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The fear of the LORD is the be-

ginning of wisdom: and the knowl-

edge of the holy is understanding.

(Proverbs 9:10)

1 Introduction

1.1 Biopolymer Networks

Eukaryotic cells exhibit an impressive versatility of biological functioning

which is attributed to their amazingly well-balanced design. They actively

crawl and squeeze through the membranes of arteria, duplicate themselves

following a precise blueprint, and form tissues uniquely combining softness

and mechanical strength (Alberts et al., 2002). These processes are intimately

connected with a vast number of accessory proteins controlling a set of bio-

logical polymers.

DNA, a prominent exponent of a flexible and large polymer, coils up inside

the nucleus. Filamentous actin (F-actin), on the other hand, is elongated and

forms stiff bundles, viscous gels, or dense networks. Along with other types

of fibers, microtubule and intermediate filaments, it develops a sophisticated

composite network inside each cell, the cytoskeleton. This network gives me-

chanical stability to the cell and supplies a scaffold for the cell membrane.

Such a biological network in living tissue should not be considered static;

rather, it is a highly dynamic structure, being actively driven by chemical re-

actions with various proteins, e. g., polymerizing enzymes or motor molecules.

These active features are indispensable for important cell functions such as cell

locomotion and cell division. Further, the cytoskeleton exhibits remarkable

viscoelastic properties: it elastically resists instantaneous, mechanical defor-

mation, but lets the cell adapt to permanent changes in its environment.

The overwhelming complexity of a living cell renders a quantitative under-

standing of cells a mission impossible. To unravel the interwoven physical,

chemical and biological processes, research started with the isolation of bio-

logical macromolecular assemblies. One of these subunits is the cytoskeleton

with its actin networks. F-actin plays a key role as model for stiff polymers:

Actin filaments are involved in virtually any mechanical action of cells; they

are experimentally comparatively well under control; and they can be tailored
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Figure 1.1 Stereo visualization of an F-actin layer in a Dictyostelium cell using cry-

oelectron tomography (Medalia et al., 2002). The width of the figure is about 350 nm,

its depth 100 nm. Focus on the black dots at the top, bring them in congruence, and the

three-dimensional structure of the network becomes visible.

and manipulated in vitro almost at will by means of a large variety of actin

binding proteins (Alberts et al., 2002). In particular, actin networks provide

a versatile model system to study fundamental properties of polymeric fluids

and gels (Bausch and Kroy, 2006; Kroy, 2006).

Theoretical approaches to polymer physics reduce the polymer to its back-

bone and attribute some diameter a to this line (Doi and Edwards , 1986;

de Gennes , 1979). The filaments are characterized by two length scales, the

persistence length ℓp, being the typical length scale for the decay of tangent-

tangent correlations, and the contour length L . A filament is considered flexi-

ble when ℓp ≪ L , and rigid when the opposite holds. A biologically relevant

third category contains semi-flexible or stiff polymers, which have ℓp and L

comparable in magnitude. These filaments do not form loops and knots (unless

certain enzymes are present), yet they are sufficiently flexible to have signifi-

cant thermal bending fluctuations. In vitro polymerized F-actin belongs to this

category: it has a persistence length of 17 µm (Gittes et al., 1993; Le Goff

et al., 2002; Ott et al., 1993), and filaments are between 4 and 70 µm long,

at average 22 µm (Käs et al., 1996). The filaments, however, are quite rigid,

e. g., in the cell cortex, where thermal undulations play a subordinate role, see

Fig. 1.1.
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Tube model for stiff polymers

Highly entangled, semi-dilute solutions of stiff polymers form viscoelastic

gels. In contrast to chemically cross-linked networks, the interaction between

the polymers is reversible and merely due to steric hindrance. A semi-dilute

polymer solution is given when the polymers have substantial overlap, but

their volume fraction is still small. Stiff polymers start to “overlap” when

their free rotation is hindered, i. e., the polymer concentration n is of the order

of L−3 due to the rod-like conformations. Excluded volume effects are negli-

gible as long as the backbone diameter a is small against the average mesh size

of the network, ξm =
√

3/nL; the latter simply rephrasing the concentration.

In this regime (a ≪ ξm), the static properties should not be effected by the

steric interaction between polymers. Experimentally studied F-actin networks

have mesh sizes in the sub-micron range, while the filament backbone is about

5 nm thick.

The picture, however, is clouded by thermally induced fluctuations of the

contour, blowing up thin polymers to thick tubes of diameter d ≫ a (Isambert

and Maggs , 1996; Semenov, 1986). A stiff polymer with transverse undula-

tions of wavelength longer than the so-called entanglement length Le obtains

a tube diameter (Hinner et al., 1998; Odijk , 1983)

d ≈
(

L3
e

ℓp

)1/2

. (1.1)

A polymer is effectively confined in its tube, which itself is in a cage formed

by the tubes of the surrounding polymers. The mutual steric hindrance of the

tubes limits the fluctuations, and the tubes grow until d ≈ ξ2
m/Le, as can be

seen from the following scaling argument (Kroy, 2006):

In a similar spirit as for flexible polymers, the essence of the highly corre-

lated state is expressed in terms of a monomer concentration c∗ characteristic

to the cross-over between the dilute and the entangled state. Defining the

monomer concentration c = nL/a, the insertion free energy density can be

expressed by a scaling Ansatz,

f = n kBT F(c/c∗). (1.2)

The dilute limit is recovered for small arguments requiring F(x → 0) = 1.

At high concentrations, it is expected that collective properties of the strongly

entangled solution are independent of the polymer length, and F(x → ∞)

has to become a power law in order to annihilate the dependence on L and n.



4 INTRODUCTION

The exponent of the power law follows from the cross-over concentration c∗
at which the enveloping tubes, with diameter d∗ = (L3/ℓp)1/2, start to have

multiple contacts. (Note that at such a low concentration the entanglement or

deflection length, Le, equals the polymer length.) Since the interaction of two

hard, rigid cylinders of diameter d∗ and length L results in an excluded volume

of about d∗L2, the cross-over happens when there is about one polymer per

such volume, nd∗L2 ≈ 1, yielding

c∗ ≈
L/a

d∗L2
∼
ℓ

1/2
p

L5/2
. (1.3)

Consequently, the scaling function behaves as F(x → ∞) ∼ x2/5, and the

asymptotic form of the free energy density for tightly entangled polymers fol-

lows,

f/kBT ∼ c7/5ℓ
−1/5
p for c ≫ c∗. (1.4)

Finally, it is argued that each of the space filling “blobs” or correlation volumes

of size ξ2
mLe/3 contributes kBT to the free energy density,

f/kBT ≈ 3/ξ2
mLe ∼ (nL)7/5ℓ

−1/5
p , (1.5)

yielding the scaling forms of the entanglement length and, via Eq. (1.1), the

tube diameter,

Le ∼ ξ4/5
m ℓ

1/5
p and d ∼ ξ6/5

m ℓ
−1/5
p . (1.6)

Using purified F-actin solutions, the confinement of stiff polymers in tubes

was observed in vitro by video microscopy of fluorescently labelled single fil-

aments (Käs et al., 1994), and the concentration dependence d ∼ c−3/5 was

experimentally confirmed (Käs et al., 1996). This example demonstrates the

importance of scaling concepts for the description of highly non-trivial sys-

tems. It was sufficient to determine the cross-over point and to assume the

cancellation of the length dependence in the free energy of the highly entan-

gled state.

Elasticity and reptation

The mechanical properties of cytoskeletal networks are essential for their

physiological function. Due to the heterogeneity of these networks, active

microrheological methods were developed which allow local measurements

of, e. g., viscoelastic properties (Amblard et al., 1996; Ziemann et al., 1994).
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A magnetic bead is placed inside the network and rattled by an external force,

the resulting displacement of the particle is tracked by video microscopy and

is used to determine the frequency-dependent, complex shear modulus of the

network. In an intermediate frequency regime, the real part of this modulus,

the storage modulus G ′(ω), exhibits a plateau G0, indicating rubber-elasticity

in this regime—the highly entangled polymers reacts like a cross-linked net-

work. The plateau modulus depends on the monomer concentration in a subtle

way, G0 ∼ c7/5 (Hinner et al., 1998; Morse , 2001); although the theoretical

predicition, based on the tube model, is supported by experiments with F-

actin (Gardel et al., 2003; Hinner et al., 1998; Palmer et al., 1999), the litera-

ture knows of different theoretical justifications making different assumptions

about the local strain field (Kroy, 2006). Since present experiments cannot

distiguish these subtleties and since the interpretation of the microrheologi-

cal experiments seems to depend on a complete understanding of the network

mechanics, extensive computer simulations of simplified models would be of

great value.

In the short frequency regime, i. e., on long time scales, the shear modulus

falls below its plateau value; the entangled network becomes viscous and starts

to flow. Thus, stress due to an imposed strain slowly relaxes—a typical out-of-

equilibrium situation, which needs an extension of the above tube model. In

a first step, the dynamics of a single polymer is investigated, keeping all other

polymers fixed.

For flexible polymers, it was argued by de Gennes (1979) that the polymer

motion is restricted to the tube which can only be left by sliding back and forth

in the tube, a process being termed “reptation” following the Latin repere, to

creep. Thus, the ends of the tube are continuously released and remodeled,

and with each remodeling, they are free to change their orientation since the

polymers are flexible. After a characteristic time scale, the disengagement

time τd, the tube is completely renewed and uncorrelated from the old one.

On this time scale, the polymer is free to diffuse, and a translational diffusion

coefficient for flexible polymers is inferred, Dcm ∼ L−2.

For stiff polymers, however, the situation is different: the remodeled ends

of the tube are correlated and describe some kind of persistent random walk.

After the disengagement time, the new tube is not at all uncorrelated with the

old one. This requires a different theory for reptation of semiflexible poly-

mers which has still to be formulated. Meanwhile, the stiff polymer might

be simplified as a rigid rod, the “reptation” dynamics of which is covered

by a theory due to Doi and Edwards (1978, 1986). The motion of the rod

along its tube axis is scarcely hindered by the other polymers, and the trans-
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lational diffusion coefficient is approximately the same as in dilute solution:

D
(0)
cm ∼ L−1 log(L/a), due to hydrodynamic interactions. The confinement

of F-actin to tubes, the process of reptation as well as the quoted suppression

of diffusivity with length was directly observed experimentally (Käs et al.,

1994).

A non-trivial prediction is given for the rotational diffusion coefficient of

entangled rigid rods; it is strongly suppressed compared to its value in dilute

solution, Drot ≈ D
(0)
rot (nL3)−2. The time scale at which correlations of the

orientation decay is given by the inverse of Drot and really huge: the micro-

scopic time scale of the diffusion process, the disentanglement time grows

already with the cube of the rod length, τd ≈ L2/Dcm (Doi and Edwards ,

1986). From the data in Ref. (Käs et al., 1994) for F-actin, one estimates

τrot ≈ 1−9 hours for filament lengths between 20 and 50 µm! Clearly, this

regime will be difficult to access experimentally, presently ruling out a ver-

ification of the predicted behavior. A way out of this are computer simula-

tions which will nevertheless be very demanding on resources and time. In

the present thesis, this issue is targeted using a simplified, two-dimensional

model.

Molecular crowding

With microrheological methods, the structure and dynamics of polymer net-

works can be studied at a specific length scale given by the diameter of the

colloidal tracers. Since the relevant scale for the mechanical properties is the

mesh size of the network, the motion of appropriately sized colloidal particles

was studied in F-actin networks (Wong et al., 2004). It was found that the

tracer motion is anomalously slow, i. e., subdiffusive, indicating a heteroge-

neous structure of the network. The particles are temporarily trapped within

“cages” of actin filaments, until they can move on to the next cage. Similar

findings were obtained in vivo for macromolecules inside the cytoplasm.

The cytoplasm of eukaryotic cells is far from being a homogeneous solu-

tion of proteins, sugar and molecules. Rather, it is structured on many length

scales: on the µm-scale, there are organelles like the mitochondria, endo-

somes, and the Golgi apparatus. On smaller scales of about 100 nm, the endo-

plasmic reticulum imposes together with the cytoskeleton a random reticular

network (Alberts et al., 2002). Differently sized proteins, lipids, and sugars

constitute more than 40% of the volume of the cytoplasm (Weiss et al., 2004).

Consequently, the motion of macromolecules is obstructed; the mobility de-
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creases as the radius of gyration increases, finally leading to total immobi-

lization of particles with radii larger than 10−30 nm. (Arrio-Dupont et al.,

2000; Luby-Phelps et al., 1987, 1986). On short time scales, however, mea-

surements indicate that the mobility is independent of the particle size (Seksek

et al., 1997)—supporting the picture of particles being trapped in cages.

The reduction of mobility is related to another effect very well known from

disordered and glassy media: critical slowing down. An increase of the radius

of the tracer particle effectively increases the volume fraction of the surround-

ing obstacles. As this effective volume fraction approaches a critical value,

the tracer does not diffuse freely, but in a maze leading to a qualitatively dif-

ferent type of motion: anomalous transport or subdiffusion. The mean-square

displacement no longer grows linearly, but as a power law, δr2(t) ∼ tα , with

α < 1. Such a behavior was directly measured in the cytoplasm of eukary-

otes (Caspi et al., 2002; Tolić-Nørrelykke et al., 2004; Weiss et al., 2004)

as well as in bacterial cells (Golding and Cox, 2006). The anomalous, frac-

tal form of the mean-square displacement is attributed to the heterogeneities

of the cytoplasm and to the fractal geometry of the cytoskeleton (Aon et al.,

2004). The presence of such heterogeneities in the dynamics may directly be

observed using the technique of single particle tracking (Saxton and Jacobson ,

1997) which currently makes substantial progress (Hellriegel et al., 2005; Levi

et al., 2005). Similar phenomena are found not only in molecularly crowded

environments, but also in many other materials; they are grouped together in

the class of heterogeneous materials to be discussed next.

1.2 Heterogeneous Materials

A heterogeneous material is one that is composed of domains of different

materials or phases, such as a composite, or the same material in different

states, such as a polycrystal. The typical length scale of the material, e. g.,

the average domain size, shall be much larger than the atomic dimensions,

but much smaller than the length of a macroscopic sample. In such circum-

stances, the heterogeneous material can be subjected to classical analysis, the

sample looks homegeneous and macroscopic properties can be ascribed to it

(Torquato , 2002).

Such heterogeneous media abound in synthetic products and in nature; some

examples are gels, foams, and concrete, but also various rocks (sandstone,

pumice, or scoria), wood, bone, and biological tissue, a few of them being

illustrated in Fig. 1.2. Heterogeneous materials can be investigated by means
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(a) A silica aerogel as seen by trans-

mission electron microscopy (Knob-

lich and Gerber , 2001)

(b) Scanning electron micrograph of

the same aerogel as in (a), but at a

larger length scale

(c) Pore space of Berea sandstone

from micro-computerized tomography,

box size: 0.64 mm (Okabe and Blunt ,

2004)

(d) Electron micrograph of F-actin

network (filopodia) in a melanoma cell,

image width: 2.2 µm (Svitkina et al.,

2003)

Figure 1.2 Examples of heterogeneous materials.
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of various imaging techniques, e. g., electron microscopy or confocal light mi-

croscopy, and, maybe more importantly, scattering techniques such as small-

angle neutron or X-ray scattering, nuclear magnetic resonance spectroscopy,

and dielectric measurements. A physical understanding of their macroscopic

properties, such as mechanical elasticity, electrical conductivity, particle trans-

port or fluid permeability has far reaching consequences for applications in

material science, nano-chemistry and oil recovery.

The heterogeneities manifest themselves in the apparent randomness in the

morphology of materials, the latter having two major aspects: first, the inter-

connectedness of its individual elements and, second, the shape and size of

these individual elements. However, a heterogeneous morphology is only half

of the story; typical examples are diffusion and Brownian motion where appar-

ent random processes are observed over certain length scales. Hence, nature

is disordered both in its structure and the dynamic processes that take place

therein. Indeed, the two types of disorder are often coupled. An example is

fluid flow through a porous rock where the interplay between the disordered

morphology of the pore space and the dynamics of fluid motion gives rise to a

rich variety of phenomena (Sahimi , 2003).

A physical description of disordered media should provide methods for de-

riving macroscopic properties of such materials from the laws that govern the

microscopic world. Whereas the microscopic details are only relevant for a

quantitative description of the physical properties, a general understanding

can be gained by focusing on the topology of the medium and the emerg-

ing random structures. These structures were successfully modeled in terms

of fractals. A more rigorous analysis can be given on the basis of the well

established percolation theory.

Fractals

Fractals are geometric objects that look similar when observed at various mag-

nifications; they are self-similar (ben Avraham and Havlin , 2000). One type

of fractals is generated by a deterministic prescription: in general, one starts

from an initial shape, and recursively, adds or removes rescaled copies of this

shape to or from the developing structure ad infinitum. A two-dimensional ex-

ample is the Sierpinski gasket, Fig. 1.3. Here, an equilateral triangle of length

a is divided into four equal subunits, and the central subunit is discarded. This

step is repeated with the remaining three subunits and then iterated further.

Proper magnifications of the resulting object are indistinguishable from the

original. However, the length a sets an upper cutoff, since a scaled down copy
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Figure 1.3 The first steps of the recursive generation of the Sierpinski gasket.

can’t be matched with the whole. A lower cutoff were present if the fractal

were build up by adding elementary units. Apart from these cutoff lengths, a

fractal exhibits no other length scale.

Since the Sierpinski gasket has zero “mass” density, it is sparser than a two-

dimensional object, but it is certainly “denser” than a line. Thus, its dimension

is expected to be something between 1 and 2; in particular, it is fractal. This

fractal dimension df is defined by the scaling of the mass of the fractal with its

linear size, i. e.,

M(L) ∼ Ldf . (1.7)

(The constant of proportionality includes a factor a−df in order to get the di-

mensions right.) In our example, magnifying a sub-triangle by a factor 2 in-

creases its mass by a factor 3, hence M(2L) = 3M(L), and the fractal dimen-

sion of the Sierpinski gasket is df = log(3)/log(2) ≈ 1.585.

Another kind of fractals is generated by random processes. For example,

one could take a huge fishing net and roll a die for each side of every mesh, cut-

ting the thread if the die is odd. The net will fall apart in pieces of all sizes. The

largest piece—on average still spanning the original net from edge to edge—is

a fractal object termed incipient infinite cluster in percolation theory. It will,

however, look different if another fishing net is cut. Also, many regions of

this cluster won’t be similar to some other region. Exact self-similarity is lost,

instead we can argue that the fractal is self-similar in a statistical sense: the

distribution of holes looks similar at all length scales (Fig. 1.4)—provided the

individual meshes are still invisible (L ≫ a). In particular, no characteristic

length scale is present also in a random fractal. The absence of such a length

scale forces all physical quantities to obey power laws similar to Eq. (1.7).

The fractal dimension can also be measured for a random fractal if averages

over many realizations are considered. In contrast to deterministic fractals,

its value is universal for, e. g., different lattices and depends only on the di-

mension of the embedding space. In two dimensions, it is given by a rational
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Figure 1.4 A random fractal derived from a square lattice at three different magni-

fications. The lattice sites were colored with probability p = 0.5927; then, only the

largest cluster is retained. From left to right, the image widths equal 100, 300 and 1000

lattice spacings. All three images look similar in the sense that they show holes of all

sizes.

number, df = 91/48. In three dimensions, no exact result is available; com-

puter simulations yield df ≈ 2.53 (Stauffer and Aharony, 1994).

1.3 Percolation Theory

Basic concepts

Consider a square lattice on which each bond is present with probability p, or

absent with probability 1 − p. When p is small, there is a dilute population

of bonds, and clusters of small numbers of connected bonds predominate. As

p increases, the size of the clusters also increases. Eventually, for p large

enough there emerges a cluster that spans the lattice from edge to edge. If

the lattice is infinite, the inception of the spanning cluster occurs sharply upon

crossing a critical threshold of the bond concentration, p = pc.

The probability P∞ that a given bond belongs to this incipient infinite clus-

ter undergoes a phase transition: it is zero for p < pc, and increases contin-

uously as p is made larger than the critical threshold pc. Above and close to

the transition point, P∞ follows a power law:

P∞ ∼ (p − pc)β (1.8)

This phenomenon is known as percolation transition. The bonds may be in-

terpreted as open channels in a porous medium, and at the transition point,

a fluid can percolate through the medium for the first time. The percolation
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Figure 1.5 Schematic representation of the percolating cluster by repeating the Sier-

pinski gasket on a triangular lattice: self-similarity is found only on distances shorter

than the correlation length ξ , whereas on larger length scales, the cluster is homoge-

neous. Figure taken from the book by ben Avraham and Havlin (2000).

transition is analogous to continuous thermodynamic phase transitions with

respect to their phenomenology and theoretical concepts; but the mechanisms

driving both types of transitions are actually quite different. In the percola-

tion transition, P∞ plays the role of an order parameter, and β is its critical

exponent.

The continuous character of the transition suggests that the percolating clus-

ter grows continuously upon approaching pc, where it starts to span the whole

lattice. In addition to this largest cluster, there is a complete hierarchy of

smaller clusters. The typical size of the largest non-percolating or finite cluster

defines an important length scale characterizing the medium: the correlation

length ξ . It diverges close to the transition as

ξ ∼ |p − pc|−ν, (1.9)

constituting another critical exponent ν. Above pc, the correlation length is

also of significance for the structure of the percolating cluster: since the largest

holes are typically of size ξ , it can be self-similar only up to length scales

smaller than ξ . At length scales large compared to ξ , self-similarity is lost,

and the infinite cluster looks homogeneous (Fig. 1.5). Finite clusters are self-

similar at small scales where their boundaries are not yet seen. Exactly at

the percolation threshold, the limitations by the correlation length are lifted,

no characteristic length scale can be found anymore, and the system is scale
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invariant. Thus, the concepts of fractals can be successfully applied to the

percolation problem; in particular, a fractal dimension, df, can be defined.

The peculiar structure of the infinite cluster implies that its mass within a

sphere of radius L scales differently for radii shorter and larger than ξ :

M(L) ∼
{

Ldf if L ≪ ξ ,

Ld if L ≫ ξ .
(1.10)

The probability that an arbitrary bond within a given region of volume Ld

belongs to the infinite cluster is given by M(L)/Ld . For large distances, L ≫
ξ , it approaches a constant, namely P∞. Matching the behavior for small and

large L at the cross-over length ξ , wie infer

P∞ ∼
ξdf

ξd
(1.11)

close to the transition. Comparing the singular behavior of P∞ and ξ , Eqs.

(1.8) and (1.9), an exponent relation follows,

d − df =
β

ν
. (1.12)

Thus, the fractal dimension is not a new, independent exponent, but depends

on the critical exponents β and ν. Other physical quantities introduce more

critical exponents, which however, have to fulfill similar scaling relations. In

general, an equilibrium phase transition is characterized by only two indepen-

dent critical exponents, and it is difficult to say which set is the most funda-

mental one.

Here, an important concept in the context of cricital phenomena comes into

play: universality. For many thermodynamic phase transitions, the critical

exponents, e. g., β and ν, are identical provided that fundamental symmetries

are shared. Phase transitions with the same critical exponents are grouped into

universality classes. One such class contains many liquid-gas transitions near

the critical point and, surprisingly, also the vanishing of ferromagnetism in

uniaxial magnets.

Percolation constitutes another universality class. The microscopic details

of the system under consideration merely determine the percolation threshold

and the prefactors of the divergences, the critical amplitudes. But the qualita-

tive behavior close to the percolation transition, i. e., the divergence of phys-

ical quantities, is not influenced by these details. It does not matter whether
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the underlying geometry is a square lattice, a honeycomb structure, or even

irregular—they all share the same critical exponents. These exponents only

depend on the dimensionality of the system. But above the upper critical di-

mension dc, even the dimension is irrelevant; the percolation transition has

dc = 6.

Random walks and anomalous diffusion

A random walk is a stochastic process defined on the points of a lattice. We

will choose its simplest variant, where the time variable is considered discrete

as well; but continuous time steps are also chosen frequently, in particular if

one likes to describe the real dynamics of the system or use analytical tools

(Metzler and Klafter , 2000). At each time step, the “walker” hops to a neigh-

boring site according to a prescribed random rule. This rule is independent of

the history of the walk, and so the process is Markovian.

Assume that the walk is performed on a hypercubic lattice in d dimensions

and that the rule says that the walker hops to one of its nearest neighbors with

equal probability, 1/2d. Let the lattice spacing be a, and let the time step be

τ . Denoting the displacement of the i th step by ei and using |ei | = a, the

mean-square displacement of the walker is given by

δr2(nτ ) =
〈(

n∑

i=1

ei

)2〉
= na2 + 2

n∑

i> j

〈
ei · e j

〉
, (1.13)

where the average
〈
. . .
〉

is over different realizations of the walk. Since the

steps are independent, it holds
〈
ei · e j

〉
= a2δi j , and the second term vanishes.

Therefore, δr2(t) ∼ t , and the walker—or more vividly, a set of independent

walkers—diffuses over the lattice. In particular, a diffusion coefficient, D =
a2/(2d)τ , can be defined such that

δr2(t) = (2d)Dt. (1.14)

More generally, one can consider the probability distribution G(r, t) to find

the walker at position r after time t if it started at the origin r = 0 at time

t = 0. In one dimension, the occupation probability of a site x depends on the

occupation of its neighboring sites at the previous time step,

G(x, t + τ ) = 1

2
G(x − a, t)+ 1

2
G(x + a, t), (1.15)



1.3 Percolation Theory 15

the generalization to arbitrary dimensions is straightforward. In the limit of

small a and τ , but for fixed a2/τ , this equation is transformed into a diffusion

equation,

∂t G(r, t) = D∇2G(r, t) (1.16)

with the above definition of D, proving that the random walk is indeed a dis-

crete version of the diffusion problem.

What happens if the space available for the walker is not uniform but ram-

ified as in a fractal? Then, the various lattice sites are no longer equal, many

of them can’t be left in all directions, some can only be left to that site where

the walker came from. The Markovian assumption is no longer true, and the

hopping process is highly correlated. If the walker enters a large cul-de-sac,

it will take some time until it comes back to the exit, and the time inside the

cul-de-sac is “lost” for the mean-square displacement. Hence, one expects

that the diffusion coefficient is much smaller than in a homogeneous space.

Actually, the diffusion coefficient is zero! A new, anomalous transport mech-

anism arises being qualitatively slower than diffusion. It is called anomalous

diffusion or subdiffusion; its signature is a mean-square displacement growing

slower than linearly with a power law

δr2(t) ∼ t2/dw ; (1.17)

and it is described by the walk dimension dw. Since dw > 2, the diffusion

coefficient, defined as the long-time limit of δr2(t)/(2dt), vanishes.

Such a behavior is observed for a random walk on the percolating cluster ex-

actly at the percolation threshold. The exponent dw is in general not inferable

from the other critical exponents; rather, it is independent and complements

the static exponents. Slightly above the threshold, the infinite cluster is fractal

only on length scales smaller then the correlation length. Hence, the transport

is anomalous only as long as δr2(t) ≪ ξ2, defining a cross-over time scale

tcross ∼ ξdw . For much longer times, t ≫ tcross, normal diffusion takes place

again. Since the cross-over time scale—and thus, the window of anomalous

transport—diverges upon approaching the threshold, the diffusion coefficient

vanishes. We match the two regimes at the cross-over and estimate,

D∞ ∼
ξ2

tcross
∼ ξ−(dw−2). (1.18)

The subscript on D∞ indicates that the walker is restricted to the infinite clus-

ter.
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Dynamic scaling

The central idea of critical scaling is that in the vicinity of a continuous phase

transition, all static properties are described in terms of a single divergent

length scale, the correlation length ξ . The dynamic scaling assumption states

further, that this length scale is the same for static and dynamic properties

(Ferrell et al., 1967, 1968; Halperin and Hohenberg , 1967; Hohenberg and

Halperin , 1977). This implies that close to the transition, all physical proper-

ties are independent of the distance to the transition if all lengths are renormal-

ized by ξ , and if time is rescaled by an appropriate power of ξ (and a constant

prefactor taking care of the dimensions). In particular, all singular behavior

is traced back to the divergence of the correlation length, ξ ∼ |p − pc|−ν .

In the previous section, we have expressed the cross-over time, tcross, and the

diffusion coefficient, D∞, in terms of ξ . But the scaling property also applies

to functional contexts, e. g., to the mean-square displacement,

δr2(t ; p) = ξ2δ̃r2
(

tξ−dw

)
. (1.19)

It is conventional to pull out a factor x2/dw of δ̃r2(x) and to isolate the anoma-

lous behavior, writing

δr2(t ; p) = t2/dwδr2
(

tξ−dw

)
. (1.20)

Although the mean-square displacement depends on two variables, it can be

described by a one-parametric scaling function δr2(x). This function not only

combines both the anomalous transport at short time scales and normal diffu-

sion at long times, but also describes the cross-over in detail. It is required to

behave asymptotically as

δr2(x) ∼
{

const if x ≪ 1,

x1−2/dw if x ≫ 1.
(1.21)

A very sensitive test of dynamic scaling is achieved by plotting the rescaled

mean-square displacements, t−2/dwδr2(t), against rescaled time, tξ−dw , at var-

ious bond densities p. Then, the data points will collapse into the scaling func-

tion δr2(x). It is an interesting observation that also the scaling functions are

often the same within the same universality class (Lübeck , 2005). Thus, data

collapse is not only achieved amongst data from different parameters, p, but

also amongst data from different systems belonging to the same universality

class!
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Continuum percolation

One class of percolating systems attracting special interest is that of contin-

uum percolation (Kertész, 1981), which was later also termed “Swiss cheese”

model (Halperin et al., 1985). Isolating discs or spheres are distributed at ran-

dom within a conducting material, they may overlap, and the void space be-

tween them forms the percolation clusters. In the simplest variant, the spheres

are monodisperse, i. e., have equal radii, but binary distributions were consid-

ered as well (van der Marck , 1996; Rintoul , 2000). The percolation threshold

was first determined by discretizing the void space and using lattice methods

(Kertész, 1981). Much more efficiently, the void space is well represented by

a random network constructed from a Voronoi tessellation (Kerstein , 1983);

then, the percolation thresholds are calculated for that network. As expected

from the universality hypothesis, the critical exponents for static properties,

e. g., β and ν, agree with the findings for various lattices of the same dimen-

sion (Elam et al., 1984).

The more suprising were theoretical predictions, based on the “nodes-links-

blobs” picture, that the exponents of transport properties, e. g., conductivity

and elasticity, are considerably larger than their values on lattices; in partic-

ular, they are not universal (Halperin et al., 1985; Machta and Moore , 1985)

(with exception of the conductivity exponent in d = 2). These results were ob-

tained by assigning microscopic properties to the bonds of the network, e. g.,

in order to investigate the conductivity, the bonds were considered as resistors.

Since the macroscopic conductivity only depends on the probability distribu-

tion of the bond conductances, the latter are distributed randomly obeying a

given distribution. A renormalization group analysis of such random resis-

tor networks (Harris et al., 1984; Lubensky and Tremblay, 1986; Stenull and

Janssen , 2001; Straley, 1982) attributes the non-universal character of the crit-

ical exponents to a singularity in the distribution of conductances.

Note that the mapping from the geometric Voronoi network to a random

resistor network is indeed intuitive, but not at all rigorous. A direct confirma-

tion by measuring transport properties of the Swiss cheese model would be

desirable, the present work takes a first step towards this task.

1.4 The Lorentz Model

The Lorentz model has attracted the attention of researchers in statistical phys-

ics over more than a century now. Despite its simple formulation, it shares a
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wealth of fundamental phenomena having always been a challenge for the-

ory. Originally, Lorentz (1905) introduced its model in order to describe the

electric resistance in metals: a gas of non-interacting electrons, i. e., point par-

ticles, is scattered from the ions which are assumed to be randomly placed

in the metal. Due to the vacuum between the ions, the motion is ballistic.

Two decades before the invention of quantum mechanics, the model, however,

missed the duality of electrons being also waves and hence the consequences

of the Bloch theorem—so, it had to fail its purpose.

The revival of the Lorentz model is closely related with the progress of

kinetic theory in the 1960s. It started with the discovery that transport coef-

ficients of simple liquids, e. g., the viscosity, cannot be expanded in a power

series of the density (Dorfman and Cohen , 1965; Haines et al., 1966; Sen-

gers , 1965). Similar non-analyticities were found in the Lorentz model (van

Leeuwen and Weijland , 1967), which can also be considered as a binary fluid

mixture of heavy and light particles: the heavy particles are immobile and

act merely as scatterers, whereas the light particles move ballistically with

constant speed and do not interact with each other; they only change their di-

rection of motion upon collisions with a scatterer. The Lorentz model is more

tractable than a fluid, and there, Weijland and van Leeuwen (1968) obtained

the non-analytic expansion of the inverse of a transport coefficient, namely the

diffusion coefficient D of a light particle with speed v between heavy parti-

cles of radius σ and density n. This asymptotic expansion is valid for dilute

systems, n∗ = nσ d → 0; in d = 2 dimensions, the first terms are given by

vσ

D
= 16

3
n∗ − 64

9
(n∗)2 log(n∗)+ O

[
(n∗)2

]
, (1.22)

and in d = 3 dimensions,

vσ

D
= 3πn∗ + b2(n∗)2 + b′3(n∗)3 log(n∗)+ O

[
(n∗)3

]
. (1.23)

The lowest order represents the result of the linearized Boltzmann equation

which treats subsequent collisions as uncorrelated. The calculation of the log-

arithmic terms involves the resummation of collision sequences of higher or-

der; in three dimensions, only numerical values for the prefactors are known,

b2 ≈ 19.05 and b′3 ≈ 0.645. With the appearance of computers, and therewith,

the technique of Molecular Dynamics simulations (Alder and Wainwright ,

1959), a direct “experimental” verification of this expansion—and of the log-

arithmic terms—became feasible. (Bruin , 1972, 1974)
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Long-time tails

One of the most striking early results from the new technique of computer

simulations was the discovery of power-law tails for long times in the velocity

auto-correlation function, ψ(t) := v−2
〈
v(t) · v(0)

〉
, in simple liquids by Alder

and Wainwright (1967, 1970). They found that a tagged fluid particle remem-

bers its initial velocity unusually long what the slow decay of the correlations

reflects, ψ(t) ∼ t−d/2 for sufficiently long times. These memory effects were

explained by the formation of a vortex pattern in the velocity field around the

tagged particle: on average, it pushes the particles ahead as it moves, and the

particles behind follow in its wake. Theoretical derivations of the phenomenon

use hydrodynamic equations (Ernst et al., 1970, 1971; Kawasaki , 1971) and

kinetic theory techniques (Dorfman and Cohen , 1970; Dorfman and Cohen ,

1972, 1975; de Schepper and Ernst , 1977). Since the long-time tail has a posi-

tive sign, the tail yields an increase of the diffusion coefficient; the latter being

obtained by integrating the velocity auto-correlation function,

D = v2

d

∫ ∞

0

dt ψ(t). (1.24)

A remarkable consequence follows for two-dimensional liquid films: a tagged

particle does not show truly diffusive behavior; the diffusion coefficient di-

verges.

For the Lorentz model, similar tails were predicted from the low-density

expansion (Ernst and Weijland , 1971; Weijland and van Leeuwen , 1968) and

measured by means of computer simulations (Alder and Alley, 1978; Bruin ,

1972, 1974). The amplitudes of these tails, however, are negative, and their

exponents are different from the liquid,

ψ(t) ≃ At−d/2−1 for t →∞. (1.25)

The tail in the Lorentz model is of a different nature than the hydrodynamic

tails in liquids. It is not due to collective motion; rather, it results from a series

of backscattering events preferring the return of the particle to its origin. The

regime of higher obstacle densities poses considerable challenges for theory;

ring collision sequences play an important role and were accounted for by self-

consistent approaches. A mode-coupling approach by Götze et al. (1981a,b,

1982) provides a feedback mechanism for the current relaxations down to the

particle density. It was found that the exponent of the tail, d/2+1, applies at all

densities, but with increasing density, a preasymptotic tail, ψ(t) ∼ t−α , devel-
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ops. The time of the cross-over between both tails grows rapidly with increas-

ing density. A self-consistent kinetic theory (Masters and Keyes , 1982) and a

completely different approach mapping the Lorentz model to a hopping pro-

cess on a random network (Machta and Moore , 1985) give similar predictions.

Early computer experiments doubt the universality of the tail exponent (Alder

and Alley, 1978, 1983); rather, support is claimed for a density-dependent ex-

ponent. It was argued (Götze et al., 1981b, 1982) that the simulations cover

only a finite and relatively small time window, and that the cross-over pre-

tends effective exponents varying continuously from d/2+ 1 to α. More light

should be shed on this controversy by simulations of two-dimensional lat-

tice variants of the Lorentz model (Binder and Frenkel , 1990; Frenkel , 1987;

Frenkel et al., 1992), clearly observing the t−2 decay of the velocity auto-

correlation function, independent of density. Further, a direct measurement

on the Lorentz model in d = 2 corroborates the universality of the exponent

(Lowe and Masters , 1993). An unresolved issue is the value of the amplitude,

A. Theoretical predictions (Ernst et al., 1984; Götze et al., 1981b) disagree

with each other, and greatly underestimate A as simulations in d = 2 indicate

(Lowe and Masters , 1993).

The localization transition

The emergence of a preasymptotic, negative tail in the velocity auto-correla-

tion function yields an additional suppression of the diffusion coefficient. At a

critical obstacle density, n∗c , the preasymptotic tail persists for all times, yield-

ing zero diffusivity. At higher densities, diffusion is absent as well; moreover,

the mean-square displacement saturates—and the moving particle is trapped.

This transition from diffusion to localization has the signatures of a continu-

ous phase transition; it exhibits power-law divergences of physical quantities

with critical exponents expected to be universal. In particular, the diffusion

coefficient vanishes with a power law upon approaching the critical density,

D ∼ |n∗ − n∗c |µ.

The transition was predicted by a mode-coupling approach (Götze et al.,

1981b) and by a mapping to continuum percolation (Kertész and Metzger ,

1983; Machta and Moore , 1985). The mode-coupling approach provides a mi-

croscopic picture of the transition and predicts the critical slowing down of the

dynamics, i. e., the anomalous transport being a consequence of the preasymp-

totic tail. But it has severe problems resulting from the divergent length scales

at the transition; the mode-coupling functional contains a divergence for small

wave numbers which must forcibly be removed. It can provide only poor pre-
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dictions of the critical exponents, but nevertheless, it gives a qualitative and

detailed description of the Lorentz model. On the other hand, the mapping to

continuum percolation and, further, to hopping on random networks, describes

the transition phenomenologically and—already anticipating the percolation

scenario—accounts for the correct critical exponents. The direct link between

the Lorentz model and continuum percolation, however, was not established

until the present work.

1.5 Outline

This thesis is layed out in two parts. The first one focuses on the critical

dynamics of the Lorentz model close to the localization transition. Chapter 2

gives an overview of the central findings. In particular, the intimate connection

between the localization transition and continuum percolation is established, a

dynamic scaling Ansatz is introduced which incorporates two divergent length

scales, and the importance of corrections to dynamic scaling is demonstrated.

Chapter 3 provides the theoretical background for this scaling Ansatz; a rela-

tion between the universal dynamic and static correction exponents is derived.

Chapter 4 presents a detailed analysis of the data supplemented by a finite-size

analysis of the diffusion coefficient and discusses the van Hove function and

non-ergodicity parameters.

The second part of the thesis is dedicated to the dynamics of rod-like macro-

molecules. In Chapter 5, I will introduce a simplified model closely related to

the Lorentz model: it describes the dynamics of a needle in a disordered envi-

ronment of point obstacles. A theoretical description of the dynamics is given,

being valid in the dilute regime. It is complemented by Molecular Dynamics

simulations in Chapter 6; a novel algorithm allows for the exploration of the

full density range and the observation of interesting collective effects. These

effects will be discussed phenomenologically considering different non-trivial

time scales in the system.

Chapter 7 closes the thesis with a synopsis of the main results.





Part I

Localization in the

Lorentz Model





2 The Localization Transition and

Continuum Percolation

This chapter has been published as: F. Höfling, T. Franosch, and E. Frey: Localization transition

of the three-dimensional Lorentz model and continuum percolation, Phys. Rev. Lett. 96, 165901

(2006). Fig. 2.1 was chosen as cover illustration of this issue.

Abstract

The localization transition and the critical properties of the Lorentz mod-

el in three dimensions are investigated by computer simulations. We give

a coherent and quantitative explanation of the dynamics in terms of con-

tinuum percolation theory and obtain an excellent matching of the critical

density and exponents. Within a dynamic scaling Ansatz incorporating

two divergent length scales we achieve data collapse for the mean-square

displacements and identify the leading corrections to scaling. We provide

evidence for a divergent non-Gaussian parameter close to the transition.

Transport in heterogeneous and disordered media has important applications

in many fields of science including composite materials, rheology, polymer

and colloidal science, and biophysics. Recently, dynamic heterogeneities and

growing cooperative length scales in structural glasses have attracted consid-

erable interest (Berthier et al., 2005; Bertin et al., 2005). The physics of

gelation, in particular of colloidal particles with short range attraction (Camp-

bell et al., 2005; Manley et al., 2005; Ruzicka et al., 2004; Zaccarelli et al.,

2005), is often accompanied by the presence of a fractal cluster generating

sub-diffusive dynamics. It is of fundamental interest to demonstrate the rele-

vance of such heterogeneous environments on slow anomalous transport.

The minimal model for transport of particles through a random medium

of fixed obstacles, is known as Lorentz model, and already incorporates the

generic ingredients for slow anomalous transport. Earlier, the Lorentz model

has played a significant role as a testing ground for elaborate kinetic theories,
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shortly after the discovery of long-time tails in auto-correlation functions for

simple liquids in the late 1960s (Alder and Wainwright , 1970), since the non-

analytic dependence of transport coefficients on frequency, wavenumber, and

density predicted for simple liquids (Bedaux and Mazur , 1973; Dorfman and

Cohen , 1970; Ernst et al., 1971; Kawasaki , 1971; Tokuyama and Oppenheim ,

1978) has a close analog in the Lorentz model (Ernst and Weijland , 1971;

Weijland and van Leeuwen , 1968).

The simplest variant of the Lorentz model consists of a structureless test

particle moving according to Newton’s laws in a d-dimensional array of iden-

tical obstacles. The latter are distributed randomly and independently in space

and interact with the test particle via a hard-sphere repulsion. Consequently,

the test particle explores a disordered environment of possibly overlapping re-

gions of excluded volume; see Fig. 2.1. Due to the hard-core repulsion, the

magnitude of the particle velocity, v = |v|, is conserved. Then, the only

control parameter is the dimensionless obstacle density, n∗ := nσ d , where

σ denotes the radius of the hard-core potential. At high densities, the model

exhibits a localization transition, i. e., above a critical density, the particle is

always trapped by the obstacles.

Significant insight into the dynamic properties of the Lorentz model has

been achieved by a low-density expansion for the diffusion coefficient by

Weijland and van Leeuwen (1968) rigorously demonstrating the non-analytic

dependence on n∗. As expected, for low densities the theoretical results com-

pare well with Molecular Dynamics simulations (Bruin , 1974). Elaborate self-

consistent kinetic theories (Götze et al., 1981a,b; Masters and Keyes , 1982)

have allowed going much beyond such perturbative approaches. They give

a mathematically consistent description of the localization transition, which

allows to calculate the critical density within a 20% accuracy and extend

the regime of quantitative agreement to intermediate densities. In addition,

they have provided a microscopic approach towards anomalous transport and

mean-field-like scaling behavior (Götze et al., 1981b).

A different line of approach focusing on the localization transition starts

from the fractal nature of the void space between the overlapping spheres in

the Lorentz model and considers it as a continuum percolation problem (Elam

et al., 1984; Halperin et al., 1985; Kertész, 1981; Machta and Moore , 1985;

Stenull and Janssen , 2001), which in this context has also been termed “Swiss

cheese” model (Halperin et al., 1985). These authors conjectured that the

transport properties close to the percolation threshold can be obtained by ana-

lyzing an equivalent random resistor network. The equivalence, however, has

been shown only for geometric properties close to the percolation point (Ker-
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Figure 2.1 Typical particle trajectories in a two-dimensional Lorentz model slightly

below n∗c over a few thousand collisions each. Colors encode different initial condi-

tions; obstacles have been omitted for clarity. Most trajectories being in the percolating

void space have some overlap; a few trajectories are confined to finite clusters. Blow-

up: a particle squeezes through narrow gaps formed by the obstacles.

stein , 1983). As a peculiarity of continuum percolation, differences to lattice

percolation may arise due to power law tails in the probability distribution of

the conductances (“narrow gaps”). Such random resistor networks have been

investigated extensively by means of Monte-Carlo simulations (Derrida et al.,

1984; Gingold and Lobb , 1990) and renormalization group techniques (Harris

et al., 1984; Lubensky and Tremblay, 1986), providing reliable numeric and

analytic results for the critical behavior (Havlin and Ben-Avraham , 2002).

In this Letter, we present a direct numerical analysis of the dynamic prop-

erties of the Lorentz model without resorting to random resistor networks. By

means of extensive Molecular Dynamics simulations, we obtain a quantitative

description of the dynamic properties over the full density range, in particular,

focusing on both sides of the critical region. This allows for a quantitative

test of the conjectured mappings to continuum percolation theory. Further-

more, we explore the range of validity of the dynamic scaling hypothesis for

the Lorentz model (Kertész and Metzger , 1983). The probability distribu-
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tion of particle displacements, i. e., the van Hove self-correlation function,

G(r, t) :=
〈
δ(r−1R(t))

〉
, and its second moment, the mean-square displace-

ment, δr2(t) :=
〈
|1R(t)|2

〉
, are the appropriate quantities for this purpose;

1R(t) = R(t)− R(0) denotes the displacement of the test particle at time t .

Over a wide range of obstacle densities, we have simulated several hun-

dred trajectories in three dimensions, employing an event-oriented Molecular

Dynamics algorithm. For each of Nr different realizations of the obstacle

disorder, a set of Nt trajectories with different initial conditions is simulated.

Below the critical density, we have chosen Nr ≥ 25 and Nt ≥ 4. At very high

densities, where the phase space is highly decomposed, these values have been

increased up to Nr × Nt = 600. In order to minimize finite-size effects, the

size of the simulation box, Lbox, has been chosen significantly larger than the

correlation length ξ , Lbox = 200σ ≫ ξ .1

The results for the mean-square displacement cover a non-trivial time win-

dow of more than seven decades for densities close to the transition, see

Fig. 2.2. At low densities, one observes only a trivial cross-over from bal-

listic motion, δr2(t) = v2t2, to diffusion, δr2(t) ∼ t , near the mean collision

time τ = 1/πnvσ 2 as expected from Boltzmann theory. With increasing den-

sity, an intermediate time window opens where motion becomes sub-diffusive,

δr2(t) ∼ t2/z with z > 2. This time window extends to larger and larger times

upon approaching a certain critical density n∗c . For the density n∗ = 0.84,

the sub-diffusive behavior is obeyed over more than five decades and is com-

patible with a value of z ≈ 6.25. The power law, δr2(t) ∼ t2/z , indicated

in Fig. 2.2, discriminates nicely trajectories above and below n∗c . One also

observes a density-dependent length scale ℓ characterizing the end of the sub-

diffusive regime by δr2(t) ≃ ℓ2; upon approaching n∗c this cross-over length

scale ℓ is found to diverge. For long times, the dynamics eventually becomes

either diffusive or localized for densities below or above n∗c , respectively.

The diffusion coefficient D has been extracted from the long-time limit of

δr2(t)/6t ; in Fig. 2.4, D is shown in units of the Boltzmann result, D0 =
τv2/3. With increasing density, D is more and more suppressed until it van-

ishes at n∗c as a power law, D ∼ |ε|µ, where ε := (n∗ − n∗c )/n∗c defines the

separation parameter. Anticipating the exponent µ from percolation theory, a

fit to our data yields the critical density,2 n∗c = 0.839(4), and the power law

1This relation may be violated for |ε| < 0.01 We checked that our findings are not affected by

finite-size effects. A detailed analysis is presented in Section 4.3.
2This value for n∗c corresponds to a critical volume fraction for the obstacles, ϕc = 1 −

exp(− 4π
3

n∗c ) = 0.9702(5).
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behavior is confirmed over five decades in D. Above the critical density, the

long-time limit of the mean-square displacement is compatible with a power

law over more than one decade, ℓ ∼ ε−ν+β/2, where ν − β/2 ≈ 0.68 (bottom

inset in Fig. 2.4). Our finding of n∗c coincides with the percolation point of the

void space (Elam et al., 1984; Kertész, 1981; Rintoul , 2000). This provides

clear evidence for the intimate connection between continuum percolation and

the Lorentz model, i. e., diffusion is not blocked as long as there is an infinite

path through the medium—a purely geometric reason.

Considering the underlying continuum percolation problem, a geometric

transition occurs at n∗c , above which the void space falls completely apart into

finite clusters. Just below this density, the volume fraction P of the percolating

void space (infinite cluster) vanishes as a power law, P ∼ |ε|β . There are two

divergent length scales characterizing the structure of the percolation network:

the linear dimension of the largest finite clusters, ξ ∼ |ε|−ν , and the mean clus-

ter radius (radius of gyration), ℓ ∼ |ε|−ν+β/2 (Stauffer and Aharony, 1994).

The geometric exponents β and ν are believed to be the same for lattice and

continuum percolation (Elam et al., 1984). Our results in Fig. 2.4 clearly

identify the geometric mean cluster radius ℓ with the localization length of the

mean-square displacement as anticipated by our choice of notation.
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In continuum percolation, transport of a particle is limited by narrow gaps

in the void space. It was argued that this feature of the dynamics is captured by

an associated random resistor network with a distribution ρ(W ) of weak con-

ductances W exhibiting a power-law tail, ρ(W ) ∼ W−α , α < 1 for small W

(Halperin et al., 1985; Machta and Moore , 1985). Depending on the value of

α, the suppression of diffusion, D ∼ |ε|µ, may be dominated by this tail, and

dynamic exponents become different from lattice percolation, µ > µlat. In

this case, the hyperscaling relation, µ = (d − 2)ν + 1/(1− α), holds (Stenull

and Janssen , 2001; Straley, 1982). There is a discrepancy in the literature

about the value of α in the Lorentz model (Halperin et al., 1985; Havlin and

Ben-Avraham , 2002; Machta and Moore , 1985). Only the result of Machta

and Moore (1985), α = (d − 2)/(d − 1), is consistent with our data. In d = 3,

it implies µ = ν + 2 ≈ 2.88, and therefore, µ > µlat ≈ 2.0.3 By means of a

scaling relation (Stauffer and Aharony, 1994), z = (2ν − β + µ)/(ν − β/2),

one finds the dynamic exponent, z ≈ 6.25, describing anomalous transport

at critical density, δr2(t) ∼ t2/z . Note that this dynamic exponent is not in-

dependent but entirely determined by the geometric properties of the random

environment.

In conclusion, the values obtained from the simulated mean-square dis-

placement for the critical density n∗c , the dynamic exponent z as well as the

exponents for the diffusion coefficient µ and the localization length ν − β/2
agree with the predicted values for continuum percolation. Within the statisti-

cal accuracy, no deviations can be inferred.

The quality of our data allows to go beyond determining critical exponents

and to give a full analysis of the dynamic scaling properties. It has been argued

by Kertész and Metzger (1983) that the van Hove correlation function obeys

scaling. Rewriting their Ansatz in a more transparent way yields,

G(r, t ; ε) = ξ−β/ν−dG±(r/ξ, tℓ−z), (2.1)

where G± are master functions above (+) and below (−) the critical density.

This Ansatz clearly reflects the role of the two length scales: the correlation

length ξ rescales geometry whereas the cross-over length scale ℓ rescales time.

The scaling form of the mean-square displacement is easily inferred from

δr2(t ; ε) =
∫

ddr r2G(r, t ; ε) as, δr2(t ; ε) = t2/zδr2±(t̂), where t̂ ∼ tℓ−z .

Plotting t−2/zδr2(t ; ε) versus t̂ for various densities (left panels of Fig. 2.3),

the data collapse nicely in the diffusive and localized regimes (t̂ ≫ 1) and

3All exponents are calculated consistently based on the values β = 0.41, ν = 0.88, and µlat =
2.0 (Stauffer and Aharony, 1994).
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converge rapidly to the corresponding large-t̂ asymptotes, δr2−(t̂) ∼ t̂1−2/z and

δr2+(t̂) ∼ t̂−2/z . Convergence to the critical asymptote, δr2
±(t̂) ∼ const, for

t̂ ≪ 1 becomes increasingly better as the critical point is approached.

Deviations from scaling can be rationalized by considering the again uni-

versal corrections to scaling. Extending the Ansatz, Eq. (2.1), by an irrelevant

parameter u leads to δr2(t ; ε, u) = t2/zR±(tℓ−z, ut−y), where y is a univer-

sal exponent. Since R± is assumed to be analytic for small arguments, one

obtains the leading order correction upon expanding R± to first order in u,

δr2(t ; ε) = t2/zδr2±(t̂)[1+ t−y1±(t̂)] , (2.2)

introducing some analytic functions 1±(t̂). Specializing Eq. (2.2) to the crit-

ical density, i. e., t̂ = 0, yields δr2(t ; ε = 0) ∝ t2/z(1 + Ct−y), with a single

amplitude C = 1±(t̂ = 0); it also identifies y as the leading non-analytic

correction exponent at criticality. Our data for n∗c = 0.84 are compatible with

values for y between 0.15 and 0.4. For the following, we found the choice

y = 0.34 and C = −0.8 reasonable, the value for y is supported by theoreti-

cal arguments presented in Section 3.3.

Inspection of Fig. 2.3 reveals that corrections to scaling are less relevant for

long times, t̂ ≫ 1, whereas significant deviations are visible in the critical

regime, t̂ ≪ 1. This observation is consistent with the scaling behavior of the

diffusion coefficient and the localization length, see Fig. 2.4. These findings

also suggest approximating the corrections by its value at t̂ = 0, i. e., substi-

tuting1±(t̂) = C in Eq. (2.2) for all times, δr2(t ; ε) = t2/zδr2±(t̂) (1+Ct−y).

With y and C already inferred from the data close to criticality, the correc-

tion terms should apply for all densities. Indeed, including this leading-order

correction improves the data collapse substantially (Fig. 2.3, right panels).

The presence of two different length scales, ℓ and ξ , in the scaling hypoth-

esis, Eq. (2.1), is not manifested in the mean-square displacement; it will,

however, affect the higher moments of the probability distribution, e. g., the

mean-quartic displacement, δr4(t ; ε) =
∫

ddr r4G(r, t ; ε). Above n∗c , it is eas-

ily inferred that the long-time limit of the mean-quartic displacement scales as,

δr4(t → ∞) ∼ ξ2ℓ2. At the critical density, we obtain the long-time asymp-

tote, δr4(t) ∼ t4/̃z , with the exponent z̃ := (2ν−β+µ)/(ν−β/4) ≈ 5.45 dif-

ferent from z. We have evaluated the mean-quartic displacement by our sim-

ulation and find agreement with the prediction of continuum percolation at a

similar level of significance as for the mean-square displacement, see Fig. 2.5.

In particular, for the density n∗ = 0.84 the mean-quartic displacement follows

a power-law with the predicted exponent z̃ for a time window of more than

four decades.
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A more sensitive quantity is the (first) non-Gaussian parameter, α2(t) :=
3
5
δr4(t)[δr2(t)]−2 − 1, quantifying deviations from a Gaussian distribution

(Boon and Yip , 1991). At criticality, it diverges as α2(t) ∼ t4/̃z−4/z ≈ t0.097;

direct observation of this very small exponent is expected to be a consider-

ably difficult task. The long-time limits of α2(t) diverge upon approaching

n∗c from either above or below as α2(t → ∞) ∼ |ε|−β . In particular, the

non-Gaussian parameter does not vanish in the diffusive regime close to the

transition due to the presence of localized particles even below n∗c . Although

there are significant statistical errors in the data for the non-Gaussian param-

eter, Fig. 2.5 (inset) provides evidence for a significant increase of α2(t) as

density approaches n∗c from either side. The properties of the non-Gaussian

parameter demonstrate that the presence of two divergent length scales is cru-

cial for the understanding of the dynamics close to the localization transition.





3 Diffusion on Percolation Clusters

Abstract

Based on scaling concepts and the fundamental assumption for perco-

lation theory that a porous medium is self-similar up to length scales

shorter than the correlation length, we formulate a cluster-resolved the-

ory for diffusion on percolation clusters. It gives scaling predictions for

the medium before cluster averages are performed and illuminates the

emergence of two different length scales in the dynamic properties—

the latter was demonstrated for the van Hove probability distribution in

Chapter 2. Further, the van Hove function, which contains the statisti-

cal information about the dynamics, is generalized by including also the

static structure, i. e., the cluster numbers. Therewith, a relation between

the static correction exponent for the cluster numbers and the dynamic

correction exponent for the anomalous diffusion can be established.

Transport in porous media has been modeled by diffusion on percolation clus-

ters. Many experimental techniques, e. g., nuclear magnetic resonance, di-

electric measurements and inelastic neutron scattering, probe the percolating

cluster and finite clusters at the same time. Most theoretical work on percola-

tion clusters focuses on the infinite cluster where the physics can be described

using a single length scale, the correlation length ξ . As soon as cluster aver-

ages come into play, the picture becomes a little bit more involved, since two

divergent length scales enter the description, see Chapter 2. Real experiments

will hardly test the critical point exactly, and deviations from the universal

scaling behavior should be considered. These dynamic corrections are again

of universal character and can even be related to static corrections as will be

demonstrated in this article. Although the presentation will be given along the

example of the Lorentz model, it is valid for percolation clusters in general.
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3.1 Self-Similarity and Scaling

Scale invariance is a property that gives rise to a series of predictions for many

areas of physics and related natural sciences. You can find fractals ubiquitous

in nature and many nice illustrations are available. Let us condense this obser-

vation in the principle of self-similarity and scale invariance. Scale invariance

at criticality dictates that the system looks identical upon zooming in and out.

The counting statistics under scale transformation, L 7→ λL , in such a scale

invariant system remains identical, except that cluster “masses” rescale by a

factor of M 7→ λdf M—which defines the crucial quantity of the system: the

fractal dimension df (ben Avraham and Havlin , 2000; Stauffer and Aharony,

1994).

In particular, the mass of the incipient infinite cluster is scale-dependent,

i. e., the total mass of the cluster in a large sphere of radius L scales at criti-

cality as Mc(L) ∼ Ldf . Obviously, the density Mc L−d becomes smaller and

smaller as the scale factor L is increased: the volume fraction of this cluster

on large scales is zero.

Assume that, at criticality, a specified site belongs to the infinite cluster;

then, the conditional probability that another site separated at a distance r also

belongs to this cluster is denoted by gc
∞(r). It follows that Mc(L) is determined

by

Mc(L) =
∫

r<L

ddr gc
∞(r) ∼ Ldf . (3.1)

One expects gc
∞(r) to be self-similar, i. e., to follow a power law, and it is

required that

gc
∞(r) ∼ r−(d−df) for r →∞. (3.2)

In addition to the incipient infinite cluster, a continuous hierarchy of finite

clusters is present. Scale invariance at criticality requires that the probability

ns for a specified site to belong to an s-cluster does not exhibit a preferred

size, i. e., is a power law in the cluster size again, ns ∼ s−τ for s → ∞.

Equivalently, we consider the cumulative probability, i. e., the probability for

a cluster to contain at least s sites, N (s) ∼ s1−τ .

The number of clusters having at least s sites in a volume of Ld is given

by N (s)Ld . Rescaling the unit of length by a factor of λ, i. e., L 7→ λL , we

require

N (s) Ld = N (λdfs) (λL)d , (3.3)
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i. e.,

s1−τ Ld = (λdfs)1−τ (λL)d . (3.4)

This yields the first relation between exponents, here the Fisher exponent τ

and the fractal dimension,

τ = 1+ d

df
. (3.5)

3.2 Cluster-Resolved Dynamic Scaling Theory

The conditional probability that, provided a specified site belongs to an s-

cluster, a site separated at a distance r also belongs to the same cluster is

denoted by gs(r). At criticality, one expects that large finite clusters all look

alike up to rescaling. The typical linear dimension of an s-cluster1 is denoted

by Rs ∼ s1/df , and we assume the following scaling form,

gc
s (r) = R−(d−df)

s gc
F(r/Rs), s →∞. (3.6)

It should be noted that no new exponent enters the expression. The rela-

tion merely manifests scale invariance at criticality. Indeed, rescaling lengths

scales, r 7→ λr, Rs 7→ λRs, s 7→ sλdf , reflects the invariance property,

∫
ddr gc

s (r) = Rdf
s

∫
dd r̂ gc

F(r̂ ) = λdf

∫
dd (λr ) gc

sλdf
(λr). (3.7)

Close to the percolation threshold

Away from criticality, the infinite cluster exists only on one side of the thresh-

old, and it looks homogeneous on scales larger than the correlation length ξ .

Denoting the distance to the threshold by ε = (n − nc)/nc, the correlation

length diverges upon approaching the threshold as ξ ∼ |ε|−ν introducing a

new exponent ν. For distances much shorter than the correlation length, the

infinite cluster still looks like at criticality; the correlation length is irrelevant

at these scales. At scales much larger than the correlation length, the infinite

cluster becomes homogeneous, and we extend the scaling for the two-point

correlation function by

g∞(r; ε) = ξ−(d−df)g∞(r/ξ ). (3.8)

1Away from the threshold, this interpretation holds only for not too large s-clusters, s ≪ ξdf .
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The scaling function g∞(r̂ ) behaves as power law for short rescaled distances,

g∞(r̂ ) ∼ r̂−(d−df). For scales large compared to the correlation length, the

conditional probability becomes independent of the distance, i. e., the joint

probability factorizes,

g∞(r ≫ ξ ; ε) = Prob(r ∈ C∞ and 0 ∈ C∞)

Prob(0 ∈ C∞)
= P∞(ε) (3.9)

where P∞(ε) = Prob(r ∈ C∞) is the probability for a site r to belong to the

infinite cluster. A prediction resulting from the self-similarity hypothesis is

P∞(ε) ∼ ξ−(d−df) ∼ |ε|ν(d−df). (3.10)

Defining another exponent β such that P∞(ε) ∼ |ε|β , we obtain the hyper-

scaling relation,

df = d − β
ν
. (3.11)

The mass of the infinite cluster within a sphere of radius L reflects that

self-similarity is limited to scales of the order of the correlation length,

M(L; ε) =
∫

r<L

ddr g∞(r; ε) = ξdfM(L/ξ ). (3.12)

For small arguments L/ξ , we require M(L̂) ∼ L̂df in order to recover the result

at criticality, M(L; ε = 0) ≡ Mc(L) ∼ Ldf .

If the system is only close to criticality, scaling suggests that some aspects

of self-similarity are retained at least for length scales not too large. We have

seen that scale invariance implies that the cluster distribution follows a power

law, ns ∼ s−τ ∼ R
−d−df
s . Close to the transition but away from it, we need an

additional scaling law2

ns(ε) = ξ−d−dfn±(sξ−df) for s →∞, ε→ 0, (3.13)

where we have allowed for different master functions n± above and below the

transition. Again for clusters smaller than one with a linear extension of the

correlation length, s ≪ ξdf , the distribution looks as if at criticality. For the

scaling function this observation implies

n±(ŝ) ∼ ŝ−1−d/df = ŝ−τ , for ŝ ≪ 1. (3.14)

2Stauffer and Aharony (1994) introduce another exponent σ with no obvious physical content

by writing the cluster distribution as ns (ε) = s−τ h(cs), where c ∼ |ε|1/σ ∼ ξ−df , i. e.,

df = 1/νσ .
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Clusters with linear dimension significantly larger than ξ are known to be

exponentially rare, thus, we require a rapid decay of n±(ŝ) for ŝ ≫ 1.

The proper extension for the two-site conditional probability reads

gs(r; ε) = R−(d−df)
s g±F (r/Rs, ξ/Rs), (3.15)

with again two different master functions g±F for either side of the transition.

In particular, scaling states that there are essentially two types of clusters:

(i) clusters of linear dimensions Rs ≪ ξ look like if generated at the crit-

ical point, g±F (r̂ , ξ̂ → ∞) ≡ gc
F(r̂ ). The correlation length ξ becomes

irrelevant.

(ii) very large clusters (Rs ≫ ξ ) apart from being rare have a completely

different structure: they are fractal on small scales, r ≪ ξ , and homo-

geneous on large scales, r ≫ ξ .

Hence, we require for the master functions g±F to behave asymptotically as

g±F (r̂ , ξ̂ ) ∼





r̂−(d−df) if r̂ ≪ ξ̂ and r̂ ≪ 1,

const if ξ̂ ≪ r̂ ≪ 1,

O(e−r̂ ) if r̂ ≫ 1.

(3.16)

Cluster averages

In practice, measurements are often performed on clusters of all sizes at the

same time. This introduces an average over all finite and the infinite cluster,

the latter contributes only in the percolating regime. The probability g(r; ε)
for a site separated a distance r to belong to the same cluster can be inferred

as

g(r; ε) =
∑

s

sns(ε) gs(r; ε)+ P∞(ε) g∞(r; ε) (3.17)

= r−2(d−df)g±(r/ξ ) (3.18)

and is known under the name pair-correlation function. For distances much

larger than the correlation length, the pair correlation is exponentially small

if no infinite cluster is present. If it is present, the pair correlation attains a

constant value, given by the probability that both sites belong to the infinite
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cluster, P∞(ε)2 ∼ ξ−2(d−df). For length scales small compared to the correla-

tion length the pair correlation falls off according to a power law; it should be

noted that the corresponding exponent is twice the one of the infinite cluster.

Moments of the pair-correlation function are calculated from the cluster-

resolved moments. Since gs(r; ε) is an absolute probability rather than a prob-

ability density, the averages need to be normalized,

〈
rm
〉
s
=
∫

ddr rm gs(r; ε)∫
ddr gs(r; ε) = Rm

s rm(Rs/ξ ), (3.19)

〈
rm
〉
∞ = lim

L→∞

∫
r<L

ddr rm g∞(r; ε)∫
r<L

ddr g∞(r; ε)

∼ lim
L→∞

ξm+df(L/ξ )d

ξdf(L/ξ )d
∼ ξm .

(3.20)

On the infinite cluster, the result
〈
rm
〉
∞ ∼ ξ

m is readily interpreted by the ob-

servation that the correlation length ξ is the only present length scale in this

case. On small clusters, Rs ≪ ξ , the moments become independent of ξ re-

quiring rm to be constant for small arguments. Conversely, on very large finite

clusters, Rs cancels due to the normalization, and the moments are determined

by the correlation length approaching the result on the infinite cluster, hence,

rm(x) ∼ 1/x for x ≫ 1. Averaging over all finite and the infinite cluster

yields,

〈
rm
〉
=
∑

s

sns(ε)
〈
rm
〉
s
+ P∞(ε)

〈
rm
〉
∞ ∼ ξ

m−(d−df), (3.21)

where both terms contribute equally.

In addition to the correlation length, another important length scale emerges

when characterizing the properties of the medium: the root mean-square clus-

ter size or radius of gyration ℓ. It diverges at the threshold as

ℓ :=
√〈

r2
〉
∼ ξ1−(d−df)/2 ∼ |ε|−ν+β/2. (3.22)

It may be noted that the second moment of the averaged correlation function,

g(r; ε), yields the squared correlation length,

lim
L→∞

∫
r<L

ddr r2 g(r; ε)∫
r<L

ddr g(r; ε) ∼ ξ
2. (3.23)
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Dynamic correlation functions

In the Lorentz model, a test particle is placed on an arbitrary cluster which then

is explored by the particle dynamics. The complete statistical information

of this process is encoded in the cluster-resolved van-Hove self-correlation

function,

Gs(r, t) :=
〈
δ(R(t)− R(0)− r) |R(0) ∈ Cs

〉
, (3.24)

where R(t) denotes the trajectory of the particle. The average is performed

over a restricted phase space in order to fulfill the condition that the initial

point is on an s-cluster, and over the realizations of the random medium. For

long times, the static pair-correlation functions are recovered,

Gs(r, t →∞) ∼ R−df
s gs(r). (3.25)

On the infinite cluster, the same equations with s = ∞ hold.

Since the incipient infinite cluster is completely fractal, the dynamics of the

particle is fractal again. A new independent exponent arises, the walk dimen-

sion dw. For long times, the particle has explored a mean-square displacement,

δr2
∞(t) :=

〈
[R(t)− R(0)]2 |R(0) ∈ C∞

〉
∼ t2/dw . Away from the threshold, we

expect fractal dynamics as long as the particle motion is restricted to distances

much smaller than the correlation length, δr2
∞(t) ≪ ξ2. Beyond, the medium

looks homogeneous and usual diffusion is recovered. The dynamic scaling

Ansatz for the infinite cluster reads,

G∞(r, t ; ε) = ξ−dG∞(r/ξ, tξ−dw) for r, t →∞. (3.26)

For large finite clusters, a single length scale Rs determines the dynamics at

long length and time scales. We extend Eq. (3.15) to

Gs(r, t ; ε) = R−d
s G±F (r/Rs, t R−dw

s , ξ/Rs) (3.27)

Essentially this states that clusters much smaller than the correlation length,

Rs ≪ ξ , all have identical dynamics up to rescaling length and time scales by

intrinsic cluster properties. Furthermore, for lengths r ≪ Rs ≪ ξ and times

t ≪ R
dw
s the clusters look like the incipient infinite cluster.

The size of the cluster where the particle is placed is not known a priori in

a computer simulation without an additional analysis of the geometry. There-

fore, one would like to have predictions for the unconditional correlation func-

tion, i. e., averaged over all clusters. In experiments, this average is inevitable,
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and the averaged van Hove correlation function is the quantity containing all

accessible statistical information. It is given by

G(r, t ; ε) :=
∑

s

sns(ε) Gs(r, t ; ε)+ P∞(ε) G∞(r, t ; ε). (3.28)

Exploiting the above scaling Ansatz, one easily derives

G(r, t ; ε) = ξ−2d+dfG̃±(r/ξ, tξ−dw). (3.29)

It is favorable to rewrite this expression in order to introduce the dynamic

exponent,

z := dw

1− (d − df)/2
such that ℓz ∼ ξdw, (3.30)

Applying Eq. (3.11), the scaling Ansatz for the cluster-averaged van Hove cor-

relation function is obtained, see Chapter 2 and (Kertész and Metzger , 1983),

G(r, t ; ε) = ξ−d−β/νG±(r/ξ, tℓ−z). (2.1)

The roles of the exponent z and the length ℓ become apparent in the scaling

form of the cluster-averaged mean-square displacement, which can be inferred

from

δr2(t ; ε) =
∫

ddr r2G(r, t ; ε) = t2/zδr2±(tℓ−z). (3.31)

In absence of an infinite cluster, the mean-square displacement saturates for

long times, δr2+(t̂ ≫ 1) ∼ t̂−2/z , and the long-time limit of the mean-square

displacement is given by the mean-square cluster size,

δr2(t →∞) ∼ ℓ2. (3.32)

For not too large times, when the particle has only explored a region with

linear dimension smaller than the cross-over length, t ≪ ℓz , the dynamics is

fractal with exponent z and δr2
±(t̂ ≪ 1) ∼ const.

If an infinite cluster is present, the test particle at large time scales, t ≫ ξdw ,

is either localized in a finite cluster, or it moves on a homogeneously looking

infinite cluster. The latter results in normal diffusion, δr−(t̂ ≫ 1) ∼ t̂1−2/z ,

which is characterized by a diffusion coefficient,

D = lim
t→∞

δr2(t)

2d t
. (3.33)

From the scaling properties of the mean-squared displacement, it follows that

D vanishes at the percolation threshold as,

D ∼
(
ℓ−z

)1−2/z ∼ |ε|(z−2)(ν−β/2). (3.34)
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3.3 Universal Corrections to the Scaling Behavior

In this section, we give a unified description of scaling in the Lorentz problem

that allows for a generalization including corrections to scaling. We recall

from the preceding section the scaling form for the cluster distribution,

ns(ε) = ξ−d−dfn±(sξ−df), (3.13)

as well as for the cluster-resolved van Hove correlation function, Eq. (3.27),

which is rewritten as,

Gs(r, t ; ε) = ξ−d G̃±F (r/ξ, tξ−dw, sξ−df ). (3.35)

In the percolating regime, the contribution of the infinite cluster has to be

added,

G∞(r, t ; ε) = ξ−dG∞(r/ξ, tξ−dw). (3.26)

This set of quantities contains the full statistical information of the system.

An even more general quantity that combines all information is the joint

probability that a test particle is placed at an s-cluster at time t = 0 and has

moved a distance r after a time t ,

Ps(r, t ; ε) := sns(ε) Gs(r, t ; ε). (3.36)

On the percolating cluster, we define,

P∞(r, t ; ε) := P∞(ε) G∞(r, t ; ε). (3.37)

Integrating over r yields the cluster distribution, since Gs(r, t ; ε) is normalized

to unity,

sns(ε) =
∫

ddr Ps(r, t ; ε). (3.38)

Furthermore, also the cluster-resolved van Hove function is contained in Ps ,

Gs(r, t ; ε) = Ps(r, t ; ε)∫
ddr Ps(r, t ; ε) (s ≤ ∞). (3.39)

The joint probability Ps obeys again scaling, and it is tempting to postulate

an extended scaling Ansatz accounting for some irrelevant scaling variable u,

Ps(r, t ; ε) = ξ−2dP±F (r/ξ, tξ−dw, sξ−df , uξ−ω), (3.40)

P∞(r, t ; ε) = ξdf−2dP∞(r/ξ, tξ−dw, uξ−ω). (3.41)
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The variable u can be thought of a parameter encoding the microscopic details

of the system under consideration. This variable is connected with a new ex-

ponent ω which, in contrast to u, is again universal, i. e., independent of the

microscopic details. This approach extends the scaling forms of both the clus-

ter distribution, ns(ε), and the cluster-resolved van Hove function, Gs(r, t ; ε).
It introduces corrections to the scaling behavior and, at the same time, relates

the corrections for both quantities to each other. The scaling form for the

cluster distribution follows as,

ns(ε) = ξ−d−dfN±(sξ−df, uξ−ω), (3.42)

where N± is analytic in its second argument. Expanding in this argument

yields,

ns(ε) = ξ−d−dfn±(sξ−df)[1+ ξ−ωn±1 (sξ−df)], (3.43)

with another correction function n
±
1 . Specifying to the critical point, i. e.,

sξ−df → 0, yields,

ns(ε→ 0) ∼ s−τ (1+ As−�). (3.44)

We identify � := ω/df as the correction exponent that has been measured

by Lorenz and Ziff (1998) for lattice percolation in three dimensions, � =
0.64± 0.02.

The extended scaling form of the van Hove correlation function is inferred

as follows,

G(r, t ; ε) =
∑

s

sns(ε)Gs(r, t ; ε)+ P∞(ε)G∞(r, t ; ε) (3.45)

=
∑

s

Ps(r, t ; ε)+ P∞(r, t ; ε) (3.46)

≈
∫

ds ξ−2dP±F (r/ξ, tξ−dw, sξ−df , uξ−ω)

+ ξdf−2dP∞(r/ξ, tξ−dw, uξ−ω).

(3.47)

Both terms contribute equally, and we arrive with the hyperscaling relation,

Eq. (3.11), at

G(r, t ; ε) = ξ−d−β/νG±(r/ξ, tξ−dw, uξ−ω). (3.48)
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One readily obtains for the mean-square displacement,

δr2(t ; ε) =
∫

ddr r2G(r, t ; ε) (3.49)

= ξ2−β/νR̃2
±(tξ−dw, uξ−ω), (3.50)

making use of Eq. (3.30),

= t2/zR2
±(tℓ−z, ut−y), (3.51)

with the dynamic correction-to-scaling exponent,

y = ω

dw
= �df

dw
. (3.52)

Expanding R2
± in its second argument and specializing to the critical point,

tℓ−z → 0, yields the correction to the critical law,

δr2(t ; ε = 0) ∼ t2/z(1+ Ct−y). (3.53)

Our derivation of this corrections reveals its physical origin: it lies in the pres-

ence of a microscopic scale that cuts off the universal asymptotic properties.

The amplitude C depends on these microscopic details, the exponent y is uni-

versal and related to static corrections. For the Lorentz model in three dimen-

sions, we calculate y ≈ 0.34 < 1, hence the correction term is not spoiled by

analytic corrections. For diffusion on lattice percolation clusters, the walk di-

mension is smaller, d lat
w ≈ 3.8, and the dynamic correction exponent evaluates

to ylat ≈ 0.43.





4 Dynamics Close to the Transition

Abstract

The dynamics of tracer particles between overlapping spheres slows crit-

ically down as a certain obstacle density nc is approached. The essen-

tial physics of this localization phenomenon is described in terms of the

percolation transition of the void space. We give a short review on the

mapping between the Lorentz model and continuum percolation and on

the origins of the hyperscaling relation for the conductivity exponent.

Molecular Dynamics simulations are used to corroborate the mapping.

A finite-size scaling analysis for the diffusion coefficient provides an

accurate measurement of the critical density which collapses with the

percolation threshold of the void space. A spatial resolution of the dy-

namics, i. e., analysis of the van Hove function, demonstrates the coex-

istence of localized and diffusing particles. Further, the behavior of the

non-ergodicity parameters close to the transition is discussed.

4.1 Continuum Percolation

Mapping to random resistor networks

The underlying medium of the Lorentz model undergoes at high obstacle den-

sities a percolation transition with the peculiarity that the percolating clusters

are continuous geometric objects. It has been argued that dynamic properties

of the medium such as conductivity or elasticity obey different critical prop-

erties than on lattices (Halperin et al., 1985). This argumentation is based on

the following mapping of the medium to a random resistor network (Fig. 4.1):

(i) Construct a Voronoi tessellation around the obstacle centers which de-

fines vertices being connected through edges. In three dimensions, each

vertex either defines a “chamber” between the obstacles or is outside the

void space. Each edge or bond defines a “gap” between three obstacles
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at a time. (The plane through these obstacle centers separates adjacent

chambers.) If a gap is blocked by these obstacles, remove the related

bond. Then, any path in the void space can be transformed continuously

into a path along the bonds without crossing the obstacles (Kerstein ,

1983).

(ii) Fix a chamber and one of its gaps. A transition rate W can be assigned to

this gap which is given as the ratio of the phase space volume available

for leaving through the gap to the total volume V of the chamber. The

former is proportional to the cross-section area of the gap A, it holds

W ∝ A/V (Machta and Moore , 1985). The transport properties of

the Lorentz model depend only on the probability distribution ρ(W ) of

small transition rates W . It turns out that ρ(W ) exhibits a singularity

for small W which is merely determined by the distribution of small

cross-sections A or narrow gaps; the volume V plays a minor role. In d

dimensions, one calculates (Machta and Moore , 1985)

ρ(W ) ∼ W−α, where α = d − 2

d − 1
. (4.1)

(iii) Finally, drop the obstacles and keep only vertices and bonds in the void

space, and interpret the transition rates through the gaps as conductances

along the bonds. This defines the random resistor network with a fractal,

i. e., power-law, distribution of the weak conductances.

Such random resistor networks have been investigated extensively by means of

Monte-Carlo simulations (Derrida et al., 1984; Gingold and Lobb , 1990) and

renormalization group techniques (Harris et al., 1984; Lubensky and Trem-

blay, 1986), providing reliable numeric and analytic results for the critical

behavior (Havlin and Ben-Avraham , 2002).

Conductivity

In particular, the conductivity 6 of random resistor networks has been stud-

ied. As the infinite cluster becomes increasingly thinner upon approaching

the threshold, the conductivity vanishes as well with a power law, 6 ∼ |ε|µ,

defining another exponent µ.

The fact that the percolating network looks homogeneous at length scales

larger than the correlation length ξ is expressed in the “links, nodes and blobs”
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Figure 4.1 Mapping of the Lorentz model to a random resistor network.

(Cartoons are in two dimensions.)

Figure 4.2 Cartoon of the nodes-links-blobs model: nodes, being distributed homo-

geneously with average spacing ξ , are connected by chains. A chain is made of a series

of links and blobs; links are defined as bonds carrying the whole current of a chain.

Most bonds of the network are dangling sites, i. e., they carry zero current.
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model (Fig. 4.2) by Skal and Shklovskii (1975) and de Gennes (1976); for re-

views see (Nakayama et al., 1994) and the book by Stauffer and Aharony

(1994). It simplifies the infinite cluster of the percolating network in the fol-

lowing way: the nodes are defined as vertices which can not be isolated from

the cluster by cutting any two (not necessarily adjacent) bonds. The nodes

are supposed to be distributed homogeneously with an average spacing of the

correlation length ξ . Most vertices of the network belong to cul-de-sacs (“dan-

gling ends”), i. e., they can be separated by cutting a single bond somewhere in

the network. Nodes are connected by chains, i. e., objects that can be isolated

by cutting two bonds adjacent to a node. A fraction of the bonds of a chain

carries the whole current (“links” or “red bonds”), the remaining bonds of a

chain form “blobs” which connect two links at a time.

The chains have an average resistance R which diverges as the threshold is

approached with a power law defining the exponent ζ ,

R ∼ |ε|−ζ . (4.2)

Applying an electric field E , the potential drop between two nodes is of order

ξE yielding a chain current I = ξE/R. Then, the current density in the net-

work is given by j = I/ξd−1. Plugging in the definition of the conductivity,

j = 6E , yields 6 ∼ ξ2−d/R, and a hyperscaling relation follows,

µ = (d − 2)ν + ζ. (4.3)

The remaining task is to identify the exponent ζ for such random resistor

networks that are relevant for the Lorentz model, i. e., that exhibit a power-

law distribution of the conductances, ρ(W ) ∼ W−α with 0 ≤ α < 1. We

will follow the argumentation of Straley (1982). The distribution of chain

conductances ρchain(W ) can be considered as the renormalized distribution of

bond conductances ρ(W ) in the sense of the real space renormalization group.

The renormalization flow shifts the whole distribution; usually, the peak of

the renormalized distribution ρchain(W ) is determined by the peak of the mi-

croscopic distribution ρ(W ). The low-conductivity tail, however, is shifted as

well. Two different scenarios arise dependent on the value of α: either the

peak absorbs the tail, yielding the universal form of the renormalized distribu-

tion, or the tail pulls weight out of the peak, leading to a final distribution with

the same small-W tail, ρchain(W ) ∼ W−α . In the first scenario, the exponent

for the chain resistance is found to be universal, ζ univ. In the second scenario,

the chain resistance is determined by the small conductances. The total resis-

tance of parallel bonds, i. e., the blobs, can be neglected against the resistance
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of the red bonds, and ρchain(W ) obeys for small W ,

ρchain(W ) ∼ Nredρ(W ), (4.4)

where Nred is the number of red bonds within a chain. Dimensional analysis

suggests a scaling form,

ρchain(W ) = W−1
0 ρ̃chain(W/W0), (4.5)

where W0 denotes the typical chain conductance. From Eq. (4.4) one infers,

Nred ∼ Wα−1
0 , and the average chain resistance R−1 =

〈
1/W

〉
is identified

with W0. For the divergence of the number of red bonds, we finally employ a

result by Coniglio (1981),

Nred ∼ |ε|−1, (4.6)

yielding ζ = (1 − α)−1. It has been argued that the cross-over between both

scenarios occurs such that (Machta et al., 1986; Straley, 1982)

ζ = max
[
(1− α)−1, ζ univ

]
. (4.7)

Without resorting to the assumptions of the “links, nodes and blobs” model,

Stenull and Janssen (2001) have proven directly by means of an expansion

of the renormalization group equations in ε = 6 − d to arbitrary order the

equivalent relation,

µ = max
[
(d − 2)ν + (1− α)−1, µlat

]
, (4.8)

where µlat is the universal exponent for lattice percolation.

From simulations, it is known that 1 ≤ ζ univ . 1.3 for d ≥ 2 dimensions

(Stauffer and Aharony, 1994). Using the above value of α for the Lorentz

model, Eq. (4.1), it follows that ζ takes its universal value on lattices only for

d = 2 dimensions, otherwise, ζ = d − 1. Furthermore, the dynamic exponent

z of anomalous diffusion of the Lorentz model which is connected with ζ via

Eqs. (4.14) and (4.3), is not an independent exponent anymore for d ≥ 3.

Rather it can be calculated from the geometric exponents ν and β which are

believed to equal their universal lattice values (Elam et al., 1984); in three

dimensions, we use ν = 0.88 and β = 0.41 (Stauffer and Aharony, 1994)

throughout this work.
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4.2 The Mean-Square Displacement

Molecular Dynamics simulations allow for a direct numerical analysis of the

dynamic properties of the Lorentz model without resorting to random resis-

tor networks. A quantitative description over the full density range becomes

accessible, in particular, we focus on both sides of the critical region.

Molecular Dynamics simulations

The hard-core potential of the obstacles allows for an event-oriented algorithm

for the Molecular Dynamics simulation. Since the particle propagates freely

between subsequent collisions, calculating the collision points only is suffi-

cient. A possible collision of the the particle at r with velocity v against a

single obstacle in the coordinate origin occurs after the time1

tcoll = −
b

v2
− 1

v2

√
b2 − v2(r2 − σ 2), (4.9)

where b = v·r. If b > 0, the particle departs from the obstacle and no collision

will take place. If the radicand becomes negative, the particle misses and there

won’t be any collision at all. The particle velocity v′ after the collision is

reflected at the surface of the obstacle,

v′ = v− 2(v · σ̂) σ̂, (4.10)

where σ̂ = (vtcoll + r)/σ specifies the surface normal at the collision point.

The employed algorithm is straightforward. In a preparation step, the obstacle

positions, the initial particle position and its (normalized) velocity are drawn

from a uniform distribution under the constraint that the particle starts in the

void space. The box is divided into cubic cells of length Lcell, and each ob-

stacle is associated uniquely with a cell. Then, the trajectory of the particle is

calculated following the steps in Fig. 4.3.

Since a single trajectory can consist of several billion collisions, one eas-

ily runs out of computer memory if one would store the complete trajectory.

A very efficient blocking scheme [“order-n algorithm” in (Frenkel and Smit ,

2001)] takes care of this issue by arranging the trajectory on a logarithmic time

grid and simultaneously calculating various correlation functions C(t ; t0). The

1The numerical error can be reduced using tcoll = q/v2, (r2 − σ 2)/q, where q = −b +√
b2 − v2(r2 − σ 2) and b < 0. This formula avoids the calculation of the difference between

two almost equal numbers which would occur for b2 ≫ v2(r2 − σ 2).
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1. Determine the index of the cell which the particle currently traverses

2. Calculate collision times for all obstacles in that cell and its adjacent

neighbor cells in virtue of Eq. (4.9)

3. Is there any collision within these cells and which collision will occur

next?

4. Increment timer by tcoll and update particle position and velocity ac-

cording to Eq. (4.10), or let the particle simply travel straight on over a

distance Lcell − σ
5. In case the particle has left the volume: impose periodic boundary con-

ditions to the particle position and update an additional offset variable

6. Loop to No. 1 until final time is reached

Figure 4.3 Molecular Dynamics algorithm for the simulation of a single particle tra-

jectory.

algorithm already averages over different time origins t0 (“moving time aver-

age”), which, however, are not necessarily uncorrelated, especially for short

time intervals t − t0. Hence, we will not infer any estimate of the statisti-

cal error from this averaging procedure. Rather, a set of Nt trajectories with

different initial positions for each of Nr different realizations of the obstacle

disorder is simulated, and the statistical error is estimated from Nt × Nr inde-

pendent measurements. At each density, we have simulated at least Nr = 20

realizations of the disorder. At intermediate densities, the total number of tra-

jectories has been chosen Nt × Nr = 100. This value has been increased up to

600 at very high densities, where the phase space is highly decomposed into

small, disconnected parts. The longest trajectories span about a billion colli-

sions, the demand on CPU time of a 1 GHz Alpha EV 6.8 processor for such

a trajectory was about one day.

All numerical results presented in this work refer to fixed dimensionality,

d = 3. The simulation box has periodic boundaries, its linear size was chosen

as L = 200σ . A detailed finite-size analysis is presented in Section 4.3.

The long-time limit: diffusion and localization

The following discussion is based on measurements of the mean-square dis-

placement of the test particle,

δr2(t) =
〈
|R(t)− R(0)|2

〉
. (4.11)
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In principle, the Lorentz model is a deterministic system. The initial veloc-

ity of the test particle, however, is quickly randomized through subsequent

collisions with the scatterers, leading to diffusive motion. This randomiza-

tion is not related to the random distribution of obstacles, it occurs also if the

obstacles were on a lattice. In d = 3 dimensions, the mean free path l be-

tween the collisions follows from πσ 2l = 1/n since the differential scattering

cross-section is isotropic. Employing the estimate for the diffusion coefficient

D0 = vl/d, the leading order of the low-density expansion from kinetic theory

(Weijland and van Leeuwen , 1968) is recovered,

D0 =
vσ

3πn∗
. (4.12)

For higher densities, the collisions become correlated leading to non-analytic,

logarithmic correction terms.

Close to the critical density, the dynamics can be understood as a hopping

process at scales much larger than the correlation length ξ . We restrict the

particle to the percolating void space; then, the hopping occurs between the

nodes of the network (see Section 4.1), and ξ is the lattice constant. Along

the (fractal) chains of the network, the dynamics exhibits anomalous diffusion

characterized by the walk dimension dw > 2, and the time scale associated

with ξ obeys tξ ∼ ξdw . For long times, t ≫ tξ , the dynamics becomes dif-

fusive and the mean-square displacement obeys δr2(t) ≃ 2d Dt defining the

diffusion coefficient D. Since the diffusion coefficient vanishes for localized

particles, the probability to be on the percolating void space has to be ac-

counted for yielding an additional factor P∞ ∼ |ε|β . Upon approaching the

critical density, the diffusion coefficient is found to vanish as,

D ∼ |ε|βξ2/tξ ∼ |ε|βξ2−dw . (4.13)

The phase space average involves both the percolating and finite clusters,

therefore, the relevant dynamic length scale is the mean-cluster radius, ℓ ∼
|ε|−ν+β/2 and the dynamic exponent z characterizing anomalous diffusion,

δr2(t) ∼ t2/z , is different from dw. It holds ℓz ∼ ξdw and D ∼ ℓ2−z , see

Section 3.2. Making use of the Einstein relation, 6 ∝ D (Havlin and Ben-

Avraham , 2002), the diffusion coefficient vanishes with the same exponent µ

as the conductivity and a scaling relation that connects µ with the dynamic

exponent z follows,

z = 2ν − β + µ
ν − β/2 . (4.14)
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Figure 4.4 As the localization transition is approached, the diffusion coefficient D

vanishes with exponent µ = 2.88. The localization length ℓ diverges with exponent

ν − β/2 and can clearly be distinguished from the correlation length, ξ ∼ |ε|−ν .

In the localized regime, the long-time limit of the mean-square displacement

yields directly the mean cluster radius, δr2(t) ≃ ℓ2 for t ≫ tξ . The correlation

length ξ is easily accessible in the localized regime by the observation that

the mean-quartic displacement, δr4(t) :=
〈
|1R(t)|4

〉
, scales for long times as

(Chapter 2)

δr4(t) ≃ ξ2ℓ2 for t ≫ tξ . (4.15)

We have simulated trajectories of the test particle over a wide range of ob-

stacle densities, above and below the localization transition. From the long-

time limit of δr2(t) we have extracted the diffusion coefficient D which van-

ishes as a critical density n∗c is approached from below. The power law,

D ∼ |n∗ − n∗c |µ, is observed over five orders of magnitude (Fig. 4.4).

The conjectured mapping between continuum percolation and the localiza-

tion transition of the Lorentz model can be tested by means of Eq. (4.8), which

provides together with the result α = 1
2

from Machta and Moore (1985) a

value for the exponent µ = ν + 2 ≈ 2.88. Further, we can test the deviation

of µ from its value on lattices, µlat ≈ 2.0 (Stauffer and Aharony, 1994), as

well as the competing result of Halperin et al. (1985), µ = ν + 3/2. Using

Eq. (4.14), these predictions are connected with different exponents z for the

anomalous diffusion which are tested directly on the mean-square displace-

ment at the nearly-critical density n∗ = 0.84, see Fig. 4.5. The inset of the

figure compares rectification plots of the diffusion coefficient with the various
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Figure 4.5 Anomalous diffusion of the mean-square displacement at n∗ = 0.84;

straight lines represent power laws t2/z where z is related to µ by Eq. (4.14). We

compare three possibilities for the value of µ: the scaling relations µ = ν + 2 (Machta

and Moore , 1985) and µ = ν + 3/2 (Halperin et al., 1985) from Eq. (4.8), and the

lattice value, µlat = 2.0. Inset: rectification plot of the diffusion coefficient. The

straight lines are fits to the four data points with n∗ ≥ 0.80.

values for µ, the best straight line is obtained for µ = 2.88. We conclude that

only the value µ = ν+2 is consistent with our data, the other two possibilities

can clearly be ruled out.

Knowing the value of µ, the critical density can be fitted quite precisely by

means of the rectification plot, we obtain n∗c = 0.839(4). This value is much

larger than the value 9/4π suggested in the literature (Götze et al., 1981a).

Our result for n∗c coincides with the percolation threshold of the void space,

n∗perc = 0.8363(24) (Elam et al., 1984; Kertész, 1981; van der Marck , 1996;

Rintoul , 2000), what can be interpreted in such a way that the particle will

eventually squeeze through any, no matter how narrow gap. There are no

regions, e. g. cul-de-sacs, on a cluster which are too unprobable to be visited

by the particle after an infinitely long time. This means further that the particle

will diffuse as long as its surrounding phase space is connected with infinity.

In the localized regime, for densities above n∗c , the divergence of the long-

time limit of the mean-square displacement is compatible with an exponent
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ν − β/2 = 0.68, plugging in the exponents from lattice percolation in d = 3.

In particular, we can identify the localization length ℓ with the mean-cluster

radius introduced in Section 3.2 as already anticipated by the choice of our

notation. Further, we have investigated the ratio
(
δr4(t)/δr2(t)

)1/2
, it diverges

as |ε|−ν and, hence, can be identified with the correlation length ξ , see Fig. 4.4.

This result together with Eq. (4.15) not only corroborates the scaling form of

G(r, t), Eq. (2.1), but also contrasts clearly the localization length ℓ with the

correlation length ξ . In conclusion, two different length scales are present

close to the critical density, and both are relevant for the dynamic properties.

4.3 Finite-Size Scaling

The size of the simulation box, L , limits the size of the largest finite clusters

and, hence, acts as an upper cutoff on the correlation length, ξ . For very small

system, L ≪ ξ , the correlation length becomes irrelevant, and the intrinsic

(macroscopic) length scale is given by the box size. For very large systems,

L ≫ ξ , the finiteness of the box can be neglected. Observables as well as the

master functions are decorated with an additional parameter, L and L/ξ , resp.

For the mean-square displacement, we extend the scaling Ansatz, Eq. (3.31),

δr2(t ; ε, L) = t2/zδr2±(tℓ−z, L/ξ ), (4.16)

and infer for the diffusion coefficient,

D(ε, L) = ξ−µ/νD±(ξ/L) (4.17)

∼





L−µ/ν for L ≪ ξ,

O(e−L/ξ ) for L ≫ ξ and ε > 0,

|ε|µ for L ≫ ξ and ε < 0.

(4.18)

Note that in small systems, the diffusion coefficient becomes independent of ε

close to the critical density.

Our simulation results not only corroborate the scaling form of D(ε, L) very

nicely, but also demonstrate the occurence of two different master functions

D± distinguishing the regimes above and below nc, see Fig. 4.6. The master

function D+ expresses the fact that diffusion is not blocked for n∗ > n∗c as

long as the box size is much smaller than the correlation length (L ≪ ξ ).

Due to the periodic boundary conditions, large finite clusters, Rs ≫ L , are
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turned into infinite clusters, yielding diffusing particles above n∗c . In particular,

the percolation threshold seems to be shifted towards the localized regime,

i. e., the effective critical density n∗c (L), increases with decreasing box size,

L . We have measured n∗c (L) as the axis intercept of the linear extrapolation of

D(n∗)1/µ (Fig. 4.7). The true critical density is approached as (Stauffer and

Aharony, 1994)

n∗c (L)− n∗c ∼ L−1/ν, (4.19)

which is made plausible by the observation that the scaling variable ξ/L can

also be expressed in terms of |ε|L1/ν .

The finite-size scaling allows for a more precise determination of the critical

density yielding n∗c = 0.8367 ± 0.0010. We have checked that our result is

robust against a possible error in the critical exponent ν of the order of 0.01.

This finding improves our previous result, n∗c = 0.839 ± 0.004, for fixed

box size, L = 200σ . It is compatible with the result from Rintoul (2000),

n∗c = 0.8363± 0.0024.

4.4 Space-Resolved Dynamics

The van Hove correlation function

A complete statistical description of the dynamical properties of the Lorentz

model is given in terms of the van Hove self-correlation function, G(r, t) =〈
δ(R(t)− R(0)− r)

〉
. At fixed time t , this quantity can be interpreted as the

probability density describing the distribution of a set of test particles that was

placed at the coordinate origin r = 0 at time t = 0. After averaging over the

random obstacle configurations, the system is isotropic and G(r, t) depends

only on the distance r = |r|. Integrating out the dependence on the solid angle,

we are left with the reduced correlation function, G̃(r, t) = 4πr2G(r, t).

In Fig. 4.8, it can be seen that already at densities well below the critical

density, G̃(r, t) exhibits two distinct peaks. One peak is of diffusive nature,

it moves to larger distances with increasing time and vanishes finally. The

second peak is located at small distances and remains fixed, it describes the

localized particles. Writing

G(r, t) = G loc(r, t)+ Gdiff(r, t), (4.20)

the amount of localized particles is quantified by

f0 :=
∫

ddr G(r, t →∞) =
∫

ddr G loc(r, t). (4.21)
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The second equality holds at all times since Gdiff(r, t → ∞) ≡ 0 and since

localized particles cannot become diffusive and vice versa. Fig. 4.8 demon-

strates that for long time and length scales, t ≫ ℓz and r ≫ ξ , the diffusive

peak indeed can be described by the result of the three-dimensional diffusion

equation,

Gdiff(r, t) = 1− f0

(4πD∞t)3/2
exp

(
− r2

4D∞t

)
. (4.22)

The normalization factor has been modified taking into account the presence

of non-diffusing particles; consequently, the correct diffusion coefficient is

D∞ = D/(1 − f0) for particles on the infinite cluster. Deviations at short

time and length scales are attributed to the fractal structure of the percolating

cluster at distances smaller than ξ .

Non-ergodicity parameters

Scattering experiments give access to the incoherent intermediate scattering

function, 8q(t), which is simply the Fourier transform of the van Hove func-

tion,

8q(t) :=
〈
eiq·[R(t)−R(0)]

〉
=
∫

ddr eiq·rG(r, t). (4.23)

As well as the van Hove function, the scattering function is isotropic and,

hence, depends only on the magnitude of the wave vector q = |q|. Only the

localized particles contribute to the long-time limit of the scattering function,

fq := 8q (t →∞); it is called non-ergodicity parameter since it measures the

disconnectivity of the phase space. It vanishes in systems without localized

particles, e. g., in fluids, otherwise the limit fq→0 = f0 yields the fraction of

localized particles as anticipated by the choice of our notation.

In liquids, sometimes a cumulant expansion is applied to the correlation

function 8q (t), the latter being interpreted as the moment-generating func-

tional of the probability distribution G(r, t) (Boon and Yip , 1991). Systems

without memory yield Gaussian correlation functions, they are well described

by the leading order of this expansion,

8q (t) ≈ exp
[
−1

6
q2δr2(t)

]
; (4.24)

the Lorentz model, however, exhibits strong memory effects as indicated by

the divergence of the non-Gaussian parameter (Chapter 2), and the approxi-

mation is only trivially valid for small arguments of the exponential, q2 ≪
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6/δr2(t). The memory effects become apparent in particular for long times,

i. e., t ≫ ℓz , where the localized particles have completely explored their clus-

ters, and their contribution has already attained its long-time limit fq . Since

the linear size of the finite clusters is limited by the correlation length ξ , the

non-ergodicity parameters are constant, fq ≃ f0 for q ≪ ξ−1. Fourier trans-

formation of Eq. (4.20) and using Eq. (4.22) yields,

8q (t) = (1− f0) exp(−D∞q2t)+ fq for t ≫ ℓz . (4.25)

At these time scales, it holds D∞t ≫ D∞ℓz ∼ ξ2, making use of Eq. (4.13),

and the scattering function splits in two different parts near q ≈ ξ−1, see Fig.

4.9. The non-vanishing part at long wave numbers stems from the localized

particles, whereas the short wave numbers describe the diffusive particles; the

latter regime, however, being modified by a constant contribution f0. Only

in the small regime q ≪ 1/
√

D∞t ≪ ξ−1, shrinking with elapsing time,

Eq. (4.25) is equivalent with the Gaussian approximation, Eq. (4.24).

For small wave numbers the non-ergodicity parameter takes the generic

form of a Lorentzian (Götze et al., 1981b),

fq =
f0

1+ 1
6
(qℓ)2

; (4.26)
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its inverse width defines the localization length ℓ. We have determined the

values for f0 and ℓ by fitting our data for fq to this form. In the localized

regime, the values for ℓ collapse with those obtained from the long-time limit

of the mean-square displacement.

For n > n∗c , and at the localization transition in particular, all particles are

trapped, and it holds f0 = 1. This value is approached from the diffusive

regime (n∗ < n∗c ) as the volume of the percolating cluster vanishes. The

fraction of diffusing particles is given by 1− fq ; it equals the probability that

a particle is in the infinite cluster,

1− f0(ε) = P∞(ε) ∼ |ε|β . (4.27)

Hence, f0 exhibits a singularity at the transition which is qualitatively repro-

duced by our data, though the error bars are large (Fig. 4.10). Making use of

Eq. (4.26), the singular behavior is also found at finite wave numbers,

fq (ε) ∼ fq (0)+ O
(
|ε|β

)
for ε < 0, (4.28)

yielding a small kink in fq ; its experimental observation, however, will be

difficult.





Part II

Rod-Like Macromolecules





5 Dynamics of a Rod in the Dilute Limit

Abstract

A simplified model for the dynamics of a semi-dilute solution of rigid

rods is introduced. It is closely related to the Lorentz model and describes

the two-dimensional motion of a needle in an disordered static environ-

ment of point obstacles. We give a theoretical description of the dynam-

ics within the Boltzmann approximation of uncorrelated collisions. In

particular, we obtain results for the diffusion coefficients of center-of-

mass motion and of rotation, which are valid in the low density regime.

5.1 Introduction

Semi-dilute solutions of stiff polymers as well as macromolecular liquids show

distinct dynamical properties due to entanglement effects, that is due to the

topological constraint that polymer chains cannot pass through one another.

These dynamical features, however, depend sensitively on a variety of pa-

rameters such as the specific interaction between the polymers, hydrodynamic

interactions, the ratio between polymer diameter and length and the stiffness.

Therefore, it is of importance to establish simplified theoretical models allow-

ing for disentangling the influence of the different parameters.

A very appealing and challenging model is a liquid of rigid, thin needles,

i. e., the polymers are roughly approximated as rigid and treated in the limit of

vanishing diameter. Biopolymers such as F-actin come close to this limit: its

diameter is about 5 nm while filament lengths range from several microns to

20 µm and more, e. g., in the cell cortex (Alberts et al., 2002). The latter has

to be compared with a persistent length of about 17 µm (Le Goff et al., 2002).

A concentrated solution of thin needles fulfills the requirements of a semi-

dilute polymer solution: strong entanglement and the absence of excluded

volume interactions. Since the static properties of such a system are trivially

those of an ideal gas, purely dynamic effects such as entanglement can be
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studied in isolation. In particular, the model does not allow for a nematic

phase transition.

A first theoretical description of solutions of rod-like polymers is due to Doi

and Edwards (1978, 1986); using a tube model, they predict a strong suppres-

sion of the rotational diffusion coefficient with length L and number density n:

Drot ∼
(
nL3

)−2
. The tube is defined through the steric hindrance of a test

polymer by the surrounding polymers; the test polymer is restricted to move

mainly back and forth inside the tube. There, it can change its orientation only

very little, and in order to rotate, it has to disengange from its tube being, how-

ever, confined in another tube. The formation of an adjacent tube is strongly

correlated with the previous one. Consequently, a large number of tubes is

necessary for the polymer to change its orientation macroscopically.

The needle liquid was investigated in early computer simulations by Frenkel

and Maguire (1981, 1983). Being, however, limited to rather dilute situations,

their data do not allow to draw any conclusions about the high density behav-

ior. Nevertheless, they make an interesting prediction using scaling arguments

that the coefficient of center-of-mass diffusion should diverge at high densi-

ties, i. e., in highly entangled situations, as Dcm ∼
(
nL3

)1/2
. The cross-over

to the semi-dilute regime was studied a few years later (Magda et al., 1986),

hinting at an exponent −2 in the rotational diffusion Drot. But an exploration

of the power law over several decades is strongly limited by the huge demand

on computer resources for the model. In Chapter 6, we will present Molecu-

lar Dynamics simulations for a simplified model which allows for a thorough

investigation of the high density regime.

Another approach was chosen by Doi et al. (1984) in order to confirm the

tube model. For the simulation of needles in a solvent, i. e., with Brownian

dynamics, they use a Monte Carlo algorithm with an ad hoc reflection rule

accounting for the collisions. The obtained results reflect the onset of the

asymptotic high-density behavior of Drot with the predicted exponent. Other

Brownian dynamics simulations lift the limit of thin needles and use a soft

interaction potential (Bitsanis et al., 1988, 1990; Fixman , 1985), and it is not

clear how much these results are spoiled by excluded volume effects. These

simulations cover only the cross-over to the semi-dilute regime, but the data

are well described by a theory based on binary interactions (Fixman , 1985).

Next to the tube model, there are only a few theoretical approaches to the

needle liquid. We mentioned already the description of the cross-over regime.

A more elaborate theory was derived recently within a Boltzmann-Enskog ap-

proximation (Otto et al., 2006) explaining from a microscopic point of view
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anisotropic diffusion. However, the theory is applicable only in the dilute

regime. Another interesting theory modifies the model by fixing the center

of mass positions of the needles on a simple cubic lattice, thus freezing the

translational degrees of freedom (Schilling and Szamel , 2003a,b). The nee-

dles are much longer than the lattice constant and hinder mutually their free

rotation. This model is predicted to undergo a glass transition being funda-

mentally different from structural glass formers due to the absence of static

correlations.

A different line of approach simplifies the liquid of rod-like polymers fur-

ther in order to capture the main features of entangled dynamics: It focuses on

the dynamics of a single rod freezing the positions of all others. Further, the

motion of this rod is restricted to a plane, which is riddled by the other rods.

Effectively, the model describes a single rod moving in a static, random array

of fixed disks—a variant of the Lorentz model with a highly anisotropic test

particle.

A first investigation of this model was based on Molecular Dynamics sim-

ulations. Moreno and Kob (2004a,b) used a soft interaction potential and

imitated the rod by a string of linearly aligned beads (“shish kebab”). They

studied the breakdown of the isotropy of rotational dynamics close to the

cross-over to the semi-dilute regime, i. e., when the mesh size between the

obstacles becomes comparable with the rod length. Besides, they found a

suppression of rotational diffusion, being compatible with the predictions of a

two-dimensional variant of the tube model, and an increase of the translational

diffusion coefficient by a factor two compared to the Boltzmann result.

5.2 Definition of the Model

We investigate a model similar to the one mentioned in the preceding para-

graph, reducing the number of parameters to one. Instead of a soft potential

and the shish kebab-like rod, the rod interacts with the obstacles via a hard po-

tential. Since all excluded volume can be assigned to the obstacles, we reduce

the rod to a needle avoiding all ambiguities about its detailed modeling. Fur-

ther, we restrict to the limit of point obstacles—thus, the model corresponds

to the liquid of thin needles.1 In this limit, the void space formed by the obsta-

cles does not undergo a percolation transition. Thereby, we avoid the whole

scenario of critical slowing down as known from the usual Lorentz model; the

1We are grateful to Rolf Schilling for pointing out this particularly interesting limit of our model.
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Figure 5.1 Geometry for the derivation of the law of collision.

dynamic effects are not spoiled and can be studied in great detail.

In conclusion, our model describes a needle of length L moving ballistically

in a two-dimensional environment of randomly distributed, fixed point obsta-

cles of number density n. The needle has a mass m and its moment of intertia

with respect to rotations about the midpoint is given by I = αm(L/2)2, a ho-

mogeneous mass distribution along the needle is parametrized by α = 1
3
. The

configuration space is spanned by the position of the midpoint of the needle,

r, and its orientation angle ϕ. The conjugated momenta are proportional to

the center-of-mass velocity, v = ṙ, and the rotational velocity, ω = ϕ̇. The

kinetic energy is conserved, but distributed between two translational and one

rotational degrees of freedom. Our fundamental units are the length L , the

average velocity v :=
〈
v2
〉1/2

, and the mass m. Then, the only parameter is the

reduced density, n∗ := nL2.

Kinetics of a single collision

Let vi and ωi be the initial velocities of the needle, and 1r j = r − r j be the

vector pointing from obstacle j to the midpoint of the needle (Fig. 5.1). A

coordinate system is introduced via the orientation of the needle (denoted by

the unit vector êϕ) and a perpendicular direction ê⊥, where êϕ × ê⊥ = 1. We

make use of a two-dimensional definition of the cross product as a × b :=
det(a,b). The relations a × ê⊥ = a · êϕ and a · ê⊥ = −a × êϕ will render

useful for eliminating ê⊥. Next, we exploit that the momentum transfer occurs

perpendicular to the needle, 1p = 1p ê⊥. The interaction with the obstacle

induces a torque on the needle, and the change of angular momentum is given

by −1r j ×1p = a1p with a := −1r j · êϕ . Thus, the final velocities read,

v f = vi +
1p

m
and ω f = ωi +

a1p

I
. (5.1)
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Equating the kinetic energy before and after the collision,

(mvi )
2

2m
+ (Iωi )

2

2I
= 1

2m
(mvi +1p)2 + 1

2I
(Iωi + a1p)2, (5.2)

yields the momentum transfer,

1p = 2m I
vi × êϕ − ωi a

I + ma2
. (5.3)

Note that the final velocities are invariant under the symmetry transformation

êϕ 7→ −êϕ (involving ê⊥ 7→ −ê⊥).

5.3 Linearized Boltzmann Theory

The Liouville operator

The dynamics of the needle is encoded in the Liouville operator L, in particu-

lar, the equation of motion for some dynamic variable A reads,

∂t A(t) = iLA(t). (5.4)

Dynamic correlation functions between two variables A and B describe the

response of the system to some perturbation at the time t0 = 0; they are con-

veniently expressed in terms of the Mori product, CAB(t) :=
〈
A(t)

∣∣B
〉
; sup-

pressed time arguments refer to t0. The Mori product is a scalar product in

the vector space of dynamic variables, or more precisely of their fluctuations

(Mori , 1965b). It is defined as,
〈
A
∣∣B
〉

:=
〈
δA∗ δB

〉
, where δX := X−

〈
X
〉
, and

the star denotes the complex conjugate. The Liouville operator is Hermitian

with respect to the Mori product,
〈
LA
∣∣B
〉
=
〈
A
∣∣LB

〉
, as can be seen from its

definition by means of a Poisson bracket. Plugging in the formal solution of

Eq. (5.4), it follows that

CAB(t) =
〈
eiLt A

∣∣B
〉
=
〈
A
∣∣e−iLt B

〉
= CB A(−t)∗, (5.5)

and in particular, real-valued auto-correlation functions, CAA(t) are invariant

under time reversal.

Due to the singular potential of the interaction between the needle and the

obstacles, the Liouville operator does, rigorously spoken, not exist. However,

pseudo-Liouville operators, L±, can be defined in a similar spirit as for the
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hard-sphere interaction (Ernst et al., 1969). Then, the equation of motion

changes to

∂t A(t) = iL±A(t) for t ≷ t0, (5.6)

and the operators L± are adjoint to each other, L
†
+ = L−. The Liouville

operator is composed of a free-streaming and a collision part,

L± = Lfree + L±coll

= −iv ·

∂

∂r
− iω

∂

∂ϕ
+ i

∑

j

T±( j); (5.7)

the sum runs over all obstacles. The collision operator T±( j) describes a single

collision between the needle and obstacle j , it has the form,

T±( j) = δ(1r j × êϕ)2
(

L
2
− |1r j |

)

×2
(
∓ d

dt
(1r j × êϕ)

) [
∓ d

dt
(1r j × êϕ)

]
(b1r j ,ϕ − 1)

(5.8)

= δ(t − t∗)2
(
∓ d

dt
(1r j × êϕ)

)
(b1r j ,ϕ − 1). (5.9)

The δ- and 2-functions encode the (properly normalized) geometric con-

straints on a collision, they can be rewritten as δ(t − t∗) where t∗ denotes

the point in time of the collision. The second 2-function ensures that the

point of contact on the needle actually approaches the obstacle. The last factor

contains the operator b1r j ,ϕ which incorporates the law of collision, Eqs. (5.1)

and (5.3); it acts only on the velocities and replaces them by their final values,

b1r j ,ϕ f (vi , ωi ) := f (v f , ω f ). (5.10)

The operator b1r j ,ϕ − 1 annihilates expressions that are independent of the

velocities.

Densities and currents

A physically important dynamic variable is the tagged particle density; in our

case, it describes the probability distribution of the position r and the orienta-

tion ϕ of the needle. Its Fourier transform is given by

ρν(q) := eiνϕeiq · r. (5.11)
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Since the particle number (viz. one) is conserved, there are associated cur-

rent densities, jT
ν (q) and j R

ν (q), describing the temporal changes of the center-

of-mass position and of the orientation of the needle, resp. They satisfy the

continuity equation,

∂tρν(q)− iq · jT
ν (q)− iν j R

ν (q) = 0. (5.12)

Making use of the equation of motion, Eq. (5.6), and the definition of ρν(q),

we infer,

L±ρν(q) = q · jT
ν (q)+ ν j R

ν (q), (5.13)

yielding for the longitudinal part of the translational current,

j T
ν (q) := q̂ · jT

ν (q) = (q̂ · v) ρν(q), (5.14)

and for the rotational current,

j R
ν (q) = ω ρν(q); (5.15)

q̂ designates the unit vector q/q.

Static correlations between density and currents are determined by the ho-

mogeneity and isotropy of the system. All the ρν(q), j T
ν (q), and j R

ν (q) are

mutually orthogonal,

〈
ρµ(q)

∣∣ρν(k)
〉
= δµνδqk,

〈
ρµ(q)

∣∣ j T
ν (k)

〉
=
〈
ρµ(q)

∣∣ j R
ν (k)

〉
= 0. (5.16)

The non-vanishing current-current correlations describe the total energy of the

needle,

〈
j T
µ (q)

∣∣ j T
ν (k)

〉
= 1

2

〈
v2
〉
δµνδqk, (5.17a)

〈
j R
µ (q)

∣∣ j R
ν (k)

〉
=
〈
ω2
〉
δµνδqk. (5.17b)

For later use, we introduce generalized velocities ωT and ωR such that 2ω2
T =〈

v2
〉

and ω2
R =

〈
ω2
〉
.

The incoherent intermediate scattering function

The auto-correlation function of the tagged particle density is called incoher-

ent intermediate scattering function being defined as,

8µν(q, t) :=
〈
ρµ(q, t)

∣∣ρν(q, 0)
〉
. (5.18)
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8µν(q, t) shares several symmetry properties. For example, it is sufficient

to know its values along a single wave number direction, say along the x-axis:

Let Rχ be a rotation of the coordinate frame about an angle χ . Thus, we can

change the coordinate frame in such a way that the x-axis and q coincide:

Rχq = q êx . As a consequence, the orientation angle ϕ changes as well,

Rχϕ = ϕ − χ . For the correlation function, it follows

8µν(q, t) =
〈
e−iµϕ(t)eiνϕ(0)e−i(R−1

χ q êx ) · [r(t)−r(0)]
〉

=
〈
e−iµ[Rχϕ(t)+χ ]eiν[Rχϕ(0)+χ ]e−iq êx · Rχ [r(t)−r(0)]

〉

= e−i(µ−ν)χ8µν(q êx , t) (5.19)

In the last step, we made use of the rotational invariance of the system after

disorder averaging. In particular, if 8µν(q, t) is diagonal in the helicities µ

and ν, it is spherically symmetric in the wave number q as well.

The formal solution of the equation of motion for the density correlators,

Eq. (5.6), can be written as matrix elements of the time evolution operator,

8µν(q, t) =
〈
ρµ(q)

∣∣e−iL−t
∣∣ρν(q)

〉
. (5.20)

It is convenient to Laplace transform the time domain,

Lz[ f ] := i

∫ ∞

0

ei zt f (t) dt for Im z > 0, (5.21)

which converts Eq. (5.20) into matrix elements of the resolvent of the Liouville

operator,

8µν(q, z) =
〈
ρµ(q)

∣∣∣
1

L− − z

∣∣∣ρν(q)
〉
. (5.22)

By means of the Mori-Zwanzig projection technique (Mori , 1965a; Zwan-

zig , 1961, 1965), an equation of motion is derived which relates the time evo-

lution of the density correlations, 8µν(q, t), with the current correlation func-

tions, K
αβ
µν (t), to be introduced later. We consider the densities ρν(q) as slow

variables and start by defining a projector onto their subspace,

P :=
∑

ν

∣∣ρν(q)
〉 〈
ρν(q)

∣∣ , (5.23)

and its orthogonal complement Q := 1− P. Exploiting the operator identity,

z

L− − z
= z

L−Q− z
−
(

L−Q
1

QL−Q− z
QL− − L−

)
P

1

L− − z
, (5.24)
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yields,

z8µν(q, z) = −δµν +
∑

σ

〈
ρµ(q)

∣∣L−
∣∣ρσ (q)

〉
8σν(q, z)

−
∑

σ

〈
QL+ρµ(q)

∣∣∣
1

QL−Q− z

∣∣∣QL−ρσ (q)
〉
8σν(q, z).

(5.25)

Utilizing Eq. (5.13), the matrix elements
〈
ρµ(q)

∣∣L−
∣∣ρσ (q)

〉
vanish, and we see

that the matrix elements in the second line describe current-current correla-

tions,

K αβ
µν (q, z) := 1

ωαωβ

〈
jαµ (q)

∣∣∣
1

QL−Q− z

∣∣∣ jβν (q)
〉
, (5.26)

where α, β ∈ {T, R} denote either translational or rotational parts. Note that

the dynamics of these correlations is driven by a reduced Liouville operator,

QL±Q, which has been decoupled from the slow variables, i. e., the density

modes. Introducing the frequencies �T
ν (q) := qωT and �R

ν (q) := νωR and

going back to the time domain, we obtain a set of integro-differential equations

relating density and current correlations,

∂t8µν(q, t)+
∑

σ
αβ

∫ t

0

dτ �αµ(q) K αβ
µσ (q, τ )�βσ (q)8σν(q, t − τ ) = 0, (5.27)

with initial conditions8µν(q, 0) = δµν . This equation has the general form of

a time evolution equation allowing for memory effects if the kernels K
αβ
µν (q, t)

are non-local in time.

The correlators K
αβ
µν (q, t) can be interpreted as modified velocity auto-cor-

relation functions. In the hydrodynamic limit, i. e., for small wavenumbers

and large time scales, it holds, e. g.,

K T T
µν (q → 0, t →∞) = 1〈

v2
〉
〈
v(t) · v(0)

〉
; (5.28)

in particular, the dynamics in this limit is driven by the full Liouville operator,

L± (Boon and Yip , 1991).

Boltzmann approximation

Until here, the derivation was rigorous and applies at all obstacle densities.

But in order to obtain a closed set of equations for the density and current



76 DYNAMICS OF A ROD IN THE DILUTE LIMIT

correlators, it is inevitable to introduce approximations. We will make the

simplest choice and ignore correlated collisions in the spirit of Boltzmann’s

Stoßzahlansatz.

An equation of motion for the current correlators similar to Eq. (5.25) is

obtained by repeating the above procedure with a projector onto the currents,

P̃ :=
∑

α,ν

∣∣ jαν (q)
〉 1

ω2
α

〈
jαν (q)

∣∣ , (5.29)

and its complement, Q̃ = 1− P̃. An operator identity analogous to Eq. (5.24)

holds, and we approximate,

zK αβ
µν (q, z) ≈ −δµνδαβ +

∑

γ,σ

1

ωαωγ

〈
jαµ (q)

∣∣L−
∣∣ jγσ (q)

〉
K γβ
σν (q, z). (5.30)

Here, matrix elements of the generalized forces, Q̃L± jαν (q), have been ne-

glected. They describe higher order collision terms and are responsible for

memory effects. This approximation is good as long as the collision events

are rare and uncorrelated, i. e., in the dilute limit.

We are left with the evaluation of the matrix elements of the Liouville op-

erator in the subspace of currents. Due to time inversion symmetry, current-

current matrix elements of the free Liouville operator vanish,

〈
jαµ (q)

∣∣Lfree

∣∣ jβν (q)
〉
= 0, (5.31)

and the remaining task is the calculation of matrix elements of the collision

operator, 〈
jαµ (q)

∣∣L−
∣∣ jβν (q)

〉
= i N

〈
jαµ (q)

∣∣T−(1)
∣∣ jβν (q)

〉
(5.32)

Since T±(1) does not act on the space variables, r and ϕ, the matrix elements

vanish for µ 6= ν, and they are independent of q and µ. Further, T±(1) and the

angular velocity ω are invariant under rotation of the reference frame whereas

the velocity vector v is not. Thus, mixed matrix elements, α 6= β, vanish as

well, and we are left with two microscopic frequencies,

νT := − N

2ω2
T

〈
v · T−(1) v

〉
, (5.33a)

νR := − N

ω2
R

〈
ω T−(1)ω

〉
. (5.33b)
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The calculation is tedious and deferred to Appendix A; we find,

νT =
3

8

√
3αArsinh

(
α−1/2

) n∗ωT

L
, (5.34a)

νR =
3

16

√
3
[√

1+ α − αArsinh
(
α−1/2

)]
n∗ωR, (5.34b)

which reduces for a homogeneous mass distribution along the needle, i. e., for

α = 1
3
, to

νT ≈ 0.49359
n∗ωT

L
and νR ≈ 0.23244 n∗ωR . (5.35)

Our approximation for the current correlators, Eq. (5.30), collapses and is

simply given by

K αβ
µν (q, z) = −δµνδαβ

z + iνα
. (5.36)

Hence, there are only two non-vanishing current correlators; in time domain

they have the form

K α(t) = exp(−ναt) for α ∈ {T, R}. (5.37)

Using that both functions decay exponentially with rates independent of q and

µ, ν, it can be shown that the diffusion coefficients of center-of-mass motion

and of rotation follow from the relations,

Dcm =
v2

2

∫ ∞

0

K T (t) dt = v2

2νT

, (5.38a)

Drot = ω2

∫ ∞

0

K R(t) dt = ω2

νR

. (5.38b)

Since the frequencies obey νT , νR ∼ n∗, the diffusion coefficients are linearly

suppressed with increasing density.





6 Entanglement and Enhanced Diffusion

Abstract

The modified Lorentz model introduced in Chapter 5 is investigated by

means of extensive Molecular Dynamics simulations. A novel algorithm

for the collision detection makes an exploration of the full density range

feasible. Our results for the rotational diffusion coefficient provide a

thorough verification of the predictions of the tube model for highly en-

tangled networks of rigid rods. A surprising and novel finding is the

enhancement of center-of-mass diffusion with increasing density due to

the confinement of the needle in tubes.

In the previous chapter, we have presented a solution of the dynamic problem

of a needle in a random environment in the spirit of the linearized Boltzmann

theory. Having neglected correlations between subsequent collisions, the re-

sult will be applicable in dilute situations where the density of the obstacles is

low and collisions are rare. Molecular Dynamics simulations are a useful tool

for investigating the more interesting case of a dense obstacle environment.

6.1 Molecular Dynamics Simulations

We have extended our algorithm from Section 4.2 in order to incorporate the

additional features and peculiarities of a needle. First, the phase space spans

not only the center-of-mass position and velocity, but also the orientation an-

gle of the needle and its angular velocity. But the major change is in the cal-

culation of the trajectory involving sophisticated collision tests and modified

velocity updates after a collision according to Eqs. (5.1) and (5.3).

The aim of the collision tests is the determination of the point in time of the

next collision event between the needle and one of the obstacles. All obstacles

in the neighborhood of the needle are tested individually, finally, the very next
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Figure 6.1 Geometry in the center-of-mass system of the needle for the first two

stages of the collision test.

event is chosen. Once a collision has been detected after a time tcoll, the sub-

sequent tests can be reduced to the time interval T = (0, tcoll). Initially, tcoll

is limited by the time which the needle would need in order to cross its asso-

ciated obstacle cell (see Section 4.2). The actual tests consist of three stages

and are described best in the center-of-mass system of the needle, see Fig. 6.1.

There, the needle is fixed in space, but rotates about its center, and the obstacle

moves with velocity −v; its initial position is given by r′j0 = r j − r0.

Stage 1

The needle is always contained in a disk of radius L/2 about its midpoint,

r′ = 0. A collision can only take place if the obstacle crosses this disk, i. e., in

the time interval T1 = (t1, t2) delimited by

T1 =
(
− b

v2
−
√

q

v2
,− b

v2
+
√

q

v2

)
(6.1)

with the short-cuts, b = v·r and q = b2−v2
[
r2 − (L/2)2

]
. If the discriminant

q becomes negative, the particle misses, there won’t be any collision at all, and

the test stops. Otherwise, the interval of interest for the next stage is given by

the intersection of the two preceding intervals, replacing T ← T ∩ T1. By

doing so, we automatically satisfy the length constraint of the needle which

can be dropped in the following stages.
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Stage 2

During the time interval T , the needle doesn’t actually cover the whole disk but

only a small segment. Its intersection with the trajectory of the obstacle yields

sharper bounds on a possible collision. In particular, a significant number of

obstacles can be rejected here since they miss the segment completely. The

trajectory of the obstacle is described by the point set, {x | x × v = r′j0 × v}.
Let the needle be oriented along the direction êϕ , then, it contains all points

of the disk with x × êϕ = 0. The intersection of both straight lines yields the

point,

x =
v× r′j0

v× êϕ
êϕ . (6.2)

It is reached by the obstacle at time t when x = r′j0−vt . Scalar multiplication

with v solves for t ,

t = 1

v2

[
v · r′j0 −

v× r′j0

v× êϕ
(v · êϕ)

]
. (6.3)

This expression can be simplified by introducing polar coordinates for the ve-

locity, v = v êψ . Then, it holds for the ratio,

v · êϕ

v× êϕ
= 1

tan(ϕ − ψ)
. (6.4)

Next, we need to find the interval T2 = (t ′1, t ′2) of times when the obstacle

traverses the segment covered by the needle. The boundaries are obtained

by evaluating Eq. (6.3) for ϕ = ϕ0 + ωt1/2 with the initial orientation ϕ0.

However, if the point t1 already belongs to the segment, it is guaranteed that no

collision will take place in the interval T2, and actually, its complement yields

the desired restriction. This issue and the question of splitting the interval into

two is elegantly solved in terms of interval arithmetics. Since it is at the heart

of the algorithm of stage 3, we will make use of it here as well; Appendix B

gives a short introduction to this topic, more details can be found in the book

by Hansen and Walster (2004). All we have to do is to replace the real number

ϕ in Eq. (6.3) by the interval of possible orientations, 8 = ϕ0 + ωT , and

evaluate the obtained expression according to the rules of interval arithmetics,1

T2 =
1

v2

[
v · r′j0 −

1

tan(8− ψ)
(v× r′j0)

]
. (6.5)

1Note that the obtained interval is tight, there is no dependence problem here since 8 enters the

expression only once, and the tangent function is monotonic.
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Strictly speaking, T2 is a generalized interval, a so-called containment set or

simply a union of disjoint intervals. Finally, this result is applied to the interval

T by replacing T ← T ∩ T2.

Stage 3

While the foregoing stages merely yield bounds on a possible collision, the

actual collision point t∗ will be calculated in this last stage. The (oriented)

distance between the obstacle and the needle is given by,

d(t) = r′j (t)× êϕ(t) = (r′j0 − vt)× êϕ0+ωt . (6.6)

The orientation angle ϕ is measured from the x-axis, and we have

êϕ =
(

cos(ϕ)

sin(ϕ)

)
. (6.7)

If t ∈ T , the vanishing of the distance, d(t∗) = 0, is the necessary and suf-

ficient condition for a collision since the finite length of the needle is already

accounted for in the reduction of T in stage 1. Finding the zeros of the tran-

scendent function d(t) in the interval T is a considerably difficult task. A

priori, it is not known how many zeros exist or whether there is no zero at

all. However, all usual numerical methods require some knowledge about the

zero in advance. If a simple zero is bracketed, iterating some algorithm can

make the brackets tight—but if we don’t have the initial bracket, we’re lost. A

wonderful solution out of this dilemma is pointed out by interval analysis: we

calculate the zeros by means of the interval version of the Newton algorithm

which is superior to the usual Newton algorithm with respect to the following

points:

• without any a priori knowledge, the algorithm separates all zeros and

bounds them correctly

• only litte requirements are posed on the function under consideration: it

must be continuous and be given by an algebraic expression

• the non-existence of a zero is rapidly proven

Further, since for simple zeros the convergence of the algorithm is as fast as

with the usual Newton algorithm, the interval Newton method is the algorithm

of choice for our problem of collision detection (Hansen and Walster , 2004);

it is described in Appendix B. In particular, the algorithm avoids any sampling
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of the search interval being the bottle neck of other Molecular Dynamics ap-

proaches to thin needles (Frenkel and Maguire , 1983; Huthmann et al., 1999;

de la Pena et al., 2006). In an efficient and robust way, the algorithm tells us

if the needle hits the obstacle at all and at which time t∗ this next collision

will take place. If this is the case, it is checked whether the next so far known

collision with a different obstacle at tcoll is later than the just found one, and

we update tcoll ← min{t∗, tcoll}.

6.2 Diffusion Coefficients

The simplest quantities characterizing the long-time dynamics of the needle

are the diffusion coefficients Dcm and Drot of the center of mass and of the

orientation of the needle, resp. They are measured from the long-time limits

of the mean-square displacements,

Dcm = lim
t→∞

δr2(t)

4t
and Drot = lim

t→∞
δϕ2(t)

2t
, (6.8)

with the mean-square center-of-mass and mean-square angular displacements

being defined as

δr2(t) :=
〈
|r(t)− r(0)|2

〉
, (6.9a)

δϕ2(t) :=
〈
|ϕ(t)− ϕ(0)|2

〉
. (6.9b)

At low densities, the diffusive motion is caused by uncorrelated collisions

with the obstacles, and the Boltzmann result from Section 5.3 applies,

Dcm, Drot ∼ 1/n∗, see Eqs. (5.35) and (5.38).

An intrinsic length scale of the medium is the average mesh size,

ξm ≈
1√
n
. (6.10)

Once the length of the needle and the mesh size become comparable, L ≈ ξm

or n∗ ≈ 1, the collisions become correlated. Then, the free rotation of the

needle is hindered, and diffusion is suppressed, Drot < D
(0)
rot . This cross-over

can clearly be seen in the results of our simulation (Fig. 6.2): after following

the Boltzmann result, the rotational diffusion is additionally suppressed with

increasing density. Our data corroborate an asymptotic power law,

Drot ∼ (n∗)−2, (6.11)
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for very high densities, i. e., for n∗ & 102 or L/ξm & 10. Over the complete

simulated range of densities, the rotational diffusion coefficient spans more

than eight decades, and we observe this power law over three decades.

This asymptotic suppression can be explained in terms of the tube model by

Doi and Edwards (Doi and Edwards , 1978, 1986). In this model, the needle is

thought to be confined in a tube of diameter d and length L . The diameter is

estimated from the requirement to have no obstacles in the tube, nLd ≈ 1, as

d ≈ 1

nL
. (6.12)

Inside the tube, the motion of the needle is basically restricted to translation

along its axis. After travelling half its length, the needle is found in a new

tube which is on average tilted against the old one by an angle, ε ≈ d/L .

The change of the orientation occurs at any one time the needle has left its

tube to either direction. The time to disengange from a tube, τd , is estimated

from the mean-square displacement, δr2(τd ) ≈ (L/2)2; anticipating that the

translational motion is still ballistic at the time scale τd , we find τd ≈ L/v .

Altogether, the orientation performs a random walk with step size ε and hop-

ping rate 1/τd yielding a mean-square angular displacement, δϕ2(t) = ε2t/τd ,

and an estimate of the rotational diffusion coefficient,

Dtube
rot ≈

(d/L)2

L/v
≈ v

n2L5
. (6.13)

While the rotational diffusion is suppressed with increasing obstacle den-

sity, the translational diffusion, Dcm, has a minimum near n∗ ≈ 1 and in-

creases again, see Fig. 6.2. Within the density range covered by our simula-

tions, Dcm is enhanced by two orders of magnitude compared to its minimum

value. Our data indicate a power-law divergence,

Dcm ∼ (n∗)ζ for n∗→∞, (6.14)

and are compatible with an exponent ζ = 0.8.

It is a surprising and at the first glance counter-intuitive observation that the

system becomes faster in the presence of more obstacles! The overall picture

up to here was that the motion of the needle is hindered due to collisions,

leading to diffusion in general and to a decreasing diffusion coefficient—this is

a direct result of the linearized Boltzmann theory. The tube model also tells us

that the rotational diffusion is even stronger suppressed at high densities where
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Figure 6.2 Simulation results for the diffusion coefficients of the needle. Blue dots

refer to the center-of-mass diffusion Dcm; red diamonds to rotational diffusion Drot.

Solid lines show the result from the linearized Boltzmann theory (Chapter 5). Dashed

lines are fits to the asymptotic high-density behavior.

The Legend of the Ulm Sparrow

Once upon a time, the continuing construction of the Ul-

mer Münster towers made it necessary to haul big pieces

of lumber through the narrow gates of the city. It is a fa-

mous tale that once a teamster and his lorry were pre-

vented from entering the city by logs which lay crosswise

on the cart but were wider than the gate. The first reac-

tion of the stupefied citizens was to enlarge or tear down

the gate. Fortunately, this desperate measure was made unnecessary when

the people observed a sparrow with a straw in his beak trying to fly through the

narrow entrance of his nest. While passing the slit he rotated the straw to line

it up with his path. Since then the sparrow has become a symbol of Ulm and

till today he rests on the roof top of the Ulmer Münster.

Figure 6.3 The legend of the Ulm sparrow illustrates the facilitation of longitudinal

motion in the presence of a dense obstacle environment.
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the Boltzmann approximation is no longer valid. However, for the center-of-

mass diffusion things are upside down. The motion is sped up in the presence

of a dense obstacle environment. Instead of hindering the needle, the obstacles

guide the needle to follow its own orientation and, thus, Brownian motion is

avoided. At one hand side, the needle is confined by the obstacles; on the other

hand, this confinement facilitates translational motion. This paradox is nicely

illustrated by the legend of the Ulm Sparrow, see Fig. 6.3.

6.3 A Twofold Persistence

The previous discussion of the diffusion coefficients has shown that the dy-

namics of a long needle in a dense environment, L ≫ ξm, is far beyond the

description in terms of single collisions. Strong collective effects arise and

dominate the physics. They lead to a persistence of both the translational mo-

tion and the orientation and introduce new macroscopic time scales.

Persistence of orientation

While the ideas of the tube model are quite intuitive, it is important to test this

picture in detail against the results of the simulation. The confinement of the

needle is directly observed in the mean-square angular displacement, δϕ2(t):

with increasing density, it develops an intermediate plateau, see Fig. 6.4. In a

certain time window, the needle can’t relax its initial orientation. The plateau

begins at the microscopic time scale of the collisions, τcoll ∼ 1/n∗; its value

is denoted by ε2. Since the rotation of the needle is restricted to the angle

ε = d/L , it measures directly the width d of the tube. The ballistic motion at

short times implies δϕ2(τcoll) ∼ τ 2
coll ∼ (n∗)−2, and the tube width vanishes

as 1/nL with a prefactor of order 1—we measure (inset of Fig. 6.4)

ε ≈ 1.41

n(L/2)2
, and hence, d = εL ≈ 5.66

nL
. (6.15)

The end of the plateau defines the disengagement time τd , i. e., the time the

needle takes to leave its tube. As indicated by our data, this time is of the order

L/v and does not depend on the density. Beyond the plateau, the mean-square

angular displacement increases linearly, reflecting normal diffusion. The dis-

engagement time is defined by matching the plateau with the extrapolation of

the diffusive regime,

ε2 = 2Drotτd , (6.16)



6.3 A Twofold Persistence 87

10
-6

10
-3

10
0

10
3

10
-2

10
0

10
2

10
4

10
6

4 •10
-3

0.04
0.2
0.4
1.2
2

4
12
40
120
200
400

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

Time t/v−1L

Density n∗
δ
ϕ

2
(t

)

δϕ2(t)/ε2

Figure 6.4 Mean-square angular displacement δϕ2(t) over a wide range of obstacle

densities n∗. At high densities, an intermediate plateau develops between the ballistic

and the diffusive regime, i. e., for τcoll ≪ t ≪ τd . Inset: Plotting δϕ2(t)/ε2 against t

demonstrates that the plateau value is given by ε2 as defined in Eq. (6.15), and that the

disengangement time τd does not depend on the density.

plugging in our result for ε, Eq. (6.15),

Drot ≈
1.0

τdn2(L/2)4
. (6.17)

A fit to our data yields the prefactor for the diffusion coefficient,

Drot ≈ 1.5
v

n2(L/2)5
, (6.18)

and hence, for the disengagement time,

τd ≈ 0.3L/v. (6.19)

Anticipating the results for translational motion, we find that this value for τd

is related to a translation along the tube over a distance 0.4L , which fits well

with the expected L/2.

We have seen that the mean-square angular displacement, δϕ2(t), is well

described in terms of the tube model. Next, we turn to the question how fast
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the orientation of the needle relaxes. This relaxation becomes slow due to the

confinement of the needle in a narrow channel. The orientation exhibits some

persistence, which is measured by the orientation correlation function

91(t) :=
〈
êϕ(t) · êϕ(0)

〉
; (6.20)

it is related to the intermediate scattering function 8µν(q, t) from Chapter 5

in the limit q → 0 and µ = ν,

9µ(t) :=
〈
cos (µ1ϕ(t))

〉
≡ 8µµ(0, t). (6.21)

An analogous quantity is known from polymer physics: the tangent-tangent

correlation function along the back bone of the polymer. Here, thermal fluc-

tuations change the orientation of the tangent vector and compete with the

bending stiffness. In the dynamical quantity 91(t), the interplay of random

collisions with the environment, confinement and intertia leads to the decorre-

lation of the orientation.

At high densities, n∗ ≫ 1, the orientation relaxation is well approximated

by an exponential (Fig. 6.5),

91(t) ≃ exp(−t/τrot). (6.22)

Therewith, a new time scale, τrot, is introduced quantifying the persistence of

the orientation of the needle. Expanding the cosine for small angles,

〈
cos (1ϕ(t))

〉
= 1− 1

2
δϕ2(t)+ O

[
δϕ4(t)

]
, (6.23)

the connection to the mean-square angular displacement, δϕ2(t), is estab-

lished. Thus, the confinement in the tube is also reflected in a plateau in the

orientation correlator, 91(t), at 1 − 1
2
ε2. This plateau is made visible in our

data by plotting the deviation of 91(t) from 1, see Fig. 6.6. Note that the

plateau is limited to times smaller than the disengagement time, t ≪ τd , and

thus, doesn’t extend to longer times with increasing density. In sequel to the

plateau, a linear relaxation follows being identified with the short-time expan-

sion of the exponential, Eq. (6.22), i. e., for times t ≪ τrot. At the same time, it

can be matched with the diffusive regime in the mean-square angular displace-

ment, and we obtain the connection between the persistence of orientation and

the rotational diffusion coefficient,

τrot =
1

Drot
∼ n2L5 (6.24)

With increasing obstacle density or increasing length of the needle, the rota-

tional relaxation time, τrot, diverges rapidly.
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Persistence of translation

More insight into the influence of the tube on the translational motion of the

needle is gained by looking at the mean-square displacement of the center of

mass, δr2(t). Its equation of motion follows from Eq. (5.27),

∂tδr
2(t) = 2v2

∫ t

0

dτ ψcm(τ ), (6.25)

observing that

δr2(t) = −2
∂2

∂q2
8µν(q, t)

∣∣∣µ=ν=0
q→0

. (6.26)

Recall that according to the Boltzmann approximation, the velocity auto-cor-

relation function, ψcm(t), decays exponentially in the dilute limit, Eq. (5.37).

Plugging in this result yields a cross-over in the mean-square displacement

near t ≈ ν−1
cm from ballistic motion, δr2(t) ≃ v2t2, for short times to diffusion,

δr2(t) ≃ 4D
(0)
cmt , for long times. Deviations from this behavior are inspected

in Fig. 6.7 by plotting the ratio δr2(t)/4D
(0)
cmt against the average number of

collisions, t/τcoll. The collision rate is proportional to νcm, we have measured,

τ−1
coll ≈ 0.845 nLv. (6.27)

The data for the six lowest simulated densities completely collapse over the

whole time window demonstrating that the Boltzmann approximation works

very well at low obstacle densities, n∗ . 1. At large densities, however, the

ballistic regime is considerably extended and covers many hundred collisions,

shifting the long-time limit—and therewith the diffusion coefficient Dcm—to

higher values. Note that the cross-over near t ≈ ν−1
cm is still present even if it is

hardly distinguished by eye. But the underlying mechanisms are completely

different: at short times, motion is ballistic due to the absence of obstacles,

whereas at intermediate times, motion is ballistic in spite of the presence of

obstacles. This intermediate ballistic regime reflects a persistence of the trans-

lational motion, which is connected with the emergence of another divergent

time scale.

The cross-over between the two ballistic regimes is seen much clearer by

directly looking at the velocity auto-correlation function, ψcm(t). While the

Boltzmann result is reproduced at low densities, the exponential decay stops

near the value 1
2

for large densities, n∗ ≫ 1, and a shoulder or intermediate

plateau develops (Fig. 6.8). The end of this plateau is associated with the end
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Figure 6.9 Snapshots of the needle in a single realization of point obstacles at n∗ =
120. The time interval between subsequent exposures, 1t = 1.8 L/v , covers about

one hundred collisions. Time flows from red needles to blue ones, starting with red

again. Note the long straight trajectories and the cuspid turning-back points. The figure

corroborates the picture of the tube model: the needle is confined in a narrow channel

where translation—though being restricted to one dimension—is nearly unobstructed

by collisions.

of the extended ballistic regime, and a second relaxation follows. The value of

the plateau being at the half height of the initial correlation, can be explained

by a reduction of the translational degrees of freedom from two to one, i. e.,

by the confinement of the needle into a narrow channel.

Up to here, we have explained the emergence of the extended ballistic

regime by the confinement of the needle between the obstacles. But what

mechanism limits this regime? The snapshots of the needle in Fig. 6.9 show

that the trajectories are mainly composed of long, slightly bend segments. This

straight motion is interrupted by situations where the needle rests for a short

while until it either continues its way or completely turns back. It seems that

such turning-back events occur spontaneously and cause the needle to run back
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in the same channel it came from. The orientation of the needle is merely

changed during such events yielding cusps in the trajectory.

For the further analysis, we split up the center-of-mass velocity in compo-

nents longitudinal and transverse to the current axis of the needle,

v‖(t) := v · êϕ(t) and v⊥(t) := −v× êϕ(t). (6.28)

The time series of both components differ strongly for a given realization, see

Fig. 6.10. While the transverse velocity, v⊥(t), fluctuates fast, the longitudinal

velocity, v‖(t), varies slowly. On long time scales, both components explore

the whole range (−vmax, vmax); the maximum value is attained when all ki-

netic energy is in a single degree of freedom; hence, v2
max = 3

2
v2. Since each

velocity component is uniformly distributed over its domain, the fluctuations

are large and of the order of v2
max. The same holds for the rescaled angular

velocity,
√
α ωL .

Remarkably, the time series of v‖(t) exhibits many segments with only small

fluctuations where it remains essentially constant over many hundred colli-

sions. At the same time, there is only little kinetic energy in the transverse

and rotational degrees of freedom; in particular, the needle merely rotates. A

non-rotating needle is in a metastable state where it can travel straight over

long distances in spite of collisions. The needle is said to be in such a “per-

sistent” state A as long as its longitudinal velocity exceeds some threshold,

|v‖(t)| > θ . Therewith, the time series is coarsened and can be subjected to

further analysis, see bottom panels in Fig. 6.10. In particular, the distribution

of persistent times τp, i. e., how long the needle remains in state A, can be

measured. We find that the persistent times are Poisson-distributed, giving

evidence for the spontaneous character of the “decay” of this metastable state

and for the random distribution of the turning-back events. The average persis-

tence time yields the desired limit on the extened ballistic regime, a new time

scale τturn. Once this time scale is known, the translational diffusion coefficent

Dcm is easily estimated by matching the extended ballistic and the diffusive

regimes at the cross-over, 1
2
v2τ 2

turn ≈ 4Dcmτturn, yielding

Dcm ≈
1

8
v2τturn. (6.29)

Consequently, the time scale at which the turning-back events take place di-

verges for n∗→∞ as the diffusion coefficient Dcm does, τturn ∼ (n∗)ζ .
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Separation of time scales

The presented approach has the flaw to depend on the threshold θ and on the

sampling rate of the time series; therefore, it is not fully conclusive. A more

fruitful analysis is based on the auto-correlation functions of both velocity

components separately,

ψ‖(t) := 2

v2

〈
v‖(t) v‖(0)

〉
and ψ⊥(t) := 2

v2

〈
v⊥(t) v⊥(0)

〉
. (6.30)

At high obstacle densities, these functions reflect the two-step relaxation of

the combined velocity correlation function, ψcm(t). The connection follows

from a decomposition of the latter; starting from v = v‖êϕ + v⊥ê⊥, it follows

〈
v(t) · v(0)

〉
=
〈 [
v‖(t) v‖(0)+ v⊥(t) v⊥(0)

]
cos (1ϕ(t))

〉
(6.31)

The cosine term describes the relaxation of orientation, see Eq. (6.21), which

we assume to be even slower than the decay of the persistent state—this is

reasonable at high densities, see Fig. 6.11. Then, the average can be factorized,

yielding

ψcm(t) ≈ 1

2

[
ψ‖(t)+ ψ⊥(t)

]
91(t). (6.32)

The three correlation functions essentially show an exponential decay, defining

three different time scales. These time scales diverge as the density increases

(Fig. 6.12). The transverse velocity relaxes on the time scale of the individual

collisions, τcoll ∼ (n∗)−1, see Eq. (6.27); the negative minimum in ψ⊥(t)

after 2 or 3 collisions illustrates the rattling of the needle in its tube. The

relaxation of the longitudinal velocity limits the extended ballistic regime; the

characteristic time scale, τturn, is attributed to the waiting-time distribution of

turning-back events and increases with the density, τturn ∼ (n∗)ζ . Eventually,

the orientation of the needle relaxes on the time scale τrot ∼ (n∗)2, given by

the inverse of the rotational diffusion coefficient, Eq. (6.24).

Conclusion

We have studied a novel model for transport of rods in a disordered environ-

ment exhibiting interesting dynamic phenomena. Though translation and rota-

tion depend strongly on each other, collective effects lead to the emergence of

two different macroscopic time scales decoupling translation and rotation on

long time scales. The dynamics of rotation and in particular the suppression of
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the diffusion coefficient as Drot ∼ 1/n2L5 is well explained in terms of a tube

model. The center-of-mass motion exhibits the interesting feature of enhanced

diffusion in the presence of a dense obstacle environment, Dcm ∼ nζ L1+2ζ

where ζ ≈ 0.8, which is related to a macroscopic zig-zag motion; its origin,

however, is still unresolved.





In Christ are hidden all the trea-

sures of wisdom and knowledge.

(Collossians 2:3)

7 Synopsis

Nature as well as modern technology presents us a variety of heterogeneous

materials ranging from sedimented rock over composites and gels to the cy-

toskeleton of eukaryotic cells. The anomalous transport properties of simple

and macro-molecules within such materials are highly relevant for technical

applications or for physiological functioning. The cytoskeleton, a fiber net-

work of biopolymers, determines the mechanical properties of biological tis-

sue, and it is of great interest to understand the dynamics of single fibers in

such networks. Such fibers being stiff may be modeled in a first approach by

rigid rods.

A generic model for transport in heterogeneous materials, namely the Lo-

rentz model, is in the focus of this thesis. It describes the motion of a tracer

particle between overlapping spherical obstacles. In the regime of high ob-

stacle density, the tracer dynamics becomes subdiffusive, and the model is

well suited to give a microscopic explanation of anomalous transport. Above

a critical density, diffusion vanishes, and the tracers are trapped—this critical

phenomenon, known as localization, is related to the percolation transition of

the void space between the obstacles.

Using extensive Molecular Dynamics simulations, the localization transi-

tion and its critical properties were investigated. A coherent and quantitative

explanation of the dynamics was given in terms of continuum percolation the-

ory, and an excellent matching of the critical exponents was obtained. The

measurements were subjected to a finite-size scaling analysis for the diffusion

coefficient providing an accurate result for the critical density, which collapses

with the percolation threshold. A spatially resolved analysis considered the

van Hove function, i. e., the temporal and spatial probability distribution of

the tracer particle, and its Fourier transform, the incoherent intermediate scat-

tering function. Therewith, the coexistence of localized and diffusing particles

below the critical density was demonstrated. Further, a hyperscaling relation

that is peculiar to continuum percolation was verified; it relates the dynamic
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exponent to the static exponents.

Furthermore, the thesis established the intimate connection between the Lo-

rentz model at high densities and continuum percolation, originating in a series

of conjectured, but so far unproven mappings. In the literature, the diffusivity

of the Lorentz model was related to the conductivity in continuum percolation

models, being investigated further by mappings to random resistor networks,

and next to regular lattices. These mapping are rather convincing from a theo-

retical point of view to analyze the universal properties of such models as soon

as the temporal and spatial scales, as well as the relevant correlation times and

lengths are large. However, it is of great interest to establish in detail the pre-

dictions for universal exponents and scaling functions for a specific model of

paramount importance as the Lorentz model.

The quality of the obtained data for the mean-square displacements allowed

for carrying out a scaling analysis that identifies the leading corrections to

scaling. Including these corrections substantially improved the data collapse

in the regime of anomalous transport. It was demonstrated that the correc-

tions to scaling are relevant in the experimentally accessible window of time

and length scales; there, the corrections pretend exponents of the anomalous

transport varying with the obstacle density.

For diffusion on general percolation clusters, a prediction was made relat-

ing the universal dynamic correction-to-scaling exponent to the leading static

correction exponent. The latter is easier accessible, e. g., by measurements of

the distribution of cluster sizes, and known for the three-dimensional Lorentz

model. This prediction is based on a generalization of the van Hove function,

which was extended to the static structure of the medium. The generalized

van Hove function further allowed for a cluster-resolved statistical description

of the dynamics and illuminated the emergence of two different length scales

in the dynamic properties close to the transition. Both length scales, the cor-

relation length and the localization length, enter the dynamic scaling Ansatz

for the usual van Hove function. This interesting feature is in contrast to other

critical phenomena where a single length scale, the correlation length, gov-

erns the physics close to the transition. It was shown that the presence of two

length scales manifests itself in the divergence of the non-Gaussian parameter,

a quantity being discussed in the context of structural glasses.

In the second part of the thesis, a novel variant of the two-dimensional Lo-

rentz model was investigated, which describes the dynamics of a rod in a dis-

ordered static environment of point obstacles. It may serve as a toy model for

the dynamics of a semi-dilute solution of rigid rods and provide fundamental

insight into the complex physics of such systems. In contrast to the conven-
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tional Lorentz model, the tracer particle is enriched by a rotational degree of

freedom and exhibits a striking asymmetric geometry. Next to the obstacle

density, a second control parameter appears: the aspect ratio between length

and diameter of the rod.

The limit of thin rods, i. e., needles, is of particular interest reflecting exactly

the notion of a semi-dilute solution: the polymers are highly entangled, and

excluded volume effects are absent. Reducing the model parameters to one

again and completely suppressing the percolation scenario, the needle limit is

also theoretically of great importance: it describes a system with trivial static

properties, but highly non-trivial, “entangled” dynamics. Thus, completely

new aspects of the dynamics in heterogeneous materials are revealed, pure en-

tanglement effects can be studied without being spoiled by the critical slowing

down due to the percolation transition of the medium.

The analysis started with a theoretical description within the Boltzmann

approximation of uncorrelated collisions which accounts for the low density

regime, where the translational and rotational diffusion coefficients both are

linearly suppressed with increasing obstacle density. The more interesting

high density regime, however, is so far merely accessible by Molecular Dy-

namics simulations. These simulations pose considerable algorithmic chal-

lenges since the collision detection is not straightforward anymore as in the

case of spherical particles—it crucially depends on automatically proving the

non-existence of zeros of transcendental equations. Applying methods from

interval analysis, an efficient and robust algorithm for the collision detection

was developed. This algorithm allowed for a deep exploration of the high den-

sity regime yielding diffusion coefficients and correlation functions over the

full density range.

The tube model for highly entangled networks of rigid rods makes predic-

tions on the suppression of the rotational diffusion coefficient due to the entan-

glement of long needles. Since this model assumes the surrounding rods to be

frozen as well, the presented simulations provided also a thorough verification

of these predictions.

The strong entanglement effects lead to another surprising and novel obser-

vation: the enhancement of center-of-mass diffusion with increasing density.

Analyzing mean-square displacements of position and orientation and velocity

auto-correlation functions as well as directly inspecting trajectories, this effect

was attributed to the confinement of the needle in tubes and the emergence of

an intermediate ballistic regime. Further, it was pointed out that a hierarchy of

well-separated time scales exists leading to fast and slow relaxation channels

for density fluctuations. In particular, translational and rotational dynamics
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are well separated at high densities.

In conclusion, the first “experimental” data for the high density regime of

the Lorentz model were obtained. Using the results form continuum perco-

lation theory achieved a comprehensive and detailed understanding of the lo-

calization transition. Its description comprised a dynamic scaling Ansatz with

two divergent length scales and the inclusion of leading corrections to scaling.

Further, a novel variant of the Lorentz model was introduced, using a needle

as tracer particle and reducing the obstacles to points; this model gives insight

into the dynamics of entangled networks of stiff polymers. Many aspects of

the dynamics were explained qualitatively by identifying a hierarchy of differ-

ent time scales. A surprising finding was the enhancement of diffusion with

increasing obstacle density. The model belongs to a class of purely dynamic

models exhibiting novel collective phenomena; their future investigation will

yield fundamental insight into collective dynamics.



Appendix





A Matrix Elements of the Collision

Operator

The matrix elements of the collision operator T±( j) determine the microscopic

frequencies νcm and νrot that describe the relaxation of the current correlators

(Chapter 5). The aim of this appendix is to evaluate these matrix elements.

The phase space element for microcanonic states in an infinitesimal energy

shell around E is given by

dŴ = 1

2πV
w(v, ω) d2r dϕ d2v dω, (A.1)

with the short cut,1

w(v, ω) := m

4π

√
I

2E
δ
(

1
2
mv2 + 1

2
Iω2 − E

)
. (A.2)

Assuming obstacle 1 in the coordinate origin, we have 1r1 = r, and we

start with the evaluation of νR :

νR = −ω−2
R N

〈
ω T−(1)ω

〉
(A.3)

= − N

ω−2
R

〈
δ(r× êϕ)2

(
L
2
− r

)
2(v× êϕ − ωa) 2mωa

(v× êϕ − ωa)2

I + ma2

〉
,

(A.4)

1The normalization factor is obtained from the following integral,

∫
d2v dω δ

(
1
2

mv2 + 1
2

Iω2 − E
)
= 4π

∞∫

0

vdv dω δ
(

1
2

mv2 + 1
2

Iω2 − E
)

substituting εT = 1
2

mv2 and εR = 1
2

Iω2,

= 4π

m

∞∫

0

dεT

∞∫

0

dεR√
2IεR

δ(εT + εR − E) = 4π

m

E∫

0

dεR√
2IεR

= 4π

m

√
2E

I
.
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with the abbreviations a = −r · êϕ and r = |r|. The δ-function enforces

a = ±r , and we substitute r by a,

= − N

2πVω2
R

L/2∫

−L/2

da

∫ π

−π
dϕ d2v dωw(v, ω)

×2(v× êϕ − ωa) 2mωa
(v× êϕ − ωa)2

I + ma2
. (A.5)

In the second line, the velocity enters only via v× êϕ ; introducing polar coor-

dinates (v, ψ) for v, we can exploit the periodicity in the angles,

∫
dϕ d2v f (v× êϕ) =

π∫

−π

dϕ

∞∫

0

vdv

π∫

−π

dψ f (v sin(ϕ − ψ)) (A.6)

= 4π

∞∫

0

vdv

π/2∫

−π/2

dϕ f (v sin(ϕ)). (A.7)

Substituting ϕ by u = sin(ϕ) and ω by x = −ωa/v , we obtain

νR =
4m N

Vω2
R

L/2∫

−L/2

da

∞∫

0

v5dv

1∫

−1

du√
1− u2

∞∫

−∞

dx
1

|a| w
(
v,

xv

a

)

×2(u + x) x
(u + x)2

I + ma2
. (A.8)

The u-integral is treated next,

FR(x) :=
1∫

−1

du√
1− u2

2(u + x) (u + x)2 (A.9)

=





π (x2 + 1
2

) for x > 1,

3
2

x
√

1− x2 + (x2 + 1
2

)
(
arcsin(x)+ π

2

)
for |x | ≤ 1,

0 for x < −1.

(A.10)
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The v-dependence has factorized, and its integral is easily carried out,

∞∫

0

v5dv w
(
v,

xv

a

)
= m

4π

√
I

2E
× 4E2

(
m + I x2a−2

)3 . (A.11)

Collecting results, recalling that I = αm(L/2)2 and n∗ = N L2/V , and sub-

stituting y = 2a/L , Eq. (A.8) reduces to

νR =
α2n∗

4πω2
R

(
2E

I

)3
2

1∫

−1

dy

|y|

∞∫

−∞

dx
1

(
1+ αx2 y−2

)3
x FR(x)

α + y2
. (A.12)

Observing that rotation constitutes one out of three degrees of freedom, it

holds 1
2

Iω2
R = 1

3
E , and the prefactor simplifies,

= 3
√

3

2π
α2n∗ωR

1∫

0

dy

∞∫

−∞

dx
y5

(
y2 + αx2

)3
x FR(x)

α + y2
. (A.13)

The remaining two integrals can be solved using MATHEMATICA,

∞∫

−∞

dx
x FR(x)

(
y2 + αx2

)3 =
π
√
α + y2

4α2 y3
, (A.14)

1∫

0

dy
y2

√
α + y2

= 1

2

√
1+ α − α

2
Arsinh

(
α−1/2

)
, (A.15)

yielding the final result for the microscopic frequency for rotation,

νR =
3
√

3

16
n∗ωR

(√
1+ α − αArsinh

(
α−1/2

))
, (A.16)

≈ 0.23244 n∗ωR for α = 1

3
. (A.17)

The evaluation of the matrix element for νT is carried out in a similar fash-
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ion,

νT = −
N

2ω2
T

〈
v · T−(1) v

〉
(A.18)

= − N

2ω2
T

〈
δ(r× êϕ)2

(
L
2
− r

)

×2(v× êϕ − ωa) 2I v · ê⊥
(v× êϕ − ωa)2

I + ma2

〉
;

(A.19)

noting that v · ê⊥ = −v× êϕ and again substituting r by a = −r · êϕ ,

= N I

2πVω2
T

L/2∫

−L/2

da

∫ π

−π
dϕ d2v dωw(v, ω)

×2(v× êϕ − ωa) (v× êϕ)
(v× êϕ − ωa)2

I + ma2
. (A.20)

Integrating over the orientation of v and substituting u = sin(ϕ) and x =
−ωa/v , yields [cf. Eq. (A.8)]

= 2N I

Vω2
T

L/2∫

−L/2

da

|a|

∞∫

0

v5dv

1∫

−1

du√
1− u2

∞∫

−∞

dx w
(
v,

xv

a

)

×2(u + x) u
(u + x)2

I + ma2
. (A.21)

The u-integral introduces another function FT (x),

FT (x) :=
1∫

−1

du√
1− u2

2(u + x) u (u + x)2 (A.22)

=





πx for x > 1,

1
3

(x2 + 2)
√

1− x2 + x
(
arcsin(x)+ π

2

)
for |x | ≤ 1,

0 for x < −1.

(A.23)
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Making use of Eq. (A.11) and substituting y = 2a/L , we arrive at

νT =
α2n∗E2

2πω2
T m I

√
I

2E

1∫

−1

dy

|y|

∞∫

−∞

dx
1

(
1+ αx2 y−2

)3
FT (x)

α + y2
, (A.24)

using 1
2

mω2
T = 1

3
E ,

= 3
√

3

2π
α3/2 n∗ωT

L

1∫

0

dy

∞∫

−∞

dx
y5

(y2 + αx2)3

FT (x)

α + y2
. (A.25)

Employing MATHEMATICA again for the x-integration,

∞∫

−∞

dx
FT (x)

(y2 + αx2)3
= π

√
α + y2

4αy5
, (A.26)

renders the remaining y-integral basic,

1∫

0

dy
1√

α + y2
= Arsinh

(
α−1/2

)
. (A.27)

This yields the final result,

νT =
3

8

√
3αArsinh

(
α−1/2

) n∗ωT

L
, (A.28)

≈ 0.49359
n∗ωT

L
for α = 1

3
. (A.29)

We express the diffusion coefficients in units of v =
√

2ωT and L , not-

ing that ωR = 2ωT /(
√
α L); for a homogeneous mass distribution along the

needle (α = 1
3

), the prefactors evaluate to

Dcm =
v2

2νT

≈ 1.432
vL

n∗
, (A.30)

and

Drot =
ω2

R

νR

≈ 10.54
vL−1

n∗
. (A.31)





B The Interval Newton Method

Interval analysis is a generalization of real analysis; intervals replace real num-

bers, interval arithmetic combines them, and interval analysis is used to study

the properties of intervals and their arithmetic. In numeric computations, in-

terval analysis is able to account for rounding errors due to a finite machine

precision. Therefore, interval analysis may yield mathematically rigorous so-

lutions for numerical problems such as global optimization or solving non-

linear equations. A detailed introduction into this field may be found in the

book by Hansen and Walster (2004).

B.1 A Short Introduction to Interval Analysis

An interval number X is defined as a closed interval of real numbers, X :=
[a, b] = {x ∈ R | a ≤ x ≤ b}. A degenerate interval contains only a single

number, X = [a, a] = {a}. The endpoints of an interval might be results of a

computation; if they are not representable on a given computer, a is rounded

downwards and b upwards, which guarantees that the obtained interval en-

closes the true result.

The four basic arithmetic operations +,−,×,÷ between two intervals are

defined such that the outcome contains every possible result from combining

elements of the involved intervals,

X • Y := {x • y | x ∈ X and y ∈ Y }. (B.1)

This definition produces the following rules for generating the endpoints of

two intervals X = [a, b] and Y = [c, d]:

X + Y = [a + c, b + d] (B.2a)

X − Y = [a − d, b − c] (B.2b)
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X × Y =





[ac, bd] if X ≥ 0 and Y ≥ 0

[bc, bd] if X ≥ 0 and 0 ∈ Y

[bc, ad] if X ≥ 0 and Y ≤ 0

...

(B.2c)

1

Y
=
[

1

d
,

1

c

]
,

X

Y
= X × 1

Y
, if 0 6∈ Y (B.2d)

An interval X is positive, X > 0, if x > 0 for all x ∈ X , etc. For later

convenience, we introduce a notation for the midpoint and the width of an

interval X = [a, b],

m(X ) := (a + b)/2 and wd(X ) := b − a. (B.3)

A consistent handling of division by zero, i. e., the case 0 ∈ Y , becomes

possible by extending the real axis to −∞ and +∞ and by extending the

concept of intervals to finite unions of disjoint intervals, so-called contain-

ment sets. The latter subtlety leads to loops in the numerical algorithms and

otherwise will tacitely be ignored in this introduction. We define 1/{0} :=
{−∞} ∪ {+∞}; therewith, splitting Y = [c, 0] ∪ {0} ∪ [0, d] leads to

1

Y
=
[
−∞, 1

c

]
∪
[

1

d
,∞

]
. (B.4)

In general, division by an interval which contains zero splits the result into two

disjoint intervals.

Armed with this arithmetic, the definition of interval extensions of real func-

tions becomes straightforward. An interval function is an interval-valued func-

tion of one or more interval arguments. Let f be a real-valued function of real

variables x1, . . . , xn , and let f I be a corresponding interval function of inter-

val variables X1, . . . , Xn . The interval function f I is said to be an interval

extension of f if

f I
(
{x1}, . . . , {xn}

)
=
{

f (x1, . . . , xn)
}

(B.5)

for any values of the xi . An interval function f I is said to be inclusion isotonic

if X i ⊂ Yi (i = 1, . . . , n) implies f I(X1, . . . , Xn) ⊂ f I(Y1, . . . ,Yn), meaning

simply that the resulting interval becomes sharper (or at least not wider) if the

arguments become tighter intervals.
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The above interval arithmetic is inclusion isotonic, and it follows that ratio-

nal interval functions are inclusion isotonic as well—provided that we restrict

a given rational function to a single form using only interval arithmetic op-

erations. This restriction is necessary since the interval extension of a real

function is not unique, a consequence of the so-called dependence problem.

According to their definition, Eq. (B.1), the interval arithmetic operators yield

sharp bounds on expressions such as X−Y or X×Y . If we, however, evaluate

X−X or X×X , the resulting interval encloses all possible values of x−x = 0

or x2 for x ∈ X , but does not provide a sharp bound. (Convince yourself by

evaluating the expressions for X = [−1, 2].) The interval arithmetic treats

each occurrence of the interval X independently, i. e., evaluates X − Y first

and then lets Y = X . One way out of this problem is to define special rules

for integer powers of intervals taking into account that even powers can’t be

negative. Another solution is to write interval expressions in such a way that

the same interval occurs as sparsely as possible, for example (X − 1)2 − 1

instead of X2 − 2X .

The following theorem shows how easy it is to bound the range of a func-

tion; it is the most important theorem in interval analysis and referred to as

the fundamental theorem of this field. One of its far reaching consequences

is that it allows for the solution to the global optimization problem, which is,

however, not covered in this appendix.

Fundamental theorem Let f I(X1, . . . Xn) be an infinite precision inclusion

isotonic interval extension of a real function f (x1, . . . , xn). Then f I(X1,

. . . , Xn) contains the range of values of f (x1, . . . , xn) for all xi ∈ X i (i =
1, . . . , n).

It states that the direct evaluation of a function using interval arithmetic

produces rigorous bounds on the set of all function values over the argument

intervals. The major benefit of the interval method is the calculation of bounds

using only a single function evaluation. In particular, no sampling of the ar-

gument intervals is necessary! The computational effort is usually only twice

the effort for evaluating a single real value of the given function. The ob-

tained bounds are sharp if each variable occurs only once, and widened due

to the dependence problem. Monotonically non-decreasing functions, e. g.,

the exponential function, provide another route to sharp bounds by defining

f I(X ) = [ f (a), f (b)] for X = [a, b].
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B.2 The Interval Newton Method

The standard algorithm for numerically finding the roots of a high-degree

polynomial or any arbitrary non-linear, real function f of a single variable

is the Newton method. It converges fast, but the function has to satisfy certain

requirements within a neighborhood of the root. In particular, one has to know

the location of the root in advance, but if the initial estimate of the root is too

far from the true root, convergence of the Newton method is not guaranteed;

the method hopelessly fails. The author is not aware of any standard algorithm

for root finding that dispenses with initial bracketing. It would be highly de-

sirable to have a general purpose algorithm that would tell us for any supplied

function whether it has real roots and how many, and would calculate them

efficiently and precisely.

The interval Newton method is such an algorithm. It is robust, i. e., every

zero of f in an initial interval X0 is always found and correctly bounded. If

there is no zero of f in X0, the algorithm automatically proves this fact in a

finite number of iterations. As a by-product, it may even prove the existence

of a simple zero. Second, the algorithm is efficient, i. e., if 0 6∈ f ′(X ), then at

least half of X is eliminated in each iteration, and the asymptotic ratio of con-

vergence to a zero of f in X is quadratic (as is the ordinary Newton method).

Finally, the algorithm works for a quite general class of functions: the only re-

quirement on f is that it must be differentiable in X0 with bounded derivative,

and even this requirement can be relaxed by a variant of the algorithm.

The interval Newton method was derived by Moore (1966) in the following

manner. The mean value theorem states that there is some point ξ between x

and x∗ such that

f (x)− f (x∗) = (x − x∗) f ′(ξ ). (B.6)

If x∗ is a zero of f , then f (x∗) = 0, and it follows

x∗ = x − f (x)

f ′(ξ )
. (B.7)

Let X be an interval containing both x and x∗, therewith ξ ∈ X as well. Then,

the fundamental theorem implies that1 f ′(ξ ) ∈ f ′(X ). Hence, x∗ ∈ N (x, X )

where

N (x, X ) := x − f I(x)

f ′(X )
, (B.8)

1To not overload the notation, the superscript I for interval extensions of derivatives will be

suppressed, so f ′(X ) is to be understood as an interval extension of the real function f ′(x).
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f (x) = 3(1− x)(2− x)2

xn
Xn

N

-1

 0
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 0  1  2  3

Xn

Xn ∩ N (1) Xn ∩ N (2)

(a) In the case 0 6∈ f ′(Xn), a simple

zero is rapidly located.

(b) Separation of two zeros in the case

0 ∈ f ′(Xn), which results from a split-

ting of the interval N = N (1) ∪ N (2).

Figure B.1 Illustrations of the interval Newton method for f (x) = 3(1− x)(2− x)2.

The shaded areas correspond to all straight lines with slope in the range

f ′(Xn) which pass through the point [xn, f (xn)].

and we use f I(x) to denote the interval evaluation of f (x) in order to bound

rounding errors. Temporarily assume 0 6∈ f ′(X ) so that N (x, X ) is a finite

interval. In this case, the interval X contains only a single simple zero of

f . Since any zero of f in X is also in N (x, X ), it is in the intersection X ∩
N (x, X ), see Fig. B.1a.

Using this fact, the zero x∗ is found from the following simple algorithm:

Let X0 be an interval containing x∗, then iterate

xn = m(Xn), Xn+1 = Xn ∩ N (xn, Xn), n ≥ 0. (B.9)

If 0 6∈ f ′(Xm), then 0 6∈ f ′(Xn) for all n > m; this follows from inclusion

isotonicity and the fact that Xn ⊂ Xm for all n > m. Stop the iteration when

Xn+1 = Xn , i. e., no further reduction of the interval can be achieved due to

rounding errors. In this case, 0 ∈ f I(xn), and xn is a zero of f or at least near

to one; the uncertainty is smaller than wd(Xn).

The case 0 ∈ f ′(Xn) is very different, but easily handled as long as 0 6∈
f I(xn). The calculation of N (xn, Xn) involves a division by zero; according

to Eq. (B.4), this yields two disjoint intervals N = N (1) ∪ N (2), both possibly

containing a zero of f . In this situation, the algorithm branches and handles

each interval separately (Fig. B.1b). Technically, the second interval is put on

a stack and treated as initial interval for the search of another zero. It is the

separation of zeros in the initial interval that makes the present algorithm so
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powerful.

A singular case remains, and this one is really difficult to handle: if 0 ∈
f ′(Xn) and 0 ∈ f I(xn). According to our rules, Eqs. (B.2) and (B.4), it would

yield N = [−∞,∞], which is a useless result. A possible solution is to

change the point of expansion xn , it can be chosen anywhere from Xn = [a, b]

and doesn’t need to be the midpoint. One could try the interval boundaries a

or b for example. Bad luck if f I(a) and f I(b) both contain zero as well. In that

case, one could argue that the interval Xn is probably so small that rounding

errors make the function indistinguishable from a function being constantly

zero in Xn , e. g., in case of a multiple zero. Then, a criterion for stopping

could be

wd(Xn) < εR xn, or wd[ f ′(Xn)] /wd[ f I(xn)] < R, (B.10)

with εR denoting the relative machine presicion and R large, e. g., R = 1000.

In practice, the second criterion never occurred, and the reader is referred to

the book by Hansen and Walster (2004) for a further discussion.

This appendix will be closed by quoting some rigorous results concerning

essential properties of the interval Newton method.

Theorem 1 (Prove the existence of simple zeros) Let X be a finite interval.

If N (x, X ) ⊂ X , there exists a simple zero of f in N (x, X ).

Theorem 2 (Prove the uniqueness of a zero) Assume 0 6∈ f ′(X ). Then if X

contains a zero of f , the zero is simple, i.e. unique.

Theorem 3 (Prove the absence of a zero in a finite number of iterations)

Assume | f (x)| ≥ δ > 0 for all x ∈ X0 and | f ′(X0)| ≤ M for some M > 0.

Then X0 is entirely eliminated in m steps of the algorithm, i. e., Xm = ∅,
where m ≤ M wd(X0)/2δ.

Theorem 4 (Convergence is fast even for wide intervals) If 0 6∈ f I(xn) and

0 6∈ f ′(Xn), then wd(Xn+1) ≤ 1
2

wd(Xn).

Theorem 5 (Convergence is quadratic asymptotically) If 0 6∈ f ′(Xn), then

there exists a constant C such that wd(Xn+1) = C wd(Xn)2.
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