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Abstract - English

In the 1990s a number of technological innovations appeared that revolutionized biology,
and 'Bioinformatics’ became a new scientific discipline. Microarrays can measure the abun-
dance of tens of thousands of mRNA species, data on the complete genomic sequences of
many different organisms are available, and other technologies make it possible to study
various processes at the molecular level. In Bioinformatics and Biostatistics, current re-
search and computations are limited by the available computer hardware. However, this
problem can be solved using high-performance computing resources. There are several
reasons for the increased focus on high-performance computing: larger data sets, increased
computational requirements stemming from more sophisticated methodologies, and latest
developments in computer chip production.

The open-source programming language 'R’ was developed to provide a powerful and
extensible environment for statistical and graphical techniques. There are many good rea-
sons for preferring R to other software or programming languages for scientific computations
(in statistics and biology). However, the development of the R language was not aimed
at providing a software for parallel or high-performance computing. Nonetheless, during
the last decade, a great deal of research has been conducted on using parallel computing
techniques with R.

This PhD thesis demonstrates the usefulness of the R language and parallel computing
for biological research. It introduces parallel computing with R, and reviews and evaluates
existing techniques and R packages for parallel computing on Computer Clusters, on Multi-
Core Systems, and in Grid Computing. From a computer-scientific point of view the
packages were examined as to their reusability in biological applications, and some upgrades
were proposed.

Furthermore, parallel applications for next-generation sequence data and preprocessing
of microarray data were developed. Microarray data are characterized by high levels of noise
and bias. As these perturbations have to be removed, preprocessing of raw data has been a
research topic of high priority over the past few years. A new Bioconductor package called
affyPara for parallelized preprocessing of high-density oligonucleotide microarray data was
developed and published. The partition of data can be performed on arrays using a block
cyclic partition, and, as a result, parallelization of algorithms becomes directly possible.
Existing statistical algorithms and data structures had to be adjusted and reformulated
for the use in parallel computing. Using the new parallel infrastructure, normalization
methods can be enhanced and new methods became available. The partition of data and
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distribution to several nodes or processors solves the main memory problem and accelerates
the methods by up to the factor fifteen for 300 arrays or more.

The final part of the thesis contains a huge cancer study analysing more than 7000
microarrays from a publicly available database, and estimating gene interaction networks.
For this purpose, a new R package for microarray data management was developed, and
various challenges regarding the analysis of this amount of data are discussed. The com-
parison of gene networks for different pathways and different cancer entities in the new
amount of data partly confirms already established forms of gene interaction.



Abstract - Deutsch

In den 1990er Jahren sind einige technische Neuerungen erschienen, die die biologische
Forschung revolutioniert haben, und das neue Forschungsgebiet 'Bioinformatik’ wurde ge-
boren. Microarrays messen mehrere 10.000 mRNA Arten, die vollstdndigen genomischen
Sequenzen vieler verschiedener Lebewesen sind verfiighar, und andere Technologien er-
moglichen die Erforschung von molekular-biologischen Prozessen. Die heute verfiigbare
Computerhardware limitiert die aktuelle Forschung und Simulationen in der Bioinfor-
matik und Biostatistik. Dieses Problem kann aber durch den Einsatz von Hochleistungs-
Rechenarchitekturen gelost werden. Als Griinde fiir das gewachsene Interesse an neuen
Rechenarchitekturen konnen folgende Punkte genannt werden: grofle Datensétze, anspruchs-
vollere und rechenintensivere Methoden und neue Entwicklungen in der Computerchip-
Herstellung.

Die freie Programmiersprache und Statistiksoftware 'R’ wurde als umfangreiche und er-
weiterbare Programmierumgebung fiir statistische Methoden und grafische Auswertungen
entwickelt. Es gibt viele gute Griinde dafiir, R gegeniiber anderer Software oder anderen
Programmiersprachen fiir wissenschaftliches Rechnen (in der Statistik und Biologie) zu
bevorzugen. R wurde nicht fiir den Einsatz auf Hochleistungs-Rechenarchitekturen ent-
wickelt, jedoch wurde der Einsatz von Hochleistungrechnern mit R in den letzten Jahren
verstiarkt vorangetrieben.

Diese Doktorarbeit demonstriert die Brauchbarkeit der R Software sowie des parallelen
Rechnens fiir biologische Forschungszwecke. Die Arbeit gibt eine Einfithrung in paralleles
Rechnen mit R und vergleicht und bewertet existierende Technologien und R Pakete fiir
paralleles Rechnen auf Computer Clustern, auf Multi-Core Rechnern und in Grid Netz-
werken. Die Pakete wurden aus der Sicht des Informatikers fiir den Einsatz in biologischen
Anwendungen untersucht und einige Verbesserungen wurden vorgeschlagen.

Des weiteren wurden parallele Algorithmen fiir die neuen Sequenzierungstechniken —
oft 'Next-Generation Sequencing’ genannt — und fiir die Vorverarbeitung von Microarrays
— oft "Preprocessing’ genannt — entwickelt. Von Microarray-Chips gemessene Daten sind
fiir ihr starkes Rauschen und ihre Verzerrung bekannt. Da diese Fehler beseitigt werden
miissen, wurden in den letzten Jahren viel auf diesem Gebiet geforscht. In dieser Arbeit
wurde das Bioconductor Paket affyPara mit parallelisierten Preprocessingverfahren fiir
high-density Oligonucleotide Microarrays entwickelt und veroffentlicht. Mit einer block-
cyclic Aufteilung der Arrays kénnen die Daten verteilt werden und die Parallelisierung der
meisten existierenden Algorithmen ist unmittelbar méglich. Existierende statistische Ver-
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fahren und Datenstrukturen wurden angepasst und fiir paralleles Rechnen umformuliert.
Durch die neue parallele Infrastruktur werden Normalisierungsverfahren verbessert und
Ideen fiir neue Methoden entstanden. Die Aufteilung der Daten und Verteilung auf mehrere
Rechner oder Prozessoren 16st das Arbeitsspeicherproblem und beschleunigt die Verfahren
bis zum 15-fachen fiir 300 oder mehr Arrays.

Die Arbeit endet mit einer grofien Studie zu Krebsdaten, bestehend aus mehr als 7000
Microarrays von einer 6ffentlich zugénglichen Datenbank. Die Daten wurden alle zusam-
men analysiert und Gen-Interaktions-Netzwerke geschitzt. Dafiir wurde ein neues R Paket
fiir das Datenmanagement von Micorarray Experimenten entwickelt. Herausforderungen,
die bei der Analyse dieser Datenmenge entstanden sind, wurden diskutiert. Durch den Ver-
gleich der Gennetzwerke fiir verschiedene Pathways und Krebsentitdten ist eine teilweise
Bestétigung der bekannten Genezusammenhénge moglich.



Chapter 1

Introduction

Bioinformatics and Computational Biology: Bioinformatics is an interdisciplinary
research area at the interface between computer science and biological science. In litera-
ture a number of different detailed definitions of bioinformatics exist. Following [LGGOI]
"bioinformatics is conceptualising biology in terms of molecules and applying informatics
techniques (derived from disciplines such as applied maths, computer science and statis-
tics) to understand and organise the information associated with these molecules, on a large
scale. [...]". Therefore, it deals with techniques involving computers for storage, retrieval,
manipulation, and distribution of information related to biological macromolecules such as
DNA, RNA, and proteins. The emphasis here is on the use of computers, because most of
the tasks in genomic data analysis are highly repetitive or mathematically complex. Bioin-
formatics deals with macromolecules whereas computational biology is an interdisciplinary
field that applies the techniques of computer science, applied mathematics and statistics to
address all biological problems. It encompasses the fields of bioinformatics, computational
biomodeling, systems biology, protein structure prediction and structural genomics, ....
Further, the field of bioinformatics is already looking forward to what is currently termed
a 'systems biology’ approach and to simulations of whole cells with incorporation of more
levels of complexity.

The primary target of bioinformatics is to increase our understanding of biological
processes. T'wo major research areas are the analysis of gene expression using microarrays
and sequence analysis.

New Challenges in Bioinformatics: There are three primary reasons for the increased
focus on high-performance computing in bioinformatics: larger data sets, increased com-
putational requirements stemming from more sophisticated methodologies, and latest de-
velopments in computer chip production.

Bioinformatics clearly illustrates the ’growing data’ problem, considering that just a few
years ago, experimentally-generated data sets often fit on a single CD-ROM. Today, data
sets from high-throughput data sources as for examples next-generation DNA sequencing
no longer fit on a single DVD-ROM. In genome research, data sets appear to be growing at
a rate that is faster than the corresponding increase in hardware performance. At the same
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time, methodological advances have led to computationally more demanding solutions. A
common approach among these recent methods is the use of simulation and resampling
techniques. Markov Chain Monte Carlo and Gibbs Sampling, Bootstrapping, and Monte
Carlo Simulation are examples of increasingly popular methods that are important in
various areas of statistical analysis investigating geographic, econometric, and biological
data. For example in microarray data, building classification or prognostic rules from
large microarray sets will be very time consuming. Here, preprocessing must become part
of the cross-validation and resampling strategy, which is necessary to estimate the rule’s
prediction quality correctly. Both increased data size and increased simulation demands
have been approached by researchers by means of parallel computing [GH04].

Data sets can often be subdivided into 'chunks’ that can undergo analysis in parallel.
This is particularly the case when the analysis of a given data 'chunk’ does not depend on
other chunks. Similarly, simulation runs that are not dependent on other simulations can
be conducted in parallel. Hence, both reasons — data size and simulation demands — for
an increased interest in high-performance and parallel computing can be seen as so-called
embarrassingly parallel problems that are suitable for execution in parallel.

High-Performance Computing: High-Performance Computing (HPC) is one aspect
of computer based computing and includes tasks which require a huge amount of comput-
ing power and memory. In most cases it involves the use of super computers, computer
clusters, grid environments, but even graphical processing units to solve advanced comput-
ing problems. Parallel computing is a form of computation in which many calculations are
carried out simultaneously and which can run on different hardware environments. Parallel
computing is used to save computation time and money, to solve large problems, to use
non-local resources, etc.. In the last years more and more research has focused on using
HPC and parallel computing techniques for bioinformatic applications to solve these new
challenges.

R and Bioconductor: R is an open-source programming language and software environ-
ment for statistical computing and graphics which provides many statistical and modelling
functions and is highly extensible due to the use of packages. Bioconductor is an open-
source project and R package repository for the analysis and comprehension of genomic
data. The development of the R language was not aimed at providing a software for par-
allel or high-performance computing. Nonetheless, several packages for the use of parallel
computing techniques exist. Especially the snow package is useful for the use of computer
clusters and on multi-processor machines.

Outline: This work reviews parallel computing techniques in the R language for the
application in biological - especially genomic - data and demonstrates the usefulness of the
R language and parallel computing for biological research. Existing statistical algorithms
and data structures had to be adjusted to and reformulated for parallel computing. Using
the parallel infrastructure, it is possible to improve existing methods and to develop new



more efficient methods. New R packages for parallel preprocessing of microarray data and
data management of a huge amount of microarray data are presented. The use of parallel
computing in next-generation sequence data is discussed.

Chapters 1 to 3 introduce the combined research areas and existing methodology. Chap-
ter 2 describes basic biological concepts and the standard analysis processes for various
biological data. Chapter 3 introduces the R language and the Bioconductor repository,
describes available serial analysis tools, problems, challenges, and solutions occurring as a
result of new challenges.

The main part (Chapters 4 to 7) develops and applies new concepts (parallel computing)
regarding genomic data. At the end of each chapter, the results are summarized. Chapter 4
in detail deals with parallel computing and packages for the use of computer clusters
and multi-processor environments. The idea, development, implementation, and efficiency
of the affyPara package is discussed in Chapter 5. This is a package with a parallel
code for the preprocessing of huge amounts of microarray data. Chapter 6 reviews first
ideas and test implementations for next-generation sequence data. Especially problems
arising from the large amount of network traffic have to be solved. In Chapter 7 the
newly developed affyPara package is applied to a cancer data set with more than 7000
microarrays. For the purpose of solving data management problems, a new package called
ArrayExpressDataManage was developed and applied. Several problems arising from the
huge amount of data and the use of data from different experiments are discussed. Using
network analysis tools, first biological interpretations and validations are presented.

The thesis ends with a summary and critical discussion of using R in parallel computing
for biological data, and new trends in HPC are discussed for the use in bioinformatics.
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Chapter 2

Biological Data

Based on the definition in the online encyclopedia Wikipedia (http://en.wikipedia.
org/wiki/Biological_measurement, 20. March 2009) biological data are 'data or mea-
surements collected from biological sources, which are stored or exchanged in a digital
form. Biological data is commonly stored in files or databases [...].” This is a very general
definition and covers a wide field of biological research. Some examples for biological data
are DNA base-pair sequences, population data used in ecology, biosonar data, cell-based
assays, microarray data, and many more. Often biological data have very similar and char-
acteristic features: They have more variables than observations, the raw data is noisy, and
they are high-dimensional.

This work focuses on biological data arising from the study of genomes, especially
microarray data and data from next-generation sequence data.

The study of genomes is called genomics. The field of genomics encompasses two main
areas, structural genomics and functional genomics. The former mainly deals with genome
structures with a focus on the study of genome mapping and assembly as well as genome
annotation and comparison. The latter is largely experiment based with a focus on gene
function at the whole genome level using high-throughput approaches. High-throughput is
the simultaneous analysis of a lot of genes in a genome. The high-throughput analysis of
all expressed genes is also termed transcriptome analysis.

This chapter discusses aspects of the transcriptome analysis that can be conducted using
either microarray- or sequence-based approaches. First, it gives some biological background
information about the field of genomics. Section introduces the microarray technology,
especially DNA microarrays, the DNA microarray analyses process and an error model for
microarray data. Section describes aspects and analyses of next-generation sequence
data. The chapter ends with a listing of further biological data and their analyses.

2.1 Biological Background

Cells contain, within each nucleus, the entire genome for their organism. This genome
contains the organism’s complete hereditary information in the form of deoxyribonucleic
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acid (DNA), which contains the genetic instructions used in the development and func-
tioning of all known living organisms and some viruses. The main role of DNA molecules
is the long-term storage of information. DNA is often compared to a set of blueprints or a
recipe, or a code, since it contains the instructions needed to construct other components
of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic
information are called genes.

In the human body, the genome consists of 23 pairs of chromosomes. One of the two
copies is inherited from the mother and the other one from the father. Each chromosome is
made of chains of DNA. DNA consists of two polymers made up of units called nucleotides.
Each nucleotide consists of a deoxyribose sugar, a phosphate group and one of the four
nitrogen bases, guanine, adenine, thymine and cytosine. These bases, which are usually
represented by their first letters, G, A, T and C, actually encode the hereditary genetic
information. One of the two strands of the DNA double helix will suffice to describe this
information; this is due to complementary base pairing, where an A on one strand always
binds to a T on the other and a C always binds to a G (see Figure [2.1)).

Genes are essentially segments of the DNA structure described above. Loosely speaking,
a gene is a section of DNA that defines a single trait by encoding a particular pattern, about
27,000 of which exist in humans. Often though we are faced with the problem that protein-
coding sequences have no clear beginning or end; more technically, a gene is a locatable
region of genomic sequence, corresponding to a unit of inheritance, which is associated
with regulatory regions, also known as ezons, transcribed regions, also known as introns
and/or other functional sequence regions [Pea06].

DMNA Molecule

Complementary
mRMNA

Figure 2.1: The transcription process (http://www.scientificpsychic.com/fitness/
aminoacidsl.html).

The main purpose of genes is to act as a blueprint in the creation of proteins. Proteins
are made of amino acids and are responsible for the structure and activity of an organism
at a cellular level. They are created as follows and as visualized in Figure Starting
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at the 5’ end (the leading end) of a gene and proceeding to the 3’ end (the tail end),
the information contained in the gene is transcribed into a messenger ribonucleic acid
(mRNA) strand. This process is performed by an enzyme called RNA polymerase. After
transcription this mRNA molecule leaves the nucleus of the cell, where it is transcribed
into a protein in a process called translation. This is performed by ribosomes, which read
the code carried by mRNA molecules from the cell nucleus and create proteins combining
any of the 20 amino acids in the body into complex polypeptide chains. These proteins are
the building blocks of the organism. This process of translating a gene into a functional
product is known as gene expression.

2.2 Microarray Data

Microarray is a collective name for a modern molecular biology analysis tool. It consists
of an arrayed series of thousands of microscopic spots - called features - and allows the
parallel analysis of several thousands of genes. There are different kinds of microarrays -
sometimes called Genchips or Biochips. Most prominent are the DNA microarrays, which
contain picomoles of a specific DNA sequence at each spot. Other types of microarrays are
Protein-Microarrays or Transfection-Microarrays.

2.2.1 DNA Microarrays

DNA microarrays are a high throughput technology used to measure the expression levels
of thousands of genes simultaneously. The fundamental idea behind most microarrays is to
exploit complementary base pairing to measure the amount of the different types of mRNA
molecules in a cell, thus indirectly measuring the expression levels of the genes that are
responsible for the synthesis of those particular mRNA molecules.

The spots on a microarray contain single stranded DNA oligonucleotides called probes.
Each of these spots will contain DNA, which is of a complementary sequence to the specific
mRNA molecule, that corresponds to the gene, that it is targeting. A mRNA molecule,
which is complementary to the probe in question, should hybridise to that probe, forming
a strong mRNA-DNA bond. These mRNA molecules have been labeled with fluorescent
dye, which means that the amount of hybridisation, that has taken place, can be measured
by the level of fluorescence of the dye, which is examined with a scanner. This scanner
then outputs a text file for each array, which contains the relevant data pertaining to that
array, such as the level of fluorescence of each spot and the level of background noise. In
theory, a spot with brighter fluorescence means, that more mRNA has hybridised, which
in turn infers, that more mRNA was present in the sample extracted from the original cell
and that the gene represented by this spot is experiencing a higher level of expression.

DNA microarrays can be manufactured in different ways, depending on the number of
probes under examination, costs, customization requirements, manufacturers, etc.. Arrays
may have as few as 10 to up to 2 million probes. There are several microarray manufactur-
ers, the most prominent ones are Affymetrix, Inc. (http://www.affymetrix.com/)) and
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[lumina, Inc. (http://www.illumina.com/).

DNA Microarray Platforms

The types of DNA microarrays most widely used today can be broadly devided into two
categories that are differentiated by the type of data they produce. The high-density
oligonucleotide array (oligo) platforms produce one set of probe-level data per microarray
with some probes designed to measure specific binding and other to measure non-specific
binding. The two-color spotted (cDNA) platforms produce two sets of probe level data per
microarray (red and green channel).

In the following description of microarray production only the manufacturing process
for Oligonucleotide Affymetrix Microarray Chips will be described.

High-density Oligonucleotide Array - Affymetrix GeneChip: The Affymetrix
GeneChip® array is an oligonucleotide array and is the most commonly used type of
DNA microarray. Figure 2.2 shows an image of two Affymetrix GeneChips.

Ll ey 1

Ip

Figure 2.2: Two Affymetrix Microarray GeneChips® for Human (HG-U133 Plus 2.0) and
Mouse Genome (Mouse-430 2.0).

GeneChips use short oligonucleotides to probe for genes in a RNA sample. Each array
will contain hundreds of thousands of probe spots and each of these spots will in turn
contain millions of copies of an individual 25 base long DNA oligonucleotide. Genes are
represented by a set of oligo probes each with a length of 25 bases. Because of their short
length, multiple probes are used to improve specificity. Affymetrix arrays typically use
between 11 and 20 probe pairs, referred to as a probe set, for each gene. One component
of these pairs is referred to as a perfect match probe (PM) and is designed to hybridize
only with transcripts from the intended gene. However, hybridization to the PM probes
by other mRNA species is unavoidable. Therefore, the observed intensities need to be
adjusted to be accurately quantified. The other component of a probe pair, the mismatch
probe (MM), is constructed with the intention of measuring only the non-specific component
of the corresponding PM probe. Affymetrix’s strategy is to make MM probes identical to
their PM counterpart expect that the 13-th base is exchanged with its complement. The
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Affymetrix chip design is illustrated in Figure 2.3 visualizing the pseudo-image and the
probe set structure. For example the Affymetrix human "HG-U133A’ chip contains more

Perfect match (PM)
Mismatch (MM)

Probe set

Figure 2.3: Tllustration of the Affymetrix Microarray GeneChip® design with 11 probe
pairs.

than 14.500 genes, more than 22.000 probe sets and has 11 probe pairs (about 500,000
probes). The feature size is 18 um and probes from the same probe set are distributed
randomly over the chip.

For more details about the GeneChip platform see the Affymetrix website http://www.
affymetrix.com.

2.2.2 DNA Microarray Analysis Process

Microarray analysis is a complex process and starts long before computational statistical
analysis will be performed. Details can be found in numerous books for microarray data
analysis [BDG03, [Ste03]. Figure[2.4] visualizes a typical microarray data analysis process as
described in [BDGO3]. Steps 1 and 2 are very essential for the outcome of an experiment,
because scientific aims and the experiment design will be defined. Steps 3 and 4 run in the
laboratory, are complex and can have a strong influence on the results. Step 5 is mainly
concerned with the analysis of the digitized image arising out of Step 4. Image analysis
permits to convert the pixel intensities in the scanned images into probe-level data. The
result is a collection of numerical estimates representing the measured expression levels.
For reasons of limited space Steps 1 to 5 will not be discussed in detail. Instead the focus
lies on the preprocessing (Step 6 and 7) of the integrated data matrix, which is often called
low level analysis, dealing with removing measurement errors and data transformation.
This is discussed in the next paragraph. High level analysis is the 'real’ statistical analyses
and interpretation of the data (Step 8 and 9). As far as required for the analyses of the
large cancer study in Chapter [7] differential gene expression and network based methods are
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Figure 2.4: Microarray data analysis process - the big picture [BDGO03].

described. There exists a multitude of other tools for analysing and interpreting microarray
data, but they are not focused in this work.

Low Level Analysis - Preprocessing

Preprocessing starts after the image processing. Data derived from image analysis are called
raw data and stored in so called CEL files. These specially coded ASCII files containing
fluorescence intensities for each probe on one microarray. Many preprocessing methods
have been proposed for high-density oligonucleotide array data [IHCT03|. Methodology for
preprocessing Affymetrix GeneChip probe-level data is discussed in this section. However,
many of these procedures apply to high-density oligonucleotide platforms in general.

The data recorded by means of the microarray technique are characterized by high levels
of noise induced by the preparation, hybridization and measurement processes (Step 3-5).
These perturbations have to be removed, therefore, preprocessing of raw-data has been
a research topic of high priority over the past few years. In Section [2.2.3] the variations
between arrays will be described with a statistical error model. Preprocessing usually
involves three steps: background correction, normalization and summarization [GCHT05].

Quality Assessment and Control: Quality assessment (QA) and quality control (QC)
are an essential part of the data analysis process. The term quality assessment deals with
the computation and interpretation of metrics that are intended to measure quality. The
term quality control is used for possible subsequent actions, such as removing data or
redoing experiments. Bad arrays should be identified and removed as early as possible in
the process. Mostly this step will be conducted before preprocessing.
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Background Correction: The term background correction, also referred to as signal
adjustment, describes a wide variety of methods. More specifically, a background correction
method should perform some or all of the following:

1. Corrects for background noise and processing effects.

2. Adjusts for cross hybridization, which is the binding of non-specific DNA (i.e. non-
complementary binding) to the array.

3. Adjusts expression estimates so that they fall on the proper scale, or are linearly
related to concentration.

It is important to note, that this definition is somewhat broader than is often used in
the wider community. Many times only methods dealing with the first problem have been
referred to as background correction methods [BIAS03].

Normalization: Normalization is the task of manipulating data to make measurements
from different arrays comparable. The purpose of normalization is to adjust for effects,
which arise from variation in the microarray technology rather than from biological differ-
ences between the RNA samples or between the printed probes. Different efficiencies of
reverse transcription, labeling or hybridization reactions among different arrays, physical
problems with the arrays, reagent batch effects, and laboratory conditions cause systematic
technical biases and need to be corrected. [HGJYO0I] discusses these possible sources in
more detail.

Probe-level normalization for high-density oligonucleotide arrays has been investigated
in [BIASO3|, which compares the bias and variability of expression measures computed
using different normalization methods. The work defines two classes of normalization
methods: complete data methods and baseline methods. Complete data methods use in-
formation from across all arrays to produce the normalization. The baseline methods select
one array to represent the typical array, and then all of the other arrays are normalized to
that array. It has been discovered, that complete data methods are preferable to methods
choosing a baseline array.

Summarization: GeneChip arrays work by using 11 different PM spots to target 11
separate 25 base long sections of a target gene’s mRNA. The final step in preprocessing
microarray data is the summmarization. It summarizes the data from these 11 separate
probes into an expression value for the gene in question. There are a number of different
ways how this can be achieved, but the final result is always a single expression value for
each gene on each chip.

More details and adaptions for parallelization of preprocessing steps can be found in

Chapter [3 and
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High Level Analysis

High level analysis is the 'real’ statistical analysis and interpretation of microarray data.
There are many statistical approaches to analyze preprocessed data. High level analy-
sis methods mostly have the goal to identify differential gene expression, which describes
differences in the mean values between different genes, and gene-gene correlation, which
represents correlation between different genes using graphs. Differential gene expression
analysis of microarray data is fraught with many classical statistical issues, such as ap-
propriate test statistics, replicate structure, sample size, outlier detection and statistical
significance of results. The original and simplest approach to identify differentially ex-
pressed genes is to use a fold change criteria.
For an overview and introduction to different high level analyses tools see [GCHT05].

2.2.3 Microarray Error Model

Subtle variations between arrays, the reagents used, and the environmental conditions lead
to slightly different measurements even for the same sample. The effects of these variations
may be grouped into two classes:

Systematic Effects: Systematic effects affect a large number of measurements simulta-
neously and can be estimated and approximately removed.

Stochastic Components: Stochastic components or noise are completely random effects
with no well-understood pattern.

An error model is a description of the possible outcomes of a measurement. It depends
on the true value of the underlying quantity that is measured and on the measurement
apparatus. Describing the errors with a stochastic model will be useful for preprocessing,
for construction of inferential statements about experimental results, for quality assessment
and other tasks. For example a model-based approach allows pooling information across
multiple arrays.

Additive-multiplicative Error Model

Most measurement technologies require a linear calibration curve to estimate the actual
concentration of an analyte in a sample for a given response. Incorporating into the linear
calibration the two types of errors, a generic model for the value of the measured intensity
y of a single probe on a microarray is given by

Y=o+ puel +e

where « is the mean background (mean intensity of unexpressed genes), u the expression
level in arbitrary units, € ~ N(0,0.) an error term for the standard deviation of the
background, and n ~ N(0,0,) an error term. This is the additive-multiplicative error
model for microarray data, which was first proposed by [RD01]. Very similar models were
used to develop algorithms for microarray data, for example [HvHST02] proposes a variance
stabilization method for the preprocessing.
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DChip: Model-based Analysis of Oligonucleotide Arrays

Another model was proposed in [LWO01]. The estimation procedure is based on a model
of how the probe intensity values respond to changes of the expression levels of the gene.
It models the perfect match (PM) and mismatch (MM) signal from each probe pair. The
average of the PM-MM differences for all probe pairs in a probe set is used as an expression
index for the target gene. € denotes an expression index for the gene, ¢ is an additional
rate of increase and € is a generic symbol for a random error.

y=PM — MM = ¢+ ¢

The paper [LWO0I] argues, that there is a strong preference to base all computation directly
on the differences between the PM and MM responses in a probe pair. Today analysis only
using PM signals are preferred [GCHT05].

Based on this statistical model, it is possible to address several important analysis
issues that are difficult to handle by using other approaches. These include accounting
for individual probe-specific effects, and automatic detection and handling of outliers and
image artifacts [LWOI].

2.3 Next-Generation Sequencing

The term DNA sequencing refers to methods for determining the order of the nucleotide
bases — adenine (A), guanine (G), cytosine (C), and thymine (T) — in a molecule of DNA.
In essence, the DNA is used as a template to generate a set of fragments, that differ in
length from each other by a single base. The fragments are then separated by size, and
the bases at the end are identified, recreating the original sequence of the DNA.

In recent years, new sequencing schemes, also called high-throughput sequencing (HTS),
massively parallel sequencing, flow-cell sequencing or next-generation sequencing have been
proposed. The high demand for low-cost sequencing has driven the development of high-
throughput sequencing technologies, that parallelize the sequencing process, producing
thousands or millions of sequences at once. High-throughput sequencing technologies are
intended to lower the cost of DNA sequencing beyond what is possible with standard
methods.

2.3.1 Standard Methods

Since the introduction of DNA sequencing in the early 1970s, sequencing has become
easier and orders of magnitude faster in the last years. The rapid speed of sequencing
attained with modern DNA sequencing technology has been instrumental in the sequenc-
ing of the human genome in the Human Genome Project (http://www.ornl.gov/sci/
techresources/Human_Genome/home . shtml).

The most commonly used method of sequencing DNA — the dideoxy or chain termi-
nation method — was developed by Fred Sanger at the University of Cambridge in 1977
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[SNCTT7]. The key to the method is the use of modified bases called dideoxy bases. When
a piece of DNA is being replicated and a dideoxy base is incorporated into the new chain,
it stops the replication reaction.

2.3.2 High-Throughput Sequencing

Today there are two core differences of HTS to Sanger’s capillary sequencing. First of all
the library is not constructed by cloning, but by a novel way of doing polymerase chain
reaction (PCR). The fragments are seperated by physico-chemical means (emulsion PCR
or bridge PCR). Furthermore, very many fragments are sequenced in parallel in a flow cell
(as opposed to a capillary) and observed by a microscope with CCD camera. The main
advantage of HT'S is the ability to process millions of sequence reads in parallel rather than
less than 100 at a time. Commercially sequencing machines are available from Roche '454’,
[lumina (formerly: Solexa) 'Genome Analyzer’, Applied Biosystems 'SOLiD system’, and
Helicos "Helicoscope’.

Figure 2.5: Illumina genome analyzer flow cell (http://www.illumina.com/). Up to eight
samples can be loaded onto the flow cell for simultaneous analysis on the Illumina Genome
Analyzer.

More details about high-throughput sequencing can be found in the manuals of the
sequencing machines or in [HJ08, [SJO8, Mar08, VDD09|. Relevant textbooks do not exist
yet.

2.3.3 Analyses

At the moment there exist different use-cases for HTS in literature. Due to the cost
reduction and ongoing technology development their number is growing daily. Several
examples are listed in the following:

e De-novo sequencing and assembly of small genomes.

e Transcriptome analysis (RNA-Seq), especially for identifying transcripted regions and
expression profiling.
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e Resequencing to find genetic polymorphisms.
e ChIP-Seq, nucleosome positions, etc.
e Environmental sampling (metagenomics)

The applications are all very different. Therefore, it is difficult to define a standardized
analysis process. Identical to the microarray data analysis process (see Figure there is
a feedback loop. But in the Steps 3 to 7 other technology and methods, and for Step 8 and 9
other analysis, interpretation and validation methods are used. For the data processing and
analysis there are some similar procedures required in all applications, which are outlined
in the following section. These methods are available from old sequencing technologies,
but they have to be optimized especially for better performance.

Due to the higher number of sequences and the novel data structures that come along
with this development, established procedures may not be suitable and new algorithms are
required and will be developed in the future.

Alignment

Sequence Alignment is a way of arranging the sequences of DNA, RNA, or protein to
identify regions of similarity, that may be a consequence of functional, structural, or evo-
lutionary relationships between the sequences. Aligned sequences of nucleotide or amino
acid residues are typically represented as rows within a matrix. Gaps are inserted between
the residues so that identical or similar characters are aligned in successive columns (see
Figure 2.6)).

Computational approaches for sequence alignment generally fall into two categories:
global alignments and local alignments. Global alignments, which attempt to align every
residue in every sequence, are most useful, when the sequences in the query set are similar
and of roughly equal size. Local alignments are more useful for dissimilar sequences that
are suspected to contain regions of similarity or similar sequence motifs within their larger
sequence context.

The main differences in alignment of next-generation sequence data to conventional
sequences are the millions of very short reads, rather than a few long ones, which have to
be mapped to the genome. Furthermore, dominant cause for mismatches are read errors
and not substitutions. Base-call quality information is more important, only small gaps
are expected, and mate-paired reads require special handling, . ...

In the last two years, many commercial and open-source tools for short-read alignments
have been published: Eland, Maq, Bowtie, Biostrings, BWA, SSAHA2, Soap, RMAP,
SHRiMP, ZOOM, NovoAlign, Mosaik, Slider, .... The methods use different algorithms
and differ in speed, memory requirements, accuracy, user interface and available down-
stream analysis tools.
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Figure 2.6: Ungapped sequence alignment of eleven E. coli sequences defining a start codon.
The start codons start at position 1. The corresponding sequence logo is shown below the
alignment (http://www.clcbio.com/index.php?id=869).

Assembly

Sequence Assembly refers to aligning and merging fragments of a much longer DNA se-
quence in order to reconstruct the original sequence. This is needed as DNA sequencing
technology cannot read whole genomes in one go, but rather in small pieces between 20 and
1000 bases, depending on the technology used. Typically the short fragments, which are
called reads, result from shotgun sequencing genomic DNA or gene transcripts (ESTSs).
Sequence assembly requires specialized software, typically based on so-called de-Brujin
graphs. One of the most popular assembly tools is called "Velvet’ [ZB0S].

Further general analysis tools for HTS are:
e statistical tests (counting statistics)
e visualizations

e segmentations

2.4 Other Biological Data & Analyses

This work focuses on biological data arising from the studies of genomes, especially microar-
ray data and data from next-generation sequencing. But there are many other biological
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data, which will be focused on in statistical computing. It is not possible to list all available
kinds of biological data. There are many examples, where computational tools are required
to generate biological knowledge from data to better understand living systems. Following
[Xi006], the main analysis applications of bioinformatics can be divided into three subfields
(see Figure : sequence, structural, and functional analysis.

Applications
Structure Sequence Function
analysis analysis analysis
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Figure 2.7: Overview of subfields of bioinformatics [Xio06] with structure, sequence and
function analysis.

The are of sequence analysis includes sequence alignment, sequence database searching,
motif finding and pattern discovery, gene and promoter finding, reconstruction of evolution-
ary relationships, and genome assembly and comparison. This thesis focuses on classical
tools for next-generation sequence data. Other kinds of data are ChIP-Sequencing (ChIP-
Seq), used to analyze protein interactions with DNA or RNA-Sequencing (RNA-Seq) to
sequence cDNA in order to get information about a sample’s RNA content.

Structural analysis includes protein and nucleid acid structure analysis, comparison,
classification and prediction.

The functional analysis includes gene expression profiling, protein-protein interaction
prediction, protein subcellular localization prediction, metabolic pathway reconstruction,
and simulations. In addition to expression arrays, these types of arrays are for example
data from tiling arrays (ChIP-chip), which are very similar to microarray data. Another
example for functional analyses is flow cytometry. A technique for counting and examining
microscopic particles suspended in a stream of fluid. It allows simultaneous multiparametric
analysis of the physical and/or chemical characteristics of single cells flowing through an
optical and/or electronic detection apparatus. Certain applications may include physical
sorting of components.

The analysis of biological data often generates new problems and challenges, that in
turn powers the development of new and better computational tools.
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Chapter 3

Bioinformatics Using R and
Bioconductor

The open-source programming language R and the Bioconductor open-source project for
the analysis and comprehension of genomic data provide a wide spectrum of computational
tools for the analysis of genomic data. This chapter introduces existing methods for DNA
microarray analyses and next-generation sequence data. It discusses computational prob-
lems and challenges of existing programs. At the end it examines solutions to improve the
performance and to allow analyses on huge numbers of biological data.

3.1 R and Bioconductor

R [R_D08a] is an open-source programming language and software environment for statisti-
cal computing and graphics. The core R installation provides the language interpreter and
many statistical and modeling functions. R was originally created by R. Ihaka and R. Gen-
tleman in 1993 and is now being developed by the R Development Core Team. R is highly
extensible through the use of packages. These are libraries for specific functions or specific
areas of study, frequently created by R users and distributed under suitable open-source
licenses. A large number of packages is available at the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org or the Bioconductor repository |[GCBT04] at
http://www.bioconductor.org. The R language was developed to provide a powerful
and extensible environment for statistical and graphical techniques.

Bioconductor is an open-source and open-development software project and R package
repository for the analysis and comprehension of genomic data. Bioconductor is primar-
ily based on the R programming language and a repository for R packages. The Bio-
conductor project was started in fall of 2001 and is overseen by the Bioconductor core
team, based primarily at the Fred Hutchinson Cancer Research Center (FHCRC, Seattle,
WA, USA) with other members coming from various US and international institutions.
There are currently (release 2.4, 21.April 2009) 320 contributed packages in Bioconduc-
tor’s development repository. Releases occur twice a year, normally some days after a
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Release 1.1 12 13 14 15 16 1.7 1.8 19
# Packages 20 30 49 81 100 123 141 172 188
Release 20 21 22 23 24

# Packages 214 233 260 294 320

Table 3.1: Number of contributed packages included in each of the Bioconductor releases.

new release of the R language. The project also maintains more than 400 annotation
data packages, that aid in the analysis of data from microarray experiments. Table
tracks the growth of the project over the semi-annual releases. The download statistic
(http://www.bioconductor.org/packages/stats/) for Bioconductor software packages
reports 150.000 package downloads per year.

The repository is split into three parts:

Software: Packages for diverse areas of high-throughput biological analysis.

Metadata: Bioconductor ’Annotation’ packages contain biological information about mi-
croarray probes and the genes they are meant to interrogate, or contain ENTREZ
gene-based annotations of whole genomes.

Experiment Data: Bioconductor 'Experiment Data’ packages contain example data sets
directly stored in R variables.

Packages in the software repository mainly address the development of high-quality
algorithms for genome data analysis. Packages used for microarray analyses in this work
and in connection to the described aspects in Chapter will be presented in Section
Since the beginning of 2008 an ensemble of new or expanded packages introduces tools for
next-generation DNA sequence data. Details for these packages are presented in Section[3.3]

3.2 Analyses of DNA Microarray Data

The open-source programming language R and the open-source project Bioconductor sup-
port the rapid developments in microarray technologies. Table gives an overview of
some commonly used packages for DNA microarray low and high level analysis including
the corresponding references. All packages and download statistics are available at the
Bioconductor website.

3.2.1 Low Level Analysis - Preprocessing

In Chapter the general pipeline to preprocess Affymetrix microarray data is introduced:
background correction, normalization and summarization. This section outlines the opera-
tion and theory of some commonly used and serial preprocessing methods implemented with
R and Bioconductor. More details and code examples can be found in [GCH™05, BIASO3]


http://www.bioconductor.org/packages/stats/
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or the corresponding references. Most of these methods are parallelized in the affyPara
package.

Quality Control & Assessment

Quality assessment is an important procedure, that detects divergent measurements beyond
the acceptable level of random fluctuations. As microarray data quality can be affected
at each step of the microarray experiment processing, quality assessment is an integral
part of the analysis. The affy package implements tools for graphical quality assessment
of microrarray data: image(), boxplot(), hist (), MAplot(), .... The arrayQualityMet-
rics package [KGH09|] provides a comprehensive tool, that works on all expression arrays
and platforms and produces a self-contained quality report, which can be web-delivered.
Additional there are metrics included for automatical outlier detection of arrays.

Background Correction

Background correction (BGC) methods are used to adjust intensities observed by means
of image analysis to give an accurate measurement of specific hybridization. Therefore,
BGC is essential, since parts of the measured probe intensities are due to non-specific
hybridization and the noise in the optical detection system. The BGC methods RMA, MAS
5.0, and Ideal Mismatch are implemented in the function bg. correct () in the affy package
and commonly used. Further methods are available in other packages (e.g., affyPLM) and
can be used with the function bg.correct (object, method, ...), too.

RMA Background Correction: RMA background correction is done by fitting a normal-
exponential mixture model array by array and subtracting a background estimate from the

PM value of each probe that is estimated in such a way, that the result is guaranteed

to remain positive. Subsequently the data are logarithm transformed [IHCT03]. RMA

is motivated by the empirical distribution of probe intensities and ignores the different

propensities of probes to undergo non-specific binding. Therefore, the background is often

underestimated.

The characteristics of each probe can be determined by its sequence and the back-
ground noise can be described with a statistical model. Using this model the improved
RMA background correction method GCRMA incorporates probe sequence composition
into background adjustment [IHCT03].

MAS 5.0 Background Correction: The MAS 5.0 background correction breaks the
array into regions, within each grid it picks a background and noise value for that grid.
The background-noise adjustment for each probe intensity is given by taking a weighted
average of the grid background-noise values. The weights are dependent on the distance
from the probe location to the center of each of the grids [Aff02].
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Ideal Mismatch Background Correction: This method is discussed in [Aff02] and
uses the MM probes to correct the PM probes. Originally PMs were corrected by subtract-
ing MMs. However, many MM'’s are greater than the corresponding PM and therefore,
simple subtraction creates difficulties. To sidestep this problem the MAS 5.0 algorithm
uses an Ideal Mismatch, which is defined as the MM, when it is physically possible and a
quantity smaller than the PM in other cases.

Normalization

Normalization is required to compare measurements from different array hybridizations
due to many obscuring source variations. Most of the commonly used functions are im-
plemented in the affy package and can be used with the function normalize(object,
method="...", ...).

Two classes of normalization methods can be defined. Complete data methods use in-
formation from across all arrays to produce the normalization. The baseline methods select
one array to represent the typical array, and then all of the other arrays are normalized to
that array. It has been discovered, that complete data methods are preferable to methods
choosing a baseline array [IHCT03].

Complete Data Methods - Quantile Normalization: The goal of quantile normal-
ization is to give the same empirical distribution of intensities to each array [BIAS03] and
can be motivated using a quantile-quantile plot, which will have a straight diagonal line,
with slope 1 and intercept 0, if two data vectors have the same distribution. The quantile
normalization method is a specific case of the transformation z; = F~'(G(x;)) , where G is
estimated by the empirical distribution of each array and F' using the empirical distribution
of the averaged sample quantiles.

Complete Data Methods - Cyclic Loess Normalization: The cyclic loess normal-
ization is a generalization of the global loess method for two color arrays [YDLT02]. When
dealing with single channel array data, pairs of arrays are normalized to each other by using
MA plots. The cyclic loess method normalizes intensities for a set of arrays by working
in a pairwise manner. The procedure cycles through all pairwise combinations of arrays,
repeating the entire process until convergence. One drawback is, that this procedure re-
quires O(n?) loess normalizations. Usually only one or two complete cycles through the
data are required.

Baseline Methods - Scaling / Constant Normalization: The constant normaliza-
tion method, which was proposed by Affymetrix and used in both versions 4.0 and 5.0 of
their software [Aff02, [Aff04], chooses a baseline array and all the other arrays are scaled to
have the same mean intensity as this array. This is equivalent to selecting a baseline array
and then fitting a linear regression without intercept term between each array and the
chosen array. Then, the fitted regression line is used as the normalizing relation. [BIAS03]
describes four different methods for selecting the baseline array.
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Baseline Methods - Non-linear / Invariantset Normalization: The invariantset
normalization uses a non-linear relationship between each array and the baseline array
can be used for normalization. Different relations have been proposed. For example, in
[BIASO3] a loess smoother is discussed and implemented in the affy package.

Summarization

Typically, Affymetrix GeneChip microarrays have hundreds of thousands of probes. These
probes are grouped together into probesets. Within a probeset each probe interrogates
a different part of the sequence for a particular gene. Summarization is the process of
combining the multiple probe intensities for each probeset to produce an expression value
for each probeset on the array.

Similar to the normalization methods, two classes of summarization methods can be
defined: Single-Chip Summarization methods use only probe information on an individual
array to compute expression summaries for that array. The expression values for each array
are computed in isolation from information in other arrays. Multi-Chip Model Summariza-
tion is motivated by examining probe response patterns across arrays.

Most of the functions are implemented in the affy package and can be used with the
function computeExprSet(x, pmcorrect.method, summary.method, ...).

Single-Chip Summarization - avgdiff: This is an unrobust single chip method. It
takes the mean of the log preprocessed PM probes for a particular probeset as the expression
value for that probeset on that array. This is the approach, that was taken in [Aff02].

Single-Chip Summarization - mas: As documented in [Aff02], this method is a robust
average using 1-step Tukey biweight on logy scale. The alogrithm combines probe values
for a particular probeset from a single array to compute the expression value for that array.

Multi-Chip Model Summarization - 1iwong: This is an implementation of the meth-
ods proposed in [LWO01]. The Li-Wong Model Based Expression Index (MBEI) is based
upon getting the following multi-chip model to each probeset

Yij = ¢ibj + €5

where y;; is PM;; or the difference between PM;; — M M;;. The ¢; parameter is a probe
response parameter and 6; is the expression on array j.

Multi-Chip Model Summarization - medianpolish: In the medianpolish summariza-
tion, used in the RMA methods, a robust multichip linear model is fitted to the log of the
preprocessed PM probes for a particular probeset [IHCT03|. In particular for a probeset k
with ¢ = 1,..., I probes and data from 57 = 1,...,J arrays, the following model is fitted

logg(PMi’;) =af + ﬁf + efj
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where «; is a probe effect and (3; is the log, expression value. This method allows to
combine information across chips. Please note, using this summary measure the expression
values are in logy scale.

Multi-Chip Model Summarization - FARMS: ’Factor Analysis for Robust Microar-
ray Summarization’ (FARMS) is presented in [HCO06] and is a model-based technique for
summarization. The method is based on a factor analysis model for which a Bayesian
maximum a posteriori method optimizes the model parameters under the assumption
of Gaussian measurement noise. Thereafter, the RNA concentration is estimated from
the model. The code is available at the website http://www.bioinf. jku.at/software/
farms/farms.html.

Composite Preprocessing

There is a number of popular composite preprocessing algorithms, to combine the presented
methods. As discussed, the procedure for generating expression measures can be considered
as a three step process. Let X be raw probe intensities across all arrays and E be the probe
set expression measures. Let B be the operation, which background corrects probes on each
array, N be the operation, which normalizes across arrays and S be the operation, which
combines probes together to compute an expression measure. The process of computing
measures of expression can be written as:

E = S(N(B(X)))

expresso: The expresso() function provides quite general and simple facilities for com-
puting expression summary values. B, N and S can be chosen arbitrary out of the
existing methods. The trade-off is, that the function is often considerably slower than
the functions, that have been optimized for producing specific expression measures.

threestep: The threestep() function is provided by the affyPLM package and has facil-
ities for computing expression summary values. B, N and S can be chosen arbitrary
out of the existing methods. It is primarily implemented in compiled code and there-
fore, typically faster than expresso().

RMA: The rma() function is an expression measure consisting of three particular pre-
processing steps: B is the RMA background correction process, N is the quantile
normalization and S is an operation, which takes log, of the probes and fits a robust
linear model, using the median polish algorithm.

GCRMA: The gcrma() function is an expression measure consisting of three particular
preprocessing steps: B is the GCRMA background process, N is the quantile normal-
ization and S is an operation, which takes logs of the probes and fits a robust linear
model, using the median polish algorithm.


http://www.bioinf.jku.at/software/farms/farms.html
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vsn - Variance Stabilization Normalization: The vsn [HvHST02] method combines
background correction and normalization into one single procedure to share information
across arrays for background correction and normalization. The additive-multiplicative
error model, described in Chapter is used to estimate the perturbations in microar-
ray data. Therefore, a complex and computer intensive robust variant of the maximum-
likelihood estimator for the stochastic model has to be solved. The model incorporates
data calibration, a model for the dependence of the variance on the mean intensity, and a
variance stabilizing data transformation. For the normalization transformation a so called
generalized logarithm ’glog’ is used

Tri > hi(r;) = glog (xlmb_al)
(2

where x; is the intensity matrix, b; is the scale parameter for array ¢, a; is a background
offset.

The code is available in the vsn package and can be applied using the vsn2() function.
To get the expression values, additional a summarization method has to be used or the
vsnrma () function, which calles vsn2() on the perfect match values only and calculates
probeset summaries with the medianpolish algorithm of RMA.

3.2.2 High Level Analysis

High level analysis is the 'real’ statistical analysis and interpretation of microarray data.
There are many statistical approaches to analyze preprocessed data. Commonly used
are differential gene expression, which describes differences in the mean values between
different genes, and gene-gene correlation, which represents correlation between different
genes using graphs. Different packages in the Bioconductor repository exist for these two
methods and many other methods.

Differential Gene Expression

The simplest approach to identify differential expressed genes is to use a fold change criteria.
However, single genes are not, in general, the primary focus of gene expression experiments.
The researcher might be more interested in relevant pathways, functional sets, or genomic
regions consisting of several genes. For example using the GlobalAncove package [HMMOS8,
MMO5], gene-wise linear models are used to formalize the relationship of gene expression
with phenotypic or genomic covariates. An ANOVA-based sum of squares summarizes
the individual gene-wise linear models to a group statement. A permutation test and an
asymptotic distribution of the test statistics under the null hypothesis are available to
calculate P-values.

Network Analyses - Correlation

The estimation of graphs or networks for genomic data is a very ongoing technology and a
lot of studies address questions about the interaction between genes. In R and Bioconductor
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three useful methods — PC-Algorithm [KB0T7], Gene Correlation Networks (GeneNet) [SS05]
and Graphical Lasso [FHTO08|] — are available.

PC-Algorithm: The PC-Algorithm is a method for estimating the skeleton and equiv-
alence class of a very high-dimensional Directed Acyclic Graph (DAG) with corresponding
Gaussian distribution [KB07]. It uses the PC-Algorithm, presented in [SGS01], to esti-
mate a graph defined through conditional dependencies on any subset of the variables.
The PC-Algorithm starts from the complete graph and deletes recursively edges based on
conditional independencies. In the R language the method is available in the pcalg package.
The algorithm is computationally feasible and it is difficult to evaluate the computational
complexity of the PC-Algorithm exactly, but the worst case is bounded by O(p?) as a
function of dimensionality p (variables) and ¢ the maximal size of the neighbourhoods
[KBOT].

GeneNet: The GeneNet package is a R package for analyzing high-dimensional (time
series) data obtained from high-throughput functional genomics assays, such as expression
microarrays or metabolic profiling. Specifically, GeneNet allows to infere large-scale gene
association networks. These are Graphical Gaussian Models (GGMs), that represent mul-
tivariate dependencies in biomolecular networks by means of partial correlation. Therefore,
the output of an analysis — conducted by GeneNet — is a graph, where each gene corre-
sponds to a node and the edges included in the graph portray direct dependencies between
them [SS05].

Graphical Lasso: Another R package is the glasso package to estimate a sparse in-
verse covariance matrix using a lasso (L.1) penalty. It can be used for estimating a sparse
undirected graph. Using a coordinate descent procedure for the lasso, a simple and fast
algorithm - the Graphical Lasso - is available [FHTO0S].

Comparison: A comparison and simulation study for Graphical Gaussian Models is
available in [VSBHO§|. It reports strong differences between the available methods and for
the PC-Algorithm a good control of the FDR (False Discovery Rrate), when the parameter
« is suitably chosen. Comparing the computation time of the methods for estimating
graphs, the PC-Algorithm is about two times faster than the other ones. The comparison
and improvement of the existing methods is an ongoing work. Especially the choice of
the a parameter of the significance level for the individual partial correlation tests and
the convergence criteria. A fix value of a = 0.05 is commonly used, but for more than 60
nodes and more than 50% sparseness in the graph there is a huge bias. Figure[3.1]shows the
structural hamming distance (SHD) between the original graph and the estimated graph.
For the simulation 1500 normal distributed samples were generated from the original graph.
The result is independent of the used number of observations and only small imporvements
with a smaller o can be achieved.
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Figure 3.1: Visualization of the bias in the PC-Algorithm. Graphic plots the structural
hamming distance between original and estimated graph for different numbers of nodes
and sparseness in the original graph. 1500 normal distributed observataions and o = 0.05
are used.

The PC-Algorithm was designed for estimating sparse graphs. KEGG graphs (path-
ways) analyzed in the large cancer study (see Chapter @ have a nearly sparse graph
structure. They have less than 20% of the maximal number of edges and the average
number of nodes is 53 (average of edges: 173). In the large cancer study existing graph
structures should be confirmed, therefore, a good control of the FDR is required. Due to
the mentioned reasons, in this thesis the PC-Algorithm available in the pcalg package with
a fix a = 0.05 is used.

Methods for Comparing Graphs: There are only a few methods to compare graphs
especially arising from microarray data. The pcalg package provides two useful methods
to compare graphs.

Structural Hamming Distance: The Structural Hamming Distance (SHD) be-
tween two graphs is the number of edge insertions, deletions or flips in order to trans-
form one graph to another graph. The smaller the SHD the bigger is the similarity be-
tween the two graphs. The SHD is symmetric and can be calculated using the function
shd (graphl,graph?).

Rates: The True Positive Rate (TPR) is the number of correctly found edges in the
estimated (first graph parameter) divided by the number of true edges in the true (second
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graph parameter) graph. The False Positive Rate (FPR) is the number of incorrectly
found edges in the estimated (first graph parameter) divided by the number of true gaps
in the true (second graph parameter) graph. Therefore, a high TPR and a low FPR
show a good similarity between the graphs. The rates can be calculated with the function
compareGraphs (graphEstimated, graphTrue).

Graphical Comparison: Another way to demonstrate differences or similarities be-
tween two graphs is the visualization of the graphs next to each other. As you can see in
the graphs in this work, the visualization of graphs with more than 50 nodes and edges
gets very complex. Especially there are no tools for automatic graphical comparison of
two graphs. Highlighting same nodes or edges is possible, using the difficult code structure
from the Rgraphviz package. But, there are no tools to plot two graphs with the same node
structure. Therefore, a graphical comparison of graphs is not yet possible and a package
for graphical comparison of graphs should be developed.

3.2.3 Computational Problems & Challenges

Independent from the used software for genetic analyses, actual research and computa-
tions are limited by the available computer hardware. Another challenge is the fact that
microarray experiments are becoming increasingly popular, experiments are growing in
the number of used arrays, and methodological advances have led to more computational
demanding solutions.

Problem: Memory Limit

Actual research and computations are limited by the available computer hardware. For
many users the available main memory - mostly 1 or 2 GB at a workstation - limits the
number of arrays that may be quantified. In the R language the main memory limits
are caused by the structure of the AffyBatch class. An AffyBatch will be created by
importing CEL files into the R software and is a container for storing probe-level data,
related phenotypic information and MIAME. The number of arrays, which can be imported
strongly depends on the architecture of the computer system and microarray chip type.
Table B.3] shows some maximum numbers of CEL files of the Human Genome U133A

System max. CEL files
64-bit linux system with 4 GB main memory 400
32-bit linux system with 4 GB main memory 160
32-bit Microsoft Windows XP system with 1 GB main memory 60

Table 3.3: Maximum number of CEL files of the Human Genome U133A Affymetrix
GeneChip® for creating an AffyBatch object at different computer systems.

Affymetrix GeneChip (HG-U133A), which can be used for creating an AffyBatch object
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at different computer systems. The same machine can yield results differing by up to 5%.
Because of the different amount of ’outliers’ the CEL file size can change by up to 3-5%.
Using more arrays, a segmentation fault occurs in the R function ReadAffy (). Differences
in system architecture and configuration render any prediction of the maximum number of
microarrays impossible. Calculations like preprocessing methods on the AffyBatch require
more main memory, which means that the amount of usable arrays will be smaller (see

Table B4).

Problem: Computation Time

Furthermore, most of the existing preprocessing methods are very time consuming and thus
not useful for first and fast checks in laboratories. Computation time is the time a computer
needs to complete a program. This closely depends on the speed of the computer processor.
Different measurements show a nearly linear relation between computation time and the
amount of arrays. The gradient depends on the kind of method used and the speed of the
processor. Figure [3.2]shows the computation time in relation to the amount of microarrays

Build AffyBatch object
Background correction RMA
Quantile normalization
Summarization avgdiff-pmonly
Expresso preprocessing

500
|

400
|

Time in sec
300
1

200
|

100
|

0
|

0 20 40 60 80 100 120 140

Number of microarrays

Figure 3.2: Computation time in relation to the amount of microarrays for several pre-
processing methods. [expresso(..., bgcorrect.method="rma’, normalize.method="quantiles’, pmcor-
rect.method="pmonly’, summary.method="avgdiff’); computeExprSet(..., pmcorrect.method="pmonly’,
summary.method="avgdiff’)]

for several preprocessing methods. The time measurements were done at one node of
the IBE computing poll cluster with 2.66 GHz and 6 GB main memory as described in
Chapter [1.7] Summarization of the probes to probesets takes the most time. This is a very
complex process and strongly depending on the size of the chip type, because in a loop over
all probesets (HG-U133A: 22.000) the corresponding probe pairs (HG-U133A: 11) have to
be summarized.

Similar results are presented in a simulation study on a website from Ben Bolstad (http:
//bmbolstad.com/misc/ComputeRMAFAQ/size.html). The simulations were performed at
three different computer systems with a maximum main memory of 1 GB. The maximum
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number of CEL files for creating an AffyBatch object was about 100. For the computation
time there are similar linear degrees. In the discussion the swapping problem is mentioned:
"There is some upwards bias in the times due to the way the simulation was run. Because
of the way the operating system moves memory pages in and out of swap, if a large amount
of memory was allocated previously, the following routines may also suffer.’

Challenges

A further challenge is the fact, that microarray experiments are becoming increasingly
popular. The large number of publications with the keyword 'microarray’ published in
the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) shows the rapid devel-
opment in this field during the last ten years (see Figure [3.3(a))).

In addition, microarray chips are becoming cheaper and the number of chips used in
experiments is growing. The technology for creating chips is improving daily and the
number of probes per chip is growing, too. Therefore, more and more data have to be
managed and processed. Figure shows the box-and-whisker diagramsﬂ for the size
of experiments published in the database ArrayExpress [PKST07| between 2003 and 20009.
The mean size of the experiments stays stable about 10 arrays; however, the number of
big experiments is growing. The red line visualizes the number of experiments with more
than 150 microarrays. For instance, in 2007 the EMBLs European Bioinformatics In-
stitute (EMBL-EBI, Cambridge, UK) launched an experiment containing 5896 CEL files
(Affymetrix HG-U133A) to create a human gene expression atlas [PKST07, E-TABM-185].
Since 2003 there are 190 experiments with more than 150 microarrays and 8 experiments
with more than 1000 arrays.

Advances in scanner technology, array manufacturing, analysis algorithms, sequence
selection, probe design, and assay conditions have all contributed to improve the amount
and quality of data obtained from a single GeneChip array. Additionally, a reduction in
feature size has increased the data density on GeneChip arrays. The latest iteration of
the human expression arrays is represented by the Human Genome U133 Plus 2.0 Array.
Enhancements in array manufacturing, new scanner technology, and improvements in data
acquisition allowed the further reduction in feature size from 18 microns to 11 microns.
The Human Genome U133 Plus 2.0 Array contains over 54,000 probe sets representing
approximately 38,500 genes on a single array [Aff04]. Figure [3.4] visualizes the evolution of
feature size per array and number of probe sets per array for Affymetrix human genome
chips.

Next to the microarray developments, methodological advances have led to more com-
putationally demanding solutions in statistics. A common thread among these recent
methods is the use of simulation and resampling techniques. For example in microarray
data, building classification or prognostic rules, which uses resampling of the original data

In descriptive statistics, a boxplot (also known as a box-and-whisker diagram) is a convenient way
of graphically depicting groups of numerical data through their summaries: smallest observation, outliers
(circles), whiskers (extend to the most extreme data point which is no more than 1.5 times the interquartile
range from the box), lower quartile, median, upper quartile, and largest observation.
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Figure 3.3: Graphical visualization of the popularity of microarray experiments.
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to estimate the classification or prognostic error [RHPMO04], will be very time consuming.
Here, preprocessing has to be part of the cross-validation and resampling strategy which
is necessary to estimate the rule’s prediction quality honestly.

3.3 Next-Generation Sequence Data

The open-source programming language R and the open-source project Bioconductor sup-
port the rapid developments in next-generation sequencing. The packages in the Biocon-
ductor repository focus especially on down-stream (after alignment) analysis, quality as-
sessment, data manipulation, ChIP-seq and other peak calling, and visualization problems.
Due to the very new technology most packages are in development and the code structure is
very unstable. At the moment (August 2009) no publications about the new Bioconductor
packages and furthermore, no relevant textbook about high-troughput sequence analyses
exist. This section gives an overview of the latest packages for next-generation sequence
data in the Bioconductor repository.

3.3.1 Available Bioconductor Packages

All presented packages are available at the Bioconductor website. For more details see the
vignettes or help files of the packages.

The Biostrings Package

The Biostrings package offers memory efficient string containers, string matching algo-
rithms, and other utilities for fast manipulation of large biological sequences or set of
sequences. Especially for the representation of DNA, RNA, amino acid, and general bio-
logical strings. For the sequence manipulation it provides functions for sequence summary
(e.g., alphabetFrequency() ), pattern matching (matchDNApattern() ), subsequences and
"Views’ and 'masks’, and alignments (global, local, ends-free, ... ).

The BSgenome Package

The BSgenome package provides an infrastructure for Biostrings-based genome data pack-
ages. Using this package new packages with genome data stored in classes of the Biostring
package can be provided. To build the packages files containing the sequence data and files
containing the mask data are required. The package provides a foundation for representing
whole-genome sequences. At the moment there are 13 model organisms represented by 20
distinct genome builds available:

R> library(BSgenome)
R> available.genomes ()
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[1] "BSgenome.Amellifera.BeeBase.assembly4"
[2] "BSgenome.Amellifera.UCSC.apiMel2"
[3] "BSgenome.Athaliana.TAIR.01222004"
[4] "BSgenome.Athaliana.TAIR.04232008"
[5] "BSgenome.Btaurus.UCSC.bosTau3"

[6] "BSgenome.Btaurus.UCSC.bosTaud"

[7] "BSgenome.Celegans.UCSC.ce2"

[8] "BSgenome.Cfamiliaris.UCSC.canFam2"
[9] "BSgenome.Dmelanogaster.UCSC.dm2"

[10] "BSgenome.Dmelanogaster.UCSC.dm3"

[11] "BSgenome.Drerio.UCSC.danRer5"

[12] "BSgenome.Ecoli.NCBI.20080805"

[13] "BSgenome.Ggallus.UCSC.galGal3"

[14] "BSgenome.Hsapiens.UCSC.hgl7"

[15] "BSgenome.Hsapiens.UCSC.hg18"

[16] "BSgenome.Hsapiens.UCSC.hg19"

[17] "BSgenome.Mmusculus.UCSC.mm8"

[18] "BSgenome.Mmusculus.UCSC.mm9"

[19] "BSgenome.Ptroglodytes.UCSC.panTro2"

[20] "BSgenome.Rnorvegicus.UCSC.rn4"

[21] "BSgenome.Scerevisiae.UCSC.sacCerl"

Additional there are some functions to manipulate and process the whole genome data.
The bsapply () function applies a function FUN to each chromosome in a genome using the
parameters contained within the BSParams object. This object holds the various parameters
needed to configure the bsapply () function.

The ShortRead Package

The ShortRead package offers base classes, functions, and methods for representation of
high-throughput, short-read sequence data. Especially for data management, /O, manip-
ulating, and quality assessment of short read data of single-end Solexa data. For data
management and I/O the package provides functions to navigate in the output directory
structure of the Solexa Genome Analyzer sequencing machine and to read and filter the
raw data. Additional there are functions (e.g., qa()) to summarize read and alignment
quality and to create quality reports.

Further Packages

Next to the three mentioned packages there are several other packages for next-generation
sequence analysis in the Bioconductor repository and some others in development:

IRanges & genomelntervals: These packages offer an emerging infrastructure for repre-
senting very large data objects, for rangebased representations, and for manipulating
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intervals on sequences.

rtracklayer: Extensible framework for interacting with multiple genome browsers (cur-
rently UCSC built-in) and manipulating annotation tracks in various formats (cur-

rently GFF, BED and WIG built-in).

HilbertVis & HilbertVisGUI: These packages provide creative approaches for visual-
ization of long vectors of integer data (or sequence data), using space-filling (Hilbert)
curves that maintain, as much as possible, the spatial information implied by linear
chromosomes.

Chipseq: (in development) A package with tools for helping to process short read data
for Chip-Seq experiments.

3.3.2 Computational Problems & Challenges

The computational problems are very similar to the mentioned problems for micorarray
data (see Section . The continuing exponential accumulation of full genome data,
including full diploid human genomes, creates new challenges not only for understanding
genomic structure, function, and evolution, but also for the storage, navigation and privacy
of genomic data. Independent from the used software for next-generation sequence data,
actual research and computations are limited by the available computer hardware.

Data from high-throughput sequencing experiments are very large. They consist of
10s to 100s of millions of 'reads’ (each 10s to 100s of nucleotides long) and are coupled
with whole genome sequences (for example, 3 billion nucleotides in the human genome).
Currently, publicly available genomes are typically stored as flat text files in the GenBank
(http://www.ncbi.nlm.nih.gov/Genbank/), but this approach is unlikely to scale up in
many ways. The storage of the diploid genomes of all currently living humans using
this simple approach would take ’GenBank’, without counting headers or any additional
annotations, on the order of 36 x 10'® bytes, or 36 Petabytes, an amount difficult to store
or download over the Internet, even using standard compression technologies (e.g., gzip)
[BWBO09]. First developments in data structures and algorithms addressing these problems
are in progress.

Furthermore, first generation approaches with relatively short reads, restricted appli-
cation domains, and small numbers of sample individuals are being supplanted by newer
technologies producing longer and more numerous reads. New protocols and the intrinsic
curiosity of biologists are expanding the range of questions being addressed, and creating a
concomitant need for flexible and high-performance software analysis tools. The increasing
affordability of high-throughput sequencing technologies means that multi-sample studies
with non-trivial experimental designs are just around the corner.


http://www.ncbi.nlm.nih.gov/Genbank/
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3.4 Solutions

Both increased data size and increased simulation demands have to be solved. Most of
the observed problems could be removed by using faster computer processors and bigger
main memories (e.g., 128 GB). But high-throughput experiments are becoming increasingly
popular, buying a better computer can only be a temporary solution.

3.4.1 Existing Bioconductor Solutions

For microarray data, there are a number of preprocessing methods included in the affy and
affyPLM packages which try to solve these problems. For example, the justRMA() function
reads CEL files directly in the working directory and converts the raw data - without
using an AffyBatch object - to an expression measure using robust multi-array average
[MHCT03, IBCT03]. With the rma() function about 250 microarrays can be preprocessed on
the described computer. Using the justRMA() function about six times more arrays (1500)
can be analyzed. The threestep() function [BCST04] is primarily implemented in C code
and is typically faster than the expresso() or rma() function. It is an alternative method
of computing expression measures using the three described preprocessing steps. Table

100 CEL files 150 CEL files 200 CEL files

expresso 9.3 min 29.6 min segmentation fault
threestep 0.8 min 1.2 min 1.6 min

Table 3.4: Computation time improvement generated by special methods for preprocessing
(system specific).

shows the improvements, which may be achieved for HG-U133A chips. The results were
calculated at one node of the IBE computing poll cluster described in Chapter [4.7]

Unfortunately there are only a few methods available, which are designed for fast com-
putations on a large amount of data and they are limited by the available computation
hardware.

3.4.2 Further Solutions

Several different solutions were and are discussed in the user community to solve the
mentioned problems. In the following five approaches are shortly discussed.

1) Faster and Bigger Computers: One of the simplest but expensive solutions is to
buy faster and — in view of main memory — bigger computers. Today main memory is
available in nearly unlimited size, but for linear increase in size, there is an exponential
increase in costs and often a main memory limitation by the operation system. In
the last years the computer chip development could only achieve a small profit in
frequency and speed. Due to technical problems the frequency will stay stable and
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the number of processors in computers will be growing. Therefore, code has to be
(manually) adapted for the new generation of multiprocessor machines.

2) Business Applications: Another expensive solution is to buy commercial software
from business partners. Several software companies offer software for high-dimensional
genomic data and promise high-performance analyses on single computers. For ex-
ample the 'Partek Genomics Suite’ promises to be fast, memory efficient and will
analyze large data sets on one personal computer’. Most commercial software do not
provide latest algorithms and analyses tools. But using optimized GUIs they are often
more userfriendly than the command line oriented R and Bioconductor packages.

3) Databases: A database is a structured collection of data that is stored in a computer
system. The structure is achieved by organizing the data according to a database
model. Standards for storing biological data exist and could be used to develop
appropriate database models. First approaches using flat tableE] databases for mi-
croarray annotation data (e.g., hgul33a.db package) exist, using SQLite and the
RSQLite package. Due to the high-dimensionality of biological data, more complex
and efficient software (database management systems) will be required for efficient
use and have to be additionally installed at the users workstation. Furthermore, tools
for indexing, concurrency, security, etc. will be required. Databases are the preferred
storage method for large multiuser applications, where coordination between many
users is needed. If there are more read than write operations, databases perform best
for large multiuser applications.

4) Hard Drive as Main Memory: Using efficient data structure approaches for read-
ing data from a file on request, instead of loading the file to the main memory,
exist. Thereby the main memory problems can be solved, but additional 1/O will
be generated. These approaches are typically slow and special data structures are
required.

For microarray data this solution is implemented in the aroma.affymetrix package
[Ben04]. It provides memory-efficient methods to perform basic preprocessing anal-
yses, such as normalization and probe set summarization on Affymetrix data. An
AffymetrixDataset object defines a set of Affymetrix data files (typically CEL files)
on the file system, for which there are methods to access the data by probes or probe
sets across arrays. The data is accessed as in memory, but is internally read from
file on request. With this approach there is in theory no limitation in the number
of arrays. But the data have to be stored in a complex data structure and the R
code structure is more complex than the structure from the affy package. A detailed
comparison to the developed affyPara package is available in Chapter [5]

5) Distributed Computing: Using the potential of parallel computing, where calcula-
tions are carried out simultaneously, is another option. For biological data and sta-

2A flat file database or flat table describes any of various means to encode a database model as a plain
text file.
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tistical computing, parallel computing does not appear to have been used extensively
up to now [Sev03]. Message passing methods are most frequently used for paralleliza-
tion on multicomputers. In the R language, basic libraries like the Rmpi [Yu02] and
snow [RTLO03] packages are still available for parallelization on process layer. First
packages for multiprocessor machines are available, too. A detailed description about
parallel computing with R can be found in Chapter [4]

Parallelization will increase the speed of execution. Connecting several computers can
be used to increase the total available main memory. Computer cluster environments
are available for many research institutes today.

Due to the costs and expected hardware limitations, the solutions one and two were
dropped. The huge amount of expected data could be critical for database applications and
the installation of additional database software is not user friendly. Existing algorithms
using efficient data structures on the hard drive level already have performance problems.
Distributed computing is the most promising solution, because it accelerates the methods
and can solve the main memory problems. Parallel computing is, therefore, the solution,
which was picked and implemented in this thesis.



Chapter 4

Parallel Computing using R

R is an open-source programming language and software environment for statistical com-
puting and graphics. The core R installation provides the language interpreter and many
statistical and modeling functions. The R language was developed to provide a powerful
and extensible environment for statistical and graphical techniques. However, the devel-
opment of the R language was not aimed at providing a software for parallel computing.
Nonetheless, during the last decade a great deal of research has been conducted on parallel
computing techniques with R.

High-Performance Computing (HPC) is a part of computer based computing. It in-
cludes tasks which require a huge amount of computing power and of memory. In most
cases it uses supercomputers and computer clusters to solve advanced computation prob-
lems. But even the use of multi-core systems or graphics processing units (GPUs) or of
optimized database applications or optimized C class structures belong to HPC. In the R
user community and mailing-lists — especially the following topics of HPC — are of high
interest.

e Parallel computing approaches for R.

e The use of batch or queue management systems with R.
e Profiling and debugging R code.

e Large-scale automation and scripting with R.

Due to the described problems and solutions in Chapter |3| this work focuses on parallel
computing approaches.

Parallel computing is a form of computation in which many calculations are carried out
simultaneously, operating on the principle that large problems can often be divided into
smaller ones, which are then solved concurrently (’in parallel’). In distributed computing
a program is split up into parts that run simultaneously on multiple computers communi-
cating over a network. Hence distributed computing is a form of parallel computing, but
the word parallel computing is used to describe program parts running simultaneously on
multiple processors in the same computer.
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Section is a general introduction to parallel computing. The following two sections
deal with software and hardware environments for parallel computing and end with an
overview figure for notations and relations in HPC. Section [4.4] discusses important
aspects of manual parallel coding, followed by a chapter about performance analyses for
parallel algorithms. The next section introduces parallel computing with R and describes
the two most promising and most frequently used packages. The chapter ends with the
description and comparison of the three cluster environments used for this thesis.

4.1 Introduction to Parallel Computing

In general, parallel computing deals with hardware and software for computation in which
many calculations are carried out simultaneously. Traditionally, software has been written
for serial computation and runs on a single computer having a single Central Processing
Unit (CPU). Therefore, a problem is broken into a discrete series of instructions and they
are processed one after another. Only one instruction is processed at any moment in time.
A simple serial processing process with n+ 1 instructions (tasks) is visualized in Figure

In the simplest sense, parallel computing is the simultaneous use of multiple compute
resources to solve a computational problem. Using multiple CPUs a problem is broken
into discrete parts, that can be solved concurrently. Each part is further broken down to
a series of instructions, which run simultaneously on different CPUs. Figure [4.1] shows a
simple parallel processing pipeline with n + 1 tasks and m sub-tasks. Depending on the
algorithms every parallel task can have a different number (m) of sub-tasks.

v

v v v v

Task 2 Taskn

Task 3.1

Task 3.2

Task 3.m

Task n+1
|

I )
"
-~

Figure 4.1: Simple illustration of serial (left) and parallel (right) processing with n + 1
tasks and m parallel subtasks.

The compute resources of parallel computing can include ...
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e a single computer with multiple processors,
e an arbitrary number of computers connected by a network,
e and a combination of both.

Parallel computing is an evolution of serial computing, that attempts to emulate what
has always been the state of affairs in the natural world: many complex, interrelated events
happening at the same time, yet within a sequence. Historically, parallel computing has
been considered to be ’the high end of computing’, and has been used to model difficult
scientific and engineering problems found in the real world:

e Atmosphere, Earth, Environment

e Physics

e Chemistry, Molecular Sciences

e Geology, Seismology

e Mechanical Engineering - from Prosthetics to Spacecraft
e Electrical Engineering, Circuit Design, Microelectronics
e Computer Science, Mathematics

Today, commercial applications provide an equal or greater driving force in the development
of faster computers. These applications require the processing of large amounts of data in
sophisticated ways.

4.1.1 The Use of Parallel Computing

There are several main goals for the use of parallel computing.

Save Time and/or Money: Using n processors could reduce the computation time by
a maximum of factor n. Theoretically using more resources for a task will shorten
time to completion with potential cost savings. Additional computer clusters can be
built from cheap and commodity components.

Solve larger Problems: Many problems are so large and/or complex, that it is imprac-
tical or impossible to solve them on a single computer, especially given limited com-
puter memory. For example "Grand Challenges” (http://en.wikipedia.org/wiki/
Grand_Challenge) problems requiring PetaFLOPS and PetaBytes of computing re-
sources.

Provide Concurrency: A single computing resource can only do one thing at the same
time. Multiple computing resources can do many things simultaneously.


http://en.wikipedia.org/wiki/Grand_Challenge
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Use of non-local Resources: Using computing resources on a wide area network, or
even the Internet when local compute resources are scarce. For example SETI@Qhome
(http://setiathome.berkeley.edu) uses about 300.000 computers for a compute
power over 600 TeraFLOPS (http://boincstats.com/stats/project_graph.php?
pr=sah).

Limits to Serial Computing: Both physical and practical reasons pose significant con-
straints of simply building ever faster serial computers:

e Transmission speeds - the speed of a serial computer is directly dependent upon
how fast data can move through hardware. Absolute limits are the speed of light
(30 cm/nanosecond) and the transmission limit of copper wire (9 cm/nanosecond).
Increasing speed necessitates increasing proximity of processing elements.

e Limits to miniaturization - processor technology is allowing an increasing num-
ber of transistors to be placed on a chip. However, even with molecular or
atomic-level components, a limit will be reached on how small components can

be.

e FEconomic limitations - it is increasingly expensive to make a single proces-
sor faster. Using a larger number of moderately fast commodity processors to
achieve the same (or better) performance is less expensive.

During the past 20 years, the trends indicated by ever faster networks, distributed
systems, and multi-processor computer architectures (even at desktop level) clearly show,
that parallelism is the future of computing.

4.2 Parallel Hardware Environments

There are several hardware types which support parallelism. For the work presented here,
however, the software part is more important. Therefore, only the most popular hardware
types are mentioned.

Multi-core Systems: In a multi-core system a multi-core processor combines two or more
independent cores (normally a CPU) into a single package (see Figure [4.2(a)). These
processors are typically installed in desktop computers or notebooks and in the year
2009 quad-core processors - containing four cores - are becoming a standard. The
main memory is usually shared between all processing elements (shared memory).

Multi-processor Systems: In a multi-processor system two or more processors are in-
stalled in a single machine (see Figure [4.2(b)). This configuration is typically used
for server machines and nowadays several multi-core processors will be used. These
machines have a lot of main memory and can be used simultaneous from several
users. The main memory is usually shared between all processing elements. In huge
machines with a lot of processors distributed memory architectures are used. Each


http://setiathome.berkeley.edu
http://boincstats.com/stats/project_graph.php?pr=sah
http://boincstats.com/stats/project_graph.php?pr=sah

4.3 Parallel Software Environments 43

CPU1 CPU2

CPU2

——

(a) Multi-core system (b) Multi-processor system

Cache

Figure 4.2: Simple illustration of a multi-core and a multi-processor system. CPU: Central
Processing Unit; MMU: Memory Management Unit

processor has its own private memory and a key issue is the distribution of the data
over the memories.

Multi-computer - Computer Cluster: The idea of multi-computer environments — of-
ten called distributed computers — is the use of multiple computers to work on the
same task. A distributed computer is a computer system in which the computers
(processing elements with their own memory) are connected by a network.

Operation gets more difficult on heterogeneous multi-computers, where all the nodes
do not have the same architecture, operating system and key component libraries
(e.g., same R version). But in most cases multi-computer environments are homo-
geneous. If the computers are located in a local area network (LAN), they may be
called a computing cluster.

Multi-computer - Grid Computing: In grid computing, machines are connected in a
wide area network (WAN) such as the Internet. Next to the parallelization main
aspects in grid computing are heterogeneous environments and resource allocation
and management.

There are several other hardware environments which support parallel computing, but
so far they are not used for parallel computing with the R language. For example general-
purpose computing on graphics processing units (GPGPU) is a fairly recent trend in com-
puter engineering research.

4.3 Parallel Software Environments

Several programming languages and libraries have been created for programming parallel
computers. Kernel-level facilities targeted for high-performance computing (e.g., BProc,
MOSIX) are well-developed on Linux operating systems, with additional implementations
for Windows or Mac OS X. System-level tools focus especially on the management and
monitoring of parallel tasks. A list and short description of some resource management
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systems is available in [SMET09]. User-level libraries are most important for the end
user and parallel code designer. They can be classified based on the underlying memory
architecture.

4.3.1 Shared Memory

Shared memory programming languages communicate by manipulating shared memory
variables. Widely used shared memory application programming interfaces (APIs) include
OpenMP [DM9§| and POSIX Threads (Pthreads) [But97]. These are implementations of
multi-threading, a method of parallelization whereby the manager (master) thread forks a
specified number of worker (slave) threads and a task is divided among them. Each thread
executes the parallelized section of code independently.

OpenMP: Open Multi-Processing is an API that supports multi-platform shared memory
multiprocessing programming in C/C++ and Fortran. Commercial and open-source
compilers for many architectures including Windows are available. OpenMP is a
portable, scalable model that gives programmers a simple and flexible interface for
developing parallel applications. The section of code, that is meant to run in parallel
is marked accordingly by using a preprocessor directive, that will cause the threads
to form before the section is executed.

Threads: POSIX Threads is a POSIX standard for threads. Libraries implementing the
standard are often named Pthreads. For many architectures including Windows open
source implementations exist. Pthreads defines a set of C programming language
types, functions and constants. Programmers can use Pthreads to create, manipulate
and manage threads, as well as to synchronize between threads using mutexes and
signals.

OpenMP is under active development. Recent work indicates that it is easier to program
with OpenMP than Pthreads and that OpenMP delivers faster execution times [BLOO,
Bin0§].

4.3.2 Distributed Memory

Message-passing APIs are widely used in distributed memory systems. Message passing is
a form of communication which is made by sending messages to recipients. A manager-
worker architecture - often called master-slave - is most common. In this model of commu-
nication one device or process (manager) controls one or more other devices or processes
(workers) (see Figure 4.3). Once a manager-worker relationship between devices or pro-
cesses is established (spawned), the direction of control is always from the manager to the
workers. Well known implementations of the standard are MPI (Message-Passing Inter-

face) [For98] and PVM (Parallel Virtual Machine) |GBD™94].
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Slave Slave Slave

Figure 4.3: Illustration of master-slave or manager-worker architecture.

MPI: Message-Passing Interface is a standardized and portable message-passing system
designed by a group of researchers for use on a wide variety of parallel computers.
The MPI interface is meant to provide essential virtual topology, synchronization, and
communication functionality between a set of processes in a language-independent
way. Open-source implementations for many architectures including Windows exist.
MPICH2 and DeinoMPI currently provide a Windows implementation and OpenMPI
and MPICH2 are popular on Unix. OpenMPI is a project combining technologies
and resources from several other projects (e.g., LAM/MPI) with the stated aim of
building the best MPI library available.

PVM: The Parallel Virtual Machine is designed to allow a network of heterogeneous
Unix and /or Windows machines to be used as a single distributed parallel computer.
Open-source implementations for many architectures including Windows exist.

A comparison of both approaches is available in [GL02]. For computer clusters PVM
is still widely used, but MPI appears to be emerging as a de-facto standard for parallel
computing.

4.3.3 Comparison

The choice of the appropriate user-library is very difficult and often depends on the ap-
plication and available hardware. Shared memory programming languages were developed
for computer systems with shared memory to share or exchange data. These programming
languages (especially OpenMP) do not work in distributed memory environments (com-
puter clusters). In these environments message passing will be used for communication and
coordination of data between processes. MPI is a de-facto standard and message-passing
APIs (especially MPI) work on shared and distributed memory systems. In special systems
shared and distributed programming languages (especially OpenMP and OpenMPI) can
be used simultaneously. This is called hybrid parallelization and MPI will be used for the
coarse grain parallelization and OpenMP for fine scaling of single tasks.

In most cases for existing, serial code and new developments the parallelization is more
simple and faster with shared memory programming languages. However, MPI is more
flexible, runs on both hardware systems and can be used for a more complex program



46 4. Parallel Computing using R

structure. The hybrid parallelization could be very efficient, but parallelization gets very
complex.

Computer GRID
Cluster Computing

Distributed

multi-core multi-processor

Figure 4.4: Hlustration of notations and relations in high-performance computing.

The notations and relations in HPC can be confusing and due to the fast developments
in chip technology they are changing very often. Figure gives an overview of the
relations in actual HPC. The figure does not illustrate the full bandwidth of HPC, but the
important aspects for this work.

Due to the available R packages and the compatibility to different hardware systems
parallel programming languages — especially MPI — for distributed memory systems will be
used in this work. Therefore, developments will be working on all architectures for parallel
computing.

4.4 Parallel Program Design

Designing and developing parallel programs has characteristically been a very manual pro-
cess. The programmer is typically responsible for both identifying and implementing paral-
lelism [GKKGO03| [SIo04]. Very often, manually developing parallel codes is a time consum-
ing, complex, error-prone and iterative process. For a number of years, various tools have
been available to assist the programmer with converting serial programs into parallel pro-
grams. The most common type of tool used to automatically parallelize a serial program is
a parallelizing compiler or pre-processor. However, there are several important reasons to
prefer manual to automatic parallelization: Wrong results may be produced, performance
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may actually degrade, much less flexible than manual parallelization, code is too complex
for automatic parallelization, etc..

Therefore, the remainder of this section deals with several important manual methods
of developing parallel code.

4.4.1 Analysing the Serial Code

The first step in developing parallel software is to understand the problem, that has to be
solved in parallel. If a serial program is available, it necessitates to understand the existing
code. Before spending time in the attempt to develop a parallel solution for a problem,
determine whether or not the problem is one that can actually be parallelized and if there
are methods to accelerate the serial code. Several profilers and performance analysis tools
exist to identify program’s hotspotdl] or bottlenecks’l A number of tools are available to
profile R code for memory use and evaluation time. How to use these tools and how to
detect probable bottlenecks is described in [R_DO8bD], [VenOl], [Gen0§], and in the R
help page ?Rprof. The CRAN packages proftools [Tie07] and profr [Wic(O8] provide more
extensive profiling tools.

A classical example of a non-parallelizable problem is the calculation of the Fibonacci
series (1,1,2,3,5,8,13,21,...) by use of the formula:

Flk+1)=F(k) + F(k—1)

This is a non-parallelizable problem, because the calculation of the next Fibonacci (k+1)
number depends on the ultimate (k) and penultimate (k-1) sequence. These three terms
cannot be calculated independently and therefore, not in parallel.

4.4.2 Partitioning

One of the first steps in designing a parallel program is to break the problem into discrete
"chunks’ of work, that can be distributed to multiple tasks. This is known as decomposition
or partitioning. There are two basic ways to partition computational work among parallel
tasks [GKEKGO3]. Both are visualized in Figure for a decomposition into four task for
four different processors.

Data Decomposition

In data decomposition or domain decomposition the data associated with a problem will be
decomposed. Each parallel task then works on a portion of the data. This decomposition
is useful for problems, where data is static, dynamic data structure tied to a single entity
and the entity can be subsetted (e.g., large multi-body problems), and domain is fixed but
computation within various regions of the domain is dynamic (e.g., fluid vortices models).

LA hotspot is a code part where most of the real work is being done.
2 A bottleneck is a code area, that is disproportionately slow.
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Figure 4.5: Graphical illustration of the two basic decomposition strategies: data and task
decomposition.

There are many ways to decompose data into partitions. For example for two dimensional
data there are 'Block Block Distribution’, 'Block Cyclic Distribution’” and 'Cyclic Block
Distribution’.

Task Decomposition

In task decomposition or functional decomposition the focus is on the computation, that is
to be performed rather than on the data manipulated by the computation. The problem is
decomposed according to the work that must be done. Each task then performs a portion
of the overall work and the different tasks can be distributed to multiple processors for
simultaneous execution. This partition is useful, if there is no static structure or fixed
determination of calculation numbers to be performed.

4.4.3 Further Aspects for Parallel Program Design

There are several further aspects which have to be considered in the design of parallel
programs. Some interesting topics for this work are listed below. For more details and
aspects see relevant technical literature [Slo04, [GKKGO03, [DFET03].

Communication: The need for communication between tasks depends upon the problem.
In general calculation is faster than communication and therefore, communication

should be reduced.

Data Dependency: A dependence exists between program statements when the order of
statement execution affects the results of the program. A data dependence results
from multiple use of the same location(s) in storage by different tasks. Dependencies
are important to parallel programming because, they are one of the primary inhibitors
to parallelism.

Load Balancing: Load balancing refers to the practice of distributing work among tasks
so that all tasks are kept busy all of the time. It can be considered a minimization
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of task idle time. Load balancing is important to parallel programs for performance
reasons.

Granularity: In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication. Periods of computation are typically separated from
periods of communication by synchronization events. In fine-grain parallelism rela-
tively small amounts of computational work is done between communication events.
The opposite is called coarse-grain parallelism. The most efficient granularity is de-
pendent on the algorithm and the hardware environment in which it runs.

Random Numbers: Generating random numbers presents a particular problem for par-
allel programming. For example, if you are using a large number of random numbers
on a number of different processors and using the same random number generator
on each, there is a chance that some of the streams will overlap. However, there are
tools available to fix these problems, e.g., SPRNG.

4.5 Parallel Performance Analysis

Performance analysis and tuning for parallel algorithms is very difficult. As with debugging,
monitoring and analyzing parallel program execution is significantly more of a challenge
than for serial programs. A number of tools for monitoring, and program analysis for
parallel code are available. For debugging — especially of code running at the workers —
only a limited number of tools exists.

4.5.1 Computation Time

First of all the computation time for different numbers of processors and different sizes of
input data can be measured and visualized. Typically a

TN ~ ]_/N

trend can be seen for the computation time (T) plotted over the number of processors (N).
In theory a N times acceleration in computation is expected using N processors.

4.5.2 Speedup

In parallel computing, speedup (S) refers to how much a parallel algorithm is faster than a

corresponding sequential algorithm:
T
Sy = —
N Ty

Where N is the number of processors, T} the execution time of the sequential algorithm
and Ty the execution time of the parallel algorithm with N processors. The speedup is
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called absolute speedup when Tj is the execution time of the best sequential algorithm,
and relative speedup when T} is the execution time of the same parallel algorithm on one
processor.

Amdahl’s Law

One of the best rates for describing the limits and costs of parallel programming is Amdahl’s
Law [Amd67]. Tt states that the potential program speedup is defined by the fraction of

code that can be parallelized (P):
g L
—1—-P
If none of the code can be parallelized (P = 0) then the speedup is 1 (no speedup). If all
of the code is parallelized (P = 1), the speedup is infinite (in theory). If 50% of the code
can be parallelized, maximum speedup is 2, meaning the code will run twice as fast (see
Figure . Introducing the number of processors (N) performing the parallel fraction of

work, the relationship can be modeled by

1

Sy <
N=PF,g

e

where P is the parallel fraction and S the serial fraction. As visualized in Figure
there are limits to the scalability of parallelism. Due to parallelization, additional costs for
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Figure 4.6: Visualization of theoretical speedup for parallel computing plotted for the
parallel portion of code (left) and number of processors (right).

communication or synchronisation between processes are possible. Therefore, it is useful
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to add a parameter o(/N), which grows with increasing N.

g 1
N S
% + S+ o(N)
The speedup curves do not more convergence to ﬁ. They reach a maximum and then

fall off (visualized in Figure [5.11)). This effect commonly can be observed in practical
examples. If the number of processors is big enough, the costs for communication exceed
the computing time.

Amdahl’s law was written in 1967 and new technologies — especially caching — have
not been considered. Therefore, a super-linear speedup is sometimes possible. Sometimes
a speedup of more than N, when using N processors, is observed in parallel computing,
which is called super linear speedup. Super linear speedup rarely happens, that could have
different reasons: Bad serial code, cache effects, ....

4.5.3 Efficiency

Another performance metric is called efficiency and is defined as

_ SN

En i

It is a value — typically between zero and one — estimating how well-utilized the processors
are in solving the problem, compared to how much effort is wasted in communication and
synchronization. Algorithms with linear speedup and algorithms running on a single pro-
cessor have an efficiency of 1, while many difficult-to-parallelize algorithms have efficiency
such as lmgLN that approaches zero as the number of processors increases.

4.5.4 Karp-Flatt Metric

The Karp-Flatt Metric is a measure of parallelization of code in parallel processor systems.
This metric exists in addition to Amdahl’s Law as an indication of the extent to which
a particular computer code is parallelized [KF90]. The experimentally determined serial
fraction e is defined as . .
Sy N

e = .
1
-5

The lower the value of e the better the parallelization. In case of super-linear speedup the
value becomes negative.

4.5.5 Resource Requirements

The primary intent of parallel programming is to decrease execution wall clock time. How-
ever, in order to accomplish this, more CPU time is required. For example, a parallel code
that runs in one hour on eight processors actually uses eight hours of CPU time. The
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amount of memory required can be greater for parallel codes than serial codes, due to
the need to replicate data and for overheads associated with parallel support libraries and
subsystems. For short running parallel programs, there can actually be a decrease in per-
formance compared to a similar serial implementation. The overhead costs associated with
setting up the parallel environment, task creation, communications and task termination
can comprise a significant portion of the total execution time for short runs.
Table[4.1)shows the CPU time and used main memory which was consumed for this PhD
thesis at the IBE. The monitoring by the batch system "Sun Grid Engine’ is available since
March 2009. In May 2009 the permutation test described in Chapter was calculated.

March April May June July
CPU time in days - non parallel 0.6 4.0 6.0 0.9 0.8

CPU time in days - parallel 246.3 118.5 1143.9 162.6 267.4
Memory in GB - non parallel 0.1 0.79 2.1 0.1 0.1
Memory in GB - parallel 7.2 3.9 55.2 123 138

Table 4.1: Used computer resources for this PhD thesis at the cluster at the IBE.

4.6 Parallel Computing using R

During the last decade more and more research has focused on using parallel computing
techniques with R. The first available package was rpvm by Li and Rossini. This package
provides a wrapper to the Parallel Virtual Machine software. Early papers describing
parallel computing with R are [LRO1], [Yu02], [Sev03] and [|RTLO3]. Interest in high-
performance computing with R has been increasing particularly in the last two years. The
R mailing lists (http://www.R-project.org/mail.html) now frequently host discussions
about using R for parallel computing. The UseR!2008 Conference in Dortmund, Germany;,
and UseR!2009 Conference in Rennes, France contained tutorials, as well as several sessions
on HPC with R where several new packages were presented.

The paper |[SMET09] presents an overview of techniques for parallel computing with
R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen
different packages, comparing them on their state of development, the parallel technol-
ogy used, as well as on usability, acceptance, and performance. An overview containing
hyperlinks to all packages is available in Table [4.2]

Two packages (snow, Rmpi) stand out as particularly useful for general use on computer
clusters. Both have acceptable usability, support a spectrum of functionality for parallel
computing with R, and deliver good performance. Other packages try to improve usability,
but so far usability gains have usually been achieved at the expense of lower functionality.
Packages for grid computing are still in development, with only one package currently
available to the end user. For multi-core systems four different packages exist, but a
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number of issues pose challenges to early adopters. In January 2009 a new and promising
package for the use of multi-core systems with R was released: multicore

A short introduction to the two most promising and commonly used packages is given
in the following. A performance evaluation using a bootstrap example is available in
Section [4.7] The new developed affyPara package uses the snow package.

4.6.1 The snow Package

The snow package (Simple Network of Workstations) [RTL0O7| supports simple parallel
computing in R. The interface is intended to be simple, and is designed to support sev-
eral different low-level communication mechanisms. Four low-level interfaces have been
implemented: PVM (via the rpvm package), MPI (via Rmpi), NetWorkSpaces (via nws),
and raw sockets that may be useful if PVM, MPI or NWS are not available. This means
it is possible to run the same code at a cluster with PVM, MPI or NWS;, or on a single
multi-core computer.

The snow package includes scripts to launch R instances on the slaves. The instances
run until they are closed explicitly via the stop command. The package provides support
of high-level parallel functions like apply () and primitive error-handling to report errors
from the workers to the manager. The following example code starts a cluster and calls
the function sum() with the first element of the list on the first node, with the second
element of the list on the second node, and so on. Additional the function sum() gets the
parameter 3, therefore, it calculates 1+3, 2+3 and 3+3.

R> library(snow)
R> cl1 <- makeCluster(3, type = "MPI")

3 slaves are spawned successfully. O failed.

R> res <- clusterApply(cl, 1:3, sum, 3)
R> unlist(res)

[1] 456
R> stopCluster(cl)

(1] 1

4.6.2 The multicore Package

The multicore package [Urb09] is a very new R package (released in January 2009) that
provides functions for parallel execution of R code on machines with multiple cores or CPUs.
It can not be used for multi-computer environments. Unlike other parallel processing
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methods all jobs share the full state of R when spawned, so no data or code needs to be
initialized. The actual spawning is very fast as well, since no new R instance needs to be
started. The package uses the fork system call to spawn a copy of the current process,
which performs the computations in parallel. Modern operating systems use the copy-
on-write approach, which makes this very appealing for parallel computation since only
objects modified during the computation will be actually copied and all other memory is
directly shared.

This is one of the most promising package developments for the integration of multi-
processor environments to R. Problems appear due to the absence of the fork command
on Windows systems. The code for the same example as above has the following structure:

R> library(multicore)
R> res <- mclapply(1:3, sum, 3)
R> unlist(res)

[1] 4 5 6

4.7 Used Cluster Environments

For the evaluation of the new affyPara package different cluster environments were used.
All systems are Unix based and the latest R and Bioconductor versions are installed. There
are differences in the computation time on single processors due to different clock rates and
software compilers.

HLRB II: SGI Altix 4700: The system commenced operation in 2006 in the new LRZ
building in Garching, Germay. The peak performance is more than 62 TFlop/s, which
is delivered by 9,728 Intel Itanium Montecito cores (1.6GHz). The main memory size
is 39 TByte. The processors are connected with NUMAIlink4 network architecture
(Bandwidth of 6.4 GByte/s). In April 2009 the HLRBII was on place 44 in the
TOP500 (http://www.top500.o0rg) list, a ranking of supercomputers according to
the LINPACK benchmark. The HLRB2 can be used as multiprocessor machine with
up to 510 processors, or as multi-computer machine with 9728 machines, or as a
hybrid-architecture. PBS Pro (the Portable Batch Queuing System) is used for the
job management. (http://www.lrz-muenchen.de/services/compute)

IBE - Computing Pool: The system commenced operation in 2007 and is a computing
pool with 32 computers. Each machine runs on 4 CPU cores (2 dual-core Intel
Xeon DP 5150, 2.66 GHz) and 8 GB main memory and they are connected with a 1
Gbit Network. There is a maximum number of 128 processors. As master node the
machine ’lis06” described bellow can be used. SGE (Sun Grind Engine) is used for
the job management.
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IBE - 1is06: This system is a multiprocessor machine with 8 CPU cores (4 dual-cores
Intel Xeon E7220, 2.93GHz) and 64 GB main memory. SGE is used for the job
management.

4.7.1 Comparison of Used Cluster Environments

To compare the speed and performance of the three different cluster environments a simple
bootstrap - benchmark was implemented. Bootstrapping is a classic example of a time-
consuming but simple to parallelize computation. Bootstrap replicates of a generalized
linear model fit for data on the cost of constructing nuclear power plants were generated.
Available code from the boot package and the proposed parallelization from [RTLO3| were
used. For the parallelization the in Section proposed packages snow and multicore
were used. 5000 bootstrap replicates were calculated on different numbers of processors
and the calculation was replicated 10 times to adjust for external factors (network traffic,
other computations). The results are plotted in Figure , for the computation times the
boxplots with the highest IQRs are added.

Due to the architecture of the cluster environments the computation times on the single
processor should be comparable. The HLRBII with 1.6GHz has the slowest processors.
Other differences in computation time are due to differences in the compilation of the R
language (used compiler, profiling, ... ). The step (64-65) in the speedup curve for the IBE
computing pool occurs, if there are more than two processors running on one computer
(32 available computers). Due to hardware architecture the main memory communication
becomes a bottleneck. On the multi-processor machines (lis06 and HLRB2) both packages
show very similar behavior and nearly linear speedup for the bootstrap benchmark up to 20
nodes. After 20 nodes a strange behavior occurs at the HLRB2. Due to multiple processes
running on the same processor, there is no more linear speedup. This is a load balancing
problem of the batch system PBS and operating system. If the computation times are long
enough, a better performance can be reached. In all cluster environments there are only
small differences (small IQRs, no outliers) in the time measurements of the 10 replicates.
This is a good indicator for no foreign network traffic or load.

4.8 Summary

In summary there are many high-performance computing technologies available today.
Most of them were not developed or optimized for applications in (Bio-)Statistics or Bioin-
formatics. Due to the flexible package structure, the R language provides a good interface
to different high-performance computing resources. Satisfying solutions exist, especially
for parallel computing in computer clusters and mulit-core environments.
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Chapter 5

Parallel Computing in Microarray
Data: affyPara

The power of parallel computing is used to solve the mentioned problems and new challenges
in microarray data preprocessing. Microarrays can be distributed to different processors or
computers, thereby main memory problems are solved and methods accelerated. Existing
statistical algorithms and data structures are adjusted and reformulated for parallel com-
puting. Using the parallel infrastructure the methods are enhanced and new methods are
developed. A new Bioconductor package called affyPara for preprocessing huge amounts
of microarray data is presented in [SMO0S8, [SMO09].

Section outlines the main idea and aspects of the parallelization of preprocessing
for microarray data. Section describes the implementation of the affyPara package in
detail and new approaches in parallel low level analysis. The chapter ends with results,
speedup curves and a comparison to other existing solutions.

5.1 Idea

The main idea of parallel computing for microarray data is to use a block cyclic distribu-
tion to distribute arrays to different processors. In general, microarray data are stored in
a matrix structure. In the columns there are the arrays or samples and in the rows there
are the probe sets, genes or features (see Figure |5.1)). Using the block cyclic distribution
the arrays are distributed equally to all processors, therefore, the amount of required main
memory per processor gets smaller. All existing data structures and objects (AffyBatch,
ExpressionSet) for microarray data in the R language and in basic Bioconductor packages
are array oriented. The block cyclic distribution is chosen to reuse existing code and there-
fore, all data (probes) from one array are available at one processor. Other decomposition
strategies and distribution details are discussed in Section

The snow package is used for implementation due to the available cluster environments,
the compatibility of the snow package to multi-processor and multi-computer systems, and
the user friendly code interface.
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Figure 5.1: Block cyclic distribution for microarray data. The intensity matrix is split into
four small matrices using domain decomposition.

5.2 Implementation

This section describes the development and implementation of parallel algorithms for
preprocessing microarray data. For the visualization of the implementation structure
flowcharts and for the computation time Gantt charts are used. A flowchart is a com-
mon type of chart, that represents an algorithm, showing the steps as boxes of various
kinds, and their order by connecting these with arrows. A Gantt chart is a type of bar
chart that typically illustrates a project schedule, but could be used for visualizing compu-
tation and communication time, too. In the snow package (Version > 0.3-3) Gantt charts
can be created using the following functions:

R> library(snow)
R> t <- snow.time(expr)
R> plot(t, xlab = "Elapsed Time", ylab = "Node", title = "Cluster Usage")

The graphic represents active computation with green rectangles, blue horizontal lines
represent a worker waiting to return a result, and red lines represent manager-worker
communications. Ten nodes and 100 microarrays were used in this chapter for the Gantt
charts. As example for the two different graphics see Figure

5.2.1 Basic Architecture

All functions in the affyPara package can get the raw data in three different forms of input
objects. Depending on the object class, there are differences in the parallel process:

’AffyBatch’: The functions can get the raw data as an AffyBatch object. Therefore, the
complete AffyBatch object has to be built at the master node and the mentioned
main memory problems are not removed. In the parallel process the expression matrix
in the AffyBatch object is partitioned (block cyclic) and distributed to the nodes.
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’CELfileVec’: The functions can get the raw data as a list or vector of names (links to the
location) of the CEL files. Therefore, the CEL files have to be available in the same
directory at all nodes. Typically in cluster environments this is available with a shared
file system (e.g., SAMBA or nfs) and as default in multi-processor environments.
In the parallel process the list of CEL file names is partitioned, distributed to the
nodes, and then the small AffyBatch objects are built at the nodes. In cluster
environments with a shared file system the communication with the file system could
be a bottleneck, because first all nodes connect to the file system to get the raw data.

’partCELfileList’: The functions can get the raw data as a partitioned list of names of the
CEL files. CEL files can be distributed to the nodes (e.g., to temporary directories)
in advance with an optimized data distribution function. This function generates a
partitioned list of the names of the distributed CEL files. In the parallel process only
the small AffyBatch objects have to be built at the nodes. The data distribution step
is not required in multi-processor environments, while in big cluster environments it
can take some time to distribute the data to all nodes.

Due to the experiences using the computing pool at the IBE the second solution is the best
one. No connection problems with the shared file system could be detected with up to 120
nodes and about 7000 microarrays.

After the distribution of the raw data all parallel functions have the same code structure.
First of all the small AffyBatch objects are initialized at the workers. Then depending
on the kind of preprocessing method the parallel algorithm is executed. At the end the
expression matrices are collected by the master node and the AffyBatch or ExpressionSet
object is built at the master.

There are several internal checks to guarantee fail over and in every function debug
options can be switched on using the verbose=TRUE parameter.

5.2.2 Background Correction

Background correction (BGC) methods are used to adjust intensities observed by means
of image analysis to give an accurate measurement of specific hybridization. The exist-
ing methods are dependent on the actual sample only, therefore, they are easy to paral-
lelize and existing serial code can be reused: partition of the data, initialization of the
small AffyBatch objects at the workers, execution of the serial BGC methods with the
small AffyBatch objects at the workers, sending results back to master and rebuilding the
AffyBatch object. Figure shows the programming flowchart and Gantt chart of the
parallelized background correction function. In both graphics the implementation steps
are visible. The Gantt chart shows a computation time of four seconds for the initializa-
tion process and about five seconds for the parallel BGC. The long communication and
AffyBatch rebuilding time is discussed in Section |5.3]

Parallelized BGC methods are implemented in the function bgCorrectPara(). Avail-
able methods can be listed with the command bgcorrect.methods(). An example code
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START
bgCorrectPara

Node
5
|

Initialize AffyBatch
bg.correct()

‘ Initialize AffyBatch ‘ ‘ Initialize AffyBatch ‘

I l

‘ bg.correct() ‘ ‘ bg.correct() ‘

~ 4 S
- \\
oo LoNAL

0 5 10 15 20 25
STOP
bgCorrectPara Elapsed Time

(a) Flowchart (b) Gantt chart with CEL file list as input object.

Rebuild AffyBatch

Figure 5.2: Flowchart and Gantt chart for parallelized rma background correction. Both
graphics visualize the implementation steps.

using a cluster with two MPI workers and the Dilution data set (four arrays) from the
affydata package has the following structure:

R> library(affyPara)
R> library(affydata)
R> data(Dilution)

R> bgcorrect.methods ()

[1] "maS n llnonell Ilrmall

R> makeCluster (2, type = "MPI")

R> bgc <- bgCorrectPara(Dilution, method = "rma", verbose = TRUE)

Partition of object 2.924 sec DONE

Object Distribution: 2 2

Initialize AffyBatches at slaves 4.341 sec DONE
BGC on Slaves 8.308 sec DONE

Rebuild AffyBatch 3.064 sec DONE
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R> stopCluster()

5.2.3 Normalization

Normalization methods make measurements from different arrays comparable. Similar to
BGC methods the baseline normalization methods only depend on the actual arrays and
are easy to parallelize. The serial code can be reused at the workers. Complete data
methods have proved to perform very well, but due to their multi-chip dependency they
are more complex for parallelization.

Baseline Normalization Methods

These methods select one array to represent the typical arrays, and then all the other
arrays are normalized to that array. The Gantt charts for the two baseline normalization
methods constant and invariantset are visualized in Figure [5.3]

Constant Normalization Invariantset Normalization
o _r o _[ - —_ _
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©
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Figure 5.3: Gantt chart for parallelized constant and invariantset (PM and MM separate)
normalization with CEL file list as input object.

Constant Normalization: After the AffyBatch object’s initialization at the workers
(four seconds), about 0.5 second is required to get the reference arrays from one of the
workers to the master and to distribute this array to all workers (only red communication
lines in the Gantt chart). Then about five seconds are required for the parallel constant
normalization. The serial code from the affy package is reused at the workers. Parallelized
constant normalization is available in the function
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R> norm <- normalizeAffyBatchConstantPara(Dilution, refindex = 1,
+ FUN = mean)

Invariantset Normalization: After the AffyBatch object’s initialization at the work-
ers, a parallel procedure with three steps is started. If a PM and MM separate invariantset
normalization is used, then there is a second three step procedure (see Gantt Chart). In
the first step the reference array is calculated, then the reference array is copied from one
worker to all workers. In the third step the invariantset normalization is executed using the
serial code from the affy package at the workers. Parallelized invariantset normalization is
available in the function

R> norm <- normalizeAffyBatchInvariantsetPara(Dilution,
+ baseline.type = "mean", type = "pmonly" )

Complete Data Normalization Methods

These methods use information from across all arrays to produce the normalization. There-
fore, first of all the data have to be distributed to the workers, and some model parameters
have to be calculated. Sending these parameters back to the master, the parameters for
the whole normalization model can be computed. Back at the workers, the normalization
is done with the complete parameters.

Quantile Normalization: (Quantile normalization gives the same empirical distribution
of intensities to each array. First of all the row (probes) means over all arrays have to be cal-
culated. Therefore, the row means are calculated at the workers. With these results the full
row means are calculated at the master. The vector of row means is distributed to all work-
ers and the arrays are normalized at the workers. Figure shows the flowchart and Gantt
chart for the parallelized quantile normalization function. Parallelized quantile normal-
ization is available in the function normalizeAffyBatchQuantilesPara(object, type
= c("separate", "pmonly", "mmonly", "together"),...). An example code using a
cluster with two MPI workers and the Dilution data set (four arrays) from the affydata
package has the following structure:

R> makeCluster(2, type = "MPI")
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Figure 5.4: Flowchart and Gantt chart for parallelized quantile normalization with CEL
file list as input object.

R> bgc <- normalizeAffyBatchQuantilesPara(Dilution, type = "pmonly",
+ verbose = TRUE)

Partition of object 1.406 sec DONE

Object Distribution: 2 2

Initialize AffyBatches at slaves 4.929 sec DONE
PM normalization 13.413 sec DONE

Rebuild AffyBatch 2.765 sec DONE

R> stopCluster()

For performance reasons the quantile normalization in the affyPara package is imple-
mented in C. Due to the use of the snow package as communication API for parallel
computing and the support of different communication layers (socket, mpi, pvm, nws) in
the snow package, it is not possible to use C code for the parallelization. In detail for
MPI, it is not possible to export the global MPI-communication object (pointer), which is
created in R from the snow package, into the C language. A complete reimplementation of
the snow and Rmpi would be required. At the workers it is possible to use C code, but for
quantile normalization the benefit would be only small. Therefore, the computation time
of the parallel code (implemented in R) has to be compared to the serial code in C.



66 5. Parallel Computing in Microarray Data: affyPara

Cyclic Loess Normalization: In the cyclic loess normalization for single channel array
data, pairs of arrays are normalized to each other by using MA-plots. Usually only one
complete cycle through the data is required. Figure [5.5(a)| visualizes the 24D pairs (A
is the number of arrays), which will be normalized.
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Figure 5.5: Visualization of cyclic loess normalized array pairs for A arrays (1,...,n) and

N processors.

The pairwise parallelization for cyclic loess is difficult. Due to the block cyclic distribu-
tion of the arrays, at each worker only some pairs are available, visualized in Figure|5.5(b)
ceiling(A/N)—1)

2

malized to each other (NN is the number of processors) or A;(l — +) are not normalized to

each other. This means, the bigger the number of processors, the less pairs are normalized.
Furthermore, there has to be more than one array at each node ( % > 1).

If the normalization is only executed at the workers, only Al pairs are nor-

Cyclic Loess Standard: Due to the block cyclic distribution of the arrays, first of
all the available pairs at the workers are normalized to each other. To get the same results
as from the original loess normalization function, the normalization between all arrays has
to be guaranteed. Therefore, array one from worker one is distributed to all other workers,
normalized against all available pairs and removed from the workers. In the same way all
arrays are copied to the workers and normalized to each other. It has to be checked, that
arrays are not normalized twice to each other. This approach requires a lot of network
traffic, but due to the parallel normalization of the pairs, an obvious acceleration can be
achieved.

The parallelized cyclic loess normalization is available in the function

R> norm <- normalizeAffyBatchLoessPara(Dilution, type = "pmonly", maxit = 1 )



5.2 Implementation 67

Cyclic Loess with Permutation: The parallelized cyclic loess normalization re-
quires a lot of network traffic and array permutations. For further improvements the
number of normalized pairs can be adapted and the network traffic is smaller. This idea is
visualized in Figure and implemented in the function

R> norm <- normalizeAffyBatchLoessIterPara(object, percentPerm = 0.75,
+ type=c("separate", "pmonly", "mmonly", "together"), maxit=1)

The additional parameter percentPerm is required, which gives the percentage of nor-
malized pairs. Applied studies demonstrate, that 75% percent of pairs are sufficient for a
‘good’ normalization. For the quality comparison of the normalization the graphical tools
boxplot and histogram (not shown) are used. Figure compares the boxplots for 50
arrays normalized with the serial cyclic loess normalization (red boxplots) and the paral-
lel (four workers) cyclic loess normalization with 75% percent of pairs normalized (blues
boxplots).
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Figure 5.6: Boxplots comparing serial cyclic loess normalization (red boxplots) and the
parallel (four workers) cyclic loess normalization with 75% percent of pairs normalized
(blues boxplots). Arrays are from the E-GEOD-11121 experiment.

As shown in the Section the improvement by the reduced number of normalized
pairs yields only in a small improvement in the speedup.
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5.2.4 Summarization

Summarization is the final step in preprocessing raw data. It combines the multiple probe
intensities for each probeset to produce expression values. These values will be stored in
the class called ExpressionSet. Compared to the AffyBatch class, the ExpressionSet
requires much less main memory, because there are no more multiple data. The different
parallel summarization methods are available in the computeExprSetPara() function.

Single-Chip Summarization

Single-chip summarization methods use only probe intensities of an individual array to
compute expression values for that array. Therefore, they are easy to parallelize. The
original summarization methods can be executed at the workers, the new intensity matrices
(about 10-16 times smaller than the intensity matrices of an AffyBatch object) are sent
back to the master and the complete ExpressionSet object is build. This method works
for avgdiff and mas summarization.

R> eset <- computeExprSetPara(Dilution, method = "avgdiff")

Multi-Chip Model Summarization

Multi-chip model summarization methods build statistical models upon the probe intensi-
ties of all arrays. Due to the block cyclic distribution of the arrays, at each worker only
some arrays are available. Furthermore, the serial summarization methods are implemented
in for-loops over all probes. For the new generations of chips these are more than 500.000
iterations. Therefore, the serial methods are implemented in C. It is not possible to use C
code for the parallelization with the snow package and the computation time of the parallel
code (implemented in R) has to be compared to the serial code in C.

Original Multi-Chip Model Summarization: In the parallelized method, the re-
quired probes for one probeset are collected from the workers, and by means of the stan-
dard summarization methods one expression value is calculated at the master. In the
following step the next probes belonging to one probeset are collected from the workers
and summarized, and so on. This is a slow parallel implementation for multi-chip model
summarization, but produces in view of machine accuracy the same results as the serial
methods. This algorithm is available for the summarization methods playerout, farms,
liwong and medianpolish. In the computeExprSetPara() function these methods have
to be coded with method=’"XXX_orig’.

R> eset <- computeExprSetPara(Dilution, method = "medianpolish_orig")
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Partly Multi-Chip Model Summarization: Similar to the ’cyclic loess normalization
with permutation’ idea, the multi-chip model summarization can be calculated only at the
workers. In this case the ceiling(4)(N — 1) arrays at the other workers do not have any
influence on the summarization model. But parallelized summarization is about N times
faster than the original multi-chip model summarization. This algorithm is available for
the summarization methods playerout, farms, liwong and medianpolish and can be
called with the following command:

R> eset <- computeExprSetPara(Dilution, method = "medianpolish")

Applied studies demonstrate, that for more than 10 arrays per worker very similar
expression values are generated. For the quality comparison of the summarization the
graphical tools boxplot and histogram (not shown) are used. Figure compares the
boxplots for 50 arrays summarized with the original medianpolish summarization (red
boxplots) and the parallel (four workers) medianpolish summarization only at the workers
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Figure 5.7: Boxplots comparing original medianpolish summarization (red boxplots) and
the parallel (four workers) medianploish summarization only at the workers (blues box-
plots). Arrays are from the E-GEOD-11121 experiment.
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5.2.5 Composite Preprocessing

An efficient method for preprocessing can be obtained by combining the background correc-
tion, normalization and summarization methods to one single method. For parallelization,
the combination has the big advantage of reducing the exchange of data between master
and workers. Moreover, at no point a complete AffyBatch object has to be built, and the
time-consuming rebuilding of the AffyBatch object is no longer necessary.

preproPara

A parallelized complete preprocessing method is available in the following function:

R> eset <- preproPara(Dilution, bgcorrect = TRUE, bgcorrect.method = "rma",

+ normalize = TRUE, normalize.method = '"quantiles",

+ normalize.param = list(type = "pmonly"),

+ pmcorrect.method = "pmonly", summary.method = "medianpolish")

This function can compute the preprocessing steps proposed for background correc-
tion, normalization and summarization. The function was developed according to the
expresso() function in the affy package. Figure visualizes the parallel computation
time using a Gantt chart. The summarization step takes the most computation time

Constant Normalization

Node
01 2 3 456 7 8 910
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Figure 5.8: Gantt chart for parallelized complete rma preprocessing.

(200 seconds), but there are less communications and there is no expensive AffyBatch
object rebuilding.

rmaPara

One of the most common used complete preprocessing methods is the Robust Multi-Array
Average (RMA) expression measure. This function converts an AffyBatch object into
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an ExpressionSet object using the robust multi-array average expression measure. This
method is parallelized in the function rmaPara() and is a wrapper around the preproPara
function. Due to the discussed problems in parallelization of C code with the snow package,
the parallel function is not optimized using C code. Furthermore, the parallel function
does not use the original medianpolish function, the described partly multi-chip model
summarization is used. But with the parameter summary.method="medianpolish_orig"
the original summarization can be used and the same results as in the serial implementation
are obtained.

R> eset <- rmaPara(Dilution)

vsnPara

Variance stabilization normalization (VSN, [HvHST02]) combines background correction
and normalization into on single procedure and uses the additive-multiplicative error model
to estimate the errors in microarray data. Therefore, a complex and computing intensive
robust variant of the maximume-likelihood estimator for the stochastic model has to be
solved. The parallelization of the maximum-likelihood estimator is complex and ongoing
work.

First of all the serial vsn implementation is completely written in the C language. Due
to the described problems of parallelization of C code and the use of the snow package,
the existing C code was translated to R code. In the function vsn2_optimPara() the L-
BFGS-B |LNZ794] solver — implemented in the R function optim() — requires the function
to be minimized and a function to return the gradient. For the evaluation of these func-
tions all arrays are required. Therefore, these functions were reimplemented and adapted
for the block cyclic distribution of the arrays. This parallel implementation yields only a
small improvement in speed, because the function evaluations and calculations of the gra-
dients are not very time consuming. Furthermore, for every optimization step two parallel
communications are required, which produces a lot of network traffic.

This is a first working parallel implementation of the vsn method, which supports the
block cyclic data distribution and therefore, the vsn normalization of a nearly unlimited
number of arrays. However, the parallel R implementation has the same speed or is slower
than the serial C implementation.

R> norm <- vsn2Para(Dilution)

The parallel vsn method is provided by the vsn2Para() function, which additionally
supports add-on normalization (parameter reference). The commonly used vsnrmaPara ()
function is available for vsn background correction, normalization and rma summarization.
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5.2.6 Quality Control & Assessment

Quality assessment is an important procedure, that detects divergent measurements beyond
the acceptable level of random fluctuations. In most cases different graphical based methods
are used to assess the quality of arrays. Using the block cyclic data distribution in the
affyPara package, the methods have to be adapted to collect the data from the workers
and to calculate the plot parameters in parallel. In the bachelor thesis from Esmeralda
Vicedo [Vic09] the parallel quality control methods boxplotPara() and MAplotPara()
were implemented. The graphical visualization for more than 150 arrays gets — independent
on the used graphical method — very complex and unreadable. Therefore, the parallelized
methods were extended for only plotting the interesting (outlier and reference arrays)
arrays. Additional a simulation study for the agreement between statistical methods for
quality control was started to find the best quality assessment methods. First results show,
that the pairs MA-plot - heatmap, spatial density distribution - RLE, and boxplot - NUSE
assess the same arrays as outliers. This result can be validated in theory and with realistic
examples. Therefore, it can be advised to use only one method from each of these pairs. For
example, the combination of the three methods MA-plot, RLE and boxplot is sufficient for
the quality assessment of microarray data. A publication with a detailed description of the
simulation study, the statistical methods for comparing the quality assessment methods,
and the results is in preparation.

For more details on the functions, see the help files or the vignette in the affyPara package.
An overview of all functions in the affyPara package is available in the vignette, too.

5.3 Results

The affyPara package with parallelized and efficient preprocessing methods for high-density
oligonucleotide microarrays was developed. Parallelization of existing preprocessing meth-
ods produces, in view of machine accuracy, the same results as serialized methods and new
methods in parallel code arose. The partition of data and distribution to several nodes
solves the main memory problems and accelerates the methods up to factor 15 for 300
microarrays or more.

The package is open-source, available in the Bioconductor repository since April 2008
(http://www.bioconductor.org/packages/release/bioc/)), and is accepted and used
by the community. Figure visualizes the download statistic for the affyPara package
provided by the Bioconductor Team. The package supports all commonly used functions
(in parallel implementation) for microarray preprocessing. An overview of the functions is
available in the vignette of the package.

This section outlines a critical discussion for the implementation and results, and com-
pares the package to other solutions.
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Figure 5.9: Download stats for software package affyPara (http://bioconductor.org/
packages/stats/bioc/affyPara.html).

5.3.1 Partition

Main problems for microarray preprocessing are the computer hardware limitations. Es-
pecially the available main memory limits the number of arrays that may be quantified.
Therefore, mainly domain decomposition is used in the affyPara package. For paralleliza-
tion with domain decomposition, the input data have to be partitioned and the parts of
input data have to be distributed to the workers. The easiest and most natural way is
a block cyclic distribution. In this process the input data will be partitioned on arrays
(columns) and distributed equally to all nodes. This process is visualized in Figure [5.1]

Partition on probes and other partition strategies have not been tested or implemented.
In this context, a new data structure in the R programming language has to be developed,
all preprocessing functions have to be reimplemented, and the reuse of existing code would
not be possible. Due to the array oriented implementation of the existing methods the
chosen partition is the best one. Only for summarization (summarizing rows) the partition
on probes (rows) should improve the performance. However, redistribution of the data
costs a lot of communication time (compare discussion for loess normalization) and should,
therefore, be rejected.

Avoid Complete AffyBatch Object

Partitioning the AffyBatch object at the master and distributing split AffyBatch ob-
jects to the workers does not solve the problem of limited main memory. The complete
AffyBatch object has to be built at the master and the distribution creates a lot of network
traffic. Therefore, the processes start at the workers with a certain delay (see Figure .
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It is more efficient to partition the vector of CEL files and to create the split AffyBatch
objects at the workers. In the affyPara package all functions for preprocessing can get
a partitioned list of CEL files, a list of CEL files (list will be splitted at the master and
AffyBatch objects created at the workers) or an AffyBatch object as input data.

AffyBatch CEL file list partitioned CEL file list
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Figure 5.10: Gantt chart for parallelized background correction (rma) methods with an
AffyBatch object, a CEL file list and a partitioned list of CEL files as input data. No
worker process runs at the master processor.

In Figure the computation and communication time of background correction (rma)
for 120 microarrays using eight workers and different input objects is visualized with Gantt
charts. For the AffyBatch input object there is a long computation time at the master to
create the AffyBatch object (40 seconds) and then a long time for sending the AffyBatch
objects to the workers and storing them (25 seconds). These two operations take more
than 60% of the complete computation time. After these operations, a short time (about
10 seconds) is required for the background correction. At the end all data (AffyBatch
objects) have to be collected from the workers and the complete AffyBatch object has to
be rebuilt at the master. Collecting the data and rebuilding the result object is required
independent from the input object. For the 'CEL file list” input object there is less time
required for distributing data, but there is additional time required for creating the small
AffyBatch objects at the workers (6 seconds). Using a 'partitioned CEL file list’ as input
object, first of all the raw data (CEL files) have to be distributed from the master to the
workers. In this example it takes up to 40 seconds using the 'RCP’ protocol. This process
runs on the operation system level and is not monitored from the smow package in the R
language. Therefore, only computation time at the master node is plotted. In reality this
is communication time between master and workers. After the distribution process, some
time is required to build the small AffyBatch objects at the workers (6 seconds).
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In parallel environments the CEL files are often available by a shared memory system.
At a workstation cluster, this is often realized with a samba or nfs device, in multi-core
systems every processor has a connection to the hard drive. In computer clusters the
shared memory system can be the bottle neck for communication traffic. In this case
and for distributed memory systems, the function distributeFiles() for (hierarchically)
distributing files from the master to a special directory (e.g., ’/tmp/’) at all workers was
designed. R or the faster network protocols ’SCP’ or 'TRCP’ can be used for the process of
distributing data. As demonstrated in Figure the file distribution requires additional
time.

Accessing the raw data from a shared memory system and building the small AffyBatch
objects at the workers is the fastest solution. No problems with the connection to the shared
memory system could be detected at the tested computer environments.

Due to the required communication costs for small numbers of arrays the communica-
tion time is longer than the calculation time (compare Figure [5.10). Therefore, for small
numbers of arrays (less 100) the serial code is faster than the parallel code.

Equal Data Distribution

In general the size of raw data per worker is essential for the performance of the parallelized
methods. Especially using data decomposition, the raw data have to be distributed in a
suitable manner to achieve a good load balancing. In our case we assume, that every
processor or worker has the same performance and due to the same chip type of all arrays
the calculation time per array will be the same at every worker. Therefore, the arrays should
be distributed equally to all workers. All functions in the affyPara package distribute the
arrays equally to all nodes as far as possible.

Size of Partition and Number of Processors

As described in the previous section at the beginning and in the end of the preprocessing
process time for the communication will be required. The affyPara package uses the snow
package as parallel computing API. In the snow package the communication for large data
objects is not yet optimized, because there are supported communication mechanism (MPI,
PVM, NWS, SOCKET) for which no optimized broadcast functions exist. In the snow
package there is a linear data send operation: object one is sent to worker one, when the
first send operation is completed, object two is sent to worker two, and so on. Therefore,
the communication time grows linearly using the snow package (compare the Gantt chart
for the AffyBatch object in Figure . Using optimized communication functions like
"MPIL_Isend’ or 'MPI_broadcast’ from the MPI library logarithmic communication time can
be achieved. Assuming that the calculation time typically behaves like 1/N (N number of
processors) the complete time can be calculated.

Figure plots the assumed calculation time (red), possible communication times
(green, blue), and the cumulative time (dashed). For the snow package there is a linear
communication time (blue) and therefore, after a special number of processors the cumu-
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Figure 5.11: Theoretical communication and calculation time and corresponding speedup
curves.

lative time starts to grow. The same behavior can be seen in the speedup curves, due to
the linear communication time the speedup (dashed blue line in right figure) is decreasing.
This behavior can be seen in all speedup curves for the affyPara package and is discussed
in theory with Amdahl’s law in Section too.

Using optimized communication functions the optimal number of processors is as much
processors as possible. Due to the communication costs generated from the snow package
the optimal number of processors is not infinite. Therefore, it is very difficult to choose the
right size and number of partitions. Simulations (compare speedup curves in this chapter)
at the different available hardware environments show, that the best performance can be
achieved for 15-20 arrays per node or as much nodes as possible, if there are too many
arrays. The optimal number of arrays per node or number of processors can be defined as
follows:

arrays per node =~ 20 (5.1)
# Arrays

number of processors =~ RS (5.2)

5.3.2 Performance Analysis

Different tools for the performance analysis are presented in Chapter .5 This section
discusses the performance of the affyPara package at different parallel computing environ-
ments using the presented tools.
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Overview

Table lists different performance metrics for all developed parallel preprocessing meth-
ods. For the performance analysis 300 arrays of the chip type '"HG-U133A’ (data from the
large cancer study in Chapter [7) and the computer cluster at the IBE were used. For all

T seriell T parallel N Sabs Srel Efficiency Karp-Flatt

rma BGC 194.4 62.86 10 3.09 3.79 0.38 0.18
constant Norm. 700.0 68.13 14 10.27 14.68 1.05 0.00
invariant Norm. 2262.7 121.81 16 18.58 15.86 0.99 0.00
quantil Norm. 1866.7 75.72 14 2465 6.03 0.43 0.10
loess Norm. 84293.3 10877.31 20 7.75 7.6 0.38 0.08
loessIter Norm. 84293.3 9078.84 10 9.28 881 0.88 0.01
VSN 1065.8 849.04 12 1.26 2.70 0.22 0.31
Summarization 386.1 42044 6 092 1.14 0.19 0.85
Summ. part 407.1 50.63 30 8.04 7.20 0.24 0.11
RMA (summ. part.) 273.6 232.62 30 1.18 8.75 0.29 0.08
read AffyBatch 64.8 46.38 8 140 2.62 0.33 0.29

Table 5.1: Overview of the performance of the affyPara package: Serial computation time
in seconds, parallel computation time in seconds, optimal number of processors (N), ab-
solute speedup, relative speedup, efficiency, and Karp-Flatt Metric. Calculated with 300
microarrays at the computer cluster at the IBE.

functions the default parameters were chosen. To reduce computation time for the invari-
antset, quantile, cyclic loess normalization and the medianpolish summarization only the
PM intensity data were used.

All baseline methods — all background correction methods, constant and invariantset
normalization, and avgdiff and mas summarization — are parallelized very easy and ef-
ficient. But some of these methods have very short serial computation times (e.g., rma
background correction) and the communication traffic in the parallel implementation limits
the acceleration.

All other methods, multi-chip or complete data methods, are more difficult to paral-
lelize, and require more network traffic. If the proportion of communication to calculation
time is small (calculation >> communication time), then the methods perform very well in
parallel. The Karp-Flatt metric is a measure for the parallelization of code and the lower
the value the better the parallelization. Except the complete summarization, VSN, and
readAffyBatch all methods show a good level of parallelization and an acceptable efficiency.
The VSN parallelization has a medium Karp-Flatt metric, because only the function and
gradient evaluation of the solver are parallelized and the serial C code is compared with
the parallel R code. In the medianpolish summarization a loop over all probe sets, col-
lecting the probe intensities from all workers and summarizing them, with a lot of network
traffic is required. read.affybatchPara() is a parallel function to read the CEL files
into an AffyBatch object. This function is only useful at a multi-core machine, where no
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"real” network traffic is required. Therefore, this function was benchmarked at the IBE -
1lis06 multi-core machine. Due to the complex rebuilding process for the whole AffyBatch
object, there is only a low absolute speedup and a bad Karp-Flatt value.

For the normalization methods a relative speedup up to 15 and an absolute speedup
up to 24 can be achieved. Several speedup curves are plotted in Figure and for all
methods the parallel code is faster than the serial code. This even holds for parallel R code
compared to serial C code. For quantile normalization the "old” (inefficient) R code was
used, therefore, there is a super-linear absolute speedup.

As described, due to the communication costs for about 20 arrays per processor the best
performance is achieved. In this case for 300 arrays N = 15 processors are required. The
performance analysis verifies this number, but there are differences in the used methods
and hardware environment. Therefore, it is not possible to give a more detailed rule for
the optimal number of processors.

For the partly multi-chip model summarization the best results can be achieved with
as much processors as possible, because the summarization then runs in parallel and the
communication costs from the ExpressionSet objects are less (10-16 times) than from the
AffyBatch object. But having less than 10 arrays per worker, the expression intensities are
very different to the complete summarization results. In default, the function rmaPara()
uses the partly summarization and therefore, as much processors as possible, but not less
than 10 arrays per processors, should be used.

Different Computer Environments

The affyPara package is tested in different hardware environments:

Computer Cluster: IBE, Linux-Cluster (LRZ, Munich, Germany), HLRB2 (LRZ, Mu-
nich, Germany), Hoppy (FHCRC, Seattle, WA, USA)

Multicore: IBE, HLRB2 (LRZ, Munich, Germany), lamprey (FHCRC, Seattle, WA,
USA)

Thanks a lot to the listed institutes for providing access to their computer resources. The
package works at all systems and the performance was very similar. There were comparable
speedup values and ideal numbers of processors. The main differences occurred due to
hardware differences (CPU speed) of the systems. Figure shows the relative speedup
curves for background correction and quantile normalization at the IBE (2.66 GHz) and
the HLRB2 (1.6 GHz) cluster (dashed line). Breaks in the speedup curves are mostly
generated by unbalanced data distribution. For example 200 microarrays cannot be equally
distributed to 23 nodes, there are some processors that have to calculate with one more
array. Furthermore, external network traffic in the workstation cluster at the IBE is a
reason for outliers. To avoid these effects for all time measurements the calculations were
repeated five times and averaged. Due to the described linear computation time in the
snow package, the speedup curves are decreasing after the optimal number of processors.
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Figure 5.12: Speedup curves for background correction and quantile normalization at the

IBE (blue) and the HLRB2 cluster (red).

5.3.3 Comparison to other Solutions

The presented affyPara package is not the only solution to preprocess a huge number
of microarray data. There are optimized functions in some Bioconductor packages. For
example in the affy package, there is the function justRMA() which reads CEL files directly
in the working directory and converts the raw data - without using an AffyBatch object
- to an expression measure using robust multi-array average. In addition, there is the
aroma.affymetrix package which uses efficient data structure approaches for reading data
from a file on request instead of loading the file to the main memory [Ben04]. These three
solutions are compared in Table [5.2]

All packages use the R language for the basic operations. The affyPara package requires
additionally an API for parallel computing (e.g., MPI) and other solutions in the Bio-
conductor packages use the C language to accelerate the methods. The aroma.affymetrix
package uses the file system for data handling and is, therefore, the slowest implementation
in computation time. The affyPara package uses the main memory of several computers
and is, therefore, the fastest solution. A simple time comparison of rma background correc-
tion and quantile normalization is available in Figure[5.13] For small numbers of arrays the
original affy code is the fastest solution. Using more than 50 arrays the affyPara package
is the fastest solution. For 200 arrays the affyPara package is up to 13 times faster than
the aroma.affymetrix package and twice as fast as the code from the affy package.

All three solutions are open-source, they work on the standard operation systems and
there exist possibilities for third-party extensions. Compared to the other solutions, the
affyPara package only works for expression arrays. The described parallelization ideas can
be extended to other genomic data as SNP chips or exon arrays. For all three solutions
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affyPara aroma.affymetrix Affymetrix packages
in Bioconductor
Programming language R + MPI R R (+ C)
Depends on affy, snow aroma.core, affx- Biobase
parser, aroma.light,
R.huge, aroma.apd
Data handling Memory File System Memory
Chip types expression arrays expression  arrays, expression  arrays,
SNP chips, exon SNP chips, exon
arrays, . .. arrays, . . .
Usability easy difficult easy
Max. number of arrays limited by number of limited by size of limited by main
computers hard disk memory
Computation time fast slow medium

Linux, Windows, Mac OS X

yes

yes

Table 5.2: Comparison of the affyPara package to the aroma.affymetrix package and other

solutions.
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Figure 5.13: Computation time for rma background correction and quantile normalization
using code from the affy, affyPara and aroma.affymetrix package.
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there is a limitation in the maximum number of preprocessible microarrays. Due to the
size of existing supercomputers and grid environments with the affyPara package, the
biggest amount of microarray data should be preprocessible. Using the cluster pool at
the IBE about 16.000 (32 nodes - approximately 500 microarrays) microarrays of the type
HG-U133A can be preprocessed using the function preproPara().

The usability of the affyPara package is very good for trained R and Bioconductor
users. Some simple code examples for creating an AffyBatch object and rma background
correction with the affy and affyPara package are visualized in the following lines:

R> library(affy)
R> AB <- ReadAffy()
R> AB_bgc <- bg.correct(AB, method = "rma")

R> library(affyPara)

R> makeCluster(5, tpe = "MPI")

R> AB <- ReadAffy()

R> AB_bgc <- bgCorrectPara(AB, method = "rma")
R> stopCluster()

To use the power of parallel computing, the user needs only a working computer clus-
ter and cluster start or administration programs (e.g., SGE). The R syntax is very sim-
ilar and only two more lines for starting and stopping the cluster are required. For the
aroma.affymetrix package a complex data structure at hard disk level is required and the
commands are very different to other Bioconductor packages.

R> library(aroma.affymetrix)

R> cdf <- AffymetrixCdfFile$fromChipType ("HG-U133A")

R> cs <- AffymetrixCelSet$fromName (name, tags, chipType = cdf)
R> bc <- RmaBackgroundCorrection(cs)

R> csBC <- process(bc)

R> AB_bgc <- extractAffyBatch(csBC)

5.4 Summary

For preprocessing of high-density oligonucleotide microarrays the affyPara package [SMOS|
SM09] based on the snow package was developed and is available at the Biodoncuctor
repository: http://www.bioconductor.org/packages/release/bioc Existing statistical
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algorithms and data structures had to be adjusted and reformulated for parallel computing.
Using the parallel infrastructure the methods could be enhanced and new methods are
available. Parallelization of existing preprocessing methods produce, in view of machine
accuracy, the same results as serialized methods. The partition of data and distribution to
several nodes solves the main memory problems and accelerates the method up to factor
15 for 300 arrays or more. Due to communication limitations in the snow package good
performance can be achieved calculating with about 20 arrays per node. For the complete
rma preprocessing as much processors as possible can be used, but there should be not less
than 10 arrays per processor.

A new limitation will be imposed by the memory size of the ExpressionSet class and
the analysis will be performed on the new big size of expression sets. However, no data
set is currently available on the market that would cause main memory problems with the
ExpressionSet class.



Chapter 6

Parallel Computing in
Next-Generation Sequence Data

This chapter demonstrates the power and problems using parallel computing to solve the
mentioned — see Chapter — problems and new challenges for next-generation sequence
data. Especially the amount of data, data handling in parallel computing environments
and communication costs are very critical in the presented examples.

Section outlines general ideas for parallel computing in high-throughput sequenc-
ing. An existing parallel implementation for data I/O in the ShortRead package from
Martin Morgan (FHCRC, Seattle, WA, USA) is presented. Section discusses a parallel
test implementation in the BSgenome package. The bsapply () function, which applies a
function to each chromosome in a genome, was parallelized using the Rmpi and/or snow
package. Additional standard optimization strategies for parallel computing are described,
applied and tested.

6.1 Ideas

Due to the apply-like code structure of existing data analyses methods, the first idea
for parallel computing in next-generation sequence data is the use of data decomposition.
Depending on the kind of application and used sequencing technique or machine, there
will be different ways of data partition, distribution and implementation. This chapter
examines data decomposition for next-generation sequence data and will use the snow
and /or Rmpi package for parallel computing.

Parallel computing ideas from other research areas can be adapted to improve the meth-
ods especially for pattern matching and alignment. For example [Mut00] presents a simple
and parallel algorithm to solve the multi-pattern matching problem with optimal speedup.
The implementation uses a Monte-Carlo algorithm based on finger-print functions. Fur-
thermore, parallel implementations exist in literature for pair-wise alignment using the
Needleman-Wunsch algorithm [Bar02] or for local alignment using the Smith-Watermann
algorithm [RS00]. These methods are used in serial from the Biostrings package, but are
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not yet implemented in parallel in the Bioconductor project or used in next-generation
sequence analyses.

Optimized parallel computing paradigm for huge numbers of global variables exists.
NetWorkSpaces and Sleigh (R package NWS) use a central server to store all data. This
could be used to have the sequences available for every worker and data communication is
only required for the requested sequences. This solution is not yet tested for next-generation
sequence data. In addition first ideas using graphical processing units for high-throughput
sequence alignment are published [STDVQT7]. For example at a single computer workstation
the processing speed of GPUs will be used to improve pattern matching. As well there is
no integration to the R language available at the moment.

6.2 Parallelization in the ShortRead Package

The ShortRead package provides base classes, functions, and methods for representation
of high-throughput, short-read sequencing data. The ShortRead package aims to provide
key functionality for input, quality assurance, and basic manipulation of 'short read” DNA
sequences such as those produced by Solexa 454, and related technologies, including flexible
import of common short read data formats.

Solexa and other short read technologies often include many files. For example, there
is one file per tile, 300 tiles per lane, and 8 lanes per flow cell: 2400 files per flow cell.
An example request on the data could be to find the average intensity per base at special
cycle. A natural way to extract this kind of information from these files is to write short
functions. The files are generally large and numerous, so even simple calculations consume
significant computational resources. The srapply() function in the ShortRead package
is meant to provide a transparent way to perform calculations like this, distributed over
multiple nodes of a MPI cluster. The package uses the Rmpi package and therefore, MPI as
communication interface. If no Rmpi cluster is available, the function srapply () evaluates
the function as lapply (), whereas the following code distributes the calculation over the
available workers.

R> library("ShortRead")

R> library("Rmpi")

R> mpi.spawn.Rslaves(nsl = 16)

R> srres <- srapply(intFls, calcInt, cycle = 12)
R> mpi.close.Rslaves()

In most cases communication costs for sending as well as receiving data are low and
results can be reduced at the workers. Therefore, in most examples using the srapply ()
function a speedup approximately proportional to the number of available computer pro-
cessors can be achieved. However, the file hierarchy has to be available at the hard disk of
every node, e.g., provided by a samba or nfs device.
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Furthermore, for quality assessment of next-generation sequence data, the qa() function
in the ShortRead package provides a convenient way to summarize read and alignment
quality. Evaluating quality assessment for a single lane can take several minutes, due to
the mentioned amount of files. If a Rmpi cluster is available, the function distributes the
task of processing each lane to each of the workers. Again the file hierarchy has to be
available at the hard disk of every worker. Using this parallel approach in a multi-core
environment with eight processors, all lanes (8) of Solexa sequence data can be read at the
same time and there is an acceleration of factor eight.

6.3 Parallelization in the BSgenome Package

The BSgenome package provides an infrastructure for Biostrings-based genome data pack-
ages. In addition there are some functions to manipulate and process the whole genome
data. The bsapply() function applies a function to each chromosome in a genome. In
this case a parallel implementation can distribute every chromosome of a genome to one
worker.

6.3.1 Parallel Implementation

The bsapply () function is very easy to parallelize. In general apply like functions call
the same function to different data. The data can be distributed to different R sessions —
running on different processors — and the function can be applied in parallel.

As implemented in the srapply () function in the ShortRead package, the Rmpi pack-
age will be used. If a cluster is available, the function mpi.parSapply() will be used,
otherwise the serial sapply(). Therefore, some adjustments to the internal function
processSeqgname () — executes the FUN function to each chromosome — are required:

e The function has to become a global function to avoid sending the whole environment
to each node (due to lexical scoping).

e The function now gets the additional input parameter BSParams, to have the data
from the object (sequence, FUN, ...) available at every node. In the serial imple-
mentation the BSParams object was available as global object. The sequences will
be loaded (cached) from the disk at the workers. Therefore, the genome library with
the Biostrings object has to be available at all nodes, but not loaded into the R
session.

Additional there is a new function parSFapply (), which executes the apply-like function
in parallel or serial. This function is similar to the srapply () function in the ShortRead
package, but with some improvements for error handling.
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6.3.2 Results & Discussion

The parallel implementation was tested with several examples: In the worm (BSgenome.
Celegans.UCSC.ce2), and full (all chromosomes - 48) and reduced (only short chromo-
somes - 38) human (BSgenome . Hsapiens.UCSC.hg18) genome the alphabet frequencies for
every chromosome and the occurrences of all defined patterns across the whole genome
were counted. As expected the serial and parallel code produces the same results in all
tested examples.

Package and Sequence Loading Times

Using the function bsapply() in parallel mode requires the loading of the BSgenome
(including TRanges and Biostrings packages) package and the loading (caching) of the
sequences from the disk at all workers. For small examples this requires a lot of additional
time and the serial method will be the faster one, but in big examples the loading time is
irrelevant (see Figure[6.1)). In the examples all calculations were replicated five times (runs).

— bsapply parallel with package pre load — bsapply parallel with packag; ;arieih;aidf
—— bsapply parallel including package load —— bsapply parallel including package load

© —— bsapply serial — bsapply serial

20 25
| |

Computation time in sec
15

;

Computation time in sec

Runs Runs

(a) Reduced human genome (38 chromo- (b) Full human genome (48 chromosomes)
somes)

Figure 6.1: Computation time in parallel (red), in parallel with package preloading (black)
and serial (green) for counting the alphabetic frequencies in the full and reduced human
genome.

After the first run, all libraries and data structures are initialized and the computation time
gets stable. For further time comparisons the packages will be preloaded at all nodes and
therefore, the package loading time is not more measured.
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Visualization of Computation and Communication Times

For the parallelization the snow package with MPI as communication layer can be used,
too. This library is much more user friendly than the Rmpi package. For example there is a
function snow.time () to visualize the computation and network communication time in a
Gantt-Chart. But for huge applications the performance and functionality of this package
is not as good as the Rmpi package [SME™09.

Figure shows the Gantt-Chart for measuring the alphabetic frequencies for the
full human genome (48 chromosomes) using seven processors. There are more chromosomes
than workers, therefore, every worker has to calculate the alphabet frequencies for seven
chromosomes. The fist chromosomes are the longest ones (see Figure [6.4(a)|), therefore,
they have the longest calculation times.

Number of Processors

Using more processors should show a decrease in computation time. Due to a lot of network
traffic (data to send), there is no perfect linear speedup. For most examples using more
processors generates smaller computation times (see Figure [6.2(b))).

Cluster Usage
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Node
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|

15
|

Elapsed Time Nodes

(a) Gantt-Chart for counting the alphabetic (b) Computation time for counting the

frequencies in the full human genome using alphabetic frequencies in the full human

seven workers. genome, calculated at different numbers of
processors.

Figure 6.2: Visualization of computation time for counting alphabetic frequencies on full
human genome.

Additional Data Distribution - Pattern Matching

Applying pattern matching on the whole genome requires the sending of additional data —
the pattern — to the nodes. For example with the function countPDict () the number of
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occurrences for each pattern can be calculated.

R>
R>
R>
R>
R>
R>
R>
R>
R>

library(BSgenome.Hsapiens.UCSC.hg18)

params <- new("BSParams", X = Hsapiens, FUN = countPDict)
library (hgul33plus2probe)

dict0 <- DNAStringSet (hgul33plus2probe$sequence)

pdictO <- PDict(dict0)

library (Rmpi)

mpi.spawn.Rslaves(nslaves = 4)

result <- bsapply(params, pdict = pdict0)
mpi.close.Rslaves()

In detail, the Biostrings object pdictO has to be sent to every worker. This costs

additional time and the parallel implementation is not faster than the serial method (see
Figure[6.3(a)]). Plotting the computation time over the nodes shows a reduced computation
time for two nodes, but then using more processors an increase in the computation time
(see Figure [6.3(b)). This is a typical behavior of parallel computing with a lot of (too
much) network traffic.

Computation time in sec

30

|
Computation time in sec
Computation time in sec

S | | — bsapply parallel with package pre load —— bsapply parallel with package pre load
—— bsapply parallel including package load © —— bsapply parallel including package load
—— bsapply serial - —— bsapply serial

T T T T T T T T T T T T T T T T T
1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5

Runs Nodes Runs

(a) Calculation replicated five (b) Computation time for differ- (c¢) Calculation replicated five
times. ent numbers of nodes. times and pattern created at

worker.

Figure 6.3: Computation time for counting patterns in the reduced human genome.

In most cases this problem can be solved creating the parameters — here the pdict0

object — at the worker. A new function countPDictSF() has to be defined and the pdict0
object will be created at the workers.

R> countPDictSF <- function(...) {

+
4y

library(hgul33plus2probe)
dict0 <- DNAStringSet (hgul33plus2probe$sequence)
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+ pdict0 <- PDict(dict0)
+ return(countPDict (..., pdict = pdict0))
+ }

R> params <- new("BSParams", X = Hsapiens, FUN = countPDictSF, simplify = TRUE)
R> result <- bsapply(params)

Therefore, no more data sending is required and the parallel implementation is faster
than the serial one (see Figure [6.3(c)). However, the probe sequence data library or the
pattern has to be available at every node.

Parallel Optimization

There are some further aspects for optimization and performance improvement.

Sequence Length: In the BSParams class the sequences are stored in the X slot (BSgenome
object). There the sequences are sorted by length (see Figure [6.4(a)]). For parallelization
the data have to be splitted in N groups with N the number of nodes. For sequence or
genome data the first node gets the longest sequences, the second node the second longest
one and so on. Therefore, the first worker has the longest computation time and the last
node has the shortest sequences and the fastest computation time. This causes a bad
load balancing, but can be improved by using a load balanced apply-like function and by
sending only one sequence to each node. If we have more sequences than nodes, sequences
'wait” at the master node. If the computation at one node is finished, the next sequence
will be processed. A computation time improvement of factor two can be achieved (see

Figure [6.4(b))).

6.3.3 Conclusion

Parallelization of the bsapply() or more general of apply() like functions is very simple
and achieves good performance improvements in most cases. A speedup approximately
proportional to the number of available nodes is achievable. But if there is a lot of data
to distribute and the communication times are large enough to the relative computation
times, no improvement in the overall computation time can be achieved. NetWorkSpaces
and the parallel Sleigh environment using a central server to store all data could be a
working solution for parallel implementations in next-generation sequence data, but is not
yet tested.

For the parallelization of the bsapply () function the communication costs are high and
only a speedup proportional to the half number of available nodes is realistic. There are
some aspects which make the use of the parallel bsapply () function difficult and require
some notice to the user.

e We do not know which kind of FUN functions will be executed and which amount of
data will be sent to the nodes or back to the master.
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Figure 6.4: Sequence length of chromosomes in human genome and computation time for
counting alphabetic frequencies in full human genome with improved and load balanced
data distribution (black) and equal distribution (red).

e The smaller the data to send and the longer the computation time, the better the
performance.

e The genome library with the Biostrings object has to be available at all nodes, but
not loaded into the R session.

e Already simple examples can have slow parallel computation times.

Therefore, only users familiar with parallel programming standards can achieve good im-
provements. The parallel implementation was not added to the BSgenome package.

Useful Applications for the Parallel bsapply() Function

As demonstrated in this chapter especially communication costs limit the advantage of
parallel computing. Due to low communication costs the following functions are useful for
the use in the parallel bsapply () function: alphabetFrequency(), consensusString(),
matchPattern(), countPattern(), .... Unsuitable for parallel calculations are the func-
tions countPDict (), matchPDict (), pairwiseAlignment (), consensusMatrix(), ....

As described, creating the objects at the workers and reducing the output object, will
reduce the communication costs and improves the parallel performance.
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6.4 Summary

Especially the huge amount of data limits parallelization for next-generation sequence data.
In existing parallel implementations all data have to be available at all processors. Due
to the amount of data it is not possible to load all data at the master and to distribute
the data over the network. In detail the raw data have to be accessible by the hard drive
(e.g., a samba or nfs device), which limits the deployment on general computer clusters
or grid environments. The srapply() function in the ShortRead package demonstrates a
working parallel solution, in contrast the bsapply() function in the BSgenome package is
a negative example for parallel computing in next-generation sequence data.

New protocols and the intrinsic curiosity of biologists are expanding the range of ques-
tions being addressed, and creating a concomitant need for flexible software analysis tools.
The increasing affordability of high-throughput sequencing technologies means that multi-
sample studies with non-trivial experimental designs are just around the corner. Therefore,
innovative new computational tools have to be developed to manage the amount of data and
to avoid long computation times. As demonstrated, existing parallel computing techniques
show promising outcomes but there are obvious limitations, too.
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Chapter 7

Large Cancer Study

Public available data sets were collected from public microarray databases, preprocessed
and analyzed together. Data from more than 60 experiments and eight different cancer en-
tities were used to demonstrate the power of parallel computing with the affyPara package,
to discuss the difficulties of data management, and to analyze correlation between genes.
Furthermore, the demand of new meta analyses and the unused potential of the existing —
public available — data sets is outlined.

This is one of the first projects for analyzing several public available data sets together.
Therefore, this chapter presents more technical details and problems of performing mi-
croarray analyses with huge numbers of data. Detailed biological interpretations of the
results are not yet available. In future it is expected, that there will be single experiments
available with more than 2000 arrays. First ideas for genome-wide association studies,
prognosis studies or randomized studies to evaluate biological signatures exist. For these
projects well working data management, processing and analyses tools have to be available.
This chapter presents a proof of principles for a manageable data management and data
processing.

Section describes the biological idea and some biological background. Section
contains a critical comment about public available databases and data quality, details
about the selected data and the data management. Section discusses basic steps of the
analysis process and problems occurring with standard analysis procedures. The chapter
ends with several figures and tables of results and a small biological interpretation.

7.1 Biological Question(s)

The biological idea of the project is to collect microarray data from different human cancer
experiments and to compare well-known pathways in different cancer entities. Especially
gene-gene correlation and the reproducibility of KEGG pathways is of interest. Further-
more, the influence of standard analysis procedures from huge numbers of microrarrays to
the results is not yet explored.

Based on the "Cancer Facts & Figures” statistics of the American Cancer Society (ACS,
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http://www.cancer.org) and on the availability of cancer data in the public microarray
databases, eight human cancer entities are chosen. The cancer entities are coarsely grouped
into two groups:

Solid tumors: Breast Cancer, Colon Cancer, Prostate Cancer, Lung Cancer
Hemic disease tumors: Leukemia Cancer (ALL, AML, CLL), Lymphoma

Solid tumors are an abnormal mass of tissue that usually does not contain cysts or liquid
areas. Solid tumors may be benign (not cancer), or malignant (cancer). Different types
of solid tumors are named for the type of cells that form them or organs where they are
located. In contrast hemic disease tumors are tumors located in the blood or other liquid
areas, e.g., in lymphoma.

In general, statistical analyses for microarray data describe differences in the mean
intensity values with differential gene expression methods or use graphs to represent the
correlation between different genes. This study mainly analyzes correlation but also tests
for differential gene expression. Therefore, all data from one tumor group are preprocessed
together. Network anaylsis tools are used to calculate the graphs of gene-gene interac-
tion in a pathway and the estimated graphs are compared to known pathway structures.
Additionally, the differential gene expression for every pathway and entity is calculated.

7.1.1 Pathways

Strictly speaking, one could argue that pathways do not exist, there are only networks.
Furthermore, there exists no exact definition in literature. Nonetheless, pathways are useful
and powerful. Biological pathways provide intuitive views of the myriad of interactions
underlying biological processes. A typical signaling pathway, for example, can represent
receptor-binding events, protein complexes, phosphorylation reactions, translocations and
transcriptional regulation, with only a minimal set of symbols, lines and arrows.

In practice pathways are a set of related genes, described as lists of gene identifiers.
These lists of genes are commonly used to extract some genes from an array and e.g., to test
them for differential expression. Pathways are available in pathway databases, which en-
hance and complement ongoing efforts, such as Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.ad. jp/kegg), Reactome (http://www.reactome.org), or
Pathway Commons (http://www.pathwaycommons.org).

From the KEGG database the most famous pathways for human cancer are chosen
for the large human cancer analysis. Table lists the pathways and shows the KEGG
ID, the number of genes (nodes) and edges in the pathways, and the number of genes
available in the pathway and on the used chip type (HG-U133A). About 90% of the genes
in the pathways are available at the used chip type. More information and graphical
representations of the pathway structures are available in the KEGG database. For example
the graphical structure for the p53 signaling pathway is visualized in Figure[7.1] The tumor-
suppressor protein pd3 exhibits sequence-specific DNA-binding, directly interacts with
various cellular and viral proteins, and induces cell cycle arrest in response to DNA damage.
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Kegg IDs Edges Genes Genes on HG-U133A

MAPK signaling pathway  hsa04010 909 272 246
Cell cycle hsa04110 660 119 104
p53 signaling pathway hsa04115 86 69 62
Apoptosis hsa04210 170 89 80
Wnt signaling pathway hsa04310 778 152 127
ECM-receptor interaction  hsa04512 975 84 81
Colorectal cancer hsa05210 104 84 82
Prostate cancer hsa05215 295 90 86
Acute myeloid leukemia hsa05221 158 59 26
Small cell lung cancer hsa(5222 223 86 86
Non-small cell lung cancer hsa05223 122 54 53

Table 7.1: Description, KEGG ID, and number of nodes and edges of the analyzed KEGG
pathways.

In response to signals generated by a variety of genotoxic stresses, e.g, UV irradiation or
DNA damage, pb3 is expressed and undergoes post-translational modification that results
in its accumulation in the nucleus. The p53-dependent pathways help to maintain genomic
stability by eliminating damaged cells either by arresting them permanently or through
apoptosis [JKSW99].

Due to the biological history of origins and the biological information on expression
arrays it is difficult to reproduce complete graph structures of pathways. For example,
signaling pathways mainly represent phosphorylation reactions, which could not be repro-
duced on expression arrays. But it should be possible to validate common graph structures
and correlations between genes. Using more data gives more information, increases statis-
tical power and should stabilize graph structures. As mentioned in the beginning, it is not
the goal of the study to identify new biological relations. A working framework to manage,
process and analyze this amount of data is presented.

7.2 Data Set

Microarray-based research is a scientific field where an extensive amount of data is gener-
ated and published. The ability to combine microarray data sets is advantageous to re-
searchers to increase statistical power, to detect biological phenomena from studies where
logistic considerations restrict sample size, or in studies that require the sequential hy-
bridization of arrays.
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Figure 7.1: Graphical visualization of the p53 signaling pathway from the KEGG database.

7.2.1 Public Microarray Databases

Since the year 2000 public microarray databases have been developed and implemented for
data management, for reproducibility of research and to provide data to a whole research
community. There are several databases available for public data submission and those
available for public query. An overview and comparison of microarray databases is available
in [GGLOT].

In the last years the Gene Ezpression Omnibus (GEO) and ArrayEzpress (AE) databases
have been widely used and are accepted by the Bioconductor user group:

ArrayExpress: Is a public archive for transcriptomics data, which is aimed at storing
MIAMHcompliant data in accordance with MGEDP| recommendations. The Ar-
rayExpress Warehouse stores gene-indexed expression profiles from a curated sub-

set of experiments in the archive. (http://www.ebi.ac.uk/microarray-as/ae,
[PKST07, PKKT09])

Gene Expression Omnibus: Is a gene expression/molecular abundance repository sup-
porting MIAME compliant data submissions, and a curated, online resource for gene
expression data browsing, query, and retrieval. (http://www.ncbi.nlm.nih.gov/

geo, [BTWT09|)

! MIAME [BHQ™01] describes the Minimum Information About a Microarray Experiment that is needed
to enable the interpretation of the results of the experiment unambiguously and potentially to reproduce
the experiment.

2The MGED Society is an international organization of biologists, computer scientists, and data analysts
that aims to facilitate biological and biomedical discovery through data integration. (http://www.mged.
org)


http://www.ebi.ac.uk/microarray-as/ae
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.mged.org
http://www.mged.org
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Experiments from the GEO database are imported to AE database by the ’ArrayExpress
team’ on a weekly basis. Custom automated methods and text mining tools are used to
improve data information and quality. Additionally the experiment information is man-
ually curated before it is loaded into the AE database. All imported experiments get an
ArrayExpress accession number in the format of "TE-GEOD-n’; where n is a number. The
import of AE data to GEO is not known or officially confirmed.

GEO is currently the largest fully public gene expression resource. Since its inception,
the database has grown exponentially each year. Table[7.2)shows the number of experiments
and samples in GEO and AE databases at the end of February 2009. There are nearly
300.000 microarrays available for public query.

Database Experiments Samples Experiments without FLEO First Data

GEO 11298 286645 4362 (39%) Jan 2001
AE 7637 224947 1599 (21%) Okt 2003

Table 7.2: Number of experiments and samples in GEO (published data) and AE database
(27/02/2009). FLEO: feature-level extraction output

Table [7.3]and [7.4] show the five biggest chip platforms and experiments in the GEO and
AE databases at the end of February 2009. More statistics are available at the database
provider websites and related publications [PKST07, PKKT09, BTW™09].

Chip Platform Samples in GEO Samples in AE
Affymetrix GeneChip Human Genome U133 21787 28817

Plus 2.0 Array

Affymetrix GeneChip Human Genome U133 19994 37916

Array Set HG-U133A

Affymetrix GeneChip Mouse Genome 430 2.0 10468 13957

Array

Affymetrix GeneChip Mapping 10K 2.0 Ar- 8067 8070

ray

Affymetrix GeneChip Murine Genome U74 5490 10320

Version 2 Set MG-UT74A

Table 7.3: Five biggest chip platforms in GEO and AE database (27/02/2009).

Database and Data Quality

In view of software engineering the implementation and performance of the databases can
be improved. There are often long response times, in AE the detail search form was not
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Experiment Samples GEO AE FLEO

Mapping autism risk loci using ge- 6971 GSE6754  E-GEOD-6754  Yes
netic linkage and chromosomal rear-

rangements

Meta analysis of gene expression data 5896 - E-TABM-185 AE
from 6000 human publicly available dis-

eased, normal samples and cell lines ob-

tained from GEO and ArrayExpress

Liver Pharmacology and Xenobiotic 5312 GSES8858 - No
Response Repertoire

Combined gene expression and QTL 2522 GSE11611 E-GEOD-11611 Yes
analysis of soybean quantitative resis-

tance to Phytophthora sojae

Expression  Project for Oncology 1973 GSE2109 E-GEOD-2109  Yes
(expO)

Table 7.4: Five biggest experiments in GEO and AE database (27/02/2009).

working for more than one month (fixed in August 2008) and GEO is not working correctly
with popular web browsers (e.g., Mozilla Firefox).

In order to eliminate bias due to specific algorithms used in the original studies, and to
allow consistent handling of all data sets, [RMHAOS| recommends to obtain the feature-
level extraction output (FLEO) files, such as CEL and GPR files. Unfortunately in both
databases more than 20% (see Table of the experiments do not provide FLEO files.
Especially experiments from the origin of the databases (years 2000 to 2004) do not provide
raw data. But even new (year 2009) experiments (see Table do not provide FLEO
files. For big experiments it is technically challenging to provide and to transfer the raw
data. For example, 1000 CEL files have a data volume of more than 10GB — depending on
the chip type.

The AE and GEO databases support MIAME compliant data, but due to different data
archives and implementations additional transformations are required for using data from
both databases. For example, in the GEO database the annotation files list the samples in
columns and in the AE database they are listed in rows. Furthermore, there are no strict
controls of the MIAME-compliant annotation files. Especially errors in variable names
(’FactorValue..disease.state.” was found in 8 different spellings in 30 data sets), different
coding of variables and unstructured information in the 'Description’ variable, make the
reusability of annotation files very complicated.

There is a software project called "Tab2MAGE’ (http://tab2mage.sourceforge.net),
which aims to ease the process of submitting large microarray experiment data sets to
the AE public repository database. To this end, Tab2MAGE currently includes tools to
convert data and to check or validate files for MIAME-compliant sample annotation. In


http://tab2mage.sourceforge.net
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addition, the package includes tools to validate MAGE-TAB documents, to convert them
into MAGE-ML, and to import experiments from the GEO database into Tab2MAGE
format: 'GEOImport’.

Due to the mentioned weekly imports, most data sets are available in the AE database
(see Table , and data management gets more feasible when using only one database.
At the moment satisfactory tools for the use of data from different database platforms are
not yet available. Therefore, this large cancer study only uses data from the AE database.

Similar results and (negative) experiences can be found in [IABT09], which demon-
strates that repeatability of published microarray studies is apparently limited. In the
future, stricter publication rules enforcing public data availability, complete and correct
data annotation (MIAME), and explicit description of data processing and analysis should
be considered.

7.2.2 Data Set Description

This section describes the data set and data management used for the large cancer study.

Selection Criteria

To omit problems described in the chapter before, and to reduce costs for data handling
only data from one public available database (AE) were collected. To preprocess all data
together without any special data combination only one chip type is used. In the AE
database most samples are of the chip type ’Affymetrix GeneChip Human Genome U133
Array Set HG-U133A’ (see Table [7.3)).

On February 27, 2009 all experiments from AE were included in the study, that satisfy
the following selection criteria:

e Experiment available in AE.

e More than 10 arrays have chip type 'Affymetrix GeneChip Human Genome U133
Array Set HG-U133A.

e Experiment has more than 20 arrays.
e FLEO (raw data) are available.
e 50% of the arrays belong to cancer entities described in Section

Some experiments satisfying these criteria contain identical arrays. For example the arrays
from the experiments 'E-GEOD-3910" and 'E-GEOD-3911" together are identical to the
arrays from the super series experiment 'E-GEOD-3912’. These experiments were not
included in the study to avoid duplicate arrays. Thereby 23 experiments were excluded.
In the selection process microarray data from cell line experiments and from human
patients were grouped together (data from animals were excluded). Furthermore, data
from cancer subtypes were combined to one cancer entity (e.g., childhood ALL is included
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in the ALL cancer entity group). This coarse grain grouping for the cancer entities is
chosen to get groups with more than 200 arrays.

Selected Public Available Experiments

Selecting more than 60 public available experiments from the AE database, a large cancer
data set with more than 7000 microarrays was built. An overview of the selected experi-
ments is available in the Appendix-Tables to[B.11] A detailed statistic of the data set
is available in Table[7.5] The table shows the number of experiments and arrays per cancer

Experiments Arrays HG-U133A defect used

BREAST 20 3595 2454 (68%) 40 (1%) 1834 (51%)
ALL 12 1190 1140 (96%) 3(0%) 916 (77%)
LUNG 7 537 398 (74%) 12 (2%) 386 (72%)
COLON 6 203 203 (100%) 6 (3%) 197 (97%)
PROSTATE 5 475 418 (88%) 2 (0%) 416 (88%)
AML 4 726 563 (78%) 29 (4%) 534 (74%)
LYMPHOMA 4 335 335 (100%) 4 (1%) 331 (99%)
CLL 3 194 182 (94%) 5(3%) 177 (91%)
61 7255 5693 (78%) 101 (1%) 4791 (66%)

Table 7.5: Statistic of available arrays for selected ArrayExpress experiments.

entity. Several experiments include other chip types than the HG-U133A chip. Especially
in the breast cancer experiments there are more than 30% of other chip types. The tools
"boxplot’ and "M A-plot’ were used (see Chapter [5|) for quality assessment. If an array was
incorrect in both assessments, it was marked as ’defect’” and excluded. 60 defect arrays for
solid cancer experiments and 41 defect arrays for hemic cancer experiments were excluded,
which is about 1% of the data. Due to duplicated arrays in different experiments (from one
cancer entity) and several defect arrays, the number of arrays used in the analysis (column
‘used’) is lower than the number of available arrays. For the breast cancer experiments
only 51% can be used in the analysis and about 66% of all arrays. Therefore, the analysis
described in Section is executed on 4791 cancerous microarrays: 2833 arrays for solid
tumors and 1958 arrays for hemic disease tumors.

Due to the mentioned problems in the data quality of the annotation files, it is very
difficult to give more information about the cohorts. After manual correction of the anno-
tation files descriptive statistic is possible and listed in Tables [7.6] 94% (0.4% missing) of
the data are cancerous, 47% of the patients are female and 18% male (36% missing), and
the median age is 55 (50% missing). Figure|7.2/shows the histogram of the age distribution
for the hemic and solid cancer group. Expect for acute lymphoblastic leukemia all consid-
ered cancer entities mainly occur in older patients, which is expressed in both histograms.
The first peak in the histogram for hemic cancer entities shows the group of patients with
childhood acute lymphoblastic leukemia.
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(a) cancerous
non cancerous cancerous NA’s
hemic 11 (0.6%) 1942 (99.2%) 5 (0.3%)
solid 241 (8.5%) 2577 (91%) 15 (0.5%)
252 (5.3%) 4519 (94.3%) 20 (0.4%)
(b) gender
female male NA’s
hemic 237 (12%) 413 (21%) 1308 (67%)
solid 1997 (70%) 435 (15%) 401 (14%)
2234 (47%) 848 (18%) 1709 (36%)
(c) age
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
hemic 0 14 47 41.83 66 93 1246 (21%)
solid 4 47 58 57.47 68 93 1773 (29%)
0 42 55 51.19 67 93 3019 (50%)

Table 7.6: Statistic of cancerous data, gender, and
ments.
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Figure 7.2: Histogram of the age distribution for the hemic and solid cancer group.
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All other information (e.g., tumor grading, tumor staging) is in spite of manual cor-
rection not available for more than 10% of the complete cohort. For the data cleaning
only data in the annotation files were restructured. Additional data from publications or
websites were not consulted.

For the analysis of the batch effects and different influences on the data, a small data
set of breast cancer data was extracted and is called 'small cancer data set’ in the following
sections. An overview for this data set is available in Table [l The overview tables
(Table [7.7 and Appendix [B]) list the ArrayExpress ID, the cancer entity, the title and first
300 letters of the experiment description, the number of Arrays (HG-U133A/all), and the
Pubmed ID.

7.2.3 Data Management: ArrayExpressDataManage

The described large cancer data set consists of more than 60 single experiments and 7000
microarrays. Therefore, data management and storing becomes difficult. A special direc-
tory structure at the hard disk and R package for data management of AE experiments was
designed. Thereby the data set can be reused from anyone without providing the whole
data set, e.g., as new experiment in AE. The dataset can be regenerated very simply from
the public available experiments in AE. The R list structure to recreate the large cancer
study data is available in the Appendix [Bl Based on the structure of the new R package
for the data management, new experiments can be added at every time point.

Directory Structure

To keep a clear data management, the raw data and processed data were saved in a defined
directory structure on the hard disk:

Large-cancer-study Top directory for the large cancer study.

Cancer-entity-XYZ Every cancer entity has its own directory. All experiments
belonging to this entity will be stored in this directory.
Array.adf.txt Array design description.
Experiment-XYZ.raw.gz Packed CEL files for one experiment.

Experiment-XYZ.sdrf.txt Detailed sample and data relationship annotation
file for one experiment.

Experiment-XYZ.idrf.txt Investigation description for one experiment.
Experiment-XYZ_eset.Rdata R objects of preprocessed experiment data saved
as binary Rdata file.

Cancer-entity-XYZ_eset.Rdata R objects of all experiment data, belonging to
cancer entity XYZ, preprocessed together and saved as binary Rdata file.

complete_eset.Rdata R objects of all experiment data preprocessed together and
saved as binary Rdata file.
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This file structure is optimized for the data processing with the R language and for re-
usability of intermediate results. For example, the preprocessed data are stored in the data
structure or further results, e.g., graphs, can be stored, too. The CEL files are only stored
as packed files to save disk memory. This data structure can be reused for other study
types. The grouping into cancer entities can be generalized to all other kinds of groups
(for example age or sex).

R Package for Data Management

Based on the data structure described in the previous section, a new package called Ar-
rayExpressDataManage for data management of AE experiments was implemented. The
package uses the Bioconductor package ArrayExpress to download data from the AE
database and the data are stored in the described data structure. The main function of
the new package is the function dapply ()

R> library(ArrayExpressDataManage)
R> res <- dapply(function(x) print(x), path = getwd(), pattern = "*.txt",
+ recursive = TRUE)

This is an apply-like function which returns a list of values obtained by applying a
function FUN to files in a directory. The directory can be defined by the variable path and
the file type with a regular expression in the variable pattern. Some example functions
for standard microarray processing steps (e.g., rma preprocessing) are implemented. Ad-
ditionally, there are functions for data structure cleaning, creating overview tables, etc..
For preprocessing of microarray raw data serial (affy) or parallel (affyPara) packages can
be used.

For more details see the vignette of the package or the help files of the package.
The package is available at the R-forge repository: http://ArrayExpressDataManage.
R-forge.R-project.org/

7.3 Analyses

As described in Section[7.1] different network analyses and tests for differential gene expres-
sion are performed on the large cancer data set presented in Section Before high-level
mircorray analysis methods can be used, first of all the data have to be preprocessed
and checked for quality. This section presents more technical details and problems in the
analysis process of the large cancer study.

7.3.1 Analysis Process

The following analysis process was performed on the large cancer data set using the in-
troduced directory structure at the hard disk and the new ArrayExpressDataManage


http://ArrayExpressDataManage.R-forge.R-project.org/
http://ArrayExpressDataManage.R-forge.R-project.org/
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package.

1. Preprocessing for each of the tumor groups

e Extract packed CEL files into temporary directory.
e Remove arrays with wrong chip type (not HG-U133A).
e Remove duplicate arrays: CEL files are compared using the md5 check sum.

e Remove arrays with bad quality: boxplot and MA-plot are used for quality
control.

e Preprocess data with the parallel RMA algorithm (see affyPara package).

e Create annotation data frame: combine annotation files from experiments, cor-
rect errors in annotation files and manual add a new column 'FactorValue [can-
cerous]” (1 = cancerous, 0 = non cancerous), to identify cancerous data.

e Add annotation data frame to ExpressionSet object.

e Save ExpressionSet object in "_eset.Rdata’ file.

e Correct Batch Effect using ComBat algorithm (see Section [7.3.2)).

e Save ExpressionSet object in "_eset.Rdata’ file and old object in "_esetNoBatch-
Correct.Rdata’.

2. Differential Gene Expression in each of the tumor groups

e Only use cancerous data: 'FactorValue [cancerous|'==1.

e Calculate GlobalAncova test statistic for all pairs of cancer entities with 10.000
permutations perm and for all pathways (test.genes).

e Extract the top ten genes with the most influence to the test statistic.
e Save genelists in 'diffGeneExp.Rdata’ file.
3. Network Analysis with PC-Algorithm for each of the tumor groups and for every
used pathway
e Only use genes (probesets) from one pathway.
e Only use cancerous data: "FactorValue [cancerous]'==1.
e Calculate correlation graph of probesets using the PC-Algorithm with a = 0.05.

e Build gene-gene-graph from probeset-graph: If there are any correlations be-
tween probesets from different genes, then a correlation between these genes is
expected.

e Save correlation graph object in 'graphs. PATHWAY .Rdata’ file.

4. Comparing Graphs
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e Visualize graphs with genes from one pathway and different cancer entities next
to each other.

e Compute Structural Hamming Distance, True and False Positive Rates between
all graphs, and original KEGG graphs for all pathways.

e Run permutation tests on affiliation of arrays to test for differences in graph
structure (500 permutations) for all pairs of cancer entities and all pathways.

Used Packages

In Step (1| the ArrayExpressDataManage and affyPara packages with the cluster environ-
ment at the IBE with 30 computers was used for the preprocessing of the large number
of micorarrays. In Step [2] the GlobalAncova package was applied in parallel to test for all
pairs. In Step andthe pcalgo package was used and 88 (11 pathways, 4 entities, 2 tumor
groups) gene-gene graphs were estimated and 308 (11 pathways, 28 pairs of entities) pairs
compared in parallel. The permutation test was calculated at the computing resources at
the LRZ using R version 2.8.0 and the snow and Rmpi packages for parallel calculations.

Computation Time

Due to the huge number of microarrays all calculations are very time consuming and
parallel computing has to be used to solve the problem in time. Some information about
computation time and required main memory in the analysis process is presented in the
following.

Using 30 computers at the IBE, the complete rma preprocessing for 2833 arrays of solid
tumor patients takes about 35 minutes computation time and about 4.7 GB main memory
on each computer. For 1958 arrays of hemic disease tumors the computation time was 25
minutes and a maximum main memory of 5 GB.

Depending on the number of arrays, edges and genes the (serial) computation time of
all 88 graphs with the PC-Algorithm takes a lot of time [KB07]. In the IBE computing
pool the mean serial calculation time of one graph is about 20 minutes at one node. But
for the biggest pathway (MAPK signaling pathways with 250 nodes) it takes 60 minutes
computation time. Therefore, the graphs were estimated and compared in parallel.

In the permutation test in Step 4| two graphs with up to 246 genes and up to 1834
arrays have to be estimated in each run, which takes up to 60 minutes. For four groups
of cancer entities, six pairs have to be calculated. This takes up to 123 days (60 min -
500 runs - 6 pairs) for one pathway on a single processor. Using the cluster environment at
the IBE the computation time can be reduced to about 15 hours for one pathway. Using
500 processors from the HLRB2 at the LRZ the computation time is about 3 hours and
using 1000 processors the number of permutations can be doubled by the same computation
time. Due to the computation time, the permutation test in Step {4 was not executed for
pathways with more than 100 genes (MAPK, Wnt, p53).
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7.3.2 Batch Effect

Non-biological experimental variation or batch effects are commonly observed across mul-
tiple batches of microarray experiments [IWS™05]. Batch effects have been observed from
the earliest microarray experiments and can be caused by many factors including RNA iso-
lation batches, hybridization day, wash and reagent batches, operator, and lot-to-lot array
variation. In many cases the effects of the processing batches are larger than the biological
effects being studied. In general, it is inappropriate to combine data sets without adjusting
for batch effects [IWST05, [JLROT].

The batch effect can be seen in the large cancer study data, too. For visualization,
Figure [7.3] shows the heatmap of intensity values in the small cancer data set normalized
with rma before and after batch effect correction. The orange rectangles show a strong
correlation between the arrays from one experiment: batch effect
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Figure 7.3: Heatmap of intensity values visualizing the batch effect in breast cancer data
set (after rma normalization).

As one can see in the heatmap plots or in box-and-whisker plots for the intensities of the
arrays (not shown) or in Table[7.8] the batch effect is not caused by different intensity values
of the batches. In addition, the batch effect will not be removed from other normalization
methods. As well, variance stabilization normalization (VSN) [HvHST02] using a complex
error model does not remove this effect. Figure[7.4]shows hierarchical clustering of the vsn
normalized small cancer data set before and after batch effect correction.
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E-GEOD-11965 E-GEOD-4917 E-GEOD-6772 E-MEXP-440 E-TABM-43

Min. 7.29 7.30 7.25 7.29 7.31
Ist Qu. 7.30 7.35 7.32 7.33 7.34
Median 7.31 7.36 7.34 7.34 7.35
Mean 7.31 7.36 7.34 7.34 7.35
3rd Qu. 7.32 7.37 7.37 7.36 7.36
Max. 7.33 7.49 7.39 7.37 7.39

Table 7.8: Summary of intensity values for batch effect (uncorrected) in the small cancer
data set.

Correct Batch Effect

Different methods have been proposed to filter batch effects from data. All of them have
different advantages and drawbacks. At the moment it is not proved that they work
correctly or do not remove biological information. In the large cancer study a parametric
and non-parametric empirical Bayes framework ’Combatting batch effects when combining
batches of gene expression microarray data’ (ComBat) [JLROT7] is used. It is robust to
outliers in small (<10) sample sizes and performs comparable to existing methods for large
samples. It is the only algorithm correcting batch effects, which is available in R code
(http://statistics.byu.edu/johnson/ComBat). Small changes of the code are required
for the application to the latest Bioconductor ExpressionSet object. The adjusted code
is included in the ArrayExpressDataManage package.

ComBat: The algorithm is presented in [JLRO7] and the method is based on empirical
bayes (EB) methods and model based location and scale (L/S) adjustments. EB methods
are primarily designed to borrow information across genes and experimental conditions
in hope, that the borrowed information will lead to better estimates. L/S adjustments
assume, that the batch effect can be modeled out by standardizing means and variances
across batches.

The method assumes, that phenomena resulting in batch effects often affect many
genes in similar ways (e.g., increased expression, higher variability, ...). The L/S model
parameters — that represent the batch effects — are estimated by pooling information across
genes in each batch to shrink the batch effect parameter estimates towards the overall
mean of the batch effect estimates. These EB estimates are then used to adjust the data
for batch effect, providing most robust adjustments for the batch effect on each gene.
After background correction, normalization and summarization, the batch effect correction
method ’ComBat’ is applied to the data. The method consists of three steps:

e Standardize the data.
e EB batch effect parameter estimation using parametric empirical priors.

e Adjust the data for batch effects.
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Figure 7.4: Hierarchical clustering graphic visualizing batch effect in small cancer data set
(after vsn normalization).

For more details on the ComBat algorithm see [JLRO7] or http://statistics.byu.edu/
johnson/ComBat.

Discussion: Due to lacks of information in the annotation data mentioned in Section [7.2]
no covariates were used for the batch effect correction. Furthermore, the latest code of
ComBat only deals with categorical covariables.

The method is not based on a model that includes all sources of error and it is not
the best way to remove sources of error in steps (i.e. take out array effects first, average
probes, then remove batch). It can be shown that this approach introduces serious bias
into estimates of differential expression.

One thing to keep in mind is the notion of balance. For example, if the batches are not
equivalent, in the sense of ER status, HER-2 status, age, etc., then removing the batch
effect can also remove or adjust the biology. Therefore, new (unpublished) approaches try
to focus on methods that do not adjust biological signal while accounting for confounding
(e.g., array and batch effects).

Finally, note that the EB adjustments are dependent on several factors: the standard-
ized batch mean, the empirical prior distribution, the (residual) variance estimate, and
the sample size within the batch. Sample size appears to be a very influential factor in
this EB method. As sample size increases, the EB adjustment converges to the L/S batch
effect parameter estimate and diverges from the empirical prior. In data sets where the
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sample sizes were relatively moderate (15-25 samples per batch), there is usually not much
difference between the EB and the L/S adjustments |[JLRO7, Data supplement].

7.3.3 From Probes to Genes

The last step of preprocessing for Affymetrix microarrays is the summarization step, which
combines the multiple preprocessed probe intensities to a single expression value (probeset).
For most analyses and biological interpretations the interaction of genes is of interest. For
microarray experiments usually several probesets match to one gene (Entrez ID).

probes = probesets = genes

Therefore, the intensities of probesets have to be combined to intensities of genes or a single
probeset has to be selected as representative for a gene. In literature several methods are
proposed to get from probesets to genes.

Novel Definition Files for Human GeneChips based on GeneAnnot: A novel set
of custom Chip Definition Files (CDF) and the corresponding Bioconductor libraries
for Affymetrix human GeneChips based on the information contained in the GeneAn-
not database were developed. In the definitions there is a bijective mapping between
genes and probes (not probesets) [FBCT07].

Summarization for Probesets: First model based approaches (mean) for summarizing
probesets to one intensity value for one gene are published. Several studies identified
no differences between the compared models [Rus08].

Nonspecific Filtering: Nonspecific filtering removes the probe sets that are believed to
be not sufficiently informative (low variance), so that there is little point in consid-
ering them further [HHGFO0S].

No standardized models for summarization of probesets exist and the influence on
differential gene expression or correlation between genes is not yet analyzed. A lot of
genetic information gets lost using novel definition files or removing probesets with low
variance. For differential gene expression this has no or only a low influence on the results.
In the Bioconductor community the nonspecific filtering approach is commonly used. But
for network analyses and gene correlation genes or probes with correlation are removed
and a lot of information is lost.

For this work the following approach is used: Nonspecific filtering is used to remove
probesets with no information (e.g., control probes or probes without EntrezID). Genes
are extracted from the pathways and matched to the genes on the chip. Then the graph is
created on the probesets belonging to the genes in the pathway and on the chip. From this
probeset-graph a gene-graph is built. If there are any correlations between probesets from
different genes, then a correlation between these genes is expected. Due to correlations
between probesets belonging to the same gene, there are loops at some nodes (genes) in
the graphs. This gene-graph can be compared to the graph from the KEGG database.
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7.3.4 Influence of Batch Effect and Preprocessing

The gene-graphs of different experiments with different preprocessing methods are plotted
in Figure [7.5] There is a strong influence from the batch effect correction and number of
preprocessed data to the graph structure. Same effects can be shown in a lot of different
microarray analyses examples, for example differential expression. The PC-Algorithm and
the small cancer data set were used to demonstrate the influence.

In the experiments the correction of the batch effect has no influence on the analyses
results, but a strong effect to the analyses results of all data together. In Figure [7.5(a)
and all graphs for the experiments have the same structure. The graphs in the last
columns are the graphs of the network analysis on the whole data set. Only 40% of the
edges in the batch corrected graph are available in the not batch corrected graph. For the
interesting edges the strength of the correlation is similar in both graphs. Figure [7.5(b)|
andshow that preprocessing all data together has an influence on the graph structure.
Only less than 50% of the edges are in both graphs but there are less than 2% of false edges
(Table [7.9).

E-GEOD-11965 E-GEOD-4917 E-GEOD-6772 E-MEXP-440 E-TABM-43
TPR 0.12 0.16 0.29 0.34 0.52
FPR 0.01 0.02 0.02 0.02 0.01

Table 7.9: Comparison between single and complete preprocessed data with the rates TPR
and FPR.

Therefore, preprocessing of all data together makes arrays comparable and in view of
graph structures it introduces no errors.

7.3.5 VSN Add-on Normalization

Many research institutes do not have powerful computers or computer clusters to preprocess
all data together. The add-on variance stabilization normalization is a common way to
preprocess huge numbers of microarray data ([KSO8| and see Chapter . A maximal
number of arrays is normalized in a first run and a so called 'reference data set’ (or core
data) is created. Additional arrays are added to the reference data in later runs. The new
arrays are normalized with saved normalization-error-model parameters without changing
the normalized core data. This method is used as well, if arrays are added to the study in
different time steps [KSO0§].

Small differences between add-on normalization and a complete normalization, influ-
encing the results only marginally, are well known. Examples for good agreement are
presented in the vignettes of the vsn package. The effect on the results depends on the
size of the reference data, the size of the add-on arrays, the intensity of the arrays and
several other factors. Furthermore, the influence of batch effects on the data was never
discussed in detail. A strong batch effect (due to the factors described in Section
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Figure 7.5: Network analysis (PC-Algorithm) with the small cancer data set for genes in
the pb3 signaling pathway. The last column shows the graph for all data together
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Figure 7.6: Boxplots of intensities for complete vsn normalization and vsn add-on normal-
ization with arrays from the E-GEOD-11121 experiment.

may be expected especially in studies hybridizing arrays at different time points. For
example in the large multi-centre study "Microarray Innovations in LEukaemia’ (MILE)
[BKHO09] problems using the vsn add-on normalization for huge numbers of arrays and a
long study time are reported. In the affyPara package vignette ’Simulation Study for VSN
Add-On Normalization and Subsample Size’, some examples for problems with vsn add-on
normalization — especially big differences between add-on and complete normalization —
are presented. Figure shows the boxplots of intensities for complete vsn normalization
compared to the vsn add-on normalization with two add-on data sets. The graphic shows
the variance stabilization, but there is an obvious difference in the mean values, IQRs and
outliers, too. Furthermore, problems with the size of the subsamples (rows) are discussed
in the vignette.

The parallel vsn implementation in the affyPara package enables a vsn normalization
for all data together. Unfortunately, there is only a low improvement in speed (see Chap-
ter . Due to the mentioned problems a complete vsn normalization should be preferred,
if possible.

7.3.6 Simulation Study for Permutation Test of Array Affiliation

As described in the analysis process, to assess the differences of the graph structures from
two data sets a permutation test for the arrays’ group affiliation is conducted. Two graphs
are estimated with the PC-Algorithm on the two original data sets and compared using
the SHD. Then in 500 runs the affiliation of the arrays (observations) is permuted, the two
graphs are estimated and the SHD is calculated. If the two groups of data have the same
correlation structure, the original SHD should be located in the confidence interval (CI). If
the original SHD is outside (bigger) of the CI, then there is a difference in the correlation
structure of the two groups.
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To interpret and validate the results of the permutation test in the large cancer study,
a simulation study was designed. For two graphs with the same and a different graph
structure normal distributed sample data were generated. A graph sparseness of 20% was
assumed, which is consistent to the sparseness of KEGG graphs. The permutation test was
calculated with different numbers of observations and nodes. The results of the simulation
study are visualized in the Figures [7.7 which show the difference of the original SHD to
the lower bound of the 95% confidence interval of the permutation test. SHDs below the
CI are marked with black dots and SHDs above the CI are marked with red dots.

(a) fix graph structure (b) different graph structure

Figure 7.7: Distance between original SHD and minimum in confidence interval of permu-
tation test with fix and different graph structure.

For the different graph structures the SHD is bigger than the CI, which indicates the
differences between the graph structures. For the fix graph structure the original SHD
value is in most cases in the CI. As described in Chapter for more than 50 nodes
the PC algorithm overestimates the graph. Therefore, SHD values in the permutation test
become bigger and the CI slides upwards. In some cases the original SHD is smaller than
the lower bound of the CI (black dot). In all cases the original SHD is very close to the
lower bound, whereas for different graph structures there is a clear difference between the
original SHD and the upper bound.

7.4 Results

The goal of the study was not to identify new biological relations. First of all a work-
ing framework to manage, process and analyze the amount of data should be presented.
The chapter ends with a result section presenting graphs for different cancer entities and
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different pathways. In addition basic differential gene expression and some statistics for
similarities between the graph structures are shown. Not all graphs for all cancer entities
and pathways are presented due to the limited space.

7.4.1 Differential Gene Expression

To study differential gene expression between the different entities in a group of genes —
associated with a pathway — the GlobalAncova approach was used. Testing whether two
cancer entities have different gene expression patterns GlobalAncova asks for differences in
mean expression between the two clinical groups.

For hemic cancer entities as well as for solid cancer entities all pairs of entities (6 per
hemic and 6 per solid tumor) and for all pathways the p-values are smaller than 0.01.
From this result it is concluded that the overall gene expression profile for all genes in one
pathway is associated with the clinical outcome. This means, that samples with different
entity status tend to have different expression profiles. For example, Table [7.10| shows the
F-statistics and the asymptotic p-values for the hemic cancer entities AML-CLL. The test

genes F.value p.approx

Cell cycle 207 11.5 0.0000000055

p53 signaling pathway 129 16.1  0.0000000000
Apoptosis 159 18.7 0.0000000000

ECM-receptor interaction 187 26.7 0.0000000000
Colorectal cancer 166 13.8  0.0000000000
Prostate cancer 194 15.6  0.0000000000

Acute myeloid leukemia 123 14.0  0.0000000000
Non-small cell lung cancer 110 16.9  0.0000000000

Table 7.10: Test result matrix created from GlobalAncova for the hemic cancer entities
AML-CLL.

results clearly indicate that the expression pattern of all pathways is different between all
tested pairs of entities. This result is surprising, because the non cancer specific pathways
(e.g., Cell Cyle or p53) should have a similar expression profile in all cancer entities.

Using the diagnostic plot for the interpretation of the GlobalAncova results, the genes
with the most influence to the test statistic can be extracted. In the Tables [Z.11] the five
most influencing genes in the solid and hemic cancer entities for each pathway are listed.

Comparing these genes with literature, they are all well known to have any relation to
cancer. For example the insulin-like growth factor (IGF-1) appears to play a role in prostate
development and carcinogenesis [CSPT06] or an over-expression of the CDC2 gene can be
observed in leukemia cells [FTST95].
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(a) Solid Cancer Entities

1 2 3 4 5
Cell cycle GADD45B SFEFN CDC2 CDKN2A MCM4
pH3 signaling pathway GADD45B IGFBP3 CDC2 RRM2 SFN
Apoptosis TNFSF10 CFLAR FAS IRAK1 NFKBIA
ECM-receptor interaction FN1 CDh44 COL3A1 COL1A1 COL4A2
Colorectal cancer IGF1R EGFR FOS FZD1 PIK3R1
Prostate cancer IGF1 IGF1R  E2F3 EGFR FGFR1
Acute myeloid leukemia PIK3R1 STAT3  AKT3 CCND1 KRAS
Non-small cell lung cancer FOXO3 AKT3 CDKN2A E2F3 EGFR
(b) Hemic Cancer Entities
1 2 3 4 5
Cell cycle GADD45B SFEN CDC2 CDKN2A MCM4
p5H3 signaling pathway GADD45B IGFBP3 CDC2 RRM2 SFN
Apoptosis TNFSF10 CFLAR FAS IRAK1 NFKBIA
ECM-receptor interaction FN1 CD44 COL3A1 COL1A1 COL4A2
Colorectal cancer IGF1R EGFR FOS FZD1 PIK3R1
Prostate cancer 1GF1 IGF1R  E2F3 EGFR FGFR1
Acute myeloid leukemia PIK3R1 STAT3  AKT3 CCND1 KRAS
Non-small cell lung cancer FOXO3 AKT3 CDKN2A E2F3 EGFR

Table 7.11: Genes with the most influence on the test statistic of GlobalAncova for the
hemic and solid cancer entities.
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7.4.2 Correlation for Hemic Cancer Entities

Figure [7.8 shows the graphs for the four hemic cancer entities and the cell cycle pathway
(hsa04110) calculated with the PC-Algorithm with o = 0.05. Due to the high number of
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Figure 7.8: Network analysis (PC-Algorithm) for different hemic cancer entities and the
cell cycle pathway (same number of nodes (genes) in all four graphs: 104).

edges (267 to 521) and nodes (same number in all four graphs: 104) it is very difficult to
discover any similarities. The graphs for the other pathways have more nodes and edges
(see Table . Therefore, these graphs are not plotted and differences are analyzed using
the described measures for comparing graphs.
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Comparison to the KEGG graph

First of all the generated graphs are compared to the known graphs of the KEGG pathways.
The true positive rates for the hemic cancer graphs are compared in Table to the
KEGG graphs (row 0). As expected less than 20% of all edges between genes can be found
in the generated graphs. Especially for all signaling pathways (e.g., MAPK = hsa04010)
the number of true edges is very low. Surprisingly there is no better performance in the
pathways for the hemic disease tumors (e.g., Acute myeloid leukemia pathway = hsa05221)
than in pathways for solid tumors (e.g., Prostate cancer pathway = hsa05215). Similar
numbers of correct correlations between genes can be found. Best results are available for
the ALL cancer entity, 15% of the edges in the acute myeloid leukemia pathway can be
regenerated.

Additional paths — correlations or edges over one (up to 5) nodes — were analyzed.
Looking at paths over three edges more than 72% of the edges in the graphs compared to
the KEGG pathway can be recovered. For the CLL cancer entity the lowest number of
correct paths can be found. For some entities in a couple of pathways all paths can be
found. However, for example for AML in the apoptosis pathway (hsa04210) only 94% of
the true edges can be found.

(a) pathway hsa04010 (b) pathway hsa04210
ALL AML CLL LYM ALL AML CLL LYM
0 006 005 0.02 0.03 0 0.13 011 0.04 0.06
1 042 022 0.12 0.21 1 054 048 0.12 0.40
2 094 079 039 0.65 2 097 087 042 0.85
3 100 098 0.79 0.95 3 100 094 0.72 0.99
4 1.00 1.00 0.96 0.99 4 1.00 094 091 1.00
5 1.00 1.00 0.98 1.00 5 1.00 094 096 1.00
(c) pathway hsa05215 (d) pathway hsa05221
ALL AML CLL LYM ALL AML CLL LYM
0 0.15 0.12 0.05 0.09 0 0.18 0.12 0.09 0.09
1 068 052 027 047 1 078 057 022 044
2 099 092 061 0091 2 1.00 097 0.59 0.92
3 1.00 1.00 0.88 0.98 3 1.00 1.00 0.93 1.00
4 1.00 1.00 094 0.98 4 1.00 1.00 0.98 1.00
5 1.00 1.00 0.96 0.98 5 1.00 1.00 0.99 1.00

Table 7.12: TPR for hemic cancer entities compared to the KEGG pathways.

The listed edges in Table are available in the KEGG pathways and in # of the
four hemic cancer graphs. Less than four correlations or edges between two genes of one
pathway are available in all graphs.
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(a) pathway hsa04210 (b) pathway hsa05215 (c) pathway hsa05221
Genes #  Genes #  Genes #
APAF1"CASP9 4 NFKB1"NFKBIA 4 KRAS"PIK3R2 4
ILIRAPTIRAK3 4 CCNE2"RB1 3 RARA™SPI1 4
NFKB1"NFKBIA 4 IGF1"PDGFRA 3 KIT"PIK3CB 3
AKT3 IKBKB 2 AKT3 CASP9 2 KRAS"PIK3R1 3
CASP3"CASP6 2 AKT3"FRAP1 2 AKT3"FRAP1 2

Table 7.13: Top 5 edges in the graphs of the hemic cancer entities.

Rates

It is very difficult to identify similarities between these graphs. Therefore, the Tables
show the True Positive Rates (left) and the False Positive Rates (right) between two graphs
for hemic cancer entities and different pathways. A high TPR and a low FPR are indicators

(a) pathway hsa04115

ALL AML CLL LYM ALL AML CLL LYM
ALL 100 038 037 046 | ALL 0.00 0.11 0.12 0.11
AML 029 1.00 0.29 0.33|AML 0.07 0.00 0.09 0.08
CLL 0.7 017 1.00 0.23|CLL 0.04 0.05 0.00 0.05
LYM 026 024 028 1.00|LYM 0.05 0.06 0.06 0.00

(b) pathway hsa04210

ALL AML CLL LYM ALL AML CLL LYM
ALL 100 029 034 036|ALL 0.00 0.09 0.09 0.08
AML 024 1.00 0.23 0.25| AML 0.07 0.00 0.08 0.07
CLL 0.15 0.13 100 0.17|CLL 0.03 0.04 0.00 0.04
LYM 025 021 027 1.00|LYM 0.05 0.06 0.06 0.00

(c) pathway hsa05221

ALL AML CLL LYM ALL AML CLL LYM
ALL 100 044 050 044 | ALL 0.00 0.12 0.13 0.13
AML 036 1.00 033 0.33|AML 0.08 0.00 0.11 0.10
CLL 023 0.18 1.00 0.23|CLL 0.04 0.06 0.00 0.05
LYM 028 026 032 1.00|LYM 0.07 0.08 0.08 0.00

Table 7.14: TPR (left) and FPR (rigth) for different hemic cancer entities.

for similar edges in the graphs. The FPR is very low for all entities and pathways, which
indicates a very low number of wrong edges between the graphs. There are less than 50%
of the same edges in different cancer entities for the same pathway shown by the numbers
of TPR. Using these two rates a low similarity between the graphs can be found. Most
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similarity is in the graphs of the acute myeloid leukemia pathway (hsa05221).

Structural Hamming Distance

Another rate for the similarity of two graphs is the structural hamming distance (SHD). In
simple terms, this is the number of edge insertions, deletions or flips in order to transform
one graph to another graph. Therefore, a low number shows the similarity between graphs.
The SHD is symmetric.

A permutation test with 500 runs was done to test for significant correlation differences
between the cancer entities. The affiliation of the arrays between two groups of cancer
entities was permuted, the graphs estimated, compared with the SHD metric and the
confidence interval calculated.

The Tables show the SHDs, the 95%-confidence intervals (quantiles of SHD val-
ues), and the number of nodes and edges in the graphs — to evaluate the number of SHD
transformations — for hemic cancer entities and different pathways. If there would be no

(a) pathway hsa04110

ALL AML CLL LYM | nodes edges

ALL 0 581 [363,410] 542 [453,496] 570 [399,448| 104 521

AML - 0 447 [345,389] 453 [313,356] 104 381

CLL - - 0 436 [331,374] 104 267

LYM - - - 0 104 342
(b) pathway hsa04210

ALL AML CLL LYM | nodes edges

ALL 0 438 [274,315] 373 [340,379] 393 [307,347] 80 367

AML - 0 345 [269,305] 383 [257,296] 80 302

CLL - - 0 296 [243,279] 80 182

LYM - - - 0 80 265
(¢) pathway hsa05221

ALL AML CLL LYM | nodes edges

ALL 0 265 [215,251] 242 [250,284] 261 [213,250] 56 269

AML - 0 233 [215,246] 248 [190,224] 56 219

CLL - - 0 195 [173,204] 56 134

LYM - - - 0 56 182

Table 7.15: SHD, confidence intervals, and numbers of nodes and edges for different hemic
cancer entities and pathways.

differences between the cancer entities, the calculated SHD should be located in the confi-
dence interval. For most pathways and pairs of entities the SHD is obviously (very small
p-values) outside (bigger) the interval. This is an indicator for the expected different corre-
lation structures in the groups. In several pathways there is no obvious difference between
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the ALL-CLL, AML-CLL and CLL-LYM pairs. Figure plots the histogram of the dis-
tribution of SHD for some selected examples. All other histograms look very similar. As
described, an original SHD value lower than the CI occurs due to the bias in the graphs
estimated with the PC-Algorithm.
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Figure 7.9: Histogram of the distribution of SHD for pathway hsa05221.

Using the SHD rate there is an obvious difference in the graph structure for all data
in all pathways. For some pathways no significant differences between the cancer entities
could be found in the permutation test. First of all this is an indicator for a bad grouping in
the cancer entities during the creation of the large cancer study. Especially different types
of ALL were combined to one group. In view of medical scientists this grouping is critical
due to big biological differences in the cancer subgroups. Furthermore, gene expression
signatures are very similar for some entities e.g., ALL-CLL. Due to the experiment design
and the mentioned problems with the annotation files every kind of array was used. There
was no differentiation for example for sex or age.

7.4.3 Correlation for Solid Cancer Entities

Similar to the section about correlation in the hemic cancer entities, in this section the
tables for the solid cancer entities and the different pathways are presented. The graph
structures are not plotted due to the complexity of the graphs.
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Comparison to the KEGG graph

First of all the generated graphs are compared to the known graphs of the KEGG pathways.
In Table[7.16]the true positive rates for the hemic cancer graphs are compared to the KEGG
graphs (row 0). As expected less than 22% (hemic 20%) of all edges between genes can be
found in the generated graphs.

Especially for all signaling pathways (e.g., p53 signaling pathway = hsa04115) the num-
ber of true edges is very low. Surprisingly there is no better performance in the pathways
for the solid tumors (e.g., colorectal cancer pathway = hsa05210) than in pathways for
hemic disease tumors (e.g., acute myeloid leukemia = hsa05221). Best results are available
for the BREAST cancer entity. In the non-small lung cancer pathway (hsa05223) 22% of
the edges can be recovered.

Additional paths — correlations or edges over one (up to 5) nodes — were analyzed.
Looking on paths over three edges more than 85% (hemic 72%) of the edges in the graph
compared to the KEGG pathways can be recovered. The lowest number of correct paths
can be found for the COLON cancer entity.

(a) pathway hsa04115 (b) pathway hsa05210
BREAST COLON LUNG PROSTATE BREAST COLON LUNG PROSTATE
0 0.19 0.07 0.09 0.08 0 0.14 0.07 0.05 0.10
1 0.77 0.24 0.49 0.33 1 0.82 0.25 0.47 0.44
2 1.00 0.56 0.92 0.80 2 1.00 0.75 0.95 0.93
3 1.00 0.87 1.00 1.00 3 1.00 0.95 1.00 1.00
4 1.00 0.95 1.00 1.00 4 1.00 0.99 1.00 1.00
5 1.00 0.99 1.00 1.00 5 1.00 1.00 1.00 1.00
(c) pathway hsa05221 (d) pathway hsa05223
BREAST COLON LUNG PROSTATE BREAST COLON LUNG PROSTATE
0 0.20 0.05 0.11 0.10 0 0.22 0.11 0.15 0.12
1 0.89 0.39 0.53 0.45 1 0.93 0.39 0.65 0.47
2 1.00 0.72 0.98 0.80 2 1.00 0.81 0.93 0.86
3 1.00 0.89 1.00 1.00 3 1.00 0.97 1.00 0.98
4 1.00 0.99 1.00 1.00 4 1.00 0.98 1.00 0.98
5 1.00 0.99 1.00 1.00 5 1.00 0.98 1.00 0.98

Table 7.16: TPR for solid cancer entities compared to the KEGG graphs.

The edges listed in Table are available in the KEGG pathways and in # of the
four solid cancer graphs. Only one correlation is available in all graphs.

(a) pathway (b) pathway (c) pathway
hsa04115 hsa05210 hsa05223

Genes
AKT3 FOXO3
KRASPIK3CB

Genes # Genes

APAF1 " CASP9 4 SMAD2"SMAD4

ATM™TP53 3 AKT3 GSK3B
3
1
1

KRAS PIK3R1
ARAF"MAP2K2
EGFR™PIK3CG

TP53"TSC2 KRAS PIK3CB
BID"CYCS KRAS PIK3R1
CDKN2A"MDM2 AKT1"BAD

HMMMW:#:
MMC&C&W:”:

Table 7.17: Top 5 edges in the graphs of the solid cancer entities.
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Rates

The Tables show the TPR and the FPR between two graphs for solid cancer entities
and different pathways. Similar to the hemic disease data, the FPR for all data is very low,

(a) pathway hsa04115

BREAST COLON LUNG PROSTATE BREAST COLON LUNG PROSTATE
BREAST 1.00 0.55 0.38 0.44 BREAST 0.00 0.15 0.15 0.15
COLON 0.19 1.00 0.17 0.17 COLON 0.03 0.00 0.05 0.05
LUNG 0.21 0.28 1.00 0.21 LUNG 0.07 0.09 0.00 0.09
PROSTATE 0.22 0.24 0.19 1.00 PROSTATE 0.06 0.08 0.08 0.00

(b) pathway hsa05215

BREAST COLON LUNG PROSTATE BREAST COLON LUNG PROSTATE
BREAST 1.00 0.52 0.39 0.39 BREAST 0.00 0.12 0.12 0.13
COLON 0.21 1.00 0.18 0.18 COLON 0.03 0.00 0.05 0.05
LUNG 0.23 0.26 1.00 0.23 LUNG 0.06 0.07 0.00 0.07
PROSTATE 0.20 0.22 0.20 1.00 PROSTATE 0.05 0.06 0.06 0.00

(c) pathway hsa05221

BREAST COLON LUNG PROSTATE BREAST COLON LUNG PROSTATE
BREAST 1.00 0.60 0.46 0.48 BREAST 0.00 0.16 0.16 0.17
COLON 0.25 1.00 0.22 0.23 COLON 0.04 0.00 0.06 0.07
LUNG 0.28 0.33 1.00 0.25 LUNG 0.08 0.10 0.00 0.11
PROSTATE 0.25 0.29 0.21 1.00 PROSTATE 0.07 0.09 0.09 0.00

Table 7.18: TPR and FPR for different solid cancer entities.

which indicates a very low number of wrong edges. The numbers of TPR show that there
are less than 60% (hemic 50%) of the same edges. A lot of edges in the BREAST data
can be found in the COLON and LUNG data, but there are disproportionally many false
edges for these data, too. Using these two rates a low similarity between the graphs can
be found. Surprisingly, the highest number of true edges between the different entities can
be found between the genes in the hemic pathway "acute myeloid leukemia’ (hsa05221).

Structural Hamming Distance

The Tables show the SHDs, the 95%-confidence intervals and the number or nodes
and edges for solid cancer entities and different pathways.

(a) pathway hsa04210

BREAST COLON LUNG PROSTATE nodes edges
BREAST 0 475 [435,476] 540 [307,441] 475 [418,458] 80 188
COLON - 0 335 [275,314] 298 [255,292] 80 187
LUNG - - 0 375 [295,335] 80 284
PROSTATE - - - 0 80 245

(b) pathway hsa04512

BREAST COLON LUNG PROSTATE nodes edges
BREAST 0 435 [464,504] 477 [415,460] 453 [436,480] 81 467
COLON - 0 314 [301,343] 310 [294,335] 81 202
LUNG - - 0 354 [345,391] 81 295
PROSTATE - - - 0 81 273

Table 7.19: SHD and confidence interval for different solid cancer entities and pathways.

Using the SHD rate there is an obvious difference in the graph structure for all data in
all pathways. Similar to the hemic data in the permutation test for some pathways and
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entity groups no significant differences between the cancer entities can be found. Espe-
cially for the BREAST-COLON, BREAST-PROSTATE, COLON-LUNG, and COLON-
PROSTATE pairs.

7.4.4 Comparison of Correlation between Solid and Hemic Can-
cer Entities

At the end of the analysis the graphs of the solid and hemic cancer entities are compared
among each other using the structural hamming distance. As expected, there is more
similarity between the pairs of graphs in the four solid cancer entities and in the four
hemic cancer entities than between them.

Table prints the SHD values of all pairs in the eight cancer entities and the KEGG
graph for the apoptosis pathway (hsa04210). Due to the symmetry of the SHD, the matrix
is symmetric. The first column and last row is removed (contain no information) to save
space.

BREAST COLON LUNG PROSTATE ALL AML CLL LYM

KEGG 590 310 405 362 466 409 299 379
BREAST 0 475 540 475 591 577 522 530
COLON 0 0 335 298 412 366 277 329
LUNG 0 0 0 375 469 447 348 400
PROSTATE 0 0 0 0 434 392 313 349
ALL 0 0 0 0 0 438 373 393
AML 0 0 0 0 0 0 345 383
CLL 0 0 0 0 0 0 0 296

Table 7.20: SHD between pairs of KEGG graph, solid and hemic cancer entities for the
Apoptosis pathway (hsa04210).

Figure visualizes the distribution of the SHD for the solid cancer, hemic cancer
and mixed (solid+hemic) pairs. The data for the hemic and solid cancer entities include
the 0, because there is no difference (SHD=0) between the same graphs (e.g., ALL-ALL).
In all 11 analysed pathways the mean value of the mixed pairs is higher than in the other
two groups. This indicates, that there is a different correlation structure for genes in solid
and hemic disease tumors.

7.5 Summary

This chapter demonstrates that the use of parallel computing allows the analysis of more
than 4000 microarrays and reduces the computation time to less than one day. A R package
for data management of microarray experiments was presented and is available at the R-
forge repository: http://ArrayExpressDataManage.R-forge.R-project.org/

The results of the analysis are very similar for both groups of data:


http://ArrayExpressDataManage.R-forge.R-project.org/
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Figure 7.10: Boxplots for SHD distribution between solid cancer and hemic cancer graphs
and between solid and hemic graphs (mix) for the pathways hsa04210 hsa05221.

e Testing the used data for differential gene expression shows a very strong differential
gene expression for many genes and no consistent differential expression profile for
the analysed entities. The strong differential gene expression (small p values) is an
indicator for problems in the grouping — only eight entities —. It is well known, that
there are huge differences in data from subentities. This coarse grouping was chosen
to keep acceptable group sizes (more than 180 arrays) .

e There is only a small similarity between the calculated graphs (PC-Algorithm) and
the KEGG pathways. This indicates that the paths in biological pathways can not
be indicated by expression microarrays. But by analysing paths (correlations) over
three other nodes (genes) about 80% of the paths in the KEGG pathways can be
proven.

e Comparing the calculated graphs for each entity based on the pathways and using
the discussed rates as measurement, up to 60% of the same correlation between genes
can be found. However, these correlations are different to the KEGG pathways.

e Using a permutation test in the arrays of the cancer entities and comparing the
calculated graphs with the SHD, for several pairs significant differences in the gene-
gene correlation structure between the cohorts of cancer entities can be found.

The same study could be executed on public available data of the chip type '"HG-U133
Plus 2.0’. This chip type is a newer generation and stores more probes and genes. The
number of arrays will be less than 7000 but nearly all genes of the pathways should be
available on the chip. Furthermore, due to younger data (2003 to today) the data and
annotation file quality should be better. Therefore, the data can be analyzed more in
detail (e.g., female - male) and can be compared to the presented large data study.
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Chapter 8

Summary and Outlook

Bioinformatics as an interdisciplinary research area at the interface between computer
science and biological science has been confronted with new challenges in the last few years.
Especially large data sets and increased computational requirements stemming from more
sophisticated methodologies require new computational and statistical solutions, ideas and
approaches. This work demonstrates the usefulness of parallel computing as to solving
these new challenges as well as its power and limitations with two well-known biological
examples. Basic results are published or submitted to relevant journals.

The summary chapter describes the state of development and discusses open topics
regarding further parallel applications. In the end, two current trends for the future of
parallel computing will be outlined in detail.

8.1 State of Development

For the open-source programming language R — a software environment for statistical com-
puting and graphics — research has focused on using parallel computing techniques in the
last decade. Existing packages for different parallel computing hardware environments
were compared [SMET09]. The snow and Rmpi package stand out as particularly useful
for general use on computer clusters, the multicore package for multi-core systems.

For preprocessing of high-density oligonucleotide microarrays, the affyPara package
based on the snow package was developed [SMOS8| [SM09]. Existing statistical algorithms
and data structures had to be adjusted and reformulated for parallel computing. Using
the parallel infrastructure, the known methods could be enhanced and new methods have
became available. Parallelization of existing preprocessing methods produces, in view of
machine accuracy, the same results as serialized methods. The partition of data and
distribution to several nodes solves the main memory problems and accelerates the method
up to factor 15 for 300 arrays or more.

For next-generation sequence data, improvements could be achieved using parallel com-
puting in the R language with the snow or Rmpi package, but existing data structures and
huge amounts of data (network traffic) limit its usefulness. Using the multicore pack-
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age can accelerate the process considerably. However, a huge amount of main memory is
required.

The parallelized preprocessing methods were used to analyze more than 7000 microarray
data from more then 60 experiments from the public microarray database ArrayExpress.
For data management, a new package called ArrayExpressDataManage was developed.
The study proves the feasibility of data management and of analysing this amount of
microarray data. Eight different cancer entities were studied, and the gene-gene interaction
of more than ten KEGG pathways was estimated. Adequate similarities between the graphs
were found, but it is not possible to rebuild more than 30% of KEGG pathways using gene
expression data.

To conclude, microarrays remain a useful technology to address a wide area of biological
problems and the optimal analysis tool of these data to extract meaningful results, but still
pose many bioinformatic challenges. Sequencing based characterization of transcriptome
is appealing because it effectively surmounts the limitations of microarrays. As access
disseminates and costs for next-generation sequencing continue to drop, it seems probable
that a steadily increasing fraction of the community will begin to use sequencing, rather
than microarrays, to interrogate biological phenomena at the genomic scale [She0§].

8.2 Open Topics

The affyPara package provides parallelized preprocessing methods for oligonucleotide mi-
croarray data. The most frequently used and most famous methods for background correc-
tion, normalization and summarization are provided in the package. Due to the modular
software design of the package, the extension to further preprocessing methods is possible.
At the moment, the package does not support all Affymetrix chip types. In theory, similar
parallel computing techniques can be adapted, as for example exon, SNP or tiling arrays.
Furthermore, the package provides methods for quality control of large amounts of microar-
ray data. Especially the graphical visualization of this amount of data is quite difficult and
is supposed to be improved. The use of interactive GUIs seems to be a promising solution.
Developments in R-GUT interfaces are in progress in the R user community (e.g., RGG
package, [VDV™T09]).

New techniques for analyzing microarray data are constantly being developed. Al-
though the underlying distribution of microarray data is not known, analysis methods are
typically assumed to have normally distributed data. This fact can have misleading conse-
quences. [HW09] demonstrates that preprocessed microarray data are not — as a rule — well
approximated by the normal distribution. Furthermore, not having normal data can yield
misleading results for both standard and novel analysis methods. Further developments in
low- and high-level analysis should focus on model-based methods as described in Chap-
ter 2.2.3] and new methods should be tested in simulations with heavier-tailed and/or
skewed distributions. In addition, new developments have to deal with new challenges,
such as larger data sets and increased computational requirements stemming from more
sophisticated methodologies. This work demonstrates the usefulness of parallel computing
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in solving these challenges. Using the R language and existing parallel computing packages
provides an excellent framework for parallel applications. In other research areas, a lot of
parallel methods exists and can be adopted to bioinformatics, especially to genomic data.
For example, the parallel implementation of a fuzzy c-means cluster analysis for oil and
gas exploration — presented in [MECOS8] — is an efficient parallel implementation for cluster
analysis.

Finally there are new developments in high-performance computing every day. These
techniques have to be evaluated regarding their usefulness in biological applications. The
flexibility of the R package system allows integration of many different technologies, and
small test environments can be implemented very fast. At the moment (August 2009) the
development of R-interfaces to the trends of Cloud Computing and GPUs should not be
missed (for more details see Section below). Furthermore, as described in [SMET09),
there is a great development potential in existing R packages for HPC. For example the
long communication times in the snow package (see Chapter could be improved using
non-blocking communication mechanisms or broadcast commands. As well, multi-core
systems are now very common, and the number of processors per chip is growing. There is
a compelling need for integration of R code into multi-core environments (see Chapter .

8.3 The Future is Parallel

The popularized version of Moore’s law [Moo65], expected to double performance per pro-
cessing element every few years, has ended in 2006 (see International Technology Roadmap

for Semiconductors (ITRS) in Figure 8.I). While Dr. Gordon Moore’s original observa-
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Figure 8.1: ITRS Clock Rate Roadmap 2005 and 2007.

tion of doubling transistor-count every 18 to 24 months is still holding true, by 2006 the
popular expectation of doubling performance per processing core could not longer be met.
Due to physical and practical problems — transmission speed, limits of miniaturization,
end of voltage scaling, economic limitations, temperature (see Chapter — it has not
been possible to produce faster processors. Therefore, chip producers found it necessary to
produce a chip with two or more cores to increase total performance. With the prospect of
more systems with four, eight, or more processors in a machine, it is left to software pro-
grammers to use these systems efficiently. The need for programming parallel computers
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Figure 8.2: Interest in Cloud Computing visualized with Google Trends from May 2008
to 2009. Green: GPU, blue: Cloud Computing, orange: Grid Computing, red: Parallel
Computing

has arrived at the users’ desktops. Therefore, users have to start thinking in parallel when
developing new software or codes. If not, there will be a lot of idle processors in the future.

Performance = Parallelism

Beside the new multi-core chip generation, there are further environments which re-
quire parallel computing approaches. John Burdette Gage from Sun Microsystems had
a vision 25 years ago: 'Network is the computer’ (http://news.cnet.com/8301-10784_
3-9964131-7.html). Today, Cloud Computing could have the potential for this vision to
become more relevant than ever. Cloud Computing is the next generation of Grid Comput-
ing and is growing in interest and importance every day. Figure [8.2| visualizes the Cloud
Computing trend during the last year using Google Trends Labﬂ.

The search keywords and available websites for parallel computing (red) and grid com-
puting (orange) have remained stable during the last year. But for Cloud Computing (blue)
and GPUs (green), there has been an obvious and growing interest in the last one to two
years. The number of reference websites is growing, and especially for Cloud Computing,
there is an increasing number of queries. Even in the field of bioinformatics, there is an
increased interest in and demand for Cloud Computing [BW09]. Furthermore, for the near
future, it is expected that the hardware architecture will be a combination of specialised
CPU and GPU type cores [Meu(9].

LGoogle Trends compares the world’s interest in favorite topics and visualizes how often certain keywords
have been searched via Google over a certain time period. Google Trends also shows how frequently topics
have appeared in Google News stories, and in which geographic regions people have searched for them
most (http://www.google.com/trends).


http://news.cnet.com/8301-10784_3-9964131-7.html
http://news.cnet.com/8301-10784_3-9964131-7.html
http://www.google.com/trends
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8.3.1 Cloud Computing

Due to the inflationary use of the term Cloud Computing, it is very difficult to give an
exact definition of the term. Following [Vou08, BK09], Cloud Computing allows users to
access scalable, real-time, Internet-based information technology services and resources. It
is a type of computing in which resources are provided as a service over the Internet to
users who do not need to have knowledge of, expertise in, or control over the technology
infrastructure. Cloud Computing is often confused with grid computing, utility computing
and autonomic computing. Indeed many cloud computing deployments depend on grids,
have autonomic characteristics and bill-like utilities - cloud computing can thus be seen
as a natural next step from the grid-utility model. The major part of a cloud computing
infrastructure consists of reliable services delivered through data centers and computer
servers. The services are accessible anywhere in the world, with "The Cloud’ appearing
as a single point of access for all the computing needs of consumers. Open-standards and
open-source software are available. As customers generally do not own the infrastructure,
they merely access or rent it. Thus they can avoid having to pay large sums, consume
resources as a service and only pay what they use. Many cloud-computing offerings have
adopted the utility computing model, which is analogous to how traditional utilities like
electricity are consumed, while others are billed on a subscription basis. Sharing 'perishable
and intangible’ computing power among multiple tenants can improve utilization rates. As
a result, servers are not left idle, which can reduce costs significantly while increasing the
speed of application development.

Developing and operating a R Cloud Computing Infrastructure will provide a cost-
effective cluster/grid-based computing to end users. It offers computer resources to all R
users and research areas conducted to the R language.

Two basic concepts have to be developed: A business model and a software environment.
Both concepts have to meet different demands like the R GUI as a user interface, code
execution in parallel or serial, attractive and fundable pricing, etc.. A service-provider-
oriented infrastructure has to be developed due to the costs for cloud resources. In terms
of software, three different modules or R packages have to be implemented (see Figure .

8.3.2 GPGPU

A serious competitor for the multi-core CPU is represented by Graphical Processing Units
(GPUs), which are graphical cards used for scientific computing. General-Purpose com-
puting on Graphics Processing Units (GPGPU) is the technique of using a GPU, which
typically handles computation only for computer graphics, to perform computation in ap-
plications traditionally handled by the CPU. GPUs are only suitable for tasks that perform
some type of number crunching within a parallel processing environment. Today the fastest
GPUs ('Nvidia Tesla’) are already in the teraflops range, whereas normal multi-core chips
are slowly reaching this milestone. The real problem with GPUs is that they may not be
programmed as is usual for CPUs. Therefore, Nvidia GPUs offer the support of the Com-
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Figure 8.3: Software modules for a R Cloud Computing Infrastructure.

puter Unified Device Architecture (CUDA, [Nvi09]) library that provides a set of user-level
subroutines and allows the GPU to be programmed with standard C or Fortran. This user
interface could be used to integrate the new GPU computing power into the R language.
A first example implementation was proposed in June 2009 in the form of the R package
gputools.

Due to the limited memory at the graphical cards, an optimized data structure is re-
quired for efficient programming. One efficient example application in bioinformatics using
GPUs is sequence alignment [MV08|, LMS09]. Up to now, these are C code implementations
and do not have an integration into the R language.



Appendix A

Documentation of Appended DVD

To assure the reproducibility of all results in this dissertation a DVD with code and example
data is available. If the disk is not attached to this version of the PhD thesis, please contact
the author. The DVD contains the following directories and files:

README.txt: A README file with important information for the use of the DVD.
diss_schmidb.pdf: The PDF version of the PhD thesis.

largeCancerStudy: As described in the thesis, it is not required to provide the raw
data from all experiments and these data do not fit onto one DVD. The ArrayEx-
pressDataManage package can be used to regenerate the directory structure and to
download the raw data for the large cancer study.

create_large_cancer_study.R: The R file to create the directory structure and to
download all experiment data from the ArrayExpress database.

hemic: A directory with the SDRF (Sample and Data Relationship Format) file
for all hemic cancer data, a Rdata file with the complete rma preprocessed
ExpressionSet object and Rdata files with the estimated graphs.

solid: A directory with the SDRF (Sample and Data Relationship Format) file
for all solid cancer data, a Rdata file with the complete rma preprocessed
ExpressionSet object and Rdata files with the estimated graphs.

Rcode: A directory with the most important R code for this PhD thesis. In all files the
path variables to the file structure have to be adapted and a computer cluster is
required. Most of the code files are configured for the import into the Sun Grid
Engine at the IBE computer pool.

compareMethods: A directory with the R code files to reproduce the benchmarks
of the affyPara package.

largeCancerStudy: A directory with the R code files to reproduce the large cancer
study.
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simulationPCalg: A directory with the R code files to reproduce the simulation
study for the permutation test of array affiliation.

Rpackages: A directory with the latest versions of the affyPara and ArrayExpressData-
Manage package (source code and windows build).

vignettes: A directory with the vignettes.

For the R packages it is advised to install the latest package versions from the reposito-
ries, because these versions are continuously enhanced and work correctly with the latest
Bioconductor base packages. Furthermore, the additional required R packages (Dependen-
cies) are automatically installed, too.

affyPara: http://www.bioconductor.org/packages/release/bioc/html/affyPara.html

R> install.packages("affyPara", repos = "http://www.bioconductor.org")

ArrayExpressDataManage: http://r-forge.r-project.org/projects/aedatamanage

R> install.packages ("ArrayExpressDataManage",
+ repos = "http://R-Forge.R-project.org")


http://www.bioconductor.org/packages/release/bioc/html/affyPara.html
http://r-forge.r-project.org/projects/aedatamanage

Appendix B

Description of the Large Cancer Data
Set

From the public available database AE microarray data were collected. To preprocess all
data together without any special data combination only data from one chip type (HG-
U133A) were used and only experiments satisfying the different selection criteria were
included into the study. Selecting more than 60 public available experiments from the AE
database a large cancer data set with more than 7000 microarrays was built. An detailed
overview of the selected experiments is available in the following tables. The overview
tables list the ArrayExpress ID, the cancer entity, the title and first 400 letters of the
description of the experiment, the number of Arrays (cancerous/HGU133A/all) and the
Pubmed ID.

The data set was created using the new developed ArrayExpressDataManage package.
The following commands (and experiments) were used:

R> library(ArrayExpressDataManage)
R> path_small <- createDataStruct(path = '/home/cancdat’,
data= list(
breast=c('E-GEOD-6772', 'E-TABM-43', 'E-MEXP-440',
'E-GEOD-11965', 'E-GEOD-4917')
#E-GEOD-6596 included in E-GEOD-6772
s
name='small"')
R> # Solid tumors
R> path_solid <- createDataStruct(path = '/home/cancdat',
data= list(
breast=c('E-GEOD-6532', 'E-GEOD-4922', 'E-GEOD-1456',
'E-GEOD-11121"', 'E-GEOD-7390', 'E-GEOD-12093', 'E-GE0OD-2603',
'E-GEOD-5462', 'E-GEOD-9936', 'E-GEOD-5847', 'E-MTAB-7',
'E-GEOD-1561"', 'E-TABM-43', 'E-MEXP-440', 'E-GEOD-11965',
'E-GEOD-6772', 'E-GEOD-9574', 'E-GEOD-4917', 'E-GEOD-3494',

+ + + + + +

+ + + + + +
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'E-GEOD-2990"' ),
#E-GEOD-6883 to small
#E-TABM-244 included in E-MTAB-7
prostate=c('E-GEOD-8218', 'E-TABM-26', 'E-TABM-90', 'E-MEXP-1327',
'E-GEOD-2443"'),
colon=c('E-MTAB-57', 'E-GEOD-4045', 'E-MEXP-383', 'E-MEXP-101',
'E-GEOD-2742', 'E-MEXP-833'),
lung=c ('E-GEOD-4824', 'E-GEOD-10072', 'E-GEOD-6253', 'E-GEOD-7670',
'E-MEXP-231', 'E-TABM-15', 'E-GEOD-4127')
),
name='solid')
R> #Hemic tumors
R> path_hemic <- createDataStruct(path = '/home/cancdat',
data= list(
cll=c('E-GEOD-11038', 'E-GEOD-8835', 'E-GEOD-6691'),
#E-GEOD-9992 included in E-GEOD-11038 (super series)
aml=c('E-GEOD-12417', 'E-GEOD-1159', 'E-GEOD-9476', 'E-GEOD-1729'),
#E-GEOD-8970 defect annotation file
all=c('E-GEOD-12995"', 'E-GEOD-635', 'E-GEOD-10255', 'E-GEOD-2351',
'E-GEOD-3912', 'E-MEXP-313', 'E-GEOD-14618', 'E-TABM-125',
'E-GEOD-4698', 'E-GEOD-8879', 'E-MEXP-120', 'E-GEOD-1577'),
#E-GEOD-14613 included in E-GEOD-14618
#E-GEOD-3910 and E-GEOD-3911 included in
#E-GEOD-3912 (super series)
#E-GEOD-643-660 included in E-GEOD-635 (super series)
lymphoma=c ('E-GEOD-4475', 'E-TABM-346', 'E-TABM-117', 'E-GEOD-8388')
#E-GEOD-4176 is to small

+ + + + + + + + + + +

),

name="'hemic')

+ + + + 4+ + + + + + + 4+ + + + 4+

For more details see Chapter [7.2]
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ID

Entity

Title

Description

Arrays

PubMed ID

E-GEOD-635

E-GEOD-8879

E-MEXP-120

E-MEXP-313

E-TABM-125

all

all

all

all

all

Identification of novel genomic
determinants of cellular drug
resistance in acute lymphoblas-
tic leukemia.

Gene expression profiling of
atypical T-ALL

Transcription profiling of bone
marrow samples of 31 chil-
dren with acute lymphoblas-
tic leukemia to identify changes
in gene expression that are as-
sociated with the current risk
assignment, irrespective of the
genetic subtype
CIT-TALL-SIGAUX

Translating microarray data
for diagnostic testing in child-
hood leukaemia

Cellular drug resistance is associated with an unfavorable prognosis in
pediatric acute lymphoblastic leukemia (ALL). To identify genes con-
ferring resistance to antileukemic agents, we analyzed the expression
of >12,700 genes in sensitive and resistant ALL cells obtained at di-
agnosis from 174 patients. This revealed 42, 59, 54 and 22 genes
(P{\"A}{\textcent }{\~A}7{\"A}{\textcurrency}0.001) that were differen-
tially expressed in B-lineag ...

Despite improved therapy, approximately one-fifth of children with acute T-
lymphoblastic leukemia (T-ALL) succumb to the disease, suggesting unrec-
ognized biologic heterogeneity that may contribute to drug resistance. We
studied leukemic cells, collected at diagnosis, to identify features that could
define this high-risk subgroup. A total of 139 patients with T-ALL were
treated consecutively from 1 ...

We analyzed bone marrow samples of 31 children with acute lymphoblastic
leukemia to identify changes in gene expression that are associated with the
current risk assignment, irrespective of the genetic subtype

104 samples; Affymetrix U133A micro-arrays.<br> <br> Ninety two patients
with T-ALL were diagnosed and treated at Saint-Louis hospital, Paris. Seven
patients were studied at diagnosis and relapse (total 99 T-ALL samples).
There were 56 children (median age 9 years old; range 1 to 16), and 36 adults
(median age 27; range 17 to 66). Informed consent was obtained from the
patients and/or relatives. T ...

We examined published microarray data from 104 acute lymphoblastic
leukaemia patient specimens, that represent six different subgroups defined by
cytogenetic features and immunophenotypes. Using the decision-tree based
supervised learning algorithm Random Forest (RF), we determined a small
set of genes for optimal subgroup distinction and subsequently validated their
predictive power in an indepen ..

173/173

55/55

31/31

104/104

68/68

15295046

15257931

15774621

17002788

Table B.2: Selected ArrayExpress experiments of cancer entity ’all’ - part 2.
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ID

Entity

Title

Description

Arrays

PubMed ID

E-GEOD-3494

E-GEOD-4917

E-GEOD-4922

E-GEOD-5462

E-GEOD-5847

E-GEOD-6532

E-GEOD-6772

breast

breast

breast

breast

breast

breast

breast

An expression signature for
pb53 in breast cancer pre-
dicts mutation status, tran-
scriptional effects, and patient
survival

Time course microarray data
following GR activation in
MCF10A-Myc breast cells

Transcription profiling of hu-
man breast cancer tumor sam-
ples from Uppsala and Singa-
pore cohorts

Letrozole (Femara) early re-
sponse to treatment

Tumor and stroma from breast
by LCM

Transcription profiling of hu-
man breast cancers to de-
fine clinically distinct molecu-
lar subtypes in estrogen recep-
tor positive breast carcinomas
using genomic grade
Comparison of gene expression
data from human and mouse
breast cancers

The biological tumor samples (ie, breast tumor specimens) consisted of freshly
frozen breast tumors from a population-based cohort of 315 women represent-
ing 65% of all breast cancers resected in Uppsala County, Sweden, from Jan-
uary 1, 1987 to December 31, 1989. Estrogen receptor status was determined
by biochemical assay as part of the routine clinical procedure. An experienced
pathologist determ .

This series contain time course microarray data from MCF10A-Myc cells
treated with either ethanol or Dexamethasone for 30 min, 2 hr, 4 hr, and
24 hr. This series contains three biological replicates that were analyzed as
independent replicate experiments.

Histological grading of breast cancer defines morphological subtypes informa-
tive of metastatic potential, although not without considerable inter-observer
disagreement and clinical heterogeneity particularly among the moderately
differentiated grade II (G2) tumors. We posited that a gene expression signa-
ture capable of discerning tumors of grade I (G1) and grade III (G3) histology
might provide a ...

In the present investigation, we have exploited the opportunity provided by
neoadjuvant treatment of a group of postmenopausal women with large op-
erable or locally advanced breast cancer (in which therapy is given with the
primary tumour remaining within the breast) to take sequential biopsies of
the same cancers before and after 10-14 days treatment with letrozole. RNA
extracted from the biopsie .

Tumor epithelium and surrounding stromal cells were isolated using laser
capture microdissection of human breast cancer to examine differences in gene
expression based on tissue types from inflammatory and non-inflammatory
breast cancer Experiment Overall Design: We applied LCM to obtain samples
enriched in tumor epithelium and stroma from 15 IBC and 35 non-IBC cases
to study the relative contribu .

Purpose: A number of microarray studies have reported distinct molecu-
lar profiles of breast cancers (BC): basal-like, ErbB2-like and two to three
luminal-like subtypes. These were associated with different clinical outcomes.
However, although the basal and the ErbB2 subtypes are repeatedly rec-
ognized, identification of estrogen receptor (ER)-positive subtypes has been
inconsistent. Refinement of t ...

This SuperSeries is composed of the following subset Series:; GSE6581: Ex-
pression data from mammary glands of transgenic mice; GSE6596: Compar-
ison of gene expression data from human and mouse breast cancers: Identifi-
cation of conserved breast tumor genes Experiment Overall Design: Refer to
individual Series

2517502

24/24

289/578

116/116

95/95

327/741

26/38

16141321

16690749

17079448

17885619

17999412

17401012

17410534

Table B.4: Selected ArrayExpress experiments of cancer entity ’breast’ - part 2.
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ID

Entity

Title

Description

Arrays

PubMed ID

E-GEOD-10072

E-GEOD-4127

E-GEOD-4824

E-GEOD-6253

E-GEOD-7670

E-MEXP-231

E-TABM-15

lung

lung

lung

lung

lung

lung

lung

Transcription profiling of hu-
man lung adenocarcinoma and
non-tumors from former, cur-
rent and never smoking indi-
viduals

Anticancer drug clustering in
lung cancer based on gene ex-
pression profiles and sensitivity
database

Analysis of lung cancer cell
lines

A Gene Expression Signature
Predicts Survival of Patients
with Stage I Non-Small Cell
Lung Cancer

Expression data from Lung
cancer

Normal Lung + Lung adeno-
carcinoma microarray

Transcription profiling of can-
cerous and non cancerous lung
adenocarcinoma tissue. Tu-
mour and normal samples from
human lung carcinoma from 18
patients plus tumour only from
5 patients

Tobacco smoking is responsible for over 90% of lung cancer cases, and yet
the precise molecular alterations induced by smoking in lung that develop
into cancer and impact survival have remained obscure. We performed gene
expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen
tissue samples of adenocarcinoma and paired noninvolved lung tissue from
current, former and never smoker .

Anticancer drug clustering in lung cancer based on gene expression pro-
files. We performed gene expression analysis in lung cancer cell lines. (used:
Affymetrix GeneChip Human Genome U133 Array Set HG-U133A). We also
examines the sensitivity of these cell lines to commonly used anti-cancer
agents (docetaxel, paclitaxel, gemcitabine, vinorelbine, 5-FU, SN38, cisplatin,
and carboplatin) via MTT assay ...

These arrays are used for various projects Experiment Overall Design: HG-
U133A and HG-U133B data are combined and analyzed together with other
U133A & B or with HG-U133plus2 samples. No replicates were performed.
Controls are human bronchial epithelial cells (HBECs)

We applied a meta-analysis of datasets from seven different microarray studies
on lung cancer for differentially expressed genes related to survival time (under
2 y and over 5 y). Systematic bias adjustment in the datasets was performed
by distance-weighted discrimination (DWD). We identified a gene expression
signature consisting of 64 genes that is highly predictive of which stage I lung
cancer .

Detection, treatment, and prediction of outcome for lung cancer patients in-
creasingly depend on a molecular understanding of tumor development and
sensitivity of lung cancer to therapeutic drugs. The application of genomic
technologies, such as microarray, is widely used to monitor global gene ex-
pression and has built up invaluable information and knowledge, which is
essential to the discovery of ...

Gene transcription in a set of 49 human primary lung adenocarcinomas and
9 normal lung tissue samples was examined using Affymetrix GeneChip tech-
nology. We aimed to investigate differential gene expression between the two
tissue types. A total of 3,442 genes, called the set MAD, were found to be
either up- or down-regulated by at least two fold between the two phenotypes.
Genes assigned to a parti .

Comparison of gene expression of cancerous and non cancerous lung adeno-
carcinoma tissue. Tumour and normal samples from 18 patients plus tumour
only from 5 patients.

107/107

29/29

79/164

18/72

66/66

58/58

41/41

16843264

17194181

17540040

15653641

Table B.6: Selected ArrayExpress experiments of cancer entity lung’.
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ID Entity Title Description Arrays PubMed ID
E-GEOD-2443  prostate Prostate cancer - compar- Affymetrix U133A comparison of two groups (10 samples each): untreated 20/20 16203770
ison of androgen-dependent (androgen-dependent) primary prostate cancer (Gleasons 5-9) and androgen-
and -independent microdis- independent primary prostate cancer. All samples were microdissected for
sected primary tumor tumor cells only.
E-GEOD-8218 prostate Transcription profiling of hu-  Prostate cancer gene expression profiles were studied in this project. A total  148/148
man prostate cancer samples RNA from 148 prostate sample with various amount of different cell types
were hybridized to Affymetrix U133A arrays. The percentage of different cell
types vary considerably among samples and were determined by pathologist.
Cell type specific genes can be determined by linear regression using the
methods of Stuart et al ...
E-MEXP-1327 prostate Selenium vitaminE trial in 85 radical prostatectomy specimens (where 16 samples are in Placebo group  85/85
Prostate Cancer (PL), 15 are in Selenium group (SE), 25 are in Vitamin E group (VE)
and 27 are in Vitamin E & Selenium group (VS.Treatment groups: I-
selenomethionine, 400 ug + placebo (vitamin E); vitamin E, 400 IU + placebo
(I-selenomethionine); l-selenomethionine, 400 ug + vitamin E, 400 IU; place-
bos) were subjected to laser capture micr ..
E-TABM-26 prostate ~ CSM-Prostate-Cancer- Microarray studies of Prostate tissues obtained from multiple Institutions. 57/114 16618720
Samples Analysis done during Aug. 2002 to June 2004.
E-TABM-90 prostate  Transcription profiling of ir- For a case-control study, we selected 54 prostate carcinoma patients with no  108/108

radiated human lymphyocytes
from prostate carcinoma pa-
tients following curative radio-
therapy to study late radiation
toxicity

evidence of disease 2 years after curative

Table B.8: Selected ArrayExpress experiments of cancer entity 'prostate’.
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ID Entity  Title Description Arrays PubMed ID
E-GEOD-11038  «cll Molecular and transcriptional — Distinct genetic abnormalities such as TP53 deletion at 17p13.1, have been  60/72 18521849
characterization of chromo- identified as having an adverse prognostic relevance in B-cell chronic lympho-
some 17p loss in chronic lym-  cytic leukemia (B-CLL). Conventional cytogenetic studies have shown that
phocytic leukemia TP53 deletion in B-CLL is associated predominantly with 17p loss result-
ing from complex chromosomal rearrangements. We performed genome-wide
DNA (SNPs arrays), fluorescence in ..
E-GEOD-6691 cll Gene expression profiling of The tumoral clone of Waldenstrom{\~A}?s macroglobulinemia (WM) shows  56/56 17252022
B lymphocytes and plasma a wide morphological heterogeneity which ranges from B-lymphocytes (BL)
cells from  Waldenstrom’s to plasma cells (PC). By means of genome-wide expression profiling we have
macroglobulinemia. been able to identify genes exclusively deregulated in BL and PC from WM,
but with a similar expression pattern in their corresponding cell-counterparts
from CLL and MM, as well as normal i .
E-GEOD-8835 cll Chronic lymphocytic leukemia  To examine the impact of tumors on the immune system, we compared global  66/66 15965501

cells induce changes in gene ex-
pression of CD4 and CD8 T
cells.

gene expression profiles of peripheral blood T cells from previously untreated
patients with B cell chronic lymphocytic leukemia (CLL) with those from
age-matched healthy donors. Although the cells analyzed were not part of
the malignant clone, analysis revealed differentially expressed genes, mainly
involved in cell differen ...

Table B.10: Selected ArrayExpress experiments of cancer entity ’cll’.
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Appendix C

Vignettes

Each Bioconductor package contains at least one vignette, a document that provides a
task-oriented description of package functionality. Vignettes contain executable examples
and are intended to be used interactively.

You can access the PDF version of a vignette for any installed package from inside R
as follows:

R> library("affyPara")
R> openVignette(package = "affyPara")

This will present you a menu, where you can select the desired vignette. Selecting a
vignette should cause the corresponding PDF file to open on your system.

The latest vignettes are available in the latest package versions at the Bioconductor or
R-forge repositories.
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