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1. Einleitung 

Geflügel stellt einen wichtigen Lieferanten von Lebensmitteln tierischer Herkunft mit 

zunehmender Bedeutung dar. So ist in der BRD ein stetig wachsender Pro-Kopf-

Verbrauch an Geflügelfleisch zu verzeichnen. In Deutschland stieg er von 13,4 kg 

1995 auf 15,2 kg 1999. Aufgrund der, in der europäischen Hühnerhaltung üblichen 

Gepflogenheiten, ist eine Seuchenprophylaxe , auch aus humanmedizinischer Sicht 

(Salmonellose) wesentlich. Die übliche Praxis in der Hühnerhaltung, Antibiotika als 

Chemoprophylaxe und Leistungsförderer zu verwenden, ist wegen der Gefahr der 

Ausbildung resistenter Keime umstritten. Aus diesem Grund wurde der generelle 

Einsatz einer ganzen Reihe von Antibiotika als Futterzusatz EU-weit verboten. Durch 

den Wegfall der prophylaktischen Antibiotikagaben ist aber mit einem gehäuften 

Auftreten von Krankheiten zu rechnen. So konnte beim Geflügel das vermehrte 

Auftreten gastrointestinaler Erkrankungen beobachtet werden, das mit der erhöhten 

Prävalenz von Clostridium perfringens in Zusammenhang gebracht wurde (Hilton, et 

al. 2002). Mögliche Folgen dieser Entwicklung sind zum einen ein Rückgang der 

Produktion, zum anderen eine verringerte Fleischqualität. Das alles führt dazu, dass 

die Entwicklung alternativer Therapeutika für die Geflügelwirtschaft von essentieller 

Bedeutung ist. 

Für die Entwicklung neuer Therapeutika ist die Kenntnis der physiologischen 

Regulationsmechanismen, insbesondere derer des Immunsystems, unverzichtbar. 

Eine wichtige Rolle kommt dabei den Cytokinen als zentralen Regulatoren des 

Immunsystems zu. Die Zahl der beim Huhn rekombinant zur Verfügung stehenden 

Cytokine ist jedoch, im Vergleich zur Situation beim Säuger, noch relativ klein. 

Daraus ergibt sich ein großer Bedarf bezüglich der Identifizierung und Klonierung 

neuer Hühnercytokine. Erst kürzlich ist die Klonierung von Interleukin-6 (IL -6) des 

Haushuhns gelungen (Schneider, et al. 2001). Beim Säuger ist dieses Cytokin als 

wichtiges pro-inflammatorisches Cytokin bekannt. Die Charakterisierung der 

biologischen Aktivität von rekombinantem Hühner IL-6 (rChIL-6) bildet einen der zwei 

Schwerpunkte der vorliegenden Arbeit. 

Da gerade bei der intensiven Hühnerhaltung eine Einzeltierbehandlung nicht 

wirtschaftlich ist, steht die Krankheitsprophylaxe im Vordergrund. Das Mittel der Wahl 

ist hier die Vorbeugung durch Vakzination, was die Entwicklung neuer Impfstoffe und 
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Adjuvanzien nötig macht. Für die Entwicklung neuartiger Adjuvanzien ist das kürzlich 

beim Säuger beschriebene Toll-like Rezeptor (TLR)-System von besonderem 

Interesse. Diese Rezeptoren sind aufgrund ihrer Positionierung an der Schnittstelle 

zwischen angeborenem und erworbenem Immunsystem und der damit verbundenen 

weitreichenden immunmodulatorischen Eigenschaften für die Wirkvermittlung von 

Adjuvanzien wesentlich. Sie werden deshalb von einigen Autoren auch als 

„Adjuvanzrezeptoren“ bezeichnet (Kaisho and Akira 2002). Die Arbeiten von Fukui et 

al. deuten darauf hin, dass auch Hühner über ein TLR-System verfügen (Fukui, et al. 

2001). Das macht die genauere Erforschung des TLR-Systems beim Huhn, 

hinsichtlich seiner Nutzung für die Adjuvanzentwicklung äußerst interessant. 

Die Ziele dieser Arbeit sind die biologische Charakterisierung des neu klonierten 

Cytokins ChIL -6 und eine erste funktionelle Charakterisierung des TLR-Systems 

beim Huhn. 

Die Arbeit kann in zwei Themenblöcke unterteilt werden. Der erste Themenblock gibt 

einen Überblick über die beim Säugetier bekannten Tatsachen über das TLR-System 

sowie das pro-inflammatorische Cytokin IL-6. Im zweiten Themenblock erfolgt, nach 

der Beschreibung der verwendeten Materialien und Methoden, die Darstellung der 

ermittelten Ergebnisse mit daran anschließender Diskussion der Ergebnisse. 
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2. Literaturübersicht 

2.1 Toll-like Rezeptoren 

2.1.1 Erkennung von pathogenen Mikroorganismen durch das 

angeborene Immunsystem 

Das Immunsystem höherer Vertebraten besteht aus dem angeborenen und dem 

erworbenen oder adaptiven Immunsystem. Das nur bei Vertebraten vorkommende 

erworbene Immunsystem ist ein hochkomplexes System, welches auf Antigen-

spezifischen T- und B-Zellen beruht. Da die Ausbildung einer adaptiven 

Immunantwort immer einige Zeit in Anspruch nimmt, müssen andere 

Abwehrmechanismen in der frühen Phase der Immunreaktion aktiviert werden. Das 

phylogenetisch ältere, angeborene Immunsystem ist in der Lage, sehr schnell auf 

das Vorhandensein von mikrobiellen Pathogenen zu reagieren. Die intensive Suche 

nach dem Mechanismus der „Feind-Erkennung“ durch das angeborene 

Immunsystem führte kürzlich zur Entdeckung des Toll-like Rezeptor (TLR)-Systems. 

Eine der wichtigsten Aufgaben des angeborenen Immunsystems ist die 

augenblickliche und adäquate Reaktion auf eingedrungene Mikroorganismen. Eine 

wesentliche Voraussetzung dafür ist die schnelle und sichere Unterscheidung 

zwischen „infektiösem Nichtselbst“ und „nicht infektiösem Selbst“ (Janeway and 

Medzhitov 2002). Befähigt zu einer solchen Diskriminierung wird das angeborene 

Immunsystem durch die so genannten „pattern recognition receptors“ (PRR). Die 

PRRs wurden offensichtlich in der Evolution so selektiert, dass sie hochkonservierte, 

nur bei mikrobiellen Pathogenen vorkommende Muster erkennen, so genannte  

„pathogen-associated molecular pattern“ (PAMP) (Janeway 1989). In der Regel sind  

die PAMPs Bestandteile von essentiellen Strukturen der Mikroorganismen, was zum 

einen Mutationen unwahrscheinlich macht, und zum anderen eine weite Verbreitung 

innerhalb der Mikroorganismen bedingt. 

Mit der Entdeckung der Toll-like Rezeptoren Familie wurde ein zentraler Bestandteil 

der Fremd-Erkennung durch das angeborene Immunsystem beschrieben (Kaisho 

and Akira 2002). Die besondere Bedeutung der TLRs liegt darin, dass sie nach 
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Aktivierung durch adäquate Liganden die Sekretion pro-inflammatorischer Cytokine, 

wie zum Beispiel IL-1, IL-6, IL-12 und Tumor Nekrose Faktor-α (TNF- α), sowie die 

Expression co-stimulatorischer Moleküle, wie z.B. CD80/86 induzieren, was zur 

Aktivierung des angeborenen sowie des erworbenen Immunsystems führt. 

2.1.2 Toll- und Toll-like Rezeptoren 

Der erste Rezeptor dieser Gruppe wurde in der Fruchtfliege Drosophila melanogaster 

als Rezeptor für die ventro-dorsale Achsenformation im Embryo beschrieben, und als 

„Toll“ bezeichnet (Belvin and Anderson 1996, Hashimoto, et al. 1988). Bei den Toll- 

und Toll-like Rezeptoren handelt es sich um phylogenetisch hochkonservierte Typ I 

Transmembran-Proteine (Anderson 2000). Charakterisiert werden sie durch eine 

„leucine-rich repeat“ (LRR) Domäne im extrazellulären Anteil, sowie eine 

cytoplasmatische Domäne, die homolog zu der der Interleukin-1 Rezeptor Familie ist 

(O'Neill and Dinarello 2000). Die cytoplasmatische Domäne ist essentiell für die 

Signaltransduktion und wird als Toll/IL-1 Rezeptor (TIR) Homologie Domäne 

bezeichnet (Anderson 2000). Kurz nach seiner Entdeckung ist die essentielle 

Bedeutung des Toll-Rezeptors für die Abwehr von Pilzinfektionen in Drosophila 

deutlich geworden (Lemaitre, et al. 1996). 

2.1.3 Drosophila Toll 

Bei Drosophila kommt es nach einer systemischen Infektion mit Mikroorganismen, 

abhängig von der Art der eingedrungenen Pathogene, vermehrt zur Sekretion 

fungizider Peptide, wie Drosomycin oder antibakterieller Peptide, wie Diptericin 

gegen gramnegative (gram-) Bakterien und Defensin gegen grampositive (Gram+) 

Bakterien (Hoffmann, et al. 1999, Lemaitre, et al. 1996). Die Expression der Gene, 

die für fungizide bzw. antibakterielle Peptide codieren, wird von verschiedenen 

Mitgliedern der Toll-Rezeptor-Familie gesteuert. So reguliert Toll die Expression von 

Drosomycin (Lemaitre, et al. 1996), wohingegen der mit Toll strukturell verwandte 

Rezeptor „18-Wheeler“ die Synthese von antimikrobiellen Peptiden steuert (Williams, 

et al. 1997). Die Bedeutung der pathogen-spezifischen Toll Rezeptoren für das 

Immunsystem von Drosophila bei der Bekämpfung mikrobieller Infektionen wird bei 

Mutationen in Genen für Toll-Rezeptoren deutlich. So sind Tiere mit Mutationen im 

Toll-Rezeptor empfänglich für Pilz-Infektionen, die Immunantwort gegen bakterielle 

Infektionen wird hingegen nicht wesentlich beeinflusst (Lemaitre, et al. 1996). 
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Mutationen im Gen für 18-Wheeler bedingen hingegen eine hohe Empfänglichkeit für 

bakterielle Infektionen (Williams, et al. 1997). Heute sind 9 Mitglieder der Drosophila 

Toll-Familie bekannt (Tauszig, et al. 2000), die Funktion der meisten Mitglieder ist 

aber noch unbekannt. 

Medzhitov et al., charakterisierten 1997 ein humanes Homolog zum Drosophila Toll 

Rezeptor, den Toll-like Rezeptor 4 (TLR 4), und beschrieben seine Rolle in der 

Immunantwort (Medzhitov, et al. 1997). Es war das erste Mitglied einer heute beim 

Menschen 10 (hTLR 1-10) und bei der Maus 9 (mTLR 1-9) Mitglieder umfassenden 

Familie. Alle sind an der Genregulation von pro-inflammatorischen Cytokinen und co-

stimulatorischen Molekülen beteiligt (Chuang and Ulevitch 2001, Du, et al. 2000, 

Hemmi, et al. 2000, Rock, et al. 1998, Takeuchi, et al. 1999b).  

Exprimiert werden die TLRs unter anderem auf Monozyten/Makrophagen, 

Dendritischen Zellen (DCs), Natürlichen Killerzellen (NK-Zellen) , B-Zellen und T-

Zellen (Muzio and Mantovani 2001). 

2.1.4 Die Bedeutung von TLRs in der Immunabwehr von 

Säugetieren 

Das schnelle und sichere Erkennen von Pathogenen ist eine der wichtigsten 

Voraussetzungen für eine effektive Immunantwort. Hier spielen die TLRs, aufgrund 

ihrer Fähigkeit zur  Detektion eines breiten Spektrums von PAMPs eine 

herausragende Rolle. So kommt es nach einer Infektion mit pathogenen 

Mikroorganismen zur TLR-vermittelten Aktivierung von Makrophagen, und in Folge 

zur Sekretion pro-inflammatorischer Cytokine sowie antimikrobieller Moleküle, wie 

zum Beispiel Stickstoff Monoxid (NO) oder humanem Beta-Defensin-2 (Birchler, et al. 

2001). Es konnte gezeigt werden, dass die Aktivierung von TLR 2 auf murinen und 

humanen Makrophagen zum Abtöten intrazellulärer M. tuberculosis Bakterien führte. 

Interessanterweise waren die Effektormechanismen in beiden Fällen unterschiedlich. 

Bei den murinen Makrophagen kam es zur Induktion eines NO-abhängigen, bei den 

humanen Makrophagen eines NO-unabhängigen antimikrobiellen Mechanismus 

(Thoma-Uszynski, et al. 2001). 

Die Aktivierung der angeborenen Immunabwehr führt zu einer potenten 

Immunantwort, aber eine weitaus effektivere Verteidigung wird durch die Aktivierung 

des erworbenen Immunsystems erreicht, welche sich vor allem in den sekundären 
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lymphatischen Organen abspielt. Eine wesentliche Rolle kommt hier den 

Dendritischen Zellen (DCs) zu, die als Boten zwischen peripherem und sekundärem 

lymphatischem Gewebe fungieren (Banchereau and Steinman 1998, Steinman 

1991). Diese Zellen sind in der Lage, Pathogene zu detektieren und darauf hin Zellen 

des adaptiven Immunsystems zu aktivieren. Die Aktivierung Dendritischer Zellen 

durch TLRs führt zur Wanderung von DCs aus dem peripheren Gewebe in die 

sekundären lymphatischen Gewebe. Ein wesentlicher Mechanismus ist hierbei die 

TLR-induzierte Expression von Chemokin-Rezeptoren. Die aktivierten DCs 

rekrutieren darauf hin naive T-Zellen durch die Sekretion von Chemokinen (Dieu, et 

al. 1998, Rescigno, et al. 2000, Sozzani, et al. 1998). Des Weiteren führt die 

Signaltransduktion durch TLRs zur Reifung von DCs, was die gesteigerte Expression 

sowohl von „major histocompatibility“ (MHC) Komplexen, als auch von co-

stimulatorischen Molekülen, wie zum Beispiel CD80/86, einschließt. Reife DCs sind 

in der Lage, pathogen-spezifische T-Zellen zu stimulieren und ihre klonale Expansion 

auszulösen. Zusätzlich zur T-Zell Expansion spielt die T-Zell Differenzierung eine 

große Rolle. Naive T-Zellen können sich in zwei Untergruppen differenzieren, in TH1 

Zellen, die vor allem in die zelluläre Immunität involviert sind, oder in TH2 Zellen, 

welche in der humoralen Immunität von Bedeutung sind (Abbas, et al. 1996, Akira, et 

al. 2001). Ein wichtiger Faktor bei der Differenzierung ist das vorherrschende 

Cytokin-Milieu. Da durch TLRs aktivierte DCs, neben pro-inflammatorischen 

Cytokinen wie z.B. IL-1β und IL-6 auch immunmodulatorische Cytokine wie z.B. IL-

12, IL-13 und IL-18 sezernieren, können die TLRs die Art der sich entwickelnden 

Immunantwort über die selektive Induktion bestimmter Cytokine modulieren 

(Medzhitov, et al. 1997). So führen bakterielle Infektionen, über die Aktivierung von 

TLRs, vor allem zur Sekretion von IL-12, was die Differenzierung von naiven T-Zellen 

in TH1 Zellen fördert (Kaisho and Akira 2002). Kürzlich konnte gezeigt werden, dass 

Lipopolysaccharid (LPS) unter bestimmten Bedingungen die Ausbildung einer TH2 

Immunantwort fördert (Kaisho, et al. 2002). 

Zusammenfassend kann gesagt werden, dass TLRs nicht nur in der frühen Phase 

einer Infektion wichtig sind, sondern auch als Mittler zwischen angeborenem und 

erworbenem Immunsystem und Immunmodulatoren von essentieller Bedeutung sind. 
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2.1.5 TLRs und ihre Liganden 

In diesem Abschnitt werden die von den TLRs gebundenen Liganden besprochen. 

Abbildung 1 gibt einen Überblick über die heute bekannten Liganden der TLRs.  

 

TLR 2 

TLR 2 erkennt, im Vergleich zu den anderen bekannten TLRs, das breiteste 

Spektrum an mikrobiellen PAMPs. Zu den von TLR 2 erkannten PAMPs gehören 

Lipoproteine von M. tuberculosis, Borrelia burgdorferi und Mycoplasma fermentans 

(Aliprantis, et al. 1999, Brightbill, et al. 1999, Hirschfeld, et al. 1999), 

Lipoarabinomannan (LAM), ein Zellwandbestandteil von Mycobakterien; (Means, et 

al. 1999a, Means, et al. 1999b), Peptidoglykan (PGN), ein Zellwandbestandteil von 

Gram+ Bakterien (Schwandner, et al. 1999, Takeuchi, et al. 1999a, Yoshimura, et al. 

1999), LPS von Porphyromonas gingivitis und Leptospira interrogans (strukturell 

unterschiedlich vom LPS der Gram- Bakterien) (Underhill, et al. 1999, Werts, et al. 

2001), Glycosylphosphatidylinositol (GPI) von Trypanosoma cruzi (Campos, et al. 

2001) und Zymosan, ein Zellwandbestandteil von Hefepilzen (Underhill, et al. 1999). 

Die Tatsache, dass TLR 2 eine so breite Palette an verschiedenen PAMPs erkennt, 

kann zum Teil damit erklärt werden, dass TLR 2 Heterodimere mit anderen TLRs 

TLRs Herkunft der Liganden Ligand

TLR 1/2/6 Gram+ Bakterien Lipoproteine
Peptidoglykan
Lipoteichon Säure

Staphylokokken Modulin
Bakterien Lipopeptide
Mycoplasmen, Mycobakt., Spirochäten Lipoproteine/Lipopeptide
Mycoplasmen MALP-2
Spirochäten Glycolipide
Listerien Hitze-getötete Bakterien
Mycobakterien Liporarabinomannan
Porphyromonaden, Leptospiren LPS
Hefen Zymosan
Trypanosoma cruzi GPI-Anker
Klebsiellen Membran-Protein A
Neisseria meningitides lösliche Faktoren

TLR 3 Viren ds RNA

TLR 4 Gram- Bakterien LPS
Gram+ Bakterien Lipoteichon Säure
Pflanzen Taxol
Respiratorisches Synzytial Virus F-Protein
Endogene Liganden Hitze-Schock Protein 60

TLR 5 begeisselte Bakterien Flagellin

TLR 7 Imidazoquinoline

TLR 9 Bakterien unmethylierte CpG-Motive

Tab.1: TLR und ihre Liganden nach Kaisho 2002
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TLRs Herkunft der Liganden Ligand

TLR 1/2/6 Gram+ Bakterien Lipoproteine
Peptidoglykan
Lipoteichon Säure

Staphylokokken Modulin
Bakterien Lipopeptide
Mycoplasmen, Mycobakt., Spirochäten Lipoproteine/Lipopeptide
Mycoplasmen MALP-2
Spirochäten Glycolipide
Listerien Hitze-getötete Bakterien
Mycobakterien Liporarabinomannan
Porphyromonaden, Leptospiren LPS
Hefen Zymosan
Trypanosoma cruzi GPI-Anker
Klebsiellen Membran-Protein A
Neisseria meningitides lösliche Faktoren

TLR 3 Viren ds RNA

TLR 4 Gram- Bakterien LPS
Gram+ Bakterien Lipoteichon Säure
Pflanzen Taxol
Respiratorisches Synzytial Virus F-Protein
Endogene Liganden Hitze-Schock Protein 60

TLR 5 begeisselte Bakterien Flagellin

TLR 7 Imidazoquinoline

TLR 9 Bakterien unmethylierte CpG-Motive

Tab.1: TLR und ihre Liganden nach Kaisho 2002
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bildet. Von besonderer Bedeutung ist die Bildung funktioneller Heterodimere bei der 

Erkennung von bakteriellen Lipoproteinen. Diese werden von einer ganzen Reihe 

von Pathogenen, unter anderem Mycobakterien, Gram- Bakterien und Mycoplasmen 

gebildet (Henderson, et al. 1996). Essentiell für die immunstimulatorischen 

Eigenschaften bakterieller Lipoproteine ist das Vorhandensein von Lipidstrukturen 

am N-terminalem Ende. So sind die meisten bakteriellen Lipoproteine am N-

terminalen Cystein-Rest triazyliert, von Mycoplasmen stammende Lipoproteine , wie 

„macrophage activating lipoprotein-2“ (MALP-2), sind dort hingegen diazyliert 

(Chambaud, et al. 1999). In ihren Arbeiten an TLR 1, 2 und 6 Knock-out 

Makrophagen konnten Takeuchi zeigen, dass der TLR 2 mit TLR 1 bzw. TLR 6 

interagiert, um unterschiedliche PAMPs zu differenzieren. So erkennen TLR 2 und 

TLR 6 nur bei Co-Expression das diazylierte, von Mycoplasmen stammende 

Lipoprotein MALP-2 (Takeuchi, et al. 2001), wohingegen TLR 1 und TLR 2, bei Co-

Expression, triazylierte bakterielle Lipoproteine, mycobakterielle Produkte und das 

synthetische bakterielle Lipopeptid Pam3Cys-Ser-(Lys)4 (Pam3Cys) erkennen 

(Takeuchi, et al. 2002).  

Ein weiteres Beispiel für die Kooperation verschiedener TLRs beschrieben Wyllie et 

al., die zeigen konnten, dass TLR 2 und TLR 1 funktionelle Heterodimere zur 

Detektion bestimmter Faktoren von Neisseria meningitides bilden (Wyllie, et al. 

2000). 

TLR 3 

TLR 3 erkennt doppelsträngige RNA (dsRNA), ein mit viralen Infektionen assoziiertes 

molekulares Muster. DsRNA wird von den meisten Viren im Verlauf ihrer Replikation 

synthetisiert (Alexopoulou, et al. 2001). 

TLR 4 

TLR 4 ist ein essentieller Bestandteil eines LPS-Erkennenden Molekül-Komplexes 

(Janeway and Medzhitov 2002). Weitere Bestandteile dieses Komplexes sind das 

„LPS bindende Protein“ (LBP) (Ulevitch and Tobias 1995), das Zelloberflächen 

Molekül CD14 (Haziot, et al. 1996, Moore, et al. 2000) und das mit dem 

extrazellulären Anteil von TLR 4 assoziierte MD-2 Protein (Shimazu, et al. 1999). 

LPS wird im Serum an LBP gebunden, welches es zum zellwandständigen CD14 

transferiert (Ulevitch and Tobias 1995), wo es direkt vom TLR 4/CD14/MD-2 Komplex 

gebunden wird (Janeway and Medzhitov 2002). Die besondere Bedeutung von TLR 



   Literaturübersicht 

  17 

4 liegt in seiner Aufgabe als signaltransduzierendem Anteil des Rezeptor-Komplexes 

(Kaisho and Akira 2001). Weitere Liganden für TLR 4 sind Lipoteichon Säure (LTA) 

(Takeuchi, et al. 1999a) und das F-Protein des respiratorischen Synzytial Virus 

(RSV) (Kurt-Jones, et al. 2000). Interessanterweise erkennt TLR 4 auch Liganden, 

die nicht mikrobiellen Ursprungs sind, so konnte die immunstimulatorische Wirkung 

des pflanzlichen Wirkstoffes Taxol mit der Aktivierung von TLR 4 erklärt werden 

(Kawasaki, et al. 2000). Gleiches gilt auch für die im Rahmen von Entzündungen 

oder Gewebeschäden freigesetzten Hitzeschockprotein (HSP) 60 und Fibronectin-

Fragmente (Ohashi, et al. 2000, Okamura, et al. 2001, Vabulas, et al. 2001). 

Kürzlich wurde der erste „Missbrauch“ von TLRs beschrieben. Die meisten 

Retroviren benötigen aktivierte Zellen als Infektionsziel. Rassa et al. konnten zeigen, 

dass das Maus Mammatumor Virus (MMTV) den TLR 4 benutzt, um B-Zellen zu 

aktivieren und nachfolgend zu infizieren (Rassa, et al. 2002). 

TLR 5 

TLR 5 erkennt Flagellin, ein 55 kDa Protein, aus dem bakterielle Flagellen aufgebaut 

sind, wobei der TLR 5 Flagellin von Gram+ und Gram- Bakterien erkennt (Hayashi, et 

al. 2001). Flagellin ist an seinen N- und C-terminalen Enden hoch konserviert, was 

höchstwahrscheinlich die Strukturen sind, die von TLR 5 erkannt werden (Janeway 

and Medzhitov 2002). Interessanterweise wird der TLR 5 ausschließlich an der 

basolateralen Oberfläche intestinaler Epithelien exprimiert (Gewirtz, et al. 2001). 

TLR 7 

Die synthetischen Immunmodulatoren Imiquimod und R-848 aktivieren Immunzellen 

über den TLR 7 (Hemmi, et al. 2002). Allerdings sind noch keine mikrobiellen PAMPs 

für TLR 7 beschrieben worden. 

TLR 9 

Es ist schon länger bekannt, dass der immunstimulatorische Effekt bakterielle r DNA 

(Tokunaga, et al. 1984) auf dem Vorhandensein von unmethylierten CpG-

Dinucleotiden (CpG = Deoxycytidylatphosphat-Deoxyguanylat) innerhalb bestimmter 

Basensequenzen, den so genannten „CpG-Motiven“ beruht (Krieg, et al. 1995). 

Weiterhin konnte gezeigt werden, dass synthetische Oligodeoxynucleotide (ODNs), 

sofern sie die geeigneten CpG-Motive enthalten, die gleichen immunstimulatorischen 

Aktivitäten wie ihre „natürlichen“ Gegenstücke haben. Die Methylierung der CpG-



   Literaturübersicht 

  18 

Motive, die Eliminierung des CpG-Motivs sowie der Austausch von C und G beenden 

die immunstimulatorische Aktivität der ODNs (Wagner 1999). Bauer et al. (Bauer, et 

al. 2001) konnten zeigen, dass CpG-Motive spezies-spezifisch vom TLR 9 erkannt 

werden. So ist die Basensequenz des CpG-Motivs, dass für eine optimale 

Stimulation von humanen Zellen sorgt, unterschiedlich von der, die murine Zellen 

optimal stimuliert (GTCGTT bzw. GACGTT) (Bauer, et al. 2001). Weiterhin sind alle 

von CpG-Motiven induzierten Effekte, wie Cytokin Sekretion, B-Zell Differenzierung 

und DC-Reifung in TLR 9-/- Zellen und TLR 9-/- Mäusen nicht mehr durch CpG Motive 

erzeugbar (Hemmi, et al. 2000). Somit ist der TLR 9 essentiell für die Erkennung von 

bakterieller DNA. 

Dass die DNA von Säugern keine immunstimulatorische Aktivität hat, kann mit 

einigen grundlegenden Unterschieden zwischen bakterieller und mammalier DNA 

erklärt werden. Zum einen ist, im Gegensatz zu der Situation bei Bakterien, der 

Grossteil des Säuger Genoms methyliert (Krieg 2000), des Weiteren kommen CpG-

Dinucleotide in mammalier DNA sehr viel seltener vor, als bei einer zufälligen 

Basenverteilung zu erwarten wäre, ein Phänomen bekannt als „CpG-Suppression“ 

(Krieg 2001). Eine mögliche Erklärung dafür ist die Tatsache, dass methylierte CpG-

Dinucleotide im Säuger Genom so genannte „mutational hotspots“ darstellen 

(Wagner 2001). 

CpG-Motive sind von besonderem Interesse, denn sie stellen ein viel 

versprechendes Adjuvanz dar. Sie sind von der Effektivität mit dem Gold-Standard 

„Freund´s Adjuvanz“ vergleichbar, aber weisen eine wesentlich geringere Toxizität 

auf (Krug, et al. 2001). 

2.1.6 Signaltransduktion durch TLRs 

Die TLRs sind von essentieller Bedeutung bei der Verknüpfung von angeborenem 

und erworbenem Immunsystem. Es konnte gezeigt werden, dass die Anwesenheit 

von PAMPs, durch Aktivierung unterschiedlicher TLRs, zur Einleitung der für das 

jeweilige Pathogen spezifischen Effektormechanismen in Makrophagen und DCs 

führt (Huang, et al. 2001). Am weitestgehenden, aber bei weitem nicht vollständig, 

untersucht sind die ablaufenden Vorgänge für die TLRs 2, 4 und 6, weshalb diese 

hier genauer besprochen werden.  

Die Stimulation von TLR 2/TLR 6 mit PGN und TLR 4 mit LPS (E.coli) führt zum 

einen zur Expression gleicher Gene, der so genannten „core TLR response“. Dazu 
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gehören unter anderem Gene für co-stimulatorische Moleküle, z.B. CD80/86, und 

pro-inflammatorische Cytokine, z.B. IL -1β, TNF- α und IL-6 (Hirschfeld, et al. 2001, 

Pulendran, et al. 2001, Re and Strominger 2001). Daneben kommt es aber auch zur 

Expression von zusätzlichen, für die jeweiligen TLR spezifischen Genen. Durch 

Aktivierung des TLR 4 kommt es zur Induktion von IL -12, „IFN-γ inducible protein-10“ 

(IP-10), IFN-γ und „monocyte chemotactic protein-5“ (MCP-5) (Hirschfeld, et al. 2001, 

Pulendran, et al. 2001, Re and Strominger 2001). Im Unterschied dazu induziert die 

Stimulation des TLR 2 mit LPS von Porphyromonas gingivitis in vivo vor allem die 

Cytokine IL-5, IL -13 und IL -10 aber nur wenig IFN- γ (Pulendran et al. 2001). Bis 

heute ist der, der individuellen Geninduktion zugrunde liegende 

Effektormechanismus nicht in allen Einzelheiten geklärt. Es zeichnet sich aber ab, 

dass den durch TLRs induzierten Signaltransduktionsmechanismen dabei eine 

Schlüsselrolle zukommt. 

Die Aktivierung der „core TLR response“-Gene erfolgt über eine Signalkaskade, die 

mit der Bindung des „myeloid differentiation factor-88“ (MyD88) an die TIR-Domäne 

des TLR beginnt und über zwischengeschaltete Moleküle, wie der „IL-1 receptor-

associated kinase“ (IRAK), den „TNF-receptor associated factor-6“ (TRAF-6) und der 

„TGF-β-activated kinase-1“(TAK-1), in der Aktivierung der Transkriptionsfaktoren 

„nuclear factor-κ B“ (NF-κB), p38, „mitogen-activated protein kinase“ (MAPK) und 

„JUN amino-terminal kinase“ (JNK) mündet, welche dann die Expression der „core 

TLR response“-Gene induzieren (O'Neill 2002).  

Eine mögliche Antwort auf die Frage, wie die TLRs die Induktion individueller Gene 

regulieren, brachte die Entdeckung eines MyD88-unabhängigen 

Signaltransduktionsweges, der durch den TLR 4, nicht aber den TLR 2 aktiviert 

werden kann (Kaisho, et al. 2001, Kawai, et al. 2001). Diese alternative 

Signalkaskade beinhaltet unter anderem den „MyD88-adapter like“ (MAL) Faktor 

(oder „TIR-domain-containing adapter protein“ (TIRAP)), die „Protein-kinase R“ 

(PKR) sowie die „IL-1 receptor-associated kinase-2“ (IRAK-2) und mündet in der 

Aktivierung des Transkriptionsfaktor „IFN-regulated factor-3“(IRF-3) (Kawai, et al. 

2001). Dieser reguliert unter anderem die Expression von „IFN- γ inducible protein-

10“ (IP-10) und weiterer IFN-abhängiger Gene (Kaisho, et al. 2001, Kawai, et al. 

2001). Eine kürzlich veröffentlichte Studie postuliert, dass die MyD88-unabhängige 

Signalkaskade in der Aktivierung eines autokrinen Kreislaufs mündet, in dem LPS zur 
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Induktion von IFN-β führt, was wiederum die Induktion IFN-abhängiger Gene über die 

Aktivierung von IRF-3 induziert (Toshchakov, et al. 2002). Interessanterweise 

scheinen alle von TLR 4 individuell induzierten Gene die Ausbildung einer TH1 

Immunantwort zu fördern (O'Neill 2002). Diese Daten deuten darauf hin, dass die 

jeweiligen TLRs durch die Nutzung unterschiedlicher Signalkaskaden eine 

individuelle Genexpression induzieren. 

2.1.7 TLRs im Huhn 

Fukui et al. berichteten kürzlich die erfolgreiche Klonierung von zwei Toll-like 

Rezeptoren im Huhn, die sie Chicken TLR (ChTLR) Typ 1 und Typ 2 nannten (Fukui, 

et al. 2001). Die extrazellulären Abschnitte weisen eine 45- bzw. 46 %ige Homologie 

zu dem extrazellulären Anteil von humanem TLR 2 auf. Die intrazellulären TIR 

Domänen beider ChTLR Typen waren identisch und mit 80 % hoch homolog zur TIR-

Domäne von humanem TLR 2 (Fukui, et al. 2001). Untersuchungen zu den, von 

ihnen erkannten PAMPs ergaben, dass beide in der Lage sind, bakterielle  

Lipoproteine zu detektieren. ChTLR Typ 2 war, im Gegensatz zu ChTLR Typ 1, nach 

Co-Transfektion mit humanem CD 14 und/oder humanem MD-2 in der Lage LPS von 

E.coli zu erkennen. Aus diesen Daten folgerten die Autoren, dass der ChTLR Typ 2 

die Funktionen von humanem TLR 2 und humanem TLR 4 auf sich vereinigt. Über 

die Natur der durch ChTLR induzierten Gene und die beteiligten Signalkaskaden ist 

noch nichts bekannt. Es ist aber sicher, dass die ChTLR die Aktivierung von NF-κB 

induzieren. 

Weining et al. (Weining, et al. 1998) konnten zeigen, dass die Hühnermakrophagen-

Zelllinie HD11, auf LPS-Stimulation mit der Sekretion von IL-1ß, einem wichtigen pro-

inflammatorischen Cytokin, reagieren. Das lässt darauf schließen, dass auch bei 

Hühnern die Stimulation der TLRs zur Sekretion von Cytokinen führt. Mit der kürzlich 

gelungenen Klonierung von Hühner IL-6 ist ein weiteres pro-inflammatorisches 

Cytokin mit ausgesprochen pleiotroper Wirkung charakterisiert worden (Schneider, et 

al. 2001) 
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2.2 Interleukin-6 (IL-6) 

2.2.1 Geschichte der Entdeckung von Säuger IL-6 

Weissenbach et al. (Weissenbach, et al. 1980) stießen im Rahmen ihres Versuches, 

humanes IF N-β zu klonieren auf cDNA-Klone, welche durch 

Polyinosinpolycytodylsäure (Poly (I:C); synthetische dsRNA) und Cycloheximid in 

humanen Fibroblasten induzierbar waren. Das korrespondierende 26 kDa große 

Protein nannten sie IFN-β2, denn nach Applikation der mRNA in Oozysten von 

Xenopus laevis konnten sie eine IFN-ähnliche, antivirale Aktivität beobachten, die 

durch polyklonale IFN-β-Antiseren neutralisierbar war. Dem gleichen Ansatz folgend, 

isolierten Content et al. (Content, et al. 1985) ebenfalls ein 26 kDa großes Protein, 

konnten aber die von Weissenbach postulierte IFN-ähnliche Aktivität nicht 

nachweisen. Immunopräzipitation des 26-kDa Proteins mit einem polyk lonalem IFN-

β-Antiserum war nur möglich, wenn das Antiserum gegen unreine IFN-β 

Präparationen gewonnen worden war. Antiseren gegen hochreine IFN-β 

Präparationen führten nicht zu einer Immunopräzipitation. Daraus folgerten die 

Autoren, dass die von Weissenbach et al. postulierte Kreuzreaktivität ihre Ursache im 

Vorhandensein von 26-kDa Proteinen in der IFN-β Präparation hatte, was zu 26-kDa 

Protein-spezifischen Antikörpern im Serum führte. Die später veröffentlichten 

Sequenzen (Haegeman, et al. 1986, Zilberstein, et al. 1986) zeigten, dass weder das 

26-kDa Protein noch IFN-β2 eine strukturelle Homologie zu IFN-β hatten. Die 

kontrovers diskutierte antivirale Aktivität konnte aber nicht erklärt werden. 

Ein weiterer Ansatz, der zur Identifikation von IL -6 führte, war die Entdeckung eines 

spät wirkenden humanen B-Zell Differenzierungsfaktors, der von aktivierten T-Zellen 

sezerniert wurde, und in aktivierten B-Zellen die Produktion von Immunglobulinen 

induzierte (Teranishi, et al. 1982);(Hirano, et al. 1984). Dieser „B-cell stimulatory 

factor-2“ (BSF-2) genannte Faktor wurde aufgereinigt und kloniert (Hirano, et al. 

1985, Hirano, et al. 1986). Interessanterweise deutete weder die biologische Aktivität 

noch der zelluläre Ursprung auf eine Verbindung zwischen IFN-β2, 26 kDa Protein 

und BSF-2 hin, dennoch zeigte der Vergleich der Sequenzen, dass alle diese 

Faktoren identisch sind (Billiau 1986). 
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Die dritte Forschungsrichtung, die zur Identifizierung von IL-6 führte, beschäftigte 

sich mit Wachstumsfaktoren für Plasmozytome und B-Zell Hybridome. Mit der 

Einführung von Wachstumsfaktor-abhängigen Zelllinien war eine genauere 

Charakterisierung dieser Wachstumsfaktoren möglich (Nordan and Potter 1986). So 

beschrieben Van Snick et al. einen im Überstand von T-Zellen vorkommenden, 

murinen Hybridom-Wachstumsfaktor, „interleukin HP1-like plasmocytoma growth 

factor” (IL-HP1) genannt (Van Snick, et al. 1986). Ein ähnliches Molekül, als 

„plasmocytoma growth factor“ (PCT-GF) bezeichnet, wurde aus 

Makrophagenüberstand isoliert (Nordan, et al. 1987). Die Faktor-abhängigen murinen 

Zelllinien wurden auch zur Isolierung humaner Wachstumsfaktoren genutzt. So 

konnte aus dem Überstand einer mit IL-1 behandelten Osteosarkomzelllinie, ein 

„human hybridoma/plasmocytoma growth factor“ (HPGF) isoliert werden (Van 

Damme, et al. 1987a). Interessanterweise war die Aminosäuresequenz dieses 

Faktors identisch mit der, des 26 kDa Protein/IFN-β2 und BSF-2 (Brakenhoff, et al. 

1987). Ferner wies das rekombinant hergestellte 26 kDa Protein HPGF-Aktivität 

(Poupart, et al. 1987) und die klonierte cDNA des murinen Faktors IL-HP1 eine große 

Homologie zu seinem humanen Widerpart auf. 

Weitere Erkenntnisse über IL -6 brachte die Beobachtung, dass gegen IL-6 gerichtete 

Antikörper die Aktivität eines, aus Monozyten stammenden, „hepatocyte stimulating 

factor“ (HSF) neutralisierten (Gauldie, et al. 1987). Die Annahme, dass HSF und IL-6 

identisch sind, wurde durch eine HSF-ähnliche Aktivität von rekombinantem, 

humanem IL -6 unterstützt (Gauldie, et al. 1987). Ferner zeigte sich, dass IL-6 bei der 

Hämatopoese (Ikebuchi, et al. 1987, Wong, et al. 1988) sowie als 

Differenzierungsfaktor für cytotoxische T-Zellen (CDF) (Takai, et al. 1988) von 

Bedeutung ist. Das untermauerte die Erkenntnis, dass es sich bei 26 kDa 

Protein/IFN-β2/BSF-2/PCT-GF/IL-HP1/HPGF/HSF und CDF um ein und dasselbe 

Molekül handelte, man einigte sich auf den Namen IL -6. 

2.2.2 Zellulärer Ursprung des IL-6 

IL-6 wird in einer Vielzahl verschiedener Zelltypen produziert und sezerniert. So 

konnte unter anderem die Produktion von IL-6 in Fibroblasten (Weissenbach, et al. 

1980), Endothelzellen (Corbel and Melchers 1984), Keratinozyten (Baumann, et al. 

1984), Monozyten/Makrophagen (Aarden, et al. 1987, Van Snick, et al. 1986), T-

Zellen (Hirano, et al. 1985), B-Zellen (Horii, et al. 1988) sowie einer Reihe von 
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Tumorzellen (Hirano, et al. 1986) nachgewiesen werden. Zusätzlich zu den 

genannten Zelltypen wurde auch in Zellen des Hypophysen-Vorderlappens IL-6 

Produktion nachgewiesen (Vankelecom, et al. 1989). 

2.2.3 Das IL-6 Protein 

Bei humanem, aus Fibroblasten (Van Damme, et al. 1987b), T-Zellen (Hirano, et al. 

1985), und peripheren Blut Monozyten (PBMC) (Van Damme, et al. 1988) 

gereinigtem IL-6 handelt es sich um ein Protein mit einem molekularem Gewicht von 

21-28 kDa. Diese Heterogenität ist mit ausgeprägten posttranslationalen 

Modifikationen zu erklären. So kommt es zu N- und O-Glykolysierungen (May, et al. 

1988a) sowie zu Phosphorylierungen an den Serin-Resten (May, et al. 1988b). Der 

offene Leserahmen (ORF) der IL-6 cDNA umfasst 211 Codons, zwischen dem 

initialen Triplett ATG und dem terminalen Triplett TAG. Die Sequenzanalyse der 

cDNA (Hirano, et al. 1987) lässt ein Vorläufer Molekül von 212 Aminosäuren 

erwarten, das reife Protein besteht aus 184 Aminosäuren. Die ersten 28 

Aminosäuren bilden eine stark hydrophobe Region, bei der es sich wahrscheinlich 

um das Signalpeptid handelt, außerdem befinden sich an den Positionen 45 und 144 

zwei mögliche N-Glykolysierungsstellen. 

Gereinigtes, murines IL -6 gleichen zellulären Ursprungs (Cayphas, et al. 1987, 

Nordan, et al. 1987, Van Snick, et al. 1986) hat ein Molekulargewicht von 22-29 kDa, 

auch hier kann die Heterogenität mit posttranslationalen Modifikationen erklärt 

werden. Die murine IL-6 cDNA (Chiu, et al. 1988, Van Snick, et al. 1988) codiert für 

ein 211 Aminosäuren großes Protein, mit einem hydrophoben, 24 Aminosäure 

großen Signalpeptid. Die komplette Sequenz des reifen Proteins wurde durch 

Proteinsequenzierung ermittelt; interessanterweise enthält murines IL-6 keine N-

Glykosylierungsstellen, dafür mehrere mögliche O-Glykosylierungsstellen (Simpson, 

et al. 1988a). Glykosylierung scheint nicht essentiell für die biologische Aktivität zu 

sein, denn rekombinantes IL-6 prokaryotischen Ursprungs ist biologisch aktiv. 

IL-6 bildet mit IL-11, dem „leukemia inhibiting factor“ (LIF), Oncostatin M (OSM), 

„ciliary neurotrophic factor“ Faktor (CNTF) und Cardiotrophin-1 (CT-1) die Gruppe der 

„Cytokine vom IL-6 Typ“, die eine ähnliche Quartär-Struktur mit 4 antiparallelen α-

Helices aufweisen. Eine weitere Gemeinsamkeit ist die Nutzung der gp130 Kette als 

Signaltransduktor. 
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Der Vergleich der cDNA-Sequenz von humanem IL -6 mit der von Maus bzw. Ratte 

ergab eine Homologie von 65 bzw. 68% auf DNA-Ebene und von 42 

beziehungsweise 58 % auf Protein-Ebene. Sehr geringe Homologie besteht in der N-

terminalen Region, diese scheint aber für die biologische Aktivität nicht essentiell zu 

sein, denn humanes IL-6 zeigt auf murinen Zellen biologische Aktivität. Die zentrale 

Region (Aminosäuren 42-102) des Proteins ist mit 57% Übereinstimmung relativ 

hoch konserviert, die hier vorkommenden 4 Cystein-Reste liegen an identischen 

Positionen. Disulfidbrücken konnten zwischen dem Cystein-Rest (Cys) 46 und Cys 

52, sowie Cys 75 und Cys 85 lokalisiert werden (Simpson, et al. 1988b). 

Das humane und murine IL -6 Gen ist 5 bzw. 7 kb groß, und beide sind aus 5 Exons 

und 4 Introns aufgebaut (Tanabe, et al. 1988, Yasukawa, et al. 1987, Zilberstein, et 

al. 1986). 

2.2.4  Regulation des Interleukin-6 Gens in Makrophagen 

In der Promotor-Region des humanen IL-6 Gens sind jeweils eine Bindungstelle für 

die Transkriptions-Faktoren, „cyclic AMP response element“ (CRE), „activation 

protein-1“ (AP-1), NF−κB und zwei für „nuclear factor IL-6“ (NF-IL-6) identifiziert 

worden (Zhang, et al. 1995). Zhang et al. konnten in ihren Arbeiten an humanen 

Makrophagen zeigen, dass vor allem der NF-κB und den NF-IL-6 Bindungsstellen 

eine wichtige Rolle bei der IL-6 Induktion durch LPS bzw. LAM zukommt (Zhang, et 

al. 1995). Allen dreien gemeinsam ist eine positiv-regulatorische Aktivität, wobei für 

NF-κB die potenteste beschrieben wurde. Eine maximale Induktion der IL -6 

Sekretion ist aber nur bei gleichzeitiger Aktivierung aller Faktoren möglich. Die 

gleichzeitige Deletion aller 3 Faktoren führt zum Verlust der durch LPS bzw. LAM 

induzierbaren IL-6 Sekretion. 

Auch in der Promotor-Region des murinen IL-6 Gens sind Bindungsstellen für die 

Transkriptions-Faktoren AP-1, CRE, NF-IL-6 und NF-κB vorhanden. Alle vier spielen 

bei der Aktivierung des IL-6 Gens durch Prostaglandin E1, seinem second 

messenger cAMP sowie LPS in murinen Monozyten eine Rolle (Dendorfer, et al. 

1994). Interessanterweise führten gleichzeitige Mutationen in allen vier Elementen 

nur zu einer Minderung der IL-6 Gen-Aktivierung durch Prostaglandin E1 und cAMP, 

während eine alleinige Mutation im NF-κB zu einem kompletten Ausfall der IL -6 Gen-

Aktivierung durch LPS führte. 
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Glukokortikoide und Östrogen bedingen, in Abwesenheit von funktionellen Rezeptor-

Bindungsstellen, eine Abnahme der IL-6 Gen-Expression durch Hemmung der IL-6 

Promotor-Region (Ray, et al. 1991, Ray, et al. 1994, Stein and Yang 1995). Dabei 

kommt es zu einer direkten Interaktion zwischen den Transkriptionsfaktoren NF-κB 

und NF-IL-6 einerseits und dem Glukokortikoid- bzw. Östrogenrezeptor andererseits 

(Ray and Prefontaine 1994, Scheinman, et al. 1995). 

2.2.5 Signaltransduktion von IL-6 

2.2.5.1 Der IL-6 Rezeptor-Komplex 

Der IL-6 Rezeptor-Komplex wird von zwei Ketten, der IL -6 bindenden Kette, IL-6Rα 

und der signaltransduzierenden Kette, gp130 gebildet. (Hibi, et al. 1990, Taga, et al. 

1989, Yamasaki, et al. 1988). Beide gehören, aufgrund ihrer Struktur, zur Cytokin 

Rezeptor Superfamilie Typ I (Bazan 1990a, Bazan 1990b), deren wichtigste 

Merkmale vier konservierte Cystein-Reste und ein W-S-X-W-S-Motiv (WS-Motiv) 

(W=Tryptophan, S=Serin, X=beliebige Aminosäure) im extrazellulären Anteil sind. 

Der cytoplasmatische Anteil der IL-6Rα-Kette ist 82 AS groß und nicht zur 

Signaltransduktion notwendig (Sugita, et al. 1990, Taga, et al. 1989). Im Gegensatz 

dazu besitzt gp130 einen großen, funktionellen cytoplasmatischen Anteil mit zwei 

konservierten Regionen (box 1 und box 2) und 6 Tyrosin-Resten (Y=Tyrosin, Y1-6) 

(Hibi, et al. 1990). Die Bindung von IL-6 an seinen Rezeptor führt zur Assoziation von 

IL-6Rα- und der gp130-Kette (Taga, et al. 1989). Tatsächlich kommt es immer zu 

Bildung eines Hexamers aus je 2 IL-6-, IL-6Rα- und gp130-Ketten (Paonessa, et al. 

1995). Interessanterweise wird die gp130-Kette auch von den CNTF-, LIF-, OSM-, IL-

11- und CT-1-Rezeptoren als Signaltransduktor genutzt (Hibi, et al. 1996, Hirano 

1994, Kishimoto 1995). Neben dem membranständigen Rezeptor wurde auch eine 

lösliche Form (sIL-6Rα) aus dem Serum und Urin von Menschen isoliert (Honda, et 

al. 1992, Novick, et al. 1989). Der lösliche Rezeptor bindet IL -6 mit einer ähnlichen 

Affinität wie der membranständige IL-6Rα und verlängert die Halbwertszeit von IL-6 

im Plasma (Peters, et al. 1996). Der Komplex aus IL-6 und IL-6Rα ist in der Lage, an 

gp130 zu binden und Zellen zu aktivieren. Somit können Zellen aktiviert werden, die 

keinen IL-6Rα exprimieren (Rose-John and Heinrich 1994)  
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2.2.5.2 Aktivierung verschiedener Signaltransduktionswege 

Ein Weg der Signaltransduktion durch IL-6 ist die Aktivierung der „Janus Kinase/ 

signal transducer and activator of transcription“  (JAK/STAT) Signa ltransduktions-

Kaskade. Hierbei kommt es nach der Formation des IL-6 Rezeptor-Komplexes - ein 

zentraler Aspekt dabei ist die Homodimerisierung der gp130 Ketten - unter anderem 

zur Aktivierung der Tyrosin-Kinasen der Janus Kinase (JAK) Familie (Lutticken, et al. 

1994, Matsuda, et al. 1994, Stahl, et al. 1994), welche mit der box 1 im 

cytoplasmatischen Anteil des gp130 Rezeptors assoziiert sind. Narazaki et al. 

(Kishimoto 1995) konnten zeigen, dass vor allem JAK 1, JAK 2 und TYK 2 hier von 

Bedeutung sind. Die Aktivierung der JAK hat eine Phosphorylierung des Tyrosin-

Restes Y 2 und einen der Gruppe Y 3-6 am cytoplasmatischen Teil von gp130 zur 

Folge (Stahl, et al. 1995), wobei das Y-X-X-Q Motiv (Q=Glutamin) der Positionen Y 

3-6 für die Bindung eines Transkriptionsfaktors, STAT3, der STAT Familie (STAT= 

signal transducer and activator of transcription) von elementarer Bedeutung ist. Diese 

Interaktion führt zur Tyrosin-Phosphorylierung, und damit zur Aktivierung von STAT3 

(Stahl, et al. 1995, Yamanaka, et al. 1996). Des Weiteren kommt es zur Aktivierung 

von STAT1 und STAT5 (Akira, et al. 1994, Fujitani, et al. 1997, Fujitani, et al. 1994, 

Lai, et al. 1995, Nakajima, et al. 1995, Zhong, et al. 1994), wobei die Aktivierung von 

STAT5 unabhängig von der Tyrosin-Phosphorylierung der gp130 Kette erfolgt; hier 

kommt es zu einer direkten Interaktion mit der JH2-Domäne der JAK (Fujitani, et al. 

1997). 

Neben der JAK/STAT Signaltransduktions-Kaskade kommt es durch Tyrosin-

Phosphorylierung von SHP-2, einer Phosphotyrosin-Phosphatase an Position Y 2 der 

gp130-Kette (Fukada, et al. 1996), zur Aktivierung der RAS-MAP 

Signaltransduktions-Kaskade (Fukada, et al. 1996), die in der Aktivierung von NF-IL-

6 mündet (Nakajima, et al. 1993). 

Nach ihrer Aktivierung wandern die STATs und NF-IL-6 in den Nukleus und binden 

an spezifische DNA-Sequenzen. In Genen für Akute-Phase-Proteine wurden zwei 

verschiedene Bindungsstellen identifiziert und als „IL-6 responsive elements“ (IL-6 

RE) bezeichnet. Das „IL-6 responsive element I“ (IL -6 RE I) bindet NF-IL-6 und 

kommt in den Genen für C-reaktives Protein (CRP), Hemopexin A und Haptoglobin 

vor (Gaillard, et al. 1993). STAT3 bindet an das IL-6 RE II welches in den Genen für 

Fibrinogen, a2 Makroglobulin und a1 saures Glykoprotein vorkommt (Wegenka, et al. 

1993). 
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2.2.6 Biologische Aktivitäten von IL-6 

Eine der wichtigsten Aktivitäten von IL-6 ist seine Wirkung auf B-Lymphozyten. So ist 

IL-6 ein wichtiger Regulator der Immunglobulin Sekretion (Kishimoto and Hirano 

1988). Es induziert die terminale Differenzierung von aktivierten B-Zellen zu 

Plasmazellen in vitro (Hirano, et al. 1985). In vivo Experimente an IL-6-/- Mäusen 

ergaben eine kritische Rolle von IL-6 bei der Entwicklung einer lokalen IgA Antikörper 

Antwort auf Schleimhäuten. Die Knock-out Tiere zeigten eine massiv verringerte 

Anzahl von IgA produzierenden Zellen in Schleimhäuten und eine sehr schwache IgA 

Produktion nach lokaler Stimulation (Ramsay, et al. 1994). Sie wiesen eine normale 

B-Zell Differenzierung hinsichtlich der Anzahl an B-Zellen in Knochenmark und Milz 

auf, jedoch kam es zu einer verringerten IgG-, aber einer normalen IgM-Antwort auf 

lösliches Protein-Antigen und Vesikulo-stomatitis Virus (VSV) (Kopf, et al. 1994). 

IL-6 hat in vitro eine stark wachstumsfördernde Wirkung auf humane und murine B-

Zelltumore (Astaldi, et al. 1980, Kawano, et al. 1988, Klein, et al. 1989, Nordan and 

Potter 1986, Van Snick, et al. 1986, Van Snick, et al. 1987). Diese Tatsache hat 

praktische Bedeutung, zum einen in der Produktion von monoklonalen Antikörpern 

(Bazin and Lemieux 1989), zum anderen nutzt man die strikte IL -6 Abhängigkeit 

einiger B-Zellhybridomzelllinien, z.B. der 7TD1-Linie (Van Snick, et al. 1986) oder der 

B9-Linie (Lansdorp, et al. 1986) für den Nachweis von IL-6. An IL-6-/- Mäusen konnte 

gezeigt werden, dass IL -6 essentiell für die Entwicklung von Plasmazelltumoren in 

vivo ist (Hilbert, et al. 1995). Chen et al. (Chen, et al. 1988) beschrieben hingegen 

einen wachstumshemmenden Effekt von IL-6 auf einige humane Mammatumor-, 

Adenokarzinom-Zelllinien und B-Zell Lymphome. 

Weitere Arbeiten haben gezeigt, dass IL-6 die initiale Aktivierung von T-Zellen 

vermittelt (Lotz, et al. 1988), und eine wichtige Rolle sowohl bei der Differenzierung 

(Okada, et al. 1988, Takai, et al. 1988, Uyttenhove, et al. 1988) als auch bei der 

Funktion (Liu, et al. 1990, Smyth, et al. 1990, Takai, et al. 1988) von cytotoxischen T-

Lymphozyten (CTLs) spielt. So zeigten T-Zellen aus IL -6-/- Mäusen eine reduzierte 

cytolytische Aktivität gegen Vaccinia Virus in vitro (Kopf, et al. 1994). Bei der 

Stimulation der T-Zellen kommt es zu einem Synergismus zwischen IL-6 und IL-1, so 

erhöht IL -6 die IL-2 Empfindlichkeit der Zielzelle durch Induktion der IL -2 Rezeptor 

Expression (Le, et al. 1988, Noma, et al. 1987), wohingegen IL -1, zusammen mit IL-

6, die IL-2 Sekretion in der Zielzelle induziert (Houssiau, et al. 1989, Kawakami, et al. 
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1989). Des Weiteren fördert IL-6 durch Induktion von IL -4 die Ausbildung einer TH2 

Immunantwort (Rincon, et al. 1997), und unterdrückt die Ausbildung einer TH1 

Immunantwort durch Induktion des „suppressor of cytokine signaling-1“ (SOCS-1) 

(Diehl, et al. 2000). 

Ein weiterer Punkt, der die immunregulatorische Bedeutung von IL-6 unterstreicht, ist 

die Fähigkeit, die Differenzierung von Monozyten zu steuern. Unter IL-6 Einfluss 

differenzieren Monozyten vermehrt zu Makrophagen, nicht aber zu Dendritischen 

Zellen. Dies wird durch Induktion des „macrophage-colony stimulating factor“ (M-

CSF)-Rezeptors auf Monozyten erreicht, was eine erhöhte Empfindlichkeit für das 

autokrin sezernierte M-CSF bedingt und die Differenzierung in Makrophagen 

induziert (Chomarat, et al. 2000). 

Inflammatorische Prozesse gehen einher mit der Akute-Phase-Reaktion (APR), die 

durch signifikante Veränderung der Serumkonzentration der Akute Phase Proteine 

charakterisiert ist (Kushner 1982). So kommt es in vielen Spezies zum Anstieg von 

a1-Antitrypsin, a1-Antichymotrypsin, Haptoglobin, Hemopexin und Fibrinogen. 

Außerdem steigt in der Ratte a2-Makroglobulin und der Cystein-Protease-Inhibitor, im 

Mensch C-reaktives Protein und Serumamyloid A an. Einige Proteine, wie Albumin 

und Transferrin, zeigen abfallende Serumkonzentrationen während der Akute-Phase 

-Reaktion, weshalb man bei ihnen auch von „negativen Akute Phase Proteinen“ 

spricht. Ein wichtiger Regulator der APR ist IL -6 (Andus, et al. 1987, Gauldie, et al. 

1987). So führte die Injektion von IL-6 in Ratten zu einer typischen Akute-Phase-

Reaktion, die in Form und Umfang einer APR nach einer Turpentin Injektion, was 

lokale sterile Inflammationen erzeugt, entsprach (Geiger, et al. 1988). Die große 

Bedeutung von IL -6 bei der Regulation der APR wurde bei Versuchen an IL-6-/- 

Mäusen deutlich, hier blieb sie nach lokalen, sterilen Inflammationen durch 

Applikation von Turpentin aus, wohingegen systemische Inflammationen durch LPS 

Injektion zu einer physiologischen APR führte (Fattori, et al. 1994, Kopf, et al. 1994). 

Somit ist IL-6 essentiell für die Induktion der APR nach sterilen Gewebeschäden. 

Andererseits unterstreicht dieser Befund auch die weitreichende funktionelle 

Redundanz innerhalb der Cytokine. 

IL-6 hat mit anderen Cytokinen Einfluss auf das zentrale Nervensystem. So ist es, 

zusammen mit IL-1β, ein potenter Induktor von Fieber und „sickness-behaviour“ 
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(LeMay, et al. 1990). Untersuchungen an IL-6-/- Mäusen zeigten, dass die IL-6 

Genexpression im ZNS essentiell für die Fieber Induktion durch IL-1β ist (Chai, et al. 

1996). Ein weiterer Effekt ist die Erhöhung der Serumkonzentrationen von ACTH und 

Glukokortikoiden (LeMay, et al. 1990, Naitoh, et al. 1988). Bethin et al. (Bethin, et al. 

2000) konnten zeigen, dass IL-6 bei der Induktion von ACTH ein CRH-unabhängiger 

Weg offensteht. Erhöhte Glukokortikoidkonzentrationen im Serum verstärken den 

Effekt von IL -6 auf die Akute-Phase-Reaktion, zum einen durch eine synergistische 

Wirkung bei der Synthese und Sekretion der Proteine, zum anderen induzieren sie 

die Expression von hochaffinen IL-6 Rezeptoren und gp130 auf Hepatozyten 

(Schooltink, et al. 1992, Snyers, et al. 1990). Andererseits haben Glukokortikoide 

einen hemmenden Einfluss auf die IL -6 Sekretion in Monozyten/Makrophagen. Diese 

„negative feedback“-Regulation verhindert eine überschießende Freisetzung von pro-

inflammatorischen Cytokinen (Akira, et al. 1993). 

Eine wesentliche Rolle spielt IL-6 bei der lokalen Regulation des Knochenumsatzes. 

So hemmen gegen IL-6 gerichtete Antikörper die vermehrte Bildung von 

Osteoklasten-Vorläuferzellen nach Ovariektomie (Jilka, et al. 1992). IL-6-/- Mäuse 

zeigen keinen veränderten Knochenumsatz nach Ovariektomie, wie er bei Wildtypen 

zu beobachten ist (Poli, et al. 1994). Diese Daten lassen eine wesentliche 

Beteiligung von IL-6 bei der postmenopausalen Osteoporose vermuten (Hirano 

1998). 

Weitere Aktivitäten von IL-6 sind die Förderung der Hämatopoese, des Wachstums 

der glatten Muskulatur in Gefäßen, neuronale Differenzierung und die Erhöhung der 

Permeabilität von Endothelzellen (Akira, et al. 1993). 

2.2.7 Das IL-6 System beim Vogel 

Es gab schon länger Hinweise darauf, dass Vögel über ein hochkonserviertes IL-6-

System verfügen. So konnte gezeigt werden, dass LPS stimulierte Hühner 

Makrophagen HSF sezernieren, der in Hühner Hepatozyten die Sekretion von 

Fibronectin induziert (Amrani, et al. 1986). LPS induzierte auch bei Hühner 

Fibroblasten die Freisetzung von HSF, dessen biologische Aktivität durch ein 

Antiserum gegen rekombinantes humanes IL-6 (rhu IL-6) gehemmt wurde. rhuIL-6 ist 

zudem biologisch aktiv auf Hühner Hepatozyten (Samad, et al. 1993). Weitere 

Studien zeigten, dass in Hühner Serum und Aszites ein funktionelles Homolog zum 
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Säuger IL-6 vorliegen muss, denn beide induzierten die Proliferation der streng IL -6 

abhängigen murinen Hybridomzelllinie B9. Die proliferations-induzierende Wirkung 

des Aszites konnte wiederum durch ein Antiserum gegen rhuIL -6 gehemmt werden 

(Nakamura, et al. 1998, Rath, et al. 1995). 

Aufgrund der streng IL-6 abhängigen Effekte bei der Induktion von Fibronectin in 

einer Leberkarzinom Zelllinie (Lynagh, et al. 2000b) und des proliferations-

induzierenden Effektes auf streng IL-6 abhängigen Hybridomzelllinien (Lynagh, et al. 

2000a, Rath, et al. 1995) standen erste Tests zum Nachweis von Hühner IL-6 zur 

Verfügung. Mit Hilfe dieser Bioassays konnte im Serum Eimeria infizierter Vögel der 

Anstieg einer IL -6 ähnlichen Aktivität ebenso gezeigt werden (Lynagh, et al. 2000a), 

wie der im Serum von Truthähnen, die am „poult enteritis and mortality syndrom“ 

erkrankt waren. 

Die Nutzung verschiedener molekularbiologischer Methoden ermöglichte kürzlich die 

Klonierung eines Cytokins mit deutlicher Sequenzhomologie zum IL -6 von Mensch, 

Maus und Ratte (Schneider, et al. 2001). So führten die Autoren eine differenzielle 

Genexpressionsanalyse unter Verwendung einer als „suppression subtractive 

hybridization“ (SSH) bezeichneten Methode durch. Diese Methode ermöglicht den 

Vergleich zweier cDNA-Populationen und die Isolierung derjenigen cDNA Fragmente, 

die nur in einer Population vorhanden sind. In diesem Versuchsansatz wurde cDNA 

aus Milzen von Hühnern, die zuvor mit dem synthetischen Immunstimulator S-28463 

behandelt worden waren, mit cDNA aus Milzen von unbehandelten Hühnern 

verglichen. S-28463 gehört zu den Imidazoquinolinen, einer Gruppe 

immunmodulatorischer Agenzien, die antivirale und tumorwachstumshemmende 

Eigenschaften besitzen (Harrison, et al. 1991, Sidky, et al. 1992), welche vor kurzem 

mit der TLR 7-Vermittelten Induktion von Cytokinen und anderen Faktoren erklärt 

werden konnte (Hemmi, et al. 2002). 

Als Ergebnis der differenziellen Genanalyse wurden insgesamt 38 cDNA-Fragmente 

identifiziert, die von differenziell exprimierten Genen stammen. Neben cDNA-Klonen 

mit Homologie zum Säuger IL -6, wurden cDNA Fragmente mit Homologien zum 

SOCS-1 Protein und einem, mit humanem IFN induzierbarem 58-kDa Protein 

gefunden. Weiterhin konnten cDNA Fragmente mit Homologien zum Lysozym G vom 

Huhn und anderen aviären G-Typ Lysozymen isoliert werden. 
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Gleichzeitig identifizierten die Autoren in einer Bursa „Expressed sequence tag“ 

(EST)-Datenbank (Tirunagaru, et al. 2000) ein cDNA Fragment (pat.pk0076.f2.f) mit 

signifikanter Homologie zum Säuger IL -6. Der Vergleich der Sequenzen dieses cDNA 

Klons mit denen der IL -6 Homologe aus dem SSH-Ansatz ergab eine partielle 

Überlappung von cDNA Klon 5FII mit pat.pk0076.f2.f. Aufgrund der größeren Länge 

des EST-cDNA Fragments, wurde dieses als radioaktiv markierte 

Hybridisierungsprobe zur Untersuchung einer HD11-cDNA-Bank (Sick, et al. 2000) 

eingesetzt, was zur Isolierung eines ChIL-6-cDNA Klons führte, der den gesamten 

offenen Leserahmen (ORF) umfasste.  

Der ORF von ChIL-6 codiert ein 241 Aminosäuren großes Polypeptid, mit einem 

ungewöhnlich langen, N-terminalen Signalpeptid von 47 Aminosäuren. Das mature 

Polypeptid besteht aus 194 Aminosäuren mit einem Molekulargewicht von 21,9 kDa. 

Die  Sequenzhomologie zwischen ChIL -6 und seinen Gegenstücken bei Mensch und 

Ratte beträgt 35% bzw. 25% auf Proteinebene. Unter Berücksichtigung von 

konservativen Aminosäureaustauschen ergeben sich Ähnlichkeiten von über 50%. 

Dieser Wert ist erstaunlich, denn die Ähnlichkeit von humanem IL-6 zum IL-6 der 

Ratte ist nicht größer. 

Mittels PCR wurde das für ChIL-6 kodierende cDNA Fragment amplifiziert und in den 

prokaryotischen Expressionsvektor pQE9 kloniert. Die Expression des resultierenden 

Plasmids ergab reifes ChIL-6 mit einem N-terminalen Histidin Tag. Das markierte 

Polypeptid, His-ChIL -6 konnte mittels Nickel-Agarose Affinitätschromatographie 

gereinigt werden. 

Für die Expression von rChIL -6 in eukaryotischen Zellen wurden Cos-7- und LMH-

Zellen mit dem Konstrukt pcDNAI/ChIL-6-5-1, welches die ganze Sequenz von ChIL-

6 mit Signalpeptid enthält, transfiziert.  
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2.3 Zielsetzung der Arbeit 

Zielsetzung der vorliegenden Arbeit war zunächst die Etablierung eines quantitativen 

Nachweissystems für Hühner-IL-6. Unter Verwendung dieses Testsystems sollten die 

biologischen Aktivitäten rekombinanter und natürlicher Hühner-IL-6 Präparationen 

untersucht werden. Zudem sollte ein Hühner-IL-6 spezifisches Antiserum mit 

neutralisierenden Eigenschaften gewonnen werden. 

Im zweiten Teil der Arbeit sollte auf der Basis der etablierten Methoden eine erste 

Studie zur funktionellen Beschreibung des TLR-Systems der Hühner durchgeführt 

werden. 
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3. Material und Methoden 

3.1 Tiere und Tierhaltung 

Hühner 

Zur Blutentnahme wurden im MHC-Komplex identische Hühner (B19/B19) der Linie 

H.B19 verwendet. Die aus hauseigener Zucht stammenden Tiere wurden in kleinen 

Gruppen in Gitterrostkäfigen gehalten und erhielten handelsübliches Küken- und 

Junghennenalleinfutter1 sowie Wasser ad libitum. 

Kaninchen 

Die Kaninchen, die für die Herstellung polyklonaler Antiseren genutzt wurden, 

stammten aus der hauseigenen Zucht. Sie wurden einzeln oder in Gruppen von zwei 

Tieren in Bodenhaltung gehalten. Gefüttert wurden sie mit handelsüblichem 

Alleinfutter2 für Kaninchen und Heu sowie Wasser ad libitum. 

3.2 Materialien 

3.2.1 Zelllinien 

7TD1  

Diese murine, streng IL-6 abhängige B-Zellhybridomzelllinie, wurde freundlicherweise 

von J. van Snick3 zur Verfügung gestellt (Van Snick, et al. 1986). 

HD11  

Die Hühnermakrophagenzelllinie wurde freundlicherweise von Th. Graf4 zur 

Verfügung gestellt (Beug, et al. 1979). 

                                                 
1  Fa. BayWa, München 
2  Fa. Altromin 
3  Ludwig Institute for Cancer Research, Brüssel, Belgien 
4  Europäisches Molekularbiologie Labor (EMBL), Heidelberg 
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LMH  

Die Hühner-Leberkarzinomzelllinie wurde freundlicherweise von P. Staeheli 5 zur 

Verfügung gestellt (Kawaguchi, et al. 1987). 

B19-2D8 

Die Hühner-B-Zelllinie wurde freundlicherweise von F. Puehler6 zur Verfügung 

gestellt (Puehler, et al. submitted). 

3.2.2 Zellkulturmedien und Zusätze 

Medium zur Kultivierung von primären Hühnermakrophagen  

Rosewell Park Memorial Institute (RPMI) 1640 mit Glutamax7 

10% fötales Kälberserum (FCS)8 (inaktiviert bei 56°C für 30 min.) 

Penicillin 100 IU/ml und Streptomycin 100 µg/ml9 

Medium zur Kultivierung von 7TD1 Zellen 

RPMI 1640 mit Glutamax 

10% FCS (inaktiviert bei 56°C für 30 min.) 

Penicillin 200 IU/ml und Streptomycin 200 µg/ml 

L-Asparagin10 0,24 mM  

L-Glutamin11  1,5 mM  

L-Arginin12 0,55 mM 

2-Mercaptoethanol13 0,55 mM  

rChIL-614 1 ng/ml  

                                                 
5   Institut für Medizinische Mikrobiologie und Hygiene, Abteilung Virologie, Universität Freiburg 
6   Institut für Medizinische Mikrobiologie und Hygiene, Abteilung Virologie, Universität Freiburg 
7   Fa. Gibco BRL Life Technologies, Karlsruhe 
8   Fa. Gibco BRL Life Technologies, Karlsruhe 
9   Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
10  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
11  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
12  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
13  Fa. Fluka, Buchs 
14 Freundlicherweise von K. Schneider, Institut für Med. Mikrobiologie. und Hygiene, Abt. Virologie, 

    Uni. Freiburg zur Verfügung gestellt 
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Einfriermedium 

90% FCS (inaktiviert bei 56°C für 30 min.) 

10% DMSO15 

3.2.3  Allgemeine Puffer  

Posphatgepufferte Kochsalzlösung (PBS) pH: 7,2 

40g  NaCl16 

7,2g  Na2HPO4 x 2H2O17 

1g  KCl18 

1g KH2PO4
19 

Ad 5000 ml Aqua dest. 

3.2.4 Lösungen zur Messung der Zellproliferation (XTT-Test) 

XTT20-Lösung (kurz vor Gebrauch ansetzten) 

1 mg XTT wird in 1 ml RPMI bei 37°C gelöst 

(XTT = (2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl) 

-5-((phenylamino)carbonyl)-2H-tetrazolium Hydroxid)) 

PMS21-Lösung (5mM) 

1,53 mg Phenazin-Methosulfat (PMS) pro ml PBS. 

(PMS=(N-methyldibenzopyrazin Methylsulfat Salz) 

Lichtgeschützt ist die Lagerung bei 4°C für 3 Monate möglich. 

 

                                                 
15  Fa. Applichem, Darmstadt 
16  Fa. Applichem, Darmstadt 
17  Fa. Applichem, Darmstadt 
18  Fa. Applichem, Darmstadt 
19  Fa. Applichem, Darmstadt 
20  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
21  Fa. Sigma -Aldrich Chemie GmbH, Deisenhofen 
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3.2.5 Puffer für die DNA-Präparation 

TE-Puffer 

10 mM Tris-((hydroxymethyl)-aminomethan) 

  1mM EDTA 22 

auf pH 8.0 einstellen mit HCl 

Mg2Cl2/Ca2Cl2 Puffer 

  5 mM Ca2Cl223 

10 mM Mg2Cl224 

Tris-Puffer 

10 mM Tris 

auf pH 8.0 einstellen 

DNase I-Stammlösung  

1 mg DNase I25 

ad 1 ml mit Tris-Puffer  

Lagerung bei –20°C 

DNase I-Gebrauchslösung (erst kurz vor Gebrauch ansetzen) 

10 µl der DNase I Stammlösung 

ad 500 µl mit Tris-Puffer 

                                                 
22  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
23  Fa. Applichem, Darmstadt 
24  Fa. Applichem, Darmstadt 
25  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
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3.3 Methoden 

3.3.1 Kultivierung der verwendeten Zelllinien 

Alle Zellen wurden bei einer CO2-Spannung von 5 % und einer relativen Luft- 

feuchtigkeit von 100 % kultiviert. Bei Hühnerzellen lag die Temperatur bei 42°C, bei 

Säugerzellen bei 37°C. 

7TD1 und 2D8 Zellen wurden durch Klopfen der Kulturflaschen abgelöst. Etwa 1-2 ml 

Zellsuspension wurden in der Flasche belassen und wieder mit dem entsprechenden 

Medium aufgefüllt. Bei den 7TD1 Zellen erfolgte in den Erhaltungskulturen die 

Zugabe von rChIL-6 in einer Endkonzentration von 1ng/ml. 

3.3.2 Zellzählung 

Zur Ermittlung der Zahl und Viabilität von Zellen aus Zellkulturen bzw. -präparationen 

wurden 10 µl der jeweiligen Zellsuspension 1:2 mit Trypanblau vermischt. Die 

Zählung erfolgte in einer modifizierten Neubauer-Zählkammer26. 

3.3.3 Einfrieren der verwendeten Zelllinien 

Zum Einfrieren von Zelllinien wurden 1x107 Zellen durch Zentrifugation bei 400 x g 

und 4°C pelletiert und in 1 ml Einfriermedium resuspendiert. Die Zellsuspension 

wurde in ein Einfrierröhrchen27 überführt und in einer Einfrierbox28 über Nacht bei -

80°C und anschließend in flüssigem Stickstoff gelagert. 

                                                 
26  Fa. Brand GmbH & Ko. KG, Wertheim 
27  Fa. Nunc, Wiesbaden 
28  Fa. Nalge Nunc, Wiesbaden 
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3.3.4 Nachweistest von ChIL-6 (7TD1-Test) 

Dieser im Säuger etablierte, kolorimetrische Nachweistest (Scudiero, et al. 1988), 

beruht auf der streng IL -6 abhängigen murinen Hybridomzelllinie 7TD1. Das 

zugrunde liegende Testprinzip ist die, durch IL-6 induzierbare, dosis-abhängige 

Proliferation der 7TD1 Zellen, welche mittels des Tetrazoliumsalzes XTT quantifiziert 

werden kann. Durch mitochondriale Succinat-Dehydrogenasen kommt es zur 

Umwandlung des gelblichen Tetrazoliumsalzes XTT in ein orange-rotes Formazan 

Produkt. Die Auswertung erfolgt durch die Messung der Extinktion bei einer 

Wellenlänge von 450 nm. Somit lassen sich über die gemessenen Extinktionen 

Rückschlüsse auf das Ausmaß der induzierten Proliferation und damit über die 

Menge an IL-6 in den Proben ziehen. 

Die zu testenden Überstände, wurden auf einer sterilen 96-Loch-Flachbodenplatte 29 

austitriert, wobei das Endvolumen pro Delle 200 µl betrug (100 µl Probe + 100 µl 

7TD1 Zellsuspension). Da es sich bei der Titration in der Regel um log 2 Titrationen 

handelte, wurden 100 µl 7TD1 Medium vorgelegt. Die Verdünnung der eingesetzten 

Probe hing von der gewünschten Endverdünnung bzw. –konzentration ab. So 

wurden als Positivkontrolle rChIL-6 in einer Endkonzentration von 1 ng/ml, als 

Negativkontrolle IL -6-freies 7TD1 Medium verwendet. Makrophagenüberstände 

wurden geeigneterweise in einer 1:10 bis zu einer 1:50 Verdünnung verwendet. 

Nach Vorbereitung der Platten wurde die 7TD1-Zellsuspension aus den 

Zellkulturflaschen30 abgenommen und in ein 50-ml-Zentrifugenröhrchen31 überführt. 

Anschließend wurde das Röhrchen mit PBS aufgefüllt und 10 Minuten bei 400 x g 

zentrifugiert. Der Überstand wurde verworfen, und das Zellpellet wurde in 50 ml PBS 

resuspendiert und erneut zentrifugiert. Dieser Waschschritt wurde insgesamt 3 mal 

wiederholt. Anschließend wurde das Pellet in 7TD1 Medium resuspendiert, die 

Zellzahl bestimmt und auf eine Dichte von 1 x 105 Zellen/ml eingestellt. 100 µl dieser 

Zellsuspension wurden in jede Kavität der vorbereiteten 96-Loch-Flachbodenplatte 

pipettiert. Anschließend erfolgte eine 96-stündige Inkubation bei 37°C und 5 % CO2. 

                                                 
29  Fa. Nunc, Wiesbaden 
30  Fa. Nunc, Wiesbaden 
31  Fa. Nunc, Wiesbaden 
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Nach Ablauf der Inkubationszeit wurde die 0,025 mM XTT-Gebrauchslösung 

angesetzt, dazu wurden pro ml XTT-Lösung 5µl der PMS-Lösung zugesetzt. 50 µl 

dieser Gebrauchslösung wurden in jede zu testende Delle der 96-Loch-

Flachbodenplatte pipettiert. 

Diese wurde dann für 4 h bei 37°C und 5 % CO2 inkubiert. Vor der Messung der 

Extinktion im ELISA-Reader32 bei einer Wellenlänge von 450 nm wurde die 96-Loch-

Flachbodenplatte für eine Minute  auf einen Schüttler gestellt, um die Formazan-

Kristalle, die sich gebildet haben, zu lösen. 

3.3.5 Gewinnung polyklonaler Antiseren gegen ChIL-6 

3.3.5.1 Immunisierungen 

Zur Gewinnung polyklonaler Anitseren gegen ChIL-6 wurden zwei Kaninchen mit 

rekombinantem, in E.coli exprimierten ChIL -6 immunisiert. Für die Erstimmunisierung 

wurden 400 µl einer rChIL -6 Lösung mit einer Konzentration von 1 mg rChIL -6 pro ml 

mit 400 µl Freund´s inkomplettes Adjuvanz33 (FIA) versetzt. Nach Emulgation des 

Gemisches durch mehrfaches Auf- und Abziehen durch eine Kanüle mit einem 

Durchmesser von 0,4 mm, wurden jedem Kaninchen 0,4 ml der Antigenemulsion in 

den Musculus semimembranosus injiziert. Die folgenden Boosterimmunisierungen 

erfolgten im Abstand von 3-4 Wochen wobei ebenfalls Freund´s inkomplettes 

Adjuvanz verwendet wurde. 

3.3.5.2 Gewinnung der Antiseren 

In zwei- bis dreiwöchigem Abstand wurden den Kaninchen 10-20 ml Blut aus der 

Arteria auricularis media entnommen und für vier Stunden bei 37°C inkubiert. 

Nachdem das Blut über Nacht bei 4°C gelagert wurde, erfolgte die sterile Entnahme 

des Serums. Es wurde in ein 15 ml-Zentrifugenröhrchen überführt und für 10 Minuten 

bei 400 x g zentrifugiert. Das Serum wurde in 1 ml Portionen aliquotiert und bis zur 

weiteren Verwendung bei -20°C gelagert. 

                                                 
32  Fa. Tecan, Kirchheim 
33  Fa. Sigma, Deisenhofen 
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3.3.6 Gewinnung von peripheren Blutleukozyten (PBL) und 

Makrophagen 

Zur Blutentnahme wurde eine 20 ml Spritze mit ca. 0,1 ml einer 1:10 in DMEM 

verdünnten Liquemin N34 (500 U Heparin/ml) Lösung versetzt. Nach Desinfektion des 

Areals mit 70% Alkohol, wurden durch Punktion der Vena jugularis bei jedem Tier 10-

20 ml Blut unter sterilen Kautelen entnommen. 

In Anlehnung an die Methode von Peck (Peck, et al. 1982) wurde das auf diese 

Weise gewonnene Blut 1:2 mit vorgewärmtem PBS verdünnt, und jeweils 10 ml der 

Suspension in einem 50-ml-Zentrifugenröhrchen35 über die gleiche Menge Ficoll-

Paque36 geschichtet. Nach 25-minütiger Zentrifugation mit 400 x g bei 

Raumtemperatur wurden die an der Phasengrenze befindlichen Leukozyten mit einer 

sterilen Pasteurpipette abgesaugt und zweimal durch 10-minütiges Zentrifugieren 

nach Resuspension in PBS gewaschen. 

Das nach der letzten Zentrifugation gewonnene Zellpellet wurde in Makrophagen-

Medium resuspendiert und sowohl Zellzahl als auch Viabilität nach Färbung mit 

Trypanblau37 in einer modifizierten Neubauer-Zählkammer bestimmt. Die 

Leukozytensuspension wurde auf eine Dichte von 1x107 Zellen pro Milliliter 

eingestellt und auf 24-Loch-Zellkulturplatten38 ausgesät, wobei jede Kavität der Platte 

mit 1 ml der Zellsuspension gefüllt wurde. Die Platten wurden bei 40°C und 5% CO2 

für 48 Stunden kultiviert. Anschließend wurden die nicht adhärenten Zellen durch 

vorsichtiges Schütteln der 24-Loch-Zellkulturplatte und Abgießen des Mediums sowie 

durch dreimaliges Waschen mit 37°C warmen PBS entfernt. Die auf dem 

Plattenboden anhaftenden Makrophagen wurden wieder mit einem Milliliter des 

Makrophagen Mediums bedeckt. 

                                                 
34  Fa. Hoffmann-LaRoche 
35  Fa. Nunc, Wiesbaden 
36  Fa. Amersham-Pharmacia, Uppsala, Schweden 
37  Fa. Biochrom, Berlin 
38  Fa. Nunc, Wiesbaden. 



  Material und Methoden 

  41 

3.3.7 Präzipitation von bakterieller DNA 

5 mg lyophylisierte, bakterielle DNA (E.coli) wurden in 5 ml TE-Puffer gelöst. Nach 

Zugabe von 0,5 ml einer 3 M Natriumacetatlösung und 12,5 ml Ethanol39 (reinst) 

wurde die Lösung für 30 Minuten bei -80°C inkubiert. Nach Ablauf der Inkubationszeit 

schloss sich eine 20-minütige Zentrifugation bei 20000 x g an. Der Überstand wurde 

vorsichtig dekantiert und verworfen. Das Präzipitat wurde in 0,5 ml 70%igem 

Ethanol40 resuspendiert und 5 Minuten bei 20000 x g zentrifugiert. Nach erneutem 

Dekantieren und Verwerfen des Überstandes, wurde das Pellet für wenige Minuten 

im laufenden Abzug getrocknet und anschließend in 4 ml TE-Puffer resuspendiert. 

Die beschriebene DNA-Präzipitation wurde 3 mal wiederholt. Nach dem dritten 

Reinigungschritt wurde die DNA in 10 ml TE-Puffer resuspendiert. Die wiederholte 

Präzipitation wurde durchgeführt, um eine mögliche LPS-Kontamination zu 

verringern. 

Um die gereinigte DNA optimal in Lösung zu bringen, wurde die in TE-Puffer gelöste 

DNA auf einem Schüttler über Nacht inkubiert. Am nächsten Tag erfolgte die 

photometrische Bestimmung des DNA-Gehaltes. Um die DNA in kleinere Fragmente 

zu zerlegen und zu denaturieren, wurde sie durch wiederholtes Auf-und-

Abpipettieren mit einer Pipette kleinen Volumens geschert und anschließend für 10 

Minuten auf 96°C erhitzt. Die Lagerung der DNA-Stammlösung erfolgte in 1-ml-

Aliquots bei –20°C. 

3.3.8 DNA Verdau mit DNase I 

Als erstes erfolgte das Ansetzen der DNase I-Gebrauchslösung durch Mischen von 

10 µl DNase I-Stammlösung mit 500 µl Tris-Puffer. Für den Verdau von bakterieller 

DNA wurden 75 µl DNA-Stammlösung mit 150 µl des Mg2Cl2/Ca2Cl2 Puffer 

vermischt. Dann erfolgte die Zugabe von 24 µl der DNase I-Gebrauchslösung mit 

einer nachfolgenden Inkubationsphase bei Raumtemperatur für 1 Minute. Danach 

schloss sich eine abschließende, 5-minütige Inkubation bei 90°C an. Als Kontrolle 

dienten Ansätze, in denen zum einen nur die DNase I-Gebrauchslösung zum 

anderen DNase I-Gebrauchslösung und der Mg2Cl2/Ca2Cl2 Puffer durch das gleiche 

Volumen an Tris-Puffer ersetzt worden waren. Die weitere Behandlung dieser 

                                                 
39  Fa. Diesterfeld, Nürnberg 
40  Fa. Diesterfeld, Nürnberg 
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Ansätze war identisch zu der oben beschriebenen. Die Lagerung der verdauten DNA 

erfolgt bei –20°C. 

3.3.9 Stimulation primärer Hühnermakrophagen mit PAMPs 

Für die funktionelle Beschreibung des TLR-Systems beim Haushuhn wurden primäre 

Hühnermakrophagen mit folgenden Substanzen stimuliert. 

- Lipopolysaccharid (LPS) 41 von E.coli, Serotyp O127, B8 

- Rekombinantes IFN-γ , in COS-7 Zellen exprimiert (Weining, et al. 

1996) 

- Polyinosinpolycytodylsäure (poly(I:C))42,  

ein synthetisches Homolog zu dsRNA 

- Pam3CysSerLys4 (Pam3Cys)43,  

ein synthetisches bakterielles Lipopeptid 

- Bakterielle DNA44, präzipitiert  

- Bakterielle DNA45, präzipitiert und mit DNase I verdaut 

- ODN 1668 bzw. ODN 1668-GC46 

ein ODN mit den für den murinen TLR 9 optimierten CpG-Motiv 

GACGTT, das im ODN entha ltende, stimulatorische CpG-Motiv ist 

unterstrichen. 

Sequenz von ODN 1668:  TCCATGACGTTCCTGGATGCT47 

                                                 
41  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
42  Freundlicherweise von P. Staeheli, Abteilung für Virologie, Institut für Med. Mikrobiologie, 

     Uni. Freiburg zur Verfügung gestellt.  
43  Freundlicherweise von S. Bauer, Inst. für Med. Mikrobiologie, TU München zur Verfügung gestellt 
44  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
45  Fa. Sigma-Aldrich Chemie GmbH, Deisenhofen 
46  Freundlicherweise von S. Bauer, Inst. für Med. Mikrobiologie, TU München zur Verfügung gestellt 
47  Nucleotid-Sequenz des verwendeten CpG-ODNs, CpG-Motiv unterstrichen 
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Als Kontrolle wurde das ODN 1668-GC verwendet. 

Sequenz von ODN 1668-GC: TCCATGAGCTTCCTGGATGCT48 

- ODN 2006 bzw. ODN 2006-GC49 

ein ODN mit den für den humanen TLR 9 optimierten CpG-Motiv 

GTCGTT, die drei im ODN enthaltenen stimulatorischen CpG-Motive 

sind unterstrichen. 

Sequenz von ODN 2006:  TCGTCGTTTTGTCGTTTTGTCGTT50 

Als Kontrolle wurde das ODN 1668-GC verwendet. 

Sequenz von ODN 2006-GC: TGCTGCTTTTGTGCTTTTGTGCTT51 

In der Regel erfolgte die Probenentnahme nach einer 24-stündigen Inkubationszeit. 

In den Fällen, in denen die Kinetik der ChIL -6 Sekretion ermittelt wurde, erfolgte eine 

wiederholte Probenentnahme über einen Zeitraum von 24-48 Stunden. Nach 

Entnahme wurden die Makrophagenüberstände für 10 Minuten bei 400 x g 

zentrifugiert, um sie von groben Zellbestandteilen zu reinigen. Für die Bestimmung 

der ChIL -6 Konzentration wurde der 7TD1-Test herangezogen. 

                                                 
48  Nucleotid-Sequenz des verwendeten GpC-ODNs, invertiertes Dinucleotid hervorgehoben. 
49  Freundlicherweise von S. Bauer, Institut für Med. Mikrobiologie, TU München zur Verfügung gestellt  
50  Nucleotid-Sequenz des verwendeten CpG-ODNs, CpG-Motiv unterstrichen. 
51  Nucleotid-Sequenz des verwendeten GpC-ODNs, invertiertes Dinucleotid hervorgehoben. 
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4. Ergebnisse 

4.1 Charakterisierung der biologischen Aktivität von 

rekombinantem ChIL-6 / Etablierung eines 

Nachweissystems  

4.1.1 Prokaryotisch exprimiertes rChIL-6 

Ein Standardtest für den Nachweis der biologischen Aktivität von Säuger IL -6 beruht 

auf der murinen Hybridomzelllinie 7TD1, deren Wachstum streng IL-6 abhängig ist 

(Van Snick, et al. 1986). Da bereits frühere Experimente gezeigt haben, dass das 

Serum von Eimeria tenella infizierten Hühnern einen Wachstumsfaktor besitzt, 

welcher die Proliferation von 7TD1 Zellen induziert (Lynagh, et al. 2000a), lag es 

nahe, diese Zelllinie dahingehend zu testen, ob sie für den Nachweis der 

biologischen Aktivität von rekombinantem Hühner IL -6 (rChIL -6) geeignet ist. 

In einem ersten Experiment wurde der Effekt von rekombinantem, in E.coli-

exprimiertem rChIL-6 mit dem von rekombinantem HuIL -6 (rHuIL -6) auf 7TD1 Zellen 

verglichen. Zur Quantifizierung der Zellproliferation wurde, an Stelle des radioaktiven 
3H-Thymidin-Tests, ein nicht radioaktives, kolorimetrisches Verfahren eingesetzt. 

Nach Zusatz des Tetrazolium-Derivates 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-

[(phenylamino)carbonyl]-2H-tetra-zoliumhydroxid (XTT) kommt es unter dem Einfluss 

mitochondrialer Succinat-Dehydrogenasen zur Bildung eines orange-farbenen 

Formazan-Derivates. Die Quantifizierung der enzymatischen Reaktion erfolgt 

photometrisch bei einer Wellenlänge von 450 nm. Somit lässt die Messung der 

Extinktion Aussagen über das Ausmaß der induzierten Proliferation zu. Abbildung 1 

zeigt, dass beide Cytokine die Proliferation der 7TD1 Zellen induzieren, die Dosis-

Wirkungs-Kurven beider Cytokine sind identisch. Beide Cytokine haben also 

offensichtlich die gleiche spezifische Aktivität. Die halb-maximale Zellproliferation 

wird bei einer Konzentration von etwa 60 pg/ml ChIL-6 erreicht.  
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Abb. 1: Effekt von rChIL-6 bzw. rHuIL-6 auf 7TD1 Zellen. 

Die Graphen zeigen die proliferative Antwort von 7TD1 Zellen auf die Stimulation mit rekombinantem 
humanen bzw. Hühner IL-6. Jeweils 1x104 7TD1 Zellen/Kavität wurden mit unterschiedlichen rChIL-6 
Konzentrationen für 96 h inkubiert. Die Daten repräsentieren die Ergebnisse von drei unabhängig 
voneinander durchgeführten Experimenten.  

Um eine einfache Produktion und Aufreinigung des rekombinanten ChIL-6 zu 

gewährleisten, wurde das Gen für ChIL-6 in den prokaryotischen Expressionsvektor 

pQE9 kloniert. Die Expression in E.coli ergab rChIL-6 mit einer am N-terminalen 

Ende gelegenen Extension, bestehend aus dem Peptid Met-Arg-Gly-Ser-(His)6-Gly-

Ser. Dieser „His-Tag“ genannte Anhang, diente zur vereinfachten Aufreinigung des 

rekombinanten Proteins mittels einer Nickel-Chelat Agarose Säule. Um 

auszuschließen, dass diese Methode der Proteinmodifikation bzw. der 

Proteinreinigung einen Effekt auf die 7TD1 Zellen oder die biologische Aktivität des 

Proteins hatte, wurde ein auf gleiche Weise exprimiertes, irrelevantes Protein, (His-) 

MxA, auf seinen proliferations-induzierenden Effekt hin untersucht. 

Ein weiterer Punkt der in diesem Experiment untersucht wurde, war die Frage, ob 

rChIL-6 auch nach einer Temperaturbehandlung (100°C für 20 Minuten) noch einen 

proliferations-induzierenden Effekt auf die 7TD1 Zellen hat. Wie Abbildung 2 zeigt, 

induzierten weder hitzebehandeltes rChIL-6 noch MxA die Proliferation von 7TD1 

Zellen. Die Methode der Proteinaufreinigung mittels His-Tag hatte demnach keinen 

Einfluss auf die biologische Aktivität des rChIL-6. Zum anderen hatte die mögliche 

LPS-Kontamination, mit der bei auf E.coli basierenden Expressionsystemen immer 
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gerechnet werden muss, keinen proliferations-induzierenden Effekt auf die 7TD1 

Zellen, da LPS hitzestabil ist. 

Abb. 2: MxA und hitzeinaktiviertes rChIL-6 induzieren keine Proliferation von 

7TD1 Zellen 

Die Graphen repräsentieren die proliferative Antwort von 7TD1 Zellen auf die Inkubation mit den 
angegebenen Reagenzien. 1x104 7TD1 Zellen/Kavität wurden jeweils mit MxA, erhitztem rChIL-6 
(100°C für 20 Minuten), nicht erhitztem rChIL-6 und rHuIL-6 in gleichen Konzentrationen inkubiert. 
Dargestellt sind die, bei einer Wellenlänge von 450 nm, gemessenen Extinktionen nach 96-stündiger 
Inkubation. 

Diese Experimente belegen, dass bakteriell exprimiertes, rekombinantes (His-)ChIL-6 

eine deutliche biologische Aktivität besitzt.  

4.1.2 Eukaryotisch exprimiertes rChIL-6 

Um rChIL-6 auch in eukaryotischen Zellsystemen zu exprimieren, wurden COS-7 

Zellen, eine Affennieren-Zelllinie, und LMH Zellen, eine Hühnerleberzellkarzinom-

zelllinie, mit dem, die gesamte Sequenz für ChIL -6 enthaltenden Konstrukt 

pcDNAI/ChIL -6-5-1 transient-transfiziert (Schneider, et al. 2001). Als Negativkontrolle 

diente die transiente Transfektion mit dem, die Sequenz für das irrelevante Protein 

K155 enthaltende Konstrukt, pcDNAI/K155 (Schneider, et al. 2001). Die 

Zellkulturüberstände wurden auf ihren ChIL-6 Gehalt getestet. Wie Abbildung 3 zeigt, 

induzierten die Überstände beider mit pcDNAI/IL-6-5-1 transfizierten Zelllinien noch 

in einer 160 fachen Verdünnung eine deutliche proliferative Antwort der 7TD1 Zellen. 
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Die Zellkulturüberstände der mit dem Kontrollplasmid transfizierten COS-7 bzw. LMH 

Zellen führten zu keiner Proliferation der 7TD1 Zellen.  

Abb.3: In COS-7 und LMH-Zellen exprimiertes rChIL-6 ist biologisch aktiv 

Die Graphen zeigen die proliferative Antwort von 7TD1 Zellen nach Inkubation mit Überständen von 
transient -transfizierten COS-7- bzw. LMH Zellen. Zur Transfektion wurden das, das Gen für ChIL-6 
enthaltende Plasmid pcDNAI/IL-6-5-1 bzw. das Kontrollplasmid pcDNAI/K155 verwendet. Es wurden 
1x104 7TD1 Zellen/Kavität mit verschiedenen Verdünnungsstufen der Überstände für 96 h inkubiert, 
die Messung der Extinktion erfolgte bei einer Wellenlänge von 450nm. Die Daten repräsentieren 
Mittelwerte eines 2-fach-Ansatzes. 

4.1.3 In vivo Aktivität von rChIL-6 

Für die Überprüfung der in vivo Aktivität von rChIL -6 wurde die Tatsache genutzt, 

dass bei Hühnern die intravenöse Applikation pro-inflammatorischer Cytokinen zu 

erhöhten Serumkonzentrationen von Corticosteron führt (Weining et al. 1998). 

8 Wochen alten Tieren wurden 10µg/kg KGW rChIL-6 (E.coli) in die Vena jugularis 

injiziert, die Tiere der Kontrollgruppe erhielten die gleiche Menge MxA (E.coli) über 

die gleiche Route. Danach erfolgte die Entnahme von Blutproben zu verschiedenen 

Zeitpunkten. Die Messung des Corticosteron Gehaltes in den Blutproben erfolgte 

nach der beschriebenen Methode (Lay and Wilson 2002). Abbildung 4 zeigt den 

zeitlichen Verlauf der Änderung der Kortikosteronkonzentrationen im Hühnerserum. 

Bei den mit rChIL-6 behandelten Tieren kommt es zu einem schnellen Anstieg der 

Kortikosteronkonzentration, mit einem Maximum 2 Stunden nach der Injektion. Die 

geringeren Kortikosteronwerte in den Seren der Kontrollgruppe belegen, dass 

rekombinantes ChIL-6 auch in vivo eine biologische Aktivität zeigt. Der leichte 
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Anstieg der Kortikosteronkonzentration bei den Tieren der Kontrollgruppe ist mit der, 

durch die Blutentnahmen bedingten Stressreaktion zu erklären. 

Abb. 4: In vivo Aktivität von prokaryotisch exprimiertem rChIL-6 

Jede Gruppe bestand aus drei weiblichen, acht Wochen alten Tieren der Linie Lohmann Selected 
Leghorn. Jedem Tier der Testgruppe wurden 10 µg/kg KGW rChIL-6 (E.coli) i.v. (V. jugularis) 
appliziert, die Tiere der Kontrollgruppe erhielten 10 µg/kg KGW MxA (E.coli) über die gleiche Route. 
Die Blutproben wurden vor der Injektion, 1, 2 und 4 Stunden nach der Injektion genommen und die 
Kortikosteronkonzentration im Serum bestimmt52. 

4.1.4 Entwicklung eines neutralisierenden Antiserums 

Zur Gewinnung eines spezifischen Antiserums (AS) gegen rChIL-6 wurden 2 

Kaninchen (#36 und #60) wiederholt mit dem in E.coli exprimierten rChIL-6 

immunisiert. Um sowohl die Spezifität als auch die neutralisierende Wirkung des 

polyklonalen Antiserums zu testen, wurde rChIL -6 (E.coli) mit dem Antiserum 

vorinkubiert und anschließend im 7TD1-Test auf seine proliferations-induzierende 

Wirkung getestet. Die Ergebnisse hinsichtlich der neutralisierenden Wirkung des 

Antiserums auf prokaryotisch exprimiertes rChIL-6 sind in Abbildung 5a dargestellt. 

Die Ergebnisse zeigen eine deutliche Dosis-Wirkungs-Beziehung. Die Aktivität von 

100 pg/ml rChIL-6 wurden von dem Antiserum des Kaninchens #36 bis zu einer 160 

fachen Verdünnung wirksam neutralisiert, wohingegen die Aktivität von 3 pg/ml 

                                                 
52  Die verwendeten Seren wurden freundlicherweise von der Firma Intervet, Freiburg zur Verfügung 

gestellt 
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rChIL-6 bis zur höchsten getesteten Verdünnung  des Antiserums (1:2560) noch 

neutralisiert wurden. Das Antiserum des Kaninchens #60 zeigte eine vergleichbare 

neutralisierende Aktivität (Daten nicht gezeigt). 

Abb. 5a: Neutralisierende Aktivität eines polyklonalen Antiserums gegenüber 

prokaryotisch exprimiertem rChIL-6 

Die Graphen zeigen die proliferative Antwort von 7TD1 Zellen nach gleichzeitiger Inkubation mit rChIL-
6 und dem Antiserum. Verschiedene Konzentrationen des ChIL-6 wurden mit dem Antiserum in 
steigender Verdünnung inkubiert, so repräsentiert jeder Graph eine konstante rChIL-6 Konzentration. 
rChIL-6 wurde mit Antiserum eine Stunde bei 37°C vorinkubiert, dann erfolgte Zugabe von 1x104 
7TD1 Zellen/Kavität. Nach 96-stündiger Inkubation erfolgte die Messung der Extinktion bei 450 nm. 

Als zusätzliche Kontrolle der spezifischen Neutralisation von rChIL -6 durch die 

Antiseren, wurde der Effekt der polyklonalen Antiseren auf die proliferations-

induzierende Wirkung von rChIL -6 auf die 7TD1 Zellen getestet und mit dem Effekt 

der Seren verglichen, die vor der Immunisierung der Kaninchen mit rChIL-6 

gewonnen worden waren (Präseren). Wie Abbildung 5 b zeigt, haben die Präseren 

keinen hemmenden Einfluss auf die rChIL -6 induzierte Proliferation. 
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Abb. 5b: Vergleich von Antiserum und Präserum auf die Wirkung von rChIL-6 

Die Graphen zeigen die proliferative Antwort der 7TD1 Zellen nach gleichzeitiger Inkubation mit rChIL-
6 und Antiserum #36  bzw. Präserum #36. Jeweils 0,125 ng/ml rChIL-6 wurde titriert und mit den 
konstant in einer 1 zu 200 Verdünnung verwendeten Seren für 1 Stunde bei 37°C vorinkubiert. Nach 
Zugabe von 1x104 7TD1 Zellen/Kavität erfolgte eine 96-stündige Kultur. Die Extinktion wurde bei einer 
Wellenlänge von 450 nm gemessen. 

Da die Antiseren gegen prokaryotisch exprimiertes rChIL -6 entwickelt wurden, sollte 

in einem weiteren Versuch geprüft werden, ob die Antiseren auch die biologische 

Aktivität von eukaryotisch exprimiertem rChIL-6 neutralisieren. Die Wirksamkeit 

gegen eukaryotisch exprimiertes rChIL-6 ist wegen der geplanten Nutzung der 

Antiseren für die Neutralisation von natürlichem ChIL-6 von besonderer Bedeutung. 

Das in COS-7 bzw. LMH Zellen exprimierte rChIL-6 wurde mit dem Antiserum 

vorinkubiert, und anschliessend im 7TD1-Test auf seine biologische Aktivität 

getestet. Die in Abbildung 5c dargestellten Ergebnisse zeigen eine deutliche Dosis-

Wirkungs-Beziehung. So neutralisierte das Antiserum (#36) in einer 1:200 

Verdünnung die biologische Aktivität des 1:100 verdünnten rChIL-6 (LMH bzw. COS-

7). Das Antiserum des Kaninchen #60 zeigte eine vergleichbare neutralisierende 

Aktivität (Daten nicht gezeigt). 
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Abb. 5c: Neutralisierende Aktivität des Antiserums gegenüber eukaryotisch 

exprimiertem rChIL-6 

Die Graphen repräsentieren die Titrationen von rChIL-6-haltigem LMH- bzw. COS-7 
Zellkulturüberstand. Das Antiserum wurde in einer konstanten 1 zu 200 Verdünnung mit dem rChIL-6 
für 1 Stunde vorinkubiert, bevor 1x104 7TD1 Zellen/Kavität zugegeben wurden. Nach 96-stündiger 
Inkubation erfolgte die Messung der Extinktion bei einer Wellenlänge von 450 nm. 
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4.2 Untersuchungen zum Toll-like Rezeptor (TLR)-System 

des Huhnes 

Auf der Basis der vorausgegangenen Versuche sollten im weiteren zwei Aspekte des 

Makrophagen-IL-6-Systems untersucht werden, die, wie beim Säugetier gezeigt, in 

einem funktionellen Zusammenhang stehen. Die Aktivierung von Makrophagen durch 

so genannte „pathogen-associated molecular pattern“ (PAMPs) wird durch 

Rezeptoren der TLR-Familie vermittelt und führt zur Transkription von Genen pro-

inflammatorischer Cytokine. In diesem Teil der Arbeit sollten daher primäre 

Hühnermakrophagen durch Inkubation mit verschiedenen PAMPs stimuliert werden. 

Als Nachweissystem der erfolgreichen Makrophagen-Aktivierung wurde die 

quantitative Analyse der ChIL-6 Sekretion genutzt. Die methodischen 

Voraussetzungen dafür wurden durch die Untersuchungen im ersten Teil der Arbeit 

geschaffen. 

4.2.1 Lipopolysaccharid gram- Bakterien induziert ChIL-6 in vitro 

In diesem Versuch wurde untersucht, ob der Ligand für den humanen bzw. murinen 

TLR 4, LPS von gram- Bakterien, auch Hühnermakrophagen stimuliert und  die 

Sekretion des pro-inflammatorischen Cytokins ChIL-6 induziert. Eine weitere Frage 

die untersucht wurde war, ob IFN-γ,  bei gleichzeitiger Inkubation mit LPS, einen 

Einfluss auf die Kinetik der ChIL -6 Sekretion hat.  

Dazu wurden Makrophagen nach der unter Punkt 3.3.6 beschriebenen Methode 

präpariert, und mit LPS (E.coli Serotyp O127, B8)53 (0,1µg/ml) und IFN- γ (1:2000) 

sowie einer Kombination aus beiden Präparationen inkubiert. Um den Verlauf der 

ChIL-6 Sekretion verfolgen zu können, wurden über einen Zeitraum von 48 Stunden 

zu verschiedenen Zeitpunkten Proben der Überstände genommen und im 7TD1-Test 

auf ihren ChIL -6 Gehalt getestet. Die in Abbildung 6a dargestellten Ergebnisse 

dokumentieren den zeitlichen Verlauf der Änderungen in den ChIL-6 Konzentrationen 

der Makrophagenüberstände. Als Ergebnis ist festzuhalten, dass sowohl LPS als 

auch IFN- γ eine deutliche Sekretion von ChIL-6 induzierten. Im Vergleich zu IFN- γ, 

kam es bei der Stimulation der Makrophagen mit LPS zu einer schnelleren und 

                                                 
53 Fa. Sigma, Deisenhofen 
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stärkeren Induktion der ChIL-6 Sekretion. So erreichte die ChIL-6 Konzentration im 

Makrophagenüberstand nach Stimulation mit LPS das Maximum nach 4 h, während 

die maximale ChIL-6 Konzentration bei Stimulation mit IFN- γ erst nach 8 h erreicht 

worden war. Interessanterweise hatten LPS und IFN- γ bei gleichzeitiger Applikation 

einen additiven Effekt, denn es kam zu einer potenteren Induktion der ChIL-6 

Sekretion. So lag die, nach 4 h erreichte, maximale ChIL-6 Konzentration höher als 

die, die nach Stimulation mit LPS alleine erreicht worden war. Als Negativkontrolle ist 

der Überstand von unstimulierten Makrophagen getestet worden. 

Abb. 6a: LPS gram- Bakterien bzw. IFN- γ  induziert ChIL-6 in primären 

Hühnermakrophagen 

Primäre Hühnermakrophagen wurden mit LPS in einer Endkonzentration von 0,1 µg/ml, mit IFN-γ in 
einer 1:2000 Verdünnung oder einer Kombination aus beiden Substanzen in den angegebenen 
Konzentrationen stimuliert. Die Überstände wurden zu den angegebenen Zeitpunkten gewonnen, 1:10 
verdünnt und mit 1x104 7TD1 Zellen/Kavität für 96 Stunden inkubiert, die Werte repräsentieren die bei 
450 nm gemessene Extinktion. 

Der Nachweis, dass es sich bei dem, von den durch LPS bzw. IFN- γ stimulierten 

Makrophagen, sezernierten Faktor tatsächlich um ChIL-6 handelt, wurde in einem 

anschließenden Neutralisationsversuch erbracht. Wie Abbildung 6b zeigt, führte die 

Vorinkubation der Makrophagenüberstände mit dem Antiserum zu einer vollständigen 

Neutralisation der proliferations-induzierenden Aktivität des Überstandes. 
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Abb. 6b: Neutralisation der biologischen Aktivität des nativen ChIL-6 

In diesem Versuch wurden die, 4 h nach der Stimulation der primären Hühnermakrophagen mit LPS 
oder einer Kombination von LPS und IFN-γ (s. Abb. 4a) gewonnenen Überstände titriert. Vor Zugabe 
von 1x104 7TD1 Zellen/Kavität erfolgte eine 60-minütige Vorinkubation mit dem neutralisierenden 
Antiserum in einer konstanten 1:200 Verdünnung. Die Extinktion wurde nach 96-stündiger Inkubation 
bei einer Wellenlänge von 450nm gemessen. 

4.2.2  Lipopolysaccharid gram- Bakterien induziert ChIL-6 in vivo 

Dieser Versuch diente der Überprüfung der Frage, ob LPS auch in vivo zur Induktion 

von ChIL-6 führt. Drei weiblichen, drei Monate alten LSL-Hühnern (Lohman selected 

leghorn) wurden jeweils 250 µg LPS intravenös (V. jugularis) appliziert. Um den 

zeitlichen Verlauf der Änderungen in den ChIL-6 Serumkonzentrationen verfolgen zu 

können, wurden über einen Zeitraum von 24 Stunden wiederholt Blutproben 

entnommen. Die daraus gewonnenen Seren54 wurden im 7TD1-Test auf ihren ChIL-6 

Gehalt untersucht. Wie aus Abbildung 7a hervorgeht, induzierte LPS auch in vivo 

ChIL-6. Es kam zu einem schnellen Anstieg der ChIL-6 Serumkonzentration, mit dem 

Erreichen eines Maximalwertes eine Stunde nach der Injektion des LPS. Dieser fiel 

nach einer mehrstündigen Plateauphase wieder ab, 24 Stunden nach der LPS-

Injektion wurden wieder Hintergrundwerte erreicht. 

                                                 
54  Die verwendeten Seren wurden freundlicherweise von Dr. Duda, Center of biological Research,  

     Szeged, Ungarn zur Verfügung gestellt. 
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Abb.7a: LPS gram- Bakterien induziert ChIL-6 in vivo  

Dargestellt ist die proliferative Antwort von 7TD1 Zellen auf die Inkubation mit Seren von LPS-
behandelten Hühnern. Das Serum wurde in einer 1:800 Verdünnung eingesetzt und nach Zugabe von 
1x104 7TD1 Zellen/Kavität erfolgte eine 96-stündige Inkubation. Die Messung der Extinktion erfolgte 
bei einer Wellenlänge von 450 nm. Die gezeigten Werte entsprechen den Mittelwerten der drei 
getesteten Seren. 

In Abbildung 7b ist die Wirkung des neutralisierenden Antiserums auf die 

proliferations-induzierende Wirkung des Hühnerserums auf 7TD1 Zellen gezeigt. Wie 

aus dem Graphen hervorgeht, ließ sich die proliferations-induzierende Aktivität durch 

das Antiserum neutralisieren.  

Abb. 7b: Neutralisation der biologischen Aktivität von ChIL-6 in Hühnerserum 

In diesem Versuch wurde die Serumprobe eines Ti eres, die 60 Minuten nach der LPS-Injektion 
gewonnen wurde, mit dem neutralisierendem Antiserum in einer konstanten 1:200 Verdünnung für 1 
Stunde vorinkubiert bevor 1x104 7TD1 Zellen/Kavität zugegeben wurden. Der Graph spiegelt die 
proliferative Antwort der 7TD1 Zellen nach 96-stündiger Inkubation wider. 
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4.2.3 Bakterielles Lipopeptid induziert ChIL-6 in vitro 

Aus dem Säugersystem ist bekannt, dass der TLR 2 bei der Erkennung von 

bakteriellen Lipoproteinen, unter anderem dem synthetischen bakteriellen Lipopeptid 

Pam3CysSerLys4 (Pam3Cys), einem Analogon zum N-Terminus von E.coli Lipoprotein, 

eine Rolle spielt (Birchler, et al. 2001). Dieser Versuch sollte überprüfen, ob 

Hühnermakrophagen auch bakterielle Lipopeptide erkennen und mit der Sekretion 

von Cytokinen reagieren. Dazu wurden primäre Hühnermakrophagen gewonnen und 

mit dem synthetischen, bakteriellen Lipopeptid Pam3Cys in unterschiedlichen 

Konzentrationen für 24 Stunden stimuliert.  

Die in Abbildung 8 dargestellten Ergebnisse zeigen eine deutliche Dosis-Wirkungs-

Beziehung bezüglich des sezernierten ChIL -6. So führten 4 µg/ml Pam3Cys zu einer 

potenteren Induktion der ChIL-6 Sekretion als 0,125 µg/ml Pam3Cys. 

 Die proliferative Antwort der 7TD1 Zellen auf die Inkubation mit dem 

Makrophagenüberstand ließ sich durch das neutralisierende, polyklonale Antiserum 

auf Hintergrundwerte reduzieren. Das zeigt, dass ChIL-6 für die Proliferation der 

7TD1 Zellen verantwortlich war. 

Abb. 8: Pam3Cys induziert ChIL-6 Sekretion in primären Hühnermakrophagen 

Primäre Hühnermakrophagen wurden mit unterschiedlichen Konzentrationen Pam3Cys (4 µg/ml bzw. 
0,125 µg/ml) für 24 Stunden inkubiert. Die Überstände wurden titriert, anschließend erfolgte die 
Zugabe von 1x104 7TD1 Zellen/Kavität. Als Negativkontrolle diente der Überstand unstimulierter 
Makrophagen. Der Überstand, der mit 4 µg/ml Pam3Cys stimulierten Makrophagen wurde mit dem 
neutralisierenden Antiserum, in einer konstanten 1:200 Verdünnung für 1 Stunde vorinkubiert. Die 
Graphen zeigen die gemessene Extinktion bei 450 nm nach 96-stündiger Inkubation.  
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4.2.4 Doppelsträngige RNA (dsRNA) induziert ChIL-6 in vitro 

Alexopoulou et al., zeigten, dass der mTLR 3 dsRNA detektiert, und sowohl die 

Aktivierung von NF-κB als auch die Sekretion von Cytokinen induziert (Alexopoulou, 

et al. 2001). In diesem Versuch sollte überprüft werden, ob dsRNA auch 

Hühnerzellen aktiviert. Dazu wurden primäre Hühnermakrophagen präpariert und mit 

unterschiedlichen Mengen einer synthetischen dsRNA, Polyinosinpolycytodylsäure 

(poly(I:C)) stimuliert. Die Überstände wurden nach 24 Stunden gewonnen und mit 

dem 7TD1-Test auf ihren ChIL-6 Gehalt überprüft. Wie die Ergebnisse in Abbildung 9 

zeigen, hatte die Stimulation der Makrophagen mit poly(I:C) eine Dosis-abhängige 

Wirkung auf die ChIL-6 Sekretion. Durch Inkubation des Makrophagenüberstandes 

mit dem neutralisierenden Antiserum ließ sich die induzierte Proliferation der 7TD1 

Zellen auf Hintergrundwerte reduzieren.  

Abb. 9: Poly (I:C) induziert ChIL-6 in primären Hühnermakrophagen  

Primäre Hühnermakrophagen wurden mit unterschiedlichen Konzentrationen (5 µg/ml bzw. 50 µg/ml) 
poly(I:C) stimuliert. Die Überstände wurden titriert dann erfolgte die Zugabe von 1x104 7TD1 
Zellen/Kavität. Als Negativkontrolle diente der Überstand unstimulierter Makrophagen. Der Überstand 
der mit 50 µg/ml poly(I:C) stimulierten Makrophagen, wurde mit dem neutralisierenden Antiserum in 
einer konstanten 1:200 Verdünnung für 1 Stunde vorinkubiert. Die Graphen zeigen die gemessene 
Extinktion bei 450 nm nach 96-stündiger Inkubation.  

4.2.5 Bakterielle DNA induziert ChIL-6 Sekretion in vitro 

Bakterielle DNA besitzt einen starken immunstimulatorischen Effekt, wie an 

Säugetierzellen gezeigt wurde (Tokunaga, et al. 1984). Um zu prüfen, ob bakterielle 
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DNA auch Hühnermakrophagen stimuliert, wurden primäre Hühnermakrophagen 

durch Zugabe von bakterieller DNA stimuliert. Um eine mögliche LPS-Kontamination 

auszuschließen, wurde die DNA vor Verwendung auf den Makrophagen, wiederholt 

präzipitiert, und durch diesen Reinigungschritt von LPS befreit. An die Reinigung 

durch wiederholte Präzipitation schloss sich das Scheren der DNA durch schnelles 

und wiederholtes Auf-und-Abpipettieren sowie ihre Denaturierung durch 20-minütiges 

Erhitzen auf 96°C an. Als zusätzliche Kontrolle wurde die bakterielle DNA noch durch 

Inkubation mit DNase I verdaut. Nach 24-stündiger Stimulation der primären 

Hühnermakrophagen mit der so behandelten bakteriellen DNA, wurden die 

Überstände mit dem 7TD1-Test auf ihren ChIL-6 Gehalt überprüft. Abbildung 10 

zeigt, dass die Inkubation mit bakterieller DNA zu einer deutlichen Stimulation der 

Makrophagen führte, der Verdau der DNA mit DNase I resultierte im vollständigem 

Verlust dieser Aktivität. Durch Inkubation des Makrophagenüberstandes mit dem 

neutralisierenden Antiserum wurde der proliferations-induzierende Effekt des 

Makrophagenüberstandes gehemmt. 

Abb. 10: Bakterielle DNA induziert ChIL-6 in primären Hühnermakrophagen 

Primäre Hühnermakrophagen wurden mit bakterieller DNA bzw. verdauter bakterieller DNA in einer 
Konzentration von jeweils 0,5 µg/ml für 24 Stunden stimuliert. Der Überstand wurde gewonnen und, 
vor Zugabe von 1x104 7TD1 Zellen/Kavität titriert. Der Überstand der mit unverdauter bakterieller DNA 
stimulierten Zellen wurde mit neutralisierendem Antiserum für 60 Minuten vorinkubiert. Als 
Negativkontrolle diente der Überstand nicht stimulierter Makrophagen. Die Extinktion wurde bei 450 
nm nach 96-stündiger Inkubation gemessen. 
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4.2.6 CpG-ODNs induzieren ChIL-6 Sekretion in vitro 

Zahlreiche Arbeiten an Säugetieren haben gezeigt, dass die immunstimulatorische 

Aktivität bakterieller DNA auf dem Vorhandensein unmethylierter CpG-Dinucleotide 

innerhalb bestimmter Basensequenzen, den so genannten „CpG-Motiven“ (Krieg, et 

al. 1995) beruht. Weiterhin verfügen synthetische Analoga, die CpG-ODNs, über eine 

vergleichbare immunstimulatorische Aktivität (Bauer, et al. 2001). Bei Mensch und 

Maus gilt es mittlerweile als gesichert, dass der TLR 9 für die spezies-spezifische 

Detektion der CpG-Motive verantwortlich ist, so stimuliert CpG-ODN 1668 optimal 

den mTLR 9, während der hTLR 9 am besten von CpG-ODN 2006 stimuliert wird 

(Bauer, et al. 2001). Die Inversion des CpG-Dinukleotids (GpC-ODN) terminiert den 

immunstimulatorischen Effekt. Um die Frage zu klären, ob Hühnermakrophagen nach 

der Stimulation mit CpG-ODNs ChIL-6 sezernieren, wurden primäre 

Hühnermakrophagen präpariert und mit den CpG-ODNs 1668 bzw. 2006 inkubiert. 

Als Negativkontrolle dienten die bei mTLR 9 bzw. hTLR 9 inaktiven GpC-ODNs 1668 

bzw. 2006. Die Inkubationszeit betrug 24 Stunden, die Überstände wurden im 7TD1-

Test auf ihren ChIL-6 Gehalt getestet. Wie Abbildung 11a zeigt, führte die Inkubation 

von Makrophagen mit den CpG-ODN 1668 bzw. 2006 zu einer deutlichen Induktion 

von ChIL-6. Die ChIL -6 Konzentration im Überstand der Makrophagen, die mit den 

GpC-ODNs 1668 bzw. 2006 stimuliert worden waren, lag im Bereich des 

Hintergrundes. Sie zeigten also keine immunstimulatorische Aktivität auf 

Hühnermakrophagen. Um nachzuweisen, dass die proliferations-induzierende 

Wirkung des Makrophagenüberstandes auf die 7TD1 Zellen IL -6 spezifisch ist, wurde 

untersucht, ob das neutralisierende Antiserum den proliferations-induzierenden Effekt 

des Makrophagenüberstandes inhibiert. Wie Abbildungen 11b und 11c zeigen, 

neutralisiert die Inkubation mit dem Antiserum die proliferations-induzierende Aktivität 

des Makrophagenüberstandes. 
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Abb. 11a: CpG-Motive induzieren ChIL-6 in primären Hühnermakrophagen 

Primäre Hühnermakrophagen wurden mit den CpG- bzw. GpC-ODNs 1668 bzw. 2006 in einer 
Konzentration von 1 pmol/ml für 24 Stunden stimuliert. Der Überstand wurde 1:100 verdünnt und mit 
1x104 7TD1 Zellen/Kavität für 96 Stunden inkubiert. Die Messung der Extinktion erfolgte bei einer 
Wellenlänge von 450nm. Die Graphen repräsentieren die Werte von 3 unabhängigen Versuchen. 

Abb. 11b        Abb. 11c 

Abb. 11b und 11c: Neutralisation des durch CpG-ODN induzierten ChIL-6 

Die Abbildungen 11b und 11c spiegeln beide die neutralisierende Wirkung auf das von CpG-ODN 
induzierte ChIL-6 wider. Abb. 11b repräsentiert die Induktion von ChIL-6 in Hühnermakrophagen nach 
24-stündiger Inkubation mit CpG 2006 in einer Konzentration von 1 pmol/ml. Abb. 11c repräsentiert 
die Induktion von ChIL-6 in Hühnermakrophagen nach 24-stündiger Inkubation mit CpG 1668 in einer 
Konzentration von 1 pmol/ml. Der Überstand wurde titriert und mit 1x104 7TD1 Zellen/Kavität für 96 
Stunden inkubiert. Das Antiserum wurde in einer konstanten 1:200 Verdünnung verwendet und, vor 
Zugabe von 1x104 7TD1 Zellen/Kavität, für 1 Stunde mit dem Überstand vorinkubiert. Nach 96-
stündiger Inkubation erfolgte die Messung der Extinktion bei einer Wellenlänge von 450nm.
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5. Diskussion 

Cytokine sind eine heterogene Gruppe regulatorischer Proteinen, die von fast allen 

Zellen des Organismus sezerniert werden (Thompson 1998). Aufgrund ihrer 

biologischen Aktivität kann man sie in die Gruppen der Interleukine, Interferone, 

Chemokine, Kolonie-stimulierender Faktoren und Wachstumsfaktoren einteilen 

(Thompson 1998). Ihre Wirkung wird durch Bindung an spezifische Rezeptoren 

vermittelt, was zur nachfolgenden Aktivierung von Signalkaskaden führt und in der 

Aktivierung bestimmter Zielgene mündet. Wichtige Eigenschaften von Cytokinen sind 

die Phänomene der Pleiotropie und Redundanz. Ersteres bedeutet, dass sie in der 

Lage sind auf ein oder mehreren Zelltypen gleiche oder unterschiedliche Wirkungen 

zu entfalten, letzteres bezieht sich auf die sich überschneidenden Wirkungsspektren 

und die gegenseitige Beeinflussung in ihrer Wirkung. 

Die intensive Untersuchung der Cytokine in den letzten Jahren brachte die sich 

bestätigende Erkenntnis, dass sie als Regulatoren des Immunsystems von 

essentieller Bedeutung für den Organismus sind. Mit der wachsenden Anzahl 

klonierter, und in ihrer Wirkung funktionell charakterisierter Cytokine rückte ihre 

potenzielle Nutzung als neue Therapeutika in den Fokus des Interesses. So finden 

Cytokine zur Zeit beim Säuger Anwendung in der Behandlung chronischer, 

mikrobieller Infektionen sowie bestimmter Krebserkrankungen, ferner wird ihr Nutzen 

als Adjuvanz evaluiert (Staeheli, et al. 2001). 

Aus denselben Gründen sind auch das Verständnis des Immunsystems und die 

Verfügbarkeit rekombinanter Cytokine beim Vogel von großer Bedeutung. Doch 

gestaltet sich die Suche nach Homologen zu den aus dem Säuger bekannten 

Cytokinen aufgrund der im Allgemeinen geringen Sequenzhomologie als schwierig. 

Das erklärt die, im Vergleich zum Säuger, geringe Anzahl klonierter und funktionell 

charakterisierter Cytokine beim Vogel (Tabelle 2). Die generell geringe 

Sequenzhomologie macht es fast unmöglich Kreuzhybridisierungstechniken, 

degenerierte Oligonukleotide oder Antikörper für die Klonierung neuer Cytokine zu 

nutzen. Interessanterweise sind bis heute nur aviäre TH1 Cytokine kloniert worden. 

Die TH1-(T-helper cell type 1) Zellen gehören mit den TH2 (T-helper cell type 2) 

Zellen zu den CD4+ T-Zellen (Abbas, et al. 1996). Die Einteilung in TH1 und TH2-

Zellen beruht auf den Cytokinen, die vom jeweiligen Zelltyp produziert werden bzw. 
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den Cytokinen, die die Differenzierung von CD4+ T-Zellen in den jeweiligen Zelltyp 

induzieren. TH1 Cytokine, wie z.B. IFN-γ, IL-2 und IL-18 sind vor allem an der 

Ausbildung einer zellvermittelten Immunantwort beteiligt, TH2 Cytokine, wie z.B. IL-4, 

IL-5 und IL-13 vermitteln hingegen eine vorwiegend humorale Immunantwort. Als 

Vertreter der TH1 Cytokine sind beim Huhn ChIL-2, ChIFN-γ und ChIL-18 kloniert 

worden, womit das Vorhandensein eines TH1-Systems beim Huhn als gesichert gilt. 

Klassische Vertreter der TH2 Cytokine wie IL-4, IL -5 und IL -13 sind dagegen noch 

nicht kloniert worden. Einige Autoren zählen allerdings das von Schneider et al. 

(Schneider, et al. 2001) klonierte ChIL -6, aufgrund seiner B-Zell aktivierenden 

Eigenschaften, zu den TH2 Cytokinen (Hilton, et al. 2002). Diese Zuordnung ist 

allerdings strittig, denn als pro-inflammatorisches Cytokin kann IL -6 auch den TH1 

Cytokinen zugeordnet werden. Daher stellt das Fehlen von klassischen Vertretern 

der TH2 Cytokine die Existenz eines TH2-Systems bei Vögeln in Frage. 

5.1 Klonierung von rChIL-6 

Durch den Einsatz einer alternativen Strategie, der differenziellen 

Genexpressionsanalyse ist es Schneider et al. gelungen ChIL-6 zu klonieren 

(Schneider, et al. 2001). Die Autoren benutzten eine „suppression subtractive 

hybridization“ (SSH) genannte Technik, die es ermöglichte unterschiedlich 

exprimierte Gene in stimulierten bzw. nicht stimulierten Milzzellen zu identifizieren. 

Der SSH-Ansatz war mit der Isolierung eines cDNA-Klons, der Homologien zum IL-6 
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Tabelle 2
Übersicht über klonierte aviäre Cytokine (nach Hilton et al. 2002)
H: Huhn; E: Ente; P: Pute; F: Fasan; W: Wachtel; PH: Perlhuhn
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der Säugetiere aufwies, erfolgreich. Weitere Sequenzinformationen wurden durch die 

Identifikation eines cDNA-Fragmentes in einer Bursa-EST-Datenbank, dessen 

Sequenz sich mit dem des SSH-Klons überschnitt, gewonnen. Diese Informationen 

ermöglichten die Isolierung eins ChIL-6-cDNA-Klons aus einer HD11-cDNA Bank, 

der den gesamten offenen Leserahmen (ORF) umfasste. 

Rekombinantes ChIL-6 wurde mittels zweier verschiedener Methoden exprimiert. 

Zum einen wurden E.coli Bakterien mit dem prokaryotischen Expressions-Vektor 

pQE9, in den das Gen für ChIL-6 kloniert worden war, transformiert. Die Expression 

dieses Plasmids ergab ein Polypeptid mit 6 Histidin-Resten am aminoterminalen 

Ende, dem „His-Tag“, gefolgt von der Sequenz für reifes ChIL -6, beginnend mit dem 

Prolin-Rest an Position 48. Das Einfügen des „His-Tag“ ermöglichte eine einfache 

und effiziente Aufreinigung von rChIL -6 aus dem E.coli-Lysat mittels 

Affinitätschromatographie über eine Ni-Chelat Agarose Säule. So hatte das 

aufgereinigte, nicht glykolysierte His-ChIL -6 einen Reinheitsgrad von mehr als 90 % 

(Schneider, et al. 2001). Zum anderen wurde rChIL-6 auch in eukaryotischen Zellen 

exprimiert, so wurden LMH und COS-7 Zellen mit dem Konstrukt pcDNAI-6-5-1 

transfiziert, was zur Sekretion von rChIL -6 in die Zellüberstände führte. Es stand also 

rekombinantes ChIL -6 aus pro- und eukaryotischen Zellen zur Verfügung. 

Für die weiteren Arbeiten galt es zunächst einen Nachweistest für ChIL-6 zu 

etablieren. 

5.2 Etablierung eines Nachweistests für ChIL-6 

Ein Standardtest für den Nachweis von IL-6 im Säugersystem macht sich die 

Wirkung von IL -6 als Wachstumsfaktor für Hybridome zunutze. Durch die Etablierung 

von Zelllinien, wie zum Beispiel der Linien 7TD1 (Van Snick, et al. 1986) und B9 

(Lansdorp, et al. 1986), deren Wachstum streng IL -6 abhängig ist, war es möglich 

vom Ausmaß der induzierten Proliferation auf den Gehalt von IL -6 in der Probe zu 

schließen. Da beschrieben wurde, dass das Serum von Eimeria infizierten Hühnern 

die Proliferation von 7TD1 Zellen induziert (Lynagh, et al. 2000a), lag es nahe zu 

überprüfen, ob dieses, für den Nachweis von Säuger IL -6 etablierte Testsystem, 

auch für den Nachweis von Hühner IL-6 geeignet ist. 

Wie unter den Punkten 4.1.1 und 4.1.2 beschrieben wurde, haben sowohl pro- als 

auch eukaryotisch exprimiertes ChIL-6 einen proliferations-induzierenden Effekt auf 
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die 7TD1-Zellen. Ein weiteres Beispiel für die speziesübergreifende Wirkung von 

ChIL-6 kommt von Rath et al., die zeigen konnten, dass Aszites von Hühnern eine IL-

6 ähnliche Wirkung auf die murine Zelllinie B9 hat (Rath, et al. 1995). Dass das 

Überschreiten der Speziesgrenzen auch in die andere Richtung funktioniert, belegen 

die Ergebnisse von Samad et al., die zeigen konnten, dass rHuIL-6 in Hühner 

Hepatozyten die Produktion von Plasma Fibronectin induziert (Samad, et al. 1993). 

Eine mögliche Erklärung für die geringe Spezies-Spezifität von IL -6 könnte die 

bereits besprochene, relativ hohe Sequenzhomologie (~50%) zwischen dem IL -6 von 

Huhn, Mensch und Ratte sein. So ist eine ähnliche Tertiärstruktur des Polypeptids, 

bedingt durch das Vorhandensein von, bei Säuger- und Hühner IL -6 vorkommenden, 

hochkonservierten Strukturen im zentralen Abschnitt des Moleküls denkbar. Dort 

liegen, sowohl bei Säuger IL -6 als auch bei seinem Hühner Homolog neben anderen 

Sequenzmotiven, drei Cysteinreste und ein Tryptophanrest, welche an der Bildung 

der Tertiärstruktur beteiligt sind. 

Die oben genannten Ergebnisse zeigen weiterhin, dass die, durch das 

prokaryotische Expressionsystem bedingten Proteinmodifikationen, wie das Einfügen 

eines His-Tag am N-terminalen Ende des ChIL-6 sowie die fehlende Glykolysierung, 

keinen Einfluss auf die proliferations-induzierende Wirkung des rekombinanten ChIL-

6 auf 7TD1 Zellen haben. 

Ein weiterer wichtiger Aspekt zur Erhöhung der Spezifiät des Nachweistests ist die 

Herstellung eines spezifischen und neutralisierenden Antiserums. Für die 

Immunisierung der Kaninchen wurde in E.coli exprimiertes rChIL -6 verwendet, da 

dieses gegenüber den Überständen transfizierter eukaryotischer Zellen den Vorteil 

hat, dass das Protein in der Regel höher konzentriert und in reinerer Form vorliegt. 

Die Zellüberstände transfizierter eukaryotischer Zellen enthalten, neben dem 

Antigen, durch den Zusatz von fötalem Kälberserum zum Zellkulturmedium, noch 

eine Vielzahl weiterer immunogen wirkender Proteine. Durch die Immunisierung der 

Kaninchen mit rChIL-6 (E.coli) ist es wie unter Punkt 4.1.4 dargestellt, gelungen ein 

polyklonales Antiserum zu entwickeln, dass sowohl pro- als auch eukaryotisch 

exprimiertes rChIL-6 sowie natürliches ChIL-6 neutralisiert.  
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5.3 Nachweis der biologischen Aktivität von rChIL-6 in vivo 

IL-6 ist ein Cytokin mit einem sehr breiten Spektrum biologischer Aktivitäten. So 

spielt IL-6, unter anderem als zentraler Regulator der Akute-Phase-Reaktion und als 

potenter Induktor von Fieber, eine wichtige Rolle bei der Ausbildung einer 

Entzündungsreaktion. Des Weiteren ist IL-6, zusammen mit anderen pro-

inflammatorischen Cytokinen wie IL-1ß und TNF-α, in der Lage über die 

Beeinflussung der Hypothalamus-Hypophysen-Nebennierenrinden Achse, die 

Sekretion von Glukokortikoiden zu induzieren. Die Erhöhung der 

Glukokortikoidkonzentration im Serum ist aus mehreren Gründen von Bedeutung. 

Zum einen potenzieren Glukokortikoide die Wirkung von IL-6 auf die Akute-Phase-

Reaktion, zum anderen hemmen Glukokortikoide die Synthese pro-inflammatorischer 

Cytokine in Monozyten/Makrophagen und induzieren die Produktion anderer 

Cytokine wie IL -10 und IL-4 sowie ihrer Rezeptoren. Die Bedeutung der 

modulatorischen Wirkung der Glukokortikoide auf die Entzündungsreaktion und 

Cytokinproduktion wird bei Versuchen mit adenoektomierten Nagern deutlich. Diese 

Tiere zeigten eine erhöhte Letalität nach Injektionen von LPS, IL -1ß und TNF-α. Bei 

einer regelmäßigen Substitution von Glukokortikoiden überlebten sie. Außerdem 

wiesen adenoektomierte Tiere deutlich höhere Serumkonzentrationen von IL-1ß und 

TNF-α nach LPS-Injektionen auf. (Akira, et al. 1993, Bethin, et al. 2000, Schooltink, 

et al. 1992, Snyers, et al. 1990). 

Auch beim Huhn scheinen pro-inflammatorische Cytokine in der Lage zu sein, die 

Hypothalamus-Hypophysen-Nebennierenrinden Achse zu beeinflussen und die 

Freisetzung von Glukokortikoiden zu induzieren. So konnten Weining et al. zeigen, 

dass es nach Injektion von rChIL-1ß zu erhöhten Kortikosteronkonzentrationen im 

Serum kommt (Weining, et al. 1998). Deshalb lag es nahe, eine Erhöhung der 

Kortikosteronkonzentrationen im Serum nach der Injektion von rChIL -6 als einen 

Messparameter für die biologische Aktivität von rChIL-6 in vivo zu betrachten. Wie in 

Punkt 4.1.3 dargestellt, induziert rChIL-6 Kortikosteron in vivo, allerdings weniger 

stark als rChIL -1ß (Weining, et al. 1998). Das stimmt mit Beobachtungen bei Ratten 

überein, bei denen IL-1ß ebenfalls einen stärkeren Effekt auf die Hypothalamus-

Hypophysen-Nebennierenrinden Achse hat, als IL -6 (van der Meer, et al. 1996). 
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Somit stand biologisch aktives rChIL -6 von hoher Reinheit in größeren Mengen für 

weitere Untersuchungen des IL-6 Systems der Hühner zur Verfügung.  

5.4 Untersuchungen zum TLR-System der Hühner 

Im zweiten Teil der vorliegenden Arbeit wurden erste Untersuchungen zum TLR-

System der Hühner durchgeführt. Aus dem Säugersystem ist bekannt, dass es nach 

Bindung der Liganden an die Toll-like Rezeptoren zur Aktivierung der betroffenen 

Zellen kommt. Bei Makrophagen induziert die Aktivierung der TLRs unter anderem 

die Sekretion pro-inflammatorischer Cytokine. Der Grundgedanke der durchgeführten 

Experimente war, zu überprüfen, ob die aus dem Säugersystem bekannten PAMPs 

auch zur Aktivierung von Hühnermakrophagen führen, um so Rückschlüsse auf die 

Existenz eines TLR-Systems beim Huhn ziehen zu können. 

Von Bedeutung ist hierfür zum einen die Methode der Makrophagen-Isolierung. Die 

bei der Maus etablierte Methode zur Isolierung ruhender Makrophagen aus der 

Peritonealhöhle führt beim Huhn, bedingt durch die anatomischen Besonderheiten 

der Leibeshöhle, nur zu minimalen Zellausbeuten (Rose and Hesketh 1974). Deshalb 

können aus der Leibeshöhle bei dieser Spezies nur unter Zuhilfenahme von 

Substanzen, wie z.B. Sephadex, genügend Makrophagen gewonnen werden (Sabet, 

et al. 1977, Trembicki, et al. 1984). Diese Methode hat den Nachteil, dass die 

Makrophagen, durch die Art der Isolierung, schon aktiviert vorliegen. Da in der 

vorliegenden Studie aber die Aktivierung von primären Hühnermakrophagen 

untersucht werden sollte, wurden diese aus peripheren Blutleukozyten über 

Adhärenz auf Petrischalen isoliert. Diese, an Peck et al. (Peck, et al. 1982) 

angelehnte, Methode hat den Vorteil, dass die Makrophagen nicht aktiviert vorliegen. 

Neben der Wahl der Makrophagenpräparation spielt auch die Wahl des 

Aktivierungsparameters für die geplanten Studien eine Rolle. Für Untersuchungen an 

Hühnermakrophagen sind bereits verschiedene Parameter herangezogen worden. 

So wurde das vermehrte Auftreten von Wasserstoffperoxyd (Dijkmans, et al. 1990) 

oder die Stimulation der Stickstoffmonoxid-Synthese (Sung, et al. 1991) genutzt. In 

der vorliegenden Arbeit wurde die Sekretion von ChIL-6 als Parameter für eine 

erfolgte Aktivierung von Hühnermakrophagen durch die TLRs nach Stimulation mit 

PAMPs genutzt. 
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ChIL-6 war für diesen Zweck aus mehreren Gründen gut geeignet. Zum einen ist 

vom Säuger bekannt, dass die Aktivierung von Makrophagen durch PAMPs über die 

Rezeptoren der Toll-like Rezeptorfamilie vermittelt wird. Dies führt bei den heute 

bekannten TLRs unter anderem zur Induktion der so genannten „core TLR 

response“. Darunter versteht man die induzierte Expression eines immer gleichen 

Repertoires an Genen, darunter die Gene für die pro-inflammatorischen Cytokine IL-

1ß, IL-6 und TNF und die der co-stimulatorischen Moleküle CD80/86 (Hirschfeld, et 

al. 2001, Pulendran, et al. 2001, Re and Strominger 2001). Von wesentlicher 

Bedeutung dafür ist die Aktivierung einer MyD88-abhängigen Signalkaskade, die in 

der Aktivierung des Transkriptionsfaktors NF-κB mündet (O'Neill 2002), der 

zumindest für die LPS-vermittelte Induktion der IL-6 Sekretion essentiell ist 

(Dendorfer, et al. 1994). Zum anderen konnten im ersten Teil der vorliegenden Arbeit 

geeignete Werkzeuge wie der ChIL -6 Nachweistest und ein polyklonales ChIL-6 

Antiserum, welches auch natürliches ChIL-6 neutralisiert, entwickelt werden. Des 

Weiteren war schon länger bekannt, dass die Inkubation von Hühnermakrophagen 

mit LPS zu einer Aktivierung der Makrophagen führt. So konnten Amrani et al. 

(Amrani, et al. 1986) zeigen, dass die Stimulation von Hühnermakrophagen mit LPS 

die Sekretion eines, damals als „hepatocyte stimulating factor“ (HSF) bezeichneten, 

heute als ChIL -6 identifizierten, Faktors induziert. 

5.4.1 Funktionelle Charakterisierung des TLR-Systems in vitro 

Grundsätzlich ist als Ergebnis der vorliegenden Studie festzuhalten, dass die in vitro 

Stimulation von primären Hühnermakrophagen mit einigen, aus dem Säugersystem 

beschriebenen PAMPs zu einer Aktivierung der primären Hühnermakrophagen 

führte. Somit kann das Vorhandensein funktioneller Homologe zu den, aus dem 

Säugersystem bekannten, Toll-like Rezeptoren 2,3,4 und 9 postuliert werden. 

Die Makrophagen-aktivierende Wirkung von LPS ist schon von mehreren Autoren 

beschrieben worden (Qureshi, et al. 2000). Wie in Punkt 4.3.1 dargestellt, konnte 

bestätigt werden, dass die Stimulation von primären Hühnermakrophagen mit LPS zu 

einer massiven Sekretion von ChIL-6 führt. Dass auch beim Huhn ein TLR eine 

zentrale Rolle bei der Erkennung von LPS spielt, wurde mit der erst kürzlich 

gelungenen Klonierung der ChTLRs deutlich (Fukui, et al. 2001). Den Autoren gelang 

die Identifikation und erfolgreiche Klonierung zweier Typen von TLRs, die sie ChTLR 

Typ 1 und Typ 2 nannten. Die beiden TLRs weisen untereinander eine über 80 %ige 
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Homologie auf und besitzen die höchste Homologie zum humanen TLR 2 (45 % bzw. 

46 %). Die Autoren konnten zeigen, dass beide ChTLRs die Anwesenheit von MALP-

2 erkennen. Des Weiteren ist der ChTLR Typ  2 nach Kotransfektion mit humanem 

MD-2 oder CD14 in der Lage, LPS (E.coli) zu erkennen. Daraus folgerten die 

Autoren, dass der von ihnen klonierte ChTLR Typ 2 zwei PAMPs erkennt, die beim 

Säuger von zwei verschiedenen Rezeptoren, TLR 2 und TLR 4, erkannt werden. 

Allerdings existieren Daten, dass der humane TLR 2 nach Kotransfektion mit CD14 

und MD-2 die Anwesenheit von hochreinem LPS signalisieren kann (Dziarski, et al. 

2001). Weitere Hinweise, auf die Beteiligung eines TLR bei der Erkennung von LPS 

beim Huhn, wurden kürzlich von Dil et al. veröffentlicht (Dil and Qureshi 2002). Die 

Autoren konnten einen Zusammenhang zwischen der Anzahl an exprimierten TLR 4 

Rezeptoren auf Hühnermakrophagen und der Stärke der sich entwickelnden 

Makrophagen-Antwort zeigen. So war die absolute Zahl an exprimierten TLR 4 bei 

Makrophagen der hochgradig LPS-empfindlichen Hühnerlinie Cornell K-Strain 

grösser als bei Makrophagen der LPS-unempfindlichen Hühnerlinie Cornell GB2 (Dil 

and Qureshi 2002). Allerdings ist zu sagen, dass die Autoren ein polyklonales 

Antiserum gegen den humanen TLR 4 zur Detektion eines „Chicken TLR 4“ auf 

Hühnermakrophagen verwendet haben, den betreffenden Rezeptor allerdings nicht 

weiter charakterisierten. Dieser Umstand lässt die Möglichkeit von unerwarteten 

Kreuzreaktionen des Antiserums mit anderen, auf Hühnermakrophagen vorhandenen 

Strukturen offen. Aus Punkt 4.3.1 geht weiterhin hervor, dass die gleichzeitige 

Stimulation primärer Hühnermakrophagen mit IFN-γ und LPS zu einer stärkeren 

ChIL-6 Sekretion führte. Dieser synergistische Effekt von IFN- γ und LPS bezüglich 

der Aktivierung von Makrophagen ist bei Säugern (Adams and Hamilton 1984, 

Nathan, et al. 1984) und Hühnern schon länger bekannt (Ding, et al. 1988, Xie, et al. 

1992). Allerdings war der zugrunde liegende Mechanismus lange unbekannt. Eine 

mögliche Erklärung dieses Phänomens lieferten Bosisio et al., mit der Entdeckung, 

dass IFN- γ in humanen Makrophagen die Expression von TLR 4, dem für die 

Signalvermittlung essentiellen Element des LPS-Rezeptorkomplexes, stimuliert 

(Bosisio, et al. 2002). Ferner konnten die Autoren auch die vermehrte Expression 

weiterer, an der Signaltransduktion durch TLR 4 beteiligten Elemente, wie das 

Protein MD-2 oder das Adaptermolekül MyD88 beobachten. 

Die immunstimulatorischen Eigenschaften des Lipopeptids Pam3Cys (Wiesmuller, et 

al. 1983), einem Homolog zum N-terminalem Ende des E.coli Lipoproteins, wurde 
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von mehreren Autoren beschrieben (Bessler, et al. 1985, Bessler and Jung 1992, 

Scheuer, et al. 1986). Der genaue Wirkmechanismus konnte lange nicht geklärt 

werden. Für das Säugersystem änderte sich das mit der Entdeckung, dass Pam3Cys 

über die TLR 1 und TLR 2 zur Aktivierung von Zellen führt (Aliprantis, et al. 1999, 

Takeuchi, et al. 2002). Es gab mehrere Hinweise darauf, dass Pam3Cys auch beim 

Huhn seine immunstimulatorische Wirkung über einen TLR vermittelt. Zum einen ist 

der von Fukui et al. klonierte ChTLR Typ 2 (Fukui, et al. 2001) in der Lage, nach 

Bindung von MALP-2, die Aktivierung von NF-κB zu induzieren. Interessanterweise 

scheint der ChTLR Typ 2 in der Lage zu sein, MALP-2 ohne die Kooperation eines 

weiteren TLR zu erkennen, was im Gegensatz zu den beim Säuger bekannten 

Gegebenheiten steht (Takeuchi, et al. 2001). Zum anderen führte die Verwendung 

von Pam3Cys im Hühnersystem zu einer gesteigerten Immunantwort gegen 

Testantigene (Erhard, et al. 2000). Die beobachtete Adjuvanzwirkung des Pam3Cys 

ist sehr wahrscheinlich auf die Aktivierung von antigen-präsentierenden Zellen und 

der damit verbundenen Aktivierung der adaptiven Immunantwort  zurückzuführen. 

Dass Pam3Cys tatsächlich zur Aktivierung von primären Hühnermakrophagen in der 

Lage ist, konnte in der vorliegenden Arbeit erstmalig gezeigt werden: Wie aus Punkt 

4.3.3 ersichtlich, ist Pam3Cys ein potenter Induktor der ChIL-6 Sekretion in primären 

Hühnermakrophagen. Eine mögliche Erklärung für den von Erhard et al. 

beschriebenen synergistischen Effekt von Pam3Cys und IFN-γ auf das Ausmaß der 

sich entwickelnden humoralen Immunantwort, könnte die Beobachtung von Mita et 

al. (Mita, et al. 2001) sein. In ihren Experimenten konnten die Autoren zeigen, dass 

IFN-γ  die vermehrte Expression von TLR 2 auf humanen peripheren Blutmonozyten 

induziert. 

Doppelsträngige RNA ist ein mit viralen Infektionen assoziiertes molekulares Muster 

(Jacobs and Langland 1996). Bis heute sind keine Arbeiten über die Wirkungen von 

Polyinosinpolycytodylsäure (poly (I:C), einer synthetischen doppelsträngige RNA 

(dsRNA) auf Hühnermakrophagen veröffentlicht worden. Aus dem Säugersystem ist 

allerdings bekannt, dass dsRNA über den TLR 3 zur Aktivierung von Makrophagen 

führt (Alexopoulou, et al. 2001). In der vorliegenden Arbeit konnte gezeigt werden, 

dass poly(I:C) auch zur Aktivierung von primären Hühnermakrophagen führt. Da es 

sich bei poly(I:C) um synthetisches Material handelt, kann eine LPS-Kontamination 

ausgeschlossen werden. Das deutet auf das Vorhandensein eines eigenen 

Rezeptors für dsRNA auf den Makrophagen hin.  
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Die immunstimulatorischen Eigenschaften von bakterieller DNA sind schon seit der 

Arbeit von Tokunaga et al. (Tokunaga, et al. 1984) bekannt. Der genaue 

Mechanismus konnte aber erst durch die Entdeckung der CpG-Motive (Krieg, et al. 

1995) und der essentiellen Bedeutung des TLR 9 für die Wirkung der CpG-Motive 

(Bauer, et al. 2001, Hemmi, et al. 2000) erklärt werden. Interessanterweise erfolgt die 

Erkennung von CpG-Motiven spezies-spezifisch (Bauer, et al. 2001). So berichteten 

Bauer et al., dass für die halb-maximale Aktivierung von Zellen, die mit dem hTLR 9 

transfiziert worden waren, 400 nM des ODNs 2006 aber mehr als 10000 nM des 

ODNs 1668 nötig waren. Umgekehrt waren für die halb-maximale Aktivierung von 

Zellen, die mit dem murinen TLR 9 transfiziert worden waren, 70 nM des ODNs 1668, 

aber mehr als 10000 nM des ODNs 2006 vonnöten (Bauer, et al. 2001). Die 

Ergebnisse der vorliegenden Arbeit lassen darauf schließen, dass 

Hühnermakrophagen die Anwesenheit bakterieller DNA anhand von CpG-Motiven 

erkennen. So konnte unter Punkt 4.3.5 gezeigt werden, dass primäre 

Hühnermakrophagen, wie ihre humanen Gegenstücke (Bauer, et al. 1999), durch 

bakterielle DNA aktiviert werden. Aus der dort dargestellten Abbildung geht auch 

hervor, dass der Verdau der bakteriellen DNA mit DNase I diesen stimula torischen 

Effekt beendet. Zum anderen sind ODNs in der Lage primäre Hühnermakrophagen 

zu aktivieren und die ChIL-6 Sekretion zu induzieren, wie unter Punkt 4.3.6 gezeigt. 

Bemerkenswert daran ist, dass die Hühnermakrophagen auf die Stimulation mit dem, 

für den murinen TLR 9 optimierten CpG-Motiv GACGTT (ODN 1668), gleich stark 

reagieren, wie auf die Stimulation mit dem für den humanen TLR 9 optimierten CpG-

Motiv GTCGTT (ODN 2006). Weitere Hinweise auf die Fähigkeit von Hühnerzellen 

CpG-Motive zu detektieren lieferte die Beobachtung, dass CpG-ODN in der Lage 

sind, die Proliferation von Hühner B-Zellen zu stimulieren (Rankin, et al. 2001). 

Interessanterweise berichteten die Autoren, dass das ODN 2135 (Sequenz: 

TCGTCGTTTGTCGTTTTGTCGTT) den potentesten Effekt auf die B-Zell Stimulation 

hat. Die proliferations-induzierende Wirkung des ODN 2006 war vergleichbar mit der 

anderer getesteter ODN, die alle das immunstimulatorische Motiv GACGTT besaßen, 

das auch bei ODN 1668 vorkommt. 

5.4.2 Funktionelle Charakterisierung des TLR-Systems in vivo 

Für einige der getesteten PAMPs gibt es Hinweise, dass sie auch in vivo aktiv sind. 

Die systemische Applikation von LPS verursacht entzündliche Reaktionen und 
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„sickness-behaviour“ in Säugern (Verdrengh and Tarkowski 1997) und in Hühnern 

(Xie, et al. 2000). Beim Säuger ist es eine allgemein akzeptierte Tatsache, dass unter 

anderem die, durch LPS induzierte Sekretion der pro-inflammatorischen Cytokine IL-

1ß und IL-6 eine wichtige Rolle dabei spielt (Bluthe, et al. 2000). Beim Säuger ist 

gezeigt worden, dass der TLR 4 in vivo von essentieller Bedeutung für die 

Erkennung von LPS ist. Bei zwei LPS-unempfindlichen Mäuse-Linien, C3H/HeJ und 

C57BL10/ScCr, konnte die beobachtete LPS-Toleranz mit Mutationen im TLR 4-Gen 

erklärt werden (Poltorak, et al. 1998, Qureshi, et al. 1999). Daneben waren TLR 4-/- 

Mäuse auch LPS unempfindlich (Hoshino, et al. 1999). In der vorliegenden Arbeit 

konnten die Beobachtungen von Nakamura et al. sowie Xie et al. (Nakamura, et al. 

1998, Xie, et al. 2000) bestätigt werden, durch die gezeigt wurde, dass eine LPS-

Injektion zu einem schnellen Anstieg der IL-6 Serumkonzentration führte. Des 

Weiteren wurde in der Arbeit von Weining et al. (Weining, et al. 1998) gezeigt, dass 

LPS auch die IL-1ß Sekretion in Hühnerzellen induziert. Diese Befunde zusammen 

mit der Tatsache, dass ein ChTLR kloniert worden ist, der in vitro durch LPS aktiviert 

wird (Fukui, et al. 2001), deuten auch im Huhn auf eine Beteiligung des TLR-Systems 

bei der Detektion von LPS in vivo hin. 

Hinweise, dass Pam3Cys beim Huhn auch in vivo zu einer Aktivierung des 

Immunsystems führt, brachte die Beobachtung von Erhard et al., die zeigen konnten, 

dass die Verwendung von Pam3Cys als Adjuvanz zu einer deutlich gesteigerten 

humoralen Immunantwort gegen rekombinantes bovines Somatotropin und humanes 

Immunglobulin G führte (Erhard, et al. 2000). Diese Beobachtung, in Zusammenhang 

mit der unter Punkt 4.3.3 beschriebenen Wirkung von Pam3Cys auf 

Hühnermakrophagen in vitro, macht eine Beteiligung des TLR-Systems bei der 

Wirkvermittlung von Pam3Cys im Huhn wahrscheinlich. 

Bei Imidazoquinolinen handelt es sich um eine Klasse von Immunstimulanzien, die 

aufgrund der transienten Induktion von IFN-α und anderer Cytokine antivirale und 

Tumorhemmende Eigenschaften in Säugetieren besitzen (Harrison, et al. 1991, 

Sidky, et al. 1992, Testerman, et al. 1995). Kürzlich wurde der Wirkmechanismus der 

Imidazoquinoline bekannt, Hemmi et al. (Hemmi, et al. 2002) zeigten, dass sie ihre 

Wirkung über die Aktivierung des TLR 7 vermitteln. Die Tatsache, dass 

Imidazoquinoline auch in Hühnern die Synthese von Cytokinen induzieren (Karaca, 

et al. 1996, Schneider, et al. 2001) lässt vermuten, dass Hühner ein funktionelles 

Homolog zum TLR 7 der Säuger besitzen. Allerdings konnte bis heute kein ChTLR 7 
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beschrieben werden. Interessanterweise ist der natürliche Ligand des TLR 7 noch 

unbekannt. 

5.5 Mögliche Anwendungen 

Zusammenfassend kann gesagt werden, dass die weitere Erforschung des 

Immunsystems der Hühner von großer Bedeutung für die Entwicklung neuer 

Therapeutika ist.  

Ein Aspekt dabei ist die Identifikation weiterer Hühnercytokine, denn Cytokine bieten, 

aufgrund ihrer zentralen Rolle als Immunmodulatoren, vielfältige 

Verwendungsmöglichkeiten als Therapeutika. Zum einen eignen sie sich als 

Adjuvanzien, so konnte z.B. gezeigt werden, dass bei der Impfung mit 

Modellantigenen (Schaferythrozyten, Tetanustoxoid) die Antikörperproduktion 

gesteigert war und länger anhielt, wenn der Impfstoff die rekombinanten Cytokine 

ChIFN-α/β, ChIFN-γ oder ChIL -1ß enthielt (Lowenthal, et al. 1998, Schijns, et al. 

2000). Weiterhin können Cytokine auch eingesetzt werden, um die angeborene 

Immunität zu fördern. Die orale Gabe von ChIFN-α z.B. minderte die Symptome von 

Tieren, die mit Newcastle Disease Virus (NDV) infiziert und daran erkrankt waren 

(Marcus, et al. 1999). Andere Autoren berichteten, dass die Applikation von rChIFN-γ 

zu einer gesteigerten Gewichtszunahme und einer erhöhten Resistenz gegen 

parasitäre Infektionen führte (Johnson, et al. 2001). 

Zum anderen kann das Huhn auch als Modell für die Etablierung von Cytokin-

Therapien im Menschen herangezogen werden. So kann das Entenmodell einer 

Hepatitis-B-Virus (HBV)-Infektion genutzt werden, die Wirkung des therapeutischen 

Einsatzes von Interferonen zu untersuchen (Schultz and Chisari 1999, Schultz, et al. 

1995).  

Weiterhin sind Hühner auch als Modelltiere für das Studium von 

Autoimmunerkrankungen geeignet. So entwickelt die Hühnerlinie OS (obese) 

spontan eine autoimmune Thyreoiditis, die in ihrem Krankheitsverlauf der Hashimoto 

Thyreoiditis beim Menschen sehr ähnlich ist (Rose 1994). 

Ein weiterer Aspekt ist die Erforschung des TLR-Systems beim Huhn, denn diese  

Rezeptor-Familie besitzt aufgrund ihrer Beteiligung an der Schnittstelle zwischen 

angeborenem und erworbenem Immunsystem weitreichende immunmodulatorische 

Eigenschaften. Von besonderem Interesse ist dabei die mögliche Nutzung der TLRs 
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als Adjuvanzrezeptoren. Besonders intensiv wurde in letzter Zeit das Potenzial der 

CpG-Motive als Adjuvanzien untersucht. Die bisher durchgeführten Studien deuten 

darauf hin, dass CpG-Motive ein stärkeres Adjuvanz für eine TH1 vermittelte 

Immunantwort als der bisherige „Goldstandard“ FCA sind (Krieg 2002). Außerdem 

hat die Route der Applikation keinen Einfluss auf ihre Wirksamkeit (McCluskie and 

Davis 1998, McCluskie, et al. 2001). Da Bauer et al. (Bauer, et al. 2001) zeigen 

konnten, dass die Erkennung der CpG-Motive spezies-spezifisch durch den TLR 9 

vermittelt wird, ist es von Bedeutung für jede Spezies optimal-stimulierende ODNs zu 

etablieren. Erste in vitro Reihenuntersuchungen verschiedener ODNs hinsichtlich 

ihrer proliferations-induzierenden Wirkung auf Lymphozyten verschiedener 

Haustierspezies, unter anderem vom Haushuhn, ergaben, dass die, das CpG-Motiv 

umgebende ODN-Sequenz, einen spezies-spezifischen Einfluss auf die 

stimulatorische Aktivität hat (Rankin, et al. 2001). Deshalb sind weitere Arbeiten zur 

Etablierung optimaler CpG-ODNs für die verschiedenen Spezies und die genauere 

Charakterisierung ihrer biologischen Wirkung, wie zum Beispiel das induzierte 

Cytokin-Profil, notwendig. Weiterhin belegt die Arbeiten von Erhard et al. (Erhard, et 

al. 2000), dass auch andere TLR-Liganden als mögliche Adjuvanzien geeignet sind. 

Durch die weitere Erforschung des TLR-Systems beim Huhn, könnte die Nutzung der 

TLRs als Zielstrukturen für die Behandlung von Erkrankungen beim Menschen 

getestet werden. Eine denkbare Anwendung ist die Nutzung des TLR 4 bei der 

Therapie der Sepsis. 
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6. Zusammenfassung 

Ein Ziel der vorliegenden Arbeit war es, die biologische Aktivität des kürzlich von 

Schneider et al. klonierten, rekombinanten Hühner IL-6 (rChIL -6), zu 

charakterisieren. In vitro wurde der Nachweis der biologischen Aktivität von rChIL-6 

durch die Induktion der Proliferation der streng IL -6 abhängigen murinen Zelllinie 

7TD1 erbracht. Diese Tatsache wurde für die Etablierung eines quantitativen rChIL-6 

Nachweissystems genutzt. Für weiterführende Studien wurde ein neutralisierendes, 

polyklonales ChIL -6 Antiserum entwickelt. Durch wiederholte Vakzinierung von 

Kaninchen mit rChIL-6 (E.coli) war es möglich, ein ChIL -6 Antiserum zu gewinnen, 

welches auch die biologische Aktivität von natürlichem ChIL-6 neutralisiert. In vivo 

induzierte die intravenöse Applikation von rChIL -6 (E.coli) einen deutlichen Anstieg 

der Kortikosteronkonzentration im Serum von Hühnern. Somit standen mit biologisch 

aktivem rChIL -6, einem ChIL -6 Nachweistest und einem neutralisierenden Antiserum 

geeignete Werkzeuge zur Verfügung, die für erste Untersuchungen zur funktionellen 

Charakterisierung des aviären Toll-like Rezeptor (TLR)-Systems genutzt wurden. 

Diese, unter anderem auf Makrophagen exprimierten Rezeptoren, sind für eine 

adäquate Reaktion des Immunsystems von essentieller Bedeutung, denn sie 

erkennen die Anwesenheit pathogener Mikroorgansimen anhand so genannter 

„pathogen-associated molecular pattern“ (PAMP). Eine Konsequenz der 

Rezeptoraktivierung ist die Transkription von Genen pro-inflammatorischer Cytokine, 

unter anderem von IL-6. Primäre Hühnermakrophagen wurden durch Inkubation mit 

verschiedenen, aus dem Säuger-System bekannten TLR-Agonisten stimuliert; als 

Nachweissystem der erfolgreichen Aktivierung wurde die quantitative Analyse der 

ChIL-6 Sekretion genutzt. Zunächst wurden primäre Hühnermakrophagen mit LPS 

stimuliert worauf sie mit einer starken ChIL-6 Sekretion reagierten. Durch die 

gleichzeitige Inkubation der Makrophagen mit LPS und IFN-γ ließ sich das Ausmaß 

der ChIL -6 Sekretion deutlich steigern. Auch die Inkubation mit bakterieller DNA 

induzierte die Sekretion von ChIL-6. Dieser Makrophagen-aktivierende Effekt war 

DNA-spezifisch, denn zum einen beendete der DNA Verdau mit DNase I diesen 

Effekt. Zum anderen induzierten CpG-ODNs nicht aber GpC-ODNs eine starke ChIL-

6 Sekretion. Weiterhin führte die Stimulation der Makrophagen mit synthetischem 

bakteriellem Lipopeptid und synthetischer dsRNA zu einer deutlichen Sekretion von 
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ChIL-6. Bei in vivo Studien wurde eine deutliche Induktion von ChIL-6 durch LPS 

(TLR 4) beobachtet. 

Im Rahmen dieser Arbeit konnte also gezeigt werden, dass rekombinantes ChIL-6 

sowohl in vitro als auch in vivo biologisch aktiv ist. Auf der Basis der dabei etablierten 

Methoden konnte bei ersten Untersuchungen zur funktionellen Charakterisierung des 

TLR-Systems des Huhnes Hinweise dafür gewonnen werden, dass beim Huhn 

funktionelle Homologe zu den, aus dem Säuger bekannten TLR 2, 3, 4, und 9 

vorhanden sind. 
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7. Summary 

Characterization of the biological activity of chicken interleukin-6 and initial 

studies of the toll-like receptor-system in the chicken. 

One goal of the present thesis was the characterization of the biological properties of 

recombinant chicken interleukin-6 (rChIL-6), recently cloned by Schneider and 

coworkers. The biological activity in vitro was confirmed by the rChIL -6 induced 

proliferation of the strictly IL-6 dependent murine 7TD1 cell line. Taking advantage of 

this fact, 7TD1 cells were used to establish a sensitive colorimetic bioassay for ChIL-

6, which was even able to detect native ChIL -6. A polyclonal antiserum was raised in 

rabbits against E. coli-expressed rChIL-6. It efficiently neutralized the biological 

activity of recombinant and native ChIL-6. Injection of rChIL-6 into adult chickens led 

to a strong induction of corticosterone production. The developed tools, biologically 

active rChIL -6, a sensitive IL -6 bioassay and the neutralizing antiserum were used for 

a first functional characterization of the Toll-like receptor (TLR) system in chickens. In 

mammals it is well established that the activation of TLRs by pathogen associated 

molecular pattern (PAMP) is an important early trigger for innate and adaptive 

immune responses. One of the consequences following TLR activation is the 

secretion of pro-inflammatory cytokines, including IL -6. Primary chicken 

macrophages were stimulated with a variety of TLR-agonists, described in the 

mammalian system. Monocyte derived macrophages were initially stimulated with 

LPS and showed strong induction of ChIL-6. Co-stimulation of the macrophages with 

LPS and IFN-γ strongly enhanced the ChIL -6 secretion. The incubation of 

macrophages with bacterial DNA led also to a strong ChIL-6 response. This 

macrophage stimulating activity was DNA specific, since digestion of the DNA using 

DNase I led to a complete loss of the activity. Furthermore CpG- but not GpC-ODNs 

were able to induce ChIL -6 secretion in macrophages. In addition to LPS and CpG-

ODNs ChIL -6 secretion was also induced by synthetic bacterial lipopeptid and 

synthetic dsRNA. In vivo studies revealed that injection of LPS led to a significant 

increase of ChIL-6 serum levels. 

 

Summing up, rChIL-6 was shown to be active in vitro and in vivo. The established 

tools were used for a functional characterization of the avian TLR-system. The data 
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suggest that functional homologs to the mammalian TLR 2, 3, 4 and 9 must be 

present in the chicken. 
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