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Abstract

In this thesis, a novel sequential genes selection and classification (k-SS) method is
proposed. The method is analogous to the classical non-linear stepwise variable
selection (SVS) methods but unlike any of the SVS methods, this new method uses
the misclassification error rates (MERs) as its search criteria for informative marker
genes in any given microarray data. Here, the importance of any selected gene is
determined based on its marginal contribution at improving the prediction accuracy
of the classification rule. This method ensures continuous selection of more genes in
as much as the improvements brought into the decision models by the selected genes
are considered to be significant enough by some established test criteria. However,
further gene selection terminates when none of the remaining genes is capable at
improving the prediction accuracy (lowering the MER) of the current model.
Therefore, our approach only seeks to select the best combination of k marker genes

that are most predictive of the biological samples in any given microarray data sets.

An important feature of our new k-SS method is that the size a used by its test is not
arbitrarily fixed by the user as common to some of the classical SVS methods.
Rather, the value of @ at which the best prediction accuracy is achieved (or the best

combination of genes is selected) is determined by cross-validation.

The new k-SS classifier competes favourably with selected eight existing
classification methods using eleven published microarray data sets. The k-SS
classifier is very simple to apply and does not require any rigid assumption for its
implementation. Another merit of this method lies in its ability to select only those
genes that are of biological relevance to the existing cancer sub-groups in microarray

data sets.

Lastly, we proposed a new preliminary feature selection procedure that employs the
cross-validated area under the ROC curve (CVAUC) for gene selection. This method
is capable at removing all the irrelevant genes at the preliminary selection stage
before any standard classifier like the k-SS method is employed on the remaining
data set for final optimum gene selection and classification of mRNA samples. Unlike
some other data pruning methods, the new method employs the sub-sampling
technique of the wv-fold cross-validation to ensure consistency and efficiency of

selections made at the preliminary selection stage.
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Zusammenfassung

In dieser Arbeit wird eine neuartige sequentielle Geneselection und klassifikation (k-S.S)
vorgeschlagen. Die Methodik verh&lt sich analog zu nichtlinearen schrittweisen
Variablenselektionmethoden (SVS). Im Gegensatz zu diesen bentiitzt die neue Methode
die Fehlklassifikationsrate (MER) als Suchkriterium fir informative Marker-Gene in
beliebigen microarray Datensétzen. Hierbei wird die Wichtigkeit eines Genes durch
seinen marginalen Beitrag zur Verbesserung der Vorhersagegiite einer
Klassifikationsregel bestimmt. Die Methode gewihrleistet eine fortwidhrende Selektion
weiterer Gene solange die Verbesserungen der Entscheidungsmodelle durch die
ausgewédhlten Gene durch ein ebenfalls eingefiihrtes Testkriterium als signifikant genug
erachtet werden. Indes endet die weitere Geneselektion sobald keines der verbleibenden
Gene geeignet ist die Vorhersagegiite im aktuellen Modell zu verbessern bzw. die MER
zu vermindern. Deshalb ist die Bestrebung unseres Ansatzes die beste Kombination aus k
Marker-Genen, die am pradiktivsten fiir biologische Proben in beliebigen microarray

Datenséatzen sind zu selektieren.

Eine wichtige Eigenschaft unserer neuartigen k-SS Methode ist dass das MaB a, dass in
ithrem Test benitzt wird nicht eigenméchtig durch den Anwender bestimmt wird wie
allgemein in klassischen SVS Methoden. Vielmehr wird der Wert von a, bei dem die beste
Vorhersagegiite erlangt wird (oder die beste Kombination von Genen selektiert wird)

durch Kreuzvalidierung bestimmt.

Der neue k-SS Klassifizierer konkurriert erfolgreich mit acht ausgewihlten
Klassifizierungsmethoden unter Verwendung von elf publizierten microarray
Datensitzen. Der k-SS Klassifizierer ist sehr einfach anzuwenden und benétigt keine
rigiden Annahmen fir seine Durchfiihrung. Ein weiterer Vorzug dieser Methode liegt in
seiner Fahigkeit nur solche Gene zu selektieren, die von biologischer Relevanz beziiglich

existierender Tumoruntergruppen in microarray Datensétzen sind.

Letztlich schlagen wir eine neue vorausgehende Variablenselektionsprozedur vor, die die
kreuzvalidierte Flache unter der ROC-Kurve (CVAUC) fir die Genselektion bentitzt.
Diese Methode ist fdahig alle irrelevanten Gene in einem vorausgehenden
Selektionsschritt zu entfernen, bevor klassische Klassifizierer wie die k-SS Methode auf
dem verbleibenden Datensatz zur abschlieBenden, optimalen Genselektion und
Klassifikation von mRNA-Proben angewendet werden. Ungleich einigen anderen pruning
Methoden verwendet die neue Methode die v-fache Kreuzvalidierung als Methode zur
wiederholten Stichprobenteilung um Konsistenz und Effizienz der Selektion zu einem

vorausgehenden Selektionspunkt zu gewéhrleisten.
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Preamble

A common problem in most of the microarray (cancer) studies is how to identify
and select, among several available thousands, the most informative marker
genes whose expression levels are predictive of clinical or other outcomes of
interest. A major constraint however, is that the expression levels of all these
genes are often collected on relatively few samples which makes the use of
classical regression methods inappropriate for genes selection and prediction of
biological samples. Several methods have been proposed in the literature to
handle this task, but unfortunately, apart from procedural complexities, some of
these methods like Partial least squares, Principal component analysis and the
like only provide accurate classifiers that are often difficult to interpret. In this
thesis therefore, we provide a novel but simple sequential selection procedure
(k-Sequential Selection (k-SS) method) that efficiently selects from several
thousand transcripts, the most informative k genes that are suitable for the
prediction of biological samples. The k-SS procedure adopts the performance
index of the average misclassification error rates (MERSs) as its gene selection

criteria.

The performance of the new method was evaluated and compared with eight
existing standard classification methods (Support vector machines, k-nearest
neighbours, Partial least squares, Prediction analysis for microarray, Decision
trees, Naive bayes, Top scoring pair, k-Top scoring pair) using eleven different
microarray cancer data sets ten of which are publicly available. The eleventh
data set is based on microarray cancer study of 43 patients with locally advanced
rectal carcinomas (LARC) from whom 24,026 human genome U133 plus 2.0 gene-
chip arrays were generated. The clinical study was carried out in the Department
of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich,

Germany.

Several results from this work showed that the new k-SS method performs
efficiently well like any of the existing methods considered. In addition to this,
this new approach provides stable and easily interpretable classifiers (genes) that
seems to be of biological relevance to the sub-classes of tumour that are present
In any given microarray data set. This obviously meets the expectations of the

biologists and physicians who are not only interested in the classification of the
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mRNA samples into their various tumour types but also want to know the
relevant informative genes that induced such classification. In addition, the k-SS
method 1s generally simple and requires no stringent conditions for its

implementation as common to some of the existing methods.

Since a typical microarray data set usually contains expression measures of both
relevant and irrelevant transcripts, it has therefore become a usual practice in
many microarray studies to primarily reduce the whole gene data to a
manageable size of all the potentially relevant genes. This is usually done to save
computation time and efforts. To this end, we proposed another new preliminary
feature selection procedure that employs the cross-validated estimates of the
area under the ROC curve of each observed gene for selection. This method, as a
classifier-like method, improves on some of the existing methods like the ¢-
statistic procedure for being capable of removing from microarray data set, only
those genes that are absolutely non-predictive of the biological sub-groups of the
mRNA samples. This method eliminates the risk of possible exclusion of some of
the important genes at the preliminary selection stage before any standard gene
selection and prediction method, like k-SS, could be employed on the
preliminarily selected genes for further analysis. The application of the new
preliminary feature selection procedure was also demonstrated using some of the

microarray data sets considered in this work.
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1 Background into Microarray studies

1.1 Introduction

A gene is a unit of deoxyribonucleic acid (DNA) that occupies a spot
on a chromosome and helps to determine a trait in an organism.
Genes are passed on from parents to child and constitute important
part of what determines physical appearance and behaviour of an
individual. The total amount of genes carried by individual living
organism 1s called genome which in turn defines the genetic

construction of the organism called genotype.

The existence of genes was first discovered by Gregor Mendel (1822-
1884), who, in the 1860s, studied inheritance in pea plants and
discovered a factor that conveys traits from parent to offspring. His

various works were reported by Olby (1979).

Following Mendel’s line of argument is Herman J. Muller (1951) who
claimed that genes are fundamentally endowed with two basic
properties: autocatalysis that allowed the genes to reproduce as
units of transmission that connected the genotype of one generation
to that of the next and heterocatalysis which connected the genes to
the phenotype, as units involved in the expression of a particular

character.

Several studies have however shown that thousands of these genes
and their products (ribonucleic acid, proteins, etc.) are functioning in
a complicated and orchestrated way in any living organisms which
at times creates some mystery of life. The earlier traditional
approach of studying one gene per experiment using radioactive

detection reagents had made it difficult to understand the whole



functioning processes of several thousands of genes most of which

are interconnected.

Over the past few years, a new technology called DNA microarray or
simply, microarray technology (MT) as it is often referred, Burnside
et al (2008), was developed. This has made it possible to monitor and
measure the expression levels of several thousands of genes
simultaneously. By this, better understanding of the inherent

relationships among various genes is accomplished.

The gene expression is the process by which messenger ribonucleic
acid (mRNA) and protein are synthesised from the DNA template of
each gene. The DNA is a nucleic acid that contains the genetic
instructions used in the development and functioning of living
organisms. Ribonucleic acid (RNA) on the other hand is a nucleic
acid made from a long chain of nucleotide and structurally differs
from DNA. While DNA contains deoxyribose and is double stranded,
RNA contains ribose sugar and is single stranded. Messenger RNA
(mRNA) is the RNA that carries information from DNA to the
ribosomes which again translate the information they carry into
proteins. Further details about the structural form of these two
molecules can be found in Salazar et al (1993), Mikkola et al (1999),
Hermann & Patel (2000), Cooper & Hausman (2004) and in many

other related works.

The advent of modern methods into microarray profiling and
sequencing has made it easy to generate several volumes of
complimentary DNA (cDNA) through reverse transcription of
mRNAs. It is then easy to measure the activity of thousands of genes
at once and creating a global picture of cellular function. MT

method, like serial analysis of gene expression (SAGE or



SuperSAGE) is commonly adopted for gene expression profiling
which has made it possible to identify the cells that are actively
dividing based on their mRNA functions.

Another important task after the generation of microarray data sets
1s to identify the genes that are differentially expressed (DE) within
the mRNA samples. The DE genes are the group of genes that
belong to the same functional class whose expression patterns are
strong enough to classify any future mRNA samples with similar
molecular features. Many statistical techniques have been proposed
in many studies for proper classification of mRNA samples into their
various biological sub-groups. A more flexible dimension reduction
and response class prediction method is equally provided in this

thesis.

However, to analyse any experimental data correctly, it 1is
fundamental to understand the experiment that generated such data
set. Therefore, in what follows, we provide some insights into the
basic platforms upon which microarray data sets are usually

developed.
1.2 The ¢cDNA and Affymetrix microarrays

Microarray technology has provided us with a compelling approach
that allows for simultaneous evaluation of all cellular processes at
once. This has greatly assisted the process of identification of new
molecular markers that could be useful in the diagnosis, prognosis,
and prediction of different categories of cancers. However, there are
several microarray technological platforms on which mRNA samples
are processed. In all the platforms, oligonucleotide or ¢cDNA probe

sets are used for fabrication.



The common procedure especially in spotted microarray experiments
1s that, the DNA or oligonucleotide probes are synthesized prior to
deposition on the array surface and are then robotically spotted onto
glass. Thereafter, purified RNA samples are fluorescently or
radioactively labelled and hybridized to the slide or membrane. In
some cases, hybridization is done simultaneously with reference
RNA to facilitate comparison of data across multiple experiments.
After thorough washing, the raw data is obtained by laser scanning
or autoradiographic imaging. At this point, the data are entered into

a database and analyzed by a number of statistical methods.

Oligonucleotide is a small chain of nucleic acid residues which are
used to detect the presence of larger mRNA molecules.
Oligonucleotide microarray 1s a type of microarray technology
developed at Affymetrix, Inc., California, (Affymetrix, Inc; 2001a,b).
Here, short oligonucleotide sequences (20~80-mers oligos) or peptide
nucleic acid (PNA) probes are synthesized either in-situ (on-chip) or
by conventional synthesis onto the array surface followed by on-chip

immobilization.

A particular technique due to Pease et al (1994) is sometimes used to
produce oligonucleotide arrays. In this method, photolithographic
synthesis (Agilent and Affymetrix) is performed on a silica substrate
where light and light-sensitive masking agents are used to build a

sequence one nucleotide at a time across the entire array.

In spotted complementary DNA (cDNA), Two-colour or Two-channel
microarrays are typically hybridized with ¢cDNA prepared from two
samples to be compared (e.g. diseased tissue & healthy tissue) and
they are labelled with two different fluorophores, Shalon et al (1996).

Fluorophores are molecules that have fluorescent properties. The



fluorescent dyes commonly used for labelling include Cy3, which has
a fluorescence emission wavelength of 570 nm (corresponding to the
green part of the light spectrum), and Cy5 with a fluorescence
emission wavelength of 670 nm (corresponding to the red part of the
light spectrum). The Cy3 and Cyb firstly proposed by Ernst et al
(1989) are reactive water-soluble fluorescent dyes of the cyanine dye
family. Example of the two fluorescent colours is provided by the hit-
map in Fig 1.1 for selected transcripts from 24,026 genes measured
on 43 locally advanced rectal cancer patients. The two labelled cDNA
samples are then mixed and hybridized into a single microarray.
This 1s then scanned in a microarray scanner to visualize
fluorescence of the two fluorophores after excitation with a laser
beam of a defined wavelength. Relative intensities of each
fluorophore may then be used in ratio-based analysis to identify up-
regulated and down-regulated genes, Tang et al (2007). Fig 1.2
shows the schematic form of steps (not exhaustive) involved in a

typical two-channel cDNA microarray experiment.

Fig 1.1: The hit-map showing the two fluorescent dyes, Cy3 (green) and Cyb (red) indicating low and
high expressions respectively of the selected transcripts among 24,026 genes observed on 43 locally
advance rectal cancer patients.



Tumeour Cells Normal Cells

&2 &3

RNA Isolation

Reverse
Transecripase

Labelling

A J L 4

Red Flourescent probes Green Flourescent probes

Combined Targets

Hybridize to

Microarrays

Fig 1.2: A typical two-colour spotted cDNA microarray experiment

1.3 DNA microarrays in cancer research

Cancer, sometimes called malignant neoplasm, is a complex disease
in which a group of cells display certain traits of uncontrolled growth
and invasion which may possibly spread (metastasize) to other parts
of the body. Cancer can develop in any part of human body which
eventually give rise to various kinds of cancer like lung, prostate,
breast, renal, brain, gastric, rectal, colon, and head & neck cancers

among others.

Over the past few decades, classification and diagnosis of cancer
patients are based on the examination of the organs where the
tumour is developed. This often resulted into the exhaustive physical

and histopathological assessments of the organs that harbour the



tumour. However, diagnoses are only achievable either through
laboratory tests which might be too costly to bear or through surgical
operations which might expose the patients to different kind of risks.
In some instances, some of the test results, like autopsy can be
available only after the passage of time, thus causing some delay

before any diagnoses or cancer classification could be performed.

Fortunately, the advent of DNA microarray technology in the recent
past has introduced dramatic changes into cancer research. With
this new technology, it is possible to simultaneously analyse the
expressions of several thousands of genes at once and relate their
expression patterns to clinical phenotypes, Lonning et al (2005). By
this, it 1s possible to identify molecular signatures whose expression
patterns are capable of discriminating between infected (cancer)
cells and uninfected (normal) cells. It is therefore easy to predict
(diagnose) the prognostic stage (whether cancerous or normal) of all
the cancer patients using the gene expression profiles without taken

them through the rigour of expensive laboratory tests or surgery.

Due to high dimensional nature of microarray data typically with g
genes and n biological samples, n < g, many supervised and
unsupervised methods have been developed to handle dimension
reduction, patterns recognition as well as prediction of biological

samples using gene expression data.

The use of gene expression profiles for cancer diagnoses has been the
major focus in many microarray studies. One of the most highly
referred studies in this area is that of Golub et al (1999). In their
study, the expression levels of 7129 Affymetrix gene chips generated
on 72 human acute leukemia tumour subjects were used to classify

the subjects into two sub-types of leukemia: acute myeloid leukemia



(AML) and acute lymphoblastic leukemia (ALL). An unsupervised
class discovery method was used to identify these two classes of
leukemia without a priori knowledge of the subjects’ prognostic
status. The use of gene expression data for class discovery and class

prediction was firmly established in this work.

In a related study, Alizadeh et al (2000) used DNA microarrays to
conduct a systematic characterization of gene expression in B-cell
malignancies. The expression patterns of patients with diffuse large
B-cell lymphoma (DLBCL) were studied. Hierarchical clustering
with average linkage search was used on the gene expression
patterns of 88 biological samples to identify two previously
unidentified molecularly distinct forms of DLBCL (germinal centre
B-like DLBCL and in vitro activated peripheral blood B-like DLBCL)
which had gene expression patterns indicative of different stages of
B-cell differentiation. They equally demonstrated that patients with
the two sub-groups of tumour are susceptible to different clinical
outcomes. Bhattacharjee et al (2001) also used hierarchical
clustering method on expression patterns of lung cancer patients to
identify patients with various kind of this cancer type that are

characterized by different prognostic outcomes.

Also, Bittner et al (2000) used hierarchical clustering on gene
expression profiles of 31 melanomas biological samples to discover
1dentical cluster of 19 melanomas that had similar gene expression
patterns. In another study, Pomeroy et al (2002) applied some
supervised and unsupervised methods on Affymetrix oligonucleotide
microarrays to distinguish between new and existing sub-classes of
embryonic tumours of the central nervous system (CNS) using gene

expression patterns.



In hereditary breast cancer studies, Hedenfalk et al (2001) used the
gene expression profiles of breast cancer patients to identify 176
genes that are capable to discriminate patients with sub-types of
breast cancer tumours: i.e. tumour with BRCA1l mutations and

tumour with BRC2 mutations.

As application in survival studies, Nguyen & Rocke (2002c¢) used
partial least square (PLS) components constructed from gene
expression patterns of patients with locally advanced breast
carcinomas as predictors in proportional hazard (PH) regression

model to predict patients’ survival outcomes.

A good number of classification methods have been proposed in the
literature to properly classify biological samples into their respective
tumour types using their gene expression profiles. The most
commonly used ones include the linear discriminant analysis (Lee,
2004; Ye et al, 2004; Hastie et al, 2009), classification and regression
trees (Zhang et al, 2001 & 2003), logistic discriminant analysis (Ding
& Gentleman, 2004), k-nearest neighbours (Fix & Hodges, 1951;
Cover & Hart, 1967; Giordano et al, 2001; Baoli et al, 2003), support
vector machines (Vapnik, 1998; Christianini & Shawe-Taylor, 2000;
Bennett & Campbell, 2000; Furey et al , 2000; Peng et al, 2003; Liu
et al, 2005; Chu & Wang, 2005), artificial neural networks (Hertz et
al, 1991; Ripley, 1996; Khan et al, 2001; Bicciato et al, 2003; Hastie
et al, 2009), boosting (Dettling & Buhlmann, 2003) and bagging
(Dudoit & Fridlyand, 2003) among others.

The various microarray studies highlighted above are just a few
instances among several thousands of studies hitherto being
undertaken by many scientists all over the world. While some of the

methods adopted are relatively simple to apply, a good number of



them are characterized by rigorous procedural complexities.
Nonetheless, the ever-increasing challenges 1n microarrays
technology have made it imperative on the scientists to continuously
thinking and developing more concise techniques that are suitable to
address fundamental questions which often accompany new

discoveries in genes expression profiling on daily basis.

Most of the studies discussed so far focused on proper classification
or prediction of biological samples into difference cancer sub-classes.
Another important aspect of microarray studies is the selection of
the marker genes that characterized different tumour classes and
responsible for the identification, prediction or diagnosis of various
sub-groups of cancers. Some of the classification methods combined
feature selection with class prediction while some of them only
perform classification of biological samples into their various tumour
categories. However, the huge numbers of data sets generated by
microarray experiments have raised a lot of methodological and
computational challenges in the analysis of high-dimensional

genomic data.
1.4 Prior to dimension reduction and class prediction

In analysing microarray data, a number of preliminary steps need to
be taken before getting to the real dimension reduction and response
class prediction. We discuss the major two of such steps which

centres on data normalization and preliminary gene selection.
1.4.1 Data normalization

In microarray studies, normalization is the process of identifying
and removing the effects of systematic variations other than the

biological differences in the measured fluorescence intensities of
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genes across the hybridized mRNA samples. It refers to a set of data
pre-processing steps often employed to eliminate the influence of
non-biological variations that might unavoidably be present in
microarray data sets, so that differential expressions in genes can be

truly identified.

Within the purview of cDNA microarray experiment, the expression
level of each gene is measured by the ratio of two fluorescent dyes,
Cy3 and Cy5 over the mRNA samples. Variations in print-tip,
labelling efficiencies, spatial and hybridization specific effects, and
several other scanning properties of Cy3 and Cy5 may introduce a
lot of systematic variations into the observed fluorescence
intensities. As a result, the actual biological differences (differential
expression) inherent in a set of genes might be clouded by the effects
of all the extraneous variations which may eventually lead to wrong
biological decisions. Hence, the need to free microarray data sets

from all these noises.

In a loose term, the process of normalizing the n X g matrix of

microarray data set with n arrays and vector X = (X;,...,X;) of q
genes can be viewed as transforming all the expression patterns X;;

of jt" gene across the n mRNA samples by
1
Zij = h(Xij) - mz:lei,j h(X,) (1.4.1)

where h(.) represents the monotonically increasing Box-Cox family

of transformations of X;; given by

1

h(xy) = L= (1.4.2)

for some constant m > 0. Here, h(Xl-j) = X;; if m =1, indicating no

transformation except for shift in location, and h(Xij) becomes the
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square root transformation of X;; if m =1/2 while it tends to the
logarithm transformation as m — 0. However, the gene expression
patterns X;; reported in most microarray data sets are already the
log of the fluorescent ratios which might not require further log

transformation.

Literally by (1.4.1), gene normalization across the arrays is
performed by subtracting the mean expression levels of each gene
from its expression level for each array while normalization across
the g genes is performed by subtracting the mean expression levels
of all the genes for each array from their respective individual

expression levels.

Apart from the general normalization form given by (1.4.1), several
other forms of normalization have been proposed to further improve
the quality of microarray data before analysis could begin. Three of

these approaches are discussed below.
1) Intensity-dependent normalization

Yang et al (2002) suggested the use of intensity-dependent
normalization which i1s based on the locally weighted regression
(LOWESS)(Cleveland, 1979; 1981) smoothing of the MA-plot. Let
Xg- and X{} denote the green and red intensities of expressions of
gene j on i mRNA samples, i=1,..,n, j=1,..,q, as observed
from the fluorescent dyes, Cy3 and Cyb5 respectively. What is

often reported as the gene expressions are the ratios Xl-’j-/XiGj or
log-ratios log(Xf;- Xg- of the fluorescent dyes. Conventionally, we

denote the log intensity ratios by

M =log(XF/x5) = logXf — logX{; (1.4.3)
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and the average log intensity of the two colours by

M = log /XS' x X = %(logX{;- + logX; (1.4.4)

The plot of M against M is call the MA-plot which gives a 459
rotation and rescaling of the plot of logX[ against logX;:, Dudoit
et al (2002), Huber et al(2005). A fit of LOWESS function l(IVI ) of
the average intensity M is then obtained and this is used to
normalize M by computing the difference M —[(M). Thus, the
general normalization form in (1.4.1) becomes Z;; =M—l(I\71).
This normalization type is design to remove extraneous colour
effects that may be induced by different pin tips. More details
about this approach could be found in Lee (2004), Huber et

al(2002) and many other related studies.
i1)  Rank-Invariant genes normalization

The rank-invariant method as proposed by Tseng et al (2001) as a
non-linear normalization method considers a microarray
experiment in which two differentially expressed specimens are
separately labelled with green (Cy3) and red (Cy5) flours and co-
hybridized to the same slide. Unlike in the intensity-dependent
normalization in which all the genes are used to determine
normalization factor, here, a sub-set of genes that are biologically
assumed not to be differentially expressed in the two specimens
are selected for normalization. Thus, a particular gene X; is used
for normalization if the ranks of its green and red intensities are
similar up to a threshold value d and the rank of its average
intensities is not among the highest g — [ ranks or lowest [ ranks

for any choosing constant g and [. These statements are given by
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|Rank(XjR) - Rank(XjG)| <d (1.4.5)

1< <q-1 (1.4.6)

ii1)  Global normalization

Another widely adopted genes normalization approach is the
global normalization method which uses analysis of variance
(ANOVA) model introduced by Kerr et al (2000). This procedure
assumes linear normalization factor and incorporates both main
and/or interaction effects of these factors into the ANOVA models.

The global normalization model is given by
log(Xictj) =puta;+6.+1.+ q; + (QQ)U + (TQ)tj + Eictj (1.4.7)

where log(Xictj) is the logarithm of the gene expression measure
of gene j over cDNA array i, dye c, and tissue sample type t.
Parameters u is the overall population average log-expression

ith

(average signal), a; represents the effect of i'" array, 8, is the

effect of ¢t dye, 1, is the effect of t*" tissue type, ¢ j 1s the effect of

jt" gene, (aq);; 1s the interaction effect of ith

array and j'* gene,
(7q).; is the interaction effect of t** tissue type and j** gene while
&icej 1s an independent and identically distributed error term. This
approach has been employed in many other related studies (Lee et

al, 200; Wolfinger et al, 2001; Lee, 2004; etc.).

There are many other variants of normalization procedures apart
from the three provided above (see Smyth et al, 2002; Smyth &
Speed, 2003; Huber et al, 2003; Steinhoff & Vingron, 2006; etc.). The
choice of any of the method depends on the nature of microarray

data set being investigated.
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A particular important aspect of normalization is data
standardization. It is all about standardizing microarray data so
that each array has zero mean and unit variance. It is a scale
adjustment measure that prevents the expression measures in a
particular array to dominate the overall average expression, Yang et

al (2001).
1.4.2 Preliminary feature selection

A typical microarray data set is characterized by having several
thousands of g genes measured on relatively small number n of
biological samples with n <. Several experimental microarray
studies (Botstein & Risch, 2003; Su et al, 2002; etc.) have revealed
that very few numbers of these numerous genes are differentially
expressed (DE) and might actually be relevant to the clinical status
of the biological samples. Therefore, our objective here is to perform
a primary selection of potentially relevant g*genes from all the
available g genes such that all the g — ¢* non-predictive (irrelevant)
genes are removed prior to proper analysis. The reasons for this are
two-fold: One is to save a lot of computation time and efforts while
analysing the data. If the g — q* ‘useless’ genes are not removed
before any dimension reduction and/or class prediction is performed,
a good classifier will still filter them out during the analysis proper,
but at a huge cost of analysis time. To avoid this therefore, it is
proper to filter all the apparently irrelevant genes before proper
analysis could begin. The second reason which is not too far from the
first one is to minimize unnecessary ‘noise’ in the data before proper
analysis could commence. In a nutshell, a good preliminary gene
selection 1s expected to prevent undue influence of the irrelevant

genes on prediction.

15



Among the preliminary feature selection methods commonly adopted
in the literature are the p-value method (Golub et al, 1999), the
Wilcoxon-Mann-Whitney rank sum test (Thomas et al, 2001), the
student-t test or its equivalent; the Welch test (Nguyen & Rocke,
2002a; Rimkus et al, 2008) and the Wilks’ lambda score (Dillon &
Goldstein, 1984; Johnson & Wichern, 1992; Hwang et al, 2002)

among others.

Generally speaking, no single method can efficiently be suitable to
handle all kinds of microarray data sets. The choice of method to
adopt at times may depend on the nature of the data or the taste of
the investigator. The common denominator is to ensure that the
method adopted retains all the potential differentially expressed

genes among the primarily selected g* genes.

We shall discuss the procedure of the student-f test as used in this
thesis and later in Chapter 2, we propose another flexible classifier-
like preliminary feature selection method — the AUC feature
selection method- which has not been given much attention in the

literature. The reasons for this shall be provided later.

It is intuitively reasonable to ask that, why seeking for further
dimension reduction methods when some of the methods adopted for
preliminary feature selection can perform similar function? The
answers to this are two-folds. First, after the preliminary gene
selection where g — qg* non-DE genes are pruned out, the remaining
potentially relevant g*genes selected might still be more than what
1s optimally suitable for good prediction. In other words, not all the
preliminarily selected g*genes would still be suitable for good
classification of mRNA samples into their respective cancer sub-

classes. Hence, there 1s need to evolve a more robust method that
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would further extract the most relevant and informative k genes
(k < q%) from the preliminarily selected g* genes. The second but less
important reason is that, the number of qg* genes selected might still
be more than n, the number of biological samples. This would again
render the use of any standard regression methods practically
1mpossible for response class prediction due to the violation of non-

singularity condition of the design matrix of the predictors.
Feature selection by Student-t statistic

By Student-¢ statistic approach, each of the measured genes X;,
j=1,..,q, are divided into two, X,; and X;; based on the response
class categories (0,1) with corresponding sample sizes n, and n,
respectively. The equality of the group means X,; and X;; is

examined via the ¢-statistic

le—)?oj

(no-1)S§+(nq-1)s% x(Rona)
no+nq—2 nonq

t, = (1.4.8)

or its equivalent, the Welch test (Welch, 1947) that gives an
approximate solution to Behrens-Fisher problem (correcting for

unequal variances within each class) given by

t _ }?1]—)?0]
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S . S
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with modified degree of freedom

(1.4.9)

i
n3(no-1) n%(nq-1)

where, for each genej, X

yi» S§ and n, 1s the mean, the variance and

the sample size for subject class y, y = 0,1 respectively. The Welch



approximation is often preferred in many microarray studies. The
estimates of the t,, or t; above is computed for all the q genes and for
each computation a high positive ¢-score corresponds to high
expression in favour of class 1 while the least negative t-score
corresponds to high expression for class 0. The absolute values of all
the t-scores are taken and subsequently sorted in descending order
to identify the top q* genes base on the estimated ¢ (t,, or t,) values.
The cut-point for the selection of the top g* genes from the ordered
list is determined either by a pre-specified implied p-value, p* or its
critical value equivalent for the upper tail of the student-t
distribution. For instance, selection of all genes whose p-values are
less than or equal to p* = 0.001 may be desirable. This would be
equivalent to selecting all genes whose critical values, |f;| or |f,|
values, are greater than or equal to fy999 ny+n,—2 OF o999, v
respectively. The higher the value of p* chosen (i.e. as p* - 1 or as
the chosen cut-point t, — 0 ) the higher the chance of retaining more

genes and vice-versa.

While using Student #-test for preliminary feature selection in this
work, we have allowed our choice of cut-point p* to be dictated by the
underlying features of the various data being analysed. Our study
here have shown that, it is wrong to fix a general cut-off point, say
p* = 0.001, as a benchmark for all microarray data sets as done in
many studies irrespective of the nature of the data under study. The
value of p* used for a particular microarray data might not be
suitable for another data, hence the need to consider the peculiar

features of each data as a guide for selecting the cut-off points.
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1.5 Research motivation and objectives

The advent of DNA microarray technology has made it possible to
simultaneously study the expression profiles of several thousand of
genes on a given number of mRNA samples. This has helped the
researchers to have a clear understanding of different kinds of
diseases like heart diseases, mental illness, infectious disease and of
course, the cancer varieties. In cancer research for instance, the
evolution of microarray technology has made it possible for
molecular biologists and physicians to classify various sub-classes of
cancer types on the basis of the patterns of gene activity in the
tumour cells. This strongly underscores the biological relationship
between the gene expression profiles and various sub-classes of

cancer types.

In a more statistical term, let us consider a DNA microarray
experiment that generated expression data on q genes X = (X, ..., X;;)
for n mRNA samples where response of interest represented by
Y;,,i =1,..,n, is recorded for each sample. Response variable Y; may
be binary or categorical, especially if the response of interest is the
cancer tumour sub-group as in leukemia study of Golub et al (1999),
in which case, Y; = 0 for acute lymphoblastic leukemia (ALL) while
Y; =1 for acute myeloid leukemia (AML). When the tumour sub-
groups are more than two, typical of the molecular cancer study by
Ramaswamy et al (2001), then the outcome variable Y; may be given
by the set {V;} ={0,1,2,...,v}. Also, variable Y; may be continuous
denoting a desired continuous clinical outcome like blood pressure

readings, x-rays’ results, laboratory tests’ results and so on.

It should be noted that both X and Y; represent random samples from

a given population of interest and it is often desirable in microarray
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studies to use the observed sample data on expression measures of q
genes X;, j=1,..,q and observed response Y; to make inference
about the population or future subjects. Specifically, a common goal
is to use information on the observed data (X,Y;) to predict

independent future subject n, € {n}in the population.

Typically, microarray data sets are characterized by having very few
number of experimental mRNA samples, often less than 100, on
which expression levels of several thousands of genes are
simultaneously being observed. Hence, the situation where n < q is
a common scenario in genomic analysis. Therefore, to predict the
clinical/tumour status of future subjects n,, a functional relationship
between X and Y; of the form Y; = g(Xf; €) may be desirable for any
link function g(.). If the relationship is linear, then, the task is to fit
the model

Y,=XB+ ¢ (1.5.1)

But with the condition that n « g, obviously, the linear model (1.5.1)
cannot be estimated using the classical least square (LS) method.
The reason for this is that, the g X g variance-covariance (design)

matrix X7 X would be singular (non-invertible).

Several attempts directed at circumventing this common
dimensionality problem in microarray data resulted to the
development of many supervised and unsupervised techniques for
dimension reduction and tumour classification in several microarray
studies. Among the earlier methods developed for response class
prediction include the support vector machines (SVM), k-nearest
neighbours (k-NN), principal component analysis (PCA), sliced
inverse regression (SIR) and the much celebrated approach of the

partial least squares regression (PLSR) among many others. While
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some of these methods (e.g. SVM, k-NN etc.) are mainly design for
response class prediction, few other ones (e.g. PCA, PLS etc.) are
shrinkage techniques that are only meant for dimension reduction of
original g genes to a small number of k gene components, k < n,
using the expression patterns of all the q genes. For both PCA and
PLS techniques for instance, tumour classifications are only possible
through the use of other standard discriminant methods like linear,
logistic or quadratic discriminant analyses on the k gene components

constructed.

Expectedly, some of the existing methods perform accurate
classification of tumour classes using the observed gene expression
profiles, but unfortunately the classifiers they provided are often
difficult to interpret in relation to the tumour sub-classes they
predicted. For instance, the partial least squares (PLS) procedures
can only reduce the entire ¢ genes to a few number of k gene
orthogonal components, say, Z,,...,Z;, k <n using the expression
measures of all the original g genes. The constructed k components
are then being used as predictors in replacement of the original q
genes, Xi,..,X,, In regression model (1.5.1) to predict the tumour
categories of any future biological subjects n, (see Nguyen & Rocke,
2002a-d; Rosipal & Krame, 2006; Rimkus et al, 2008; etc.). Although,
PLS method has been reputed to provide accurate predictions
especially when suitable cross-validation method is employed, but
regrettably in most cases, the k components it constructed for
prediction are not easily tend to direct biological interpretations in
relation to the response groups they predicted. This has made it
imperative to evolve a separate procedure that could actually
identify and select the most relevant gene combinations that are

actually related to different tumour categories. Obviously, this
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important goal are difficult to accomplished using the factor loadings
of the constructed k PLS components as suggested in some studies,

Barker & Rayens (2003), Ding & Gentleman (2004).

One of the most important advantages of DNA microarray
technology lies in gene discovery. Due to the dynamic nature of
general hormone systems of individual organism, molecular
biologists and physicians are not only interested in proper
identification and prediction (diagnosis) of different categories of
tumour types, but rather, they are now more interested about
knowing those human transcripts (genes) that are responsible for
each of the identified tumour conditions. Identification of these
relevant transcripts would immensely help in the development of
appropriate therapeutic measures (drug discovery). This could be
further useful to pharmacogenomists in determining the relationship
between therapeutic responses to drugs and the genetic profiles of
patients. However, all these important benefits may be difficult to
achieve if appropriate statistical techniques that are capable to
select the most relevant and informative marker genes among
several available thousands are not developed. Again, it is obvious
that the latent components constructed by PLS or PCA technique
might not be suitable to address this problem. It is based on this

premise that the study carried out in this thesis is conceived.

The prime goal of this work therefore, is to develop a new flexible
dual-purpose approach that would efficiently identify and select the
most relevant gene chips that are informative enough to predict the
various tumour conditions of mRNA subjects in any given

microarray data set.
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Our method shall be evaluated on some of the existing microarray
data sets while its general performance relative to those provided by
some of the few selected existing methods (PLS, SVM, k-NN, etc.)

shall be examined.

The high-dimensional nature of microarray data sets has made
preliminary feature selection a desirable task before further analysis
like final optimal gene selection and classification are performed.
Due to this end, we shall review some of the existing preliminary
feature selection methods and provide yet another approach that
would efficiently handle features selections at the preliminary stage.
This becomes necessary because the prediction performance of any
classification rules largely depends on the crop of genes selected for

analyses at the preliminary selection stage.
1.6 Main research contributions

The main contributions of this research work include, but not

limited to the following:

@ We developed a dual-purpose flexible method that
simultaneously performs informative genes selection and
classifies mRNA samples into their respective biological
groups using the sub-set of genes selected irrespective of
the dimension of the microarray data involve.

# Our new method is capable at selecting those genes that
are of biological relevance to the tumour conditions of
the mRNA subjects in any given microarray data sets.
This, we hope, shall be helpful in the determination of
appropriate therapeutic measures for the treatment of

various cancer sub-groups.
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# We equally proposed a new classifier-like preliminary
feature selection method that is capable at reducing the
huge number of genes in any microarray data set to a
manageable size by selecting all the potentially
discriminative marker genes for further analysis by any
standard gene selection and/or classification method.
The new approach eliminates the risk of leaving out
some of the important genes at the preliminary selection
stage.

% In addition to all these, this research work avails us the
opportunity to thoroughly review the fundamental basis
of some of the existing classification techniques and offer
useful contributions, suggestions and recommendations

based on our experience in this study.
1.7 Outline of the Thesis

The rest of this thesis is arranged as follows. We presented our
newly proposed sequential dimension reduction and prediction
method in Chapter two including a review of various performance
indices that are used to assess the efficiency of the proposed method.
This is followed by introducing a new versatile preliminary feature
selection procedure. We conclude this chapter by presenting an
overview of some of the existing classification methods as employed
in this thesis. Several simulation studies carried out and few
applications of our proposed classifier are provided in Chapter three
while its applications on real microarray data sets are presented in
Chapter four. Chapter five presents the summary of our results,

necessary conclusions and suggestions for future studies.
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2 The k-Sequential Selection (k-SS)
method

2.1 Introduction

The characteristic feature of a typical microarray data set has posed
a lot of challenges to statisticians and experimental biologists due to
high dimensional nature of such data. A typical microarray data set
consists of g transcripts and response class information on n subjects
with g >> n. In most cases, the number of transcripts measured on
each biological subject ranges between 1,000 to more than 50,000
transcripts while the available experimental unit may fall below
100. Hence, the need to evolve a robust method that will be capable
to identify and select from the cloud of several thousand of observed
genes, the most relevant informative genes for the prediction of
biological sample. This is particularly important to the biologists and
physicians who are interested to know which genes have correlated
expression levels with the biological samples for determination of
proper therapeutic measures among other intents. We therefore
present in this work, a novel but flexible approach that is capable at
selecting the most relevant gene sets as well as providing accurate
prediction of the tumour sub-groups of biological samples in any
given genomic data. We have used some of the existing microarray
data sets to demonstrate the application of our method. Nonetheless,
this new approach can be applied, for instance to proteomic,
chemometrics or any other data sets in which high-dimensionality is

a common scenario.

Consider a total of N subjects that belong to two different population
groups @, and Q,, Q;,Q, € {Q}. Let a random sample of size n be

drawn from population N with n; from population Q; and n, from
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population Q,, n; + n, =n and let the g-dimensional vector X =
(X1, ., Xg), X € R denotes the expression levels of q genes
simultaneously measured on n biological samples with n<gq as
earlier presented in Section 1.5. Under the classical regression
settings, the primary goal is to establish the association between
predictor vector X and a (continuous or categorical) response

variable Y; € R, i =1, ...,n, of the form

Yi =g(XB; €) (2.1.1)

for some link function g(.). Within the framework of this study, we

define the response variable Y; by

(2.1.2)

i

_ {0, ify e,

1,ify € Q,
for any realization y of Y; in Q. This literally indicates a binary
response group (0,1) for all the n biological samples, which by far, is
the most common 1In many microarray studies. While
implementation of our proposed method shall be demonstrated
extensively on dichotomous response class microarray data sets, the
extension of its application to multi-categorical response cases shall

be equally discussed.

The definition of the outcome variable Y; in (2.1.2) implies that any
given subject in n is labelled 1 if it has a particular characteristic of
interest of those in group 2, € Q and a given subject is label 0 if it
possesses the features of those in group Q,; € Q. In microarray
cancer studies for instance, the characteristic of interest may be
patients having particular cancer tumour types labelled 1 if
tumourous, and labelled 0 if the subject is normal. This particular
instance existed in many studies (Alon et al 1999, Singh et al 2002,
Stuart et al 2004, Welsh et al 2001, Ramaswamy et al 2001, etc.). In

26



survival analysis studies however, such characteristic of interest
may be the survival outcome of the patients after a given follow-up
period with Y; = 1 for death outcome and Y; = 0 if the patient is still
alive at the end of the study (censored).

Assuming a linear form of the link function g(.) in (2.1.1), obviously
it 1s impossible to apply the usual least square method to establish
the linear relationship between X and Y; due to dimensionality
constraint imposed with n « g as remarked in Section 1.5. Our
major goal in this thesis therefore, i1s to design a classification rule
based on variable pair (Yi,Xij), i=1,..,n j=1,..,4q, that will use
subset x of the measured gene expressions X to correctly
predict/classify any independent future subjects into either of the

two biological groups Y; =y, y € {0,1}.

Most often, it is difficult to get independent samples to test the
accuracy of any developed classification rule. The usual practice is to
randomly partition the original sample size n into training/design
sample, nyz and test sample, n;r; using a suitable ratio. The
classifiers are usually built using n;; while the goodness of the
classifiers is assessed on the test set n;p. Some splitting ratios 2:1,
4:1 and 9:1 in favour of the training and test data respectively have
been suggested in some studies (Dudoit et al, 2002; Lee et al, 2005;
etc.). However, a common practice in most studies is to train the
classifier with large proportion of the original data while its

goodness is assessed using the remaining left-out sample.

The adverse effects associated with the partitioning of the already
small biological sample n into training and test sets for classifiers’
construction and assessment have been reported in many studies,

e.g. see Bura & Pfeiffer (2003), Molinaro et al (2005), Boulesteix et al
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(2008) and several others. A common argument is that, classifier
that is constructed with a fraction of already small sample size n
might underestimate the misclassification error rate (MER). In other
words, a classifier that is trained with a relatively large number of
subjects 1s likely to provide more accurate and stable results than
the one trained with smaller sample. In view of this fact, we have
adopted a splitting ratio of 19:1 for nggz:nyz in this thesis. This
literally translates to using 95% of original n subjects to build our
classifier and using the remaining 5% as external data to evaluate
the performance of the classifier. The justification of our choice is
discussed in Section 3.5. With this partitioning ratio, sufficient part
of the original data is used to construct the classifiers which

considerably improved prediction results as shall be seen later.

To further ensure generalization and stability of results, several
replicates of the original data sets are generated at the construction
and evaluation stages of our classifier using sub-sampling technique
of Monte Carlo Cross Validation (MCCV) (Dudoit et al, 2002),
Bootstrap (Efron & Gong 1983), and Bootstrap .632+ (Efron and
Tibshirani, 1997). The details of these sampling methods as adopted

in this thesis are provided in Section 2.5.

Since the variable selection and class prediction method proposed in
this thesis adapts the estimation procedures of logistic regression
method, in the next two sections therefore, we briefly provide the
basic theoretical background into the generalized linear models

(GLM) and logistic discriminant (LD) analysis.
2.2 Generalized Linear Models (GLMs)

Under the classical [linear regression models (LRMs), the

relationship between the response variable Y; € R™*%, i =1, ...,n, and
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a set of predictors X = (X;,...,X;), X € "7 in the form Y = XB + ¢,
B = By ...By)", is wusually established by assuming Gaussian
distribution with constant variance, g2 for both Y and the error
component, ¢ with each of them having means ¥ = XB and zero

respectively.

When the outcome variable Y 1s not Gaussian, but rather
dichotomous with distinct class labels (0,1), then, the Gaussian
distribution cannot be assumed for Y. This implies that the linear
regression model Y = XB + &€ cannot be fitted on Y because the range
of the conditional expectation ¥ = E(Y|X) is no loger bounded

between zero and one.

The generalized linear model (GLM), first developed by John Nelder
& Robert Wedderburn in 1972, provides a flexible generalization of
the linear regression concepts which unifies various other statistical
models including linear, logistic, Poisson and many other regression
models with or without Gaussian responses under one framework.
This led to the development of general algorithms for the maximum

likelihood estimation (MLE) of all the models’ parameters.

In GLM, each response variable Y is assumed to come from a
particular member of the exponential family of distributions (EFD)
with a probability distribution f, (y;; 8;, ), 0;, w € ©. The form of this

distribution is given by

i0i—b(0;
fr(yi; 0;, w) = exp {u + c(y;, Hi)} (2.2.1)

a(w)

where, a(.), b(.), c¢(.) are known functions that take the form of y;.
For each form of y;, 6, is the natural parameter. The dispersion

. . . . w .
function a(w) is sometimes written as a(w) =— where w is the

i

dispersion parameter which is constant for all observations and w; is
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a prior weight meant to correct for the violation of unequal variances

which might arise contrary to the constancy of w already assumed.

The EDF family include among others, the Gaussian, Binomial,

Poisson, Exponential and Gamma distributions.

Consider a general regression function Y = g(XB; €) as defined in
(2.1.1). Within the framework of GLM, the relationship between the
random component, u = E(Y|X) and the systematic component
n = XB, a linear combination of the predictors, is specified by a
linear or non-linear monotonic and differentiable link function
n = g(u). This link is a function of response variable Y which enables
the relationship between Y and vector of predictors X to be linear in

parameter B. Dropping subscript i from 6; for simplicity, it then

follows from EFD in (2.2.1) that
EY|X)=u=>'(6) (2.2.2)
Var(Y|X) = b"(8)a(w) (2.2.3)

where b'(0) and b"”(6) are the first and second derivatives of b(6)

respectively.

The special case of the link function which concerns us here is the

logit link when response variable Y is Bernoulli distributed with Y =

p(r=1|X)] _
pr=o0lx)] B

0 or 1. Here, the link function is given by g(u) = log [

More details on this are provided in the next section. Other forms of
GLMs as applied into different fields can be found in Bliss (1935),
Berkson (1944), Cox (1972), Finney (1972), Kleinbaum & Kupper
(1978), Draper & Smith (1981), McCullagh & Nelder (1989) and

many others.
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2.3 The basics in logistic discriminant analysis

The concepts of the logistic regression analysis are the primary basis
for the construction of logistic discriminant (LD) analysis technique.
Ripley (1996), Dudoit et al (2002) and several other authors have
argued at different times in favour of using LD analysis for class
prediction purposes. Their unanimous conclusion is that LD analysis
provides a more direct and unambiguous way of estimating the
posterior probabilities p(Y = y|X) that are used in the construction
of logistic discriminant (LD) rules. It has been equally reported that
LD procedure tends to more easy generalization than some of the
other classifiers like [linear discriminant analysis (LDA) and

quadratic discriminant analysis (QDA), Dudoit et al (2002).

Suppose we consider a set of n biological samples belonging to two
outcome groups (0,1) according to response variable Y as defined in
(2.1.2). Let x=(Xy,..,X;) be the subset of measured g genes
X =Xy, ..., Xy), XeR™9, k <q, selected using a suitable variable

selection method for predicting the response group Y.

Suppose that all the n samples represent independent and
identically distributed random samples from an unknown
distribution W over X XY € R, X and Y being the feature space of x
and Y respectively. Without loss of generality therefore, the LD rule
@(x) to be constructed can be seen as the mapping of X into the real
line Y i.e. ¢(x): X = Y (for continuous response variable Y) or as the
partitioning of the feature space X into y disjoint and exhaustive
groups X(y) of Y (for categorical response variable Y),y =0,1,...,v.
For binary response class, y = 1. Therefore, the predicted response
class Y by classification rule ¢(x) based on the observed feature x

can be denoted by ¥ = @(x).
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Since response variable Y can only assume value 0 or 1 it follows
that Y is Bernoulli distributed with parameter m(x). The equivalent
form of the linear model Y = E(Y|x) + € under this condition is given

by

Y=nlx)+ ¢ (2.3.1)
which implies that

e=Y—n(x) (2.3.2)

Thus, from (2.3.2) it is obvious that E(e) =0 and Var(e) =
n(x)[1 —m(x)]. This shows that under the regression form in (2.3.1),
the error term &, though has zero mean but do not have constant
variance (o2 as in Gaussian model) but rather, an heteroscendastic
form that depends on the values of x. A specific form of w(x) is the

logistic regression function given by

p(y._11x)_.n(x)_.f§§§%25 (2.3.3)

The quantity that transforms m(x) as a linear function of X and g is

the logit link n(x) as described in Section 2.2 and is given by
M@Jﬂ“w—w (2.3.4)

Thus, when Y has two groups (0,1), the link function n(x) is the

natural logarithm of the ratio of conditional probability p(Y = 1]|x)

mwﬂ_
(=0lx)

and p(Y =0|x) =1 — p(Y = 1|x). That is, n(x) = ln[

Now, given any n biological samples with dichotomous class group Y
and a vector of observed predictors (genes) x, the parameter vector f8
of the logistic regression model (2.3.3) can then be estimated
1teratively using the iterative weighted least squares as implemented

in the Newton-Raphson algorithm (Anderson et al, 1993). This is the
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GLM procedure for a regression model with binary (Bernoulli)

outcome variable Y.

After the fit of the logit model (2.3.4) as described above, the next
task is to construct a logistic discriminant (LD) rule, ¢(x) that would
be used to predict the response class Y, of any independent external
subjects n;g. By procedure of LD rule, the response class predictions
are made using the estimated conditional probability p(Y = y|x),
y € {0,1}. The predicted class of any subject is then given by
9 =1(p(ylx) > 1 —p(y|x)) where I(.) is an indicator function that is
1 if its argument is true and 0 otherwise. Thus, subject i would be
classified by rule ¢(x) into class y € Y if it has the highest estimated
posterior probability p(y|x) of being in that class. Therefore, the

connection between ¢(x) and p(y|x) could be stated as
p(x) = argmax, p(y|x) (2.3.5)

The predicted conditional probabilities p(y|x) may be formally
converted to the predicted class labels y € {0, 1} for each subject by
choosing a cut-point ¢, 0 < ¢ < 1, which finally yield the following
classifications;

(1, ifp(1lx) = ¢

¢(x) _{0, ifp(0]x) < ¢ (2.3.6)

By (2.3.6), a subject would be classified into response class 1 if its
estimated posterior probability p(1|x) =c¢ and into class 0 if

otherwise.

If the sample class prior probabilities p, = n(y)/n, n(y) being the
number of class y subjects in the sample, y = 0,1, are very close to
0.5, the choice of 0.5 for value of ¢ has been found more appropriate.

But if one of these priors is very close to 1, then, it is recommended
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to use the estimated prior probability of class 0 as the cut point, c.
Nonetheless, the general practice, which we equally adopted here is
to use ¢ = 0.5 (Efron,1975; O'Gorman & Woolson, 1991; Pohar et al,
2004; etc.). The close connection between logistic discriminant (LD)
analysis and linear discriminant analysis (LDA) has been equally
reported as a factor that favours the choice of 0.5 cut-point in logistic

discriminant analysis (Efron,1975; Hosmer & Lemeshow, 1989).

If the class conditional density of x given Y, p(x|y), y =0,1, is
multivariate Gaussian with mean p, and constant variance-
covariance matrix X, i.e., x|y ~ N(u,, X), then, with known class prior

probabilities p,, the posterior probability of ¥ given x, p(ylx), is
provided by Bayes theorem as p(y|x) = %. With known class
priors p(1) = p; and p(0) = p, of the subjects’ groups y € {0,1}, the

p(1]x)

T 18 given by

logarithm of the ratio

{P(Y=1|x)} — In {ﬁlp(xIY=1)

p(Y=0x) PopRlY= 0)}. This implies that,

P 1 -
Pl —exp|—5(x—p) T2 (x-p0)

(Y=1lx) (2m)2|z|2
In {v }: In ): 2.3.7
p(Y=0|x) & 1exp[—%(x—.uo)Tz_l(x—#o)] ( )
(2m)2|z|2

which reduces to

pY=1X)) _ w17, _ _ 1 791 1 Ty-1 p1
ln{p(yzolx)}—xz (1= Ho) = ST iy + JHEE o + In2E (2.3.8)
p(r=110)
” n {p(Y=O|x)} = xp (2.3.9)

This 1s the same as the logit model given in (2.3.4).

The procedure (2.3.7) through (2.3.9) simply provides alternative
way of constructing logistic discriminant (LD) function especially

when predictor vector x has multivariate Gaussian density.



However, it can be easily shown (Cornfield, 1962; Lachenbruch,
1975; Hosmer & Lemeshow, 1989) that the estimates of the k
parameters B = (B, ..., Bx)! of the model (2.3.9) can be obtained non-

iteratively from LD functions in (2.3.8) as follows:
Br =2t = 0.5y — o) =™ (s + o) (2.3.10)

Bt = (uy — po)TZ? (2.3.11)

where f; is the estimate of the constant parameter (intercept) of
logistic regression model (2.3.3) and B* = (B, ..,fx) are the
estimates of the remaining k — 1 parameters. All the parameters are
obtained by substituting the estimators of X and u,, y = 0,1, into
(2.3.10) and (2.3.11). Thus, for subject group Y, u, is estimated by
the mean of predictors X,;, j = 1,2, ..., k, as fi, = )?yj and covariance X
1s estimated by the estimate of the pooled sample variance-

covariance defined by subjects group Y as

(ng—1)So+(n1—-1)S,
n0+n1—1

3=

(2.3.12)

where §), is the k X k unbiased estimator of the sub-groups variance-

covariances computed for each subjects’ groups as defined by Y.

The discriminant function estimators given above may be bias,
especially when normality condition does not hold for the predictors.
It may however, be adopted for preliminary analysis after which the
final parameter estimates can be obtained using a more robust
maximum likelihood estimation (MLE) as implemented in Newton-
Raphson algorithm or any other suitable iterative procedure as

earlier discussed.
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2.4 The k-SS set-up
2.4.1 The need for k-SS technique

The new method proposed in this thesis is a comprehensive but
flexible dual-purpose gene selection technique which simultaneously
performs dimension reduction, informative genes selection and
accurate classification of biological samples into their respective
tumour sub-classes in any given high-dimensional microarray data.
This new procedure is analogous to the non-linear stepwise variable
selection technique under the classical logistic regression settings.
The prime objective i1s to develop a robust variable selection
approach that will provide flexible but efficient models that are
suitable for proper prediction of biological samples in any given
genomic data sets. Our procedure would select the most informative
predictors (genes) from the cloud of several available thousand of

genes based on some fixed decision rules.

The variable selection procedure of the stepwise logistic regression
(SLR) for instance, as implemented in some statistical packages [e.g.
SAS® (SAS institute Inc., 1995), SPSS 12.0 (Chicago, IL), STATA/SE
8.0 (Stata Corporation, Texas, USA)] is purely based on two
parameters: SLENTRY, p, which is the significant level specified for
any variable to enter the model and SLSTAY, p, which is the
significant level for a variable selected to remain in the model. A
major flaw of the SLR method is that the values of both p, and p, are
determined arbitrarily by the investigator the choice of which may,
of course, vary from one person to another. Hence, the whole
procedure under this set-up is not too far from a trial and error

exercise. Nonetheless, the SLR approach has been successfully
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adopted in many studies (Stevens et al, 1992; Seligman & Pullinger,
1996; Valenzuela et al, 1997; etc.) and is still in use till date.

Apart from SLR method, several other approaches have been
proposed purposely to shrink the number of predictors in any
regression set-up. For instance, a shrinkage method, the least
absolute shrinkage and selection operator (LASSO), proposed by
Robert Tibshirani (1996) uses quadratic programming technique to
minimize the residual sum of squares subject to the sum of absolute
value of the coefficients being less than a predetermined constant. In

other words, LASSO method provides the estimate of parameters
ﬁ:argmin{ ?:1(}’1'—ng=1[3in,-)2} subject to the constraint that
?:1 |5;| < t. Here, the value of ¢, the tuning parameter, is usually

fixed by the user, which, like the choice of p, and p, under the SLR
method, might vary from one investigator to another. Similar
arguments hold for the use of non-negative Garrote method due to

Breiman (1993) for features selection.

Another method reported in Zucknick et al (2008) is the univariate
filtering method that equally adapts the logistic regression approach
concept in its implementation. In this approach, the logit model is

fitted to each of the gene variable X;, j = 1,...,q, separately and the

Bj
s.e(B))

gene effects, 1s computed where ,éj and s. e(Bj) 1s the estimated

regression coefficient and its standard error for gene X; respectively.

The best set of g* genes, q* < q , with the largest absolute effects

1Bl

se) A€ then selected using arbitrarily chosen cut-point .
' J

It has been established in many studies that the use of the default
significant level a = 0.05 or less for p, in the implementation of SLR

method may yield a highly sensitive selection criteria that might
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result into the exclusion of some of the important variables from the
model (Bendel & Afifi, 1977; Hosmer & Lemeshow, 1989; Shtatland
et al 2000, etc). On the other hand, if the value of p, is set too high,
the resulting model might be loaded with noise due to the presence
of both needed and unwanted variables in the model (Hosmer &
Lemeshow, 1989). Therefore, there i1s need to strike a balance
between the selection of not too sensitive and not too conservative

values for both p, and p;.

In an attempt to solve this problem, Hosmer & Lemeshow (1989)
advocated the choice of p, (i.e. @) between 0.15 to 0.25 and further
suggested a choice of p; > p, for any given value of p, within this
range. However, this submission sharply contradicts what was
proposed by SAS institute Inc., 1995, page 51, in which a value
relatively smaller than 0.05 is suggested for p,. Specifically, it was
remarked that the choice of p, < 0.05 could be a better choice if the
sole objective of performing variable selection is to describe and
interpret the data under investigation. These differing positions
notwithstanding, what is common to all the submissions is that the
choice of p, and p, are highly subjective and are at the discretion of

the investigator.

Shtatland et al (2000) proposed alternative approach; output delivery
system (ODS) to the SLR implementation. Their approach uses both
Akaike information criterion (AIC), Akaike (1974, 1983) and
Schwarz information criterion (SIC), Schwarz (1978) for variable
selection. Here again, any arbitrary values very close to 1 are

suggested for both p, and p, in the implementation of their method.

Basically, two main objectives are desirable while performing

variable selections which might apparently result to the

38



development of two different models in any given regression
problems. One might be to develop a parsimonious model (with fewer
predictors) that best describes and interprets the data at hand. To
select variables for this kind of model, the values of p, to chose may
range from 0.001 to 0.05, Shtatland et al (2000), as equally
recommended by SAS institute Inc., 1995. Secondly, another
objective might be to have a robust model that best predicts the
response class. For this type of model, the use of default significant
level @ = 0.05 or less for p, might not be suitable, the reason why
any value between 0.15 and 0.25 was suggested for a (p,) by Hosmer
& Lemeshow (1989). Considering the above two possible models, it is
clear that more variables are likely to be selected under the latter
than the former. This clearly suggests that, a single regression
model might not be capable enough to provide both the best fit and
best prediction of the response class at the same time. A good
regression model that fits (describes) a data very well might poorly

predict the response class (Hosmer & Lemeshow, 1989).

In any microarray studies however, two important objectives are
always intended. One is to identify and select the few marker genes
whose expression patterns are related to the various cancer tumour
status of the biological subjects under study. In other words, it is
mostly intended to identify those genes whose expression levels
could, for instance, accelerate the discovery of key biological
processes for proper therapeutic measures among other things. The
next 1s to correctly classify the subjects into their respective
biological groups (e.g. cancerous or normal) based on the expression
levels of the marker genes already identified and selected. This
usually serves as a measure to screen the mRNA samples for early

detection of cancer or other tumour types before it metastasize to

39



other neighbouring cells. The major tasks in this thesis are therefore

targeted at achieving these two cardinal objectives by

1) identifying and selecting the most relevant marker
genes that are related to the biological properties of the
tissue samples.

11) classifying the RNA samples properly into their
respective tumour classes based on the selected marker

genes.

Therefore, the sequential variable selection procedure we proposed
here 1is basically aimed at building models not just for data
description or interpretation but also for accurate prediction of
tumour conditions of the biological samples. Our new method shall
strive to optimize both the variable selection and response class
prediction processes by ensuring that the criteria set for achieving
the best optimal prediction model are not subjectively imposed by

the investigator as common to most of the existing methods.
2.4.2 The k-SS set-up in details

Let the g-dimensional vector X = (X, ...,Xq), X € R of measured q
genes on n biological samples with two outcome groups Y € {0,1} be
as defined under Section 2.1. Our task in this thesis is to develop a
k-sequential selection and prediction (k-SS) rule ¢(x) that would
select the most informative k genes subset x = (X;,...,X;) from X,
k < q, to predict the binary response classes {0,1} of any future

(external) subjects n, & {n}

As discussed in Chapter one, Section 1.4.2, a preliminary selection of
q* genes, q¢* < q, may be necessary to filter out the irrelevant genes

from the whole g genes to a manageable size number, q* before the
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final selection of the most informative k marker genes are made for
classification purposes. This concept shall be revisited in Section 2.5
where we propose a new preliminary gene selection procedure based
on cross-validated area under the receiver operating characteristics
curve (CVAUC). However, both ¢g¢* and g may be wused
interchangeably in this thesis to mean a large set of genes from

which the selection of k informative marker genes is desirable.

We begin by dividing randomly, the original sample size n into
training set ny; and test set nyy; as described earlier. This is followed
by fitting univariate generalized linear models (GLMs) glm,, ..., glm,
with logit link (1.e. logit(n(Xj)) =a+ B;X;,j =1,..,q) on each of the
q genes (variables) using the training set n;; and constructing
classification rules (p(Xj) = argmax, ﬁ(y|Xj) for each gene X;,
j=1,...,q, and predict the two class labels {0,1} of the (external) test
sample n;; via the following classification scheme;

1, ifp,(1]X;) = 0.5

5.(X.) = =12, e, (2.4.0
?:(%)) {o, ifp;(0[X,) < 05" nrge (2.40)

For each of the true response class y;, i = 1, ..., nyg, of the test sample
predicted by (f)i(Xj), j=1,..,q, the risk (error) of misclassifying any
subject is estimated through the loss function L{(pl-(Xj), Y;}. We shall

digress a little here to provide a brief discussion on the prediction

error rate’s estimators.

The true error of misclassification by rule ¢(X;) is usually defined by
9 = Exy-w|L{g:(X;), Vi}]

- ]9] = EXY“'I'P [I{(pl(X])i Yi]], 0 S 19] S 1’ (24.1)

41



where Ij) is an indicator function with a value of 1 if its argument is
true and O if otherwise. Since the joint distribution, ¥ of x and Y in
(2.4.1) is not known, the true error (conditioning on both x and Y)
cannot be determined directly. The usual practice is to estimate 9J; by
its empirical risk using observed finite independent sample, in this

case, the test sample nyg. This is computed by

B = 5 g v (2.4.2)

nre

and i1t measures the proportion of the subjects in the test sample
that are incorrectly classified by classification rule ¢; (Xj) (Efron and
Tibshirani, 1997). We shall therefore, call 1§j the misclassification
error rate (MER) and in a later section, we are going to present two
other variants of the MER’s estimators; the brier score which
considers the discrepancies between the true class labels and the
estimated conditional (posterior) probabilities p(y|x), y =0,1, of
subjects belonging to that class and the logarithmic scores which

equally uses log{p(y|x)} in its error rate estimation.

Generally, the empirical error rate of classification rule ¢(x)

constructed using any subset of measured feature x is given by

A 1
9 = =" Ig,0=va) (2.4.3)

nre

where indicator function Ijy is as defined in (2.4.1), 0 <9 <1,

(ﬁi(x)y Yl € {Oll}’

Using the MER concepts and its estimator as presented above, the

response class predictions by discriminant rules ¢;(X;), ..., 9;(X,)
produced a set of ¢ MERs 9;, ...,@q, one for each predictor (gene) X;,
j=1,..,q. From each prediction made by <pi(Xj), a 2 X 2 confusion

matrix, typical of the one given in Table 2.1 can be constructed. The
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confusion matrix cross-classifies the predicted response class
(predicted by classification rule @(x)) by the observed true class
labels, the confusion being in the off-diagonal cells. This matrix
enables us to see at a glance, in the main and off-diagonals, the
number of subjects that are correctly and incorrectly classified by
rule @(x) respectively. From this matrix, several performance
indices can be estimated to assess the goodness of the classifier. For
instance, from Table 2.1, MER can be simply estimated by (b +
c)/(a+b+c+d).

True Class (7)

Marginal
gE’ ! Y Total
“AA
,‘%&’5 1 a b a+b
o %S
5
il 0 c d c+d

Marginal =, o b+d a+b+c+d

Total

Table 2.1: A typical confusion matrix showing the cross-classification of subjects by their true class
labels T and predicted class labels (P) by classification rule ¢(x)

A number of re-sampling techniques are commonly adopted in the
literature to eliminate bias from the estimated prediction error
rates. This is termed cross-validation (CV) and it starts by drawing
randomly, sub-samples of the training set n;z from the original n
samples R number of times (with or without replacement). The
classification rules are constructed on n;p while the response
categories of the remaining test samples nyr are predicted using the
constructed classification rules for each successive sample drawn

over R repetitions. A set of R MERs 9, i» oo Op j» are then computed for

A

each gene variable X; after which the q average MERs 51,52, s Ug
are estimated for all the g gene variables Xj, ..., X, respectively. The

average MERs 5-, j=1,..,q now become the cross-validated MERs

and their estimate are expected to be more efficient than the MERs

43



1§j which are estimated based on a single sample. A typical table of
matrix of the MERs 19”- provided by classifier ¢(x) at different
repetitions for each gene X; is presented in Table 2.2. Detail

discussions on various cross-validation methods are provided in

Section 2.7.

Genes X;
Repetitions Xy X, X,
Misclassification error rates (MERs) J, j
1 Iy P 1§1q
2 Dy D2 192q
R Ope Do Drq
Mean MERs 9, 3, ,§q

Table 2.2: A typical table of matrix of misclassification error rates (MERs) provided by classification
rule (x) for each gene X; at different repetitions.

At this stage, all the g gene variables might be ordered in order of

their prediction performance based on their respective average MER
values. Suppose we allow the sequence 5(1), 5(2), ,5@ be the
observed order of the above observed q average MERs satisfying the
condition that 5(1) < 5(2) < < 5@. Based on this ordered average
MERs we let the corresponding order of all the original g genes be
given by Xy, X(2),..,X()- By this representation, gene X, with
estimated mean MER 5(1) becomes the best gene followed by the
second best X,y with respective mean MER estimate 5(2) and so on.
However, if we define X™ = Xy and 5(1) = 5’"1, then superscript
m; would indicate that gene X™ is the first gene with minimum

average MER contribution to be selected into our prediction model.

Thus, 5(1) = 9™ = min (5(1)'5(2)' '5(61))'

Under the conventional stepwise variable selection procedure, the

importance of any variable to enter the model is judged by an
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arbitrarily selected implied significance level p, against which the
respective p-values of the estimated likelihood ratio statistics are
compared. Under this new proposal however, individual genes and
their combinations are judged to be suitable for inclusion into the
model based on their predictive strength of the response classes.
This we simply assessed through their estimated MER values. By
this criterion, the marginal contribution of each selected gene at
reducing the prediction error rate of the successive models is
examined. If this marginal contribution is significant enough based
on some test criteria (to be developed), the selected gene i1s retained
in the model, but if otherwise, it is not selected. The significant
level(s) a at which the best set of genes are selected is determined
through internal cross-validation and is not to be subjectively fixed
by the investigator. At the end of the whole exercise, the
combination of genes that yielded the minimum overall estimated
average MER value among the family of all possible gene

combinations in the data is chosen as the best by our method.

In a nutshell, our sequential selection procedure begins at step 0

with the selection of gene X™:, being the gene that yielded the

minimum mean MER 9™ among all the g genes. To determine
whether any of the remaining g — 1 genes is important once the gene
X™t is in the model, we construct g — 1 classification rules ¢™1@ (x),
™A (x), ..., @ (x) on the respective gene pairs X™ Xy, X™ X3,

.o » X™ X4y according to the same scheme given in (2.4.0). Based on
the constructed g —1 prediction rules, the response classes of the
test sample n;z are predicted and with the use of suitable cross-

validation technique the respective average MERs

IMm@, Im®), .. ™M@ are computed.
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Let X™X™2 € {Xml X2, XM X(3), e , X™ X(q)} be the gene pair that
yielded the minimum average MER defined by
Jmamz — min (5"‘1(2),5"‘1(3), ,5"‘1(‘1) ) Therefore, at step 1, gene X™2

1s chosen for possible consideration into our prediction model for

being the gene that contributed to the estimated minimum mean

MER ™™ out of the remaining q — 1 genes. Like m,, subscript m,
in the above representations also indicates that gene X™2 is the
second gene, with minimum average MER contribution, desirable for
consideration into our prediction model. Thus, gene X™2 becomes the
next best gene candidate suitable for selection into the model

provided it satisfies certain test criteria.

Without loss of generality therefore, for any set of sequentially
selected genes X™1X™2 . X"i+1  the last gene X"+t is the next best
(j+ 1™ gene to be considered into the model among all the
remaining q — j genes at the j'" selection step. Therefore, gene X™i+1
1s the gene that has the highest contribution at reducing the average
prediction error rate of the preceding model that uses j set of genes
X™ix™z  X™i, This gene selection procedure shall continue for all
the possible combination of genes for which their marginal
contributions into the successive model(s) are significant as
established by our test criteria. Further gene selection processes
only terminate when none of the remaining (left-out) genes is

capable at improving the prediction strength of the current model.

We presented in Table 2.3, the schematic representation of the MER
computations required while searching for the second best gene, X™2

to be included with X™1 in the classification model.
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Sequence of genes selection

Test Repetitions = — — —
sample (R) X X" X2 X™ X3 o0 X™ X (g
Misclassification Error rates (MERSs)

amy ami(2) 5M1(3) §™M1(q)
Nrg 1 191 191 191 aee 191 4
am aM1(2) 4M1(3) §™M1(q)
nrg 2 9, v, 9, 9,
qmi §M1(2) 3M1(3) aM1(q)
nrg 3 9] 9, 9, 9@
g §M1(2) §m1(3) §m i@
Nrg R It 9, L Yy
Average MERs Hm HMe M Hm@

Table 2.3: The schematic representation of the MER computations required while searching for the
second best gene to be added to the first selected best gene X™ into classification the model.

The next step is to determine the significance of the marginal

contribution of gene X™2 into the new classification rule ¢ (X™1, X™2)

(later defined as ™+ ™2(x)) with an average MER of 9™™M2 gver the

previous rule @(X™) (later defined as @™ (x)) with an average MER

performance of 9™ based on some test criteria (to be developed). If
this marginal contribution is significant as established by such test
criteria, then gene X™2 stays in the model and the search for the
next best gene, say gene X™s3, to be added with genes X™1, X™2 in the

model would begin.

The marginal improvement of the current classification rule

™™z (x) over the preceding rule ¢™:(x) is determined by the

difference between 9™™ and 57”1, their respective average MERs.
However, two forms of such mean MER differences exist which

eventually returned similar results as would be established later.
These are denoted by & =9m —gmmz gnd 52 = Hmumz _ mi
Appropriate test procedures shall be constructed for the two

formulations in what follows.

Let the population mean MERs of the estimated empirical mean

MERs 9™ and ™™ be represented by ugll and ,ugllmz respectively.
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Then, the following one directional hypothesis of difference are

desirable;
H011 . ‘ugll - I.Lgll’mz S 0 US. Hall :‘ugll - M_‘gll,mz > 0\
- H011 :611 S 0 US. Ha11 :611 > 0
> (2.4.4)
or Hyip: #Irgnl,mz - ugll > 0vs. Hyqp :,u;nl’m2 - ,ugll <0
- H012 :612 = O US. Ha12:512 < O )
where 651 = uy'* — py ™™ and 82 = puy ™ — py* with their respective

unbiased estimators given by &1 = Hmi — mimz and 52 = Hmma
9™, This hypotheses sets shall be used later to illustrate the basic
steps involved in the sequential gene selection method we proposed

in this thesis. But before we go into that, it is necessary to establish
the sampling distribution of Hm (or more generally 5’”1"”2""'"11') and
that of ;1 (or Sjl) under some special cross-validation techniques as
used in the construction of our test procedure for testing (2.4.4). The

sampling distribution of §2 (or sz) takes the same form as that of

A

611 .

Let the class label Y;, € {0,1} of all the subjects in the test sample n;g
be as earlier defined in (2.1.2). It then follows that classification rule
@™ (x), for instance, can correctly (if ¢™t(x) =Y;,) or incorrectly (if
p™(x) #+Y,,) classify any subject in sample n;; as being a class 0 or
1 subject. For those cases for which ¢™1(x) # Yy, let the rule ¢™1(x)
has a chance 9™, 0 < 9™ < 1, of misclassifying any subject in the
population containing test sample ny; into either being a class 0 or 1
subject. It then follows that the classification function ¢™:(x) is a
random variable having a Bernoulli process 9. The probability

mass function of ¢™1(x) for a single subject classification is given by
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ple™(x) = M [9™) = (™))" (1 —9™)1=¢™ | o™ = 0,1, (2.4.5)

The distribution of the sum, ®(x) = X% ™ (x) over the entire test

sample n;z 1s given by
p(®(x) = P[9™) = ("TE)W™)P(1 —9™)E=P, D =1, ..., n7;.(2.4.6)

n
iy o] ()

nre

The unbiased estimator of 9™ is 9™ = which simply

equals to the empirical error rate, as given in (2.4.3), of wrongly
classifying any subject in the test sample n;; by classification rule
@™ (x) but presently using only one gene X™. From sampling

distribution of 9™ it follows that

5 T E B[] )]
E 19m1 — Zi=1 l — miq 4.
() === == (2.4.7)
~ Zn_TE UZ{@T’H ()] 9M1(1 — 9™M1)
2 m — Zi=1 i —
o?(d™) = o == (2.4.8)
and by central limit theorem (CLT) we simply have that
— WNN(OJ) (2.4.9)

Jor@ma)

It should be recalled that when any of the cross-validation
techniques (MCCV or bootstrap) is used, a set of R estimates of

nTE ~Mq nTE ~Mq
am Yicl @51 (X am Yici @i (X am
average MERs 9o, ' ==—"1— v, =" — ., Y=
nre nre
nTE sMq
et ®ig ()

~ would be computed, one for each of the classification rules
TE

071 (x), @) (x),...,pp (x) that were constructed over all the R
repeatedly drawn random samples of size n;p from the original
sample size n. By this, the response class of a total of n;z X R future

subjects would be predicted. Hence, the sampling distribution of the

49



mean prediction error rate Hm =%25=119;n ! according to (2.4.7),

(2.4.8) and (2.4.9) is as follows;
E(Dm™) =238 E(]) =238 0 =

R E (5%) = um (2.4.10)

o (™) = 3R, 2(9) = ———FF oM (AL —9™)  (2.4.11)

RZXnTE r
Also, by CLT we have that
_ 9m-g(om)

ST

Similarly, for the mean misclassification error rate 9™™2 estimated
Y,

~N(0,1) (2.4.12)

by classification rule ¢™+™2(x) using the gene pair X™1,X™2 we shall

have that

E(9mame ) = g™ (2.4.13)

o2 (fmme) = 3K 9T (1 — 9] T)  (2.4.14)

RZXTLTE r

and also that

_ gmimz _ p(gmimz
7, = EE™™) _N(0,1). (2.4.15)

0-2 (1297711,‘”’12)

Without loss of generality therefore, the mean prediction error rate

Hmamz,..m; ,j=1,2,..,q, computed by classification rule g™+ (x)
using the set of j genes X™1, X™2, .., X™ would have the following

distributional properties;

. (5m1,m2,...,m,-) = ey (2.4.16)
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o2 (5m1,m2,...,mj) — szlnTE Zleﬁ:nl'mzuwmj(l _ 19;n1,m2,...,mj) (2'4.17)
_ §m1,m2,...,mj _ E(@ml,mz ..... m])
and 7 = ~N(0,1). (2.4.18)

\/az(gml,mz,...,mj)

All the above sampling distributions of the mean MERs work
perfectly under the MCCV sub-sampling scheme. If the cross-
validation by bootstrapping is to be used, little modification has to be
effected. We shall only present the sampling distribution of the
average MER estimates for the bootstrap.632+ scheme (Efron &
Tibshirani, 1997) as used in this thesis.

The estimator of the average MER employed by classification rule
QMMM (x) using a set of genes X™1,X™2, .., X™ according to the

bootstrap.632+ sub-sampling scheme is given by

A'I'T'l.l,'n'l.z,...,'I’T'l]'
bootstrap

AMmq,msyp,.

1
0.632 =%k | 9

r.test

nml,mz,...,mj

™ +0.368 % = 3R,

r.train

From the above estimator, the following results are trivial;

ﬁml,mz,...,mj

E (ﬁbootstrap

mq,my,.
r.test

) = 0632 x= ¥R, 0 M 40368 £ LER 5

r.train

> E (5"‘1"”2""””") = 0.632 % 1 7™ 40,368 x vz (2.4.19)

bootstrap O.test d.train

2 iml,mz,...,mj _ 2 i R 2 Aml,mz,...,mj

Also, o (19bootstrap )_ (0.632) *Rz ZT=1G (ﬁr.test )

2, LyR _2(3mamz.-m;

+(0.368) * — YR 02 (9, g )
2 A777,:]_,77'12,...,Trlj _ 2 1 R ml,mz,...,mj _ ml,mz,...,mj
-0 (19bootstrap )_ (0'632) *sznTE T=1l9r.test (1 19r.test )
2 1 R ml,mz,...,mj _ ml,mz,...,mj

+(0.368)? * 7o — X719, 1 in (1—9 2 2""7) (2.4.20)

and similarly we have that

=mq,msy,... m;j
_ 9 T -E(9
Z'.bootstrap — bootstrap ( bootstrap )NN(O,].) (2421)

] \/o_z(ﬁml,mz,...,mj)
bootstrap

cml,mz,...,mj
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where npz =n, the bootstrap sample. Further details on

bootstrap.632+ MER estimator are provided in Section 2.5.

Now, let us consider the unbiased estimator of 8;1 = pg™* — g™

given by &u = 9™ —9™m2 a5 defined under one directional

hypothesis set (2.4.4). It then follows that

E(8p) =E(9™) —E(dmme) = g — g™ (2.4.22)

and if we consider any possible association between 9™ and ymume
since both of them are estimated using the cross-validated random
samples n;py X R that are generated from original sample size n,

then, the variance of 8,: could be estimated by
02(8,1) = 0% (9™ ) + 0% (§m™m2 ) = 2c0v (§7am2, ™) (2.4.23)

where cov (5’"1””2,5’”1) is the covariance estimate that accounts for

any possible association that may exist between the two empirical

average MERs. This could be simply estimated by

cov (5"‘1"”2,5"‘1) =p (éml'mz,éml) * \/02 (5’”1""2) * g2 (5’”1), (2.4.25)

where p (5"‘1'"‘2,5’”1) is the Pearson correlation coefficient estimate

between 9™ and 9™ M2,

If Gaussian distribution is assumed for random variable §,1 = Hm —
5’"1""2, the difference of two successive MERs estimated at step 1,
then, it follows that &;1~N (E(811),02(811)) and consequently, we

311 —5(311)

1,‘72(811)

shall have that 2311 = ~N(0,1).
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More generally, for any observed pair of empirical average MERs

Yramzmj gpd 9MMe-Mivn i =12, ..,q—1, for which Gaussian
distribution is assumed for the difference of successive pair of

average MERs 6;1 = Y My QM1 Ma, M1 gy 8jz = YMyMzM+L —

5’”1"”2""""1, thatis, 8;s~N (8;s,0%(8;s)), s = 1,2, it is obvious that
j j j

mq,myp,..m;j mq,my,..,Mj4q
j j

6]'1 = E(Sjl) = l,lﬁ 9

(2.4.26)

ml,mz,...,mj+1 ml,mz,...,mj

5]-2 = E(sz) = /119 9

and with Sjs =+ (5’"1"”2""””1' — 5"‘1'"‘2'"""‘1'“) for s =1 or 2, we shall

have that
0'2(8]-5) = g2 (5m1,m2,...,mj) + g2 (sml,mz,...,mjﬂ)
e ) (2.4.27)

Hence, the assumption that

Zs . = +—L_~N(0,1) (2.4.28)

equally holds.

However, when considering the differences between two successive
pair of bootstrap MERs, the modifications effected on the bootstrap
.632+ MER estimator as provided in equations (2.4.19) to (2.4.21)

need to be incorporated.

In what follows, we present the procedure for testing the general
form of the hypothesis set in (2.4.4) over successive j average MER

differences. Its optimality properties shall also be discussed. The
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simple case of two gene selection as considered by hypothesis set

(2.4.4) shall be illustrated at the end of this section.

Let X™1, X™M XMz XMixmz2Xms __ XMiXTM2XMs  X™aqbe the sequence
of selected gene combinations by respective classification rules
™ (x), MM2(x), eMM2M3(x) ..., MrM2M3Mq(x) based on their
marginal contributions at reducing the average MERs in successive
models with the last classifier using all the g genes. The
corresponding average cross-validated MERs produced by the above
sets of gene combinations are given by 57”1, 5"‘1"”2, 5’"1‘"‘2"”3,
,5’”1""2""3""'7"‘1 respectively. However, the prediction accuracy of
each successive classification rule is expected to improve as
additional genes are selected into the model. Therefore, the following
order of the estimated mean MERs is expected for all the selection

steps at which additional genes are selected for prediction:
I > Jmume 5 Jmamams 5 s gmama,.mg (2.4.29)

If the complete ordered form of average MERs in (2.4.29) is observed
by our new classifier in any given microarray data set, it simply

indicates that the best prediction model with the least (optimum)

average MER Jmima.-mg yses all the q genes. However, this is not
practically feasible, because the apparent improvement in prediction
accuracies due to successive inclusion of additional genes would
vanish at a particular selection step. When such a step is reached,
the inclusion of additional gene(s) would either brings no further
improvement in prediction accuracy into the current model or
worsen the prediction performance of the previous model. Our
proposed classification rule here therefore seeks to determine the
optimal gene selection level at which the best prediction accuracy

would be achieved.
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If we consider the difference between the j and (j + 1)** average
MERs as indexed by 8]-1 = JMuMa M) _ MMz M oy
sz = Ymamasamirn 5’"1""2"""”1', j=1,..,q —1, using the g expected
order of performance formulated in (2.4.29), then we shall

have two ways by which the ¢g—1 mean MER differences

can be formulated. We present these two

formulations as 8; = (5’”1 —9muMme | 9MuMe,Mg-1 1§m1,m2,...,mq) and

6, = (19’"1""2 —9™, .., 9 MM — ﬂml'mz'“"mq-l). The estimators of

the two vectors 6; and &,are identical except for the sign
differences. These two formulations are again presented in Table 2.4.
We shall develop the test procedures that will handle the two
formulations for our gene selection problem. The two vectors may

therefore be represented in terms of Sjs, s=1,2, as

8y = (61,851, .., 84-1)1) (2.4.30)
8, = (612,852, ..., 84-12) (2.4.31)
Mean MERs j=1 j=q—-1

Sjl = EmlimZH-umj — @m1.mz.---.mj+1 gml — 1§m1,m2 5m1rmz.m3.---.mq—1 — §m1.mz:m3,---,mq

sz = 9MM2, Mgl _ QM My, M Imume _ gm YMLM2M3,sMg _ G, Ma, M, Mgy

Table 2.4: Table of the two average MER difference formulations Sjs = i(sml'mz """ mj — 5’"1'"12"""“1'*1)
for s = 1 or 2 respectively at any two successive gene selection steps j and j + 1.

It should be noted that, the expected order of mean MERs in (2.4.29)
does not necessarily suggest that the respective minimum mean
MER pair differences as given in (2.4.30) and (2.4.31) would also
followed that unique order. The implementation of the k sequential
selection procedure (k-SS) we proposed under the two minimum
mean MER difference formulations in (2.4.30) and (2.4.31) are

presented in what follows.
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& The k-SS procedures under the 6 = 9™z~ — gmuMz--Mj+

difference formulations

For any two successive selection steps j and j+1, let Sjl =

Hmum _ Gm MM j=1,..,q—1 be the vector of minimum
mean MER differences as presented 1in (2.4.30). Better
1mprovements in successive models are expected as additional genes
are being selected into the models. Thus, at any two successive
selection steps j and j+ 1 at which additional gene 1s selected,

positive values of Sjl’s would be observed in as much as the

inequality Ymumz ey _ gmame,. M s, Ci, 1s maintained for some
critical value C;, of the k-SS test procedure to be determined. This is
the stage 1 of our sequential selection procedure. Improvement in
prediction performance as observed at stage 1 shall continue until
the second selection stage, stage 2, is reached at which the marginal
improvements in successive models begin to diminish. At this stage,
the estimated average minimum mean MERs Jmima-mjr1 would be
approaching that of 9mima--mj an indication that the current model
(with additional one gene) is no more having significant marginal
gain in terms of better prediction accuracy over the preceding model

since 6j1 - 0.

At the last selection stage, stage 3, considerable losses in prediction
accuracy of the succeeding models are expected as more genes are
selected. This selection stage 1s characterized by having the
estimated 9MvMzeMis1lg > YMuMmzmils which consequently implies
that the Sj1’s < 0. Nonetheless, the optimal gene selection 1is
expected at any of the last two selection stages (stage 2 or stage 3) at
which further selection of additional genes into the model would

yield no improvement in model’'s prediction performance. The
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moment such stage is reached, further gene selection stops. The
schematic illustration of the three basic selection stages as described

above with respect to the Sjs formulation is presented in Fig 2.1a for

s=1.
(a_) Sjl — gml,mz,...,mj _ gml,mz,...,mjﬂ
Stage 3 Stage 2 ) Stage 1
8j1 < Cy, (Loss in prediction power 81 = €14 (No improvement in 81> Cy, (Improvement in
of successive models). Gene selection successive models) Gene selection successive models) Gene selection
stops stops continues
P —| — —
b !
00 0 +o0
(b) 8]-2 — §m1,m2,...,m}-+1 _ 5m1,m2,...,mj
Stage 1 Stage 2 A Stage 3
5,2 < Cy, (Improvement in 5]z =~ (;, (No improvement in 62> €y, (Loss in prediction
successive models) Gene selection successive models) Gene selection power of successive models). Gene
continues stops selection stops
s | — o
I »
-00 +0oo
0

Fig 2.1: The schematic representations of the three stages of gene selection processes by the newly
proposed k-sequential selection (k-SS) method under the two minimum mean MER differences

a.)3j1 = GMMzMy _ G My g b.) sz = JMumaaMyes _ Mumz,emy any two successive gene
selection steps jandj+1,j=1,..,q—1. The c;, represents some critical value of the k-SS
test procedure.

For any two successive j* and (j + 1)** gene selection steps, the
appropriate general one directional hypothesis test required to

justify the selection of additional gene at step j is given by

mq,my,...m; mq,my,...Mj4q mq,myp,..m;j mq,msy,...Mjyq
Hoqj: g T — g <0 ws. Hgyj:pg T — g >0
- Ho1j:8;1 S0 vs. Hgyj:60>0,j=1,..,q—1 (2.4.32)
mq,mo,...Mj mq,mo,..Mm; . .
where 8= p, " —py, 777 Obviously, the unbiased

estimator of §;:1 is given by 6}1 = YU _ G M, My However,
the test hypothesis set (2.4.32) is the general form of the one
directional hypothesis test (2.4.4).

If Hy;; 1s accepted in the test hypothesis set (2.4.32) for any

successive j™ and (j + 1)*" pair of steps, this is an indication that the
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selection of additional one gene into the preceding j** model that

yielded the mean MER Hmimzm;j jg no longer necessary because

1) no further improvement in prediction accuracy is achieved
from the current (j+ 1) model despite the selection of
additional one gene into the preceding j** model if
Gy = graimz-Mis1 and that

i)  the misclassification error rate of the current (j+ 1)™
model is further worsened if one more gene is included in

the j* model for which d™rM2Mj < GMuM2Mjss — gg

..,mj

represented by the null hypothesis Hy;; where Hmumz.

and 9™Mz-Mis1 gre the average MER of the j™*(preceding)

and (j + 1) (current) models respectively.
Therefore in a loose term, at any two successive gene selection
steps j™ and (j+ 1) the performance difference Hmama.mj _
mumzmje1 >, Ci, need to be satisfied to guarantee the inclusion of
additional one more gene into the preceding j** model, for some
critical value C;, € R. This literally translates to stopping the
selection of additional gene at step j if Ymumzmj _ gmme,.mjvy <

Ciq-

To construct a formal statistical test for hypothesis set (2.4.32), let

7~ = 6,1-E(8,1) 8,1-E(3,1) 8(61—1)1_}5(8(61—1)1)

tOAG T e T )

be the vector of test statistics for testing the set of j one directional
hypothesis in (2.4.32), j =1,...,q — 1. According to (2.4.28), each of

8,1-E(3,1)

2(3.
o 5]1

(2.4.33)

the test statistics Zz = € Z3, 1n (2.4.33) 1s assumed to have
]
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a standard Gaussian distribution. It then follows that vector
Zgl = (2311’2321""’23

have a multivariate standard Gaussian distribution with (g —1) X

- 1) of the test statistics could be assumed to
-
(@ — 1) unit variance-covariance matrix X. It should be noted that,

we only assumed Gaussian distribution for Zz or §;:, its true
J

theoretical distribution (@Gf different from Gaussian) shall be

determined at a later part of this work.

Nonetheless, under the null hypothesis Hy, ;, E(Sjl) = §;1 = 0, and by

our earlier distributional assumption on Sjs, s = 1,2, we have that

8j1asymptN (0,0’2(8]-1)) and that Zgjl = asymptN(O,].). It then

2(3.
o 6]1

follows that each successive pair of mean MERs mumzemj gand
Jmmz-misi computed at j* and (j+ 1) steps could be tested

5]-1

sequentially using the test statistic ——==. Therefore, the decision
’0’2 3‘]1

rules for such sequential test could be stated as follows;

1) Stop the selection of additional one gene into the j©* model

(accept Hy,; at the j step) if
j

Zs =—L—< (] (2.4.34)
RO

11) Select additional one gene into the j** model (accept Hy,; at

the j step) if

8,1

Zs = > (1 (2.4.35)
0. a
]1 0‘2 8]-1

where Cl is the critical value of the percentage point of the

hypothesized distribution (e.g. Gaussian, etc.) of Zz at a significance
]

level a to be determined.
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Equivalently, the above decision rules (2.4.34) and (2.4.35) can be re-

stated respectively as follows;

iii)  Stop the selection of additional one gene into the j™* model

(accept Hy,; at the j step) if
j

Sjl — MMz, _ My My,ecMjyq <l /02(5}-1) (2.4.36)

iv)  Select additional one gene into the j** model (accept H,;; at

the jt* step) if

§j1 = Gy Gy > (1 /02(8]-1) (2.4.37)

Using the decision rules (2.4.36) and (2.4.37), the new critical value

Ca /02(81-1) of 6}1 directly substitutes for C;, as used earlier.

Therefore, at the j™* selection step, the decision is to stop the
selection of additional one gene into the j** model if the inequality in
(2.4.36) 1s satisfied while the selection of additional one gene 1is

accepted if the inequality (2.4.37) is satisfied.

An important aspect of this new test procedure is that for any

hypothesized distribution of our test statistics Zz _ or 8]-1, the value of
]

the significance level a used by the test which consequently

determines the size of the critical values C} or C2 ’az(gjl)is not pre-

determined by us as often the case with some variable selection
methods (see our comments on SLR method and some other variable
selection techniques as earlier discussed under this chapter). In
other words, the size a of our sequential test procedure at which
optimal sub-set of genes are selected is determined through internal

cross-validation and not arbitrarily fixed, for instance, to 0.05 or
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something else by the investigator. Our procedure seeks to perform
gene selections and response class predictions over all possible range
of values of significance level a within the interval [0,1]. That value
(range of values) of @ between 0 and 1 at which the decision rule
(2.4.36) 1s satisfied and for which the optimal (best) prediction
accuracy is achieved becomes the size of a of our test. Consequently,
the selected k=j gene(s), j=1,..,q—1 at which further gene
selection terminates becomes the needed optimal informative k
genes suitable for classifying the mRNA subjects into their
appropriate the tumour sub-groups. More details on this shall be

provided in Chapter 3.

It should be recalled that each of the estimated average MERs
5’”1, 5’"1"”2, éml'mz'm% ,5’”1"”2"”3""""‘1 1Is a minimum statistic
estimate computed at each gene selection steps. This literally

implies that at any given successive jth and (j + 1)t pair of gene
selection steps, j=1,..,q—1, the statistic 06;: = Hmmze.mj
GmMzMits or §p = YMMeMs — §MM2-M g g difference between

two observed minimum mean MERs 9™v™M2Mj gnd 9MvMe-Mj+1

obtained at j®" and (j + 1) steps respectively.

Although, Gaussian distribution has been earlier assumed for the
estimators S]S = i(§m1.mz....,mj_5m1.m2....,mj+1), S = 1 or 2, their true
distribution might be different from Gaussian due to the fact that

their realizations are the differences of two minimum statistics.

Therefore, in testing the null hypothesis Hy,;: ‘u;anz,...,mj B
'”:9n v <0 in (2.4.32), we suspected that the test statistic

constructed for the test might not follow a standard

o2(8;1)

7x =
8.

Gaussian distribution as would have been expected under the null. If
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our suspicion is correct, then, the use of the critical values of the
percentage point of the standard normal distribution Z;_, for C} in
(2.4.34) to (2.4.37) for the test might not be appropriate. Base on this
suspicion, it is necessary to determine the true distribution of the

difference 5]-1 or Zz ~whose quantile values could be suitably
]

determine as the correct value of C} /02(8]-1) or C} as appropriate.

We shall use the gene selection results at steps 0 and 1 to illustrate
the procedures that leads to the determination the distribution of

Sjl. At step 0, gene X™ E{X(l), X2y oee s X(q)} that yielded the
minimum mean MER 9™ = min (5(1), 5(2), ,5@) among the set of
ordered mean MERs 5(1), 5(2),... ,5@ is selected with 9™ =1§(1).
Therefore, for j=1,..,q, let 5(]-) has unknown density function

f;(,) (¢o). Then, from the distribution of ordered statistics, it is very
J

easy to establish the density function of 9™ as

f(s0) = a1 = F (Gl f5, (60) (2.4.38)

where F@(D (&) = ffgo fﬁ(,-) (wdu.

Similarly, at step 1, our sequential procedure selected the gene pair

XmX™z € {X™ X5y, X™ X3y, ... ,X™ Xy} that yielded the minimum
mean MERs 9™™2 = min (5’"1(2),5’"1(3), ,5’"1@) among the set of
q — 1 mean MERs 5"‘1(2),5"‘1(3), ,5"‘1(‘1). Let the ordered statistics of
the ¢ —1 mean MER sequence Mm@, Jm®), .. IM@ be given by
Sc12y sy »91qy respectively with ™Mz =9, Also let the

unknown density function of each 5(1]-), j=2,..,q9, be given by
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f3., (&;). Then, it can be easily verified that the density function of

9™m1m2 ig of the form
pn(s1) = (q = D[1 = F5, (G125, (&) (2.4.39)

Given that the difference of the two minimum average MERs Hm
and 9™m g 5 = 9m — 9ymmz2  then, the distribution of 5 is
desired from which the critical value C! of our one directional
hypothesis tests (2.4.4) and by extension, that of the general test in
(2.4.32) can be determined.

If we represent the joint density of 9™ and JImme by
forum(3™ 5" ™), then, the distribution of §;1 = 9m — Jmima can be

determined as follows;

Let the distribution function of §,: be given by

F?sll(S) = P(Sll < 8) =P (5m1 — 1§m1,m2 < 5")

B (8) = [l gy frozm G 8"")dG™)d ™)

Fo(8) = 7 [, fran GR 8" dG™™)] dG™)  (2.4.40)

If we substitute 9™ — v for ™™ in (2.4.40) for any arbitrary

variable v, then we shall have that,
F.(8) = [ |1, franGm 3" -0 dw)|dGE™) (2441
Similarly, if 9mum2 1 is substituted for 9™ in (2.4.40), we have

F.(8) =/, [f foram (377 + ”ml’"z)d(v)]d(”’”l"”) (2.4.42)

The representations (2.4.41) and (2.4.42) are the expressions for the

distribution function of 81 = 9™ —9mmz | To obtain the density
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function of 6,1, f;sll(g), we simply take the derivative of the

distribution function in (2.4.41) and (2.4.42) respectively. Therefore,
from (2.4.41) we shall have that;

dF; 1(5)

£.(8) =

while from (2.4.42) we shall have that;

= L5 fran G ) dG™)]d @)

£.(8) = = 13 = S fran (5™ + 03 dG™™)]d )}

These consequently yield the two forms of f; , (8) given by
f5.,(8) = [ oz (™5™ - 0)d(E™) (2.4.43)

£.(8) = [7 fram ("™ 405" dE™™)  (2.4.44)
respectively.

If Gaussian densities with means ,uﬁ1 & ,umlm2 and variances
o, = 02 (5’"1) & o, =0? (ﬁml'mz) are as initially assumed for the
distribution of both 9™ & 9mumz respectively hold, then, the density
function ]%11(8) in (2.4.43) can be expressed in terms of the joint

density function of both 9™ and 9mMm2 ag

f5,.(8) = [ o exp |~y | d (™) (2.4.45)

(3m1- ,gn)z s (5m1-v- #gtl.mz)z 2p(FM1 - ) (1 -y M2

where z; =
01 02 0102

and p = corr(@ml,sml'mz). Also, from (2.4.44), the equivalent form of

fSll(S) as in (2.4.45) can be established in terms of Jmima ag

fiu®) = L mmep [t 4 (9mm2) - @440
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where

Z, = (’?ml'm“”_“gll)z + (

01 02 0102

gmimz _#:1911,1712 )2 2p(129m1rm2 +v—ugll)(§m1'm2 _#:’911'7”2)

More generally, for any pair of minimum average MERs Hmumz,...m;

and 9™vM2-"Mj+1 having Gaussian densities with respective means

my,my,...,m;j

ml,mz,...,mj+1
)

and u, and variances o; = 02 (Eml'mz'"-'mf) and

0, = 02 (5’”1'7”2'"'"”“1), the density function of the difference 8j1 =

Ymumz,.mj _ gmims..mjr1 could be obtained from the marginal density

functions of both 9™v™MzMj gnd M M2Mj gg

f6 &=/ 00—2110102 = exp [_—2(1i1pz)]d(gmpmz,...,mj) (2.4.47)

or equivalently as
f5.08) = [7 ———exp |- 2| d (§mmamin)  (2.4.48)
6,1 °°27r0102,/1 p? p 2(1-p2) T

where p = corr(9™™mz-Mj §MM2-Mjs1) - 7 . and z;, are respectively

given as
=mymg,..m; MMMy 2 =mq,my,...,m; myma,..Mj4q\2
(19 1.m2 J_ﬂ.g ]) (19 1.m2 J—U—H.ﬁ ] )
Z11 = +
01 02
=mq,my,...,m i ml,mz,...,mj)(cml’mz miq,my,.. j+1)
_2p(19 J J73 9 mj_y— Ky
0102
=~ 2 ~ . 2
d (@ml’mz Mjt+1 4y ygll M2 ]) (1_9m1'm2'---'mj+1_Hgll'mz’""ml"'l)
an Zip = +

o1 02

- . mq,mo,..m;\ /= . mq,mo,..m;
Zp(“.9‘"7.1,77'7.2,...,171.]_'_1_|_V_I‘L‘l9 1,12 _])(“.977'7.1,771.2,...,771.]_'_1_”19 1,M2 ]+1)

01032

However, since we have suspected earlier that the Gaussian density

might not be appropriate as the distribution of Sjl, the true density
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function, fgll(S) in (2.4.47) or (2.4.48) of 8]-1 estimator would be
]

determined through simulation studies in Chapter 3 in line with the
set-up of our proposed sequential test procedures. The quantile

values of the true theoretical density of 8]-1 (or sz) to be determined

shall then be true critical value C} (or C2) of our test.

& The k-SS procedures under the 62 = 92+t — gz

difference formulations

In a similar manner, if the differences of the successive pairs of
minimum mean MERs sz = YMUMz M4t _ GMUMz M g presented in
equation (2.4.31) and Table 2.4 are used to construct our k-SS
method, the same results and conclusion as obtained under the Sjl
formulations would be obtained. Under the sz formulation however,
negative values of S]-z’s would be observed at all selection steps for
which 9mumz-mjs1 < 5’”1"”2""'7"1', denoting the stage 1 of the
sequential selection stages. At this stage, the prediction power of the

succeeding models would continue to improve. At stage 2 however,
the situation for which 9™VM2=Mjs1 5 JMimzwmj  would exist,
implying that the difference 8]-2 — 0. Thus, no significant
improvements in successive models in terms of prediction accuracies
would be expected at this selection stage. Finally, at stage 3, it is
expected that MMz M1 > MMz g0 that sz > 0. Considerable
losses in prediction accuracies of successive models would be
recorded at this stage. The schematic presentation of these three

selection stages under the sz formulation of our k-SS method is

presented in Fig 2.1b.
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Now, if we consider the difference formulation sz, the appropriate

one directional hypothesis of interest would be of the form

my,My,..Mipq my,my,..m; my,My,...Mipq my,my,...m;
Hozj: g ! — Uy 7> 0vs. Hgj iy - o T <0
- Hozj:82 20 vs. Hppj:8;2<0,j=1,..,q—1 (2.4.49)

ml,mz,...,mj+1 ml,mz,...,mj

where 8,2 = p 9 with its unbiased estimator

given by sz = YMamz.amiry — gmimz.mj - Ag defined in (2.4.43), vector

Zs, = (Zgjz), for j =1,..,q — 1, is the vector of the test statistics for

§.2-E(3.
testing the q —1 hypothesis set (2.4.49), where Z3, =’2—’2)
]

,O’Z(sz ’

0j2 = YMMz M1 — MMz, gpnd E((sz) =0 wunder Hy,;. The

~

decision rules with respect to sz formulation are as follows;

1) Stop the selection of additional one gene into the j* model

(accept Hy,;) at the j* step if

5"]_2 — 5m1,m2,...,mj+1 _ 1§m1,m2,...,mj > Cozc ’0-2(8‘],2) (2.4.50)

11) Select additional one gene into the j* model (accept H,, j) at

the j step if

§j2 = G — Gz < (2 /02(8,-2) (2.4.51)

where the critical values C2? for the test shall equally be determined

through cross-validation using the theoretical distribution of sz or

Zz ,. The true distribution of 4,2 is similar to that of §;1. Necessary
J

details on this are provided in Chapter 3.

It should however be noted that the use of either of the hypothesis

test (2.4.32) or (2.4.49) would yield the same selection and

classification results. All these are demonstrated in the next chapter.
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In summary, when Hy,; or Hp,; 1s accepted using decision rules
(2.4.34)-(2.4.37) or (2.4.50)-(2.4.51) depending on whether hypothesis
set (2.4.32) or (2.4.49) is used respectively at any particular j step,
further gene selection into the j*® model stops and the k = genes
selected at that point becomes the optimal informative genes. If on
the other hand, H,;; or Hy;; 1s accepted, additional one gene is added
at step j after which the search for the next best gene begins. A
single algorithm that captures the whole k-SS procedures is
presented in Section 3.2. Nonetheless, we present clearly in what
follows, the basic steps required in the implementation of our k-SS
method. We shall provide illustrations using the hypothesis set

(2.4.4) designed for only two gene selection steps.

Here, we shall revert to the use of our initial notations in which gene
X™ 1is the first gene to be selected at Step O being the gene that
yielded the minimum mean MER Hm among the ordered sequence of
the original g genes, X4y, X(3), ... ,X(q) and the gene pair X™1X™2 is
the set of genes that yielded the minimum mean MER Hmama among
the g — 1 sequence of gene pairs X™t X;), X™ X3), ... ,X™ X(4y. Here,
we shall test whether the inclusion of additional gene X™2 into the

preceding classification model that contains only gene X™ improves

or worsen the prediction strength of the current model through the
average minimum MERs difference Sjl =J9m —Jmma op sz =
9mimz2 — 9m1_If this difference is not significant based on appropriate
decision rule (2.4.37) or (2.4.51) depending on whether test statistic
Sj1 or szis used, it simply shows that the marginal contribution of

gene X™2 at improving the current model is not significant. Then,
further gene selection stops and the model containing only gene X™

becomes the best optimal model. On the other hand, if its
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contribution is significant according to decision rule (2.4.36) or
(2.4.50), the new selected gene X™2 would be retained with X™ in
the model while the search for the next best gene to be added with
X™t X™2 would begin.

This sequential selection steps continues until none of the remaining
genes could satisfy the decision criteria (2.4.37) or (2.4.51) that
allows the selection of additional genes into the model. The k genes
selected, k < g, at which no additional genes can be selected into the
model becomes the required optimal k informative genes and the
response class predictions provided by such set of genes becomes the

optimal prediction.
Backward checks

It is suspected that at each gene selection step where new gene is
selected into the model, it might be possible for some of the
previously selected genes not to be useful again for prediction given
that a new gene i1s now in the model. Based on this suspicion, we
perform backward checks on each of the previously selected genes
whenever a new gene is selected. The procedure is straight forward,

if a new gene is selected into the model and an average MER, say
9full is computed for the full model, then each of the previously
selected gene 1s removed from the model and a new model is fitted
using all other genes except the removed gene. An average MER, say
Jremove g computed for each model without the removed gene. If
Jremove 5 gfull it gimply suggests that the removed gene is
important in the model and should be retained. But if Hremove <
97Ul then the removed gene is not useful again in the model and it
1s permanently removed from the model. Generally, the number of

backward checks, denoted by ng., to be performed at each gene
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selection step j for which k =j+ 1 genes have been selected is

nBC=k—1

Our newly proposed k-sequential gene selection (k-SS) method is
implemented using R statistical package (http://www.r-project.org/)
and the R code we developed for its implementation is presented in
Appendix B.1. The R code that performs the backward checks is also
provided in Appendix B.2.

The dimension reduction, informative gene selection and response
class prediction procedures as executed by our new k-SS method for
binary response class can be generalized to a polytomous class
prediction with true class categories y =0,1,...,y (y > 1) using any

of the following approaches:

& Pair-wise coupling: This approach is adapted from Hastie &
Tibshirani (1998) and it begins by constructing a separate
binary k-SS classifier for each of the distinct pair of classes
y,y" €y, y' #y". For any microarray data set that contains
a fixed response class y> 1, a total of y(y—1)/2 distinct
binary k-SS classifiers would be constructed with each of them
predicting a class member in y. At the end, the results of all
the classifiers are combined and final decision is made by
majority voting. The class category with the highest votes
would be chosen as the predicted class for each subject. This
approach is also called One-vs-One-scheme (Tan et al, 2005) or
Round Robin Ensemble (Furnkranz, 2002).

# One-vs-Others scheme: For a polytomous response class
y ={0,1,...,y} in which the class members follow some natural
ordering, the k-SS classifier can be constructed to distinguish

a reference class y* € y from all other class labels. By this, all
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other complementary classes are put into one group. The log of

the ratio of the posterior probabilities used in the logit model

would be of the form In [yri(lyi]. Other variants of this
Yy pIX)

approach can be found in Hand (1997), Speed (2003), Dudoit et
al(2002) and some other related works.

2.5 Assessment of the k-SS classifier

As remarked earlier, the goodness of classification rule ¢(x) is
generally assessed through a discrepancy function L{Y,, ¢(x)} called
the loss function, where Y, = y;,i = 1, ..., nyg, 1s the true class labels
(0,1) of any independent ny; subjects that are predicted by ¢(x).
From now on, ¢ and ¢; shall be used to represent ¢(x) and <pj(Xj)
respectively, dropping both x and X; for simplicity. For instance, the

loss function L{Y;, ¢(x)} shall become L(Y,, ).

As demonstrated in the previous section, the main concern while
assessing any classification function is to find that rule ¢ that
minimizes the loss function L(Y;, ¢). The concept of 0-1 loss function
as commonly used is to describe a situation where ¢ correctly or
incorrectly predicts each of the n;p; subjects. In this case, the
respective loss is 0 or 1 for any subject that is correctly or incorrectly
predicted by rule ¢. That is, the loss is L(Y0 =1, = 1) = L(YO =
0, =0)=0 for correct prediction and is L(?O =1,¢ = O) =
L(Y0 =0,p = 1) = 1 for incorrect prediction.

However, the loss function may be given in terms of absolute or
square error loss functions. An absolute error loss function is defined

by

LYy, @) =|Y, — o] (2.5.1)
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while the square error loss function is given by

L(Yy, @) = (Yo — 9)? (2.5.2)

The expected loss of using rule ¢ to classify all the n;; subjects is

then given by the risk function
r(@) = E[L(Y,, ¢)] (2.5.3)
- r(@) = X2, Ly, ¢dp(xly)p,y =0,1. (2.5.4)

But since the true density function p(x|y;) in (2.5.4) is not known,

the risk r(¢) is usually estimated from the sample by
= #(p) = =22 lyi — @il (2.5.5)
nrE

if absolute error loss function is used, or by

9 =7(p) = -2 00— ¢ (2.5.6)

nr
if the square error loss function is used.

The risk estimator given by (2.5.5) is the equivalent form of the

empirical misclassification error rate (MER) given by (2.4.3).

Among other estimators of prediction error rate suggested in the

literature are the brier or quadratic score and logarithmic score.

The brier score, proposed by Brier (1950), is the average deviation
between the predicted probabilities p(1|x) that a set of subjects
belong to particular response class and the true subjects classes. The
brier score simply replaces the predicted class labels @; with the
predicted class probabilities p;(1]|x) in the square error loss function
definition of the MER in (2.5.6) that the subjects belong to the

predicted classes. This is given by
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Oprier = — 2B (y; — B (1]%))? (2.5.7)

nre

where 0 < Jp,40r < 1.

The logarithmic or informational score has been equally reported as
a reliable measure of performance of classifiers (Hand, 1997; Witten
& Frank, 2000). Like brier score, it also uses the predicted
probabilities p;(1|x) in its assessment. Its definition for a two-class

prediction is given by
Biog = — 7 L ilog[Bi(110] + (1 = y)logl1 = p (1D} (2.5.8)

where 0 < 1§log < oo, Like both the MER and the brier scores, a small
value of the log score equally shows a better performance of the
classifier. What distinguishes the log score index from the other two
scores 1s that it produces a set of general and uncalibrated scores

that are not bounded between 0 and 1.

Nonetheless, both the MER and brier scores are part of assessment
measures adopted to evaluate the performance of our new k-SS

classifier.

Apart from MER, brier or logarithm scores, there are some other
performance measures under the pseudo name of similarity indices
as well as the receiver operating characteristics (ROC) analysis that
are equally appropriate to assess the goodness of a classification

rule.
The similarity indices

The most prominent similarity indices among others are the Jaccard
index (Jaccard, 1901), Dice-Sorensen index (Dice, 1945), Ochiai index
(Ochiai, 1957) and the Simple Matching index (Sokal & Michener,
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1958). Some other variants to these four can be found in Simpson
(1960), Hazel (1970), Sokal & Sneath (1973) and many others. It has
been reported, Zucknick et al (2008), that both Dice-Serensen and
Ochiai indexes are simple modification of Jaccard index. Expectedly,
these three indices tend to similar results’ interpretation. Therefore,
we shall only consider the Jaccard index being the most popular

among the three measures.

The simple matching index, as would be seen shortly, is just the
complement of the misclassification error rate (MER) given by (2.13),
(2.14), and (2.63), which we have adopted in the construction of our
k-SS classifier. In an unambiguous term, SMI = 1-MER. Therefore,

the SMI shall not be given any separate treatment here again.

More generally, using the 2 X 2 confusion matrix in Table 2.1, the

following similarity indices can be estimated as follows;

@ Jaccard index (JI) 1s an asymmetric similarity measure
between two classifiers (subjects’ true class grouping and
classification by k-SS classifier) which attaches more
importance to the correct or incorrect classification of subjects

with outcome of interest (group 1 subjects). It is estimated by

n(TNP) a

P](T' P) = n(TUP)  a+b+c 2.59)
€ Dice-Sorensen index: pp_g(T,P) = Zai;c
@ Ochiai index: po(T,P) = ———
# Simple matching index (SMI): pgy (T, P) = a+Z:Ccl+d

Like any other performance measures adopted in this work, the
estimates of the Jaccard index, as will be reported later, are the
cross-validated estimates based on the respective subsampling

scheme adopted for estimation. The R code that computes the JI are
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already part of the main code we developed for the implementation
of our k-SS method as provided in Appendix B.1. Therefore, the
cross-validated estimates of the JI indices shall be part of our k-SS

results’ outputs.
The receiver operating characteristic (ROC) analysis

The ROC analysis is an integral part of measures commonly adopted
to assess the worth of any classification rule. It was originally
developed by Egan (1975) for analysis of radar images in signal
detection theory. Its procedure was later adapted into the screening
of diagnostic tests to aid medical decisions (Swets, 1988; Zou, 2002;
Shapiro & Brutlag, 2004; etc.). This has helped to determine
whether a particular patient will benefit from a given treatment or
not. The extension of ROC analysis to assess the performance of
classifiers has been reported in Swets et al (2000), Fawcett (2006)

and many other related studies.

The excellent use of ROC analysis lies in the construction and uses
of the ROC curve and the area under the curve (AUC). The ROC
curve is a useful tool to describe the performance of a classifier (or
diagnostic test) that discriminates between normal (healthy) and
cancerous (diseased) subjects based on variable(s) measured on
continuous scale. In other words, both the ROC curve and the area
under the curve (AUC) are measures of ranking of the quality of a

classifier.

Suppose the expression level of gene X; is measured on n subjects
with two outcome groups 1 (for tumour subjects) and 0 (for normal
subjects). Let X;; and X,; (X;;,Xo; € X;) denote the expression levels of
n, and n, subjects in groups 1 and 0 respectively, n, + n, = n.

Necessarily, X;; measures are assumed to be greater that X,; if gene
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X; 1s to discriminated the response group n; from n,. What AUC then
does 1s to rank all the n subjects based on their gene expression
levels and compute the probability of correct ranking of any

randomly selected (tumour, normal) subject pair given by (Green &

Swets, 1966),

This is the true area under the ROC curve and its estimate can be
obtained in different ways. We highlighted below, four of the
methods by which AUC can be computed as equally being reported
in Hanley & McNeil (1983):

% The trapezoidal rule, Morrison (2005), Fawcett (2006).

# The output from Dorfman & Alf maximum likelihood
estimation program, Dorfman & Alf (1969).

4 Plot of the original data on binomial graph paper and compute

the AUC area from the slope and intercept of the plot by

intercept

A=p(Z < ZA), where ZA =\/Topez’

and Z~N(0,1), Swets

(1979).
# The wuse of the Wilcoxon-Mann-Whitney test statistics
approximation, Bamber (1975).

After the AUC estimate A]- has been computed for each gene X;, the
(null) hypothesis test that X; is not capable to discriminate between

any two subjects’ groups can be tested. This is given by,
Ho:p(X1; > Xoj) <05 vs. Hyip(Xy > Xo;)>05  (2.5.11)

The value of /ij very close to 1 will provide evidence to support that
X; 1s a good discriminator of the two subjects’ groups (accepting H,)

while a value of /ij very close to 0.5 or less will suggest otherwise
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(accepting H,). One can arrive at any of these two decisions using the
100(1 — @)% confidence interval of Aj given by Aj + Z,s. e(Aj) where
s. e(Aj) 1s the standard error of /ij as defined in Section 2.6, and Z,, is
the percentiles of the standard normal distribution at a specified

Type I error, a.

The plot of the ROC curve can be obtained for each gene X; to
visualize the performance of each of them as reported by their AUC
estimates, Aj. The ROC curve is a 2-dimensional plot of sensitivity of
the classifier against 1-specificity. The sensitivity, sometimes called
the true positive (TP) rate or recall is plotted on the y-axis while 1-
specificity, also called the false positive (FP) /false alarm (FA) rate is
plotted on the x-axis. In other words, the sensitivity of a classifier ¢
is given by the probability p(¢ = 1|Y = 1) while its specificity is
estimated as p(¢ = 0|Y =0). The ROC curve however, shows the
trade-off between the benefits (TP) and the costs (FP) of a
classification or ranking rule ¢. Some of the metrics used to compute
the sensitivity, specificity and other related measures are presented

in the confusion matrix in 7Table 2.5.

True Class (T)

o 1 0 Marginal
T o Total
cA 1 TP FP TP +FP
5 ;(S-
Q w
&= 0 FN TN FN+TN
Q

Marginal TP+FN FP+TN
Total

Table 2.5: Confusion matrix showing common performance metrics calculated from it.
Along the column of the confusion matrix is the true class label of
the outcome variable Y for the two biological sub-groupings of mRNA
samples and along the row are the predicted classes of these subjects
by the classifier ¢(x). The cell entries TP, FP, FN, TN represent the

true positive, false positive, false negative and true negative
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respectively. Therefore, given the observed biological groups y € {0,1}
of the test sample n;z and the predicted response class @ € {0,1} as
provided by k-SS classifier ¢@(x), the following performance
measures can be computed from the confusion matrix in Table 2.5

among others:

nrg A~
e . TP Yz 1i=1;9;=1)
£ Sensitivity = = Sl
TP+FN ST 1(y=1)
nrg A~
e TN Y=y 1(vi=0; §;=0)
£ Specificity = = Sl
FP+TN 2T 1(y=0)
nrg A~
. .. TP iz 1i=1;9;=1)
% Positive predictive value = = =L
TP+FP STE1@=1)
nre PN
. .. TN Yi=1 1(i=0; ${=0)
# Negative predictive value = = =
TN+FN 2B 1(@=0)

where I(.) is an indicator function whose value is 1 if its argument is
true and O otherwise. The positive predictive value (PPV) measures
the precision of the classifier. It shows the proportion of the true
class 1 (tumour) subjects that are correctly classified into that class
among those that were classified as class 1 subjects by classifier
¢@(x). Similarly, the negative predictive value gives the proportion of
group 0 (healthy) subjects that are correctly classified into that

group among the subjects classified as group 0 subjects.

The estimates of all the above performance measures are obtained as
cross-validated estimates for each of the k-SS classifiers constructed.
The R codes we developed to compute all the cross-validated
performance measures are already incorporated into the main R
codes we developed for the construction of our k-SS classifier as

given in Appendix B.1.

To construct the ROC curves for the k-SS classifiers, all the test

samples nrgq,...,nrgr generated by MCCV or bootstrap over R
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random partitions are merged 1into one large sample
nyg = (Nrgq, ..., Nrgr). The true class labels y € {0,1} and the predicted
probabilities p(y|x) € [0,1] of belonging to any of the y classes
estimated for each subject in n;; are observed. These two values are
then passed into our algorithm to generate the cross-validated ROC
(CVROC) curves for each of the k-SS classifiers. More details on
various ways to construct a typical ROC curve are provided by

Fawecett (2006).

A flexible procedure for generating ROC curve in R as implemented
in the ROCR library (l1ibrary (ROCR)) by Sing et al (2005) was
adapted into our main R codes (see Appendix B.1) to generate the

CVROC curves for our k-SS classifier.

A particular variant of the ROC curve which we do not consider in
this thesis 1s the ordinal dominance curve (ODC) proposed by
Bamber (1975). The ODC is obtained by reversing the axes of the
ROC curve. By this, a plot of specificity (on the y-axis) against 1-
sensitivity (on the x-axis) produces a typical ODC curve. More

details on this could be found in Hsieh & Turnbull(1996).
2.6 The AUC preliminary feature selection method

A new preliminary feature selection procedure we introduce in this
work 1s based on the concepts and criteria of the area under the ROC
curve (AUC). The importance of the ROC curve as a good measure of
performance of a classification or ranking rule has been reported in
many works as discussed in Section 2.3.1. The exact relationship
between the empirical prediction error rate (PER) and the estimated
area beneath the ROC curve (AUC) has been established by Cortes
& Mohri (2004). In their study, they established that if the empirical
PER of a given ranking function, say ¢(X), is given by 9, then, the
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average estimated AUC over all possible rankings of subjects
corresponding to ¢@(X) could be approximated by 1—19 especially
No

when the two class probabilities p, = — and p; = % are very close

to each other. This argument particularly underscores the relevance
of the AUC as another efficient measure to assess the goodness of
classification or ranking rules. Therefore, the preliminary selection
we are proposing here using AUC criteria could be seen as a

classifier-like preliminary feature selection method.

The reasons for proposing this new preliminary selection method are
two-fold. The fact remains that there are no unique standard criteria
for determining which genes to be selected at the preliminary
selection stage while working with most of the preliminary feature
selection methods. This is very true of the ¢-test approach as
presented in Chapter 1 Section 1.4.2. For example, the choice of the
cut-point p* or its t-statistic (£, or f,) equivalent the under this
approach is at the discretion of the investigators. Due to the absence
of standard way of choosing such cut-point, it is not uncommon for
different analysts to select different number and types of transcripts

at preliminary selection stage for analysis under this method.

Secondly, the common practice of using all the available mRNA
sample size n while performing preliminary feature selection
without leaving out certain proportion of the sample for cross-
validation has been criticized to be capable of increasing the
prediction bias of classification rules (Ambroise & McLachlan, 2002).
This might consequently result to poor gene selection at the
preliminary stage. This line of argument was equally corroborated
by Ioannidis (2005) and recently by Boulesteix et al (2008). Hence,

there is need to evolve a preliminary feature selection procedure,
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like the one proposed here, that will allow for easy cross-validation

through via external (independent) test samples.

Consider a set of q genes, X = (Xy,...,X;), whose expression levels
are measured on two groups Y; € {0,1} of n biological subjects as
previously described in relevant sections. The main goal here is to
perform a preliminary (primary) selection of potentially relevant
q*genes from all the available g genes such that all the g — q¢* non-
predictive genes are removed prior to model construction proper. The
reasons for this are two-fold: One is to save a lot of computation time
and efforts while carrying out the analysis. If the ¢ — ¢* ‘unwanted’
genes are not removed before any dimension reduction and
prediction exercise is performed, a good classifier will still filter
them out during the analysis proper, but at a huge cost of analysis
time. To avoid this therefore, it is proper to filter them out before
proper classifiers construction could begin. The second reason that is
not too far from the first one is to reduce noise from the data before
proper analysis could commence. This is to avoid undue influence of

the irrelevant genes on classification results.

Our procedure starts by partitioning the entire sample size n into
training sample, nyz and test sample, ny. This is followed by fitting
univariate logit model, logit(n(X;) ) = a + B;X;, j = 1, ..., q, on each of
the g genes using the training sample, n;z. Next is to use the fitted
model to estimate the predicted class probabilities, p;(Y; = y|X;),
i =1,..,nrg, (probability of subjects belonging to class y), for each
subject in the left out test sample, nyz. This is followed by cross-
validation using sub-sampling scheme of v-fold-cross-validation, the
concepts of which shall be discussed fully in Section 2.7. By this

choice of cross-validation method, the entire sample size n is divided
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into a number of equal fold v with each of the v fold serving as the
test sample at each sample selection. The remaining v — 1 is then
used to build the logit model. This method has the advantage of
ensuring that all the observations are being used as both the
training and test samples at different time. Thereafter, both the

predicted probabilities p;(Y; = ¥|X;) and the true class labels y € {0,1}

for each subject in the test sample n;; as observed from the fitted

model for each gene X; are used to construct the cross-validated ROC

(CVROC) curve from which the respective area under the curve
(AUC) would be estimated.

Let the estimated AUC for each gene X; using the test sample nr; be
denoted by AXJ. and let I‘ij be the respective average AUC obtained

over the entire v fold. To establish the significance or otherwise of

the estimated average AUC /TX]. for each gene, we simply test one

directional hypothesis set given in (2.6.1) for each /TX].. By this, we

construct and tested a total of g hypothesis set of the form
Hoj:p(X1; > Xoj) <05 vs. Hyjip(Xy > X)) >05, j=1,..,q,
This could be equivalently written in terms of the average AUC, /TXJ.
for the population as
Hoj:/IXj < 0.5 vwvs. Haj:/TXj > 0.5 (2.6.1)

Since the estimated AUC, AX]. has a Gaussian distribution, Hanley &

McNeil (1982), it then becomes easier to develop a test procedure for

the hypothesis set in (2.6.1) as follows;

AX]-"’N(MA: ai) © AX]-“'N(MA' U/%)
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A j P
R Zy, == 2“*‘ ~N(0,1) (2.6.2)

02

where pz and o are the mean and variance of /TXJ. respectively. If we

adapt Bamber’s estimator of standard error of the AUC, Bamber
(1975), oZ could be estimated by
9 I‘TXJ-(1—2Xj)+(n1—1)(ﬁjx+x+x— —j§j)+(no—1)(ﬁjx+x—x— -4% )

o2 = L (2.6.3)

ning

where pjx+x+x— 1s defined as the probability that a classifier ranks
any two randomly chosen tumour subjects higher than a normal
subject and F’jx+x—x— is the probability that a classifier ranks two
randomly chosen normal subjects lower that a tumour subject. These

two probabilities can be estimated by adapting the statistics

proposed by Hanley & McNeil (1982) for which

(2.6.4)

For any pre-specified level of significance a, the apparent decision

rule for the test hypothesis in (2.6.1) is to reject the null, Hy; in

. 5 Ax;muz . .
favour of H, if Zx; = i >Zi_o- This can be equivalently re-

2
02

constructed as; reject Hy; in favour of H,; if

Ay, 2 1z +Zy_q /ag (2.6.5)

Under Hy;, E (/TX].) = uz = 0.5, then, Hy; is rejected in favour of H,; if

Ay, 205+ 27, /ag (2.6.6)
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and for any preliminary feature selection, the decision rule is to
select that gene X; whose estimated average AUC value /TX]. satisfies

the inequality in (2.6.6).

It should be noted that /TX]. = 0.5 corresponds to AUC area that lies

on the 45° diagonal line of a typical ROC plane as shown in Fig 2.2.
Any gene whose AUC value revolves around the diagonal, as the
case with gene OIP106 in Fig 2.2, does not possess any useful
information to correctly predict (rank) the response group. Such gene
lacks any good predictive power and should be dropped. In a
nutshell, any gene whose AUC value is greater than 0.5 by Z,_, of
its standard error would be selected primarily by this method for
further analysis, where Z,_, i1s the quantile of the standard
Gaussian density obtained at significance level a. The size of a for

this test could be any of the conventional default values in the range

a € (0,0.05].

A typical ROC curve for three genes
) )

1.00
|

Sensitivity
0.50 0.75
I

0.25
|

0.00
|

T T T T T
0.00 0.25 0.50 0.75 1.00
1-Specificity

——e— CASP1 ROC area: 0.8916 ——e—— OIP106 ROC area: 0.4495
——e—— SF3A1 ROC area: 0.9039 Reference

Fig 2.2: A typical ROC curve for three (CASPI, SF3A1, OIP106) of the 24,026 genes in the rectal

cancer microarray data. While the two genes, CASPI and SF3A1 are informative as shown by their

ROC curves being far away from the diagonal reference line with their respective high AUC

estimates of 0.8916 and 0.9039, gene OIP106 contains no information to be able to predict the

response group, hence, its own ROC curve revolves round or below the diagonal reverence line with
relatively small AUC estimate of 0.4495.

Using this procedure, a total of q* potential discriminating genes

would be selected at the preliminary gene selection stage with
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extremely small chance of leaving out any of the potentially good

genes from further analysis.

The new preliminary feature selection method proposed here is
implemented using R statistical package. The sub-sampling
technique of v-fold-cross-validation is adopted in the implementation
of this method and the R codes that implement the procedure is
presented in Appendix B.3. Due to the huge number of gene
variables involved (usually in thousands) in microarray data sets,
any choice of fold v between 2 to 10 would be suitable for the test.
The application of this new preliminary feature selection method is
demonstrated in Chapter 3 in relation to our new k-SS method. The
k-SS algorithms under the two sub-sampling scheme of MCCV and
bootdtrap.632+ for which the new AUC preliminary feature selection

1s incorporated are provided in Appendix B.5 and B.7 respectively.
2.7 Cross-validation techniques in brief

In any typical microarray data, the number of available biological
samples i1s usually very small. Since genes selections, biological
sample predictions and all other performance measures are based on
these small samples, it is therefore possible for the estimated results
to be bias. As a result of this, it is important to device some
estimation procedures that would ensure that the results obtained
from the small sample would be a good representation of the
population, thereby removing any form of bias from the estimators.
For instance, the empirical prediction error rate (PER), 1§emp(PER)
estimated by classification rule ¢ (x) using n sample is expected to be

close to the unseen true PER, U;y¢(pgr) for the entire population. The
difference between the expected value of the PER estimator 1§emp(PER)

and the true PER value from the population is called the bias of
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1§emp(PER). That is, 9p;qs = E(@emp(PER)) — Orue(per)- 1f the bias, Opiqs 18
zero, it implies that E (1§emp(PER)) = Otruepery an indication that the
estimator 1§emp(pER) 1s a good estimator of the population parameter
Oerue(per)- Hence, 1§emp(PER) becomes an unbiased estimator of
Urue(per)- But a large value of bias indicates that 9emp(PER) 1s not a

good estimator of the population parameter and its results might not

be suitable for generalization.

One of the popular short cuts at removing bias from an estimator is
through cross-validation techniques first introduced by Seymour
Geisser (1993) with additional discussions on his works by Berry
(2005). By cross-validation approach, the original sample size n is
partitioned into subsets such that the analysis is initially performed
on a single subset of n called the training sample, while the other
subset(s), called the test sample(s) are retained for subsequent use
in confirming and validating the results from previous analysis.
Several forms of this method are available in the literature. The

most prominent ones are discussed in what follows.

i.)  Holdout method

By this method, the original n sample is splitted randomly
into two, nrg, Nrg, With nyp + nyp = n. One part (nrg) is used
to train the classifier while the second part (n;g) is held out
to test the goodness of the classifier. This is sometimes
called out-of-bag method. In practice, it is customary to
holdout 1/3 of n (n;g) for testing and the remaining 2/3 of n
(nyg) for training, McLachlan (1992). The empirical
prediction error rate is computed over the test sample n;g

by
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a 1
Unotdout = azzf [I{¢(X1)¢ Yio}] (2.7.1)

Ll
|

‘ Training set ’ Test set ‘

Original sample size (n)

|A

Fig 2.3: Schematic representation of the sample splitting under the Holdout cross-
validation method

The schematic representation of the sample split under this
method is presented in Fig 2.3. This method poses no
computational burden. Its major disadvantage apart from
small sample size problem is that the sample used as the
training or test sample might not be representative of the
original sample. It is possible to miss out all members of a
certain class in a training or test set. Therefore, whatever

error rate reported might be misleading.

Monte Carlo cross validation (MCCV)

The MCCV method sometimes called random subsampling
1s one of the cross-validation techniques proposed to
overcome the limitations of the holdout method. The
approach is to repeat the process of taken random sub-
samples of training set, nyp, and test set, nyy from the
original sample size n several number of (R) times (e.g. 50,
100, 500, 1000 or 10000 repetitions) without replacement.
At each random split, classifier is learned on the training

set while 1ts goodness i1s assessed on the test set wvia

prediction error rate o, =%Z?=Tf [I{@(X)iYio}] which 1is
TE

computed at each r repetition, r = 1,2, ...,R. The different
prediction error rates over the entire R repetitions are then
averaged to yield an overall average prediction error rate.

That 1s

87



1il.)

Op = ~YR_ D, (2.7.2)

TR
However, the maximum number of subsamples of test set

nyg that can be drawn from n without replacement is

R = ML (nretl) i approach has been widely adopted

nrg!
in many works (Xu & Liang, 2001; Dudoit et al, 2002; Xu et
al, 2004; Lee et al, 2005; Du et al, 2006; Zucknick et al,
2008; etc.) due to its reliability and results’ consistencies.
The supremacy of MCCV over the leave-one-out cross-
validation method (discussed below) was equally reported
in Xu et al(2004). However, the MCCV approach 1is
computationally demanding unlike the holdout method. A
schematic representation of subsampling stages under

MCCV is given by Fig 2.4.

L Original sample size (n) J
I >
1st repetition ‘ Test set ‘ ‘
2nd repetition ‘ ‘ Test set ‘ ‘
Rth repetition ‘ ’ Test set ‘ ‘

Fig 2.4: Schematic representation of the random sub-sampling for cross-validation
under the MCCV method

v-fold-cross-validation

In this method, the n sample is divided into a number of
mutually exclusive equal subsamples of fixed fold, v. Each
fold is used for testing while the remaining v — 1 folds are
used for training. This exercise is repeated v times such

that each of the v test samples is used once. The prediction

error rate 9, = nizsz [I{a(xi)i yw}] 1s computed at each fold
TE

and the average of all the prediction error rates, averaged
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over v, is computed as the true prediction error rate. Thus,

we have that

A

9y ==¥01 0, (2.7.3)
A major challenge of this method is the determination of
the best number of fold to be adopted. However, ten-fold
cross-validation has been suggested in many studies as a
standard way of measuring the misclassification error rate
using this approach, Witten & Frank (2000), Molinaro et
al(2005). Advantage of this approach is that one is sure that
all the original samples are used for both classifier
construction and 1ts assessment. Nonetheless, the
estimated prediction error rate may be associated with high
variance due to the smallness of the sample size. A
schematic representation of this subsampling procedure

with v = 3 is given by Fig 2.5.

L Original sample size (n) _l
I~ g
1st fold ’ Test sample ‘ ‘
ond fold ‘ ‘ Test sample ‘ ‘
3th fold ‘ ‘ Test sample ‘

Fig 2.5: Schematic representation of the v-fold cross-validation method with v = 3

Leave-one-out cross-validation (LOOCYV)

The LOOCYV is an extreme case of v-fold cross-validation
with v = n. Here, each subject in the sample is left out and
the remaining n — 1subjects are used to learn the classifier.
The left out sample in turn is used to test the goodness of
the classifier. This exercise is performed n times to ensure
that each subject has been used in the construction and

validation of the classifier. Fig 2.6 gives its schematic form

89



at each evaluation. The prediction error is obtained for each
left out sample and the average for all the n samples is

taken as the empirical prediction error rate. That is

a 1
Vioocy = ;Z{;l [I{a(xi);: Yio}] (2.7.4)

where indicator function I, is as defined in (2.4.3).

L|

L Original sample size (n)
I~ g

1st evaluation ’ ‘ n — 1 sample Training set ‘

ond ayaluation ‘ ‘ ‘ n — 1 sample Training set ‘

One sample test set

nth evaluation ‘ n — 1 sample Training set ‘

Fig 2.6: Schematic representation of the Leave-one-out cross-validation method

The advantage of this method is that it returns low bias for
prediction error rate since almost all the sample size is used
to train. Like in the v-fold method, the LOOCYV is equally
associated with high variance of the prediction error rate.
Nonetheless, it has been described as an elegant cross-
validation measure suitable for eliminating bias from an
estimator provided that the original sample size n is a true
representation of the targeted population. This method has
received a wider application in many research studies due
to its simplicity, (Nguyen & Rocke, 2002a; Man et al, 2004;
Boulesteix, 2004; Statnikov et al, 2005; etc.).

Bootstrap

The bootstrap method is based on sampling with
replacement. All the n subjects is sampled n times with
replacement to give another ‘new’ n data set. The new n
sample now becomes the training set and the original n
sample 1s the test set. Since sampling is done with

replacement, there is tendency to have some observations
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repeated in the new sample while some may not be sampled
at all from the original sample. Therefore, the unsampled
subjects in the original data become the test set by
implication. A particular variant to this general
bootstrapping is the bootstrap.632+ (Efron & Gong, 1983;
Efron & Tibshirani,1997; etc.). The idea behind this new

modification is that each subject in the original n sample

has a probability % of being selected into the new sample
and (1 —%) of not being selected. Since the samples are
drawn n times with replacement, the chance that a subject
. . . 1\ 1

1s not selected into the new sample is then (1 _Z) R ==

0.368. Thus, for n random bootstrap sampling, about 36.8%

of n will not be selected into the new data set (the training
n
set). It shows that only about 1 — (1 — %) ~ 0.632 of n

would be in the training set while the remaining 0.368 of n
would be in the test set, hence, the term bootstrap.632+.
Suppose we define J,,4, as the re-substitution prediction
error rate computed over the training set and J;,,; as the
bootstrap prediction error rate computed over the test set.
The empirical prediction error rate for bootstrap.632+
scheme 1s given (Efron & Tibshirani, 1997; Gerds &
Schumacher, 2007; Binder & Schumacher, 2008) by

Bpoor = 0.632 * ypep + 0.368 * Iy gim (2.7.5)
The entire bootstrap procedures are then repeated R

number of times as in MCCV, and respective average

prediction error rates 5test = O.632%Z§=11§T.test and

5tmin = 0.368%Z§=11§r.tmm are computed. These estimators
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are then used to compute the overall average prediction
error rate, 51,0“ for bootstrap.632+. Thus, we have that

2 1 A A
Upoot = R 5:1(0-632 * Uy test T 0.368 * 19r.train) (2.7.6)

Out of all these cross-validation techniques, the methods of MCCV
and bootstrap are adopted in this thesis for the implementation of

our proposed k-SS classifier.
2.8 Overview of some other classification methods

In this section we provide brief overview of three of the existing
state-of-the art classification methods as considered in this thesis.
The three methods discussed here are the Support vector machines
(SVM), k-nearest neighbours (k-NN), and Partial least squares (PLS)
methods. The theoretical background of other classification methods
considered in this thesis can be found in the relevant literatures.
The relative performance of all the methods as compared to the
prediction results provided by our new k-SS classifier are discussed

in later chapters.
2.8.1 Support Vector Machines (SVM)

Support vector machines (SVM) 1s one of the state-of-the art
techniques developed in the field of statistical learning theory and
pattern recognition. The original SVM algorithm was pioneered in
Russia by Vapnik and his co-workers in the early sixties (Vapnik &
Lerner, 1963; Vapnik & Chervonenkis, 1964; etc.) after which
several modifications were incorporated into the original theory (see
Vapnik & Chervonenkis, 1974; Vapnik, 1982; 1995; & 1998). The
SVM method has become increasingly popular among the kernel
based methods as an excellent tool in response group classification,

regression and statistical pattern recognition. Because of the huge

92



contributions of Vapnik and Chervonenkis to the present form of the
SVM methodology, the SVM theory is now been referred to as the
Vapnik-Chervonenkis (VC) theory. We have adopted SVM
methodologies in this work mainly for the prediction/classification of
mRNA samples into their respective biological groups using various
microarray data sets. In what follows therefore, we present a brief

theoretical background of the SVM procedure for classification.

There are several forms of SVM algorithms available in the
literature, see McCormick (1983), Vapnik (1995), Cortes & Vapnik
(1995), Smola (1998), Smola & Schoélkopf (2004), Lee (2004) and a
host of others. However, we shall present the SVM procedures of
Burges (1998) and Lee (2004) which essentially are adaptations of
the original algorithm of Vapnik (1995).

Let t,. = {(x1,¥1), (x2,¥2) -» (npjp Yurz)}» = 1, ., q, be the training
set of nyp biological samples with the corresponding test sample nyg
defined by t, = {(xlj,yl), (xzj,yz), ) (anEj,ynTE)}, n=ngg+ Ngg.
Each y;, i =1,...,n, is the true class label that correspond to the
observed x;; genes expression levels. For simplicity, we shall use the
variable pair (x;,y;) to denote the input vector x; of observed gene
expression profiles on i biological sample with response class label
y;. With little modification of the definition of the response groups
given in (2.1.2), we assume that both the training and test data sets
come from only two response classes £; and Q, but with y; =1 if
subject i comes from class Q, and y; = —1 if the i subject comes from
class Q; with both classes remained as defined under Section 2.1.

The goal in SVM methods is to find a decision function of the form

h(x;) = sgn({w.x;) + b) (2.8.1)
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that would classify any unseen subject in the test sample n;; into
their respective class labels y; € {—1,1}, where w is a vector of
weights with Euclidean norm ||w|| = (w.w)/? =1 with b being the
bias. The quantity (w.x;) is the inner product of vectors w and x;
defined as (w.x;) = w'x;. Suppose we define a hyperplane H, € H,
simply called the separating hyperplane, that separates the training
samples into the two existing response class labels (—1,1). If the two
response groups Q; and &, of subjects that make up the training
sample are linearly separable, then we can define the maximal
distance of the separating hyperplane H, from the closest positive
sample (y; = 1) by d,units and its respective maximal distance from
the closest negative sample (y; =—1) by d_units. If the two
maximal distances are the same, that is, d, = d_ = d, then the two
sample groups are 2dunits apart. The task in SVM procedure
therefore, is to find the weight vector w and bias b that will
maximize the distance d. In a linearly separable sample, the SVM
algorithm seeks for the separating hyperplane with the maximal
margin (distance) d. This essentially results to the following

optimization problem using (2.8.1);

max,,, d (2.8.2)
subject to the conditions that;
(wx;))+ b=>d,ify; =1 (2.8.3)
w.x;))+ b<—d,ify, =-1 (2.8.4)
withw having a unit norm ||w| = 1. Therefore, for any given

linearly separable set of training data, we define a maximal margin
hyperplane H, € H for which the equality (w.x;) + b =d in (2.8.3)

holds and maximal margin hyperplane H_; € H for which the
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equality (w.x;) + b = —d in (2.8.4) also holds. All vectors x; for which
these two equalities are satisfied are called support vectors and the
solutions of the optimization problem depend only on these vectors
and not on the entire dimension of the training set. In other words,
support vectors are those points x; that lie on the two maximal
margin hyperplanes H, and H_,. Thus, a subject would be classified
into group y; = 1 if the condition (2.8.3) is satisfied and into group
y; = —1 if condition (2.8.4) is satisfied. This concept is geometrically

1llustrated in Fig 2.7.

. [=]
Margim Group 1 o
o - @

zamgles a

Maxmal margin
hyperplane H_;

Mammal margin
hyperplane H,

Separating
hyperplane

Fig 2.7: The figure showing the typical separating hyperplane and the maximal margin hyperplanes
for the linearly separable subjects with two distinct subject groups. This is an example of linear
SVM classification function given by equation (2.8.1). The support vectors lie on the margins.

If the two constraints in (2.8.3) and (2.8.4) are multiplied by their
respective class labels and the weight vector w is divided by its norm

|lw|| we shall have a single constraint of the form
myi[(w. x)+ bl=d,V,i=1,..,n (2.8.5)

Since the two maximal margin hyperplanes H; and H_; have the
same normal (parallel), it shows that there exist a pair of
hyperplanes in H that will provide the maximum margin between

the two subject groups in the training set. This can be achieved by
1

T Therefore, maximizing the value of d as given in
w

setting d =
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(2.8.2) 1s equivalent to minimizing the value of ||lw||. Hence, the
whole problem becomes that of looking for the weight vector w and
bias b that minimizes ||w||. Thus, the optimization problem in (2.8.2)

shall become that of;

min,, ,||wl| (2.8.6)
subject to the constraint that

yvillw.x;)+ bl =2 1,v,,i=1,..,n (2.8.7)

Under the new formulation of (2.8.6), all points x; with margins

v;[{(w.x;) + b] = 1 are now the support vectors.

In a situation where the training set t, contains linearly but non-
separable group members, then, it may be necessary to introduce the
slack variables &; to the constraints in (2.8.7). This is analogous to
the soft margin loss function due to Bennett & Mangasarian (1992)
which was later employed into SVM by Cortes & Vapnik (1995). The
whole idea is to allow for some misclassification errors and the value
¢, represents the amount by which the prediction function h(x;)
classifies subjects into the wrong side of the margin, Hastie et al
(2009). Thus, the whole optimization problem in (2.8.6) then becomes
that of

min,, ,[|W||, subject to y;[{w.x;)+ b]=>21-¢,V;,i=1,..,n (2.8.8)

with additional condition that & >0, V;, and that > ¢ =¢, for

some fixed constant €.

The Lagrangian formulation of the above optimization problem is
often preferred for easy generalization of the SVM procedures to

pure non-linear separating data sets. This is done by constructing a
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Lagrange function to be minimized from the objective function in

(2.8.6) which we called the primal objective function of the form
Ly ==[wl? = X%, ayilw. x) + bl + X,  (2.8.9)

subject to the constraint that «; >0, i=1,..,n. The a; are the
Lagrange multipliers on each of the inequality constraints in (2.8.7)
or (2.8.8). After little algebra, the dual form of the convex
optimization problem (2.8.9) is obtained (Burges, 1998; Lee, 2004) as

1

Lala) =Sy a;— 1

o1 Xie1 a;a;yiy;j (w.x;) (2.8.10)

This function is to be maximized subject to the conditions that a; = 0
and )i, a;y; =0. The Karush-Kuhn-Tucker (KKT) condition
(Karush, 1939, Kuhn & Tucker, 1951) that

a{y;[(w.x;)+ b]—1}=0 Vv;,i=1,..,n (2.8.11)

1s often adopted to provide the estimate of b. From KKT condition
above, it is very easy to verify that only few of the a;’s, say «a;, are
non-zero at the optimal solution level and they are those «;’s for
which the margin y;[(w.x;)+ b] = 1. Hence, the vector w* that
defines the optimal maximal separating hyperplane has non-zero

weights for the support vectors and can be easily obtained as
w' =Y aiy x; (2.8.12)

More details on this can be found in Burges (1998), Bennett &
Campbell (2000) and Lee (2004).

The classification function h(x) in terms of the optimal separating

hyperplane is now of the form

h(x) = sign[{w*.x) + b*]
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- h(x) =sign[Y-, a]y; (x;.x) + b*] (2.8.13)

More generally, SVM algorithms embed data vector (x;, x;/) from the
input space R into the high-dimensional feature space F through the
use of kernel functions K(.,.). Given any non-linear mapping @ that
embeds input vector (x;, x;/) into the feature space F, kernel K(.,.)

has the following representation;
K(x;, xi) = (D(x;). 0(x;1)) (2.8.14)

where x;, x;» € R and 0(x;),d(x;/) € F. This implies that points x;, x;/
in the input space R correspond to the points @(x;),d(x;) in the
feature space F. The kernel representation allows efficient
computation of the inner product directly in the feature space which
saves a lot of rigorous data embedding and computational burden in
the input space. The SVM method using kernel function separates
the training data in the feature space by a hyperplane defined by the
type of kernel function adopted. The kernel representation of the

classification function h(x) is of the form
h(x) = sign[)}, a/y; K(x;.x) + b*] (2.8.15)

The four types of kernels mostly adopted are the linear, polynomaial,
radial basis function and sigmoid kernels. The functional forms of

these kernels are presented below:

& Linear: K(x;.x) = (x;.X)

€ Polynomial: K(x;.x) = [(yx;.x + ¢)]?

% Radial basis function (RBF): K (x;.x) = exp(—y|x; — x|?)
& Sigmoid: K(x;.x) = tanh(yx;.x + c)

The linear kernel corresponds to the single inner product function
used by the linearly separable case as presented in (2.8.1) through
(2.8.13). Both y and ¢ are the parameters used to determine the



respective kernel functions while p is the number of degree used in

polynomial kernel.

Like any other classification methods, the prediction accuracy of the
SVM method over the test sample t, is assessed through empirical
misclassification rate analogous to the MER estimators given in

(2.4.2) and (2.4.3). This is defined over the test sample n;g by

1

S|y A (2.8.16)

Yoy =
SVM = o

where y; € (—1,1) is the observed class labels and h(x;) € (—=1,1) is
the predicted class label by SVM classifier h(x) for i subject.

The SVM procedures for response class prediction are implemented
In R statistical package under the 1071 library. This we have

adopted for analysis under the SVM implementations in this thesis.
2.8.2 k-Nearest Neighbours (k-NN)

The k-nearest neighbours (k-NN) is a supervised learning algorithm
where the predictions of future test samples are determined based
on the majority of nearest neighbours’ category closest to them. It is
the simplest form of classification procedure that has been adopted
In many studies, (Zhang & Srihari, 2002; Baoli et al, 2003;
Kuramochi & Karypis, 2005; Shang & Shen, 2005; etc.). It does not
require any rigorous model to fit. For any given test data point, we
only need to determine the number k of subjects in the training
samples that are closest to that test data point. The classification is
done through the use of simple majority votes of the classified

categories.

More formally, let us consider a set of training sample

t, = {(x1;,31), (x25,¥2), wr Cnggjo Yur) s J=1,.,q, on which the
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expression levels of g genes were measured. We assumed that the
response group has binary category y € {0,1}. Now, to predict/classify
each member n the test sample
t, = {(xlj,yl), (xzj,yz), s (anEj,ynTE)}, the k-NN algorithm begins by
calculating the minimum distance of each test subjects from their
corresponding training subjects and determine the k-nearest
neighbours by ranks. The simple majority of these k-nearest
neighbours become the prediction of the respective test samples. The
similarity measure commonly used to measure the distance between
the training and test sample 1s the Euclidean distance measure. The
misclassification error rate (MER) for k-NN algorithm is calculated

using the estimator given in (2.4.3) as used by our k-SS method.
2.8.3 Partial Least Squares (PLS)

The partial least squares (PLS) method is one of the old data
reduction methods originally pioneered by Harald Wold (Wold, 1966,
1973, 1983, etc.). It has been adopted by chemometricians and other
researchers for various purposes over many years, (Volmer et al,
1993; Holland et al, 1998; Naik & Tsai, 2000; etc.). The typical
nature of microarray data in which it is often the interest to classify
very few biological samples into their respective tumour groups
using expression profiles of several thousand of genes has given the

PLS approach a wider application in many microarray studies.

For brief theoretical presentation of PLS procedures, we consider the
regression model Y; = g(XB; €) as given in (2.1.1) whose linear form
Y; = XB + ¢ 1s as provided in (1.5.1) where X = (X;,..,X;) isanXxgq
matrix of gene expression levels measured on n biological subjects
with binary response class Y; € {0,1} given that n <q. With n <gq

however, it is obvious that the classical least squares regression
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cannot be used to estimate parameter vector B of the above linear
regression equation because the g X g design matrix X7X on which
the estimator of B is based is not non-singular. What is being done,
according to PLS approach is to represent the linear regression

equation Y; = X + ¢ in terms of two separate equations of the form
Y=TQT + F (2.8.17)
X=TP"+ E (2.8.18)

dropping the subscript i from Y; for simplicity, where T is a n X ¢
matrix of the latent components (factor scores) for the n obervations,
Q7 is a ¢ x 1 vector of regression coefficients (the factor loadings of
Y), P is a q X ¢ matrix of regression coefficients (the factor loadings of
X), F and E are the residuals of regression models (2.8.17) and
(2.8.18) respectively and c is the number of latent components T to
be constructed usually fixed by the user. However, the maximum
number ¢ of latent components that can be constructed in any given

PLS regression is ¢ = min (n, q).
The latent component T is usually of the form

T =XW (2.8.19)
for an appropriate g X ¢ weight matrix W for X.

The estimate of the regression coefficients Q7 in (2.8.17) is usually

obtained through the normal least square method as
" =(T"T)'T"Y (2.8.20)

Once the estimates of vector Q has been determined, the estimates of

the original coefficient B can then be estimated by

B=wQ  =w(T'T)'TTY (2.8.21)
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which can be simply expressed in terms of the weight matrix W as
B=WWTX"XW) 'W'XTy (2.8.22)

From the estimator of B given by (2.8.22), it is obvious that the only
quantity that needs to be determined to get B is the weight matrix

W. Similarly, the estimator of PT in (2.8.18) can be conceived as
PT =(T"T)'T"X (2.8.23)

However, several variants of PLS algorithms are available in the
literature all of which are targeted at extracting the vector of latent
components T. The most common among this whose procedure we
shall present here is the non-linear iterative partial least squares

(NIPALS) algorithm due to Wold (1975). The NIPALS algorithm

seeks to maximize the objective function

w; = argmax Cov?*(T,Y)
w
= argmax(TTYYTT)
w
- w; = argmax(WTXTYYTWX) (2.8.24)
w

subject to the constraints that

wiw;, =1 (2.8.25)
and that

for i #j € {1,..,c}. The quantity w; and t; are the columns of g X ¢
and n X ¢ weight matrix W and latent components T with both w;
and t; defined as w; = (W, Wy, ., wy)" and t; = (ty;, by, ..., ty)"
respectively. Thus, the row-vector representations of W and T are

given by W = (w,w,,...,w,.) and T = (t,,t,,...,t.) respectively. By
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the objective function given by (2.8.24), each of the weight vector w;
1s computed such that the square of the covariance of the response
variable Y and latent components T = XW is maximized subject to
the conditions that each w; is of unit norm (by (2.8.25)) and that all
the latent vectors t; € {T} are purely orthogonal (by (2.8.26)).

After the construction of the PLS components, the classification of
the response groups would be performed using the ¢ PLS
components constructed by adapting any of the standard
classification methods such as the linear discriminant analysis
(LDA), logistic discriminant (LD) analysis, quadratic discriminant
analysis (QDA) and the like. More details about the PLS method for
classification can be found in Martens (1985), Wold et al (1983), Dai
et al (2006), Rosipal & Kramer (2006), Boulesteix & Strimmer (2007)
and in many other related works. However, in our implementation of
the PLS approach for classification, we have adapted the LDA
procedure as implemented in the plsgenomics library of R
statistical package. Detail applications of this classification method

are provided in the next two chapters.
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3 Simulation Studies

3.1 Simulating Microarray data sets

Simulation 1s the process of emulating the reality using
mathematical models. The sole objective 1s to build models to
replicate the actual system. This is often necessary especially when
the cost, time and efforts of generating live observations for
Investigation purposes are rather too unbearable. In such a
situation, models that are replica of the condition under study may
be simulated to examine the behaviour of the system, proffer
solutions to the identified problems and evaluate the practicability of

the solutions provided before transferring them to the real world.

For some years back, developing appropriate models to analyse
microarray data was such a daunting task due to the sparseness of
relevant data sets. This 1s not unconnected with the huge costs and
times involve in generating such data sets. The situations become a
lot better in the past few decades due to the advent of several
microarray technologies. However, the sensitive nature of
microarray studies especially with the involvement of human data
has made it more imperative for the investigators to carryout
analysis on similar pseudo (simulated) data to ascertain the
appropriateness of their methods and results before such could be

implemented on live data.

To implement our newly proposed k-SS classifier, we intend to
simulate typical microarray data set on which the procedure would
be tested to ascertain its suitability and results’ efficiencies. The
performance of our method relative to some of the existing
classification methods shall be equally assessed using such

simulated data.
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The procedure we employed for simulating microarray data set here
follows the method adopted, with little modifications, by Bura &
Pfeiffer (2003), and Molinaro et al (2005) both of which were
adaptations of the earlier approaches used by Cook & Lee (1999) and
Kepler et al (2002). We simulated n = 100 observations representing
the number of mRNA samples with two distinct biological groups
Y =0 (normal patients) and Y =1 (diseased/tumour patients). On
each observation, 1000 covariates, X = (X4, ..., X1000), representing
the observed gene expression profiles were simulated. Each
biological group O or 1 has 50 observations which we denoted as n,
for group 0 and n; for group 1 with n, +n; =n. The data sets
X|Y = 0 were simulated from multivariate normal distribution with
mean U,, Mo # 0 and variance-covariance matrix X. That 1is
[(X1, s X100) 1Y = 0]~N (1o, Z). Of 1000 genes simulated on group 1
subjects, 5 of them were simulated from the mixture of two
multivariate normal densities with the same covariance matrix X,
and means pu,; and p,, respectively, p;; # ty, and pyq, 5 > Uo. That
is, [(Xy, .., X5) Y =1]~[m* N(uy1,2) + (1 — 1) * N(uy,,2)] with  the
estimate of the mixing parameter m taken to be 0.5. The remaining
995 genes for group 1 were simulated from N(u,,Z) distribution as
those in group 0. The 5 genes simulated from multivariate mixture
models represent those genes that are differentially expressed. They
are the genes whose expression levels are believed to be strongly
related to the tumour group. The remaining genes that were
simulated from N(u,, X) densities constitute the genes with relatively
low expression levels, but not necessarily zero, only that their
expression levels are not as strong as those in the former group. The

covariance matrix X defined as X = {Gij}, has a block structure such

that
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_ (0.2, if j—i] <5

% = {0, otherwise (3.1.1)
The variance-covariance formulation in (3.1.1) is to allow for some
level of correlations among the simulated genes, typifying a real

gene expression data sets.

The whole data set we simulated is of dimension n X g (100 x 1000),
n < q, as usually the case with microarray data. This is the data we
have used to test-run our proposed k-SS method and the data was

use for further analysis at various stages in this thesis.

In what follows, we provided the distribution of the test statistics

used for the construction of our sequential test procedure.
3.2 Determining the critical values C; of the k-SS tests

As established in Chapter 2, the Sjs, j=1,..,q—1, s =12, are the
differences of two minimum average MERs between any successive
pairs of selection steps j and j+ 1 in the construction of our
sequential test procedures. However, the estimates of the critical
values C! and C2 simply written as CS, for s = 1,2, as required by our
test procedures in (2.4.34), (2.4.35) and (2.4.50), (2.4.51) respectively
depend on the theoretical distribution of the test statistic Sjs or
_ 8;5-E(8;s)

Z3 , = ———=" designed for the tests. Based on the methodologies
! o2(8s)
adopted for the construction of our k-SS procedure, we highly

suspected that neither of the test statistics §;s or ZSjs may be fitted

by the Gaussian distribution as earlier assumed. Therefore, to

determine the true distribution of S]-s, we developed a set of
algorithms to simulate the Sjs = i(@ml'mz'""mf —éml'mz'""mfﬂ)

estimates for s = 1 or 2 respectively according to our proposed k
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sequential selection and prediction procedures. The simulated
microarray data matrix of 100 samples by 1,000 genes according to
the scheme presented in Section 3.1 is used for simulating the Sjs

values.

The values of the two average MER differences Sjs =+ (1§m1,m2,...,mj —
Jmumzemis1) for s = 1 or 2, [8]-1 = YMamzem) _ GMmumz. s for g = 1,
sz = MMz Mgt _ GMMz oy o =2] were simulated at 50, 100,
200, 500 and 1000 sample sizes according to our k-SS procedures.

The R code we developed for simulating the Sjs values 1s presented in

Appendix B.4.

To confirm our suspicion that the Gaussian density might not be
suitable to fit the Sjs values, we compared the empirical distribution
(red) of 1000 simulated 5‘]-1’5 (for s = 1) with the theoretical density
function of the normal distribution (blue) (see Fig 3.I). The
maximum likelihood estimates of the two parameters u and o2 of the
normal distribution (estimated from the simulated 8]1 data) are
computed to be fi = 0.0069 and 62 = 0.0002. The histogram (green) of
the raw 8]-1 data i1s equally presented in Fig 3.1. From the results
displayed in Fig 3.1, it is obvious that the true distribution of the Sjs
1s not Gaussian as earlier assumed. This is clearly evident from the
deviation of the theoretical Gaussian density function (blue) from
the empirical distribution (red) of the Sjl data in Fig 3.1. This lack of
Gaussian fit is equally revealed by the quantile-quantile (Q-Q) plot
of the simulated 8j1 data as provided again in Fig 3.1.

More specifically, the empirical distribution of the Sjl data obviously

suggested a typically skewed distribution for the Sjs’s in contrast to
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the symmetry property that characterize a typical Gaussian
distribution. For clarity purposes however, we presented in Fig 3.2,
the empirical distributions (histograms and line graphs) of the Sjs
using the simulated 1,000 Sjs data for s = 1 and 2. It can be easily
observed from the two plots in Fig 3.2 that the empirical distribution
of the § 1 data (left) 1s positively skewed while that of 5 2 data (right),

though similar to that of § 1, 1s negatively skewed.

Normal Q-Q Plot

Empirical distribution of the minimum MERs differences

o
M —— Empirical density <
L ---= Normal density function S |
o _
<
©
3
=1
i =0.0069
s | - H g <
@ | = 34
oy g °
g s 6% =0.0002 4
Z o, ° o
£ < \& g g
@
o
3
=1
o
N
o
<
o - o
r T T T T T 1
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -3 2 -1 0 1 2 3

Simulated minimum maen MER differences Theoretical Quantiles

Fig 3.1: The plots in the left present the empirical (red) and the theoretical Normal
differences of minimum mean MERs) data at 1,000 sample size. The parameters of the Normal

distribution are obtained by Maximum Likelihood Estimation (MLE) using the simulated Sjl data.
The Q-Q plot (right) clearly indicated lack-of-fit of normal density to the Sjl data.
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Fig 3.2: The empirical distributions of the simulated 1000 8]-1 = MM _ Gy My fors=1
(left) and sz = JMum My _ MM, for s = 2 (right)(differences of minimum mean MERs)
data.
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After several considerations given to some of the common probability
distribution functions like Gamma, Exponential, lognormal, Weibull
or Beta as well as the Skew-Laplace distribution as used by Fieller
& Flenley (1992) for the distribution of particle size to fit Sjs data,
our simulation studies finally revealed that the true distribution of
the Sjs data, s = 1 or 2, belong to the Skew-Normal parametric class

of density functions originally due to Azzalini (1985).

The Skew-Normal (SN) densities were developed to capture the
continuous variations from normality to non-normality. It is a
density function for normal-like data but with lack of symmetry. In
what follows, we present the basic theoretical formulations of this

distribution and its relevance to our situation under study.

Let ¢(2) be the standard normal density function of random variable
7 defined by ¢(2) = exp(—2z2/2)/2r and ®(Az) be its distribution
function but evaluated at Az. Thus, it is obvious that ®(1z) =

[ ¢(t)dt. Tf another density function is defined by

P(z; 1) = 2¢(2)P(Az), then, under this new formulation, random
variable Z 1s said to have a skew-normal (SN) density with

parameter A, Azzalini (1985,1986). Thus, we have;

$(z:2) = =exp(—22/2) [2 p(t)dt (3.2.1)
That is, Z~SN(1) and in line with the usual N(0,1) notation used to
denote the standard normal variable Z, the (standard) skew-normal
variate Z with shape parameter A can be equally written as
Z~SN(0,1,4) which literally translates to a skew-normal random
variable Z with location parameter = 0, scale parameter = 1 and
shape parameter = A. The value of 1 determines the shape of the

density function ¢(z; 1). As the value of 1 increases, the skewness of
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the function also increases and positive values of A provide positive

skewness and vice-versa.

From (3.2.1), the cumulative distribution function (cdf) of ¢(z; 1) can

be obtained as

o(z;2) =2 " [ $w)p(w) dw)d(w) (3.2.2)

The histograms and density plots of 10* samples drawn from SN (1)
family in (3.2.1) at A = 5 and -5 are presented in Fig 3.3.

The Skew-Normal density with Shape parameter = 5 The Skew-Normal density with Shape parameter = -5

1 — Theoretical (SN)dens\lyfunction‘ —

‘ —— Theoretical (SN)denswtyfunction‘

~—

\
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Skew-Normal variates Skew-Normal variates

Fig 3.3: The histograms and density plots of 10,000 samples simulated from the Skew-Normal
density SN(1) with shape parameters A = 5 (left) and A = -5 (right).

The SN density in (3.2.1) enjoys similar properties of the normal
distribution except for symmetry. However, if A =0, it is obvious
from (3.2.1) that ¢(z;0) = ¢(2), the standard normal density. For
any quantity ¢ defined as & = 1/vV1 + A2 therefore, both the mean and
variance of Z are respectively given as Egy(Z) = \/2/_715 and Vsy(Z2) =
1—2&%/m, Azzalini (1985). Further details on the distributional
properties of ¢(z;4) could be found in Azzalini (1985, 1986, 2001,
2005, 2006), Azzalini & Capitanio (1999) and Azzalini et al (2003).
After the original work of Azzalini and his co-workers on the
development of the skew-normal class of distributions, several other

variants and modifications of the SN probability functions have been
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developed, see, for example, Gupta et al (2004), Arellano-Valle et al
(2004), Armando et al (2007) among others.

Now, if we consider a transformation on SN variate Z of the form
§js = ps + 0,z (3.2.3)

then, random variable Sjs has a SN distribution with location and

scale parameters u, and o, (different from 0 and 1) respectively, and

shape parameter still remain A.

From (3.2.3), it is easy to verify that,

E(8;s) = s + AogV2 /\m(1 + 22) (3.2.4)
and that
V(8;s) = a2[1 — 22%/m(1 + 22)] (3.2.5)

Thus, the distribution of random wvariable Sjs can be written as
(/)(Sjs; Us, US,A), a skew-normal density with location parameter = p.,
scale parameter = o0, and shape parameter = A1 or as
SjsfvSN(us, 02,2). If 2 =0, it is obvious again from (3.2.4) and (3.2.5)
that E(8;s) = us and V(8;s) =62 and variable §;s would become a
(symmetric) normal random variable, 1.e. Sjs~N (4s,02). On the other
hand, when yu, = 0 and o, = 1, it follows from (3.2.3) to (3.2.5) that
Sjs = Z~SN(A). Hence, it follows that given any skew-normal variate
Sjs with specified location, scale and shape parameters u,, o, A,
8;5-E(8)s)

respectively, the statistic Zgjs =L —2L’ would have a skew-normal

distribution with location, scale and shape parameters 0, 1, and A

respectively simply written as Zgjs ~SN(A) as defined in (3.2.1).
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8,5-E(8)s)

statistics (2.4.33) to (2.4.35) constructed for our sequential

Obviously, the statistic Z?ijs = 1s in the form of the test

hypothesis tests of (2.4.32) and (2.4.49) with &;s = J_r(émvmz»--'mf -

5’”1"”2""'7”1'“), for s= 1 or 2 respectively (i.e. Sjl = Jmama..mj _
Jmumzmiri for s =1 and sz = JMUmz b1 _ GMaMa e for g = 2).
Hence, to determine the critical values C3, s = 1 or 2, of the test
statistics Sjs as used in (2.4.36) for s = 1 and (2.4.50) for s = 2, it is
sufficient to establish that random variable Sjs has a skew-normal
distribution with location, scale and shape parameters u,, o, and A
respectively [i.e. Sjs~SN (us,02,1)] or equivalently that the

standardized variate ZSjs has a (standard) skew-normal density

function with shape parameter 1 [i.e. Zng~SN (1)] as earlier stated.

Following our simulation procedures, it is quite easy to establish
that random variable Sjs actually follows the skew-normal
distribution. Firstly, we fitted the skew-normal density
¢(8;s; s, 05, 1) to the simulated §;s, s =1, 2, data at 50, 100, 200, 500
and 1000 sample sizes. The maximum likelihood estimates (MLE) of
parameters yg, 02, A, of each of the five fitted skew-normal densities
were estimated using expectation-maximization (EM) algorithm.
Thereafter, random sample of size 10,000 were drawn from each of
the fitted SN densities. The empirical distributions (histograms and
line graphs) of the Sjs data (under all the five samples) are plotted
based on the 10,000 samples drawn. These are respectively
compared with the theoretical (skew-normal) densities using the
estimated parameters. Due to space consideration, we only present

in Fig 3.4, the empirical (red) and theoretical (blue) density plots as
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well as the respective histograms (green) of the Sjs data, for s = 2, at
all the five chosen sample sizes. The quantile-quantile (Q-Q) plot of
each of the simulated Sjs data sets is equally presented in Fig 3.4.
From the various density plots, the closeness of both the empirical
(observed) and theoretical (skew-normal) distributions can be easily
observed, therefore, confirming the fitness of the skew-normal
density to the Sjs data. This result is corroborated by the respective
Q-Q plots as displayed in Fig 3.4.

Furthermore, among the popular statistical test procedures that are
commonly adopted to establish whether or not a set of data comes
from a specified theoretical distribution are the Kolmogorov-Smirnov
test (Chakravart et al, 1967), Anderson-Darling goodness-of-fit test
(Stephens,1974) and the Chi-square goodness-of-fit test (Snedecor &
Cochran, 1989) among others. While the approach of Kolmogorov-
Smirnov test has been reported to be highly sensitive at rejecting
that a data comes from a given theoretical distribution even when it

does, (http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm), the method of Anderson-

Darling goodness-of-fit test only exists for a very few distribution
which does not include the skew-normal density to the best of our
knowledge. Therefore, in addition to the probability density function
(pdf) and the Q-Q plots presented in Fig 3.4, we equally constructed
the Chi-square goodness-of-fit test to determine the fitness of the

Skew-Normal density to the simulated Sjs data. The results from the
Chi-square test for both Sjl and sz data are presented in Tables 3.1a

& 3.1b respectively. All the results clearly confirmed the

appropriateness of the skew-normal distribution to fit the § s data.
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The S-N density for differences of minimum mean MERs
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Fig 3.4: The plots in the left showed the empirical (red) and the theoretical (Skew-Normal, blue)
distributions of the sz = 9MuMarMjr1 — 9MuMaMy dotg qt the chosen five sample sizes of 50, 100,
200, 500, and 1000. The estimates of location, scale, and shape parameters u, o and A of the skew-

normal densities are indicated for each plot. The corresponding @Q-Q plots (right) for each
sample are also presented.
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Estimated parameters of Skew-Normal density

No. of 3]-1’5 fitted to 3,'2 data Chi-square goodness-of-fit test
(n) simulated Location Scale Shape Critical values
parameter parameter parameter values b
50 -0.0064 0.0180 3.9363 0.1445 1.0000
100 -0.0072 0.0200 4.9813 1.6946 0.9890
200 -0.0079 0.0197 3.1463 0.1150 0.9998
500 -0.0084 0.0216 4.0917 0.0665 1.0000
1000 -0.0086 0.0212 4.0244 0.1183 1.0000
Average -0.0077 0.0201 4.0360

Table 3.1a: The Chi-square goodness-of-fit test to establish the fitness of the simulated 51-1 =

9 MzMy . gMaMarMits data to the Skew-Normal distribution. The Chi-square estimates and the
corresponding p-values are respectively shown in the last two columns of the table. The parameter
estimates of the fitted SN densities presented are computed using 10,000 random samples drawn
from the fitted SN distributions for each respective simulated 3j1 data. All results indicated that the

Skew-Normal density fits the Sjl data.

Estimated parameters of Skew-Normal densit . .
P Y Chi-square goodness-of-fit test

No. of 3jz’s fitted to 3]-2 data
(n) simulated Location Scale Shape Critical
p-values
parameter parameter parameter values
50 0.0073 0.0195 -3.0212 0.1907 0.9999
100 0.0082 0.0170 -4.5873 0.1278 0.9980
200 0.0078 0.0204 -4.8565 0.2692 1.0000
500 0.0082 0.0205 -3.6002 0.1442 1.0000
1000 0.0082 0.0217 -4.1532 0.1380 1.0000
Average 0.0075 0.0198 -4.0437

Table 8.1b: The Chi-square goodness-of-fit test to establish the fitness of the simulated sz =

9MMeMjss  9MuMaM date to the Skew-Normal distribution. The Chi-square estimates and the
corresponding p-values are respectively shown in the last two columns of the table. The parameter
estimates of the fitted SN densities presented are computed using 10,000 random samples drawn
from the fitted SN distributions for each respective simulated sz data. All results indicated that the

Skew-Normal density fits the sz data.
The family of the skew-normal density functions is implemented in

the sn library of R statistical package. We have employed this to fit

the skew-normal distribution to all the simulated Sjs data sets.

It can be observed from Tables 3.1a & b that, except for the sign
differences in both location and shape parameters, all the estimated
parameters of the skew-normal densities for both 8j1 and sz variates
are essentially similar at each of the selected sample sizes. These are
clearly shown by the respective density plots in Fig 3.2. While Sjl
has more positive values than negatives and is positively skewed, sz

has more negative values than the positives and is negatively
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skewed. More justifications are provided by the Box-and-Whiskers
plots of the simulated 8]-1 and sz values at the five selected sample
sizes as shown in Fig 3.5a and Fig 3.5b respectively. This is more
conspicuously presented by the box-plot of the S]-s data, s = 1,2, at
1000 sample size as shown in Fig 3.5c. Except for their sign
differences due to skewness as indicated in all the plots, the two Sjs

data have similar distribution patterns but in the opposite sense.

Fig 3.5a

The box plot of the differeces of minimum MERs at various sample sizes

Fig 3.5 a &b: The box-plot of the simulated minimum average MER differences, 3]-1 (a) and sz (b)
data at the selected five sample sizes.

As previously discussed in Chapter 2 under the two S]-s k-SS
formulations, s = 1,2, the strict inequality IMUM2 Mkt < GMLMz,
shall be observed as long as the selection of additional gene
continues to improve the prediction accuracy of the current models.
This will continue to yield positive 8j1 values (or negative sz values)
at each successive selection steps until no further improvement is
brought into the model despite the inclusion of additional gene. At

such selection levels, the condition that 8]-1 <0 (or sz > 0) shall hold.
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These are the pictures displayed in Fig 3.2 for the empirical

distributions of both 8]-1 and sz simulated data sets.

T
delta1 delta2

The box plot of the differeces of minimum MERs at 1000 sample size

Fig 3.5c: The box-plot of the simulated minimum average MER differences for both Sjl (deltal) and
sz (delta2) at 1000 sample size showing the effects of skewness under the two formulations.

Now that 1t has been established that the Sjs data have the skew-

normal distribution, it is therefore obvious that the test statistics

5.s—E(d.:s .
Z3 =’—(’), s=1,2, j=1,..,qg—1, as stated for testing one

js V(SJS)
directional hypotheses sets (2.4.32) and (2.4.49) are also distributed
skew-normal. To compute the critical values C; therefore, we only

need to determine the shape parameters of the skew-normal

densities ¢(6Aj1;11) and ¢($-z;lz) or simply that of ¢ (Zg'l,'/ll) and
]
¢>(Zg,2 ;AZ). We recall that the skewness of the two SN densities
)
¢ (Zg.1 ;/11) and ¢ (Zg.2 ;/12) are different only by their signs, such
] ]

that when 3]-1 1s positively skewed by A, magnitude sz would be

negatively skewed by 1, magnitude with A, = —A;. Therefore, if the

random variable Z3 1s distributed skew-normal with shape
J
parameter 4, i.e. Zz ~SN( 4;), it can be easily shown (Azzalini, 1985,
J
pp172) that random variable Z3 , would be distributed skew-normal
J

with shape parameter A, 1e. [Z3 ,~SN(4;)], 4, = —4;. From this
)
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relationship, another basic property of SN family of distributions as

adapted here, using (3.2.2) equally holds that
@ (zgjl;,ll) =1-® (Zgjz;ﬂz) o d (zgjl;zz) =1-0 (zgjz;zl)(g.z.e)

Azzalini (1985, ppl174), where the absolute value of the oint’ shape

parameter |A|, s = 1,2, that satisfies (3.2.6) is to be determined.

To this end therefore, we shall let the joint estimate of the absolute

value of the shape parameter for both (],')(S 1 ;/11) and ¢((§jz ; /12) skew-

normal densities be denoted by 1*. This can be determined by taken
the average of the absolute values of all the estimated shape
parameters of the skew-normal densities ¢(81;A1,,) and ¢(82; A2 )
fitted for simulated Sjs data sets, s = 1,2, at m chosen number of

sample sizes, m = 1,..., M. Thus, 1* is obtained by
~ 1 ) A
A= oM (Z%=1|Alm| + Z%=1|12m|) (3.2.7)

Based on the results of our simulations, the estimates of each of the
Asm, S=1,2, m=1,..,5, are provided in Tables 3.1a & 3.1b for
simulated 8]-1 and sz data sets respectively. From these results, the
value of 1* is estimated to be 1* = 4.0398 using (3.2.7). Henceforth,

this value of 2* shall be used as the true value of parameter 1* of the
skew-normal densities ¢ (Zg, ¥ /1*) and ¢ (Z’g S /1*) for the critical
] J

values Cl = Z,_,(1*) and C2 = Z,_,(—2%) of our k-SS test procedures

(2.4.32) and (2.4.49) respectively at any given value of «a.

Therefore, for testing the hypothesis sets (2.3.32) and (2.4.49) the

5.1-E(8. 85.2-E(6;
respective test statistics Zz = 2 0p) 22(0p)

PG T G

skew-normal distributions with shape parameters A* and —-A*

have the
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respectively with A* estimated as 1* = 4.0398 and E (Sjs) = 0 under
Hysj, s =12, j=1,..,q — 1. From the distributions of the two test

statistics Z3 _ given above, one can easily determine the estimates of
J

their critical values C; for our k-SS test procedures in (2.4.32) and
(2.4.49) for s = 1 and 2 respectively. These are presented in what

follows.

Let us consider one directional hypothesis set given in (2.4.32), i.e.
Hyyj: 6j1 < 0 vs. Hypj:6;1 > 0, for j = 1,...q — 1. Since the test statistic

Zz . as used in (2.4.33) for this test is distributed skew-normal,
]

Zz ~SN(A"), then, at any significance level a (to be determined by
]

cross-validation), the critical values C! for this test, as used in

(2.4.34) through (2.4.37), shall be estimated by
Cl= Z,_,(1) (3.2.8)

where Z;_,(1*) is the quantile of the skew-normal distribution

¢ (Zg o /1*) with shape parameter 1* computed at significance level a.
]

Similarly, under the one directional hypothesis set in (2.4.49), 1i.e.

Hyy;: sz = 0 vs. Hyy;j: sz < 0, each of the test statistic Zz , for the test
J
1s equally distributed skew-normal, Zz ,~SN(—1"), and at any given
J

significance level a, the critical values CZ for this test, as defined in

(2.4.50) and (2.4.50), shall be estimated by
C2= 7, _o(=2) (3.2.9)

where Z,_,(—A1*) is the quantile of the skew-normal density

¢ (Zg , ;/1*) with shape parameter —1* at significance level a also to
]

be determined by cross-validation.
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Having determined the theoretical distributions of Zgjs or Sjs, s=1,2,

we then present in what follows, the complete form of our k-SS
algorithm. However, it i1s to be noted that the implementation of
either of two k-SS test procedures in (2.4.32) or (2.4.49) on a given

microarray data set would essentially yield similar results.

The k-SS algorithm

Input: Training samples nyi and test samples nyg of n biological subjects with binary
response group Y € {0,1} and g-dimensional vector X = (Xy,..,X;)T of genes whose
expression levels are measured on all the n samples, n = npg + npg.

Out-put: The k-SS classifiers and various performance indices.

Step 0-0: #Search for the first best gene to be selected into the classification model
among all the q genes.

1) Fit logit model, logit(n(Xj)) =a+p;X;, j=1,..,q, on individual gene X;
using the training sample nyg.
ii) Construct the classifiers ¢(X;) = argmax, p(y|X;) for each gene X;, j =1, ...,q, and
predict the two class labels (0,1) of the test sample nyy via the classification scheme;
2(X) = 1, ifp;(1]X;) = 05
P =00, itp(olx;) < 05

1i1) Base on ii) above, compute the misclassification error rates (MERs), 1§j =
1 a . .
n—wzzf [1{@(}(]_)#,[}], 0<9; <1 j=1,..,4q, for each X;, where I3 =1 if the
argument is true and 0 otherwise.

iv) Draw R replicates of training sample n;p randomly, without replacement,

from the original n sample and repeat steps 1) to iii) on each sub-sample for

each gene X; and compute the average MERs

= 1 .
;= SITE SR [ (yera)] = 1

J 7 Rxngg

V) Define the minimum average MER from iv) by
9™ = 5(1) = min (5(1),5(2), ,5@) and select the corresponding gene
X™ =Xy € {X(l), X2y ,X(q)} as the first gene candidate into our

classification model.

Step 1-0: #Search for the next best gene to be included with gene X™ in the

model
1) For the remaining q — 1 genes, construct classification rules as in Step 0-0 1)
to v) above but using each gene pair X™Xqy, ..., X™Xq). Obtain the

minimum average MERs defined as
drame = min (§me, §me, ., fmiw)
which is provided by the corresponding gene pair
X™X™z € (XM X (), X™ X3, . , X™ Xy}
i1) Select gene X™2 into our classification model which already has gene X™ to
form gene pair X™ X™2 in the new classification model.
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Step 1-1: #Test for the significance of the gain in prediction accuracy of the
current model due to the inclusion of gene X™2.

i) Test one directional hypothesis test of the form:
Hyqq: ,ug“ - ,ugll’mz <0 vs. Hgip: ,u:;ll - ,ugll’mz >0

= Hy11:612 <0 vs. Hyq1: 610 >0
where 61 = pygt — pg "™

5y = G — G,

with its unbiased estimator given by

_81-E@1)
SN(1*) — Skew-Normal density with shape parameter A*. Under Hyq,
E(6p)=0.

111.) Construct decision rules (for gene(s) selection(s)):

At some range of significance level a (determined by cross-validation),
a.) accept Hyyq (reject the selection of gene X™2 into the model) if

ii.) Use the test statistic, 2311 ~SN(1%),

Sp=D0m —9mme < 7, (4.0398) [02(81)
b.) reject Hy11 (accept the selection of gene X™2 into the model) if
Sp=D0m —9mme > 7, (4.0398) [02(81)

where Z;_,(4.0398) is the quantile of the skew-normal density at the
estimated shape parameter I* = 4.0398.

iv.) If the null hypothesis Hy;; is rejected base on decision rule iii.)b.), retain
gene X™2 in the model and go back to Step 1-0 in search of the next best
gene to be added to the gene pair X™X™2 in the model. If Hy; is accepted,
drop the selected gene X™2 from the model and stop further gene selection.

v.) Execute Steps 1-0 (i-ii) to Step 1-1 (i-iv) repeatedly until no more gene
satisfies the decision rule iii.)b.) above

vi.) STOP and RETURN the k-sequentially selected (k-SS) informative genes,
k € {1,..,q} and various performance indices.

3.3 Applications of k-SS method

The new k-SS method proposed here is first applied here on the
simulated microarray dataset. The method is later applied on eleven
published microarray data sets as presented in Chapters 4 and 5.

Details of all the data sets used are provided in the next Chapter.

Since the 100 by 1,000 data matrix we simulated here represents a
typical microarray data set, appropriate data normalization and
standardization as discussed in Chapter 1 are carried out prior to
analysis of the data such that each vector of genes has zero mean
and unit standard deviation across the mRNA samples. This is
followed by preliminary gene selection using the student-¢ statistics

based on the procedures described in Section 1.4.2. Using the range
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of the observed p-values from the data as a guide, the cut-point
p-value, p* is taken to be 0.05. The univariate filtering using this
student-t method hereby reduced the original g = 1000 genes to
q" = 55 genes.

We begin the implementation of our k sequential gene selection (k-
SS) method by random splitting of the mRNA sample size n using
the splitting ratio 19:1 for n;; (training sample) : nyp (test sample)
respectively as discussed in Section 2.1. Therefore, with the
simulated mRNA sample size n = 100, nyz =95 would be used to
build our classifier while n;; = 5 would be used to evaluate its

performance.

Sub-sampling scheme of Monte Carlo Cross-Validation (MCCV) is
adopted to ensure stability of results and minimize bias in our
estimates. By this, random sample of size n;z =95 is repeatedly
drawn from the entire n =100 sample 5000 times without
replacement and univariate logit model is fitted on each of the
q* = 55 genes using each selected n;z sample. Each of the fitted
model is used to predict the response class labels y € {0,1} of the
remaining left-out nyz = 5 samples from which the misclassification

error rates (MERs) are computed. Thereafter, the average MERs

51,52, ,555, averaged over the entire 5000 repetitions, are
computed. All the 55 genes are then ordered in ascending order of
their averaged MER estimates. This resulted into the following
genes sequence and their respective average MER estimates (in
parenthesis): g5(0.1737), g4(0.18170),...,V879(0.4850), V876(0.5171).
It should be recalled that the genes labelled g1 to g5 are the 5
simulated genes with up-regulated expression values while genes

labelled V6 to V1000 are the 995 simulated genes with moderate
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gene expressions values according to our simulation procedures as

presented in Section 3.1.

Base on the above estimated mean MERs sequence the ordered
prediction performance of the genes can be vividly seen. The gene
labelled g5 is the gene that provided the best prediction accuracy for
having the least mean MER of 0.1737 among the 55 preliminarily
selected genes. Hence, gene g5 is the first gene to be selected by our
k-SS procedure. This is then followed by searching for the next best
gene among the remaining 54 genes to be included in the model with
g5. We determined this by fitting the logit model on each of the 54
gene pairs gbg4, ... , gbV879, gbV876 and use the fitted model to
predict the response category of the test samples. Here again, the
mean MER for each prediction is computed and the gene pair that
produces the minimum mean MER among the 54 mean MERs is
selected for consideration into the model. At this selection step, any

mq,my,...m;j

of the one directional null hypothesis set of the form Hy,;: i,

my,mz,...,Mjiq

M ml,mz,...,mj+1 mq,may,...
9

< 0 or Hoyj: g 5 ™ >0 as given in (2.4.32)
or (2.4.49) respectively with j =1 is to be tested between the two

minimum mean MERs obtained at the previous two gene selections.

We shall first consider the use of the hypothesis test (2.4.32) after
which the second hypothesis test (2.4.49) shall be considered to
1llustrate the applications our k-SS method. It shall be finally
established thereafter that the k-SS results under the two test

formulations are essentially similar.

Using hypothesis test (2.4.32), the test hypothesis required at this

gene selection stage is of the form
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L, m mq,m; ., m mq,m;p
HOll'IJ’-ﬁl_Mﬁl SO US. Hall.‘uﬁl_ﬂ_a >0

g H011 . 611 < 0 wvs. Hall: 611 >0 (3.3.1)

where 6,1 = ,ugll — ,ugll'mz. Based on the decision rules in (2.4.36) and

(2.4.37) additional one gene would be selected and added to gene g5

(accepting Hyyy) if 8p =9™ —Jdmmz > (L /02(811), while the

selection of additional one gene would be stopped (accepting Hy,,) if

S = Im — gmamz < c /0'2(811) where C! =27, ,(1*) is the critical

value of the percentage points of the skew-normal distribution as
defined in Section 3.2 at some Type I error a to be determined by

internal cross-validation.

The value of the shape parameter 1* of the skew-normal density has
been estimated to be 4.0398 through simulation studies in the
previous section. This shall be used to determine C} at each selection
step. In a nutshell, if the null hypothesis H,;; is accepted, further
variable selection stops, but if the alternative set H,,;, 1s accepted,
then, additional one gene would be included into the model and the
search for the next best gene to be selected begins by repeating the
above procedures. The R code we develop to run this test procedure

1s provided in Appendix B.1.

We would like to reiterate here again that the size a of our k-SS test
procedure i1s not arbitrarily fixed by us but rather, it is being

determined through cross-validation. By this, different estimates of

the critical values C. faz (511) would be computed over all possible

values of a in the interval [0,1] and the value(s) of a at which the
decision rule (2.4.36) is satisfied and for which the best prediction

results are obtained becomes the size of our test.
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Based on these criteria, additional one gene labelled “g3” is selected

at step 1 having satisfied the decision rule & = Jm — Hruma >

o /02(811) as given by (2.4.37). Therefore, gene “g3” was added to

gene “gb” at step 1 to make gene pair “gh, g3” in the k-SS

classification function.

Selection Mi;,['Enﬁzan Mi;,['Enﬁzan 8,1 = oy No.of genes ..
steps j Frnsma.my Frmsma.myen — MMMy selected
0 0.1831 1 continue
1 0.1831 0.1132 0.0701 2 v
2 0.1120 0.0783 0.0337 3 v
3 0.0787 0.0697 0.0090 4 v
4 0.0718 0.0602 0.0116 5 v
5 0.0598 0.0459 0.0139 6 v
6 0.0463 0.0485 -0.0021 X stop

Table 3.2a: Table of results of k-SS classifier under the 3]-1 formulations at each gene selection step

for simulated data. Optimal selection (the best prediction result) is achieved at the fifth selection step
at which the sixth gene is selected. The size a of the k-SS test, determined by cross-validation,

satisfies the range a € (0,0.975]. The corresponding rage of the critical value C} ,02(361) of the test

statistic 841 for this range of a is estimated as C} ’02(361) € (00,—1.2081 x 10™*]. The six genes
selected in order of selection steps 0,1, ... ,5 are “gh”, “g3”, “V192”, “V805”, “V566”, “g2” respectively.

At step 2, the decision rule §,1 = Jmumz _ gmimzms >, cl /02(321) was

also satisfied with the selection of gene “V192”. This was again
added to the gene pair “gh, g3” to increase the number of selected
informative genes from two (“gb, g3”) to three (“g5, g3, V192”). The
gene selections and response class predictions processes continue
until step 5 at which the gene selection and classification were
optimal. At that optimal selection step, step 5, the following six
informative genes, “g5”, “g3”, “V192”, “V805”, “V566” and “g2”, have
been selected in that sequence. We present in Table 3.2a, the k-SS
prediction results which include the minimum mean MERs and their
differences as well as the number of gene selected at each gene

selection step.
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At the 6t selection step however, consideration was being given to

the 7t gene to be selected. At this step, the minimum mean MER
difference g1 = Hmumzme _ gMimz.ms wag  estimated given the
following summary statistics: Hmama,me = 0.0463, Hmamz,my =

A

0.0485, 6,1 = —0.0021. Also, with ¢} already found to be

Ci=17,_,(4.0398), the estimates of the critical value C2 /02(861) of

the test statistic 6,1 as given by the decision rules (2.4.36) and
(2.4.37) with j = 6 has a range

Z,_,(4.0398) x /02(861) € (00,—1.2081 x 107*]  (3.3.2)

computed over the corresponding range of significance level «a,

estimated by cross-validation, given by
a € (0,0.975] (3.3.3)

It can be easily observed from (3.3.2) that &, = —0.0021 <

Z1_4(4.0398) x /02(861) over all the range of a as given in (3.3.3).

Therefore, by decision rule (2.4.37), further gene selection is stopped
and the 7th gene is excluded from k-SS classification model. This
simply implies that, our k-SS procedure considers the relative loss in

prediction accuracy of —0.0021, the difference between the mean
MER Jm™imz-ms = 0.0463 (obtained at 5t selection step from 6

genes) and the mean MER Jmumz.ms = ().0485 (obtained at 6tk
selection step from 7 genes), to be too large enough to warrant the
stoppage of further gene selection beyond the 5t selection step.
Hence, the reason why the inclusion of the seventh gene at the 6t

selection steps is rejected by k-SS criteria.
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Based on our simulated microarray data set therefore, the best
prediction results are obtained at the 5th selection step at which
k = 6 informative genes (“g5”, “g3”, “V192”, “V805”, “V566~, “g2”) are
selected by our k-SS method. The average prediction accuracy
achieved by our k-SS classifier using the six genes is 95.37%. This
yielded an average MER of 0.0463.

If we adopt the minimum mean MER sz = JmumzMisy _ Gma s, m;
formulation in the construction of one directional hypothesis set as
stated in (2.4.49), the same test procedures above would be followed
with the only exception that the test statistic used would now be sz

or Zz , with Z3 ,~SN(—1") as earlier established in this chapter. The
] ]
critical value C; of the test statistic Zz, would be C}=
J
7, o (—4.0398).

According to our k-SS results under the sz formulation, the optimal

selection step i1s also attained at the 5t selection step after the
selection of the 6t gene into the model. At the 6t selection step
however, consideration is being given to the 7t gene to be selected

into the model. The minimum mean MER difference &, =
MM,y _ G M2, M g computed at this selection step (step 7) and
the following summary statistics are obtained; Jmima.me = (0473 ,

Hmimaems = 00490 and 8¢2 = 0.0017. The estimated critical value

C2 /02 (862) for the test statistic 5,2 has a range

Z,_,(—4.0398) x /02(862) € [2.1629 x 1074, —0)  (3.3.4)
which 1s obtained over the corresponding range of @ estimated as

a € [0.025,1) (3.3.5)
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Min. mean Min. mean

Selection MERs MERs 8 = DMt No. of genes

steps j Fmuma,..m; Fmams.myaq —gmama.m; selected Decision
0 0.1822 1 continue
1 0.1768 0.1090 -0.0678 2 v
2 0.1121 0.0772 -0.0349 3 v
3 0.0817 0.0712 -0.0105 4 v
4 0.0722 0.0584 -0.0138 5 v
5 0.0601 0.0461 -0.0140 6 v
6 0.0473 0.0490 0.0017 X stop

Table 3.2b: Table of results of k-SS classifier under the 3]-2 formulations at each gene selection step

for simulated data. Optimal selection (the best prediction result) is achieved at the fifth selection step
at which the sixth gene is selected. The size a of the k-SS test, determined by cross-validation,

satisfies the range a € [0.025,1). The corresponding rage of the critical value C2 ,02(562) of the test

statistic 8, for this range of a is estimated as C2 faZ(Sﬁz) € [2.1629 x 107*, —0). The six genes
selected in order of selection steps 0,1, ... ,5 are “g5”, “g3”, “V192”, “V805”, “V566”, “g2” respectively.

Based on the above results, it could be observed that 5 = 0.0017 >

Z,_q(—4.0398) x /0'2(862), which satisfied the decision rule (2.4.50)

over all the range of a as given in (3.3.5). Therefore, the selection of
the 7t gene into the model at the 6t selection step is rejected and
further gene selection stops. The results’ estimates at each selection
step as provided by our k-SS procedures are presented in Table 3.2b.
At the optimal selection step, step 5 after which no additional genes
1s allowed into the model again, the following sequence of 6 genes,
“eh”, “g3”, “V1927, “V805”, “V566”, “g2” as selected under the 8j1 test
formulations have being equally selected. This simply confirms our
earlier remark that the use of Sjl = Jmumzemy _ §mimz,.mis1 op
sz = Ymamaeamiry — gmimz.m; formuyulations for the construction of

our k-SS procedure would yield similar prediction results.

Results from Tables 3.2a & b showed that the average prediction
error rate estimated by k-SS method using six genes is about 4.7%
under the two test formulations. This shows that, for the simulated

microarray data set, the new k-SS method provided prediction
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accuracy of about 95%. By this result, our k-SS method correctly
classified 95% of the subjects in the population from which the data
was simulated while it misclassify just about 5% of the subjects. The
estimates of other performance measures for the k-SS classifier are
provided as follows; sensitivity = 96%, specificity = 98%, positive
predictive value (PPV) = 98%, negative predictive value (NPV)
~ 96%, Jaccard Index = 91%. All these performance measures as
obtained under the two test conditions (2.4.32) and (2.4.49) as
considered by our k-SS method is presented in Table 3.3. The cross-
validated ROC (CVROC) curve and the estimated area under the
curve called the cross-validated AUC (CVAUC) area, for the optimal
k-SS classification model (containing six selected genes) under the

Sjl formulation is presented in Fig 3.6.

Performance Measures on k-SS classifiers

k-SS MER Sensitivity Specificity +predictive -predictive Jaccard No. of
formulations value value Index selected
Genes
3]-1 0.0463 0.9593 0.9789 0.9785 0.9601 0.9131 6
3].2 0.0473 0.9592 0.9790 0.9786 0.9600 0.9112 6
Average 0.0468 0.9593 0.9790 0.9786 0.9601 0.9122 6
performance

Table 3.3: Table of estimated performance indices for the k-SS classifier on simulated microarray
data set under the two minimum mean MER test formulations 61 and 0;z.

Due to some argument raised in favour of the use of brier score as an
important assessment measure of classification rules (Hand, 1997),

we equally obtained the average cross-validated estimates of the
brier score, ébn-er to access the performance of the k-SS method. This

1s estimated to be 5bn-er = 0.0492 for the simulated microarray data.
It can be observed that the estimated brier score of 0.0492 is very
close to the estimated MER of 0.0473. To this end, we shall ignore

the brier scores estimates in our subsequent analyses.
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The plot of the average MERs at each selection steps against the
number of genes selected as presented in Fig 3.7 clearly indicated
successive improvements in k-SS prediction results as additional

genes are selected into the models.
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Fig: 3.6: The cross-validated ROC (CVROC) curve for the optimal k-SS prediction results (with six
selected genes) under the 3]-1 test formulation. The cross-validated AUC area is estimated to be

0.9702.
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Fig 3.7: The graph of the successive average MER estimates at each selection step against the

number of gene selected. The graph shows improvement in prediction accuracy by k-SS method as

additional genes are selected into the model until optimal gene selection is reached at the 6t gene
selection.

Furthermore, we present in Fig 3.8 the plots of the estimated
minimum mean MER differences for Sjl and sz at successive
selection steps j against the number of selected genes. It can be
easily observed from the plots that both 8]-1 and sz, though having
different estimates, provided the same gene selection results and

they both reach their optimal selection levels after the selection of

the sixth informative genes.
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Fig 3.8: The graphs of the successive estimated minimum mean MER differences under the two k-SS

test formulations Sjl (Delta 1) and S]-z (Delta 2).The optimal gene selection step was reached when

k = 6 genes were selected as indicated by the two plots. The optimal selection point is the point at
which the 6,1 > —ves or 6;2 > +ves by some estimated critical values.

Backward checks on the selected genes

As briefly discussed in the last chapter, we intend to examine the
importance of each selected genes by our k-SS classifier in the
presence of other genes in the model. By this, we want to find out if
the previously selected genes are still important in the model given
that additional new gene is selected into the model. Each of the six
selected genes is examined for their relevance in the presence of
other selected genes as detailed in Section 2.4.2 under the backward
checks procedure. The R code we developed for the implementation
of the backward checks on genes selected by k-SS method is provided
in Appendix B.2.

The results of our backward checks for the six selected genes by our
k-SS classifier are presented in Table 3.4. From the table, it can be
easily observed that all the genes selected by k-SS method are
important in the presence of other selected gene variables in the
model. In all cases, the prediction performance of the model without
the removed gene are worst than when the removed gene are put
back into the model. Based on these results, we can simply suspect

that the k-SS method only selects the most suitable gene
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combinations in any given microarray data set. Our suspicion in this
regard shall be confirmed when the k-SS procedures are applied on
real microarray data sets in the next chapter. The box-plot of the
results of the backward checks at the 2rd selection step is provided in

Fig 3.9.

o 3
22| 88| MER
3 o = 3 of full MER of the model when the indicated gene was removed
% o s 3 Model
Z
0 1 1oissn €
1 2 g5 g3
0.1132 4 5563 0.1847
2 3 g5 23 V192
0.0783 4 2192  0.1479  0.1067
3 4 g5 23 V192 V805
0.0697 4 2189 0.1241 0.1092 = 0.0779
4 5 0.0602 g5 23 V192 V805 V566
. 0.1936 0.0922 @ 0.0893  0.07123 : 0.0880
5 6 0.0459 g5 23 V192 V805 V566 g2
. 0.1677 0.0542 0.1142 0.0616 0.0835 0.0625

Table 3.4: Results of the backward checks on each of the selected gene by k-SS classifier. The MER
indicated against each gene at each selection step is the MER of the model without the indicated
gene. The results generally showed that all the selected genes by k-SS method are important in the

model.
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The box plot of the MER estimates without the indicated genes

Fig 3.9: The box plot of the backward checks on k-SS selection and prediction results for simulated

microarray data. The plot shows the MER of the full model and the models without the indicated

gene variables at the third gene selection. The triangular spots are the mean MERs of the models

while the red horizontal line indicated the mean MER of the full model. Results from the plot
revealed that all the genes selected by k-SS classifier are important in the model.

The sub-sampling technique of Monte-Carlo cross-validation (MCCYV)
has been adopted in the above implementation of the k-SS

procedures. It is essential to report that when the cross-validation
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technique of bootstrap.632+ scheme as proposed by Efron &
Tibshirani (1997) was used for the implementation of the k-SS
procedures, similar results as in MCCV were obtained. To achieve
stable results however, we recommend that sufficient cross-
validation runs are used for k-SS implementation. Since the results
of the k-SS method under the bootstrap.632+ scheme are essentially
similar to those obtained using the MCCV scheme, the results for
bootstrap are therefore not reported here to save space. However,
the R codes we wrote to implement k-SS procedure under the

bootstrap.632+ scheme are provided in Appendix B.6.

In the next section, we present the prediction results of three
existing classifiers — SVM, k-NN, PLS as implemented in this work
on our simulated data and their prediction performances are

compared to that of the new k-SS classifier.
3.4. Applications of some other classifiers

In this section, we only present the implementation of each of the
three selected methods - SVM, k-NN, PLS on simulated microarray
data. The results of the remaining five classifiers on published
microarray data sets are provided in the relevant section of this

thesis.

We begin by using the splitting ratio of 19:1 in favour of training :
test samples as used for the construction of our k-SS classifier. For
all the analyses performed using the three selected methods, the

cross-validation approach of MCCV is adopted with 5000 repetitions.
Support Vector Machines (SVM)

As used for the k-SS implementation, 95% of the sample is used to

train the SVM classifier while the remaining 5% is used for its
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assessment. There are various forms of algorithms that executes
SVM for classification. We have adopted the SVM implementation in
R located under the €1071 library. Since SVM approach is kernel
based whose prediction accuracy is often a function of the type of
kernel used for analysis, we shall implement the SVM algorithm
using all the four basic kernel functions — i.e. linear, polynomial,
radial, and sigmoid kernels as fully discussed in Section 2.8.1. In
addition to this, we have discovered that the polynomial kernel
implemented in the 1071 library of R is for cubic polynomial by
default. We shall, in addition to this, examine the performance of
SVM for classification under a polynomial kernel of second degree
for possible results’ improvements. Thus, all together we have
considered five types of kernel for the implementation of SVM and
the kernel that provides the best prediction results is finally selected

for further inferences.

Kernel Types

Performance
Measures Linear Polynomial3 radial sigmoid polynomial2
MER 0.0340 0.0668 0.0368 0.3812 0.0674
Sensitivity 0.9987 0.9967 0.9975 0.2951 0.9965
Specificity 0.9979 0.9966 0.9988 1.000 0.9968

Table 3.5: Results of support vector machines for classification using simulated microarray data
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Fig 3.10: The box-plots of average MERs estimates from five support vector machines (SVM) kernels
for simulated microarray data. The triangular spots are the mean MERs of the models for each
kernel type and the red horizontal line indicated the minimum mean MER.
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We present in Table 3.5, the classification results from SVM
implementation on the simulated microarray data for all the five
kernel types. The basic performance measures we reported in the
table are the average misclassification error rates MERs, sensitivity
and specificity which were all computed over 5000 repetitions using

the MCCV sub-sampling scheme.

It can be easily observed from Table 3.5 that prediction results of
SVM using linear or radial kernel seems the best among the five
kernel types based on the three performance indices. This
superiority performance of the two kernels is clearly shown on the
box-plot of the estimated MERs for all the five kernels as presented
in Fig 3.10. However, the radial basis kernel has been reported in
many works to yield more stable results and is generally been
preferred in many works (Brown et al, 2000; Lee, 2004; etc.). As a
result of this, the results of the SVM with radial basis kernel shall
be used for further discussions and implementations. Using the
radial basis kernel as a standard, the SVM prediction results for the
simulated data shows a misclassification error rate (MER) of about

3.7% with 99.75% sensitivity and 99.88% specificity.
k-Nearest Neighbours (k-INN)

As in SVM, the performance of k-NN method also depends on the
choice of parameter k, the number of neighbour to be used for
classification. In some studies the value of k is fixed a priori (Shang
& Shen, 2005, Hastie et al, 2009) the practice that has been
criticized elsewhere for its biasness due to heterogeneity in group
samples (Baoli et al, 2003). In another studies, the number of
neighbours, k between 15 and 20 has been suggested (Cover & Hart,

1968; Broder, 1986; etc.) in search for optimal prediction accuracy.
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What is however clear is that, prediction accuracy of k-NN classifier
largely depends on the number of neighbours adopted for analyses
and that the number of neighbour, k, adopted is not unique to all
microarray data sets. Therefore, we shall implement the k-NN
algorithm for all values of k within the range 1 < k < 20 and the
best classification results among these as determined through cross-
validation shall be chosen as our k-NN result. The k-NN procedure
1s implemented in the library (class) of the R statistical package

and this we have used for our k-NN implementation.
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Fig 3.11: The box-plot of the average MERs for k-NN response class prediction at different number of

neighbours (k) for simulated microarray data. The best performance occurred at k = 15 neighbours

where the least MER is achieved. The triangular spots are the mean MERs of the models at each
number of neighbour while the red horizontal line indicated the minimum mean MER.

Using the splitting ration of 19:1 for training : test samples as
before, the prediction results under the k-NN method for the
simulated microarray data shows the best prediction accuracy at
k=15 neighbours. The following performance measures are however
estimated: MER = 0.0313, sensitivity = 0.9928 and specificity =
0.9638. The box-plot of the k-NN performance based on MER index

at different number of neighbours is presented in Fig 3.11.
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Partial Least Squares (PLS)

As remarked in the last chapter, the PLS method is, by itself not a
classification method but a dimension reduction technique. It is
mostly adopted to reduce several thousand of g genes to a very few k
gene components, which most often is less than 10 in a high-
dimensional microarray data. The number of components, k,
constructed from the original g genes are then being used to classify
biological subjects into their response groups using any of the
standard classification methods. Among the common classification
techniques wusually adopted for class prediction with PLS
components include the linear discriminant analysis (Boulesteix &
Strimmer, 2005 & 2007), logistic discriminant analysis (Nguyen &
Rocke, 2002a,b; Fort & Lambert-Lacroix,2005), and Quadratic

discriminant analysis (Nguyen & Rocke, 2002a,b) among others.

The method that combined dimension reduction of PLS with
classification method of the linear discriminant analysis (LDA)
simply written as PLS-LDA as implemented in the R library
plsgenomics (Boulesteix & Strimmer, 2005 & 2007) 1s adopted for
analyses in this work. The number of the PLS components to be
constructed can be fixed a priori or determined through cross-
validation. Generally, between two to three components have been
suggested in some studies (Nguyen & Rocke, 2002a,b,c), while other
numbers different from these have are adopted in some others (Ding
& Gentleman, 2004). In our implementation of the PLS-LDA, the
optimal number of components k desirable for each microarray data
set 1s determined among the first twenty PLS components through
cross-validation. By this, the number of component at which the best
prediction accuracy is achieved becomes the optimal number of

component for each data set.
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Based on our simulated microarray data, the classification results of
the PLS-LDA revealed a better prediction at just one component.
The summary of the estimated performance indices are as follows;
MER = 0.0248, sensitivity = 0.9600 and specificity = 0.9994. The box-
plot of the MERs at different number of components is presented in
Fig 3.12 where it can be seen that the best prediction is achieved at

just one component for the simulated data.

K7 k9 k11 k13 k15 k17 k19

Number of components (k)

Fig 3.12: The box-plot of the average MERs for PLS-LDA response class prediction at different

number of components (k) for simulated microarray data. The best prediction accuracy occurred at

the first PLS component (at k = 1) where the least MER is observed. The triangular spots are the

mean MERs of the models at different number of components while the red horizontal line indicated
the minimum mean MER.

Plrop(.)s.ed Other classifiers
Performance Measures classifier

k-SS SVM k-NN PLS-LDA
MER 0.0463 0.0368 0.0313 0.0248
*CPR 0.9537 0.9632 0.9687 0.9752
Sensitivity 0.9593 0.9975 0.9928 0.9600
Specificity 0.9790 0.9988 0.9638 0.9994
No. of genes used for 6 1000 1000 1000

prediction

Table 3.6: Summary of the estimated performance indices of the new k-SS classifier and three of the
existing classification methods (SVM, k-NN, PLS) on simulated microarray data. The values
reported for k-SS are the average estimated prediction performances under the Sjl and sz k-SS test
formulations as reported in Table 3.3. The correct prediction rate (‘CPR) is the complement of the
estimated MER.
The summary of the estimated performance measures for our new
k-SS classifier and that of other three classifiers (SVM, k-NN, PLS)
for simulated microarray data are presented in Table 3.6. It can be
seen clearly from the table that our k-SS method competes

favourably with the three state-of-the art methods in terms of
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prediction accuracy. The prediction accuracies of all the four
classifiers, including the k-SS, revolved around 95%. In addition to
this, the k-SS method has additional advantage of been capable to
identify and select those genes that actually contributed to the
prediction accuracy estimated. Detail discussions on this and some
other benefits of the k-SS method shall be provided in the next two

chapters.

In the section that follows, we examine the impacts of some random
splitting ratios for the training and test samples on the performance
of our new k-SS classifier as well as other existing classification
methods we have so far considered using MCCV sub-sampling

scheme.

3.5 Effects of training-test sample splitting ratios on

classifier’s performance

When the sub-sampling techniques of MCCV, bootstrap or any of
their variants is to be adopted to improve the performance of any
classification rule, the usual practice is to perform a random split of
the original sample size n into the training and test sample. The
idea is to build the classifier using the training sample and
evaluates its prediction performance on the test sample. Different
splitting ratios between the training and the test samples have been
suggested in the literature the most common of which is the ratio 2:1
in favour of training : test sample respectively proposed by Dudoit et
al (2002). By this, 2/3 of the whole data would be used to train the
classifiers and the remaining 1/3 would be used to evaluate their

performance via any preferred prediction accuracy indices.

In this section, we seek to examine the effects of some random

splitting ratios between the training and test samples on the
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prediction performance of our k-SS classifier as well as other three
classifiers so far considered up to this point. Due to small sample
size scenario as common to microarray data sets, we suspected that
the common choice of 2:1 splitting ratio might yield unstable and
misleading results. Our argument here is that, further reduction of
the original sample size n by 1/3'd (used as the training sample)
might result into loss of some useful information in the sample that
might be needed to construct efficient and stable classification rules.
Hence, it 1s important to keep as much as possible, substantial part
of the data in the training set while the remaining few left-out

sample shall be used to assess the performance of the classifiers.

To buttress our argument, we shall consider the prediction
performances of the k-SS, SVM, k-NN and PLS-LDA classifiers on
four different random splitting ratios 1:1, 2:1, 4:1 and 19:1 for
training : test samples respectively. This literally translates to using
50%, 66%, 80% and 95% of the whole sample size n as training
samples and the remaining 50%, 33%, 20%, and 5% as the test

samples respectively.

Splitting ratios 1:1 2:1 4:1 19:1
MERs (%) 8.37 6.38 4.92 4.63
No. of genes selected 6 8 9 6

Table 3.7: Table of gene selection and class prediction results by k-SS method at four different
splitting ratios of training : test samples. The best prediction results are obtained at 19:1 random
splitting ratio, i.e. at 95% training sample(test sample of 5%).

Using our simulated microarray data set, the prediction results of
the new k-SS classifier under each of the selected splitting ratios are
provided in Table 3.7. The corresponding box-plot for these results is

provided in Fig 3.13.

It can be easily observed from the results of Table 3.7 and Fig 3.13

that the performance of the k-SS classifier is sensitive to the choice

140



of splitting ratios between the training and test samples adopted for
analysis. The results indicated that the more observations we have
in the training samples the better the prediction accuracy of the k-SS
classifier. The best prediction accuracy (the least mean MER value)
however occurred when the k-SS classifier is trained with 95% of the
whole sample while its prediction performance is only being assessed

based on the remaining 5% of the sample.
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Fig 3.13: The box-plot of the misclassification error rates (MERs) in Table 3.7 for k-SS performances

at four different splitting ratios between the training and test samples. The box-plot shows the best

prediction accuracy (the least MER value) of the k-SS classifier at 19:1 random splitting ratio i.e. at
95% training sample (test sample of 5%).

Splitting ratios 1:1 H 2:1 H 4:1 H 19:1
Classifiers Average MERs (%)

SVM 4.63 4.02 3.65 3.53
k-NN 6.22 5.33 4.58 3.13
PLS-LDA 3.69 3.18 2.96 2.48

Table 3.8: Prediction results of SVM, k-NN and PLS-LDA classifier at four different training : test
sample splitting ratios. The best prediction results of the three classifiers are obtained at 19:1
random splitting ratio.

We equally present in Table 3.8 the prediction performances of other
three existing classification rules (SVM, k-NN, PLS-LDA) at the four
splitting ratios 1:1, 2:1, 4:1 and 19:1 for training : test samples
respectively. The corresponding box-plots are provided in Figs 3.14.

All the results also confirmed a better performance of each of the
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classifiers at the splitting ratio of 19:1 for training : test samples

respectively.
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Fig 3.14: Box-plots of the misclassification error rates (MERs) of SVM, k-NN and PLS-LDA

classifiers at four different training : test sample random splitting ratios. The three box-plots showed

the best prediction accuracy (the least MER value) of all the three classifiers at 19:1 random
splitting ratio i.e. at 95% training sample (test sample of 5%).

In summary, all the above results clearly provided a clear
justification of our choice of random splitting ratio of 19:1 in favour
of training : test samples respectively while constructing our k-SS

classifier.

3.6 Applications of AUC preliminary feature selection

method

We briefly present here, the discussion of results obtained from the
application of AUC preliminary feature selection we proposed in
Section 2.6 of this thesis as applied on our simulated microarray
data set. Under the student-f preliminary feature selection
procedure, 55 genes were selected by setting the cut-point of the p-
value at 0.05. However, when our proposed AUC criteria as detailed
in Section 2.6 were applied, 101 genes were selected at the threshold
value of 0.05 for «. When all the 101 genes were ordered in terms of
their average AUC values, gene “gh” was found to be the best gene

having the highest average AUC value of 0.9075. The worst gene
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with the least mean AUC value of 0.5950 is gene “V948”. What we
can quickly infer from this two results (student-£s and AUC’s) is
that given the same significance level a, the AUC criteria will select
more genes than the ¢-statistic, thereby saving us from the risk of
leaving out some of the potentially relevant genes at the primary
selection stage for further consideration by standard classification
methods. Additional advantage of our AUC preliminary selection
procedure 1s that, it is possible to have idea of the possible predictive

power of each gene selected under via their estimated cross-

validated AUC values.

However, as remarked in Section 2.6, any gene with its AUC value
revolving around 0.5 is not expected to uniquely provide good
prediction of the response class. Due to this fact, we decided to lower
the value of the significance level a used by the AUC selection from
0.05 to 0.02. At this level of a, a total of 50 potentially good genes
were selected with the best gene, “g5”, having the highest AUC value
of 0.9196 while the weakest gene in the group in terms of its AUC
contribution has estimated AUC value of 0.6169.

Surprisingly, the use of the AUC preliminary gene selection on our
k-SS method yielded the same final gene selection results as those
provided by it under the features selection by the t-statistics. For
instance, the following six genes, “g5”, “g3”, “V192”, “V805”, “V566”,
“g2”, as previously selected by k-SS classifier under the preliminary
selection by the t-test are equally selected using AUC preliminary

feature selection method. The full results are not presented here due

to space consideration.

However, it is necessary to remark that, though, both the AUC and

the ¢ preliminary feature selection methods as used with our k-SS
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method provided similar results based on the simulated microarray
data only. It is not unexpected in some instances however to discover
some differences in the results provided under the two approaches in
terms of the crop and number of genes selected as well as overall
prediction performances of the classifiers that might used them. This
should be expected because the two methods adopted different
criteria for feature selection. If this situation arises, the crop of
genes finally selected for class prediction by k-SS method under the
two approaches might differ and one would expect better classifier’s
performance under the AUC feature selection criteria. This
particular scenario was encountered when the two methods were
applied on real microarray data sets. This is discussed in detail in

the next chapter.
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4 Applications of k-SS method to

Microarray data sets

4.1 Data descriptions

In this chapter, we present the application of the new k-SS method
on real microarray data sets. To start with, the performances of our
new classifier are first compared with those provided by three of the
existing state-of-the art classification methods to assess its relative
worth under the real microarray data situations. Eleven microarray
data sets are used to demonstrate the implementation of the k-SS
method. Ten of these data sets are published microarray data that
are freely available at their respective web links as later provided.
The eleventh data set, as analysed in Section 4.2, is base on
microarray rectal cancer study carried out in the Department of
Surgery, Klinikum rechts der Isar, Technical University of Munich,
Munich, Germany. Details about this particular data are provided in
the next section. The brief descriptions of other ten data sets are
presented in what follows. We want to remark that, only the results

of our k-SS method under its 8j1 formulation shall be reported for all

the data sets.

Colon cancer data: These data were first analysed by Alon et al
(1999). They contain 2,000 gene expression profiles of 62 tissue
samples with two distinct clinical groups of tumourous (40 tissue
samples) and normal (22 tissue samples) subjects. These data are

freely available and can be downloaded at http://microarray.princeton.edu

/oncology/affydata/index.html.

Leukemia cancer datal: These data set are pre-loaded with any

version of R statistical software (http://www.R-project.org) under the
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package multtest. The data contained 3,051 genes whose
expression levels were measured on 38 biological samples containing
27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid
leukemia (AML). The data set were also described in Golub et al

(1999) and is publicly available at http://www-genome.wi.mit.edw/MPR/.

Leukemia cancer data2: The Leukemia cancer data 2 have 7,129
genes and 72 samples. As in Leukemia cancer data 1, the sample
contains 47 ALL and 25 AML biological subjects. More details on
these data can be found in Golub et al (1999). The data can be freely

downloaded at http://www-genome.wi.mit.edu/MPR/.

CNS data: These data described the embryonal tumours of the
central nervous system (CNS) and were analysed by Pomeroy et al
2002. The data contained 7,129 genes and 34 tissue samples. The 34
sample contains 25 classic (C) and 9 desmoplastic (D) tumour

groups.

DLBCL data: These data set were on 7,129 gene expressions of 77
biological samples. The data were analysed in Ship et al (2002) to
distinguish 58 Diffuse large B-cell lymphoma (DLBCL) samples from
19 follicular lymphoma (FL) samples. The data are publicly

available at www.genome.wi.mit.edw/MPR/lymphoma.

Lung cancer data: These are lung cancer data described in Gordon
et al (2002). They contained 12,533 genes and 181 samples, 150 of
which were those with malignant pleural mesothelioma (MPM) and
the remaining 31 subjects having adenocarcinoma (ADCA) of the

lung. The data can be found at http:/www.chestsurg.org.

Prostate cancer datal: These are prostate cancer data described in

Singh et al (2002). They contained expression profiles of 12,600
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genes that were measured on 102 samples of 52 tumour and 50

normal samples. The data are available at http:/www.genome.wi.mit.edw/MPR

/prostate.

Prostate cancer data2: These are prostate cancer data used by
Stuart et al (2004). They have expression measures of 12,625 genes
on 88 biological subjects with 38 tumour and 50 normal samples.

The data are available at www.affymetrix.com.

Prostate cancer data3: These are another prostate cancer data
described by Welsh et al (2001). They contained 12,626 gene
expression profiles of 33 samples. The sample has 24 tumour and 9

normal patients. The data are publicly available at

http://www.gnf.org/cancer/prostate.

GCM data: These are molecular cancer data described in
Ramaswamy et al (2001). The data have 16,063 genes with 280
samples 190 of which are tumourous while 90 are normal samples.

The data are available at www.genome.wi.mit.edu MPR_GCM.html.

4.2 Molecular classifications of rectal and colon cancer

patients with k-SS method

This section presents detail applications of the new k-SS method on

both rectal and colon cancer microarray data sets.
Rectal cancer data

As briefly highlighted in Section 4.1, the rectal cancer data analysed
here are based on microarray study carried out in the Department of
Surgery, Klinikum rechts der Isar, Technical University of Munich,
Munich, Germany, on preoperative endoscopic biopsy specimen of 43
patients that were diagnosed for locally advanced rectal carcinomas

(LARC). In that study, all the 43 patients were subjected to
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neoadjuvant radiochemotherapy treatments followed by surgical
resection. Thereafter, expression profiles of 24,026 probe sets
representing 24,026 human genome U133 plus 2.0 gene-chip arrays
were measured on each of the 43 patients. At the end of the clinical
diagnoses and treatments, it was discovered that 14 out the 43
patients responded very well to neoadjuvant radiochemotherapy
treatments while the remaining 29 patients did not respond to these
treatments. However, since it was possible to observe the expression
profiles of a good number of genes on these patients, the task now is

to

1) determine whether it is possible carry out pre-operative
prediction of the clinical status (responder or none-
responder to neoadjuvant treatment) of any future LARC
patients using the gene expression profiles of some of the
observed genes.

1)  identify and select those gene sub-set that are really
correlated with the two clinical status of the LARC patients
in 1) for possible determination of appropriate therapeutic

measures among other things.

However, the rectal cancer data set analysed here have been
recently analysed also by Rimkus et al (2008) where some results
regarding the prediction of the clinical status of the 43 LARC
patients using their gene expression profiles were equally reported.
Further details on clinical characteristics of all the 43 patients are
provided in that work. We shall discuss some of the results reported

1n the article later.

By our preferred random splitting ratio of 19:1 in favour of training

and test samples, we used n;z = 41 sample as training set and nyy =
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2 sample as the test set. The sub-sampling scheme of MCCV as
discussed in Section 2.7 is adopted for analysis. The expression
measures for all the genes were normalized so that each gene vector

has zero mean and unit variance across the mRNA samples.

Since the crop of genes selected for further analyses at the
preliminary selection stage can greatly influence the performance of
any classification rule, we shall therefore examine the prediction
performance of our k-SS method under the conventional preliminary
selection provided by the t-statistics and that of the AUC feature

selection criteria as proposed in this work.
1) k-SS applications under the preliminary selection by t-statistic

Here, the preliminary genes selection was performed using the
Student-¢ statistic as discussed in Section 1.4.2. The cut-point we
adopted for the p-values of the ¢-statistic 1s 0.001 as also used in
many studies, (Nguyen & Rocke, 2002 a, b, ¢; Rimkus et al, 2008;
etc.). This procedure selected 34 probe sets whose p-values of their
estimated ¢-statistic are less than or equal to the pre-selected
implied p-value of 0.001. These are the genes passed into our k-SS

algorithm for further analyses.

Results of our analysis on rectal cancer data showed that the k-SS
method selected seven genes with gene symbols “SF3A1”, “TOE1”,
“RBM18”, “RPL31”, “227353_at”, “ETS2”, “TNFRSF1B” at the end of
the 6t selection step to classify/predict the clinical status of the
LARC patients in the test sample as shown in Tables 4.1 & 4.2. The
probe sets numbers, the genes’ symbols and the genes’ names of each
selected gene are provided in the Table 4.1. Details of the selection
and prediction results at each selection steps are provided in Table

4.2.
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Probe-set Gene Gene Name
Number Symbol
216457_s_at SF3A1 Splicing factor 3a, subunit 1, 120kDa
204080_at TOE1 Target of EGR1, member 1 (nuclear)
238963_at RBM18 RNA binding motif protein 18
221593_s_at RPL31 Ribosomal protein L31
227353_at “227353_at” | “227353_at”
201329_s_at ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)
203508_at TNFRSF1B | Tumor necrosis factor receptor superfamily, member 1B

Table 4.1: The selected genes from rectal cancer data by k-SS method under the t-test preliminary
feature selection. Only the probe-set number is available for the fifth gene selected as shown on the
table.

Min. mean Min. mean

i 31 = Jmmz.my
0 0.1570 - 1 continues
1 0.1570 0.0897 0.0673 2 v
2 0.0940 0.0665 0.0275 3 v
3 0.0734 0.0609 0.0125 4 v
4 0.0539 0.0482 0.0057 5 v
5 0.0456 0.0018 0.0438 6 v
6 0.0017 0.0011 0.0006 7 v
7 0.0015 0.0018 -0.0003 X stops

Table 4.2: Table of results for k-SS classifier at each gene selection step for rectal cancer data under

the preliminary selection by the t-test. Optimal selection is attained after the selection of the 7th gene

at the 6th selection step. The seven genes selected in order of selection sequence are “SF3A1”, “TOE1”,
“RBM18”, “RPL317, “227353_at”, “ETS2”, “TNFRSF1B’.
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T T T T
) 02 o4 08 (=K 10

Fale positive raie
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Fig: 4.1: The cross-validated ROC (CVROC) curve estimated by k-SS method from seven selected
genes for rectal cancer data. The cross-validated AUC = 1.

It can be easily observed from Table 4.2 that the k-SS method
provides correct prediction rate of about 99.89% (average MER of

0.0011) using seven genes. The cross-validated ROC (CVROC) curve

150



and its corresponding AUC area for this result are provided in Fig

4.1 where 1t can be seen that the estimated AUC area is almost 1.

To ensure that all the seven selected genes deserve to stay in the
model, we perform backward checks on each of the selected genes as
discussed in Section 3.3 and the results obtained, as presented in
Table 4.3, confirmed that all the seven selected genes are important

in the model as selected by the k-SS classifier and they should all

remain in the model.

Eul=g 22
82| 538 == MER of the model if the indicated gene is removed
277 *8 =23
SF3A1
0 1 | o0.1570 :
SF3A1 TOE1
1 2 0.0890 © 5 5700 0.1565
SF3A1 TOE1 RBM18
2 3 0.0652 © 5 1334  0.1587 @ 0.0961
3 4 SF3A1 TOE1 RBM18 RPL31
0.0571 ' 5 1248  0.1799 | 0.0955 @ 0.0700
4 SF3A1 TOE1 RBM18 RPL31 227353_at
5 0.0474 ' 5 1706 0.1371 | 0.1117 @ 0.1017 | 0.0518
5 6 SF3A1 TOE1 RBM18 RPL31 227353_at ETS2
0.0012 © 45 9020  0.1200 | 0.1201 | 0.0025 | 0.1164 i 0.0459
6 7 0.0009 SF3A1 TOE1 RBM18 RPL31 227353_at ETS2 TNFRSF1B
. 0.0675 0.0910 0.1335 0.0015 0.1160 0.0255 0.0013
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selected under the ¢-statistic criteria, but might not necessarily be
the crop of genes selected under the AUC criteria. Further

discussions on this shall be provided later.

The k-SS method, under the AUC preliminary feature selection,
selected nine genes in the following sequence with gene symbols
“SF3A17, “TOE1”, “RBM18”, “ZNF24”, “227353_at”, “222303_at”,
“CASP1”, “ADPRHL2”, “BLVRA”. The average MER obtained using
the 9 genes for prediction is 0.000 translating to 100% correct
prediction rate. The k-SS results at each selection steps are

presented in Table 4.4.

Selection Mi;l/[.ErrI;(;an Mil\r/l[.Enl;(;an 81 = Dy No. of genes Decision
steps j Frmama,..m; Frmamz.mjss —PMmLmz, M1 selected
0 0.1580 1 continues
1 0.1580 0.0881 0.0699 2 v
2 0.0904 0.0670 0.0234 3 v
3 0.0701 0.0470 0.0231 4 v
4 0.0471 0.0278 0.0193 5 v
5 0.0311 0.0020 0.0291 6 v
6 0.0015 0.0010 0.0005 7 v
7 0.0009 0.0005 0.0004 8 v
8 0.0005 0.0000 0.0005 9 v
9 0.0000 0.0000 0.0000 X stops

Table 4.4: Table of results for k-SS classifier at each gene selection step for Rectal data under the

preliminary selection by AUC criteria. Optimal selection is attained when nine genes were selected.

The nine informative genes selected in order of selection steps are “SF3A1”, “TOE1”, “RBM18”,
“INF24”, “227353_at”, “222303_at”, “CASP1”, “ADPRHL2”, “BLVRA”.

It can be easily observed from the results that the first three genes
selected here are the same set of genes selected by the k-SS
procedure under the preliminary selection by t-statistic. However, at
the 3 gelection step, the 4th gene with gene symbol “ZNF24” was
selected by k-SS method. The inclusion of this gene with three other
previously selected genes (“SF3A1”, “TOE1”, “RBM18”) reduced the
average MER from 0.0701 to 0.0470 (red bold in Table 4.4),

contributing a reduction in prediction error rate by about 33%. The
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estimates of other performance indices at the end of the genes
selection steps provided the following results; sensitivity = 100%,
specificity = 100%, positive predictive value (PPV) = 100%, negative
predictive value (NPV) = 100%, Jaccard Index = 100%. The cross-
validated ROC curve for the k-SS classifier is presented in Fig 4.2
where it can be seen that the estimated cross-validated AUC is

exactly 1.

False pes bve rate
AUC =1

Fig: 4.2: The cross-validated ROC (CVROC) curve estimated by k-SS classifier from nine selected
genes for rectal cancer data under the AUC preliminary feature selection criteria. The cross-
validated area under the ROC curve (CVAUC) is 1.

In the implementation of the k-SS method using the preliminarily
selected genes by the ¢-test procedure as presented in 1) above, it is
observed that gene “ZNF24”, which was among the 76 genes
preliminarily selected under the AUC criteria, was not among the 34
genes preliminarily selected by the ¢-statistics criteria (see Table
4.2), hence, it was not available for consideration by the k-SS
algorithm during the gene selection and prediction processes. In the
sequence of genes selected by the ¢-statistics, gene “RPL31” was the
next best gene available among the remaining genes and this was
duly identified and selected by the k-SS classifier at the third
selection step. This gene was considered as the fourth best gene due

to non-existence of the right gene “ZNF24” (see Table 4.2).

As can be observed from Table 4.2, the selection of gene “RPL31” by
k-SS classifier at the 3 selection step reduced the average MER
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from 0.0734 to just 0.0609 (red bold in Table 4.2), contributing a
reduction in prediction error rate by about 17%. This is just about
50% of the gain in prediction accuracy of 33% achieved by k-SS
method for selecting gene “ZNF24” as presented in 11) using the crop

of genes selected under the AUC preliminary selection criteria.

More generally, it can be observed from the above results that the
prediction accuracy of the k-SS classifiers progressively improves as
more suitable genes are selected for prediction at each selection step
(see Tables 2 & 4). This improvement shall be more remarkable if all
the potentially discriminative genes are selected at the preliminary
selection stage for further analyses as obtainable under the AUC
selection criteria. It is not surprising however, to observe in Table
4.4 (for k-SS results under the AUC preliminary selection criteria)
that the prediction error rate finally approach zero at the optimal
gene selection step, step 10 at which the 9th gene was selected. This
result simply underscores the need to adopt a good preliminary
selection method that would ensure the selection of all potentially
relevant genes at the preliminary selection stage before any
standard gene selection and/or classification method like the new

k-SS technique are implemented on the features selected.

Based on the results obtained under 1) and 11) above, we can simply
conclude that the best set of genes combination that are capable to
discriminate between responder and non-responder LARC patients
to neoadjuvant radiochemotherapy treatments are the 9 genes
“SF3A1”, “TOE1”, “RBM18”, “ZNF24”, “227353_at”, “222303_at”,
“CASP1”, “ADPRHL2”, “BLVRA” as provided by k-SS method under
the AUC preliminary selection criteria. Detail information about

these nine genes is provided in Table 4.5. Further comments on
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these results are provided in the next chapter under the discussion

of results.

?ﬁﬁ;zﬁt Gene Symbol Gene Name
216457_s_at SF3A1 Splicing factor 3a, subunit 1, 120kDa
204080_at TOE1 Target of EGR1, member 1 (nuclear)
238963_at RBM18 RNA binding motif protein 18
203247_s_at ZNF24 Zinc finger protein 24 (KOX 17)
227353_at “227353_at” “227353_at”
222303_at “222303_at” “222303_at”
1552703_s_at CASP1 Caspase 1, apoptosis-related cysteine peptidase
223097_at ADPRHL2 ADP-ribosylhydrolase like 2
203773_x_at BLVRA Biliverdin reductase A

Table 4.5: The selected genes from rectal cancer data by k-SS method using the crop of genes selected
at preliminary selection stage by AUC setlecion criteria. Only the probe-set number is available for
the fifth and sixth selected genes as shown on the table.

The above results clearly showed that the crop of features selected at
the preliminary selection stage has significant influence on the
performance of classification rules. The goodness or otherwise of the
crop of genes selected at the preliminary selection stage directly
depends on the efficiency of selection method adopted. If the
selection method adopted at the preliminary selection stage is very
efficient like the newly proposed AUC feature criteria, the prediction
results of k-SS or that of any other classifiers would also be efficient
and reliable. But if wrong crop of genes are selected at the
preliminary selection stage due to the adoption of inefficient method,

then, the prediction performance of any adopted classification rule

would be badly affected.

It is important to remark that the rectal cancer data considered
here has been earlier investigated by Rimkus et al (2008) where the
classification procedure of PLS-LDA was adopted using sub-
sampling scheme of leave-one-out cross-validation (LOOCYV). In their
results, they reported correct classification rate of responders

(specificity) to be 71% while correct classification rate of non-
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responders (sensitivity) was estimated to be 86%. These results
indicated an overall estimated correct prediction rate (CCR) of about
81.4% suggesting a misclassification of about 8 out of the 43 LARC
patients. Obviously, this prediction results fell far below the
estimated prediction accuracy of 100% provided by our k-SS method

under the two cases considered above for this same data set.
Colon cancer

These are cDNA microarray colon cancer data that has been
previously analysed elsewhere, (Alon et al, 1999) using unsupervised
technique of two-way hierarchical clustering with single linkage
search to separate cancerous from non-cancerous tissues among 62
colon cancer patients. The same data were analysed at different
times by Furey et al (2000) using support vector machines (SVM) and
Ding & Gentleman (2004) using iterative reweighted partial least
square (IRWPLS) methods to classify the biological subjects into two

distinct sub-cancer groups of tumour and normal patients.

The data contain the expression profiles of 2,000 genes on 40 tumour
and 22 normal colon tissue samples. Our task is to (1) identify and
select those genes that are predictive of these two biological groups
and (i1) use the selected genes to predict any future (unseen) colon
tissue samples as either tumourous or normal using the new k-SS
method. We shall only present here, the k-SS results under the

AUC preliminary feature selection.

Results of our k-SS method for the colon cancer data revealed the
four genes that provided the best discrimination between tumour
and normal patients. The probe-set numbers of the four selected
genes are "Hsa.8147", "Hsa.5392", "Hsa.1410", "Hsa.490". With these

four genes, the k-SS prediction accuracy i1s 93.83% indicating a
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misclassification of about 4 subjects. The estimates of other
performance measures computed by k-SS method are as follows;
sensitivity = 94.96%, specificity = 95.22%, positive predictive value
(PPV) = 97.32%, negative predictive value (NPV) = 91.23%, Jaccard
Index = 90.94%. The CVROC curve for this data is presented in Fig
4.3 with the estimated cross-validated AUC area (CVAUC) of 0.9465.
The prediction results at each gene selection steps are presented in
Table 4.6. The results of the backward checks on all the four selected
genes are presented in Table 4.7 where it is clear that all the four
selected genes are relevant in the model. The box-plot of one of the
results of the backward checks at the third gene selection is provided
in Fig 4.4 where it is revealed that the average MER of the models
without the indicated genes are higher than the estimated mean
MER of the full model. This evidently underscores the relative
importance of each of the selected genes for prediction by k-SS

method.

rd

True positive rate

Fig: 4.3: The cross-validated ROC (CVROC) curve estimated by k-SS method using the four selected
genes from colon cancer data. The cross-validated area under the ROC curve (CVAUC) is 0.9465.

Min. mean Min. mean

Selectiqn MERs MERs 8, = mamz..m No. of genes Decision
steps j Frmama,..m; Frmsma.mjen —Ymuma, selected
0 0.1454 - - 1 continues
1 0.1454 0.1095 0.0359 2 v
2 0.1096 0.0679 0.0417 3 v
3 0.0661 0.0604 0.0057 4 v
4 0.0617 0.0688 -0.0071 X stops

Table 4.6: Table of results for k-SS classifier at each gene selection step for colon cancer data.
Optimal selection is attained after the selection of the 4th gene at the 37d selection step. The four
genes selected in order of selection sequence are "Hsa.8147", "Hsa.5392", "Hsa.1410", "Hsa.490".
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Selection Neor'leosf MER of MER of the model when the indicated gene was
steps j g full Model removed
selected
0 1 0.1454 Hsa'_8147
Hsa.8147 Hsa.5392
1 2 0.1095 0.3299 0.1449
Hsa.8147 Hsa.5392 Hsa.1410
2 3 0.0679 0.2748 0.1956 0.1056
Hsa.8147 Hsa.5392 Hsa.1410 Hsa.490
3 4 0.0604 0.3014 0.0962 0.1378 0.0646

Table 4.7: Results of the backward checks on the four selected genes by k-SS classifier from colon

cancer data. The MER indicated against each gene is the MER of the model without the indicated

gene. The MERs of the full models at each selection step are relatively smaller than that of the

models without the indicated genes. This showed that all the selected genes by k-SS method are
important in the model.

0.8

0.6

MER estimates

0.4

a0

0.0

fullmodel Hsa.8147 Hsa.5392 Hsa.1410

The box plotofthe MER estimates withoutthe indicated genes

Fig 4.4: The box plot of the backward checks for colon cancer data. It shows the MER of the full

model and that of the models without the indicated genes at the third gene selection. The triangular

spots are the mean MERs of the models while the red horizontal line indicated the mean of the full

model. The estimated average MERs of the model without the indicated genes are relatively higher

than that of the full model and indication that all the four genes selected by k-SS classifier are
important in the model.

As earlier remarked, this colon cancer data has been previously
analysed at different times by Furey et al (2000) and Ding &
Gentleman (2004) and the two studies reported a misclassification of
about 6 of the 62 colon cancer subjects on the average. More
specifically, Ding & Gentleman (2004) employs the IRWPLS
approach and its variant that incorporated the Firth’s procedure,
Firth (1992), and selected the first 20 genes with the highest
absolute t-statistics for classification. The best prediction results

reported in their work indicated a misclassification of 7 of the 62

biological subjects. On the other hand, the study of Furey et al (2000)
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misclassified 6 of the 62 subjects using support vector machines

procedures for classification. In their study, a preliminary selection

+

[#/ %] o
— was employed, where X;

] - ]
+GJ

~.

method that uses the statistic F; =

Q
4+

and ¥; are the average expression measures of gene j, o/ and o;” are
their respective standard deviations for the two biological groups
denoted by + and — signs respectively. The Furey’s statistic, though
similar to the wusual t¢-statistic, has no theoretical support in
statistics for its use. Nonetheless, the k-SS classifier, using just four
genes, provided better predictions than any of these earlier methods

for this data set.
4.3 k-SS results for other microarray data sets

We present the classification results of our k-SS method for other
nine publicly available microarray data sets as considered in this
work. The remaining data sets whose results are presented under
this section are Leukemia data 1 & 2, Prostate data 1, 2 & 3, CNS,
DLBCL, Lung and GCM data. The number of genes in each data
ranges from 2,000 to 16,000 while the mRNA samples ranges from
33 to 180. The performance measures estimated by the k-SS
classifier as shown in Table 4.8 for each microarray data set are the
average MER, correct classification rate (CCR), sensitivity,
specificity, PPV, NPV, and Jaccard Index, all of them expressed in
percentages. The cross-validated ROC curves as well as their
respective cross-validated AUC (CVAUC) area for k-SS classifier for

each microarray data set is presented in Fig 4.5.

It can be observed from all the results in Table 4.8 that the new k-SS
classifier generally performs very well in all cases of microarray data

sets considered. On the overall average, this new method provides
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about 96% correct classification rate of the tissue samples with an
average of 6 selected genes. More discussions on the performance of

this new classifier shall be provided in the next chapter.

Microarray Estimated performance indices (in %) on k-SS classifier No. of
data MER | CCR | Sensitivity | Specificity | PPV | NPV | Jaccard s;’e‘fr‘ii‘;d

Leukemial 0.00 100.00 100.00 100.00 100.00 | 100.00 100.00 1
Leukemia2 0.00 100.00 100.00 100.00 100.00 : 100.00 100.00 9
Prostatel 2.85 97.15 97.99 98.00 98.07 97.92 94.45 8
Prostate2 12.01 87.99 84.82 93.89 91.34 89.07 75.10 8
Prostate3 0.00 100.00 100.00 100.00 100.00 100.00 100.00 2
CNS 3.57 96.43 99.54 99.69 99.89 98.85 95.03 4
Lung 0.00 100.00 100.00 100.00 100.00 | 100.00 100.00 9
DLBCL 0.00 100.00 100.00 100.00 100.00 100.00 100.00 5
GCM 13.17 86.83 96.84 67.63 86.33 91.03 83.28 8

Average 3.51 96.49 97.69 95.47 97.29 97.43 94.21 6
performance

Table 4.8: The various performance indices on the new k-SS classifier for nine published microarray
data sets. MER = misclassification error rate, CCR =correct classification rate, PPV = positive
predictive value, NPV = negative predictive value.

4.4 k-SS methods versus other classifiers

In order to determine the goodness of the new k-SS method in
comparison to some of the existing classification methods it is
necessary to examine its performance relative to some of these
classifiers. For this reason, we shall consider the three selected
classification methods - SVM, k-NN and PLS-LDA- as presented in
Sections 2.8 & 3.4 against which the goodness of our new k-SS
classifier would be compared using all the eleven published
microarray data sets as presented in Sections 4.1 and 4.2. The
comparison of the prediction results of the k-SS method with that of
the remaining five classifiers (Prediction analysis for microarray,
Decision trees, Naive bayes, Top scoring pair, k-Top scoring pair) 1s

provided in Chapter 5.
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Leukemia 1 (CVAUC = 1) Leukemia 2 (CVAUC = 1) Prostate I (CVAUC = 0.9664)

i i
i ] I2
i : z
Prostate 2 (CVAUC = 0.8651) Prostate 3 (CVAUC = 1) CIVS (CVAUC = 0.9932)
i
i i i
Lung (CVAUC = 1) DLBCL (CVAUC = 1) GCM (CVAUC = 0.8356)

Fig 4.5: The cross-validated ROC (CVROC) curves for the prediction results of the k-SS classifier for
nine published microarray data sets as shown in Table 4.8. The respective estimates of the
cross-validated area under the ROC curve (CVAUC) are equally reported.

The various estimated correct prediction rates (CCR), expressed in
percentages, from SVM, k-NN, PLS-LDA classifiers as well as that of
our new k-SS classification method are presented in Table 4.9. To
ensure that all the classifiers are evaluated on the same platform,
we only presented in Table 4.9 the prediction results of each

classifier under preliminary selection by the ¢-statistic.

It can be generally observed from 7Table 4.8 that all the four
classifiers including the new k-SS method provide good predictions of
the biological samples in all the eleven microarray data sets
considered. However, a closer look at their results revealed that the
k-SS method has a little edge over other three existing classifiers.

Out of the eleven data sets, the prediction rates provided by k-SS
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method is better than that of other classifiers in seven cases, (about
64% of the cases) and performed equally well as others in two
instances, (about 18% of the cases) while its prediction performance
is slightly lower than others in just two cases, (about 18% of the
cases). However, if we consider the average overall performances it
can be easily observe that the k-SS classifier performs better than all
the three existing classifiers considered with respect to their
prediction accuracies. In addition, the k-SS methods uses a very few
sub-sets of genes for classification unlike other earlier methods that

used all the available genes for the same purpose.

Correct Classification Rate (CCR) (%)
. Number of
Microarray . New . .pe
d genes in the . Existing classifiers
ata sets data classifier
k-SS SVM k-NN PLS-LDA
Rectal 24,026 99.89 (7) 95.17 93.62 96.73
Colon 2,000 93.83 (4) 81.27 85.65 86.30
Leukemia 1 3,051 100.00 (1) 99.97 100.00 100.00
Leukemia 2 7,129 100.00 (9) 98.48 93.49 98.63
CNS 7,129 96.43 (4) 88.03 96.75 91.14
DLBCL 7,129 100.00 (5) 89.22 91.33 91.74
Prostate 1 12,600 97.15 (8) 91.67 90.71 95.36
Prostate 2 12,625 87.99 (8) 78.40 81.38 81.61
Prostate 3 12,626 100.00 (2) 100.00 97.45 100.00
Lung 12,533 100.00 (9) 98.83 99.74 99.48
GCM 16,063 86.83 (8) 87.60 90.28 86.23
Average Performance 96.57 91.69 92.76 93.38

Table 4.9: The correct classification rates (CCR) of the new k-SS classifier and that of three of the

existing methods — SVM, k-NN, PLS-LDA, for eleven published microarray data sets. Out of all the

eleven data sets, the k-SS method out-performed other three classifiers in seven instances (about 64%

of the cases), it performed equally with others in three cases while it under-performed in just one

case. The figures in parenthesis are the number of genes selected for classification by k-SS method

from respective microarray data sets. The preliminary feature selection of the t-statistic is used
by all the classifiers.

4.5 k-SS classifier and cluster analysis

Cluster analysis is one of the earlier unsupervised statistical
learning methods commonly adopted for classification and pattern

recognition. It is unsupervised because the inherent sub-classes of
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the subjects are not known a priori and are to be discovered from the
data. Therefore, the major aim of clustering is to determine the
intrinsic grouping in a set of unlabelled data. When applied to
microarray data, it performs the task of revealing some systematic
patterns underlying the gene expressions and several sub-classes of
the tissue samples. This has been successfully adopted in many
microarray studies to identify various sub-classes of cancers in
mRNA samples. See Eisen et al (1998 & 1999), Alon et al (1999),
Golub et al (1999), Alizadeh et al (2000), Gordon et al (2002) and
Stuart et al (2004) among others.

As earlier stated, while applying -clustering techniques for
classification of mRNA samples, it is assumed that the various
subject groups in the data are not previously known and the task is
to use the measured genes expression profiles to discover these
unknown different biological sub-groups. In other words, it 1is
possible to use the observed gene expression profiles on mRNA
samples to discover their various biological sub-groups without an a

priori knowledge of those biological groupings through clustering.

In microarray technology, the expression patterns of several
thousand of genes are studied simultaneously at the same time.
However, if there exist a procedure, like our new k-SS method, that
can identify and select the few marker genes that are directly
related to the existing biological sub-groupings of the mRNA
samples, then it would be more appealing and easier while
performing clustering, to use only the relevant selected maker genes
to identify the different biological groupings of any unidentified
future subjects rather than labouring unnecessarily on the entire
thousands of genes for the same task. To this end, we shall send the

selected k-SS classifiers from each microarray data set considered
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into a suitable clustering algorithm to determining whether they
would be capable to identify the inherent biological sub-groups of the
unlabelled mRNA samples.

Few of the clustering techniques commonly adopted in the literature
are the k-Means, fuzzy c-Means and hierarchical clustering methods
among others. However, the method of two-way single-linkage
hierarchical clustering (SLHC) has received wider applications in
the literature (Alon et al, 1999; Alizadeh et al, 2000; Gordon et al,
2002 etc.) than others and its procedure shall be employed using the

k-SS selection results.

In the SLHC method as adopted here, the distance matrix between
the gene expression data 1s computed and a linkage or
amalgamation rule to determine when two clusters are sufficiently
similar to be linked together is defined. By this procedure, a
hierarchical tree (dendrogram) is developed which shows the links
between all the gene sets and/or between the tissue samples. The
clusters are nested together rather than being mutually exclusive as
in k-means cluster procedure. By this, more and more objects are
linked together as larger and larger clusters of increasing dissimilar
elements are amalgamated. Therefore, larger clusters created at
later stages contained smaller clusters created at earlier stages of
agglomeration. In the last step, all objects (genes or tissue samples)
are joined together and a horizontal linkage distance is formed. The
closer to 1.00 the line that connects two or more genes (or samples)
1s, the more related the genes (or samples) are to one another. The
SLHC becomes a two-way type when both the genes and mRNA
samples are clustered simultaneously as performed in Alon et al

(1999). More details about this clustering method can be found in
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Everitt (1980), Alon et al (1999), Speed (2003), Lee (2004), Abonyi &
Feil (2007) and many other related literatures.

The distance measure we adopted is the Fuclidean distance metric

between any two genes x; and x;' defined by

dz(xj'xj’) = [Z?=1(xij — x”,)z]l/z (4.5.1)

which 1s a special case of Minkowski distance metric given by

1/
dp (x5, ;7) = [21y (x5 — x,50)" ] ’
with p = 2.

As earlier remarked, to demonstrate the goodness of the genes
selected by our k-SS method, only the selected genes from rectal,
Leukemia 2, and Lung cancer data sets out of all the eleven
microarray data sets are considered for cluster analysis. We have
used the clustering software, cluster 3.0 due to de Hoon et al (2004)
which 1s an enhanced version of cluster software developed by Eisen

et al, (1998) for clustering using the SLHC techniques.
Rectal cancer data

In rectal cancer data, the 43 LARC patients consist of 14 responders
and 29 non-responders to neoadjuvant radiochemotherapy
treatments as obtained from the clinical results. Each subject in the
two response group is given a distinct mRNA label. For instance, the
14 responder subjects were given the following labels; p24, p66, p79,
p80, pl05, p211, p215, p224, p309, p332, p354, p380, p402, and
p410. The remaining 29 subjects with mRNA labels different from
these fourteen constitute the non-responder patients. Though, we

have assumed that the clinical status of the patients is not known,
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but for the purpose of assessing the cluster output, we have supplied
the above mRNA labels for each subject into the cluster algorithm.
By this we can easily recognise the subjects’ groups clustered

together.

The best marker genes selected by k-SS method for prediction from
rectal cancer data are the following nine genes, as provided in Table
4.5 “SF3A1”, “TOE1”, “RBM18”, “ZANF24”, “227353_at”, “222303_at”,
“CASP1”, “ADPRHL2”, “BLVRA”. These are the nine genes used in
our clustering algorithm using two-way SLHC method. The cluster

result is provided in Fig 4.6.

Responders Non-responders

cooo25 5
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coooTFE
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BNL binding motif protein 18

227353_at

zinc finger protein 24 (KOX 17)

splicing factor 3a, subunit 1, 120kDa

caspase l, apoptosis-related cysteine peptidase
target of EGRL, member 1 (maclear)
ADP-ribosylhydrolase like 2

biliverdin reductase &

222303 at

Fig 4.6: The dendrogram of the two-way single linkage hierarchical clustering results using the nine

selected genes from rectal cancer data by k-SS method. The cluster shows the two distinct biological

groups of LARC patients with responders (indicated with red arrow signs) mostly being those with

high expression levels (red fluorescent dyes) of the nine genes and the non-responders (indicated with

green arrow or bracket signs) mostly being those with low expression levels (green fluorescent dyes) of
the nine genes.

The clustering results as shown in Fig 4.6 revealed the two distinct
groups of LARC patients in the rectal cancer microarray data. The
group of responders are mostly the patients with high expression
levels of the nine selected genes by k-SS classifier, indicated by red
fluorescent dyes (Cy5) while the histopathologically non-responders
are those patients having low expression levels of the nine genes,
indicated by green fluorescent dyes (Cy3). These two groups are

clearly identified by the nine genes selected by the k-SS method. The
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fourteen responder subjects are indicated on the dendrogram by red

arrow signs while the rest are the non-responders.
Leukemia cancer data 2

The Leukemia cancer data 2 data have 7,129 genes from which 9
informative genes were selected by our k-SS method for prediction.
There are 72 mRNA samples consisting 47 acute lymphoblastic
leukemia (ALL) and 25 acute myeloid leukemia (AML) patients. The
47 ALL subjects are labelled pO1, p02, ... , p047 while 25 AML
subjects are labelled p148, p149, ..., p172.

The nine genes selected by the k-SS classifier from these data are
Adipsin(M84526), IL-8(M28130), HoxA9(U82759_at), Macmarcks
(HG1612), Nucleoside-diphosphate kinase (Y07604), Terminal
transferase mRNA (M11722), Cyclin D3(M92287), LTC4
synthase(U50136), and Oncoprotein (Op) 18(M31303). These are the
genes used in the two-way SLHC clustering algorithm. The cluster

results are displayed by the dendrogram in Fig 4.7 for these data.

47 ALL patients 25 AML patients
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Fig 4.7: The dendrogram of the Single-Linkage Hierarchical clustering (SLHC) result using the nine

selected genes by k-SS classifier from leukemia cancer data 2. The two groups of biological subjects

with Acute lymphoblastic leukemia (ALL) and Acute myeloid leukemia (AML) are clearly identified
by clustering.

It could be observed from the cluster results (Fig 4.7) that the AML
patients are mostly characterized by having high expression levels of

five genes Adipsin(M84526), IL-8(M28130), HoxA9(U82759_at),
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Nucleoside-diphosphate  kinase(Y07604) and  LTC4synthase
(U50136), for which the ALL subjects group have low expression
levels. On the other hand, the ALL patients are mostly those with
high  expression levels of the remaining four genes
Macmarcks(HG1612), Terminal transferase mRNA (M11722), Cyclin
D3(M92287) and Op 18 (M31303) for which the AML patients
equally have low expressions. The six genes asterisked in Fig 4.7
were among the fifty differentially expressed genes identified by
Golub et al (1999). More discussions on this are provided in the next

chapter.
Lung cancer data

The lung cancer data contain 12,533 genes and 181 samples, 150 of
which are those with adenocarcinoma (ADCA) of the lung and the
remaining 31 are those with malignant pleural mesothelioma
(MPM). Except for the rectal, colon and leukemia 1 & 2 data sets
where we have information on both gene names and probe-set
numbers (rectal, leukemia 2), or probe-set numbers only (colon &
leukemial), we do not have information on both the gene names and
probe-set numbers for the remaining seven microarray data sets
considered in this thesis. As a result of this, we have labelled the
probe-sets in each of the affected data sets including the Lung cancer
data 3 as V1, V2, V3, ..., and so on, indicating the sequence of
available genes in each microarray data set. These are the labels we

used in the clustering algorithm for the lung cancer data.

Out of the entire 12,533 genes in the lung cancer data, the following
nine genes, “V8005”, “V9707”, “V2255”, “V9607”, “V2421”, “V8858”,
“V8537”7, “V5979”, “V6189” were identified and selected by our k-SS

method for predicting the 181 tissue samples. These nine genes are
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therefore used for clustering as done earlier and the results of the

two-way SLHC are as displayed by the dendrogram in Fig 4.8.

As in the previous two microarray data sets considered, it can be
observed again here that the nine genes selected by k-SS method
perfectly revealed the two groups of biological patients (ADCA or

MPL) as contained in the lung cancer data.

MPM ADCA

Fig 4.8: The dendrogram of the Single-Linkage Hierarchical clustering (SLHC) results using the

nine selected genes by k-SS classifier from lung cancer data. The two biological groups of Malignant

Pleural Mesothelioma (MPL) and Adenocarcinoma (ADCA) are clearly identified by clustering. The

red bracket and/or arrows indicated the ADCA group while the green bracket denotes the MPM
group.

The principal component analysis (PCA)

The discriminatory power of the selected genes by k-SS method is
equally assessed based on principal component analysis (PCA). The
1dea 1is to fit principal component regression model using the selected
genes from each microarray data sets and obtain the graphical plots
of the first two principal components simply called the PCA plots. If
the selected genes are good discriminators of the response classes,
the number of sub-groups in the response class must be clearly

separated on the PCA plots.

We shall again consider the three microarray data sets - Rectal,
Leukemia 2 and Lung cancer data sets - as used for clustering in
addition to the Prostate 1 data set for the construction of the

principal components to assess the efficiency of the k-SS classifiers.
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As described in Section 4.1, the Prostate 1 cancer data consist of
12,600 genes and 102 samples. The 102 samples consist of 52
tumour (cancerous) and 50 normal (non-cancerous) patients. Our
k-SS classifier selected 8 informative genes for prediction out of the
12,600 genes which yielded
prediction/classification rate (CCR) of about 97.15% (see Table 4.8),

entire eventually correct

indicating a misclassification of about 3 subjects.
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Fig 4.9: The plots of the first two principal components, PCA plots, constructed using the genes
selected by k-SS classifier for four different microarray data sets. All the four PCA plots showed good

discriminations of the biological groups of the mRNA samples based on the genes selected by k-SS
classifier.

The plot of the first two principal components for each of the data
sets is provided in Fig 4.9. It can be observed that the different
biological groups in each microarray data set are clearly separated

on the PCA plots, an indication that the selected genes by k-SS
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classifier are good predictors of the mRNA samples. The two
misclassifications (a normal subject misclassified as tumour and a
tumour subject misclassified as normal) noticed on the PCA plot for
Prostate 1 cancer data is justified by correct prediction rate of
97.15% estimated by k-SS classifier using the 8 selected genes as
reported for these data in Table 4.8.

Based on all the various results as demonstrated in this work, we
can generally conclude therefore that the new k-SS classifier is
capable at selecting the best combination of informative marker
genes from several available thousand of genes for good prediction of

biological samples in any microarray data sets.

171



5 Summary of the Study

5.1 Summary of results

This research study is basically designed to address one of the major
challenges in microarray studies. The advent of microarray
technology which has made it possible to monitor and observe
simultaneously the expression levels of several thousand of both
relevant and irrelevant genes on a given set of biological subjects has
made it more important for us to identify and select the few most
relevant genes that are actually related to the tumour conditions
being investigated. This task becomes very necessary since the
discovery of such relevant genes could tremendously help in the

development of appropriate therapeutic measures.

Several methods have being proposed in the literature to carry out
this task, but unfortunately a good number of these methods only
classify the biological samples into their various cancer sub-groups
but not the selection of the relevant informative gene that are easily
interpretable with respect to the category of tumour conditions they
classified. In addition to this, none of the earlier dimension reduction
and/or classification methods like SVM, k-NN, PLS, naive bayes
(NB), prediction analysis for microarray (PAM), decision tree (DT),
top scoring pair (TSP) and the like, has been reputed to be capable at
achieving 100 percent prediction accuracy in all cases of tumour

classifications in microarray studies.

It is obvious that the cost of misclassify an early stage cancer patient
as a normal patient and a normal patient as being cancerous might
be too enormous. To avert such negative consequences, it becomes
imperative to continuously seeking to develop more efficient

classification techniques, like the k-SS method proposed here, that
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could efficiently select the most relevant sub-set of the observed gene
chips and provide accurate and stable prediction of biological
samples into their various tumour groups In any given high

dimensional genomic data.

The new k-SS procedure proposed in this thesis is one of the methods
targeted at unravel the riddles of dimension reduction, relevant gene
selection as well as accurate prediction of various tumour conditions
of the mRNA samples as hitherto being desirable in various
microarray studies. Given any microarray data set therefore, our
new k-SS classifier simply adopts unambiguous and easy-to-
understand procedures to select only the most informative and
biologically relevant marker genes and accurately classify the mRNA
samples into their various biological conditions based on the genes
selected. This argument i1s supported by all prediction results
provided by our k-SS method. For instance, in rectal cancer data, all
the 9 selected genes by our k-SS procedure are genes encoding
proteins. It is clear from the cluster result of Fig 4.6 for these data
that all the selected 9 genes indicated high expressions patterns
across all the histopathologically responder patients while they
indicated reduced expressions for all the non-responder patients.
The two genes “SF3A1” and “TOE1” are genes encoding proteins that
perform important function in the nucleus, Rimkus et al (2008).
Caspases is the family of genes that serve as initiator or executioner
of the 1intrinsic or extrinsic signals that may result into
morphological changes that are related to apoptosis, Boatright &
Salvesen (2003), Boatright et al (2003), Danial & Korsmeyer (2004).
Caspase-1 for instance, was the first member of this family whose
functions in apoptosis and inflammation have been reported in many

studies, Yuan et al (1993), Kondo et al (1995), Martinon & Tschopp
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(2004), Thalappilly et al (2006). Among the genes encoding protein
that perform transport functions are Biliverdin reductase A
(BLVRA) and Zinc finger protein 24 (ZNF24). The BLVRA performs
oxidoreductase activities and 1is capable of initiating several
biological processes through energy pathways metabolism. The
ZNF24 on the other hand performs transcription regulatory
activities and it regulates nucleobase, nucleoside, nucleotide and

nucleic acid metabolism (see http://www.biocompare.com/

gene/gene details.asp?geneid=11229%#products, HPRD@, for more details on

biological functions of these selected genes)

In the leukemia2 cancer data on the other hand, the nine genes
selected by k-SS method clearly discriminates the acute myeloid
leukemia (AML) group from acute lymphoblastic leukemia (ALL) as
shown by cluster result in Fig 4.7 and PCA plots in Fig 4.9. As
asterisked on the cluster result of Fig 4.7, six of the nine selected
genes by k-SS classifier have been previously identified as good
discriminators between AML and ALL subjects in a microarray
study of Golub et al (1999). More specifically, the following four
genes, Adipsin, IL-8, HoxA9, and LTC4synthase out of the five genes
selected by k-SS classifier for which AML subjects have high
expression profiles and the two genes, Cyclin D3 and Oncoprotein 18
(Op18) out of the remaining four selected genes by k-SS method for
which the ALL subjects are up-regulated were among the fifty genes
identified by Golub et al (1999). More importantly, the two genes
Cyclin D3 and Op 18 have been reported to be genes encoding
proteins which are critical to S-phase cell cycle progression, Golub et
al (1999). It has been further reported (Ross et al 1984; Golub et al
1999) that some of these identified informative genes encodes

topoisomerase II, which is the principal target of the anti-leukemic

174



drug etoposide. All these findings confirm the biological relevance of

the genes selected by our new k-SS method.

The fact, however remains that all the eleven microarray data sets
as used in this thesis have been previously analysed elsewhere at
different times to assess the performance of some classification
methods. A particular study that interests us among these is the
work of Tan et al (2005). Except for rectal and leukemial cancer
data, the remaining nine data sets used in this thesis were also
analysed by Tan and his co-workers to assess the performances of
their TSP family of classifiers relative to selected five existing
classification methods. The two classifiers, PAM and DT that equally
perform gene selection as well as classification of biological samples

were among the five methods considered in their study.

Like our new k-SS method, the TSP family of classifiers which
consist of TSP and k-TSP, perform gene selection and class
prediction and have been adopted for analysis in some studies since
they were developed, (Geman et al 2004, Xu et al, 2005; Price et al,
2007, Xu et al 2008). We shall therefore, assess the performance of
our new k-SS classifier relative to that of TSP, k-TSP, PAM and DT,
all of which perform the same functions like the k-SS method as well
as one other classifier, Naive (Idiot) Bayes (NB) which we have not
really discussed in this study using the nine microarray data sets as
considered in Tan et at (2005). For simplicity, we shall only report
the various results for the above five classifiers as provided in Tan et
at (2005), pp 3900 for all the nine microarray data sets and
compared these prediction results with the corresponding results
provided by our k-SS method. The correct classification rates (CCR)

estimated by these classifiers are provided in Table 5.1 while the
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respective number of genes selected for classification by each of the

methods, except NB, is presented in Table 5.2.

Correct classification rates (in %) of classifiers
Method
Colon Leuk.2 CNS DLBCL Prost.1 Prost.2  Prost.3 Lung GCM | Average

k-SS 93.83 100.00 96.43 100.00 97.15 87.99 100.00 100.00 86.83 95.80
*TSP 91.10 93.80 77.90 98.10 95.10 67.60 97.00 98.30  75.40 88.26
*k-TSP 90.30 95.83 97.10 97.40 91.18 75.00 97.00 98.90 85.40 92.01
*DT 80.65 73.61 67.65 80.52 87.25 64.77 84.85 96.13  77.86 79.25
*PAM 85.48 97.22 82.35 85.71 91.18 79.55 100.00 99.45 79.29 88.91
*NB 58.06 100.00 82.35 80.52 62.75 73.86 90.91 97.79 84.29 81.17

Table 5.1: Prediction performances of k-SS method and four other similar gene selection and
classification methods (TSP, k-TSP, PAM, DT) as well as NB classifier on nine published
microarray data sets. *The reported results are from Tan et al (2005).

Number of genes used for classification
Method
Colon Leuk.2 CNS DLBCL Prost.1 Prost.2  Prost.3 Lung GCM

k-SS 4 9 4 5 8 8 2 9 8
*TSP 2 2 2 2 2 2 2 2 2
*k-TSP 2 18 10 2 2 18 2 10 10
*DT 3 2 2 3 4 4 1 3 14
*PAM 15 2,296 4 17 47 13 701 9 47

Table 5.2: Number of genes selected for classification by each classification method from nine
published microarray data sets. *The reported results are from Tan et al (2005).

It can be observed from 7Table 5.1 that the new k-SS method
performs excellently well than all the five existing classifiers.
Although, k-SS, TSP, k-TSP and PAM classifiers provided average
prediction accuracy in the neighbourhood of 90% while DT and NB
provided average prediction accuracy in the neighbourhood of 80%,
the k-SS classifier outperformed all the five classifiers in six of the
nine cases (Colon, DLBCL, Prostate 1 & 2, Lung, GCM) while it
performed equally in one case each with NB (Leukemia2) and PAM
(Prostate 3). The k-TSP method slightly performs better than the k-
SS method in just one instance (CNS) but uses ten genes as against
four used by k-SS to achieve almost the same result. In the case for

which PAM performs equally with k-SS (Prostate 3), the k-SS
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method uses only 2 genes to yield 100% correct prediction while
PAM uses as large as 701 genes to achieve the same result (see
Table 5.2). It can be observed generally that PAM uses more genes
for classifications than any other classifiers with very little

appreciable relative performance over others.

Based on the estimated average prediction accuracies on all the nine
binary classification problems presented in Table 5.1, it is very clear
that the best classifier is the k-SS classifier (95.80%) followed by
k-TSP (92.01%), then PAM (88.91%), TSP (88.26%), NB (81.17%) and
lastly DT (79.25%) in that order.

The usual practice in which the random splitting ratio of 2:1 is used
to split the original sample size into training sample (2/3) and test
sample (1/3) for the construction and assessment of classifiers
respectively has been established in this work to be capable of
providing unstable and misleading results. Not only in k-SS method,
other three classifiers considered (SVM, k-NN, PLS-LDA) at four
different splitting ratios (1:1, 2:1, 4:1, 19:1) all provided their best
prediction performances at 19:1 random splitting ratio for which
95% of the sample is used as training and the remaining 5% is used
as the test samples. Therefore, due to very small number of
biological subjects that characterizes a typical microarray data, and
to truly minimize average prediction error variance, we wish to
recommend that 95% of the entire n mRNA sample should be used to
training the classifiers while the remaining 5% should be set aside
as 1ndependent test sample to assess their performances while
adopting any of the sub-sampling schemes (with or without

replacement) for cross-validation.
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Since the preliminary feature selection is inevitable in the
application of virtually all the proposed classification rules including
the k-SS method due to huge size of a typical microarray data often
encountered, it is important therefore to be conscious of the kind of
preliminary feature selection methods to be adopted. Most
importantly, care must be taken to ensure that the chosen
preliminary selection method does not weed out the potentially
relevant genes at the preliminary selection stage. However, since
none of the existing preliminary selection methods has been reported
to be a super-method that is suitable for all cases of microarray data
problems, we have also proposed here, a new classifier-like
preliminary feature selection method — the AUC feature selection
method- that is capable at retaining all the potentially relevant
features at the close of its preliminary selection exercise. Unlike
some of the existing data pruning methods, this new method
employs the v-fold cross-validation sub-sampling technique to ensure

the stability and consistency of the features selected.
5.2 Discussions and conclusion

In this thesis a novel comprehensive but flexible sequential
procedure that simultaneously performs dimension reduction,
informative gene selection and accurate prediction of tumour
conditions of biological samples in any given microarray study has
been proposed. The procedure sequentially selects only the most
informative k genes that are related to the sub-tumour groups in any
high dimensional microarray data set, hence, the name k-sequential

selection (k-SS) given to the method.

It has been demonstrated in this thesis that the new k-SS method

competes favourably with some of the existing dimension reduction
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and classification methods. Eleven publicly available microarray
data sets have been used to assess the performance of this new
classifier relative to eight other existing methods. In virtually all
the cases considered, the k-SS method exerts its superiority over
other methods in terms of prediction accuracies and biological
relevance of genes selected. It is hoped that the ability of the k-SS
method to identify and select only the biologically relevant
transcripts shall facilitate pre-operative predictions of several sub-
classes of cancers. This shall tremendously help at determining

proper therapeutic measures for various kinds of cancers.

In conclusion, the k-SS method is a novel dimension reduction and
class prediction method that is capable of selecting the most
biologically relevant genes in a clearly understood manner, thereby
satisfying the yearnings of molecular biologists, physicians and other
health workers who are not only interested in the correct
classification of different tumour groups but also want to know, in an
unambiguous manner, the kind of genes that are related to different

tumour conditions of the mRNA samples.

Apart from its simplicity, the k-SS method, unlike the ‘black-box’
approach of some of the earlier methods, is user friendly because the
various steps that lead to optimum gene selection and class
prediction can easily be understood by any user with very little

statistical background.

The new k-SS classifier clearly underscores the fact that good
variable selection and response class prediction do not necessarily
lies in the complexity of the method adopted, as equally remarked by
Tan et al(2005). The major tasks of informative genes selection and

classification of mRNA samples, as often desirable in microarray
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studies can be accomplished using a very simple, unambiguous but
still efficient procedure like the newly developed k-SS procedure in

this thesis.

Finally, we want to remark that the algorithms that execute the
k-SS method are developed using R statistical software. All
necessary R codes we developed for its implementation shall be
incorporated into the main R library within a very short period to

facilitate its availability to any interested users.
5.3 Suggestions for future studies

The current form of our new k-SS method as proposed in this thesis,
like any other methods, presents several opportunities for further
improvements in order to enhance its general usage. However,
whatever modifications intended at this stage shall be addressed in
future research works. Few of the areas that come to mind for the

benefit of future studies are highlighted in what follows.

Although, binary classification problems are the most common
scenario in microarray studies, the dynamic nature of this research
area has brought about a few cases that require multiclass
prediction problems. An example of this is the three response groups
prediction problem of Beer et al (2002) using Affymetrix lung cancer
microarray data set or the five class predictions using breast cancer
data as described in Perou et al (2000). However, the suitability of
the k-SS method to handle multiclass predictions problems has been
conjectured in this work. This particular area of application needs to

be given thorough practical treatments to enhance its versatility.

More generally, the biological importance of the genes selected by

k-SS method has been established in this thesis, this particular
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advantage of the method need to be further demonstrated within the
purview of survival analysis where the selected genes could serve as
suitable prognostic factors to predict the survival times of cancer
patients. This would particularly discourage the use of either the
PLS or PCA components, which are often difficult to interpret, to
predict the survival times of cancer patients as adopted in some
studies, (Nguyen & Rocke, 2002¢; Nguyen, 2005). Using the genes
selected by k-SS method as predictors in survival models would
enable us to establish meaningful biological relationship between
the gene expression levels and the survival time or status of
individual cancer patients. A related study in this regard is the
recent study carried out by Yahya & Ulm (2009) in which some
histopathological variables were used as predictors of survival times

of breast and small-cell lung cancer patients.
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Appendix A

List of some symbols and notations

We present some of the symbols and notations used for the

construction of k-SS method.

Symbols/Notations Descriptions/Functions
q-dimensional vector of expression level of g genes
X =Xy, Xy Lo
measured on n biological samples.
Binary response variable indicating the two groups (0,1)
Y, € {0,1} T :
of biological subjects.
®j (Xj) The k-SS classifier using gene X;, j =1, ...,q

P (x)

The k-SS classifier using the gene sets X™1, X™2, .., X™

my,my,..mj

(v

Minimum average MER estimated using j genes
X™m, X™m2 L XM

myMy,.Mjyq

o

Minimum average MER estimated using (j + 1) genes
X™, XM L X, X

)

1= YMLM2saMj __ 1qMy, M, Mg g

Estimated difference of the two minimum average
MERs using the first formulation 8]-1

)

2 = éml,mz,...,mﬂ_l _ §m1,m2,...,m]-

Estimated difference of the two minimum average
MERs using the second formulation sz

The two minimum average MERs

8]'5, S = 1,2
my,My,.Mj

E (éml,mz,...,mj) = 1y

Expected value of Jmamz,..m;

mymy,.,Mj4q

E (5m1,m2,...,mj+1) = ,1119

Expected value of Hmimz, Mg

E(S]q) = 5]-1

Expected value of Sjl

SN(A%)

The Skew-normal density with shape parameter 1*
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Appendix B

R functions

B.1 The R function that implements the k-SS method using sub-
sampling technique of Monte-Carlo cross-validation (MCCV).
The following instructions should be noted for using any of the

k-SS functions provided here:

1) The response variable Y, the vector of the group labels of biological

subjects should be in the first column.

i1) The binary group should be coded O for normal, and 1 for tumourous or

any other outcomes of interest.

# This function returns preliminary genes selected by the t-statistics, and the
misclassification error rates (MERs) from logistic discriminant (LD) rules for
each of the preliminarily selected genes.

FhEFHHE AR AR A R

# dat = Microarray data

# repetitions = Number of cross-validation runs
# test.sample = Number of test sample to be predicted/classified
# alpha = t-statistics' p-value cut-point
FHAFF AR R R R R R R R

mer.select <- function(dat, repetitions, test.sample, alpha)

{

t.selection <- function (dat)

{

t.vec <- c()

for (1 in 2:ncol (dat))

{

t.statistic <- abs(t.test(dat[, i] ~ dat[, 1], var.equal = F)Sp.value)
t.vec <- c(t.vec, t.statistic)

}

names (t.vec) <- names (dat[-1]

return (t.vec)

}

t.result <- t.selection(dat)

t.result <- t.result[t.result <= alphal]

print (sort(t.result, decreasing = F))

dat <- cbind(dat[, 1], dat[, is.element (names (dat), names (t.result))])

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T))
dat <- as.data.frame (dat)
names (dat) [1] <- "response"
mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions,
dimnames = list(l:repetitions, names(dat) [-1]))
cat ("Repetitions done:", "\n"); utils::flush.console ()

for (1 in l:repetitions)

{
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repeat

{

samp <- sample(l:nrow(dat), test.sample)

dat2 <- dat[samp, ]

dat3 <- dat[-samp, 1]

if (length (unique (dat2[, 11)) !'= 1 && length(unique(dat3[, 11)) != 1)
{

for (j in names (dat) [-1]

{

test.data <- data.frame ("response" = dat2[, 1], "x.variable" = dat2[, Jjl)
train.data <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, 3jl)
mod <- glm(response ~ x.variable, dat = train.data, family = "binomial")
pred <- predict (mod, newdat = test.data, type = "response")
mer.mat[i, j] <- sum(abs(test.dataSresponse -

ifelse(pred < 0.5, 0, 1))) / length(pred)

}

if (i %in% seq(0, repetitions, round(repetitions/10)))

cat (i, "... "); utils::flush.console()
break

}

}

}

return (list ("MER" = mer.mat))

}
MER.results <- mer.select (dat, repetitions, test.sample, alpha)

mer <- apply (MER.results$MER, 2, mean)
mer.ordering <- sort (mer, decreasing=F)
mer.ordering

# This function returns the k-SS results at each of the gene selection steps

S s s s s d:
# dat = Microarray data

ordering = mer.ordering (from the previous out-put)

iterations = Number of cross-validation runs

test.sample = Test sample to be predicted/classified

alpha.range = sequence of positive integer from 1 to 1000 (or any

H OH OH H

preferred number) upon which the range of alpha (0,1) is divided
plot.ROC = F (default). If set to T, the plot of ROC curve is
provided, otherwise, no ROC curve will be plotted.
# first = F (default). If set to T, only the first ROC curve at which
the k-SS criteria is satisfied will be plotted.
# cells = ¢(0,0), specifies the number of cell space to be created for
ROC curve plot.
FHERHHH A H A AR AR AR AR A R R R

H*

library (ROCR)
library(sn)

sequential.selection <- function(dat, ordering, iterations, test.sample,
alpha.range, plot.ROC = F, first = F,
cells = c(0,0)

{

names (dat) [1] <- "response"

dat <- dat[, c("response", names (ordering))]

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T , scale = T))
dat <- as.data.frame (dat)

names (dat) [1] <- "response"

if (plot.ROC == T && first == F) par (mfrow = cells)

final.result <- matrix(NA, ncol = length(alpha.range), nrow = 9)

Mer.mat <- Brier.mat <- Sens.mat <- Spec.mat <- ppv.mat <-
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npv.mat <- match.matrix <- jaccard.matrix <-
matrix (NA, ncol = length(alpha.range), nrow = iterations)
colnames (final.result) <- colnames (match.matrix) <-
colnames (jaccard.matrix) <- colnames (Mer.mat) <-
colnames (Brier.mat) <- colnames (Sens.mat) <- colnames (Spec.mat) <-
colnames (ppv.mat) <- colnames (npv.mat) <- alpha.range

(

rownames (final.result) <- c("MER", "Jaccard.Index", "Match.Index",
"Brier-Score", "Sensitivity",
"Specificity", "Positive PV",
"Negative PV", "Number of Genes selected")
selection <- (c(names (ordering) [which (ordering == min(ordering))])) [1]

comparison <- rep(FALSE, length (alpha.range))

cat ("Gene added:", "\n"); utils::flush.console()
count <- 0

while (length (selection) < length(ordering))

{

count <- count + 1

merl.vec <- jaccard.vec <- match.vec <- brier.vec <- spec.vec <-
sens.vec <- ppv.vec <- npv.vec <- R.prediction <- R.true.values <- c()

predicted.mer.matrix <- true.mer.matrix <-
matrix (NA, ncol = iterations, nrow = test.sample)

mer2.mat <- matrix (NA, nrow = iterations,
ncol = length (names (ordering) [
which(!is.element (names (ordering), selection))]))
colnames (mer2.mat) <- names (ordering) [
which(!is.element (names (ordering), selection))]

for (j in l:iterations)

{

samp <- sample (l:nrow(dat), test.sample)

glml <- glm(response ~ ., data = dat[-samp, c("response", selection)],
family = "binomial")
predl <- ifelse(predict(glml, newdat = dat[samp, -11,
type = "response") < 0.5, 0, 1)
probab <- predict(glml, newdat = dat[samp, -1], type = "response")
merl <- sum(abs(predl - dat[samp, 1])) / test.sample

R.prediction <- c(R.prediction, probab)
R.true.values <- c(R.true.values, dat[samp, 1]

predicted.mer.matrix[, J] <- predl
true.mer.matrix[, j] <- dat[samp, 1]
brier.score <- sum((dat[samp, 1] - probab)”"2) / test.sample
predl.all <- ifelse(predict(glml, newdat = dat[ ,-11,
type = "response") < 0.5, 0, 1)

merl.vec <- c(merl.vec, merl)

brier.vec <- c(brier.vec, brier.score)

sensitivity <- (sum(c(predl.all == dat[ ,c("response")]) [
which(dat[ ,c("response")] == 1)1])
/length(dat[ ,c("response")][
which(dat[ ,c("response")] ==
specificity <- (sum(c(predl.all == dat[ ,c("response")])
which(dat[ ,c("response™)] == 0)])
/length(dat[ ,c("response")][
which(dat[ ,c("response")] == 0)]))
spec.vec <- c(spec.vec, specificity)
sens.vec <- c(sens.vec, sensitivity)

I
[

ppv <- (sum(c(predl.all == dat[ ,c("response")]) [
which(dat[ ,c("response")] == 1)])
/ length(predl.all[which(predl.all == 1)1))
npv <- (sum(c(predl.all == dat[ ,c("response")]) [
which(dat[ ,c("response")] == 0)])

/ length (predl.all[which (predl.all == 0)]))
ppv.vec <- c(ppv.vec, ppVv)
npv.vec <- c(npv.vec, npv)

for (i in names (ordering) [which(!is.element (names (ordering), selection))])
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{

glm2 <- glm(response ~ .,

data = dat[-samp, c("response", selection, 1)1,
family = "binomial")
pred2 <- ifelse(predict(glm2, newdat = dat[samp, -11],
type = "response") < 0.5, 0, 1)
mer2 <- sum(abs(pred2 - dat[samp, 1])) / test.sample
mer2.mat[j, i] <- mer2
}
}
jaccard.mat <- predicted.mer.matrix + true.mer.matrix
jaccard.vec <- apply(jaccard.mat, 2, function (x)
{sum(x == 2) / sum(x !'= 0)})
match.vec <- apply(jaccard.mat, 2, function (x)
{sum(x == | x == 0) / length(x)})
mean.merl <- mean (merl.vec)
mean.brier <- mean (brier.vec)
mean.mer?2 <- colMeans (mer2.mat)
mer.diff <- mean.merl - min (mean.mer2) [1]
cat("selection.step:", count, "\n"); utils::flush.console ()
cat("min.average.MER1:", mean.merl, "\n"); utils::flush.console ()
cat ("min.average.MER2:", min (mean.mer2) [1], "\n"); utils::flush.console/()
cat ("difference.deltal:", mer.diff, "\n"); utils::flush.console()
mean.sens <- mean(sens.vec)
mean.spec <- mean (spec.vec)
mean.ppv <- mean (ppv.vec)
mean.npv <- mean (npv.vec)
cat ("genes.selected", selection, "\n"); utils::flush.console()
comparison2 <- comparison
var.merl <- sum(merl.vec * (1 - merl.vec)) / (iterations”2 *

test.sample)

var.mer2 <- sum(mer2.mat[, which (mean.mer2 == min (mean.me
(1 - mer2.mat[, which(mean.mer2 == min (me
(iterations”2 * test.sample)

critical.value <- gsn(l - alpha.range * 0.001, shape = 4
ifelse(var.merl == || var.mer2

r2)) [1]] *
an.mer2)) [1]11))

.0398)
== 0, O,

sgrt (abs (var.merl + var.mer2 -

2 * cor(merl.vec, mer2.ma
which (mean.mer2 == min (me
sgrt (var.merl * var.mer2)

comparison <- mer.diff <= critical.value
criteria <- comparison == comparison2

if (sum(criteria) != length(criteria))
{

filled.before <- sum(!is.na(colSums (final.result)))

final.result[, which(criteria == F) [which(criteria == F)
which(is.na(colSums (final.result)) == T)
c(mean.merl, mean(jaccard.vec, na.rm = T
mean (match.vec), mean.brier, mean.sens,
mean.ppv, mean.npv, length(selection))
Mer.mat [, which(criteria == F) [which(criteria ==
which(is.na(colSums (Mer.mat)) == T)]]
Brier.mat[, which(criteria == F) [which(criteria ==
which (is.na(colSums (Brier.mat)) == T)]
Sens.mat [, which (criteria == F) [which(criteria ==
which(is.na (colSums (Sens.mat)) == T)]]
Spec.mat [, which(criteria == F) [which(criteria ==
which (is.na (colSums (Spec.mat)) == T)]]
ppv.mat [, which (criteria == F) [which(criteria ==
which(is.na (colSums (ppv.mat)) == T)]]
npv.mat [, which(criteria == F) [which(criteria ==
which(is.na(colSums (npv.mat)) == T)]]
jaccard.matrix[, which(criteria == F) [which(criteria ==
which (is.na (colSums (Spec.mat)) == T)]]

t[l
an.mer2)) [1]])
)))

%$in%
11 <=
) 4

mean.spec,

) %$in%
<- merl.vec
F) %in%
] <- brier.vec
F) %in%
<- sens.vec
F) %in%
<- spec.vec
F) %in%
<- ppv.vec
) %$in$%
<- npv.vec
) %in%
<- jaccard.vec
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match.matrix[, which(criteria == F) [which(criteria == F) %in%
which (is.na(colSums (Spec.mat)) == T)]] <- match.vec

filled.after <- sum(!is.na(colSums (final.result)))

if (plot.ROC == T && filled.before != filled.after)

{

if (first == T && filled.before == 0 && filled.after == 1)

{

pred <- prediction (R.prediction, R.true.values)

perf <- performance (pred, "tpr", "fpr" )

plot (perf); abline(a=0, b=1)

}

if (first == F)

{

pred <- prediction(R.prediction, R.true.values)

perf <- performance (pred, "tpr", "fpr" )

plot (perf, main = paste("alpha-factor:", paste(sort (alpha.range,
decreasing = T) [
(filled.before + 1):filled.after],

collapse =", ")), sub = paste("AUC =",
performance (pred, 'auc')@y.values[[1l]]),
col = "red"); abline(a=0, b=1)
}
}
}
cat ("sequential.result.output:", "\n")
utils::flush.console ()
print (final.result)
ifelse(sum(comparison) == length(alpha.range),
break,
selection <- c(selection, names (mean.mer2 [
which (mean.mer2 == min(mean.mer2))])[1]))
}
cat ("\n")
return(list ("RESULT.MATRIX" = final.result,
"GENE.SELECTED" = selection,
"MER.MAT" = Mer.mat, "BRIER.MAT" = Brier.mat,
"SENS.MAT" = Sens.mat, "SPEC.MAT" = Spec.mat,
"PPV.MAT" = ppv.mat, "NPV.MAT" = npv.mat,
"JACCARD.MAT" = jaccard.matrix,
"MATCH.MAT" = match.matrix, "R.PREDICTION" = R.prediction,
"R.TRUE.VALUES" = R.true.values))

}

KSS.results <- sequential.selection(dat, ordering, iterations, test.sample,
alpha.range, plot.ROC = T,
first = F, cells = c(1,1)

B.2 The R function that performs backward checks on the genes
selected by k-SS method under B.1.

S s s s s d:
# dat = Microarray data

genes = genes selected by k-SS method

iterations = Number of cross-validation runs

test.sample = test sample to predict/classify

bootstrap = F (default) which uses MCCV. If set to T, it uses

bootstrap cross-validation.
FHER A F AR AR AR AR AR R AR R A R A R A R R R R R R

H OH H H

back.check <- function(genes, iterations, test.sample, dat, bootstrap = F)
{

names (dat) [1] <- "response"

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T , scale = T))
dat <- as.data.frame (dat)

names (dat) [1] <- "response"
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mer.mat <- matrix (NA, nrow = iterations, ncol = length(genes)+1)
colnames (mer.mat) <- c("full.model", genes)

names (dat) [1] <- "response"

for (j in l:iterations)

{

ifelse (bootstrap == F, samp <- sample (l:nrow(dat),

nrow (dat) - test.sample),

samp <- sample(l:nrow(dat), replace = T))
glml <- glm(response ~ ., data = dat[samp, c("response", genes)],

family = "binomial")
predl <- ifelse(predict(glml, newdat = dat[-samp, -11],
type = "response") < 0.5, 0, 1)

merl <- mean(abs(predl - dat[-samp, 1]))

mer.mat([j, 1] <- merl

for (1 in 1:(length(genes)))
{

glm2 <- glm(response ~ ., data = dat[samp, c("response", genes[-1i])],
family = "binomial")
pred2 <- ifelse(predict(glm2, newdat = dat[-samp, -11],
type = "response") < 0.5, 0, 1)
mer2 <- mean(abs(pred2 - dat[-samp, 1]))

mer.mat([j, 1 + 1] <- mer2
}
}

return (mer.mat)

}
KSS.backward.checks <- back.check (genes, iterations, test.sample, dat,
bootstrap = F)

B.3 The R function that implements the proposed AUC

preliminary feature selection.

# This code returns the number and types of the preliminarily selected genes
as well as their cross-validated AUC estimates.

E i
# dat = Microarray data

# alpha = The chosen size alpha for the AUC test
# fold = Number of fold chosen for cross-validation
FHEAH AR A AR A AR AR AR AR A AR AR A AR AR AR AR A4

library (ROCR)
mer.select <- function(dat, alpha, fold)

{

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T))
dat <- as.data.frame (dat)

names (dat) [1] <- "response"

auc.mat <- matrix (NA, ncol = ncol(dat) - 1, nrow = fold,
dimnames = list(l:fold, names(dat) [-1]))

groups <- sample(rep(l:fold, len = nrow(dat)))
for (k in 1l:fold)
{

repeat

éat2 <- dat[groups == k, 1]

dat3 <- dat[groups != k, ]

if (length (unique (dat2[, 1])) != 1 && length(unique(dat3[, 1])) !'= 1)
éor (m in names (dat) [-1]

{
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B.4

test.dat <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, m])

train.dat <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, m])
mod <- glm(response ~ x.variable, data = train.dat, family = "binomial")
pred <- predict (mod, newdata = test.dat, type = "response")

roc <- prediction(pred, test.dat$response)

auc.mat [k, m] <- performance(roc, 'auc')Qy.values[[1l]]
}

break

}

}

}

mean.auc <- colMeans (auc.mat)

p.l <- mean.auc / (2 - mean.auc)

p.2 <= 2 * mean.auc”2 / (1 + mean.auc)
sigma <- (mean.auc * (1 - mean.auc) +

(sum(dat[, 1]) - 1) * (p.l - mean.auc”2) +
(length(dat[, 1]) - sum(dat[, 1]) - 1) * (p.2 - mean.auc"2)) /
(sum(dat[, 1]) * (length(dat[, 1]) - sum(dat[, 11)))

auc.result <- names (mean.auc) [which (mean.auc >= 0.5 + gnorm(l - alpha) *

sgrt (sigma)) ]
auc.select <- sort(mean.aucl[auc.result], decreasing = T)
print (length (auc.select))
return (list (auc.select))

}

AUC.selection <- mer.select(dat, alpha, fold)
AUC.selection

The R function that simulates the estimates of the minimum
mean MER differences 6}1 = Jmumz M) _ gmimz,mit1 gnd

sz = YMaMaraMity _ GMuMzM) gg ysed by the k-SS method.

S

# dat = data to be used

# repetitions = Number of cross-validation runs

# test.sample = the number of test sample to predict/classify
# alpha = the t-statistics' p-value cut-point

FHEFH AR AR AR R R R R A R R R A R R R A R R

mer.select <- function(dat, repetitions, test.sample, alpha)

{

t.selection <- function (dat)

{

t.vec <- c()

for (1 in 2:ncol(dat))

{

t.statistic <- abs(t.test(dat[, 1] ~ dat[, 1], var.equal = F)S$p.value)
t.vec <- c(t.vec, t.statistic)

}

names (t.vec) <- names (dat[-1]

return (t.vec)

}

t.result <- t.selection(dat)

t.result <- t.result[t.result <= alpha]

print (sort(t.result, decreasing = F))

dat <- cbind(dat[, 1], dat[, is.element (names (dat), names (t.result))])

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T))
dat <- as.data.frame (dat)
names (dat) [1] <- "response"
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mer.mat <- matrix (NA, ncol = ncol(dat) - 1, nrow = repetitions,
dimnames = list(l:repetitions, names(dat) [-11))

cat ("Repetitions done:", "\n"); utils::flush.console()
for (1 in l:repetitions)

{

repeat

{

samp <- sample(l:nrow(dat), test.sample)

dat2 <- dat[samp, ]

dat3 <- dat[-samp, ]

if (length (unique (dat2[, 1])) != 1 && length(unique(dat3[, 1])) !'= 1)
{
for (j in names (dat) [-1]
{
test.data <- data.frame ("response" = dat2[, 1], "x.variable" = dat2[, Jj1)
train.data <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, jl)
mod <- glm(response ~ x.variable, dat = train.data, family = "binomial")
pred <- predict (mod, newdat = test.data, type = "response")
mer.mat[i, j] <- sum(abs (test.data$Sresponse -

ifelse(pred < 0.5, 0, 1))) / length(pred)

}

if (i %$in% seq(0, repetitions, round(repetitions/10)))

cat (i, "... "); utils::flush.console()
break

}

}

}

return (list ("MER" = mer.mat))

}
MER.results <- mer.select (dat, repetitions, test.sample, alpha)

mer <- apply(MER.results$MER, 2, mean)
mer.ordering <- sort(mer, decreasing=F)
mer.ordering

# This function returns a matrix of 3}1 values whose dimension is [iterations by
(mer.ordering - 1)]

E i
# dat = Microarray data
# ordering = mer.ordering
# iterations = Number of 3j1 to be generated from each gene pair

# repetitions = Number of cross-validation run
e R

sequential.selection <- function(dat, ordering, iterations, repetitions,
test.sample)

{

names (dat) [1] <- "response"

dat <- datl[, c("response", names (ordering)) ]

dat <- as.matrix(dat)

dat <- cbind(dat[, 1], scale((dat)[,2:ncol(dat)], center =T , scale = T))

dat <- as.data.frame (dat)

names (dat) [1] <- "response"

Mer.mat <- matrix(NA, nrow = iterations, ncol = length(ordering))
colnames (Mer.mat) <- names (ordering)

cat ("Iterations:", "\n")

for (j in l:iterations)
{
selection <- (c(names (ordering) [which (ordering == min (ordering))])) [1]
while (length(selection) != (ncol(dat) - 1)
{
merl.vec <- c()
mer2.mat <- matrix (NA, nrow = repetitions,
ncol = length (names (ordering) [
which(!is.element (names (ordering), selection))]))
colnames (mer2.mat) <- names (ordering) [
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which(!is.element (names (ordering), selection))]

for (k in l:repetitions)

{

samp <- sample(l:nrow(dat), test.sample)

glml <- glm(response ~ ., data = dat[-samp, c("response", selection)],
family = "binomial")

predl <- ifelse(predict(glml, newdat = dat[samp, -11],
type = "response") < 0.5, 0, 1)

merl <- sum(abs(predl - dat[samp, 1])) / test.sample

merl.vec <- c(merl.vec, merl)

for (i in names (ordering) [which(!is.element (names (ordering), selection))])

{

glm2 <- glm(response ~ ., data = dat[-samp, c("response", selection, 1i)],
family = "binomial")
pred2 <- ifelse(predict(glm2, newdat = dat[samp, -11],
type = "response") < 0.5, 0, 1)
mer2 <- sum(abs(pred2 - dat[samp, 1])) / test.sample

mer2.mat[k, 1] <- mer2
}
}

merl <- mean (merl.vec)
mer2.vec <- colMeans (mer2.mat)

mer.diff <- merl - min(mer2.vec) [1]
Mer.mat[]j, names (mer2.vec|
which (mer2.vec == min(mer2.vec))])] <- mer.diff
selection <- c(selection, names (mer2.vec|
which (mer2.vec == min (mer2.vec))])[1])

}

if (j %$in% seq(0, iterations, round(iterations / 1)))
cat(j, "... "); utils::flush.console()

}

cat ("\n")

return (Mer.mat)

}

mini.mean.mer.diffiference <- sequential.selection(dat, ordering, iterations,
repetitions, test.sample)

B.5 The R function that implements the k-SS method using the
new AUC preliminary feature selection under the sub-

sampling technique of Monte-Carlo cross-validation (MCCV).

# This function returns preliminary genes selected by newly proposed AUC
criteria, and the Misclassification error rates (MERs) from logistic
discriminant (LD) rules for each preliminarily selected genes.

S s s s s s s s E:
# dat = Microarray data
# repetitions = Number of cross-validation runs
# test.sample = Number of test sample to be predicted/classified
# alpha = The chosen size alpha for the AUC test

# fold = the number of fold used for cross-validation
Fh A

library (ROCR)
mer.select <- function(dat, repetitions, test.sample, alpha, fold)

{

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T))
dat <- as.data.frame (dat)

names (dat) [1] <- "response"
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auc.mat <- matrix (NA, ncol = ncol(dat) - 1, nrow = fold,
dimnames = list(l:fold, names(dat) [-1]))

groups <- sample(rep(l:fold, len = nrow(dat)))
for (k in 1l:fold)
{

repeat
{
dat2 <- dat[groups == k, ]
dat3 <- dat[groups != k, ]
if (length (unique (dat2[, 1])) != 1 && length(unique(dat3[, 1])) !'= 1)
{
for (m in names (dat) [-1]
{
test.dat <- data.frame ("response" = dat2[, 1], "x.variable" = dat2[, m])
train.dat <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, m])
mod <- glm(response ~ x.variable, data = train.dat, family = "binomial")
pred <- predict (mod, newdata = test.dat, type = "response")
roc <- prediction(pred, test.dat$response)
auc.mat[k, m] <- performance(roc, 'auc')@y.values[[1l]]
}
break
}
}
}
mean.auc <- colMeans (auc.mat)
p.l <- mean.auc / (2 - mean.auc)
p.2 <= 2 * mean.auc”2 / (1 + mean.auc)
sigma <- (mean.auc * (1 - mean.auc) +

(sum(dat[, 1]) - 1) * (p.l - mean.auc”2) +

(length(dat[, 1]) - sum(dat[, 1]) - 1) * (p.2 - mean.auc"2)) /

(sum(dat[, 1]) * (length(dat[, 1]) - sum(dat[, 11)))
auc.result <- names (mean.auc) [which (mean.auc >= 0.5 +

gnorm (1l - alpha) * sqgrt(sigma))]
cat ("preliminary.features.selected:", "\n")
print (sort (mean.aucl[auc.result], decreasing = T))
utils::flush.console()
dat <- cbind(dat[, 1], dat[, is.element (names (dat), auc.result)])
mer.mat <- matrix (NA, ncol = ncol(dat) - 1, nrow = repetitions,
dimnames = list(l:repetitions, names(dat) [-1]))

cat ("Repetitions done:", "\n"); utils::flush.console()
for (1 in l:repetitions)
{
repeat
{
samp <- sample(l:nrow(dat), test.sample)
dat2 <- dat[samp, ]
dat3 <- dat[-samp, ]
if (length (unique (dat2[, 1])) != 1 && length(unique(dat3[, 1])) !'= 1)
{
for (j in names(dat) [-1]
{
test.data <- data.frame ("response" = dat2[, 1], "x.variable" = dat2[, I1)
train.data <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, jl)
mod <- glm(response ~ x.variable, dat = train.data, family = "binomial")
pred <- predict (mod, newdat = test.data, type = "response")

mer.mat[i, j] <- sum(abs (test.data$Sresponse -
ifelse(pred < 0.5, 0, 1)))/length (pred)
}

if (i %$in% seq(0, repetitions, round(repetitions/10))) cat(i, "... ")
break

}

}

}

return (list ("MER" = mer.mat))

}
MER.results <- mer.select (dat, repetitions, test.sample, alpha, fold)
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mer <- apply(MER.results$MER, 2, mean)
mer.ordering <- sort(mer, decreasing=F)
mer.ordering

# This function returns the k-SS results at each of the gene selection steps

et R
# dat = Microarray data

ordering = mer.ordering (from the previous out-put)

iterations = Number of cross-validation runs

test.sample = Test sample to be predicted/classified

alpha.range = sequence of positive integer from 1 to 1000 (or any

H OH H H

preferred number) upon which the range of alpha (0,1) is divided
plot.ROC = F (default). If set to T, the plot of ROC curve is
provided, otherwise, no ROC curve will be plotted.
# first = F (default). If set to T, only the first ROC curve at which
the k-SS criteria satisfied will be plotted.
# cells = ¢(0,0), specifies the number of cell space to be created for
ROC curve plot.
FHEFHHE AR R R

H*

library (ROCR)
library (sn)

sequential.selection <- function(dat, ordering, iterations, test.sample,
alpha.range, plot.ROC = F, first = F,
cells = c(0,0))

{

names (dat) [1] <- "response"

dat <- datl[, c("response", names (ordering)) ]

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T , scale = T))

dat <- as.data.frame (dat)

names (dat) [1] <- "response"

if(plot.ROC == T && first == F) par(mfrow = cells)

final.result <- matrix(NA, ncol = length(alpha.range), nrow = 9)
Mer.mat <- Brier.mat <- Sens.mat <- Spec.mat <- ppv.mat <-
npv.mat <- match.matrix <- jaccard.matrix <-
matrix (NA, ncol = length(alpha.range), nrow = iterations)
colnames (final.result) <- colnames (match.matrix) <-
colnames (jaccard.matrix) <- colnames (Mer.mat) <-
colnames (Brier.mat) <- colnames (Sens.mat) <- colnames (Spec.mat) <-
colnames (ppv.mat) <- colnames (npv.mat) <- alpha.range

(

rownames (final.result) <- c("MER", "Jaccard.Index", "Match.Index",
"Brier-Score", "Sensitivity",
"Specificity", "Positive PV",
"Negative PV", "Number of Genes selected")
selection <- (c(names (ordering) [which (ordering == min (ordering))])) [1]

comparison <- rep(FALSE, length(alpha.range))

cat ("Gene added:", "\n"); utils::flush.console()
count <- 0

while (length(selection) < length(ordering))

{

count <- count + 1

merl.vec <- jaccard.vec <- match.vec <- brier.vec <- spec.vec <-
sens.vec <- ppv.vec <- npv.vec <- R.prediction <- R.true.values <- c()

predicted.mer.matrix <- true.mer.matrix <-
matrix (NA, ncol = iterations, nrow = test.sample)
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mer2.mat <- matrix (NA, nrow = iterations,
ncol = length (names (ordering) [
which(!is.element (names (ordering), selection))]))
colnames (mer2.mat) <- names (ordering) [
which(!is.element (names (ordering), selection))]

for (j in l:iterations)
{
samp <- sample(l:nrow(dat), test.sample)
glml <- glm(response ~ ., data = dat[-samp, c("response", selection)],
family = "binomial")
predl <- ifelse(predict(glml, newdat = dat[samp, -1],
type = "response") < 0.5, 0, 1)
probab <- predict(glml, newdat = dat[samp, -1], type = "response")
merl <- sum(abs(predl - dat[samp, 1])) / test.sample
R.prediction <- c(R.prediction, probab)
R.true.values <- c(R.true.values, dat[samp, 1]

predicted.mer.matrix[, J] <- predl
true.mer.matrix[, j] <- dat[samp, 1]

brier.score <- sum((dat[samp, 1] - probab)”"2) / test.sample
predl.all <- ifelse(predict(glml, newdat = dat[ ,-11,

type = "response") < 0.5, 0, 1)
merl.vec <- c(merl.vec, merl)

brier.vec <- c(brier.vec, brier.score)

sensitivity <- (sum(c(predl.all == dat[ ,c("response")]) [
which(dat[ ,c("response")] == 1)])
/length(dat[ ,c("response")][
which(dat[ ,c("response")] =
specificity <- (sum(c(predl.all == dat[ ,c("response")
which(dat[ ,c("response")] == 0)
/length(dat[ ,c("response")][
which(dat[ ,c("response")] == 0)1))
spec.vec <- c(spec.vec, specificity)
sens.vec <- c(sens.vec, sensitivity)
ppv <- (sum(c(predl.all == dat[ ,c("response")]) [
which(dat[ ,c("response")] == 1)1])
/ length (predl.all[which (predl.all == 1)]))
npv <- (sum(c(predl.all == dat[ ,c("response")]) [
which(dat[ ,c("response")] == 0)])
/ length (predl.all[which (predl.all == 0)]))
ppv.vec <- c(ppv.vec, ppvVv)
npv.vec <- c(npv.vec, npv)

I
) L
)

for (i in names (ordering) [which(!is.element (names (ordering), selection))])
{
glm2 <- glm(response ~ .,

data = dat[-samp, c("response", selection, 1)1,

family = "binomial")
pred2 <- ifelse(predict(glm2, newdat = dat

type = "response") < 0.5

mer2 <- sum(abs (pred2 - dat[samp, 11]) / t
mer2.mat[j, 1] <- mer2
}
}

[samp, -1],
, 0, 1)
est.sample

jaccard.mat <- predicted.mer.matrix + true.mer.matrix
jaccard.vec <- apply(jaccard.mat, 2, function (x)

{sum(x == 2) / sum(x != 0)}
match.vec <- apply(jaccard.mat, 2, function (x)

{sum(x == | x == 0) / length(x)})

mean.merl <- mean (merl.vec)

mean.brier <- mean (brier.vec)

mean.mer?2 <- colMeans (mer2.mat)

mer.diff <- mean.merl - min(mean.mer2) [1]

cat("selection.step:", count, "\n"); utils::flush.console ()
cat("min.average.MER1:", mean.merl, "\n"); utils::flush.console ()
cat("min.average.MER2:", min (mean.mer2)[1], "\n"); utils::flush.console ()
cat ("difference.deltal:", mer.diff, "\n"); utils::flush.console()

mean.sens <- mean (sens.vec)
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mean.spec <- mean (spec.vec)
mean.ppv <- mean (ppv.vec)
mean.npv <- mean (npv.vec)

cat ("genes.selected", selection, "\n"); utils::flush.console ()
comparison2 <- comparison

var.merl <- sum(merl.vec * (1 - merl.vec)) / (iterations”2 *
test.sample)

var.mer2 <- sum(mer2.mat[, which (mean.mer2 == min (mean.mer2)) [1]] *
(1 - mer2.mat[, which(mean.mer2 == min (mean.mer2))[1]])) /
(iterations”2 * test.sample)

critical.value <- gsn(l - alpha.range * 0.001, shape = 4.0398)
ifelse(var.merl == || var.mexr2 == 0, O,
sgrt (abs (var.merl + var.mer2 -
2 * cor(merl.vec, mer2.matl[,
which (mean.mer2 == min(mean.mer2)) [1]]) *
sgrt (var.merl * var.mer2))))

comparison <- mer.diff <= critical.value
criteria <- comparison == comparison2

if (sum(criteria) != length(criteria))
{

filled.before <- sum(!is.na(colSums (final.result)))

final.result[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (final.result)) == T)]] <-

c (mean.merl, mean(jaccard.vec, na.rm = T),
mean (match.vec), mean.brier, mean.sens, mean.spec,
mean.ppv, mean.npv, length(selection))

Mer.mat [, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Mer.mat)) == T)]] <- merl.vec
Brier.mat|[, which (criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Brier.mat)) == T)]] <- brier.vec
Sens.mat|[, which (criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Sens.mat)) == T)]] <- sens.vec
Spec.mat [, which (criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Spec.mat)) == T)]] <- spec.vec
ppv.mat[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (ppv.mat)) == T)]] <- ppv.vec
npv.mat [, which (criteria == F) [which(criteria == F) %in%
which (is.na(colSums (npv.mat)) == T)]] <- npv.vec
jaccard.matrix[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Spec.mat)) == T)]] <- jaccard.vec
match.matrix[, which(criteria == F) [which(criteria == F) %in%
which(is.na (colSums (Spec.mat)) == T)]] <- match.vec

filled.after <- sum(!is.na(colSums (final.result)))

if (plot.ROC == T && filled.before != filled.after)

{

if (first == T && filled.before == 0 && filled.after == 1)

{

pred <- prediction (R.prediction, R.true.values)

perf <- performance (pred, "tpr", "fpr" )

plot (perf); abline(a=0, b=1)

}

if (first == F)

{

pred <- prediction (R.prediction, R.true.values)

perf <- performance (pred, "tpr", "fpr" )

plot (perf, main = paste("alpha-factor:", paste(sort (alpha.range,
decreasing = T) [
(filled.before + 1):filled.after],

collapse =", ")), sub = paste("AUC =",
performance (pred, 'auc')@y.values[[1]]),
col = "red"); abline(a=0, b=1)

}

}

}

cat ("sequential.result.output:", "\n")

utils::flush.console ()
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print (final.result)

ifelse (sum(comparison) == length(alpha.range),
break,
selection <- c(selection, names (mean.mer?2 [
which (mean.mer2 == min (mean.mer2))])[1]))
}
cat ("\n")
return(list ("RESULT.MATRIX" = final.result,
"GENE.SELECTED" = selection,
"MER.MAT" = Mer.mat, "BRIER.MAT" = Brier.mat,
"SENS.MAT" = Sens.mat, "SPEC.MAT" = Spec.mat,
"PPV.MAT" = ppv.mat, "NPV.MAT" = npv.mat,
"JACCARD.MAT" = jaccard.matrix,
"MATCH.MAT" = match.matrix, "R.PREDICTION" = R.prediction,
"R.TRUE.VALUES" = R.true.values))

}

KSS.results <- sequential.selection(dat, ordering, iterations,
test.sample, alpha.range,
plot.ROC = T, first = F,
cells = c(1,1))

B.6 The R function that implements the k-SS method using

bootstrap .632+ sub-sampling scheme under the preliminary

feature selection by the ¢-statistics.

# This function returns preliminary gene selection by the t-statistic, and the

Misclassification error rates (MERSs) from logistic discriminant (LD) rules for
each preliminarily selected genes.

FHAAF A A A A A A

# dat = Microarray data
# repetitions = Number of cross-validation runs

# alpha = the t-statistics' p-value cut-point
Sttt

mer.select <- function(dat, repetitions, alpha)

{

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T))
dat <- as.data.frame (dat)
names (dat) [1] <- "response"

t.selection <- function (dat)

{

t.vec <- c()

for (1 in 2:ncol (dat))

{

t.statistic <- abs(t.test(dat[, i] ~ dat[, 1], var.equal = F)S$p.value)
t.vec <- c(t.vec, t.statistic)

}

names (t.vec) <- names (dat[-1]

return (t.vec)

}

t.result <- t.selection(dat)

t.result <- t.result[t.result <= alpha]

cat ("preliminary.features.selected", "\n")

print (sort(t.result, decreasing = F))

utils::flush.console ()

dat <- cbind(dat[, 1], dat[, is.element (names (dat), names (t.result))])

mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions,
dimnames = list(l:repetitions, names (dat) [-1]))
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cat ("Repetitions done:", "\n"); utils::flush.console ()
for (1 in l:repetitions)

{

repeat

{

samp <- sample(l:nrow(dat), replace = T)

dat2 <- dat[-samp, ]

dat3 <- dat[samp, ]

if (length (unique (dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1)
{
for (j in names (dat) [-1]
{
test.data <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, jl)
train.data <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, jl)
mod <- glm(response ~ x.variable, dat = train.data, family = "binomial")
pred <- predict (mod, newdat = test.data, type = "response")
mer.mat[i, j] <- 0.632 * sum(abs(test.data$response -

ifelse(pred < 0.5, 0, 1))) / nrow(dat) +

0.368 * sum(abs(train.data$response -
ifelse (mod$fitted.values < 0.5, 0, 1))) /

nrow (dat2)

}

if (i %$in% seq(0, repetitions, round(repetitions/10)))

cat (i, "... "); utils::flush.console()
break

}

}

}

return (list ("MER" = mer.mat))

}

MER.results <- mer.select (dat, repetitions, alpha)
mer <- apply(MER.results$MER, 2, mean)

mer.ordering <- sort (mer, decreasing=F)
mer.ordering

# This function returns the k-SS results at each of the gene selection steps

FhEFHHE AR
# dat = Microarray data

ordering = mer.ordering (from the previous out-put)
iterations = Number of cross-validation runs
alpha.range = sequence of positive integer from 1 to 1000 (or any

H H H

preferred number) upon which the range of alpha (0,1) is
divided
# plot.ROC = F (default). If set to T, the plot of ROC curve is
provided, otherwise, no ROC curve will be plotted.
# cells = ¢(0,0), specifies the number of cell space to be created for
ROC curve plot.
FHER A F A AR A AR AR R AR R A AR AR R A R A R A R R A R R R

library (ROCR)

library (sn)

sequential.selection <- function(dat, ordering, iterations, alpha.range,
plot.ROC = F, cells = c(0,0)

{

names (dat) [1] <- "response"

dat <- dat[, c("response", names (ordering)) ]

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center =T , scale = T))
dat <- as.data.frame (dat)

names (dat) [1] <- "response"

if (plot.ROC == T) par (mfrow = cells)

final.result <- matrix(NA, ncol = length(alpha.range), nrow = 2)
Mer.mat <- match.matrix <- matrix(NA, ncol = length(alpha.range),
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nrow = iterations)
colnames (final.result) <- colnames (Mer.mat) <- alpha.range

rownames (final.result) <- c("MER", "Number of Genes selected")

selection <- (c(names (ordering) [which (ordering == min(ordering))])) [1]
comparison <- rep(FALSE, length(alpha.range))

cat ("Gene added:", "\n"); utils::flush.console()
count <- 0

while (length(selection) < length(ordering))
{

count <- count + 1

merl.vec <- R.prediction <- R.true.values <-
merl.test.vec <- merl.train.vec <- c()

mer2.mat <- mer2.test.mat <- mer2.train.mat <-
matrix (NA, nrow = iterations,
ncol = length (names (ordering) [
which(!is.element (names (ordering),
selection))]))
colnames (mer2.mat) <- colnames (mer2.test.mat) <-
colnames (mer2.train.mat) <-
names (ordering) [which (!is.element (names (ordering), selection))]

for (j in l:iterations)

{

samp <- sample(l:nrow(dat), replace = T)
glml <- glm(response ~ ., data = dat[samp, c("response", selection)],
family = "binomial")
predl <- ifelse(predict(glml, newdat = dat[-samp, -11],
type = "response") < 0.5, 0, 1)
probab <- predict(glml, newdat = dat[-samp, -1], type = "response")
merl.test <- mean (abs(predl - dat[-samp, 1])

merl.train <- mean (abs(ifelse(glml$fitted.values < 0.5, 0, 1) -
dat[samp, 11]))
merl <- 0.632 * merl.test + 0.368 * merl.train

R.prediction <- c(R.prediction, probab)
R.true.values <- c(R.true.values, dat[-samp, 1]

merl.vec <- c(merl.vec, merl)
merl.test.vec <- c(merl.test.vec, merl.test)
merl.train.vec <- c(merl.train.vec, merl.train)

for (i in names (ordering) [which(!is.element (names (ordering), selection))])
{
glm2 <- glm(response ~ ., data = dat[samp, c("response", selection, 1i)],
family = "binomial")
pred2 <- ifelse(predict(glm2, newdat = dat[-samp, -11,
type = "response") < 0.5, 0, 1)
mer2 <- 0.632 * mean(abs(pred2 - dat[-samp, 1])) +

0.368 * mean(abs(ifelse(glm2$fitted.values < 0.5, 0, 1) -
dat[samp, 1]))

mer2.mat[j, 1] <- mer2
mer2.test.mat[j, 1] <- mean (abs(pred2 - dat[-samp, 11))
mer2.train.mat[j, 1] <- mean (abs(
ifelse(glm2$fitted.values < 0.5, 0, 1) -
dat[samp, 11]))

mean.merl <- mean (merl.vec)
mean.mer?2 <- colMeans (mer2.mat)

mer.diff <- mean.merl - min(mean.mer?2) [1]

cat("selection.step:", count, "\n"); utils::flush.console ()
cat("min.average.MER1:", mean.merl, "\n"); utils::flush.console ()
cat("min.average.MER2:", min (mean.mer2)[1], "\n"); utils::flush.console ()
cat ("difference.deltal:", mer.diff, "\n"); utils::flush.console()

cat ("genes.selected", selection, "\n"); utils::flush.console /()
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comparison2 <- comparison

var.merl <- .63272 * (iterations”2 * nrow(dat[-samp, ]))”"(-1) *
sum (merl.test.vec * (1 - merl.test.vec)) +
.368"2 * (iterations”2 * nrow(dat))”(-1) *

sum(merl.train.vec * (1 - merl.train.vec))
var.mer2 <- .63272 * (iterations”2 * nrow(dat[-samp, ]))"(-1) *

sum(mer2.test.mat[, which (mean.mer2 == min (mean.mer2))[1]] *

(1 - mer2.test.mat[, which(mean.mer2 ==

min (mean.mer2)) [1]])) +

.36872 * (iterations”2 * nrow(dat))”(-1) *
sum (mer2.train.mat[, which(mean.mer2 == min(mean.mer2))[1]] *
(1 - mer2.train.mat[, which (mean.mer2 == min (mean.mer2)) [1]]))

critical.value <- gsn(l - alpha.range * 0.001, shape = 4.0398) *
ifelse(var.merl == || var.mer2 == 0, O,
sgrt (abs (var.merl + var.mer2 -
2 * cor(merl.vec, mer2.matl[,
which (mean.mer2 == min(mean.mer2)) [1]]) *
sgrt (var.merl * var.mer2))))
comparison <- mer.diff <= critical.value
criteria <- comparison == comparison2

if (sum(criteria) != length(criteria))
{

filled.before <- sum(!is.na(colSums (final.result)))

final.result[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (final.result)) == T)]] <-
c(mean.merl, length(selection))
Mer.mat[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Mer.mat)) == T)]] <- merl.vec

filled.after <- sum(!is.na(colSums (final.result)))

if (plot.ROC == T && filled.before != filled.after)
{
pred <- prediction(R.prediction, R.true.values)
perf <- performance (pred, "tpr", "fpr" )
plot (perf, main = paste("alpha-factor:",
paste (sort (alpha.range, decreasing = T) [
(filled.before + 1):filled.after],

collapse =", ")),
sub = paste ("AUC =", performance (pred, 'auc')@y.values[[1]]),
col = "red"); abline(a=0, b=1)

}

}

cat ("sequential.result.output:", "\n")
utils::flush.console ()

print (final.result)

ifelse (sum(comparison) == length(alpha.range),
break, selection <- c(selection, names (mean.mer?2 |
which (mean.mer2 == min(mean.mer2))]1)[1]))
}
cat ("\n")
return (list ("RESULT.MATRIX" = final.result, "GENE.SELECTED" = selection,
"MER.MAT" = Mer.mat, "R.PREDICTION" = R.prediction,
"R.TRUE.VALUES" = R.true.values))

}
KSS.results <- sequential.selection (dat, ordering, iterations, alpha.range,
plot.ROC = T, cells = c(0,0)
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B.7 The R function that implements the k-SS method using
bootstrap .632+ sub-sampling scheme under the new AUC

preliminary feature selection.

# This function returns preliminary genes selected by the new AUC feature
selection method, and the Misclassification error rates (MERSs) from logistic
discriminant (LD) rules for each preliminarily selected genes.

FHAH A R R
# dat = Microarray data
# repetitions = Number of cross-validation runs
# alpha = The chosen size alpha for the AUC test
# fold = Number of fold chosen for cross-validation
iz st
library (ROCR)
mer.select <- function(dat, repetitions, alpha, fold)

{

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T))
dat <- as.data.frame (dat)
names (dat) [1] <- "response"
auc.mat <- matrix (NA, ncol = ncol(dat) - 1, nrow = fold,
dimnames = list(l:fold, names(dat) [-1]))

groups <- sample(rep(l:fold, len = nrow(dat)))
for (k in 1l:fold)
{

repeat

{

dat2 <- dat[groups == k, ]

dat3 <- dat[groups != k, ]

if (length (unique (dat2[, 1]1)) !'= 1 && length(unique(dat3[, 11)) != 1)

{

for (m in names (dat) [-1]

{

test.dat <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, m])
train.dat <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, m])
mod <- glm(response ~ x.variable, data = train.dat, family = "binomial")
pred <- predict (mod, newdata = test.dat, type = "response")

roc <- prediction(pred, test.dat$response)

auc.mat [k, m] <- performance(roc, 'auc')@y.values[[1l]]
}

break

}

}

}

mean.auc <- colMeans (auc.mat)
p.l <- mean.auc / (2 - mean.auc)
p.2 <= 2 * mean.auc”2 / (1 + mean.auc)

sigma <- (mean.auc * (1 - mean.auc) +
(sum(dat[, 1]) - 1) * (p.l - mean.auc”2) +
(length(dat[, 1]) - sum(dat[, 1]) - 1) * (p.2 - mean.auc"2)) /
(sum(dat[, 1]) * (length(dat([, 1]) - sum(dat[, 11)))

auc.result <- names (mean.auc) [which (mean.auc >= 0.5 +
gnorm (1l - alpha) * sqgrt(sigma))]

cat ("preliminary.features.selected:", "\n")
print (sort (mean.auc[auc.result], decreasing = T))

utils::flush.console ()

dat <- cbind(dat[, 1], dat[, is.element (names (dat), auc.result)])
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mer.mat <- matrix (NA, ncol = ncol(dat) - 1, nrow = repetitions,
dimnames = list(l:repetitions, names(dat) [-1]))

cat ("Repetitions done:", "\n"); utils::flush.console ()
for (1 in l:repetitions)

{

repeat

{

samp <- sample(l:nrow(dat), replace = T)

dat2 <- dat[-samp, ]

dat3 <- dat[samp, ]

if (length (unique (dat2[, 1])) != 1 && length(unique(dat3[, 1])) !'= 1)
{
for (j in names(dat) [-1]
{
test.data <- data.frame ("response" = dat2[, 1], "x.variable" = dat2[, 3jl)
train.data <- data.frame ("response" = dat3[, 1], "x.variable" = dat3[, jl)
mod <- glm(response ~ x.variable, dat = train.data, family = "binomial")
pred <- predict (mod, newdat = test.data, type = "response")
mer.mat[i, j] <- 0.632 * sum(abs(test.data$response -

ifelse(pred < 0.5, 0, 1))) / nrow(dat) +

0.368 * sum(abs(train.data$response -
ifelse (mod$fitted.values < 0.5, 0, 1))) /

nrow (dat2)

}

if (i %$in% seq(0, repetitions, round(repetitions/10)))

cat (i, "... "); utils::flush.console()
break

}

}

}

return (list ("MER" = mer.mat))

}

MER.results <- mer.select (dat, repetitions, alpha, fold)
mer <- apply(MER.results$MER, 2, mean)

mer.ordering <- sort (mer, decreasing=F)

mer.ordering

# This function returns the k-SS results at each of the gene selection steps
et R E
# data = Microarray data
# ordering = mer.ordering (from the previous out-put)
# 1iterations = Number of cross-validation runs
# alpha.range = sequence of positive integer from 1 to 1000 (or any
preferred number) upon which the range of alpha (0,1) is
divided plot.ROC = F (default). If set to T, the plot of ROC curve
is provided, otherwise, no ROC curve will be plotted.
# cells = ¢(0,0), specifies the number of cell space to be created for
ROC curve plot.
S s s EEd:

library (ROCR)

library (sn)

sequential.selection <- function(dat, ordering, iterations, alpha.range,
plot.ROC = F, cells = c(0,0)

{

names (dat) [1] <- "response"

dat <- dat[, c("response", names (ordering)) ]

dat <- as.matrix(dat)

dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center =T , scale = T))
dat <- as.data.frame (dat)

names (dat) [1] <- "response"

if (plot.ROC == T) par (mfrow = cells)

final.result <- matrix(NA, ncol = length(alpha.range), nrow = 2)

Mer.mat <- match.matrix <- matrix(NA, ncol = length(alpha.range),
nrow = iterations)
colnames (final.result) <- colnames (Mer.mat) <- alpha.range
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rownames (final.result) <- c("MER", "Number of Genes selected")

selection <- (c(names (ordering) [which (ordering == min (ordering))])) [1]
comparison <- rep(FALSE, length (alpha.range))

cat ("Gene added:", "\n"); utils::flush.console()
count <- 0

while (length (selection) < length (ordering))
{

count <- count + 1

merl.vec <- R.prediction <- R.true.values <-
merl.test.vec <- merl.train.vec <- c()

mer2.mat <- mer2.test.mat <- mer2.train.mat <-
matrix (NA, nrow = iterations,

ncol = length (names (ordering) [
which(!is.element (names (ordering),
selection))]))

colnames (mer2.mat) <- colnames (mer2.test.mat) <-
colnames (mer2.train.mat) <-
names (ordering) [which (!is.element (names (ordering), selection))]

for (j in l:iterations)

{

samp <- sample (l:nrow(dat), replace = T)
glml <- glm(response ~ ., data = dat[samp, c("response", selection)],
family = "binomial")
predl <- ifelse(predict(glml, newdat = dat[-samp, -11,
type = "response") < 0.5, 0, 1)
probab <- predict(glml, newdat = dat[-samp, -1], type = "response")
merl.test <- mean (abs(predl - dat[-samp, 1]))

merl.train <- mean (abs(ifelse(glml$fitted.values < 0.5, 0, 1) -
dat[samp, 1]))
merl <- 0.632 * merl.test + 0.368 * merl.train

R.prediction <- c(R.prediction, probab)
R.true.values <- c(R.true.values, dat[-samp, 1]

merl.vec <- c(merl.vec, merl)
merl.test.vec <- c(merl.test.vec, merl.test)
merl.train.vec <- c(merl.train.vec, merl.train)

for (i in names (ordering) [which(!is.element (names (ordering), selection))])

{

glm2 <- glm(response ~ ., data = dat[samp, c("response", selection, 1i)],
family = "binomial")

pred2 <- ifelse(predict(glm2, newdat = dat[-samp, -11],
type = "response") < 0.5, 0, 1)

mer2 <- 0.632 * mean (abs(pred2 - dat[-samp, 1])) +

0.368 * mean (abs(ifelse(glm2$fitted.values < 0.5, 0, 1) -
dat[samp, 11]))

mer2.mat[j, i] <- mer2
mer2.test.mat[j, 1] <- mean (abs(pred2 - dat[-samp, 1]))
mer2.train.mat[j, 1] <- mean (abs(
ifelse(glm2$fitted.values < 0.5, 0, 1) -
dat[samp, 1]))

mean.merl <- mean(merl.vec)
mean.mer2 <- colMeans (mer2.mat)
mer.diff <- mean.merl - min (mean.mer2) [1]

cat("selection.step:", count, "\n"); utils::flush.console ()

cat ("min.average.MER1:", mean.merl, "\n"); utils::flush.console()
cat("min.average.MER2:", min (mean.mer2)[1], "\n"); utils::flush.console()
cat ("difference.deltal:", mer.diff, "\n"); utils::flush.console()

cat ("genes.selected", selection, "\n"); utils::flush.console()

comparison2 <- comparison
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var.merl <- .63272 * (iterations”2 * nrow(dat[-samp, ]))"(-1) *
sum (merl.test.vec * (1 - merl.test.vec)) +
.36872 * (iterations”2 * nrow(dat))”(-1) *
sum(merl.train.vec * (1 - merl.train.vec))

var.mer2 <- .63272 * (iterations”2 * nrow(dat[-samp, 1))”"(-1) *
sum (mer2.test.mat[, which(mean.mer2 == min (mean.mer2)) [1]] *
(1 - mer2.test.mat[, which(mean.mer2 ==
min (mean.mer2)) [1]1])) +
.368%2 * (iterations”2 * nrow(dat))”(-1) *
sum(mer2.train.mat[, which (mean.mer2 == min (mean.mer2)) [1]] *
(1 - mer2.train.mat[, which(mean.mer2 == min (mean.mer2)) [1]]))

critical.value <- gsn(l - alpha.range * 0.001, shape = 4.0398) *
ifelse (var.merl == || var.mer2 == 0, O,
sgrt (abs (var.merl + var.mer2 -

2 * cor(merl.vec, mer2.matl[,

which (mean.mer2 == min (mean.mer2)) [1]]) *

sgrt (var.merl * var.mer2))))
comparison <- mer.diff <= critical.value
criteria <- comparison == comparison?2

if (sum(criteria) != length(criteria))
{

filled.before <- sum(!is.na(colSums (final.result)))

final.result[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (final.result)) == T)]] <-
c(mean.merl, length(selection))
Mer.mat[, which(criteria == F) [which(criteria == F) %in%
which(is.na(colSums (Mer.mat)) == T)]] <- merl.vec

filled.after <- sum(!is.na(colSums (final.result)))

if (plot.ROC == T && filled.before != filled.after)
{
pred <- prediction(R.prediction, R.true.values)
perf <- performance (pred, "tpr", "fpr" )
plot (perf, main = paste("alpha-factor:",
paste (sort (alpha.range, decreasing = T) [
(filled.before + 1):filled.after],

collapse =", ")),
sub = paste ("AUC =", performance (pred, 'auc')Qy.values[[1l]]),
col = "red"); abline(a=0, b=1)

}

}

cat ("sequential.result.output:", "\n")

utils::flush.console ()
print (final.result)

ifelse(sum(comparison) == length (alpha.range),
break, selection <- c(selection, names (mean.mer?2 [
which (mean.mer2 == min (mean.mer2))])[1]))
}
cat ("\n")
return(list ("RESULT.MATRIX" = final.result, "GENE.SELECTED" = selection,
"MER.MAT" = Mer.mat, "R.PREDICTION" = R.prediction,
"R.TRUE.VALUES" = R.true.values))

}
KSS.results <- sequential.selection (dat, ordering, iterations, alpha.range,
plot.ROC = T, cells = c(0,0)

FHEH A AR A A A R A R R A R R A R R R R

203



References

(1]

[10]

Abonyi J & Feil B, Cluster analysis for data mining and system
identification (2007), Birkhiuser verlang AG, Berlin.

Affymetrix Inc. GeneChip expression analysis technical manual, technical

report (2001a), Santa Clara, California.

Affymetrix Inc. New statistical algorithm for monitoring gene expression

on GeneChip probe arrays. Technical note, (2001b). http:/www.affymetrix.com

/pdf/algorithms.pd

Akaike H, A new look at the statistical model identification. IEEE
Transactions on Automatic Control 19.6 (1974): 716-723.

Akaike H, Information measures and model selection. Bulletin of the

International Statistical Institute, 50(1983): 277-290.

Alizadeh AA, Eisen MB, Davis RE, MAC et al, Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling. Nature,
403.6769 (2000): 503-511.

Alon U, Barkai N, Notterman DA et al, Broad patterns of gene expression
revealed by clustering analysis of tumor and normal colon tissues probed

by oligonucleotide arrays. PNAS, 96 (1999):6745-6750.

Ambroise C & McLachlan G, Selection bias in gene extraction on the basis

of microarray gene-expression data. PNAS, 99.10 (2002): 6562-6566.

Anderson PK, Borgan @, Gill RD & Keiding N, Statistical Models Based
on Counting Processes (1993), Springer-Verlag, New York.

Arellano-Valle RB, Gomez HW & Quintana FA, A new class of skew-
normal distributions. Communications in Statistics: Theory and Methods

33 (2004): 1465-1480.

204



[11]

[12]

[13]

[14]

[16]

[17]

(18]

[19]

[20]

(21]

Armando J, Dominguez-Molina, Gonzalez-Farias G, Ramos-Quiroga R &
Gupta AK, A matrix variate closed skew-normal distribution with
applications to stochastic frontier analysis. Commun. Statist. — Theory &

Methods 36 (2007).

Azzalini A, A class of distributions which includes the normal ones. Scand.

Jour. Stat., 12 (1985): 171-178.

Azzalini A & Capitanio A, Statistical applications of the multivariate skew

normal distributions. Jour. Royal Stat. Soc., B 61 (1999): 579-602.

Azzalini A, A note on regions of given probability of the skew-normal

distribution. Metron, LIX (2001): 27—-34.

Azzalini A, Further results on a class of distributions which includes the

normal ones. Statistica, 46 (1986): 199-208.

Azzalini A, Skew-normal family of distributions. In Kotz, S.,
Balakrishnan, N., Read, C. B., & Vidakovic, B, editors, Encyclopaedia of
Statistical Sciences, 12 (2006): 7780-7785, John Wiley & Sons, New York,

second edition.

Azzalini A, The skew-normal distribution and related multivariate
families (with discussion). Scand. J. Statist. 32 (2005): 159-188 (C/R 189—
200).

Azzalini A, Dal-Cappello T & Kotz S, Log-skew-normal and log-skew-t
distributions as model for family income data. Journal of Income

Distribution, 11 (2003): 12—20.

Bamber D, The area above the ordinal dominance graph and the area

below the receiver operating graph. Jour. Math. Psych. 12 (1975): 387-415.

Baoli L, Shiwen Y & Qin L, An improved k-nearest neighbor algorithm for
text categorization. Proceedings of the 20t International Conference on

Computer Processing of Oriental Languages, Shenyang, China, (2003).

Beer DG et al, Gene-expression profiles predict survival of patients with

lung adenocacinoma. Nat. Med., 8 (2002): 816-824.

205



[22]

(23]

[24]

(25]

[26]

[27]

[29]

[30]

[31]

[32]

Bendel RB & Afifi AA, Comparison of stopping rules in forward regression.
Jour. Amer. Stat. Assoc., 72 (1977): 46-53.

Bennett KP & Campbell C, Support vector machines: Hype of Hallelujah?
SIGKDD Explorations, 2.2(2000): 1-13.

Bennett KP & Mangasarian OL, Robust Ilinear programming
discrimination of two linearly inseparable sets. Optimization Methods and

Software, 1 (1992):23-34.

Berkson J, Application of logistic function to bio-assay. Jour. Amer. Stat.

Assoc., 39 (1944): 357-365.

Berry DA, Seymour Geisser, 1929-2004. Jour. Royal Stat. Soc., A 168
(2005): 245-6.

Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S et al,
Classification of human lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses. PNAS, 98.24 (2001):13790-
13795.

Bicciato S et al, Pattern identification and classification in gene expression
data using an auto-associative neural network model. Biotechnology and

Bioengineering, 81.5 (2003): 594-606.

Binder H & Schumacher M, Adapting prediction error estimates for biased
complexity selection in high-dimensional bootstrap sample. Statistical

Applications in genetics and Molecular Biology, 7.1.12 (2008): 1-26.

Bittner M, Meltzer P, Chen Y, Jiang Y et al, Molecular classification of
cutaneous malignant melanoma by gene expression profiling. Nature,

406.6795 (2000): 536-540.

Bliss CI, The calculation of the dosage-mortality curve. Annals of Applied
Biology 22 (1935): 134-167.

Boatright KM & Salvesen GS, Mechanisms of caspase activation. Curr.

Opin. Cell Biol., 15 (2003): 725-731.

206



[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

[42]

[43]

Boatright KM, Renatus M, Scott FL, Sperandio S, et al, A unified model
for apical caspase activation. Mol. Cell, 11(2003): 529-541.

Botstein D & Risch N, Discovering genotypes underlying human
phenotypes: past successes for mendelian disease, future approaches for

complex disease. Nature Genetics Supplement, 33 (2003): 228-237.

Boulesteix A-L & Strimmer K, Partial least squares: a versatile tool for the
analysis of high-dimensional genomic data. Briefings in Bioinformatics, 8

(2007): 32-44.

Boulesteix A-L& Strimmer K, Predicting transcription factor activities
from combined analysis of microarray and ChIP data: a partial least

squares approach. Theor. Biol. Med. Model, (2005): 2-23.

Boulesteix A-L, Strobl C, Augustin T & Daumer M, Evaluating
microarray-based classifiers: an overview. Cancer Informatics, 4 (2008):

77-97.

Breiman L, Better subset selection using the non-negative garrotte.

Technical Report, University of California, Berkeley (1993).

Brier, Verification of forecasts expressed in terms of probabilities. Monthly

Weather Review, 78 (1950): 1-3.

Broder AdJ, Strategies for efficient incremental nearest neighbor search.

Pattern Recognition, 23.1-2 (1986): 171-178.

Brown MPS, Grundy WN, Lin D et al, Knowledge-based analysis of
microarray gene expression data by using support vector machines.

Proceedings of the National Academy of Science, USA, 97 (2000): 262-267.

Bruce A, Johnson A, Lewis J, Raff M, Roberts K & Walters P, Molecular
Biology of the Cell (2002), Fourth Edition. Garland Science, New York &

London.

Bura E & Pfeiffer RM, Graphical methods for class prediction using
dimension reduction techniques on DNA microarray data. Bioinformatics.

19.10 (2003): 1252 — 1258.

207



[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Burges CJC, A Tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2 (1998): 121-167.

Burnside J, Ouyang M, Anderson A, Bernberg E, Lu C, Meyers BC, Green
PL, Markis M, Isaacs G, Huang E, & Morgan RW, Deep Sequencing of
Chicken microRNAs. BMC Genomics 9.1 (2008): 185. do0i:10.1186/1471-
2164-9-185. PMID 18430245.

Chakravarti L & Roy, Handbook of Methods of Applied Statistics, 1(1967),
John Wiley and Sons, 392-394.

Chu F & Wang L, Applications of support vector machines to cancer
classification with microarray data. International Journal of Neural

Systems, 15.6 (2005): 475-484.

Cleveland WS, LOWESS: A program for smoothing scatter plots by robust
locally weighted regression. The American Statistician, 35 (1981): 54.

Cleveland WS, Robust locally weighted regression and smoothing scatter
plots. Jour. Amer. Stat. Ass., 74 (1979): 829-836.

Cook RD & Lee H, Dimension reduction in binary response regression.

Jour. Amer. Stat. Soc., 94, (1999): 1187-1200.

Cooper GC, Hausman RE, The Cell: A Molecular Approach (2004), 3rd
edition, 261-276, 297, 339—344, Sinauer.

Cornfield J, Joint dependence of the risk of coronary heart disease on
serum cholesterol and systolic blood pressure: A discriminant function

analysis. Federation Proceedings, 21(1962): 58-61.

Cortes C & Mohri M, AUC optimization vs. error rate minimization. In
Sebastian Thrun, Lawrence Saul, and Bernhard Scholkopf, editors,
Advances in Neural Information Processing Systems 16 (2004). MIT

Press.

Cortes C & Vapnik VN, Support vector networks. Machine Learning, 20
(1995):273-297.

208



[55]

[56]

[57]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Cover T & Hart P, Nearest neighbour pattern classification. Proc. IEEE
Trans. Inform. Theory, 11 (1967): 21-27.

Cover TM & Hart PE, Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13.1 (1967): 21-27.

Cristianini N & Shawe-Taylor J, An introduction to support vector

machines (2000), Cambridge University Press, UK.

Dai JdJ, Lieu L & Rocke D, Dimension reduction for classification with
gene expression microarray data. Statistical Applications in Genetics and

Molecular Biology, 5.1.6 (2006): 1-19.

Danial NN & Korsmeyer Sd, Cell death: critical control points. Cell, 116
(2004): 205-219.

de Hoon MJL, Imoto S, Nolan J & Miyano S, Open Source Clustering
Software. Bioinformatics. 20.9 (2004): 1453-1454.

Dettling M & Buhlmann P, Boosting for tumour classification with gene

expression data. Bioinformatics, 19.9 (2003): 1061-1069.

Dice LR, Measures of the amount of ecological association between species.

Ecology, 26 (1945): 297-302.

Dillon WR & Goldstein M, Multivariate analysis (1984), Wiley, New York.

Ding B & Gentleman R, Classification using generalized partial least

squares. Bioconductor project 5(2004): 1-29.

Dorfman DD, & AIf E, Maximum likelihood estimation of parameters of
signal detection theory and determination of confidence intervals-rating-

method data. J Math Psych 6 (1969): 487-496.

Draper N & Smith H, Applied regression analysis (1981), 2»d ed., John
Wiley & Sons, New York.

209



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[76]

Du YP, Kasemsumran S, Maruo K et al, Ascertainment of the number of
samples in the validation set in Monte Carlo cross validation and the
selection of model dimension with Monte Carlo cross validation.

Chemometrics and Intelligent Laboratory Systems, 82(1-2)(2006): 83-89.

Dudoit S & Fridlyand J, Bagging to improve the accuracy of a clustering
procedure. Bioinformatics, 19.9 (2003): 1090-1099.

Dudoit S, Fridlyand J & Speed TP, Comparison of discriminant methods
for the classification of tumors using gene expression data. Jour. Amer.

Stat. Assoc., 97 (2002): 77-87.

Dudoit S, Yang YH, Callow MdJ & Speed TP, Statistical methods for
identifying differentially expressed genes in replicated cDNA microarray
experiments. Statistica Sinica, 12 (2002): 111-139.

Efron B & Gong G, A leisurely look at the bootstrap, the Jackknife and
cross-validation. The American Statistician, 37 (1983): 36-48.

Efron B & Tibshirani R, An introduction to the Bootstrap (1993), Chapman
& Hall, London. Efron B Estimating the error rate of a prediction rule:

improvements and cross-validation. Jour. Amer. Stat. Assoc., 78 (1983):

316-331.

Efron B & Tibshirani R, Improvements on cross-validation: The .632+

bootstrap method. Jour. Amer. Stat. Assoc., 92 (1997): 548-560.

Efron B, The efficiency of logistic regression compared to normal
discriminant function analysis. Jour. Amer. Stat. Assoc., 70 (1975): 892-
898.

Eisen MB, Spellman PT, Brown PO & Bostein D, Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95 (1998): 14863-
14868.

Ernst LA, Gupta RK, Mujumdar RB & Waggoner AS, Cyanine dye
labelling reagents for sulfhydryl groups. Cytometry10.1(1989): 3-10.
PMID: 2917472.

210



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Everitt B, Cluster analysis (1980), 2rd Ed., John Wiley & Sons, Inc. New
York.

Fawcett T, An introduction to ROC analysis. Pattern Recognition Letters,

27 (2006): 861-874.

Fieller NRJ & Flenley EC, Statistics of particle size data. Applied
Statistics, 41.1 (1992): 127-146.

Firth D, Bias reduction, the jeffrey’s prior and glim. In Fahrmeir L,
Francis B, Gilchrist R & Tutz G, editors, Advances in GLIM and
statistical modelling, (1992): 91-100.

Fix E & Hoges J, Discriminatory analysis, nonparametric discrimination:
consistency properties (1951), Technical report, Randloph Field, Texas,
USAF School of Aviation Medicine.

Furey TS, Cristianini N, Duffy N et al., Support vector machine
classification and validation of cancer tissue samples using microarray

expression data. Bioinformatics,. 16.10 (2000): 906-914.

Geisser S Predictive Inference: An Introduction (1993), CRC Press, USA.

Geman et al, Classifying gene expression profiles from pairwise mRNA

comparisons. Stat. Applic. Geneti. Molic. Biol., 3.1.19 (2004): 1-19

Gerds TA & Schumacher M, Efron-type measures of prediction error for
survival analysis. Biometrics, 63.4 (2007): 1283-1287.

Giordano Td, et al, Distinct transcriptional profiles of Adrenocortical
tumours uncovered by DNA microarray analysis. Am J Pathol, 162.2
(2003): 521-531.

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, BloomPeld CD & Lander
ES, Molecular Classification of Cancer: Class Discovery andClass
Prediction by Gene Expression Monitoring. Science, 286.5439(1999): 531-
537.

211



[88]

[89]

[90]

[91]

[92]

[94]

[95]

[96]

[97]

(98]

Gordon GdJ, Jensen, RV et al, Translation of Microarray Data into
Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios
in Lung Cancer and Mesothelioma. Cancer Research 62 (2002): 4963—
4967.

Green D & Swets JA, Signal detection theory and psychophysics (1966),
John Wiley and Sons, New York.

Gupta AK, Gonzalez-Farias G & Dominguez-Molina JA, A multivariate
skew normal distribution. Jour. Multivariate Analysis, 89 (2004): 181-190.

Hand DJ, Construction and assessment of classification rules (1997), John

Wiley & Sons, New York.

Hanley JA & McNeil B, The meaning and use of the area under a
reaceiver operating characteristic (ROC) curve. Radiology 143 (1982): 29-
36.

Hastie T & Tibshirani R, Classification by pair-wise coupling, Annals of
statistics, 26(2) (1998): 451-471.

Hastie T, Tibshirani R & Friedman J, The elements of statistical leaning

(2009), 2nd Ed., Springer, New York.

Hazel JE, Binary coefficients and clustering in stratigraphy. Geological

Society of America Bulletin, 81.11 (1970): 3237-3252.

Hedenfalk I, Duggan D, Chen Y, Radmacher M, et al, Gene-Expression
Profiles in Hereditary Breast Cancer. The New England Journal
Medicine,. 344.8 (2001): 539-548.

Hermann T, Patel DJ, RNA bulges as architectural and cognition motifs.
Structure 8.3 (2000): R47. doi:10.1016/S0969-2126(00)00110-6. PMID
10745015.

Hertz J, Krogh A, Palmer RG, Introduction to the theory of neural
computation (1991), Addison-Weasley, Redwood City, CA.

212



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Holland JK, Kemsley EK & Wilson RH, Use of Fourier Transform Infrared
Spectroscopy and Partial Least Squares Regression for the Detection of

Adulteration of Strawberry purees. J Sci Food Agric, 76 (1998): 263-269.

Hosmer DW & Lemeshow S, Applied logistic regression (1989), John Wiley
& Sons, New York.

Hsieh FS & Turnbull BW, Nonparametric and semi-parametric estimation
of the receiver operating characteristic curve. The Annals of Statistics 24

(1996): 25-40.

Huber et al, Variance stabilization applied to microarray data calibration
and to the quantification of differential expression. Bioinformatics,18

(2002): 896-8104.

Huber W, Heydebreck Av & Vingron M, Analysis of microarray gene
expression data. (2003) Chichester: John Wiley & Sons.

Huber W, Heydebreck Av & Vingron M, Low-level analysis of microarray
experiments (2005), Wiley-VCH.

Human Protein Reference Database® (HPRD®), dJohns Hopkins

University. http://www.biocompare.com/gene/gene_details.asp?Geneid =11229# products

Hwang D, Schmitt WA, Stephanopoulos G & Stephanopoulos G,
Determination of minimum sample size and discriminatory expression

patterns in microarray data. Bioinformatics, 18 (2002): 1184-1193.

Toannidis JP, Microarray and molecular research: noise discovery? The

Lancet, 365 (2005): 454-455.

Jaccard P, Etude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bulletin de la Societe Vaudoise des Sciences

Naturelles, 37 (1901): 547-579.

Johnson RA & Wichern DW, Applied multivariate statistical analysis
(1992), Prentice Hall, New Jersey.

213



[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Karush W, Minima of functions of several variables with inequalities as
side constraints (1939), Master’s thesis, Dept. of Mathematics, University
of Chicago.

Kepler TB, Crosby L & Morgan KT, Normalization and analysis for DNA
microarray data by self-consistency and local regression. Genome Biol.,

3(2002): RESEARCHO0037.

Kerr MK, Martin M & Churchill GA, Analysis of variance for gene
expression microarray data. Jour. Computational Biology, 7(2000): 819-

837.

Khan J, Wei1 JS, Ringner M et al., Classification and diagnostic prediction
of cancers using gene expression profiling and artificial neural networks.

Nature Medicine, 7.6 (2001): 673.

Kleinbaum DG & Kupper LL, Applied regression analysis and other
multivariate methods (1978), Wadsworth Publishing Company, Inc.,

Belmont California.

Kondo S, Barna BP, Morimura T, Takeuchi J et al, Interleukin-I
betaconverting enzyme mediates cisplatin-induced apoptosis in malignant

glioma cells. Cancer Research, 55 (1995): 6166—6171.

Kuhn HW & Tucker AW Nonlinear programming. Proc. 2nd Berkeley
Symposium on Mathematical Statistics and Probabilities, (1951): 481-492.

Kuramochi M & Karypis G Gene classification using expression profiles: a
feasibility study. Int’l Jour. On Artificial Intellegence Tools, 14.4 (2005):
641-660.

Lachenbruch PA, Discriminant analysis (1975), Hafner, New York.

Lee J, Park M & Songs S, An extensive comparison of recent classification
tools applied to microarray data. Computational Statistics and Data

Analysis, 48 (2005): 867-885.

Lee M-LT, Analysis of microarray gene expression data (2004), Springer,
New York.

214



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Lee M-LT et al, The importance of replication in microarray gene
expression studies. Statistical methods and evidence from repetitive cDNA

hybridizations. Proc. Natl. Acad. Sc., USA 97 (2000): 9834-9839.

Liu B et al, A combinational feature selection and ensemble neural network
method for classification of gene expression data. BMC Bioinformatics, 5

(2004.): 136.

Lonning PE, Sorlie T & Borresen-Dale A-L, Genomics in breast cancer -
therapeutic implications. Nature Clinical Practice Oncology, 2.1(2005): 26-
33.

Man MZ, Dyson G, Johnson K, & Liao B, Evaluating methods for
classifying expression data. Jour. Biopharmaceutical Statistics, 14 (2004):

1065-1084.

Martens H, Multivariate Calibration. (1985), Dr. technical thesis,

Technical University of Norway, Trondheim 7.

Martinon F & Tschopp J, Inflammatory caspases: linking an intracellular
innate immune system to autoinflammatory diseases. Cell, 117 (2004):

561-574.

McCormick GP, Nonlinear Programming: Theory, Algorithms, and
Applications (1983), John Wiley and Sons, New York.

McCullagh P & Nelder JA, Generalized Linear Models (1989), 2nd ed.
London: Chapman & Hall.

McLachlan GdJ, Discriminant analysis and statistical pattern recognition

(1992), John Wiley & Sons, Inc., New York.

Mikkola S, Nurmi K, Yousefi-Salakdeh E, Stromberg R, Lonnberg H, The
mechanism of the metal ion promoted cleavage of RINA phosphodiester
bonds involves a general acid catalysis by the metal aquo ion on the
departure of the leaving group. Perkin transactions 2 (1999): 1619-26.
do0i:10.1039/a903691a.

215



[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Molinaro AM, Simon R & Pfeiffer RM, Prediction error estimation: a
comparison of re-sampling methods. Bioinformatics, 21.15 (2005):3301-
33017.

Morrison, AM, Receiver operating characteristic (ROC) curve preparation -
A Tutorial. Boston: Massachusetts Water Resources Authority. Report,
2005: 1-5.

Muller HdJ, The development of the gene theory. In Leslie C. Dunn (ed.),
Genetics in the 20th Century. Essays on the Progress of Genetics During
its First 50 Years. (1951), 77-99, MacMillan, New York.

Naik P & Tsai C-L, Partial least squares estimator for single-index models.

Jour. Royal. Stat. Soc., B 62.4 (2000): 763-771.

Nelder JA & Wedderburn R, Generalized Linear Models Jour. Royal Stat.
Soc., A, 135.3 (1972): 370-384.

Nguyen DV & Rocke DM, Tumour classification by partial least squares
using gene expression data. Bioinformatics,18 (2002a): 39-50.

Nguyen DV & Rocke DM, Classification of acute leukemia based on DNA
microarray gene expressions using partial least squares. In Lin, S.M and
Johnson,K.F. (eds), Methods of Microarray Data Analysis. Kluwer,
Dordrecht, (2002b): 109-124.

Nguyen DV & Rocke DM, Partial least squares proportional hazard
regression  for application to DNA microarray survival data.

Bioinformatics. 18.12 (2002¢): 1625—-1632.

Nguyen DV & Rocke DM, Multi-class cancer classification via partial least
squares with gene expression profiles. Bioinformatics, 18(2002d): 1216—
1226.

Nguyen DV, Partial least squares dimension reduction for microarray gene
expression data with a censored response. Mathematical Biosciences, 193

(2005): 119-137.

216



[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Ochiai A, Zoogeographical studies on the soleoid fishes found in Japan
and its neighbouring regions. Bulletin of the Japanese Society of Scientific

Fisheries, 22 (1957): 526-530.

O'Gorman TW & Woolson RF, Variable Selection to Discriminate Between

Two Groups: Stepwise Logistic Regression or Stepwise Discriminant

Analysis? The American Statistician, 45.3 (1991): 187-193.

Olby RC, Mendel no Mendelian?. History of Science, 17(1979): 53-72.

Pease AC, Solas D, Sullivan EdJ, Cronin MT, Holmes CP, Fodor SP, Light-
generated oligonucleotide arrays for rapid DNA sequence analysis. PNAS
91(1994).: 5022-5026. doi:10.1073/pnas.91.11.5022. PMID 8197176.

Peng S, et al, Molecular classification of cancer types from microarray data
using the combination of genetic algorithms and support vector machines.

FEBS Letters, 555 2 (2003): 358-362.

Perou CM, Surlie T, Eisen MB et al, Molecular portraits of human breast
tumours. Nature, 406.17(2000): 747-752.

Pohar M, Blas M & Turk S, Comparison of Logistic Regression and Linear
Discriminant Analysis: A Simulation Study. Metodoloski zvezki, 1.1
(2004): 143-161.

Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM et al, Prediction of
central nervous system embryonal tumour outcome based on gene

expression Nature, 415.6870 (2002):436-42.

Price ND, Trent J, El-Naggar AK et al Highly accurate two-gene classifier
for differentiating gastrointestinal stromal tumors and leiomyosarcomas.

PNAS, 104.9 (2007): 3414—-3419.

Ramaswamy S, Tamayo P, Rifkin R et al, Multiclass cancer diagnosis
using tumor gene expression signatures. PNAS, 98.26 (2001): 15149-
15154.

Rimkus C, Friederichs J et al, Microarray-based prediction of tumour

response to neoadjuvant radiochemotherapy of patients with locally

217



[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

advanced rectal cancer. Clinical Gastroenterology and Hepatology, 6

(2008): 53-61.

Ripley RB, Pattern recognition and neural networks (1996), Cambridge
University Press, U.K.

Rosipal R & Kramer N, Overview and recent advances in partial least

squares. Saunders et al (Eds.): SLSFS 2005, LNCS 3940 (2006): 34-51.

Ross W, Rowe T, Glisson B, Yalowich J & Liu L, Cancer Res. 44 (1984):
5857.

R Development Core Team, R: A language and environment for statistical
computing. R foundation for Statistical computing, Vienna, Austria

(2007), ISBN 3-900051-07-0, URL http://www.R-project.org.

Salazar M, Fedoroff OY, Miller JM, Ribeiro NS & Reid BR, The DNA
strand in DNAoRNA hybrid duplexes is neither B-form nor A-form in
solution. Biochemistry 32 (1993): 4207-15. PMID 7682844,

SAS Institute Inc., Logistic regression examples using SAS system (1995),
Version 6, Cary, NC: SAS Institute Inc.

Schwarz G, Estimating the dimension of a model. Annals of Statistics 6.2

(1978):461-464.

Seligman DA & Pullinger AG, A multiple stepwise logistic regression
analysis of trauma history and 16 other history and dental cofactors in
females with temporomandibular disorders. Jour. Orofac Pain, 10.4

(1996): 351-61.

Shalon D, Smith SJ & Brown PO, A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization.

Genome Res 6 (1996): 639-645. do0i:10.1101/gr.6.7.639. PMID 8796352.

Shang C & Shen Q, Aiding classification of gene expression data with
feature selection: A comparative study. Int’l. Jour. Comput’l. Intelligence

Research, 1.1(2005): 68-76.

218



[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Shapiro J & Brutlag DL, Fold Miner: Structural Motif Discovery Using an
Improved Superposition Algorithm. Protein Science, 13 (2004): 278-294.

Shipp MA et al, Diffuse large B-cell lymphoma outcome prediction by gene
expression profiling and supervised machine learning. Nat. Med., 8.1

(2002): 68-74.

Shtatland ES, Cain E & Barton MB, The perils of stepwise logistic
regression and how to escape them using information criteria and the

output delivery system. NESUG paper (2000): 222-226.

Simpson GG, Notes on the measurement of faunal resemblance. American

Journal of Science, A, 258 (1960): 300-311.

Singh D, Febbo PG, Ross K et al, Gene expression correlates of clinical

prostate cancer behaviour. Cancer Cell, 1 (2002): 203-209.

Smola AJd & Scholkopf B, A tutorial on support vector regression. Statistics
and Computing, 14 (2004): 199-222.

Smola AdJ, Learning with Kernels (1998), PhD thesis, Technische
Universitat Berlin, GMD Research Series No. 25.

Smyth GK & Speed TP, Normalization of cDNA microarray data.
Methods, 31 (2003): 265-273.

Smyth GK, Yang YH & Speed TP, Statistical issues in cDNA microarray

data analysis. (2002), Totowa: Humana Press.

Snedecor GW & Cochran WG, Statistical Methods (1989), Eighth Edition,

Iowa State University Press.

Sokal RR & Michener CD A statistical method for evaluating systematic
relationships. University of Kansas Scientific Bulletin, 28 (1958): 1409-
1438).

Sokal RR & Sneath PHA, Numerical taxonomy: The principles and

practice of numerical classification. WH Freeman, San Francisco, (1973).

219



[174]

[175]
[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Speed T, Statistical analysis of gene expression microarray data (2003),

Chapman & Hall, London.

SPSS Inc., Prentice Hall Inc. (2003), Chicago.
Stata Corporation, Texas 77845 USA. http:/www.stata.com/

Statnikov A, Aliferis CF, Tsamardinos L, Hardin D & Levy S, A
comprehensive evaluation of multicategory classification methods for
microarray gene expression cancer diagnosis. Bioinformatics, 21 (2005):

631-643.

Steinhoff C & Vingron M, Normalization and quantification of differential
expression in gene expression microarrays. Briefings in Bioinformatics, 7.2

(2006): 166-177.

Stephens MA, EDF Statistics for Goodness of Fit and Some Comparisons.
Journal of the American Statistical Association, 69 (1974): 730-737.

Stevens MW, Leong AS-Y, Fazzalari NL, Dowling KD & Henderson DW,
Cytopathology of Malignant Mesothelioma: A Stepwise Logistic Regression
Analysis. Diagnostic Cytopathology, 8.4 (1992): 333-341.

Stuart RO, Wachsman W, Berry CC et al, In silico dissection of cell-type-
associated patterns of gene expression in prostate cancer. PNAS, 101.2

(2004): 615-620.

Su Al, Welsh JB et al, Molecular classification of human carcinomas by

use of gene expression signatures. Cancer Research, 61 (2001): 7388-7393.

Swets J, Measuring the accuracy of diagnostic system, Science, 240 (1988):
1285-1293.

Swets JA, ROC analysis applied to the evaluation of medical imaging
techniques. Invest. Radiol. 14 (1979): 109-121.

Swets JA, Dawes RM & Monahan J, Better decisions through science.
Scientific American 283 (2000): 82—87.

220



[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

Tan AC, Naiman DQ, Xu L, Winslow RL & Geman D, Simple decision
rules for classifying human cancers from gene expression profiles.

Bioinformatics, 21.20 (2005): 3896-3904.

Tang T, Francois N, Glatigny A, Agier N, Mucchielli MH, Aggerbeck L &
Delacroix H, Expression ratio evaluation in two-colour microarray
experiments is significantly improved by correcting image misalignment.
Bioinformatics 23 (2007): 2686-2691. doi:10.1093/bioinformatics/btm399.
PMID 17698492.

Thalappilly S, Sadasivam S, Radha V & Swarup G, Involvement of caspase
1 and its activator Ipaf upstream of mitochondrial events in apoptosis.

FEBS Journal 273 (2006): 2766—2778

Thomas JG et al, An efficient and robust statistical modelling approach to
discover differentially expressed genes using genomic expression profiles.

Genome Research, 11 (2001): 1227-1236.

Tibshirani R, Regression shrinkage and selection via the LASSO. Jour.
Royal Stat. Soc., B.58.1(1996): 276- 288.

Tseng GC, Oh M-K et al, Issues in cDNA microarray analysis: quality
filtering, channel normalization, models of variation and assessment of

gene effects. Nucleid Acid Research, 29 (2001): 2549-2557.

Valenzuela TD, Roe DdJ, Cretin S et al, Estimating Effectiveness of
Cardiac Arrest Interventions: A Logistic Regression Survival Model.

Circulation, 96 (1997): 3308-3313.

Vapnik V Statistical learning theory (1998), John Wiley & Sons, New
York.

Vapnik VN & Chervonenkis A, A note on one class of perceptrons.

Automation and Remote Control, 25, 1964.

Vapnik VN & Chervonenkis A, Theory of Pattern Recognition (in
Russian)(1974). Nauka, Moscow (German Translation: W. Wapnik & A.

Tscherwonenkis, Theorie der Zeichenerkennung. 1979, Akademie-Verlag,

Berlin).

221



[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

Vapnik VN & Lerner, A Pattern recognition using generalized portrait

method. Automation and Remote Control, 24 (1963): 774—780.

Vapnik VN, Estimation of Dependences Based on Empirical Data (1982).

Springer, Berlin.

Vapnik VN, Statistical Learning Theory (1998). John Wiley and Sons,
New York.

Vapnik VN, The Nature of Statistical Learning Theory(1995). Springer,
New York.

Volmer M, Bolck A, Woithers BG, et al, Partial Least-Squares Regression
for Routine Analysis of Urinary Calculus Composition with Fourier

Transform Infrared Analysis. Clinical Chemistry, 39/6(1993): 948-954.

Welch BL, The generalization of "student’s” problem when several different

population variances are involved. Biometrika 34 (1947), 28-35

Welsh JB, Sapinoso LM, Su Al et al, Analysis of Gene Expression
Identifies Candidate Markers and Pharmacological Targets in Prostate
Cancer. Cancer Research, 61 (2001): 5974-5978.

Witten IH & Frank E, Data mining practical machine learning tools and
techniques with JAVA implementations (2000), Morgan Kaufmann
Publishers, London.

Wold H, Estimation of Principal components and related models by
iterative least squares. In: Krishnaiah PR (ed). Multivariate Analysis, New

York: Academic press, (1966): 391-420.

Wold H, Nonlinear Iterative Partial least Squares (NIPALS) modeling:
some current developments. In: Krishnaiah PR (ed). Multivariate Analysis,

New York: Academic press, (1973): 383-407.

Wold H, Path models with latent variables: The NIPALS approach. In
H.M. Blalock (edition), Quantitative Sociology: International perspectives

on mathematical and statistical model building, (1975): 307-35"7.

222



[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

Wold S, Wold, Martens H, Wold H, The multivariate calibration problem
in chemistry solved by the PLS method. In: A. Ruhe, B. Kagstrom (Eds).

Proc.

Wolfinger RD, Gibson G et al, Assessing gene significance from cDNA
microarray expression data via mixed models. Jour. Comput. Biol.,, 8

(2001): 625-637.

Xu L, Tan AC, Geman D & Winslow RL, Merging microarray data from
separate breast cancer studies provides a robust prognostic test. BMC

Bioinformatics 9(2008): 125.

Xu L, Tan AC, Naiman DQ, Geman D & Winslow RL, Robust prostate
cancer marker genes emerge from direct integration of inter-study

microarray data. Bioinformatics, 21(2005): 3905-3911.

Xu Q-S & Liang Y-Z & Du YP, Monte Carlo cross-validation for selecting a
model and estimating the prediction error in multivariate calibration.

Journal of Chemometrics, 18.2 (2004): 112-120.

Xu Q-S & Liang Y-Z, Monte Carlo cross-validation. Chemometrics and
Intelligent Laboratory System, 56.1 (2001): 1-11.

Yahya WB & Ulm K, Survival analysis of breast and small-cell lung
cancer patients using conditional logistic regression models. International

Journal of Ecological Economics & Statistics, 14.509 (2009): 15-35.

Yang YH et al, Normalization for cDNA microarray data, in microarrays:
Optical technologies and informatics, 4266, Proc. SPIE, Bittner, ML et al,
Eds., 141-152.

Yang YH, Dudoit S et al, Normalization for cDNA microarray data: a
robust composite method addressing single and multiple slide systematic

variation. Nucleid Acids Research, 30.4(2002): e15

Ye J, Li T & dJanardan R, Using uncorrelated discriminant analysis for
tissue classification with gene expression data. IEEE/ACM Transactions

on Computational Biology and Bioinformatics, 01.4 (2004): 181-190.

223



[217]

[218]

[219]

[220]

[221]

[222]

Yuan J, Shaham S, Ledoux S, Ellis HM & Horvitz HR, The C. elegans cell
death gene ced-3 encodes a protein similar to mammalian interleukin-1b-

converting enzyme. Cell, 75 (1993): 641-652.

Zhang B & Srihari SN A, Fast Algorithm for Finding k-Nearest Neighbors
with Non-metric Dissimilarity. Proceedings of the Eighth International
Workshop on Frontiers in Handwriting Recognition IWFHR’02), IEEE,
2002: 1-6.

Zhang H, Yu C-Y & Singer B, Cell and tumour classification using gene
expression data: Construction of forests. PNAS, 100.7 (2003): 4168-4172.

Zhang H, Yu C-Y, Singer B & Xiong M, Recursive partitioning for tumour
classification with gene expression microarray data. PNAS, 98.12 (2001):
6730-6735.

Zou KH, Receiver operating characteristics (ROC) literature research

(2002), http://splweb.bwh.harvard.edu:8000/pages/ppl/zou/roc.html

Zucknick M, Richardson S & Stronach EA, Comparing the characteristics
of gene expression profiles derived by univariate and multivariate methods.

Statistical Application in Genetics and Molecular Biology, 7.1 (2008): 1-31.

224



Curriculum Vitae

Name: Waheed Babatunde YAHYA
Sex: Male

Place of Birth: Osogbo

Nationality: Nigerian

Marital Status: Married (with children)

Secondary Education:
e 1980 — 1985 Nawair - ud - deen Grammar School, Osogbo, Nigeria
Pre-University Education & Qualification obtained:
e 1989-1992  Osun State College of Education, Ila — Orangun, Nigeria, National Certificate in Education
(N.C.E), Mathematics / Geography (Distinctions)
e 1995-1997 Kwara State Polytechnic, Ilorin, Nigeria, Higher Diploma in Public Accounting & Auditing
University Education & Qualification obtained:

e Sept. 1997 - May 2001 University of llorin, Ilorin, Nigeria, Bachelor of Science, B.Sc. (Hons.) in

Statistics.

July 2001 - Dec. 2003 University of Ilorin, Ilorin, Nigeria, Master of Science (M.Sc.) in Statistics.

Dec. 2003 — Sept. 2004  University of Ado-Ekiti, Nigeria, Postgraduate Diploma in Financial
Management (PGDFM,).

Sept. 2004 - Aug. 2006  University of Ado-Ekiti, Nigeria, Master of Business Administration (MBA).

Dec. 2006 - March 2007 Goethe-Institute, Mannheim (affiliated to University of Mannheim), Germany,
Deutsch-Sprachkurs (Intensive 8)

e April 2007 - June 2009 Ludwig-Maximillians-University of Munich, Munich, Germany, Ph.D. Statistics
(Dr. rer. Nat).

Work Experience:

e Jan. 1993 - Sept. 1994 Sales Representative, Doyin Pharmaceuticals Ltd., Nigeria.

Oct. 1994 - Aug. 1997 Sales / Operations Manager, Hasdel Oil (Nig.) Ltd., Nigeria.

Sep. 2001 - Dec. 2003 Graduate Assistant, Department of Statistics, University of Ilorin, Ilorin,
Nigeria.

Dec. 2003 - Sept. 2007 Assistant Lecturer, Department of Statistics, University of Ilorin, Ilorin, Nigeria.

Oct. 2007 - date Lecturer II, Department of Statistics, University of Ilorin, Ilorin, Nigeria.

April 2007 - Aug. 2008  Technical University of Munich, Munich, Germany, Research Assistant to
Prof. Dr. Kurt Ulm.
Merits & Awards:

e The School of Science prize of Osun State College of Education Ila-Orangun, Nigeria for being the best

student in academic performance in the final N.E.C examinations for 1991/1992 session.

®  Prize for being the best student in academic performance in the Department of Statistics, University of
Ilorin, Nigeria, for 1997/1998 session.

e  Deutscher Akademischer Austausch Dienst (DAAD) Scholar.

e  STIBET Studentship awards, Technical University of Munich, Munich, Germany for 2007/2008 session.

225




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


