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Abstract 

This work is focused on the investigation of synthesis conditions for the direct growth 

of metal-organic frameworks (MOFs) on self-assembled monolayers (SAMs) used for 

surface functionalization. The characterization of the surface-grown crystals is a 

central part of this thesis, in order to learn more about the mechanism of MOF 

crystallization and the interesting properties of this class of materials leading to future 

applications. 

The tuneable oriented growth of thin films of the porous MOF HKUST-1 

(Cu3(C9H3O6)2(H2O)3·xH2O) on different functionalized SAMs is demonstrated. Films 

grown on carboxylate-terminated SAMs are highly oriented along the [100] direction, 

while alcohol-terminated surfaces induce a completely different orientation along the 

[111] direction. Homogeneous but less oriented thin films are also obtained on 

methyl-terminated SAMs. A combination of X-ray diffraction and scanning electron 

microscopy was used to study the film growth, including the morphological evolution 

of the crystals on the SAMs. 

In situ atomic force microscopy was used to directly investigate the growth processes 

of the oriented MOF HKUST-1 grown on SAMs on gold substrates. This approach 

provides direct evidence for a layer-by-layer mechanism of the constituent 1.5 nm d111 

crystal spacing step, its form during growth, and the influence of the step vertex on 

the rate of growth. 

The orientation and structure of porous MOFs based on iron terephthalate can be 

controlled by heterogeneous nucleation on self-assembled monolayers of 

mercaptohexadecanoic acid (MHDA). The framework MIL-53 is the product of 
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homogeneous nucleation, whereas in the same crystallisation solution, oriented MIL-

88B grows on the functionalized gold surface. 

A new sample cell was developed to allow for the investigation of the structural 

changes of flexible, porous materials during adsorption and desorption of guest 

molecules. Crystals of the flexible MOF Fe-MIL-88B were investigated as bulk 

material as well as surface-grown, oriented crystals. We were able to follow the 

structural changes of the Fe-MIL-88B crystals upon ad- and desorption of water. Due 

to the orientation of the crystals on the gold substrates, structural changes in [001] 

direction could be observed. For the randomly oriented bulk crystals the structural 

changes in all crystallographic directions are observable and the changes of the lattice 

constants a and c and the cell volume could be determined quantitatively by indexing 

of the complete diffraction patterns. The sorption isotherms recorded with the help of 

the sorption@XRD method show two distinct steps of structural changes. During 

adsorption of water the lattice parameter c is slightly but still detectably decreased, 

whereas the lattice parameter a shows a prominent two step-increase resulting in an 

increase of the cell volume about 40 %. The conventional volumetric water sorption 

measurement also shows two distinct steps of the amount of adsorbed volume that 

can be correlated to the structural changes observed in X-ray diffraction. 

We have demonstrated that advantages of functionalization can also be realized in 

oriented film synthesis of MOFs: We have shown for the first time that functionalized 

MOFs can be grown on self-assembled monolayers and that a preferred orientation of 

the crystals is achieved. This was demonstrated for NH2-MIL-101 and to a lesser 

extent for NH-MIL-88B. Importantly for potential storage applications, it was also 
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shown that the adsorption capacity of NH2-MIL-101 was not significantly reduced by 

the amino functionalization.  

 

 



 

 

 

 

 

 

 

 

 

 

 



Preface 

 

IX 
 

Table of Contents 

Erklärung ......................................................................................................... I 

Ehrenwörtliche Versicherung .......................................................................... I 

Danksagung .................................................................................................. III 

Abstract .......................................................................................................... V 

Table of Contents .......................................................................................... IX 

1 INTRODUCTION ......................................................................................... 1 

1.1 Metal-Organic Frameworks as a fast developing class of 

crystalline porous materials ............................................................ 1 

Classical crystalline porous materials: Zeolites and zeotypes ......................... 1 

Inorganic-organic hybrid materials ................................................................ 3 

Prospects for applications of MOFs ................................................................ 8 

Novel framework structures: covalent organic frameworks .......................... 11 

1.2 Self Assembled Monolayers ............................................................ 13 

1.3 Inorganic crystal growth on surfaces ........................................... 16 

Biomineralization ......................................................................................... 17 

Crystal growth of inorganic materials on functionalized surfaces ................ 17 

1.4 Concept of direct growth of MOFs on functionalized surfaces. 20 

1.5 Goals ................................................................................................... 26 

2 CHARACTERIZATION .............................................................................. 29 

2.1 X-ray Diffraction .............................................................................. 29 

2.2 Electron microscopy ......................................................................... 32 



Preface 
 

X 
 

Scanning Electron Microscopy (SEM) ...........................................................32 

2.3 Atomic Force Microscopy (AFM) ...................................................... 35 

Historical Background ...................................................................................35 

Atomic Force Microscope working principle .................................................37 

MultiMode
TM

 SPM .........................................................................................39 

AFM in fluids .................................................................................................41 

2.4 Vibrational Spectroscopy ................................................................ 42 

2.5 Adsorption measurements ............................................................... 44 

Characterization of porous solids ..................................................................44 

Quartz Crystal Microbalance (QCM) ..............................................................49 

2.6 Thermogravimetric analysis and Differential Scanning 

Calorimetry ....................................................................................... 51 

3 ORIENTED GROWTH OF METAL-ORGANIC FRAMEWORK HKUST-1 

TUNEABLE WITH FUNCTIONALIZED SELF-ASSEMBLED 

MONOLAYERS ......................................................................................... 53 

3.1 Introduction ...................................................................................... 53 

3.2 Experimental Section ....................................................................... 56 

Self-assembled monolayers on gold ..............................................................56 

HKUST-1 Synthesis Mixture ..........................................................................57 

Thin-film growth ...........................................................................................58 

3.3 Characterization .............................................................................. 58 

3.4 Results and discussion..................................................................... 59 

3.5 Conclusion ......................................................................................... 72 



Preface 

 

XI 
 

4 SINGLE LAYER GROWTH OF SUB-MICRON METAL-ORGANIC 

FRAMEWORK CRYSTALS OBSERVED BY IN SITU ATOMIC FORCE 

MICROSCOPY ........................................................................................... 73 

4.1 Introduction ...................................................................................... 73 

4.2 Experimental ...................................................................................... 76 

Self-assembled monolayers on gold ............................................................. 76 

HKUST-1 synthesis mixture and Preparation of HKUST-1 Thin Films ......... 77 

Preparation of the crystallisation solution for in situ AFM Measurements ... 77 

In Situ AFM measurements .......................................................................... 77 

Quantitative Analyses of AFM Scans ............................................................ 78 

4.3 Results and Discussion..................................................................... 78 

4.4 Conclusion ......................................................................................... 86 

4.5 Additional Details............................................................................. 86 

Dissolution in pure ethanol........................................................................... 87 

Growth and dissolution in Cu(II)/BTC solutions............................................ 90 

5 DIRECTING THE STRUCTURE OF METAL-ORGANIC FRAMEWORKS 

BY ORIENTED SURFACE GROWTH ON AN ORGANIC MONOLAYER . 95 

5.1 Introduction ...................................................................................... 95 

5.2 Experimental Section ...................................................................... 101 

Preparation of self-assembled monolayers on gold .................................... 101 

Fe-MIL-53 synthesis mixture ...................................................................... 101 

Thin film growth ......................................................................................... 101 

Fe-MIL-88B synthesis ................................................................................. 102 

5.3 Characterization ............................................................................. 103 



Preface 
 

XII 
 

5.4 Results and Discussion .................................................................. 103 

5.5 Conclusion ....................................................................................... 113 

5.6 Additional Details .......................................................................... 114 

Optimization of the Synthesis pathway for MIL-88B films ........................... 114 

Synthesis and Characterization of Fe-MIL-53 .............................................. 116 

6 SORPTION PROPERTIES OF ORIENTED, THIN-FILM FE-MIL-88B 

CRYSTALS STUDIED BY X-RAY DIFFRACTION ................................. 121 

6.1 Introduction .................................................................................... 121 

6.2 Methods ........................................................................................... 123 

Experimental setup of the flow controlling system ...................................... 123 

Development of the new sample cell for sorption@XRD measurements ..... 127 

Synthesis and Sample Preparation .............................................................. 129 

Further sample characterization .................................................................. 129 

6.3 Results and Discussion .................................................................. 130 

6.4 Conclusions ..................................................................................... 142 

6.5 Additional Details .......................................................................... 143 

6.6 Documentation of the LabView control programmes ................ 146 

LabView control programme for automated Sorption@XRD measurements

 .................................................................................................................... 146 

Redesigned LabView control programme for automated QCM measurements

 .................................................................................................................... 153 

Excel sheet for the calculation of settings of digital MFCs during 

Sorption@XRD and QCM measurements .................................................... 173 

List of included SubVis in the programme QCM Main.vi ............................. 174 



Preface 

 

XIII 
 

7 EXTENDING THE STRUCTURE-DIRECTING CONCEPT TO 

FUNCTIONALIZED METAL-ORGANIC FRAMEWORKS ...................... 177 

7.1 Introduction .................................................................................... 177 

7.2 Experimental .................................................................................... 179 

Preparation of self-assembled monolayers on gold .................................... 179 

Synthesis of bulk NH2-MIL-101 .................................................................. 179 

Preparation of the crystallization solution for film growth of NH2-MIL-101 180 

Film Growth of NH2-MIL-101 ..................................................................... 180 

7.3 Characterization ............................................................................. 180 

7.4 Results and Discussion................................................................... 181 

7.5 Conclusion ....................................................................................... 187 

7.6 Additional Details........................................................................... 188 

Synthesis of NH2-MIL-88B ......................................................................... 190 

Preparation of self-assembled monolayers on gold .................................... 191 

Preparation of the crystallization solution for film growth of NH2-MIL-88B on 

–COOH terminated SAMs ........................................................................... 191 

Film-Synthesis of NH2-MIL-88B ................................................................. 191 

8 GENERAL CONCLUSIONS .................................................................... 193 

9 REFERENCES ......................................................................................... 197 

10 APPENDIX: ............................................................................................. 217 

10.1 List of abbreviations ....................................................................... 217 

10.2 Synthesis and Characterization of Fe-MIL-101 ........................... 220 



Preface 
 

XIV 
 

Synthesis of Fe-MIL-101 ............................................................................. 220 

Characterization of Fe-MIL-101................................................................... 220 

11 CURRICULUM VITAE ............................................................................ 225 

12 PUBLICATIONS AND PRESENTATIONS ............................................. 225 

12.1 Publications .................................................................................... 227 

12.2 Oral Presentations ......................................................................... 228 

12.3 Poster Presentations ..................................................................... 229 

 

 



1 Introduction 

 

1 
 

1 Introduction 

1.1 Metal-Organic Frameworks as a fast developing class of 

crystalline porous materials 

The classification of porous materials is usually given by the diameter of their pores. 

According to IUPAC, microporous (< 2 nm), mesoporous (2 – 50 nm) and 

macroporous (> 50 nm) materials are distinguished.
[1]

 

The interest in porous materials results from their outstanding properties and their 

manifold applications. Zeolites being an important class of crystalline porous hosts 

are widely employed as catalysts
[2]

 in the petrochemical industry, ion exchangers in 

detergents
[3]

 and as molecular sieves in the separation technology,
[4]

 to name some of 

the most important fields. During the last decades, several new classes of porous 

materials were discovered and much research work is focused on the exploration of 

new compounds and their properties. Within this chapter, a short introduction into 

classical crystalline porous materials will lead to the more detailed overview over 

metal-organic frameworks as interesting porous hybrid materials. 

Classical crystalline porous materials: Zeolites and zeotypes 

Zeolites were first discovered by the Swedish mineralogist Axel Fredrik Cronstedt in 

1756.
[5]

 The term “zeolite” was chosen based on the Greek words “zein” (“to boil”) 

and “lithos” (“stone”) as the crystals released evaporating water upon heating. 
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Zeolites are crystalline aluminosilicates built from [SiO4] and [AlO4]
-
 tetrahedra, that 

are connected in a way to form frameworks with channels and cavities in the range of 

3 – 15 Å.
[6-8]

 Negative charges resulting from replacement of silicon by aluminium 

ions are compensated by counter metal ions, typically alkali or alkaline earth cations 

inside the structure. Even before the structures of zeolitic frameworks could be 

revealed, several key properties were discovered by the investigation of natural 

zeolites, such as reversible dehydration
[9]

 and ion exchange.
[10]

 The first structure 

determinations of zeolite frameworks were achieved in 1930 by Taylor and Pauling.
[11, 

12]
 This led to the preparation of synthetic zeolite structures, starting with the 

pioneering work of Richard Barrer and Robert Milton.
[13-16]

 In the following years 

important industrial applications were found for these new synthetic framework 

structures, such as the use of zeolite X as a cracking catalyst by Mobil Oil.
[17]

 To date 

48 natural zeolites and more than 150 synthetic framework structures are known.
[17,18]

 

The partial or full substitution of silicon and aluminium by hetero-elements gives the 

so-called zeotypic compounds. One important representative class of these are 

(silico-)aluminophosphates (SAPO / AlPOn), microporous crystalline molecular sieves, 

that were first described in 1982.
[19, 20]

 Also metal phosphate open framework 

structures are known for many different metals, for example iron
[21]

, copper
[22]

 and 

titanium.
[23]

 

In addition to the classical applications for zeolites and zeotypes mentioned above, in 

recent years, the fields of application shifted more and more to new areas such as gas 

storage,
[24-26]

 sensor devices,
[27, 28]

 solar cell technology,
[29, 30]

 heat storage,
[31, 32]

 

biological carriers,
[33, 34]

 medical technologies
[35, 36]

 and many others.  
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The drawback for some applications of zeolites is the limitation of the pore size of 

these materials due to the construction of the framework structures from corner or 

edge sharing tetrahedra. This insight was fertile ground for the development of new 

porous compounds with tuneable and larger pore sizes. One class of materials that 

overcomes limits in pore dimensions are mesoporous materials, which are only 

crystalline in terms of pore structure, while the walls between the pores consist of 

amorphous silicon dioxide or other metal oxides.
[37-39]

 A completely different 

approach led to the discovery of porous inorganic-organic hybrid materials with 

different tuneable pore sizes within the concept of reticular chemistry; this class of 

compounds shall be discussed in detail in the following section. 

Inorganic-organic hybrid materials 

Inorganic-organic hybrid materials can be crystalline or X-ray amorphous, the 

bonding between the inorganic and organic parts may be covalent, coordinative or 

based on van-der-Waals interactions. It is easy to imagine that this general definition 

comprises a large number of completely different chemical compounds. This work is 

focused on the subgroup of inorganic-organic hybrid material with coordinative 

bonding between the metal ions (inorganic parts) and the organic linkers: the so-

called Metal-Organic-Frameworks (MOFs) or coordination polymers. The term “metal-

organic framework” was defined by Omar Yaghi in 1995
[40]

 and is nowadays widely 

used for all microporous materials emerging from the modular concept of combining 

metal centres and organic compounds for the formation of three-dimensional 

framework structures. However the first synthesis of MOFs - even though not named 

as such at the time - was reported by Tomic in 1965.
[41]

 Currently many research 

groups are working on the synthesis and characterization of novel MOF structures 



1 Introduction 

 

4 
 

focussing on many different aspects of this interesting class of materials. Leading 

research groups in this field include the groups of Prof. Gérard Férey (France), Prof. 

Omar Yaghi (USA) and Prof. Susumu Kitagawa (Japan).
[42]

 

Usually, MOFs are synthesized from solution under solvothermal conditions; typical 

solvents are water, ethanol, methanol, dimethylformamide (DMF) or acetonitrile, 

temperatures may vary from room temperature to 250 °C. As depicted schematically 

in Figure 1.1, MOFs form in a self-assembly process through coordination of organic 

ligands to metal centres. 

 

Figure 1.1: General building scheme for MOFs: organic ligands with at least two 

functional groups coordinate to metal ions resulting in 3D framework 

structures. 

The functional groups appropriate for coordinative bonding to the metal ions are most 

commonly carboxylates, phosphonates, sulfonates and nitrogen derivatives such as 

pyridines and imidazoles. The organic linkers are often chosen to be rigid, so that 
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aromatic systems are preferred over alkyl chains for the carbon backbone. The 

coordination of the chelating ligands to the metal ions often leads to metal-ligand 

polyhedra, in most cases metal-oxygen polyhedra. These polyhedra may be linked to 

each other to form the so-called Secondary Building Units (SBUs).  

 

Figure 1.2: Secondary Building Units (SBUs) of HKUST-1 (left): paddlewheel unit 

consisting of two copper atoms coordinated by four carboxylate groups and 

two water molecules and of MIL-88 and MIL-101 (right): trimer of iron-

oxygen octahedra linked by one µ3 oxide ion and six carboxylate groups. 

Figure 1.2 represents the typical SBUs known from relevant MOF structures, namely 

of HKUST-1 (Hong-Kong University, structure 1, consisting of copper as the metal 

component and benzenetricarboxylic acid as the organic ligand) and MIL-88 

(Matériaux de l’Institut Lavoisier, number 88) as well as MIL-101 (both consisting of 

trivalent metal ions like iron (III), chromium (III) or aluminium (III) and terephthalic 

acid) these are to be found in several additional MOF structures as well. There is 

evidence in the literature that some inorganic SBUs of the MOFs form prior to 

crystallisation of the inorganic-organic hybrid structure.
[43]
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Figure 1.3: Series of isoreticular MOF structures (IRMOFs) with the same cubic 

network topology, the particular linkers differ in functionality and length. 

While expansion of the linkers increases the internal void space 

(represented by yellow spheres), it also allows the formation of catenated 

phases.
[44]

 

The synthesis of MOFs gives rise to the concepts of network design and reticular 

chemistry.
[45]

 The idea of tuning the properties, i.e. the pore size and functionality of a 

MOF structure with a certain network topology was first demonstrated by the group of 

O. Yaghi in 2002, where a series of isoreticular MOF-structures (IRMOFs), based on 

the network topology of MOF-5, a zinc-terephthalate with a cubic framework 

structure
[46]

 was presented with 16 different molecules acting as organic linkers, with 

different length and functionality.
[47]

 (Figure 1.3) 
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The concept of reticular chemistry is widely employed in the research in the field of 

MOFs to obtain porous crystalline compounds with engineered properties for 

different applications.
[48-53]

 The use of longer ligands may lead to the formation of 

catenated (also called interpenetrating) phases with smaller specific surface area and 

smaller pore dimensions than the corresponding non-catenated structure (see also 

Figure 1.3).
[54]

 The most impressive impact of catenation is a reduction of the free 

diameter of the pores, i.e., it represents a potential strategy for improving hydrogen 

uptake.
[55]

 

Challenges associated with obtaining new structures with larger pores and 

consequently larger unit cells and different functionalities of the organic linkers, i.e., 

additional alkyl chains, amino, hydroxyl or carboxylic acid groups, may occur in the 

synthesis of the materials due to different solubilities of the larger compounds on the 

one hand, and in the solution of the crystal structures of compounds with such large 

unit cells on the other hand. One approach to overcome the difficulties with drastically 

different synthesis conditions is to investigate the parameters of the synthesis field 

systematically with the help of high-throughput methods.
[56-59]

 The high-throughput 

method allows for the systematic investigation of synthesis parameters while using 

low amounts of chemicals, resulting in faster and less expensive access to the desired 

information over a broad range of parameters. To solve complex crystal structures 

with large unit cells, the group of Prof. Férey has developed the so-called AASBU 

(automated assembly of secondary building units) approach.
[60]

 Here the inorganic 

and organic SBUs are assembled to give hypothetical crystal structures. The 

simulated X-ray diffraction patterns of these hypothetical structures are then 

compared to experimental patterns, obtained from the synthesis carried out with the 
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same compounds used for the simulation. If both patterns are in good agreement, the 

simulated structure obtained from the AASBU approach is used as the starting point 

for the refinement of the crystal structure. 

The choice of organic linkers with certain functionalities is expected to lead to the 

design of MOF structures with particular properties (pore surface design). The group 

of S. Kitagawa has focused the research on this challenge by tuning the organic 

linkers in order to obtain the host-guest interactions desired for a particular 

application.
[61]

 Another highly interesting approach is the use of chiral organic linkers 

to create specific asymmetric environments for guest molecules within the pores.
[62-66]

 

The tuning of certain properties leads to the question of possible applications for this 

interesting class of materials, which will be the subject of the following section. 

Prospects for applications of MOFs 

Interesting features of MOFs such as high thermal stability and high metal content 

were already investigated in the aforementioned first publication reporting 

carboxylates of metals like zinc, nickel, iron and aluminium in 1965.
[41]

 As described 

above, the reticular design of MOFs allows for the tuning of pore size and 

functionality, thus greatly influencing the properties of MOFs suitable for applications. 

The most promising application prospects shall be described within this section. 
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Catalysis 

In comparison with zeolites, MOFs offer lower thermal stability and therefore are not 

expected to be a suitable substitution for the latter in high temperature processes 

such as catalytic cracking. First proof of the catalytic activity of MOFs was obtained in 

vinyl group esterification reactions on MOF-2 and MOF-5. It could be shown, that, 

compared to the zinc paddlewheel-containing MOF-2, MOF-5 with fully saturated 

zinc-coordination is quite poor in performing in the selective esterification, 

demonstrating the important role of accessible metal sites in MOF structures.
[67]

 

Successful catalysis on zinc-containing MOFs in the activation of alkoxides and 

carbon dioxide for the formation of polypropylene carbonate,
[68, 69]

 and even 

entioselective conversions with an enantiomeric excess of 8 %
[66, 70]

 have already 

been reported. Further catalytic reactions from different research groups were 

already reported, i.e. Ziegler–Natta-type polymerization, Diels–Alder-reaction, 

transesterification, cyanosilylation of aldehydes, hydrogenation and isomerisation 

reactions.
[53]

 Future studies will have to prove the value of MOFs as catalysts in terms 

of efficiency, costs and stability and reveal the yet unknown mechanisms of catalytic 

activities of this class of materials. 

Gas purification 

The BASF AG was able to demonstrate that the volume specific uptake of 

tetrahydrotiophene was about ten times higher with the investigated MOF HKUST-1 

(the structure of which is discussed in detail in chapter 3) than with conventional 

activated carbon materials. A dominant colour change of the HKUST-1 crystals for 

several enclosed molecules allows visible detection of breakthrough and contaminant 
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saturation. During removal of the contaminant by vacuum treatment or heating, the 

original colour reappears, indicating a possible regeneration of the adsorbent.
[67]

 

Gas storage 

The probably most striking property of many MOFs is the total lack of non-accessible 

bulk volume. Although high surface areas are already known from activated carbons 

and zeolites, it is the absence of any dead volume in MOFs which principally gives 

them the highest porosities and world record surface areas.
[67]

 The highest surface 

areas of known MOFs are reported for MOF-177
[71]

 and MIL-101
[72]

 with 4500 m
2
g

-1
 

and 5900 m
2
g

-1
, respectively. This intriguing property of MOFs makes them 

interesting candidates for any application concerning gas storage, with special focus 

on hydrogen storage.
[51, 55, 73-86]

 Safe and efficient gas storage is an important 

requirement for the employment of alternative energy resources in both mobile 

automotive as well as portable electronic device applications. Storage of a gas in 

MOF-filled canisters can be used to either enhance capacity in a given volume or 

transport an equivalent amount of gas at a far lower pressure. It was, for instance, 

possible to keep methane, propane and other hydrocarbons at a denser state by 

storing them in MOF-filled containers.
[67, 69, 87]

 Especially promising materials are 

MOFs with light metal atoms such as Al-MIL-53, for which a hydrogen storage 

capacity of 3.8 wt.% when loaded at 77 K under 1.6 MPa could be shown.
[88]

 

The temperature required for a possible application might direct the choice of 

particular structures: highly porous MOFs might be favourable for low temperatures, 

whereas rather small pore materials,
[89, 90]

 or highly attractive and flexible ones,
[88, 91]

 

could be favourites for room temperature storage. Additional mechanisms including 
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chemisorption, as in hydrides, and physisorption, as in MOFs, might offer a solution 

to future challenges.
[67]

 

Novel framework structures: covalent organic frameworks 

A new class of porous hybrid materials was introduced by Yaghi et al. in 2005.
[92, 93]

 

Covalent organic frameworks (COFs) were either obtained by self-condensation of 

aromatic organoboronic acids or by condensation of organoboronic acids with 

aromatic alcohols. Both products present covalent bonding instead of the coordinative 

bond of metal-ligand interactions in MOFs. COFs consist exclusively of light elements, 

such as carbon, boron, hydrogen and oxygen, which is in contrast to MOFs containing 

heavier metal atoms. The employment of different rigid aromatic compounds leads to 

the formation of rings, tuneable in size, thus picking up the concept of reticular 

chemistry already established in MOF synthesis.
[94]

 The size of the rings and therefore 

the size of the pores lie in the micro- to mesoporous range. The first described 

structures consist of porous 2D sheets, which can be arranged in the third dimension 

by π-stacking, such that the pores are aligned, resulting in 1D channels.
[92, 95]

 The 

planarity of the 2D sheets directly results from the aromaticity of the condensating 

organic compound. The next step was to use triangular and tetrahedral nodes to 

construct 3D covalent structures. This approach led to the successful synthesis of 

COF-102, COF-105 and COF-108 (Figure 1.4).
[96]
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Figure 1.4: Atomic connectivity and structure of COF-102 (A), COF-105 (B), and COF-108 

(C), based on powder diffraction data and modelling. Carbon, boron, and oxygen 

atoms are represented as gray, orange, and red spheres, respectively.
[96]

 

Due to the construction of these materials from strong covalent bonds, the thermal 

stability of COFs is very high (400 – 500 °C) and they are also shown to have very high 

surface areas. These properties, in addition to their extremely low densities invoked 

research studies on the possible employment of COFs as hydrogen storage 

materials.
[86, 97-100]

 As described for MOFs, it is possible to use substituted organic 

compounds as starting materials for the COF synthesis. This permits to tune the pore 

size of the materials through implementation of alkyl chains into a known COF 

structure.
[101]

 Different substituents, such as functional groups, will lead to the 

formation of pores with tuneable functionalities, further increasing the design 

possibilities of this relatively new class of materials. 
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1.2 Self Assembled Monolayers  

Self-assembled monolayers (SAMs) are organic assemblies formed by the adsorption 

of molecules from solution or the gas phase onto the surface of solids. The adsorbates 

organize spontaneously into crystalline or semi crystalline structures. The molecules 

assembling in SAMs feature a chemical functionality or “head group” with a specific 

affinity for a substrate, which is often so strong that the molecule displaces other 

adsorbed organic compounds from the surface. The most extensively studied class of 

SAMs consists of alkanethiols on gold and other noble and coinage metals;
[102-112]

 a 

schematic representation of an ideal SAM of alkanethiolates on gold is depicted in 

Figure 1.5. The high affinity of thiols for noble metals offers the possibility to obtain 

well-defined organic surfaces with different chemical functionalities displayed at the 

exposed interface.
[113]

 There are also different examples for organic monolayers on 

different substrates, for instance alkylsiloxane SAMs on oxidic materials like SiO2. The 

discussion of SAMs within this section shall be limited to the alkanethiol / Au (111) 

system, as this is the only one employed for this work. Au(111) surfaces are the 

preferred substrates for the preparation of alkanethiolate SAMs due to the facile 

formation of the monolayers and due to the relatively low surface roughness of the 

(111) face of gold.
[114]

 Au(111) surfaces can be obtained either form single crystals or 

by evaporation of thin gold films on planar supports, typically mica, glass or silicon 

wafers.
[115-117]
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Figure 1.5: Schematic diagram of an ideal, single crystalline SAM of alkanethiolates 

supported on a gold surface with a (111) texture. 

The important issues for the preparation of SAMs from solution are alkanethiol 

concentration of the solution, length of time for immersion, type of solvent and 

temperature.
[118, 119]

 The commonly used preparation procedure to prepare thiol-

based SAMs is the immersion of thoroughly cleaned gold substrates in a diluted 

ethanolic solution (1 – 10 mmol/l) of the desired thiol for 18 – 24 h at room 

temperature.
[110]

 The mechanism of the SAM formation from solution is postulated to 

be analogous to the assembly of thiolates on gold from the gas phase.
[120]

 

To investigate the structure of SAMs on planar substrates, a number of techniques for 

surface analysis have been applied, such as reflectance absorption infrared 

spectroscopy (RAIRS), optical ellipsometry, contact angle goniometry and 

electrochemistry, and scanning tunnelling microscopy (STM).
[105, 118, 121-126]

 

The surface structure of thiolates on Au(111) is generally accepted to be based on a 

(√3×√3)R30 ° overlayer.
[103, 106]

 This structure most probably results from the sulphur 
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atoms being positioned in the 3-fold hollows of the gold lattice. There is agreement in 

the literature that the organization of the thiol molecules on the surface adopts a 

secondary ordering of the chains corresponding to a c(4 × 2) superlattice.
[127, 128]

 This 

structure is shown schematically in Figure 1.6. The light gray circles with dashed 

lines indicate the approximate projected surface area occupied by the alkane chains. 

The red dashed lines in Figure 1.6 mark the formal c(4 × 2) unit cell, the blue dashed 

lines mark the 2√3 × 3 unit cell. The alkane chains are tilted in the direction of their 

next-nearest neighbours; the dark wedges indicate the projection of the CCC plane of 

the alkane chain onto the surface. The distance between pinning sites in this 

geometry is 5.0 Å, resulting in an available area for each molecule of 21.4 Å
2
. Since 

the van-der-Waals diameter of the alkane chain is too small (4.6 Å) for the chain to 

completely occupy that area, the chains will tilt, forming an angle of approximately 

30 ° with the surface normal.
[114]

 

 

Figure 1.6: Structural model of the adlayer formed by thiols on the gold lattice.
[103]
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It has been shown that SAMs formed from thiols with an alkane chain length of twelve 

or more methylene units present well-ordered and dense monolayers. As the chain 

length decreases, the SAM becomes increasingly disordered with low packing density 

and coverage; this lack of order has been attributed to weak interchain interactions 

and to a greater concentration of gauche defects.
[105]

  

The terminal functional group of the thiol determines the functionality of the SAM. 

The possibility to tune the organic functionality makes SAMs very interesting 

candidates for various purposes. The preparation procedure of SAMs from thiols with 

different functional terminal groups may depend on the nature of the functional 

group. For example, with carboxylated organothiols, which were also employed 

within this work, hydrogen bonds between the terminal carboxylic acid groups may 

occur. It was shown that the structural quality of the SAM strongly depends on the 

preparation conditions.
[129]

 

In general, within the last decades SAMs have received considerable attention with 

respect to fundamental aspects
[119]

 as well as in view of potential technical 

applications in fields such as molecular recognition,
[130]

 corrosion protection,
[131]

 

organic-molecular electronics,
[132-134]

 and, as employed within this work, as 

functionalized substrates for crystallization (see following sections). 

1.3 Inorganic crystal growth on surfaces 

„The systematic fabrication of advanced materials will require the construction of 

architectures over scales ranging from the molecular to the macroscopic. The basic 

constructional processes of biomineralization – supramolecular pre-organization, 
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interfacial molecular recognition (templating) and cellular processing – can provide 

useful archetypes for molecular-scale building or “molecular tectonics” in inorganic 

materials chemistry.” (Stephen Mann, 1993)
[135]

  

Biomineralization 

The definition of biomineralization is the process by which living organisms produce 

minerals, often to harden or stiffen existing tissues. The concept of biomineralization 

refers to oriented nucleation, control over crystal morphology, formation of unique 

composites of proteins and single crystals, and the production of ordered multicrystal 

arrays.
[136]

 It is an extremely widespread phenomenon; over 60 different minerals 

have been identified in organisms.
[137]

  

The mechanisms involved in biomineralization, i.e. the processes that result in the 

construction of higher-order architectures, may serve as guide for materials scientists 

to develop new methods for the controlled synthesis of organized inorganic and 

composite materials.
[138, 139]

 Interesting examples, where the concept of biomimetic 

materials was picked up, will be discussed in the following section. 

Crystal growth of inorganic materials on functionalized surfaces 

To mimic the influence of organic molecules on crystallisation observed in nature,
[140]

 

often SAMs are used to create organic functionalized surfaces.
[141]

  

In 1994 Bunker et al. reported the formation of ceramic thin films on functionalized 

interfaces through biomimetic processing.
[142]

 This approach covered the preparation 

of ceramic films on plastic and metal substrates leading to the formation of high-

quality, dense polycrystalline films of oxides, hydroxides, and sulphides at 
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temperatures below 100 °C. For some ceramics preferred orientation of the 

crystallites was observed, therefore this process is considered a promising approach 

towards the production of inorganic-organic composites. 

In 1999 oriented growth of calcite controlled by SAMs of functionalized alkane thiols 

on gold and silver substrates was studied by Aizenberg et al.
[143]

 High level control 

over the crystal orientation could be achieved by employment of different terminal 

functional groups of the SAMs on the metal substrates; selective nucleation of calcite 

from six crystallographic planes could be obtained. The great influence of the 

geometry of the array of certain terminal functional groups is attributed to the highly 

ordered structure of the applied SAMs; patterned SAMs were applied and led to the 

formation of high-resolution patterns of differently oriented crystals. 

Chemical deposition of lead sulphide from solution on carboxylic acid terminated 

SAMs was studied by Meldrum et al. in 1997.
[144]

 The kinetics of crystal growth was 

followed with the help of surface plasmon spectroscopy. The results reveal that film 

growth proceeds by the formation of a thin layer over the substrate, followed by 

nucleation of crystals also demonstrated by transmission electron spectroscopy.  

In order to show the possibility of using organic templates to direct the growth of 

technologically useful inorganic nanocrystals, organically functionalized silver 

surfaces were used to study the direct growth of ZnO nanorods.
[145, 146]

 The authors 

suggest that the nucleation and growth morphology of ZnO on surfaces are governed 

by the surface free energy of the substrate, which can be altered by SAMs with 

different end groups. For SAMs with chemically active (carboxylic or thiol) end 

groups, the ZnO morphology is found to be three-dimensional nanorods on low-

surface energy surfaces and two-dimensional thin films on high-energy surfaces.  
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Different functionalized glass substrates were used to investigate the surface-

mediated growth of transparent, oriented, and well-defined nanocrystalline anatase 

titania films.
[147]

 The surface mediated growth is explained with the help of the 

electrostatic attraction of ions, serving as nucleation sites, from solution to the 

charged surface groups under the given synthesis conditions. 

The above examples of inorganic crystal growth on functionalized surfaces all focus 

on dense inorganic materials. The first studies presenting oriented, surface-controlled 

growth of molecular sieve crystals were presented by Sue Feng et al. in 1994.
[148, 149]

 

Zinco-phosphate and aluminium phosphate molecular sieve crystals were grown on 

gold substrates functionalized with metal-phosphonate multilayer films. The 

octahedral zinco-phosphate crystals were shown to grow in [111]-orientation while 

the hexagonal crystals of AlPO-5 were growing in [001]-orientation. The porosity of 

the surface-grown crystals could be shown with the help of quartz-crystal-

microbalance measurements, thus demonstrating the accessibility of the pores and 

giving rise to interesting applications such as catalytic membranes or sensor 

materials. In a different study, oriented growth of TS-1 zeolite crystals was achieved 

on functionalized glass substrates.
[150]

 The poly(ethylene oxide) SAMs are considered 

as 2D template leading to the formation of [010]-oriented zeolite thin films. 

The studies described within this section on direct crystal growth on functionalized 

substrates build the basis for the investigations of direct growth of MOF crystals on 

SAMs. The existing work in this field of research shall be described in the following 

section. 
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1.4 Concept of direct growth of MOFs on functionalized 

surfaces 

This work is focused on the investigation of the direct growth of MOFs on gold 

substrates functionalized with different self-assembled monolayers (SAMs, see section 

1.2). Within this section, the concept of direct growth of MOFs on SAMs shall be 

explained and existing work on this subject will be introduced. 

The mechanism of direct growth of MOFs on functionalized substrates is proposed to 

be analogous to the self-assembly process during the formation of MOF crystals 

discussed in chapter 1.1. The concept of direct growth of MOF crystals on organic 

monolayers is depicted in Figure 1.7. The central idea is to use or in fact mimic the 

particular functional groups of a certain MOF structure on the surface as functional 

terminal groups of the employed SAM. This enables coordination of the metal ions or 

SBUs from the solution to the surface. The attached metal centres or SBUs will 

subsequently be coordinated by the organic ligands present in the solution; this 

process further leads to the crystal growth of the desired MOF, with the crystals being 

directly attached to the surface. 
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Figure 1.7: Concept of direct growth of MOFs on SAM-functionalized gold substrates. 

The first study on nucleation and growth of a MOF structure on SAMs was published 

by Fischer et al. in 2005.
[151]

 Here it could be shown for the first time that direct 

attachment of MOF-5 crystals on a functionalized gold substrate is possible. A 

patterned functionalization of 16-mercaptohexadecanoic acid and 1H,1H,2H,2H-

perflourododecane thiol was used on the substrate, which was achieved with the help 

of Micro Contact Printing (µCP). The functionalized substrate was immersed into a 

pre-treated crystallization solution. Crystal growth could be observed on the 

carboxylic acid terminated SAM, whereas no crystallization occurred on the CF3-

groups (Figure 1.8). 
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Figure 1.8: The concept of anchoring a typical MOF-5 building unit to a carboxylic acid 

terminated SAM (left). Optical microscope (middle) and an AFM image 

(right) of a selectively grown film of MOF-5 on a patterned SAM.
[151]

 

The synthesis solution has to be pre-treated solvothermally to obtain crystal growth 

on the substrate; the authors attribute the necessity of this step to the formation of the 

typical SBUs of MOF-5 at higher temperatures. In order to grow the films, the 

crystallisation of the bulk material is then slowed down by reducing the temperature 

to room temperature. X-ray diffraction data of the synthesized MOF-5 films show all 

characteristic reflections of MOF-5, clearly proving the formation of the desired 

crystal structure, but also demonstrating that no preferred orientation of the crystals 

was observed. In a later publication, the same authors were able to show the growth 

of MOF-5 crystals on different substrates, such as carboxylic acid terminated SAMs 

on SiO2 and ultrathin, amorphous Al2O3 adhesion layers (ALD), demonstrating the 

possibility to obtain thin MOF films on a great variety of substrates.
[152]

  

As in the case of MOF-5, in many instances the functional group of the organic ligand 

in a MOF is a carboxylic acid group; consequently the carboxylic acid group is chosen 
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as the functional terminal group of the SAM. If there are different ligands 

coordinating at a metal centre in a MOF, as for example additional solvent molecules 

(water or alcohol molecules), different functional groups for the SAM may be chosen 

(e.g. alcohol group). If the coordination sites of the different ligands have distinct 

orientations in the crystal structure, different functionalities on a surface can lead to 

crystal growth in different preferred orientations. This could be demonstrated 

successfully for HKUST-1 crystals; the results of this study are discussed in detail in 

chapter 3. 

In a similar study, Zacher et al. were able to show evidence of surface selective and 

oriented growth on functionalized alumina and silica surfaces under solvothermal 

conditions.
[153]

 Direct growth of HKUST-1 could be observed with preferred [100]-

orientation on plain sapphire substrates and in [111]-orientation on COOH-terminated 

Si/SiO2 surfaces (see Figure 1.9), while on plain SiO2 and on CF3-terminated surfaces 

no crystal growth could be observed. The different results compared to our study 

discussed in chapter 3 can be assigned to the different substrates and reaction 

conditions. SAMs of silanes on silica do not present the same level of homogeneity as 

SAMs of alkanethiols on gold.
[119]

 Furthermore, the experiments were carried out at 

different temperatures. HKUST-1 on silica substrates was deposited under 

solvothermal conditions at 120 °C, where the interchain forces that stabilize the self-

assembled monolayer are weakened, while our experiments were carried out at room 

temperature.  
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Figure 1.9: left: Single HKUST-1 crystal in [100]-orientation grown on c-plane 

sapphire; right: [111]-oriented HKUST-1 crystal grown on COOH-

terminated Si/SiO2. 

The growth of a second investigated MOF (Zn2(bdc)2(dabco)) was observed to be not 

surface-selective at all; densely packed coatings were obtained on silica and alumina 

surfaces.  

Continued research by the Bochum group led to the development of a step-by-step 

route for the synthesis of HKUST-1 on functionalized gold substrates, resulting in 

homogeneous and highly crystalline MOF films.
[154]

 Instead of immersing the 

functionalized substrate into a pre-treated solution containing a mixture of the 

organic ligand and the metal salt, the substrate is exposed to the two building units in 

a sequential fashion (Figure 1.10). The step-by-step deposition of multilayers was 

characterized with the help of surface plasmon resonance and infrared spectroscopy. 

Whereas in a earlier study on the layer-by-layer growth of a different zinc-containing 

MOF no X-ray data for the identification of the desired crystal structure could be 

obtained,
[155]

 the step-by-step route for the synthesis of [100]-oriented HKUST-1 on 

MHDA-SAMs could be proven by X-ray diffraction. The layer-by-layer approach is 

appealing due to the possibility to coat surfaces with MOF layers of defined thickness 
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and to potentially synthesize completely new types of MOFs with compositions not 

accessible by bulk synthesis routes. 

 

Figure 1.10: Schematic diagram for the step-by-step route for the synthesis and growth 

of HKUST-1 on MHDA SAMs obtained by repeated immersion cycles in 

solutions of copper acetate and BTC.
[156]

 

The validity of the step-by-step preparation procedure could be verified with the help 

of a quantitative scanning force microscopy study.
[156]

 The number of layers grown is 

observed to be proportional to the number of immersion cycles from 20 cycles on, 

indicating that after reaching a critical thickness a layer-by-layer formation during 

growth takes place. 

Kubo et al. were able to demonstrate the preparation of oriented films of a different 

type of coordination polymer,
[157]

 namely CPL-1, a coordination polymer with a 

pillared layer structure, first synthesized by the group of S. Kitagawa.
[158]

 The reaction 

conditions for this film synthesis had to be tuned according to the relatively fast room 

temperature synthesis of bulk CPL-1: the supply of enough nutrients was achieved by 

replacement of the synthesis solution with a freshly prepared synthesis solution every 

two hours. This in-situ crystallization procedure was repeated for five cycles. The 

protocol for the oriented growth of CPL-1 is particularly interesting as it opens up the 



1 Introduction 

 

26 
 

way for the surface crystallisation of a completely different class of MOFs, the pore 

size of which is tuneable by employment of particular pillaring ligands. The pillared 

structure of this class of MOFs may help to synthesize crystals on surfaces consisting 

of alternating layers of different ligands. 

The functionality of MOFs directly grown on functionalized substrates has been 

investigated by Allendorf et al.
[159]

 HKUST-1 crystals were grown on functionalized, 

gold-coated microcantilevers and responses to different vapours of the hydrated and 

dehydrated form were investigated. It was found that HKUST-1 provides sensitivity to 

alcohols and CO2 and insensitivity to N2 and O2. The authors indicate that the 

developed device is far from optimization and suggest that for MOFs exhibiting 

greater structural flexibility higher sensitivities can be expected. 

1.5 Goals 

The concept of direct growth of MOFs on SAM functionalized surfaces has been 

explained within the previous chapter and existing work in this area of research has 

been introduced. Although there are already a number of studies on direct growth of 

coordination polymers, many fundamental aspects of the growth mechanism during 

surface growth as well as during homogeneous nucleation of these materials are still 

not well understood. By focussing on the control of direct surface growth of MOFs on 

SAMs, the following work contributes towards the understanding of the growth 

mechanism of MOFs. Structural features of particular MOFs shall be correlated to the 

observations made during our studies, leading to explanations for the structure-

directing properties of the functional groups of the SAMs. Furthermore, the ability to 

control the orientation of the crystals and thus the pore-system in such films will open 
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the way to more advanced applications such as selective gas-separation membranes 

or sensors. 

In this context the oriented crystal growth of HKUST-1 will be investigated. The fact 

that there are two different coordination sites in the structure of HKUST-1 gives rise 

to the idea that different functional groups acting as termination of the SAM, such as 

carboxylic acid and hydroxyl groups, should have different effects on the crystal 

orientation with respect to the surface. In addition, to gain further insights into the 

formation of crystals on functionalized surfaces, the morphological evolution of the 

HKUST-1 crystals on different terminated SAMs is followed. 

To further enhance the knowledge about the growth mechanism of MOFs, the unique 

platform of HKUST-1 crystals grown under ambient conditions in an oriented manner 

on gold substrates functionalized with SAMs is employed for in situ AFM studies. The 

oriented HKUST-1 crystals are appealing for in situ AFM due to their direct 

attachment to a gold-coated glass substrate that can be easily mounted in the in situ 

chamber of the AFM and, more importantly, the orientation of the crystals can be 

tuned by using different functional groups for surface functionalization, such that the 

growth of the (111) face can be monitored directly. In addition, the surface-grown 

crystals are essentially free from screw dislocations, and exhibit large micrometer 

sized terraces with a homogeneous (111) termination.
[160]

 The possibility to use 

microscopic in situ techniques is very promising, as it allows for insights in processes 

otherwise not accessible for investigation. 

HKUST-1 is a very popular MOF structure due to its straightforward synthesis and its 

interesting possible applications. Nevertheless, to verify the concept of direct growth 

of MOFs on functionalized surfaces, it will be necessary to enlarge the group of 
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surface-grown MOFs and to learn more about the level of control achievable in these 

systems. For example, in the system Fe(III)/terephthalic acid, several framework 

structures are known. It will be interesting to learn more about the structure-directing 

properties of functionalized surfaces in crystallization solutions containing competing 

MOF structures. Within such systems, it is easily accepted that the particular 

synthesis conditions have to play an important role in obtaining the desired structure. 

A further part of this work aims at the detailed investigation of surface-grown crystals. 

The ability to control different aspects of direct crystal growth makes it possible to 

investigate the properties of these newly created systems with special attention to 

possible applications. 

In summary, this thesis concentrates on the investigation of synthesis conditions for 

the direct growth of MOFs on SAMs and deals with the characterization of the 

surface-grown crystals, in order to learn more about the mechanism of MOF 

crystallization and the interesting properties of this class of materials leading to future 

applications. 

 

 

 



2 Characterization 

 

29 
 

2 Characterization 

2.1 X-ray Diffraction 

X-rays, electromagnetic radiation with a wavelength of around 10 to 0.01 nm, were 

discovered in 1895 by Wilhelm Roentgen. They are generated by hitting a cooled 

metal anode with a highly energetic, focused electron beam. As electrons collide with 

atoms in the target and slow down, a continuous spectrum of X-rays is emitted, which 

is termed Bremsstrahlung. Depending on the elemental composition of the target, 

there also exist characteristic narrow lines in the spectrum resulting from X-ray 

fluorescence. In this process the impact of primary electrons creates a hole in a lower 

shell of an atom. Electrons from upper shells can occupy this vacancy and the surplus 

energy directly related to the difference between the two energy states, is released as 

X-ray photons. By applying blocking filters, a single energy spike can be isolated 

resulting in fairly monochromatic X-ray radiation.  

Interactions between X-rays and any kind of material are divided into absorption, 

reflection and scattering. 

The idea that diffraction of X-rays should be possible by their passage through a 

crystal resulted from the insight that the wavelengths of X-ray photons lie in the 

Ångstrøm-sized range, which is in the same order of magnitude as the distances 

between atoms in solid matter.
[161]

 The ordered lattice of a crystal allows one to gain 

structural information by observing the diffraction patterns caused by constructive 

and destructive interference of X-rays scattered by the lattice planes (Figure 2.1). 
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Figure 2.1 Scheme illustrating the Bragg relation. Constructive interference is 

achieved when the path difference is a multiple integer of the X-ray 

wavelength. 

The path difference of two rays hitting a crystal surface is defined as: 

 

where  is known as Bragg angle and h, k, l are the Miller indices that are used to 

identify the lattice planes. Constructive interference of the scattered X-rays leads to 

the observation of diffraction peaks. According to Bragg’s law, the diffracted beams 

show constructive interference if the path difference is a multiple integer of the 

applied wavelength: 

 

n: order of interference 

: X-ray wavelength 

d: lattice plane distance 

: angle of incidence 
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If  is known, the distance d between the lattice planes can be easily deduced. 

Monochromatic X-rays are employed for X-ray diffraction of single crystals. The 

single crystal rotates in the beam, such that the Bragg law is fulfilled for each lattice 

plane at least once. 

For powder diffraction monochromatic X-rays are used, as well. As powder samples 

contain a large number of randomly oriented crystallites, the resulting diffraction 

patterns are formed by a set of cones from all planes that satisfy the Bragg condition. 

Powder diffraction patterns allow the identification of crystalline phases by 

comparison with data bases. 

To obtain information about the domain size (D) of the crystals, the Debye-Scherrer 

equation can be applied: 

𝐷 =  
𝐾 

𝛽 cos 𝜃
 

D: crystalline domain size 

K: Scherrer constant, in general set to 0.9 

: wavelength 

β: full width at half maximum in radians 

: angle of incidence 

 

For small crystalline domains, reflex broadening is caused by incomplete destructive 

interference of the out-of-phase X-rays. The mean size of the crystalline domains can 

be calculated using the given formula. As the results are volume-based, it should be 

noted that small amounts of larger particles will greatly influence the average size. 
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2.2 Electron microscopy 

According to E. K. Abbe, in microscopy distances d are resolvable, if 

𝑑 ≥
𝜆

 𝑛 sin𝛼
 

where n sin α is defined as numerical aperture and α is half the angle of aperture of 

the objective. Increase of α leads to a maximum resolution of dmin = λ/2. The use of 

visible light in optical microscopy therefore limits the resolution to dmin = ca. 200 nm. 

The decrease of λ leads to better resolutions. Electrons, for example, have a 

considerably smaller wavelength than visible light, the wavelength of electrons 

accelerated by 100 kV is 0.004 nm and therefore ~10
5
 times smaller than that of 

visible light. We note, however, that certain aberrations and imaging artefacts prevent 

electron microscopy from achieving the extreme resolution predicted by Abbe’s law. 

Two different microscopic techniques are commonly used, namely Scanning Electron 

Microscopy (SEM)
[162]

 and Transmission Electron Microscopy (TEM)
[163]

. 

Scanning Electron Microscopy (SEM) 

The first scanning electron microscopes were developed in the 1950s. Since this time 

they are used intensively for research in the fields of chemistry, biology, physics and 

medicine. 

The working principle of a scanning electron microscope is given in Figure 2.2. The 

electrons are emitted by an electron gun (either a tungsten filament or a field 

emission gun) and accelerated through high voltage. Several condenser lenses focus 

the electrons to a thin, tight coherent beam with a diameter of about 2 – 10 nm when 
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hitting the specimen. Scanning of the specimen is provided by a set of 

electromagnetic coils that deflect the electron beam. The objective lenses focus the 

beam onto the desired part of the specimen. 

 

Figure 2.2 Electron pathway from electron generation to the surface of the 

specimen.
[162]

 

There are several possible interactions between the electron beam and the sample. 

(Figure 2.3) The primary electrons dislodge so-called secondary electrons from the 

sample by transferring their energy to the sample by inelastic scattering. The signal 

generated by the detection of secondary electrons is amplified, and a pixel intensity 

proportional to the number of emitted electrons is obtained. 



2 Characterization 

 

34 
 

 

Figure 2.3 Possible interactions between electron beam and specimen. 

Additionally, backscattered electrons, which result from elastic scattering with the 

atomic nucleus, can provide information about the composition of the scanned 

material. The amounts of secondary and backscattered electrons are dependent on 

the acceleration voltage of the primary electron beam and of course on the sample 

morphology. 

Collisions of primary electrons with core electrons from atoms in the sample result in 

excited atomic states. The re-occupation of the vacancy by an outer shell electron 

leads to emission of X-ray photons with characteristic wavelength distributions for 

different elements. Therefore, with the help of SEM we can obtain information about 

the morphology and the elemental composition of the particular sample. 
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2.3 Atomic Force Microscopy (AFM) 

Historical Background 

The development of the first stylus profiler by Gustav Schmalz in 1929 marks the 

beginnings of scanning probe microscopy (SPM).
[164]

 A sharp probe, mounted at the 

end of a cantilever, scanned the particular sample; the motion was monitored by 

means of an optical lever arm and recorded on photographic paper. This instrument 

was capable of reaching magnifications of about 1000, but the tip was prone to 

destruction due to collisions with the features on the surface. In 1972, Russell Young 

and co-workers published their work on the first non-contact type stylus profiler, the 

topographiner. This instrument scanned the surface of conductive materials in the x 

and y dimensions at a constant tip-sample distance, by keeping electron field 

emission current between a sharp tungsten probe and the sample surface constant. A 

piezoelectric ceramic, onto which the probe was mounted, was used to move the 

probe in the z direction. Thus, the topographiner was able to provide 3D images. It 

worked under a vacuum system of about 4 × 10
-10

 Torr. 

In 1982 the first topographic images with atomic resolution, obtained on CaIrSn4 and 

Au using a scanning tunnelling microscope (STM), were published.
[165]

 The scanning 

tunnelling microscope has piezodrives that scan a metal tip over the surface in the x 

and y direction to maintain a constant tunnel current, with energies ranging from 1 

meV to 4 eV. The voltages applied to the different piezos provide the information to 

image the topography of the surface. Owing to low energy tunnel currents - energy of 

the tunnel “beam” 1 meV up to 4 eV -, STM proved to be a non-destructive technique, 
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but as with the topographiner, in this first STM a vacuum system was required and 

only electrically conductive samples could be imaged. 

The invention of atomic force microscopy (AFM) in 1986 by Binnig, Quate and 

Gerber, resulted from the combination of the fundamental principles of STM and the 

stylus profiler.
[166]

 The first AFM consisted of a diamond tip attached to a cantilever 

which was positioned directly beneath an STM Au probe. The sample was positioned 

on a xyz piezoelectric and, as the diamond tip scanned the surface, the fluctuations in 

current between the STM probe and the contact tip were used as the feedback 

mechanism to maintain a small constant force between the diamond tip and the 

sample. Great progress was made by employing an optical system, consisting of a 

reflected laser beam and a photo detector, capable of detecting very small 

movements, for the feedback mechanism. In 1987 the first non-contact mode AFM 

was developed by Martin et al.,
[167]

 who used an oscillating cantilever to scan the 

sample surface. As the tip approaches the sample surface, van der Waals attractive 

forces provoke changes in the amplitude of the cantilever, which are then used in the 

feedback mechanism to control the distance between the sample and the tip. 

Variations on the AFM technique, such as magnetic imaging and imaging under water 

with forces down to 10
-9

 N, are just some of the improvements made in the field. The 

first atomic force microscope was commercially available in 1989 and owing to its 

non-destructive nature, its capacity to image conductor and insulator materials with 

hard and soft surfaces and its ability to work in different environments such as air and 

liquids it has been widely used in many different scientific fields. 
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Atomic Force Microscope working principle 

The probe used in an atomic force microscope consists of a very sharp tip, with a 

radius of curvature normally <10 nm that is attached to the underside of a thin, 

flexible cantilever. As the tip scans the surface of the sample, the cantilever deflects in 

response to interactions between the tip and sample. These interactions may be a 

combination of attractive and repulsive forces. The deflection of the cantilever is 

monitored by deflecting a laser off the back of the cantilever and then onto a four-

quadrant photo detector. A feedback loop then enables the 3D piezoelectric scanner 

to maintain a constant force between the tip and the sample either by moving the 

sample or the cantilever, dependent on the design of the particular AFM. The scanner 

is designed to provide very precise movements in the x, y and z direction. A 

schematic representation of the mechanism is given in Figure 2.4. 
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Figure 2.4 Functional schematic of an atomic force microscope. 

In principle, different scanning probe microscopy modes are possible: For instance, 

non-contact mode where topography is measured by sensing van der Waals forces, 

contact mode which comprises scanning the sample at a constant force whilst the tip 

and the sample are always in contact, tapping mode where an oscillating cantilever is 

used in a way that the tip taps the sample softly with constant amplitude, magnetic 

force microscopy (MFM) which allows the measurement of magnetic force gradients 

above a sample surface and scanning tunnelling microscopy (STM) which measures 

topography and electronic properties by means of a tunnelling current. The 

information gathered to render the images depends upon the scanning mode used. 

The force applied to the sample when scanning in contact mode is relatively high and 
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in some cases this can lead to sample damage, thus it is important to consider the 

physical and chemical properties of the sample to select an adequate AFM mode. 

The AFM specifications described in the following section refer to the Veeco 

MultiMode
TM

 scanning probe microscope (SPM), with Nanoscope IIIa controller – the 

instrument used in this project. 

MultiMode
TM

 SPM 

The MultiMode
TM

 SPM works on the basis of keeping the probe motionless and 

scanning the sample beneath it. The sample is usually fixed to a metal stub that is 

magnetically attached to the top of the scanner tube. The MultiMode
TM

 SPM is able to 

scan images from the atomic scale up to 175 µm in size by means of exchangeable 

scanners. Figure 2.5 shows the Veeco MultiMode
TM 

scanning probe microscope 

comprising a scanning head, a scanner and the base. 

 

Figure 2.5 left: Digital Instruments Nanoscope III Multimode
TM 

scanning probe 

microscope; right: atomic force microscope scanning head mechanism. 
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The scanning head, shown in Figure 2.5, comprises the essential optical AFM 

mechanism, where a laser beam is produced and directed towards the cantilever by a 

mirror. The laser beam reflects off the cantilever at different angles depending on 

interactions between sample features and the tip. Finally, the laser beam reaches the 

photo detector, which is a position-sensitive quadrangle detector that provides 

different information depending on the scanning mode used. The scanning head is 

attached to an x-y stage, connected to the scanner. The scanner limits the size and 

resolution of the image that can be obtained. The AC voltages applied to the 

conducting regions of the piezo tube cause piezo movement along the x, y and z axes. 

Movement in the z direction is determined by the feedback mechanism that applies a 

variable voltage to the piezo to maintain a constant force or amplitude between the tip 

and the sample. Piezo movement along the x and y directions are determined by 

parameters such as the scan size and scan rate. The smallest scan size achievable in a 

MultiMode
TM

 SPM is 0.4 × 0.4 µm
2
 with a vertical range of 0.4 µm using an “A” 

scanner, whilst the largest scan size is 200 × 200 µm
2
 with a vertical range of 8 µm 

using an “AS-200” scanner. When scanning at a scan angle of 0 ° the fast-scan is 

conducted along the x axis and the slow scan along the y axis. 

The probes most commonly used in SPM consist of a tip attached to the underside or 

the end of a flexible cantilever extending from a rigid substrate. AFM tips are typically 

made of silicon or silicon nitride (Si3N4), and for most applications pyramidal silicon 

nitride tips are used. The resolution obtained from AFM scanning is greatly 

influenced by the shape of the tip, for instance the sharper the tip the better the 

resolution, and also by the topography of the sample. 
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AFM in fluids 

One of the main advantages of imaging samples in fluid environments is that 

attractive forces due to surface tension are eliminated, while van der Waals forces are 

reduced; therefore the force between the tip and the sample is minimal. AFM real 

time in-situ observations in fluids may be conducted either using contact mode or 

TappingMode
TM

. To conduct observation under liquids, a fluid cell is needed.  

 

Figure 2.6 Schematic of a typical fluid cell: Imaging a sample under liquids using an o-

ring. 

In order to conduct AFM under liquids, the cell is inserted in the AFM scanning head 

as a normal tip holder and an o-ring is used to seal the gap between the sample and 

the fluid cell. Then the liquid chamber can be flooded using the inlet and the outlet. 

The laser is then carefully aligned on the cantilever to start scanning. Both the sample 

and the tip are submerged in the fluid as shown in Figure 2.6. 
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2.4 Vibrational Spectroscopy 

FT-IR
[168]

 and Raman
[169]

 spectroscopy are applied to investigate the chemical 

bonding in materials by excitation of vibrational modes to higher energy levels by 

absorption of radiation of appropriate frequency.  

For IR spectroscopy, radiation in a range of 200 – 4000 cm
-1

 (mid IR radiation) is 

employed. In MIR transitions between molecular energy levels are enabled, which 

delivers information about the chemical bonding of the investigated substance. 

Molecular vibrations are IR-active if the molecule has a permanent dipole moment or 

if the dipole moment of the molecule changes during the vibration. 

Whereas FT-IR spectroscopy is typically employed to investigate powder samples, 

Reflection-Adsorption IR spectroscopy (RAIRS) utilizes an alternative geometry that 

allows examination of thin layers such as self-assembled monolayers on reflecting 

substrates (metals, polished metal oxides).
[170]

 The set-up of the Reflection-Absorption 

FT-IR experiment is shown in Figure 2.7. IR radiation is directed onto the sample, the 

organic part of the sample, i.e. the investigated monolayer, interacts with the IR beam 

and the resulting beam is reflected by the underlying substrate. In addition to the 

described selection rules for IR spectroscopy, there is another selection rule for 

RAIRS. 

If the reflection layer is a noble metal, only those vibrations whose transition dipole 

moments lie perpendicular to the reflection surface can be observed. This is because 

the incident and reflected p-polarised components of the radiation superimpose 

constructively (add together), enhancing the signal, whereas the s-polarised 
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components cancel each other out, (as they undergo a phase change on reflection 

from the reflection surface). 

 

Figure 2.7 Schematic set-up of the reflection-absorption IR spectrometer. 

In a Raman measurement, the sample is illuminated with monochromatic light, 

usually generated by a laser. The samples scatter the monochromatic light either 

elastically (Rayleigh scattering), or inelastically (Raman-scattering). Whereas IR 

absorption is the result of a change in the dipole moment, Raman absorption involves 

a change in the bond polarisability during the vibration. The latter is a two-photon 

process. Thus, the mechanism of Raman scattering is different from that of infrared 

absorption, and Raman and IR spectra provide complementary information. 

Vibrational spectra of solid samples present a large number of peaks, each 

corresponding to specific vibrational transitions. Thus, IR as well as Raman 

techniques are suitable for identification purposes of specific functional groups (e.g., 

in organic molecules), as well as the local structure of the solid material. 
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Figure 2.8 Schematic Raman spectrum showing Rayleigh line, Stokes Raman 

scattering and anti-Stokes Raman scattering (after 
[169]

). 

2.5 Adsorption measurements 

Characterization of porous solids 

To characterize porous materials, adsorption is widely used, as it delivers information 

about properties like porosity, surface area or pore diameter.
[171, 172]

 Adsorption is 

defined as the enrichment of one or more components in an interfacial layer and can 

occur when a solid material (adsorbent) is exposed to a gas (adsorptive). In general, 

two different types of adsorption, chemisorption and physisorption in dependence on 

the type of interaction between the adsorbent and the adsorptive, can be 

distinguished. Chemisorption involves the formation of chemical bonds between the 

gas molecule and the pore surface, whereas physisorption is mediated by van der 

Waals forces such as dipole-dipole, London forces or hydrogen bonding. Therefore, in 

contrast to chemisorptions, physisorption is a completely reversible process, where 
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the adsorptive is in equilibrium with the adsorbed gas molecules (adsorbate) in 

dependence of the relative pressure p/p0. Equilibrium isotherms are obtained by 

plotting the adsorbed volume as a function of p/p0. Adsorption isotherms can be 

classified as one of six types according to the IUPAC
[1]

 (Figure 2.9), each type being 

characteristic for certain material types (see Table 2.1). 

 

Figure 2.9 IUPAC classification of sorption isotherms: Type I to Type VI isotherms.
[1]
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Table 2.1 Classification of adsorption isotherms. 

Type Interpretation 

I 
Chemisorption isotherms or physisorption in microporous materials, 

where a plateau is reached after filling of the micropores 

II 
Nonporous and macroporous materials with high energies of 

adsorption 

III 
Nonporous and macroporous materials with low energies of 

adsorption 

IV 
Mesoporous materials with high energies of adsorption, often 

contain hysteresis loops attributed to mesoporosity 

V 
Mesoporous materials with low energies of adsorption, often contain 

hysteresis loops attributed to mesoporosity 

VI 
Several possibilities, including multiple pores sizes and multiple 

distinct energies of adsorption 

 

Classical microporous materials commonly show isotherms of type I. They are 

characterized by a steep increase of adsorbed volume at very low relative pressures, 

typically below 0.1. This step corresponds to the formation of an adsorbate monolayer 

within the micropores of the material. As the dimensions of the pores are in the range 

of the adsorbate, the monolayer formation is equivalent to a complete filling of the 

pores, and no further increase of adsorbed volume is observed until a high pressure 

close to p/p0 = 1 is reached. If the adsorbent particles have nano-scale dimensions, 

the interparticle voids may fall into the mesoporous range, leading to textural 

porosity. Hence, a steady increase in adsorbed volume is observed after micropore 

filling. 
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For evaluation of the adsorption isotherms several different models exist. The 

Brunauer-Emmett-Teller (BET) theory is widely used for porous materials and is 

based on a number of simplifying assumptions in order to extend the Langmuir 

model
[1]

 to multilayer adsorption. For low partial pressures (p/p0 < 0.3) the BET 

equation can be expressed in a linear form: 

 

𝑝/𝑝0

𝑛(𝑝0 − 𝑝)
=  

1

𝑛𝑚𝐶
+

𝐶 − 1

𝑛𝑚𝐶
 
𝑝

𝑝0
 

p/p0 : relative pressure; p0 is the saturation pressure of the adsorptive 

n: amount of adsorbate 

nm: monolayer capacity 

C : BET constant. 

 

From the obtained experimental data the monolayer capacity nm can be deduced and 

the surface area AS can be calculated according to 

 

 𝐴𝑆   𝐵𝐸𝑇 =  𝑛𝑚𝑁𝐴𝑎𝑚  

NA: Avogadro constant 

am: cross-sectional area of the probe molecule. 

In a strict sense, the BET method is not applicable for microporous solids, because 

the diameter of the micropores is too small to allow multilayer formation.
[173]

 

However, the BET theory is sometimes used for microporous materials to deliver 

comparative values. 
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Most Metal-Organic Frameworks are microporous and possess surfaces that are far 

from flat. Many of these materials have been shown to exhibit very large BET surface 

areas. It is suggested that adsorption occurs through a pore filling mechanism rather 

than by layer formation,
[51]

 thus it is unclear whether the reported BET surface area 

numbers are really meaningful.
[174]

 By comparison of the geometrical surface area 

calculated from the particular crystals structures with the simulated adsorption 

isotherms, deduced from grand canonical Monte Carlo simulations, Walton et al. 

could demonstrate that the BET theory is applicable for the evaluation of sorption data 

of MOFs.
[174]

  

Nowadays, in addition to the macroscopic theories for describing adsorption, there 

are several microscopic models including molecular simulations (Monte Carlo 

simulations), molecular dynamics, statistical mechanics techniques, and density 

functional theory (DFT), which yield more realistic results. The validity of the DFT 

method has already been shown, using various reference materials. However, specific 

knowledge about the structure and surface atoms of the investigated materials is 

required in order to correctly calculate the forces and input parameters of these 

models. Therefore, such approaches cannot be applied to unknown surfaces, and the 

macroscopic theories are still frequently employed. 

The two principal experimental methods for the collection of adsorption isotherms are 

volumetric and gravimetric techniques. In both cases, the adsorbent is held at a 

constant temperature, which is usually at or near the boiling point of the adsorptive, 

i.e., by cooling with liquid nitrogen in the case of nitrogen sorption. By step-wise 

increase of the adsorptive pressure followed by equilibration of the system, the 

increase in the amount of adsorbed molecules can be measured. Volumetric 
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measurements are carried out by dosing a certain gas volume into the sample 

chamber, and by measuring the pressure decrease due to adsorption in the pores. In 

contrast, in gravimetric systems the mass gain of the sample is recorded after each 

addition step of the adsorptive.  

 Quartz Crystal Microbalance (QCM) 

The Quartz Crystal Microbalance (QCM) is one of the gravimetric techniques for 

recording adsorption isotherms. The central element of the QCM is a so-called QCM 

chip, a small disc AT-cut of a quartz crystal with key-hole gold electrodes patterned 

on both sides (Figure 2.10). 

 

Figure 2.10 Quartz crystal microbalance chip (XA 1600, KVG Quartz Crystal 

Technology) next to a 1 Euro coin. 

The working principle of the QCM chip is the piezoelectric effect, which was first 

described in 1880 by Chaques and Pierre Curie. Piezoelectric materials are charging if 

a force such as traction, torsion or pressure is applied on them. The inverse 

piezoelectric effect is defined as the mechanical deformation of these materials upon 

application of an electric field. For quartz crystals, i.e. the QCM chips, application of 

an electric field leads to an oscillation of the chip, in the present work with a basic 
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frequency of f0 ~ 10 MHz. The change of this fundamental frequency upon mass 

changes on the QCM chip was demonstrated in 1959 by G. Sauerbrey.
[175]

 The 

relation between mass change and frequency change is given in the so called 

Sauerbrey equation:  

∆𝑓 = −
2𝑓0

2∆𝑚

𝐴 𝜌𝑞𝜇𝑞

 

Δf:  frequency change 

Δm:  mass change 

f0:  resonant frequency of the basic mode of the crystal 

A:  piezo-active area of the electrode 

ρ:  density of quartz 

μ:  shear modulus of quartz 

This gives a frequency change of 1 Hz corresponding to a mass loading of 4.42·10
-9

 g 

onto a surface area of 1 cm
2 

on a quartz disc. This very high gravimetric sensitivity 

can be employed to record the adsorbed amount of an adsorptive by a small amount 

of porous material. The porous material is usually prepared as a thin film onto the 

QCM chip. The adsorptive can be any gas or liquid. The experimental setup given in 

Figure 2.11 refers to using a liquid sorptive; the usual applied temperature is 25 °C. 

The control of the partial pressure of the adsorptive in the sample chamber is done by 

diluting the evaporated compound with a carrier gas, for example nitrogen, using 

digital mass-flow controllers and a calibrated gas-flow system.  
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Figure 2.11 Experimental set-up for the collection of sorption data with the help of a 

QCM device: the carrier gas (N2) and the sorptive are dosed with the help 

of two digital mass flow controllers (MFC 1 and 2) and are mixed in the 

controlled evaporation mixer (CEM) to be transported into the sample 

chamber, the temperature of which is controlled by the thermostat. The 

data collected during the frequency scans are transferred to a computer. 

2.6 Thermogravimetric analysis and Differential Scanning 

Calorimetry 

With the help of Thermogravimetric analysis (TGA) it is possible to detect mass 

changes of a sample as a function of temperature or time. The sample is heated at 

constant or variable rates and the evolving weight changes are determined with the 

help of a thermobalance and recorded. The mass changes are typically evoked by 

evaporation or decomposition of volatile components or by oxidation or reduction of 

the investigated material. For porous materials, TGA is of great interest because it 

enables the quantification of water or template molecules inside the pores and gives 

information about the particular temperature which leads to removal of the guest 

molecules. In addition it is possible to determine thermal framework stabilities. 

A complementary method is Differential Scanning Calorimetry (DSC). Here the heat 

flux from or to a sample as a function of the sample temperature is measured. The 
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detected signal is direct proportional to the exchanged heat. Therefore, DSC is a 

method to determine quantitatively exothermic and endothermic processes in the 

sample during heating, i.e., combustion steps, phase transitions and evaporation of 

absorbed molecules. 
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3 Oriented Growth of Metal-Organic Framework 

HKUST-1 tuneable with functionalized self-

assembled monolayers  

This chapter is based on a publication in the “Journal of the American Chemical 

Society”.
[176]

 The project was a joint project in collaboration with Dr. Enrica Biemmi. 

3.1 Introduction 

The chemistry of metal organic frameworks (MOFs) has been intensively studied, with 

particular attention to porous compounds due to their many potential applications 

such as gas sorption, molecular separation, storage, and catalysis.
[50, 53, 72, 79] 

To date, 

the research efforts have been mainly focused on bulk materials; the preparation of 

thin films of those compounds is an important challenge. The successful oriented 

growth of inorganic compounds, such as calcium carbonate,
[143]

 lead sulfide,
[144]

 

anatase,
[147]

 zinc and iron oxide,
[142, 146]

 and zeolites,
[148, 177]

 on functionalized surfaces 

has inspired us to explore the effect of self-assembled monolayers (SAMs)
[114]

 with 

different functionalities on the growth of the metal-organic framework HKUST-1.
[178]

 

The growth of one other MOF structure, such as MOF-5, has been reported on a SAM 

of COOH-terminated alkanethiols; however, this film did not show preferred crystal 

orientation.
[151]

 The ability to control the orientation of the crystals and thus the pore 

system in such films will open the way to more advanced applications such as 

selective gas separation membranes or chemical sensors.  
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The structural features and stability of HKUST-1 as well as its intriguing sorption and 

catalytic properties 
[76, 179, 180]

 make this material an interesting candidate for the 

growth of thin films.  

The metal-organic framework compound HKUST-1 with the chemical composition 

Cu3(BTC)2(H2O)3·xH2O has a cubic framework structure with an open 3D pore system. 

Two Copper (II) ions are linked to dimers, also referred to as paddlewheel units, by 

four 1,3,5-benzenetricarboxylic acid (BTC) molecules. (Figure 3.1) Such bimetallic 

units are common features and often highly stable arrangements found for many 

other transition metal carboxylates. 

 

Figure 3.1 Building block of the HKUST-1 framework (paddle-wheel unit): Cu2 dimers 

are coordinated by four carboxylate groups arranged in a square. 

The primary building blocks, i.e. the paddlewheel units are arranged in the open 

framework structure (Figure 3.2) to give a porous network consisting of main 

channels of a square cross-section of about 0.9 nm diameter and tetrahedral side 

pockets of ca. 0.6 nm, connected to the main channels by triangular windows of ca. 
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0.35 nm. The pore volume has been determined by N2 as well as H2 sorption; 

depending on the sample preparation it varies between 0.33 and 0.62 cm
3
 g

-1
.
[76, 181]

 

 

Figure 3.2 left: View into the pore of the 3D framework structure of HKUST-1 

right: two different types of oxygen atoms coordinating the copper ions. 

In Figure 3.2 (right) the two different types of oxygen atoms coordinating the copper 

atoms are marked with black arrows. There are oxygen atoms from the carboxylate 

groups and oxygen atoms from weakly bound water molecules occupying the axial 

coordination sites. This building characteristic is fundamental for many of the 

interesting properties of the HKUST-1 framework structure. The weakly bound water 

molecules point towards the centre of the main pores. Thus, a hydrophilic interior 

characterizes the main cavity. On the other hand, the smaller pores surrounded by the 

planar BTC-units present a more hydrophobic character.
[182]

 Furthermore, the local 

structure of the framework has been characterized in detail.
[183]

 This has been 
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motivation for several studies concerning the catalytic properties of HKUST-1. After 

removal of the coordinated water molecules in vacuum, Lewis acidic Cu (II) sites are 

created and accessible for catalytic transformations.
[179]

 Gas purification and 

separation
[184]

, as well as hydrogen adsorption and storage,
[55, 76, 78]

 have been studied 

in relation to the intriguing sorption properties and the high structural stability of 

HKUST-1. Employing HKUST-1, the removal of sulphur odorant components from 

natural gas as well as amines and ammonia, water traces, alcohols and oxygenates 

have been demonstrated.
[67]

 Interestingly, in all cases a dominant colour change (from 

deep blue to turquoise in the case of water) allows visible detection of breakthrough 

and contaminant saturation on the MOF. During removal of the contaminant by 

vacuum treatment or heating, the original colour reappears, indicating the 

regeneration of the adsorbent. 

In addition to all these interesting results from literature, the fact that there are two 

different coordination sites in the structure of HKUST-1, gave us the idea that 

different functional groups as termination of the SAM, like carboxylic acid and 

hydroxyl groups, should have different effects on the crystals orientation in respect to 

the surface.  

3.2 Experimental Section 

Self-assembled monolayers on gold 

The gold-coated slides (glass slides (76 × 26 mm
2
) coated with 10 nm Ti and 100 nm 

Au by electron-beam evaporation, Advalytix AG) were cut in smaller pieces 

(10 × 13 mm
2
), cleaned in a piranha solution (H2SO4 (95 – 98 %) : H2O2 (30 %) = 3:1), 
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and treated in an 12 mbar oxygen plasma for 20 min. The cleaned gold slides were 

immersed in a 1 mM ethanolic solution (6 pieces in 30 mL) of the desired thiol, and 

left at RT for 48 h. The SAM-functionalized gold slides were repeatedly washed with 

ethanol, and stored in absolute ethanol until needed. The following alkanethiols 

employed in this work were 11-Mercapto-1-undecanol (97 %, Aldrich), 11-

Mercaptoundecanoic acid (95 %, Aldrich) and 1-Mercaptoundecan (98 %, Aldrich).  

HKUST-1 Synthesis Mixture 

A solution of 0.837 g (3.6 mmol) Cu(NO3)2·2.5 H2O (98 %, Aldrich) in 12 mL double 

distilled water was added to a solution of 0.42 g (2.0 mmol) of 1,3,5-

benzentricarboxylic acid (98 %, Fluka) in 12 mL absolute ethanol in a sealed-glass 

reactor and left in a preheated oven at 75 °C for 8 days.  

 

Figure 3.3 Schematic illustration of the preparation procedure of HKUST-1 thin films 

on SAM-functionalized gold slides. 
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Thin-film growth 

After cooling the HKUST-1 synthesis mixture in a water/ice bath, the crystalline 

product was filtrated and stored for further characterization. The filtrated solution was 

used as crystallization sol for film growth. The SAM-functionalized gold-slides (3 

pieces) were placed upside-down on Teflon-supports in 20 mL of the clear HKUST-1 

crystallization solution (Figure 3.3). The growth step took place at room temperature 

in a sealed glass vessel. For the kinetic investigations the slides were removed after 

various immersion times (8-210 h). 

3.3 Characterization 

X-ray diffraction (XRD) measurements of powders were performed on a STOE powder 

diffractometer in transmission geometry (Cu-Kα1, λ = 1.5406 Å) and of films using a 

Scintag Inc. XDS 2000 in theta-theta geometry (Cu-Kα1, λ = 1.5406 Å; Cu-Kα2, 

λ = 1.5444 Å). Characterization of the self-assembled monolayers was performed by 

RAIR spectroscopy, using a Bruker IFS 66v FTIR spectrometer. The sample chamber 

mounting a high performance variable angle reflection accessory (A-513) is 

maintained at 2 mbar during the entire measurement by means of an Edwards rotary-

pump. In a typical measurement for gold surfaces, an incidence angle of 83 ° to the 

surface normal was used. Furthermore, a cleaned gold slide was measured as 

background prior to the measurements. The morphological evolution of the crystals 

during thin film growth was followed with the help of a JEOL JSM-6500F scanning 

electron microscope. 



3 Oriented growth of the metal-organic framework HKUST-1  

 

59 
 

3.4 Results and discussion 

For the growth of the HKUST-1 crystals, gold substrates were modified with 

monolayers of HS(CH2)10X (with X = -COOH, -CH2OH, -CH3) following known 

procedures
[119, 185]

 (see section 3.2). As described above, the carboxylic acid 

functionality imitates the organic linker (1,3,5-benzenetricarboxylate (BTC)) in the 

open framework structure, the alcohol group mimics the coordinating water, while the 

methyl group presents an inert reference surface. The formation of the self assembled 

monolayers has been proven by RAIR, as shown in Figure 3.4. The characteristic 

absorption bands indicating the -OH, -COOH, and -CH3 functionalized surfaces are 

marked in red in the graphs. Common to all alkanethiol SAMs are the methylene 

groups of the aliphatic chains, which present high-frequency modes at 2920 and 

2850 cm
-1

 associated with the asymmetric and symmetric stretching vibrations, 

respectively; as well as the band at 721 cm
-1

 assigned to the stretching vibration of the 

S-C bond. For the 11-mercaptoundecanol SAM band at 1060 cm
-1

, the characteristic 

C-O stretching vibration absorption band is proof of a successful synthesis. For the 

-COOH functionalization the presence of the 11-mercaptoundecanoic acid-SAM is 

verified by the typical -C=O stretch absorption band at 1714 cm
-1

. The -CH3 groups 

can be identified by the asymmetric and symmetric stretching vibrations at 2954 and 

2875 cm
-1

, respectively. The stability of the -OH and -COOH SAMs was studied, via 

RAIR, after immersion of the gold slides in a Cu
2+

/H2O/EtOH solution for the longest 

immersion time of 112 h. No indications of damage to the SAM were found. 

Interestingly, in the case of the -COOH-terminated SAM it is possible to observe a 

shift of the -C=O band, from 1714 cm
-1

 in the as synthesized SAM typical of a -COOH 

group, to lower wavenumbers (1554 and 1454 cm
-1

) typical of the asymmetric and 
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symmetric stretching of the carboxylate units,
[183]

 which indicates the binding of 

copper ions to the SAM (but no damage to the SAM). 

 

Figure 3.4 RAIR-spectra of alkanethiol self-assembled monolayers on gold substrates: 

-OH: 11-Mercapto-1-undecanol-SAM, -COOH: 11-Mercaptoundecanoic acid-

SAM, and –CH3: 1-Mercaptoundecan-SAM. (The alkanethiol self-assembled 

monolayers are represented with a tilt of about 30 ° from surface normal as 

reported in the literature.)
[114]
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The synthesis of HKUST-1 thin films as described in chapter 3.2 (Figure 3.3) is carried 

out within two steps. In the first solvothermal step bulk HKUST-1 crystals are 

obtained, which can be seen easily from the powder pattern of the bulk product 

compared to the simulated pattern of HKUST-1 (Figure 3.5). The solution, after 

filtration of bulk HKUST-1, is directly used for thin film growth by immersing the 

functionalized gold slides upside down for various reaction times. Thin films of 

HKUST-1 crystals were obtained on each modified gold surface. No crystallization 

takes place on bare gold slides. 

 

Figure 3.5: X-ray diffraction data of bulk HKUST-1, synthesized in the solvothermal 

step during thin film synthesis, compared to the simulated powder pattern 

of HKUST-1. 

Highly ordered thin films of HKUST-1 were formed on the SAMs as demonstrated by 

the diffraction patterns shown in Figure 3.6. The film grown on the -COOH self-
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assembled monolayer is highly oriented along the [100] direction, while the OH-

modified surface induces a completely different orientation along the [111] direction. 

Homogeneous thin films but with no preferential orientation are obtained on the 

methyl SAM. Figure 3.7 shows a schematic illustration of the surface-induced 

oriented growth of HKUST-1 crystals. 

 

Figure 3.6 X-ray diffraction patterns (background corrected) of thin films of HKUST-1 

on functionalized gold surfaces, compared to powder diffraction data of 

bulk HKUST-1. 

The strong effect of control over the orientation of the crystals can be explained by 

the different coordination sites of the paddlewheel units in the structure. The two 

different termini of the SAMs (-COOH and -OH) force the oriented attachment of 

appropriate growth species at the molecular interface, followed by oriented crystal 

growth on the molecular layer on the substrate. 
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Figure 3.7 Schematic illustration of oriented growth of HKUST-1 nano-crystals left on 

an 11-mercaptoundecanoic acid SAM, and right on 11-mercaptoundecanol-

modified gold surfaces. 

For –OH terminated SAMs we observe crystal growth in [111] orientation. Following 

our hypothesis, the hydroxyl could mimic the axially coordinating water molecules, 

and therefore a close-to-upright orientation of the paddle-wheel unit with respect to 

the self-assembled monolayer interface would be expected. Both the [100] and the 

[111] crystal orientations present planes with tilted Cu2-units. In [111]-orientation the 

Cu2-units are tilted about 35 ° with respect to the vertical, in contrast to the 45 ° tilt in 

the [100] case. (Figure 3.8) Taking into account steric factors (crowding by the BTC 

ligands), in our view, this difference could be the deciding factor in favouring the 

[111]-orientation for the OH-functionalized gold surfaces. 

For optimal coordination of the carboxylate groups of the SAM at the copper dimers, 

the dimers should be oriented with their axis parallel to the surface. In [100] 

orientation of the crystal the copper dimers are aligned in a way, that enables 

coordination of two carboxylate units per bimetallic cluster rather than one accessible 
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coordination site in the case of [111] orientation. Statistically the first option should 

be preferred on a SAM presenting a rather dense population of –COOH groups. 

 

Figure 3.8 Schematic illustrations of the respective lattice planes of HKUST-1 in (111) 

and (100) direction. 

After long immersion times (> 100 h), about 600 nm thin films composed of a 

monolayer of close-packed intergrown crystals are found on all functionalized gold 

substrates. (Figure 3.9) Therefore, after this stage, it is not possible to investigate the 

crystals orientation with the help of electron microscopy. In order to learn more about 

the mechanism of formation of the thin films on each modified surface (-OH, -COOH, 

and -CH3) the temporal evolution of the growth process was followed. The samples 

were removed from the crystallization solution after different immersion times, dried 

at room temperature, and characterized. The growth process could be followed 

employing X-ray diffraction (in reflection geometry) and scanning electron 

microscopy could confirm the preferential crystal orientation on the different 

functionalized gold surfaces. The compared samples where all obtained from the 

same batch, and different batches are comparable: the difference in the amount of 

HKUST-1 obtained in different batches is always consistent with variations smaller 
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than 1 %. The original solutions were all prepared in the same way with particular 

attention to composition, aging time and temperature. 

 

Figure 3.9 SEM-pictures of HKUST-1 thin films after an immersion time of 112 h on an 

11-mercapto-1-undecanol-SAM (left), 11-Mercaptoundecanoic acid-SAM 

(middle), and a 1-Mercaptoundecan-SAM (right). The thickness is similar 

for all three samples (ca. 600 nm). 

For –OH terminated SAMs, the diffraction patterns of [111]-oriented HKUST-1 

crystals, collected after immersion times between 16 and 210 h, are displayed in 

Figure 3.10. The intensity of the reflections increases with the reaction time because 

both the number and the size of the crystals on the surface increase. The scanning 

electron micrographs presented in Figure 3.11 show, in detail, the morphological 

development of the crystals from “rounded” octahedra of 150 – 200 nm in diameter at 

the first stages (after 16 h) up to 1 µm well-shaped crystals after 45 h . 
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Figure 3.10 Diffraction patterns of [111]-oriented HKUST-1 crystals on -OH SAMs 

collected after immersion times between 16 and 210 h. 
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Figure 3.11 Scanning electron micrographs of [111]-oriented HKUST-1 crystals grown 

on -OH functionalized gold-slides after immersion in the crystallization 

solution for 16, 24, and 45 h. 

An analogous investigation was performed on the -COOH and -CH3 functionalized 

samples. Figure 3.12 shows the diffraction patterns of the gold slides modified with 

the carboxylic acid SAM. After about 62 h, the (200) and (400) reflections of the 



3 Oriented growth of the metal-organic framework HKUST-1 

 

68 
 

HKUST-1 crystals appear, followed by further growth until the end of the experiment 

(112 h). With the exception of a minute (222) peak, the (200) and (400) reflections 

completely dominate the pattern, thus demonstrating the growth of a highly oriented 

crystalline film of HKUST-1. 

A close look at the morphology of the film after 32 h (Figure 3.13) reveals that already 

after 32 h in solution many small [100] oriented crystals can be detected “growing 

out” of the SAM gold substrate, in addition to a few [111]-oriented crystals which 

cause the minute additional (222) reflection. 

 

Figure 3.12 X-Ray diffraction patterns of [100]-oriented HKUST-1-crystals on -COOH 

terminated SAMs collected after immersion times between 16 and 210 h. 
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Figure 3.13: Scanning electron micrographs of [100]-oriented HKUST-1 crystals grown 

on -COOH functionalized gold-slides. The measurements were performed 

on different samples after immersion times of 32 h, 40 h and 112 h.  
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Figure 3.14: X-Ray diffraction patterns of thin films grown on methyl-functionalized 

gold surfaces after immersion times between 16 and 164 h. 

The HKUST-1 crystal layer on the methyl-terminated SAM shows a faster growth 

process than on the other two polar layers, with no unique orientation (as shown in 

the SEM pictures presented in Figure 3.15). The X-ray diffraction patterns present all 

typical reflections of HKUST-1, while the (222) reflection is predominant (Figure 

3.12). Thus the [111] direction appears to be favoured for less selective crystal 

growth; we propose that, in this case, the growth species have already assumed an 

octahedral shape with (111) faces that can attach to the surface. This should 

constitute a favourable attachment mechanism if dispersive forces between the 

organically terminated crystal faces and the alkyl-terminated SAM are dominant.  
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Figure 3.15: Scanning electron micrographs of HKUST-1 crystals grown on –CH3 

functionalized gold-slides. The measurements were performed on different 

samples after immersion times of 16 h, 24 h, and 112 h. No unique 

orientation can be observed. 

Noteworthy, the deposition of microcrystalline HKUST-1 under solvothermal 

conditions on silica surfaces modified with -COOH self assembled silane monolayers 

has been reported (as discussed in section 1.4).
[153]

 As described above, we observed 

[111]-oriented growth of HKUST-1 on 11-mercaptoundecanoic acid-SAMs. In 

contrast, the crystals on silica surfaces modified with -COOH self assembled silane 

monolayers are oriented in [111]-direction. However, these results are difficult to 

compare, as drastically different reaction conditions were employed. SAMs of silanes 

on silica do not present the same grade of homogeneity as SAMs of alkanethiol on 

gold.
[119]

 Furthermore, the experiments were carried out at different temperatures. 

HKUST-1 on silica substrates was deposited under solvothermal conditions at 120 °C, 

where the interchain forces that stabilize the self-assembled monolayer are weakened, 

while our experiments were carried out at room temperature. Conclusively, the -

COOH silane functionalized surface does not present the same features as the thiol-

SAM. Thus, the influence on crystals orientation is not comparable. 
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3.5 Conclusion 

The above results clearly demonstrate that different molecular functionalities of the 

self-assembled monolayers induce different, well-defined orientations of the HKUST-1 

crystals grown on gold. Although the mechanism of this remarkable effect is still 

unknown, a reasonable model could invoke selective interactions of crystal building 

blocks in solution with the functionalized surfaces. The thermal pre-treatment of the 

synthesis solution (8 days at 75 C) induces the crystallization process; after filtration 

of the solid product, we anticipate the existence of colloidal or molecular building 

blocks of Cu3(BTC)2 in the solution. Taking into account the paddle-wheel motif in the 

open framework structure, different coordination modes of the carboxylic or the 

alcoholic groups might control the selective nucleation on the substrate, thus 

mimicking either axial (as with water) coordination with the alcohol terminus or 

chelating coordination (as with BTC) with the -COOH terminus of the SAM, 

respectively. 

The results, described in this chapter, represent the “proof of concept” that by 

mimicking characteristic structural features of metal-organic frameworks in the 

terminal group of the self-assembled monolayers, it is possible to control the 

orientation of crystals during direct growth on gold. In the following chapters of this 

thesis, this proof of concept shall be further verified and extended. After employing 

the control over MOFs grown on gold substrates, the properties of highly oriented 

films of MOFs on functionalized surfaces will be investigated. 
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4 Single Layer Growth of Sub-micron Metal-Organic 

Framework Crystals Observed by In Situ Atomic 

Force Microscopy 

This chapter is based on a manuscript submitted to the RSC journal “Chemical 

Communications”. 

The work results from the cooperation with Dr. Maryiam Shöâeè, Dr. Neena John, Dr. 

Martin Attfield and Prof. Michael Anderson from the School of Chemistry, The 

University of Manchester. 

4.1 Introduction 

Crystalline nanoporous metal-organic frameworks (MOFs), constructed from metal 

ions and organic linkers offer vast potential for the design of porous materials with 

molecularly selective interfaces, novel physical properties, enormous surface areas 

and a diverse array of functionality.
[44, 53, 186] 

The metamorphosis of MOFs to 

functional materials necessitates a detailed understanding of their crystal growth to 

produce desirable crystal forms, for instance defect-free crystallites or single crystal 

films that will open new avenues for application. Atomic force microscopy (AFM), with 

its capability for sub-nanometre vertical resolution, has emerged as a powerful tool to 

investigate such crystal growth and has been applied to a wide variety of crystalline 

materials including nanoporous inorganic
[187-190]

 and more recently hybrid 

materials.
[160, 191-193]

 In particular, in situ AFM is an essential technique to provide 
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definitive real-time evidence about crystal growth including the mechanism, rates, 

fundamental growth units, and the effect of the surface form, supersaturation and 

impurities on growth.
[193-197]

 Crucial fundamental knowledge can often only be gained 

from in situ AFM measurements if individual processes can be isolated on crystal 

faces with low defect concentrations, which is achievable using small crystals. 

However, growing such defect-free crystals and anchoring them during in situ AFM 

measurements is non facile. Here we report, for the first time, the direct observation 

of single layer growth on a monolayer-supported low-defect MOF crystal by in situ 

AFM. 

The copper trimesate Cu3(C9H3O6)2(H2O)3 (HKUST-1)
[178]

 is a significant crystalline 

nanoporous MOF
[67, 154, 159, 198]

 built from Cu2(H2O)2 units and benzene-1,3,5-

tricarboxylate (BTC) groups to form a cubic framework with a three-dimensional 

nanoporous channel system (see section 3.1). Some of the above mentioned AFM 

studies on hybrid materials deal with the crystal growth features of HKUST-1. The 

first high-resolution microscopic study, using AFM of the surface of a (111) face of 

HKUST-1, revealed spiral growth with steps heights directly correlated to the d111 and 

d222 lattice plane distances.
[192]

 In a second study, the first high-resolution in situ AFM 

study of the crystal growth of a crystalline nanoporous material, the observed features 

of the ex situ images could be verified.
[193]

 Both these studies were dealing with single 

crystals of HKUST-1 synthesized in DMF. 

For this work, HKUST-1 crystals were grown under ambient conditions in an oriented 

manner on gold substrates functionalized with self-assembled monolayers (SAMs) (for 

detailed description see Chapter 3),
[176]

 they provide a unique platform for in situ AFM 

studies since the crystals are directly attached to a gold-coated glass substrate that 
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can be easily mounted in the in situ chamber of the AFM. More importantly, the 

orientation of the crystals can be tuned by using different functional groups for 

surface functionalization, such that the growth of the (111) face can be monitored 

directly (Figure 4.1). A similar approach has been used successfully to collect ex situ 

AFM images of this material only. The reported results are differing from the previous 

ex situ AFM study mentioned above for the (111) surface of HKUST-1 crystals 

prepared in the conventional way. The main observation emerging from the previous 

study was the very high density of screw dislocations and frequent fracturing which 

result in a high density of very short terraces. Moreover, as evidenced by the 

frequently observed steps with a height corresponding to the multiple of 1.52/2 

height, this surface exhibits also (222) termination, which makes it chemically non-

homogenous. In contrast, the surface-grown crystals are essentially free from screw 

dislocation, and exhibit large micrometer-sized terraces with a homogeneous (111) 

termination.
[160] 
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Figure 4.1: Octahedral HKUST-1 crystals attached to 16-mercapto-1-hexadecanol-SAM 

on a gold substrate in [111] orientation; attachment of copper and BTC 

molecules during terrace growth on the (111) face (d111-steps are shown). 

4.2 Experimental 

Self-assembled monolayers on gold 

The gold-coated slides (glass slides (76 × 26 mm
2
) coated with 10 nm Ti / 100 nm Au 

by electron-beam evaporation, Advalytix AG) were cut in smaller pieces (10 × 13 mm
2
) 

and cleaned in ethanol and methanol. The cleaned gold slides were immersed in a 

1 mmol ethanolic solution (6 pieces in 30 mL) of 16-mercaptohexadecanol (MHD) 

(99 %, Frontier Scientific) and left at RT for 48 h. The SAM-functionalized gold slides 

were repeatedly washed with ethanol, and stored in fresh absolute ethanol till needed. 
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HKUST-1 synthesis mixture and Preparation of HKUST-1 Thin Films 

The synthesis of the crystals of HKUST-1 supported on self-assembled monolayers of 

16-mercapto-1-hexadecanol on gold was performed as described in the previous 

chapter (Section 3.2). 

Preparation of the crystallisation solution for in situ AFM 

Measurements 

A solution of 0.139 g (0.6 mmol) Cu(NO3)2·2.5H2O (98%, Aldrich) in 6 ml water was 

added to a solution of 0.070 g (0.334 mmol) of 1,3,5-benzentricarboxylic acid (97%, 

Fluka) in 6 mL absolute ethanol, resulting in a [Cu
2+

] concentration of 0.05 mmol/mL 

in the solution, that was injected directly into the AFM liquid cell. 

In Situ AFM measurements 

The gold-coated glass slide supporting the crystals was fixed on to a cover glass using 

a Bi : Sn alloy (58 : 42 wt % - Alfa Aesar) and sealed in the liquid cell of a Nanowizard 

II, JPK Instruments A.G. AFM used to collect all the micrographs. Ex situ scanning 

was initially performed to image the topography of crystals and then 0.5 mL of the 

growth solution (see above), was injected directly into the AFM liquid cell. The laser 

intensity of the AFM was re-adjusted and the scanning continued under ambient 

conditions. The time at which the solution was injected was taken as time zero. The 

solution within the liquid cell was static and hence the supersaturation dropped as the 

growth proceeded. Stable scans of the growing crystal were possible once the 

supersaturation was sufficiently low. Imaging was done in contact mode using 
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commercial silicon nitride cantilevers with a low spring constant of 0.06 N/m and a 

scan rate of 2.5 or 3.5 Hz. 

Quantitative Analyses of AFM Scans 

Height analysis was performed using the JPK software. Plane fitting was done with 

respect to a flat terrace prior to height measurements. Approximately ten 

measurements were taken on every step to determine the precision of the step 

heights. The advancement of points at the vertex of the triangular growth step in the 

[11-2] direction and the [2-1-1] step were tracked in consecutive images in relation to 

the opposite crystal edge, with the latter assumed to be constant throughout the 

growth. The time for the points to advance between consecutive images was 

calculated from the pixel values of the particular point in the images and the scan 

rate. The distance measurements were repeated several times to provide mean 

deviations for each value plotted in Figure 4.7. The velocities were determined from 

the gradients of the linear fits to the data. 

4.3 Results and Discussion 

The high-resolution AFM deflection images of the growing (111) facet of a ca. 600 nm 

sized crystal of HKUST-1 as a function of time are presented in Figure 4.2 and Figure 

4.3. The crystal growth could be clearly monitored 56 minutes after injection of the 

growth solution The image at t = 56 min (Figure 1a) reveals an extremely flat and 

relatively defect free crystal surface exemplifying the utility of this synthetic protocol 

to produce high quality crystal surfaces. In the subsequent images, growth of the 

surface is seen to proceed by a two-dimensional crystal growth mechanism
[199, 200]

 in 
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which each new crystal layer nucleates at the same point on the crystal surface, 

indicated by an asterisk in Figure 4.2 b. A defect on the crystal edge that is beyond 

the resolution limits of the microscope is likely to be present at this point. The growth 

steps emerge from this single nucleation point and spread across the entire exposed 

crystal face. The low supersaturation of the growth solution, the small crystal face 

area and the low defect concentration on the crystal surface prevent additional two-

dimensional surface nucleation. This offers the unique opportunity to monitor growth 

of ca. 0.2 m
2
 single steps across the crystal face without influence from other co-

altitudinal growth steps. After 77 minutes of growth, the supersaturation level is low 

enough that the growth of a single step, from nucleation to coverage of the whole 

crystal face, can be observed as seen in Figure 4.2 b – j. 
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Figure 4.2: Real time deflection AFM images of the growing (111) facet of a HKUST-1 

crystal at a) 56 b) 77 c) 79 d) 82 e) 85 f) 88 g) 91 h) 94 i) 97 j) 108 min, after 

injection of the growth solution. (Times refer to the end of the each scan). 

Image sizes are 0.763 × 0.613 m
2
. 
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Figure 4.3: Full series of AFM deflection images of a (111) facet of a ca. 600 nm 

HKUST-1 crystal in the growth medium (starting concentration of 

Cu
2+

 = 0.05 M) as a function of time (time is indicated in each image). The 

decrease in image clarity after 97 min is likely to be due to slight crystal 

movement. Image size is 885 × 800 nm
2
. 
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Real time images of the growth process of a single step provide exclusive details 

concerning the growth of this material. The images reveal the presence of anisotropic 

growth steps that are triangular in nature and exhibit the ternary symmetry of the 

(111) face. 

 

Figure 4.4: Cross-sectional analyses of growing steps on the (111) facet (b); cross-

sectional analysis of the single growth step (c) – (d); Step heights were 

measured from height images, although deflection images are shown in (b) 

– (d) for clarity. 

Cross-sectional analyses of height images at each time during the growth reveals that 

the vast majority of growth steps have heights of 1.5 ± 0.1 nm (see Figure 4.4) 

corresponding to the 1.5 nm d111 crystal spacing of the HKUST-1 structure, as shown 

in Figure 4.5 and previously reported for HKUST-1 crystals grown under a variety of 

conditions.
[160, 192, 193]
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Figure 4.5: <110> view of HKUST-1 framework, illustrating the observed steps during 

crystal growth. 

At 77 minutes after growth started, a small area at the nucleation point corresponding 

to the nucleation of a fresh layer can be noticed before it appears as a clear terrace at 

t = 79 min (Figure 4.4). Analysis of this small emerging area marked in Figure 4.2 b 

gives the step height of 0.9 ± 0.1 nm, corresponding to the 0.8 nm d222 crystal 

spacing. In the consecutive image (t = 79 min) the clear terrace with a triangular habit 

reveals a characteristic step height of 1.5 ± 0.2 nm. The growth of this terrace 

continues across the complete crystal face in the subsequent images (Figure 4.2 c-j). 

Considering the structure of HKUST-1, there are two different possible terminations 

of the (111) face, (depicted as termination A and B in Figure 4.6) of which A, due to 

symmetry and planarity, is viewed to be more stable than B.
[192, 193, 201]
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Figure 4.6: Projection of A and B layers along (111). The A layer is 2D and more 

symmetric while the B layer features a corrugated 3D structure. 

The results suggest that crystal growth starts with the attachment of a single BTC 

molecule and a dimeric copper unit, corresponding to the 0.8 nm d’222 crystal 

spacing, onto the stable layer A (see Figure 4.5 and Figure 4.6). We propose that 

attachment of additional reagent to the crystal occurs more rapidly at this newly 

created layer with metastable termination B than at the surface with termination A. 

This process leads to the rapid growth of a second 0.8 nm d”222 crystal spacing step to 

create a 1.5 nm d111 crystal spacing step with a stable A-terminated surface. In this 

model, the growth subsequently takes place via the slow attachment of a d’222 layer 

onto a stable layer A, followed by rapid growth of the second d’’222 layer to complete 

the next d111 layer with termination A. 

The growth rate of the vertex of the triangular terrace in the [11-2] and the [2-1-1] 

direction (see Figure 4.2 b for directions) was measured and plotted in Figure 4.7. 

During the time period in which the vertex propagates to the crystal boundary (Figure 

4.2 b – i), a linear growth rate of 25 nm min
-1

 is observed, while the edge in [2-1-1] 
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direction advances at approximately half the step speed of 13 nm min
-1

. The constant 

step speed implies that the supersaturation is at a low enough level to remain 

essentially constant. At 96 minutes, after the vertex has reached the crystal boundary, 

the [2-1-1] edge still advances at a constant but slower speed of 2 nm min
-1

. The 

sudden drop in step speed could be associated with a sudden change in 

supersaturation; however as the drop in step speed is observed when the growing 

vertex reaches the boundary of the crystal we attribute this drop to the removal of the 

influence of the vertex. We suggest that the vertex exhibits a “point effect” in which 

the rate of mass transport to the vertex is greater than that to a point elsewhere on the 

linear [2-1-1] and [-12-1] step edges.
[202, 203]

 The vertex can also provide kink sites that 

will enhance edge-growth via a terrace-ledge-kink mechanism. 

 

Figure 4.7: Plot of the terrace advancement in [2-1-1] and [-12-1] direction as a 

function of time. 
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The crystal growth of HKUST-1 we report here strongly contrasts with a previous in 

situ study of the group of Prof. Anderson where a 2D crystal growth mechanism and 

isotropic advancement of the growth steps was observed at multiple sites across the 

crystal surface.
[193]

 This reflects the use of a much larger (ca. 50 m) crystal with a 

high surface defect concentration and multiple nucleation sites in a different growth 

medium, i.e. dimethylformamide.
[200, 204]

 

4.4 Conclusion 

In summary, in situ atomic force microscopy was successfully used to directly 

investigate the growth processes of oriented HKUST-1 crystals grown on self-

assembled monolayers on gold substrates. This approach has allowed the growth of a 

single growth step to be monitored extensively, which has provided direct evidence 

for a layer-by-layer mechanism of a constituent 1.5 nm d111 crystal spacing step of 

HKUST-1, its form during growth, and the influence of the step vertex on the rate of 

growth. This information enhances current understanding of the crystal growth of 

MOF materials, will support the development of crystals of these materials of specific 

form for future application, and demonstrates clearly the potential of the unique 

platform of SAM-supported oriented crystals to provide further insights into the 

chemistry and structural evolution of coordination polymers. 

4.5 Additional Details 

In this section the experiments prior to the observation of crystal growth described in 

the previous sections shall be presented.  
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Figure 4.8: Dissolution of the [111]-oriented HKUST-1 crystals under a mixture of 

water: ethanol (1 : 1). Scan size is 2.48 × 2.48 µm
2
. 

The first exposure of a sample of oriented surface-grown crystals to a water/ethanol 

mixture (ratio 1:1) in the in situ chamber of the AFM led to rapid dissolution of the 

crystal, such that after 4 minutes, the majority of the crystal appears to have dissolved 

(Figure 4.8). The sample was scanned using contact mode and a scan speed of 

3.02 Hz. 

Dissolution in pure ethanol 

In a second experiment, a [111]-oriented HKUST-1 crystal was scanned in pure 

ethanol at a rate of 4.2 Hz. Dissolution takes place immediately under these 

conditions. Deflection images given in Figure 4.9 show little change in the topography 

of the chosen crystal. However, height analyses reveal that the lateral dimension of 

the crystal at t = 48 minutes has decreased by 100 nm. After 48 minutes the 

dissolution seems to slow down, resulting in a more obvious topographical change. 

This decrease in dissolution rate might be due to the increase in concentration in the 

supernatant solution because of the dissolving crystals all over the sample. At 
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t = 60 minutes it can be seen that the top terrace has dissolved and the remaining 

surface is smooth. A new layer begins to dissolve, as observed at t = 71 minutes. The 

boundary of the dissolved area appears to be at approximately the same position as 

the terrace seen in images taken between t = 12 and 48 minutes, (white line on 

t = 33 minutes) after which the dissolution of that top terrace slows down and a rapid 

dissolution of another layer up to approximately the said point follows, which results 

in multiple terraces that are observed at t = 89-160 minutes. The step heights in many 

instances are equal to the d222 spacing of 0.76 nm or to multiples thereof. 
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Figure 4.9: Deflection images of the (111) face of a HKUST-1 crystal; times are quoted 

in minutes; scan size is 1.45 × 1.65 µm
2
. 
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Growth and dissolution in Cu(II)/BTC solutions 

The AFM images using pure ethanol reveal fast dissolution of HKUST-1 crystals 

during scanning. To observe the reverse, i.e., in situ crystal growth at rates 

compatible with the AFM it is necessary to use a crystallisation solution with a 

concentration of nutrients as close to equilibrium concentration as possible. Due to 

the semi-static conditions under which the AFM experiments were carried out and the 

very small volume of the solution in the liquid cell, the saturation concentration has to 

be determined very carefully. It was found that the solution prepared in the same way 

as the solution used for prior synthesis of the films ([Cu
2+

] = 0.04 mmol/mL, see 

experimental section) led to dissolution of the crystal under study (Figure 4.10). In 

contrast, very fast crystal growth was observed when using a freshly prepared 

solution containing 0.06 mmol/mL [Cu
2+

] (Figure 4.11).  

 

Figure 4.10: Deflection images of the dissolution process under a solution with 

[Cu
2+

] = 0.04 mmol/mL. 
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Figure 4.11: Deflection images of crystal growth under a solution with 

[Cu
2+

] = 0.06 mmol/mL. 

A HKUST-1 crystal was scanned at 4.6 Hz in a solution with a concentration of 

[Cu
2+

] = 0.05 mmol/mL. The experiment resulted in the direct in situ observation of 

growth and dissolution processes of the crystal under study. The chosen octahedral 

crystal is much smaller (size of about 600 nm) than the crystals described above but 

still shows the characteristic triangular top face. Figure 4.12 shows a crystal with a 

triangular top face at t = 6 minutes progressing to a hexagonal top face at 

t = 180 minutes. This change in crystal topography is accompanied by a change in 

height and area, so that the aspect ratio of the crystal changed significantly, resulting 

in a more plate-like morphology. The change in aspect ratio and topography of the 

crystal under study is a perfect example of the effect of supersaturation on both 

morphology and topography. 
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Figure 4.12: Deflection images of a HKUST-1 crystal under a solution with 

[Cu
2+

] = 0.05 mmol/mL; times are quoted in minutes; scan size is 

1.45 × 1.65 µm
2
. 
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An important issue to consider here is the effect of the scanning AFM-tip in contact 

mode on the surface properties of the crystal. As both crystal growth and dissolution 

was observed in the very same experiment, we assume that the gentle force applied 

on the crystal does not play an important role in these studies. 

The solution was prepared at the beginning of the experiment and all the amounts 

injected are from the same batch. It is believed that due to depletion of nutrients in 

the initial solution during the experiment, dissolution will be occurring more readily 

at a later point compared to the beginning of the experiment. This is apparent at 

t≈115-135 minutes, where a sharp drop in crystal height is observed within a 

relatively short time window. 

Step height analyses of the observed crystals show the height of most of the shortest 

terraces to be about 0.76 nm. Other steps such as 1.5 nm (but also around 0.4 nm) 

high were observed as well.  

As discussed in section 4.3, the d111 spacing of HKUST-1 is 1.52 nm. The step heights 

observed during growth and dissolution processes are in most cases equal to the d222 

spacing of 0.76 nm or to multiples thereof. Steps smaller than d111 or d222 were 

observed as well and can be explained by different terminations of the crystals 

surface; i.e., either the paddlewheel units or the BTC molecules can be the face-

terminating species. Additionally, as the mechanism of dissolution and growth of 

MOFs must involve changes in the coordination chemistry of the copper ions, the 

departure of the copper-coordinating BTC molecule will be accompanied by the 

substitution of this ligand by another, in this case water or ethanol. Varying step 

heights in-between d111 and d222 distances can be explained this way. Deflection 

images of the growth processes (Figure 4.12) show clearly that growth as well as 
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dissolution takes place via a layer-by-layer mechanism. The layers correspond to the 

incremental attachment of BTC molecules and copper dimers. 

The experiments summarized in this Supporting Information were the first steps in 

learning more about the mechanism of crystal growth of MOFs employing our surface 

grown oriented crystals. The conditions specified during these studies later on led to 

the monitoring of single layer growth described in section 4.3.  
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5 Directing the structure of metal-organic 

frameworks by oriented surface growth on an 

organic monolayer 

This chapter is based on a publication in the journal “Angewandte Chemie, 

(International Edition)”
[205]

.  

5.1 Introduction 

The concept of biomineralization implies the control of crystallization in terms of 

phase and orientation through interactions with organic macromolecules.
[135-137]

 This 

is of particular interest for the synthesis of biomimetic materials.
[142]

 If one strives to 

mimic the enormous structure-directing power of biomineralization in materials 

science, an artificial organic interface is needed. For example, functionalized self-

assembled monolayers (SAMs)
[141]

 have been shown to affect the oriented growth and 

phase direction of the dense phase calcium carbonate.
[143, 206]

 The oriented growth of 

other dense materials such as lead sulphide
[144]

 or zinc oxide,
[146]

 and even the 

oriented growth of porous materials such as zeolites
[148]

 on SAMs has been reported. 

Studies on the growth of MOF-5 and HKUST-1 phases on organic monolayers were 

recently reported (for detailed discussion see also chapters 1.4 and 3).
[151, 153]

 

However, to our knowledge so far it has not been possible to control the crystal 

structure of a porous material through interactions with molecular layers. This is 



5 Directing the structure of MOFs by oriented surface growth 

 

96 
 

expected to be particularly difficult due to the large, complex unit cells featured by 

these systems. 

Due to their many potential applications such as gas sorption, molecular separation, 

storage and catalysis, metal-organic frameworks (MOFs) have been intensively 

studied.
[50, 67, 207]

 In chapter 3 the tuneable, oriented growth of the porous metal-

organic framework HKUST-1 on different functionalized self-assembled monolayers is 

discussed.
[176]

 Here we investigate the crystal growth of metal-organic frameworks on 

SAMs in the system Fe(III) / BDC (benzenedicarboxylic acid or terephthalic acid).  

In this system several open framework structures are known, including MIL-53, MIL-

88, and MIL-101 (MIL = Matériaux de l’Institut Lavoisier). MIL-101 is very famous for 

its large zeotype unit cell and its large surface area. The structures of MIL-53 and 

MIL-88 are very flexible and the cell constants of these materials are strongly 

dependent on the pore content.
[208, 209]

 The framework flexibility of these materials 

enables their use for the adsorption of different organic molecules and makes them 

interesting candidates for sensors. 

The monoclinic structure (space group I2/a) of Fe(OH)(BDC)(py)0.85, the Fe(III)-

analogue of MIL-53, consists of chains of FeO6 octahedra that are connected by 

benzenedicarboxylate anions. Thus, as presented in Figure 5.1, rhomb-shaped one-

dimensional channels are formed that run along the a axis of the structure.
[210]

 The 

group of Férey first synthesized MIL-53 with the metal ions chromium
[211]

 and 

aluminium
[88]

. The Fe(III)-analogue was synthesized from Whitfield et al.,
[210]

 using 

iron nitrate and BDC in the presence of pyridine in dimethylformamide (DMF). 
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Figure 5.1: Crystal structure of Fe-MIL-53 with view along chains of FeO6 octahedra 

(along a axis). 

The first synthesis of MIL-101 was with chromium (III) as the metal component
[72]

, but 

up to now the structure is known with different metal (III) ions.
[212]

 The composition of 

MIL-101 is Cr3F(H2O)2O(BDC)3 ∙ n H2O (n ~ 25). It crystallizes in the cubic space 

group Fd-3m with a lattice parameter of a = 89 Å. For frameworks with such a large 

unit cell it is difficult to obtain single crystals, which is why a special approach was 

employed to solve this complicated crystal structure, the AASBU (automated assembly 

of secondary building units).
[213]

 The AASBU method explores how an inorganic 

cluster and an organic linker, or even predefined hybrid building blocks, may connect 

in 3D space to form periodic lattices. A set of possible framework structures is 

produced, along with their crystallographic features (space group, cell parameters, 

and atomic coordinates) and their simulated X-ray diffraction patterns. The 

comparison of the simulated pattern of each candidate structure with the 

experimental one identifies the experimental structure. The final solution of the 

crystal structure is obtained by fitting the theoretical data to the experimental results 
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with the help of Rietveld refinement.
[214-217]

 In the crystal structure of MIL-101 four 

trimers of metal-oxygen octahedra are linked via BDC molecules to so-called 

supertetrahedra (ST). Corner sharing STs are linked in a way to give a MTN-zeotype 

framework structure. (Figure 5.2) 

 

Figure 5.2:  Trimers of metal-oxygen octahedra are linked to Supertetrahedra; Corner 

sharing ST are linked to give a MTN-zeotype framework structure with a 

lattice parameter of a = 89 Å. 

The framework structure of MIL-101 consists of mesoporous cages with a diameter of 

29 Å and 34 Å. Evaluation of the sorption data with the help of the Langmuir method 

gives a surface area for MIL-101 of 4500 – 5900 m
2
/g, which is a higher value than 

ever observed for any other MOF structure.
[72]

 

The hexagonal 3D structure of MIL-88B with the chemical composition 

Fe3O(BDC)3∙solv (solv = MeOH) is built up from trimers of FeO6 octahedra linked to 

benzenedicarboxylate anions. Thus, the 3D pore system of MIL-88B consists of 

tunnels along the c axis connected by bipyramidal cages (Figure 5.3 and Figure 

5.4).
[43]

 The other members of the isoreticular MIL-88 family have the same crystal 
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structure; the only difference is the organic linker, which can vary in size from 

fumaric acid (MIL-88A) over naphthalenedicarboxylic acid (MIL-88C) to 

biphenyldicarboxylic acid (MIL-88D).  

 

Figure 5.3: Crystal structure of Fe-MIL-88B with view along b axis. 

 

Figure 5.4: View along the channels of Fe-MIL-88B structure (along c axis). 
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All of these interesting structures have been investigated with regard to their 

properties since their discovery.
[208, 209, 218-224]

 The prospects for applications vary 

from gas sorption and storage, including selectivity towards certain substances,
[77, 86, 

88, 225-241]
 over electrolytic

[242]
 and catalytic

[243, 244]
 properties ending up with drug 

delivery systems.
[245, 246]

 The structures of MIL-53, MIL-88B, and MIL-101 all consist 

of the same building blocks. Therefore it is easy to understand, that the particular 

synthesis conditions have to play an important role in getting the desired structure. In 

the following chapter the dramatic change in the crystallization of a porous metal-

organic framework upon moving from homogeneous nucleation to heterogeneous 

nucleation on an ordered self-assembled monolayer is presented. (see Figure 5.5) 

 

Figure 5.5: In the system Fe
III

/BDC we observe Fe-MIL-53 as product of homogeneous 

nucleation, and oriented Fe-MIL-88B as product of heterogeneous 

nucleation, i.e., on functionalized gold surfaces. 
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5.2 Experimental Section 

Preparation of self-assembled monolayers on gold 

The gold-coated slides (glass slides (76 × 26 mm
2
) coated with 10 nm Ti / 100 nm Au 

by electron-beam evaporation, Advalytix AG) were cut in smaller pieces (10 ×13 mm
2
) 

cleaned in ethanol, methanol and then treated 3 min in an oxygen-plasma. The 

cleaned gold slides were immersed in a 1 mmol ethanolic solution (6 pieces in 30 mL) 

of 16-mercaptohexadecanoic acid (MHDA) (90 %, Aldrich) and left at RT for 48 h. 

The SAM-functionalized gold slides were repeatedly washed with ethanol, and stored 

in fresh absolute ethanol till needed. 

Fe-MIL-53 synthesis mixture 

In a glass reactor, 0.2492 g (1.5 mmol) of 1,4-benzenedicarboxylic acid (98 %, 

Aldrich) were dissolved in 10 mL dimethylformamide (DMF) (p.a., Acros Organics). To 

the clear solution 0.2703 g (1 mmol) FeCl3·6 H2O (p.a., Merck) was added. The 

sealed-glass reactor was left for 2 days in a preheated oven at 150 °C. After cooling 

the synthesis mixture to room temperature, the crystalline product was filtrated and 

stored for further characterization. The filtrated solution was filled into a glass reactor 

and left for 5 days in a preheated oven at 150 °C. The clear solution was cooled down 

to room temperature and used for growth of thin films. 

Thin film growth 

The SAM-functionalized gold-slides were placed upside-down on Teflon-supports 

into the previous prepared crystallization solution (3 pieces in 10 mL). The growth 
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step takes place at RT in a closed glass reactor. Immersion times were varied between 

16 h to16 d. 

 

Figure 5.6: Schematic illustration of the preparation procedure of Fe-MIL-88B thin 

films on MHDA SAM-functionalized gold slides. 

Fe-MIL-88B synthesis 

The synthesis was carried out according to the literature procedure,
[43, 247]

 In a glass 

reactor, 3.987 g (24 mmol) of 1,4-benzenedicarboxylic acid (98 %, Aldrich) were 

mixed with 160 mL methanol (MeOH) (p.a., Fluka). To the mixture 10 mL 1M NaOH 

and 4.326 g (24 mmol) FeCl3 6 H2O (p.a., Merck) was added. The sealed-glass reactor 

was left for 3 days in a preheated oven at 100 °C. The orange crystals were filtered, 

washed with MeOH and dried under nitrogen before further characterization. 



5 Directing the structure of MOFs by oriented surface growth 

 

103 
 

5.3 Characterization 

X-ray diffraction (XRD) measurements of powders were performed on a STOE powder 

diffractometer in transmission geometry (Cu-Kα1, λ = 1.5406 Å) and of films using a 

Scintag Inc. XDS 2000 in theta-theta geometry (Cu-Kα1, λ = 1.5406 Å; Cu-Kα2, 

λ = 1.5444 Å). Characterization of the self-assembled monolayers was performed by 

RAIR spectroscopy, using a Bruker IFS 66v FT-IR spectrometer. The sample chamber 

mounting a high performance variable angle reflection accessory (A-513) is 

maintained at 2 mbar during the entire measurement by means of an Edwards rotary-

pump. In a typical measurement for gold surfaces, an incidence angle of 83 ° to the 

surface normal was used. Furthermore, a cleaned gold slide was measured as 

background prior to the measurements. The morphology of the crystals on the 

substrates and as bulk material was investigated with the help of a JEOL JSM-6500F 

scanning electron microscope. 

5.4 Results and Discussion 

Highly ordered thin films of MOF crystals were formed on the carboxylate terminated 

SAMs. X-ray diffraction patterns of all synthesized thin films show two reflections at 

9.2 ° and 18.4 ° two theta (Figure 5.7). The intensity of the reflections increases with 

longer immersion times. In Figure 5.8 the increase in intensity of the first reflection is 

given as a function of the immersion time. 
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Figure 5.7: X-ray diffraction measurements of crystals grown on functionalized gold 

substrates. The immersion time of the substrates in the crystallization 

solution varied between 16 h and 9 d. 

 

Figure 5.8:  Increase in intensity of the main reflection as a function of crystallization 

time. 
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Figure 5.9 X-ray diffraction data of product in the crystallization solution during 

surface growth compared to the simulated pattern of Fe-MIL-53.
[210]

 

The lack of any additional reflections in the XRD patterns of the film samples strongly 

suggests the oriented assembly of the crystals on the functionalized gold surface. 

The reflections in the XRD pattern of the synthesized films fit both the (011) and (022) 

reflections of MIL-53 as well as the (002) and (004) reflections of MIL-88B. The 

precipitate in the crystallization solution during film synthesis can be identified as the 

iron MIL-53 analogue (Figure 5.9). 

For further characterization the crystals were removed from the gold surface. The 

powder pattern of the surface-removed crystals shows several additional reflections in 

comparison to the XRD patterns of the films (see Figure 5.10). 
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Figure 5.10 (a) XRD pattern of film on gold substrate, (b) powder pattern of the 

removed crystals and (c) powder pattern of bulk Fe-MIL-88B. 

In spite of the fact, that the product of homogenous nucleation during surface crystal 

growth is Fe-MIL-53, the powder pattern of the surface-removed crystals does not fit 

to the powder pattern of bulk MIL-53. In a bulk synthesis an authentic sample of MIL-

88B was prepared.
[43, 247]

 The XRD pattern of the product (Figure 5.10c) agrees very 

well with the XRD pattern of the surface-removed crystals. It is possible to index the 

reflections of the XRD pattern of the removed crystals in the space group of MIL-88B 

a 

b 

c 
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as P-62c
[222]

 (Figure 5.11). The lattice constants are determined as 10.751 Å for a, and 

19.211 Å for c, respectively. 

 

Figure 5.11: (a) Simulated X-ray diffraction pattern of MIL-88B as
[222]

. (b) XRD powder 

pattern of surface removed crystals. The indexation of reflections of sample 

(b) is given on top of the figure. The lattice constants for MIL-88B as are 

a = 11.1 Å, c = 19.0 Å. The determined lattice constants for sample (b) are  

a = 10.751 Å, c = 19.211 Å. 

As indicated above (Figure 5.5) there is a drastic change from Fe-MIL-53, the product 

of the homogeneous nucleation from the crystallisation solution to Fe-MIL-88B, the 

product of the heterogeneous nucleation on the functionalized gold surface. We 

attribute this dramatic effect to symmetry transfer, i.e., the different symmetry 

relationships between the carboxylate-terminated SAMs and the two different crystal 

systems. Carboxyl-terminated thiolates, as well as thiolates in general, adsorb on an 
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Au (111) surface to form a (√3√3)R30 ° overlayer.
[106, 248]

 The order of carboxylic acid 

SAMs responds sensitively to the deposition conditions.
[129]

 The SAMs used in this 

study feature carboxylate termini and high crystallinity in the alkyl-part of the film, as 

evidenced by the reflection-absorption infrared spectra presented in Figure 5.12. No 

crystal growth was observed with hydroxyl- and alkyl-terminated SAMs or with non-

treated gold slides. Being presented with a surface exposing (approximately) 

hexagonal symmetry, the reactants (Fe
III

 and BDC) clearly prefer to crystallize in the 

form of hexagonal MIL-88B instead of monoclinic MIL-53. 

 

Figure 5.12:  RAIR-spectra of a MHDA self-assembled monolayer on a gold substrate. 

In order to investigate the morphology of the crystals grown on gold substrates, 

scanning electron micrographs of samples after different immersion times were taken. 

The scanning electron micrographs of two different samples are shown in Figure 

5.13.  
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Figure 5.13: (a, b) Scanning electron micrographs of samples after immersion times of 

24 h, (c) 3 days and (d) a bundle of removed crystals. 

After an immersion time of 24 h, small hexagonally-shaped pyramids with almost 

vertical orientation can be observed. The diameter of the pyramids is about 200 nm. 

Crystal intergrowth already starts after immersion times of 24 h. After an immersion 

time of 3 days the gold surface is almost completely covered with pillar-like 

hexagonally shaped crystals that are about 500 nm long. Samples with longer 

immersion times show cracked films in the SEM. The cracking might be due to the 

post-synthesis treatment of the samples (i.e., drying under nitrogen or evacuating 

during scanning electron microscopy). 
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The morphology and the symmetry of the crystals agree well with the structure of 

MIL-88B. The XRD pattern of the film shows exclusive orientation of the crystals in 

[001] direction. This implies that the (001) plane of the crystals is parallel to the gold 

substrate. Figure 3 shows schematically the connection of MIL-88B to the carboxylate 

groups of the MHDA SAMs on the gold surface. The sixfold axis of the MIL-88B 

crystal lattice is aligned with the hexagonal symmetry of the SAM-liquid interface. In 

addition, the oriented crystal growth on the carboxylate-terminated self-assembled 

monolayers can be explained by the coordination of the carboxylate at the metal atom 

of the metal-organic framework. Since all terephthalic acid molecules are oriented 

along [001], substitution of the carboxylates of terephthalic acid through carboxylates 

of the SAM will enable crystal growth only in the [001] direction (Figure 5.14). 
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Figure 5.14: Oriented growth of MIL-88B crystals on MHDA SAMs on Au (111) 

(schematic). Crystals grow in [001] direction. 

To investigate the properties of the grown crystals, particularly with regard to the 

sorption properties, the samples were exposed to saturated DMF vapour for 24 h. Due 

to the framework flexibility of MIL-88B as a function of the pore content, the DMF 

form of MIL-88B shows different reflection positions than the as-synthesized form.
[222]

 

Our results show clearly that the structure changed during uptake of DMF (Figure 

5.15). 
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Figure 5.15: XRD patterns of a MIL-88B film as synthesized, after exposure to DMF 

vapour for 24 h during desorption in air (diffraction data were collected 

every 30 min), and after drying for 24 h. 

The (002) reflection after DMF uptake lies at 10.02 ° 2 at a value fairly similar to the 

reported value of 10.4 ° 2 for bulk MIL-88B.
[222]

 Small differences are attributed to 

different partial pressures of DMF in these experiments, and to the surface 

attachment of the crystals. During desorption of DMF the XRD measurements were 

performed every thirty minutes. At the beginning desorption evokes a continuous 

structural change which after 24 h ends with the state shown in Figure 5.15, similar to 

the initial state. The surface-bound MIL-88B crystals were synthesized in their 

expanded, DMF-loaded form, and shrinkage upon drying provides space for 

expansion upon renewed uptake of DMF (see Figure 5.16). Obviously their elasticity 
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can accommodate the shrinkage and expansion cycles demonstrated in the 

experiment. 

 

Figure 5.16: Changes of the framework in MIL-88B during uptake and desorption of 

DMF are depicted schematically. 

5.5 Conclusion  

The results presented above show the striking structure-directed and oriented growth 

of MIL-88B on MHDA SAMs. MIL-53 is the product of homogeneous nucleation, 

whereas in the same crystallisation solution, oriented MIL-88B grows on the 

functionalized gold surface. These remarkable results can be explained through 

favourable symmetry relationships between the hexagonally ordered SAMs and the 

hexagonal structure of MIL-88B. The carboxylate functionality of the MHDA SAMs 

can mimic the carboxylate groups of the BDC molecules und thus direct oriented 

growth on the surface. We could also show that the pores of MIL-88B crystals in the 

film are accessible for DMF molecules and that the characteristic associated structural 

changes during the adsorption and desorption processes can be observed. 

Future studies will show if the concept of symmetry transfer between functional 

monolayers and complex crystalline materials can be adapted to other MOFs, thus 
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providing a powerful means to control structure and orientation in biomimetic 

materials systems. 

In the next chapter the sorption properties of the highly oriented films of MIL-88B will 

be discussed in detail. 

5.6 Additional Details 

Optimization of the Synthesis pathway for MIL-88B films 

To find the right conditions for the film synthesis of MIL-88B, several experiments 

were carried out. The parameter field in the system Fe(III)/BDC was investigated with 

regard to the synthesis temperature, the synthesis time and the concentration of the 

reactants. In the series of experiments we distinguish between the first and the 

second crystallization step. The first crystallization step refers to the product of the 

reaction after mixing the reagents in the given ratio followed by thermal treatment. In 

the second crystallization we use the filtrated synthesis solution of a first 

crystallisation step to investigate the precipitation products after a second thermal 

treatment and/ or after a certain reaction time. The reason for this approach is our 

interest in the crystallisation of MOFs under mild conditions to make sure, that the 

SAM on the gold substrate survives the synthesis conditions. During film synthesis of 

HKUST-1 (chapter 3), we observed, that it is possible to obtain crystalline products in 

a second crystallisation step, so we transferred this synthesis pathway to different 

framework structures. 
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Table 5.1: Composition of the crystalline products after synthesis under the given 

conditions; blue: unknown crystalline phase, red: Fe-MIL-101, orange: Fe-

MIL-53. 

 75 °C 100 °C 150 °C 

1 d 

   

2 d 

   

5 d 

   

8 d -  

 

 

For 75 °C and 100 °C only mixtures of two products where obtained, as shown 

schematically in Table 5.1. At 75 °C the mixture contained more of the unknown 

crystalline phase, while at 100 °C the product was mainly Fe-MIL-101. After a reaction 

time of two days, the only obtained product at 150 °C was Fe-MIL-53. In a second 

series of experiments the effect of dilution on the resulting products was examined. 

For more concentrated solutions than in the original composition 

(Fe : BDC : DMF = 1 mmol : 1.5 mmol : 10 mL), Fe-MIL-53 was the only obtained 

product. For reaction mixtures with lower iron concentrations, again a mixture of the 

unknown phase and Fe-MIL-101 precipitated. Fe-MIL-101 was obtained as only 

product for very dilute systems, i.e. cFe = 0.006 mmol/mL. 
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Table 5.2: Composition of the crystalline products after synthesis at 150 °C for 2 d 

with the given Fe(III)/DMF ratio (the Fe/BDC ratio remained constant at 

1:1.5); blue: unknown crystalline phase, red: Fe-MIL-101, orange: Fe-MIL-

53. 

2.50 1.13 0.62 0.1 0.025 0.013 0.006 

       

 

As the more diluted system did not result in the formation of Fe-MIL-53, we chose the 

original batch composition as a starting point for the investigation of the second 

crystallisation step. The bulk Fe-MIL-53 crystals were filtrated after two days reaction 

time and the clear yellow solution was used for further investigations. In a second 

solvothermal step (150 °C, 5 d) no product was obtained during the heating period. 

While the reaction mixture was cooling, Fe-MIL-53 precipitated. This observation 

caused us to investigate surface crystal growth in the solution produced via this 

synthesis pathway, as described in section 5.4: 

𝐹𝑒𝐶𝑙3 × 6𝐻2𝑂 + 1.5 𝐵𝐷𝐶 + 10 𝑚𝑙 𝐷𝑀𝐹
150°,2𝑑
      𝑏𝑢𝑙𝑘 𝐹𝑒𝑀𝐼𝐿53 + 𝑐𝑙𝑒𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑐𝑙𝑒𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
150°,5𝑑
      𝑏𝑢𝑙𝑘 𝐹𝑒𝑀𝐼𝐿53. 

 

Synthesis and Characterization of Fe-MIL-53 

During the optimization of the synthesis pathway for MIL-88B films, Fe-MIL-53 was 

synthesized and characterized. The results will be presented in the following section.  
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The synthesis was carried out as described in section 5.2. The X-ray diffraction 

pattern of the orange, needle like crystals is displayed in Figure 5.17. The comparison 

with the simulated X-ray pattern from the literature
[210]

 shows relatively good 

agreement, nevertheless the reflection positions are slightly shifted in relation to the 

simulated pattern. This shift results from the different synthesis conditions, as in the 

synthesis from Whitfield pyridine was present in the reaction mixture and 

subsequently in the pores of MIL-53. As described in chapter 5.1, MIL-53 has a 

flexible framework structure and the dimensions of the unit cell are dependent on the 

pore content. It is possible to treat the MIL-53 crystals post-synthetically with pyridine 

to demonstrate the flexibility of the framework and to prove the successful synthesis 

of Fe-MIL-53 (see Figure 5.17). 

 

Figure 5.17: left: comparison of the XRD pattern of bulk Fe-MIL-53 crystals to the 

simulated pattern of Fe(OH)(BDC)(py)0.85; right: shift of the (011) and (002) 

reflections due to treatment with pyridine. 

The needle-like crystals of Fe-MIL-53 are relatively large. The scanning electron 

micrographs presented in Figure 5.18 show the ca. 500 µm sized needles that often 
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appear to be intergrown to bundles of crystals. The top face of the needles has a 

distorted triangular shape. 

 

Figure 5.18: Scanning electron micrographs of 500 µm sized, needle-like Fe-MIL-53 

crystals. 

 

Figure 5.19: Thermogravimetric (TG) and Differential Scanning Calorimetric (DSC) 

Analysis of Fe-MIL-53. 
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The thermogravimetric analysis of Fe-MIL-53, displayed in Figure 5.19, shows a first 

weight loss of 24 % in one broad step between 90 and 250 °C. As there is no strong 

signal in the DSC corresponding to this weight loss, it is assigned to the removal of 

the solvent molecules, i.e. DMF from inside the pores. This results in a chemical 

composition of Fe(OH)(BDC)(DMF)0.84 for the compound synthesized in DMF without 

addition of pyridine. The solvent-free structure is stable up to 400 °C. The weight loss 

of about 50 %, which occurs in a relative steep, exothermic step is in good agreement 

with the combustion of the organic linker (BDC; FW = 166.11 g/mol), leaving Fe2O3 

(FW = 159.69 g/mol) as the tentative product. 

 

Figure 5.20: IR (left) and Raman (right) powder spectra of Fe-MIL-53. 

The IR spectrum of Fe-MIL-53 and the Raman spectrum (Figure 5.20) were collected 

under the same conditions. The assignment of the observed bands to the particular 

groups is accomplished as follows.
[249]

 The IR spectrum shows vibrational bands at 

1560 cm
-1

 and 1396 cm
-1

 characteristic for the asymmetric and symmetric stretching 

vibration of the carboxylic groups of the BDC coordinated to a metal centre. The 
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absence of bands in the region of 1715-1680 cm
-1

, typical of protonated carboxylic 

groups, is in agreement with the known framework structure where no protonated 

carboxylic acid groups are present. Other characteristic bands of the ligand due to the 

C=C stretching vibration of the p-disubstituted aromatic ring were found at 1504 cm
-1

. 

Overtone and combination bands due to the C─H out-of-plane deformation vibration 

and characteristic for 1,4-disubstituted benzene rings occur in the region 

2000 - 1750 cm
-1

. The Fe-O stretching vibration from the FeO6 octahedra is present at 

532 cm
-1

. The absorption band at 1672 cm
-1

 can be assigned to the C=O stretching of 

the amide (DMF), which is still present in the framework after synthesis. In the Raman 

spectrum, the peak at 456 cm
-1

 can be assigned to the Fe-O vibration of the iron-

oxygen octahedron. The deformation vibrations of the aromatic CH-groups can be 

found between 630 and 1143 cm
-1

. The absorption bands within the region between 

1400 and 1460 cm
-1

 can be assigned to the symmetric stretch of the carboxylate 

groups and to the C=C vibrations. The absorption band with the highest intensity 

(1613 cm
-1

) is assigned to the asymmetric stretch of the carboxylate group. 
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6 Sorption properties of oriented, thin-film Fe-MIL-

88B crystals studied by X-ray diffraction 

6.1 Introduction 

The increasing interest in the assembly of porous crystals on defined surfaces is 

motivated by the potential applications of these materials in the fields of catalysis, gas 

storage and sensor devices. Metal-organic frameworks (MOFs) or inorganic-organic 

hybrid materials, emerging as an important class in the family of porous solids,
[44, 53, 

67, 186, 207]
 are excellent candidates for surface assembly. The existing studies 

concerning the production of MOF thin-films, including films of [Zn4O(bdc)3] (MOF-5; 

bdc = 1,4-benzenedicarboxylate), [Cu3(btc)2] (HKUST-1; btc = 1,3,5-

benzenetricarboxylate), [Zn2(bdc)2(dabco)] (dabco = 1,4-diazabicyclo[2.2.2]octane), 

[Mn(HCOO)], [Cu2(pzdc)2(pyz)] (CPL-1; pzdc = pyrazine-2,3-dicarboxylate, 

pyz = pyrazine), [Fe(OH)(bdc)] (MIL-53(Fe)) and [Fe3O(bdc)3] (MIL-88B), have been 

recently summarized by Zacher et al.
[250]

 Due to the coexistence of organic and 

inorganic units in the framework, the MOF crystals can be attached to a substrate 

functionalized with an organic self assembled monolayer (SAM). We have recently 

shown that, by tuning the functional head group of the SAM, it is possible to direct 

the orientation and the structure of these materials.
[176, 205]

 Depending on the 

framework structure, it is thus possible to direct the orientation of the pores with 

respect to the substrate. Highly oriented assemblies of crystals with pores 

perpendicular to the surface represent interesting candidates for sensor applications. 
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We have demonstrated the oriented and structure directed growth of the flexible 

framework structure Fe-MIL-88B on carboxylate terminated SAMs, where the pores 

were aligned perpendicular to the surface (see Figure 6.1 and Chapter 5 for a detailed 

description of the results). Among the known MOF structures, those possessing 

flexible frameworks are of particular interest.
[251]

 The flexibility of these MOFs results 

in different cell parameters of the unit cell depending on the pore content. 

 

Figure 6.1: Highly oriented hexagonal crystals of Fe-MIL-88B on a 16-

mercaptohexadecanoic acid SAM on gold. 

The gas sorption behaviour of these materials often results in isotherms that do not 

conform to any of the IUPAC isotherm types.
[1]

 For example, Cr-MIL-53 as well as its 

aluminium analogue, well known representatives of flexible porous materials, have 

been subject to many studies on sorption behaviour towards gases such as CO2 or 
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methane.
[219, 226, 227, 231, 237, 252]

 Another flexible framework structure is Fe-MIL-88B. 

The hexagonal 3D structure of MIL-88B is built up from trimers of FeO6 octahedra 

linked to benzenedicarboxylate anions. Thus the 3D pore system of MIL-88B consists 

of tunnels along the c axis connected by bipyramidal cages.
[43]

 The framework 

flexibility of crystals of the MIL-88 series has been demonstrated by the group of 

Gerard Férey.
[209, 222, 253]

 Powder diffraction data of crystals exposed to different liquid 

solvents and the strong dependence of the lattice parameters on the type of the 

solvent was shown for the Cr(III) analogue of MIL-88B. However, to our knowledge 

the gas sorption properties of MIL-88B have not been reported yet. 

Here, we present an investigation of the structural changes of the flexible porous 

material MIL-88B during the uptake of water vapour. The MIL-88B structure was 

grown in the form of oriented layers on functionalized gold substrates and its sorption 

behaviour was also studied with bulk crystals. The structural changes of this flexible 

framework material during ad- and desorption of water could be followed by X-ray 

diffraction and thus be correlated to the partial pressure of water. 

6.2 Methods 

Experimental setup of the flow controlling system 

The flow controlling system consists of mainly three parts: the gas flow controller 

system, the liquid mass flow controller and the controlled evaporation mixer (CEM) 

(Figure 6.2). 
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Figure 6.2: Experimental setup of the flow controlling system employed in this work, 

consisting of the gas flow controlling system, a liquid mass flow controller 

and a controlled evaporation mixer (CEM). 

Five digital gas flow controllers purchased from Bronkhorst High-Tech, Netherlands 

(MFC 1- 5) can be used for the dosing of gases. The types of flow controllers with 

their maximum flow for the calibrated gases are listed in Table 6.1. In the setup 

depicted in Figure 6.2 the gas is used as carrier gas; in most of the measurements 

nitrogen is chosen for this purpose and the MFC 4 is used. 

The liquid mass flow controller purchased from Bronkhorst High-Tech, Netherlands 

(Table 6.1) delivers a maximum flow of 1 g/h if water is used as sorptive. It is, 

however, possible to use different solvents as well. The liquid conversion factor to 
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calculate the maximum flow of the particular sorptive is taken from the official 

Bronkhorst web page.
[254]

 In the setup, a reservoir of the particular liquid is connected 

to the liquid MFC and nitrogen is used to ensure continuous flow from the reservoir to 

the flow controller. 

Table 6.1: Types of digital mass flow controllers with their maximum flow (in 

mLn = normalized volume at 1013 hPa and 0.0 °C) for the calibrated gases, 

their labels in the Labels in the LabView control programme and the node 

they are connected to. 

Number Gas/Liquid max. Flow Model Node Label 

MFC 1 H2 2000 mLn/min F-201 C Node 2 C1 

MFC 2 O2 400 mLn/min F-201 C Node 4 C4 

MFC 3 CO 10 mLn/min F-200D Node 6 C5 

MFC 4 N2 2000 mLn/min F-201C Node 3 C6 

MFC 5 CO 10 mLn/min F-200D Node 7 C7 

Liquid MFC H2O 1 g/h W-101A-110-P Node 5 C3 

 

The central unit, for ensuring the accurate mixing of the carrier gas and the sorptive 

is the CEM (Label C2, Node 1). In this unit the liquid analyte and the carrier gas are 

mixed and heated above the specific boiling point of the liquid to ensure a 

homogeneous mixture of both components. 

The settings for the MFCs for the carrier gas and the sorptive were calculated 

assuming van-der-Waals behaviour to take into account the repulsive and attractive 

molecular interactions and the non-zero volume taken up by the molecules 

themselves. Van-der-Waals parameters for the solvents were taken from reference 

255. To determine the measurement settings, an MS Excel sheet was used (see Table 
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6.6 for representation of the redesigned sheet), where the parameters for the 

measurement are set: temperature, pressure, vapour pressure of the solvent at the 

given temperature, liquid conversion factor and the actual gas flow of the carrier gas. 

The maximum flow is given in mLn/min, which is defined at 0.0 °C and 1013 hPa, and 

has to be recalculated to mL/min at the actual conditions with the help of the gas 

conversion factor from the official Bronkhorst web page.
[254]

 In the MS Excel sheet the 

volume of the gas is first calculated, assuming ideal gas behaviour. In order to obtain 

a volumetric flow from the evaporated liquid the molar volume according to  

𝑝𝑉3 −  𝑝𝑛𝑏 + 𝑛𝑅𝑇 𝑉2 + 𝑎𝑛2𝑉 + 𝑎𝑛3 = 0 

was evaluated with the mathematical programme Maple.
[256]

 

 

 

Figure 6.3: Alternative experimental setup of the flow controlling system in the case of 

using gaseous sorptives. 
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It is also possible to use the flow controlling system to mix two gases. In this case no 

liquid MFC and no CEM is necessary; the partial pressures may be adjusted by the 

two employed MFCs, one for the carrier gas (if necessary) and one for the sorptive. 

(Figure 6.3). 

Development of the new sample cell for sorption@XRD 

measurements 

A new sample cell was constructed to allow the measurement of X-ray diffraction 

patterns under controlled partial pressures of a sorptive. (Figure 6.4) The cell consists 

of a lower and an upper part. The lid of the cell is made out of Kapton, which is 

transparent to X-rays. The lid is fixed to the lower part of the sample holder, on which 

either the film or the powder samples are positioned with the help of two screws. The 

gas input in the lower part of the cell is connected to the flow controlling system 

described above.  

The cell was positioned onto the sample holder of a Scintag XDS 2000 X-ray 

diffractometer, (Cu K-α radiation, λ = 1.54 Å) measuring in theta-theta geometry. The 

powder patterns were recorded at angles between 5 ° and 35 ° two theta with an 

interval of 0.01 ° two theta and at a scan rate of 5 ° to 10 ° two theta per minute. 

Sorption@XRD data were recorded using automatic measurement routines. The valve 

opening of the liquid flow controller was increased by the desired increment every 

90 minutes (for detailed description see below). 
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Figure 6.4:  Pictures of sample cell for Sorption@XRD measurements (a-c) and the 

positioning of the cell into the Scintag XDS 2000 X-ray diffractometer (d-f). 
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Synthesis and Sample Preparation 

The synthesis of Fe-MIL-88B crystals with [001] orientation on the functionalized gold 

slides was carried out as described previously.
[205]

 Film samples were dried under 

nitrogen for two hours in the sample cell for sorption@XRD and then directly used for 

measurements. 

The synthesis was carried out according to the literature procedure for MIL-88A,
[43, 

247]
 using 1,4-benzenedicarboxylic acid (98 %, Aldrich) and FeCl36 H2O (p.a., Merck) 

in methanol (MeOH) (p.a., Fluka). Powder samples were washed in 

dimethylformamide (DMF) (p.a., Acros Organics) and MeOH for 24 h at RT each to 

remove any additional 1,4-benzenedicarboxylic acid molecules from inside the pores. 

The dry powder was deposited on the sample holder to give a flat surface of about 

2 cm
2
, dried under nitrogen for two hours within the sample cell for sorption@XRD, 

and then directly used for measurements. 

Further sample characterization 

Conventional water sorption measurements were carried out using volumetric 

sorption experiments (Quantachrome Autosorb MP) at 298 K. Prior to the adsorption 

experiments, the samples were outgassed under vacuum at 120 °C overnight. 
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6.3 Results and Discussion 

The films used in this study were obtained by oriented growth of MIL-88B on MHDA 

SAMs, as described earlier.
[205]

 The oriented growth of Fe-MIL-88B crystals has been 

demonstrated with the help of X-ray diffraction of the crystals grown on the film and 

the XRD pattern of the surface-removed crystals compared to Fe-MIL-88B crystals 

from a bulk synthesis. As depicted in Figure 6.5, the XRD pattern of the surface 

removed crystals is in good agreement with the XRD pattern of the bulk MIL-88B 

crystals. The XRD data of the crystals grown on the functionalized surface clearly 

demonstrate the [001] orientation as only the (002) and the (004) reflection of Fe-MIL-

88B is observed. The SEM images, also presented in Figure 6.5, show small 

hexagonally-shaped pyramids with almost vertical orientation after an immersion time 

of 24 h. The diameter of the pyramids is about 200 nm. After an immersion time of 

3 days the gold surface is almost completely covered with pillar-like hexagonally 

shaped crystals that are about 500 nm long. In Chapter 5, it is described that during 

the synthesis procedure MIL-53 is the product of homogeneous nucleation, whereas 

in the same crystallisation solution, oriented MIL-88B grows on the functionalized 

gold surface. We address the structure directing effect of the SAM to the carboxylate 

functionality of the MHDA SAMs mimicking the carboxylate groups of the BDC 

molecules und thus directing oriented growth on the surface. 
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Figure 6.5: Left: (a) XRD pattern of film on gold substrate, (b) powder pattern of the 

removed crystals and (c) powder pattern of bulk Fe-MIL-88B; right: Fe-

MIL-88B crystals grown on a functionalized gold substrate for 24 h (top) 

and 3 d (bottom). 

The sorption measurement of the SAM-supported, oriented Fe-MIL-88B crystals on 

the gold substrates was performed by increasing the partial pressure of water by an 

increment of 5 % every 90 minutes. The (002) reflection of the crystals is subject to a 

shift to higher two theta values during adsorption of water, while during desorption 

the reflection is shifted towards lower values back to its original position. The shift 

during adsorption and desorption of water is displayed in Figure 6.6.  

a 

b 

c 
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Figure 6.6: Shift of (002) reflection of oriented MIL-88B crystals on MHDA substrates 

upon water adsorption and desorption. 

In Figure 6.7 the shift of the two theta values as well as the change of the lattice 

parameter c are displayed as a function of the partial pressure of water. It becomes 

clear that the adsorption as well as the desorption of water takes place within two 
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distinct steps. During adsorption the first step ocurs between a relative pressure 

p/p0 = 0.2 and 0.3 and gives rise to a shift of 0.04 ° two theta. The second step takes 

place between p/p0 = 0.65 and 0.75, the reflection position is shifted by 0.05 ° two 

theta. The sorption process recorded in X-ray diffraction shows a hysteresis, most 

notably in the lower part of the isotherm between p/p0 = 0.0 and 0.3. The structural 

changes of the crystals appear delayed in desorption in comparison to adsorption. 

 

Figure 6.7: Water sorption isotherm of crystal film recorded in a sorption@XRD 

measurement. Left: The two theta values of the (002) reflection are plotted 

versus the relative pressure of H2O; right: the plot of the lattice parameter 

c against the relative pressure. 

Due to the orientation of the crystals on the film it is only possible to obtain 

information about the (002) reflection and therefore about the change of the c lattice 

parameter of the crystal structure. Therefore the same sorption experiment, combined 

with X-ray diffraction, was carried out with a thin layer of bulk Fe-MIL-88B crystals. In 

this way, it is possible to obtain information about the change of all three lattice 

parameters in dependence on the relative pressure, deduced from the shift of the 

(002), (100) and (101) reflection positions. (Figure 6.8) 
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Figure 6.8: Shift of reflection positions of (002), (100) and (101) of a thin layer of 

randomly oriented bulk MIL-88B crystals during a sorption@XRD 

measurement. 

The results for the c parameter obtained for both, film and bulk sorption@XRD 

measurements, are in good agreement. As on the film, in the bulk measurement the c 

lattice parameter decreases during uptake of water molecules and increases during 

desorption within two distinct steps (see Figure 6.9, top). The hysteresis of the 

desorption relative to the adsorption is more pronounced in the case of bulk-MIL-88B 

crystals, especially during the first desorption step. However, the overall decrease of 

about 0.3 Å of the lattice parameter c is the same for both the film and the powder 

sample.  
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Figure 6.9: Top: change of cell parameter c during adsorption and desorption of water 

of bulk MIL-88B crystals; bottom: change of cell parameter a during the 

same measurement. Note that the scale bars are different for the c and a 

parameters. 

The reverse and a much stronger effect is observed for the (101) and even more so for 

the (001) reflection position. The a parameter increases during adsorption of water 

molecules and decreases during desorption. The shift of these two reflection positions 

is much larger than in the case of the (002) reflection position (c parameter). We 

emphasize that the two distinct stepwise structural changes with increasing water 

pressure are reflected in shifts of both the a and c parameter of the unit cell. The 

change of the a parameter as a function of the partial pressure is given in Figure 6.9, 

bottom. 
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The hysteresis of the structural conversion becomes even more obvious in the case of 

the (100) direction. Above a relative pressure of approximately 0.3 p/p0 during 

adsorption there is a large increase of a of about 0.8 Å in one step. Between p/p0 = 0.4 

and 0.75 there is a plateau and no change of the lattice constant a can be observed. 

The second distinct step occurs at a partial pressure of 0.8 p/p0 and the lattice 

parameter a increases by approximately 0.5 Å. The impact of these structural changes 

can be seen when referring to the structure of MIL-88B (Figure 6.10). While the d001 

distance shrinks (increase of the two theta values of the (002) reflection position) 

there is an expansion in the 100 and 010 directions respectively, which leads to an 

increase of the volume enclosed by the cages of the Fe-MIL-88B structure. 

 

Figure 6.10: Changes of the MIL-88B framework during uptake and desorption of water 

depicted schematically. 

The complete diffraction patterns of Fe-MIL-88B crystals at various partial pressures 

were also recorded and are displayed in Figure 6.11. It is possible to index these 

patterns in the hexagonal space group of MIL-88B, that is P-62c,
[43]

 by variation of the 

lattice parameters of a and c. The resulting lattice parameters and cell volumes are 

listed in Table 6.2. 
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Figure 6.11: Left: complete diffraction patterns under relative pressures of water of 

0.00, 0.25, 0.50, 0.85; right: schematic of change of lattice parameter a at 

partial pressures of water of 0.00 and 0.85. 

Table 6.2: Lattice parameters a and c after indexing using Werner algorithm at 

different partial pressures. 

 

From the full diffraction patterns at various partial pressures (Figure 6.11) it can be 

seen, that the completely empty and dry powder shows less intense and partially 

broader reflections than the powders containing water. This suggests that the empty 

form is less ordered than the forms where water molecules are present within the 

p/p0 
lattice parameter a 

/ Å 

lattice parameter c 

/ Å 

cell volume / 

Å
3
 

Figure of 

Merit 

0.00 9.21 19.39 1425 18.6 

0.25 9.70 19.39 1581 16.9 

0.50 10.57 19.21 1858 64.1 

0.85 11.10 19.09 2038 24.2 
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pores. This peak broadening is only observed for reflections with an a component, 

which implies that the variations of the lattice plane distances in the c direction are 

smaller than the variations in a direction. This is consistent with the much greater 

structural changes upon water adsorption in the a direction. The powder patterns 

compared to their simulated patterns are depicted in Figure 6.12. 

For Cr-MIL-88B, and for the other members of the MIL-88 series, the structural 

changes upon exposure to various liquid solvents have been discussed by Serre et 

al.
[222]

 The authors show the slow swelling kinetics of Cr-MIL-88B crystals upon 

exposure to liquid water. The structure (obtained from the lattice parameters) of Cr-

MIL-88B dispersed in liquid water is different from the structure that we observe for 

crystals exposed to water vapour. It seems that less water can be adsorbed from the 

gas phase. We also examined the time-dependent structural evolution of Fe-MIL-88B; 

the powder responds quickly to changes in partial pressure and the structural change 

is complete after 45 min (Figure 6.13). 
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Figure 6.12: Comparison of the measured X-ray patterns under the given relative 

pressures with the simulated patterns. Parameters of indexation are given 

in Table 6.2. The size of the unit cell as a function of relative pressure is 

depicted schematically. 
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Figure 6.13: Evolution of structural changes of dry MIL-88B exposed to a relative 

pressure of water of 0.9. 

To quantify the uptake of water and to verify the employed method of sorption@XRD 

the sorption isotherm of water with bulk-Fe-MIL-88B was recorded (albeit under 

different conditions); it is shown in Figure 6.14. The sorption@XRD measurements 

were obtained from thin films under a continuous flow of dry nitrogen, and the partial 

pressure was adjusted by mixing water vapour and nitrogen at a particular ratio. In 

contrast, the conventional bulk sorption measurement was performed volumetrically, 

that is, the sample was outgassed in vacuum for one night at 120 °C, followed by 

incremental dosing of water vapour into the sample cell. 
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Figure 6.14: Water sorption isotherm of bulk MIL-88B crystals after outgassing (120 °C, 

overnight). 

Beginning at low pressures, there is continuously increasing adsorption of water. 

Above a relative pressure of 0.3, a drastic stepwise increase of the adsorbed amount is 

observed. The second distinct step occurs above a partial pressure of 0.8; between 

those two steps, there is a continuous increase of the adsorbed volume. These results 

are in good agreement with the data obtained from the sorption@XRD measurements. 

The desorption also proceeds in two distinct steps, but these are shifted to lower 

relative pressures, thus reflecting the hysteresis observed in the sorption@XRD 

measurements. As equilibration for the last data points upon desorption took longer 

than three days for each point, complete closure of the isotherm could not be 

obtained. The adsorbed volume of water at a partial pressure of 0.85 can be 

calculated to be 278 cm
3
/g, which corresponds to 15 mmol/g. 
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6.4 Conclusions 

In this chapter we have reported the development of a new sample cell, which was 

employed for in situ sorption@XRD measurements. This method allows us to follow 

the structural changes of flexible, porous materials during adsorption and desorption 

of guest molecules. Employing this new method we were able to obtain information 

about the water sorption behaviour of Fe-MIL-88B crystals. Oriented, surface-grown 

Fe-MIL-88B crystals on SAM-functionalized gold substrates showed the same 

structural changes during sorption of water as randomly oriented bulk Fe-MIL-88B 

crystals. The sorption isotherms recorded with the help of the employed 

sorption@XRD method show two distinct steps of structural change. An increase of 

the relative pressure of water leads to a small decrease of the c parameter of both the 

surface-grown MIL-88B crystals and the bulk material and in the same instance a 

larger increase of the a parameter, resulting in an overall increase of the cell volume 

of more than 40 %. Based on their large pore volume and crystalline micropore 

system, surface grown porous MOFs with accessible pores are interesting candidates 

for sensor and membrane applications. 
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6.5 Additional Details 

Table 6.3: Two theta values of the (002) reflection and resulting lattice parameter c, 

taken from the sorption@XRD measurement of the Fe-MIL-88B film 

sample. 

p/p0 2 002 / ° d002 parameter c 

0.000 9.125 9.684 19.367 

0.051 9.130 9.678 19.357 

0.102 9.135 9.673 19.346 

0.153 9.140 9.668 19.336 

0.203 9.140 9.668 19.336 

0.254 9.160 9.647 19.293 

0.304 9.180 9.626 19.251 

0.354 9.180 9.626 19.251 

0.404 9.180 9.626 19.251 

0.454 9.190 9.615 19.231 

0.504 9.190 9.615 19.231 

0.553 9.190 9.615 19.231 

0.602 9.200 9.605 19.210 

0.652 9.205 9.600 19.199 

0.701 9.250 9.553 19.106 

0.750 9.260 9.543 19.086 

0.798 9.260 9.543 19.086 

0.847 9.270 9.532 19.065 

0.895 9.270 9.532 19.065 

0.944 9.270 9.532 19.065 

0.992 9.270 9.532 19.065 

0.944 9.270 9.532 19.065 

0.895 9.270 9.532 19.065 

0.847 9.270 9.532 19.065 

0.798 9.270 9.532 19.065 

0.750 9.260 9.543 19.086 

0.701 9.250 9.553 19.106 

0.652 9.215 9.589 19.179 

0.602 9.205 9.600 19.199 

0.553 9.200 9.605 19.210 

0.504 9.200 9.605 19.210 

0.454 9.195 9.610 19.220 

0.404 9.190 9.615 19.231 

0.354 9.190 9.615 19.231 
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0.304 9.190 9.615 19.231 

0.254 9.190 9.615 19.231 

0.203 9.180 9.626 19.251 

0.153 9.180 9.626 19.251 

0.102 9.170 9.636 19.272 

0.051 9.150 9.657 19.314 

0.000 9.130 9.678 19.357 

 

Table 6.4: Two theta values of the (002) and (101) reflections and resulting lattice 

parameters (lp) a and c. The theoretical value for the reflection position of 

(100) is calculated and compared to the observed value. 

p/p0 2002/° d002 lp c 2101/° d101 lp a 
d100 

(calc.) 

2100/° 

(calc.) 

2100/° 

(obs.) 

0.00

0 

9.13 9.678 19.357 12.03 7.351 9.176 7.946 11.126 11.15 

0.04

9 

9.15 9.657 19.314 11.83 7.475 9.361 8.106 10.905 10.91 

0.09

7 

9.15 9.657 19.314 11.74 7.532 9.445 8.179 10.808 10.81 

0.14

5 

9.15 9.657 19.314 11.63 7.603 9.550 8.271 10.688 10.69 

0.19

4 

9.15 9.657 19.314 11.57 7.642 9.609 8.321 10.623 10.63 

0.24

2 

9.15 9.657 19.314 11.53 7.669 9.648 8.355 10.579 10.59 

0.28

9 

9.15 9.657 19.314 11.51 7.682 9.668 8.373 10.558 10.57 

0.33

7 

9.21 9.594 19.189 10.75 8.223 10.509 9.101 9.710 9.71 

0.38

5 

9.21 9.594 19.189 10.73 8.238 10.533 9.122 9.688 9.71 

0.43

2 

9.21 9.594 19.189 10.73 8.238 10.533 9.122 9.688 9.69 

0.47

9 

9.21 9.594 19.189 10.73 8.238 10.533 9.122 9.688 9.69 

0.52

6 

9.21 9.594 19.189 10.73 8.238 10.533 9.122 9.688 9.69 

0.57

9 

9.21 9.594 19.189 10.71 8.254 10.557 9.143 9.666 9.67 

0.62

6 

9.21 9.594 19.189 10.71 8.254 10.557 9.143 9.666 9.67 

0.67

3 

9.23 9.574 19.147 10.69 8.269 10.587 9.168 9.639 9.67 

0.72

0 

9.23 9.574 19.147 10.67 8.285 10.611 9.189 9.617 9.63 

0.76

7 

9.23 9.574 19.147 10.67 8.285 10.611 9.189 9.617 9.63 

0.81

3 

9.29 9.512 19.024 10.3 8.581 11.103 9.615 9.190 - 

0.86

0 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.90

6 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.95

2 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.91

9 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.87

2 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.82

5 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.77

7 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 

0.73

0 

9.29 9.512 19.024 10.29 8.590 11.116 9.627 9.179 - 
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0.68

3 

9.29 9.512 19.024 10.33 8.557 11.062 9.580 9.224 - 

0.63

5 

9.29 9.512 19.024 10.37 8.524 11.009 9.534 9.268 - 

0.58

7 

9.23 9.574 19.147 10.73 8.238 10.538 9.126 9.683 9.67 

0.53

9 

9.23 9.574 19.147 10.73 8.238 10.538 9.126 9.683 9.69 

0.49

1 

9.23 9.574 19.147 10.73 8.238 10.538 9.126 9.683 9.69 

0.44

2 

9.23 9.574 19.147 10.75 8.223 10.514 9.106 9.705 9.71 

0.39

4 

9.23 9.574 19.147 10.75 8.223 10.514 9.106 9.705 9.71 

0.34

5 

9.23 9.574 19.147 10.75 8.223 10.514 9.106 9.705 9.69 

0.29

6 

9.23 9.574 19.147 10.77 8.208 10.491 9.085 9.728 9.73 

0.24

7 

9.23 9.574 19.147 10.78 8.200 10.479 9.075 9.739 9.77 

0.19

8 

9.23 9.574 19.147 10.79 8.193 10.467 9.064 9.750 9.73 

0.14

9 

9.21 9.594 19.189 10.81 8.178 10.438 9.040 9.777 9.810 

0.09

9 

9.19 9.615 19.231 10.87 8.133 10.363 8.975 9.847 9.83 

0.05

0 

9.17 9.636 19.272 11.71 7.551 9.477 8.207 10.771 10.81 

0.00

0 

9.14 9.668 19.336 11.97 7.388 9.231 7.994 11.059 11.15 

 

  



6 Sorption properties of oriented Fe-MIL-88B crystals 

 

146 
 

6.6 Documentation of the LabView control programmes  

LabView control programme for automated Sorption@XRD 

measurements 

Within this work a new programme was designed to ensure a fully automated 

collection of sorption@XRD data, in the following it will be referred to as 

Sorption@XRD. 

The Sorption@XRD programme controls the valve opening of the MFCs for the 

sorptive and the carrier gas and allows the automated increase or decrease of the 

valve opening of the liquid MFC. The automated collection of the XRD data is ensured 

by the software programme
[257]

 of the diffractometer via writing an event list including 

scans and breaks. 

The front panel of the programme Sorption@XRD is presented in Figure 6.15. The 

different options for the possible settings will be explained with reference to the 

programme code. 
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Figure 6.15: Front panel of the LabView programme Sorption@XRD. 

As described above, different MFCs are selectable for the carrier gas (Nitrogen Flow). 

In the case of nitrogen Flow controller C6 is selected by clicking on the green button 

next to its name. For liquid sorptives Flow controller C3_S has to be selected. If one 

flow controller is selected, all others will automatically be deselected and the ID of the 

flow controller will be written to variable ID nitrogen FC or ID sorptive FC, 

respectively (see Figure 6.16). 
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Figure 6.16: Cut-out from the block diagram of the Sorption@XRD programme 

demonstrating the flow controller selection. 

This selection process is running within a while loop as long as either Start or Start 2 

is selected. (Figure 6.17). 

 

Figure 6.17: While loop containing the process of flow controller selection. 

The communication with the flow controllers and the CEM is started as soon as either 

Start or Start 2 is selected (case selector for case structure). The communication 

consists of two different main steps. The first being the request of the current valve 

opening and current evaporation temperature and display of the three requested 
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values in the Flow controller monitor (front panel, Figure 6.15). The second step is the 

transfer of the defined values for Nitrogen flow in, Sorptive flow in and Evaporation 

Temperature in to the digital MFCs (see Figure 6.19). 

 

Figure 6.18: Case structure containing the communication with the digital MFCs and 

the CEM. The communication is processed via SubVis delivered from 

Bronkhorst along with the MFCs. The case structure contains a stacked 

sequence structure within a while loop. The first process within the 

stacked sequence (No. 0) is a waiting step to ensure synchronization of the 

following multiple steps (see Figure 6.19). 
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Figure 6.19: Steps 1 to 6 of the stacked sequence structure within the flow controller 

communications window (see Figure 6.18). Steps 1 – 3 request the current 

values for valve openings and evaporation temperature of the MFCs for the 

sorptive, the carrier gas and the CEM. The obtained value is handed over to 

the flow controller monitor and displayed there. Steps 4 – 6 transfer the set 

values for Evaporation Temperature, Nitrogen flow in and Sorptive flow in 

to the digital MFCs with the help of the SubVi DDE Poke. 
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The address of the particular flow controller is read from the variables filled in the 

flow controller selection step (ID Nitrogen FC and ID Sorptive FC). The main 

advantage of this design is that different combinations of flow controllers may be 

chosen by the user without changing the programme code. The CEM is addressed 

directly (ID C(2)) as there is physically only one CEM in the experimental setup.  

As can be seen from the front panel (Figure 6.15), there are two different running 

modes for the Sorption@XRD programme: Gas Flow (Start) and Automatic Gas Flow 

(Start 2). If the programme is running in Gas Flow mode, the current values for valve 

openings Nitrogen flow in, Sorptive flow in and Evaporation Temperature in are 

transferred to the MFCs and the CEM, as described above. The difference when 

running in Automatic Gas Flow mode, instead of the Sorptive flow in, the variable 

Sorptive flow in 2 is transferred to the digital MFCs (as marked red in Figure 6.19). 

The value of this variable results from a calculation within an automated sequence 

structure. (Figure 6.20) If Start 2 is selected a sequence starts, beginning with a 

pause, defined by the user (front panel, Figure 6.15) and filling of the variable Current 

variation of valve opening, the value is taken from the user defined parameter 

Increment valve opening (for example 5 %). The central part of the sequence 

structure is an inner sequence consisting of five steps. In the first step, it is checked if 

the sum of the set value for the Increment valve opening (see also front panel, Figure 

6.15) and the Current valve opening is bigger than 100. If that is true, the Increment 

valve opening (see also front panel) is multiplied with minus one and the new value is 

written to the variable Current variation of valve opening. In the next step the variable 

Current variation of valve opening is added to the Current valve opening, resulting in 

a new Current valve opening, that is written to the variable Sorptive flow in 2. The 
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third step consist in a pause, which is set by the user (see front panel, Figure 6.15) 

and corresponds to the time for which a certain partial pressure shall be held 

constant. The next two steps control the end of the process, i.e. if the Current valve 

opening is bigger than zero, the inner sequence is started from the beginning, if not 

the Start 2 button is deselected and the Current valve opening and the Current 

variation of valve opening are set to zero. If the Start 2 button is deselected, the while 

loop containing the described inner sequence structure is stopped (exit condition). 

 

Figure 6.20: Process for the automated increase and decrease of the sorptive valve 

opening during Automatic Gas Flow. 

To summarize, the functions of the Sorption@XRD process are either simple gas flow 

at a defined partial pressure or an automatic gas flow with variations of partial 

pressure in a user-set increment. The possible user settings are listed in Table 6.5. 

Table 6.5: For the two different running modes, different parameters may be set by 

the user (marked with an X). 
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Possible User Settings Gas Flow mode Automatic Gas flow mode 

Nitrogen Flow (%) in X X 

Evaporation Temperature (°C) in X X 

Sorptive Flow (%) in X  

Increment valve opening  X 

Pause (s)  X 

 

The features of the simple Gas Flow mode are also implemented in a second control 

programme (Ellipsometer porosimetry) for usage of the flow controlling system in 

combination with an ellipsometer. 

Redesigned LabView control programme for automated QCM 

measurements 

The already existing LabView programme for automated QCM measurements in our 

group was cleaned up during this work, existing problems were solved and new 

features were implemented. Within this section the possible settings and their 

programme code shall be explained. 

 

Figure 6.21: File and Folder Settings in the Front panel of the QCM Main.vi. 



6 Sorption properties of oriented Fe-MIL-88B crystals 

 

154 
 

The first settings the user should check are the so-called “File and Folder Settings” 

(Figure 6.21), where the root path for the produced files during the measurement is 

defined. The default setting for the root path is the folder “aktuelle Messung” in the 

directory “E:\QCM Messungen”. It is also possible to have the produced files sent via 

email to the entered email address. 

 

Figure 6.22: Front panel for the flow control  

The flow controller system that is used to control partial pressures in the sample cell 

of the QCM is the same as employed for sorption@XRD measurements and its 
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features were already described above. The only difference consists of a delay of one 

second inserted within the while loop containing the flow controller selection, to 

achieve a better overall performance. (see Figure 6.23) 

 

Figure 6.23: While loop containing the sequence structure with the flow controller 

selection; the time delay in the second step is one second. 
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The determination of the correct settings for the valve opening for the carrier gas and 

the sorptive is performed exactly the same way as for sorption@XRD measurements. 

The front panel for the flow control, already known from the Sorption@XRD 

programme is slightly extended (Figure 6.22); the new parameters will be discussed 

in the course of this section. The communication with the flow controllers is also 

nearly identical to the one discussed in the previous section, apart from the fact that 

the settings for the flow controllers are recorded during the QCM measurement (see 

Figure 6.24). 

 

Figure 6.24: Case structure containing the communication with the digital MFCs and 

the CEM within the QCM Main.vi. The structure is identical to the one 

within the Sorption@XRD programme (see Figure 6.18 and Figure 6.19) 

apart from the writing of the file Flow_Data.txt, which records the settings 

for the FCs every 100 milliseconds and saves the file to the root path for 

current measurement.  

The programme code for the automated QCM measurements is constructed within a 

case structure, the case selector of which is the START Measurement button above 

the frequency measurement part in the front panel (Figure 6.25 and Figure 6.26). A 
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while loop within the case structure ensures the automated procedure, the exit 

condition of this while loop will be discussed at the end of this section. The sequence 

consists of 17 single steps; the first two of these are displayed in Figure 6.25. In the 

first step of the main sequence the step temperature for the following measurement is 

calculated. This is done by multiplying the iteration of the surrounding while loop 

with the Step Size, set by the user (see Figure 6.27, Temperature control panel) and 

adding the result to the variable Start Temperature (also set by the user, Figure 6.27). 

The iteration of the while loop (depicted as small i in a blue frame in Figure 6.25) is a 

zero-based counter, which means that for the first iteration the Step Temperature is 

equal to the Start Temperature. The resulting Step Temperature is further used within 

this step 1 to create a folder to which the resulting files of this temperature step will 

be saved. The name of this folder will be the actual date and the calculated Step 

Temperature (e.g. 22.02.2009 T=25) and the user will be able to read the created path 

for this folder from the field “Data is saved to” within the “File and Folder settings” 

panel (Figure 6.21). 
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Figure 6.25: Case structure, while loop and step 1 and 2 of the sequence structure for 

the automated QCM measurements. 

In step 2 the communication with the temperature controller is started. The new 

temperature controller for this setup is a Watlow F4 device. The communication with 

this device is accomplished with the help of several so-called SubVis provided by 

National Instruments especially for the Watlow F4 product series (for a complete list 

of all SubVis employed in the programme QCM Main.vi see Table 6.7). The 

combination of these SubVis must be adjusted to the requirements of the particular 

setup. The unit address and the port of the controller are set per default to 1 and COM 

1 (Figure 6.27), the settings required to ensure the communication with the controller 

in the actual experimental setup. Here the communication starts with an initialization 

step in which the controller is reset, followed by the deletion of all profiles that might 

have been running at that point. In the next steps a new profile is created, which 

consists of a ramp time step and an end step. The temperature set point for the ramp 

step is the variable Step Temperature, the value of which was determined in step 1. 
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The time for the ramp time step is set by the user in the Temperature Control panel 

(see Figure 6.27) where it says Heating Time and refers to the time that is needed to 

reach the Step Temperature. The Profile Name, per default set to HEATING, may also 

be changed by the user, but only capital letters may be written in this field. For the 

end step the option “Hold” is selected, that means that the set point is held constant 

by the temperature controller until a new profile is started. The end step is followed 

by the starting of the created profile and afterwards the communication with the flow 

controller is terminated. If any errors occur during this process, they will be displayed 

in the error log within the Output front panel (Figure 6.28). The Output front panel 

also includes the Flow Controller monitor as well as the Step Logging monitor, which 

displays the message “Heating to Step Temperature” during step 2 of the main 

sequence structure. 
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Figure 6.26: Control panel for the frequency measurement, including the START button 

for the automated QCM measurements. 
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Figure 6.27: Temperature control front panel. 
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Figure 6.28: Output front panel, including window for step logging, flow controller 

monitor and error logs for the communication with flow controllers and 

with the temperature controller. For the element in the block diagram 

controlling the clearing of the log monitor see Figure 6.29. 
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Figure 6.29: Permanently running while loop, controlling the deletion of the content of 

the flow controller monitor, if the Clear Log button is selected; a delay of 

one second is inserted in the second step of the sequence structure. 

 

Figure 6.30: Steps 3 - 7 of the sequence structure for the automated QCM 

measurements. 

Step 3 (Figure 6.30) contains a delay time of 60 seconds; the message in the step 

logging monitor is “Waiting”. During step 4, which is announced with “Waiting for 



6 Sorption properties of oriented Fe-MIL-88B crystals 

 

164 
 

Step Temperature” within the Step Logging monitor, the values for the variables 

Current Set Point and the Current Temperature are read from the temperature 

controller within a while loop. As soon as the Current Temperature equals the Step 

Temperature the while loop is stopped and the communication with the temperature 

controller is terminated. After a one second delay time (step 5), the user defined value 

for the nitrogen flow (see Figure 6.22) during the measurement is written to the 

variable Nitrogen flow in, which is used for the direct communication with the digital 

flow controllers (see description of flow controlling system above). In step 7, the 

Increment valve opening (defined by the user in the flow control panel, Figure 6.22) is 

written to the variable Current Variation of valve opening. 

 

Figure 6.31: Steps 8 and 9 of the sequence structure for the automated QCM 

measurements. 
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Before the actual measurement starts, the stability of the frequency of the QCM chips 

has to be guaranteed. This is accomplished with the help of a while loop, which is 

only stopped, if the measured frequencies of both QCM chips are varying within a 

defined interval (Deltatemp chip 1/2) from the mean frequency of the particular chip. 

The time interval for which this condition has to be true is also defined by the user 

(Integration time (s)) in the frequency measurement panel (Figure 6.26). The values of 

the variables Frequency of QCM 1/2 and mean frequency chip1/2 are obtained within 

different structure blocks of the QCM Main.vi block diagram. 

 

Figure 6.32: Case structure controlling the communication with the frequency counter. 

The communication with the frequency counter is performed within a separated case 

structure, which becomes active either during the automated QCM measurement or if 

the Display Frequency button is selected (which may be the case during the 

preparation of a QCM measurement or for determining basic frequencies of QCM 

chips). A NI standard SubVi Measure Frequency.vi is used to determine the 
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Frequencies of QCM 1 and QCM 2 (stacked sequence within while loop, Figure 6.32). 

During an automated measurement, i.e., if START is selected, each measured 

frequency is written into a text file named QCM1_Data.txt and QCM2_Data.txt and 

saved to the root path defined by the user. The mean frequencies of both chips are 

determined in a separated while loop, which is running permanently (Figure 6.33). 

The time interval for which a mean value shall be given, is settable in the field 

Integration Time (s) in the front panel for the frequency measurement settings (Figure 

6.26). 

 

Figure 6.33: Determination of mean frequencies of QCM chip 1 and QCM chip 2. 
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Figure 6.34: Step 10 of the sequence structure for the automated QCM measurements.  

If stability of the frequencies of both chips is reached in step 8, the main sequence 

continues with step 9 (Figure 6.31), in which the text entered by the user under File 

Description (Figure 6.26) is transferred to a string, which later on will be added to the 

file containing the measurement data. Step 10 contains a while loop consisting of 

several sub-structures. Within the upper sequence structure the stability of the 

frequencies of both chips is ensured. If the frequencies are not stable within the given 

timeframe and frequency interval (set by the user in the frequency measurement 

panel, Figure 6.26), for all variables zero is handed over to the lower case structure, 

leading to no action unless the frequencies are stable (Figure 6.35). 
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Figure 6.35: If frequencies are not stable within the given timeframe (Integration Time) 

and the given frequency interval (Delta Chip 1/2), no data will be written to 

files. 

If the frequencies are stable, a sequence consisting of five steps is started. In step a 

the variables for mean frequency chip1/2 and the current valve opening are handed 

over to the case structures containing the data saving. Within these case structures 

(one for each QCM chip) the values for the current valve opening and the mean 

frequency of the particular chip are arranged into a table and written to the files 

QCM1_mean.txt and QCM2_mean.txt with the help of the SubVi Write QCMx 

_mean.vi. In step b, the Current variation of valve opening is multiplied with minus 

one, if the sum of the Current variation of valve opening and the Current valve 

opening is bigger than the value entered for the variable Maximum valve opening. 

This means that if the desired maximum valve opening for the sorptive is reached, the 

valve is closed again in the subsequent steps. Step c contains the actual variation of 

the valve opening, which is also displayed in the Step Logging monitor. The variable 

Current variation of valve opening is added to the Current valve opening and the 
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result is written into the variables Current valve opening and Sorptive flow in, which is 

directly used for the communication with the digital mass flow controllers. In step d 

the value for the Current valve opening is checked, if it is not below zero, the process, 

beginning with the waiting for stable frequencies, is starting again after a user 

defined pause (step e). If the Current valve opening is smaller than zero, the while 

loop containing this whole process is stopped, resulting in the end of this temperature 

step, being announced in the Step Logging within step 11 (Figure 6.36). Also in step 

11, the value for Nitrogen flow in is taken from the user defined value for the Basic 

nitrogen flow. In Step 12 the values for Sorptive flow in, Current valve opening and 

Current variation of valve opening are reset to zero and in the Step Logging monitor 

the message “Reset of variables” is displayed. After the first temperature step is 

completed it is necessary to remove any remaining sorptive molecules. This is 

accomplished with the help of a bake out step, which means that the temperature is 

raised, similar to a calcination process. This bake out process is done within step 13; 

the communication with the temperature controller is almost the same as described 

for the heating step, the only differences being the insertion of a soaking step (the 

user is able to define the time for which the bake out process should last) and the 

different end type (here: all off), as the next temperature will be defined at the 

beginning of the next temperature step.  
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Figure 6.36: Steps 11 - 13 of the sequence structure for the automated QCM 

measurements. 

Step 14 contains the SubVi that sends the produced files (QCM1_mean.txt and 

QCM2_mean.txt) to the entered email address (Figure 6.37). This feature is currently 

disabled in the programme (case structure, case selector set to false). 
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Figure 6.37: Steps 14 and 15 of the sequence structure for the automated QCM 

measurements 

After waiting twice the time of the bake out process during step 15 to ensure that the 

sample cell is cooled down before the process continues (Step Logging delivers the 

message “Waiting bake out time twice”), step 16 ensures that the process does not go 

on without the frequencies being stable; the message in the Step Logging delivered 

during that step is “Waiting for stable frequencies after bake out” (Figure 6.38). Step 

17 regulates the abortion of the surrounding while loop. The user defines, at the 

beginning of an automated QCM measurement, how many steps, i.e. at how many 

different temperatures shall be measured (Number of Repetitions, Temperature 

Control panel, Figure 6.27). The while loop is aborted as soon as the Number of 

Repetitions equals the iteration of the while loop, i.e. for one temperature step the 
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Number of Repetitions to enter is zero, for two steps (two different temperatures) it is 

one. If the Number of Repetitions does not equal the iteration of the while loop, the 

sequence starts again, beginning with step 1. 

 

Figure 6.38: Steps 16 and 17 of the sequence structure for the automated QCM 

measurements. 
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Excel sheet for the calculation of settings of digital MFCs during 

Sorption@XRD and QCM measurements 

Table 6.6: Excel sheet for the calculation of valve openings and partial pressures for 

Sorption@XRD and QCM measurements. 

N2  
valve  

 

N2 
flow 

Sorptive  
valve  

 

Sorptive  
flow  

Sorptive 
quantity 

Sorptive 
 volume 

Sorptive  
VdW  

volume 

Volume  
ratio 

Partial  
pressure 

p/p* 

(%) 
(mL/ 
min)  (%) (g/min) (mol/min) (l/min) (l/min) p/p0 (Pa)   

                    

T (°C) 
actual 
flow Water 

Liquid  
conversion  
factor (g/h) M (g/mol)   

Vmol 
(l/mol)   

Luft- 
druck  

(p0) [Pa] 

Saetti-
gungs- 
dampf-
druck  

(p*) [Pa] 

24 2298.00   1.0000 18.00   22.4   95955 2983 

                    

T (K)     

Liquid  
conversion  

factor 
(g/min)             

297     0.0167             

                    

34 781.32 0 0.0000 0.0000 0.0000 0.00E+00 0.000 0.000 0.000 

34 781.32 5 0.0008 0.0000 0.0010 1.20E-03 0.002 147.436 0.049 

34 781.32 10 0.0017 0.0001 0.0021 2.40E-03 0.003 294.420 0.099 

34 781.32 15 0.0025 0.0001 0.0031 3.61E-03 0.005 440.954 0.148 

34 781.32 20 0.0033 0.0002 0.0041 4.81E-03 0.006 587.039 0.197 

34 781.32 25 0.0042 0.0002 0.0052 6.01E-03 0.008 732.678 0.246 

34 781.32 30 0.0050 0.0003 0.0062 7.21E-03 0.009 877.873 0.294 

34 781.32 35 0.0058 0.0003 0.0073 8.42E-03 0.011 1022.626 0.343 

34 781.32 40 0.0067 0.0004 0.0083 9.62E-03 0.012 1166.939 0.391 

34 781.32 45 0.0075 0.0004 0.0093 1.08E-02 0.014 1310.814 0.439 

34 781.32 50 0.0083 0.0005 0.0104 1.20E-02 0.015 1454.252 0.488 

34 781.32 55 0.0092 0.0005 0.0114 1.32E-02 0.017 1597.257 0.535 

34 781.32 60 0.0100 0.0006 0.0124 1.44E-02 0.018 1739.829 0.583 

34 781.32 65 0.0108 0.0006 0.0135 1.56E-02 0.020 1881.971 0.631 

34 781.32 70 0.0117 0.0006 0.0145 1.68E-02 0.021 2023.379 0.678 

34 781.32 75 0.0125 0.0007 0.0156 1.80E-02 0.023 2164.668 0.726 

34 781.32 80 0.0133 0.0007 0.0166 1.92E-02 0.024 2305.532 0.773 

34 781.32 85 0.0142 0.0008 0.0176 2.04E-02 0.025 2445.974 0.820 
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34 781.32 90 0.0150 0.0008 0.0187 2.16E-02 0.027 2585.995 0.867 

34 781.32 95 0.0158 0.0009 0.0197 2.28E-02 0.028 2725.597 0.914 

34 781.32 100 0.0167 0.0009 0.0207 2.40E-02 0.030 2864.782 0.960 
                    

34 781.32 100 0.0167 0.0009 0.0207 2.40E-02 0.030 2864.782 0.960 

34 781.32 95 0.0158 0.0009 0.0197 2.28E-02 0.028 2725.597 0.914 

34 781.32 90 0.0150 0.0008 0.0187 2.16E-02 0.027 2585.995 0.867 

34 781.32 85 0.0142 0.0008 0.0176 2.04E-02 0.025 2445.974 0.820 

34 781.32 80 0.0133 0.0007 0.0166 1.92E-02 0.024 2305.532 0.773 

34 781.32 75 0.0125 0.0007 0.0156 1.80E-02 0.023 2164.668 0.726 

34 781.32 70 0.0117 0.0006 0.0145 1.68E-02 0.021 2023.379 0.678 

34 781.32 65 0.0108 0.0006 0.0135 1.56E-02 0.020 1881.971 0.631 

34 781.32 60 0.0100 0.0006 0.0124 1.44E-02 0.018 1739.829 0.583 

34 781.32 55 0.0092 0.0005 0.0114 1.32E-02 0.017 1597.257 0.535 

34 781.32 50 0.0083 0.0005 0.0104 1.20E-02 0.015 1454.252 0.488 

34 781.32 45 0.0075 0.0004 0.0093 1.08E-02 0.014 1310.814 0.439 

34 781.32 40 0.0067 0.0004 0.0083 9.62E-03 0.012 1166.939 0.391 

34 781.32 35 0.0058 0.0003 0.0073 8.42E-03 0.011 1022.626 0.343 

34 781.32 30 0.0050 0.0003 0.0062 7.21E-03 0.009 877.873 0.294 

34 781.32 25 0.0042 0.0002 0.0052 6.01E-03 0.008 732.678 0.246 

34 781.32 20 0.0033 0.0002 0.0041 4.81E-03 0.006 587.039 0.197 

34 781.32 15 0.0025 0.0001 0.0031 3.61E-03 0.005 440.954 0.148 

34 781.32 10 0.0017 0.0001 0.0021 2.40E-03 0.003 294.420 0.099 

34 781.32 5 0.0008 0.0000 0.0010 1.20E-03 0.002 147.436 0.049 

34 781.32 0 0.0000 0.0000 0.0000 0.00E+00 0.000 0.000 0.000 

 

List of included SubVis in the programme QCM Main.vi 

Table 6.7: List of all employed SubVis within the QCM Main.vi, including their source, 

location on the computer and their function. 

Title Level Source Location (path) Function 

DDE_open 

conversation_cs.vi 
1 Bronkhorst 

E:\LabView 

Steuerung\SubVIs 

Communication 

with MFCs 

DDE_close 

conversation_cs.vi 
1 Bronkhorst 

E:\LabView 

Steuerung\SubVIs 

Communication 

with MFCs 

DDE poke_cs.vi 1 Bronkhorst E:\LabView Communication 
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Steuerung\SubVIs with MFCs 

DDE request_cs.vi 1 Bronkhorst 
E:\LabView 

Steuerung\SubVIs 

Communication 

with MFCs 

WLF4  Initialize.vi 1 NI 

E:\LabView 

Steuerung\T 

Control\_WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Configure 

Profile.vi 
1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Insert 

Ramp Time Step 

Event.vi 

1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Insert 

Ramp Time 

Step.vi 

1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Insert Soak 

Step.vi 
1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Insert End 

Step.vi 
1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Read.vi 1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Monitor.vi 1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

WLF4 Close.vi 1 NI 

E:\LabView 

Steuerung\T 

Control\WLF4.llb 

Communication 

with temperature 

controller 

Measure 

Frequency.vi 
1 NI 

C:\Programme\National 

Instruments\LabView 

Communication 

with frequency 
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7.1\vi.li\daq\1easiyo.llb counter 

Simple Error 

Handler_cs.vi 
1 Ni 

E:\LabView 

Steuerung\SubVIs 

Display of error 

messages 

Std deviation and 

variance_cs.vi 
1 NI 

E:\LabView 

Steuerung\SubVIs 

Calculation of 

mean values 

Email 

versenden.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Send email to 

given email 

address 

Write 

Flow_Data.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Save 

Flow_Data.txt 

Write 

QCM1_Data.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Save 

QCM1_Data.txt 

Write 

QCM2_Data.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Save 

QCM2_Data.txt 

Write 

QCM1_mean.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Save 

QCM1_mean.txt 

Write 

QCM2_mean.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Save 

QCM1_mean.txt 

Write to 

logmon.vi 
1 

self-

written 

E:\LabView 

Steuerung\SubVIs 

Display status of 

process in Step 

Logging Monitor 
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7 Extending the structure-directing concept to 

functionalized metal-organic frameworks  

The work described in this chapter was undertaken as part of a joint project in 

collaboration with Dr. Jennifer Williams of the University of Edinburgh. 

7.1 Introduction 

Extending the concept of directing the structure and orientation of MOFs using self-

assembled monolayers for surface functionalization invokes the question, which 

framework structures could offer enhanced properties. Interesting candidates for new 

MOF structures directly grown on substrates are those with implemented 

functionalities. Here the modification of the pore walls offers the possibility of 

improving the properties of existing MOF structures. This could, for example, result 

in more selective materials with a higher storage capacity in fields such as gas 

separation or storage.
[45]

 

There are two different approaches to implementing functionalities in MOFs. The first 

employs organic ligands with additional functional groups that are not involved in 

coordination of the metal centres but rather change the functionality of the pore walls. 

The group of S. Kitagawa have focused their research efforts on this challenge. They 

modified the organic linkers in such a way that the host-guest interactions desired for 

a particular application were obtained by inserting unsaturated metal-centres.
[61]

 In a 

different study, the same group reports the implementation of hydrogen-bonding 
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groups for specific host-guest interactions within dynamic porous coordination 

polymers.
[251]

 The second approach is, in a strict sense, an extension of this first 

approach, as it refers to the post-synthetic modification of the organic linkers, which 

in most cases requires the presence of at least one modifiable functional group.
[258]

 

For example, Kim and co-workers showed that the pendant pyridyl groups in a chiral 

zinc network could be methylated.
[70]

 Burrows et al. reported a post-synthetic 

modification starting from an aldehyde-functionalized dicarboxylate to a hydrazone 

ligand.
[259]

 In different studies it has been demonstrated that the amino groups in 2-

amino-1,4-benzenedicarboxylate MOFs can be converted into amides, urethanes,
[260-

263]
 or salicylidenes.

[264]
  

 

Figure 7.1: Substitution of 1,4 benzenedicarboxylic acid through 2-amino-1,4-

benzenedicarboxylic acid leads to the formation of the amino-

functionalized structures of MIL-53, Mil-88B and MIL-101. 

In chapter 5 of this thesis the system iron(III)/ 1,4 benzenedicarboxylic acid has been 

discussed and the three most important structures within this system, namely MIL-53, 

MIL-88B and MIL-101, have been introduced. By employing high-throughput 

synthetic methods, Bauer et al. were able to obtain the amino-functionalized 

isoreticular compounds of these three structures.
[58]

 Their study revealed that the 

insertion of functional groups in the organic linker may strongly change the synthesis 

conditions required for a desired structure. It was found that the nature of the 
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reaction medium has the most profound impact on structure formation. Furthermore, 

the concentration of the starting mixture (i.e., the solvent content) and the 

temperature have also been identified as key parameters for the formation of the 

different competing hybrid phases.  

Within this section the growth of amino-functionalized MILs on SAMs will be 

discussed, representing the extension of the described concept of structure-directed, 

oriented growth of MIL-88B crystals. 

7.2 Experimental  

Preparation of self-assembled monolayers on gold 

The gold-coated slides (glass slides (10 × 13 mm
2
) coated with 10 nm Ti / 100 nm Au 

by electron-beam evaporation, Advalytix AG) were cleaned in ethanol and methanol. 

The cleaned gold slides were immersed in a 1 mM ethanolic solution (6 pieces in 

30 mL) of 16-mercaptohexadecanoic acid (MHDA; 90 %, Aldrich) and left at RT for 

48 h. The SAM-functionalized gold slides were repeatedly washed with ethanol, and 

stored in fresh absolute ethanol until needed. 

Synthesis of bulk NH2-MIL-101  

In a glass reactor, 0.25 g (1.4 mmol) of 2-amino-1,4-benzenedicarboxylic acid (99 %, 

Aldrich) was dissolved in 15 mL dimethylformamide (DMF, p.a., Acros Organics). To 

the clear solution 0.746 g (2.7 mmol) FeCl3·6 H2O (p.a., Merck) was added. The 

sealed-glass reactor was left for 1 day in a preheated oven at 150 °C. After cooling the 
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synthesis mixture to room temperature, the crystalline product was filtrated and 

stored for further characterization. 

Preparation of the crystallization solution for film growth of NH2-

MIL-101 

In a glass reactor, 0.25 g (1.4 mmol) of 2-amino-1,4-benzenedicarboxylic acid (99 %, 

Aldrich) was dissolved in 15 mL dimethylformamide (DMF) (p.a., Acros Organics). To 

the clear solution 0.746 g (2.7 mmol) FeCl3·6 H2O (p.a., Merck) was added. The 

sealed-glass reactor was left for 1 day in a preheated oven at 150 °C. After cooling the 

synthesis mixture to room temperature, the crystalline product was filtered and stored 

for further characterization. The filtrated solution was used for the growth of thin 

films. 

Film Growth of NH2-MIL-101 

The SAM-functionalized gold-slides were placed upside-down on Teflon-supports 

into the filtrated synthesis solution of NH2-MIL-101 (3 pieces in 15 mL). The growth 

step took place at RT in a closed glass reactor. Immersion times were varied between 

3 d and 10 d. 

7.3 Characterization 

X-ray diffraction (XRD) measurements of powders were performed on a STOE powder 

diffractometer in transmission geometry (Cu-Kα1, λ = 1.5406 Å), those of films using a 

Bruker D8 in theta-theta geometry (Cu-Kα1, λ = 1.5406 Å; Cu-Kα2, λ = 1.5444 Å). 

Characterization of the self-assembled monolayers was performed by RAIR 
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spectroscopy, using a Bruker IFS 66v FTIR spectrometer. The sample chamber with a 

high performance variable angle reflection accessory (A-513) was maintained at 2 

mbar during the entire measurement by means of an Edwards rotary-pump. In a 

typical measurement on gold surfaces, an incidence angle of 83 ° to the surface 

normal was used. Furthermore, a cleaned gold slide was measured as background 

prior to the measurements. The morphology of the crystals was studied using a JEOL 

JSM-6500F scanning electron microscope. 

7.4 Results and Discussion 

In our experiments on the direct growth of amino-functionalized MIL structures on 

carboxylate terminated SAMs, we observe, for the first time, direct growth of a MOF 

with an exceptionally large unit cell, namely NH2-MIL-101. 

For the direct growth of the amino-functionalized MIL crystals, the gold substrates 

were modified with monolayers of HS(CH2)16COOH following known procedures
[119, 

185]
 (see section 7.2). The formation of the self-assembled monolayers was confirmed 

by RAIR, as shown in Figure 7.2. The characteristic absorption band at 1554 cm
-1 

indicating the carboxylate group is indicated in the spectrum. The methylene groups 

of the aliphatic chains present high-frequency modes at 2920 and 2850 cm
-1

 

associated with the asymmetric and symmetric C-H stretching vibrations, respectively; 

we also observe the band at 721 cm
-1

 assigned to the stretching vibration of the S-C 

bond.  
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Figure 7.2: RAIR-spectrum of the MHDA self-assembled monolayer on a gold 

substrate. 

As described in section 7.1, NH2-MIL-101 is isoreticular to MIL-101, which has a 

cubic unit cell with a cell parameter of 89 Å. After an immersion time of 3 d, the (222) 

reflection at 3.4 ° two theta and the (333) reflection at 5.1 ° two theta of NH2-MIL-101 

can be clearly detected, as shown in the XRD patterns of the synthesized film samples 

compared to the powder pattern of bulk MIL-101 crystals (Figure 7.3). The increase of 

the immersion time to 7 d leads to a strong increase of the intensities of the (222) and 

(333) reflections. Small additional reflections at 8.6 ° and 10.3 ° two theta , which can 

be assigned to the (662) and the (1022) reflection of NH2-MIL-101, indicate the 

appearance of a small second population of less oriented crystals. We conclude that 

the crystal populations on the SAM have a strongly preferred orientation in [111]-

direction. 
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Figure 7.3: X-ray diffraction data of NH2-MIL-101 crystals grown on functionalized 

gold substrates (immersion times of the substrates in the crystallization of 

3 d and 7 d) compared to the powder pattern of bulk NH2-MIL-101 crystals. 

The background of the XRD patterns of the film samples was subtracted. 

To further investigate the crystal growth on the functionalized substrates, SEM 

images were taken. (Figure 7.4) The crystals feature a distinct sphere-like morphology 

with sizes between 100 – 500 nm. 
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Figure 7.4: Scanning electron micrographs of NH2-MIL-101 samples after immersion 

times of 10 days at different magnifications. 
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Higher magnification reveals that most of the crystals have a triangular top-face 

(Figure 7.4) This is in good agreement with the preferred [111]-orientation of the 

crystals, deduced from the XRD results. NH2-MIL-101 crystallizes in a cubic symmetry 

and the bulk crystals show an octahedral morphology, which would appear with 

triangular habit from in top-view if oriented in [111] direction. 

To demonstrate the interesting properties of NH2-MIL-101 a thermogravimetric 

analysis (TGA) and nitrogen sorption data were recorded of the corresponding bulk 

material; the results are depicted in Figure 7.5 and Figure 7.6. The first step of 

56 wt. % in the TGA is assigned to the loss of solvent and water molecules from 

inside the pores. The decomposition of the organic parts of NH2-MIL-101 

subsequently takes place above 250 °C within two steps, which can also be seen from 

the differential scanning Calorimetry (DSC) in red in Figure 7.5. These two steps show 

a weight loss of 30 % and of 70 % corresponding to the crystals with filled pores and 

those with empty pores respectively. This 70 % weight loss is in good agreement with 

the weight fraction of the organic parts of NH2-MIL-101 (Fe3O(NH2BDC)3), which can 

be calculated as 75 wt. %. 
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Figure 7.5:  TGA and DSC data of NH2-MIL-101. 

 

Figure 7.6: Nitrogen gas sorption isotherm at 77 K for bulk NH2-MIL-101. 
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The high porosity of NH2-MIL-101 crystals can be demonstrated using nitrogen 

sorption, recorded at 77 K. The Type I isotherm of the amino functionalized MIL-101 

is very similar to the isotherm of the unfunctionalized compound reported in the 

literature.
[72]

 The shapes of the isotherms are nearly identical, both providing a small 

step in the adsorption curve at 0.2 p/p0. The overall adsorbed volume of nitrogen is 

slightly smaller for NH2-MIL-101 than for MIL-101, which can be attributed to the 

amino groups being present in the framework. The fact that the adsorption capacity of the 

material is only slightly reduced by the amino functionalization is of great interest for the 

thin film growth and for further investigations concerning possible applications of 

these functionalized MOF thin films. 

7.5 Conclusion 

In chapters 3 to 5, the complete molecular control of the growth orientation of MOFs 

was demonstrated on HKUST-1 and MIL-88B. After this proof of concept, the next 

important step is to extend these methods to functionalized MOFs - this work is the 

subject of the present chapter.  

An inherent advantage of MOFs over more traditional porous materials, such as 

zeolites or activated carbons, is the possibility of tuning the host-guest interactions by 

functionalizing the organic linker molecules. In this chapter, we have demonstrated 

that advantages of functionalization can also be realized in oriented film synthesis of 

MOFs: We have shown for the first time that functionalized MOFs can be grown on 

self-assembled monolayers and that a preferred orientation of the crystals is achieved. 

This was demonstrated for NH2-MIL-101 and to a lesser extent for NH2-MIL-88B. (see 

Additional Details within section 7.6) It was also shown that the adsorption capacity of 
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NH2-MIL-101 was not significantly reduced by the amino functionalization; this is 

important for potential storage applications. 

We envisage that by carrying out systematic investigations of the synthesis 

parameters such as described in this work, MOFs with different functionalities or 

entirely different functionalised MOFs could be grown with a preferred orientation. 

We anticipate that the ability to direct the growth of functionalized MOFs will be of 

particular interest in applications such as selective chemical sensors, where both the 

control of crystal growth orientation and functionalization of the organic linker to 

control host-guest interactions are advantageous. 

7.6 Additional Details 

Oriented growth of another amino-functionalized MOF, NH2-MIL-88B, was observed 

in several instances in fairly similar synthesis batches. The details for these 

experiments are presented at the end of this section. Apparently, the position of these 

syntheses in the crystallization parameter field is close to the crystallization boundary 

between NH2-MIL-101 and NH2-MIL-88B, as both phases can be observed when 

incrementally changing synthesis parameters. 

As with unfunctionalized MIL-88B crystals, we observe crystal growth of 

NH2-MIL-88B in the [002] direction on functionalized gold substrates with –COO
-
 

termination. In the X-ray diffraction patterns of the crystals grown directly on the film, 

we observe only two reflections at 9.2 ° and 18.4 ° two theta (Figure 7.7). The absence 

of the other peaks observed in the corresponding bulk XRD indicates that the crystals 

grow on the SAM in a highly oriented fashion.  
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Figure 7.7: X-ray diffraction measurements of crystals grown on functionalized gold 

substrates compared to the XRD pattern of bulk NH2-MIL-88B crystals. The 

immersion time of the substrates in the crystallization solution varied 

between 4 d and 11 d. 

SEM images of the samples, represented in Figure 7.8, show small hexagonally 

shaped crystals with almost vertical orientations, very similar to the SEM images of 

the earlier stages of MIL-88B crystal growth. The size distribution of the surface-

grown crystals is inhomogeneous and the surface coverage is fairly low. 
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Figure 7.8: Scanning electron micrographs of NH2-MIL-88B crystals after an 

immersion time of 11d. 

The results presented on the direct growth of NH2-MIL-88B show that the insertion of 

a functional group into the framework strongly influences the synthesis conditions for 

the bulk crystals and for the oriented growth on functionalized substrates. We have 

demonstrated that the extension of the observed structure- and orientation-directing 

behaviour of carboxylate-terminated SAMs for unfunctionalized MIL-88B is possible 

for the amino-functionalized analogs as well. 

Synthesis of NH2-MIL-88B  

In a glass reactor, 1.00 g (5.52 mmol) of 2-amino-1,4-benzenedicarboxylic acid 

(99 %, Aldrich) were dissolved in 15 mL dimethylformamide (DMF) (p.a., Acros 

Organics). To the solution 2.784 g (11.04 mmol) of FeCl3·6 H2O (p.a., Merck) was 
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added. The sealed-glass reactor was left for 1 day in a preheated oven at 150 °C. After 

cooling the synthesis mixture to room temperature, the crystalline product was 

filtrated and stored for further characterization.  

Preparation of self-assembled monolayers on gold 

The synthesis of the SAMs was performed as described in section 7.2. 

Preparation of the crystallization solution for film growth of NH2-

MIL-88B on –COOH terminated SAMs  

In a glass reactor, 0.25 g (1.4 mmol) of 2-amino-1,4-benzenedicarboxylic acid (99 %, 

Aldrich) were dissolved in 15 mL dimethylformamide (DMF) (p.a., Acros Organics). To 

the clear solution 0.696 g (2.5 mmol) FeCl3·6 H2O (p.a., Merck) was added. The 

sealed-glass reactor was left for 2 days in a preheated oven at 150 °C. After cooling 

the synthesis mixture to room temperature, the crystalline product was filtrated and 

stored for further characterization. The filtered solution was used for the growth of 

thin films. 

Film-Synthesis of NH2-MIL-88B 

The SAM-functionalized gold-slides were placed upside-down on Teflon-supports 

into the filtrated synthesis solution of NH2-MIL-88B (3 pieces in 15 mL). The growth 

step takes place at RT in a closed glass reactor. Immersion times were varied between 

4 d and 11 d. 
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8 General conclusions 

Within this thesis several aspects of the controlled direct growth of metal-organic 

frameworks on functionalized self-assembled monolayers were investigated. 

It could be demonstrated that different molecular functionalities of the self-assembled 

monolayers induce different, well-defined orientations of HKUST-1 crystals. A model 

for explaining the still unknown mechanism of this remarkable effect could be 

developed, suggesting selective interactions of crystal building blocks in solution with 

the functionalized surfaces. The thermal pre-treatment of the synthesis solution 

induces a crystallization process which results in bulk HKUST-1 crystals and, 

presumably, in the existence of colloidal or molecular building blocks of Cu3(BTC)2 in 

the solution. Taking into account the copper-carboxylate-based paddle-wheel motif in 

the open framework structure, different coordination modes of the carboxylic or the 

alcoholic groups might control the selective nucleation/growth on the substrate, thus 

mimicking either axial (as with water) coordination with the alcohol terminus or 

chelating coordination (as with BTC) with the -COOH terminus of the SAM, 

respectively. 

These results represent the first “proof of concept” that by mimicking characteristic 

structural features of metal-organic frameworks in the terminal group of self-

assembled monolayers, it is possible to control the orientation of crystals during 

direct growth on functionalized gold surfaces. 

This synthetic concept for oriented film growth gave us the opportunity to directly 

monitor successfully the growth processes of oriented HKUST-1 crystals grown on 
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self-assembled monolayers with the help of in situ atomic force microscopy. The 

development of a single growth step could be followed extensively, which has 

provided direct evidence for a layer-by-layer mechanism of a constituent 1.5 nm d111 

crystal spacing step of HKUST-1, its shape during growth, and the influence of the 

step vertex on the rate of growth. This information helps to enhance current 

understanding of the crystal growth of MOF materials, will support the development 

of crystals of these materials of specific form for future application, and demonstrates 

clearly the potential of the unique platform of SAM-supported oriented crystals to 

provide further insights into the chemistry and structural evolution of coordination 

polymers. 

A different aspect of the control on surface-grown MOFs could be demonstrated with 

the structure-directed and oriented growth of MIL-88B on carboxylate-terminated 

SAMs. The results suggest that structure direction is evoked through favourable 

symmetry relationships between the hexagonally ordered SAMs and the hexagonal 

structure of MIL-88B, which is competing with MIL-53, the product of homogeneous 

nucleation in the very same crystallisation solution. In agreement with our previous 

studies, the carboxylate functionality of the SAMs is proposed to mimic the 

carboxylate groups of the BDC molecules und thus to direct oriented growth on the 

surface. 

The oriented crystals of the flexible framework structure of MIL-88B provide channels 

perpendicular to the surface, thus representing a promising model system for studies 

of the sorption properties of MOF crystals assembled as thin films. For this purpose a 

new sample cell was developed, which allowed us to follow the structural changes of 

flexible, porous materials during adsorption and desorption of guest molecules 
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(“sorption@XRD”). Oriented Fe-MIL-88B crystals grown on SAM-functionalized gold 

substrates showed similar structural changes during sorption of water as randomly 

oriented bulk Fe-MIL-88B crystals. The sorption isotherms recorded with the help of 

the sorption@XRD method show two distinct steps of structural changes upon loading 

and unloading the channel system with water vapour, including two well‐defined 

hystereses. 

In the latest study, we have demonstrated that the advantages of molecular 

functionalization can also be realized in oriented film synthesis of MOFs: We have 

shown for the first time that amino-functionalized MOFs can be grown on SAMs and 

that a preferred orientation of the crystals is achieved. We envisage that by carrying 

out systematic investigations of the synthesis parameters such as described in this 

work, MOFs with different functionalities or entirely different functionalised MOFs 

could be grown with a preferred orientation. We anticipate that the ability to direct 

the growth of functionalized MOFs will be of particular interest in applications such as 

selective chemical sensors, where both the control of crystal growth orientation and 

functionalization of the organic linker to control host-guest interactions are 

advantageous. 

The ability of functionalized molecular surfaces to act as crystallisation substrates has 

been demonstrated in this work and first studies on the properties of these systems 

have led to promising results. These investigations lay the foundation for future 

studies directed at the mechanism of oriented growth of MOF crystals, thus providing 

a powerful means to control structure and orientation in biomimetic materials 

systems. Furthermore, the selective adsorption and separation behaviour of the 
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resulting thin MOF films will be of interest for the development of selective chemical 

sensors and separation concepts. 
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10 Appendix:  

10.1 List of abbreviations 

 

2D two dimensional 

3D three dimensional 

AASBU Automated assembly of secondary building units 

AFM Atomic Force Microscopy 

BDC 1,4-Benzenedicarboxylic acid 

BET Brunauer, Emmett, Teller 

BTC 1,3,5-Benzenetricarboxylic acid 

CEM Controlled evaporation mixer 

COF Covalent organic framework 

CPL-1 Coordination polymer with pillared layer structure, number 1 

CRT Cathode ray tube 

DFT Density functional theory 

DMF N,N-Dimethylformamide 

DSC Differential scanning calorimetry 

FC Flow controller 

FT Fourier transformation 
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HKUST-1 Hong-Kong University structure 1 

ID Identification number 

IR Infrared 

IRMOF Isoreticular metal-organic framework 

IUPAC International Union of Pure and Applied Chemistry 

µCP Micro-Contact printing 

MFC Mass flow controller 

MFM Magnetic Force Microscopy 

MHD 16-Mercaptohexadecanol 

MHDA 16-Mercaptohexadecanoic acid 

MIL Matériaux de l’Institut Lavoisier 

MOF Metal-organic framework 

MS Microsoft 

MUD 11-Mercaptoundecanol 

QCM Quartz-crystal microbalance 

RAIRS Reflection-Adsorption IR spectroscopy 

RT Room temperature 

SAM Self-assembled monolayer 

SBU Secondary building unit 

SEM Scanning electron microscopy 

SPM Scanning probe microscopy 
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STM Scanning tunnelling microscopy 

TEM Transmission electron microscopy 

TGA Thermogravimetric analysis 

XRD X-ray diffraction 
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10.2 Synthesis and Characterization of Fe-MIL-101 

During the optimization of the synthesis pathway for MIL-88B films Fe-MIL-101 was 

also synthesized and characterized. The results will be presented in the following 

section. 

Synthesis of Fe-MIL-101 

In a glass reactor, 15.6 mg (0.094 mmol) of 1,4-benzenedicarboxylic acid (98 %, 

Aldrich) were dissolved in 10 mL dimethylformamide (DMF) (p.a., Acros Organics). To 

the mixture 16.9 mg (0.063 mmol) FeCl3·6 H2O (p.a., Merck) was added. The sealed-

glass reactor was left for 2 days in a preheated oven at 150 °C. The orange crystals 

were filtered, washed with DMF and dried under nitrogen before further 

characterization. 

Characterization of Fe-MIL-101 

The synthesis was carried out as described in the experimental section of this chapter 

(section 5.2). The XRD pattern of the synthesized Fe-MIL-101 compared to the 

simulated pattern of Cr-MIL-101 crystals is shown in Figure 10.1. The reflection 

positions are in very good agreement, the intensities, however, vary strongly. This 

deviation is attributed to the different metal ions in the two products. The first 

reflection at 1.7 ° two theta was cut off by the beam stop of the diffractometer. 
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Figure 10.1: Comparison of the XRD pattern of bulk Fe-MIL-101 crystals to the 

simulated pattern of Cr-MIL-101. 

 

Figure 10.2: Scanning electron micrographs of small octahedral Fe-MIL-101 crystals. 

The morphology of the Fe-MIL-101 crystals was investigated with the help of 

scanning electron microscopy (Figure 10.2). The size distribution of the crystals is 

very inhomogeneous; the size varies from about 50 to 500 nm. As described before, 

for materials with such large unit cells it is often difficult to obtain crystals that are 
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large enough for single crystal structure solutions. Due to the large unit cell of MIL-

101 and in agreement with the published work for the Cr(III) analogue
[72]

, we were 

not able to obtain larger single crystals. 

 

Figure 10.3: Thermogravimetric (TG) and Differential Scanning Calorimetric (DSC) 

Analysis of Fe-MIL-101. 

The thermogravimetric analysis of Fe-MIL-101, displayed in Figure 10.3 shows a first 

weight loss of 55 % in one step between 25 and 250 °C. As there is only a small 

endothermic signal in the DSC corresponding to this weight loss, it is assigned to the 

removal of the guest molecules, i.e. DMF or water from inside the pores. The solvent 

free structure is stable up to 360 °C. The combustion of the organic part of the 

framework takes place via three steps (three exothermic peaks in the DSC-curve) and 

corresponds to a weight loss of about 20 %.  
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Figure 10.4: IR (left) and Raman (right) spectra of Fe-MIL-101. 

The IR spectrum of Fe-MIL-101 and the Raman spectrum are displayed in Figure 

10.4. The assignment of the observed bands to the particular groups is accomplished 

as follows.
[249]

 The IR spectrum shows vibrational bands between 1560 cm
-1

 and 

1376 cm
-1

 characteristic for the asymmetric and symmetric stretching vibration of the 

carboxylic groups of the BDC coordinated to a metal centre. The absence of bands in 

the region of 1715-1680 cm
-1

, typical of protonated carboxylic groups, is in 

agreement with the framework structure of MIL-101 where no protonated carboxylic 

acid groups are present. Other characteristic bands of the ligand due to the C=C 

stretching vibration of the p-disubstituted aromatic ring were found between 1500 

and 1600 cm
-1

. Typical C-H vibrations for para-substituted aromatic compounds lie in 

the region between 800 and 840 cm
-1

. The deformation vibration of the carboxylate 

groups is to be found at 750 cm
-1

. The Fe-O stretching vibration from the FeO6 

octahedra is present at 548 cm
-1

. The absorption band at 1656 cm
-1

 can be assigned 

to the C=O stretching of the amide (DMF), which is still present in the framework after 

synthesis. In the Raman spectrum, the peak at 470 cm
-1

 can be assigned to the Fe-O 
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vibration of the iron-oxygen octahedron. The deformation vibrations of the aromatic 

CH-groups can be found at 631, 863 and 1144 cm
-1

. The absorption bands within the 

region between 1400 and 1460 cm
-1

 can be assigned to the symmetric stretch of the 

carboxylate groups. The C=C vibration is at 1502 cm
-1

. The absorption band with the 

highest intensity (1612 cm
-1

) is assigned to the asymmetric stretch of the carboxylate 

group. 
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