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Zusammenfassung

Tropische Wirbelstürme gehören sicherlich zu den spektakulärsten Wettererscheinun-

gen auf unserem Planeten. Die aktuelle Diskussion des Klimawandels hat solche ex-

tremen Wettererscheinungen zudem ins öffentliche Interesse gerückt.

Heutzutage werden hochkomplexe numerische Computersimulationen verwendet um

zum Beispiel die Zugbahn von Wirbelstürmen vorherzusagen. Trotzdem gibt es noch

viele fundamentale Fragen im Zusammenhang mit tropischen Wirbelstürmen, die un-

beantwortet sind. Darunter ist die Frage, wie stark der Sturm werden kann von beson-

derem Interesse.

Die Grenzschicht tropischer Wirbelstürme hat auf deren Dynamik und Thermody-

namik entscheidenden Einfluß. In meiner Arbeit habe ich zwei Vertreter verbreiteter

Modelltypen dieser Grenzschicht entwickelt.

In Kapitel (2) habe ich ein lineares Modell der Grenzschicht hergeleitet und analytische

Lösungen der Windfelder berechnet. Im Unterschied zu anderen Studien konnte ich

mit Hilfe dieser Lösungen eine Bewertung der linearen Approximation durchführen.

Die Ergebnisse wurden in Vogl und Smith (2009) veröffentlicht.

In Kapitel (3) habe ich ein sogenanntes Scheibenmodell untersucht. Dieses Modell

ermöglicht zusätzlich eine Vorhersage von thermodynamischen Vorgängen in der Grenz-

schicht. Der Einfluß verschiedenster physikalischer Prozesse wurde untersucht und

schließlich konnte eine umfassende Bewertung der Stärken und Schwächen des Scheiben-

modells durchgeführt werden. Die Ergebnisse wurden in Smith und Vogl (2008) ver-

öffentlicht.

Aus den Untersuchungen folgt, daß die Annahme des Gradientwind-Gleichgewichts

die entscheidende Schwäche dieser beiden Grenzschichtmodelle darstellt. In Kapitel

(4) zeige ich, daß genau diese Schwäche der Grenzschichtmodelle auch die Schwäche

der etablierten ”potential intensity” Theorie darstellt. Ich stelle schließlich ein neues,

verbessertes konzeptionelles Modell des Bereiches rund um das Auge des Sturmes vor.

Diese Ergebnisse wurden in Smith, Montgomery und Vogl (2008) veröffentlicht.

Insgesamt konnte ich mit meiner Arbeit einen wichtigen Beitrag zur Bewertung der

Stärken und Schwächen unterschiedlicher Grenzschichtmodelle liefern und am Ende

sogar einen neuen Ansatzpunkt aufzeigen, der die Entwicklung einer dringend benö-

tigten, verbesserten Theorie für die Vorhersage der Intensität tropischer Wirbelstürme

liefert.



Abstract

Hurricanes are some of the most spectacular yet deadly natural disasters. Especially

in times of the widely discussed anthropogenic climate change, public interest focusses

on such extreme weather events. Nowadays, highly sophisticated numerical models

are used for example for track prediction, but still there are many fundamental open

questions. Among these, the question how intense a tropical cyclone may become is of

major interest.

In this work a study of the two most common types of models for the hurricane bound-

ary layer is carried out. This study reveals major deficiencies of boundary layer models

and finally leads to a reassessment of the established theory of potential intensity of

hurricanes.

In chapter (2), a linear model for the hurricane boundary layer is derived from a de-

tailed scale analysis of the full equations of motions. It is shown how analytic solutions

for the model may be calculated and how these solutions may be used to appraise the

integrity of the linear approximation. Some of the results of this chapter are published

in Vogl and Smith (2009).

In chapter (3), a slab model is examined, which yields results for the main thermo-

dynamic quantities. Depending on the chosen boundary layer depth and the imposed

wind profile, two different types of solution behaviour are found and interpreted. Other

aspects of the dynamics and thermodynamics of the boundary layer are studied as for

example the influence of shallow convection. The limitations and strengths of the slab

model are discussed at the end of chapter (3). The results are published in Smith and

Vogl (2008).

The results of the detailed investigation of the linear and the slab model both point out

an important deficiency of hurricane boundary layer models, namely the assumption

of gradient wind balance. In chapter (4) it is shown that indeed the major deficiency

of the established hurricane (P)otential (I)ntensity theory is the tacit assumption of

gradient wind balance in the boundary layer. The results of chapter (4) show a funda-

mental problem of the established PI theory and then point to an improved conceptual

model of the hurricane inner core region. Thus this work suggests a way forward to

an urgently needed more consistent theory for the hurricane potential intensity. It is

published in Smith, Montgomery and Vogl (2008).
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Introduction

People have always been fascinated by extreme and hazardeous natural disasters and

it is like that until today. Earthquakes, flooding and extreme weather demand hu-

man lifes and cause inestimable material losses. However, the damage caused annually

seems to increase from year to year as for example a statistic of the Munich Re Group

shows, where the losses of the last fifty years are documented.

Although there has been an aroused debate, nowadays there is a wide consensus that

during the last hundred years the world experiences an anthropogenic climate change.

The anthropogenic global warming has various adverse effects on the environment we

are living in. The amount and the pattern of global precipitation are changing signif-

icantly and the increasing temperatures are causing a rise in the sea level. Droughts

and floods and an increase in the number of extreme and severe weather events are sup-

posed to be some of the immediate consequences of a changing climate. Among these

natural disasters, tropical cyclones (which are called hurricanes in the Atlantic Ocean

and typhoons in the Pacific) are together with earthquakes the most hazardous and

deadly ones (Anthes 1982, Emanuel 2005b). In fact their destructiveness costs more

lifes than any other nature catastrophy and, at least in the United States, hurricanes

are the most expensive ones (Pielke and Landsea 1998).

Already historical records are witness of this destructiveness (e.g. Rappaport and

Fernandez-Partagas 1995). One of the most devastating hurricanes was the so-called

”1780-Hurricane”. During the period 10 - 16 October, this storm passed over the Car-

ribean islands of Martinique and Barbados, which were almost complete devastated.

More than 22000 people died during that storm.

A recent example is hurricane ”Mitch” from 1998. It destroyed the coastal region of

Honduras in Central America and caused tremendous damage through extreme rain-

fall. 12000 people died, more than 2 million became homeless. Anyway, it is not only
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Introduction

Central America which is impacted repeatedly. Again and again the severe storms

make landfall along the coastal regions of the United States. A prominent example is

hurricane ”Andrew” (1992). With an averaged wind speed of about 210 kmh−1 and

peak winds of more than 280 kmh−1 it caused damage of more than 45 million US Dol-

lars. One of the most spectacular landfalls happened during August 2005. Hurricane

”Katrina” passed Florida and reached the Gulf of Mexico. The extreme winds with

peaks of more than 340 kmh−1 caused high waves and extraordinary strong precipi-

tation was recorded (the strongest rainfall was measured in Lousiana with 380 mm).

The storm destroyed the town of New Orleans by flooding when the protective em-

bankments couldn’t resist the water masses any longer. It lost hurricane strength just

250 km inland, leaving behind a path of destruction. The final balance was more than

81 million US Dollars loss. This means that ”Katrina” was the most costly hurricane

the United States ever experienced up to now.

However, tropical cyclones do not have only a negative impact. They bring urgently

needed precipitation to Central America and countries such as Mexico are almost com-

pletely dependent on their water supply through that source. If it were not for these

storms, severe droughts would follow, which is also a considerable economic factor.

The fact that these storms are huge rotating weather systems nowadays doesn’t seem

too surprising, but it was not before the early 19th century that people realized more

clearly the structure of tropical cyclones. The possibilities for observations were poor

and information came mostly from weather stations at the coasts, or on the islands,

or from ship’s navigation books. Just a small percentage of the storms were detected

as there were large areas over the oceans where no information was available. It was

the 20th century with its immense progress in aviation which finally stimulated and

allowed deeper investigation. The structure and the life cycle of tropical cyclones were

now rapidly becoming clearer. In the 1940s reconaissance flights were used systemat-

ically. The first pass through the eye of a hurricane took place in 1943 in the Gulf

of Mexico and the first radar images were obtained by Wexler in 1947. These images

clarified the structure of the clouds, showing the eye and the spiralling rainbands.

It was in the late 1960s when it became feasible to use satellites, which documented the

global weather from space. Since then it is possible to record all storms that develop

and actually estimate their intensities.

A tropical cyclone is defined as a cyclonic weather system that builds up over the trop-

ical oceans where the sea surface has a temperature of more than 26 oC. The high sea
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surface temperatures are a crucial factor as the cyclogenesis is supported by the heat

transfer from the sea surface. The Saffir-Simpson scale provides an accepted framework

to categorize the strength of the storms by their maximum wind speed. This maximum

is determined by calculating a ten-minute average of the total wind speed at a height

of 10 m, except for the United States, where a one-minute average is used. Not every

rotating weather system is a tropical cyclone. If the maximum wind speed is below a

threshold value of 17 ms−1 the system is called a tropical depression, if the wind speed

is larger than 17 ms−1, the so-called gale force wind, but smaller than 32 ms−1 it is a

tropical storm. Only if the averaged winds exceed 33 ms−1 it is defined as hurricane. In

Australia exists a different scale to classify tropical cyclones. For example the 17 ms−1

threshold is used to define a storm as a tropical cyclone, the equivalent of a hurricane

there is the severe tropical cyclone.
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Figure 1: Idealized cloud structure of a hurricane in a cross section.

The horizontal extent of tropical cyclones, which is defined as the area where the wind

speed is larger than a value of 17 ms−1, is very variable. There have been reported

very tight storms with a radial extent not larger than a hundred kilometers such as,

for example, cyclone ”Tracy” (1974). These very small storms are often referred to as

midget storms. Tracy was the smallest storm ever recorded with gale force winds that

only covered an area 48 km in radius. The variability in size may be quite large as it

is examplified by ”Tip” (1979). The storm was recorded in the Northwest Pacific and
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Introduction

reached a horizontal size with a radius of 1087 km. It may be surprising, but it seems

that there is no connection between size and intensity, which is in general measured

by the maximum wind speed or the central surface pressure (Emanuel 1988, Emanuel

1995b, Bister and Emanuel 1998).

Figure (1) shows the main parts of the cloud structure of a mature storm which may be

idealized as an axisymmetric vortex. The most spectacular feature is the so called eye

which is often cloud-free, has a radius of usually 10 to 60 km and where only very light

winds are measured. The eye is surrounded by huge clouds which reach up to 16 km into

the troposphere. The highest wind speeds in the storm are found at low levels beneath

the so called eyewall-cloud. The whole region of the storm, except possibly the eye, is

covered by dense cirrus clouds. The visualization of some of the asymmetries of the flow

in the tropical cyclone are the outwards spiralling cloud bands, the so called rainbands.

Although many models of tropical cyclones still assume rotationally symmetric storms,

nowadays the asymmetries of the flow field are found to be of great importance also

for cyclone dynamics as, for example, cyclone intensification (e.g. Nguyen et al. 2008).

Figure 2: Satellite image of Hurricane Andrew at 2020 UTC on 25th August 1992 (picture from NASA

satellite/NOAA).

Figure (2) shows Hurricane Andrew at 2020 UTC on 25th August in 1992 over the
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Gulf of Mexico. The image, taken from NASA satellite imagery, reveals the storm’s

inner structure. The Earth’s surface is visible through the cloud free eye, while in the

outer parts of the storm the cirrus overcast obstructs the sight onto the ground. The

spiral rainbands are seen as white cloud tails in the satellite image. The strongest pre-

cipitation is found in these spiral rainbands and in the eye-wall. Most insights about

the structure and the life-cycle of tropical cyclones are a direct result from measure-

ments by reconaissance flights. However, high-resolution numerical model simulations

are becoming more and more important. These sophisticated models use the available

data to predict the track of the cyclone, of course try to answer the question how far

the weather system might extend in the horizontal and how high the maximum wind

speed inside the storm might be.

Track prediction and the estimation of maximum intensity are questions which are of

immense public interest, especially when a storm is on the verge of landfall. To im-

prove operational models, statistical comparison of available different model types or

the question for the best way of data-assimilation, to initialize the model runs, are on-

going challenges. These very complex models, which often provide satisfactory results,

could easily suggest that the physical processes in the tropical cyclone are well under-

stood. However this is not the case. The highly complicated process of cyclogenesis,

the spin-up of the storm, or for example the processes that govern the strength of the

storm, are still not fully understood.

One possibility to investigate the most fundamental problems is to use highly idealized

mathematical models of tropical cyclones. Those models reduce the storm to its ma-

jor features and need just very few predetermined parameter specifications to obtain

results for their spatial structure and their temporal development.

Figure (3) shows a highly idealized sketch of the dynamical features in a mature hur-

ricane, when it is approximated as an axisymmetric vortex.

The flow in a mature tropical cyclone, in a simplified thought experiment, may be

divided into two different circulations. First of all there is the primary circulation. It

is a horizontal quasi-symmetric circulation on which is superposed a thermally-direct

vertical (transverse) circulation, the secondary circulation. These terms were first used

by Ooyama (1982). The combination of these two circulations results in the typical

spiralling flow, which is characteristic of tropical cyclones. The question now arises

where this secundary circulation is originating from, which is responsible for the char-

acteristic observed spiral motion in the storm. If there was only the primary circulation
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Figure 3: Schematic structure of the flow in a mature tropical cyclone in a steady state where gradient

wind balance is seen.

an air parcel would just move along a circle round the axis. In the absence of friction

the centrifugal force and the Coriolis force act to move the parcel outwards and balance

the pressure gradient force, which is due to the pressure drop towards the storm center.

This balance, which is schematically shown in Fig.(3), is also referred to as gradient

wind balance.

However, there must be other physical effects which induce the secondary circulation

and finally lead to the spiraling motion of air parcels. It turns out that the surface

friction has a strong influence on the dynamics of the tropical cyclone. Actually this

is not only true in the layer where friction acts, the so-called boundary layer, but also

above.

One can show that the friction must reduce the tangential wind speed near the surface.

Not at all obvious is the fact that the effect of friction on the pressure field in the

boundary layer is just very small. A scale analysis will show (see Chapter (1.2)) that

the radial pressure gradient in the boundary layer is approximately the same as that

immediately above the layer so that the pressure gradient force acting on a parcel of

air is almost the same through the whole depth of the layer.

The reduction of the tangential wind speed by friction leads to a reduction of the cen-

trifugal and the Coriolis force as sketched in Fig.(4). The result is that the unchanged

pressure gradient force now is larger than the sum of the two outwards pointing forces

and the parcel of air is driven inwards towards the core. A strong inflow in the bound-
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ary layer close to the ground at a height of about 50 to 100 m is resulting, as sketched

in Figure (4). This effect is often referred to as frictionally-induced convergence. The

consequences of this convergence are notable in the vertical velocity.

Secondary
circulation

r

z

v

v

Primary
circulation

d

Figure 4: Schematic sketch of the frictionally-induced convergence in the tropical cyclone.

Figure (4) also highlights schematically the frictionally-induced convergence and the

secondary circulation. At large distances from the hurricane core both the inflow ve-

locity and the mass flux towards the center increase with decreasing radius. This mass

flux is balanced through forced subsidence above the boundary layer at large radii. At

inner radii, where the inflow and mass flux begin to become smaller, the air parcels are

moved upwards from the boundary layer into the vortex above due to effects of local

buoyancy. This means that the presence of the rigid boundary leads to convergence in

lower levels and vertical motion in the vortex above the boundary layer, thereby in-

ducing the secondary circulation in the vortex above. The strong upflow in the eyewall

clouds transports very moist and warm air from the boundary layer up into the vortex

above and the heat transfer from the sea surface is the most important energy supply

of the storm. Therefore, it is the great importance of the boundary layer both for the

dynamic and the thermodynamic processes why the lowest few hundreds of meters are

of special interest.
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Introduction

Over the years the boundary layer has been the subject of numerous theoretical investi-

gations, many of them relating to axisymmetric vortices (Rosenthal 1962, Miller 1965,

Smith 1968, Leslie and Smith 1970, Carrier 1971, Eliassen 1971, Bode and Smith 1975,

Eliassen and Lystadt 1977, Shapiro 1983, Montgomery et al. 2001, Smith 2003) and a

few to asymmetric vortices (Shapiro 1983, Kepert 2001, Kepert and Wang 2001, Kepert

2006a, 2006b). With the exception of Smith (2003), these studies focussed exclusively

on the dynamical constraints of the boundary layer. The importance of the thermody-

namical constraint was recognized by Emanuel (1986) and its representation was a key

feature in the simple axisymmetric model he proposed for a mature hurricane. This

model was the starting point for his so-called potential intensity theory which gives an

estimate for the maximum wind speed that may be obtained in a hurricane during its

life-cycle.

Hurricane boundary layer models may be divided into three different types. First there

are vertically-integrated models (Smith 1968, Leslie and Smith 1970, Bode and Smith

1975). For this approach, radially-varying profiles for the radial and the tangential

wind need to be given, but not their scales. The so called slab models are a subset of

these (Shapiro 1983, Smith 2003, Smith and Montgomery 2008). They assume vertical

profiles and finally yield radial and tangential wind profiles, which are averaged through

the depth of the boundary layer. The third type are the ”continuous models” (Eliassen

1971, Eliassen and Lystadt 1977, Montgomery et al. 2001, Kepert 2001, Kepert and

Wang 2001). These models enable both the radial and the vertical structure of the

boundary layer flow to be determined. Although all of these models capture the gen-

eral features of the hurricane boundary layer reasonably well it is clear that each type

has its own strengths and also weaknesses. In this work, two types of boundary layer

models are derived and compared. The first one is a symmetric ”continuous model”,

which focusses exclusively on the dynamics of the boundary layer, while the second

model, which is a slab model similiar to the one developed by Smith (2003), considers

also certain thermodynamic aspects.

In one of the early studies of continuous models Eliassen (1971) developed a linear

theory for the spin-down (i.e. the decrease of the intensity) of a idealized vortex due

to the influence of surface friction. He used a very simplified boundary condition at

the surface which supposes that both the radial and the tangential wind speed vanish

at the surface, the so-called no-slip boundary condition. He showed that with this

condition, the tangential winds above the boundary layer decrease exponentially with

16



time. He found also that the vertical velocity is directed upwards at the top of the

layer, that it is almost constant inside the radius of maximum tangential wind and

that it reaches its maximum at the center of the vortex. This result is different from

what is found in turbulent boundary layers where the vertical velocity at the top of

the boundary layer is zero at the vortex center and increases linearly with radius inside

the radius of maximum tangential winds.

The work of Eliassen (1971) was extended by Eliassen and Lystad (1977). They incor-

porated differential rotation in the tangential flow and presented numerical solutions

of the coupled equations for the boundary layer and the vortex above for the case with

a quadratic drag law in the surface layer, the so called slip boundary condition. Their

theory for the spindown predicts the evolution of the angular velocity, the transverse

streamfunction, the boundary layer depth as well as the half-life time of the vortex (the

time required to reduce the angular velocity by one half). They formulated the theory

in a nonrotating coordinate system and assumed that the flow evolves close to a state

of cyclostrophic balance throughout the fluid. Cyclostrophic balance means that fric-

tional and Coriolis forces are negligible and the centripetal acceleration is exclusively

balanced by the pressure gradient force.

However, they did not examine vortices of hurricane strength. The strongest vortex

they examined had a maximum wind speed of only 10 m s−1. This corresponds to a

Rossby number of 20 at the latitude they considered. Their Rossby number was de-

fined as Ro = 2ωc/f where ωc denotes the angular velocity at the vortex center and f

is the Coriolis parameter. It characterizes the importance of the Coriolis acceleration

for the flow. If the influence of the Coriolis force is just small, as it is required for

cyclostrophic balance, the Rossby number must be sufficiently large.

Montgomery et al. (2001) pointed out that the neglected noncyclostrophic terms in

the boundary layer may become significant at higher swirl speeds. It was argued that

this might limit the applicability of the theory to hurricanes. To investigate this is-

sue, Montgomery et al. (2001) carried out numerical calculations of the full nonlinear

equations in the same spin-down flow configuration as Eliassen and Lystadt. They

calculate solutions for weak vortices, but also for vortices of hurricane strength (i.e.,

with maximum tangential winds exceeding 33 m s−1).

They found that the theoretically predicted algebraic temporal decay of the primary

vortex is validated for tropical storm and hurricane strength vortices also. Further

they noted increasing quantitative deviations from Eliassen and Lystadt’s theory with
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Introduction

increasing fluid depth, although the theory is still qualitatively valid for hurricane-like

vortices 10 and 15 km deep. They found also that, as the vortex strength increases

from tropical storm to hurricane strength, the cyclostrophic balance approximation

becomes only marginally valid in the boundary layer, yet remains valid in the flow

interior. In addition, a temporary spinup of tangential winds and vertical vorticity

in the boundary layer and a low-level outflow jet occur in the numerical simulations.

These features were not predicted by the theory and it was argued that they are the

primary cause for the discrepancy between the theory and the model simulations.

Kepert (2001) examined the linear equations for the steady boundary layer of an asym-

metric vortex with the assumption that there is gradient wind balance at the top of

the boundary layer and obtained an analytic solution to these. He showed that the

solution incorporates a region of supergradient winds (that means that the tangential

wind speed in the boundary layer exeeds that found at the top of the layer) near the

top of the layer, just like the solution to the well known classical Ekman equations for

the boundary layer flow. He showed also that just as in the Ekman solution, the degree

to which the flow is supergradient is only a few percent.

In a second paper Kepert and Wang (2001) compared their linear solution with a steady

state solution for the boundary layer obtained from a numerical model, which included

a relatively sophisticated parameterization of the boundary layer. They showed, inter

alia, that vertical advection of angular momentum plays a crucial role in strengthening

the supergradient component, which may be several times stronger than predicted by

the linear model. However none of these studies presented a detailed scale analysis

to corroborate the linear theory. In this work the linear equations as presented by

Kepert (2001), but in an axisymmetric framework, will be derived from a detailed

scale analysis.

In many early hurricane models and also in many idealized models that have been used

recently, the boundary layer is represented by a simple slab model. As the resulting

predictions of hurricane models are sensitive to the implemented representation of the

boundary layer and slab models are widely used, it is of interest to investigate their

accuracy compared to linear boundary models. One disadvantage of slab boundary

layer models as developed by Shapiro (1983), Smith (2003) or Smith and Montgomery

(2008) is that it is not possible to determine the radial variation of the boundary

layer depth. In many cases a constant boundary layer depth is assumed and the

profiles are integrated over this constant depth. However, an investigation of the linear
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solutions suggests that the boundary layer depth decreases towards the center and the

assumption of a constant boundary layer depth is a crude simplification. It will be

shown in this work that it is possible to remove this deficiency if the continous model

is used to calculate a radial profile of the boundary layer depth and use this profile in

the slab model.

This work will show that the assumption of gradient wind balance in the boundary

layer is a major deficiency of many common theories. However, for the slab model, it

is not necessary to assume that the flow which leaves the layer must be in gradient

wind balance with the flow above. This fact is an advantage compared to the linear

approach.

The finding that the assumption of gradient wind balance in the boundary layer is a

major deficiency turns out to have important consequences.

The forecasting models for tropical cyclones do not only focus on an accurate track

prediction, but are also used to estimate the energy which will be released by the storm

on an eventual landfall. To find a measure for the inherent potential destructiveness and

to predict a worst case scenario is, indeed, one of the most important tasks operational

models have to fulfill. In 1986 Emanuel presented a steady axisymmetric model for

a mature hurricane which provided the basis to develop a theory of this potential

intensity (PI) of a tropical cyclone (Emanuel 1988, Emanuel 1995b, Bister and Emanuel

1998). The potential intensity therein is estimated by the predicted pressure fall or the

predicted maximum attained wind speed.

It is very common to use the so called E(manuel)PI-theory whenever the intensity

attained in numerical models is compared to theory (e.g. Frank and Ritchie 2001,

Persing and Montgomery 2003). As the EPI theory predicts an increase of potential

intensity with increasing sea surface temperature, the effects of global warming on the

hurricane intensity have been also investigated by many researchers using this theory,

as for example by Knutson and Tuleya (2004), Emanuel (2005) and Bengtson et al.

(2007).

Despite the fact that EPI-theory provides a reasonable framework for intensity esti-

mates, evidence suggests that this theory has some major deficiencies. Persing and

Montgomery (2003), for example, have shown that high resolution numerical models

may produce storms for which the intensity is significantly higher than it is predicted

by the EPI-theory. It was shown also that for these so-called ”superintense” storms
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Introduction

the intensity depended delicately on the assumed relative humidity at the radius of

maximum tangential wind speed, while in EPI theory Emanuel assumed the humidity

to be constant at a value of 80 %. It is not only the assumption of a constant relative

humidity that is a limiting factor to the performance of EPI-theory. In the hurricane

model developed by Emanuel (1986) the boundary layer is of high importance as it

determines the values of absolute angular momentum per unit mass and equivalent

potential temperature which are assumed to be conserved when an air parcel exits

the layer. It is questionable how the representation of the boundary layer in Emanuel

(1986) influences the results of EPI-theory.

As it has been pointed out in detail above, there are still a lot of fundamental open

questions in the field of tropical cyclone physics. It is more and more accepted that the

answers to many of those questions can not be given without considering the processes

in the boundary layer of the storm. High-resolution numerical models of course are

an important tool in research, but often do not provide physically substantial insights.

Therefore this work focusses on two highly idealized boundary layer models. The aim

of this study is to understand better the strengths and limitations of two very common

representations of the boundary layer and to investigate, if there are consequences for

other fields of hurricane research, such as the question of hurricane spin-up or the the-

ory of potential intensity. In chapter (2), a linear model for the hurricane boundary

layer is derived from a detailed scale analysis of the full equations of motions. It is

shown how analytic solutions for the model may be calculated and how these solutions

may be used to appraise the integrity of the linear approximation.

In chapter (3), a slab model is examined numerically, which additionally yields results

for the main thermodynamic quantities. Different aspects of the dynamics and ther-

modynamics of the boundary layer are studied and the limitations and strengths of the

slab model are discussed at the end of chapter (3).

Finally, chapter (4) recapitulates the main ideas of the well-established hurricane

(P)otential (I)ntensity theory and investigates some of its major deficiencies in the

light of the findings of chapter (2) and (3). Indeed, the results of chapter (4) show a

fundamental problem of the established PI theory and point to an improved conceptual

model of the hurricane inner core region.
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Chapter 1

Ekman’s simple boundary layer

model applied to a hurricane

1.1 The planetary boundary layer

The planetary boundary layer (PBL) is defined as ”that part of the troposphere that

is directly influenced by the presence of the Earth’s surface, and responds to surface

forcings with a timescale of about an hour or less. These forcings include frictional drag,

evaporation and transpiration, heat transfer, pollutant emission, and terrain induced

flow modification. The boundary layer thickness is quite variable in time and space,

ranging from hundreds of meters to a few kilometers”, (Stull 1988, pg.2).

Simply speaking, the planetary boundary layer is that part of the Earth’s atmosphere

that directly surrounds us and where ”weather happens”.

The transport processes in the PBL are mostly dominated by turbulence, a characteris-

tic feature in contrast to the free atmosphere. The boundary layer is usually subdivided

into three parts (e.g. Garratt 1992) as sketched in Fig.(1.1).

The lowest few millimeters are called the friction layer or viscous sublayer where the

influence of the surface is immediate. In the viscous sublayer the vertical shears are

very large and the heat and mass transfer between the surface and the air above is

mainly due to molecular diffusion. This layer is often neglected although it may become

important for processes which include, for example, the interaction of the atmosphere
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

with the sea surface.

Above the viscous sublayer lies the so called Prandtl layer or inertial sublayer which

has a depth of 20 m up to about 100 m, depending on the thermal stratification. The

influence of the Coriolis force is assumed to be negligible so that there is no change in

the wind direction, but just an increase in the wind speed with height. The turbulent

fluxes are assumed to be constant with height in this layer.

The so called Ekman layer covers the main part of the PBL. It is often called the outer

region. In this context the viscous sublayer together with the Prandtl layer are referred

to as the inner region of the PBL. In the outer region the influence of the surface is

only weak, the turbulent fluxes vanish through the depth of the layer and the flow at its

top is approximately laminar. The influence of the Coriolis force is no longer negligible

and it causes a change in the wind direction with height - the famous Ekman-spiral.

Z  ~ 1 cm0
friction layer

Prandtl layer

z

h ~ 100 m

H ~ 1 km
Ekman layer

free atmospherelaminar flow

turbulent fluxes
decreasing with
height

turbulent fluxes
constant with height

r

|v(z)|

Figure 1.1: Vertical structure of the planetary boundary layer.

Especially over land the structure of the PBL is periodically changing with the so-called

diurnal cycle (see e.g. Stull 1988). Surface heating during the daytime is followed by

cooling in the nighttime. These are two completely different regimes, forming different

types of turbulence. Fig.(1.2) shows the typical features of the PBL, varying during a

day.

During the daytime there is strong surface heating caused by the sun. This heating

results in thermal instability or convection. It is this convection that coins the name the

convective (mixed) BL, also referred to as the unstably stratified BL. The stronger the
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1.1. The planetary boundary layer
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Figure 1.2: Diurnal variation of the planetary boundary layer following Stull (1988).

surface heating, the more dominant become the convective motions in the outer region

which is then often called convective mixed layer. If there is strong convection it is easy

to define the top of the boundary layer as that height in which a capping inversion is

found. It is that cap that inhibits turbulent eddies to rise. At which height the stable

layer occurs is very variable, but in general it is not above three kilometers. In some

situations, the top of the unstably stratified BL may be defined also by a notable

decrease in the aerosol concentration. In the case of very strong surface heating, such

as for example over desert areas in mid summer, a boundary layer depth of 5 kilometers

or even more may be observed.

During the nighttime the stably stratified BL is found. Surface cooling starts after

sunset and a surface inversion is typical for the fully developed stable layer. It is not

easy to define the top of the nighttime BL as the turbulence is much weaker. As a

consequence the stable layer may just cover a few hundred meters.

Over the oceans the variability of the boundary layer within the diurnal cycle is much

less than that over land. This is due to the fact that the sea surface does not heat

up as fast as the land during daytime nor does it cool as fast during the nighttime.

In tropical regions the structure of the PBL over the sea depends mostly on seasonal

variations or special weather conditions and it’s depth may be comparable to that of

a PBL over land during daytime.

In any case, the boundary layer of a swirling flow with very high wind speeds such as in
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

the case of tropical cyclones has special characteristics as will be shown in the following

section. The influence of the diurnal cycle on the hurricane boundary layer is assumed

to be small and is therefore neglected in the following considerations as hurricanes are

weather phenomena over the sea surface.

1.2 Ekman’s simple boundary layer model

The simplest model of a planetary boundary layer under the influence of the Coriolis

force is the well known model of the Ekman layer (Ekman 1905). In general the model

was developed to study straight geostrophic ocean currents. Ekman assumed the flow

to be geostrophic at the top of the boundary layer, which means that the horizontal

component of the Coriolis force exactly balances the pressure gradient force.

For any system it is possible to calculate the so-called Rossby number which charac-

terizes the importance of the Coriolis acceleration in proportion to the background

flow:

Ro =
V

Rf
,

where V and R are characteristic velocity and length scales of the flow and f is the

Coriolis parameter. A small Rossby number distinguishes a system which is strongly

affected by Coriolis forces from one with a large Rossby number, in which inertial and

centrifugal forces dominate.

Ekman’s assumption of geostrophic flow holds only if the Rossby number is sufficiently

small (Ro ≪ 1). So consequently Ro is appropriate to check the applicability of Ek-

man’s assumption for a certain flow regime.

Taylor (1916) exerted Ekman’s theory to atmospheric flow over the Earth’s surface

and applied a slip boundary condition at the bottom of the layer. In the slip boundary

condition, the surface stress is assumed to be proportional to the absolute value of the

windspeed just above the boundary.

Together with the appropriate boundary conditions, the problem of the Ekman layer

is well posed and it is possible to obtain full solutions for the radial and the tangential

flow inside the boundary layer. Additionally the turning of the wind vector with height

and its angle to the surface may be derived.
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1.3. The boundary layer equations

This kind of approach is known to be relevant to a lot of problems where a boundary

layer flow is found as for example in tropical cyclones. However, in the case of tropical

cyclones an application of the classical Ekman theory has some limitations. First of

all the theory is not posed for a circular setup.

The second problem is that, in the case of a tropical cyclone, large Rossby numbers

are found. The tangential wind speed due to the rapid rotation of the storm is dom-

inant compared to the radial component of the flow, the centrifugal force acting on

an air parcel must also be taken into account. Thus the assumption that the pressure

gradient force is balanced by the Coriolis force alone, is valid only in a region far from

the center of the storm, where the tangential wind speed and thus the centrifugal force

acting on an air parcel is small.

Even if the Ekman model was not developed for high Rossby numbers as found in

tropical cyclones, it will be shown in the next section that it reproduces some char-

acteristic features of the tropical cyclone boundary layer reasonably well. To study

the Ekman equations is of interest as their simple analytic solutions allow for a sub-

stantial analysis of the influence of certain parameters such as, for example, surface

drag or the representation of turbulence. In the following section it will be shown how

the Ekman equations can be obtained from the general boundary layer equations by

a scale analysis. Analytic solutions are derived and different boundary conditions are

investigated.

1.3 The boundary layer equations

As the boundary layer of a hurricane is relatively shallow, it is a good approximation

to neglect the variation of air density with height. It is assumed for the present that

the turbulent momentum transfer may be represented in terms of a constant eddy dif-

fusivity, KM . Now the momentum equations for an axisymmetric vortex in cylindrical

polar coordinates, (r, λ, z) are of the form:

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
− fv = −1

ρ

∂p

∂r
+ KM

(

∇2u − u

r2

)

, (1.1)

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+

uv

r
+ fu = KM

(

∇2v − v

r2

)

, (1.2)
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∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ KM∇2w, (1.3)

where (u, v, w) is the velocity vector, p is the perturbation pressure and ρ is the density

of air (see e.g. Holton 1988, Garratt 1992). The equations are completed by the

continuity equation, which for a homogeneous fluid takes the form:

1

r

∂ru

∂r
+

∂w

∂z
= 0 (1.4)

assuming that there are no density variations.

In the derivation of the equations for the boundary layer for axisymmetric flow it is

normally assumed that the tangential wind component, vgr, at the top of the boundary

layer is a function only of radius and possibly time and that it is in gradient wind

balance, i.e. it satisfies the equation:

v2
gr

r
+ fvgr =

1

ρ

∂p

∂r
. (1.5)

A scale analysis that is carried out below will show that the radial pressure gradient

throughout the boundary layer may be assumed approximately equal to that at the

top of the layer. Using this result it is possible to substitute for the pressure gradient

in terms of vgr by the use of Eq.(1.5).

1.3.1 A scale analysis

Let U , V , W be scales for u, v, w, and R, Z be length scales for r and z, respectively. Let

T = R/U be an advective time scale for the radial flow and ∆p to be a scale for changes

in the perturbation pressure, p. It is possible to define four nondimensional parameters:

a swirl parameter, S = U/V ; a Rossby number Ro = V/fR; a Reynolds number,

Re = V Z/KM , which characterizes the importance of the inertial to the friction terms;

and an aspect ratio, A = Z/R, which measures the ratio of the boundary-layer depth

to the radial scale. As the motion is assumed to be axisymmetric, a separate advective

time scale for the tangential flow, V/R, is not required.

First the continuity equation (Eq.(1.4)) is examined to derive a relation between the

radial and the vertical scale. The two summands on the left-hand-side have scales
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1.3. The boundary layer equations

u−momentum

∂u
∂t

+ u∂u
∂r

+ w ∂u
∂z

− v2

r
− fv = −1

ρ
∂p
∂r

+ KM

(

∇2
hu − u

r2

)

+ KM
∂2u
∂z2 (1)

U
T

U2

R
W U

Z
V 2

R
fV ∆p

ρR
KM

U
R2 KM

U
Z2 (1a)

S2 S2 S2 1 1
Ro

∆p
ρV 2

1
Re

SA 1
Re

SA−1 (1b)

v−momentum

∂v
∂t

+ u∂v
∂r

+ w ∂v
∂z

+ uv
r

+ fu = + KM

(

∇2
hv − v

r2

)

+ KM
∂2v
∂z2 (2)

V
T

U V
R

W V
Z

U V
R

fU KM
V
R2 KM

V
Z2 (2a)

S S S S S
Ro

1
Re

A 1
Re

A−1 (2b)

w−momentum

∂w
∂t

+ u∂w
∂r

+ w ∂w
∂z

= −1
ρ

∂p
∂z

+ KM∇2
hw + KM

∂2w
∂z2 (3)

W
T

UW
R

W 2

Z
∆p
ρZ

KM
W
R2 KM

W
Z2 (3a)

S2A2 S2A2 S2A2 ∆p
ρV 2

SA3

Re

SA
Re

(3b)

Table 1.1: Scaling of the terms in Eqs.(1.1),(1.2) and (1.3). The ratios in the first lines under each

equation show the scale of the equation term above it while the second line shows the corresponding

nondimensional scales. Here A = Z/R, S = U/V , Ro = V/fR, and Re = V Z/K.

U/R and W/Z and since these sum to zero, they must have the same magnitude, i.e.

W/Z ∼ U/R. This result is used to simplify the scale analysis of the momentum

equations shown in Table (1.1).

The ratios in the first lines under each equation show the scale of the equation term

above it while the second line shows the corresponding nondimensional scales. These

are obtained by dividing line (1a) and (2a) by V 2/R to obtain (1b) and (2b), and

dividing line (3a) by V 2/Z to obtain (3b).

As the boundary layer is typically thin, which means that it has not more than 500

m to 1 km in depth, Z is small compared to the radial scale R, say R = 50 km and

Z = 500 m. Hence for the aspect ratio A follows that A = Z/R = 10−2, which is

small compared with unity. A typical value for the eddy diffusivity KM is of the order

of 10 m2s−1 (e.g. Rosenthal 1962) and if the core region of the storm is to be taken

into account it is realistic to assume V = 50 ms−1. These estimates may be used to
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

calculate the Reynolds number: Re = V Z
KM

= 50·500
10

= 2.5 × 103. It follows from line

(3b) in Table (1.1) that

∆p/(ρV 2) ≈ 3S2A2 − SA

Re

(A2 + 1).

As A2 = 10−4 it follows (A2 + 1) ≈ 1 and therefore

∆p/(ρV 2) ≈ max(3S2A2, SAR−1
e ) = 3 × 10−4 (1.6)

if one assumes that S ≈ 1 in the boundary layer, which means that the radial and

the tangential wind speeds are of the same order of magnitude. Analyzing Eq.(1.6)

it follows that the vertical variation of p across the boundary layer is only a tiny

fraction of the radial variation of p above the boundary-layer. In other words, to

a close approximation, the radial pressure gradient within the boundary-layer is the

same as that above the boundary-layer. This result justifies the substitution for the

pressure gradient in terms of vgr, using the gradient wind equation Eq.(1.5). Under

the additional assumption of a steady flow ( ∂
∂t

≡ 0) the boundary layer equations then

take the form:

u
∂u

∂r
+ w

∂u

∂z
+

v2
gr − v2

r
+ f(vgr − v) = KM

∂2u

∂z2
, (1.7)

u
∂v

∂r
+ w

∂v

∂z
+

uv

r
+ fu = KM

∂2v

∂z2
, (1.8)

where vgr(r) is the gradient wind speed at the top of the boundary layer and we denote

vgr(rg) = vg for the geostrophic radius rg. Note that for some calculations a radial

profile for vgr(r), the flow at the top of the boundary layer must be specified.

To derive now the well known Ekman equations from Eqs.(1.7) and (1.8), a non-

dimensional form of the equations is useful.

First the scales for the quantities have to be specified. The eddy diffusivity KM may

be written as KM = K∗

Mk. Here K∗

M is a constant value which is appropriate to the

Ekman region, i.e. far out from the core of the storm. As a first approximation KM

is assumed to be constant (k = const.) even if it would be more realistic to let the

parameter vary with height and radius and hence choose k = k(z, r).
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1.3. The boundary layer equations

The Ekman length scale is Zg =
√

K∗

M

f
and with the velocity scale Vg, which again

represents the azimuthal geostrophic flow at the top of the boundary layer at large

radii, one can define

v = VgV, u = VgU, vgr = VgVgr, z = ZgZ and r = RgR.

The vertical velocity w can be scaled as w = VgZg

Rg
W using the continuity equation,

Eq.(1.4).

Note that again the capital letters now denote dimensionless values of the scaled vari-

ables. A non-dimensional form of the momentum equations may be derived easily.

This form reveals the terms that scale with the Rossby number Ro.

Using K∗

M = Z2
gf , Eqs.(1.7) and (1.8) in terms of Ro = Vg

Rgf
, the local Rossby number

for the flow above the Ekman region, may be simplified to:

Ro

(

U
∂U

∂R
+ W

∂U

∂Z
+

V 2
gr − V 2

R

)

+ (Vgr − V ) = k
∂2U

∂Z2
. (1.9)

Ro

(

U
∂V

∂R
+ W

∂V

∂Z
+

UV

R

)

+ U = k
∂2V

∂Z2
. (1.10)

These non-dimensional equations will now be the basis for deriving the well known

Ekman equations for a swirling flow in the boundary layer.

At regions distant from the center of the hurricane, the flow may be assumed to be

geostrophic. In terms of the local Rossby number Ro this means that Ro ≪ 1 as this

assumption requires a very small Vgr. Of course for the case of the flow in a hurricane

this is a very crude assumption which is not valid for regions closer to the core where

there is no gradient wind balance and large Rossby numbers are obtained.

Figure (1.3) shows the local Rossby number Ro = vgr/(rf) evaluated for the profile

of vgr(r) (vortex 3), which is realistic for a tropical cyclone. The profile is shown in

Fig.(4.12) in the Appendix, where different realistic vortex profiles and their properties

are discussed in detail.

The red horizontal line is drawn at the value 1. Clearly Ro > 1 for radii smaller than

307 km and the assumption Ro ≪ 1 is only valid for radii far from the storm center.

However, the calculation with the most simple case, the Ekman equations, gives a first

idea of the flow fields for a vortex of hurricane strength.
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Figure 1.3: Local Rossby number Ro for vortex 3 where the red line marks unity.

The interpretation of equations (1.9) and (1.10) under the assumption of a small Rossby

number, Ro ≪ 1, shows that the inertial terms (first terms on the left hand sides of

Eqs.(1.9) and (1.10)) are small compared to the terms representing Coriolis effects and

the effects of friction. Hence the inertial terms may be neglected, so that finally the

Ekman equations follow in their non dimensional form

(Vgr − V ) = k
∂2U

∂Z2
, (1.11)

U = k
∂2V

∂Z2
. (1.12)

In their dimensional form the Ekman equations are:

f(vgr − v) = KM
∂2u

∂z2
, (1.13)

fu = KM
∂2v

∂z2
, (1.14)

where vgr denotes the horizontal component of the tangential wind speed at the top of

the boundary layer. Note that vgr(r) is a function of the radius and it is assumed that

v → vgr, u → 0 for z → ∞. These equations may easily be solved analytically.
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1.3. The boundary layer equations

Now solutions to the Ekman equations are derived using different boundary conditions

at the lower bound. It is comfortable to complexify the system:

Let x := v + iu, then the Ekman equations reduce to the complex equation

∂2x

∂z2
+ i

f

KM

x =
if

KM

vgr. (1.15)

Using a standard exponential ansatz, solutions for x are found to be of the form

x = vgr(1 − Ae−(1−i) z
δ ),

where A is a complex integration constant and δ :=
√

2KM

f
can be interpreted as a

boundary layer depth scale. The constant A is depending on the boundary condition

at the surface (z = 0). Two different boundary conditions will be explored in the

following section.

1.3.2 The no-slip boundary condition

Physically it is required that on the surface friction is acting against the flow. One

possible assumption, actually the most simple one, is to assume that this makes the

flow fields vanish completely at the ground (z = 0). This is called the no-slip boundary

condition:

v(z) → 0, u(z) → 0 for z → 0.

With

u(r, z) = Im(x(z)) = −vgr(r)Ae−
z
δ sin

(z

δ

)

and (1.16)

v(r, z) = Re(x(z)) = vgr(r)
(

1 − Ae−
z
δ cos

(z

δ

))

(1.17)

follows for the integration constant A that A = 1 and

x = vgr(1 − e−(1−i) z
δ )

is a complete solution for the no-slip case. This kind of solutions were first discussed

by Ekman (1905), who formulated and solved the problem for laminar ocean currents.

To calculate the complete dynamical fields in Fig.(1.4), the wind profile vortex 3 shown
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in Fig (4.12) in the Appendix is used. It is also necessary to specify the Coriolis

parameter f and the Eddy diffusivity KM . Here f = 5×10−5 s−1 and KM = 10 m2s−1

are chosen which are realistic values for that parameters (e.g. Rosenthal 1962). Panel

(a) of Fig.(1.4) shows the tangential wind deficit v′(r, z) = v(r, z) − vgr(r).
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Figure 1.4: Tangential wind deficit v′(r, z) = v(r, z)− vgr(r) (panel (a)) and radial wind speed u(r, z)

(panel (b)).

Near the ground the tangential wind speed vanishes according to the no-slip boundary

condition. In terms of the tangential wind deficit this means, that the difference to the

given wind profile near the ground close to the radius of maximum wind speed rm must

be the maximum value of vgr which is vm = 40 ms−1. As v′(r, z) = −vgr(r)e
−

z
δ cos(z/δ),

the wind deficit is zero for
z

δ
= (2k + 1)

π

2
.

For k = 1 and k = 2 this condition is satisfied for z1 = 993.5 m and for z2 = 2980.4 m,

respectively. The result is visualized by the zero contourlines in Fig (1.4), panel (a).

If v′ > 0 the tangential wind speed in the boundary layer is larger than that above.

The fact that v′ changes sign inside the boundary layer highlights the fact that there

are two completely different flow regimes. In heights between z1 and z2 the tangential

wind is supergradient (that is v′(r, z) ≥ 0) below it is subgradient.

Fig.(1.4), panel (b) shows the radial wind field u(r, z). With A = 1 it is u(r, z) =

−vgr(r)e
−

z
δ sin(z/δ) and it follows, that u(r, z) is zero for

z

δ
= kπ.

For k = 1 and k = 2 this condition is satisfied for z1 = 1986.92 m and for z2 = 3973.84
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1.3. The boundary layer equations

m, respectively. This means that a layers of weak inflow (u(r, z) ≥ 0) is capped by a

layer (z > z1) where weak outflow is obtained.

To determine the extreme values of the radial and tangential wind speeds u(r, z) and

v′(r, z) the gradients of u and v′ are calculated:

grad(u(r, z)) =

(

− ∂
∂r

vgr(r)e
−

z
δ sin

(

z
δ

)

−vgr(r)
((

−1
δ

)

e−
z
δ sin

(

z
δ

)

+
(

1
δ

)

e−
z
δ cos

(

z
δ

))

)

(1.18)

and

grad(v′(r, z)) =

(

− ∂
∂r

vgr(r)e
−

z
δ cos

(

z
δ

)

−vgr(r)
((

−1
δ

)

e−
z
δ cos

(

z
δ

)

−
(

1
δ

)

e−
z
δ sin

(

z
δ

))

)

. (1.19)

As vgr has its maximum at rm = 40 km, ∂vgr(r)
∂r

= 0 at this radius and the corresponding

z-values for the extrema of u(r, z) and v′(r, z) have to satisfy the conditions

−vgr(rm)

(

−1

δ

)

e−
z
δ

(

sin
(z

δ

)

− cos
(z

δ

))

= 0, (1.20)

−vgr(rm)

(

−1

δ

)

e−
z
δ

(

sin
(z

δ

)

+ cos
(z

δ

))

= 0. (1.21)

As −vgr(rm)
(

−1
δ

)

e−
z
δ 6= 0 it follows that for u(r, z) and v′(r, z) the z-coordinates of

the extreme points ze are given by the equations

arctan(1)δ = ze (for u(r, z)), (1.22)

arctan(−1)δ = ze (for v′(r, z)). (1.23)

Thus the radial and tangential wind have their extreme values at the points

ue(r, m) =
(

rm, (4k+1)π
4

δ
)

v′

e(r, m) =
(

rm, (4k−1)π
4

δ
) for k = 0, 1, 2, . . . (1.24)

According to the calculated extrema, the local and global maximum supergradient

value v′

e(r, z) = 2.68 m s−1 is obtained for k = 1 at rm in a height of z = 1.49 km.

So the tendency of supergradient wind is weaker in regions far out from the radius of

maximum winds and in the inner core for r < rm.

u(r, z) has its local and global minimum value of ue =- 12.9 m s−1 for k = 0 at rm in a
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

height of z = 0.5 km. A local maximum of 0.56 m s−1 is found for k = 1 in the layer of

weak outflow obtained at the radius of maximum winds rm in a height of z = 2.48 km.

Another way to illustrate the results is to plot the radial and tangential flow as functions

of z. Figure (1.5) shows the resulting hodograph, a modification of the famous Ekman

spiral, for four different radii, assuming a no-slip boundary condition.
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Figure 1.5: Hodographs of the radial and tangential wind speed for four different radii.

Figure (1.5) shows that the vector of the total wind is recurving with height until it

reaches the value vgr(r). It is possible to calculate the angle α between the absolute

wind vector and the vector vgr at the ground. It is

tan(α) = lim
z→0

v(0, z)

u(0, z)
= 1

by the use of L’Hospitals rule. Hence α = π/4 for all radii. In general, the observed

angle between the wind vector at the ground and the vector of the geostrophic wind

is much smaller. Values between 12 and 25 degrees are typical. One reason for the

deviation is the crude assumption of an eddy diffusivity KM which is constant with

height.

In addition to the radial and tangential flow fields it is of interest to investigate the

vertical motion. In the case of the Ekman equations the vertical velocity w is obtained

by integrating the continuity equation, Eq.(1.4). Using the solution obtained for u(r, z)

u(r, z) = −vgr(r)e
−

z
δ sin(z/δ)
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1.3. The boundary layer equations

it is
∂

∂r
(ru) =

1

r
e−

z
δ

(

vgr(r) + r
∂

∂r
(vgr(r))

)

:= f(r, z)

and the final result is an analytic solution for w(r, z):

w(r, z) = −1

r

∫ z

0

f(r, z′)dz′

= − δ

2r
e−

z
δ

(

−e
z
δ + cos(z/δ) + sin(z/δ)

)

(

vgr(r) + r
∂

∂r
vgr(r)

)

. (1.25)

Figure (1.6) shows a contour plot of the vertical velocity w(r, z), calculated with vortex

3, in which can be seen that the domain is clearly divided into two regions.
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Figure 1.6: Vertical velocity w(r, z) in m s−1 for the no-slip boundary condition.

First a region far out from the center of the vortex at radii larger than 263 km where

w(r, z) is negative and air parcels are transported downwards into the boundary layer.

However the absolute values of w(r, z) are small here. Closer to the center w(r, z) is

becoming positiv. This upflow is strongest in the core region of the vortex with values

larger than 1 m s−1. As the boundary condition forces the radial wind to zero at z = 0,

the vertical velocity is also vanishing at the ground. For heights between 0 < z < 1.5

km, w(r, z) is slightly changing until it asymptotically attains values constant in height.

The radial distribution of the vertical velocity at large heights, w∞(r), may be derived

by calculating the limit limz→∞ w(r, z). It is

w∞(r) =
δ

2r
(vgr + rv′

gr). (1.26)
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

This shows that w∞(r) is only depending on the chosen profile vgr(r). An inspection

of the zero contour in Fig.(1.6) shows that, for all heights, the vertical wind speed

changes sign at the same radius, rw=0. This fact is explained by the following analysis.

In the analytic expression for w(r, z) the first factor is always non-zero for all r. Thus

the zero contour of the vertical velocity w(r, z) is a vertical line at a radius which is

determined by the condition

−1

r
vgr(r) =

∂

∂r
vgr(r). (1.27)

Note that this radius (where the vertical flow changes direction) is also only depending

on the choice of the wind profile vgr(r). As the general character of the vertical flow is

described by rw=0 this is an important aspect.

1.3.3 The slip boundary condition

Usually a no-slip boundary condition (u → 0, v → 0 for z → 0) as described before is

used to close the problem at the surface although it is not very realistic. A slip boundary

condition where the surface stress is parametrized by a constant drag coefficient CD

reflects the physical processes at the lower bound much better (see e.g. Holton 2004

or Garratt 1992). The boundary condition may be expressed as:

K
∂x

∂z

∣

∣

∣

∣

z=0

= CDx|x||z=0 with x = u + iv.

As the solutions for the Ekman equations x are of the form x = vgr(1−Ae−(1−i) z
δ ), the

boundary condition becomes

(1 − i)K

δvgr
A = CD|1 − A|(1 − A).

If Re = vgrδ
KM

and ν = ReCD, the equation (1 − i)A = ν|1 − A|(1 − A) has to be solved

for A. It is of advantage to substitute 1 − A = Beiβ with the real numbers B and β.

Note that B, as the absolute value of the complex number (1 − A), must be positive.

With this substitution the boundary condition is

(1 − i)(1 − Beiβ) = νB2eiβ.

Separating in real and imaginary parts, a system of two equations for the real numbers

B and β has to be solved:

(1 + νB) cos(β)+ sin(β) = 1
B

,

cos(β)− (1 + νB) sin(β) = 1
B

.
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1.3. The boundary layer equations

This leeds to two expressions for sin(β) and cos(β) of the form

sin(β) = −νB
B(1+(1+νB)2)

, (1.28)

cos(β) = 2+νB
B(1+(1+νB)2)

, (1.29)

and with the identity sin2(β) + cos2(β) = 1 an algebraic equation for B is obtained

ν2B2 + (2 + νB)2 − B2(1 + (1 + νB)2)2 = 0. (1.30)

This equation can be solved analytically and with

w1(ν) := (2 + 9ν2 + 3
√

3
√

4ν2 − 13ν4 + 32ν6)
1

3

and

w2(ν) := −1 +
22

1

3 (1 − 6ν2)

w1(ν)
+ 2

2

3 w1(ν)

the real and positive B can be written as

B = − 1

2ν
+

1

2
√

3ν

√

w2(ν) +
1

2
√

3ν

√

−w2(ν) − 3 +
2
√

3

ν2
√

w2(ν)
.

The complex integration constant A now takes the simple form

A(r) = a1(r) + ia2(r) =
Bν

(1 − i) + Bν
,

and the real and the imaginary part of x give the solutions for v and u:

v(r, z) = vgr

(

1 − e−
z
δ

(

a1 cos
(z

δ

)

− a2 sin
(z

δ

)))

, (1.31)

u(r, z) = −vgre
−

z
δ

(

a1 sin
(z

δ

)

+ a2 cos
(z

δ

))

. (1.32)

As before in the calculation for the no-slip boundary condition the values for f and

KM are chosen as KM = 10 m2s−1 and f = 5×10−5 s−1. Additionally it is necessary to

specify the drag coefficient CD. For simplicity it is assumed that the parameter CD is

constant. Following the literature, a realistic value is CD = 2×10−3 (see e.g. Rosenthal

1962, Powell et al. 2003, Black et al. 2006). The tangential wind speed at the top of

the layer is again given by vortex profile 3. Figure (1.7) shows the distribution of the

tangential wind deficit v′(r, z) (panel (a)) and the obtained radial wind speed u(r, z)

(panel (b)).
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Figure 1.7: Tangential wind deficit v′(r, z) (panel (a)) and radial wind speed u(r, z) (panel (b)).

Again the zero contourlines of the radial wind speed u(r, z) and the tangential wind

deficit v′(r, z) may be calculated analytically. As the integration constant is never zero

it is a1, a2 6= 0 and it follows

v′(r, z) = 0 ⇔ a1 cos(z/δ) = a2 sin(z/δ), (1.33)

u(r, z) = 0 ⇔ a1 sin(z/δ) = −a2 cos(z/δ). (1.34)

Therefore it is

z0(r) = δ(arctan(a1(r)/a2(r)) − kπ) (for v′(r, z)), (1.35)

z0(r) = δ(arctan(−a2(r)/a1(r)) − kπ) (for u(r, z)) (1.36)

for k = 0, 1, 2, . . .. Note that the zero contours are now functions of the radius r. An

investigation of the gradients of v′(r, z) and u(r, z) shows that the extreme values of

both functions are always obtained at the radius of maximum winds rm where the

gradient of the function vgr(r) is zero. For k = 0 the zero contourline for v′(r, z) is

varying between 600 m for r = 600 km and the maximum of 800 m at r = 40 km from

where it is again dropping down. Below this height the wind deficit is negative with a

maximum value of about −25 m s−1 near the ground at rm.

Above the zero contour v′(r, z) turns positive and hence supergradient winds are ob-

tained. The maximum supergradient value of 2.4 m s−1 is obtained at rm at a height

of 1296 m.

For the radial wind speed two zero contourlines are lying in the plotted domain. One

for k = −1 where the heights are varying between 1600 m at a radius of r = 600 km
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1.3. The boundary layer equations

and 1800 m at rm and a second one for k = −2 which is lying above. For the second

one the heights are varying between 3570 m at r = 600 km and 3800 m at rm. In the

lowest layer u(r, z) is negative with a minimum value of −11.4 m s−1 which is obtained

at a height of 303 m. Above there is outflow which has a maximum value of 0.5 m s−1

at a height of 2290 m.
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Figure 1.8: Hodographs of the radial and tangential wind speed for four different radii for the slip

boundary condition.

Again the wind field can be visualized by the hodographs of the wind vectors for

different radii. In Figure (1.8) the hodographs are plotted with radii varying between

50 km and 500 km, showing the turning of the wind vector with height. While for the

no-slip condition both u(r, z) and v(r, z) were vanishing at the ground, now for all radii

the wind vector has a value different from zero for z = 0. Also the angle α between the

wind vector and vgr(r) at the ground is different than for the no-slip condition. It is

α =
π

2
+ arctan

(

v(r, 0)

u(r, 0)

)

(1.37)

and it follows

α =
π

2
+ arctan

(

a1(r) − 1

a2(r)

)

. (1.38)

Clearly, for the slip boundary condition, α is depending on the radius. Figure (1.9)

shows the radial variation of α. Far from the core α is about 10 degrees. It is increasing

towards the center with a maximum value of about 28 degrees. Further inwards α is

decreasing again rapidly.
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Figure 1.9: Angle α between the vector of the total wind at the ground and vgr(r) as function of the

radius.

For the slip boundary condition the values of α are in much better agreement with

the observations (e.g. Etling 2002, Holton 2004). Clearly the parametrization of the

surface stress by a constant drag coefficient CD is much more realistic than the no-slip

condition.

Now the distribution of the vertical wind speed w(r, z) is investigated. The solution

for the radial wind speed derived before was

u(r, z) = −vgr(r)e
−

z
δ (a1(r) sin(z/δ) + a2(r) cos(z/δ))

Note that there are three parameters depending on the radius: the wind profile vgr(r)

and the two integration constants a1(r) and a2(r). Then it is

f(r, z) := −1
r

∂
∂r

(ru)

= 1
r
e−

z
δ

[

sin(z/δ)(rvgra
′

1 + a1(vgr + rv′

gr))

+ cos(z/δ)(rvgra
′

2 + a2(vgr + rv′

gr))
]

(1.39)

and

w(r, z) =

∫ z

0

f(r, z′)dz′

Solving this integral finally gives:

w(r, z) = δ
2r

e−
z
δ

[

− cos(z/δ)
(

vgr(a1 + a2 + r(a′

1 + a′

2)) + r(a1 + a2)v
′

gr

)

+e
z
δ

(

vgr(a1 + a2 + r(a′

1 + a′

2)) + r(a1 + a2)v
′

gr

)

+ sin(z/δ)
(

rvgr(−a′

1 + a′

2) − a1(vgr + rv′

gr) + a2(vgr + rv′

gr)
)]

.

(1.40)
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Let

A(r) := vgr(a1 + a2 + r(a′

1 + a′

2)) + r(a1 + a2)v
′

gr

and

B(r) := rvgr(−a′

1 + a′

2) − a1(vgr + rv′

gr) + a2(vgr + rv′

gr).

Then the expression for w(r, z) may be written in the simple form

w(r, z) =
δ

2r
e−

z
δ

[(

e
z
δ − cos(z/δ)

)

A(r) + sin(z/δ)B(r)
]

. (1.41)

Figure (1.10) shows a contour plot of the vertical velocity w(r, z).
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Figure 1.10: Vertical velocity w(r, z) in m s−1 for the slip boundary condition.

Similiar to the calculation with the no-slip boundary condition there is very weak

inflow at large radii. The maximum upflow is found in the core region of the vortex

with values larger than 1 m s−1. Again the vertical velocity tends to zero close to the

ground level and for heights above 1.5 km w is finally independent of the height z.

Analogous to the calculations for the no-slip case a simple analytic expression for w at

large z may be derived calculating the limit z → ∞. From equation (1.41) follows that

for z → ∞

w(r, z) → δ

2r

(

vgr(a1 + a2 + r(a′

1 + a′

2)) + r(a1 + a2)v
′

gr

)

.

This can be written in the form

w∞(r) =
δ

2r

(

vgr(a1 + a2) + r
∂

∂r
(vgr(a1 + a2))

)

.
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

In the case of the slip boundary condition the behaviour of the vertical velocity in the

inner core is much more realistic than in the no-slip case. In difference to the calculation

shown there the values for w(r, z) are dropping rapidly from their maximum in the

eyewall until they reach almost zero in the center of the vortex. Another difference to

the no-slip case is that the zero contour line is not independent of height any longer.

An analysis of the equation derived for w(r, z) (Eq.(1.41)) confirms that fact. For

w(r, z) = 0 it is
(

e
z
δ − cos(z/δ)

)

A(r) = − sin(z/δ)B(r)

and hence the condition for rw=0 is

A(r)

B(r)
= − sin(z/δ)

e
z
δ − cos(z/δ)

.

Clearly rw=0 is depending on the parameters A and B and hence it is depending on

the height z. As an inspection of the zero contourline in Fig.(1.10) shows, the radius

where w(r, z) changes sign converges to the constant value r = 230 km for increasing

z.

In analogy to the result derived for the no-slip boundary condition this can be calculated

from

vgr(a1 + a2) = −r
∂

∂r
(vgr(a1 + a2)) .

It is obvious that in the case of the slip boundary condition w∞(r) is no longer only

depending on the chosen profile for vgr. The real and imaginary part of the integration

constant a1 and a2 are responsible for the value of rw=0 as well. This means that the

whole range of chosen parameters as for example drag coefficient or eddy diffusivity

influences the behaviour of the solution.

1.3.4 A comparison of the different boundary conditions

It is of interest to compare the results for the two boundary conditions directly, as

both are used in the literature. For that purpose the tangential and the radial wind

are normalized by the vortex profile vgr and evaluated at a given radius. Figure (1.11)

shows the resulting vertical profiles. Panel (a) shows the tangential wind v normalized

by vgr(r). Thus for v
vgr

≥ 1 the obtained winds are supergradient.

The blue graph shows the results for the no-slip, the red one the results for the slip

boundary condition. As the no-slip boundary condition forces v(r, z) to vanish at the
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Figure 1.11: Comparison of the tangential wind (panel (a)) and the radial wind (panel (b)) normalized

by vgr for a radius of 250 km for the no-slip (blue) and the slip boundary condition (red).

ground while the slip boundary condition allows the tangential wind to attain a non-

zero value there is a large difference between the two profiles for z = 0. For the slip

boundary condition v
vgr

attains a value of about 0.5 at z = 0. It is also remarkable

that the slip boundary condition allows the tangential wind to become supergradient

already at a height of about 700 m. This is about 300 m closer to the ground level

than for the no-slip case. For both conditions the tangential wind doesn’t become

subgradient again for heights below about 3 km. However the obtained supergradient

winds are generally slightly weaker for the slip case and the maximum is obtained

closer to the ground level. In panel (b) of Fig (1.11) the quotient u
vgr

is plotted for

both boundary conditions. Again there is a large deviation at the ground. While the

no-slip condition forces u to vanish, in the slip case u
vgr

= −0.2. This means that there

is inflow even at the ground. In general both solutions show a layer of inflow topped

by an outflow layer (u(r, z) ≥ 0). For the slip case the maximum inflow is less and it

is obtained closer to the ground. The flow turns positive already at 1700 m, although

admittedly it is always slightly weaker than in the no-slip case. Here the maximum

inflow is u
vgr

= −0.3 obtained at z = 500 m and the flow takes positive values at heights

above 2 km. Generally, the no-slip boundary condition favoures a stronger inflow in a

thicker ground layer topped by a slightly stronger outflow layer above.

Figure (1.12) shows the vertical velocity w for the two different boundary conditions at

a height of 2 km. For large distances from the radius of maximum winds, air is slightly

floating into the boundary layer which is indicated by small and negative values of
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Figure 1.12: Vertical velocity w at a height of 2 km for the no-slip and the slip boundary condition.

the vertical velocity w. Closer to the center the vertical velocity turns positiv and is

increasing rapidly. It is remarkable that in the case of the slip condition the vertical

velocity is dropping down to almost zero again after reaching its maximum slightly

inside rm while in the case of the no-slip condition this drop isn’t found.

With the analytic solutions for the Ekman boundary layer equations one can also easily

assess the accuracy of the approximation in the following way:

One can interpret the solutions of the Ekman equations as approximated solutions

of the full boundary layer equations and then it is possible to calculate the values of

the neglected terms. This will give an approximation of the error resulting from the

assumption of a small Rossby number Ro ≪ 1. A comparison of neglected and retained

terms will give further insight into the character of the Ekman approximation.

An inspection of the full set of differential equations Eq.(1.7) and Eq.(1.8) shows that

the neglected terms are

tn1 = u
∂u

∂r
+ w

∂u

∂z
+

v2
gr − v2

r
, (1.42)

tn2 = u
∂v

∂r
+ w

∂v

∂z
+

uv

r
, (1.43)

while the retained terms are

tr1 = f(vgr − v), (1.44)

tr2 = fu. (1.45)

44



1.3. The boundary layer equations

Using the solutions obtained for the two boundary conditions, these terms can be

calculated approximately. The result of the calculation for the no-slip case is shown in

Figure (1.13).
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Figure 1.13: Comparison of neglected and retained terms (tn1 and tr1) of the full differential equation

of the u-momentum (panel (a) and (b)) and the v-momentum (tn2 and tr2) in panel (c) and panel (d)

for the no-slip boundary condition. The orange vertical line in panel (a) and (d) marks the radius

where w(r, z) = 0.

As shown in Fig.(1.13) the neglected terms tn1 and tn2 and the retained terms tr1 and

tr2 are of the same order of magnitude over the entire domain. However the absolute

values of tn1 and tn2 attain their maxima for radii r < rm and even exceed the maximum

values of tr1 and tr2 by an order of magnitude. This finding emphasizes the fact that

the approximation is very crude for a vortex of cyclone strength, especially in the core

region. The orange vertical lines in panel (a) and (d) mark the loci where the vertical

velocity w(r, z) is changing sign and the flow characteristic is changing from inflow to
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

upflow (rw=0). For radii smaller than rw=0, the absolute values of the neglected terms

are very small compared to their maxima. Thus one may argue that the assumptions

made to derive the Ekman equations are well posed for regions far from the center where

vgr is small and Ro ≪ 1, corresponding to a region where inflow into the boundary

layer is found.

For comparison Figure (1.14) shows the same calculation as discussed before for the

slip boundary condition.

0 100 200 300 400 500 600
r HkmL

0

1

2

3

z
Hk

m
L

tn2*103
Hms-2 L Hslip b.c.L

5. 2. 0.5

0.3

0
0

0
-0.05

-0.05

-0.1

-0.1

-0.5

-0.5

-2.

-2.
0 100 200 300 400 500 600

r HkmL

0

1

2

3

z
Hk

m
L

tr2 *103
Hms-2 L Hslip b.c.L

0.02 0.01

0

0

-0.1

-0.3-0.5

0 100 200 300 400 500 600
r HkmL

0

1

2

3

z
Hk

m
L

tn1*103
Hms-2 L Hslip b.c.L

5.
2.

0.2

0

0

-0.2

-0.2

0 100 200 300 400 500 600
r HkmL

0

1

2

3
z
Hk

m
L

tr1 *103
Hms-2 L Hslip b.c.L

0.4 0.1

0

0

-0.02

-0.05-0.1

HaL HbL

HcL HdL

Figure 1.14: Comparison of neglected and retained terms (tn1 and tr1) of the full differential equation

of u-momentum (panel (a) and (b)) and the v-momentum (tn2 and tr2) in panel (c) and panel (d)

for the slip boundary condition. The orange vertical in panel (a) and (d) marks the radius where

w(r, z) = 0.

There are just slight differences notable for the slip boundary condition. The main

features are almost the same as in the no-slip case. The neglected and retained terms

are of the same order of magnitude all over the domain. The neglected terms attain
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1.4. Discussion of the results

their maxima in the inner core and for radii larger than rw=0 (marked by the orange

curve) their absolute values are small. Thus the same argumentation as for the no-slip

case may be applied. The approximation is not significantly improved by imposing the

slip boundary condition at the lower bound z = 0.

1.4 Discussion of the results

In the first chapter it was shown by the means of a scale analysis how the well known

Ekman equations are derived. It was discussed how adequate the approximation is to

describe the boundary layer flow in a hurricane. Typical features of this are known to

be:

• The turning of the wind vector with height as visualized by the hodographs.

• There is a secondary circulation, which means that there is a low-level jet towards

the storm center and in a layer aloft there is outflow.

• Close to the ground a maximum in the tangential flow is found. This means that

the winds inside the boundary layer are actually spinning faster than the winds

in the free atmosphere. Supergradient winds are obtained.

Although the Ekman eqations were shown to be appropriate only in regions with a

small Rossby number (regions far from the storm center), they describe the main fea-

tures of the boundary layer of a tropical cyclone resonably well: The solutions for the

radial flow showed as well the effect of inflow close to the ground level as the region

of outflow above and together with the downwards motion at large and the upwards

motion at small radii the secondary circulation in the tropical cyclone was reproduced.

In the tangential wind field supergradient winds (i.e. v > vgr) were obtained.

The results were compared for two different boundary conditions. The first is the no-

slip boundary condition which assumes that both the radial and the tangential flow are

vanishing at the ground. The second was the slightly more sophisticated slip condition,

where the effects of friction at the ground are taken into account. It was shown that

the slip condition produced the more realistic results.

The obtained full solutions (u, v, w) were used to estimate the quality of the approxima-

tion by comparing the terms which were neglected in the full boundary layer equations
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Chapter 1. Ekman’s simple boundary layer model applied to a hurricane

with those that were retained.

It was shown by that comparison that the approximation is not too crude in the outer

regions of the storm where the assumption of a balance between the pressure gradient

force and Coriolis and frictional force is well satisfied as the effects of rotation are small

in that region. It was also shown that the region where Ekman-like solutions are valid

is roughly coinciding with the region where air parcels are flowing from above into the

boundary layer and carrying their properties with them. Even if the Ekman solutions

were shown to be inaccurate in the core region the availability of analytic solutions is

of advantage when the most general physical processes are to understand.

The Ekman equations were used before to describe different phenomena inside the

boundary layer, but it was the first time that it was shown that they can also be used

in the case of a tropical cyclone. Bearing their limitations in mind, they can be ap-

propriate to understand fundemantal physical characteristics of the flow. As will be

discussed in the next chapter (2) a similiar ansatz can be used to derive an extended

and refined linear model starting with the full boundary layer equations Eq.(1.7) and

Eq.(1.8).
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Chapter 2

A linear model of the hurricane

boundary layer

2.1 Eliassen’s linear model applied to a hurricane

The Rossby number is a measure of the magnitude of the acceleration compared to the

Coriolis force and hence a small Rossby number reflects good validity of the geostrophic

approximation. It was assumed to be small when the Ekman equations were derived.

However in the hurricane the Rossby number may become large in the core regions.

Therefore, as it was discussed in chapter (1), the Ekman theory for a rotating boundary

layer is not really appropriate for the swirling flow in a hurricane.

Although the approximation reveals certain characteristics of the flow, the analysis may

be improved further. Now, as an extension of the Ekman theory, a continous model

will be derived which is similiar to the linear model developed by Kepert (2001). In

that paper he examined the linear equations for a steady boundary layer also allowing

for asymmetries in the problem. The linear approximation for a symmetric vortex

is an extension of the classical Ekman approach and has the advantage that analytic

solutions to the problem are possible. Now it will be shown how the linear model may

be derived from a detailed scale analysis of the Navier-Stokes equations. The turbulent

stresses are represented by an eddy diffusivity formulation.

An advantage of the linear approach is that it is possible to check the self consistency

of the approximation by computing the neglected nonlinear terms. The sensitivity of
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Chapter 2. A linear model of the hurricane boundary layer

the hurricane boundary layer problem to the choice of parameters such as the gradient

wind profile at the top of the boundary layer, the Eddy diffusivity or the drag coefficient

may be studied in detail using the linear model.

2.1.1 A scale analysis

As in chapter (1) the variation of air density with height is neglected as the boundary

layer is assumed to be relatively shallow. As before it is assumed for the present that

the turbulent momentum transfer may be represented in terms of a constant eddy diffu-

sivity, KM . Again the starting point for the calculations are the momentum equations

for an axisymmetric vortex, expressed in cylindrical polar coordinates, (r, λ, z):

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
− fv = −1

ρ

∂p

∂r
+ KM

(

∇2u − u

r2

)

, (2.1)

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+

uv

r
+ fu = KM

(

∇2v − v

r2

)

, (2.2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ KM∇2w, (2.3)

where (u, v, w) is the velocity vector, p is the perturbation pressure and ρ is the density

of air. Again the equations are completed by the continuity equation, which for a

homogeneous fluid is:

1

r

∂ru

∂r
+

∂w

∂z
= 0. (2.4)

It is again assumed that the flow at the top of the boundary layer is in gradient wind

balance, i.e. it satisfies the equation:

v2
gr

r
+ fvgr =

1

ρ

∂p

∂r
. (2.5)

The scale analysis, which is accomplished in chapter (1), shows that the radial pressure

gradient throughout the boundary layer can be assumed approximately equal to that

at the top of the layer. Using this result it is possible to substitute for the pressure
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2.1. Eliassen’s linear model applied to a hurricane

u−momentum

∂u
∂t

+u∂u
∂r

+w ∂u
∂z

−v′2

r
−ξgrv

′ = K ∂2u
∂z2 (1)

U
T

U2

R
W U

Z
V ′2

R
ΞV ′ K U

Z2 (1a)

S2
uS

−1
v′ RoΞ S2

uS
−1
v′ RoΞ S2

uS
−1
v′ RoΞ Sv′RoΞ 1 A(ReSv′)

−1SuRoΞ (1b)

v−momentum

∂v′

∂t
+u∂v′

∂r
+w ∂v′

∂z
+uv′

r
+ζagr

u = K ∂2v′

∂z2 (2)
V ′

T
U V ′

R
W V ′

Z
U V ′

R
ΛU K V ′

Z2 (2a)

Sv′RoΛ Sv′RoΛ Sv′RoΛ Sv′RoΛ 1 A(ReSu)
−1RoΛ (2b)

Table 2.1: Scaling of the terms in Eqs.(2.6) and (2.7). Here A = Z/R, Su = U/V , Sv′ = V ′/V ,

RoΞ = V/(RΞ), RoΛ = V/(RΛ), and Re = V Z/K.

gradient in terms of vgr by the use of Eq.(2.5). The tangential wind speed may be

split up into two parts, vgr and the deviation from that, v′, called the tangential wind

deficit. This means it is v = vgr(r, t) + v′ and Eqs.(2.1) and (2.2) reduce to:

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v′2

r
− ξgrv

′ = KM
∂2u

∂z2
, (2.6)

∂v′

∂t
+ u

∂v′

∂r
+ w

∂v′

∂z
+

uv′

r
+ ζagr

u = KM
∂2v′

∂z2
(2.7)

where

ξgr =
2vgr

r
+ f and ζagr

=
dvgr

dr
+

vgr

r
+ f

are the absolute angular velocity and the vertical component of absolute vorticity of

the gradient wind.

Now Eqs.(2.6) and (2.7) are inspected in more detail to underpin the final derivation

of the linear model.

Let U , V , V ′ and W be scales for u, v, v′, w, and let R and Z be length scales for r

and z. Again an advective time scale T = R/U for the radial flow is chosen and ∆p

denominates a scale for changes in the perturbation pressure, p. As before the ratios

in the first lines under each equation in Table (2.1) show the scale of the equation

term above it while the second line shows the corresponding nondimensional scales.

The latter are obtained by dividing line (1a) in Table (2.1) by V ′Ξ to obtain (1b), and
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Chapter 2. A linear model of the hurricane boundary layer

dividing line (2a) in this table by UΛ to obtain (2b). Here Ξ is taken as a scale for ξgr

and Λ for ζagr
. It is seen that the extended analysis now introduces 6 nondimensional

parameters:

• RoΛ = V/(RΛ), a local Rossby number in the tangential momentum equation

based on the gradient wind (scale V ) and the local absolute vorticity of the

gradient wind above the boundary layer (Λ);

• RoΞ = V/(RΞ), a local Rossby number in the radial momentum equation based

on twice the absolute rotation rate of the gradient wind, Ξ, instead of Λ;

• Su = U/V , the ratio of the radial to tangential wind speed;

• Sv′ = V ′/V , the ratio of the departure of the tangential wind speed from the

gradient wind to the gradient wind, itself;

• Re = V Z/K, a Reynolds number, which characterizes the importance of the

inertial to the friction terms;

• A = Z/R, an aspect ratio, which measures the ratio of the boundary-layer depth

to the radial scale.

Investigating Table (2.1), it is seen that a vertical scale Z which makes the largest

friction terms as important as the linear terms in (1a) and (2a) is such that ΞV ′
≈

KU/Z2 and ΛU ≈ KV ′/Z2. From that it follows that Z = (K/I∗)
1

2 , where I∗2 = ΛΞ is

a scale for the inertial stability parameter defined by I2 = ξgrζagr
. If Ro = V/(Rf) ≪ 1,

ξgr and ζagr
are both approximately equal to f and the vertical scale reduces to (K/f)

1

2 ,

which is the appropriate scaling for the classical Ekman layer. However the scale

analysis in Table (2.1) shows that further approximations are not possible without

estimates of the nondimensional parameters Su = U/V and Sv′ = V ′/V and the radial

variations of the local Rossby numbers RoΞ = V/(RΞ) and RoΛ = V/(RΛ).

As the choice of the tangential wind field vgr is responsible for the values of RoΞ =

V/(RΞ) and RoΛ = V/(RΛ), five different wind profiles are examined below to attain

estimates of these parameters.

Figure (2.1) shows five different profiles for the tangential wind field vgr and their

absolute vorticity ζagr
= dvgr

dr
+ vgr

r
+ f , where a value of f = 5× 10−5 s−1 is used. The
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2.1. Eliassen’s linear model applied to a hurricane

wind profiles have all the same maximum of 40 m s−1 which is attained at a radius of

40 km, but their width is varying. This variation is characterized by the radius of gale

force winds. That is the radius at which the wind speed exceeds a value of 17 m s−1.
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Figure 2.1: wind profiles of vgr with threshold of gale force winds marked in red, (panel (a)), and the

absolute vorticity ζagr
of these profiles, (panel (b)).

The wind profiles are described and discussed more accurately in the appendix. Fig-

ure (2.2) shows the local Rossby numbers RoΞ = vgr/(rξgr) (panel (a)) and RoΛ =

vgr/(rζagr
) (panel (b)), calculated for the five wind profiles shown in Fig.(2.1), panel(a).

As RoΞ = vgr/(rξgr) = vgr/r
2vgr/r+f

it is clear that RoΞ cannot exceed a value of 0.5 and is

decreasing with increasing radius. This is valid for all profiles of vgr as Fig.(2.2), panel

(a) also confirms.
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Figure 2.2: RoΞ = vgr/(rξgr) (panel (a)) and RoΛ = vgr/(rζagr
) (panel (b)) calculated for the five

wind profiles shown in Fig.(2.1), (panel (a)).

What is easy to see for RoΞ, namely the existence of an upper bound, is not obvious for
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Chapter 2. A linear model of the hurricane boundary layer

RoΛ. Actually this parameter could become quite large for a sufficiently small absolute

vorticity. In the calculation shown in Fig.(2.1), panel (b) the largest values for RoΛ are

obtained for vortex profile 1, which has the smallest absolute vorticity. In that case

the maximum value is about 13.

With these estimates for the local Rossby numbers it is now possible to interpret the

scale analysis further. If one assumes a situation where the effects of friction are

negligible, say Su and Sv′ are small compared with unity, the nonlinear terms on the

left hand side of Eqs.(2.6) and (2.7) may be neglected. Of course this is only possible in

the case where RoΛ does not exceed unity appreciably and it is RoΛ = O(1). Formally

it follows from Table (2.1) under the assumption

Su ≪ 1, Sv′ ≪ 1 and RoΛ = O(1)

that the equations (2.6) and (2.7) reduce to the linear system

−ξgrv
′ = KM

∂2u

∂z2
, (2.8)

ζagr
u = KM

∂2v′

∂z2
. (2.9)

In the case of Ro ≪ 1 this system reduces to the classical Ekman equations which were

discussed in detail in the foregoing chapter. Calculations with a slab boundary-layer

model which are described in detail in chapter (3) show that U ≈ V ′ ≈ 0.2V − 0.3V .

This means that in that special case neither Su nor Sv′ are very small compared with

unity. Thus in a practical case the approximation is not too good and the solutions

are not too accurate. Recently Smith and Montgomery (2008) confirmed this as they

showed that in the case of a slab boundary layer model the solutions obtained from

a linear model were poor compared to the results with the corresponding nonlinear

system.

However, the full nonlinear boundary layer equations in the steady case are parabolic

and thus hard to solve. So it is interesting to examine this approximation even though

the neglect of terms of magnitude 0.2 - 0.3 compared with unity is unlikely to be very

accurate. For one thing the equations (2.8) and (2.9) are relatively easy to solve and

they are a generalization of the Ekman layer theory. Another matter of particular

interest is to investigate the accuracy of the approximations made, using the obtained

analytic solutions of the model.

54



2.1. Eliassen’s linear model applied to a hurricane

2.1.2 Analytic solutions

Equations (2.8) and (2.9) may be readily solved by eliminating either u or v′ to give a

fourth-order ordinary differential equation for the other variable. For example, elimi-

nating u gives

∂4v′

∂z4
+

C2

K2
M

v′ = 0 (2.10)

where C2 = ξgrζagr
. General solutions of Eq.(2.10) that are bounded as z → ∞ have

the form

v′(z) = V1e
−(1−i)

q

C
2KM

z
+ V2e

−(1+i)
q

C
2KM

z
(2.11)

where V1 and V2 are constants. This may be written in the form

v′(z) = e(− z
δ
)(a1 cos(z/δ) + a2 sin(z/δ)) (2.12)

where δ =
√

2KM/C is a boundary-layer scale thickness and a1 and a2 are constants.

The corresponding solution for u is obtained by substituting (2.12) into (2.9):

u(z) = −2KM

ζaδ2
e(− z

δ
)(a2 cos(z/δ) + a1 sin(z/δ)). (2.13)

Now a slip boundary condition, as explained in chapter (1.2), is applied at the surface

(z = 0) with a quadratic drag law for the surface stress. Defining ~x = (vgr + v′, u) and

a drag coefficient CD, this condition takes the form

KM
∂~x

∂z
= CD|~x|z=0 ~x at z = 0. (2.14)

Substituting the expressions (2.13) for u and (2.12) for v′ this becomes

∂v′

∂z

∣

∣

∣

∣

z=0

=
(a2 − a1)

δ
and

∂u

∂z

∣

∣

∣

∣

z=0

=
2KM

ζaδ2

(a1 + a2)

δ
.

With |~x|z=0 =

√

(vgr + a1)2 +
(

2KM

ζaδ2

)2

a2
2 the boundary condition at the surface finally

gives two algebraic equations
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Chapter 2. A linear model of the hurricane boundary layer

a2 − a1 = ν
√

(. . .)(vgr + a1),

a2 + a1 = −ν
√

(. . .)a2

(2.15)

where
√

. . . =
√

(1 + a1

vgr
)2 + (2KM

ζaδ2 )2( a2

vgr
)2 and ν = CDRe with Re = vgrδ

KM
. These two

equations can be solved to calculate the coefficients a1(r) and a2(r) and to obtain

the full solutions (u(r, z), v(r, z), w(r, z)) in terms of the local tangential wind speed

at the top of the boundary layer, vgr(r). The vertical velocity w(r, z) is obtained by

integrating the continuity equation Eq.(2.4).

2.2 Calculations

2.2.1 The control calculation

The control calculation is based on the wind profile vortex 3 plotted in solid in Fig.(4.12).

Also a constant eddy diffusivity KM = 10 m2s−1, and a constant drag coefficient CD

= 2.0 ×10−3 are chosen. Let again f = 5 × 10−5 s−1.

Figure (2.3) shows contour plots of the radial wind speed u(r, z) and tangential wind

deficit v′(r, z) = v(r, z) − vgr(r) in the boundary layer which are given analytically by:

u(r, z) = − 2KM

ζagr
δ2

e−z/δ (a2(r) cos(z/δ) − a1(r) sin(z/δ)) , (2.16)

v′(r, z) = e−z/δ (a1(r) cos(z/δ) + a2(r) sin(z/δ)) . (2.17)

As a1 and a2 are functions of vgr, the solutions for u and v′ are also strongly depending

on the chosen profile for vgr. The zero contours in Fig.(2.3) are plotted in red and are

also analytically given by

zu=0(r) = δ arctan

(

a2(r)

a1(r)

)

, (2.18)

zv′=0(r) = −δ arctan

(

a1(r)

a2(r)

)

. (2.19)

These equations show also that the different regimes for the tangential and the radial
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Figure 2.3: Radial wind speed u(r, z) (panel (a)) and tangential wind deficit v′(r, z) = v(r, z)− vgr(r)

(panel (b)) in the boundary-layer for vortex 3. The zero contours are plotted in red color.

flow may also be anticipated roughly by an inspection of the boundary layer depth

scale δ.

The maximum inflow of about 13.25 m s−1 occurs at a radius of 71.5 km, about twice

the value of rm, and at a height of about 54 m above the surface. The cap level of the

inflow region (u(r, z) ≤ 0) is decreasing rapidly from about 1.7 km at a radius of 600

km to almost zero in the core region. Above that layer, limited by the zero contour

zu=0(r), there is weak outflow which is strongest (u(r, z) > 0.5 m s−1) for radii between

40 km and 100 km and in a height range between 450 m to 850 m.

The tangential winds are supergradient in regions where v′(r, z) ≥ 0. The domain

is divided by zv′=0(r) in a region of subgradient and one of supergradient flow. For

the control calculation there is a large area of supergradient winds at heights between

about 800 m and 2000 m at radii larger than 400 km and in a much shallower height

range at lesser radii. The maximum supergradient winds are 1.7 m s−1 and occur at a

radius of 55 km and in the height of 271 m. Above the flow turns slightly subgradient

again. This area of subgradient flow is coinciding roughly with the region of weak

outflow (u(r, z) > 0) that occurs above the inflow layer. As it was stated correctly

by Kepert (2001) the occurrence of supergradient winds is due to the radial transport

of momentum surfaces by frictionally induced inflow. If there was no friction and if

one assumes that angular momentum surfaces are close to vertical one would expect

the level of supergradient winds to occur close to the level at which the radial wind is

maximum. It is seen from Fig. (2.3) that the maximum radial winds occur close to the
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Chapter 2. A linear model of the hurricane boundary layer

surface. This is explained by the fact that friction there produces the largest deviation

of the tangential wind from the gradient wind. Therefore the largest net radial force is

produced here. With the supergradient winds found in a level distinct from the level

of maximum radial inflow it can be deduced that the vertical diffusion of momentum

is the factor which explains the structure of the boundary layer in the linear model. In

that case the surfaces of absolute angular momentum are not vertical near the surface

and there is no conservation of absolute angular momentum by radial motion in the

boundary layer.

It is seen from the linear equations that there must be a balance between the general-

ized Coriolis force, (ξgrv
′,−ζagr

u), and the vertical diffusion of horizontal momentum,
∂2

∂z2 (u, v′). An inspection of the level of supergradient winds (v′ > 0) shows that there

the generalized Coriolis force in the radial momentum equation ξv′ is positive and

hence is acting radially outwards. In the linear approximation this force is balanced

by the upward diffusion of negative radial momentum, ∂τx < 0, with a radial stress

τx = KM(∂u/∂z) in a height z. In the tangential wind direction a similiar balance may

be deduced.

This is an important distinction of the linear to the nonlinear model. In the nonlinear

case the vertical advection will also be responsible for some transfer of horizontal

momentum in the vertical direction. It has been argued (e.g. Kepert 2001) that this

is the primary reason for the deviations of solutions of the linear from the nonlinear

model. However it is shown here, that the radial advection is also a crucial factor (see

chapter (2.3))!

Now it is possible to derive an analytic solution for the vertical flow w(r, z), evaluating

the continuity equation. It is

w(r, z) =
∂

∂r

(

e−z/δKMr

δζagr

(

ez/δ(a1 − a2) − cos(z/δ)(a1 − a2) − sin(z/δ)(a1 + a2)
)

)

(2.20)

and finally the expression for w(r, z) takes the form

w(r, z) =
e−z/δKM

rδ3ζ2
agr

[

−ez/δδA + cos(z/δ)B + sin(z/δ)C
]

(2.21)
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where

A = ζa (δ(a1 − a2 + r(a′

1 − a′

2)) − r(a1 − a2)δ
′) − r(a1 − a2)δζ

′

agr
,

B = ζa

(

δ2(a1 − a2 + r(a′

1 − a′

2)) − r(a2(2z − δ) + a1δ)δ
′
)

− r(a1 − a2)δ
2ζ ′

agr
,

C = ζa

(

δ2(a1 + a2 + r(a′

1 + a′

2)) − r(−2za1 + (a1 + a2)δ)δ
′
)

− r(a1 + a2)δ
2ζ ′

agr
.

An inspection of Eq.(2.21) shows, that in the limit z → ∞ the vertical velocity ap-

proaches a state where it is independent of height. It is

w∞(r) =
−KM

rδ2ζ2
agr

A. (2.22)

A contour plot of the function w(r, z) (Fig.(2.4)) confirms that result. A similiar

shape of the profile is found for all heights z > 150 - 200 m. Just close to the boundary

w(r, z) is decreasing rapidly due to the effects of friction and finally the vertical velocity

vanishes at z = 0.

For any height z > 150 - 200 m, where the vertical flow is almost independent of height,

the maximum vertical velocity occurs close to the radius of maximum tangential wind

speed in the eyewall, rm. It is worth to note that the overall maximum value of w(r, z)

between the ground level and z = 2 km is not found in the area where the vertical

flow is already independent of height, but in a region close to the ground as Fig.(2.4)

shows. The absolute maximum value is 0.10 m s−1. It appears to be attained just nine

kilometers outside rm in a height of only 431 m in an area where the influence of the

surface is still notable.

The solid red line in Fig.(2.4) marks the point where w is zero and the vertical flow is

changing sign. In the limit z → ∞ the zero contour is given by the condition A = 0

because −KM

rδ2ζ2
agr

6= 0. As shown in Fig.(2.4) the radius where w(r, z) = 0 stays almost

constant for the whole range of z not only for large heights. Thus the two different

flow regimes, namely the region of inflow and upflow are clearly divided by an almost

constant radius rw=0.

Fig.(2.5) shows the boundary layer depth scale δ and the vertical velocity at a height of

z = 2 km for this calculation. Note that δ decreases rapidly towards the vortex center,

a consequence of the significant growth of both ξgr and ζagr
with increasing wind speed.

The maximum vertical velocity is 9.5 cm s−1 and is attained at a radius of 49 km, just

nine kilometers outside rm. Fig.(2.5) also shows that w is negativ for radii larger than
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Figure 2.4: Vertical velocity w(r,z) for vortex 3 in m s−1; the red curve marks w(r, z) = 0.
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Figure 2.5: Boundary-layer depth scale δ (panel (a)) and vertical velocity w (panel (b)) at a height

of z = 2000 m for vortex profile 3.

339 km where it changes sign. Thus the flow is directed inward the boundary layer for

large radii. The fact that there is a large area where the air is ascending is representing

an important limitation of the linear model for the case of the hurricane boundary

layer. This will be discussed later together with the question how accurate the linear

solution may be especially in regions where there is found strong radial advection (see

chapter (2.3)).
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2.2. Calculations

2.2.2 Dependence on the vortex profile

An inspection of the boundary-layer depth scale shows that the parameters that are of

importance for the flow evolution are the eddy diffusivity KM and the characteristics

of the vortex profile vgr(r) at the top of the boundary layer. Fig.(2.6), panel (a), shows

the depth scale δ for the five different profiles shown in Fig.(4.12). The results for δ

are very similiar for all profiles at large radii and also in the core region. However, at

intermediate radii, notable deviations are found. This differences are due to differences

in the intermediate inertial parameters, which are smaller for narrower vortices due to

a more negative relative vorticity.
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Figure 2.6: (a) Boundary-layer depth scale δ for wind profiles vortex 1 - vortex 5 and (b) corresponding

vertical velocity w(r, z).

The depth scale has its maximum value at a radius of 600 km for profiles 3 to 5. The

obtained maximum value is 540 for profile 5 and increasing to a value of 670 for profiles

3 and 4. Profiles 1 and 2 both have their maximum towards the center. Profile 1 peaks

at r = 230 km with a value of 920, profile 2 has its maximum at r = 310 km and

reaches a value of 750. Towards the center the scales are steadily decreasing for all five

profiles until they share a value of 70 at r = 0 km. In the center of the covered area at a

radius of about 200 - 300 km the difference beween the obtained depth scales is largest.

While δ stays more or less constant with a value of about 650 km up to a radius of 300

km for vortex 1, it has already declined to about 70 percent of its starting value for

vortex 5. As Fig.(2.6), panel (a) shows, the result for vortex 1 is substantially different

from the others. For vortex 1, the depth scale δ shows a considerable increase and a

significant local minimum. This pronounced maximum and local minimum is unique

for that vortex profile. As expected the results for the vertical velocity w(r, z) reflect
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Chapter 2. A linear model of the hurricane boundary layer

those for the depth scale δ. The profiles for w corresponding to vortex 1 and vortex

2, the ones with a pronounced peak, show both a local maximum in the region where

the flow is directed out of the boundary layer (w(r, z) > 0). The results for vortex 3 -

vortex 5 are very similiar in shape and the attained range of values but it is remarkable

that the radius where the flow changes sign is significantly depending on δ. For vortex

1 and thus for the largest δ air parcels are transported into the boundary layer for radii

larger than 227 km. With decreasing depth scale this is changing dramatically. For

vortex 3 the radii have already to be larger than 340 km and for vortex 5 w(r, z) is

positive for all radii shown in Fig.(2.6 (b)).

As profiles 2 - 5 do not differ substantially, only the results of the calculations carried

out for vortex 2 and vortex 5 are shown. It was shown before in section (2.1.1) that

the linear approximation is only performing acceptable for the case of a profile where

RoΛ = vgr/(rζagr
) is of order unity. However this was not true for profile one where

RoΛ was shown to attain a maximum value of about 13. Hence it doesn’t make sense

to investigate this profile in the case of the linear approximation. Figure (2.7) shows

the result for u(r, z) and v′(r, z) for vortex profiles 2 and 5.

Panels (a) and (c) of Fig.(2.7) show a comparison of the radial wind speed u(r, z). The

result for vortex 5 (Fig.(2.7), panel (c)) is very similiar to the control calculation but

shows some special features. A region of strong inflow is topped by a layer of weak

outflow.

An inspection of the boundary layer depth scale δ for vortex 5 (Fig.(2.6)) anticipates

the result for the contour line u(r, z) = 0, as motivated by Eq.(2.18). The maximum

inflow of about −12.5 m s−1 appears near the ground close to the radius of maximum

winds rm. This is similiar to the result for vortex 3, but the inflow stays at a high level

of about −7 m s−1 for all radii, while for the control calculation it is decreasing almost

linearly until it reaches −0.5 m s−1 at r = 600 km. A comparison of the depth scale

δ for vortex 3 and vortex 5 shows that at large radii, δ is much smaller for vortex 5

and there is also found a much shallower inflow layer for vortex 5. And according to

the δ-profile for vortex 2, the steepest contour line u(r, z) = 0 is found for vortex 2

(Fig.(2.7), panel (a)). Similiar to the control calculation the values for u(r, z) near the

ground are decreasing almost linearly from −12 m s−1 to −0.5 m s−1 at r = 600 km,

but now the maximum is about −14 m s−1 and lies in a height of about 270 m and

with a radius of 250 km far from the core region.
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Figure 2.7: Wind speeds u(r, z) and wind deficit v′(r, z) for vortex profile 2 (panel (a) and (b)) and

vortex profile 5 (panel (c) and (d)).

Panels (b) and (d) of Fig.(2.7) show a comparison of the tangential wind deficit v′(r, z).

For vortex 2 the tangential wind deficit close to the ground is decreasing with increasing

radius whereas for vortex 5 high values are obtained for all radii. Both distributions

show supergradient flow of about 1.5 m s−1 but for vortex 5 the area, where the flow is

significantly supergradient, is covering all radii and is lying in a height range of 200 m

close to the core and 1.5 km for r = 600 km while for vortex 2 v′(r, z) ≤ 0.5m s−1 for

all radii larger than 300 km.

2.2.3 The influence of eddy diffusivity

As an inspection of the full solution (u, v, w) has shown that the boundary layer depth

scale δ =
√

2KM/C is the determining factor of the obtained profiles and therefore

(equally important as the choice of the profile for vgr) the choice of the eddy diffusivity

KM must be of high influence for the solution. A range of constant values of KM is
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Chapter 2. A linear model of the hurricane boundary layer

investigated now to highlight the importance of this parameter.
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Figure 2.8: Boundary layer depth scale δ (panel (a)) and vertical velocity w(r, z) (panel (b)) for

varying KM for vortex profile 3.

Figure (2.8) panel (a) shows the resulting boundary layer depth scale δ for values of KM

varying between 5 m2s−1 to 100 m2s−1. The range of values used for KM follows the

values that appear in the literature as for example in Kepert (2001) (KM = 5 m2s−1)

or Montgomery et al. (2001) which used a value of KM = 50 m2s−1 and provided

an estimate of the eddy diffusivity of KM = 500 m2s−1, using data from hurricane

”Norbert” (1984), presented by Marks et al. (1992). This exemplifies the fact that

there is a wide range of values for KM in use. As δ is proportional to the square root

of KM the boundary layer depth scale increases with increasing KM . In all cases δ is

almost constant for radii between 400 km and 600 km and decreases rapidly towards

the center. For KM = 5 m2s−1 the maximum value is about 500 while for KM = 100

m2s−1 it is four times larger with a value of about 2000. Panel (b) of Figure (2.8) shows

the corresponding vertical velocity w. As expected the maximum vertical velocity is

obtained in the core region and increases with increasing values of KM . For KM = 5

m2s−1 the maximum (wmax= 0.08 m s−1) lies at a radius of about 47 km while for KM

= 100 m2s−1 it is already wmax= 0.16 m s−1 at a slightly larger radius of 54 km. Figure

(2.8) shows also that the region of upflow (w > 0) changes slightly with varying KM .

Figure (2.9) panel (a) shows the significant increase in the vertical velocity with in-

creasing eddy diffusivity. If KM is varied from 5 m2 s−1 to 100 m2 s−1 the maximum

of w doubles. Panel (b) of Figure (2.9) shows that the radius where w changes sign

decreases from 340 km to about 315 km. This radius stays almost constant if z is

varied. Thus the region where there is upflow in the boundary layer is smaller for large

values of the eddy diffusivity. The results for the distributions of the radial velocity
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Figure 2.9: Maximum of vertical wind speed wmax (panel (a)) and the radius of the vortex where

w = 0 (panel (b)) for varying KM for z = 2000 m.

u(r, z) and the tangential wind deficit v′(r, z) can be deduced from the profiles of δ

shown in Fig.(2.8), panel (a), as it is seen from Eqs.(2.18).
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Figure 2.10: Wind speeds u(r, z) and wind deficit v′(r, z) for KM = 5 m2s−1 (panel (a) and (b)) and

KM = 100 m2s−1 (panel (c) and (d)).

Figure (2.10) highlights the importance of the choice of a realistic eddy parameter KM
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Chapter 2. A linear model of the hurricane boundary layer

for the solutions of the linear approximation. As expected the region of inflow for KM

= 5 m2s−1 expands near the ground level at heights varying from about 1 km at a

radius between 400 km and 600 km and declines rapidly towards the core region. It is

topped by a layer of week outflow. The maximum of about 12 m s−1 is obtained near

the radius rm where vgr has it’s maximum, close to the ground. For KM = 100 m2s−1

the result changes significantly. The maximum value is a bit lower, 7 m s−1, but now

there is inflow almost throughout the whole region except at heights larger than 500

m in the core region (r < 100 km).

2.2.4 A non-constant representation of the drag coefficient

Another parameter of great importance is the value of the drag coefficient CD. In chap-

ter (1) a slip boundary condition at the surface (z = 0) was applied with a quadratic

drag law for the surface stress. Defining ~x = (vgr + v′, u) it was

KM
∂~x

∂z
= CD|~x|z=0 ~x at z = 0. (2.23)

Clearly the choice of the drag coefficient is important for the solutions obtained for

~x. Now it is investigated how accurate the choice of a constant value for CD is and

how much the solutions are influenced by that parameter. Calculations are carried

out with three different representations of CD. The first one is the control calculation

as described in section (2.2.1) which uses vortex 3, a constant Eddy diffusivity of

KM = 10m2s−1 and a constant drag coefficient CD = 2.0×10−3. The second calculation

is as the control calculation but with a smaller drag coefficient of CD = 1.0× 10−3 and

the third one uses a radially varying value for CD. Following Shapiro (1983) for the

third case study it is defined:

CD = CD0 + CD1|~x|z=0 (2.24)

which means that starting from a value CD0 = 1.1×10−3 the drag coefficient is a linear

function of the absolute value of the total wind speed ~x = (vgr + v′, u).

Again the starting point is the expressions for the radial wind speed and the tangential

wind deficit derived before:
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v′(z) = e(− z
δ
)(a1 cos(z/δ) + a2 sin(z/δ)),

u(z) = − 2KM

ζagr
δ2

e(− z
δ
)(a2 cos(z/δ) − a1 sin(z/δ)).

The slip boundary condition is applied at z = 0, but now with a drag coefficient

calculated with Eq.(2.24). For CD at z = 0 it is

CD = CD0 + CD1

√

(vgr + a1)2 +

(

2KM

ζagr
δ2

)2

a2
2

and the boundary condition gives now two equations for the parameters a1 and a2:

a2 − a1 = Re(CD0 + CD1|~x|z=0)
√

(. . .)(vgr + a1),

a2 + a1 = −Re(CD0 + CD1|~x|z=0)
√

(. . .)a2,
(2.25)

where
√

. . . =
√

(1 + a1

vgr
)2 + ( 2KM

ζagrδ2 )2( a2

vgr
)2 and Re = vgrδ

KM
.
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Figure 2.11: Radially varying drag coefficient CD (panel (a)) and the vertical wind speed w(r) (panel

(b)) for varying CD for z = 2000 m.

Figure (2.11) panel (a) shows the radially varying drag coefficient derived from Eq.(2.24)

with CD0 = 1.1 × 10−3 and CD1 = 4 × 10−5. The solid line marks the value for CD

in the control calculation. At large radii where the absolute value of the total wind

speed is small, CD is close to CD0, then it increases rapidly with increasing total wind

speed until it reaches its maximum value of CD = 2.6×10−3 at the radius of maximum

wind speed rm = 40 km. For radii smaller than rm CD drops off rapidly following the

behaviour of the total wind speed in the core region. Figure (2.11) panel (b) shows

the vertical wind speed w(r) at a height of z = 2 km calculated with the three cases
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described above. For a constant drag coefficient CD = 1.0 × 10−3 the lowest vertical

velocities are obtained. The maximum value of 6.5 cm s−1 is obtained at a radius of

51 km and is significantly lower than for CD = 2.0 × 10−3. In the control calculation

we find 9.4 cm s−1 at almost the same radius (r = 49 km). All three velocity profiles

change sign at about r = 335 km with a variation of only ±3 km. In general the

absolute value of the vertical velocity is lower for smaller CD. As the radially varying

drag coefficient is lower than CD = 2.0×10−3 for radii larger than 200 km the absolute

value of w is lower than in the control calculation for those radii. But the response of

the vertical velocity to an enhanced drag is not an immediate one. The solutions have

to adjust to the enhanced drag. Just for radii smaller than about 53 km larger vertical

velocities are obtained. However the maximum value (at r = 45 km) is 9.6 cm s−1 and

thus just slightly larger as in the control calculation. In general the largest differences

between the control calculation and the case with a radially varying drag coeffficient

are just 0.5 cm s−1 obtained for radii of about 230 km.
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Figure 2.12: Radial wind speed u(z) at r = 50 km (panel (a)) and the wind deficit v′(z) at r = 50 km

(panel (b)) for varying CD.

Figure (2.12) panel (a) shows the radial wind speed u(z) at a radius of 50 km close to

the radius of maximum winds rm. For the calculation with the underestimated drag

coefficient in general lower radial wind speeds with significant deviations in the region

close to the ground are found. There the radial wind for CD = 1.0×10−3 is −8.7 m s−1

while for CD = 2.0 × 10−3 it is −12.1 m s−1 and for the case of radially varying drag

the highest value of −12.6 m s−1 is obtained. In general the control calculation and the

calculation with a radially varying CD do not show large differences. The deviation of

about 0.5 m s−1 at the peak is the largest one for all heights z.

A similiar result is found for the tangential wind deficit at r = 50 km which is shown
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in Figure (2.12) panel (b). An underestimation of CD leeds to an underestimation

of the wind deficit and especially of the tendency of supergradient winds (v′ > 0).

With increasing drag the maximum of the wind deficit is increasing from 1.25 m s−1

to 1.7 m s−1 for the control and finally 1.77 m s−1 for the radially varying drag coeffi-

cient. Again the difference of 0.07 m s−1 at the peak is the largest one for the control

calculation and CD = CD0 + CD1|~x|.

The fact that the differences between the control calculation and the radially varying

drag coefficient shown in Figure (2.11) and Figure (2.12) are small, it is concluded that

the assumption of a constant drag coefficient of CD = 2.0 × 10−3 as in the control

calculation is a good approximation for the model studied in this chapter and there is

no significant improvement of the results when a more sophisticated representation of

this parameter is used.

2.3 An appraisal of the linear approximation

Based on the full solution for u(r, z), v(r, z) and w(r, z) it is possible to assess the

accuracy of the linear approximation. As a steady state is assumed it is ∂u
∂t

= 0 and
∂v′

∂t
and Equations (2.6) and (2.7) were simplified by omitting the terms

tn1 = u
∂u

∂r
+ w

∂u

∂z
− v′2

r

and

tn2 = u
∂v′

∂r
+ w

∂v′

∂z
+

uv′

r
,

respectively.

If u(r, z), v′(r, z) and w(r, z) are understood as approximate solutions of Eq.(2.6) and

Eq.(2.7) the terms tn1 and tn2 can be interpreted as deviations of the complete equa-

tionset from the linear equations. They should be small compared with unity!

An estimate of the values of these expressions can be calculated using the solution of

the linearized system. To appraise the accuracy of the linear approximation tn1 and

tn2 are compared with the terms retained:

tr1 = −
(

2vgr(r)

r
+ f

)

v′(r, z)
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Chapter 2. A linear model of the hurricane boundary layer

and

tr2 =

(

∂vgr(r)

∂r
+

vgr(r)

r
+ f

)

u,

respectively. Figure (2.13) shows this comparison.
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Figure 2.13: Evaluation of neglected terms tn1 and retained terms tr1 in Eq.(2.6), (panels (a) and (b))

and terms tn2 and tr2 in Eq.(2.7), (panels (c) and (d).

As expected the largest absolute values of tn1 and tn2 occur in a region close to the

surface and the core region where the gradients for u and v′ are large (Fig.(2.13), panels

(a) and (c)). However the quality of the approximation can not only be evaluated by

an examination of the absolute errors made but must also include a comparison with

the nonneglected terms. Fig.(2.13) shows that the terms tr1 and tr2 are of the same

order of magnitude as the values obtained for tn1 and tn2 over much of the region which

is of interest. It is seen that the zero contours of tn1 and tn2 do not coincide with those

of the retained terms tr1 and tr2. Thus a comparison in terms of ratios of neglected to

retained terms is very difficult to interpret. The neglected terms gain influence not only
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2.3. An appraisal of the linear approximation

in the core region, where their absolute values are largest, but also in areas where both

neglected and retained terms become small at the same time. To compare the order

of magnitude of the retained and neglected terms the relative error can be computed.

Let

erel1 =

∣

∣

∣

∣

tn1

tn1 + tr1

∣

∣

∣

∣

, (2.26)

erel2 =

∣

∣

∣

∣

tn2

tn2 + tr2

∣

∣

∣

∣

(2.27)

be the relative errors of the terms which were neglected in Eq.(2.6) and Eq.(2.7). Figure

2.14 shows the logarithm of relative errors erel1, (panel (a)), and erel2, (panel (b)), of the

approximation for Eq.(2.6) and Eq.(2.7). As an inspection of Figure (2.13) suggests,

there is a large relative error not only in the core region but spreading over the whole

domain. In Figure (2.13) the singularities at tn1 + tr1 = 0 and tn2 + tr2 = 0 dominate

the picture, but they contribute little if the whole domain is taken into account.
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Figure 2.14: Logarithm of relative error erel1, (panel (a)) and relative error erel2, (panel (b)).

For large regions of the domain the neglected terms are of the same order of magnitude

as the retained ones and hence the relative error is 1. To highlight the fact that there

are also regions where the neglected terms are dominating Fig. (2.15) shows the area

of the domain for which the relative errors are smaller than a certain threshold value.

For Equation (2.6) only about 60 percent of the whole domain have a relative error

smaller than a hundred percent, for Eq. (2.7) this value is just slightly higher with 70

percent. It is remarkable that the approximation is only good (relative errors smaller

than 20 percent) for few points of the domain. Fig. (2.15) shows that just about 15

percent of the domain have erel1 ≤ 20% while for erel2 ≤ 20% it is about 20 percent.

However these calculations allow no statement about the errors of the solutions of the
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Figure 2.15: Percentage of area of the domain where the relative error is smaller than erel1 plotted

versus erel1, (panel (a)) and the same calculation for erel2, (panel (b)).

differential equation. To assess this problem one would need to solve Eq.(2.6) and

Eq.(2.7) and afterwards compare the results for (u, v, w) directly.

Another hint how to estimate the accuracy of the linear approximation is given by

the scale analysis itself. In section (2.1.1) it was shown that the importance of the

neglected terms can be investigated by an inspection of the radial variations of RoΞ

and RoΛ as well as estimates of Su and Sv′ . These parameters are naturally depending

on the chosen profile for vgr (the details will be discussed later).

Figure (2.16) shows contour plots of the parameters Su = u/vgr (panel (a)), and Sv′ =

v′/vgr (panel (b)).
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Figure 2.16: Ratio of the radial to the gradient wind Su = u/vgr, panel (a) and ratio of the tangential

to the gradient wind Sv′ = v′/vgr, panel (b).

For the weak friction approximation which was studied before, it was assumed that

72



2.3. An appraisal of the linear approximation

both, Su and Sv′ are small compared to unity. As Fig.(2.16) shows this condition isn’t

valid for most of the domain for both parameters. Su and Sv′ even reach values larger

than 0.4 which is not really small compared to unity. It is remarkable that the highest

values not only occur in the core region where the approximation naturally may be

inaccurate but they spread all over the domain. The global maximum of |Su| is for

example attained at a radius of about 330 km, far out from the radius of maximum

winds. The result shown in Fig.(2.16) confirms the findings of the direct comparison

of retained terms, tr1 and tr2, and neglected terms, tn1 and tn2 which was shown

in Fig.(2.13). It is to say that the assumptions of the weak friction approximation

(Su ≪ 1 and Sv′ ≪ 1) are not valid for vortex profile 3 for all radii. As the scale

analysis suggested, also the nonlinear terms could be neglected under the condition

that the scales S2
u > S−1

v′ RoΞ, Sv′RoΞ and Sv′RoΛ are all small compared to unity. To

check this, Figure (2.17) shows the radial profiles of the three parameters, evaluated

in a height of 100 m for vortex profile 3.
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Figure 2.17: Radial profiles of the scales S2
us−1

v′ RoΞ, Sv′RoΞ and Sv′RoΛ, evaluated in a height of 100

m for vortex profile 3.

Clearly, for vortex profile 3 none of the parameters is very small compared to unity

at most of the radii. Hence Fig.(2.17) is a further corroboration of the findings from

above: the linear approximation to the boundary layer is inaccurate and does not

provide much of an improvement to the classical Ekman layer anywhere near the inner

core region of a hurricane. This inaccuracy is due to miscellaneous reasons.

Kepert (2001) stated that the neglect of the vertical advection, which was not supported
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Chapter 2. A linear model of the hurricane boundary layer

by a scale analysis, was the main fact to cause the crucial deviation of the linear model

from nonlinear ones. In any case the scale analysis derived before suggests that not

only the vertical advection is important. The neglect of radial advection should be

almost equally important. To examine this idea further it is possible to calculate the

contributions of the radial and vertical advection terms to the terms tn1 and tn2. Figure

(2.18) shows contour plots of the radial advections u∂u
∂r

and u∂v′

∂r
, panel (a) and (b) and

vertical advections w ∂u
∂z

and w ∂v′

∂z
, panel (c) and (d).
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Figure 2.18: Radial advections u∂u
∂r

and u∂v′

∂r
, panel (a) and (b) and vertical advections w ∂u

∂z
and

w ∂v′

∂z
, panel (c) and (d).

It is obvious that in both of the terms tn1 and tn2 the radial advection terms are of

the same order of magnitude as the vertical advection terms. To highlight this fact

Fig.(2.19) shows the radial variation of the advection terms evaluated at a height of

100 m, where their values are at a maximum.

The maximum values of the vertical advection terms are about twice as large as the
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Figure 2.19: Comparison of radial and vertical advection terms in tn1, panel (a) and in tn2, panel (b)

evaluated in a height of 100 m, where the values are close to their maximum.

maximum values in the radial terms, but over most of the domain the radial terms are

as large as the vertical ones or even larger. This calculation gives additional evidence

that the importance of the radial terms is underestimated and the effects of radial

advection must not be ignored. However if other wind profiles are used, the results

may change as Su and Sv′ , and thus the quality of the approximation depends crucially

on the choice of a profile for vgr.

Figure (2.20) shows a comparison of the neglected terms tn1 and tn2 for vortex 2 (panel

(a) and (b)) and vortex profile 5 (panel (c) and (d)).

As before the absolute values of the neglected terms are in the same range as the terms

retained in the analysis but the two vortex profiles show differences. Both tn1 and tn2

achieve their maximum values of about 4 m s−1 in the core region close to the ground

level but for vortex 2 the area of high values up to 1 m s−1 is much larger covering a

range of radii up to 250 km and heights up to 1 km. Both terms tn1 and tn2 show a

pronounced local minimum at a radius of about 300 km from the ground up to heights

of about 1 km which is not attained for vortex 5.

Again the accuracy of the approximation for each wind profile may be estimated by

comparing the parameters Su and Sv′ . Figure (2.21) shows a comparison of the pa-

rameters Su and Sv′ for the five different vortex profiles shown in Fig.(4.12). The

calculation for RoΞ and RoΛ shown in Fig.(2.2) suggested already that the accuracy

of the approximation is highly dependent on the wind profile used. A fact that is

highlighted by the profiles shown in Fig.(2.21). It was shown earlier that for vortex
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Figure 2.20: Terms tn1 and tn2 neglected in the approximation for vortex profile 2 (panel (a) and (b))

and vortex profile 5 (panel (c) and (d)).
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Figure 2.21: Parameters Su (panel (a)) and Sv′ (panel (b)) for the five different vortex profiles.

1 the deviation of the parameters RoΞ and RoΛ from the assumed value was largest

and it was argued that the accuracy was weakest for that profile. This argument was

strengthened also by the direct comparison of neglected and retained terms which was

shown in Fig.(2.20). Figure (2.21) is the ultimate confirmation of these findings.
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2.3. An appraisal of the linear approximation

Su and Sv′ were assumed to be small compared to unity. This is not nearly true for

vortex profile 1. Here the maximum value of Su is 1.9 and therefore almost twice as

large as unity. However it is of interest that for vortex profile 1, the value of Su is

smaller than in the case of profiles 3 to 5 for large regions of the domain. In general

the results of Su are more extreme for vortex 1 and 2, which means that the extreme

values are significantly higher than in the other cases (vortex 3 and 4 have maxima

of about 0.5, which is four times smaller than the maximum value for vortex 1), but

for very small and very large radii the curves for vortex 1 and vortex 2 are below the

others.

In the case of Sv′ the differences due to the use of different gradient wind profiles are

not as large as in the case of the parameter Su. The profiles are almost identical inside

a radius of about 100 km. In all five cases the maximum of the parameter lies in the

range of 0.4 to 0.6. In general it is to say that for all five profiles both Su and Sv′ are

not even small compared to unity for most of the area of the domain. However, the

use of vortex 1 in the linear approximation may be somewhat better for very large and

very small radii but it also causes more inaccuracies for radii close to the radius where

its maximum values of Su and Sv′ are attained. The results for vortex 3, which was

used in the control calculation, show that this profile may be the best compromise for

use in the linear model.

As it was discussed before the quality of the approximation is also very sensitive to

the choice of the Eddy diffusivity KM . Again for the choice of different values for KM

varying between 5 and 100 m2s−1 the neglected and the retained terms are of the same

order of magnitude. Figure (2.22) shows how changes in the eddy diffusivity influence

the neglected terms tn1 and tn2.

The influence of the eddy diffusivity will become even clearer by an inspection of the

scale parameters Su and Sv′ .

Figure (2.23) shows the parameters Su (panel (a)) and Sv′ (panel (b)). For the calcula-

tion five different values of KM varying between 5 to 100 m2s−1 were used. Fig.(2.23)

shows that the values for Su (panel (a)) and Sv′ (panel (b)) are decreasing significantly

with increasing KM . While for KM = 5 m2s−1 the maxima of Su and Sv′ are about

0.5, a value of KM = 100 m2s−1 brings the maxima down to 0.3 and 0.2 which is a

reduction of about one half. This finding can also be confirmed by an inspection of the

radial profiles of the scales S2
uS

−1
v′ RoΞ, Sv′RoΞ and Sv′RoΛ. These scales are shown in
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Figure 2.22: Neglected terms tn1 and tn2 for KM = 5 m2s−1 (panel (a) and (b)) and KM = 100 m2s−1

(panel (c) and (d)).
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Figure 2.23: Parameters Su (panel (a)) and Sv′ (panel (b)) for five different values of KM varying

between 5 to 100 m2s−1.

Figure (2.24) for KM = 5 m2s−1, panel (a), and for KM = 100 m2s−1, panel (b).

For KM = 5 m2s−1 the values of the scales exceed those calculated with KM = 100

m2s−1 by almost a factor of two. Thus it can be argued that the linear approximation

performs better for larger values of Eddy diffusivity KM .
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Figure 2.24: Radial profiles of the scales S2
uS−1

v′ RoΞ, Sv′RoΞ and Sv′RoΛ, evaluated in a height of 100

m for KM = 5 m2s−1, panel (a), and for KM = 100 m2s−1, panel (b).

2.4 Discussion of the results

The foregoing analysis points to serious limitations of the linear boundary layer solution

when applied to the inner core of hurricanes, even for radii well beyond the radius of

maximum gradient wind speed.

However, this is not the only limitation. There is another important point that was

not yet discussed. As pointed out by Smith and Vogl (2008) and will be discussed in

the next chapter, it is probably incorrect to prescribe the tangential wind speed just

above the boundary layer in the inner region, where the flow exits the boundary layer.

Many previous boundary-layer models have taken this approach (e.g. Smith 1968,

Ooyama 1969, Leslie and Smith 1970, Bode and Smith 1975, Shapiro 1983, Kepert

2001, Smith 2003), but the consequences thereof have not been investigated or discussed

in detail. Presumably with this limitation in mind, Kepert and Wang (2001) used a

boundary condition that constrains the vertical gradient of the radial and tangential

velocity components to be zero at the top of their computational domain. Nevertheless,

because the radial motion at this boundary turns out to be close to zero (see their Fig.

2), the tangential wind speed must be close to the gradient wind at this boundary.

One has to concur with Kepert and Wang (2001) that it is more reasonable to suppose

that boundary-layer air carries its momentum with it as it ascends out of the boundary

layer, because this boundary is an outflow boundary of the problem.

Unfortunately, it is not possible to accommodate a zero vertical-gradient constraint in

the analytic solution of the linear model. Since the radius at which the vertical motion
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Chapter 2. A linear model of the hurricane boundary layer

reverses sign at the top of the boundary layer occurs relatively far from the vortex

center in the linear model, the inability to apply a zero vertical-gradient constraint

further limits the usefulness of the model when applied to hurricanes. These remarks

presumably apply to the extension of the linear model to nonaxisymmetric flow worked

out by Kepert (2001).

It will be shown in the next capter that the same limitation does not exist in a slab

boundary layer model. The reason is that boundary layer wind and gradient wind are

not the same at the top of the boundary layer, even though the radial pressure gradient

in the boundary layer is the same as that above (see Smith and Montgomery (2008)

for a scale analysis for the slab boundary layer).

For the calculations shown here it was assumed that the turbulent diffusivity is constant

with height and radius. A range of different constant values for the parameter KM was

investigated.

With the variation of the results caused by a change in KM in mind it is to say that a

constant eddy diffusivity is adequate for present purposes when combined with a bulk

drag formulation of the surface layer (see e.g. Leslie and Smith 1970, Bode and Smith

1975). Keeping KM constant with radius is potentially more serious as one would

certainly expect turbulence levels to rise as the wind speeds increase significantly with

decreasing radius. It was shown that it is possible to derive a KM which is a function

of the radius when the existence of a surface layer is postulated. Unfortunately obser-

vations provide little guidance on the magnitude of this increase. Thus the functional

dependence of KM may not be estimated against measurements.

In view of the result that the linear boundary-layer theory breaks down in the region of

strong winds, it is questionably whether one would learn much more from calculations

in which such a variation of KM is postulated. Nevertheless, the scaling analysis in

section 2.1 suggests that any increase will be reflected in a commensurate increase in

the boundary layer depth above that predicted assuming a radially constant KM .
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Chapter 3

A simple slab model of the

hurricane boundary layer

In the foregoing chapter a type of models of the hurricane boundary layer was discussed

which could be subsummed under the term ”continuous model”. In these models

the vertical structure as well as the radial variation were considered. The studies

focussed exclusively on the dynamical constraints of the boundary layer, there was no

representation of thermodynamic aspects.

The importance of the thermodynamical constraint was first recognized by Emanuel

(1986). He proposed a simple axisymmetric model for a hurricane. In a slab model

the equations are vertically integrated (which means that they are averaged over the

whole depth of the boundary layer) and uniform profiles of the radial and tangential

wind are assumed. The representation of the thermodynamic features in the hurricane

boundary layer was a key feature in Emanuel (1986).

In his hurricane model, the tangential wind field above the boundary layer is assumed

to be in thermal wind balance and air parcels flowing upwards and outwards into the

upper troposphere.

These air parcels are assumed to conserve their absolute angular momentum and moist

entropy. The model is closed by a simple, uniform-depth slab formulation for the

boundary layer. Emanuel used this simple slab model to determine a functional re-

lationship between the absolute angular momentum and moist entropy of air parcels

that are moving out of the boundary layer.

81



Chapter 3. A simple slab model of the hurricane boundary layer

In this chapter a slightly more sophisticated, axisymmetric, slab model than that em-

ployed by Emanuel op. cit. will be derived, following Smith (2003) and Smith and Vogl

(2008) (see Fig.(3.1)). In the literature there is no other model of the hurricane bound-

ary layer which is focussing not only on the dynamical but also on the thermodynamical

processes.

This axisymmetric slab model is allowing for the effects of mean subsidence at large

radii and for the effects of shallow convection. These effects have an important con-

trol on the radial variation of thermodynamic quantities. It turns out that shallow

convection plays an important role as without a representation of mixing by shallow

convection, the boundary layer saturates at an unrealistically-large radius.

The model derived below is a steady, moist, axisymmetric, slab model of constant

depth, but the tangential wind speed at the top of the layer is prescribed as a function

of radius. With these assumptions the boundary layer equations reduce to a set of

coupled ordinary differential equations for the radial variation of the boundary-layer

wind, temperature and moisture fields. It is possible to obtain high-resolution solutions

of these equations by integrating inwards from some large radius. At this starting radius

it is assumed that geostrophic balance and convective-radiative equilibrium conditions

are dominant in the boundary layer. The model can be used to explore various aspects

of the boundary layer including the influence of vortex size and structure, the influence

of the chosen boundary layer depth itself, including radially varying boundary layer

depth. It is also possible to discuss the influence of the parameter setup, i.e. the

sensitivity of the slab model to changes in the drag or the eddy diffusivity. A particular

advantage of this slab model is that it is not only the radial distribution of key dynamic

quantities that may be explored but also that of basic thermodynamic quantities.

3.1 Summary of the model

Boundary layer equations

The boundary layer of a steady axisymmetric hurricane-like vortex on an f -plane is

considered. This means that the spherical Earth is assumed to be a plane normal to

the zenithal component of the Earth’s rotation. The rotation rate f is assumed to

be constant on the plane. This assumption turns out to be accurate enough when
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3.1. Summary of the model

atmospheric or oceanic motions are described for which the time scales are smaller

than or comparable to 1/f .

The boundary layer is assumed to have uniform depth δ and constant density. In a

cylindrical coordinate system (r, φ, z), the boundary layer equations for a hurricane-like

vortex in a homogeneous fluid can be written as

1

r

∂

∂r
(ru2) +

∂

∂z
(uw) +

v2
gr − v2

r
+ f(vgr − v) =

∂

∂z

(

KM
∂u

∂z

)

, (3.1)

1

r2

∂

∂r
(r2uv) +

∂

∂z
(vw) + fu =

∂

∂z

(

KM
∂v

∂z

)

. (3.2)

The continuity equation takes the form

∂

∂r
(ru) +

∂

∂z
(rw) = 0. (3.3)

In these equations the wind vector is ~u = (u, v, w) so that u denotes the radial, v the

tangential component of the flow and w stands for the vertical wind speed. vgr(r) is

the tangential wind speed at the top of the boundary layer.

If χ denotes a scalar quantity, here dry static energy or specific humidity, there is an

additional equation for these thermodynamic quantities which is of the form

1

r

∂

∂r
(ruχ) +

∂

∂z
(wχ) =

∂

∂z

(

KM
∂χ

∂z

)

. (3.4)

As before f denotes the Coriolis parameter, KM is an Eddy diffusivity. These equations

can now be integrated vertically from the ground at z = 0 to the top of the boundary

layer z = δ. First for simplicity it is assumed that δ is a constant and hence not

depending on the radius r. Integration with respect to z then gives

d

dr

(

r

∫ δ

0

u2dz

)

+ [ruw]|z=δ +

∫ δ

0

(v2
gr − v2)dz + rf

∫ δ

0

(vgr − v)dz = −KMr
∂u

∂z

∣

∣

∣

∣

z=0

,

(3.5)
d

dr

(

r2

∫ δ

0

uvdz

)

+ [r2vw]
∣

∣

z=δ
+ fr2

∫ δ

0

udz = −KMr2 ∂v

∂z

∣

∣

∣

∣

z=0

, (3.6)

d

dr

(

r

∫ δ

0

uχdz

)

+ [rwχ]|z=δ = −KMr
∂χ

∂z

∣

∣

∣

∣

z=0

, (3.7)

d

dr

(
∫ δ

0

rudz

)

+ [rw]|z=δ = 0. (3.8)
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Chapter 3. A simple slab model of the hurricane boundary layer

Now it is

[ruw]|z=δ = rubwδ+ + rugrwδ−

and ugr denotes the radial component of the flow in the region above the boundary

layer. It is assumed that ugr is zero so that there is just a tangential component of the

flow for z > δ. The flow inside the boundary layer for z < δ is denoted as ~ub = (ub, vb).

For the vertical motion it is

wδ+ =
1

2
(wδ + |wδ|)

and

wδ− =
1

2
(wδ − |wδ|).

Note that it is wδ+ = wδ if wδ is positive and zero otherwise and wδ− = wδ if wδ is

negative and zero otherwise. As before at the surface a bulk drag law may be applied.

It is assumed that

KM
∂ ~ub

∂z

∣

∣

∣

∣

z=0

= CD |~ub| ~ub. (3.9)

As before CD is a drag coefficient which may be chosen as a constant or as a radially

varying parameter. A similiar law is valid for χ:

KM
∂χ

∂z

∣

∣

∣

∣

z=0

= Cχ |~ub| (χb − χs). (3.10)

Here χb denotes the value of χ inside the boundary layer while χs represents that at

the sea surface. The expression χδ+ denotes the value of χ just above the boundary

layer.

If χ stands for the dry static energy, the value of χs can be calculated using the sea

surface temperature, and if χ represents the moisture, it is the saturation specific

humidity at this temperature. Now in the Equations (3.5) - (3.8) the integrals can be

explicitely solved, giving:

δ
d

dr
(ru2

b) = −wδ+rub − δ(v2
gr − v2

b ) − δrf(vgr − vb) − CDr
√

u2
b + v2

bub, (3.11)

δ
d

dr
(rubrvb) = −rwδ+rvb − rwδ−rvgr − δr2fub − CDr2

√

u2
b + v2

bvb, (3.12)

δ
d

dr
(rubχb) = −wδ+rχb − rwδ−χδ+ + Cχr

√

u2
b + v2

b (χs − χb), (3.13)

and

δ
d

dr
(rub) = −rwδ. (3.14)
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These equations can be divided by δ to give

d

dr
(ru2

b) = −wδ+

δ
rub − (v2

gr − v2
b ) − rf(vgr − vb) −

CD

δ
r
√

u2
b + v2

bub, (3.15)

d

dr
(rubrvb) = −r

wδ+

δ
rvb − r

wδ−

δ
rvgr − r2fub −

CD

δ
r2
√

u2
b + v2

bvb, (3.16)

d

dr
(rubχb) = −wδ+

δ
rχb − r

wδ−

δ
χδ+ +

Cχ

δ
r
√

u2
b + v2

b (χs − χb), (3.17)

and
d

dr
(rub) = −r

wδ

δ
. (3.18)

If η stands for any dependent variable, ub, vb or χb, it is

d

dr
(rubη) = rub

dη

dr
+ η

d

dr
(rub) = rub

dη

dr
− wδ

δ
rη. (3.19)

Using this identity the vertically-integrated equations for radial momentum, azimuthal

momentum, heat or moisture, and continuity can be written in the form:

ub
dub

dr
= ub

wδ−

δ
−

(v2
gr − v2

b )

r
− f(vgr − vb) −

CD

δ

√

(u2
b + v2

b )ub −
(u′w′)δ

δ
, (3.20)

ub
dvb

dr
=

wδ−

δ
(vb − vgr) −

(vb

r
+ f
)

ub −
CD

δ

√

(u2
b + v2

b )vb −
(v′w′)δ

δ
, (3.21)

ub
dχb

dr
=

wδ−

δ
(χb − χδ+) +

Cχ

δ

√

(u2
b + v2

b )(χs − χb) −
(χ′w′)δ

δ
− χ̇b, (3.22)

and
dub

dr
= −ub

r
− wδ

δ
. (3.23)

In this equations Cχ is the surface transfer coefficient for χb, χδ+ is the value of χ just

above the boundary layer, χs is the value of χ at the sea surface. The term χ̇b denotes

any source of χ and the terms (u′w′)δ, (v′w′)δ, (χ′w′)δ represent turbulent fluxes at the

top of the boundary layer.

If χ represents the dry static energy it is χs = cpTs, where Ts denotes the temperature

at the sea surface and cp is the specific heat of air at a constant pressure. Additionally

χ̇b is the sum of the terms −cpṪb and CD(u2
b + v2

b )
3/2. Here Ṫb denotes the radiative

cooling rate and CD(u2
b + v2

b )
3/2 has to be interpreted as the rate of generation of
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Chapter 3. A simple slab model of the hurricane boundary layer

enthalpy by frictional dissipation. Smith (2003) did not include the dissipation term

and just was taking into account the radiative cooling rate. However it was shown by

Bister and Emanuel (1998) that the dissipation term is also significant especially when

it is coming to wind speeds of hurricane strength. If χ represents the moisture χs is

the saturation specific humidity at the temperature Ts. In this case χ̇b = 0.

Note that in this calculation condensation with latent heat release in the boundary

layer is supressed. However it is checked that the boundary layer does not saturate,

although the cloud base will become lower as the boundary layer humidity increases.

As the quantities ub, vb and χb are vertically averaged, they are only functions of the

radius and not of the height z. As it was discussed before wδ− is nonzero only when

wδ < 0. In this case it is equal to wδ. Thus the terms that are involving wδ− are

representing transport processes in which the properties of the atmosphere above the

boundary layer are transported downwards.

Representation of the drag coefficient

For the representation of the drag coefficient there are different possibilities. The most

simple case would be to take an appropriate constant value as done for example by

Kepert (2001). A constant value for CD was also used in the calculations for the linear

models discussed before. However, it was also shown there that a radially varying drag

coefficient may cause slight changes in the results. Other possibilities would be to follow

Shapiro (1983), as it was done for example by Smith (2003). There CD was evaluated

from the formula CD = CD0 + CD1|ub|, where CD0 = 1.1 × 10−3, CD1 = 4 × 10−5 and

ub = (ub, vb, 0). That means that CD is linearly depending on the wind speed. He

assumed also that Cχ = CD.

In the past good measurements of the exchange coefficients in a hurricane were rare.

The extreme wind speeds obtained in the hurricane boundary layer make explorations

for example by reconaissance flights or dropsondes quite difficult. Sea spray, for exam-

ple, causes damage to the motors of the airplanes due to the salt which is entruding.

However the technical possibilities are improving and recently Black et al. (2006) pre-

sented new aircraft measurements of the exchange coefficients at wind speeds up to 30

m s−1. These measurements suggest that CD no longer increases for wind speeds higher

than about 20 m s−1, although there is considerable scatter in the data. Including the
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3.1. Summary of the model

most recent results, for the calculations in later sections, values of CD0 = 0.7 × 10−3

and CD1 = 6.5 × 10−5 for wind speeds less than 20 m s−1 and CD = 2.0 × 10−3, a

constant, for larger wind speeds are used. These values are based on the interpretation

of Black et al.’s Fig.(5). For Cχ simply a constant value equal to 1.1 × 10−3, based on

their Fig.(6) is included into the calculations.

To find ub, vb, and χb as functions of r an expression for the vertical velocity has to

be derived first. For that purpose it is started with Equation (3.20) and substituting

Equation (3.23) into it. Then an expression for wδ follows immediately:

wδ =
δ

1 + α

[

1

ub

(

(v2
gr − v2

b )

r
+ f(vgr − vb) +

CD

δ

√

(u2
b + v2

b )ub

)

− ub

r

]

, (3.24)

where α is zero if the expression in square brackets is negative and unity if it is positive.

Now Eqs.(3.21) - (3.23), together with this expression for wδ, form a system that may

be integrated radially inwards from some large starting radius R to find ub, vb, and χb

as functions of r. The values of these quantities at r = R have to be given. The way

how to calculate the starting values at the initial conditions is discussed in detail later.

If χ is the specific humidity the surface moisture flux has to be calculated. Therefore

it is necessary to know the saturation specific humidity qss at the ground level which

is depending on the pressure at the surface. The surface pressure is not prescribed. It

has to be calculated together with all other quantities. To do that the gradient wind

equation

dp

dr
= ρ

(

v2
gr

r
+ fvgr

)

(3.25)

is integrated.

Representation of shallow convection

In regions over the tropical oceans there are widespread areas of large-scale subsidence.

Convection is an omnipresent feature in the boundary layer there. An important

aspect of this convective boundary layer is, that shallow convection is occuring nearly

everywhere. The regions where hurricanes occur are also part of this area. Thus

shallow convective processes have to be taken into account when the boundary layer of

hurricanes is studied. The shallow convection plays an important role in the exchange

of heat and moisture between the subcloud layer, the layer which is modelled by the
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Chapter 3. A simple slab model of the hurricane boundary layer

simple slab model discussed in this section, and the cloudy layer above.

The thermodynamic variables represented by χδ+ above the boundary layer are not

predicted here. So for simplicity a constant value for the mass flux of shallow convec-

tion, wsc is chosen and added to wδ− in Eqs.(3.20) - (3.22). Note that it is also added

even if wδ− = 0.

This is equivalent to representing the flux terms η′w′

δ in these equations by wsc(η+−ηb),

where η is one of the dependent variables u, v, χ and the subscript ’+’ denotes a value

just above the boundary layer. However, wδ in Eq.(3.23) is left unchanged. This is due

to the fact that there is no net exchange of mass between the cloud and the subcloud

layers caused by shallow convection. The value for wsc is chosen to ensure that the

thermodynamic profile at large radius is close to radiative-convective equilibrium as

explained in the next subsection.

Starting conditions at large radius

It is assumed that at the starting radius r = R, far from the axis of rotation, the flow

above the boundary layer is steady and in geostrophic balance.

Alternatively it would be possible to assume a linearized form of the full equations.

−ξgrv
′

b = −CD

δ

√

(u2
b + v2

b )ub, (3.26)

ζagr
ub = −CD

δ

√

(u2
b + v2

b )vb, (3.27)

where v′

b = vb − vgr and ξgr and ζagr
are given by

ξgr =
2vgr

r
+ f

and

ζagr
=

1

r

(

d

dr
(rvgr)

)

+ f =
d

dr
vgr +

vgr

r
+ f.

If one defines now u = ub/vgr, v = vb/vgr, Eqs.(3.26) and (3.27) may be written as

−ξvgr(v − 1) = −CD

δ
v2

gr

√

(u2 + v2)u, (3.28)

ζavgru = −CD

δ
v2

gr

√

(u2 + v2)v. (3.29)

Introducing the parameters b = ξgr/ζagr
and c = ζagr

δ/(CDvgr) to the equations yields

−bc(v − 1) = −
√

(u2 + v2)u, (3.30)

cu = −
√

(u2 + v2)v. (3.31)
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Dividing the first of these equations (3.30) by the second (3.31) gives the relation

u2 = bv(1 − v). (3.32)

Now it is possible to derive an equation for v only. First squaring Eq.(3.30) and using

Eq.(3.32) leads to the algebraic equation

v2 [b(1 − v) + v] − bc2(1 − v) = 0. (3.33)

This can be solved for v numerically and u can be calculated from Eq.(3.32). The

vertical velocity w is then obtained by integrating the continuity equation.

Both possibilities to calculate the initial values, the linear approach or the assumption

of geostrophic balance, are possible and it is seen that there is not much of a difference

between both. For the following calculations the assumption of geostrophic balance is

used to calculate the initial values.

If vgr(R) denotes the tangential wind at the starting radius R far from the storm center

and CD is equal to CD0 + CD1vgr(R), the tangential and the radial wind speed in the

boundary layer vb and ub satisfy the equations

f(vgr − vb) = ub

wδ− + wsc

δ
− CD

δ

√

(u2
b + v2

b )ub, (3.34)

fub =
wδ− + wsc

δ
(vb − vgr) −

CD

δ

√

(u2
b + v2

b )vb. (3.35)

Now a first approximation to the solution is obtained analytically by neglecting mo-

mentum transport from above. In the equations this is realized by setting the first

two terms on the right-hand-side of Eqs.(3.34) and (3.35) to zero. This leads to the

equations

f(vgr − vb) = −CD

δ

√

(u2
b + v2

b )ub, (3.36)

fub = −CD

δ

√

(u2
b + v2

b )vb, (3.37)

and a first guess for ub(R) and vb(R) is obtained. Now it is possible to calculate an

expression for the vertical velocity wδ−(R) at the starting radius r = R using the

continuity equation (3.23). Then it follows
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wδ−(R) = −δ

(

dub

dr
+

ub

r

)

= −δ

r

d

dr
(rub). (3.38)

This approximate solution is used as a first guess in an iteration procedure for wsc that

ensures zero moisture tendency at r = R. From the sea surface moist air is transported

into the boundary layer so that there is a source of moisture at the ground level. On

the other hand moist air is transported upwards and is leaving the boundary layer

through the top, where it is replaced by drier air parcels from the atmosphere above.

If there is assumed a zero moisture tendency this rate of moisture gain from the sea

surface must be balanced by the loss through the top of the boundary layer and its

replacement by dry air. This balance is expressed by the equation

Cχ

√

(u2
b + v2

b )(qs − qb) = (wsc + wδ−(R))(qb − qδ+). (3.39)

If Cχ, qs, qb and qδ+ are given and wδ−(R) is evaluated from Eq.(3.38), this is an

equation for wsc. When wδ−(R) and wsc have been determined, Eqs.(3.34) and (3.35)

are solved again, now using the values of wδ− and wsc to find new values of ub and vb.

Then the whole procedure is repeated until stable values are obtained for wδ− and wsc.

Once wδ− and wsc are determined the representation of the drag may be refined using

now CD = CD0 + CD1

√

(u2
b + v2

b ). Then Eqs.(3.34) and (3.35) are used again to find

values for ub and vb and the complete iteration process is repeated until stable values

are obtained for all quantities, ub, vb, wδ−(R), wsc and CD.

As mentioned before for the iteration, the values of the sea surface temperature together

with the specific humidities in the boundary layer, qb, and just above the boundary

layer, qδ+, have to be known at r = R. The sea surface temperature, Ts, and surface

pressure, ps, are used to determine the saturation specific humidity at the surface. Once

the final value for wsc is obtained, the temperature just above the boundary layer, Tδ+,

is calculated. This is done in a way so that for a specified radiative cooling rate and

air temperature just above the surface, Tas, the sensible heat fluxes are in equilibrium

at the starting radius r = R. Let Tδ− denote the temperature just below the boundary

layer top.

The assumption of equilibrium leads to an equation for the difference Tδ+−Tδ− between

the temperature just above and just below the boundary layer of the form
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Tδ+ − Tδ− =
1

wsc

[

Ṙbδ

cp

− Cχ(u2
b + v2

b )
1/2(Ts − Tas) −

CD

cp

(u2
b + v2

b )
3/2

]

. (3.40)

The temperature structure in the boundary layer including both Tb and Tδ− is deter-

mined on the assumption that the dry static energy is uniform across the boundary

layer. The last term in square brackets is the dissipative heating. This is included for

completeness although it is small compared with the other terms at r = R.

Fig.(3.1) summarizes again the complete setup of the slab model as discussed above.

3.1.1 Comparison with S03

As mentioned before the slab boundary model described here is similiar to the one

developed by Smith (2003). The revisited version discussed here fixed an error in

the Runge-Kutta algorithm for the integration of the boundary layer equations and

introduced some new features as a new convective equilibrium scheme or exchange

coefficients evaluated from the most recent measurements. For completeness a com-

parison of the revised version and the model represented by Smith (2003) was carried

out. For this calculation the same parameters as in the control calculation described

by Smith (2003) in his section 6 were used. Including his calculations for the initial

equilibrium state and his representation of the exchange coefficients. For the compar-

ison only the dynamical fields are considered. The boundary layer depth is radially

constant with a value of 550 m and wsc is -2.2 cm s−1.

Figure (3.2) shows a comparison of the radial and tangential wind components ub

and vb and the total wind speed (denoted by vv) in the boundary layer in the control

calculation (panel (a)) and that in Smith (2003) (panel (b)). It shows also the tangential

wind speed vgr at the top of the boundary layer.

From Fig.(3.2) it is clear that for that setup of parameters, there are significant quan-

titative differences in the corrected calculations. The tangential wind speed in the

boundary layer is mostly lower beyond the radius rm (the radius of maximum tangen-

tial wind speed above the boundary layer), but increases steeply as r approaches rm.

Inside a radius of 41.5 km it is supergradient and exceeds the maximum vgr by 8 m s−1

at the radius where the solution breaks down. The fact that supergradient winds are

obtained is an important difference between the both calculations.

91



Chapter 3. A simple slab model of the hurricane boundary layer

z

r

r (km)

0

R

d

u
g

T
sst

T
d+q

d+

w
d-

w
sc

T
b

q
b

u
b

v
g

40

40

(r ,v )m m

v
b

v (r)gr

(ms )
-1

q (T ,p)s sst
drag

heat

Figure 3.1: Schematic sketch of the slab boundary layer model. The values of the radial and tangential

flow are denoted by (ub, vb) if it is inside the boundary layer and by (ug, vg) if the initial values of

that quantities are referred to. The red curve at the top indicates the profile of the gradient wind vgr

which is imposed at the top of the boundary layer.
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Figure 3.2: Comparison of radial profiles of radial (ub) and tangential (vb) wind components and the

total wind speed vv in the boundary layer as well as the tangential wind speed above the boundary

layer (vgr) for (a) the new calculation and (b) the corresponding calculation in Smith (2003). The

boundary layer depth, δ, is 550 m.

The radial wind speed is about twice as large as that in Smith (2003). It reaches its

maximum at about 50 km (1.25rm), compared to a little more than 80 km (2rm). How-

ever, it is important to note that ub becomes zero at a radius of about 28.4 km (0.71rm).

At that point the boundary layer equations are singular and the solutions break down.

Near this radius, radial gradients are so steep that the underlying approximations of

boundary-layer theory become questionable. The rapid decline in ub near the singular

radius implies a large vertical velocity at the top of the boundary layer. Indeed, the

maximum upflow is much larger than that in Smith (2003). It is exceeding the values

obtained by Smith (2003) by several m s−1 near the radius where the solution breaks

down. In Smith (2003) it is only 0.15 m s−1 and occurs 1 km inside rm.

The results of the new calculation exhibit a behavior that was not found in earlier

studies (e.g. Smith 1968, Leslie and Smith 1970, Bode and Smith 1975) as well as in

the calculations presented by Smith (2003).

So it is of interest to carry out investigations of the dynamical and thermodynamical

aspects of the boundary layer, including checks using two independent codes (one a

Fortran90 code and the other using Mathematica).
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Chapter 3. A simple slab model of the hurricane boundary layer

3.2 The new calculations - dynamical aspects

3.2.1 Dependence on boundary-layer depth

In the simple slab boundary layer model investigated by Smith (2003) only one single,

radially constant boundary-layer depth has been studied. This boundary layer depth

was chosen to be that of the subcloud layer in a very simple model for radiative-

convective equilibrium at the starting radius.

An inspection of Eqs.(3.20)-(3.22) shows that the effective frictional stress (i.e. the

surface stress divided by the boundary layer depth) and the effective enthalpy and

moisture exchange coefficients are inversely proportional to the assumed depth. So it

is of particular interest to investigate how the boundary-layer depth might influence

the inward evolution of the layer.

For the remaining calculations the additional modifications to the model described by

Smith (2003) were used. Specifically the most recent representations of the drag and

heat/moisture exchange coefficients were used. These are based on the observations

reported by Black et al. (2006). The new convective equilibrium scheme described in

section 3.1 was introduced.

To aquire an equilibrium state it was necessary to choose slightly different values for

the thermodynamic input parameters. These parameters are: ps = 1015 hPa, Ts =

29oC, Tas = 28.5oC, qb = 14 g kg−1, qδ+ = 13.4 g kg−1. These lead to values for Tδ+

and wsc of 21.7oC and −5.7 cm s−1, respectively.

The results of calculations similar to those described in section 3.1.1, but for boundary

layer depths 550 m, and 800 m are summarized in Fig.(3.3), which shows graphs similar

to those in Fig.(3.2).

The flow behavior in the calculation for δ = 550 m (Fig.(3.2), panel (a)) is similar

to that for δ = 550 m in Smith (2003) (Fig.(3.2), panel(b)). However, the solution

becomes singular (i.e. ub → 0) at a larger radius: 35 km compared with 28.4 km. In

addition, the maximum radial wind speed is lower (16 m s−1 compared with 21 m s−1)

and occurs at a slightly larger radius (54.7 km compared with 50 km). The maximum

vertical velocity out of the boundary layer is less also: 1.8 m s−1 at r = 35 km compared

with 3.8 m s−1 at r = 28.4 km in the case with δ = 550 m. As the boundary layer depth

increases to 679 m the radius at which the solution becomes singular increases to 40
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Figure 3.3: Comparison of radial profiles of radial (ub) and tangential (vb) wind components and the

total wind speed vv in the boundary layer as well as the tangential wind speed above the boundary

layer (vgr), but for two calculations with boundary layer depths (a) 550 m, and (b) 800 m.

km and the maximum radial wind speed decreases to 14 m s−1 and the radius at which

it occurs increases to 63 km. The maximum vertical velocity out of the boundary layer

is slightly smaller, 1.6 m s−1, and occurs at r = 40 km.

As δ increases beyond 679 m, a dramatic transition occurs in the solution behavior. For

δ = 680 m and beyond, the solution for r < rm is quite different from that for δ ≤ 679

m and extends to within a few kilometres of the rotation axis. In this ”large depth”

regime, the tangential wind speed in the boundary layer becomes subgradient again

after reaching its peak supergradient value. It then oscillates about the prescribed

wind profile above the boundary layer with ever decreasing amplitude as the axis is

approached. The oscillations are accompanied by oscillations of the radial wind field

and therefore in the vertical flow at the top of the boundary layer. This behavior is

similar to that described in Smith (2003) for a vortex with rm = 100 km.

The vertical motion at the top of the boundary layer in the calculations with boundary

layer depths of 550 m and 800 m are shown in Fig.(3.4), panel (a) and (b). There is

a slight adjustment near the starting radius on account of the sudden introduction of

the inertial acceleration terms in the boundary layer, but the subsidence velocities at

outer radii are relatively weak. The subsidence increases with decreasing radius and

then decreases again shortly before changing to ascent. The change from subsidence

to ascent occurs at a radius of 130 km when δ = 550 km and 155 km when δ = 800

km. Reasons for these differences are discussed below.
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Figure 3.4: Radial profiles of vertical velocity (wδ) at the top of the boundary layer in the calculations

with boundary layer depths of 550 m and 800 m for the whole domain (panel (a)) and with emphasize

on the inner region (panel (b)).
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Figure 3.5: (a) Maximum radial and tangential wind speeds in the boundary layer, ub,max and vb,max,

and the tangential wind speed vgr, at the top of the boundary layer at the radius where vb,max occurs,

as functions of boundary-layer depth. (b) Radii ru and rv where the maximum radial and tangential

wind speeds occur as functions of boundary-layer depth. Panel (b) also shows the first radius, rsg , at

which, starting from r = R, the tangential wind speed becomes supergradient. The solid horizontal

line in panel (a) indicates the maximum tangential wind speed at the top of the boundary-layer, vm,

and that in panel (b) the radius rm, at which this maximum occurs.
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The dependence of the solutions to the boundary-layer depth is highlighted by plots of

the maximum radial and tangential wind speed and the radii at which these occur as

functions of δ as shown in Fig.(3.5).

As δ increases, the effective frictional stress (i.e. the surface stress divided by the

boundary-layer depth) is becoming smaller. In that case the degree of supergradient

flow is also progressively diminished. This behavior is visualized by the difference

between the maximum tangential wind speed in the boundary layer, vb,max, and the

tangential wind speed above the boundary layer at the radius rv at which vb,max occurs

(Fig.(3.5), panel (a)). In contrast, rv is growing when δ is becoming larger as shown in

Fig.(3.5, panel (b)). The maximum inflow, ub,max, decreases also (Fig.(3.5, panel (a))

while the radius at which it occurs increases (Fig.(3.5), panel(b)). It is also evident that

the radius at which the flow first becomes supergradient shows an almost linear increase

when δ is becoming larger. Now the question is turning up how this behavior of the

solutions with varying boundary layer depth δ may be interpreted, taking Eqs.(3.20)

and (3.21) into account. This topic is in detail discussed in the following section.

3.2.2 Interpretation

The foregoing behavior depends in a delicate way on the relative importance of various

force terms in the radial and tangential components of the momentum equation. For the

purpose of interpretation it is helpful to rewrite Eqs.(3.20) and (3.21) in the following

form:

dus

ds
=

wδ− + wsc

δ
− (vgr − vb)

us

(

(vgr + vb)

R − s
+ f

)

− CD

δ

√

(u2
s + v2

b ), (3.41)

dvb

ds
=

wδ− + wsc

δ

(vb − vgr)

us
+

vb

R − s
+ f − CD

δ

√

(u2
s + v2

b )
vb

us
. (3.42)

Here us = −ub is the radial inflow velocity and s = R − r, with s ≤ R, measures

distance inwards from the starting radius, R. In addition the flux terms on the far

right of Eqs.(3.20) and (3.21) have been replaced with the formulation described in

section (3.1). In this form the equations show how the (inward) radial and tangential

components of flow change with decreasing radius.

If there are no frictional stresses the converging rings of air conserve their absolute
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Chapter 3. A simple slab model of the hurricane boundary layer

angular momentum, rv + 1
2
fr2, and spin faster. However, in the boundary layer these

rings of air are still spinning faster. But of course now frictional torque is acting

and therefore the rate at which vb increases is reduced significantly. This effect is

represented by the last term in Eq.(3.42):

CD

δ

√

(u2
s + v2

b )
vb

us
.

For the development of supergradient winds it is now necessary to have a sufficiently

large radial displacement of air parcels in the boundary layer. This displacement is on

the other hand just possible if the radially-inward wind speeds are large enough.

From a Lagrangian viewpoint one may think of air parcels spiralling inwards. As they

move slower inwards the tracks they follow become longer. This means that they have

a longer way to go along where friction can act and reduce vb.

An inspection of Eq.(3.42) shows that this effect is contained in the terms proportional

to the inverse of us.

The foregoing discussion makes clear that the development of supergradient winds

depends on the radial gradient of absolute angular momentum in the boundary layer

and hence on that above the layer. This feature is also explored in the context of a

linear boundary-layer model by Kepert (2001) and Kepert and Wang (2001). It is also

consistent with the results in the context of the linear model in the foregoing chapter.

Equation (3.41) shows that the only term that can cause a radially-inward acceleration

in the slab model is the net pressure gradient. The effect of this pressure gradient is

contained in the second term on the right-hand-side of Equation (3.41):

(vgr − vb)

us

(

(vgr + vb)

R − s
+ f

)

.

This term describes the net inward force which is due to the difference between the

radial pressure gradient and the centrifugal and Coriolis forces. The first term in

Eq.(3.41)
wδ− + wsc

δ

stands for the effects of the downward transport of radial momentum. This is zero in

the present model. Finally the third term

CD

δ

√

(u2
s + v2

b )

98



3.2. The new calculations - dynamical aspects

represents the frictional stress. Both of these act to reduce the radial inflow. If the

flow is supergradient, i.e. if vb > vgr, the net pressure gradient acts radially outwards

also. The net inward force increases with the degree to which the tangential flow in the

boundary layer is subgradient (i.e. to vgr − vb), which in turn increases as the effective

frictional torque becomes larger. Equation (3.42) shows that this torque is the only

term that leads to a reduction of vb with decreasing radius as long as the flow in the

boundary layer remains supergradient. The friction terms are inversely proportional

to the boundary-layer depth. This means that shallower boundary layers favour lower

tangential wind speeds. However shallower boundary layers lead to larger radial wind

speeds. This is because, at least in the outer part of the vortex for large radii, they

cause a larger net pressure gradient. If one approaches the core region of the vortex

and the radii are becoming smaller the situation is a little different. Now the term

vb/(R − s) in Eq.(3.42) becomes large and contributes to an increase in vb with s.

Thus larger radial wind speeds favor larger tangential wind speeds. This is because air

parcels may move rapidly to smaller radii, where this effect is important. In addition

they suffer less total frictional torque on the way (note that the frictional term in

Eq.(3.42) decreases as us increases). The key to what determines the two flow regimes

depends on which of the foregoing processes dominates and boils down to whether or

not the flow can become subgradient again before ub becomes zero. In the calculation

with δ = 680 m, the tangential flow just manages to become subgradient before ub

becomes zero, whereupon the inflow begins strengthen again with decreasing radius.

Because the tangential wind speed at the top of the boundary layer decreases also, the

flow again becomes supergradient so that ub decreases rapidly and vb − vgr decreases

until ub becomes subgradient again. These fluctuations are a kind of damped inertial

oscillation as described in Smith (2003). These waves are not very significant in reality.

It is more realistic to interpret them as an artifact which is descended of the prescription

of the tangential wind field at the top of the boundary layer. The radial scale of the

waves is on the order of a few kilometers and decreases with radius. Thus such waves

would not be resolvable by most numerical models of hurricanes. Moreover the implied

radial gradients associated with them would stretch the assumptions of boundary layer

theory, which assumes radial gradients of quantities to be small compared with vertical

gradients. It turns that these oscillations have much smaller amplitudes in calculations

that allow the boundary depth to decline with radius (see section (3.2.6)).

The dynamical interpretations given above provide also an explanation for the differ-
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Chapter 3. A simple slab model of the hurricane boundary layer

ences in the radial location where, wδ changes sign in Fig.(3.4). The larger effective

friction for the shallower boundary layer implies a larger net radial pressure gradient,

which, in turn, leads to a larger acceleration of the radial flow and a decrease in the

radius at which the radial gradient of inward mass flux changes sign.

3.2.3 Dependence on vortex intensity

Decreasing the vortex intensity has an effect similiar to increasing the boundary layer

depth. A repeat of the control calculation for different values of the maximum tangen-

tial wind speed at the top of the boundary layer, vm, shows that as vm decreases, the

strength of supergradient winds decreases. In addition, the transition in regime from

one, in which ub becomes zero before vb reduces to vgr, to one in which vb oscillates

about vgr, occurs at a smaller boundary-layer depth.

For example, if δ = 550 m, the regime transition occurs if vm is reduced by just 8

m s−1 to 32 m s−1. As vm decreases further, the behavior is similar to that when δ

decreases at fixed vm. Theses findings are consistent with the results of Kepert (2001).

In his Figure 1, he showed that a larger gradient wind speed leads to a stronger jet, i.e.

to an increase in the strength of supergradient winds. The behavior discussed above

suggests that it might be possible to rescale the equations in a way that the vm and δ

dependence condenses into a single parameter, but this does not appear to be the case.

3.2.4 Dependence on mixing by shallow convection

Smith (2003) showed that it is important to include a representation of downward

mixing by shallow convection. This prevents the boundary layer from completely sat-

urating. The formulation is necessarily crude because thermodynamic quantities are

not predicted above the boundary layer. This means that there is no physical basis

for allowing the mass transport due to shallow convection to vary with radius. Never-

theless it is pertinent to ask how sensitive the foregoing results are to the magnitude

chosen for wsc. To answer this question two additional calculations were carried out,

similar to the control calculation, but with wsc = 0 in one and wsc = −10 cm s−1 in

the the other. It turns out that for wsc = 0, the transition in boundary layer behavior

described in section (3.2.1) occurs at a larger boundary layer depth (765 m instead of
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Figure 3.6: (a) Maximum radial and tangential wind speeds (un and vn, respectively, n = 1, 2, 3) in

the boundary layer, and the tangential wind speed at the top of the boundary layer at the radius at

which the maximum vn occurs, as functions of the boundary layer depth for three different values

for wsc: 0, -5 and -10 cm s−1. (b) Radii at which the maximum radial and tangential wind speeds

occur (run and rvn, respectively) as functions of boundary layer depth. Solid horizontal lines are as

in Figure (3.5).

680 m). In the case where wsc = −10 cm s−1 and vm = 40 m s−1, there is no transition

in behavior for any boundary layer depth. The tangential wind speed in the boundary

layer becomes subgradient again after reaching its maximum value and then oscillates

about the prescribed wind profile for any boundary layer depth. At the same time the

radial wind field and the vertical flow oscillate. All of these effects are presented in

Fig.(3.6), which shows the maxima of radial and tangential wind speed in the boundary

layer (panel (a)) and the radii, where the maxima occur (panel (b)) as functions of the

boundary-layer depth for the three values of wsc. The maximum radial wind speed for

wsc = 0 is denoted by u1, for wsc = −5 cm s−1 by u2, and for wsc = −10 cm s−1 by u3.

The radii at which u1, u2 and u3 occur are denoted by r1, r2 and r3, respectively.

If δ is fixed both the maximum of the radial and of the tangential components are be-

coming smaller if the value of |wsc| is increasing. The maximum inflow is also becoming

larger for a shallower boundary layer as it is for the degree of supergradient wind speed

when wsc = 0. However, if |wsc| is 5 cm s−1 and 10 cm s−1 the degree of supergradient

wind is maximal for an intermediate value of δ.

The reason for the foregoing behavior is that the downward mixing of radial momen-

tum by shallow convection reduces the strength of the inflow directly and thereby the

strength of supergradient winds that can be achieved. An indirect reduction of the
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inflow is caused by the downward mixing of azimuthal moment. This process causes a

reduction of the net inward force and hence an indirect reduction of the inflow. In any

case a diminished inflow causes a significant reduction of the strength of supergradient

winds that may be obtained. If one fixes a value of wsc this effects can be reduced by

choosing a smaller boundary layer depth δ. This is due to the fact that the reduction of

δ leads to a stronger effective frictional force in the boundary layer. The radii at which

the maxima in ub and vb occur increase with δ. This effect, i.e. the rate of increase is

largest for a calculation without any mixing by shallow convection.

Further calculations showed that the maximum amount by which the tangential wind

becomes supergradient is sensitive to changes in wsc and decrease significantly as wsc

increases in magnitude. The maximum vertical flow at the top of the boundary layer

decreases a little also and the radius at which it occurs increases.

3.2.5 Dependence on a varying drag coefficient

It is also possible to investigate the effects of variations in the drag coefficient. It was

defined CD = CD0 + CD1|~v| and it was assumed that the drag coefficient does not

increase further for total wind speeds larger that 20 ms−1. CD can be written in the

form CD = CD0(1 + cdx|~v|), where cdx = CD1

CD0
. To investigate a broad range of profiles

for CD it is possible to vary the parameter cdx linearly.

Figure (3.7), panel (a), shows the maximum radial and tangential wind speeds in the

boundary layer, and the tangential wind speed at the top of the boundary layer at

the radius at which the maximum vb occurs, as functions of 1/cdx. An increase in

1/cdx corresponds to a reduction of the drag coefficient. It is seen that an increase in

1/cdx results in a decrease of radial wind speed in the boundary layer as well as in the

tangential wind speed. This confirms the idea that increased frictional stress at the

ground reduces the wind speeds above, when the frictional stress is represented by

CD

δ

√

(u2
s + v2

b ).

From Fig.(3.7), panel (b), it is seen that not only the absolute values of the radial

and the tangential wind speeds in the boundary layer are affected by a varying drag

coefficient. Panel (b) shows the radii at which the maximum radial and tangential

wind speeds occur (ru and rv, respectively) and the radius r1, where the tangential
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Figure 3.7: (a) Maximum radial and tangential wind speeds, (ub and vb), in the boundary layer, and

the tangential wind speed at the top of the boundary layer at the radius at which the maximum vb

occurs, as functions of 1/cdx. (b) Radii at which the maximum radial and tangential wind speeds

occur (ru and rv, respectively) and the radius r1, where the tangential wind speed is equal to vgr as

functions of 1/cdx. Solid horizontal lines indicate vm = 40 ms−1, (panel (a)), and rm = 40 km, (panel

(b)).

wind speed is equal to vgr as functions of 1/cdx. It is seen from panel (b) that the

maxima of the radial and the tangential wind occur at larger radii when 1/cdx is

increased. It is also seen that the tangential wind speed turns supergradient further

out from the core when 1/cdx is increased.

3.2.6 Effects of radially-varying boundary-layer depth

The model described in section 3.1 assumes a constant boundary layer depth. This

may in fact not be too accurate. A scale analysis of the equations as presented in

the foregoing chapter suggested that the boundary layer depth should decline with the

radius. This may easily be seen by an inspection of the boundary layer depth scale

derived there. Also the linear solution to the full boundary-layer equations (Eliassen

and Lystad 1977, Kepert 2001 and Vogl and Smith 2009) suggests that the depth

should decrease with declining radius at a rate inversely proportional to
√

C, where

C = (ζgr + f)

(

2vgr

r
+ f

)

and

ζgr =
1

r

(

d(rvgr)

dr

)
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is the vertical component of relative vorticity at the top of the boundary layer. It is

not possible to determine the radial variation of δ in the slab-model. However, it is

straightforward to modify the Eqs.(3.20) - (3.23) to allow for a prescribed variation of

δ(r). Now it is assumed that the boundary layer depth δ(r) is a prescribed function of

radius r.

Starting with the boundary-layer equations (3.20) - (3.23) it is for δ = δ(r):

d

dr

(

∫ δ(r)

0

ru2dz

)

−δ′(r)ru2+(ruw)|z=δ(r)+

∫ δ(r)

0

(v2
gr−v2)dz+rf

∫ δ(r)

0

(vgr−v)dz = −Kr
∂u

∂z

∣

∣

∣

0
,

d

dr

(

∫ δ(r)

0

r2uvdz

)

− δ′(r)r2uv + (r2vw)|z=δ(r) + r2f

∫ δ(r)

0

udz = −Kr2 ∂v

∂z

∣

∣

∣

0
,

d

dr

(

∫ δ(r)

0

ruχdz

)

− δ′(r)ruχ + (rχw)|z=δ(r)+ = −Kr
∂χ

∂z

∣

∣

∣

0
,

d

dr

(

∫ δ(r)

0

rudz

)

− δ′(r)ru + (rw)|z=δ(r) = 0,

whereupon

d

dr
(δ(r)ru2

b)− δ′(r)ru2
b +wδ+rub + δ(r)(v2

gr −v2)+ δ(r)rf(vgr −v) = −CDr(u2
b +v2

b )
1

2 ub,

d

dr
(δ(r)rubrvb) − δ′(r)rubrvb + wδ+r2vb + wδ−r2vgr + δ(r)r2fub = −CDr2(u2

b + v2
b )

1

2 vb,

d

dr
(δ(r)rubχb)−δ′(r)rubχb +wδ+rχb +wδ−rχδ+ +δ(r)r2fub = −Cχr(u2

b +v2
b )

1

2 (χs−χb),

and
d

dr
(δ(r)rub) − δ′(r)rub = −rwδ. (3.43)

Now d
dr

(δ(r)rub)η is examined with a dependent variable η which is ub, rvb or χb. It is

d

dr
(δ(r)rub)η = δ(r)rub

d

dr
η + η

d

dr
(δ(r)rub) (3.44)

and from Eq.(3.43) follows now

d

dr
(δ(r)rub)η = δ(r)rub

d

dr
η + η(δ′(r)rub − rwδ). (3.45)

Using this identity and simplifying the equations one ends up with a set of differential

equations of the same type as for constant δ, where δ is just replaced by δ(r):
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ub
dub

dr
= ub

wδ−

δ(r)
−

(v2
gr − v2

b )

r
− f(vgr − vb) −

CD

δ(r)
(u2

b + v2
b )

1

2 ub, (3.46)

ub
dvb

dr
=

wδ−

δ(r)
(vb − vgr) − (

vb

r
+ f)ub −

CD

δ(r)
(u2

b + v2
b )

1

2 vb, (3.47)

ub
dχb

dr
=

wδ−

δ(r)
(χb − χδ+) +

Cχ

δ(r)
(u2

b + v2
b )

1

2 (χs − χb). (3.48)

If a representation of turbulent fluxes at the top of the boundary layer is included, terms

(u′w′)δ, (v′w′)δ, (χ′w′)δ have to be added to the equations and with a representation

of radiative cooling χ̇b the equations take their final form:

ub
dub

dr
= ub

wδ−

δ(r)
−

(v2
gr − v2

b )

r
− f(vgr − vb) −

CD

δ(r)
(u2

b + v2
b )

1

2 ub −
(u′w′)δ

δ(r)
,(3.49)

ub
dvb

dr
=

wδ−

δ(r)
(vb − vgr) −

(vb

r
+ f
)

ub −
CD

δ(r)
(u2

b + v2
b )

1

2 vb −
(v′w′)δ

δ(r)
, (3.50)

ub
dχb

dr
=

wδ−

δ(r)
(χb − χδ+) +

Cχ

δ(r)
(u2

b + v2
b )

1

2 (χs − χb) −
(χ′w′)δ

δ(r)
− χ̇b. (3.51)

Now Eq.(3.43) is used to modify (3.49) to provide an expression for wδ. Writing (3.43)

as

d

dr
(δ(r)rub) = δ′(r)rub − rwδ (3.52)

and carrying out the differentiation gives

δ′(r)rub + δ(r)

(

ub + r
d

dr
ub

)

= δ′(r)rub − rwδ. (3.53)

Finally

d

dr
ub =

1

δ(r)r
(−rwδ − δ(r)ub), (3.54)

which leads to an expression for wδ.

It is seen from the foregoing analysis that Eqs.(3.20) - (3.22) do not change in the case

of a radially varying boundary layer depth. It is the vertical velocity that is affected.

To summarize the calculations for δ = δ(r) the average of any quantity φ(r, z) across

the boundary layer is defined as
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φb =
1

δ

∫ δ(r)

0

φ(r, z)dz. (3.55)

With this definition it immediately follows that

dφb

dr
=

1

δ(r)

∫ δ(r)

0

dφ(r, z)

dr
dz −

[

1

δ(r)

dδ(r)

dr

(

φb − φδ+

)

]

. (3.56)

Here φδ+ denotes the value of φ(r, z) just above the boundary layer. This equation

can be applied to the radial velocity ub in the boundary layer. Then the continuity

equation
1

r

(

∂ru

∂r
+

∂w

∂z

)

= 0

gives

wδ = −1

r

d

dr
(rubδ(r)) (3.57)

and finally it follows

wδ =
δ(r)

1 + α

[

1

ub

(

(v2
gr − v2

b )

r
+ f(vgr − vb) +

CD

δ(r)

√

(u2
b + v2

b )ub

)

− ub

r

]

− ub
dδ(r)

dr
.

(3.58)

In difference to the equation for wδ for a constant boundary layer depth δ (Eq.(3.24))

the modified expression contains the additional summand −ub
dδ(r)

dr
. As an analysis

showed, the contribution of this term turns out to be rather small. However for com-

pleteness it is added for the calculations with a radially varying boundary layer depth.

To assess the effect of a decrease in the boundary layer depth with declining radius we

carried out a calculation in which

δ(r) = δ(R)
√

(Cg/C),

where δ(R) is the boundary layer depth at the starting radius, R, Cg is the value of C

at this radius and

C = (ζgr + f)

(

2vgr

r
+ f

)

as defined before. Fig.(3.8) shows the radial variation of δ(r)/δ(R) for the vortex profile

used here.

The solutions for δ(R) = 550 m and 800 m are shown in Fig.(3.9).
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Figure 3.8: Assumed radial variation of the ratio of boundary-layer depth, δ(r), to that at radius R,

δ(R), for the calculations shown in Fig.(3.9).

In both cases the tangential wind speeds in the boundary layer are decreased, especially

inside a region of about 200 km and the peak winds are significantly lower in magnitude

than vm. In contrast the peak radial winds are larger than in the constant-depth

calculations, especially in the calculation for δ(R) = 800 m and the maxima occur

at markedly smaller radii. These differences in behavior are consistent with the ideas

presented in section (3.2.2). Here it was noted that a decreasing boundary-layer depth

implies a larger effective drag throughout the layer. When the boundary-layer depth

decreases towards the center of the vortex, the maximum vertical velocity at the top

of the layer is reduced considerably from that in the constant-depth calculations. This

results are more in line with that in previous calculations (e.g. Kepert and Wang 2001:

see e.g. their Fig.(3)). The reducing-depth calculations still show slightly supergradient

wind speeds and oscillations in radial and vertical motion, but now well inside rm and

again in a region where radial gradients are probably steep enough to invalidate the

assumptions of boundary layer theory.

3.2.7 Effects of downward momentum transport

The calculations presented by Smith (2003) showed that in regions where there is inflow

into the boundary layer (wδ < 0), the contribution of the terms involving wδ− < 0 to

the radial derivatives on the left of Eqs.(3.20) - (3.22) is small. This suggests that a

simplified approximate system of equations could be obtained by setting wδ− = 0 in
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Figure 3.9: Comparison of radial wind speeds (red) and tangential wind speeds (black) in the boundary

layer in the control calculation, which has a fixed depth δ(R) and a calculation in which δ(r) =

δ(R)
√

(Cg/C). (a) δ(R) = 550 m, (b) δ(R) = 800 m. Panels (c) and (d) show the corresponding

comparisons of the vertical velocity at the top of the boundary layer.
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Figure 3.10: (a) Comparison of the radial and tangential wind speeds for a calculation with δ = 940

m and without shallow convection (u1 and v1), and one in which wδ− is set to zero (u2 and v2). (b)

compares the vertical motion (w1 and w2) at the top of the boundary layer in these two calculations

these equations and by diagnosing wδ using the continuity equation, Eq.(3.23). Such

an approximation is made, for example, by Emanuel (1986, 1995) in the development

of a steady-state model for a hurricane. Here the accuracy of this approximation is

explored in the case, where the boundary-layer depth varies with radius as in the

foregoing section.

Figure (3.10) compares the radial and tangential wind components in the boundary

layer and the vertical motion at the top of the boundary layer in two calculations.

The first one is like the control calculation, but with a boundary layer depth of 940 m

and no representation of shallow convection, the other one is just the same, but with

the foregoing approximations. Evidently the approximation is quite acceptable. The

neglect of the downward transport of momentum by the mean vertical motion has a

negligible effect on the tangential wind field, but it leads to a slightly larger inflow.

The predicted vertical velocity is marginally higher within a radius of about 210 km

as it is shown in Fig.(3.10, panel (b)), but there is little difference beyond that radius.

Even at radii less than rm, the vertical motion is similar until a radius of about 50 km,

where the approximate calculation breaks down. Evidently, for this boundary layer

depth, the calculation is close to its transition point.
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Figure 3.11: Comparison of vertical motion at the boundary layer top (800 m) predicted by the

nonlinear slab model (solid line), the linear slab model (LS) and the linear model that allows the

boundary layer to have vertical structure (LC).

3.2.8 Vertical motion at the top of the boundary layer

The formula for the vertical velocity at the top of the boundary layer (Eq.(3.24)) differs

considerably from that derived by Kepert (2001), his Equation (28), which is based

on a linear approximation to the full boundary-layer equtions and, indeed, from that

obtained from a linear approximation to the slab model (see Smith and Montgomery

2008). The differences in vertical motion predicted by these different formulae for the

tangential wind profile vgr used here are shown in Fig.(3.11).

It is seen that the vertical velocity profile in the full nonlinear model is more peaked

than in the approximate theories and the maximum upflow velocity is more than twice

that of the linear theories and occurs at a significantly smaller radius. The linear slab

model and the more complete version give similar profiles and similar maxima, but the

maximum inflow occurs at a larger radius in the slab model.

3.3 Thermodynamical aspects

3.3.1 Dependence on boundary-layer depth

In difference to most of the models of the hurricane boundary layer the model discussed

here provides the possibility to investigate not only the dynamical fields but also the
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3.3. Thermodynamical aspects

thermodynamical fields. An investigation of the thermodynamics was also presented

by Smith (2003). The calculations discussed here include, inter alia, an improved algo-

rithm for calculating the radiative-convective equilibrium state at the starting radius

and have slightly different parameter values as used in Smith (2003). Therefore a

comparison of the results is not as insightful as for the dynamic fields.

Here two of the new solutions for boundary layer depths of 550 m and 800 m are

shown. The details are summarized in Fig.(3.12). Panels (a) and (c) of this show the

radial profiles of the boundary layer temperature, specific humidity, saturation specific

humidity, and saturation specific humidity at the sea surface, (qss) for the two solutions,

while panels (b) and (d) of Fig.(3.12) show the sensible and latent heat fluxes at the

surface and through the top of the boundary layer.

The boundary layer temperature is nearly constant in both cases with a value of about

25.8 oC for δ = 550 m and the slightly smaller value of 24.5 oC for δ = 800 m, but shows

a small rise in the inner core region at radii less than about 100 km. In essence, the mean

boundary layer temperature largely follows the sea surface temperature. Note that the

temperature in the boundary layer decreases adiabatically with height and therefore it

is in general Tb < TSST . The increase in the core region is associated with dissipative

heating, which appears to be significant at high wind speeds. Consistent with this

heating, the sensible heat fluxes are slightly negative in the core region. Recently Smith

(2006, 2007) showed that an inviscid balanced vortex, where the tangential circulation

decays with height, has a cold core in regions near and directly at the surface.

The present calculations show that this is not the case when one accounts for the

boundary-layer effects. Of course the strong surface winds and the effects of unsatu-

rated downdraught cause some upwelling (Cione et al. 2000). This upwelling is the

reason for some cooling of the ocean surface. An effect which is neglected here and

hence must be kept in mind when comparing the two cases.

The results presented here suggest also that there is a kind of balance between two

processes. On the one hand there is a kind of adiabatic cooling when air parcels are

spiralling towards the core region, where the lowest pressure is obtained. On the other

hand in outer regions of the vortex there are sensible heat fluxes and in the core region

some dissipative heating is acting. This adiabatic cooling is more than compensated

by the sensible heat fluxes and the dissipative heating.
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Figure 3.12: Radial profiles of boundary-layer temperature, Tb (oC), specific humidity, qb, saturation

specific humidity, qsb, and the saturation specific humidity at the sea surface , qss (all g kg−1), for

boundary-layer depth (a) 550 m and (c) 800 m. (b) and (d) show corresponding latent and sensible

heat fluxes from the sea surface (fluxq and fluxh, respectively) and through the top of the boundary

layer (fluxqt and fluxht). All fluxes are given in W m−2. Note that the sign of fluxht has been reversed

for convenience of plotting.
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The specific humidity shown in Fig.(3.12), panel (a), increases markedly with decreas-

ing radius from a value of 14.5 g kg−1 at r = 500 km to about 17.8 g kg−1 at r = 35 km.

This increase is associated with an increasing surface moisture flux, which outweighs

the flux of dry air through the top of the boundary layer (panels (b) and (d)). The

saturation specific humidity, qbs, for a boundary layer depth of 550 m varies between

21.3 g kg−1 and 23.2 g kg−1 for radii between 500 km and about 35 km. The values

for the deeper boundary layer (δ = 800 m) are typically about 1.5 g kg−1 smaller. It

is interesting to note that in both cases, qb < qssst at all radii. Thus the air does

not become saturated near the sea surface, but the lifting condensation level lowers

as the boundary layer moistens. The latent heat fluxes shown in Fig.(3.12), panel (b)

and (d), are much larger than the sensible heat fluxes and they increase strongly with

decreasing radius. The latent heat flux is coupled with the near-surface wind speed

and the degree of disequilibrium between specific humidity of the air near the surface

and the saturation specific humidity at the sea-surface. This means that if the latter

is increasing the same is valid for the latent heat flux. Since the saturation specific

humidity at the sea-surface is becoming larger with decreasing pressure, the degree of

disequilibrium is maintained (see Figs. (3.12), panel (a) and panel (c)) and, of course,

the wind speed increases with decreasing radius. The growing boundary layer moisture

is causing an enhancement of the moisture contrast at the top of the boundary layer.

This is due to the fact that the specific humidity of air above the boundary layer is

held constant in the present model. It is this amplification in moisture contrast that

accounts for the increase in the magnitude of the latent heat flux at the top of the

boundary layer towards the vortex center. It is questionary how realistic this amplifi-

cation in the moisture contrast is. Convective processes should increase the moisture

content of the air above the boundary layer step by step towards the core region. The

increase of the saturation specific humidity which is obtained in the calculations shown

here should be even higher in reality. This means that the predicted growth of qb for

decreasing radius is only a lower bound for that expected in reality. The curves for

the latent heat flux at the top of the boundary layer show a kink at the radius, where

wδ changes sign (about 130 km for δ = 550 m and 150 km for δ = 800 m). Inside

these radii, wδ− is zero and does not contribute to the fluxes at z = δ. At large radii,

wsc dominates so that the moisture flux terms are similar for both values of δ. As the

radius decreases the terms diverge from one another as wδ− becomes significant.
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Figure 3.13: Radial profiles of boundary-layer temperature, Tb (oC), and specific humidity, qb (g kg−1),

for boundary-layer depth δ(R) = 550 m (red) and δ(R)= 800 m (black).

3.3.2 Effects of radially-varying boundary-layer depth

Now the calculation is repeated for a radially varying boundary layer depth δ = δ(r). It

is found that there is less sensitivity in the results for the thermodynamic variables as

in those for the dynamical quantities. Calculations with δ(R) = 550 m and δ(R) = 800

m lead to results which are very similiar to those with a constant δ at large radii. This

is to be expected since the boundary layer depth is in both cases similiar in that region.

At the radius of maximum tangential wind speed above the boundary layer, rm=40

km, the values are slightly higher.

It is seen from Fig.(3.13) that Tb is raised by about 1 oC while qb is about maximally

1.5 g kg−1 higher compared to those shown in Fig.(3.12). In the calculations with a

varying depth the peak values of Tb and qb are very similiar. It is Tb = 28.5oC and

qb =18 g kg −1. This is due to the fact that both boundary layer depths, the one with

δ(R) = 550 m and the one with δ(R) = 800 m, become very similiar at inner radii. For

this calculations it was shown that the vertical velocities are becoming much smaller

than in the cases with constant δ. This is the reason why there are no recognizable

kinks in the curves for the moisture fluxes as shown in Fig.(3.14), at the top of the

boundary layer.
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Figure 3.14: Latent and sensible heat fluxes from the sea surface (fluxq and fluxh, respectively) and

through the top of the boundary layer (fluxqt and fluxht) for radial varying boundary layer depth δ(r)

where δ(R) = 550 m, panel (a) and δ(R) = 800 m, panel (b). All fluxes are given in W m−2. Note

that the sign of fluxht has been reversed for convenience of plotting.

3.3.3 The reversible equivalent potential temperature

A thermodynamic quantity of fundamental theoretical interest is the reversible equiv-

alent potential temperature, θe. It has for example been used in developing a theory

for the potential intensity of tropical cyclones (Emanuel 1986, 1988, 1995b, Bister and

Emanuel 1998). For this reason we show in Fig.(3.16) the radial variation of θe for

δ = δ(r). The variation of δ(r) is here assumed to be the same as in the calculations

discussed above. Now in Fig.(3.16), θe1 and θe2 label the curves for δ(R) = 550 m, and

δ(R)= 800 m, respectively. In both calculations, θe increases with decreasing radius,

while a deeper boundary layer leads to marginally lower values.

Recently Montgomery et al. (2006) and Bell and Montgomery (2007) presented ob-

servational data from the category five Hurricane ”Isabel”, (2003), including data on

the radial increase of θe towards the centre. To be able to compare the predictions of

this model with their observations two more calculations for the same boundary-layer

depths were carried out, but with a maximum tangential wind speed of 70 m s−1, which

is more appropriate for a category five storm like Isabel. The two curves are also shown

in Fig.(3.16) and they are labelled by θe3 and θe4. These curves are for δ(R) = 550

m (θe3), and δ(R) = 800 m, (θe4), respectively. As expected θe reaches higher values

than before but the difference between the calculations for the two values of δ is larger.

For δ(R) = 550 m and a maximum tangential wind speed of 70 m s−1, θe, the solution
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Figure 3.15: Radius-height azimuthal mean storm-relative θe (color, in Kelvin); absolute angular

momentum (contour, m2s−1 ×106); and transverse secondary circulation (vector) from 12 - 14 (a - c)

of September, 2003 (from Bell and Montgomery 2007).

116



3.3. Thermodynamical aspects

breaks down for a radius of about 60 km. The solution up to this radius shows a steady

increase in θe and it reaches finally a value of about 355 K at the radius, where the

solution breaks down. This result is not improper if it is compared to the ones reported

by Montgomery et al. (2006) in their Fig.(5) which is shown in Fig.(3.15).

When comparing the results it has also to be taken into account that the model pre-

sented here fixes the values of wsc and qδ+ and does not allow them to vary with varying

radius as it would be realistic. If the concrete values are compared, it is seen that the

general trend and range of values is in a quite good agreement. For example, on 12

September 2003 they found values of θe of about 353 K at radii between 50 and 60 km

in the low-level inflow layer. On 13 September it was a value of up to 360 K (Figure

(5) in their paper). It is also nicely seen that their values are rising steadily with

decreasing radius. This is the same behavior as it is shown in the calculations with

the model presented here until the solutions break down (see Fig.(3.16)). Montgomery

et al. (2006) calculated their θe pseudo-adiabatically. Anyhow, at low levels in the

boundary layer there is no liquid water and the pseudo-adiabatically calculated θe is

essentially the same.
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Figure 3.16: Radial profiles of reversible equivalent potential temperature θe (K) in the boundary-

layer for a maximal wind speed of 40 m s−1 with δ = 550 m (θe1) and δ = 800 m (θe2) and calculated

with a higher maximal wind speed of 70 m s−1 (θe3 and θe4).
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3.4 Discussion of the results

Many simple models of hurricanes use just a representation of the boundary layer as one

single layer of fixed depth as it is discussed here. So the results presented here for the

slab boundary layer model have certainly implications for the modeling of hurricanes

in general. Of course one-layer models have their limitations and these should be borne

in mind when interpreting the results of this study. Some important limitations are

listed below together with certain issues that may be arising from the results.

One assumption in deriving the bulk equations is that the vertical average of terms

such as those representing radial advection are equal to the radial advection computed

from vertically averaged quantities. This assumption can be expected to be inaccurate

if regions of strong outflow overlie regions of inflow. This may happen near the radius of

maximum tangential wind speed in the continuous models (see e.g. Kepert and Wang

2001, Montgomery et al. 2001). The feature was also discussed in chapter (2), where

the simple linear model was investigated in detail. However, here it was considered that

the boundary layer is just the inflow layer itself. Therefore the inaccuracy mentioned

above should be much less important.

Another important issue is that the prescription of a uniform depth with radius is a

further limitation. It was discussed in section (3.2.6) that an elementary scale analysis

suggests that the layer depth must decrease as the inertial stability increases. This fact

is confirmed by many solutions where the depth is allowed to vary as in the linear model

in chapter (2) or various examples in the literature as e.g. Smith (1968), Leslie and

Smith (1970), Eliassen and Lystad (1977), Kepert (2001), Kepert and Wang (2001),

Montgomery et al. (2001). However, it was shown in section (3.2.6) that this weakness

of the slab model can be removed by introducing a radially varying boundary layer

depth δ = δ(r). If the boundary layer depth is calculated by

δ(r) = δ(R)
√

(Cg/C),

where δ(R) is the boundary layer depth at the starting radius R, Cg is the value of C

at this radius and

C = (ζgr + f)

(

2vgr

r
+ f

)

it is made sure that the radial variation of this quantity is in agreement with the

results suggested by the scale analysis and is reflecting results from models that alllow

the boundary layer depth to be calculated as e.g. the linear model presented before.
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However, in reality the processes that are determining the boundary layer depth are

much more complex. On the one hand at large radii far from the core region the

turbulence which is generated in the boundary layer will act such that the boundary

layer may be deepened. On the other hand there is subsidence aloft, a process which

is acting to make it shallower. So a very delicate balance between this two processes

is determining the final depth of the boundary layer in that region. In the inner core

the situation is even more complicated. Here the air parcels are spiralling up and out

of the boundary layer, a fact that is seen from the vertical wind profiles. This ascent

is responsible for some vertical advection of turbulence which may be quite important.

The boundary layer depth in the inner core may be influenced by this process also as

e.g. suggested in Stull (1988). However it is not possible to represent those difficil

processes in a simple one-layer model. It must be said that that the accuracy of the

slab model in the core region may be reduced.

The consequences of prescribing the tangential wind speed, or equivalently the radial

pressure gradient, above the boundary layer in the inner-core region, where the flow

exits the boundary layer, are unclear. As the discussion of the linear model in chap.(2)

showed it is probably just incorrect to prescribe vgr just above the boundary layer in

regions, where the air parcels are floating up and out of the layer.

Many previous boundary-layer models have taken this approach (e.g. Smith 1968,

Leslie and Smith 1970, Bode and Smith 1975, Shapiro 1983, Kepert 2001, Kepert and

Wang 2001, Smith 2003), but the consequences have not been investigated or discussed

in detail.

In this region it would seem more reasonable to suppose that boundary-layer air carries

its momentum with it as it ascends. This means in regions, where there is ascent the

upper boundary must be treated as an outflow boundary and not as an inflow boundary

as it is done by prescribing vgr.

This argument is obviously having certain important consequences that have to be

discussed more detailed. The fact that in regions of ascent there is an outflow boundary

implies of course that the air parcels that are spiralling out of the layer are carrying

their momentum ρ(ub, vb) with them.

The assumption of an imposed profile of vgr was tacitly made by Emanuel (1986).

He formulated a steady state hurricane model with a very simple representation of
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the boundary layer which is among others the basis of his well established potential

intensity theory. In his model he assumed that the tangential flow just above the

boundary layer vgr is the same as that in the boundary layer vb in regions of ascent

and that gradient wind balance is satisfied. In his theory for potential intensity (Bister

and Emanuel, 1998 and references therein) he made a very similiar assumption. Of

course this implies that even in the boundary layer gradient wind balance must exist.

Obviously in that case there would be no net force to drive the inflow. Thus it must be

clearly argued that the inconsistency is arising from the assumption of gradient wind

balance in the boundary layer. There is no reason to suppose that the tangential flow

vb should be in gradient wind balance as air parcels exit the boundary layer.

However in the slab model (ub, vb) are calculated as an average through the depth of the

boundary layer and as such they have to interpreted. This implies that some differences

between (ub, vb) in the boundary layer and the supposed values of the imposed gradient

flow, (0, vgr), at the top of the boundary layer could be tolerated. In the slab model it

may be best to regard the prescribed profile of vgr as nothing else than a prescription

of the radial pressure gradient. This reduces the inconsistencies. The only place, where

it would be a problem, is the assumption that the momentum fluxes at the top of the

boundary layer which are associated with shallow convection or precipitation-driven

downdraughts are proportional to (0, vgr) − (ub, vb). The consequence is that the slab

model is much less constrained than models that allow for vertical structure as for

example the linear continuous model presented before. In those models the air parcels

that are leaving the boundary layer are subject to a prescribed pressure gradient. It is

also the case that the model at the top of the boundary layer forces the radial and the

tangential wind speed to the gradient values

(u(z), v(z)) → (0, vgr).

In that case z describes the vertical coordinate. Of course the foregoing discussion

points towards some new interpretations of previous studies. For example Montgomery

et al. (2001) presented full numerical solutions, where the boundary layer and the flow

above were solved together. In that calculation they found an outflow jet above the

inflow layer. Now the slab model provides a possibility to interpret that result. The

mismatch between (ub, vb) and (0, vgr) which has become obvious by the analysis of

the slab model suggests that the outflow jet is just a means by which the flow exciting

the boundary layer adjusts to the radial pressure gradient which is associated with
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the profile of the vortex above. A consequence of that is, that for a more complete

formulation of the steady boundary layer in the inner-core region of a hurricane a simple

one-layer slab model is not enough. If a slab-type representation of the boundary layer

shall be used it is at least necessary to distinguish two separate layers. The second one

is obviously necessary to represent the outflow jet. Here it would be necessary that

the radial and the tangential wind fields (ub, vb) could adjust to the radial pressure

gradient. That pressure gradient would be implied by the mass distribution in the free

troposphere.

Another issue is to interprete models that allow the boundary layer to have vertical

structure particularly with regard to the findings emerging from the slab model. Es-

pecially the following discussion is of importance for the interpretation of the result

of the linear model presented in chap.(2). Models that allow for vertical structure set

in general (ub, vb) to (0, vgr) at the top of the layer. However, this does not avoid the

problem that the flow that exits the layer is unrealistically over-constrained.

For example, the solutions reported by Kepert and Wang (2001), their Fig.(2) show

supergradient flow everywhere above the boundary layer. It is defined there by the

region, where there are significant turbulence levels. In their model the supergradient

flow is even found in regions, where turbulence levels are small and where there is no

apparent radial or vertical motion. The reasons for these supergradient winds are hard

to interpret in terms of the insights gained from the slab model, which requires strong

inflow to achieve supergradient winds. That is not to say that Kepert and Wang’s

results are wrong, but they need to be understood. The solutions of Montgomery et

al. (2001) do not need any constraints to be imposed at the top of the boundary layer.

These calculations do not show a level above the boundary layer where the radial flow is

zero everywhere. Even if the slab model provided new insights that were enlightening,

the results of those models the problems mentioned above require further research.

A significant result emerging from the slab model is the ubiquitous tendency to produce

supergradient winds. A well-known result from the inviscid axisymmetric balanced

theory of vortex intensification is that the latent heat release in eye-wall convection

tends to produce a secondary circulation. In that secondary circulation the tangential

wind tendency is largest inside the radius of maximum tangential wind speed (Shapiro

and Willoughby 1982). This means that the vortex contracts as it intensifies. If the

boundary layer tends to generate supergradient tangential winds inside the radius of
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maximum tangential wind speed above it and if these winds are advected vertically

out of the boundary layer, they would contribute in a similar way to a spin up of the

core region.

Such behavior is consistent with some unpublished calculations performed by a col-

league, Wolfgang Ulrich. Using an axisymmetric tropical-cyclone model, he found that

the ring of air corresponding with the maximum calculated tangential wind speed al-

ways originated at large radial distances in the boundary layer (Ulrich and Smith,

2004). The idea is supported also by the simple tropical-cyclone model examined by

Emanuel (1997) in which the inner-core spin up appears to be orchestrated by the

boundary layer. The veracity of these results would indicate that the boundary layer

is a fundamental aspect of the spin-up of the inner-core of a tropical cyclone. This

statement hold at least when an axisymmetric setup is investigated. However the

major influence of the boundary layer for the intensification process is an important

implication of the studies presented above.
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Chapter 4

A critique of Potential Intensity

theory

4.1 A review of Emanuel’s (1986) hurricane model

and potential intensity theory

The results obtained with a simple slab boundary layer model as discussed in chapter

(3) (see also Smith 2003, Smith and Vogl 2008) led to a new interpretation of the

processes in the boundary layer. In the following a critique of Emanuel’s steady state

hurricane model will be presented (Smith, Montgomery and Vogl 2008). Emanuel’s

steady state model is a forerunner to his theory for hurricane potential intensity.

It will be shown that a major deficiency of the theory is the tacit assumption of gradi-

ent wind balance in the boundary layer, a layer that owes its existence to gradient wind

imbalance in the radial momentum equation. If a more complete boundary layer for-

mulation is included, using the gradient wind profiles obtained from Emanuel’s theory,

the tangential wind speed in the boundary layer becomes supergradient, invalidating

the assumption of gradient wind balance. It will be shown that the degree to which the

tangential wind is supergradient depends on the assumed boundary layer depth. The

full boundary-layer solutions require a knowledge of the tangential wind profile above

the boundary layer in the outer region, where there is subsidence into the layer and

they depend on the breadth of this profile. This effect is not considered in Emanuel’s

theory. It will be argued that a more complete theory for the steady state hurricane
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would require the radial pressure gradient above the boundary layer to be prescribed

or determined independently of the boundary layer.

The issues raised herein highlight a fundamental problem with Emanuel’s theory for

potential intensity, since that theory makes the same assumptions as in the steady

state hurricane model. The current findings together with recent studies examining

intense hurricanes suggest a way forward towards a more consistent theory for hurricane

potential intensity.

In the first of what has turned out to be a series of very influential papers, Emanuel

(1986, henceforth E86) presented a steady axisymmetric model for a mature hurricane.

This paper was an important milestone in tropical cyclone research in that it re-focussed

attention on the importance of the radial gradient of sea surface moisture fluxes in the

storm-scale energetics. The hurricane model described therein was a prelude to the

development of an axisymmetric theory for the potential intensity (PI) of a tropical

cyclone, which will be refered to as EPI-Theory in the following discussion (Emanuel

1988, Emanuel 1995, Bister and Emanuel 1998). Since its inception, EPI-theory has

been called upon by many researchers as a standard for comparison with the intensity

attained in numerical models (e.g., Frank and Ritchie 2001, Persing and Montgomery

2003). It was also used for an assessment of possible changes in the intensity of hur-

ricanes as a result of global warming (e.g., Knutson and Tuleya 2004, Emanuel 2005,

Bengtsson et al. 2007). At the present time it appears to be the only such theory

of merit for these applications (Camp and Montgomery 2001). Even so, there are in-

dications that the theory is deficient. For example, Persing and Montgomery (2003)

have shown that high-resolution numerical models have a tendency to produce ”su-

perintense” storms, superintense meaning that they significantly exceed the intensity

predicted by EPI-theory. Moreover, the calculated potential intensity depends sensi-

tively on the assumed relative humidity at the radius of maximum tangential wind

speed, which Emanuel generally takes to be 80%.

In this chapter attention is especially drawn to a fundamental inconsistency of the

hurricane model and of EPI-theory. This inonsistency is the assumption of gradient

wind balance in the boundary layer, both inside and outside the radius of maximum

tangential wind speed. The consequences of this assumption for Emanuel’s hurricane

model and EPI-theory are discussed below and a way forward is sketched.
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Figure 4.1: Schematic diagram of Emanuel’s 1986 model for a mature hurricane. The boundary layer

is assumed to have constant depth h and is divided into three regions as shown: the eye (Region

I), the eyewall (Region II) and outside the eyewall (Region III), where spiral rainbands and shallow

convection emanate into the vortex above. The absolute angular momentum per unit mass, M , and

equivalent potential temperature, θe of an air parcel are conserved after the parcel leaves the boundary

layer and ascends in the eyewall cloud. The precise values of these quantities depend on the radius at

which the parcel exits the boundary layer. The model assumes that the radius of maximum tangential

wind speed, rm, is located at the outer edge of the eyewall cloud, whereas recent observations (e.g.

Marks et al. 2008, Fig.(3)) indicate it is closer to the inner edge.

4.1.1 The E86 model in brief

In the E86 model, the hurricane vortex is assumed to be steady and circularly sym-

metric about its axis of rotation. The boundary layer is taken to have uniform depth,

h, and is divided into three regions as shown in Fig.(4.1). Regions I and II encompass

the eye and eyewall, respectively, while Region III refers to that beyond the radius, rm,

of maximum tangential wind speed, vm, at the top of the boundary layer.

Contrary to Emanuel’s assumption in this figure, observations show that rm is located

well inside the outer edge of the eyewall (e.g. Marks et al. 2008, Fig.(3)). The

significance of this discrepancy will become clearer in section (4.3). E86 takes the

outer radius of Region II to be rm on the basis that precipitation-driven downdrafts

can be important outside this radius. The tangential wind field above the boundary

layer is assumed to be in thermal wind balance and air parcels flowing upwards and

outwards into the upper troposphere are assumed to conserve their absolute angular

momentum, M , and saturation moist entropy, s∗ (calculated reversibly). These surfaces

are assumed to flare out in the upper troposphere. Here, s∗ is defined by:

s∗ = cp ln θe
∗, (4.1)
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where θ∗e is the reversible saturation equivalent potential temperature and cp denotes

the specific heat at constant pressure of dry air. Because the saturation vapor pressure

of moist air is a unique function of temperature both s∗ and θ∗e are state variables. It

is now shown in detail how E86 derives an equation for the tangential wind speed V

at z = h in Region II.

In pressure coordinates, the gradient wind equation and hydrostatic equation can be

written as:

g

(

∂z

∂r

)

p

=
M2

r3
− 1

4
rf 2 (4.2)

and

g

(

∂z

∂p

)

r

= −α, (4.3)

where α is the specific volume, p is the pressure, z is the height of a pressure surface

and g is the acceleration due to gravity. Eliminating the geopotential height of the

pressure surface, gz, gives an alternative form of the thermal wind equation:

1

r3

(

∂M2

∂p

)

r

= −
(

∂α

∂r

)

p

. (4.4)

Since s∗ is a state variable, α can be regarded as a function of p and s∗. Then with a

little manipulation Eq.(4.4) becomes the thermal wind equation:

1

r3

(

∂M2

∂p

)

r

= −
(

∂α

∂s∗

)

p

(

∂s∗

∂r

)

p

. (4.5)

E86 invokes one of the Maxwell relations for moist saturated air in the form

(

∂α

∂s∗

)

p

=

(

∂T

∂p

)

s∗

, (4.6)

so that Eq.(4.5) becomes

1

r3

(

∂M2

∂p

)

r

= −
(

∂T

∂p

)

s∗

(

∂s∗

∂r

)

p

. (4.7)
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With the assumption that M and s∗ surfaces coincide, i.e. M = M(s∗), Eq.(4.7)

becomes

2M

r3

(

∂M

∂p

)

r

= −
(

∂T

∂p

)

s∗

ds∗

dM

(

∂M

∂r

)

p

. (4.8)

Note that (∂T/∂p)s∗ is just the temperature lapse rate as a function of pressure along

a moist adiabat. Now along a M surface,

(

∂M

∂r

)

p

dr +

(

∂M

∂p

)

r

dp = 0, (4.9)

so that the slope of a M surface in (r, p) space is

(

dr

dp

)

M

= −
(

∂M

∂p

)

r

/(

∂M

∂r

)

p

. (4.10)

Combining Eq.(4.8) and (4.10), the thermal wind equation (Eq.(4.7)) becomes

1

2

(

dr−2

dp

)

M

= − 1

2M

(

∂T

∂p

)

s∗

ds∗

dM
, (4.11)

which can be integrated upwards along the M (or s∗) surface starting from the top of

the boundary layer z = h to an outer radius rout to give

1

r2

∣

∣

∣

∣

M

− 1

r2
out

∣

∣

∣

∣

M

= − 1

M

ds∗

dM
[T − Tout(s

∗, pout)]. (4.12)

Assuming that rout >> r, and using the chain rule, Eq.(4.12) gives

−[TB − Tout(s
∗, pout)]

∂s∗

∂r
=

1

2r2

∂M2

∂r
, at z = h, (4.13)

where TB is the temperature at the top of the boundary layer and Tout is the outflow

temperature along the M (or s∗) surface at rout. Using the Exner function, π = (p/po)
κ,

instead of pressure, the gradient wind equation (4.2) takes the form

M2 = r3

[

cpTB

(

∂ ln π

∂r

)

z

+
1

4
rf 2

]

. (4.14)
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In the expression for π, κ = R/cp, where R is the specific gas constant and po is a

constant pressure, taken by E86 to be 1015 hPa. Substituting Eq.(4.14) into (4.13)

results in

−TB − Tout(s
∗, pout)

TB

∂ ln θ∗e
∂r

=
∂ ln π

∂r
+

1

2

∂

∂r

(

r
∂ ln π

∂r

)

+
1

2

rf 2

cpTB
, at z = h, (4.15)

where it is assumed that θe = θ∗e at z = h. This equation is integrated with respect to

radius from r to some large radius r = ro, where it is assumed that ln(π/πo) and its

radial derivative vanish, πo being the value of π at z = h and r = ro. Remembering

that TB is assumed to be constant, the result is:

− ln θ∗eo + ln θ∗e +
1

TB

∫ ro

r

Tout(s
∗, pout)

∂ ln θe

∂r
dr =

ln πo − ln π +
1

2
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− 1

2

(

r
∂ ln π
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1

4

f 2

cpTB

(r2
o − r2), at z = h. (4.16)

Emanuel defines

Tout =
1

ln(θ∗e/θ
∗

eo)

∫ ln θ∗e

ln θeo

Toutd ln θ∗e , (4.17)

which is an average outflow temperature weighted with the saturation moist entropy of

the outflow angular momentum surfaces. Remember that θ∗e along angular momentum

surfaces is taken equal to the equivalent potential temperature, θe, where the surfaces

meet the top of the boundary layer. Then (4.13) gives Eq.(4.22).

It is at this point that boundary layer considerations are invoked. Assuming a slab

boundary layer model with uniform depth as it will be described later in detail, E86

derives a further relationship between the specific moist entropy of the boundary layer,

s, and M by effectively dividing Eq.(4.30) by Eq.(4.29). It has to be recognized here

that the near-surface wind can be different from that at the top of the boundary layer.

Thus following E86, but allowing for a reduced surface wind, it is

ds∗

dM

∣

∣

∣

∣

z=h

=
τs

τM

∣

∣

∣

∣

z=0

, (4.18)

where τs = −cpCk|Vs|(ln θe − ln θ∗es) and τM = −CD|Vs|rVs are the surface fluxes of

enthalpy and momentum expressed by standard aerodynamic formulae, and |Vs| is the

magnitude of the near surface horizontal velocity.
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Other quantities are defined in the following section (4.1.1).

In the derivation of Eq.(4.18) it is assumed that the specific entropy, s, and the equiv-

alent potential temperature, θe, are uniform across the boundary layer and that the air

at the top of the subcloud layer is saturated so that sb = s∗ and θe = θ∗e . This equation

can then be blended with Eq.(4.12) above. Equation (4.13) then gives

ln θ∗e = ln θ∗es − µ
CD

Ck

1

cp(TB − Tout)

(

V 2 +
1

2
rfV

)

, at z = h, (4.19)

where M has been expressed in terms of the tangential wind speed V at z = h. In

Region II, rf << V so that the second term in parentheses on the right of Eq.(4.19)

can be neglected compared with V 2 and the equation can be written as

µV 2 =
Ck

CD
cp(TB − Tout)(ln θ∗es − ln θ∗e), at z = h, (4.20)

where µ = Vs/V . Equation (4.20) is a cornerstone of the current EPI-Theory (Emanuel

1995, Bister and Emanuel 1998).

A further important relationship in Emanuel’s theory is that between θ∗e and the pres-

sure and humidity at the top of the surface layer, which can be written

ln
θ∗e
θ∗ea

= − ln
πs

πa

(

1 +
Lq∗aRHs

RTs

)

+
Lq∗a
RTs

(RH − RHa)s, at z = h, (4.21)

where L is the latent heat of vaporization, q is the water vapor mixing ratio, RH is the

relative humidity, and T is the absolute temperature. As above, a subscript ’s’ denotes

a value at the top of the surface layer and a superscript ’*’ denotes a saturation value.

This equation is the same as Eq.(25) in E86 if one assumes that the reference pressure

in the definition of the Exner function is pa rather than 1000 hPa as is usual.

So in brief E86 assumes the tangential wind field above the boundary layer to be in

thermal wind balance. The air parcels are assumed to conserve their absolute angu-

lar momentum and their saturation moist entropy when they are spiralling up and

outwards into the troposphere.

E86 then integrates the thermal wind equation upwards along these surfaces from radius

r to some large radius rout (>> r) to obtain a relationship between the radial rates

of change of M and s∗ at the top of the boundary layer, z = h (see Eq.(4.13) above).
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This equation can be further integrated with respect to radius to obtain a relationship

between θ∗e and the logarithm of the Exner function at the top of the boundary layer.

If it is assumed that gradient wind balance holds it is at this height:

TB − T̄out

TB

ln

(

θ∗e
θ∗eo

)

= ln
(πo

π

)

− 1

2

(

r
∂ ln π

∂r

)

+
1

4

f 2

cpTB

(r2
o − r2), at z = h, (4.22)

where TB is the temperature at z = h, Tout is the temperature on the s∗ surface at rout

and T̄out is an average of this temperature weighted with the saturation moist entropy

of the outflow angular momentum surfaces (see Eq.(4.17)). Moreover π is the Exner

function, f is the Coriolis parameter and the subscript ’o’ denotes a value at some large

radius r = ro.

The flow in Regions I and II is fully determined by a simple slab formulation for the

boundary layer from which a second functional relationship is obtained between M

and s∗ (see Eq.(4.18)). The two relationships, Eqs.(4.13) and (4.18), lead inter alia to

an expression for the tangential wind speed, V , at z = h in Region II. In this region

the Rossby number is large compared to unity and the Coriolis term can be neglected,

giving

µV 2 =
Ck

CD
cp(TB − Tout)(ln θ∗es − ln θ∗e), at z = h, (4.23)

where θ∗es is the saturation equivalent potential temperature at the sea surface temper-

ature, Ck and CD are sea surface exchange coefficients for enthalpy and momentum,

and µ = Vs/V , where Vs is the magnitude of the near surface wind. Equation (4.23)

states that in Region II, V is determined locally by the thermodynamic disequilib-

rium between the air in the boundary layer and the sea surface and the temperature

difference between the top of the boundary layer and the outflow temperature.

E86’s boundary layer formulation in Regions I and II expresses a balance between

radial advection and surface gain or loss of azimuthal momentum and specific entropy.

In the derivation of (4.23), the radial velocity is eliminated so that the formula for V 2

is not explicitly dependent on the radial component of velocity in the boundary layer.

Equations (4.22) and (4.23) lead essentially to an expression for the pressure as a

function of radius (actually the logarithm of the Exner function) at the top of the

boundary layer in Regions I and II (see E86, Eqs.(41) and (45)).
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On the basis that precipitation-driven downdrafts tend to offset the moistening of

inflowing boundary layer parcels in Region III, Emanuel assumes that the relative

humidity at the top of the surface layer has a constant value of 80% all the way

inwards to rm, an assumption that is not borne out by observations (see e.g. Fig.(4d)

of Montgomery et al. 2006).

These assumptions lead to a second equation relating the equivalent potential temper-

ature to the logarithm of the Exner function and the relative humidity at the top of

the surface layer (see Eq.(4.21)). This equation, when combined with Eq.(4.22) gives

an expression for the logarithm of the Exner function at z = h in Region III (E86,

Eq.(39)). With the assumption of gradient wind balance at z = h, the resulting two

equations for pressure and θ∗e(z = h) completely determine the tangential wind speed

at the top of the boundary layer at all radii.

Note that the tangential wind speed at the top of Region III is obtained only from

thermodynamic considerations in the boundary layer: the dynamics of the boundary

layer are completely ignored. It will be argued below that the tacit assumption of

gradient wind balance in the boundary layer in Regions I and II and the neglect of

boundary-layer dynamics in Region III represent a fundamental limitation of Emanuel’s

theory and leads to an inconsistency with important ramifications.

4.1.2 The slab boundary layer model

To put E86’s assumptions regarding the boundary layer in perspective the slab bound-

ary layer model which is discussed in detail in chapter (3) can be used. It is a more

complete model of the boundary layer of a steady axisymmetric hurricane-like vortex

on an f -plane as the one used by Emanuel (1986). With that model the consequences

of assuming gradient wind balance in the boundary layer can be discussed in detail.

The boundary layer is assumed to have uniform depth, h, and constant density, follow-

ing Chapter (3). In fact in Chapter (3) also the variable depth case was considered,

but for simplicity the focus now is on the constant depth boundary layer assumed by

E86.

In a cylindrical coordinate system (r, φ, z), the vertically-integrated equations express-

ing the local budgets of radial momentum, azimuthal momentum, heat or moisture,

and mass continuity can be written in the following form:
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ub
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ub
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dr
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h
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b + v2
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1

2 (χs − χb) − χ̇b, (4.26)

dub

dr
= −ub

r
− wh

h
, (4.27)

where ub and vb are the radial and azimuthal components of wind speed in the boundary

layer, vgr(r) and wh are the tangential wind speed and vertical velocity at the top of the

boundary layer, wh− = 1
2
(wh − |wh|). Furthermore χb is a scalar quantity, which could

be the dry static energy, the specific humidity, or the specific entropy, f is the Coriolis

parameter, CD is the surface drag coefficient, Cχ is the surface transfer coefficient for

χb, χh+ is the value of χ just above the boundary layer, and χs is the value of χ at the

sea surface.

The terms involving wsc represent turbulent fluxes at the top of the boundary layer.

These could come from rainbands, shallow convection, or smaller-scale turbulent struc-

tures. The term χ̇b represents the effects of radiative cooling and dissipative heating

when χb is taken to be the dry static energy. Consistent with the slab boundary layer

formulation, the quantities ub, vb and χb are assumed to be independent of depth as

they are averaged over the deth of the layer by integration.

Note that wh− is nonzero only when wh < 0, in which case it is equal to wh. Thus the

terms involving wh− represent the transport of properties from above the boundary

layer that can be different from those inside the boundary layer. For the calculations

presented in sections (4.2.1) and (4.2.2) CD is taken to be a constant. This constant is

chosen equal to 2.0 × 10−3 which is the value that was used by E86.

For those in section (4.2.2), chapter (3) is the reference. There it was chosen CD =

CD0 + CD1|ub|, where CD0 = 0.7 × 10−3 and CD1 = 6.5 × 10−5 for wind speeds less

than 20 m s−1 and CD = 2.0 × 10−3, a constant, for larger wind speeds. As already

mentioned before, these values are based on the interpretation of Fig.(5) from Black

et al. (2007). In the calculations described in Section (4.2), only dynamical effects are

considered. This implies that a value for Cχ is not required.

As detailed in chapter (3) substitution of Eq.(4.27) into Eq.(4.24) gives an expression
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for wh:

wh =
h

1 + α

[

1

ub

(

(v2
gr − v2

b )

r
+ f(vgr − vb) +

CD

h
(u2

b + v2
b )

1

2 ub

)

− ub

r

]

. (4.28)

Note that α is zero if the expression in square brackets is positive and unity if it is

negative. With this expression for wh, Eqs.(4.24) - (4.28) form a system of ordinary

differential equations that can be integrated radially inwards from some large radius R

to find ub, vb and χb as functions of r, if values of these quantities at r = R as well as

the radial profile vgr(r) are given. The detailed description of the calculations and the

complete results are presented in chapter (3).

4.1.3 E86’s approximations for the boundary-layer

Emanuel writes Eq.(4.25) in terms of the absolute angular momentum in the boundary

layer, Mb = rvb + 1
2
fr2, and approximates this equation in Region II, where wh > 0, as

ub
dMb

dr
= −CD

h
rv2

b . (4.29)

In Eq.(4.29) the boundary layer depth δ = h and it is assumed that wsc = 0 and

that ub << vb in the drag term. Note that in general, knowledge of ub is required

for the determination of Mb. However, Emanuel does not use the radial momentum

equation to determine ub, as his main focus is to obtain an expression relating the

specific entropy, sb, to Mb (see Eq.(4.18)). In fact, E86 uses Eq.(4.29) to determine

ub having obtained the radial pressure distribution through his Eqs.(39) and (41) and

having assumed gradient wind balance to obtain vb.

In the region, where wh > 0 the equation for the specific entropy is:

ub
dsb

dr
=

Ck

h
vb(s

∗

s − sb), (4.30)

where s∗s is the saturation specific humidity at the sea surface and again it is assumed

that wsc = 0. Furthermore the total wind speed has been approximated by the tan-

gential wind speed.

E86’s assumption that air leaving the boundary layer conserves its absolute angular

momentum implies that vgr = vb, where wh > 0. The assumption that vgr is in gradient

wind balance also implies that vb is in gradient wind balance. This is a rather strong
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assumption for the boundary layer in the inner core of a rapidly-rotating vortex and

although it has been made by previous authors (e.g. Ooyama 1969), it is not known

that there would be any rigorous justification for it. In fact it is not supported by a

scale analysis of the boundary-layer equations (see chap.(2)). Ooyama was certainly

aware of the limitations of the assumption and wrote in an unpublished manuscript in

1968

” ... it appears that the weakest hypothesis in [his] original model is the use of the

balance approximation in the boundary layer”.

In this manuscript, Ooyama went on to show that the solutions in a calculation with

a more complete boundary layer formulation were more realistic than those with a

balanced boundary-layer formulation. Indeed it is precisely the lack of gradient wind

balance in the boundary layer that gives rise to the ”frictionally-driven” inflow in the

layer.

While inflow is theoretically possible in a boundary layer that is in approximate gradient

wind balance, the balance assumption can be justified only if the radial acceleration

and radial friction terms are small compared with the radial pressure gradient and

the sum of the centrifugal and Coriolis forces. In such a ”balanced” formulation, the

radial flow is determined by the (sic) tangential momentum equation. With Emanuel’s

assumption that the total wind speed in the friction term in Eq.(4.25) can be reasonably

approximated by vgr, the equation predicts that

ub = −cvgr, (4.31)

where c = Cdvgr/(hζa), and ζa = ζ + f and ζ are the absolute vorticity and relative

vorticity of the gradient wind, vgr, respectively. Other processes could contribute also

to radial motion in a boundary layer that is closely in gradient wind balance. One

example is a radial buoyancy gradient above the boundary layer associated with moist

convective processes (see e.g. Smith 2000, Smith et al. 2005).

In the next section solutions of the dynamical component of the full boundary layer

equations as shown in section (4.1.2) are examined. The solutions are obtained with the

gradient wind speed vgr which was used by E86. It will be shown that these solutions

are incompatible with the assumption in the E86 model that vgr = vb where wh > 0.

Further it will be shown that the lack of any dynamical constraint in the boundary

layer in Region III other than the tacit assumption of gradient wind balance is another
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major deficiency of the theory.

4.2 Calculations

4.2.1 The E86 gradient wind profile

Figure (4.2) shows calculations of the full boundary layer equations of section (4.1.2),

taking the gradient wind speed profile vgr(r) and other parameters the same as those

obtained by E86. In particular f = 6.83 × 10−5 s−1, corresponding with a latitude of

28oN , h = 1000 m, CD = 2.0 × 10−3, Ts = 27o C, TB = 27o C and T̄out = −67o C.

The radial profile of vgr is obtained by solving the gradient wind equation with the

pressure profile derived from the coupled expressions for ln π and θe
∗ in E86, namely

Eqs.(39) and (41), using the parameter values detailed in that paper.

The integration in the full boundary layer calculation starts at a radius of 375 km, where

the gradient wind speed (only 1.73 m s−1) is small enough to justify the neglect of the

nonlinear acceleration terms in the equations (see Smith 2003, Section 4). Note that

beyond a radius of 400 km, the tangential wind in Emanuel’s calculation is anticyclonic

and just inside this radius, at about 396 km, the profile is inertially-unstable.

Figure (4.2), panel(a), compares the full solution for the tangential wind speed in the

boundary layer, vb, with the imposed gradient wind speed vgr. It compares also the

full solution for the radial wind speed, ub, with that obtained from Eq.(4.31) based on

the balance assumption that vgr = vb as made by E86, and assuming that wsc = 0.

The balanced solution for ub is marked as uE and that for the corresponding vertical

motion at the top of the boundary layer as wE . The latter is calculated numerically

from the continuity equation (4.27). The profiles of vertical velocity at the top of the

boundary layer in the full solution, wh, is compared with that in the balanced solution

in Fig.(4.2), panel(b). It is worth noting at this point that this balanced solution agrees

closely with that shown by E86 in his Fig.(12).

In the full and balanced calculations, the radial wind component increases inwards

to a certain radius and then decreases. However, there are significant quantitative

differences in the profiles. In the balanced solution, the maximum inflow of about 12

m s−1 occurs at a comparatively large radius (130 km), while in the full solution it
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Figure 4.2: (a) Radial profiles of boundary layer radial (ub) and tangential (vb) wind components

and the total wind speed
√

(ub
2 + vb

2) (denoted vv) from the full boundary layer solution, and the

tangential wind speed above the boundary layer (vgr) as obtained by E86 (solid curve). Shown also

is the radial flow obtained from the balanced solution determined from Eq.(4.31) and denoted by uE.

For plotting convenience the signs of ub and uE have been reversed. (b) Corresponding radial profiles

of vertical velocity at the top of the boundary layer (wh) and that in the balanced solution (wE). The

thin vertical line in (a) and (b) marks the radius of maximum vgr , the boundary between Regions II

and III in Fig.(4.1). (c) Radial profiles of the coefficient c in Eq.(4.31). (d) Radial profiles of the three

terms on the right-hand-side of the radial momentum equation, Eq.(4.24), and their sum (the solid

line) for the full solution. The designation ”wu”, ”nif” and ”fri” refer to the first, second and third

terms in the equation representing the downward advection of radial momentum, the net inward force

and the frictional force, respectively.
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occurs at 52 km, a little outside the radius of maximum gradient wind speed (35.8

km). These differences occur despite the fact that beyond 100 km in radius, vb is at

most 18% smaller than vgr. This shows impressively that the degree of gradient wind

imbalance is important. The decline in uE from such a large radius is a result of the

decline in the parameter c with decreasing radius (Fig.(4.2), panel(c)), which is larger

than the rate at which vgr increases. The discontinuity in uE at r = rm is a result of

the discontinuity of the relative vorticity ζ at this radius, which leads to a discontinuity

in c. As expected there are correspondingly large differences in the profiles of vertical

velocity at the top of the boundary layer (panel (b)). In particular, the change from

descent at large radii to ascent at small radii occurs at a much smaller radius in the

full calculation: 107 km compared with 230 km.

Of particular significance is the difference between vb and vgr in the inner core region,

near the radius of maximum gradient wind speed. Here the tangential wind in the

boundary layer becomes supergradient (i.e. vb exceeds vgr), which is incompatible

with Emanuel’s assumption that vgr is equal to vb at radii where wh > 0. In other

words, Emanuel’s calculated potential intensity (i.e. vm) is exceeded when a more

complete boundary layer formulation is used. The occurrence of supergradient winds

is a reflection of the strong radial inflow which advects absolute angular momentum

at a rate larger than it can be removed locally by the frictional torque (Smith and

Vogl 2008). As soon as the tangential wind speed becomes supergradient, all forces

in the radial momentum equation act outwards and lead to a rapid deceleration of

the inflow. In the full boundary-layer solution, the radial flow becomes zero at some

finite radius and the boundary-layer model becomes singular at this radius. In reality

one would expect the inflow to be expelled upwards before this radius, carrying its

horizontal momentum with it. If the upflow remains out of balance one would expect

it to flow outwards immediately above the inflow layer, a behaviour which is shown

by full numerical solutions (e.g. Montgomery et al. 2001, Figs.(3c), (6c), Persing and

Montgomery, Fig.(1b)).

Panel (d) of Fig.(4.2) shows the radial variation of the force terms in the radial mo-

mentum equation, Eq.(4.24). The term representing the downward transport of radial

momentum, that proportional to wh−, is non-zero only in the outer region and is small

compared with the other terms. At larger radii, the net inward force (the difference

between the inward pressure gradient and outward centrifugal and Coriolis forces) is
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Figure 4.3: Legend as for Fig.(4.2)a, but for a boundary layer depth of 600 m.

larger in magnitude than the outward frictional force. Moreover, the inward radial

acceleration, which is equal to the net total radially-inward force, is particularly large

at radii less than 150 km.

4.2.2 Dependence on boundary layer depth

The boundary-layer constraint in Emanuel’s theory is independent of the assumed

boundary-layer depth. Note that the depth cancels in applying E86’s boundary layer

formulation to derive Eq.(4.18). However, this depth has a significant influence on

the full boundary-layer solution because the effective drag in the boundary later is

inversely proportional to the depth (Smith and Vogl 2008). For this reason the foregoing

boundary-layer calculations were repeated for a boundary-layer depth of 600 m. The

results of these calculations are shown in Fig.(4.3).

The increased effective friction leads to a larger reduction of the tangential wind speed

in the boundary layer than in the earlier calculation and therefore to a larger net

inward force and a larger inward acceleration. Consequently the maximum inflow is

considerably larger than before (36 m s−1 instead of 19 m s−1) and occurs at a smaller

radius (32 km instead of 52 km). On the other hand, the balanced solution changes

only in magnitude and not in shape, whereupon the maximum occurs at 130 km as

before. This result follows directly from Eq.(4.31) because the decreased depth simply

increases the coefficient c by a constant factor at all radii and the gradient wind profile

is the same. The fact that the maximum tangential wind speed in the boundary layer
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Figure 4.4: Radial profiles of tangential wind speed, vgr(r), at the top of the boundary layer used

for the calculations shown in Fig.(4.5), panel(a), and their absolute vorticity ζa, panel (b). The red

horizontal line in panel (a) indicates the radius of gale force winds (17 m s−1).

in this calculation is considerably higher than in the previous one implies that the

potential intensity of the steady vortex is sensitive to the boundary layer depth, an

important point not emphasized in E86 and his subsequent papers. Whereas the E86

model and the more complete boundary layer model furnish nonnegligible but modest

differences in the maximum tangential wind (∼10-20%), it should be remembered that

the boundary layer model used here precludes any thermodynamic and dynamic feed-

backs between the boundary layer and interior flow. For several reasons, this feedback

is thought to be quantitatively significant. The topic will be discussed in detail later.

Dependence on vortex size

As it was shown above the radial acceleration in the boundary layer is of major im-

portance. Keeping that in mind, the inclusion of boundary-layer dynamics in Region

III of Emanuel’s model can be expected to have important consequences for the tan-

gential wind maximum also. These consequences are demonstrated by a third set of

calculations to emphasize the dependence of the maximum boundary-layer wind speed

on the vortex size. The calculations presented below are based on solutions of the full

boundary layer equations with the different profiles of gradient wind speed shown in

Fig.(4.4).

These profiles are described in detail in the Appendix and are inertially stable. The

solutions for the five vortex profiles are shown in Fig.(4.5) for a boundary layer depth

of 800 m, a radially-varying drag coeffcient CD and with wsc = −5.7 cm s−1, the value

used in chapter (3).
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Note that there is a clear dependence of the solution on storm size, as might be charac-

terized, for example, by the radius of gale-force winds (17 ms−1) above the boundary

layer. As the storm size decreases, the radius of maximum inflow is moving inwards

and the maximum inflow is becoming larger. Moreover, the radius at which the vertical

velocity changes sign decreases. This is highlighted in Fig.(4.6).

While for vortex profile 1 the area, where the air parcels are swirling up and out of

the boundary layer, covers only a region inside a radius about 60 km, this changes

dramatically for profile 5, where w is positive for all radii larger that 200 km.

To the extent that the intensity is controlled by boundary-layer dynamics, these solu-

tions show a clear dependence on the size of the outer circulation so that the potential

intensity of midget storms can be expected to be different from that of broad storms.

These solutions highlight the dependence of the flow at all radii in the boundary layer
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Figure 4.7: Modified conceptual model of the hurricane inner-core region motivated by the findings

herein together with recent observational and modeling studies. Air subsides into the boundary layer

for r > rup and ascends out of the boundary layer for r < rup. The frictionally-induced net pressure

gradient in the outer region produces a radially inward jet at r = rup. The subsequent evolution of

this jet depends on the bulk radial pressure gradient that can be sustained by the mass distribution at

the top of the boundary layer. The jet eventually generates supergradient tangential winds whereafter

the radial flow rapidly decelerates and turns upwards and outwards. When the outflow has adjusted

to the radial pressure gradient that is sustained by the mass field, the flow turns upwards into the

eyewall clouds.

on the size of the vortex above.

4.3 Discussion

Using the gradient wind profile predicted by Emanuel’s steady state hurricane model

in conjunction with a more complete formulation of the boundary layer generally leads

to the occurrence of supergradient winds in the boundary layer in the high wind region

of the vortex. These are incompatible with a key assumption in Emanuel’s derivation

of the gradient wind profile that requires it to be equal to that in the boundary layer,

where the flow is upwards out of the boundary layer. Moreover, the degree to which

the boundary layer winds are supergradient increases as the boundary layer depth

decreases. In reality, the vertical advection of the supergradient winds out of the

boundary layer would lead to outflow until a radius is achieved at which the pressure

gradient is matched to that which can be sustained by the mass distribution. Of

course, this effect cannot be captured by a one layer model, but, it is significant that

calculations in which the boundary layer is allowed to adjust to an outer flow do show

such behaviour (e.g. Montgomery et al. 2001, Figs.(3)c, (6)c, Persing and Montgomery

2003, Fig.(1)b).
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The dependence of the radius at which subsidence at large radii changes to ascent, rup,

as well as the predicted radial profiles of ub, vb and wh on the tangential wind profile

above the boundary layer, where there is subsidence into it, shows that the dynamics

of the boundary layer in Region III of Fig.(4.1) cannot be ignored.

The foregoing considerations suggest an alternative subdivision of the boundary layer

to that in Fig.(4.1). This alternative is sketched in Fig.(4.7) and is based on whether

the top of the boundary layer is an inflow boundary (Region B, r > rup) or an outflow

boundary (Region A, r < rup).

In Region B the boundary layer is directly influenced by the vortex above through the

radial pressure gradient at the top of the layer and through the downward advection of

free vortex properties such as moisture, heat and momentum. Except possibly through

the occurrence of moist convection, there is no essential feedback to the free vortex.

An important exception arises with the occurence of spiral rainbands and the corre-

sponding formation of one or more secondary eyewalls (Houze et al. 2007, Terwey

and Montgomery 2008). These asymmetric processes, their coupling to the boundary

layer and the free axisymmetric vortex are not yet well understood and consequently

lie beyond the scope of the present model.

However, in Region A, boundary layer properties are advected into the free vortex and

have a profound influence on its structure. One can think of the boundary layer flow in

Region B as producing an inward radial jet at r = rup. The strength of this jet depends

on the gradient wind profile at larger radii as well as the boundary-layer depth. The

boundary layer dynamics in Region A determine the fate of this jet, but the details

depend inter alia on the radial pressure gradient at the top of the boundary layer. This

means that there is a substantial two-way feedback between the boundary layer and

the free vortex in this region. These details depend also on the boundary layer depth.

The radial pressure gradient in the boundary layer is probably still determined in large

measure by the mass distribution in the free vortex, with possible exceptions in localized

regions near, where inflow turns to upflow and possibly outflow (see below). However

the free vortex can be expected to be strongly influenced by the radial distribution of

mass, momentum and moisture that leave the boundary layer.

The foregoing calculations described here, supported by those of chapter (3), show that

the tangential winds tend to become supergradient in the inner core.
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As a result, the radial flow rapidly decelerates until the tangential component becomes

subgradient again, or the radial wind becomes zero. This is of course a point at

which the boundary layer equations in a one layer model become singular and a more

sophisticated technique beyond the scope of this study is required for matching the

solutions inside and outside this radius. In either case the flow out of the boundary layer

increases markedly. If the winds carried upwards retain their supergradient character

they will surely flow with a significant component outwards until they have come into

gradient wind adjustment with the mass field aloft. At this point they would be

expected to turn upwards into the eyewall. While parts of this scenario are speculative

at this stage, the foregoing ideas would explain the observations of a skirt of moderate

to high radar reflectivity adjacent to the main eyewall (e.g. Aberson et al. 2006, Figs.

(5)-(7); Marks et al. 2008, Fig.(3)) but still within the ’visible’ eye defined by the upper-

tropospheric boundary of clear and cloudy air seen in high resolution satellite images

(e.g. Bell and Montgomery 2008, Fig.(2)) and they are consistent with the calculations

of Montgomery et al. (2001), (Fig.(3)c, (6)c) and Persing and Montgomery (2003),

Fig.(1)b.

Within the context of the axisymmetric model the thermodynamic consequences of

the overshoot/adjustment region have been demonstrated to be nontrivial as moist air

near the surface and interior to the maximum tangential wind (including the outer part

of the ’eye’) can be drawn into the main eyewall above the shallow inflow layer. This

low-level air generally possesses higher equivalent potential temperature than air found

at the radius of maximum wind due to a lower surface pressure and nonzero surface

winds and contributes additional heat and local buoyancy to the eyewall (Persing and

Montgomery 2003, Cram et al. 2007). The net result is an enhancement of the radial

gradient of equivalent potential temperature above the inflow layer that supports strong

tangential winds in accordance with axisymmetric thermal wind balance above the

boundary layer (Montgomery et al. 2006). In the light of these findings, together with

the recognition that shear instability and coherent vortex sub-structures bordering the

eye and eyewall will contribute to the aforementioned adjustment process (Schubert

et al. 1999, Montgomery et al. 2002, Braun et al. 2006), it can be concluded that

both the initial vortex structure and interactions between the eye and eyewall region

are important elements of intense storms and should be accounted for in hurricane

intensity theory.
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Conclusions

In this work, different models of the hurricane boundary layer were investigated.

The adequacy of the well-known Ekman equations for describing the boundary layer

flow in a hurricane was examined. Typical features of the flow in a hurricane are known

to be:

• the turning of the wind vector with height as visualized by hodographs;

• there is a secondary circulation, which means in this case that there is a low-level

jet towards the storm center and in a layer aloft, there is outflow;

• close to the ground a maximum in the tangential flow is found. This means that

the winds inside the boundary layer are actually spinning faster than the winds

in the free atmosphere, assuming that the flow above the boundary layer is in

gradient wind balance.

Although the Ekman eqations were shown to be appropriate only in regions with a

small Rossby number, as the regions far from the storm center, it was demonstrated

that they describe qualitatively the main features of the boundary layer of a tropical

cyclone. The solutions for the radial flow showed the effect of inflow close to the ground

level and also the region of outflow above. Together with the downwards motion at

large radii and the upwards motion at small radii the secondary circulation in the

tropical cyclone was reproduced. In the tangential wind field supergradient winds (i.e.

v > vgr) were obtained.

The boundary layer equations for a hurricane were derived from the Navier-Stokes’

equations, assuming that the turbulent transfer of momentum can be characterized by

a constant eddy diffusivity in conjunction with a bulk representation of surface drag.

The derivation was based on a detailed scale analysis of the Navier-Stokes’ equations.
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It was shown how a linear form of the boundary layer equations that has been studied

by several previous authors (e.g. Kepert 2001) can be obtained as a weak friction

limit of the full equations. The weak friction limit formally assumes that the radial

and perturbation tangential velocity components are small compared with the gradient

wind speed above the boundary layer and that the local Rossby number based on the

absolute vorticity of the gradient wind is of order unity or less.

Height-radius plots of the three velocity components derived from an analytic solution

of the linear boundary layer equations were shown and discussed. The calculations were

similiar to those carried out by Kepert (2001) but in contrast to these a symmetric

vortex was assumed. Interesting features of the solutions are the presence of supergra-

dient winds at all radii and a vertical velocity that has a weak local maximum just at

the top of the inflow layer near the radius of maximum gradient wind speed. The radial

profile of vertical velocity at the top of the boundary layer for different tangential wind

profiles is similar in shape to those in a slab version of the linear model.

The dependence of the solutions on different values of eddy diffusivity and drag coef-

ficient was studied. It was shown, inter alia, that a more sophisticated representation

of drag, where the drag coefficient is assumed to increase with increasing wind speed,

does not change the solutions significantly.

It also followed that the linear solution is not selfconsistent over a considerable range

of radii because the magnitude of the nonlinear terms calculated from this solution

is not much smaller than the linear terms themselves. Therefore it is most likely not

of much interest to carry out calculations with a more sophisticated parameter setup

such as radially varying drag or eddy diffusivity. This conclusion is supported also by

considering the relative magnitude of terms in the scale analysis. These remarks apply

presumably to non-axisymmetric extensions of the linear theory also.

In chapter (3) a slab boundary layer model was examined. The model was similiar

to the one presented by Smith (2003), but included some new features such as a new

derivation of the initial values for the wind speeds and the mass flux of shallow con-

vection at large radii. The development of supergradient winds in the boundary layer

was found to be an ubiquitous feature. The solutions exhibit two types of behavior in

the inner core of the vortex depending on the boundary layer depth and the maximum

tangential wind speed above the layer. For small depths, or equivalently for large max-

imum tangential wind speeds, the winds are strongly supergradient and lead to a rapid
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deceleration of the inflow. As a result, the inflow becomes zero at some finite radius

inside the radius of maximum tangential wind speed above the boundary layer. At

this radius the equations are singular. At this point and near it, boundary-layer theory

is no longer applicable. The reason is, that the radial gradients of the quantities are

exceeding their vertical gradients near that point. This is in contrast to the assumption

of boundary-layer theory that the radial gradients have to be small compared to the

vertical gradients.

At a particular depth, which may be called a bifurcation depth, there is an abrupt

transition in behavior. The so-called bifurcation depth increases with the maximum

tangential wind speed above the boundary layer and for depths larger than this value,

the solutions remain non-singular until within a few km of the rotation axis. Inside

the radius of maximum tangential wind speed above the boundary layer, the tangen-

tial wind speed in the boundary layer oscillates about that above the layer, becoming

alternately supergradient and subgradient. These oscillations are accompanied by os-

cillations in the radial wind speed in the layer and in the vertical flow at the top of

the boundary layer. The reasons for these oscillations were discussed in detail and it

was argued that they may not be realistic. They were interpreted as an artifact of

the prescribed radial pressure gradient at the top of the layer in regions, where there

is ascent. It was shown also that the bifurcation depth increases not only with the

maximum tangential wind at the top of the boundary layer, but also with a decreasing

mass flux of shallow convection (the mass flux which is connected to thermally-driven

turbulent mixing of the atmosphere, where vertical lifting processes are confined to low

levels).

In general the downward mixing of radial momentum by shallow convection reduces

the inflow. Together with the downward mixing of tangential momentum the effects

of shallow convection reduce the supergradient winds found in the boundary layer. It

was shown that an increase of the surface drag has the same effects on the solutions as

a decrease in the boundary layer depth.

The assumption was investigated, that the mean vertical velocity at the top of the

boundary layer is set to zero in the momentum equations and is simply diagnosed by

use of the continuity equation. It was found that this simplification of the dynamical

equations is reasonably accurate.
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A scale analysis of the full equations as well as the results of the linear boundary

layer model studied in chapter (2) suggested, that the prescribed boundary layer depth

should not be hold constant but vary with radius. From chapter (2) it emerged that

the boundary layer depth δ should vary inversely with the square root of the inertial

parameter. Consequently two different radially varying profiles for the boundary layer

depth δ, fulfilling this requirement, were used in the calculation with the slab model.

While the results for the radial, tangential and vertical wind speeds changed signifi-

cantly when a radially varying δ was used, the thermodynamic parameters were found

to be much less sensitive.

The results for the thermodynamical fields were found to be very similiar to those

presented by Smith (2003), although the calculations carried out in this work used

an improved algorithm for the calculation of the radiative-convective equilibrium state

of the boundary layer at some large radius R where the inwards integration begins.

To assess the results from the slab model, the values predicted for the potential tem-

perature were compared to the observations made in category-five hurricane ”Isabel”

(2003). For that comparison a strong vortex comparable to a category-five hurricane

was used to initialize the model calculation. It turned out that the results of the slab

model were not improper if they were compared to the ones measured in ”Isabel” that

were reported by Montgomery et al. (2006). In general the solutions for the thermody-

namic quantities suggest that the heat and moisture fluxes at the top of the boundary

layer are of the same magnitude as those at the sea surface under the assumption of

local radiative-convective equilibrium. The calculations discussed here showed that the

knowledge of the thermodynamic parameters is really a key issue and they highlighted

the urgent need of representative field measurements of the fluxes at the top of the

boundary layer.

The results obtained with the linear model as well as those of the slab model lead to

the conclusion that there is a potential inconsistency in vortex boundary layer models

that assume a prescribed tangential wind speed, or equivalently the radial pressure

gradient, above the boundary layer in regions, where the the flow exits the boundary

layer. This limitation applies to many previous studies of the boundary layer that are

found in the literature.

It was argued that this limitation is less severe for slab models than it is for models that
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allow for vertical variations of the variables as the linear model prescribed in chapter

(2). Moreover the implications of the above issues for the potential intensity theory

are of special interest.

In chapter (4) first Emanuel’s simple steady-state hurricane model (see Emanuel 1986)

was reviewed, which was the basis for his potential intensity theory, where he devel-

oped a theoretical approach to assess the question how intense a hurricane may become

during its life-cycle.

Using the results from the investigations of a linear and a slab hurricane boundary

layer model from chapters (2) and (3) it was possible to show in the course of chapter

(4) that the tacit assumption of gradient wind balance in the boundary layer is a major

deficiency of Emanuel’s steady-state hurricane model. Also, by implication, his theory

for the potential intensity of hurricanes must be seen in the light of the recent findings.

Although the vertically-integrated tangential wind in the boundary layer is usually no

more than fifteen to twenty percent less than its gradient wind counterpart, a fact that

makes gradient wind balance a seemingly defensible zero-order approximation locally,

it was shown that the global consequences of this simplification on the inner-core struc-

ture of intense storms are nontrivial.

Indeed, the processes observed in the boundary layer, as for example the low-level con-

vergence, result from gradient wind imbalance that originates from a reduction of the

tangential wind speed by friction. When such imbalance is allowed for by the inclusion

of a nontrivial radial momentum equation in the theory, the boundary layer flow de-

pends on the tangential wind structure above the boundary layer. This feature must

be taken into account in an improved theory for hurricane potential intensity.

It is concluded that it is not permissible to make the gradient balance assumption

in the inner region and that in a realistic model of a hurricane, the radial pressure

gradient above the boundary layer must be prescribed or determined independently of

the boundary layer. Nevertheless, even in this case, the solutions show a mismatch

between the predicted mean winds in the boundary layer and those prescribed above,

where the flow is out of the layer. This mismatch suggests that the outflow jet found

above the inflow layer in full numerical solutions for the boundary layer together with

the flow above it is a means by which the flow exiting the boundary layer adjusts

to the radial pressure gradient associated with the vortex above the boundary layer.

The implication would be that a more complete formulation of the (steady) boundary

layer in the inner core region of a tropical cyclone using a slab-type formulation would
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require at least two layers including one to represent the outflow jet. This layer is

required to allow the radial and tangential wind fields to adjust to the radial pressure

gradient implied by the mass distribution in the free troposphere. Such a formulation

would appear to be a necessary component of a more consistent and accurate theory

for hurricane potential intensity and such a theory must take into account the vortex

size and the boundary layer depth.

In the course of this work a comprehensive study of the hurricane boundary layer

was carried out. Although this part of the hurricane was subject to research before,

substantial progress in the understanding of hurricane boundary layer models was

achieved with this study. The symmetric linear model, which was developed in chapter

(2), is a perfect tool to study the main dynamical processes in the storm. A scale

analysis of the complete equations of motions has never been carried out before and it

was the first time that an appraisal of the linear theory was performed.

The slab model was improved fundamentally for example by introducing a radially

varying boundary layer depth and a new scheme to calculate the initial values. However,

even if these results are already quite satisfactory, the main benefit from this work lies in

the fact that two different types of models were used. It was possible for the first time to

present a comprehensive study and compare the weaknesses and the strengths of the two

models directly. Only this comparison allowed to spot the main deficiencies of this two

common model types. The results of this work also stimulated the study about balanced

boundary layers by Smith and Montgomery (2008). Finally, the question turned up if

the results of this work have consequences for other fields of hurricane research. The

problem that was picked up was the question about hurricane intensity, as this is one

of the most actual topics in hurricane research. Consequently, the famous E(manuel)

P(otential) I(ntensity) theory was reassessed in the light of the results obtained in

chapters (2) and (3). Indeed, it turned out that the limitations of the representation

of the boundary layer used in EPI-theory is the major deficiency of this theory. This

is an actual breakthrough as before it was not possible to pin down the reasons why

EPI-theory fails in certain cases. This work even could present a new conceptual model

for the inner core region that does not suffer from the former limitations. Altogether

the results of this work, that are partly published (see Smith and Vogl 2008, Smith,

Montgomery and Vogl 2008 and Vogl and Smith 2009) contribute not only to the

research in the field of the tropical cyclone boundary layer itself but will also be of
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merit for an urgently needed, improved PI theory.
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Windprofiles used in hurricane

boundary layer models

The different models for the hurricane boundary layer which are discussed in this work

have several different features and differences in their setup. However one thing they

have in common: the need of a prescribed profile for the tangential wind at the top of

the boundary layer. In general it would be best to introduce a profile which is supported

by measurements of the wind speed in the region which is of interest. However it turns

out that on the one hand wind measurements in the hurricane boundary layer are

not easy to accomplish, on the other hand can it be of advantage to have an analytic

function representing the wind profile. There are many possibilities to obtain such a

vortex profile which is appropriate for the extreme winds in a hurricane.

Well known are the representations developed by Holland (1980) or Willoughby et al.

(2006). Some other profiles were developed by Smith (1968) or Smith (2003).

The wind profile from Smith (1968)

Smith (1968) represented the main vortex by a steady, axisymmetric, potential vortex

which is stationary in a fluid at rest and has a tangential velocity Vgr. This tangential

velocity is determined by the gradient wind equation:

Vgr(R) = −1

2
Rf +

√

1

4
R2f 2 +

R

ρ

dP

dR
, (4.32)

where f is the Coriolis parameter, ρ is the density of air, R the radial distance and
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P (R) the pressure. This vortex is a solution to the Euler equation of motion in a

rotating frame of reference in which there is no radial motion (U = 0). With a wind

profile defined like that, the flow is completely specified by the choice of an arbitrary

pressure profile P (R). This is a major advantage of that method. Measurements of

the pressure profiles of tropical cyclones are much easier to obtain than such of the

velocity. If a radial pressure profile is given, the shape of Vgr directly results for physical

reasons. A possible choice for the radial pressure profile which is in good agreement

with measurements is

P (R) = Pc + (Pg − Pc) · ex(b−Rm
R ), (4.33)

where Pc is the pressure at the center, Pg the pressure at the geostrophic radius Rg,

b := Rm

Rg
is a constant and x is chosen to make the azimuthal velocity above the

boundary layer a maximum at R = Rm. From the equation of the pressure profile

Eq.(4.33) it follows

dP

dR
=

(Pg − Pc)Rmx

R2
· ex(b−Rm

R ).

To obtain the constant x it is of advantage to nondimensionalize Eq.(4.32). The ap-

propriate scales are:

U = Vgu, V = Vgv, Vgr = Vgvgr, W =
VgZg

Rg
w, Z = Zgz, R = Rgr,

where the subscript ”g” denotes the value of the variable at the geostrophic radius Rg

and R0 = Vg

Rgf
is a local Rossby number. The Eddy diffusivity KM is scaled by its value

K∗

M at the geostrophic radius and can be written as KM = K∗

Mk where k may be a

constant or a function k(r, z). Now Zg =
√

K∗

M

f
.

With the scalings Vgr = Vgvgr, R = Rgr and b := Rm

Rg
it follows from Eq.(4.32)

Vgvgr = −1

2
(Rgf)r +

[

(Rgf)21

4
r2 +

(Pg − Pc)

ρ
· 1

(Rgf)2
· (Rgf)2 · Rm

Rg

x

r
· ex(b− b

r)
]

1

2

.

Now let m := (Pg−Pc)

ρ
· 1

(Rgf)2
, then

Vg

Rgf
· vgr = −1

2
r +

(

1

4
r2 +

mxb

r
· exb(1− 1

r )
)

1

2
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and finally with R0 = Vg

Rgf
the equation for the nondimensional wind profile at the top

of the boundary layer is of the form

ṽ = R0 · vgr = −1

2
r +

(

1

4
r2 +

mxb

r
· exb(1− 1

r )
)

1

2

. (4.34)

From the fact that Vgr = Vg at the geostrophic radius R = Rg (that is r = 1) it follows

that vgr = 1 at r = 1. Now from Eq.(4.34) an expression for the Rossby radius Ro may

be obtained:

Ro = −1

2
+

[

1

4
+ mxb

]
1

2

. (4.35)

It is now possible to derive an equation for x so that finally an expression for the

windprofile vgr is obtained. The maximum value of vgr is reached at R = Rm = Rg · Rm

Rg
,

which means that vgr is maximal at r = Rm

Rg
= b, so dvgr

dr
= 0 at r = b. It is

dvgr

dr
=

1

Ro

dṽ

dr
=

=
1

Ro
·



−1

2
+

r
2
− mxb

r2 · exb(1− 1

r ) + b2mx2

r3 · exb(1− 1

r)

2

√

r2

4
+ bmx

r
· exb(1− 1

r)



 .

So for r = b it follows:

−1

2
+

b
2
− ex(b−1) · mx

b
+ ex(b−1) · mx2

b

2
√

1
4
b2 + ex(b−1) · mx

= 0

or

b

2
− ex(b−1)

(

mx

b
− mx2

b

)

=

√

(

1

2
b

)2

+ ex(b−1) · mx.

Squaring the left and the right hand-side of the equation finally yields an equation for

x

b2(x − 2) + mx(x − 1)2 · ex(b−1) = 0. (4.36)

For a vortex of hurricane strength it is realistic to choose the constants Pc = 940 mb,

Pg = 1000 mb, Rg = 1000 km, Rm = 40 km, f = 5 · 10−5 and ρ = 0.0012g cm−3. The

obtained pressure profile is shown in Fig.(4.8).
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Figure 4.8: Pressure profile P (R) obtained from Eq.(4.33).

It shows a steep increase from its value of 940 hPa at r = 0 to about 990 hPa at 200

km. Then an asymptotical increase towards 1000 hPa in the region far out from the

core is found. This kind of radial profile is typical for the boundarylayer of a tropical

cyclone where there is a strong low in the center of the storm found.

Finally a typical profile for the tangential wind at the top of the hurricane boundary

layer can be calculated. The resulting vortex is shown in Fig.(4.9).
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Figure 4.9: Profile for the tangential wind speed vgr at the top of the boundary layer.

The profile shows all characteristics of the tangential wind speed in a hurricane. For

regions far from the storm center the tangential wind speed is close to zero which

means that there is almost no rotation. Towards the center the tangential wind speed

is increasing rapidly. This means that the air parcels are spinning much faster when
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they approach the eye wall. The maximum wind speed is attained at a radius of

Rm = 40 km as it was constructed. The maximum tangential wind speed vm is 42.78

m s−1. This reproduces the fact that the highest wind speeds in the hurricane are

usually measured in the clouds of the eyewall. For radii smaller than Rm the wind

speed is dropping down until it reaches the zero value right in the storm center as it

does in a real storm. Thus it is to say that a sufficiently reasonable pressure profile

ensures the resulting wind profile to be close to reality. If

ζagr
=

∂vgr(r)

∂r
+

vgr(r)

r
+ f

is the absolute vorticity and ξgr is defined as

ξgr =
2vgr(r)

r
+ f,

then a parameter for the inertial stability of the profile may be introduced which is

c = ζaξ. The profile is inertially stable if c > 0.
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Figure 4.10: Parameter for the inertial stability c = ξgrζagr
; the zero value is marked by the horizontal

red line.

Figure (4.10) shows the inertial stability parameter c and the horizontal red line marks

the value c = 0. Clearly it follows from Fig.(4.10) that the profile is inertially stable

as c > 0 for all radii.

Moreover it is indicated by a scale analysis that the depth of the boundary layer is

decreasing with increasing wind speeds. A boundary layer scale depth

δ =

√

2KM
√

ζagr
ξgr
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was introduced in Chapter (2) which shows the variation of the boundary layer depth

with varying wind speed. If KM=10 m2 s−1 and the Coriolis parameter is f = 5×10−5

the boundary layer depth scale may be plotted for the vortex profile shown in Fig.(4.9).
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Figure 4.11: Boundary layer depth scale δ(r) evaluated with the vortex profile shown in Fig.(4.9).

Figure (4.11) shows the boundary layer depth scale δ. The depth scale δ is decreasing

towards the center of the storm.

The wind profiles from Smith (2003)

In the calculations carried out by Smith (2003) and in this work a set of profiles was

examined for the gradient wind which were of the form

V (r) = V1se
−α1s + V2se

−α2s, where s =
r

rm

,

and V1, V2, α1 and α2 are constants. This constants were chosen so that the maximum

wind speed Vm is 40 m s−1 and occurs at a radius of rm = 40 km. In terms of the

parameters µ = V2/vm and α2 it is possible to calculate α1 and V1 using:

α1 = (1 − µα2e
−α2)/(1 − µe−α2), (4.37)

V1 = vmeα1(1 − µe−α2). (4.38)

Five different wind profiles are investigated which were specified by the values for

(µ, α): (0.9,0.5), (0.8,0.4), (0.5,0.3), (0.5,0.25) and (0.3,0.15). These profiles are shown

in Fig.(4.12), panel (a).
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All these profiles are inertially stable (ξgrζagr
> 0) for the values of the Coriolis param-

eter used: f = 5.0 × 10−5 s−1.
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Figure 4.12: Tangential wind profiles as a function of radius (the red line marks the radius of gale

force winds), panel (a) and the absolute vorticity for each of the vortex profiles, panel (b).

Panel (b) of Fig.(4.12) shows the absolute vorticity of the five different vortex profiles.

A typical vortex profile which is in the middle of the range of the shown functions

of vgr is vortex 3, which was calculated with the parameters (µ, α) = (0.5, 0.3). This

profile is used for the control calculations for all the models which were investigated in

this work.

A comparison of vortex 3 with the profile from Smith (1968) shows, that the kind of

ansatz described above leeds to very similiar results than a physical derivation of a

possible profile, starting from a given pressure profile. Figure (4.13) shows tangential

wind profiles vortex 3 (black) and the one calculated from Smith (1968) (red) in panel

(a). The corrsponding boundary layer depth scale δ for these two profiles is shown in

panel (b).
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Figure 4.13: Tangential wind profiles vortex 3 (black) and from Smith (1968) (red), panel (a) and the

boundary layer depth scale δ for these two profiles, panel (b).
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It is seen that the profile from Smith (1968) is in general lying slightly higher than

vortex 3. This may be easily modified by changing the given pressure profile or the

given value for the wind maximum vm. The general characteristic shape of the profile

is the same for both cases.

Another possibility to specify wind profiles in a simple way but with physical back-

ground is the one described by Nolan (2005). The radial variation of his wind field is

defined by:

V (r) =
(1 + a)Vmax

(

r
rmax

)

a +
(

r
rmax

)(1+a)
, (4.39)

where Vmax defines the maximum azimuthal wind speed, rmax is the radius of the

maximum wind, and a is parameter which may be varied to modify the shape of the

profile.

Eq.(4.39) defines a wind profile that decays as 1
ra in the far field and, as for the profile

from Smith (2003), both the maximum Vmax and the radius where it occurs, rmax, may

easily be specified. Another advantage is that there are measurements available for the

decay rate. Observations (Shea and Gray 1973, Samsury and Zipser 1995, Mallen et

al. 2005) show that for tropical cyclones, the parameter a varies between values of 1
3

and 2
3
.
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Figure 4.14: Tangential wind profiles vortex 3 (black) and four profiles calculated with Eq.(4.39)

labelled v1-v4.

Figure (4.14) shows four profiles calculated with Eq.(4.39) labelled v1-v4 and for com-
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parison the profile vortex 3 as described above. To calculate v1-v4 the maximum Vmax

was set to 40 m s−1 at rmax = 40 km. The parameters a1 - a2 were chosen to be 1/3,

1/2, 2/3 and 1. It is seen that the profiles have a wide range of values. The profile

vortex 3 coincides best with v2. For radii smaller than 300 km the two profiles are

almost identical. For large radii vortex 3 decays much faster than v2. However, the

values of vortex 3 are still in the range of the results obtained with Eq.(4.39).
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