Der LuxP/Al-2- und LuxQ-abhängige Signaltransduktionsweg des Quorum sensing-Systems von *V. harveyi*

Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München von Nina Stambrau

München, 07. Mai 2008
1. Gutachterin
Prof. Dr. Kirsten Jung
Department Biologie I, Bereich Mikrobiologie
Ludwig-Maximilians-Universität München

2. Gutachter
Prof. Dr. Dirk Schüler
Department Biologie I, Bereich Mikrobiologie
Ludwig-Maximilians-Universität München

Tag der mündlichen Prüfung
15. Oktober 2008
Inhaltsverzeichnis

Inhaltsverzeichnis

Abbildungsverzeichnis vi
Tabellenverzeichnis vii
Abkürzungsverzeichnis viii
Nomenklatur x

1 Einleitung 1
1.1 Zell-Zell-Kommunikation bei Bakterien 1
1.2 Phosphorelaysysteme .. 2
1.3 Das Quorum sensing-System in *Vibrio harveyi* 6
1.4 Die membranständigen Hybridsensorkinasen in *V. harveyi* 7
1.4.1 Die HAI-1 abhängige Hybridsensorkinase LuxN 9
1.4.2 Die LuxP/AI-2 abhängige Hybridsensorkinase LuxQ 9
1.4.3 Die CAI-1 abhängige Hybridsensorkinase CqsS 10
1.5 Das Histidinphosphotransfer-Protein LuxU 11
1.6 Der σ^{54}-abhängige Antwortregulator LuxO 11
1.6.1 Empfängerdomäne eines Antwortregulators 12
1.6.2 AAA$^+$ ATPase-Domäne 12
1.6.3 DNA-Bindedomäne .. 13
1.6.4 Biochemische Untersuchungen des Antwortregulators LuxO 13
1.7 Aufgabenstellung 14

2 Material und Methoden 15
2.1 Materialien 15
2.2 Stämme, Plasmide und Oligonukleotide 16
2.2.1 Verwendete Stämme 16
2.2.2 Verwendete Plasmide und Cosmide 17
2.2.3 Verwendete Oligonukleotide 19
2.3 Kultivierung 22
2.3.1 Kultivierung von *Escherichia coli* 22
2.3.2 Kultivierung von *Rhodobacter sphaeroides* 23
2.3.3 Kultivierung von *Vibrio harveyi* 23
2.3.4 Kompetente Zellen und Transformation 23
2.4 Molekularbiologische Methoden 24
2.4.1 Plasmidisolierung 24
INHALTSVERZEICHNIS

2.4.2 Isolierung von chromosomaler DNA 24
2.4.3 Modifikation von DNA .. 24
2.4.4 Elektrophoretische Auftrennung von DNA 24
2.4.5 Extraktion von DNA aus Agarosegelien 25
2.4.6 „In Gel“-Ligation und Transformation 25
2.4.7 Konstruktion der Plasmide 25
2.4.8 DNA-Sequenzanalyse ... 26

2.5 Biochemische und Analytische Methoden 30
2.5.1 Proteinbestimmung .. 30
2.5.2 SDS-Polyacrylamidelektrophorese 30
2.5.3 Immunologischer Nachweis von Proteinen (Western-Blot) 30
2.5.4 Quantitativer Western-Blot 31
2.5.5 Präparation von zellfreiem Kulturüberstand 31
2.5.6 Lokalisationsstudien von Proteinen 31
2.5.7 Präparation von Zellfraktionen zur Gewinnung der Lux-Proteine ... 32
2.5.8 Ni²⁺-NTA-Affinitätschromatographie 33
2.5.9 Proteolyse mit Thrombin 33
2.5.10 Heterologe Überproduktion und Reinigung von LuxU 33
2.5.11 Heterologe Überproduktion und Reinigung von LuxP 34
2.5.12 In vitro-Phosphorylierung der Lux-Proteine 34
2.5.13 Al-2 Bioassay ... 37
2.5.14 ATPase-Aktivitätsmessung 37

2.6 Mathematische Modellierung des Lux-Systems 37

3 Ergebnisse 39

3.1 Biochemische Untersuchungen der Hybridsensorkinase LuxQ ... 39
3.1.1 Heterologe Expression von LuxQ 39
3.1.2 Lokalisation von LuxQ und Präparation von Membranvesikeln ... 41
3.1.3 Autokinaseaktivität von LuxQ 41
3.1.4 LuxQ-spezifische Phosphorylierung von LuxU 42
3.1.5 Phosphataseaktivität von LuxQ 44
3.2 Einfluss des periplasmatischen Bindeproteins LuxP und AI-2 auf LuxQ 46
3.2.1 Heterologe Überproduktion und Reinigung von LuxP 46
3.2.2 Einfluss von LuxP und AI-2 auf die Kinaseaktivität von LuxQ 48
3.2.3 Einfluss von LuxP und AI-2 auf die Phosphataseaktivität von LuxQ ... 49
3.3 Biochemischer Vergleich der Hybridsensorkinasen LuxQ und LuxN 51
3.3.1 Vergleich der Kinaseaktivitäten 52
3.3.2 Vergleich der Phosphataseaktivitäten ... 55
3.3.3 Vergleich des Einflusses der Autoinduktoren HAI-1 und AI-2 56
3.3.4 Kinase-zu-Phosphatase-Verhältnis von LuxQ und LuxN 57
3.4 Mathematisches Modell des kombinierten LuxN- und LuxQ-Signalwegs ... 57
3.5 Das Zusammenspiel der Hybridsensorkinasen LuxQ und LuxN 61
 3.5.1 Beeinflussung der LuxN-Kinaseaktivität durch LuxQ 62
 3.5.2 Beeinflussung der LuxQ-Kinaseaktivität durch LuxN 65
 3.5.3 Einfluss von HAI-1 auf das Zusammenspiel von LuxN und LuxQ 65
 3.5.4 Dephosphorylierung von LuxU in Anwesenheit von LuxQ und LuxN 67
3.6 LuxQ/LuxN-Chimäre .. 68
3.7 Verkürzte LuxQ- und LuxN-Derivate .. 69
 3.7.1 Heterologe Überproduktion der verkürzten Derivate 71
 3.7.2 Einfluss von LuxQ(475-859) auf die LuxN-Kinaseaktivität 72
 3.7.3 Überproduktion und Untersuchung von verkürzten LuxN- und LuxQ- Derivaten als Trx-Hybridprotein ... 73
3.8 Heterologe Überproduktion von LuxO in E. coli 74
 3.8.1 Heterologe Überproduktion und Lokalisation von LuxO 75
 3.8.1.1 Aufschlussbedingungen ... 75
 3.8.1.2 Ni²⁺-NTA-Affinitätschromatographie 76
 3.8.1.3 Anionenaustauschchromatographie .. 77
 3.8.1.4 Phosphorylierung des Cytosols ... 77
 3.8.2 Heterologe Überproduktion und Reinigung von Trx-LuxO 79
 3.8.2.1 Kultivierungsbedingungen ... 79
 3.8.2.2 Anreicherung von Trx-LuxO aus dem Cytoplasma 80
 3.8.2.3 Proteolytische Abspaltung von Thioredoxin 81
 3.8.2.4 ATPase Assay .. 82
 3.8.2.5 Phosphorylierung ... 83
 3.8.3 Weitere Expressionssysteme zur Überproduktion von LuxO 84
3.9 Überproduktion und Lokalisation von LuxO/NtrC-Chimären 85
 3.9.1 Konstruktion der LuxO/NtrC-Chimäre ... 85
 3.9.2 Lokalisation der LuxO/NtrC-Chimäre ... 86
3.10 Bestimmung der Löslichkeit von verkürzten LuxO-Derivaten 87
 3.10.1 Bioinformatische Untersuchungen ... 87
 3.10.2 Konstruktion und Lokalisation verkürzter LuxO-Derivate 88
3.11 „Rational Engineering“ von LuxO zur Erhöhung der Löslichkeit in Koopera-
 tion mit der Firma Sloning BioTechnology .. 91
3.12 Heterologe Überproduktion der Lux-Proteine in \textit{R. sphaeroides}

4 Diskussion
4.1 Biochemische Untersuchungen der Hybridsensorkinase LuxQ
4.1.1 Charakterisierung der enzymatischen Aktivitäten von LuxQ
4.1.2 Einfluss von LuxP und Autoinduktor-2 auf LuxQ
4.1.3 Vergleich der enzymatischen Aktivitäten von LuxQ und LuxN
4.2 Mathematische Modellierung des HAI-1- und LuxP/AI-2-abhängigen Signalwegs
4.3 Wechselwirkungen der Hybridsensorkinasen LuxQ und LuxN
4.3.1 Einfluss der LuxN/LuxQ-Chimäre auf die LuxN-Kinaseaktivität
4.3.2 Verkürzte LuxQ- und LuxN-Derivate
4.4 Heterologe Überproduktion von LuxO in \textit{Escherichia coli}
4.4.1 Veränderte Kultivierungs- und Induktionsbedingungen
4.4.2 Herstellung von LuxO/NtrC-Chimären
4.4.3 Gezielte Veränderungen in LuxO zur Erhöhung der Löslichkeit
4.5 Heterologe Überproduktion der Lux-Proteine in \textit{R. sphaeroides} DD13
4.6 Ausblick

5 Zusammenfassung

Literatur

Anhang
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Zweikomponenten- und Phosphorelay-Systeme</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Das Quorum sensing-System von Vibrio harveyi</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Domänenstruktur der Hybridsensorkinasen LuxN, LuxQ und CqsS</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Domänen des Antwortregulators LuxO</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Lokalisation der Hybridsensorkinase LuxQ</td>
<td>41</td>
</tr>
<tr>
<td>3.2 LuxQ-abhängige Phosphorylierung von LuxU</td>
<td>43</td>
</tr>
<tr>
<td>3.3 LuxQ-abhängige Dephosphorylierung von LuxU</td>
<td>45</td>
</tr>
<tr>
<td>3.4 AI-2 Aktivitätsassay</td>
<td>47</td>
</tr>
<tr>
<td>3.5 Kinaseaktivität von LuxQ in Anwesenheit von LuxP/AI-2 und LuxP</td>
<td>49</td>
</tr>
<tr>
<td>3.6 Einfluss von LuxP/AI-2 auf die LuxQ-abhängige Phosphorylierung von LuxU</td>
<td>50</td>
</tr>
<tr>
<td>3.7 Einfluss von LuxP bzw. LuxP/AI-2 auf die Phosphataseaktivität von LuxQ</td>
<td>51</td>
</tr>
<tr>
<td>3.8 Vergleich der LuxQ- und LuxN-abhängigen Phosphorylierung von LuxU</td>
<td>52</td>
</tr>
<tr>
<td>3.9 ATP-Abhängigkeit der LuxQ- und LuxN-Kinaseaktivität</td>
<td>53</td>
</tr>
<tr>
<td>3.10 Bestimmung des K_m-Werts für ATP mittels Eadie-Hofstee-Diagramm</td>
<td>54</td>
</tr>
<tr>
<td>3.11 LuxQ- und LuxN-abhängige Dephosphorylierung von LuxU</td>
<td>55</td>
</tr>
<tr>
<td>3.12 Schema der Reaktionen</td>
<td>58</td>
</tr>
<tr>
<td>3.13 Einfluss der Autoinduktor-Konzentration auf den LuxU~P Output</td>
<td>61</td>
</tr>
<tr>
<td>3.14 Zusammenspiel der Hybridsensorkinasen LuxN und LuxQ</td>
<td>63</td>
</tr>
<tr>
<td>3.15 Beeinflussung der LuxU-Phosphorylierungsrate von LuxN durch LuxQ bzw. LuxQ-H492Q-haltige Membranvesikel</td>
<td>64</td>
</tr>
<tr>
<td>3.16 Einfluss von LuxN-D771N auf die LuxQ-Kinaseaktivität</td>
<td>66</td>
</tr>
<tr>
<td>3.17 Phosphorylierungsgraten verschiedener Kombination von LuxN, LuxQ, HAI-1 und LuxP/AI-2</td>
<td>67</td>
</tr>
<tr>
<td>3.18 Effekt der LuxQ-Domänen auf die LuxN-Phosphorylierungsrate</td>
<td>69</td>
</tr>
<tr>
<td>3.19 Schematische Darstellung der verkürzten LuxQ- und LuxN-Derivate</td>
<td>70</td>
</tr>
<tr>
<td>3.20 Lokalisation des verkürzten Derivats LuxQ(475-859)</td>
<td>72</td>
</tr>
<tr>
<td>3.21 Einfluss von LuxQ(475-859) auf die LuxN-Kinaseaktivität</td>
<td>73</td>
</tr>
<tr>
<td>3.22 Prozentuale Verteilung von LuxO in den Fraktionen bei Aufschluss in Gegenwart von Salz</td>
<td>76</td>
</tr>
<tr>
<td>3.23 Phosphorylierung von LuxO-haltigem Cytosol</td>
<td>78</td>
</tr>
<tr>
<td>ABBILDUNGSVERZEICHNIS</td>
<td>vi</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----</td>
</tr>
<tr>
<td>3.24 Lokalisation von Thioredoxin-LuxO bei Kultivierung bei 18°C</td>
<td>80</td>
</tr>
<tr>
<td>3.25 Reinigung von Thioredoxin-LuxO</td>
<td>81</td>
</tr>
<tr>
<td>3.26 Thrombinbehandlung von Thioredoxin-LuxO</td>
<td>82</td>
</tr>
<tr>
<td>3.27 LuxO/NtrC-Chimäre</td>
<td>86</td>
</tr>
<tr>
<td>3.28 Lokalisation von LuxO, NtrC und der Chimäre LuxO/NtrC und NtrC/LuxO</td>
<td>87</td>
</tr>
<tr>
<td>3.29 Lokalisation der verkürzten LuxO-Derivate</td>
<td>90</td>
</tr>
<tr>
<td>3.30 3D Modell von LuxO</td>
<td>94</td>
</tr>
<tr>
<td>3.31 3D Modell der LuxO_C_Variante6</td>
<td>95</td>
</tr>
<tr>
<td>4.1 Modell der enzymatischen Aktivitäten von LuxQ</td>
<td>103</td>
</tr>
<tr>
<td>4.2 Dreidimensionale Darstellung des Einflusses der Autoinduktor-Konzentration auf den LuxU∼P Output</td>
<td>105</td>
</tr>
<tr>
<td>4.3 Wechselwirkungen der Hybridsensorkinasen LuxN und LuxQ</td>
<td>111</td>
</tr>
<tr>
<td>4.4 Auszutauschende Aminosäuren des N-terminalen Bereichs im 3D Modell von LuxO</td>
<td>118</td>
</tr>
<tr>
<td>5.1 Alignment der Proteinsequenzen von V. harveyi LuxO und E. coli NtrC</td>
<td>136</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

2.1 Verwendete Materialien ... 15
2.2 Verwendete Stämme .. 16
2.3 Verwendete Plasmide und Cosmide .. 17
2.4 Verwendete Oligonukleotide .. 20
2.5 Konstruktion der Plasmide mittels einstufiger PCR 27
2.7 Konstruktion der Plasmide mittels zweistufiger PCR 29
2.9 Verwendete Antikörper zum immunologischen Nachweis von Proteinen ... 31
3.1 Namen und Werte der Parameter der mathematischen Modellierung 60
3.2 Vorhersagen zur Löslichkeit der LuxO-Fragmente 89
3.3 Aminosäuresubstitutionen in den LuxO_C_Varianten 93
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA⁺ ATPase</td>
<td>ATPase associated with diverse cellular activity</td>
</tr>
<tr>
<td>AI-2</td>
<td>Autoinduktor-2</td>
</tr>
<tr>
<td>Amp<sup>R</sup></td>
<td>Plasmidvermittelte Ampicillin-Resistenz</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserumalbumin</td>
</tr>
<tr>
<td>CAI-1</td>
<td>cholerae Autoinduktor-1</td>
</tr>
<tr>
<td>Cam<sup>R</sup></td>
<td>Plasmidvermittelte Chloramphenicol-Resistenz</td>
</tr>
<tr>
<td>Da, kDa</td>
<td>Dalton, Kilodalton</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNase</td>
<td>Desoxyribonuklease</td>
</tr>
<tr>
<td>DNTB</td>
<td>5,5'-Dithio-bis-(2-Nitrobenzoinsäure)</td>
</tr>
<tr>
<td>dNTP</td>
<td>desoxy-Ribonukleotidtriphosphat</td>
</tr>
<tr>
<td>DPD</td>
<td>4,5-Dihydroxyl-2,3-Pentandion</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiotreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraacetat</td>
</tr>
<tr>
<td>HAI-1</td>
<td>harveyi Autoinduktor-1</td>
</tr>
<tr>
<td>HisKA</td>
<td>Histidin KinaseA-Domäne</td>
</tr>
<tr>
<td>HK</td>
<td>Histidinkinase</td>
</tr>
<tr>
<td>HPt-Protein /-Domäne</td>
<td>Histidin-Phosphotransfer-Protein /-Domäne</td>
</tr>
<tr>
<td>HSL</td>
<td>Acyl-Homoserinlakton</td>
</tr>
<tr>
<td>HTH</td>
<td>Helix-turn-Helix</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobuline der Klasse G</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thioglaktopyranosid</td>
</tr>
<tr>
<td>Kan<sup>R</sup></td>
<td>Plasmidvermittelte Kanamycin-Resistenz</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>K<sub>m</sub></td>
<td>Michaelis-Konstante</td>
</tr>
<tr>
<td>KÜ</td>
<td>zellfreier Kulturüberstand</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani Medium</td>
</tr>
<tr>
<td>LDAO</td>
<td>N,N-Dimethylaminoxid-Octyglucosid</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>LM</td>
<td>Luria Marine Medium</td>
</tr>
<tr>
<td>LuxP/AI-2</td>
<td>AI-2 haltiges LuxP</td>
</tr>
<tr>
<td>LuxPQ</td>
<td>LuxP-LuxQ-Komplex</td>
</tr>
<tr>
<td>LuxPQ₂</td>
<td>Dimer von LuxPQ</td>
</tr>
<tr>
<td>LuxPQₚ</td>
<td>periplasmatische Domänen von LuxPQ</td>
</tr>
<tr>
<td>NTA</td>
<td>Triazetonitril</td>
</tr>
<tr>
<td>OD₆₀₀</td>
<td>Optische Dichte bei 600 nm</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamidgelektrophorese</td>
</tr>
<tr>
<td>PBP</td>
<td>periplasmatisches Bindeprotein</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonylfluorid</td>
</tr>
<tr>
<td>Pro-AI-2</td>
<td>Vorstufe von Autoinduktor-2</td>
</tr>
<tr>
<td>REC</td>
<td>Empfängerdomäne eines Antwortregulators</td>
</tr>
<tr>
<td>Rf</td>
<td>Retentionsfaktor</td>
</tr>
<tr>
<td>RLU</td>
<td>„relative light unit“</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>RR</td>
<td>Antwortregulator</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SAM</td>
<td>S-Adenosylmethionin</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SRH</td>
<td>S-Ribosyl-Homocystein</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloressigsäure</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethyletylendiamin</td>
</tr>
<tr>
<td>Tet⁺</td>
<td>Plasmidvermittelte Tetracyclin-Resistenz</td>
</tr>
<tr>
<td>TG</td>
<td>Tris/HCL-Glycerol</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrandomäne</td>
</tr>
<tr>
<td>TNB</td>
<td>2-Nitro-5-Thiobenzoat</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht pro Volumen</td>
</tr>
<tr>
<td>3D-PSSM</td>
<td>„three-dimensional position-specific scoring matrix“</td>
</tr>
</tbody>
</table>
Nomenklatur

Substitutionen im Genprodukt werden so bezeichnet, dass die native Aminosäure und deren Position, gefolgt von der Aminosäuresubstitution genannt werden.
1 Einleitung

1.1 Zell-Zell-Kommunikation bei Bakterien

Die Zelldichte-abhängige Regulation der Genexpression wird als „Quorum sensing“ bezeichnet (Quorum, lat.: die Anzahl von Mitgliedern (...) die für die Beschlussfähigkeit erforderlich ist). Der Begriff macht die Notwendigkeit deutlich, dass viele Individuen gemeinsam agieren müssen, um einen bestimmten Prozess in Gang zu setzen und ein sinnvolles Resultat zu erzielen.

1.2 Phosphorelaysysteme

Bei der Autophosphorylierung wird die γ-Phosphorylgruppe von ATP auf den konservierten Histidinrest übertragen, wodurch eine energiereiche Phosphoramidatbindung (His∼P) entsteht. Bei dem Phosphoryltransfer auf das Aspartat des Antwortregulators entsteht ein ebenfalls energiereiches Acylphosphat (Asp∼P), daher ist die Reaktion reversibel.

EnvZ-OmpR in *E. coli*

KinA/KinB-Spo0F-Spo0B-Spo0A in *B. subtilis*

ArcB-ArcA in *E. coli*
BvgS-BvgA in *B. pertussis*

Sln1p-Ypd1p-Ssk1p/Skn7p in *S. cerevisiae*

CbbSR-CbbRR1/CbbRR2 in *R. plustris*

LuxN/LuxQ/CqsS-LuxU-LuxO in *V. harveyi*

Ein Beispiel ist das KinA,KinB-Spo0F-Spo0B-Spo0A-System, das die Sporulation in *B. subtilis* reguliert (Burbulys et al., 1991). In diesem Fall sind die vier phosphorakzeptierenden Reste auf vier unterschiedlichen Proteinen lokalisiert (Abb. 1.1B). Somit nimmt der Antwortregulator Spo0F eine Sonderstellung unter den prokaryotischen Antwortregulatoren ein, da seine Effektordomäne den Phosphotransfer zwischen Histidinkinase KinA und Histidinphosphotransferprotein Spo0B katalysiert.

Das einzige Phosphorelaysystem in *S. cerevisiae* ist das an der Osmoregulation beteiligte Sln1p-Ypd1p-Ssk1p,Skn7p-System (Brewster et al., 1993). Hier handelt es sich bei Sln1 um eine Hybridsensorkinase, die aus einer Histidinkinase- und Antwortregulatordomäne besteht. Das System erhält zusätzliche Komplexität, da die Phosphorylgruppe des HPt-Proteins Ypd1p auf zwei verschiedene Antwortregulatoren (Ssk1p und Skn7p) übertragen werden kann (Abb. 1.1D).

tionen statt, bis schließlich der Antwortregulator ArcA bzw. BvgA phosphoryliert werden (Abb. 1.1C).

Einen verzweigten Phosphorylierungsweg weist das CbbSR-CbbRR1,CbbRR2-System (Calvin Benson Bassham) in R. plustris auf (Romagnoli und Tabita, 2006). Nach der Autophosphorylierung an der Histidinkinasedomäne von CbbSR kann es entweder zu einem intermolekularen Phosphotransfer auf eine der beiden Antwortregulatordomänen von CbbRR2 kommen, oder zu einem intramolekularen Transfer auf die Antwortregulatordomäne der Hybridsensorkinase (Abb. 1.1E). In diesem Fall wird die Phosphorylgruppe auf die mit dem Antwortregulator verschmolzene HPt-Domäne von CbbRR1 übertragen und es kommt zu einem weiteren intramolekularen Phosphotransfer auf die Antwortregulatordomäne.

Das LuxN/LuxQ/CqsS-LuxU-LuxO-System in V. harveyi erhält durch die Anwesenheit von drei Hybridsensorkinasen zusätzliche Komplexität (Abb. 1.1F). Alle drei Hybridsensorkinasen übertragen nach einer intramolekularen Phosphotransferreaktion die Phosphorylgruppe auf das HPt-Protein LuxU (Bassler et al., 1993). Auf das Lux-System von V. harveyi wird in Kapitel 1.3 genauer eingegangen.

1.3 Das Quorum sensing-System in *Vibrio harveyi*

Bei dem Quorum sensing-System in *Vibrio harveyi* (Abbildung 1.2), einem Gram-negativen, freilebenden marinen Leuchtbakterium, handelt es sich um eine Mischung der für Gram-positive und Gram-negative Organismen beschriebenen Signaltransduktionswege (Bassler et al., 1993). Wie *V. fischeri* nutzt auch *V. harveyi* ein frei über die Cytoplasmamembran diffundierendes HSL als Signalmolekül, das Signal wird aber wie in Gram-positiven Organismen durch eine membranständige Hybridsensorkinase wahrgenommen und weitergeleitet.

Abbildung 1.2: Das Quorum sensing-System von *Vibrio harveyi*. Dargestellt sind die dominierenden Reaktionen des Zelldichte-abhängigen Signaltransduktionswegs in *Vibrio harveyi* bei

Allerdings handelt es sich hierbei nicht um ein klassisches Zweikomponenten-System sondern um ein Phosphorelaysystem. Nach Autophosphorylierung an der Histidinkinasedomäne der Hybridsensorkinase kommt es zu einem intramolekularen Phosphotransfer auf die Antwortregulatordomäne. Die Phosphorylgruppe wird von der Hybridsensorkinase auf ein Histidinphosphotransfer-Protein (HPt-Protein) und danach auf einen Antwortregulator übertragen. Der phosphorylierte Antwortregulator reguliert die Produktion von fünf kleinen RNAs (sRNA). Diese wiederum destabilisieren gemeinsam mit dem Chaperon Hfq das

1.4 Die membranständigen Hybridsensorkinasen in V. harveyi

Bei allen drei Signalkaskaden führt eine niedrige Zelldichte zu einer Phosphorylierung der Sensorkinasen und der anderen Proteinkomponenten. Somit werden die Biolumineszenzgene
Abbildung 1.3: Domänenstruktur der Hybridsensorkinasen LuxN, LuxQ und CqsS in *V. harveyi*. Die Zahlen beziehen sich auf die Aminosäure-Positionen in den Wildtyp-Proteinen.

Eine weitere Differenzierung und Möglichkeit der Integration von verschiedenen Signalen sind die sRNAs, deren Produktion durch den Phosphorylierungsgrad von LuxO reguliert wird. Nur vier der fünf sRNAs werden für die Destabilisierung der *luxR* mRNA benötigt. Während die sRNAs in *V. cholerae* redundant wirken, agieren die sRNAs in *V. harveyi*
additiv. Auf diese Weise wird ein LuxR-Gradient verursacht, der die Zielgene differentiell regulieren kann.

1.4.1 Die HAI-1 abhängige Hybridsensorkinase LuxN

Wie in Abb. 1.3 dargestellt besitzt LuxN eine Transmembrandomäne und ist dementsprechend in der Cytoplasmamembran verankert (Timmen et al., 2006). Die Topologie wurde von Jung et al. (2007) aufgeklärt: LuxN besitzt neun transmembrane Helizes, wobei der N-Terminus im Periplasma lokalisiert ist.

Es konnte außerdem gezeigt werden, dass die Kinaseaktivität von LuxN durch die Anwesenheit von HAI-1 gehemmt wird, während die Phosphataseaktivität unabhängig von HAI-1 ist. Aufgrund der HSL-Bindung kommt es vermutlich zu einer Konformationsänderung der Histidinkinase, die zu einer verringerten Autokinaseaktivität führt. Das Gleichgewicht wird daher in Richtung der unphosphorylierte Form verschoben, somit wird ebenfalls die Menge an phosphoryliertem LuxU reduziert (Timmen et al., 2006). Die genaue HSL-Bindestelle ist bisher nicht bekannt.

1.4.2 Die LuxP/AI-2 abhängige Hybridsensorkinase LuxQ

LuxQ besitzt zwei Transmembrandomänen; zwischen den Transmembrandomänen befindet sich eine große periplasmatische Schleife bestehend aus zwei PAS-Domänen (benannt nach drei PAS-Proteinen: Per-period circadian Protein, Arnt-Ah receptor nuclear translocator Protein, Sim-single-minded Protein). In Gegenwart als auch in Abwesenheit des Autoinduktors AI-2 ist das der Familie der periplasmatischen Bindeproteine (PBP, Quiocho und Ledvina, 1996) zugehörige Protein LuxP an die beiden PAS-Domänen gebunden. Obwohl pe-
riplasmatische Bindeproteine und PAS-Domänen unter den Lebewesen weit verbreitet sind, konnte zum ersten Mal eine Interaktion zwischen ihnen gezeigt (Neiditch et al., 2005).

1.4.3 Die CAI-1 abhängige Hybridsensorkinase CqsS

1.5 Das Histidinphosphotransfer-Protein LuxU

Neben dem Histidinrest H58 besitzt LuxU einen weiteren, unter den Histidinphosphotransferproteinen nicht konservierten Histidinrest 103. Dieser Rest ist auf der α-Helix E lokalisiert und scheint nicht an der Phosphorylierung beteiligt zu sein, weist aber eine Affinität für anorganisches Phosphat auf (Ulrich et al., 2005).

1.6 Der σ^{54}-abhängige Antwortregulator LuxO

$LuxO$ kodiert für ein 50 kDa großes cytosolisches Protein, das zur Familie der σ^{54}-abhängigen Transkriptionsaktivatoren gezählt werden kann (Lilley und Bassler, 2000). Proteine dieser Familie besitzen eine N-terminale Empfängerdomäne eines Antwortregulators (REC) mit einem konservierten Aspartatrest (D47 in LuxO). Außerdem besitzt LuxO eine AAA$^+$ ATPase-Domäne (AAA) sowie eine Helix-Turn-Helix-Domäne (HTH), die für die DNA-Bindung zuständig ist. Aufgrund der Domänenstruktur wird LuxO zu der NtrC-Familie der σ^{54}-abhängigen Transkriptionsaktivatoren gezählt. Die einzelnen Domänen von LuxO sind in Abb. 1.4 schematisch dargestellt.

Abbildung 1.4: Domänen des Antwortregulators LuxO.

REC Empfängerdomäne eines Antwortregulators. AAA AAA$^+$ ATPase-Domäne. HTH DNA-Bindedomäne.

1.6.1 Empfängerdomäne eines Antwortregulators

Der konservierte Rest der Antwortregulatordomäne, auf den die Phosphorylgruppe von LuxU vermutlich übertragen wird, ist der Aspartatrest 47. Wird Aspartat gegen Asparagin ($LuxO$-D47N) ausgetauscht, ist eine Phosphorylierung von LuxO nicht mehr möglich und das $lux0$-
Operon wird konstitutiv exprimiert. Der Austausch gegen Glutamat (LuxO-D47E) hingegen bewirkt, dass der phosphorylierte Zustand des Antwortregulators simuliert wird und die Zellen kein Licht produzieren (Freeman und Bassler, 1999a). Die postulierte Phosphorylierungsstelle konnte biochemisch bisher nicht bewiesen werden.

1.6.2 AAA$^+$ ATPase-Domäne

1.6.3 DNA-Bindedomäne

Aufgrund der Domänenstruktur können ca. 60% der Antwortregulatoren den OmpR-, NarL- und NtrC-Familien zugeordnet werden (Galperin, 2006). Eine weitere Klassifizierung bietet das DNA-Bindemotiv der Antwortregulatoren. Auf diese Weise können die Regulatoren in
unterschiedliche Klassen eingeteilt werden: „Helix-Turn-Helix-Domänen“ (NarL in *E. coli*), „winged Helix-Turn-Helix-Domänen“ (OmpR in *E. coli*), „Fis-like Domänen“ (factor of inversion stimulation; NarL in *E. coli*) und LyrTR-Domänen (YpdB in *E. coli*). Die Aminosäuren 404-444 von LuxO stellen ein so genanntes „Helix-Turn-Helix“-Motiv (HTH) dar, LuxO kann dementsprechend der ersten Klasse der Antwortregulatoren zugeordnet werden.

1.6.4 Biochemische Untersuchungen des Antwortregulators LuxO

Der σ^{54}-abhängige Antwortregulator LuxO konnte bisher nicht in löslicher und aktiver Form heterolog in *E. coli* überproduziert werden. LuxO lag auch bei veränderten Kultivierungsbedingungen zum größten Teil im Pellet der niedertourigen Zentrifugation vor (Timmen, 2005).

Die Überproduktion von LuxO als Hybridprotein mit Thioredoxin oder dem Maltosebindedeprotein hatte lediglich eine geringe Auswirkung auf die Löslichkeit von LuxO. Die geringen Mengen LuxO in der cytosolischen Fraktion reichten nicht für eine Anreicherung mittels Affinitätschromatographie aus.
1.7 Aufgabenstellung

Das Quorum sensing-System in *Vibrio harveyi* wurde bisher fast ausschließlich durch genetische Studien charakterisiert. Nur wenige biochemische Studien liegen vor.

2 Material und Methoden

2.1 Materialien

Tabelle 2.1: Verwendete Materialien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylphosphat</td>
<td>Sigma (Deisenhofen)</td>
</tr>
<tr>
<td>Alkalische Phosphatase (AP)</td>
<td>NEB (Frankfurt)</td>
</tr>
<tr>
<td>AP konjugiertes Anti-Kaninchen IgG</td>
<td>GE Healthcare (Braunschweig)</td>
</tr>
<tr>
<td>AP konjugiertes Anti-Maus IgG</td>
<td>GE Healthcare (Braunschweig)</td>
</tr>
<tr>
<td>[γ³²P]-ATP</td>
<td>GE Healthcare (Braunschweig)</td>
</tr>
<tr>
<td>[α³²P]-ATP</td>
<td>GE Healthcare (Braunschweig)</td>
</tr>
<tr>
<td>Biotinylated Thrombin Capture Kit</td>
<td>Novagen</td>
</tr>
<tr>
<td>DNase</td>
<td>Sigma (Deisenhofen)</td>
</tr>
<tr>
<td>DNA-Standard (1 kb bzw. 2-log-Ladder)</td>
<td>NEB (Frankfurt)</td>
</tr>
<tr>
<td>DNeasy Tissue Kit</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>HMW-Proteinstandard</td>
<td>Sigma (Deisenhofen)</td>
</tr>
<tr>
<td>Ni²⁺-NTA-Agarose</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>Nitrozellulose-Membran</td>
<td>Schleicher & Schuell (Dassel)</td>
</tr>
<tr>
<td>Nucleotid Removal Kit</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>Page Ruler™ Prestained Proteinstandard</td>
<td>Fermentas (St. Leon-Rot)</td>
</tr>
<tr>
<td>Penta-His-AK</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>PEI-Cellulose F TLC-Platte</td>
<td>Merck KGaA (Darmstadt)</td>
</tr>
<tr>
<td>Pfu-DNA-Polymerase</td>
<td>Fermentas (St. Leon-Rot)</td>
</tr>
<tr>
<td>Phusion-DNA-Polymerase</td>
<td>Finnzymes Diagnostics (Espoo)</td>
</tr>
<tr>
<td>Plaque GeneticPure Agarose</td>
<td>Biozym (Oldendorf)</td>
</tr>
<tr>
<td>PMSF</td>
<td>Sigma (Deisenhofen)</td>
</tr>
<tr>
<td>Pyridin</td>
<td>Sigma (Deisenhofen)</td>
</tr>
<tr>
<td>QIA-prep-spin Plasmid Kit</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>QIAquick-Gel-Extraction Kit</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>QIAquick-PCR-Purification Kit</td>
<td>QIagen GmbH (Hilden)</td>
</tr>
<tr>
<td>Q Sepharose</td>
<td>GE Healthcare (Braunschweig)</td>
</tr>
<tr>
<td>Restriktionsenzymen</td>
<td>N.E.B. (Frankfurt)</td>
</tr>
<tr>
<td>Rinderserumalbumin (BSA)</td>
<td>AppliChem GmbH (Darmstadt)</td>
</tr>
</tbody>
</table>
Materialien | Hersteller
--- | ---
SeeBlue Plus2 Prestained Proteinstandard | Invitrogen (Karlsruhe)
T4 DNA-Ligase | NEB (Frankfurt)
T4 Polynukleotidkinase | NEB (Frankfurt)
Taq-DNA-Polymerase | Fermentas (St. Leon-Rot)

Alle hier nicht aufgeführten Materialien wurden von den Firmen Bayer (Leverkusen), Biomol (Hamburg), Biorad (München), Biozym Diagnostics GmbH (Hess. Oldendorf), Fluka (Neu-Ulm), Gibco/BRL (Eggenstein), Merck (Darmstadt), Riedel-de Häen (Seelze), Roche Diagnostics (Mannheim), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen) im Reinheitsgrad „pro analysis“ bezogen.

2.2 Stämme, Plasmide und Oligonukleotide

2.2.1 Verwendete Stämme

Die im Rahmen dieser Arbeit verwendeten *Escherichia coli*, *Rhodobacter sphaeroides*- und *Vibrio harveyi*-Stämme sind in folgender Tabelle aufgelistet:

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Genotyp</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli BL21 (DE3)/pLysS</td>
<td>F− ompT hsdSB(rrB− mB−) gal dcm (DE3) pLysS (CamR)</td>
<td>Studier et al., 1990</td>
</tr>
<tr>
<td>E. coli JM109</td>
<td>F− traD36 proAB+lacI9 Δ(lacZ) M15/Δ(lac-proAB) glnV44 e14- gyrA96 recA1 relA1 endA1 thi hsdR17</td>
<td>Yanisch-Perron et al., 1985</td>
</tr>
<tr>
<td>E. coli MDA12</td>
<td>luxS::TetR-Derivat von E. coli W3110 (F− λ− IN(rrnD-rrnE) rph-1)</td>
<td>DeLisa et al., 2001</td>
</tr>
<tr>
<td>E. coli MG1655</td>
<td>F− K12 Referenzstamm</td>
<td>Blattner et al., 1997</td>
</tr>
<tr>
<td>E. coli OrigamiB (DE3)/pLysS</td>
<td>F− ompT hsdSB(rrB− mB−) gal dcm lacY1 ahpC (DE3) gor522::Tn10(TetR) trxB(KanR) pLysS (CamR)</td>
<td>Novagen</td>
</tr>
</tbody>
</table>
(Fortsetzung Tabelle 2.2: Verwendete Stämme)

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Genotyp</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli S17-1</td>
<td>thi pro hsdR⁻ hsdM⁺ recA RP4-2</td>
<td>Simon et al., 1983</td>
</tr>
<tr>
<td></td>
<td>(Tet::Mu Km::Tn7)</td>
<td></td>
</tr>
<tr>
<td>E. coli TKR2000</td>
<td>∆kdpFABCDE thi rha lacZ habA trkA405 trkD1 atp706</td>
<td>Kollmann und Alten-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dorf, 1993</td>
</tr>
<tr>
<td>R. sphaeroides DD13</td>
<td>pufBALMX::(KanR)* pucBA::(StrR)*</td>
<td>Jones et al., 1992b</td>
</tr>
<tr>
<td>V. harveyi BB120</td>
<td>Wildtyp</td>
<td>Bassler et al., 1997</td>
</tr>
<tr>
<td>V. harveyi MM77</td>
<td>luxLM::Tn5, luxS::CamR</td>
<td>Mok et al., 2003</td>
</tr>
</tbody>
</table>

2.2.2 Verwendete Plasmide und Cosmide

Die im Rahmen dieser Arbeit verwendeten Plasmide und Cosmide sind in folgender Tabelle aufgelistet:

Tabelle 2.3: Verwendete Plasmide und Cosmide

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Resistenz</th>
<th>Charakterisierung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT-LuxQ</td>
<td>Amp*R</td>
<td>luxQ in pT7-5</td>
<td>Timmen, 2005</td>
</tr>
<tr>
<td>pT-LuxNb</td>
<td>Amp*R</td>
<td>luxN in pT7-5</td>
<td>Timmen, 2005</td>
</tr>
<tr>
<td>pPV5-1</td>
<td>Amp*R</td>
<td>kdpCDE (MluI bis BspMI) in pKK223-3</td>
<td>Walderhaug et al., 1992</td>
</tr>
<tr>
<td>pPV5-10</td>
<td>Amp*R</td>
<td>KpnI-Schnittstelle in pPV5-1</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKQ</td>
<td>Amp*R</td>
<td>luxQ in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKQ-H492Q</td>
<td>Amp*R</td>
<td>luxQ-H492Q in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKQ-D785N</td>
<td>Amp*R</td>
<td>luxQ-D785N in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKN</td>
<td>Amp*R</td>
<td>luxN in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKQ-1-NQN</td>
<td>Amp*R</td>
<td>luxN-luxQ-Fusion in pPV5-10</td>
<td>Schön, 2007</td>
</tr>
<tr>
<td>pNKN-1-QNN</td>
<td>Amp*R</td>
<td>luxQ-luxN-Fusion in pPV5-10</td>
<td>Schön, 2007</td>
</tr>
<tr>
<td>pNKQ-1-QQN</td>
<td>Amp*R</td>
<td>luxQ-luxN-Fusion in pPV5-10</td>
<td>Schön, 2007</td>
</tr>
<tr>
<td>pNKN-1-QNQ</td>
<td>Amp*R</td>
<td>luxQ-luxN-Fusion in pPV5-10</td>
<td>Schön, 2007</td>
</tr>
<tr>
<td>pNKN-1-QQNQ</td>
<td>Amp*R</td>
<td>luxN-luxQ-Fusion in pPV5-10</td>
<td>Schön, 2007</td>
</tr>
<tr>
<td>pNKQ-299-859</td>
<td>Amp*R</td>
<td>verkürztes luxQ in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
(Fortsetzung Tabelle 2.3: Verwendete Plasmide und Cosmide)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Resistenz</th>
<th>Charakterisierung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNKQ(475-859)</td>
<td>Amp(^R)</td>
<td>verkürztes luxQ in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKQ(733-859)</td>
<td>Amp(^R)</td>
<td>verkürztes luxQ in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKN(454-849)</td>
<td>Amp(^R)</td>
<td>verkürztes luxN in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pNKN(719-849)</td>
<td>Amp(^R)</td>
<td>verkürztes luxN in pPV5-10</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET32a</td>
<td>Amp(^R)</td>
<td>Expressionsvektor</td>
<td>Novagen</td>
</tr>
<tr>
<td>pET32-LuxQ(475-859)</td>
<td>Amp(^R)</td>
<td>verkürztes luxQ in pET32</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET32-LuxQ(733-859)</td>
<td>Amp(^R)</td>
<td>verkürztes luxQ in pET32</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET32-LuxN(454-859)</td>
<td>Amp(^R)</td>
<td>verkürztes luxN in pET32</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET32-LuxN(719-859)</td>
<td>Amp(^R)</td>
<td>verkürztes luxN in pET32</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET32-LuxO</td>
<td>Amp(^R)</td>
<td>luxO in pET32a</td>
<td>Timmen, 2005</td>
</tr>
<tr>
<td>pET32-LuxO-K167A</td>
<td>Amp(^R)</td>
<td>luxO-K167A in pET32a</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET16b</td>
<td>Amp(^R)</td>
<td>Expressionsvektor</td>
<td>Novagen</td>
</tr>
<tr>
<td>pET-LuxO</td>
<td>Amp(^R)</td>
<td>luxO in pET16b</td>
<td>Timmen, 2005</td>
</tr>
<tr>
<td>pET-LuxO(1-110)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(111-190)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(191-264)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(265-453)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(1-190)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(1-264)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(111-264)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(111-453)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO(191-453)</td>
<td>Amp(^R)</td>
<td>verkürztes luxO in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO_C_Var1 bis</td>
<td>Amp(^R)</td>
<td>luxO_C-Varianten in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO_C_Var7</td>
<td>Amp(^R)</td>
<td>(Aminosäuresubstitutionen siehe Tabelle 3.3)</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-NtrC</td>
<td>Amp(^R)</td>
<td>ntrC in pET16b</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pET-LuxO/NtrC</td>
<td>Amp(^R)</td>
<td>luxO-ntrC-Fusion in pET16b</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
2.2.3 Verwendete Oligonukleotide

Tabelle 2.4: Verwendete Oligonukleotide

<table>
<thead>
<tr>
<th>Oligonukleotid</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LuxQ KpnI sense</td>
<td>5’-A ATG GGT ACC ACA ACA ACA ACG CGA TCA AAC ATT AAA-3’</td>
</tr>
<tr>
<td>LuxQ HindIII antisense</td>
<td>5’-ATT AAA GCT TCA ATG ATG ATG ATG ATG GGT TCT TTC TAC CAA GAA ACG TTG GGT ATT G-3’</td>
</tr>
<tr>
<td>LuxQ D785N sense</td>
<td>5’-ATG AAT AAC CAG CTG CCC CAC CTT GGT GGT ATT G-3’</td>
</tr>
<tr>
<td>LuxQ D785N antisense</td>
<td>5’-GGG CAG CTG GTT ATT CAT GAG GAT CAG ATC G-3’</td>
</tr>
<tr>
<td>LuxQ H492Q sense</td>
<td>5’-CTA AAA TGA GCC AAG AAA TTC G-3’</td>
</tr>
<tr>
<td>LuxQ H492Q antisense</td>
<td>5’-CGA ATT TCT TGG CTC ATT TTA G-3’</td>
</tr>
<tr>
<td>LuxQ SpeI antisense</td>
<td>5’-C ACT AGT AGC ACT TTT AAA CTT TCA TCA AAC AAG G-3’</td>
</tr>
<tr>
<td>LuxQ(299) KpnI sense</td>
<td>5’-GAT TGG TAC CGC CTT AAT GAG TAG GGA ATG G-3’</td>
</tr>
<tr>
<td>LuxQ(475) KpnI sense</td>
<td>5’-G ATT GGT ACC GAA GCA GAA AAA TCC GCG C-3’</td>
</tr>
<tr>
<td>LuxQ(733) KpnI sense</td>
<td>5’-G ATT GGT ACC GAA AGT TTA AAA GTG CTA CTG G-3’</td>
</tr>
<tr>
<td>LuxQ 2400 sense</td>
<td>5’-GGG ACA ACA TTT GTT ATA AC-3’</td>
</tr>
<tr>
<td>LuxN 10His HindIII antisense</td>
<td>5’-ACA GAA GCT TAG TGG TGG TGG TGG TGG TGG TGG TG-3’</td>
</tr>
<tr>
<td>LuxN(454) KpnI sense</td>
<td>5’-T TAA GGT ACC GAA GCC GAT CGC CGT ATC-3’</td>
</tr>
<tr>
<td>LuxN(719) KpnI sense</td>
<td>5’-C TAA GGT ACC CAA TCT CCA ACA GTG CTC-3’</td>
</tr>
<tr>
<td>LuxN KpnI sense</td>
<td>5’-AAT GGG TAC CTT TGA TTT TAG TCT AGA GCC TAT CG-3’</td>
</tr>
<tr>
<td>LuxO NdeI sense</td>
<td>5’-TAT CTA CAT ATG GTT GAA GAC ACC GCA TCC-3’</td>
</tr>
<tr>
<td>LuxO BamHI antisense</td>
<td>5’-ATA CGT GGA TCC TCA TAC GTT TTG TTT TTC GTC-3’</td>
</tr>
<tr>
<td>LuxO(111) NdeI sense</td>
<td>5’-TAT CTA CAT ATG GCG ATT CGT AAA GCT ACC-3’</td>
</tr>
<tr>
<td>LuxO(110) BamHI antisense</td>
<td>5’-ATA TGC GGA TCC TCA ATT GTT CAC CGT GAC ACG-3’</td>
</tr>
<tr>
<td>Oligonukleotid</td>
<td>Sequenz</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>LuxO(191) NdeI sense</td>
<td>5’-TAT CTA CAT ATG GCA GCA ATC CCG AAA GAC C-3’</td>
</tr>
<tr>
<td>LuxO(190) BamHI antisense</td>
<td>5’-ATA CGT GGA TCC TCA GCA GTT GAT AGC GAT AAA CGG-3’</td>
</tr>
<tr>
<td>LuxO(265) NdeI Sall sense</td>
<td>5’-TAT CTA CAT ATG GTC GAC GTG CGG TTT GTG TGT C-3’</td>
</tr>
<tr>
<td>LuxO(264) BamHI antisense</td>
<td>5’-ATA CGT GGA TCC TCA GCT TTT CAT TTT AGA AGA ACC G-3’</td>
</tr>
<tr>
<td>LuxO K167A antisense</td>
<td>5’-CAC TTC TGC ACC GGT ACC ACT TTC ACC-3’</td>
</tr>
<tr>
<td>LuxO K167A sense</td>
<td>5’-AGT GGT ACC GGT GCA AAG GTG TGT GC-3’</td>
</tr>
<tr>
<td>LuxO KpnI pRK sense</td>
<td>5’-TTT TGG TAC CAG TTG GGA GAC GAC ACA ATG GTT GAA GAC ACT GCA TCC-3’</td>
</tr>
<tr>
<td>LuxO HindIII pRK antisense</td>
<td>5’-AAT TCG GTA CCT TAG TTG TGG TGG TGG TGG TGG TGT ACG TTT TGT TTT TCG TCC-3’</td>
</tr>
<tr>
<td>LuxO BamHI sense</td>
<td>5’-GC ACT GGA TCC ATG GTA GAA GAC ACC GCA TC-3’</td>
</tr>
<tr>
<td>LuxO SalI antisense</td>
<td>5’-GCC GAC GTC GAC TCA TAC GTT TTG TTT TTC GTC CT-3’</td>
</tr>
<tr>
<td>LuxO PstI antisense</td>
<td>5’-TTT TCT GCA GTA CGT TTT GTT TTG TTC CGT CCT TGC-3’</td>
</tr>
<tr>
<td>LuxO PstI 12His antisense</td>
<td>5’-TTT TCT GCA GTA CGT TTT GTT TTG TTC CGT CCT TGC-3’</td>
</tr>
<tr>
<td>LuxO BamHI Start 6His sense</td>
<td>5’-TTT AGA GGA TCC ATG CAT CAT CAT CAT CAT CAT CAT CAT GTA GAA GAC ACC GCA TCC GTT GC-3’</td>
</tr>
<tr>
<td>LuxO PstI Stop Linker sense</td>
<td>5’-G TAA TAG TGA GGA TCG AGC TGC A-3’</td>
</tr>
<tr>
<td>LuxO PstI Stop Linker antisense</td>
<td>5’-AC GTC ATT ATC ACT CCT AGC TCG-3’</td>
</tr>
<tr>
<td>LuxU 6His Stop PstI antisense</td>
<td>5’-TAA TTA CTG CAG TTA ATG ATG ATG ATG ATG GTT TGG CCA AGC GTA GGC TCC AGG GTA GGC TGC ACG-3’</td>
</tr>
<tr>
<td>LuxU PstI antisense</td>
<td>5’-TTA TTA CTG CAG GTT TGT CCA AGA AGC GTA GGC TGC ACG-3’</td>
</tr>
<tr>
<td>NtrC NdeI sense</td>
<td>5’-GCT GAA CAT ATG CAA CGA GGT ATA GTC TG-3’</td>
</tr>
</tbody>
</table>
(Fortsetzung Tabelle 2.4: Verwendete Oligonukleotide)

<table>
<thead>
<tr>
<th>Oligonukleotid</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>NtrC BamHI antisense</td>
<td>5'-ATT TTG GAT CCT TAC TCC ATC CCC AGC TC-3'</td>
</tr>
<tr>
<td>LuxO/NtrC sense</td>
<td>5'-CGA TGC AAC AAG TTT TCC GTA TTA TCG-3'</td>
</tr>
<tr>
<td>LuxO/NtrC antisense</td>
<td>5'-CGA TAA TAC GGA AAA CTT GTT GCA TCG-3'</td>
</tr>
<tr>
<td>NtrC/LuxO sense</td>
<td>5'-CCA TGC AAG ACG TAT ACC GCA CCA TTG-3'</td>
</tr>
<tr>
<td>NtrC/LuxO antisense</td>
<td>5'-CAA TGG TGC GGT ATA CGT CTT GCA TGG-3'</td>
</tr>
<tr>
<td>KdpD120 antisense</td>
<td>5'-GTT TGG GAT GTC ATC ATC AAC GGG AAC CTG GCG CAT TAC-3'</td>
</tr>
<tr>
<td>pKK176 sense</td>
<td>5'-AAA TCA CTG CAT AAT TCG TGT CGC-3'</td>
</tr>
<tr>
<td>pPV5-1 KpnI antisense</td>
<td>5'-CGT AAG GGT TCG GTA CCC ATC AAG TTT AT-3'</td>
</tr>
<tr>
<td>pPV5-1 KpnI sense</td>
<td>5'-ATA AAC TTG ATG GGT ACC CAA CCC TTA CG-3'</td>
</tr>
</tbody>
</table>

2.3 Kultivierung

Die optische Dichte (OD\textsubscript{600}) der Zellsuspensionen wurde bei 600 nm in einem Biophotometer (Eppendorf) bestimmt.

2.3.1 Kultivierung von \textit{Escherichia coli}

Die Kultivierung von \textit{E. coli}-Zellen erfolgte, wenn nicht anders beschrieben, aerob bei 37°C in speziellen Vollmedien. \textit{E. coli} JM109, Origami B/pLysS und BL21 (DE3)/pLysS wurden je nach Anwendung in Luria-Bertani (LB)-Medium [1 % (w/v) Trypton; 1 % (w/v) NaCl; 0,5 % (w/v) Hefextrakt] oder KML-Medium [1 % (w/v) Trypton; 1 % (w/v) KCl; 0,5 % (w/v) Hefextrakt] kultiviert. Gegebenenfalls wurde die Produktion der Lux-Proteine bei einer OD\textsubscript{600} \sim 0,5-0,9 durch Zugabe von 0,1 mM IPTG induziert. \textit{E. coli} TKR2000 wurde ausschließlich in KML-Medium kultiviert. Festmedien der entsprechenden Kulturmedien wurden durch Zugabe von 1,5 % (w/v) Agar hergestellt. Antibiotika wurden in Konzentrationen von 100 µg/ml (Ampicillin, Kanamycin, Carbenicillin) oder 34 µg/ml (Chloramphenicol) zugegeben.
2.3.2 Kultivierung von *Rhodobacter sphaeroides*

2.3.3 Kultivierung von *Vibrio harveyi*

Die Kultivierung von *V. harveyi*-Zellen erfolgte, wenn nicht anders beschrieben, aerob bei 30°C in Luria-Marine (LM)-Vollmedium [1 % (w/v) Trypton; 2 % (w/v) NaCl; 0,5 % (w/v) Hefeeextrakt] oder AB-Minimalmedium nach Greenberg et al. (1979) [1,75 % (w/v) NaCl; 1,23 % (w/v) MgSO₄; 0,2 % (w/v) Caseinhdrolysat; pH 7,5 (KOH); nach Sterilisation wurden 1 % (v/v) Glycerol, 1 mM L-Arginin und 10 mM Kaliumphosphat-Puffer, pH 7,0 zugegeben]. Festmedien wurden durch Zugabe von 1,5 % (w/v) Agar zu LM-Medium hergestellt. Antibiotikum wurde in Konzentrationen von 10 µg/ml (Chloramphenicol) zugegeben.

2.3.4 Kompetente Zellen und Transformation

Für die Aufnahme eines Plasmids werden die Zellen mit CaCl₂ und RbCl behandelt (Promega, 1994). Frisches KML-Medium wurde mit Zellen einer Übernachtkultur 1:100 beimpft. Nach Erreichen der logarithmischen Wachstumsphase (OD₆₀₀ ≃ 0,3 - 0,5) wurden die Zellen bei 4°C für 5 min abzentrifugiert (4.000 rpm, Eppendorf Tischzentrifuge). Das Pellet wurde in 5 ml Lösung A (10 mM MOPS, pH7,0; 10 mM RbCl) auf Eis resuspendiert und abzentrifugiert. Danach wurde das Pellet in 5 ml Lösung B (10 mM MOPS, pH 6,5; 50 mM CaCl₂; 10 mM RbCl) resuspendiert und für 30 min auf Eis inkubiert. Anschließend wurden die Zellen erneut abzentrifugiert und das Pellet in 1 ml Lösung B resuspendiert und weiterverwendet. 200 µl kompetente Zellen wurden mit 1 µl Plasmid-DNA, bzw. mit dem gesamten Ligationsansatz vermischt, 1h auf Eis inkubiert und dann einem Hitzeschock (90s bei 42°C) ausgesetzt. Die Zellsuspension wurde mit 1 ml KML-Medium versetzt und zur Regeneration für 1h bei 37°C geschüttelt. 200 µl dieser Suspension (bei Ligationstransformation der gesamte Ansatz) wurden auf KML-Platten mit dem entsprechenden Antibiotikum ausplattiert.
und über Nacht bei 37°C inkubiert.

2.4 Molekularbiologische Methoden

2.4.1 Plasmidisolierung

2.4.2 Isolierung von chromosomaler DNA

Chromosomale DNA wurde aus 1 ml Übernachtkultur von Vibrio harveyi BB120 bzw. Escherichia coli MG1655 mittels des „DNeasy Tissue“-Kit nach Angaben des Herstellers isoliert.

2.4.3 Modifikation von DNA

2.4.4 Elektrophoretische Auftrennung von DNA

Die analytische und präparative Auftrennung von DNA-Fragmenten erfolgte mittels Agarose-Gelelektrophorese. Dafür wurden Gele mit 0,7-1% (w/v) Agarose in TAE-Puffer [40 mM Tris; 40 mM Essigsäure; 1 mM EDTA] verwendet, die mit 0,2 µg/ml Ethidiumbromid versetzt waren. Vor dem Lauf wurden zu den Proben 10 x DNA-Probenpuffer [50% (v/v) Glycerol; 0,1 M EDTA; 1% (w/v) SDS; 0,1% (w/v) Bromphenolblau] gegeben. Zur Bestimmung der DNA-Fragmentgrößen diente 2Log-Leiter-Standard oder 1 kb-Leiter-Standard. Der Gellauf wurde in einer „Mini Sub DNA Cell“-Agarosegel-Laufkammer (Biorad, München) bei konstant 100 V für 30-60 min durchgeführt. Die Detektion der aufgetrennten DNA erfolgte auf einem UV-Transilluminator bei 304 nm und die Dokumentation der Gele mit der Gel-Dokumentationsanlage (Peqlab, Erlangen).
2.4.5 Extraktion von DNA aus Agarosegelen

DNA-Fragmente wurden mittels des „QIAquick-Gel-Extraction“-Kit nach Angaben des Herstellers aus Agarosegelen extrahiert.

2.4.6 „In Gel“-Ligation und Transformation

Die analytische und präparative Auftrennung von großen DNA-Fragmenten (> 5 kb) erfolgte mittels „low melting“ Plaque GP-Agarose (Biozym, Oldendorf). Es wurden Gele mit 1% (w/v) Plaque GP-Agarose in TAE-Puffer [40 mM Tris; 40 mM Essigsäure; 1 mM EDTA] verwendet, die mit 0,2 µg/ml Ethidiumbromid versetzt waren. Die Gelelektrophorese erfolgte wie in Kapitel 2.4.4 beschrieben. Die durch einen UV-Transilluminator detektierte DNA wurde ausgeschnitten und in ein Eppendorf-Gefäß überführt und bei 70°C geschmolzen. Die DNA wurde entweder direkt weiter verwendet oder bei -20°C gelagert.

Der Ligationsansatz bestehend aus geschnittenem Vektor und Fragment sowie Ligations-Puffer wurde erneut bei 70°C geschmolzen. Nach kurzer Abkühlung (30 sec bei Raumtemperatur) wurde Ligase (NEB, Frankfurt) zugegeben und der Ansatz sofort auf Eis gestellt. Die Ligation erfolgte für 4 h bei Raumtemperatur oder ÜN bei 16°C. Für die Transformation wurde der Ligationsansatz erneut bei 70°C geschmolzen und das vierfache Volumen Puffer [0,1 M Tris/HCl, pH 7,5; autoklaviert] zugegeben. Die Transformation erfolgte wie in Kapitel 2.3.4 beschrieben.

2.4.7 Konstruktion der Plasmide

In den folgenden Tabellen sind die Angaben zur Konstruktion aller im Rahmen dieser Arbeit konstruierten Plasmide aufgelistet.

Tabelle 2.6 auf Seite 27 beinhaltet die Informationen der Konstruktion von Plasmiden, die mittels einstufiger-PCR hergestellt wurden; neben der Ursprungs-DNA, den Oligonukleotiden und Zielvektor sind ebenfalls die Restriktionsenzyme und die Größe des umgesetzten Fragments aufgelistet. Tabelle 2.8 auf Seite 29 beinhaltet die Informationen der Konstruktion von Plasmiden, die mittels zweistufiger-PCR hergestellt wurden. Die Fragmente der ersten PCR-Stufe wurden mit den angegebenen Oligonukleotiden anhand der Ursprungs-DNA amplifiziert. Die Fragmente der zweiten PCR-Stufe wurden jeweils mit dem sense Oligonukleotid von Fragment 1 und dem antisense Oligonukleotid von Fragment 2 amplifiziert, als
Ursprungs-DNA dienten Fragmente 1 und 2 der ersten Stufe (Ho et al., 1989). Das Fragment der zweiten Stufe wurde mit den angegebenen Schnittstellen in den Zielvektor umgesetzt.

2.4.8 DNA-Sequenzanalyse

Alle Fragmente, die durch PCR amplifiziert wurden, wurden zur Kontrolle sequenziert. Die Sequenzierrreaktion erfolgte nach dem Protokoll des Sequenzierungsservices der LMU München, Department Biologie I.
Tabelle 2.5: Konstruktion der Plasmide mittels einstufiger PCR

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Ursprungs-DNA</th>
<th>sense Primer</th>
<th>antisense Primer</th>
<th>Schnittstellen</th>
<th>bp</th>
<th>Zielvektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNKQ</td>
<td>pT-LuxQ</td>
<td>LuxQ KpnI</td>
<td>LuxQ HindIII</td>
<td>KpnI/HindIII</td>
<td>2596</td>
<td>pPV5-10</td>
</tr>
<tr>
<td>pNKQ(299-859)</td>
<td>pNKQ</td>
<td>LuxQ(299) KpnI</td>
<td>LuxQ HindIII</td>
<td>KpnI/HindIII</td>
<td>1714</td>
<td>pNKQ</td>
</tr>
<tr>
<td>pNKQ(475-859)</td>
<td>pNKQ</td>
<td>LuxQ(475) KpnI</td>
<td>LuxQ HindIII</td>
<td>KpnI/HindIII</td>
<td>1186</td>
<td>pNKQ</td>
</tr>
<tr>
<td>pNKQ(733-859)</td>
<td>pNKQ</td>
<td>LuxQ(733) KpnI</td>
<td>LuxQ HindIII</td>
<td>KpnI/HindIII</td>
<td>412</td>
<td>pNKQ</td>
</tr>
<tr>
<td>pNKN</td>
<td>pT-LuxNb</td>
<td>LuxN KpnI</td>
<td>LuxN 10His HindII</td>
<td>KpnI/HindIII</td>
<td>2571</td>
<td>pPV5-10</td>
</tr>
<tr>
<td>pNKN(454-849)</td>
<td>pNKN</td>
<td>LuxN(454) KpnI</td>
<td>LuxN 10His HindII</td>
<td>KpnI/HindIII</td>
<td>1212</td>
<td>pNKN</td>
</tr>
<tr>
<td>pNKN(719-849)</td>
<td>pNKN</td>
<td>LuxN(719) KpnI</td>
<td>LuxN 10His HindII</td>
<td>KpnI/HindIII</td>
<td>417</td>
<td>pNKN</td>
</tr>
<tr>
<td>pET-NtrC</td>
<td>E. coli genom. DNA</td>
<td>NtrC NdeI</td>
<td>NtrC BamHI</td>
<td>NdeI/BamHI</td>
<td>1412</td>
<td>pET16 LuxO</td>
</tr>
<tr>
<td>pET-LuxO(1-110)</td>
<td>pET16 LuxO</td>
<td>LuxO NdeI</td>
<td>LuxO(110) BamHI</td>
<td>NdeI/BamHI</td>
<td>335</td>
<td>pET16 NtrC</td>
</tr>
<tr>
<td>pET-LuxO(1-190)</td>
<td>pET16 LuxO</td>
<td>LuxO NdeI</td>
<td>LuxO(190) BamHI</td>
<td>NdeI/BamHI</td>
<td>575</td>
<td>pET16 NtrC</td>
</tr>
<tr>
<td>pET-LuxO(1-264)</td>
<td>pET16 LuxO</td>
<td>LuxO NdeI</td>
<td>LuxO(264) BamHI</td>
<td>NdeI/BamHI</td>
<td>797</td>
<td>pET16 NtrC</td>
</tr>
<tr>
<td>pET-LuxO(111-190)</td>
<td>pET-LuxO</td>
<td>LuxO(111) NdeI</td>
<td>LuxO(190) BamHI</td>
<td>NdeI/BamHI</td>
<td>242</td>
<td>pET-NtrC</td>
</tr>
<tr>
<td>pET-LuxO(111-264)</td>
<td>pET-LuxO</td>
<td>LuxO(111) NdeI</td>
<td>LuxO(264) BamHI</td>
<td>NdeI/BamHI</td>
<td>470</td>
<td>pET-NtrC</td>
</tr>
<tr>
<td>pET-LuxO(111-453)</td>
<td>pET-LuxO</td>
<td>LuxO(111) NdeI</td>
<td>LuxO BamHI</td>
<td>NdeI/BamHI</td>
<td>1037</td>
<td>pET-NtrC</td>
</tr>
<tr>
<td>pET-LuxO(191-264)</td>
<td>pET-LuxO</td>
<td>LuxO(191) NdeI</td>
<td>LuxO(264) BamHI</td>
<td>NdeI/BamHI</td>
<td>227</td>
<td>pET-NtrC</td>
</tr>
<tr>
<td>pET-LuxO(191-453)</td>
<td>pET-LuxO</td>
<td>LuxO(191) NdeI</td>
<td>LuxO BamHI</td>
<td>NdeI/BamHI</td>
<td>797</td>
<td>pET-NtrC</td>
</tr>
<tr>
<td>pET-LuxO(265-453)</td>
<td>pET16 LuxO</td>
<td>LuxO(265) NdeI</td>
<td>LuxO BamHI</td>
<td>NdeI/BamHI</td>
<td>575</td>
<td>pET-NtrC</td>
</tr>
<tr>
<td>pT-LuxO-1</td>
<td>pET-LuxO</td>
<td>LuxO BamHI</td>
<td>LuxO PstI</td>
<td>BamHI/PstI</td>
<td>1361</td>
<td>pT7-5</td>
</tr>
<tr>
<td>pT-LuxO-2</td>
<td>pT-LuxO</td>
<td>LuxO BamHI</td>
<td>LuxO PstI 12His</td>
<td>BamHI/PstI</td>
<td>1379</td>
<td>pT-LuxO</td>
</tr>
<tr>
<td>pT-LuxO-3</td>
<td>pT-LuxO</td>
<td>LuxO BamHI Start 6His</td>
<td>LuxO PstI</td>
<td>BamHI/PstI</td>
<td>1387</td>
<td>pT-LuxO-1</td>
</tr>
</tbody>
</table>
(Fortsetzung: Konstruktion der Plasmide mittels einstufiger PCR)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Ursprungs-DNA</th>
<th>sense Primer</th>
<th>antisense Primer</th>
<th>Schnittstellen</th>
<th>bp</th>
<th>Zielvektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT-LuxOU</td>
<td>Cosmid OU</td>
<td>LuxO BamHI Start 6His</td>
<td>LuxU PstI</td>
<td>BamHI/PstI</td>
<td>1728</td>
<td>pT-LuxO-1</td>
</tr>
<tr>
<td>pQE-LuxO</td>
<td>pET-LuxO</td>
<td>LuxO BamHI</td>
<td>LuxO PstI</td>
<td>BamHI/PstI</td>
<td>1361</td>
<td>pQE30</td>
</tr>
<tr>
<td>pQE-LuxOU</td>
<td>Cosmid OU</td>
<td>LuxO BamHI Start 6His</td>
<td>LuxU PstI</td>
<td>BamHI/PstI</td>
<td>1728</td>
<td>pQE30</td>
</tr>
<tr>
<td>pRKO</td>
<td>pET16 LuxO</td>
<td>LuxO KpnI pRK</td>
<td>LuxO HindIII pRK</td>
<td>KpnI/HindIII</td>
<td>1406</td>
<td>pRK-CBC</td>
</tr>
</tbody>
</table>
Tabelle 2.7: Konstruktion der Plasmide mittels zweistufiger PCR

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Ursprungs-DNA</th>
<th>Fragment der ersten PCR-Stufe</th>
<th>Gesamtfragment</th>
<th>Zielvektor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bez.</td>
<td>sense</td>
<td>antisense</td>
<td>bp</td>
</tr>
<tr>
<td>pPV5-10</td>
<td>pPV5-1</td>
<td>F1</td>
<td>pKK176</td>
<td>pPV5-1 KpnI</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>pPV5-1 KpnI</td>
<td>KdpD120</td>
<td>360</td>
</tr>
<tr>
<td>pNKQ-H492Q</td>
<td>pNKQ</td>
<td>F1</td>
<td>LuxQ KpnI</td>
<td>LuxQ-H492Q</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>LuxQ-H492Q</td>
<td>LuxQ SpeI</td>
<td>736</td>
</tr>
<tr>
<td>pNKQ-D785N</td>
<td>pNKQ</td>
<td>F1</td>
<td>LuxQ 2400</td>
<td>LuxQ-D785N</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>LuxQ-D785N</td>
<td>LuxQ HindIII</td>
<td>250</td>
</tr>
<tr>
<td>pET32-LuxO-K167A</td>
<td>pET-LuxO</td>
<td>F1</td>
<td>LuxO BamHI</td>
<td>LuxO K167A</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>LuxO K167A</td>
<td>LuxO SalI</td>
<td>880</td>
</tr>
<tr>
<td>pET-LuxO/NtrC</td>
<td>pET-LuxO</td>
<td>F1</td>
<td>LuxO NdeI</td>
<td>NtrC/LuxO</td>
</tr>
<tr>
<td></td>
<td>pET-NtrC</td>
<td>F2</td>
<td>LuxO/NtrC</td>
<td>NtrC BamHI</td>
</tr>
<tr>
<td>pET-NtrC/LuxO</td>
<td>pET-NtrC</td>
<td>F1</td>
<td>NtrC NdeI</td>
<td>LuxO/NtrC</td>
</tr>
<tr>
<td></td>
<td>pET-LuxO</td>
<td>F2</td>
<td>NtrC/LuxO</td>
<td>LuxO BamHI</td>
</tr>
</tbody>
</table>
2.5 Biochemische und Analytische Methoden

2.5.1 Proteinbestimmung

Proteinbestimmungen wurden in Abwandlung des Protokolls von Lowry et al. (Lowry et al., 1951; Peterson, 1977) durchgeführt. Als Standardprotein für die Herstellung von Eichgeraden wurde BSA verwendet.

2.5.2 SDS-Polyacrylamidgelelektrophorese

Die elektrophoretische Auftrennung von Proteinen erfolgte mittels SDS-PAGE (Laemmli, 1970). Dazu wurden 0,75 mm dicke Flachgel der Größe 7 x 10 cm verwendet. Die Acrylamidkonzentration im Sammelgel betrug 4,9%. Im Trenngel variierte die Konzentration je nach gewünschter Auftrennung der Proteine zwischen 10 und 15%. Die SDS-Gele wurden mit Hilfe von Protogel-Fertiglösung [30% (v/v) Acrylamid; 0,8% (w/v) Bisacrylamid] hergestellt. Die Proteinproben wurden vor dem Lauf mit SDS-Probenpuffer versetzt, so dass eine Endkonzentration von 62,5 mM Tris/HCl (pH 6,9), 10% (v/v) Glycerol, 2% (w/v) SDS, 5% (v/v) 2-Mercaptoethanol und 0,005% (w/v) Bromphenolblau erzielt wurde. Der Gellauf wurde in einer Gellaufanlage (Modell 45-1010-I, Peqlab) bei 200 V durchgeführt. Die aufgetrennten Proteine wurden anschließend mit Serva Blau G-250 (Coomassie-Blau) gefärbt (Weber und Osborn, 1969), wobei die Färbelösung zur Fixierung der Proteine zusätzlich 10% (w/v) TCA enthielt. Die Entfärbung der Gele erfolgte in Entfärberlösung mit 5% (v/v) Methanol und 7,5% (v/v) Essigsäure. Zur Konservierung wurden die Gele anschließend bei 80°C in einem Geltrockner GD-4534 (Scie-Plas, UK) getrocknet.

2.5.3 Immunologischer Nachweis von Proteinen (Western-Blot)

Nach der Auftrennung der Proteine durch SDS-PAGE wurden das SDS-Gel, eine Nitrozellulosemembran (0,2 µm Porengröße, Schleicher & Schuell, Dassel) sowie Filterpapier in Blotpuffer [25 mM Tris; 192 mM Glycin; 20% (v/v) Methanol, p.a.] equilibriert. Mit Hilfe einer Nass-Blot Anlage (Scie-Plas, UK) wurden die aufgetrennten Proteine bei 300 mA innerhalb von 1h auf die Nitrozellulosemembran übertragen. Nach dem Transfer wurde die Membran für 1h mit 3% (w/v) BSA in TBS-Puffer [10 mM Tris/HCl pH 7,5; 150 mM NaCl] gesättigt. Anschließend erfolgte der immunologische Nachweis mit Hilfe von Antikörpern. Der primäre Antikörper wurde zugegeben und 1h bei RT wippend inkubiert, überschüssige Antikörper wurden durch mehrfaches Waschen mit TBS + Tween/Triton [20 mM Tris/HCl pH 7,5; 500 mM NaCl; 0,05% (v/v) Tween 20; 0,2% (v/v) Triton X-100] entfernt. Abschließend wurde der sekundäre Antikörper zugegeben. Nach 1h Inkubation bei RT und erneutem Waschen mit TBS + Tween/Triton wurde die Membran mit
Puffer A [0,9% (w/v) NaCl; 50 mM Tris/HCl, pH 7,5] equilibriert. Als Substrat wurde BCIP (5 mg/ml) gelöst in 50 mM Na₂CO₃-Puffer (pH 9,5) und 0,1% (v/v) NBT zugegeben und bei 37°C inkubiert. Nach dem Abstoppen der Reaktion durch Waschen mit destilliertem Wasser wurde die Membran zwischen Filterpapier getrocknet. Die verwendeten Antikörper und deren Verdünnungen zum Nachweis von Proteinen mit His-Tag bzw. zum Nachweis von LuxO sind in folgender Tabelle wiedergegeben:

Tabelle 2.9: Verwendete Antikörper zum immunologischen Nachweis von Proteinen.

<table>
<thead>
<tr>
<th>primärer Antikörper</th>
<th>sekundärer Antikörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antikörper</td>
<td>Verdünnung</td>
</tr>
<tr>
<td>Antikörper</td>
<td>Verdünnung</td>
</tr>
<tr>
<td>alk. Phosphatase konj.</td>
<td></td>
</tr>
<tr>
<td>His-Tag</td>
<td>Penta-His-AK 1 : 2.500</td>
</tr>
<tr>
<td>LuxO</td>
<td>LuxO-AK 1 : 1.000</td>
</tr>
</tbody>
</table>

2.5.4 Quantitativer Western-Blot

Quantitative Western-Blots wurden mit einer Auflösung von 300 dpi in 256 Grautönen gescannt und als TIFF-Datei in ImageQuant 5.0 (GE Healthcare) importiert. Die Menge der Lux-Proteine mit His-Tag wurde durch den Vergleich mit gereinigtem KdpD-6His quantifiziert.

2.5.5 Präparation von zellfreiem Kulturüberstand

Für die Gewinnung von zellfreiem Kulturüberstand (KÜ) wurden V. harveyi-Zellen in AB-Medium aerob bei 30°C kultiviert. Das Zellwachstum wurde durch Messen der Optischen Dichte bei 600 nm kontrolliert. Dabei wurde auch die Emission von Biolumineszenz mittels eines β-Counters verfolgt. Erreichte die Kultur eine OD₆₀₀ von ungefähr 1 und konnte eine deutliche Biolumineszenz festgestellt werden, wurden die Zellen pelletiert (5.000 rpm, 10 min, 4°C). Der Überstand der Kultur wurde von den restlichen Zellen durch Sterilfiltration (50 ml Sterilfilter (Millipore), Porengröße 0,22 µm) befreit und bei -80°C gelagert (Bassler et al., 1993).
2.5.6 Lokalisationsstudien von Proteinen

Die Kultivierung von *E. coli*-Zellen für Lokalisationsstudien von Proteinen erfolgte in einem Maßstab von 50 ml. Die Zellen wurden wie in Kapitel 2.3.1 beschrieben kultiviert und gegebenenfalls die Produktion der Lux-Proteine induziert. Zur Fraktionierung wurden die Zellen pellettiert, in Aufschlusspuffer [50 mM Tris/HCl, pH 8,0; 10% (v/v) Glycerol; 0,5 mM PMFS] resuspendiert (0,1 ml/ml Kultur OD=1) und mittels Ultraschall aufgeschlossen. Nach niedertouriger Zentrifugation (5.000 rpm, 15 min, 4°C) wurde der Überstand einer hochtourigen Zentrifugation unterzogen (45.000 rpm, 30 min, 4°C). Die Pellets der niedertourigen und hochtourigen Zentrifugation wurden im gleichen Volumen wie der Überstand aufgenommen und entsprechend gleiche Volumina der einzelnen Fraktionen (Zellsuspension, Pellet der niedertourigen Zentrifugation, Cytoplasmafraktion und Membranfraktion) durch SDS-PAGE (Laemmli, 1970) aufgetrennt. Die Detektion erfolgte wie in Kapitel 2.5.3 beschrieben.

2.5.7 Präparation von Zellfraktionen zur Gewinnung der Lux-Proteine

Geeignete Expressionsstämmme wurden mit Plasmiden transformiert, die für das gewünschte lux-Gen codierten. pT- und pET16-Derivate wurden in dem *E. coli*-Stamm BL21(DE3)/pLysS, pKK-Derivate in dem *E. coli*-Stamm TKR2000 und pET32-Derivate in dem *E. coli*-Stamm OrigamiB/pLysS exprimiert. Die Zellen wurden in LB- bzw. KML-Medium bei 37°C aerob bis zu einer OD$_{600}$ 0,5 - 0,8 kultiviert. Zellaufschluss und Fraktionierung erfolgten nach den Angaben von Timmen et al. (2006). Die Expression erfolgte durch Induktion der Zellen mit 0,1 - 0,5 mM IPTG für 2-3 bzw. 24 Stunden. Die Zellen wurden anschließend mit Hilfe einer Sorval RC5C-Zentrifuge für 20 min bei 7.000 x g pellettiert und in Waschpuffer [50 mM Tris, pH 8,0; 10% (v/v) Glycerol] resuspendiert und erneut pellettiert. Das Zellpellet wurde in Aufschlusspuffer [50 mM Tris, pH 8,0; 10% (v/v) Glycerol; 0,5 mM PMSF; 10 mM MgCl$_2$; 1 mM DTT; 30 ng/ml DNase] resuspendiert (0,2 g Feuchtgewicht/ml) und nach Homogenisierung mit Hilfe eines Hochdruck-Zellaufschlussgeräts (Constant Systems, UK) aufgeschlossen. Kleine Mengen Zellsuspensionen (bis 10 ml) wurden mittels Ultraschallbehandlung (3 x 30 sec in Eiswasser mit jeweils 1 min Pause, Branson-Sonifier) aufgeschlossen. In diesem Fall wurde das Zellpellet zu einer optischen Dichte von 10 resuspendiert. Nicht aufgeschlossene Zellen und Einschlusskörper wurden durch niedertourige Zentrifugation für 10 min bei 11.200 x g entfernt. Die
Cytoplasmamembranen wurden als invertierte Memranvesikel bei 130.000 \times g in einer Ultrazentrifuge (Beckmann Coulter Optima L-90K Ultrazentrifuge; Sorvall Ti-1250 Rotor) in 45 min bei 4°C pelletiert und so von den löslichen Proteinen getrennt. Das Memranpellet wurde anschließend in niederionischem Waschpuffer [1 mM Tris/HCl, pH 8,0; 3 mM EDTA] gewaschen und die Memranvesikel in TG-Puffer [50 mM Tris, pH 8,0; 10 % (v/v) Glycerol] aufgenommen. Die Lagerung der Proteine erfolgte bei -20°C.

2.5.8 Ni\(^{2+}\)-NTA-Affinitätschromatographie

Für die Anreicherung cytosolischer Proteine wurde die nach Angaben des Herstellers vorbereitete Ni\(^{2+}\)-NTA (Thiazetonitril)-Agarose dreimal mit dem zehnfachen Volumen Reinigungspuffer [50 mM Tris/HCl, pH 7,5; 10 % (v/v) Glycerol; 200 mM NaCl; 10 mM Imidazol und 2 mM 2-Mercaptoethanol] equilibriert. Die für die Reinigung einzusetzende Menge Agarose ergab sich aus der Proteinkonzentration und der Bindekapazität der Ni\(^{2+}\)-NTA-Agarose (5-10 mg/ml abgesetzte Agarose, nach Angaben des Herstellers). Für überproduzierte cytosolische Proteine wurde angenommen, dass sie \sim 10\% der löslichen Proteine ausmachen. Zur Bindung der His-getaggteten Proteine wurde Proteinrohextrakt zu equilibrierter Agarose gegeben und 30 min bei 4°C geschwenkt. Nach Absetzen des Säulenmaterials wurde der Überstand entfernt und die Agarose dreimal mit dem zehnfachen Ausgangsvolumen Reinigungspuffer gewaschen. Die Elution der gebundenen Proteine erfolgte zweimal mit Elutionspuffer [Reinigungspuffer mit zusätzlich 250 mM Imidazol] in 1/20 des Ausgangsvolumens. Das Eluat wurde für 4h gegen kalten TG-Puffer (pH 8,0) dialysiert, um das Imidazol zu entfernen.

2.5.9 Proteolyse mit Thrombin

Die Proteolyse mit Thrombin (Novagen) erfolgte mit dem „Biotinylated Thrombin Capture“-Kit. Trx-LuxO wurde mit 1 U Thrombin/mg Protein bei 20°C für 3 h inkubiert. Danach wurde das biotinylierte Thrombin nach Angaben des Herstellers mittels Streptavidin-Agarose entfernt.
2.5.10 Heterologe Überproduktion und Reinigung von LuxU

LuxU wurde wie von Timmen (2005) beschrieben in dem *E. coli*-Stamm JM109, transformiert mit dem Plasmid pQE-LuxU, heterolog produziert. Bei einer OD$_{600}$ ∼ 0,5 wurde die Expression mit 0,1 mM IPTG induziert und die Zellen nach 3h pelletiert, aufgeschlossen und fraktioniert. LuxU wurde aus der cytosolischen Fraktion gereinigt (Kapitel 2.5.8). Die Konzentration des gereinigten Proteins wurde nach Petersen (Kapitel 2.5.1) bestimmt und die Reinheit durch SDS-Polyacrylamidgelelektrophorese überprüft. Die Reinigungsfraktionen wurden aliquotiert und bei -20°C gelagert.

2.5.11 Heterologe Überproduktion und Reinigung von LuxP

Die heterologe Überproduktion erfolgte in dem *E. coli*-Stamm BL21(DE3)/pLysS bzw. MDAI2, jeweils transformiert mit dem Plasmid pGEX-LuxP. Die Zellen wurden aerob in LB-Medium, ergänzt mit zusätzlich 1 mM Borsäure, bis zu einer OD$_{600}$ ∼ 0,3 bei 37°C, ab dann bei RT kultiviert. Bei einer OD$_{600}$ ∼ 0,9 wurde die Expression mit 0,1 mM IPTG induziert und die Zellen nach 6h pelletiert, aufgeschlossen und fraktioniert (Kapitel 2.5.7).

2.5.12 *In vitro*-Phosphorylierung der Lux-Proteine

Alle Phosphorylierungsreaktionen enthielten die zu charakterisierenden Proteine und wurden in Phosphorylierungspuffer [50 mM Tris/HCl, pH 8,0; 10% (v/v) Glycerol; 0,5 M KCl und 2 mM DTT] bei einer Temperatur von 25°C durchgeführt. Die Reaktion wurde (wenn nicht anders angegeben) durch Zugabe von 100 µM [γ-32P]ATP (spezifische Radioaktivität-

Bestimmung der Phosphataseaktivität Die *in vitro*-Dephosphorylierung von LuxU durch die Hybridsensorkinasen LuxN bzw. LuxQ erfolgte nach den Angaben von Timmen et al. (2006). LuxU (0,2 mg/ml im Reaktionsansatz) wurde *in vitro* durch LuxN-haltige Membranvesikel (15 mg/ml) phosphoryliert. Nach 10 min Inkubation wurden die Membranproteine durch Ultrazentrifugation (45.000 rpm, 15 min, 4°C) entfernt. Anschließend wurde der LuxU∼P-haltige Überstand durch Gelfiltration über „Sephadex G25-NAP5“-Säulen (GE Healthcare), equilibriert mit Phosphorylierungspuffer, von freien Nukleotiden gereinigt. Der Elutionsfraktion von LuxU∼P (∼0,1 mg/ml) wurde 110 µM MgCl₂ zugegeben. Sofern nicht anders angegeben wurde der Reaktionsansatz mit 2,5 mg/ml LuxN- bzw. 3,75 mg/ml LuxQ-haltigen Membranvesikeln inkubiert, so dass das molare Verhältnis von Sensorkinase zu LuxU wie bei der Bestimmung der Kinaseaktivität ungefähr 1 : 30 betrug.

In vitro-Phosphorylierung mit \([\alpha-^{32}P]ATP\) und anschließender Dünnschicht-chromatographie Für den Nachweis des durch die ATP-Hydrolyse bei der Autophosphorylierung der Hybridsensorkinasen entstandenen ADPs wurden LuxN- oder LuxQ-haltige Membranvesikel bzw. Kontrollvesikel (12 mg/ml in einem Gesamtvolumen von 50 µl) mit 100 µM \([\alpha-^{32}P]ATP\) (spezifische Radioaktivität = 0,2 Ci/mmol) und 110 µM MgCl₂ inkubiert. Die Reaktion wurde durch Zugabe von 50% (v/v) EtOH gestoppt. Membranproteine wurden durch Ultrazentrifugation (45.000 rpm, 15 min, 4°C) entfernt. Jeweils 5 µl des Reaktionsansatzes wurden auf eine PEI-Cellulose F TLC-Platte aufgetragen. Das Laufmittel bestand aus 2 M Ameisensäure und 0,5 M LiCl (Seifert et al., 2001). \([\alpha-^{32}P]ATP\) und \([\alpha-^{32}P]ADP\) wurden nach Exponierung auf einem „Storage Phospho Screen“ (Molecular Dynamics) mittels „PhosphoImager Storm 820“ (Molecular Dynamics) detektiert.

In vitro-Phosphorylierung von LuxO-haltigem Cytosol Für die *in vitro*-Phosphorylierung von LuxO-haltigem Cytosol wurde wie in Kapitel 2.5.12 beschrieben phosphoryliertes LuxU hergestellt. Membranproteine wurden durch Ultrazentrifugation (45.000 rpm, 15 min, 4°C) entfernt und der LuxU~P-haltige Überstand durch Gelfiltration über „Sephadex G25-NAP5“-Säulen (GE Healthcare), equilibriert mit Phosphorylierungspuffer, von freien Nukleotiden gereinigt. Der Elutionsfraktion von LuxU~P (~0,1 mg/ml) wurde 110 µM MgCl₂ zugegeben.

LuxO-haltiges Cytosol (enthielt 200 mM KCl) wurde mit LuxU~P gemischt, so dass der Phosphorylierungsansatz (Gesamtvolumen 90 µl) 60 µl Cytosol und 30 µl Elutionsfraktion enthielt. LuxO-haltiges Cytosol wurde für 30 min mit phosphoryliertem LuxU inkubiert.

In vitro-Phosphorylierung mit \([^{32}P]Acetylphosphat\) Für die Phosphorylierung von LuxO mit Acetylphosphat wurde \([^{32}P]Acetylphosphat\) nach einem modifizierten Protokoll
nach Stadtman (1957) hergestellt. Hierzu wurden 190 µl Pyridin, 300 µl 0,33 M K₂HPO₄ und 100 µl [³²P]Orthophosphat (1 mCi) auf Eis unter Rühren inkubierte. 22 µl 98%iges Essigsäureanhydrid wurden langsam zugegeben und insgesamt 6 min auf Eis inkubierte. Mit 4 N LiOH wurde der pH-Wert neutralisiert und das gebildete [³²P]Acetylphosphat mit 4,5 ml eiskaltem 100%igen Ethanol zur Präzipitation auf Eis inkubierte. Das Präzipitat wurde pelletiert, zweimal mit je 5 ml Ethanol gewaschen und über KOH-Pellets über Nacht getrocknet. Nach Aufnahme des getrockneten [³²P]Acetylphosphat in TEGD-Puffer [50 mM Tris/HCl, pH7,5; 5% (v/v) Glycerol; 0,1 mM EDTA und 1 mM DTT] wurde die Konzentration nach Lipman und Tuttle (1945) bestimmt. Die Ausbeute lag bei ca. 80-95%, die spezifische Radioaktivität des [³²P]Acetylphosphat betrug 10-13 mCi/mmol. Für die in vitro-Phosphorylierung wurden 40-80 mM [³²-P]Acetylphosphat eingesetzt und die Inkubation der Proteine erfolgte bei 25°C im Thermoblock für bis zu 30 min.

2.5.13 AI-2 Bioassay

2.5.14 ATPase-Aktivitätsmessung

Die Bestimmung der ATPase-Aktivität von LuxO bzw. LuxO-K167A wurden nach dem Protokoll von Henkel et al. (1988) durchgeführt. Verschiedene Proteinkonzentrationen (0,5 - 2 µg in einem Endvolumen von 10 µl) wurden zusammen mit 10 µl 4fach ATPase-Puffer [200 mM Tris/HCl, pH 7,5, 40% (v/v) Glycerol, 10 mM MgCl₂] und 5 µl bidest in Mikrotiterplatten gemischt und für 5 min bei 37°C inkubierte. Durch Zugabe von 25 µl 2 mM ATP-Lösung wurde die Reaktion gestartet und nach 5 min Inkubation bei 37°C mit 200 µl Stoppreagens [1 Teil Ammoniummolybdatlösung (5,72% (w/v) Ammoniumheptamolybdat in 6 N HCL), 1 Teil Polyvinylalkohollösung (2,32% (v/v) Polyvinylalkohol in H₂O bidest), 2 Teile Malachitgrünlös-
sung [0,0812% (w/v) Malachitgrün in H$_2$O$_{bidest}$, 2 Teile H$_2$O$_{bidest}$] gestoppt. Anschließend wurden die Ansätze bei 37°C inkubiert bis eine Grünfärbung eintrat und die Absorption bei 620 nm (Referenzfilter 450nm) photometrisch (Sunrise Tecan) bestimmt. Zur Konzentrationsbestimmung des entstandenen Phosphats wurde eine Eichgerade mit 0 - 140 μM K$_2$HPO$_4$ erstellt.

2.6 Mathematische Modellierung des Lux-Systems

Sämtliche Gleichungen des mathematischen Modells des Lux-Systems wurden von Prof. Dr. Johannes Müller vom Zentrum Mathematik der Technischen Universität München, Dr. Christina Kuttler und Dr. Burkhard A. Hense vom Institut für Biomathematik und Biometrie der GSF erstellt. Vorgehensweise sowie Gleichungen sind im Anhang dieser Arbeit aufgeführt.
3 Ergebnisse

Viele Studien beschäftigten sich mit Prozessen, die Quorum sensing-gesteuert sind. Durch Ausschalten einzelner Gene wurden die an der Signaltransduktion beteiligten Gene identifiziert und mit Hilfe von Sequenzhomologie-Vergleichen Vermutungen zur Funktion der Genprodukte und entsprechende Modelle aufgestellt. Die biochemische Charakterisierung der Signaltransduktionsketten stand dabei nicht im Mittelpunkt. So beruhen nahezu alle Informationen über das Quorum sensing-System in *V. harveyi* auf genetischen Studien.

Ziel dieser Arbeit war die Vervollständigung der *in vitro*-Rekonstruktion der komplexen Signaltransduktionskaskade des Quorum sensing-Systems in *V. harveyi*. Anhand der biochemischen Charakterisierung insbesondere von der Hybridsensorkinase LuxPQ und dem Antwortregulator LuxO sollte untersucht werden, wie die Reize auf molekularer Ebene integriert werden.

3.1 Biochemische Untersuchungen der Hybridsensorkinase LuxQ

Für LuxQ wurde anhand genetischer Untersuchungen postuliert, dass die konservierten Reste Histidin 492 und Aspartat 785 eine essentielle Rolle bei der Autophosphorylierung sowie beim Phosphotransfer einnehmen.

LuxQ sollte heterolog in *E. coli* überproduziert und invertierte Membranvesikel präpariert werden. Durch *in vitro*-Phosphorylierungen sollten die enzymatischen Aktivitäten von LuxQ charakterisiert und die postulierten phosphatakzeptierenden Reste Histidin 492 und Aspartat 785 bestätigt werden.

3.1.1 Heterologe Expression von LuxQ

Auf Grundlage der Gen-Sequenz wurde LuxQ von *V. harveyi* mit verschiedenen Internet-Analyse-Programmen des Expasy-Servers in Hinblick auf die vermutliche Masse und die
Lokalisation in der Zelle analysiert. LuxQ hatte demnach mit 867 AS eine relative Molekülmasse von 97,8 kDa. Zur Verankerung in der Cytoplasmamembran der Zelle enthielt LuxQ nach Sekundärstrukturanalyse zwei hydrophobe Bereiche, die eine große periplasmatische Schleife mit zwei PAS-Domänen einschließen, an welche das periplasmatische Bindeprotein LuxP konstitutiv gebunden ist (Neiditch et al., 2005).

Da dieser Bereich die Expression und die Lokalisation von KdpD in der Membranfraktion zu begünstigen schien, wurden Plasmide konstruiert, die neben den Genen der Hybridsensorkinase LuxQ den stromaufwärts von *kdpD* gelegenen Bereich enthielten. Hierfür wurde zuerst eine KpnI-Schnittstelle in dem Vektor pPV5-1 vor das Start-Kodon von KdpD eingefügt, der resultierende Vektor wurde als pPV5-10 bezeichnet. Das *kdpD*-Gen wurde durch *luxQ* bzw. *luxN* ersetzt, bei der Klonierung wurden den Genen C-terminal sechs bzw. zehn Kodons für Histidin angehängt, die bei der Produktion einen sogenannten „His-Tag“ bildeten. Die Vektoren wurden als pNKQ (LuxQ) bzw. pNKN (LuxN) bezeichnet. Um die konservierten Histidin- und Aspartatreste von LuxQ auf ihre Funktionalität beim Phosphotransfer zu untersuchen, wurden die entsprechenden Kodons mutiert (*luxQ*-D785N (pNKQ-D785N), *luxQ*-H492Q (pNKQ-H492Q)).

3.1.2 Lokalisation von LuxQ und Präparation von Membranvesikeln

Abbildung 3.1 zeigt die Lokalisation von LuxQ in den verschiedenen Zellfraktionen. Ein geringer Teil der Hybridsensorkinase LuxQ war im Pellet der niedertourigen Zentrifugation zu finden, der größte Teil jedoch war wie erwartet in der Membranfraktion lokalisiert. Das nachgewiesene LuxQ im Pellet der niedertourigen Zentrifugation war vermutlich auf nicht aufgeschlossene Zellen zurückzuführen. Die Lokalisation der Sensorkinase LuxQ ist hier stellvertretend für die Lokalisation von LuxQ-H492Q, LuxQ-D785N und LuxN dargestellt, die ebenfalls nahezu vollständig in der Membranfraktion vorlagen.

3.1.3 Autokinaseaktivität von LuxQ

wurden nach 0,16 / 0,5 / 1 / 2 / 5 und 15 min genommen, die Proteine wurden durch 10%ige SDS-PAGE aufgetrennt (32 pmol pro Spur). Es konnte kein phosphoryliertes Protein im Autoradiogramm detektiert werden, das entsprechend der relativen Molekülmasse LuxQ zuzuordnen war und nicht in dem Ansatz mit LuxQ-H492Q zu finden war. Auch die alkali-stabilere Phosphoamidatbindung (His\simP) von LuxQ-D785N-haltigen Membranvesikeln konnte nicht detektiert werden. Die Zugabe von äquimolaren Mengen (0,5 M) anderer Salze (NaCl, CaCl$_2$) oder kompatibler Solute (Trehalose, Betain, Glutamat, Prolin, Citrat) führte zu keiner sichtbaren Autophosphorylierung (Daten nicht gezeigt).

3.1.4 LuxQ-spezifische Phosphorylierung von LuxU

Analog zu der sehr schwachen Autophosphorylierung von LuxN (Timmen et al., 2006) und der stabilen Phosphorylierung des HPt-Proteins LuxU wurde die Autophosphorylierung indirekt durch den Phosphotransfer auf LuxU nachgewiesen. Der Phosphorylierungsansatz für die Kinaseaktivität enthielt 0,8 µM LuxQ und 25 µM gereinigtes LuxU, die beiden Proteine wurden somit in einem molaren Verhältnis von 1 : 30 eingesetzt, was dem typischen Verhältnis von membranständigen Histidinkinasen und deren löslichen Partnern entsprach (Kremling et al., 2004). Das Verhältnis der beiden Proteine zueinander wurde durch quan-
titativen Westernblot bestätigt. Die Reaktion wurde mit 100 µM [$\gamma-^{32}$P]ATP gestartet, zu den angegebenen Zeitpunkten wurden Proben entnommen.

Das Autoradiogramm in Abbildung 3.2A zeigt die LuxQ-spezifische Akkumulation von phosphoryliertem LuxU. Nach 10 minütiger Inkubation mit 100 µM [$\gamma-^{32}$P]ATP lagen 0,1% LuxU phosphoryliert vor. Die Quantifizierung ist in Abb. 3.2C graphisch dargestellt. Die aufgrund der Initialgeschwindigkeit der LuxU-Phosphorylierung berechnete spezifische Kinaseaktivität von LuxQ betrug 0,27 pmol/min x mg Membranprotein.
Wie auch schon für LuxN beschrieben (Timmen, 2005) war die Kinaseaktivität von LuxQ Kalium-abhängig. Es wurde weniger LuxU phosphoryliert, wenn niedrigere KCl-Konzentrationen (20 - 200 mM) eingesetzt wurden. Wurde Kaliumchlorid durch Natriumchlorid ersetzt, wurde LuxU ebenfalls mit einer deutlich niedrigeren Rate phosphoryliert (Daten nicht gezeigt).

Um zu zeigen, dass die konservierten Reste Histidin 492 und Aspartat 785 am Phosphotransfer von LuxQ auf LuxU beteiligt sind, wurden ebenfalls LuxQ-H492Q- und LuxQ-D785N-haltige Membranvesikel mit gereinigtem LuxU inkubiert. Da geringere Mengen LuxQ-D785N in die Membranvesikel eingebaut wurden, wurde dementsprechend die Menge Membranprotein im Phosphorylierungsansatz angepasst. Durch Immunodetektion wurde nachgewiesen, dass äquimolare Mengen LuxQ, LuxQ-H492Q und LuxQ-D785N eingesetzt wurden (Abb. 3.2D). Der Phosphotransfer von LuxQ auf LuxU war nur mit Wildtyp-LuxQ nachweisbar. Dadurch konnte bestätigt werden, dass die vorhergesagten Phosphat-akzeptierenden Reste von LuxQ für den Phosphotransfer essentiell sind, was zu dem in Abb. 3.2B dargestelltem Modell führte: wurde der konservierte Histidinrest gegen Glutamin ausgetauscht, konnte keine Autophosphorylierung und somit keine Phosphotransfer auf LuxU stattfinden. Wurde der konservierte Aspartatrest gegen Asparagin ausgetauscht, konnte ebenfalls kein Phosphotransfer zu LuxU stattfinden. Vermutlich fand eine Autophosphorylierung an dem konservierten Histidinrest statt, diese konnte aber experimentell nicht nachgewiesen werden.

3.1.5 Phosphataseaktivität von LuxQ

Für LuxN konnte gezeigt werden, dass der Phosphorylierungsstatus von LuxU auch von der Phosphataseaktivität der Hybridsensorkinase LuxN abhängt (Timmen et al., 2006). Entsprechend sollte die Phosphataseaktivität von LuxQ charakterisiert werden. Dazu wurde LuxU, wie in Kapitel 2.5.12 beschrieben, mit LuxN-haltigen Membranvesikeln phosphoryliert und von Membranproteinen und freien Nukleotiden gereinigt. Phosphoryliertes LuxU wurde anschließend mit Membranvesikeln, welche LuxQ-Derivate enthielten, inkubiert. Zu bestimmten Zeitpunkten wurden Proben entnommen und die Menge an phosphoryliertem LuxU nach SDS-PAGE im Autoradiogramm bestimmt. Der Testansatz enthielt 12,5 μM LuxU und 0,4 μM LuxQ, was einem Verhältnis von etwa 1 : 30 entsprach. Es konnte gezeigt werden, dass LuxQ neben der Kinaseaktivität eine Phosphataseaktivität besaß (Abb. 3.3). Die Menge an

phosphoryliertem LuxU nahm in Gegenwart von LuxQ zeitabhängig ab (Abb. 3.3A). Hierbei kam es zu einer schnellen Dephosphorylierung innerhalb der ersten Minute, nach dieser Zeit lagen nur noch ~80% LuxU im Vergleich zum Anfangswert phosphoryliert vor (Abb. 3.3C). Nach der schnellen Initialrate innerhalb der ersten Minute lief die Dephosphorylierung von LuxU langsamer ab. Es konnte außerdem die schnelle Initialgeschwindigkeit eine spezifische Dephosphorylierungsraten von 0,1 pmol/min x mg bestimmt werden.
Die Inkubation von phosphoryliertem LuxU mit LuxQ-H492Q-haltigen Membranvesikeln führte zu einer mit dem Wildtyp-LuxQ vergleichbaren Dephosphorylierung (Abb. 3.3C). Das konservierte Histidin, das eine entscheidende Rolle bei der Kinaseaktivität von LuxQ spielt, ist für die Phosphataseaktivität demnach nicht essentiell. Wurde aber phosphoryliertes LuxU mit LuxQ-D785N-haltigen Membranvesikeln inkubiert, blieb die Menge an phosphoryliertem LuxU konstant (Abb. 3.3C). Durch den Austausch des konservierten Aspartats in LuxQ verfügt das Protein somit über keine Phosphataseaktivität. Dies zeigte, dass Aspartat 785 sowohl für die Phosphorylierung als auch für die Dephosphorylierung von LuxU wichtig ist (Abb. 3.3B). Zusätzlich konnte hiermit gezeigt werden, dass es sich bei der Dephosphorylierung von LuxU um eine LuxQ-spezifische Reaktion handelte.

3.2 Einfluss des periplasmatischen Bindeproteins LuxP und AI-2 auf LuxQ

Der Autoinduktor-2 wird nicht direkt von der membranständigen Hybridsensorkinase LuxQ detektiert. Die Wahrnehmung findet indirekt durch das periplasmatische Bindeprotein LuxP statt. LuxP ist unabhängig von AI-2 konstitutiv an LuxQ gebunden (LuxPQ), durch die Bindung von AI-2 an LuxP wird eine asymmetrische Dimerisierung der periplasmatischen Domänen verursacht ([LuxPQ_p]₂). Diese Konformationsänderung wird auf die cytoplasmatische Domäne des Dimers übertragen, was die trans Autophosphorylierung verhindert (Neiditch et al., 2006).

Um den Einfluss von AI-2 auf die enzymatischen Aktivitäten von LuxQ *in vitro* zu untersuchen, mussten daher sowohl AI-2 als auch LuxP dem Phosphorylierungsansätzen zugegeben werden.

3.2.1 Heterologe Überproduktion und Reinigung von LuxP

Es konnte gezeigt werden, dass *V. harveyi*-LuxP heterolog in *E. coli* produziert und gemeinsam mit gebundenem *E. coli*-Autoinduktor-2 gereinigt und kristallisiert werden konnte (Chen et al., 2002). Diese Tatsache wurde im Rahmen dieser Arbeit genutzt, um sowohl AI-2-haltiges LuxP (LuxP/AI-2) als auch AI-2-freies LuxP (LuxP) heterolog überzuproduzieren und zu reinigen. Die Expression von *luxP* erfolgte heterolog in dem luxS-positiven *E. coli*-Stamm BL21(DE3)/pLysS bzw. in dem luxS-negativen *E. coli*-Stamm MDAI2, je-

Zunahme der Biolumineszenz in der Negativkontrolle und ist auf den CAI-1-abhängige Signalweg zurückzuführen.

3.2.2 Einfluss von LuxP und AI-2 auf die Kinaseaktivität von LuxQ

LuxP gebundenen AI-2 handelte. Abb. 3.5B zeigt das Modell der LuxQ-Kinaseaktivität in Anwesenheit von LuxP/AI-2 bzw. LuxP.

3.2.3 Einfluss von LuxP und AI-2 auf die Phosphataseaktivität von LuxQ

Abbildung 3.7 zeigt die zeitabhängige Abnahme an phosphoryliertem LuxU. Es konnte gezeigt werden, dass die Phosphataseaktivität von LuxQ nicht durch die Anwesenheit von LuxP und AI-2 beeinflusst wurde. Alle Versuchsansätze führten zu einer für LuxQ typischen Dephosphorylierungsraten von LuxU (0,1 pmol/min x mg Membranprotein).

3.3 Biochemischer Vergleich der Hybridsensorkinasen LuxQ und LuxN

Um die Kinaseaktivitäten und die Phosphataseaktivitäten von LuxQ und LuxN zu vergleichen, wurde mittels quantitativem Westernblot gleiche Mengen der Sensorkinasen eingestellt. Da unterschiedliche Mengen Membranprotein den Ansätzen zugefügt werden mussten, um äquimolare Mengen LuxQ und LuxN zu erhalten, wurde die Proteinkonzentration beim Vergleich der Aktivitäten nicht berücksichtigt. Die Einheit der Enzymaktivitäten ist daher in pmol/min angegeben.
Ebenfalls wurde der Einfluss der Autoinduktoren auf die entsprechenden Sensorkinasen miteinander verglichen. Neben Aussagen über das jeweilige Kinase-zu-Phosphatase-Verhältnis der Hybridsensorkinasen sollte die Signalstärke von HAI-1 und AI-2 verglichen werden.

3.3.1 Vergleich der Kinaseaktivitäten

Die LuxN- und LuxQ-spezifische Phosphorylierung von LuxU (Abb. 3.8B) wurde *in vitro* untersucht, die Ergebnisse sind in Abbildung 3.8 gezeigt. Das Autoradiogramm der Phos-
phorylierungsexperimente (Abb. 3.8A) zeigt, dass mehr LuxU phosphoryliert vorlag, wenn LuxN anwesend war. Dies konnte durch Quantifizierung der Menge an phosphoryliertem LuxU und der graphischen Darstellung bestätigt werden (Abb. 3.8C). Die Kinaseaktivität von LuxN (0,44 pmol/min) war um ein zehnfaches höher als die von LuxQ (0,04 pmol/min). LuxN besitzt somit einen größeren Einfluss auf den Phosphorylierungsgrad von LuxU als LuxQ. Im Westernblot ist zu sehen, dass äquimolare Mengen LuxN und LuxQ eingesetzt wurden (Abb. 3.8D). Abb. 3.8D zeigt das Modell der LuxQ- und LuxN-Kinaseaktivität.

Abbildung 3.9: ATP-Abhängigkeit der LuxQ- und LuxN-Kinaseaktivität. Die Bestimmung der LuxQ- bzw. LuxN-Kinaseaktivität in Gegenwart von 20 bis 7.500 µM [γ^{-32}P]ATP (spezifische Radioaktivitäten zw. 0,03 und 2,38 Ci/mmol) wurde wie in Kapitel 2.5.12 beschrieben durchgeführt. Dargestellt sind die Phosphorylierungsraten (V [pmol LuxU∼P/min x mg]) in Abhängigkeit der ATP-Konzentration.

Zur Bestimmung des K_m-Werts für ATP wurden LuxQ- bzw. LuxN-haltige Mem-
Ergebnisse

branvesikel und gereinigtes LuxU in Gegenwart von folgenden ATP-Konzentrationen inkubiert: 20 µM (spezifische Radioaktivität 2,38 Ci/mmol), 100 µM (0,48 Ci/mmol), 500 µM (0,21 Ci/mmol), 1.500 µM (0,13 Ci/mmol), 2.500 µM (0,10 Ci/mmol), 4.000 µM (0,06 Ci/mmol), 5.000 µM (0,05 Ci/mmol), 7.500 µM (0,03 Ci/mmol). Die Menge an phosphoryliertem LuxU wurde nach 1 / 2,5 / 5 und 10 min quantifiziert und die Initialgeschwindigkeiten bestimmt.

Abbildung 3.10: Bestimmung des K_m-Werts für ATP mittels Eadie-Hofstee-Diagramm. Aufgetragen ist die Reaktionsgeschwindigkeit (V [pmol/min x mg]) gegen den Quotienten aus Reaktionsgeschwindigkeit und Substratkonzentration (V/S [µM]). A LuxQ. B LuxN.

Zur Bestimmung des K_m-Werts und der maximalen Phosphorylierungsraste (V_max) wurde ein Eadie-Hofstee-Diagramm erstellt (Abbildung 3.10). Aufgetragen wurden die Reaktionsgeschwindigkeit (V [pmol/min x mg]) gegen den Quotienten aus Reaktionsgeschwindigkeit und Substratkonzentration (V / S [µM]). Die maximale Phosphorylierungsraste V_max ergab sich jeweils aus dem Schnittpunkt der Geraden mit der Y-Achse, während die Steigung den negativen K_m-Wert darstellte.
Für LuxQ wurde ein \(K_m \)-Wert von 790 µM und für LuxN ein Wert von 658 µM bestimmt. Der berechnete \(K_m \)-Wert des Phosphotransfers von LuxN auf LuxU stimmt mit dem \(K_m \)-Wert der Autophosphorylierung (555 µM) weitgehend überein. Der \(K_m \)-Wert für ATP von LuxQ lag in der gleichen Größenordnung wie der von LuxN, allerdings zeigte LuxN eine maximale Initialgeschwindigkeit von 50,4 pmol/min x mg, die deutlich höher war als die von LuxQ (8,9 pmol/min x mg).

3.3.2 Vergleich der Phosphataseaktivitäten

Abbildung 3.11A zeigt das Autoradiogramm der LuxQ-, LuxN- und LuxQ-D785N-spezifischen Dephosphorylierung von LuxU sowie die Quantifizierung der Menge an phosphoryliertem LuxU zu den angegebenen Zeitpunkten. Das Autoradiogramm zeigt eine deutliche Dephosphorylierung von LuxU durch LuxQ und LuxN, während die Menge an phosphoryliertem LuxU in Anwesenheit von LuxQ-D785N gleich blieb. Für die Quantifizierung (Abb. 3.11C) wurde der Mittelwert der Menge an mit LuxQ-D785N inkubiertem LuxU\(~P\) gleich 100% gesetzt.

LuxN wies eine Initialgeschwindigkeit von 0,032 pmol LuxU\(~P\)/min auf, was mit der von Timmen et al. (2006) bestimmten LuxN-abhängigen Dephosphorylierungsrate übereinstimmte. Die Initialgeschwindigkeit der LuxQ-abhängigen Dephosphorylierung von LuxU\(~P\) lag bei 0,0078 pmol/min. Somit zeigte LuxN nicht nur eine zehnfach höhere Kinaseaktivität, sondern auch eine vierfach höhere Phosphataseaktivität als LuxQ. Abbildung 3.11B zeigt das Modell der Phosphataseaktivität von LuxQ, LuxN und LuxQ-D785N.

3.3.3 Vergleich des Einflusses der Autoinduktoren HAI-1 und AI-2

Sowohl für LuxQ als auch für LuxN konnte ein Einfluss des jeweiligen Autoinduktors auf die Kinaseaktivität gezeigt werden (diese Arbeit, Timmen et al., 2006). In Anwesenheit der

Unterschiede ergaben sich aber in der Restaktivität bei maximal inhibierenden Konzen-
trationen. Während HAI-1 die Kinaseaktivität von LuxN um 70% auf eine Restaktivität von 30% reduzierte, wurde die Kinaseaktivität von LuxQ durch die Anwesenheit von LuxP/AI-2 lediglich um 40% auf 60% reduziert. Es konnte somit gezeigt werden, dass der Autoinduktor HAI-1 eine größere Signalstärke aufwies als AI-2.

3.3.4 Kinase-zu-Phosphatase-Verhältnis von LuxQ und LuxN

Bei einer maximal reduzierenden Konzentration der Autoinduktoren (was einer hohen Zelldichte entspricht) näherten sich die Kinase-zu-Phosphatase-Verhältnisse jedoch an. In Anwesenheit von HAI-1 wies LuxN ein Verhältnis von 4 : 1 auf, in Anwesenheit von LuxP/AI-2 wies LuxQ ein Verhältnis von 5 : 1 auf. Dies war durch den unterschiedlichen Einfluss der Autoinduktoren auf die entsprechende Kinaseaktivität zu erklären. Während HAI-1 die LuxN-Kinaseaktivität um 70% reduzierte, reduzierte LuxP/AI-2 die LuxQ-Kinaseaktivität lediglich um 40%.

3.4 Mathematisches Modell des kombinierten LuxN- und LuxQ-Signalwegs

Modellierung erfolgte in Kooperation mit Prof. Dr. Johannes Müller vom Zentrum Mathematik der Technischen Universität München, Dr. Christina Kuttler und Dr. Burkhard A. Hense vom Institut für Biomathematik und Biometrie der GSF.

Um ein Modell der kombinierten LuxN- und LuxQ-Signalwege zu entwickeln, wurden folgende Vereinfachungen angenommen:

1. ATP stellt keinen limitierenden Faktor dar.

2. LuxN und LuxQ können in vier verschiedenen Zuständen vorliegen (phosphoryliert bzw. unphosphoryliert und als Komplex mit dem entsprechenden Autoinduktor bzw. ohne Autoinduktor.

3. Die Bindung von Autoinduktor beeinflusst nur die Autophosphorylierung der Hybridsensorkinasen und nicht den Phosphotransfer zu LuxU.

Des Weiteren wurde ein Quasi-Steady-State für alle Reaktionen (ausgenommen der Phosphorylierung und Dephosphorylierung von LuxU) angenommen, um das Modell weiter zu vereinfachen.

Alle möglichen Reaktionen, die hierbei berücksichtigt wurden, sind in Abb. 3.12 dargestellt (Komplexbildung mit AI, Autophosphorylierung/Phosphorylierung von LuxU/Dephosphorylierung von LuxU jeweils für Sensorkinase mit oder ohne gebundenem AI).

Zunächst wurden die einzelnen Reaktionen des LuxN-abhängigen Signalweges modelliert, das Modell bestand aus den folgenden Reaktionen: Autophosphorylierung von LuxN in Abwesenheit von HAI-1 \((k_1)\), Phosphotransfer auf LuxU \((k_2)\) und Dephosphorylierung von LuxU \((k_{-2})\), sowie den gleichen Reaktionen in Anwesenheit von HAI-1 (entsprechend \(k_{1,a}\), \(k_{2,a}\), \(k_{-2,a}\), wobei \(a\) die Anwesenheit des Autoinduktors darstellt). Die Gleichungen und deren Herleitung sind im Anhang widergegeben. Zur Validierung wurde das Submodell mit den experimentell bestimmten Daten verglichen. Durch das Modell konnten die biochemischen Ergebnisse sehr gut dargestellt und wiedergegeben werden (Daten nicht gezeigt).

Aufbauend auf dem Submodell konnten die Daten von LuxQ mit entsprechend niedrigeren Phosphorylierungs- und Dephosphorylierungsraten dem Modell hinzugefügt werden. Die dem LuxN-Submodell zugefügten Reaktionen sind in Abb. 3.12 mit \(\tilde{k}\) bezeichnet.

Auf diese Weise konnte der LuxU\(\sim P\)-Output in Abwesenheit der Autoinduktoren sowie in jeder möglichen Kombination an AI-Konzentrationen bestimmt werden. Als Input wurden die Autoinduktor-Konzentrationen betrachtet, die zu einem Output an phosphoryliertem LuxU führten. Die Menge an phosphoryliertem LuxU wurde durch folgende Gleichung berechnet:

\[
r = \tau \left(1 + \frac{[\text{HAI-1}]}{[\text{HAI-1}]^* + [\text{HAI-1}]}(r^N - 1)\right) + (1 - \tau)\left(1 + \frac{[\text{AI-2}]}{[\text{AI-2}]^* + [\text{AI-2}]}(r^Q - 1)\right)
\]

Der Wert \(r (0 < r < 1)\) gibt die relative Menge an phosphoryliertem LuxU wider. In Tabelle 3.1 sind alle verwendeten Parameter aufgeführt, die zur Berechnung dieses Werts notwendig sind. Der Wert \(r^N\) stellt die relative Menge durch LuxN phosphoryliertes LuxU in Abwesenheit von LuxQ dar unter der Annahme, dass die HAI-1-Konzentration zu einer maximalen Reduktion der LuxN-Kinaseaktivität führt. Entsprechend stellt der Wert \(r^Q\) die relative Menge durch LuxQ phosphoryliertes LuxU in Abwesenheit von LuxN dar, bei einer die Kinaseaktivität maximal reduzierenden LuxP/AI-2-Konzentration. Aufgrund der Tatsache, dass die LuxN-Kinaseaktivität durch HAI-1 auf 30% reduziert werden konnte, wurde \(r^N = 0.3\) gesetzt. Die Anwesenheit von einer ausreichend hohen AI-2-Konzentration führte zu einer Reduktion der LuxQ-Kinaseaktivität auf 60%, daher wurde \(r^Q = 0.6\) gesetzt.
<table>
<thead>
<tr>
<th>Name</th>
<th>Bedeutung</th>
<th>Wert</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^N</td>
<td>Relative Menge LuxU~P in Gegenwart von LuxN und HAI-1</td>
<td>0,3</td>
<td>experimentell</td>
</tr>
<tr>
<td>r^Q</td>
<td>Relative Menge LuxU~P in Gegenwart von LuxQ und LuxP/AI-2</td>
<td>0,6</td>
<td>experimentell</td>
</tr>
<tr>
<td>[HAI-1]*</td>
<td>halb-maximale inhibitorische HAI-1-Konzentration</td>
<td>5 µM</td>
<td>experimentell</td>
</tr>
<tr>
<td>[AI-2]*</td>
<td>halb-maximale inhibitorische LuxP/AI-2-Konzentration</td>
<td>5 µM</td>
<td>experimentell</td>
</tr>
<tr>
<td>τ</td>
<td>Relative Stärke der beiden Signalwege</td>
<td>0,7</td>
<td>angenommen</td>
</tr>
</tbody>
</table>

Die Konstante τ ($0<\tau<1$) stellte die relative Stärke der beiden Signalwege dar. Hätte der LuxN-abhängige Signalweg keinen Einfluss auf die Menge an phosphoryliertem LuxU, wäre $\tau = 0$, entsprechend wäre $\tau = 1$, wenn der LuxQ abhängige Signalweg keinen Einfluss hätte. Die Konstante τ konnte bisher nicht experimentell bestimmt werden. Daher wurde die Menge an phosphoryliertem LuxU für die Werte $\tau = 0,2$, $\tau = 0,7$ und $\tau = 0,9$ berechnet. Durch diese τ-Werte konnte simuliert werden, wie sich die Menge an phosphoryliertem LuxU in Gegenwart von HAI-1, AI-2 oder beiden Autoinduktoren verhielt. Die Ergebnisse für alle drei τ-Werte sind in Abbildung 3.13A-C dargestellt. Durch die Berechnung der relativen Menge an phosphoryliertem LuxU mit den Werten $\tau = 0,2$, $\tau = 0,7$ und $\tau = 0,9$ konnte gezeigt werden, dass die Tendenzen unabhängig von dem wahren Wert τ waren. Der Wert τ beeinflusste lediglich die relative Signalstärke beider Autoinduktoren im kombinierten LuxN/LuxPQ/LuxU-System.

Der biochemische Vergleich der beiden Kinasen LuxN und LuxQ zeigte, dass sowohl HAI-1 einen stärkeren Effekt verursachte als AI-2, als auch LuxN höhere Kinase- und Phosphataseaktivitäten aufwies. Daher konnte davon ausgegangen werden, dass die Konstante $\tau > 0,5$ sein musste. Es wurde der Wert $\tau = 0,7$ angenommen. Die Menge an LuxU~P nimmt mit steigender AI-Konzentration ab, wobei der reduzierende Einfluss von HAI-1 grö-
ßer ist als der Einfluss von AI-2. Die Menge an phosphoryliertem LuxU konnte noch weiter reduziert werden, wenn beide Autoinduktoren vorhanden sind.

Abbildung 3.13: Einfluss der Autoinduktor-Konzentration auf den LuxU~P Output. Darstellung des kombinierten Einflusses der HAI-1 und AI-2 Konzentration auf den LuxU~P Output. Für die relative Stärke der HAI-1- und AI-2-abhängigen Signalwege wurden Werte zwischen \(\tau = 0,2 \) und 0,9 angenommen. A \(\tau = 0,2 \). B \(\tau = 0,7 \). C \(\tau = 0,9 \). RU Relative Einheit.

Durch das mathematische Modell, welches auf biochemischen Daten der einzelns untersuchten Hybridsensorinkasen beruht, konnte die Menge an phosphoryliertem LuxU nie auf 0% reduziert werden. Auch wenn beide Autoinduktoren in Konzentrationen vorlagen, welche experimentell zu einer maximalen Inhibition der Kinaseaktivitäten führten, lagen 45% LuxU phosphoryliert vor. Waters und Bassler (2006) zeigten, dass LuxR in Abhängigkeit der Autoinduktoren graduell produziert wird. Dies würde für das Ergebnis des mathematischen Modells bedeuten, dass die Induktion nicht vollständig ist, obwohl beide Autoinduktoren vorliegen.

Aufgrund der Ergebnisse der mathematischen Modellierung der kombinierten LuxN- und LuxQ-Signalwege muss angenommen werden, dass es einen weiteren regulatorischen Effekt gibt, der bisher nicht berücksichtigt wurde.
3.5 Das Zusammenspiel der Hybridsensorinkasen LuxQ und LuxN

Wenn beide Hybridsensorinkasen getrennt experimentell untersucht wurden, konnte der Output an phosphoryliertem LuxU weder durch die Zugabe von HAI-1 noch durch die Zugabe von LuxP/AI-2 auf Null reduziert werden. Ebenfalls durch das erstellte mathematische Modell der kombinierten LuxN- und LuxQ-Signalwege konnte die Menge an phosphoryliertem LuxU nicht auf 0% (bezogen auf die maximal phosphorylierte Menge an LuxU) gesenkt werden. Da aber bei einem voll induzierten lux-Operon die Menge an phosphoryliertem LuxO (und somit die mit LuxO∼P in einem Gleichgewicht stehende Menge an phosphoryliertem LuxU) sehr gering sein muss, ist es vorstellbar, dass der Output durch einen weiteren Faktor beeinflusst und reduziert werden kann. Unter anderem ist es denkbar, dass sich die beiden Signalwege gegenseitig beeinflussen.

3.5.1 Beeinflussung der LuxN-Kinaseaktivität durch LuxQ

Um eine mögliche Wechselwirkung der Hybridsensorinkasen zu untersuchen, wurden LuxN-haltige Membranvesikel in Anwesenheit verschiedener Konzentrationen LuxQ zusammen mit gereinigtem LuxU und ATP inkubiert, und die Menge an phosphoryliertem LuxU wurde quantifiziert. Abbildung 3.14 zeigt das Autoradiogramm (A) und die Quantifizierung (C) der Menge an phosphoryliertem LuxU. Es ist deutlich zu sehen, dass die Menge an phosphoryliertem LuxU abnahm, wenn LuxQ-haltige Membranvesikel dem Testansatz zugegeben wurden. Außerdem war die Reduktion der LuxN-Kinaseaktivität konzentrationsabhängig. Wenn Kontrollvesikel des Stammes E. coli TKR2000 zugegeben wurden, kam es zu keiner reduzierenden Wirkung (Daten nicht gezeigt). Daher konnte davon ausgegangen werden, dass die Beeinflussung der LuxN-Kinaseaktivität LuxQ-spezifisch war.
Um auszuschließen, dass dieser Effekt auf die Phosphataseaktivität von LuxQ zurückzuführen war, wurde das gleiche Experiment mit LuxQ-D785N-haltigen Membranvesikeln durchgeführt. Auch LuxQ-D785N reduzierte die Kinaseaktivität von LuxN in gleicher Weise wie Wildtyp-LuxQ. Es konnte somit gezeigt werden, dass die deutlich niedrigere Menge an phosphoryliertem LuxU nicht auf die Phosphataseaktivität von LuxQ zurückzuführen war. Es ist denkbar, dass sich die beiden Hybridsensorkinasen in einer Konkurrenz um das Substrat LuxU befinden oder sich gegenseitig inhibieren, was in Abbildung 3.14B schematisch dargestellt ist. Die Tatsache, dass LuxQ die Aktivität von LuxN beeinflusst, würde eine Möglichkeit der Regulation bieten.

3.5.2 Beeinflussung der LuxQ-Kinaseaktivität durch LuxN

Hierzu wurden 0,8 µM LuxQ und 25 µM LuxU mit unterschiedlichen Konzentrationen LuxN-D771N (0,27 - 0,8 µM) gemischt und die Menge an phosphoryliertem LuxU nach 5 minütiger Inkubation mit 100 µM [γ-32P]ATP bestimmt. Es konnte gezeigt werden, dass ebenfalls die LuxQ-spezifische Phosphorylierung von LuxU durch die Anwesenheit von LuxN konzentrationsabhängig reduziert wurde (Abb. 3.16). Bei zunehmender Menge an LuxN-D771N-haltigen Membranvesikeln nahm die Menge von durch LuxQ phosphoryliertem LuxU ab. Wurden LuxQ und LuxN-D771 in äquimolaren Mengen eingesetzt, wurden die Menge an phosphoryliertem LuxU auf knapp 30% reduziert.

3.5.3 Einfluss von HAI-1 auf das Zusammenspiel von LuxN und LuxQ

Timmen et al. (2006) konnten zeigen, dass HAI-1 die Kinaseaktivität von LuxN um 70%

Abbildung 3.17 zeigt die Initialgeschwindigkeiten verschiedener Kombinationen von LuxN, LuxQ, HAI-1 und LuxP/AI-2 aus drei unabhängigen Experimenten. Die Phosphorylierungs-
rate von LuxN wurde gleich 100 Prozent gesetzt. Die Aktivität von LuxN wurde durch Anwesenheit von LuxQ bzw. HAI-1 deutlich reduziert. In Gegenwart beider Komponenten (LuxQ und HAI-1) wurde die LuxN-Kinaseaktivität nahezu vollständig inhibiert.

3.5.4 Dephosphorylierung von LuxU in Anwesenheit von LuxQ und LuxN

3 ERGEBNISSE

geklärt werden. Es konnte aber die Aussage getroffen werden, dass bei der Dephosphorylierung von LuxU keine inhibierenden Wechselwirkungen der Hybridsensorkinasen vorzuliegen schien.

3.6 LuxQ/LuxN-Chimäre

Um zu zeigen, welche Domäne für die Wechselwirkungen zwischen den beiden Hybridsensorkinasen LuxN und LuxQ und die Beeinflussung der Kinaseaktivitäten verantwortlich ist, wurden Chimärproteine hergestellt, in denen die einzelnen Domänen (Transmembran-, Histidinkinase- und Empfängerdomäne) zwischen den beiden Proteinen ausgetauscht wurden. Im Rahmen der Diplomarbeit von Carolin Schön (2007) konnten sechs Plasmide konstruiert werden (pNKQ-1-NQN, pNKN-1-QNN, pNKQ-1-QQN, pNKN-1-QNQ, pNKQ-1-NQQ, pNKN-1-NNQ), die für die LuxQ/LuxN-Chimäre (LuxNQN, LuxQNN, LuxQQN, LuxQNQ, LuxNQQ und LuxNNQ) kodierten.

Die LuxN-Kinaseaktivität wurde in Gegenwart von LuxQ-haltigen Membranvesikeln bzw. in Gegenwart von Membranvesikeln bestimmt, welche die überproduzierten LuxQ/LuxN-Chimäre enthielten. LuxQ bzw. LuxQ/LuxN-Chimäre wurden in den einzelnen Phosphorylierungsexperimenten in äquimolaren Mengen eingesetzt (überprüft durch quantitative Westernblot-Analyse, Daten nicht gezeigt). Das molare Verhältnis von LuxN zu LuxQ bzw. den LuxQ/LuxN-Chimären war 1 : 0.3. Die Initialrate der LuxN-Kinaseaktivität in Abwesenheit von LuxQ oder den Chimären wurde gleich 100% gesetzt. Das Chimär LuxQNQ konnte nicht eingesetzt werden, da die produzierten Mengen zu gering waren.

Die Initialraten der Kinaseaktivität [%] von LuxN in Gegenwart von LuxQ und der verschiedenen LuxQ/LuxN-Chimäre sind in Abbildung 3.18 graphisch dargestellt. Die beiden Chimäre LuxNNQ und LuxNQQ, welche die Empfängerdomäne eines Antwortregulators von LuxQ besaßen, zeigten einen reduzierenden Effekt auf die LuxN-Kinaseaktivität. Die

LuxN-Kinaseaktivität wurde wie in Gegenwart von LuxQ auf ca. 65% reduziert. Alle anderen Chimäre (LuxQQN, LuxQNN, LuxNQN) hatten keinerlei Auswirkungen auf die LuxN-Kinaseaktivität. Der reduzierende Effekt kann aufgrund dieser Ergebnisse eindeutig auf die Empfängerdomäne von LuxQ zurückgeführt werden. Effekte durch die Histidinkinase- und Transmembrandomäne von LuxQ können ausgeschlossen werden.

3.7 Verkürzte LuxQ- und LuxN-Derivate

rungsraten aufweist als LuxN, findet der Phosphotransfer auf LuxU langsamer statt. Durch die Bindung und den langsamem Phosphotransfer von LuxQ auf LuxU wird das Substrat LuxU der schnelleren Kinase LuxN entzogen und die Menge an phosphoryliertem LuxU reduziert.

Die vorhergesagte Domänenstruktur von LuxQ (Neiditch et al., 2005) enthält zwei Transmembranbereiche (AS Positionen 1-38 und 281-298), die eine periplasmatische Schleife, bestehend aus zwei PAS-Domänen (AS 39-280), flankieren. An diesen PAS-Domänen ist das
periplasmatische Bindeprotein LuxP konstitutiv gebunden. Des Weiteren enthält LuxQ die
cytoplasmatischen HAMP- (AS 299-350) und PAS-Domänen (AS 365-459), einen coiled-coil-
Bereich (AS 462-491) sowie die Histidinkinase-Domäne (AS 489-711) und die Empfängerdom-
äne eines Antwortregulators (AS 736-851). Der Transmemranbereich von LuxN mit neun
transmembranen Helices (Jung et al., 2007) umfasst die Aminosäuren 1-303, des Weiteren
enthält LuxN eine Histidinkinasedomäne (463-685, ProDom Domäne PDAOK485) und die
Empfängerdomäne eines Antwortregulators (727-840, ProDom Domäne PD000039).

Anhand dieser Domänenstruktur der Hybridsensorkinasen wurden verkürzte LuxQ- und
LuxQ(299-859) besteht aus HAMP- und PAS-Domäne, dem Coiled-coil-Bereich sowie der
Histidinkinase- und Empfängerdomäne, LuxQ(475-859) besteht aus Coiled-coil-Bereich, His-
idinkinase- und Empfängerdomäne, während LuxQ(733-859) nur die Empfängerdomäne ei-
nes Antwortregulators besitzt. Entsprechend bestehen LuxN(454-849) aus Histidinkinase- und
Empfängerdomäne und LuxN(719-849) lediglich aus der Empfängerdomäne eines Antwort-
regulators. Die Aminosäurepositionen beziehen sich jeweils auf das Wildtyp-Protein von
LuxQ und LuxN.

3.7.1 Heterologe Überproduktion der verkürzten Derivate

Die verkürzten LuxQ- und LuxN-Derivate wurden in dem *E. coli* -Stamm TKR2000, trans-
formiert mit den Plasmiden pNKQ(299-859), pNKQ(475-859), pNKQ(733-859), pNKN(454-
849) bzw. pNKN(719-849), heterolog überproduziert. Durch immunologischen Nachweis des
His-Tags der Proteine wurde die Produktion und Lokalisation überprüft. Lediglich LuxQ(475-
859) mit einem relativen Molekulargewicht von 44,4 kDa wurde in ausreichenden Mengen
produziert und lag nahezu vollständig in der löslichen Fraktion vor (Abbildung 3.20A). Die
anderen verkürzten Proteine wurden entweder nicht produziert oder unterlagen einem star-
ken proteolytischen Abbau. Dies war auch schon für weitere verkürzte LuxN-Derivate be-
schrieben worden (Timmen, 2005).

LuxQ(475-859) konnte aus dem Cytosol mittels Ni²⁺-NTA-Affinitätschromatographie an-
gereichert werden. In Abbildung 3.20B ist das erste Eluat der Ni²⁺-NTA-Affinitätschro-
matographie gezeigt. Ungefähr 70% der Proteine im ersten Eluat können LuxQ(475-859)
zugeordnet werden. Die verkürzte Form von LuxQ zeigte in *in vitro*-Experimenten keinen
Phosphotransfer auf LuxU (Daten nicht gezeigt). Das verkürzte LuxQ-Derivat schien daher
in einer inaktiven Form vorzuliegen.

3.7.2 Einfluss von LuxQ(475-859) auf die LuxN-Kinaseaktivität

Man kann sehen, dass ebenfalls das verkürzte LuxQ-Derivat, das nur aus der Antwortregulatordomäne von LuxQ besteht, eine reduzierende Wirkung auf die LuxN-abhängige Phosphorylierung von LuxU hatte. Wurden die Proteine LuxN und LuxQ(475-859) in einem molaren Verhältnis von 1 : 1 eingesetzt, lag die Phosphorylierungsrate bei ungefähr 35%. Dies bestätigt die auf Versuchen mit LuxQ/LuxN-Chimären beruhende Hypothese, dass nur die Antwortregulatordomäne von LuxQ zur Reduktion der LuxN-Aktivität benötigt wird (Schön, 2007).

3.7.3 Überproduktion und Untersuchung von verkürzten LuxN- und LuxQ-Derivaten als Trx-Hybridprotein

Um diese Aussage zu bestätigen, sollte die Empfängerdomäne eines Antwortregulators, der nicht an dem Quorum sensing-System beteiligt ist, als Negativkontrolle eingesetzt werden. Der Antwortregulator KdpE des KdpD-KdpE-Systems von \(E. coli\) würde sich hierfür eignen.
3.8 Heterologe Überproduktion von LuxO in *E. coli*

Um die Löslichkeit sowie Aktivität von LuxO zu erhöhen, wurden im Rahmen dieser Doktorarbeit unterschiedliche Ansätze getestet. Diese sind im Folgenden kurz beschrieben:

- Durch veränderte Aufschlussbedingungen sollte die Bildung von Einschlusskörpern verringert werden.
- Die Überproduktion von LuxO als Hybridprotein mit einem extrem löslichen Protein wie z.B. Thioredoxin (Trx) sollte zur Erhöhung der Löslichkeit von LuxO führen.
- Die Kultivierungsbedingungen sollten verändert werden, hierbei wurden die Kultivierungsstemperatur und die IPTG-Konzentration zur Induktion erniedrigt.
- Die Überproduktion einzelner LuxO-Bereiche als LuxO/NtrC-Chimärprotein sollte getestet werden.

Im Folgenden sind Herangehensweise und Ergebnisse aller angewandten Methoden beschrieben.
3.8.1 Heterologe Überproduktion und Lokalisation von LuxO

Die Kultivierung erfolgte aerob bei 37°C, die Expression von *luxO* wurde durch Zugabe von 0,5 mM IPTG induziert.

3.8.1.1 Aufschlussbedingungen

Häufig werden Einschlusskörper erst beim Aufschließen der Zellen gebildet. Um dies zu verhindern, wurden die Zellen in Puffern resuspendiert, die verschiedene Konzentrationen NaCl bzw. KCl enthielten, und mittels Ultraschall aufgeschlossen. Die Zellen wurden fraktioniert (vergl. Kapitel 2.5.6), die Menge an LuxO wurde in den einzelnen Fraktionen immunologisch nachgewiesen und quantifiziert (vergl. Kapitel 2.5.4).

Die graphische Darstellung in Abb. 3.22 zeigt die prozentuale Verteilung von LuxO im Pellet nach niedertouriger Zentrifugation, im Cytoplasma, sowie im Pellet nach hochtouriger Zentrifugation. Man kann eine deutliche Korrelation zwischen der NaCl-Konzentrationen im Aufschlusspuffer und der Löslichkeit von LuxO erkennen (Abb. 3.22A). Die Löslichkeit nahm mit steigender NaCl-Konzentration zu und erreichte ihr Maximum bei 0,2 M NaCl. Über 70% des LuxO lagen im Cytoplasma vor. Bei noch höheren Konzentrationen war jedoch eine Abnahme der Löslichkeit zu erkennen.

Es besteht ebenfalls eine Abhängigkeit der LuxO-Löslichkeit von der KCl-Konzentration im Aufschlusspuffer (Abb. 3.22 B). Die Löslichkeit ist bei einer KCl-Konzentration von 0,05 bis 0,15 M am höchsten (ca. 40% liegen löslich vor), allerdings führte KCl im Vergleich zu NaCl lediglich zu einer geringen Erhöhung der Löslichkeit. Im Gegensatz zu der Abhängigkeit der Löslichkeit von der NaCl- und KCl-Konzentration im Aufschlusspuffer zeigte die Gegenwart von CaCl$_2$ im Aufschlusspuffer keinen Einfluss (Daten nicht gezeigt).

3.8.1.2 Ni$^{2+}$-NTA-Affinitätschromatographie

Da LuxO löslich produziert werden konnte, sollte das Protein mit C-terminalem His-Tag mittels Ni$^{2+}$-NTA-Affinitätschromatographie aus dem Cytosol angereichert werden. Die Zellen wurden in Gegenwart von 0,2 M NaCl oder KCl im Aufschlusspuffer aufgeschlossen. Die Affinitätschromatographie wurde wie in Kapitel 2.5.8 beschrieben durchgeführt. Es konnte auch unter sehr unspezifischen Bedingungen (ohne Salz und Imidazol im Äquilibrierungs- und Waschpuffer) kein LuxO angereichert werden (Daten nicht gezeigt).

Daher wurde der His$_6$-Tag (LuxO-6His) gegen einen His$_{12}$-Tag (LuxO-12His) ausgetauscht. Hierzu wurden in dem Plasmid sechs weitere Kodons für Histidin eingefügt, so dass während der Translation nun zwölf Histidine C-terminal angehängt wurden (pT-LuxO-2). Auch eine Verlängerung des His-Tags führte nicht zu einer Anreicherung von LuxO (Daten nicht gezeigt). Der His-Tag schien nicht zugänglich zu sein.
Aus diesem Grund wurde ein His-Tag am N-Terminus des Proteins (Plasmid pT-LuxO-2) angebracht und das Protein im *E. coli*-Stamm BL21(DE3)/pLysS überproduziert. Befindet sich ein His-Tag am N-Terminus, konnte das LuxO nicht durch Immunodetektion nachgewiesen werden. Es scheint, dass in diesem Fall das Protein nicht produziert oder proteolytisch abgebaut wurde.

3.8.1.3 Anionenaustauschchromatographie

Da LuxO aber nur in der löslichen Fraktion vorlag, wenn der Aufschlusspuffer Salz enthielt, wurde erst ein Vorversuch durchgeführt, um zu sehen, ob unter diesen Bedingungen ausreichend Protein an das Säulenmaterial bindete. Als Material wurde Q Sepharose Fast Flow (Pharmacia Biotech) verwendet. Zehn verschiedene Ansätze mit jeweils 150 µl Sepharose wurden in Eppendorfgefäße gegeben und mit Puffer [10 mM Tris pH 7,5; 10% Glycerol und 2 mM DTT] mit variierenden KCl-Konzentrationen (0 bis 0,45 M KCl) equilibriert. Zu jedem Ansatz wurde 1 ml Cytosol (9,5 mg Protein/ml, 50 mM KCl) zugegeben, gemischt und 10 min inkubiert. Nachdem sich das Gel abgesetzt hat, wurde der Überstand (Durchfluss) abgenommen und durch 12,5%ige SDS-PAGE aufgetrennt. Der immunologische Nachweis von LuxO erfolgte mit dem polyklonalen Antikörper gegen 10His-LuxO (Timmen, 2005). Auch bei der geringsten KCl-Konzentration wurde LuxO nicht an die Sepharose gebunden. Aus diesem Grund wurde die Reinigung mittels Anionenaustauschchromatographie nicht weiter verfolgt.

3.8.1.4 Phosphorylierung des Cytosols

LuxO konnte zwar löslich in ausreichenden Mengen überproduziert werden, es war aber bisher nicht möglich, das Protein anzureichern. Aus diesem Grund wurde Cytosol des *E. coli*-Stamms BL21(DE3)/pLysS mit überproduziertem LuxO-6His für den Phosphotransfer von LuxU auf LuxO verwendet. Cytosol von *E. coli* BL21(DE3)/pLysS, transformiert mit dem Leervektor pT7-5, diente in den Phospho-

3.8.2 Heterologe Überproduktion und Reinigung von Trx-LuxO

LuxO besitzt sechs Cysteine, die möglicherweise an der Ausbildung von Disulfidbrücken beteiligt sind. Unter den reduzierenden Bedingungen im Cytoplasma von *E. coli* könnte es daher zu einer fehlerhaften Konformation des Proteins kommen (Makrides, 1996). In dem *E. coli*-Stamm Origami B erlauben die Deletionen des *trxB*-Gens, das für die Thioredoxin-Reduktase kodiert, und des *gor*-Gens, welches für die Glutathion-Reduktase kodiert, die Ausbildung von Disulfidbrücken im Cytoplasma. Auf diese Weise können Disulfidbrückenenthaltende Proteine korrekt gefaltet und in löslicher Form heterolog überproduziert werden. Des Weiteren kann die Löslichkeit von Proteinen durch einen Thioredoxin-Tag erhöht werden (LaVallie et al., 1993). Thioredoxin (Trx) ist ein sehr kleines Protein, das sich durch eine sehr hohe Löslichkeit und Stabilität im Cytoplasma auszeichnet.

Melanie Timmen (2005) konnte *luxO* in den Vektor pET32a klonieren und LuxO als Hybridprotein mit Thioredoxin und His-Tag heterolog in *E. coli* Origami B überproduzieren. Doch auch mit diesem Expressionssystem, gekoppelt an besondere Wachstumsbedingungen (25°C, KML-Medium mit 2,5 mM Betain, Induktion mit 0,25 mM IPTG bei gleichzeitigem Osmostress mit 0,4 M Saccharose), wurde Trx-LuxO lediglich in sehr geringen Mengen löslich produziert und ließ sich nicht anreichern.

3.8.2.1 Kultivierungsbedingungen

Im Rahmen dieser Arbeit wurde die Kultivierung bei niedrigen Temperaturen durchgeführt (18 - 25°C), um die korrekte Faltung der Proteine bei einer langsamen Produktion zu ermöglichen und somit lösliches LuxO zu erhalten. Ebenfalls wurde die Konzentration an IPTG zur Induktion noch weiter reduziert. Die Zellen wurden aerob in LB-Medium kultiviert, aufgeschlossen und fraktioniert (Kapitel 2.5.6). Anschließend wurde Trx-LuxO mittels Immunodetektion des His-Tags in den einzelnen Fraktionen nachgewiesen und quantifiziert.

Die heterologe Überproduktion von Trx-LuxO wurde bei Konzentrationen von 0,1 bis 0,5 mM IPTG durchgeführt. Während bei einer Konzentration von 0,1 bis 0,2 mM IPTG eine deutliche geringere Proteinmenge nachweisbar war, war die LuxO-Produktion ab einer Konzentration von 0,25 mM maximal (Daten nicht gezeigt). Aus diesem Grund wurden alle folgenden Überproduktionen von Trx-LuxO bei 0,25 mM IPTG durchgeführt.

Wie schon von Melanie Timmen (2005) gezeigt, war bei Standard-Kultivierungsbedingungen (37°C) sowie bei Erniedrigung der Temperatur auf 25°C nahezu kein lösliches
Trx-LuxO vorhanden. Im Rahmen dieser Doktorarbeit konnte gezeigt werden, dass der Anteil an löslichem Trx-LuxO erst bei einer Temperatur von 18°C deutlich erhöht war. Bei dieser Temperatur zeigten die Zellen ein sehr langsames Wachstum mit einer Verdopplungszeit von mehr als 4h während der exponentiellen Phase. Nach Induktion mit 0,25 mM IPTG für 20h und anschließender Fraktionierung wurde der His-Tag von Trx-LuxO (68 kDa) mittels Immunoblot nachgewiesen. Wie man in Abbildung 3.24 sehen kann, lagen ca. 60% von Trx-LuxO in der löslichen Fraktion vor.

In der Cytoplasmafraktion ist ein weiteres Protein mittels Penta-His-AK nachweisbar, welches in den anderen Fraktionen nicht vorhanden ist. Hierbei handelt es sich vermutlich um ein Abbauprodukt von Trx-LuxO.

Aufgrund dieser Ergebnisse wurden die Zellen bei einer Temperatur von 18°C kultiviert und die Expression mit 0,25 mM IPTG induziert. Der Aufschlusspuffer enthielt PMSF als Proteaseinhibitor. Auf die Zugabe von Salz beim Aufschluss wurde verzichtet, da dadurch die Löslichkeit von Trx-LuxO verringert wurde (Daten nicht gezeigt).

3.8.2.2 Anreicherung von Trx-LuxO aus dem Cytoplasma Das lösliche Trx-LuxO wurde aus dem Cytosol mittels Ni$^{2+}$-NTA-Affinitätschromatographie angereichert (vergl. Kapitel 2.5.8) und gegen Dialysepuffer [50 mM Tris/HCl, pH 8,0; 10 % Glycerol; 200 mM KCl; 2 mM DTT] dialysiert. In Abbildung 3.25 ist die Anreicherung von Trx-LuxO mittels Ni$^{2+}$-NTA-Affinitätschromatographie gezeigt. Das Hybridprotein Trx-LuxO konnte angereichert werden, allerdings waren deutliche Verunreinigungen durch andere Proteine zu sehen, die auf unspezifische Bindungen zurückzuführen sind. Aufgrund dieser Verunreinigungen kön-
nen lediglich ca. 50% des Gesamtproteins in der ersten Elutionsfraktion LuxO zugeordnet werden.

![Coomassie-gefärbtes Gel nach 12,5%iger SDS-PAGE]

Abbildung 3.25: Reinigung von Thioredoxin-LuxO. Gezeigt ist ein Coomassie-gefärbtes Gel nach 12,5%iger SDS-PAGE. MF Membranfraktion. CP Cytoplasmafraktion. DF Durchfluss. WF1+WF2 Waschfraktionen 1 und 2. E1-E3 Elutionsfraktionen 1-3. Der Pfeil markiert Trx-LuxO.

3.8.2.3 Proteolytische Abspaltung von Thioredoxin

Zwischen Thioredoxin und dem N-Terminus von LuxO befand sich ein Linker, der neben einem His-Tag Erkennungssequenzen für die Proteasen Thrombin und Enterokinase enthielt. Vorversuche zeigten, dass die Proteolyse mit Enterokinase den unspezifischen Abbau des Proteins zur Folge hatte (Daten nicht gezeigt). Die Inkubation mit Thrombin jedoch führte zu einer spezifischen Abspaltung des Trx-Tags von dem 68 kDa großen Hybridprotein Trx-LuxO. Neben dem Trx-Tag wird ebenfalls der His-Tag abgespalten, so dass die Immunodetektion mit dem Penta-His-AK ein 8 kDa großes Fragment nachweist, bestehend aus Trx- und His-Tag. Abb. 3.26 zeigt die Immunodetektion bzw. Coomassiefärbung nach 15%iger SDS-PAGE von mit Thrombin inkubiertem LuxO, aufgetragen wurden jeweils 4 µg Trx-LuxO pro Spur. Die Inkubation mit Thrombin war bei 20°C mit 5 U/mg Protein nach 1h, mit 1 U/mg Protein nach 3h vollständig. Trx-LuxO war ohne Zugabe von Thrombin bei Inkubation für mindestens 7,5h bei 20°C stabil (Abb. 3.26 Spur 1).

Aufgrund dieser Ergebnisse wurde das Protein mit 1 U Thrombin/mg Protein für 3 h bei 20°C inkubiert und danach mit dem „Biotinylated Thrombin Capture“-Kit von Thrombin befreit.
Abbildung 3.26: Thrombinbehandlung von Thioredoxin-LuxO. Gezeigt ist die Immunodetection bzw. Coomassiefärbung von Thrombin-behandeltem Trx-LuxO (4 µg/Spur) nach 15%iger SDS-PAGE. Die Inkubation wurde bei 20°C durchgeführt. Spur 1 Inkubation für 7,5h ohne Thrombin. Spur 2-4 Inkubation für 1/3/7,5h mit 0,05 U Thrombin/10 µg Protein. Spur 5-7 Inkubation für 1/3/7,5h mit 0,01 U Thrombin/10 µg Protein. Spur 8 Inkubation für 7,5h mit 0,005 U Thrombin/10 µg Protein. Spur 9 Inkubation für 7,5h mit 0,01 U Thrombin/10 µg Protein, Coomassiefärbung. Die Pfeile markieren Trx-LuxO (Schwarz), LuxO (Grau) bzw. Trx mit His-Tag und Linker (Hellgrau).

LuxO-K167A (0,5 - 2 µg) wurden mit 1 mM ATP inkubiert und anschließend die Menge an freiem Phosphat bestimmt (vergl. Kapitel 2.5.14).

Angereichertes LuxO-K167A wies jedoch die gleiche ATPase-Aktivität auf wie WT-LuxO, was darauf schließen ließ, dass die gemessene ATP-Hydrolyse auf eine Verunreinigung durch ein anderes Protein mit ATPase-Aktivität zurückzuführen war. Wie man an Abb. 3.25 sehen kann, lag LuxO in den Elutionsfraktionen nicht in gereinigter Form vor, lediglich ca. 50% der Gesamtproteinnenge konnten LuxO zugeordnet werden.

Aufgrund des ATPase Assays konnte nicht nachgewiesen werden, ob LuxO in aktiver Form vorlag. Dies konnte aber auch nicht ausgeschlossen werden. Es ist denkbar, dass LuxO eine so geringe ATPase-Aktivität aufwies, dass sie aufgrund der Verunreinigungen, unter denen sich ein Protein mit sehr starker ATPase-Aktivität befinden könnte, so dass die Aktivität von LuxO nicht detektierbar war.

3.8.2.5 Phosphorylierung Angereichertes Trx-LuxO sowie LuxO nach Thrombinbehandlung wurden für Phosphorylierungsexperimente eingesetzt. Hierzu wurde LuxU wie in Kapitel 2.5.12 beschrieben phosphoryliert und angereichertes Trx-LuxO bzw. LuxO (0,67 µg/µl) zugegeben. Zu Zeitpunkten zwischen 0,5 und 60 min wurden Proben entnommen und die Reaktion mit SDS-Ladepuffer abgestoppt. Die Proteine (16 µg LuxO pro Spur) wurden mittels SDS-PAGE aufgetrennt, die Gеле wurden getrocknet und für mindestens 24h exponiert.

Es konnte kein phosphoryliertes Protein nachgewiesen werden, dass eindeutig LuxO zuzuordnen war (Daten nicht gezeigt). Alle phosphorylierten Proteine wurden in den Kontrollen ohne LuxO ebenfalls detektiert. Es wäre denkbar, dass phosphoryliertes LuxO zwar vorlag, das Signal aber aufgrund des alkali-labilen Anhydrids (Asp∼P) unter der Nachweigrenze lag. In diesem Falle wäre eine Abnahme der Menge an phosphoryliertem LuxU zu erwarten gewesen. Da dies nicht der Fall war, konnte davon ausgegangen werden, dass kein Phosphotransfer von LuxU auf LuxO stattfand.

Es war weder eine ATPase-Aktivität noch eine Phosphorylierung von LuxO nachweisbar. Es ist möglich, dass ein für die LuxO-Aktivität nötiger Co-Faktor nicht vorhanden war. Ein weiterer Grund ist, dass LuxO unter den beschriebenen Bedingungen nicht in aktiver Form zu produzieren und zu reinigen war. Es ist denkbar, dass die Kultivierungstemperatur von $18^\circ C$ die korrekte Faltung von LuxO verhinderte, so dass das Protein zwar löslich, aber nicht aktiv war. Ebenfalls könnte einer der nachfolgenden Behandlungsschritte (Zellaufschluss, Affinitätschromatographie, Thrombinbehandlung) zu einem Aktivitätsverlust geführt haben.

3.8.3 Weitere Expressionssysteme zur Überproduktion von LuxO

Da mit den in den Kapiteln 3.8.1 und 3.8.2 beschriebenen Expressionssystemen LuxO nicht in löslicher und aktiver Form überproduziert und angereichert werden konnte, wurden weitere Expressionssysteme getestet.

3.9 Überproduktion und Lokalisation von LuxO/NtrC-Chimären

Im Rahmen dieser Arbeit konnte die Löslichkeit von LuxO durch verschiedene Expressionssysteme und Kultivierungsbedingungen deutlich erhöht werden. Allerdings konnte durch keine der beschriebenen Methoden lösliches und aktives LuxO erhalten werden, das sich in vitro phosphorylieren ließ.

Anhand von Sequenzvergleichen konnte eine hohe Homologie zwischen LuxO und Proteinen der NtrC-Familie festgestellt werden. Mitglieder der NtrC-Familie besitzen wie LuxO eine Antwortregulator-Empfängerdomäne, eine AAA$^+$ ATPase-Domäne sowie eine DNA-Bindedomäne. Es sollten LuxO/NtrC-Chimäre hergestellt werden, welche die Antwortregulatordomäne von LuxO sowie die AAA$^+$ ATPase-Domäne und DNA-Bindedomäne von NtrC enthielten und vice versa. Ziel war es, im idealen Fall lösliche Chimäre zu produzieren, die für den in vitro-Phosphotransfer von LuxU auf LuxO eingesetzt werden können. Außerdem könnte das NtrC/LuxO-Chimär für DNA-Bindestudien eingesetzt werden.

3.9.1 Konstruktion der LuxO/NtrC-Chimären

Die Domänen des V. harveyi luxO-Gens und des E. coli ntrC-Gens wurden durch Primerfusionen während der PCR an sehr homologen und konservierten Bereichen ausgetauscht. Hierzu wurde ein Alignment der beiden Proteinsequenzen von LuxO aus V. harveyi und NtrC aus E. coli erstellt (siehe Anhang, Abb. 5.1 auf Seite 136).

Das Chimär LuxO/NtrC besaß somit die 143 N-terminalen Aminosäuren von LuxO und die Aminosäuren 151-469 von NtrC, entsprechend besaß das Chimär NtrC/LuxO die 150 N-terminalen Aminosäuren von NtrC und die Aminosäuren 144-453 von LuxO. Die LuxO/NtrC-Chimäre sind in Abbildung 3.27 schematisch dargestellt. Die kodierenden Bereiche wurden in das Plasmid pET-NtrC kloniert, die daraus resultierenden Plasmide wurden als pET-LuxO/NtrC und pET-NtrC/LuxO bezeichnet.

3.9.2 Lokalisation der LuxO/NtrC-Chimäre

Die Chimäre LuxO/NtrC, NtrC/LuxO sowie die WT-Proteine LuxO und NtrC wurden in *E. coli* BL21 (DE3)/pLysS überproduziert (vergl. Kapitel 2.3.1). Die Zellsuspension wurde durch Zentrifugation in lösliche und unlösliche Fraktionen sowie in die Membranfraktion unterteilt (vergl. Kapitel 2.5.6) und das Hybrid- bzw. Wildtypprotein durch Immunodetektion des N-terminalen His-Tags lokalisiert.

Die Lokalisation der Chimäre und Wildtypproteine zeigte, dass die Chimäre sowie LuxO-WT unlöslich und im Pellet der niedertourigen Zentrifugation lokalisiert waren (Abb. 3.28). Im Gegensatz dazu war das NtrC-WT-Protein zu 100% in der löslichen Fraktion zu finden. Die Löslichkeit von LuxO konnte weder durch den Austausch der ersten 150 Aminosäuren gegen die von NtrC noch durch den Austausch der letzten 300 Aminosäuren erhöht werden. Somit konnte keine Aussage bezüglich des Einflusses einzelner Domänen auf die Löslichkeit des Gesamtproteins gemacht werden. Die Eigenschaft, LuxO in Form von Einschlusskörpern zu bilden, ist nicht nur auf einen einzelnen Bereich des Proteins zurückzuführen.

3.10 Bestimmung der Löslichkeit von verkürzten LuxO-Derivaten

Mit Hilfe der LuxO/NtrC-Chimäre konnte kein Bereich innerhalb von LuxO bestimmt werden, der für die Unlöslichkeit von LuxO verantwortlich war. Um aber einen Bereich zu detektieren, den man gezielt zur Erhöhung der Löslichkeit verändern kann, wurden bioinformatische Analysen durchgeführt.

3.10.1 Bioinformatische Untersuchungen

Um die theoretische Löslichkeit des Antwortregulators LuxO bei einer Überproduktion in E. coli zu berechnen, wurden zwei Software-Programme genutzt, die mit unterschiedlichen Algorithmen arbeiten.

- Recombinant Protein Solubility Prediction, Universität Oklahoma

- PROSO, TU München

Die theoretischen Löslichkeiten für die einzelnen LuxO-Fragmente, die mit den beiden unterschiedlichen Algorithmen berechnet wurden, sind in Tabelle 3.2 wiedergegeben. Die berechneten Löslichkeiten der beiden Programme stimmen teilweise überein. Es kommen aber auch deutliche Abweichungen in den Vorhersagen vor, da beide Programme auf unterschiedliche Algorithmen zurückgreifen.

3.10.2 Konstruktion und Lokalisation verkürzter LuxO-Derivate

Aufgrund der bioinformatischen Studien mit den Programmen der Universität Oklahoma und Weihenstephan sollten die verkürzten Fragmente LuxO(1-110) und LuxO(191-264), überproduziert in *E. coli*, in der löslichen Fraktion zu finden sein. Für die beiden anderen Fragmente, bestehend aus den Aminosäuren 111-190 bzw. 265-453, wurden unterschiedliche Vorhersagen getroffen, was auf die unterschiedlichen Algorithmen, mit denen die beiden Programme arbeiten, zurückzuführen ist. Um diese Vorhersagen zu verifizieren und zu beurteilen, wurden verkürzte LuxO-Derivate in dem Expressionssystem *E. coli* BL21 (DE3)/pLysS überproduziert. Neben den vier Derivaten, welche jeweils die vier Bereiche mit unterschiedlicher Löslichkeit beinhalten, wurden ebenfalls alle in Tabelle 3.2 angegebenen Kombinationen der
Tabelle 3.2: Vorhersagen zur Löslichkeit der LuxO-Fragmente. Die Vorhersagen beziehen sich auf LuxO von *V. harveyi* mit N-terminalem His$_{10}$-Tag und einer Linkerregion von 9 Aminosäuren.

<table>
<thead>
<tr>
<th>Fragmente</th>
<th>PROSO löslich</th>
<th>PROSO Wahrsch.</th>
<th>Solubility Prediction löslich</th>
<th>Solubility Prediction Wahrsch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LuxO-WT(1-453)</td>
<td>nein</td>
<td>0,650</td>
<td>nein</td>
<td>0,586</td>
</tr>
<tr>
<td>LuxO(1-110)</td>
<td>ja</td>
<td>0,597</td>
<td>ja</td>
<td>0,632</td>
</tr>
<tr>
<td>LuxO(111-190)</td>
<td>ja</td>
<td>0,569</td>
<td>nein</td>
<td>0,926</td>
</tr>
<tr>
<td>LuxO(191-264)</td>
<td>ja</td>
<td>0,600</td>
<td>ja</td>
<td>0,614</td>
</tr>
<tr>
<td>LuxO(265-453)</td>
<td>ja</td>
<td>0,612</td>
<td>nein</td>
<td>0,618</td>
</tr>
<tr>
<td>LuxO(1-190)</td>
<td>ja</td>
<td>0,650</td>
<td>nein</td>
<td>0,669</td>
</tr>
<tr>
<td>LuxO(1-264)</td>
<td>nein</td>
<td>0,686</td>
<td>nein</td>
<td>0,572</td>
</tr>
<tr>
<td>LuxO(111-264)</td>
<td>ja</td>
<td>0,663</td>
<td>nein</td>
<td>0,730</td>
</tr>
<tr>
<td>LuxO(111-453)</td>
<td>nein</td>
<td>0,766</td>
<td>nein</td>
<td>0,665</td>
</tr>
<tr>
<td>LuxO(191-453)</td>
<td>nein</td>
<td>0,768</td>
<td>nein</td>
<td>0,546</td>
</tr>
</tbody>
</table>

Derivate hergestellt.

Die Derivate LuxO(1-264), LuxO(1-190), LuxO(111-264), LuxO(265-453), LuxO(111-453) und LuxO(191-453) wurden in ausreichenden Mengen produziert und unterlagen keinem proteolytischen Abbau. Die Derivate mit einem geringen Molekulargewicht (LuxO(1-110), LuxO(111-190) und LuxO(191-264)) waren in den einzelnen Fraktionen schlecht nachzuweisen. Die Proteine wurden entweder in sehr geringen Mengen produziert oder unterlagen einem proteolytischen Abbau. Die Menge der verkürzten Proteine in den einzelnen Fraktionen wurde mittels ImageQuant quantifiziert, die prozentuale Verteilung der verkürzten LuxO-Derivate in den einzelnen Zellfraktionen ist in Abbildung 3.29 wiedergegeben.

Vergleicht man die theoretisch bestimmte Löslichkeit der verkürzten Derivate mit der experimentell bestimmten Löslichkeit, sieht man, dass es kaum Übereinstimmungen gab. Lediglich die Vorhersagen beider Software-Tools bezüglich des unverkürzten WT-LuxO(1-
Abbildung 3.29: Lokalisation der verkürzten LuxO-Derivate.

Die verkürzten LuxO-Derivate wurden in dem E. coli-Stamm BL21(DE3)/pLysS überproduziert und lokalisiert (Kapitel 2.5.6). Gezeigt ist die prozentuale Verteilung von LuxO im P Pellet der niedertourigen Zentrifugation, CP Cytoplasma und MF Membranfraktion.

453) stimmen mit den experimentellen Ergebnissen überein.

Wie in Tabelle 3.2 zu sehen ist, sollten das N-terminale Fragment LuxO(1-110) und das Fragment LuxO(191-264) löslich sein. Das Programm PROSO wiederum berechnete für alle kurzen Fragment (ebenso für die Fragmente LuxO(1-190) und LuxO(111-264)) eine theoretische Löslichkeit. Die experimentell bestimmte Löslichkeit der vier verkürzten Derivate LuxO(1-110), LuxO(111-190), LuxO(191-264) und LuxO(265-453) zeigte jedoch eine völlig andere Situation. Vor allem das als löslich vorhergesagte N-terminale Fragment war komplett unlöslich, während die Derivate LuxO(111-190) und LuxO(191-264) zu über 30% im Cytoplasma lokalisiert waren. Das C-terminale Fragment wiederum war unlöslich. Betrachtet man die kombinierten Derivate, die den N-terminalen Teil von LuxO beinhalten (LuxO(1-190) und LuxO(1-264)), scheinen die ersten 110 Aminosäuren von LuxO die alleine produzierten Bereiche AA 111-190 und AA 191-164 wieder unlöslich zu machen. Ebenfalls ist das Gesamtprotein unlöslich.

Die Aminosäuren 1-110 von LuxO scheinen demnach für die Unlöslichkeit des Gesamtproteins verantwortlich zu sein. Überraschend ist die Löslichkeit des Derivats LuxO(111-453),
das aus den löslichen Fragmenten LuxO(111-190) und LuxO(191-264) sowie aus dem unlöslichen Fragment LuxO(265-453) besteht. Hier scheinen die beiden löslichen Fragmente die Unlöslichkeit des C-terminalen Fragments wieder aufzuheben. Verwunderlich ist aber, warum das kombinierte Derivat LuxO(111-264), das nur aus den löslichen Fragmenten LuxO(111-190) und LuxO(191-264) besteht, komplett unlöslich war.

Die Ergebnisse zeigen, dass die Löslichkeit der einzelnen Fragmente nicht theoretisch vorherzusagen ist. Die Löslichkeit scheint sehr komplexen Regeln zu folgen, die die Berechnung unmöglich machen. Außerdem können zwei lösliche Fragmente nicht zu einem größeren löslichen Fragment zusammengefügt werden. Anhand der experimentellen Ergebnisse der vier einzelnen Fragmente LuxO(1-110), LuxO(111-190), LuxO(191-264) und LuxO(265-453) kann man sich aber auf zwei Bereiche konzentrieren, die man mit dem Ziel der erhöhten Löslichkeit verändern sollte. Dabei handelt es sich um die 110 N-terminalen und die 190 C-terminalen Aminosäuren.

3.11 „Rational Engineering“ von LuxO zur Erhöhung der Löslichkeit in Kooperation mit der Firma Sloning BioTechnology

Um LuxO hinsichtlich der Löslichkeit zu optimieren, wurde der Ansatz des Rational Engineering gewählt. In Kooperation mit der Firma Sloning BioTechnology sollten mit Hilfe der Slonomics™ Technologie verschiedene Varianten der verkürzten LuxO-Derivate hergestellt und charakterisiert werden. Christendat et al. (2000) zeigten für M. thermoautotrophikum, dass unlöschliche Proteine hydrophobe Cluster mit mehr als 20 AA, einen niedrigen Glutamingehalt (Q < 4%), wenige negativ geladene Reste (DE < 17%) und einen hohen Anteil an aromatischen Aminosäuren (TYW > 7,5%) aufweisen.

Um sicher zu gehen, dass sich die ausgewählten Aminosäuren an der Oberfläche von LuxO befanden und somit für die Unlöslichkeit von LuxO verantwortlich sein konnten, wurde die Struktur von LuxO durch Homologiemodellierung mit Hilfe von bekannten Strukturen

<table>
<thead>
<tr>
<th>Aminosäuren</th>
<th>Variante</th>
<th>Y295</th>
<th>F330</th>
<th>R340</th>
<th>Y344</th>
<th>N359</th>
<th>P376</th>
<th>R384</th>
<th>M410</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LuxO_C_V1</td>
<td>Y</td>
<td>F</td>
<td>R</td>
<td>Y</td>
<td>G</td>
<td>D</td>
<td>I</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>LuxO_C_V2</td>
<td>Y</td>
<td>F</td>
<td>R</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>LuxO_C_V3</td>
<td>Y</td>
<td>F</td>
<td>R</td>
<td>Y</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>LuxO_C_V4</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>L</td>
<td>G</td>
<td>P</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>LuxO_C_V5</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>G</td>
<td>P</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>LuxO_C_V6</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>L</td>
<td>G</td>
<td>D</td>
<td>I</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>LuxO_C_V7</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
3.12 Heterologe Überproduktion der Lux-Proteine in *R. sphaeroides*

Bisher wurden die *V. harveyi*-Proteine in unterschiedlichen *E. coli*-Stämmen heterolog überproduziert. LuxU und LuxP konnten in ausreichenden Mengen produziert und gereinigt werden. Im Gegensatz dazu konnte LuxO nicht in löslicher und aktiver Form in *E. coli* überproduziert werden. Die Überproduktion der Hybridsensorkinasen LuxN und LuxQ führte lediglich zu sehr geringen Mengen Protein im Vergleich zu der Überproduktion von *E. coli*-KdpD, obwohl das gleiche Expressionssystem verwendet wurde.

Demnach scheint das Expressionssystem nicht für die heterologe Überproduktion von cytosolischen Proteinen geeignet zu sein. Ob die membranständigen Proteine LuxQ und LuxN in R. sphaeroides erfolgreich überproduziert werden können, konnte im Rahmen dieser Arbeit nicht geklärt werden.
4 Diskussion

Im Vordergrund standen hierbei stets genetische Untersuchungen. Nur wenige biochemische Charakterisierungen, welche Details der Signalaufnahme und -weiterleitung beinhalten, liegen bisher vor. Die Hybridsensorkinase LuxN konnte biochemisch charakterisiert werden (Timmen et al., 2006). Ebenfalls konnte die Topologie von LuxN aufgeklärt werden (Jung et al., 2007). Der Antwortregulator LuxO konnte bisher lediglich in Form von Einschlusskörpern heterolog in *E. coli* überproduziert werden (Timmen, 2005), eine biochemische Charakterisierung und somit vollständige Rekonstruktion der Signalkaskade war daher nicht möglich. Ebenfalls wurde die Hybridsensorkinase LuxQ heterolog überproduziert aber noch nicht weiter charakterisiert.

4.1 Biochemische Untersuchungen der Hybridsensorkinase LuxQ

LuxQ von *V. harveyi* gehört zu der Familie der Hybridsensorkinasen und weist neben der Ähnlichkeit zu LuxN Ähnlichkeit zu anderen Hybridsensorkinasen auf, wie z.B. Sln1p von *Saccharomyces cerevisiae* (Lu et al., 2004) und CbbSR von *Rhodopseudomonas palustris* (Romagnoli und Tabita, 2007). Alle diese Proteine besitzen neben der Histidinkinasedomä-

ne eine Empfängerdomäne eines Antwortregulators, somit kommt es nach der Autophosphorylierung zu einem intramolekularen Phosphotransfer. Sequenzalignments (LALIGN, www.ch.embnet.org) ergaben zwei konservierte Phosphorylierungsstellen: Histidin 492 und Aspartat 785. Für die Hybridsensorkinase LuxQ werden drei verschiedene Aktivitäten vorge-hergesagt:

1. Hydrolyse von ATP und Autophosphorylierung an einem konservierten Histidinrest der Histidinkinasedomäne;

2. *intramolekularer* Phosphotransfer zu einem konservierten Aspartatrest der Empfängerdomäne eines Antwortregulators und *intermolekularer* Phosphotransfer zu dem HPt-Protein LuxU;

3. Dephosphorylierung von LuxU.

4.1.1 Charakterisierung der enzymatischen Aktivitäten von LuxQ

Für *in vitro*-Phosphorylierungen wurden invertierte LuxQ-haltige Membranvesikel mit radioaktivem ATP inkubiert. Bisher konnte kein phosphoryliertes LuxQ im Autoradiogramm detektiert werden. Auch für LuxN konnte lediglich eine sehr schwache Autophosphorylierung sichtbar gemacht werden (Timmen et al., 2006). Da die LuxQ-Kinaseaktivität aber geringer als die von LuxN ist, lag die Menge an phosphoryliertem LuxQ vermutlich unter der

Neben der Kinaseaktivität von LuxQ konnte ebenfalls die Phosphataseaktivität in vitro nachgewiesen werden. Wie LuxN zeigte LuxQ eine zeitabhängige Dephosphorylierung von LuxU. Innerhalb von einer Minute wurden ca. 80% von LuxU in einer LuxQ-spezifischen Reaktion dephosphoryliert. Danach nahm die Dephosphorylierungsgeschwindigkeit ab. An-
hand der schnellen Initialrate konnte eine spezifische Aktivität von 0,1 pmol/min x mg bestimmt werden. Für Asp785 konnte eine essentielle Rolle in der Dephosphorylierung von LuxU gezeigt werden. Das Derivat LuxQ-D785N zeigte keinerlei Phosphataseaktivität in in vitro Experimenten. Diese Rolle wurde auch schon für LuxN (Timmen et al., 2006) und für die Hybridsensorkinasen ArcB und EvgS in *E. coli* (Uhl und Miller, 1996a,b; Schuster et al., 2001) gezeigt. Während beide phosphatakzeptierenden Aminosäuren His492 und Asp785 essentiell für die Kinaseaktivität von LuxQ waren, zeigte das Derivat LuxQ-H492Q die gleiche Dephosphorylierungsrate wie WT-LuxQ. Hierauf kann man schließen, dass es nach der Dephosphorylierung von LuxU durch den konservierten Aspartatrest zu keinem intramolekularen Phosphotransfer auf den konservierten Histidinrest kommt.

Bisher konnte noch nicht gezeigt werden, ob die Phosphorylgruppe nach der Dephosphorylierung direkt freigesetzt oder erst an Asp785 gebunden wird. Eine schnelle Bindung der Phosphorylgruppe an Asp785 der Empfängerdomäne von LuxQ mit einer langsameren Freilassung würde den biphasischen Verlauf der Dephosphorylierung erklären.

Zusätzliche Stabilisierung der Asp~P-Bindung durch den Antwortregulator kann wie für den Antwortregulator Ssk1 in *S. cerevisiae* beschrieben zu einer Halbwertszeit von ungefähr 2 Tagen führen (Janiak-Spens et al., 1999). Ebenfalls scheinen Acylphosphate in thermophilen Proteinen im Gegensatz zu deren mesophilen Counterparts stabilisiert zu sein, was sich ebenfalls durch eine längere Halbwertszeit bemerkbar macht (Swanson et al., 1996; Goudreau et al., 1998).

Bisher liegen noch keine biochemischen Daten über die Phosphorylierung von LuxO vor. Für das Quorum sensing-System von *V. harveyi* ist bisher noch nichts über eine Autophosphataseaktivität oder eine intrinsische Stabilisierung von LuxO bekannt. Daher liefert die Phosphataseaktivität von LuxN und LuxQ die einzige bekannte Möglichkeit, das Gleichgewicht aktiv in die unphosphorylierte Form der Proteinkomponenten zu bringen.

4.1.2 Einfluss von LuxP und Autoinduktor-2 auf LuxQ

Konzentration von 25 μM um maximal 40% reduziert werden, eine halbmaximale Reduktion war bei ungefähr 5 μM zu sehen.

4.1.3 Vergleich der enzymatischen Aktivitäten von LuxQ und LuxN

Die enzymatischen Aktivitäten von LuxQ wurden mit denen von LuxN verglichen. Es konnte gezeigt werden, dass die Kinaseaktivität von LuxN mit 0,44 pmol/min ungefähr 10 mal so hoch war wie die Kinaseaktivität von LuxQ. Nach 15 min Inkubation wurde die 8-fache Menge an phosphoryliertem LuxU detektiert. Ebenfalls unterschied sich die berechnete maximale Geschwindigkeit stark zwischen den beiden Proteinen. Der bestimmte K_m-Wert für ATP von 609 μM (LuxN) bzw. 984 μM (LuxQ) lag jedoch im gleichen Bereich. Außerdem lag der K_m-Wert für ATP in der gleichen Größenordnung wie die der CheA-Histidinkinasen von *Escherichia coli* (770 μM) und *Rhodobacter sphaeroides* (250 μM für CheA1 und 610 μM für CheA2) (Porter und Armitage, 2002).

4.2 Mathematische Modellierung des HAI-1- und LuxP/AI-2-abhängigen Signalwegs

Die Menge an phosphoryliertem LuxU stellt einen gewichteten Mittelwert zwischen den Signalen der einzeln betrachteten Signalwege dar. Die Gewichtung bzw. die relative Stärke der beiden Signalwege wird durch die Konstante τ ($0<\tau<1$) dargestellt. Jeder Autoinduktor reduziert die Kinaseaktivität der entsprechenden Hybridsensorkinase um einen gewissen Wert. Die maximale Reduktion konnte erst durch die Kombination der beiden Autoinduktoren erreicht werden. Dieses Ergebnis steht im Einklang mit in vivo-Experimenten, in denen gezeigt werden konnte, dass die Expression bestimmter Gene nur in Anwesenheit beider Autoinduktoren maximal ist (Mok et al., 2003).

Abbildung 4.2 zeigt das dreidimensionale Modell des Einflusses der Autoinduktoren auf den LuxU\simP-Output für $\tau=0.7$. Die präsentierten Tendenzen waren unabhängig von dem wahren Wert τ, der lediglich die relative Signalstärke beider Autoinduktoren im kombinierten LuxN/LuxPQ/LuxU-System beeinflussen würde.

Durch das Modell konnte die Menge an phosphoryliertem LuxU bei einer Konstante $\tau=0.7$ nicht unter 45% gesenkt werden. Da HAI-1 die Kinaseaktivität auf ca. 30% reduziert, wäre zu erwarten gewesen, dass die Menge an phosphoryliertem LuxU in Anwesenheit von LuxN und HAI-1 sowie LuxPQ und AI-2 noch weiter reduziert wird. Dies war im mathematischen Modell nicht der Fall. Für diese subadditive Reduktion sind zwei Erklärungen möglich: entweder wird durch den biochemischen Downstream-Prozess ein scharfer Schwellenwert geschaffen, sodass eine geringe Reduktion der Menge an phosphoryliertem LuxU durch Zugabe des zweiten Autoinduktors bestimmte Gene vollständig exprimiert werden können. Ein solcher Schwellenwert kann durch das Equilibrium einer enzymatischen Um-
Abbildung 4.2: Dreidimensionale Darstellung des Einflusses der Autoinduktor-Konzentration auf den LuxU-P Output. Dreidimensionale Darstellung des kombinierten Einflusses der HAI-1 und AI-2 Konzentration auf den LuxU-P Output. \(\tau = 0,7 \)

...wandelung eines Moleküls zwischen zwei unterschiedlichen Formen wie z.B. phosphorylierter und nicht-phosphorylierter Zustand erreicht werden (Goldbeter und Koshland, 1981).

4.3 Wechselwirkungen der Hybridsensorkinasen LuxQ und LuxN

Da das mathematische Modell für den kombinierten LuxN- und LuxQ-Signalweg auf einen zusätzlichen, bisher noch nicht berücksichtigten Effekt hinwies, wurden die beiden Sensorkinasen gemeinsam in vitro untersucht. Die Reaktionsansätze enthielten LuxN- und LuxQ-haltige invertierte Membranvesikel, gereinigtes LuxU sowie radioaktiv-markiertes ATP. Überraschenderweise wurde auf diese Weise weniger LuxU phosphoryliert, als wenn LuxN alleine eingesetzt wurde. Die Anwesenheit von LuxQ schien also die Kinaseaktivität von LuxN negativ zu beeinflussen. Die Reduktion der LuxN-Kinaseaktivität nahm mit zunehmender Menge an LuxQ zu, der Einfluss war also konzentrationsabhängig. Es konnte eine Reduktion der LuxN-Kinaseaktivität um 80% beobachtet werden, wenn die Hybridsensorkinasen in einem äquimolaren Verhältnis eingesetzt wurden.

Da die Inkubation von LuxN mit Membranen, die kein LuxQ enthielten, keinen negativen Effekt zeigte, kann davon ausgegangen werden, dass nicht die zusätzliche Proteinmenge die inhibitorische Komponente darstellt. Es handelt sich um einen LuxQ-spezifischen Effekt.

Um auszuschließen, dass die Reduktion der Kinaseaktivität auf die Phosphataseaktivität der zugegebenen Sensorkinase zurückzuführen ist, wurde der Einfluss von LuxQ-D785N auf LuxN untersucht. Bei der Inkubation mit radioaktiv markiertem ATP konnte der gleiche Einfluss auf die Kinaseaktivität gezeigt werden.

Die Phosphataseaktivität wurde durch das Zusammenspiel der beiden Sensorkinasen nicht

Durch die biochemische Untersuchung des Zusammenspiels der Hybridsensorkinasen konnte eine Heterodimerbildung zwischen LuxN und LuxQ ausgeschlossen werden. Die Proteine lagen in Form von invertierten Membranvesikeln vor, die getrennt hergestellt wurden, eine Heterodimerbildung war daher nicht möglich. Die Verhinderung der gegenseitigen Phosphorylierung und somit Reduktion der Kinaseaktivität kann nicht zur Erklärung des beobachteten Effekts herangezogen werden.

4.3.1 Einfluss der LuxN/LuxQ-Chimäre auf die LuxN-Kinaseaktivität

Die durch in vitro-Experimente erlangten Daten gehen aber noch einen Schritt weiter. Während Neiditch und Koautoren die Reduktion an phosphoryliertem LuxU auf die Phos-

4.3.2 Verkürzte LuxQ- und LuxN-Derivate

Um zu bestätigen, dass die Empfängerdomäne einer Hybridsensorkinase die Aktivität der anderen beeinflussen kann, und die Wechselwirkungen zwischen den Proteinen genauer zu definieren, sollten Interaktionsstudien durchgeführt werden. Es wurden verkürzte LuxQ und LuxN-Derivate hergestellt, mit denen der Einfluss auf die Kinaseaktivität bestätigt werden sollte, und die für Proteininteraktionsstudien eingesetzt werden konnten. Für die Hybridsensorkinase ArcB von *E. coli* konnte gezeigt werden, dass die drei enzymatischen Domänen (HisKA, RR, HPt) ohne kovalente Bindung zu den anderen Domänen in der Lage sind, sich korrekt zu falten und katalytisch aktive Einheiten zu bilden (Georgellis et al., 1997). Ebenfalls konnte Neiditch et al. (2006) zeigen, dass die alleine produzierte Empfängerdomäne von LuxQ aktiv ist. Daher wurde angenommen, dass auch einzelnen Domänen von LuxQ und LuxN, wenn sie einzeln produziert werden, korrekt gefaltet vorliegen und Wildtypverhalten in biochemischen Experimenten zeigen.

Es wurden verkürzte LuxQ-Derivate hergestellt, die aus HAMP-, PAS-, Histidinkinase- und Empfängerdomäne (LuxQ(299-859)), Histidinkinase- und Empfängerdomäne- (LuxQ(475-859)) bzw. nur aus der Empfängerdomäne (LuxQ(733-859)) bestanden. Von LuxN wurden Derivate bestehend aus Histidinkinase- und Empfängerdomäne- (LuxN(454-849)) bzw. nur aus der Empfängerdomäne (LuxN(719-849)) hergestellt. Da diese verkürzten Derivate keine Transmembranhelices aufwiesen, sollten sie löslich im Cytoplasma vorliegen.

Das Protein LuxQ(475-859) konnte in ausreichender Menge heterolog produziert und aus der cytosolischen Fraktion von *E. coli* gereinigt und für Phosphorylierungsexperimente eingesetzt werden. Es zeigte jedoch keine Kinaseaktivität, weder konnte die Autophosphorylierung direkt noch indirekt durch den Phosphotransfer auf LuxU im Autoradiogramm gezeigt werden. Die Annahme, dass einzelne Domänen enzymatische Aktivität aufweisen,
wie das für ArcB gezeigt werden konnte, bestätigte sich nicht. Das verkürzte LuxQ-Derivat hatte die gleiche hemmende Wirkung auf die LuxN-Kinaseaktivität.

Die *in vitro*-Phosphorylierung zeigte auch für das verkürzte LuxQ-Derivat eine deutliche und konzentrationsabhängige Reduktion der LuxN-Kinaseaktivität. Die anderen verkürzten Proteine (LuxQ(733-859), LuxN(454-849) und LuxN(719-849)) unterlagen vermutlich einem proteolytischen Abbau während der Kultivierung der Zellen.

Anhand der experimentell gewonnenen Daten konnte das von Carolin Schön (2007) erstellte Modell der sich gegenseitig in ihrer Aktivität reduzierenden Hybridsensorkinasen erweitert werden. Das Modell ist in Abb. 4.3 dargestellt.

Es wird postuliert, dass das Protein LuxQ das Substrat LuxU bindet, um es zu phosphor ylieren und somit verhindert, dass LuxN mit einer höheren Phosphorylierungsrate LuxU phosphorylieren kann. Da LuxQ eine zehnfach geringere Kinaseaktivität aufweist als LuxN, wird LuxU vermutlich länger an LuxQ gebunden. Auf diese Weise entsteht eine Konkurrenz um LuxU, das durch die Bindung an LuxQ der Phosphorylierung durch LuxN entzogen wird.

Neben der Konkurrenz um das Substrat LuxU stellt eine mögliche Kooperativität von LuxU eine weitere Erklärung des beobachteten Phänomens dar. LuxU könnte zwischen der

Um diese Hypothese zu bestätigen, wäre es sinnvoll, strukturelle Veränderungen von LuxU in der Anwesenheit der Proteine LuxN und LuxQ zu untersuchen. Sind strukturelle Unterschiede vorhanden, würde dies für eine Kooperativität von LuxU sprechen und die beobachteten Effekte der Antwortregulatordomänen der Hybridsensorkinasen könnten erklärt werden.
4.4 Heterologe Überproduktion von LuxO in *Escherichia coli*

Eine Alternative zu diesen Methoden stellt die gezielte Veränderung der Proteine dar, was als Rational Engineering bezeichnet wird (Eijsink et al., 2004). Des Weiteren ermöglicht die ungerichtete Mutagenese und das Screening nach einem bestimmten Phänotyp, Proteine mit verbesserten Eigenschaften zu finden. Dies wird als Directed Evolution bezeichnet (Roodveldt et al., 2005). Es gibt eine Reihe von Proteinen, die durch die Einführung kleiner kummulativer Effekte stabilisiert werden konnten (Wintrode et al., 2000; Lehmann et al., 2002; Dámico et al., 2003).

Im Rahmen dieser Arbeit wurden konventionelle Methoden sowie das Rational Engineering von Proteinen angewendet, um die Löslichkeit von LuxO zu erhöhen. Die angewendeten Ansätze führten nicht zu löslichem und aktivem LuxO. Die Phosphorylierungskaskade konnte daher nicht vollständig rekonstruiert werden. Im Folgenden werden die erzielten Ergebnisse diskutiert.
4.4.1 Veränderte Kultivierungs- und Induktionsbedingungen

Um LuxO als lösliches Protein in *E. coli* heterolog überzuproduzieren, wurden die Kultivierungs- und Induktionsbedingungen verändert. Die Überproduktion von Proteinen stellt eine unnatürliche Situation für die Wirtszelle dar, da hier eine sehr große Menge eines Proteins produziert wird. Aus diesem Grund ist es denkbar, dass sich die Zelle während der Produktion gegen die Anhäufung dieses Proteins wehrt. Dies kann durch Proteolyse oder durch Aggregation des fremden Proteins in Einschlusskörpern geschehen.

Einschlusskörper mit den Targetproteinen können auch erst während des Zellaufschlusses entstehen. Um die Bildung der Einschlusskörper während des Zellaufschlusses zu vermeiden, können Aufschlusspuffer durch Zugabe von Salz verändert werden. Es konnte gezeigt werden, dass die Zugabe von Salz, insbesondere von NaCl, im Aufschlusspuffer zu einer deutlich erhöhten Löslichkeit von LuxO führte. In Abhängigkeit der Salzkonzentration nahm der Anteil an löslichem LuxO zu, die maximale Menge war bei einer NaCl-Konzentration von 0,2 M zu detektieren. Auf diese Weise wurden über 70% von LuxO im Cytoplasma lokalisiert. Bei einer noch höheren Konzentration nahm die Löslichkeit wieder ab. die Anwesenheit von 0,05 - 0,15 M KCl erhöhte Ebenfalls die Löslichkeit, maximal konnten aber nur ca. 40% in der löslichen Zellfraktion nachgewiesen werden.

Eine weitere Möglichkeit stellt die Fusion von LuxO an bestimmte Proteine dar, bei denen
bekannt ist, dass sie die Löslichkeit des Targetproteins erhöhen. Ein bekannter Proteintag
stellt Thioredoxin (Trx) dar. Es handelt sich um ein sehr kleines und extrem lösliches Pro-
etin, das die Eigenschaften des Targetproteins bezüglich ihrer Löslichkeit beeinflussen kann.
Melanie Timmen (2005) konnte LuxO als Hybridprotein mit Trx in dem *E. coli*-Stamm
Origami B überproduzieren. Unter Standardkultivierungsbedingungen (aerob bei 37°C) war
LuxO aber dennoch unlöslich.

Aus diesem Grund wurde die Kultivierungstemperatur drastisch erniedrigt. Lösliches Pro-
etin war aber erst bei einer Temperatur von 18°C vorhanden. Unter diesen Bedingungen lagen
cia. 60% löslich im Cytoplasma vor. Trx-LuxO besitzt einen Linker, der neben einem His-Tag
auch eine Thrombin-Schnittstelle aufweist. LuxO konnte als Trx-Hybridprotein durch Ni²⁺-
NTA-Affinitätschromatographie angereichert und proteolytisch von Trx getrennt werden.
Das angereicherte Protein wies aber in Phosphorylierungsexperimenten keine Aktivität auf.
Auch mittels Acetylphosphat konnte kein LuxO in phosphoryliertem Zustand nachgewiesen
werden. Es war eine sehr geringe ATPase-Aktivität im Eluat nach der Affinitätschrooma-
tographie messbar. Die gleiche Aktivität war jedoch auch zu messen, wenn LuxO-K167A
für den ATPase-Assay eingesetzt wurde. Vermutlich ist die Aktivität auf Verunreinigungen
durch andere Proteine mit ATPase-Aktivität zurückzuführen.

Aufgrund der sehr niedrigen Kultivierungstemperatur lag LuxO vermutlich in einer nicht
correr gefalteten Konformation vor und zeigte daher keinerlei enzymatische Aktivitäten.

Die Zugabe von NaCl zum Aufschlusspuffer, bzw. die Kombination von der Fusion an
Trx und niedrige Kultivierungstemperatur führte zu einer erhöhten Löslichkeit. Wie aber
von Roodveldt et al. (2005) behauptet, wird hierbei die intrinsische Natur des Proteins nicht
verändert. Durch beide Ansätze wurde inaktives Protein erhalten.

Eine weitere Möglichkeit, um phosphorylierbares LuxO zu erhalten, stellt die Reinigung
und Renaturierung von LuxO aus Einschlusskörpern dar. Im Rahmen der Doktorarbeit von
Tina Odenbach (2008) wurde dieser Ansatz verfolgt. Erstmals konnte auf diese Weise LuxO
durch einen Phosphodonor mit geringem molekularen Gewichts phosphoryliert werden. In
Gegenwart von 0 M bis 0,5 M Harnstoff wurde Acetylphosphat an LuxO gebunden. Es könnte
sich hierbei aber auch um eine unspezifische Bindung handeln, da die Bindung ebenfalls in
Gegenwart von 2 M Harnstoff nachzuweisen war. Der Phosphotransfer von phosphoryliertem
LuxU auf LuxO konnte nicht gezeigt werden.
4.4.2 Herstellung von LuxO/NtrC-Chimären

Aufgrund der Sequenzähnlichkeit und Ähnlichkeit in der Domänenstruktur zwischen LuxO in *V. harveyi* und NtrC in *E. coli* ist die Idee entstanden, die Antwortregulatordomänen der beiden Proteine auszutauschen. Da NtrC sehr gut löslich und aktiv überproduziert und gereinigt werden kann (Foster-Hartnett et al., 1994), bestand die Hoffnung, dass durch den Austausch der Domänen ein lösliches Chimär erhalten werden kann. Es wurden zwei verschiedene Chimären hergestellt, das eine enthielt die Antwortregulatordomaine von LuxO sowie die AAA⁺ ATPase- und DNA-Bindedomäne von NtrC (LuxO/NtrC). Dieses Chimär könnte, wenn es löslich produziert und auch gereinigt werden kann, als Antwortregulator in der LuxN,LuxQ-LuxU-Phosphorylierungskaskade dienen. Das zweite enthielt die Antwortregulatordomaine von NtrC sowie die AAA⁺ ATPase- und DNA-Bindedomäne von LuxO (NtrC/LuxO). Dieses Chimär könnte für Protein-DNA-Interaktionsstudien eingesetzt werden.

Als Fusionsstelle wurde ein hochkonservierter Bereich zwischen Antwortregulator- und ATPase-Domäne ausgewählt. Die kodierenden Bereiche der Domänen beider Proteine konnten durch eine zweistufige PCR-Reaktion fusioniert werden, ohne dass Restriktionsschnittstellen eingebaut werden mussten. Beide Proteine konnten in *E. coli* in ausreichendem Maße produziert werden. Lokalisationsstudien zeigten jedoch, dass sowohl LuxO/NtrC als auch NtrC/LuxO unlöslich in Form von Einschlusskörpern vorlagen.

Anhand dieser Ergebnisse konnte die Unlöslichkeit von LuxO nicht auf einen bestimmten Bereich eingegrenzt werden. Wäre nur eines der beiden Chimären löslich gewesen, hätte man die unlösliche Sequenz zuordnen können. Demnach enthalten sowohl die Antwortregulatordomaine als auch die Effektordomäne, bestehen aus AAA⁺ ATPase- und DNA-Bindedomäne, unlösliche Bereiche. Der Austausch einer Domäne gegen eine konservierte Domäne eines in *E. coli* löslichen Proteins erhöht die Löslichkeit von LuxO nicht.

Als ein wichtiger Faktor bei der Proteinsynthese kann auch die Kodonabfolge betrachtet werden. So sind in allen Organismen bestimmte Kodons vorhanden, die als Pausesignale in der Translation fungieren. Irwin et al. (1995) konnten zeigen, dass bestimmte überrepräsentierte Codonpaare langsamer translatiert werden als andere Codonpaare. Diese Signale legen die Synthesegeschwindigkeit bestimmter Proteinbereiche fest und sorgen so für die Funktionalität des Proteins. Die Codons unterscheiden sich jedoch in den verschiedenen Organis-

Durch die heterologe Produktion von LuxO in *E. coli* oder auch die Fusion der beiden kodierenden Bereiche von LuxO und NtrC kann es zu einer unnatürlichen Kodonabfolge kommen, die wiederum die Translation beeinträchtigen und die Löslichkeit zusätzlich verringern könnte. Ein weiterer Ansatzpunkt, der im Rahmen dieser Arbeit aus zeitlichen Gründen nicht verfolgt werden konnte, ist die Analyse der von *V. harveyi* verwendeten Kodons und die entsprechende Optimierung. Die „CODAs Translational Engineering™“ Technologie behandelt die Optimierung der Kodons für die Proteinsynthese (http://www.codagenomics.com).

4.4.3 Gezielte Veränderungen in LuxO zur Erhöhung der Löslichkeit

Der Ansatz der gezielten Veränderung der Proteinsequenz bietet eine weitere Möglichkeit, die Löslichkeit von LuxO zu erhöhen. Hierbei werden Aminosäuren ausgewählt, die die Unlöslichkeit oder Proteinaggregation verursachen könnten. Die Schwierigkeit dabei ist aber, die entsprechenden Aminosäuren, die ausgetauscht werden sollen, vorherzusagen, da die Proteinstruktur meistens noch nicht aufgeklärt ist.

Auf diese Weise konnte gezeigt werden, welche Bereiche von LuxO, wenn sie einzeln produziert wurden, löslich waren. Der N-terminale Bereich, der die ersten 110 Aminosäuren umfasst, sowie der C-terminale Bereich, der die letzten 188 Aminosäuren umfasst, wurden unlöslich produziert. Die Tatsache, dass sowohl der C-terminale als auch der N-terminale Bereich unlöslich sind, erklärt, warum die LuxO/NtrC-Chimäre nicht löslich waren. Jedes der beiden Chimären enthält entweder den C- oder den N-terminalen Bereich von LuxO und
somit einen unlöslichen Bereich. Der mittlere Bereich scheint in löslicher Form produziert werden zu können, wenn er in zwei Teile unterteilt war.

Aufgrund dieser Ergebnisse lag der Fokus auf den unlöslichen Bereichen LuxO(1-110) und LuxO(265-453).

Um jedoch den Austausch essentieller Aminosäuren zu vermeiden, wurde anhand eines Alignments von LuxO mit NtrC von \textit{E. coli} überprüft, ob es sich um konservierte Aminosäuren handelte. Waren die Aminosäuren konserviert, wurden sie nicht weiter berücksichtigt. Des Weiteren wurde anhand einer dreidimensionalen Struktur von LuxO, die durch Homologiemodellierung anhand ähnlicher Proteine erstellt wurde, eine Vorhersage darüber gemacht, ob sich die Aminosäure an der Oberfläche des Proteins befindet. Aminosäuren, die anhand dieses Modells im Proteininneren waren, wurden ebenfalls nicht ausgetauscht.

Untersuchung des Gesamtproteins mit den entsprechenden Austauschen verzichtet.

Da die Auswahl der Aminosäuren, die substituiert werden sollen, für den Ansatz des Rational Engineering von Proteinen essentiell ist, kann es sein, dass man sich aufgrund der falschen Kriterien und aufgrund eines nicht zutreffenden Homologiemodells für die falschen
Aminosäuren entschieden hat. Außerdem ist die Untersuchung jeder einzelnen Variante durch Lokalisationsstudien recht zeintensiv.

4.5 Heterologe Überproduktion der Lux-Proteine in *R. sphaeroides* DD13

Generell stellt der Ansatz der Überproduktion von *V. harveyi*-Proteinen in einem marinen Organismus eine Möglichkeit dar, die Proteine in einer natürlicheren Umgebung zu produzieren, als in *E. coli*. Die vermutlich höhere Salzkonzentration in den Zellen kann nicht nur für eine erhöhte Löslichkeit sondern auch für eine korrekte Faltung der Proteine sorgen.
4.6 Ausblick

5 Zusammenfassung

- LuxQ konnte heterolog in *E. coli* überproduziert und in der Membranfraktion detektiert werden. Das periplasmatische Bindeprotein LuxP konnte als Komplex mit AI-2 und ohne gebundenen AI-2 in *E. coli* überproduziert und gereinigt werden.

- Die enzymatischen Aktivitäten der Hybridsensorkinasen LuxQ und LuxN wurden miteinander verglichen. LuxQ wies sowohl eine niedrigere Kinase- als auch Phosphataseaktivität auf. Zusätzlich hatte HAI-1 einen größeren Einfluss auf die LuxN-Kinaseaktivität.
als AI-2 auf die LuxQ-Kinaseaktivität. Somit kann LuxN eine größere Signalstärke be-
züglich des Phosphorylierungsgrads von LuxU zugeordnet werden.

- Es wurde ein mathematisches Modell des kombinierten LuxQ- und LuxN-Signalwegs erstellt. In Anwesenheit beider Autoinduktoren wurde der Anteil an phosphoryliertem LuxU lediglich auf 45% gesenkt. Das Modell gab somit einen Hinweis auf einen bisher noch nicht berücksichtigten Faktor.

- Um lösliches und aktives Protein zu gewinnen, wurden Chimäre der Antwortregulatoren LuxO und NtrC aus \textit{E. coli} hergestellt. Die beiden Chimäre LuxO/NtrC und NtrC/LuxO konnten in \textit{E. coli} produziert werden, waren jedoch nicht löslich.

- Verschiedene verkürzte LuxO-Derivate wurden hergestellt und hinsichtlich ihrer Löslichkeit untersucht. Es wurde gezeigt, dass die Peptide 1-110 sowie 265-453 unlöslich sind, während die Peptide 111-190 sowie 190-264 zu einem deutlichen Anteil in der cytosolischen Fraktion lokalisiert waren.

Literatur

Abbildung 5.1: Alignment der Proteinsequenzen von LuxO und NtrC. Der konservierte Aspartatrest der Empfängerdomäne ist mit einem roten Stern gekennzeichnet.
Mathematische Modellierung des LuxN/LuxQ/LuxU-Systems

Introduction

We describe the modeling procedure for the LuxN/LuxQ signaling system and the simplification of the model. For an introduction into mathematical modeling see e.g. Murray (2002). We first consider LuxN only, in order to demonstrate the principle for a subsystem that is smaller and thus can be treated more easily, and consequently we investigate the complete LuxN/LuxQ signaling system.

For the equations in the supplement, we use a slightly simplified notation, compared to the main part of the article: Complexes of LuxN and LuxQ with the corresponding autoinducer are marked by [LuxN-HAI1] and [LuxQ-AI2], respectively; no further [] is used to indicate concentrations. Even though LuxP/AI-2 was added in the experiments, not AI-2, we just mention AI-2, in order to keep the notation as simple as possible. Let superscript p denote the phosphorylated state of LuxN, LuxQ, and LuxU (and the complexes); let A_1 and A_2 denote the concentrations of the autoinducers HAI-1 and AI-2, respectively.

The model for the LuxN pathway only

We assume mass action kinetics and, based on experimental observations, that phosphorylation of LuxN by ATP resp. reaction with the autoinducer is rather fast, while the transport from or to LuxU is rather slow. Let the time scale ratio ε be small. We obtain

\[
\begin{align*}
\frac{d}{dt} A_1 &= \frac{(-k_a A_1 \text{LuxN} + k_{-a} [\text{LuxN-HAI1}])}{\varepsilon} \\
\frac{d}{dt} \text{LuxNP} &= \frac{(-k_{-1} \text{LuxNP} + k_1 \text{LuxN})}{\varepsilon} - k_{2 \text{LuxNP}} \text{LuxU} + k_{-2 \text{LuxN LuxUP}} \\
\frac{d}{dt} \text{LuxN} &= \frac{(-k_1 + k_a A_1) \text{LuxN} + k_{-a} [\text{LuxN-HAI1}] + k_{-1} \text{LuxNP})}{\varepsilon} \\
&\quad - k_{-2 \text{LuxN LuxUP}} + k_{2 \text{LuxNP}} \text{LuxU} \\
\frac{d}{dt} [\text{LuxN-HAI1}] &= \frac{(-k_{-a} + k_{1,a}) [\text{LuxN-HAI1}] + k_a A_1 \text{LuxN} + k_{-1,a} [\text{LuxNP-HAI1}])}{\varepsilon} \\
&\quad - k_{-2,a} [\text{LuxN-HAI1}] \text{LuxUP} + k_{2,a} [\text{LuxNP-HAI1}] \text{LuxU} \\
\frac{d}{dt} [\text{LuxNP-HAI1}] &= \frac{(-k_{-1,a} [\text{LuxNP-HAI1}] + k_{1,a} [\text{LuxN-HAI1}])}{\varepsilon} \\
&\quad - k_{2,a} [\text{LuxNP-HAI1}] \text{LuxU} + k_{-2,a} [\text{LuxN-HAI1}] \text{LuxUP} \\
\frac{d}{dt} \text{LuxU} &= -(k_{2 \text{LuxNP}} + k_{2,a} [\text{LuxNP-HAI1}]) \text{LuxU} \\
&\quad + (k_{-2 \text{LuxN}} + k_{-2,a} [\text{LuxN-HAI1}]) \text{LuxUP}
\end{align*}
\]
\[\frac{d}{dt} \text{LuxU}^P = \left(k_2 \text{LuxN}^P + k_{2,a} \text{[LuxN}^P\text{-HAI}1] \right) \text{LuxU} \\ - \left(k_{-2} \text{LuxN} + k_{-2,a} \text{[LuxN-HAI}1] \right) \text{LuxU}^P. \]

Time scale analysis We now assume that the fast system (binding of autoinducer) is in its quasi-equilibrium, i.e. \(\varepsilon \) is small. We multiply the equations by \(\varepsilon \), and take the limit \(\varepsilon \to 0 \). The corresponding equations read

\[\begin{align*}
0 &= -k_{-1} \text{LuxN}^P + k_1 \text{LuxN} \\
0 &= -(k_1 + k_a A_1) \text{LuxN} + k_{-a} [\text{LuxN-HAI}1] + k_{-1} \text{LuxN}^P \\
0 &= - (k_{-a} + k_{1,a}) [\text{LuxN-HAI}1] + k_a A_1 \text{LuxN} + k_{-1,a} [\text{LuxN}^P\text{-HAI}1] \\
0 &= -k_{-1,a} [\text{LuxN}^P\text{-HAI}1] + k_{1,a} [\text{LuxN-HAI}1]
\end{align*} \]

Furthermore, the total amount of LuxN (\(C_1 \)) does not change,

\[\text{LuxN} + \text{LuxN}^P + [\text{LuxN-HAI}1] + [\text{LuxN}^P\text{-HAI}1] = C_1 \]

and the total amount of HAI-1 (\(\bar{A}_1 \)) is also fixed,

\[A_1 + [\text{LuxN-HAI}1] + [\text{LuxN}^P\text{-HAI}1] = \bar{A}_1. \]

Let us assume that we already know \(\text{LuxN}^P \). Then,

\[\begin{align*}
\text{LuxN} &= \frac{k_{-1}}{k_1} \text{LuxN}^P \\
[\text{LuxN-HAI}1] &= \frac{k_a A_1}{k_{-a}} \text{LuxN}^P = \frac{k_a A_1}{k_{-a}} \frac{k_{-1}}{k_1} \text{LuxN}^P \\
[\text{LuxN}^P\text{-HAI}1] &= \frac{k_{1,a}}{k_{-1,a}} [\text{LuxN-HAI}1] = \frac{k_{1,a}}{k_{-1,a}} \frac{k_a A_1}{k_{-a}} \frac{k_{-1}}{k_1} \text{LuxN}^P.
\end{align*} \]

Now we can use the fact that the complete amount of LuxN (in any form) sums up to \(C_1 \), and find

\[\begin{align*}
C_1 &= \left(1 + \frac{k_{-1}}{k_1} + \frac{k_a A_1}{k_{-a}} \frac{k_{-1}}{k_1} + \frac{k_{1,a}}{k_{-1,a}} \frac{k_a A_1}{k_{-a}} \frac{k_{-1}}{k_1} \right) \text{LuxN}^P \\
\Rightarrow \text{LuxN}^P &= \left(1 + \frac{k_{-1}}{k_1} + \frac{k_a A_1}{k_{-a}} \frac{k_{-1}}{k_1} + \frac{k_{1,a}}{k_{-1,a}} \frac{k_a A_1}{k_{-a}} \frac{k_{-1}}{k_1} \right) \frac{C_1}{k_{-1,a} k_{-a} k_1 + k_{-1,a} k_{-a} k_{-1} + k_{1,a} A_1 k_{-1} + k_{1,a} A_1 k_a k_{-1}}.
\end{align*} \]
Hence,

\[
\begin{align*}
\text{LuxN} &= \frac{C_1 k_{-1,a} k_{-1}}{k_{-1,a} k_{-1} + k_{-1,a} k_{-1} + k_{-1,a} A_1 k_{-1} + k_{1,a} A_1 k_{-1}} \\
[\text{LuxN-HAI1}] &= \frac{C_1 k_{-1,a} A_1 k_{-1}}{k_{-1,a} k_{-1} + k_{-1,a} k_{-1} + k_{-1,a} A_1 k_{-1} + k_{1,a} A_1 k_{-1}} \\
[\text{LuxNp-HAI1}] &= \frac{C_1 k_{1,a} A_1 k_{-1}}{k_{-1,a} k_{-1} + k_{-1,a} k_{-1} + k_{-1,a} A_1 k_{-1} + k_{1,a} A_1 k_{-1}}.
\end{align*}
\]

If we define

\[
\begin{align*}
\alpha &= k_{-1,a} k_{-1}, & \beta &= k_{-1,a} k_{-1}, & \gamma &= k_{-1,a} k_{-1}, & \delta &= k_{1,a} k_{-1},
\end{align*}
\]

we find

\[
\begin{align*}
\text{LuxN} &= C_1 \frac{\beta}{\alpha + \beta + (\gamma + \delta) A_1} \\
\text{LuxNp} &= C_1 \frac{\alpha}{\alpha + \beta + (\gamma + \delta) A_1} \\
[\text{LuxN-HAI1}] &= C_1 \frac{\gamma A_1}{\alpha + \beta + (\gamma + \delta) A_1} \\
[\text{LuxNp-HAI1}] &= C_1 \frac{\delta A_1}{\alpha + \beta + (\gamma + \delta) A_1}.
\end{align*}
\]

From this result we are able to compute \(A_1 \) in dependence on \(A_1 \), i.e. the amount of free HAI-1 in dependence on the total amount of HAI-1,

\[
\begin{align*}
A_1 &= A_1 + [\text{LuxN-HAI1}] + [\text{LuxNp-HAI1}] \\
&= A_1 + C_1 \frac{\gamma A_1}{\alpha + \beta + (\gamma + \delta) A_1} + C_1 \frac{\delta A_1}{\alpha + \beta + (\gamma + \delta) A_1}.
\end{align*}
\]

Hence, \(A_1 \) is given as the root of the polynomial

\[(\gamma + \delta) A_1^2 + \{(\alpha + \beta) + (C_1 - A_1)(\gamma + \delta)\} A_1 - A_1(\alpha + \beta) = 0,\]

i.e. by

\[
A_1 = \frac{1}{2} \left\{ A_1 - C_1 - \frac{\alpha + \beta}{\gamma + \delta} \pm \sqrt{ \left(A_1 - C_1 - \frac{\alpha + \beta}{\gamma + \delta} \right)^2 + 4 A_1 \frac{\alpha + \beta}{\gamma + \delta} } \right\}.
\]

Since the feasible solution is positive, we chose the positive sign in front of the root. As in the experiments \(A_1 \gg C_1 \) (the autoinducer (AI) concentrations used are \(\mu \)M, while the LuxN concentration is pM), we may assume \(A_1 - C_1 \approx A_1 \), and therefore

\[
A_1 \approx A_1.
\]
Dynamics of LuxU

Since also the total amount of LuxU \((C_3)\) is constant,

\[
\text{LuxU} + \text{LuxUP} = C_3,
\]

we may only consider \(\text{LuxUP}\) and find

\[
\frac{d}{dt}\text{LuxUP} = (k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}]) (C_3 - \text{LuxUP}) - (k_{-2}\text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}]) \text{LuxUP}
\]

\[
= (k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}])C_3 - (k_{-2}\text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}]) \text{LuxUP},
\]

with initial conditions

\[
\text{LuxUP}(0) = 0.
\]

We may thus solve the equation explicitly,

\[
\text{LuxUP}(t) = \text{LuxUP}^{\text{equil}} \left(1 - e^{-(k_{-2}\text{LuxN}+k_{-2,a}[\text{LuxN-HAI1}]+k_2\text{LuxNP}+k_{2,a}[\text{LuxNP-HAI1}])t}\right)
\]

with

\[
\text{LuxUP}^{\text{equil}} = C_3 \frac{k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}]}{k_{-2}\text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}]}.
\]

Hence, the system always tends to an equilibrium. Now we use our results for LuxN,

\[
k_{-2}\text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}]
\]

\[
= C_1 \frac{k_{-2}\beta + k_{-2,a}\gamma A_1 + k_2\alpha + k_{2,a}\delta A_1}{\alpha + \beta + (\gamma + \delta)A_1}
\]

\[
= C_1 \frac{k_{-2}\beta + k_2\alpha + (k_{-2,a}\gamma + k_{2,a}\delta)A_1}{\alpha + \beta + (\gamma + \delta)A_1}
\]

and therefore

\[
\text{LuxUP}^{\text{equil}} = C_3 \frac{k_2\alpha + k_{2,a}\delta A_1}{k_{-2}\beta + k_2\alpha + (k_{-2,a}\gamma + k_{2,a}\delta)A_1}.
\]

The value \(\text{LuxUP}^{\text{equil}}\) does not depend on the total amount LuxN in the system (i.e., on \(C_1\)). If \(C_1 = 0\), then the exponent in the equation for \(\text{LuxUP}(t)\) will be zero, i.e. the exponent is responsible that the amount of LuxUP will not change without LuxN. However, if at least a small amount of LuxN is present in the system, the amount of LuxUP tends to an equilibrium independent of the concentration of LuxN. The time scale at which the equilibrium is approached does depend on \(C_1\). One may view the situation as two basins.
or reservoirs of phosphor (ATP and LuxU^p), connected by two pipes with pumps: one pipe (LuxN and [LuxN-HAI1]) pumps phosphor from LuxU^p to ATP, the other pipe (LuxN^p and [LuxN^p-HAI1]) in the reverse direction. The relative power of the two pumps determines the value of the equilibrium, the absolute power only the time needed to reach the equilibrium.

HAI-1 influences the (relative) strength of both pumps: the more LuxN is bound to HAI-1, the better is the relative strength of the pump from LuxU^p to ATP. As the concentration of HAI-1 is much higher than that of LuxN, there is no competition of LuxN for HAI-1. Hence, each LuxN molecule independently of all other LuxN molecule is bound to HAI-1 with a certain probability (that again does not depend on the total amount of LuxN C_1). In consequence, also the influence of HAI-1 on the equilibrium concentration of LuxU^p is independent of C_1.

If we take A_1 to zero, we find the maximal “signal” (LuxU^p) which we call S_0. For A_1 → ∞, the “signal” will approach another value S_1. We can write the equation in a more comprehensible way as

\[
\text{LuxU}^p \text{ equil} = S_0 + (S_1 - S_0) \frac{A_1}{a_1^{1/2} + A_1}.
\]

I.e., the signal LuxU^p is decreased from S_0 to S_1 by HAI-1 according to a Hill function with Hill coefficient one and half activation \(a_1^{1/2}\).

The complete model (LuxN and LuxQ)

![Diagram of the complete model](image)
Also in this case we introduce time scales: the reactions of LuxN or LuxQ with LuxU and LuxUp are slow in comparison with all other reactions. Taking into account the observations from the system for LuxN only, we assume the AI concentrations (for both species of autoinducer) as given and fixed (A2 denotes the total amount of AI-2); the amount of autoinducer bound by the receptor molecules is neglected. The total amount of LuxQ (C2) does not change. Accordingly, we find the system

\[
\begin{align*}
\frac{d}{dt} \text{LuxNP} & = (-k_{-1}\text{LuxNP} + k_1\text{LuxN})/\epsilon - \tilde{k}_2\text{LuxNP} \text{LuxU} + k_{-2}\text{LuxN} \text{LuxUp} \\
\frac{d}{dt} \text{LuxN} & = (-k_1 + k_aA_1)\text{LuxN} + k_{-a}[\text{LuxN-HAI1}] + k_{-1}\text{LuxNP})/\epsilon \\
& \quad -k_{-2}\text{LuxN} \text{LuxUp} + \tilde{k}_2\text{LuxNP} \text{LuxU} \\
\frac{d}{dt}[\text{LuxN-HAI1}] & = (-k_{-a} + k_{1,a})[\text{LuxN-HAI1}] + k_{1,a}\text{LuxN} + k_{-1,a}[\text{LuxNP-HAI1}]/\epsilon \\
& \quad -k_{-2,a}[\text{LuxN-HAI1}] \text{LuxUp} + k_{2,a}[\text{LuxNP-HAI1}] \text{LuxU} \\
\frac{d}{dt}[\text{LuxNP-HAI1}] & = (-k_{-1,a}[\text{LuxNP-HAI1}] + k_{1,a}[\text{LuxN-HAI1}])/\epsilon \\
& \quad -k_{2,a}[\text{LuxN-HAI1}] \text{LuxUp} + \tilde{k}_2\text{LuxNP} \text{LuxU} \\
\frac{d}{dt} \text{LuxQ} & = (-\tilde{k}_{-1}\text{LuxQ} + \tilde{k}_1\text{LuxQ})/\epsilon - \tilde{k}_2\text{LuxQP} \text{LuxU} + \tilde{k}_{-2}\text{LuxQ} \text{LuxUp} \\
\frac{d}{dt} \text{LuxQP} & = (\tilde{k}_{-1}\text{LuxQP} + \tilde{k}_1\text{LuxQ})/\epsilon - \tilde{k}_2\text{LuxQP} \text{LuxU} + \tilde{k}_{-2}\text{LuxQ} \text{LuxUp} \\
\frac{d}{dt}[\text{LuxQ-AI2}] & = (\tilde{k}_{-a} + \tilde{k}_{1,a})[\text{LuxQ-AI2}] + \tilde{k}_aA_1\text{LuxQ} + \tilde{k}_{-1,a}[\text{LuxQP-AI2}]/\epsilon \\
& \quad -\tilde{k}_{-2,a}[\text{LuxQ-AI2}] \text{LuxUp} + \tilde{k}_2,a[\text{LuxQP-AI2}] \text{LuxU} \\
\frac{d}{dt}[\text{LuxQP-AI2}] & = (-\tilde{k}_{-1,a}[\text{LuxQP-AI2}] + \tilde{k}_{1,a}[\text{LuxQ-AI2}])/\epsilon \\
& \quad -\tilde{k}_2,a[\text{LuxQP-AI2}] \text{LuxU} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}] \text{LuxUp} \\
\frac{d}{dt} \text{LuxU} & = -(k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}])\text{LuxU} \\
& \quad +(k_{-2}\text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}])\text{LuxUp} \\
& \quad -(\tilde{k}_2\text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}])\text{LuxU} \\
& \quad +(\tilde{k}_{-2}\text{LuxQ} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}])\text{LuxUp} \\
\frac{d}{dt} \text{LuxUp} & = (k_2\text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}])\text{LuxU} \\
& \quad -(k_{-2}\text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}])\text{LuxUp} \\
& \quad +(\tilde{k}_2\text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}])\text{LuxU} \\
& \quad -(\tilde{k}_{-2}\text{LuxQ} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}])\text{LuxUp}.\end{align*}
\]
Quasi-stationary state As before, we multiply all equations by ε and take ε to zero. The system yields the set of equations

\[
\begin{align*}
0 &= -k_{-1}\text{LuxN} + k_1\text{LuxN} \\
0 &= -(k_1 + k_1A_1)\text{LuxN} + k_- a[\text{LuxN-HAI1}] + k_{-1}\text{LuxN} \\
0 &= -(k_1 + k_1, a)\text{LuxN} + k_1A_1\text{LuxN} + k_- a[\text{LuxN}^\text{P-HAI1}] \\
0 &= -k_{-1, a}[\text{LuxN}^\text{P-HAI1}] + k_1, a[\text{LuxN-HAI1}] \\
0 &= -\tilde{k}_{-1}\text{LuxQ} + \tilde{k}_1\text{LuxQ} \\
0 &= -(\tilde{k}_1 + \tilde{k}_1 A_2)\text{LuxQ} + \tilde{k}_-, a[\text{LuxQ-AI2}] + \tilde{k}_{-1}\text{LuxQ} \\
0 &= -(\tilde{k}_1 + \tilde{k}_1, a)[\text{LuxQ-AI2}] + \tilde{k}_1 A_2\text{LuxQ} + \tilde{k}_{-1, a}[\text{LuxQ}^\text{P-AI2}] \\
0 &= -\tilde{k}_{-1, a}[\text{LuxQ}^\text{P-AI2}] + \tilde{k}_1, a[\text{LuxQ-AI2}].
\end{align*}
\]

This set of equations can be treated similarly as the corresponding equations above. We define (again)

\[
\begin{align*}
\alpha &= k_{-1, a}k_- a k_1, & \beta &= k_{-1, a}k_- a k_{-1}, & \gamma &= k_{-1, a}k_a k_{-1}, & \delta &= k_{1, a}k_a k_{-1}, \\
\tilde{\alpha} &= \tilde{k}_{-1, a}k_- a \tilde{k}_1, & \tilde{\beta} &= \tilde{k}_{-1, a}k_- a \tilde{k}_{-1}, & \tilde{\gamma} &= \tilde{k}_{-1, a}\tilde{k}_a \tilde{k}_{-1}, & \tilde{\delta} &= \tilde{k}_{1, a}\tilde{k}_a \tilde{k}_{-1}
\end{align*}
\]

and find

\[
\begin{align*}
\text{LuxN} &= C_1 \frac{\beta}{\alpha + \beta + (\gamma + \delta)A_1} \\
\text{LuxN}^\text{P} &= C_1 \frac{\alpha}{\alpha + \beta + (\gamma + \delta)A_1} \\
[\text{LuxN-HAI1}] &= C_1 \frac{\gamma A_1}{\alpha + \beta + (\gamma + \delta)A_1} \\
[\text{LuxN}^\text{P-HAI1}] &= C_1 \frac{\delta A_1}{\alpha + \beta + (\gamma + \delta)A_1} \\
\text{LuxQ} &= C_2 \frac{\tilde{\beta}}{\tilde{\alpha} + \tilde{\beta} + (\tilde{\gamma} + \tilde{\delta})A_2} \\
\text{LuxQ}^\text{P} &= C_2 \frac{\tilde{\alpha}}{\tilde{\alpha} + \tilde{\beta} + (\tilde{\gamma} + \tilde{\delta})A_2} \\
[\text{LuxQ-AI2}] &= C_2 \frac{\tilde{\gamma} A_2}{\tilde{\alpha} + \tilde{\beta} + (\tilde{\gamma} + \tilde{\delta})A_2} \\
[\text{LuxQ-AI2}] &= C_2 \frac{\tilde{\delta} A_2}{\tilde{\alpha} + \tilde{\beta} + (\tilde{\gamma} + \tilde{\delta})A_2}.
\end{align*}
\]
Dynamics of LuxU Now we assume the receptor molecules to be in equilibrium. Using the fact that LuxU + LuxUP is constant, we find an autonomous differential equation for LuxUP

\[
\frac{d}{dt} \text{LuxUP} = (k_2 \text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}] + \tilde{k}_2 \text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}]) (C_3 - \text{LuxUP}) - (k_{-2} \text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + \tilde{k}_{-2} \text{LuxQ} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}]) \text{LuxUP} = (k_2 \text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}] + \tilde{k}_2 \text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}]) C_3 - (k_{-2} \text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + k_2 \text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}]) + \tilde{k}_{-2} \text{LuxQ} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}] + \tilde{k}_2 \text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}] \text{LuxUP}.
\]

If we start with no LuxUP we obtain the solution

\[
\text{LuxUP}(t) = \text{LuxUP} \text{ equil } (1 - e^{-\lambda t})
\]

where

\[
\text{LuxUP \text{ equil}} = C_3 \left(k_2 \text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}] + \tilde{k}_2 \text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}] \right) \times \left(k_{-2} \text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + k_2 \text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}] + \tilde{k}_{-2} \text{LuxQ} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}] + \tilde{k}_2 \text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}] \right)^{-1}
\]

\[
= C_3 \frac{C_1 \frac{k_{2,a} + k_{2,a} \delta_1}{\alpha + \beta + (\gamma + \delta) A_1} + C_2 \frac{\tilde{k}_{2,a} + \tilde{k}_{2,a} \delta_2}{\alpha + \beta + (\gamma + \delta) A_2}}{C_1 \frac{k_{-2,a} + k_{-2,a} \gamma_1 + k_{2,a} + k_{2,a} \delta_1}{\alpha + \beta + (\gamma + \delta) A_1} + C_2 \frac{k_{-2,a} + k_{-2,a} \gamma_2 + k_{2,a} + k_{2,a} \delta_2}{\alpha + \beta + (\gamma + \delta) A_2}}
\]

\[
= C_3 \frac{C_1 \frac{k_{2,a} + k_{2,a} \delta_1}{\alpha + \beta + (\gamma + \delta) A_1} + C_2 \frac{\tilde{k}_{2,a} + \tilde{k}_{2,a} \delta_2}{\alpha + \beta + (\gamma + \delta) A_2}}{C_1 \frac{k_{-2,a} + k_{2,a} \gamma_1 + k_{-2,a} \gamma_2 + k_{2,a} \delta_1}{\alpha + \beta + (\gamma + \delta) A_1} + C_2 \frac{k_{-2,a} + k_{-2,a} \gamma_2 + k_{2,a} \delta_2}{\alpha + \beta + (\gamma + \delta) A_2}}
\]

and

\[
\lambda = \left(k_{-2} \text{LuxN} + k_{-2,a}[\text{LuxN-HAI1}] + k_2 \text{LuxNP} + k_{2,a}[\text{LuxNP-HAI1}] + \tilde{k}_{-2} \text{LuxQ} + \tilde{k}_{-2,a}[\text{LuxQ-AI2}] + \tilde{k}_2 \text{LuxQP} + \tilde{k}_{2,a}[\text{LuxQP-AI2}] \right)
\]

Simplification / simplifying assumptions for the asymptotic formula In this section we aim at a simplification of the result. The experimental findings hint that

1. the autoinducer does not influence the phosphotransfer between LuxN (LuxQ) and LuxU, but the phosphotransfer between LuxN (LuxQ) and ATP. Thus,

\[
k_2 \approx k_{2,a}, \quad k_{-2} \approx k_{-2,a}, \quad \tilde{k}_2 \approx \tilde{k}_{2,a}, \quad \tilde{k}_{-2} \approx \tilde{k}_{-2,a}.
\]
2. The rates of phosphotransfer from and to LuxU do not differ to a large extent. Indeed, the data in the paper Timmen et al. (2006) hint that \(k_2/k_{-2} \approx 3 \).

3. only a minor fraction of all LuxN (LuxQ) molecules are phosphorylated, i.e.

\[
\frac{k_{-1}}{k_1} \gg 1, \quad \frac{k_{-1,a}}{k_{1,a}} \gg 1, \quad \frac{\tilde{k}_{-1}}{k_1} \gg 1, \quad \frac{\tilde{k}_{-1,a}}{k_{1,a}} \gg 1.
\]

Indeed, the data in the paper Timmen et al. (2006) show that this quotient is around 100-300 for LuxN. Consequently,

\[
\beta + \alpha = \beta + \frac{k_1}{k_{-1}} \beta \approx \beta
\]

and, similarly,

\[
\tilde{\beta} + \tilde{\alpha} = \tilde{\beta} + \frac{\tilde{k}_1}{k_{-1}} \tilde{\beta} \approx \tilde{\beta}
\]

and thus

\[
\gamma + \delta \approx \gamma, \quad k_{2,a} \tilde{\delta} + k_{-2,a} \tilde{\gamma} \approx k_{-2,a} \tilde{\gamma}, \quad \tilde{\gamma} + \tilde{\delta} \approx \tilde{\gamma}, \quad \tilde{k}_{2,a} \tilde{\delta} + \tilde{k}_{-2,a} \tilde{\gamma} \approx k_{-2,a} \tilde{\gamma}.
\]

Using these approximations, we find

\[
\text{LuxU}^\text{equil} = C_3 \left(\frac{C_1 k_2 \alpha + k_{2,a} \delta A_1}{\alpha + \beta + (\gamma + \delta) A_1} + \frac{C_2 \tilde{k}_2 \tilde{\alpha} + k_{2,a} \delta A_2}{\tilde{\alpha} + \tilde{\beta} + (\tilde{\gamma} + \tilde{\delta}) A_2} \right)
\]

\[
\approx C_3 \left(\frac{C_1 k_2 \alpha + k_{2,a} \delta A_1}{\beta + \gamma A_1} + \frac{C_2 \tilde{k}_2 \tilde{\alpha} + k_{2,a} \delta A_2}{\tilde{\alpha} + \tilde{\beta} + \tilde{\gamma} A_2} \right)
\]

\[
= C_3 \left(\frac{C_1 k_2}{C_1 k_{-2} + C_2 k_{-2}} \beta + \gamma A_1 + \frac{C_2 \tilde{k}_2}{C_1 k_{-2} + C_2 k_{-2}} \tilde{\beta} + \tilde{\gamma} A_2 \right).
\]

Estimations from separated LuxN/LuxQ experiments Let us now assume that we have information of the LuxN system (where we did not take into account the effect of LuxQ) respectively LuxQ (where LuxN is not present). We define the following variables.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal without any autoinducer for LuxN/LuxU (without LuxQ)</td>
<td>$\hat{S}_{0,1}$</td>
</tr>
<tr>
<td>Signal without any autoinducer for LuxQ/LuxU (without LuxN)</td>
<td>$\hat{S}_{0,2}$</td>
</tr>
<tr>
<td>Relative asymptotic Signal with (a high amount of) HAI-1 only in absence of LuxQ</td>
<td>r^N</td>
</tr>
<tr>
<td>Relative asymptotic Signal with (a high amount of) AI-2 only in absence of LuxN</td>
<td>r^Q</td>
</tr>
<tr>
<td>Concentration of HAI-1 which results in half-maximal inhibition (while $A_2 = 0$)</td>
<td>$a_1^{1/2} = [HAI-1]^*$</td>
</tr>
<tr>
<td>Concentration of AI-2 which results in half-maximal inhibition (while $A_1 = 0$)</td>
<td>$a_2^{1/2} = [AI-2]^*$</td>
</tr>
</tbody>
</table>

As we have seen in section 2, the response of the LuxN/LuxU system can be written as

$$\text{LuxU}^D_{\text{equil}} = \hat{S}_{0,1} + (r^N - \hat{S}_{0,1}) \frac{A_1}{a_1^{1/2} + A_1}$$

and that for the LuxQ/LuxU system

$$\text{LuxU}^D_{\text{equil}} = \hat{S}_{0,2} + (r^Q - \hat{S}_{0,2}) \frac{A_2}{a_2^{1/2} + A_2}.$$

Hence, the response on the combined system can be displayed by

$$\text{LuxU}^D_{\text{equil}} = \frac{C_3C_1k_2}{C_1k_{-2} + C_2k_{-2}} \left(\hat{S}_{0,1} + (r^N - \hat{S}_{0,1}) \frac{A_1}{a_1^{1/2} + A_1} \right)$$

$$+ \frac{C_3C_2\tilde{k}_2}{C_1k_{-2} + C_2k_{-2}} \left(\hat{S}_{0,2} + (r^Q - \hat{S}_{0,2}) \frac{A_2}{a_2^{1/2} + A_2} \right)$$

$$= \frac{\hat{S}_{0,1}C_3C_1k_2}{C_1k_{-2} + C_2k_{-2}} \left(1 + \frac{(r^N - \hat{S}_{0,1})}{\hat{S}_{0,1}} \frac{A_1}{a_1^{1/2} + A_1} \right)$$

$$+ \frac{\hat{S}_{0,2}C_3C_2\tilde{k}_2}{C_1k_{-2} + C_2k_{-2}} \left(1 + \frac{(r^Q - \hat{S}_{0,2})}{\hat{S}_{0,2}} \frac{A_2}{a_2^{1/2} + A_2} \right)$$

The quotient $\hat{S}_1 = (r^N - \hat{S}_{0,1})/\hat{S}_{0,1}$ denotes the maximal, relative decrease of the signal by HAI-1 in the presence of LuxN only (similarly, $\hat{S}_2 = (r^Q - \hat{S}_{0,2})/\hat{S}_{0,2}$ that for the LuxQ system). We now normalize $\text{LuxU}^D_{\text{equil}}$ to one for $A_1 = A_2 = 0$. After normalizing we find

$$\text{LuxU}^D_{\text{equil}} = \tau_1 \left(1 + (r^N - 1) \frac{A_1}{a_1^{1/2} + A_1} \right) + \tau_2 \left(1 + (r^Q - 1) \frac{A_2}{a_2^{1/2} + A_2} \right)$$
where
\[
\tau_1 = \frac{\hat{S}_{0,1} k_2 C_1}{\hat{S}_{0,1} k_2 C_1 + \hat{S}_{0,2} k_2 C_2}, \quad \tau_2 = \frac{\hat{S}_{0,2} \hat{k}_2 C_2}{\hat{S}_{0,1} k_2 C_1 + \hat{S}_{0,2} k_2 C_2} = 1 - \tau_1.
\]
Let \(\tau = \tau_1 \). The number \(\tau \in [0, 1] \) indicates the relative strength of the two signal channels.

If \(0 < \tau < 1 \), the maximal signal (LuxU_P) in response to both autoinducers is always below the maximal response for one autoinducer only, however, the combined, maximal response always is above the best response of LuxN alone (in absence of any LuxQ). We may understand this finding again by viewing the situation as two vessels (ATP, LuxU_P), connected by four pumping systems: two in the direction from ATP to LuxU_P (one due to LuxN and one due to LuxQ), and also two in the reverse direction. If both pipe systems (that due to LuxN and that due to LuxQ) are active, the equilibrium will be a mixture (a linear combination) of the equilibrium of the pipe system due to LuxN alone resp. LuxQ alone. Hence, the result of the complete system is a weighted average of the subsystems and never can have more influence than these.

The model requires to determine five parameters: \(r^N, r^Q, a_1^{1/2}, a_2^{1/2} \) and \(\tau \). The first four parameters are determined by the experiments presented by the present work:
\[
r^N = 0.3, \quad r^Q = 0.6, \quad a_1^{1/2} = 5 \mu M, \quad a_2^{1/2} = 5 \mu M.
\]
The only unknown is the parameter \(\tau \). In order to obtain information of this parameter, especially measurements of \(\hat{k}_2 \) are necessary. This rate constant, however, is for technical reasons quite difficult to determine experimentally. Of course, also the other rates play a role for the value of \(\tau \), but they can be reduced to other magnitudes like the complete amounts of LuxN and LuxQ (\(C_1 \) and \(C_2 \)), and the signals without any autoinducer (\(\hat{S}_{0,1} \) and \(\hat{S}_{0,2} \)), which are known or easier to determine experimentally. Luckily enough, our predictions do not heavily depend on the special choice of \(\tau \), at least as long as the value of \(\tau \) does not invert the relative strength of the two signal channels. We present the dependence of LuxU_P for several choices of \(\tau \) in Fig. 3.13. Varying values of the relative weight \(\tau \) influences the effect strength of each autoinducer and of the combined effect. Lower values for \(\tau \) result in a stronger reduction of the LuxU phosphorylation by LuxP/AI-2 and a weaker reduction by HAI-1.
Danksagung

Mein ganz besonderer Dank gilt Frau Prof. Dr. Kirsten Jung für die herzliche Aufnahme in ihre Arbeitsgruppe und die Möglichkeit am Quorum sensing-Projekt zu arbeiten. Ganz besonders möchte ich mich für die stetige Diskussionsbereitschaft und die unermüdliche und ausgezeichnete Betreuung sowie für das mir entgegengebrachte Vertrauen bedanken.

Ich habe immer mit viel Spaß und Freude in der Arbeitsgruppe gearbeitet.

Bedanken möchte ich mich bei allen Mitarbeitern der Arbeitsgruppen Kirsten und Heinrich Jung für die immer vorhandene Hilfsbereitschaft, die Diskussionen und das Beantworten vieler Fragen. Insbesondere möchte ich Prof. Dr. Heinrich Jung, Dr. Ralf Heermann, Dr. Torsten Pirch und Dr. Larissa Tetsch für die vielen Anregungen und Denkansätze danken.

Den technischen Assistentinnen Korinna Burdack, Simone Holpert und Sonia Kroll, den Doktoranden Stephanie Kögl, Christiane Koller, Tobias Kraxenberger, Christoph Küper und Tina Odenbach sowie den zahlreichen Diplomanden, die während meiner Zeit unsere Arbeitsgruppe durchlaufen haben, danke ich für die angenehme Zeit in und außerhalb des Labors.

Ganz herzlich danke ich Carolin Schön für die Herstellung und Charakterisierung der LuxN/LuxQ-Chimäre sowie der verkürzten Trx-LuxN- und Trx-LuxQ-Derivate, für die Mithilfe bei den Untersuchungen der Wechselwirkungen zwischen LuxN und LuxQ und natürlich für die freundschaftliche Atmosphäre im Keller.

Prof. Dr. Dirk Schüler danke ich recht herzlich für die Begutachtung dieser Arbeit.

Dr. Heinz Schwer von der Firma Sloning Biotechnology danke ich für die Möglichkeit die des Projekts zur Herstellung der LuxO-Varianten sowie für die Bereitstellung aller notwendigen Ressourcen. Den Mitarbeitern Dr. Jan van den Brulle und Dr. Markus Fuhrmann der Firma Sloning Biotechnology danke ich für die Unterstützung bei der Auswahl der Aminosäuren und der Herstellung der luxO-Varianten sowie für die hervorragende Zusammenarbeit.
Dr. Christina Kuttler, Dr. Burkard Hense und Prof. Dr. Johannes Müller von der TU München danke ich für die Erstellung des mathematischen Modells der LuxN- und LuxQ-abhängigen Signalwege und für die Beantwortung vieler Fragen.

Dr. Martina Silber vom botanischen Institut der Ludwig-Maximilians-Universität München danke ich für die Transformation und Kultivierung der *Rhodobacter sphaeroides*-Stämme.

Der größte und herzlichste Dank gilt meinen Eltern Daniela und Peter Kramer, denen ich meine Ausbildung zu verdanken habe und die mich während meines gesamten Studiums unterstützt haben, meinem Mann Fabian Stambrau, der in allen Lebenslagen für mich da war und ist, sowie meinen besten Freundinnen Tina Heitmann, Sara Kleiner, Natalija Kuštrin und Nina Wolfrum, die mir trotz räumlicher Entfernung sehr nahe sind.
Lebenslauf

Persönliche Daten
Name: Nina Stambräu, geb. Kramer
Geburtsort: Frankfurt am Main
Familienstand: verheiratet

Schulische Ausbildung
Aug. 1984 - Aug. 1988 Besuch der Friedrich-Fröbel-Grundschule in Frankfurt am Main

Beruflicher Werdegang
Okt. 1997 - Mär. 2002 Studium der Biologie an der Johann-Wolfgang-von-Goethe-Universität in Frankfurt am Main;
Diplomarbeit im Bereich Mikrobiologie in der Arbeitsgruppe Prof. Dr. Achim Kröger mit dem Titel „Die membranständige Sulfid-Dehydrogenase von Wolinella succinogenes“
Okt. 2002 - Sep. 2004 Postgraduales Masterstudium der Bioinformatik an der Technischen Fachhochschule Berlin;
Masterarbeit mit dem Titel „Modelling and analysis of biological processes using Petri net theory“
seit Sep. 2004 Promotion an der Fakultät für Biologie an der Ludwig-Maximilians-Universität München in der Arbeitsgruppe Prof. Dr. Kirsten Jung