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Chapter 1Introdu
tion
1.1 The motivation for string theoryThe standard model of parti
le physi
s and Einstein's theory of general relativity
onstitute the fundament of modern theoreti
al physi
s, and they explain almostevery experimental data from parti
le and astrophysi
s [1, 2℄. Despite this impressivesu

ess there are several theoreti
al drawba
ks, whi
h make us believe that thereexists a more fundamental theory underlying both.First of all, the standard model of parti
le physi
s (SM) 
ontains a s
alar �eld,the Higgs boson, whi
h is needed to generate the masses of the SM parti
les by theme
hanism of spontaneous symmetry breaking. Even though it has not been observedso far, it would 
ome as a great surprise if it will not be dis
overed in the up
omingexperiments at the Large Hadron Collider (LHC) at CERN. But even if one assumesits existen
e it is well known that the Higgs boson su�ers from the so-
alled hierar
hyproblem. It states that s
alar �elds should get masses of the order �2 if the SM isvalid up to an energy s
ale �. So if � is mu
h larger than the ele
tro-weak s
ale thebare value of the Higgs mass has to be �ne tuned in su
h a way that the quantum
orre
tions 
an
el up to some 100 GeV, whi
h seems quite unsatisfa
tory. A naturalsolution to the hierar
hy problem would be to take � to be of the order of the ele
tro-weak s
ale and to repla
e the SM above that s
ale by a theory, whi
h somehow doesnot give rise to quadrati
 
orre
tions in its own 
ut-o� �0.But there are also more fundamental questions that do not �nd an answer withinthe SM. As a 
onsistent quantum �eld theory (QFT) the SM appears to be highlyarbitrary in the sense that there exists no me
hanism, whi
h 
hooses the observedparti
le spe
trum, the gauge group or even four-dimensional spa
e-time. Further-more there are roughly 20 free parameters, whose values have to be determined byexperiment.Another short
oming of the SM is related to the most important problem ofgeneral relativity (GR). In the same way the SM negle
ts any gravitational e�e
tsin its usual formulation in 
at Minkowski spa
e, GR appears as a 
lassi
al theory,



4 Introdu
tionnegle
ting any quantum e�e
ts. Thus, even though modern theoreti
al physi
s isbuild upon both theories, they seem to ignore the existen
e of the respe
tive other.This issue begs for an explanation within a uni�ed theory of GR and QFT.During the last de
ades several ideas were proposed to solve the above mentionedproblems with di�erent su

ess. Supersymmetri
 QFTs (see [3℄ for an introdu
tionand further referen
es) for example have exa
tly the properties needed to avoid thehierar
hy problem. The symmetry between bosons and fermions leads to a 
an
ella-tion of quadrati
 divergen
es su
h that the quantum 
orre
tions to the Higgs massdepend only logarithmi
ally on �0, whi
h 
ould be as large as the Plan
k mass withoutleading to a �ne tuning problem.An attempt to redu
e the arbitrariness of the SM is given by the so-
alled granduni�
ation theories (GUTs). The idea here is the embedding of the SM gauge groupSU(3) � SU(2) � U(1) into a simple gauge group su
h as SU(5), SO(10) or E6. Inthis s
enario there is only one gauge group fa
tor at some high energy s
ale, whi
hthen redu
es to the SM gauge group by some generalized Higgs me
hanism. It turnsout that only in a supersymmetri
 extension of the SM the gauge 
ouplings 
an
onsistently be uni�ed. One may view this as another motivation for supersymmetry.In order to a
hieve a uni�
ation of GR and the SM, the famous idea of Kaluzaand Klein [4℄ was to assume more than four spa
e-time dimensions. In order to make
onta
t with observation the extra dimensions should be small enough to es
apedete
tion by todays a

elerators. The isometry group of the internal spa
e gives riseto gauge �elds in four dimensions even if the higher dimensional theory only involvesgravity. To make this more pre
ise let us 
onsider a �ve-dimensional metri
 gmn witha 
ir
le as internal spa
e. Regarded as four-dimensional �eld, it 
ontains the four-dimensional metri
 g��, a ve
tor �eld g�5 and a s
alar g55. The ve
tor turns out toobey the Maxwell equations in a 
urved ba
kground. In this way one has a uni�ed afour-dimensional theory of gravitation and ele
tromagnetism into a �ve-dimensionaltheory of pure gravity. The value of the gauge 
oupling is related to the radius of theinternal 
ir
le and thus gets a deeper geometri
al origin. But already in this simpletoy model there is a problem that persists to mu
h more advan
ed realizations of theKaluza-Klein (KK) idea. The radius R is related to the s
alar �eld 
orresponding tothe g55-
omponent of the metri
, and the problem is that it turns out to be massless.Hen
e, nothing �xes the value of the gauge 
oupling, i.e. the radius R. Un
hargedmassless s
alar �elds are 
alled moduli and the problem of generating masses for su
h�elds goes under the name of moduli stabilization whi
h plays an important role inthis thesis.To over
ome the 
lassi
al nature of GR, the most obvious idea would be to justquantize it as one does with ordinary 
lassi
al �eld theories. But it turns out that thisquantization leads to ultraviolet divergen
es whi
h appear to be non-renormalizable(see however [5℄).Most of the di�erent approa
hes to extend or unify the SM and GR merge natu-rally in string theory (see [6℄ for an introdu
tion). The basi
 point of string theory is



1.1 The motivation for string theory 5to repla
e point parti
les by strings, i.e. one-dimensional obje
ts. Upon quantizationthe string spe
trum, i.e. the vibrational modes of the string, 
ontains parti
les as theyo

ur in the SM and a spin two parti
le, the graviton, whi
h turns string theory intoa viable 
andidate for the uni�
ation of the SM with GR. But even better, roughlyspeaking, the extended nature of the strings smears out the lo
ation of intera
tions ina way that removes the ultraviolet divergen
es en
ountered in the 
onventional QFTapproa
h towards quantum gravity. Although this is a great a
hievement, string the-ory has not fully solved the problem of quantizing gravity sin
e it 
onsiders strings ina given ba
kground spa
e-time. The gravitons in the string spe
trum des
ribe small
u
tuations around this va
uum and string theory thus provides only a 
onsistentperturbation theory of 
u
tuations around a given ba
kground.Histori
ally the motivation for the �rst formulation of string theory was rather dif-ferent. In the late 1960s, the bosoni
 string gave the theoreti
al ba
kground to derivethe Veneziano amplitude, whi
h was proposed as an amplitude for meson s
atteringbefore the advent of quantum 
hromodynami
s (QCD). After improved experimentaldata ruled out the Veneziano amplitude as a hadroni
 amplitude, string theory wasreinterpreted as a uni�ed theory of gravity and all other fundamental for
es in 1974 [7℄by studying the spe
trum of the quantized theory. The presen
e of a ta
hyoni
 �eldand the la
k of any fermioni
 �elds in the bosoni
 string theory led to the formulationof supersymmetri
 string theories, 
alled superstring theories. Thus supersymmetryappears in string theory at a mu
h more fundamental level than just as an extensionas it does for the SM.It turns out that a QFT of one-dimensional obje
ts is only 
onsistent in a ten-dimensional spa
e-time and this immediately brings the KK idea ba
k into the game.Six of the dimensions have to be 
ompa
ti�ed in order to obtain our four-dimensionalworld. Another 
onsequen
e of 
onsisten
y is, that there are only three possible super-string theories, the type I and the type IIA/IIB string theories. Furthermore there aretwo so-
alled heteroti
 string theories, whi
h are the result of a hybrid 
onstru
tion,
ombining type II and bosoni
 strings. The type II theories seemed to lead to N = 2supersymmetry in four dimensions and too small gauge groups whi
h made themphenomenologi
ally unattra
tive. During the so-
alled �rst superstring revolution inthe mid 1980s, triggered by [8℄, 
ompa
ti�
ations of the other superstring theories,however, gave rise to quasi-realisti
 parti
le spe
tra and gauge groups large enoughto 
ontain the SM gauge group, naturally employing the idea of grand uni�
ation.But some features of superstring theory remained un
lear. Similar to the arbi-trariness of the SM as a QFT, there were now di�erent superstring theories and nome
hanism to prefer one over the other. Furthermore string theory was only de�ned asa perturbative expansion, whi
h 
ould only be used dire
tly at weak 
oupling. In theearly 1990s the situation 
ould be improved by the dis
overy of the so-
alled D-branes[9℄, whi
h impli
itly were always present in string theories as boundary 
onditions ofopen strings but now 
ould be identi�ed with solitoni
 obje
ts arising in the e�e
tiveten-dimensional supergravity theories of type II string theory. This made it also pos-



6 Introdu
tionsible to 
onstru
t quasi-realisti
 
ompa
ti�
ations in the type II string theories sin
eD-branes 
an lead to larger gauge groups and supersymmetry breaking. Maybe evenmore important they triggered the so-
alled se
ond superstring revolution in the mid1990s in whi
h it be
ame 
lear that all the di�erent superstring theories are relatedto ea
h other. The 
entral idea, 
alled duality, is that the strong 
oupling limit ofone theory is equivalent to the weak 
oupling limit of another theory. The 
ompletepi
ture is, that all the string theories are di�erent limits of one unifying theory 
alledM-theory, whose low energy e�e
tive theory is eleven-dimensional supergravity, theunique supersymmetri
 theory in the highest possible dimension. In this way stringtheory, or now M-theory, appears to be a unique theory.However, this high degree of uniqueness is spoiled by the the requirement of 
hoos-ing a ba
kground around whi
h to expand the KK redu
tion, leaving many possibil-ities for the resulting four-dimensional theory. And even if one �nds the ba
kgroundwhi
h gives exa
tly the SM spe
trum and gauge group, one still has to explain whynature 
hooses this one. A related problem is that even for a �xed ba
kground, as wealready saw, the KK redu
tion leads to the problem of massless s
alar �elds whi
hin turn leaves physi
al quantities su
h as gauge 
ouplings undetermined and rendersthe va
uum of the theory degenerate. Furthermore massless s
alar �elds may lead toan unobserved �fth for
e. So, all in all, progress in phenomenology has been mu
hmore limited than had been hoped in the mid 1980s. The origin of the stru
ture ofthe SM is not better understood now than it was then. Advan
es in this area havebeen mostly internal and a de
isive low-energy test of string theory does not seempossible, sin
e in any terrestrial experiment, unless the string s
ale is extremely low,all new signatures su
h as supersymmetry or extra dimensions �nd an explanationwithin string theory but they do not prove string theory.This implies that astrophysi
al observations might be
ome more and more im-portant in order to �nd any experimental signature of string theory. But for thatone �rst has to know how string theory predi
ts 
osmologi
al observables. This is arelatively new area of resear
h, 
alled string 
osmology, and it has a strong relationto the already mentioned problem of moduli stabilization as we will see in this thesis.Re
ent advan
es in observational 
osmology have brought us 
loser to a fundamentalunderstanding of the origin of stru
ture in the universe. Observations of variations inthe 
osmi
 mi
rowave ba
kground (CMB) temperature and of the spatial distributionof galaxies in the sky have yielded a 
onsistent pi
ture in whi
h gravitational instabil-ity drives primordial 
u
tuations to 
ondense into large-s
ale stru
tures, su
h as ourown galaxy. Moreover, quantum �eld theory and GR provide an elegant mi
rophysi
alme
hanism, in
ation, for generating these primordial perturbations during an earlyperiod of a

elerated expansion. The resulting paradigm of a universe undergoingin
ation [10, 11℄ at early times, and dominated by 
old dark matter and dark energyat late times, has sometimes been referred to as a standard model for 
osmology. So,if string theory wants to be the theory of everything it has to explain all these 
osmo-logi
al observations. But in fa
t there exists a mutual relevan
e of string theory and



1.2 The formulation of string theory 7
osmology, be
ause if one evolves the expansion of the universe ba
k in time usingthe equations of GR and the SM, one hits a regime in whi
h both des
riptions breakdown and physi
s beyond the SM and GR is required. In parti
ular one would need a
onsistent des
ription of quantized gravity, whose best developed 
andidate seems tobe string theory. This immediately leads to the question whether one 
an implementthe me
hanism of in
ation in string 
ompa
ti�
ations. As we will review later, thebest developed models of in
ation are based on a s
alar �eld, the in
aton, moving ina non-trivial potential. This immediately suggests that one of the moduli present instring 
ompa
ti�
ations might play the role of the in
aton provided one �nds a wayto generate a potential for it. To �nd expli
it examples of in
ation in string theoryis te
hni
ally quite 
hallenging be
ause one needs detailed knowledge of the four-dimensional e�e
tive theory resulting from string theory for a given ten-dimensionalba
kground. We will make this more pre
ise in the next 
hapter motivating also thetopi
s of this thesis, but �rst we will brie
y sket
h in the next se
tion how stringtheory is a
tually formulated.Finally, let us also mention that, despite the slow phenomenologi
al progress,string theory has led to many profound results su
h as mirror symmetry [12, 13℄,an exa
t mi
ros
opi
 
al
ulation of the Bekenstein-Hawking bla
k hole entropy [14℄and the AdS/CFT 
orresponden
e [15℄, some with deep 
onne
tions to apparentlyunrelated �elds.1.2 The formulation of string theoryIn this se
tion we will establish the basi
 
on
epts to formulate string theory in away that is adapted to the topi
s of this thesis. For a broad introdu
tion into stringtheory see e.g. [6℄.Let us 
onsider a string moving in a D-dimensional Minkowski spa
e-time MDwith 
oordinates XM . It 
an be des
ribed by the embedding of the string world-sheet, i.e. the two-dimensional surfa
e swept out by the string as it propagates intime, into spa
e-time. This is a map from a two-dimensional surfa
e � into MD,XM(�1; �2) : � ! MD, where �a are the 
oordinates on �. In analogy to the pointparti
le, the a
tion determining the 
lassi
al equations of motion for the string is takento be proportional to the area of the world-sheet. This is known as the Nambu-Gotoa
tion whi
h is 
lassi
ally equivalent to the Polyakov a
tionSP = 14��0 Z� d2�phh����XM��XNGMN ; (1.1)where GMN is the ten-dimensional spa
e-time metri
 and h�� is the two-dimensionalworld-sheet metri
. This a
tion is usually taken as the starting point for de�ning thequantum theory. The symmetries of the Polyakov a
tion are D-dimensional Poin
ar�einvarian
e, invarian
e under di�eomorphisms of the world-sheet and two-dimensionalWeyl-invarian
e. Weyl invarian
e plays a 
ru
ial role in string theory, be
ause it is
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tiongenerally anomalous under quantization. In order to obtain a unitary theory one hasto demand Weyl-invarian
e, whi
h in turn imposes severe 
onstraints on the theory.We do not want to go into the details of the quantization of this theory and justfo
us on the results. The spe
trum of the quantum theory 
onsists of the vibrationalmodes of the string. It turns out that it 
ontains a ta
hyon and no fermions. Toremove the ta
hyon and to get spa
e-time fermions one introdu
es fermioni
 degreesof freedom on the world-sheet. Demanding a vanishing Weyl anomaly then 
onstrainsthe dimension of the spa
e-time uniquely to be D = 10, whi
h we will assume fromnow on. One ends up with spa
e-time fermions but the ta
hyon is still present. Itis possible to remove the ta
hyon by a suitable trun
ation of the spe
trum known asthe GSO proje
tion. The remaining spe
trum 
onsists of a set of massless states andan in�nite tower of massive ex
itations whose masses are quantized in units of thestring s
ale �0�1=2. As one usually assumes this to be of the order of the Plan
k mass,these states are extremely heavy.A
tually there are several possibilities to introdu
e world-sheet fermions and toperform the GSO proje
tion. Together with further 
onsisten
y 
onditions one endsup with only �ve 
onsistent string theories in D = 10 Minkowski spa
e-time listed intable 1.1. Type Massless bosoni
 spe
trum Gauge group G NIIA gMN ; BMN ;�; AM ; AMNP U(1) 2IIB gMN ; BMN ;�; A; AMN ; AMNPQ - 2Heteroti
 E8 � E8 gMN ; BMN ;�; AaM E8 � E8 1Heteroti
 SO(32) gMN ; BMN ;�; AaM SO(32) 1Type I gMN ;�; AaM ; AMN SO(32) 1Table 1.1: The �ve 
onsistent string theories in D = 10Every theory 
ontains a graviton gMN and a s
alar �eld � 
alled the dilaton whoseva
uum expe
tation value sets the value of the string 
oupling gs. Furthermore allstring theories ex
ept the type I are based on 
losed strings and their spe
trumin
ludes an antisymmetri
 tensor gauge �eld BMN whi
h is 
alled the NS B-�eld. Be-sides this `universal' part of the spe
trum ea
h string theory has its individual masslessbosoni
 ex
itations, 
onsisting of non-abelian gauge �elds AaM , a = 1; : : : ; dimG, orantisymmetri
 p-form gauge �elds AM1:::Mp, the so 
alled RR p-forms. Strings do not
arry any 
harge of the RR p-form �elds. However it was one of the big dis
overieswithin string theory that it a
tually 
ontains obje
ts whi
h do 
arry a 
harge of theRR �elds. They are 
alled Dp-branes where p denotes the number of their spatialdimensions.So far we only dis
ussed strings in 
at ba
kgrounds. If the spa
e-time metri
is 
urved, then the Weyl-invarian
e of the 
lassi
al a
tion is still manifest. But atthe quantum level it be
omes non-trivial and imposes restri
tions on the spa
e-time
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. The metri
 
an be interpreted as the 
ouplings of the two-dimensional �eldtheory. One 
an de�ne a modi�ed beta fun
tion �, whi
h measures the violation ofWeyl invarian
e. In order to preserve Weyl invarian
e this beta fun
tion must vanish.It 
an be 
omputed perturbatively, order by order in �0. In a target spa
e with 
hara
-teristi
 radius Lint the e�e
tive dimensionless expansion parameter is p�0L�1int. Termswith more than two derivatives in the �-fun
tion are of higher order in the p�0L�1intexpansion. Thus if p�0L�1int � 1 perturbation theory in the two dimensional theoryis valid and it is possible to trun
ate the equations of motion at the two derivativelevel. This is known as the regime of low energy e�e
tive theory. Furthermore in thislimit it is allowed to negle
t the heavy string modes and 
onsider only the masslessspe
trum. The leading term of the �-fun
tion for the metri
 is given by�GMN = �0RMN : (1.2)Thus, the spa
e-time ba
kground has to be Ri

i-
at, i.e. it satis�es the va
uumEinstein equation. The 
ondition imposed on the ba
kground �eld by Weyl invarian
eon the world-sheet is its spa
e-time equation of motion. This relation between world-sheet and spa
e-time properties holds for other ba
kground �elds as well and 
an beused as an eÆ
ient method to 
onstru
t e�e
tive a
tions whose equations of motionjust reprodu
e the �-fun
tions.The equations of motion for the massless spa
e-time �elds 
an also be derived inan alternative way. One 
al
ulates their n-point fun
tions and the e�e
tive spa
e-time a
tion is determined by demanding that its 
lassi
al s
attering amplitudes shouldreprodu
e these n-point fun
tions. From this e�e
tive a
tion one derives the equationsof motion.For both ways it turns out that the leading terms in an �0-expansion, the lowenergy e�e
tive theories, des
ribe ten-dimensional supergravities, either type I super-gravity in 
ase of heteroti
 and type I string theory or type IIA/IIB supergravity in
ase of IIA/IIB string theory. For example the ten-dimensional type II supergravitya
tion des
ribing to lowest order in �0 the low energy e�e
tive theory of the masslessstates of type II string theory is in string frame given byS = 12�210 Z d10xp�g e�2� "R + 4(��)2 � 12H2 � 14e�2�Xn F 2n# : (1.3)In appendix A we 
olle
t further de�nitions and 
onventions. To make 
onta
t withobservation, one would like to 
onsider su
h a theory on a ba
kground of the formX4�M6, where X4 
ould in a �rst step be any maximally symmetri
 four-dimensionalspa
e, i.e. Minkowski, de Sitter or anti-de Sitter, and M6 is some 
ompa
t six-dimensional manifold.
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tion



Chapter 2The topi
s of this thesisThis thesis studies 
ompa
ti�
ations of type IIA string theory on a ba
kground ofthe form AdS4 �M6 where M6 is a six-dimensional 
ompa
t manifold with SU(3)-stru
ture. In this 
hapter we want to introdu
e the basi
 
on
epts and give somemotivation for the study of su
h 
ompa
ti�
ations. We will �rst review brie
y thepre
eding developments without explaining all the details before we will more 
arefullyintrodu
e the topi
s of this thesis in separate se
tions.As already mentioned in the introdu
tion, before the dis
overy of D-branes, 
om-pa
ti�
ations of the heteroti
 string seemed to be the phenomenologi
ally most promis-ing s
enarios be
ause they allowed for large enough gauge groups to in
orporate theSM gauge group. In su
h 
ompa
ti�
ations, one would like to obtain an N = 1 super-symmetri
 theory in four dimensions. The reason for that is twofold. First, from thephenomenologi
al side, e.g. the hierar
hy problem, one expe
ts supersymmetry to bebroken at a mu
h lower s
ale than the string s
ale. Another and maybe even strongermotivation 
omes from the theoreti
al side. It is pretty hard to �nd non-trivial solu-tions to the ten-dimensional equations of motion, whi
h are se
ond order. The �rstorder supersymmetry 
onditions, on the other hand, are mu
h easier to solve, andthey often extend to solutions of the full equations of motion. It turned out that inorder to preserve N = 1 supersymmetry in four dimensions the internal spa
e has tobe a so-
alled Calabi-Yau manifold whi
h we will introdu
e later.After the dis
overy of D-branes, the fo
us shifted to the type II string theoriesbe
ause now it was also possible in these theories to 
onstru
t large enough gaugegroups to in
orporate the SM. However, the 
ompa
ti�
ation of type II string theo-ries on the well studied 
lass of Calabi-Yau manifolds leads to N = 2 supersymmetri
va
ua in four dimensions whi
h seems phenomenologi
ally unattra
tive sin
e, e.g.,su
h theories do not allow for fermions with 
hiral gauge intera
tions. Moreover, asa 
onsequen
e of the Gauss law, the RR 
harge 
arried by the D-branes has to be
an
elled by some obje
ts 
arrying opposite RR 
harge. In prin
iple this 
ould bea
hieved by anti-D-branes but sin
e they break supersymmetry expli
itly one wouldloose its ni
e phenomenologi
al properties as well as its 
omputational 
ontrol. As



12 The topi
s of this thesisit turns out, type II string theories in
lude obje
ts whi
h do 
arry opposite D-brane
harge (and tension) and at the same time allow for a 
ontrolled way of breakingsupersymmetry. These are the so-
alled orientifold-planes (O-planes). O-planes arisein type II string theories by modding out world-sheet parity plus a geometri
 symme-try � of X4 �M6. The O-planes are given by the �xpoint-set of this symmetry. Onthe level of the full string theory this implies that non-orientable string world-sheetsare allowed. Fo
using on the e�e
tive a
tion, O-planes break part or all of the su-persymmetry of the low-energy theory by trun
ating the �eld 
ontent of the N = 2supersymmetri
 theory to N = 1 or N = 0.But even after the in
lusion of O-planes another problem is still present in 
om-pa
ti�
ations on Calabi-Yau manifolds, namely the moduli problem already men-tioned in the introdu
tion. Massless s
alar �elds 
orresponding to deformations ofthe internal spa
e are in 
on
i
t with experiment and physi
al quantities su
h asgauge 
ouplings remain arbitrary. This problem 
ould be addressed in so-
alled 
ux
ompa
ti�
ations. The in
lusion of 
uxes, i.e. non-vanishing ba
kground values forthe di�erent �eld-strengths present in ten dimensions, allows one to generate a po-tential for the s
alar �elds. As we will see, 
uxes arise quite naturally by demandingN = 1 supersymmetry for the va
uum of type II 
ompa
ti�
ations. However, inthis thesis we are interested in N = 1 e�e
tive theories, i.e. 
u
tuations around agiven va
uum, for whi
h we will still need O-planes to trun
ate the spe
trum. Ingeneral, these are also needed for 
harge 
an
ellation sin
e the 
uxes 
ontribute tothe integrated Bian
hi identities with the same sign as the D-branes do.What makes the in
lusion of 
uxes deli
ate is that they ba
krea
t in general onthe geometry in su
h a way that they deform it away from the well-known 
lasses ofCalabi-Yau manifolds, as we will explain later. Sin
e in type IIB 
ompa
ti�
ations,based on the work of [16℄, examples have been 
onstru
ted where this deformationis rather mild and the resulting geometry is still 
onformal to a Calabi-Yau, themain fo
us in type II 
ompa
ti�
ations was on the type IIB side. In the followingyears it was shown that the moduli problem 
ould indeed in prin
iple be solvedin su
h 
ompa
ti�
ations. In [17℄ the dilaton and 
omplex stru
ture moduli, i.e.deformations that roughly 
orrespond to the shape of the internal manifold, 
ould bestabilized by 
uxes, whereas the stabilization of the K�ahler moduli, 
orrespondingto size deformations, require the in
lusion of quantum e�e
ts along the lines of [18℄.However, a supersymmetri
 va
uum is only possible for a non-positive 
osmologi
al
onstant and one always has to �nd some me
hanism that breaks supersymmetry insu
h a way that the resulting va
uum has positive 
osmologi
al 
onstant in agreementwith observation. Several proposals have been made for su
h an uplift ( see e.g. [19℄,[20℄) whi
h then fueled a broad study of the phenomenology of su
h 
ompa
ti�
ations
on
erning the SM as well as 
osmology.On the type IIA side, the deformation by the 
uxes away from the Calabi-Yau
ase is in general mu
h more severe and this made it diÆ
ult for some time to obtainexpli
it examples of type IIA 
ux 
ompa
ti�
ations. However, the improved mathe-



13mati
al understanding of, at least, a 
ertain 
lass of su
h non-Calabi-Yau manifoldsin re
ent years [21℄ made it possible to study su
h 
ompa
ti�
ations in more detail.There are several reasons whi
h make su
h 
ompa
ti�
ations an attra
tive area ofresear
h:� First, as opposed to the type IIB side, in 
ompa
ti�
ations with a four-dimen-sional AdS4 spa
e-time it is in prin
iple possible to stabilize all moduli alreadyat tree level in a 
ontrolled supergravity regime without the use of any quan-tum e�e
ts. It is then an interesting question whether these 
ompa
ti�
ations
an be of phenomenologi
al interest, e.g. after the in
lusion of an additionaluplifting potential so as to 
onstru
t meta-stable dS minima. But even withoutan expli
it uplift potential, one 
an investigate whether the potential alreadyhas meta-stable dS va
ua away from the supersymmetri
 AdS minimum. Re-lated to that is the question of implementing some in
ationary s
enario in su
h
ompa
ti�
ations.� Se
ond, type IIA orientifolds with interse
ting D6-branes (see e.g. [22, 23℄ for re-views and many more referen
es) o�er good prospe
ts for deriving the StandardModel from strings, as was re
ently demonstrated in [24℄. So, if 
osmologi
al as-pe
ts 
an likewise be modelled, one may study questions su
h as, e.g., reheatingmu
h more expli
itly.� Third, va
ua of type IIA string theory with AdS4 spa
e-time are also interestingin the 
ontext of the AdS/CFT duality, whi
h we will introdu
e later. Expli
itexamples have been 
onstru
ted re
ently where the AdS part is given by typeIIA string theory in a ba
kground of the form AdS4 �M6, where M6 is givenby CP3. These examples involve va
ua with N = 1 supersymmetry as well asnon-supersymmetri
 va
ua.In this thesis we will mainly fo
us on the �rst point whi
h 
an be divided intothree steps. First of all one has to �nd an N = 1 supersymmetri
 va
uum of the ten-dimensional type IIA supergravity on a ba
kground of the form AdS4 �M6. On
e asolution is found the se
ond step would be to study small 
u
tuations around thatva
uum and to write down a four-dimensional e�e
tive theory for the light 
u
tu-ations. In parti
ular, one would like to 
he
k whether all the moduli have beenstabilized by the 
uxes. In a third step the phenomenology of the obtained va
uum
ould be studied. Here one would like to know whether it is possible to obtain allthe features of the SM like spe
trum, gauge group and so on. However, as alreadyindi
ated, in this thesis we will 
on
entrate on another phenomenologi
ally importantquestion, namely on how to implement in
ation or to �nd de Sitter va
ua in su
h
ompa
ti�
ations. For that we will fo
us on the s
alar �elds in the four-dimensionale�e
tive theory. We will study these questions in detail for di�erent expli
it internalspa
es M6.
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s of this thesisHowever, in the last 
hapter we will also 
onstru
t non-supersymmetri
 va
ua forsome of the examples studied in the pre
eding 
hapters. These non-supersymmetri
AdS4 va
ua may serve as a starting point for more realisti
 models in the same wayas the supersymmetri
 ones, although they are mu
h more diÆ
ult to obtain. Sin
eCP3, mentioned in the third point above, is one of our examples, the results of that
hapter are also interesting in the 
ontext of the AdS/CFT 
orresponden
e. A naturalquestion, e.g., 
ould be how the dual �eld theory 
onstru
tion of those va
ua lookslike.In the following se
tions we are going to introdu
e the di�erent topi
s of thisthesis in more detail. In se
tion 2.1 we review the 
onditions the ten-dimensionalba
kground has to satisfy in order to get an N = 1 supersymmetri
 va
uum in fourdimensions and whi
h role 
uxes play in this 
onstru
tion. We will spe
ialize thisin 
hapter 3 to the 
ase of type IIA supergravity with an AdS4 spa
e-time and amanifold with SU(3)-stru
ture as internal spa
e. We will present all known expli
itexamples of internal manifolds that satisfy those 
onditions.In se
tion 2.2 we dwell on the so 
alled moduli problem whi
h arises in string
ompa
ti�
ations and how 
uxes may solve it by generating a potential for the s
alar�elds. This will be the topi
 of 
hapter 4 and 
hapter 5, where we will study thelow energy theory of the examples found earlier. These 
hapters summarize [25℄.In se
tion 2.3 we introdu
e the basi
s of in
ation that are needed in this thesis.Furthermore we 
omment on the attempts to realize in
ation in four-dimensionale�e
tive low energy theories that have their origin in string theory. We outline the
urrent problems in type IIA 
ompa
ti�
ations and how they might be 
ir
umvented.This will be the subje
t of 
hapter 6 whi
h is based on [26℄.In se
tion 2.4 we will re
all why non-supersymmetri
 va
ua are interesting froma phenomenologi
al point of view. Furthermore, we will very brie
y give a roughpi
ture of the AdS/CFT 
orresponden
e with spe
ial emphasis on the AdS4/CFT3
ase. We do this be
ause the non-supersymmetri
 va
ua that we 
onstru
t in 
hapter7 might be of interest in that 
ontext. The results of this 
hapter will appear in [27℄.We give a more detailed outline of this thesis in se
tion 2.5.2.1 Type II supersymmetri
 ba
kgrounds with 
uxWe want to review the 
onditions that allow for a four-dimensional N = 1 super-symmetri
 va
uum of type II supergravity given in the �rst referen
e of [28℄. In orderto �nd a va
uum of the ten-dimensional type II e�e
tive supergravity theory, one hasto solve the equations of motion for the �elds, whi
h are given by the graviton, thedilaton, the NS B-�eld and the RR p-form �elds as 
an be seen from (A.2). As we willexplain later in more detail, it turns out that supersymmetry simpli�es these equa-tions in su
h a way that it is enough to verify supersymmetry as well as the Bian
hiidentities for the form �elds. The Einstein equation, the dilaton equation of motionand the equations of motion for the form �elds are then automati
ally satis�ed. Here



2.1 Type II supersymmetri
 ba
kgrounds with 
ux 15we will only 
onsider the supersymmetry 
onditions and postpone the dis
ussion ofthe Bian
hi identities to 
hapter 3.In order to get a four-dimensional (4d) N = 1 supersymmetri
 theory, one makesan ansatz for the ten-dimensional (10d) ba
kground to be of the formM10 =M4�M6,where M6 is some six-dimensional (6d) 
ompa
t spa
e. If one further demands 4dmaximal spa
e-time symmetry (i.e. Minkowski, anti-de Sitter (AdS) or de Sitter (dS)spa
e-time) the most general 10d metri
 is given byds2 = e2A(y)g��dx�dx� + gmndy�dy� ; (2.1)with � = 1; : : : ; 3 ; m = 1; : : : ; 6. A is a fun
tion of the internal 
oordinates and it is
alled warp fa
tor. For maximal symmetry in four dimensions the va
uum expe
tationvalue of the fermioni
 �elds has to vanish, whi
h means the ba
kground is purelybosoni
. Thus, for any fermion �, one should have, in a supersymmetri
 va
uum,< Q�� >=< Æ�� >= 0, where Q is the preserved supersymmetry generator and �is the 
orresponding supersymmetry parameter. In type II theories, the fermioni
�elds are two gravitinos  AM ; A = 1; 2 and two dilatinos �A. The bosoni
 part of thesupersymmetry transformation for the fermions is given in string frame byÆ 1M = �rM + 14HM� �1 + e�16Xn F(n)�M�(10)�2 ;Æ 2M = �rM � 14HM� �2 � e�16Xn �(F(n))�M�(10)�1 ;Æ�1 = ��� + 12H� �1 + e�16Xn �MF(n)�M�(10)�2 ;Æ�2 = ���� 12H� �2 � e�16Xn �M�(F(n))�M�(10)�1 :
(2.2)

In these equations M = 0; :::; 10,  M stands for the 
olumn ve
tor  M = � 1M 2M�
ontaining the two Majorana-Weyl spinors of the same 
hirality in type IIB, and ofopposite 
hirality in IIA, and similarly for � and �. An underline means a 
ontra
tionwith gamma matri
es in the form Fn = 1n!FP1:::PN�P1:::PN , and HM � 12HMNP�NP .The NS and RR �eld strengths are de�ned as in in (A.2). We are using the demo
rati
formulation of Ref. [29℄ for the RR �elds, as explained in appendix A. However, thedetails are not so important here.First we want to analyze the impli
ations of this equation for the internal geometryin the absen
e of 
ux, i.e. in the absen
e of any ba
kground values for the �eldstrengths H and Fn. To this end one needs to split the two supersymmetry spinorsof type II supergravity into 4d and 6d spinors. As explained later, we will use only
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s of this thesisone internal Weyl spinor to do this de
omposition, whi
h then reads for IIA�1 = �1+ 
 �+ + �1� 
 �� ;�2 = �2+ 
 �+ + �2� 
 �� : (2.3)Inserting the de
omposition (2.3) into the internal part of the gravitino variationgiven in (2.2) gives the 
ondition rm�� = 0 : (2.4)The internal manifold should therefore have a globally de�ned spinor whi
h is 
o-variantly 
onstant with respe
t to the Levi-Civita 
onne
tion. This is a very strongrequirement from the topologi
al and di�erential geometri
al point of view. A 6dmanifold that has a globally well de�ned non-vanishing spinor has stru
ture groupSU(3) and vi
e versa. The stru
ture group of a manifold is the group of transforma-tions required to pat
h the orthonormal frame bundle. If this spinor is in addition
ovariantly 
onstant the manifold is said to have holonomy group SU(3), or a sub-group thereof. A 6d manifold with SU(3) holonomy is 
alled a Calabi-Yau manifold.It admits one 
ovariantly 
onstant spinor. To have more than one, the holonomygroup should be smaller than SU(3) whi
h results in a larger number of supersymme-tries preserved. In this thesis we will only 
onsider manifolds with one globally de�nedspinor, although when turning on 
uxes it does not have to be 
ovariantly 
onstantanymore, as one 
an anti
ipate by looking at (2.2). This explains the use of only oneinternal spinor in (2.3). All in all, we see that for one 
ovariantly 
onstant internalspinor equation (2.3) tells us that there are two 4d supersymmetry parameters, �1and �2 leading to N = 2 supersymmetry in four dimensions.Turning on 
uxes has two e�e
ts in (2.2). First, we see that the two supersym-metry parameters �1 and �2 are not independent anymore and this typi
ally leadsto N = 1 supersymmetry instead of N = 2. Se
ond, the spinors do not have tobe 
ovariantly 
onstant anymore with respe
t to the Levi-Civita 
onne
tion1, or inother words the di�erential 
onstraint 
an be relaxed. In this thesis, we will keep forthe 6d internal manifold the (minimal) topologi
al assumption of SU(3)-stru
ture,but we will drop the assumption of SU(3) holonomy. On a manifold with SU(3)-stru
ture, the spinor representation in six dimensions, the 4 of SO(6), 
an be furtherde
omposed into representations of SU(3) as 4! 3+ 1. We see a SU(3) singlet inthe de
omposition, whi
h means that there is a spinor that depends trivially on thetangent bundle of the manifold and is therefore well-de�ned and non-vanishing. Itturns out that there are also singlets in the de
omposition of 2-forms and 3-forms.Thus, we also have a non-vanishing globally well de�ned real 2-form and a 
omplex3-form. They are 
alled J and 
. One does not �nd any invariant �ve-forms, whi
h1On manifolds with SU(3)-stru
ture one 
an always de�ne a 
onne
tion with respe
t to whi
hthe spinor is 
ovariantly 
onstant.



2.1 Type II supersymmetri
 ba
kgrounds with 
ux 17means J ^
 = 0. J and 
 
an be expressed in terms of the internal spinor, and theydetermine a metri
 as we demonstrate in appendix B2.For a Calaby-Yau spa
e it turns out that J and 
 are both 
losed. One 
anparameterize the deviation of a 6d manifold with SU(3)-stru
ture from the Calabi-Yau 
ase by �ve torsion 
lasses W1; : : : ;W5 whi
h appear in the exterior derivativeof J and 
 as follows dJ = 32Im(W1
�) +W4 ^ J +W3 ;d
 =W1J ^ J +W2 ^ J +W�5 ^ 
 ; (2.5)whereW1 is a s
alar,W2 is a primitive (1,1)-form,W3 is a real primitive (1; 2)+(2; 1)-form, W4 is a real one-form and W5 a 
omplex (1,0)-form. This deviation from theCalabi-Yau 
ase, i.e. the non-vanishing torsion 
lasses, is sometimes 
alled geometri

ux. Geometri
 
ux is not a terribly well-de�ned 
on
ept and for us the internalmanifold will have geometri
 
ux if the Ri

i s
alar R is non-zero. This is 
onsistentwith the above des
ription sin
e Calabi-Yau manifolds are Ri

i 
at.Let us now 
ome to the di�erential 
ondition in the presen
e of 
uxes. As alreadymentioned 
uxes relate the two spinors �1 and �2 and in parti
ular the two externalspinors �1 and �2 to ea
h other. Demanding maximal 4d symmetry only allows atrivial relation between �1 and �2, namely they should be proportional. The 
omplex
onstant of proportionality 
an a
tually be a fun
tion of the internal spa
e, whi
h
an be in
luded in the de�nition of the 6d spinors. We will therefore write�1 = �1+ 
 a�+ + �1� 
 �a�� ;�2 = �2+ 
 b�+ + �2� 
 �b�� : (2.6)N = 1 supersymmetry links a and b, and how they are related tells us how the N = 1va
uum sits in the underlying N = 2 e�e
tive 4d e�e
tive theory.When (2.3) is inserted in the supersymmetry variations (2.2), the 4d pie
e 
anbe fa
tored out, and one is left with equations involving only the 6d parts of thespinors. In this way, one obtains relations between the non-vanishing 
uxes and theinternal geometry, des
ribed by the spinors. Sin
e the SU(3)-stru
ture (J;
) 
anbe 
onstru
ted out of the internal spinors this leads to a relation between the non-vanishing 
uxes and the torsion 
lasses introdu
ed in (2.5). We will postpone theresult of this 
al
ulation for the spe
ial 
ase of type IIA AdS4 
ompa
ti�
ations to
hapter 3, where we will also have to impose the Bian
hi identities for the form �elds.Furthermore, we will have to 
larify, how to deal with sour
es su
h as D-branes andO-planes in those equations. We present all known solutions on internal manifolds for2In appendix B we will use the language of generalized geometry, whi
h in fa
t 
onstitutes ageneralization of the SU(3)-stru
ture 
ase to the 
ase with two di�erent internal spinors. However,sin
e it allows for a very elegant formulation of the supersymmetry 
onditions, we will use thislanguage in that appendix and spe
ialize it to the SU(3)-stru
ture 
ase.
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s of this thesiswhi
h one 
an expli
itly �nd a va
uum of the 10d theory in the spe
ial 
ase of typeIIA AdS4 
ompa
ti�
ations. These manifolds are so-
alled nilmanifolds and 
osetspa
es introdu
ed in appendix C. The key feature of su
h manifolds is that theyallow for left-invariant (globally de�ned) one-forms and that the exterior derivativeof those one-forms, when expanded in two-forms, only has 
onstant 
oeÆ
ients. Aswe will see, this makes it possible to perform expli
it 
al
ulations for those manifolds.2.2 Flux 
ompa
ti�
ations and the moduli prob-lemIn this se
tion, we want to sket
h the problem of moduli stabilization that plaguedstring 
ompa
ti�
ations for a long time and how it 
an be resolved by 
uxes. In thelast se
tion we saw that 
uxes arise in the breaking of the N = 2 supersymmetryof the va
uum down to N = 1. Another, but related, ni
e feature of the in
lusionof ba
kground 
uxes is the possibility of generating masses for the 4d s
alar �eldswhi
h in 
uxless ba
kgrounds would stay massless. This is also the key advan
ein implementing in
ation in string theory, and it goes under the name of modulistabilization (see [28℄ for the 
urrent status and more referen
es). Let us see how thisworks.To obtain the 4d e�e
tive theory for a given ba
kground, one should perform aKK redu
tion of the 10d type II supergravity on a 
ompa
t internal manifold, andkeep only some �nite set of light �elds. Take for example a s
alar �(x; y) ful�llingthe 10d Lapla
e equation of motion �10� = 0 in the 10d spa
e of the form (2.1).The KK redu
tion 
onsists of 
onsidering small 
u
tuations of the 10d �elds arounda given va
uum leading to the equation �10(�(x; y)+Æ�(x; y)) = 0. The 10d Lapla
eoperator splits as �10 = �4 +�6 and we may apply the fa
t that �6 on a 
ompa
tspa
e has a dis
rete spe
trum. The 
u
tuations Æ�(x; y) are then expanded intoeigenfun
tions of the internal Lapla
e operator �6. The 
oeÆ
ients arising in thisexpansion are �elds depending only on the external 
oordinates. From a 4d point ofview, the term �6Æ� thus appears as a mass term. One ends up with an in�nite towerof massive states with masses quantized in terms of 1=R, where R is the radius of theinternal manifold. Choosing the internal manifold to be small enough the massiveKK states be
ome heavy and 
an be integrated out. However, this way of de
ouplingthe KK tower only works in the simplest examples and we will have to 
ome ba
k tothis issue. As we will see, the O-planes present in our 
onstru
tions might help here.The resulting e�e
tive theory en
odes the dynami
s of the 4d �elds asso
iated withthe massless KK modes satisfying �6�(x; y) = 0 : (2.7)This pro
edure 
an be generalized to all �elds present in 10d supergravity theoriesin
luding the metri
. The ansatz (2.1) spe
i�es the 10d ba
kground metri
 and a
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ompa
ti�
ations and the moduli problem 19gravity theory is given by 
u
tuations around this ba
kground. In the external di-re
tions these 
orrespond to the 4d graviton and the e�e
tive a
tion redu
es to thestandard Einstein-Hilbert term for the metri
 in 4d. In the 
ompa
t dire
tions the
u
tuations of the metri
 su
h as 
hanges of the size and shape of the internal mani-fold 
orrespond to massless s
alar �elds in the 4d e�e
tive theory. Sin
e for manifoldswith SU(3)-stru
ture the metri
 is 
ompletely determined by the real two-form J andthe 
omplex three-form 
, one 
an divide the s
alar �elds 
orresponding to metri
deformations into K�ahler moduli, 
orresponding to deformations of J , and 
omplexstru
ture moduli, 
orresponding to deformations of 
. In order to write the resulting4d theory in a manifest supersymmetri
 form, one has to 
omplexify these real s
alar�elds with the s
alar �elds des
ending from the redu
tion of the 10d p-form poten-tials. Sin
e in Calabi-Yau 
ompa
ti�
ations without 
uxes there is no potential forthe s
alar �elds, they are not driven to any parti
ular value whi
h is problemati
 fordi�erent reasons. First of all massless s
alar �elds typi
ally (though not always) leadto modi�
ations to the gravitational for
e law, whi
h are not observed. Furthermorethe parameters su
h as, e.g., the gauge kineti
 fun
tion depend on these s
alars andthus physi
s depends on their value. In this way one �nds a parameterized familyof physi
ally distin
t va
ua, the moduli spa
e, 
onne
ted by simply varying massless�elds. This is in 
ontrast to the well known Goldstone bosons arising in the pro
essof symmetry breaking, where the physi
s of any 
onstant 
on�guration of this �eldis the same. A �rst idea to solve the problem of massless s
alar �elds appearingat some early stage of the analysis would be to in
orporate higher order 
orre
tionsto the potential at some later stage. Indeed, in non-supersymmetri
 theories thereis no reason the e�e
tive potential should not depend on all of the �elds. But forsupersymmetri
 QFTs there exist quite powerful non-renormalization theorems, su
hthat moduli spa
es often persist to all orders in perturbation theory or even beyond.However, in the end we will have to break supersymmetry and so they might getmasses of the order of the supersymmetry breaking s
ale. But in the 
ase of lows
ale supersymmetry breaking, whi
h seems phenomenologi
ally desirable, this willbe a very small mass leading to the so-
alled Polonyi problem [30℄, wherein the lightmoduli �elds 
arry too mu
h energy in the early universe, leading to over
losure.Therefore one needs to �nd a me
hanism in string theory whi
h indu
es a potentialleading to larger masses for the moduli. This me
hanism is given by ba
kground
uxes. To see this qualitatively, take as an example a tensor �eld B2. If its �eldstrength H3 = dB2 admits a ba
kground 
ux Hflux3 = hdBflux2 i, the kineti
 term ofB2 yields a 
ontribution ZM10 Hflux3 ^ ?Hflux3 ; (2.8)whi
h via the Hodge-? 
ouples to the metri
 and its deformations. In this way anon-trivial potential for the size and shape deformations of the internal manifold isindu
ed.
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s of this thesisThe light modes of the e�e
tive theory all appear as form-�eld zero modes of theLapla
e operator on the given manifold. For Calabi-Yau manifolds su
h harmoni
forms are in one-to-one 
orresponden
e with non-trivial elements of the 
ohomologygroups of the Calabi-Yau, whi
h means that they are 
losed. The intera
tions ofthe low energy Lagrangian are given by the KK redu
tion of the ten-dimensionalLagrangian. This low energy theory is found to be a 4d N = 2 supergravity 
oupledto ve
tor- and hypermultiplets.One way to deal with ba
kground 
uxes in string 
ompa
ti�
ations is the so 
alledCalabi-Yau with 
uxes approximation. If the typi
al energy s
ale of the 
uxes is mu
hlower than the KK s
ale, one 
an assume that the spe
trum is the same as in the
uxless 
ase, ex
ept that some of the massless modes a
quire a mass due to 
uxes.This allows one still to use the powerful Calaby-Yau ma
hinery to extra
t the 4de�e
tive theory, or in other words, one still uses the basis of harmoni
 forms on theCalabi-Yau in whi
h one expands the 10d �elds.But, as already explained in the last se
tion, the 
uxes ba
krea
t through thesupersymmetry variations (2.2) on the geometry deforming it away from the well-understood 
lass of Calabi-Yau manifolds to the more general 
ase of manifolds withSU(3)-stru
ture or even beyond that. By looking at (2.5) we see that in generalone now has to use non-
losed forms in the KK redu
tion. Unfortunately, it is stillun
lear how to 
onstru
t a suitable basis of expansion forms for this 
ase in general.A detailed dis
ussion of the general 
onstraints on su
h a basis appeared in [31℄ (seealso [32, 33℄ for related work). However, as already mentioned in the last se
tion,on the manifolds studied in this thesis, namely nilmanifolds and 
oset spa
es (seeappendix C), a natural set of expansion forms, namely left-invariant forms, exists.These forms are not ne
essarily 
losed anymore, whi
h somehow re
e
ts the fa
tthat we are going beyond ordinary Calabi-Yau manifolds. This makes it possible to
onstru
t the e�e
tive a
tion for these examples expli
itly.Interestingly for supersymmetri
 theories there exists an alternative, althoughless dire
t, approa
h to derive the low energy e�e
tive a
tion, whi
h we will 
alle�e
tive supergravity. The s
alar potential of any 4d N = 1 supersymmetri
 theoryis 
ompletely spe
i�ed by a K�ahler potential K and a holomorphi
 superpotentialW.For theories des
ending from string 
ompa
ti�
ations there exist general expressionsfor these quantities in terms of the internal geometry and the 
uxes [34, 33, 35, 36℄.For more work see also [37, 38, 39℄. Using these expressions, one only has to plug inthe values of the ba
kground 
uxes, the expansion of the geometri
 quantities J and
 that de�ne the SU(3)-stru
ture and the expansion of the form �eld potentials toobtain the whole s
alar potential.In this thesis we will make use of both the e�e
tive supergravity approa
h as wellas the KK redu
tion. The 
omputation of the s
alar masses of the 4d low energye�e
tive a
tion resulting from a KK redu
tion of the nilmanifold examples will be thetopi
 of 
hapter 4. The result will serve as a 
he
k on the potential obtained by thee�e
tive supergravity approa
h used in 
hapter 5. Having established 
onsisten
y of



2.3 In
ation in string theory 21both we will sti
k to the latter and 
ompute the s
alar potential for the 
oset spa
eexamples. We are then able to 
he
k whether it is indeed possible to stabilize all themoduli at tree level. Furthermore the knowledge of the full potential opens up thepossibility to look for 
osmologi
al appli
ations.2.3 In
ation in string theoryIn this se
tion we want to introdu
e the 
on
ept of in
ation and how it may berealized in string 
ompa
ti�
ations. By far the most important property of in
ationis that it 
an generate irregularities in the universe, whi
h may lead to the formationof stru
ture. The general properties of the spe
trum of in
ationary inhomogeneitieswere predi
ted long ago ([40℄) and are in beautiful agreement with re
ent observationsby WMAP ([41℄). However, the histori
al motivation for in
ation was rather di�erent.It has originally been formulated to solve the so 
alled 
atness-, horizon- and defe
tproblem. The �rst problem 
on
erns the spatial 
atness of the present-day universe,whi
h is suggested by observations of the temperature 
u
tuations in the CMB. These
ond problem asks why the initial universe is so very homogeneous. In parti
ular,the temperature 
u
tuations of the CMB only arise at the level of 1 part in 105, andthe question is why this temperature should be so in
redibly uniform a
ross the sky.A third problem, 
alled the defe
t problem3, 
an arise if one extrapolates the BigBang ba
k to times mu
h earlier than the epo
h of Big Bang Nu
leosynthesis. Itpredi
ts a mu
h larger abundan
e of magneti
 monopoles than observed.As an illustration we will just sket
h the �rst problem and how in
ation may solveit. The most general spa
e-time metri
 
onsistent with homogeneity and isotropyof our three-dimensional spa
e is given by the Friedmann-Robertson-Walker (FRW)metri
 ds2 = �dt2 + a2(t) � dr21� kr2 + r2(d� + sin2 �d�2)� ; (2.9)where k 
an take the values 1; 0 � 1 and a(t) is the time-dependent s
ale fa
tor ofthree-dimensional spa
e. If one now assumes the perfe
t 
uid form for the energy-momentum tensor of 
osmologi
al matter and applies the Einstein equation to theFRW metri
 one resulting equation is the Friedman equation
� 1 = kH2a2 ; (2.10)where 
 is the total energy density of the universe and the Hubble parameter H isde�ned by H � _aa ; (2.11)3Sometimes also known as the monopole problem.



22 The topi
s of this thesiswhere an overdot denotes a derivative with respe
t to time. We know observationallythat at at present time 
 is not hugely di�erent from unity. On the other hand aH isa de
reasing fun
tion of time during radiation or matter domination so that the righthand side of (2.10) in
reases. This means that at mu
h earlier times, e.g. at the timeof nu
leosynthesis, 
 must be yet 
loser to 1. The 
atness problem states that su
h�nely tuned initial 
onditions seem extremely unlikely.The fundamental idea of in
ation is that the universe undergoes a period of a

el-erated expansion, de�ned as a period when �a > 0, at early times. The e�e
t of thisa

eleration is to qui
kly expand a small region of spa
e to a huge size, diminishingspatial 
urvature in this pro
ess, making the universe extremely 
lose to 
at. By fur-ther examining the Einstein equation applied to the FRW metri
 and a perfe
t 
uidenergy-momentum tensor, one 
an show that in order to get �a > 0 one needs a mate-rial with the unusual property of a negative pressure. Su
h material may be given bys
alar �elds. In the last se
tion, we saw how 
uxes helped us to obtain masses, i.e. apotential, for the s
alar �elds of string 
ompa
ti�
ations. Here we learn that s
alar�elds might also provide a me
hanism to realize in
ation in the low energy theory.As we will demonstrate this is only possible if there exists a non-vanishing potentialfor the s
alar �elds. So, the non-vanishing s
alar potential indu
ed by the in
lusionof ba
kground 
uxes does not only allow for a solution to the moduli problem but italso provides a way to realize in
ation in string theory. Let us see how s
alars �elds
an realize in
ation.For simpli
ity we will spe
ialize to the homogeneous 
ase, in whi
h all quantitiesdepend only on 
osmologi
al time and set k = 1. The equation of motion for a s
alar�eld is given by ��+ 3 _aa _�+ dVd� = 0 ; (2.12)whi
h 
an be thought of the usual equation of motion for a s
alar �eld in Minkowskispa
e, but with a fri
tion term due to the expansion of the universe. The Friedmannequation with the s
alar �eld as the only energy sour
e is given by� _aa�2 = 13M2P �12 _�2 + V (�)� : (2.13)If _�2 � V (�) we get from this equationa(t) / epV (�) ; (2.14)so that the resulting expansion is 
ertainly a

elerating. In a loose sense the negligen
eof the kineti
 energy is equivalent to the �eld slowly rolling down its potential whi
hwe will now make more pre
ise.Te
hni
ally, the slow-roll approximation for in
ation involves negle
ting the ��term in (2.12) and the kineti
 energy of � 
ompared to the potential energy in (2.10).



2.3 In
ation in string theory 23The s
alar �eld equation of motion (2.12) and the Friedmann equation (2.13) thenbe
ome H2 ' V (�)3M2P ; 3H _� ' �V 0(�) ; (2.15)where a prime denotes a derivative with respe
t to �. These 
onditions will hold ifthe two slow-roll 
onditions are satis�ed. They are given by�� 1 and j�j � 1 ; (2.16)where the slow-roll parameters are de�ned as� � M2P2 �V 0V �2 and � �M2P V 00V : (2.17)It is easy to see that the slow-roll 
onditions yield in
ation. If one di�erentiatesthe de�nition of the Hubble-parameter with respe
t to time, one gets�aaH2 = _HH2 + 1 : (2.18)This should be larger than one to get in
ation whi
h means_HH2 > �1 : (2.19)But in slow-roll one has _HH2 ' � ; (2.20)whi
h will be small. Smallness of the �-parameter helps to ensure that in
ation willlast long enough.As already mentioned in the introdu
tion one may also hope to test string theoryby 
osmology. However, a dire
t test seems diÆ
ult be
ause any signal that arisesin string theory 
an also arise in a suitable low-energy e�e
tive QFT, as it is the
ase for any earth based experiment. But if one is extremely lu
ky, some high-energyphenomenon does not de
ouple at low energies. An example is given by 
osmi
strings and their dete
tion would 
ertainly be one of the greatest dis
overies evermade. A more 
onservative approa
h would be to 
he
k for signals, whi
h are generi
in string-derived e�e
tive Lagrangians, but are highly unnatural from a 
onventional�eld-theory viewpoint. For example in many string based in
ationary models theprimordial tensor signal is very small. Hen
e, an observation would eliminate themajority of presently known models of in
ation implemented in string theory.Let us brie
y sket
h how in
ationary models in string theory have been 
on-stru
ted so far. For the 
urrent status of in
ation in string theory see [42℄. Some
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s of this thesisearlier developments in string 
osmology relied on the hope that whatever me
hanismeventually stabilizes the moduli it would not have important side e�e
ts for models ofin
ation whi
h resulted in the two step strategy of �rst �xing all the moduli and theadding some additional ingredient to realize in
ation. Over the last years it turnedout that this hope is often violated so that the problem of moduli stabilization andin
ation in string theory are ultimatively linked together in a wide 
lass of models.The most prominent and detailed examples of in
ationary models in string theorywere obtained in type IIB 
ux 
ompa
ti�
ations with orientifolds and D3/D7-branes.As already mentioned, in these models the ba
krea
tion of the 
uxes on the geom-etry is rather mild, and the internal manifold turns out to be still 
onformal to aCalabi-Yau manifold. This allows one to still use the whole ma
hinery of Calabi-Yau
ompa
ti�
ations and makes it possible to obtain the 4d e�e
tive potential for thes
alar �elds. However, in these models the 
uxes turn out to stabilize only the dilatonand the 
omplex stru
ture moduli [17℄, while the K�ahler moduli stabilization requiresthe use of quantum e�e
ts, e.g. along the lines of KKLT [18℄. In addition one stillneeds a me
hanism to uplift the resulting AdS4 minimum to a dS va
uum. In [18℄this is done by the in
lusion of an D3-brane, whi
h breaks supersymmetry expli
itly.The role of the in
aton is played by the open string modulus 
orresponding to theseparation of a D3/D3. Another uplift me
hanism is given in [20℄ where one swit
heson some 
ux on a D7-brane, breaking supersymmetry only spontaneously. The in
a-ton is this time given by the separation of the D3-brane from a D7-brane. There alsoexist models in whi
h the in
aton is played by some 
losed string moduli, e.g. in thelarge volume 
ompa
ti�
ations of [43℄.In 
ontrast to type IIB string theory, 
omparatively little is known about in
ationin type IIA string theory. In [44℄ an example was given in whi
h all moduli werestabilized. This example only made use of 3-form NSNS-
ux, RR-
uxes, D6-branesand O6-planes. In addition to these ingredients [45, 46, 47℄ also in
luded geometri

uxes. The advantage of su
h models is their expli
itness and the possibility tostabilize the moduli at tree level in a well-
ontrolled regime (
orresponding to largevolume and small string 
oupling) with power law parametri
 
ontrol (instead oflogarithmi
 as in type IIB 
onstru
tions along the lines of [18℄). Possible 
osmologi
alappli
ations were subsequently explored in a number of papers, with surprisinglylittle su

ess. In [48℄, for instan
e, a simple F-term uplift to a meta-stable de Sitterva
uum based on an e�e
tive O'Raifeartaigh se
tor was found to be impossible. Usingsimilar arguments, the authors of [49, 50℄ 
ould also formulate a no-go theorem againstslow-roll in
ation and de Sitter va
ua for general type IIA models with only 3-formNSNS-
ux, RR-
uxes, D6-branes and O6-planes. As additional ingredients that 
an
ir
umvent this no-go theorem, the authors of [50℄ identi�ed geometri
 
uxes, NS5-branes and/or the more exoti
 non-geometri
 
uxes.4Sin
e the expli
it examples of string 
ompa
ti�
ations, given in this thesis, 
ontaingeometri
 
uxes, i.e. they deviate from the Calabi-Yau 
ase, they 
ir
umvent the4Re
ent progress obtaining in
ation with these ingredients appeared in [51℄.



2.4 Non-supersymmetri
 va
ua 25above mentioned no-go theorem and thus might allow for dS va
ua or in
ation. Wewill deal with this question in 
hapter 6.2.4 Non-supersymmetri
 va
uaMost string 
ompa
ti�
ations to four spa
e-time dimensions built so far preserve atleast N = 1 supersymmetry. The main reason to fo
us on supersymmetri
 stringva
ua is two-fold. First, supersymmetri
 va
ua are relatively easy to 
onstru
t. Theunderlying supersymmetry equations are �rst-order di�erential equations, whose so-lutions are known in several instan
es. Se
ond, from the phenomenologi
al point ofview, supersymmetri
 va
ua are a good starting point, sin
e a promising s
enario isto assume that spa
e-time supersymmetry is broken at the TeV s
ale, mu
h below astring s
ale or a 
ompa
ti�
ation s
ale not far from the Plan
k mass.On the other hand we know that supersymmetry is eventually broken in na-ture. Hen
e, a stringy realization of our observed world should involve, in somesense, a non-supersymmetri
 string va
uum. It is a 
hallenging task to �nd su
hnon-supersymmetri
 va
ua dire
tly be
ause one has to solve the full string equationsof motion. Even in the supergravity approximation, this implies solving generi
ally
umbersome se
ond order di�erential equations whose solutions are 
ompli
ated andto a large extent unknown. In pra
ti
e, however, one may still hope to break super-symmetry in a 
ontrolled way, by modifying a 
ertain supersymmetri
 ba
kground.One may then try to add some additional stru
ture to uplift these va
ua to dS in thesame way as one does for the supersymmetri
 va
ua.Another strong motivation for the study of AdS4 va
ua, independent of the amountof preserved supersymmetry, is related to the AdS/CFT 
orresponden
e [52℄. We onlywant to give a rough pi
ture of where the results obtained in this thesis might �nd anappli
ation in that 
orresponden
e. We already mentioned in the introdu
tion thatthere exist some remarkable dualities relating the di�erent string theories or M-theoryto ea
h other. However, with the AdS/CFT 
orresponden
e an entirely new 
lass ofdualities has been 
onje
tured. It relates 
onventional (non-gravitational) quantum�eld theories to string theories and M-theory. The AdS/CFT 
orresponden
es aredualities in the usual sense: when one des
ription is weakly 
oupled, the dual de-s
ription is strongly 
oupled. Thus, assuming that the 
onje
ture is 
orre
t, it allowsthe use of weak-
oupling perturbative methods in one theory to learn non-trivial fa
tsabout the strongly 
oupled dual theory.The basi
 idea of the AdS/CFT duality and its generalizations is that string theoryor M-theory in the near-horizon geometry of a 
olle
tion of 
oin
ident D-branes orM-branes is equivalent to the low-energy world-volume theory of the 
orrespondingbranes. To make this more pre
ise 
onsider for example type IIB string theory. Itslow energy e�e
tive a
tion is given by the type IIB supergravity theory given in(1.3). Dp-branes arise as solitoni
 solutions to the equations of motion resultingfrom this a
tion. Be
ause it is the 
ase that is best understood, let us take as an
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s of this thesisexample D3-branes. They �ll the four spa
e-time dimensions and have six transversedire
tions. The resulting metri
 des
ribes asymptoti
ally a 
at Minkowski spa
e,but taking the near-horizon limit leads to a spa
e of the form AdS4 � S5. The
orresponden
e now states that type IIB string theory on this near-horizon spa
e isdual to the D3-brane world-volume theory, whi
h is given by N = 4 super Yang-Millstheory. The string theory ba
kground 
orresponds to the ground state of the gaugetheory, and ex
itations and intera
tions in one des
ription 
orrespond to ex
itationsand intera
tions in the dual des
ription. In this spe
i�
 
ase, for example, one mighthope to get insight into the strong 
oupling limit of a 4d gauge theory su
h as QCD bystudying the weakly 
oupled string theory. Of 
ourse, realisti
 models of QCD shouldbe able to explain 
on�nement and 
hiral symmetry-breaking, properties whi
h arenot present in N = 4 super Yang-Mills theories due to the large amount of unbrokensupersymmetry. However, there is a variety of ways to break these symmetries so asto get ri
her models.During the last years another example attra
ted more and more attention, namelythat of M2-branes arising as solitoni
 obje
ts in eleven-dimensional supergravity, thelow-energy theory of M-theory. A non-perturbative understanding of M-theory is ofgreat interest from the theoreti
al side sin
e M-theory is believed to be the unifyingtheory of all string theories. The near-horizon geometry is given by AdS4�S7 and onlyvery re
ently there was progress in the understanding of the world-volume theory of
oin
ident M2-branes [53, 54℄. Again one 
an hope to learn something about the �eldtheory side from the gravity side. Three dimensional 
onformal �eld theories 
ouldfor example des
ribe interesting 
onformal �x points in 
ondensed matter systems.But also the other dire
tion seems now interesting. The AdS4/CFT3 
orresponden
eopens up the possibility to study some portion of the lands
ape of 4d ba
kgrounds ofstring theory with negative 
osmologi
al 
onstant.In [54℄ a three-dimensional Chern-Simons-matter theory with gauge group U(N)k�U(N)�k, where k denotes the level of the Chern-Simons theory, were 
onstru
tedwhi
h expli
itly realized N = 6 super
onformal symmetry. It was argued that thistheory at level k des
ribes the low energy limit of N M2-branes probing a C4=Zksingularity. At large N this theory is then dual to M-theory on AdS4 � S7=Zk. Thisdes
ription is weakly 
urved for N � k5, while for larger values of k a 
ir
le inthe M-theory des
ription be
omes small, and the more appropriate des
riptions is interms of type IIA string theory on AdS4�CP3. These gravity duals are old solutions[55, 56℄ that, of 
ourse, also have N = 6 supersymmetry and only involve 
uxes forF2 and F6, so in parti
ular no 
ux for F0.In [57℄ it was realized that by allowing for di�erent levels k1 and k2 for ea
h U(N)fa
tor in the gauge groups of the Chern-Simons theory it was possible to relate thedi�eren
e of both to the F0 
ux: F0 = k1�k2, leading to a �eld theory interpretationof the F0 
ux on the gravity side. And in fa
t in [58, 59℄ solutions of type IIA stringtheory with non-vanishing F0 have been 
onstru
ted on a spa
e whose topology isCP3. These solutions have only N = 1 supersymmetry but they happen to have
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e that, although dis
retized by 
ux quantization, gets arbitrarily
lose to the N = 6 solutions of [55, 56℄. Exploiting this fa
t, Chern-Simons theorieshave been 
onstru
ted in [57℄ whi
h are, in a sense, small deformations of the originalN = 6 Chern-Simons theory. Four di�erent ways of deforming this theory havebeen identi�ed, leading to N = 0; 1; 2; 3 supersymmetri
 Chern-Simons theories. Thegravity duals of the N = 2; 3 
ases have been 
onstru
ted in [60℄ but they will notplay any role in this thesis. The gravity duals for the N = 0; 1 
ases have beenidenti�ed already in [57℄. As anti
ipated, the N = 1 
ase 
orresponds to the solutionof [58, 59℄, whereas the N = 0 solution was 
onstru
ted in [57, 61℄. It is here werethe results of this thesis might �nd their appli
ation. Among others we will 
onsider
ompa
ti�
ations of type IIA string theory on a spa
e that is topologi
ally equivalenttoCP3. In 
hapter 3 we will reprodu
e the solution found in [58, 59℄. In 
hapter 7 wewill then try to �nd non-supersymmetri
 va
ua (N = 0) for this parti
ular 
ase. Wewill �nd the N = 0 solution of [57℄ as well as some other known non-supersymmetri
solutions given in [62, 63℄ and [64℄. But we will also �nd new non-supersymmetri
solutions not dis
ussed in the literature before.2.5 Outline of this thesisAfter the general introdu
tion into string theory in 
hapter 1 and the somewhatmore detailed 
rash-
ourse on 
ux 
ompa
ti�
ations and their relation to in
ation in
hapter 2, we now make things 
on
rete for the 
ase of type IIA string theory.In 
hapter 3 we solve the equations of motion for the ten-dimensional �elds forthe 
ase in whi
h the 10d ba
kground spa
e takes the form (2.1) with the externalpart being 4d AdS spa
e-time and the internal manifold has SU(3)-stru
ture. To doso we will have to solve the supersymmetry variations (2.2) and to impose the Bian
hiidentities for the form �elds. Furthermore, we will 
omment on the introdu
tion ofsour
es su
h as D-branes and O-planes in our equations. The result will be a set of
onditions whi
h have to be satis�ed by the internal manifold in order to allow fora supersymmetri
 va
uum of type IIA supergravity. Finally we will have to makesure that our 
onstru
tion is self-
onsistent, i.e. that we are in a parameter regimein whi
h the supergravity des
ription is valid. We will present solutions on a 
lassof manifolds, namely nilmanifolds and 
oset spa
es introdu
ed in appendix C, whi
hare tra
table enough to �nd su
h va
ua expli
itly. This 
onsists of two steps. First,we will have to make sure that a given manifold admits an SU(3)-stru
ture at all,and, se
ond, this manifold has to meet the derived 
onditions for a supersymmetri
va
uum. We will see that this leaves only a few examples. This 
hapter is mostlybased on [59℄ while some results appeared in [25℄. Based on this 
hapter, we willpursue three dire
tions in this thesis, whi
h all 
an be studied independently.First of all, having found su
h expli
it va
uum solutions, we will perform in 
hap-ter 4 for the nilmanifolds the KK redu
tion of the 10d 
u
tuations around the va
uumand 
ompute the masses for the 4d s
alar �elds. In 
hapter 5 we will �rst use the
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s of this thesise�e
tive supergravity approa
h to 
ompute the s
alar potential for the nilmanifoldsand 
ompare the resulting masses of the two approa
hes. The 
onsisten
y with theKK redu
tion will provide a non-trivial 
he
k on the e�e
tive supergravity approa
h.Having 
on�rmed its appli
ability we will use it to 
ompute the s
alar potential forthe 
oset spa
es. This 
hapter is entirely based on [25℄.Se
ondly, we want to study the question of implementing in
ation in the obtainedlow energy e�e
tive theories. This amounts to analyze the s
alar potentials and theirappli
ability for slow-roll in
ation. In the �rst part of 
hapter 6 we are able toprove in most 
ases the impossibility of implementing in
ation. For that we only usethe geometry of the internal manifold whi
h makes this part independent from thepre
eding 
hapters. In a se
ond part we will study the only 
ase for whi
h we werenot able to ex
lude in
ation and in this 
ase we need the potential 
omputed before.This 
hapter is based on [26℄.Finally, in 
hapter 7 we will 
onstru
t non-supersymmetri
 va
ua for some spe-
i�
 
osets of the pre
eding 
hapters. These examples play a prominent role in theAdS4/CFT3 
orresponden
e, and our results should be of interest in that 
ontext.The results of this 
hapter will appear in [27℄.We will summarize and 
on
lude in 
hapter 8. De�nitions and 
onventions,theoreti
al ba
kground material and 
omputational details are delegated to the ap-pendi
es. In appendix A we derive the equations of motion for type II supergravity.In appendix B we brie
y review generalized geometry whi
h allows for a very el-egant formulation of the N = 1 supersymmetry 
onditions for type II theories. Inappendix C we introdu
e the manifolds that we study in this thesis. Finally, inappendix D we 
omment on a 
omputational subtlety that we will en
ounter later.



Chapter 3Supersymmetri
 type IIA AdS4
ompa
ti�
ationsIn this 
hapter we review the 
onditions that lead to a supersymmetri
N = 1 va
uumof type IIA supergravity, i.e. a solution of the equations of motion, with an AdS4spa
e-time and an SU(3)-stru
ture manifold as internal spa
e. Let us mention thatup to now all the known expli
it ten-dimensional examples of N = 1 supersymmetri

ompa
ti�
ations to AdS4 fall within the 
lass of type IIA SU(3)-stru
ture 
ompa
t-i�
ations and T-duals thereof. By analyzing integrability 
onditions, it was provedin [65, 66℄ that, in the 
ontext of type II supergravity, a ba
kground that is super-symmetri
 and whose 
uxes satisfy Bian
hi identities and the equations of motionis a solution to the full equations of motion (whenever there are no mixed external-internal 
omponents of the Einstein tensor, whi
h will be our 
ase). We also dis
usshow to obtain a 
ontrolled parameter regime in whi
h the string 
oupling is small andsupergravity is valid su
h that these va
ua of supergravity lift to true va
ua of stringtheory. Finally, we give the list of all known manifolds for whi
h it is possible to �ndexpli
it solutions. These manifolds are nilmanifolds and 
oset spa
es whose propertieswe review in appendix C. For additional ba
kground material and a summary of our
onventions the reader is referred to appendi
es A and B.3.1 Conditions for a supersymmetri
 va
uumAs sket
hed in the last 
hapter for an N = 1 ansatz, the supersymmetry variations(2.2) of the fermioni
 �elds relate the internal geometry to the 
uxes. By dire
tinspe
tion of the these variations, the most general form of N = 1 
ompa
ti�
ationsof IIA supergravity to AdS4 with SU(3)-stru
ture was given in [66℄. There existsa framework for IIA/IIB supergravities, 
alled generalized geometry, whi
h allowsfor a very elegant and 
ompa
t des
ription of the supersymmetry 
onditions for boththeories leading to the same result. Sin
e we do not really need and use this frameworkin this thesis, we will only mention it at some pla
es an refer to appendix B for more
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 type IIA AdS4 
ompa
ti�
ationsdetails. We review the derivation of the results of [66℄ using generalized geometry inappendix B.1 and just state here the result. It turns out that the va
ua must have
onstant warp fa
tor and 
onstant dilaton1, �. Setting the warp fa
tor to one, thesolutions of [66℄ are given by: H = 2m5 e�Re
 ; (3.1a)F2 = f9J + F 02 ; (3.1b)F4 = fvol4 + 3m10 J ^ J ; (3.1
)Wei� = �15e�m+ i3e�f ; (3.1d)where H is the NSNS three-form, and Fn denote the RR n-forms. Furthermore, (J ,
) is the SU(3)-stru
ture (de�ning a metri
, see appendix B.2 for de�nitions andfurther details) of the internal six-manifold , i.e. J is a real two-form, and 
 is ade
omposable 
omplex three form su
h that:
 ^ J = 0 ; (3.2a)
 ^ 
� = 4i3 J3 6= 0 : (3.2b)f , m are 
onstants parameterizing the solution: f is the Freund-Rubin parameter,while m is the mass of Romans' supergravity [67℄ { whi
h 
an be identi�ed with F0in the `demo
rati
' formulation [29℄. ei� is the 
onstant of proportionality betweenthe internal supersymmetry generators: �(2)+ = ei��(1)+ . This re
e
ts the fa
t that weare dealing with an SU(3)-stru
ture whi
h arises as a spe
ial 
ase of the more generalSU(3)�SU(3)-stru
ture as explained in appendix B. The 
onstant W is de�ned bythe following relation for the AdS4 Killing spinors, ��,r��� = 12W
��+ ; (3.3)so that the radius of AdS4 is given by jW j�1. The two-form F 02 is the primitive partof F2 (i.e. it is in the 8 of SU(3)).Furthermore, for the above solutions most of the torsion 
lasses have to vanishW+1 =W+2 =W3 =W4 =W5 = 0 ; (3.4)where the plus sign denotes the real part. The only non-zero torsion 
lasses of theinternal manifold are W�1 = �4i9 e�f ; W�2 = �ie�F 02 ; (3.5)1For the 
ase of vanishing Romans mass non-
onstant warp fa
tor and dilaton are possible. Wewill not dis
uss this in this thesis.



3.1 Conditions for a supersymmetri
 va
uum 31where we have de�ned W�1;2 = iImW1;2. Thus (2.5) reads (see also (B.19))dJ = �32 iW�1 Re
 ; (3.6a)d
 =W�1 J ^ J +W�2 ^ J : (3.6b)The only extra 
ondition that follows from the Bian
hi identities and equations ofmotion of the form �elds is given by:dF 02 = ( 227f 2 � 25m2)e�Re
� j6 ; (3.7)where we allow for a non-vanishing sour
e-term, j6, for D6-branes/O6-planes on theright-hand side. A somewhat deli
ate feature of our models is that the sour
es haveto be smeared. The reason for this is that the supersymmetry 
onditions of [66℄ (for
onstant Romans mass) for
e the warp fa
tor to be 
onstant. Considering the ba
k-rea
tion of a lo
alized orientifold, on the other hand, one would expe
t a non-
onstantwarp fa
tor, at least 
lose to the orientifold sour
e. A possible way around this
ontradi
tion is that taking into a

ount �0-
orre
tions might allow for a non-
onstantwarp fa
tor (see also [68℄ for an alternative dis
ussion). A helpful interpretation ofthe smearing of a lo
alized sour
e, whose Poin
ar�e dual is given, roughly-speaking, bya delta-fun
tion, is that it 
orresponds to Fourier-expanding the delta-fun
tion anddis
arding all but the zero mode. In this thesis, we will adopt the pragmati
 point ofview that the smeared orientifolds are an unavoidable feature of our models that is
onsistent with a Kaluza-Klein redu
tion in the approximation where only the lowestmodes are kept.As already mentioned in the introdu
tion the in
lusion of sour
es is motivated byseveral reasons. First, we will �nd examples, whi
h do not allow for an N = 1 va
uumwithout sour
es. Se
ond, as we will see in the next 
hapter, in whi
h we 
ompute thee�e
tive theories of these va
ua, they might provide a me
hanism to de
ouple the KKtower. Finally, we are interested in 4d, N = 1 supersymmetri
 low energy e�e
tivetheories, for whi
h O-planes are ne
essary. The question of how to asso
iate orientifoldinvolutions to a smeared sour
e turns out to be somewhat subtle. We will make thenatural assumption that the di�erent orientifolds 
orrespond to the de
omposable(simple) terms in the orientifold 
urrent. The rationale and details behind this areexplained in appendix B.3. The general properties of supersymmetri
 sour
es andtheir 
onsequen
es for the integrability of the supersymmetry equations were re
entlydis
ussed in [69℄ within the framework of generalized geometry. It was shown in thisreferen
e that, under 
ertain mild assumptions, supersymmetry guarantees that theappropriately sour
e-modi�ed Einstein equation and dilaton equation of motion areautomati
ally satis�ed if the sour
e-modi�ed Bian
hi identities are satis�ed. For thisto work the sour
e must be supersymmetri
, whi
h means it must be generalized
alibrated as in [70℄.
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 type IIA AdS4 
ompa
ti�
ationsBut for the moment let us imagine the 
ase j6 = 0. For a given geometry to
orrespond to a va
uum without orientifold sour
es, we �nd from plugging (3.7) into(3.5) and using (B.22) together with the result below (B.24) that the following boundon (W�1 ;W�2 ) has to be satis�ed165 e2�m2 = 3jW�1 j2 � jW�2 j2 � 0 ; (3.8)where we have de�ned j�j2 := ��mn�mn, for any two-form �.Still assuming j6 = 0 we get from (3.5) and (3.7)dW�2 / Re
 : (3.9)So in the absen
e of sour
es the ne
essary and suÆ
ient 
onditions for N = 1
ompa
ti�
ation of type IIA supergravity to four-dimensional anti-de Sitter spa
e onmanifolds with SU(3)-stru
ture are the 
onditions (3.4), (3.8) and (3.9) on the torsion
lasses of the internal six-dimensional manifold. The 
uxes are then given by (3.5)and (3.1). De�ning � as the intrinsi
 torsion these 
onditions are summarized in table3.1. � 2 W�1 �W�23jW�1 j2 � jW�2 j2dW�2 / Re
Table 3.1: Ne
essary and suÆ
ient 
onditions on the internal six-dimensional SU(3)-stru
ture manifold for N = 1 
ompa
ti�
ation to four-dimensional anti-de Sitterspa
e, in the absen
e of sour
es.However, the se
ond 
onstraint (3.8) 
an be relaxed by allowing for an orientifoldsour
e, j6 6= 0. As a parti
ular example, let us 
onsider:j6 = �25e���Re
 ; (3.10)where � is a dis
rete, real parameter of dimension (mass)2, so that �� is proportionalto the orientifold/D6-brane 
harge (� is positive for net orientifold 
harge and negativefor net D6-brane 
harge). In this thesis we will make the assumption that we 
antune this parameter by adding orientifolds or D-branes. For D-branes this shouldnot be a problem sin
e they are physi
al obje
ts whose number we may vary. Fororientifolds, however, this seems problemati
 sin
e they arise as �xpoint lo
i of ageometri
 symmetry. In a true string 
ompa
ti�
ation their 
harge is a �xed number.In our supergravity approximation we will 
onsider them as 
harged obje
ts in thesame way as the D-branes and it remains an open question, whi
h values for the
harge are possible from string theory. The addition of the sour
e term in (3.10) was
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 va
uum 33�rst 
onsidered in [71℄. Eq. (3.10) above guarantees that the 
alibration 
onditions,whi
h for D6-branes/O6-planes readj6 ^ Re
 = 0 ; j6 ^ J = 0 ; (3.11)are satis�ed and thus the sour
e wraps supersymmetri
 
y
les. The bound (3.8)
hanges to e2�m2 = �+ 516 �3jW�1 j2 � jW�2 j2� � 0 : (3.12)Sin
e � is arbitrary, the above equation 
an always be satis�ed, and therefore nolonger imposes any 
onstraint on the torsion 
lasses of the manifold. For this form ofthe sour
e-term, the third 
ondition in table 3.1, (3.9), still applies.Furthermore it is also possible to relax this 
ondition by the in
lusion of moregeneral supersymmetri
 orientifold six-plane sour
es that do not satisfy eq. (3.10).Requiring this sour
e to satisfy the 
alibration 
onditions (3.11), we �nd that it isnow of the following form: j6 = �25e���Re
 + w3 ; (3.13)with w3 a primitive (2,1)+(1,2)-form. From the Bian
hi identity (3.7) we �ndw3 = �ie��dW�2 ���(2;1)+(1;2) ; (3.14)and (3.12) still un
hanged.In appendix B.3 we will explain how to asso
iate orientifold involutions to asmeared sour
e. Under ea
h orientifold involution the dilaton, metri
 and 
uxesmust transform as follows [69℄:Even : ��e� = e� ; ��F0 = F0 ; ��F4 = F4 ;Odd : ��H = �H ; ��F2 = �F2 ; (3.15a)whereas the SU(3)-stru
ture transforms asEven : ��Im
 = Im
 ;Odd : ��Re
 = �Re
 ; ��J = �J : (3.15b)So if one allows for sour
es of the type des
ribed above the only non-trivial 
on-dition for an N = 1 va
uum of type IIA supergravity on a given manifold withSU(3)-stru
ture is the �rst one in table 3.1, whi
h is (3.4). The 
uxes then followfrom (3.5) and (3.1). The Bian
hi identity (3.7) tells us if we need sour
es and whetherthey are of the form (3.10) or even (3.13). The sour
e parameter � is bounded frombelow by (3.12).
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 type IIA AdS4 
ompa
ti�
ations3.2 Hierar
hy of s
alesTo promote a given supergravity va
uum to a trustworthy approximation of a stringtheory va
uum we need to show that we 
an 
onsistently take the string 
oupling
onstant to be small (gs = e� � 1), so that string loops 
an be safely ignored, andthat the volume of the internal manifold is large in string units (Lint=l � 1, whereLint is the 
hara
teristi
 length of the internal manifold), so that �0-
orre
tions 
an benegle
ted. This 
an be seen by essentially employing the following s
aling argument:In the full quantum theory, all 
uxes have to be quantized a

ording to1lp�1 ZCp Fp = np ; (3.16)where l := 2�p�0, Cp is a 
y
le in the internal manifold, and np 2 Z. By 
ombiningthe �rst equation in (3.1) with (3.6a) we see that the NSNS three-form turns outto be exa
t in our models, hen
e its integral over any internal three-
y
le vanishes;it therefore suÆ
es to impose (3.16) for the RR 
uxes. The issue of quantization isstudied in more detail in [58℄. Let fp=(gsLint) be the norm of the 
ux density Fp, forsome numbers fp depending on the internal geometry (but not on the overall s
aleLint). The quantization 
onditions (3.16) imply:gs = (f 30 f4) 14 (n30n4)� 14 ; Lintl = �f0f4� 14 �n4n0� 14 ; (3.17)together with n2pn0n4 = f2pf0f4 ; n0n6n2n4 = f0f6f2f4 : (3.18)It 
an then be easily veri�ed that, given a solution fnpg to the quantization 
ondi-tions (3:16), there are several di�erent possible s
alings np ! N�pnp, for N; �p 2 N ,whi
h leave the fp's invariant and at the same time ensure that gs is parametri
allysmall while Lint=l is parametri
ally large (with large parameter N). This s
hemati
argument 
an be made pre
ise, by taking into a

ount the spe
i�
s of the geometryof ea
h internal manifold, as in [58℄. Despite the fa
t that we are allowing for large
ux quanta, it 
an be shown that higher-order 
ux 
orre
tions 
an also be negle
ted.Indeed it is not diÆ
ult to see that the parameter jgsFpj2, whi
h 
ontrols the size ofthese 
orre
tions, s
ales with a negative power of the large parameter N .3.3 Solutions on nilmanifoldsIn the next two se
tions we want to use the manifolds introdu
ed in appendix C to
onstru
t expli
it examples of the type of 
ompa
ti�
ations reviewed in se
tion 3.1.



3.3 Solutions on nilmanifolds 35By trying to solve the 
ondition for a supersymmetri
 va
uum, one would like to �ndmanifolds on whi
h one 
an expli
itly 
ompute the exterior derivatives appearing in(3.6). Examples for su
h manifolds are given by nilmanifolds and 
oset spa
es withthe restri
tion to left-invariant forms, as explained in appendix C. Sin
e one obtainsa global des
ription of these manifolds it be
omes quite easy to expli
itly solve thesupersymmetry 
onditions (3.1). We review the results of [25℄ and [59℄ where thesolutions for nilmanifolds and 
oset spa
es have been presented, respe
tively.As follows from the dis
ussion of se
tion 3.1, it suÆ
es to look for all possible six-dimensional nilmanifolds whose only non-zero torsion 
lasses are W�1;2. A systemati
s
an yields exa
tly two possibilities in type IIA, namely the six-torus and the nilman-ifold 4.7 of Table 4 of [72℄ (also known as the Iwasawa manifold), whi
h (for somevalues of the parameters) turn out to be related by T-duality along two dire
tions2.Let us note that 
ondition (3.8) turns out to be too stringent to be satis�ed for anynilmanifold whose only non-zero torsion 
lasses are W�1;2. This implies that withoutorientifolds there are no solutions on nilmanifolds. To obtain a solution the mostgeneral ansatz for (J , 
) would involve all 15 two-forms and 20 three-forms. It turnsout that some 
omponents of J and 
 are related by 
oordinate transformations,whi
h have to be 
ompatible with the stru
ture 
onstants. This allows one to redu
ethe number of forms appearing in 
, and it is always possible to bring J into theform J = ae1 ^ e2 + be3 ^ e4 + 
e5 ^ e6 .With this ansatz we impose the SU(3)-stru
ture 
onditions (3.2) (or (B.17)) andwe have to demand that the resulting metri
 (B.28) impli
itly de�ned by (J , 
) ispositive de�nite. Next we impose the 
onditions (3.4) on the torsion 
lasses. Whenthere is a solution, we 
an read of the 
uxes by using (3.5) in (3.1). Finally, we readof the form of the sour
e term from (3.7), where (3.12) puts a lower bound on thesour
e parameter �. One 
an then 
he
k that the resulting orientifold proje
tion is
onsistent with the resulting ba
kground. In this way one obtains the following twosolutions.3.3.1 The T6 solutionOur �rst IIA solution is obtained by taking the internal manifold to be a six-dimensionaltorus. Let us de�ne a left-invariant basis feig su
h that:dei = 0; i = 1; : : : ; 6 : (3.19)On the torus we 
an just 
hoose ei = dyi, where yi are the internal 
oordinates. TheSU(3)-stru
ture is given byJ = e12 + e34 + e56 ;
 = (ie1 + e2) ^ (ie3 + e4) ^ (ie5 + e6) ; (3.20)2We also found a type IIB solution with stati
 SU(2)-stru
ture on the nilmanifold 5.1, whi
hforms the intermediate step after one T-duality.
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 type IIA AdS4 
ompa
ti�
ationsIt readily follows that all torsion 
lasses vanishW�1 = 0 ; W�2 = 0 : (3.21)Note, however, that there are non-vanishing H and F4 �elds given by (3.1)H = 25e�m �e246 � e136 � e145 � e235� ;F4 = 35m �e1234 + e1256 + e3456� : (3.22)From (3.7) we �nd that there is an orientifold sour
e of the type (3.10) with � =e2�m2, whi
h 
orresponds to smeared orientifolds along (1; 3; 5), (2; 4; 5), (2; 3; 6) and(1; 4; 6). The 
orresponding orientifold involutions areO6 : e2 ! �e2 ; e4 ! �e4 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e3 ! �e3 ; e6 ! �e6 ;O6 : e1 ! �e1 ; e4 ! �e4 ; e5 ! �e5 ;O6 : e2 ! �e2 ; e3 ! �e3 ; e5 ! �e5 : (3.23)
3.3.2 The Iwasawa solutionThe se
ond IIA solution is obtained by taking the internal manifold to be the Iwasawamanifold. The left-invariant basis is de�ned by:dea = 0; a = 1; : : : ; 4 ;de5 = e13 � e24 ;de6 = e14 + e23 ; (3.24)and is usually denoted by (0; 0; 0; 0; 13 � 24; 14 + 23). Up to basis transformationsthere is a unique SU(3)-stru
ture satisfying the supersymmetry 
onditions of se
tion3.1: J = e12 + e34 + �2e65 ;
 = � (ie5 � e6) ^ (ie1 + e2) ^ (ie3 + e4) ; (3.25)In the left-invariant basis, the metri
 is given by g = diag(1; 1; 1; 1; �2; �2), and thenon-vanishing torsion 
lasses are given byW�1 = �2i3 � ;W�2 = �4i3 � �e12 + e34 + 2 �2 e56� : (3.26)
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oset spa
es 37By using (3.5) the 
uxes follow from (3.1). Furthermore we 
ompute from (3.26)jW�1 j2 = 49�2 ; jW�2 j2 = 643 �2 : (3.27)We therefore �nd from (3.12) a non-zero net orientifold six-plane 
harge� � 254 �2 : (3.28)Finally one 
an verify that dW�2 is proportional to Re
:dW�2 = �8i3 �2Re
 ; (3.29)whi
h means we have a sour
e of the form (3.10), and the orientifold involution is thesame as in (3.23).The solution (3.25) has one 
ontinuous parameter, �, 
orresponding essentiallyto the �rst torsion 
lass W�1 . An additional se
ond parameter 
an be introdu
edby noting that the de�ning SU(3)-stru
ture equations (B.17) are invariant under theres
aling J ! 
2J ; 
! 
3
 : (3.30)The additional s
alar 
 is related to the volume modulus via vol6 = �
6�2e1:::6, as
an be seen from eq. (B.18).For the 
ase m = 0, for whi
h the bound (3.28) is saturated, the above example
an also be obtained by performing two T-dualities on the torus solution of se
tion3.3.1, as 
an be 
he
ked expli
itly by using the T-duality rules of [73℄. We �nd thenthat � = 25mT e� where mT is the mass parameter of the dual torus solution.3.4 Solutions on 
oset spa
esWe will now present the IIA solutions of the type des
ribed in se
tion 3.1 where the in-ternal manifold is a 
oset,M6 = G=H, equipped with a left-invariant SU(3)-stru
ture,introdu
ed in appendix C. They 
an be found in [59℄, whi
h also in
orporates so-lutions that were already known [55, 74, 75, 76, 58, 77, 78℄ into the single unifyingframework of left-invariant SU(3)-stru
tures on 
oset spa
es. In [58℄ an alternativedes
ription in terms of twistor bundles is used for the 
osets of se
tions 3.4.2 and 3.4.3.Although this des
ription does not allow to des
ribe the 
omplete parameter spa
eon the 
oset SU(3)�U(1)SU(2) , it is more a

urate for the nearly Calabi-Yau limit in whi
h,as we will see, the shape parameters take negative values and the 
oset des
ription isnot valid anymore.We will pro
eed in the same way as for the nilmanifolds, although for most ofthe 
osets we do not need to gauge away some of the possible forms appearing in the
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 type IIA AdS4 
ompa
ti�
ationsansatz for (J , 
), be
ause the set of leftinvariant forms is very restri
ted right fromthe start. We will see this in the examples.So we start by imposing the SU(3)-stru
ture 
onditions (3.2) (or (B.17)) for themost general ansatz for (J , 
). The resulting metri
 (B.28), impli
itly de�ned by(J , 
), has to be positive de�nite. Next we impose (3.4). In 
ase of a solution, the
uxes are given by (3.1) where we have to use (3.5). The sour
e term follows from(3.7), where (3.12) puts a lower bound on the sour
e parameter �. Again we have toshow that the resulting ba
kground is 
onsistent with the orientifold proje
tion. Thismeans in parti
ular that the stru
ture 
onstant tensor following from (C.20) has tobe even under the orientifold involution in order to ensure that the exterior derivativeis even.For the 
oset spa
es, we will �nd solutions that admit � � 0, i.e. solutions withzero orientifold or even with net D6-brane 
harge. However, we will always assumethat there are orientifolds present in our 
onstru
tion, whose 
harge may then bebalan
ed by an appropriate number of D6-branes. In this way we will always end upwith an N = 1 theory. We obtain the following �ve solutions.3.4.1 The G2SU(3) solutionThe G2 stru
ture 
onstants 
an be written as:f 163 = f 145 = f 253 = f 264 = 1p3 ;f 736 = f 745 = f 853 = f 846 = f 956 = f 934 = f 1016 = f 1052= f 1151 = f 1162 = f 1241 = f 1232 = f 1331 = f 1324 = 12 ;f 1443 = f 1456 = 12p3 ; f 1421 = 1p3 ;f i+6j+6;k+6 = fGMijk ;
(3.31)

where fGMijk are the Gell-Mann stru
ture 
onstants.The G-invariant two-forms and three-forms are spanned byfe12 � e34 + e56g ; (3.32)f� = e245 + e135 + e146 � e236; �̂ = �e235 � e246 + e145 � e136g ; (3.33)respe
tively3, and there are no invariant one-forms.3�̂ 
an be found by lowering one index of the purely Ki-part of the stru
ture 
onstant tensorwith the Cartan-Killing metri
, and � is its Hodge dual, so they are both left-invariant. Moreover,sin
e the stru
ture 
onstant tensor should be even under all orientifold involutions and the Hodgedual is odd, we �nd that �̂ is even and � odd. We 
an immediately 
on
lude that they shouldbe proportional to Im
 and Re
 respe
tively. Of 
ourse a priori there 
ould have been moreleft-invariant three-forms.



3.4 Solutions on 
oset spa
es 39The most general solution is then given byJ = a(e12 � e34 + e56) ;
 = d �(e245 + e146 + e135 � e236) + i(e145 � e246 � e235 � e136)� ; (3.34)with d2 = a3 ; normalization of 
 ;a > 0 ; metri
 positivity ; (3.35)su
h that a, the overall s
ale, is the only free parameter. For the non-vanishingtorsion 
lasses (3.5) we �ndW�1 = �i 2ap3d ; W�2 = 0 : (3.36)Thus, the only possibility for this 
oset is the nearly-K�ahler geometry. It will be
onvenient to isolate the s
ale a and introdu
e the redu
ed 
ux parameters~m � a1=2e�m ; ~f � a1=2e�f ; ~� � a� ; (3.37)in terms of whi
h the ba
kground 
uxes in (3.1) take the form:H = 2 ~m5 a(e245 + e135 + e146 � e236) ;e�F2 = a1=22p3 �e12 � e34 + e56� ;e�F4 = a�1=2 ~fvol4 � 35 ~ma3=2 �e1234 � e1256 + e3456� : (3.38)Furthermore, we 
ompute for the sour
e term (3.7)e�j6 = �25a1=2~�(e245 + e135 + e146 � e236) ; (3.39)whi
h shows that j is of the form (3.10), as was already 
lear from (3.36) or the fa
tthat we only have one odd three-form. The bound (3.12) gives~m2 � ~� = 5a34d2 (3.40)As mentioned before, ~� > 0 (, � > 0) 
orresponds to net orientifold 
harge. Solu-tions with � � 0 | i.e. with net D-brane 
harge | are possible, but in that 
ase westill assume that smeared orientifolds are present, whi
h then should be 
ompensatedby introdu
ing enough smeared D-branes. It 
an be easily read o� from j6 that theorientifolds are along the dire
tions (1; 3; 6); (2; 4; 6); (2; 3; 5) and (1; 4; 5), leading tofour orientifold involutions. One 
an 
he
k that all �elds and the SU(3)-stru
turetransform as in (3.15) under ea
h of the orientifold involutions. Also, the stru
ture
onstant tensor is even.
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 type IIA AdS4 
ompa
ti�
ations3.4.2 The Sp(2)S(U(2)�U(1)) solutionThe stru
ture 
onstants are totally antisymmetri
. The non-zero ones are given by:f 541 = f 532 = f 613 = f 642 = 12 ; f 756 = f 1089 = �1 ;f 721 = f 743 = f 814 = f 832 = f 913 = f 924 = f 1034 = f 1021 = 12 ; (3.41)
orresponding to the nonmaximal embedding. The G-invariant two-forms and three-forms are spanned byfe12 + e34; e56g ; (3.42)f� = e245 � e135 � e146 � e236; �̂ = e235 + e246 + e145 � e136g ; (3.43)respe
tively, and there are no invariant one-forms. Again the sour
e (if present) mustbe proportional to Re
. The most general solution is then given byJ = a(e12 + e34)� 
e56 ;
 = d �(e245 � e236 � e146 � e135) + i(e246 + e235 + e145 � e136)� ; (3.44)with a > 0 ; 
 > 0; metri
 positivity ;d2 = a2
 ; normalization of 
 ; (3.45)su
h that a and 
 are the free parameters. For the non-vanishing torsion 
lasses(3.5) we �nd W�1 = i2a + 
3d ;W�2 = � 2i3d �a(a� 
)(e12 + e34) + 2
(a� 
)e56� ;jW�2 j2 = 163a2
(a� 
)2 : (3.46)
The nearly-K�ahler limit 
orresponds to setting a = 
. The two parameters 
orrespondto the overall s
ale a and a parameter � � 
=a that measures the deviation from thenearly-K�ahler limit, and we 
an make 
onta
t with the results of [58℄ as in [59℄.
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oset spa
es 41For the ba
kground 
uxes and sour
e we �nd in terms of the redu
ed 
ux param-eters (3.37): H = 2 ~m5 a�1=2(e245 � e135 � e146 � e236) ;e�F2 = a1=24 ��1=2 �(2� 3�)(e12 + e34) + (6� � 5�2)e56� ;e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �e1234 � �e1256 � �e3456� : (3.47)
Furthermore, we 
ompute for the sour
e term (3.7)e�j6 = �25a1=2~��1=2(e245 � e135 � e146 � e236) ; (3.48)whi
h shows that j is again of the form (3.10). The bound (3.12) gives~m2 � ~� = 516a
 ��4a2 � 5
2 + 12a
� : (3.49)We introdu
e the same orientifold involutions as in se
tion 3.4.1 and 
he
k thatall �elds and the stru
ture 
onstants transform appropriately.3.4.3 The SU(3)U(1)�U(1) solutionWe 
hoose a basis su
h that the stru
ture 
onstants of SU(3) are given byf 154 = f 136 = f 246 = f 235 = f 347 = f 576 = 12 ;f 127 = 1 ; f 348 = f 568 = p32 ; and all 
y
li
 : (3.50)The G-invariant two-forms and three-forms are spanned byfe12; e34; e56g ; (3.51)f� = e245 + e135 + e146 � e236; �̂ = e235 + e136 + e246 � e145g ; (3.52)respe
tively, and there are no invariant one-forms. The sour
e (if present) must againbe proportional to Re
.The most general solution is then given byJ = �ae12 + be34 � 
e56 ;
 = d �(e245 + e135 + e146 � e236) + i(e235 + e136 + e246 � e145)� ; (3.53)
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ompa
ti�
ations
a > 0; b > 0; 
 > 0 ; metri
 positivity ;d2 = ab
; normalization of 
 ; (3.54)with a; b and 
 three free parameters.For the non-vanishing torsion 
lasses (3.5) we �ndW�1 = �ia + b+ 
3d ;W�2 = � 2i3d �a(2a� b� 
)e12 + b(a� 2b + 
)e34 + 
(�a� b + 2
)e56� ;jW�2 j2 = 163ab
 �a2 + b2 + 
2 � (ab + a
+ b
)� : (3.55)

Putting a = b we end up with a model that is very similar to the one of se
tion 3.4.2,while further putting a = b = 
 
orresponds to the nearly-K�ahler limit. Next to theoverall s
ale a, we have this time two shape parameters � � b=a and � � 
=a. Fora 
omparison with the results of [58℄ see [59℄. Introdu
ing again the redu
ed 
uxparameters (3.37) we �nd for the 
uxes and sour
eH = 2 ~m5 a(��)1=2(e245 + e135 + e146 � e236) ;e�F2 = a1=24 (��)�1=2 �(5� 3�� 3�)e12 + (3�� 5�2 + 3��)e34 + (�3� � 3�� + 5�2)e56� ;e�F4 = a�1=2 ~fvol4 � 35a3=2 ~m ��e1234 � �e1256 + ��e3456� : (3.56)Furthermore, we 
ompute for the sour
e term (3.7)e�j6 = �25a1=2~�(��)1=2(e135 + e146 + e245 � e236) ; (3.57)whi
h veri�es that j is again of the form (3.10). The bound (3.12) gives~m2 � ~� = 516ab
 ��5(a2 + b2 + 
2) + 6(ab + a
+ b
)� ; (3.58)while the orientifold involutions are still as in se
tion 3.4.1.3.4.4 The SU(2)�SU(2) solutionThe stru
ture 
onstants in this 
ase aref 123 = f 456 = 1 ; and 
y
li
 : (3.59)
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oset spa
es 43This time, the 
oset stru
ture does not eliminate any forms so one might think, thatwe would have to introdu
e some orientifolds before we 
an pro
eed. In parti
ular thistime we have all the six one-forms available. As we will see the resulting orientifoldwill proje
t them all out. What makes the analysis tra
table again is the fa
t thatit was shown in [79℄ that there is always a 
hange of basis preserving the form of thestru
ture 
onstants whi
h brings J to the formJ = ae14 + be25 + 
e36 : (3.60)With this result the most general solution to eqs. (3.4), (3.5),(3.7), (3.12) and (3.13)is then given byJ = ae14 + be25 + 
e36 ;
 = d(a(e234 � e156) + b(e246 � e135) + 
(e126 � e345)� ihh� 2 ab
(e123 + e456) + a(b2 + 
2 � a2)(e234 + e156) + b(a2 + 
2 � b2)(e153 + e426)+ 
(a2 + b2 � 
2)(e345 + e126)i) ; (3.61)with h � p2 a2b2 + 2 b2
2 + 2 a2
2 � a4 � b4 � 
4 ;and thus 0 < 2 a2b2 + 2 b2
2 + 2 a2
2 � a4 � b4 � 
4 :Again a; b and 
 are free parameters withab
 > 0 ; metri
 positivity ;d2 = 2ab
h ; normalization of 
 : (3.62)For the non-vanishing torsion 
lasses (3.5) we �ndW�1 = � 2i3d ;W�2 = � 2i3hr2ab
h "(b2 � 
2)2 + a2(�2a2 + b2 + 
2)b
 e14 + (
2 � a2)2 + b2(�2b2 + 
2 + a2)a
 e25+ (a2 � b2)2 + 
2(�2
2 + a2 + b2)ab e36# : (3.63)
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 type IIA AdS4 
ompa
ti�
ationsBy a suitable 
hange of basis we 
an always arrange for a > 0; b > 0 and 
 > 0, whi
hwe will assume from now on. In terms of the redu
ed 
ux parameters (3.37), to whi
hwe add ~h = a�2h ; ~d = a�1=2d ; (3.64)we �nd for the 
uxesH = �2 ~m5 ~d �(e156 � e234) + �(e135 � e246) + �(e345 � e126)� ;F2 = � a1=22 ~d~h2n �3(�4 + �4)� 5 + 2(�2 + �2)� 6�2�2� e14 (3.65)+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e25+ � �3(1 + �4)� 5�4 + 2�2(1 + �2)� 6�2� e36o ;F4 = a�1=2 ~fvol4 � a3=2 3 ~m5 (�e1245 + �e1346 + ��e2356) :This time we 
ompute for the sour
e (3.7)e�j = �idW�2 + � 227f 2 � 25m2� e2�Re
 ;= j1(e234 � e156) + j2(e246 � e135) + j3(e126 � e345) : (3.66)with j1; j2 and j3 some 
ompli
ated fa
tors depending on a; b and 
 whose exa
tform does not matter for the moment. It 
ontains the same terms as Re
 but withdi�erent 
oeÆ
ients. In fa
t, one 
an 
he
k that j6 is not proportional to Re
 unlessjaj = jbj = j
j, whi
h redu
es the solution to a nearly-K�ahler geometry. This timeit is not immediately obvious how to 
hoose the orientifold proje
tion. Choosingthem naively along the six terms leads to the �elds and stru
ture 
onstants havingthe wrong transformation properties. In appendix B.3 we outline how to �nd theorientifold involutions asso
iated to a smeared sour
e in general and then apply thepro
edure to the 
ase at hand. In order to present the resulting involutions, it is
onvenient to de�ne 
omplex one-forms as followsez1 = � e i3�4 d2pb
(2b
� h) �[2b
� h+ i(a2 � b2 � 
2)℄e1 + [a2 � b2 � 
2 + i(2b
� h)℄e4	 ;ez2 = � e i3�4 d2pa
(2a
� h) �[2a
� h+ i(b2 � a2 � 
2)℄e2 + [b2 � a2 � 
2 + i(2a
� h)℄e5	 ;ez3 = � e i�4 d2pab(2ab� h) �[2ab� h+ i(
2 � a2 � b2)℄e3 + [
2 � a2 � b2 + i(2ab� h)℄e6	 ;(3.67)



3.4 Solutions on 
oset spa
es 45where the signs must be 
hosen su
h that 
 = ez1z2z2. De�ning further the asso
iatedx and y one-forms ezi = exi � ieyi , the orientifold involutions are given as in (B.38).3.4.5 The SU(3)�U(1)SU(2) solutionWe 
onstru
t the algebra by takingEi = Gi+3; i = 1; : : : ; 5; E6 =M ;E7 = G1; E8 = G2; E9 = G3 ; (3.68)where the Gi's are the Gell-Mann matri
es generating su(3), M generates a u(1),and the su(2) subalgebra is generated by E7; E8 and E9. It follows that the SU(2)subgroup is embedded entirely inside the SU(3), so that the total spa
e is given bySU(3)SU(2) � U(1) ' S5 � S1. The stru
ture 
onstants aref 789 = 1; f 714 = f 732 = f 813 = f 824 = f 912 = f 943 = 1=2 ;f 512 = f 534 = p32 ; all 
y
li
 : (3.69)Invariant one-forms are generated by fe5; e6g, and, like in the last example, the re-sulting orientifold will proje
t them out. The invariant two- and three-forms are givenby fe12 + e34; e13 � e24; e14 + e23; e56g ; (3.70)fe145 + e235; e135 � e245; e126 + e346; e146 + e236; e136 � e246; e125 + e345g : (3.71)The most general solution is then given byJ = �a(e13 � e24) + b(e14 + e23) + 
e56 ;
 = dn �2a(e145 + e235) + 2b(e135 � e245) + 
(e126 + e346)�� ipa2 + b2 �a
(e146 + e236) + b
(e136 � e246)� 2(a2 + b2)(e125 + e345)�o ; (3.72)with 
 > 0 ; a2 + b2 6= 0 ; metri
 positivity ;d2 = 12pa2 + b2; normalization of 
 ; (3.73)and a; b and 
 three free parameters. For the non-vanishing torsion 
lasses (3.5) we�nd W�1 = � ip3d ;W�2 = � i d2p3pa2 + b2 ��a(e13 � e24) + b(e14 + e23)� 2
e56� : (3.74)
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 type IIA AdS4 
ompa
ti�
ationsBy a suitable 
hange of basis we 
an always arrange for a > 0 and b > 0, whi
h we willassume from now on. Note that dW�2 is not proportional to Re
, hen
e the sour
eis not of the form (3.10). Interestingly, if we take the part of the sour
e along Re
to be zero, i.e. j6 ^ Im
 = 0, we �nd from the last equation in (3.73) that m = 0.This would amount to a 
ombination of smeared D6-branes and O6-planes su
h thatthe total tension is zero. Allowing for negative total tension (more orientifolds), we
ould have m > 0. For an arbitrary m we �nd the ba
kgroundH = p3 ~m ~d5 a �2(e145 + e235) + 2�(e135 � e245) + �(e126 + e346)� ;e�F2 = �a1=22 ~d �(e13 � e24)� �(e14 + e23) + �e56� ; (3.75)e�F4 = a�1=2 ~fvol4 + 35a3=2 ~m �(1 + �2)e1234 � �(e1356 � e2456) + ��(e1456 + e2356)� ;where we de�ned � = b=a and � = 
=a and used again (3.37). From (3.7) we 
omputefor the sour
ee�jO6 = p3 ~d10 a1=2 � 5~d2 � 4 ~m2��e145 + e235 + �(e135 � e245)�� p3 ~d20 a1=2�� 5~d2 + 4 ~m2��e126 + e346� : (3.76)One 
an 
he
k that for the ba
kground the sour
e satis�es the 
alibration 
onditions(3.11). If we make the following 
oordinate transformatione10 = e1 ; e20 = e2 ; e30 = e3 + ��1e4 ; e40 = e3 � �e4 ; e50 = e5 ; e60 = e6 ; (3.77)we see 
learly that j is a sum of four de
omposable termse�j6 = �p310 ~da1=2 � 5~d2 � 4 ~m2� (e103050 � e204050)p1 + �2+ p3 ~d20 a1=2�� 5~d2 + 4 ~m2��e102060 + e304060� ; (3.78)to whi
h we 
an asso
iate four orientifold involutions.



Chapter 4Low energy physi
s I: TheKaluza-Klein redu
tionIn this 
hapter we want to use the dire
t KK redu
tion to 
ompute the mass matri
esfor the two nilmanifold examples, i.e. the torus and the Iwasawa manifold1, des
ribedin the last 
hapter. The 
omparison to the result of the e�e
tive supergravity ap-proa
h, des
ribed in the next 
hapter, will then serve as a non-trivial 
he
k on thelatter in the 
ase of non Calabi-Yau manifolds. In the �rst se
tion we will review thegeneral KK pro
edure for the 
ase of an AdS4 spa
e time. We will also show howto express the 
u
tuations of the RR �eld strengths in terms of 
u
tuations of theirpotentials. In the subsequent se
tion we 
omment on the problem of de
oupling theKK tower. Finally we will apply the KK redu
tion to the two nilmanifolds of se
tion3.3 and 
ompute the mass matri
es for the light 
u
tuations2. This 
hapter is basedon [25℄.4.1 Kaluza-Klein redu
tionWe are interested in performing a Kaluza-Klein redu
tion on ea
h of the AdS4 �M6 solutions des
ribed in se
tions 3.3.1 and 3.3.2. Let x and y be 4d spa
e-timeand internal-manifold 
oordinates, respe
tively. Moreover, let �̂(x; y) be a `va
uum',i.e. a parti
ular solution of the equations of motion of ten-dimensional supergravity.The Kaluza-Klein redu
tion (see [80℄ for a review) 
onsists in expanding all ten-dimensional �elds �(x; y) in `small' 
u
tuations around the va
uum:�(x; y) = �̂(x; y) + Æ�(x; y) ; (4.1)1More pre
isely, we will do this for the 
ase m = 0.2As a general remark, we will not 
onsider blow-up modes asso
iated to the �xed points of theorientifold involutions. Ideally, we would like to argue that the blow-up modes will be stabilizedby 
ux through the blown-up 
y
le at a size mu
h smaller than the size of the internal manifold.Unfortunately, su
h an analysis is beyond the s
ope of this thesis. It may be possible, however, toargue for the stabilization of the blow-up modes using a lo
al analysis of the singularities as in [44℄.



48 Low energy physi
s I: The Kaluza-Klein redu
tionkeeping only terms up to linear order in Æ�(x; y) in the equations of motion (
or-responding to at most quadrati
 terms in the Lagrangian). From now on the hatsindi
ate ba
kground quantities, and the Æ's denote 
u
tuations. The 
u
tuations areFourier-expanded in the internal spa
e:Æ�(x; y) =Xn �n(x)!n(y) ; (4.2)where �n(x) are four-dimensional spa
e-time �elds, and the !n(y)'s form a basis ofeigenforms of the Lapla
ian operator � = ddy + dyd in the six-dimensional spa
e M(the internal part of the va
uum solution).In the following, we will trun
ate all the higher Kaluza-Klein modes in the har-moni
 expansion (4.2) and keep only those !n(y)'s in (4.2) that are left-invariant onM6. The resulting modes are not in general harmoni
, but 
an be 
ombined intoeigenve
tors of the Lapla
ian whose eigenvalues are of order of the geometri
 
uxes.One has to make sure that su
h a trun
ation is 
onsistent. We want to argue in thenext se
tion that indeed we 
an tune our parameters in su
h a way that the higherKK modes (the KK tower) de
ouples.Plugging the ansatz (4.1)-(4.2) into the ten-dimensional equations of motion andkeeping at most linear-order terms in the 
u
tuations, one 
an read o� the massesof the spa
e-time �elds, i.e. the `spe
trum'. In the present 
ase, this is a

omplishedby 
omparing with the equations of motion for non-intera
ting �elds propagating inAdS4. Let M and � be the mass of the �eld and the 
osmologi
al 
onstant of theAdS spa
e, respe
tively, su
h thatS
alar : ��+ �M2 + 23��� = 0 ; (4.3a)Ve
tor : ��� +r�r��� +M2�� = 0 ; (4.3b)Metri
 : �Lh�� + 2r(�r�h�)� �r(�r�)h�� + (M2 � 2�)h�� = 0 ; (4.3
)where �L is the Li
hnerowi
z operator de�ned by:�Lh�� = �r2h�� � 2R����h�� + 2R(��h�)� : (4.4)With the above de�nitions, the Breitenlohner-Freedman bound [81℄ is simplyM2 � 0 ; (4.5)for the metri
 and the ve
tors. For the s
alars, however, a negative mass-squared isallowed: M2 � �12 = �jW j24 ; (4.6)



4.1 Kaluza-Klein redu
tion 49where W was de�ned in eq. (3.3). A
tually, we will present the results for the massspe
trum of the s
alars in terms of~M2 =M2 + 23� ; (4.7)for whi
h the Breitenlohner-Freedman bound reads~M2 � �9jW j24 : (4.8)We will take ~M = 0 as the de�nition of an unstabilized modulus sin
e from (4.3a)we see that then, if it were not for the boundary 
onditions of AdS4, a 
onstant shiftof � would be a solution to the equations of motion. Therefore, a 
onstant shift of �leads to a new va
uum solution.We want to apply this strategy to the nilmanifold va
ua of se
tion 3.3. Theba
kgrounds for these two va
ua are given in se
tion 3.3.1 and 3.3.2, and by de�nitionthey are solutions to the equations of motion of type IIA supergravity, whi
h are givenby (A.7a), (A.7b), (A.9b) as well as (A.10), and to the Bian
hi identities (A.9a).It is possible to express the 
u
tuations of the RR �eld strengths ÆF in terms of the
u
tuations of the potentials ÆC in su
h a way that the Bian
hi identity dHF = �jis automati
ally satis�ed. This analysis is 
ompli
ated by the presen
e of a sour
e.We assume that the sour
e does not 
u
tuate sin
e it is asso
iated to smeared ori-entifolds. For the Bian
hi identities of the ba
kground and the 
u
tuation we �ndthen, respe
tively, (d + Ĥ)F̂ = �j ; (4.9a)(d + Ĥ + ÆH)(F̂ + ÆF ) = �j : (4.9b)The integrability equations read (d + Ĥ)j = 0 ; (4.10a)(d + Ĥ + ÆH)j = 0 ; (4.10b)from whi
h follows ÆH ^ j = 0 : (4.11)This implies also (d + Ĥ)(eÆB ^ j) = 0 ; (4.12)so that, subtra
ting (4.9a), we 
an de�ne (lo
ally)�(eÆB � 1) ^ j = (d + Ĥ)Æ! : (4.13)
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s I: The Kaluza-Klein redu
tionNow, for orientifold sour
es the left hand side of this equation always vanishes. Thisfollows be
ause the pull-ba
k of ÆB to the orientifold, ÆBj�, must be zero, whi
himplies using (B.30): ÆB ^ j = 0 ; (4.14)and the same for all powers of ÆB. Then, we 
an also 
hoose Æ! = 0.The di�eren
e between (4.9a) and (4.9b) gives the Bian
hi identity for the 
u
tu-ations �d + Ĥ + ÆH� ÆF + ÆH ^ F̂ = 0 ; (4.15)whi
h 
an be rewritten as�d + Ĥ� �eÆBÆF �+ ÆH ^ eÆBF̂ = 0 : (4.16)One 
an easily show that (with ÆF0 = 0) this Bian
hi identity 
an be satis�ed byintrodu
ing potentials ÆC and puttingeÆBÆF = (d + Ĥ)ÆC � (eÆB � 1)F̂ + Æ! : (4.17)where we 
an set ÆF0 = Æ! = 0 so that we obtaineÆBÆF = (d + Ĥ)ÆC � (eÆB � 1)F̂ : (4.18)Expanding this expression we �nd for the IIA-
u
tuationsÆF0 = 0 ;ÆF2 = dÆC1 �mÆB ;ÆF4 = dÆC3 + Ĥ ^ ÆC1 � ÆB ^ (F̂2 + ÆF2)� 12m(ÆB)2 ; (4.19)ÆF6 = dÆC5 + Ĥ ^ ÆC3 � ÆB ^ (F̂4 + ÆF4)� 12(ÆB)2 ^ (F̂2 + ÆF2)� 13!m(ÆB)3 :For the NSNS 
ux we 
an just writeH = Ĥ + ÆH = Ĥ + dÆB : (4.20)For the Kaluza-Klein redu
tion of the equations of motion we will only need theterms linear in the 
u
tuations while for an analysis of �nite 
u
tuations of the a
tionone would need higher orders too. Furthermore, in the Kaluza-Klein redu
tion wewill only need 
u
tuations of the physi
al �elds ÆF2; ÆF4 sin
e the higher-form 
uxesare removed from the equations of motion using (A.1), while in the superpotentialapproa
h, whi
h is formulated in the demo
rati
 formalism, we should work with theinternal part of ÆF6 instead of the external part of ÆF4 as we will explain later.



4.2 De
oupling the Kaluza-Klein tower 514.2 De
oupling the Kaluza-Klein towerConsisten
y requires that the Kaluza-Klein tower 
an be de
oupled. This means wehave to make sure that the higher Kaluza-Klein �elds are really mu
h heavier than theones that we kept in our analysis su
h that we 
an negle
t them in an e�e
tive low-energy theory. Sin
e the Compton wavelength of the lightest ex
itations above theBreitenlohner-Freedman bound in four dimensions is of the order of the AdS4 radius,we need to show that the Compton wavelength of the Kaluza-Klein ex
itations (whi
his proportional to Lint) satis�es: j�AdSjL2int � 1 ; (4.21)where �AdS is the four-dimensional 
osmologi
al 
onstant. In models without ori-entifolds this is impossible to a
hieve, sin
e the 
hara
teristi
 length of the internalmanifold turns out to be of the same order as the radius of AdS4. This is the problemof separation of s
ales whi
h, for example, plagues the 
ompa
ti�
ations of eleven-dimensional supergravity on the seven-sphere. Ultimately, we would like to upliftour models to a de Sitter spa
e with a small, positive 
osmologi
al 
onstant, and theposition 
ould be taken that the question of the mass spe
tra should be re-addressedonly after this uplifting. However, let us now study whether it is possible to tune theorientifold sour
e su
h that there is a hierar
hy between the two s
ales even beforethe uplifting and (4.21) is obeyed.Taking into a

ount j�AdSj � jW j2 and using (3.1d), we �nd that to de
ouple theKaluza-Klein s
ale we must imposejW j2L2int = 125(gs)2m2L2int + 19(gs)2f 2L2int � 1 ; (4.22)whi
h means that ea
h of the two terms on the right-hand side of the equal signmust be separately mu
h smaller than one. Tuning the orientifold 
harge we 
ana

omplish e2�m2L2int � 1. Indeed, we just need to show that we 
an 
hoose � sothat it is 
lose to its bound (3.12):�L2int + 516 �3jW�1 j2 � jW�2 j2�L2int � 1 : (4.23)In our 
onventions the dis
rete parameter �, whi
h is proportional to the net numberof orientifold planes nO6, is given by (up to numeri
al fa
tors of order one): � �gsnO6lL�3int. Taking into a

ount that the torsion 
lasses are given by (again up tonumeri
al fa
tors of order one): jW�i j2 � L�2int, we 
an rewrite the above equations
hemati
ally as follows: nO6gs� lLint�+ a� 1 ; (4.24)
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s I: The Kaluza-Klein redu
tionwhere a is a number of order one. Sin
e gs � lLint�� 1, we 
an then satisfy this boundby 
hoosing some large integer nO6. Note that in the examples where we study thislimit, a turns out to be negative so that we 
an a

omplish this with positive nO6,whi
h 
orresponds to net orientifold 
harge (as opposed to net D-brane 
harge).However, we must also make sure that the se
ond square in (4.22) is small, whi
hmeans that fgsLint / jW�1 jLint is small. Manifolds for whi
h W�1 vanishes (and onlyW�2 is possibly non-zero) are 
alled `nearly Calabi-Yau' (NCY) see e.g. [82℄; hen
e forthe bound (4.21) to be satis�ed, the internal manifold must admit an SU(3)-stru
turewhi
h is suÆ
iently 
lose to the NCY limit.On
e a solution for nO6 is obtained in this way, we have to make sure that it is
onsistent with the 
onditions for a small string 
oupling and large volume found inse
tion 3.2. It turns out that we do not have any problems with that be
ause weare free to res
ale nO6 ! N qnO6 leaving (4.24) invariant, provided we take: q =(�0 + �4)=2 2 N . For example, the reader 
an verify that the res
aling fn0 !N4n0; n2 ! N6n2; n4 ! N8n4; n6 ! N10n6; nO6 ! N6nO6g leave eq. (4.24) and allthe f 0ps in eq. (3.17) invariant, so that:gs � N�5 ; Lintl � N ; j�AdSjL2int = �xed� 1 ; (4.25)where we 
an take N large.We were only able to identify this way as a possibility to de
ouple the KK tower,although there might exist another. Unfortunately, as we will see in due 
ourse,for some models we will have some problems to de
ouple the KK tower in the waypresented here. However, we believe that the 
on
lusions for these models are nota�e
ted by this problem. Indeed it was shown in [83℄ that the N = 2 theory ob-tained from a redu
tion of type IIA string theory based on left-invariant forms on thethree 
oset spa
es G2SU(3) , Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) without any sour
es is a 
onsistenttrun
ation, i.e. solutions of the 4d equations of motion lift to solutions of the 10dequations of motion. It seems plausible that the in
lusion of smeared left-invariantsour
es does not alter this 
on
lusion and that it also holds for redu
tions based onleft-invariant forms on other spa
es. Based on the arguments of [83℄ and referen
estherein one expe
ts that the �elds 
onstituting a 
onsistent trun
ation do not 
oupleto other �elds. This then means that our results will not be altered by the in
lusionof more �elds. We will 
ome ba
k to this point at the end of the next two 
hapters.4.3 The nilmanifoldsWith the preparations of the last se
tion we are now ready to expli
itly perform theKK redu
tion of our type IIA supergravity va
ua of se
tion 3.3.1 and 3.3.2.For the Kaluza-Klein redu
tion on T6, we will expand the 
u
tuations of the



4.3 The nilmanifolds 53various �elds in the following basis:ÆB(x; y) =bi;~n(x)Y(2)i;~n (y) + bi;~n1 (x)Y(1)i;~n (y) + b~n2 (x)Y(0)~n (y) ; (4.26a)Æ�(x; y) =Æ�~n(x)Y(0)~n (y) ; (4.26b)ÆC(1)(x; y) =
(1)i;~n(x)Y(1)i;~n (y) + 
(1)~n1 (x)Y(0)~n (y) ; (4.26
)ÆC(3)(x; y) =
(3)i;~n(x)Y(3)i;~n (y) + 
(3)i;~n1 (x)Y(2)i;~n (y) + 
(3)i;~n2 (x)Y(1)i;~n (y)+ 
(3)~n3 (x)Y(0)~n (y) ; (4.26d)Æg(x; y) =hi;~n(x)X (2)i;~n (y) + hi;~n1 (x)Y(1)i;~n (y) + h~n2 (x)Y(0)~n (y) : (4.26e)The fun
tions Y(l)i;~n(y) are the l-eigenforms of the Lapla
ian operator and are given byY(l)i;~n(y) = Y (l)i ei~p�~y ; ~p = ~nR ; ~n 2 Z6 : (4.27)For the torus the Y (l)i form a basis of harmoni
 l-forms. X (2) are symmetri
two-tensors X (2)i;~n (y) = X(2)i ei~p�~y ; ~p = ~nR ; ~n 2 Z6 ; (4.28)Sin
e we will restri
t our analysis to the zero modes (~p = 0), we only keep Y(l)i;~n=0(y) =Y (l)i and X (2)i;~n=0(y) = X(2)i in the expansions above and derivatives only a
t on theexternal �elds. A basis for the harmoni
 l-forms Y (l)i is simply given by all exteriorprodu
ts of the form dym1 ^ � � � ^ dyml = em1:::ml , 1 � l � 6. Hen
e:bl = � 6l � ; (4.29)where bl denotes the real dimension of the lth 
ohomology group of T6.For the Iwasawa manifold, we will use for the expansion forms Y (l)i left-invariantforms, whi
h will not ne
essarily be all harmoni
. When exterior derivatives a
t onthese forms terms will be generated of the order of the geometri
 
uxes.In both 
ases we must then impose the orientifold proje
tion whi
h means thatsuitable expansion forms must be even or odd under all the orientifold involutions.For both, the torus and the Iwasawa, this involution is given by (3.23) whi
h leads tothe following forms type basis nameodd 2-form e12; e34; e56 Y (2�)ieven 3-form e135; e146; e236; e245 Y (3+)iodd 3-form e136; e145; e235; e246 Y (3�)ieven 4-form e1234; e1256; e3456 Y (4+)ieven symmetri
 2-tensor e1 
 e1; e2 
 e2; : : : ; e6 
 e6 X(2)i
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s I: The Kaluza-Klein redu
tionUnder the orientifold proje
tion, we �nd from (3.15) that �; g; F0; C3 are even,while B;C1 are odd. This simpli�es the expansion (4.26) 
onsiderablyÆB(x; y) = bi(x)Y (2�)i ; (4.30a)Æ�(x; y) = �(x) ; (4.30b)ÆC(3)(x; y) = 
(3)i(x)Y (3+)i + 
(3)3 (x) ; (4.30
)Æg(x; y) = hi(x)X(2)i + h2(x) : (4.30d)Note in parti
ular that the orientifold proje
tion removes all four-dimensional gauge�elds, whi
h in fa
t holds for all type IIA models for whi
h the orientifolds proje
tout all one-forms and even two-forms. So far the dis
ussion for the torus and theIwasawa went parallel. Now we have to use the ba
kgrounds of se
tions 3.3.1 and3.3.2 to get the respe
tive 
u
tuations of the �eld strengths given in (4.19). For thetorus we �nd ÆF2 = �mÆB ; (4.31a)ÆF4 = dÆC3 : (4.31b)while for the Iwasawa we getÆF2 = 0 ; (4.32a)ÆF4 = dÆC3 � ÆB ^ F̂2 : (4.32b)So we �rst have to 
ompute the variation of all the equations of motion (A.7a),(A.7b), (A.9b) and (A.10) to �rst order. Remember that we should use (A.1) toremove the redundant RR-�elds so that the only RR-
u
tuations are the ones above.For the torus we have to plug in the ba
kground of se
tion 3.3.1 plus the 
u
tuations(4.30) and (4.31a), while for the Iwasawa we will have to use the ba
kground of se
tion3.3.2 and the 
u
tuations (4.32a). We will dis
uss the two 
ases separately in thenext two subse
tions.4.3.1 Kaluza-Klein redu
tion of the torusSin
e we are only 
onsidering the internal zero modes we use that for the torusderivatives only a
t on the external �elds. It turns out that the RR-�elds togetherwith H do not mix with the metri
 and the dilaton, so we 
an dis
uss their equationsof motion separately.
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torApplying the steps des
ribed above we get from the equation of motion for H (A.10)the following equation, whi
h has (external, internal) index stru
ture (0; 2):0 = �(biY (2�)i )� ?(F̂4 ^ d
(3)3 )�m ? (?F̂4 ^ biY (2�)i ) +m2biY (2�)i : (4.33)From the variation of the equation of motion of F4 (A.9b) we get a (0; 3)-equationand a (1; 6)-equation0 = �(
(3)iY (3+)i )� ?(Ĥ ^ d
(3)3 ) ; (4.34a)0 = d ? d
(3)3 + dbi ^ Y (2�)i ^ F̂4 + Ĥ ^ d
(3)i ^ Y (3+)i ; (4.34b)and from F2 a (4; 5)- and (3; 6)-equation0 = Ĥ ^ ? hhiX(2)i � F̂4i ; (4.35a)0 = Ĥ ^ ?(d
(3)i ^ Y (3+)i ) ; (4.35b)where the dot is de�ned in (A.3). Furthermore, we used in the upper equation thevariation of the ? given by(Æ?)Fl = �12gMNÆgMN� ? Fl � ?[Æg � Fl℄ ; (4.36)where we de�ned [Æg � Fl℄M1:::Ml � l � Æg[M1jAgABFBjM2:::Ml℄ : (4.37)The equations (4.35) are automati
ally satis�ed using the orientifold proje
tion. In-deed, the right-hand sides should have 
ontained an even internal �ve-form respe
-tively six-form under all orientifold involutions, whi
h do not exist, so they mustvanish.Next, we integrate (4.34b) and put the integration 
onstant to zero be
ause itwould 
orrespond to 
hanging the ba
kground value of f . The result 
an the be usedto eliminate d
(3)3 in (4.33) and (4.34a). This pro
edure 
orresponds to dualizing 
(3)3as explained in [37, 34℄. For more details see appendix D.To pro
eed, we make a 
hoi
e of expansion basis for the even three-formsY (3+)0 = Im
 ; (4.38a)Y (3+)i ; i = 1; 2; 3 : 3 real (2,1)+(1,2) forms ; (4.38b)and the odd two-formsY (2�)0 = J ; (4.39a)Y (2�)i ; i = 1; 2 : 2 primitive real 2-forms ; (4.39b)
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s I: The Kaluza-Klein redu
tionwhere a primitive two-form is de�ned in (B.20).Using these in (4.33) and (4.34a) gives the equations of motion for the 4d s
alar�elds. Diagonalizing the mass matrix we obtain the following result for the eigenvalues~M2 =M2 + 2=3�: mass eigenmode mass (in units m2=25)bi; i = 1; 2 10
i; i = 1; 2; 3 0b0 � 4
(3)0 103b0 + 
(3)0 88Dilaton and metri
 se
torWith the same pro
edure as above, we get from the dilaton equation of motion (A.7a)0 = (� + 67m225 )Æ� + 7m225 6Xi=1 hi ; (4.40)and from the internal part of the Einstein equation (A.7b)0 = �hi + 8m225 hi + 7m250 giiÆ� + m250 gii 6Xj=1 hj + 2m25 giihi�(�1)i : (4.41)The result of diagonalizing the mass matrix ismass eigenmode mass (in units m2=25)�h1 � h2 + h3 + h4 18�h1 � h2 + h5 + h6 18�3 Æ� + 7Phi 187 Æ� +P hi 70�h1 + h2 �2�h3 + h4 �2�h5 + h6 �2The external part of the Einstein equation on the other hand be
omes12�Lh�� +r(�r�h�)� � 12r(�r�)hPP + 325m2h�� � 320m2g��X hi � 21100m2g��Æ� = 0 :(4.42)At this point we have to take into a

ount that so far we worked in the ten-dimensional Einstein frame. As we will show in (5.16) the 
onversion to the four-dimensional Einstein frame is given bygE�� = 
pg6 g�� ; (4.43)
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onstant fa
tor 
 =M�2P ��210 Vs does not matter here, so that
�1hE�� = pg6 h�� + 12pg6 g��Xi hi : (4.44)Plugging this into (4.42) and using (4.41), we �nd for hE�� exa
tly equation (4.3
)with M2 = 0 so that hE�� indeed des
ribes a massless graviton.4.3.2 Kaluza-Klein redu
tion of the IwasawaAgain it turns out that the equations of motion for the RR-�elds and the H �eld donot mix with the Einstein equation and the equation of motion for the dilaton, so we
an dis
uss them separately.RR and NS B-�led se
torExpanding the equation of motion for H (A.10) around the Iwasawa solution, weobtain0 =�bi Y (2�)i + bi �?6d ?6 dY (2�)i �� 
(3)i ?6 (?6dY 3+i ^ F̂2)+ bi ?6 h?6 �Y (2�)i ^ F̂2� ^ F̂2i+ f
(3)i ?6 dY 3+i � bif ?6 �Y (2�)i ^ F̂2� ; (4.45)while the equation of motion for F4 (A.9b) splits in (1; 6) and (4; 3) index stru
tures0 = d ?4 d
(3)3 + 12fd (Æg�� � Ægmm � Æ�) ; (4.46a)0 = �
(3)i Y (3+)i + 
(3)i �?6d ?6 dY (3+)i � + fbi ?6 dY (2�)i � bi ?6 d ?6 �Y (2�)i ^ F̂2� :(4.46b)In a similar way as in the torus 
ase, we integrate (4.46a), put the integration 
onstantto zero and plug the result for d
(3)3 in the other equations.As expansion forms we take the same three-forms as in eq. (4.38), while for thetwo-forms we take this time Y (2�)0 = �2e56 ; (4.47a)Y (2�)1 = e12 + e34 ; (4.47b)Y (2�)2 = e12 � e34 : (4.47
)Note that this time Y (3+)0 and Y (2�)0 are not 
losed. Introdu
ing mT su
h that � =25e�mT (this is of 
ourse the Romans mass of the T-dual torus solution), we get thefollowing masses:
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s I: The Kaluza-Klein redu
tionmass eigenmode mass (in units m2T =25)
i; i = 1; 2; 3 0b0 + b1 10b2 108
(3)0 + 5b0 + 3b1 10
(3)0 � b0 + 2b1 88Due to T-duality the mass eigenvalues are the same as for the torus solution.Dilaton and metri
 se
torThe equation for the variation of the dilaton equation (A.7a) reads0 = (� + 27m2T25 )Æ�� 9m2T25 6Xi=5 hi + 3m2T25 4Xi=1 hi : (4.48)For the Einstein equation (A.7b) we �nd for i = 5; 6:0 = �hi + 49m2T50 hi + 53m2T50 hi�(�1)i � 11m2T50 4Xj=1 hj � 33m2T50 Æ� ; (4.49)and for i = 1; 2; 3; 4:0 = �hi + 8m2T25 hi + 2m2T5 hi�(�1)i � 3m2T10 6Xj=5 hj + m2T10 4Xj=1 hj + 3m2T10 Æ� : (4.50)Here we used thatÆRmn = 12�LÆgmn +r(mrP Ægn)P � 12rmrnÆgQQ ; (4.51)where �L is the Li
hnerowi
z operator de�ned in (4.4) and all 
ovariant derivativesand 
ontra
tions are with respe
t to the ba
kground metri
. In (4.51) the last twoterms are vanishing.Diagonalizing the mass matrix we �nd the following eigenmodes:mass eigenmode mass (in units m2T=25)�h1 � h2 + h3 + h4 1811(h1 + h2) + 5(h5 + h6) 185Æ�� 3(h1 + h2) 183Æ�� 3(h5 + h6) + (h1 + h2 + h3 + h4) 70�h1 + h2 �2�h3 + h4 �2�h5 + h6 �2On
e again, we �nd the same masses as in the torus example.



4.3 The nilmanifolds 594.3.3 SummaryThe dire
t 
omputation of the Kaluza-Klein redu
tion on the six-torus solution ofse
tion 3.3.1 and the Iwasawa solution of se
tion 3.3.2 yields in both 
ases exa
tly thesame mass spe
trum. This is of 
ourse the expe
ted result, sin
e the two solutionsare related by T-duality. We obtain the following mass eigenvalues ~M2=jW j2 for thes
alar �elds:3 Complex stru
ture �2, �2, �2K�ahler & dilaton 70, 18, 18, 18Three axions of ÆC3 0, 0, 0ÆB & one more axion 88, 10, 10, 10We see that all three axions 
orrespond to massless moduli. This is a feature thatis also dis
ussed in [47℄. It is argued there that, when one introdu
es D6-branes,these axions 
an provide St�u
kelberg masses to some of the U(1) gauge �elds onthe D-brane. We further noti
e that some masses are ta
hyoni
, whi
h is allowedbe
ause they are still above the Breitenlohner-Freedman bound (4.8). S
alars thatare in the same supermultiplet, su
h as the 
omplex stru
ture moduli and the three
orresponding axions, the dilaton and the remaining axion, the K�ahler moduli and theB-�eld moduli have di�erent masses. This is in fa
t a subtlety of the supersymmetryalgebra of AdS4 that no longer allows a de�nition for the mass as an invariant Casimiroperator.We 
an de
ouple the tower of Kaluza-Klein masses (see the dis
ussion below(4.21)) when we take m2(e2�L2int)� 1 for the torus or �Lint � 1 for the Iwasawa.

3The 
al
ulations in se
tion 4.3.1 were made in the ten-dimensional Einstein frame, while thee�e
tive supergravity approa
h followed in later se
tions will lead to a result in the four-dimensionalEinstein frame. By dividing out with jW j2 we avoid 
onversion problems, sin
e ~M2 and jW j2transform in the same way under 
hange of frame.
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Chapter 5Low energy physi
s II: E�e
tivesupergravityIn this 
hapter we 
ompute the s
alar potential of the 4d low energy e�e
tive theoryfor all the examples of se
tion 3.3 and 3.4. As already mentioned in se
tion 2.2,the easiest and most popular approa
h to do this is to use the more or less indire
tte
hniques of N = 1 supergravity, where the s
alar potential is entirely determinedin terms of a K�ahler potential and a superpotential1. For the Calabi Yau 
ase, theirgeneral form is given in [84, 34℄, whereas a generalization to SU(3)-stru
ture manifoldsor even beyond is given in [33, 35, 36℄. We will use this approa
h to 
ompute thewhole s
alar potential for all our expli
it N = 1 AdS4 va
ua. From this potentialwe will 
ompute the s
alar masses and 
he
k the stability of those va
ua. For thenilmanifolds we will reprodu
e the results of the last 
hapter where we used the dire
tKK redu
tion on these ba
kgrounds. Having 
on�rmed that both te
hniques yieldthe same results we will then 
ontinue with the e�e
tive supergravity approa
h andstudy the Iwasawa solution withm 6= 0 as well as the 
oset models in the next se
tion.This 
hapter is based on [25℄.5.1 E�e
tive supergravityThe superpotential and K�ahler potential of the e�e
tive N = 1 supergravity havebeen derived in various ways in [33, 35, 36℄ (based on earlier work of [84, 34℄). Herewe summarize the main formul� whi
h will be used in the following. More details onthe derivation 
an be found in appendix B.4.The part of the e�e
tive four-dimensional a
tion 
ontaining the graviton and thes
alars reads: S = Z d4xp�g4 �M2P2 R�M2PKi�|���i�� ���| � V (�; ��)� ; (5.1)1We do not 
onsider any D-terms in this thesis



62 Low energy physi
s II: E�e
tive supergravitywhereMP is the four-dimensional Plan
k mass. The s
alar potential is given in termsof the superpotential via:2V (�; ��) =M�2P eK �Ki�|DiWED�|W�E � 3jWEj2� ; (5.2)where the superpotential in the Einstein frame WE reads (see equation (B.65))WE = �ie�i�4�210 ZMhei(J�iÆB); F̂ � idĤ �eÆBe��Im
 + iÆC3�i ; (5.3)and h�; �i indi
ates the Mukai pairing (B.4). The K�ahler potential is given by (seeequation (B.66)) K = Kk +K
 + 3 ln(8�210M2P ) ; (5.4)where Kk and K
 are the parts 
ontaining, respe
tively, the K�ahler and 
omplexstru
ture/dilaton moduli. They are given byKk =� lnZM 43J3 ; (5.5a)K
 =� 2 lnZM 2 e��Im
 ^ e��Re
 ; (5.5b)where e��Re
 should be seen as a fun
tion of e��Im
 (see appendix B).On the 
u
tuations we must impose the orientifold proje
tions (3.15). It turnsout that for all our examples: ÆB ^ Im
 = 0 ; (5.6)sin
e there are no odd �ve-forms. By expanding in a suitable basis of even and oddexpansion forms (whi
h have to be identi�ed separately for ea
h 
ase), we �nd thatthe 
u
tuations organize naturally in 
omplex s
alarsJ
 = J � iÆB = (ki � ibi)Y (2�)i = tiY (2�)i ; (5.7a)e��Im
 + iÆC3 = (ui + i
i)e��̂Y (3+)i = zie��̂Y (3+)i ; (5.7b)where we took out the ba
kground e��̂ from the de�nition of zi for further 
onve-nien
e. We have de�ned the geometri
al s
alars ki and ui slightly di�erently fromthe axioni
 s
alars bi and 
i in the sense that the geometri
al s
alars 
ontain theba
kground whereas the axioni
 s
alars are pure 
u
tuation. In other words the su-persymmetri
 va
uum we started with 
orresponds to the values ki = ui = 1 and2In [38℄ the s
alar potential was for general type II SU(3)�SU(3) 
ompa
ti�
ations dire
tlyderived from dimensional redu
tion of the a
tion.
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i = 0. To 
ompute now the potential we only have to use the expansion (5.7)and plug it together with the ba
kground values of the �elds given in se
tion 3.3 and3.4 into the superpotential (5.3) and the K�ahler potential (5.4), whi
h we then haveto use in (5.2) to obtain the full potential. From there we 
ompute the mass matrixand 
he
k the stability of our solution.5.2 The nilmanifoldsNow we want to use the e�e
tive supergravity approa
h des
ribed in the last se
tionto 
ompute the potential of the nilmanifold solutions of se
tion 3.3.5.2.1 The torus potentialFor 
onvenien
e we 
hoose a slightly di�erent expansion basis as in se
tion 4.3.1:Y (2�) : e12; e34; e56 ;Y (3+) : �e135; e146; e236; e245 : (5.8)Using this basis in (5.7) and plugging the result together with the ba
kground ofse
tion 3.3.1 into (5.3), we obtain the superpotentialWE;Torus = e�i�4�210Vsm ��t1t2t3 + 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)� ; (5.9)where Vs is a standard volume Vs = R e1:::6, whi
h does not depend on the moduli.By the same pro
edure we get from (5.4) the K�ahler potentialK = Kk +K
 + 3 ln(8�210M2PV �1s e4�̂=3) ; (5.10a)where Kk = � ln 3Yi=1(ti + �ti)! (5.10b)is the K�ahler potential in the K�ahler-moduli se
tor, andK
 = � ln 4 4Yi=1 �zi + �zi�! (5.10
)is the K�ahler potential in the 
omplex stru
ture moduli se
tor.Using the expressions for the superpotential and the K�ahler potential, it is straight-forward to 
al
ulate the masses for the s
alar �elds from the quadrati
 terms in thepotential (5.2). Before we 
omment on the results, let us �rst do the same 
al
ulationfor the Iwasawa manifold.
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s II: E�e
tive supergravity5.2.2 The Iwasawa potentialWe 
hoose the following expansion basis:Y (2�) : �2e65; e12; e34 ;Y (3+) : ��e135;��e146;��e236; �e245 : (5.11)This implies that dY (3+)i = ��e1234 for all i = 1; : : : ; 4. Using this basis in (5.7) andplugging the result together with the ba
kground of se
tion 3.3.2 into (5.3), we obtainthe superpotentialWE;Iwasawa = �ie�i�4�210 mTVs �35 � 25t1(z1 + z2 + z3 + z4) + 35(t1t2 + t1t3)� t2t3� ;(5.12)where Vs = R ��2e1:::6 is again a standard volume, and mT � 52e��̂� the Romansmass of the T-dual torus solution. We note here the following relationWE;Iwasawa = �it1WE;Torus(t1 ! 1t1 ) ; (5.13)whi
h follows from T-duality. Repeating this pro
edure, we get from (5.4) the sameK�ahler potential (5.10) as for the torus.Again the masses for the s
alar �elds follow from the quadrati
 terms in thepotential (5.2), where we have to use the above results for the K�ahler potential andsuperpotential.5.2.3 SummaryFrom the four-dimensional Einstein-frame a
tion (B.54) we 
ompute the equation ofmotion for the s
alar �elds ��k +M�2P (K̂�1M̂)ki�i = 0 ; (5.14)where M̂ij = 12 �2V��i��j jba
kground is the mass matrix and K̂ij is the K�ahler metri
 in real
oordinates in the ba
kground. Therefore, to 
ompare the results for the masses inthe analysis with the superpotential and the K�ahler potential with the results fromthe Kaluza-Klein redu
tion, we need to diagonalize the matrix M�2P K̂�1M̂ . We alsohave to take into a

ount that the results from the Kaluza-Klein redu
tion were in theten-dimensional Einstein frame, while here we get the result in the four-dimensionalEinstein frame: gs = e�2 gE10 ;gs =M2PN�1gE4 ; (5.15)



5.2 The nilmanifolds 65where N is de�ned below (B.46), and thusgE10 =M2P e��=2N�1gE4 =M2P�210e�2AVol�1E gE4 ; (5.16)where in the last expression we assumed A and � 
onstant over the internal spa
e.The 
onversion for the mass ism2E = �210M2P e�2AVol�1E m2E10 : (5.17)Upon noting that in the Kaluza-Klein analysis we set the ba
kground values forthe warp fa
tor and the dilaton equal to zero and Vol = Vs, we �nd for the torusand the Iwasawa exa
tly the same result as we did in se
tion 4.3.1 and 4.3.2 byperforming a dire
t KK redu
tion. This provides a 
onsisten
y 
he
k on the ability ofthe superpotential/K�ahler potential approa
h to handle geometri
 
uxes. After thisnon-trivial test we believe in the 
orre
tness of the e�e
tive supergravity approa
hand 
ompute in the next se
tion the potentials for the 
oset spa
es.But before we will do so, let us brie
y 
omment on the Iwasawa solution for the
ase m 6= 0. Turning on m, one gets extra terms in the superpotential that lookexa
tly like the torus superpotential, so we �nd:WE;Iwasawa;m6=0 =WE;Iwasawa(mT ) +WE;Torus(m) ; (5.18)where WE;Torus(m) is the superpotential of the torus obtained and WE;Iwasawa(mT )is the superpotential for the Iwasawa manifold that one obtains by T-dualizing thetorus solution. The mass spe
trum is the same upon repla
ing m2T ! m2 + m2T .Also, this time it is possible to de
ouple the Kaluza-Klein tower: in the limit (m2 +m2T )(e2�L2int)� 1.This ends the use of nilmanifolds in this thesis. We have mainly used them tojustify the use of the easier e�e
tive supergravity approa
h to 
ompute the s
alarpotential for the 
oset spa
es in the next se
tion. From a phenomenologi
al point ofview they do not seem very promising, be
ause, as we saw, three axions 
orrespond tomassless moduli, whi
h one would have to stabilize before turning to phenomenology.This problem might be solved by the St�u
kelberg me
hanism to generate masses forsome of the U(1) gauge �elds living on the D6-branes, as it is argued in [47℄. Butas we will see later in the 
osmologi
al appli
ations, our torus potential falls undera 
lass of potentials whose suitability for slow roll in
ation is ruled out by a no gotheorem formulated in [50℄. The same is then true for the Iwasawa manifold be
auseof T-duality. So let us instead turn to the more promising 
oset spa
es, sin
e there wewill �nd examples in the next se
tion, whi
h do not have any massless s
alar �elds.Furthermore, in the next 
hapter we will also see how they evade the no go theoremof [50℄.



66 Low energy physi
s II: E�e
tive supergravity5.3 The 
oset spa
esIn this se
tion, we 
ompute the s
alar potential for the 
oset spa
e va
ua of se
tion3.4. We will do this by using the e�e
tive supergravity approa
h of se
tion 5.1. Wewill pro
eed for ea
h 
oset in the same way as we did for the nilmanifolds. First, wewill have to 
hoose an expansion basis whi
h to use in (5.7). To 
ompute the K�ahlerpotential and superpotential, we then plug the result together with the respe
tiveba
kground from se
tion 3.4 into (5.3) and (5.4). The potential is given by (5.2) fromwhere we obtain the mass matrix.5.3.1 The G2SU(3) potentialWe 
hoose the expansion forms in (5.7) as follows:Y (2�) : a(e12 � e34 + e56) ;Y (3+) : a3=2(�e235 � e246 + e145 � e136) ; (5.19)and the standard volume Vs = � R a3 e123456.The superpotential reads:WE = ie�i�e��̂4�210 Vsa�1=2 �3p32 + 8 ~mi5 z0 � 9 ~mi5 t1 + 4p3z0t1 � p32 (t1)2 + i ~m(t1)3! ;(5.20)whereas the K�ahler potential isK = � ln �(t1 + �t1)3�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.21)If we plot ~M2=jW j2, the overall s
ale a drops out, and the only parameter is theredu
ed orientifold tension ~�: see Figure 5.1, where the dashed and solid red linerepresent the Breitenlohner-Freedman bound (4.8) and the bound (3.8) for ~�, respe
-tively. We see that all four moduli masses are above the Breitenlohner-Freedmanbound. Moreover, all masses are positive for ~� > �0:82. For ~� ! 1 the massesasymptote to ~M2=jW j2 = (10; 18; 70; 88), whi
h are the same as for the torus in se
-tion 4.3.1 (ex
ept there are no 
omplex stru
ture moduli and 
orresponding axions).In fa
t, this asymptoti
 behavior is universal for all models we studied. Indeed, for~� ! 1 we �nd from (3.12) that m ! 1 regardless of the details W�1 ;W�2 of themodel and exa
tly those terms in the superpotential be
ome relevant that also appearin the superpotential of the torus..In se
tion 3.2, we have seen that jW�1 jLint � 1 is one way to obtain a separation ofs
ales between the light masses and the Kaluza-Klein masses even before the uplifting.However, as 
an be seen from eq. (3.38), this is impossible to a
hieve for this 
oset.
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(b) Behavior for large ~�Figure 5.1: Mass spe
trum of G2SU(3) .5.3.2 The Sp(2)S(U(2)�U(1)) potentialWe 
hoose the expansion forms in (5.7) as follows:Y (2�) : a(e12 + e34);�ae56 ;Y (3+) : a3=2(e235 + e246 + e145 � e136) ; (5.22)and the standard volume Vs = � R a3 e123456. We �nd the following superpotentialWE = ie�i�e��̂4�210 Vsa�1=2 �� ~f� + 8 ~mi5 �1=2z0 � 3 ~mi5 (2�t1 + t2)� 2(2t1 + t2)z0+ i ~m(t1)2t2 + �1=2�32 � 54�� (t1)2 � ���1=2 � 32�1=2� t1t2� ; (5.23)and K�ahler potentialK = � ln �(t1 + �t1)2(t2 + �t2)�� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.24)This time the solution has next to the overall s
ale a two free parameters: the \shape"� = 
=a and the orientifold tension ~�. In Figure 5.2 we display plots for several valuesof �: � = 1 is the nearly-K�ahler point while for � = 2=5 and � = 2 the lower boundfor ~� from (3.12) is exa
tly zero. These were extreme points in [58℄, sin
e outsidethe interval [2=5; 2℄ the lower bound is above zero and solutions without orientifoldsare no longer possible. Moreover, for ~� = 0 also m = 0, and these solutions 
an belifted to M-theory. We also display a plot for large �, here � = 13. We see that thelower bound for ~� is indeed positive so that there must be net orientifold 
harge. The
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(d) � = 13Figure 5.2: Mass spe
trum of Sp(2)S(U(2)�U(1)) .behavior is however already like the universal behavior for ~�!1. Again we see thatin all 
ases all masses are above the Breitenlohner-Freedman bound and by 
hoosing~� large enough they are all positive.Again we would like to get jW�1 jLint � 1 to de
ouple the Kaluza-Klein modes.From eq. (3.46) we see that this 
an be formally obtained by putting � ! �2, i.e. weneed to analyti
ally 
ontinue to negative values for �. From [82℄ we learn that � < 0 isindeed possible, but the model 
annot be des
ribed as a left-invariant SU(3)-stru
tureon the 
oset Sp(2)S(U(2)�U(1)) anymore. Rather it is a twistor bundle on a four-dimensionalhyperboli
 spa
e. The pre
ise agreement between the results of [58℄ (whi
h is basedon [82℄) and [59℄ (wherever they overlap) suggests that the analyti
 
ontinuation ispossible. Stri
tly speaking, however, one should 
he
k that also the mass spe
trum
an be analyti
ally 
ontinued to negative values for �. Although this seems plausible,verifying it dire
tly would require using entirely di�erent te
hnology, and lies beyond
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(a) � = �2Figure 5.3: Mass spe
trum of the 
ontinuation of Sp(2)S(U(2)�U(1)) to negative �.the s
ope of this thesis. In deriving the plot of Figure 5.3 for � = �2, we have assumedthat su
h analyti
 
ontinuation of the mass spe
trum is possible. We see that twomass eigenvalues stay light, while the others blow up ifW�1 ! 0 and join the Kaluza-Klein masses. In this limit the light modes have ~M2=jW j2 = (�38=49; 130=49).5.3.3 The SU(3)U(1)�U(1) potentialIn this 
ase we 
hoose the expansion forms in (5.7) as follows:Y (2�) : �ae12; ae34;�ae56 ;Y (3+) : a3=2(e235 + e246 + e136 � e145) ; (5.25)and the standard volume Vs = R a3 e123456.Using the expression (B.65) for the superpotential and the expansion given in(5.7), we derive the superpotentialWE =� ie�i�e��̂4�210 Vsa�1=2 ~f�� � 8 ~mi5 (��)1=2z0 + 3 ~mi5 (��t1 + �t2 + �t3)+ 14(��)�1=2�(3� + 3�� � 5�2)t1t2 + (3�� 5�2 + 3��)t1t3 + (�5 + 3�+ 3�)t2t3�� 2z0(t1 + t2 + t3)� i ~mt1t2t3! : (5.26)The K�ahler potential (5.4) be
omesK = � ln 3Yi=1(ti + �ti)!� ln �4(z0 + �z0)4�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.27)
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(b) � = 1 and � = 25 .Figure 5.4: Mass spe
trum of SU(3)U(1)�U(1) .The model has this time two shape parameters: � = b=a and � = 
=a. We displaythe mass spe
trum for a number of sele
ted values of these parameters in Figure5.4. There is a symmetry under permuting (a; b; 
) whi
h translates into a symmetryunder � $ � and (�; �; ~�) $ (�=�; 1=�; �~�). Applying these symmetries leads toidenti
al mass spe
tra. Moreover, the mass spe
tra for � = 1 are, apart from twomore eigenvalues, identi
al to the mass spe
tra of Sp(2)S(U(2)�U(1)) . We also display anexample with �; � 6= 1.In the plots of Figure 5.5 we have analyti
ally 
ontinued to � < 0; � < 0 in orderto approa
h the NCY limit, whi
h we obtain for �+ � = �1. Again, two eigenvaluesstay light with ~M2=jW j2 = (�38=49; 130=49) in the limit while the other eigenvaluesblow up to the Kaluza-Klein s
ale.5.3.4 The SU(2)�SU(2) potentialThe expansion forms are given byY 2�1 = ae14 ; Y 2�2 = be25 ; Y 2�3 = 
e36 ; (5.28)Y 3+1 = ex1x2y3 = �h4
1(a+ b + 
)(e123 + e456 + e126 + e345 + e315 + e264 + e156 + e234) ;Y 3+2 = ex1y2x3 = h4
1(�a + b+ 
)(e123 + e456 � e126 � e345 � e315 � e264 + e156 + e234) ;Y 3+3 = ey1x2x3 = �h4
1(a� b + 
)(�e123 � e456 + e126 + e345 � e315 � e264 + e156 + e234) ;Y 3+4 = �ey1y2y3 = h4
1(a+ b� 
)(e123 + e456 + e126 + e345 � e315 � e264 � e156 � e234) ;
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(b) � = � 34 and � = � 14 .Figure 5.5: Mass spe
trum of SU(3)U(1)�U(1) for negative � and �.and the standard volume Vs = � RM ab
 e1:::6. One �nds for the superpotential:W = ie�i�e��̂4�210 Vsa�1=2(32~
1 + i ~m�t1t2t3 � 35(t1 + t2 + t3)� 25(z1 + z2 + z3 + z4)�+ 32~
1(t1t2 + t2t3 + t1t3)+ ~
1~h2n4 �t2t3(1� �2 � �2) + t1t3�2(�1 + �2 � �2) + t1t2�2(�1� �2 + �2)�+ �t1(�1 + �2 + �2) + t2�2(1� �2 + �2) + t3�2(1 + �2 � �2)� (z1 + z2 + z3 + z4)+ �� ��2t1 + t2(1 + �2 � �2) + t3(1� �2 + �2)� (z1 + z2 � z3 � z4)+ � �t1(1 + �2 � �2)� 2�2t2 + t3(�1 + �2 + �2)� (z1 � z2 + z3 � z4)+ � �t1(1� �2 + �2) + t2(�1 + �2 + �2)� 2�2t3� (z1 � z2 � z3 + z4)o) : (5.29)The K�ahler potential reads:K = � ln 3Yi=1(ti + �ti)!� ln 4 4Yi=1 �zi + �zi�!+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.30)There are again two shape parameters � = b=a and � = 
=a, and the samesymmetries �$ �, (�; �; ~�)$ (�=�; 1=�; �~�) as in the previous model. In Figure 5.6,we display the mass spe
trum for some values of the parameters. This time there willalways be one unstabilized massless axion ( ~M2=0) and a 
orresponding ta
hyoni

omplex stru
ture modulus with ~M2=jW j2 = �2.
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(b) � = 1 and � = 25 .Figure 5.6: Mass spe
trum of SU(2)�SU(2).In the limitW�1 ! 0, W�2 blows up just as the lower bound for ~�. So in prin
iplewe 
ould de
ouple the Kaluza-Klein modes this way, however it is quite diÆ
ult tostudy this singular limit.5.3.5 The SU(3)�U(1)SU(2) potentialWe display the general results here and refer the reader for the spe
ial 
ase 5
21 �4e2�m2 = 0 to [25℄. We 
hoose the expansion forms in (5.7) as follows:Y (2�) : �a[(e13 � e24)� �(e14 + e23)℄; ae56 ;Y (3+) : a3=2[(e13 � e24) + ��1(e14 + e23)℄ ^ e6; a3=2(e125 + e345) ; (5.31)and the standard volume Vs = R a3(1 + �2)e123456. The superpotential and K�ahlerpotential read:WE = � ie�i�e��̂4�210 Vsa�1=2 � ~f� + 3i ~m5 �(2t1 + 1� t2)+r32(1 + �2)� 14 ��t1t2 + �2 (t1)2�� i ~m(t1)2t2 (5.32)�4p2i ~m5� (1 + �2) 14 z1 + 2p2i ~m5 �(1 + �2)� 34 z2 + 2p3� z1t1 �p3(1 + �2)�1t2z2! ;
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(b) � = 12 and � = 2.Figure 5.7: Mass spe
trum of SU(3)�U(1)SU(2) .and K =� ln �(t1 + �t1)2(t2 + �t2)�� ln�4 1�2(1 + �2)(z1 + �z1)2(z2 + �z2)2�+ 3 ln(8�210M2PV �1s e4�̂=3) : (5.33)This model has two shape parameters � = b=a and � = 
=a, and a symmetryunder (�; �; ~�)$ (1=�; �=�; �~�). In Figure 5.7, we show the mass spe
trum for somevalues of the parameters. The mass spe
trum at � = 0 turns out to be independentof the parameters �; �. There always seem to be two negative ~M2 eigenvalues.5.3.6 SummaryIn this se
tion we derived the s
alar potential for type IIA SU(3)-stru
ture 
ompa
ti�-
ations on nilmanifolds and 
osets, whi
h are tra
table enough to allow for an expli
it
al
ulation. In parti
ular, we 
al
ulated the mass spe
trum of the light s
alar modes,using N = 1 supergravity te
hniques. In the 
oset models, ex
ept for SU(2)�SU(2),all moduli are stabilized.It would be interesting to study the uplifting of these models to de Sitter spa
e-times. This might be a

omplished by in
orporating a suitable additional upliftingterm in the potential along the lines of, e.g, [18℄. Although a negative mass squaredfor a light �eld in AdS does not ne
essarily signal an instability, after the uplift all�elds should have positive mass squared. Unless the uplifting potential 
an 
hangethe sign of the squared masses, it is thus desirable that they are all positive evenbefore the uplifting. We �nd that this 
an be arranged in the 
oset models G2SU(3) ,Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) for suitable values of the orientifold 
harge.An alternative approa
h towards obtaining meta-stable de Sitter va
ua 
ould alsobe to sear
h for non-trivial de Sitter minima in the original 
ux potential away from
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s II: E�e
tive supergravitythe AdS va
uum. In su
h a 
ase, one would have to re-investigate the spe
trum ofthe light �elds and the issue of the Kaluza-Klein de
oupling. We will 
ome to thisquestion in the next 
hapter.We dis
ussed the Kaluza-Klein de
oupling for the original AdS va
ua and foundthat it requires going to the nearly-Calabi Yau limit, whi
h seems to be somewhathard to do. Indeed, we found that for Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) one has to make a
ontinuation to negative values of the \shape" parameters. Stri
tly speaking, this 
anno longer be des
ribed as a left-invariant SU(3)-stru
ture on a 
oset anymore, but it
an still be des
ribed in terms of a twistor bundle over a four-dimensional hyperboli
spa
e. However, as explained in se
tion 4.2, even if we are not able to de
ouple theKK tower our results should not be altered by the in
lusion of other �elds be
ausethe latter should not 
ouple to �elds 
onstituting a 
onsistent trun
ation.



Chapter 6CosmologyIn this 
hapter we want to study whether the s
alar potentials obtained in the last
hapter might be suitable for some phenomenologi
al appli
ation. The only thing thatwe know so far is that they posses a supersymmetri
 AdS4 minimum. To make 
onta
twith observation, one possibility would be to try to modify the whole 
onstru
tion ina way that breaks supersymmetry and results in a 4d de Sitter minimum. But this isnot what we want to do here. Instead we want to investigate whether the potentials
omputed in the last 
hapter allow for dS minima somewhere away from the originalsupersymmetri
 minimum. But as we will explain, we 
an answer this question byasking an even more general question, namely, whether there are regions somewherein the potential that allow for slow-roll in
ation.The main problem of implementing in
ation in type IIA 
ompa
ti�
ations is thatthere exist already quite strong no-go theorems against dS va
ua and slow-roll in-
ation: extending the earlier work [49℄, the authors of [50℄ prove a no-go theoremagainst small � in type IIA 
ompa
ti�
ations on Calabi-Yau manifolds with standardRR and NSNS-
uxes, D6-branes and O6-planes at large volume and with small string
oupling. This no-go theorem uses the parti
ular fun
tional dependen
e of the 
orre-sponding s
alar potentials on the volume modulus � and the 4d dilaton � . Using onlythis (�; �)-dependen
e, they 
ould derive a no-go theorem in the absen
e of metri

uxes that puts a lower bound on the �rst slow-roll parameter,� � gij�iV �jV2V 2 � 2713 ; whenever V > 0; (6.1)where gij denotes the inverse of gij appearing in front of the kineti
 energy terms,and the indi
es i; j run over all moduli �elds. This then not only ex
ludes slow-rollin
ation but also dS va
ua (
orresponding to � = 0).As was already emphasized in [50℄, however, the in
lusion of other ingredientssu
h as NS5-branes, geometri
 
uxes and/or non-geometri
 
uxes evade the assump-tions that underly this no-go theorem. In [85℄, a 
ombination of geometri
 
uxes,KK5-branes and more ingredients was indeed argued to allow for dS minima. These



76 Cosmologyingredients were used in [51℄ to 
onstru
t large �eld in
ationary models with veryinteresting experimental predi
tions. As already mentioned in ?? the above no-gotheorem dire
tly rules out the torus example. Sin
e the Iwasawa example is T-dualto the torus this manifold is also ruled out even though it has geometri
 
ux.In the re
ent work [86℄, F0 
ux (i.e. non-vanishing Romans mass) and geometri

ux were identi�ed as \minimal" additional ingredients in order to 
ir
umvent the no-go theorem of [50℄. We want to dis
uss the question to what extent the type IIAN = 1AdS4 va
ua with SU(3)-stru
ture 
an be used for in
ation or dS va
ua. In parti
ular,the 
oset models with SU(3)-stru
ture 
ould be 
andidates for 
ir
umventing the no-go theorem of [50℄, as they all have geometri
 
uxes and allow for non-vanishingRomans mass. Spe
i�
ally, we investigate whether the s
alar potentials in the 
losedstring moduli se
tor 
an be 
at enough in order to allow for in
ation by one of the
losed string moduli. For this to be the 
ase the parameter � must be small enough insome region of the positive s
alar potential for the 
losed string moduli. In addition,this analysis is also relevant for open string in
ation in these IIA va
ua, sin
e in this
ase we have to �nd 
losed string minima of the s
alar potential, i.e. � = 0 somewherein the 
losed string moduli spa
e. Having a point with � = 0 would also be a ne
essary
ondition for a dS va
uum somewhere in moduli spa
e.In the next se
tion we will �rst review the no-go theorems of [50℄ and [86℄ tosee how our 
oset models evade them. After that we introdu
e yet another no-gotheorem, �rst formulated in [87℄, whi
h also in
ludes geometri
 
uxes. We will thenapply a slight modi�
ation of this no-go theorem to rule out all but one 
oset modelsto allow for dS minima or in
ation. We will study the remaining 
oset and somefurther generalizations in the following se
tions.6.1 A no-go theorem without geometri
 
uxesWe start by reviewing previously derived no-go theorems [50℄ (see also [85, 86℄) thatex
lude slow-roll in
ation and dS va
ua in the simplest 
ompa
ti�
ations of massivetype IIA supergravity, fo
using in parti
ular on the role played by the 
urvature ofthe internal spa
e. In [50℄ the authors studied the dependen
e of this s
alar potentialon the volume modulus and the four-dimensional dilaton de�ned by� � (Vol)1=3 ; � � e��pVol : (6.2)The formulation of the no-go theorem then 
onsists of two steps. First, they derivea general expression for the slow roll parameter �, valid for any N = 1 supergravitytheory. It is the sum of a positive term plus the gradient in the (�; �)-plane. These
ond step 
onsists of �nding a lower bound for the gradient in the (�; �)-plane,forbidding � to be
ome arbitrarily small.Be
ause we use similar arguments in the next se
tions let us review their 
on-stru
tion here and start with the �rst step. A basi
 ingredient in the formulation of



6.1 A no-go theorem without geometri
 
uxes 77any 4d N = 1 supergravity theory is the K�ahler potential (see (5.4))K = Kk +K
 + 3 ln(8�210M2P ) ; (6.3)where Kk and K
 are the parts 
ontaining, respe
tively, the K�ahler and 
omplexstru
ture/dilaton moduli.Let us now fo
us on the K�ahler moduli, whose K�ahler potential is given by (see(5.5a)) Kk =� lnZM 43J3 = � lnZM 8 dvol6 ; (6.4a)where we have used J3 = 6 dvol6 in the se
ond equality. Sin
e RM dvol6 = Vol we
an use this to relate the volume modulus � de�ned in (6.2) to the K�ahler moduli kiappearing in the expansion of J . Namely, using the usual expansion of J given byJ = kiY (2�)i ; (i = 1; : : : ; h2�) (6.5)and de�ning the triple interse
tion numbers �ijk as�ijk = ZM Y (2�)i ^ Y (2�)j ^ Y (2�)k ; (6.6)we get from (6.4a) �ijkkikjkk = 6�3 ; (6.7)So we 
an relate � to the ki if we writeki = �
i ; (6.8)and impose the 
onstraint �ijk
i
j
k = 6 : (6.9)Now we obtain an important pie
e of information by looking at the kineti
 energy forthe K�ahler and 
omplex stru
ture moduli ti and zi given byT = Tk + T
 = �Ki�j��ti��t�j � Ki�j��zi��z�j : (6.10)Let us fo
us again on the K�ahler se
tor. Turning to real 
oordinates ti = ki � ibi weget Tk = �14 �2Kk�ki�kj ���ki��kj + ��bi��bj� : (6.11)



78 CosmologyPlugging in (6.8) and using ��(�ijk
i
j
k) = 0, we obtain:Tk = �"3(���)24�2 � 14�ijk
k��
i��
j + �ikl
k
l�jmn
m
n � 4�ijk
k16 �2 ��bi��bj# (6.12)We see that � does not have 
anoni
al kineti
 energy, but we 
an de�ne a �̂, whi
hdoes: �̂ �r32 ln � : (6.13)By swit
hing from � to �̂, we 
an read o� the kineti
 energy for �̂. The remainingkineti
 energy terms for 
i and bi are blo
k diagonal (there are no 
ross terms involving��� ��
a et
), and this has an important 
onsequen
e: We know that in the physi
alregion the total kineti
 energy must be positive, so ea
h of the above 3 terms mustbe positive. Hen
e, Tk = �(���̂)2=2 + positive: (6.14)For the 
omplex stru
ture/dilaton se
tor, the pro
edure is similar, although moresubtle. Without going through the details here we, just give the result. Again, onepulls out the � dependen
e by ui = � ~ui, where the ~ui are no longer independentanymore. One then has to de�ne a 
anoni
ally normalized �eld�̂ � p2 ln � (6.15)to obtain for the kineti
 energyT
 = �(��̂ )2=2 + positive: (6.16)The kineti
 energy is again blo
k diagonal. In fa
t we know this must be true fromthe 10-dimensional point of view; the dilaton modulus is inherited dire
tly from 10dimensions, and so 
annot possibly give rise to mixed kineti
 terms with the 
omplexstru
ture moduli in four dimensions.So all in all we know that the metri
 appearing in (6.1) is blo
k diagonal in �̂; �̂and the remaining moduli, whi
h allows us to write� = M2p2V 2 (V�̂V�̂ + V�̂V�̂ + positive terms) : (6.17)Thus we get for � the following estimate derived in [50℄ :� � M2p2 "��lnV��̂ �2 + ��lnV��̂ �2# : (6.18)
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uxes 79Writing this in terms of � and � we get� � M2pV 2 "13 ���V�� �2 + 14 �� �V�� �2# : (6.19)This 
an be written as� � M2p39V 2 ����V�� � 3� �V�� �2 + M2p13V 2 �2��V�� � 12� �V�� �2 ; (6.20)from whi
h we get � � M2p39V 2 ����V�� � 3� �V�� �2 : (6.21)It is now surprisingly simple to derive a lower bound for the right hand side of(6.21). Classi
ally, the four-dimensional s
alar potentials of su
h 
ompa
ti�
ationsmay re
eive 
ontributions from the NSNS H3-
ux, geometri
 
uxes, O6/D6-branesand the RR-
uxes Fp; p = 0; 2; 4; 6 leading to, respe
tively, the following terms:V = V3 + Vf + VO6=D6 + V0 + V2 + V4 + V6; (6.22)where V3; V0; V2; V4; V6 � 0, and Vf and VO6=D6 
an a priori have either sign. Vf followsfrom the redu
tion of the Einstein Hilbert term in (A.2), and it is expli
itly given byVf = �12M4P�210e2�Vol�1R = �12M4P�210��2R ; (6.23)where R is the Ri

i s
alar of the internal manifold. By looking at (A.2) and (A.4),it is not diÆ
ult to obtain the general s
aling behavior of these terms with respe
t to� and � ,V3 / ��3��2; Vp / �3�p��4; VO6=D6 / ��3; Vf / ��1��2 : (6.24)These s
alings 
an also be found by analyzing the potential (5.2) arising in the e�e
tivesupergravity approa
h. Using these s
alings we get from (6.22)���V�� � 3� �V�� = 9V + Xp=2;4;6 pVp � 2Vf : (6.25)Hen
e, whenever the 
ontribution from the metri
 
uxes Vf is zero or negative thisgives ���V�� � 3� �V�� � 9V : (6.26)



80 CosmologyAssuming a regime where V > 0, whi
h is ne
essary for in
ation, we 
an plug thisinto (6.21) to get � � 2713 ; (6.27)as it has been derived in [50℄. This dire
tly rules out the torus example of se
tion 5.2as well as the T-dual Iwasawa example.Avoiding this no-go theorem without introdu
ing any new ingredients would thusrequire Vf > 0. Sin
e Vf / �R, where R denotes the internal s
alar 
urvature, thisis equivalent to demanding that the internal spa
e has negative 
urvature. Sin
e allterms in V s
ale with a negative power of � we see from (6.22) and (6.24) that wethen also need VO6=D6 < 0 to avoid a runaway, whi
h re
e
ts the old result of [88℄.Following a related argument in [86℄, one 
an identify another 
ombination ofderivatives with respe
t to � and � that sets a bound for �:�3��V�� � 3� �V�� = 9V + 6V3 � 6V0 + 6V4 + 12V6 � 9V � 6V0: (6.28)In the 
ase of vanishing mass parameter, we have V0 = 0, and (6.28) implies � � 97 .Therefore, we need to have Vf > 0; VO6=D6 < 0 and V0 6= 0 in order to avoid the aboveno-go theorems. Note that the only real restri
tion here is that we have to have a
ompa
t spa
e with negative 
urvature sin
e in our examples we are always free toturn on F0-
ux and to do an orientifold proje
tion. By 
omputing the Ri

i s
alar(C.35) from the stru
ture 
onstants of the 
osets and the metri
, whi
h depends onthe geometri
 moduli, we will see that some of the 
osets admit a negative 
urvaturein a 
ertain regime of the moduli spa
e and are thus not a�e
ted by the no-go theoremof [50℄.6.2 A modi�ed no-go theorem for SU(3)-stru
tureUnfortunately, in [87℄ yet another no-go theorem has been derived, this time alsoapplying to 
ertain 
lasses of 
ompa
ti�
ations with negative s
alar 
urvature. Wewill review it in this se
tion.The 
oset examples of SU(3)-stru
ture manifolds have spe
ial interse
tion numbersthat allow a split of the index i of the K�ahler moduli into f0; ag; a = 1; : : : ; (h2��1),su
h that the only non-vanishing interse
tion numbers are�0ab � Xab : (6.29)We now introdu
e a variable similar to � in (6.8) by de�ningka = ��a ; (6.30)



6.2 A modi�ed no-go theorem for SU(3)-stru
ture 81where � is the overall s
ale of (h2� � 1) K�ahler moduli, and the �a are 
onstrainedby Xab�a�b = 2. The volume 
an now simply be written as Vol = k0�2. Now onedoes the same kind of 
omputations as we did in the last 
hapter. Instead of (6.12)we get this time for the kineti
 energyTk = �"(���)22�2 � ���k02k0 �2 + 14Xab���a���b � 14Kab��bi��bj# ; (6.31)where we used ��(Xab�a�b) = 0. This time the 
anoni
ally normalized �eld is givenby �̂ � ln� ; (6.32)whi
h gives Tk = �(���̂)2=2 + positive: (6.33)The kineti
 energy for �̂ is still the same as in (6.16) so that we get the same boundas in (6.18), but now for � instead of �:� � 12 "��lnV��̂ �2 + ��lnV��̂ �2# : (6.34)Writing this in terms of � and � we get� � 12V 2 "���V�� �2 + 12 �� �V�� �2# : (6.35)This 
an be written as� � 118V 2 ���V�� + 2� �V�� �2 + 136V 2 �4��V�� � � �V�� �2 : (6.36)from whi
h we get � � 118V 2 ����V�� � 2� �V�� �2 : (6.37)Again it is possible to derive a lower bound for the right hand side of (6.37). Withoutthe geometri
 
uxes the s
alings of the potentials in (6.22) be
ome for the spe
ialinterse
tion numbers (6.29)V3 / (k0�2)�3� 2 ; V0 / (k0�2)3� 4 ; V6 / (k0�2)�3� 4 ; VO6=D6 / 1� 3 ; (6.38)V2 / (�4 + (k0)2�2)(k0�2)1� 4 ; V4 / (�2 + (k0)2)(k0�2)1� 4 ; (6.39)



82 Cosmologyas it has been expli
itly derived in [25℄.De�ning DV � (���� � 2��� )V ; (6.40)we obtain from (6.38) DV3 =6V3 ;DVO6 =6VO6 ;DV0 =6V0 ;DV2 =6V2 + positive term ;DV4 =8V4 + positive term ;DV6 =10V6 : (6.41)
In [87℄ it was shown that if one de�nes a matrix riI bydY 2�i = riIY (3�)I ; (6.42)des
ribing the geometri
 
ux of J whi
h is expanded in odd two-forms, the extra
ondition raI = 0 or r0I = 0 leads to DVf = 6Vf . Plugging this and (6.41) into (6.37)one would get � � 2 ; whenever V > 0 : (6.43)However, in the 
oset examples that we want to dis
uss, one always has raI 6= 0,and r0I 6= 0 so the no-go theorem of [87℄ is not dire
tly appli
able. But one still 
anexpli
itly 
he
k for ea
h 
ase separately whether DVf � 6Vf is satis�ed or not. Inorder to do so, it is 
onvenient to writeVf = 12� 2VolU ; (6.44)so that DVf = 6Vf + 12� 2VolDU = 6Vf + 12� 2Vol(����)U; (6.45)and the no-go theorem applies if we 
an show that����U = �ka�kaU � 0 : (6.46)



6.3 Cosmology of 
osets 83Furthermore, if the inequality (6.46) is stri
tly valid, Minkowski va
ua are ruled outas well. This 
an be seen as follows. Using (6.41) and (6.45), we obtainDV = 6V + 2V4 + 4V6 + 12� 2Vol(����)U + positive terms ; (6.47)so that for a va
uum, DV = 0, we �nd with (6.46)V = �16 �2V4 + 4V6 + 12� 2Vol(����)U + positive terms� � 0 : (6.48)So, if the inequality (6.46) holds stri
tly, also (6.48) holds stri
tly as well, andMinkowski va
ua are ruled out.Indeed, one 
an 
he
k that the 
oset models dis
ussed in this thesis do not allowfor supersymmetri
 Minkowski va
ua with left-invariant SU(3)-stru
ture. Strangelyenough, this in
ludes the 
ase SU(2)�SU(2) for whi
h eq. (6.46) 
an be violated.This model may still allow for a non-supersymmetri
 Minkowski va
uum. In the nextse
tion we will expli
itly 
ompute (6.46) for ea
h 
oset.6.3 Cosmology of 
osetsIn the previous se
tion, we des
ribed a no-go theorem that rules out dS va
ua andslow-roll in
ation for type IIA 
ompa
ti�
ations on 
ertain types of SU(3)-stru
turemanifolds, namely those for whi
h one 
oordinate in the triple interse
tion number�ijk 
an be separated as in eq. (6.29), and the geometri
 
uxes indu
e the relation(6.46). While these seem to be quite strong assumptions, it turns out that almost allthe 
osets do fall into this 
ategory, as we will show in this se
tion. For that we willevaluate (6.46) for ea
h 
oset expli
itly. By looking at (6.44) and (6.23), we see thatwe �rst have to 
ompute the Ri

i s
alar for ea
h 
oset. It is given in (C.35) in termsof the stru
ture 
onstants and the metri
.6.3.1 The G2SU(3) no-goFor this 
ase, one �nds for the fun
tion U of (6.44):U / �(k1)2 ; (6.49)whi
h is manifestly negative. This implies that Vf itself is manifestly negative sothat the no-go theorem of [50℄, reviewed in se
tion 6.1, already rules out this 
ase.All other 
oset models allow for values of the moduli su
h that Vf > 0 and thereforerequire a more 
areful analysis using the re�ned no-go theorem of se
tion 6.2.



84 Cosmology6.3.2 The Sp(2)S(U(2)�U(1)) no-goFor this 
ase, one has U / (k2)2 � 4(k1)2 � 12k1k2 ; (6.50)and the only non-vanishing interse
tion number is �112 and permutations thereof, sothat k2 plays the role of k0, and we haveDU = �k1�k1U / 8(k1)2 + 12k1k2 > 0 ; (6.51)so that with ki > 0 (be
ause of metri
 positivity) the inequality (6.46) is stri
tlysatis�ed and this model is ruled out.6.3.3 The SU(3)U(1)�U(1) no-goFor this 
oset spa
e, we haveU / (k1)2 + (k2)2 + (k3)2 � 6k1k2 � 6k2k3 � 6k1k3 ; (6.52)and the non-vanishing interse
tion numbers are of the type �123 so that we 
an 
hooseany one of the three k's as k0. We will 
hoose k0 to be the biggest and assume withoutloss of generality that this is k1, i.e. that k1 � k2; k3. We then �nd thatDU = (�k2�k2 � k3�k3)U / (6k1 � 2k2)k2 + (6k1 � 2k3)k3 + 12k2k3 > 0; (6.53)so that with ki > 0 (be
ause of metri
 positivity) this 
oset spa
e is also ruled out bythe no-go theorem (6.46).6.3.4 The SU(3)�U(1)SU(2) no-goFor this model, the fun
tion U depends on an extra positive 
onstant � related to the
hoi
e of orientifolds. The fun
tion U turns out to beU / (k2)2(u2)2�� 8k1k2ju1u2j(1 + �2) ; (6.54)and the non-vanishing interse
tion numbers are of the form �112. Thus k2 plays therole of k0, and we �nd thatDU = �k1�k1U / 8k1k2ju1u2j(1 + �2) > 0; (6.55)so that with ki > 0 (be
ause of metri
 positivity) this 
ase is also ruled out.



6.4 The SU(2)�SU(2) 
oset 856.3.5 No SU(2) � SU(2) no-goThus far, we have found that � � 2 for all other 
ases. For the remaining 
oset spa
eSU(2)�SU(2), one �ndsU / 3Xi=1 (ki)2 4XI=1(uI)2!� 4k2k3(ju1u2j+ ju3u4j)� 4k1k2(ju1u4j+ ju2u3j)� 4k1k3 �ju1u3j+ ju2u4j� ; (6.56)and the non-vanishing interse
tion numbers are of the form �123 so that we 
ould
hoose any one of the k's as k0. However, it is not possible to apply the no-gotheorem. This 
an be easily seen if we take for example u1 � u2; u3; u4. Then wehave s
hemati
ally U / ~k2(u1)2 and DU / �kaka(u1)2 < 0. In [87℄ further no-gotheorems have been derived but none of those apply to this 
ase either. We will studythis 
ase in more detail in the next 
hapter.6.4 The SU(2)�SU(2) 
osetIn the last se
tion we have seen that the known no-go theorems 
annot be used torule out small � for 
ompa
ti�
ation on SU(2)�SU(2) even though in a numeri
alanalysis we did not �nd small �.We will argue in this 
hapter that from a 4d e�e
tive supergravity perspe
tivethere are, in a sense we will have to spe
ify, di�erent inequivalent values for the 
uxespossible, whi
h lead to inequivalent superpotentials. The superpotentials we foundfor the 
osets in 
hapter 5 by plugging in the supersymmetri
 ba
kground values forthe �elds given in 
hapter 3 are just one possibility. They are 
hara
terized by the fa
tthat they allow by 
onstru
tion for a supersymmetri
 va
uum. In the next se
tion wewill make pre
ise what we mean by inequivalent superpotentials. It turns out thatthere are values for the 
uxes leading to superpotentials whi
h do not allow for asupersymmetri
 minimum in the potential. Exa
tly for su
h a non-supersymmetri
superpotential we will �nd that for SU(2)�SU(2) it is possible to get � � 0 and thereare dS extrema. In prin
iple one 
ould to do su
h a 
lassi�
ation of inequivalentpotentials for all the 
oset spa
es in order to study the full moduli spa
e. Note,however, that for all the 
osets in whi
h we were able to prove a no-go theoremagainst in
ation, this 
on
lusion is not altered, be
ause we only used the geometri
alinformation, namely the geometri
al 
ux potential for ea
h 
oset, in this proof1. Inorder to �nd small � this leaves as the only possibility out of the 
osets studied sofar the SU(2)�SU(2) model, although numeri
ally we did not �nd small �. From theviewpoint of this 
hapter, we should make this more pre
ise by saying that there is no1We are only 
onsidering the 
ase of O6-planes. Allowing for other O-planes 
ould 
hange this
on
lusion



86 Cosmologysmall � in \bubbles", i.e. inequivalent 
hoi
es of the ba
kground 
uxes, whi
h allowfor a supersymmetri
 AdS4 minimum. Indeed we will �nd 
on�gurations with � � 0and V > 0 in bubbles that do not allow for supersymmetri
 AdS va
ua.Taking this 4d point of view it is also possible to study potentials resulting from
osets whi
h do not allow for a supersymmetri
 va
uum at all. By still restri
tingfor simpli
ity to 
osets whi
h allow for an SU(3)-stru
ture, we will see that there aretwo more 
andidates in table C.1. In analyzing the whole moduli spa
e there is one
ompli
ation, namely the 
hoi
e of 
ompatible orientifolds. In our supersymmetri
analysis they were obtained as a result of the solutions to the Bian
hi identities ofthe 
uxes, whi
h were in turn �xed in terms of the geometry by the supersymmetryequations. This is no longer the 
ase for the non-supersymmetri
 
ases, and we willsti
k in our analysis to the 
ase of O6-planes.6.4.1 Classifying inequivalent potentialsIn this se
tion, we want to 
lassify the di�erent inequivalent superpotentials andthe resulting potentials. In what follows, we will 
all a given set of 
ux parametersa \bubble". In a given bubble the potential is �xed, and one 
an rea
h di�erentpoints of it by 
u
tuations of the �elds. A natural idea would be to 
all two bubblesinequivalent when it is not possible to go from one bubble to the other by �nite
u
tuations of the moduli �elds. From the 4d e�e
tive supergravity point of view onewould then have to 
lassify all inequivalent bubbles and study the potential for ea
hbubble in order to analyze the full moduli spa
e. In this way, we will �nd bubbles,whi
h do not possess a supersymmetri
 AdS4 va
uum and are thus not 
overed byour analysis so far. We follow here the standard approa
h of 
lassifying the di�erentbubbles by 
ux quanta, whi
h is however 
ompli
ated by the presen
e of Romansmass, H-�eld and O6-plane sour
e. Classifying the di�erent bubbles in terms of
uxes amounts to �nding 
on�gurations that solve the Bian
hi identitiesdH = 0 ; (6.57a)dF0 = 0 ; (6.57b)dF2 +mH = �j3 ; (6.57
)dF4 +H ^ F2 = 0 ; (6.57d)while two 
on�gurations are 
onsidered equivalent if they are related by a 
u
tuationof the moduli �elds, whi
h after imposing the orientifold proje
tion (and assuming itremoves one-forms) is given by (4.19)ÆH = dÆB ; (6.58a)ÆF0 = 0 ; (6.58b)ÆF2 = �mÆB ; (6.58
)



6.4 The SU(2)�SU(2) 
oset 87ÆF4 = dÆC3 � ÆB ^ (F2 + ÆF2)� 12m(ÆB)2 ; (6.58d)ÆF6 = H ^ ÆC3 � ÆB ^ (F4 + ÆF4)� 12(ÆB)2 ^ (F2 + ÆF2)� 13!m(ÆB)3 : (6.58e)In other words, we want to �nd representatives of the 
ohomology of the Bian
hiidentities (6.57) modulo pure 
u
tuations of the potentials (6.58).From eqs. (6.58b) we get immediately that F0 is 
onstant. Using the non-
losedpart of ÆB in (6.58a), we 
an remove the exa
t part of H and set H 2 H3(M;R) in(6.57a). To analyze (6.57
) and (6.58
), we take the point of view that we 
hoose the
ux F2, whi
h then determines the sour
e j3. From here on, one has to dis
uss the
ase F0 6= 0 and F0 = 0 separately.If F0 6= 0, the 
losed part of F2 
an be set to zero by 
hoosing the 
losed partof ÆB in (6.58
). Thus F2 is the most general non-
losed two form. Moving on toF4, we �nd that in eq. (6.57d) H ^ F2 = 0, sin
e we assumed there were no even�ve-forms under all the orientifold involutions. Moreover, with the 
u
tuations ÆC3,we 
an remove the exa
t part of F4 so that F4 2 H4(M;R). This however, leaves the
losed part of ÆC3 undetermined, whi
h, if we have 
hosen H non-trivial, 
an be usedto put2 F6 = 0 . Otherwise we should allow for F6 = fdvol.If F0 = 0, there is no ÆF2 and F2 is just the most general two form. Againwith ÆC3 we 
an remove the exa
t part of F4 so that F4 2 H4(M;R), whi
h we 
anfurther simplify by using the freedom of 
hoosing the 
losed part of ÆB. And also the
losed part of ÆC3 
an, if we have 
hosen H non-trivial, be used again to put F6 = 0.Otherwise we should allow for F6 = fdvol.To illustrate the pro
edure, we 
an study the G2SU(3) 
oset of se
tion 3.4.1. For the
ase F0 6= 0, we obtain the following most general form of the 
uxesF̂0 = m ; F̂2 = �(e12 � e34 + e56) ;F̂4 = 0 ; F̂6 = fdvol ; Ĥ = 0 ; (6.59)where m; f and � are free parameters. If we use the expansionJ
 = t1(e12 � e34 + e56) ; (6.60)Im

 = z1(�e235 � e246 + e145 � e136) (6.61)in (5.3) and (5.4), we obtain the same K�ahler potential as in (5.21), and the super-potential is given by W = f + im(t1)2 + 4p3t1z1 � 3�(t1)2 ; (6.62)whi
h already looks a bit ni
er than (5.20). Now we 
an 
ompute the potential asusual with (5.2).2If there is non-trivial H there is always a ÆC3 to put F0 = 0.



88 Cosmology6.4.2 Small � for SU(2)� SU(2)Now we 
ome to the study of the SU(2)�SU(2) 
oset spa
e for 
ux parameters whi
hdo not allow for a supersymmetri
 va
uum. In order to eliminate the one- and�ve-forms, we must introdu
e at least three mutually supersymmetri
 orientifolds,
ompatible with the stru
ture 
onstants. We 
an then always perform a basis trans-formation so that the odd two-forms and odd/even three-forms are the same as inse
tion 5.3.4 and read expli
itlyY (2�)1 =e14; Y (2�)2 = e25; Y (2�)3 = e36;Y (3�)1 =14 �e156 � e234 � e246 + e135 + e345 � e126 + e123 � e456� ;Y (3�)2 =14 �e156 � e234 + e246 � e135 � e345 + e126 + e123 � e456� ;Y (3�)3 =14 �e156 � e234 + e246 � e135 + e345 � e126 � e123 + e456� ;Y (3�)4 =14 ��e156 + e234 + e246 � e135 + e345 � e126 + e123 � e456� ;Y (3+)1 =12 �e156 + e234 � e246 � e135 + e345 + e126 + e123 + e456� ;Y (3+)2 =12 �e156 + e234 + e246 + e135 � e345 � e126 + e123 + e456� ;Y (3+)3 =12 �e156 + e234 + e246 + e135 + e345 + e126 � e123 � e456� ;Y (3+)4 =12 ��e156 � e234 + e246 + e135 + e345 + e126 + e123 + e456� ;
(6.63)

where the e� (� = 1; : : : ; 6) are a basis of left-invariant 1-forms. The e� satisfyde� = �12f��
e� ^ e
 ; (6.64)where the stru
ture 
onstants for SU(2) � SU(2) are f 123 = f 456 = 1, 
y
li
. Fromthis we �nd dY (2�)i = riIY (3�)I ; with r = 0� 1 1 1 �11 �1 �1 �11 �1 1 1 1A : (6.65)In terms of the above expansion forms, we 
an again de�ne the 
omplex moduli as in(5.7). The positivity of the metri
 demandsu1u2 < 0 ; u3u4 < 0 ; u1u4 < 0 : (6.66)
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oset 89Next we turn to the 
hoi
e of ba
kground 
uxes as explained in se
tion 6.4.We already now from 
hapter 6.1 that we need a non-vanishing F0 to get a small�. Furthermore our numeri
al studies did not give small � for the 
ase of vanishing H
ux, whi
h one 
ould 
hoose in the potential of se
tion 5.3.4. For the 
ase where H isnon-trivial in 
ohomology, p 6= 0 (see below), the most general form of the ba
kground
uxes is F0 =m; (6.67a)F2 =miY (2�)i ; (6.67b)F4 =0; (6.67
)F6 =0; (6.67d)H =p�Y (3�)1 + Y (3�)2 � Y (3�)3 + Y (3�)4 � : (6.67e)Plugging in these ba
kground values for the 
uxes together with the expansion (5.7)in terms of the basis (6.63), we �nd for the superpotential (5.3)W = Vs(4�210)�1�m1t2t3 +m2t1t3 +m3t1t2 � imt1t2t3 � ip(z1 + z2 � z3 + z4) + riItizI� ;(6.68)and the K�ahler potential (5.4) readsK = � ln 3Yi=1 �ti + �ti�� ln 4YI=1 �zI + �zI�+ 3 ln �V �1s �210M2P �+ ln 32 ; (6.69)where Vs = � RM e123456. Note that the superpotential depends on all the moduli sothere are no 
at dire
tions in this model.It is straightforward to 
al
ulate the s
alar potential (5.2) and the slow-roll pa-rameter � (6.1) from the K�ahler and superpotential. Although we 
annot analyti
allyminimize �, we 
he
ked numeri
ally that there is a solution with numeri
ally vanishing�, whi
h means that in this 
ase there is no lower bound for �. To obtain a trustworthysupergravity solution, we would have to make sure that the internal spa
e is large
ompared to the string length and that the string 
oupling is small. Furthermore, inthe full string theory, the 
uxes have to be properly quantized. Although we do notthink that this would prevent small �, we did not try to �nd su
h a solution be
auseall the solutions with vanishing � we found have a more serious problem, namely that� . �2:4. The eigenvalues of the mass matrix turn out to be generi
ally all positiveex
ept for one, with the one ta
hyoni
 dire
tion being a mixture of all the light �elds,in parti
ular the axions. This means that we have a saddle point rather than a dSminimum. A similar instability was found in related models in [87℄.



90 CosmologyIn [89℄, a no-go theorem preventing dS va
ua and slow-roll in
ation was derivedby studying the eigenvalues of the mass matrix. Allowing for an arbitrary tuning ofthe superpotential, it was shown that for 
ertain K�ahler potentials the `sGoldstino'mass is always negative. For the examples we found, this mass is always positive sothat the no-go theorem of [89℄ does not apply. A

ording to [89℄ this means thatallowing for an arbitrary superpotential it should be possible to remove the ta
hyoni
dire
tion. In our 
ase, however, the superpotential is of 
ourse not arbitrary.Sin
e the no-go theorems against slow-roll in
ation do not apply and we havefound solutions with vanishing �, we 
he
ked whether our solutions allow for small� in the vi
inity of the dS extrema. Unfortunately, this is not the 
ase. In fa
t, wefound that � does not 
hange mu
h in the vi
inity of our solutions where � is stillsmall.It would be very interesting to study the SU(2) � SU(2) model further to 
he
kwhether one 
an prove that there is always at least one ta
hyoni
 dire
tion or whetherit allows for metastable dS va
ua after all. Understanding this ta
hyoni
 dire
tionbetter should also allow to de
ide whether there are points in the moduli spa
e thatallow for slow-roll in
ation in this model.6.5 SU(3)-stru
ture 
osets without supersymme-tri
 va
uumIn this se
tion, we study the only two 
oset spa
es of the list given in table C.1that do allow for an SU(3)-stru
ture but not for a supersymmetri
 AdS4 va
uum.To keep the analysis tra
table we will restri
t to perpendi
ular O6-planes, whi
h arealigned along or perpendi
ular to the one-forms e1 : : : e6, although we already sawwith SU(2)�SU(2) an example where the O-planes are not perpendi
ular (3.66). Asit turns out, it is again possible to apply the no-go theorem of se
tion 6.2 to these
ases, whi
h only needs the potential part of the geometri
 
uxes. Thus, there is noneed to 
ompute the full potential.6.5.1 SU(2)2U(1) �U(1)It was shown in [59℄ that if the U(1) fa
tor in the denominator does not sit 
ompletelyin the SU(2)2, the resulting 
oset is equivalent to SU(2)�SU(2), so we ex
lude thispossibility here, as the above notation already suggests. The internal manifold is thenin fa
t equivalent to T 1;1�U(1). We 
hoose the stru
ture 
onstants as follows (this isa = 1, b = 0 
ompared to [59℄)f 123 = f 745 = 1; 
y
li
;f 345 = f 217 = f 172 = 1: (6.70)



6.5 SU(3)-stru
ture 
osets without supersymmetri
 va
uum 91The possible orientifolds that are perpendi
ular to the 
oordinate frame and 
ompat-ible with these stru
ture 
onstants are alonge123 ; e345; e256 ; e146 ; e246 ; e156 : (6.71)In order to remove one-forms and �ve-forms, it turns out that we have to introdu
etwo orientifolds, in parti
ular one of f123; 345g and one of f256; 146; 246; 156g. Itdoes not matter for the analysis whi
h parti
ular 
hoi
e is made, but for de�nitenesslet us 
hoose 345 and 256. We arrive then at the following expansion formsodd 2-forms: (e15 + e24) ; e36 ;even 3-forms: e123 ; (e256 � e146) ; e345 (6.72)for (5.7).There is always a 
hange of basis su
h that we 
an assume ki > 0. The 
onditionsfor metri
 positivity then be
omeu1u2 > 0 ; u1u3 > 0 : (6.73)U be
omes U / �4k1k2u2(u1 + u3) + (k2)2 [(u1)2 + (u3)2℄2pu1u3ju2j : (6.74)The non-vanishing interse
tion number is �112 so that k2 plays the role of k0, and weget for (6.46): DU = �k1�k1U / 2k1k2u2(u1 + u3)pu1u3ju2j > 0 ; (6.75)whi
h is positive using the 
onditions (6.73). Hen
e, this 
ase is ruled out as well.6.5.2 SU(2)�U(1)3In this 
ase there are ten possible orientifold planes perpendi
ular to the 
oordinateframe and 
ompatible with the stru
ture 
onstants. It turns out that in order toremove the one- and �ve-forms, we have to 
hoose at least three mutually super-symmetri
 orientifolds and that it does not matter for the analysis whi
h ones we
hoose. For de�niteness, let us takee123 ; e356; e246 : (6.76)With these orientifolds, we get the following expansion forms to be used in (5.7)odd 2-forms: e16 ; e25 ; e34 ;even 3-forms: e123 ; e356 ; e264 ; e145 : (6.77)



92 CosmologyAgain there is always a 
hange of basis su
h that we 
an assume ki > 0. The positivityof the metri
 demands thatu1u2 > 0 ; u1u3 > 0 ; u1u4 > 0 : (6.78)For the quantity U as de�ned in (6.44) we getU / (k1u4)2 + (k2u3)2 + (k3u2)2 � 2k1u4k2u3 � 2k1u4k3u2 � 2k2u3k3u22pu1u2u3u4 : (6.79)The non-vanishing interse
tion number is �123 so that ea
h ki 
an play the role of k0.Without loss of generality we 
an assume k1u4 � k2u3 > 0, k1u4 � k3u2 > 0 and
hoose k0 to be k1. Thus we then �ndDU = (�k2�k2 � k3�k3)U / �(k2u3 � k3u2)2 + k1u4(k2u3 + k3u2)pu1u2u3u4 > 0 ; (6.80)so that we 
an also rule out this model.6.6 A 
omment on extra ingredientsSome ingredients that are not taken into a

ount in the original no-go theorem of[50℄, see se
tion 6.1, nor in the no-go theorems of [87℄, see se
tion 6.2, are KK-monopoles, NS5-branes, D4-branes and D8-branes. Some of these ingredients wereused in 
onstru
ting simple dS-va
ua in [85℄. KK-monopoles would drasti
ally 
hangethe topology and geometry of the internal manifold so that their introdu
tion makesit diÆ
ult to obtain a 
lear ten-dimensional pi
ture, hen
e we will not dis
uss thispossibility further. NS5-branes, D4-branes and D8-branes would 
ontribute throughtheir respe
tive 
urrents jNS5, jD4 and jD8 as follows to the Bian
hi identitiesdH = �jNS5 ;dF4 +H ^ F2 = �jD4 ;dF0 = �jD8 : (6.81)Sin
eH and F2 should be odd, and F0 and F4 even under all the orientifold involutions,we �nd that jNS5 is an odd four-form, jD4 an even �ve-form and jD8 an even one-form.In the approximation of left-invariant SU(3)-stru
ture to be used in the next se
tion,one should also impose these brane-
urrents to be left-invariant (making the branesitself smeared branes). For the 
on
rete models studied in this thesis there are nosu
h 
urrents jNS5, jD4 or jD8 with the appropriate properties under all orientifoldinvolutions, implying that NS5-branes, D4- and D8-branes 
annot be used in thesemodels.



6.7 Summary 93Let us brie
y mention that an F-term uplifting along the lines of O'KKLT [48, 90℄by 
ombining the 
oset models with the quantum 
orre
ted O'Raifeartaigh modelwill not be a promising possibility either. The O'Raifeartaigh model is given byWO = ��2S and KO = S �S � (S �S)2�2 . The model has a dS minimum for S = 0 whereVO � �4. We 
ombine the two models as follows (the subs
ript IIA refers to thepreviously dis
ussed 
ux and brane 
ontributions)W =WIIA +WO ; K = KIIA +KO : (6.82)In lowest order in S the total potential is then given byV � VIIA + eKIIAVO + : : : : (6.83)Note that we 
an then in
lude the 
ontribution of Vup = eKIIAVO in the no-go theorems,be
ause the uplift potential Vup s
ales like F6,Vup = Aup� 4 Vol : (6.84)Sin
e we assume a positive uplift potential, Vup > 0, the fa
t that Vup s
ales like F6tells us that adding this uplift potential does not help in 
ir
umventing the no-gotheorems of se
tion 6.1 or se
tion 6.2.6.7 SummaryThe main result of this 
hapter is that we 
an apply, for all but one 
oset spa
e, are�ned no-go theorem of [87℄ that does not just use the volume modulus and thedilaton, but also some of the other K�ahler moduli.3 These would not have beenruled out by the no-go theorem of [50℄ (ex
ept for the example of positive 
urvaturein 6.3.1) whi
h already ruled out the nilmanifolds. Just as in [50℄, it is the epsilonparameter, i.e., �rst derivatives of the potential that 
annot be made small. Ourresults in parti
ular show that it is important to make sure that the potential has a
riti
al point (or small �rst derivative) in all dire
tions in moduli spa
e. Moreover,the re�ned no-go theorem, just as the one of [50℄, is of a di�erent nature than theno-go theorems developed in [89℄, whi
h assume a vanishing (or small) �rst derivativeand then show that, under 
ertain 
onditions, the eta parameter de�ned in (2.17)
annot be made small enough.The 
oset model we do not rule out by a no-go theorem 
orresponds to the groupmanifold SU(2)�SU(2)even though we 
ould not �nd small � by numeri
al analysisfor the form of the superpotential given in se
tion 5.3.4. However, generalizing theallowed 
uxes as in se
tion 6.4.1, we were indeed able to �nd 
riti
al points (
orre-sponding to numeri
ally vanishing �) with positive energy density, but only at the pri
e3Problems with �eld dire
tions orthogonal to the (�, �)-plane were also dis
ussed in [86℄, whereattempts were made to 
onstru
t dS va
ua on manifolds that are produ
ts of 
ertain three-manifolds.
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hyoni
 dire
tion, 
orresponding to a large negative eta-parameter, � . �2:4.Interestingly, this ta
hyoni
 dire
tion does not 
orrespond to the one used in the dif-ferent types of no-go theorems of [89℄. As our numeri
al sear
h was not exhaustive,however, we 
annot 
ompletely rule out the existen
e of dS va
ua or in
ating regionsfor this 
ase. Sin
e this 
ase also does not allow for a supersymmetri
 Minkowskiva
uum as mentioned below (6.48), our dis
ussion 
overs all SU(3)-stru
ture 
om-pa
ti�
ations on semi-simple and U(1) 
osets that have a supersymmetri
 va
uum.Furthermore, we also studied the remaining two 
oset spa
es of table C.1 thatdo admit an SU(3)-stru
ture but no supersymmetri
 AdS va
uum. Choosing forsimpli
ity the O-planes su
h that one-forms are proje
ted out and restri
ting to O-planes perpendi
ular to the 
oordinate frame, we 
ould again use the re�ned no-gotheorem of se
tion 6.2 to rule out dS va
ua and slow-roll in
ation for both of these
ases as well. At the end we brie
y ex
luded some of the most important extraingredients that one 
an think of to modify the models in su
h a way as to allow forsmall �.Again we believe that our results are valid even if we are not able to de
ouple theKK tower for the same reasons as the ones given in se
tion 5.3.6.



Chapter 7
Non-supersymmetri
 va
ua
In this 
hapter, we want to study non-supersymmetri
 va
ua on the three 
osets spa
esG2SU(3) , Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) whose supersymmetri
 va
ua we have analyzed in thepre
eding 
hapters. In parti
ular, we will be interested in the 
oset spa
e Sp(2)S(U(2)�U(1))whi
h is topologi
ally equivalent to C P3. The latter has played an important role inthe re
ently 
onje
tured AdS4/CFT3 
orresponden
e [54℄, as already explained in se
-tion 2.4. To study this 
orresponden
e further, the non-supersymmetri
 va
ua on thisspa
e are as important as the supersymmetri
 ones. We will not 
onsider any sour
esin this 
hapter. The supersymmetri
 va
uum for C P3 was �rst 
onstru
ted in [58℄and, allowing for sour
es, in [59℄. As we will review, a non-supersymmetri
 va
uumwas 
onstru
ted in [57, 64℄. Moreover, there exist already some general me
hanisms[62, 63℄ to produ
e non-supersymmetri
 va
ua starting from a supersymmetri
 one.But with our ansatz, whi
h is somehow trimmed to the expli
it 
oset examples, wewill �nd non-supersymmetri
 va
ua that have not appeared in the literature so far.As 
an be seen in 
hapter 3.4 the G2SU(3) and the Sp(2)S(U(2)�U(1)) 
oset spa
es are, insome sense, spe
ial 
ases of the SU(3)U(1)�U(1) 
oset and our analysis will be presentedin a form whi
h is adapted to the latter, but 
an then be easily spe
ialized to theother two 
oset spa
es. In the next se
tion we will present our strategy to �nd non-supersymmetri
 va
ua, namely to solve the equations of motion, before we will analyzethe resulting equations for ea
h of the three 
osets separately, starting with G2SU(3) whi
his the simplest. Of 
ourse, as already mentioned in se
tion 2.4, for phenomenologi
alappli
ations these non-supersymmetri
 va
ua are also of interest and one should studythem in the same way as we studied the supersymmetri
 ones. In parti
ular, onewould have to 
he
k the stability of those va
ua sin
e, as opposed to supersymmetri
va
ua, they may have ta
hyoni
 dire
tions. So stri
tly speaking, we will 
onstru
tnon-supersymmetri
 extrema and it remains to be 
he
ked whether they are trueva
ua of the theory.
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 va
ua7.1 Generalizing the supersymmetri
 solutionTo 
onstru
t non-supersymmetri
 va
ua our strategy is to start from the supersymme-tri
 solutions given in se
tion 3.4. We will then keep the geometry, namely the SU(3)-stru
ture (J;
) and the torsion 
lasses W�1;2 given in se
tions 3.4.1, 3.4.2 and 3.4.3,of the supersymmetri
 va
ua un
hanged, but write down the most general ansatz forthe 
uxes on these 
oset spa
es. As we saw in se
tion 3.4 for all three 
osets thereis always only one 
losed left-invariant three-form to expand H in and there are atmost three linear independent two-forms leading to the following general ansatz forthe 
uxes: F0 = 
0F2 = 
4J + i
5W�2 + 
8PF4 = 
1J ^ J + i
6J ^W�2 + 
7J ^ P (7.1)F6 = 
2dvol6H = 
3Re
 ;where the 
i are real parameters and the dilaton and warp fa
tor have been put tozero. We have 
onverted the external part of F4 into an internal part of F6 andexpressed everything in terms of the torsion 
lasses. For SU(3)U(1)�U(1) there are threelinear independent two forms. Two of them are given by J andW�2 . One then �nds athird linear independent 
losed primitive (1; 1)-form P with the following properties:P ^ 
 = 0 ; W�2 � P = 0P ^ J ^W�2 = 0 ; ?P = �P ^ J (7.2)Furthermore, by the same arguments as forW�2 in (B.24) one 
an show the followingrelation: P ^ P ^ J = �jP j22 vol6 (7.3)and we 
an normalize P su
h that jP j2 = jW�2 j2 : (7.4)This susy solution is re
overed by setting
5 = 1 ; 
6 = 0 ; 
7 = 0 ; 
8 = 0 ;
0 = m ; 
1 = 310m ; 
2 = �94 iW�1 ; 
3 = 25m ; 
4 = i4W�1 : (7.5)
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 solution 97and using the relation m2 = 1516 jW�1 j2 � 516 jW�2 j2 : (7.6)The susy solution solves the full equations of motion and Bian
hi identities of typeIIA supergravity without the need of any sour
es given in appendix A. Now we wantto use our ansatz (7.1) in those equations of motion and study the solutions to them.Without sour
es and vanishing dilaton they read0 = 12H2 � 18Xn (5� n)F 2n ; (7.7)0 = RMN + gMN  18H2 + 132Xn (n� 1)F 2n!� 12HM �HN � 14Xn FnM � FnN ;(7.8)0 = d (?Fn)�H ^ ?F(n+2) ; (7.9)0 = dF +H ^ F ; (7.10)0 = d ?H � 12Xn ?Fn ^ F(n�2) : (7.11)The equation of motion for F2 and the Bian
hi for F4 are trivially satis�ed for ouransatz (7.1). From the Bian
hi identity of F2, the equation of motion for F4 and thedilaton equation of motion we obtain0 = 8
3
0 � 12iW�1 
4 + 
5jW�2 j2 ; (7.12)0 = 8
3
2 + 24i
1W�1 + 
6jW�2 j2 ; (7.13)0 = 16
23 � 10
20 � 18
24 � 24
21 + 2
22 � (
26 + 3
25 + 
27 + 3
28)jW�2 j2 : (7.14)The equation of motion for the H �eld (7.11) gives0 = �� i
3W�1 � 12
4
0 � 2
1
4 � 
2
1�J ^ J+ �� 
3 + 
5
0 � 2
1
5 + 
4
6 � 
2
6�iW�2 ^ J (7.15)+ �
8
0 � 2
1
8 + 
7
4 � 
2
7�J ^ P + �i
5W�2 + 
8P� ^ �i
6W�2 + 
7P�Sin
e we know that there are at most three independent four-forms this leads to threeindependent equations, whi
h we obtain by wedging this equation with J , W�2 andP , respe
tively. The result 
an be simpli�ed by using the primitivity of W�2 and P
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uaas well as (7.3). Furthermore, we de�neX1vol6 � W ^W ^W = P ^ P ^W ;X2vol6 � W ^W ^ P = P ^ P ^ P ; (7.16)where the last equality follows from the properties (7.2) and (7.4) of P . With theabove relations the three resulting equations that one obtains by wedging (7.15) withJ , W�2 and P , respe
tively, are given by0 = 12 �
2
1 + 2
1
4 + i
3W�1 �+ 6
4
0 + (
5
6 + 
8
7)jW�2 j2 ; (7.17)0 = jW�2 j2 (
0
5 � 
3 � 2
1
5 + 
4
6 � 
2
6) + 2i(
5
6 � 
7
8)X1 + 2(
5
7 + 
6
8)X2 ;0 = (
0
8 � 
2
7 + 
7
4 � 2
1
8) jW�2 j2 + 2(
5
6 � 
7
8)X2 � 2i(
5
7 + 
6
8)X1 :Sin
e AdS4 is Einstein, the whole information of the external part of the 10dEinstein equation (7.8) is in it's tra
e whi
h is given by8R4 = 2
20 � 16
23 � 6
24 � 72
21 � 10
22 � (
25 + 3
26 + 
28 + 3
27)jW�2 j2 : (7.18)We split the internal part of (7.8) into the tra
e and the tra
eless part de�ned byR0mn � Rmn � 16gmnR : (7.19)The Ri

i s
alar for manifolds with SU(3)-stru
ture is given by [91℄R = 14(30jW�1 j2 � jW�2 j2) : (7.20)Using this formula we obtain from the tra
e of (7.8)0 =120jW�1 j2 � 48
23 � 6
20 � 30
24 � 18
22 � 168
21 � jW�2 j2(5
25 + 7
26 + 5
28 + 7
27 + 4) ;(7.21)where the tra
e of the external part drops out be
ause of (7.18). For the tra
elesspart we obtain R0mn = 12F2m � F2n + 12F4m � F4n � 16gmn �F 22 + 2F 24 � : (7.22)Plugging in our ansatz (7.1) and subtra
ting the supersymmetri
 solution we get0 = (
25 � 
26 � 1)�W� x2m W�2xn � 16gmnjW�2 j2� (7.23)� (
28 � 
27)�P xm Pxn + 16gmnjW�2 j2�� i(
5
8 � 
6
7)W� x2(mPxn)� J x(mW�2xn)�2i
1
6 + i
4
5 + 14W�1 �� J x(mPxn) (
8
4 + 2
1
7) ;



7.2 Non-supersymmetri
 va
ua on G2SU(3) 99
where the symmetrization is with weight one and only a�e
ts un
ontra
ted indi
es.As for the equation of motion for H there are again three independent parts ofthe Einstein equation. One is given by the tra
e part, whi
h is obtained by the
ontra
tion with the inverse metri
 gmn = �JmxJ nx . The other two parts are obtainedby 
ontra
ting (7.23) with J (mxW� n)2x and J (mxP n)x . It is possible to express theresulting tra
es in terms of X1, X2 and jW�2xnj2. This results in0 = (
25 � 
26 + 
27 � 
28 � 1)X1 � 2i(
5
8 � 
6
7)X2 + 2(2i
1
6 + i
4
5 + 14W�1 )jW�2 j2 ;0 = (
25 � 
26 + 
27 � 
28 � 1)X2 � 2i(
5
8 � 
6
7)X1 � 2(
8
4 + 2
1
7)jW�2 j2 : (7.24)So, in order to �nd a va
uum of type IIA supergravity for 
uxes of the form (7.1) onehas to solve the nine equations (7.13), (7.17), (7.21) and (7.24). in terms of the ninevariables 
i. The equation (7.18) then determines the external s
alar 
urvature. Fora given solution to the above equations one 
an always produ
e three more by thefollowing sign 
hanges whi
h ea
h leave those equations invariant:� keep 
3 and 
hange all other signs ;� 
hange 
3 together with 
0; 
1; 
6; 
7 and keep the rest : (7.25)Thus, solutions to these equations will always 
ome in quadruples. We will try tosolve these equations for our three 
oset models in the next se
tions.7.2 Non-supersymmetri
 va
ua on G2SU(3)For the 
oset spa
e G2SU(3) there is only one two-form, whi
h is given by J . Thus thereis no room for a se
ond torsion 
lass W�2 or an additional two-form P and we have
5 = 
6 = 
7 = 
8 = 0. This simpli�es the equations to a huge extent. Plugging inthe result for W�1 from se
tion 3.4.1, given byW�1 = � 2ip3a ; (7.26)and de�ning Ci � pa
i (i = 1 : : : 4), we obtain from (7.13), (7.17) and (7.21)0 = C3C0 �p3C4 ;0 = 2p3C1 + C3C2 ;0 = 16C23 � 10C20 � 18C24 � 24C21 + 2C22 ; (7.27)0 = 4C3 +p3(C4C0 + 4C1C4 + 2C2C1) ;0 = 160� (48C23 + 6C20 + 30C24 + 168C21 + 48C22) :
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 va
uaThe equation (7.18) for the external 
urvature be
omes8
R4 = 2C20 � 16C23 � 6C24 � 72C21 � 10C22 : (7.28)Up to the sign 
hangings (7.25) there are only three solutions to (7.27), whi
h aregiven byC0 =r53 ; C1 = 0 ; C2 = 5p3 ; C3 = 0 ; C4 = 0 ;C0 = 1 ; C1 = �12 ; C2 = p3 ; C3 = 1 ; C4 = 1p3 ; (7.29)C0 = �p52 ; C1 = � 34p5 ; C2 = �3p32 ; C3 = � 1p5 ; C4 = 12p3 ;The last solution 
orresponds to the supersymmetri
 solution of se
tion 3.4.1, whereasthe other two solutions as well as the sign 
hangings (7.25) of all the above solutionsgive rise to non-supersymmetri
 solutions. The above solutions are all of the typealready found in [61℄, where non-supersymmetri
 va
ua for Nearly-K�ahler manifolds(W�2 = 0) have been 
onstru
ted.7.3 Non-supersymmetri
 va
ua on Sp(2)S(U(2)�U(1))For the 
oset spa
e Sp(2)S(U(2)�U(1)) there are two linear independent two-forms, whi
h we
hoose to be J and W�2 . Thus there is no room for the two-form P and we have
7 = 
8 = 0. This still simpli�es the equations 
onsiderably. The expli
it values forX1 and jW�2 j2 follow from the solution in se
tion 3.4.2 and are given byW�1 = i3 2 + �p
 ; jW�2 j2 = 16(1� �)23
 ; X1 = �32i(1� �)39
3=2 ; (7.30)where we have used the shape parameter �, de�ned in se
tion 3.45, whi
h measuresthe deviation from the nearly-K�ahler limit.De�ning Ci � p

i for i = 1 : : : 4, we get from (7.13), (7.17), (7.21) and (7.24):0 = 6C3C0 + 3(2 + �)C4 + 4
5(1� �)2 ;0 = 3C1(2 + �)� 2C6(1� �)2 � 3C3C2 ;0 = 48C23 � 30C20 � 54C24 � 72C21 + 6C22 � 16(1� �)2(3
25 + 
26) ;0 = 6C3(2 + �)� 9C4C0 � 36C1C4 � 18C2C1 � 8
5
6(1� �)2 ; (7.31)0 = 3(1� �)2(
5C0 � C3 � 2C1C5 + C4
6 � C2
6) + 4
5
6(1� �)3 ;0 = 20(2 + �)2 � 8(5
25 + 7
26 + 4)(1� �)2 � 9C20 � 45C24 � 252C21 � 27C22 � 72C23 ;0 = (
25 � 
26 � 1)(1� �)3 � (1� �2)(24C1
6 + 12C4
5 + (2 + �)) ;
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ua on Sp(2)S(U(2)�U(1)) 101The equation (7.18) for the external 
urvature be
omes8
R4 = 2C20 � 16C23 � 6C24 � 72C21 � 10C22 � (
25 + 3
26)16(1� �)23 : (7.32)7.3.1 Reprodu
ing known resultsIn the last se
tion we saw that our ansatz did not lead to any new results for the
osets spa
e G2SU(3) . This spa
e is a Nearly-K�ahler manifold, i.e. W�2 = 0, and itsnon-supersymmetri
 va
ua all fall into the 
lass des
ribed in [61℄. The 
osets spa
eSp(2)S(U(2)�U(1)) , however, is in general not a Nearly-K�ahler manifold. The shape of this
oset is parameterized by � and for spe
ial values of this parameter there exist alreadysome results in the literature. Here, we want to reprodu
e these results before we willstudy the new va
ua on this spa
e.Non-supersymmetri
 va
ua on Nearly-K�ahler manifoldsIn [61℄ non-supersymmetri
 va
ua for Nearly-K�ahler manifolds were 
onstru
ted. The
oset Sp(2)S(U(2)�U(1)) be
omes Nearly-K�ahler only for the spe
ial value � = 1. 
5 and 
6are not determined in this 
ase, be
ause W�2 = 0. However, we 
ould still modify our
uxes by a se
ond two-form di�erent fromW�2 . This was di�erent for the G2SU(3) 
osetbe
ause in that 
ase there is no other two-form than J . This kind of deformationneeds a separate treatment. We get the following solutions to (7.31):C0 = p32 ; C1 = �p34 ; C2 = 32 ; C3 = �p32 ; C4 = 12 ;C0 = p52 ; C1 = 0 ; C2 = 52 ; C3 = 0 ; C4 = 0 ; (7.33)C0 = p154 ; C1 = 38r35 ; C2 = 94 ; C3 =r 320 ; C4 = �14 :This was expe
ted, sin
e for � = 1 the 
oset spa
e Sp(2)S(U(2)�U(1)) looks like G2SU(3) andthe above solutions 
orrespond to the ones found in (7.29) whi
h already appeared in[61℄.Non-supersymmetri
 va
ua from M-theoryIn [62, 63, 80℄ non-supersymmetri
 solutions in M-theory are dis
ussed. Redu
ingthese solutions to type IIA string theory implies solutions where one starts from asupersymmetri
 solution with only F2 and F6 non-vanishing (in parti
ular F0 = 0whi
h for
es us to put � = 2 or � = 2=5 to reprodu
e their results) and obtains a



102 Non-supersymmetri
 va
uanon-supersymmetri
 solution with the same F2, a modi�ed F6 and non-vanishing Has well as F4. For � = 2 these va
ua are given by the following solutions to (7.31):Susy : C0 = 0; C1 = 0; C2 = 3; C3 = 0; C4 = �13 ; 
5 = 1; 
6 = 0 ; (7.34)Non-Susy : C0 = 0; C1 = 12 ; C2 = �2; C3 = �1; C4 = �13 ; 
5 = 1; 
6 = 0 ;while for � = 2=5 they are given bySusy : C0 = 0; C1 = 0; C2 = 95 ; C3 = 0; C4 = �15 ; 
5 = 1; 
6 = 0 ; (7.35)Non-Susy : C0 = 0; C1 = 310 ; C2 = �65 ; C3 = �35 ; C4 = �15 ; 
5 = 1; 
6 = 0 :We also get solutions 
orresponding to the sign 
hangings (7.25) of the above solutions.We see exa
tly the expe
ted behavior. F2, spe
i�ed by C4 and 
5, stays the same whileF6 (C2) gets modi�ed. This is somehow 
ompensated by turning on H (C3) and F4(C2).Non-supersymmetri
 va
ua on Einstein manifoldsIn [64℄ and [57℄ solutions on Einstein manifolds are dis
ussed where one starts from asupersymmetri
 solution with 
0 = m = 0 and H = 0 and gets a non-supersymmetri
solution with 
0 6= 0 keeping H = 0. Our 
oset be
omes an Einstein manifold onlyfor the spe
ial value � = 2. Their ansatz for the 
uxes is given byH = 0 ; F0 = � ; F2 = � ~J ; F4 = 12
 ~J2 ; F6 = 16Æ ~J3 ; (7.36)where ~J is the K�ahler form, i.e. it is 
losed. For the spe
ial 
ase we are dis
ussinghere it is given by ~J = 13J � ip
W�2 (7.37). Sin
e in our ansatz (7.1) for the 
uxes the J is not the K�ahlerform this �xes ourparameters 
5 and 
6 in terms of 
4 and 
1:
5 = �3p

4 ; 
6 = 6p

1 : (7.38)Putting 
3 = 0 our ansatz (7.1) then readsH = 0 ; F0 = 
0 ; F2 = 3
4 ~J ; F4 = �3
1 ~J2 ; F6 = �16
2 ~J3 ; (7.39)
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h gives the following relation between our parameters 
i and the parameters(7.36) appearing in [64℄ and [57℄:
0 = � ; ; 
2 = �Æ ; 3
4 = � ; �6
1 = 
 : (7.40)Plugging these values into (7.31) only the third, fourth and sixth equation are non-trivial and read 0 = �� + 2
� + 
Æ ;0 = 15�2 + 27�2 + 9
2 � 3Æ2 ; (7.41)16R = 6�2 + 30�2 + 42
2 + 18Æ2 :The other equations are trivially satis�ed due to the 
losure of ~J . Furthermore fromthe external Einstein equation (7.18) we get�12R4 = �3�2 + 9�2 + 27
2 + 15Æ2 : (7.42)These equations are equivalent to the equations (3.11), (3.12), (3.14) and (3.15) of[64℄ and we obtain exa
tly their solutions.7.3.2 New non-supersymmetri
 va
ua on Sp(2)S(U(2)�U(1))Here we will give a preliminary analysis of the solutions to the equations (7.31) forall values of �. To get a qualitative pi
ture we plot in �gure 7.1 the possible solutionsfor C3, parameterizing H, against �. The plots for the other variables Ci look verysimilar. The plot is symmetri
 under C3 ! �C3 due to the sign 
hangings (7.25).Red points indi
ate the already known non-supersymmetri
 solutions from M-theoryfor the spe
ial values � = 2=5 and � = 2 as well as the supersymmetri
 solution,dis
ussed in 7.3.1. We see that both solutions 
an be varied 
ontinuously between� = 2=5 and � = 2. Interestingly the non-supersymmetri
 solution also exists fora 
ertain range beyond � = 2. Green dots indi
ate the known solutions for Nearly-K�ahler manifolds (� = 1) also dis
ussed in 7.3.1. We will have to leave a further studyof the new non-supersymmetri
 va
ua for future work [27℄. A �rst step would be toanalyze the stability of those va
ua, i.e. to 
he
k whether they exhibit any ta
hyoni
dire
tions below the Breitenlohner-Friedman bound.
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� = 2=5 � = 1 � = 2Figure 7.1: Solutions for C3 for all possible values of �7.4 Non-supersymmetri
 va
ua on SU(3)U(1)�U(1)This is the most 
ompli
ated 
ase. We will express the equations in terms of theparameters given in se
tion 3.4.3. We 
ompute for the form PP = 2pap3�� �(�� �)e12 + �(1� �)e34 + �(1� �)e56� ; (7.43)where we have used the shape parameters � and �, de�ned in se
tion 3.4.3. Theexpli
it values for X1, X2 and jW�2 j2 follow from the solution in se
tion 3.4.3 and aregiven by W�1 = � i3 1 + � + �pa�� ; (7.44)jW�2 j2 = 163a��(1 + �2 + �2 � �� ��� �) ; (7.45)X1 = � 16i9(a��)3=2 (2� � 1� �)(2� �� �)(2�� 1� �) ; (7.46)X2 = 16p3(a��)3=2 (1� �)(1� �)(�� �) : (7.47)
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oset. However, we do not study this 
ase any further here but leave this for futurework. In prin
iple, one would have to study the variations away from � = 1, sin
e forthat spe
ial value this 
oset looks like the Sp(2)S(U(2)�U(1)) model and we expe
t the sameresults.
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Chapter 8Con
lusionsIn this thesis, we studied a number of type IIA SU(3)-stru
ture 
ompa
ti�
ationswith O6-planes on nilmanifolds and 
osets, whi
h are tra
table enough to allow foran expli
it derivation of the low energy e�e
tive theory. In parti
ular, in 
hapter 5we 
al
ulated the mass spe
trum of the light s
alar modes, using N = 1 supergravityte
hniques. For the torus and the Iwasawa solution, we have also performed an expli
itKaluza-Klein redu
tion in 
hapter 4, whi
h led to the same result, supporting thevalidity of the e�e
tive supergravity approa
h, with superpotential (5.3) and K�ahlerpotential (5.4), also in the presen
e of geometri
 
uxes. For the nilmanifold exampleswe have found that there are always three unstabilized moduli 
orresponding to axionsin the RR se
tor. On the other hand, in the 
oset models, ex
ept for SU(2)�SU(2),all moduli are stabilized.We dis
ussed the Kaluza-Klein de
oupling in se
tion 4.2 for the supersymmetri
AdS va
ua and found that it requires going to the Nearly-Calabi Yau limit. Forour nilmanifolds, this 
an be arranged by tuning the parameters, while for our 
osetmodels it is somewhat harder. Indeed, we found that for Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) onehas to make a 
ontinuation to negative values of the \shape" parameters. Stri
tlyspeaking, this 
an no longer be des
ribed as a left-invariant SU(3)-stru
ture on a
oset anymore, but it 
an still be des
ribed in terms of a twistor bundle over a four-dimensional hyperboli
 spa
e. It would be interesting to study these models in moredetail, as there are more examples of this type. Another 
lass of va
ua may beobtained by quotienting out the internal manifold by a dis
rete group �, where � isa subgroup of SU(3). This possibility may be of interest for model-building. Theresults of 
hapter 4 and 5 all appeared in [25℄.It would be interesting to study the uplifting of these models to de Sitter spa
e-times. This might be a

omplished by in
orporating a suitable additional upliftingterm in the potential along the lines of, e.g, [18℄. Although a negative mass squaredfor a light �eld in AdS does not ne
essarily signal an instability, after the uplift all�elds should have positive mass squared. Unless the uplifting potential 
an 
hangethe sign of the squared masses, it is thus desirable that they are all positive even
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lusionsbefore the uplifting. We �nd that this 
an be arranged in the 
oset models G2SU(3) ,Sp(2)S(U(2)�U(1)) and SU(3)U(1)�U(1) for suitable values of the orientifold 
harge.However, in 
hapter 6, we fo
used on an alternative approa
h towards obtainingmeta-stable de Sitter va
ua, namely we sear
hed for non-trivial de Sitter minima inthe original 
ux potential away from the AdS va
uum. This was motivated by thefa
t that the 
oset spa
es allow for a negative s
alar 
urvature 
ir
umventing re
entlyproven no-go theorems for manifolds without 
urvature [50℄1. Using the 4D e�e
tivea
tion worked out in 
hapter 5, we 
ould rule out dS (as well as Minkowski) va
uaand slow-roll in
ation elsewhere in moduli spa
e for four of the 
oset spa
es by usinga re�ned no-go theorem that probes the s
alar potential also along a K�ahler modulusdi�erent from the overall volume modulus (see also [87℄). Just as the no-go theoremof [50℄, this no-go theorem works by establishing a 
ertain lower bound on the �rstderivatives of the potential, and hen
e the epsilon parameter, for V � 0. It is thusdi�erent in spirit from the no-go theorems given in [89℄, whi
h assume a small �rstderivative and 
onsider 
onsequen
es for the se
ond derivatives, i.e. the eta parameter.The only 
oset spa
e that allows for supersymmetri
 va
ua and that is not dire
tlyruled out by any known no-go theorem is then the group manifold SU(2)�SU(2). Forthis 
ase, we were indeed able to �nd 
riti
al points (
orresponding to numeri
allyvanishing �) with positive energy density, but only at the pri
e of a ta
hyoni
 dire
-tion, 
orresponding to a large negative eta-parameter, � . �2:4. Interestingly, thista
hyoni
 dire
tion does not 
orrespond to the one used in the di�erent types of no-gotheorems of [89℄. As our numeri
al sear
h was not exhaustive, however, we 
annot
ompletely rule out the existen
e of dS va
ua or in
ating regions for this 
ase. Sin
ethis 
ase also does not allow for a supersymmetri
 Minkowski va
uum as mentionedat the end of se
tion 6.2, our dis
ussion 
overs all SU(3)-stru
ture 
ompa
ti�
ationson semi-simple and U(1) 
osets that have a supersymmetri
 va
uum.Furthermore, we also studied the remaining two 
oset spa
es of table C.1 thatdo admit an SU(3)-stru
ture but no supersymmetri
 AdS va
uum. Choosing forsimpli
ity the O-planes su
h that one-forms are proje
ted out and restri
ting to O-planes perpendi
ular to the 
oordinate frame, we 
ould again use the re�ned no-gotheorem of se
tion 6.2 to rule out dS va
ua and slow-roll in
ation for both of these
ases as well. The results of 
hapter 6 are published in [26℄.Our results show that a negative s
alar 
urvature and a non-vanishing F0 is ingeneral not enough to ensure dS va
ua or in
ation (as also noted in [86℄), and wegive a geometri
 
riterion that allows one to separate interesting SU(3)-stru
ture
ompa
ti�
ations from non-realisti
 ones.Finally, in 
hapter 7, we fo
used on a family of three 
oset spa
es and 
onstru
tednon-supersymmetri
 va
ua on them. For the G2SU(3) 
oset we reprodu
ed already knownresults and did not �nd any new va
ua. For the Sp(2)S(U(2)�U(1)) model, however, we found1Sin
e the Iwasawa manifold is T-dual to the torus dS va
ua and slow-roll in
ation are ruledout already by [50℄.



109new non-supersymmetri
 va
ua that did not appear in the literature so far. This
ase is of spe
ial interest sin
e it is topologi
ally equivalent to CP3 whi
h played aprominent role in the re
ently 
onje
tured AdS4/CFT3 
orresponden
e. We did notanalyze the 
oset SU(3)U(1)�U(1) , although we were able to write down a set of equationsthat one has to solve in order to �nd the va
ua of this spa
e. The results of 
hapter7 as well as their further analysis will appear in [27℄.The next step for these non-supersymmetri
 va
ua would be to 
he
k whether theyexhibit any ta
hyoni
 dire
tions below the Breitenlohner-Friedman bound. If thereare no su
h ta
hyons, there are basi
ally two dire
tions for further resear
h. First, itwould be interesting to study the phenomenology of those va
ua in a similar way aswe did for the supersymmetri
 va
ua in this thesis. Se
ond, regarding the AdS/CFT
orresponden
e, it would be very interesting to identify on the dual �eld theory sidethe me
hanism, that we used in this thesis to 
onstru
t these va
ua.Our analysis of the low energy theory of string 
ompa
ti�
ations in 
hapter 4, 5and 6 
ould be extended in several dire
tions. For one thing, it would be extremelyinteresting to �nd expli
it SU(3)-stru
ture manifolds that do not fall under the 
lass of
oset spa
es we have dis
ussed here and to investigate their usefulness for 
osmologi
alappli
ations along the lines of this thesis. The most obvious 
lass of manifolds to studysystemati
ally would be the nil- and solvmanifolds. Another interesting dire
tionmight be the study of 
ompa
ti�
ations on manifolds with N = 1 spinor ans�atzemore general than the SU(3)-stru
ture 
ase [92℄. Con
erning the SU(2)�SU(2) modeldis
ussed in se
tion 6.4, one might try to either �nd a working dS minimum, or ruleit out based on another no-go theorem, perhaps by using methods similar in spirit to[89℄, although a dire
t appli
ation of their results to this 
ase does not seem possible.Following [85, 51℄ or [93, 94℄, one 
ould also try to in
orporate additional stru
turessu
h as NS5-branes or quantum 
orre
tions of various types. In se
tion 6.6, however,we found that at least for our models, the following additional ingredients 
annot beadded or do not work: NS5-, D4- and D8-branes as well as an F-term uplift alongthe lines of O'KKLT [90, 48℄. Perhaps also methods similar to the ones in [61℄ fornon-supersymmetri
 Minkowski or AdS va
ua might be useful for the dire
t 10D
onstru
tion of dS 
ompa
ti�
ations. There is 
ertainly a lot to improve about ourunderstanding of 
osmologi
ally realisti
 
ompa
ti�
ations of the type IIA string!
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Appendix AType II supergravityThe bosoni
 
ontent of type II supergravity 
onsists of a metri
 g, a dilaton �, anNSNS 3-form H and RR-�elds Fn. In the demo
rati
 formalism of [29℄, where thenumber of RR-�elds is doubled, n runs over 0; 2; 4; 6; 8; 10 in IIA and over 1; 3; 5; 7; 9in type IIB. We write n to denote the dimension of the RR-�elds; for example (�1)nstands for +1 in type IIA and �1 in type IIB. After deriving the equations of motionfrom the a
tion, the redundant RR-�elds are to be removed by hand by means of theduality 
ondition: Fn = (�1) (n�1)(n�2)2 en�52 � ?10 F(10�n) ; (A.1)given here in the Einstein frame. We will often 
olle
tively denote the RR-�elds, andthe 
orresponding potentials, with polyforms F =Pn Fn and C =Pn C(n�1), so thatF = dHC.The 
onformal transformation gsMN = e�2 gEMN brings the string frame a
tion(1.3) to the Einstein frame a
tionSbulk = 12�210 Z d10xp�g "R� 12(��)2 � 12e��H2 � 14Xn e 5�n2 �F 2n# ; (A.2)where for an l-form A we de�neA2 = A � A = 1l! AM1:::MlAN1:::NlgM1N1 � � � gMlNl : (A.3)Sin
e (A.1) needs to be imposed by hand this is stri
tly-speaking only a pseudoa
tion.Note that the doubling of the RR-�elds leads to fa
tors of 1=4 in their kineti
 terms.The 
ontribution from the 
alibrated (supersymmetri
) sour
es 
an be written as:Ssour
e = Z hC; ji �Xn en4� Z h	n; ji ; (A.4)



112 Type II supergravitywith 	n = eAdt ^ e��(n� 1)!�̂1T �1 �̂1T
M1:::Mn�1 �̂2 dXM1 ^ : : : ^ dXMn�1 ; (A.5)with �̂1;2 nine-dimensional internal supersymmetry parameters. For spa
e-�lling sour
esin 
ompa
ti�
ations to AdS4 this be
omes [95℄	n = vol4 ^ e4A��Im	1E��n�4 ; (A.6)with 	1E the pure spinor 	1 in the Einstein frame.The dilaton equation of motion and the Einstein equation read0 = r2� + 12e��H2 � 18Xn (5� n)e 5�n2 �F 2n + �2102 Xn (n� 4)en4� ?h	n; ji ; (A.7a)0 = RMN + gMN  18e��H2 + 132Xn (n� 1)e 5�n2 �F 2n! (A.7b)� 12�M��N�� 12e��HM �HN � 14Xn e 5�n2 �FnM � FnN� 2�210Xn en4� ?h�� 116ngMN + 12gP (MdxP 
 �N)�	n; ji ;where we de�ned for an l-form AAM � AN = 1(l � 1)!AMM2:::MlANN2:::NlgM2N2 � � � gMlNl : (A.8)The Bian
hi identities and the equations of motion for the RR-�elds, in
luding the
ontribution from the `Chern-Simons' terms of the sour
es, take the form0 = dF +H ^ F + 2�210 j ; (A.9a)0 = d�e 5�n2 � ? Fn�� e 3�n2 �H ^ ?F(n+2) � 2�210 �(j) : (A.9b)Finally, for the equation of motion for H we have:0 = d(e�� ?H)� 12Xn e 5�n2 � ? Fn ^ F(n�2) + 2�210Xn en4�	n ^ �(j)�����8 : (A.10)In the above equations we 
an rede�ne j in order to absorb the fa
tor of 2�210,(2�210)j ! j ; (A.11)whi
h we do in this thesis.The equations of motion resulting from Sbulk + Ssour
e were given in this form(in the string frame) in [69℄, where it was shown that, under 
ertain mild assump-tions, imposing the supersymmetry equations together with the Bian
hi identities forthe forms, is enough to guarantee that the dilaton and Einstein equations are alsosatis�ed.



Appendix BGeneralized geometryIn this thesis we have assumed the following N = 1 
ompa
ti�
ation ansatz for theten-dimensional supersymmetry parameters [92℄�1 = �+ 
 �(1)+ + �� 
 �(1)� ;�2 = �+ 
 �(2)� + �� 
 �(2)� ; (B.1)for IIA/IIB, where �� are four-dimensional and �(1;2)� six-dimensional Weyl spinors.The Majorana 
onditions for �1;2 imply the four- and six-dimensional reality 
onditions(�+)� = �� and (�(1;2)+ )� = �(1;2)� . This redu
es the stru
ture of the generalized tangentbundle to SU(3)�SU(3) [96℄. The stru
ture group of the tangent bundle itself, onthe other hand, is a subgroup of SU(3), sin
e there is at least one invariant internalspinor. The pre
ise form of this subgroup depends on the relation between �(1) and�(2). Combining the terminology of [92℄ and [97℄, the following 
lassi�
ation 
an bemade:� stri
t SU(3)-stru
ture: �(1) and �(2) are parallel everywhere;� stati
 SU(2)-stru
ture: �(1) and �(2) are orthogonal everywhere;� intermediate SU(2)-stru
ture: �(1) and �(2) at a �xed angle, but neither a zeroangle nor a right angle;� dynami
 SU(3)�SU(3)-stru
ture: the angle between �(1) and �(2) varies, possi-bly be
oming a zero angle or a right angle at a spe
ial lo
us.Sin
e for stati
 and intermediate SU(2)-stru
ture there are two independent inter-nal spinors, the stru
ture of the tangent bundle redu
es to SU(2), while for dynami
SU(3)�SU(3)-stru
ture no extra 
onstraints beyond SU(3) are imposed on the topol-ogy of the tangent bundle, sin
e the two internal spinors �(1) and �(2) might not beeverywhere independent.



114 Generalized geometryIn [36℄ it was realized that, in type IIB supergravity, stri
t SU(3) 
ompa
ti�
ationsto N = 1 AdS4 are impossible1. Conversely it was shown in [65℄ that type IIAstati
 SU(2) 
ompa
ti�
ations to AdS4 are impossible. This was extended in [25℄to intermediate SU(2)-stru
ture AdS4 va
ua with left-invariant pure spinors for bothtype IIA and type IIB. The way out of this no-go theorem is that in type IIA wemust allow e2A���(2)y+ �(1)+ to vary along the internal manifold, while in type IIB weneed a genuine dynami
 SU(3)�SU(3)-stru
ture that 
hanges type to stati
 SU(2)on a non-zero lo
us. So the most interesting but also the most 
ompli
ated 
ase,the dynami
 SU(3)�SU(3)-stru
ture is still possible, but we will not 
onsider that
ase here. Note that in [69, 97℄ examples of 
onstant intermediate SU(2)-stru
ture onMinkowski 
ompa
ti�
ations were provided. In this thesis, we fo
us on stri
t SU(3)N = 1 AdS4va
ua in type IIA. In the �rst se
tion of this appendix, we will reviewthe formulation of the supersymmetry 
onditions for type II supergravity using thelanguage of generalized geometry, spe
ializing in the end to the SU(3)-stru
ture 
ase.Then we will re
all the basi
 de�nitions of an SU(3)-stru
ture independent of itsformulation in terms of generalized geometry. Furthermore, we will 
larify the role ofthe O-planes present in our 
onstru
tions before we �nally review the formulation ofthe 4d s
alar potential in the language of generalized geometry.B.1 N = 1 AdS4 susy equationsIn the generalized geometry formalism the supersymmetry generators �(1) and �(2)from (B.1) are 
olle
ted into two spinor bilinears, whi
h using the Cli�ord map, 
anbe asso
iated with two polyforms of de�nite degree	+ = 8jajjbj�(1)+ 
 �(2)y+ ; 	� = 8jajjbj�(1)+ 
 �(2)y� : (B.2)It 
an be shown that these are asso
iated to pure spinors of SO(6; 6) and that theysatisfy the normalization h	+;	�+i = h	�;	��i 6= 0 ; (B.3)with the Mukai pairing h�; �i given byh�1; �2i = �1 ^ �(�2)jtop : (B.4)The operator � a
ts by inverting the order of indi
es on forms. The Mukai pairinghas the following useful property:heb�1; eb�2i = h�1; �2i ; (B.5)1That is at a pure 
lassi
al level. Taking non-perturbative 
orre
tions into a

ount the authorsof [18℄ indeed 
onstru
ted an AdS4 va
uum with SU(3)-stru
ture. See also [36℄ for a dis
ussion.



B.1 N = 1 AdS4 susy equations 115for an arbitrary two-form b. Sin
e there are two 
ompatible invariant pure spinors thestru
ture of the generalized tangent bundle is redu
ed to SU(3)�SU(3). In order toobtain similar equations in IIA and IIB, one rede�nes	1 = 	� ; 	2 = 	� ; (B.6)with upper/lower sign for IIA/IIB. We 
olle
t all the RR-�elds of the demo
rati
formalism into one polyform and make the following 
ompa
ti�
ation ansatzF = F̂ + vol4 ^ ~F ; (B.7)with vol4 the four-dimensional (AdS4) volume form. In fa
t, in this thesis we willdrop the hat and hope that it is 
lear from the 
ontext whether we mean the full For only the internal part.With these de�nitions the supersymmetry 
onditions (in string frame) take thefollowing 
on
ise form in both IIB and IIA [92℄dH �e4A��Im	1� = 3e3A��Im(W �	2) + e4A ~F ; (B.8a)dH �e3A��Re(W �	2)� = 2jW j2e2A��Re	1 ; (B.8b)dH �e3A��Im(W �	2)� = 0 ; (B.8
)where we used jaj2 = jbj2 / eA. From the above, the equations of motion for Ffollow as integrability 
onditions, as well as the following equation:dH �e2A��Re	1� = 0 : (B.9)Here W is de�ned in terms of the AdS Killing spinorsr��� = �12W
��+ ; (B.10)for IIA/IIB.These equations should be supplemented with the Bian
hi identities for the RR-
uxes (A.9a) where the (lo
alized or smeared) sour
es j have to be 
alibratedhRe	1; ji = 0 ; (B.11a)h	2;X � ji = 0 ; 8X 2 �(TM � T ?M) : (B.11b)An easy way to solve these 
alibration 
onditions is to 
hoosej = �kRe	1 ; (B.12)for some fun
tion k, whi
h is positive for net D-brane 
harge and negative for netorientifold 
harge. Applying an exterior derivative on (B.8a), taking (B.8b), (A.9a),(B.7) into a

ount, it 
an be shown that�dH �� �?dH �e3A��Im	1��	 = �e4Aj � 6jW j2eA��Re	1 ; (B.13)



116 Generalized geometryfor IIA/IIB.When the internal supersymmetry generators of (B.1) are proportional,�(2)+ = (b=a)�(1)+ ; (B.14)with j�(1)j2 = jaj2; j�(2)j2 = jbj2, they de�ne an SU(3)-stru
ture whose properties wewill review in the next se
tion. First let us de�ne a normalized spinor �+ su
h that�(1)+ = a�+ and �(2)+ = b�+ and moreover we 
hoose the phase of � su
h that a = b�.Note that in 
ompa
ti�
ations to AdS4 the supersymmetry imposes jaj2 = jbj2 su
hthat b=a = ei� is just a phase. Now we 
an de�ne J and 
 as followsJmn = i�y+
mn�+ ; 
mnp = �y�
mnp�+ : (B.15)Plugging in (B.14) into (B.2) and using the above de�nition we get	� = �
 ; 	+ = e�i�eiJ : (B.16)By using (B.6) for IIA we 
an insert this into (B.8) and arrive at (3.1) as well as (3.4)and(3.5).B.2 SU(3)-stru
tureA real non-degenerate two-form J and a 
omplex de
omposable three-form 
 
om-pletely spe
ify an SU(3)-stru
ture on the six-dimensional manifoldM i�:
 ^ J = 0 ; (B.17a)
 ^ 
� = 4i3 J3 6= 0 ; (B.17b)and the asso
iated metri
 (B.28) is positive de�nite. Up to a 
hoi
e of orientation,the volume normalization 
an be taken su
h that16J3 = � i8
 ^ 
� = vol6 : (B.18)The intrinsi
 torsion ofM de
omposes into �ve modules (torsion 
lasses)W1; : : : ;W5.These also appear in the SU(3) de
omposition of the exterior derivative of J , 
. In-tuitively, this is be
ause the intrinsi
 torsion parameterizes the failure of the manifoldto be of spe
ial holonomy, whi
h 
an also be thought of as the deviation from 
losureof J , 
. More spe
i�
ally we have:dJ = 32Im(W1
�) +W4 ^ J +W3 ;d
 =W1J ^ J +W2 ^ J +W�5 ^ 
 ; (B.19)



B.2 SU(3)-stru
ture 117whereW1 is a s
alar,W2 is a primitive (1,1)-form,W3 is a real primitive (1; 2)+(2; 1)-form, W4 is a real one-form and W5 a 
omplex (1,0)-form. For the va
ua of interestto us only the 
lasses W1, W2 are non-vanishing and they are purely imaginary,whi
h we will indi
ate with a minus supers
ript. Indeed, we 
an readily see thateq. (3.6a) follows from eq. (B.19) above, upon setting W3;4;5 to zero and imposingW1;2 =W�1;2 = iImW�1;2.Note that by de�nition W2 is primitive, whi
h meansW2 ^ J ^ J = 0 : (B.20)One interesting property of a primitive (1,1)-form is? (W2 ^ J) = �W2 ; (B.21)whi
h 
an be shown using JmnW2mn = 0 (whi
h follows from the primitivity) andJmnJpqWnq =Wmp (whi
h follows from the fa
t that W2 is of type (1,1)).Let us now 
al
ulate the part of dW�2 proportional to Re
:dW�2 = �Re
 + (2; 1) + (1; 2) ; (B.22)for some �. Taking the exterior derivative of 
 ^ W�2 = 0 and using (B.22) as wellas the eqs. (B.17b), (2.5), we arrive at:W�2 ^W�2 ^ J = 2i3 �J3 : (B.23)We 
an now use (B.21) to showW�2 ^W�2 ^ J = 12 jW�2 j2vol6 ; (B.24)from whi
h we obtain � = �ijW2j2=8.From the SU(3)-stru
ture (B.17b), we 
an read o� the metri
 as follows [98℄.From Re
 alone we 
an 
onstru
t an almost 
omplex stru
ture. First we de�ne~I lk = �"lm1:::m5(Re
)km1m2(Re
)m3m4m5 ; (B.25)where "m1:::m6 = �1 is the totally antisymmetri
 symbol in six dimensions, and thenproperly normalize it I = ~Iq�tr 16 ~I2 ; (B.26)so that I2 = �1. Note that H(Re
) = tr 16 ~I2 (B.27)is 
alled the Hit
hin fun
tional. The metri
 
an then be 
onstru
ted from I and Jvia: gmn = ImlJln : (B.28)



118 Generalized geometryB.3 How to dress smeared sour
es with orientifoldinvolutionsSuppose we are given a form j representing the Poin
ar�e dual of smeared orientifolds.How do we de
ide what the orientifold involutions should be? Let us �rst give anexample for a lo
alized orientifold in 
at spa
e. If we have an orientifold along thedire
tions � = (x1; x2; x3) then the 
orresponding sour
e isj = TOp j� = �TOp Æ(x4; x5; x6) dx4 ^ dx5 ^ dx6 ; (B.29)where TOp < 0 for an orientifold and j is the Poin
ar�e dual of � satisfyingZ� � = ZMh�; j�i = � ZM � ^ j� ; (B.30)for an arbitrary form � 2. In this 
ase the orientifold involution is of 
ourseO6 : x4 ! �x4 ; x5 ! �x5 ; x6 ! �x6 : (B.31)Suppose we now introdu
e many orientifolds and 
ompletely smear them in the di-re
tions (x1; x2; x3) obtainingj = �TOp 
 dx4 ^ dx5 ^ dx6 ; (B.32)where 
 is a 
onstant representing the orientifold density. We have now lost infor-mation about the exa
t lo
ation but we would still like to asso
iate the orientifoldinvolution O6 : dx4 ! �dx4 ; dx5 ! �dx5 ; dx6 ! �dx6 : (B.33)An important observation is that dx4 ^ dx5 ^ dx6 is not just any form, it is ade
omposable form, i.e. it 
an be written as a wedge produ
t of three one-forms.These one-forms span the annihilator spa
e of T�, the tangent spa
e of �. So if weare given a smeared orientifold 
urrent j we should write it as a sum of de
omposableforms and then asso
iate to ea
h term an orientifold involution as above.Let us now study more formally how we 
ould write j as a sum of de
omposableforms and whether the de
omposition is unique. First, let us introdu
e a basis offorms ei 2 V? that span (lo
ally) TM. Indeed, for the 
ase of group manifolds wehave su
h a basis, whi
h is even de�ned globally. For the 
osets left-invariant formsin this basis are also globally de�ned.Now, let V be a d-dimensional ve
tor spa
e and V? its dual. A (real/
omplex)p-form j 2 �pV? is 
alled simple or de
omposable if it 
an be written as a wedge2The de�nition with the Mukai pairing is the one appropriate for generalizing to D-branes withworld-volume gauge 
ux as explained in [99℄. Here it will just give an extra minus sign
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t of p one-forms.3 What we are interested in is that there is a one-to-one
orresponden
e between (d� p)-planes (our orientifold planes) and de
omposable p-forms (up to a proportionality fa
tor). This isomorphism is 
alled the Pl�u
ker map.A dis
ussion of the 
riteria for having a simple form 
an be found in e.g. [100℄ pp.209-211. We will use here the 
riterion based onj? = fX 2 V : �Xj = 0g � V ; (B.34)and W = Ann(j?) � V? : (B.35)In [100℄ it is shown that j is simple if and only if dimW = p. Using this the followingalternative 
riterion is shown:Theorem: A p-form j 2 �pV? is simple if and only if for every (p� 1)-polyve
tor� 2 �p�1V, ��j ^ j = 0 ; (B.36)where ��j is the one-form 
ontra
tion of j with �.Now for the spe
ial 
ase of three-forms in six dimensions there is another usefultheorem due to Hit
hin [98℄.Theorem: Consider a real three-form j 2 �3V? and 
al
ulate its Hit
hin fun
tionalH(j) de�ned in (B.27). Then� H(j) > 0 if and only if j = j1 + j2 where j1; j2 are unique (up to ordering) realde
omposable three-forms and j1 ^ j2 6= 0;� H(j) < 0 if and only if j = �+�� where � is a unique (up to 
omplex 
onjugation)
omplex de
omposable three-form and � ^ �� 6= 0.Now we have two base-independent 
hara
terizations of j: the Hit
hin fun
tionalH(j) and dimW . Using these two 
hara
terizations the possible j's and their de
om-position in simple terms are 
lassi�ed in [25℄. Here we will fo
us on the 
ase H(j) < 0whi
h is always the 
ase for the examples in this thesis. From the above it followsthat if H(j) < 0 then j is a sum of exa
tly two (
onjugate) 
omplex simple termsand thus of exa
tly four real simple terms.An important remark is in order: while the Hit
hin theorem states that the two
omplex forms in the de
omposition of j are unique (up to 
omplex 
onjugation), the
hoi
e of one-forms out of whi
h these forms are made is not unique. One still has thefreedom of 
hoosing a basis of 
omplex one-forms belonging to a 
omplex stru
ture,3Note that a (real/
omplex) form of �xed dimension is a pure spinor if and only if it is simple.In fa
t, we 
ould regard the notion of pure spinor as a generalization of the notion of de
omposableforms to polyforms.
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h is SL(3,C ). As a 
onsequen
e the 
hoi
e of the four real forms in whi
h j isde
omposed is not unique. Indeed, suppose we 
hoose one basis of 
omplex one-formsand asso
iated x and y 
oordinates: ezi = exi � ieyi . Then j 
an be written as thesum of the following four terms:j = Re(ez1z2z3) = ex1x2x3 � ex1y2y3 � ey1x2y3 � ey1y2x3 ; (B.37)whi
h leads to the following orientifold involutions:O6 : ex1 ! �ex1 ; ex2 ! �ex2 ; ex3 ! �ex3 ;O6 : ex1 ! �ex1 ; ey2 ! �ey2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ex2 ! �ex2 ; ey3 ! �ey3 ;O6 : ey1 ! �ey1 ; ey2 ! �ey2 ; ex3 ! �ex3 : (B.38)
If we perform a SL(3,C ) transformation, j takes exa
tly the same form, but nowin the new basis. So alternatively we 
ould have 
hosen four orientifold involutionstaking the same form as the old ones, but now in the new basis, whi
h is rotated.This means that our 
hoi
e of orientifold involutions is not unique. We must thenfurther 
hoose them su
h that the stru
ture 
onstant tensor of the group or 
oset iseven, and Re
 and J are odd.Appli
ation to SU(2)�SU(2)Let us now apply the above pro
edure to the model of se
tion 3.4.4. Cal
ulating theHit
hin fun
tional H(j6) of (3.66) we �nd that it is negative so that it 
ontains fourorientifold involutions. We must now �x the freedom of 
hoosing them su
h that Re
and J are odd, and the stru
ture 
onstant tensor f is even. Some re
e
tion shouldmake 
lear that if Re
 is to be odd, it should be a sum of the same four terms as j6,but with di�erent 
oeÆ
ients. In fa
t, we 
ould reverse the pro
edure and 
hoose a
omplex basis ezi in whi
h 
 and J take their standard form:
 = ez1z2z3 ; J = � i2Xi ezi�zi : (B.39)Then Re
 and J are automati
ally odd under the asso
iated orientifold involutions(B.38). However, this should of 
ourse also be the orientifold involutions that followfrom j6. This will be the 
ase if and only if j6 has the same terms as Re
 (but withdi�erent 
oeÆ
ients). One 
an show that this is the 
ase if j6 is of the formj6 = Re �
0ez1z2z3 + 
11e�z1z2z3 + 
22ez1�z2z3 + 
33ez1z2�z3� ; (B.40)



B.3 How to dress smeared sour
es with orientifold involutions 121with all 
oeÆ
ients 
 real. To bring j to this form we still have the freedom to makea base transformation su
h that 
 and J invariant, i.e. an SU(3)-transformation. Apriori, j6 is an arbitrary three-form whi
h transforms under SU(3) as20 = 1 + �1 + 3 + �3 + 6 + �6 : (B.41)However, we know that j6 has to satisfy the 
alibration 
onditions (3.11), whi
hremove the 3 + �3 representation and only leave the form proportional to Re
 outof 1 + �1. Here the 6 is the (3 � 3)S i.e. the symmetri
 produ
t of two fundamentalrepresentations of SU(3). It follows that the most general j6 satisfying the 
alibration
onditions looks likej6 = 
0Re
 + Re �
kig(kj�|d�z�| ^ �zi)
�= 
0Re
 + Reh
11e�z1z2z3 + 
22ez1�z2z3 + 
33ez1z2�z3+ 
12 �e�z2z2z3 + ez1�z1z3� + 
13 �e�z3z2z3 + ez1z2�z1� + 
23 �ez1�z3z3 + ez1z2�z2� i ; (B.42)with 
0 real and the entries of the 
oeÆ
ient matrixC = 0� 
11 
12 
13
21 
22 
23
31 
32 
33 1A ; (B.43)
omplex. Now we have to �nd an SU(3)-transformation to put j6 in the form (B.40).
0 does not transform but is lu
kily already of the right form, while the 
oeÆ
ientmatrix transforms as C ! UCUT : (B.44)From (B.40) we see that we want to transform C to a diagonal real matrix. In fa
t,sin
e the above transformation 
annot 
hange the determinant this is only possible ifdetC 2 R : (B.45)This is a 
ondition we have to add to the 
alibration 
onditions. For the j6 of (3.66),one 
an 
he
k that it is indeed satis�ed and it is possible to �nd the 
omplex 
oordi-nates with the required properties. Also, under the asso
iated orientifold involutionthe stru
ture 
onstant tensor f is even as required. Note that alternatively, as wea
tually did in (3.67), we 
an also 
onstru
t a 
omplex basis asso
iated to 
 su
hthat f is even. This then automati
ally implies that j is odd and that it is a sum ofthe same four terms as Re
.
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tive supergravityThe superpotential for SU(3)� SU(3)-stru
ture was derived in various ways in [33, 35,36℄ (based on [84, 34℄). Here we will follow the approa
h of [36℄, whi
h 
al
ulated thesuperpotential and the (
onformal) K�ahler potential in the super
onformal formalismof [101℄.The bosoni
 part of the e�e
tive four-dimensional super
onformal a
tion takes thefollowing formS = Z d4xp�g4�12NR+ 3NI �J g��D�XID�X� �J + 13WI �N�1�I �JW��J + � � �� ;(B.46)where the ve
tor multiplet se
tor, in
luding D-terms, has been omitted. Here theXI are the n + 1 s
alars and D�XI = ��XI � 13 iA�XI , where A� is the gauge �eldasso
iated to the U(1)-transformations, generated by � (see (B.49)), in the 
omplexWeyl transformation. From dimensional redu
tion of the ten-dimensional supergrav-ity a
tion the 
onformal K�ahler potential N and the superpotential W were foundand read (here we reinstate dimensionful 
oupling 
onstants)N = 1�210 ZM d6ypdet h e2A�2� = 18�210�i ZM e�4AhZ; �Zi�1=3�i ZM e2Aht; �ti�2=3 ;(B.47a)W = 14�210 ZMhZ; F + i dH(ReT )i : (B.47b)Here Z, ReT and t are de�ned throughZ = �ie3A��	2 ; (B.48a)t = e��	1 ; (B.48b)ReT = Imt = e��Im	1 : (B.48
)The dimensionally redu
ed a
tion is naturally invariant under the following 
om-plex Weyl symmetryA! A + � ; g! e�2�g ; Z ! e3�+i�Z ; N ! e2�N : (B.49)Sin
e the s
alars XI transform asXI ! e�+ i3�XI ; (B.50)we �nd that Z must be homogeneous of degree 3 in the XI . To go to the usualEinstein frame, we must gauge-�x the Weyl symmetry. We �rst expli
itly isolate theunphysi
al degree of freedom, whi
h is 
alled the 
onformon, as followsXI = Y xI(�i) ; Z = Y 3Z(�i) N = jY j2e�K=3; W = Y 3M�3P WE(�i) ;(B.51)
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tive supergravity 123where Y is the 
onformon, �i are the n s
alar degrees of freedom in the Einsteinframe and MP the four-dimensional Plan
k mass. K and WE will turn out to be theK�ahler potential and the Einstein-frame superpotential after gauge-�xing. Indeed, inthe new 
oordinates the a
tion (B.46) be
omesS =Z d4xp�g4 �12 jY j2e�K=3R� jY j2e�K=3Ki�| g�� ���i�� ���| + � � ��M�6P jY j4eK=3 �Ki�|DiWED�|W�E � 3jWEj2�+ � � � � ; (B.52)where for the kineti
 term of the s
alars we omitted pie
es that will vanish after thegauge-�xing.We then impose the following gaugeN = jY j2e�K=3 =M2P ; (B.53)whi
h obviously gives us the usual Einstein-frame a
tionS = Z d4xp�g4 �M2P2 R�M2PKi�|���i�� ���| � V (�; ��)� ; (B.54)and also leads to the standard expression for the potentialV (�; ��) =M�2P eK �Ki�|DiWED�|W�E � 3jWEj2� : (B.55)The U(1)-symmetry must also be gauged, but for more details on this we refer to[101℄.The K�ahler potential readsK = � ln i ZM e�4AhZ; �Zi � 2 ln i ZM e2Aht; �ti+ 3 ln(8�210jY j2) : (B.56)Note that in [102℄ it is shown that Imt is a fun
tion of Ret so that t 
an be seen as(non-holomorphi
ally) dependent on T . To take this relation properly into a

ountwe use the fa
t that the K�ahler potential for the t-se
tor may be written asKt = �2 ln 4 ZM e2AH(Imt) ; (B.57)where H(Imt) is the Hit
hin fun
tional [98, 102, 33℄. For stable pure spinors ofSO(6; 6) it is de�ned as followsH(Imt) =r� 112J ��J �� : (B.58)where J�� = hImt;���Imti is a generalized 
omplex stru
ture and �;� = 1; : : : ; 12.The generalized SO(6; 6) gamma matri
es �� a
t on forms as�� = �m for m = � = 1; : : : ; 6 and �� = em ^ for m + 6 = � = 7; : : : ; 12 :(B.59)
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ase of SU(3)-stru
ture Imt = �Im
, and the Hit
hin fun
tional redu
es to(B.27).Note that if we make an expansion of the warp fa
tor A in harmoni
 modesA = A0 +X~n 6=0 A~nY(0)~n (y) = A0 + ~A; (B.60)the Weyl transformation (B.49) only a
ts on A0 sin
e � is 
onstant in the internal
oordinates (while of 
ourse it 
an depend on the four-dimensional 
oordinates). Sup-pose A and � are 
onstant over the internal spa
e (so ~A=0). A good 
hoi
e of Y in(B.51) would be Y = eA��=3MP ; (B.61)where the MP is introdu
ed for 
onvenien
e as it allows K to be dimensionless uponimposing the Einstein gauge (B.53). With this 
hoi
e we �nd for the superpotentialand the K�ahler potentialK = � ln i ZMh	2; �	2i � 2 ln i ZMht; �ti+ 3 ln(8�210M2P ) ; (B.62a)WE = �i4�210 ZMh	2; F + i dH(ReT )i : (B.62b)Note that another 
hoi
e Y 0 = fY would amount to a K�ahler transformationW 0E = f�3WE ; K0 = K + 3 ln f + 3 ln f � : (B.63)Using the expansion in ba
kground and 
u
tuations of (4.18) and (4.20) we 
anrewrite the superpotential asWE = �i4�210 ZMh	2eÆB ; F̂ + i dĤ(eÆBReT � iÆC)i ; (B.64)where we used property (B.5). This shows how the �elds organize in 
omplex multi-plets 	2eÆB and ReT � iÆC, whi
h will be 
learer in 
on
rete examples.Spe
ializing to the SU(3) 
ase with pure spinors (B.16) and the identi�
ation (B.6)for type IIA, the superpotential takes the formWE = �ie�i�4�210 ZMhei(J�iÆB); F̂ � idĤ �eÆBe��Im
 + iÆC3�i ; (B.65)and the K�ahler potential is given byK = � lnZM 43J3 � 2 lnZM 2 e��Im
 ^ e��Re
 + 3 ln(8�210M2P ) ; (B.66)where e��Re
 should be seen as a fun
tion of e��Im
.



Appendix CTen-dimensional geometriesIn this appendix we introdu
e the ten-dimensional geometries that we want to use asthe internal 6d 
ompa
t manifolds with SU(3)-stru
ture. These are so-
alled nilman-ifolds and 
osets spa
es and they are totally 
hara
terized by the stru
ture 
onstantsof the asso
iated Lie algebra. We do not want to go into the details here but justwant to 
olle
t the results appearing in the literature that we will need in this thesis.The key feature of su
h manifolds is that they allow for left-invariant (globally de-�ned) one-forms and that the exterior derivative of those one-forms, when expandedin two-forms, only has 
onstant 
oeÆ
ients. For later use we will also 
ompute thes
alar 
urvature of su
h spa
es. Furthermore we need to make sure that we 
an makethe non-
ompa
t examples 
ompa
t by moding out a dis
rete symmetry. We willstart with reviewing group-manifolds before we dis
uss nilmanifolds and 
oset spa
es.Good reviews are given in [103℄ while an introdu
tion into the topi
 
an be found in[104℄.C.1 Group-manifoldsA Lie group G is a manifold and group at the same time. Let ym, m = 1; : : : ; dim(G),be lo
al 
oordinates on G and let L(y) be an element of G. The left a
tion is de�nedas a map from G to G: gL(y) = L(y0) ; (g 2 G) (C.1)It indu
es a map between the tangent spa
es at di�erent points. Ve
tor �elds invariantunder this map are 
alled left-invariant and they de�ne the Lie algebra G of G.Sin
e any left-invariant ve
tor �eld is uniquely determined by its value at e, theidentity element of G, G 
an be identi�ed with Te(G). If we denote the basis of Te(G)as TA with A = 1 : : : dim(G) one has[TA; TB℄ = fCABTC ; (C.2)



126 Ten-dimensional geometrieswhere the fCAB are 
onstants sin
e the left hand side is left-invariant.The left-invariant one-forms eA are de�ned through the Lie-algebra valued one-form E(y) � L�1(y)dL(y) = eA(y)TA ; (C.3)whi
h we expanded in generators of G. This one-form is left-invariant and by de�ni-tion it obeys the so 
alled Maurer-Cartan equationsdE = �E ^ E : (C.4)Plugging in (C.3) and using (C.2), one getsdeA = �12fABCeB ^ eC : (C.5)The Ja
obi-identity for the stru
ture 
onstants ensures that taking another exteriorderivative gives zero. If the Lie group G is non-
ompa
t one needs to make sure thatone 
an make it 
ompa
t by moding out a dis
rete subgroup � yielding M = G=�.We 
ome to that point in the next se
tions.So we see that for a Lie group the exterior derivative of the globally de�ned one-forms involves the stru
ture 
onstants of the Lie algebra. One 
an also show the otherdire
tion. A manifoldM with dim(M) globally de�ned linear independent one-formsis 
alled parallelizable. One 
an then of 
ourse always expand dei in the two-formbasis ei ^ ej, but not ne
essarily with 
onstant 
oeÆ
ients. If they are 
onstant,the manifold is 
alled homogeneous. Imposing further d2ei = 0 for
es the 
onstant
oeÆ
ients to satisfy the Ja
obi identities, thus we 
an asso
iate a Lie group G tothem. If it is non-
ompa
t this means M = G=� sin
e we want M to be 
ompa
t.One possible metri
 on group manifolds is the so 
alled Cartan-Killing metri
de�ned by �AB = fYAXfXBY ; (C.6)whi
h has the property fCA[BgD℄C = 0 : (C.7)The Levi-Civita 
onne
tion one-form !AB of a metri
 g is uniquely determined bythe two equations 0 = dgAB � !CAgCB � !CBgAC ; (C.8)0 = deA + !AB ^ eB : (C.9)For a left-invariant metri
 the se
ond equation be
omes!AB � gAC!CB = �!BA (C.10)



C.2 Nilmanifolds 127Using (C.2) in (C.8), one 
an show that the solution of (C.8) and (C.10) is given by!AB = gAC �12fECBgED + fED[BgC℄E� eD : (C.11)Now it is straight forward to 
ompute the 
urvature two-formRAB = 12RABCDeC ^ eD � d!AB + !AC ^ !CB : (C.12)Using (C.2) and 
ontra
ting indi
es we �nd for the Ri

i s
alarR = �12gABfCDAfDCB � 14gABgCDgEFfACEfBDF ; (C.13)where the �rst term is the 
ontra
tion of the killing metri
.In the next two se
tions we will introdu
e the expli
it Lie algebras that we want tostudy. Levi's theorem tells us that any Lie-algebra A 
an be written as the semi-dire
tsum of a solvable and a semisimple Lie algebra. We will look at examples whi
h fallinto the two extreme 
lasses, namely either A is solvable or A is semisimple. SolvableLie algebras are de�ned by a re
ursive series. If we set A0 = A and de�ne theseries As � [As�1; As�1℄, then A is 
alled solvable if this series be
omes zero aftera �nite number of steps. A parti
ular sub
lass of solvable Lie algebras is given bynilpotent Lie algebras. They are de�ned in a similar way by demanding that theseries As � [As�1; A℄ be
omes zero after a �nite number of steps. A spe
ial propertyof nilpotent algebras is that the Killing form (Killing metri
) is identi
ally zero. Asexplained in [72℄ they admit a generalized 
omplex stru
ture, whi
h makes them good
andidates to look for type II supergravity solutions. For Semisimple Lie algebras onthe other hand, the Killing form is non-degenerate. There already exist some examplesof type IIA solutions in the literature [58, 76℄, whi
h gives hope that there might bemore.C.2 NilmanifoldsLet us start with the nilpotent algebras. For these manifolds the 
onstru
tion of theleftinvariant one-forms and the a
tion of the exterior derivative works exa
tly as inthe last se
tion. The question that arises is whether one 
an make them 
ompa
t.If yes, the asso
iated manifold M = G=� is 
alled a nilmanifold. Let's take as anexample the Heisenberg algebra, whi
h is nilpotent. The only non-vanishing stru
ture
onstant is f 312 leading tode1 = 0 ; de2 = 0 ; de3 = Ne1 ^ e2 : (C.14)A 
ompa
t notation for that is (0; 0; N12). Let us 
hoose a gauge wheree1 = dx1 ; e2 = dx2 ; de3 = dx3 +Nx1e2 : (C.15)



128 Ten-dimensional geometriesWe 
an 
ompa
tify this by making the identi�
ation (x1; x2; x3) ' (x1; x2 + a; x3) '(x1; x2; x3 + b) with a,b integer but we 
an not do the same for x1 be
ause e3 wouldnot be single-valued. For that we need to twist the identi�
ation by (x1; x2; x3) '(x1 + 
; x2; x3 � N
x2). The resulting nilmanifold G=� is an S1 �bration over T 2,whi
h is topologi
ally distin
t from T 3. More loosely, nilmanifolds are often 
alledtwisted tori and the stru
ture 
onstants are referred to as metri
 
uxes. A generalnilmanifold is always an iteration of torus �brations.It is possible to perform a systemati
 s
an for solutions on nilmanifolds be
ausethe nilpotent Lie algebras up to dimension seven have been 
lassi�ed and six is thehighest dimension where there are �nitely many. There are 34 isomorphism 
lasses ofsimply-
onne
ted 6d nilpotent Lie groups. A list of them 
an be found in [72℄. The
lassi�
ation, however, does not take into a

ount whether it is possible to produ
ea 
ompa
t manifold by modding out a dis
rete subgroup �. We only want to makesure that one � exists but do not 
are about whether there are more. By looking at(C.14), we see that already in three dimensions there are in�nitely many nilmanifolds.However, they are all isomorphi
 via a res
aling of e3. The information lost in thisres
aling is whi
h subgroup is being modded out. This 
hoi
e does not matter for usbe
ause we only work with left-invariant forms, whi
h have to have 
onstant 
oeÆ-
ients. It turns out that the ne
essary 
ondition is fABA = 0. This 
ondition be
omessuÆ
ient for stru
ture 
onstants that are rational in some basis. It is easy to see thatthis 
ondition is ne
essary. If fABA 6= 0, the top form dvol � e1 ^ : : : ^ e6 would beexa
t, but a 
ompa
t manifold needs a top-form non-trivial in 
ohomology. Indeed, if� � �A1:::An�A1eA2 ^ : : : ^ eAn with �A1 
onstant, one has d� = (fABA�A)dvol show-ing that the volume would be exa
t. This argument leaves open the possibility thatdvol = fe1 ^ : : : ^ e6 with some fun
tion f . This would not be left-invariant and ingeneral it is not 
lear that 
omputing the 
ohomology using left-invariant forms givesthe same as using all forms. However, it turns out that this is true for nilmanifoldsafter taking the quotient. This shows that fABA = 0 is a ne
essary 
ondition and ani
e feature of nilmanifolds is that it is automati
ally satis�ed.The Ri

i s
alar (C.13) simpli�es for nilmanifolds due to the vanishing of theKilling-form to R = �14gABgCDgEFfACEfBDF ; (C.16)whi
h is never positive.C.3 Coset spa
esLet us now dis
uss the semisimple Lie algebras. To do so we will have to generalizethe above de�nitions to the so 
alled 
oset spa
es M = G=H, where H is a subgroupof g whi
h we divide out. We will only 
onsider 
ompa
t Lie groups.
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es 129Let ym, m = 1; : : : ; dim(G)�dim(H), be lo
al 
oordinates on G=H and let L(y)be a 
oset representative. The left a
tion of G on G=H is now de�ned as:gL(y) = L(y0)h ; (g 2 G; h 2 H) ; (C.17)be
ause by a
ting with g from the left on a 
oset representative L(y), we will ingeneral get an element belonging to a di�erent 
oset whose representative we 
allL(y0). To bring L(y0) to that element we need an extra h transformation. It indu
esa map between the tangent spa
es at di�erent points. Ve
tor �elds invariant underthis map are 
alled left-invariant and they de�ne the Lie algebra of G=H.Let Ha be a basis of generators of the algebra H, and let Ki be a basis of the
omplement K of H inside G, i.e. a = 1; : : : ; dim(H) and i = 1; : : : ; dim(G)�dim(H).We de�ne the stru
ture 
onstants as follows:[Ha;Hb℄ = f 
abH
 ;[Ha;Ki℄ = f jaiKj ;[Ki;Kj℄ = fkijKk + faijHa ; (C.18)where we have used that for 
ompa
t H one 
an always �nd a basis of generatorsfKig su
h that the stru
ture 
onstants f bai vanish [103℄. In other words: [H;K℄ � K,and in this 
ase the 
oset G=H is 
alled redu
tive.Let ym, m = 1; : : : ; dim(G)�dim(H), be lo
al 
oordinates on G=H and let L(y)be a 
oset representative. The de
omposition of the Lie-algebra valued one-form Eis not left-invariant anymore, and it 
an be de
omposed asE(y) � L�1(y)dL(y) = ei(y)Ki + !a(y)Ha : (C.19)It still solves the Maurer Cartan equation (C.4) and by plugging its expansion into itand using (C.18), one arrives atdei = �12f ijkej ^ ek � f iaj!a ^ ej ; (C.20)d!a = �12faijei ^ ej � 12fab
!b ^ !
 : (C.21)Furthermore plugging (C.19) into (C.17) yieldsei(y0)Ki + !a(y0)Ha = ei(y)hKih�1 + !a(y)hHah�1 + hdh�1 : (C.22)Sin
e G=H is 
ompa
t we know that hKh�1 � K and we 
an de�neD ij (h�1)Ki � hKIh�1 : (C.23)This gives the transformation rule for the 
oframe ei on G=H:ei(y0) = ej(y)D ij (h�1) : (C.24)



130 Ten-dimensional geometriesWe are interested in expanding in forms that are left-invariant under the a
tion of Gon G=H. Any 
ovariant form B on G=H 
an be written asB = 1n!Bi1:::inei1 ^ : : : ^ ein (C.25)and by using (C.24) left invarian
e of B then amounts toBi1:::in = Bj1:::jnD j1i1 (h) : : :D jnin (h) (C.26)due to the a
tion of H and Bi1:::in = 
onstant (C.27)due to homogeneity. The in�nitesimal version of (C.26) isf ja[i1Bi2:::ip℄j = 0 ; (C.28)where we have used the de�nition (C.23) and (C.18). If one now takes the exteriorderivative dB this equation ensures that the part 
oming from the se
ond term in(C.20) drops out and we get again a left-invariant form. A
tually, one 
an reverse thispro
edure to obtain all the left-invariant forms on a 
oset spa
e. One just 
omputesfor all possible forms the exterior derivative using (C.20) and keeps only those forwhi
h the se
ond term drops out. This gives all left-invariant forms.Similarly, a metri
 g = gijei 
 ej is left-invariant if and only if its 
omponents gijare 
onstants and fka(igj)k = 0 : (C.29)Again we 
ompute the Levi-Civita 
onne
tion one-form !ij from0 = dgij � !kigkj � !kjgik ; (C.30)0 = dei + !ij ^ ej : (C.31)Choosing ei to be the 
oframe given in (C.19) the se
ond equation be
omes for aleft-invariant metri
 !ij � gik!kj = �!ji (C.32)Using (C.20) in (C.30) this time the solution of (C.30) and (C.32) is given by!ij = f iaj!a + gim�12f lmjglk + f lk[jgm℄l� ek ; (C.33)whi
h now has an extra term 
ompared to (C.11). The 
urvature two-form isRi j = 12Ri jklek ^ el � d!ij + !ik ^ !kj ; (C.34)
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es 131and using (C.20) and 
ontra
ting indi
es we �nd for the Ri

i s
alar:R = �gijfkaifakj � 12gijfklif lkj � 14gijgklgmnf ikmf jln ; (C.35)whi
h also has an extra term 
ompared to (C.13)As was explained in [59℄, in order for a 
oset spa
e G=H to allow for an SU(3)-stru
ture, the group H should be 
ontained in SU(3). The list of su
h six-dimensional
osets and the 
orresponding stru
ture 
onstants were given in and are summarizedin table C.1. Out of these only �ve lead to N = 1 AdS4 solutions [59℄, as we haveindi
ated in the table. We also indi
ated whether the 
oset admits an SU(3)-stru
tureat all, whi
h would be the �rst requirement.G H SU(3)-stru
ture N = 1 AdS4G2 SU(3) p pSU(3)�SU(2)2 SU(3)Sp(2) S(U(2)�U(1)) p pSU(3)�U(1)2 S(U(2)�U(1))SU(2)3�U(1) S(U(2)�U(1))SU(3) U(1)�U(1) p pSU(2)2�U(1)2 U(1)�U(1)SU(3)�U(1) SU(2) p pSU(2)3 SU(2)SU(2)2�U(1) U(1) pSU(2)2 1 p pSU(2)�U(1)3 1 pTable C.1: All six-dimensional manifolds of the type M = G=H, where H is asubgroup of SU(3) and G and H are both produ
ts of semisimple and U(1)-groups.To be pre
ise this list should be 
ompleted with the 
osets obtained by repla
ing anynumber of SU(2) fa
tors in G by U(1)3.
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Appendix DA note on integrating out d
(3)3Both in the torus and in the Iwasawa analysis we integrated out d
(3)3 . In general onegets from the part of the equation of motion of F4 with (1; 6) index stru
turee 12� ?4 d
(3)3 ^ vol6 =+ 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6+ 
(3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 + Æf ; (D.1)where the integration 
onstant Æf 
orresponds to a variation of the ba
kground 
uxf , whi
h we put to zero.This des
ribes the external part of F4, whi
h equivalently 
an be des
ribed by theinternal part of F6. Indeed, from varyingF6 = e 12� ? F4 ; (D.2)whi
h we got from (A.1), followsÆF6;int = 12e 12�f (Æg�� � Ægmm � Æ�) ^ vol6 + e 12� ? d
(3)3 ; (D.3)so that plugging in (D.1) we �ndÆF6;int = 
(3)iĤ ^ Y (3+)i � bi ^ Y (2�)i ^ F̂4 : (D.4)This 
orresponds to the part of ÆF6 in (4.19) that is �rst order in the 
u
tuations.We 
on
lude that instead of introdu
ing d
(3)3 , the external part of F4, we might aswell have worked with the internal part of F6. That is exa
tly what we will do in thesuperpotential analysis.
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