 summarizes the
parameters of all detections. One event, OGLE-06-109L, is particularly interesting, since the lensing
system consists of a two planet configuration that is very similar to the Jupiter-Saturn system.
One limitation of the microlensing method is the fact that an event will never occuragain. This makes
it impossible to confirm a detection. The lack of follow-up possibilities5 implies that the microlensing
method is only useful for the investigation of the distributions of masses and projected semi-major
axes of extra-solar planets.

planet mass semi-major axis reference

MOA-07-BLG-400-L b 0.9MJup 0.85 AU Donget al. (2009)
MOA-07-BLG-192-L b 0.01MJup 0.62 AU Bennettet al. (2008)

OGLE-06-109L b 0.71MJup 2.3 AU Gaudiet al. (2008)
OGLE-06-109L c 0.27MJup 4.6 AU Gaudiet al. (2008)
OGLE-05-390L b 0.017MJup 2.1 AU Beaulieuet al. (2006)
OGLE-05-169L b 0.04MJup 2.8 AU Gouldet al. (2006b)
OGLE-05-071L b 3.5MJup 3.6 AU Udalskiet al. (2005)

OGLE-03-235L/MOA-03-BLG-53 b 2.6MJup 5.1 AU Bondet al. (2004)

Table 1.2: Parameters of all planet candidates detected by microlensing.

5 in some cases it was possible to identify the lens star with HST
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Figure 1.7: Light Curve of microlensing event OGLE-06-109L. Five anomalies reveal the presence of
two companions to the lens star.
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1.3.3 Timing methods

Because in a two body system both objects revolve their common center of mass, a planet causes
its host star to perform a reflex motion. With the radial velocity method (see§1.3.4), the radial part
of this wobble is measured directly as a redshift of the stellar spectra. However, in case the star is
sending out a coherent periodical signal, even the actual radial displacement of the star caused by
the planet can be measured as time delays arising from light travel time differences of the signal. In
the following, we summarize 3 different timing methods that have led to the detectionof extra-solar
planets.

The first extra-solar planet that was detected is actually orbiting a pulsar.Wolszczan & Frail (1992)
measured periodic time delays of the radio pulses of PSR B1257+12, which can only be explained by
a reflex motion of the pulsar due to a system of 3 planets with 0.02, 4.3, and 3.9 Earth masses and
respective orbital periods of 25, 66 and 98 days. Measuring the mutualgravitational perturbations of
the outermost two planets, Konacki & Wolszczan (2003) were able to measure the inclinations (and
therefore the true masses) of the two orbits. They found both orbits to be coplanar with an inclination
of ∼50◦. The existence of pulsar planets was a big surprise6. It is still not fully understood, how these
planets have survived the supernova explosion of their host or how they could have been captured
afterwards. In addition to the 3 planets in the PSR B1257+12 system, one moreplanet with a mass of
M·sini = 2.5 MJup was found with the pulsar timing method (Thorsettet al., 1999).

Silvotti et al. (2007) reported the discovery of a M·sini=3.2 MJup companion to the pulsating
sub-dwarf B V391 Pegasi at an orbital distance of about 1.7 AU with a period of 3.2 yr. The star is on
the extreme horizontal branch of the HRD. Silvottiet al.(2007) used the O-C (Observed - Calculated)
diagram (Sterken, 2005) to measure the secular variation of pulsation periods in time caused by
the reflex motion of the star. This technique is particularly useful for two classes of pulsators: hot
sub-dwarfs and white dwarfs (Kepleret al., 2005), since their short pulsation periods of a few minutes
are extremely stable in time.

Recently, a planet candidate was found around the eclipsing binary system HW Vir (Leeet al., 2009).
The binary consists of a sub-dwarf B and an M-dwarf which revolve and eclipse each other every
2.8 hours producing a very stable periodic signal. 8 years of photometric data have revealed periodic
time delays of the eclipses which can consistently be explained by the presence of two additional
circumbinary companions with masses of M·sini=19.2 MJup and M·sini=8.5 MJup and orbital
periods of 9.1 and 15.8 years respectively.

1.3.4 The radial velocity method

The most successful detection method so far is the radial velocity (RV) method. Already in the 1950s,
Otto Struve proposed to measure the periodic RV signal that a Jupiter-sizedplanet would induce on
its host star (Struve, 1952). The method had so far only been used to determine the masses of stellar
binary systems. According to Struve, a variation of 200 m/s for a Jupiter-sized planets in close orbits
could have been detectable already at that time.

6 especially considering that the system is located in a globular cluster (M4)
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However, it took more than 40 years until this method was applied successfully. In 1995 Michael
Mayor and Didier Queloz published the discovery of the first extra-solarplanet revolving a main-
sequence star (Mayor & Queloz, 1995). Fig. 1.8 shows the measured RVvariation of 51 Peg with a
period of 4.2 days.

Figure 1.8: Radial velocity variations of 51 Peg, the first main-sequence star that was known to have
a planet.

In the following, the most important equations and relations that connect the individual parameters of
a planetary system to the measured RV amplitude are summarized .
The relation between mass and semi-major axis of a star and its planet is given by the definition of the
barycenter:

a∗ ·M∗ = apl ·Mpl , (1.2)

where in the following the indexespl and∗ always refer to the planet and the star respectively.
On a circular orbit with periodP, the orbital velocity of the starv∗ can be calculated as:

v∗ = 2π · a∗
P

= 2π · apl

P
· Mpl

M∗
, (1.3)

where the periodP and the semi-major axisapl are connected by Kepler’s 3rd Law:

(

a∗ +apl
)3

=
G

4π2P2(

M∗ +Mpl
)

. (1.4)

In most systems the mass of the planet is much smaller than the mass of the host star(i.e. Mpl ≪ M∗).
According to eq. 1.2, this implies that the semi-major axis of the stellar orbit is much smaller than the
semi-major axis of the planet (i.e.a∗ ≪ apl). Using these approximations, eq. 1.4 transforms into:

a3
Pl =

G
4π2P2M∗ . (1.5)
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Putting this result into eq. 1.3, the orbital velocity of the star moving around the common center of
mass can be calculated as:

v∗ =

(

2πG
P

)1/3

· Mpl

M2/3
∗

. (1.6)

A measurement of the true orbital velocity is not possible since the inclination angle of the system is
generally unknown. As the name of the detection method suggest, only the radial component of the
orbital velocity,v∗ ·sini, can be measured. The half-amplitudeK of the RV variation is therefore:

K = v∗ ·sini =

(

2πG
P

)1/3

· Mpl ·sini

M2/3
∗

(1.7)

or in Solar System units:

K = 28.4·
(

P
1yr

)−1/3

·
(

Mpl ·sini

MJupiter

)

·
(

M∗
M⊙

)−2/3

[m/s] , (1.8)

which is equivalent to

K = 28.4·
( apl

1AU

)−1/2
·
(

Mpl ·sini

MJupiter

)

·
(

M∗
M⊙

)−5/6

[m/s] , (1.9)

where we used eq. 1.5 in Solar System units:

P =
( a

1AU

)3/2
·
(

M∗
M⊙

)−1/2

[yr] . (1.10)

The above equations were deduced under the assumption of a circular orbit. In case of non-circular
orbit with eccentricitye the amplitude of the radial velocity variation is higher and eq. 1.7 has to be
multiplied by an additional factor (Cumminget al., 1999):

K =

(

2πG
P

)1/3

· Mpl ·sini

M2/3
∗

· 1√
1−e2

. (1.11)

For eccentric orbits, the radial velocity variations are not sinusoidal as they are in the case of 51
Peg (see Fig. 1.9). A fit to the RV measurements reveals the periodP, the semi-major axisapl, the
eccentricitye and the minimum mass Mpl · sini. However, as mentioned above, the inclinationi and
thus the true mass Mpl cannot be determined. Using the RV method, several systems with more than
one planet have already been detected. In these cases, the RV variations are superimposed like beats
in musics.

The challenge in measuring accurate radial velocities is to find a stable wavelength reference. Mainly
two methods were used in the past: the simultaneous ThAr calibration and theI2-technique.
In ThAr mode, one fiber is put on the object of interest and one fiber is fed with the light coming from
a ThAr calibration lamp. The ThAr-spectrum can then be used as a wavelength reference to monitor
the instrumental drifts on the detector. One problem with this method is the long termstability.
Because ThAr-lamps age, the spectrum may change over time.
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Figure 1.9: Radial velocity variations of HD222582, a star with a planet in a highly eccentric orbit
(e= 0.71).

Figure 1.10: Modeling of the combined iodine and stellar spectrum. The Doppler-shifted stellar
spectrum is added to a PSF-convolved iodine template spectrum that has been measured at the Fourier
Transform Spectrometer (FTS) at McNath Observatory. By least-squares fitting of this model to the
observed spectrum, the radial velocity of the star can be measured. The Figure shows a 5̊A region of
the spectrum of HR 5019, taken from Marcy & Butler (1992)
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The I2-technique was proposed by Campbell & Walker (1979) and first appliedin a radial velocity
search for extra-solar planets by Marcy & Butler (1992). The light coming from the telescope is led
through a cell filled with I2-gas that is absorbing at specific wavelengths. As a result, a combined
spectrum of the star and the I2 absorption reaches the detector. I2 has several hundred very narrow
absorption lines in the optical spectral region. The radial velocity of the star can be measured by
simultaneous modeling of the combined I2 and Doppler-shifted stellar spectrum (see Fig. 1.10).
Despite of a better long term stability, the I2-technique has two major disadvantages over the
ThAr-method. Firstly, the I2 lines are only covering a limited wavelength range from 5 000-6 500Å
and secondly, the I2 absorption reduces the S/N of the spectrum which is a problem for faint sources.
A significant improvement in the precision and stability of the wavelength calibration might come
from the relatively new technology of optical frequency combs, generated from mode-locked
femtosecond-pulsed lasers. The 2005 Nobel Prize in physics was awarded for the pioneering on such
combs (Reichertet al., 1999; Joneset al., 2000; Udemet al., 2002). For further details on this method
we refer to Murphyet al. (2007).
Todays best spectrographs have a spectral resolution of about 105 which enables the observer to
measure radial velocities with a precision better than 1 m/s for bright stars. Inthis region, the
precision is mainly limited by stellar variability acting on different timescales (Pepe &Lovis, 2008;
Kjeldsenet al., 2005), from minutes (p-modes) to hours (granulation) and days or weeks (activity).
Presently, the most powerful instrument for a RV search is the High Accuracy Radial velocity Planet
Searcher (HARPS, Mayoret al. (2003)) mounted at the 3.6m telescope at LaSilla observatory. The
exquisite temperature stability (a few mK) of this stationary fiber-fed high resolution (R=115 000)
spectrograph has recently enabled the detection of a system with 3 planets incircular orbits which
have very low minimum masses of 4.2, 6.9, and 9.2MEarth and periods of 4.3, 9.6, and 20.5 days,
respectively (Mayoret al., 2009).

1.3.5 The astrometric method

A complementary detection technique to the RV method is the astrometric method wherethe two
tangential components of the reflex motion of a host star of an extra-solar planet are measured as a
periodical displacement (see Fig. 1.11). The effect is very small (of theorder of milli-arcseconds)
and decreasing with increasing distance of the system.
No planet has been found with the astrometric method. Nevertheless, (Benedict et al., 2002) achieved
a confirmation of GJ876b with astrometric follow-up observations using the Find Guidance Sensor
at the HST. In combination with the RV measurements, the inclination of the orbit and therefore the
true mass of the planet was determined.
The astrometric method is more sensitive to planets with larger semi-major axis makingthe technique
complementary to both the RV and transit techniques. However, the longer periods of such planets
require a longer baseline of the observations.
ESA’s GAIA mission (http://gaia.esa.int) is planned to be launched in 2011. The satellite is expected
to deliver proper motions and radial velocities of 1 billion stars. With an expected astrometric
precision of 20µas, GAIA will be able to detect a large number of long period extra-solar planets.
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Figure 1.11: Astrometric displacement of the Sun during a 30 year period asseen from a distance of
10 pc (source: NASA/JPL).

1.3.6 The transit method

If the orbital inclinationi is close to 90◦, it is possible to detect transits of an extra-solar planet.
Covering a small fraction of the stellar surface, the observed brightnessof the star drops by a certain
amount that is (under the assumption of a constant surface brightness) equal to the square of the
radius-ratio of planet and star:

∆F
F

=

(

Rpl

R∗

)2

. (1.12)

For a Jupiter-sized planet transiting a Solar-type star, this is on the order of 1% whereas for an
Earth-sized planet, the depth reduces to 0.01%. Note that for bright stars, a photometric precision
of 1% can be achieved already with comparable small telescopes (∼20 cm aperture) whereas
the detection of Earth-sized planets around Sun-like stars is currently onlypossible from space.
Exceptional cases are M-dwarf host stars which are much smaller than theSun. Due to the reduced
radius, the transit depth of an Earth-sized planet is large enough to be detected from ground.

In detail, the exact progression of the brightness change during a transit is more complicated.
During ingress, the planet eclipses more and more of the star making the brightness decrease
smoothly. During the transit, the shape of the light curve is determined by limb-darkening. The planet
covers parts of the stellar surface with different brightnesses and the light curve gets a round bottom
with the lowest point in the center when the planet covers the brightest partof the star. Analytic
models for transit light curves are discussed in Mandel & Agol (2002).Fig. 1.12 shows a schematic
view of a transit indicating ingress (2), transit (3) and egress (4) phases.
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Figure 1.12: Light Curve of a transit event.

The first transit of an extra-solar planet was discovered by Charbonneauet al. (2000). The planetary
companion of HD209458 was detected with the RV method (Mazehet al., 2000) and later found to
be transiting. Since the RV curve allows to predict the exact time when a planettransits (in case the
orbit is edge-on), such follow-up observations are quite easy to perform and have become a standard
procedure that is applied to most planets that are detected with the RV method.
Right after the discovery of its transit, HD209458b was followed-up with theHubble-Space-Telescope
(HST Brown et al. (2001)). Fig. 1.13 shows the HST light curve with an exquisite photometric
precision of 10−5 that can only be achieved from space.

Figure 1.13: Hubble Space Telescope light curve of a transit of HD209458 b.

In the following we derive the equations that connect the most important parameters of transiting
planets. As already mentioned above, the orbital inclination of a transiting planet has to be close
to 90◦. In particular, it has to exceed a minimum inclinationimin that is depending on the orbital
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Figure 1.14: Geometry of a transit event.

semi-major axisapl and the stellar radiusR∗:

imin = cos−1 R∗
apl

. (1.13)

The probability to see transits of a planet with randomly oriented inclination vector is:

ptransit = cosimin =
R∗
apl

. (1.14)

For individual objects, the probability is in fact very low. E.g. in our Solar System, the transit proba-
bility drops from 1.2% for Mercury to 0.46% for the Earth and to 0.01% for Jupiter. As a consequence,
the transit method is insensitive to planets in wide orbits. Only planets with semi-majoraxis smaller
than 0.1 AU have been detected so far7. In order to compensate the limited range of sensitivity and
the small edge-on probability, a large number of stars need to be observedin transit surveys. This is
achieved either with extremely wide angle optics or with deep observations of crowded regions of the
sky such as the Milky Way disk.
The relation between inclination and stellar latitude can be derived from Fig. 1.14:

cosi =
R∗ sinδ

apl
. (1.15)

where central transits withδ = 0◦ correspond to an inclination ofi = 90◦ and grazing eclipses with
δ = 90◦ correspond toi = imin.
Another important parameter is the transit durationttransit which depends on the stellar and planetary
radii, the orbital period and the semi-major axis as well as the stellar latitude (Deeg, 1998):

ttransit =
P
π

(

R∗ cosδ +Rpl

apl

)

. (1.16)

The transit duration can also be expressed as a function of semi-major axisusing eq. 1.5:

ttransit =

√

4·apl

πGM∗
·
(

R∗ cosδ +Rpl
)

. (1.17)

The so-called fractional transit durationτ is defined as the transit duration in units of orbital periods:

τ =
ttransit

P
∼ a−1

pl . (1.18)

7 the transiting planets HD17156b and HD80606b found with the RV method have larger semi-major axes



22 CHAPTER 1. INTRODUCTION

For uniformly spaced light curves, the expected number of measurements taken during a transit is
proportional to the fractional transit duration. In order to detect transiting planets, a sufficient number
of data points in transit are needed (see§2.6.2). As a consequence, short period planets which have a
longer fractional transit length will be easier to detect than long period planets. For unevenly sampled
light curves, as one would expect for a ground based survey, the effect is on average the same.
However, the window function introduced by the diurnal day/night cycle leads to a period dependent
detection efficiency with an enhanced detection efficiency for planets with periods close to an integer
number of days (about half of which show transits in each night).
In summary, the detection of transiting planets with longer orbits is more difficult intwo respects:
firstly, because of a∼ a−1

pl decreasing transit probability (eq. 1.14) and secondly, due to the∼ a−1
pl

decreasing average number of data points taken during a transit (eq. 1.18). Compared to the RV
method where the amplitude of the variation only drops∼ a−1/2

pl (eq. 1.8) the transit method is much
more biased towards finding planets in close-in orbits.
Due to the large number of stars observed in a transit survey (of the order 105-106), an efficient
detection algorithm is needed to identify planet candidates. In§2.6.2 we introduce the detection
algorithm we used in our work.
After the selection of light curves that show transit signatures, there arestill a high number of false
interlopers (transiting low-mass stars, blend eclipsing binary systems) amongthe list of candidates
(see§1.5). In order to confirm the planetary nature of a candidate selected by the detection algorithm,
the mass has to be determined using RV follow-up observations.

Current transit projects can be divided into two distinct classes: wide-angle surveys using tele-
scopes with small apertures and deep surveys using meter-class telescopes. The former observe bright
stars up to 13th magnitude whereas the latter observe fainter stars in the range 13-17 mag. Table 1.3
gives an overview of the most successful ongoing and most promising future transit surveys.

survey aperture survey area planets found reference

TrES small (various) large (various) 4 Dunhamet al. (2004)
super WASP 2x8x0.2m 964 sq.deg. 15 Pollaccoet al. (2006)

HAT-Net 6x0.11m 384 sq.deg. 11 Bakoset al. (2004)
XO 2x0.2m 2 646 sq.deg. 5 McCulloughet al. (2005)

OGLE 1.3m 0.3 sq.deg. 8 Udalski (2007)
CoRoT(space) 0.27m 7.8 sq.deg. 6 Baglinet al. (2007)

Kepler(space) 0.95m 105 sq.deg. launched Kochet al. (2004)
Pan-Planets 1.8m 49 sq.deg. start 2009 Koppenhoeferet al. (2009)

OmegaTranS 2.6m 18 sq.deg. start 2010 www.astro-wise.org/projects

Table 1.3: Overview of ongoing and future transit surveys.

In contrast to planets detected with the RV method, transiting planets reveal much more information.
Not only the orbital parameters, such as period, epoch and eccentricity but also intrinsic parameters
of the planet, like its true mass and radius (and therefore its density) can be determined. In addition, a
variety of detailed follow-up studies can be performed during transit or eclipse of the planet (see§1.6).
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1.4 Current Status of Extra-Solar Planet Searches

As of March 20th 2009, a total of 331 detections of extra-solar planets have been published8. Fig.
1.15 shows the number of planets detected with each of the methods describedin the previous section.

Figure 1.15: Number of planets detected with each method.

The most successful technique is the RV method which has provided 75% ofall detections. Note that
since only a minimum mass of the candidates can be derived, some might actually be too massive
to be a planet. However, in a statistical view, most of the candidates detected by the RV method are
indeed planets. Radial velocity searches will continue with focus on the detection of very low-mass
planets, multi-planetary systems, planets with longer periods and planets around low-metallicity stars
and giants.
A total of 57 transiting planets are known to date9. Remarkably, more than half of the transiting
planets have been found in the past two years, making the transit method similarly successful in that
period compared to the radial velocity method (see Fig. 1.15). The majority of the recently detected
transiting planets were found in wide-angle surveys which target bright stars such as WASP, HAT,
TrES or XO (Pollaccoet al., 2006; Noyeset al., 2008; O’Donovanet al., 2007; McCulloughet al.,
2005). Also the space mission CoRoT has contributed by adding six new discoveries (Aigrainet al.,
2008). Deep surveys such as OGLE which are targeting highly crowdedregions of the Milky Way
disk have not been able to keep up with the increased detection rate of all-sky monitoring programs

8 for a daily update see www.exoplanet.eu
9 five of which were detected with the RV method
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mainly due to limited amount of observation time and a lower number of target stars.However,
upcoming projects such as Pan-Planets or OmegaTranS will presumably give rise to a revival of the
deep surveys in the next years. The first detection of a transiting Earth-mass planet in the habitable
zone is expected from the Kepler space mission that has been launched recently.
Although each of the other methods (imaging, timing and microlensing) has its own specific aspects
and although each of the detected objects is very interesting, a large numberof detections is not
expected in the near future. This is mainly due to the fact that these methods are not applicable
in large scale surveys but require detailed analyses of single objects. Anexception might be a
microlensing space mission that would have both the photometric precision and the time sampling
that is needed to detect a large number of planets in a small field of view (Bennett et al., 2004). Note
also that the microlensing technique is currently the only method capable of detecting free-floating
planets or planets outside the Milky Way (e.g. in M31).

Figure 1.16: Comparing the number of planets detected with the RV and transit methods. In the
last years the detection rate of transiting planets increased significantly whereas the RV detections
flattened out at a rate of∼30 detections per year.

The high number of extra-solar planets that have been found over the last decade allows a detailed
statistical analysis of their parameters (see e.g. Udry & Santos (2007)). In the following we discuss
the most important results that have been found.
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The minimum mass distribution of RV planets

The analysis of the mass distribution of extra-solar planets (Fig. 1.17) indicates that although
the RV method is more sensitive to massive companions, the frequency of planets decreases as a
function of mass (Jorissenet al., 2001). The distribution falls to a value close to zero for masses above
10 MJup. In the Brown Dwarf regime (between 13 and 80 MJup), there is a deficiency of companions
to solar-type stars which is called the Brown Dwarf desert (Halbwachset al., 2000). Together with
the shape of the mass distribution, this suggests a different formation mechanism between low-mass
stars and planetary systems.
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Figure 1.17: Minimum mass distribution of planets detected with the RV method.

The period distribution of RV planets

Fig. 1.18 shows the period distribution of planets detected with the RV method. Although the
RV method has a selection effect towards finding short period planets (K∼ a −1

pl , see eq. 1.11), the
resulting bias in the period distribution of Jupiter-sized planets is assumed to below, because the
precision of most RV surveys is high enough to detect most of the massive planets, even with longer
periods (Cumminget al., 2008).
Giant-planets with periods below 3 days have been named Very Hot Jupiters(VHJ) in contrast to Hot
Jupiters (HJ) with periods between 3 and 5 days10.

10the upper limit of 5 days is not strictly used



26 CHAPTER 1. INTRODUCTION

0 1000 2000 3000 4000

period [days]

0

20

40

60

80

100

120

N

0 20 40 60 80 100 120 140

period [days]

0

10

20

30

40

50

N

Figure 1.18: Period distribution of planets detected with the RV method.
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Figure 1.19: Eccentricity vs. semi-major axis of planets detected with the transitor RV method.



1.4. CURRENT STATUS OF EXTRA-SOLAR PLANET SEARCHES 27

The eccentricity distribution of RV and transiting planets

Unlike the planets in our Solar System, extra-solar planets have been foundto exhibit signifi-
cant eccentricities. Fig. 1.19 shows the eccentricity distribution of all planetsdetected with the RV
and transit method as a function of semi-major axis. For distances larger than0.1 AU, the values
range from 0 to more than 0.9 with a distribution that is similar compared to eccentricities found in
binary star systems (Halbwachset al., 2005). However, the high eccentricities cannot be explained
by the standard giant planet formation models. Several eccentricity pumpingmechanisms have been
proposed such as interactions in multiple systems (Jurić & Tremaine, 2008; Rasio & Ford, 1996) or
the interactions between the planet and the disk of planetesimals (Murrayet al., 2002).
For orbital distances smaller than 0.1 AU, the average eccentricity drops significantly which is a
result of a circularization process caused by tidal interactions of the planet with the star (see§1.2.3).

Multi-planet systems

Among the 254 planets detected with the RV technique, there are 79 planets in multi-planet
systems. 23 systems with 2 planets, 8 systems with 3 planets, 1 system with 4 planets(HD160691)
and 1 system with 5 planets (55 Cnc) have been detected. However, this is considered to be only a
lower limit. Ongoing monitoring of most planet systems is continuously increasing the number of
known multi-planet systems. Many RV curves of stars with a single planet show long term trends that
indicate the presence of a second planet with a longer period (see e.g. Fischeret al. (2001)).
Taking these considerations into account and given the higher rate of multi-planet systems in the
older long-running RV surveys, it seems likely that most stars form systemsof planets rather than
isolated, single planets (Udry & Santos, 2007).

The frequency of giant planets and its metallicity dependence

Analyzing the results from several RV surveys, Fischeret al. (2005) found a strong correlation
between the frequency of extra-solar planets and the host star metallicity. Fig. 1.20 shows the
frequency of planets with orbital periods less than 4 years with a RV amplitudelarger than 30 m/s.
The frequency rises from 4% for solar metallicity to 27% for [Fe/H]=0.5. The frequency for sub-solar
metallicity is consistent with being constant (see also recent results by Sozzetti et al. (2009)).
There are two theories that explain the metallicity dependent frequency of Jupiter-sized planets.
The first scenario is favored by the CAGC planet formation model (see§1.2.1) and is assuming that
the overabundance of heavy elements in planet-hosting stars is primordial (Ida & Lin, 2004). A
collapsing molecular cloud with high metallicity has a larger number of dust particles which can build
more planetesimals in the agglomeration and accretion phase. Naturally, the chance for the formation
of a giant planet will be higher if more planetesimals are present in the proto-planetary disk.
The second scenario assumes that the planet-hosting stars are actually not metal-rich but only the
outer layers (that are observed to derive the metallicity of a star) are polluted by the debris of the
planetary system (Laughlin & Adams, 1997; Gonzalez, 1998). This wouldbe in agreement with the
DI planet formation model (see§1.2.2) which predicts a very weak metallicity dependency of the
giant planet frequency.
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Figure 1.20: Planet frequency as a function of host star metallicity.

If the overabundance is coming from pollution of the outer layers, mixing processes in the convection
zone of the stars should diminish the effect and since the depth of the convection zone depends on
the spectral type of the star, there should be a trend with effective temperature. No such trend has
been observed, most groups are therefore in favor of the primordial metallicity enhancement (Valenti
& Fischer, 2008; Ecuvillonet al., 2006; Pinsonneaultet al., 2001). However, Pasquiniet al. (2007)
analyzed the metallicity distribution of 14 planet-hosting giant stars and found no evidence for a
metallicity dependent frequency. Since giant stars have a much larger massof the convection zone
they conclude that planet hosting main-sequence stars might indeed be polluted by infall of debris
whereas the pollution disappears as soon as the convective mixing increases during the transition to
the giant phase.

The masses and radii of transiting planets

Fig. 1.21 shows the radii and masses of all transiting extra-solar planets withM < 5 MJup.
Most planets have densities in the range from 0.4 to 1.5 g/cm3 (shown as dashed lines). Three planets
have significantly larger radii than predicted by models for core-less planets densities (Fortneyet al.,
2007; Burrowset al., 2007). The origin of the large radii might be explained by additional heat
sources such as more significant core heating, tidal dissipation due to a non-zero eccentricity and/or
irradiation (for a detailed discussion see Liuet al. (2008)).
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Figure 1.21: Radius and mass of all transiting planets.
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1.5 Follow-up Observations of Transiting Extra-Solar Planet Candi-
dates

The detection of a high S/N transit signature in the light curve of a star does not prove the existence of
a transiting planet. In order to confirm the detection, a number of false positive scenarios with similar
or identical light curves have to be ruled out (Bouchyet al., 2005):

• a transiting low-mass star with radius similar to that of Jupiter

• a transiting Brown Dwarf with M≥ 13 MJup

• an eclipsing binary system which is blend by a third star that is either physicallybound or a
fore- or background star within the line of sight

For the detection of an extra-solar planet with the transit method it is essentialto confirm the planetary
nature of a candidate with high-resolution spectroscopic follow-up observations (see§1.3.4). Since
the inclination of transiting systems is known (∼90◦), measurement of the RV variations of the host
star reveals the true mass of the transiting object, which can decide whether acandidate is really a
planet or one of the three false positive cases.
However, high-resolution spectroscopy is time-consuming and large telescopes are needed (especially
for faint targets). It is infeasible to follow-up all candidates found in a transit survey. An efficient
preselection based on the light curve and/or low-resolution RV measurements is essential in order to
reduce the number of candidates as much as possible beforehand.
In the following we present methods that were developed to reject false positive detections.

1.5.1 The Tingley-Sackett parameter

Tingley & Sackett (2005) proposed a photometric diagnostic to aid in the identification of transiting
extra-solar planets on light curve basis. They derived a simple parameterηpl that is the ratio between
observed transit duration and the duration expected given the transit depth and orbital period. The
parameter helps to rank the candidates. It can be applied even if the photometric precision or the
sampling of the light curve is not good enough to resolve ingress and egress of the transit. Assuming
a planetary radius of 1 RJup, equation (11) of Tingley & Sackett (2005) transforms into:

ηp =
Dobs

D
=

Dobs

2(1+
√

1.3/d)
·
(

2πGM⊙
τ

)1/3

R−5/12
⊙

(

1.3
d

)5/24

, (1.19)

with periodτ, transit durationDobs and fractional transit depthd. Fig. 1.22 showsηp for 173 transit
candidates found in the OGLE-III survey (Udalskiet al., 2002a,c,b, 2003, 2004). All confirmed
planets have a value ofηp < 1.0 (red diamonds). Applying this cut to the OGLE sample reduces the
number of candidates significantly to 61.
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Figure 1.22: Value of the Tingley-Sackett parameter for 173 OGLE candidates. Five planets that were
confirmed to be transiting planets are shown as red diamonds.

1.5.2 Ellipsoidal variations

In case of a transiting low-mass star, the system may show ellipsoidal light variations in the
out-of-transit parts of the light curve (Udalskiet al., 2002a) with exactly half the orbital period: tidal
effects cause deformations of the secondary which make the system appear the brightest at phases
0.25 and 0.75 (assuming the transit occurs at phase 0.0). This effect is stronger the more massive
and closer the secondary is. Therefore, detecting ellipsoidal variationsin the light curve is a good
indicator for a high mass of the companion and rule out a planetary nature ofthe candidate. Fig. 1.23
shows the light curve of OGLE-TR-5 with strong ellipsoidal variations.
Drake (2003) demonstrated, that the sample of candidates published by theOGLE group can be
reduced analyzing the out-of-transit parts of the light curves. Sirko & Paczýnski (2003) extended the
work of Drake (2003) improving the error estimates on the amplitudes of the variations.

For each frequencyν the ellipsoidal variations can be parameterized as:

I(t) =< I > +ac,ν ·cos(2πνt)+as,ν ·sin(2πνt) , (1.20)

whereac,ν andas,ν are least-square fitted in such a way thatI (t) matches the observations using only
the out-of-transit data points of the light curve.
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Figure 1.23: Folded light curve of candidate OGLE-TR-5 with strong ellipsoidal variations in the
out-of-transit part. The solid line shows the best cosine fit excluding the points in transit phase.
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Figure 1.24: Power spectrum of candidate OGLE-TR-5. There are three peaks with p(ν) > 20. The
highest peak marks the ellipsoidal frequencyνc2 = 2.475 days−1 and two aliases at 1.475 and 3.475
days−1. The red line shows a least-squares power law fit to the spectrum.

We calculate the power at each ellipsoidal frequency ranging from 0.22 -3.5 d−1 (corresponding to
orbital periods of 0.57 - 9.2 days):

p(ν) = ac(ν)2 +as(ν)2 . (1.21)
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As an example we show in Fig. 1.24 the power spectrum of candidate OGLE-TR-5 with a clear signal
of ellipsoidal variations visible as a peak at the ellipsoidal frequencyνc2=2.475 days−1 (corresponding
to half the orbital period of 0.808 days).
The coefficientac2 fitted at the frequency corresponding to half the orbital period is a directindicator
for variations caused by tidal deformations of a massive secondary. Therefore, significant positive
value ofac2 can be used to rule out a planetary nature of a transit candidate. In order to estimate the
significance ofac2, Sirko & Paczýnski (2003) fit a 2 parameter power-law of the form

p(ν) = p0 ·ν p1 (1.22)

to the power spectrum and estimate the statistical errorσ at each frequencyν to be equal to
√

p(ν)/2. Fig. 1.25 shows the measurements ofac2 for 173 OGLE candidates. Rejecting candidates
with significant sinusoidal variations, the sample of transiting planet candidates can be reduced
significantly making the search for ellipsoidal variations a powerful tool in the process of eliminating
false candidates on light curve basis.

1.5.3 Low-precision spectroscopic follow-up observations

A first and low-cost step in the process of eliminating false positive candidates by follow-up
observations is to do low-resolution spectroscopy. A rough determination of the effective temperature
and surface gravity provides an estimate of the stellar radius and spectraltype. The stellar radius, in
turn, can be used to determine an improved value for the radius of the candidate. If e.g. the host star
turns out to be an evolved star, the transiting object will be very large as well and the candidate is
most likely a stellar companion.
The measured stellar parameters can also be used to improve the light curve fitting. More realistic
limb-darkening coefficients and a more precise stellar radius decrease theparameter-space of the
fit. Possible false candidates will show systematic outliers in the residuals of thebest fit, if the
photometric precision is good enough.

1.5.4 Medium-precision spectroscopic follow-up observations

Most false positive candidates are actually transiting low-mass stars or Brown Dwarfs which can
be excluded with medium precision RV measurements. This can be achieved either with medium
resolution spectroscopy at high S/N or with high resolution spectroscopy at medium/low S/N. Due to
the high mass, the amplitude of the RV variation is very large (∼km/s) and a few measurements taken
at phases with the highest RV signal (close to phase values of 0.25 and 0.75) are sufficient to identify
and eliminate non-planetary candidates.
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Figure 1.25: The values of the parameterac2 as a function of period for 173 OGLE candidates. Positive
values ofac2 indicate tidal deformations of a massive secondary rather than a planet. Upto 30% of
all OGLE candidates show significant ellipsoidal variations. None of the negative values ofac2 is
significant. The red diamonds represent the 5 confirmed planets found among the OGLE candidates.

1.5.5 High-precision spectroscopic follow-up observations

The final step in the follow-up process and confirmation of a transit candidate, is the accurate
determination of its mass with high resolution spectroscopy. This is done as described in §1.3.4.
Since the period and epoch of the transiting object are known and since most candidates are on
circularized orbits, there is only one free parameter when fitting the radial velocity curve, namely the
mass. Therefore, fewer measurements are required to confirm a transiting planet candidate compared
to the number of measurements needed to detect planets with the RV method. Fig. 1.26 shows the
RV measurements taken in order to follow-up and confirm the transiting planetWASP-2b.
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Figure 1.26: RV follow-up observations of WASP-2b. Since period, epoch and eccentricity of the
orbit are known, 9 measurements suffice to derive the mass of the candidate and confirm its planetary
nature (Cameronet al., 2007).

Most currently detected candidates have visual magnitudes of 10 and more. The S/N of the spectra
and therefore the precision of the RV measurements is generally lower than for the very bright objects
targeted in RV surveys. This is particularly true for candidates found in deep surveys, such as the
OGLE-III or the pre-OmegaTranS survey (see§2) where candidates down to V∼17 have been found.

The following formula provides an estimate of the expected precision of RV measurements:

σRV ≈ 1.45×109
(

S
N

)−1

R−1B− 1
2

[m
s

]

, (1.23)

with the averageS/N per resolution element, the resolving power of the spectrographR and the
covered spectral rangeB in Å. The formula was derived numerically (E. Guenther, private communi-
cations). For a typical S/N of 50, a resolution of 40 000-50 000 and a spectral coverage of∼2 000Å,
the expected precision is 10-15 m/s. This is enough to derive masses down to1 MJup for planets in
short orbits around cool main-sequence stars.
One very important aspect in the process of confirming transit candidateswith RV measurements
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is the possibility that an eclipsing binary system that is blend by a foregroundstar may not show
the expected large RV variations if the foreground source is a very largecontribution the total light.
In this case, the combined spectrum may be dominated by the foreground starin such a way that
the varying eclipsing binary component can not be separated in the spectrum. It might only cause
the spectral lines of the foreground star to become asymmetrically shifted towards higher or lower
wavelengths. Cross-correlation with a template results in the detection of a smallRV variation, as
one would expect for a planet.
In order to rule out such a scenario, a careful analysis of line asymmetries has to be done by
calculating the bisector of the cross-correlation function (see e.g. Quelozet al. (2001) or Santoset al.
(2002)). The procedure has become a standard tool in excluding blendscenarios in the process of
confirming transiting extra-solar planets with RV measurements (see§3).

1.5.6 Multi-band photometric follow-up observations

Multi-band photometric follow-up observations can aid in the process of eliminating candidates
that are actually blend eclipsing binary systems. If the spectral type of the blending source differs
significantly from the spectral type of the eclipsed primary, the amount of third light is different in
each band. This results in a transit depth that is different in each band, or in other words in a color
change during the transit (Tingley, 2004).
The 7-channel imager GROND is the ideal instrument for this kind of follow-up. A combined fit to
the light curves in multiple bands can exclude a blended binary scenario, if the transit morphology of
eclipsing binaries is found to be inconsistent with the observations (i.e. too wide and/or V-shaped or
too color-dependent, see§3).
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1.6 Follow-up Studies of Transiting Extra-Solar Planets

In contrast to all other detection methods, planets found with the transit methodallow the observer
to perform a variety of detailed follow-up studies. Analyzing the photometric and spectroscopic
signals, we are able to uncover the composition of the planetary atmosphere and determine its surface
temperature, an important step towards the detection of life in the universe. In the following we
introduce the techniques that are currently used to study transiting extra-solar planets.

Figure 1.27: The orbit of a transiting planet (taken from Winn (2009)).

Analysis of the planetary atmosphere

During a transit, the light of the star shines through the atmosphere of a transiting planet (see
Fig. 1.28). Comparing the spectra before and during the transit, the detection of additional absorption
features can reveal the presence of atoms and molecules. Since the effect is very small, such
measurements can presently only be done for very bright stars and exclusively from space.
Charbonneauet al. (2002) published the detection of sodium in the atmosphere of HD209458b.
Using the Hubble-Space-Telescope STIS spectrograph, they found that the transit depth in a
bandpass centered on the sodium feature is deeper by 2.32·10−4 relative to the transit depth in
comparison bands. In the following years, also atomic Hydrogen, Carbonand Oxygen have been
found in the outer atmosphere of HD209458b (Vidal-Madjaret al., 2003, 2004). More recently,
Tinetti et al.(2007) detected a clear signal of water vapor in the transmission spectrumof HD189733b.
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Figure 1.28: Transmission spectroscopy of an extra-solar planet’s atmosphere (taken from
www.http://www.windows.ucar.edu/tour/link=/headlineuniverse/extrasolar.html).

Detection of thermal emission

Thermal emission of transiting extra-solar planets has been detected by several groups. During
the secondary eclipse, i.e. when the planet disappears behind the star, the brightness drops by a
small amount which is equal to the emitted light from the planet in the observed wavelength region.
Assuming a black-body law the so-called brightness temperature of an extra-solar planet can be
determined.
Infrared observations with the Spitzer Space Telescope (Werneret al., 2004) have been used to suc-
cessfully measure the day-side temperature of 6 planets so far. In two additional cases, TrES-3b and
OGLE-TR-56b, a detection of a thermal signal was possible even from ground based observations.
Table 1.4 gives an overview of the measured temperatures of extra-solarplanets.
The observations of Knutsonet al. (2007) span more than half of an orbital period, covering primary
and secondary eclipse (see Fig. 1.29). Analyzing the brightness variations between both transits, they
were able to derive also the night-side temperature which they found to be 973± 33K, indicating that
the energy from the irradiated day-side is efficiently redistributed throughout the atmosphere.
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planet Temperature wavelength reference

GJ436b 717± 35K 8 µm Demoryet al. (2007)
712± 36K 8 µm Deminget al. (2007)

HD149026b 2 300± 200K 8 µm Harringtonet al. (2007)
HD189733b 1 117± 42K 16 µm Deminget al. (2006)

1 212± 11K 8 µm Knutsonet al. (2007)
HD209458b 1 130± 150K 24 µm Deminget al. (2005)

TrES-1b 1 060± 50K 4.5 and 8.0µm Charbonneauet al. (2005)
TrES-3b 2 040± 185K 2.2 µm de Mooij & Snellen (2009)
TrES-4b 2 290± 220K 8 µm Knutsonet al. (2009)

OGLE-TR-56b 2 718± 117K 1 µm Sing & López-Morales (2009)

Table 1.4: Brightness temperatures of extra-solar planets derived fromsecondary eclipse measure-
ments. Except for TrES-3b and OGLE-TR-56b, all observations havebeen done with the Spitzer
Space Telescope.

Figure 1.29: Infrared light curve of HD189733b showing primary and secondary eclipse and sinu-
soidal variations caused be a temperature gradient between day- and night-side.
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In an advanced form, secondary eclipse measurements in multiple bands canbe used to obtain a
(very) low resolution emission-spectrum of a planet. Swainet al. (2008) measured thermal emission
of HD189733b in 18 different bands between 1.5 and 2.5µm. They conclude, that the observed inten-
sity distribution indicates the presence of H2O, CO2 and CO in the planet’s atmosphere (see fig. 1.30).

Figure 1.30: Day-side emission spectrum of HD189733b. The observedspectrum (black markers) is
compared to model spectra with different components.

Analysis of the spin-orbit alignment

As the planet transits its host star, it covers different parts of the stellar surface. Since all stars
are rotating, each surface element has a differential radial velocity whereas the measured radial
velocity of the star is the sum of all surface elements. Blocking some fraction of the stellar light,
the transiting planet causes a line-asymmetry which results in a small shift of thetotal stellar
radial velocity that is measured during the transit (see Fig. 1.31). This is known as the Rossiter-
McLaughlin-Effect (Rossiter, 1924; McLaughlin, 1924).
Using the Rossiter-McLaughlin-Effect, the alignment between the projectedspin vector of the star
and the orbital vector of the planet can be determined. According to planetformation theories (see
§1.2), a good spin-orbit alignment is expected since the angular momentum should be the same for
the star and the proto-planetary disk in which the planets form.
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Figure 1.31: The Rossiter-McLaughlin-Effect (taken from www.oklo.org).

planet projected spin-orbit angle reference

HD209458b -4.4◦ ± 1.4◦ Winn et al. (2005)
3.9◦ ± 20◦ Quelozet al. (2000)

HD189733b -1.4◦ ± 1.1◦ Winn et al. (2006)
HD149026b -12◦ ± 15◦ Wolf et al. (2007)
HD17156b 62◦ ± 25◦ Naritaet al. (2008)

9.4◦ ± 9.3◦ Cochranet al. (2008)
TrES-1b 30◦ ± 21◦ Naritaet al. (2007)
TrES-2b -9◦ ± 12◦ Winn et al. (2008)

HAT-P-1b 3.7◦ ± 2.1◦ Johnsonet al. (2008)
HAT-P-2b 1.2◦ ± 13.4◦ Winn et al. (2007)

0.2◦ ± 12.3◦ Loeillet et al. (2008)
WASP-14b -14◦ ± 17◦ Joshiet al. (2009)
CoRoT-2b 7.2◦ ± 4.5◦ Bouchyet al. (2008)

XO-3b 37.3◦ ± 3.7◦ Winn et al. (2009)
70◦ ± 15◦ Hébrardet al. (2008)

Table 1.5: Spin-orbit alignment of transiting extra-solar planets.

In Table 1.5 we summarize the results of all spin-orbit studies that have beendone so far. In most
cases there is a good alignment. Only two systems were found to be significantlymisaligned:
the controversial case of HD17156b and XO-3b where two authors measured a high value of the
projected spin-orbit angle.
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Detection of additional planets

Accurate measurement of transit timing variations (TTV) opens up the possibility to detect ad-
ditional planets. The gravitational perturbation will cause the time between subsequent transits to
change slightly (Holman & Murray, 2005; Agolet al., 2005). The effect is especially high, if the
perturbing planet is in a mean motion resonance. In this case, even Earth-mass planets can be found
with current instrumentation. Fig. 1.32 shows the predicted TTV of HD209458b for a range of
perturbing planets.

Figure 1.32: Theoretical TTV of HD209458b for a coplanar perturbing1.05 MJup planet with an
orbital period of 99.8, 46.4, 28.0, and 19.2 days (A to D) and eccentricity of 0.7, 0.5, 0.3, and 0.1
respectively (taken from Holman & Murray (2005)).

At the present time, no planet detection has been achieved by measuring TTV and only upper limits
have been derived. However, a large number of groups have startedto measure accurate transit
times. Especially the space missions CoRoT and Kepler will be able measure TTVwith a surpassing
accuracy.
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Detection of Moons

The detection of a photometric signal from moons of transiting extra-solar planets is extremely
challenging, even from space, where the precision is enhanced by orders of magnitudes (Sartoretti
& Schneider, 1999). Several authors have suggested to use TTV to search for extra-solar moons
(Sartoretti & Schneider, 1999; Szabó et al., 2006; Simonet al., 2007). However, Kipping (2009)
pointed out that the TTV amplitude is proportional to both the mass MM and the orbital distance aM

of the moon

δTTV ∼ MM ·aM . (1.24)

He argues that since the period of the moon (and therefore the distance aM) cannot be reliably deter-
mined from the TTV signal, the mass of a detected moon will remain unknown. However, he found
that a moon will also cause transit duration variations (TDV) with

δTDV ∼ MM ·a−1/2
M , (1.25)

which is of a similar order of magnitude asδTTV. By combining the measurements of both TTV and
TDV, the mass of the moon can be determined. According to Kipping (2009), TTV and TDV caused
by a moon with 1 MEarth orbiting the transiting planet GJ436b could be as large as 20s, which is
within the reach of current photometric follow-up capabilities.

1.7 Habitability of Planets and the Search for Life

Mankind has always been curious about the existence of extra-terrestrial life. The discovery of the
first planet around a main-sequence star (Mayor & Queloz, 1995) hascaught the attention of both
scientists and non-scientists and the ongoing search for extra-solar planets is now followed with great
public interest. The results from the last years have shown that gaseousgiant planets are common in
the Galaxy and it is only a matter of time until the first rocky Earth-like planet is detected.
A new branch of science has been formed combining the two disciplines astronomy and biology.
Astrobiology has been defined as “the study of the living universe” (NASA Astrobiology Institute,
2004). On purpose, this definition includes the study of life on Earth. In fact, since no extra-terrestrial
life has been found so far, we have to learn from life on Earth and extrapolate our knowledge to other
places in the universe.

What is life?

This is not a trivial question. There have been various attempts in the literature to find a com-
prehensive scientific definition of life, most of them face problems in the form of counter-examples.
E.g., metabolic definitions of life find it hard to exclude fire (since it grows andreproduces through
chemical reactions) and thermodynamic definitions find it hard to exclude mineral crystals (which
create and sustain local order). For a more detailed discussion see Chyba & McDonald (1995) and
Chyba & Hand (2005).
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Maybe a purely scientific answer can never be given, since the question“what is life?” is partly
philosophical. The focus of Astrobiology is therefore to study life not to finda definition for it.
Life on Earth is based on carbon chemistry. However, it would be naive toexclude the existence
of life based on other elements, such as silicon (Feinberg & Shapiro, 1980). Nevertheless, several
carbon-based molecules have been identified in the interstellar medium (Ehrenfreundet al., 2002)
whereas silicon-based molecules have not been found in a large number.This suggests that life is
more likely based on carbon-chemistry. Anyway, it seems natural to first try to understand life as
we know it. In the following considerations, we focus on extra-solar life that is similar to the life on
Earth.

The Habitable Zone

Several groups have addressed the question of under which conditions a planet is suitable for
the development of life (Rasool & de Bergh, 1970; Hart, 1979; Kasting,1988). The presence of
liquid water is an essential parameter since water acts as a polar solvent providing a medium in which
molecules may dissolve and chemical reactions may occur.
The Habitable Zone (HZ) of a star has been defined as a shell in which liquid water can be present
on the surface of a rocky planet (Kastinget al., 1993). The inner edge of the HZ is determined by
the photolysis of H2O and the resulting H escape. The outer edge is determined by the creation of
CO2-clouds in the atmosphere of the planet which increase its albedo and causea runaway glaciation
process.
Within this range, the carbon-silicate cycle acts as a stabilizing negative feedback mechanism:
CO2 is removed from the atmosphere by weathering processes of calcium and silicon in rocks and
subsequent precipitation as carbonate sediments. Vulcanism feeds backCO2 into the atmosphere.
There is a balance between both processes which stabilizes the Earth’s climate (for more details about
the carbon cycle we refer to Houghton (2003)). Conservative estimatesfor our Solar System define a
HZ from 0.95 to 1.37 AU (Kastinget al., 1993). Hotter stars have larger HZs.
As we know from the history of life on Earth, the development of complex organisms takes a long
time. There is robust and abundant fossil evidence for life on Earth morethan 3 billion years ago. In
this time span, the Sun’s luminosity increased by about 40%. As a consequence the HZ has evolved
outwards. Kastinget al.(1993) define the continuous habitable zone (CHZ), as the shell arounda star
in which liquid water can be present over time scales of billions of years. According to conservative
estimates, the 4.5 Gyr CHZ of the Earth around the Sun extends from about 0.95 AU to 1.15 AU.
The CHZ disappears for massive stars that have a main-sequence lifetime shorter than 4.5 Gyr. The
development of life is therefore assumed to occur on planets around G-stars and later types. The
CHZs of low-mass stars (later than mid-K) are at very close distances and liewithin the tidal lock
radius at which tidal interactions result in a permanent day- and night-sides of the planet and the loss
of its magnetosphere. The synchronous orbit will make the planet a very harsh environment, which
would very unlikely allow the development of life. In sumamry, G-Stars are themost interesting
targets in the search for life because more massive stars have a shorter lifetime and less massive stars
have a HZ that is too close.
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The Galactic Habitable Zone

Several authors suggested that there might be a preferable region in our Galaxy for the devel-
opment of life (Gonzalezet al., 2001; Lineweaveret al., 2004), often referred to as the Galactic
Habitable Zone (GHZ). If the observed planet frequency metallicity relationfor Jupiter-sized planets
(see§1.4) can be extrapolated to rocky planets, the radial metallicity gradient in the Milky Way
indicates that the more metal rich inner regions will bear more planets than the outer regions.
However, supernova explosions are expected to have a life-threatening effect on all neighboring
stellar systems. The more dense regions in the bulge of the Galaxy and the starforming regions in the
spiral arms may therefore impose a higher radiation risk for the developmentof life. In this context,
our Solar System is located in a preferred location. At a distance of 8.5kpcfrom the Galactic center,
the Sun is situated in the corotation zone, where it keeps pace with the spiral arms. Close supernova
explosions have therefore been very rare in the past.
Taking into account both the metallicity effect and the supernova risk, Lineweaveret al. (2004)
estimated the GHZ to extend from about 7 to 9 kpc distance from the Galactic center.

The Intelligent Universe?

Various attempts have been made to address the question whether or not intelligent species ex-
ist elsewhere in the universe. In the following, we summarize some of the mostpopular arguments
for or against extra-terrestrial intelligence.

The Copernican principle: The Copernican principle states that the Earth is not in a central,
specially favored position. This concept can be extended to say that humans are not privileged
observers of the universe. As the Earth is only one of many planets in the Solar System, humans
might be only one of many life forms that exist in the Universe.

The large number argument: In our universe, there are hundreds of billions of galaxies with
each of them having hundreds of billions of stars. It seems natural to expect that at least some of
these have planets upon which life has developed and advanced civilizations live. The famous Drake
equation, which was written down as a meeting agenda for a conference held in November 1960 in
Green Bank, is the mathematical representation of the large number argument:

N = R⋆ · fp ·ne · fl · fi · fc ·L , (1.26)

where the number of coexisting technically communicative civilizations in the Galaxy N is calculated
by multiplication of the rate of star formationR⋆ with the fraction of stars that have a planetary
systemfp, the average number of planets in each system that are suitable for the development of life
ne, the fraction of those on which life actually evolvesfl , the fraction of those on which intelligent
life evolves fi , the fraction of those which become communicativefc and the average lifetime of such
a communicative civilizationL.
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The problem with the Drake equation is that most of its factors can only be guessed. Only for the
first three (R⋆, fp andne) we have a reliable estimate. Probably the most uncertain factor isL, which
could have a value of anything between the lifetime of a star (∼1010years) and the time between
the development of radio and the production of nuclear weapons (∼102 years). Therefore, the
uncertainties inL alone frustrate any estimation ofN.

Fermi’s paradox: The Fermi Paradox is the apparent contradiction between a high probabil-
ity of the existence of extra-terrestrial civilizations and the lack of evidence for it. If intelligent
life were common, there must have been more advanced civilizations than mankind which long
ago developed interstellar travel and would therefore have already populated the whole Galaxy and
inevitably have reached the Earth. Since no signs of such civilizations have been found, they must
not exist.
Several solutions to the Fermi paradox have been proposed. One (hopefully wrong) solution is that
advanced civilizations have a high probability of destroying themselves on ashort timescale. Another
possibility is that we just did not look carefully enough to find other civilizations.

The Search for Extra-Terrestrial Life

The most promising scientific projects in the search for evidence of extra-terrestrial life are the
ESA mission DARWIN (Cockellet al., 2009) and NASA’s Terrestrial Planet Finder (TPF) mission
(Beichmanet al., 2006). Both projects aim at the detection and characterization of atmospheres of
nearby Earth-like extra-solar planets using infrared interferometry andspectroscopy. In particular,
the goal is to find signatures of so called biomarkers which indicate the presence of life on a planet.
CO2, H2O are considered to be important for the habitability of a planet. Other moleculessuch as O3
or CH4 are resulting from biological activity.
Given the ambitious nature of both projects and the common problem of funding, NASA and ESA
may in the end collaborate on a joint Darwin/TPF mission. Russia and Japan have also expressed
their interest in contributing to the mission (according to www.esa.int).

The Search For Extra-Terrestrial Intelligence

One may ask, why take the detour of looking for biomarkers if we could as easily try to listen
to signals emitted from other civilizations? In fact, the first thoughts in this direction were published
by Cocconi & Morrison (1959) which is today considered to be the birthplace of SETI, the Search for
Extra-Terrestrial Intelligence. Cocconi and Morrison proposed to use radio telescopes to search for
signals with a narrow bandwidth close to the 21cm line of hydrogen.
A first SETI project named Ozma was conducted by Frank Drake back in 1960. In 200h he analyzed
the signals of two stars with the new 85 foot radio telescope at Green Bank. Although Ozma did not
find a signal from an extra-terrestrial civilization, it became the model formost future SETI projects.
In November 1960, the Green Bank conference was the first place where scientists discussed the
possibility of extra-terrestrial intelligence. Despite different opinions on various aspects, the general
consensus was that intelligent life most likely exists outside Earth and that it was worthwhile to
search for it.
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However, only small surveys were conducted in the following years (e.g.Ozpa or Ozma II). One
survey worth mentioning is the Big Ear project. In 1973, a radio antenna of the size of a soccer field
started a continuous scan of the sky. On the 15th of August 1977, the Big Ear heard a strong signal
that was recorded over a duration of 37s (which is the time needed for an object on the sky to move
out of the view of the telescope). The detection became famous as the “Wow”-signal. To date there
is no explanation that could rule out an alien origin. But unless the signal is detected again, we may
never know for sure what the Big Ear heard.
The situation of SETI changed in the 70s, when NASA joined by sponsoringworkshops and studies
on the feasibility of SETI. Ambitious programs were designed such as the Cyclops mission (Oliver,
1973), a large array of radio telescopes with a diameter of a few km (see Fig. 1.33).

Figure 1.33: Artist’s concept of the entire Cyclops system. The diameter of the antenna array is about
16 kilometers.

Ambitious projects needed extensive funding which was becoming more and more a problem for the
proposed SETI. It was not until 1992 that NASA started a targeted SETImission using the 305m
Arecibo radio telescope in Puerto Rico. At the same time an all-sky radio survey began at a 34m dish
at Jet Propulsion Laboratory. Surprisingly, only one year after its start, both projects were terminated.
After an investment of around 60 million dollars over 23 years, and less thanone year of operation,
NASA’s SETI project was dead.
When NASA pulled out, the SETI institute stepped in. Founded in 1984, the SETI institute sponsored
and conducted research on SETI and life in the universe. The institute was able to raise enough
private funding to save the targeted search that had been started at the Arecibo telescope.
From 1995 to 2004, a total of 1 000 solar-type stars closer than 200 pc were analyzed in the project
Phoenix. The project was conducted on several big radio telescopes,namely the 64m telescope of
Parkes Observatory in Australia, the 42m Green Bank Telescope and the305m Arecibo telescope.
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The ongoing untargeted search SERENDIP was started in 1996 at the Arecibo telescope. Permanently
mounted, the SERENDIP receiver scans whatever region the telescope happens to point at. Due to
a need for computational resources to analyze the enormous amount of data that is collected, the
project SERENDIP invented SETI@home, a joint network of users that donate their computational
resources to analyze a small subset of the recorded radio signals.
After the start of SETI@home in 1999, there was a stunning response. The idea of participating in
such a fascinating process as the detection of alien life motivated computer users worldwide to let
their computers run day and night with the hope of being the one who detects the first signal of an
extra-terrestrial civilization.
Today, the SETI@home community has hundreds of thousands of members in more than 200
countries (see www.setiathome.org). Although no evident signal of an extra-terrestrial civilization
has ever been found, people around the globe continue to let their computers search for signals from
outer space, true to the motto of Cocconi and Morrison: “The probability ofsuccess is difficult to
estimate; but if we never search, the probability of success is zero.”



Chapter 2

The pre-OmegaTranS Survey

2.1 Abstract

In late 2004, a consortium of astronomers from INAF1 Capodimonte (Italy), Sterrewacht Leiden
(Netherlands) and MPE Garching (Germany) designed the OmegaCam Transit Survey (Omega-
TranS). A total of 26 nights of guaranteed time observations with OmegaCam (Kuijken et al., 2002)
at the VLT Survey Telescope (Capaccioliet al., 2002) were granted to this project by the three
institutes. Scaling from existing surveys, OmegaTranS was expected to deliver 10-15 new detections
per year with the main power being the large 1 sq.deg. field of view of the OmegaCam detector. Note
that at that time only 8 transiting planets were known.
Due to ongoing delays in the construction and commissioning of the telescope, the start of the project
has been delayed further and further. At the present time, we expect the telescope to be ready in 2010.
Since there are already more than 50 transiting planets known today, the impact of OmegaTranS in its
original design will not be very high. We therefore decided to change thestrategy and optimize the
survey for the detection of low-mass planets around M-dwarfs and Hot Jupiters in open stellar clusters.

In order to start the project and to collect the first data, we conducted a pre-OmegaTranS sur-
vey using the ESO Wide Field Imager (WFI) mounted on the 2.2m telescope at LaSilla observatory
(Baadeet al., 1999). The aim of this project was, on the one hand, to finalize the set-upof the Omega-
TranS data reduction pipeline and, on the other hand, to possibly find the first transit candidates.
In §2.2 we give an overview of the pre-OmegaTranS data set. Standard data reduction procedures
are described in§2.3. In order to obtain absolute photometry and color information for each star in
our target field, we perform a photometric calibration as explained in§2.4. The creation of the light
curves using the difference imaging technique is presented in§2.5. In §2.6 we introduce our light
curve analysis and candidate selection process and in§2.7 we present 4 transiting planet candidates
that were detected. Simulations on the survey efficiency are summarized in§2.8. We present survey
byproducts such as eclipsing binaries or other variable stars in§2.9. Finally, we draw our conclusion
in §2.10

1 Instituto Nazionale di Astrofisica
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2.2 The Data

For the first season of the pre-OmegaTranS survey, we observed twoadjacent WFI fields (OTSF-1a
and OTSF-1c) which are the north-west and south-west corner of thepreviously selected best
OmegaTranS field OTSF-1 (Barbieri, 2007). In the following seasons in 2007 and 2008, we decided
to observe only OTSF-1a due to the limited amount of observing time that was available. The
image center of OTSF-1a is at RA=13h35m41.6s and DEC=-66◦42’21” and the field dimensions are
34’x33’.
As the outcome of 7 proposals (both for public ESO time and MPG reserved time), a total of 129h
of observations were collected in the years 2006-2008. Spread over 34 nights, we obtained a total
of 4433 pointings in the Johnson R-band (filter #844, see WFI user manual). The exposure time
was 25s in most cases. Under very good and very bad observing conditions we slightly adjusted the
exposure time in order to achieve a stable S/N and to avoid saturating too many stars. Fig. 2.1 shows
the exposure time distribution of all pre-OmegaTranS images. The average cycle rate (exposure,
readout and file transfer time) is 107s. There is a second much shallower peak in the cycle rate
distribution (Fig. 2.2) at around 230s which is made of the few images taken in 2006 when we were
alternating between two fields. In Fig. 2.3 we show the PSF FWHM (seeing hereafter) distribution of
all observations. 167 images with a seeing larger than 2.5 arcsec are not used because of their bad
quality.
In addition to the science images, we obtained calibration images (i.e. bias and flatfield exposures)
for each of the 34 nights. The total uncompressed raw data set comprises725 GBytes (589 GBytes
science data, 136 GBytes calibration data).
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Figure 2.1: Exposure time distribution of the pre-OmegaTranS observations.Most images were ex-
posed for 25s. Under very bad or very good seeing conditions we slightly adjusted the exposure
time.
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Figure 2.2: Cycle rate distribution of the pre-OmegaTranS observations. The typical time between
two pointings was 100 seconds. Varying readout and data transfer times resulted in a broadening of
the distribution. In 2006 we were alternating between 2 fields which roughly doubled the cycle rate,
visible as a second much shallower peak at around 230s.
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Figure 2.3: Seeing distribution of the pre-OmegaTranS observations. 167pointings with a seeing
larger than 2.5 arcsec are not used.
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CCD gain (e−/ADU) readout noise bad pixel fraction
ccd50 1.98 5.68 e− 2.56%
ccd51 1.95 5.62 e− 0.58%
ccd52 2.24 5.62 e− 0.75%
ccd53 1.95 5.50 e− 2.49%
ccd54 1.99 5.75 e− 0.45%
ccd55 2.00 6.00 e− 6.77%
ccd56 2.13 5.39 e− 2.28%
ccd57 2.14 5.37 e− 0.97%

Table 2.1: WFI CCD characteristics. All CCDs have a size of 2kx4k pixel with a pixel scale of 0.238
arcsec/pixel.

2.3 Standard Reduction

The basic CCD data reduction steps were done using the Astro-WISE2 standard calibration pipeline.
For a complete description of all tasks we refer to the Astro-WISE User andDeveloper manual3. The
data reduction pipeline treats all CCDs as independent detectors. Throughout this chapter, the term
’image’ refers to the pixels of one single CCD.

2.3.1 The gain

The factor that is converting detector counts4 into photon numbers is calledgain. Thegain of a CCD
can be modified in order to adjust its dynamic range. This is usually done during commissioning of
the detector. After that, thegain is only changed on rare occasions.
To measure thegain, one can use flatfield images with different signal levels. The idea is to measure
the signal and variance of detector counts in several pairs of images, atdifferent light levels. The
inverse slope of the linear relationship between variance and signal is equal to the gain5. The
measured values for each CCD are listed in Table 2.1.
Multiplication of the raw images with thegainvalue provides photon number counts for each pixel.

2.3.2 Construction of the master bias images

For each of the 34 nights we constructed a master bias image using a set of raw bias exposures. First
we determined and subtracted the bias level of each single image as the per-row average values of
the overscan in x-direction, smoothing the averages over 10 rows (method10, in Astro-WISE). The
bias level was different for each CCD and varying between 100-200 detector counts. To construct
the master bias image, we averaged the overscan corrected single images applying a 3σ -clipping
algorithm.

2 Astronomical Wide-field Imaging System for Europe
3 http://www.astro-wise.org/docs/Manual.pdf
4 measured in Analog-Digital-Units (ADU)
5 for further details see e.g. http://www.mirametrics.com/technoteccdgain.htm
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Further we were using two raw bias images of each night to determine the readout noise of the
detector. The readout noise was calculated as the RMS of the differenceof the raw biases divided
by

√
2. The average readout noise values for each CCD are shown in Table2.1, an example master

bias image of ccd50 is shown in Fig. 2.4.

2.3.3 Construction of the master flatfield images

In order to correct for variations in the pixel-to-pixel sensitivity, for inhomogeneous illumination of
the CCDs and for dimming effects caused by dust pollution of the optical elements, we constructed
a normalized sensitivity map for each night, a so called master flatfield image. Dividing the science
images by the master flatfield we removed all of the linear effects.
In order to create a master flatfield image, one can either use images of a uniform illuminated screen
that is placed within the telescope enclosure (domeflats) or images of the twilightsky (skyflats). One
disadvantage of domeflats is that the light does not enter the telescope in parallel beams (since the
dome screen is very close to the telescope). Therefore only the pixel-to-pixel variations are well
represented whereas the illumination pattern and dimming effects are not. In case of skyflats, all
light beams enter the telescope almost parallel. Pixel-to-pixel variations, illumination pattern and
dimming effects are well represented. Unfortunately, skyflats can only betaken in perfectly clear sky
conditions and in the limited twilight period. As a consequence, skyflats are not always available and
the S/N is usually lower compared to domeflats.
To construct the master flatfield images, we combined domeflats and skyflats. Using a Fast-Fourier-
Transformation algorithm, the master flatfield was constructed by extracting lowspatial frequency
components from the skyflat and high spatial frequencies from the domeflat (combine type 1, in
Astro-WISE). An example master flatfield image of ccd50 is shown in Fig. 2.4.

2.3.4 Construction of the bad pixel masks

All pixels with non-linear response were considered to be not useful or’bad’ pixels. Pixels with
values that are systematically too high (hot pixels) were identified as positive5σ -outliers in the
master bias images. Pixels with values that are systematically too low (cold pixels) were identified in
the master flatfield images as pixels that are more than 6% below the local detectorcount level.
Combining the hot pixel maps (one for each master bias image) and the cold pixel maps (one for
each master flatfield image) we constructed a master bad pixel mask for each of the 8 CCDs which
we applied to all science images. In addition to hot and cold pixels we masked bad columns that have
been identified by eye. The fraction of masked pixels is listed in Table 2.1 for each CCD. In Fig. 2.4
we show the bad pixel mask of ccd50 (right panel).
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2.3.5 Data reduction of the science images

To all raw science images we applied an overscan correction and subtracted a normalized master bias
image (see§2.3.2). Further we divided each science image by a master flatfield image (see§2.3.3).
All nonlinear pixels and bad columns were flagged using the master bad pixelmask. In some images,
tracks of coincidentally observed satellites were visible. We detected the tracks using a Hough
transform (Duda & Hart, 1972) and masked all affected pixels.

Figure 2.4: Example master bias image (left), master flatfield image (middle) and master bad pixel
mask (right) of ccd50.

2.3.6 Cosmic ray filtering

Cosmic rays and high energy particles originate from radio-active decaywithin the camera and hit the
detector during the exposure and readout process. This is visible as very narrow peaks in the images
(cosmics). We identified cosmics using a 5-parameter Gaussian fit (for elongated cosmics) and a
3-parameter Gaussian fit (for circular cosmics) to all local maxima in each image. If the FWHM of
a local maximum was found to be smaller than 1.5 pixel (0.36 arcsec) and if the amplitude of the
Gaussian fit was more than 5σ higher than the local background, the local maximum was considered
to be a cosmic and all pixels that are 2σ higher than the local background were masked.
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2.3.7 Astrometry

All images of one CCD roughly map the same part of the sky. However, small shifts of the individual
exposures (smaller than 20 pixels) arise from a limited pointing accuracy anddithering6.
For the following data reduction steps, it was necessary to align all images witha sub-pixel precision.
In Astro-WISE, this is done with the LDAC tools (Deulet al., 1995). There are two possibilities for
calculating the astrometric solution: astrometry of one image relative to an external reference catalog
(e.g. USNO-A2.0, Monet (1998)) and astrometry of one image relative to areference image. The
first method is used to a achieve a good absolute astrometric calibration whereas the second method
is better in achieving a good relative astrometry (because of a higher number of reference stars and
smaller proper motion7 effects).
We calculated the absolute astrometric solution only for the best seeing image. The positions and
brightnesses of several hundred stars were measured with SExtractor(Bertin & Arnouts, 1996) and
compared to the USNO-A2.0 catalog. Using least-square methods, a transformation was calculated
that corrects for a shift, a rotation and a 3rd order polynomial distortion.
For all other images we performed a relative astrometric calibration in order tooptimize the overlap
of all sources in the whole field of view of one CCD. The procedure of deriving the relative
astrometric solution is the same as for absolute astrometry with the only difference that we replaced
the USNO-A2.0 reference catalog by a catalog that has been extracted from the reference image (see
§2.5.1). Typically 300-400 reference stars were used to derive the relative astrometric solutions of the
4266 single images. Fig. 2.5 shows the spatial residuals of one astrometic solution. In Fig. 2.6 we
plot a RMS-histogram of all astrometric solutions with RMS≤ 0.1 arcsec. Only 12 images had an
RMS larger than 0.1 and were not used in the following.

After calculating the astrometric solution (either with absolute or relative astrometry), each
image was resampled to a new grid with a smaller pixel scale of 0.2 arcsec/pixel using the program
SWarp8. The redistribution of the flux was done with a LANCZOS3 interpolation algorithm.

6 the pointing of the telescope is shifted on purpose by a few pixels in order to avoid that the stars always fall on the same
pixel on the detector which would increase the amount of correlated noisein the light curves

7 due to small differences in the motion of the stars in the Milky Way, the stellar positions on the sky are changing with
time; this effect is larger for closer stars

8 http://terapix.iap.fr
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Figure 2.5: Spatial residuals of an arbitrary astrometric solution.
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Figure 2.6: RMS histogram of all astrometric solutions. The median value is 0.04arcsec. We use all
images with an RMS smaller than 0.1 arcsec.

2.4 UBVRI Photometry

In order to determine absolute magnitudes and colors for each star in our target field, we performed a
photometric calibration. On March 25th 2006, we obtained 3 dithered U-bandexposures (filter #877)
of OTSF-1a. Furthermore, on March 28th 2006, we obtained 3 dithered exposures in B-, V-, R- and
I-band (filter #878, #843, #844 and #879). Table 2.2 list the observingconditions of the photometric
calibration images.

We transformed the measured magnitudemmeas,i (see below) of each stari into a calibrated
magnitudemcal,i according to the following formula:

mcal,i = mmeas,i +2.5· log(exptime)−Ef ·airmass+Cf ·colori +ZPf ,c . (2.1)

The first correction term normalizes the measurements to 1s exposure time. The second term corrects
for extinction in the Earth’s atmosphere9 with a filter-dependent extinction coefficientEf . The third
term accounts for differences in the transmission curve of the WFI filters tothe Johnson-Cousins filter
system. Lastly, the zeropointZPf ,c (which is different for each filter and CCD) is added to account
for overall throughput of the telescope-camera system.

9 the airmass is the amount of air that the light from a distant source has to pass until it enters the telescope; in plane parallel
approximation, the airmass is equal to 1/cos(z) with z being the zenith distance
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filter airmass exposure time seeing
U 1.26 3x300s 1.15”
B 1.40 3x30s 1.05”
V 1.38 3x24s 0.85”
R 1.36 3x10s 0.90”
I 1.35 3x17s 1.00”

Table 2.2: Observing conditions of the images used for the photometric calibration.

U B V R I
ext 0.48 0.23 0.18 0.16 0.11
col 0.05 0.25 -0.13 0.00 0.03

Table 2.3: Extinction and color coefficients. The B, V, R and I-band extinction coefficients have been
measured whereas the U-band extinction coefficient and all color coefficients were taken from the
WFI web page.

The color coefficients are fixed properties of the WFI-filters and have been published on the WFI
web page10. The extinction coefficients and zeropoints, however, change with time andhave to be
measured using standard star observations. For the calibration in B-, V- R- and I-band, 4 observations
of standard star fields (Landolt, 1992) were taken at various airmasses. This enabled us to determine
the extinction coefficients and zeropoints in these bands. For the U-band calibration, there were
only 2 Landold standard star field observations available, taken at almost exactly the same airmass.
Therefore, we had to use the U-band extinction coefficient published onthe WFI web page.
After standard reduction of the images (as described in§2.3), we performed aperture photometry on
all stars in the Landolt fields and compared the measurements to the values in thereference catalog.
In order to have almost all flux within the aperture (independent from seeing), it is important to
use a big aperture when measuring the reference star fluxes. We used an aperture with 30 pixel
diameter (=̂ 6 arcsec). We compare our measurements to a reference catalog that hasbeen exported
from Astro-WISE which contains measurements from Landolt, Stetson (Stetson, 2000) and from
the Sloan Digital Sky Survey (SDSS) Data Release 5 (Adelman-McCarthyet al., 2007). SDSS
measurements were transformed into the Johnson-Cousins filter system using the equations given in
Jesteret al. (2005).
In order to derive the extinction coefficientsEf for B-, V-, R- and I-band, we first corrected the
measured valuesmmeas,i for exposure time and color term (see eq. 2.1) and then fitted a linear function
to the residuals as a function of airmass. We iteratively clipped 2.5σ outliers in order to improve the
stability of the fit.
We assumed that the extinction coefficient is independent of CCD number and used the average of
the values we obtained for the individual CCDs. Table 2.3 lists the measured extinction coefficients
for B-, V-, R- and I-band as well as the extinction coefficient of the U-band and the color coefficients
that were taken from the WFI web page.
After the extinction and color term correction, we derived a zeropoint for each CCD and filter by
fitting a constant offset to the residuals. Table 2.4 lists our measured zeropoints. The errors of the
zeropoints were estimated from the RMS of the final residuals.

10http://www.eso.org/sci/facilities/lasilla/instruments/wfi/inst/zeropoints/
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CCD ZPU [mag] ZPB [mag] ZPV [mag] ZPR [mag] ZPI [mag]
ccd50 22.32±0.06 24.77±0.03 24.12±0.04 24.46±0.05 23.36±0.09
ccd51 22.20±0.11 24.88±0.02 24.24±0.03 24.55±0.03 23.48±0.05
ccd52 22.20±0.09 24.66±0.04 24.01±0.03 24.37±0.06 23.29±0.07
ccd53 22.18±0.06 24.83±0.05 24.20±0.03 24.55±0.09 23.42±0.08
ccd54 22.24±0.12 24.80±0.03 24.15±0.04 24.54±0.09 23.41±0.08
ccd55 22.25±0.12 24.89±0.05 24.24±0.04 24.58±0.07 23.47±0.09
ccd56 22.14±0.10 24.82±0.04 24.19±0.04 24.51±0.05 23.39±0.05
ccd57 22.21±0.11 24.66±0.04 24.03±0.03 24.39±0.06 23.31±0.07

Table 2.4: Measured U-, B-, V-, R- and I-band zeropoints of each CCD.

As an example we plot the residuals of the photometric calibration in B-band. InFig. 2.7, we show
the residuals after correcting for all but the extinction term as a function ofthe airmass. The slope
of the fit to the residuals (black line) reveals the extinction coefficientEB. In Fig. 2.8, we show
the residuals after correcting for all but the color term as a function of color. The black line which
corresponds toCB=0.25 fits well to the residuals which confirms the color coefficient taken from the
WFI web page.
In order to check if we had to correct for zeropoints variations over thefield of view of one CCD
(known as illumination correction), we plot the residuals as a function of x- and y-position on the
CCD (Fig. 2.9). We found no strong trends and therefore used a constant zeropoint for each CCD.
We plot the final residuals as a function of Universal Time (UT) in order toproof that the night was
indeed photometric (Fig. 2.10).
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Figure 2.7: Residuals of the photometric B-band calibration as a function of airmass. Different colors
represent different reference catalogs. Using a linear fit to the residuals (black line) we determined
the extinction coefficient.
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Figure 2.8: Residuals of the photometric B-band calibration as a function of color. The inverse slope
of the black line represents the color coefficient that we obtained from theWFI web page which fits
well the observed residuals.

 0  500  1000  1500  2000
−0.5

0.0

0.5

LandoltLandoltLandoltLandoltLandolt StetsonStetsonStetsonStetsonStetson SDSS5SDSS5SDSS5SDSS5SDSS5

x

m
ag

 −
 m

ag
st

d

 0  1000  2000  3000  4000
−0.5

0.0

0.5

LandoltLandoltLandoltLandoltLandolt StetsonStetsonStetsonStetsonStetson SDSS5SDSS5SDSS5SDSS5SDSS5

y

m
ag

 −
 m

ag
st

d

Figure 2.9: Final residuals of the photometric B-band calibration as a function of x- and y-position.
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Figure 2.10: Final residuals of the photometric B-band calibration as a function of universal time. No
strong trends are visible indicating photometric conditions for this particular night.

In order to derive the U-, B-, V-, R- and I-band magnitudes of all starsin our target field, we performed
aperture photometry on each of the OTSF-1a images (3 per filter). Since thefield is very crowded, the
sources lie all very close to each other. Neighboring stars would corrupt the measurements, therefore
we could not use a big aperture. For faint sources, a big aperture (such as 30 pixel) is also not the best
choice in terms of S/N, since the background dominates the stellar photons in theouter regions of
the PSF. Increasing the aperture size results in a large increase in background noise but only a small
increase in signal.
In order to optimize the S/N we used SExtractor with different aperture sizeson one of the R-band
images and plotted the median of the photometric errors of all stars as a functionof aperture radius
(Fig. 2.11). The highest photometric precision was achieved with a 15 pixelaperture (red line) which
we used in the following.
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Figure 2.11: Photometric precision vs. aperture size for one of the R-band images. The optimal
aperture diameter is 15 pixel which corresponds to 3 arcsec.

Since we cut-off the PSF at a shorter radius we were loosing some flux andthe previously determined
zeropoints are not valid without correcting for this effect. An aperture correction has to be applied
that is depending on the PSF shape, where a broader PSF needs a higher correction. Using bright stars
we estimated the difference between a 30 pixel aperture and a 15 pixel aperture. For sources with
no bright close neighbors the difference between the two measurements was equal to the aperture
correction. For blended sources the 30 pixel aperture gave a too high value therefore the difference
was larger (more negative).
In Fig. 2.12 we plot the difference between a 30 pixel aperture and a 15 pixel aperture for all source
in one of the V-band exposures. The red line marks the aperture correction we derived. Note that
we calculated this correction for each of the 3 exposure and then used theaverage value for the
correction.
Fig 2.13 shows the aperture correction as a function of PSF radius. Images with a broader PSF needed
a larger (more negative) correction since more flux was lost in the smaller aperture.
Using eq. 2.1 and applying the aperture corrections to the measurements, wewere able to derive
the absolute U-, B-, V-, R-, and I-band magnitudes of each star in our target field. Since we had
3 observations of OTSF-1a in each band, we obtained 3 independent measurements. In order to
eliminate outliers, we used the median value.
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Figure 2.12: Determination of the aperture correction for one of the V-band exposures. Crowding
results in down-scattering of points because neighboring sources lead toan overestimation in the
object brightness when using a large aperture.
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Figure 2.13: The aperture correction is correlated with the seeing. Because more flux is lost outside
the aperture, a larger PSF usually needs a larger (more negative) aperture correction. However, since
not only the size but also the shape of the PSF is varying, there is not a direct relationship between
aperture correction and seeing.
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In a final step we corrected our measurements for Galactic extinction. FromSchlegelet al. (1998)
we obtained the total reddening for extragalactic objects E(B-V) = 0.698. Assuming a standard
extinction law, this translates in E(U-B) = 0.64· E(B-V) = 0.45 (Binney & Merrifield, 1998). Since
our target stars are located inside the Galaxy, the actual reddening will belower than the extragalactic
reddening (depending on the individual distance of each star). Fig. 2.14 shows the UBV color-color
plot of the OTSF-1a stars after correcting for an average reddening of half the extragalactic value11.
Yellow and red lines indicate the location of main-sequence dwarfs and luminosity class III giants.
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Figure 2.14: UBV color-color diagram of the 3 000 brightest stars in the OTSF-1a field. We corrected
all stars for an average reddening of E(B-V) = 0.35 (black arrow) which is half the value for extra-
galactic objects at that position of the sky (Schlegelet al., 1998). The yellow and red lines show
the position of the main-sequence and luminosity class III giants (according to Binney & Merrifield
(1998)).

11for individual sources (i.e. our detected transit candidates) we performed a more detailed analysis and derived individual
extinction values and distances (see§2.7.1)
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2.5 Difference Imaging Analysis

Difference imaging was first developed by Tomaney & Crotts (1996) and further improved by Alard
& Lupton (1998). The technique has become the most successful method used for the creation of
high precision light curves in crowded fields like the Milky Way Bulge, the Large Magellanic Cloud
or the Andromeda Galaxy (M31). A quantitative comparison of differenceimaging to aperture and
PSF-photometry can be found in Montaltoet al. (2007).
The method uses a reference image which is a stack of the best seeing images. This reference image is
degraded by convolution in order to match the seeing of each single image in thedataset. Subtracting
the convolved reference image from a single image, one gets a so called difference image with all
constant sources being removed. Variable sources are visible as positive or negative PSF-shaped
residuals (see Fig. 2.16).

2.5.1 Construction of the reference image

For each CCD we created a stack of the 15 best seeing images. We performed absolute astrometry
on the very best image then and used the astrometrically calibrated image as a reference for relative
astrometry on the remaining 14 images. After regridding we expanded all 15 images to the same size
and created an error image using the following formula:

σ =

√

N′
ADU

gain
+RN2/p2 (2.2)

with N′
ADU being the pixel values of the regridded image,RN being the readout noise ine− in the raw

image andp being the pixel scale ratio between raw and regridded image (i.e. 0.238/0.2 = 1.19). In
our data reduction pipeline, error images store the 1σ uncertainties of each pixel. The above formula
provides an initial estimate of the error of the regridded images where we neglected the noise that
was introduced by the flatfield division and the bias subtraction which is only asmall contribution to
the total noise. In all subsequent data reduction steps the error images were calculated using Gaussian
error propagation.
We subtracted the background in the best seeing image by iteratively fitting a 2-dimensional 2nd order
polynomial while clipping positive outliers (i.e. stars). The 14 other images were photometrically
aligned (scaled and background subtracted) by measuring amplitudes andlocal background levels of
100 stars and by comparing them to the background-subtracted best image. We fitted a constant scale
and a 2nd order polynomial background.
Using an isolated star, we measured the PSF characteristics (FWHM and angle) in each image and
replaced masked regions by the pixel values of the image with the most similar PSF. This was done
in order to ensure a homogeneous PSF over the whole field in the stacked image. The final reference
image we constructed as the seeing and background weighted combination ofthe photometrically
aligned and bad pixel replaced images. Fig 2.15 shows the reference image and the reference error
image for ccd50.
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Figure 2.15: Reference image and corresponding error image of ccd50. Since masked pixels are on
different x- and y-positions on the 15 regridded input images, the stacking process removed all bad
pixel regions in the reference image. Nevertheless, bad pixel regions have a larger uncertainty, visible
as brighter areas in the error image.

2.5.2 Construction of the difference images

In difference imaging, the reference imageR(u,v) is convolved with a kernelK(u,v) in order to match
the PSF of each of the single images. In addition a 2-dimensional polynomial surfaceB(x,y) accounts
for background differences. The convolved imageC(x,y) can therefore be calculated as:

C(x,y) ≡ R(u,v)⊗K(u,v)+B(x,y) . (2.3)

Since the convolution always results in a degradation of the PSF, the reference image has to be
constructed using the best seeing images.
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The optimal kernel can be approximated using a superposition ofN kernel base functionski(x,y):

K(u,v) =
N

∑
i=1

ki(u,v) . (2.4)

Alard & Lupton (1998) proposed to use 2-dimensional Gaussian functions modulated with
polynomials of the orderpi as kernel base functions:

K(u,v) =
N

∑
i=1

exp−u2 +v2

2σ2
i

pi

∑
j=0

pi− j

∑
k=0

ai jku jvk . (2.5)

We usedN=4 kernel base functions withσi={0.1,1,4,12} andpi={0,4,6,2} and a kernel size of 41x41
pixel. The total number of coefficientsai jk is 50. Together with 10 free parametersbmn of a 3rd
order background polynomialB(x,y) we had a total of 60 free parameters which we determined via
χ2-minimization of the following expression:

χ2 = ∑
x,y

1
σ2

x,y
[(R⊗K)(x,y)+B(x,y)−S(x,y)]2 . (2.6)

We subtracted the convolved imageC(x,y) from each single imageS(x,y) and in this way we obtained
a difference imageD(x,y) for each single image:

D(x,y) =
S(x,y)−C(x,y)

|K| , (2.7)

with

|K| = ∑
u,v

K(u,v) (2.8)

being the norm of the kernel. Using this normalization, the difference image hasthe same flux level
as the reference image which is important for the following steps.
We used almost all pixels to determine the optimal kernel and background coefficients. Only pixels
that belong to variable objects were not taken into account since these would have destroyed the
normalization of the kernel. As we did not know a priori which pixel belong tovariable objects, we
first created a subset of difference images without masking any pixel, identified variable objects and
masked them in the second run when we created all difference images.
In most cases, the PSF is varying over the field of view of the detector. In order to account for that,
Alard (2000) proposed to use a space-varying kernel with the coefficientsai being functions of the
position on the CCD. However, in this case, the minimization procedure to derive the coefficients
ai(x,y) is much more time consuming. A faster approach is to split each image in subfields and to
determine a kernel in each of the subfields independently. In our case weused 4x8 subfields with a
size of approximately 600x600 pixel. Fig. 2.16 shows a zoom-in on one of theregridded images and
the corresponding difference image (i.e. S(x,y) and D(x,y)).
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Figure 2.16: Example regridded image and the corresponding differenceimage. Two variable sources
are visible as negative PSF-shaped residuals (black spots). All constant sources are subtracted leaving
only noise in the difference image.

2.5.3 Light curve extraction

Using the difference images we were able to measure the differential flux ofeach source. Adding the
flux in the reference image, we got the total flux in each single exposure. The flux measuriement in
the reference image has to be done very carefully because sources located close to each other can
affect the measurements. An overestimation of the reference image flux dueto blending leads to an
underestimation of the amplitude of any brightness variation of a variable object (see below).
One method to measure accurate fluxes in crowded fields is iterative PSF-photometry. Using bright
isolated stars, the PSF is extracted and resampled on a finer grid. Fig. 2.17 illustrates the process of
the PSF determination. Pixelization effects that are visible in the single isolated stars (upper panel)
are removed by combining 6 PSF-reference stars that are centered on different sub-pixel positions.
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Figure 2.17: Determination of the PSF in the reference image. The PSF of 6 isolated stars is aligned,
resampled on a finer grid and afterwards combined.

The extracted PSF was used to measure an initial flux value of each source. In the following
iterations, all neighboring sources were subtracted before measuring the flux of a source making
use of the improved fluxes that have been measured in the previous step. This was done, until all
measured fluxes converged.
The photometry on the difference image was easier, because all non-variable sources have already
been subtracted. We measured the fluxes with PSF-photometry where we extracted the PSF from
the normalized convolved reference image C’(x,y) combining the same isolatedstars we used to
measure the fluxes in the reference image. Note that in this way we obtained the differential fluxes
with respect to the reference image and later on measured the correct amplitudes of all variations (e.g.
transit depths).
In a final step, we normalized all light curves to 1 (i.e. divided by the median value) and applied
a barycentric time correction using the formulae of Meeus (1982) as implemented in the skycalc
program by J. Thorstensen12.

12http://www.dartmouth.edu/ physics/faculty/thorstensen.html
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2.6 Light Curve Analysis

In this section we describe the light curve analysis and candidate selection process. For each CCD
we extracted the light curves of the 2 000 brightest sources. In order toidentify variable stars, we
calculated the reducedχ2 of a constant baseline fit. In Fig. 2.18 we plot the RMS of all light curves
with reducedχ2 ≤ 1.5 as a function of the R-band magnitude. We overplot the theoretical RMS for
25s exposure time, airmass 1.4, sky brightness of 20.3 mag/arcsec2 and 1.5 arcsec seeing (black line).
The expected precision has almost been reached, which demonstrates thepower of the difference
imaging technique. However, small systematic effects, such as correlated noise could still be present
in our light curves and might have increased the RMS. In the next chapterwe describe how we
corrected for systematic effects.
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Figure 2.18: RMS of all non-variable light curves. The solid black line shows the RMS that is expected
for a 25s exposure at airmass 1.4 assuming a sky brightness of 20.3 mag/arcsec2 (4 days from full
moon) and a seeing of 1.5 arcsec. The other lines show the individual noise contributions, namely the
photon noise of the object (dashed blue line) the background noise (dotted red line) and the readout
noise (dashed-dotted green line).
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2.6.1 Systematics removal

The analysis of the photometric scatter of individual light curves in large data sets (such as the
OGLE-III light curves) has shown that the RMS that was reached for faint sources is comparable to
the expected value, but for bright sources an RMS excess was foundthat is limiting the photometric
precision to 4-5 mmag. This excess was attributed to correlated noise (also known as ’red noise’, see
e.g. Pontet al. (2006) or Snellenet al. (2007)).
In order to correct for red noise in large data sets, Tamuzet al. (2005) have developed an algorithm
calledsysremwhich has turned out to be very successful in reducing systematic effects for bright
stars and is now used in most transit surveys.

The initial idea of thesysremalgorithm was to correct for differential extinction: since the
spectral energy distribution of each star has a different slope within the transmission range of the
filter, the (wavelength-dependent) extinction is slightly different for eachstar (depending on its color).
As shown in§2.4, the extinction is proportional to the airmass (Ef ·airmass). The difference imaging
technique only corrects for a constantEf for all stars (by the normalization of the kernel). Therefore
we can expect to see a residual of the formci ·a j for each star i and image j with a color-dependent
differential extinction coefficientci and airmassa j . In the following, we consider a data set consisting
of N light curves withM data points. In order to remove differential extinction effects, we have to
find for each stari the valueci that minimizes the expression

S2
i = ∑

j

(r i j −cia j)
2

σ2
i j

, (2.9)

wherer i j is the flux difference of data point j to the average flux in light curve i andσi j is the uncer-
tainty of the measurement. Assuming we know the airmassesa j , we can find the bestci as

ci =

∑
j

r i j a j

σ2
i j

∑
j

a j

σ2
i j

(2.10)

and subtract the residualsci ·ai from each light curve.

In its generalized form, thesysremalgorithm corrects for any linear systematic effect that can
be represented asci ·a j . Starting with an initial set of ’generalized airmasses’a j

13, we calculate the
’generalized colors’ci that minimize Eq. 2.9. Then we turn the problem around and ask are what the
best values ofa j that minimize the expression

S2
j = ∑

i

(r i j −cia j)
2

σ2
i j

, (2.11)

given the ’generalized colors’ci , we derived in the previous step. Minimization of S2 with respect to
a j results in

a j =
∑
i

r i j ci

σ2
i j

∑
j

ci
σ2

i j

. (2.12)

13in practice, one may start with the actual airmass
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After calculating the improved valuesa j , we start again using eq. 2.10 to calculate better values of
ci . Repeating this process, thea j and ci converge typically after a few iterations to a final set of
’generalized airmasses’ and ’generalized colors’ which are not necessarily the true airmasses of the
observations or the true colors of the stars. Instead,ci anda j could be related to other parameters like
e.g. the position on the CCD, the moon phase or the seeing.
Using the final valuesa j andci , we subtract the residuals from each light curve. In this way, we
remove only the most prominent systematic effect. Subsequently applying thesysremalgorithm to
the corrected light curves, we remove all significant systematic effects.
Sysremis very robust against the choice of initial values fora j . The algorithm identifies and removes
systematic effects without any prior knowledge of their origin (as long as they are linear and appear in
many stars of the sample). If all measurements have the same uncertaintiesσi j , thesysremalgorithm
is identical to a principal component analysis.
Sysremcan only work efficiently, if all light curves of variable stars are identifiedand removed from
the sample. Therefore, we fitted a constant baseline to each light curve and plotted the histogram of
reducedχ2 in Fig. 2.19. We applied the algorithm to all light curves withχ2 ≤ 1.5 (70% of all light
curves) and subtracted 4 systematic effects.
Fig. 2.20 shows the RMS of the light curves before (black dots) and afterthesysremcorrection (red
dots). The algorithm reduced the RMS of the light curves by only a small amount. We therefore
conclude, that systematic effects in our data set are not as prominent as itis the case for other surveys.
Note that we already reach∼ 3 mmag precision in the uncorrected light curves. Note also, that there
is no strong deviation from the expected precision for bright stars but rather a constant offset for the
whole magnitude range which indicates an overestimated throughput of the telescope rather than the
presence of red noise.
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Figure 2.19: Histogram of the reducedχ2 for a constant baseline fit to all light curves. We apply the
sysremalgorithm to all light curves with a reducedχ2 ≤ 1.5.
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Figure 2.20: RMS before (black) and after (red) application of thesysremalgorithm.

Since other groups reported more significant improvements usingsysrem(e.g. Pontet al., 2006;
Snellenet al., 2007; Raetzet al., 2009), we performed a test to verify our implementation. For one
CCD, we created a new set of light curves running the difference imagingsoftware with unoptimized
standard parameters (i.e. lower background order, bigger subfields,etc.) and extracted the light
curves in the same way as before. Then we ransysremon the new set of light curves and compare the
RMS before and afterwards (Fig. 2.21).
Naturally, using an unoptimized pipeline, the RMS of the light curves is higher compared to the
optimized pipeline (Fig 2.20). However, thesysremalgorithm was able to remove a large fraction of
it. This demonstrates, on the one hand, the power of thesysremalgorithm but, on the other hand, it
shows that optimizing the data reduction pipeline is very important in order to reduce the amount of
systematic effects in the light curves.
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Figure 2.21: RMS after application of thesysremalgorithm for an unoptimized pipeline.

2.6.2 Box-fitting analysis

In order to find transiting planet candidates in our large set of light curves, a fast detection algorithm
was needed. In the past years the box-fitting least squares (BLS) algorithm proposed by Kov́acs
et al. (2002) has proven to be one of the most efficient algorithms. In the following, we explain
the algorithm and introduce two important quantities: the S/N of a transit light curve and the signal
detection efficiency (SDE).

Consider a transiting planet light curve that is showing cyclical brightnessdrops with period
p. In a simplistic view the flux is a two level system with valuesH andL. The time spend in the
lower levelL (i.e. the transit duration) isτ · p, whereτ is the fractional transit length (see eq. 1.18).
For Hot Jupiters,τ is on the order of 0.01 to 0.1 (Defaÿ et al., 2001) which corresponds to absolute
transit durations of typically to 2-3 hours. Together with the epoch of the transit t0 the light curve is
characterized by five parameters:p, τ, H, L andt0.
The individual errors of each measurementσi are taken into account by giving each point{xi} a
weightωi = σ−2

i [∑n
j=1 σ−2

j ]−1. Applying an offset to all points in the light curve we further require
that the arithmetic average of the values{ωixi} is zero.
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In the following we consider the light curve to be folded with a test periodp. The new sequence of
points is named{x′i} and the corresponding weights{ω ′

i }. In order to find the best-fitting box, the
expression

D =
i1−1

∑
i=1

ω ′
i (x

′
i −H)2 +

n

∑
i=i2+1

ω ′
i (x

′
i −H)2 +

i2

∑
i=i1

ω ′
i (x

′
i −L)2 (2.13)

has to be minimized with respect toH andL. This results in the arithmetic averages in each of the two
regions

L =
s
r

and H = − s
1− r

(2.14)

with

s=
i=i2

∑
i=i1

ω ′
i x

′
i and r =

i=i2

∑
i=i1

ω ′
i . (2.15)

Using this, eq. 2.13 transforms into

D =
n

∑
i=1

ω ′
i x

′2
i − s2

r(1− r)
, (2.16)

where the first term in eq. 2.16 is independent of the period. In order to minimize with respect to the
parametersτ andt0, we determine for all possible pairs(i1, i2) the minimum of the second term in
equation 2.16:

SR:= −min

{

−
[

s2(i1, i2)
r(i1, i2)[1− r(i1, i2)]

]

1
2
}

= max

{

[

s2(i1, i2)
r(i1, i2)[1− r(i1, i2)]

]

1
2
}

. (2.17)

In fact, we test only those pairs(i1, i2) that correspond to a fractional transit lengthτ in a physical
meaningful range, e.g. [0.01...0.1]. In order to further increase the speed of the algorithm by reducing
the number of pairs(i1, i2), it has been proposed by Kovácset al. (2002) to divide the folded light
curve in N bins (with N being smaller than the number of data points in the light curve) and use only
the average values of each bin in the box-fitting process.
Note that in eq. 2.17, we switched the sign in order to makeSRpositive. A highSRmeans a lowχ2

of the fit. Determining the maximumSRfor each periodp one gets the best fitting box represented by
the values ofL, H, τ andt0. Plotting the maximumSRvalue for each periodp over 1/p we obtain the
SR-spectrum which we normalized to the maximumSRvalue.
In theSR-spectrum, good detections are visible as narrow peaks that build a high contrast to the noisy
otherSRvalues. In many cases, additional peaks at twice or half of the best period14 are visible. As
an example we show theSR-spectrum of our best candidate in Fig. 2.24.

14or even higher order harmonics and sub-harmonics
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A measure for the significance of a detection is the so called signal detection efficiency (SDE):

SDE:=
SRpeak− < SR>

sd(SR)
, (2.18)

where< SR> is the averageSRvalue andsd(SR) is the standard deviation of allSRvalues.

We applied the BLS-algorithm to allsysrem-corrected light curves and tested 4 001 different
periods equally spaced in 1/p between 0.9 and 9.1 days. We used 1 000 bins in the folded light
curves. For each light curve we determined the best fitting periodp, epocht0, transit depth∆F / F
and fractional transit lengthτ. In addition, we determine the number of transits, number of data
points during a transit, theS/N of the light curve and the SDE of each detection and calculate the
reducedχ2 of the box-fit.
As an additional very useful parameter, we measured the variations that are in the out-of-transit part
of the light curve: after the masking the detected signal (i.e. removing all points within a distance of
0.75·τ from t0), we ran the BLS-algorithm again on the remaining data points. We compared theS/N
found in the masked light curve,S/Nremovedhereafter, to theS/N found in the unmasked light curve.
In the case of variable stars the difference between the two valuesS/N - S/Nremovedwas very low,
whereas for a transiting planet the difference was high, since no variation was left after the masking
of the transit.

In order to identify all interesting transiting planet candidates and to reject variable stars and
other false positives, we applied a number of selection criteria to the light curves that have been
selected by the BLS-algorithm. In particular we required:

i) # transits≥ 2

ii) S/N ≥ 12

iii) reducedχ2 ≤ 1.5

iv) S/N - S/Nremoved≥ 4.7

A minimum of two transits is required in order to determine the period of the orbit15. According to
Kovácset al. (2002), aS/N of 12 is required for the BLS-algorithm to work efficiently. The last two
selection criteria were optimized using Monte-Carlo simulations and are discussed in§2.8.

15candidates showing only one transit are unlikely to be detected by the BLS-algorithm and even if they were detected, the
follow-up of such a candidate would be difficult
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2.7 pre-OmegaTranS Candidates

Among 200 light curves that passed the detection criteria presented in the previous chapter, we
identified 4 transiting planet candidates (POTS-C1, POTS-C2, POTS-C3 and POTS-C4). The
remaining detections are classified as variable stars or false detections caused by systematic outliers
and are clearly distinguishable from the 4 candidates. We calculated the Tingley-Sackett parameter
(see§1.5.1) for each candidate and searched for ellipsoidal variations in the out-of-transit parts of
the light curves (see§1.5.2). According to these tests, POTS-C1 is the most reliable candidate (see
Fig. 2.22). POTS-C3 has the lowest quality, since the candidate has a Tingley-Sackett parameter of
1 and shows indications of ellipsoidal variations. Fig 2.23 shows 1.5x1.5 arcmin finding charts of all
candidates. In the following, we discuss each candidate in detail.
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Figure 2.22: Tingley-Sackett parameter and ellipsoidal variations of the pre-OmegaTranS candidates.

2.7.1 POTS-C1

The most interesting candidate was detected close to the image center on ccd52. The S/N of the
detection is 38.2, the highest value of all candidates found in the pre-OmegaTranS survey. In Fig. 2.24
we show the SR-spectrum of the detection. The highest peak is located atp1=1.58 days (SDE=4.63).
There is also a peak at twice the periodp2=3.16 with similar significance (SDE=4.55). Looking at
the epochs of the 3 observed transits, we found that the separation between the first and the second
transit is 2·p1=p2=3.16 days and the separation between the first and the third transit is 36·p1=18
·p1=56.88 days. Since we have no observations at odd epochs ofp1, in principle both periods are
possible. However, we believe thatp1 is the correct period given the higher SDE and considering the
strong selection effect of the transit method towards finding shorter period planets (see§1.3.6). The
detailed light curve fitting also supports the conclusion, thatp1 is the correct period (see below).
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POTS-C1POTS-C1 POTS-C2POTS-C2

POTS-C3POTS-C3 POTS-C4POTS-C4

Figure 2.23: Finding chart of POTS-C1, POTS-C2, POTS-C3 and POTS-C4. The field of view is
1.5x1.5 arcmin. North is up and East is left.

We extracted the UBVRI magnitudes of POTS-C1 from the photometric calibration (see§2.4). The
uncorrected (V-I) of POTS-C1 is 1.80 mag, indicating that the host star is alate K-dwarf. In addition,
we identified POTS-C1 to be identical to source 13342613-6634520 in the 2MASS catalog (Skrutskie
et al., 2006) and extracted its JHK magnitudes.

In order to estimate the intrinsic color (V-I)0, we iteratively fitted a distance (using absolute
and measured apparent magnitude), calculated the extinction (using an average value of E(B-V)/kpc
= 0.21 mag, as derived in the field selection process [Barbieri (2007)])and determined the spectral
type by least-squares fitting of the extinction corrected colors UBVRIJHK toreference colors taken
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from Binney & Merrifield (1998)16. The fitting procedure converged for a K6V star at a distance of
970 pc with an extinction of E(B-V)=0.21 mag.
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Figure 2.24: SR-spectrum of POTS-C1. Two peaks of comparable significance are visible atp1=1.58
days andp2=3.16 days.
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Figure 2.25:χ2 of the converged fit as a function of the spectral type of the host star (Ndo f=3056).

16a similar approach has been recently used by Saleet al. (2009) to derive a high resolution extinction map of the Milky
Way using 3 bands (r’, i’ and Hα )
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Figure 2.26: Folded R-band light curve of POTS-C1. The red line showsthe best fitting model with
the parameters listed in Table 2.5.

In order to measure all parameters of the POTS-C1 system, we fitted an analytical transit light curve
model according to the equations of Mandel & Agol (2002) with a quadraticlimb-darkening parame-
terization of the form:

I(r) = γ1(1−
√

1− r2)+ γ2(1−
√

1− r2)2 , (2.19)

where r is the normalized radial coordinate on the disk (i.e. 0≤ r ≤ 1) andγ1 andγ2 are the quadratic
limb-darkening coefficients taken from Claret (2000).
The free parameters of the fit were period p, epoch t0, inclination i and planetary radius Rpl. We fitted
a scale in order to normalize the light curve to 1. In an iterative process, weminimized theχ2 with
respect to one parameter after the other until all parameters converged.
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From the extinction corrected color of the star we had only a rough estimate ofits spectral type and
thus we did not know its limb-darkening coefficients. We therefore performed the fitting for several
spectral types and subtypes ranging from A0V to M5V and searched for the absolute minimumχ2 of
all fits. In the case of POTS-C1 the best fit was achieved for a K9V star (see Fig. 2.25) with aχ2 of
3112.83 which is in good agreement with the spectral type that has been derived from the colors.
In the same way we determined the best fit with the second possible periodp2. We found a minimum
χ2 of 3114.36 for a spectral type of M2V. The slightly largerχ2 indicates thatp1 is more likely the
correct period.
In order to increase the accuracy of the fitting and to derive precise uncertainties of the system
parameters, we minimized theχ2 on a grid centered on the minimum previously found with the
iterative process. The resulting final parameters including error estimatesare listed in Table 2.5
together with all other parameters of the POTS-C1 system. In Fig. 2.26 we show the folded light
curve together with the best fit. Fig. 2.27 shows the individual transits (1 full transit and 2 ingress
parts).
The best fitting planetary radius of POTS-C1b is 1.02RJup, a value that is comparable to most
transiting planets detected so far. However, the host star, a late K-dwarf, is one of the smallest stars
known to host a transiting planet (see§1.4) making POTS-C1 a very interesting candidate.
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Figure 2.27: Unfolded R-band light curve of POTS-C1 showing three individual transits of
POTS-C1b.
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POTS-C1 POTS-C2
Stellar parameters:
RA(J2000.0) 13h34m26s.1 13h37m32s.1

DEC (J2000.0) -66◦34′52′′ -66◦50′41′′

U 20.89±0.10 mag 20.90±0.12
B 19.54±0.04 mag 19.90±0.04
V 17.94±0.03 mag 18.50±0.03
R 17.01±0.06 mag 17.70±0.06
I 16.14±0.07 mag 16.91±0.07
J 15.17±0.06 mag 15.93±0.12
H 14.38±0.04 mag 15.16a

K 14.24±0.08 mag 15.09a

d 0.90 kpc 1.49 kpc
E(B-V) 0.19 mag 0.32 mag
(R-I ) 0.87 mag 0.79 mag
(R-I )0 0.71 mag 0.53 mag

spectral type K7Vb / K9Vc K4Vb / G0Vc

Planetary and orbital parameters:
p 1.58025319±3.174·10−5 days 2.76311360±9.662·10−5 days
t0 2 454 231.6527187±1.0465·10−3 days 2 454 241.3666309±1.7152·10−3 days

Rpl 1.025±0.016 RJup 1.981±0.039 RJup

i 86.46±0.16◦ 84.63±0.14◦

apl 0.0218d AU 0.0392e AU
reducedχ2 1.02 (Ndo f=3051) 0.95 (Ndo f=2892)

Light Curve and detection properties:
S/N 38.2 38.0

S/Nremoved 10.8 11.1
SDE 4.63 5.27

τ 0.036 0.031
∆F/F 0.029 0.024

# transits 3 (1 full, 2 ingress) 3 (2 full, 1 ingress )
# transit points 83 128

RMS 0.0089 0.0129

a no error estimate is available

b from colors

c from light curve fit

d assuming a K9 host star withM⋆ = 0.55M⊙
e assuming a G0 host star withM⋆ = 1.05M⊙

Table 2.5: Planetary and stellar parameters of the POTS-C1 and POTS-C2 systems.
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2.7.2 POTS-C2

A second candidate was detected on ccd57. TheS/N of 38.0 is equally high compared to POTS-C1.
The best fitting periodp1=2.76 days (SDE=5.27) is of much larger significance than the second best
period (SDE=4.33). 3 different transits (2 full transit and 1 ingress part) comprise a total of 128 data
points.
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Figure 2.28: Folded R-band light curve of POTS-C2. The red line showsthe best fitting model with
the parameters listed in Table 2.5.

POTS-C2 is identical to 2MASS source 13342613-6634520. Iterative fitting of spectral type
and distance/extinction converged for a K4V star at a distance of 1.49 kpcwith an extinction of
E(B-V)=0.32 mag.



84 CHAPTER 2. THE PRE-OMEGATRANS SURVEY

The light curve fitting resulted in a minimumχ2 of 2741.51 for a G0V star which is different
to the spectral type that has been derived from the colors. Fig. 2.28 shows the folded light curve
together with the best fitting model.
With a best fitting planetary radius of 1.98RJup, POTS-C2b is very large for a planet. However, since
the radius of the host star is not known with good precision, the candidate might be actually smaller.
Nevertheless, POTS-C2 is a candidate of much lower quality than POTS-C1.
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Figure 2.29: Folded R-band light curve of POTS-C3. The red line showsthe best fitting model with
the parameters listed in Table 2.6.
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2.7.3 POTS-C3

A third candidate was detected on ccd54 with a S/N of 37.6. The best fitting period is p1=6.87 days.
2 observed transits (1 full transit and 2 ingress parts) comprise a total of182 data points.
POTS-C3 is identical to 2MASS source 13323523-64244520. Iterativefitting of spectral type
and distance/extinction converged for a F6V star at a distance of 1.38 kpcwith an extinction of
E(B-V)=0.30 mag.

The light curve fitting resulted in a minimumχ2 of 3400.88 for a A0V star which is very dif-
ferent to the spectral type derived from the colors (note, that A0V wasthe earliest spectral type we
fitted, earlier types might give an even better fit). Fig. 2.29 shows the foldedlight curve together with
the best fitting model.
The best fitting planetary radius is 6.7RJup - by far too large for a planet. The inconsistency of the
derived spectral types, the V-shaped transit signal, a large Tingley-Sackett parameter and possible
ellipsoidal variations (see Fig. 2.22) and last but not least the large radius make POTS-C3 a candidate
of low quality. A grazing eclipsing binary system is a more likely scenario.

2.7.4 POTS-C4

A fourth candidate was detected on ccd51 with a S/N of 25.6. The best fitting period is 3.21 days. 2
different transits comprise a total of 97 data points.
Because of its faintness, POTS-C4 is not included in the 2MASS catalog andtherefore no JHK
magnitudes were avaliable. Iterative fitting of spectral type and distance/extinction converged for a
F6V star at a distance of 1.82 kpc with an extinction of E(B-V)=0.39 mag.

The light curve fitting resulted in a minimumχ2 of 3495.09 for a A4V star which is different
to the spectral type that has been derived from the colors. Fig. 2.30 shows the folded light curve
together with the best fitting model.
The large radius of the primary and the deep transit depth result in a radiusof 3.16 RJup. POTS-C4b
is therefore most likely too large to be a planet.
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POTS-C3 POTS-C4
Stellar parameters:
RA(J2000.0) 13h32m52s.3 13h36m39s

DEC (J2000.0) -66◦45′20′′ -66◦34′51′′

U 19.44±0.12 mag 19.94±0.11 mag
B 19.05±0.03 mag 19.53±0.02 mag
V 17.96±0.04 mag 18.37±0.03 mag
R 17.40±0.09 mag 17.69±0.03 mag
I 16.81±0.08 mag 17.04±0.05 mag
J 15.85 maga —
H 15.52 maga —
K 14.73 maga —
d 1.38 kpc 1.82 kpc

E(B-V) 0.30 mag 0.39 mag
(R-I ) 0.59 mag 0.65 mag
(R-I )0 0.49 mag 0.54 mag

spectral type F6Vb / A0Vc F6Vb / A4Vc

Planetary and orbital parameters:
p 6.87296277±4.0309·10−4 days 3.21169909±2.9061·10−4 days
t0 2 454 181.6255139±2.2784·10−3 days 2 454 184.6568274±3.8515·10−3 days

Rpl 6.710±0.077 RJup 3.162±0.083 RJup

i 83.59±0.01◦ 82.96±0.16◦

apl 0.1009 AUd 0.0552 AUe

reducedχ2 1.10 (Ndo f=3083) 1.15 (Ndo f=3034)
Light Curve and detection properties:

S/N 37.6 25.6
S/Nremoved 8.2 10.1

SDE 3.82 3.40
τ 0.020 0.025

∆F/F 0.025 0.027
# transits 2 2

# transit points 182 97
RMS 0.0116 0.0125

a no error estimate is available

b from colors

c from light curve fit

d assuming a A0V host star withM⋆ = 2.90M⊙
e assuming a A4V host star withM⋆ = 2.18M⊙

Table 2.6: Planetary and stellar parameters of the POTS-C3 and POTS-C4 systems.
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Figure 2.30: Folded R-band light curve of POTS-C4. The red line showsthe best fitting model with
the parameters listed in Table 2.6.

2.7.5 Follow-up strategy

In order to confirm the planetary nature of the candidates, it is essential todetermine the mass of the
transiting objects using spectroscopic follow-up observations (see§1.5.5). Since all of our candidates
are very faint, we will need a high resolution echelle spectrograph on a 8m-class telescope. Therefore
we have submitted a proposal (program 383.C-0821) to ESO for high resolution spectroscopic
follow-up observations using the UVES17 instrument (Dekkeret al., 2000) which is mounted on the
Very Large Telescope (VLT) at Paranal Observatory in Chile. A total of 10h have been granted in
period P83 (March-September 2009).

17Ultra-Violet-Echelle-Spectrograph
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We will use the combination of UVES and FLAMES18 (Pasquiniet al., 2002) which enables us to
simultaneously observe objects that are located within a circle of 25 arcmin diameter. The positions
of our candidates allow us to observe our best candidate POTS-C1 together with either POTS-C3
or POTS-C4. The remaining five fibers will be used for follow-up of eclipsing binaries and for
observations of RV reference stars.
With the granted time we will be able to execute 10 observing blocks with each of them having
1h execution time (45min exposure + 15min overhead). According to the UVESexposure time
calculator19, we will be able to achieve a RV precision of about 100-150 m/s for our candidates. The
expected RV variation can be calculated using eq. 1.11. Assuming a mass of 1MJup and assuming the
spectral type of POTS-C1, POTS-C3 and POTS-C4 is K9V, A0V and A4V, we expect RV variations
of 460 m/s, 90 m/s and 120 m/s respectively. Since we know the period and epoch of the orbit, even
10 measurements will enable us to derive a mass of POTS-C1b and thereforeconfirm or reject their
planetary nature. 5 measurements of POTS-C3 and POTS-C4 will reveal or rule out a high mass of
the candidates. Moreover, the spectra will asses the spectral typing.
In addition to the spectroscopic follow-up, we plan to observe upcoming transits of POTS-C1b with
GROND, a 7 chanel imager mounted on the 2.2m telescope at LaSilla Observatory in Chile (for details
of the observational and data reduction strategy see§3). In a two week period of MPE guaranteed
time in April 2009, we will have 3 chances to observe a transit of POTS-C1b.The light curves in the
4 optical bands (g’, r’, i’ and z’) will provide very important information about the candidate systems
and contribute significantly to the follow-up success (as demonstrated in Snellen et al. (2009), see§3).

2.8 Detection Efficiency

In order to study the detection efficiency of the pre-OmegaTranS surveyand to estimate the expected
number of detections, we perform detailed Monte-Carlo simulations. We followed a backward
approach injecting artificial transit signals into the light curves that were extracted from the WFI data
and applied the BLS-algorithm trying to recover the correct period. Fig. 2.31 illustrates the different
inputs to the simulations.
For the input stellar population we used a Besançon model of the OTSF-1atarget field which provided
us with a distribution of stellar masses M⋆ and radii R⋆ as well as apparent R-band magnitudemR and
limb-darkening coefficientsγ1 andγ2 (determined fromTe f f and logg, according to Claret (2000)).
We tested two different planet populations with periods equally distributed between 1 and 3 days
(Very Hot Jupiters) and periods equally distributed between 3 and 5 days(Hot Jupiters). For both
populations we distributed the planetary radiiRpl equally between 1.0 and 1.25RJup. For the planet
fraction fplanet we used the values of Gouldet al. (2006a) who foundfHJ = 1/320 andfVHJ = 1/710
analyzing the OGLE-III survey. Note that according to these numbers there are about 50 HJ and
23 VHJ in our field. Assuming an typical transit probability of∼5%, there are on average only 3-4
planets that could be detected - even with infinite observation time.

18Fiber Large Array Multi Element Spectrograph
19http://www.eso.org/observing/etc/bin/gen/form?INS.NAME=UVES+INS.MODE=spectro
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Figure 2.31: Overview of the simulation inputs.

For each of the 15996 light curves20 we randomly picked one star of the stellar population requiring
the apparent R-band magnitude of the star in the Besançon model to match themagnitude of the star
the light curve belongs to (as derived in from the photometric calibration, see§2.4). Then we decided
randomly whether the star has a planet or not, depending on the fraction ofstars having a planet of
this type. If the star had a planet, we randomly picked a VHJ or HJ from one of the input planet
distributions and created a star-planet pair which we attributed a randomly oriented inclination vector.
If the inclination vector was resulting in a transiting orbit21, we injected an artificial transit signal into
the light curve using the stellar and planetary parameters, the inclination and arandom epoch. The
transits were simulated according to the formulae of Mandel & Agol (2002).After the simulation
of the light curves, we applied the BLS-algorithm and checked whether ornot the detected period
matched the simulated period (allowing for twice and half the correct value).
One simulation run was finished after each light curve had been picked once. In this way one run
represents one possible outcome of the pre-OmegaTranS survey. Sincein the majority of cases the
star has no planet or the inclination was such that no transits were visible, there were in general only a
few transit light curves per run. We performed 500 000 simulation runs and averaged over all results.
After running the BLS-algorithm, we applied the detection cuts listed in§2.6.2. A total of 132 723
simulated VHJ and HJ light curves passed the first two criteria (i.e. had a S/N higher than 12.0 and
showed 2 individual transits or more). However, applying these cuts on the 15 996 pre-OmegaTranS
light curves resulted in 5 589 detections. The majority of these detections areto be considered as
false positive detections (noisy light curves, variable stars or light curves with uncorrected systematic
effects).

20we removed the light curves of the 4 candidates
21the geometric probability transiting orbit mainly depends on stellar radius andsemi-major axis of the orbit, see eq. 1.14
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In order to lower the false positive rate and to decrease the number of light curves that have to be
inspected by eye, we optimized the last two criteria using the results from the simulations. For a
given maximum number of false positives we determine the optimal detection cutsS/N-S/Nremoved

and reducedχ2, for which as few as possible simulated true detections are lost. Fig. 2.32 shows the
fraction of all simulated detections that were lost due to the additional two detection cuts as a function
of the maximum allowed number of false positives (left panel). With the optimized detection cuts
(dashed blue lines), we reduced the number of false positive detections by 96.4% to a total of 200 and
lost only 15.1% of all simulated true detections. Note that the majority of the true detections were
lost due to a high reducedχ2 value indicating a variable host star. These candidates would be very
difficult to follow-up and confirm anyway. In the right panel of Fig. 2.32we plotS/N-S/Nremovedvs.
reducedχ2 of 200 false positives (red dots) and simulated true detections (black dots).
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Figure 2.32: Optimizing the detection cuts of the pre-OmegaTranS project. Simulated detections are
shown as black points whereas false detections are shown in red. The blue line marks the location of
the optimized detection cuts. Only 15.1% of the true detections were lost while the number of false
detections is reduced by 96.4% to 200.

Applying all 4 detection cuts to the simulated light curves led to 115 311 detectionsin 500 000 runs.
Table 2.7 shows the fraction of all runs that resulted in 0, 1, 2 or 3 detections. According to our
simulations, the chance to detect a planet (VHJ or HJ) was 21%. Fig. 2.33 shows the S/N distribution
of all planets detected in our simulations. In Fig. 2.34 we show the expected magnitude and spectral
type distribution of the host stars.
The detection of one good candidate (POTS-C1) is consistent with the results of our simulations
although a null result would have been more likely. However, the planet fractions we use in our
simulations have uncertainties of a factor of 2. Also the Besançon model might not well enough
represent the distribution of stellar parameters in the pre-OmegaTranS fields. Due to low number
statistics, we cannot conclude on any of these explanations since a ’by chance’ detection is also a
possible explanation.
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number of detections VHJ [%] HJ [%] both [%]
0 87.74 90.45 79.37
1 11.48 9.08 18.35
2 0.75 0.45 2.11
3 0.03 0.02 0.16
4 0.00 0.00 0.01

Table 2.7: Expected number of detections for the pre-OmegaTranS project.

Looking at the expected spectral type distribution (Fig. 2.33) we find our candidate to be atypically
red. Note that this makes POTS-C1 very interesting for follow-up studies, since not many planets
transiting low mass stars have been found so far (see§1.4).
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Figure 2.33: Expected S/N distribution of VHJ and HJ detections for the pre-OmegaTranS project.
We show only the combined distribution since the results for VHJ and HJ are almost identical.
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Figure 2.34: Expected host star magnitude and spectral type distribution for the pre-OmegaTranS
project. Also here, the individual results for VHJ and HJ are almost identical.

2.9 Survey Byproducts: Variable Stars

Among the 16 000 light curves extracted from the pre-OmegaTranS images,we identified more than
one hundred variable stars. The majority of these are short-period eclipsing binary systems but also
pulsating stars and one flare star were found. We detected periodically variable sources using 4
different detection algorithms:

• BLS-algorithm (see§2.6.2): The BLS-algorithm has turned out to be very useful in the search
for detached eclipsing binary systems. We tested 50 000 periods ranging from 0.1 to 100 days
allowing box lengths between 0.01 and 0.4 phase units.

• LS-algorithm: To search for sinusoidal variations such as pulsating starsor contact eclipsing bi-
nary systems we used the Lomb-algorithm (Lomb, 1976) in the interpretation ofScargle (1982)
for unevenly sampled data. The LS-algorithm is based on a Fourier analysis. For each light
curve, the algorithm provided us a power-spectrum in the frequency range of 0.001 days−1

to 1 000 days−1 in which we searched for significant peaks. We used the implementation of
Goessl (2007).

• LK-algorithm: The Lafler-Kinman-algorithm (Lafler & Kinman, 1965) provides a measure-
ment of the smoothness of the folded light curve. For each test period we calculated
the sum of the squared flux-differences of subsequent points in the folded light curve22:
LK(p) = ∑N−1

i=1 (Fi+1−Fi)
2. We calculated the LK-spectrum for 20 000 periods between 0.01

and 1 000 days and search for minima ofLK(p).

22the points have to be sorted according to their phase value
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• PDM-algorithm: The Phase-Dispersion-Method (Stellingwerf, 1978) is based on a technique to
minimizes the sample variance of the phase diagram. For each test period the folded light curve
was divided into m=100 segments withnm data points and the segment-variances are summed
up: PDM(p) = ∑m

j=1 ∑nm
i=1(Fi − F̄j)

2/(nm−1) with F̄j being the flux-average in segment j. We
tested 20 000 trial periods between 0.01 and 1 000 days.

For each light curve, we followed-up the best three periods of each ofthe four detection algo-
rithm resulting in 12 possible periods. In order to find and refine the correct period, we used a
String-Length-algorithm (Clarke, 2002) with 10 000 test periods within 1% of each detected period.
The SL-algorithm is similar to the LK-algorithm but instead of summing up the flux-differences
the sum is calculated over the 2-dimensional distance in the phase-folded light curve: SL(p) =
∑N−1

i=1

[

(Fi+1−Fi)
2 +(φi+1−φi)

2
]

. Finally, each light curve was folded using the period that resulted
in the lowest SL-value and inspected by eye.
In the following we present a selection of the most interesting variable stars found in the
pre-OmegaTranS dataset. The full catalog of variable sources will be available soon at
www.usm.uni-muenchen.de/∼koppenh/. More detailed informations about the different types
of variable stars can be found in Hoffmeisteret al. (1984).
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Figure 2.35: POTS-V5606989: An example of a detached eclipsing binarysystem of Algol type - the
most common type. The two components have a different surface brightness which result in a deep
primary eclipse and a shallow secondary eclipse.
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Figure 2.36: POTS-V5300024: Algol type eclipsing binary with an extremelydeep primary eclipse.
The system must consist of a large secondary that is eclipsing a bright but small primary causing the
brightness to drop by 96%. Because the star is located very close the border of the field, no magnitude
and color information is available.
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Figure 2.37: POTS-V5706871: Algol type eclipsing binary with no visible secondary eclipse. The
total light is completely dominated by the primary component.
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Figure 2.38: POTS-V5104049: An example of a detached eclipsing binarysystem of RX Her type.
The two components have very similar radii and luminosities causing the light curve to show two
eclipses of almost identical depth and shape.



2.9. SURVEY BYPRODUCTS: VARIABLE STARS 95

0.0 0.5 1.0 1.5 2.0
0.5

0.6

0.7

0.8

0.9

1.0

phase

flu
x 

[n
or

m
al

iz
ed

]
RA=13h36m36.2s  DEC=−66°46’17’’   p=0.924days   V=16.5mag  V−I=0.9mag

Figure 2.39: POTS-V5606939: An example of a detached eclipsing binarysystem of AR Lac type.
In this system, a total eclipse of the secondary occurs - visible as a flat part in the light curve at
phase 0.5 and 1.5.
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Figure 2.40: POTS-V5107329:β Lyr type eclipsing binary. This close contact system consists of
components with different surface brightnesses. The ligthcurve is characterized by strong ellipsoidal
variations in between two eclipses of unequal depth.
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Figure 2.41: POTS-V5707071: Contact eclipsing binary system of W Uma type. Like theβ Lyr type
systems, there are strong ellipsoidal variations visible. Two almost identical components result in very
similar primary and secondary eclipses.
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RA=13h35m16.0s  DEC=−66°28’19’’   p=0.355days   V=17.6mag  V−I=1.4mag

Figure 2.42: POTS-V5207790: Non-eclipsing binary contact system withstrong ellipsoidal varia-
tions. Not many systems of this type had been found in the past, because the accuracy needed to
detect the small variations was only reached for bright stars. However,current photometric surveys
reach a precision of a few mmag also for fainter stars. In the pre-OmegaTranS light curve dataset we
have identified∼20 objects of this type.
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Figure 2.43: POTS-V5303056: Another non-eclipsing binary with ellipsoidal variations on a 5%
level.
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Figure 2.44: POTS-V5105074: Ellipsoidal variations on a 2% level with a grazing primary eclipse.
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Figure 2.45: POTS-V5206701: This interesting object was very faint in 2006 and 2008 but showed a
nova-like outburst in 2007 with a brightness-increase of more than a factor of 20.
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Figure 2.46: POTS-V5209654: Very red long periodically variable star,presumably a Mira type
pulsating star. Note that the maximum is almost in sync with POTS-V5206701 (seeFig. 2.45). The
two objects are actually very close to each other (∼2’), however, the different color and shape of the
variation rules out a physical connection of the observed phenomena.
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Figure 2.47: POTS-V5107359: A UV Cet type flare star showing a single outburst on May 11th 2007.
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2.10 Conclusion

Analyzing the light curves of 16 000 stars, we identified 4 transiting planet candidates. Using light
curve diagnostics and consistency checks we were able to provide strong evidence for a planetary
nature of one of the candidates (POTS-C1). With both spectroscopic andphotometric follow-up
observations we will soon be able to derive the mass of the candidate. In case our expectations will be
met and POTS-C1b will be confirmed as a planet, the detection will be of high scientific value. With
a spectral type of K7, POTS-C1 would be the second lowest mass host star around which a transiting
planet was found (only GJ436, an M-dwarf, has a lower mass).
We estimate the luminosity of POTS-C1 to be 0.1 L⊙. Given the close distance of 0.02 AU, the
irradiation at the surface of POTS-C1 is 250 times higher than the Solar constant. Due to the close
distance to the star, POTS-C1b will most likely be tidally locked.
In the course of the pre-OmegaTranS project we set-up and optimized the data reduction pipeline. We
have proven to be able to produce high precision lightcurves with only a minimumlevel of systematic
noise. Therefore we are now in a good position to start the OmegaCam Transit Survey and search for
low-mass planets around M-dwarfs and Jupiters in open clusters.
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Chapter 3

Follow-up of OGLE2-TR-L9

This Chapter is based on Snellenet al. (2009). The photometric observations of the OGLE-II
microlens monitoring campaign have been taken in the period 1997−2000. All light curves of this
campaign have recently become public. Our analysis of these data has revealed 13 low-amplitude
transiting objects among∼15700 stars in three Carina fields towards the Galactic disk. One of these
objects, OGLE2-TR-L9 (P∼2.5 days), turned out to be an excellent transiting-planet candidate. In
this section, we report on our investigation of the true nature of OGLE2-TR-L9. By re-observing
the photometric transit, we attempt to determine the transit parameters to high precision, and, by
spectroscopic observations, to estimate the properties of the host star anddetermine the mass of the
transiting object by means of radial velocity measurements.
High precision photometric observations were obtained ing′, r ′, i′, and z′ band simultaneously,
using the new GROND detector, mounted on the MPI/ESO 2.2m telescope at La Silla. Eight epochs
of high-dispersion spectroscopic observations were obtained using thefiber-fed FLAMES/UVES
Echelle spectrograph, mounted on ESO’s Very Large Telescope at Paranal.
The photometric transit, now more than 7 years after the last OGLE-II observations, was re-
discovered only∼8 minutes from its predicted time. The primary object is a rapidly rotating F3 star
with vsini=39.33±0.38 km/s, T=6933±58 K, log g = 4.25±0.01, and [Fe/H] =−0.05±0.20. The
transiting object is an extra-solar planet with Mp=4.5±1.5 MJup and Rp=1.61±0.04RJup.
Since this is the first planet detected orbiting a fast rotating star, the uncertainties in both the radial
velocity measurements and the planetary mass are larger than for most other planets discovered to
date. The rejection of possible blend scenarios was based on a quantitative analysis of the multi-color
photometric data. A stellar blend scenario of an early F-star with a faint eclipsing-binary system is
excluded, due to 1) the consistency between the spectroscopic parameters of the star and the mean
density of the transited object as determined from the photometry, and 2) the excellent agreement
between the transit signal as observed at four different wavelengths.
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3.1 Transit Photometry with GROND
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Figure 3.1: Transit light curves of OGLE2-TR-L9 in g′, r′, i′ and z′ observed simultaneously with the
GROND instrument, mounted on the MPI/ESO 2.2m telescope. The line shows the best model fit for
the combined light curves, as discussed in the text.

3.1.1 Data acquisition and analysis

We observed one full transit of OGLE-TR-L9 with GROND (Greineret al., 2008), which is a gamma
ray burst follow-up instrument mounted on the MPI/ESO 2.2m telescope at theLa Silla observatory.
GROND is a 7-channel imager that allows to take 4 optical (g′r′i′z′) and 3 near infrared (JHK)
exposures simultaneously. On January 27, 2008, a total of 104 images in each optical band and
1248 images in each near infrared band were taken. The JHK-images turned out to have insufficient
signal-to-noise ratio to be able to detect the transit, and will not be considered further. Using exposure
times of 66 seconds and a cycle rate of 2.5 minutes, we covered a period of about 4 hours centered on
the predicted transit time.
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filter γ1 γ2

g′ 0.3395 0.3772
r′ 0.2071 0.3956
i′ 0.1421 0.3792
z′ 0.0934 0.3682

Table 3.1: Limb-darkening coefficients used for the transit fitting, taken from Claret (2004) for a star
with metallicity [Fe/H] = 0.0, surface gravity logg = 4.5, and effective temperatureTe f f = 7000K.

All optical images were reduced with themupipesoftware developed at the University Observatory
in Munich1. After the initial bias and flat-field corrections, cosmic rays and bad pixels were masked,
and the images were resampled to a common grid. The frames did not suffer from detectable
fringing, even in the z-band. Aperture photometry2 was performed on OGLE2-TR-L9 and eight to
ten interactively selected reference stars, after which light curves were created for each of the 4 bands.
The aperture radius was chosen to be 12 pixels, corresponding to 1.9 arcseconds, and the seeing was
typically 1.1 arcseconds during the observations. The sky was determinedin an annulus between
20 and 30 pixels from the object positions. The rms in the individual light curves of the reference
stars was in all cases lower than 0.3%, which provided typical precisions inthe relative fluxes superior
to 0.2%.

3.1.2 Fitting the transit light curves

The light curves in g′, r′, i′, and z′, were fitted with analytic models presented by Mandel & Agol
(2002). We used quadratic limb-darkening coefficients taken from Claret (2004), for a star with
metallicity [Fe/H]=0.0, surface gravity logg=4.5, and effective temperatureTeff=7000K (close to
the spectroscopic parameters of the star as determined below). The valuesof the limb-darkening
coefficients are given in Table 3.1.
Using a simultaneous fit to all 4 light curves, we derived the mean stellar density, Mstar / R3

star in solar
units, the radius ratioRplanet / Rstar, the impact parameterβimpact in units ofRstar, and the timing of the
central transit. With a scaling factor for each band, eight free parameters could be fitted.
The light curves and the model fits are shown in Fig. 3.1, and the resulting parameters are listed in
Table 3.2. The model fits the light curves well except for the g-band light curve, which is attributed
to the significantly more noisy light curve, and the poorly determined baseline,particularly before
ingress.

3.2 Spectroscopic Observations with UVES/FLAMES

We observed OGLE2-TR-L9 with the UV-Visual Echelle Spectrograph (UVES; Dekkeret al.(2000)),
mounted at the Nasmyth B focus of UT2 of ESO’s Very Large Telescope (VLT) at Paranal, Chile.

1 http://www.usm.lmu.de/∼arri/mupipe/
2 note that for a bright object like OGLE-TR-L9, aperture photometry performs better than the difference imaging technique

(see§2.5) which is limited to∼ 2-3 mmag due to systematic effects. Since there are many equally bright or brighter
reference stars in the vicinity of OGLE-TR-L9 we achieved a better precision with aperture photometry, see below
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The aims of these observations were to estimate the spectroscopic parametersof the host star, and
to determine the radial velocity variations. The observations were performed in fiber mode, with
UVES connected to the FLAMES fiber facility (Pasquiniet al., 2002), with 7 science fibers and with
simultaneous thorium-argon wavelength calibration (UVES7 mode).
Apart from our main target, fibers were allocated to two other OGLE-II transit candidates from
S07 (OGLE2-TR-L7 and OGLE2-TR-L12), and three random stars within the 25′ FLAMES field.
In addition, one fiber was positioned on the empty sky. A setup with a central wavelength of
580 nm was used, resulting in a wavelength coverage of 4785−6817Å over two CCDs, at a resolving
power of R=47000. Since the upper CCD was found to cover only a small number of strong stellar
absorption lines, in addition to being affected by significant telluric contamination, only the lower
CCD (4785−5729Å) was used for further analysis.
Eight observations were taken in Director’s Discretionary Time, in servicemode during December
2007 and January 2008, and spread in such a way that the data would beevenly distributed across
the orbital phases of our main target (see Table 3.3). The data were analyzed using themidas-based
UVES/FLAMES pipeline provided by ESO, which results in fully reduced, wavelength-calibrated
spectra. Since we were concerned with the wavelength calibration of the fifth epoch (see below), we
also analyzed the data using purpose-build IDL routines. No significant differences in the wavelength
solutions were found. The resulting signal-to-noise per resolution element,in the central part of the
orders, varied between∼10 and 20 during the different epochs (see Table 3.3).

3.2.1 Determination of stellar spectroscopic parameters

Figure 3.2: The central part of one order of the combined UVES spectrum of OGLE2-TR-L9, with
overplotted a synthetic spectrum with T=6900 K, g=4.5, [Fe/H]=0, and vsini = 39.33 km/sec.
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Transit:
ρs = 0.4260±0.0091ρsun

Rp/Rs = 0.10847±0.00098
βimpact = 0.7699±0.0085

t0 = 2 454 492.79765±0.00039 HJD
P = 2.4855335±7×10−7 d

Host star:
Coord. (J2000) = 11h 07m 55.29s −61◦ 08′ 46.3′′

I mag = 13.974
I−J mag = 0.466±0.032

J−K mag = 0.391±0.049
T = 6933±58 K

log g = 4.47±0.13∗

log g = 4.25±0.01∗∗

[Fe/H] = −0.05±0.20
vsini = 39.33±0.38 km/s

Rs = 1.53±0.04 Rsun

Ms = 1.52±0.08 Msun

Age < 0.66 Gyr
Planetary Companion:

K = 510±170 m/s
i = 79.8±0.3◦

a = 0.0413±0.0005 AU
Rp = 1.61±0.04 RJup

Mp = 4.5±1.5 MJup
∗Determined from the spectroscopic analysis
∗∗Determined from mean stellar density combined with the

evolutionary tracks

Table 3.2: The transit, host star, and planetary companion parameters as determined from our photo-
metric and spectroscopic observations.

The spectroscopic parameters of the star, vsini, surface temperature, surface gravity, and metallicity,
were determined from the SNR-weighted, radial velocity shifted combination of the eight epochs
taken with UVES. This combined spectrum has a signal-to-noise ratio of∼42 in the central areas of
the orders. Detailed synthetic spectra were computed using the interactive data language (IDL) inter-
face SYNPLOT (I. Hubeny, private communication) to the spectrum synthesis program SYNSPEC
(Hubenyet al., 1994), utilizing Kurucz model atmospheres3. These were least-squares fitted to each
individual order of the combined UVES spectrum. The final atmospheric parameters were taken as
the average values across the available orders. The uncertainties in the fitted parameters estimated
using aχ-square analysis and from the scatter between the orders, provided similar results, of which
the latter are adopted.

3 http://kurucz.harvard.edu/grids.html
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HJD Orbital SNR RV BiS
-2450000 Phase km s−1 km s−1

4465.8421 0.157 19.0 1.090±0.224 -0.076±0.482
4466.8583 0.566 16.6 1.204±0.276 0.173±0.380
4468.7219 0.316 11.2 0.842±0.212 -0.233±0.683
4472.7447 0.934 14.7 1.105±0.231 -0.492±0.460
4489.6749 0.746 9.0 2.345±0.376 0.123±1.101
4490.8382 0.214 15.3 0.472±0.318 0.235±0.339
4493.7697 0.393 19.9 1.187±0.187 -0.150±0.432
4496.7703 0.601 19.0 1.190±0.272 0.418±0.545

Table 3.3: Spectroscopic observations of OGLE2-TR-L9 taken with UVES/FLAMES. The first three
columns give the Heliocentric Julian Date, the planet’s orbital phase at the time of observation, and the
signal-to-noise ratio of the spectra per resolution element in the center of themiddle order. Column 4
and 5 give the radial velocity and the bisector span measurements.

The best-fit solution parameters and their uncertainties are given in Table 3.2. One order of the
combined UVES spectrum is shown in Fig. 3.2, showing the Mgb 5170Å complex, with the synthetic
spectrum with T=6900 K, log g=4.5, [Fe/H]=0, and vsini = 39.33 km/sec, overplotted.

3.2.2 Radial velocity measurements

The orders of the eight spectra were first cosine-tapered to reduce edge effects. Cross-correlations
were performed using the best-fit velocity-broadened synthetic spectrum, as determined above, as
a reference. The spectrum of the sky-fiber indicated that the sky contribution was typically of the
order of∼0.5%. However, for the observation at 0.74 orbital phase (epoch 5), the relative sky levels
were an order of magnitude larger, due to a combination of bad seeing and afull moon. We therefore
subtracted the sky spectrum from all target spectra before cross-correlation.
The resulting radial velocity data are presented in Table 3.3, after correction to heliocentric values.
The uncertainties are estimated from the variation of the radial velocity fits between the different
orders. The final radial velocity data as function of orbital phase (the latter determined from the
transit photometry), are shown in Figure 3.3. The data were fitted with a sine function with amplitude,
K, and a zero-point, V0, as free parameters. The radial velocity amplitude was determined at
K = 510± 170 m/s, with V0 = +0.2 km/s.
We also determined the variations in the bisector span (following Quelozet al. (2001)) as function
of both radial velocity and orbital phase which are shown in Fig. 3.4. We performed a least-squares
fit of the bisector span measurements as function of orbital phase with a sinusoid, but no significant
variations at a level of -0.01± 0.140 km s−1 were found. Although this means that there is no
indication that the measured radial velocity variations are due to line-shape variations, caused by
either stellar activity or blends of more than one star, the errors are very large, making any claim
based on the bisector span uncertain.
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Figure 3.3: The radial velocity measurements of OGLE2-TR-L9 as functionof orbital phase from the
ephemeris of the transit photometry.

3.3 Estimation of the Stellar and Planetary Parameters

3.3.1 Stellar mass, radius, and age

The transit photometry provides an estimate of the mean density of the host star, while the spectro-
scopic observations yield its surface temperature, surface gravity, andmetallicity. The stellar evolu-
tionary tracks of Siesset al. (2000) were used subsequently to estimate the star’s mass, radius, and
age, resulting in Ms=1.52±0.08 MSun, Rs=1.53±0.04 RSun, and an age of<0.66 Gyr. These parame-
ters correspond to a surface gravity of log g = 4.25±0.01, which is in reasonable agreement, but about
1.7σ lower than the spectroscopic value. It should be realized that it is notoriously difficult to obtain
reliable log g values from spectra at relatively low signal-to-noise ratio.

3.3.2 Planetary mass and radius

Using the values obtained from the transit fit to the GROND light curves, the radial velocity curve
fit, and the stellar parameters derived above, we obtain a planetary mass ofMp = 4.5±1.5 MJup and a
planetary radius of Rp = 1.61±0.04 RJup. The semi-major axis of the orbit is a=0.0413±0.0005 AU
and the mean density of the planet is 1.44±0.49 g cm−3.
This implies that OGLE2-TR-L9b is one of the largest known transiting hot Jupiters, only TrES-4b
and WASP-12b are marginally larger, although its mean density is similar to that ofJupiter.
Even so, OGLE2-TR-L9b is significantly larger than expected for an irradiated∼4.5 MJup planet
(Fressinet al., 2007).
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Figure 3.4: Bisector variations as function of orbital phase (top panel) and radial velocity value (bot-
tom panel). The solid line and dashed lines in the top panel indicate the least-squares fit to the sinu-
soidal variation in the bisector span and its uncertainty at−0.01±0.140 km s−1.

3.4 Rejection of Blended Eclipsing Binary Scenarios

Large photometric transit surveys are prone to produce a significant fraction of false interlopers
among genuine, transiting, extra-solar planets. If the light from a short-period eclipsing stellar
binary is blended with that from a third, brighter star, the combined photometricsignal can mimic a
transiting exoplanet. Although the radial velocity variations induced by an eclipsing binary should be
orders of magnitude larger than those caused by a planet, the blending of the spectral lines with those
from the brighter, third star could produce variations in the overall cross-correlation profile that have
significantly smaller amplitudes, possibly as small as expected for giant planets. Since this would be
accompanied with significant line-shape variations, bisector span analyses are often used to reject a
blended eclipsing binary scenario.
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Figure 3.5: The upper panel shows the stellar surface temperature, Ts, versus the mean density,ρs,
for evolutionary tracks of Siesset al. (2000). The filled squares on each track indicate stellar ages of
0.1, 0.5, and 1×109 years, (and 5×109 years for M≤1.2MSun), with larger symbols indicated higher
ages. The dashed line indicates the maximum possibleρs for a given stellar surface temperature.
The bottom panel shows the confidence intervals from theχ-square analysis of all possible blended
eclipsing binary scenarios fitted to the GROND light curves. On the x-axis thedifference in surface
temperature between the eclipsed and the third star is shown, and on the y-axis the fraction of the total
light coming from the third star in r’-band. It shows that the combined g’r’i’z’ light curves can only
be fitted including a low level (. 30%) of light contamination.

Although no significant variations in the bisector span are observed in OGLE2-TR-L9, it could be
argued that this is due to the low signal-to-noise ratio of the data. We show however that a blended
eclipsing binary scenario can be rejected anyway, because of the following observations:

1 Transit light curves from g′ to z′ band:As can be seen in Fig. 3.1, there is an excellent agree-
ment between the light curves from g to z band. This means that if the transit was actually
caused by a background eclipsing binary blended with a bright foreground star, the colors (and
thus the surface temperatures) of the eclipsed binary star and foreground star should be very
similar.

2 Transit shape and spectral classification:The mean stellar density determined from the transit
photometry is in excellent agreement with that inferred from the spectral classification, both
being consistent with an early F-star. Using the argument above, this meansthat if this is a
blend, then both the foreground star and the eclipsed binary star should be early F stars.

However, if we now assume that a significant fraction of the light originatesfrom a foreground star,
and we remove this contribution from the light curve, the transit can no longer be fitted by an early
F-star, but only by a star of significantly higher mean density, implying a cooler, less massive star,
again in contradiction with point 1). This implies that the early F-staris the transited object, and that
a blended eclipsing binary scenario can be rejected.
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To explore further the possible role of additional light from a blended star, we performed a quan-
titative analysis, simulating background eclipsing binary systems with their light diluted by that
from a third star. We first used the stellar evolutionary tracks of Siesset al. (2000) to determine the
full range of stellar parameters that can be present in eclipsing binaries,of which only the stellar
surface temperature, Tecl, and the mean stellar density,ρecl of the eclipsed star are of interest in
the simulations. We note that the evolutionary status of the third star is not important, since we do
not restrict ourselves to physical triple systems, but also include chance-alignments of back- and
foreground stars. As is indicated in the top panel of Fig. 3.5, where the stellar evolutionary tracks are
shown, there is a maximum possible mean-stellar density for a given surfacetemperature. This was
used as a boundary condition in the simulations.
In our simulations we varied two parameters, 1) the difference between the surface temperature of
the eclipsed star and that of the third star,∆T (−1000 K<∆T<+1000 K), and 2) the fraction of
light originating from the third (possibly unrelated) star, F3rd (0<F3rd< 99%). The combined light
of the eclipsing binary and third star should produce a spectrum which with asurface temperature
of Tcomb = 6933 K. Therefore, a simple linear relation between Tcomb and the surface temperatures
of the individual stars was assumed, such that Tecl = Tcomb− F3rd

1+F3rd
∆T. We note that any small

fraction of light that could originate from the eclipsing star is simply added to F3rd. In this way,
each combination of F3rd and∆T, results in a Tecl and a maximum possibleρecl. It also results in a
fractional contribution of light from the third star that varies over the fourfilters.

For each combination of F3rd and ∆T, model eclipsing binary light curves fitted to the g’r’i’z’
GROND data, using as before the algorithms of Mandel & Agol (2002), in which the binary size
ratio and the impact parameter were completely free to vary, andρecl was retricted to be below the
upper limit set by Tecl. In this way, all possible blended eclipsing binary scenarios were simulated,
independently of whether or not the third star is physically related to the binary. The bottom panel
of Fig. 3.5 shows the confidence contours of theχ-square analysis of all possible blended eclipsing
binary scenarios. It shows that the combined g’r’i’z’ data can only be fitted by light curves of
eclipsing binaries with a low level.30% (90% confidence level) of blended light, meaning that most
light in the stellar spectrum must originate from the eclipsed star.
Scenarios in which the stellar spectrum is dominated by a third star with a small contribution from
a background eclipsing binary, can be strongly rejected. The transit light curves produced by those
rejected scenarios are simply too wide, too V-shaped, and/or too color dependent to fit the GROND
data. One scenario that we cannot reject, is a small contribution from a blended star. For example, it
could in principle be possible that the light from the transited F3 star is diluted at a∼30% level with
light from another F-star (with a similar vsini and radial velocity, otherwise it would show up in the
spectra). In this case, the transiting planet would be∼30% more massive (and∼15% larger) than
determined above, by no means outside the planet mass range.
We note that for most transiting planets presented in the literature, such a low-level contamination
scenario can not be excluded, since the variations in the bisector span would be orders of magnitude
smaller than in the case of a blended eclipsing stellar binary. This is because the radial velocity
variations in the latter case are 102−3 times larger than in the first case.
There have been several reports of blended eclipsing binaries hiding out as transiting planets, most
notably by Mandushevet al. (2005) and Torreset al. (2004). However, these studies dealt with
very low signal-to-noise ratio light curves, whereas the true nature of these systems would have
been easily established by high quality photometric data similar to that presented inthis paper.



3.4. REJECTION OF BLENDED ECLIPSING BINARY SCENARIOS 111

Mandushevet al. (2005) rejected a transiting planet scenario for the rapidly rotating (vsini=34 km/s)
F5 star GSC 01944-02289, in favour of a blended eclipsing binary. Thissystem was shown to be a
hierarchical triple consisting of an eclipsing binary with G0V and M3V components, in orbit around
a slightly evolved F5 dwarf. The latter star in this scenario contributes for∼89% to the total light
from the system. Although they claim that the true nature of this system was notrevealed by their
BVI light curves, the color difference between the G0V and F5V star impliesthat the transit must be
25-30% deeper in I-band than in B-band. However, no quantitative analysis of the light curves was
presented, and the authors claimed that the true nature of the system was only brought to light by
spectroscopic means.
In a similar fashion, Torreset al. (2004) presented the case of OGLE-TR-33, which was identified as
a triple system consisting of an eclipsing binary with F4 and K7-M0 componentsorbiting a slightly
evolved F6 star. However, the photometry in this study relied solely on the original I-band OGLE-III
data, resulting in a relatively low SNR transit detection for which the ingress and bottom of the transit
were not well covered. They also claimed that the blended eclipsing binarywas only revealed by
spectroscopy. However, their best-fit planet model already pointed towards a very unlikely planet
radius of∼3 RJup, and the V-shaped transit produced by the blended eclipsing binary would have
been easily detected by our high precision photometry. We note that while Torreset al. (2004) and
Mandushevet al.(2005) only considered physical triple systems, our analysis presentedabove covers
all possible scenarios, including those involving chance-alignment of background or foreground stars.
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3.5 Discussion

More than seven years and>1000 orbital periods after the last observations of OGLE2-TR-L9, we
have rediscovered the transit signal only 8 minutes from its predicted time (from S07). Our study not
only shows that an observing campaign with long time intervals between measurements can produce
reliable light curves, it also shows that it produces extremely accurate orbital periods.
OGLE2-TR-L9b is the first extra-solar planet discovered transiting a rapidly rotating (vsini=39 km/s)
F-star. OGLE2-TR-L9 is also the star with the highest surface temperature(T=6933 K) of all
main-sequence stars that host an exoplanet known to date. It is therefore not surprising that the
uncertainties in the radial velocity variations are higher than for most other transiting exoplanets
presented in the literature. Only because of the high mass of OGLE2-TR-L9b, we were able to detect
its radial velocity signature. We note, however, that since a blend scenario can be rejected at high
significance, an upper limit to the mass of OGLE2-TR-L9b would have been sufficient to claim the
presence of a transiting, extra-solar planet, although of unknown mass.Similar arguments have to be
used in the case of future detection of the transits of Earth-size planets from Kepler or CoRoT, since
their radial velocity signature may be too small to measure.
OGLE2-TR-L9b has a significantly larger radius than expected for a planet of about 4.5 times the
mass of Jupiter, even if it is assumed that 0.5% of the incoming stellar luminosity is dissipated at
the planet’s center (Fressinet al., 2007). However, it is not the only planet found to be too large
(e.g. CoRoT-exo-2b, TrES-4b, and XO-3b). Several mechanisms have been proposed to explain these
’bloated’ radii, such as more significant core heating and/or orbital tidal heating (see Liuet al. (2008)
for a recent detailed discussion).
The measured vsini and estimated stellar radius have been combined to infer a rotation period of the
host star of∼1.97±0.04 days. This implies that the rotation of the star is not locked to the orbital
period of OGLE2-TR-L9b. A vsini of 39 km/sec is within the normal range for stars of this spectral
type. The mean vsini of F5 to F0 stars in the solar neighbourhood range from 102 to 103 km/sec
respectively. We note that the vsini of OGLE2-TR-L9a is only∼9% of the expected break-up
velocity for a star of this mass and radius. Assuming the general Roche model for a rotating star
(e.g. Seidov (2004)), the ratio of polar to equatorial radius of OGLE2-TR-L9a will be on the order
of, 1− 1

2(v/vmax)
2 ∼ 0.996. Thus, the rotational flattening of the host star is not expected to influence

the transit shape significantly. OGLE2-TR-L9 is expected to exhibit a strong Rossiter-McLaughlin
effect. Simulation using a segmented stellar surface predict an amplitude of 230 m/sec.



Chapter 4

Optimization of the Pan-Planets Survey
Strategy

4.1 Abstract

This Chapter is based on Koppenhoeferet al. (2009). Using Monte Carlo simulations we analyze the
potential of the upcoming transit survey Pan-Planets. The analysis covers the simulation of realistic
light curves (including the effects of ingress/egress and limb-darkening) with both correlated and
uncorrelated noise as well as the application of a box-fitting least squaresdetection algorithm. In this
work we show how simulations can be a powerful tool in defining and optimizingthe survey strategy
of a transiting planet survey.
We find the Pan-Planets project to be competitive with all other existing and planned transit surveys
with the main power being the large 7 square degree field of view. In the firstyear we expect to find
up to 25 Jupiter-sized planets with periods below 5 days around stars brighter than V = 16.5 mag. The
survey will also be sensitive to planets with longer periods and planets with smaller radii. After the
second year of the survey, we expect to find up to 9 Warm Jupiters with periods between 5 and 9 days
and 7 Very Hot Saturns around stars brighter than V = 16.5 mag as well as 9Very Hot Neptunes with
periods from 1 to 3 days around stars brighter than i’ = 18.0 mag.
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4.2 The Pan-Planets Survey

The Panoramic Survey Telescope and Rapid Response System (PanSTARRS) is an Air Force funded
project aiming at the detection of killer asteroids that have the potential of hittingthe Earth in the near
future. The prototype mission PanSTARRS1 is using a 1.8m telescope at the Haleakala Observatories
(Maui, Hawaii) to monitor 3π of the sky over a 3.5 yr period starting in early 2009. The telescope
is equipped with the largest CCD camera in the world to date that samples a field of7 sq.deg. on a
1.4 Gigapixel array (Kaiser, 2004) with a pixel-size of 0.258 arcsec.
To make use of the large amount of data that will be collected, a science consortium of institutes
from USA, Germany, UK and Taiwan has defined 12 Key Science Projects, out of which one is the
Pan-Planets transit survey. A total of 120h per year have been dedicated to this project during the
3.5 yr lifetime of the survey. The actual observing time will be less due to bad weather and technical
downtime. We account for a 33% loss in our simulations.
In the first two years, Pan-Planets will observe 3 to 7 fields in the direction of the Galactic plane.
Exposure and read-out time will be 30s and 10s respectively. The observations will be scheduled in
1h or 3h blocks. The target magnitude range will be 13.5 to 16.5 mag in the Johnson V-band. The
magnitude range is extended to i’ = 18 when searching for Very Hot Neptunes (see§4.4.6). More
detailed informations about Pan-Planets are presented in Afonso et al. (inprep.).

4.3 Simulations

The goal of this work is to study the expected number of planets that will be detected by the
Pan-Planets project as a function of different survey strategies, with avariety of different parameters
like number of fields (3 to 7), length of a single observing block (1h and 3h)and level of residual red
noise (0 mmag, 1 mmag, 2 mmag, 3 mmag and 4 mmag). In total we simulate about 100 different
combinations of these parameters for each of 5 different planet populations (see§4.3.2).
In our simulations we follow a full Monte-Carlo approach, starting with the simulation of light
curves with realistic transit signals. Systematic effects coming from data reduction steps on image
basis, such as differential imaging or PSF-photometry are taken into account by adding non-Gaussian
correlated noise, the so called red noise (Pontet al., 2006), to our light curves (see§4.3.4). We apply
a box-fitting least squares algorithm to all simulated light curves in order to test whether a transiting
planet is detected or not.
For each star in the input stellar distribution (§4.3.1) we decide randomly whether it has a planet or
not, depending on the fraction of stars having a planet of this type. In the case it has a planet, we
randomly pick a planet from the input planet distribution (§4.3.2) and create a star-planet pair which
is attributed a randomly oriented inclination vector resulting in a transiting or non-transiting orbit (the
geometric probability for a transiting orbit depends on stellar radius and semi-major axis of the orbit).
In the case of a transiting orbit, the light curve is simulated based on stellar andplanetary param-
eters and the observational dates we specified (see§4.3.5). The shape of the transit is calculated
according to the formulae of Mandel & Agol (2002) and includes the effects of ingress/egress and
limb-darkening. We add uncorrelated Gaussian (white) and correlated non-Gaussian (red) noise to
our light curves. Details about our noise model are given in§4.3.3 and§4.3.4. After the simulation of
the light curves, we apply our detection algorithm and our detection cuts as described in§4.3.6, and
count how many planets we detect.
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One simulation run is finished after each star has been picked once. In this way one run represents
one possible outcome of the Pan-Planets survey. Since in the majority of cases the star has no planet
or the inclination is such that no transits are visible, there are in general onlya few transiting light
curves per run. For each planet population and each set of survey parameters we simulate 25 000 runs.
For the selected survey strategy we increase the precision to 100 000 runs. The numbers we list in our
results are averages over these runs. The scatter of the individual outcomes allows us to derive errors
for our estimates.

4.3.1 Input stellar distribution

We make use of a Besançon model1 (Robin et al., 2003) for the spectral type and brightness dis-
tributions of stars in our target fields. A model of 1 sq.deg centered around RA = 19h47m41s

·7,
DEC =+17d01m52s (l = 54.5, b = -4.2) is scaled to the actual survey area assuming a constantden-
sity. The parameters taken from the model are stellar massMstar, effective temperatureTe f f, surface
gravity logg, metallicity [Fe/H] and apparent MegaCam2 i’-band AB-magnitudemi′ . The model also
provides colors which we use to determine the apparent Johnson V-bandmagnitudemV , according to
the following formula derived by Smithet al. (2002) :

V = g′−0.55· (g′− r ′)−0.03 (4.1)

The stellar radiiRstar are calculated using logg andMstar according toRstar = sqrt(G×Mstar / g).
Furthermore,Te f f, log g, and [Fe/H] are used to determine quadratic limb-darkening coefficients
according to Claret (2004) which are based on synthetic ATLAS spectra(Claret, 2000).
In total we find 3 440 F-, G-, K- and M-dwarfs3 per sq.deg. that are not saturated (i.e.mi′ ≥ 13 mag)
and are brighter than our radial velocity follow-up limit (i.e.mV ≤ 16.5 mag). Fig. 4.1 shows the
input stellar distribution.
For VHN we extend the target magnitude range tomi′ ≤ 18 mag. We find 34 000 M-dwarfs in this
range.

1 http://bison.obs-besancon.fr/modele/
2 http://www.cfht.hawaii.edu/Instruments/Imaging/Megacam/
3 we refer to dwarfs as stars of luminosity class IV-VI
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Figure 4.1: Total number and magnitude histogram of F-, G-, K- and M-dwarfs (top to bottom) with
mi′ ≥ 13 mag andmV ≤ 16.5 mag in our target population. Note that the cut on the visual magnitude
results in an brighter cut in i’ for the later type stars due to their redder color.

4.3.2 Input planet distributions

We test five different planetary populations:

i) Very Hot Jupiters (VHJ), with radii of 1.0-1.25RJ and periods between 1 and 3 days

ii) Hot Jupiters (HJ), with radii of 1.0-1.25RJ and periods between 3 and 5 days

iii) Warm Jupiters (WJ), with radii of 1.0-1.25RJ and periods between 5 and 10 days

iv) Very Hot Saturns (VHS), with radii of 0.6-0.8RJ and periods between 1 and 3 days

v) Very Hot Neptunes (VHN), with radii of 0.3RJ and periods between 1 and 3 days

Within the given ranges the radii and periods are homogeneously distributed.
Our predicted yields depend on the frequency of stars that have a planet for each of the five
population. These frequencies are not known to a very good precisionand not many estimates have
been published so far. Gouldet al. (2006a) performed a detailed study of the OGLE-III survey and
derived frequencies of Very Hot Jupiters and Hot Jupiters by comparing the number of detected
planets in the OGLE-III survey to the number of stars the survey was sensitive to. They found at 90%
confidence level 0.1408· (1+1.10

−0.54)% of all late type dwarfs to have a VHJ and 0.3125· (1+1.37
−0.59)% to

have a HJ. Fressinet al. (2007) published comparable results analyzing the same survey.
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For VHJ and HJ we use the frequencies published by Gouldet al. (2006a). The frequency of WJ we
speculate to be the same as for HJ which is consistent with the OGLE-III results (see§4.5). Further
we assume the frequencies for VHS and VHN to be 0.714% (same as for VHJ) and 5% respectively.

4.3.3 White noise model

For the white noise in our light curves we add four different Gaussian components: stellar photon
noise, sky background, readout and scintillation noise. The photon noise of each star is estimated
using a preliminary exposure time calculator which has been calibrated by observations taken during
a pre-commissioning phase of the PanSTARRS1 telescope. We assume the sky background to be
20.15 mag per square arcsecond which corresponds to a seven day distance to full moon. The readout
noise is assumed to be 8e− per pixel. The scintillation noise is estimated to be 0.5 mmag according
to the formula of Young (1967, 1993) and is only of importance at the very bright end of our target
distribution. Fig. 4.2 shows the white noise as function of magnitude as well as the individual
contributions.
For our calculations we assume a seeing of 1.2 arcsec, airmass of 1.4, extinction coefficient of 0.08
and PSF fitting radius of 1.0 arcsec. At the faint end (i’ = 18 mag) the numberof photons is of the
order of 15,500 for the object and 7,800 for the sky and therefore welloutside the Poisson statistics
regime.
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Figure 4.2: Total white noise and contributions of the four components.
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4.3.4 Residual red noise model

As detailed analyses of light curve datasets have shown, all transit surveys suffer from non-Gaussian
correlated noise sources, also known as red noise. E.g. Pontet al.(2006) analyzed the OGLE-III light
curves and calculated binned averages of subsets containing n data points. They found the standard
deviationσ of these averages can be parameterized to a good approximation by the following formula:

σ =

√

σ2
white

n
+σ2

red (4.2)

with σwhite being the single point rms of the white noise component andσ2
red being a constant red

noise contribution. With this equation one can model how the red noise decreases the signal-to-noise
ratio (S/N) of a transit light curve.
Application of algorithms to remove systematic effects, such asSysrem(Tamuzet al., 2005) orTFA
(Kovácset al., 2005) have been successfully applied by several groups resulting ina significant
reduction of the level of red noise (e.g. Snellenet al., 2007). However, a small fraction of the
correlated noise always remained.
In our simulations we want to account for this residual red noise (RRN). Asimple model would be
to increase the level of Gaussian noise by a certain amount and thereforeassume that the correlated
nature is of minor importance. For studies based only on S/N calculations one could also use a
parameterization like equation 4.2. Since we are simulating light curves, we want to introduce a
different approach. We model the RRN by adding superimposed sine waves of different wavelengths
and amplitudes. This allows us to include the effects the correlated noise has on the efficiency of the
detection algorithm, which could get confused by noise that is correlated ontimescales of a typical
transit duration.

We add RRN according to the following model:

∆ f lux(t) = ∑
i

Ai ·sin(
π
τi

t + p0,i) (4.3)

with normalized amplitudeAi , timescaleτi and random phase shiftp0,i of each component i. The
phase shift is calculated for each observing block independently and therefore changing with time for
a single light curve. This is done in order to avoid introducing strong periodic signals that are coherent
over a timescale longer than a day.
For each model we start with relative amplitudesA′

i which are normalized in such a way that the rms
of the added RRN (rmsred) is of value 1 mmag, 2 mmag, 3 mmag or 4 mmag:

rmsred =

√

∑i A
2
i

2
. (4.4)

In order to analyze the influence of the timescales and amplitudes on our results we construct a total
of 9 different red noise models with each of them having 3 or 4 components. Table 4.1 gives an
overview of the parameters of our red noise models. We refer to models 1 to 3as ’fixed parameter’
models because for these we select arbitrary fixed values forA′

i and τi which we use for all light
curve. For models 4 to 9 we draw the relative amplitudes and timescales randomlyin a given range
and for each light curve individually. Fig. 4.3 shows∆ f lux(t) for the fixed parameter models.
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model A′
1 A′

2 A′
3 A′

4 τ1[min] τ2[min] τ3[min] τ4[min]

1 1 2 3 4 355 169 111 48
2 2 3 4 1 169 131 111 88
3 3 4 1 2 131 99 61 27
4 1-4 1-4 1-4 1-4 300-400 200-300 100-200 0-100
5 1-4 1-4 1-4 1-4 250-300 200-250 150-200 100-150
6 1-4 1-4 1-4 1-4 250-300 200-250 150-200 —
7 1-4 1-4 1-4 1-4 250-300 200-250 — 100-150
8 1-4 1-4 1-4 1-4 250-300 — 150-200 100-150
9 1-4 1-4 1-4 1-4 — 200-250 150-200 100-150

Table 4.1: Dimensionless relative amplitudesA′
i and timescalesτi of our different red noise models. Models 1 to 3 are fixed parameter models

whereas for the others we draw random values within a given range foreach single light curve individually. The timescales are chosen to
cover the range of expected transit durations.
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Figure 4.3:∆ f lux(t) for the fixed parameter models 1 to 3. Because the random phase shift is calculated
for each day individually there are discontinuities visible at integer day positions (local noon). In our
simulation we calculate the phase shift for each observing block in order to ensure continuity within
an observing block.

4.3.5 Epochs of the observations

For each year the Pan-Planets survey has been granted a total of 120hhours which will be executed
in 1h or 3h blocks. Assuming a 33% loss due to bad weather we expect the data to be taken in 81 or
27 nights per year depending on our survey strategy. The actual epochs of the observations we use
to construct our light curves are computed in the following way. For each night in which our target
field is visible for at least 3h we calculate the range of visibility, namely the time the field is higher
than airmass 2 on the sky. This results in a 183 day period starting on April 26th and ending on
October 24th. We randomly pick nights during the period of visibility and place the observing block
arbitrarily within the time span our target is higher than airmass 2, as calculated earlier.
In our simulations we test 5 different scenarios with alternate observationsof 3 to 7 fields during the
observing block. The time for one exposure and readout is assumed to be40s. Therefore the different
number of fields transform into cycle rates between 120s and 280s. Usingthe selected nights, the
random position of a block within a night and the cycle rate we construct a table of observational
dates which we use as input to the light curve simulations. For each simulation run (which represents
one possible outcome of the survey) we draw new observational dates. Table 4.2 summarizes the
observational parameter depending on the survey strategy.
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# of fields block size cycle rate # of data points # of data points
per night per year

3 1h 120s 30 2430
4 1h 160s 23 1863
5 1h 200s 18 1458
6 1h 240s 15 1215
7 1h 280s 13 1053
3 3h 120s 90 2430
4 3h 160s 68 1863
5 3h 200s 54 1458
6 3h 240s 45 1215
7 3h 280s 39 1053

Table 4.2: Cycle rate and number of data points per night and year depending on observational strat-
egy.

4.3.6 Light curve analysis

Each simulated light curve is analyzed by our detection algorithm which is a box-fitting least squares
(BLS) algorithm proposed by Kovácset al. (2002). The program folds the light curves with trial
periods in the range from 0.9 to 9.1 days and finds the bestχ2 fitting box corresponding to a fractional
transit length4 τ between 0.01 and 0.1. For each detection the BLS-algorithm provides period, S/N
and the number of individual transits. For a successful detection we require the period found to match
the simulated period within 0.2% (see Fig. 4.4). In addition, we impose the S/N to be larger than 16
(see§4.3.7) and the number of transits to be at least equal to 3. The planet is also considered being
detected if the measured period is half or twice the simulated period (to within 0.2%).This can easily
happen in case of unevenly sampled light curves. For later analysis we store all input parameters of
the simulation and output parameters of the detection algorithm in a table.

4.3.7 Signal-to-noise cut

To model a transit survey, it is very important to have a transparent and reproducible procedure of
applying cuts in the process of selecting the candidates. The most important value is the minimum
S/N. The S/N of a transit light curve is defined as the transit depth divided by the standard deviation of
the photometric average of all measurements taken during a transit. For a light curve withN uniformly
spaced data points with individual Gaussian errorσ , transit depthδ and a fractional transit lengthτ
this is:

S/N =
δ

σ/
√

Nτ
. (4.5)

4 the fractional transit length is defined as the transit duration divided by theperiod
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Figure 4.4: Deviation of the detected periodpdet from the simulated periodpsim of a number of
arbitrary selected observation runs. For a successful detection we require the detected period to deviate
less than 0.2% (dashed line).

In the presence of red noise the value of the S/N is reduced. Also the actual shape of the transit,
which is determined by limb-darkening and ingress/egress, has an impact onthe S/N. This effect is
included implicitly in our simulation.
Since the probability of finding a planet is small, the majority of transit surveys use a low S/N cut of
about 10. This results in a high number of statistical and physical false positives5 and has made it
necessary to include non-reproducible selection procedures such as”by-eye” rejection. Pushing the
S/N cut to the detection limit makes it therefore difficult to model the detection efficiency.
In the Pan-Planets survey we expect to find a very high number of candidates already in the first year
which will require a high amount of radial velocity follow-up resources. The best candidates have the
highest S/N and will be followed-up first. We will most likely not be able to follow-up all candidates
down to the detection threshold of∼ 12 and therefore use a somewhat larger S/N cut. In this work we
calculate the expected number of detections using a S/N cut of 16.

5 statistical false positives are purely noise generated detections whereasphysical false positives are true low amplitude
variations (like e.g. in a blended binary system)
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4.4 Results

In this section we summarize the results of a total of 7.6 million simulation runs. The computation
time was 230 000 CPU hours which we distributed over a 486 CPU beowulf cluster.
In §4.4.1 we show which block size (1h or 3h) is more efficient for the Pan-Planets survey. In§4.4.2
we compare the different RRN models. Section§4.4.3 addresses the question of the optimal number
of fields (3 to 7). In§4.4.4 we summarize the actual number of VHJ, HJ, WJ, VHS we expect to find
using our preferred survey strategy. Finally, we show the results in the case of observing the same
fields during the second year of the survey instead of monitoring new ones(§4.4.5). In§4.4.6 we
study the potential to find Very Hot Neptunes transiting M-dwarfs.
Error estimates are only given for the final numbers in§4.4.4 and§4.4.5. All numbers we present are
scaled from the 1 sq.deg. Besançon model to the actual survey area ofNf ields× 7 sq.deg assuming a
constant spectral type and magnitude distribution and a homogeneous density.
In order to check whether there are 7 fields of comparable density, we count the total number of stars
in the USNO-A2.0 catalog and compare it to the total number of stars in the Besançon model for a set
of different Galactic longitudes (Table 4.3). We assumed an average color (mUSNOR-mi′) of 0.25 mag.
In the range 43.5≤ l ≤ 61.5 the number of stars in the Besançon model agrees well with the number
of stars. The USNO density varies at a level of 30% with the average being∼14 000, close to the
density we assume in our simulations (l = 54.5). With a diameter of 3 deg. a total of7 Pan-Starrs
fields fit in this range.

4.4.1 Influence of the size of the observing blocks

We investigate the influence of the observing block size on the number of detections in the Pan-Planets
survey. Table 4.4 lists the average number of VHJ and HJ found with 1h and3h blocks after the
application of our detection cuts, as described in§4.3.7.
The first three columns list the planet population and the survey strategy (i.e. number of fields and
observing block size). The fourth column shows the average numbers ofall simulated transiting
planet light curves having a S/N of 16 or more (without requiring 3 transits and without running the
detection algorithm). Here the numbers are very similar comparing the 1h to the 3hblock strategies.
To understand this, one has to consider that a planet spends a certain fraction of its orbit in transit
phase (also known as fractional transit lengthτ). This fraction depends mainly on the inclination and
period of the orbit as well as the radius of the host star. For a givenτ the average number of points
in transit (N · τ) only depends on the total number of observationsN and is therefore independent
of the block size. The same applies to the S/N which, for fixed transit depth and photometric noise
properties, depends only on the number of points in transit to a good approximation. Therefore, if
only a minimum S/N is required, the number of detections is comparable for a strategy with 1h blocks
and with 3h blocks, with minor differences arising from limb-darkening and ingress/egress effects.
Although the number of points in transit is the same for both strategies, one 3h block covers on
average a bigger part of the transit compared to a 1h block. As a consequence the average number of
individual transits must be lower in the case of 3h blocks. If we impose the additional cut of requiring
at least 3 transits to be visible in the light curve (column 5), the expected number of planets found
is lower for the 3h blocks compared to the 1h blocks. With a 3h block strategy the number of light
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l b # USNO-A2.0 # Besançon model
deg deg 13.25≤ mUSNOR ≤ 16.25 13≤ mi′ ≤ 16

40.5 -4.2 7748 15103
41.5 -4.2 8439 14623
42.5 -4.2 10670 14352
43.5 -4.2 14814 14248
44.5 -4.2 14248 14208
45.5 -4.2 10906 13754
46.5 -4.2 14910 13645
47.5 -4.2 17018 13194
48.5 -4.2 17065 13175
49.5 -4.2 14482 12959
50.5 -4.2 14295 12370
51.5 -4.2 14424 12459
52.5 -4.2 16737 12260
53.5 -4.2 15890 11997
54.5 -4.2 14131 11770
55.5 -4.2 14555 11705
56.5 -4.2 15682 11456
57.5 -4.2 14562 11370
58.5 -4.2 13195 11058
59.5 -4.2 11301 10877
60.5 -4.2 11194 10436
61.5 -4.2 9188 10489
62.5 -4.2 6181 10139
63.5 -4.2 4968 9903

Table 4.3: Total number of stars per sq.deg. according to the USNO-A2.0 catalog and the Besançon
model.

curves passing the S/N cut and having 3 or more transits is on average 53%lower for HJ and 26%
lower for VHJ. For the longer period HJ this effect is stronger due to the fact that the number of
visible transits is lower in general.
In order the planet to be considered detected (as described in§4.3), we not only require S/N≥ 16
and at least 3 visible transits, but also that the BLS-algorithm finds the correct period (allowing for
twice and half the correct value). The impact of this additional selection cutis shown in columns
6-10 for light curves with 0 mmag, 1 mmag, 2 mmag, 3 mmag and 4 mmag RRN6. Without RRN,
most planets are found by the BLS-algorithm. The loss is marginally higher in thecase of 3h blocks
which is a consequence of the generally lower number of transits, since theBLS-algorithm is more
efficient if more transits are present. Comparing the results for 1h and 3h blocks we find that in case
the RRN level is 2 mmag, the number of detected planets without RRN is on average 59% lower for
HJ and 30% lower for VHJ in the 3h block case.

6 we restrict ourself here to RRN of model 4 - our favored model (see§4.4.2)
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population fields block S/N≥ 16 ≥ 3 transits 0mmag 1mmag 2mmag 3mmag 4mmag

VHJ 3 1h 13.13 11.39 10.95 10.18 7.73 5.33 3.61
VHJ 4 1h 16.09 13.91 13.37 12.54 9.82 7.00 4.82
VHJ 5 1h 18.53 16.12 15.52 15.06 12.06 8.66 6.10
VHJ 6 1h 20.67 18.00 17.34 16.75 14.00 10.17 7.38
VHJ 7 1h 22.44 19.57 18.87 18.44 15.76 11.72 8.44

VHJ 3 3h 12.50 8.16 7.50 6.45 4.04 2.57 1.61
VHJ 4 3h 15.04 9.95 9.16 8.32 5.32 3.39 2.15
VHJ 5 3h 17.69 11.88 10.95 9.66 6.48 4.23 2.75
VHJ 6 3h 20.09 13.61 12.54 11.01 7.84 5.23 3.21
VHJ 7 3h 21.43 14.64 13.47 12.51 9.03 6.09 3.84

HJ 3 1h 15.93 10.83 9.75 8.65 5.52 3.36 2.06
HJ 4 1h 18.31 12.11 10.87 10.07 6.97 4.37 2.74
HJ 5 1h 20.54 13.69 12.22 11.40 8.43 5.30 3.37
HJ 6 1h 22.45 14.82 13.22 12.32 9.41 6.15 4.07
HJ 7 1h 23.60 15.54 13.78 13.16 10.28 6.86 4.45

HJ 3 3h 14.06 4.98 3.91 2.91 1.49 0.85 0.53
HJ 4 3h 16.30 5.78 4.49 3.54 1.88 1.04 0.66
HJ 5 3h 18.22 6.45 4.97 4.09 2.31 1.34 0.84
HJ 6 3h 20.06 7.04 5.38 4.49 2.74 1.56 0.98
HJ 7 3h 21.59 7.60 5.73 5.07 3.20 1.89 1.15

Table 4.4: Influence of the block size shown on the basis of the number of planets detected in a 1 yr
campaign after applying different detection cuts.

Including RRN, fewer planets are detected by the BLS-algorithm and the discrepancy between 1h and
3h blocks increases. For a typical RRN level of 2 mmag we find on average71% less HJ and 45% less
VHJ with 3h blocks compared to 1h blocks.
As an additional test we perform the same analysis for a campaign with twice theamount of observing
time spread over 2 years. This would correspond to a strategy where we stay on the same target fields
in the second year of the Pan-Planets survey. Also in this case, 1h blocksare more efficient than 3h
blocks. Assuming the RRN level is 2 mmag, we find that the number of detected planets is on average
34% lower for HJ and 59% lower for VHJ in the 3h block case. The details ofthe simulations for a 2
yr campaign can be found in§4.4.5. In the following we restrict our results to 1h blocks.

4.4.2 Influence of the residual red noise model

In this section we compare the results of nine different RRN models which have been introduced
in §4.3.4. In addition, we compare the red noise models to a scenario where we add additional
uncorrelated white noise by the same amount as the RRN level. Table 4.5 showsthe number of
HJ and VHJ found with a 1h block strategy and 2 mmag RRN for each of the 9 different red noise
models, as well as for the increased white noise model.
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In general the increased white noise model results in a significantly higher number of detections
compared to the RRN models (on average 22% and 39% higher for VHJ and HJ respectively). This
shows that the effect of the RRN on the efficiency of the BLS-algorithm is strong and needs to be
taken into account in our simulations.
Comparing the individual RRN models to each other we find that for the fixed parameter models (1 to
3) the number of detections is 8% and 13% higher for VHJ and HJ respectively than for the random
models (4 to 9). The individual results of the random models are all very similar and vary only by
a few percent. In the following we restrict our results to the red noise model 4, since it is the most
general of all models with 4 components and random timescales ranging from0 to 400 minutes.

4.4.3 Influence of the number of fields

In order to optimize the survey with respect to the number of alternating fields monitored during an
observing block, we compare the number of detections for each of the 5 strategies (3 to 7 fields).
We do not test more than 7 fields, because it is not sure if we can find a higher number of fields
with comparable density (see§4.4). Note also, that with more than 7 fields, the number of data
points per light curve would be less than 1 000 and the cycle rate longer than5 minutes which would
complicate the process of eliminating false positives on the basis of the light curve shape7. We limit
our simulations to the above selected 1h blocks (see§4.4.1) and 2 mmag RRN of model 4 (see§4.4.2).
In general, the total number of detections depends on the number of fields intwo counteracting ways:
on the one hand, observing more fields results in more target stars and therefore more transiting planet
systems that can be detected; on the other hand, observing more fields results in a lower number of
data points per light curve and thus the S/N of each transit candidate is shifted to a lower value. The
latter effect is stronger for faint stars because the S/N is generally lowerwhereas for brighter stars the
S/N is high enough in most cases.
The number of detections in the first year of the Pan-Planets survey for different number of fields is
shown in Table 4.6. For all planet populations (i.e. VHJ, HJ, WJ and VHS) we find more planets with
a higher number of fields. The loss in S/N is over-compensated by the higher number of target stars.
In Fig. 4.5 we show the S/N distributions of VHJ detections for a 3 field and a 7 field strategy. The
S/N distribution of VHJ peaks at a higher level than our cut of 16, even for the 7 field strategy, which
explains why observing more fields results in more detections.

7 it is important to well sample the ingress/egress part of the transits which has a duration of approximately 15-20 minutes
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population # of fields model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8 model 9 white

VHJ 3 9.10 8.26 8.72 7.73 7.90 7.80 7.84 7.85 7.75 10.91
VHJ 4 11.30 10.31 11.17 9.82 9.81 9.88 9.92 9.97 9.83 13.30
VHJ 5 13.53 12.66 13.34 12.06 11.95 12.29 12.43 12.23 12.08 15.08
VHJ 6 15.81 14.66 15.01 14.00 14.16 14.12 14.01 13.89 14.23 17.11
VHJ 7 17.24 16.13 16.97 15.76 15.77 15.95 15.85 15.74 15.81 18.44
HJ 3 7.04 6.01 6.74 5.52 5.63 5.69 5.61 5.54 5.60 9.39
HJ 4 8.51 7.37 7.99 6.97 6.80 6.91 6.89 6.91 7.00 10.51
HJ 5 9.84 8.83 9.75 8.43 8.32 8.29 8.33 8.32 8.45 12.10
HJ 6 11.13 10.08 10.53 9.41 9.42 9.41 9.37 9.51 9.41 13.15
HJ 7 11.77 10.78 11.37 10.28 10.39 10.39 10.42 10.31 10.31 13.64

Table 4.5: Influence of the red noise model for 1h blocks and a RRN levelof 2 mmag.
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# fields VHJ HJ WJ VHS

3 7.73 5.52 1.60 2.26
4 9.82 6.97 1.95 2.63
5 12.06 8.43 2.44 3.05
6 14.00 9.41 2.61 3.40
7 15.76 10.28 2.78 3.51

Table 4.6: Number of planets found in the first year depending on the number of target fields, assuming
1h blocks and 2 mmag RRN (model 4).
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Figure 4.5: Normalized S/N distribution of VHJ detections for a 3 field strategy (black) and a 7 field
strategy (red) assuming 1h blocks and 2 mmag RRN (model 4).

In the case of a 2 yr campaign the situation is the same. For all four planet populations it is more
efficient to observe a higher number of fields (see Table 4.7). Therefore we conclude that observing 7
fields is the most efficient strategy and restrict our results in the following to 7fields.

4.4.4 The expected number of detections in the Pan-Planets survey

In the previous sections we have identified our preferred survey strategy with 1h blocks and alternating
among 7 fields. In addition we selected RRN model 4 as our preferred one.For these parameters we
performed more detailed simulations in order to calculate the expected number ofdetections of the
Pan-Planets project (including error estimates) and to study the parameter distributions of the detected
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# fields VHJ HJ WJ VHS

3 11.16 11.90 4.85 3.95
4 14.72 15.21 6.18 5.07
5 17.96 18.34 7.46 5.94
6 21.25 21.22 8.66 6.68
7 24.13 23.55 9.48 7.49

Table 4.7: Number of planets found after 2 years depending on the numberof target fields, assuming
1h blocks and 2 mmag RRN (model 4).

planets in detail. For each of 4 different RRN levels (1 mmag, 2 mmag, 3 mmag and 4mmag) and
4 planet populations (VHJ, HJ, WJ and VHS) we performed 25 000 simulationruns. The number of
detections depending on the level of RRN are shown in Table 4.8. Fig. 4.6 shows the cumulative
distribution of the host star brightness for each planet populations for 2 mmag of RRN (model 4).
Our predicted numbers are affected by two sources of uncertainties. The first and dominant one is
the uncertainty of the planet frequency taken from Gouldet al. (2006a) which is caused by the low
number statistics of the OGLE detections. This uncertainty is not included in Table 4.8 and must be
taken into account by scaling all of our HJ results by a factor of 1+1.37

−0.59 and all of our VHJ results by a
factor of 1+1.10

−0.54, as published in Gouldet al. (2006a).
The second uncertainty is a direct result of our simulations. Each simulation run represents one
possible outcome of 1 sq.deg. of the Pan-Planets survey. Since the simulatedobservational epochs
change from one run to the other and since in each run different stars are attributed to planets with
different orbital parameters, an intrinsic scatter in the number of planets in found in each run. The
combination of 49 randomly chosen runs represents one possible outcome of the full 49 sq.deg. survey
(7 fields). From the histogram of these combinations we derive 68% confidence intervals for our
predicted numbers.

4.4.5 Number of expected detections in a two year campaign

The Pan-Planets project has a lifetime of 3.5 years. In the previous sections we focus mainly on the
first year of the survey. In this section we show the results of our simulations for a 2 year campaign.
In particular, we address the question whether the project is more efficient if we stay on the same
fields or if we choose new targets assuming that we find fields with similar densities (see§4.6).
Table 4.9 shows the number of planets detected in a 2 yr campaign for four different levels of RRN.
Except for VHJ, we more than double the number of detections for each planet population. For the
longer period WJ the gain is a factor of 3. In a 1 yr campaign most of these planets show less than
3 transits and are not detected. Adding the observations of the second year, the number of transits
increases and many of the previously undetected planets are found.
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Figure 4.6: Cumulative host star brightness distributions for each planet population for a 1 yr cam-
paign with 2 mmag RRN (model 4).
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Figure 4.7: Cumulative host star brightness distributions for each planet population for a 2 yr cam-
paign with 2 mmag RRN (model 4).
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RRN level VHJ HJ WJ VHS

1 mmag 18.4±4.3 13.2±3.7 3.8±2.0 5.2±2.3
2 mmag 15.8±4.0 10.3±3.2 2.8±1.7 3.5±1.9
3 mmag 11.7±3.5 6.9±2.7 1.8+1.4

−1.3 1.9±1.4
4 mmag 8.4±2.9 4.5±2.1 1.1+1.1

−0.9 0.9+1.0
−0.7

Table 4.8: Number of planets found in the first year for our selected survey strategy as a function of
residual red noise level (model 4).

In addition, staying on the same fields in the second year increases the S/N ofall transit light curves,
due to the higher number of data points taken during a transit. Planets that have an insufficiently high
S/N after the first year are detected after the second year. This is particularly true for VHS.
Fig. 4.8 shows the fraction of all transiting Jupiter-sized planets (VHJ, HJ,WJ) that are detected in
the first year of the survey (lower black line) and in the 2 yr campaign (upper red line). In the first
year, the average efficiencies are 26.3%, 10.6% and 4.3% for VHJ, HJ and WJ respectively. Planets
that have been missed do not have the required S/N, show less than 3 transits in the light curve, or
the BLS-algorithm found a wrong period. Extending the survey to the second year increases the
efficiency significantly to 39.8%, 24.0% and 14.3% for VHJ, HJ and WJ respectively.
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Figure 4.8: Fraction of all transiting VHJ, HJ and WJ that are detected as a function of period for a
1 yr campaign (lower black line) and a 2 yr campaign (upper red line).
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RRN level VHJ HJ WJ VHS

1 mmag 28.1± 5.3 29.3± 5.4 12.4± 3.5 10.6± 3.3
2 mmag 24.1± 4.9 23.6± 4.9 9.5± 3.1 7.5± 2.7
3 mmag 19.0± 4.4 16.5± 4.1 6.1± 2.5 4.0± 2.1
4 mmag 14.4± 3.8 10.9± 3.3 4.0± 2.0 2.1± 1.5

Table 4.9: Number of planets found with 160h of observations in 2 years for our selected survey
strategy as a function of residual red noise level (model 4).

RRN level 1 yr 2 yr

1 mmag 5.7±2.4 16.6±4.1
2 mmag 3.5±1.9 9.7±3.1
3 mmag 2.4±1.6 6.3±2.5
4 mmag 1.7±1.4 4.6±2.2

Table 4.10: Number of VHN detections after the first and second year of the Pan-Planets survey for
our selected survey strategy for different residual red noise levels (model 4).

4.4.6 The detection of Very Hot Neptunes

In this section we study the potential to find Very Hot Neptunes transiting M-dwarfs. The radius ratio
between planet and star is much higher for low mass stars which results in muchdeeper transits and
therefore a higher detection probability. According to the Besançon model there are a total of 34 000
M-dwarfs brighter than AB-magnitudemi′ = 18 mag in 7 fields of 7 sq.deg. each. These objects
are particularly interesting, since the composition of planets in this mass range israther unknown
(gaseous, icy or rocky). Also the habitable zone is much closer to the star due to its lower surface
temperature. Note, that only one planet transiting an M-dwarf has been detected so far.
We consider all transiting VHN candidates down to host star brightnesses of mi′ = 18 mag to be inter-
esting objects, although the spectroscopical follow-up will be very challenging. New high resolution
near infrared spectrographs will help to confirm these very red objects.
To study the potential of Pan-Planets to find transiting VHN we perform simulations for the whole
input stellar distribution and analyze the spectral type distribution of the hostsstars of all successful
detections (Fig. 4.9). The Pan-Planets survey is sensitive to close-in Neptune-sized planets around
late K- and early M-dwarfs if the frequency of these stars hosting Neptunes is as large as 5%. The
number of VHN detections after the first and the second year is listed in Table4.10 for 4 different
residual red noise levels. Assuming 2 mmag of RRN we expect to find 3 VHN after the first and
9 VHN after the second year.
Further we analyze the distance distributions of all detected VHJ, VHS and VHN systems (Fig. 4.10).
The volume probed strongly depends on the radius of the planet. For lowermass radius the transit
depth is generally smaller and therefore the photometric precision needed to detect the transits must
be higher, which is only the case for closer and thus brighter systems. Notethat for HJ and WJ the
distance distributions are very similar to the VHJ distribution.



4.4. RESULTS 133

0.00

0.05

0.10

0.15

0.20

spectral type

fr
ac

tio
n

K0 K2 K4 K6 K8 M0 M2 M4 M6 M8

Figure 4.9: Host star spectral type distribution of all detected VHN for a 2 yr campaign with 2 mmag
RRN (model 4). Pan-Planets is sensitive to VHN transiting late K- and early M-dwarfs.

VHJ

VHS

VHN

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

distance [kpc]

fr
ac

tio
n

N=9

N=7

N=24

Figure 4.10: Distance distribution of the detected VHJ, VHS and VHN for a 2 yr campaign with
2 mmag RRN (model 4). Due to the lower transit depth smaller planets can only be detected around
closer stars.
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4.5 Consistency Check

Gouldet al. (2006a) have modeled the OGLE-III survey in order to derive absolutefrequencies of HJ
and VHJ. In our simulations we are using these frequencies to predict the number of detections for the
Pan-Planets survey. In order to verify our results we performed a consistency check by modeling the
OGLE-III survey and comparing the results to the actual number of planetsfound. We limit this test
to the 3 Carina fields where 3 planets have been found (1 HJ, 2 VHJ). The2 bulge fields that have also
been observed during the OGLE-III campaign are more difficult to model due to a stronger blending
and a higher uncertainty in the input stellar distribution.
We obtained the Besançon model population of the 3 Carina fields (CAR100, CAR104, CAR105) for
stars in the magnitude range of 13.7≤ Imag≤ 17.0. The overall noise level as a function of magnitude
has been determined by Gouldet al. (2006a) to be:

σ = −0.723+0.1544· Imag−0.01094· I2
mag+0.000259· I3

mag . (4.6)

In their simulations Gouldet al.(2006a) did not include correlated noise sources, instead they account
for systematics by using an increased S/N cut. In order to be as consistentas possible we follow the
same procedure and do not split the over-all noise in red and white noise components (as we did in
the Pan-Planets simulations). We use the radius and period distributions for HJ and VHJ introduced
in §4.3.2. The epochs of the observations were taken from the light curve ofOGLE-TR-748 with
1,200 epochs taken from February to May 2002.
After simulating the light curves in the same way as described in§4.3 we run the BLS-algorithm and
check for a correct period recovery. In addition we apply the followingcuts which have been used
by the OGLE group and are summarized in detail in Section 3 and Table 1 in Gouldet al. (2006a):
the transit depthδ must be smaller than 0.04 mag (∼3.62%); the S/N greater than 11.6; the signal
detection efficiency9 larger than 3.8; the number of transits is required to be at least 3; and finaly, the
color (V − I)0 must be greater than 0.4. Note that we have not imposed any cut on the transit depth
in our simulations for the Pan-Planets survey since a Jupiter-sized planet transiting an M-dwarf can
have a fairly high transit depth. Further we do not use a color since in oursimulations we include
only late type dwarfs a priori.

In total we simulated 50 000 runs for each of the five planet populations. Onaverage we find
2.18 VHJ and 1.46 HJ which is in reasonable good agreement with the actual number of 2 VHJ and
1 HJ found by the OGLE group.
According to our simulations the OGLE-III carina survey was not sensitive to one of the other
3 planet populations we tested. We find on average 0.45 WJ, 0.12 VHS and zero VHN which is
agreement with none being found by OGLE.

8 one of the OGLE-III candidates
9 quality parameter provided by the BLS-algorithm for each detection
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4.6 Conclusion

The aim of this work was to study the influence of the survey strategy on the efficiency of the
Pan-Planets project and to predict the number of detections for an optimizedstrategy.
Our calculations are based on the simulation of realistic light curves including the effects of
limb-darkening, ingress/egress and observational window functions. In addition we have introduced
a model to simulate correlated (red) noise which allows us to include the effectsof correlated noise
on the efficiency of the BLS-algorithm. Our approach can be applied to anytransit survey as well.

Below we summarize the caveats and assumptions that were made in our simulations:

• Our results depend on the spectral type and magnitude distribution of the Besançon model. The
model does not include second order substructure such as spiral arms.

• We neglect the effects of blending. Due to crowding into the direction of the Galactic disk some
stars are blended by neighboring sources.

• We assume all planets that are detected by the BLS-algorithm to be followed-up and confirmed
spectroscopically. In particular, we assume that no true candidate is rejected by any candidate
selection process. The detailed follow-up strategy of the Pan-Planets survey will be presented
in Afonso et al. (in prep.).

• Our simulations are done for 1 sq.deg. and the results are scaled to the actual survey area. We
assume that all fields (3, 4, 5, 6 or 7 case) have homogeneous densities and non-varying (or
similar) stellar populations. Simple number counts on the USNO-catalog showed that we can
find up to 7 fields with similar total number of stars (see§4.4). For a larger number of fields, the
assumption of a constant density might be too optimistic since we are restricted to fields that
are close to each other in order to keep the observational overhead low.

• Our results directly scale with the assumed planet frequencies. The valuesof 0.14% and 0.31%
we use for VHJ and HJ have uncertainties of a factor of 2. For WJ, VHS and VHN we have
used hypothetical values of 0.31%, 0.14% and 5% respectively. After completion of the Pan-
Planets survey we will be able to derive more accurate absolute frequencies for all five planet
populations.

• The quality of the data is assumed to be homogeneously good over the whole detector area. Bad
pixel regions and gaps between the individual CCDs are not taken into account and result in an
effective field of view that is smaller than 7 sq.deg.

Comparing different observing strategies we found that observing morefields is more efficient.
Concerning the observation time per night, we compared 1h blocks to 3h blocks and found the shorter
ones to be more efficient. This is still the case for a 2 yr campaign.

For a RRN level of 2 mmag we expect to find up to 15 VHJ and 10 HJ in the first year around stars
brighter than V = 16.5 mag. The survey will also be sensitive to planets with longer periods (WJ) and
smaller radii (VHS and VHN). Assuming that the frequencies of stars with WJand VHS is 0.31%
and 0.14% respectively, we expect to find up to 2 WJ and 3 VHS in the same magnitude range.
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We found that observing the same fields in the second year of the 3.5 yr lifetimeof the survey is
more efficient than choosing new fields. We expect to find up to 24 VHJ, 23HJ, 9 WJ and 7 VHS.
In particular for longer periods (HJ and WJ) and smaller radii (VHS) we will more than double the
number of detections of the first year if we continue to observe the same targets.
We have investigated the potential of the Pan-Planets survey to detect VHN transiting M-dwarfs
brighter than i’ = 18 mag. Assuming the frequency of these objects is 5%, we expect to find up to
3 detections in the first year and up to 9 detections observing the same fields inthe second year.
As a consistency check we modeled the OGLE-III Carina survey and found 2.18 VHJ, 1.46 HJ, 0.45
WJ, 0.12 VHS and zero VHN which is in agreement with the 2 VHJ and 1 HJ and the zero WJ, VHS
and VHN that have been actually detected.



Chapter 5

Summary and Outlook

The search for extra-solar planets has become more and more important in the last years. The number
of known planets is aready 331 (as of 20.3.2009) and new detections arepublished almost on a
weekly basis. Not least a strong public interest motivates more and more astronomers to initiate new
surveys and to participate in the search.

Direct imaging of extra-solar planets is extremely difficult, since in most casesthe star out-
shines the planet by orders of magnitudes. In addition, the very small apparent distance between
planet and star due to the large interstellar distances complicates direct imaging.Therefore, a number
of indirect techniques are used to detect extra-solar planets among whichthe transit method has a
privileged position. The transit method aims to detect periodic luminosity changes that are caused
by a companion passing in front of the star. Finding such a transiting planethas the advantage that
its radius and therefore its density can be inferred by measuring the luminositydecrease of the star.
In addition, transiting planets allow a detailed analysis of the composition of their atmospheres.
Transiting planets are therefore very promising targets to look for signs oflife. The work in hand
considers several aspects of the search for extra-solar planets with the transit method.

In the first chapter, the most successful methods that led to the detection ofextra-solar planets
are introduced. In addition we summarize the formalisms that are important for the following
chapters.

The second chapter presents the pre-OmegaTranS project, a photometricsurvey conducted
with the 2.2m telescope in LaSilla/Chile. The goal of this project is the detection oftransiting planets.
A total of 16 000 stars have been analyzed in order to find the characteristic luminosity variations that
are caused by a transiting planetary companion. We found four candidates among which one is very
promising (POTS-C1b). The candidate is a Jupiter-sized object that is transiting a low-mass star. We
found strong evidence for a planetary nature of the companion. Preparations for the confirmation of
the candidate with photometric and spectroscopic follow-up observations have been initiated.

Chapter 3 demonstrates such a process of confirmation of a transit candidate in the case of
OGLE2-TR-L9b. Using high resolution spectroscopic follow-up observations we were able to derive
the mass of the candidate to be 4.5 Jupiter-masses. Additional photometric follow-up confirms with-
out doubt the planetary nature of the candidate. With a radius of 1.6 Jupiter-radii, OGLE2-TR-L9b is
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larger than expected for a planet of about 4.5 times the mass of Jupiter. Other planets (e.g. CoRoT-2b,
TrES-4b and XO-3b) were also found to be too large. Several mechanisms have been proposed
to explain these ’bloated’ radii, such as more significant core heating and/or orbital tidal heating.
Compared to the other 56 transiting planets that were found, OGLE2-TR-L9b is the planet with the
hottest and most rapidly rotating host star.

This year, a new transit survey, Pan-Planets, will start observations using the PanSTARRS
telescope at Haleakala Observatory in Hawaii. The telescope is equipped with the largest CCD
camera that has been built so far. Each exposure maps seven sq.deg. of the sky in 1.4 billion pixels.
The survey is led by the Max-Planck-Institute for Astronomy in Heidelberg (C. Afonso and Th.
Henning). The focus of the first observing campaign of this project is theunbiased exploration of the
mass-radius relationship of Jupiter-sized planets.
The University Observatory of the LMU is actively participating in the Pan-Planets project. In the
course of this work, detailed Monte-Carlo simulations have been carried out in order to optimize
the survey strategy of Pan-Planets and to estimate the number of detections that can be expected
(chapter 4). We found that observing a high number of fields results in more detections. Furthermore,
short observing blocks of 1h are favored over 3h observing blocks. According to our simulations,
Pan-Planets will be able to find up to 25 planets of the size of Jupiter already inthe first year. The
project is therefore one of the most promising transit searches in the nearfuture. We will contribute
to the photometric identification of transit candidates as well as to their spectroscopic confirmation.

Another future project is OmegaTranS, which will start observations in early 2010. The main
focus of this survey will be the search for low-mass planets around M-dwarfs and Hot Jupiters in
open stellar clusters. The data reduction pipeline of OmegaTranS has beendeveloped and optimized
in the course of the pre-OmegaTranS project (chapter 2). This will enable us to achieve quick results.

Last but not least, we are a member of the RoPACS project1, which is a near infrared search
for rocky planets around cool stars. The observations have alreadybeen started and first candidates
are being examined.

The knowledge and experience gained in this work is very useful for allof our future projects.
Not only the software but also the skills that have been developed are of great value and enable us to
increasingly take part in one of the most fascinating fields of astronomy.

1 http://www.star.herts.ac.uk/ dpi/RoPACS/



Appendix A

Astrophysical Constants and Acronyms

AU 1.50 1011 m
pc 3.09 1016 m

M⊙ 1.99 1030 kg
MJup 1.90 1027 kg

MEarth 5.97 1024 kg
R⊙ 6.96 108 m
RJup 7.14 107 m

REarth 6.37 106 m
L⊙ 3.84 1026 W

Table A.1: Astrophysical constants used throughout this work.
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ADU Analog Digital Unit
Astro-WISE Astronomical Wide-field Imaging System for Europe

BLS Box-fitting Least Squares
CCD Charge Coupled Device
CHZ Continuous Habitable Zone
ESO European Southern Observatory

FWHM Full Width Half Maximum
GHZ Galactic Habitable Zone

GROND Gamma Ray burst Optical/Near-infrared Detector
HJ Hot Jupiter
HZ Habitable Zone

HRD Hertzsprung-Russell Diagram
HST Hubble Space Telescope

OmegaTranS OmegaCam Transit Survey
OTSF OmegaTranS Survey Field

PanSTARRS Panoramic Survey Telescope and Rapid Response System
Pan-Planets PanSTARRS Planet Survey

POTS Pre-Omegacam Transit Survey
PSF Point Spread Function

RoPACS Rocky Planets Around Cool Stars
RMS Root Mean Squares
RRN Residual Red Noise
SDE Signal Detection Efficiency
SDSS Sloan Digital Sky Survey
S/N Signal to Noise ratio

USNO US Naval Observatory
VHJ Very Hot Jupiter
VHN Very Hot Neptune
VHS Very Hot Saturn
WFI Wide Field Imager
WJ Warm Jupiter

Table A.2: Acronyms used throughout this work.
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Bakos, G., Noyes, R. W., Kovács, G., Stanek, K. Z., Sasselov, D. D., & Domsa, I. 2004:Wide-Field
Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection, PASP, 116, 266



142 BIBLIOGRAPHY

Barbieri, M. 2007:Fields Selection for Transiting Planets Surveys and Application to theΩTranS
Survey, in Astronomical Society of the Pacific Conference Series, Vol. 366, Transiting Extrapolar
Planets Workshop, ed. C. Afonso, D. Weldrake, & T. Henning, 78–+

Barranco, J. A. & Marcus, P. S. 2000:Vortices in Protoplanetary Disks and the Formation of Plan-
etesimals, in Studying Turbulence Using Numerical Simulation Databases, 8. Proceedings of the
2000 Summer Program, p. 97, 97–+
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Koeltzsch, A., Vǎnko, M., Broeg, C., Koppenhoefer, J., et al. 2009:Observations of the transit-
ing planet TrES-2 with the AIU Jena telescope in Großschwabhausen, in IAU Symposium, Vol.
253, IAU Symposium, 436–439

Rasio, F. A. & Ford, E. B. 1996:Dynamical instabilities and the formation of extrasolar planetary
systems, Science, 274, 954

Rasool, S. I. & de Bergh, C. 1970:The runaway greenhouse and accumulation of CO2 in the Venus
atmosphere, Nat, 226, 1037
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Sirko, E. & Paczýnski, B. 2003:Ellipsoidal Variability in the OGLE Planetary Transit Candidates,
ApJ, 592, 1217

Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S.,Carpenter, J. M., Beich-
man, C., Capps, R., Chester, T., Elias, J., Huchra, J., et al. 2006:The Two Micron All Sky Survey
(2MASS), AJ, 131, 1163

Smith, J. A., Tucker, D. L., Kent, S., Richmond, M. W., Fukugita, M., Ichikawa, T., Ichikawa, S.-i.,
Jorgensen, A. M., Uomoto, A., Gunn, J. E., Hamabe, M., et al. 2002:The u’g’r’i’z’ Standard-Star
System, AJ, 123, 2121

Snellen, I. A. G., Koppenhoefer, J., van der Burg, R. F. J., Dreizler,S., Greiner, J., de Hoon, M. D. J.,
Husser, T. O., Kr̈uhler, T., Saglia, R. P., & Vuijsje, F. N. 2009:OGLE2-TR-L9b: an exoplanet
transiting a rapidly rotating F3 star, A&A, 497, 545

Snellen, I. A. G., van der Burg, R. F. J., de Hoon, M. D. J., & Vuijsje, F. N. 2007: A search for
transiting extrasolar planet candidates in the OGLE-II microlens databaseof the galactic plane,
A&A, 476, 1357



BIBLIOGRAPHY 155

Snellgrove, M. D., Papaloizou, J. C. B., & Nelson, R. P. 2001:On disc driven inward migration of
resonantly coupled planets with application to the system around GJ876, A&A, 374, 1092

Sozzetti, A., Torres, G., Latham, D. W., Stefanik, R. P., Korzennik, S. G., Boss, A. P., Carney, B. W.,
& Laird, J. B. 2009:A Keck HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. II.
On the Frequency of Giant Planets in the Metal-Poor Regime, ApJ, 697, 544

Stellingwerf, R. F. 1978:Period determination using phase dispersion minimization, ApJ, 224, 953

Sterken, C., ed. 2005, Astronomical Society of the Pacific Conference Series, Vol. 335, The Light-
Time Effect in Astrophysics: Causes and cures of the O-C diagram

Stetson, P. B. 2000:Homogeneous Photometry for Star Clusters and Resolved Galaxies. II. Photo-
metric Standard Stars, PASP, 112, 925

Struve, O. 1952:Proposal for a project of high-precision stellar radial velocity work, The Observa-
tory, 72, 199

Swain, M. R., Vasisht, G., & Tinetti, G. 2008:The presence of methane in the atmosphere of an
extrasolar planet, Nat, 452, 329
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