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Abstract 

In the past few decades, the lobula plate of the fly has emerged as one of the leading 

models for the neural processing of optic flow stimuli that give rise to visual orientation 

behaviors (for recent reviews see Borst and Haag, 2002; Egelhaaf et al., 2002; Egelhaaf et al., 

2002; Borst and Haag, 2007). The relative simplicity and accessibility of this neural system 

allows researchers to characterize the neural mechanisms that are thought to link the visual 

stimuli and the resulting behavioral responses. In the lobula plate, a set of 60 motion sensitive 

lobula plate tangential cells (LPTCs) integrate visual motion information from an array of local 

motion detectors, which form a retinotopic map of the fly’s visual space in the lobula plate. The 

selective pooling of local, direction selective inputs, together with a network of unilateral and 

bilateral interactions between LPTCs, shape and tune the response properties of LPTCs to 

behaviorally relevant optic flow stimuli.  

Over the years, lobula plate researchers assembled a formidable array of measurement 

and perturbation techniques that are usually available only in in-vitro systems. Additionally, the 

lobula plate and its presynaptic circuitry have been the subject of extensive and detailed 

modeling which allows a deeper synthetic understanding of the empirical results, as well as a 

more efficient and detailed way to generate hypotheses.  

In this work I used a selection of these tools to explore the role of intracellular 

processing of visual motion information in lobula plate neurons and the significance of spatial 

segregation and aggregation of these cells’ inputs in the context of their sensory function. 
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Previous work on a network of ten LPTCs of the vertical system (VS cells) resulted in a 

prediction that due to lateral, gap-junction coupling of neighboring VS cells in their axon-

terminals, the receptive fields of these cells should be broader in the axonal region than in the 

dendritic regions. I tested and confirmed this prediction using in-vivo calcium imaging and 

intracellular recordings. Using single-electrode voltage clamp I was able to perturb the flow of 

information in these cells and isolate the source of input responsible for this broadening, 

confirming that the coupling indeed takes place in the axon terminal.  

The separation of feed-forward, synaptic input in the dendrites from lateral, gap-

junction coupling in the axon-terminals allowed me to experimentally ask what is the function 

of the receptive field broadening. Relying on model predictions, I showed that this broadening 

results in a more stable and smooth representation of optic flow in the output region of the 

cells than in their input region, when the fly is presented with naturalistic, patchy and non-

uniform stimuli. I then showed, using a simplified compartmental model that the separation of 

axonal gap-junctions from the dendritic synaptic input makes the gap-junction coupling more 

effective, and is thus necessary to ensure the functionality of the lateral interactions.  
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Chapter 1. Introduction 

 

1.1. Visual orientation in flight 

When a flying insect performs three dimensional maneuvers in space, it has access to 

three sources of information to monitor and control its maneuvers: wind, inertial and 

gyroscopic forces, and visual input. Wind can be used mainly to measure the speed of the 

animal and its angle of flight pitch (Simmons, 1980; Reichert et al., 1985), and inertial and 

coriolis forces to measure attitude of flight and deviations from it, as well as rotation (Pringle, 

1948; Nalbach, 1993; Nalbach and Hengstenberg, 1994; Dickinson, 1999). However, light 

reflected by the surroundings and entering the animal’s visual system can provide information 

not only about these two variables of flight control, but more importantly, about how the 

animal’s flight relates to the physical structure of its immediate environment. The importance 

of visual information for flying insects becomes all the more evident when one considers the 

amount of neural hardware these organisms dedicate to vision. In flies, for example, the optic 

lobes amount to approximately half of the brain’s volume (Strausfeld, 1976).  

It is not surprising, therefore, that visual information is considered of primary 

importance when considering the mechanisms of flight control in insects (for reviews see 

Buchner, 1984; Collett et al., 1993; Egelhaaf and Kern, 2002; Srinivasan and Zhang, 2004). For 

example, bees regulate their flight speed using the angular velocity of their visual surrounding 
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(Srinivasan et al., 1996) and use integrated optic flow to estimate flight distance (Srinivasan et 

al., 1996; Srinivasan et al., 2000). Flies use visual input to control and stabilize their flight 

courses (Poggio and Reichardt, 1976; Reichardt and Poggio, 1976; Reichardt and Poggio, 1981; 

Hausen and Egelhaaf, 1989; Egelhaaf and Borst, 1993b; Egelhaaf and Borst, 1993a; Egelhaaf and 

Borst, 1993b; Heisenberg et al., 2001), and visual input is also crucial even for orientation 

behaviors whose primary sensory modality is not visual – for example, Drosophila can locate a 

source of odor only when its surroundings are visually textured, and fail when they are visually 

uniform (Frye et al., 2003). The experiments that elucidate these robust and reproducible 

behaviors treat the animal subject as a ‘black box’ that implements a function from the stimulus 

ensemble to the elicited behaviors. This behavioristic approach leads the neuroscientist to the 

inevitable question – what is the neural hardware that supports and implements the stimulus-

response mapping of visual stimuli to motion responses? To answer this question, one must 

first consider the system’s relevant stimuli.  

1.1.1. Optic flow and the optomotor response 

When an organism moves in space, its self-motion generates optic flow, the motion of 

its visual environment relative to its retina. This autogenic optic flow contains visual motion 

patterns that can provide information for the organism about its own motion (Gibson, 1958; 

Lee, 1980; Koenderink, 1986; Warren and Hannon, 1988) and, through parallax motion, about 

the spatial layout of its physical surroundings (Nakayama and Loomis, 1974; Koenderink and 

Vandoorn, 1975; Prazdny, 1980). Practically all visual organisms use these optic flow in order to 

control their motor behavior (for reviews see, e.g., Lappe and Hoffmann, 1999; Srinivasan et al., 
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1999), including humans (Pailhous et al., 1990; Barnes, 1993; Patla, 1997), monkeys (Fuchs and 

Mustari, 1993), rabbits (Baarsma and Collewij, 1974), birds (Fite, 1968; Gioanni et al., 1981; 

Gioanni, 1988; Eckmeier and Bischof, 2008), turtles (Fite et al., 1979), fish (Keng and Anastasio, 

1997; Huang and Neuhauss, 2008) and insects such as beetles (Hassenstein and Reichardt, 

1956; Hassenstein and Reichardt, 1956), locusts (Goodman, 1965; Robert and Rowell, 1992; 

Thorson, 1966), bees (Esch et al., 2001; Srinivasan et al., 1996; Srinivasan et al., 2000) and flies 

(Hecht and Wald, 1934; Kalmus, 1949; Fermi and Reichardt, 1963; Götz, 1964; McCann and 

MacGinitie, 1965; Götz, 1968; Eckert, 1973; Buchner, 1976; Srinivasan, 1977; Wagner, 1982; 

Blondeau and Heisenberg, 1982, reviewed in Reichardt and Poggio, 1976; Poggio and Reichardt, 

1976; Reichardt and Poggio, 1981; Egelhaaf and Borst, 1993b; Pflugfelder and Heisenberg, 

1995; Heisenberg et al., 2001). In many of these cases, autogenic optic flow is used primarily in 

order to adjust the visual apparatus for minimal visual slip across the retina, for example by 

rotating the eyes, head or body in the opposite direction to correct for involuntary deviations 

from the animals intended trajectory. Additionally, there is much evidence for use of autogenic 

optic flow for the estimation of distance from objects, for example in the peculiar peering 

behavior of locusts and praying mantids (Wallace, 1959; Horridge, 1986; Sobel, 1990; Kral, 

1998; Kral, 2003) as well as the figure-versus-background tracking responses of flies (Virsik and 

Reichardt, 1976; Reichardt and Poggio, 1979) 

One of the most robust and reproducible behavioral responses to optic flow patterns is 

the so-called optomotor response in arthropods, including insects (reviewed in Reichardt and 

Poggio, 1976; Wehner, 1981; Buchner, 1984; Pflugfelder and Heisenberg, 1995). This set of 

reflexes was extensively characterized in various species of flies (Götz, 1964; Götz, 1968; 
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Blondeau and Heisenberg, 1982; Wehrhahn and Hausen, 1980; Eckert, 1973; Buchner, 1976; 

Buchner, 1984; Egelhaaf and Borst, 1993b): When presented with a horizontally rotating striped 

drum flies respond with a horizontal rotation of their body, so as to reduce the visual slip of the 

pattern on their retina, in a stereotypic visual stabilization reflex (Götz, 1964; Götz, 1968; 

Reichardt, 1969; Blondeau and Heisenberg, 1982; Collett et al., 1993). However, when 

presented with a different optic flow pattern, such as front-to-back motion on both sides of the 

fly, the fly responds with a variation of its forward thrust (Götz, 1968). Another motor behavior 

elicited by different optic flow patterns is the landing response (Goodman, 1960; Hyzer, 1962), 

triggered by image expansion in front of the fly (Braitenberg and Taddei-Ferretti, 1966; Wagner, 

1982; Borst and Bahde, 1986) or by reducing the ambient light level (Taddei-Ferretti and Perez 

de Talens, 1973). Yet another behavior is elicited by parallax flow-fields resulting from 

translational flight near an object that is closer to the fly than the background; in this case the 

fly tends to orient itself towards the object (Virsik and Reichardt, 1976; Virsik and Reichardt, 

1974; Reichardt and Poggio, 1979; Egelhaaf, 1987; Egelhaaf et al., 1988). 

From these examples it is clear that different optic flow-fields arising from different 

flight maneuvers of the fly relative to itself and to its environment elicit different motor 

responses. It is important to realize in this context that discrimination between different optic 

flow-fields is only possible by means of global analysis of motion patterns; local motion 

detectors, subtending only a small part of an organism’s visual field, can respond similarly to 

very different optic flow-fields and would therefore constitute poor discriminators (Figure 1-1). 

Moreover, local measurements can only detect the component of motion that is parallel to the 

light intensity gradient, a limitation that results in the so-called “aperture problem” (Marr and 
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Ullman, 1981; Adelson and Movshon, 1982; Hildreth and Koch, 1987). Theoretical approaches 

to solving this problem rely usually on integration over space or object contours, given a non-

singular distribution of contour orientations (Marr and Ullman, 1981; Adelson and Movshon, 

1982). One might therefore expect the nervous system of a visually guided animal to contain 

elements responsive to global or large-field optic flow-field patterns, elements that would serve 

as representations of these patterns in order to support flow-field discrimination on a neural 

level. 

Indeed, the nervous systems of many organisms contain large-field neurons that are 

responsive to optic flow patterns generated by self-motion, including neurons in cortical areas 

MST (Tanaka and Saito, 1989; Duffy and Wurtz, 1991; Lappe et al., 1996; Gu et al., 2006; 

Britten, 2008) and VIP (Bremmer et al., 2000; Bremmer, 2005) in monkeys, the accessory optic 

system in all vertebrate classes (Fite, 1985; Simpson, 1984; Simpson et al., 1988; Wylie and 

Frost, 1999), the nucleus rotundus in pigeons (Wang and Frost, 1992), the lobula in locusts 

(Gabbiani et al., 2002; Gabbiani et al., 2004) and the lobula plate in flies (Krapp and 

Figure ‎1-1: Optic flow fields for different flight maneuvers.  

The optic flow fields elicited by two different flight maneuvers are represented by red arrow vector diagrams 

projected on a globe which represents the visual space of the fly. Whereas the two flow-fields are clearly 

different when taking them into account over the entire visual space, it is difficult to tell them apart by looking 

at a small part of them, for example the shaded squares to the right-hand side of the fly. Figure adopted from 

Zbikowski, (2005) 
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Hengstenberg, 1996; Krapp et al., 1998; Borst and Haag, 2002; Egelhaaf et al., 2002; Egelhaaf 

and Kern, 2002; Borst and Haag, 2007). I will next review what is known on how these neurons 

acquire their selectivity for optic-flow field patterns. 

1.2. Local motion detection  

In order for an organism to integrate motion in a global scope, it must first be able to 

detect motion locally. The essential requirements from any motion detector are inputs from 

neighboring locations in space, asymmetrical processing of these inputs, and a non-linear 

interaction between the two (Poggio and Reichardt, 1973; Buchner, 1984; Borst and Egelhaaf, 

1989). Several models can account for local motion detection in visual systems, and these 

models fall into two broad categories: gradient extraction and correlation detectors (Barlow 

and Levick, 1965; Hildreth and Koch, 1987; Marr and Ullman, 1981; Reichardt, 1987; Torre and 

Poggio, 1978; Ullman, 1983 reviewed in Borst and Egelhaaf, 1993). The prevailing model for 

local motion detection in the fly and in other insects is a kind of correlation detector called the 

Reichardt detector (Hassenstein and Reichardt, 1956; Reichardt, 1961; Reichardt, 1987; Borst 

and Egelhaaf, 1989; Borst and Egelhaaf, 1993; Srinivasan et al., 1999), a model which embodies 

the essential aspects of the correlation model (Poggio and Reichardt, 1973). The correlation 

model of motion detection provides a good description of many motion-dependent behaviors 

in various species, from insects through mammals and even humans (van Doorn and 

Koenderink, 1982b; van Doorn and Koenderink, 1982a; van Santen and Sperling, 1984; Wilson, 

1985; Nakayama, 1985; Borst and Egelhaaf, 1989; van den Berg and van de Grind, 1989; 

Emerson et al., 1992; Ibbotson et al., 1994; Wolf-Oberhollenzer and Kirschfeld, 1994). 
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1.2.1. The Reichardt detector 

In the Reichardt detector (Figure 1-2), input comes from two light-sensitive channels, for 

example directly from photoreceptors, that are tuned to adjacent locations in space. The first 

channel’s output is time-delayed by means of a first order RC circuit low-pass filter, and the 

output of this low-pass filter is multiplied by the non-delayed output of the second light 

sensitive channel. This results in a half-detector that is weakly selective to motion, responding 

strongly to motion from channel 1 to channel 2, but also weakly to motion from channel 2 to 

channel 1. Connecting another mirror-symmetric unit to this half-detector and subtracting the 

 

Figure ‎1-2: The Reichardt 
detector. 

Left: a schematic representation 

of a Reichardt detector, right: 

responses to the motion of a 

spot of light from 1 to 2. The x-

axis represents time from left to 

right. The spot of light triggers a 

response first in the 

photoreceptor 1, then with a 

delay in photoreceptor 2. The 

response from 1 is delayed by 

the low-pass filter τ resulting in 

the response 1’ which is 

multiplied with the signal coming 

from photoreceptor 2, resulting 

in a strong positive response 

(1’2). The mirror symmetric unit 

also results in a positive 

response, albeit much reduced in 

amplitude (2’1). Subtracting 

these two signals results in a 

strongly directional selective 

response (R). 
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outputs of these two half-detectors results in a complete opponent-motion selective detector 

that responds positively to motion from channel 1 to channel 2 and negatively from channel 2 

to channel 1. Thus, the full-blown Reichardt detector consists of three essential steps – 

temporal delay, spatial shift and multiplication, and subtraction.  

1.2.2. Evidence in insects 

The existence of correlation-type motion detectors in the visual system of insects was 

first suggested in behavioral studies of the optomotor response in the beetle Chlorophanus, 

and later in flies (Hassenstein and Reichardt, 1956; Kunze, 1961; Fermi and Reichardt, 1963; 

Götz, 1964; Eckert, 1973; Buchner, 1976; Buchner et al., 1978; Buchner, 1984). Subsequently, 

response properties characteristic of Reichardt detectors were discovered in large-field lobula 

plate tangential cells (LPTCs) of the fly that pool arrays of local motion detectors (see Lobula 

plate tangential cells below). Evidence for non-linear processing of neighboring locations in 

space is found both in the inversion of the optomotor response (Götz, 1964; Götz and Wenking, 

1973) and of the responses of LPTCs (Zaagman et al., 1977; McCann and Arnett, 1972) when the 

grating’s spatial frequency is smaller than twice the spacing between adjacent photoreceptors, 

suggesting a non-linearity that inverts the output of the spatially aliased input channels. That 

the underlying non-linearity is multiplicative was demonstrated by Fourier analysis of lobula 

plate cell responses, showing that energy is confined to the first and second temporal harmonic 

of the stimulus grating’s contrast frequency (Egelhaaf and Borst, 1989; Egelhaaf et al., 1989b). 

Additional support for the existence of a multiplication step comes from the positive and 
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negative responses, respectively, to apparent motion stimuli consisting of luminance changes in 

adjacent locations with either the same sign or with opposite signs (Egelhaaf and Borst, 1992).  

The subtraction step of the Reichardt detector is required to turn the weakly selective 

responses of the half-detectors into a strong, opponent direction-selective response (Reichardt, 

1961; Borst and Egelhaaf, 1989; Borst and Egelhaaf, 1990). The existence of a subtraction step 

was initially indicated by experiments in which responses to apparent motion stimuli could not 

be explained only by a multiplicative interaction (Borst and Egelhaaf, 1990). That this step takes 

place on the dendrites of lobula plate tangential cells as a local interaction between excitatory, 

preferred-direction inputs and inhibitory, null-direction inputs was shown in experiments in 

which the membrane potential of tangential cells was changed, affecting the electrochemical 

driving force of the excitatory and inhibitory synapses. This was done either by using the cells’ 

own response to preferred direction stimuli  (Borst and Egelhaaf, 1990) or by intracellularly 

perturbing the membrane potentials by current injection (Borst et al., 1995). In the latter case, 

injection of strong negative currents resulted in the inversion of responses to null-direction 

motion, implying the existence of two different synaptic reversal potentials that are 

differentially activated by preferred- and null-direction motion, presumably excitatory and 

inhibitory. In-vitro electrophysiological studies revealed pharmacological profiles of GABAergic 

and nicotinic cholinergic synapses (Brotz and Borst, 1996), and immunohistological stainings in 

Drosophila confirm the existence of these synapses in the dendrites of tangential cells (Raghu et 

al., 2007; Raghu et al., 2009). Blockade of GABAergic synapses inverted the responses to null-

direction motion from negative to positive, resulting in positive, weakly directional-selective 

responses to both preferred- and null-direction motion (Single et al., 1997). This demonstrated 
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that the interaction between null-direction inhibition and preferred-direction excitation is 

crucial for the emergence of strongly directional-selective responses from the weakly 

directional-selective inputs.  

1.2.3. Response properties 

An important characteristic of the Reichardt detector that derives from its mathematical 

structure, specifically from the spatial distance between its input channels and the time 

constant of the low-pass filter, is the dependence of its response on various input features such 

as image velocity, contrast, spatial wavelength spectrum and luminance (Reichardt, 1961; 

Reichardt, 1987; Borst and Egelhaaf, 1993). The Reichardt detector’s dependence on contrast 

and luminance is a consequence of the direct multiplication of one light-sensitive channel with 

the non-amplified, filtered version of the other. More interestingly, the dependence of the 

response on the angular velocity of the stimulus is not linear, or even monotonic. Instead, for a 

given drifting grating, the steady-state response of a Reichardt detector will peak at a certain 

optimal angular velocity in which the maxima of the input signals coincide at the multiplication 

stage, after the temporal delay (Reichardt and Varjú, 1959). Consequently, the optimal angular 

velocity depends on the spatial wavelength of the grating such that the ratio between the 

velocity (in deg sec-1) and the wavelength (in deg cycle-1), i.e. the temporal frequency of the 

drifting grating (in cycle sec-1), is constant (Reichardt, 1961; Buchner, 1984; Götz, 1964; 

Reichardt, 1987). Such dependence of the motion detectors on the visual features of the 

stimulus can be seen in the pooled, steady-state responses of large arrays of motion detectors 

recorded postsynaptically in LPTCs, e.g. H1 (Zaagman et al., 1978; Eckert, 1980; Reisenman et 
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al., 2003; Single et al., 1997; Haag et al., 2004; Borst et al., 2005; Safran et al., 2007; Srinivasan 

and Dvorak, 1980; Dvorak et al., 1980, last two in Lucilia sericata), HS cells (Egelhaaf and Borst, 

1989; Egelhaaf et al., 1989a) and VS cells (Haag et al., 1992; Haag et al., 2004).  

The dependence of Reichardt detectors on the visual features of their input also 

contains a pronounced dynamic component. When presented with a drifting sinusoidal grating, 

the responses of single Reichardt detectors are modulated by the local structure and features 

of the grating (Reichardt, 1961; Reichardt, 1987; Egelhaaf and Reichardt, 1987; Egelhaaf and 

Borst, 1989; Egelhaaf et al., 1989a). When presented with small-field drifting gratings that 

stimulate only a few motion detectors, the resulting fluctuations can be measured in the axons 

of LPTCs (Egelhaaf et al., 1989a; Egelhaaf et al., 1989b; Egelhaaf and Borst, 1989). In these 

experiments, a doubling of the temporal frequency can also be seen, another line of evidence 

supporting the multiplication step inherent to the Reichardt model. Similar local modulations 

were also measured by calcium imaging in the fine dendritic tips of LPTCs, thought to be 

directly postsynaptic to single local motion detectors, but not in the axons of these cells, which 

pool many of the small dendritic tips (Single and Borst, 1998; Haag et al., 2004). These 

experiments, conducted with full-field drifting gratings, highlight an important aspect of spatial 

integration when computing flow-field responses by large-field units. Namely, dendritic 

integration of many single motion detectors averages out fluctuations caused by the 

dependence of the motion detectors on the local structure of the visual input, resulting in a 

smooth representation of global motion of the presented grating (Reichardt and Guo, 1986; 

Egelhaaf and Reichardt, 1987; Reichardt and Egelhaaf, 1988). The idea of spatial integration of 
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local motion detectors to overcome local modulations was also raised in the context of complex 

cells in mammalian visual cortex (Movshon et al., 1978; Holub and Morton-Gibson, 1981). 

Thus, the computation of flow-field responses in the fly begins with local motion 

detection by correlation-based Reichardt detectors and continues with the pooling of these 

local signals into global flow-field responses. I will next address the question of how this is 

thought to take place in the visual system of the fly. 

 

1.3. The fly visual system 

Light enters the fly’s visual system through its compound eyes, which have a panoramic 

field of vision encompassing almost every direction around the fly’s head. The incoming signal is 

then processed by four optic neuropils before it is sent downstream to motor circuits involved 

in the control of locomotion and posture. In the first two of these neuropils, the lamina and 

medulla, local motion is computed by columnar, retinotopic circuits. These circuits project the 

motion information in a retinotopic manner onto the next neuropil, the lobula complex, which 

consists of the lobula and the lobula plate. In the lobula plate these local motion signals are 

integrated by a population of roughly 60 neurons, the lobula plate tangential cells (LPTCs). 

Through the selective integration of feedforward input from the local motion detectors and the 

lateral interactions between different LPTCs, these neurons become selective to different optic 

flow-fields. This information is then projected to descending motor and pre-motor neurons.  



 Introduction 

23 
 

In the following review of the fly’s visual system I will refer to results from Calliphora as 

well as from other fly species such as Drosophila, Musca and Sarcophaga, in which the visual 

system seems to be largely conserved in both anatomical structure and electrophysiological 

responses (Buschbeck and Strausfeld, 1996; Shaw, 1989; Fischbach and Dittrich, 1989; 

Meinertzhagen and Sorra, 2001; Jarvilehto and Zettler, 1973; Joesch et al., 2008).  

1.3.1. The compound eye 

The compound eye is one of the most studied organs of insect physiology, and an 

essentially modern description can be found already in the landmark work of Exner (1891). As 

the retina is the input location for light in this system and is therefore responsible for the initial 

coding of this input, I will discuss it in relative detail.  

 

Figure ‎1-3: Schematic 
overview of the fly visual 
system 

a. Dorsal view of the fly 

visual system including 

the retina and the four 

main neuropils, the 

lamina, medulla, lobula 

and lobula plate. b. Schematic overview of the columnar 

organization of the four optic nueopils. Each column, 

represented here as a hexagonal body, computes local 

motion information from a small part of the fly’s visual 

space and this information is retinotopically projected to 

the lobula and the lobula plate. Figures from Borst and 

Haag (2002). 
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In the blowfly, light is captured by a lattice of ca. 5000 hexagonal lenses of receptive 

structures called ommatidia, that gather incoming light and focus it on the eight 

photoreceptors, R1-8, of the ommatidium (Figure 1-4a). The resulting spatial resolution in 

calliphorid flies is about 1-2°, limited mainly by diffraction resulting from the small lenses (20-30 

µm radius depending on position within the eye) as well as by the geometry of the lens-

photoreceptor arrangement (Smakman et al., 1984; Land and Eckert, 1985, reviewed in Land, 

 

Figure 1-4: The fly retina – 
morphology and light responses 

a. Schematic morphology of an 

apposition eye from Land and 

Nilsson (2002a), modified from 

Duke-Elder (1958). b. Left: electron 

micrograph of Drosophila 

photoreceptors R1-6 and R7, right: 

schematic of a single ommatidium 

with photoreceptors R1-6 (gray), 

R7 (purple) and R8 (green). From 

Silver Essay, Claude Desplan. c. 

Schematic illustration of the neural 

superposition principle. Different 

photoreceptors from adjacent 

ommatidia receive light from the 

same direction, this is subsequently 

pooled in the next synapse by 

laminar neurons (Braitenberg, 

1967, after Kirschfeld, 1967). d. 

Schematic of the 180° twist to 

conserve retinotopy (Braitenberg, 

1967), see text for details. e.  Left: 

Responses of Drosophila R1-6 

photoreceptor to different 

magnitude light steps, right: 

corresponding noise levels of the 

steady-state response (Wu and 

Pak, 1978) f. Log-intensity–

response curves from Calliphora: 

dark-accomodated (left curve) or 

accommodated to light levels 

indicated by the arrows. From 

Matiç and Laughlin (1981).  
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1997). The resulting spatial separation is ca. 120 times worse than that of human fovea (1° 

compared to 0.5’ Land, 1997). Perhaps with the exception of redundancy and robustness to 

damage, it is still unclear why this particular visual adaptation persisted despite obviously 

superior optical designs such as the single-lens design that exists in the larval and dorsal ocelli 

(for a discussion of the benefits of the single-lens design see Land, 1997; Land and Nilsson, 

2002b). Nevertheless, it seems that this structure underwent structural adaptations to make it 

a better input device for flow-field analysis. Specifically, the increase of the intra-ommatidial 

angles along the frontal-lateral axis (Braitenberg, 1967) is thought to deal with the larger retinal 

velocity, and hence larger temporal smear, of lateral flow-field components during forward 

flight (Land and Eckert, 1985; Land et al., 1989; Petrowitz et al., 2000). Similarly, the changes in 

the angle of alignment of the rows of ommatidia is also thought to be an adaptation towards 

flow-field analysis (Petrowitz et al., 2000; Egelhaaf et al., 2000). 

Fly eyes, and dipteran eyes in general, are of the so-called neural superposition type. As 

in regular apposition eyes, each single ommatidium is an optically separated light channel. 

However, unlike apposition eyes, in a neural superposition eye the eight photoreceptors within 

a single ommatidium are aligned to seven different optical axes – R7 and 8 occupy the center 

channel, and R1-6 the surround (Kirschfeld, 1967). Thus, the six photoreceptors  R1-6 from six 

neighboring ommatidia (Figure 1-4b) are aligned to the same optical axis and view the same 

point in the fly’s visual space (Figure 1-4c).  

The axons of these photoreceptors are pooled together in the next neuropil, the lamina 

(Trujillo and Melamed, 1966; Braitenberg, 1967). Pooling is mediated both by chemical 
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synapses on the lamina and by gap-junction coupling between the axons of photoreceptors 

(Ribi, 1978). In order to maintain spatial contiguity after the inversion of the image by each one 

of the facet lenses, this axonal pooling requires a 180° twist of the photoreceptor axons before 

they synapse on their partners in the lamina (Figure 1-4d; reviewed in Fischbach and Hiesinger, 

2008).  

At low light intensities, the R1-6 photoreceptors respond with unitary “bumps” to single 

photons. At higher intensities these bumps fuse into a noisy graded depolarization in response 

to light steps (Figure 1-4e; Laughlin and Hardie, 1978; Wu and Pak, 1978). The depolarization 

magnitudes can be fitted by a sigmoid function   nn IIVV max/ , where I is the light intensity 

and n and  are parameters that depend on the light adaptation state of the photoreceptors 

(Figure 1-4f; Matiç and Laughlin, 1981). In the VI /log graphs these sigmoidal curves have a 

relatively large log linear region spanning about 2 log units around the adaptation light, in 

which the response function can be treated as logarithmic (Hardie, 1984). The resulting image 

that is transmitted to the lamina is therefore a retinotopic, pixelated one, where each pixel is 

provides a log-luminance encoding to its partners in the next neuropil, the lamina. 

The pathways that mediate color and motion vision are separate; monochromatic 

information from R1-6, and not polychromatic information from R7/8, is important for motion 

detection. This is evident from the absent optomotor response in R1-6 deficient Drosophila 

mutants compared to a normal response in R7 and R7/8 deficient mutants (Heisenberg and 

Buchner, 1977; Yarnaguchi et al., 2008), as well as from the necessity of the laminar L1 and L2 

cells, post-synaptic to R1-6 but not to R7/8, for the optomotor response (Rister et al., 2007).  
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1.3.2. The lamina 

Much is known about the cellular and synaptic arrangement of the lamina and its 

projections from electron microscopy and genetic labeling. Laminar neurons are grouped into 

retinotopic columns, “cartridges”, each containing five principle neurons, the laminar 

monopolar cells L1-5 (Meinertzhagen and Oneil, 1991; Meinertzhagen and Hanson, 1993; 

Meinertzhagen and Sorra, 2001). Of these, the L1 and L2 neurons are the only neurons 

necessary for motion vision (Rister et al., 2007). In each cartridge, the L1, L2 and L3 neurons 

 

Figure 1-5: The two motion detection pathways in the lamina 

a. Comparison of membrane potential responses in Calliphora R1-6 photoreceptors and L2 laminar 

monopolar cells to light intensity steps, highlighting the high-pass filtering characteristic of this syapse (from 

Jarvilehto and Zettler, 1973). b. Schematic of the two motion detection pathways that separate in the lamina 

and their downstream components in the medulla, with projections to the lobula plate (modified from 

Bausenwein et al., 1992) – the Mi1 neuron might correspond to iTm neurons from later work (Strausfeld and 

Lee, 1991; Douglass and Strausfeld, 1995; Douglass and Strausfeld, 1996).  
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and the amacrine cell amc receive input from single R1-6 photoreceptors (Meinertzhagen and 

Hanson, 1993), a different photoreceptor from each of six adjacent ommatidia (Figure 1-4f) 

(Braitenberg, 1967). The histaminergic R1-6-to-L1/2 synapses are inverting (Järvilehto and 

Zettler, 1971) and have a high-pass characteristic, especially at high luminance (Figure 1-5a; 

Jarvilehto and Zettler, 1973; Coombe et al., 1989) which might be important in the initial 

filtering stage of motion detection, thought to take place in this neuropil. This interpretation of 

the role of the lamina in motion detection is also supported by the failure to find any 

directionally selective responses to motion in the lamina.  

In the lamina, the motion processing pathway diverges into two pathways, the L1 

pathway and the L2 pathway (Strausfeld, 1984; Bausenwein and Fischbach, 1992) . These two 

pathways are thought to have different contributions to motion processing, for example the L2 

pathway participates exclusively in rotation, not translation, responses in walking flies (Katsov 

and Clandinin, 2008), and the two pathways give rise to different optomotor responses under 

different pattern contrast conditions (Rister et al., 2007). The L1 neurons project to Mi1 

neurons in layers M1 and M5 of the medulla, and the L2 neurons to Tm1 neurons in layer M2 of 

the medulla (Figure 1-5b). 

In the lamina, a few examples of lateral interactions between neighboring light-sensitive 

channels are known. A short-range form of lateral inhibition was described in the lamina and is 

thought to explain the sharpening of the receptive fields of laminar monopolar cells relative to 

their photoreceptor inputs (Zettler and Järvilehto, 1972). This might be the result of ephaptic 

interactions between photoreceptors which result in the inhibition of adjacent photoreceptors 
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in the same ommatidium, although contribution of these interactions to the net output of the 

photoreceptors has not been quantified (in locusts: Shaw, 1975). In the context of motion 

detection, information must be conveyed laterally between adjacent laminar cartridges in order 

to temporally compare neighboring parts of the visual field over time. The L4 small monopolar 

neurons are considered prime candidates for this function, providing reciprocal collaterals to 

adjacent retinotopic columns (Strausfeld and Campos-Ortega, 1973; Braitenberg and Debbage, 

1974). A similar role was also suggested for the amacrine cell and T1 neuron as an asymmetrical 

delay line between L2 cells in different cartridges  (Douglass and Strausfeld, 1995, reviewed in 

(Douglass and Strausfeld, 2003).  

1.3.3. The medulla 

The medulla receives projections from laminar monopolar cells as well as directly from 

the R7/8 photoreceptors of the color pathway. The L1 monopolar cells terminate in layers m1 

and m5 and contact the intrinsic medullary cell Mi1 (Bausenwein et al., 1992, iTm in Strausfeld 

and Lee, 1991; Douglass and Strausfeld, 1995; Douglass and Strausfeld, 1996)), which contacts 

the motion-sensitive, weakly directionally-selective T4 cells in layer m10. These cells are 

thought to synapse on lobula plate tangential cells (Strausfeld and Lee, 1991). The L2 

monopolar cells project to the m2 layer where they contact the transmedullary Tm1 cells, 

which project to the T5 cells in the lobula. T5 cells are strongly directionally selective and 

project to the lobula plate.  

Two lines of evidence indicate that the two local motion processing pathways first result 

in motion-sensitive responses in the medulla. In Drosophilla, labeling with radioactive 2-deoxy-
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glucose shows that different layers of the medulla are labeled when the fly is presented with 

motion and when it is presented with a full-field flicker in the same temporal frequency 

(Buchner et al., 1984; Bausenwein and Fischbach, 1992). These activity patterns fit well with the 

anatomical tracing of the motion-detection L1 and L2 pathways, and the schematic summary of 

these combined results is shown in Figure 1-5b. More evidence comes from recordings of 

membrane potentials in medullary neurons, in which motion-sensitive cells have been reported 

(DeVoe, 1980; Douglass and Strausfeld, 1995; Douglass and Strausfeld, 1996). Both the Tm1 

neurons from the L2 pathway and the iTm neurons from the L1 pathway show sustained 

responses to motion, although a comparison with flicker stimuli of the same frequency is 

lacking. However, there is very scant evidence for the emergence of directionally-selective 

responses at this level. The above mentioned T4 cells have qualitatively different responses to 

different directions of motion, however quantifying this effect has resulted in only very weak 

direction selectivity (Douglass and Strausfeld, 1996). Recordings in Tm1 cells show a 

directionally selective frequency doubling, suggesting a non-linear, perhaps multiplicative 

interaction, but the source of this doubling is still unclear (Douglass and Strausfeld, 1995). 

Although strongly directionally-selective responses have been recorded in the medulla,  these 

are of centrifugal cells such as CY2 (Douglass and Strausfeld, 1996) and Y18 (Douglass and 

Strausfeld, 1998), projecting from the lobula plate to the lobula and the medulla. 

The paucity of physiological data from medullary cells makes it difficult to construct a 

functional model of the retinotopic columns and the lateral interactions between them in this 

neuropil (but see Higgins et al., 2005). However, there are some initial results pointing in the 

direction of possible lateral interactions in the medulla. Specifically, the M7 layer is labeled by 
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2-DG when presenting a moving single stripe, but not a grating, in Drosophila, suggesting lateral 

interactions that result in differential responses to full-field and small-field gratings 

(Bausenwein and Fischbach, 1992). A clearer indication comes from a motion-sensitive (but not 

direction-selective) medullary neuron that seems to have a center-surround receptive field 

characteristic of a lateral inhibition architecture (DeVoe, 1980). Lateral connections were also 

found in Golgi staining of the medulla, the most interesting of which is the GABAergic deep 

medulla amacrine cell (Douglass and Strausfeld, 1996, m:tan5 in Strausfeld, 1970). This cell 

spans several adjacent columns in the projection layer of Tm1 and iTm, and is speculated to 

participate in the lateral interactions that underlie motion detection.  

1.3.4. The lobula 

The anterior part of the lobula complex, the lobula, consists of six layers (Fischbach and 

Dittrich, 1989), of which three are labled by 2-deoxy glucose when the fly is presented with 

motion stimuli (Buchner et al., 1984). The transmedullary Tm1 neurons project from the 

medulla to the posterior layer of this neuropil, where they contact the directionally selective 

bushy T5 neurons (Douglass and Strausfeld, 1995; Douglass and Strausfeld, 1996). Different T5 

cells project exclusively to the four different layers of the lobula plate which contain tangential 

cells selective for the four main axes of motion (Strausfeld, 1976).  

1.3.5. The lobula plate 

The lobula plate is a flat structure on the posterior side of the lobula complex, and is 

home to a group of large cells known as lobula plate tangential cells (LPTCs), a subset of which 
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are the focus of my work (Pierantoni, 1976; Hausen, 1976; Hausen, 1982a; Hengstenberg et al., 

1982, reviewed in Hausen and Egelhaaf, 1989; Borst and Haag, 2002; Egelhaaf et al., 2002; 

Borst and Haag, 2007). LPTCs are thought to be a cardinal part of the optomotor response 

circuitry of the fly, based on a number of important observations, most importantly the shape 

of their receptive fields and directional selectivity (see next section). Information about local 

motion, computed by the neurons in the lamina and the medulla, is retinotopically projected as 

a map of the fly’s ipsilateral visual space onto the lobula plate, as was shown by calcium 

imaging studies in lobula plate tangential cells (Borst and Egelhaaf, 1992; Egelhaaf and Borst, 

1995; Durr and Egelhaaf, 1999; Borst and Single, 2000). 

The lobula plate is divided into four layers, each containing the dendrites of different 

LPTCs, as well as other output elements of the lobula plate. LPTCs ramifying in different layers 

of the lobula plate are sensitive to different directions of motion (Braitenberg, 1972 - 

Drosophila, Dvorak et al., 1975; Pierantoni, 1976; Hausen, 1977; Eckert, 1982; Hengstenberg et 

al., 1982 - Calliphora), giving rise to the idea that four separate retinotopic motion input maps 

project onto the lobula plate. This idea was corroborated by 2-deoxy glucose labeling 

experiments, in which motion stimuli in four different directions resulted in labeling of four 

different layers in the lobula plate (Buchner et al., 1984). 

Directionally selective input to the lobula plate is most likely to be supplied at least in 

part by the bushy T-cells, the medullary T4 and the lobular T5 neurons. These neurons come in 

four “flavors”, each of which stratifies in a different directionally selective layer of the lobula 

plate, making them good candidates for the four cardinal directions for which LPTCs are 
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selective (Strausfeld, 1984; Fischbach and Dittrich, 1989; Strausfeld and Lee, 1991). However, 

direct evidence for contact between the bushy T-cells and LPTCs is lacking – only a single 

example of a contact between a T4 cell and a LPTC was ever shown (Strausfeld and Lee, 1991), 

and no such demonstration was made for T5 cells.    

The flat and superficial structure of the lobula plate and the large diameters and two-

dimensional morphology of the LPTCs makes them relatively easily amenable to a variety of 

experimental techniques. These include various wide-field optical techniques such as in-vivo 

calcium imaging (Borst and Egelhaaf, 1992; Single and Borst, 1998; Durr and Egelhaaf, 1999), 

laser ablation (Warzecha et al., 1992; Warzecha et al., 1993; Farrow et al., 2003; Farrow et al., 

2005; Kalb et al., 2006) and UV flash photolysis of caged calcium (Kurtz, 2004; Kurtz, 2007) as 

well as intra- and extracellular electrophysiological recordings using glass micropipettes (Dvorak 

et al., 1975; Haag et al., 1997; Haag and Borst, 2004) and tungsten electrodes (Bishop and 

Keehn, 1966; Eckert, 1980; Bialek et al., 1991; Steveninck et al., 1997), along with less 

frequently used ablation techniques such as ablation of precursor cells in the larva (Geiger and 

Nässel, 1981) and targeted microsurgical lesions (Hausen and Wehrhahn, 1983; Hausen and 

Wehrhahn, 1990). Pharmacological agents such as synaptic agonists and antagonists and 

channel blockers can also be relatively easily applied to the lobula plate (Warzecha et al., 1993; 

Brotz and Borst, 1996; Haag et al., 1997). 
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1.4. Lobula plate tangential cells 

In each hemisphere of the fly brain, around 60 uniquely identifiable lobula plate 

tangential cells pool the incoming signals from the retinotopic array of local motion detectors 

with their dendrites. The LPTCs process this information both intracellularly within single 

neurons, and by an extensive network of ipsilateral and heterolateral interactions, before 

projecting the processed information towards downstream motor circuits. LPTCs respond to 

visual motion either by graded deflections of their membrane potentials (CH cells), by 

modulation of their spiking frequency (H1-6, V1-3), or both (HS cells, VS cells, FD cells). LPTCs 

are categorized by their primary direction selectivity either as selective to horizontal motion 

(HS, CH, H and FD cells) or vertical motion (VS and V cells), although their motion selectivity in 

different parts of their receptive fields are more complex. LPTCs acquire their receptive fields 

by the combined effects of feedforward motion detector input and lateral interactions between 

LPTCs.  

1.4.1. Lobula plate tangential cells and optic flow integration 

The lobula plate tangential cells are widely believed to be part of the fly’s optomotor 

response circuitry, implementing the visual motion integration step required for optic flow 

analysis. LPTCs are ideally situated directly downstream of the local motion detection circuitry 

in the preceding neuropils, allowing them to integrate the output of these motion detectors 

and thereby control the post-synaptic motor circuits. 
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Although still short of a direct corroboration, a number of experiments have 

accumulated a large body of indirect evidence to this effect.  Ablation of HS and VS cell 

precursors in Musca larvae results in reduced optomotor responses to front-to-back motion on 

the ablated side of the animal (Geiger and Nässel, 1981), and similarly, Drosophila optomotor-

blindH31 mutants in which the entire lobula plate structure is missing lack a walking and 

tethered flight optomotor response almost completely, compared to the wild-type (Heisenberg 

et al., 1978; Blondeau and Heisenberg, 1982). Microsurgical lesions that sever the projection 

pathways of several LPTCs in the protocerebrum result in marked alterations of the optomotor 

response in Calliphora (Hausen and Wehrhahn, 1983; Hausen and Wehrhahn, 1990), and finally, 

electrical stimulation of different areas in the lobula plate in the absence of visual stimulus 

results in reproducible yaw, lift and landing responses, similar to those elicited by moving 

gratings (Blondeau, 1981). However, each of these results, taken on its own, lacks specificity; in 

the ablation experiments, it is not known what cells other than the LPTCs were ablated in the 

adult. Similarly, in the microsurgical lesions, other neuronal projections may have been severed 

as well, or entire neurons killed due to the lesion. In the optomotor-blindH31 mutant the whole 

lobula plate structure is missing, which might result in the absence of many other, non-

tangential lobula plate neurons, and other structures might be missing from other visual lobes 

as well. The electrical stimulation experiments also suffer from non-specificity, as the current 

injections are extracellular and therefore could de- or hyper-polarize cells other than LPTCs.  
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Figure 1-6: Lobula plate tangential cells 

(a) Example responses of LPTCs to preferred direction motion on the ipsilateral (first stimulus) and 

contralateral sides (second stimulus). Top: CH cell, middle: HS cell, bottom: VS cell. Adapted from Haag et 

al. (1999) (b) Camera lucida tracings of vCH and dCH, HSE and HSN, and VS1 and VS2 cells, with outlines of 

the fly’s brain anatomy. LP – lobula plate, lPro – lateral protocerebrum. Adapted from Krapp et al. (1998; 

2001). (c) Responses of an HS cell to gratings drifting in the preferred (upper traces) and null direction 

(lower traces), on the ipsilateral (right traces) or contralateral (left traces) side. Taken from Hausen (1982b). 

(d) responses of a frontal VS cell to gratings drifting in the preferred (downward) and null direction 

(upward), on the ipsilateral (left traces) or contralateral side (right traces). Adapted from Eckert and Bishop 

(1978). 
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The most convincing evidence for the participation of LPTCs in the optomotor response 

is the close agreement between response properties of LPTCs and properties of the optomotor 

response. Although this is by no means direct evidence, the quantitative and qualitative 

concurrence is too good to be written off as coincidental or just correlative. The most 

convincing case was made for the horizontal, output neuron HSE by Hausen. This neuron’s 

responses were shown to be dependent on parameters of the moving grating such as temporal 

frequency, mean luminance, and spatial position in an way astonishingly similar to the 

dependence of yaw torque response on these parameters (Hausen, 1977; Hausen, 1981; 

Hausen, 1982b; Hausen and Wehrhahn, 1989). Moreover, HSE responses are almost 

independent of stimulus size (Hausen, 1982b), as are the yaw torque responses (Reichardt et 

al., 1983). The range of the contrast dependency of VS cells is also in close agreement with 

various optomotor responses (Hengstenberg, 1982), although here it is more difficult to 

associate the responses of single VS cells with a single optomotor behavior (but see, e.g., 

Srinivasan, 1977). Such similarities are also found in the responses of the H1 neuron, however 

this neuron is not an output element of the lobula plate and cannot be considered to be in 

direct control of downstream elements of the optomotor response circuitry (McCann and 

Foster, 1971; Zaagman et al., 1977; Eckert, 1980). Another similarity found here is the 

aforementioned reversal of responses to grating motion both in the H1 neuron and in the 

optomotor reflex when the spatial wavelength of the grating is between the ommatidial 

sampling distance and twice that distance (Götz, 1964; Götz and Wenking, 1973; Zaagman et 

al., 1977; McCann and Arnett, 1972).  
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As mentioned before, in order for a system to evaluate and more importantly 

differentiate optic flow patterns, two conditions must be met by LPTCs: first, receptive fields of 

LPTCs must be large in order to implement the integration necessary for large-field motion 

integration, averaging-out of fluctuations caused by the dependence of the motion detectors 

on local input features, and avoiding the aperture problem. Second, these receptive fields are 

required to fit behaviorally relevant optic flow patterns in order to be able to generate the 

behavioral responses (Franz and Krapp, 2000; Krapp, 2000). This means that in a single optic 

flow detector, different direction selective responses from different parts of the fly’s visual 

space need to be selectively “bound” together so as to correspond to a particular optic flow 

field and to be selective to it. I will next review the known neurons that perform this type of 

selective integration in the lobula plate, with emphasis on the VS cells which are in the focus of 

my work.   

1.4.2. HS cells 

The Horizontal system consists of 3 neurons for each hemisphere – the dorsal HSN, 

medial HSE and ventral HSS (Eckert, 1978; Eckert, 1981; Hausen, 1982a; Hausen, 1982b). HS cell 

dendrites ramify in the anterior (deeper), horizontal-selectivity layer of the lobula plate, and the 

cells respond to large-field, horizontal motion with graded membrane potential deflections, 

positive for front-to-back motion and for back-to-front motion; preferred direction responses 

are superimposed by pseudo-spikes (Figure 1-6). HSN and HSE cells also respond to motion in 

the contralateral side with spikelets, triggered by spikes in H1 and H2 neurons (Hausen, 1977; 

Hausen, 1984; Hausen, 1981; Haag, 1994; Haag et al., 1999; Horstmann et al., 2000; Haag and 
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Borst, 2001). Although this response was initially considered to have little effect on the average 

membrane potential of HS cells (Hausen, 1977; Hausen, 1981), contralateral input to HS cells 

(and CH cells, see below) seems to have a pronounced effect on the calcium levels in these 

cells, suggesting that these interactions are significant (Egelhaaf et al., 1993). HS cells receive 

acetylcholine and GABA input from local motion detectors, and are thought to be both output 

elements of the lobula plate (Hausen et al., 1980) and to supply information through lateral 

interactions to other LPTCs such as ipsilateral CH cells (Haag and Borst, 2002; Farrow et al., 

2003) and the contralateral H2 (HSE only, Farrow et al., 2006). 

1.4.3. CH cells 

The lobula plate contains two Centrifugal Horizontal (CH) cells, the dorsal dCH and the 

ventral vCH  (Eckert and Dvorak, 1983). Their dendrites also populate the anterior, horizontal-

selectivity layer of the lobula plate, and are both pre- and post-synaptic in the lobula plate and 

post-synaptic in their protocerebral ramification (Gauck et al., 1997). Based on monoclonal 

antibody staining, it is known that CH cells are GABAergic, and therefore probably supply 

inhibitory output both in the protocerebrum and in the lobula plate (Meyer et al., 1986) Their 

ipsilateral input arrives at the lobula plate dendrite (Egelhaaf et al., 1993), but rather than being 

directly activated by local motion detectors, they receive their input from HS cells via dendro-

dendritic gap junctions (Haag and Borst, 2002; Farrow et al., 2003). CH cells respond to 

ipsilateral horizontal motion with graded deflections of their membrane potential, and have the 

same preferred direction as HS cells, front-to-back. The cells also respond to contralateral 

horizontal motion with spikelets triggered by spikes in the contralateral H1 and H2 cells 
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(Hausen, 1977; Hausen, 1984; Hausen, 1981; Eckert and Dvorak, 1983; Haag, 1994; Haag et al., 

1999; Horstmann et al., 2000). The contralateral input arrives both at the dendrite and at the 

protocerebral axon terminal (Egelhaaf et al., 1993), from the contralateral H1 and H2 cells, 

respectively (Haag and Borst, 2001). V1 also supplies excitatory contralateral input to vCH, but 

not dCH cells, most probably at the protocerebral terminal (Haag and Borst, 2003). The 

unidentified Hu cell supplies contralateral inhibitory input to CH cells, most likely also in the 

protocerebrum.  

1.4.4. FD cells (CI cells) 

A set of at least 4 different cells called Figure Detection (FD) cells respond selectively to 

ipsilateral small-field motion and are inhibited by large field motion from both the ispilateral 

and contralateral side (Egelhaaf, 1985b; Gauck and Borst, 1999). Not much is known about 

these cells, but it is thought that they receive ipsilateral input from local motion detectors, and 

that they are inhibited by GABAergic input from CH cells, probably on their dendrite in the 

lobula plate (Warzecha et al., 1993; Gauck et al., 1997). Whether or not the FD and CI cells 

reported in these two studies represent the same cells, these cells are the only small-field 

selective elements described in the lobula plate, and are therefore thought to participate in the 

object fixation behavior, in which tethered flies turn towards the position of a small-field 

stimulus (Egelhaaf, 1985a; Hausen and Wehrhahn, 1989).  

FD cells acquire their small-field sensitivity by a combination of large-field selective 

excitatory responses to horizontal motion and large-field inhibitory responses to the same 

motion, mediated by CH cells (Warzecha et al., 1993). However, it is still unclear whether the 
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inhibitory and excitatory signals are dendritically pooled before inhibiting the FD cell, or 

whether they remain spatially distributed on the dendrite of the FD cell itself. Initial models 

favored the former interpretation, with different size dependencies of the inhibition and 

excitation responsible for the emergence of small-field selectivity (Reichardt et al., 1983; 

Egelhaaf, 1985c). An important drawback of these pooled models is that a pooled signal has less 

degrees of computational freedom; it will necessarily confound size dependence with 

dependence on contrast, speed and spatial wavelength. A more recent model considers a 

distributed, local interaction on the dendrites of the FD cell between the inhibitory input from 

the CH cell dendrites and the local motion input. According to this model, the activity pattern 

on the HS cell dendrite is passed on to the CH dendrite via dendro-dendritic gap junctions, 

resulting in a spatially low-pass filtered (“blurred”) image on the CH dendrite (Egelhaaf et al., 

1993; Durr and Egelhaaf, 1999; Haag and Borst, 2002). The blurred, inhibitory signal from the 

CH cell dendrite is then subtracted from the non-blurred local motion detector input on the FD 

cell’s dendrite, resulting in motion edge enhancement and small-field selectivity (Cuntz et al., 

2003; Hennig et al., 2008).  

1.4.5. Bilateral spiking cells – H cells and V cells 

A network of bilateral, spiking LPTCs that connect the lobula plates of both hemispheres 

has been described in relative detail, together with their interactions with other ipsilateral 

LPTCs. The spiking cells respond to motion with full-blown spikes, presumably necessary to 

conduct their signal to the contralateral hemisphere. They are either horizontally- or vertically-

sensitive (H- and V-cells respectively), and were the first recorded LPTCs (Bishop and Keehn, 
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1966). There are at least six H-cells, H1-6, and two V-cells, V1-2, and the best characterized of 

these are H1, H2 and V1 (Hausen, 1977; Hausen, unpublished). Another horizontal cell, Hu, is 

known only from the inhibitory post-synaptic potentials it triggers on CH cells, but its 

morphology is not known and it might be one of the H3-6 cells.  

H1 and H2 receive dendro-dendritic inhibitory GABAergic input from ipsilateral CH cells 

(Hausen, 1981; Horstmann et al., 2000; Haag and Borst, 2001). The H1 and H2 cells are coupled 

in their dendrites to the dendrites of VS1, since depolarizing and hyperpolarizing currents 

injected into the latter cause a rise and fall in the spiking rates of the former (Haag and Borst, 

2003). Injecting current into VS2 and VS3, however, does not affect the spiking rate of H1 and 

H2 (Haag and Borst, 2003), a surprising result considering the electric coupling of VS2 and VS3 

with VS1 (see 1.5 below). The V1 cell is postsynaptic to VS1-3 (Krapp et al., 2001; Kurtz et al., 

2001; Haag and Borst, 2003), and this contact is mediated by electrical coupling to VS1 (Haag 

and Borst, 2008), possibly also to VS2 and VS3, although coupling with the latter two cells 

cannot be distinguished from coupling of VS2 and VS3 to VS1 and that of VS1 to V1 (see below). 

V1 is presynaptic to the contralateral vCH cells (Krapp et al., 2001; Haag and Borst, 2003) and to 

the contralateral VS1 (Haag and Borst 2008). The horizontal H1 and H2 and Hu cells, together 

with the vertically sensitive V1 cell and the unilateral CH, HS and some VS cells, participate in an 

elaborate bilateral network of interactions which combines information from both eyes to 

achieve selectivity for yaw rotational flow-fields over thrust translational flow-fields 

(Horstmann et al., 2000; Hausen, 1981; Haag and Borst, 2001; Krapp et al., 2001; Haag and 

Borst, 2003; Farrow et al., 2006).  
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1.4.6. VS cells 

The ten neurons of the Calliphora Vertical System (VS cells) are T-shaped cells 

comprised of a horizontally oriented axon and a single, main dendrite spanning the length of 

the lobula plate in a dorso-ventral strip, from which smaller dendrites branch off (Braitenberg, 

1972; Dvorak et al., 1975; Pierantoni, 1976; Hausen, 1976; Bishop and Bishop, 1981; 

Hengstenberg et al., 1982; Hausen, unpublished; Figure 1-7a). The dendrites of the VS cells span 

the lobula plate in a tessellated, partially overlapping manner, and receive acetylcholine and 

GABA input from local motion detectors (Brotz and Borst, 1996; Raghu et al., 2007; Raghu et al., 

2009). VS cells respond primarily to ipsilateral large-field, vertical motion by graded deflections 

of their membrane potential – depolarization for motion in the downward, preferred direction 

and hyperpolarization for upward, null direction motion. Most pronouncedly in the VS1 neuron, 

these graded potentials are superimposed by pseudo-spikes – discrete but not full-blown action 

potentials (Dvorak et al., 1975; Eckert and Bishop, 1978; Soohoo and Bishop, 1980; 

Hengstenberg, 1982; Haag et al., 1999; Figure 1-6d)1. All VS cells extend their dendrites into the 

posterior, vertical- selectivity layer of the lobula plate. The more lateral and medial VS cells (VS1 

and VS6-10), also have dendritic ramifications in the anterior, horizontal-selectivity layer (Figure 

1-7a; Hengstenberg et al., 1982; Hausen, unpublished). Based on this, it was suggested that 

these cells are not simply selective for vertical motion, but have complex receptive fields that 

respond to motion in different directions within different parts of their receptive fields 

(Hengstenberg et al., 1982). This was in agreement with preliminary results which showed that 

                                                      
1
 To avoid confusion I will refer to action potentials which are not fully blown as ‘pseudo-spikes’, and to 

excitatory post-electrical synaptic potentials, i.e. spikes in a presynaptic neuron that are transmitted via an 
electrical synapse, as  ‘spikelets’ (see, e.g., Schmitz et al., 2001) 
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VS cells are selective for rotational flow-fields (Hengstenberg and Hengstenberg, 1980; 

Hengstenberg, 1981), but it was only a decade and a half later that the receptive fields of VS 

cells were fully characterized over the entire visual space of the fly by intracellular 

measurement of the local preferred direction and the local motion sensitivity (Krapp and 

Hengstenberg, 1996; Krapp et al., 1998; Figure 1-7b). These results demonstrated that VS cells 

 

Figure 1-7: VS cells and their receptive fields 

(a) Dendrites of the ten VS cells. Shaded areas indicate dendritic arborizations in the anterior, horizontal-

selectivity layer of the lobula plate. Modified from Hengstenberg et al. (1982). (b) Examples of three VS cells. 

Left – camera lucida reconstructions, right – local sensitivity and directional preference, represented as the 

length and direction of the arrows, respectively. Adapted from Krapp et al. (1998). (c) Estimated preferred axes 

of rotation for all VS cells of one hemisphere. Adapted from Karmeier et al. (2005a). 
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respond to visual flow fields arising from horizontal-axis ego-rotations: rotation of the fly 

around different horizontal axes centered at its own body; essentially pitch, roll and all 

combinations thereof. Each VS cell has a different axis of preferred rotation, and the set of ten 

VS cells span an entire hemisphere with their preferred axes of rotation (Figure 1-7c). 

VS cells receive retinotopic input from local motion detectors in their dendrites (Borst 

and Egelhaaf, 1992), and are electrically coupled to neighboring VS cells (Haag and Borst, 2004; 

see 1.5 below). An inhibitory loop was found in the latter study between lateral VS cells 

(probably VS1) and medial VS cells (VS7-10), and vice versa; this was later ascribed, at least in 

one direction, to dendro-dendritic coupling between the medial VS cells and a spiking cell called 

Vi, an inhibitory neuron that synapses on the dendrite of the ipsilateral VS1 (Haag and Borst, 

2007). The medial VS cells receive horizontal input via dendro-dendritic coupling to the dCH 

cell, a connection that accounts for the horizontal sensitivity in the dorsal, frontal part of their 

receptive fields (Haag and Borst, 2007).  

1.4.7. Calcium responses 

Since much of my work is based on in-vivo calcium imaging in VS cells, it is important to 

consider what are the sources and properties of calcium influx in these cells. Calcium influx into 

LPTCs in response to motion stimuli was first reported in VS and HS cells, and was used to 

localize sources of input to cells (Borst and Egelhaaf, 1992; Egelhaaf et al., 1993) and to serve as 

a proxy for the responses of presynaptic motion detectors which are too small to record from 

directly (Single and Borst, 1998; Haag et al., 2004).  
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Within the relevant voltage range for visual stimuli, calcium influx into LPTCs depends 

linearly, albeit with different slopes, on membrane potential changes induced by intracellular 

current injection (Haag and Borst, 2000). In HS and VS cells, the time course of calcium 

concentration rise is slower in the fine dendritic tips relative to the main axonal arbor, where 

the injection was made. However, in these experiments the cells were depolarized much 

beyond their normal activity range (up to –20mV). When stimulated with visual motion, the 

time courses were more compatible, up to a normalization (Dürr, 1998).  

In an in-vitro study, the sources of calcium influx into VS cells was determined to be 

extrinsic, a mixture of influx through cholinergic receptor channels and voltage-gated calcium 

channels (Oertner et al., 2001). This was demonstrated by application of the cholinergic agonist 

carbachol in normal and low-calcium extracellular media; response to carbachol in the latter 

medium was abolished, showing that external calcium is necessary for the elevation of the 

intacellular calcium concentration. This experiment also rules out second-messenger driven 

release from internal stores, as such signaling depends only on the activation of muscarinic 

cholinergic receptors. Calcium-induced calcium release was also ruled out by experiments in 

which application of caffeine in a ryanodine-containing medium failed to trigger the elevation 

of intracellular calcium. Depletion of intracellular calcium stores with thapsigargin also did not 

affect the carbachol-induced calcium responses. Stimulation with carbachol in a low-sodium 

medium resulted in almost complete extinction of the membrane potential responses, but the 

calcium responses remained at almost the control level. The conclusion from this work was that 

around 80% of the calcium influx in LPTC dendrites comes from ligand-gated channels, and only 

the remainder from voltage-gated calcium channels.  
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However, as the authors themselves note, the situation in an in-vitro preparation using 

carbachol to activate the cholinergic receptors can differ substantially from an in-vivo 

preparation activated by cholinergic synapses in the visual pathway. A good demonstration of 

this is the failure of the authors to evoke calcium responses in VS2 and VS3 cells by intracellular 

depolarization. In the intact fly, hyperpolarization of tangential cells by current injection results 

in the vanishing of calcium fluctuations that are caused by the responses of local motion 

detectors to the local texture of the visual stimulus (Single and Borst, 1998). This hints towards 

a dominant role of voltage-gated calcium channels in tangential cell calcium influx, and a 

subsequent experimental and modeling study showed that at least 60% of the calcium comes 

through these channels (Borst and Single, 2000). However, most importantly to my work, that 

study also made it clear that local activation from synaptic stimulation remains confined to the 

synapse’s dendritic branch, and thus the calcium signal readout, whether from cholinergic or 

voltage-gated channels, reflects this local synaptic input.  

 

1.5. Lateral interactions between VS cells 

Considering the retinotopic projection of motion information onto the lobula plate, a 

surprising result from the experiments by Krapp et al. is that for each VS cell, the receptive field 

measured intracellularly in the axon is approximately 3- to 4-fold wider at the horizon than 

what is expected from the extent of their dendritic arborization in the lobula plate (Krapp and 

Hengstenberg, 1996; Krapp et al., 1998; Farrow et al., 2005). One explanation considered for 

these broader receptive fields was lateral interactions between the VS cells. Such interactions 
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were first speculated by Hengstenberg et al. (1982) based on anatomical evidence of ‘axon-

collaterals’ in VS cells that seemed to project towards the location of similar neighboring axon 

terminals, but at the time it was not clear whether these protrusions were indeed synaptic 

connections and how they influenced the receptive fields of VS cells.  

1.5.1. Axo-axonal gap junctions 

The existence of lateral interactions between VS cells was directly tested by Haag and 

Borst (2004), using double recordings and current injections in pairs of VS cells. Inward and 

outward currents injected in VS cells result in positive and negative membrane potential 

responses in other VS cells, respectively. These responses are smaller the further the distance 

between injected and recorded VS cells, and reverse their sign for VS cells closer to the edges of 

the lobula plate (e.g. VS1 and VS7/8). Analyzing the time course of the responses in the 

recorded cells led the authors to propose a chain-like connectivity model, where each VS cell is 

connected to its immediate neighbors, with an inhibitory loop between VS1 and VS7/8 (See 

Figure 2-5). Due to the bi-directional transfer of current, the most likely explanation for the 

connectivity is electrical synapses. This was verified in an experiment where neurobiotin, which 

permeates through gap-junctions, was loaded into one cell and its spread within the lobula 

plate was inspected after it was allowed to diffuse. As expected, the neurobiotin diffused to 

neighboring cells, indicating their connection by gap junctions, and moreover, the strength of 

the labeling decrease with distance from the loaded cell, supporting the chain-like connectivity 

scheme (Haag and Borst, 2005). From two-photon microscopy images as well as from earlier 

electron micrographs, it became clear that the gap junctions between VS cells resided in the 
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axons, which lie in close proximity throughout the lobula plate and in the protocerebrum, and 

not in the dendrites, which are spaced from each other in the lobula plate and do not make 

direct contacts (Pierantoni, 1976; Haag and Borst, 2004). This was verified using calcium 

imaging and intracellular current injection – current injected into a VS cell caused 

depolarization and calcium influx through voltage-gated calcium channels in the entire VS cell, 

but when the current was injected in a neighboring cell, calcium influx was registered only in 

the axon. This demonstrated that the VS cells are compartmentalized into an axon-terminal 

region and a dendritic region (Cuntz et al., 2007). 

1.5.2. Functional significance 

What is the contribution of input from neighboring VS cells to the receptive fields of a 

VS cell? To answer this question, receptive fields of VS cells were measured before and after 

ablation of single neighboring VS cells, filled with carboxyfluorescine, by laser irradiation. As 

predicted by the chain-like connectivity model, the responsiveness of VS cells to preferred 

direction motion was reduced on the side of the ablated cell, making their receptive fields 

narrower, but only on that side (Farrow et al., 2005). 

What is the functional significance of the VS cells’ broader receptive fields? A modeling 

study which simulated a biophysically realistic network of VS cells proposed an answer to this 

question. Cuntz et al. (2007) digitalized images of VS cells from two-photon microscope stacks 

and built a compartmental model of 10 VS cells, connected in their axons by gap junctions. The 

model network was fed by an array of Reichardt detectors synapsing on the dendrites of the 

simulated VS cells as excitatory and inhibitory synapses. When the model was presented with 
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rotating artificial images containing uniform random patterns with high contrast, both the 

dendritic and the axon-terminal population responses remained relatively stable over time, and 

it was easy to estimate the axis of rotation of the image from the dendritic population 

response. The population response measured in the axon terminals was a spatially smoothed 

version of the dendritic responses, but it was not clear under this stimulation regime what this 

spatial smoothing achieved. Specifically, the position of the axis of rotation could easily be 

estimated by looking at the neuron whose response was closest to zero in both the dendritic 

and the axonal populations.  

The contribution of this spatial smoothing was made evident when the network was 

presented with a naturalistic image in which the distribution of local image characteristics such 

as contrast and spatial frequency content is highly non-uniform across the different receptive 

fields of the VS cells. In this case, the dendritic responses were very unstable over time, 

reflecting the non-uniform naturalistic input and the effect it has on the responses of the 

Reichardt detectors that synapse on the VS cell dendrites. However, when looking at the 

spatially smoothed axon-terminal responses, it was immediately clear that in the case of 

naturalistic images they were much more stable over time than the dendritic responses. Also, it 

was easier to estimate the axis of rotation by looking at the neuron with the smallest absolute 

response. This was interpreted as a spatial “interpolation” of the axis of rotation, in the sense 

that the zero crossing of the population response was more robustly represented in the 

responses of the axon-terminal population, and not that of the dendritic population.  
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1.6. Neuronal morphology and intracellular computation 

Much of what we know today about the way inputs to a single cell interact is due to the 

pioneering work by Wilfrid Rall and his students and collaborators from the late 1960s and later 

(compiled by Segev et al. 1994). Although earlier researchers used elements of linear cable 

theory to model and understand their results, Rall presented an integrated and comprehensive 

analytical framework that allowed neurophysiologists to understand how distributed electrical 

processes that occur in electrotonically remote dendrites affect recordings made 

predominantly in the soma of neurons (Rall, 1967; Rall et al., 1967). From these theoretical 

results it became increasingly clear that the relative location of inputs into single cells plays an 

important role in their interaction, and in the resulting integration at the level of the single 

neuron.  

1.6.1. Segregation and aggregation of inputs  

The physical and electrical separation of synaptic, local motion detectors in the 

dendrites of VS cells from electrical, gap-junction coupling between the axons of neighboring VS 

cells allows us to ask questions about intracellular computation in this system. Specifically, we 

can begin to address questions of design in this system – why are certain inputs to a cell 

spatially and electrotonically aggregated, whereas others are segregated? Using the blowfly 

lobula plate as a model system, we have a unique opportunity to adress these questions in the 

context of the system’s sensory function – the processing of visual motion stimuli related to 

flow-field estimation.  
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That neighboring excitatory and inhibitory synapses interact divisively, i.e. sublinearly, is 

an idea that traces back to the discovery of inhibitory synapses by the Eccles group (Brock et al., 

1952) and the finding that muscle end-plate potentials in crustaceans are attenuated by 

inhibitory input without reduction in the baseline potential by Fatt and Katz (1953). Based on 

Rall’s cable theoretical approach to the neuron and his ideas regarding the effect of synaptic 

location on the somatically-measured EPSP  (Rall, 1959; Rall, 1964; Rall et al., 1967), Blomfield 

suggested that when close together, inhibitory and excitatory synapses will interact divisively, 

 

Figure ‎1-4: Single neurons 
as dual layer neural 
networks 

(a) Equivalence between an 

electrically distributed 

model neuron and a dual 

layer neural network. The 

synaptic input to the same 

dendrite is integrated and 

passed through a local, 

dendritic non-linearity 

before being integrated 

with inputs from other 

dendrites at the soma and 

passed through the spiking 

non-linearity. Adapted 

from (Poirazi et al., 2003b). 

(b) Non-linear and linear 

integration of synaptic 

input on the same dendrite 

and on different dendrites, 

respectively, demonstrated 

by local excitation using 2-

photon glutamate uncaging (right) and using a compartmental model (left). Adapted from (Polsky et al., 

2004) 
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but when enough electrotonic distance is introduced, the interactions become essentially 

linear, i.e. subtractive. This idea also was also made explicit in a theoretical proposal for the 

underlying mechanism of directional selectivity (Torre and Poggio, 1978): “…this type of 

multiplicative inhibition is critically dependent on the spatial arrangement of the synapses. If 

the two synapses are not spatially adjacent (their distance being larger than about one-tenth of 

the membrane length constant), the circuit of figure 2 [i.e. a non-linear, multiplicative 

interaction] is not a faithful model. In this case the effects of the conductance changes would 

essentially summate linearly (Rall, 1964; Jack et al., 1975)”.  

An important point to be made here is that when one considers spiking responses, 

shunting inhibition acts linearly even on nearby located excitatory inputs, due to the effect of 

the shunt on the spike generating mechanism (Holt and Koch, 1997). However, in non-spiking 

cells such as VS cells where the important interactions are sub-threshold also in the output of 

the cells, the shunting operation remains divisive. 

These ideas, taken together with the various local dendritic non-linearities that were 

discovered in hippocampal and cortical pyramidal neuron dendrites (Johnston et al., 1996; 

Magee et al., 1998; Schiller et al., 2000; Häusser et al., 2000; Wei et al., 2001; Reyes, 2001), led 

to the suggestion that a single neuron could implement a dual-layer artificial neural network. In 

these networks, each artificial “neuron” sums its inputs linearly and passes the sum through a 

non-linear output function, and these are implemented in the single-neuron model in the 

dendrites and in the spiking non-linearity at the axon hillock (Mel et al., 1998; Archie and Mel, 

2000; Poirazi et al., 2003a; Poirazi et al., 2003b; Figure 1-8a). The additional computational 
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mechanism in these models was the local dendritic non-linearity, which in a subthreshold 

regime allows inputs on the same branch to interact non-linearly while inputs on different 

branches sum linearly. These model predictions were subsequently tested and verified in 

hippocampal slices, although the strict one-to-one identification of the thin dendritic branches 

with the first layer’s subunits was dropped in favor of a more continuous compartmentalization 

in the dendrites (Liu, 2004; Polsky et al., 2004; Figure 1-8b). 

1.6.2. Non-linear integration in LPTC dendrites 

Are these ideas applicable to the subject of this thesis, the VS cell network? Various 

non-linear integration mechanisms have been documented in LPTCs, including sub-linear 

saturation in spatial summation (Hausen, 1982b; Hengstenberg, 1982; Haag et al., 1992; Haag 

and Borst, 1994; Haag et al., 1999), synaptic gain-control of the saturation level by interactions 

between inhibitory and excitatory motion-selective inputs (Borst et al., 1995; Single et al., 1997) 

and supralinear amplification of high-frequency signal components by active properties in the 

dendrites and axons of HS and VS cells (Haag and Borst, 1996; Haag et al., 1999). There is some 

evidence for linear summation of inputs arriving at separate dendritic branches of the same VS 

cell (Haag et al., 1992). However, the existence of gap-junctions between axon terminals of VS 

cells raises the interesting possibility to view each VS cell as a separate dendrite of a large 

conglomerate “VS-network” neuron, since connecting two neurons by a gap junction or 

connecting two neuronal processes with a branching point is biophysically equivalent, assuming 

the gap junctions are passive.  
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1.7. Goals and project outline 

Considering that the axo-axonal gap-junctions between VS cells are responsible for the 

broadening of their receptive fields, but that the effects of these interactions can only be seen 

in the axons, an immediate prediction is that the broader receptive field should be seen only in 

the axons, and not in the dendrite, which should not be affected by these connections. Thus, it 

should be possible to measure two distinct receptive fields in a single VS cell: a narrow 

receptive field in the dendrites, corresponding to the retinotopic feedforward input from local 

motion detectors, and a broader one in the axon terminals, corresponding to the cell’s own 

dendritic input combined with information from neighboring VS cells (Figure 1-9). I directly 

tested and visualized this prediction using in-vivo calcium imaging; I showed that in VS cells, the 

dendritic receptive field is narrower than the axon terminal receptive field, and that this 

broadening is mediated by the lateral axo-axonal interactions. I also showed that the broader 

receptive fields are responsible for linearly integrating signals coming from the cells’ dendrites 

and from their neighboring cells, as predicted by previous model studies. I then used a 

compartmental model to show that spatially separating the gap junction interactions in the 

axon terminals from the conductive load of the dendritic synapses is essential for this linear 

integration. Separating axonal interactions from dendritic input sites serves as an explanation 

for the cells’ distinctive T-shaped morphology. 



Introduction 

56 
 

 

 

Figure ‎1-5: Narrow dendritic and broad axonal receptive fields 
in single VS cells 

Top: a schematic depicting 3 example VS cells with their lobula 

plate input from local motion detectors (left) and the lateral 

connections between their axon terminals in the 

protocerebrum. Bottom: the resulting narrow dendritic 

receptive field, corresponding to input from the local motion 

detectors, and the broad axon-terminal receptive field, 

corresponding to the input from the cell’s dendrites and from 

neighboring cells. 
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Chapter 2. Methods 

 

In this chapter, I present a detailed description of the materials and methods used in 

gathering and analyzing the data, as well as the modeling techniques used. For a more succinct 

account of this chapter’s contents, the reader is referred to Elyada et al (2009). 

2.1. Experiments 

2.1.1. Preparation and positioning of the flies 

Female blowflies, Calliphora Vicina, were prepared as previously described (Haag and 

Borst, 2004; Farrow et al., 2005; Borst and Haag, 1996; 2-4 day old, laboratory stock). The files 

were briefly anesthetized with CO2, then mounted ventral side up on a piece of glass. The legs 

were cut off at the base, and the bases of the wings were waxed to prevent them from moving 

during the recording. The head was then pressed down towards the thorax and waxed, creating 

an angle of roughly 90 with the rest of the body’s axis to allow access to the back of the head. 

The proboscis was pulled out and cut at the base to separate it from the gut, the antennae 

were also pulled out and cut and the incisions were closed with wax. An incision was made in 

the back of the fly’s neck, the uppermost muscles removed and the gut was pulled out and 

waxed to the back of the thorax. The left side of the back of the head capsule was cut out, and 

air sacs and fat bodies were extracted, exposing the ipsilateral optic neuropils (lamina, medulla, 

lobula plate) and the dorsal part of the central brain including the bilateral calices, lateral 
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deutocerebrum, protocerebral bridge, protocerebrum and suboesophageal ganglion (Figure 

2-1).  

The piece of glass on which the fly was mounted was used to hold the fly in the 

recording setup, serving as an insulator to prevent ground loops between the amplifier’s 

ground and that of the headstage. The fly was mounted facing down in front of the screen (see 

Stimulus presentation), which covered roughly 108 of the ipsilateral visual field from -7 to 

101. An upright epifluorescence microscope (Axioscope, Zeiss, Göttingen) located above the 

fly’s head was used to visualize the brain and the electrodes so as to position the electrodes. A 

20x water immersion objective was used in order to minimize optic distortion due to the fly’s 

spontaneous pumping of its haemolymph, and this was also found to be useful in preventing 

the electrode’s capacitance from changing during voltage clamp due to the rising and falling 

fluid level.  

 

Figure ‎2-1: Access to the lobula plate and the LPTCs.   

Caudal view of the open head capsule showing the brain with a dCH cell filled with fluorescent dye. Left – 

without external light, right – with external light. Med – medulla, LP – lobula plate, PC – protocerebrum. In 

the right picture, the lamina between the medulla and the eye is obstructed by a light reflection from the 

external light source.  
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2.1.2. Electrophysiology 

Micropipettes for intracellular recordings were pulled using a Flaming/Brown puller (P-

97, Sutter Instrument Co., Novato, CA), and for switched-mode voltage-clamp recordings 

coated almost up to the tip with a layer of wax to reduce the pipettes’ capacitance. The 

following combinations of dyes were used in the tip solutions:  

 5mM Oregon Green BAPTA-1 (OGB-1) and 1mM Alexa 594 (A549) for initial access to 

the cells and receptive field mapping. 

 2mM A594 for electrical access to cells already filled with OGB-1 and A594 in order to 

voltage clamp them without accidentally introducing calcium dye into other cells. 

 Oregon Green BAPTA 6-F (OGB-6F) for imaging of calcium fluctuations while presenting 

dynamic stimuli.  

 

Dyes were dissolved in 0.5 M Potassium Acetate (all dyes from Molecular Probes, 

Eugene, Oregon). Electrodes were backfilled with 2M KAc and 500mM KCl. Average electrode 

resistance was 25MΩ. 

VS cells were found by blind search in the lobula plate under visual stimulation and were 

usually initially impaled in the main dendrite or the axon close to the main dendritic branching 

point. VS cells were recorded in bridge mode or switched mode at 20-40kHz for voltage clamp 

(amplifier SEC10-L, NPI Electronic GmbH, Tamm, Germany). The time constant of VS cells (~1.2-

1.4ms; Haag and Borst, 2004; Haag, 1994) is one to two orders of magnitude lower than that of 
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cells commonly recorded from electrophysiological experiments in other preparations (10ms-

100ms), and therefore much closer to the time constants measured from our electrodes (~100 

µs). Because of this we found it difficult to reliably balance capacitance in the amplifier by 

adjusting the voltage responses to square-shaped pulses. We therefore injected a sinusoidal 

current in the switched mode at 200Hz; since the corner frequency of VS cells is around 80Hz 

(Borst and Haag, 1996), the cell should not respond significantly to the injected sinusoid, and 

the only sinusoidal response should be that of the unbalanced electrode. We used this principle 

to balance the capacitance of the electrode under auditory feedback.  

The sinusoidal current was superimposed on a hyperpolarizing DC current which 

achieved two things: Most importantly, it constrained the capacitance balancing exclusively to 

negative current injections, mitigating the effects of the non-linear properties of the relatively 

high-resistance electrode. We experienced a rectification by the electrodes at 0nA, which 

caused a different voltage drop over the electrode for currents of opposite sign. Since the 

stimuli we used were excitatory, we expected injection of negative currents while voltage-

clamping, and it was therefore important to balance the electrodes using exclusively negative 

currents. Another thing this achieved was preventing the activation of the cells’ active 

properties which might have distorted their responses to the sinusoidal injection and thus make 

it difficult to correctly balance the electrode’s capacitance. This compensation method was 

tested with a few test electrodes in the bath and yielded negligible voltage deflections for 

negative current injections up to -10nA.  
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The amplifier’s output was fed into an analog-to-digital converter board on a PC and 

sampled at 4kHz using custom software modified from Delphi code (Borland, Austin, TX) written 

by Juergen Haag. The program also controlled the computer generating the stimuli and 

triggered the CCD camera. This program was modified to allow automatic repetition of the 

same experimental protocol.  

2.1.3. Visual stimulation 

Flies were placed 85mm in front of a CRT monitor with fast, P46 phosphor dots sporting 

a 300Hz refresh rate (ML15MAX, Image Systems, Plymouth,  MN), which resulted in a 

substantially smaller response of the cells to screen flicker relative to slower, conventional CRT 

monitors. The screen spanned 108° of the flies’ ipsilateral visual field. Stimuli were generated 

by custom software written in Delphi as a front end for the API of a graphics board (ViSaGe, 

Cambridge Research Systems, Rochester, UK). The stimuli were presented in pseudo-random 

order within each repetition of the set of stimuli for a given experiment.  

For receptive field mapping, 20° wide square-wave gratings (20° spatial wavelength, 

100% contrast, maximal luminance 97.7 cd/m2) measuring 3 wavelengths high were presented 

at the fly’s ipsilateral, medial visual horizon drifting in the preferred direction of the cells at a 

contrast frequency of 3Hz. The windows were centered at azimuths, from 0° (directly frontal) 

laterally up to 80°, in 10° steps (overlapping 10° with the two adjacent gratings).  

For the calcium influx modeling experiments, whole-field gratings (20° spatial 

wavelength, 100% contrast, maximal luminance 97.7 cd/m2) were presented to the fly, 
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alternating between intervals where the grating drifted at a contrast frequency of 3Hz and 

intervals where the grating was stationary. This alternation started 1 sec after imaging began, 

and continued for 3 seconds at switching frequencies of 0.5, 1, 2, 3 and 4 Hz.  

In the axon-terminal signal interpolation experiments, receptive fields of the filled cells 

were first mapped by presenting the same gratings described above for receptive field 

mapping. The fly was then presented with a pattern comprising sets of horizontal double bars 

(20 wide, 20 vertical spatial frequency) repeating periodically in the vertical dimension at 

100°/cycle and drifting at 50°/sec in the preferred direction of the cell. The bars were 

positioned in the previously mapped dendritic receptive field or outside of it, laterally shifted by 

40° to a position still inside the axon-terminal receptive field and spatially phase-shifted by half 

a cycle (Figure 3-11a).  

2.1.4. Electrical responses 

Steady-state membrane-potential responses were calculated from the intracellular 

recordings by averaging 2 seconds before stimulus onset and 1.5 seconds beginning 0.5 seconds 

after stimulus onset. The response to each drifting grating was taken as the difference between 

the two. Receptive fields were normalized to their maximum.  
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2.2. Data analysis 

2.2.1. Cell identification 

Identifying VS cells from other tangential cells was done by the directional selectivity of 

their electrical responses, and later confirmed by visual inspection. To identify each specific VS 

cell, I used a method developed by Karl Farrow, in which the relative location of the main 

dendritic branch in the lobula plate is compared to a table (Farrow, 2005). To this end, a 

fluorescence image of the filled VS cell was taken with a 10x water immersion lens with and 

without external lighting to illuminate the borders of the lobula plate. The relative location of 

the VS cell’s dendrite was calculated by first marking the medial and lateral borders of the 

lobula plate in a matlab GUI script, then drawing a line drawn between them and finally 

marking the crossing point and its projection on that line (Figure 2-2).  

 

 

Figure ‎2-2: Identification of a VS4 cell by 
the relative position of its main dendrite.  

Dotted yellow line illustrate the borders of 

the lobula plate, cyan X-s are the marked 

edges of the lobula plate and the blue X is 

the marked intersection between the 

connecting line (red) and the VS cell’s 

dendrite.  
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2.2.2. Calcium imaging 

Calcium imaging was performed using an epifluorescence-CCD camera imaging system 

(CoolSnapHQ, Roper Scientific, Tucson, Arizona) at 2Hz (receptive field mapping and current 

injection experiments) or 10Hz sampling frequency (image translation experiments). calcium 

imaging stacks were corrected for motion artifacts (ImageJ, stackreg extension), and ΔF/F stacks 

were filtered with a 10x10 pixel median filter and pixel-wise exponentially bleach corrected.  

To quantify the steady-state calcium responses for the receptive field mapping 

experiment, difference images were calculated between the averages of 3 frames during the 

stimulus and 3 before stimulus onset (“average difference ΔF/F images”). A region of interest 

(ROI) was defined by setting a threshold set at 30% of the value of the 95 percentile pixel (see  

Figure 2-3), and averaged the difference value over all pixels in the ROI for each of the 9 

stimulus conditions. Note that in the dendrite, most of the calcium signal comes from thin 

dendrites located distally (laterally) from the main dendritic branch. This may reflect the larger 

 

 

Figure ‎2-3: Calculating the region of 
interest (ROI).  

Calculating ROIs for dendrite and axon-
terminal. a. Average difference ΔF/F 
image (see text) for the dendrite of the 
cell in Fig. 1b,c. ROI boundaries drawn 
in yellow. b. ROI presented on the raw 
fluorescence image. c,d. same as a,b 
for axon terminal. 
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increase in [Ca+2]i caused by the proximity to the direct synaptic channels as well as by the 

smaller volumes of the respective neuronal processes there.  

Calcium-imaging receptive fields measured in the dendrite or in the axon-terminal were 

normalized to their maximum. This deals with two potential sources of inhomogeneity in the 

calcium responses across different cells and different cell regions. The first is different cellular 

and circuit parameters that may result in different membrane potential and calcium responses 

(Swensen and Bean, 2005; Schulz et al., 2006; Marder and Goaillard, 2006). The second is a 

shortcoming of wide-field epifluorescence microscopy; because of the inhomogeneous 

background in an in-vivo preparation, and the optical merging of small branches into the 

background, it is virtually impossible to carry out a reliable background correction in this 

preparation (Borst and Egelhaaf, 1992; Haag and Borst, 2000). Background subtraction is an 

important processing step when trying to relate the F/F measurements to a physiologically 

relevant signal such as the intracellular calcium concentration (Grynkiewicz et al., 1985), and I 

therefore could not obtain good estimations of any such relevant signal. The F/F 

 

Figure ‎2-4: Normalizing calcium imaging 
receptive fields.  

Maxima of the dendritic and axon-

terminal receptive fields normalized to 1. 

VC: voltage-clamped dendrite, imaging in 

axon-terminal. Arrow: maximum of the 

axon-terminal receptive field under 

dendritic voltage-clamp, bracket: 

“residual” axon-terminal receptive field 

which was normalized so as to minimize 

the sum-of-squares difference from the 

corresponding points in the unperturbed 

axon-terminal receptive field.  
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measurement variability resulting was thus accounted for by normalization.  

To compare axon-terminal receptive field under dendritic voltage clamp (terminal-VC) 

with the unperturbed axon-terminal responses, we had to take into account that voltage 

clamping the dendrite might some effect on the response of the terminal as well, even for 

responses arriving solely through lateral interactions. We therefore normalized the terminal-VC 

curves so as to minimize the sum-of-squares difference between the unperturbed terminal 

receptive field and the axon-terminal receptive field under dendritic voltage-clamp, from the 

latter’s maximum to the edge that is farthest away from the maximum of the dendritic 

response (see Figure 2-4). 

I also modeled the effect that a voltage-clamping electrode has on signals arriving from 

neighboring cells through the gap junctions. To model this, I used a morphologically realistic 

compartmental model from Cuntz et al. (2007) kindly supplied by Hermann Cuntz (Figure 2-5a). 

The model runs in the NEURON environment (Hines and Carnevale, 1997) and incorporates 

detailed reconstructions of 10 VS cells from 2-photon fluorescence microscopy stacks. 
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2.3. Modeling 

2.3.1. VS cell network model 

To simulate the VS cell network, I generated a simplified passive 20-compartment model 

with each cell being represented by a dendritic and an axon-terminal iso-potential 

compartment (Figure 2-5b). Each compartment was given a leak current and membrane 

capacitance, and the two compartments were connected by an axon for each cell, modeled as a 

simple conductance. Electrical synapses between either the dendrites or the axon-terminals, 

also modeled as simple conductances, were used to connect the cells in a chain-like fashion 

(only axon-terminal gap-junctions shown in Figure 2-5b). Synaptic conductances were placed 

 

Figure 2-5: VS network models 
used for simulations.  

a. Illustration of the model used for 

voltage clamp simulations and to 

extract parameters for the 

simplified 20-compartment model. 

Each cell is plotted in a unique 

color, with full representation of 

the branching pattern as well as the 

diameter of each compartment 

(taken from Cuntz et al., 2007). b. 

Simplified 20 compartment model 

extracted from the detailed model. 
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exclusively in the dendrites, with batteries of -40mV and +40mV for inhibitory GABAA synapses 

and excitatory Acetylcholine synapses, respectively (see below for a description of how the 

time-dependent synaptic conductances were calculated). VS cells have resting potential of -

45mV to -50mV, and in the model this is represented as 0mV. Thus the reversal potentials of 

Acetylcholine and GABA synapses in the model should be +45 to +50mV and -35 to -30mV, 

respectively. We used symmetric values as an abstraction step, in order to simplify the analysis 

of the model.  Values of -30mV and +40mV were used by Cuntz et al., (2007), and their results 

do not differ substantially from ours. 

Model simulations were carried out in matlab (MathWorks, Natick, MA) using custom 

written code adapted from an unpublished manual by Alexander Borst. Essentially, model 

parameters were incorporated into a conductance matrix M which has the i-th compartment’s 

sum conductances and 
𝐶𝑚

∆𝑡
 (taken from the term for capacitative current) on the diagonal 𝑀𝑖𝑖 , 

and the conductance between the i-th and j-th compartment in 𝑀𝑗𝑖  and 𝑀𝑖𝑗 . Using the vector of 

membrane potentials at time 𝑡 − 1, 𝑉   𝑡 − 1 , the algorithms solves for 𝑉  (𝑡) using the vectors 

𝐼 (𝑡) of currents injected into each compartment, 𝐸𝑖𝑛𝑕 ∙ 𝑔 𝑖𝑛𝑕  and 𝐸𝑒𝑥𝑐 ∙ 𝑔 𝑒𝑥𝑐  of inhibitory and 

excitatory synaptic currents to each compartment (the leak potential is taken as zero and does 

not contribute to this) and 
𝐶𝑚

∆𝑡
∙ 𝑉  (𝑡 − 1) (the other part of the term for capacitative current):  

𝑴 ∙ 𝑉   𝑡 = 𝐼  𝑡 + 𝐸𝑖𝑛𝑕 ∙ 𝑔 𝑖𝑛𝑕 + 𝐸𝑒𝑥𝑐 ∙ 𝑔 𝑒𝑥𝑐 +
𝐶𝑚

∆𝑡
∙ 𝑉  (𝑡 − 1) 

This is an implementation of the Euler method for solving the underlying differential equations, 

using a time discretization at ∆𝑡 = 1msec. 
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A two-dimensional array of vertically oriented local motion detectors of the Reichardt 

type (Reichardt, 1987) with high-pass filters on the cross arms (Borst et al., 2003; filter time 

constants: low-pass 35ms; high-pass 75ms) simulated the local motion detection circuitry 

presynaptic to the lobula plate. Output signals of upward and downward motion detector 

subunits were thresholded at 0, summed by 10x100 pixel receptive fields, scaled by a gain 

factor (see model parameters below) and fed into the inhibitory and excitatory synapses, 

respectively. In models with current-injection synapses, the outputs of the motion detectors 

were rectified by a square root function immediately before being injected into the dendritic 

compartments, to account for the synaptic saturation that takes place in conductance based 

synapses. 

2.3.2. Model parameters 

For simplicity and abstraction, model parameters were assumed to be identical between 

all cells except those on the edges (VS1 and VS10, with only one connected electrical synapse). 

We then used an anatomically realistic model taken from ref. (Cuntz et al., 2007) to calculate 

responses in the axon-terminal (corresponding to the gap-junction connected compartment in 

the realistic model) or the dendritic compartment (corresponding to the primary dendritic 

branching point) to 10nA current injections in either of these compartments, in the injected and 

in the immediately neighboring cells. To constrain the magnitude of evoked synaptic currents, 

we also fitted responses in the dendrites and the axon terminal to drifting sinusoid gratings, as 

well as to a reduction of 25% in input resistance in the dendritic compartment when presenting 

the same stimulus(Borst et al., 1995).  
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We calculated the model’s parameters by least sum-of-squares optimization using a 

score made of the previously described constraints. The resulting model parameters are 

summarized in Table 2-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-1: Model parameters 

 

2.3.3. Modeling visual input 

Six hundred images were taken from an online image database (van Hateren and van 

der Schaaf A., 1998), rebinned by factor 2 and rescaled by taking the log of the middle 100x100 

pixel values minus their mean. This logarithmic transformation mimics the compressive non-

linearity of fly photoreceptors that allows them to reliably respond with reasonable signal-to-

gAxon (VS1, VS10) 103.5 nS 

gAxon (VS2-9) 90.01 nS 

gin dendrite (VS1, VS10) 240.8 nS 

gin dendrite (VS2-9) 211.4nS 

gin axon terminal (VS1, VS10) 6.03 nS 

gin axon terminal (VS2-9) 5.29 nS 

ggap-junction 473.6 nS 

Synaptic scaling coefficient 10-7.4656 
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noise ratio to light intensities in a very broad range (Juusola et al., 1994) Images were rotated 

around their centers at 155 deg/sec and 1kHz temporal resolution for 2 seconds. This time 

sequence was fed into the array of local motion detectors.  

2.3.4. Modeling calcium responses 

We modeled the Ca+2 response to changes in Vm, by measuring the Vm and Ca+2 

responses to drifting gratings with square-wave velocity profiles repeating in frequencies of 0.5, 

1, 2, 3 and 4 Hz. Since the high-Kd dye (OGB-6-F, Kd ~ 3μM) operates in the linear domain for 

cellular concentrations of Ca+2, and assuming a linear dependency of Ca+2 influx on Vm 

fluctuations around the cells’ resting potential (Haag and Borst, 2000), we modeled the 

responses as a second-order time-domain linear filter (Borst and Abarbanel, 2007). Each cell’s 

Vm responses (average responses if Vm recordings were unavailable) were normalized, 

resampled by a factor of 400 and fitted by the normalized ΔF/F responses using Steiglitz-

McBride iteration (see also Supp. Fig. 3). The modeling resulted in a low-pass filter with cut-off 

frequency of ~0.4Hz. Signal-to-noise ratio was calculated by dividing the Welch power spectral 

density estimate of the average of all single sweeps (signal) by that of the difference of all single 

sweeps and the average sweep (noise). For the averaged 5-sweep SNR we divided the noise by 

5 . 
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Chapter 3. Results 

 

I started my approach to the questions outlined in the introduction by combining full-

field epifluorescence calcium imaging and electrical recordings in order to map the receptive 

fields in different parts of VS cells. I found that dendrites of VS cells have narrow receptive 

fields, relative to the broader receptive fields in the axon-terminals. Using voltage-clamp 

blockade of the information flow from the dendrites of single cells, I was able to show that 

lateral interactions in the axon-terminals, and not in the dendrites, are responsible for this 

receptive field broadening. Moreover, I was able to demonstrate that the axon-terminal 

responses are linearly smoothed versions of the dendritic responses, as predicted by previous 

modeling work (Cuntz et al., 2007; Weber et al., 2008). 

The question of why a certain circuit is built one way and not another, however, cannot 

be answered by experimentation. I therefore turned to compartmental modeling, which allows 

different configurations and wiring schemes to be tested and compared against each other. For 

this end I generated a simplified 20-compartment model of the VS cell network. I found that 

connecting VS cells with gap junctions in their axon-terminals results in significantly more 

effective interpolative smoothing of the population responses than connecting them in the 

dendrites, due to the shunting of the gap junction coupling by the dendritic chemical synapses. 

The need to electrotonically remove the gap junctions from the shunting effect of the synapses 

serves as a functional explanation for the striking T-shaped morphology of VS cells.  
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3.1. Two receptive fields in single VS cells 

To measure the receptive fields in the two subcellular compartments, I performed 

simultaneous intracellular recordings and calcium imaging of VS cells using Oregon Green 

BAPTA 1 (OGB-1) while stimulating the flies with 20 wide gratings drifting in the preferred 

direction of the cells. The stripes were located at 9 different azimuths along the fly’s visual 

horizon. This allowed me to directly visualize calcium responses in dendrites and terminals by 

looking at the relative change in fluorescence, F/F.  

3.1.1. Linearity and homogeneity of calcium responses 

Two important prerequisites for the use of calcium imaging to monitor neuronal activity 

in subcellular compartments are that the calcium influx is linearly related to the membrane 

potential deflection, and that this relationship is homogeneous in the various compartments in 

question. The voltage-gated calcium responses in VS cell dendrites and axon-terminals are 

linearly related to membrane potential deflections within the activity range of the membrane 

potentials of these cells (Egelhaaf and Borst, 1995; Haag and Borst, 2000), and the this 

relationship is homogeneous (Haag and Borst, 2000; Cuntz et al., 2007). I independently 

corroborated these results in VS cells by injecting current in bridge mode into the main 

dendritic branching point in 5 VS cells and measuring the calcium responses (Figure 3-1). 

Positive membrane potential deflections of up to 10mV, within the range of visually induced 

responses (Haag et al., 1999), can be elicited by injecting currents of 3-3.5nA (Borst and Haag, 
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1996) . In this range of currents, calcium responses in both dendrites and axon-terminals are 

linearly related to the injected current, albeit with a different linear slope. VS cells are therefore 

amenable to calcium imaging of visual-motion induced responses. 

3.1.2. Mapping the receptive fields 

Taking advantage of these results, I proceeded to map receptive fields in dendrites and 

axon-terminals of VS cells. I presented the fly with drifting square-wave gratings at various 

azimuths on the horizon of the fly’s eye, and measured the average calcium dye activation over 

stimulus presentation within defined regions of interest in the dendrites and axon-terminals of 

the cells. In an example VS3 cell, both axon-terminal and dendrite responded to gratings in 

lateral azimuths (40-70), but only the axon-terminal responded to gratings positioned in 

frontal azimuths (0-30); the dendrite showed no detectable response to these stimuli (Figure 

3-2a, example F/F traces in Figure 3-2b). This confirmed that excitatory input from 

neighboring VS cells arrives at the axon-terminal and not at the dendrite. I mapped the 

 

Figure ‎3-1: Current-calcium influx 
relationship in VS cell dendrites and 
axons 

Linear relationship between injected 

current and calcium influx in VS cell 

dendrites and axon-terminals. Gray 

shading: functionally relevant range of 

current injections. See text for details. 
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receptive fields of this cell’s dendrite and axon-terminal by averaging the responses over the 

two defined regions of interest (Figure 3-2c). The terminal receptive field is more than twice as 

broad as the dendritic one (Gaussian fits:  ~ 13 dendrite,  ~ 29 terminal), and the frontal 

part of the dendritic responses vanishes, whereas that of the terminal remains above zero.  

I measured the receptive fields of 49 VS cells (5 VS1, 14 VS2, 16 VS3 and 14 VS4, Figure 

3-3a); data from more medial cells were not acquired because with the stimulus screen it was 

 

Figure ‎3-2: Broadening of VS cells’ receptive fields within single cells.  

(a) Ca
2+

 imaging results for a VS3 cell, top row – dendrite, bottom row – terminal. Each frame is the difference 

between the averages of 3 F/F frames before and after stimulus onset. Scale bar – 100m, (b) Intracellular 

recording (black) and F/F traces (red – axon terminal, blue – dendrite) of the cell’s response to a 20 wide 

grating drifting at 60 azimuth (gray bar). (c) Receptive fields of the cell in b, averaged over the cell’s dendrite 

and terminal. 
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not possible to measure their receptive fields to their full extent, and in some cases the 

maximum of their receptive fields fell outside of the stimulation region, which made 

normalization impossible. Shifts in the receptive fields resulting from variable positioning of the 

flies in front of the screen were accounted for by aligning all receptive fields according to the 

maximum of each cell’s dendritic receptive field. The dendritic receptive fields of VS2-4 cells 

vary from frontal to lateral, as expected from their dendritic arborizations in the lobula plate, 

but their terminal receptive fields are similar, as are their electrical receptive fields (see also 

(Farrow et al., 2005)). To test for receptive field broadening in the axon-terminal on a 

population level, I calculated a Gaussian fit for the dendrite and axon-terminal of each of the 

 

Figure ‎3-3: Broadening of VS cells’ receptive fields – population analysis.  

(a) Pooled population responses for dendritic, terminal and Vm receptive fields, means with 95% bootstrap 

confidence intervals – VS 2 (n=14), VS3 (n=16) and VS4 (n=14) cells. (b) Comparison of σ values from 

Gaussian fits for dendrite and terminal: left panel – paired responses, right panel – means with 95% 

bootstrap confidence intervals and t-test p-values. 
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Figure ‎3-4: No broadening of receptive fields in VS1 cells – 
population analysis.  

Same as Figure ‎3-3 for VS1 cells (N=5). 

cells I measured. Most notably in the present context, I found that the terminal receptive field 

was substantially broader compared with the dendritic one in all experiments (Figure 3-3b). 

 

3.2. Information flow underlying receptive field 

broadening 

The results of the previous section suggest that in single VS cells, two sources of input 

dictate the size of receptive fields in dendrites and in axon-terminals. In the dendrites, 

receptive fields reflect the pooling of retinotopic input from the presynaptic array local motion 

detectors, and in axons, receptive fields are broadened by axo-axonal gap junctions. However, 

there is an alternative explanation of these data; it could be the case that due to the lower 

magnitude of calcium influx into the dendritic compartment, what I demonstrated in Figure 3-2 
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and Figure 3-3 could be the result of a threshold artifact. In other words, the parts of the axon-

terminal receptive field that are not responsive in the dendrite (e.g. azimuths 0°-30° in Figure 

3-2a) are simply below threshold for calcium imaging in the dendrites, but above threshold in 

the axon-terminal. They are therefore measureable in the axon-terminal but not in the 

dendrite.  

3.2.1. Controlling information flow with voltage clamp 

To rule this possibility out, a tool was required that would allow me to control 

information flow within the cell and therefore to confirm that different sources of information 

reach different parts of the cell. The tool of choice in this case was single-cell voltage clamping 

(Finkel and Redman, 1984; see Discussion). I used single-electrode voltage clamp at the site of 

the main dendritic branching point of VS cells in order to block dendritic inputs from reaching 

the axon terminal. Although the axon-terminal membrane potential should be partially clamped 

by the electrode in the dendrite, the electrotonic distance between the two compartments 

should guarantee substantial residual excitation of the terminal by the neighboring neurons.  

To confirm this, I performed current injections and voltage clamp simulations in a 

biophysically and morphologically realistic compartmental model, kindly supplied by Hermann 

Cuntz (Cuntz et al., 2007). Voltage responses to current injections of 5 nA into the main 

dendritic branching point were significantly decayed when they reached the axon-terminal 

(77.9%, 91.6% and 79% for VS2, VS3 and VS4, respectively, Figure 3-5b,c). The interesting result 

for the voltage clamp method was that voltage clamping had very little effect on signals coming 

from neighboring cells at the axon-terminal. Voltage clamp in the dendritic branching point  
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Figure ‎3-5: Voltage clamp and current injection in a VS cell network model.  

(a) Modeling configuration (not all cells shown), access by electrodes in 3 places for each cell – in the main 

dendritic branching point and in the gap-junction connected compartment of the subject cell (electrodes 1 and 

2 respectively, top cell) and in the main dendritic branching point of a neighboring cell (electrode 3, bottom 

cell). (b) Injection of 5 nA for 30ms into electrode 1, recording in electrode 1. The local effectiveness of current 

injection is greatest for VS3. (c) Same as b, but recording in electrode 2. Electrotonic decay in VS3 is the 

strongest relative to VS2 and VS4. (d) Effect of voltage clamp. Currents were injected into both electrode 1 and 

3 (black) or only into electrode 3 (blue, shifted in time for clarity), recordings were done in electrode 2. For the 

red curves, membrane potential was clamped at the location of electrode 1 to the membrane potential by an 

ideal single-electrode voltage clamp. Clamp percentages show the relative reduction of the signal from the 

neighboring cell (blue curves) when clamped at the dendrite (red curve). 
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significantly reduced the axon-terminal responses to simultaneous dendritic current 

injections in the subject cell and its neighboring cell (Figure 3-5d, compare black and red 

traces). 

However, this reduction was almost strictly from the voltage response of the subject 

cell, and not from excitation coming from the neighboring cell through the gap junction 

connection. These voltage clamped responses were only slightly reduced compared with axon-

terminal responses to current injection only in the neighboring cell (3.58%, 1.22% and 7.58% for 

VS2, VS3 and VS4, respectively, Figure 3-5d, compare red and blue traces), demonstrating that 

voltage clamping the dendritic branching point had little effect on signals coming from the 

neighboring cells. This spatial restriction of the voltage clamp perturbation, therefore, makes 

this method suitable for asking questions about information flow in the VS cell network.  

3.2.1. Clamping out dendritic input to the axon terminal 

If lateral connectivity takes place in the axon terminals, and synaptic excitation from the 

dendrite is blocked by voltage clamping in the main dendritic branching point, two predictions 

can be made: first, responses in the axon terminals should still persist despite blocking dendritic 

inputs. Second, a “dip” in the terminal receptive field should be observed, corresponding to the 

location of the peak of the dendritic receptive field, as a result of the cell’s dendritic 

contribution to the terminal receptive field being suppressed. 
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The results of a voltage clamp experiment performed in the same VS3 cell as in Figure 

3-2a show, as predicted, that the responses in the axon-terminal were not entirely abolished by 

the dendritic voltage clamp (Figure 3-6a,b). Also, a reduction in the axon-terminal responses  

 

Figure 3-6: Voltage clamping of dendritic input.  

(a) Bottom row: calcium imaging results from a voltage-clamp experiment; same cell as in Figure 3-2a, 

unperturbed dendritic and axon-terminal receptive fields shown for comparison in top rows. (b) Terminal 

receptive field under dendritic voltage clamp measured from a, compared with the dendritic and terminal 

receptive fields taken from Figure 3-2a 
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can be seen only in the lateral parts of the visual field, corresponding to the dendritic receptive 

field in this particular cell.  I measured receptive fields for 20 VS2-4 cells (Figure 3-7a); most 

importantly, in all 3 cell types it is obvious that terminal responses did not vanish with dendritic 

voltage clamp. The predicted dip, corresponding to the location of the dendritic RF, was 

clearest in VS4 cells, less significant but still visible in VS3 cells, and practically non-existent in 

VS2 cells. We confirmed this notion by plotting the difference curves between the axon-

terminal receptive fields and those of the axon-terminals under voltage clamp (Figure 3-7a) as 

well as by the correlation coefficients between these curves and the dendritic receptive fields 

 

Figure ‎3-7: Voltage clamping of dendritic input – population analysis.  

(a) Populationz responses as in Figure ‎3-3 for VS 2 (n=8), VS3 (n=5) and VS4 (n=7). Voltage clamp curves were 

normalized to minimize the difference between the non-clamped part of the voltage clamp curve and the 

same positions in the corresponding terminal receptive field (see Methods). Difference trace (black) – 

difference between the terminal curve (red) and the VC curve (cyan). Means with 95% bootstrap confidence 

intervals, statistic comparisons are between the terminal curve and the VC curve (* - p<0.05, ** - p<0.005, 

one-sided paired t-test). (b) Correlation coefficients between the dendritic receptive fields and the difference 

traces in (a). 
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(Figure 3-7b).  

3.3. Interpolation of dendritic signals in the terminals 

My results from the previous section show for the first time that receptive fields in VS 

cell dendrites are different from those in axon-terminals. This is a corroboration of a prediction 

from an experimental and modeling study by (Cuntz et al., 2007 especially Figure 2), and in that 

sense these results confirm that the lateral interactions between VS cells which are responsible 

for the broadening of the cells’ receptive fields are confined to the axon-terminal.  

What is the purpose of broadening the receptive fields of VS cells? In the study by Cuntz 

et al. (2007), and in a more recent one (Weber et al., 2008), it was suggested that the broader 

receptive fields of VS cells support a local linear pooling of dendritic responses from 

neighboring VS cell dendrites. This linear pooling was suggested to result in the spatial 

smoothing of fluctuations that arise from spatially non-uniform naturalistic input and the 

effects this non-uniform input has on the responses of the local motion detectors. However, 

this suggested consequence of the lateral interactions was never tested because of the 

difficulty of separating the feed-forward synaptic input in the dendrite from the effects of the 

lateral interactions in the axon-terminals.  

3.3.1. Faster reporting of calcium dynamics 

I reasoned that since lateral interactions from the terminal do not reach the dendrite, 

the linear interpolation of the dendritic synaptic signals predicted by those previous modeling 

studies should be measureable in the axon terminal, but not in the dendrite. In order to 
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measure faster temporal fluctuations I used a low-affinity dye (Oregon Green BAPTA 6-F, Kd~3 

M), allowing for faster resolution of calcium fluctuations (see discussion). Although OGB-1 has 

become the synthetic calcium indicator of choice in many experimental setups due to its higher 

affinity and therefore its higher sensitivity to calcium influx, this advantage comes at the price 

of slower temporal dynamics. Recently, several groups have attempted to overcome this 

problem by using new-generation low-affinity dyes to image faster calcium dynamics (Bollmann 

and Sakmann, 2005; Rotschild, G., ISFN 2008). Low-affinity dyes were used before in the lobula 

plate preparation to demonstrate that the lion’s share of calcium buffering in tangential cells 

results from cell-intrinsic properties, and not from buffering due to the dynamics of the calcium 

dye (Haag and Borst, 2000). Still, there is a significant difference in the time constant of the 

calcium influx and efflux between the lower and higher affinity dyes in those measurements 

(1.69 sec vs. 1.23 sec, or 37% for the decay phase of the calcium response, fits made to graphs 

extracted from the paper), and I therefore decided to minimize the temporal low-pass filtering 

introduced by the dye by using a lower affinity dye. 

When imaging and comparing temporal fluctuations in the two different compartments, 

two important issues must be considered. First, the temporal filtering properties of the visually 

evoked responses by the calcium reporter must be similar, if not identical, in both 

compartments. If this is not the case, it would present problems in the analysis and comparison 

of the two signals. Second, when measuring spatial filtering of visual input in a system which is 

essentially a low-pass filter, it is important to avoid confounding signal smoothing due to 

temporal low-pass filtering of the calcium imaging system with smoothing due to gap-junction 

mediated integration.  
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3.3.2. Frequency response and SNR of the calcium dye 

To test the similarity of the filtering properties in dendrites and axon-terminals, I 

determined the frequency response curves of the calcium dye to the membrane potential 

responses in the two compartments. I first recorded the electrical responses of the cells 

together with the calcium responses in their dendrites and axon-terminals, while presenting the 

fly with full-field gratings alternating between drifting and standing at various frequencies (  

Figure 3-8). I then modeled the calcium influx as a function of the membrane potential 

  

Figure ‎3-8: Calcium influx modeling results.  

Intracellular recordings of responses to full-field gratings drifting at 0.5, 1, 2, 3, and 4Hz (gray) together with 

calcium responses (OGB-6-F, red) and calcium response model (blue) in the terminal (left column) and 

dendrite (right column), means with s.e.m. The same electrical responses were used for terminal and 

dendrite. Gray bars denote intervals of motion. 
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by treating the F/F responses as a second-order time-domain linear filtered version of the 

electrical responses (Borst and Abarbanel, 2007; see Discussion). This was done using Steiglitz-

McBride iteration, an algorithm that takes an input signal and an output signal, and returns the 

coefficients of a linear filter of a requested order that will produce a least-squares 

approximation of the output signal given the input signal (see Methods). The frequency 

response curves for dendrites and axon-terminals I derived from the linear filter models of the 

two compartments were similar (Figure 3-9).  

In order to be able to distinguish between smoothing due to the calcium reporter’s 

temporal filtering and smoothing due to the lateral interactions, I used visual stimuli whose 

 

Figure ‎3-10: Calcium influx model frequency 
response.  

Frequency response of the calcium influx model 

for dendrites and terminals.  

 

 

Figure ‎3-9: Calcium influx signal-to-
noise ratio analysis.  

Signal-to-noise ratios for dendrite and 

terminal for single sweeps and the 

average of 5 sweeps, assuming the 

noise is Gaussian for each frequency. 
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main frequency components lie under the low-pass filter cutoff frequency of the dye in these 

cells. To determine which stimuli fall in this category, I characterized the signal-to-noise ratio 

(SNR) at different visual stimulation frequencies. To calculate the SNR I took the ratio between 

the spectra of the signal and of the noise (see Methods). To account for averaging of noise over 

multiple stimulus presentations, I assumed the noise is Gaussian and divided the noise power 

spectrum by the square-root of 5, the number of averaged traces. This resulted in a reasonable 

SNR at signal frequencies of up to 0.5 Hz when averaging 5 trials for each stimulus condition 

(Figure 3-10). 

3.3.3. Smoothing of dendritic fluctuations in the axon terminal 

I first measured the dendritic and terminal receptive fields of the cells (Figure 3-11a), 

and then stimulated the flies with sets of double bars moving inside the dendritic receptive field 

(“in”-bars) or outside of it but still within the axonal receptive field (“out”-bars), or both sets 

simultaneously (Figure 3-11b). Each set of bars was repeated at a frequency of 0.5 Hz, and the 

two sets were out of phase by half a cycle. This stimulus was chosen in order to evoke 

fluctuations in the dendrites of the target cell, and anti-correlated fluctuations in the dendrites 

of a neighboring cell, both within the temporal resolution of the calcium dye. The reasoning is 

that if fluctuations are smoothed out by linear integration in the axon-terminals, the most 

effective stimulus to demonstrate this is a perfectly anti-correlated pair in which the peaks of 

the fluctuations caused by one stimulus would cancel out the troughs of the other.  

As expected, dendrites responded to the in-bars and fluctuated at their temporal 

frequency, but did not respond to the out-bars. When both were presented together, the out-
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bars had no effect on the response and it was the same as that obtained with only the in-bars 

(Figure 3-11c,e). In contrast, the terminals responded both to the in- and, to a lesser extent, to 

the out-bars. When presented together, the two responses were smoothly interpolated, as 

predicted by the models (Figure 3-11d), approximating an algebraic sum of the responses to the 

two sets of bars (Figure 3-11f). 

 

3.4. Functional consequences 

What are the functional consequences of separating the two different input pathways 

that reach a single neuron? Gap junction connections between neighboring VS cells are thought 

 

Figure ‎3-11: Interpolation of dendritic responses in the axon terminal.  

a. Dendritic and axon-terminal receptive fields of an example VS2 cell. b. snapshot of the translating image 
presented to the fly. Yellow rectangle demarcates the screen size, white arrow the direction of image motion. c. 

Normalized F/F signals in the dendritic region of interest for double bars drifting inside the dendritic receptive 
field (red), outside of it (blue) or both (cyan). Means with s.e.m. (shaded). Grey bar marks the interval of 
stimulus motion. (n=6). d. Same as c for the axon-terminals. e.-f. comparison of responses to both sets of bars 
presented together (cyan) and the algebraic sum of the responses to the single set of bars (black) 
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to participate in interpolating the responses of the VS cell population, in order to overcome 

fluctuations in the dendritic responses that arise from the patchy, non-uniform nature of 

naturalistic visual input. These fluctuations are a result of the dependence of the two 

dimensional array of local motion detectors on the local structure and contrast of the visual 

input (Zaagman et al., 1978; Dvorak et al., 1980; Srinivasan and Dvorak, 1980; Eckert, 1980; 

Egelhaaf et al., 1989b; Egelhaaf et al., 1989b; Single and Borst, 1998; Reisenman et al., 2003; 

Haag et al., 2004). A previous study showed that the vertically oriented dendrite of each VS cell 

can smooth out these fluctuations in the vertical dimension (Single and Borst, 1998), but at that 

time it was not known that VS cells are connected with neighboring VS cells, in the horizontal 

dimension (Haag and Borst, 2004). After this finding was made, the gap junctions were 

proposed to deal with such fluctuations in the horizontal dimension, across the receptive fields 

of different VS cells (Cuntz et al., 2007; Weber et al., 2008). I asked whether the positioning of 

the gap junction connections bears any significance to this function.  

3.4.1. Compartmental model 

I generated passive compartmental models of ten VS cells, each consisting of one dendritic and 

one axon-terminal compartment, connected by a simple conductance to simulate the axon. The 

cells were connected in a chain-like fashion by gap junctions, also represented by 

conductances. I compared models with dendritic versus axon-terminal gap junction 

connections. All model parameters were fitted using a detailed morphological model (Cuntz et 

al., 2007) and relevant results from electrophysiological measurements (Borst et al., 1995). I 

calculated the synaptic input to the model using naturalistic images taken from an image 
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database (van Hateren and van der Schaaf A., 1998); images were rotated around their center 

and fed into a 2-dimensional array of Reichardt-type local motion detectors (see Methods). I 

fed the outputs of the preferred- and null-direction motion detectors as conductances to 

excitatory and inhibitory synapses on the dendrites, respectively. I analyzed the responses of 

the model to a representative image from the database (Figure 3-12a), shown with the 

simulated receptive field borders of the modeled VS cells overlaying it. 

To visually compare the results of the different models to this example stimulus, I 

plotted the voltage responses in the axon-terminal compartment over the time period of the 

simulation (Figure 3-12a-c), as well as the population voltage responses of the ten VS cells at 

different time points (Figure 3-12d-f). Models connected by gap junctions in their axon terminal 

clearly implemented better interpolation of the dendritic input signals (Figure 3-12b) than 

those connected in their dendrites (Figure 3-12c), as was evident from the reduced fluctuations 

in the voltage responses over time and the smoother population responses of the ten cells at 

each time point (Figure 3-12e,f). In fact, results of the dendritically connected model differed 

only slightly (less than 0.1mV) from those of models without gap junctions (results not shown). 

3.4.2. Quantifying response smoothness 

Finding a suitable quantification for this apparent effect is, however, not a trivial matter. 

Ideally, given a good understanding of the way the ensemble of post-synaptic neurons use the 

information they receive from VS cells, I could have directly tested changes in these neurons’ 

functional capabilities as a function of the output of the VS cell network. Unfortunately, despite 

some promising advances in the last few years (Haag et al., 2007a; Wertz et al., 2008a) we are  
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Figure ‎3-12: Axon terminal coupling results in more robust VS cell population coding 

 Axon terminal coupling of model VS cells results in more robust population coding than dendritic coupling. 

(a) Rotated image with modeled VS cell receptive fields, left to right: VS1-10. Arrow shows direction of 

rotation. (b) Compartmental model with 2 compartments for each of 10 VS cells, electrically coupled in the 

axon terminal (see text for details): population responses of the axon terminal compartments to the rotating 

image plotted over time, color coded from red (VS1) through green (VS5) to blue (VS10). Dotted line 

represents resting potential. (c) Same as b. for the dendritic coupling model. (d) Same as b, dendritic 

coupling model, conductance-based synapses replaced with current clamp simulation of synaptic input. (e-g) 

Population responses of axon-terminal compartments from b-d plotted as a connected line for each 20
th

 

time point over all VS cells. Time points separated by 20ms, color coded from red (t=20ms) to blue 

(t=2000ms). (h) RMS error of the population responses for each time point, for models with axonal or 

dendritic coupling, using conductance based or current-clamp synapses. For each time point, the population 

response of the 10 VS cells was fitted by a single sinusoid and the RMS of the fit’s error calculated. Left panel 

– population responses and sinusoid fits for t=1848ms from e in blue and f in black. Center panel – RMS 

error for each time point plotted over time. Right panel – mean and std over the whole simulation period. GJ 

– gap junction, CC – current-clamp. (i) Comparison of RMS error for all 600 images in the database. Dashed 

lines: green – linear fit (slope 0.4), red – unity slope.  Red x marks the example image in a-g. 
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still far from having such an understanding. I therefore had to rely on a general measure that 

would allow for a reasonable space of possible coding schemes in the post-synaptic circuitry; I 

fit, for each time point, a sinusoid to the population response of the VS cells. The underlying 

assumption for choosing a sinusoid fit is that given an image with uniform structure (i.e. 

contrast, spatial frequency, etc.), the vertically oriented Reichardt detectors’ output will be 

roughly proportional to the velocity in the vertical dimension in their receptive fields, up to a 

certain rotation velocity. When rotating an image around its axis, this velocity depends on the 

azimuth in a sinusoidal manner (see also Karmeier et al., 2005b). Any deviation from this 

sinusoidal fit can be therefore attributed to fluctuations arising from the structure of the 

naturalistic image, and thus I chose the RMS (root mean square) of the fit error as a measure 

for how good the coding in the VS cell network is (Figure 3-12h). Indeed, model VS cell 

networks connected in the axon terminals had a smaller RMS error of the sinusoid fit for each 

time point (Figure 3-12i).  

3.4.3. The shunting effect of chemical synapses 

At first thought, it is surprising that the position of gap junction coupling should be in 

any way relevant to the effectiveness of the lateral interactions. To explain this effect, we 

considered the chemical, conductance-based mechanism of the synapses we used in our 

model. Strong synaptic conductances, especially inhibitory ones, are known to result in a 

suppression of neural excitability known as shunting inhibition (Fatt and Katz, 1953; Blomfield, 

1974; Torre and Poggio, 1978; Alger and Nicoll, 1979; Borg-Graham et al., 1998). Although in 
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the classical theory of this kind of synaptic interaction (see, e.g., Koch, 1999), the shunting 

conductance is regarded as a single ionic conductance with a battery close to or equal to the 

resting potential of the cell, it is easy to show that a combination of two shunting conductances 

with equal magnitudes and opposing reversal potentials relative to the resting potential is 

mathematically equivalent.  

Adopting the notation of Koch (1999), in a single RC compartment with an excitatory 

synaptic input and an inhibitory, shunting input we have from his eq. (1.29):  

 
R

V
VgVEg

dt

dV
C iee   

(3-1) 

where C is the capacitance of the compartment, V is the membrane potential with 0mV as the 

resting potential, g is a constant synaptic conductance with the subscripts e and i denoting 

excitatory and inhibitory (shunting) synaptic inputs, and R is the compartment’s leak resistance. 

This formulation holds for a single ionic conductance; to generalize it to a scenario with two 

ionic conductances, we can replace EVEVV
2
1

2
1

2
1

2
1  and after rearranging we have: 

     
R

V
VEgVEgVEg

dt

dV
C iiee 

2
1

2
1  

(3-2) 

This results in an equivalent shunt where half of the original conductance is associated with a 

reversal potential of E and half with a reversal potential of E , a situation very similar to the 

dendritic compartment of the simplified VS cell model.  
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But this analysis is for a single RC compartment; how will a similar shunt affect 

information arriving from a neighboring compartment via a gap junction? One can replace the 

excitatory synaptic input in Eq. (3-1) with a gap junction connection 
GJg  to another 

compartment which is clamped to a membrane potential 
OV : 

 
R

V
VgVVg

dt

dV
C iOGJ   

(3-3) 

The solution to this differential equation is 

  





 




t

in

OGJ e
G

Vg
tV 1  

3-4 

where 
RiGJin ggG 1  is the sum of all conductances in the compartment and 

inG

C
 is its 

time constant. The greater the magnitude of the shunting conductance 
ig , the smaller the 

effect OV  will have on  tV , in other words, the smaller the coupling coefficient between the 

two compartments induced by the gap junction connection.  

I therefore reasoned that the reduction in the effective coupling that occurred in the 

dendritically connected model should be alleviated by replacing the conductance based 

excitatory and inhibitory synapses that are responsible for this shunting effect with current-

clamp synapses (CC models), i.e. injecting current proportional to the output of the motion 

detectors without changing the synaptic conductance. When I did this, interpolation in the 

dendritically connected network was similar to the axon-terminal connected model (Figure 
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3-12d,g,i). The axon-terminal connected CC model was practically identical to the dendritically-

connected CC model (results not shown), suggesting that even though both leak and synaptic 

conductances contribute to the overall conductivity of the dendritic compartment, the crucial 

factor behind the interpolation efficacy is the synaptic conductances, due to their larger 

magnitude. When we compared RMS error values of dendritic versus axon-terminal connected 

models with chemical synapses, similar results held uniformly over the entire database of 

natural images we tested (Figure 3-12i). 

3.5. Small field selectivity of VS cell dendrites 

In the course of our experiments, I encountered a phenomenon that was not reported 

previously in the VS cell system. Because VS cells are considered to be spatial integrators, it is 

expected that large-field motion will drive the cells more effectively, resulting in stronger 

 

 

 

Figure ‎3-13: Small-field selectivity in VS 
cell dendrites 

(a) Small-field gratings evoke stronger 

calcium influx in the dendrite of a VS cell 

than full-field grating. ΔF/F images 

averaged over stimulus presentation for 

a large field (left) and a small-field (right) 

stimulus. Note that dendritic areas 

excited by the 20° grating are more 

strongly excited by it than by the full-

field grating. (b) Normalized ΔF/F 

responses averaged in dendrites (red) 

and axon-terminals (blue) of VS cells over 

stimulus presentation for gratings 

varying in horizontal width. 



Results 

96 
 

responses, than small-field motion. This is indeed the case for electrical responses (Haag et al., 

1992; Borst et al., 1995), and when I compared full-field calcium responses to small-field, 20° 

gratings, this is also what I observed in the axon terminals. But when I measured the dendritic 

calcium responses, the result was reversed – the small-field gratings elicited larger responses 

than the full-field gratings (Figure 3-13a). I began an initial quantification of the spatial extent of 

this small-field selectivity by measuring the responses to gratings varying horizontally in size in 

15 VS cells (3 VS2, 6 VS3, 5 VS4, 1 VS5, Figure 3-13b). Here the axon-terminal responses 

increase by close to 100% on average from the smallest grating to the full-field grating, whereas 

the dendritic responses unexpectedly dropped approximately 30%.  

To check whether this small field selectivity can also be seen in the vertical dimension, I 

presented gratings that varied in size in the vertical dimension. To keep total luminance 

constant I presented gratings consisting of an integer number of cycles, from 1 to 4 cycles, at a 

 

Figure ‎3-14: Vertical size dependence of dendrites and axons 

Left: illustration of stimuli used – gratings presented were 1-4 integer number of cycles long in the vertical 

dimension and 10° or 20° wide. Right: dependence of dendritic and axon terminal responses on vertical size. 

Both dendrites and axon terminal responses grow with stimulus size.  
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width of 10° and 20°. As expected, responses grew with the size of the grating both for the axon 

terminal and the dendrite, reflecting the integration expected in the vertical dimension of the 

dendrite (Figure 3-14, same cells as above).This also served as a control for the dendritic 

calcium imaging, demonstrating that the imaging could register increase in response magnitude 

as a function of stimulus size.  

As putative mechanisms for this small-field dendritic selectivity, I considered either a 

presynaptic pooling inhibitory mechanism acting isotropically along the horizontal dimension, 

or a form of presynaptic short-range lateral inhibition. Longer ranges of lateral inhibition, 

between medial VS cells and the VS1 cell were reported in previous studies (Haag and Borst, 

2004; Haag and Borst, 2007), however the shorter range of the effect I describe here, as well as 

its manifestation in the dendritic compartment of VS2-5 cells, removed from the effect of 

inhibition coming from VS1 through the axo-axonal gap junctions, suggested that this is a 

different inhibitory mechanism than any described before.  

To differentiate between these two possible mechanisms, I presented a stimulus 

consisting of the 20° grating that elicited the strongest dendritic response (the “main” grating) 

and simultaneously another 20° grating horizontally positioned at various distances either 

lateral or medial to the main grating (the “inhibitory” grating), both drifting in the preferred 

direction of the cells. If short-range lateral inhibition is the underlying mechanism, the 

expectation is that further-distanced inhibitory gratings should result in a smaller inhibition. 

However, if the mechanism is an isotropic pre-synaptic pooling mechanism, we should expect 

no effect of the position of the inhibitory grating on the inhibition it elicits in the dendrite.  
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The results of this experiment are presented in Figure 3-15, for the same cells as above. 

As expected from the linear summation of the responses to the two gratings, the axon terminal 

responded stronger to both gratings drifting together. In the dendrite, I could not detect a 

statistically significant effect of the second stripe on the calcium response, neither when I 

separately analyzed effect of lateral and medial inhibitory gratings (Figure 3-15), nor when I 

pooled responses to the lateral and medial inhibitory gratings. However, there seems to be a 

tendency for a stronger effect of medium distances (50°-70°), and this can be seen in a lower 

mean and lower t-test p-values testing for a difference from responses to the main grating 

alone (p-values 0.2493, 0.6431, 0.7394, 0.0943, 0.1856, 0.1229 for 20°-70°, respectively). The 

statistical insignificance of these results may be a result of the small effect for a 40° grating 

relative to a 20° one (Figure 3-13b), but presenting a larger inhibitory grating and moving it 

 

Figure ‎3-15: Effect of a lateral grating on dendritic and axonal responses 

a. Schematic representation of the stimuli used; a main grating (red) is presented together with a horizontally 

shifted “inhibitory” grating. b. Effect of the inhibitory grating on the axon-terminal and dendritic responses, 

separated into medially positioned inhibitory gratings and laterally positioned inhibitory gratings. c. Same as 

b, lateral and medial positioned inhibitory gratings pooled 
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laterally and medially is not possible using the current stimulus presentation device. Clearly, 

though, more experimentation is needed in order to obtain a satisfactory description of the 

underlying mechanism.  
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Chapter 4. Discussion 

 

In this work I demonstrated that in VS cells, axon terminals have broader receptive fields 

than dendrites because of the electrotonic separation of feedforward synaptic input from 

lateral, gap junction interactions. I also showed that this separation ensures effective gap 

junction connectivity, allowing for the interpolation of dendritic responses and a robust 

representation of motion information in the axon terminals, the output regions of these cells. 

The separation between terminal and dendritic receptive fields reveals an important 

characteristic of sensory neurons: different parts of a cell can have different receptive fields, 

depending on the proximity of inputs and their intracellular processing. These results also 

resolve the discrepancy between the dendritic morphology and the shape of the cells’ electrical 

receptive fields (Krapp et al., 1998; Krapp and Hengstenberg, 1996). The dendritic arborization 

is commensurate with the shape of the dendritic receptive field, whereas the traditionally 

measured electrical receptive field is more similar to the terminal receptive field. 

 

4.1. Methodology 

In this section I will discuss the experimental methodology I used in this work, the 

potential advantages and disadvantages it incurs and how this might affect the interpretation of 

the results I obtained. 



 Discussion 

101 
 

4.1.1. Calcium imaging 

Calcium imaging allows the experimenter, among other things, to independently 

measure activity in different parts of a single neuron without accessing the different with 

different electrodes. Calcium imaging uses intracellular fluorescent dyes that change their 

fluorescence properties in response to changes in calcium concentration. The technique is a 

popular and well established one; calcium dyes with essentially modern fluorescence and 

temporal qualities were available from the mid-eighties (Grynkiewicz et al., 1985; Tsien, 1988), 

and since then have been used in a wide variety of in-vitro and in-vivo preparations using 

synthetic as well as genetically encoded dyes (Sobel and Tank, 1994; Miyawaki et al., 1997; 

Takahashi et al., 1999; Svoboda et al., 1997; Miesenbock, 2004; Mank et al., 2008; Wallace et 

al., 2008) In the blowfly, this method was first used to demonstrate the retinotopy of the 

motion detector array that feeds the lobula plate (Borst and Egelhaaf, 1992), and was since 

used to map input sources (Egelhaaf et al., 1993), lateral connectivity (Haag and Borst, 2002; 

Cuntz et al., 2007; Haag and Borst, 2007), and input dynamics (Single and Borst, 1998; Haag et 

al., 2004 reviewed by Kurtz et al., 2008).  

Despite being such a ubiquitous and useful technique, one must take a few drawbacks 

and limitations into account when using calcium imaging as an experimental technique. The 

main concerns stem from the fact that calcium concentration in a neuronal compartment is 

only a proxy for the actual electrical activity which is often the desired object of measurement 

(nevertheless, in many cases calcium concentration itself is the relevant quantity, e.g., Neher 

and Augustine, 1992; Sobel and Tank, 1994; Helmchen et al., 1996). One of the important pre-

requisites is that the cells in question possess low-threshold voltage-gated calcium channels 
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(VGCCs) that are properly activated by the stimulus paradigm used in the study. This is indeed 

the case for VS cells, and moreover, VGCCs are considered a main source of calcium influx both 

in the axon-terminal and in the dendrites (Figure 3-1; Haag et al., 1997; Single and Borst, 1998; 

Haag and Borst, 2000).  

Another concern that arises from the use of calcium indicators is the non-linearity of the 

dependence of calcium indicator fluorescence on the intracellular calcium concentration (Tsien, 

1989; Grynkiewicz et al., 1985; Maravall et al., 2000; Borst and Abarbanel, 2007), and of the 

calcium concentration on membrane potential (Neher and Augustine, 1992; Helmchen et al., 

1996; Borst and Abarbanel, 2007). Current injection experiments conducted both by myself 

(Figure 3-1) and by others in the lab (Haag and Borst, 2000) demonstrated that the dependence 

of calcium indicator fluorescence on membrane potential in VS cells is reasonably linear within 

the range of voltage deflections expected from visual stimulation. Although the linear 

coefficient associated with this dependence is different for axons and dendrites in both 

datasets, this difference can be accounted for by normalization.  

The concentration of calcium in LPTCs was estimated both in-vivo (Borst and Egelhaaf, 

1992) and in an in-vitro preparation (Brotz et al., 1995), in both cases using ratiometric 

measurement with fura-2 (Oertner et al., 2001; Oertner, 2000). The in-vivo measurements 

resulted in a value of 20-60nM for resting calcium, and 85nM-130nM during preferred direction 

visual stimulation. The in-vitro measurements, on the other hand, resulted in a value of 150nM 

for the resting state and up to 400nM under carbachol stimulation of the cholinergic receptors. 

For Oregon Green BAPTA-1 (OGB-1, Kd = 170nM) the in-vivo values seem marginally within the 
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linear regime of the dye where  Ca2+ 𝑖 ≪ 𝐾𝑑 , especially if we take into account that the Kd of 

OGB-1 rises to ~260nM in an in-vivo preparation of Drosophila larval motoneurons (Hendel et 

al., 2008). The in-vitro values, however, are clearly outside of the linear regime, a result which is 

at odds both with the above mentioned current injection results and with the in-vivo 

measurements by Borst and Egelhaaf (1992). This discrepancy might be caused by the 

difference between the two preparations. Specifically, it is well known that severing the 

descending connectives from the brain to the thoracic ganglion results in loss of visual 

responses in LPTCs (unpublished), and this “death” of the LPTCs may well be associated with a 

rise in intracellular calcium. In undocumented observations which I made in the course of this 

work, cells loaded with calcium dye seemed to undergo an abrupt rise in raw fluorescence, 

clearly visible in the live feed of the CCD camera, after which the cells ceased to respond 

electrically or with calcium influx to motion stimulus. This might be another indication that 

calcium levels in non-responsive, “dead” LPTCs are elevated, although obviously more 

experimentation is needed to clarify this issue.  

To stay on the safe side, in the dynamic motion experiments I changed the calcium 

indicator to the low-affinity Oregon Green BAPTA 6-F (OGB-6-F, Kd=3µM). In the case of this 

indicator, even the in-vitro values cited above are an order of magnitude smaller than the Kd of 

the dye, well within the linear regime. This allowed me to safely assume linear coding along the 

framework laid out by Borst and Abarbanel, (2007).  
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4.1.2. Single electrode voltage clamp 

Voltage clamping neurons using two electrodes was invented by Kenneth Cole in the 

1940s (e.g., Cole, 1949), and used in the seminal work of Hodgkin and Huxley to characterize 

the currents involved in action potentials of the squid giant axon (Hodgkin et al., 1952; Hodgkin 

and Huxley, 1952). The electrical separation of the current injecting electrode and the voltage-

measuring electrode in the two-electrode voltage clamp was subsequently replaced by a 

temporal separation of a current injection interval and a voltage measurement interval within a 

“switched-mode” cycle of the single-electrode voltage clamp (Brenneck and Lindeman, 1974; 

Wilson and Monahangoldner, 1975; Finkel and Redman, 1984). However the idea of using a 

feedback circuit to control the membrane potential of a neuron using current injection 

remained essentially the same. 

Already in the early days of Cole, Hodgkin and Huxley, it was clear that the two 

electrodes should be inserted parallel and as deep as possible into the axon to avoid 

electrotonic decay between the measuring and injecting electrodes, and the resulting distortion 

of the measurement. When taking this intuitive approach into the context of an electrically 

distributed structure such as an intact neuron, electrotonic decay means that the effect of the 

voltage clamp on electrotonically removed locations, such as fine dendritic tips or remote 

axonal projections, should be negligible. This was indeed shown in model simulations (Johnston 

and Brown, 1983; Spruston et al., 1993; Borg-Graham et al., 1998) and lately measured and 

quantified in experiments in brain slices (Williams and Mitchell, 2008). These results brought 

the inevitable conclusion that the single-electrode voltage clamp can only be used to control 

local membrane potential, and is practically useless in controlling remote structures.  
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4.1.3. Local voltage clamp as a tool 

I propose to turn this argument on its head: If voltage clamp is locally effective but 

remotely ineffective, the experimenter can use it to block specific sources of input within the 

cell by placing electrodes in the pathway of these sources and clamping membrane potential to 

the resting potential. This will block the desired pathway, but will not substantially affect the 

integration of information sources located further downstream (or upstream, for example in 

the case of back-propagating action potentials) from the electrode. Naturally, if there is no 

good spatial and electrotonic separation between different information input sites of the cell, 

this method will not be useful, and will probably result in significant interference between the 

desired pathway for blocking and the pathway which is to be left unblocked. However, the 

model simulations of voltage clamps I carried out, based on a biophysically realistic model of 

the VS cell network, show that this is not the case in my preparation, at least insofar as the 

model is a good description thereof.  

Another concern with the single-electrode voltage clamp technique is that of over- or 

undercompensating the capacitance of the electrode. This could cause the micropipette voltage 

to have insufficient time after the current injection cycle to decay to zero before taking a 

voltage measurement sample, and the result is referred to as “micropipette clamping” - the 

micropipette voltage is clamped instead of or in addition to that of the cell. I took two measures 

to ensure this is not the case with my voltage clamp, namely that of waxing the shaft of the 

electrode to decrease its capacitance, and thereby its time constant, and the compensation 

protocol under sinusoidal current injection (see Methods). However, both methods might not 
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prove sufficient to cover the potential caveat of micropipette clamping. This is of special 

concern when considering the results of Figure 3-7, where in VS2 and VS3 cells there is very 

little change in the axon-terminal receptive fields relative to those measured without dendritic 

voltage clamp, and therefore might be the result of micropipette clamping. However, the fact 

that under dendritic voltage clamp, VS4 cells show a reduced axon-terminal response to 

gratings located in the dendritic receptive fields of these cells speak strongly against this 

interpretation, and in favor of an efficient voltage clamp of the dendritic signal. 

4.1.4. The effects of dendritic voltage clamp in VS cells 

The masking of the predicted dip in the axon-terminal receptive field in VS2 and its 

partial masking in VS3 can be explained by the extensive overlap of VS1’s dendritic receptive 

field with those of VS2 and VS3 (Figure 3-4), together with the weaker VS1-VS3 connectivity 

relative to VS1-VS2 (Haag and Borst, 2004), making the predicted dip in the axon-terminal 

receptive field of VS2 more effectively masked by connectivity with VS1 than that of VS3. This 

interpretation also seems plausible considering the small effect of VS3 ablation on the receptive 

field of VS1, compared to that of ablating VS2 on the receptive field of VS4 (Farrow et al., 2005). 

The latter result also rules out a similar overlapping effect of VS5 on VS4. Although we could 

not reliably map VS5’s dendritic receptive field, we can dismiss any significant overlap with 

VS4’s dendrite based on morphological evidence (Krapp et al., 1998). VS1’s overlapping 

dendritic receptive field with those of VS2 and VS3 may also explain why the electrically 

measured receptive fields of VS1-3 overlap extensively at the horizon (Farrow et al., 2005; 

Krapp et al., 1998). 
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4.2. Relation to previous results 

In this section I will discuss the relevance of the results and the relation they have to 

previous work in the field. The lobula plate of the fly has been an experimental system for over 

40 years, and techniques such as intracellular electrophysiology and in-vivo calcium imaging 

have been available in it for decades. Although in my work I have not introduced new 

measurement techniques, I will argue that the application of old techniques within the 

framework of newly available results, the combination of methods, the use of old methods in 

new approaches, and the methodological control of the stimuli can result in advances of our 

understanding of this system. 

4.2.1. Receptive field broadening in VS cells 

The lateral, gap-junction mediated connections between VS cells are thought to underlie 

the broadening of receptive fields in the VS cell network (Haag and Borst, 2004). This has been 

demonstrated by others in the lab both experimentally by laser ablation of neighboring cells 

(Farrow et al., 2005) and in modeling studies by realistically simulating the VS cell network and 

the inputs to each cell (Cuntz et al., 2007). However, these results have a few drawbacks.  

In the ablation experiments by Farrow et al. (2005), despite many of the results being 

statistically significant, the reduction in the broadening of the receptive fields was in some 

cases quantitatively not strong enough to fully account for the 3-4 fold broadening of the 

receptive fields compared to those expected from the width of the dendrite in the lobula plate. 

This might be ascribed to variable efficiency of the cell ablation technique, but such an 

explanation seems unlikely as the authors took satisfactory measures to ensure that a cell was 
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entirely ablated when they carried out the procedure (Farrow et al., 2005; Farrow, 2005). A 

more likely explanation is overlapping dendritic receptive fields, along the lines of the 

explanation given above for the masking of the expected “dip” in the axon-terminal receptive 

field during dendritic voltage clamp. Thus, the contribution of an ablated cell to the receptive 

field of its neighbor will be compensated by the neighbor’s own, overlapping dendritic 

receptive field, or by that of the ablated cell’s other neighbor. In this work I have shown strong 

evidence for the broadening of VS cell receptive fields within single cells (Figures 3-2, 3-3); here 

one can see two versions of a cell’s receptive field – one with and one without contributions 

from neighboring cells, allowing me to rule out potential overlaps when considering the latter.  

The modeling results by Cuntz et al. (2007) were instrumental in showing that the gap-

junction connections could be responsible for the receptive fields broadening, and also 

suggested a possible explanation why this broadening is advantageous in the context of optic 

flow coding. However, as modeling results they should be taken as predictions made using the 

information collected in experiments, to be used in the design of new experiments. I believe 

this has been done to a large extent in this work.  

4.2.2. Information flow in the lobula plate 

The unidirectional flow of information in VS cells, from dendrites to axon-terminal but 

not the other way, could explain some results that seem to be at odds with a lobula plate wiring 

diagram in which each cell is considered to be a single, equipotential compartment. As 

described above in the Introduction, injecting positive and negative current into VS1 cells raises 

and lowers the spiking rate of H1 and H2. However, injecting current into VS2 and VS3 cells 
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does not have any influence on these cells (Haag and Borst, 2003). This is a surprising result 

seeing as VS2 and VS3 are both coupled, directly or indirectly, to VS1. This discrepancy can be 

explained based on the modeling results presented above and on the current injection 

experiments by Cuntz et al. (2007). VS1 is coupled with H1 and H2 in its dendritic arborization in 

the lobula plate; current injected directly into VS1 will reach both the dendrite and axon 

terminal of the cell, invade both H1 and H2, and modify their spiking frequency (Figure 4-1a, 

blue electrode and arrows). However, current injected into VS2 and VS3 will only reach the 

axon-terminal of VS1, will not invade the dendrites, and therefore have no influence on H1 and 

H2’s spiking rate (Figure 4-1a, red electrodes and arrows).  

In the context of the coupling between VS1 and H1 and H2, one should also note that H1 

and H2 receive inhibitory synaptic input on their dendrites from ipsilateral CH cells (Figure 4-1a, 

dCH only shown). Taken together with the principle of chemical shunting of gap junction 

connectivity, one should expect that if the CH cells are activated in their dendrites (e.g. by 

ipsilateral progressive motion or by current injection), the H1 and H2 cells should lose their 

responsiveness to vertical motion, conveyed to them by the coupling with VS1. However, if CH 

cells are ablated, the vertical sensitivity should persist even under ipsilateral progressive 

motion. Thus, vertical input to H1 and H2 may only be relevant to the system when shunting 

inhibition from CH cells do not veto it under progressive horizontal motion, the null-direction 

for H1 and H2. This feature might be behaviorally relevant in the context of yaw versus pitch 

rotational selectivity of these cells. The effect of ipsilateral null direction motion on vertical 

sensitivity of H1 and H2 is an interesting prediction that can easily be tested experimentally.  
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An interesting demonstration of the principle of separating gap junctions from synaptic 

input to ensure effective electric coupling can be found in the coupling of medial VS cell 

dendrites to the spiking neuron Vi and to dCH (Haag and Borst, 2007). This work showed that 

the medial-to-lateral direction of the reciprocal inhibitory connection between medial and 

lateral VS cells is mediated by the spiking neuron Vi, which is coupled dendritically to the 

 

Figure 4-1: Schematic of VS cell connectivity with other LPTCs 

a. Dendritic coupling of VS1 with H1 and H2. Current injected in VS1 can pass to H1 and H2 and modulate their 

spiking frequency (blue arrows), however current injected into VS2 and VS3 is transferred to VS1 in the axon-

terminal, cannot invade VS1’s dendrite, and cannot pass to H1 and H2 (red arrows). b. Coupling of medial VS 

cells to Vi and dCH (only connections with VS8 shown for clarity). dCH is coupled to VS8 putatively in the latter’s  

dendrite in the horizontal-selectivity layer of the lobula plate, and so current injected into dCH can pass to the 

coupled VS8, and on to the dendritically coupled Vi to modify its spiking frequency. c. Implausible connectivity 

scheme; dCH coupled to VS8 further down the axonal shaft. Current injected into dCH will pass to VS8’s axon, 

will not invade the dendrite and will not pass to Vi.  
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dendrites of VS7-10 (Figure 4-1b). This fits well with a unidirectional flow of excitation from the 

VS cells’ dendrites to those of Vi, but not vice versa (Vi spikelets recorded in VS9 are attenuated 

by more than 90%). However, it was also shown that medial VS cells are coupled to dCH cells, a 

connection responsible for the horizontal motion sensitivity of the medial VS cells in the frontal, 

dorsal visual field (Figure 4-1b). Considering the results in that paper, and taking into account 

the anatomy of the Vi cell, which can contact VS cells only in the lobula plate, the dCH-to-

medial VS cell coupling can only take place in the lobula plate, and not further down the axonal 

projections of these two neurons. The reason for this is that the medial VS cells and Vi can be 

coupled only in the dendrites for anatomical reasons, and that dCH is coupled to Vi indirectly 

through the medial VS cells, and not directly (Haag and Borst, 2007 diagram in Figure 4-1b, blue 

arrow). Were the coupling between dCH and the medial VS cells to take place in the axonal 

projection, current injected into dCH (and also into HSN, transferred to the dCH through their 

electrical coupling; Haag and Borst, 2004; Haag and Borst, 2007) would not reach the dendrites 

of the VS cells, invade the Vi cell and change its spiking frequency, contrary to experimental 

results (Figure 4-1c, red arrow).  

This interpretation poses a problem: if dCH input to the medial VS cells arrives at the 

dendrite through electrical coupling, how is it that the chemical synaptic input to the VS cells 

does not shunt this input? To understand this, one should consider that the coupling with dCH 

probably takes place in a separate dendritic branch that ramifies in the frontal, horizontal-

selectivity layer of the lobula plate, and not where the synaptic input from vertical-sensitive 

motion detectors arrives on the other part of the VS cell dendrite (see Figure 1-7a, horizontal 

layer dendrites marked in gray). On the other hand, it is not known whether vertically sensitive 
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chemical synapses exist on that dendritic branch (a very unlikely prospect), and so theoretically 

the dCH-medial VS cell coupling could also be shunted under vertical motion. An alternative 

explanation for this scenario is that during strong vertical responses, the horizontal input to the 

medial VS cells is behaviorally irrelevant and will therefore not contribute to the cells’ 

responses. These alternative explanations can once again be tested experimentally.  

 

4.3. Broad receptive fields and population coding 

Why are broad receptive fields useful for population coding in the VS cell network? 

Broad, overlapping tuning curves in a population code might be useful to provide robustness 

against cell death and to ensure effective excitation of many cells given a certain stimulus 

(Sanger, 2003). But intuitively, making receptive fields broader should deteriorate the 

information content of a population, just as reducing the resolution in an image makes the 

image less sharp and thus contain less information. This intuition has mathematical grounds – 

generally speaking, narrow receptive fields tend to have steeper slopes, and so discrimination 

along these slopes is better for a given change in stimulus location. For populations of neurons, 

this can be quantified using Fisher Information, a measure that is related to the error of 

parameter estimation through the Cramér-Rao bound and also to Shannon Information, under 

certain non-restrictive conditions (Blahut, 1987; Brunel and Nadal, 1998; Clarke and Barron, 

1990). Indeed, in the case of a population of neurons coding a single variable (not necessarily a 

spatial one) with independent Gaussian noise, the Fisher information is a sum of the slopes of 

the tuning curves scaled by the inverse of the noise:  
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𝐼 =  
𝑓𝑖

′ 𝜃 2

𝜎2
 

where f, a function of Θ, is the tuning curve and σ is the variance of the Gaussian noise (Seung 

and Sompolinsky, 1993; Pouget et al., 1999). Interestingly, it was shown that when monkeys are 

trained for orientation discrimination, cortical cells change their orientation tuning to make the 

slope of the tuning curve steeper in the tested area in area V1 (Schoups et al., 2001) and V4 

(Raiguel et al., 2006).  

4.3.1. Noise correlations 

However, this simple picture changes dramatically when noise correlations are 

introduced. Correlative noise between neuronal responses can affect the Fisher Information 

positively or negatively, depending on many features of the population coding such as the 

strength and sign of the correlation, the noise model (e.g. additive, multiplicative, Gaussian, 

Poisson), and the dimension of the coded stimulus (Abbott and Dayan, 1999). An interesting 

model when considering the VS cell network is that of limited-range correlations, in which the 

noise correlation between two neurons is a decreasing function of the distance between their 

tuning curves. Here, the effect of increasing the length and strength of noise correlation on the 

Fisher Information is non-monotonic, decreasing it when correlations are weak and short, but 

then gradually turning its sign and increasing it when the correlations are strong and long 

(Snippe and Koenderink, 1992; Abbott and Dayan, 1999). However, in this case the effect of 

broadening and overlapping the tuning curves is not explicitly discussed.  
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4.3.2. Stimulus dimension 

Also interesting for the case of VS cells is the effect of the dimensionality of the coded 

stimulus on the Fisher information content. In a model with multiple, non periodic coding 

dimensions, radial symmetric tuning curves which are identical in all dimensions, and 

independent Gaussian noise, broader receptive fields of neurons pays off (in terms of Fisher 

information) when the encoded variable is of more than two dimensions:   

𝐽 = 𝜂𝜎𝐷−2𝐾𝜙(𝐹, 𝜏, 𝐷) 

where J is the Fisher information, η is the number of neurons with tuning curve centers in a 

given unit of volume, σ is the tuning curve width, D is the dimension of coding space, F is the 

mean peak firing rate, and τ is the integration window and Kφ is an expression that depends on 

the tuning curves of the neuronal population (Zhang and Sejnowski, 1999). This insight stays 

essentially the same when noise correlations are added; positive noise correlations will improve 

the Fisher information content, introducing a factor of 
q1

1 where q is the correlation coefficient. 

The intuition to be gained here is that sharpening tuning curves may result in increasing 

the information carried by single neurons; however it also reduces the number of 

simultaneously active neurons, a factor that is more important in high-dimensional spaces 

where more information can be extracted from overlaps between different neurons (Zhang and 

Sejnowski, 1999; Eurich and Wilke, 2000). This can be better seen when the condition of 

isotropic tuning curves in all dimensions is relaxed. In this case Fisher information in a given 

dimension i becomes a tradeoff between sharpening the tuning curve in that “informative” 
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dimension and broadening the tuning curves in the other, “non-informative” dimensions, which 

essentially ensures that for a given stimulus, enough neurons will be activated:  

𝐽𝑖 = 𝜂𝐷𝐾𝜙(𝐹, 𝜏, 𝐷)
 𝜎𝑘

𝐷
𝑘=1

𝜎𝑖
2  

The notation is as before, but here each dimension has its own tuning curve width σi, and the 

information is measured in the dimension i. However, sharpening the tuning curve only works 

up to a certain point; sufficient overlaps must exist between the tuning curves in the 

“informative” dimension, otherwise the coding breaks down, leaving patches of uncoded 

stimuli, and becomes suboptimal. This results in an optimal tuning curve width for any number 

of stimulus dimensions (Eurich and Wilke, 2000). Broadening of tuning curves in progressive 

coding stages in the mammalian visual system is a well documented phenomenon; as the 

complexity of the coded stimulus gets larger, the tuning curves become broader. For example, 

V1 neurons have narrower tuning curves in macaque than V2 neurons (De Valois et al., 1982; 

Levitt et al., 1994; Ringach et al., 2002), and V4 neurons (David et al., 2006). 

  A similar analysis for the coding of periodic stimuli also yields an optimum tuning curve 

for stimuli with more than two dimensions, the optimum getting broader the more dimensions 

are added and the larger the period of the stimulus (Montemurro and Panzeri, 2006). This 

might be of more interest regarding VS cells, in which some coding dimensions such as direction 

and axis of rotation are periodic. Interestingly, these results fit the broadening of tuning curves 

found in visual cortex from orientation selective neurons (period of 180°) to directional-

selective neurons (period of 360°, see e.g. (Albright, 1984; Kohn and Movshon, 2004)). 
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4.3.3. Relevance to the VS cell network 

It is tempting to speculate that since the stimuli that VS cells encode are high-

dimensional (space, direction, contrast, luminosity, speed, contrast frequency and rotational 

axis), it would make sense to have broader tuning curves, with positive noise correlations, in 

the non-informative dimensions. However, a comparison between the theoretical results 

presented above and the actual empirical measurements of VS cells’ receptive fields, tuning 

curves and noise correlations is far from trivial and merits a work of its own. It would also be 

interesting to see whether the coupling strength between VS cells is optimized to maximize 

such an informational measure such as Fisher information. The coupling strength of VS cells is 

essentially a tradeoff between two opposing extremes: at the one end, if the coupling 

coefficient would be 1, all VS cells would have the exact same output and would not be able to 

code differences in the rotational axis. On the other hand, if the VS cells would not be coupled 

at all (coupling coefficient 0), the advantage of local linear integrations would be lost. 

Somewhere between these two extremities, an optimal solution should be available, given the 

statistics of the visual input and the utilization of information encoded in the VS cell network by 

downstream neurons.   

It is important to keep in mind, though, that gap junctions between VS cells cannot 

increase the information content of the entire network, and in that sense do not truly improve 

the population coding. Rather, this computational intermediate step might benefit downstream 

neurons by averaging out fluctuations arising from the spatial structure of the visual input. This 

is especially useful for postsynaptic neurons pooling small subsets of VS cell outputs and 
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integrating information from other subsystems that might be unaffected by these sources of 

fluctuations (Haag et al., 2007b; Haag and Borst, 2008; Wertz et al., 2008b).  

 

4.4. Gap junctions 

One last point of consideration in the analysis of the results presented above is the 

question of electrical coupling between VS cells. What are the functional advantages of using 

gap junctions for receptive field broadening? Connecting neuronal processes with gap junctions 

or with branching points is biophysically equivalent when the gap-junctions are passive. Thus, it 

is not inconceivable to have one giant VS cell with ten dendrites and ten different output 

processes, or, for example, three uncoupled VS cells with three dendrites each, or any other 

combination along those lines. Likewise it could be possible to account for the broad receptive 

fields at the level of the VS cell dendrites, simply by integrating broader fields of local motion 

inputs.  

 Gap junctions are channel-forming protein structures that connect the plasma 

membranes of two adjacent cells to allow direct metabolic and electrical communication. 

Electrically, when connecting two neurons, they function as low-pass filter comparators, 

transferring current between the cells only when there is a difference in the potentials between 

both sides (Migliore et al., 2005; Galarreta and Hestrin, 2001; Connors and Long, 2004; Sohl et 

al., 2005). They do not incur the costs involved in chemical transmission such as maintaining 

and activating the synaptic mechanism, synthesizing the transmitter and recycling it, and 

maintaining spatial proximity to the post-synaptic partner. In an electrical synapse, cells need 
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only to invest is synthesizing the innexin proteins and maintaining them. This, in itself, is a good 

argument against pooling broader, overlapping arrays of local motion detectors on the VS cell 

dendrite in order to broaden receptive fields – it is simply much more energetically costly. The 

price for this cost-effectiveness is that electrical synapses cannot be used to amplify 

transmitted signals, or to invert their signs (e.g. as inhibitory synapses do).  

Another alternative circuitry could be achieved by simply replacing the gap junctions 

with branching points. One argument that could speak against this is that the developmental 

program of LPTCs might not be able to generate neurons that have multiple main dendrites and 

multiple output regions. A more interesting prospect is that gap junctions could be used in this 

system as convenient regulation points both for short-term and long term modifications. 

Regulation of gap-junction coupling strength by various gap-junction modulators has been 

described in the vertebrate retina (DeVries and Schwartz, 1989; Hampson et al., 1992; Mills and 

Massey, 1995), and such regulation is thought to serve as a means of improving the signal-to-

noise ratio in darkness by sacrificing spatial acuity both in amacrine cells (Bloomfield et al., 

1997; Bloomfield and Volgyi, 2004; Xia and Mills, 2004; Mills et al., 2007). Whether gap 

junctions between VS cells serve a similar function is an interesting possibility that can be 

tested experimentally. However, modifications of branch connectivity have been recently 

demonstrated in hippocampal CA1 pyramidal cells, suggesting that local modifications of 

membrane permeability and excitability could serve similar functions (Losonczy et al., 2008). 
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4.5. Separating VS cell input sources 

In this work, I showed that in VS cells, separating the lateral, gap junction interactions 

from chemical synapses serves to separate these interactions from the conductive load 

generated by the dendritic synapses. This ensures effective gap junction connectivity, allowing 

for the linear “interpolation” of dendritic responses and a robust representation of motion 

information in the axon terminals, the output regions of these cells. This provides a functional 

explanation for the striking T-shaped morphology of the VS cells, and as this separation of input 

sources is common to many LPTCs, it might serve as a general structural principle in the lobula 

plate (Pierantoni, 1976; Hausen, 1982a; Eckert and Dvorak, 1983). As mentioned above, in a 

passive model, connecting two neuronal processes by a branching point or by a gap junction is 

biophysically equivalent, making the findings presented in this work relevant for understanding 

the functional structure of neuronal arborizations. 

Notably, effects of chemical synapses on electrical synapses have been demonstrated in 

other systems, such as the dynamic decoupling of mammalian inferior olivary neurons (Llinas et 

al., 1974; Lang et al., 1996) and of the pharyngeal motor neurons in the mollusk Navanax (Spira 

and Bennett, 1972) by shunting inhibition. In these systems, a complementary principle is 

implemented: the chemical synapses are located in close proximity to the gap junctions to 

maximize their shunting effect. In the oculomotor system of teleost fish, the degree of 

proximity or separation of synaptic inputs from gap junction coupling determines how 

functionally coupled these inputs are—that is, how synchronous the resulting activation of the 

coupled cells is (Kriebel et al., 1969; Korn and Bennett, 1975). 
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4.5.1. Linear and non-linear integration 

In addition to enhancing the effectiveness of gap-junction coupling, separating dendrites 

from the influence of lateral interactions might be useful in isolating local computations that 

depend on the dendritic membrane potential. For example, the final subtraction step of the 

Reichardt-type motion detectors, which takes place in the dendrites of lobula plate cells, 

involves a combination of excitatory and inhibitory inputs that are tuned to opposing motion 

directions. These inputs exert synaptic driving forces that depend on the postsynaptic potential, 

and jointly balance this potential at its input-driven value (Borst et al., 1995; Single et al., 1997). 

Receptive field separation may also allow for nonlinear processing steps, such as amplification 

of high-frequency components by active properties (Haag and Borst, 1996; Haag et al., 1997), 

response saturation as a function of stimulus size (Hausen, 1982b; Hengstenberg, 1982; Haag et 

al., 1992; Haag and Borst, 1994; Haag et al., 1999), and gain control (Borst et al., 1995; Single et 

al., 1997), to take place before linearly integrating information from neighboring cells.  

These speculations are yet to be tested in this system, but modeling (Mel et al., 1998; 

Archie and Mel, 2000; Poirazi et al., 2003a; Poirazi et al., 2003b) and in vitro (Liu, 2004; Polsky 

et al., 2004) studies of cortical neurons as well as in vivo studies of locust visual neurons 

(Gabbiani et al., 1999; Gabbiani et al., 2002) support the notion that proximal synaptic inputs 

interact nonlinearly, but inputs coming from separate dendritic branches sum linearly. An 

interesting question that arises in this context is that of the vertical dendritic structure of the VS 

cells. One could theoretically conceive of a larger array of VS cells, in which each VS cell pools a 

small, circular patch of local motion detectors which would then be selectively linearly coupled 

to form the receptive fields of VS cells in their output regions. Taking that in mind, what is the 
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functional significance of the non-linear integration of inputs in a vertical stripe, and 

subsequently a linear integration in the horizontal dimension? A very speculative suggestion 

could point to the horizon, or a similar horizontal contrast border between dark (trees, foliage, 

ground) and light (sky, clouds) as a common feature of many naturalistic settings. Thus, the 

function of the vertical dendrite would be to capture the motion of this landmark in a 

threshold-like manner, and construct the representation of the axis of rotation in the output 

regions of the VS cells from the position of this feature. 

Another possibility to explain this separation comes from a similar two-tier integration 

process which has been recently suggested for calculating the likelihood function of a stimulus 

by a population of sensory neurons (Jazayeri and Movshon, 2006). In this model, each cell in the 

second layer calculates a weighted sum of the first layer’s receptive fields to generate a 

representation of the likelihood function. An array of dual-compartment cells, such as the one 

presented above, can achieve this two-step computation faster and energetically more 

efficiently, without the need for additional synaptic steps. 

 

4.6. Small field selectivity of VS cell dendrites 

A surprising result that came from this work was that the dendrites of VS cells are 

selective for small-field motion, and their responses get attenuated as stimulus size grows in 

the horizontal, but not the vertical dimension. This serves as a good demonstration for the 

advantages of being able to separate the feed-forward, motion detector inputs from the lateral, 
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lobula plate interactions in accessing the former in their more “clean” form, without effects 

being masked by the lateral interactions.  

What could be the underlying mechanism for this small-field selectivity? One possibility 

to consider is presynaptic lateral inhibition between motion detector output channels. Lateral 

inhibition is a common motif in many sensory systems (Aungst et al., 2003; Balboa and 

Grzywacz, 2000; Wu et al., 2008), but its function and purpose are still debated (e.g., Series et 

al., 2004; Oswald et al., 2006). Lateral inhibition was described between laminar columns in the 

fly (Zettler and Järvilehto, 1972; Laughlin and Hardie, 1978), however, the neurons in these 

columns are not sensitive to motion, so it is unlikely that this lateral inhibition participates in a 

such a motion-dependent effect. A more similar, motion-sensitive form of lateral inhibition was 

found between horizontal motion detectors in the locust visual system (O'Shea and Rowell, 

1975), where it is believed to prevent adaptation to wide-field motion in the context of object 

detection. Thus, the inhibitory effect we observed might be a reflection of phylogenetic 

similarities in the peripheral visual systems across various insect taxa (Laughlin and Hardie, 

1978; Buschbeck and Strausfeld, 1996). However, these two phenomena differ both in 

magnitude and in direction selectivity, so it is yet unclear whether they both result from the 

same underlying mechanism. A second possible mechanism could be a large-field cell that 

inhibits the responses in the dendrites only at larger grating sizes, similar to a mechanism 

suggested for inhibition of FD-cells by the wide-field CH cells (Warzecha et al., 1993), and also 

consistent with an alternative model of gain-control by large-field inhibitory cells in the lobula 

plate (Neri, 2006).  
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What could be the location of this inhibitory action? The possibility of dendro-dendritic 

inhibition between VS cell dendrites is easily ruled out since it requires them to have output 

synapses, as well as physical contacts; both have not been found (Hausen et al., 1980; Haag and 

Borst, 2004; Raghu et al., 2007). Two remaining possibilities are inhibition by presynaptic 

elements on the dendrites of the VS cells, and inhibition of the presynaptic elements before 

they synapse on the VS cell dendrites. A simple experiment can discriminate between these 

alternatives: if inhibition by larger gratings takes place on the VS cell dendrites, increasing the 

size of the grating will recruit additional inhibitory synaptic input, reducing the input resistance 

of the cell. On the other hand, if inhibition affects the presynaptic excitatory inputs to the VS 

cells, reducing their amplitude before they synapse on the VS cells’ dendrites, the input 

resistance of the cell should grow with the size of the grating. 

What could be the functional significance of small-field tuning in the VS cell dendrites? A 

similar small-field selectivity was found in horizontal selective LPTCs, the so-called figure 

detection (FD) cells, which are thought to mediate the optomotor orientation of flies towards 

small-field oscillating gratings (Egelhaaf, 1985a; Gauck and Borst, 1999). The possibility of the 

existence of a similar, vertically sensitive small-field selective element in the lobula plate has 

been raised in another study of fly optomotor responses (Hausen and Wehrhahn, 1990) but 

such a cell in the lobula plate has not yet been described. It remains an intriguing possibility 

that small-field selectivity in the vertical system is first generated in the dendrites of VS cells or 

in their immediate presynaptic partners. Still, it seems counter-intuitive that the dendrites 

should be small-field tuned since the main outputs of VS cells, the axon-terminals, are clearly 

tuned to large-field stimuli, an important requirement of a system participating in global flow-
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field processing. Thus, the small-field tuning of the dendrites is lost by the time the signal 

reaches the cells’ post-synaptic partners.  

If indeed the underlying mechanism is lateral inhibition, the advantage could indeed be 

along the lines of the adaptation avoidance effect in the locust (O'Shea and Rowell, 1975). This 

can be tested by presenting either a small-field or a large-field adaptation stimulus and testing 

its effect on a subsequently presented small-field stimulus. A large-field stimulus will activate 

the lateral inhibition and adaptation will be avoided, thus the response to the second stimulus 

will remain unaffected. On the other hand, a small-field stimulus will not drive lateral inhibition, 

and the response to the second stimulus will be significantly reduced. Another possible 

advantage could be seen if the dendrites of VS cells are presynaptic in the lobula plate. 

Although this was ruled out for chemical synapses based on electron micrographs in Calliphora 

(Hausen et al., 1980) as well as immunohistochemistry in Drosophila (Raghu et al., 2007), 

dendritic gap-junction connectivity between frontally tuned VS cells and H1 and H2 cells (Haag 

and Borst, 2003)as well as between caudally-tuned VS cells and the spiking neuron Vi (Haag and 

Borst, 2007) could serve as an output signal for such small-field selective responses. 

Finally, are HS-cell dendrites also selective to small-field horizontal motion? The 

horizontally selective HS-cells are also directly post-synaptic to local motion detectors, and so if 

a similar presynaptic mechanism for small-field selectivity exists in the horizontal system, it 

might be found in the dendrites of HS-cells. This is an interesting possibility also considering 

that lateral inhibition in the locust is between horizontal motion detectors.  
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