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Chapter 1

Introduction

1.1 The motivation for string theory

The standard model of particle physics and Einstein’s theory of general relativity
constitute the fundament of modern theoretical physics, and they explain almost
every experimental data from particle and astrophysics [1, 2]. Despite this impressive
success there are several theoretical drawbacks, which make us believe that there
exists a more fundamental theory underlying both.

First of all, the standard model of particle physics (SM) contains a scalar field,
the Higgs boson, which is needed to generate the masses of the SM particles by the
mechanism of spontaneous symmetry breaking. Even though it has not been observed
so far, it would come as a great surprise if it will not be discovered in the upcoming
experiments at the Large Hadron Collider (LHC) at CERN. But even if one assumes
its existence it is well known that the Higgs boson suffers from the so-called hierarchy
problem. Tt states that scalar fields should get masses of the order A? if the SM is
valid up to an energy scale A. So if A is much larger than the electro-weak scale the
bare value of the Higgs mass has to be fine tuned in such a way that the quantum
corrections cancel up to some 100 GeV, which seems quite unsatisfactory. A natural
solution to the hierarchy problem would be to take A to be of the order of the electro-
weak scale and to replace the SM above that scale by a theory, which somehow does
not give rise to quadratic corrections in its own cut-off A’.

But there are also more fundamental questions that do not find an answer within
the SM. As a consistent quantum field theory (QFT) the SM appears to be highly
arbitrary in the sense that there exists no mechanism, which chooses the observed
particle spectrum, the gauge group or even four-dimensional space-time. Further-
more there are roughly 20 free parameters, whose values have to be determined by
experiment.

Another shortcoming of the SM is related to the most important problem of
general relativity (GR). In the same way the SM neglects any gravitational effects
in its usual formulation in flat Minkowski space, GR appears as a classical theory,
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neglecting any quantum effects. Thus, even though modern theoretical physics is
build upon both theories, they seem to ignore the existence of the respective other.
This issue begs for an explanation within a unified theory of GR and QFT.

During the last decades several ideas were proposed to solve the above mentioned
problems with different success. Supersymmetric QFTs (see [3] for an introduction
and further references) for example have exactly the properties needed to avoid the
hierarchy problem. The symmetry between bosons and fermions leads to a cancella-
tion of quadratic divergences such that the quantum corrections to the Higgs mass
depend only logarithmically on A’, which could be as large as the Planck mass without
leading to a fine tuning problem.

An attempt to reduce the arbitrariness of the SM is given by the so-called grand
unification theories (GUTs). The idea here is the embedding of the SM gauge group
SU(3) x SU(2) x U(1) into a simple gauge group such as SU(5), SO(10) or Es. In
this scenario there is only one gauge group factor at some high energy scale, which
then reduces to the SM gauge group by some generalized Higgs mechanism. It turns
out that only in a supersymmetric extension of the SM the gauge couplings can
consistently be unified. One may view this as another motivation for supersymmetry.

In order to achieve a unification of GR and the SM, the famous idea of Kaluza
and Klein [4] was to assume more than four space-time dimensions. In order to make
contact with observation the extra dimensions should be small enough to escape
detection by todays accelerators. The isometry group of the internal space gives rise
to gauge fields in four dimensions even if the higher dimensional theory only involves
gravity. To make this more precise let us consider a five-dimensional metric g,,, with
a circle as internal space. Regarded as four-dimensional field, it contains the four-
dimensional metric g,,, a vector field g,5 and a scalar gs5. The vector turns out to
obey the Maxwell equations in a curved background. In this way one has a unified a
four-dimensional theory of gravitation and electromagnetism into a five-dimensional
theory of pure gravity. The value of the gauge coupling is related to the radius of the
internal circle and thus gets a deeper geometrical origin. But already in this simple
toy model there is a problem that persists to much more advanced realizations of the
Kaluza-Klein (KK) idea. The radius R is related to the scalar field corresponding to
the gss-component of the metric, and the problem is that it turns out to be massless.
Hence, nothing fixes the value of the gauge coupling, i.e. the radius R. Uncharged
massless scalar fields are called moduli and the problem of generating masses for such
fields goes under the name of moduli stabilization which plays an important role in
this thesis.

To overcome the classical nature of GR, the most obvious idea would be to just
quantize it as one does with ordinary classical field theories. But it turns out that this
quantization leads to ultraviolet divergences which appear to be non-renormalizable
(see however [5]).

Most of the different approaches to extend or unify the SM and GR merge natu-
rally in string theory (see [6] for an introduction). The basic point of string theory is
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to replace point particles by strings, i.e. one-dimensional objects. Upon quantization
the string spectrum, i.e. the vibrational modes of the string, contains particles as they
occur in the SM and a spin two particle, the graviton, which turns string theory into
a viable candidate for the unification of the SM with GR. But even better, roughly
speaking, the extended nature of the strings smears out the location of interactions in
a way that removes the ultraviolet divergences encountered in the conventional QFT
approach towards quantum gravity. Although this is a great achievement, string the-
ory has not fully solved the problem of quantizing gravity since it considers strings in
a given background space-time. The gravitons in the string spectrum describe small
fluctuations around this vacuum and string theory thus provides only a consistent
perturbation theory of fluctuations around a given background.

Historically the motivation for the first formulation of string theory was rather dif-
ferent. In the late 1960s, the bosonic string gave the theoretical background to derive
the Veneziano amplitude, which was proposed as an amplitude for meson scattering
before the advent of quantum chromodynamics (QCD). After improved experimental
data ruled out the Veneziano amplitude as a hadronic amplitude, string theory was
reinterpreted as a unified theory of gravity and all other fundamental forces in 1974 [7]
by studying the spectrum of the quantized theory. The presence of a tachyonic field
and the lack of any fermionic fields in the bosonic string theory led to the formulation
of supersymmetric string theories, called superstring theories. Thus supersymmetry
appears in string theory at a much more fundamental level than just as an extension
as it does for the SM.

It turns out that a QFT of one-dimensional objects is only consistent in a ten-
dimensional space-time and this immediately brings the KK idea back into the game.
Six of the dimensions have to be compactified in order to obtain our four-dimensional
world. Another consequence of consistency is, that there are only three possible super-
string theories, the type I and the type ITA /TIB string theories. Furthermore there are
two so-called heterotic string theories, which are the result of a hybrid construction,
combining type II and bosonic strings. The type II theories seemed to lead to N = 2
supersymmetry in four dimensions and too small gauge groups which made them
phenomenologically unattractive. During the so-called first superstring revolution in
the mid 1980s, triggered by [8], compactifications of the other superstring theories,
however, gave rise to quasi-realistic particle spectra and gauge groups large enough
to contain the SM gauge group, naturally employing the idea of grand unification.

But some features of superstring theory remained unclear. Similar to the arbi-
trariness of the SM as a QFT, there were now different superstring theories and no
mechanism to prefer one over the other. Furthermore string theory was only defined as
a perturbative expansion, which could only be used directly at weak coupling. In the
early 1990s the situation could be improved by the discovery of the so-called D-branes
[9], which implicitly were always present in string theories as boundary conditions of
open strings but now could be identified with solitonic objects arising in the effective
ten-dimensional supergravity theories of type II string theory. This made it also pos-
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sible to construct quasi-realistic compactifications in the type II string theories since
D-branes can lead to larger gauge groups and supersymmetry breaking. Maybe even
more important they triggered the so-called second superstring revolution in the mid
1990s in which it became clear that all the different superstring theories are related
to each other. The central idea, called duality, is that the strong coupling limit of
one theory is equivalent to the weak coupling limit of another theory. The complete
picture is, that all the string theories are different limits of one unifying theory called
M-theory, whose low energy effective theory is eleven-dimensional supergravity, the
unique supersymmetric theory in the highest possible dimension. In this way string
theory, or now M-theory, appears to be a unique theory.

However, this high degree of uniqueness is spoiled by the the requirement of choos-
ing a background around which to expand the KK reduction, leaving many possibil-
ities for the resulting four-dimensional theory. And even if one finds the background
which gives exactly the SM spectrum and gauge group, one still has to explain why
nature chooses this one. A related problem is that even for a fixed background, as we
already saw, the KK reduction leads to the problem of massless scalar fields which
in turn leaves physical quantities such as gauge couplings undetermined and renders
the vacuum of the theory degenerate. Furthermore massless scalar fields may lead to
an unobserved fifth force. So, all in all, progress in phenomenology has been much
more limited than had been hoped in the mid 1980s. The origin of the structure of
the SM is not better understood now than it was then. Advances in this area have
been mostly internal and a decisive low-energy test of string theory does not seem
possible, since in any terrestrial experiment, unless the string scale is extremely low,
all new signatures such as supersymmetry or extra dimensions find an explanation
within string theory but they do not prove string theory.

This implies that astrophysical observations might become more and more im-
portant in order to find any experimental signature of string theory. But for that
one first has to know how string theory predicts cosmological observables. This is a
relatively new area of research, called string cosmology, and it has a strong relation
to the already mentioned problem of moduli stabilization as we will see in this thesis.
Recent advances in observational cosmology have brought us closer to a fundamental
understanding of the origin of structure in the universe. Observations of variations in
the cosmic microwave background (CMB) temperature and of the spatial distribution
of galaxies in the sky have yielded a consistent picture in which gravitational instabil-
ity drives primordial fluctuations to condense into large-scale structures, such as our
own galaxy. Moreover, quantum field theory and GR provide an elegant microphysical
mechanism, inflation, for generating these primordial perturbations during an early
period of accelerated expansion. The resulting paradigm of a universe undergoing
inflation [10, 11] at early times, and dominated by cold dark matter and dark energy
at late times, has sometimes been referred to as a standard model for cosmology. So,
if string theory wants to be the theory of everything it has to explain all these cosmo-
logical observations. But in fact there exists a mutual relevance of string theory and
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cosmology, because if one evolves the expansion of the universe back in time using
the equations of GR and the SM, one hits a regime in which both descriptions break
down and physics beyond the SM and GR is required. In particular one would need a
consistent description of quantized gravity, whose best developed candidate seems to
be string theory. This immediately leads to the question whether one can implement
the mechanism of inflation in string compactifications. As we will review later, the
best developed models of inflation are based on a scalar field, the inflaton, moving in
a non-trivial potential. This immediately suggests that one of the moduli present in
string compactifications might play the role of the inflaton provided one finds a way
to generate a potential for it. To find explicit examples of inflation in string theory
is technically quite challenging because one needs detailed knowledge of the four-
dimensional effective theory resulting from string theory for a given ten-dimensional
background. We will make this more precise in the next chapter motivating also the
topics of this thesis, but first we will briefly sketch in the next section how string
theory is actually formulated.

Finally, let us also mention that, despite the slow phenomenological progress,
string theory has led to many profound results such as mirror symmetry [12, 13],
an exact microscopic calculation of the Bekenstein-Hawking black hole entropy [14]
and the AdS/CFT correspondence [15], some with deep connections to apparently
unrelated fields.

1.2 The formulation of string theory

In this section we will establish the basic concepts to formulate string theory in a
way that is adapted to the topics of this thesis. For a broad introduction into string
theory see e.g. [6].

Let us consider a string moving in a D-dimensional Minkowski space-time Mp
with coordinates X*. Tt can be described by the embedding of the string world-
sheet, i.e. the two-dimensional surface swept out by the string as it propagates in
time, into space-time. This is a map from a two-dimensional surface ¥ into Mp,
XM(gl 0?) : ¥ — Mp, where o are the coordinates on ¥. In analogy to the point
particle, the action determining the classical equations of motion for the string is taken
to be proportional to the area of the world-sheet. This is known as the Nambu-Goto
action which is classically equivalent to the Polyakov action

1
Sp = 4ol

/ dQU\/EhaﬂaaXMaﬂXNGMN s (11)
by

where Gj/n is the ten-dimensional space-time metric and h,g is the two-dimensional
world-sheet metric. This action is usually taken as the starting point for defining the
quantum theory. The symmetries of the Polyakov action are D-dimensional Poincaré
invariance, invariance under diffeomorphisms of the world-sheet and two-dimensional
Weyl-invariance. Weyl invariance plays a crucial role in string theory, because it is
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generally anomalous under quantization. In order to obtain a unitary theory one has
to demand Weyl-invariance, which in turn imposes severe constraints on the theory.

We do not want to go into the details of the quantization of this theory and just
focus on the results. The spectrum of the quantum theory consists of the vibrational
modes of the string. It turns out that it contains a tachyon and no fermions. To
remove the tachyon and to get space-time fermions one introduces fermionic degrees
of freedom on the world-sheet. Demanding a vanishing Weyl anomaly then constrains
the dimension of the space-time uniquely to be D = 10, which we will assume from
now on. One ends up with space-time fermions but the tachyon is still present. It
is possible to remove the tachyon by a suitable truncation of the spectrum known as
the GSO projection. The remaining spectrum consists of a set of massless states and
an infinite tower of massive excitations whose masses are quantized in units of the
string scale o/~'/2. As one usually assumes this to be of the order of the Planck mass,
these states are extremely heavy.

Actually there are several possibilities to introduce world-sheet fermions and to
perform the GSO projection. Together with further consistency conditions one ends
up with only five consistent string theories in D = 10 Minkowski space-time listed in
table 1.1.

Type Massless bosonic spectrum Gauge group G | N

ITA gMN;BMN;(b;AM;AMNP U(].) 2

1IB gun, Bun, ®, A, Ay, AMNPQ - 2
Heterotic Eg X Eg gMN s BMN: (b, A%/[ Eg X Eg 1
Heterotic SO(32) guns Byun, ®, A%, SO(32) 1
Type I gMN:(I);A‘]]\/[;AMN SO(32) 1

Table 1.1: The five consistent string theories in D = 10

Every theory contains a graviton g,y and a scalar field ® called the dilaton whose
vacuum expectation value sets the value of the string coupling g,. Furthermore all
string theories except the type I are based on closed strings and their spectrum
includes an antisymmetric tensor gauge field By;y which is called the NS B-field. Be-
sides this ‘universal’ part of the spectrum each string theory has its individual massless
bosonic excitations, consisting of non-abelian gauge fields A%,, a = 1,... ,dimG, or
antisymmetric p-form gauge fields Ay, s, the so called RR p-forms. Strings do not
carry any charge of the RR p-form fields. However it was one of the big discoveries
within string theory that it actually contains objects which do carry a charge of the
RR fields. They are called Dp-branes where p denotes the number of their spatial
dimensions.

So far we only discussed strings in flat backgrounds. If the space-time metric
is curved, then the Weyl-invariance of the classical action is still manifest. But at
the quantum level it becomes non-trivial and imposes restrictions on the space-time
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metric. The metric can be interpreted as the couplings of the two-dimensional field
theory. One can define a modified beta function S, which measures the violation of
Weyl invariance. In order to preserve Weyl invariance this beta function must vanish.
It can be computed perturbatively, order by order in /. In a target space with charac-
teristic radius L;,; the effective dimensionless expansion parameter is \/JLi_nlt. Terms
with more than two derivatives in the j3-function are of higher order in the v/a/Ly!
expansion. Thus if v/a’'L;,} < 1 perturbation theory in the two dimensional theory
is valid and it is possible to truncate the equations of motion at the two derivative
level. This is known as the regime of low energy effective theory. Furthermore in this
limit it is allowed to neglect the heavy string modes and consider only the massless

spectrum. The leading term of the -function for the metric is given by
ﬁ]?/IN = O/RMN . (12)

Thus, the space-time background has to be Ricci-flat, i.e. it satisfies the vacuum
Einstein equation. The condition imposed on the background field by Weyl invariance
on the world-sheet is its space-time equation of motion. This relation between world-
sheet and space-time properties holds for other background fields as well and can be
used as an efficient method to construct effective actions whose equations of motion
just reproduce the g-functions.

The equations of motion for the massless space-time fields can also be derived in
an alternative way. One calculates their n-point functions and the effective space-
time action is determined by demanding that its classical scattering amplitudes should
reproduce these n-point functions. From this effective action one derives the equations
of motion.

For both ways it turns out that the leading terms in an o'-expansion, the low
energy effective theories, describe ten-dimensional supergravities, either type I super-
gravity in case of heterotic and type I string theory or type ITA/TIB supergravity in
case of ITA/IIB string theory. For example the ten-dimensional type I supergravity
action describing to lowest order in o' the low energy effective theory of the massless
states of type II string theory is in string frame given by

1
S — le — -2
2K3%, woge

1 1
R+ 4(0®)? — 5H2 - Ze—” Y F| . (1.3)

In appendix A we collect further definitions and conventions. To make contact with
observation, one would like to consider such a theory on a background of the form
Xy x Mg, where X4 could in a first step be any maximally symmetric four-dimensional
space, i.e. Minkowski, de Sitter or anti-de Sitter, and Mg is some compact six-
dimensional manifold.
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Chapter 2

The topics of this thesis

This thesis studies compactifications of type ITA string theory on a background of
the form AdSy x Mg where Mg is a six-dimensional compact manifold with SU(3)-
structure. In this chapter we want to introduce the basic concepts and give some
motivation for the study of such compactifications. We will first review briefly the
preceding developments without explaining all the details before we will more carefully
introduce the topics of this thesis in separate sections.

As already mentioned in the introduction, before the discovery of D-branes, com-
pactifications of the heterotic string seemed to be the phenomenologically most promis-
ing scenarios because they allowed for large enough gauge groups to incorporate the
SM gauge group. In such compactifications, one would like to obtain an A/ = 1 super-
symmetric theory in four dimensions. The reason for that is twofold. First, from the
phenomenological side, e.g. the hierarchy problem, one expects supersymmetry to be
broken at a much lower scale than the string scale. Another and maybe even stronger
motivation comes from the theoretical side. It is pretty hard to find non-trivial solu-
tions to the ten-dimensional equations of motion, which are second order. The first
order supersymmetry conditions, on the other hand, are much easier to solve, and
they often extend to solutions of the full equations of motion. It turned out that in
order to preserve N' = 1 supersymmetry in four dimensions the internal space has to
be a so-called Calabi- Yau manifold which we will introduce later.

After the discovery of D-branes, the focus shifted to the type II string theories
because now it was also possible in these theories to construct large enough gauge
groups to incorporate the SM. However, the compactification of type II string theo-
ries on the well studied class of Calabi-Yau manifolds leads to A/ = 2 supersymmetric
vacua in four dimensions which seems phenomenologically unattractive since, e.g.,
such theories do not allow for fermions with chiral gauge interactions. Moreover, as
a consequence of the Gauss law, the RR charge carried by the D-branes has to be
cancelled by some objects carrying opposite RR charge. In principle this could be
achieved by anti-D-branes but since they break supersymmetry explicitly one would
loose its nice phenomenological properties as well as its computational control. As



12 The topics of this thesis

it turns out, type II string theories include objects which do carry opposite D-brane
charge (and tension) and at the same time allow for a controlled way of breaking
supersymmetry. These are the so-called orientifold-planes (O-planes). O-planes arise
in type II string theories by modding out world-sheet parity plus a geometric symme-
try o of Xy x Mg. The O-planes are given by the fixpoint-set of this symmetry. On
the level of the full string theory this implies that non-orientable string world-sheets
are allowed. Focusing on the effective action, O-planes break part or all of the su-
persymmetry of the low-energy theory by truncating the field content of the N’ = 2
supersymmetric theory to N'=1 or N/ = 0.

But even after the inclusion of O-planes another problem is still present in com-
pactifications on Calabi-Yau manifolds, namely the moduli problem already men-
tioned in the introduction. Massless scalar fields corresponding to deformations of
the internal space are in conflict with experiment and physical quantities such as
gauge couplings remain arbitrary. This problem could be addressed in so-called flux
compactifications. The inclusion of fluxes, i.e. non-vanishing background values for
the different field-strengths present in ten dimensions, allows one to generate a po-
tential for the scalar fields. As we will see, fluxes arise quite naturally by demanding
N = 1 supersymmetry for the vacuum of type II compactifications. However, in
this thesis we are interested in N' = 1 effective theories, i.e. fluctuations around a
given vacuum, for which we will still need O-planes to truncate the spectrum. In
general, these are also needed for charge cancellation since the fluxes contribute to
the integrated Bianchi identities with the same sign as the D-branes do.

What makes the inclusion of fluxes delicate is that they backreact in general on
the geometry in such a way that they deform it away from the well-known classes of
Calabi-Yau manifolds, as we will explain later. Since in type IIB compactifications,
based on the work of [16], examples have been constructed where this deformation
is rather mild and the resulting geometry is still conformal to a Calabi-Yau, the
main focus in type II compactifications was on the type IIB side. In the following
years it was shown that the moduli problem could indeed in principle be solved
in such compactifications. In [17] the dilaton and complex structure moduli, i.e.
deformations that roughly correspond to the shape of the internal manifold, could be
stabilized by fluxes, whereas the stabilization of the Kéahler moduli, corresponding
to size deformations, require the inclusion of quantum effects along the lines of [18].
However, a supersymmetric vacuum is only possible for a non-positive cosmological
constant and one always has to find some mechanism that breaks supersymmetry in
such a way that the resulting vacuum has positive cosmological constant in agreement
with observation. Several proposals have been made for such an uplift ( see e.g. [19],
[20]) which then fueled a broad study of the phenomenology of such compactifications
concerning the SM as well as cosmology.

On the type IIA side, the deformation by the fluxes away from the Calabi-Yau
case is in general much more severe and this made it difficult for some time to obtain
explicit examples of type ITA flux compactifications. However, the improved mathe-
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matical understanding of, at least, a certain class of such non-Calabi-Yau manifolds
in recent years [21] made it possible to study such compactifications in more detail.
There are several reasons which make such compactifications an attractive area of
research:

e First, as opposed to the type IIB side, in compactifications with a four-dimen-
sional AdS, space-time it is in principle possible to stabilize all moduli already
at tree level in a controlled supergravity regime without the use of any quan-
tum effects. It is then an interesting question whether these compactifications
can be of phenomenological interest, e.g. after the inclusion of an additional
uplifting potential so as to construct meta-stable dS minima. But even without
an explicit uplift potential, one can investigate whether the potential already
has meta-stable dS vacua away from the supersymmetric AdS minimum. Re-
lated to that is the question of implementing some inflationary scenario in such
compactifications.

e Second, type ITA orientifolds with intersecting D6-branes (see e.g. [22, 23] for re-
views and many more references) offer good prospects for deriving the Standard
Model from strings, as was recently demonstrated in [24]. So, if cosmological as-
pects can likewise be modelled, one may study questions such as, e.g., reheating
much more explicitly.

e Third, vacua of type ITA string theory with AdS, space-time are also interesting
in the context of the AdS/CFT duality, which we will introduce later. Explicit
examples have been constructed recently where the AdS part is given by type
ITA string theory in a background of the form AdS,; x Mg, where Mjy is given
by CIP3. These examples involve vacua with N = 1 supersymmetry as well as
non-supersymmetric vacua.

In this thesis we will mainly focus on the first point which can be divided into
three steps. First of all one has to find an N' = 1 supersymmetric vacuum of the ten-
dimensional type ITA supergravity on a background of the form AdS,; x Mgs. Once a
solution is found the second step would be to study small fluctuations around that
vacuum and to write down a four-dimensional effective theory for the light fluctu-
ations. In particular, one would like to check whether all the moduli have been
stabilized by the fluxes. In a third step the phenomenology of the obtained vacuum
could be studied. Here one would like to know whether it is possible to obtain all
the features of the SM like spectrum, gauge group and so on. However, as already
indicated, in this thesis we will concentrate on another phenomenologically important
question, namely on how to implement inflation or to find de Sitter vacua in such
compactifications. For that we will focus on the scalar fields in the four-dimensional
effective theory. We will study these questions in detail for different explicit internal
spaces Mg.
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However, in the last chapter we will also construct non-supersymmetric vacua for
some of the examples studied in the preceding chapters. These non-supersymmetric
AdS, vacua may serve as a starting point for more realistic models in the same way
as the supersymmetric ones, although they are much more difficult to obtain. Since
CP?, mentioned in the third point above, is one of our examples, the results of that
chapter are also interesting in the context of the AdS/CFT correspondence. A natural
question, e.g., could be how the dual field theory construction of those vacua looks
like.

In the following sections we are going to introduce the different topics of this
thesis in more detail. In section 2.1 we review the conditions the ten-dimensional
background has to satisfy in order to get an A/ = 1 supersymmetric vacuum in four
dimensions and which role fluxes play in this construction. We will specialize this
in chapter 3 to the case of type ITA supergravity with an AdS, space-time and a
manifold with SU(3)-structure as internal space. We will present all known explicit
examples of internal manifolds that satisfy those conditions.

In section 2.2 we dwell on the so called moduli problem which arises in string
compactifications and how fluxes may solve it by generating a potential for the scalar
fields. This will be the topic of chapter 4 and chapter 5, where we will study the
low energy theory of the examples found earlier. These chapters summarize [25].

In section 2.3 we introduce the basics of inflation that are needed in this thesis.
Furthermore we comment on the attempts to realize inflation in four-dimensional
effective low energy theories that have their origin in string theory. We outline the
current problems in type ITA compactifications and how they might be circumvented.
This will be the subject of chapter 6 which is based on [26].

In section 2.4 we will recall why non-supersymmetric vacua are interesting from
a phenomenological point of view. Furthermore, we will very briefly give a rough
picture of the AdS/CFT correspondence with special emphasis on the AdS,/CFT;
case. We do this because the non-supersymmetric vacua that we construct in chapter
7 might be of interest in that context. The results of this chapter will appear in [27].

We give a more detailed outline of this thesis in section 2.5.

2.1 Type Il supersymmetric backgrounds with flux

We want to review the conditions that allow for a four-dimensional N' = 1 super-
symmetric vacuum of type I supergravity given in the first reference of [28]. In order
to find a vacuum of the ten-dimensional type IT effective supergravity theory, one has
to solve the equations of motion for the fields, which are given by the graviton, the
dilaton, the NS B-field and the RR p-form fields as can be seen from (A.2). As we will
explain later in more detail, it turns out that supersymmetry simplifies these equa-
tions in such a way that it is enough to verify supersymmetry as well as the Bianchi
identities for the form fields. The Einstein equation, the dilaton equation of motion
and the equations of motion for the form fields are then automatically satisfied. Here
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we will only consider the supersymmetry conditions and postpone the discussion of
the Bianchi identities to chapter 3.

In order to get a four-dimensional (4d) N = 1 supersymmetric theory, one makes
an ansatz for the ten-dimensional (10d) background to be of the form My = My x Mg,
where Mg is some six-dimensional (6d) compact space. If one further demands 4d
maximal space-time symmetry (i.e. Minkowski, anti-de Sitter (AdS) or de Sitter (dS)
space-time) the most general 10d metric is given by

ds® = e“(y)guydx“dx” + Grmndy*dy” (2.1)

with u=1,...,3,m=1,...,6. Ais a function of the internal coordinates and it is
called warp factor. For maximal symmetry in four dimensions the vacuum expectation
value of the fermionic fields has to vanish, which means the background is purely
bosonic. Thus, for any fermion y, one should have, in a supersymmetric vacuum,
< Qex >=< 0.x >= 0, where @ is the preserved supersymmetry generator and e
is the corresponding supersymmetry parameter. In type II theories, the fermionic
fields are two gravitinos ¢4, , A = 1,2 and two dilatinos A*. The bosonic part of the
supersymmetry transformation for the fermions is given in string frame by

1 e?®
sy, = (vM + Z@) e+ ;@M(m)é :

1 e®
oy = (VM - 1@) "~ 16 2= Fw)TTaoe

(2.2)

1 d

1 e®
o = (20 511) € = S STl F P e

In these equations M = 0, ..., 10, s stands for the column vector 1, = (ﬁ”)
containing the two Majorana-Weyl spinors of the same chirality in type IIB, and of
opposite chirality in ITA, and similarly for A and e. An underline means a contraction
with gamma matrices in the form F, = LFp_ p 7% and Hy = $HynplNT.
The NS and RR field strengths are defined as in in (A.2). We are using the democratic
formulation of Ref. [29] for the RR fields, as explained in appendix A. However, the
details are not so important here.

First we want to analyze the implications of this equation for the internal geometry
in the absence of flux, i.e. in the absence of any background values for the field
strengths H and F;,. To this end one needs to split the two supersymmetry spinors
of type II supergravity into 4d and 6d spinors. As explained later, we will use only
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one internal Weyl spinor to do this decomposition, which then reads for 1TA

ed=Con+on,
e=Con+Con . (2.3)

Inserting the decomposition (2.3) into the internal part of the gravitino variation
given in (2.2) gives the condition

an:t =0. (24)

The internal manifold should therefore have a globally defined spinor which is co-
variantly constant with respect to the Levi-Civita connection. This is a very strong
requirement from the topological and differential geometrical point of view. A 6d
manifold that has a globally well defined non-vanishing spinor has structure group
SU(3) and vice versa. The structure group of a manifold is the group of transforma-
tions required to patch the orthonormal frame bundle. If this spinor is in addition
covariantly constant the manifold is said to have holonomy group SU(3), or a sub-
group thereof. A 6d manifold with SU(3) holonomy is called a Calabi-Yau manifold.
It admits one covariantly constant spinor. To have more than one, the holonomy
group should be smaller than SU(3) which results in a larger number of supersymme-
tries preserved. In this thesis we will only consider manifolds with one globally defined
spinor, although when turning on fluxes it does not have to be covariantly constant
anymore, as one can anticipate by looking at (2.2). This explains the use of only one
internal spinor in (2.3). All in all, we see that for one covariantly constant internal
spinor equation (2.3) tells us that there are two 4d supersymmetry parameters, ¢
and (? leading to N = 2 supersymmetry in four dimensions.

Turning on fluxes has two effects in (2.2). First, we see that the two supersym-
metry parameters ¢! and €2 are not independent anymore and this typically leads
to NV = 1 supersymmetry instead of A/ = 2. Second, the spinors do not have to
be covariantly constant anymore with respect to the Levi-Civita connection®, or in
other words the differential constraint can be relaxed. In this thesis, we will keep for
the 6d internal manifold the (minimal) topological assumption of SU(3)-structure,
but we will drop the assumption of SU(3) holonomy. On a manifold with SU(3)-
structure, the spinor representation in six dimensions, the 4 of SO(6), can be further
decomposed into representations of SU(3) as 4 — 3 + 1. We see a SU(3) singlet in
the decomposition, which means that there is a spinor that depends trivially on the
tangent bundle of the manifold and is therefore well-defined and non-vanishing. It
turns out that there are also singlets in the decomposition of 2-forms and 3-forms.
Thus, we also have a non-vanishing globally well defined real 2-form and a complex
3-form. They are called J and €2. One does not find any invariant five-forms, which

'On manifolds with SU(3)-structure one can always define a connection with respect to which
the spinor is covariantly constant.
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means J A2 = 0. J and €2 can be expressed in terms of the internal spinor, and they
determine a metric as we demonstrate in appendix B2.

For a Calaby-Yau space it turns out that .J and €2 are both closed. One can
parameterize the deviation of a 6d manifold with SU(3)-structure from the Calabi-

Yau case by five torsion classes Wy, ..., Wy which appear in the exterior derivative
of J and 2 as follows

3
dJ = “Im(Wi Q") + Wy AT + W5,
2 (2.5)

dQ=WJANT+Wr AT +W; AN,

where W, is a scalar, W, is a primitive (1,1)-form, Wj is a real primitive (1,2)+(2, 1)-
form, Wy is a real one-form and Ws a complex (1,0)-form. This deviation from the
Calabi-Yau case, i.e. the non-vanishing torsion classes, is sometimes called geometric
flux. Geometric flux is not a terribly well-defined concept and for us the internal
manifold will have geometric flux if the Ricci scalar R is non-zero. This is consistent
with the above description since Calabi-Yau manifolds are Ricci flat.

Let us now come to the differential condition in the presence of fluxes. As already
mentioned fluxes relate the two spinors €! and €2 and in particular the two external
spinors ¢! and (2 to each other. Demanding maximal 4d symmetry only allows a
trivial relation between (' and ¢2, namely they should be proportional. The complex
constant of proportionality can actually be a function of the internal space, which
can be included in the definition of the 6d spinors. We will therefore write

e = @any + ¢ @an

2 2 2 o T (2.6)
€ =0y + @b .

N = 1 supersymmetry links a and b, and how they are related tells us how the A/ = 1
vacuum sits in the underlying A/ = 2 effective 4d effective theory.

When (2.3) is inserted in the supersymmetry variations (2.2), the 4d piece can
be factored out, and one is left with equations involving only the 6d parts of the
spinors. In this way, one obtains relations between the non-vanishing fluxes and the
internal geometry, described by the spinors. Since the SU(3)-structure (J,2) can
be constructed out of the internal spinors this leads to a relation between the non-
vanishing fluxes and the torsion classes introduced in (2.5). We will postpone the
result of this calculation for the special case of type IIA AdS,; compactifications to
chapter 3, where we will also have to impose the Bianchi identities for the form fields.
Furthermore, we will have to clarify, how to deal with sources such as D-branes and
O-planes in those equations. We present all known solutions on internal manifolds for

2In appendix B we will use the language of generalized geometry, which in fact constitutes a
generalization of the SU(3)-structure case to the case with two different internal spinors. However,
since it allows for a very elegant formulation of the supersymmetry conditions, we will use this
language in that appendix and specialize it to the SU(3)-structure case.
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which one can explicitly find a vacuum of the 10d theory in the special case of type
ITA AdS; compactifications. These manifolds are so-called nilmanifolds and coset
spaces introduced in appendix C. The key feature of such manifolds is that they
allow for left-invariant (globally defined) one-forms and that the exterior derivative
of those one-forms, when expanded in two-forms, only has constant coefficients. As
we will see, this makes it possible to perform explicit calculations for those manifolds.

2.2 Flux compactifications and the moduli prob-
lem

In this section, we want to sketch the problem of moduli stabilization that plagued
string compactifications for a long time and how it can be resolved by fluxes. In the
last section we saw that fluxes arise in the breaking of the N/ = 2 supersymmetry
of the vacuum down to N/ = 1. Another, but related, nice feature of the inclusion
of background fluxes is the possibility of generating masses for the 4d scalar fields
which in fluxless backgrounds would stay massless. This is also the key advance
in implementing inflation in string theory, and it goes under the name of moduli
stabilization (see [28] for the current status and more references). Let us see how this
works.

To obtain the 4d effective theory for a given background, one should perform a
KK reduction of the 10d type II supergravity on a compact internal manifold, and
keep only some finite set of light fields. Take for example a scalar ®(z,y) fulfilling
the 10d Laplace equation of motion A;q® = 0 in the 10d space of the form (2.1).
The KK reduction consists of considering small fluctuations of the 10d fields around
a given vacuum leading to the equation Ao (®(z,y)+0®(x,y)) = 0. The 10d Laplace
operator splits as Ajg = Ay + Ag and we may apply the fact that Ag on a compact
space has a discrete spectrum. The fluctuations 0®(x,y) are then expanded into
eigenfunctions of the internal Laplace operator Ag. The coefficients arising in this
expansion are fields depending only on the external coordinates. From a 4d point of
view, the term AgdP thus appears as a mass term. One ends up with an infinite tower
of massive states with masses quantized in terms of 1/R, where R is the radius of the
internal manifold. Choosing the internal manifold to be small enough the massive
KK states become heavy and can be integrated out. However, this way of decoupling
the KK tower only works in the simplest examples and we will have to come back to
this issue. As we will see, the O-planes present in our constructions might help here.
The resulting effective theory encodes the dynamics of the 4d fields associated with
the massless KK modes satisfying

AgP(z,y) =0 . (2.7)

This procedure can be generalized to all fields present in 10d supergravity theories
including the metric. The ansatz (2.1) specifies the 10d background metric and a
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gravity theory is given by fluctuations around this background. In the external di-
rections these correspond to the 4d graviton and the effective action reduces to the
standard Einstein-Hilbert term for the metric in 4d. In the compact directions the
fluctuations of the metric such as changes of the size and shape of the internal mani-
fold correspond to massless scalar fields in the 4d effective theory. Since for manifolds
with SU(3)-structure the metric is completely determined by the real two-form .J and
the complex three-form 2, one can divide the scalar fields corresponding to metric
deformations into Kdhler moduli, corresponding to deformations of J, and complex
structure moduli, corresponding to deformations of 2. In order to write the resulting
4d theory in a manifest supersymmetric form, one has to complexify these real scalar
fields with the scalar fields descending from the reduction of the 10d p-form poten-
tials. Since in Calabi-Yau compactifications without fluxes there is no potential for
the scalar fields, they are not driven to any particular value which is problematic for
different reasons. First of all massless scalar fields typically (though not always) lead
to modifications to the gravitational force law, which are not observed. Furthermore
the parameters such as, e.g., the gauge kinetic function depend on these scalars and
thus physics depends on their value. In this way one finds a parameterized family
of physically distinct vacua, the moduli space, connected by simply varying massless
fields. This is in contrast to the well known Goldstone bosons arising in the process
of symmetry breaking, where the physics of any constant configuration of this field
is the same. A first idea to solve the problem of massless scalar fields appearing
at some early stage of the analysis would be to incorporate higher order corrections
to the potential at some later stage. Indeed, in non-supersymmetric theories there
is no reason the effective potential should not depend on all of the fields. But for
supersymmetric QF Ts there exist quite powerful non-renormalization theorems, such
that moduli spaces often persist to all orders in perturbation theory or even beyond.
However, in the end we will have to break supersymmetry and so they might get
masses of the order of the supersymmetry breaking scale. But in the case of low
scale supersymmetry breaking, which seems phenomenologically desirable, this will
be a very small mass leading to the so-called Polonyi problem [30], wherein the light
moduli fields carry too much energy in the early universe, leading to overclosure.

Therefore one needs to find a mechanism in string theory which induces a potential
leading to larger masses for the moduli. This mechanism is given by background
fluxes. To see this qualitatively, take as an example a tensor field By. If its field
strength Hs = dB, admits a background flux H{"" = (dBJ""), the kinetic term of
B, yields a contribution

H{"™ A H™ (2.8)
Mjio

which via the Hodge-x couples to the metric and its deformations. In this way a
non-trivial potential for the size and shape deformations of the internal manifold is
induced.
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The light modes of the effective theory all appear as form-field zero modes of the
Laplace operator on the given manifold. For Calabi-Yau manifolds such harmonic
forms are in one-to-one correspondence with non-trivial elements of the cohomology
groups of the Calabi-Yau, which means that they are closed. The interactions of
the low energy Lagrangian are given by the KK reduction of the ten-dimensional
Lagrangian. This low energy theory is found to be a 4d N = 2 supergravity coupled
to vector- and hypermultiplets.

One way to deal with background fluxes in string compactifications is the so called
Calabi- Yau with fluzes approrimation. If the typical energy scale of the fluxes is much
lower than the KK scale, one can assume that the spectrum is the same as in the
fluxless case, except that some of the massless modes acquire a mass due to fluxes.
This allows one still to use the powerful Calaby-Yau machinery to extract the 4d
effective theory, or in other words, one still uses the basis of harmonic forms on the
Calabi-Yau in which one expands the 10d fields.

But, as already explained in the last section, the fluxes backreact through the
supersymmetry variations (2.2) on the geometry deforming it away from the well-
understood class of Calabi-Yau manifolds to the more general case of manifolds with
SU(3)-structure or even beyond that. By looking at (2.5) we see that in general
one now has to use non-closed forms in the KK reduction. Unfortunately, it is still
unclear how to construct a suitable basis of expansion forms for this case in general.
A detailed discussion of the general constraints on such a basis appeared in [31] (see
also [32, 33] for related work). However, as already mentioned in the last section,
on the manifolds studied in this thesis, namely nilmanifolds and coset spaces (see
appendix C), a natural set of expansion forms, namely left-invariant forms, exists.
These forms are not necessarily closed anymore, which somehow reflects the fact
that we are going beyond ordinary Calabi-Yau manifolds. This makes it possible to
construct the effective action for these examples explicitly.

Interestingly for supersymmetric theories there exists an alternative, although
less direct, approach to derive the low energy effective action, which we will call
effective supergravity. The scalar potential of any 4d N/ = 1 supersymmetric theory
is completely specified by a Kahler potential X and a holomorphic superpotential W.
For theories descending from string compactifications there exist general expressions
for these quantities in terms of the internal geometry and the fluxes [34, 33, 35, 36].
For more work see also [37, 38, 39]. Using these expressions, one only has to plug in
the values of the background fluxes, the expansion of the geometric quantities J and
Q that define the SU(3)-structure and the expansion of the form field potentials to
obtain the whole scalar potential.

In this thesis we will make use of both the effective supergravity approach as well
as the KK reduction. The computation of the scalar masses of the 4d low energy
effective action resulting from a KK reduction of the nilmanifold examples will be the
topic of chapter 4. The result will serve as a check on the potential obtained by the
effective supergravity approach used in chapter 5. Having established consistency of
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both we will stick to the latter and compute the scalar potential for the coset space
examples. We are then able to check whether it is indeed possible to stabilize all the
moduli at tree level. Furthermore the knowledge of the full potential opens up the
possibility to look for cosmological applications.

2.3 Inflation in string theory

In this section we want to introduce the concept of inflation and how it may be
realized in string compactifications. By far the most important property of inflation
is that it can generate irregularities in the universe, which may lead to the formation
of structure. The general properties of the spectrum of inflationary inhomogeneities
were predicted long ago ([40]) and are in beautiful agreement with recent observations
by WMAP ([41]). However, the historical motivation for inflation was rather different.
It has originally been formulated to solve the so called flatness-, horizon- and defect
problem. The first problem concerns the spatial flatness of the present-day universe,
which is suggested by observations of the temperature fluctuations in the CMB. The
second problem asks why the initial universe is so very homogeneous. In particular,
the temperature fluctuations of the CMB only arise at the level of 1 part in 10°, and
the question is why this temperature should be so incredibly uniform across the sky.
A third problem, called the defect problem?®, can arise if one extrapolates the Big
Bang back to times much earlier than the epoch of Big Bang Nucleosynthesis. It
predicts a much larger abundance of magnetic monopoles than observed.

As an illustration we will just sketch the first problem and how inflation may solve
it. The most general space-time metric consistent with homogeneity and isotropy
of our three-dimensional space is given by the Friedmann-Robertson-Walker (FRW)
metric

2

2 2 2 r
ds® = —dt” + a*(t) T

+ 7%(df + sin® 0dp*) | | (2.9)

where k can take the values 1,0 — 1 and a(t) is the time-dependent scale factor of
three-dimensional space. If one now assumes the perfect fluid form for the energy-
momentum tensor of cosmological matter and applies the Einstein equation to the
FRW metric one resulting equation is the Friedman equation

k
= H2a?

where () is the total energy density of the universe and the Hubble parameter H is
defined by

Q-1 (2.10)

H : (2.11)

I
SHEY

3Sometimes also known as the monopole problem.
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where an overdot denotes a derivative with respect to time. We know observationally
that at at present time €2 is not hugely different from unity. On the other hand aH is
a decreasing function of time during radiation or matter domination so that the right
hand side of (2.10) increases. This means that at much earlier times, e.g. at the time
of nucleosynthesis, €2 must be yet closer to 1. The flatness problem states that such
finely tuned initial conditions seem extremely unlikely.

The fundamental idea of inflation is that the universe undergoes a period of accel-
erated expansion, defined as a period when d > 0, at early times. The effect of this
acceleration is to quickly expand a small region of space to a huge size, diminishing
spatial curvature in this process, making the universe extremely close to flat. By fur-
ther examining the Einstein equation applied to the FRW metric and a perfect fluid
energy-momentum tensor, one can show that in order to get @ > 0 one needs a mate-
rial with the unusual property of a negative pressure. Such material may be given by
scalar fields. In the last section, we saw how fluxes helped us to obtain masses, i.e. a
potential, for the scalar fields of string compactifications. Here we learn that scalar
fields might also provide a mechanism to realize inflation in the low energy theory.
As we will demonstrate this is only possible if there exists a non-vanishing potential
for the scalar fields. So, the non-vanishing scalar potential induced by the inclusion
of background fluxes does not only allow for a solution to the moduli problem but it
also provides a way to realize inflation in string theory. Let us see how scalars fields
can realize inflation.

For simplicity we will specialize to the homogeneous case, in which all quantities
depend only on cosmological time and set £ = 1. The equation of motion for a scalar
field is given by

- a. dV

¢+3a¢+d¢—0, (2.12)
which can be thought of the usual equation of motion for a scalar field in Minkowski
space, but with a friction term due to the expansion of the universe. The Friedmann
equation with the scalar field as the only energy source is given by

&) - st v
o) = m §¢ + V(o) - (2.13)
If ¢ < V(¢) we get from this equation

a(t) o eVV ) (2.14)

so that the resulting expansion is certainly accelerating. In a loose sense the negligence
of the kinetic energy is equivalent to the field slowly rolling down its potential which
we will now make more precise. )

Technically, the slow-roll approximation for inflation involves neglecting the ¢
term in (2.12) and the kinetic energy of ¢ compared to the potential energy in (2.10).
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The scalar field equation of motion (2.12) and the Friedmann equation (2.13) then
become

2 V(9)

~qp  He=-V), (2.15)

where a prime denotes a derivative with respect to ¢. These conditions will hold if
the two slow-roll conditions are satisfied. They are given by

e<1l and |n| <1, (2.16)
where the slow-roll parameters are defined as

_m

I\ 2 "
€= — <%> and nEM]%VV. (2.17)

It is easy to see that the slow-roll conditions yield inflation. If one differentiates
the definition of the Hubble-parameter with respect to time, one gets

7 H

This should be larger than one to get inflation which means

H
I >—1. (2.19)
But in slow-roll one has
H
m ~ € s (220)

which will be small. Smallness of the n-parameter helps to ensure that inflation will
last long enough.

As already mentioned in the introduction one may also hope to test string theory
by cosmology. However, a direct test seems difficult because any signal that arises
in string theory can also arise in a suitable low-energy effective QFT, as it is the
case for any earth based experiment. But if one is extremely lucky, some high-energy
phenomenon does not decouple at low energies. An example is given by cosmic
strings and their detection would certainly be one of the greatest discoveries ever
made. A more conservative approach would be to check for signals, which are generic
in string-derived effective Lagrangians, but are highly unnatural from a conventional
field-theory viewpoint. For example in many string based inflationary models the
primordial tensor signal is very small. Hence, an observation would eliminate the
majority of presently known models of inflation implemented in string theory.

Let us briefly sketch how inflationary models in string theory have been con-
structed so far. For the current status of inflation in string theory see [42]. Some
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earlier developments in string cosmology relied on the hope that whatever mechanism
eventually stabilizes the moduli it would not have important side effects for models of
inflation which resulted in the two step strategy of first fixing all the moduli and the
adding some additional ingredient to realize inflation. Over the last years it turned
out that this hope is often violated so that the problem of moduli stabilization and
inflation in string theory are ultimatively linked together in a wide class of models.

The most prominent and detailed examples of inflationary models in string theory
were obtained in type IIB flux compactifications with orientifolds and D3/D7-branes.
As already mentioned, in these models the backreaction of the fluxes on the geom-
etry is rather mild, and the internal manifold turns out to be still conformal to a
Calabi-Yau manifold. This allows one to still use the whole machinery of Calabi-Yau
compactifications and makes it possible to obtain the 4d effective potential for the
scalar fields. However, in these models the fluxes turn out to stabilize only the dilaton
and the complex structure moduli [17], while the K&hler moduli stabilization requires
the use of quantum effects, e.g. along the lines of KKLT [18]. In addition one still
needs a mechanism to uplift the resulting AdS,; minimum to a dS vacuum. In [18]
this is done by the inclusion of an D3-brane, which breaks supersymmetry explicitly.
The role of the inflaton is played by the open string modulus corresponding to the
separation of a D3/D3. Another uplift mechanism is given in [20] where one switches
on some flux on a D7-brane, breaking supersymmetry only spontaneously. The infla-
ton is this time given by the separation of the D3-brane from a D7-brane. There also
exist models in which the inflaton is played by some closed string moduli, e.g. in the
large volume compactifications of [43].

In contrast to type IIB string theory, comparatively little is known about inflation
in type ITA string theory. In [44] an example was given in which all moduli were
stabilized. This example only made use of 3-form NSNS-flux, RR-fluxes, D6-branes
and O6-planes. In addition to these ingredients [45, 46, 47] also included geometric
fluxes. The advantage of such models is their explicitness and the possibility to
stabilize the moduli at tree level in a well-controlled regime (corresponding to large
volume and small string coupling) with power law parametric control (instead of
logarithmic as in type I1IB constructions along the lines of [18]). Possible cosmological
applications were subsequently explored in a number of papers, with surprisingly
little success. In [48], for instance, a simple F-term uplift to a meta-stable de Sitter
vacuum based on an effective O’Raifeartaigh sector was found to be impossible. Using
similar arguments, the authors of [49, 50] could also formulate a no-go theorem against
slow-roll inflation and de Sitter vacua for general type ITA models with only 3-form
NSNS-flux, RR-fluxes, D6-branes and O6-planes. As additional ingredients that can
circumvent this no-go theorem, the authors of [50] identified geometric fluxes, NS5-
branes and/or the more exotic non-geometric fluxes.?

Since the explicit examples of string compactifications, given in this thesis, contain
geometric fluxes, i.e. they deviate from the Calabi-Yau case, they circumvent the

“Recent progress obtaining inflation with these ingredients appeared in [51].
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above mentioned no-go theorem and thus might allow for dS vacua or inflation. We
will deal with this question in chapter 6.

2.4 Non-supersymmetric vacua

Most string compactifications to four space-time dimensions built so far preserve at
least A/ = 1 supersymmetry. The main reason to focus on supersymmetric string
vacua is two-fold. First, supersymmetric vacua are relatively easy to construct. The
underlying supersymmetry equations are first-order differential equations, whose so-
lutions are known in several instances. Second, from the phenomenological point of
view, supersymmetric vacua are a good starting point, since a promising scenario is
to assume that space-time supersymmetry is broken at the TeV scale, much below a
string scale or a compactification scale not far from the Planck mass.

On the other hand we know that supersymmetry is eventually broken in na-
ture. Hence, a stringy realization of our observed world should involve, in some
sense, a non-supersymmetric string vacuum. It is a challenging task to find such
non-supersymmetric vacua directly because one has to solve the full string equations
of motion. Even in the supergravity approximation, this implies solving generically
cumbersome second order differential equations whose solutions are complicated and
to a large extent unknown. In practice, however, one may still hope to break super-
symmetry in a controlled way, by modifying a certain supersymmetric background.
One may then try to add some additional structure to uplift these vacua to dS in the
same way as one does for the supersymmetric vacua.

Another strong motivation for the study of AdS, vacua, independent of the amount
of preserved supersymmetry, is related to the AdS/CFT correspondence [52]. We only
want to give a rough picture of where the results obtained in this thesis might find an
application in that correspondence. We already mentioned in the introduction that
there exist some remarkable dualities relating the different string theories or M-theory
to each other. However, with the AdS/CFT correspondence an entirely new class of
dualities has been conjectured. It relates conventional (non-gravitational) quantum
field theories to string theories and M-theory. The AdS/CFT correspondences are
dualities in the usual sense: when one description is weakly coupled, the dual de-
scription is strongly coupled. Thus, assuming that the conjecture is correct, it allows
the use of weak-coupling perturbative methods in one theory to learn non-trivial facts
about the strongly coupled dual theory.

The basic idea of the AdS/CFT duality and its generalizations is that string theory
or M-theory in the near-horizon geometry of a collection of coincident D-branes or
M-branes is equivalent to the low-energy world-volume theory of the corresponding
branes. To make this more precise consider for example type IIB string theory. Its
low energy effective action is given by the type IIB supergravity theory given in
(1.3). Dp-branes arise as solitonic solutions to the equations of motion resulting
from this action. Because it is the case that is best understood, let us take as an
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example D3-branes. They fill the four space-time dimensions and have six transverse
directions. The resulting metric describes asymptotically a flat Minkowski space,
but taking the near-horizon limit leads to a space of the form AdS,; x S°. The
correspondence now states that type IIB string theory on this near-horizon space is
dual to the D3-brane world-volume theory, which is given by N = 4 super Yang-Mills
theory. The string theory background corresponds to the ground state of the gauge
theory, and excitations and interactions in one description correspond to excitations
and interactions in the dual description. In this specific case, for example, one might
hope to get insight into the strong coupling limit of a 4d gauge theory such as QCD by
studying the weakly coupled string theory. Of course, realistic models of QCD should
be able to explain confinement and chiral symmetry-breaking, properties which are
not present in A/ = 4 super Yang-Mills theories due to the large amount of unbroken
supersymmetry. However, there is a variety of ways to break these symmetries so as
to get richer models.

During the last years another example attracted more and more attention, namely
that of M2-branes arising as solitonic objects in eleven-dimensional supergravity, the
low-energy theory of M-theory. A non-perturbative understanding of M-theory is of
great interest from the theoretical side since M-theory is believed to be the unifying
theory of all string theories. The near-horizon geometry is given by AdS, x S7 and only
very recently there was progress in the understanding of the world-volume theory of
coincident M2-branes [53, 54]. Again one can hope to learn something about the field
theory side from the gravity side. Three dimensional conformal field theories could
for example describe interesting conformal fix points in condensed matter systems.
But also the other direction seems now interesting. The AdS,/CFTj; correspondence
opens up the possibility to study some portion of the landscape of 4d backgrounds of
string theory with negative cosmological constant.

In [54] a three-dimensional Chern-Simons-matter theory with gauge group U(N); X
U(N)_j, where k denotes the level of the Chern-Simons theory, were constructed
which explicitly realized A/ = 6 superconformal symmetry. It was argued that this
theory at level k describes the low energy limit of N M2-branes probing a C*/Z
singularity. At large N this theory is then dual to M-theory on AdSy x S7/Z;. This
description is weakly curved for N > k°, while for larger values of k a circle in
the M-theory description becomes small, and the more appropriate descriptions is in
terms of type IIA string theory on AdS, x CIP?. These gravity duals are old solutions
[55, 56] that, of course, also have A/ = 6 supersymmetry and only involve fluxes for
F5 and Fg, so in particular no flux for Fj.

In [57] it was realized that by allowing for different levels k; and &y for each U(N)
factor in the gauge groups of the Chern-Simons theory it was possible to relate the
difference of both to the Fy flux: Fy = ki — ks, leading to a field theory interpretation
of the F flux on the gravity side. And in fact in [58, 59] solutions of type ITA string
theory with non-vanishing F; have been constructed on a space whose topology is
CP2. These solutions have only A/ = 1 supersymmetry but they happen to have
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a parameter space that, although discretized by flux quantization, gets arbitrarily
close to the A = 6 solutions of [55, 56]. Exploiting this fact, Chern-Simons theories
have been constructed in [57] which are, in a sense, small deformations of the original
N = 6 Chern-Simons theory. Four different ways of deforming this theory have
been identified, leading to ' = 0, 1, 2, 3 supersymmetric Chern-Simons theories. The
gravity duals of the N' = 2,3 cases have been constructed in [60] but they will not
play any role in this thesis. The gravity duals for the N' = 0,1 cases have been
identified already in [57]. As anticipated, the N’ =1 case corresponds to the solution
of [58, 59], whereas the N' = 0 solution was constructed in [57, 61]. It is here were
the results of this thesis might find their application. Among others we will consider
compactifications of type IIA string theory on a space that is topologically equivalent
to CIP2. In chapter 3 we will reproduce the solution found in (58, 59]. In chapter 7 we
will then try to find non-supersymmetric vacua (N = 0) for this particular case. We
will find the N = 0 solution of [57] as well as some other known non-supersymmetric
solutions given in [62, 63] and [64]. But we will also find new non-supersymmetric
solutions not discussed in the literature before.

2.5 Outline of this thesis

After the general introduction into string theory in chapter 1 and the somewhat
more detailed crash-course on flux compactifications and their relation to inflation in
chapter 2, we now make things concrete for the case of type ITA string theory.

In chapter 3 we solve the equations of motion for the ten-dimensional fields for
the case in which the 10d background space takes the form (2.1) with the external
part being 4d AdS space-time and the internal manifold has SU(3)-structure. To do
so we will have to solve the supersymmetry variations (2.2) and to impose the Bianchi
identities for the form fields. Furthermore, we will comment on the introduction of
sources such as D-branes and O-planes in our equations. The result will be a set of
conditions which have to be satisfied by the internal manifold in order to allow for
a supersymmetric vacuum of type IIA supergravity. Finally we will have to make
sure that our construction is self-consistent, i.e. that we are in a parameter regime
in which the supergravity description is valid. We will present solutions on a class
of manifolds, namely nilmanifolds and coset spaces introduced in appendix C, which
are tractable enough to find such vacua explicitly. This consists of two steps. First,
we will have to make sure that a given manifold admits an SU(3)-structure at all,
and, second, this manifold has to meet the derived conditions for a supersymmetric
vacuum. We will see that this leaves only a few examples. This chapter is mostly
based on [59] while some results appeared in [25]. Based on this chapter, we will
pursue three directions in this thesis, which all can be studied independently.

First of all, having found such explicit vacuum solutions, we will perform in chap-
ter 4 for the nilmanifolds the KK reduction of the 10d fluctuations around the vacuum
and compute the masses for the 4d scalar fields. In chapter 5 we will first use the
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effective supergravity approach to compute the scalar potential for the nilmanifolds
and compare the resulting masses of the two approaches. The consistency with the
KK reduction will provide a non-trivial check on the effective supergravity approach.
Having confirmed its applicability we will use it to compute the scalar potential for
the coset spaces. This chapter is entirely based on [25].

Secondly, we want to study the question of implementing inflation in the obtained
low energy effective theories. This amounts to analyze the scalar potentials and their
applicability for slow-roll inflation. In the first part of chapter 6 we are able to
prove in most cases the impossibility of implementing inflation. For that we only use
the geometry of the internal manifold which makes this part independent from the
preceding chapters. In a second part we will study the only case for which we were
not able to exclude inflation and in this case we need the potential computed before.
This chapter is based on [26].

Finally, in chapter 7 we will construct non-supersymmetric vacua for some spe-
cific cosets of the preceding chapters. These examples play a prominent role in the
AdS,/CFT; correspondence, and our results should be of interest in that context.
The results of this chapter will appear in [27].

We will summarize and conclude in chapter 8. Definitions and conventions,
theoretical background material and computational details are delegated to the ap-
pendices. In appendix A we derive the equations of motion for type II supergravity.
In appendix B we briefly review generalized geometry which allows for a very el-
egant formulation of the N/ = 1 supersymmetry conditions for type II theories. In
appendix C we introduce the manifolds that we study in this thesis. Finally, in
appendix D we comment on a computational subtlety that we will encounter later.



Chapter 3

Supersymmetric type IIA AdSy
compactifications

In this chapter we review the conditions that lead to a supersymmetric N’ = 1 vacuum
of type ITA supergravity, i.e. a solution of the equations of motion, with an AdS,
space-time and an SU(3)-structure manifold as internal space. Let us mention that
up to now all the known explicit ten-dimensional examples of N' = 1 supersymmetric
compactifications to AdS, fall within the class of type ITA SU(3)-structure compact-
ifications and T-duals thereof. By analyzing integrability conditions, it was proved
in [65, 66] that, in the context of type IT supergravity, a background that is super-
symmetric and whose fluxes satisfy Bianchi identities and the equations of motion
is a solution to the full equations of motion (whenever there are no mixed external-
internal components of the Einstein tensor, which will be our case). We also discuss
how to obtain a controlled parameter regime in which the string coupling is small and
supergravity is valid such that these vacua of supergravity lift to true vacua of string
theory. Finally, we give the list of all known manifolds for which it is possible to find
explicit solutions. These manifolds are nilmanifolds and coset spaces whose properties
we review in appendix C. For additional background material and a summary of our
conventions the reader is referred to appendices A and B.

3.1 Conditions for a supersymmetric vacuum

As sketched in the last chapter for an A/ = 1 ansatz, the supersymmetry variations
(2.2) of the fermionic fields relate the internal geometry to the fluxes. By direct
inspection of the these variations, the most general form of N' = 1 compactifications
of TTA supergravity to AdS, with SU(3)-structure was given in [66]. There exists
a framework for ITA/IIB supergravities, called generalized geometry, which allows
for a very elegant and compact description of the supersymmetry conditions for both
theories leading to the same result. Since we do not really need and use this framework
in this thesis, we will only mention it at some places an refer to appendix B for more
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details. We review the derivation of the results of [66] using generalized geometry in
appendix B.1 and just state here the result. It turns out that the vacua must have
constant warp factor and constant dilaton!, ®. Setting the warp factor to one, the
solutions of [66] are given by:

_2m

H = ?B(I'RGQ, (31&)
F, = fJ F, 3.1b
2 — 5 + 2 ( . )
3m
F4 :fV014+1—0J/\J, (3].(3)
i0 1 ] Z 0]
We" = —56 m + 56 f, (31d)

where H is the NSNS three-form, and F;, denote the RR n-forms. Furthermore, (.J,
) is the SU(3)-structure (defining a metric, see appendix B.2 for definitions and
further details) of the internal six-manifold , i.e. J is a real two-form, and € is a
decomposable complex three form such that:

QANJ =0, (3.2a)
* 41 3
OAQ =T £0. (3.2b)

f, m are constants parameterizing the solution: f is the Freund-Rubin parameter,
while m is the mass of Romans’ supergravity [67] — which can be identified with Fj
in the ‘democratic’ formulation [29]. € is the constant of proportionality between
the internal supersymmetry generators: nf) = e“’n(j). This reflects the fact that we
are dealing with an SU(3)-structure which arises as a special case of the more general
SU(3)xSU(3)-structure as explained in appendix B. The constant W is defined by
the following relation for the AdS, Killing spinors, (.,

Vil = Wk (33

so that the radius of AdS, is given by |W|~!. The two-form F} is the primitive part
of F, (i.e. it is in the 8 of SU(3)).
Furthermore, for the above solutions most of the torsion classes have to vanish

WE=WS =Wy =W, =W;=0, (3.4)

where the plus sign denotes the real part. The only non-zero torsion classes of the
internal manifold are
4
W, = —geq’f, W, = —ie®F}, (3.5)

'For the case of vanishing Romans mass non-constant warp factor and dilaton are possible. We
will not discuss this in this thesis.




3.1 Conditions for a supersymmetric vacuum 31

where we have defined Wy, = ilm W, 5. Thus (2.5) reads (see also (B.19))

3
dJ = —EinReQ, (3.6a)
AQ =W AT+ Wy AJ . (3.6b)

The only extra condition that follows from the Bianchi identities and equations of
motion of the form fields is given by:

2 2
P (L2 A9y _ 6
dFQ—(27f =M Je®ReQ — 5%, (3.7)

where we allow for a non-vanishing source-term, 5%, for D6-branes/O6-planes on the
right-hand side. A somewhat delicate feature of our models is that the sources have
to be smeared. The reason for this is that the supersymmetry conditions of [66] (for
constant Romans mass) force the warp factor to be constant. Considering the back-
reaction of a localized orientifold, on the other hand, one would expect a non-constant
warp factor, at least close to the orientifold source. A possible way around this
contradiction is that taking into account o/-corrections might allow for a non-constant
warp factor (see also [68] for an alternative discussion). A helpful interpretation of
the smearing of a localized source, whose Poincaré dual is given, roughly-speaking, by
a delta-function, is that it corresponds to Fourier-expanding the delta-function and
discarding all but the zero mode. In this thesis, we will adopt the pragmatic point of
view that the smeared orientifolds are an unavoidable feature of our models that is
consistent with a Kaluza-Klein reduction in the approximation where only the lowest
modes are kept.

As already mentioned in the introduction the inclusion of sources is motivated by
several reasons. First, we will find examples, which do not allow for an /' = 1 vacuum
without sources. Second, as we will see in the next chapter, in which we compute the
effective theories of these vacua, they might provide a mechanism to decouple the KK
tower. Finally, we are interested in 4d, A/ = 1 supersymmetric low energy effective
theories, for which O-planes are necessary. The question of how to associate orientifold
involutions to a smeared source turns out to be somewhat subtle. We will make the
natural assumption that the different orientifolds correspond to the decomposable
(simple) terms in the orientifold current. The rationale and details behind this are
explained in appendix B.3. The general properties of supersymmetric sources and
their consequences for the integrability of the supersymmetry equations were recently
discussed in [69] within the framework of generalized geometry. It was shown in this
reference that, under certain mild assumptions, supersymmetry guarantees that the
appropriately source-modified Einstein equation and dilaton equation of motion are
automatically satisfied if the source-modified Bianchi identities are satisfied. For this
to work the source must be supersymmetric, which means it must be generalized
calibrated as in [70].
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But for the moment let us imagine the case j° = 0. For a given geometry to
correspond to a vacuum without orientifold sources, we find from plugging (3.7) into
(3.5) and using (B.22) together with the result below (B.24) that the following bound
on (W, , W, ) has to be satisfied

16
362¢m2 =3WrlP =Wy P >0, (3.8)

where we have defined |0|* := 0 ©O™" for any two-form ©.
Still assuming j® = 0 we get from (3.5) and (3.7)

dW, x ReQ . (3.9)

So in the absence of sources the necessary and sufficient conditions for N' = 1
compactification of type ITA supergravity to four-dimensional anti-de Sitter space on
manifolds with SU(3)-structure are the conditions (3.4), (3.8) and (3.9) on the torsion
classes of the internal six-dimensional manifold. The fluxes are then given by (3.5)
and (3.1). Defining 7 as the intrinsic torsion these conditions are summarized in table
3.1.

TEW W,
3 > Wy 2
dW; o Ref)

Table 3.1: Necessary and sufficient conditions on the internal six-dimensional SU(3)-
structure manifold for A/ = 1 compactification to four-dimensional anti-de Sitter
space, in the absence of sources.

However, the second constraint (3.8) can be relaxed by allowing for an orientifold
source, j% # 0. As a particular example, let us consider:

2
§% = —ge_q’uReQ : (3.10)

where j is a discrete, real parameter of dimension (mass)?, so that —pu is proportional
to the orientifold /D6-brane charge (1 is positive for net orientifold charge and negative
for net D6-brane charge). In this thesis we will make the assumption that we can
tune this parameter by adding orientifolds or D-branes. For D-branes this should
not be a problem since they are physical objects whose number we may vary. For
orientifolds, however, this seems problematic since they arise as fixpoint loci of a
geometric symmetry. In a true string compactification their charge is a fixed number.
In our supergravity approximation we will consider them as charged objects in the
same way as the D-branes and it remains an open question, which values for the
charge are possible from string theory. The addition of the source term in (3.10) was



3.1 Conditions for a supersymmetric vacuum 33

first considered in [71]. Eq. (3.10) above guarantees that the calibration conditions,
which for D6-branes/O6-planes read

I*AReQ=0, j°AJ=0, (3.11)

are satisfied and thus the source wraps supersymmetric cycles. The bound (3.8)
changes to

5
e*®m? =+ o (BWr P =W, ?) > 0. (3.12)

Since p is arbitrary, the above equation can always be satisfied, and therefore no
longer imposes any constraint on the torsion classes of the manifold. For this form of
the source-term, the third condition in table 3.1, (3.9), still applies.

Furthermore it is also possible to relax this condition by the inclusion of more
general supersymmetric orientifold six-plane sources that do not satisfy eq. (3.10).
Requiring this source to satisfy the calibration conditions (3.11), we find that it is
now of the following form:

2
3% = —ge’(buReQ + w3 (3.13)

with ws a primitive (2,1)+(1,2)-form. From the Bianchi identity (3.7) we find

wy = —ie TdW, (3.14)

(2,1)+(1,2)
and (3.12) still unchanged.

In appendix B.3 we will explain how to associate orientifold involutions to a
smeared source. Under each orientifold involution the dilaton, metric and fluxes
must transform as follows [69]:

Even : ote® =e?, o*Fy = Fy, o*F, = Fy,
(3.15a)
Odd : O'*H:—H, O'*FQZ—FQ,
whereas the SU(3)-structure transforms as
Even : o' ImQ = ImQ,
(3.15h)
Odd : c*ReQ) = —Re(, o' J=—-J.

So if one allows for sources of the type described above the only non-trivial con-
dition for an N' = 1 vacuum of type ITA supergravity on a given manifold with
SU(3)-structure is the first one in table 3.1, which is (3.4). The fluxes then follow
from (3.5) and (3.1). The Bianchi identity (3.7) tells us if we need sources and whether
they are of the form (3.10) or even (3.13). The source parameter p is bounded from
below by (3.12).
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3.2 Hierarchy of scales

To promote a given supergravity vacuum to a trustworthy approximation of a string

theory vacuum we need to show that we can consistently take the string coupling

constant to be small (g, = e? < 1), so that string loops can be safely ignored, and

that the volume of the internal manifold is large in string units (L;,;/l > 1, where

Lin is the characteristic length of the internal manifold), so that o’-corrections can be

neglected. This can be seen by essentially employing the following scaling argument:
In the full quantum theory, all fluxes have to be quantized according to

1
M—_1A Fp = TLp s (316)

P

where [ := 27V, C, is a cycle in the internal manifold, and n, € Z. By combining
the first equation in (3.1) with (3.6a) we see that the NSNS three-form turns out
to be exact in our models, hence its integral over any internal three-cycle vanishes;
it therefore suffices to impose (3.16) for the RR fluxes. The issue of quantization is
studied in more detail in [58]. Let f,/(gsLin:) be the norm of the flux density F,, for
some numbers f, depending on the internal geometry (but not on the overall scale
L;nt). The quantization conditions (3.16) imply:

0= iny T B ()T () 3.17)

f4 nyg

together with

ng f2 . n0n6_f0f6

VTomg B Vfofa ’ NoTy B fafa '

It can then be easily verified that, given a solution {n,} to the quantization condi-
tions (3.16), there are several different possible scalings n, — N*n,, for N, )\, € N,
which leave the f,’s invariant and at the same time ensure that g, is parametrically
small while L;,;/l is parametrically large (with large parameter N). This schematic
argument can be made precise, by taking into account the specifics of the geometry
of each internal manifold, as in [58]. Despite the fact that we are allowing for large
flux quanta, it can be shown that higher-order flux corrections can also be neglected.
Indeed it is not difficult to see that the parameter |gsF,|?, which controls the size of
these corrections, scales with a negative power of the large parameter N.

(3.18)

3.3 Solutions on nilmanifolds

In the next two sections we want to use the manifolds introduced in appendix C to
construct explicit examples of the type of compactifications reviewed in section 3.1.
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By trying to solve the condition for a supersymmetric vacuum, one would like to find
manifolds on which one can explicitly compute the exterior derivatives appearing in
(3.6). Examples for such manifolds are given by nilmanifolds and coset spaces with
the restriction to left-invariant forms, as explained in appendix C. Since one obtains
a global description of these manifolds it becomes quite easy to explicitly solve the
supersymmetry conditions (3.1). We review the results of [25] and [59] where the
solutions for nilmanifolds and coset spaces have been presented, respectively.

As follows from the discussion of section 3.1, it suffices to look for all possible six-
dimensional nilmanifolds whose only non-zero torsion classes are W, ,. A systematic
scan yields exactly two possibilities in type IIA, namely the six-torus and the nilman-
ifold 4.7 of Table 4 of [72] (also known as the Iwasawa manifold), which (for some
values of the parameters) turn out to be related by T-duality along two directions?.

Let us note that condition (3.8) turns out to be too stringent to be satisfied for any
nilmanifold whose only non-zero torsion classes are W, ,. This implies that without
orientifolds there are no solutions on nilmanifolds. To obtain a solution the most
general ansatz for (J, ) would involve all 15 two-forms and 20 three-forms. It turns
out that some components of .J and 2 are related by coordinate transformations,
which have to be compatible with the structure constants. This allows one to reduce
the number of forms appearing in {2, and it is always possible to bring .J into the
form J = ae' Ae? +bed Aet +ce® Aeb .

With this ansatz we impose the SU(3)-structure conditions (3.2) (or (B.17)) and
we have to demand that the resulting metric (B.28) implicitly defined by (J, Q) is
positive definite. Next we impose the conditions (3.4) on the torsion classes. When
there is a solution, we can read of the fluxes by using (3.5) in (3.1). Finally, we read
of the form of the source term from (3.7), where (3.12) puts a lower bound on the
source parameter . One can then check that the resulting orientifold projection is
consistent with the resulting background. In this way one obtains the following two
solutions.

3.3.1 The T solution

Our first ITA solution is obtained by taking the internal manifold to be a six-dimensional
torus. Let us define a left-invariant basis {e’} such that:

de! =0, i=1,...,6. (3.19)

On the torus we can just choose e’ = dy’, where 3’ are the internal coordinates. The
SU(3)-structure is given by

J=e?+e¥ e
(3.20)
Q = (ie' +e*) A (ie* +e*) A (ie® + €b) |

2We also found a type IIB solution with static SU(2)-structure on the nilmanifold 5.1, which
forms the intermediate step after one T-duality.
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It readily follows that all torsion classes vanish
W, =0, W, =0. (3.21)

Note, however, that there are non-vanishing H and F} fields given by (3.1)

2
H = geq)m (6246 _ o136 _ o145 _ 6235) ,

(3.22)
F, = %m (1234 4 (1256 4 3456)
From (3.7) we find that there is an orientifold source of the type (3.10) with u =

e?®m?, which corresponds to smeared orientifolds along (1, 3,5), (2,4,5), (2,3,6) and

(1,4,6). The corresponding orientifold involutions are

06 : e? = —e?, et = —e', b — —€f,
06 : el » —e!, = -, e = —€f,
1 1 4 4 5 5 (3.23)
06 : e »—e, € = —e, e — —e,
06 : 2 —» —e?, = -, &= —€.

3.3.2 The Iwasawa solution

The second ITA solution is obtained by taking the internal manifold to be the Iwasawa
manifold. The left-invariant basis is defined by:

de* =0, a=1,...,4,
de® = e'® — e, (3.24)
de® = et +e* |

and is usually denoted by (0,0,0,0,13 — 24,14 + 23). Up to basis transformations
there is a unique SU(3)-structure satisfying the supersymmetry conditions of section

3.1:
J=e2 4 ¢ 4 525
(3.25)
Q= B(ie° — e®) A (ie' +€*) A (ie* +e?) |

In the left-invariant basis, the metric is given by g = diag(1,1, 1,1, 82, 3?), and the
non-vanishing torsion classes are given by

21
Wf = _56;

A (3.26)
Wy = ——ZB (612+634+252656) .
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By using (3.5) the fluxes follow from (3.1). Furthermore we compute from (3.26)
_ 4 _ 64
Wi |2 = §ﬁ2, W, |2 = EﬁQ- (3.27)
We therefore find from (3.12) a non-zero net orientifold six-plane charge
25
> zﬁQ . (3.28)
Finally one can verify that dW, is proportional to Re(2:
8,
dWwy = —35 Re( , (3.29)

which means we have a source of the form (3.10), and the orientifold involution is the
same as in (3.23).

The solution (3.25) has one continuous parameter, /3, corresponding essentially
to the first torsion class W, . An additional second parameter can be introduced
by noting that the defining SU(3)-structure equations (B.17) are invariant under the
rescaling

J =T Q=90 (3.30)

The additional scalar v is related to the volume modulus via volg = —7%3%e!6, as
can be seen from eq. (B.18).

For the case m = 0, for which the bound (3.28) is saturated, the above example
can also be obtained by performing two T-dualities on the torus solution of section
3.3.1, as can be checked explicitly by using the T-duality rules of [73]. We find then
that g = %mTe‘I) where my is the mass parameter of the dual torus solution.

3.4 Solutions on coset spaces

We will now present the ITA solutions of the type described in section 3.1 where the in-
ternal manifold is a coset, Mg = G/H , equipped with a left-invariant SU(3)-structure,
introduced in appendix C. They can be found in [59], which also incorporates so-
lutions that were already known [55, 74, 75, 76, 58, 77, 78] into the single unifying
framework of left-invariant SU(3)-structures on coset spaces. In [58] an alternative
description in terms of twistor bundles is used for the cosets of sections 3.4.2 and 3.4.3.
Although this description does not allow to describe the complete parameter space
on the coset %ﬁ;(l), it is more accurate for the nearly Calabi-Yau limit in which,
as we will see, the shape parameters take negative values and the coset description is
not valid anymore.

We will proceed in the same way as for the nilmanifolds, although for most of

the cosets we do not need to gauge away some of the possible forms appearing in the
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ansatz for (J, ), because the set of leftinvariant forms is very restricted right from
the start. We will see this in the examples.

So we start by imposing the SU(3)-structure conditions (3.2) (or (B.17)) for the
most general ansatz for (J, Q). The resulting metric (B.28), implicitly defined by
(J, Q), has to be positive definite. Next we impose (3.4). In case of a solution, the
fluxes are given by (3.1) where we have to use (3.5). The source term follows from
(3.7), where (3.12) puts a lower bound on the source parameter ;. Again we have to
show that the resulting background is consistent with the orientifold projection. This
means in particular that the structure constant tensor following from (C.20) has to
be even under the orientifold involution in order to ensure that the exterior derivative
is even.

For the coset spaces, we will find solutions that admit x > 0, i.e. solutions with
zero orientifold or even with net D6-brane charge. However, we will always assume
that there are orientifolds present in our construction, whose charge may then be
balanced by an appropriate number of D6-branes. In this way we will always end up
with an A/ = 1 theory. We obtain the following five solutions.

3.4.1 The %(23) solution

The G5 structure constants can be written as:

1
fles = flas = P53 = fea =

ﬁ )

f736:f745:f853:f846:f956:f934:f1016:f1052

= f1151 = 1162 = 1241 = 1232 = 1331 = f1324 = %, (3-31)
14 14 1 14 1
3=f 56:ﬁa f?lzﬁa
fi+6j+6,k+6 = faMijk »
where fqwijr are the Gell-Mann structure constants.
The G-invariant two-forms and three-forms are spanned by

{e'? — & 50}, (3.32)
[p= e 4 oI35 4 o6 _ 236 5 o285 26 | U5 136) (3.33)

respectively?, and there are no invariant one-forms.

35 can be found by lowering one index of the purely K;-part of the structure constant tensor
with the Cartan-Killing metric, and p is its Hodge dual, so they are both left-invariant. Moreover,
since the structure constant tensor should be even under all orientifold involutions and the Hodge
dual is odd, we find that p is even and p odd. We can immediately conclude that they should
be proportional to Im) and Re(? respectively. Of course a priori there could have been more
left-invariant three-forms.
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The most general solution is then given by

J=a(e” — ¥ +e%),

O=d [(6245 46y 135 _ o236) 4 (o145 _ o246 _ (235 6136)] ’ (3-34)
with
d> =a?, normalization of €2,
(3.35)
a>0, metric positivity,

such that a, the overall scale, is the only free parameter. For the non-vanishing
torsion classes (3.5) we find

W, = —i— Wy, =0. (3.36)

Thus, the only possibility for this coset is the nearly-Kahler geometry. It will be
convenient to isolate the scale a and introduce the reduced flux parameters

m=a'?e®m, f=a%®f, =au, (3.37)
in terms of which the background fluxes in (3.1) take the form:
H— ?G(GQ% 4 el3 M6 236)
al/2
e<I>F2 - - (612 . e34 4 656) , (338)

V3
e Fy = a1 fyol, — gmas/g (1234 — 1206 1 (3436)
Furthermore, we compute for the source term (3.7)
e 0 — _§a1/2ﬂ(6245 4 el35 4 Q46 _ o236) (3.39)

which shows that j is of the form (3.10), as was already clear from (3.36) or the fact
that we only have one odd three-form. The bound (3.12) gives

s . ba?

m° == (3.40)
As mentioned before, i > 0 (& pu > 0) corresponds to net orientifold charge. Solu-
tions with 4 < 0 — i.e. with net D-brane charge — are possible, but in that case we
still assume that smeared orientifolds are present, which then should be compensated
by introducing enough smeared D-branes. It can be easily read off from 5% that the
orientifolds are along the directions (1,3, 6), (2,4,6),(2,3,5) and (1,4,5), leading to
four orientifold involutions. One can check that all fields and the SU(3)-structure
transform as in (3.15) under each of the orientifold involutions. Also, the structure
constant tensor is even.
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Sp(2) )
3.4.2 The m solution

The structure constants are totally antisymmetric. The non-zero ones are given by:

1
f541:f532:f613:f642:§7 f756:f1089:_]-a
(3.41)

1
f721:f743:f814:f832:f913:f924:f1034:f102125:

corresponding to the nonmaximal embedding. The G-invariant two-forms and three-
forms are spanned by

{e'? + &, e}, (3.42)

{p= 25 Q135 L6 (236 5 o235 4 26 4 o145 6136}, (3.43)

respectively, and there are no invariant one-forms. Again the source (if present) must
be proportional to Re{). The most general solution is then given by

J=a(e'” + ™) — ce”,

0=d [(6245 P M6 135y | (246 | (235 | o145 6136)} , (3.44)
with
a>0, c¢>0, metric positivity,
(3.45)
d*> = a’c, normalization of €2,

such that a and c¢ are the free parameters. For the non-vanishing torsion classes
(3.5) we find

_ 2a+c
Wi =i
9
Wy = =2 fala - (e + %) + 2e(a — )e”] (3.49)
16
—2 2
Wy |? = —3@26(a — ).

The nearly-Kahler limit corresponds to setting a = ¢. The two parameters correspond
to the overall scale @ and a parameter 0 = ¢/a that measures the deviation from the
nearly-Kéhler limit, and we can make contact with the results of [58] as in [59].
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For the background fluxes and source we find in terms of the reduced flux param-
eters (3.37):

2m
H— a01/2(6245 _ o135 _ 146 236)

5 e —e),
ql/?
e®F, = T071/2 [(2 _ 30)(612 + 634) + (60 — 502)656] , (3.47)

P Fy = a V2 fvol, + §a3/2m (12 — 126 _ e36)
Furthermore, we compute for the source term (3.7)

e 6 = —2a1/2ﬂ01/2(6245 — ! M6 236 (3.48)

5
which shows that j is again of the form (3.10). The bound (3.12) gives

m* — i = (—4a® — 5¢* + 12ac) . (3.49)

16ac

We introduce the same orientifold involutions as in section 3.4.1 and check that
all fields and the structure constants transform appropriately.

3.4.3 The % solution

We choose a basis such that the structure constants of SU(3) are given by

Flsv= oo = Fas= Fos = oo = o =5,
3.50
flor =1, fis=fos = ?, and all cyclic . ( |
The G-invariant two-forms and three-forms are spanned by
(2,63, 5 (3.51)
[p= M5 4 ol | o6 _ (236 5 o235 4 o136 (216 145) (3.52)

respectively, and there are no invariant one-forms. The source (if present) must again
be proportional to Re().
The most general solution is then given by

J = —ae'? + be*t — ce™,

Q = d [(e217 + 35 4 M6 _ ¢230) | (235 4 (136 | 206 _ o145)] (3.53)
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a>0,0>0,¢>0, metric positivity,
(3.54)
d* = abc, normalization of €,
with a,b and c three free parameters.
For the non-vanishing torsion classes (3.5) we find
_ a+b+ec
Wi =i
9
W, = —3—; [a(2a—b—c)e® + bla—2b+c)e® + c(—a—b+2c)e”] | (3.55)
Wy |? = 16 (a®> +b° + ¢ — (ab+ ac + bc))
2 3abc '

Putting a = b we end up with a model that is very similar to the one of section 3.4.2,
while further putting a = b = ¢ corresponds to the nearly-Kéhler limit. Next to the
overall scale a, we have this time two shape parameters p = b/a and o = ¢/a. For
a comparison with the results of [58] see [59]. Introducing again the reduced flux
parameters (3.37) we find for the fluxes and source

2m

H = ?a(po.)l/Q(eQZIS 4 6135 4 e146 o 6236),
ql/?
ey = ——(po) 2 [(5 = 3p = 30)e" + (3p — 5p” + 3po)e™ + (=30 — 3po + 50%)e™] ,
: 3
6(I>F4 — a—l/?fvol4 _ ga?)/Qm (p61234 _ 0,61256 + p0_63456) . (356)

Furthermore, we compute for the source term (3.7)

2
€q)j6 — —EQI/QIEL([)O')I/Q(6135 _|_ 6146 _|_ 6245 — 6236) , (357)

which verifies that j is again of the form (3.10). The bound (3.12) gives

m? — i =

ol [—5(a® +b* + ¢*) + 6(ab+ ac + be)] | (3.58)

while the orientifold involutions are still as in section 3.4.1.

3.4.4 The SU(2)xSU(2) solution

The structure constants in this case are

flaa=f% =1,  and cyclic . (3.59)
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This time, the coset structure does not eliminate any forms so one might think, that
we would have to introduce some orientifolds before we can proceed. In particular this
time we have all the six one-forms available. As we will see the resulting orientifold
will project them all out. What makes the analysis tractable again is the fact that
it was shown in [79] that there is always a change of basis preserving the form of the
structure constants which brings J to the form

J = ae** + be® + ce®. (3.60)

With this result the most general solution to egs. (3.4), (3.5),(3.7), (3.12) and (3.13)
is then given by

J = ae' + be® + e,

0= d{a(e234 . 6156) + b(6246 . 6135) + C(el% . 6345)

- % [ — 2abc(e'® 4 *) + a(b? + 2 — a®)(e®* 4 ') + b(a® + & — b?) (e + ')

+cm?+ﬁ—8x&“+é%ﬂ}, (3.61)

with  h=v2a2b2 + 2022 + 2a2¢ — a* — b4 — ¢4,

and thus 0 < 2a%b® +2b6%¢? +2a%? — a* — b* — ¢*.
Again a,b and c are free parameters with

abc >0, metric positivity,

_2abc
==

(3.62)

normalization of 2.

d2

For the non-vanishing torsion classes (3.5) we find

2
3d’

B 21 [2abc
W ==\

ab

Wy = —

(b — )2 + a®(=2a® + b* + 2) N (= a®)? + 0* (=20 + % + a?) .4
e e
bc ac

(3.63)
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By a suitable change of basis we can always arrange for ¢ > 0,5 > 0 and ¢ > 0, which
we will assume from now on. In terms of the reduced flux parameters (3.37), to which
we add

h=a2h, d=a "%, (3.64)
we find for the fluxes
27 -
H— —?md [(6156 _ 6234) +p(el35 _ 6246) +a(e345 _ 6126)] ’
__a1/2 4 N 2 2y 2 2] 14
F, = e [3(p" +0") = 5+2(p* +0°) — 6p°c?] e (3.65)

+p[3(1 40" = 5p" +2p°(1 + 0°) — 60°] *°

+0 [3(1 4 p*) — 50 + 20°(1 + p?) — 657] 636} ,

/231

F4 — a71/2fvol4 - a3 - (p61245 4 1346 2356) )

oe + poe

This time we compute for the source (3.7)

2 2
e?j = —idW, + (—f2 - —m2> e?®Re(),
27" 5 (3.66)

— j1(6234 o 6156) —|—j2(6246 o 6135) —|—j3(6126 o 6345).

with 7,70 and j3 some complicated factors depending on a,b and ¢ whose exact
form does not matter for the moment. It contains the same terms as Re{2 but with
different coefficients. In fact, one can check that j° is not proportional to Re€) unless
la| = |b] = |c|, which reduces the solution to a nearly-Kahler geometry. This time
it is not immediately obvious how to choose the orientifold projection. Choosing
them naively along the six terms leads to the fields and structure constants having
the wrong transformation properties. In appendix B.3 we outline how to find the
orientifold involutions associated to a smeared source in general and then apply the
procedure to the case at hand. In order to present the resulting involutions, it is
convenient to define complex one-forms as follows

3w

1 et d
=4 {[2bc — h +i(a® = b* — *)]e' + [a* — b* — * +i(2bc — h)]e*} |
21/bc(2bc — h)
i3m
e’ = :I:Q\/% {[2ac — h+i(b* — a® — *)]e* + [b* — a® — ¢ +i(2ac — h)]€"} |
ac(2ac —
Td
e = :I:2 b6(24 =0 {[2ab — h 4+ i(¢* — a® = b*)]€* + [¢* — a® — b” + i(2ab — h)]e"} |
ab(2ab —

(3.67)
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where the signs must be chosen such that (2 = e?' 77 Defining further the associated
z and y one-forms e* = e® —ie¥’, the orientifold involutions are given as in (B.38).

3.4.5 The %&J(l) solution

We construct the algebra by taking
E,=G;3, 1=1,...,5; FEg=M;
E; =Gy Es=Gy FEy=Gs,

where the G;’s are the Gell-Mann matrices generating su(3), M generates a u(1),
and the su(2) subalgebra is generated by E7, Es and Ey. It follows that the SU(2)
subgroup is embedded entirely inside the SU(3), so that the total space is given by

SUB) « U(1) = S5 x S'. The structure constants are

SU(2)
floo=1, flu=flaa=Ffn=rrfu=rov=r,,us=1/2,

(3.68)

5 (3.69)
o= fo3 = 5 all cyclic .

Invariant one-forms are generated by {e’, e}, and, like in the last example, the re-
sulting orientifold will project them out. The invariant two- and three-forms are given
by
[e12 4 %, e — 2 et 4 2 ) (3.70)
{145 4 235 (135 _ (25 (126 | (346 (146 | (236 136 _ 246 (125 | ;345) (3.71)
The most general solution is then given by
J = —a(613 _ e24) 4 b(614 +623) +C€56,

145 | 235 135 _ 245 126 346
Q= d{ [2a(e™ + €*¥) + 2b(e"™ — ) + ¢(e"* + )] (3.72)
‘ 146 236 136 _ 246 2 | 12\(,125 | 345
— —— |ac(e™ 4+ €*°) + be(e™® — e*°) —2(a” +b°) (e + e )}},
va?+b? [
with
c>0, a*+bv#0, metric positivity ,

1 (3.73)
d* = 5\/ a’ + b2, normalization of €2,
and a,b and c three free parameters. For the non-vanishing torsion classes (3.5) we

find

o (3.74)
Wy = ! [—a(e13 — ™) + (e + ) - 26656] .

a 2v/3vVa? + b2
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By a suitable change of basis we can always arrange for ¢ > 0 and b > 0, which we will
assume from now on. Note that dV, is not proportional to Re(2, hence the source
is not of the form (3.10). Interestingly, if we take the part of the source along Re(2
to be zero, i.e. 7 AImQ = 0, we find from the last equation in (3.73) that m = 0.
This would amount to a combination of smeared D6-branes and O6-planes such that
the total tension is zero. Allowing for negative total tension (more orientifolds), we
could have m > 0. For an arbitrary m we find the background

3 d
H = _\/_;n 0 [2(eM5 + ¢295) 4 2p(e!% — 25) 4 g (12 4 3)] |
al/2
e’ Fy = — o [(e" —e*') — p(e" + ) + 0e™] | (3.75)

: 3
6(I>F4 — a—l/?fvol4 + ga?)/?,rh [(1 +p2)61234 - 0'(61356 o e2456) +p0'(61456 + 62356)} ,

where we defined p = b/a and 0 = ¢/a and used again (3.37). From (3.7) we compute
for the source

¢®j06 — \{ida1/2 (% _ 47712) (6145 + 2 4 p(el® — ¢249)]
J3d (3.76)
3d 1) 5 ~ 2 126 | 346
—Wa/a<§+4m>(e +e )
One can check that for the background the source satisfies the calibration conditions

(3.11). If we make the following coordinate transformation

’ ' ' - ’ ' ’
b =et, e =€, ef =4 plet, ef = —pet, e =€, ¥ =€b, (3.77)

we see clearly that j is a sum of four decomposable terms

10

n \/gdal/QO_ <% i 47712) <61’2’6’ . 63’4’6’) ,

6‘1’]-6 — \/gczal/Q <% . 4m2> (61/3/5/ _ 62/4/5/) T p2
(3.78)

20

to which we can associate four orientifold involutions.



Chapter 4

Low energy physics I: The
Kaluza-Klein reduction

In this chapter we want to use the direct KK reduction to compute the mass matrices
for the two nilmanifold examples, i.e. the torus and the Iwasawa manifold', described
in the last chapter. The comparison to the result of the effective supergravity ap-
proach, described in the next chapter, will then serve as a non-trivial check on the
latter in the case of non Calabi-Yau manifolds. In the first section we will review the
general KK procedure for the case of an AdSs space time. We will also show how
to express the fluctuations of the RR field strengths in terms of fluctuations of their
potentials. In the subsequent section we comment on the problem of decoupling the
KK tower. Finally we will apply the KK reduction to the two nilmanifolds of section
3.3 and compute the mass matrices for the light fluctuations?. This chapter is based
on [25].

4.1 Kaluza-Klein reduction

We are interested in performing a Kaluza-Klein reduction on each of the AdS, x
M solutions described in sections 3.3.1 and 3.3.2. Let x and y be 4d space-time
and internal-manifold coordinates, respectively. Moreover, let @(m, y) be a ‘vacuum’,
i.e. a particular solution of the equations of motion of ten-dimensional supergravity.
The Kaluza-Klein reduction (see [80] for a review) consists in expanding all ten-
dimensional fields ®(z, y) in ‘small’ fluctuations around the vacuum:

~

O(z,y) = O(x,y) + 0P(x,y) , (4.1)

' More precisely, we will do this for the case m = 0.

2As a general remark, we will not consider blow-up modes associated to the fixed points of the
orientifold involutions. Ideally, we would like to argue that the blow-up modes will be stabilized
by flux through the blown-up cycle at a size much smaller than the size of the internal manifold.
Unfortunately, such an analysis is beyond the scope of this thesis. It may be possible, however, to
argue for the stabilization of the blow-up modes using a local analysis of the singularities as in [44].
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keeping only terms up to linear order in d®(z,y) in the equations of motion (cor-
responding to at most quadratic terms in the Lagrangian). From now on the hats
indicate background quantities, and the 0’s denote fluctuations. The fluctuations are
Fourier-expanded in the internal space:

0P (z,y) = qun(x)wn(y) ) (4.2)

where ¢, (z) are four-dimensional space-time fields, and the w,(y)’s form a basis of
eigenforms of the Laplacian operator A = dd! + d'd in the six-dimensional space M
(the internal part of the vacuum solution).

In the following, we will truncate all the higher Kaluza-Klein modes in the har-
monic expansion (4.2) and keep only those w,(y)’s in (4.2) that are left-invariant on
M. The resulting modes are not in general harmonic, but can be combined into
eigenvectors of the Laplacian whose eigenvalues are of order of the geometric fluxes.
One has to make sure that such a truncation is consistent. We want to argue in the
next section that indeed we can tune our parameters in such a way that the higher
KK modes (the KK tower) decouples.

Plugging the ansatz (4.1)-(4.2) into the ten-dimensional equations of motion and
keeping at most linear-order terms in the fluctuations, one can read off the masses
of the space-time fields, i.e. the ‘spectrum’. In the present case, this is accomplished
by comparing with the equations of motion for non-interacting fields propagating in
AdS,. Let M and A be the mass of the field and the cosmological constant of the
AdS space, respectively, such that

2
Scalar : A¢ + <M2 + §A> p=0, (4.3a)
Vector:  A¢, + V, V¢, + M*¢, =0, (4.3b)
Metric 1 Aphy, 4+ 2V, V?h,y, — V.V h?, + (M? = 2A)hy,, =0, (4.3¢)

where Ay is the Lichnerowicz operator defined by:
Arhy = =V?hy — 2Rueh” + 2R, hy, - (4.4)
With the above definitions, the Breitenlohner-Freedman bound [81] is simply
M?*>0, (4.5)

for the metric and the vectors. For the scalars, however, a negative mass-squared is
allowed:

M2>A:_w

4.
12 4 (4.6)
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where W was defined in eq. (3.3). Actually, we will present the results for the mass
spectrum of the scalars in terms of

- 2
M? = M? + §A, (4.7)
for which the Breitenlohner-Freedman bound reads
- 9| |2
M22—4. (4.8)

We will take M = 0 as the definition of an unstabilized modulus since from (4.3a)
we see that then, if it were not for the boundary conditions of AdS,, a constant shift
of ¢ would be a solution to the equations of motion. Therefore, a constant shift of ¢
leads to a new vacuum solution.

We want to apply this strategy to the nilmanifold vacua of section 3.3. The
backgrounds for these two vacua are given in section 3.3.1 and 3.3.2, and by definition
they are solutions to the equations of motion of type IIA supergravity, which are given
by (A.7a), (A.7b), (A.9b) as well as (A.10), and to the Bianchi identities (A.9a).

It is possible to express the fluctuations of the RR field strengths 6 F' in terms of the
fluctuations of the potentials 6C' in such a way that the Bianchi identity dgF = —j
is automatically satisfied. This analysis is complicated by the presence of a source.
We assume that the source does not fluctuate since it is associated to smeared ori-
entifolds. For the Bianchi identities of the background and the fluctuation we find
then, respectively,

(d+H)F =—j, (4.92)
(d+ H+0H)(F +0F) = —j. (4.9b)
The integrability equations read
(d+H)j=0, (4.10a)
(d+H+0H)j =0, (4.10D)
from which follows
VHAN]=0. (4.11)
This implies also
(d+ H)(ePAj)=0, (4.12)

so that, subtracting (4.9a), we can define (locally)

—(P —1)Aj=(d+ H)bw. (4.13)
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Now, for orientifold sources the left hand side of this equation always vanishes. This
follows because the pull-back of 0B to the orientifold, 0 B|y, must be zero, which
implies using (B.30):

SBAj=0, (4.14)

and the same for all powers of § B. Then, we can also choose dw = 0.
The difference between (4.9a) and (4.9b) gives the Bianchi identity for the fluctu-
ations

(d+ﬁf+6H)5F+5HAF:o, (4.15)
which can be rewritten as
(a+A) ("6F) + 6H AP F = 0. (4.16)

One can easily show that (with 6Fy = 0) this Bianchi identity can be satisfied by
introducing potentials C' and putting

ePOF = (d+ H)0C — ("% — 1)F + 0w (4.17)

where we can set 6Fy = dw = 0 so that we obtain

e?B6F = (d+ H)0C — (’8 — 1)F . (4.18)

Expanding this expression we find for the IIA-fluctuations

SFy =0,
SFy = d5C, — mo B
SFy = ddCs + FT A SCy — 6B A (B + 6F,) — %m((SB)Q | (4.19)
§Fy = ddCs + F A 3Cy — 6B A (s + 6F,) — %(53)2 A (Fy + 6 Fy) — %m(éB)‘g |
For the NSNS flux we can just write
H=H+0H=H+diB. (4.20)

For the Kaluza-Klein reduction of the equations of motion we will only need the
terms linear in the fluctuations while for an analysis of finite fluctuations of the action
one would need higher orders too. Furthermore, in the Kaluza-Klein reduction we
will only need fluctuations of the physical fields § F5, d F; since the higher-form fluxes
are removed from the equations of motion using (A.1), while in the superpotential
approach, which is formulated in the democratic formalism, we should work with the
internal part of § Fs instead of the external part of dF; as we will explain later.
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4.2 Decoupling the Kaluza-Klein tower

Consistency requires that the Kaluza-Klein tower can be decoupled. This means we
have to make sure that the higher Kaluza-Klein fields are really much heavier than the
ones that we kept in our analysis such that we can neglect them in an effective low-
energy theory. Since the Compton wavelength of the lightest excitations above the
Breitenlohner-Freedman bound in four dimensions is of the order of the AdS, radius,
we need to show that the Compton wavelength of the Kaluza-Klein excitations (which
is proportional to L;,;) satisfies:

[ Anas| Loy < 1, (4.21)

where Apqs is the four-dimensional cosmological constant. In models without ori-
entifolds this is impossible to achieve, since the characteristic length of the internal
manifold turns out to be of the same order as the radius of AdS,. This is the problem
of separation of scales which, for example, plagues the compactifications of eleven-
dimensional supergravity on the seven-sphere. Ultimately, we would like to uplift
our models to a de Sitter space with a small, positive cosmological constant, and the
position could be taken that the question of the mass spectra should be re-addressed
only after this uplifting. However, let us now study whether it is possible to tune the
orientifold source such that there is a hierarchy between the two scales even before
the uplifting and (4.21) is obeyed.

Taking into account |Axgs| ~ |[W]? and using (3.1d), we find that to decouple the
Kaluza-Klein scale we must impose

1 1
WP = 5o (90) 2 Ly 5 (92 < 1, (4.2
which means that each of the two terms on the right-hand side of the equal sign
must be separately much smaller than one. Tuning the orientifold charge we can
accomplish e?**m?L?, < 1. Indeed, we just need to show that we can choose u so

that it is close to its bound (3.12):
5
BL + - (8DVF P — Wi ) Ly < 1. (4.23)

In our conventions the discrete parameter p, which is proportional to the net number
of orientifold planes npg, is given by (up to numerical factors of order one): p ~
gsnoslL; 3. Taking into account that the torsion classes are given by (again up to
numerical factors of order one): |[W, |2 ~ L 2 we can rewrite the above equation

int?
schematically as follows:

l
Neeyds (L—> +akK1 s (424)

int
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where a is a number of order one. Since g; (%) < 1, we can then satisfy this bound

nt

by choosing some large integer npg. Note that in the examples where we study this
limit, a turns out to be negative so that we can accomplish this with positive nog,
which corresponds to net orientifold charge (as opposed to net D-brane charge).

However, we must also make sure that the second square in (4.22) is small, which
means that fgsLiy o< W, |Ling is small. Manifolds for which W, vanishes (and only
Wj is possibly non-zero) are called ‘nearly Calabi-Yau’ (NCY) see e.g. [82]; hence for
the bound (4.21) to be satisfied, the internal manifold must admit an SU(3)-structure
which is sufficiently close to the NCY limit.

Once a solution for npg is obtained in this way, we have to make sure that it is
consistent with the conditions for a small string coupling and large volume found in
section 3.2. It turns out that we do not have any problems with that because we
are free to rescale npg — Ninpg leaving (4.24) invariant, provided we take: ¢ =
(Ao + Ag)/2 € N. For example, the reader can verify that the rescaling {n, —
N'ng,ny — NSny,ny — N®ny,ng — N'%ng, nps — N°npg} leave eq. (4.24) and all
the f)s in eq. (3.17) invariant, so that:

Lint
[

gs~ N7, ~ N, (Aags|L3, = fixed < 1, (4.25)

int

where we can take N large.

We were only able to identify this way as a possibility to decouple the KK tower,
although there might exist another. Unfortunately, as we will see in due course,
for some models we will have some problems to decouple the KK tower in the way
presented here. However, we believe that the conclusions for these models are not
affected by this problem. Indeed it was shown in [83] that the N' = 2 theory ob-
tained from a reduction of type IIA string theory based on left-invariant forms on the
three coset spaces 58(23), S(Uég’%(l)) and U(f)UX(%)(l) without any sources is a consistent
truncation, i.e. solutions of the 4d equations of motion lift to solutions of the 10d
equations of motion. It seems plausible that the inclusion of smeared left-invariant
sources does not alter this conclusion and that it also holds for reductions based on
left-invariant forms on other spaces. Based on the arguments of [83] and references
therein one expects that the fields constituting a consistent truncation do not couple
to other fields. This then means that our results will not be altered by the inclusion
of more fields. We will come back to this point at the end of the next two chapters.

4.3 The nilmanifolds

With the preparations of the last section we are now ready to explicitly perform the
KK reduction of our type IIA supergravity vacua of section 3.3.1 and 3.3.2.
For the Kaluza-Klein reduction on T®, we will expand the fluctuations of the
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various fields in the following basis:

5Bz, y) =b" (@) Y2 (y) + 02 (2) VD () + b5 (@) Y (3) . (4.26a)

5(x,y) =0¢" (1) V5 () . (4.26b)

5CW (2, y) = @)V ) + @)V () (4.26¢)
0O (2, y) = () Y0 () + (@) VD () + S (@)Y ()

+ (@) YO y) (4.26d)

8g(x,y) = (x) X2 (y) + " (@)Y () + b3 () YO (y) - (4.26¢)

The functions yi(’l%(y) are the [-eigenforms of the Laplacian operator and are given by

Vinly) = Y07, ji=

7

, nelZd. (4.27)

o=

For the torus the YU) form a basis of harmonic I-forms. X

; are symmetric
two-tensors

nv BT

Since we will restrict our analysis to the zero modes (p'= 0), we only keep y}f,llzo(y) =

Yi(” and XZ.(’?:O(y) = Xi(2> in the expansions above and derivatives only act on the

external fields. A basis for the harmonic [-forms Yi(l) is simply given by all exterior
products of the form dy™ A .- Ady™ =™ ™ 1 <[ < 6. Hence:

m:(?), (4.29)

where b; denotes the real dimension of the /th cohomology group of T®.

For the Twasawa manifold, we will use for the expansion forms Yi(l) left-invariant
forms, which will not necessarily be all harmonic. When exterior derivatives act on
these forms terms will be generated of the order of the geometric fluxes.

In both cases we must then impose the orientifold projection which means that
suitable expansion forms must be even or odd under all the orientifold involutions.
For both, the torus and the Iwasawa, this involution is given by (3.23) which leads to

the following forms

‘ type ‘ basis ‘ name ‘
odd 2-form el2, e, ¢ Y;(?*)
even 3-form 6135, 6146, 6236, 245 Y;(3+)
odd 3-form e136 o145 235 o246 Yi(37)
even 4-form 61234, 61256, 3456 Yz'(4+)

even symmetric 2-tensor | e! @ e',e2 ®e?,... e’ ® €’ Xi(Q)




54 Low energy physics I: The Kaluza-Klein reduction

Under the orientifold projection, we find from (3.15) that ®, g, F, C3 are even,
while B, Cy are odd. This simplifies the expansion (4.26) considerably

0B(x,y) = b'(x) v, (4.30a)
0®(z,y) = O(x), (4.30b)
0C (2, y) = ¥ (1) VP + (), (4.30¢)
59(x,y) = W ()X + ha(w) (4.30d)

Note in particular that the orientifold projection removes all four-dimensional gauge
fields, which in fact holds for all type IIA models for which the orientifolds project
out all one-forms and even two-forms. So far the discussion for the torus and the
Iwasawa went parallel. Now we have to use the backgrounds of sections 3.3.1 and
3.3.2 to get the respective fluctuations of the field strengths given in (4.19). For the
torus we find

6F, = —méB, (4.31a)

while for the Iwasawa we get

6F, =0, (4.32a)

So we first have to compute the variation of all the equations of motion (A.7a),
(A.7b), (A.9b) and (A.10) to first order. Remember that we should use (A.1) to
remove the redundant RR-fields so that the only RR-fluctuations are the ones above.
For the torus we have to plug in the background of section 3.3.1 plus the fluctuations
(4.30) and (4.31a), while for the Iwasawa we will have to use the background of section
3.3.2 and the fluctuations (4.32a). We will discuss the two cases separately in the
next two subsections.

4.3.1 Kaluza-Klein reduction of the torus

Since we are only considering the internal zero modes we use that for the torus
derivatives only act on the external fields. It turns out that the RR-fields together
with H do not mix with the metric and the dilaton, so we can discuss their equations
of motion separately.
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RR and NS B-filed sector

Applying the steps described above we get from the equation of motion for H (A.10)
the following equation, which has (external, internal) index structure (0, 2):

0=AWY2)) = By AdeSY) — mx (Fy ABYPT) + m2b Y2 (4.33)

From the variation of the equation of motion of Fy (A.9b) we get a (0, 3)-equation
and a (1, 6)-equation

0 =AYy — w(H Add?), (4.34a)
0=dxde) + dbi AY,"D A Ey+ HA A A YD) (4.34b)
and from Fy a (4,5)- and (3, 6)-equation
0=HAx [WXP - Fy (4.35)
0=H Ax(dc® A YDy, (4.35b)

where the dot is defined in (A.3). Furthermore, we used in the upper equation the
variation of the x given by

1
(0x)F; = (§gMN6gMN> * Fy —*[dog - F], (4.36)

where we defined

109 Flaryon = U 89,1492 Fiagy.. ) - (4.37)

The equations (4.35) are automatically satisfied using the orientifold projection. In-
deed, the right-hand sides should have contained an even internal five-form respec-
tively six-form under all orientifold involutions, which do not exist, so they must
vanish.

Next, we integrate (4.34b) and put the integration constant to zero because it
would correspond to changing the background value of f. The result can the be used
to eliminate dcg?’) in (4.33) and (4.34a). This procedure corresponds to dualizing cg?’)
as explained in [37, 34]. For more details see appendix D.

To proceed, we make a choice of expansion basis for the even three-forms
YE = ImQ, (4.384)
Y(3+)

i 3

i=1,2,3: 3real (2,1)+(1,2) forms, (4.38Db)
and the odd two-forms
vE) =7, (4.39a)

i=1,2: 2 primitive real 2-forms, (4.39b)
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where a primitive two-form is defined in (B.20).
Using these in (4.33) and (4.34a) gives the equations of motion for the 4d scalar
fields. Diagonalizing the mass matrix we obtain the following result for the eigenvalues

M? = M? +2/3A:

| mass eigenmode | mass (in units m?/25) |

bi, i—l 2 10
A i=1,2,3 0
bo 4 G0 10
300 + (30 88

Dilaton and metric sector

With the same procedure as above, we get from the dilaton equation of motion (A.7a)

0=(

and from the internal part of the Einstein equation (A.7b)

8m?
=AW+ —h' +
0= + 55

Tm?

50

The result of diagonalizing the mass matrix is

gnfsq) + gzz Z h] + —gzzhZ (= )

| mass eigenmode | mass (in units m?/25) |

—h' —h2 4+ K+ h? 18
—ht — h?2 + h® + h° 18
—30D + 75 b 18
700+ > hy 70
—h' + h? -2

—h? + h? -2

—h® + hb -2

(4.40)

(4.41)

The external part of the Einstein equation on the other hand becomes

1
5L+ V(uV hy,

3

1
3V Vo wh”p + —m?h

25

uv_

mgWZh

To0™ 29,00 = 0.
(4.42)

At this point we have to take into account that so far we worked in the ten-

dimensional Einstein frame.

dimensional Einstein frame is given by

5w = C\/g_fig;w )

As we will show in (5.16) the conversion to the four-

(4.43)
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where the constant factor ¢ = M5?k;;V, does not matter here, so that
_ 1
& 1hEuV = \/g_Gh;w + 5\/%9;“/ Z hi . (444)
i

Plugging this into (4.42) and using (4.41), we find for hg,, exactly equation (4.3c)
with M? = 0 so that hgy, indeed describes a massless graviton.

4.3.2 Kaluza-Klein reduction of the Iwasawa

Again it turns out that the equations of motion for the RR-fields and the H field do
not mix with the Einstein equation and the equation of motion for the dilaton, so we
can discuss them separately.

RR and NS B-filed sector

Expanding the equation of motion for H (A.10) around the Iwasawa solution, we
obtain

0 =A6 Y 40 (xdas 4V, ) = e g (1Y A )
(4.45)

A

+ bl *6 [*6 <}/Z(27) N FQ) A F2:| + fC(3)i *6 di/;3+ — blf *6 (Y(Qi) A FQ) ,

)

while the equation of motion for F; (A.9b) splits in (1,6) and (4, 3) index structures
1
0=duxdcl) + 514 (8¢, — 09" — 69) . (4.46a)

0= Ay 4 (B (*6d - in(?’“) + Fbxg Y% — b kg d xg (Yf“ A Fg) .
(4.46D)

In a similar way as in the torus case, we integrate (4.46a), put the integration constant
to zero and plug the result for dcg?’) in the other equations.
As expansion forms we take the same three-forms as in eq. (4.38), while for the

two-forms we take this time

v#) = 526 (4.47a)

V) =2 4 e (4.47D)

V2 =2 = 3t 4.47c¢
2

Note that this time Y0(3+) and YO(Q_) are not closed. Introducing mg such that g =

%e‘bmgp (this is of course the Romans mass of the T-dual torus solution), we get the

following masses:
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| mass eigenmode | mass (in units m%./25) |

¢, i=1,2,3 0
bV + bt 10

b2 10

8¢B0 1 540 + 3p1 10
B30 _ 0 4 2p! 88

Due to T-duality the mass eigenvalues are the same as for the torus solution.

Dilaton and metric sector

The equation for the variation of the dilaton equation (A.7a) reads

0=(A+ 27mT )5 — ng Z hi+ ?’mT Z hi. (4.48)

For the Einstein equation (A.7b) we find for i = 5, 6:

S 49mZ . 53ma . ; 11m 33m
0= AR T p T pi=(=0" _ TN pi — T(s 4.49
+ 50 + 50 Z ¢ ( )

and fori =1, 2,3, 4:

0= A4 STy 20 ey 3mE S w+ mp 24: W 2 ss (450)
B 25 5 10 10 = 10 7 ‘

Here we used that
1 1
6Rmn = §AL69mn + v(mvpégn)P - ivmvn(ngQ ) (451)

where Ay is the Lichnerowicz operator defined in (4.4) and all covariant derivatives
and contractions are with respect to the background metric. In (4.51) the last two
terms are vanishing.

Diagonalizing the mass matrix we find the following eigenmodes:

| mass eigenmode | mass (in units m?%/25) |
—h' =R+ 03+ h? 18
11(h' + h?) + 5(h° + h) 18
50® — 3(h' + h?) 18
30® — 3(h° + h®) + (h' + h? + h® + ") 70
—h'+ h? —2
—h* + n' —2
—h> + KB —2

Once again, we find the same masses as in the torus example.
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4.3.3 Summary

The direct computation of the Kaluza-Klein reduction on the six-torus solution of
section 3.3.1 and the Iwasawa solution of section 3.3.2 yields in both cases exactly the
same mass spectrum. This is of course the expected result, since the two solutions
are related by T-duality. We obtain the following mass eigenvalues M?2/|W|? for the
scalar fields:?

Complex structure -2, =2, =2

Kahler & dilaton 70, 18, 18, 18
Three axions of dC5 0,0,0
0B & one more axion | 88, 10, 10, 10

We see that all three axions correspond to massless moduli. This is a feature that
is also discussed in [47]. It is argued there that, when one introduces D6-branes,
these axions can provide Stiickelberg masses to some of the U(1) gauge fields on
the D-brane. We further notice that some masses are tachyonic, which is allowed
because they are still above the Breitenlohner-Freedman bound (4.8). Scalars that
are in the same supermultiplet, such as the complex structure moduli and the three
corresponding axions, the dilaton and the remaining axion, the Kahler moduli and the
B-field moduli have different masses. This is in fact a subtlety of the supersymmetry
algebra of AdS, that no longer allows a definition for the mass as an invariant Casimir
operator.

We can decouple the tower of Kaluza-Klein masses (see the discussion below
(4.21)) when we take m?(e*®*L2 ,) < 1 for the torus or 3L;,; < 1 for the Iwasawa.

int

3The calculations in section 4.3.1 were made in the ten-dimensional Einstein frame, while the
effective supergravity approach followed in later sections will lead to a result in the four-dimensional
Einstein frame. By dividing out with |[IW|> we avoid conversion problems, since M? and |W |
transform in the same way under change of frame.



60

Low energy physics I: The Kaluza-Klein reduction




Chapter 5

Low energy physics II: Effective
supergravity

In this chapter we compute the scalar potential of the 4d low energy effective theory
for all the examples of section 3.3 and 3.4. As already mentioned in section 2.2,
the easiest and most popular approach to do this is to use the more or less indirect
techniques of N/ = 1 supergravity, where the scalar potential is entirely determined
in terms of a Kihler potential and a superpotential'. For the Calabi Yau case, their
general form is given in [84, 34|, whereas a generalization to SU(3)-structure manifolds
or even beyond is given in [33, 35, 36]. We will use this approach to compute the
whole scalar potential for all our explicit N' = 1 AdS, vacua. From this potential
we will compute the scalar masses and check the stability of those vacua. For the
nilmanifolds we will reproduce the results of the last chapter where we used the direct
KK reduction on these backgrounds. Having confirmed that both techniques yield
the same results we will then continue with the effective supergravity approach and
study the Iwasawa solution with m # 0 as well as the coset models in the next section.
This chapter is based on [25].

5.1 Effective supergravity

The superpotential and Kahler potential of the effective A/ = 1 supergravity have
been derived in various ways in [33, 35, 36] (based on earlier work of [84, 34]). Here
we summarize the main formulae which will be used in the following. More details on
the derivation can be found in appendix B.4.

The part of the effective four-dimensional action containing the graviton and the
scalars reads:

S = / d'zy/~g; (%R — MEK;0,6'0"¢" — V (9, ¢)> , (5.1)

'We do not consider any D-terms in this thesis
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where Mp is the four-dimensional Planck mass. The scalar potential is given in terms
of the superpotential via:?

V(g,0) = Mpe™ (K7 D;WeDyW; — 3)We|?) | (5.2)
where the superpotential in the Einstein frame Wy reads (see equation (B.65))

-y
—ie"
WE -

12 / (V=08 B —id (e”Pe™*ImQ +i6C3)) (5.3)
Kio Jm

and (-,-) indicates the Mukai pairing (B.4). The Kéihler potential is given by (see
equation (B.66))

K=K+ K.+ 3In(8x3,M53), (5.4)

where K and K. are the parts containing, respectively, the Kahler and complex
structure/dilaton moduli. They are given by

4

Kip=— ln/ —J?, (5.5a)
v 3

K. =— 21n/ 2¢ *ImQ Ae ®Re(, (5.5b)
M

where e~ ?Re (2 should be seen as a function of e~ *Im ¢ (see appendix B).
On the fluctuations we must impose the orientifold projections (3.15). It turns
out that for all our examples:

§BATmQ =0, (5.6)

since there are no odd five-forms. By expanding in a suitable basis of even and odd
expansion forms (which have to be identified separately for each case), we find that
the fluctuations organize naturally in complex scalars

Jo=J—i6B= (kK —ithy,*) = ¢y (5.7a)

e ImQ +idC5 = (u' + ici)e_q’Yi(?’Jr) = zie_q’}/i(?’Jr) : (5.7h)
where we took out the background e=® from the definition of z¢ for further conve-
nience. We have defined the geometrical scalars k' and u’ slightly differently from
the axionic scalars b* and ¢ in the sense that the geometrical scalars contain the
background whereas the axionic scalars are pure fluctuation. In other words the su-
persymmetric vacuum we started with corresponds to the values k' = u' = 1 and

In [38] the scalar potential was for general type II SU(3)xSU(3) compactifications directly
derived from dimensional reduction of the action.
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b = ¢! = 0. To compute now the potential we only have to use the expansion (5.7)
and plug it together with the background values of the fields given in section 3.3 and
3.4 into the superpotential (5.3) and the Kéhler potential (5.4), which we then have
to use in (5.2) to obtain the full potential. From there we compute the mass matrix
and check the stability of our solution.

5.2 The nilmanifolds

Now we want to use the effective supergravity approach described in the last section
to compute the potential of the nilmanifold solutions of section 3.3.

5.2.1 The torus potential

For convenience we choose a slightly different expansion basis as in section 4.3.1:

y2-) . el2, 3 5.

y(3+) . 135 146 236 245 (5:8)

—e e e e
Using this basis in (5.7) and plugging the result together with the background of
section 3.3.1 into (5.3), we obtain the superpotential

e—iﬂ

WE,TOruS = 3
4r1y

3 2
Vom | =t + g(t1 + 12413 — g(z1 +2+242Y, (5.9

where V; is a standard volume V; = [ €%, which does not depend on the moduli.
By the same procedure we get from (5.4) the Kéhler potential

K =Ky, + K, + 3In(8k2, M2V, Let®/3) | (5.10a)
where
3
K= —1In (H(ti + fl’)) (5.10b)
i=1

is the Kahler potential in the Kédhler-moduli sector, and

K.=-1In (4 : (2" + zi)) (5.10c)

is the Kahler potential in the complex structure moduli sector.

Using the expressions for the superpotential and the Kahler potential, it is straight-
forward to calculate the masses for the scalar fields from the quadratic terms in the
potential (5.2). Before we comment on the results, let us first do the same calculation
for the Twasawa manifold.
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5.2.2 The Iwasawa potential

We choose the following expansion basis:

y(2o) . 52685 12 634;
(5.11)
y(3+) . _Be'35. _Be 146 56236,56245-

This implies that dY B+ = _Be!?4 for all i = 1,... ,4. Using this basis in (5.7) and
plugging the result together with the background of section 3.3.2 into (5.3), we obtain
the superpotential

—ie”" 3 2.4, 28 A\, S 1,2, 1,3 2,3
Weitwasawa = ——5—mrVs |z =t (27 + 2"+ 27 +2°) + Z(t " +°1°) =787,
’ 4K3, 5 5 5
(5.12)
where V, = [ —p%"-® is again a standard volume, and my = Ze ~%3 the Romans
mass of the T-dual torus solution. We note here the following relatlon
. 1
WE,Iwasawa = _ZthVE,Torus(t1 — t_l) ) (513)

which follows from T-duality. Repeating this procedure, we get from (5.4) the same
Kéhler potential (5.10) as for the torus.

Again the masses for the scalar fields follow from the quadratic terms in the
potential (5.2), where we have to use the above results for the Kahler potential and
superpotential.

5.2.3 Summary

From the four-dimensional Einstein-frame action (B.54) we compute the equation of
motion for the scalar fields

A¢F + MZHK M)k ¢ =0, (5.14)

where Mz] = 2 awadﬂ |background 1S the mass matrix and IC” is the Kahler metric in real
coordinates in the background. Therefore, to compare the results for the masses in
the analysis with the superpotential and the Kéahler potential with the results from
the Kaluza-Klein reduction, we need to diagonalize the matrix M;QIC_U\AJ. We also
have to take into account that the results from the Kaluza-Klein reduction were in the
ten-dimensional Einstein frame, while here we get the result in the four-dimensional
Einstein frame:

2
gs = €2 0ryq

(5.15)
= MIQDNilgE4 )
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where N is defined below (B.46), and thus
Jery = M3e 2PN gy, = M2k2e 2 Vol ! gg, (5.16)

where in the last expression we assumed A and ® constant over the internal space.
The conversion for the mass is

m? = ki Mpe > Vol ' m? . (5.17)

Upon noting that in the Kaluza-Klein analysis we set the background values for
the warp factor and the dilaton equal to zero and Vol = V,, we find for the torus
and the Iwasawa exactly the same result as we did in section 4.3.1 and 4.3.2 by
performing a direct KK reduction. This provides a consistency check on the ability of
the superpotential /Kéhler potential approach to handle geometric fluxes. After this
non-trivial test we believe in the correctness of the effective supergravity approach
and compute in the next section the potentials for the coset spaces.

But before we will do so, let us briefly comment on the Iwasawa solution for the
case m # 0. Turning on m, one gets extra terms in the superpotential that look
exactly like the torus superpotential, so we find:

WE,Iwasawa,m;éO = WE,Iwasawa(mT) + WE,Torus(m) 3 (518)

where Wy rorus(m) is the superpotential of the torus obtained and Wy rwasawa(m7)
is the superpotential for the Iwasawa manifold that one obtains by T-dualizing the
torus solution. The mass spectrum is the same upon replacing m2 — m? + m2.
Also, this time it is possible to decouple the Kaluza-Klein tower: in the limit (m? +
mp)(e** L) < 1.

This ends the use of nilmanifolds in this thesis. We have mainly used them to
justify the use of the easier effective supergravity approach to compute the scalar
potential for the coset spaces in the next section. From a phenomenological point of
view they do not seem very promising, because, as we saw, three axions correspond to
massless moduli, which one would have to stabilize before turning to phenomenology.
This problem might be solved by the Stiickelberg mechanism to generate masses for
some of the U(1) gauge fields living on the D6-branes, as it is argued in [47]. But
as we will see later in the cosmological applications, our torus potential falls under
a class of potentials whose suitability for slow roll inflation is ruled out by a no go
theorem formulated in [50]. The same is then true for the Iwasawa manifold because
of T-duality. So let us instead turn to the more promising coset spaces, since there we
will find examples in the next section, which do not have any massless scalar fields.

Furthermore, in the next chapter we will also see how they evade the no go theorem
of [50].
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5.3 The coset spaces

In this section, we compute the scalar potential for the coset space vacua of section
3.4. We will do this by using the effective supergravity approach of section 5.1. We
will proceed for each coset in the same way as we did for the nilmanifolds. First, we
will have to choose an expansion basis which to use in (5.7). To compute the Kéhler
potential and superpotential, we then plug the result together with the respective
background from section 3.4 into (5.3) and (5.4). The potential is given by (5.2) from
where we obtain the mass matrix.

5.3.1 The

SU(3) potential

We choose the expansion forms in (5.7) as follows:

ye-) . a(e!? — 3 1 %)
(5.19)
Y(3+) : CL3/2(—6235 _ o246 + el45 _ 6136) :
and the standard volume V; = — [ a®e!?345,
The superpotential reads:
jem0e=® 3v3  8m 977 3
We = ——Via /* (—T‘[+ 0 %tl +4VE - g(t )2 +z‘m(t1)3> ,
10
(5.20)
whereas the Kahler potential is
K=-In(t"+)%) —In(4(" + 2°)") + 31H(8/€3%0M12;V;_164&)/3) : (5.21)

If we plot M?/|W|?, the overall scale a drops out, and the only parameter is the
reduced orientifold tension fi: see Figure 5.1, where the dashed and solid red line
represent the Breitenlohner-Freedman bound (4.8) and the bound (3.8) for /i, respec-
tively. We see that all four moduli masses are above the Breitenlohner-Freedman
bound. Moreover, all masses are positive for i > —0.82. For i — oo the masses
asymptote to M?/[W[? = (10, 18,70,88), which are the same as for the torus in sec-
tion 4.3.1 (except there are no complex structure moduli and corresponding axions).
In fact, this asymptotic behavior is universal for all models we studied. Indeed, for
f — oo we find from (3.12) that m — oo regardless of the details W, , W5 of the
model and exactly those terms in the superpotential become relevant that also appear
in the superpotential of the torus..

In section 3.2, we have seen that [W; | L, < 1is one way to obtain a separation of
scales between the light masses and the Kaluza-Klein masses even before the uplifting.
However, as can be seen from eq. (3.38), this is impossible to achieve for this coset.
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Figure 5.1: Mass spectrum of %(23)
Sp(2) :
5.3.2 The S(O2)xU) potential
We choose the expansion forms in (5.7) as follows:
Y. a(e' + ), —ae™;
(5.22)
Y6+ . a312(235 4 o216 4 145 _ 136y
and the standard volume V; = — [ a®e'**%, We find the following superpotential
ie e ? 1/2 7 8Mi 15 o 3 1, 42 1, 42),0
We = ———Via [ —fo+ —0c'22" — ——(20t" +1*) — 2(2t" + %)z
4K, 5 5
o 11242 2 (3 9D 1\2 R R IRV AR

and Kahler potential
K=—In((t'+ )2 + 7)) —In (4(z° + 2°)*) + 3In(8k2,MBV, e'*/3) . (5.24)

This time the solution has next to the overall scale a two free parameters: the “shape”
o = ¢/a and the orientifold tension fi. In Figure 5.2 we display plots for several values
of 0: 0 =1 is the nearly-Kéhler point while for 0 = 2/5 and ¢ = 2 the lower bound
for i from (3.12) is exactly zero. These were extreme points in [58], since outside
the interval [2/5,2] the lower bound is above zero and solutions without orientifolds
are no longer possible. Moreover, for zz = 0 also m = 0, and these solutions can be
lifted to M-theory. We also display a plot for large o, here 0 = 13. We see that the
lower bound for /i is indeed positive so that there must be net orientifold charge. The
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Figure 5.2: Mass spectrum of W'

behavior is however already like the universal behavior for i — oo. Again we see that
in all cases all masses are above the Breitenlohner-Freedman bound and by choosing
it large enough they are all positive.

Again we would like to get |Wy |L; < 1 to decouple the Kaluza-Klein modes.
From eq. (3.46) we see that this can be formally obtained by putting o — —2, i.e. we
need to analytically continue to negative values for 0. From [82] we learn that o < 0 is
indeed possible, but the model cannot be described as a left-invariant SU(3)-structure
on the coset ﬁ%m) anymore. Rather it is a twistor bundle on a four-dimensional
hyperbolic space. The precise agreement between the results of [58] (which is based
on [82]) and [59] (wherever they overlap) suggests that the analytic continuation is
possible. Strictly speaking, however, one should check that also the mass spectrum
can be analytically continued to negative values for o. Although this seems plausible,
verifying it directly would require using entirely different technology, and lies beyond
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the scope of this thesis. In deriving the plot of Figure 5.3 for 0 = —2, we have assumed
that such analytic continuation of the mass spectrum is possible. We see that two
mass eigenvalues stay light, while the others blow up if W;” — 0 and join the Kaluza-
Klein masses. In this limit the light modes have M?/|W|? = (—38/49, 130/49).

SU(3 .
5.3.3 The W(U)(l) potential

In this case we choose the expansion forms in (5.7) as follows:

Y@, —ae'?, ae’t, —ae® ;
(5.25)
y 6+ . a3/2(6235 4 246 4 o136 _ 6145)’
and the standard volume V; = [ a® e!?345,

Using the expression (B.65) for the superpotential and the expansion given in
(5.7), we derive the superpotential

i, oy g
. 8 3
Wy = — %Vsa’l/2 Foo — 2 (p0) 220 + 8 (pot! + ot + pt?)
4K2, 5 5
1
+ Z(pa)_l/g ((30 +3po — 50)t't? + (3p — 5p° + 3po)t't* + (=5 + 3p + 30)1&%3)
— 220t + 2+ 1) — imt1t2t3) : (5.26)

The Kéhler potential (5.4) becomes

3
K=—1In (H(t" + fi)) —In (4(2° + 2°)*) + 31In(8k3, MpV, e */?) . (5.27)

=1
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Figure 5.4: Mass spectrum of %

The model has this time two shape parameters: p = b/a and 0 = ¢/a. We display
the mass spectrum for a number of selected values of these parameters in Figure
5.4. There is a symmetry under permuting (a, b, ¢) which translates into a symmetry
under p < o and (p,0, 1) < (p/o,1/0,0). Applying these symmetries leads to
identical mass spectra. Moreover, the mass spectra for p = 1 are, apart from two
more eigenvalues, identical to the mass spectra of ﬁ%. We also display an
example with o, p # 1.

In the plots of Figure 5.5 we have analytically continued to p < 0,0 < 0 in order
to approach the NCY limit, which we obtain for p + 0 = —1. Again, two eigenvalues
stay light with M?2/|W|? = (—38/49,130/49) in the limit while the other eigenvalues
blow up to the Kaluza-Klein scale.

5.3.4 The SU(2)xSU(2) potential

The expansion forms are given by

2— 14 2 25 2 36
Y7 =ae”, Y5 =be™, Yy =ce®, (5.28)
1,.2,3 _h
Y = er'e’® = (€12 4 455 4 (126 | (35 | (315 | (260 | 156 | 234y
4er(a+b+c)
1,2,.3 h
N (€123 4 o156 _ (126 _ o35 _ (315 _ 261 4 (156 4 (23)
der(—a+b+c)
1,.2..3 _h
Y = o' e'e = (=123 _ o156 | o126 | (35 _ (315 _ (264 4 o156 4 o204
4ei(a—b+c)
h

}/;13+ _ _ey1y2y3 .

_ (€12 4 456 4 (126 | (35 _ (315 _ 264 _ 156 _ ,234)
4er(a+b—c)
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Figure 5.5: Mass spectrum of % for negative o and p.

and the standard volume V; = — [, abce'~%. One finds for the superpotential:
3 3 2
W = 714@—1/2{551 + i <t1t2t3 — 5(# + £+ 1) — 5(z1 + 27+ 22 + z4)>
& (tH + 287 + t117)

ey D“I|Qz l\DIOO

(=14 p+0)) + (L= p"+0)) + P01+ p" —0”)] ' + 22+ 2° + 2)
+po [2' +P(1+p* =)+ (1= p* +0°)] (' +2° = 2* = =)
+o[t'(14p°—0) =20+ (-1 +p* + 0%)] (' — 2> +2° — 2

+p[t' (1= p*+ )+ (14 p" +0%) = 20*°] (2! = 2° = 2* + z4)}} . (5.29)
The Kéhler potential reads:

3 4
K=—1In (H(t" + ti)) —In (41_[ (2" + zi)) + 31In(8k2, MAV1e*®/3) . (5.30)
i=1

=1

There are again two shape parameters p = b/a and 0 = ¢/a, and the same
symmetries p <> o, (p, 0, 1) <> (p/o,1/o,0f1) as in the previous model. In Figure 5.6,
we display the mass spectrum for some values of the parameters. This time there will
always be one unstabilized massless axion (]\2/2:0) and a corresponding tachyonic
complex structure modulus with M?/|[W|? = —2.
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Figure 5.6: Mass spectrum of SU(2)xSU(2).

In the limit Wi — 0, W, blows up just as the lower bound for . So in principle
we could decouple the Kaluza-Klein modes this way, however it is quite difficult to
study this singular limit.

5.3.5 The %&J(l) potential

We display the general results here and refer the reader for the special case 5¢? —
4e**m? = 0 to [25]. We choose the expansion forms in (5.7) as follows:

Y(Qf) . —a[(el?’ o 624) o p(€14 + 623)], ae56;

(5.31)
Y(3+) . a3/2[(el3 . 624) +p71(614 —|—€23)] A 66, a3/2(6125 + 6345),

and the standard volume Vi = [a®(1 + p?)e!?**%. The superpotential and Kahler
potential read:

i i0e? - 3im 1
- _ Va2 (2t 4 =2
We 4K32, “ fo+ 5 o2t + o )
3 -1 (12 | T2 s 1y2,2
+ 2(l—i-p) 1 —tt +2(t) im(t)%t (5.32)

4/ 21mr 2y 2um 23
B \/_Zm(l_i_pg)%zl_i_ \/5_2m0(1—|—p2)_%22—|——\/_21t1—\/§(1+p2)_1t222> ,
p
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and
1

K=—In({t+7)%(+#)) —1In (4m

(21 + 22 (22 + 52)2>
(5.33)
+3 ln(SH%OMIQDV;_le@B) :

This model has two shape parameters p = b/a and 0 = ¢/a, and a symmetry
under (p, 0, 1) <> (1/p,0/p, pit). In Figure 5.7, we show the mass spectrum for some
values of the parameters. The mass spectrum at g = 0 turns out to be independent
of the parameters p, 0. There always seem to be two negative M? eigenvalues.

5.3.6 Summary

In this section we derived the scalar potential for type ITA SU(3)-structure compactifi-
cations on nilmanifolds and cosets, which are tractable enough to allow for an explicit
calculation. In particular, we calculated the mass spectrum of the light scalar modes,
using A = 1 supergravity techniques. In the coset models, except for SU(2)xSU(2),
all moduli are stabilized.

It would be interesting to study the uplifting of these models to de Sitter space-
times. This might be accomplished by incorporating a suitable additional uplifting
term in the potential along the lines of, e.g, [18]. Although a negative mass squared
for a light field in AdS does not necessarily signal an instability, after the uplift all
fields should have positive mass squared. Unless the uplifting potential can change
the sign of the squared masses, it is thus desirable that they are all positive even

before the uplifting. We find that this can be arranged in the coset models 85(23),
S(U(SQE’(XQ[)J(U) and U(?)Ux(%)(l) for suitable values of the orientifold charge.

An alternative approach towards obtaining meta-stable de Sitter vacua could also
be to search for non-trivial de Sitter minima in the original flux potential away from
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the AdS vacuum. In such a case, one would have to re-investigate the spectrum of
the light fields and the issue of the Kaluza-Klein decoupling. We will come to this
question in the next chapter.

We discussed the Kaluza-Klein decoupling for the original AdS vacua and found
that it requires going to the nearly-Calabi Yau limit, Wthh seems to be somewhat
hard to do. Indeed, we found that for (U(SI))¢1 SUG)__ one has to make a
continuation to negative values of the “shape” parameters %trlctly speaking, this can
no longer be described as a left-invariant SU(3)-structure on a coset anymore, but it
can still be described in terms of a twistor bundle over a four-dimensional hyperbolic
space. However, as explained in section 4.2, even if we are not able to decouple the
KK tower our results should not be altered by the inclusion of other fields because
the latter should not couple to fields constituting a consistent truncation.



Chapter 6

Cosmology

In this chapter we want to study whether the scalar potentials obtained in the last
chapter might be suitable for some phenomenological application. The only thing that
we know so far is that they posses a supersymmetric AdS; minimum. To make contact
with observation, one possibility would be to try to modify the whole construction in
a way that breaks supersymmetry and results in a 4d de Sitter minimum. But this is
not what we want to do here. Instead we want to investigate whether the potentials
computed in the last chapter allow for dS minima somewhere away from the original
supersymmetric minimum. But as we will explain, we can answer this question by
asking an even more general question, namely, whether there are regions somewhere
in the potential that allow for slow-roll inflation.

The main problem of implementing inflation in type IIA compactifications is that
there exist already quite strong no-go theorems against dS vacua and slow-roll in-
flation: extending the earlier work [49], the authors of [50] prove a no-go theorem
against small € in type ITA compactifications on Calabi-Yau manifolds with standard
RR and NSNS-fluxes, D6-branes and O6-planes at large volume and with small string
coupling. This no-go theorem uses the particular functional dependence of the corre-
sponding scalar potentials on the volume modulus p and the 4d dilaton 7. Using only
this (p, 7)-dependence, they could derive a no-go theorem in the absence of metric
fluxes that puts a lower bound on the first slow-roll parameter,
g”&VajV > 27

— h 1
sz 2 13 Whenever V>0, (6.1)

€

where ¢ denotes the inverse of g;; appearing in front of the kinetic energy terms,
and the indices 7, j run over all moduli fields. This then not only excludes slow-roll
inflation but also dS vacua (corresponding to € = 0).

As was already emphasized in [50], however, the inclusion of other ingredients
such as NS5-branes, geometric fluxes and/or non-geometric fluxes evade the assump-
tions that underly this no-go theorem. In [85], a combination of geometric fluxes,
KK5-branes and more ingredients was indeed argued to allow for dS minima. These
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ingredients were used in [51] to construct large field inflationary models with very
interesting experimental predictions. As already mentioned in ?? the above no-go
theorem directly rules out the torus example. Since the Iwasawa example is T-dual
to the torus this manifold is also ruled out even though it has geometric flux.

In the recent work [86], Fy flux (i.e. non-vanishing Romans mass) and geometric
flux were identified as “minimal” additional ingredients in order to circumvent the no-
go theorem of [50]. We want to discuss the question to what extent the type [TA N =1
AdS, vacua with SU(3)-structure can be used for inflation or dS vacua. In particular,
the coset models with SU(3)-structure could be candidates for circumventing the no-
go theorem of [50], as they all have geometric fluxes and allow for non-vanishing
Romans mass. Specifically, we investigate whether the scalar potentials in the closed
string moduli sector can be flat enough in order to allow for inflation by one of the
closed string moduli. For this to be the case the parameter e must be small enough in
some region of the positive scalar potential for the closed string moduli. In addition,
this analysis is also relevant for open string inflation in these ITA vacua, since in this
case we have to find closed string minima of the scalar potential, i.e. ¢ = 0 somewhere
in the closed string moduli space. Having a point with ¢ = 0 would also be a necessary
condition for a dS vacuum somewhere in moduli space.

In the next section we will first review the no-go theorems of [50] and [86] to
see how our coset models evade them. After that we introduce yet another no-go
theorem, first formulated in [87], which also includes geometric fluxes. We will then
apply a slight modification of this no-go theorem to rule out all but one coset models
to allow for dS minima or inflation. We will study the remaining coset and some
further generalizations in the following sections.

6.1 A no-go theorem without geometric fluxes

We start by reviewing previously derived no-go theorems [50] (see also [85, 86]) that
exclude slow-roll inflation and dS vacua in the simplest compactifications of massive
type ITA supergravity, focusing in particular on the role played by the curvature of
the internal space. In [50] the authors studied the dependence of this scalar potential
on the volume modulus and the four-dimensional dilaton defined by

p= (Vol)/3, 7 =e ?VVol. (6.2)

The formulation of the no-go theorem then consists of two steps. First, they derive
a general expression for the slow roll parameter e, valid for any N' = 1 supergravity
theory. It is the sum of a positive term plus the gradient in the (p, 7)-plane. The
second step consists of finding a lower bound for the gradient in the (p,7)-plane,
forbidding € to become arbitrarily small.

Because we use similar arguments in the next sections let us review their con-
struction here and start with the first step. A basic ingredient in the formulation of
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any 4d N' = 1 supergravity theory is the K&hler potential (see (5.4))
K=K+ K.+ 3In(8x3,M53), (6.3)

where K and K. are the parts containing, respectively, the Kahler and complex
structure/dilaton moduli.

Let us now focus on the Kéhler moduli, whose Kéhler potential is given by (see
(5.5a))

4
K = — ln/ —J = —ln/ 8 dvolg, (6.4a)
M 3 M

where we have used J® = 6 dvols in the second equality. Since [,, dvols = Vol we
can use this to relate the volume modulus p defined in (6.2) to the Kahler moduli &°
appearing in the expansion of J. Namely, using the usual expansion of J given by

J=kKY®) (i=1,...,h%) (6.5)

and defining the triple intersection numbers k;; as

)

Kijh = / YEIAYEI Ay, (6.6)
M
we get from (6.4a)
/ﬁijkkikjkk = 6p3, (67)
So we can relate p to the k' if we write
K=p, (6.8)
and impose the constraint
KigrY' Y7 = 6. (6.9)

Now we obtain an important piece of information by looking at the kinetic energy for
the Kihler and complex structure moduli # and z' given by

T =T, +T,= —K;0,t' 0" — K;0,2 0" . (6.10)

Let us focus again on the Kihler sector. Turning to real coordinates #' = k' — ib’ we
get
1 0°K;
4 0k okI

T}, = (0,k'0" K + 0,b'0"V) . (6.11)
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Plugging in (6.8) and using 9, (kiry'7’7*) = 0, we obtain:

3 a 2 1 ) , . kAl .. MAn _ fe k ) ,
(O,p) — —KijY Oy Oy + Nikly Y KJW;Z} Z Rk b0ty | (6.12)
p

Ty = —
g 40?2 4

We see that p does not have canonical kinetic energy, but we can define a p, which

does:
) 3
p= \/;lnp- (6.13)

By switching from p to p, we can read off the kinetic energy for p. The remaining
kinetic energy terms for 7% and b* are block diagonal (there are no cross terms involving
d,p 0"y" etc), and this has an important consequence: We know that in the physical
region the total kinetic energy must be positive, so each of the above 3 terms must
be positive. Hence,

Ty = —(0,p)?/2 + positive. (6.14)

For the complex structure/dilaton sector, the procedure is similar, although more
subtle. Without going through the details here we, just give the result. Again, one
pulls out the 7 dependence by u' = 74‘, where the @' are no longer independent
anymore. One then has to define a canonically normalized field

F=v2In7 (6.15)
to obtain for the kinetic energy
T. = —(07)%/2 + positive. (6.16)

The kinetic energy is again block diagonal. In fact we know this must be true from
the 10-dimensional point of view; the dilaton modulus is inherited directly from 10
dimensions, and so cannot possibly give rise to mixed kinetic terms with the complex
structure moduli in four dimensions.
So all in all we know that the metric appearing in (6.1) is block diagonal in p, 7
and the remaining moduli, which allows us to write
M2
€= 2—‘;’2 (V3V; + V3V + positive terms) . (6.17)

Thus we get for € the following estimate derived in [50] :

M| /omV\?  [(dnV\?
€2 —- - + -
2 op ot

(6.18)
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Writing this in terms of p and 7 we get

MZ2I1( av\® 1 [ av)®
s ) [ == 6.19
€27 3<pap> +4<Tar> (6.19)
This can be written as
M? oV ov\?  M? ov 1 ov\?
> L [ —p— — 37— P (2p— — —7— 6.20
6—39v2< iy Tar> 13V2< Pap 2767> ’ (6.20)
from which we get
M? oV ov\?
> —p—=——31— | . :
> 3517 ( ) 37&) (6.21)

It is now surprisingly simple to derive a lower bound for the right hand side of
(6.21). Classically, the four-dimensional scalar potentials of such compactifications
may receive contributions from the NSNS Hjs-flux, geometric fluxes, O6/D6-branes
and the RR-fluxes F},, p = 0, 2,4, 6 leading to, respectively, the following terms:

V =Vs+ Vi +Vosps + Vo + Vo + Vi + V4, (6.22)

where V3, Vo, V5, Vi, Vs > 0, and Vy and Vipspg can a priori have either sign. V; follows
from the reduction of the Einstein Hilbert term in (A.2), and it is explicitly given by

1 1
V= 2M4I€1062¢V01 1R——2M§H107 R, (6.23)

where R is the Ricci scalar of the internal manifold. By looking at (A.2) and (A.4),
it is not difficult to obtain the general scaling behavior of these terms with respect to
p and T,

Vs ox p3772, V, o< p* Pt Vos)pe X 773, Viocp'r72. (6.24)

These scalings can also be found by analyzing the potential (5.2) arising in the effective
supergravity approach. Using these scalings we get from (6.22)

A 9V} 2
p 37 o+ > pV, -2V, (6.25)

Hence, whenever the contribution from the metric fluxes V; is zero or negative this
gives
ov ov

~r g, 3G 2V (6.26)
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Assuming a regime where V' > 0, which is necessary for inflation, we can plug this
into (6.21) to get

27
€ >

— 2
> (6.27)

as it has been derived in [50]. This directly rules out the torus example of section 5.2
as well as the T-dual Iwasawa example.

Avoiding this no-go theorem without introducing any new ingredients would thus
require Vy > 0. Since V; o —R, where R denotes the internal scalar curvature, this
is equivalent to demanding that the internal space has negative curvature. Since all
terms in V' scale with a negative power of 7 we see from (6.22) and (6.24) that we
then also need Vipg,ps < 0 to avoid a runaway, which reflects the old result of 88].

Following a related argument in [86], one can identify another combination of
derivatives with respect to p and 7 that sets a bound for e:

—3paa—v - 3786—‘/ = 9V + 6V5 — 6V, 4 6V, + 12V > 9V — 6V, (6.28)
P T

In the case of vanishing mass parameter, we have V; = 0, and (6.28) implies ¢ > %
Therefore, we need to have V; > 0, Vg pg < 0 and V4 # 0 in order to avoid the above
no-go theorems. Note that the only real restriction here is that we have to have a
compact space with negative curvature since in our examples we are always free to
turn on Fj-flux and to do an orientifold projection. By computing the Ricci scalar
(C.35) from the structure constants of the cosets and the metric, which depends on
the geometric moduli, we will see that some of the cosets admit a negative curvature
in a certain regime of the moduli space and are thus not affected by the no-go theorem
of [50].

6.2 A modified no-go theorem for SU(3)-structure

Unfortunately, in [87] yet another no-go theorem has been derived, this time also
applying to certain classes of compactifications with negative scalar curvature. We
will review it in this section.

The coset examples of SU(3)-structure manifolds have special intersection numbers
that allow a split of the index 7 of the Kéhler moduli into {0,a},a =1,...,(h*” —1),
such that the only non-vanishing intersection numbers are

Koab = Xab . (629)
We now introduce a variable similar to p in (6.8) by defining

k= ox", (6.30)
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where o is the overall scale of (h*~ — 1) Kéhler moduli, and the x* are constrained
by Xax?x? = 2. The volume can now simply be written as Vol = k%02, Now one
does the same kind of computations as we did in the last chapter. Instead of (6.12)
we get this time for the kinetic energy

9 o)2 0. k0\?% 1 1 4 4
Ty = - [( 2”02) a ( Q#ko > * ZXabauXaaqu o ZKabaublaubg : (6.31)

where we used 9, (Xux*x") = 0. This time the canonically normalized field is given
by

6=Ino, (6.32)
which gives
Ty = —(9,06)*/2 + positive. (6.33)

The kinetic energy for 7 is still the same as in (6.16) so that we get the same bound
as in (6.18), but now for o instead of p:

1| /omV\* [omV)?
> — .34
6_2<8ﬁ>+<8%> (6.34)
Writing this in terms of o and 7 we get
1 av\® 1/ v\’
> — (o= (= .
“= 912 <060> +2 <767> (6.35)
This can be written as
1 v av\® 1 v av\?
> ——|o— + 21— ——(do— —T7— | . :
“= 1812 <060+ T@T) +36V2<080 T@T) (6.36)
from which we get
1 v v\’
—— | —0— — 21— | . 6.37
6—18v2< e T&) (6.37)

Again it is possible to derive a lower bound for the right hand side of (6.37). Without
the geometric fluxes the scalings of the potentials in (6.22) become for the special
intersection numbers (6.29)

(kOO.Q)—b’ (k00.2)3
— . Vex T/

(0* + (K")%)

(k002)17-4 ?

(kUO.Q)—?)

1
‘/'3 X % X 1 , VOG/DG X ;, (638)

(o + (1)20?)
(k00-2)17-4 ’

T

Vs ox Vi o (6.39)
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as it has been explicitly derived in [25].

Defining
DV = (-00, —2710,)V, (6.40)
we obtain from (6.38)
DV3 =6V3,
DVoe =6V0s
DVy =64,
(6.41)

DV; =6V; + positive term ,
DV =8V} + positive term,
DV =10V5.

In [87] it was shown that if one defines a matrix r;; by

Ay~ = 7 YOI (6.42)

)

describing the geometric flux of J which is expanded in odd two-forms, the extra
condition r,; = 0 or ro; = 0 leads to DV = 6V;. Plugging this and (6.41) into (6.37)
one would get

€>2, whenever V > 0. (6.43)

However, in the coset examples that we want to discuss, one always has r,; # 0,
and ro; # 0 so the no-go theorem of [87] is not directly applicable. But one still can
explicitly check for each case separately whether DV; > 6V} is satisfied or not. In
order to do so, it is convenient to write

1

= 44
= anva (6:44)

so that

1
DU =6V + ——(—08,)U, (6.45)

DVf = 6Vf + 579Vl

1
272Vol

and the no-go theorem applies if we can show that

—00,U = k04U > 0. (6.46)
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Furthermore, if the inequality (6.46) is strictly valid, Minkowski vacua are ruled out
as well. This can be seen as follows. Using (6.41) and (6.45), we obtain

DV =6V + 2V, + 4V + (—0d,)U + positive terms, (6.47)

1
272Vol

so that for a vacuum, DV = 0, we find with (6.46)

1 1
Ve (oV 44V + ——
6< 1AV oo

—00,)U + positive terms) <0. (6.48)

So, if the inequality (6.46) holds strictly, also (6.48) holds strictly as well, and
Minkowski vacua are ruled out.

Indeed, one can check that the coset models discussed in this thesis do not allow
for supersymmetric Minkowski vacua with left-invariant SU(3)-structure. Strangely
enough, this includes the case SU(2)xSU(2) for which eq. (6.46) can be violated.
This model may still allow for a non-supersymmetric Minkowski vacuum. In the next
section we will explicitly compute (6.46) for each coset.

6.3 Cosmology of cosets

In the previous section, we described a no-go theorem that rules out dS vacua and
slow-roll inflation for type ITA compactifications on certain types of SU(3)-structure
manifolds, namely those for which one coordinate in the triple intersection number
kijr can be separated as in eq. (6.29), and the geometric fluxes induce the relation
(6.46). While these seem to be quite strong assumptions, it turns out that almost all
the cosets do fall into this category, as we will show in this section. For that we will
evaluate (6.46) for each coset explicitly. By looking at (6.44) and (6.23), we see that
we first have to compute the Ricci scalar for each coset. It is given in (C.35) in terms
of the structure constants and the metric.

6.3.1 The %(23) no-go

For this case, one finds for the function U of (6.44):
Uox —(k")?, (6.49)

which is manifestly negative. This implies that V} itself is manifestly negative so
that the no-go theorem of [50], reviewed in section 6.1, already rules out this case.
All other coset models allow for values of the moduli such that V; > 0 and therefore
require a more careful analysis using the refined no-go theorem of section 6.2.
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Sp(2)
6.3.2 The W no-go
For this case, one has
U o (k*)? — 4(k")? — 12k'%? (6.50)

and the only non-vanishing intersection number is k112 and permutations thereof, so
that &2 plays the role of k°, and we have

DU = —k'0 U o< 8(k")* + 12k'k* > 0, (6.51)
so that with k' > 0 (because of metric positivity) the inequality (6.46) is strictly
satisfied and this model is ruled out.

_ su@)
6.3.3 The T =<0 NO-80
For this coset space, we have
U o (kY2 + () + (k*)? — 6k'k* — 6%k — 6Kk, (6.52)

and the non-vanishing intersection numbers are of the type k123 so that we can choose
any one of the three k’s as k°. We will choose £° to be the biggest and assume without
loss of generality that this is k', i.e. that k' > k2, k3. We then find that

DU = (=K’ — k*0ps)U o (6k" — 2k°)k” + (6k" — 2k°)k* + 12k°k* > 0,  (6.53)

so that with k' > 0 (because of metric positivity) this coset space is also ruled out by
the no-go theorem (6.46).

6.3.4 The %&J() no-go

For this model, the function U depends on an extra positive constant A related to the
choice of orientifolds. The function U turns out to be

U o (*)*(u?)? X — 8k B [utu?| (1 + \?), (6.54)

and the non-vanishing intersection numbers are of the form ;5. Thus k% plays the
role of k°, and we find that

DU = —k'" 01U o 8k'k?[u'u?|(1 + \?) > 0, (6.55)

so that with k* > 0 (because of metric positivity) this case is also ruled out.
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6.3.5 No SU(2) x SU(2) no-go

Thus far, we have found that € > 2 for all other cases. For the remaining coset space
SU(2)xSU(2), one finds

U oYk (Z(u’)?) — ARE (ju' |+ )

I=1

(6.56)
— 4k B (Ju'ut| + [utu?]) = 4kTED (Ju'u®] + [uPut]) |

and the non-vanishing intersection numbers are of the form k53 so that we could
choose any one of the k’'s as k°. However, it is not possible to apply the no-go
theorem. This can be easily seen if we take for example u' > u? u3, u*. Then we
have schematically U oc k2(u!)2 and DU o —k*k*(u')? < 0. In [87] further no-go
theorems have been derived but none of those apply to this case either. We will study
this case in more detail in the next chapter.

6.4 The SU(2)xSU(2) coset

In the last section we have seen that the known no-go theorems cannot be used to
rule out small e for compactification on SU(2)xSU(2) even though in a numerical
analysis we did not find small e.

We will argue in this chapter that from a 4d effective supergravity perspective
there are, in a sense we will have to specify, different inequivalent values for the fluxes
possible, which lead to inequivalent superpotentials. The superpotentials we found
for the cosets in chapter 5 by plugging in the supersymmetric background values for
the fields given in chapter 3 are just one possibility. They are characterized by the fact
that they allow by construction for a supersymmetric vacuum. In the next section we
will make precise what we mean by inequivalent superpotentials. It turns out that
there are values for the fluxes leading to superpotentials which do not allow for a
supersymmetric minimum in the potential. Exactly for such a non-supersymmetric
superpotential we will find that for SU(2)xSU(2) it is possible to get € &~ 0 and there
are dS extrema. In principle one could to do such a classification of inequivalent
potentials for all the coset spaces in order to study the full moduli space. Note,
however, that for all the cosets in which we were able to prove a no-go theorem
against inflation, this conclusion is not altered, because we only used the geometrical
information, namely the geometrical flux potential for each coset, in this proof!. In
order to find small € this leaves as the only possibility out of the cosets studied so
far the SU(2)xSU(2) model, although numerically we did not find small €. From the
viewpoint of this chapter, we should make this more precise by saying that there is no

!'We are only considering the case of O6-planes. Allowing for other O-planes could change this
conclusion
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small € in “bubbles”, i.e. inequivalent choices of the background fluxes, which allow
for a supersymmetric AdS; minimum. Indeed we will find configurations with € ~ 0
and V > 0 in bubbles that do not allow for supersymmetric AdS vacua.

Taking this 4d point of view it is also possible to study potentials resulting from
cosets which do not allow for a supersymmetric vacuum at all. By still restricting
for simplicity to cosets which allow for an SU(3)-structure, we will see that there are
two more candidates in table C.1. In analyzing the whole moduli space there is one
complication, namely the choice of compatible orientifolds. In our supersymmetric
analysis they were obtained as a result of the solutions to the Bianchi identities of
the fluxes, which were in turn fixed in terms of the geometry by the supersymmetry
equations. This is no longer the case for the non-supersymmetric cases, and we will
stick in our analysis to the case of O6-planes.

6.4.1 Classifying inequivalent potentials

In this section, we want to classify the different inequivalent superpotentials and
the resulting potentials. In what follows, we will call a given set of flux parameters
a “bubble”. In a given bubble the potential is fixed, and one can reach different
points of it by fluctuations of the fields. A natural idea would be to call two bubbles
inequivalent when it is not possible to go from one bubble to the other by finite
fluctuations of the moduli fields. From the 4d effective supergravity point of view one
would then have to classify all inequivalent bubbles and study the potential for each
bubble in order to analyze the full moduli space. In this way, we will find bubbles,
which do not possess a supersymmetric AdS, vacuum and are thus not covered by
our analysis so far. We follow here the standard approach of classifying the different
bubbles by flux quanta, which is however complicated by the presence of Romans
mass, H-field and O6-plane source. Classifying the different bubbles in terms of
fluxes amounts to finding configurations that solve the Bianchi identities

dH =0, (6.57a)

dFy =0, (6.57b)

dF, + mH = —js , (6.57¢)
dFy+HAF, =0, (6.57d)

while two configurations are considered equivalent if they are related by a fluctuation
of the moduli fields, which after imposing the orientifold projection (and assuming it
removes one-forms) is given by (4.19)

SH = doB, (6.58a)
5Fy =0, (6.58b)
0F, = —méB, (6.58¢)
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1
6Fy = déCs —SB A (Fy + 6Fy) — 5m(éB)2 , (6.58d)

§Fy = H AGCs — 6B A (Fy + 0F,) — ~(6B)? A (Fy + 6F,) — %m(éB)‘g. (6.58¢)

1
)
In other words, we want to find representatives of the cohomology of the Bianchi
identities (6.57) modulo pure fluctuations of the potentials (6.58).

From egs. (6.58b) we get immediately that Fj is constant. Using the non-closed
part of §B in (6.58a), we can remove the exact part of H and set H € H3(M,R) in
(6.57a). To analyze (6.57¢) and (6.58¢), we take the point of view that we choose the
flux F5, which then determines the source j3. From here on, one has to discuss the
case Fy # 0 and F, = 0 separately.

If Fy # 0, the closed part of F, can be set to zero by choosing the closed part
of B in (6.58¢c). Thus F; is the most general non-closed two form. Moving on to
Fy, we find that in eq. (6.57d) H A F, = 0, since we assumed there were no even
five-forms under all the orientifold involutions. Moreover, with the fluctuations 6C},
we can remove the exact part of F so that Fy € H*(M,R). This however, leaves the
closed part of §C5 undetermined, which, if we have chosen H non-trivial, can be used
to put? Fy = 0 . Otherwise we should allow for Fg = fdvol.

If Fy, = 0, there is no 0F; and F; is just the most general two form. Again
with dC3 we can remove the exact part of Fy so that Fy € H*(M,R), which we can
further simplify by using the freedom of choosing the closed part of 3. And also the
closed part of 6C3 can, if we have chosen H non-trivial, be used again to put Fg = 0.
Otherwise we should allow for Fgz = fdvol.

To illustrate the procedure, we can study the z2- coset of section 3.4.1. For the

SU(3)
case Fy # 0, we obtain the following most general form of the fluxes

Fy=m, Fy=ale? - 4,
F,=0, Fy=fdvol, H=0, (6.59)
where m, f and « are free parameters. If we use the expansion
J, =t'(e'? — ¥ 4 €9, (6.60)

ImQ, = 2! (—e® — 210 4 ! — (136) (6.61)

in (5.3) and (5.4), we obtain the same Ké&hler potential as in (5.21), and the super-
potential is given by

W= f+im(t")? + 4V/3t' 2" — 3a(t')?, (6.62)

which already looks a bit nicer than (5.20). Now we can compute the potential as
usual with (5.2).

2If there is non-trivial H there is always a 6C3 to put Fy = 0.
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6.4.2 Small ¢ for SU(2) x SU(2)

Now we come to the study of the SU(2)xSU(2) coset space for flux parameters which
do not allow for a supersymmetric vacuum. In order to eliminate the one- and
five-forms, we must introduce at least three mutually supersymmetric orientifolds,
compatible with the structure constants. We can then always perform a basis trans-
formation so that the odd two-forms and odd/even three-forms are the same as in
section 5.3.4 and read explicitly

Y1(2_) 2614, Y2(2—) = %, Yé(Q_) = 36,
y 31 :i (130 — 234 _ g6 | 135 4 (35 _ (126 | o123 _ (456)
y (3-)2 :% (130 — 234 4 216 _ 135 _ 345 4 (126 | o123 _ (456)
y(3-)3 :% (156 — 234 4 246 _ o135 4 35 _ (126 _ (123 4 (456)
y(3-)4 :i (el 4 23 4 26 _ (135 | M5 _ (126 4 (128 d56) (6.63)
y(3+) :% (130 4 (234 _ 216 _ o135 4 (345 | o126 | (123 4 o456)
v, :% (156 4 2 4 26 4 (135 _ (35 _ (126 4 o123 ds6)
y,) :% (16 4 €2 4 216 | (135 4 (M5 | 126 _ (123 _ od56)
Y& :% (el — 24 | 26 4 (135 | (M5 | (126 4 o123 | 456)
where the e (« = 1,...,6) are a basis of left-invariant 1-forms. The e® satisfy

1
de® = —§f"576ﬁ NeT, (6.64)

where the structure constants for SU(2) x SU(2) are f'y3 = f456 = 1, cyclic. From
this we find

1 1 1 -1
Y% = v®I with r=| 1 -1 -1 -1 |. (6.65)
1 -1 1 1

In terms of the above expansion forms, we can again define the complex moduli as in
(5.7). The positivity of the metric demands

wu? <0, wdul<0, wlul<o. (6.66)
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Next we turn to the choice of background fluxes as explained in section 6.4.

We already now from chapter 6.1 that we need a non-vanishing Fy to get a small
€. Furthermore our numerical studies did not give small € for the case of vanishing H
flux, which one could choose in the potential of section 5.3.4. For the case where H is
non-trivial in cohomology, p # 0 (see below), the most general form of the background
fluxes is

Fy =m, (6.67a)
Fy =m'Y;® 7, (6.67D)
Fy =0, (6.67¢)
Fy =0, (6.67d)
H=p (Y7 +vf7 v 4y, (6.67¢)

Plugging in these background values for the fluxes together with the expansion (5.7)
in terms of the basis (6.63), we find for the superpotential (5.3)

W =V, (4k%) " (m1t2t3 +m* P 4 mP e —imt P —ip(2t 2 - P 42 + rutizf> :

(6.68)
and the Kéhler potential (5.4) reads
3 4
K=-n[](#+7) —Wn]] (=" +2") +3Wn (V"6 M}) + In32, (6.69)
=1 I=1
where V; = — [, €'?**. Note that the superpotential depends on all the moduli so

there are no flat directions in this model.

It is straightforward to calculate the scalar potential (5.2) and the slow-roll pa-
rameter € (6.1) from the Kéhler and superpotential. Although we cannot analytically
minimize €, we checked numerically that there is a solution with numerically vanishing
¢, which means that in this case there is no lower bound for €. To obtain a trustworthy
supergravity solution, we would have to make sure that the internal space is large
compared to the string length and that the string coupling is small. Furthermore, in
the full string theory, the fluxes have to be properly quantized. Although we do not
think that this would prevent small €, we did not try to find such a solution because
all the solutions with vanishing ¢ we found have a more serious problem, namely that
n < —2.4. The eigenvalues of the mass matrix turn out to be generically all positive
except for one, with the one tachyonic direction being a mixture of all the light fields,
in particular the axions. This means that we have a saddle point rather than a dS
minimum. A similar instability was found in related models in [87].
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In [89], a no-go theorem preventing dS vacua and slow-roll inflation was derived
by studying the eigenvalues of the mass matrix. Allowing for an arbitrary tuning of
the superpotential, it was shown that for certain Kéhler potentials the ‘sGoldstino’
mass is always negative. For the examples we found, this mass is always positive so
that the no-go theorem of [89] does not apply. According to [89] this means that
allowing for an arbitrary superpotential it should be possible to remove the tachyonic
direction. In our case, however, the superpotential is of course not arbitrary.

Since the no-go theorems against slow-roll inflation do not apply and we have
found solutions with vanishing €, we checked whether our solutions allow for small
n in the vicinity of the dS extrema. Unfortunately, this is not the case. In fact, we
found that n does not change much in the vicinity of our solutions where € is still
small.

It would be very interesting to study the SU(2) x SU(2) model further to check
whether one can prove that there is always at least one tachyonic direction or whether
it allows for metastable dS vacua after all. Understanding this tachyonic direction
better should also allow to decide whether there are points in the moduli space that
allow for slow-roll inflation in this model.

6.5 SU(3)-structure cosets without supersymme-
tric vacuum

In this section, we study the only two coset spaces of the list given in table C.1
that do allow for an SU(3)-structure but not for a supersymmetric AdS; vacuum.
To keep the analysis tractable we will restrict to perpendicular O6-planes, which are
aligned along or perpendicular to the one-forms e'...e%, although we already saw
with SU(2)xSU(2) an example where the O-planes are not perpendicular (3.66). As
it turns out, it is again possible to apply the no-go theorem of section 6.2 to these
cases, which only needs the potential part of the geometric fluxes. Thus, there is no

need to compute the full potential.

2
6.5.1 SGE-xU(1)
It was shown in [59] that if the U(1) factor in the denominator does not sit completely
in the SU(2)?, the resulting coset is equivalent to SU(2)xSU(2), so we exclude this
possibility here, as the above notation already suggests. The internal manifold is then
in fact equivalent to T'"'xU(1). We choose the structure constants as follows (this is
a =1, b =0 compared to [59])

f123 = f745 =1, cyclic,

s e (6.70)
flas=f1r=[fn=L1L
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The possible orientifolds that are perpendicular to the coordinate frame and compat-
ible with these structure constants are along

6123 , 6345, 6256 , 6146 , 6246 , 6156 ) (671)

In order to remove one-forms and five-forms, it turns out that we have to introduce
two orientifolds, in particular one of {123,345} and one of {256, 146,246, 156}. It
does not matter for the analysis which particular choice is made, but for definiteness
let us choose 345 and 256. We arrive then at the following expansion forms

odd 2-forms: (615 + 624) : 36 ,
(6.72)

123

even 3-forms: ', (&% —e!0) ¥

for (5.7).
There is always a change of basis such that we can assume k’ > 0. The conditions
for metric positivity then become

utu® >0, u'u® > 0. (6.73)

U becomes

—4k"E2u? (u' + u?) + (B2)? [(u')? + (u?)?] _
2V ulud [u?|

The non-vanishing intersection number is k115 so that k2 plays the role of k°, and we
get for (6.46):

U x (6.74)

2k 2w (u' + u?)
Vulud|u?|

which is positive using the conditions (6.73). Hence, this case is ruled out as well.

DU = —k'9pU o

>0, (6.75)

6.5.2 SU(2)xU(1)?

In this case there are ten possible orientifold planes perpendicular to the coordinate
frame and compatible with the structure constants. It turns out that in order to
remove the one- and five-forms, we have to choose at least three mutually super-
symmetric orientifolds and that it does not matter for the analysis which ones we
choose. For definiteness, let us take

el2 356 246 (6.76)
With these orientifolds, we get the following expansion forms to be used in (5.7)

odd 2-forms: 616, 625, 634,
(6.77)

even 3-forms: e!??, 36, 201 o115
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Again there is always a change of basis such that we can assume £’ > 0. The positivity
of the metric demands that

wu? >0, uwe?>0, wlu?>0. (6.78)

For the quantity U as defined in (6.44) we get

(K*ut)? + (K*u?)? + (k*u?)? — 2k utk?u® — 2k utk3u? — 2k2u3k3u?
2vVuluulut '

The non-vanishing intersection number is k93 so that each &% can play the role of £°.

Without loss of generality we can assume k'u* > k%u® > 0, k'u* > k3u? > 0 and

choose k° to be k'. Thus we then find

—(k*u® — K*u?)? + kot (B2u® + E*u?)

vVaulu2udu?

U (6.79)

DU = (=Kk*0> — k*Op3)U >0, (6.80)

so that we can also rule out this model.

6.6 A comment on extra ingredients

Some ingredients that are not taken into account in the original no-go theorem of
[50], see section 6.1, nor in the no-go theorems of [87], see section 6.2, are KK-
monopoles, NS5-branes, D4-branes and D8-branes. Some of these ingredients were
used in constructing simple dS-vacua in [85]. KK-monopoles would drastically change
the topology and geometry of the internal manifold so that their introduction makes
it difficult to obtain a clear ten-dimensional picture, hence we will not discuss this
possibility further. NS5-branes, D4-branes and D8-branes would contribute through
their respective currents jnss, jp4 and jpg as follows to the Bianchi identities

dH = _jNS5 )
AF, + HAFy = —jps ., (6.81)
dFy = —jps -

Since H and F; should be odd, and Fj and F); even under all the orientifold involutions,
we find that jngs is an odd four-form, jps an even five-form and jpg an even one-form.
In the approximation of left-invariant SU(3)-structure to be used in the next section,
one should also impose these brane-currents to be left-invariant (making the branes
itself smeared branes). For the concrete models studied in this thesis there are no
such currents jnss, Jp4 Or jpg with the appropriate properties under all orientifold
involutions, implying that NS5-branes, D4- and D8-branes cannot be used in these
models.
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Let us briefly mention that an F-term uplifting along the lines of O’'KKLT [48, 90|
by combining the coset models with the quantum corrected O’Raifeartaigh model
will not be a promising possibility either. The O’Raifeartaigh model is given by
Wo = —p25 and Ko = S5 — B3 The model has a dS minimum for § = 0 where
Vo ~ p'. We combine the two models as follows (the subscript IIA refers to the
previously discussed flux and brane contributions)

W = Wha + Wo , KK = Kia + ’Co . (682)
In lowest order in S the total potential is then given by
Voa Via + eV + . (6.83)

Note that we can then include the contribution of V;,, = X114V in the no-go theorems,
because the uplift potential V,,, scales like Fg,
Ay

Vip = ——2—. 6.84

P 4 Vol ( )

Since we assume a positive uplift potential, V;,, > 0, the fact that V,, scales like Fj

tells us that adding this uplift potential does not help in circumventing the no-go

theorems of section 6.1 or section 6.2.

6.7 Summary

The main result of this chapter is that we can apply, for all but one coset space, a
refined no-go theorem of [87] that does not just use the volume modulus and the
dilaton, but also some of the other Kihler moduli.> These would not have been
ruled out by the no-go theorem of [50] (except for the example of positive curvature
in 6.3.1) which already ruled out the nilmanifolds. Just as in [50], it is the epsilon
parameter, i.e., first derivatives of the potential that cannot be made small. Our
results in particular show that it is important to make sure that the potential has a
critical point (or small first derivative) in all directions in moduli space. Moreover,
the refined no-go theorem, just as the one of [50], is of a different nature than the
no-go theorems developed in [89], which assume a vanishing (or small) first derivative
and then show that, under certain conditions, the eta parameter defined in (2.17)
cannot be made small enough.

The coset model we do not rule out by a no-go theorem corresponds to the group
manifold SU(2)xSU(2)even though we could not find small e by numerical analysis
for the form of the superpotential given in section 5.3.4. However, generalizing the
allowed fluxes as in section 6.4.1, we were indeed able to find critical points (corre-
sponding to numerically vanishing €) with positive energy density, but only at the price

3Problems with field directions orthogonal to the (p, 7)-plane were also discussed in [86], where
attempts were made to construct dS vacua on manifolds that are products of certain three-manifolds.
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of a tachyonic direction, corresponding to a large negative eta-parameter, n < —2.4.
Interestingly, this tachyonic direction does not correspond to the one used in the dif-
ferent types of no-go theorems of [89]. As our numerical search was not exhaustive,
however, we cannot completely rule out the existence of dS vacua or inflating regions
for this case. Since this case also does not allow for a supersymmetric Minkowski
vacuum as mentioned below (6.48), our discussion covers all SU(3)-structure com-
pactifications on semi-simple and U(1) cosets that have a supersymmetric vacuum.

Furthermore, we also studied the remaining two coset spaces of table C.1 that
do admit an SU(3)-structure but no supersymmetric AdS vacuum. Choosing for
simplicity the O-planes such that one-forms are projected out and restricting to O-
planes perpendicular to the coordinate frame, we could again use the refined no-go
theorem of section 6.2 to rule out dS vacua and slow-roll inflation for both of these
cases as well. At the end we briefly excluded some of the most important extra
ingredients that one can think of to modify the models in such a way as to allow for
small e.

Again we believe that our results are valid even if we are not able to decouple the
KK tower for the same reasons as the ones given in section 5.3.6.



Chapter 7

Non-supersymmetric vacua

In this chapter, we want to study non-supersymmetric vacua on the three cosets spaces

G- Sp(2) SU(3) . :
SU(23), S(U(21;)><U(1)) and ORI whose supersymmetric vacua we have analyze(i 1(1;)the
p

preceding chapters. In particular, we will be interested in the coset space SO0
which is topologically equivalent to CP?. The latter has played an important role in
the recently conjectured AdS,/CFT; correspondence [54], as already explained in sec-
tion 2.4. To study this correspondence further, the non-supersymmetric vacua on this
space are as important as the supersymmetric ones. We will not consider any sources
in this chapter. The supersymmetric vacuum for CP? was first constructed in [58]
and, allowing for sources, in [59]. As we will review, a non-supersymmetric vacuum
was constructed in [57, 64]. Moreover, there exist already some general mechanisms
[62, 63] to produce non-supersymmetric vacua starting from a supersymmetric one.
But with our ansatz, which is somehow trimmed to the explicit coset examples, we
will find non-supersymmetric vacua that have not appeared in the literature so far.

As can be seen in chapter 3.4 the 55(23) and the ﬁ%u)) coset, spaces are, in

some sense, special cases of the % coset and our analysis will be presented
in a form which is adapted to the latter, but can then be easily specialized to the
other two coset spaces. In the next section we will present our strategy to find non-
supersymmetric vacua, namely to solve the equations of motion, before we will analyze
the resulting equations for each of the three cosets separately, starting with 55(23) which
is the simplest. Of course, as already mentioned in section 2.4, for phenomenological
applications these non-supersymmetric vacua are also of interest and one should study
them in the same way as we studied the supersymmetric ones. In particular, one
would have to check the stability of those vacua since, as opposed to supersymmetric
vacua, they may have tachyonic directions. So strictly speaking, we will construct
non-supersymmetric extrema and it remains to be checked whether they are true

vacua of the theory.
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7.1 Generalizing the supersymmetric solution

To construct non-supersymmetric vacua our strategy is to start from the supersymme-
tric solutions given in section 3.4. We will then keep the geometry, namely the SU(3)-
structure (.J,€2) and the torsion classes Wy, given in sections 3.4.1, 3.4.2 and 3.4.3,
of the supersymmetric vacua unchanged, but write down the most general ansatz for
the fluxes on these coset spaces. As we saw in section 3.4 for all three cosets there
is always only one closed left-invariant three-form to expand H in and there are at
most three linear independent two-forms leading to the following general ansatz for
the fluxes:

Fy=c¢

Fy =cyJ +ics Wy + csP

Fy=cJNJ+iced N\Wy +c7J NP (7.1)
Fs = codvolg

H = c3Re 2,

where the ¢; are real parameters and the dilaton and warp factor have been put to
zero. We have converted the external part of F, into an internal part of Fg and

expressed everything in terms of the torsion classes. For %@(1) there are three

linear independent two forms. Two of them are given by .J and W, . One then finds a
third linear independent closed primitive (1, 1)-form P with the following properties:

PAQ=0, W, -P=0

(7.2)
PAJAW; =0, «P=-PAJ

Furthermore, by the same arguments as for YW, in (B.24) one can show the following
relation:

Lidh

and we can normalize P such that
2 —2
PI" =Wy ] (7.4)
This susy solution is recovered by setting

cs=1, ¢=0, c;=0, c=0,

3 9
co=m, clzﬁm, CQZ—ZZ'W{, c3 = —-m, C4:ZW1_'

)
o~
—~
-
ot
N—r
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and using the relation
15 5
2 _ 19— 12 9 a2

The susy solution solves the full equations of motion and Bianchi identities of type
ITA supergravity without the need of any sources given in appendix A. Now we want
to use our ansatz (7.1) in those equations of motion and study the solutions to them.
Without sources and vanishing dilaton they read

1 1

0= 5H? ~3 d (6-n)F}, (7.7)

n

1 9 1 9 1 1
OZRMN+QMN <—H +—Z(n—1)Fn) _iHM.HN_Z;FnM.FnN’

8 32 &
(7.8)
0=d (*Fn) — HA *F(n_|_2) , (7.9)
0=dF+HAF, (7.10)
1
ozd*H—§zn:*Fn/\F(n2). (7.11)

The equation of motion for F, and the Bianchi for F; are trivially satisfied for our
ansatz (7.1). From the Bianchi identity of Fy, the equation of motion for Fj and the
dilaton equation of motion we obtain

0 = 8czcy — 12iW; ¢ + 5| Wy |2, (7.12)
0 = 8cscy + 24icy Wy + cs| Wy |2, (7.13)
0= 16¢5 — 10c; — 18¢5 — 24c} + 2¢5 — (ci + 3c2 + 2 + 3ca) | Wy 2. (7.14)

The equation of motion for the H field (7.11) gives

1
0= ( —icsW; — 50400 — 2c1c4 — 0201>J ANJ

+ ( — ¢35 + c5c0 — 2¢1C5 + CaC — 0206>iW2_ AJ (7.15)
+ (CSCO - 20168 + crcq — CQC7> JANP+ (ZC5WQ_ + CgP) A (ZCGWQ_ + C7P)
Since we know that there are at most three independent four-forms this leads to three

independent equations, which we obtain by wedging this equation with .J, W, and
P, respectively. The result can be simplified by using the primitivity of W, and P
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as well as (7.3). Furthermore, we define
Xivolg=WAWAW = PAPAW, : )
7.16
Xpyvoly=WAWAP = PAPAP,

where the last equality follows from the properties (7.2) and (7.4) of P. With the
above relations the three resulting equations that one obtains by wedging (7.15) with
J, W5 and P, respectively, are given by

0=12 (0201 + 2cic4 + ic;;Wf) + 6cyco + (esce + cger) | Wy 2, (7.17)
U = ‘WQ_‘Q (0005 — C3 — 26105 + CyCq — CQCG) + 2i(6566 — C7CS)X1 + 2(0507 + CGCS)XQ s
0 = (cocs — cacr + creq — 2c168) Wy |2+ 2(cse6 — creg) Xo — 2i(cser + ceg) X -

Since AdS; is Einstein, the whole information of the external part of the 10d
Einstein equation (7.8) is in it’s trace which is given by

S8Ry = 2c2 — 16¢% — 6¢2 — 72¢2 — 10¢5 — (¢ + 3¢2 + 2 + 3¢ Wy |2. (7.18)
We split the internal part of (7.8) into the trace and the traceless part defined by
Romn = Rypn — égmnR. (7.19)

The Ricci scalar for manifolds with SU(3)-structure is given by [91]
R= Z(30W; P~ W, ). (7.20)

Using this formula we obtain from the trace of (7.8)
0 =120|W; |* — 48¢5 — 6¢5 — 30c; — 18¢5 — 168¢2 — W, |*(5¢2 + Tca + 5ea + Tca + 4)
(7.21)

where the trace of the external part drops out because of (7.18). For the traceless
part we obtain

1 1 1

Plugging in our ansatz (7.1) and subtracting the supersymmetric solution we get

1
0= (&= = 1) (WaWa — Gl ?) (7.23
2 2 T 1 -2 . -z
— (g —c3) | PN Py + égmn\WQ | —i(cses — 0607)W2(m Py

m” ¥ 2xn)

1
— JIW;, <2i0106 +icycs + ZW{) — Jim Prn) (cgcq + 2¢107)
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where the symmetrization is with weight one and only affects uncontracted indices.
As for the equation of motion for H there are again three independent parts of
the Einstein equation. One is given by the trace part, which is obtained by the
contraction with the inverse metric ¢™" = —J™*J.". The other two parts are obtained
by contracting (7.23) with J™M*W, ™ and J™TP,™ It is possible to express the
resulting traces in terms of X, X, and |Wj,, |?. This results in

1
0=(ct—ci+ct—ci—1)X| — 2i(cses — cgcr) Xo + 2(2ici g + icacs + ZW{)|W2_\2 :

0=(c2—ci+cE—ct—1)Xy— 2i(cscs — cecr) X1 — 2(cgeq + 2¢1¢7) W, | (7.24)

So, in order to find a vacuum of type ITA supergravity for fluxes of the form (7.1) one
has to solve the nine equations (7.13), (7.17), (7.21) and (7.24). in terms of the nine
variables ¢;. The equation (7.18) then determines the external scalar curvature. For
a given solution to the above equations one can always produce three more by the
following sign changes which each leave those equations invariant:

e keep c3 and change all other signs;
(7.25)
e change c3 together with cg, ¢1, ¢g, c; and keep the rest .

Thus, solutions to these equations will always come in quadruples. We will try to
solve these equations for our three coset models in the next sections.

L] G-2
7.2 Non-supersymmetric vacua on SU(3)
For the coset space %(23) there is only one two-form, which is given by .J. Thus there

is no room for a second torsion class W, or an additional two-form P and we have
cs = cg = ¢; = cg = 0. This simplifies the equations to a huge extent. Plugging in
the result for W, from section 3.4.1, given by

2

Wy = — Nerh (7.26)
and defining C; = v/ac; (i = 1...4), we obtain from (7.13), (7.17) and (7.21)
0= C3Cy — V3Cy,
0= 2v3C, + C3Cs,
0= 16C3 — 10C; — 18C% — 24C} + 2C7 (7.27)

0 = 4C5 4+ V/3(C4Cy + 4C,Cy + 2C5CY)
0 =160 — (48C; + 6C¢ + 30C; + 168CT + 48C5) .
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The equation (7.18) for the external curvature becomes
8cR, = 2C% — 1603 — 6CF — 72C7 — 10C3 . (7.28)

Up to the sign changings (7.25) there are only three solutions to (7.27), which are
given by

5) 5)
Co=1/=, Ci=0, Cy=—, (C3=0, Cy=0
0 \/;7 1 ) 2 \/ga 3 ; 4 )
1

1
Cr=1, Ci=-3, Cy=vV3, C3=1, Cj=—, (7.29)

1 1
COZ—LB, Clz_i 22—@7 C3 =

7 3= Nk Cy= Wk

The last solution corresponds to the supersymmetric solution of section 3.4.1, whereas
the other two solutions as well as the sign changings (7.25) of all the above solutions
give rise to non-supersymmetric solutions. The above solutions are all of the type
already found in [61], where non-supersymmetric vacua for Nearly-K&hler manifolds
(W5 = 0) have been constructed.

&

. Sp(2)
7.3 Non-supersymmetric vacua on SUIORU6)
For the coset space ﬁ% there are two linear independent two-forms, which we

choose to be J and W, . Thus there is no room for the two-form P and we have
c¢; = cg = 0. This still simplifies the equations considerably. The explicit values for
X, and W3 |? follow from the solution in section 3.4.2 and are given by

N _ 16(1 — 0)? 32i(1 — o)3
2

= — = X = —

Mi=gTe s Ml 3c ' 9c3/2

where we have used the shape parameter o, defined in section 3.45, which measures

the deviation from the nearly-Kahler limit.
Defining C; = /cc; for i = 1...4, we get from (7.13), (7.17), (7.21) and (7.24):

0 = 6C5C) + 3(2 4+ 0)Cy + 4es(1 — 0)?,

0=3C1(2+0)—2Cs(1 —0)? — 3C3Cy,

0 = 48C% — 3007 — 54C; — 720} + 6C3 — 16(1 — 0)*(3c2 + c3)

0 =6C3(2 + ) — 9C,Cy — 36C,C4 — 18C,C, — 8cscs(1 — 0)?, (7.31)
0=3(1 - 0)*(c5Cy — C3 — 2C,C5 + Cycg — Cocg) + deseg(1 — 0)?
0=20(2+0)%—8(5c2 + Tca +4)(1 — 0)? — 9C? — 45C% — 25207 — 2702 — 7202,
0= (c2—ci—1)(1—-0)*— (1 —0%)(24C1c6 + 12Cyc5 + (2 + 0)),

9
Lzto (7.30)
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The equation (7.18) for the external curvature becomes

16(1 — 0)?
8cRy = 202 — 1602 — 6C3 — 72C? — 10C3 — (c2 + 302)% .

7.3.1 Reproducing known results

In the last section we saw that our ansatz did not lead to any new results for the
cosets space %(23) This space is a Nearly-Kahler manifold, i.e. W, = 0, and its
non-supersymmetric vacua all fall into the class described in [61]. The cosets space
%, however, is in general not a Nearly-Kahler manifold. The shape of this
coset is parameterized by o and for special values of this parameter there exist already
some results in the literature. Here, we want to reproduce these results before we will

study the new vacua on this space.

Non-supersymmetric vacua on Nearly-Kahler manifolds

In [61] non-supersymmetric vacua for Nearly-Kéhler manifolds were constructed. The
coset ﬁ%(l)) becomes Nearly-Kahler only for the special value 0 = 1. ¢5 and c¢q
are not determined in this case, because W, = 0. However, we could still modify our
fluxes by a second two-form different from W, . This was different for the %(23) coset
because in that case there is no other two-form than .J. This kind of deformation

needs a separate treatment. We get the following solutions to (7.31):

V3 V3 3 V3 1

Co=—, CG=-—, G=5, G=-7F, G=g,
5 5
Cozga 01:07 02257 03:07 C4:0: (733)
V15 3 /3 9 3 1
Co=—3 CO=gV5 @ G\ =g

This was expected, since for o = 1 the coset space Sp(2) ) looks like %(23) and

S(U(2)xU
the above solutions correspond to the ones found in (7.29) which already appeared in
[61].

Non-supersymmetric vacua from M-theory

In [62, 63, 80] non-supersymmetric solutions in M-theory are discussed. Reducing
these solutions to type IIA string theory implies solutions where one starts from a
supersymmetric solution with only F, and Fg non-vanishing (in particular Fy = 0
which forces us to put 0 = 2 or 0 = 2/5 to reproduce their results) and obtains a
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non-supersymmetric solution with the same F;, a modified Fy and non-vanishing H
as well as Fy. For 0 = 2 these vacua are given by the following solutions to (7.31):

1
SUSYI COZO, 01:0, 02:3, 03:0, C4Z—§,C5:1, CGZO, (734)

[u—y

1
NOH-SUSY : CO = 0, Cl = 5, CQ = —2, 03 = —1, C4 = —5, Cs = 1, Cg = 0,

while for o = 2/5 they are given by

9 1
SUSYI COZO, 01:0, 0225,03:0, 04:—5,05:1, Ce = U, (735)
3 6 3 1
Non—Susy : CO = 0, Cl = 1—0, CQ = —5, 03 = —g, 04 = —5, Cy = 1, Cg — 0

We also get solutions corresponding to the sign changings (7.25) of the above solutions.
We see exactly the expected behavior. Fj, specified by Cy and cs, stays the same while
Fs (Cy) gets modified. This is somehow compensated by turning on H (C5) and Fj

(Cy).

Non-supersymmetric vacua on Einstein manifolds

In [64] and [57] solutions on Einstein manifolds are discussed where one starts from a
supersymmetric solution with ¢¢ = m = 0 and H = 0 and gets a non-supersymmetric
solution with ¢y # 0 keeping H = 0. Our coset becomes an Einstein manifold only
for the special value ¢ = 2. Their ansatz for the fluxes is given by

- 1 - 1 -
H=0, F=«a, F=43J, F4:§7J2, F6:66J3, (7.36)

where J is the Kahler form, i.e. it is closed. For the special case we are discussing
here it is given by

-1
T= g0 —ivew; (7.37)

Since in our ansatz (7.1) for the fluxes the J is not the Kéhlerform this fixes our
parameters c; and ¢g in terms of ¢4 and ¢q:

Cs = —3\/504, Ce = 6\/501 . (738)
Putting ¢3 = 0 our ansatz (7.1) then reads

~ 1 ~
H=0, Fy=c, Fy,=3cJ, F,=-3cJ>, Fs= —ECQJ?’, (7.39)
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which gives the following relation between our parameters ¢; and the parameters
(7.36) appearing in [64] and [57]:

co=a, ,co0=-0, 3cu,=p, —6¢c=r. (7.40)

Plugging these values into (7.31) only the third, fourth and sixth equation are non-
trivial and read

0=af+2v6+79,
0 =150 + 278 + 99° — 34%, (7.41)
16R = 6a* + 30/3% + 4272 4 1862 .

The other equations are trivially satisfied due to the closure of J. Furthermore from
the external Einstein equation (7.18) we get

—12R, = —3a® + 987 + 279% + 156 (7.42)

These equations are equivalent to the equations (3.11), (3.12), (3.14) and (3.15) of
[64] and we obtain exactly their solutions.

7.3.2 New non-supersymmetric vacua on W%(l))

Here we will give a preliminary analysis of the solutions to the equations (7.31) for
all values of 0. To get a qualitative picture we plot in figure 7.1 the possible solutions
for ('3, parameterizing H, against 0. The plots for the other variables C; look very
similar. The plot is symmetric under C3 — —C3 due to the sign changings (7.25).
Red points indicate the already known non-supersymmetric solutions from M-theory
for the special values 0 = 2/5 and o = 2 as well as the supersymmetric solution,
discussed in 7.3.1. We see that both solutions can be varied continuously between
o = 2/5 and o0 = 2. Interestingly the non-supersymmetric solution also exists for
a certain range beyond o = 2. Green dots indicate the known solutions for Nearly-
Ké&hler manifolds (o = 1) also discussed in 7.3.1. We will have to leave a further study
of the new non-supersymmetric vacua for future work [27]. A first step would be to
analyze the stability of those vacua, i.e. to check whether they exhibit any tachyonic
directions below the Breitenlohner-Friedman bound.
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Figure 7.1: Solutions for C for all possible values of o

SU(3)

7.4 Non-supersymmetric vacua on T <0()

This is the most complicated case. We will express the equations in terms of the
parameters given in section 3.4.3. We compute for the form P

pP= \2/;3/0'_—&/) [(p—0)e” +p(1—0)e* +a(1 — p)e”®] | (7.43)

where we have used the shape parameters ¢ and p, defined in section 3.4.3. The
explicit values for X;, Xy and |[Wj |? follow from the solution in section 3.4.3 and are
given by

_ t1+p+o
Wl = —gw, (744)
_ 16
W; |2=%(1+p2+02—p—0p—0), (7.45)
161
16
X, = (L= =)o o). (7.47)
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Plugging this into (7.13), (7.17), (7.21) and (7.24) one obtains the equations for this
coset. However, we do not study this case any further here but leave this for future
work. In principle, one would have to study the variations away from p = 1, since for

that special value this coset looks like the ﬁ%(l)) model and we expect the same
results.
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Chapter 8

Conclusions

In this thesis, we studied a number of type ITA SU(3)-structure compactifications
with O6-planes on nilmanifolds and cosets, which are tractable enough to allow for
an explicit derivation of the low energy effective theory. In particular, in chapter 5
we calculated the mass spectrum of the light scalar modes, using A/ = 1 supergravity
techniques. For the torus and the Iwasawa solution, we have also performed an explicit
Kaluza-Klein reduction in chapter 4, which led to the same result, supporting the
validity of the effective supergravity approach, with superpotential (5.3) and Kéhler
potential (5.4), also in the presence of geometric fluxes. For the nilmanifold examples
we have found that there are always three unstabilized moduli corresponding to axions
in the RR sector. On the other hand, in the coset models, except for SU(2)xSU(2),
all moduli are stabilized.

We discussed the Kaluza-Klein decoupling in section 4.2 for the supersymmetric
AdS vacua and found that it requires going to the Nearly-Calabi Yau limit. For
our nilmanifolds, this can be arranged by tuning the parameters, while for our coset
models it is somewhat harder. Indeed, we found that for S(U(S21))(><QI)J(1)) and U(T)UX(%)(I) one
has to make a continuation to negative values of the “shape” parameters. Strictly
speaking, this can no longer be described as a left-invariant SU(3)-structure on a
coset anymore, but it can still be described in terms of a twistor bundle over a four-
dimensional hyperbolic space. It would be interesting to study these models in more
detail, as there are more examples of this type. Another class of vacua may be
obtained by quotienting out the internal manifold by a discrete group I', where I' is
a subgroup of SU(3). This possibility may be of interest for model-building. The
results of chapter 4 and 5 all appeared in [25].

It would be interesting to study the uplifting of these models to de Sitter space-
times. This might be accomplished by incorporating a suitable additional uplifting
term in the potential along the lines of, e.g, [18]. Although a negative mass squared
for a light field in AdS does not necessarily signal an instability, after the uplift all
fields should have positive mass squared. Unless the uplifting potential can change
the sign of the squared masses, it is thus desirable that they are all positive even
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before the uplifting. We find that this can be arranged in the coset models 55(23),
S(U(SQE’(XQ[)J(U) and U(?)Ux(%)(l) for suitable values of the orientifold charge.

However, in chapter 6, we focused on an alternative approach towards obtaining
meta-stable de Sitter vacua, namely we searched for non-trivial de Sitter minima in
the original flux potential away from the AdS vacuum. This was motivated by the
fact that the coset spaces allow for a negative scalar curvature circumventing recently
proven no-go theorems for manifolds without curvature [50]'. Using the 4D effective
action worked out in chapter 5, we could rule out dS (as well as Minkowski) vacua
and slow-roll inflation elsewhere in moduli space for four of the coset spaces by using
a refined no-go theorem that probes the scalar potential also along a Kéhler modulus
different from the overall volume modulus (see also [87]). Just as the no-go theorem
of [50], this no-go theorem works by establishing a certain lower bound on the first
derivatives of the potential, and hence the epsilon parameter, for V' > 0. It is thus
different in spirit from the no-go theorems given in [89], which assume a small first
derivative and consider consequences for the second derivatives, i.e. the eta parameter.

The only coset space that allows for supersymmetric vacua and that is not directly
ruled out by any known no-go theorem is then the group manifold SU(2)xSU(2). For
this case, we were indeed able to find critical points (corresponding to numerically
vanishing €) with positive energy density, but only at the price of a tachyonic direc-
tion, corresponding to a large negative eta-parameter, n < —2.4. Interestingly, this
tachyonic direction does not correspond to the one used in the different types of no-go
theorems of [89]. As our numerical search was not exhaustive, however, we cannot
completely rule out the existence of dS vacua or inflating regions for this case. Since
this case also does not allow for a supersymmetric Minkowski vacuum as mentioned
at the end of section 6.2, our discussion covers all SU(3)-structure compactifications
on semi-simple and U(1) cosets that have a supersymmetric vacuum.

Furthermore, we also studied the remaining two coset spaces of table C.1 that
do admit an SU(3)-structure but no supersymmetric AdS vacuum. Choosing for
simplicity the O-planes such that one-forms are projected out and restricting to O-
planes perpendicular to the coordinate frame, we could again use the refined no-go
theorem of section 6.2 to rule out dS vacua and slow-roll inflation for both of these
cases as well. The results of chapter 6 are published in [26].

Our results show that a negative scalar curvature and a non-vanishing Fj is in
general not enough to ensure dS vacua or inflation (as also noted in [86]), and we
give a geometric criterion that allows one to separate interesting SU(3)-structure
compactifications from non-realistic ones.

Finally, in chapter 7, we focused on a family of three coset spaces and constructed

non-supersymmetric vacua on them. For the %(23) coset we reproduced already known
Sp(2)

results and did not find any new vacua. For the 5T

Sy model, however, we found

ISince the Iwasawa manifold is T-dual to the torus dS vacua and slow-roll inflation are ruled
out already by [50].
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new non-supersymmetric vacua that did not appear in the literature so far. This
case is of special interest since it is topologically equivalent to CP3 which played a
prominent role in the recently conjectured AdS;/CFTj; correspondence. We did not
analyze the coset %, although we were able to write down a set of equations
that one has to solve in order to find the vacua of this space. The results of chapter
7 as well as their further analysis will appear in [27].

The next step for these non-supersymmetric vacua would be to check whether they
exhibit any tachyonic directions below the Breitenlohner-Friedman bound. If there
are no such tachyons, there are basically two directions for further research. First, it
would be interesting to study the phenomenology of those vacua in a similar way as
we did for the supersymmetric vacua in this thesis. Second, regarding the AdS/CFT
correspondence, it would be very interesting to identify on the dual field theory side
the mechanism, that we used in this thesis to construct these vacua.

Our analysis of the low energy theory of string compactifications in chapter 4, 5
and 6 could be extended in several directions. For one thing, it would be extremely
interesting to find explicit SU(3)-structure manifolds that do not fall under the class of
coset spaces we have discussed here and to investigate their usefulness for cosmological
applications along the lines of this thesis. The most obvious class of manifolds to study
systematically would be the nil- and solvmanifolds. Another interesting direction
might be the study of compactifications on manifolds with A/ = 1 spinor ansitze
more general than the SU(3)-structure case [92]. Concerning the SU(2)xSU(2) model
discussed in section 6.4, one might try to either find a working dS minimum, or rule
it out based on another no-go theorem, perhaps by using methods similar in spirit to
[89], although a direct application of their results to this case does not seem possible.
Following [85, 51] or [93, 94], one could also try to incorporate additional structures
such as NS5-branes or quantum corrections of various types. In section 6.6, however,
we found that at least for our models, the following additional ingredients cannot be
added or do not work: NS5-, D4- and D8-branes as well as an F-term uplift along
the lines of O’'KKLT [90, 48]. Perhaps also methods similar to the ones in [61] for
non-supersymmetric Minkowski or AdS vacua might be useful for the direct 10D
construction of dS compactifications. There is certainly a lot to improve about our
understanding of cosmologically realistic compactifications of the type ITA string!
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Appendix A

Type 1I supergravity

The bosonic content of type II supergravity consists of a metric ¢, a dilaton ®, an
NSNS 3-form H and RR-fields F,. In the democratic formalism of [29], where the
number of RR-fields is doubled, n runs over 0,2, 4,6, 8,10 in ITA and over 1, 3,5,7,9
in type IIB. We write n to denote the dimension of the RR-fields; for example (—1)"
stands for +1 in type ITA and —1 in type IIB. After deriving the equations of motion
from the action, the redundant RR-fields are to be removed by hand by means of the
duality condition:

Fn = (—1) 2 : €Tq) *10 F(IOfn) , (Al)

given here in the Einstein frame. We will often collectively denote the RR-fields, and
the corresponding potentials, with polyforms F' = %" F, and C = )" C,_y), so that

The conformal transformation g,y = eggEMN brings the string frame action
(1.3) to the Einstein frame action

10 2 P2 _ 5-ng o
Shulk = 2“10 d /- ( P)° — H Z ez "F|, (A.2)
where for an [-form A4 we define
1
A2 =A- A= ﬁ AMlliANllengNl - 'ngNl . (A3)

Since (A.1) needs to be imposed by hand this is strictly-speaking only a pseudoaction.
Note that the doubling of the RR-fields leads to factors of 1/4 in their kinetic terms.
The contribution from the calibrated (supersymmetric) sources can be written as:

Suwee = [(C.0) - S [t (A4)
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with
o
U, =edt A ——————& s, G0 AXM AL A AX M (A.5)
(n — 1)!61T61
with € 9 nine-dimensional internal supersymmetry parameters. For space-filling sources
in compactifications to AdSy this becomes [95]

v, = voly A 64A*¢Im\I!1E‘n74 , (A.6)
with Wy the pure spinor ¥, in the Einstein frame.
The dilaton equation of motion and the Einstein equation read
1 1 “n 2 n
0=V>® + §e’q’H2 -3 2(5 - n)eSTq)F,f + % Z(n — 4)et?® «(T,,7), (A.7a)
L o apo, 1 50 2
0=Ruyn+ gun ée H +3—22(n— 1)6 2 Fn (A7b)
9 ng 1 1 P .
— 2Ky Ze“ * _1_6ngMN + §9P(Md50 X L) U, ),
where we defined for an [-form A
1
Ay - An = MAMMQ...MlANNQ...ngMQNQ e 'ngNl . (A-S)

The Bianchi identities and the equations of motion for the RR-fields, including the
contribution from the ‘Chern-Simons’ terms of the sources, take the form

0=dF+HAF +2K3,7, (A.9a)

0=4d (e"’-’T"‘I’ X Fn) — " TVH A xFpy ) — 263 a(j) (A.9b)

Finally, for the equation of motion for H we have:

1 —-n n
0=d(e ®+H) - 5 ST A Py A Fluigy + 263, Y TP, Aalj) . (A10)
n n 8
In the above equations we can redefine j in order to absorb the factor of 2x%,

(26707 = 7, (A.11)

which we do in this thesis.

The equations of motion resulting from Spu + Ssource Were given in this form
(in the string frame) in [69], where it was shown that, under certain mild assump-
tions, imposing the supersymmetry equations together with the Bianchi identities for
the forms, is enough to guarantee that the dilaton and Einstein equations are also
satisfied.



Appendix B

Generalized geometry

In this thesis we have assumed the following A" = 1 compactification ansatz for the
ten-dimensional supersymmetry parameters [92]

a=¢on) + ¢ eonh,

62=C+®77§:2) + ¢ o,

(B.1)
for ITA/IIB, where (4 are four-dimensional and 775:1’2) six-dimensional Weyl spinors.
The Majorana conditions for €; 5 imply the four- and six-dimensional reality conditions
((4)*=(_ and (775:’2))* = 77(,1’2). This reduces the structure of the generalized tangent
bundle to SU(3)xSU(3) [96]. The structure group of the tangent bundle itself, on
the other hand, is a subgroup of SU(3), since there is at least one invariant internal
spinor. The precise form of this subgroup depends on the relation between n(") and
1n?). Combining the terminology of [92] and [97], the following classification can be
made:

e strict SU(3)-structure: n") and 1® are parallel everywhere;
e static SU(2)-structure: n(") and 1® are orthogonal everywhere;

e intermediate SU(2)-structure: 7" and 1 at a fixed angle, but neither a zero
angle nor a right angle;

e dynamic SU(3)xSU(3)-structure: the angle between ") and 1®) varies, possi-
bly becoming a zero angle or a right angle at a special locus.

Since for static and intermediate SU(2)-structure there are two independent inter-
nal spinors, the structure of the tangent bundle reduces to SU(2), while for dynamic
SU(3) xSU(3)-structure no extra constraints beyond SU(3) are imposed on the topol-
ogy of the tangent bundle, since the two internal spinors n(!) and n® might not be
everywhere independent.
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In [36] it was realized that, in type IIB supergravity, strict SU(3) compactifications
to N = 1 AdS; are impossible'. Conversely it was shown in [65] that type ITA
static SU(2) compactifications to AdS, are impossible. This was extended in [25]
to intermediate SU(2)-structure AdS, vacua with left-invariant pure spinors for both
type ITA and type IIB. The way out of this no-go theorem is that in type IIA we
must allow eQA*‘I’nf)TnS:) to vary along the internal manifold, while in type IIB we
need a genuine dynamic SU(3)xSU(3)-structure that changes type to static SU(2)
on a non-zero locus. So the most interesting but also the most complicated case,
the dynamic SU(3)xSU(3)-structure is still possible, but we will not consider that
case here. Note that in [69, 97] examples of constant intermediate SU(2)-structure on
Minkowski compactifications were provided. In this thesis, we focus on strict SU(3)
N =1 AdS,vacua in type ITA. In the first section of this appendix, we will review
the formulation of the supersymmetry conditions for type I supergravity using the
language of generalized geometry, specializing in the end to the SU(3)-structure case.
Then we will recall the basic definitions of an SU(3)-structure independent of its
formulation in terms of generalized geometry. Furthermore, we will clarify the role of
the O-planes present in our constructions before we finally review the formulation of
the 4d scalar potential in the language of generalized geometry.

B.1 N =1 AdS, susy equations

In the generalized geometry formalism the supersymmetry generators ") and n(®
from (B.1) are collected into two spinor bilinears, which using the Clifford map, can
be associated with two polyforms of definite degree

8 (1) o . (@41 8 () o . (@41
U, =70 @nys,  ¥_=——n @n". (B.2)
T Jallp] * |a/|b] "

It can be shown that these are associated to pure spinors of SO(6,6) and that they
satisfy the normalization

with the Mukai pairing (-, ) given by
(D1, 2) = ¢1 A (2)ltop - (B.4)

The operator a acts by inverting the order of indices on forms. The Mukai pairing
has the following useful property:

(€' p1,€"ho) = (1, ¢2) (B.5)

!That is at a pure classical level. Taking non-perturbative corrections into account the authors
of [18] indeed constructed an AdSs vacuum with SU(3)-structure. See also [36] for a discussion.
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for an arbitrary two-form b. Since there are two compatible invariant pure spinors the
structure of the generalized tangent bundle is reduced to SU(3) x SU(3). In order to
obtain similar equations in ITA and IIB, one redefines

\Ijl - \IJ:F y ‘I’Q = ‘Ili y (B6)

with upper/lower sign for ITA/IIB. We collect all the RR-fields of the democratic
formalism into one polyform and make the following compactification ansatz

F=F+vol, AF, (B.7)

with voly the four-dimensional (AdS,) volume form. In fact, in this thesis we will
drop the hat and hope that it is clear from the context whether we mean the full F
or only the internal part.

With these definitions the supersymmetry conditions (in string frame) take the
following concise form in both IIB and ITA [92]

dg (e" *ImTy) = 3e* *Im (W*T,) + eMF (B.8a)
dg [ PRe(W*T,)] = 2|W[*e** ®Re ¥, (B.8b)
dy [ Im (W*¥,)] =0, (B.8c)
where we used |a|? = |b|> oc e4.  From the above, the equations of motion for F

follow as integrability conditions, as well as the following equation:
dr (e 7®Rely) = 0. (B.9)
Here W is defined in terms of the AdS Killing spinors

1
V(= i§W7uC+a (B.10)

for TIA /TIB.
These equations should be supplemented with the Bianchi identities for the RR-
fluxes (A.9a) where the (localized or smeared) sources j have to be calibrated

(ReWy,j) =0, (B.11a)
(U, X ) =0, VXel(Tu®Ty). (B.11b)

An easy way to solve these calibration conditions is to choose
j=—kReVU, (B.12)

for some function k, which is positive for net D-brane charge and negative for net
orientifold charge. Applying an exterior derivative on (B.8a), taking (B.8b), (A.9a),
(B.7) into account, it can be shown that

+dg {a [xdy (e *Im ;)] } = -5 — 6|W > *Re ¥, (B.13)
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for ITA/IIB.
When the internal supersymmetry generators of (B.1) are proportional,

i = (/s (B.14)
with [nM[2 = a|?, [n® |2 = |b|?, they define an SU(3)-structure whose properties we

will review in the next section. First let us define a normalized spinor 7, such that

775:) = any and nf) = bny and moreover we choose the phase of n such that a = b*.

Note that in compactifications to AdS, the supersymmetry imposes |a|> = [b|* such
that b/a = €% is just a phase. Now we can define J and Q as follows

Tmn = injr’YmnnJr ] anp = ni’Ymnanr . (B-15)
Plugging in (B.14) into (B.2) and using the above definition we get
U_=-Q, T, =e e, (B.16)

By using (B.6) for ITA we can insert this into (B.8) and arrive at (3.1) as well as (3.4)
and(3.5).

B.2 SU(3)-structure

A real non-degenerate two-form J and a complex decomposable three-form  com-
pletely specify an SU(3)-structure on the six-dimensional manifold M iff:

QAT =0, (B.17a)
* 41 3
QA =TT £0, (B.17h)

and the associated metric (B.28) is positive definite. Up to a choice of orientation,
the volume normalization can be taken such that

1 .
S = QA" = volg . (B.18)
6 8

The intrinsic torsion of M decomposes into five modules (torsion classes) Wy, ..., W.

These also appear in the SU(3) decomposition of the exterior derivative of J, 2. In-
tuitively, this is because the intrinsic torsion parameterizes the failure of the manifold
to be of special holonomy, which can also be thought of as the deviation from closure
of J, Q. More specifically we have:

3
dJ = =Im (W Q") + Wy A J + Ws,
2 (B.19)

dQ=WJANT+Wr NT+W; A,
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where W, is a scalar, W, is a primitive (1,1)-form, Wj is a real primitive (1,2)+ (2, 1)-
form, Wj is a real one-form and W5 a complex (1,0)-form. For the vacua of interest
to us only the classes W), W, are non-vanishing and they are purely imaginary,
which we will indicate with a minus superscript. Indeed, we can readily see that
eq. (3.6a) follows from eq. (B.19) above, upon setting W5 45 to zero and imposing
WLQ = Wl_,Q = ZIle_’Q

Note that by definition W, is primitive, which means

WoANJANJT=0. (B.20)
One interesting property of a primitive (1,1)-form is
*(WoNJ) = =W, (B.21)

which can be shown using J™W,,, = 0 (which follows from the primitivity) and
In" Ty Whg = Wiy (which follows from the fact that W is of type (1,1)).
Let us now calculate the part of dW, proportional to Re(2:

dW, =aReQ+(2,1)+(1,2), (B.22)

for some «. Taking the exterior derivative of Q A W, = 0 and using (B.22) as well
as the eqgs. (B.17b), (2.5), we arrive at:

Wy AW AT = %aﬁ : (B.23)
We can now use (B.21) to show
Wy AW, ANJ = %W22V016, (B.24)
from which we obtain o = —i|W,|?/8.

From the SU(3)-structure (B.17b), we can read off the metric as follows [98].
From Re() alone we can construct an almost complex structure. First we define

T, = —5lm1“'m5(ReQ)kmlm2(ReQ)mSmms , (B.25)

where ™6 = +1 is the totally antisymmetric symbol in six dimensions, and then
properly normalize it

7
T =—, (B.26)
\/ —tr éIQ
so that Z?2 = —1. Note that
1.~
H(ReQ) = tr 6I2 (B.27)

is called the Hitchin functional. The metric can then be constructed from Z and J
via:
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B.3 How to dress smeared sources with orientifold
involutions

Suppose we are given a form j representing the Poincaré dual of smeared orientifolds.
How do we decide what the orientifold involutions should be? Let us first give an
example for a localized orientifold in flat space. If we have an orientifold along the
directions ¥ = (2', 2%, ) then the corresponding source is

j=Topjs = —Top6(z*, 2°, 2% da’ A da® A da®, (B.29)

where T, < 0 for an orientifold and j is the Poincaré dual of ¥ satisfying

/E¢:/M<¢aj2> :—/M¢/\jz, (B.30)

for an arbitrary form ¢ 2. In this case the orientifold involution is of course

06 : gt — -2t 2% = —2® 2% = —af, (B.31)
Suppose we now introduce many orientifolds and completely smear them in the di-
rections (z', 2, 2%) obtaining

j = —Topcda" Ada® Ada®, (B.32)

where ¢ is a constant representing the orientifold density. We have now lost infor-
mation about the exact location but we would still like to associate the orientifold
involution

06 : dz? — —dz*, da® — —d2®, da® — —da®. (B.33)

An important observation is that dz* A da® A dz® is not just any form, it is a
decomposable form, i.e. it can be written as a wedge product of three one-forms.
These one-forms span the annihilator space of Ty, the tangent space of ¥. So if we
are given a smeared orientifold current j we should write it as a sum of decomposable
forms and then associate to each term an orientifold involution as above.

Let us now study more formally how we could write j as a sum of decomposable
forms and whether the decomposition is unique. First, let us introduce a basis of
forms e! € V* that span (locally) Th. Indeed, for the case of group manifolds we
have such a basis, which is even defined globally. For the cosets left-invariant forms
in this basis are also globally defined.

Now, let V be a d-dimensional vector space and V* its dual. A (real/complex)
p-form j € APV* is called simple or decomposable if it can be written as a wedge

2The definition with the Mukai pairing is the one appropriate for generalizing to D-branes with
world-volume gauge flux as explained in [99]. Here it will just give an extra minus sign
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product of p one-forms.> What we are interested in is that there is a one-to-one
correspondence between (d — p)-planes (our orientifold planes) and decomposable p-
forms (up to a proportionality factor). This isomorphism is called the Plicker map.
A discussion of the criteria for having a simple form can be found in e.g. [100] pp.
209-211. We will use here the criterion based on

jF={XeV:ixj=0}CV, (B.34)
and
W = Ann(j*) c V*. (B.35)

In [100] it is shown that j is simple if and only if dim W = p. Using this the following
alternative criterion is shown:

Theorem: A p-form j € APV* is simple if and only if for every (p — 1)-polyvector
£ € APy,

i Aj=0, (B.36)

where t¢j is the one-form contraction of j with &.

Now for the special case of three-forms in six dimensions there is another useful
theorem due to Hitchin [98].

Theorem: Consider a real three-form j € A*V* and calculate its Hitchin functional
H(j) defined in (B.27). Then

e H(j) > 0if and only if j = j; 4+ j» where ji, jo are unique (up to ordering) real
decomposable three-forms and j; A j5 # 0;

e H(j) < 0ifand only if j = a+a where «is a unique (up to complex conjugation)
complex decomposable three-form and a A & # 0.

Now we have two base-independent characterizations of j: the Hitchin functional
H(j) and dim W. Using these two characterizations the possible j’s and their decom-
position in simple terms are classified in [25]. Here we will focus on the case H(j) < 0
which is always the case for the examples in this thesis. From the above it follows
that if H(j) < 0 then j is a sum of exactly two (conjugate) complex simple terms
and thus of exactly four real simple terms.

An important remark is in order: while the Hitchin theorem states that the two
complex forms in the decomposition of j are unique (up to complex conjugation), the
choice of one-forms out of which these forms are made is not unique. One still has the
freedom of choosing a basis of complex one-forms belonging to a complex structure,

3Note that a (real/complex) form of fixed dimension is a pure spinor if and only if it is simple.
In fact, we could regard the notion of pure spinor as a generalization of the notion of decomposable
forms to polyforms.
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which is SL(3,C). As a consequence the choice of the four real forms in which j is
decomposed is not unique. Indeed, suppose we choose one basis of complex one-forms
and associated z and y coordinates: e* = e® — ie?. Then j can be written as the
sum of the following four terms:

1,2,3 1,.2..3

]:Re(ezzz):ezzz 2

1 3 1,.2,3 1,2..3
—e" VY et TV VY (B.37)

which leads to the following orientifold involutions:

1 1 2 2 3 3
06 : er — —e", ¥ = —e", ¥ — —e",
1 1 2 2 3 3
06 : et - —e", e = —e¥, €& — —e¥,
y! y! 22 22 y3 y® (B38)
06 : ey — —e¥, e - —e", Y - -6,
1 1 2 2 3 3
06 : e/ - —e¥, e - —€ey, e — —e".

If we perform a SL(3,C) transformation, j takes exactly the same form, but now
in the new basis. So alternatively we could have chosen four orientifold involutions
taking the same form as the old ones, but now in the new basis, which is rotated.
This means that our choice of orientifold involutions is not unique. We must then
further choose them such that the structure constant tensor of the group or coset is
even, and Re{2 and .J are odd.

Application to SU(2)xSU(2)

Let us now apply the above procedure to the model of section 3.4.4. Calculating the
Hitchin functional H(j°) of (3.66) we find that it is negative so that it contains four
orientifold involutions. We must now fix the freedom of choosing them such that Re(2
and .J are odd, and the structure constant tensor f is even. Some reflection should
make clear that if Re2 is to be odd, it should be a sum of the same four terms as j°,
but with different coefficients. In fact, we could reverse the procedure and choose a
complex basis e** in which € and J take their standard form:

Q=" J=—2 Z e (B.39)

Then Re() and .J are automatically odd under the associated orientifold involutions
(B.38). However, this should of course also be the orientifold involutions that follow
from j%. This will be the case if and only if j° has the same terms as Re{2 (but with
different coefficients). One can show that this is the case if j° is of the form

2

+ B 23) : (B.40)

2,3 2

. 1,7 51,2,3 152,3
jGZRe (Coezzz +Cllezzz +6226zzz
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with all coefficients ¢ real. To bring j to this form we still have the freedom to make
a base transformation such that Q and J invariant, i.e. an SU(3)-transformation. A
priori, j% is an arbitrary three-form which transforms under SU(3) as

20=1+1+34+3+6+6. (B.41)

However, we know that j° has to satisfy the calibration conditions (3.11), which
remove the 3 + 3 representation and only leave the form proportional to ReQ out
of 14+ 1. Here the 6 is the (3 x 3)g i.e. the symmetric product of two fundamental
representations of SU(3). Tt follows that the most general j° satisfying the calibration
conditions looks like

7° = coReQ + Re [ gg;d2 A 1,09

2

o 11 712223 22 2132,3 33 21,273

= coReQ) + Re [c e +ce +ce (B.42)
52,2 ,3 151,3 53,2,3 1,251 153,3 1,252

—|—012<€ZZZ+€ZZZ>+CIS<€ZZZ—|—€ZZZ>—|—C23<€ZZZ—|—€ZZZ>:|,

with ¢y real and the entries of the coefficient matrix

Cll 012 013

C=1| & & A, (B.43)
Al 32 33

complex. Now we have to find an SU(3)-transformation to put j® in the form (B.40).
co does not transform but is luckily already of the right form, while the coefficient
matrix transforms as

C —UCur. (B.44)

From (B.40) we see that we want to transform C' to a diagonal real matrix. In fact,
since the above transformation cannot change the determinant this is only possible if

det C € R. (B.45)

This is a condition we have to add to the calibration conditions. For the 5% of (3.66),
one can check that it is indeed satisfied and it is possible to find the complex coordi-
nates with the required properties. Also, under the associated orientifold involution
the structure constant tensor f is even as required. Note that alternatively, as we
actually did in (3.67), we can also construct a complex basis associated to € such
that f is even. This then automatically implies that j is odd and that it is a sum of
the same four terms as Re(2.
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B.4 Effective supergravity

The superpotential for SU(3)x SU(3)-structure was derived in various ways in [33, 35,
36] (based on [84, 34]). Here we will follow the approach of [36], which calculated the
superpotential and the (conformal) Kéhler potential in the superconformal formalism
of [101].

The bosonic part of the effective four-dimensional superconformal action takes the
following form

1 S ]
S = /d4x\/—g4 <§NR + 3N 9" D, XD, X* + W VYT + - ) ,
(B.46)

where the vector multiplet sector, including D-terms, has been omitted. Here the
X' are the n + 1 scalars and D, X' = 9,X" — 2iA, X" where A, is the gauge field
associated to the U(1)-transformations, generated by « (see (B.49)), in the complex
Weyl transformation. From dimensional reduction of the ten-dimensional supergrav-
ity action the conformal Kahler potential N/ and the superpotential W were found
and read (here we reinstate dimensionful coupling constants)

1 1 _\1/3 2/3
N = _2/ dSy\/det he2A 22 — —(z/ 6*4‘*(2,2)) (z/ e2A<t,f>) ,
M M M

Ko 8Ky

(B.47a)
1
=— [ (Z,F+idg(ReT)) . (B.47b)
4k10 S

Here Z, Re7 and t are defined through
Z = —ied" 7", (B.48a)
t=e%0, (B.48b)
Re7 =Imt = e ®Im 7, . (B.48c)

The dimensionally reduced action is naturally invariant under the following com-
plex Weyl symmetry

AsA+o, g—e g, Zoetz NN, (B.49)

Since the scalars X! transform as
X7 eotao X (B.50)
we find that Z must be homogeneous of degree 3 in the X’. To go to the usual

Einstein frame, we must gauge-fix the Weyl symmetry. We first explicitly isolate the
unphysical degree of freedom, which is called the conformon, as follows

X'=val(¢'), Z=Y2Z(¢') N=|YPe P W=V MPW(),
(B.51)
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where Y is the conformon, ¢’ are the n scalar degrees of freedom in the Einstein
frame and Mp the four-dimensional Planck mass. I and W, will turn out to be the
Kahler potential and the Einstein-frame superpotential after gauge-fixing. Indeed, in
the new coordinates the action (B.46) becomes

1 A
S :/d4x /—_g4 [§Y2€K/3R _ |Y|26*’C/3 K:l,jgl“’ aﬂ¢lay¢ﬂ + ...
(B.52)

—MpS| Y43 (KIDWo DWE — 3IWe|?) +---]

where for the kinetic term of the scalars we omitted pieces that will vanish after the
gauge-fixing.
We then impose the following gauge

N = V]2 X3 = M2, (B.53)

which obviously gives us the usual Einstein-frame action
4 My o
S = /d TV —94 <TR — MpKiz0,9'0" ¢’ — V(g 675)) ) (B.54)
and also leads to the standard expression for the potential

V(g, ) = Mp’e™ (KTDW.DW; — 3We|?) . (B.55)

The U(1)-symmetry must also be gauged, but for more details on this we refer to
[101].
The Kahler potential reads

K = —lni/ 172, 3) —21nz’/ () 4 3In(8K2,[V]2) (B.56)
M M

Note that in [102] it is shown that Im¢ is a function of Ret so that ¢ can be seen as
(non-holomorphically) dependent on 7. To take this relation properly into account
we use the fact that the Kédhler potential for the t-sector may be written as

K = —21n4/ e H(Imt), (B.57)
M

where H(Imt) is the Hitchin functional [98, 102, 33]. For stable pure spinors of
SO(6,6) it is defined as follows

[ 1
H(Irnt) == —ﬁjnzjzn . (B58)

where Jny, = (Imt, I'pxImt) is a generalized complex structure and I, X = 1,... ,12.
The generalized SO(6,6) gamma matrices ['* act on forms as

I'y=t, for m=YX=1,...,6 and I's=e"A for m+6=X=7,...,12.
(B.59)
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In the case of SU(3)-structure Im¢ = —Im€, and the Hitchin functional reduces to
(B.27).
Note that if we make an expansion of the warp factor A in harmonic modes

A=A+ ATy (y) = A+ 4, (B.60)
Ai£0

the Weyl transformation (B.49) only acts on A° since o is constant in the internal
coordinates (while of course it can depend on the four-dimensional coordinates). Sup-
pose A and ® are constant over the internal space (so A=0). A good choice of Y in
(B.51) would be

Y = e Mp, (B.61)

where the Mp is introduced for convenience as it allows I to be dimensionless upon
imposing the Einstein gauge (B.53). With this choice we find for the superpotential
and the Kahler potential

K = —lni/ (T, T) —21nz’/ (4,7) + 31n(8k2, M2) | (B.62a)
M M

We = — [ (Wy, F+idg(ReT)) . (B.62b)

B Akt Jar
Note that another choice Y’ = fY would amount to a Kahler transformation
WL = f*Wg, K'=K+3Inf+3lnf*. (B.63)

Using the expansion in background and fluctuations of (4.18) and (4.20) we can
rewrite the superpotential as

—1
= .2
4K,

W / (W98 F +id(e?PReT —i6C)) , (B.64)
M
where we used property (B.5). This shows how the fields organize in complex multi-
plets ¥5e’Z and ReT — idC, which will be clearer in concrete examples.
Specializing to the SU(3) case with pure spinors (B.16) and the identification (B.6)

for type ITA, the superpotential takes the form
—ie "

WE —

12 / (V1B B id (e”Pe *ImQ +i6Cy)) (B.65)
Kio Jm
and the Kahler potential is given by
4
K=- ln/M §J3 - 21n/M 2¢" " ImQ A e”®ReQ + 31In(8k7,M}) , (B.66)

where e~®Re() should be seen as a function of e=®Im ().



Appendix C

Ten-dimensional geometries

In this appendix we introduce the ten-dimensional geometries that we want to use as
the internal 6d compact manifolds with SU(3)-structure. These are so-called nilman-
ifolds and cosets spaces and they are totally characterized by the structure constants
of the associated Lie algebra. We do not want to go into the details here but just
want to collect the results appearing in the literature that we will need in this thesis.
The key feature of such manifolds is that they allow for left-invariant (globally de-
fined) one-forms and that the exterior derivative of those one-forms, when expanded
in two-forms, only has constant coefficients. For later use we will also compute the
scalar curvature of such spaces. Furthermore we need to make sure that we can make
the non-compact examples compact by moding out a discrete symmetry. We will
start with reviewing group-manifolds before we discuss nilmanifolds and coset spaces.
Good reviews are given in [103] while an introduction into the topic can be found in
[104].

C.1 Group-manifolds

A Lie group G is a manifold and group at the same time. Let y™, m =1,..., dim(G),
be local coordinates on G and let L(y) be an element of G. The left action is defined
as a map from G to G:

gL(y) = L(y'), (9€@) (C.1)

It induces a map between the tangent spaces at different points. Vector fields invariant
under this map are called left-invariant and they define the Lie algebra G of G.

Since any left-invariant vector field is uniquely determined by its value at e, the
identity element of G, G can be identified with T,(G). If we denote the basis of T,(G)
as Ty with A=1... dim(G) one has

[Ta.Ts) = [ 45T, (C.2)
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where the f€,, are constants since the left hand side is left-invariant.
The left-invariant one-forms e? are defined through the Lie-algebra valued one-
form

E(y) = L7 (y)dL(y) = e*(y)Ta , (C.3)

which we expanded in generators of G. This one-form is left-invariant and by defini-
tion it obeys the so called Maurer-Cartan equations

dE=-EAE. (C.4)

Plugging in (C.3) and using (C.2), one gets
1
de? = —ifABCeB Ael. (C.5)

The Jacobi-identity for the structure constants ensures that taking another exterior
derivative gives zero. If the Lie group G is non-compact one needs to make sure that
one can make it compact by moding out a discrete subgroup T yielding M = G/T.
We come to that point in the next sections.

So we see that for a Lie group the exterior derivative of the globally defined one-
forms involves the structure constants of the Lie algebra. One can also show the other
direction. A manifold M with dim (M) globally defined linear independent one-forms
is called parallelizable. One can then of course always expand de’ in the two-form
basis e A €/, but not necessarily with constant coefficients. If they are constant,
the manifold is called homogeneous. Imposing further d%e’ = 0 forces the constant
coefficients to satisfy the Jacobi identities, thus we can associate a Lie group G to
them. If it is non-compact this means M = G/ since we want M to be compact.

One possible metric on group manifolds is the so called Cartan-Killing metric
defined by

KAB = fYAXfXBY ) (0-6)
which has the property
fCA[BgD}c =0. (C.7)

The Levi-Civita connection one-form w®, of a metric g is uniquely determined by
the two equations

0=dgap —w 4908 — w Bgac, (C.8)
0=de* +wipne”. (C.9)
For a left-invariant metric the second equation becomes

WAB = gAcwCB = —WBRA (ClO)
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Using (C.2) in (C.8), one can show that the solution of (C.8) and (C.10) is given by

1
wip = g4¢ (§fECBgED + fED[BQC}E> el (C.11)
Now it is straight forward to compute the curvature two-form
1

Using (C.2) and contracting indices we find for the Ricci scalar

1 1
R= _igABfCDAfDCB - ZQABQCDQEFfACEfBDF ) (C-13)

where the first term is the contraction of the killing metric.

In the next two sections we will introduce the explicit Lie algebras that we want to
study. Levi’s theorem tells us that any Lie-algebra A can be written as the semi-direct
sum of a solvable and a semisimple Lie algebra. We will look at examples which fall
into the two extreme classes, namely either A is solvable or A is semisimple. Solvable
Lie algebras are defined by a recursive series. If we set A° = A and define the
series A* = [A*71 A571]) then A is called solvable if this series becomes zero after
a finite number of steps. A particular subclass of solvable Lie algebras is given by
nilpotent Lie algebras. They are defined in a similar way by demanding that the
series A° = [A*!, A] becomes zero after a finite number of steps. A special property
of nilpotent algebras is that the Killing form (Killing metric) is identically zero. As
explained in [72] they admit a generalized complex structure, which makes them good
candidates to look for type II supergravity solutions. For Semisimple Lie algebras on
the other hand, the Killing form is non-degenerate. There already exist some examples
of type ITA solutions in the literature [58, 76], which gives hope that there might be
more.

C.2 Nilmanifolds

Let us start with the nilpotent algebras. For these manifolds the construction of the
leftinvariant one-forms and the action of the exterior derivative works exactly as in
the last section. The question that arises is whether one can make them compact.
If yes, the associated manifold M = G/T is called a nilmanifold. Let’s take as an
example the Heisenberg algebra, which is nilpotent. The only non-vanishing structure
constant is £, leading to

de' = 0; de? = 0; de? = Ne' Ae?. (C.14)
A compact notation for that is (0,0, N12). Let us choose a gauge where

el =dz'; e? = da?; de* = da® + Nz'e?. (C.15)
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We can compactify this by making the identification (z', 22, 2%) ~ (2!, 2% + a, %) ~
(z', 2% 23 + b) with a,b integer but we can not do the same for z' because e¢* would
not be single-valued. For that we need to twist the identification by (z', 2% 23) ~
(z! + ¢, 2% 2 — Ncz?). The resulting nilmanifold G/T is an S! fibration over T2
which is topologically distinct from 7. More loosely, nilmanifolds are often called
twisted tori and the structure constants are referred to as metric flurzes. A general
nilmanifold is always an iteration of torus fibrations.

It is possible to perform a systematic scan for solutions on nilmanifolds because
the nilpotent Lie algebras up to dimension seven have been classified and six is the
highest dimension where there are finitely many. There are 34 isomorphism classes of
simply-connected 6d nilpotent Lie groups. A list of them can be found in [72]. The
classification, however, does not take into account whether it is possible to produce
a compact manifold by modding out a discrete subgroup I'. We only want to make
sure that one I' exists but do not care about whether there are more. By looking at
(C.14), we see that already in three dimensions there are infinitely many nilmanifolds.
However, they are all isomorphic via a rescaling of 3. The information lost in this
rescaling is which subgroup is being modded out. This choice does not matter for us
because we only work with left-invariant forms, which have to have constant coeffi-
cients. It turns out that the necessary condition is f45, = 0. This condition becomes
sufficient for structure constants that are rational in some basis. It is easy to see that
this condition is necessary. If f4;, # 0, the top form dvol = e' A ... A €% would be
exact, but a compact manifold needs a top-form non-trivial in cohomology. Indeed, if
a=eq_anat e AL Aer with o' constant, one has da = (fA54a)dvol show-
ing that the volume would be exact. This argument leaves open the possibility that
dvol = fe! A ... A €® with some function f. This would not be left-invariant and in
general it is not clear that computing the cohomology using left-invariant forms gives
the same as using all forms. However, it turns out that this is true for nilmanifolds
after taking the quotient. This shows that f45, = 0 is a necessary condition and a
nice feature of nilmanifolds is that it is automatically satisfied.

The Ricci scalar (C.13) simplifies for nilmanifolds due to the vanishing of the
Killing-form to

1

R = —ZQABQCDQEFfACEfBDF ; (C-16)

which is never positive.

C.3 Coset spaces

Let us now discuss the semisimple Lie algebras. To do so we will have to generalize
the above definitions to the so called coset spaces M = G/H, where H is a subgroup
of g which we divide out. We will only consider compact Lie groups.
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Let y™, m =1,..., dim(G)—dim(H), be local coordinates on G/H and let L(y)
be a coset representative. The left action of G on G/H is now defined as:

gL(y) = L(y')h, (9ge G,he H), (C.17)

because by acting with ¢ from the left on a coset representative L(y), we will in
general get an element belonging to a different coset whose representative we call
L(y'). To bring L(y') to that element we need an extra h transformation. It induces
a map between the tangent spaces at different points. Vector fields invariant under
this map are called left-invariant and they define the Lie algebra of G/H.

Let H, be a basis of generators of the algebra 7, and let K; be a basis of the
complement C of # inside G, i.e. a=1,...,dim(H)and i =1,..., dim(G)—dim(H).
We define the structure constants as follows:

[Haa Hb] - fcab?'lc )
[Ha, K] = 105, (C.18)
[KCi, IC;] = fXiilkk + f%Ha

where we have used that for compact H one can always find a basis of generators
{KC;} such that the structure constants f,; vanish [103]. In other words: [H, K] C K,
and in this case the coset G/H is called reductive.

Let 4™, m = 1,..., dim(G)—dim(H), be local coordinates on G/H and let L(y)
be a coset representative. The decomposition of the Lie-algebra valued one-form E
is not left-invariant anymore, and it can be decomposed as

E(y) = L™ (y)dL(y) = €' (y)Ki + w (y) Ha - (C.19)

It still solves the Maurer Cartan equation (C.4) and by plugging its expansion into it
and using (C.18), one arrives at

de! = —%fijkej Ael — flwt ANel (C.20)
dw® = —%f“ijei Nel — %fabcwb A w . (C.21)
Furthermore plugging (C.19) into (C.17) yields
e (YK + w (Y YHae = €' (y)RIC;h ™" + w(y)hHoh ™t + hdh ™. (C.22)
Since G/H is compact we know that hKh~ C K and we can define
D/ (h"YHK; = hKih ™t (C.23)

J

This gives the transformation rule for the coframe e’ on G/H:

¢'(y') =€ (y)Dj(h"). (C.24)
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We are interested in expanding in forms that are left-invariant under the action of G
on G/H. Any covariant form B on G/H can be written as

1 X N
B = —'Bilminez VAN 61 (025)
n:

and by using (C.24) left invariance of B then amounts to

w7 (h) (C.26)

)

Byt = By jn Dy’ (h)...D

due to the action of H and
B;i _;» = constant (C.27)

due to homogeneity. The infinitesimal version of (C.26) is
FajiyBiy..iyjj = 0, (C.28)

where we have used the definition (C.23) and (C.18). If one now takes the exterior
derivative dB this equation ensures that the part coming from the second term in
(C.20) drops out and we get again a left-invariant form. Actually, one can reverse this
procedure to obtain all the left-invariant forms on a coset space. One just computes
for all possible forms the exterior derivative using (C.20) and keeps only those for
which the second term drops out. This gives all left-invariant forms.

Similarly, a metric g = g;;¢’ ® €’ is left-invariant if and only if its components g;;
are constants and

FFaigin =0. (C.29)

Again we compute the Levi-Civita connection one-form w} from
0= dg;j — wFigr; — Wik , (C.30)
0=de +wjnel. (C.31)

Choosing ¢’ to be the coframe given in (C.19) the second equation becomes for a
left-invariant metric

wij = gikwkj = —wﬂ (032)
Using (C.20) in (C.30) this time the solution of (C.30) and (C.32) is given by

w' = flyw" + g™ <§flmjglk + flk[jgm}l> et (C.33)

which now has an extra term compared to (C.11). The curvature two-form is

sz — ERijlek A\ 6l = du}l] + (A}lk N wk] 3 (034)
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and using (C.20) and contracting indices we find for the Ricci scalar:

R=—g"f*uif % — %gl]fkliflkj - igijgklgmnfzkmf]ln: (C.35)
which also has an extra term compared to (C.13)

As was explained in [59], in order for a coset space G/H to allow for an SU(3)-
structure, the group H should be contained in SU(3). The list of such six-dimensional
cosets and the corresponding structure constants were given in and are summarized
in table C.1. Out of these only five lead to N/ = 1 AdS, solutions [59], as we have
indicated in the table. We also indicated whether the coset admits an SU(3)-structure
at all, which would be the first requirement.

| G | H | SU(3)-structure | A" =1 AdS, |
Go SU(3) Vv v
SU(3)xSU(2)? SU(3)
Sp(2) S(U(2)xU(1)) A A
SU@)xU(1) | S(U(2)xU(1))
SU(2)2xU(1) | S(U(2)xU(1))
SU(3) U(1)xU(1) A A
SU(2)?xU(1)? | U(1)xU(1)
SU(3)xU(1) SU(2) Vv Vv
SU( )3 SU(2)
| SU ) U@ ] v | |
| SU( ) | L | v [ V]
[ SUR)xUQ)” | L | v | |

Table C.1: All six-dimensional manifolds of the type M = G/H, where H is a
subgroup of SU(3) and G and H are both products of semisimple and U(1)-groups.
To be precise this list should be completed with the cosets obtained by replacing any
number of SU(2) factors in G by U(1)3.
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Appendix D
(3)

A note on integrating out dc,

Both in the torus and in the Iwasawa analysis we integrated out dcg?’). In general one

gets from the part of the equation of motion of Fy with (1,6) index structure

1 ]_ 1
e2?® %y dcg3) Avolg =+ —e2® f (§g", — g™ — 0®) A volg
2 (D.1)

where the integration constant ¢ f corresponds to a variation of the background flux
f, which we put to zero.

This describes the external part of F}, which equivalently can be described by the
internal part of Fgz. Indeed, from varying

Fo=e2®x Fy, (D.2)
which we got from (A.1), follows
]. 1 1
OF6int = Eeiq)f (0g", — 0g™m — 0P) A volg + e2® *dc:(f) , (D.3)
so that plugging in (D.1) we find
§Fgm = OV HAYEY b AY,CTO AR (D.4)

This corresponds to the part of 0F; in (4.19) that is first order in the fluctuations.
We conclude that instead of introducing dcg?’), the external part of Fj, we might as
well have worked with the internal part of Fyz. That is exactly what we will do in the

superpotential analysis.
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