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Abstract 

In this thesis, a novel sequential genes selection and classification (k-SS) method is 

proposed. The method is analogous to the classical non-linear stepwise variable 

selection (SVS) methods but unlike any of the SVS methods, this new method uses 

the misclassification error rates (MERs) as its search criteria for informative marker 

genes in any given microarray data. Here, the importance of any selected gene is 

determined based on its marginal contribution at improving the prediction accuracy 

of the classification rule. This method ensures continuous selection of more genes in 

as much as the improvements brought into the decision models by the selected genes 

are considered to be significant enough by some established test criteria. However, 

further gene selection terminates when none of the remaining genes is capable at 

improving the prediction accuracy (lowering the MER) of the current model. 

Therefore, our approach only seeks to select the best combination of ݇ marker genes 

that are most predictive of the biological samples in any given microarray data sets.   

An important feature of our new ݇-SS method is that the size ߙ used by its test is not 

arbitrarily fixed by the user as common to some of the classical SVS methods. 

Rather, the value of ߙ at which the best prediction accuracy is achieved (or the best 

combination of genes is selected) is determined by cross-validation. 

The new k-SS classifier competes favourably with selected eight existing 

classification methods using eleven published microarray data sets. The k-SS 

classifier is very simple to apply and does not require any rigid assumption for its 

implementation. Another merit of this method lies in its ability to select only those 

genes that are of biological relevance to the existing cancer sub-groups in microarray 

data sets. 

Lastly, we proposed a new preliminary feature selection procedure that employs the 

cross-validated area under the ROC curve (CVAUC) for gene selection. This method 

is capable at removing all the irrelevant genes at the preliminary selection stage 

before any standard classifier like the k-SS method is employed on the remaining 

data set for final optimum gene selection and classification of mRNA samples. Unlike 

some other data pruning methods, the new method employs the sub-sampling 

technique of the ݒ-fold cross-validation to ensure consistency and efficiency of 

selections made at the preliminary selection stage. 
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Zusammenfassung 

In dieser Arbeit wird eine neuartige sequentielle Geneselection und klassifikation (k-SS) 

vorgeschlagen. Die Methodik verhält sich analog zu nichtlinearen schrittweisen 

Variablenselektionmethoden (SVS). Im Gegensatz zu diesen benützt die neue Methode 

die Fehlklassifikationsrate (MER) als Suchkriterium für informative Marker-Gene in 

beliebigen microarray Datensätzen. Hierbei wird die Wichtigkeit eines Genes durch 

seinen marginalen Beitrag zur Verbesserung der Vorhersagegüte einer 

Klassifikationsregel bestimmt. Die Methode gewährleistet eine fortwährende Selektion 

weiterer Gene solange die Verbesserungen der Entscheidungsmodelle durch die 

ausgewählten Gene durch ein ebenfalls eingeführtes Testkriterium als signifikant genug 

erachtet werden. Indes endet die weitere Geneselektion sobald keines der verbleibenden 

Gene geeignet ist die Vorhersagegüte im aktuellen Modell zu verbessern bzw. die MER 

zu vermindern. Deshalb ist die Bestrebung unseres Ansatzes die beste Kombination aus k 

Marker-Genen, die am prädiktivsten für biologische Proben in beliebigen microarray 

Datensätzen sind zu selektieren. 

Eine wichtige Eigenschaft unserer neuartigen k-SS Methode ist dass das Maß ߙ, dass in 

ihrem Test benützt wird nicht eigenmächtig durch den Anwender bestimmt wird wie 

allgemein in klassischen SVS Methoden. Vielmehr wird der Wert von ߙ, bei dem die beste 

Vorhersagegüte erlangt wird (oder die beste Kombination von Genen selektiert wird) 

durch Kreuzvalidierung bestimmt. 

Der neue k-SS Klassifizierer konkurriert erfolgreich mit acht ausgewählten 

Klassifizierungsmethoden unter Verwendung von elf publizierten microarray 

Datensätzen. Der k-SS Klassifizierer ist sehr einfach anzuwenden und benötigt keine 

rigiden Annahmen für seine Durchführung. Ein weiterer Vorzug dieser Methode liegt in 

seiner Fähigkeit nur solche Gene zu selektieren, die von biologischer Relevanz bezüglich 

existierender Tumoruntergruppen in microarray Datensätzen sind. 

Letztlich schlagen wir eine neue vorausgehende Variablenselektionsprozedur vor, die die 

kreuzvalidierte Fläche unter der ROC-Kurve (CVAUC) für die Genselektion benützt. 

Diese Methode ist fähig alle irrelevanten Gene in einem vorausgehenden 

Selektionsschritt zu entfernen, bevor klassische Klassifizierer wie die k-SS Methode auf 

dem verbleibenden Datensatz zur abschließenden, optimalen Genselektion und 

Klassifikation von mRNA-Proben angewendet werden. Ungleich einigen anderen pruning 

Methoden verwendet die neue Methode die ݒ-fache Kreuzvalidierung als Methode zur 

wiederholten Stichprobenteilung um Konsistenz und Effizienz der Selektion zu einem 

vorausgehenden Selektionspunkt zu gewährleisten. 
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Preamble  

A common problem in most of the microarray (cancer) studies is how to identify 

and select, among several available thousands, the most informative marker 

genes whose expression levels are predictive of clinical or other outcomes of 

interest. A major constraint however, is that the expression levels of all these 

genes are often collected on relatively few samples which makes the use of 

classical regression methods inappropriate for genes selection and prediction of 

biological samples. Several methods have been proposed in the literature to 

handle this task, but unfortunately, apart from procedural complexities, some of 

these methods like Partial least squares, Principal component analysis and the 

like only provide accurate classifiers that are often difficult to interpret. In this 

thesis therefore, we provide a novel but simple sequential selection procedure              

(݇-Sequential Selection (݇-SS) method) that efficiently selects from several 

thousand transcripts, the most informative ݇ genes that are suitable for the 

prediction of biological samples. The ݇-SS procedure adopts the performance 

index of the average misclassification error rates (MERs) as its gene selection 

criteria.  

The performance of the new method was evaluated and compared with eight 

existing standard classification methods (Support vector machines, k-nearest 

neighbours, Partial least squares, Prediction analysis for microarray, Decision 

trees, Naïve bayes, Top scoring pair, k-Top scoring pair) using eleven different 

microarray cancer data sets ten of which are publicly available. The eleventh 

data set is based on microarray cancer study of 43 patients with locally advanced 

rectal carcinomas (LARC) from whom 24,026 human genome U133 plus 2.0 gene-

chip arrays were generated. The clinical study was carried out in the Department 

of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 

Germany.  

 Several results from this work showed that the new ݇-SS method performs 

efficiently well like any of the existing methods considered. In addition to this, 

this new approach provides stable and easily interpretable classifiers (genes) that 

seems to be of biological relevance to the sub-classes of tumour that are present 

in any given microarray data set. This obviously meets the expectations of the 

biologists and physicians who are not only interested in the classification of the 



 
 

 ix 

mRNA samples into their various tumour types but also want to know the 

relevant informative genes that induced such classification. In addition, the ݇-SS 

method is generally simple and requires no stringent conditions for its 

implementation as common to some of the existing methods. 

Since a typical microarray data set usually contains expression measures of both 

relevant and irrelevant transcripts, it has therefore become a usual practice in 

many microarray studies to primarily reduce the whole gene data to a 

manageable size of all the potentially relevant genes. This is usually done to save 

computation time and efforts. To this end, we proposed another new preliminary 

feature selection procedure that employs the cross-validated estimates of the 

area under the ROC curve of each observed gene for selection. This method, as a 

classifier-like method, improves on some of the existing methods like the t-

statistic procedure for being capable of removing from microarray data set, only 

those genes that are absolutely non-predictive of the biological sub-groups of the 

mRNA samples. This method eliminates the risk of possible exclusion of some of 

the important genes at the preliminary selection stage before any standard gene 

selection and prediction method, like k-SS, could be employed on the 

preliminarily selected genes for further analysis. The application of the new 

preliminary feature selection procedure was also demonstrated using some of the 

microarray data sets considered in this work. 
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1 Background into Microarray studies 

1.1  Introduction 

A gene is a unit of deoxyribonucleic acid (DNA) that occupies a spot 

on a chromosome and helps to determine a trait in an organism. 

Genes are passed on from parents to child and constitute important 

part of what determines physical appearance and behaviour of an 

individual. The total amount of genes carried by individual living 

organism is called genome which in turn defines the genetic 

construction of the organism called genotype. 

The existence of genes was first discovered by Gregor Mendel (1822-

1884), who, in the 1860s, studied inheritance in pea plants and 

discovered a factor that conveys traits from parent to offspring. His 

various works were reported by Olby (1979).  

Following Mendel’s line of argument is Herman J. Muller (1951) who 

claimed that genes are fundamentally endowed with two basic 

properties: autocatalysis that allowed the genes to reproduce as 

units of transmission that connected the genotype of one generation 

to that of the next and heterocatalysis which connected the genes to 

the phenotype, as units involved in the expression of a particular 

character.  

Several studies have however shown that thousands of these genes 

and their products (ribonucleic acid, proteins, etc.) are functioning in 

a complicated and orchestrated way in any living organisms which 

at times creates some mystery of life. The earlier traditional 

approach of studying one gene per experiment using radioactive 

detection reagents had made it difficult to understand the whole 



 
 

 2 

functioning processes of several thousands of genes most of which 

are interconnected.  

Over the past few years, a new technology called DNA microarray or 

simply, microarray technology (MT) as it is often referred, Burnside 

et al (2008), was developed. This has made it possible to monitor and 

measure the expression levels of several thousands of genes 

simultaneously. By this, better understanding of the inherent 

relationships among various genes is accomplished.  

The gene expression is the process by which messenger ribonucleic 

acid (mRNA) and protein are synthesised from the DNA template of 

each gene. The DNA is a nucleic acid that contains the genetic 

instructions used in the development and functioning of living 

organisms. Ribonucleic acid (RNA) on the other hand is a nucleic 

acid made from a long chain of nucleotide and structurally differs 

from DNA. While DNA contains deoxyribose and is double stranded, 

RNA contains ribose sugar and is single stranded. Messenger RNA 

(mRNA) is the RNA that carries information from DNA to the 

ribosomes which again translate the information they carry into 

proteins. Further details about the structural form of these two 

molecules can be found in Salazar et al (1993), Mikkola et al (1999), 

Hermann & Patel (2000), Cooper & Hausman (2004) and in many 

other related works. 

The advent of modern methods into microarray profiling and 

sequencing has made it easy to generate several volumes of 

complimentary DNA (cDNA) through reverse transcription of 

mRNAs. It is then easy to measure the activity of thousands of genes 

at once and creating a global picture of cellular function. MT 

method, like serial analysis of gene expression (SAGE or 
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SuperSAGE) is commonly adopted for gene expression profiling 

which has made it possible to identify the cells that are actively 

dividing based on their mRNA functions.  

Another important task after the generation of microarray data sets 

is to identify the genes that are differentially expressed (DE) within 

the mRNA samples. The DE genes are the group of genes that 

belong to the same functional class whose expression patterns are 

strong enough to classify any future mRNA samples with similar 

molecular features. Many statistical techniques have been proposed 

in many studies for proper classification of mRNA samples into their 

various biological sub-groups. A more flexible dimension reduction 

and response class prediction method is equally provided in this 

thesis. 

However, to analyse any experimental data correctly, it is 

fundamental to understand the experiment that generated such data 

set.  Therefore, in what follows, we provide some insights into the 

basic platforms upon which microarray data sets are usually 

developed. 

1.2 The cDNA and Affymetrix microarrays  

Microarray technology has provided us with a compelling approach 

that allows for simultaneous evaluation of all cellular processes at 

once. This has greatly assisted the process of identification of new 

molecular markers that could be useful in the diagnosis, prognosis, 

and prediction of different categories of cancers. However, there are 

several microarray technological platforms on which mRNA samples 

are processed. In all the platforms, oligonucleotide or cDNA probe 

sets are used for fabrication. 
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The common procedure especially in spotted microarray experiments 

is that, the DNA or oligonucleotide probes are synthesized prior to 

deposition on the array surface and are then robotically spotted onto 

glass. Thereafter, purified RNA samples are fluorescently or 

radioactively labelled and hybridized to the slide or membrane. In 

some cases, hybridization is done simultaneously with reference 

RNA to facilitate comparison of data across multiple experiments. 

After thorough washing, the raw data is obtained by laser scanning 

or autoradiographic imaging. At this point, the data are entered into 

a database and analyzed by a number of statistical methods. 

Oligonucleotide is a small chain of nucleic acid residues which are 

used to detect the presence of larger mRNA molecules.  

Oligonucleotide microarray is a type of microarray technology 

developed at Affymetrix, Inc., California, (Affymetrix, Inc; 2001a,b). 

Here, short oligonucleotide sequences (20~80-mers oligos) or peptide 

nucleic acid (PNA) probes are synthesized either in-situ (on-chip) or 

by conventional synthesis onto the array surface followed by on-chip 

immobilization.  

A particular technique due to Pease et al (1994) is sometimes used to 

produce oligonucleotide arrays. In this method, photolithographic 

synthesis (Agilent and Affymetrix) is performed on a silica substrate 

where light and light-sensitive masking agents are used to build a 

sequence one nucleotide at a time across the entire array. 

In spotted complementary DNA (cDNA), Two-colour or Two-channel 

microarrays are typically hybridized with cDNA prepared from two 

samples to be compared (e.g. diseased tissue & healthy tissue) and 

they are labelled with two different fluorophores, Shalon et al (1996). 

Fluorophores are molecules that have fluorescent properties. The 
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Fig 1.2: A typical two-colour spotted cDNA microarray experiment 

1.3 DNA microarrays in cancer research 

Cancer, sometimes called malignant neoplasm, is a complex disease 

in which a group of cells display certain traits of uncontrolled growth 

and invasion which may possibly spread (metastasize) to other parts 

of the body. Cancer can develop in any part of human body which 

eventually give rise to various kinds of cancer like lung, prostate, 

breast, renal, brain, gastric, rectal, colon, and head & neck cancers 

among others. 

Over the past few decades, classification and diagnosis of cancer 

patients are based on the examination of the organs where the 

tumour is developed. This often resulted into the exhaustive physical 

and histopathological assessments of the organs that harbour the 
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tumour. However, diagnoses are only achievable either through 

laboratory tests which might be too costly to bear or through surgical 

operations which might expose the patients to different kind of risks. 

In some instances, some of the test results, like autopsy can be 

available only after the passage of time, thus causing some delay 

before any diagnoses or cancer classification could be performed.   

Fortunately, the advent of DNA microarray technology in the recent 

past has introduced dramatic changes into cancer research. With 

this new technology, it is possible to simultaneously analyse the 

expressions of several thousands of genes at once and relate their 

expression patterns to clinical phenotypes, Lonning et al (2005).  By 

this, it is possible to identify molecular signatures whose expression 

patterns are capable of discriminating between infected (cancer) 

cells and uninfected (normal) cells. It is therefore easy to predict 

(diagnose) the prognostic stage (whether cancerous or normal) of all 

the cancer patients using the gene expression profiles without taken 

them through the rigour of expensive laboratory tests or surgery.   

Due to high dimensional nature of microarray data typically with ݍ 

genes and ݊ biological samples, ݊ ا  many supervised and ,ݍ

unsupervised methods have been developed to handle dimension 

reduction, patterns recognition as well as prediction of biological 

samples using gene expression data.  

The use of gene expression profiles for cancer diagnoses has been the 

major focus in many microarray studies. One of the most highly 

referred studies in this area is that of Golub et al (1999).   In their 

study, the expression levels of 7129 Affymetrix gene chips generated 

on 72 human acute leukemia tumour subjects were used to classify 

the subjects into two sub-types of leukemia: acute myeloid leukemia 
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(AML) and acute lymphoblastic leukemia (ALL). An unsupervised 

class discovery method was used to identify these two classes of 

leukemia without a priori knowledge of the subjects’ prognostic 

status. The use of gene expression data for class discovery and class 

prediction was firmly established in this work. 

In a related study, Alizadeh et al (2000) used DNA microarrays to 

conduct a systematic characterization of gene expression in B-cell 

malignancies. The expression patterns of patients with diffuse large 

B-cell lymphoma (DLBCL) were studied. Hierarchical clustering 

with average linkage search was used on the gene expression 

patterns of 88 biological samples to identify two previously 

unidentified molecularly distinct forms of DLBCL (germinal centre 

B-like DLBCL and in vitro activated peripheral blood B-like DLBCL) 

which had gene expression patterns indicative of different stages of 

B-cell differentiation. They equally demonstrated that patients with 

the two sub-groups of tumour are susceptible to different clinical 

outcomes. Bhattacharjee et al (2001) also used hierarchical 

clustering method on expression patterns of lung cancer patients to 

identify patients with various kind of this cancer type that are 

characterized by different prognostic outcomes.  

Also, Bittner et al (2000) used hierarchical clustering on gene 

expression profiles of 31 melanomas biological samples to discover 

identical cluster of 19 melanomas that had similar gene expression 

patterns. In another study, Pomeroy et al (2002) applied some 

supervised and unsupervised methods on Affymetrix oligonucleotide 

microarrays to distinguish between new and existing sub-classes of 

embryonic tumours of the central nervous system (CNS) using gene 

expression patterns.   
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In hereditary breast cancer studies, Hedenfalk et al (2001) used the 

gene expression profiles of breast cancer patients to identify 176 

genes that are capable to discriminate patients with sub-types of 

breast cancer tumours: i.e. tumour with BRCA1 mutations and 

tumour with BRC2 mutations. 

As application in survival studies, Nguyen & Rocke (2002c) used 

partial least square (PLS) components constructed from gene 

expression patterns of patients with locally advanced breast 

carcinomas as predictors in proportional hazard (PH) regression 

model to predict patients’ survival outcomes.  

A good number of classification methods have been proposed in the 

literature to properly classify biological samples into their respective 

tumour types using their gene expression profiles. The most 

commonly used ones include the linear discriminant analysis (Lee, 

2004; Ye et al, 2004; Hastie et al, 2009), classification and regression 

trees (Zhang et al, 2001 & 2003), logistic discriminant analysis (Ding 

& Gentleman, 2004), ݇-nearest neighbours (Fix & Hodges, 1951; 

Cover & Hart, 1967; Giordano et al, 2001; Baoli et al, 2003), support 

vector machines (Vapnik, 1998; Christianini & Shawe-Taylor, 2000; 

Bennett & Campbell, 2000; Furey et al , 2000;  Peng et al, 2003; Liu 

et al, 2005; Chu & Wang, 2005), artificial neural networks (Hertz et 

al, 1991; Ripley, 1996; Khan et al, 2001; Bicciato et al, 2003; Hastie 

et al, 2009), boosting (Dettling & Buhlmann, 2003) and bagging 

(Dudoit & Fridlyand, 2003) among others. 

The various microarray studies highlighted above are just a few 

instances among several thousands of studies hitherto being 

undertaken by many scientists all over the world. While some of the 

methods adopted are relatively simple to apply, a good number of 
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them are characterized by rigorous procedural complexities. 

Nonetheless, the ever-increasing challenges in microarrays 

technology have made it imperative on the scientists to continuously 

thinking and developing more concise techniques that are suitable to 

address fundamental questions which often accompany new 

discoveries in genes expression profiling on daily basis.    

Most of the studies discussed so far focused on proper classification 

or prediction of biological samples into difference cancer sub-classes. 

Another important aspect of microarray studies is the selection of 

the marker genes that characterized different tumour classes and 

responsible for the identification, prediction or diagnosis of various 

sub-groups of cancers. Some of the classification methods combined 

feature selection with class prediction while some of them only 

perform classification of biological samples into their various tumour 

categories. However, the huge numbers of data sets generated by 

microarray experiments have raised a lot of methodological and 

computational challenges in the analysis of high-dimensional 

genomic data. 

1.4  Prior to dimension reduction and class prediction 

In analysing microarray data, a number of preliminary steps need to 

be taken before getting to the real dimension reduction and response 

class prediction. We discuss the major two of such steps which 

centres on data normalization and preliminary gene selection. 

1.4.1 Data normalization 

In microarray studies, normalization is the process of identifying 

and removing the effects of systematic variations other than the 

biological differences in the measured fluorescence intensities of 
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genes across the hybridized mRNA samples. It refers to a set of data 

pre-processing steps often employed to eliminate the influence of 

non-biological variations that might unavoidably be present in 

microarray data sets, so that differential expressions in genes can be 

truly identified.  

Within the purview of cDNA microarray experiment, the expression 

level of each gene is measured by the ratio of two fluorescent dyes, 

Cy3 and Cy5 over the mRNA samples. Variations in print-tip, 

labelling efficiencies, spatial and hybridization specific effects, and 

several other scanning properties of Cy3 and Cy5 may introduce a 

lot of systematic variations into the observed fluorescence 

intensities.  As a result, the actual biological differences (differential 

expression) inherent in a set of genes might be clouded by the effects 

of all the extraneous variations which may eventually lead to wrong 

biological decisions. Hence, the need to free microarray data sets 

from all these noises. 

In a loose term, the process of normalizing the ݊ ൈ  matrix of ݍ

microarray data set with ݊ arrays and vector ࢄ ൌ ሺ ଵܺ, … , ܺ௤ሻ of ݍ 

genes can be viewed as transforming all the expression patterns ௜ܺ௝ 

of ݆௧௛ gene across the ݊ mRNA samples by 

      ܼ௜௝ ൌ ݄൫ ௜ܺ௝൯ െ ଵ
௡אכ ௡,௤

∑ ݄ሺ ௟ܺሻ௟א௜,௝       (1.4.1) 

where ݄ሺ. ሻ represents the monotonically increasing Box-Cox family 

of transformations of ௜ܺ௝ given by  

    ݄൫ ௜ܺ௝൯ ൌ  ௑೔ೕ
೘ିଵ

௠
        (1.4.2) 

for some constant ݉ ൐ 0. Here, ݄൫ ௜ܺ௝൯ ൌ ௜ܺ௝ if ݉ ൌ 1, indicating no 

transformation except for shift in location, and ݄൫ ௜ܺ௝൯ becomes the 
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square root transformation of ௜ܺ௝ if ݉ ൌ 1/2 while it tends to the 

logarithm transformation as ݉ ՜ 0. However, the gene expression 

patterns ௜ܺ௝ reported in most microarray data sets are already the 

log of the fluorescent ratios which might not require further log 

transformation. 

Literally by (1.4.1), gene normalization across the arrays is 

performed by subtracting the mean expression levels of each gene 

from its expression level for each array while normalization across 

the ݍ genes is performed by subtracting the mean expression levels 

of all the genes for each array from their respective individual 

expression levels. 

Apart from the general normalization form given by (1.4.1), several 

other forms of normalization have been proposed to further improve 

the quality of microarray data before analysis could begin. Three of 

these approaches are discussed below. 

i) Intensity-dependent normalization 

Yang et al (2002) suggested the use of intensity-dependent 

normalization which is based on the locally weighted regression 

(LOWESS)(Cleveland, 1979; 1981) smoothing of the MA-plot. Let 

௜ܺ௝
ீ  and ௜ܺ௝

ோ  denote the green and red intensities of expressions of 

gene ݆ on ݅ mRNA samples, ݅ ൌ 1, … , ݊, ݆ ൌ 1, … ,  as observed ,ݍ

from the fluorescent dyes, Cy3 and Cy5 respectively. What is 

often reported as the gene expressions are the ratios ௜ܺ௝
ோ/ ௜ܺ௝

ீ  or 

log-ratios ݈݃݋൫ ௜ܺ௝
ோ/ ௜ܺ௝

ீ൯ of the fluorescent dyes. Conventionally, we 

denote the log intensity ratios by  

ܯ ൌ ൫݃݋݈ ௜ܺ௝
ோ/ ௜ܺ௝

ீ൯ ൌ ݃݋݈ ௜ܺ௝
ோ െ ݃݋݈ ௜ܺ௝

ீ                (1.4.3) 
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     and the average log intensity of the two colours by  

෩ܯ    ൌ ට݃݋݈ ௜ܺ௝
ோ ൈ ௜ܺ௝

ீ ൌ ଵ
ଶ

൫݈݃݋ ௜ܺ௝
ோ ൅ ݃݋݈ ௜ܺ௝

ீ൯           (1.4.4) 

The plot of ܯ against ܯ෩ is call the MA-plot which gives a 450 

rotation and rescaling of the plot of ݈݃݋ ௜ܺ௝
ோ  against ݈݃݋ ௜ܺ௝

ீ , Dudoit 

et al (2002), Huber et al(2005). A fit of LOWESS function  ݈൫ܯ෩൯ of 

the average intensity ܯ෩ is then obtained and this is used to 

normalize ܯ by computing the difference ܯ െ ݈൫ܯ෩൯. Thus, the 

general normalization form in (1.4.1) becomes ܼ௜௝ ൌ ܯ െ ݈൫ܯ෩൯. 

This normalization type is design to remove extraneous colour 

effects that may be induced by different pin tips. More details 

about this approach could be found in Lee (2004), Huber et 

al(2002) and many other related studies. 

ii) Rank-Invariant genes normalization 

The rank-invariant method as proposed by Tseng et al (2001) as a 

non-linear normalization method considers a microarray 

experiment in which two differentially expressed specimens are 

separately labelled with green (Cy3) and red (Cy5) flours and co-

hybridized to the same slide. Unlike in the intensity-dependent 

normalization in which all the genes are used to determine 

normalization factor, here, a sub-set of genes that are biologically 

assumed not to be differentially expressed in the two specimens 

are selected for normalization.  Thus, a particular gene ௝ܺ is used 

for normalization if the ranks of its green and red intensities are 

similar up to a threshold value ݀ and the rank of its average 

intensities is not among the highest ݍ െ ݈ ranks or lowest ݈ ranks 

for any choosing constant ݍ and ݈. These statements are given by  
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    หܴܽ݊݇൫ ௝ܺ
ோ൯ െ ܴܽ݊݇൫ ௝ܺ

ீ൯ห ൏ ݀      (1.4.5) 

    ݈ ൏ ቤܴܽ݊݇ ቊ
ቀ௑ೕ

ೃቁାቀ௑ೕ
ಸቁ

ଶ
ቋቤ ൏ ݍ െ ݈      (1.4.6) 

iii) Global normalization 

Another widely adopted genes normalization approach is the 

global normalization method which uses analysis of variance 

(ANOVA) model introduced by Kerr et al (2000). This procedure 

assumes linear normalization factor and incorporates both main 

and/or interaction effects of these factors into the ANOVA models. 

The global normalization model is given by 

൫݃݋݈   ௜ܺ௖௧௝൯ ൌ ߤ ൅ ௜ߙ ൅ ௖ߜ ൅ ߬௧ ൅ ௝ݍ ൅ ሺݍߙሻ௜௝ ൅ ሺ߬ݍሻ௧௝ ൅  ௜௖௧௝   (1.4.7)ߝ

where ݈݃݋൫ ௜ܺ௖௧௝൯ is the logarithm of the gene expression measure 

of gene ݆ over cDNA array ݅, dye ܿ, and tissue sample type ݐ. 

Parameters ߤ is the overall population average log-expression 

(average signal), ߙ௜ represents the effect of ݅௧௛ array, ߜ௖ is the 

effect of ܿ௧௛ dye, ߬௧ is the effect of ݐ௧௛ tissue type, ݍ௝ is the effect of 

݆௧௛ gene, ሺݍߙሻ௜௝ is the interaction effect of ݅௧௛ array and ݆௧௛ gene, 

ሺ߬ݍሻ௧௝ is the interaction effect of ݐ௧௛ tissue type and ݆௧௛ gene while 

 ௜௖௧௝ is an independent and identically distributed error term. Thisߝ

approach has been employed in many other related studies (Lee et 

al, 200; Wolfinger et al, 2001; Lee, 2004; etc.).  

There are many other variants of normalization procedures apart 

from the three provided above (see Smyth et al, 2002; Smyth & 

Speed, 2003; Huber et al, 2003; Steinhoff & Vingron, 2006; etc.). The 

choice of any of the method depends on the nature of microarray 

data set being investigated. 
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A particular important aspect of normalization is data 

standardization. It is all about standardizing microarray data so 

that each array has zero mean and unit variance. It is a scale 

adjustment measure that prevents the expression measures in a 

particular array to dominate the overall average expression, Yang et 

al (2001).  

1.4.2   Preliminary feature selection  

A typical microarray data set is characterized by having several 

thousands of ݍ genes measured on relatively small number ݊ of 

biological samples with ݊ ൏  Several experimental microarray .ݍ

studies (Botstein & Risch, 2003; Su et al, 2002; etc.) have revealed 

that very few numbers of these numerous genes are differentially 

expressed (DE) and might actually be relevant to the clinical status 

of the biological samples.  Therefore, our objective here is to perform 

a primary selection of potentially relevant כݍgenes from all the 

available ݍ genes such that all the ݍ െ  non-predictive (irrelevant) כݍ

genes are removed prior to proper analysis. The reasons for this are 

two-fold: One is to save a lot of computation time and efforts while 

analysing the data. If the ݍ െ  useless’ genes are not removed‘ כݍ

before any dimension reduction and/or class prediction is performed, 

a good classifier will still filter them out during the analysis proper, 

but at a huge cost of analysis time. To avoid this therefore, it is 

proper to filter all the apparently irrelevant genes before proper 

analysis could begin. The second reason which is not too far from the 

first one is to minimize unnecessary ‘noise’ in the data before proper 

analysis could commence. In a nutshell, a good preliminary gene 

selection is expected to prevent undue influence of the irrelevant 

genes on prediction.  
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Among the preliminary feature selection methods commonly adopted 

in the literature are the p-value method (Golub et al, 1999), the 

Wilcoxon-Mann-Whitney rank sum test (Thomas et al, 2001), the 

student-t test or its equivalent; the Welch test (Nguyen & Rocke, 

2002a; Rimkus et al, 2008) and the Wilks’ lambda score (Dillon & 

Goldstein, 1984; Johnson & Wichern, 1992; Hwang et al, 2002) 

among others.  

Generally speaking, no single method can efficiently be suitable to 

handle all kinds of microarray data sets. The choice of method to 

adopt at times may depend on the nature of the data or the taste of 

the investigator. The common denominator is to ensure that the 

method adopted retains all the potential differentially expressed 

genes among the primarily selected כݍ genes. 

We shall discuss the procedure of the student-t test as used in this 

thesis and later in Chapter 2, we propose another flexible classifier-

like preliminary feature selection method – the AUC feature 

selection method- which has not been given much attention in the 

literature. The reasons for this shall be provided later.  

It is intuitively reasonable to ask that, why seeking for further 

dimension reduction methods when some of the methods adopted for 

preliminary feature selection can perform similar function? The 

answers to this are two-folds. First, after the preliminary gene 

selection where ݍ െ  non-DE genes are pruned out, the remaining כݍ

potentially relevant כݍgenes selected might still be more than what 

is optimally suitable for good prediction. In other words, not all the 

preliminarily selected כݍgenes would still be suitable for good 

classification of mRNA samples into their respective cancer sub-

classes. Hence, there is need to evolve a more robust method that 
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would further extract the most relevant and informative ݇ genes 

(݇ ൏  genes. The second but less כݍ from the preliminarily selected (כݍ

important reason is that, the number of כݍ genes selected might still 

be more than ݊, the number of biological samples. This would again 

render the use of any standard regression methods practically 

impossible for response class prediction due to the violation of non-

singularity condition of the design matrix of the predictors.  

Feature selection by Student-t statistic 

By Student-t statistic approach, each of the measured genes ௝ܺ, 

݆ ൌ 1, … ,  are divided into two, ܺ଴௝ and ଵܺ௝ based on the response ,ݍ

class categories ሺ0,1ሻ with corresponding sample sizes ݊଴ and ݊ଵ 

respectively. The equality of the group means തܺ଴௝ and തܺଵ௝ is 

examined via the t-statistic 

௦ݐ           ൌ  ௑തభೕି௑തబೕ 

ඨቆ
ሺ೙బషభሻೄబ

మశሺ೙భషభሻೄభ
మ 

೙బశ೙భషమ ቇൈቀ೙బశ೙భ
೙బ೙భ

ቁ 

      (1.4.8) 

or its equivalent, the Welch test (Welch, 1947) that gives an 

approximate solution to Behrens-Fisher problem (correcting for 

unequal variances within each class) given by  

௪ݐ                                              ൌ  ௑തభೕି௑തబೕ 

ඨೄబ
మ 

೙బ
ାೄభ

మ

೙భ
 

                                       (1.4.9)         

with modified degree of freedom   

ݒ     ൌ
ቆೄబ

మ 
೙బ

ାೄభ
మ

೙భ
ቇ

మ

ቆ
ೄబ

ర 
೙బ

మሺ೙బషభሻ
ା ೄభ

ర 
೙భ

మሺ೙భషభሻ
ቇ
 

where, for each gene ݆, തܺ௬௝, ܵ௬
ଶ and ݊௬ is the mean, the variance and 

the sample size for subject class ݕ ,ݕ ൌ 0, 1  respectively. The Welch 
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approximation is often preferred in many microarray studies. The 

estimates of the ݐ௪ or ݐ௦ above is computed for all the ݍ genes and for 

each computation a high positive t-score corresponds to high 

expression in favour of class 1 while the least negative t-score 

corresponds to high expression for class 0. The absolute values of all 

the t-scores are taken and subsequently sorted in descending order 

to identify the top כݍ genes base on the estimated t (ݐ௪ or ݐ௦) values. 

The cut-point for the selection of the top כݍ genes from the ordered 

list is determined either by a pre-specified implied ݌-value, כ݌ or its 

critical value equivalent for the upper tail of the student-t 

distribution. For instance, selection of all genes whose ݌-values are 

less than or equal to כ݌ ൌ 0.001 may be desirable. This would be 

equivalent to selecting all genes whose critical values, |̂ݐ௦| or |̂ݐ௪| 

values, are greater than or equal to ݐ଴.ଽଽଽ, ௡బା௡భିଶ or ݐ଴.ଽଽଽ,   ௩ 

respectively. The higher the value of כ݌ chosen (i.e. as  כ݌ ՜ 1 or as 

the chosen cut-point ݐఈ ՜ 0 ) the higher the chance of retaining more 

genes and vice-versa.   

While using Student t-test for preliminary feature selection in this 

work, we have allowed our choice of cut-point כ݌ to be dictated by the 

underlying features of the various data being analysed. Our study 

here have shown that, it is wrong to fix a general cut-off point, say 

כ݌ ൌ 0.001, as a benchmark for all microarray data sets as done in 

many studies irrespective of the nature of the data under study. The 

value of כ݌ used for a particular microarray data might not be 

suitable for another data, hence the need to consider the peculiar 

features of each data as a guide for selecting the cut-off points.  
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1.5 Research motivation and objectives 

The advent of DNA microarray technology has made it possible to 

simultaneously study the expression profiles of several thousand of 

genes on a given number of mRNA samples. This has helped the 

researchers to have a clear understanding of different kinds of 

diseases like  heart diseases, mental illness, infectious disease and of 

course, the cancer varieties. In cancer research for instance, the 

evolution of microarray technology has made it possible for 

molecular biologists and physicians to classify various sub-classes of 

cancer types on the basis of the patterns of gene activity in the 

tumour cells. This strongly underscores the biological relationship 

between the gene expression profiles and various sub-classes of 

cancer types.  

In a more statistical term, let us consider a DNA microarray 

experiment that generated expression data on ݍ genes ࢄ ൌ ሺ ଵܺ, … , ܺ௤ሻ 

for ݊ mRNA samples where response of interest represented by 

௜ܻ , ݅ ൌ 1, … , ݊, is recorded for each sample. Response variable ௜ܻ may 

be binary or categorical, especially if the response of interest is the 

cancer tumour sub-group as in leukemia study of Golub et al (1999), 

in which case,  ௜ܻ ൌ 0 for acute lymphoblastic leukemia (ALL) while 

௜ܻ ൌ 1 for acute myeloid leukemia (AML). When the tumour sub-

groups are more than two, typical of the molecular cancer study by 

Ramaswamy et al (2001), then the outcome variable ௜ܻ may be given 

by the set ሼ ௜ܻሽ ൌ ሼ0, 1, 2, … , ঙሽ. Also, variable ௜ܻ may be continuous 

denoting a desired continuous clinical outcome like blood pressure 

readings, x-rays’ results, laboratory tests’ results and so on.  

It should be noted that both ࢄ and ௜ܻ represent random samples from 

a given population of interest and it is often desirable in microarray 
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studies to use the observed sample data on expression measures of ݍ 

genes ௝ܺ, ݆ ൌ 1, … ,  and observed response ௜ܻ to make inference ݍ

about the population or future subjects. Specifically, a common goal 

is to use information on the observed data ሺࢄ෡, ෠ܻ௜ሻ to predict 

independent future subject ݊כ ב ሼ݊ሽ in the population. 

Typically, microarray data sets are characterized by having very few 

number of experimental mRNA samples, often less than 100, on 

which expression levels of several thousands of genes are 

simultaneously being observed. Hence, the situation where ݊ ا  is ݍ

a common scenario in genomic analysis. Therefore, to predict the 

clinical/tumour status of future subjects ݊כ, a functional relationship 

between ࢄ and ௜ܻ of the form ௜ܻ ൌ ݃ሺࢼࢄ;  ሻ may be desirable for anyߝ 

link function ݃ሺ. ሻ. If the relationship is linear, then, the task is to fit 

the model   

                                               ௜ܻ ൌ ࢼࢄ ൅  (1.5.1)                                      ߝ 

But with the condition that ݊ ا  obviously, the linear model (1.5.1) ,ݍ

cannot be estimated using the classical least square (LS) method. 

The reason for this is that, the ݍ ൈ  variance-covariance (design) ݍ

matrix ࢄ்ࢄ would be singular (non-invertible). 

Several attempts directed at circumventing this common 

dimensionality problem in microarray data resulted to the 

development of many supervised and unsupervised techniques for 

dimension reduction and tumour classification in several microarray 

studies. Among the earlier methods developed for response class 

prediction include the support vector machines (SVM), ݇-nearest 

neighbours ( ݇-NN), principal component analysis (PCA), sliced 

inverse regression (SIR) and the much celebrated approach of the 

partial least squares regression (PLSR) among many others. While 
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some of these methods (e.g. SVM, ݇-NN etc.) are mainly design for 

response class prediction, few other ones (e.g. PCA, PLS etc.) are 

shrinkage techniques that are only meant for dimension reduction of 

original ݍ genes to a small number of ݇ gene components, ݇ ൏ ݊, 

using the expression patterns of all the ݍ genes. For both PCA and 

PLS techniques for instance, tumour classifications are only possible 

through the use of other standard discriminant methods like linear, 

logistic or quadratic discriminant analyses on the ݇ gene components 

constructed.  

Expectedly, some of the existing methods perform accurate 

classification of tumour classes using the observed gene expression 

profiles, but unfortunately the classifiers they provided are often 

difficult to interpret in relation to the tumour sub-classes they 

predicted. For instance, the partial least squares (PLS) procedures 

can only reduce the entire  ݍ genes to a few number of ݇ gene 

orthogonal components, say, ܼଵ, … , ܼ௞, ݇ ൏ ݊ using the expression 

measures of all the original ݍ genes. The constructed ݇ components 

are then being used as predictors in replacement of the original ݍ 

genes, ଵܺ, … , ܺ௤, in regression model (1.5.1) to predict the tumour 

categories of any future biological subjects ݊כ (see Nguyen & Rocke, 

2002a-d; Rosipal & Kräme, 2006; Rimkus et al, 2008; etc.). Although, 

PLS method has been reputed to provide accurate predictions 

especially when suitable cross-validation method is employed, but 

regrettably in most cases, the ݇ components it constructed for 

prediction are not easily tend to direct biological interpretations in 

relation to the response groups they predicted. This has made it 

imperative to evolve a separate procedure that could actually 

identify and select the most relevant gene combinations that are 

actually related to different tumour categories. Obviously, this 
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important goal are difficult to accomplished using the factor loadings 

of the constructed ݇ PLS components as suggested in some studies, 

Barker & Rayens (2003), Ding & Gentleman (2004). 

One of the most important advantages of DNA microarray 

technology lies in gene discovery. Due to the dynamic nature of 

general hormone systems of individual organism, molecular 

biologists and physicians are not only interested in proper 

identification and prediction (diagnosis) of different categories of 

tumour types, but rather, they are now more interested about 

knowing those human transcripts (genes) that are responsible for 

each of the identified tumour conditions. Identification of these 

relevant transcripts would immensely help in the development of 

appropriate therapeutic measures (drug discovery). This could be 

further useful to pharmacogenomists in determining the relationship 

between therapeutic responses to drugs and the genetic profiles of 

patients.   However, all these important benefits may be difficult to 

achieve if appropriate statistical techniques that are capable to 

select the most relevant and informative marker genes among 

several available thousands are not developed. Again, it is obvious 

that the latent components constructed by PLS or PCA technique 

might not be suitable to address this problem. It is based on this 

premise that the study carried out in this thesis is conceived. 

The prime goal of this work therefore, is to develop a new flexible 

dual-purpose approach that would efficiently identify and select the 

most relevant gene chips that are informative enough to predict the 

various tumour conditions of mRNA subjects in any given 

microarray data set. 
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Our method shall be evaluated on some of the existing microarray 

data sets while its general performance relative to those provided by  

some of the few selected existing methods (PLS, SVM, ݇-NN, etc.) 

shall be examined. 

The high-dimensional nature of microarray data sets has made 

preliminary feature selection a desirable task before further analysis 

like final optimal gene selection and classification are performed. 

Due to this end, we shall review some of the existing preliminary 

feature selection methods and provide yet another approach that 

would efficiently handle features selections at the preliminary stage. 

This becomes necessary because the prediction performance of any 

classification rules largely depends on the crop of genes selected for 

analyses at the preliminary selection stage. 

1.6 Main research contributions 

The main contributions of this research work include, but not 

limited to the following: 

 We developed a dual-purpose flexible method that 

simultaneously performs informative genes selection and 

classifies mRNA samples into their respective biological 

groups using the sub-set of genes selected irrespective of 

the dimension of the microarray data involve. 

 Our new method is capable at selecting those genes that 

are of biological relevance to the tumour conditions of 

the mRNA subjects in any given microarray data sets. 

This, we hope, shall be helpful in the determination of 

appropriate therapeutic measures for the treatment of 

various cancer sub-groups. 



 
 

 24 

 We equally proposed a new classifier-like preliminary 

feature selection method that is capable at reducing the 

huge number of genes in any microarray data set to a 

manageable size by selecting all the potentially 

discriminative marker genes for further analysis by any 

standard gene selection and/or classification method. 

The new approach eliminates the risk of leaving out 

some of the important genes at the preliminary selection 

stage.  

 In addition to all these, this research work avails us the 

opportunity to thoroughly review the fundamental basis 

of some of the existing classification techniques and offer 

useful contributions, suggestions and recommendations 

based on our experience in this study. 

1.7 Outline of the Thesis 

The rest of this thesis is arranged as follows. We presented our 

newly proposed sequential dimension reduction and prediction 

method in Chapter two including a review of various performance 

indices that are used to assess the efficiency of the proposed method. 

This is followed by introducing a new versatile preliminary feature 

selection procedure. We conclude this chapter by presenting an 

overview of some of the existing classification methods as employed 

in this thesis. Several simulation studies carried out and few 

applications of our proposed classifier are provided in Chapter three 

while its applications on real microarray data sets are presented in 

Chapter four.  Chapter five presents the summary of our results, 

necessary conclusions and suggestions for future studies. 
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2 The ࢑-Sequential Selection (࢑-SS) 

method 

2.1 Introduction 

The characteristic feature of a typical microarray data set has posed 

a lot of challenges to statisticians and experimental biologists due to 

high dimensional nature of such data. A typical microarray data set 

consists of ݍ transcripts and response class information on ݊ subjects 

with ݍ >> ݊. In most cases, the number of transcripts measured on 

each biological subject ranges between 1,000 to more than 50,000 

transcripts while the available experimental unit may fall below 

100. Hence, the need to evolve a robust method that will be capable 

to identify and select from the cloud of several thousand of observed 

genes, the most relevant informative genes for the prediction of 

biological sample. This is particularly important to the biologists and 

physicians who are interested to know which genes have correlated 

expression levels with the biological samples for determination of 

proper therapeutic measures among other intents. We therefore 

present in this work, a novel but flexible approach that is capable at 

selecting the most relevant gene sets as well as providing accurate 

prediction of the tumour sub-groups of biological samples in any 

given genomic data. We have used some of the existing microarray 

data sets to demonstrate the application of our method. Nonetheless, 

this new approach can be applied, for instance to proteomic, 

chemometrics or any other data sets in which high-dimensionality is 

a common scenario.  

Consider a total of ܰ subjects that belong to two different population 

groups Ωଵ and Ωଶ, Ωଵ,Ωଶ א ሼΩሽ. Let a random sample of size ݊ be 

drawn from population ܰ with ݊ଵ from population Ωଵ and ݊ଶ from 
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population Ωଶ, ݊ଵ ൅  ݊ଶ ൌ ݊ and let the ݍ-dimensional vector ࢄ ൌ

ሺ ଵܺ, … , ܺ௤ሻ, א ࢄ  Ը௡ൈ௤ denotes the expression levels of ݍ genes 

simultaneously measured on ݊ biological samples with ݊ ൏  as ݍ

earlier presented in Section 1.5. Under the classical regression 

settings, the primary goal is to establish the association between 

predictor vector ࢄ and a (continuous or categorical) response 

variable ௜ܻ א  Ը, ݅ ൌ 1, … , ݊, of the form  

                                                ௜ܻ ൌ ݃ሺࢼࢄ;  ሻ                                  (2.1.1)ߝ 

for some link function ݃ሺ. ሻ. Within the framework of this study, we 

define the response variable ௜ܻ by 

                                              ௜ܻ ൌ ൜0, if ݕ א Ωଵ
1, if ݕ א Ωଶ

        (2.1.2) 

for any realization ݕ of ௜ܻ in Ω. This literally indicates a binary 

response group (0,1) for all the ݊ biological samples, which by far, is 

the most common in many microarray studies. While 

implementation of our proposed method shall be demonstrated 

extensively on dichotomous response class microarray data sets, the 

extension of its application to multi-categorical response cases shall 

be equally discussed.  

The definition of the outcome variable ௜ܻ in (2.1.2) implies that any 

given subject in ݊ is labelled 1 if it has a particular characteristic of 

interest of those in group Ωଶ א  Ω and a given subject is label 0 if it 

possesses the features of those in group Ωଵ א  Ω. In microarray 

cancer studies for instance, the characteristic of interest may be 

patients having particular cancer tumour types labelled 1 if 

tumourous, and labelled 0 if the subject is normal. This particular 

instance existed in many studies (Alon et al 1999, Singh et al 2002, 

Stuart et al 2004, Welsh et al 2001, Ramaswamy et al 2001, etc.). In 
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survival analysis studies however, such characteristic of interest 

may be the survival outcome of the patients after a given follow-up 

period with ௜ܻ ൌ 1 for death outcome and ௜ܻ ൌ 0 if the patient is still 

alive at the end of the study (censored).    

Assuming a linear form of the link function ݃ሺ. ሻ in (2.1.1), obviously 

it is impossible to apply the usual least square method to establish 

the linear relationship between ࢄ and ௜ܻ due to dimensionality 

constraint imposed with ݊ ا  as remarked in Section 1.5. Our ݍ

major goal in this thesis therefore, is to design a classification rule 

based on variable pair ൫ ௜ܻ, ௜ܺ௝൯, ݅ ൌ 1, … , ݊, ݆ ൌ 1, … ,  that will use ,ݍ

subset ࢞ of the measured gene expressions ࢄ to correctly 

predict/classify any independent future subjects into either of the 

two biological groups ௜ܻ ൌ ݕ  ,ݕ א ሼ0,1ሽ. 

Most often, it is difficult to get independent samples to test the 

accuracy of any developed classification rule. The usual practice is to 

randomly partition the original sample size ݊ into training/design 

sample, ்݊ோ and test sample, ்݊ா using a suitable ratio. The 

classifiers are usually built using ்݊ோ while the goodness of the 

classifiers is assessed on the test set ்݊ா. Some splitting ratios 2:1, 

4:1 and 9:1 in favour of the training and test data respectively have 

been suggested in some studies (Dudoit et al, 2002; Lee et al, 2005; 

etc.). However, a common practice in most studies is to train the 

classifier with large proportion of the original data while its 

goodness is assessed using the remaining left-out sample.  

The adverse effects associated with the partitioning of the already 

small biological sample ݊ into training and test sets for classifiers’ 

construction and assessment have been reported in many studies, 

e.g. see Bura & Pfeiffer (2003), Molinaro et al (2005), Boulesteix et al 
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(2008) and several others. A common argument is that, classifier 

that is constructed with a fraction of already small sample size ݊ 

might underestimate the misclassification error rate (MER). In other 

words, a classifier that is trained with a relatively large number of 

subjects is likely to provide more accurate and stable results than 

the one trained with smaller sample. In view of this fact, we have 

adopted a splitting ratio of 19:1 for  ்݊ோ: ்݊ா in this thesis. This 

literally translates to using 95% of original ݊ subjects to build our 

classifier and using the remaining 5% as external data to evaluate 

the performance of the classifier. The justification of our choice is 

discussed in Section 3.5. With this partitioning ratio, sufficient part 

of the original data is used to construct the classifiers which 

considerably improved prediction results as shall be seen later. 

To further ensure generalization and stability of results, several 

replicates of the original data sets are generated at the  construction 

and evaluation stages of our classifier using sub-sampling technique 

of Monte Carlo Cross Validation (MCCV) (Dudoit et al, 2002), 

Bootstrap (Efron & Gong 1983), and Bootstrap .632+ (Efron and 

Tibshirani, 1997). The details of these sampling methods as adopted 

in this thesis are provided in Section 2.5. 

Since the variable selection and class prediction method proposed in 

this thesis adapts the estimation procedures of logistic regression 

method, in the next two sections therefore, we briefly provide the 

basic theoretical background into the generalized linear models 

(GLM) and logistic discriminant (LD) analysis. 

2.2 Generalized Linear Models (GLMs) 

Under the classical linear regression models (LRMs), the 

relationship between the response variable ௜ܻ א Ը௡ൈଵ, ݅ ൌ 1, … , ݊, and 
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a set of predictors ࢄ ൌ ሺ ଵܺ, … , ܺ௤ሻ, ࢄ א Ը௡ൈ௤  in the form ܻ ൌ ࢼࢄ ൅  ,ߝ 

ࢼ ൌ ሺߚ૚, … ,  is usually established by assuming Gaussian ,ࢀሻࢗߚ

distribution with constant variance, ߪଶ for both ܻ and the error 

component, ߝ with each of them having means ෠ܻ ൌ  ෡  and zeroࢼࢄ 

respectively. 

When the outcome variable ܻ is not Gaussian, but rather 

dichotomous with distinct class labels ሺ0, 1ሻ, then, the Gaussian 

distribution cannot be assumed for ܻ. This implies that the linear 

regression model ܻ ൌ ࢼࢄ ൅  cannot be fitted on ܻ because the range ߝ 

of the conditional expectation ෠ܻ ൌ  ሻ is no loger boundedࢄ|ሺܻܧ

between zero and one. 

The generalized linear model (GLM), first developed by John Nelder 

& Robert Wedderburn in 1972, provides a flexible generalization of 

the linear regression concepts which unifies various other statistical 

models including linear, logistic, Poisson and many other regression 

models with or without Gaussian responses under one framework. 

This led to the development of general algorithms for the maximum 

likelihood estimation (MLE) of all the models’ parameters.  

In GLM, each response variable ܻ is assumed to come from a 

particular member of the exponential family of distributions (EFD) 

with a probability distribution ௒݂ሺݕ௜; ,௜ߠ ߱ሻ, ߠ௜, ߱ א Θ. The form of this 

distribution is given by 

                      ௒݂ሺݕ௜; ,௜ߠ ߱ሻ ൌ ݌ݔ݁ ቄሾ௬೔ఏ೔ି௕ሺఏ೔ሻሿ
௔ሺఠሻ

൅  ܿሺݕ௜,  ௜ሻቅ               (2.2.1)ߠ

where, ܽሺ. ሻ, ܾሺ. ሻ, ܿሺ. ሻ are known functions that take the form of ݕ௜. 

For each form of ݕ௜, ߠ௜ is the natural parameter. The dispersion 

function ܽሺ߱ሻ is sometimes written as ܽሺ߱ሻ ൌ ఠ
௪೔

 where ߱ is the 

dispersion parameter which is constant for all observations and ݓ௜ is 
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a prior weight meant to correct for the violation of unequal variances 

which might arise contrary to the constancy of ߱ already assumed.  

The EDF family include among others, the Gaussian, Binomial, 

Poisson, Exponential and Gamma distributions.  

Consider a general regression function ܻ ൌ ݃ሺࢼࢄ;  ሻ as defined inߝ 

(2.1.1). Within the framework of GLM, the relationship between the 

random component, ߤ ൌ  ሻ and the systematic componentࢄ|ሺܻܧ

ߟ ൌ  a linear combination of the predictors, is specified by a ,ࢼࢄ

linear or non-linear monotonic and differentiable link function 

ߟ ൌ ݃ሺߤሻ. This link is a function of response variable ܻ which enables 

the relationship between ܻ and vector of predictors ࢄ to be linear in 

parameter ࢼ. Dropping subscript ݅ from ߠ௜ for simplicity, it then 

follows from EFD in (2.2.1) that 

ሻࢄ|ሺܻܧ     ൌ ߤ ൌ ܾᇱሺߠሻ        (2.2.2) 

ሻࢄ|ሺܻݎܸܽ                              ൌ ܾᇱᇱሺߠሻܽሺ߱ሻ       (2.2.3) 

where ܾᇱሺߠሻ and ܾᇱᇱሺߠሻ are the first and second derivatives of ܾሺߠሻ 

respectively. 

The special case of the link function which concerns us here is the 

logit link when response variable ܻ is Bernoulli distributed with ܻ ൌ 

0 or 1. Here, the link function is given by ݃ሺߤሻ ൌ ݃݋݈ ቂ௣ሺ௒ୀଵ|ࢄሻ
௣ሺ௒ୀ଴|ࢄሻ

ቃ = ࢼࢄ. 

More details on this are provided in the next section. Other forms of 

GLMs as applied into different fields can be found in Bliss (1935), 

Berkson (1944), Cox (1972), Finney (1972), Kleinbaum & Kupper 

(1978), Draper & Smith (1981), McCullagh & Nelder (1989) and 

many others. 
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2.3 The basics in logistic discriminant analysis  

The concepts of the logistic regression analysis are the primary basis 

for the construction of logistic discriminant (LD) analysis technique. 

Ripley (1996), Dudoit et al (2002) and several other authors have 

argued at different times in favour of using LD analysis for class 

prediction purposes. Their unanimous conclusion is that LD analysis 

provides a more direct and unambiguous way of estimating the 

posterior probabilities  ݌ሺܻ ൌ  ሻ that are used in the constructionࢄ|ݕ

of logistic discriminant (LD) rules. It has been equally reported that 

LD procedure tends to more easy generalization than some of the 

other classifiers like linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA), Dudoit et al (2002).  

Suppose we consider a set of ݊ biological samples belonging to two 

outcome groups (0,1) according to response variable ܻ as defined in 

(2.1.2). Let ࢞ ൌ ሺ ଵܺ, … , ܺ௞ሻ be the subset of measured ݍ genes 

ൌ ࢄ ሺ ଵܺ, … , ܺ௤ሻ, ࢄ ߳ Ը௡ൈ௤, ݇ ൏  selected using a suitable variable ,ݍ

selection method for predicting the response group ܻ.  

Suppose that all the ݊ samples represent independent and 

identically distributed random samples from an unknown 

distribution Ψ over ॿ ൈ ঀ א Ը,  ॿ and ঀ being the feature space of ࢞ 

and ܻ respectively. Without loss of generality therefore, the LD rule  

߮ሺ࢞ሻ to be constructed can be seen as the mapping of ॿ into the real 

line ঀ i.e. ߮ሺ࢞ሻ: ॿ ՜ ঀ (for continuous response variable ܻ) or as the 

partitioning of the feature space ॿ into ݕ disjoint and exhaustive 

groups ॿሺݕሻ of ঀ (for categorical response variable ܻ), ݕ ൌ 0, 1, … , ঙ. 

For binary response class, ঙ ൌ 1. Therefore, the predicted response 

class ෠ܻ by classification rule ߮ሺ࢞ሻ based on the observed feature ࢞ 

can be denoted by ෠ܻ ൌ  ො߮ሺ࢞ሻ.  
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Since response variable ܻ can only assume value 0 or 1 it follows 

that ܻ is Bernoulli distributed with parameter ߨሺ࢞ሻ. The equivalent 

form of the linear model ܻ ൌ ሻ࢞|ሺܻܧ ൅  under this condition is given ߝ 

by 

ܻ ൌ ሻ࢞ሺߨ ൅  (2.3.1)          ߝ 

which implies that 

ߝ     ൌ  ܻ െ  ሻ        (2.3.2)࢞ሺߨ

Thus, from (2.3.2) it is obvious that ܧሺߝሻ ൌ 0 and ܸܽݎሺߝሻ ൌ

ሻሾ1࢞ሺߨ െ  ,ሻሿ. This shows that under the regression form in (2.3.1)࢞ሺߨ

the error term ߝ, though has zero mean but do not have constant 

variance (ߪଶ as in Gaussian model) but rather, an heteroscendastic 

form that depends on the values of ࢞. A specific form of ߨሺ࢞ሻ is the 

logistic regression function given by  

ሺܻ݌     ൌ ሻ࢞|1 ൌ ሻ࢞ሺߨ ൌ ௘௫௣ ሺࢼ࢞ሻ
ଵା௘௫௣ ሺࢼ࢞ሻ

     (2.3.3) 

The quantity that transforms ߨሺ࢞ሻ as a linear function of ࢄ and ࢼ is 

the logit link ߟሺ࢞ሻ as described in Section 2.2 and is given by 

ሻ࢞ሺߟ     ൌ  ݈݊ ቂ గሺ࢞ሻ 
ଵିగሺ࢞ሻ 

ቃ ൌ  (2.3.4)     ࢼ࢞ 

Thus, when ܻ has two groups (0,1), the link function ߟሺ࢞ሻ is the 

natural logarithm of the ratio of conditional probability  ݌ሺܻ ൌ  ሻ࢞|1

and ݌ሺܻ ൌ ሻ࢞|0 ൌ 1 െ ሺܻ݌  ൌ ሻ࢞ሺߟ  ,ሻ. That is࢞|1 ൌ ݈݊ ቂ௣ሺ௒ୀଵ|࢞ሻ
௣ሺ௒ୀ଴|࢞ሻ

ቃ ൌ  .ࢼ࢞ 

Now, given any ݊ biological samples with dichotomous class group ܻ 

and a vector of observed predictors (genes) ࢞, the parameter vector ࢼ 

of the logistic regression model (2.3.3) can then be estimated 

iteratively using the iterative weighted least squares as implemented 

in the Newton-Raphson algorithm (Anderson et al, 1993). This is the 
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GLM procedure for a regression model with binary (Bernoulli) 

outcome variable ܻ. 

After the fit of the logit model (2.3.4) as described above, the next 

task is to construct a logistic discriminant (LD) rule, ߮ሺ࢞ሻ that would 

be used to predict the response class ଴ܻ of any independent external 

subjects ்݊ா. By procedure of LD rule, the response class predictions 

are made using the estimated conditional probability ̂݌ሺܻ ൌ  ,ሻ࢞|ݕ

ݕ א ሼ0, 1ሽ. The predicted class of any subject is then given by                     

ොݕ ൌ ሻ࢞|ݕሺ̂݌൫ܫ ൐ 1 െ .ሺܫ ሻ൯ where࢞|ݕሺ̂݌ ሻ is an indicator function that is 

1 if its argument is true and 0 otherwise. Thus, subject ݅ would be 

classified by rule ߮ሺ࢞ሻ into class ݕ א ܻ if it has the highest estimated 

posterior probability ̂݌ሺ࢞|ݕሻ of being in that class. Therefore, the 

connection between ߮ሺ࢞ሻ  and ̂݌ሺ࢞|ݕሻ could be stated as 

    ߮ሺ࢞ሻ ൌ  ሻ                 (2.3.5)࢞|ݕሺ̂݌ ௬ݔܽ݉݃ݎܽ 

The predicted conditional probabilities ̂݌ሺ࢞|ݕሻ may be formally 

converted to the predicted class labels ݕො א ሼ0, 1ሽ for each subject by 

choosing a cut-point ܿ, 0 ൏ ܿ ൏ 1, which finally yield the following 

classifications;  

                                        ߮ሺ࢞ሻ ൌ ൜1,   if ̂݌ሺ1|࢞ሻ  ൒  ܿ 
0,   if ̂݌ሺ0|࢞ሻ  ൏  ܿ                        (2.3.6) 

By (2.3.6), a subject would be classified into response class 1 if its 

estimated posterior probability ̂݌ሺ1|࢞ሻ ൒ ܿ and into class 0 if 

otherwise. 

If the sample class prior probabilities ̂݌௬ ൌ ݊ሺݕሻ/݊, ݊ሺݕሻ being the 

number of class ݕ subjects in the sample, ݕ ൌ 0, 1, are very close to 

0.5, the choice of 0.5 for value of ܿ has been found more appropriate. 

But if one of these priors is very close to 1, then, it is recommended 
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to use the estimated prior probability of class 0 as the cut point, ܿ. 

Nonetheless, the general practice, which we equally adopted here is 

to use ܿ ൌ 0.5  (Efron,1975; O'Gorman & Woolson, 1991; Pohar et al, 

2004; etc.). The close connection between logistic discriminant (LD) 

analysis and linear discriminant analysis (LDA) has been equally 

reported as a factor that favours the choice of 0.5 cut-point in logistic 

discriminant analysis (Efron,1975; Hosmer & Lemeshow, 1989). 

If the class conditional density of ࢞ given ܻ, ݌ሺݕ|࢞ሻ, ݕ ൌ 0,1, is 

multivariate Gaussian with mean ߤ௬ and constant variance-

covariance matrix Σ, i.e., ݕ|࢞ ~ ܰሺߤ௬, Σሻ, then, with known class prior 

probabilities ̂݌௬, the posterior probability of ܻ given ݌ ,࢞ሺ࢞|ݕሻ, is 

provided by Bayes theorem as ݌ሺ࢞|ݕሻ ൌ ௣ሺ௬ሻ௣ሺ௫|௬ሻ
௣ሺ௫ሻ

. With known class 

priors ݌ሺ1ሻ ൌ ሺ0ሻ݌ ଵ and̂݌ ൌ ݕ ଴ of the subjects’ groupŝ݌ א ሼ0,1ሽ, the 

logarithm of the ratio ௣ሺଵ|࢞ሻ
௣ሺ଴|࢞ሻ

 is given by                         

݈݊ ቄ௣ሺ௒ୀଵ|࢞ሻ
௣ሺ௒ୀ଴|࢞ሻ

ቅ ൌ ݈݊ ቄ௣ොభ௣ሺ࢞|௒ୀଵሻ
௣ොబ௣ሺ࢞|௒ୀ଴ሻ

ቅ. This implies that, 

                 ݈݊ ቄ௣ሺ௒ୀଵ|࢞ሻ
௣ሺ௒ୀ଴|࢞ሻ

ቅ ൌ  ݈݊ ቐ

೛ෝభ

ሺమഏሻ
೜
మ|ಂ|

భ
మ

௘௫௣ቂିభ
మሺି࢞ఓభሻ೅ஊషభሺି࢞ఓభሻቃ

೛ෝబ

ሺమഏሻ
೜
మ|ಂ|

భ
మ

௘௫௣ቂିభ
మሺି࢞ఓబሻ೅ஊషభሺି࢞ఓబሻቃ

ቑ              (2.3.7)  

which reduces to  

 ݈݊ ቄ௣ሺ௒ୀଵ|࢞ሻ
௣ሺ௒ୀ଴|࢞ሻ

ቅ ൌ ଵߤΣିଵሺ࢞ െ ଴ሻߤ െ  ଵ
ଶ

ଵߤ
்Σିଵߤଵ ൅  ଵ

ଶ
଴ߤ

்Σିଵߤ଴ ൅  ݈݊ ௣ොభ
௣ොబ

       (2.3.8) 

  ՜                    ݈݊ ቄ௣ሺ௒ୀଵ|࢞ሻ
௣ሺ௒ୀ଴|࢞ሻ

ቅ ؆  (2.3.9)          ࢼ࢞

This is the same as the logit model given in (2.3.4).  

The procedure (2.3.7) through (2.3.9) simply provides alternative 

way of constructing logistic discriminant (LD) function especially 

when predictor vector ࢞ has multivariate Gaussian density. 
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However, it can be easily shown (Cornfield, 1962; Lachenbruch, 

1975; Hosmer & Lemeshow, 1989) that the estimates of the ݇ 

parameters ࢼ ൌ ሺߚ૚, … , -of the model (2.3.9) can be obtained non ࢀሻ࢑ߚ

iteratively from LD functions in (2.3.8) as follows:   

መ૚ߚ    ൌ ݈݊ ௣ොభ
௣ොబ

െ 0.5ሺߤଵ െ ଵߤ଴ሻ்Σିଵሺߤ ൅  ଴ሻ   (2.3.10)ߤ

෡௞ିଵࢼ            ൌ ሺߤଵ െ       ଴ሻ்Σିଵ                              (2.3.11)ߤ

where ߚመ૚ is the estimate of the constant parameter (intercept) of 

logistic regression model (2.3.3) and ࢼ෡௞ିଵ ൌ ሺߚመ૛, … ,  ሻ are the࢑መߚ

estimates of the remaining ݇ െ 1 parameters. All the parameters are 

obtained by substituting the estimators of Σ and ߤ௬, ݕ ൌ 0,1, into   

(2.3.10) and (2.3.11). Thus, for subject group ܻ, ߤ௬ is estimated by 

the mean of predictors ܺ௬௝, ݆ ൌ 1, 2, … , ݇, as ̂ߤ௬ ൌ തܺ௬௝ and covariance Σ 

is estimated by the estimate of the pooled sample variance-

covariance defined by subjects group ܻ  as 

    Σ෠ ൌ ሺ௡బିଵሻࡿబାሺ௡భିଵሻࡿభ
௡బା௡భିଵ

            (2.3.12) 

where ࡿ௬ is the ݇ ൈ ݇ unbiased estimator of the sub-groups variance-

covariances computed for each subjects’ groups as defined by ܻ. 

The discriminant function estimators given above may be bias, 

especially when normality condition does not hold for the predictors. 

It may however, be adopted for preliminary analysis after which the 

final parameter estimates can be obtained using a more robust 

maximum likelihood estimation (MLE) as implemented in Newton-

Raphson algorithm or any other suitable iterative procedure as 

earlier discussed. 
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2.4 The ࢑-SS set-up 

2.4.1 The need for ࢑-SS technique  

The new method proposed in this thesis is a comprehensive but 

flexible dual-purpose gene selection technique which simultaneously 

performs dimension reduction, informative genes selection and 

accurate classification of biological samples into their respective 

tumour sub-classes in any given high-dimensional microarray data. 

This new procedure is analogous to the non-linear stepwise variable 

selection technique under the classical logistic regression settings. 

The prime objective is to develop a robust variable selection 

approach that will provide flexible but efficient models that are 

suitable for proper prediction of biological samples in any given 

genomic data sets. Our procedure would select the most informative 

predictors (genes) from the cloud of several available thousand of 

genes based on some fixed decision rules. 

The variable selection procedure of the stepwise logistic regression 

(SLR) for instance, as implemented in some statistical packages [e.g. 

SAS® (SAS institute Inc., 1995), SPSS 12.0 (Chicago, IL), STATA/SE 

8.0 (Stata Corporation, Texas, USA)] is purely based on two 

parameters: SLENTRY, ݌௘ which is the significant level specified for 

any variable to enter the model and SLSTAY, ݌௦ which is the 

significant level for a variable selected to remain in the model. A 

major flaw of the SLR method is that the values of both ݌௘ and ݌௦ are 

determined arbitrarily by the investigator the choice of which may, 

of course, vary from one person to another. Hence, the whole 

procedure under this set-up is not too far from a trial and error 

exercise. Nonetheless, the SLR approach has been successfully 
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adopted in many studies (Stevens et al, 1992; Seligman & Pullinger, 

1996; Valenzuela et al, 1997; etc.) and is still in use till date. 

Apart from SLR method, several other approaches have been 

proposed purposely to shrink the number of predictors in any 

regression set-up. For instance, a shrinkage method, the least 

absolute shrinkage and selection operator (LASSO), proposed by 

Robert Tibshirani (1996) uses quadratic programming technique to 

minimize the residual sum of squares subject to the sum of absolute 

value of the coefficients being less than a predetermined constant. In 

other words, LASSO method provides the estimate of parameters 

෡ࢼ ൌ arg ݉݅݊ ቄ∑ ൫ ௜ܻ െ ∑ ௝ߚ ௜ܺ௝
௤
௝ୀଵ ൯ଶ௡

௜ୀଵ ቅ subject to the constraint that 

∑ ௝|௤ߚ|
௝ୀଵ ൑  the tuning parameter, is usually ,ݐ Here, the value of .ݐ

fixed by the user, which, like the choice of ݌௘ and ݌௦ under the SLR 

method, might vary from one investigator to another. Similar 

arguments hold for the use of non-negative Garrote method due to 

Breiman (1993) for features selection. 

Another method reported in Zucknick et al (2008) is the univariate 

filtering method that equally adapts the logistic regression approach 

concept in its implementation. In this approach, the logit model is 

fitted to each of the gene variable ௝ܺ, ݆ ൌ 1, … ,  separately and the ,ݍ

gene effects, ఉ෡ೕ

௦.௘ሺఉ෡ೕሻ
 is computed where ߚመ௝ and ݏ. ݁ሺߚመ௝ሻ is the estimated 

regression coefficient and its standard error for gene ௝ܺ respectively. 

The best set of כݍ genes, כݍ ൏  with the largest absolute effects , ݍ
|ఉ෡ೕ|

௦.௘ሺఉ෡ೕሻ
 are then selected using arbitrarily chosen cut-point ߚመ଴. 

It has been established in many studies that the use of the default 

significant level ߙ ൌ 0.05 or less for ݌௘ in the implementation of SLR 

method may yield a highly sensitive selection criteria that might 
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result into the exclusion of some of the important variables from the 

model (Bendel & Afifi, 1977; Hosmer & Lemeshow, 1989; Shtatland 

et al 2000, etc). On the other hand, if the value of  ݌௘ is set too high, 

the resulting model might be loaded with noise due to the presence 

of both needed and unwanted variables in the model (Hosmer & 

Lemeshow, 1989). Therefore, there is need to strike a balance 

between the selection of not too sensitive and not too conservative 

values for both ݌௘ and ݌௦. 

In an attempt to solve this problem, Hosmer & Lemeshow (1989) 

advocated the choice of ݌௘ (i.e. ߙ) between 0.15 to 0.25 and further 

suggested a choice of ݌௦ ൐  ௘ within this݌ ௘ for any given value of݌ 

range. However, this submission sharply contradicts what was 

proposed by SAS institute Inc., 1995, page 51, in which a value 

relatively smaller than 0.05 is suggested for ݌௘. Specifically, it was 

remarked that the choice of ݌௘ ൏ 0.05 could be a better choice if the 

sole objective of performing variable selection is to describe and 

interpret the data under investigation. These differing positions 

notwithstanding, what is common to all the submissions is that the 

choice of  ݌௘ and ݌௦ are highly subjective and are at the discretion of 

the investigator. 

Shtatland et al (2000) proposed alternative approach; output delivery 

system (ODS) to the SLR implementation. Their approach uses both 

Akaike information criterion (AIC), Akaike (1974, 1983) and 

Schwarz information criterion (SIC), Schwarz (1978) for variable 

selection. Here again, any arbitrary values very close to 1 are 

suggested for both ݌௘ and ݌௦ in the implementation of their method. 

 Basically, two main objectives are desirable while performing 

variable selections which might apparently result to the 
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development of two different models in any given regression 

problems. One might be to develop a parsimonious model (with fewer 

predictors) that best describes and interprets the data at hand. To 

select variables for this kind of model, the values of ݌௘ to chose may 

range from 0.001 to 0.05, Shtatland et al (2000), as equally 

recommended by SAS institute Inc., 1995. Secondly, another 

objective might be to have a robust model that best predicts the 

response class.  For this type of model, the use of default significant 

level ߙ ൌ 0.05 or less for ݌௘ might not be suitable, the reason why 

any value between 0.15 and 0.25 was suggested for ߙ (݌௘) by Hosmer 

& Lemeshow (1989). Considering the above two possible models, it is 

clear that more variables are likely to be selected under the latter 

than the former. This clearly suggests that, a single regression 

model might not be capable enough to provide both the best fit and 

best prediction of the response class at the same time. A good 

regression model that fits (describes) a data very well might poorly 

predict the response class (Hosmer & Lemeshow, 1989).  

In any microarray studies however, two important objectives are 

always intended. One is to identify and select the few marker genes 

whose expression patterns are related to the various cancer tumour 

status of the biological subjects under study. In other words, it is 

mostly intended to identify those genes whose expression levels 

could, for instance, accelerate the discovery of key biological 

processes for proper therapeutic measures among other things. The 

next is to correctly classify the subjects into their respective 

biological groups (e.g. cancerous or normal) based on the expression 

levels of the marker genes already identified and selected. This 

usually serves as a measure to screen the mRNA samples for early 

detection of cancer or other tumour types before it metastasize to 
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other neighbouring cells. The major tasks in this thesis are therefore 

targeted at achieving these two cardinal objectives by  

i) identifying and selecting the most relevant marker 

genes that are related to the biological properties of the 

tissue samples. 

ii) classifying the RNA samples properly into their 

respective tumour classes based on the selected marker 

genes. 

Therefore, the sequential variable selection procedure we proposed 

here is basically aimed at building models not just for data 

description or interpretation but also for accurate prediction of 

tumour conditions of the biological samples. Our new method shall 

strive to optimize both the variable selection and response class 

prediction processes by ensuring that the criteria set for achieving 

the best optimal prediction model are not subjectively imposed by 

the investigator as common to most of the existing methods.  

2.4.2 The ࢑-SS set-up in details 

Let the ݍ-dimensional vector ࢄ ൌ ൫ ଵܺ, … , ܺ௤൯, ࢄ ߳ Ը௡ൈ௤ of measured ݍ 

genes on ݊ biological samples with two outcome groups ܻ א ሼ0,1ሽ be 

as defined under Section 2.1. Our task in this thesis is to develop a  

k-sequential selection and prediction (k-SS) rule ߮ሺ࢞ሻ that would 

select the most informative ݇ genes subset ࢞ ൌ ሺ ଵܺ, … , ܺ௞ሻ from ࢄ, 

݇ ൏  to predict the binary response classes ሼ0,1ሽ of any future ,ݍ

(external) subjects ݊כ ב ሼ݊ሽ 

As discussed in Chapter one, Section 1.4.2, a preliminary selection of 

כݍ ,genes כݍ ൏  may be necessary to filter out the irrelevant genes ,ݍ 

from the whole ݍ genes to a manageable size number, כݍ before the 
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final selection of the most informative ݇ marker genes are made for 

classification purposes. This concept shall be revisited in Section 2.5 

where we propose a new preliminary gene selection procedure based 

on cross-validated area under the receiver operating characteristics 

curve (CVAUC). However, both כݍ and ݍ may be used 

interchangeably in this thesis to mean a large set of genes from 

which the selection of ݇ informative marker genes is desirable.  

We begin by dividing randomly, the original sample size ݊ into 

training set ்݊ோ and test set ்݊ா as described earlier. This is followed 

by fitting univariate generalized linear models (GLMs) ݈݃݉ଵ, … , ݈݃݉௤ 

with logit link (i.e. ݈ݐ݅݃݋൫ߨሺ ௝ܺሻ ൯ ൌ ߙ ൅ ݆ ,௝ܺ௝ߚ ൌ 1, … ,  on each of the (ݍ

 genes (variables) using the training set ்݊ோ and constructing ݍ

classification rules ߮൫ ௝ܺ൯ ൌ หݕ൫̂݌ ௬ݔܽ݉݃ݎܽ  ௝ܺ൯ for each gene ௝ܺ, 

݆ ൌ 1, … ,  and predict the two class labels ሼ0,1ሽ of the (external) test ,ݍ

sample ்݊ா via the following classification scheme; 

                        ො߮௜൫ ௝ܺ൯ ൌ ቊ
1,   if ̂݌௜൫1ห ௝ܺ൯  ൒  0.5 
0,   if ̂݌௜൫0ห ௝ܺ൯  ൏  0.5

, ݅ ൌ 1,2, … , ்݊ா.      (2.4.0) 

For each of the true response class ݕ௜, ݅ ൌ 1, … , ்݊ா, of the test sample 

predicted by ො߮௜൫ ௝ܺ൯, ݆ ൌ 1, … ,  the risk (error) of misclassifying any ,ݍ

subject is estimated through the loss function ܮ൛߮௜൫ ௝ܺ൯,  ௜ܻൟ. We shall 

digress a little here to provide a brief discussion on the prediction 

error rate’s estimators. 

The true error of misclassification by rule ߮൫݆ܺ൯ is usually defined by 

௝ߴ  ൌ ൛߮௜൫ܮ௒~Ψൣࢄܧ ௝ܺ൯,  ௜ܻൟ൧   

                           ՜ ௝ߴ   ൌ ௒~Ψࢄܧ ቂܫ൛ఝ೔൫௑ೕ൯ஷ ௒೔ൟቃ,  0 ൑ ௝ߴ ൑ 1,              (2.4.1)                         
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where ܫሼ.ሽ is an indicator function with a value of 1 if its argument is 

true and 0 if otherwise. Since the joint distribution, Ψ of ࢞ and ܻ in 

(2.4.1) is not known, the true error (conditioning on both ࢞ and ܻ) 

cannot be determined directly. The usual practice is to estimate ߴ௝ by 

its empirical risk using observed finite independent sample, in this 

case, the test sample ்݊ா. This is computed by   

መ௝ߴ                                          ൌ ଵ
௡೅ಶ

∑ ቂܫ൛ఝෝ೔൫௑ೕ൯ஷ ௒೔ൟቃ
௡೅ಶ
௜ୀଵ                (2.4.2) 

and it measures the proportion of the subjects in the test sample 

that are incorrectly classified by classification rule ߮௝൫ ௝ܺ൯ (Efron and 

Tibshirani, 1997). We shall therefore, call ߴመ௝ the misclassification 

error rate (MER) and in a later section, we are going to present two 

other variants of the MER’s estimators; the brier score which 

considers the discrepancies between the true class labels and the 

estimated conditional (posterior) probabilities ̂݌ሺ࢞|ݕሻ, ݕ ൌ 0, 1, of 

subjects belonging to that class and the logarithmic scores which 

equally uses ݈݃݋ሼ̂݌ሺ࢞|ݕሻሽ in its error rate estimation. 

Generally, the empirical error rate of classification rule ߮ሺ࢞ሻ 

constructed using any subset of measured feature ࢞ is given by  

መߴ         ൌ ଵ
௡೅ಶ

∑ ሻஷ ௒೔ሽ൧࢞ሼఝෝ೔ሺܫൣ
௡೅ಶ
௜ୀଵ             (2.4.3) 

 where indicator function ܫሼ.ሽ is as defined in (2.4.1), 0 ൑ መߴ ൑ 1, 

ො߮௜ሺ࢞ሻ, ௜ܻ א ሼ0,1ሽ. 

Using the MER concepts and its estimator as presented above, the 

response class predictions by discriminant rules ߮௜ሺ ଵܺሻ, … , ߮௜ሺܺ௤ሻ 

produced a set of ݍ MERs ߴመଵ, … ,  ,መ௤, one for each predictor (gene) ௝ܺߴ

݆ ൌ 1, … , From each prediction made by ߮௜൫ .ݍ ௝ܺ൯, a 2 ൈ 2 confusion 

matrix, typical of the one given in Table 2.1 can be constructed. The 
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confusion matrix cross-classifies the predicted response class 

(predicted by classification rule ߮ሺ࢞ሻ) by the observed true class 

labels, the confusion being in the off-diagonal cells. This matrix 

enables us to see at a glance, in the main and off-diagonals, the 

number of subjects that are correctly and incorrectly classified by 

rule ߮ሺ࢞ሻ respectively. From this matrix, several performance 

indices can be estimated to assess the goodness of the classifier. For 

instance, from Table 2.1, MER can be simply estimated by ሺܾ ൅

ܿሻ/ሺܽ ൅ ܾ ൅ ܿ ൅ ݀ሻ.  

                       True Class (T)  

P
re

di
ct

ed
 

cl
as

s 
(P

) b
y 

࣐
ሺ ࢄ

ሻ  

 1 0 Marginal 
Total 

1 ܽ ܾ ܽ + ܾ 

0 ܿ ݀ ܿ + ݀ 

 Marginal 
Total ܽ + ܿ ܾ + ݀ ܽ + ܾ + ܿ + ݀ 

 

Table 2.1: A typical confusion matrix showing the cross-classification of subjects by their true class 
labels T and predicted class labels (P) by classification rule ߮ሺ࢞ሻ 

A number of re-sampling techniques are commonly adopted in the 

literature to eliminate bias from the estimated prediction error 

rates. This is termed cross-validation (CV) and it starts by drawing 

randomly, sub-samples of the training set ்݊ோ from the original ݊ 

samples ܴ number of times (with or without replacement). The 

classification rules are constructed on ்݊ோ while the response 

categories of the remaining test samples ்݊ா are predicted using the 

constructed classification rules for each successive sample drawn 

over ܴ repetitions. A set of ܴ MERs ߴመଵ௝, … ,  መோ௝, are then computed forߴ

each gene variable ௝ܺ after which the ݍ average MERs ߴҧመଵ, ,ҧመଶߴ … ,  ҧመ௤ߴ

are estimated for all the ݍ gene variables ଵܺ, … , ܺ௤ respectively. The 

average MERs ߴҧመ௝, ݆ ൌ 1, … ,  now become the cross-validated MERs ݍ

and their estimate are expected to be more efficient than the MERs 
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 መ௝ which are estimated based on a single sample. A typical table ofߴ

matrix of the MERs ߴመ௥௝ provided by classifier ߮ሺ࢞ሻ at different 

repetitions for each gene ௝ܺ is presented in Table 2.2. Detail 

discussions on various cross-validation methods are provided in 

Section 2.7. 

Repetitions 

Genes ࢐ࢄ 

ଵܺ ܺଶ … ܺ௤ 
Misclassification error rates (MERs) ߴመ௥௝ 

 መଵ௤ߴ … መଵଶߴ መଵଵߴ 1

 መଶ௤ߴ … መଶଶߴ መଶଵߴ 2

 ڭ … ڭ ڭ ڭ

 መோ௤ߴ … መோଶߴ መோଵߴ ࡾ

Mean MERs ߴҧመଵ ߴҧመଶ … ߴҧመ௤ 
 

Table 2.2: A typical table of matrix of misclassification error rates (MERs) provided by classification 
rule ߮ሺ࢞ሻ for each gene ௝ܺ at different repetitions. 

At this stage, all the ݍ gene variables might be ordered in order of 

their prediction performance based on their respective average MER 

values. Suppose we allow the sequence ߴҧመሺଵሻ, ,ҧመሺଶሻߴ  … ,  ҧመሺ௤ሻ be theߴ

observed order of the above observed ݍ average MERs satisfying the 

condition that ߴҧመሺଵሻ ൏ ҧመሺଶሻߴ  ൏ ڮ ൏  ҧመሺ௤ሻ. Based on this ordered averageߴ 

MERs we let the corresponding order of all the original ݍ genes be 

given by ሺܺଵሻ, ሺܺଶሻ, … , ሺܺ௤ሻ. By this representation, gene ሺܺଵሻ with 

estimated mean MER  ߴҧመሺଵሻ becomes the best gene followed by the 

second best ሺܺଶሻ with respective mean MER estimate ߴҧመሺଶሻ and so on. 

However, if we define ܺ௠భ ൌ ሺܺଵሻ and ߴҧመሺଵሻ ൌ   ҧመ௠భ, then  superscriptߴ

݉ଵ would indicate that gene ܺ௠భ is the first gene with minimum 

average MER contribution to be selected into our prediction model. 

Thus, ߴҧመሺଵሻ ൌ ҧመ௠భߴ ൌ ݉݅݊ ቀ ,ҧመሺଵሻߴ ,ҧመሺଶሻߴ … ,  .ҧመሺ௤ሻቁߴ

Under the conventional stepwise variable selection procedure, the 

importance of any variable to enter the model is judged by an 
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arbitrarily selected implied significance level ݌௘ against which the 

respective p-values of the estimated likelihood ratio statistics are 

compared. Under this new proposal however, individual genes and 

their combinations are judged to be suitable for inclusion into the 

model based on their predictive strength of the response classes. 

This we simply assessed through their estimated MER values. By 

this criterion, the marginal contribution of each selected gene at 

reducing the prediction error rate of the successive models is 

examined. If this marginal contribution is significant enough based 

on some test criteria (to be developed), the selected gene is retained 

in the model, but if otherwise, it is not selected. The significant 

level(s) ߙ at which the best set of genes are selected is determined 

through internal cross-validation and is not to be subjectively fixed 

by the investigator. At the end of the whole exercise, the 

combination of genes that yielded the minimum overall estimated 

average MER value among the family of all possible gene 

combinations in the data is chosen as the best by our method.  

In a nutshell, our sequential selection procedure begins at step 0 

with the selection of gene ܺ௠భ, being the gene that yielded the 

minimum mean MER ߴҧመ௠భ among all the ݍ genes. To determine 

whether any of the remaining ݍ െ 1 genes is important once the gene 

ܺ௠భ is in the model, we construct ݍ െ 1 classification rules ߮௠భሺమሻሺ࢞ሻ, 

߮௠భሺయሻሺ࢞ሻ, … , ߮௠భሺ೜ሻሺ࢞ሻ on the respective gene pairs ܺ௠భ ሺܺଶሻ, ܺ௠భ ሺܺଷሻ, 

… , ܺ௠భ ሺܺ௤ሻ according to the same scheme given in (2.4.0). Based on 

the constructed ݍ െ 1 prediction rules, the response classes of the 

test sample ்݊ா are predicted and with the use of suitable cross-

validation technique the respective average MERs 

,ҧመ௠భሺమሻߴ ,ҧመ௠భሺయሻߴ … ,   .ҧመ௠భሺ೜ሻ are computedߴ
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Let ܺ௠భܺ௠మ א ൛ܺ௠భ ሺܺଶሻ, ܺ௠భ ሺܺଷሻ, … , ܺ௠భ ሺܺ௤ሻൟ be the gene pair that 

yielded the minimum average MER defined by 

ҧመ௠భ௠మߴ ൌ ݉݅݊ ቀ ҧመ௠భሺమሻߴ , ,ҧመ௠భሺయሻߴ … ,  ҧመ௠భሺ೜ሻ ቁ.  Therefore, at step 1, gene ܺ௠మߴ

is chosen for possible consideration into our prediction model for 

being the gene that contributed to the estimated minimum mean 

MER ߴҧመ௠భ௠మ out of the remaining ݍ െ 1 genes. Like ݉ଵ, subscript ݉ଶ 

in the above representations also indicates that gene ܺ௠మ is the 

second gene, with minimum average MER contribution, desirable for 

consideration into our prediction model. Thus, gene ܺ௠మ becomes the 

next best gene candidate suitable for selection into the model 

provided it satisfies certain test criteria.  

Without loss of generality therefore, for any set of sequentially 

selected genes ܺ௠భܺ௠మ … ܺ௠ೕశభ, the last gene ܺ௠ೕశభ is the next best 

ሺ݆ ൅ 1ሻ௧௛ gene to be considered into the model among all the 

remaining ݍ െ ݆ genes at the ݆௧௛ selection step. Therefore, gene ܺ௠ೕశభ 

is the gene that has the highest contribution at reducing the average 

prediction error rate of the preceding model that uses ݆ set of genes 

ܺ௠భܺ௠మ … ܺ௠ೕ. This gene selection procedure shall continue for all 

the possible combination of genes for which their marginal 

contributions into the successive model(s) are significant as 

established by our test criteria. Further gene selection processes 

only terminate when none of the remaining (left-out) genes is 

capable at improving the prediction strength of the current model. 

We presented in Table 2.3, the schematic representation of the MER 

computations required while searching for the second best gene, ܺ௠మ 

to be included with ܺ௠భ in the classification model. 
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Test 
sample  

Repetitions 
 (ࡾ)

Sequence of genes selection 

ܺ௠భ ܺ௠భ ሺܺଶሻ ܺ௠భ ሺܺଷሻ … ܺ௠భ ሺܺ௤ሻ 
Misclassification Error rates (MERs) 

መߴ 1 ࡱࢀ࢔
ଵ
௠భ ߴመ

ଵ
௠భሺమሻ ߴመ

ଵ
௠భሺయሻ … ߴመ

ଵ
௠భሺ೜ሻ 

መߴ 2 ࡱࢀ࢔
ଶ
௠భ ߴመ

ଶ
௠భሺమሻ ߴመ

ଶ
௠భሺయሻ … ߴመ

ଶ
௠భሺ೜ሻ 

መߴ 3 ࡱࢀ࢔
ଷ
௠భ ߴመ

ଷ
௠భሺమሻ ߴመ

ଷ
௠భሺయሻ … ߴመ

ଷ
௠భሺ೜ሻ 

 ڭ … ڭ ڭ ڭ ڭ ڭ

መߴ ܴ ࡱࢀ࢔
ோ
௠భ ߴመ

ோ
௠భሺమሻ ߴመ

ோ
௠భሺయሻ … ߴመ

ோ
௠భሺ೜ሻ 

Average MERs ߴҧመ௠భ ߴҧመ௠భሺమሻ ߴҧመ௠భሺయሻ … ߴҧመ௠భሺ೜ሻ 
 

Table 2.3: The schematic representation of the MER computations required while searching for the 
second best gene to be added to the first selected best gene ܺ௠భ into classification the model. 

The next step is to determine the significance of the marginal 

contribution of gene ܺ௠మ into the new classification rule ߮ሺܺ௠భ, ܺ௠మሻ 

(later defined as ߮௠భ,௠మሺ࢞ሻ) with an average MER of ߴҧመ௠భ௠మ over the 

previous rule ߮ሺܺ௠భሻ (later defined as ߮௠భሺ࢞ሻ) with an average MER 

performance of ߴҧመ௠భ based on some test criteria (to be developed). If 

this marginal contribution is significant as established by such test 

criteria, then gene ܺ௠మ stays in the model and the search for the 

next best gene, say gene ܺ௠య, to be added with genes ܺ௠భ, ܺ௠మ in the 

model would begin.  

The marginal improvement of the current classification rule 

߮௠భ,௠మሺ࢞ሻ over the preceding rule ߮௠భሺ࢞ሻ is determined by the 

difference between ߴҧመ௠భ,௠మ and ߴҧመ௠భ, their respective average MERs. 

However, two forms of such mean MER differences exist which 

eventually returned similar results as would be established later. 

These are denoted by ߜመଵభ ൌ ҧመ௠భߴ െ መଵమߜ ҧመ௠భ,௠మ andߴ ൌ ҧመ௠భ,௠మߴ െ  .ҧመ௠భߴ

Appropriate test procedures shall be constructed for the two 

formulations in what follows. 

Let the population mean MERs of the estimated empirical mean 

MERs ߴҧመ௠భ and ߴҧመ௠భ,௠మ be represented by ߤణ
௠భ and ߤణ

௠భ௠మ respectively. 
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Then, the following one directional hypothesis of difference are 

desirable; 

ణߤ : ଴ଵଵܪ
௠భ െ ణߤ

௠భ,௠మ ൑ 0  vs.  ܪ௔ଵଵ : ణߤ
௠భ െ ణߤ

௠భ,௠మ ൐ 0 

՜              ܪ଴ଵଵ : ଵభߜ ൑ 0 vs. ܪ௔ଵଵ : ଵభߜ ൐ 0 

or           ܪ଴ଵଶ : ߤణ
௠భ,௠మ െ ణߤ

௠భ ൒  0 vs.  ܪ௔ଵଶ : ణߤ
௠భ,௠మ െ ణߤ

௠భ ൏ 0 

՜           ܪ଴ଵଶ : ଵమߜ ൒ 0 vs. ܪ௔ଵଶ: ଵమߜ ൏ 0 

where ߜଵభ ൌ ణߤ
௠భ െ ణߤ

௠భ,௠మ and ߜଵమ ൌ ణߤ
௠భ,௠మ െ ణߤ

௠భ with their respective 

unbiased estimators given by ߜመଵభ ൌ ҧመ௠భߴ െ መଵమߜ ҧመ௠భ,௠మ andߴ ൌ ҧመ௠భ,௠మߴ െ

 ҧመ௠భ. This hypotheses sets shall be used later to illustrate the basicߴ

steps involved in the sequential gene selection method we proposed 

in this thesis. But before we go into that, it is necessary to establish 

the sampling distribution of ߴҧመ௠భ (or more generally ߴҧመ௠భ,௠మ,…,௠ೕ) and 

that of ߜመଵభ (or ߜመ௝భ) under some special cross-validation techniques as 

used in the construction of our test procedure for testing (2.4.4). The 

sampling distribution of ߜመଵమ (or ߜመ௝మ) takes the same form as that of 

 .መଵభߜ

Let the class label ௜ܻ଴ א ሼ0,1ሽ of all the subjects in the test sample ்݊ா 

be as earlier defined in (2.1.2). It then follows that classification rule 

߮௠భሺ࢞ሻ, for instance, can correctly (if ߮௠భሺ࢞ሻ ൌ ௜ܻ଴) or incorrectly (if 

߮௠భሺ࢞ሻ ് ௜ܻ଴) classify any subject in sample ்݊ா as being a class 0 or 

1 subject. For those cases for which ߮௠భሺ࢞ሻ ് ௜ܻ଴, let the rule ߮௠భሺ࢞ሻ 

has a chance ߴ௠భ, 0 ൑ ௠భߴ ൑ 1, of misclassifying any subject in the 

population containing test sample ்݊ா into either being a class 0 or 1 

subject. It then follows that the classification function ߮௠భሺ࢞ሻ is a 

random variable having a Bernoulli process ߴ௠భ. The probability 

mass function of ߮௠భሺ࢞ሻ for a single subject classification is given by  

(2.4.4) 
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ሻ࢞ሺ߮௠భሺ݌     ൌ ߮௠భ|ߴ௠భሻ ൌ  ሺߴ௠భሻఝ೘భ ሺ1 െ ௠భሻଵିఝ೘భߴ ,  ߮௠భ ൌ 0,1.  (2.4.5) 

The distribution of the sum, Φሺ࢞ሻ ൌ ∑ ௜߮
௠భ௡೅ಶ

௜ୀଵ ሺ࢞ሻ over the entire test 

sample ்݊ா is given by 

ሻ࢞ሺΦሺ݌    ൌ Φ|ߴ௠భሻ ൌ  ൫௡೅ಶ
஍ ൯ሺߴ௠భሻ஍ሺ1 െ ௠భሻ௡೅ಶ ି ஍, Φߴ ൌ 1, … , ்݊ா.(2.4.6) 

 The unbiased estimator of ߴ௠భ is ߴመ௠ଵ ൌ
∑ ఝ೔

೘భ೙೅ಶ
೔సభ ሺ࢞ሻ

௡೅ಶ
 which simply 

equals to the empirical error rate, as given in (2.4.3), of wrongly 

classifying any subject in the test sample ்݊ா by classification rule 

߮௠భሺ࢞ሻ but presently using only one gene ܺ௠భ. From sampling 

distribution of ߴመ௠భ it follows that 

൫ܧ                                      መ௠భ൯ߴ ൌ
∑ ாሾఝෝ೔

೘భ೙೅ಶ
೔సభ ሺ࢞ሻሿ

௡೅ಶ
ൌ          ௠భ                     (2.4.7)ߴ

ଶ൫ߪ                                መ௠భ൯ߴ ൌ
∑ ఙమሾఝෝ೔

೘భ೙೅ಶ
೔సభ ሺ࢞ሻሿ

௡೅ಶ
మ ൌ ణ೘భሺଵ ି ణ೘భሻ

௡೅ಶ
             (2.4.8) 

and by central limit theorem (CLT) we simply have that 

                                          ܼ ൌ ణ෡೘భିா൫ణ෡೘భ൯

ටఙమ൫ణ෡೘భ൯
~ܰሺ0,1ሻ                (2.4.9) 

It should be recalled that when any of the cross-validation 

techniques (MCCV or bootstrap) is used, a set of ܴ estimates of 

average MERs ߴመ
ଵ
௠భ ൌ

∑ ఝෝ೔భ
೘భ೙೅ಶ

೔సభ ሺ࢞ሻ

௡೅ಶ
መߴ  ,

ଶ
௠భ ൌ

∑ ఝෝ೔మ
೘భ೙೅ಶ

೔సభ ሺ࢞ሻ

௡೅ಶ
መߴ , … ,

ோ
௠భ ൌ

∑ ఝෝ೔ೃ
೘భ೙೅ಶ

೔సభ ሺ࢞ሻ

௡೅ಶ
 would be computed, one for each of the classification rules 

߮ଵ
௠భሺ࢞ሻ, ߮ଶ

௠భሺ࢞ሻ, … , ߮ோ
௠భሺ࢞ሻ that were constructed over all the ܴ 

repeatedly drawn random samples of size ்݊ா from the original 

sample size ݊. By this, the response class of a total of ்݊ா ൈ ܴ future 

subjects would be predicted. Hence, the sampling distribution of the 
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mean prediction error rate ߴҧመ௠భ ൌ ଵ
ோ

∑ መ௥ߴ
௠భோ

௥ୀଵ  according to (2.4.7), 

(2.4.8) and (2.4.9) is as follows; 

ܧ                       ቀ ҧመ௠భቁߴ ൌ ଵ
ோ

∑ ൫ܧ መ௥ߴ
௠భ൯ோ

௥ୀଵ ൌ ଵ
ோ

∑ ௥ߴ
௠భோ

௥ୀଵ ൌ ణߤ
௠భ                

  ՜   ܧ ቀ ҧመ௠భቁߴ ൌ ణߤ
௠భ                                      (2.4.10) 

ଶߪ           ቀ ҧመ௠భቁߴ ൌ ଵ
ோమ ∑ ଶ൫ߪ መ௥ߴ

௠భ൯ோ
௥ୀଵ ൌ ଵ

ோమൈ௡೅ಶ
∑ ௥ߴ

௠భሺ1 െ ௥ߴ
௠భሻோ

௥ୀଵ      (2.4.11) 

Also, by CLT we have that 

                                          ҧܼଵ ൌ
ణഥ෡೘భ ି ாቀణഥ෡೘భቁ

ටఙమቀణഥ෡೘భቁ
~ܰሺ0,1ሻ                     (2.4.12) 

Similarly, for the mean misclassification error rate ߴҧመ௠భ,௠మ estimated 

by classification rule ߮௠భ,௠మሺ࢞ሻ using the gene pair ܺ௠భ, ܺ௠మ, we shall 

have that 

                                            E ቀ ҧመ௠భ,௠మቁߴ ൌ ణߤ
௠భ,௠మ                           (2.4.13) 

ଶߪ                          ቀ ҧመ௠భ,௠మቁߴ ൌ ଵ
ோమൈ௡೅ಶ

∑ ௥ߴ
௠భ,௠మሺ1 െ ௥ߴ

௠భ,௠మሻோ
௥ୀଵ       (2.4.14) 

and also that 

                                      ҧܼଶ ൌ
ణഥ෡೘భ,೘మ ି ாቀణഥ෡೘భ,೘మቁ

ටఙమቀణഥ෡೘భ,೘మቁ
~ܰሺ0,1ሻ.                (2.4.15) 

Without loss of generality therefore, the mean prediction error rate 
݆ ,ҧመ௠భ,௠మ,…,௠ೕߴ ൌ 1, 2, … ,  ሻ࢞computed by classification rule ߮௠భ,௠మ,…,௠ೕሺ ,ݍ

using the set of ݆ genes ܺ௠భ, ܺ௠మ, … , ܺ௠ೕ would have the following 

distributional properties; 

                    E ቀ ҧመ௠భ,௠మ,…,௠ೕቁߴ ൌ ణߤ
௠భ,௠మ,…,௠ೕ                    (2.4.16) 
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ଶߪ          ቀ ҧመ௠భ,௠మ,…,௠ೕቁߴ ൌ ଵ
ோమൈ௡೅ಶ

∑ ௥ߴ
௠భ,௠మ,…,௠ೕሺ1 െ ௥ߴ

௠భ,௠మ,…,௠ೕሻோ
௥ୀଵ    (2.4.17)   

and                       ҧܼ௝ ൌ
ణഥ෡೘భ,೘మ,…,೘ೕ ି ாቀణഥ෡೘భ,೘మ,…,೘ೕቁ

ටఙమቀణഥ෡೘భ,೘మ,…,೘ೕቁ
~ܰሺ0,1ሻ.              (2.4.18) 

All the above sampling distributions of the mean MERs work 

perfectly under the MCCV sub-sampling scheme. If the cross-

validation by bootstrapping is to be used, little modification has to be 

effected. We shall only present the sampling distribution of the 

average MER estimates for the bootstrap.632+ scheme (Efron & 

Tibshirani, 1997) as used in this thesis. 

The estimator of the average MER employed by classification rule 

߮௠భ,௠మ,…,௠ೕሺ࢞ሻ using a set of genes ܺ௠భ, ܺ௠మ, … , ܺ௠ೕ according to the 

bootstrap.632+ sub-sampling scheme is given by  

ҧመߴ
௕௢௢௧௦௧௥௔௣
௠భ,௠మ,…,௠ೕ ൌ 0.632 כ ଵ

ோ
∑ መߴ

௥.௧௘௦௧
௠భ,௠మ,…,௠ೕோ

௥ୀଵ ൅ 0.368 כ ଵ
ோ

∑ መߴ
௥.௧௥௔௜௡
௠భ,௠మ,…,௠ೕோ

௥ୀଵ   

From the above estimator, the following results are trivial; 

E ቀ ҧመߴ
௕௢௢௧௦௧௥௔௣
௠భ,௠మ,…,௠ೕቁ ൌ 0.632 כ ଵ

ோ
∑ ௥.௧௘௦௧ߴ

௠భ,௠మ,…,௠ೕோ
௥ୀଵ ൅ 0.368 כ ଵ

ோ
∑ ௥.௧௥௔௜௡ߴ

௠భ,௠మ,…,௠ೕோ
௥ୀଵ      

՜        E ቀ ҧመߴ
௕௢௢௧௦௧௥௔௣
௠భ,௠మ,…,௠ೕቁ ൌ 0.632 כ ణ.௧௘௦௧ߤ

௠భ,௠మ,…,௠ೕ ൅ 0.368 כ ణ.௧௥௔௜௡ߤ
௠భ,௠మ,…,௠ೕ       (2.4.19) 

 Also,  ߪଶ ቀ ҧመߴ
௕௢௢௧௦௧௥௔௣
௠భ,௠మ,…,௠ೕቁ ൌ ሺ0.632ሻଶ כ ଵ

ோమ ∑ ଶ൫ߪ መߴ
௥.௧௘௦௧
௠భ,௠మ,…,௠ೕ൯ோ

௥ୀଵ        

                     ൅ሺ0.368ሻଶ כ ଵ
ோమ ∑ ଶ൫ߪ መߴ

௥.௧௥௔௜௡
௠భ,௠మ,…,௠ೕ൯ோ

௥ୀଵ  

՜ ଶߪ ቀ ҧመߴ
௕௢௢௧௦௧௥௔௣
௠భ,௠మ,…,௠ೕቁ ൌ ሺ0.632ሻଶ כ ଵ

ோమൈ௡೅ಶ
∑ ௥.௧௘௦௧ߴ

௠భ,௠మ,…,௠ೕ൫1 െ ௥.௧௘௦௧ߴ
௠భ,௠మ,…,௠ೕ൯ோ

௥ୀଵ     

                     +ሺ0.368ሻଶ כ ଵ
ோమൈ௡೅ೃ

∑ ௥.௧௥௔௜௡ߴ
௠భ,௠మ,…,௠ೕ൫1 െ ௥.௧௥௔௜௡ߴ

௠భ,௠మ,…,௠ೕ൯ோ
௥ୀଵ  (2.4.20) 

and similarly we have that 

                        ҧܼ௝.௕௢௢௧௦௧௥௔௣ ൌ
ణഥ෡್೚೚೟ೞ೟ೝೌ೛

೘భ,೘మ,…,೘ೕ ି ாቀణഥ෡್೚೚೟ೞ೟ೝೌ೛
೘భ,೘మ,…,೘ೕቁ

ටఙమቀణഥ෡್೚೚೟ೞ೟ೝೌ೛
೘భ,೘మ,…,೘ೕቁ

~ܰሺ0,1ሻ.      (2.4.21) 
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where ்݊ோ ൌ ݊, the bootstrap sample. Further details on 

bootstrap.632+ MER estimator are provided in Section 2.5. 

Now, let us consider the unbiased estimator of δଵభ ൌ ణߤ
௠భ െ ణߤ

௠భ,௠మ 

given by δ෠ଵభ ൌ ҧመ௠భߴ െ  ҧመ௠భ,௠మ as defined under one directionalߴ

hypothesis set (2.4.4). It then follows that 

൫δ෠ଵభ൯ܧ   ൌ ܧ ቀ ҧመ௠భቁߴ െ E ቀ ҧመ௠భ,௠మቁߴ ൌ ణߤ
௠భ െ ణߤ

௠భ,௠మ         (2.4.22) 

and if we consider any possible association between ߴҧመ௠భ and ߴҧመ௠భ,௠మ 

since both of them are estimated using the cross-validated random 

samples ்݊ா ൈ ܴ that are generated from original sample size ݊, 

then, the variance of δ෠ଵభ could be estimated by 

ଶ൫δ෠ଵభ൯ߪ              ൌ ଶߪ ቀ ҧመ௠భቁߴ ൅ ଶߪ ቀ ҧመ௠భ,௠మቁߴ െ ݒ݋2ܿ ቀ ,ҧመ௠భ,௠మߴ  ҧመ௠భቁ  (2.4.23)ߴ

where ܿݒ݋ ቀ ,ҧመ௠భ,௠మߴ  ҧመ௠ଵቁ is the covariance estimate that accounts forߴ

any possible association that may exist between the two empirical 

average MERs. This could be simply estimated by  

ݒ݋ܿ ቀ ,ҧመ௠భ,௠మߴ ҧመ௠ଵቁߴ ൌ ොߩ ቀ ,ҧመ௠భ,௠మߴ ҧመ௠భቁߴ כ ටߪଶ ቀ ҧመ௠భ,௠మቁߴ כ ଶߪ ቀ  ҧመ௠భቁ,   (2.4.25)ߴ

where ߩො ቀ ,ҧመ௠భ,௠మߴ  ҧመ௠భቁ is the Pearson correlation coefficient estimateߴ

between  ߴҧመ௠భ and ߴҧመ௠భ,௠మ. 

If Gaussian distribution is assumed for random variable δ෠ଵభ ൌ ҧመ௠భߴ െ

 ,ҧመ௠భ,௠మ, the difference of two successive MERs estimated at step 1ߴ

then, it follows that δ෠ଵభ~ܰ ቀܧ൫δ෠ଵభ൯,  ଶ൫δ෠ଵభ൯ቁ and consequently, weߪ

shall have that ܼఋ෡భభ ൌ
ఋ෡భభିா൫ఋ෡భభ൯

ටఙమ൫ఋ෡భభ൯
~ܰሺ0,1ሻ.    
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More generally, for any observed pair of empirical average MERs 

݆ ,ҧመ௠భ,௠మ,…,௠ೕశభߴ ҧመ௠భ,௠మ,…,௠ೕ andߴ ൌ 1, 2, … , ݍ െ 1, for which Gaussian 

distribution is assumed for the difference of successive pair of 

average MERs δ෠௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ ҧመ௠భ,௠మ,…,௠ೕశభ or δ෠௝మߴ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ

ܰ~ҧመ௠భ,௠మ,…,௠ೕ, that is,  δ෠௝ೞߴ ቀߜ௝ೞ, ݏ , ଶ൫δ෠௝ೞ൯ቁߪ ൌ 1,2, it is obvious that 

௝భߜ                                  ൌ ൫δ෠௝భ൯ܧ ൌ ణߤ
௠భ,௠మ,…,௠ೕ െ ణߤ

௠భ,௠మ,…,௠ೕశభ     

௝మߜ                           ൌ ൫δ෠௝మ൯ܧ ൌ ణߤ
௠భ,௠మ,…,௠ೕశభ െ ణߤ

௠భ,௠మ,…,௠ೕ             

and with δ෠௝ೞ ൌ േ ቀ ҧመ௠భ,௠మ,…,௠ೕߴ െ ݏ ҧመ௠భ,௠మ,…,௠ೕశభቁ forߴ ൌ 1 or 2, we shall 

have that 

ଶ൫δ෠௝ೞ൯ߪ ൌ ଶߪ ቀ ҧመ௠భ,௠మ,…,௠ೕቁߴ ൅ ଶߪ ቀ  ҧመ௠భ,௠మ,…,௠ೕశభቁߴ

                                േ2ܿݒ݋ ቀ ,ҧመ௠భ,௠మ,…,௠ೕశభߴ  ҧመ௠భ,௠మ,…,௠ೕቁ                  (2.4.27)ߴ

Hence, the assumption that 

                                         ܼஔ෡ೕೞ ൌ
ஔ෡ೕೞିఋೕೞ

ටఙమቀஔ෡ೕೞቁ
~ܰሺ0,1ሻ                         (2.4.28) 

equally holds. 

However, when considering the differences between two successive 

pair of bootstrap MERs, the modifications effected on the bootstrap 

.632+ MER estimator as provided in equations (2.4.19) to (2.4.21) 

need to be incorporated.  

In what follows, we present the procedure for testing the general 

form of the hypothesis set in (2.4.4) over successive ݆ average MER 

differences. Its optimality properties shall also be discussed. The 

(2.4.26) 
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simple case of two gene selection as considered by hypothesis set 

(2.4.4) shall be illustrated at the end of this section. 

Let ܺ௠భ,  ܺ௠భܺ௠మ,  ܺ௠భܺ௠మܺ௠య, … , ܺ௠భܺ௠మܺ௠య … ܺ௠೜ be the sequence 

of selected gene combinations by respective classification rules 

߮௠భሺ࢞ሻ,  ߮௠భ,௠మሺ࢞ሻ,  ߮௠భ,௠మ,௠యሺ࢞ሻ ,…, ߮௠భ,௠మ,௠య,…,௠೜ሺ࢞ሻ  based on their 

marginal contributions at reducing the average MERs in successive 

models with the last classifier using all the ݍ genes. The 

corresponding average cross-validated MERs produced by the above 

sets of gene combinations are given by ߴҧመ௠భ,   ߴҧመ௠భ,௠మ,  ߴҧመ௠భ,௠మ,௠య,

… ,  ҧመ௠భ,௠మ,௠య,…,௠೜ respectively. However, the prediction accuracy ofߴ

each successive classification rule is expected to improve as 

additional genes are selected into the model. Therefore, the following 

order of the estimated mean MERs is expected for all the selection 

steps at which additional genes are selected for prediction: 

ҧመ௠భߴ                      ൐ ҧመ௠భ,௠మߴ ൐ ҧመ௠భ,௠మ,௠యߴ ൐, … , ൐  ҧመ௠భ,௠మ,…,௠೜         (2.4.29)ߴ

If the complete ordered form of average MERs in (2.4.29) is observed 

by our new classifier in any given microarray data set, it simply 

indicates that the best prediction model with the least (optimum) 

average MER ߴҧመ௠భ,௠మ,…,௠೜ uses all the ݍ genes. However, this is not 

practically feasible, because the apparent improvement in prediction 

accuracies due to successive inclusion of additional genes would 

vanish at a particular selection step. When such a step is reached, 

the inclusion of additional gene(s) would either brings no further 

improvement in prediction accuracy into the current model or 

worsen the prediction performance of the previous model. Our 

proposed classification rule here therefore seeks to determine the 

optimal gene selection level at which the best prediction accuracy 

would be achieved. 
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If we consider the difference between the  ݆௧௛ and ሺ݆ ൅ 1ሻ௧௛ average 

MERs as indexed by ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ                     ҧመ௠భ,௠మ,…,௠ೕశభ orߴ

መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ ݆ ,ҧመ௠భ,௠మ,…,௠ೕߴ ൌ 1, … , ݍ െ 1, using the ݍ expected 

order of performance formulated in (2.4.29), then we shall            

have two ways by which the ݍ െ 1 mean MER differences                 

can be formulated. We present these two                         

formulations as ࢾ෡૚ ൌ ቀ ҧመ௠భߴ െ ,ҧመ௠భ,௠మߴ … , ҧመ௠భ,௠మ,…,௠೜షభߴ െ                       ҧመ௠భ,௠మ,…,௠೜ቁ andߴ

෡૛ࢾ ൌ ቀ ҧመ௠భ,௠మߴ െ ,ҧመ௠భߴ … , ҧመ௠భ,௠మ,…,௠೜ߴ െ  ҧመ௠భ,௠మ,…,௠೜షభቁ. The estimators ofߴ

the two vectors ࢾ෡૚ and ࢾ෡૛ are identical except for the sign 

differences. These two formulations are again presented in Table 2.4. 

We shall develop the test procedures that will handle the two 

formulations for our gene selection problem. The two vectors may 

therefore be represented in terms of ߜመ௝ೞ, ݏ ൌ 1,2, as 

෡૚ࢾ                                        ൌ ൫ߜመଵభ, ,መଶభߜ … ,  መሺ௤ିଵሻభ൯                        (2.4.30)ߜ

෡૛ࢾ                               ൌ ൫ߜመଵమ, ,መଶమߜ … ,  መሺ௤ିଵሻమ൯                        (2.4.31)ߜ

Mean MERs ݆ ൌ 1 … ݆ ൌ ݍ െ 1 

መ௝భߜ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ െ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ ߴҧመ௠భ െ ҧመ௠భ,௠మ,௠య,…,௠೜షభߴ … ҧመ௠భ,௠మߴ െ  ҧመ௠భ,௠మ,௠య,…,௠೜ߴ

መ௝మߜ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ െ ഥࣖ෡࢓૚,࢓૛,…,ߴ ࢐࢓ҧመ௠భ,௠మ െ ҧመ௠భ,௠మ,௠య,…,௠೜ߴ … ҧመ௠భߴ െ  ҧመ௠భ,௠మ,௠య,…,௠೜షభߴ
 

Table 2.4: Table of the two average MER difference formulations ߜመ௝ೞ ൌ േሺ ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభሻߴ
for s = 1 or 2 respectively at any two successive  gene selection steps ݆ and ݆ ൅ 1. 

It should be noted that, the expected order of mean MERs in (2.4.29) 

does not necessarily suggest that the respective minimum mean 

MER pair differences as given in (2.4.30) and (2.4.31) would also 

followed that unique order. The implementation of the k sequential 

selection procedure (k-SS) we proposed under the two minimum 

mean MER difference formulations in (2.4.30) and (2.4.31) are 

presented in what follows. 
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 The ݇-SS procedures under the ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభߴ

difference formulations 

For any two successive selection steps ݆ and ݆ ൅ 1, let ߜመ௝భ ൌ

ҧመ௠భ,௠మ,…,௠ೕߴ െ ݆ ,ҧመ௠భ,௠మ,…,௠ೕశభߴ ൌ 1, … , ݍ െ 1 be the vector of minimum 

mean MER differences as presented in (2.4.30). Better 

improvements in successive models are expected as additional genes 

are being selected into the models. Thus, at any two successive 

selection steps ݆ and ݆ ൅ 1 at which additional gene is selected, 

positive values of ߜመ௝భ ’s would be observed in as much as the 

inequality ߴҧመ௠భ,௠మ,…,௠ೕ െ ҧመ௠భ,௠మ,…,௠ೕశభߴ ൐  ଵఈ is maintained for someܥ 

critical value ܥଵఈ of the k-SS test procedure to be determined. This is 

the stage 1 of our sequential selection procedure. Improvement in 

prediction performance as observed at stage 1 shall continue until 

the second selection stage, stage 2, is reached at which the marginal 

improvements in successive models begin to diminish. At this stage, 

the estimated average minimum mean MERs ߴҧመ௠భ,௠మ,…,௠ೕశభ would be 

approaching that of ߴҧመ௠భ,௠మ,…,௠ೕ an indication that the current model 

(with additional one gene) is no more having significant marginal 

gain in terms of better prediction accuracy over the preceding model 

since   ߜመ௝భ ՜ 0.  

At the last selection stage, stage 3, considerable losses in prediction 

accuracy of the succeeding models are expected as more genes are 

selected. This selection stage is characterized by having the 

estimated ߴҧመ௠భ,௠మ,…,௠ೕశభԢݏ ൐  which consequently implies ݏҧመ௠భ,௠మ,…,௠ೕԢߴ

that the ߜመ௝భԢݏ ൏ 0. Nonetheless, the optimal gene selection is 

expected at any of the last two selection stages (stage 2 or stage 3) at 

which further selection of additional genes into the model would 

yield no improvement in model’s prediction performance. The 
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moment such stage is reached, further gene selection stops. The 

schematic illustration of the three basic selection stages as described 

above with respect to the ߜመ௝ೞ formulation is presented in Fig 2.1a for 

ݏ ൌ 1.  

 

 

 

 

 

 

Fig 2.1: The schematic representations of the three stages of gene selection processes by the newly 
proposed  k-sequential selection (݇-SS) method under the two minimum mean MER differences 
.ࢇ ሻ ߜ෡௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ .࢈ ҧመ௠భ,௠మ,…,௠ೕశభ andߴ ሻ ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕ at any two successive geneߴ
selection   steps  ݆ and ݆ ൅ 1, ݆ ൌ 1, … , ݍ െ 1. The  ܿଵఈ   represents   some   critical   value  of   the  k-SS  
                                                                     test procedure. 
 
For any two successive ݆௧௛ and ሺ݆ ൅ 1ሻ௧௛ gene selection steps, the 

appropriate general one directional hypothesis test required to 

justify the selection of additional gene at step ݆ is given by    

ణߤ :଴ଵ௝ܪ         
௠భ,௠మ,…,௠ೕ െ ణߤ

௠భ,௠మ,…,௠ೕశభ ൑ 0   vs. ܪ௔ଵ௝ : ణߤ
௠భ,௠మ,…,௠ೕ െ ణߤ

௠భ,௠మ,…,௠ೕశభ ൐ 0     

              ՜        ܪ଴ଵ௝ : ௝భߜ ൑ 0 vs. ܪ௔ଵ௝ : ௝భߜ ൐ 0, ݆ ൌ 1, … , ݍ െ 1           (2.4.32) 

where ߜ௝భ ൌ ణߤ 
௠భ,௠మ,…,௠ೕ െ ణߤ

௠భ,௠మ,…,௠ೕశభ. Obviously, the unbiased 

estimator of ߜ௝భ is given by ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ  ,ҧመ௠భ,௠మ,…,௠ೕశభ. Howeverߴ

the test hypothesis set (2.4.32) is the general form of the one 

directional hypothesis test (2.4.4).  

If ܪ଴ଵ௝ is accepted in the test hypothesis set (2.4.32) for any 

successive ݆௧௛ and ሺ݆ ൅ 1ሻ௧௛ pair of steps, this is an indication that the 

ሺࢇ. ሻ መ௝భߜ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభߴ

 Stage 3          
መ௝భߜ  ൏  ଵఈ (Loss in prediction powerܥ 

of successive models). Gene selection 
stops 

Stage 2                       
መ௝భߜ   ൎ  ଵఈ (No improvement inܥ

successive models) Gene selection 
stops 

 Stage 1                        
 ଵఈ (Improvement inܥ <መ௝భߜ 

successive models) Gene selection 
continues 

+∞ -∞ 0 

 ሺ࢈. ሻ መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕߴ

Stage 1                        
መ௝మߜ   ൏  ଵఈ (Improvement inܥ 

successive models)  Gene selection 
continues 

Stage 2 
መ௝మߜ ൎ  ଵఈ (No improvement inܥ

successive models) Gene selection 
stops 

Stage 3                      
 ଵఈ (Loss in predictionܥ <መ௝మߜ     

power of successive models). Gene 
selection stops 

+∞ -∞ 0 
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selection of additional one gene into the preceding ݆௧௛ model that 

yielded the mean MER ߴҧመ௠భ,௠మ,…,௠ೕ is no longer necessary because 

i) no further improvement in prediction accuracy is achieved 

from the current ሺ݆ ൅ 1ሻ௧௛ model despite the selection of 

additional one gene into the preceding ݆௧௛ model if 

ҧመ௠భ,௠మ,…,௠ೕߴ ൌ  ҧመ௠భ,௠మ,…,௠ೕశభ and thatߴ

ii) the misclassification error rate of the current ሺ݆ ൅ 1ሻ௧௛ 

model is further worsened if one more gene is included in 

the ݆௧௛ model for which ߴҧመ௠భ,௠మ,…,௠ೕ ൏  ҧመ௠భ,௠మ,…,௠ೕశభ, asߴ

represented by the null hypothesis ܪ଴ଵ௝ where ߴҧመ௠భ,௠మ,…,௠ೕ 

and ߴҧመ௠భ,௠మ,…,௠ೕశభ are the average MER of the ݆௧௛(preceding) 

and ሺ݆ ൅ 1ሻ௧௛ (current) models respectively.   

Therefore in a loose term, at any two successive gene selection     

steps ݆௧௛ and ሺ݆ ൅ 1ሻ௧௛ the performance difference ߴҧመ௠భ,௠మ,…,௠ೕ െ

ҧመ௠భ,௠మ,…,௠ೕశభߴ ൐  ଵఈ need to be satisfied to guarantee the inclusion ofܥ

additional one more gene into the preceding ݆௧௛ model, for some 

critical value ܥଵఈ א  Թ. This literally translates to stopping the 

selection of additional gene at step ݆ if ߴҧመ௠భ,௠మ,…,௠ೕ െ ҧመ௠భ,௠మ,…,௠ೕశభߴ ൑

 .ଵఈܥ

To construct a formal statistical test for hypothesis set (2.4.32), let  

෡૚ࢾܼ
ൌ ቌ

ఋ෡భభିா൫ఋ෡భభ൯

ටఙమ൫ఋ෡భభ൯
,

ఋ෡మభିா൫ఋ෡మభ൯

ටఙమ൫ఋ෡మభ൯
, … ,

ఋ෡ሺ೜షభሻభିாቀఋ෡ሺ೜షభሻభቁ

ටఙమቀఋ෡ሺ೜షభሻభቁ
ቍ   (2.4.33) 

be the vector of test statistics for testing the set of ݆ one directional 

hypothesis in (2.4.32), ݆ ൌ 1, … , ݍ െ 1.  According to (2.4.28), each of 

the test statistics  ܼఋ෡ೕభ ൌ
ఋ෡ೕభିாቀఋ෡ೕభቁ

ටఙమቀఋ෡ೕభቁ
א ෡૚ࢾܼ

 in (2.4.33) is assumed to have 
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a standard Gaussian distribution. It then follows that vector 

෡૚ࢾܼ
ൌ  ቀܼఋ෡భభ , ܼఋ෡మభ , … , ܼఋ෡ሺ೜షభሻభ ቁ of the test statistics could be assumed to 

have a multivariate standard Gaussian distribution with ሺݍ െ 1ሻ ൈ

ሺݍ െ 1ሻ unit variance-covariance matrix Σ. It should be noted that, 

we only assumed Gaussian distribution for ܼఋ෡ೕభ  or ߜመ௝భ, its true 

theoretical distribution (if different from Gaussian) shall be 

determined at a later part of this work.  

Nonetheless, under the null hypothesis ܪ଴ଵ௝,  ܧ൫ߜመ௝భ൯ ൌ ௝భߜ ൌ 0, and by 

our earlier distributional assumption on ߜመ௝ೞ, ݏ ൌ 1,2, we have that 

መ௝భߜ ෧ݐ݌݉ݕݏܽ ܰ ቀ0, መ௝భ൯ቁ and that ܼఋ෡ೕభߜଶ൫ߪ ൌ
ఋ෡ೕభ

ටఙమቀఋ෡ೕభቁ
෧ݐ݌݉ݕݏܽ ܰሺ0,1ሻ. It then 

follows that each successive pair of mean MERs ߴҧመ௠భ,௠మ,…,௠ೕ and 

ҧመ௠భ,௠మ,…,௠ೕశభ computed at ݆௧௛ and ሺ݆ߴ ൅ 1ሻ௧௛ steps could be tested 

sequentially using the test statistic 
ఋ෡ೕభ

ටఙమቀఋ෡ೕభቁ
. Therefore, the decision 

rules for such sequential test could be stated as follows; 

i) Stop the selection of additional one gene into the ݆௧௛ model 

(accept ܪ଴ଵ௝ at the ݆௧௛ step) if 

                                ܼఋ෡ೕభ ൌ
ఋ෡ೕభ

ටఙమቀఋ෡ೕభቁ
൑ ఈܥ

ଵ     (2.4.34) 

ii) Select additional one gene into the ݆௧௛ model (accept ܪ௔ଵ௝ at 

the ݆௧௛ step) if 

                                ܼఋ෡ೕభ ൌ
ఋ෡ೕభ

ටఙమቀఋ෡ೕభቁ
൐ ఈܥ

ଵ     (2.4.35) 

where ܥఈ
ଵ is the critical value of the percentage point of the 

hypothesized distribution (e.g. Gaussian, etc.) of ܼఋ෡ೕభat a significance 

level ߙ to be determined. 
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Equivalently, the above decision rules (2.4.34) and (2.4.35) can be re-

stated respectively as follows; 

iii) Stop the selection of additional one gene into the ݆௧௛ model 

(accept ܪ଴ଵ௝ at the ݆௧௛ step) if 

መ௝భߜ           ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ ҧመ௠భ,௠మ,…,௠ೕశభߴ ൑ ఈܥ
ଵටߪଶ൫ߜመ௝భ൯           (2.4.36) 

iv) Select additional one gene into the ݆௧௛ model (accept ܪ௔ଵ௝ at 

the ݆௧௛ step) if 

መ௝భߜ                    ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ ҧመ௠భ,௠మ,…,௠ೕశభߴ ൐ ఈܥ
ଵටߪଶ൫ߜመ௝భ൯           (2.4.37) 

Using the decision rules (2.4.36) and (2.4.37), the new critical value 

ఈܥ
ଵටߪଶ൫ߜመ௝భ൯ of ߜመ௝భ directly substitutes for ܥଵఈ as used earlier. 

Therefore, at the ݆௧௛ selection step, the decision is to stop the 

selection of additional one gene into the ݆௧௛ model if the inequality in 

(2.4.36) is satisfied while the selection of additional one gene is 

accepted if the inequality (2.4.37) is satisfied.  

An important aspect of this new test procedure is that for any 

hypothesized distribution of our test statistics ܼఋ෡ೕభ  or ߜመ௝భ, the value of 

the significance level ߙ used by the test which consequently 

determines the size of the critical values ܥఈ
ଵ or ܥఈ

ଵටߪଶ൫ߜመ௝భ൯is not pre-

determined by us as often the case with some variable selection 

methods (see our comments on SLR method and some other variable 

selection techniques as earlier discussed under this chapter). In 

other words, the size ߙ of our sequential test procedure at which 

optimal sub-set of genes are selected is determined through internal 

cross-validation and not arbitrarily fixed, for instance, to 0.05 or 
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something else by the investigator. Our procedure seeks to perform 

gene selections and response class predictions over all possible range 

of values of significance level ߙ within the interval [0,1]. That value 

(range of values) of ߙ between 0 and 1 at which the decision rule 

(2.4.36) is satisfied and for which the optimal (best) prediction 

accuracy is achieved becomes the size of ߙ of our test. Consequently, 

the selected ݇ ൌ ݆ gene(s), ݆ ൌ 1, … , ݍ െ 1 at which further gene 

selection terminates becomes the needed optimal informative ݇ 

genes suitable for classifying the mRNA subjects into their 

appropriate the tumour sub-groups. More details on this shall be 

provided in Chapter 3. 

It should be recalled that each of the estimated average MERs 

,ҧመ௠భ,௠మ,௠యߴ  ,ҧመ௠భ,௠మߴ   ,ҧመ௠భߴ … ,  ҧመ௠భ,௠మ,௠య,…,௠೜ is a minimum statisticߴ

estimate computed at each gene selection steps. This literally 

implies that at any given successive ݆th and ሺ݆ ൅ 1ሻth pair of gene 

selection steps, ݆ ൌ 1, … , ݍ െ 1, the statistic ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ

መ௝మߜ ҧመ௠భ,௠మ,…,௠ೕశభ orߴ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕ is a difference betweenߴ

two observed minimum mean MERs ߴҧመ௠భ,௠మ,…,௠ೕ and ߴҧመ௠భ,௠మ,…,௠ೕశభ 

obtained at ݆௧௛ and   ሺ݆ ൅ 1ሻ௧௛ steps respectively.  

Although, Gaussian distribution has been earlier assumed for the 

estimators ߜመ௝ೞ ൌ േሺ ҧመ௠భ,௠మ,…,௠ೕെߴ ݏ ,ҧመ௠భ,௠మ,…,௠ೕశభሻߴ ൌ 1 or 2, their true 

distribution might be different from Gaussian due to the fact that 

their realizations are the differences of two minimum statistics. 

Therefore, in testing the null hypothesis ܪ଴ଵ௝: ߤణ
௠భ,௠మ,…,௠ೕ െ

ణߤ
௠భ,௠మ,…,௠ೕశభ ൑ 0 in (2.4.32), we suspected that the test statistic 

ܼఋ෡ೕభ ൌ
ఋ෡ೕభ

ටఙమቀఋ෡ೕభቁ
  constructed for the test might not follow a standard 

Gaussian distribution as would have been expected under the null. If 
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our suspicion is correct, then, the use of the critical values of the 

percentage point of the standard normal distribution Zଵିఈ for ܥఈ
ଵ in 

(2.4.34) to (2.4.37) for the test might not be appropriate. Base on this 

suspicion, it is necessary to determine the true distribution of the 

difference ߜመ௝భ or ܼఋ෡ೕభ  whose quantile values could be suitably 

determine as the correct value of ܥఈ
ଵටߪଶ൫ߜመ௝భ൯ or ܥఈ

ଵ as appropriate. 

We shall use the gene selection results at steps 0 and 1 to illustrate 

the procedures that leads to the determination the distribution of 

መ௝భ. At step 0, gene  ܺ௠భߜ א ൛ ሺܺଵሻ, ሺܺଶሻ, …  , ሺܺ௤ሻൟ that yielded the 

minimum mean MER ߴҧመ௠భ ൌ ݉݅݊ ቀ ,ҧመሺଵሻߴ ,ҧመሺଶሻߴ … ,  ҧመሺ௤ሻቁ among the set ofߴ

ordered mean MERs ߴҧመሺଵሻ, ,ҧመሺଶሻߴ … , ҧመ௠భߴ ҧመሺ௤ሻ is selected withߴ ൌ   .ҧመሺଵሻߴ

Therefore, for ݆ ൌ 1, … ,  ҧመሺ௝ሻ has unknown density functionߴ let ,ݍ

݂ణഥ෡ሺೕሻ
ሺߦ଴ሻ. Then, from the distribution of ordered statistics, it is very 

easy to establish the density function of ߴҧመ௠భ as  

                               ݂ ҧ෠݉1ߴ ሺݏ଴ሻ ൌ ሾ1ݍ െ ܨ ҧ෠݆݉ߴ ሺߦ଴ሻሿ௤ିଵ݂ణഥ෡ሺೕሻ
ሺߦ଴ሻ               (2.4.38) 

where ܨణഥ෡ሺೕሻ
ሺߦ଴ሻ ൌ ׬ ݂ణഥ෡ሺೕሻ

ሺݑሻ݀ݑకబ
ିஶ .  

Similarly, at step 1, our sequential procedure selected the gene pair 

ܺ௠భܺ௠మ א ൛ܺ௠భ ሺܺଶሻ, ܺ௠భ ሺܺଷሻ, … , ܺ௠భ ሺܺ௤ሻൟ that yielded the minimum 

mean MERs ߴҧመ௠భ,௠మ = ݉݅݊ ቀ ҧመ௠భሺమሻߴ , ,ҧመ௠భሺయሻߴ … ,  ҧመ௠భሺ೜ሻቁ among the set ofߴ

ݍ െ 1 mean MERs ߴҧመ௠భሺమሻ , ,ҧመ௠భሺయሻߴ … ,  ҧመ௠భሺ೜ሻ. Let the ordered statistics ofߴ

the ݍ െ 1 mean MER sequence ߴҧመ௠భሺమሻ, ,ҧመ௠భሺయሻߴ … ,  ҧመ௠భሺ೜ሻ be given byߴ

,ҧመሺଵଶሻߴ ,ҧመሺଵଷሻߴ … , ҧመ௠భ,௠మߴ ҧመሺଵ௤ሻ respectively withߴ ൌ  ҧመሺଵଶሻ. Also let theߴ

unknown density function of each ߴҧመሺଵ௝ሻ, ݆ ൌ 2, … ,  be given by ,ݍ
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݂ ҧ෠ߴ
ሺ1݆ሻ

ሺߦଵሻ. Then, it can be easily verified that the density function of 

  ҧመ௠భ,௠మ is of the formߴ

                         ݂ ҧ෠݉1,݉2ߴ ሺݏଵሻ ൌ ሺݍ െ 1ሻሾ1 െ ܨ ҧ෠ߴ
ሺ1݆ሻ

ሺߦଵሻሿ௤ିଶ݂ ҧ෠ߴ
ሺ1݆ሻ

ሺߦଵሻ         (2.4.39) 

Given that the difference of the two minimum average MERs ߴҧመ௠భ 

and ߴҧመ௠భ,௠మ is ߜመଵభ ൌ ҧመ௠భߴ െ  መଵభ isߜ ҧመ௠భ,௠మ, then, the distribution ofߴ

desired from which the critical value ܥఈ
ଵ of our one directional 

hypothesis tests (2.4.4) and by extension, that of the general test in 

(2.4.32) can be determined. 

If we represent the joint density of ߴҧመ௠భ and ߴҧመ௠భ,௠మ by           

ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ҧመ݉1ߴ

, መଵభߜ ҧመ݉1,݉2ሻ, then, the distribution ofߴ ൌ ҧመ௠భߴ െ  ҧመ௠భ,௠మ can beߴ

determined as follows; 

Let the distribution function of  ߜመଵభ be given by  

11ߜ̂ܨ     ൫ߜመ൯ ൌ ܲ൫ߜመଵభ ൑ መ൯ߜ ൌ ܲ ቀ ҧመ௠భߴ െ ҧመ௠భ,௠మߴ ൑  መቁߜ

11ߜ̂ܨ                      ൫ߜመ൯ ൌ ׭  ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ҧመ݉1ߴ

, ҧመ݉1,݉2ሻ݀ሺߴ ҧ෠݉1ߴҧመ݉1ሻ݀ߴ െ ߴҧ෠݉1,݉2 ൑̂ߜ
ሺ   ҧመ݉1,݉2ሻߴ

11ߜ̂ܨ           ؠ       ൫ߜመ൯ ൌ ׬  ቂ׬ ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ҧመ݉1ߴ

, ҧ෠݉1ߴҧመ݉1,݉2ሻߴ െ̂ߜ

ିஶ ݀ሺ ҧመ݉1,݉2ሻቃߴ ݀ሺ ҧመ݉1ሻஶߴ
ିஶ    (2.4.40) 

If we substitute ߴҧመ௠భ െ  ҧመ௠భ,௠మ in (2.4.40) for any arbitraryߴ for ݒ

variable ݒ, then we shall have that, 

11ߜ̂ܨ                     ൫ߜመ൯ ൌ ׬  ቂ׬ ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ҧመ݉1ߴ

, ҧመ݉1ߴ
െ ߜሻ̂ݒ

ିஶ ݀ሺݒሻቃ ݀ሺ ҧመ݉1ሻஶߴ
ିஶ         (2.4.41)   

Similarly, if ߴҧመ௠భ,௠మ ൅   ҧመ௠భ in (2.4.40), we haveߴ is substituted for  ݒ

11ߜ̂ܨ                   ൫ߜመ൯ ؠ ׬ ቂ׬ ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ߴҧመ݉1,݉2

൅ ,ݒ ߜҧመ݉1,݉2ሻ̂ߴ

ିஶ ݀ሺݒሻቃ ݀ሺ ҧመ݉1,݉2ሻஶߴ
ିஶ   (2.4.42) 

The representations (2.4.41)   and (2.4.42) are the expressions for the 

distribution function of ߜመଵభ ൌ ҧመ௠భߴ െ  ҧመ௠భ,௠మ . To obtain the densityߴ
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function of ߜመଵభ,  ݂̂11ߜ ൫ߜመ൯, we simply take the derivative of the 

distribution function in (2.4.41)   and (2.4.42) respectively. Therefore, 

from (2.4.41) we shall have that; 

11ߜ݂̂             ൫ߜመ൯ ൌ  
ௗி̂ߜ

11 ൫ఋ෡൯

ௗఋ෡
ൌ ௗ

ௗఋ෡
ቄ׬ ׬ൣ ҧመ݉1ߴ݂

ҧመ݉1,݉2ߴ, ሺ ҧመ݉1ߴ
, ҧመ݉1ߴ

െ ሻஶݒ
ିஶ ݀ሺ ߜሻ̂ݒҧመ݉1ሻ൧݀ሺߴ

ିஶ ቅ  

while from (2.4.42) we shall have that;   

11ߜ݂̂          ൫ߜመ൯ ൌ  
ௗி̂ߜ

11 ൫ఋ෡൯

ௗఋ෡
ൌ ௗ

ௗఋ෡
ቄ׬ ׬ൣ ҧመ݉1ߴ݂

ҧመ݉1,݉2ߴ, ሺ ߴҧመ݉1,݉2
൅ ,ݒ ҧመ݉1,݉2ሻஶߴ

ିஶ ݀ሺ ߜሻ̂ݒҧመ݉1,݉2ሻ൧݀ሺߴ

ିஶ ቅ   

These consequently yield the two forms of ݂̂11ߜ ൫ߜመ൯ given by  

11ߜ݂̂                              ൫ߜመ൯ ൌ ׬ ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ҧመ݉1ߴ

, ҧመ݉1ߴ
െ ሻ݀ሺݒ ҧመ݉1ሻஶߴ

ିஶ              (2.4.43) 

11ߜ݂̂                              ൫ߜመ൯ ൌ ׬ ҧመ݉1ߴ݂
ҧመ݉1,݉2ߴ, ሺ ߴҧመ݉1,݉2

൅ ,ݒ ҧመ݉1,݉2ሻஶߴ
ିஶ ݀ሺ  ҧመ݉1,݉2ሻ        (2.4.44)ߴ

respectively. 

If Gaussian densities with means ߤణ
௠భ & ߤణ

௠భ,௠మ and variances 

ଵߪ ൌ ଶߪ ቀ ଶߪ & ҧመ௠భቁߴ ൌ ଶߪ ቀ  ҧመ௠భ,௠మቁ are as initially assumed for theߴ

distribution of both ߴҧመ௠భ & ߴҧመ௠భ,௠మ respectively hold, then, the density 

function ݂̂11ߜ ൫ߜመ൯ in (2.4.43) can be expressed in terms of the joint 

density function of both ߴҧመ௠భ and ߴҧመ௠భ,௠మ as  

                     ݂ఋ෡భభ ൫ߜመ൯ ൌ ׬ ଵ
ଶగఙభఙమඥଵିఘమ ݌ݔ݁ ቂെ ௭భ

ଶሺଵିఘమሻ
ቃ ݀ ቀ ҧመ௠భቁஶߴ

ିஶ       (2.4.45) 

where   ݖଵ ൌ
ቀణഥ෡೘భିఓഛ

೘భቁ
మ

ఙభ
൅

ቀణഥ෡೘భି௩ିఓഛ
೘భ,೘మቁ

మ

ఙమ
െ

ଶఘቀణഥ෡೘భିఓഛ
೘భቁቀణഥ෡೘భି௩ିఓഛ

೘భ,೘మቁ

ఙభఙమ
  

and ߩ ൌ ሺݎݎ݋ܿ ,ҧመ௠భߴ  ҧመ௠భ,௠మሻ. Also, from (2.4.44), the equivalent form ofߴ

݂ఋ෡భభ ൫ߜመ൯ as in (2.4.45) can be established in terms of ߴҧመ௠భ,௠మ as 

                  ݂ఋ෡భభ ൫ߜመ൯ ൌ ׬ ଵ
ଶగఙభఙమඥଵିఘమ ݌ݔ݁ ቂെ ௭మ

ଶሺଵିఘమሻ
ቃ ݀ ቀ ҧመ௠భ,௠మቁஶߴ

ିஶ      (2.4.46) 
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where   

ଶݖ ൌ
ቀణഥ෡೘భ,೘మା௩ିఓഛ

೘భቁ
మ

ఙభ
൅

ቀణഥ෡೘భ,೘మିఓഛ
೘భ,೘మቁ

మ

ఙమ
െ

ଶఘቀణഥ෡೘భ,೘మା௩ିఓഛ
೘భቁቀణഥ෡೘భ,೘మିఓഛ

೘భ,೘మቁ

ఙభఙమ
 

More generally, for any pair of minimum average MERs  ߴҧመ௠భ,௠మ,…,௠ೕ 

and ߴҧመ௠భ,௠మ,…,௠ೕశభ having Gaussian densities with respective means 

ణߤ
௠భ,௠మ,…,௠ೕ and ߤణ

௠భ,௠మ,…,௠ೕశభ and variances ߪଵ ൌ ଶߪ ቀ  ҧመ௠భ,௠మ,…,௠ೕቁ andߴ

ଶߪ ൌ ଶߪ ቀ መ௝భߜ ҧመ௠భ,௠మ,…,௠ೕశభቁ, the density function of the differenceߴ ൌ

ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభ could be obtained from the marginal densityߴ

functions of  both  ߴҧመ௠భ,௠మ,…,௠ೕ and ߴҧመ௠భ,௠మ,…,௠ೕ as  

             ݂ఋ෡ೕభ ൫ߜመ൯ ൌ ׬ ଵ
ଶగఙభఙమඥଵିఘమ ݌ݔ݁ ቂെ ௭భభ

ଶሺଵିఘమሻ
ቃ ݀ ቀ ҧመ௠భ,௠మ,…,௠ೕቁஶߴ

ିஶ     (2.4.47) 

or equivalently as 

          ݂ఋ෡ೕభ ൫ߜመ൯ ൌ ׬ ଵ
ଶగఙభఙమඥଵିఘమ ݌ݔ݁ ቂെ ௭భమ

ଶሺଵିఘమሻ
ቃ ݀ ቀ ҧመ௠భ,௠మ,…,௠ೕశభቁஶߴ

ିஶ     (2.4.48) 

where ߩ ൌ ሺݎݎ݋ܿ ,ҧመ௠భ,௠మ,…,௠ೕߴ  ଵଶ are respectivelyݖ ଵଵ andݖ ,ҧመ௠భ,௠మ,…,௠ೕశభሻߴ

given as 

ଵଵݖ              ൌ
ቀణഥ෡೘భ,೘మ,…,೘ೕିఓഛ

೘భ,೘మ,…,೘ೕቁ
మ

ఙభ
൅

ቀణഥ෡೘భ,೘మ,…,೘ೕି௩ିఓഛ
೘భ,೘మ,…,೘ೕశభቁ

మ

ఙమ
  

                     െ
ଶఘቀణഥ෡೘భ,೘మ,…,೘ೕିఓഛ

೘భ,೘మ,…,೘ೕቁቀణഥ෡೘భ,೘మ,…,೘ೕି௩ିఓഛ
೘భ,೘మ,…,೘ೕశభቁ

ఙభఙమ
 

and      ݖଵଶ ൌ
ቀణഥ෡೘భ,೘మ,…,೘ೕశభା௩ିఓഛ

೘భ,೘మ,…,೘ೕቁ
మ

ఙభ
൅

ቀణഥ෡೘భ,೘మ,…,೘ೕశభିఓഛ
೘భ,೘మ,…,೘ೕశభቁ

మ

ఙమ
  

                 െ
ଶఘቀణഥ෡೘భ,೘మ,…,೘ೕశభା௩ିఓഛ

೘భ,೘మ,…,೘ೕቁቀణഥ෡೘భ,೘మ,…,೘ೕశభିఓഛ
೘భ,೘మ,…,೘ೕశభቁ

ఙభఙమ
 

However, since we have suspected earlier that the Gaussian density 

might not be appropriate as the distribution of ߜመ௝భ, the true density 
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function, ݂ఋ෡ೕభ ൫ߜመ൯ in (2.4.47) or (2.4.48) of ߜመ௝భ estimator would be 

determined through simulation studies in Chapter 3 in line with the 

set-up of our proposed sequential test procedures. The quantile 

values of the true theoretical density of ߜመ௝భ (or ߜመ௝మ) to be determined 

shall then be true critical value ܥఈ
ଵ (or ܥఈ

ଶ) of our test.  

 The ݇-SS procedures under the ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕߴ

difference formulations 

In a similar manner, if the differences of the successive pairs of 

minimum mean MERs ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕ as presented inߴ

equation (2.4.31) and Table 2.4 are used to construct our k-SS 

method, the same results and conclusion as obtained under the ߜመ௝భ 

formulations would be obtained. Under the ߜመ௝మ formulation however, 

negative values of ߜመ௝మ ’s would be observed at all selection steps for 

which ߴҧመ௠భ,௠మ,…,௠ೕశభ ൏  ҧመ௠భ,௠మ,…,௠ೕ, denoting the stage 1 of theߴ

sequential selection stages. At this stage, the prediction power of the 

succeeding models would continue to improve. At stage 2 however, 

the situation for which ߴҧመ௠భ,௠మ,…,௠ೕశభ ՜  ,ҧመ௠భ,௠మ,…,௠ೕ would existߴ

implying that the difference ߜመ௝మ ՜ 0. Thus, no significant 

improvements in successive models in terms of prediction accuracies 

would be expected at this selection stage. Finally, at stage 3, it is 

expected that ߴҧመ௠భ,௠మ,…,௠ೕశభ ൐ መ௝మߜ ҧመ௠భ,௠మ,…,௠ೕ so thatߴ ൐ 0. Considerable 

losses in prediction accuracies of successive models would be 

recorded at this stage. The schematic presentation of these three 

selection stages under the ߜመ௝మ formulation of our k-SS method is 

presented in Fig 2.1b.  
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Now, if we consider the difference formulation ߜመ௝మ, the appropriate 

one directional hypothesis of interest would be of the form 

ణߤ :଴ଶ௝ܪ
௠భ,௠మ,…,௠ೕశభ െ ణߤ

௠భ,௠మ,…,௠ೕ ൒  0 vs. ܪ௔ଶ௝ : ణߤ
௠భ,௠మ,…,௠ೕశభ െ ణߤ

௠భ,௠మ,…,௠ೕ ൏ 0 

 ՜                          ܪ଴ଶ௝ : ௝మߜ ൒ 0  vs.  ܪ௔ଶ௝ : ௝మߜ ൏ 0, ݆ ൌ 1, … , ݍ െ 1                   (2.4.49) 

where ߜ௝మ ൌ ణߤ
௠భ,௠మ,…,௠ೕశభ െ ణߤ

௠భ,௠మ,…,௠ೕ with its unbiased estimator 

given by ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕ.  As defined in (2.4.43), vectorߴ

෡૛ࢾܼ
ൌ  ቀܼఋ෡ೕమ ቁ, for ݆ ൌ 1, … , ݍ െ 1, is the vector of the test statistics for 

testing the ݍ െ 1 hypothesis set (2.4.49), where ܼఋ෡ೕమ ൌ
ఋ෡ೕమିாቀఋ෡ೕమቁ

ටఙమቀఋ෡ೕమቁ
, 

መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ መ௝మ൯ߜ൫ܧ ҧመ௠భ,௠మ,…,௠ೕ, andߴ ൌ 0 under ܪ଴ଶ௝ . The 

decision rules with respect to ߜመ௝మ formulation are as follows; 

i) Stop the selection of additional one gene into the ݆௧௛ model 

(accept ܪ଴ଶ௝) at the ݆௧௛ step if 

መ௝మߜ        ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ ҧመ௠భ,௠మ,…,௠ೕߴ ൒ ఈܥ
ଶටߪଶ൫ߜመ௝మ൯        (2.4.50) 

ii) Select additional one gene into the ݆௧௛ model (accept ܪ௔ଶ௝) at 

the ݆௧௛ step if 

መ௝మߜ         ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ ҧመ௠భ,௠మ,…,௠ೕߴ ൏ ఈܥ
ଶටߪଶ൫ߜመ௝మ൯       (2.4.51) 

where the critical values ܥఈ
ଶ for the test shall equally be determined 

through cross-validation using the theoretical distribution of ߜመ௝మ or 

ܼఋ෡ೕమ . The true distribution of ߜመ௝మ is similar to that of ߜመ௝భ. Necessary 

details on this are provided in Chapter 3.  

It should however be noted that the use of either of the hypothesis 

test (2.4.32) or (2.4.49) would yield the same selection and 

classification results. All these are demonstrated in the next chapter. 
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In summary, when ܪ଴ଵ௝ or ܪ଴ଶ௝ is accepted using decision rules 

(2.4.34)-(2.4.37) or (2.4.50)-(2.4.51) depending on whether hypothesis 

set (2.4.32) or (2.4.49) is used respectively at any particular  ݆ step, 

further gene selection into the ݆௧௛ model stops and the ݇ ൌ ݆ genes 

selected at that point becomes the optimal informative genes. If on 

the other hand, ܪ௔ଵ௝ or ܪ௔ଶ௝ is accepted, additional one gene is added 

at step ݆ after which the search for the next best gene begins. A 

single algorithm that captures the whole k-SS procedures is 

presented in Section 3.2. Nonetheless, we present clearly in what 

follows, the basic steps required in the implementation of our k-SS 

method. We shall provide illustrations using the hypothesis set 

(2.4.4) designed for only two gene selection steps.   

Here, we shall revert to the use of our initial notations in which gene 

ܺ௠భ is the first gene to be selected at Step 0 being the gene that 

yielded the minimum mean MER ߴҧመ௠భ among the ordered sequence of 

the original ݍ genes, ܺሺଵሻ, ሺܺଶሻ, … , ሺܺ௤ሻ and the gene pair ܺ௠భܺ௠మ is 

the set of genes that yielded the minimum mean MER ߴҧመ௠భ௠మ among 

the ݍ െ 1 sequence of gene pairs ܺ௠భ ሺܺଶሻ, ܺ௠భ ሺܺଷሻ, … , ܺ௠భ ሺܺ௤ሻ. Here, 

we shall test whether the inclusion of additional gene ܺ௠మ into the 

preceding classification model that contains only gene ܺ௠భ improves 

or worsen the prediction strength of the current model through the 

average minimum MERs difference ߜመ௝భ ൌ ҧመ௠భߴ െ መ௝మߜ ҧመ௠భ௠మ orߴ ൌ

ҧመ௠భ௠మߴ െ  ҧመ௠భ. If this difference is not significant based on appropriateߴ

decision rule (2.4.37) or (2.4.51) depending on whether test statistic 

 መ௝మis used, it simply shows that the marginal contribution ofߜ መ௝భ orߜ

gene ܺ௠మ at improving the current model is not significant. Then, 

further gene selection stops and the model containing only gene ܺ௠భ 

becomes the best optimal model. On the other hand, if its 
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contribution is significant according to decision rule (2.4.36) or 

(2.4.50), the new selected gene ܺ௠మ would be retained with ܺ௠భ in 

the model   while the search for the next best gene to be added with 

ܺ௠భ ܺ௠మ would begin.  

This sequential selection steps continues until none of the remaining 

genes could satisfy the decision criteria (2.4.37) or (2.4.51) that 

allows the selection of additional genes into the model. The ݇ genes 

selected, ݇ ൏  at which no additional genes can be selected into the ,ݍ

model becomes the required optimal ݇ informative genes and the 

response class predictions provided by such set of genes becomes the 

optimal prediction.  

Backward checks 

It is suspected that at each gene selection step where new gene is 

selected into the model, it might be possible for some of the 

previously selected genes not to be useful again for prediction given 

that a new gene is now in the model. Based on this suspicion, we 

perform backward checks on each of the previously selected genes 

whenever a new gene is selected. The procedure is straight forward, 

if a new gene is selected into the model and an average MER, say 

ҧመߴ ௙௨௟௟ is computed for the full model, then each of the previously 

selected gene is removed from the model and a new model is fitted 

using all other genes except the removed gene. An average MER, say 

ҧመߴ ௥௘௠௢௩௘ is computed for each model without the removed gene. If 

ҧመߴ ௥௘௠௢௩௘ ൐ ҧመߴ ௙௨௟௟, it simply suggests that the removed gene is 

important in the model and should be retained. But if ߴҧመ ௥௘௠௢௩௘ ൑

ҧመߴ ௙௨௟௟, then the removed gene is not useful again in the model and it 

is permanently removed from the model. Generally, the number of 

backward checks, denoted by ݊஻஼, to be performed at each gene 
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selection step ݆ for which ݇ ൌ ݆ ൅ 1 genes have been selected is 
݊஻஼ ൌ ݇ െ 1 

Our newly proposed ݇-sequential gene selection (݇-SS) method is 

implemented using R statistical package (http://www.r-project.org/) 

and the R code we developed for its implementation is presented in 

Appendix B.1. The R code that performs the backward checks is also 

provided in Appendix B.2. 

The dimension reduction, informative gene selection and response 

class prediction procedures as executed by our new ݇-SS method for 

binary response class can be generalized to a polytomous class 

prediction with true class categories ݕ ൌ 0, 1, … , ঙ  (ݕ ൐ 1) using any 

of the following approaches: 

 Pair-wise coupling: This approach is adapted from Hastie & 

Tibshirani (1998) and it begins by constructing a separate 

binary ݇-SS classifier for each of the distinct pair of classes 

,ᇱݕ ᇱᇱݕ א ঙ, ᇱݕ ്  ᇱᇱ.  For any microarray data set that containsݕ

a fixed response class ঙ ൐ 1, a total of ঙሺঙ െ 1ሻ/2 distinct 

binary ݇-SS classifiers would be constructed with each of them 

predicting a class member in ঙ. At the end, the results of all 

the classifiers are combined and final decision is made by 

majority voting. The class category with the highest votes 

would be chosen as the predicted class for each subject. This 

approach is also called One-vs-One-scheme (Tan et al, 2005) or 

Round Robin Ensemble (Furnkranz, 2002).  

 One-vs-Others scheme: For a polytomous response class 

ݕ ൌ ሼ0, 1, … , ঙሽ in which the class members follow some natural 

ordering, the ݇-SS classifier can be constructed to distinguish 

a reference class כݕ א ঙ from all other class labels. By this, all 
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other complementary classes are put into one group. The log of 

the ratio of the posterior probabilities used in the logit model 

would be of the form ݈݊ ൤ ௣ሺ௬ࢄ|כሻ
∑ ௣ሺ௬|ࢄሻঙషభ

೤
൨. Other variants of this 

approach can be found in Hand (1997), Speed (2003), Dudoit et 

al(2002) and some other related works. 

2.5   Assessment of the ࢑-SS classifier  

As remarked earlier, the goodness of classification rule ߮ሺ࢞ሻ is 

generally assessed through a discrepancy function ܮሼ ଴ܻ, ߮ሺ࢞ሻሽ called 

the loss function, where  ଴ܻ ൌ ,௜ݕ ݅ ൌ 1, … ,  ்݊ா, is the true class labels 

(0,1) of any independent ்݊ா subjects that are predicted by ߮ሺ࢞ሻ. 

From now on, ߮ and ߮௝ shall be used to represent ߮ሺ࢞ሻ and ߮௝൫ ௝ܺ൯ 

respectively, dropping both ࢞ and ௝ܺ for simplicity. For instance, the 

loss function ܮሼ ଴ܻ, ߮ሺ࢞ሻሽ shall become ܮሺ ଴ܻ, ߮ሻ. 

As demonstrated in the previous section, the main concern while 

assessing any classification function is to find that rule ߮ that 

minimizes the loss function ܮሺ ଴ܻ, ߮ሻ. The concept of 0-1 loss function 

as commonly used is to describe a situation where ߮ correctly or 

incorrectly predicts each of the  ்݊ா subjects. In this case, the 

respective loss is 0 or 1 for any subject that is correctly or incorrectly 

predicted by rule ߮. That is, the loss is ܮ൫ ෠ܻ଴ ൌ 1, ො߮ ൌ 1൯ ൌ ൫ܮ ෠ܻ଴ ൌ

0, ො߮ ൌ 0ሻ ൌ 0 for correct prediction and is ܮ൫ ෠ܻ଴ ൌ 1, ො߮ ൌ 0൯ ൌ

൫ܮ ෠ܻ଴ ൌ 0, ො߮ ൌ 1൯ ൌ 1 for incorrect prediction. 

However, the loss function may be given in terms of absolute or 

square error loss functions. An absolute error loss function is defined 

by  

ሺܮ                         ଴ܻ, ߮ሻ ൌ | ଴ܻ െ ߮|                              (2.5.1)  
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while the square error loss function is given by  

ሺܮ                                          ଴ܻ, ߮ሻ ൌ ሺ ଴ܻ െ ߮ሻଶ                   (2.5.2) 

The expected loss of using rule ߮ to classify all the ்݊ா subjects is 

then given by the risk function  

ሺ߮ሻݎ      ൌ ሺܮሾ࢞ܧ  ଴ܻ, ߮ሻሿ       (2.5.3) 

            ՜   ݎሺ߮ሻ ൌ  ∑ ,௜ݕሺܮ  ො߮௜ሻ݌ሺݕ|࢞௜ሻ݌௡బ
௜ୀଵ , ݕ ൌ 0, 1.            (2.5.4) 

But since the true density function ݌ሺݕ|࢞௜ሻ in (2.5.4) is not known, 

the risk ݎሺ߮ሻ is usually estimated from the sample by  

መߴ            ൌ ሺ߮ሻݎ̂ ൌ ଵ
 ௡೅ಶ

∑ ௜ݕ| െ  ො߮௜|
 ௡బ
௜ୀଵ                (2.5.5) 

if absolute error loss function is used, or by   

መߴ                                       ൌ ሺ߮ሻݎ̂ ൌ ଵ
 ௡೅ಶ

∑ ሺݕ௜ െ  ො߮௜ሻଶ ௡బ
௜ୀଵ                (2.5.6) 

if the square error loss function is used. 

The risk estimator given by (2.5.5) is the equivalent form of the 

empirical misclassification error rate (MER) given by (2.4.3).  

Among other estimators of prediction error rate suggested in the 

literature are the brier or quadratic score and logarithmic score. 

The brier score, proposed by Brier (1950), is the average deviation 

between the predicted probabilities ̂݌ሺ1|࢞ሻ that a set of subjects 

belong to particular response class and the true subjects classes. The 

brier score simply replaces the predicted class labels  ො߮௜ with the 

predicted class probabilities ̂݌௜ሺ1|࢞ሻ in the square error loss function 

definition of the MER in (2.5.6) that the subjects belong to the 

predicted classes. This is given by 



 
 

 73 

መ஻௥௜௘௥ߴ         ൌ ଵ
 ௡೅ಶ

∑ ሺݕ௜ െ ሻሻଶ ௡೅ಶ࢞|௜ሺ1̂݌
௜ୀଵ                      (2.5.7) 

where 0 ൑ መ஻௥௜௘௥ߴ ൑ 1. 

The logarithmic or informational score has been equally reported as 

a reliable measure of performance of classifiers (Hand, 1997; Witten 

& Frank, 2000). Like brier score, it also uses the predicted 

probabilities  ̂݌௜ሺ1|࢞ሻ in its assessment. Its definition for a two-class 

prediction is given by  

መ௟௢௚ߴ          ൌ െ ଵ
 ௡೅ಶ

∑ ሼݕ௜݈݃݋ሾ̂݌௜ሺ1|࢞ሻሿ ൅ ሺ1 െ ሾ1݃݋௜ሻ݈ݕ െ ሻሿሽ ௡೅ಶ࢞|௜ሺ1̂݌
௜ୀଵ  (2.5.8) 

where 0 ൑ መ௟௢௚ߴ ൏ ∞. Like both the MER and the brier scores, a small 

value of the log score equally shows a better performance of the 

classifier. What distinguishes the log score index from the other two 

scores is that it produces a set of general and uncalibrated scores 

that are not bounded between 0 and 1. 

Nonetheless, both the MER and brier scores are part of assessment 

measures adopted to evaluate the performance of our new ݇-SS 

classifier.  

Apart from MER, brier or logarithm scores, there are some other 

performance measures under the pseudo name of similarity indices 

as well as the receiver operating characteristics (ROC) analysis that 

are equally appropriate to assess the goodness of a classification 

rule.  

The similarity indices 

The most prominent similarity indices among others are the Jaccard 

index (Jaccard, 1901), Dice-Sørensen index (Dice, 1945), Ochiai index 

(Ochiai, 1957) and the Simple Matching index (Sokal & Michener, 
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1958). Some other variants to these four can be found in Simpson 

(1960), Hazel (1970), Sokal & Sneath (1973) and many others.  It has 

been reported, Zucknick et al (2008), that both Dice-Sørensen and 

Ochiai indexes are simple modification of Jaccard index. Expectedly, 

these three indices tend to similar results’ interpretation. Therefore, 

we shall only consider the Jaccard index being the most popular 

among the three measures.  

The simple matching index, as would be seen shortly, is just the 

complement of the misclassification error rate (MER) given by (2.13), 

(2.14), and (2.63), which we have adopted in the construction of our 

݇-SS classifier. In an unambiguous term, SMI = 1-MER. Therefore, 

the SMI shall not be given any separate treatment here again.  

More generally, using the 2 ൈ 2 confusion matrix in Table 2.1, the 

following similarity indices can be estimated as follows; 

 Jaccard index (JI) is an asymmetric similarity measure 

between two classifiers (subjects’ true class grouping and 

classification by ݇-SS classifier) which attaches more 

importance to the correct or incorrect classification of subjects 

with outcome of interest (group 1 subjects). It is estimated by    

,௃ሺܶߩ                                ܲሻ ൌ  ௡ሺ்ת௉ሻ
௡ሺ்׫௉ሻ

ൌ ௔
௔ା௕ା௖

      (2.5.9) 

 Dice-Sørensen index: ߩ஽ିௌሺܶ, ܲሻ ൌ  ଶ௔
ଶ௔ା௕ା௖

 

 Ochiai index: ߩைሺܶ, ܲሻ ൌ  ௔
√௔ା௕כ√௔ା௖

 

 Simple matching index (SMI): ߩௌெሺܶ, ܲሻ ൌ ௔ାௗ
௔ା௕ା௖ାௗ

 

Like any other performance measures adopted in this work, the 

estimates of the Jaccard index, as will be reported later, are the 

cross-validated estimates based on the respective subsampling 

scheme adopted for estimation. The R code that computes the JI are 
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already part of the main code we developed for the implementation 

of our ݇-SS method as provided in Appendix B.1. Therefore, the 

cross-validated estimates of the JI indices shall be part of our ݇-SS 

results’ outputs. 

The receiver operating characteristic (ROC) analysis 

The ROC analysis is an integral part of measures commonly adopted 

to assess the worth of any classification rule. It was originally 

developed by Egan (1975) for analysis of radar images in signal 

detection theory. Its procedure was later adapted into the screening 

of diagnostic tests to aid medical decisions (Swets, 1988; Zou, 2002; 

Shapiro & Brutlag, 2004; etc.). This has helped to determine 

whether a particular patient will benefit from a given treatment or 

not. The extension of ROC analysis to assess the performance of 

classifiers has been reported in Swets et al (2000), Fawcett (2006) 

and many other related studies. 

The excellent use of ROC analysis lies in the construction and uses 

of the ROC curve and the area under the curve (AUC). The ROC 

curve is a useful tool to describe the performance of a classifier (or 

diagnostic test) that discriminates between normal (healthy) and 

cancerous (diseased) subjects based on variable(s) measured on 

continuous scale.  In other words, both the ROC curve and the area 

under the curve (AUC) are measures of ranking of the quality of a 

classifier.   

Suppose the expression level of gene ௝ܺ is measured on ݊ subjects 

with two outcome groups 1 (for tumour subjects) and 0 (for normal 

subjects). Let ଵܺ௝ and ܺ଴௝ ( ଵܺ௝,ܺ଴௝ א ௝ܺ) denote the expression levels of 

݊ଵ and ݊଴ subjects in groups 1 and 0 respectively, ݊ଵ ൅ ݊଴ ൌ ݊. 

Necessarily, ଵܺ௝ measures are assumed to be greater that ܺ଴௝ if gene 
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௝ܺ is to discriminated the response group ݊ଵ from ݊଴. What AUC then 

does is to rank all the ݊ subjects based on their gene expression 

levels and compute the probability of correct ranking of any 

randomly selected (tumour, normal) subject pair given by (Green & 

Swets, 1966), 

ܣ     ൌ ሺ݌ ଵܺ௝ ൐ ܺ଴௝ሻ,  0 ൑ ܣ ൑ 1.    (2.5.10) 

This is the true area under the ROC curve and its estimate can be 

obtained in different ways. We highlighted below, four of the 

methods by which AUC can be computed as equally being reported 

in Hanley & McNeil (1983):  

 The trapezoidal rule, Morrison (2005), Fawcett (2006). 

 The output from Dorfman & Alf maximum likelihood 

estimation program, Dorfman & Alf (1969). 

 Plot of the original data on binomial graph paper and compute 

the AUC area from the slope and intercept of the plot by 

መܣ ൌ ሺܼ ൑݌  መܼ஺ሻ, where መܼ஺ ൌ ௜௡௧௘௥௖௘௣௧
ඥଵା௦௟௢௣௘మ, and ܼ~ܰሺ0,1ሻ, Swets 

(1979). 

 The use of the Wilcoxon-Mann-Whitney test statistics 

approximation, Bamber (1975).   

After the AUC estimate ܣመ௝ has been computed for each gene ௝ܺ, the 

(null) hypothesis test that ௝ܺ is not capable to discriminate between 

any two subjects’ groups can be tested. This is given by,  

൫݌ :଴ܪ        ଵܺ௝ ൐ ܺ଴௝൯ ൑ 0.5   vs.   ܪ௔: ݌൫ ଵܺ௝ ൐ ܺ଴௝൯ ൐ 0.5     (2.5.11) 

The value of ܣመ௝ very close to 1 will provide evidence to support that 

௝ܺ is a good discriminator of the two subjects’ groups (accepting ܪ௔) 

while a value of ܣመ௝ very close to 0.5 or less will suggest otherwise 
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(accepting ܪ଴). One can arrive at any of these two decisions using the 

100ሺ1 െ መ௝ܣ  መ௝ given byܣ ሻ% confidence interval ofߙ േ ܼఈݏ. ݁ሺܣመ௝ሻ where 

.ݏ ݁ሺܣመ௝ሻ is the standard error of ܣመ௝ as defined in Section 2.6, and ܼఈ is 

the percentiles of the standard normal distribution at a specified 

Type I error, ߙ. 

The plot of the ROC curve can be obtained for each gene ௝ܺ to 

visualize the performance of each of them as reported by their AUC 

estimates, ܣመ௝. The ROC curve is a 2-dimensional plot of sensitivity of 

the classifier against 1-specificity. The sensitivity, sometimes called 

the true positive (TP) rate or recall is plotted on the y-axis while 1-

specificity, also called the false positive (FP) /false alarm (FA) rate is 

plotted on the x-axis. In other words, the sensitivity of a classifier ߮ 

is given by the probability ݌ሺ߮ ൌ 1|ܻ ൌ 1ሻ while its specificity is 

estimated as ݌ሺ߮ ൌ 0|ܻ ൌ 0ሻ. The ROC curve however, shows the 

trade-off between the benefits (TP) and the costs (FP) of a 

classification or ranking rule ߮. Some of the metrics used to compute 

the sensitivity, specificity and other related measures are presented 

in the confusion matrix in Table 2.5.   

                      True Class (T)  

P
re

di
ct

ed
 

cl
as

s 
(P

) b
y 

ෝ࣐
 

 1 0 Marginal 
Total 

+ ܲܶ ܲܨ ܲܶ 1  ܲܨ

+ܰܨ ܰܶ ܰܨ 0 ܶܰ 

 Marginal 
Total 

ܶܲ + + ܲܨ ܰܨ ܶܰ  

 

Table 2.5: Confusion matrix showing common performance metrics calculated from it.  

Along the column of the confusion matrix is the true class label of 

the outcome variable ܻ for the two biological sub-groupings of mRNA 

samples and along the row are the predicted classes of these subjects 

by the classifier ߮ሺ࢞ሻ. The cell entries ܶܲ, ܰܨ ,ܲܨ, ܶܰ represent the 

true positive, false positive, false negative and true negative 
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respectively. Therefore, given the observed biological groups ݕ א ሼ0,1ሽ 

of the test sample ்݊ா and the predicted response class ො߮ א ሼ0,1ሽ as 

provided by ݇-SS classifier ߮ሺ࢞ሻ, the following performance 

measures can be computed from the confusion matrix in Table 2.5 

among others:  

 Sensitivity = ்௉
்௉ାிே

ൌ  
∑ ூሺ௬೔ୀଵ; ఝෝ೔ୀଵሻ೙೅ಶ

೔సభ
∑ ூሺ௬೔ୀଵሻ೙೅ಶ

೔సభ
        

 Specificity = ்ே
ி௉ା்ே

ൌ  
∑ ூሺ௬೔ୀ଴; ఝෝ೔ୀ଴ሻ೙೅ಶ

೔సభ
∑ ூሺ௬೔ୀ଴ሻ೙೅ಶ

೔సభ
 

 Positive predictive value = ்௉
்௉ାி௉

ൌ  
∑ ூሺ௬೔ୀଵ; ఝෝ೔ୀଵሻ೙೅ಶ

೔సభ
∑ ூሺఝෝ೔ୀଵሻ೙೅ಶ

೔సభ
 

 Negative predictive value = ்ே
்ேାிே

ൌ  
∑ ூሺ௬೔ୀ଴; ఝෝ೔ୀ଴ሻ೙೅ಶ

೔సభ
∑ ூሺఝෝ೔ୀ଴ሻ೙೅ಶ

೔సభ
 

where ܫሺ. ሻ is an indicator function whose value is 1 if its argument is 

true and 0 otherwise. The positive predictive value (PPV) measures 

the precision of the classifier. It shows the proportion of the true 

class 1 (tumour) subjects that are correctly classified into that class 

among those that were classified as class 1 subjects by classifier 

߮ሺ࢞ሻ. Similarly, the negative predictive value gives the proportion of 

group 0 (healthy) subjects that are correctly classified into that 

group among the subjects classified as group 0 subjects. 

The estimates of all the above performance measures are obtained as 

cross-validated estimates for each of the ݇-SS classifiers constructed. 

The R codes we developed to compute all the cross-validated 

performance measures are already incorporated into the main R 

codes we developed for the construction of our ݇-SS classifier as 

given in Appendix B.1. 

To construct the ROC curves for the ݇-SS classifiers, all the test 

samples ்݊ாଵ, … , ்݊ாோ generated by MCCV or bootstrap over ܴ 
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random partitions are merged into one large sample                     

்݊ா
כ ൌ ሺ்݊ாଵ, … , ்݊ாோሻ. The true class labels ݕ א ሼ0,1ሽ and the predicted 

probabilities ̂݌ሺ࢞|ݕሻ א ሾ0,1ሿ of belonging to any of the ݕ classes 

estimated for each subject in ்݊ா
כ  are observed. These two values are 

then passed into our algorithm to generate the cross-validated ROC 

(CVROC) curves for each of the ݇-SS classifiers. More details on 

various ways to construct a typical ROC curve are provided by 

Fawcett (2006). 

A flexible procedure for  generating ROC curve in R as implemented 

in the ROCR library (library(ROCR)) by Sing et al (2005) was 

adapted into our main R codes (see Appendix B.1) to generate the 

CVROC curves for our ݇-SS classifier.  

A particular variant of the ROC curve which we do not consider in 

this thesis is the ordinal dominance curve (ODC) proposed by 

Bamber (1975). The ODC is obtained by reversing the axes of the 

ROC curve. By this, a plot of specificity (on the y-axis) against 1-

sensitivity (on the x-axis) produces a typical ODC curve. More 

details on this could be found in Hsieh & Turnbull(1996). 

2.6    The AUC preliminary feature selection method  

A new preliminary feature selection procedure we introduce in this 

work is based on the concepts and criteria of the area under the ROC 

curve (AUC). The importance of the ROC curve as a good measure of 

performance of a classification or ranking rule has been reported in 

many works as discussed in Section 2.3.1. The exact relationship 

between the empirical prediction error rate (PER) and the estimated 

area beneath the ROC curve (AUC) has been established by Cortes 

& Mohri (2004). In their study, they established that if the empirical 

PER of a given ranking function, say ߮ሺܺሻ, is given by ߴ, then,  the 
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average estimated AUC over all possible rankings of subjects 

corresponding to ߮ሺܺሻ could be approximated by 1 െ  especially ߴ

when the two class probabilities  ̂݌଴ ൌ  ௡బ
௡

 and  ̂݌ଵ ൌ  ௡భ
௡

 are very close 

to each other. This argument particularly underscores the relevance 

of the AUC as another efficient measure to assess the goodness of 

classification or ranking rules. Therefore, the preliminary selection 

we are proposing here using AUC criteria could be seen as a 

classifier-like preliminary feature selection method. 

The reasons for proposing this new preliminary selection method are 

two-fold. The fact remains that there are no unique standard criteria 

for determining which genes to be selected at the preliminary 

selection stage while working with most of the preliminary feature 

selection methods. This is very true of the t-test approach as 

presented in Chapter 1 Section 1.4.2. For example, the choice of the 

cut-point כ݌ or its t-statistic (̂ݐ௦ or ̂ݐ௪) equivalent the under this 

approach is at the discretion of the investigators. Due to the absence 

of standard way of choosing such cut-point, it is not uncommon for 

different analysts to select different number and types of transcripts 

at preliminary selection stage for analysis under this method.  

Secondly, the common practice of using all the available mRNA 

sample size ݊ while performing preliminary feature selection 

without leaving out certain proportion of the sample for cross-

validation has been criticized to be capable of increasing the 

prediction bias of classification rules (Ambroise & McLachlan, 2002). 

This might consequently result to poor gene selection at the 

preliminary stage. This line of argument was equally corroborated 

by Ioannidis (2005) and recently by Boulesteix et al (2008). Hence, 

there is need to evolve a preliminary feature selection procedure, 
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like the one proposed here, that will allow for easy cross-validation 

through via external (independent) test samples.   

Consider a set of ݍ genes, ࢄ ൌ ሺ ଵܺ, … , ܺ௤ሻ, whose expression levels 

are measured on two groups ௜ܻ א ሼ0,1ሽ of ݊ biological subjects as 

previously described in relevant sections.  The main goal here is to 

perform a preliminary (primary) selection of potentially relevant 

ݍ genes such that all the ݍ genes from all the availableכݍ െ -non כݍ

predictive genes are removed prior to model construction proper. The 

reasons for this are two-fold: One is to save a lot of computation time 

and efforts while carrying out the analysis. If the ݍ െ  ’unwanted‘ כݍ

genes are not removed before any dimension reduction and 

prediction exercise is performed, a good classifier will still filter 

them out during the analysis proper, but at a huge cost of analysis 

time. To avoid this therefore, it is proper to filter them out before 

proper classifiers construction could begin. The second reason that is 

not too far from the first one is to reduce noise from the data before 

proper analysis could commence. This is to avoid undue influence of 

the irrelevant genes on classification results.  

Our procedure starts by partitioning the entire sample size ݊ into 

training sample, ்݊ோ and test sample, ்݊ா. This is followed by fitting 

univariate logit model, ݈ݐ݅݃݋൫ߨሺ ௝ܺሻ ൯ ൌ ߙ ൅ ݆ ,௝ܺ௝ߚ ൌ 1, … ,  on each of ,ݍ

the ݍ genes using the training sample, ்݊ோ. Next is to use the fitted 

model to estimate the predicted class probabilities, ̂݌௜ሺ ௜ܻ ൌ |ݕ ௝ܺሻ, 

 ݅ ൌ 1, … , ்݊ா, (probability of subjects belonging to class ݕ), for each 

subject in the left out test sample, ்݊ா. This is followed by cross-

validation using sub-sampling scheme of ݒ-fold-cross-validation, the 

concepts of which shall be discussed fully in Section 2.7. By this 

choice of cross-validation method, the entire sample size ݊ is divided 
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into a number of equal fold ݒ with each of the ݒ fold serving as the 

test sample at each sample selection. The remaining ݒ െ 1 is then 

used to build the logit model. This method has the advantage of 

ensuring that all the observations are being used as both the 

training and test samples at different time. Thereafter, both the 

predicted probabilities ̂݌௜ሺ ௜ܻ ൌ |ݕ ௝ܺሻ and the true class labels ݕ א ሼ0,1ሽ 

for each subject in the test sample ்݊ா as observed from the fitted 

model for each gene ௝ܺ are used to construct the cross-validated ROC 

(CVROC) curve from which the respective area under the curve 

(AUC) would be estimated. 

Let the estimated AUC for each gene ௝ܺ using the test sample ்݊ா be 

denoted by ܣመ௑ೕ and let ܣҧመ௑ೕ be the respective average AUC obtained 

over the entire ݒ fold. To establish the significance or otherwise of 

the estimated average AUC ܣҧመ௑ೕ for each gene, we simply test one 

directional hypothesis set given in (2.6.1) for each ܣҧመ௑ೕ. By this, we 

construct and tested a total of ݍ hypothesis set of the form  

൫݌ :଴௝ܪ       ଵܺ௝ ൐ ܺ଴௝൯ ൑ 0.5   vs.   ܪ௔௝: ݌൫ ଵܺ௝ ൐ ܺ଴௝൯ ൐ 0.5 ,  ݆ ൌ 1, … ,    ,ݍ

This could be equivalently written in terms of the average AUC, ܣҧ௑ೕ 

for the population as  

ҧ௑ೕܣ :଴௝ܪ        ൑ 0.5   vs.   ܪ௔௝: ܣҧ௑ೕ ൐ 0.5                    (2.6.1) 

Since the estimated AUC, ܣመ௑ೕ has a Gaussian distribution, Hanley & 

McNeil (1982), it then becomes easier to develop a test procedure for 

the hypothesis set in (2.6.1) as follows; 

,஺ߤመ௑ೕ~ܰሺܣ                     ஺ߪ
ଶሻ ՞ ,஺ҧߤҧመ௑ೕ~ܰሺܣ ஺ҧߪ

ଶሻ 
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          ՜                          ҧܼመ௑ೕ ൌ
஺ҧ෠೉ೕି ఓಲഥ

ටఙಲഥ
మ

~ܰሺ0, 1ሻ                               (2.6.2) 

where ߤ஺ҧ and ߪ஺ҧ
ଶ are the mean and variance of ܣҧመ௑ೕ respectively. If we 

adapt Bamber’s estimator of standard error of the AUC, Bamber 

஺ҧߪ  ,(1975)
ଶ could be estimated  by   

஺ҧߪ             
ଶ ൌ  

஺ҧ෠೉ೕቀଵି஺ҧ෠೉ೕቁାሺ௡భିଵሻ൬௉෠ೕೣశೣశೣషି஺ҧ෠
೉ೕ
మ ൰ାሺ௡బିଵሻሺ௉෠ೕೣశೣషೣషି஺ҧ෠

೉ೕ
మ ሻ

௡భ௡బ
       (2.6.3) 

where ෠ܲ௝௫శ௫శ௫ష is defined as the probability that a classifier ranks 

any two randomly chosen tumour subjects higher than a normal 

subject and ෠ܲ௝௫శ௫ష௫ష is the probability that a classifier ranks two 

randomly chosen normal subjects lower that a tumour subject. These 

two probabilities can be estimated by adapting the statistics 

proposed by Hanley & McNeil (1982) for which 

                       ෠ܲ௝௫శ௫శ௫ష ൌ
஺ҧ෠೉ೕ

ቀଶି஺ҧ෠೉ೕቁ
  and  ෠ܲ௝௫శ௫ష௫ష ൌ

ଶቀ஺ҧ෠೉ೕቁ
మ

ቀଵା஺ҧ෠೉ೕቁ
               (2.6.4) 

For any pre-specified level of significance ߙ, the apparent decision 

rule for the test hypothesis in (2.6.1) is to reject the null, ܪ଴௝ in 

favour of ܪ௔ if ҧܼመ௑ೕ ൌ
஺ҧ෠೉ೕି ఓಲഥ

ටఙಲഥ
మ

൒ ܼଵିఈ. This can be equivalently re-

constructed as; reject ܪ଴௝ in favour of ܪ௔௝ if 

ҧመ௑ೕܣ                               ൒ ஺ҧߤ ൅ ܼଵିఈටߪ஺ҧ
ଶ                                   (2.6.5) 

Under ܪ଴௝,  ܧ ቀܣҧመ௑ೕቁ ൌ ஺ҧߤ ൌ 0.5, then, ܪ଴௝ is rejected in favour of ܪ௔௝ if 

ҧመ௑ೕܣ                ൒ 0.5 ൅ ܼଵିఈටߪ஺ҧ
ଶ                                  (2.6.6) 
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and for any preliminary feature selection, the decision rule is to 

select that gene ௝ܺ whose estimated average AUC value ܣҧመ௑ೕ satisfies 

the inequality in (2.6.6).  

It should be noted that ܣҧመ௑ೕ ൌ 0.5 corresponds to AUC area that lies 

on the 450 diagonal line of a typical ROC plane as shown in Fig 2.2. 

Any gene whose AUC value revolves around the diagonal, as the 

case with gene OIP106 in Fig 2.2, does not possess any useful 

information to correctly predict (rank) the response group. Such gene 

lacks any good predictive power and should be dropped. In a 

nutshell, any gene whose AUC value is greater than 0.5 by ܼଵିఈ of 

its standard error would be selected primarily by this method for 

further analysis, where ܼଵିఈ is the quantile of the standard 

Gaussian density obtained at significance level ߙ. The size of ߙ for 

this test could be any of the conventional default values in the range 

ߙ א ሺ0, 0.05ሿ.  

 
Fig 2.2: A typical ROC curve for three (CASP1, SF3A1, OIP106) of the 24,026 genes in the rectal 
cancer microarray data. While the two genes, CASP1 and SF3A1 are informative as shown by their 
ROC curves being far away from the diagonal reference line with their respective high AUC 
estimates of 0.8916 and 0.9039, gene OIP106 contains no information to be able to predict the 
response group, hence, its own ROC curve revolves round or  below  the diagonal  reverence line with 
                                                relatively small AUC estimate of 0.4495.  

Using this procedure, a total of כݍ potential discriminating genes 

would be selected at the preliminary gene selection stage with 
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extremely small chance of leaving out any of the potentially good 

genes from further analysis.   

The new preliminary feature selection method proposed here is 

implemented using R statistical package. The sub-sampling 

technique of ݒ-fold-cross-validation is adopted in the implementation 

of this method and the R codes that implement the procedure is 

presented in Appendix B.3. Due to the huge number of gene 

variables involved (usually in thousands) in microarray data sets, 

any choice of fold ݒ between 2 to 10 would be suitable for the test. 

The application of this new preliminary feature selection method is 

demonstrated in Chapter 3 in relation to our new k-SS method. The 

k-SS algorithms under the two sub-sampling scheme of MCCV and 

bootdtrap.632+ for which the new AUC preliminary feature selection 

is incorporated are provided in Appendix B.5 and B.7 respectively.  

2.7   Cross-validation techniques in brief 

In any typical microarray data, the number of available biological 

samples is usually very small. Since genes selections, biological 

sample predictions and all other performance measures are based on 

these small samples, it is therefore possible for the estimated results 

to be bias. As a result of this, it is important to device some 

estimation procedures that would ensure that the results obtained 

from the small sample would be a good representation of the 

population, thereby removing any form of bias from the estimators. 

For instance, the empirical prediction error rate (PER), ߴመ௘௠௣ሺ௉ாோሻ 

estimated by classification rule ߮ሺ࢞ሻ using ݊ sample is expected to be 

close to the unseen true PER, ߴ௧௥௨௘ሺ௉ாோሻ for the entire population. The 

difference between the expected value of the PER estimator ߴመ௘௠௣ሺ௉ாோሻ 

and the true PER value from the population is called the bias of 
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መ௕௜௔௦ߴ ,መ௘௠௣ሺ௉ாோሻ. That isߴ ൌ ൫ܧ መ௘௠௣ሺ௉ாோሻ൯ߴ െ  መ௕௜௔௦ isߴ ,௧௥௨௘ሺ௉ாோሻ.  If the biasߴ

zero, it implies that ܧ൫ መ௘௠௣ሺ௉ாோሻ൯ߴ ൌ  ௧௥௨௘ሺ௉ாோሻ an indication that theߴ

estimator ߴመ௘௠௣ሺ௉ாோሻ is a good estimator of the population parameter 

 መ௘௠௣ሺ௉ாோሻ becomes an unbiased estimator ofߴ ,௧௥௨௘ሺ௉ாோሻ. Henceߴ

 መ௘௠௣ሺ௉ாோሻ is not aߴ ௧௥௨௘ሺ௉ாோሻ. But a large value of bias indicates thatߴ

good estimator of the population parameter and its results might not 

be suitable for generalization.  

One of the popular short cuts at removing bias from an estimator is 

through cross-validation techniques first introduced by Seymour 

Geisser (1993) with additional discussions on his works by Berry 

(2005). By cross-validation approach, the original sample size ݊ is 

partitioned into subsets such that the analysis is initially performed 

on a single subset of ݊ called the training sample, while the other 

subset(s), called the test sample(s) are retained for subsequent use 

in confirming and validating the results from previous analysis. 

Several forms of this method are available in the literature. The 

most prominent ones are discussed in what follows. 

i.) Holdout method 

By this method, the original ݊ sample is splitted randomly 

into two, ்݊ோ, ்݊ா, with ்݊ோ ൅ ்݊ா ൌ ݊. One part (்݊ோ) is used 

to train the classifier while the second part (்݊ா) is held out 

to test the goodness of the classifier. This is sometimes 

called out-of-bag method. In practice, it is customary to 

holdout 1/3 of ݊ (்݊ா) for testing and the remaining 2/3 of ݊ 

(்݊ோ) for training, McLachlan (1992). The empirical 

prediction error rate is computed over the test sample ்݊ா 

by 
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መ௛௢௟ௗ௢௨௧ߴ      ൌ ଵ
௡೅ಶ

∑ ሼఝෝܫൣ ሺࢄ೔ሻஷ ௒೔బሽ൧
௡೅ಶ
௜ୀଵ             (2.7.1) 

                                  Original sample size ሺ݊ሻ 

Training set Test set 
 

Fig 2.3: Schematic representation of the sample splitting under the Holdout cross- 
                                                    validation method 

The schematic representation of the sample split under this 

method is presented in Fig 2.3. This method poses no 

computational burden. Its major disadvantage apart from 

small sample size problem is that the sample used as the 

training or test sample might not be representative of the 

original sample. It is possible to miss out all members of a 

certain class in a training or test set. Therefore, whatever 

error rate reported might be misleading.  

ii.) Monte Carlo cross validation (MCCV)  
 

The MCCV method sometimes called random subsampling 

is one of the cross-validation techniques proposed to 

overcome the limitations of the holdout method. The 

approach is to repeat the process of taken random sub-

samples of training set, ்݊ோ and test set, ்݊ா from the 

original sample size ݊ several number of ሺܴሻ times (e.g. 50, 

100, 500, 1000 or 10000 repetitions) without replacement. 

At each random split, classifier is learned on the training 

set while its goodness is assessed on the test set via 

prediction error rate ߴመ௥ ൌ ଵ
௡೅ಶ

∑ ሻஷ ௒೔బሽ൧ࢄሼఝෝ೔ሺܫൣ
௡೅ಶ
௜ୀଵ  which is 

computed at each ݎ repetition, ݎ ൌ 1,2, … , ܴ. The different 

prediction error rates over the entire ܴ repetitions are then 

averaged to yield an overall average prediction error rate. 

That is 
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ҧመோߴ      ൌ  ଵ
ோ

∑ መ௥ߴ
ோ
௥ୀଵ                                (2.7.2) 

However, the maximum number of subsamples of test set 

்݊ா that can be drawn from ݊ without replacement is 

ܴ ൌ ௡ሺ௡ିଵሻ…ሺ௡ି௡೅ಶାଵሻ
௡೅ಶ!

. This approach has been widely adopted 

in many works (Xu & Liang, 2001; Dudoit et al, 2002; Xu et 

al, 2004; Lee et al, 2005; Du et al, 2006; Zucknick et al, 

2008; etc.) due to its reliability and results’ consistencies. 

The supremacy of MCCV over the leave-one-out cross-

validation method (discussed below) was equally reported 

in Xu et al(2004). However, the MCCV approach is 

computationally demanding unlike the holdout method. A 

schematic representation of subsampling stages under 

MCCV is given by Fig 2.4. 

Original sample size ሺ݊ሻ 

Test set  

 
 
 
 

 ڭ

 
Fig 2.4: Schematic representation of the random sub-sampling for cross-validation  
                                                     under the MCCV method 

iii.) ݒ-fold-cross-validation 

In this method, the ݊ sample is divided into a number of 

mutually exclusive equal subsamples of fixed fold, ݒ. Each 

fold is used for testing while the remaining ݒ െ 1 folds are 

used for training. This exercise is repeated  ݒ times such 

that each of the ݒ test samples is used once. The prediction 

error rate ߴመ௩ ൌ ଵ
௡೅ಶ

∑ ሼఝෝܫൣ ሺࢄ೔ሻஷ ௒೔బሽ൧
௡೅ಶ
௜ୀଵ  is computed at each fold 

and the average of all the prediction error rates, averaged 

 Test set  

 Test set  

1st repetition 

2nd repetition 

 ڭ

Rth repetition 
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over ݒ, is computed as the true prediction error rate.  Thus, 

we have that 

ҧመ௩ߴ      ൌ ଵ
௩

∑ መआߴ
௩
आୀଵ                                 (2.7.3) 

A major challenge of this method is the determination of 

the best number of fold to be adopted. However, ten-fold 

cross-validation has been suggested in many studies as a 

standard way of measuring the misclassification error rate 

using this approach, Witten & Frank (2000), Molinaro et 

al(2005). Advantage of this approach is that one is sure that 

all the original samples are used for both classifier 

construction and its assessment. Nonetheless, the 

estimated prediction error rate may be associated with high 

variance due to the smallness of the sample size. A 

schematic representation of this subsampling procedure 

with ݒ ൌ 3 is given by Fig 2.5. 
       Original sample size ሺ݊ሻ 

Test sample  

 
 
 
 

 
Fig 2.5: Schematic representation of the ݒ-fold cross-validation method with ݒ ൌ 3 

iv.) Leave-one-out cross-validation (LOOCV) 

The LOOCV is an extreme case of ݒ-fold cross-validation 

with ݒ ൌ ݊. Here, each subject in the sample is left out and 

the remaining ݊ െ 1subjects are used to learn the classifier. 

The left out sample in turn is used to test the goodness of 

the classifier. This exercise is performed ݊ times to ensure 

that each subject has been used in the construction and 

validation of the classifier. Fig 2.6 gives its schematic form 

 Test sample  

 Test sample 

1st fold 

2nd fold 

3th fold 
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at each evaluation. The prediction error is obtained for each 

left out sample and the average for all the ݊ samples is 

taken as the empirical prediction error rate. That is 

መ௟௢௢௖௩ߴ       ൌ ଵ
௡

∑ ሼఝෝܫൣ ሺࢄ೔ሻஷ ௒೔బሽ൧௡
௜ୀଵ             (2.7.4)  

where indicator function ܫሼ.ሽ is as defined in (2.4.3). 

Original sample size ሺ݊ሻ 

 ݊ െ 1 sample Training set 

 
 
 
 

 ڭ

 

Fig 2.6: Schematic representation of the Leave-one-out cross-validation method 

The advantage of this method is that it returns low bias for 

prediction error rate since almost all the sample size is used 

to train. Like in the ݒ-fold method, the LOOCV is equally 

associated with high variance of the prediction error rate. 

Nonetheless, it has been described as an elegant cross-

validation measure suitable for eliminating bias from an 

estimator provided that the original sample size ݊ is a true 

representation of the targeted population. This method has 

received a wider application in many research studies due 

to its simplicity, (Nguyen & Rocke, 2002a; Man et al, 2004; 

Boulesteix, 2004; Statnikov et al, 2005; etc.). 

v.) Bootstrap 

The bootstrap method is based on sampling with 

replacement. All the ݊ subjects is sampled ݊ times with 

replacement to give another ‘new’ ݊ data set. The new ݊ 

sample now becomes the training set and the original ݊ 

sample is the test set. Since sampling is done with 

replacement, there is tendency to have some observations 

            ݊ െ 1 sample Training set 

           ݊ െ 1 sample Training set  

1st evaluation 

2nd evaluation 

One sample test set ڭ 

݊ th evaluation 
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repeated in the new sample while some may not be sampled 

at all from the original sample. Therefore, the unsampled 

subjects in the original data become the test set by 

implication. A particular variant to this general 

bootstrapping is the bootstrap.632+ (Efron & Gong, 1983; 

Efron & Tibshirani,1997; etc.). The idea behind this new 

modification is that each subject in the original ݊ sample 

has a probability ଵ
௡
 of being selected into the new sample 

and ሺ1 െ ଵ
௡

ሻ of not being selected. Since the samples are 

drawn ݊ times with replacement, the chance that a subject 

is not selected into the new sample is then ቀ1 െ ଵ
௡

ቁ
௡

ൎ ଵ
௘

ൌ

0.368. Thus, for ݊ random bootstrap sampling, about 36.8% 

of ݊ will not be selected into the new data set (the training 

set). It shows that only about 1 െ ቀ1 െ ଵ
௡

ቁ
௡

ൎ 0.632 of ݊ 

would be in the training set while the remaining 0.368 of ݊ 

would be in the test set, hence, the term bootstrap.632+. 

Suppose we define ߴመ௧௥௔௜௡ as the re-substitution prediction 

error rate computed over the training set and ߴመ௧௘௦௧ as the 

bootstrap prediction error rate computed over the test set. 

The empirical prediction error rate for bootstrap.632+ 

scheme is given (Efron & Tibshirani,1997; Gerds & 

Schumacher, 2007; Binder & Schumacher, 2008) by  

መ௕௢௢௧ߴ   ൌ 0.632 כ መ௧௘௦௧ߴ ൅ 0.368 כ  መ௧௥௔௜௡        (2.7.5)ߴ

The entire bootstrap procedures are then repeated ܴ 

number of times as in MCCV, and respective average 

prediction error rates  ߴҧመ௧௘௦௧ ൌ 0.632 ଵ
ோ

∑ መ௥.௧௘௦௧ߴ
ோ
௥ୀଵ  and 

ҧመ௧௥௔௜௡ߴ ൌ 0.368 ଵ
ோ

∑ መ௥.௧௥௔௜௡ߴ
ோ
௥ୀଵ  are computed.  These estimators 
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are then used to compute the overall average prediction 

error rate, ߴҧመ௕௢௢௧ for bootstrap.632+. Thus, we have that 

ҧመ௕௢௢௧ߴ        ൌ ଵ
ோ

∑ ൫0.632 כ መ௥.௧௘௦௧ߴ ൅ 0.368 כ መ௥.௧௥௔௜௡൯ோߴ
௥ୀଵ      (2.7.6) 

Out of all these cross-validation techniques, the methods of MCCV 

and bootstrap are adopted in this thesis for the implementation of 

our proposed k-SS classifier.  

2.8 Overview of some other classification methods 

In this section we provide brief overview of three of the existing 

state-of-the art classification methods as considered in this thesis. 

The three methods discussed here are the Support vector machines 

(SVM), ݇-nearest neighbours (݇-NN), and Partial least squares (PLS) 

methods. The theoretical background of other classification methods 

considered in this thesis can be found in the relevant literatures. 

The relative performance of all the methods as compared to the 

prediction results provided by our new ݇-SS classifier are discussed 

in later chapters.   

2.8.1   Support Vector Machines (SVM) 

Support vector machines (SVM) is one of the state-of-the art 

techniques developed in the field of statistical learning theory and 

pattern recognition. The original SVM algorithm was pioneered in 

Russia by Vapnik and his co-workers in the early sixties (Vapnik & 

Lerner, 1963; Vapnik & Chervonenkis, 1964; etc.) after which 

several modifications were incorporated into the original theory (see 

Vapnik & Chervonenkis, 1974; Vapnik, 1982; 1995; & 1998). The 

SVM method has become increasingly popular among the kernel 

based methods as an excellent tool in response group classification, 

regression and statistical pattern recognition.  Because of the huge 
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contributions of Vapnik and Chervonenkis to the present form of the 

SVM methodology, the SVM theory is now been referred to as the 

Vapnik-Chervonenkis (VC) theory. We have adopted SVM 

methodologies in this work mainly for the prediction/classification of 

mRNA samples into their respective biological groups using various 

microarray data sets. In what follows therefore, we present a brief 

theoretical background of the SVM procedure for classification. 

There are several forms of SVM algorithms available in the 

literature, see McCormick (1983), Vapnik (1995),  Cortes & Vapnik 

(1995), Smola (1998), Smola & Schölkopf (2004), Lee (2004) and a 

host of others. However, we shall present the SVM procedures of 

Burges (1998) and Lee (2004) which essentially are adaptations of 

the original algorithm of Vapnik (1995).  

Let ࢚࢘ ൌ ൛൫ݔଵ௝, ,ଵ൯ݕ ൫ݔଶ௝, ,ଶ൯ݕ … , ൫ݔ௡೅ೃ௝, ݆ ,௡೅ೃ൯ൟݕ ൌ 1, … ,  be the training ,ݍ

set of ்݊ோ biological samples with the corresponding test sample ்݊ா 

defined by ࢋ࢚ ൌ ൛൫ݔଵ௝, ,ଵ൯ݕ ൫ݔଶ௝, ,ଶ൯ݕ … , ൫ݔ௡೅ಶ௝, ݊ ,௡೅ಶ൯ൟݕ ൌ ்݊ோ ൅  ்݊ா. 

Each ݕ௜, ݅ ൌ 1, … , ݊, is the true class label that correspond to the 

observed ݔ௜௝ genes expression levels. For simplicity, we shall use the 

variable pair ሺ࢞௜,  ௜ of observed gene࢞ ௜ሻ to denote the input vectorݕ

expression profiles on ݅ biological sample with response class label 

 ௜. With little modification of the definition of the response groupsݕ

given in (2.1.2), we assume that both the training and test data sets 

come from only two response classes Ωଵ and Ωଶ but with ݕ௜ ൌ 1 if  

subject ݅ comes from class Ωଶ and ݕ௜ ൌ െ1 if the ݅ subject comes from 

class Ωଵ with both classes remained as defined under Section 2.1. 

The goal in SVM methods is to find a decision function of the form 

                                           ݄ሺ࢞௜ሻ ൌ .࢝ۃሺ݊݃ݏ ۄ௜࢞ ൅  ܾሻ                      (2.8.1) 
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that would classify any unseen subject in the test sample ்݊ா into 

their respective class labels ݕ௜ א ሼെ1,1ሽ, where ࢝ is a vector of 

weights with Euclidean norm ԡ࢝ԡ ൌ .࢝ۃ  ଵ/ଶۄ࢝ ൌ 1 with ܾ being the 

bias. The quantity ࢝ۃ.  ௜࢞ and ࢝ is the inner product of vectors ۄ௜࢞

defined as ࢝ۃ. ۄ௜࢞ ൌ ଴ܪ ௜. Suppose we define a hyperplane࢞ᇱ࢝ א  ,ܪ

simply called the separating hyperplane, that separates the training 

samples into the two existing response class labels ሺെ1,1ሻ. If the two 

response groups Ωଵ and Ωଶ of subjects that make up the training 

sample are linearly separable, then we can define the maximal 

distance of the separating hyperplane ܪ଴ from the closest positive 

sample (ݕ௜ ൌ 1) by ݀ାunits and its respective maximal distance from 

the closest negative sample ሺݕ௜ ൌ െ1ሻ by ݀ିunits.  If the two 

maximal distances are the same, that is, ݀ା ൌ ݀ି ൌ ݀, then the two 

sample groups are 2݀units apart. The task in SVM procedure 

therefore, is to find the weight vector ࢝ and bias ܾ that will 

maximize the distance ݀. In a linearly separable sample, the SVM 

algorithm seeks for the separating hyperplane with the maximal 

margin (distance) ݀. This essentially results to the following 

optimization problem using (2.8.1); 

௕,࢝ݔܽ݉                                                  ݀                                         (2.8.2) 

subject to the conditions that; 

.࢝ۃ                                         ۄ௜࢞ ൅  ܾ ൒ ݀, if ݕ௜ ൌ 1                         (2.8.3) 

.࢝ۃ                                         ۄ௜࢞ ൅  ܾ ൑ െ݀, if ݕ௜ ൌ െ1                    (2.8.4) 

with ࢝ having  a unit norm ԡ࢝ԡ ൌ  1. Therefore, for any given 

linearly separable set of training data, we define a maximal margin 

hyperplane ܪଵ א .࢝ۃ for which the equality ܪ ۄ௜࢞ ൅  ܾ ൌ ݀ in (2.8.3) 

holds and maximal margin hyperplane ିܪଵ א  for which the ܪ
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equality ࢝ۃ. ۄ௜࢞ ൅  ܾ ൌ െ݀ in (2.8.4) also holds. All vectors ࢞௜ for which 

these two equalities are satisfied are called support vectors and the 

solutions of the optimization problem depend only on these vectors 

and not on the entire dimension of the training set. In other words, 

support vectors are those points ࢞௜ that lie on the two maximal 

margin hyperplanes ܪଵ and ିܪଵ. Thus, a subject would be classified 

into group ݕ௜ ൌ 1 if the condition (2.8.3) is satisfied and into group 

௜ݕ ൌ െ1 if condition (2.8.4) is satisfied. This concept is geometrically 

illustrated in Fig 2.7. 

 
Fig 2.7: The figure showing the typical separating hyperplane and the maximal margin hyperplanes 
for the linearly separable subjects with two distinct subject groups. This is an example of linear  
SVM  classification  function  given  by  equation (2.8.1).  The  support  vectors  lie  on  the  margins. 

If the two constraints in (2.8.3) and (2.8.4) are multiplied by their 

respective class labels and the weight vector ࢝ is divided by its norm 
ԡ࢝ԡ we shall have a single constraint of the form  

   ଵ
ԡ࢝ԡ

.࢝ۃ௜ሾݕ ۄ௜࢞ ൅  ܾሿ ൒ ݅ ,௜׊ ,݀ ൌ 1, … , ݊                (2.8.5) 

Since the two maximal margin hyperplanes ܪଵ and ିܪଵ have the 

same normal (parallel), it shows that there exist a pair of 

hyperplanes in ܪ that will provide the maximum margin between 

the two subject groups in the training set. This can be achieved by 

setting ݀ ൌ ଵ
ԡ࢝ԡ

. Therefore, maximizing the value of  ݀ as given in 
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(2.8.2) is equivalent to minimizing the value of ԡ࢝ԡ. Hence, the 

whole problem becomes that of looking for the weight vector ࢝ and 

bias ܾ that minimizes ԡ࢝ԡ. Thus, the optimization problem in (2.8.2) 

shall become that of; 

 ԡ                  (2.8.6)࢝௕ԡ,࢝݊݅݉        

 subject to the constraint that 

.࢝ۃ௜ሾݕ       ۄ௜࢞ ൅  ܾሿ ൒ ݅ ,௜׊ ,1 ൌ 1, … , ݊          (2.8.7) 

Under the new formulation of (2.8.6), all points ࢞௜ with margins 

.࢝ۃ௜ሾݕ ۄ௜࢞ ൅  ܾሿ ൌ 1 are now the support vectors.   

In a situation where the training set ࢚࢘ contains linearly but non-

separable group members, then, it may be necessary to introduce the 

slack variables ߦ௜ to the constraints in (2.8.7). This is analogous to 

the soft margin loss function due to Bennett & Mangasarian (1992) 

which was later employed into SVM by Cortes & Vapnik (1995). The 

whole idea is to allow for some misclassification errors and the value 

 ௜ሻ࢞௜ represents the amount by which the prediction function ݄ሺߦ

classifies subjects into the wrong side of the margin, Hastie et al 

(2009). Thus, the whole optimization problem in (2.8.6) then becomes 

that of  

.࢝ۃ௜ሾݕ   ԡ, subject to࢝௕ԡ,࢝݊݅݉  ۄ௜࢞ ൅  ܾሿ ൒ 1 െ ݅ ,௜׊ ,௜ߦ ൌ 1, … , ݊     (2.8.8) 

 with additional condition that ߦ௜ ൐ ∑ ௜, and that׊ ,0 ௜ߦ
௡
௜ୀଵ ൌ  for ,ߦ

some fixed constant ߦ. 

The Lagrangian formulation of the above optimization problem is 

often preferred for easy generalization of the SVM procedures to 

pure non-linear separating data sets. This is done by constructing a 
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Lagrange function to be minimized from the objective function in 

(2.8.6) which we called the primal objective function of the form 

                         ࣦ௣ ؔ ଵ
ଶ

ԡ࢝ԡଶ െ ∑ .࢝ۃ௜ሾݕ௜ߙ ۄ௜࢞ ൅  ܾሿ ൅ ∑ ௜ߙ
௡
௜ୀଵ  ௡

௜ୀଵ       (2.8.9) 

subject to the constraint that ߙ௜ ൒ 0, ݅ ൌ 1, … , ݊. The ߙ௜ are the  

Lagrange multipliers on each of the inequality constraints in (2.8.7) 

or (2.8.8). After little algebra, the dual form of the convex 

optimization problem (2.8.9) is obtained (Burges, 1998; Lee, 2004) as  

                       ࣦௗሺߙ௜ሻ ؔ ∑ ௜ߙ
௡
௜ୀଵ െ  ଵ

ଶ
∑ ∑ ௝ݕ௜ݕ௝ߙ௜ߙ

௡
௜ୀଵ

௡
௜ୀଵ .࢝ۃ  (2.8.10)        ۄ௜࢞

This function is to be maximized subject to the conditions that ߙ௜ ൒ 0 

and ∑ ௜ݕ௜ߙ ൌ 0௡
௜ୀଵ . The Karush-Kuhn-Tucker (KKT) condition 

(Karush, 1939, Kuhn & Tucker, 1951) that 

.࢝ۃ௜ሾݕ௜ሼߙ  ۄ௜࢞ ൅  ܾሿ െ 1ሽ ൌ ݅ ,௜׊  0 ൌ 1, … , ݊      (2.8.11) 

is often adopted to provide the estimate of ܾ. From KKT condition 

above, it is very easy to verify that only few of the ߙ௜ ’s, say ߙ௜
 are ,כ

non-zero at the optimal solution level and they are those ߙ௜
 s for’כ

which the margin ݕ௜ሾ࢝ۃ. ۄ௜࢞ ൅  ܾሿ ൌ 1. Hence, the vector כ࢝ that 

defines the optimal maximal separating hyperplane has non-zero 

weights for the support vectors and can be easily obtained as  

כ࢝                                            ൌ ∑ ௜ߙ
௜ݕכ

௡
௜ୀଵ  ௜                               (2.8.12)࢞

More details on this can be found in Burges (1998), Bennett & 

Campbell (2000) and Lee (2004).  

The classification function ݄ሺ࢞ሻ in terms of the optimal separating 

hyperplane is now of the form  

                                         ݄ሺ࢞ሻ ൌ .כ࢝ۃሾ݊݃݅ݏ ۄ࢞ ൅ ܾכሿ 
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                             ՜   ݄ሺ࢞ሻ ൌ ∑ሾ݊݃݅ݏ ௜ߙ
௜ݕכ

௡
௜ୀଵ .௜࢞ۃ ۄ࢞ ൅  ሿ             (2.8.13)כܾ 

More generally, SVM algorithms embed data vector ሺ࢞௜,  ௜ᇲሻ from the࢞

input space Ը into the high-dimensional feature space ࣠ through the 

use of kernel functions ߈ሺ. , . ሻ. Given any non-linear mapping ׎ that 

embeds input vector ሺ࢞௜, .ሺ߈ ௜ᇲሻ into the feature space ࣠, kernel࢞ , . ሻ 

has the following representation; 

,௜࢞ሺ߈                                        ௜ᇲሻ࢞ ൌ .௜ሻ࢞ሺ׎ۃ   (2.8.14)                     ۄ௜ᇲሻ࢞ሺ׎

where ࢞௜, ௜ᇲ࢞ א Ը and ׎ሺ࢞௜ሻ, ௜ᇲሻ࢞ሺ׎ א  ࣠. This implies that points  ࢞௜,  ௜ᇲ࢞

in the input space Ը correspond to the points ׎ሺ࢞௜ሻ,  ௜ᇲሻ in the࢞ሺ׎

feature space ࣠. The kernel representation allows efficient 

computation of the inner product directly in the feature space which 

saves a lot of rigorous data embedding and computational burden in 

the input space. The SVM method using kernel function separates 

the training data in the feature space by a hyperplane defined by the 

type of kernel function adopted. The kernel representation of the 

classification function ݄ሺ࢞ሻ is of the form 

                                   ݄ሺ࢞ሻ ൌ ∑ሾ݊݃݅ݏ ௜ߙ
௜ݕכ

௡
௜ୀଵ .௜࢞ሺ߈ ሻ࢞ ൅  ሿ          (2.8.15)כܾ 

The four types of kernels mostly adopted are the linear, polynomial, 

radial basis function and sigmoid kernels. The functional forms of 

these kernels are presented below: 

 Linear: ߈ሺ࢞௜. ሻ࢞ ൌ .௜࢞ۃ   ۄ࢞

 Polynomial: ߈ሺ࢞௜. ሻ࢞ ൌ ሾ࢞ߛۃ௜. ࢞ ൅  ሿ௣ۄܿ

 Radial basis function (RBF): ߈ሺ࢞௜. ሻ࢞ ൌ ௜࢞|ߛሺെ݌ݔ݁ െ  ଶሻ|࢞

 Sigmoid: ߈ሺ࢞௜. ሻ࢞ ൌ .௜࢞ߛۃ݄݊ܽݐ ࢞ ൅  ۄܿ

The linear kernel corresponds to the single inner product function 

used by the linearly separable case as presented in (2.8.1) through 

(2.8.13). Both ߛ and ܿ are the parameters used to determine the 
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respective kernel functions while ݌ is the number of degree used in 

polynomial kernel. 

Like any other classification methods, the prediction accuracy of the 

SVM method over the test sample ࢋ࢚ is assessed through empirical 

misclassification rate analogous to the MER estimators given in 

(2.4.2) and (2.4.3). This is defined over the test sample ்݊ா by  

መௌ௏ெߴ                                      ൌ ଵ
ଶ௡೅ಶ

∑ หݕ௜ െ ෠݄ሺ࢞௜ሻห௡೅ಶ
௜ୀଵ                      (2.8.16) 

where  ݕ௜ א ሺെ1,1ሻ is the observed class labels and ෠݄ሺ࢞௜ሻ א ሺെ1,1ሻ is 

the predicted class label by SVM classifier ݄ሺ࢞ሻ for ݅ subject.  

The SVM procedures for response class prediction are implemented 

in R statistical package under the e1071 library. This we have 

adopted for analysis under the SVM implementations in this thesis.    

 (NN-࢑) Nearest Neighbours-࢑     2.8.2 

The k-nearest neighbours (݇-NN) is a supervised learning algorithm 

where the predictions of future test samples are determined based 

on the majority of nearest neighbours’ category closest to them. It is 

the simplest form of classification procedure that has been adopted 

in many studies, (Zhang & Srihari, 2002; Baoli et al, 2003; 

Kuramochi & Karypis, 2005; Shang & Shen, 2005; etc.). It does not 

require any rigorous model to fit. For any given test data point, we 

only need to determine the number k of subjects in the training 

samples that are closest to that test data point. The classification is 

done through the use of simple majority votes of the classified 

categories.  

More formally, let us consider a set of training sample                    

࢚࢘ ൌ ൛൫ݔଵ௝, ,ଵ൯ݕ ൫ݔଶ௝, ,ଶ൯ݕ … , ൫ݔ௡೅ೃ௝, ݆ ,௡೅ೃ൯ൟݕ ൌ 1, … ,  on which the ,ݍ
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expression  levels of ݍ genes were measured. We assumed that the 

response group has binary category ݕ א ሼ0,1ሽ. Now, to predict/classify 

each member in the test sample 

ࢋ࢚ ൌ ൛൫ݔଵ௝, ,ଵ൯ݕ ൫ݔଶ௝, ,ଶ൯ݕ … , ൫ݔ௡೅ಶ௝,  ௡೅ಶ൯ൟ, the k-NN algorithm begins byݕ

calculating the minimum distance of each test subjects from their 

corresponding training subjects and determine the k-nearest 

neighbours by ranks. The simple majority of these k-nearest 

neighbours become the prediction of the respective test samples. The 

similarity measure commonly used to measure the distance between 

the training and test sample is the Euclidean distance measure. The 

misclassification error rate (MER) for k-NN algorithm is calculated 

using the estimator given in (2.4.3) as used by our k-SS method.   

2.8.3     Partial Least Squares (PLS) 

The partial least squares (PLS) method is one of the old data 

reduction methods originally pioneered by Harald Wold (Wold, 1966, 

1973, 1983, etc.). It has been adopted by chemometricians and other 

researchers for various purposes over many years, (Volmer et al, 

1993; Holland et al, 1998; Naik & Tsai, 2000; etc.).  The typical 

nature of microarray data in which it is often the interest to classify 

very few biological samples into their respective tumour groups 

using expression profiles of several thousand of genes has given the 

PLS approach a wider application in many microarray studies.  

For brief theoretical presentation of PLS procedures, we consider the 

regression model ௜ܻ ൌ ݃ሺࢼࢄ;   ሻ as given in (2.1.1) whose linear formߝ 

௜ܻ ൌ ࢼࢄ ൅ ൌ ࢄ is as provided in (1.5.1) where ߝ ሺ ଵܺ, … , ܺ௤ሻ is a ݊ ൈ  ݍ

matrix of gene expression levels measured on ݊ biological subjects 

with binary response class ௜ܻ א ሼ0,1ሽ given that ݊ ൏ ݊ With  .ݍ ൏  ݍ

however, it is obvious that the classical least squares regression 
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cannot be used to estimate parameter vector ࢼ of the above linear 

regression equation because the ݍ ൈ  on which ࢄ்ࢄ design matrix ݍ

the estimator of ࢼ is based is not non-singular. What is being done, 

according to PLS approach is to represent the linear regression 

equation ௜ܻ ൌ ࢼࢄ ൅  in terms of two separate equations of the form ߝ

        ܻ ൌ ்ࡽࢀ ൅  (2.8.17)                                 ܨ 

ࢄ                                               ൌ ்ࡼࢀ ൅  (2.8.18)                                 ܧ 

dropping the subscript ݅ from ௜ܻ for simplicity, where ࢀ is a ݊ ൈ ܿ 

matrix of the latent components (factor scores) for the ݊ obervations, 

ܿ is a ்ࡽ ൈ 1 vector of regression coefficients (the factor loadings of 

ݍ is a ࡼ ,(ܻ ൈ ܿ matrix of regression coefficients (the factor loadings of 

 are the residuals of regression models (2.8.17) and ܧ and ܨ ,(ࢄ

(2.8.18) respectively and ܿ is the number of latent components ࢀ to 

be constructed usually fixed by the user.  However, the maximum 

number ܿ of latent components that can be constructed in any given 

PLS regression is ܿ ൌ ݉݅݊ ሺ݊,  .ሻݍ

The latent component ࢀ is usually of the form  

ࢀ                                   ൌ  (2.8.19)                                      ࢃࢄ

for an appropriate ݍ ൈ ܿ  weight matrix ࢃ for ࢄ.  

The estimate of the regression coefficients ்ࡽ in (2.8.17) is usually 

obtained through the normal least square method as 

෡்ࡽ                                              ൌ ሺࢀ்ࢀሻିଵ(2.8.20)                       ்ܻࢀ 

Once the estimates of vector ࡽ has been determined, the estimates of 

the original coefficient ࢼ can then be estimated by  

෡ࢼ                                       ൌ ்ࡽࢃ ൌ  (2.8.21)                     ்ܻࢀሻିଵࢀ்ࢀሺࢃ
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which can be simply expressed in terms of the weight matrix ࢃ as  

෡ࢼ                                      ൌ  (2.8.22)                   ்ܻࢄ்ࢃሻିଵࢃࢄ்ࢄ்ࢃሺࢃ

From the estimator of  ࢼ given by (2.8.22), it is obvious that the only 

quantity that needs to be determined to get ࢼ෡ is the weight matrix 

  in (2.8.18) can be conceived as ்ࡼ Similarly, the estimator of  .ࢃ

෡்ࡼ                                              ൌ ሺࢀ்ࢀሻିଵ(2.8.23)                            ࢄ்ࢀ 

However, several variants of PLS algorithms are available in the 

literature all of which are targeted at extracting the vector of latent 

components ࢀ. The most common among this whose procedure we 

shall present here is the non-linear iterative partial least squares 

(NIPALS) algorithm due to Wold (1975). The NIPALS algorithm 

seeks to maximize the objective function 

௜࢝ ൌ ݔܽ݉݃ݎܽ
௪

,ࢀଶሺݒ݋ܥ ܻሻ 

                                  ൌ ݔܽ݉݃ݎܽ
௪

ሺࢀ்்ܻܻࢀሻ 

    ՜                     ࢝௜ ൌ ݔܽ݉݃ݎܽ
௪

ሺࢄࢃ்்ܻܻࢄ்ࢃሻ                  (2.8.24) 

subject to the constraints that      

௜࢝                
௜்࢝ ൌ 1                                   (2.8.25) 

and that   

௜࢚                                             
௝்࢚ ൌ ௜࢝

௝࢝ࢄ்ࢄ் ൌ 0                       (2.8.26) 

for ݅ ് ݆ א ሼ1, … , ܿሽ.  The quantity ࢝௜ and ࢚௜ are the columns of  ݍ ൈ ܿ 

and ݊ ൈ ܿ  weight matrix ࢃ and latent components ࢀ with both  ࢝௜ 

and ࢚௜ defined as ࢝௜ ൌ ሺ࢝ଵ௜, ,ଶ௜࢝ … , ௜࢚ ௤௜ሻ் and࢝ ൌ ሺ࢚ଵ௜, ,ଶ௜࢚ … ,  ௡௜ሻ்࢚

respectively. Thus, the row-vector representations of ࢃ and ࢀ are 

given by ࢃ ൌ ሺ࢝ଵ, ,ଶ࢝ … , ࢀ ௖ሻ and࢝ ൌ ሺ࢚ଵ, ,ଶ࢚ … ,  ௖ሻ respectively. By࢚
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the objective function given by (2.8.24), each of the weight vector ࢝௜ 

is computed such that the square of the covariance of the response 

variable ܻ and latent components ࢀ ൌ  is maximized subject to ࢃࢄ

the conditions that each ࢝௜ is of unit norm (by (2.8.25)) and that all 

the latent vectors ࢚௜ א ሼࢀሽ are purely orthogonal (by (2.8.26)).  

After the construction of the PLS components, the classification of 

the response groups would be performed using the ܿ PLS 

components constructed by adapting any of the standard 

classification methods such as the linear discriminant analysis 

(LDA), logistic discriminant (LD) analysis, quadratic discriminant 

analysis (QDA) and the like. More details about the PLS method for 

classification can be found in Martens (1985), Wold et al (1983), Dai 

et al (2006), Rosipal & Krämer (2006), Boulesteix & Strimmer (2007) 

and in many other related works. However, in our implementation of 

the PLS approach for classification, we have adapted the LDA 

procedure as implemented in the plsgenomics library of R 

statistical package. Detail applications of this classification method 

are provided in the next two chapters. 
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3 Simulation Studies 

3.1 Simulating Microarray data sets 

Simulation is the process of emulating the reality using 

mathematical models. The sole objective is to build models to 

replicate the actual system. This is often necessary especially when 

the cost, time and efforts of generating live observations for 

investigation purposes are rather too unbearable. In such a 

situation, models that are replica of the condition under study may 

be simulated to examine the behaviour of the system, proffer 

solutions to the identified problems and evaluate the practicability of 

the solutions provided before transferring them to the real world.  

For some years back, developing appropriate models to analyse 

microarray data was such a daunting task due to the sparseness of 

relevant data sets. This is not unconnected with the huge costs and 

times involve in generating such data sets. The situations become a 

lot better in the past few decades due to the advent of several 

microarray technologies. However, the sensitive nature of 

microarray studies especially with the involvement of human data 

has made it more imperative for the investigators to carryout 

analysis on similar pseudo (simulated) data to ascertain the 

appropriateness of their methods and results before such could be 

implemented on live data. 

To implement our newly proposed k-SS classifier, we intend to 

simulate typical microarray data set on which the procedure would 

be tested to ascertain its suitability and results’ efficiencies. The 

performance of our method relative to some of the existing 

classification methods shall be equally assessed using such 

simulated data. 
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The procedure we employed for simulating microarray data set here 

follows the method adopted, with little modifications, by Bura & 

Pfeiffer (2003), and Molinaro et al (2005) both of which were 

adaptations of the earlier approaches used by Cook & Lee (1999) and 

Kepler et al (2002).  We simulated ݊ ൌ 100 observations representing 

the number of mRNA samples with two distinct biological groups 

ܻ ൌ 0 (normal patients) and ܻ ൌ 1 (diseased/tumour patients). On 

each observation, 1000 covariates, ࢄ ൌ ሺ ଵܺ, … , ଵܺ଴଴଴ሻ′, representing 

the observed gene expression profiles were simulated. Each 

biological group 0 or 1 has 50 observations which we denoted as ݊଴ 

for group 0 and ݊ଵ for group 1 with ݊଴ ൅ ݊ଵ ൌ ݊. The data sets 

ܻ |ࢄ ൌ 0 were simulated from multivariate normal distribution with 

mean ߤ଴, ߤ଴ ് 0 and variance-covariance matrix Σ. That is 

ሾሺ ଵܺ, … , ଵܺ଴଴ሻ′|ܻ ൌ 0ሿ~ܰሺߤ଴, Σሻ. Of 1000 genes simulated on group 1 

subjects, 5 of them were simulated from the mixture of two 

multivariate normal densities with the same covariance matrix Σ, 

and means ߤଵଵ and ߤଵଶ respectively, ߤଵଵ ് ,ଵଵߤ ଵଶ andߤ ଵଶߤ ൐  ଴. Thatߤ

is, ሾሺ ଵܺ, … , ܺହሻ′|ܻ ൌ 1ሿ~ሾߨ כ ܰሺߤଵଵ, Σሻ ൅ ሺ1 െ ሻߨ כ ܰሺߤଵଶ, Σሻሿ with the 

estimate of the mixing parameter ߨ taken to be 0.5. The remaining 

995 genes for group 1 were simulated from ܰሺߤ଴, Σሻ distribution as 

those in group 0. The 5 genes simulated from multivariate mixture 

models represent those genes that are differentially expressed. They 

are the genes whose expression levels are believed to be strongly 

related to the tumour group. The remaining genes that were 

simulated from ܰሺߤ଴, Σሻ densities constitute the genes with relatively 

low expression levels, but not necessarily zero, only that their 

expression levels are not as strong as those in the former group. The 

covariance matrix Σ defined as Σ ൌ ൛σ୧୨ൟ, has a block structure such 

that  
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                                        σ୧୨ ൌ ൜0.2, ݂݅ |݆ െ ݅| ൑ 5
 (3.1.1)                                ݁ݏ݅ݓݎ݄݁ݐ݋     ,0

The variance-covariance formulation in (3.1.1) is to allow for some 

level of correlations among the simulated genes, typifying a real 

gene expression data sets.   

The whole data set we simulated is of dimension ݊ ൈ ሺ100 ݍ ൈ 1000ሻ, 

݊ ൏  as usually the case with microarray data. This is the data we ,ݍ

have used to test-run our proposed k-SS method and the data was 

use for further analysis at various stages in this thesis.  

In what follows, we provided the distribution of the test statistics 

used for the construction of our sequential test procedure.   

3.2 Determining the critical values  ܥఈ
௦ of the ݇-SS tests 

As established in Chapter 2, the ߜመ௝ೞ,  ݆ ൌ 1, … , ݍ െ ݏ ,1 ൌ 1,2, are the 

differences of two minimum average MERs between any successive 

pairs of selection steps ݆ and ݆ ൅ 1 in the construction of our 

sequential test procedures.  However, the estimates of the critical 

values ܥఈ
ଵ and ܥఈ

ଶ simply written as ܥఈ
௦, for ݏ ൌ 1,2, as required by our 

test procedures in (2.4.34), (2.4.35) and (2.4.50), (2.4.51) respectively 

depend on the theoretical distribution of the test statistic ߜመ௝ೞ or 

ܼఋ෡ೕೞ ൌ
ఋ෡ೕೞିாቀఋ෡ೕೞቁ

ටఙమቀఋ෡ೕೞቁ
 designed for the tests. Based on the methodologies 

adopted for the construction of our k-SS procedure, we highly 

suspected that neither of the test statistics ߜመ௝ೞ or ܼఋ෡ೕೞ  may be fitted 

by the Gaussian distribution as earlier assumed. Therefore, to 

determine the true distribution of ߜመ௝ೞ, we developed a set of 

algorithms to simulate the ߜመ௝ೞ ൌ േ ቀ ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభ ቁߴ

estimates for ݏ ൌ 1 or 2 respectively according to our proposed k 
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sequential selection and prediction procedures. The simulated 

microarray data matrix of 100 samples by 1,000 genes according to 

the scheme presented in Section 3.1 is used for simulating the  ߜመ௝ೞ 

values.  

The values of the two average MER differences ߜመ௝ೞ ൌ േ ቀ ҧመ௠భ,௠మ,…,௠ೕߴ െ

ݏ ҧመ௠భ,௠మ,…,௠ೕశభሻ, forߴ ൌ 1 or 2, [ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ ݏ ҧመ௠భ,௠మ,…,௠ೕశభ forߴ ൌ 1, 

መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ ݏ ҧመ௠భ,௠మ,…,௠ೕ forߴ ൌ2] were simulated at 50, 100, 

200, 500 and 1000 sample sizes according to our k-SS procedures. 

The R code we developed for simulating the ߜመ௝ೞ values is presented in 

Appendix B.4.  

To confirm our suspicion that the Gaussian density might not be 

suitable to fit the ߜመ௝ೞ values, we compared the empirical distribution 

(red) of 1000 simulated ߜመ௝భ ’s (for ݏ ൌ 1) with the theoretical density 

function of the normal distribution (blue) (see Fig 3.1). The 

maximum likelihood estimates of the two parameters ߤ and ߪଶ of the 

normal distribution (estimated from the simulated ߜመ௝భ data) are 

computed to be ̂ߤ ൌ 0.0069 and ߪොଶ ൌ 0.0002. The histogram (green) of 

the raw ߜመ௝భ data is equally presented in Fig 3.1. From the results 

displayed in Fig 3.1, it is obvious that the true distribution of the ߜመ௝ೞ 

is not Gaussian as earlier assumed. This is clearly evident from the 

deviation of the theoretical Gaussian density function (blue) from 

the empirical distribution (red) of the ߜመ௝భ data in Fig 3.1. This lack of 

Gaussian fit is equally revealed by the quantile-quantile (Q-Q) plot 

of the simulated ߜመ௝భ data as provided again in Fig 3.1.  

More specifically, the empirical distribution of the ߜመ௝భ data obviously 

suggested a typically skewed distribution for the ߜመ௝ೞ ’s in contrast to 
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the symmetry property that characterize a typical Gaussian 

distribution. For clarity purposes however, we presented in Fig 3.2, 

the empirical distributions (histograms and line graphs) of the ߜመ௝ೞ 

using the simulated 1,000 ߜመ௝ೞ data for 1 = ݏ and 2. It can be easily 

observed from the two plots in Fig 3.2 that the empirical distribution 

of the ߜመ௝భ data (left) is positively skewed while that of ߜመ௝మ data (right), 

though similar to that of ߜመ௝భ, is negatively skewed. 

 
Fig 3.1: The plots in the left present the empirical (red) and the theoretical Normal 
[N(0.0069,0.0002)] (blue) distributions fitted to the simulated ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ  െ  ҧመ௠భ,௠మ,…,௠ೕశభ (theߴ
differences of minimum mean MERs) data at 1,000 sample size. The parameters of the Normal 
distribution are  obtained  by  Maximum Likelihood Estimation (MLE) using the simulated ߜመ௝భ data.  
                   The Q-Q plot (right) clearly indicated lack-of-fit of normal density to the ߜመ௝భ data. 

 
Fig 3.2: The empirical distributions of the simulated 1000 ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ  െ  ҧመ௠భ,௠మ,…,௠ೕశభ for s = 1ߴ
(left) and ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ ൌ ݏ ݎ݋݂ ҧመ௠భ,௠మ,…,௠ೕߴ  2 ሺݐ݄݃݅ݎሻ(differences of minimum mean MERs) 

data. 
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After several considerations given to some of the common probability 

distribution functions like Gamma, Exponential, lognormal, Weibull 

or Beta as well as the Skew-Laplace distribution as used by Fieller 

& Flenley (1992) for the distribution of particle size to fit ߜመ௝ೞ data, 

our simulation studies finally revealed that the true distribution of 

the ߜመ௝ೞ data, ݏ ൌ 1 or 2, belong to the Skew-Normal parametric class 

of density functions originally due to Azzalini (1985). 

The Skew-Normal (SN) densities were developed to capture the 

continuous variations from normality to non-normality. It is a 

density function for normal-like data but with lack of symmetry. In 

what follows, we present the basic theoretical formulations of this 

distribution and its relevance to our situation under study. 

Let ߶ሺݖሻ be the standard normal density function of random variable 

ܼ defined by ߶ሺݖሻ ൌ  ሻ be its distributionݖߣand Φሺ ߨଶ/2ሻ/√2ݖሺെ݌ݔ݁

function but evaluated at ݖߣ. Thus, it is obvious that Φሺݖߣሻ ൌ

׬ ߶ሺݐሻ݀ݐఒ௭
ିஶ . If another density function is defined by                         

߶ሺݖ; ሻߣ ൌ 2߶ሺݖሻΦሺݖߣሻ, then, under this new formulation, random 

variable ܼ is said to have a skew-normal (SN) density with 

parameter ߣ, Azzalini (1985,1986). Thus, we have; 

                                 ߶ሺݖ; ሻߣ ൌ ଶ
√ଶగ

ଶ/2ሻݖሺെ݌ݔ݁ ׬ ߶ሺݐሻ݀ݐఒ௭
ିஶ       (3.2.1) 

That is, ܼ~ܵܰሺߣሻ and in line with the usual ܰሺ0,1ሻ notation used to 

denote the standard normal variable ܼ, the (standard) skew-normal 

variate ܼ with shape parameter ߣ can be equally written as 

ܼ~ܵܰሺ0,1,  ሻ which literally translates to a skew-normal randomߣ

variable ܼ with location parameter = 0, scale parameter = 1 and 

shape parameter = ߣ. The value of ߣ determines the shape of the 

density function ߶ሺݖ;  increases, the skewness of ߣ ሻ. As the value ofߣ
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the function also increases and positive values of ߣ provide positive 

skewness and vice-versa.  

From (3.2.1), the cumulative distribution function (cdf) of ߶ሺݖ;  ሻ canߣ

be obtained as 

                           Φሺݖ; ሻߣ ൌ 2 ׬ ׬ ߶ሺݒሻ߶ሺݑሻఒ௭
ିஶ

௭
ିஶ ݀ሺݒሻ݀ሺݑሻ                (3.2.2) 

The histograms and density plots of 104 samples drawn from ܵܰሺߣሻ 

family in (3.2.1) at ߣ ൌ 5 and -5 are presented in Fig 3.3. 

 
Fig 3.3: The histograms and density plots of 10,000 samples simulated from the Skew-Normal 
                               density SN(ߣ) with shape parameters 5 = ߣ (left) and 5- = ߣ (right). 

The ܵܰ density in (3.2.1) enjoys similar properties of the normal 

distribution except for symmetry. However, if ߣ ൌ 0, it is obvious 

from (3.2.1) that ߶ሺݖ; 0ሻ ൌ ߶ሺݖሻ, the standard normal density. For 

any quantity ߦ defined as ߦ ൌ 1√/ߣ ൅  ଶ therefore, both the mean andߣ

variance of ܼ are respectively given as  ܧௌேሺܼሻ ൌ ඥ2/ߦߨ and ௌܸேሺܼሻ ൌ

1 െ  Azzalini (1985). Further details on the distributional ,ߨ/ଶߦ2

properties of ߶ሺݖ;  ,ሻ could be found in Azzalini (1985, 1986, 2001ߣ

2005, 2006), Azzalini & Capitanio (1999) and Azzalini et al (2003). 

After the original work of Azzalini and his co-workers on the 

development of the skew-normal class of distributions, several other 

variants and modifications of the SN probability functions have been 
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developed, see, for example, Gupta et al (2004), Arellano-Valle et al 

(2004), Armando et al (2007) among others.  

Now, if we consider a transformation on SN variate ܼ of the form 

መ௝ೞߜ                                               ൌ ௦ߤ  ൅        ௦ܼ                                   (3.2.3)ߪ

then, random variable ߜመ௝ೞ has a SN distribution with location and 

scale parameters ߤ௦ and ߪ௦ (different from 0 and 1) respectively, and 

shape parameter still remain ߣ.                                               

From (3.2.3), it is easy to verify that, 

መ௝ೞ൯ߜ൫ܧ                ൌ ௦ߤ ൅ ሺ1ߨ௦√2 /ඥߪߣ ൅  ଶሻ                   (3.2.4)ߣ

and that 

      ܸ൫ߜመ௝ೞ൯ ൌ ௦ߪ
ଶሾ1 െ ሺ1ߨ/ଶߣ2 ൅    ଶሻሿ               (3.2.5)ߣ

Thus, the distribution of random variable ߜመ௝ೞ can be written as  

߶൫ߜመ௝ೞ; ,௦ߤ ,௦ߪ  ,௦ߤ = ൯, a skew-normal density with location parameterߣ

scale parameter = ߪ௦ and shape parameter = ߣ or as  

,௦ߤመ௝ೞ~ܵܰሺߜ ௦ߪ
ଶ, ߣ ሻ. Ifߣ ൌ 0, it is obvious again from (3.2.4) and (3.2.5) 

that ܧ൫ߜመ௝ೞ൯ ൌ መ௝ೞ൯ߜ௦ and ܸ൫ߤ ൌ ௦ߪ
ଶ  and variable ߜመ௝ೞ would become a 

(symmetric) normal random variable, i.e. ߜመ௝ೞ~ܰሺߤ௦, ௦ߪ
ଶሻ.  On the other 

hand, when ߤ௦ ൌ 0 and ߪ௦ ൌ 1, it follows from (3.2.3) to (3.2.5) that 

መ௝ೞߜ ൌ ܼ~ܵܰሺߣሻ. Hence, it follows that given any skew-normal variate 

 ,ߣ ,௦ߪ ,௦ߤ መ௝ೞ with specified location, scale and shape parametersߜ

respectively, the statistic ܼఋ෡ೕೞ ൌ
ఋ෡ೕೞିாቀఋ෡ೕೞቁ

ට௏ቀఋ෡ೕೞቁ
 would have a skew-normal 

distribution with  location, scale and shape parameters 0, 1, and ߣ 

respectively simply written as ܼఋ෡ೕೞ ~ܵܰሺߣሻ as defined in (3.2.1).   
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Obviously, the statistic ܼఋ෡ೕೞ ൌ
ఋ෡ೕೞିாቀఋ෡ೕೞቁ

ට௏ቀఋ෡ೕೞቁ
  is in the form of the test 

statistics (2.4.33) to (2.4.35) constructed for our sequential 

hypothesis tests of (2.4.32) and (2.4.49) with ߜመ௝ೞ ൌ േ ቀ ҧመ௠భ,௠మ,…,௠ೕߴ െ

ݏ ҧመ௠భ,௠మ,…,௠ೕశభሻ, forߴ ൌ 1 or 2 respectively (i.e. ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ

ݏ ҧመ௠భ,௠మ,…,௠ೕశభ forߴ ൌ 1 and ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ ݏ ҧመ௠భ,௠మ,…,௠ೕ forߴ ൌ 2). 

Hence, to determine the critical values ܥఈ
௦, ݏ ൌ 1 or 2, of the test 

statistics ߜመ௝ೞ as used in (2.4.36) for ݏ ൌ 1 and (2.4.50) for ݏ ൌ 2, it is 

sufficient to establish that random variable ߜመ௝ೞ has a skew-normal 

distribution with location, scale and shape parameters ߤ௦, ߪ௦ and ߣ 

respectively [i.e. ߜመ௝ೞ~ܵܰሺߤ௦, ௦ߪ
ଶ,  ሻ] or equivalently that theߣ

standardized variate ܼఋ෡ೕೞ  has a (standard) skew-normal density 

function with shape parameter ߣ [i.e. ܼఋ෡ೕೞ ~ܵܰሺߣሻ] as earlier stated.  

Following our simulation procedures, it is quite easy to establish 

that random variable ߜመ௝ೞ actually follows the skew-normal 

distribution. Firstly, we fitted the skew-normal density 

߶൫ߜመ௝ೞ; ,௦ߤ ,௦ߪ ݏ ,መ௝ೞߜ ൯ to the simulatedߣ ൌ1, 2,  data at 50, 100, 200, 500 

and 1000 sample sizes. The maximum likelihood estimates (MLE) of 

parameters ߤ௦, ߪ௦
ଶ,  ߣ, of each of the five fitted skew-normal densities 

were estimated using expectation-maximization (EM) algorithm. 

Thereafter, random sample of size 10,000 were drawn from each of 

the fitted SN densities. The empirical distributions (histograms and 

line graphs) of the ߜመ௝ೞ data (under all the five samples) are plotted 

based on the 10,000 samples drawn. These are respectively 

compared with the theoretical (skew-normal) densities using the 

estimated parameters. Due to space consideration, we only present 

in Fig 3.4, the empirical (red) and theoretical (blue) density plots as 
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well as the respective histograms (green) of the ߜመ௝ೞ data, for ݏ ൌ 2, at 

all the five chosen sample sizes. The quantile-quantile (Q-Q) plot of 

each of the simulated ߜመ௝ೞ data sets is equally presented in Fig 3.4. 

From the various density plots, the closeness of both the empirical 

(observed) and theoretical (skew-normal) distributions can be easily 

observed, therefore, confirming the fitness of the skew-normal 

density to the ߜመ௝ೞ data. This result is corroborated by the respective 

Q-Q plots as displayed in Fig 3.4. 

Furthermore, among the popular statistical test procedures that are 

commonly adopted to establish whether or not a set of data comes 

from a specified theoretical distribution are the Kolmogorov-Smirnov 

test (Chakravart et al, 1967), Anderson-Darling goodness-of-fit test 

(Stephens,1974) and the Chi-square goodness-of-fit test (Snedecor & 

Cochran, 1989) among others. While the approach of Kolmogorov-

Smirnov test has been reported to be highly sensitive at rejecting 

that a data comes from a given theoretical distribution even when it 

does, (http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm), the method of Anderson-

Darling goodness-of-fit test only exists for a very few distribution 

which does not include the skew-normal density to the best of our 

knowledge. Therefore, in addition to the probability density function 

(pdf) and the Q-Q plots presented in Fig 3.4, we equally constructed 

the Chi-square goodness-of-fit test to determine the fitness of the 

Skew-Normal density to the simulated ߜመ௝ೞ data. The results from the 

Chi-square test for both ߜመ௝భ and ߜመ௝మ data are presented in Tables 3.1a 

& 3.1b respectively. All the results clearly confirmed the 

appropriateness of the skew-normal distribution to fit the ߜመ௝ೞ data.  
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Fig 3.4: The plots in the left showed the empirical (red) and the theoretical (Skew-Normal, blue) 
distributions of the ߜመ௝మ ൌ …,ҧመ௠భ,௠మߴ ,௠ೕశభ െ  ,ҧመ௠భ,௠మ,…,௠ೕ data at the chosen five sample sizes of 50, 100ߴ
200, 500, and 1000. The estimates of location, scale, and shape parameters ߪ ,ߤ and ߣ of the skew-
normal   densities  are   indicated  for   each  plot.  The   corresponding   Q-Q  plots  (right)  for   each  
                                                              sample are  also presented. 
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n = 100 

n = 50 

ߤ̂ ൌ 0.0073  

ොߪ ൌ 0.0195         

መߣ ൌ െ3.0212      

n = 200 

ߤ̂ ൌ 0.0082  

ොߪ ൌ 0.0170         

መߣ ൌ െ4.5873         

n = 500 

ߤ̂ ൌ 0.0078  

ොߪ ൌ 0.0204         

መߣ ൌ െ4.8565            

n = 1000 

ߤ̂ ൌ 0.0082  

ොߪ ൌ 0.0205         

መߣ ൌ െ3.6002       

ߤ̂ ൌ 0.0082  

ොߪ ൌ 0.0217         

መߣ ൌ െ4.1532      
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   No. of ࢾ෡࢐૚ ’s 
(n) simulated 

Estimated parameters of Skew-Normal density 
fitted to ࢾ෡࢐૛ data Chi-square goodness-of-fit test 

Location 
parameter 

Scale 
parameter 

Shape 
parameter 

Critical 
values p-values 

50 -0.0064 0.0180 3.9363 0.1445 1.0000 

100 -0.0072 0.0200 4.9813 1.6946 0.9890 

200 -0.0079 0.0197 3.1463 0.1150 0.9998 

500 -0.0084 0.0216 4.0917 0.0665 1.0000 

1000 -0.0086 0.0212 4.0244 0.1183 1.0000 

Average -0.0077 0.0201 4.0360   
 

Table 3.1a: The Chi-square goodness-of-fit test to establish the fitness of the simulated ߜመ௝భ ൌ
ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభ data to the Skew-Normal distribution. The Chi-square estimates and theߴ

corresponding p-values are respectively shown in the last two columns of the table. The parameter 
estimates of the fitted SN densities presented are computed using 10,000 random samples drawn 
from the fitted SN distributions for each respective simulated ߜመ௝భ data. All results indicated  that the  
                                                         Skew-Normal density fits the ߜመ௝భ data.  

No. of   ࢾ෡࢐૛ ’s 
(n) simulated 

Estimated parameters of Skew-Normal density 
fitted to ࢾ෡࢐૛ data Chi-square goodness-of-fit test 

Location 
parameter 

Scale 
parameter 

Shape 
parameter 

Critical 
values p-values 

50 0.0073 0.0195 -3.0212 0.1907 0.9999 

100 0.0082 0.0170 -4.5873 0.1278 0.9980 

200 0.0078 0.0204 -4.8565 0.2692 1.0000 

500 0.0082 0.0205 -3.6002 0.1442 1.0000 

1000 0.0082 0.0217 -4.1532 0.1380 1.0000 

Average 0.0075 0.0198 -4.0437   
 

Table 3.1b: The Chi-square goodness-of-fit test to establish the fitness of the simulated ߜመ௝మ ൌ
ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕ data to the Skew-Normal distribution. The Chi-square estimates and theߴ

corresponding p-values are respectively shown in the last two columns of the table. The parameter 
estimates of the fitted SN densities presented are computed using 10,000 random samples drawn 
from the fitted SN distributions for each respective simulated  ߜመ௝మ data. All results indicated that the 
                                                      Skew-Normal density fits the ߜመ௝మ data.  

The family of the skew-normal density functions is implemented in 

the sn library of R statistical package. We have employed this to fit 

the skew-normal distribution to all the simulated ߜመ௝ೞ data sets. 

It can be observed from Tables 3.1a & b that, except for the sign 

differences in both location and shape parameters, all the estimated 

parameters of the skew-normal densities for both ߜመ௝భ and ߜመ௝మ variates 

are essentially similar at each of the selected sample sizes. These are 

clearly shown by the respective density plots in Fig 3.2. While ߜመ௝భ 

has more positive values than negatives and is positively skewed, ߜመ௝మ 

has more negative values than the positives and is negatively 
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skewed. More justifications are provided by the Box-and-Whiskers 

plots of the simulated ߜመ௝భ and ߜመ௝మ values at the five selected sample 

sizes as shown in Fig 3.5a and Fig 3.5b respectively. This is more 

conspicuously presented by the box-plot of the ߜመ௝ೞ data, ݏ ൌ 1,2, at 

1000 sample size as shown in Fig 3.5c. Except for their sign 

differences due to skewness as indicated in all the plots, the two ߜመ௝ೞ 

data have similar distribution patterns but in the opposite sense. 

 

 

Fig 3.5 a &b: The box-plot of the simulated minimum average MER differences, ߜመ௝భ (a) and ߜመ௝మ (b)   
                                                     data at the selected five sample sizes. 

As previously discussed in Chapter 2 under the two ߜመ௝ೞ k-SS 

formulations, ݏ ൌ 1, 2,  the strict inequality ߴҧመ௠భ,௠మ,…,௠ೕశభ ൏  ҧመ௠భ,௠మ,…,௠ೕߴ

shall be observed as long as the selection of additional gene 

continues to improve the prediction accuracy of the current models. 

This will continue to yield positive ߜመ௝భ values (or negative  ߜመ௝మ values) 

at each successive selection steps until no further improvement is 

brought into the model despite the inclusion of additional gene. At 

such selection levels, the condition that ߜመ௝భ ൑ 0 (or ߜመ௝మ ൒ 0) shall hold. 
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These are the pictures displayed in Fig 3.2 for the empirical 

distributions of both ߜመ௝భ and ߜመ௝మ simulated data sets.  

 
Fig 3.5c: The box-plot of the simulated minimum average MER differences for both ߜመ௝భ (delta1) and  
 .መ௝మ (delta2) at 1000 sample size showing the effects of skewness under the two formulationsߜ       

Now that it has been established that the ߜመ௝ೞ data have the skew-

normal distribution, it is therefore obvious that the test statistics           

ܼఋ෡ೕೞ ൌ
ఋ෡ೕೞିாቀఋ෡ೕೞቁ

ට௏ቀఋ෡ೕೞቁ
ݏ , ൌ 1, 2, ݆ ൌ 1, … , ݍ െ 1, as stated for testing one 

directional hypotheses sets (2.4.32) and (2.4.49) are also distributed 

skew-normal. To compute the critical values ܥఈ
௦ therefore, we only 

need to determine the shape parameters of the skew-normal 

densities ߶൫ߜመ௝భ; ;መ௝మߜଵ൯ and ߶൫ߣ ߶ ଶ൯ or simply that ofߣ ቀܼఋ෡ೕభ ;  ଵቁ andߣ

߶ ቀܼఋ෡ೕమ ;  ଶቁ. We recall that the skewness of the two SN densitiesߣ

߶ ቀܼఋ෡ೕభ ; ߶  ଵቁ andߣ ቀܼఋ෡ೕమ ;  ଶቁ are different only by their signs, suchߣ

that when ߜመ௝భ is positively skewed by ߣଵ magnitude ߜመ௝మ would be 

negatively skewed by ߣଶ magnitude with ߣଶ ൌ െߣଵ. Therefore, if the 

random variable ܼఋ෡ೕభ  is distributed skew-normal with shape 

parameter ߣଵ i.e. ܼఋ෡ೕభ ~ܵܰሺ ߣଵሻ, it can be easily shown (Azzalini, 1985, 

pp172) that random variable ܼఋ෡ೕమ  would be distributed skew-normal 

with shape parameter ߣଶ i.e. [ܼఋ෡ೕమ ~ܵܰሺߣଶሻ], ߣଶ ൌ െߣଵ. From this 
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relationship, another basic property of ܵܰ family of distributions as 

adapted here, using (3.2.2) equally holds that  

     Φ ቀܼఋ෡ೕభ ; ଵቁߣ ൌ 1 െ Φ ቀܼఋ෡ೕమ ; ଶቁߣ ՞ Φ ቀܼఋ෡ೕభ ; ଶቁߣ ൌ 1 െ Φ ቀܼఋ෡ೕమ ;  ଵቁ(3.2.6)ߣ

Azzalini (1985, pp174), where the absolute value of the ‘joint’ shape 

parameter |ߣ௦|, ݏ ൌ 1,2, that satisfies (3.2.6) is to be determined.  

To this end therefore, we shall let the joint estimate of the absolute 

value of the shape parameter for both ߶൫ߜመ௝భ; ;መ௝మߜଵ൯ and ߶൫ߣ -ଶ൯ skewߣ

normal densities be denoted by כߣ෡ .  This can be determined by taken 

the average of the absolute values of all the estimated shape 

parameters of the skew-normal densities ߶൫ߜመ௝భ; ;መ௝మߜଵ௠൯ and ߶൫ߣ  ଶ௠൯ߣ

fitted for simulated ߜመ௝ೞ data sets, ݏ ൌ 1,2, at ݉ chosen number of 

sample sizes, ݉ ൌ 1, … , ෡כߣ ,Thus .ܯ  is obtained by 

෡כߣ                                   ൌ ଵ
ଶெ

൫∑ หߣመଵ௠หெ
௠ୀଵ ൅ ∑ หߣመଶ௠หெ

௠ୀଵ ൯                  (3.2.7) 

Based on the results of our simulations, the estimates of each of the 

ݏ ,௦௠ߣ ൌ 1,2, ݉ ൌ 1, … , 5, are provided in Tables 3.1a & 3.1b for 

simulated ߜመ௝భ and ߜመ௝మ data sets respectively. From these results, the 

value of כߣ෡  is estimated to be כߣ෡ ൌ ૝. ૙૜ૢૡ using (3.2.7). Henceforth, 

this value of כߣ෡  shall be used as the true value of parameter כߣ of the 

skew-normal densities ߶ ቀܼఋ෡ೕభ ; ߶ ቁ andכߣ ቀܼఋ෡ೕమ ;  ቁ for the criticalכߣ

values  ܥఈ
ଵ ൌ  ܼଵିఈሺכߣ෡ ሻ and ܥఈ

ଶ ൌ ܼଵିఈሺെכߣ෡ ሻ of our k-SS test procedures 

(2.4.32) and (2.4.49) respectively at any given value of ߙ. 

Therefore, for testing the hypothesis sets (2.3.32) and (2.4.49) the 

respective test statistics ܼఋ෡ೕభ ൌ
ఋ෡ೕభିாቀఋ෡ೕభቁ

ට௏ቀఋ෡ೕభቁ
 and ܼఋ෡ೕమ ൌ

ఋ෡ೕమିாቀఋ෡ೕమቁ

ට௏ቀఋ෡ೕమቁ
 have the 

skew-normal distributions with shape parameters כߣ and െכߣ 
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respectively with כߣ estimated as כߣ෡ ൌ ૝. ૙૜ૢૡ and ܧ൫ߜመ௝ೞ൯ ൌ 0 under 

ݏ ,଴௦௝ܪ ൌ 1,2, ݆ ൌ 1, … , ݍ െ 1. From the distributions of the two test 

statistics ܼఋ෡ೕೞ  given above, one can easily determine the estimates of 

their critical values ܥఈ
௦ for our k-SS test procedures in (2.4.32) and 

(2.4.49) for ݏ ൌ 1 and 2 respectively. These are presented in what 

follows.  

Let us consider one directional hypothesis set given in (2.4.32), i.e. 

௝భߜ :଴ଵ௝ܪ ൑ 0 vs. ܪ௔ଵ௝ : ௝భߜ ൐ 0, for ݆ ൌ 1, … ݍ െ 1. Since the test statistic 

ܼఋ෡ೕభ  as used in (2.4.33) for this test is distributed skew-normal, 

ܼఋ෡ೕభ ~ܵܰሺכߣሻ, then, at any significance level ߙ (to be determined by 

cross-validation), the critical values ܥఈ
ଵ for this test, as used in 

(2.4.34) through (2.4.37), shall be estimated by  

ఈܥ                                       
ଵ ൌ  ܼଵିఈሺכߣ෡ ሻ                                 (3.2.8) 

where ܼଵିఈሺכߣ෡ ሻ is the quantile of the skew-normal distribution 

߶ ቀܼఋ෡ೕభ ;    .ߙ computed at significance level כߣ ቁ with shape parameterכߣ

Similarly, under the one directional hypothesis set in (2.4.49), i.e. 

መ௝మߜ :଴ଶ௝ܪ ൒ 0 vs. ܪ௔ଶ௝ : መ௝మߜ ൏ 0, each of the test statistic ܼఋ෡ೕమ  for the test 

is equally distributed skew-normal, ܼఋ෡ೕమ ~ܵܰሺെכߣሻ, and at any given 

significance level ߙ, the critical values ܥఈ
ଶ for this test, as defined in 

(2.4.50) and (2.4.50), shall be estimated by  

ఈܥ                                     
ଶ ൌ  ܼଵିఈሺെכߣ෡ ሻ                                (3.2.9) 

where ܼଵିఈሺെכߣ෡ ሻ is the quantile of the skew-normal density 

߶ ቀܼఋ෡ೕమ ;  also to ߙ at significance level כߣቁ with shape parameter െכߣ

be determined by cross-validation.  
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Having determined the theoretical distributions of ܼఋ෡ೕೞ  or ߜመ௝ೞ, ݏ ൌ 1,2, 

we then present in what follows, the complete form of our k-SS 

algorithm. However, it is to be noted that the implementation of 

either of two k-SS test procedures in (2.4.32) or (2.4.49) on a given 

microarray data set would essentially yield similar results. 

The k-SS algorithm 

Input: Training samples ்݊ோ and test samples ்݊ா of ݊ biological subjects with binary 
response group ܻ א ሼ0,1ሽ and ݍ-dimensional vector ࢄ ൌ ሺ ଵܺ, … , ܺ௤ሻ் of genes whose 
expression levels are measured on all the ݊ samples, ݊ ൌ ்݊ோ ൅ ்݊ா. 
Out-put:  The k-SS classifiers and various performance indices. 

Step 0-0: #Search for the first best gene to be selected into the classification model  
    among all the ݍ genes. 

 
i) Fit logit model, ݈ݐ݅݃݋൫ߨሺ ௝ܺሻ ൯ ൌ ߙ ൅ ݆ ,௝ܺ௝ߚ ൌ 1, … ,  on individual gene ௝ܺ ,ݍ

using the training sample ்݊ோ. 
ii) Construct the classifiers ߮൫ ௝ܺ൯ ൌ หݕ൫̂݌ ௬ݔܽ݉݃ݎܽ  ௝ܺ൯ for each gene ௝ܺ, ݆ ൌ 1, … ,  and ,ݍ

predict the two class labels (0,1) of the test sample ்݊ா via the classification scheme; 

ො߮௜൫ ௝ܺ൯ ൌ ቊ
1,   if ̂݌௜൫1ห ௝ܺ൯  ൒  0.5 
0,   if ̂݌௜൫0ห ௝ܺ൯  ൏  0.5

 

iii) Base on ii) above, compute the misclassification error rates (MERs), ߴመ௝ ൌ
ଵ

௡೅ಶ
∑ ቂܫ൛ఝෝ೔൫௑ೕ൯ஷ௒೔ൟቃ , 0 ൑ መ௝ߴ ൑ 1.௡೅ಶ

௜ୀଵ  ݆ ൌ 1, … , ሼ.ሽܫ for each ௝ܺ, where ,ݍ ൌ 1 if the 

argument is true and 0 otherwise. 
iv) Draw R replicates of training sample ்݊ோ randomly, without replacement, 

from the original ݊ sample and repeat steps i) to iii) on each sub-sample for 
each gene ௝ܺ and compute the average MERs  
ҧመ௝ߴ              ൌ ଵ

ோൈ௡೅ಶ
∑ ∑ ቂܫ൛ఝෝ೔ೝ൫௑ೕ൯ஷ௒೔ೝൟቃோ

௥ୀଵ
௡೅ಶ
௜ୀଵ , ݆ ൌ 1, … ,  .ݍ

v) Define the minimum average MER from iv) by 
ҧመ௠భߴ ൌ ҧመሺଵሻߴ ൌ ݉݅݊ ቀ ,ҧመሺଵሻߴ ,ҧመሺଶሻߴ … ,  ҧመሺ௤ሻቁ and select the corresponding geneߴ

ܺ௠భ ൌ ሺܺଵሻ א  ൛ܺሺଵሻ, ሺܺଶሻ, … , ܺሺ௤ሻൟ as the first gene candidate into our 
classification model. 

Step 1-0:  #Search for the next best gene to be included with gene ܺ௠భ in the 
                    model 

i) For the remaining ݍ െ 1 genes, construct classification rules as in Step 0-0 i) 
to v) above but using each gene pair ܺ௠భ ሺܺଶሻ, …,  ܺ௠భ ሺܺ௤ሻ. Obtain the 
minimum average MERs defined as   
ҧመ௠భ௠మߴ                   ൌ ݉݅݊ ቀ ҧመ௠భሺమሻߴ , ,ҧመ௠భሺయሻߴ … ,                 ҧመ௠భሺ೜ሻቁߴ
which is provided by the corresponding gene pair 
ܺ௠భܺ௠మ א ൛ܺ௠భ ܺሺଶሻ, ܺ௠భ ܺሺଷሻ, … , ܺ௠భ ܺሺ௤ሻൟ.  

ii) Select gene ܺ௠మ into our classification model which already has gene ܺ௠భ to 
form gene pair ܺ௠భܺ௠మ in the new classification model.  
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Step 1-1: #Test for the significance of the gain in prediction accuracy of the 
                  current model due to the inclusion of gene ܺ௠మ. 
 
i.) Test one directional hypothesis test of the form: 

ణߤ :଴ଵଵܪ
௠భ െ ణߤ

௠భ,௠మ ൑ 0  vs. ܪ௔ଵଵ: ߤణ
௠భ െ ణߤ

௠భ,௠మ ൐ 0 
       ՜ : ଴ଵଵܪ ଵభߜ ൑ 0  vs. ܪ௔ଵଵ: ߜଵభ ൐ 0 
where ߜଵభ ൌ ణߤ 

௠భ െ ణߤ
௠భ,௠మ with its unbiased estimator given by  

መଵభߜ ൌ ҧመ௠భߴ െ  .ҧመ௠భ,௠మߴ

ii.) Use the test statistic, ܼఋ෡భభ ൌ ఋ෡భభିாሺఋ෡భభሻ

ට௏൫ఋ෡భభ൯
~ܵܰሺכߣሻ,     

ܵܰሺכߣሻ ՜ Skew-Normal density with shape parameter כߣ. Under ܪ଴ଵଵ, 
መଵభ൯ߜ൫ܧ ൌ 0. 

iii.) Construct decision rules (for gene(s) selection(s)): 
At some range of significance level ߙ (determined by cross-validation), 
a.) accept ܪ଴ଵଵ (reject the selection of gene ܺ௠మ into the model)  if 

መଵభߜ ൌ ҧመ௠భߴ െ ҧመ௠భ,௠మߴ ൑ ܼଵିఈሺ4.0398ሻටߪଶ൫ߜመଵభ൯ 

b.) reject ܪ଴ଵଵ (accept the selection of gene ܺ௠మ into the model) if 

መଵభߜ ൌ ҧመ௠భߴ െ ҧመ௠భ,௠మߴ ൐ ܼଵିఈሺ4.0398ሻටߪଶ൫ߜመଵభ൯ 

where ܼଵିఈሺ4.0398ሻ is the quantile of the skew-normal density at the 
estimated shape parameter כߣ෡ ൌ 4.0398. 

iv.) If the null hypothesis ܪ଴ଵଵ is rejected base on decision rule iii.)b.), retain 
gene ܺ௠మ in the model and go back to Step 1-0 in search of the next best 
gene to be added to the gene pair ܺ௠భܺ௠మ in the model. If ܪ଴ଵଵ is accepted, 
drop the selected gene ܺ௠మ from the model and stop further gene selection. 

v.) Execute Steps 1-0 (i-ii) to Step 1-1 (i-iv) repeatedly until no more gene 
satisfies the decision rule iii.)b.) above 

vi.) STOP and RETURN the k-sequentially selected (k-SS) informative genes, 
݇ א ሼ1, . . ,  .ሽ and various performance indicesݍ

3.3 Applications of ࢑-SS method 

The new k-SS method proposed here is first applied here on the 

simulated microarray dataset. The method is later applied on eleven 

published microarray data sets as presented in Chapters 4 and 5. 

Details of all the data sets used are provided in the next Chapter. 

Since the 100 by 1,000 data matrix we simulated here represents a 

typical microarray data set, appropriate data normalization and 

standardization as discussed in Chapter 1 are carried out prior to 

analysis of the data such that each vector of genes has zero mean 

and unit standard deviation across the mRNA samples. This is 

followed by preliminary gene selection using the student-t statistics 

based on the procedures described in Section 1.4.2. Using the range 
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of the observed ݌-values from the data as a guide, the cut-point       

 is taken to be 0.05. The univariate filtering using this כ݌ ,value-݌

student-t method hereby reduced the original ݍ ൌ 1000 genes to   

כݍ ൌ 55 genes.  

We begin the implementation of our ݇ sequential gene selection (݇-

SS) method by random splitting of the mRNA sample size ݊ using 

the splitting ratio 19:1 for ்݊ோ (training sample) : ்݊ா (test sample) 

respectively as discussed in Section 2.1. Therefore, with the 

simulated mRNA sample size ݊ ൌ 100, ்݊ோ ൌ 95 would be used to 

build our classifier while  ்݊ா ൌ 5 would be used to evaluate its 

performance.  

Sub-sampling scheme of Monte Carlo Cross-Validation (MCCV) is 

adopted to ensure stability of results and minimize bias in our 

estimates. By this, random sample of size ்݊ோ ൌ 95 is repeatedly 

drawn from the entire ݊ ൌ 100 sample 5000 times without 

replacement and univariate logit model is fitted on each of the 

כݍ ൌ 55 genes using each selected ்݊ோ sample. Each of the fitted 

model is used to predict the response class labels ݕ א ሼ0,1ሽ of the 

remaining left-out ்݊ா ൌ 5 samples from which the misclassification 

error rates (MERs) are computed. Thereafter, the average MERs 

,ҧመଵߴ ,ҧመଶߴ … ,  ҧመହହ, averaged over the entire 5000 repetitions, areߴ

computed. All the 55 genes are then ordered in ascending order of 

their averaged MER estimates. This resulted into the following 

genes sequence and their respective average MER estimates (in 

parenthesis): g5(0.1737), g4(0.18170),…,V879(0.4850), V876(0.5171). 

It should be recalled that the genes labelled g1 to g5 are the 5 

simulated genes with up-regulated expression values while genes 

labelled V6 to V1000 are the 995 simulated genes with moderate 
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gene expressions values according to our simulation procedures as 

presented in Section 3.1.  

Base on the above estimated mean MERs sequence the ordered 

prediction performance of the genes can be vividly seen. The gene 

labelled g5 is the gene that provided the best prediction accuracy for 

having the least mean MER of 0.1737 among the 55 preliminarily 

selected genes. Hence, gene g5 is the first gene to be selected by our 

k-SS procedure.  This is then followed by searching for the next best 

gene among the remaining 54 genes to be included in the model with 

g5. We determined this by fitting the logit model on each of the 54 

gene pairs g5g4, … , g5V879, g5V876 and use the fitted model to 

predict the response category of the test samples. Here again, the 

mean MER for each prediction is computed and the gene pair that 

produces the minimum mean MER among the 54 mean MERs is 

selected for consideration into the model. At this selection step, any 

of the one directional null hypothesis set of the form ܪ଴ଵ௝: ߤణ
௠భ,௠మ,…,௠ೕ െ

ణߤ
௠భ,௠మ,…,௠ೕశభ ൑ 0 or ܪ଴ଶ௝: ߤణ

௠భ,௠మ,…,௠ೕశభ െ ణߤ
௠భ,௠మ,…,௠ೕ ൒ 0 as given in (2.4.32) 

or (2.4.49) respectively with ݆ ൌ 1  is to be tested between the two 

minimum mean MERs obtained at the previous two gene selections. 

We shall first consider the use of the hypothesis test (2.4.32) after 

which the second hypothesis test (2.4.49) shall be considered to 

illustrate the applications our ݇-SS method. It shall be finally 

established thereafter that the ݇-SS results under the two test 

formulations are essentially similar.  

Using hypothesis test (2.4.32), the test hypothesis required at this 

gene selection stage is of the form   
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ణߤ :଴ଵଵܪ
௠భ െ ణߤ

௠భ,௠మ ൑ 0  vs. ܪ௔ଵଵ: ߤణ
௠భ െ ణߤ

௠భ,௠మ ൐ 0 

           ՜                     ܪ଴ଵଵ : ଵభߜ ൑ 0  vs. ܪ௔ଵଵ: ߜଵభ ൐ 0             (3.3.1) 

where ߜଵభ ൌ ణߤ 
௠భ െ ణߤ

௠భ,௠మ. Based on the decision rules in (2.4.36) and 

(2.4.37) additional one gene would be selected and added to gene g5 

(accepting ܪ௔ଵଵ) if ߜመଵభ ൌ ҧመ௠భߴ െ ҧመ௠భ,௠మߴ ൐ ఈܥ
ଵටߪଶ൫ߜመଵభ൯, while the 

selection of additional one gene would be stopped (accepting ܪ଴ଵଵ) if 

መଵభߜ ൌ ҧመ௠భߴ െ ҧመ௠భ,௠మߴ ൑ ఈܥ
ଵටߪଶ൫ߜመଵభ൯ where ܥఈ

ଵ ൌ ܼଵିఈሺכߣ෡ ሻ is the critical 

value of the percentage points of the skew-normal distribution as 

defined in Section 3.2 at some Type I error ߙ to be determined by 

internal cross-validation.  

The value of the shape parameter כߣ෡  of the skew-normal density has 

been estimated to be 4.0398 through simulation studies in the 

previous section. This shall be used to determine ܥఈ
ଵ at each selection 

step. In a nutshell, if the null hypothesis ܪ଴ଵଵ is accepted, further 

variable selection stops, but if the alternative set ܪ௔ଵଵ is accepted, 

then, additional one gene would be included into the model and the 

search for the next best gene to be selected begins by repeating the 

above procedures.  The R code we develop to run this test procedure 

is provided in Appendix B.1. 

We would like to reiterate here again that the size ߙ of our k-SS test 

procedure is not arbitrarily fixed by us but rather, it is being 

determined through cross-validation. By this, different estimates of 

the critical values ܥఈ
ଵටߪଶ൫ߜመଵభ൯ would be computed over all possible 

values of ߙ in the interval ሾ0,1ሿ and the value(s) of ߙ at which the 

decision rule (2.4.36) is satisfied and for which the best prediction 

results are obtained becomes the size of our test.  
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Based on these criteria, additional one gene labelled “g3” is selected 

at step 1 having satisfied the decision rule ߜመଵభ ൌ ҧመ௠భߴ െ ҧመ௠భ,௠మߴ ൐

ఈܥ
ଵටߪଶ൫ߜመଵభ൯ as given by (2.4.37). Therefore, gene “g3” was added to 

gene “g5” at step 1 to make gene pair “g5, g3” in the k-SS 

classification function.  

Selection 
steps ࢐ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

૚࢐෡ࢾ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 
െഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

No. of genes 
selected Decision 

0 0.1831 - - 1 continue  

1 0.1831 0.1132 0.0701 2   

2 0.1120 0.0783 0.0337 3   

3 0.0787 0.0697 0.0090 4   

4 0.0718 0.0602 0.0116 5   

5 0.0598 0.0459 0.0139 6   

6 0.0463 0.0485 -0.0021 ൈ stop 
 

Table 3.2a: Table of results of ݇-SS classifier under the ߜመ௝భ formulations at each gene selection step 
for simulated data. Optimal selection (the best prediction result) is achieved at the fifth selection step 
at which the sixth gene is selected. The size ߙ of the ݇-SS test, determined by cross-validation, 

satisfies the range ߙ א ሺ0, 0.975ሿ. The corresponding rage of the critical value ܥఈ
ଵටߪଶ൫ߜመ଺భ൯ of the test 

statistic ߜመ଺భ for this range of ߙ is estimated as ܥఈ
ଵටߪଶ൫ߜመ଺భ൯ א ሺ∞, െ1.2081 ൈ 10ିସሿ. The six genes 

selected in order of selection steps 0,1, … ,5 are “g5”, “g3”, “V192”, “V805”, “V566”, “g2” respectively. 

At step 2, the decision rule ߜመଶభ ൌ ҧመ௠భ,௠మߴ െ ҧመ௠భ,௠మ,௠యߴ ൐ ఈܥ
ଵටߪଶ൫ߜመଶభ൯ was 

also satisfied with the selection of gene “V192”. This was again 

added to the gene pair “g5, g3” to increase the number of selected 

informative genes from two (“g5, g3”) to three (“g5, g3, V192”). The 

gene selections and response class predictions processes continue 

until step 5 at which the gene selection and classification were 

optimal. At that optimal selection step, step 5, the following six 

informative genes, “g5”, “g3”, “V192”, “V805”, “V566” and “g2”,  have 

been selected in that sequence. We present in Table 3.2a, the k-SS 

prediction results which include the minimum mean MERs and their 

differences as well as the number of gene selected at each gene 

selection step.  
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At the 6th selection step however, consideration was being given to 

the 7th gene to be selected. At this step, the minimum mean MER 

difference ߜመ଺భ ൌ ҧመ௠భ,௠మ,…,௠లߴ െ  ҧመ௠భ,௠మ,…,௠ళ was estimated given theߴ

following summary statistics: ߴҧመ௠భ,௠మ,…,௠ల ൌ ҧመ௠భ,௠మ,…,௠ళߴ ,0.0463 ൌ

መ଺భߜ ,0.0485 ൌ  െ0.0021. Also, with ܥఈ
ଵ already found to be               

ఈܥ
ଵ ൌ ܼଵିఈሺ4.0398ሻ, the estimates of the critical value ܥఈ

ଵටߪଶ൫ߜመ଺భ൯ of 

the test statistic ߜመ଺భ as given by the decision rules (2.4.36) and 

(2.4.37) with ݆ ൌ 6 has a range 

      ܼଵିఈሺ4.0398ሻ ൈ ටߪଶ൫ߜመ଺భ൯ א ሺ∞, െ1.2081 ൈ 10ିସሿ    (3.3.2) 

computed over the corresponding range of significance level ߙ, 

estimated by cross-validation, given by 

ߙ              א ሺ0, 0.975ሿ                                  (3.3.3) 

It can be easily observed from (3.3.2) that ߜመ଺భ ൌ  െ0.0021 ൏

ܼଵିఈሺ4.0398ሻ ൈ ටߪଶ൫ߜመ଺భ൯ over all the range of  ߙ as given in (3.3.3). 

Therefore, by decision rule (2.4.37), further gene selection is stopped 

and the 7th gene is excluded from k-SS classification model. This 

simply implies that, our k-SS procedure considers the relative loss in 

prediction accuracy of െ0.0021, the difference between the mean 

MER ߴҧመ௠భ,௠మ,…,௠ల ൌ 0.0463 (obtained at 5th selection step from 6 

genes) and the mean MER ߴҧመ௠భ,௠మ,…,௠ళ ൌ 0.0485  (obtained at 6th 

selection step from 7 genes), to be too large enough to warrant the 

stoppage of further gene selection beyond the 5th selection step. 

Hence, the reason why the inclusion of the seventh gene at the 6th 

selection steps is rejected by k-SS criteria.  
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Based on our simulated microarray data set therefore, the best 

prediction results are obtained at the 5th selection step at which    

݇ ൌ 6 informative genes (“g5”, “g3”, “V192”, “V805”, “V566”, “g2”) are 

selected by our k-SS method.  The average prediction accuracy 

achieved by our k-SS classifier using the six genes is 95.37%. This 

yielded an average MER of 0.0463.  

If we adopt the minimum mean MER ߜመ௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕߴ

formulation in the construction of one directional hypothesis set as 

stated in (2.4.49), the same test procedures above would be followed 

with the only exception that the test statistic used would now be ߜመ௝మ 

or ܼఋ෡ೕమ  with ܼఋ෡ೕమ ~ܵܰሺെכߣሻ as earlier established in this chapter. The 

critical value ܥఈ
ଶ of the test statistic ܼఋ෡ೕమ  would be ܥఈ

ଶ ൌ

ܼଵିఈሺെ4.0398ሻ. 

According to our k-SS results under the ߜመ௝మ formulation, the optimal 

selection step is also attained at the 5th selection step after the 

selection of the 6th gene into the model. At the 6th selection step 

however, consideration is being given to the 7th gene to be selected 

into the model. The minimum mean MER difference ߜመ଺మ ൌ

ҧመ௠భ,௠మ,…,௠ళߴ െ  ҧመ௠భ,௠మ,…,௠ల is computed at this selection step (step 7) andߴ

the following summary statistics are obtained; ߴҧመ௠భ,௠మ,…,௠ల ൌ 0.0473 ,   

ҧመ௠భ,௠మ,…,௠ళߴ ൌ 0.0490 and  ߜመ଺మ ൌ  0.0017. The estimated critical value 

ఈܥ
ଶටߪଶ൫ߜመ଺మ൯ for the test statistic ߜመ଺మ has a range  

                    ܼଵିఈሺെ4.0398ሻ ൈ ටߪଶ൫ߜመ଺మ൯ א ሾ2.1629 ൈ 10ିସ, െ∞ሻ     (3.3.4) 

which is obtained over the corresponding range of ߙ estimated as  

ߙ                                                א ሾ0.025, 1ሻ                                    (3.3.5) 
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Selection 
steps ࢐ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

૛࢐෡ࢾ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 
െഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 

No. of genes 
selected Decision 

0 0.1822 - - 1 continue 

1 0.1768 0.1090 -0.0678 2   

2 0.1121 0.0772 -0.0349 3   

3 0.0817 0.0712 -0.0105 4   

4 0.0722 0.0584 -0.0138 5   

5 0.0601 0.0461 -0.0140 6   

6 0.0473 0.0490  0.0017 ൈ stop 
 

Table 3.2b: Table of results of ݇-SS classifier under the ߜመ௝మ formulations at each gene selection step 
for simulated data. Optimal selection (the best prediction result) is achieved at the fifth selection step 
at which the sixth gene is selected. The size ߙ of the ݇-SS test, determined by cross-validation, 

satisfies the range ߙ א ሾ0.025, 1ሻ. The corresponding rage of the critical value ܥఈ
ଶටߪଶ൫ߜመ଺మ൯ of the test 

statistic ߜመ଺మ for this range of ߙ is estimated as ܥఈ
ଶටߪଶ൫ߜመ଺మ൯ א ሾ2.1629 ൈ 10ିସ, െ∞ሻ. The six genes 

selected in order of selection steps 0,1, … ,5 are “g5”, “g3”, “V192”, “V805”, “V566”, “g2” respectively. 

Based on the above results, it could be observed that ߜመ଺మ ൌ  0.0017 ൐

ܼଵିఈሺെ4.0398ሻ ൈ ටߪଶ൫ߜመ଺మ൯, which satisfied the decision rule (2.4.50) 

over all the range of  ߙ as given in (3.3.5). Therefore, the selection of 

the 7th gene into the model at the 6th selection step is rejected and 

further gene selection stops. The results’ estimates at each selection 

step as provided by our ݇-SS procedures are presented in Table 3.2b. 

At the optimal selection step, step 5 after which no additional genes 

is allowed into the model again, the following sequence of 6 genes, 

“g5”, “g3”, “V192”, “V805”, “V566”, “g2” as selected under the ߜመ௝భ test 

formulations have being equally selected.  This simply confirms our 

earlier remark that the use of ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ  െ  ҧመ௠భ,௠మ,…,௠ೕశభ orߴ

መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕ formulations for the construction ofߴ

our ݇-SS procedure would yield similar prediction results. 

Results from Tables 3.2a & b showed that the average prediction 

error rate estimated by ݇-SS method using six genes is about 4.7% 

under the two test formulations. This shows that, for the simulated 

microarray data set, the new ݇-SS method provided prediction 
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accuracy of about 95%. By this result, our k-SS method correctly 

classified 95% of the subjects in the population from which the data 

was simulated while it misclassify just about 5% of the subjects. The 

estimates of other performance measures for the ݇-SS classifier are 

provided as follows; sensitivity ൎ 96%, specificity ൎ 98%, positive 

predictive value (PPV) ൎ 98%, negative predictive value (NPV) 

ൎ 96%, Jaccard Index ൎ 91%. All these performance measures as 

obtained under the two test conditions (2.4.32) and (2.4.49) as 

considered by our ݇-SS method is presented in Table 3.3. The cross-

validated ROC (CVROC) curve and the estimated area under the 

curve called the cross-validated AUC (CVAUC) area, for the optimal 

k-SS classification model (containing six selected genes) under the 

 .መ௝భ formulation is presented in Fig 3.6ߜ

 SS-࢑
formulations 

Performance Measures on ࢑-SS classifiers 
MER Sensitivity Specificity +predictive 

value 
-predictive 

value 
Jaccard 
Index 

No. of 
selected 
Genes 

 ૚ 0.0463 0.9593 0.9789 0.9785 0.9601 0.9131 6࢐෡ࢾ

 ૛ 0.0473 0.9592 0.9790 0.9786 0.9600 0.9112 6࢐෡ࢾ

Average 
performance 

0.0468 0.9593 0.9790 0.9786 0.9601 0.9122 6 
 

Table 3.3: Table of estimated performance indices for the ݇-SS classifier on simulated microarray  
                    data set under the two minimum mean MER test formulations ߜመ௝భ and ߜመ௝మ. 

Due to some argument raised in favour of the use of brier score as an 

important assessment measure of classification rules (Hand, 1997), 

we equally obtained the average cross-validated estimates of the 

brier score, ߴҧመ௕௥௜௘௥ to access the performance of the k-SS method. This 

is estimated to be  ߴҧመ௕௥௜௘௥ ൌ 0.0492 for the simulated microarray data. 

It can be observed that the estimated brier score of 0.0492 is very 

close to the estimated MER of 0.0473. To this end, we shall ignore 

the brier scores estimates in our subsequent analyses. 
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The plot of the average MERs at each selection steps against the 

number of genes selected as presented in Fig 3.7 clearly indicated 

successive improvements in k-SS prediction results as additional 

genes are selected into the models.  

 
Fig: 3.6: The cross-validated ROC (CVROC) curve for the optimal k-SS prediction results (with six 

selected genes)  under  the  ߜመ௝భ  test formulation. The  cross-validated  AUC  area  is  estimated  to  be  
                                                                                  0.9702. 

 
Fig 3.7: The graph of the successive average MER estimates at each selection step against the 
number of gene selected. The graph shows improvement in prediction accuracy by ݇-SS method as 
additional genes are  selected into the  model  until optimal  gene  selection is  reached at the 6th gene 
                                                                                selection. 

Furthermore, we present in Fig 3.8 the plots of the estimated 

minimum mean MER differences for ߜመ௝భ and ߜመ௝మ at successive 

selection steps ݆ against the number of selected genes. It can be 

easily observed from the plots that both ߜመ௝భ and ߜመ௝మ, though having 

different estimates, provided the same gene selection results and 

they both reach their optimal selection levels after the selection of 

the sixth informative genes.   
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Fig 3.8: The graphs of the successive estimated minimum mean MER differences under the two k-SS 
test formulations ߜመ௝భ (Delta 1) and ߜመ௝మ (Delta 2).The optimal gene selection step was reached when     
k = 6 genes were  selected as  indicated  by  the  two  plots. The  optimal selection point is the point at  
                            which the ߜመ௝భ ՜  െݏ݁ݒ or  ߜመ௝మ ՜  ൅ݏ݁ݒ by some estimated critical values. 

Backward checks on the selected genes 

As briefly discussed in the last chapter, we intend to examine the 

importance of each selected genes by our ݇-SS classifier in the 

presence of other genes in the model. By this, we want to find out if 

the previously selected genes are still important in the model given 

that additional new gene is selected into the model. Each of the six 

selected genes is examined for their relevance in the presence of 

other selected genes as detailed in Section 2.4.2 under the backward 

checks procedure.  The R code we developed for the implementation 

of the backward checks on genes selected by k-SS method is provided 

in Appendix B.2.    

The results of our backward checks for the six selected genes by our 

k-SS classifier are presented in Table 3.4. From the table, it can be 

easily observed that all the genes selected by k-SS method are 

important in the presence of other selected gene variables in the 

model. In all cases, the prediction performance of the model without 

the removed gene are worst than when the removed gene are put 

back into the model. Based on these results, we can simply suspect 

that the k-SS method only selects the most suitable gene 

መ௝భߜ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ   ҧመ௠భ,௠మ,…,௠ೕశభߴ

መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  ҧመ௠భ,௠మ,…,௠ೕߴ
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combinations in any given microarray data set. Our suspicion in this 

regard shall be confirmed when the k-SS procedures are applied on 

real microarray data sets in the next chapter. The box-plot of the 

results of the backward checks at the 2nd selection step is provided in 

Fig 3.9. 

Se
le

ct
io

n 
st

ep
s ݆

 

N
o.

 o
f g

en
es

 
se

le
ct

ed
 

MER    
of full 
Model 

MER of the model when the indicated gene was removed 

0 1 0.1831 g5       
- 

     

1 2 0.1132 g5 
0.2563 

g3 
0.1847 

    

2 3 0.0783 g5 
0.2192 

g3 
0.1479 

V192 
0.1067 

   

3 4 0.0697 g5 
0.2189 

g3 
0.1241 

V192 
0.1092 

V805 
0.0779 

  

4 5 0.0602 g5 
0.1936 

g3 
0.0922 

V192 
0.0893 

V805 
0.07123 

V566 
0.0880 

 

5 6 0.0459 g5 
0.1677 

g3 
0.0542 

V192 
0.1142 

V805 
0.0616 

V566 
0.0835 

g2 
0.0625 

 

Table 3.4: Results of the backward checks on each of the selected gene by k-SS classifier. The MER 
indicated against each gene at each selection step is the MER of the model without the indicated 
gene. The results generally showed  that all the selected genes by k-SS  method  are  important in the  
                                                                                 model. 

 

Fig 3.9: The box plot of the backward checks on k-SS selection and prediction results for simulated 
microarray data. The plot shows the MER of the full model and the models without the indicated 
gene variables at the third gene selection. The triangular spots are the mean MERs of the models 
while  the red horizontal  line  indicated  the  mean  MER  of  the  full  model. Results  from  the plot  
                  revealed that all the genes selected by k-SS classifier are important in the model. 

The sub-sampling technique of Monte-Carlo cross-validation (MCCV) 

has been adopted in the above implementation of the k-SS 

procedures.  It is essential to report that when the cross-validation 
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technique of bootstrap.632+ scheme as proposed by Efron & 

Tibshirani (1997) was used for the implementation of the k-SS 

procedures, similar results as in MCCV were obtained. To achieve 

stable results however, we recommend that sufficient cross-

validation runs are used for k-SS implementation. Since the results 

of the k-SS method under the bootstrap.632+ scheme are essentially 

similar to those obtained using the MCCV scheme, the results for 

bootstrap are therefore not reported here to save space. However, 

the R codes we wrote to implement k-SS procedure under the 

bootstrap.632+ scheme are provided in Appendix B.6. 

In the next section, we present the prediction results of three 

existing classifiers – SVM, k-NN, PLS as implemented in this work 

on our simulated data and their prediction performances are 

compared to that of the new ݇-SS classifier. 

3.4. Applications of some other classifiers 

In this section, we only present the implementation of each of the 

three selected methods - SVM, ݇-NN, PLS on simulated microarray 

data. The results of the remaining five classifiers on published 

microarray data sets are provided in the relevant section of this 

thesis.  

We begin by using the splitting ratio of 19:1 in favour of training : 

test samples as used for the construction of  our ݇-SS classifier. For 

all the analyses performed using the three selected methods, the 

cross-validation approach of MCCV is adopted with 5000 repetitions.  

Support Vector Machines (SVM) 

As used for the ݇-SS implementation, 95% of the sample is used to 

train the SVM classifier while the remaining 5% is used for its 
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assessment. There are various forms of algorithms that executes 

SVM for classification. We have adopted the SVM implementation in 

R located under the e1071 library. Since SVM approach is kernel 

based whose prediction accuracy is often a function of the type of 

kernel used for analysis, we shall implement the SVM algorithm 

using all the four basic kernel functions – i.e. linear, polynomial, 

radial, and sigmoid kernels as fully discussed in Section 2.8.1. In 

addition to this, we have discovered that the polynomial kernel 

implemented in the e1071 library of R is for cubic polynomial by 

default. We shall, in addition to this, examine the performance of 

SVM for classification under a polynomial kernel of second degree 

for possible results’ improvements. Thus, all together we have 

considered five types of kernel for the implementation of SVM and 

the kernel that provides the best prediction results is finally selected 

for further inferences. 

Performance 
Measures 

Kernel Types 

Linear Polynomial3 radial sigmoid polynomial2 

MER 0.0340 0.0668 0.0368 0.3812 0.0674 

Sensitivity 0.9987 0.9967 0.9975 0.2951 0.9965 

Specificity 0.9979 0.9966 0.9988 1.000 0.9968 
 

Table 3.5: Results of support vector machines for classification using simulated microarray data 

 
Fig 3.10: The box-plots of average MERs estimates from five support vector machines (SVM) kernels 
for  simulated  microarray  data. The triangular spots are the mean MERs  of  the  models  for  each 
                    kernel type and the red horizontal line indicated the minimum mean MER.  
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We present in Table 3.5, the classification results from SVM 

implementation on the simulated microarray data for all the five 

kernel types. The basic performance measures we reported in the 

table are the average misclassification error rates MERs, sensitivity 

and specificity which were all computed over 5000 repetitions using 

the MCCV sub-sampling scheme. 

It can be easily observed from Table 3.5 that prediction results of 

SVM using linear or radial kernel seems the best among the five 

kernel types based on the three performance indices. This 

superiority performance of the two kernels is clearly shown on the 

box-plot of the estimated MERs for all the five kernels as presented 

in Fig 3.10. However, the radial basis kernel has been reported in 

many works to yield more stable results and is generally been 

preferred in many works (Brown et al, 2000; Lee, 2004; etc.). As a 

result of this, the results of the SVM with radial basis kernel shall 

be used for further discussions and implementations. Using the 

radial basis kernel as a standard, the SVM prediction results for the 

simulated data shows a misclassification error rate (MER) of about 

3.7% with 99.75% sensitivity and 99.88% specificity.  

݇-Nearest Neighbours (݇-NN) 

As in SVM, the performance of ݇-NN method also depends on the 

choice of parameter ݇, the number of neighbour to  be used for 

classification. In some studies the value of ݇ is fixed a priori (Shang 

& Shen, 2005, Hastie et al, 2009) the practice that has been 

criticized elsewhere for its biasness due to heterogeneity in group 

samples (Baoli et al, 2003). In another studies, the number of 

neighbours, ݇  between 15 and 20 has been suggested (Cover & Hart, 

1968; Broder, 1986; etc.) in search for optimal prediction accuracy. 
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What is however clear is that, prediction accuracy of ݇-NN classifier 

largely depends on the number of neighbours adopted for analyses 

and that the number of neighbour, ݇, adopted is not unique to all 

microarray data sets. Therefore, we shall implement the ݇-NN 

algorithm for all values of  ݇ within the range 1 ൑ ݇ ൑ 20 and the 

best classification results among these as determined through cross-

validation shall be chosen as our ݇-NN result. The ݇-NN procedure 

is implemented in the library(class) of the R statistical package 

and this we have used for our ݇-NN implementation. 

  

 

 

 

  

 

 

 
Fig 3.11: The box-plot of the average MERs for ݇-NN response class prediction at different number of 
neighbours (݇ሻ for simulated microarray data. The best performance occurred at ݇ ൌ 15 neighbours 
where the least MER is  achieved. The triangular spots are the mean MERs of the models at each 
           number of neighbour while the red horizontal line indicated the minimum mean MER. 

Using the splitting ration of 19:1 for training : test samples as 

before, the prediction results under the ݇-NN method for the 

simulated microarray data shows the best prediction accuracy at 

݇=15 neighbours. The following performance measures are however 

estimated: MER = 0.0313, sensitivity = 0.9928 and specificity =    

0.9638. The box-plot of the ݇-NN performance based on MER index 

at different number of neighbours is presented in Fig 3.11. 
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 Partial Least Squares (PLS) 

As remarked in the last chapter, the PLS method is, by itself not a 

classification method but a dimension reduction technique. It is 

mostly adopted to reduce several thousand of ݍ genes to a very few ݇ 

gene components, which most often is less than 10 in a high-

dimensional microarray data. The number of components, ݇, 

constructed from the original ݍ genes are then being used to classify 

biological subjects into their response groups using any of the 

standard classification methods. Among the common classification 

techniques usually adopted for class prediction with PLS 

components include the linear discriminant analysis (Boulesteix & 

Strimmer, 2005 & 2007), logistic discriminant analysis (Nguyen & 

Rocke, 2002a,b; Fort & Lambert-Lacroix,2005), and Quadratic 

discriminant analysis (Nguyen & Rocke, 2002a,b) among others.  

The method that combined dimension reduction of PLS with 

classification method of the linear discriminant analysis (LDA) 

simply written as PLS-LDA as implemented in the R library 

plsgenomics (Boulesteix & Strimmer, 2005 & 2007) is adopted for 

analyses in this work. The number of the PLS components to be 

constructed can be fixed a priori or determined through cross-

validation. Generally, between two to three components have been 

suggested in some studies (Nguyen & Rocke, 2002a,b,c), while other 

numbers different from these have are adopted in some others (Ding 

& Gentleman, 2004). In our implementation of the PLS-LDA, the 

optimal number of components ݇ desirable for each microarray data 

set is determined among the first twenty PLS components through 

cross-validation. By this, the number of component at which the best 

prediction accuracy is achieved becomes the optimal number of 

component for each data set.   
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Based on our simulated microarray data, the classification results of 

the PLS-LDA revealed a better prediction at just one component. 

The summary of the estimated performance indices are as follows; 

MER = 0.0248, sensitivity = 0.9600 and specificity = 0.9994. The box-

plot of the MERs at different number of components is presented in 

Fig 3.12 where it can be seen that the best prediction is achieved at 

just one component for the simulated data. 

 

 

 

 
 

Fig 3.12: The box-plot of the average MERs for PLS-LDA response class prediction at different 
number of components (݇ሻ for simulated microarray data. The best prediction accuracy occurred at 
the first PLS component (at ݇ ൌ 1ሻ where the least MER is observed. The triangular spots are the 
mean MERs of the models at different number of components while the red horizontal line  indicated 
                                                             the minimum mean MER.  
 

Performance Measures 
Proposed 
classifier Other classifiers 

݇-SS SVM ݇-NN PLS-LDA 

MER 0.0463 0.0368 0.0313 0.0248 
*CPR 0.9537 0.9632 0.9687 0.9752 

Sensitivity 0.9593 0.9975 0.9928 0.9600 

Specificity 0.9790 0.9988 0.9638 0.9994 

No. of genes used for 
prediction 

6 1000 1000 1000 
 

Table 3.6: Summary of the estimated performance indices of the new ݇-SS classifier and three of the 
existing classification methods (SVM, ݇-NN, PLS) on simulated microarray data. The values 
reported for ݇-SS are the average estimated prediction performances under the ߜመ௝భ and ߜመ௝మ k-SS test 
formulations  as  reported  in  Table 3.3. The  correct  prediction rate (*CPR) is the complement of the  
                                                                     estimated MER.  

The summary of the estimated performance measures for our new    

݇-SS classifier and that of other three classifiers (SVM, ݇-NN, PLS) 

for simulated microarray data are presented in Table 3.6. It can be 

seen clearly from the table that our ݇-SS method competes 

favourably with the three state-of-the art methods in terms of 
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prediction accuracy. The prediction accuracies of all the four 

classifiers, including the k-SS, revolved around 95%. In addition to 

this, the k-SS method has additional advantage of been capable to 

identify and select those genes that actually contributed to the 

prediction accuracy estimated. Detail discussions on this and some 

other benefits of the k-SS method shall be provided in the next two 

chapters.  

In the section that follows, we examine the impacts of some random 

splitting ratios for the training and test samples on the performance 

of our new k­SS classifier as well as other existing classification 

methods we have so far considered using MCCV sub-sampling 

scheme. 

3.5 Effects of training-test sample splitting ratios on 

classifier’s performance 

When the sub-sampling techniques of MCCV, bootstrap or any of 

their variants is to be adopted to improve the performance of any 

classification rule, the usual practice is to perform a random split of 

the original sample size ݊ into the training and test sample. The 

idea is to build the classifier using the training sample and 

evaluates its prediction performance on the test sample. Different 

splitting ratios between the training and the test samples have been 

suggested in the literature the most common of which is the ratio 2:1 

in favour of training : test sample respectively proposed by Dudoit et 

al (2002). By this, 2/3 of the whole data would be used to train the 

classifiers and the remaining 1/3 would be used to evaluate their 

performance via any preferred prediction accuracy indices.  

 In this section, we seek to examine the effects of some random 

splitting ratios between the training and test samples on the 
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prediction performance of our k-SS classifier as well as other three 

classifiers so far considered up to this point. Due to small sample 

size scenario as common to microarray data sets, we suspected that 

the common choice of 2:1 splitting ratio might yield unstable and 

misleading results. Our argument here is that, further reduction of 

the original sample size n by 1/3rd (used as the training sample) 

might result into loss of some useful information in the sample that 

might be needed to construct efficient and stable classification rules. 

Hence, it is important to keep as much as possible, substantial part 

of the data in the training set while the remaining few left-out 

sample shall be used to assess the performance of the classifiers. 

To buttress our argument, we shall consider the prediction 

performances of the k-SS, SVM, k-NN and PLS-LDA classifiers on 

four different random splitting ratios 1:1, 2:1, 4:1 and 19:1 for 

training : test samples respectively. This literally translates to using 

50%, 66%, 80% and 95% of the whole sample size n as training 

samples and the remaining 50%, 33%, 20%, and 5% as the test 

samples respectively. 

Splitting ratios  1:1 2:1 4:1 19:1 

MERs (%) 8.37 6.38 4.92 4.63 

No. of genes selected 6 8 9 6 
 

Table 3.7: Table of gene selection and class prediction results by k-SS method at four different 
splitting ratios of training : test samples. The  best  prediction  results  are  obtained  at 19:1 random  
                              splitting ratio, i.e. at 95% training sample(test sample of 5%).   

Using our simulated microarray data set, the prediction results of   

the new k-SS classifier under each of the selected splitting ratios are 

provided in Table 3.7. The corresponding box-plot for these results is 

provided in Fig 3.13.   

It can be easily observed from the results of Table 3.7 and Fig 3.13 

that the performance of the k-SS classifier is sensitive to the choice 



 
 

 141 

of splitting ratios between the training and test samples adopted for 

analysis. The results indicated that the more observations we have 

in the training samples the better the prediction accuracy of the k-SS 

classifier. The best prediction accuracy (the least mean MER value) 

however occurred when the k-SS classifier is trained with 95% of the 

whole sample while its prediction performance is only being assessed 

based on the remaining 5% of the sample.  

 

Fig 3.13: The box-plot of the misclassification error rates (MERs) in Table 3.7 for k-SS performances 
at four different splitting ratios between the training and test samples. The box-plot shows the best 
prediction  accuracy (the least MER value) of the k-SS classifier at 19:1 random splitting ratio i.e. at  
                                            95% training sample (test sample of 5%).   

 
Splitting ratios  1:1 2:1 4:1 19:1 

Classifiers Average MERs (%) 

SVM 4.63 4.02 3.65 3.53 

k-NN 6.22 5.33 4.58 3.13 

PLS-LDA 3.69 3.18 2.96 2.48 
 

Table 3.8: Prediction results of SVM, k-NN and PLS-LDA classifier at four different training : test 
sample  splitting  ratios. The  best  prediction  results  of  the  three  classifiers  are  obtained  at 19:1  
                                                                      random splitting ratio. 

We equally present in Table 3.8 the prediction performances of other 

three existing classification rules (SVM, k-NN, PLS-LDA) at the four 

splitting ratios 1:1, 2:1, 4:1 and 19:1 for training : test samples 

respectively. The corresponding box-plots are provided in Figs 3.14. 

All the results also confirmed a better performance of each of the 
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classifiers at the splitting ratio of 19:1 for training : test samples 

respectively. 

  

                          SVM                                                       k-NN                                                   PLS-LDA 

Fig 3.14: Box-plots of the misclassification error rates (MERs) of SVM, k-NN and PLS-LDA 
classifiers at four different training : test sample random splitting ratios. The three box-plots showed 
the  best  prediction  accuracy (the  least  MER  value)  of  all  the  three  classifiers  at  19:1  random  
                                 splitting ratio i.e. at 95% training sample (test sample of 5%).   
 

In summary, all the above results clearly provided a clear 

justification of our choice of random splitting ratio of 19:1 in favour 

of training : test samples respectively while constructing our k-SS 

classifier. 

3.6 Applications of AUC preliminary feature selection 

method 

We briefly present here, the discussion of results obtained from the 

application of AUC preliminary feature selection we proposed in 

Section 2.6 of this thesis as applied on our simulated microarray 

data set. Under the student-t preliminary feature selection 

procedure, 55 genes were selected by setting the cut-point of the p-

value at 0.05.  However, when our proposed AUC criteria as detailed 

in Section 2.6 were applied, 101 genes were selected at the threshold 

value of 0.05 for ߙ. When all the 101 genes were ordered in terms of 

their average AUC values, gene “g5” was found to be the best gene 

having the highest average AUC value of 0.9075. The worst gene 
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with the least mean AUC value of 0.5950 is gene “V948”. What we 

can quickly infer from this two results (student-t’s and AUC’s) is 

that given the same significance level ߙ, the AUC criteria will select 

more genes than the t-statistic, thereby saving us from the risk of 

leaving out some of the potentially relevant genes at the primary 

selection stage for further consideration by standard classification 

methods. Additional advantage of our AUC preliminary selection 

procedure is that, it is possible to have idea of the possible predictive 

power of each gene selected under via their estimated cross-

validated AUC values.   

However, as remarked in Section 2.6, any gene with its AUC value 

revolving around 0.5 is not expected to uniquely provide good 

prediction of the response class.  Due to this fact, we decided to lower 

the value of the significance level ߙ used by the AUC selection from 

0.05 to 0.02. At this level of ߙ, a total of 50 potentially good genes 

were selected with the best gene, “g5”, having the highest AUC value 

of 0.9196 while the weakest gene in the group in terms of its AUC 

contribution has estimated AUC value of 0.6169. 

Surprisingly, the use of the AUC preliminary gene selection on  our 

k-SS method yielded the same final gene selection results as those 

provided by it under the features selection by the t-statistics. For 

instance, the following six genes, “g5”, “g3”, “V192”, “V805”, “V566”, 

“g2”, as previously selected by k-SS classifier under the preliminary 

selection by the t-test are equally selected using AUC preliminary 

feature selection method. The full results are not presented here due 

to space consideration. 

However, it is necessary to remark that, though, both the AUC and 

the t preliminary feature selection methods as used with our k-SS 
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method provided similar results based on the simulated microarray 

data only. It is not unexpected in some instances however to discover 

some differences in the results provided under the two approaches in 

terms of the crop and number of genes selected as well as overall 

prediction performances of the classifiers that might used them. This 

should be expected because the two methods adopted different 

criteria for feature selection. If this situation arises, the crop of 

genes finally selected for class prediction by k-SS method under the 

two approaches might differ and one would expect better classifier’s 

performance under the AUC feature selection criteria. This 

particular scenario was encountered when the two methods were 

applied on real microarray data sets. This is discussed in detail in 

the next chapter.  
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4 Applications of ࢑-SS method to        

Microarray data sets 

4.1 Data descriptions 

In this chapter, we present the application of the new ݇-SS method 

on real microarray data sets. To start with, the performances of our 

new classifier are first compared with those provided by three of the 

existing state-of-the art classification methods to assess its relative 

worth under the real microarray data situations.  Eleven microarray 

data sets are used to demonstrate the implementation of the k-SS 

method. Ten of these data sets are published microarray data that 

are freely available at their respective web links as later provided. 

The eleventh data set, as analysed in Section 4.2, is base on 

microarray rectal cancer study carried out in the Department of 

Surgery, Klinikum rechts der Isar, Technical University of Munich, 

Munich, Germany. Details about this particular data are provided in 

the next section. The brief descriptions of other ten data sets are 

presented in what follows. We want to remark that, only the results 

of our ݇-SS method under its ߜመ௝భ formulation shall be reported for all 

the data sets. 

Colon cancer data: These data were first analysed by Alon et al 

(1999). They contain 2,000 gene expression profiles of 62 tissue 

samples with two distinct clinical groups of tumourous (40 tissue 

samples) and normal (22 tissue samples) subjects. These data are 

freely available and can be downloaded at http://microarray.princeton.edu 

/oncology/affydata/index.html. 

Leukemia cancer data1: These data set are pre-loaded with any 

version of R statistical software (http://www.R-project.org) under the 
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package multtest. The data contained 3,051 genes whose 

expression levels were measured on 38 biological samples containing 

27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid 

leukemia (AML). The data set were also described in Golub et al 

(1999) and is publicly available at http://www-genome.wi.mit.edu/MPR/. 

Leukemia cancer data2: The Leukemia cancer data 2 have 7,129 

genes and 72 samples. As in Leukemia cancer data 1, the sample 

contains 47 ALL and 25 AML biological subjects. More details on 

these data can be found in Golub et al (1999). The data can be freely 

downloaded at http://www-genome.wi.mit.edu/MPR/. 

CNS data: These data described the embryonal tumours of the 

central nervous system (CNS) and were analysed by Pomeroy et al 

2002. The data contained 7,129 genes and 34 tissue samples. The 34 

sample contains 25 classic (C) and 9 desmoplastic (D) tumour 

groups.  

DLBCL data: These data set were on 7,129 gene expressions of 77 

biological samples. The data were analysed in Ship et al (2002) to 

distinguish 58 Diffuse large B-cell lymphoma (DLBCL) samples from 

19 follicular lymphoma (FL) samples. The data are publicly 

available at www.genome.wi.mit.edu/MPR/lymphoma.  

Lung cancer data: These are lung cancer data described in Gordon 

et al (2002). They contained 12,533 genes and 181 samples, 150 of 

which were those with malignant pleural mesothelioma (MPM) and 

the remaining 31 subjects having adenocarcinoma (ADCA) of the 

lung. The data can be found at http://www.chestsurg.org. 

Prostate cancer data1: These are prostate cancer data described in 

Singh et al (2002). They contained expression profiles of 12,600 
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genes that were measured on 102 samples of 52 tumour and 50 

normal samples. The data are available at http://www.genome.wi.mit.edu/MPR 

/prostate. 

Prostate cancer data2: These are prostate cancer data used by 

Stuart et al (2004). They have expression measures of 12,625 genes 

on 88 biological subjects with 38 tumour and 50 normal samples. 

The data are available at www.affymetrix.com. 

Prostate cancer data3: These are another prostate cancer data 

described by Welsh et al (2001). They contained 12,626 gene 

expression profiles of 33 samples. The sample has 24 tumour and 9 

normal patients. The data are publicly available at 
http://www.gnf.org/cancer/prostate. 

GCM data: These are molecular cancer data described in 

Ramaswamy et al (2001). The data have 16,063 genes with 280 

samples 190 of which are tumourous while 90 are normal samples. 

The data are available at www.genome.wi.mit.edu_MPR_GCM.html. 

4.2 Molecular classifications of rectal and colon cancer 

patients with ࢑-SS method 

This section presents detail applications of the new k-SS method on 

both rectal and colon cancer microarray data sets. 

Rectal cancer data 

As briefly highlighted in Section 4.1, the rectal cancer data analysed 

here are based on microarray study carried out in the Department of 

Surgery, Klinikum rechts der Isar, Technical University of Munich, 

Munich, Germany, on preoperative endoscopic biopsy specimen of 43 

patients that were diagnosed for locally advanced rectal carcinomas 

(LARC). In that study, all the 43 patients were subjected to 
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neoadjuvant radiochemotherapy treatments followed by surgical 

resection. Thereafter, expression profiles of 24,026 probe sets 

representing 24,026 human genome U133 plus 2.0 gene-chip arrays 

were measured on each of the 43 patients. At the end of the clinical 

diagnoses and treatments, it was discovered that 14 out the 43 

patients responded very well to neoadjuvant radiochemotherapy 

treatments while the remaining 29 patients did not respond to these 

treatments. However, since it was possible to observe the expression 

profiles of a good number of genes on these patients, the task now is 

to   

i) determine whether it is possible carry out pre-operative 

prediction of the clinical status (responder or none-

responder to neoadjuvant treatment) of any future LARC 

patients using the gene expression profiles of some of the 

observed genes. 

ii) identify and select those gene sub-set that are really 

correlated with the two clinical status of the LARC patients 

in i) for possible determination of appropriate therapeutic 

measures among other things.      

However, the rectal cancer data set analysed here have been  

recently analysed also by Rimkus et al (2008) where some results 

regarding the prediction of the clinical status of the 43 LARC 

patients using their gene expression profiles were equally reported. 

Further details on clinical characteristics of all the 43 patients are 

provided in that work. We shall discuss some of the results reported 

in the article later. 

By our preferred random splitting ratio of 19:1 in favour of training 

and test samples, we used ்݊ோ ൌ 41 sample as training set and ்݊ா ൌ 



 
 

 149 

2 sample as the test set. The sub-sampling scheme of MCCV as 

discussed in Section 2.7 is adopted for analysis. The expression 

measures for all the genes were normalized so that each gene vector 

has zero mean and unit variance across the mRNA samples. 

Since the crop of genes selected for further analyses at the 

preliminary selection stage can greatly influence the performance of 

any classification rule, we shall therefore examine the prediction 

performance of our ݇-SS method under the conventional preliminary 

selection provided by the t-statistics and that of the AUC feature 

selection criteria as proposed in this work. 

i) ݇-SS applications under the preliminary selection by t-statistic  

Here, the preliminary genes selection was performed using the 

Student-t statistic as discussed in Section 1.4.2. The cut-point we 

adopted for the p-values of the t-statistic is 0.001 as also used in 

many studies, (Nguyen & Rocke, 2002 a, b, c; Rimkus et al, 2008; 

etc.). This procedure selected 34 probe sets whose p-values of their 

estimated t-statistic are less than or equal to the pre-selected 

implied p-value of 0.001. These are the genes passed into our ݇-SS 

algorithm for further analyses.  

Results of our analysis on rectal cancer data showed that the ݇-SS 

method selected seven genes with gene symbols “SF3A1”, “TOE1”, 

“RBM18”, “RPL31”, “227353_at”, “ETS2”, “TNFRSF1B” at the end of 

the 6th selection step to classify/predict the clinical status of the 

LARC patients in the test sample as shown in Tables 4.1 & 4.2. The 

probe sets numbers, the genes’ symbols and the genes’ names of each 

selected gene are provided in the Table 4.1. Details of the selection 

and prediction results at each selection steps are provided in Table 

4.2.  
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Probe-set 
Number 

Gene 
Symbol Gene Name 

216457_s_at SF3A1 Splicing factor 3a, subunit 1, 120kDa 

204080_at TOE1 Target of EGR1, member 1 (nuclear) 

238963_at RBM18 RNA binding motif protein 18 

221593_s_at RPL31 Ribosomal protein L31 

227353_at “227353_at” “227353_at” 

201329_s_at ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian) 

203508_at TNFRSF1B Tumor necrosis factor receptor superfamily, member 1B 
 

Table 4.1: The selected genes from rectal cancer data by k-SS method under the t-test preliminary 
feature  selection. Only  the  probe-set  number is available for the fifth gene selected as shown on the 
                                                                          table. 

Selection 
steps 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

૚࢐෡ࢾ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 
െഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

No. of genes 
selected Decision 

0 0.1570 - - 1 continues 

1 0.1570 0.0897 0.0673 2   

2 0.0940 0.0665 0.0275 3   

3 0.0734 0.0609 0.0125 4   

4 0.0539 0.0482 0.0057 5   

5 0.0456 0.0018 0.0438 6   

6 0.0017 0.0011 0.0006 7   

7 0.0015 0.0018 -0.0003 ൈ stops 
 

Table 4.2: Table of results for ݇-SS classifier at each gene selection step for rectal cancer data under 
the preliminary selection by the t-test. Optimal selection is attained after the selection of the 7th gene 
at  the 6th selection step. The seven genes selected in order of selection sequence are “SF3A1”, “TOE1”, 
                                      “RBM18”, “RPL31”, “227353_at”, “ETS2”, “TNFRSF1B”. 

 

Fig: 4.1: The cross-validated ROC (CVROC) curve estimated by k-SS method from seven selected  
                           genes for rectal cancer data. The cross-validated AUC ൎ 1. 

It can be easily observed from Table 4.2 that the ݇-SS method 

provides correct prediction rate of about 99.89% (average MER of 

0.0011) using seven genes. The cross-validated ROC (CVROC) curve 
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and its corresponding AUC area for this result are provided in Fig 

4.1 where it can be seen that the estimated AUC area is almost 1. 

To ensure that all the seven selected genes deserve to stay in the 

model, we perform backward checks on each of the selected genes as 

discussed in Section 3.3 and the results obtained, as presented in 

Table 4.3, confirmed that all the seven selected genes are important 

in the model as selected by the k-SS classifier and they should all 

remain in the model. 
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MER of the model if the indicated gene is removed 

0 1 0.1570 SF3A1 
- 

      

1 2 0.0890 SF3A1 
0.2700 

TOE1 
0.1565 

     

2 3 0.0652 SF3A1 
0.1334 

TOE1 
0.1587 

RBM18 
0.0961 

    

3 4 0.0571 SF3A1 
0.1248 

TOE1 
0.1799 

RBM18 
0.0955 

RPL31 
0.0700 

   

4 5 0.0474 SF3A1 
0.1106 

TOE1 
0.1371 

RBM18 
0.1117 

RPL31 
0.1017 

227353_at 
0.0518 

  

5 6 0.0012 SF3A1 
0.0020 

TOE1 
0.1200 

RBM18 
0.1201 

RPL31 
0.0025 

227353_at
0.1164 

ETS2 
0.0459 

 

6 7 0.0009 SF3A1 
0.0675 

TOE1 
0.0910 

RBM18 
0.1335 

RPL31 
0.0015 

227353_at 
0.1160 

ETS2 
0.0255 

TNFRSF1B 
0.0013 
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selected under the t-statistic criteria, but might not necessarily be 

the crop of genes selected under the AUC criteria. Further 

discussions on this shall be provided later.  

 The ݇-SS method, under the AUC preliminary feature selection, 

selected nine genes in the following sequence with gene symbols 

“SF3A1”, “TOE1”, “RBM18”, “ZNF24”, “227353_at”, “222303_at”, 

“CASP1”, “ADPRHL2”, “BLVRA”. The average MER obtained using 

the 9 genes for prediction is 0.000 translating to 100% correct 

prediction rate. The k-SS results at each selection steps are 

presented in Table 4.4.  

Selection 
steps ࢐ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

૚࢐෡ࢾ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 
െഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

No. of genes 
selected Decision 

0 0.1580 - - 1 continues 

1 0.1580 0.0881 0.0699 2   

2 0.0904 0.0670 0.0234 3   

3 0.0701 0.0470 0.0231 4   

4 0.0471 0.0278 0.0193 5   

5 0.0311 0.0020 0.0291 6   

6 0.0015 0.0010 0.0005 7   

7 0.0009 0.0005 0.0004 8   

8 0.0005 0.0000 0.0005 9   

9 0.0000 0.0000 0.0000 ൈ stops 
 

Table 4.4: Table of results for ݇-SS classifier at each gene selection step for Rectal data under the 
preliminary selection by AUC criteria. Optimal selection is attained when nine genes were selected. 
The  nine  informative  genes  selected  in  order  of  selection  steps  are  “SF3A1”, “TOE1”, “RBM18”,  
                         “ZNF24”, “227353_at”, “222303_at”, “CASP1”, “ADPRHL2”, “BLVRA”. 

It can be easily observed from the results that the first three genes 

selected here are the same set of genes selected by the ݇-SS 

procedure under the preliminary selection by t-statistic. However, at 

the 3rd selection step, the 4th gene with gene symbol “ZNF24” was 

selected by ݇-SS method. The inclusion of this gene with three other 

previously selected genes (“SF3A1”, “TOE1”, “RBM18”) reduced the 

average MER from 0.0701 to 0.0470 (red bold in Table 4.4), 

contributing a reduction in prediction error rate by about 33%. The 
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estimates of other performance indices at the end of the genes 

selection steps provided the following results; sensitivity = 100%, 

specificity = 100%, positive predictive value (PPV) = 100%, negative 

predictive value (NPV) = 100%, Jaccard Index = 100%. The cross-

validated ROC curve for the ݇-SS classifier is presented in Fig 4.2 

where it can be seen that the estimated cross-validated AUC is 

exactly 1. 

 
Fig: 4.2: The cross-validated ROC (CVROC) curve estimated by k-SS classifier from nine selected 
genes   for  rectal  cancer  data  under  the  AUC  preliminary  feature  selection  criteria.  The  cross- 
                                         validated area under the ROC curve (CVAUC) is 1. 

In the implementation of the k-SS method using the preliminarily 

selected genes by the t-test procedure as presented in i) above,  it is 

observed that gene “ZNF24”, which was among the 76 genes 

preliminarily selected under the AUC criteria, was not among the 34 

genes preliminarily selected by the t-statistics criteria (see Table 

4.2), hence, it was not available for consideration by the ݇-SS 

algorithm during the gene selection and prediction processes. In the 

sequence of genes selected by the t-statistics, gene “RPL31” was the 

next best gene available among the remaining genes and this was 

duly identified and selected by the ݇-SS classifier at the third 

selection step. This gene was considered as the fourth best gene due 

to non-existence of the right gene “ZNF24” (see Table 4.2).  

As can be observed from Table 4.2, the selection of gene “RPL31” by 

݇-SS classifier at the 3rd selection step reduced the average MER 
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from 0.0734 to just 0.0609 (red bold in Table 4.2), contributing a 

reduction in prediction error rate by about 17%. This is just about 

50% of the gain in prediction accuracy of 33% achieved by k-SS 

method for selecting gene “ZNF24” as presented in ii) using the crop 

of genes selected under the AUC preliminary selection criteria.  

More generally, it can be observed from the above results that the 

prediction accuracy of the k-SS classifiers progressively improves as 

more suitable genes are selected for prediction at each selection step 

(see Tables 2 & 4). This improvement shall be more remarkable if all 

the potentially discriminative genes are selected at the preliminary 

selection stage for further analyses as obtainable under the AUC 

selection criteria.  It is not surprising however, to observe in Table 

4.4 (for k-SS results under the AUC preliminary selection criteria) 

that the prediction error rate finally approach zero at the optimal 

gene selection step, step 10 at which the 9th gene was selected. This 

result simply underscores the need to adopt a good preliminary 

selection method that would ensure the selection of all potentially 

relevant genes at the preliminary selection stage before any 

standard gene selection and/or classification method like the new    

k-SS technique are implemented on the features selected. 

Based on the results obtained under i) and ii) above, we can simply 

conclude that the best set of genes combination that are capable to 

discriminate between responder and non-responder LARC patients 

to neoadjuvant radiochemotherapy treatments are the 9 genes 

“SF3A1”, “TOE1”, “RBM18”, “ZNF24”, “227353_at”, “222303_at”, 

“CASP1”, “ADPRHL2”, “BLVRA” as provided by ݇-SS method under 

the AUC preliminary selection criteria. Detail information about 

these nine genes is provided in Table 4.5. Further comments on 
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these results are provided in the next chapter under the discussion 

of results.  

Probe-set 
Number Gene Symbol Gene Name 

216457_s_at SF3A1 Splicing factor 3a, subunit 1, 120kDa 

204080_at TOE1 Target of EGR1, member 1 (nuclear) 

238963_at RBM18 RNA binding motif protein 18 

203247_s_at ZNF24 Zinc finger protein 24 (KOX 17) 

227353_at “227353_at” “227353_at” 

222303_at “222303_at” “222303_at” 

1552703_s_at CASP1 Caspase 1, apoptosis-related cysteine peptidase  

223097_at ADPRHL2 ADP-ribosylhydrolase like 2 

203773_x_at BLVRA Biliverdin reductase A 
 

Table 4.5: The selected genes from rectal cancer data by k-SS method using the crop of genes selected 
at preliminary  selection  stage  by  AUC setlecion criteria. Only the probe-set number is available for  
                                      the fifth and sixth selected genes as shown on the table. 

The above results clearly showed that the crop of features selected at 

the preliminary selection stage has significant influence on the 

performance of classification rules. The goodness or otherwise of the 

crop of genes selected at the preliminary selection stage directly 

depends on the efficiency of selection method adopted. If the 

selection method adopted at the preliminary selection stage is very 

efficient like the newly proposed AUC feature criteria, the prediction 

results of k-SS or that of any other classifiers would also be efficient 

and reliable. But if wrong crop of genes are selected at the 

preliminary selection stage due to the adoption of inefficient method, 

then, the prediction performance of any adopted classification rule 

would be badly affected. 

 It is important to remark that the rectal cancer data considered 

here has been earlier investigated by Rimkus et al (2008) where the 

classification procedure of PLS-LDA was adopted using sub-

sampling scheme of leave-one-out cross-validation (LOOCV). In their 

results, they reported correct classification rate of responders 

(specificity) to be 71% while correct classification rate of non-
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responders (sensitivity) was estimated to be 86%.  These results 

indicated an overall estimated correct prediction rate (CCR) of about 

81.4% suggesting a misclassification of about 8 out of the 43 LARC 

patients. Obviously, this prediction results fell far below the 

estimated prediction accuracy of 100% provided by our k-SS method 

under the two cases considered above for this same data set.  

Colon cancer   

These are cDNA microarray colon cancer data that has been 

previously analysed elsewhere, (Alon et al, 1999) using unsupervised 

technique of two-way hierarchical clustering with single linkage 

search to separate cancerous from non-cancerous tissues among 62 

colon cancer patients. The same data were analysed at different 

times by Furey et al (2000) using support vector machines (SVM) and 

Ding  & Gentleman (2004) using iterative reweighted partial least 

square (IRWPLS) methods to classify the biological subjects into two 

distinct sub-cancer groups of tumour and normal patients.  

The data contain the expression profiles of 2,000 genes on 40 tumour 

and 22 normal colon tissue samples. Our task is to (i) identify and 

select those genes that are predictive of these two biological groups 

and (ii) use the selected genes to predict any future (unseen) colon 

tissue samples as either tumourous or normal using the new ݇-SS 

method.  We shall only present here, the ݇-SS results under the 

AUC preliminary feature selection.  

Results of our k-SS method for the colon cancer data revealed the 

four genes that provided the best discrimination between tumour 

and normal patients. The probe-set numbers of the four selected 

genes are "Hsa.8147", "Hsa.5392", "Hsa.1410", "Hsa.490". With these 

four genes, the k-SS prediction accuracy is 93.83% indicating a 
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misclassification of about 4 subjects. The estimates of other 

performance measures computed by k-SS method are as follows; 

sensitivity = 94.96%, specificity = 95.22%, positive predictive value 

(PPV) = 97.32%, negative predictive value (NPV) = 91.23%, Jaccard 

Index = 90.94%. The CVROC curve for this data is presented in Fig 

4.3 with the estimated cross-validated AUC area (CVAUC) of 0.9465. 

The prediction results at each gene selection steps are presented in 

Table 4.6. The results of the backward checks on all the four selected 

genes are presented in Table 4.7 where it is clear that all the four 

selected genes are relevant in the model. The box-plot of one of the 

results of the backward checks at the third gene selection is provided 

in Fig 4.4 where it is revealed that the average MER of the models 

without the indicated genes are higher than the estimated mean 

MER of the full model. This evidently underscores the relative 

importance of each of the selected genes for prediction by k-SS 

method. 

 
Fig: 4.3: The cross-validated ROC (CVROC) curve estimated by k-SS method using the four selected  
   genes from colon cancer data. The cross-validated area under the ROC curve (CVAUC) is 0.9465. 

Selection 
steps ࢐ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 

Min. mean 
MERs 

ഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

૚࢐෡ࢾ ൌ ഥࣖ෡࢓૚,࢓૛,…,࢐࢓ 
െഥࣖ෡࢓૚,࢓૛,…,࢐࢓శ૚ 

No. of genes 
selected Decision 

0 0.1454 - - 1 continues 
1 0.1454 0.1095 0.0359 2   
2 0.1096 0.0679 0.0417 3   
3 0.0661 0.0604 0.0057 4   
4 0.0617 0.0688 -0.0071 ൈ stops 

 
 

Table 4.6: Table of results for ݇-SS classifier at each gene selection step for colon cancer data. 
Optimal  selection  is attained  after  the  selection of the 4th gene at the 3rd selection step. The four  
      genes selected in order of selection sequence are "Hsa.8147", "Hsa.5392", "Hsa.1410", "Hsa.490". 

5 , 3 4 , 3 3 , 3 2 , 3 1 , 3 0 , 2 9 , 2 8 , 2 7 , 2 6 , 2 5 , 2 4 , 2 3 , 2 2 , 2 1 , 2 0 , 1 9 , 1 8 , 1 7 , 1 6 , 1 5 , 1 4 , 1
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Selection 
steps ݆ 

No. of 
genes 

selected 

MER of 
full Model 

MER of the model when the indicated gene was 
removed 

0 1 0.1454 Hsa.8147  
- 

   

1 2 0.1095 Hsa.8147 
0.3299 

Hsa.5392  
0.1449 

  

2 3 0.0679 Hsa.8147 
0.2748 

Hsa.5392   
0.1956 

Hsa.1410  
0.1056 

 

3 4 0.0604 Hsa.8147 
0.3014 

Hsa.5392  
0.0962 

Hsa.1410  
0.1378 

Hsa.490 
0.0646 

 

Table 4.7: Results of the backward checks on the four selected genes by k-SS classifier from colon 
cancer data. The MER indicated against each gene is the MER of the model without the indicated 
gene. The MERs of the full models at each selection step are relatively smaller than that of the 
models  without  the indicated genes. This  showed  that  all  the  selected  genes  by k-SS method are 
                                                                 important in the model. 

 
Fig 4.4: The box plot of the backward checks for colon cancer data. It shows the MER of the full 
model and that of the models without the indicated genes at the third gene selection. The triangular 
spots are the mean MERs of the models while the red horizontal line indicated the mean of the full 
model. The estimated average MERs of the model without the indicated genes are relatively higher 
than that of the full model and  indication  that  all  the  four  genes  selected by  k-SS  classifier  are 
                                                                important in the model. 

As earlier remarked, this colon cancer data has been previously 

analysed at different times by Furey et al (2000) and Ding & 

Gentleman (2004) and the two studies reported a misclassification of 

about 6 of the 62 colon cancer subjects on the average. More 

specifically, Ding & Gentleman (2004) employs the IRWPLS 

approach and its variant that incorporated the Firth’s procedure, 

Firth (1992), and selected the first 20 genes with the highest 

absolute t-statistics for classification. The best prediction results 

reported in their work indicated a misclassification of 7 of the 62 

biological subjects. On the other hand, the study of Furey et al (2000) 
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misclassified 6 of the 62 subjects using support vector machines 

procedures for classification. In their study, a preliminary selection 

method that uses the statistic ܨ௝ ൌ
ቚ௫ҧೕ

శି௫ҧೕ
షቚ

ఙೕ
శାఙೕ

ష  was employed, where ݔҧ௝ା 

and ݔҧ௝ି are the average expression measures of gene ݆, ߪ௝
ା and ߪ௝

ି are 

their respective standard deviations for the two biological groups 

denoted by + and – signs respectively. The Furey’s statistic, though 

similar to the usual t-statistic, has no theoretical support in 

statistics for its use. Nonetheless, the k-SS classifier, using just four 

genes, provided better predictions than any of these earlier methods 

for this data set.   

 SS results for other microarray data sets-࢑ 4.3

We present the classification results of our ݇-SS method for other 

nine publicly available microarray data sets as considered in this 

work. The remaining data sets whose results are presented under 

this section are Leukemia data 1 & 2, Prostate data 1, 2 & 3, CNS, 

DLBCL, Lung and GCM data. The number of genes in each data 

ranges from 2,000 to 16,000 while the mRNA samples ranges from 

33 to 180. The performance measures estimated by the ݇-SS 

classifier as shown in Table 4.8 for each microarray data set are the 

average MER, correct classification rate (CCR), sensitivity, 

specificity, PPV, NPV, and Jaccard Index, all of them expressed in 

percentages.  The cross-validated ROC curves as well as their 

respective cross-validated AUC (CVAUC) area for ݇-SS classifier for 

each microarray data set is presented in Fig 4.5.    

It can be observed from all the results in Table 4.8 that the new ݇-SS 

classifier generally performs very well in all cases of microarray data 

sets considered. On the overall average, this new method provides 
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about 96% correct classification rate of the tissue samples with an 

average of 6 selected genes. More discussions on the performance of 

this new classifier shall be provided in the next chapter. 

Microarray 
data 

Estimated performance indices (in %) on ݇-SS classifier No. of 
selected 

genes 
MER CCR Sensitivity Specificity PPV NPV Jaccard 

Leukemia1 0.00 100.00 100.00 100.00 100.00 100.00 100.00 1 
Leukemia2 0.00 100.00 100.00 100.00 100.00 100.00 100.00 9 
Prostate1 2.85 97.15 97.99 98.00 98.07 97.92 94.45 8 
Prostate2 12.01 87.99 84.82 93.89 91.34 89.07 75.10 8 
Prostate3 0.00 100.00 100.00 100.00 100.00 100.00 100.00 2 
CNS 3.57 96.43 99.54 99.69 99.89 98.85 95.03 4 
Lung 0.00 100.00 100.00 100.00 100.00 100.00 100.00 9 
DLBCL 0.00 100.00 100.00 100.00 100.00 100.00 100.00 5 
GCM 13.17 86.83 96.84 67.63 86.33 91.03 83.28 8 

Average 
performance 

3.51 96.49 97.69 95.47 97.29 97.43 94.21 6 
 

Table 4.8: The various performance indices on the new k-SS classifier for nine published microarray 
data  sets.  MER = misclassification   error  rate,  CCR = correct  classification  rate,   PPV = positive 
                                          predictive value, NPV = negative predictive value. 

4.4 k-SS methods versus other classifiers 

In order to determine the goodness of the new k-SS method in 

comparison to some of the existing classification methods it is 

necessary to examine its performance relative to some of these 

classifiers. For this reason, we shall consider the three selected 

classification methods - SVM, k-NN and PLS-LDA- as presented in 

Sections 2.8 & 3.4 against which the goodness of our new k-SS 

classifier would be compared using all the eleven published 

microarray data sets as presented in Sections 4.1 and 4.2. The 

comparison of the prediction results of the k-SS method with that of 

the remaining five classifiers (Prediction analysis for microarray, 

Decision trees, Naïve bayes, Top scoring pair, k-Top scoring pair) is 

provided in Chapter 5.  
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 Fig 4.5: The cross-validated ROC (CVROC) curves for the prediction results of the ݇-SS classifier for 
nine  published  microarray  data  sets  as  shown  in  Table 4.8. The  respective  estimates  of the 
                     cross-validated area under the ROC curve (CVAUC) are equally reported. 

The various estimated correct prediction rates (CCR), expressed in 

percentages, from SVM, k-NN, PLS-LDA classifiers as well as that of 

our new k-SS classification method are presented in Table 4.9. To 

ensure that all the classifiers are evaluated on the same platform, 

we only presented in Table 4.9 the prediction results of each 

classifier under preliminary selection by the t-statistic.  

It can be generally observed from Table 4.8 that all the four 

classifiers including the new k-SS method provide good predictions of 

the biological samples in all the eleven microarray data sets 

considered. However, a closer look at their results revealed that the 

k-SS method has a little edge over other three existing classifiers. 

Out of the eleven data sets, the prediction rates provided by k-SS 
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method is better than that of other classifiers in seven cases, (about 

64% of the cases) and performed equally well as others in two 

instances, (about 18% of the cases) while its prediction performance 

is slightly lower than others in just two cases, (about 18% of the 

cases). However, if we consider the average overall performances it 

can be easily observe that the k-SS classifier performs better than all 

the three existing classifiers considered with respect to their 

prediction accuracies. In addition, the k-SS methods uses a very few 

sub-sets of genes for classification unlike other earlier methods that 

used all the available genes for the same purpose. 

Microarray 
data sets 

Number of 
genes in the 

data 

Correct Classification Rate (CCR) (%) 
New 

classifier Existing classifiers 

k-SS SVM k-NN PLS-LDA 
Rectal 24,026 99.89  (7) 95.17 93.62 96.73 

Colon 2,000 93.83  (4) 81.27 85.65 86.30 

Leukemia 1 3,051 100.00 (1) 99.97 100.00 100.00 

Leukemia 2 7,129 100.00 (9) 98.48 93.49 98.63 

CNS 7,129 96.43  (4) 88.03 96.75 91.14 

DLBCL 7,129 100.00 (5) 89.22 91.33 91.74 

Prostate 1 12,600 97.15  (8) 91.67 90.71 95.36 

Prostate 2 12,625 87.99  (8) 78.40 81.38 81.61 

Prostate 3 12,626 100.00 (2) 100.00 97.45 100.00 

Lung 12,533 100.00 (9) 98.83 99.74 99.48 

GCM 16,063 86.83  (8) 87.60 90.28 86.23 

Average Performance 96.57 91.69 92.76 93.38 
 

Table 4.9: The correct classification rates (CCR) of the new k-SS classifier and that of three of the 
existing methods – SVM, k-NN, PLS-LDA, for eleven published microarray data sets. Out of all the 
eleven data sets, the k-SS method out-performed other three classifiers in seven instances (about 64% 
of the cases), it performed equally with others in three cases while it under-performed in just one 
case. The figures in parenthesis are the number of genes selected for classification by k-SS method 
from respective microarray data sets. The  preliminary  feature  selection  of  the  t-statistic  is  used  
                                                               by all the classifiers.  

4.5 k-SS classifier and cluster analysis 

Cluster analysis is one of the earlier unsupervised statistical 

learning methods commonly adopted for classification and pattern 

recognition. It is unsupervised because the inherent sub-classes of 
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the subjects are not known a priori and are to be discovered from the 

data. Therefore, the major aim of clustering is to determine the 

intrinsic grouping in a set of unlabelled data. When applied to 

microarray data, it performs the task of revealing some systematic 

patterns underlying the gene expressions and several sub-classes of 

the tissue samples. This has been successfully adopted in many 

microarray studies to identify various sub-classes of cancers in 

mRNA samples. See Eisen et al (1998 & 1999), Alon et al (1999), 

Golub et al (1999), Alizadeh et al (2000), Gordon et al (2002) and 

Stuart et al (2004) among others. 

As earlier stated, while applying clustering techniques for 

classification of mRNA samples, it is assumed that the various 

subject groups in the data are not previously known and the task is 

to use the measured genes expression profiles to discover these 

unknown different biological sub-groups. In other words, it is 

possible to use the observed gene expression profiles on mRNA 

samples to discover their various biological sub-groups without an a 

priori knowledge of those biological groupings through clustering.   

In microarray technology, the expression patterns of several 

thousand of genes are studied simultaneously at the same time. 

However, if there exist a procedure, like our new k-SS method, that 

can identify and select the few marker genes that are directly 

related to the existing biological sub-groupings of the mRNA 

samples, then it would be more appealing and easier while 

performing clustering, to use only the relevant selected maker genes 

to identify the different biological groupings of any unidentified 

future subjects rather than labouring unnecessarily on the entire 

thousands of genes for the same task. To this end, we shall send the 

selected k-SS classifiers from each microarray data set considered 
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into a suitable clustering algorithm to determining whether they 

would be capable to identify the inherent biological sub-groups of the 

unlabelled mRNA samples. 

Few of the clustering techniques commonly adopted in the literature 

are the k-Means, fuzzy c-Means and hierarchical clustering methods 

among others. However, the method of two-way single-linkage 

hierarchical clustering (SLHC) has received wider applications in 

the literature (Alon et al, 1999; Alizadeh et al, 2000; Gordon et al, 

2002 etc.) than others and its procedure shall be employed using the 

k-SS selection results. 

In the SLHC method as adopted here, the distance matrix between 

the gene expression data is computed and a linkage or 

amalgamation rule to determine when two clusters are sufficiently 

similar to be linked together is defined. By this procedure, a 

hierarchical tree (dendrogram) is developed which shows the links 

between all the gene sets and/or between the tissue samples. The 

clusters are nested together rather than being mutually exclusive as 

in k-means cluster procedure. By this, more and more objects are 

linked together as larger and larger clusters of increasing dissimilar 

elements are amalgamated. Therefore, larger clusters created at 

later stages contained smaller clusters created at earlier stages of 

agglomeration. In the last step, all objects (genes or tissue samples) 

are joined together and a horizontal linkage distance is formed. The 

closer to 1.00 the line that connects two or more genes (or samples) 

is, the more related the genes (or samples) are to one another. The 

SLHC becomes a two-way type when both the genes and mRNA 

samples are clustered simultaneously as performed in Alon et al 

(1999). More details about this clustering method can be found in 
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Everitt (1980), Alon et al (1999), Speed (2003), Lee (2004), Abonyi & 

Feil (2007) and many other related literatures. 

The distance measure we adopted is the Euclidean distance metric 

between any two genes ݔ௝ and ݔ௝′ defined by  

                               ݀ଶ൫ݔ௝, ௝′൯ݔ ൌ ቂ∑ ൫ݔ௜௝ െ ௜௝′൯ݔ
ଶ௡

௜ୀଵ ቃ
ଵ/ଶ

       (4.5.1) 

which is a special case of Minkowski distance metric given by  

   ݀௣൫ݔ௝, ௝ᇲ൯ݔ ൌ ൣ∑ ൫ݔ௜௝ െ ௜௝ᇲ൯௣௡ݔ
௜ୀଵ ൧

ଵ/௣
  

with ݌ ൌ 2. 

As earlier remarked, to demonstrate the goodness of the genes 

selected by our k-SS method, only the selected genes from rectal, 

Leukemia 2, and Lung cancer data sets out of all the eleven 

microarray data sets are considered for cluster analysis. We have 

used the clustering software, cluster 3.0 due to de Hoon et al (2004) 

which is an enhanced version of cluster software developed by Eisen 

et al, (1998) for clustering using the SLHC techniques. 

Rectal cancer data 

In rectal cancer data, the 43 LARC patients consist of 14 responders 

and 29 non-responders to neoadjuvant radiochemotherapy 

treatments as obtained from the clinical results. Each subject in the 

two response group is given a distinct mRNA label. For instance, the 

14 responder subjects were given the following labels; p24, p66, p79, 

p80, p105, p211, p215, p224, p309, p332, p354, p380, p402, and 

p410. The remaining 29 subjects with mRNA labels different from 

these fourteen constitute the non-responder patients. Though, we 

have assumed that the clinical status of the patients is not known, 
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Nucleoside-diphosphate kinase(Y07604) and LTC4synthase 

(U50136), for which the ALL subjects group have low expression 

levels. On the other hand, the ALL patients are mostly those with 

high expression levels of the remaining four genes 

Macmarcks(HG1612), Terminal transferase mRNA (M11722), Cyclin 

D3(M92287) and Op 18 (M31303) for which the AML patients 

equally have low expressions.  The six genes asterisked in Fig 4.7 

were among the fifty differentially expressed genes identified by 

Golub et al (1999). More discussions on this are provided in the next 

chapter. 

Lung cancer data 

The lung cancer data contain 12,533 genes and 181 samples, 150 of 

which are those with adenocarcinoma (ADCA) of the lung and the 

remaining 31 are those with malignant pleural mesothelioma 

(MPM). Except for the rectal, colon and leukemia 1 & 2 data sets 

where we have information on both gene names and probe-set 

numbers (rectal, leukemia 2), or probe-set numbers only (colon & 

leukemia1), we do not have information on both the gene names and 

probe-set numbers for the remaining seven microarray data sets 

considered in this thesis. As a result of this, we have labelled the 

probe-sets in each of the affected data sets including the Lung cancer 

data 3 as V1, V2, V3, … , and so on, indicating the sequence of 

available genes in each microarray data set. These are the labels we 

used in the clustering algorithm for the lung cancer data.   

Out of the entire 12,533 genes in the lung cancer data, the following 

nine genes, “V8005”, “V9707”, “V2255”, “V9607”, “V2421”, “V8858”, 

“V8537”, “V5979”, “V6189” were identified and selected by our k-SS 

method for predicting the 181 tissue samples. These nine genes are 



 

 

the

two

As 

obs

per

MP

 

Fig 
nine
Pleu
red b
       

The

The

equ

ide

gen

of t

the

the

sep

We

Leu

add

pri

erefore us

o-way SL

 in the p

served ag

rfectly re

PL) as con

4.8: The den
e selected gene
ural Mesotheli
bracket and/o
                       

e principa

e discrim

ually asse

ea is to fit

nes from e

the first t

e selected

e number

parated on

e shall ag

ukemia 2

dition to 

ncipal com

   MPM

sed for cl

HC are a

previous t

gain here

vealed th

ntained in

ndrogram of t
es by k-SS cla
ioma (MPL) a
or arrows  ind
                      

al compon

minatory p

essed bas

t principa

each micr

two princ

d genes a

r of sub-

n the PCA

gain cons

2 and Lun

 the Pro

mponents

M                      

lustering 

s displaye

two micro

e that the

he two gr

n the lung

the Single-Lin
assifier from l
and Adenocar
dicated  the  A
                       

nent anal

power of 

sed on pri

l compon

roarray d

cipal comp

are good d

groups in

A plots.   

sider the

ng cancer

ostate 1 

s to asses

                         

 

 as done 

ed by the

oarray da

e nine ge

roups of 

g cancer d

nkage Hierar
lung cancer d
rcinoma (ADC
ADCA group w
       group. 

lysis (PCA

 the selec

incipal co

ent regre

data sets 

ponents s

discrimin

n the res

 three m

r data se

data set

ss the effic

                         

earlier a

 dendrogr

ata sets c

enes selec

biologica

data. 

rchical cluste
data. The two 
CA) are clear
while  the  gre

A) 

cted gene

omponent

ession mo

and obtai

simply ca

nators of 

sponse cl

microarray

ets - as u

t for the

ciency of 

      ADCA 

and the re

ram in Fi

considere

cted by k

al patient

ering (SLHC)
 biological gro
rly identified 
een bracket  d

es by k-S

t analysis

del using

in the gra

lled the P

the respo

lass mus

y data se

used for c

 construc

the k-SS 

esults of 

ig 4.8.  

ed, it can

k-SS meth

ts (ADCA

 results using
oups of Malig
 by clustering
denotes  the  M

S method

s (PCA). T

g the selec

aphical p

PCA plots

onse clas

st be clea

ets - Rec

clustering

ction of 

classifier

the 

n be 

hod 

A or 

 
g the 

gnant 
g. The 
MPM 

d is 

The 

cted 

lots 

s. If 

ses, 

arly 

ctal, 

g in 

the 

rs.  

169 



 
 

 170 

As described in Section 4.1, the Prostate 1 cancer data consist of 

12,600 genes and 102 samples. The 102 samples consist of 52 

tumour (cancerous) and 50 normal (non-cancerous) patients. Our     

k-SS classifier selected 8 informative genes for prediction out of the 

entire 12,600 genes which eventually yielded correct 

prediction/classification rate (CCR) of about 97.15% (see Table 4.8), 

indicating a misclassification of about 3 subjects.  

 
  Rectal cancer data                    Leukemia cancer data 2 

  
                            Lung cancer data                                         Prostate cancer data 1 

Fig 4.9: The plots of the first two principal components, PCA plots, constructed using the genes 
selected by k-SS classifier for four different microarray data sets. All the four PCA plots showed good 
discriminations of the biological groups of the mRNA  samples  based  on  the  genes selected by k-SS  
                                                                           classifier. 

The plot of the first two principal components for each of the data 

sets is provided in Fig 4.9. It can be observed that the different 

biological groups in each microarray data set are clearly separated 

on the PCA plots, an indication that the selected genes by  k-SS 
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classifier are good predictors of the mRNA samples. The two 

misclassifications (a normal subject misclassified as tumour and a 

tumour subject misclassified as normal) noticed on the PCA plot for 

Prostate 1 cancer data is justified by correct prediction rate of 

97.15% estimated by k-SS classifier using the 8 selected genes as 

reported for these data in Table 4.8. 

Based on all the various results as demonstrated in this work, we 

can generally conclude therefore that the new k-SS classifier is 

capable at selecting the best combination of informative marker 

genes from several available thousand of genes for good prediction of 

biological samples in any microarray data sets. 
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5 Summary of the Study 

5.1 Summary of results 

This research study is basically designed to address one of the major 

challenges in microarray studies. The advent of microarray 

technology which has made it possible to monitor and observe 

simultaneously the expression levels of several thousand of both 

relevant and irrelevant genes on a given set of biological subjects has 

made it more important for us to identify and select the few most 

relevant genes that are actually related to the tumour conditions 

being investigated. This task becomes very necessary since the 

discovery of such relevant genes could tremendously help in the 

development of appropriate therapeutic measures. 

Several methods have being proposed in the literature to carry out 

this task, but unfortunately a good number of these methods only 

classify the biological samples into their various cancer sub-groups 

but not the selection of the relevant informative gene that are easily 

interpretable with respect to the category of tumour conditions they 

classified. In addition to this, none of the earlier dimension reduction 

and/or classification methods like SVM, k-NN, PLS, naïve bayes 

(NB), prediction analysis for microarray (PAM), decision tree (DT), 

top scoring pair (TSP) and the like, has been reputed to be capable at 

achieving 100 percent prediction accuracy in all cases of tumour 

classifications in microarray studies.  

It is obvious that the cost of misclassify an early stage cancer patient 

as a normal patient and a normal patient as being cancerous might 

be too enormous. To avert such negative consequences, it becomes 

imperative to continuously seeking to develop more efficient 

classification techniques, like the k-SS method proposed here, that 
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could efficiently select the most relevant sub-set of the observed gene 

chips and provide accurate and stable prediction of biological 

samples into their various tumour groups in any given high 

dimensional genomic data. 

The new k-SS procedure proposed in this thesis is one of the methods 

targeted at unravel the riddles of dimension reduction, relevant gene 

selection as well as accurate prediction of various tumour conditions 

of the mRNA samples as hitherto being desirable in various 

microarray studies.  Given any microarray data set therefore, our 

new k-SS classifier simply adopts unambiguous and easy-to-

understand procedures to select only the most informative and 

biologically relevant marker genes and accurately classify the mRNA 

samples into their various biological conditions based on the genes 

selected. This argument is supported by all prediction results 

provided by our k-SS method. For instance, in rectal cancer data, all 

the 9 selected genes by our k-SS procedure are genes encoding 

proteins. It is clear from the cluster result of Fig 4.6 for these data 

that all the selected 9 genes indicated high expressions patterns 

across all the histopathologically responder patients while they 

indicated reduced expressions for all the non-responder patients. 

The two genes “SF3A1” and “TOE1” are genes encoding proteins that 

perform important function in the nucleus, Rimkus et al (2008). 

Caspases is the family of genes that serve as initiator or executioner 

of the intrinsic or extrinsic signals that may result into 

morphological changes that are related to apoptosis, Boatright & 

Salvesen (2003), Boatright et al (2003), Danial & Korsmeyer (2004). 

Caspase-1 for instance, was the first member of this family whose 

functions in apoptosis and inflammation have been reported in many 

studies, Yuan et al (1993), Kondo et al (1995), Martinon & Tschopp 
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(2004), Thalappilly et al (2006). Among the genes encoding protein 

that perform transport functions are Biliverdin reductase A 

(BLVRA) and Zinc finger protein 24 (ZNF24). The BLVRA performs 

oxidoreductase activities and is capable of initiating several 

biological processes through energy pathways metabolism. The 

ZNF24 on the other hand performs transcription regulatory 

activities and it regulates nucleobase, nucleoside, nucleotide and 

nucleic acid metabolism (see http://www.biocompare.com/ 

gene/gene_details.asp?geneid=11229#products, HPRD®, for more details on 

biological functions of these selected genes) 

In the leukemia2 cancer data on the other hand, the nine genes 

selected by k-SS method clearly discriminates the acute myeloid 

leukemia (AML) group from acute lymphoblastic leukemia (ALL) as 

shown by cluster result in Fig 4.7 and PCA plots in Fig 4.9. As 

asterisked on the cluster result of Fig 4.7, six of the nine selected 

genes by k-SS classifier have been previously identified as good 

discriminators between AML and ALL subjects in a microarray 

study of Golub et al (1999). More specifically, the following four 

genes, Adipsin, IL-8, HoxA9, and LTC4synthase out of the five genes 

selected by k-SS classifier for which AML subjects have high 

expression profiles and the two genes, Cyclin D3 and Oncoprotein 18 

(Op18) out of the remaining four selected genes by k-SS method for 

which the ALL subjects are up-regulated were among the fifty genes 

identified by Golub et al (1999). More importantly, the two genes 

Cyclin D3 and Op 18 have been reported to be genes encoding 

proteins which are critical to S-phase cell cycle progression, Golub et 

al (1999). It has been further reported (Ross et al 1984; Golub et al 

1999) that some of these identified informative genes encodes 

topoisomerase II, which is the principal target of the anti-leukemic 
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drug etoposide. All these findings confirm the biological relevance of 

the genes selected by our new k-SS method. 

The fact, however remains that all the eleven microarray data sets 

as used in this thesis have been previously analysed elsewhere at 

different times to assess the performance of some classification 

methods. A particular study that interests us among these is the 

work of Tan et al (2005). Except for rectal and leukemia1 cancer 

data, the remaining nine data sets used in this thesis were also 

analysed by Tan and his co-workers to assess the performances of 

their TSP family of classifiers relative to selected five existing 

classification methods. The two classifiers, PAM and DT that equally 

perform gene selection as well as classification of biological samples 

were among the five methods considered in their study.  

Like our new k-SS method, the TSP family of classifiers which 

consist of TSP and k-TSP, perform gene selection and class 

prediction and have been adopted for analysis in some studies since 

they were developed, (Geman et al 2004, Xu et al, 2005; Price et al, 

2007, Xu et al 2008). We shall therefore, assess the performance of 

our new k-SS classifier relative to that of TSP, k-TSP, PAM and DT, 

all of which perform the same functions like the k-SS method as well 

as one other classifier, Naïve (Idiot) Bayes (NB) which we have not 

really discussed in this study using the nine microarray data sets as 

considered in Tan et at (2005). For simplicity, we shall only report 

the various results for the above five classifiers as provided in Tan et 

at (2005), pp 3900 for all the nine microarray data sets and 

compared these prediction results with the corresponding results 

provided by our k-SS method.  The correct classification rates (CCR) 

estimated by these classifiers are provided in Table 5.1 while the 
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respective number of genes selected for classification by each of the 

methods, except NB, is presented in Table 5.2.   

Method 
Correct classification rates (in %) of classifiers 

Colon Leuk.2 CNS DLBCL Prost.1 Prost.2 Prost.3 Lung GCM Average 

k-SS 93.83 100.00 96.43 100.00 97.15 87.99 100.00 100.00 86.83 95.80 

*TSP 91.10 93.80 77.90 98.10 95.10 67.60 97.00 98.30 75.40 88.26 

*k-TSP 90.30 95.83 97.10 97.40 91.18 75.00 97.00 98.90 85.40 92.01 

*DT 80.65 73.61 67.65 80.52 87.25 64.77 84.85 96.13 77.86 79.25 

*PAM 85.48 97.22 82.35 85.71 91.18 79.55 100.00 99.45 79.29 88.91 

*NB 58.06 100.00 82.35 80.52 62.75 73.86 90.91 97.79 84.29 81.17 
 

Table 5.1: Prediction performances of k-SS method and four other similar gene selection and 
classification methods (TSP, k-TSP, PAM, DT) as well as NB classifier on nine published 
microarray data sets. *The reported results are from Tan et al (2005). 

Method 
Number of genes used for classification 

Colon Leuk.2 CNS DLBCL Prost.1 Prost.2 Prost.3 Lung GCM 

k-SS 4 9 4 5 8 8 2 9 8 

*TSP 2 2 2 2 2 2 2 2 2 

*k-TSP 2 18 10 2 2 18 2 10 10 

*DT 3 2 2 3 4 4 1 3 14 

*PAM 15 2,296 4 17 47 13 701 9 47 
 

Table 5.2: Number of genes selected for classification by each classification method from nine 
published microarray data sets. *The reported results are from Tan et al (2005). 

It can be observed from Table 5.1 that the new k-SS method 

performs excellently well than all the five existing classifiers. 

Although, k-SS, TSP, k-TSP and PAM classifiers provided average 

prediction accuracy in the neighbourhood of 90% while DT and NB 

provided average prediction accuracy in the neighbourhood of 80%, 

the k-SS classifier outperformed all the five classifiers in six of the 

nine cases (Colon, DLBCL, Prostate 1 & 2, Lung, GCM) while it 

performed equally in one case each with NB (Leukemia2) and PAM 

(Prostate 3). The k-TSP method slightly performs better than the k-

SS method in just one instance (CNS) but uses ten genes as against 

four used by k-SS to achieve almost the same result. In the case for 

which PAM performs equally with k-SS (Prostate 3), the k-SS 
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method uses only 2 genes to yield 100% correct prediction while 

PAM uses as large as 701 genes to achieve the same result (see 

Table 5.2). It can be observed generally that PAM uses more genes 

for classifications than any other classifiers with very little 

appreciable relative performance over others. 

Based on the estimated average prediction accuracies on all the nine 

binary classification problems presented in Table 5.1, it is very clear 

that the best classifier is the k-SS classifier (95.80%) followed by      

k-TSP (92.01%), then PAM (88.91%), TSP (88.26%), NB (81.17%) and 

lastly DT (79.25%) in that order.    

The usual practice in which the random splitting ratio of 2:1 is used 

to split the original sample size into training sample (2/3) and test 

sample (1/3) for the construction and assessment of classifiers 

respectively has been established in this work to be capable of 

providing unstable and misleading results. Not only in k-SS method, 

other three classifiers considered (SVM, k-NN, PLS-LDA) at four 

different splitting ratios (1:1, 2:1, 4:1, 19:1) all provided their best 

prediction performances at 19:1 random splitting ratio for which 

95% of the sample is used as training and the remaining 5% is used 

as the test samples. Therefore, due to very small number of 

biological subjects that characterizes a typical microarray data, and 

to truly minimize average prediction error variance, we wish to 

recommend that 95% of the entire n mRNA sample should be used to 

training the classifiers while the remaining 5% should be set aside 

as independent test sample to assess their performances while 

adopting any of the sub-sampling schemes (with or without 

replacement) for cross-validation.  
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Since the preliminary feature selection is inevitable in the 

application of virtually all the proposed classification rules including 

the k-SS method due to huge size of a typical microarray data often 

encountered, it is important therefore to be conscious of the kind of 

preliminary feature selection methods to be adopted. Most 

importantly, care must be taken to ensure that the chosen 

preliminary selection method does not weed out the potentially 

relevant genes at the preliminary selection stage. However, since 

none of the existing preliminary selection methods has been reported 

to be a super-method that is suitable for all cases of microarray data 

problems, we have also proposed here, a new classifier-like 

preliminary feature selection method – the AUC feature selection 

method- that is capable at retaining all the potentially relevant 

features at the close of its preliminary selection exercise. Unlike 

some of the existing data pruning methods, this new method 

employs the ݒ-fold cross-validation sub-sampling technique to ensure 

the stability and consistency of the features selected. 

5.2 Discussions and conclusion 

In this thesis a novel comprehensive but flexible sequential 

procedure that simultaneously performs dimension reduction, 

informative gene selection and accurate prediction of tumour 

conditions of biological samples in any given microarray study has 

been proposed. The procedure sequentially selects only the most 

informative k genes that are related to the sub-tumour groups in any 

high dimensional microarray data set, hence, the name k-sequential 

selection (k-SS) given to the method. 

It has been demonstrated in this thesis that the new k-SS method 

competes favourably with some of the existing dimension reduction 
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and classification methods. Eleven publicly available microarray 

data sets have been used to assess the performance of this new 

classifier relative to eight other existing methods.  In virtually all 

the cases considered, the k-SS method exerts its superiority over 

other methods in terms of prediction accuracies and biological 

relevance of genes selected. It is hoped that the ability of the k-SS 

method to identify and select only the biologically relevant 

transcripts shall facilitate pre-operative predictions of several sub-

classes of cancers. This shall tremendously help at determining 

proper therapeutic measures for various kinds of cancers. 

In conclusion, the k-SS method is a novel dimension reduction and 

class prediction method that is capable of selecting the most 

biologically relevant genes in a clearly understood manner, thereby 

satisfying the yearnings of molecular biologists, physicians and other 

health workers who are not only interested in the correct 

classification of different tumour groups but also want to know, in an 

unambiguous manner, the kind of genes that are related to different 

tumour conditions of the mRNA samples. 

Apart from its simplicity, the k-SS method, unlike the ‘black-box’ 

approach of some of the earlier methods, is user friendly because the 

various steps that lead to optimum gene selection and class 

prediction can easily be understood by any user with very little 

statistical background.  

The new k-SS classifier clearly underscores the fact that good 

variable selection and response class prediction do not necessarily 

lies in the complexity of the method adopted, as equally remarked by 

Tan et al(2005). The major tasks of informative genes selection and 

classification of mRNA samples, as often desirable in microarray 
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studies can be accomplished using a very simple, unambiguous but 

still efficient procedure like the newly developed k-SS procedure in 

this thesis.  

Finally, we want to remark that the algorithms that execute the      

k-SS method are developed using R statistical software. All 

necessary R codes we developed for its implementation shall be 

incorporated into the main R library within a very short period to 

facilitate its availability to any interested users.   

5.3 Suggestions for future studies    

The current form of our new k-SS method as proposed in this thesis, 

like any other methods, presents several opportunities for further 

improvements in order to enhance its general usage. However, 

whatever modifications intended at this stage shall be addressed in 

future research works. Few of the areas that come to mind for the 

benefit of future studies are highlighted in what follows.  

Although, binary classification problems are the most common 

scenario in microarray studies, the dynamic nature of this research 

area has brought about a few cases that require multiclass 

prediction problems. An example of this is the three response groups 

prediction problem of Beer et al (2002) using Affymetrix lung cancer 

microarray data set or the five class predictions using breast cancer 

data as described in Perou et al (2000).  However, the suitability of 

the k-SS method to handle multiclass predictions problems has been 

conjectured in this work. This particular area of application needs to 

be given thorough practical treatments to enhance its versatility. 

More generally, the biological importance of the genes selected by    

k-SS method has been established in this thesis, this particular 
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advantage of the method need to be further demonstrated within the 

purview of survival analysis where the selected genes could serve as 

suitable prognostic factors to predict the survival times of cancer 

patients. This would particularly discourage the use of either the 

PLS or PCA components, which are often difficult to interpret, to 

predict the survival times of cancer patients as adopted in some 

studies, (Nguyen & Rocke, 2002c; Nguyen, 2005). Using the genes 

selected by k-SS method as predictors in survival models would 

enable us to establish meaningful biological relationship between 

the gene expression levels and the survival time or status of 

individual cancer patients. A related study in this regard is the 

recent study carried out by Yahya & Ulm (2009) in which some 

histopathological variables were used as predictors of survival times 

of breast and small-cell lung cancer patients.  
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Appendix A 

List of some symbols and notations 

We present some of the symbols and notations used for the 

construction of k-SS method. 

Symbols/Notations Descriptions/Functions 

ൌ ࢄ ሺ ଵܺ, … , ܺ௤ሻ  ݍ-dimensional vector of expression level of ݍ genes 
measured on ݊ biological samples. 

௜ܻ א ሼ0,1ሽ  Binary response variable indicating the two groups (0,1) 
of biological subjects.  

߮௝൫ ௝ܺ൯  The k-SS classifier using gene ௝ܺ, ݆ ൌ 1, … ,  ݍ
߮௠భ,௠మ,…,௠ೕሺ࢞ሻ  The k-SS classifier using the gene sets ܺ௠భ, ܺ௠మ, … , ܺ௠ೕ 

  ҧመ௠భ,௠మ,…,௠ೕߴ
Minimum average MER estimated using ݆ genes 
ܺ௠భ, ܺ௠మ, … , ܺ௠ೕ  

  ҧመ௠భ,௠మ,…,௠ೕశభߴ
Minimum average MER estimated using ሺ݆ ൅ 1ሻ genes  
ܺ௠భ, ܺ௠మ, … , ܺ௠ೕ, ܺ௠ೕశభ 

δ෠௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ   ҧመ௠భ,௠మ,…,௠ೕశభߴ
Estimated difference of the two minimum average 
MERs using the first formulation δ෠௝భ 

δ෠௝మ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ   ҧመ௠భ,௠మ,…,௠ೕߴ
Estimated difference of the two minimum average 
MERs using the second formulation δ෠௝మ 

δ෠௝ೞ, ݏ ൌ 1,2  The two minimum average MERs  
ܧ ቀ ҧመ௠భ,௠మ,…,௠ೕቁߴ ൌ ణߤ

௠భ,௠మ,…,௠ೕ  Expected value of ߴҧመ௠భ,௠మ,…,௠ೕ 

E ቀ ҧመ௠భ,௠మ,…,௠ೕశభቁߴ ൌ ణߤ
௠భ,௠మ,…,௠ೕశభ  Expected value of ߴҧመ௠భ,௠మ,…,௠ೕశభ 

൫δ෠௝భ൯ܧ ൌ  ௝భ  Expected value of δ෠௝భߜ
ܵܰሺכߣሻ  The Skew-normal density with shape parameter כߣ 
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Appendix B 

R functions 

B.1 The R function that implements the k-SS method using sub-

sampling technique of Monte-Carlo cross-validation (MCCV). 

The following instructions should be noted for using any of the 

k-SS functions provided here: 

i) The response variable Y, the vector of the group labels of biological 

subjects should be in the first column. 

ii)  The binary group should be coded 0 for normal, and 1 for tumourous or 

any other outcomes of interest.  

#   This function returns preliminary genes selected by the t-statistics, and the  
     misclassification error rates (MERs) from logistic discriminant (LD) rules for  
     each of the preliminarily selected genes. 
############################################################## 

#   dat = Microarray data  
#   repetitions = Number of cross-validation runs 
#   test.sample = Number of test sample to be predicted/classified  
#   alpha = t-statistics' p-value cut-point 

############################################################## 
      mer.select <- function(dat, repetitions, test.sample, alpha) 
      { 
 
      t.selection <- function(dat) 
      { 
      t.vec <- c() 
      for (i in 2:ncol(dat)) 
      { 
      t.statistic <- abs(t.test(dat[, i] ~ dat[, 1], var.equal = F)$p.value) 
      t.vec <- c(t.vec, t.statistic) 
      } 
      names(t.vec) <- names(dat[-1]) 
      return(t.vec) 
      } 
     
      t.result <- t.selection(dat) 
      t.result <- t.result[t.result <= alpha] 
      print(sort(t.result, decreasing = F)) 
      dat <- cbind(dat[, 1], dat[, is.element(names(dat), names(t.result))]) 
 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions, 
                      dimnames = list(1:repetitions, names(dat)[-1])) 
     
      cat("Repetitions done:", "\n"); utils::flush.console() 
      for (i in 1:repetitions) 
      { 
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      repeat 
      { 
      samp <- sample(1:nrow(dat), test.sample) 
      dat2 <- dat[samp, ] 
      dat3 <- dat[-samp, ] 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (j in names(dat)[-1]) 
      { 
      test.data <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, j]) 
      train.data <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, j]) 
 
      mod <- glm(response ~ x.variable, dat = train.data, family = "binomial") 
      pred <- predict(mod, newdat = test.data, type = "response") 
      mer.mat[i, j] <- sum(abs(test.data$response -  
                               ifelse(pred < 0.5, 0, 1))) / length(pred) 
      } 
      if (i %in% seq(0, repetitions, round(repetitions/10)))  
      cat(i, "... "); utils::flush.console() 
      break 
      } 
      } 
      } 
      return(list("MER" = mer.mat)) 
      } 
 
      MER.results <- mer.select(dat, repetitions, test.sample, alpha) 
 
      mer <- apply(MER.results$MER, 2, mean) 
      mer.ordering <- sort(mer, decreasing=F) 
      mer.ordering 
 

 
#   This function returns the k-SS results at each of the gene selection steps  
 
############################################################## 

#   dat = Microarray data 
#   ordering = mer.ordering (from the previous out-put) 
#   iterations = Number of cross-validation runs 
#   test.sample = Test sample to be predicted/classified 
#   alpha.range = sequence of positive integer from 1 to 1000 (or any 
     preferred number) upon which the range of alpha (0,1) is divided 
#   plot.ROC = F (default). If set to T, the plot of ROC curve is   
     provided, otherwise, no ROC curve will be plotted. 
#   first = F (default). If set to T, only the first ROC curve at which  
     the k-SS criteria is satisfied will be plotted. 
#   cells = c(0,0), specifies the number of cell space to be created for  
     ROC curve plot. 

 ############################################################## 
      
      library(ROCR) 
      library(sn) 
 
      sequential.selection <- function(dat, ordering, iterations, test.sample,  
                                       alpha.range, plot.ROC = F, first = F,  
                                       cells = c(0,0)) 
      { 
      names(dat)[1] <- "response" 
      dat <- dat[, c("response", names(ordering))] 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T , scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      if(plot.ROC == T && first == F) par(mfrow = cells) 
 
      final.result <- matrix(NA, ncol = length(alpha.range), nrow = 9) 
      Mer.mat <- Brier.mat <- Sens.mat <- Spec.mat <- ppv.mat <- 
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      npv.mat <- match.matrix <- jaccard.matrix <-  
      matrix(NA, ncol = length(alpha.range), nrow = iterations) 
         
      colnames(final.result) <- colnames(match.matrix) <- 
      colnames(jaccard.matrix) <- colnames(Mer.mat) <-  
      colnames(Brier.mat) <- colnames(Sens.mat) <- colnames(Spec.mat) <- 
      colnames(ppv.mat) <- colnames(npv.mat) <- alpha.range 
      rownames(final.result) <- c("MER", "Jaccard.Index", "Match.Index",  
                                    "Brier-Score", "Sensitivity",  
                                    "Specificity", "Positive PV",  
                                    "Negative PV", "Number of Genes selected") 
 
 
      selection <- (c(names(ordering)[which(ordering == min(ordering))]))[1] 
      comparison <- rep(FALSE, length(alpha.range)) 
 
      cat("Gene added:", "\n"); utils::flush.console() 
      count <- 0 
 
      while(length(selection) < length(ordering)) 
      { 
      count <- count + 1 
      mer1.vec <- jaccard.vec <- match.vec <- brier.vec <- spec.vec <- 
      sens.vec <- ppv.vec <- npv.vec <- R.prediction <- R.true.values <- c() 
 
      predicted.mer.matrix <- true.mer.matrix <-  
      matrix(NA, ncol = iterations, nrow = test.sample) 
 
      mer2.mat <- matrix(NA, nrow = iterations, 
                           ncol = length(names(ordering)[ 
                           which(!is.element(names(ordering), selection))])) 
      colnames(mer2.mat) <- names(ordering)[ 
                              which(!is.element(names(ordering), selection))] 
 
      for (j in 1:iterations) 
      { 
      samp <- sample(1:nrow(dat), test.sample) 
      glm1 <- glm(response ~ ., data = dat[-samp, c("response", selection)],  
                    family = "binomial") 
      pred1 <- ifelse(predict(glm1, newdat = dat[samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      probab <- predict(glm1, newdat = dat[samp, -1], type = "response") 
      mer1 <- sum(abs(pred1 - dat[samp, 1])) / test.sample 
      R.prediction <- c(R.prediction, probab) 
      R.true.values <- c(R.true.values, dat[samp, 1]) 
 
      predicted.mer.matrix[, j] <- pred1 
      true.mer.matrix[, j] <- dat[samp, 1] 
 
      brier.score <- sum((dat[samp, 1] - probab)^2) / test.sample 
      pred1.all <- ifelse(predict(glm1, newdat = dat[ ,-1],  
                                    type = "response") < 0.5, 0, 1) 
      mer1.vec <- c(mer1.vec, mer1) 
 
      brier.vec <- c(brier.vec, brier.score) 
 
 
      sensitivity <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                            which(dat[ ,c("response")] == 1)]) 
                        /length(dat[ ,c("response")][ 
                                which(dat[ ,c("response")] == 1)])) 
      specificity <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                            which(dat[ ,c("response")] == 0)]) 
                        /length(dat[ ,c("response")][ 
                                which(dat[ ,c("response")] == 0)])) 
      spec.vec <- c(spec.vec, specificity) 
      sens.vec <- c(sens.vec, sensitivity) 
      ppv <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                    which(dat[ ,c("response")] == 1)]) 
                      / length(pred1.all[which(pred1.all == 1)])) 
      npv <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                    which(dat[ ,c("response")] == 0)]) 
                     / length(pred1.all[which(pred1.all == 0)])) 
      ppv.vec <- c(ppv.vec, ppv) 
      npv.vec <- c(npv.vec, npv) 
 
      for (i in names(ordering)[which(!is.element(names(ordering), selection))]) 
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      { 
      glm2 <- glm(response ~ .,  
                    data = dat[-samp, c("response", selection, i)],  
                    family = "binomial") 
      pred2 <- ifelse(predict(glm2, newdat = dat[samp, -1],  
                        type = "response") < 0.5, 0, 1) 
      mer2 <- sum(abs(pred2 - dat[samp, 1])) / test.sample 
      mer2.mat[j, i] <- mer2 
      } 
      } 
 
      jaccard.mat <- predicted.mer.matrix + true.mer.matrix 
      jaccard.vec <- apply(jaccard.mat, 2, function(x) 
                           {sum(x == 2) / sum(x != 0)}) 
      match.vec <- apply(jaccard.mat, 2, function(x)  
                           {sum(x == 2 | x == 0) / length(x)}) 
 
      mean.mer1 <- mean(mer1.vec) 
      mean.brier <- mean(brier.vec) 
      mean.mer2 <- colMeans(mer2.mat) 
      mer.diff <-  mean.mer1 - min(mean.mer2)[1] 
         
      cat("selection.step:", count, "\n"); utils::flush.console() 
      cat("min.average.MER1:", mean.mer1, "\n"); utils::flush.console() 
      cat("min.average.MER2:", min(mean.mer2)[1], "\n"); utils::flush.console() 
      cat("difference.delta1:", mer.diff, "\n"); utils::flush.console() 
         
      mean.sens <- mean(sens.vec) 
      mean.spec <- mean(spec.vec) 
      mean.ppv <- mean(ppv.vec) 
      mean.npv <- mean(npv.vec) 
 
      cat("genes.selected", selection, "\n"); utils::flush.console() 
 
      comparison2 <- comparison 
 
      var.mer1 <- sum(mer1.vec * (1 - mer1.vec)) / (iterations^2 *  
                                                       test.sample) 
 
 
      var.mer2 <- sum(mer2.mat[, which(mean.mer2 == min(mean.mer2))[1]] * 
                      (1 - mer2.mat[, which(mean.mer2 == min(mean.mer2))[1]])) / 
                      (iterations^2 * test.sample) 
 
      critical.value <-  qsn(1 - alpha.range * 0.001, shape = 4.0398) *  
                               ifelse(var.mer1 == 0 || var.mer2 == 0, 0, 
                                      sqrt(abs(var.mer1 + var.mer2 - 
                                      2 * cor(mer1.vec, mer2.mat[,  
                                      which(mean.mer2 == min(mean.mer2))[1]]) * 
                                      sqrt(var.mer1 * var.mer2)))) 
 
      comparison <- mer.diff <= critical.value 
      criteria <- comparison == comparison2 
 
      if(sum(criteria) != length(criteria)) 
      { 
      filled.before <- sum(!is.na(colSums(final.result))) 
 
      final.result[, which(criteria == F)[which(criteria == F) %in% 
                       which(is.na(colSums(final.result)) == T)]] <-  
                       c(mean.mer1, mean(jaccard.vec, na.rm = T),  
                       mean(match.vec), mean.brier, mean.sens, mean.spec,  
                       mean.ppv, mean.npv, length(selection)) 
      Mer.mat[,          which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Mer.mat)) == T)]] <- mer1.vec 
      Brier.mat[,        which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Brier.mat)) == T)]] <- brier.vec 
      Sens.mat[,         which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Sens.mat)) == T)]] <- sens.vec 
      Spec.mat[,         which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Spec.mat)) == T)]] <- spec.vec 
      ppv.mat[,          which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(ppv.mat)) == T)]] <- ppv.vec 
      npv.mat[,          which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(npv.mat)) == T)]] <- npv.vec 
      jaccard.matrix[,   which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Spec.mat)) == T)]] <- jaccard.vec 
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      match.matrix[,     which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Spec.mat)) == T)]] <- match.vec 
 
      filled.after <- sum(!is.na(colSums(final.result))) 
 
      if (plot.ROC == T && filled.before != filled.after) 
      { 
      if (first == T && filled.before == 0 && filled.after == 1) 
      { 
      pred <- prediction(R.prediction, R.true.values) 
      perf <- performance(pred, "tpr", "fpr" ) 
      plot(perf); abline(a=0, b=1) 
      } 
      if (first == F) 
      { 
      pred <- prediction(R.prediction, R.true.values) 
      perf <- performance(pred, "tpr", "fpr" ) 
      plot(perf, main = paste("alpha-factor:", paste(sort(alpha.range,  
                                decreasing = T)[ 
                                (filled.before + 1):filled.after],  
                                collapse = ", ")), sub = paste("AUC =",  
                                performance(pred, 'auc')@y.values[[1]]),  
                                col = "red"); abline(a=0, b=1) 
      } 
      } 
      } 
      cat("sequential.result.output:", "\n") 
      utils::flush.console() 
      print(final.result) 
                               
      ifelse(sum(comparison) == length(alpha.range), 
               break,  
               selection <- c(selection, names(mean.mer2[ 
                              which(mean.mer2 == min(mean.mer2))])[1])) 
      } 
      cat("\n") 
      return(list("RESULT.MATRIX" = final.result,  
                    "GENE.SELECTED" = selection, 
                    "MER.MAT" = Mer.mat, "BRIER.MAT" = Brier.mat, 
                    "SENS.MAT" = Sens.mat, "SPEC.MAT" = Spec.mat, 
                    "PPV.MAT" = ppv.mat, "NPV.MAT" = npv.mat, 
                    "JACCARD.MAT" = jaccard.matrix,  
                    "MATCH.MAT" = match.matrix, "R.PREDICTION" = R.prediction,  
                    "R.TRUE.VALUES" = R.true.values)) 
      } 
 
      KSS.results <- sequential.selection(dat, ordering, iterations, test.sample, 
                                                       alpha.range, plot.ROC = T, 
                                                       first = F, cells = c(1,1)) 
                                                 

B.2 The R function that performs backward checks on the genes   

selected by k-SS method under B.1.  

############################################################## 
#   dat = Microarray data  
#   genes = genes selected by k-SS method 
#   iterations = Number of cross-validation runs 
#   test.sample = test sample to predict/classify 
#   bootstrap = F (default) which uses MCCV. If set to T, it uses  
     bootstrap cross-validation. 

############################################################## 
 
      back.check <- function(genes, iterations, test.sample, dat, bootstrap = F) 
      { 
      names(dat)[1] <- "response" 
      dat <- as.matrix(dat)     
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T , scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
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      mer.mat <- matrix(NA, nrow = iterations, ncol = length(genes)+1) 
      colnames(mer.mat) <- c("full.model", genes)   
      names(dat)[1] <- "response" 
      for (j in 1:iterations) 
      { 
      ifelse(bootstrap == F, samp <- sample(1:nrow(dat),  
                                       nrow(dat) - test.sample),  
                                       samp <- sample(1:nrow(dat), replace = T)) 
      glm1 <- glm(response ~ ., data = dat[samp, c("response", genes)],  
                    family = "binomial") 
      pred1 <- ifelse(predict(glm1, newdat = dat[-samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      mer1 <- mean(abs(pred1 - dat[-samp, 1])) 
      mer.mat[j, 1] <- mer1 
 
      for (i in 1:(length(genes))) 
      { 
      glm2 <- glm(response ~ ., data = dat[samp, c("response", genes[-i])],  
                    family = "binomial") 
      pred2 <- ifelse(predict(glm2, newdat = dat[-samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      mer2 <- mean(abs(pred2 - dat[-samp, 1])) 
      mer.mat[j, i + 1] <- mer2 
      } 
      } 
      return(mer.mat) 
      } 
      KSS.backward.checks <- back.check (genes, iterations, test.sample, dat,  
                                         bootstrap = F) 

 

B.3 The R function that implements the proposed AUC 

preliminary feature selection. 

#   This code returns the number and types of the preliminarily selected genes  
     as well as their cross-validated AUC estimates. 
 
############################################################## 

#   dat = Microarray data  
#   alpha = The chosen size alpha for the AUC test 
#   fold = Number of fold chosen for cross-validation 

############################################################## 
 
     library(ROCR) 
      mer.select <- function(dat, alpha, fold) 
      { 
 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      auc.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = fold, 
                        dimnames = list(1:fold, names(dat)[-1])) 
 
      groups <- sample(rep(1:fold, len = nrow(dat))) 
      for (k in 1:fold) 
      { 
      repeat 
      { 
      dat2 <- dat[groups == k, ] 
      dat3 <- dat[groups != k, ] 
 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (m in names(dat)[-1]) 
      { 
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      test.dat <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, m]) 
      train.dat <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, m]) 
 
      mod <- glm(response ~ x.variable, data = train.dat, family = "binomial") 
      pred <- predict(mod, newdata = test.dat, type = "response") 
      roc <- prediction(pred, test.dat$response) 
      auc.mat[k, m] <- performance(roc, 'auc')@y.values[[1]] 
      } 
      break 
      } 
      } 
      } 
 
      mean.auc <- colMeans(auc.mat) 
      p.1 <- mean.auc / (2 - mean.auc) 
      p.2 <- 2 * mean.auc^2 / (1 + mean.auc) 
      sigma <- (mean.auc * (1 - mean.auc) + 
           (sum(dat[, 1]) - 1) * (p.1 - mean.auc^2) + 
           (length(dat[, 1]) - sum(dat[, 1]) - 1) * (p.2 - mean.auc^2)) / 
           (sum(dat[, 1]) * (length(dat[, 1]) - sum(dat[, 1]))) 
 
      auc.result <- names(mean.auc)[which(mean.auc >= 0.5 + qnorm(1 - alpha) * 
                                                            sqrt(sigma))] 
      auc.select <- sort(mean.auc[auc.result], decreasing = T) 
      print(length(auc.select)) 
      return(list(auc.select)) 
      } 
       
      AUC.selection <- mer.select(dat, alpha, fold) 
      AUC.selection 
 
 

B.4 The R function that simulates the estimates of the minimum 

mean MER differences ߜመ௝భ ൌ ҧመ௠భ,௠మ,…,௠ೕߴ െ  ҧመ௠భ,௠మ,…,௠ೕశభ andߴ

መ௝మߜ ൌ ҧመ௠భ,௠మ,…,௠ೕశభߴ െ  .ҧመ௠భ,௠మ,…,௠ೕ as used by the k-SS methodߴ

############################################################## 
#   dat = data to be used 
#   repetitions = Number of cross-validation runs 
#   test.sample = the number of test sample to predict/classify  
#   alpha = the t-statistics' p-value cut-point 

############################################################## 
 
      mer.select <- function(dat, repetitions, test.sample, alpha) 
      { 
 
      t.selection <- function(dat) 
      { 
      t.vec <- c() 
      for (i in 2:ncol(dat)) 
      { 
      t.statistic <- abs(t.test(dat[, i] ~ dat[, 1], var.equal = F)$p.value) 
      t.vec <- c(t.vec, t.statistic) 
      } 
      names(t.vec) <- names(dat[-1]) 
      return(t.vec) 
      } 
     
      t.result <- t.selection(dat) 
      t.result <- t.result[t.result <= alpha] 
      print(sort(t.result, decreasing = F)) 
      dat <- cbind(dat[, 1], dat[, is.element(names(dat), names(t.result))]) 
 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
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      mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions, 
                      dimnames = list(1:repetitions, names(dat)[-1])) 
     
      cat("Repetitions done:", "\n"); utils::flush.console() 
      for (i in 1:repetitions) 
      { 
      repeat 
      { 
      samp <- sample(1:nrow(dat), test.sample) 
      dat2 <- dat[samp, ] 
      dat3 <- dat[-samp, ] 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (j in names(dat)[-1]) 
      { 
      test.data <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, j]) 
      train.data <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, j]) 
 
      mod <- glm(response ~ x.variable, dat = train.data, family = "binomial") 
      pred <- predict(mod, newdat = test.data, type = "response") 
      mer.mat[i, j] <- sum(abs(test.data$response -  
                               ifelse(pred < 0.5, 0, 1))) / length(pred) 
      } 
      if (i %in% seq(0, repetitions, round(repetitions/10)))  
      cat(i, "... "); utils::flush.console() 
      break 
      } 
      } 
      } 
      return(list("MER" = mer.mat)) 
      } 
 
      MER.results <- mer.select(dat, repetitions, test.sample, alpha) 
 
      mer <- apply(MER.results$MER, 2, mean) 
      mer.ordering <- sort(mer, decreasing=F) 
      mer.ordering 

 
#   This function returns a matrix of ࢾ෡࢐૚ values whose dimension is [iterations by  
     (mer.ordering - 1)] 
 
############################################################## 

#   dat = Microarray data 
#   ordering = mer.ordering 
#   iterations = Number of ߜመ௝భ to be generated from each gene pair 
#   repetitions = Number of cross-validation run 

############################################################## 
 
      sequential.selection <- function(dat, ordering, iterations, repetitions,  
                                                                 test.sample) 
      { 
      names(dat)[1] <- "response" 
      dat <- dat[, c("response", names(ordering))] 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[, 1], scale((dat)[,2:ncol(dat)], center =T , scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      Mer.mat <- matrix(NA, nrow = iterations, ncol = length(ordering)) 
      colnames(Mer.mat) <- names(ordering) 
       
      cat("Iterations:", "\n") 
 
      for (j in 1:iterations) 
      { 
      selection <- (c(names(ordering)[which(ordering == min(ordering))]))[1] 
      while(length(selection) != (ncol(dat) - 1)) 
      { 
      mer1.vec <- c() 
      mer2.mat <- matrix(NA, nrow = repetitions, 
                           ncol = length(names(ordering)[ 
                           which(!is.element(names(ordering), selection))])) 
      colnames(mer2.mat) <- names(ordering)[ 
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                              which(!is.element(names(ordering), selection))] 
 
      for (k in 1:repetitions) 
      { 
          
      samp <- sample(1:nrow(dat), test.sample) 
      glm1 <- glm(response ~ ., data = dat[-samp, c("response", selection)],  
                                family = "binomial") 
      pred1 <- ifelse(predict(glm1, newdat = dat[samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      mer1 <- sum(abs(pred1 - dat[samp, 1])) / test.sample 
      mer1.vec <- c(mer1.vec, mer1) 
 
      for (i in names(ordering)[which(!is.element(names(ordering), selection))]) 
      { 
      glm2 <- glm(response ~ ., data = dat[-samp, c("response", selection, i)],  
                                family = "binomial") 
      pred2 <- ifelse(predict(glm2, newdat = dat[samp, -1],  
                        type = "response") < 0.5, 0, 1) 
      mer2 <- sum(abs(pred2 - dat[samp, 1])) / test.sample 
      mer2.mat[k, i] <- mer2 
      } 
      } 
      mer1 <- mean(mer1.vec) 
      mer2.vec <- colMeans(mer2.mat) 
      mer.diff <-   mer1 - min(mer2.vec)[1] 
      Mer.mat[j, names(mer2.vec[ 
                         which(mer2.vec == min(mer2.vec))])] <- mer.diff 
      selection <- c(selection, names(mer2.vec[ 
                                       which(mer2.vec == min(mer2.vec))])[1]) 
      } 
      if (j %in% seq(0, iterations, round(iterations / 1)))  
      cat(j, "... "); utils::flush.console() 
      } 
      cat("\n") 
      return(Mer.mat) 
      } 
 
      mini.mean.mer.diffiference <-  sequential.selection(dat, ordering, iterations,  
                                                           repetitions, test.sample) 
                                                            

 
B.5 The R function that implements the k-SS method using the 

new AUC preliminary feature selection under the sub-

sampling technique of Monte-Carlo cross-validation (MCCV). 

#   This function returns preliminary genes selected by newly proposed AUC    
     criteria, and  the Misclassification error rates (MERs) from logistic  
     discriminant (LD) rules for each preliminarily selected genes. 
 
############################################################## 

#   dat = Microarray data 
#   repetitions = Number of cross-validation runs 
#   test.sample = Number of test sample to be predicted/classified  
#   alpha = The chosen size alpha for the AUC test 
#   fold = the number of fold used for cross-validation  

############################################################## 
 
      library(ROCR) 
      mer.select <- function(dat, repetitions, test.sample, alpha, fold) 
      { 
 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
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      auc.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = fold, 
                        dimnames = list(1:fold, names(dat)[-1])) 
 
      groups <- sample(rep(1:fold, len = nrow(dat))) 
      for (k in 1:fold) 
      { 
      repeat 
      { 
      dat2 <- dat[groups == k, ] 
      dat3 <- dat[groups != k, ] 
 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (m in names(dat)[-1]) 
      { 
      test.dat <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, m]) 
      train.dat <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, m]) 
 
      mod <- glm(response ~ x.variable, data = train.dat, family = "binomial") 
      pred <- predict(mod, newdata = test.dat, type = "response") 
      roc <- prediction(pred, test.dat$response) 
      auc.mat[k, m] <- performance(roc, 'auc')@y.values[[1]] 
      } 
      break 
      } 
      } 
      } 
 
      mean.auc <- colMeans(auc.mat) 
      p.1 <- mean.auc / (2 - mean.auc) 
      p.2 <- 2 * mean.auc^2 / (1 + mean.auc) 
      sigma <- (mean.auc * (1 - mean.auc) + 
                (sum(dat[, 1]) - 1) * (p.1 - mean.auc^2) + 
                (length(dat[, 1]) - sum(dat[, 1]) - 1) * (p.2 - mean.auc^2)) / 
                (sum(dat[, 1]) * (length(dat[, 1]) - sum(dat[, 1]))) 
 
      auc.result <- names(mean.auc)[which(mean.auc >= 0.5 +  
                                    qnorm(1 - alpha) * sqrt(sigma))] 
       
      cat("preliminary.features.selected:", "\n")  
      print(sort(mean.auc[auc.result], decreasing = T)) 
      utils::flush.console() 
           
      dat <- cbind(dat[, 1], dat[, is.element(names(dat), auc.result)]) 
 
      mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions, 
                      dimnames = list(1:repetitions, names(dat)[-1])) 
 
      cat("Repetitions done:", "\n"); utils::flush.console() 
       
      for (i in 1:repetitions) 
      { 
      repeat 
      { 
      samp <- sample(1:nrow(dat), test.sample) 
      dat2 <- dat[samp, ] 
      dat3 <- dat[-samp, ] 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (j in names(dat)[-1]) 
      { 
      test.data <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, j]) 
      train.data <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, j]) 
 
      mod <- glm(response ~ x.variable, dat = train.data, family = "binomial") 
      pred <- predict(mod, newdat = test.data, type = "response") 
      mer.mat[i, j] <- sum(abs(test.data$response -  
                           ifelse(pred < 0.5, 0, 1)))/length(pred) 
      } 
      if (i %in% seq(0, repetitions, round(repetitions/10))) cat(i, "... ") 
      break 
      } 
      } 
      } 
      return(list("MER" = mer.mat)) 
      } 
      MER.results <- mer.select(dat, repetitions, test.sample, alpha, fold) 
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      mer <- apply(MER.results$MER, 2, mean) 
      mer.ordering <- sort(mer, decreasing=F) 
      mer.ordering 

 
#   This function returns the k-SS results at each of the gene selection steps  
 
############################################################## 

#   dat = Microarray data 
#   ordering = mer.ordering (from the previous out-put) 
#   iterations = Number of cross-validation runs 
#   test.sample = Test sample to be predicted/classified 
#   alpha.range = sequence of positive integer from 1 to 1000 (or any  
     preferred number) upon which the range of alpha (0,1) is divided 
#   plot.ROC = F (default). If set to T, the plot of ROC curve is  
     provided, otherwise, no ROC curve will be plotted. 
#   first = F (default). If set to T, only the first ROC curve at which 
     the k-SS criteria satisfied will be plotted. 
#   cells = c(0,0), specifies the number of cell space to be created for  
     ROC curve plot. 

 ############################################################## 
 
      library(ROCR) 
      library(sn) 
 
      sequential.selection <- function(dat, ordering, iterations, test.sample,  
                                       alpha.range, plot.ROC = F, first = F,  
                                       cells = c(0,0)) 
      { 
      names(dat)[1] <- "response" 
      dat <- dat[, c("response", names(ordering))] 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T , scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      if(plot.ROC == T && first == F) par(mfrow = cells) 
 
      final.result <- matrix(NA, ncol = length(alpha.range), nrow = 9) 
      Mer.mat <- Brier.mat <- Sens.mat <- Spec.mat <- ppv.mat <- 
      npv.mat <- match.matrix <- jaccard.matrix <-  
      matrix(NA, ncol = length(alpha.range), nrow = iterations) 
         
      colnames(final.result) <- colnames(match.matrix) <- 
      colnames(jaccard.matrix) <- colnames(Mer.mat) <-  
      colnames(Brier.mat) <- colnames(Sens.mat) <- colnames(Spec.mat) <- 
      colnames(ppv.mat) <- colnames(npv.mat) <- alpha.range 
      rownames(final.result) <- c("MER", "Jaccard.Index", "Match.Index",  
                                    "Brier-Score", "Sensitivity",  
                                    "Specificity", "Positive PV",  
                                    "Negative PV", "Number of Genes selected") 
 
 
      selection <- (c(names(ordering)[which(ordering == min(ordering))]))[1] 
      comparison <- rep(FALSE, length(alpha.range)) 
 
      cat("Gene added:", "\n"); utils::flush.console() 
      count <- 0 
 
      while(length(selection) < length(ordering)) 
      { 
      count <- count + 1 
      mer1.vec <- jaccard.vec <- match.vec <- brier.vec <- spec.vec <- 
      sens.vec <- ppv.vec <- npv.vec <- R.prediction <- R.true.values <- c() 
 
      predicted.mer.matrix <- true.mer.matrix <-  
      matrix(NA, ncol = iterations, nrow = test.sample) 
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      mer2.mat <- matrix(NA, nrow = iterations, 
                           ncol = length(names(ordering)[ 
                           which(!is.element(names(ordering), selection))])) 
      colnames(mer2.mat) <- names(ordering)[ 
                              which(!is.element(names(ordering), selection))] 
 
      for (j in 1:iterations) 
      { 
      samp <- sample(1:nrow(dat), test.sample) 
      glm1 <- glm(response ~ ., data = dat[-samp, c("response", selection)],  
                    family = "binomial") 
      pred1 <- ifelse(predict(glm1, newdat = dat[samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      probab <- predict(glm1, newdat = dat[samp, -1], type = "response") 
      mer1 <- sum(abs(pred1 - dat[samp, 1])) / test.sample 
      R.prediction <- c(R.prediction, probab) 
      R.true.values <- c(R.true.values, dat[samp, 1]) 
 
      predicted.mer.matrix[, j] <- pred1 
      true.mer.matrix[, j] <- dat[samp, 1] 
 
      brier.score <- sum((dat[samp, 1] - probab)^2) / test.sample 
      pred1.all <- ifelse(predict(glm1, newdat = dat[ ,-1],  
                                    type = "response") < 0.5, 0, 1) 
      mer1.vec <- c(mer1.vec, mer1) 
 
      brier.vec <- c(brier.vec, brier.score) 
 
 
      sensitivity <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                            which(dat[ ,c("response")] == 1)]) 
                        /length(dat[ ,c("response")][ 
                                which(dat[ ,c("response")] == 1)])) 
      specificity <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                            which(dat[ ,c("response")] == 0)]) 
                        /length(dat[ ,c("response")][ 
                                which(dat[ ,c("response")] == 0)])) 
      spec.vec <- c(spec.vec, specificity) 
      sens.vec <- c(sens.vec, sensitivity) 
      ppv <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                    which(dat[ ,c("response")] == 1)]) 
                      / length(pred1.all[which(pred1.all == 1)])) 
      npv <- (sum(c(pred1.all == dat[ ,c("response")])[ 
                    which(dat[ ,c("response")] == 0)]) 
                     / length(pred1.all[which(pred1.all == 0)])) 
      ppv.vec <- c(ppv.vec, ppv) 
      npv.vec <- c(npv.vec, npv) 
 
      for (i in names(ordering)[which(!is.element(names(ordering), selection))]) 
      { 
      glm2 <- glm(response ~ .,  
                    data = dat[-samp, c("response", selection, i)],  
                    family = "binomial") 
      pred2 <- ifelse(predict(glm2, newdat = dat[samp, -1],  
                        type = "response") < 0.5, 0, 1) 
      mer2 <- sum(abs(pred2 - dat[samp, 1])) / test.sample 
      mer2.mat[j, i] <- mer2 
      } 
      } 
 
      jaccard.mat <- predicted.mer.matrix + true.mer.matrix 
      jaccard.vec <- apply(jaccard.mat, 2, function(x) 
                           {sum(x == 2) / sum(x != 0)}) 
      match.vec <- apply(jaccard.mat, 2, function(x)  
                           {sum(x == 2 | x == 0) / length(x)}) 
 
      mean.mer1 <- mean(mer1.vec) 
      mean.brier <- mean(brier.vec) 
      mean.mer2 <- colMeans(mer2.mat) 
      mer.diff <-  mean.mer1 - min(mean.mer2)[1] 
         
      cat("selection.step:", count, "\n"); utils::flush.console() 
      cat("min.average.MER1:", mean.mer1, "\n"); utils::flush.console() 
      cat("min.average.MER2:", min(mean.mer2)[1], "\n"); utils::flush.console() 
      cat("difference.delta1:", mer.diff, "\n"); utils::flush.console() 
         
      mean.sens <- mean(sens.vec) 
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      mean.spec <- mean(spec.vec) 
      mean.ppv <- mean(ppv.vec) 
      mean.npv <- mean(npv.vec) 
 
      cat("genes.selected", selection, "\n"); utils::flush.console() 
 
      comparison2 <- comparison 
 
      var.mer1 <- sum(mer1.vec * (1 - mer1.vec)) / (iterations^2 *  
                                                       test.sample) 
 
 
      var.mer2 <- sum(mer2.mat[, which(mean.mer2 == min(mean.mer2))[1]] * 
                      (1 - mer2.mat[, which(mean.mer2 == min(mean.mer2))[1]])) / 
                      (iterations^2 * test.sample) 
 
      critical.value <-  qsn(1 - alpha.range * 0.001, shape = 4.0398) *  
                               ifelse(var.mer1 == 0 || var.mer2 == 0, 0, 
                                      sqrt(abs(var.mer1 + var.mer2 - 
                                      2 * cor(mer1.vec, mer2.mat[,  
                                      which(mean.mer2 == min(mean.mer2))[1]]) * 
                                      sqrt(var.mer1 * var.mer2)))) 
 
      comparison <- mer.diff <= critical.value 
      criteria <- comparison == comparison2 
 
      if(sum(criteria) != length(criteria)) 
      { 
      filled.before <- sum(!is.na(colSums(final.result))) 
 
      final.result[, which(criteria == F)[which(criteria == F) %in% 
                       which(is.na(colSums(final.result)) == T)]] <-  
                       c(mean.mer1, mean(jaccard.vec, na.rm = T),  
                       mean(match.vec), mean.brier, mean.sens, mean.spec,  
                       mean.ppv, mean.npv, length(selection)) 
      Mer.mat[,          which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Mer.mat)) == T)]] <- mer1.vec 
      Brier.mat[,        which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Brier.mat)) == T)]] <- brier.vec 
      Sens.mat[,         which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Sens.mat)) == T)]] <- sens.vec 
      Spec.mat[,         which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Spec.mat)) == T)]] <- spec.vec 
      ppv.mat[,          which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(ppv.mat)) == T)]] <- ppv.vec 
      npv.mat[,          which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(npv.mat)) == T)]] <- npv.vec 
      jaccard.matrix[,   which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Spec.mat)) == T)]] <- jaccard.vec 
      match.matrix[,     which(criteria == F)[which(criteria == F) %in% 
                         which(is.na(colSums(Spec.mat)) == T)]] <- match.vec 
 
      filled.after <- sum(!is.na(colSums(final.result))) 
 
      if (plot.ROC == T && filled.before != filled.after) 
      { 
      if (first == T && filled.before == 0 && filled.after == 1) 
      { 
      pred <- prediction(R.prediction, R.true.values) 
      perf <- performance(pred, "tpr", "fpr" ) 
      plot(perf); abline(a=0, b=1) 
      } 
      if (first == F) 
      { 
      pred <- prediction(R.prediction, R.true.values) 
      perf <- performance(pred, "tpr", "fpr" ) 
      plot(perf, main = paste("alpha-factor:", paste(sort(alpha.range,  
                                decreasing = T)[ 
                                (filled.before + 1):filled.after],  
                                collapse = ", ")), sub = paste("AUC =",  
                                performance(pred, 'auc')@y.values[[1]]),  
                                col = "red"); abline(a=0, b=1) 
      } 
      } 
      } 
      cat("sequential.result.output:", "\n") 
      utils::flush.console() 
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      print(final.result) 
                               
      ifelse(sum(comparison) == length(alpha.range), 
               break,  
               selection <- c(selection, names(mean.mer2[ 
                              which(mean.mer2 == min(mean.mer2))])[1])) 
      } 
      cat("\n") 
      return(list("RESULT.MATRIX" = final.result,  
                    "GENE.SELECTED" = selection, 
                    "MER.MAT" = Mer.mat, "BRIER.MAT" = Brier.mat, 
                    "SENS.MAT" = Sens.mat, "SPEC.MAT" = Spec.mat, 
                    "PPV.MAT" = ppv.mat, "NPV.MAT" = npv.mat, 
                    "JACCARD.MAT" = jaccard.matrix,  
                    "MATCH.MAT" = match.matrix, "R.PREDICTION" = R.prediction,  
                    "R.TRUE.VALUES" = R.true.values)) 
      } 
 
      KSS.results <- sequential.selection(dat, ordering, iterations,  
                                                test.sample, alpha.range,  
                                                plot.ROC = T, first = F,  
                                                cells = c(1,1)) 

 

B.6 The R function that implements the k-SS method using 

bootstrap .632+ sub-sampling scheme under the preliminary 

feature selection by the t-statistics. 

#   This function returns preliminary gene selection by the t-statistic, and the  
     Misclassification error rates (MERs) from logistic discriminant (LD) rules for  
     each preliminarily selected genes. 
 
 ############################################################## 
                  #   dat = Microarray data 

#   repetitions = Number of cross-validation runs 
#   alpha = the t-statistics' p-value cut-point 

 ############################################################## 
    
    mer.select <- function(dat, repetitions, alpha) 
    { 
    dat <- as.matrix(dat) 
    dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T)) 
    dat <- as.data.frame(dat) 
    names(dat)[1] <- "response" 
 
    t.selection <- function(dat) 
    { 
    t.vec <- c() 
    for (i in 2:ncol(dat)) 
    { 
    t.statistic <- abs(t.test(dat[, i] ~ dat[, 1], var.equal = F)$p.value) 
    t.vec <- c(t.vec, t.statistic) 
    } 
    names(t.vec) <- names(dat[-1]) 
    return(t.vec) 
    } 
     
    t.result <- t.selection(dat) 
    t.result <- t.result[t.result <= alpha] 
    cat("preliminary.features.selected", "\n") 
    print(sort(t.result, decreasing = F)) 
    utils::flush.console() 
    dat <- cbind(dat[, 1], dat[, is.element(names(dat), names(t.result))]) 
 
    mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions, 
                        dimnames = list(1:repetitions, names(dat)[-1])) 
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    cat("Repetitions done:", "\n"); utils::flush.console() 
    for (i in 1:repetitions) 
    { 
    repeat 
    { 
    samp <- sample(1:nrow(dat), replace = T) 
    dat2 <- dat[-samp, ] 
    dat3 <- dat[samp, ] 
    if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
    { 
    for (j in names(dat)[-1]) 
    { 
    test.data <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, j]) 
    train.data <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, j]) 
     
    mod <- glm(response ~ x.variable, dat = train.data, family = "binomial") 
    pred <- predict(mod, newdat = test.data, type = "response") 
    mer.mat[i, j] <- 0.632 * sum(abs(test.data$response -  
                                   ifelse(pred < 0.5, 0, 1))) / nrow(dat) + 
                       0.368 * sum(abs(train.data$response -  
                                   ifelse(mod$fitted.values < 0.5, 0, 1))) /  
                                   nrow(dat2) 
    } 
    if (i %in% seq(0, repetitions, round(repetitions/10)))  
    cat(i, "... "); utils::flush.console() 
    break 
    } 
    } 
    } 
    return(list("MER" = mer.mat)) 
    } 
 
    MER.results <- mer.select (dat, repetitions, alpha) 
    mer <- apply(MER.results$MER, 2, mean) 
    mer.ordering <- sort(mer, decreasing=F) 
    mer.ordering 
 

#   This function returns the k-SS results at each of the gene selection steps  
 
############################################################## 

#   dat = Microarray data 
#   ordering = mer.ordering (from the previous out-put) 
#   iterations = Number of cross-validation runs 
#   alpha.range = sequence of positive integer from 1 to 1000 (or any 
     preferred number) upon which the range of alpha (0,1) is 
     divided 
#   plot.ROC = F (default). If set to T, the plot of ROC curve is  
     provided, otherwise, no ROC curve will be plotted. 
#   cells = c(0,0), specifies the number of cell space to be created for 
     ROC curve plot. 

############################################################## 
 
     
      library(ROCR) 
      library(sn) 
      sequential.selection <- function(dat, ordering, iterations, alpha.range,  
                                 plot.ROC = F, cells = c(0,0)) 
      { 
      names(dat)[1] <- "response" 
      dat <- dat[, c("response", names(ordering))] 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center =T , scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      if(plot.ROC == T) par(mfrow = cells) 
 
      final.result <- matrix(NA, ncol = length(alpha.range), nrow = 2) 
      Mer.mat <- match.matrix  <- matrix(NA, ncol = length(alpha.range),  
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                                           nrow = iterations) 
      colnames(final.result) <- colnames(Mer.mat) <- alpha.range 
 
      rownames(final.result) <- c("MER", "Number of Genes selected") 
 
      selection <- (c(names(ordering)[which(ordering == min(ordering))]))[1] 
      comparison <- rep(FALSE, length(alpha.range)) 
 
      cat("Gene added:", "\n"); utils::flush.console() 
      count <- 0 
     
      while(length(selection) < length(ordering)) 
      { 
      count <- count + 1 
         
      mer1.vec <-  R.prediction <- R.true.values <- 
      mer1.test.vec <- mer1.train.vec <- c() 
         
      mer2.mat <- mer2.test.mat <- mer2.train.mat <-  
                    matrix(NA, nrow = iterations, 
                           ncol = length(names(ordering)[ 
                                  which(!is.element(names(ordering),  
                                                    selection))])) 
      colnames(mer2.mat) <- colnames(mer2.test.mat) <-  
      colnames(mer2.train.mat) <-  
      names(ordering)[which(!is.element(names(ordering), selection))] 
 
      for (j in 1:iterations) 
      { 
      samp <- sample(1:nrow(dat), replace = T) 
      glm1 <- glm(response ~ ., data = dat[samp, c("response", selection)],  
                                family = "binomial") 
      pred1 <- ifelse(predict(glm1, newdat = dat[-samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      probab <- predict(glm1, newdat = dat[-samp, -1], type = "response") 
 
      mer1.test <- mean(abs(pred1 - dat[-samp, 1])) 
      mer1.train <- mean(abs(ifelse(glm1$fitted.values < 0.5, 0, 1) -  
                                                             dat[samp, 1])) 
      mer1 <- 0.632 * mer1.test + 0.368 * mer1.train 
         
      R.prediction <- c(R.prediction, probab) 
      R.true.values <- c(R.true.values, dat[-samp, 1]) 
 
      mer1.vec <- c(mer1.vec, mer1) 
      mer1.test.vec <- c(mer1.test.vec, mer1.test) 
      mer1.train.vec <- c(mer1.train.vec, mer1.train) 
         
      for (i in names(ordering)[which(!is.element(names(ordering), selection))]) 
      { 
      glm2 <- glm(response ~ ., data = dat[samp, c("response", selection, i)],  
                                family = "binomial") 
      pred2 <- ifelse(predict(glm2, newdat = dat[-samp, -1],  
                                type = "response") < 0.5, 0, 1) 
 
      mer2 <- 0.632 * mean(abs(pred2 - dat[-samp, 1])) + 
              0.368 * mean(abs(ifelse(glm2$fitted.values < 0.5, 0, 1) -  
                                                                dat[samp, 1])) 
 
      mer2.mat[j, i] <- mer2 
      mer2.test.mat[j, i] <- mean(abs(pred2 - dat[-samp, 1])) 
      mer2.train.mat[j, i] <- mean(abs( 
                                     ifelse(glm2$fitted.values < 0.5, 0, 1) -  
                                                                dat[samp, 1])) 
      } 
      } 
 
      mean.mer1 <- mean(mer1.vec) 
      mean.mer2 <- colMeans(mer2.mat) 
      mer.diff <-  mean.mer1 - min(mean.mer2)[1] 
        
      cat("selection.step:", count, "\n"); utils::flush.console() 
      cat("min.average.MER1:", mean.mer1, "\n"); utils::flush.console() 
      cat("min.average.MER2:", min(mean.mer2)[1], "\n"); utils::flush.console() 
      cat("difference.delta1:", mer.diff, "\n"); utils::flush.console() 
        
      cat("genes.selected", selection, "\n"); utils::flush.console() 
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      comparison2 <- comparison 
      
      var.mer1 <- .632^2 * (iterations^2 * nrow(dat[-samp, ]))^(-1) *  
                             sum(mer1.test.vec * (1 - mer1.test.vec)) + 
                  .368^2 * (iterations^2 * nrow(dat))^(-1) *  
                             sum(mer1.train.vec * (1 - mer1.train.vec)) 
        
      var.mer2 <- .632^2 * (iterations^2 * nrow(dat[-samp, ]))^(-1) *  
                   sum(mer2.test.mat[, which(mean.mer2 == min(mean.mer2))[1]] * 
                    (1 - mer2.test.mat[, which(mean.mer2 ==  
                                         min(mean.mer2))[1]])) + 
                  .368^2 * (iterations^2 * nrow(dat))^(-1) *  
                  sum(mer2.train.mat[, which(mean.mer2 == min(mean.mer2))[1]] * 
                  (1 - mer2.train.mat[, which(mean.mer2 == min(mean.mer2))[1]])) 
       
      critical.value <-  qsn(1 - alpha.range * 0.001, shape = 4.0398) *  
                              ifelse(var.mer1 == 0 || var.mer2 == 0, 0, 
                                 sqrt(abs(var.mer1 + var.mer2 - 
                                      2 * cor(mer1.vec, mer2.mat[,  
                                      which(mean.mer2 == min(mean.mer2))[1]]) * 
                                      sqrt(var.mer1 * var.mer2)))) 
      comparison <- mer.diff <= critical.value 
      criteria <- comparison == comparison2 
 
      if(sum(criteria) != length(criteria)) 
      {             
      filled.before <- sum(!is.na(colSums(final.result))) 
 
      final.result[, which(criteria == F)[which(criteria == F) %in% 
                     which(is.na(colSums(final.result)) == T)]] <-  
                     c(mean.mer1, length(selection)) 
      Mer.mat[, which(criteria == F)[which(criteria == F) %in% 
                which(is.na(colSums(Mer.mat)) == T)]] <- mer1.vec 
         
      filled.after <- sum(!is.na(colSums(final.result))) 
 
      if (plot.ROC == T && filled.before != filled.after) 
      { 
      pred <- prediction(R.prediction, R.true.values) 
      perf <- performance(pred, "tpr", "fpr" ) 
              plot(perf, main = paste("alpha-factor:", 
                  paste(sort(alpha.range, decreasing = T)[ 
                        (filled.before + 1):filled.after], 
                  collapse = ", ")),  
                  sub = paste("AUC =", performance(pred, 'auc')@y.values[[1]]),  
                  col = "red"); abline(a=0, b=1) 
      } 
      } 
      cat("sequential.result.output:", "\n") 
      utils::flush.console() 
      print(final.result) 
 
      ifelse(sum(comparison) == length(alpha.range), 
              break, selection <- c(selection, names(mean.mer2[ 
                                    which(mean.mer2 == min(mean.mer2))])[1])) 
      } 
      cat("\n") 
      return(list("RESULT.MATRIX" = final.result, "GENE.SELECTED" = selection, 
                   "MER.MAT" = Mer.mat, "R.PREDICTION" = R.prediction,  
                    "R.TRUE.VALUES" = R.true.values)) 
      } 
      KSS.results <- sequential.selection (dat, ordering, iterations, alpha.range,  
                                                     plot.ROC = T, cells = c(0,0)) 
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B.7 The R function that implements the k-SS method using 

bootstrap .632+ sub-sampling scheme under the new AUC 

preliminary feature selection. 

#   This function returns preliminary genes selected by the new AUC feature 
     selection method, and the Misclassification error rates (MERs) from logistic 
     discriminant (LD) rules for each preliminarily selected genes. 
 
 ############################################################## 
                  #   dat = Microarray data 

#   repetitions = Number of cross-validation runs 
#   alpha = The chosen size alpha for the AUC test 
#   fold = Number of fold chosen for cross-validation 

 ############################################################## 
 
      library(ROCR) 
      mer.select <- function(dat, repetitions, alpha, fold) 
      { 
 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center = T, scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      auc.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = fold, 
                        dimnames = list(1:fold, names(dat)[-1])) 
 
      groups <- sample(rep(1:fold, len = nrow(dat))) 
      for (k in 1:fold) 
      { 
      repeat 
      { 
      dat2 <- dat[groups == k, ] 
      dat3 <- dat[groups != k, ] 
 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (m in names(dat)[-1]) 
      { 
      test.dat <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, m]) 
      train.dat <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, m]) 
 
      mod <- glm(response ~ x.variable, data = train.dat, family = "binomial") 
      pred <- predict(mod, newdata = test.dat, type = "response") 
      roc <- prediction(pred, test.dat$response) 
      auc.mat[k, m] <- performance(roc, 'auc')@y.values[[1]] 
      } 
      break 
      } 
      } 
      } 
 
      mean.auc <- colMeans(auc.mat) 
      p.1 <- mean.auc / (2 - mean.auc) 
      p.2 <- 2 * mean.auc^2 / (1 + mean.auc) 
      sigma <- (mean.auc * (1 - mean.auc) + 
                (sum(dat[, 1]) - 1) * (p.1 - mean.auc^2) + 
                (length(dat[, 1]) - sum(dat[, 1]) - 1) * (p.2 - mean.auc^2)) / 
                (sum(dat[, 1]) * (length(dat[, 1]) - sum(dat[, 1]))) 
 
      auc.result <- names(mean.auc)[which(mean.auc >= 0.5 +  
                                    qnorm(1 - alpha) * sqrt(sigma))] 
       
      cat("preliminary.features.selected:", "\n")  
      print(sort(mean.auc[auc.result], decreasing = T)) 
      utils::flush.console() 
           
      dat <- cbind(dat[, 1], dat[, is.element(names(dat), auc.result)]) 



 
 

 201 

 
        mer.mat <- matrix(NA, ncol = ncol(dat) - 1, nrow = repetitions, 
                        dimnames = list(1:repetitions, names(dat)[-1])) 
       
      cat("Repetitions done:", "\n"); utils::flush.console() 
      for (i in 1:repetitions) 
      { 
      repeat 
      { 
      samp <- sample(1:nrow(dat), replace = T) 
      dat2 <- dat[-samp, ] 
      dat3 <- dat[samp, ] 
      if(length(unique(dat2[, 1])) != 1 && length(unique(dat3[, 1])) != 1) 
      { 
      for (j in names(dat)[-1]) 
      { 
      test.data <- data.frame("response" = dat2[, 1], "x.variable" = dat2[, j]) 
      train.data <- data.frame("response" = dat3[, 1], "x.variable" = dat3[, j]) 
 
      mod <- glm(response ~ x.variable, dat = train.data, family = "binomial") 
      pred <- predict(mod, newdat = test.data, type = "response") 
      mer.mat[i, j] <- 0.632 * sum(abs(test.data$response -  
                                   ifelse(pred < 0.5, 0, 1))) / nrow(dat) + 
                       0.368 * sum(abs(train.data$response -  
                                   ifelse(mod$fitted.values < 0.5, 0, 1))) /  
                                   nrow(dat2) 
      } 
      if (i %in% seq(0, repetitions, round(repetitions/10)))  
      cat(i, "... "); utils::flush.console() 
      break 
      } 
      } 
      } 
      return(list("MER" = mer.mat)) 
      } 
      MER.results <- mer.select(dat, repetitions, alpha, fold) 
      mer <- apply(MER.results$MER, 2, mean) 
      mer.ordering <- sort(mer, decreasing=F) 
      mer.ordering 
 

#   This function returns the k-SS results at each of the gene selection steps  
############################################################## 

#   data = Microarray data 
#   ordering = mer.ordering (from the previous out-put) 
#   iterations = Number of cross-validation runs 
#   alpha.range = sequence of positive integer from 1 to 1000 (or any 
     preferred number) upon which the range of alpha (0,1) is   
    divided plot.ROC = F (default). If set to T, the plot of ROC curve  
    is provided, otherwise, no ROC curve will be plotted. 
#   cells = c(0,0), specifies the number of cell space to be created for 
     ROC curve plot. 

############################################################## 
 
      library(ROCR) 
      library(sn) 
      sequential.selection <- function(dat, ordering, iterations, alpha.range,  
                                 plot.ROC = F, cells = c(0,0)) 
      { 
      names(dat)[1] <- "response" 
      dat <- dat[, c("response", names(ordering))] 
      dat <- as.matrix(dat) 
      dat <- cbind(dat[,1], scale((dat)[,2:ncol(dat)], center =T , scale = T)) 
      dat <- as.data.frame(dat) 
      names(dat)[1] <- "response" 
 
      if(plot.ROC == T) par(mfrow = cells) 
 
      final.result <- matrix(NA, ncol = length(alpha.range), nrow = 2) 
      Mer.mat <- match.matrix  <- matrix(NA, ncol = length(alpha.range),  
                                           nrow = iterations) 
      colnames(final.result) <- colnames(Mer.mat) <- alpha.range 
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      rownames(final.result) <- c("MER", "Number of Genes selected") 
 
      selection <- (c(names(ordering)[which(ordering == min(ordering))]))[1] 
      comparison <- rep(FALSE, length(alpha.range)) 
 
      cat("Gene added:", "\n"); utils::flush.console() 
      count <- 0 
     
      while(length(selection) < length(ordering)) 
      { 
      count <- count + 1 
         
      mer1.vec <-  R.prediction <- R.true.values <- 
      mer1.test.vec <- mer1.train.vec <- c() 
         
      mer2.mat <- mer2.test.mat <- mer2.train.mat <-  
                    matrix(NA, nrow = iterations, 
                           ncol = length(names(ordering)[ 
                                  which(!is.element(names(ordering),  
                                                    selection))])) 
      colnames(mer2.mat) <- colnames(mer2.test.mat) <-  
      colnames(mer2.train.mat) <-  
      names(ordering)[which(!is.element(names(ordering), selection))] 
 
      for (j in 1:iterations) 
      { 
      samp <- sample(1:nrow(dat), replace = T) 
      glm1 <- glm(response ~ ., data = dat[samp, c("response", selection)],  
                                family = "binomial") 
      pred1 <- ifelse(predict(glm1, newdat = dat[-samp, -1],  
                                type = "response") < 0.5, 0, 1) 
      probab <- predict(glm1, newdat = dat[-samp, -1], type = "response") 
 
      mer1.test <- mean(abs(pred1 - dat[-samp, 1])) 
      mer1.train <- mean(abs(ifelse(glm1$fitted.values < 0.5, 0, 1) -  
                                                             dat[samp, 1])) 
      mer1 <- 0.632 * mer1.test + 0.368 * mer1.train 
         
      R.prediction <- c(R.prediction, probab) 
      R.true.values <- c(R.true.values, dat[-samp, 1]) 
 
      mer1.vec <- c(mer1.vec, mer1) 
      mer1.test.vec <- c(mer1.test.vec, mer1.test) 
      mer1.train.vec <- c(mer1.train.vec, mer1.train) 
         
      for (i in names(ordering)[which(!is.element(names(ordering), selection))]) 
      { 
      glm2 <- glm(response ~ ., data = dat[samp, c("response", selection, i)],  
                                family = "binomial") 
      pred2 <- ifelse(predict(glm2, newdat = dat[-samp, -1],  
                                type = "response") < 0.5, 0, 1) 
 
      mer2 <- 0.632 * mean(abs(pred2 - dat[-samp, 1])) + 
              0.368 * mean(abs(ifelse(glm2$fitted.values < 0.5, 0, 1) -  
                                                                dat[samp, 1])) 
 
      mer2.mat[j, i] <- mer2 
      mer2.test.mat[j, i] <- mean(abs(pred2 - dat[-samp, 1])) 
      mer2.train.mat[j, i] <- mean(abs( 
                                     ifelse(glm2$fitted.values < 0.5, 0, 1) -  
                                                                dat[samp, 1])) 
      } 
      } 
 
      mean.mer1 <- mean(mer1.vec) 
      mean.mer2 <- colMeans(mer2.mat) 
      mer.diff <-  mean.mer1 - min(mean.mer2)[1] 
        
      cat("selection.step:", count, "\n"); utils::flush.console() 
      cat("min.average.MER1:", mean.mer1, "\n"); utils::flush.console() 
      cat("min.average.MER2:", min(mean.mer2)[1], "\n"); utils::flush.console() 
      cat("difference.delta1:", mer.diff, "\n"); utils::flush.console() 
        
      cat("genes.selected", selection, "\n"); utils::flush.console() 
 
      comparison2 <- comparison 
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      var.mer1 <- .632^2 * (iterations^2 * nrow(dat[-samp, ]))^(-1) *  
                             sum(mer1.test.vec * (1 - mer1.test.vec)) + 
                  .368^2 * (iterations^2 * nrow(dat))^(-1) *  
                             sum(mer1.train.vec * (1 - mer1.train.vec)) 
        
      var.mer2 <- .632^2 * (iterations^2 * nrow(dat[-samp, ]))^(-1) *  
                   sum(mer2.test.mat[, which(mean.mer2 == min(mean.mer2))[1]] * 
                    (1 - mer2.test.mat[, which(mean.mer2 ==  
                                         min(mean.mer2))[1]])) + 
                  .368^2 * (iterations^2 * nrow(dat))^(-1) *  
                  sum(mer2.train.mat[, which(mean.mer2 == min(mean.mer2))[1]] * 
                  (1 - mer2.train.mat[, which(mean.mer2 == min(mean.mer2))[1]])) 
       
      critical.value <-  qsn(1 - alpha.range * 0.001, shape = 4.0398) *  
                              ifelse(var.mer1 == 0 || var.mer2 == 0, 0, 
                                 sqrt(abs(var.mer1 + var.mer2 - 
                                      2 * cor(mer1.vec, mer2.mat[,  
                                      which(mean.mer2 == min(mean.mer2))[1]]) * 
                                      sqrt(var.mer1 * var.mer2)))) 
      comparison <- mer.diff <= critical.value 
      criteria <- comparison == comparison2 
 
      if(sum(criteria) != length(criteria)) 
      {             
      filled.before <- sum(!is.na(colSums(final.result))) 
 
      final.result[, which(criteria == F)[which(criteria == F) %in% 
                     which(is.na(colSums(final.result)) == T)]] <-  
                     c(mean.mer1, length(selection)) 
      Mer.mat[, which(criteria == F)[which(criteria == F) %in% 
                which(is.na(colSums(Mer.mat)) == T)]] <- mer1.vec 
         
      filled.after <- sum(!is.na(colSums(final.result))) 
 
      if (plot.ROC == T && filled.before != filled.after) 
      { 
      pred <- prediction(R.prediction, R.true.values) 
      perf <- performance(pred, "tpr", "fpr" ) 
              plot(perf, main = paste("alpha-factor:", 
                  paste(sort(alpha.range, decreasing = T)[ 
                        (filled.before + 1):filled.after], 
                  collapse = ", ")),  
                  sub = paste("AUC =", performance(pred, 'auc')@y.values[[1]]),  
                  col = "red"); abline(a=0, b=1) 
      } 
      } 
      cat("sequential.result.output:", "\n") 
      utils::flush.console() 
      print(final.result) 
 
      ifelse(sum(comparison) == length(alpha.range), 
              break, selection <- c(selection, names(mean.mer2[ 
                                    which(mean.mer2 == min(mean.mer2))])[1])) 
      } 
      cat("\n") 
      return(list("RESULT.MATRIX" = final.result, "GENE.SELECTED" = selection, 
                   "MER.MAT" = Mer.mat, "R.PREDICTION" = R.prediction,  
                    "R.TRUE.VALUES" = R.true.values)) 
      } 
      KSS.results <- sequential.selection (dat, ordering, iterations, alpha.range,  
                                                     plot.ROC = T, cells = c(0,0)) 
      ############################################################## 
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