Untersuchung zur Biegefestigkeit von Zirkoniumdioxid nach unterschiedlicher Oberflächenbearbeitung und künstlicher Alterung

Dissertation zum Erwerb des Doktorgrades der Zahnheilkunde an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

vorgelegt von
Gruber Monika
aus Haag
2009
Mit Genehmigung der medizinischen Fakultät
der Universität München

Berichterstatter: Prof. Dr. Dr. h.c. Wolfgang Gernet

Mitberichterstatter: Priv. Doz. Dr. Karin Huth

Mitbetreuung durch den promovierten Mitarbeiter: Dr. Florian Beuer

Dekan: Prof. Dr. med. Dr. h.c. M. Reiser, FACR, FCR

Tag der mündlichen Prüfung: 25.05.2009
Meinem lieben Vater in großer Dankbarkeit
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
<th>Einleitung .. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Literaturübersicht .. 10</td>
</tr>
<tr>
<td>2.1</td>
<td>Keramik in der Zahnheilkunde .. 10</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Geschichtliche Entwicklung ... 10</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Definition ... 12</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Einteilung der Dentalkeramiken .. 12</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Feldspatkeramiken ... 14</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Glaskeramiken ... 15</td>
</tr>
<tr>
<td>2.1.3.3</td>
<td>Glasinfiltrierte Keramiken ... 17</td>
</tr>
<tr>
<td>2.1.3.4</td>
<td>Polykrystalline Keramiken ... 18</td>
</tr>
<tr>
<td>2.1.3.5</td>
<td>Zirkoniumoxid .. 19</td>
</tr>
<tr>
<td>2.2</td>
<td>CAD/CAM-Verfahren .. 26</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Definition ... 26</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Entwicklung der CAD/CAM-Systeme ... 26</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Dentale Systeme .. 27</td>
</tr>
<tr>
<td>2.3</td>
<td>Werkstoffkundliche Parameter von Keramiken .. 30</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Biegefestigkeit ... 30</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Weibull-Analyse ... 31</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Risszähigkeit ... 32</td>
</tr>
<tr>
<td>2.4</td>
<td>Einflussfaktoren auf die Festigkeit vollkeramischer Restaurationen 34</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Mechanische Wechselfbelastung ... 34</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Korrosion ... 35</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Thermische Wechselfbelastung .. 36</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Oberflächenbeschaffenheit .. 37</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Mechanische Vorschädigung ... 41</td>
</tr>
<tr>
<td>2.4.5.1</td>
<td>Schleifen .. 42</td>
</tr>
<tr>
<td>2.4.5.2</td>
<td>Korundstrahlen .. 45</td>
</tr>
<tr>
<td>3</td>
<td>Material und Methode</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>3.1</td>
<td>Übersicht</td>
</tr>
<tr>
<td>3.2</td>
<td>Umbau der Linearschleifvorrichtung</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Anfertigung der Turbinenhalterung</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Anfertigung der Schraubvorrichtung</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Anfertigung der Planparallelplatten</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Justierung der Schleifvorrichtung</td>
</tr>
<tr>
<td>3.3</td>
<td>Herstellung der Proben</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Schneiden und Sintern der Proben</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Planparallelschleifen der Proben</td>
</tr>
<tr>
<td>3.4</td>
<td>Bearbeitung der Proben</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Probenverteilung</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Schleifen der Proben</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Korundstrahlen der Proben</td>
</tr>
<tr>
<td>3.5</td>
<td>Rasterelektronenmikroskopaufnahmen (REM)</td>
</tr>
<tr>
<td>3.6</td>
<td>Bestimmung der Dicke und Parallelität der Proben</td>
</tr>
<tr>
<td>3.7</td>
<td>Alterung der Proben</td>
</tr>
<tr>
<td>3.8</td>
<td>Bruchtest</td>
</tr>
<tr>
<td>3.9</td>
<td>Statistische Auswertung</td>
</tr>
<tr>
<td>3.10</td>
<td>Berechnung der Biegefestigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Ergebnisse</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Biegefestigkeitswerte der Oberflächenbearbeitung</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Rot-Ring bearbeitet, nicht gealtert</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Blau-Ring bearbeitet, nicht gealtert</td>
<td>71</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Grün-Ring bearbeitet, nicht gealtert</td>
<td>72</td>
</tr>
<tr>
<td>4.1.4</td>
<td>1x korundgestrahlt, nicht gealtert</td>
<td>73</td>
</tr>
<tr>
<td>4.1.5</td>
<td>3x korundgestrahlt, nicht gealtert</td>
<td>74</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Unbearbeitet, nicht gealtert</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Vergleich aller untersuchten Proben</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Vergleich der nicht gealterten mit den gealterten Proben</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Vergleich der bearbeiteten Proben</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Berechnung des Weibull-Moduls</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Substanzabtrag der unterschiedlichen Bearbeitungsformen</td>
<td>82</td>
</tr>
<tr>
<td>4.7</td>
<td>Auswertung der REM Aufnahmen</td>
<td>83</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Rot-Ring bearbeitet</td>
<td>83</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Blau-Ring bearbeitet</td>
<td>84</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Grün-Ring bearbeitet</td>
<td>85</td>
</tr>
<tr>
<td>4.7.4</td>
<td>1x korundgestrahlt</td>
<td>86</td>
</tr>
<tr>
<td>4.7.5</td>
<td>3x korundgestrahlt</td>
<td>87</td>
</tr>
<tr>
<td>4.7.6</td>
<td>Unbearbeitet</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Diskussion</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>Zirkoniumoxid</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>In-vitro-Untersuchung</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Material und Methode</td>
<td>90</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Versuchsaufbau</td>
<td>90</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Herstellung der Proben</td>
<td>92</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Bearbeitung der Proben</td>
<td>94</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Alterung</td>
<td>99</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Bestimmung der Dicke und Parallelität</td>
<td>100</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Bruchversuch</td>
<td>101</td>
</tr>
<tr>
<td>5.4</td>
<td>Ergebnisse</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>Zusammenfassung</td>
<td>109</td>
</tr>
<tr>
<td>6.1</td>
<td>Schlussfolgerung für die Praxis</td>
<td>111</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Literaturverzeichnis</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>Materialliste</td>
<td>130</td>
</tr>
<tr>
<td>9</td>
<td>Danksagung</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>Lebenslauf</td>
<td>132</td>
</tr>
</tbody>
</table>
Einleitung

Das wachsende ästhetische Bewusstsein der Bevölkerung sowie das Interesse nach jugendlichem Aussehen führten in den letzten Jahren zu einer steigenden Nachfrage nach unsichtbarem Zahnersatz [100].

Bislang wurde diesem Wunsch durch die keramische Verblendung von Metallgerüsten, die dem Zahnersatz die notwendige Stabilität und Festigkeit für funktionelle Belastung gewährleisten, nachgekommen [99]. Doch die seit langer Zeit bewährten Kronen und Brücken aus Metallkeramik werden zunehmend von metallfreien Restaurationen verdrängt [125].

Mit dem Werkstoff Zirkoniumoxid ist es gelungen, eine für dentale Anwendungen ideale Kombination von hoher Festigkeit, Bruchzähigkeit, Biokompatibilität und Ästhetik zu realisieren. Das metallfreie Gerüstmaterial hat inzwischen die Indikation für vollkeramische Systeme auf den Seitenzahnersatz ausgedehnt [119].

Der keramische Werkstoff bietet jedoch nicht nur Vorteile. Als kennzeichnende Eigenschaften gelten die Sprödigkeit des Werkstoffs und seine geringe Bruchfestigkeit im Vergleich zu Metallkeramikrestaurationen [9, 10, 72].

Da aber nicht nur die oben genannten Eigenschaften [87, 97, 121], sondern auch die Oberflächenbeschaffenheit des Zahnersatzes zur Langlebigkeit beiträgt, spielt die sachgemäße Bearbeitung von Zirkoniumoxid eine wichtige Rolle [97, 137]. Die Oberflächenbearbeitung keramischer Werkstoffe hat einen entscheidenden Einfluss auf die Biegefestigkeit des Materials. So kann ein Schleifen oder Fräsen von gesinterten Keramiken bewirken, dass Mikrorisse an der Oberfläche auftreten und dadurch die Festigkeit und Stabilität der Restauration vermindert wird. Punktuelle Überhitzung oder unsachgemäßes Strahlen mit Al₂O₃ können zu einem deutlichen Verlust an Festigkeit führen [51, 53, 137].

2 Literaturübersicht

2.1 Keramik in der Zahnheilkunde

2.1.1 Geschichtliche Entwicklung

Keramiken waren wahrscheinlich die ersten Werkstoffe, die vom Menschen künstlich hergestellt wurden. Das wohl zunächst zufällig im Feuer gebrannte Material (griechisch keramos = gebrannter Stoff, aus Ton gefertigte Gegenstände; kerameus = Töpfer) wurde, wie Funde aus der Zeit um 23000 v. Chr. im Gebiet des heutigen Böhmens belegen, schon früh in der Menschheitsgeschichte bewusst verwendet. Seit etwa 100 v. Chr. ist auch die Herstellung von Steinzeug (härtere, dicht gesinterte, wasserundurchlässiger Scherben) bekannt [100]. Aus dem Porzellan, dem edelsten Tonzeug, das bereits 700 n. Chr. in China hergestellt wurde, und den Glasurmaterialien entwickelten sich die heutigen dentalkeramischen Massen. Im 15. Jahrhundert erst gelangte das Porzellan mit den Portugiesen nach Europa und etablierte sich bis Mitte des 18. Jahrhunderts.

Die Passgenauigkeit einer Vollgußkrone und einer metallkeramischen Krone ist identisch. Allerdings lässt sich die Biokompatibilität und die Ästhetik nicht mit einer vollkeramischen Restauration vergleichen, da Oxidationsprodukte zu einer verminderten Gewebeverträglichkeit führen und die ästhetische Wirkung durch mangelnde Transluzenz deutlich herabgesetzt wird [104, 124].

Die Entwicklung vollkeramischer Versorgungen war durch die Etablierung der Metallkeramik zunächst verzögert. Es wurden auf der Basis der Forschung McLeans erneute Versuche mit Aluminiumoxidzusätzen unternommen; man brannte jetzt auf feuerfesten Stümpfen. Allerdings konnten auch diese Produkte (Mirage, Optec, Hi-Ceram) keine überzeugenden klinischen Langzeitergebnisse liefern.

2.1.2 Definition

2.1.3 Einteilung der Dentalkeramiken

Die in der Zahnmedizin verwendeten Keramiken werden nach ihrer chemischen Zusammensetzung differenziert. Dabei kann man zwei übergeordnete Gruppen unterscheiden, zum einen die mehrphasigen Silikatkeramiken, die einen hohen Glasanteil aufweisen, und zum anderen die einphasigen Oxidkeramiken, deren Glasanteil nur sehr gering ist. Die Silikatkeramiken werden weiter in Feldspat- und Glaskeramiken unterteilt, die Oxidkeramiken in glasinfiltrierte und polykristalline Keramiken [99, 102, 118].
1. Silikatkeramische Werkstoffe

<table>
<thead>
<tr>
<th>Gefüge</th>
<th>grob</th>
<th>fein</th>
</tr>
</thead>
<tbody>
<tr>
<td>porös</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>porös</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Wasseraufnahmefähigkeit [Gew. %] | > 6 | < 6 | > 2 | < 2 |

| Scherben | farbig | farbig | farbig | hell bis weiß | farbig | hell bis weiß (fuchsindicht) |

1.1 Tonkeramische Erzeugnisse (Scherben enthalten Mullit als wesentlichen Gefügebestandteil)

<table>
<thead>
<tr>
<th>Beispiele</th>
<th>Ziegel</th>
<th>Klinker Baukeramik</th>
<th>Töpferwaren</th>
<th>Tonsteinung</th>
<th>Fliesen Sanitärwaren</th>
<th>Hartporzellan Weichporzellan Dentalkeramik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 Sonstige Silikatkeramische Erzeugnisse

<table>
<thead>
<tr>
<th>Beispiele</th>
<th>Silikatsteine</th>
<th>Schmelzgossene, feuerfeste Steine</th>
<th>Cordierit</th>
<th>Cordierit</th>
<th>Steatit Li-Al-Silikat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Oxidkeramische Werkstoffe

<table>
<thead>
<tr>
<th>Gefüge</th>
<th>grob</th>
<th>fein</th>
</tr>
</thead>
</table>

2.1 Einfache Oxide

<table>
<thead>
<tr>
<th>Beispiele</th>
<th>Aluminiumoxid</th>
<th>Magnesiumoxid</th>
<th>Berylliumoxid</th>
<th>Titanoxid</th>
<th>Zirkoniumdioxid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 Komplexe Oxide

<table>
<thead>
<tr>
<th>Beispiele</th>
<th>Chromit</th>
<th>Perowskite</th>
<th>Spinelle</th>
<th>Granate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Nichtoxidische keramische Werkstoffe

<table>
<thead>
<tr>
<th>Gefüge</th>
<th>grob</th>
<th>fein</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Beispiele</th>
<th>Kohlenstoff</th>
<th>Carbide</th>
<th>Kohlenstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1: Systematik der keramischen Werkstoffe nach Schüller [118].
2.1.3.1 Feldspatkeramiken

Die Feldspatkeramiken bestehen in ihren Hauptanteilen zu 60 bis 80% aus Feldspat, zu 15 bis 25% aus Quarz und zu 0 bis 5% aus Kaolin [27, 87, 124]. Der Unterschied zum Porzellan liegt im verminderten Kaolin- und hohen Feldspatanteil. Feldspat stellt ein Mischkristallsystem dar und besteht zumeist aus Kalifeldspat (Orthoklas), Natronfeldspat (Albit) und Kalkfeldspat (Anorthit) [27, 105, 124]. Feldspate sind stark verbreitete Minerale, die nur selten in einer typenreinen Form vorkommen. Entscheidend für das Verhalten der Keramik während des Brennvorganges ist der Gehalt an Kalifeldspat, der in der schmelzflüssigen Phase Leuzitkristalle bildet, die den dentalkeramischen Schmelzen innerhalb des Schmelzintervalls ihre hohe Viskosität und Standfestigkeit verleihen. Zudem bestimmt der Anteil an Leuzitkristallen die mechanische Festigkeit und den Wärmeausdehnungskoeffizienten der Dentalkeramiken [27, 87]. Der Quarz, chemisch SiO₂, ist eines der am weitesten verbreiteten Minerale und liegt in kristalliner Form vor. Man unterscheidet insgesamt sieben verschiedene Modifikationen der Kristallstruktur: Quarz (α und β), Tridymit (α, β und γ) und Cristobalit (α und β). In den keramischen Massen wird er als Magerungsmittel verwendet und trägt durch sein thermovolumetrisches Verhalten zu einer Verringerung der Sinterschwindung bei [56, 105]. Beim Kaolin, das in dentalkeramischen Massen nur geringfügig vorhanden ist, handelt es sich um ein Aluminiumsilikat, in dem Wasser in Form von Hydroxylgruppen gebunden ist. Es entsteht als Verwitterungsprodukt aus Feldspat und verleiht Porzellanmassen Plastizität und Formbarkeit [56].

Hierzu werden hoch schmelzende feste Oxide des Siliziums, des Aluminiums, des Magnesiums und des Zirkoniums genutzt, ebenso wie Leuzit, Glimmer und Hydroxylapatit [86, 88].

Die Verarbeitung der Feldspatkeramik erfolgt zumeist in Form der so genannten Sintertechnologie. Dabei wird das Keramikpulver mit Flüssigkeit angemischt und auf einen feuerfesten Stumpf oder einer Platinfolie aufgetragen. Als Sintern bezeichnet man den anschließenden Vorgang des Zusammenbackens der Pulverpartikel an den Grenzflächen beim Brennen unterhalb der Schmelztemperatur. Die Verkleinerung der Zwischenräume bedingt einen Volumenschwund von 20 % bis 35 %, der bei der Verarbeitung einkalkuliert werden muss [87, 107]. Der Brennvorgang findet in Vakuumöfen statt, wodurch Porositäten fast vollständig verhindert werden, was sowohl die Festigkeit als auch die Transluzenz der Werkstücke steigert [27].

2.1.3.2 Glaskeramiken

2.1.3.3 Glasinfiltrierte Keramiken

Die glasinfiltrierten Aluminiumoxidkeramiken sind bekannt unter dem Handelsnamen In-Ceram®. Man unterscheidet drei verschiedene Modifikationen des Systems [102]. Die ursprüngliche Form In-Ceram® -Aluminia hat sich für die Herstellung konventionell zementierter Front- und Seitenzahnkronen bewährt [11, 101].
Es wurde auch eine Verwendung für kurzspannige Brücken diskutiert [10, 64], doch wiesen klinisch insbesondere Seitenzahnbrücken aus In-Ceram®-Alumina eine erhöhte Frakturrate auf [120]. In-Ceram®-Zirconia stellt mit einem Zirkoniumdioxidanteil von 33 % eine weitere Modifikation des In-Ceram®-Systems dar. Die im enthaltenen Zirkoniumdioxidanteil begründete deutliche Festigkeitssteigerung und Erhöhung der Risszähigkeit lassen den Einsatz für dreigliedrige Brücken möglich erscheinen [3, 43, 63, 131]. Durch Beimischung von Magnesiumoxid (In-Ceram®-Spinell) erhöht sich die Lichtdurchlässigkeit der im Vergleich zur Glaskeramik opaken Oxidkeramik, wobei jedoch die geringe Festigkeit den Indikationsbereich auf das Frontzahngebiet beschränkt [117, 127].

2.1.3.4 Polykristalline Keramiken

2.1.3.5 Zirkoniumoxid

Das in technischen und medizinischen Bereichen eingesetzte Zirkoniumoxid wird in der Regel in einem aufwändigen Prozess aus Zirkonkorund gewonnen.

Die besonderen und zugleich problematischen Materialeigenschaften von Zirkoniumoxid sind in seiner Polymorphie begründet. Kristallgraphisch betrachtet tritt Zirkoniumoxid in monokliner, tetragonaler und kubischer Modifikation auf (Abb.1). Beim Abkühlvorgang einer reinen Zirkoniumoxid-Schmelze kristallisiert ab 2690 °C zuerst die kubische Phase (k) aus, die eine Dichte von 6,3 g/cm³ aufweist. Diese wandelt sich bei 2370 °C in die tetragonale Phase (t) mit einer Dichte von 6,1 g/cm³ um. Bei einer Temperatur von 950 °C findet schließlich die schlagartige Umwandlung in die monokline Phase (m) mit einer Dichte von 5,6 g/cm³ statt [20], in der das Zirkoniumoxid dann bei Raumtemperatur vorliegt. Diese letzte Umwandlung (t→m) geht mit einer Volumenzunahme von ca. 3 % einher, die bei vollständiger Abkühlung bis auf Raumtemperatur auf 4,9 % anwächst [28]. In der Aufheizphase wechselt die monokline Phase bei 1173 °C in die tetragonale Phase. Dieser Vorgang ist mit einer entsprechenden Volumenabnahme von ca. 3 % verbunden.

Abb. 1: Die drei Kristallphasen des Zirkoniumoxides [136].
Die sprunghafte Volumenzunahme in der Abkühlphase macht die Herstellung von Sinterkeramiken aus reinem Zirkoniumoxid unmöglich. Die Volumenvergrößerung führt stets zu hohen Spannungen und unerwünschten Rissbildungen im Keramikgefüge. Die martensitische \(t \rightarrow m \)-Umwandlung wird in der Abkühlphase in jedem Fall durchlaufen, da die Sinterendtemperatur in einem Bereich von 1350 °C bis 1600 °C liegt [22]. Die \(t \rightarrow m \)-Umwandlung kann vermieden werden, wenn die Martensit-Umwandlungstemperatur von 950 °C unter die Raumtemperatur gedrückt wird. Dieses wird durch die Reduktion der mittleren Krongröße der tetragonalen Phase mittels Zugabe von Stabilisierungsoxiden erreicht, die in das Kristallgitter des Zirkoniumoxides eingebaut werden. Die wichtigsten Oxide, die zur Stabilisierung von Zirkoniumoxid eingesetzt werden, sind MgO, CaO, Y₂O₃ und CeO₂. Durch die vollständige Stabilisierung der tetragonalen Phase erhält man die so genannten TZP (tetragonal zirconia polycristals)-Keramiken. Sie zeigen den charakteristischen Mechanismus der Umwandlungsverstärkung (\(t \rightarrow m \)) unter Einwirkung äußerer Belastungen bei Raumtemperatur. Dieses Konzept der Phasentransformationsverstärkung wurde erstmals von Garvie et al. für eine Zirkoniumoxidverbindung vorgeschlagen. Besonders die Dotierung mit Yttriumoxid (Y₂O₃) hat sich als günstig erwiesen, da die so stabilisierten Zirkoniumoxidkeramiken eine hohe mechanische Belastbarkeit aufweisen [28]. In der Zahnmedizin findet praktisch ausschließlich mit Y₂O₃ stabilisiertes Zirkoniumoxid Anwendung, eine Ausnahme bildet die Infiltrationskeramik In-Ceram®-Zirconia, der CeO₂ als stabilisierendes Oxid zugesetzt ist [119, 128].

Es werden als stabilisierende Oxide MgO und CaO in einer Konzentration von 8 bis 10 Mol % eingesetzt. Die Festigkeits- und Zähigkeitswerte liegen unter denen der TZP-Keramik [82, 108, 119]. In Form des Materials DC-Leolux® findet teilstabilisiertes Zirkoniumoxid Anwendung in der Zahnmedizin.

Zum einen kann eine lokale, spontane $t\to m$-Umwandlung von Zirkoniumoxid die Bildung feiner Mikrorisse hervorrufen, die durch das größere Volumen der monoklinen Kristallform bedingt ist. Ein sich ausbreitender Riss verläuft sich entweder in diesen Mikrorissen oder wird an den Zirkoniumoxidteilchen abgelenkt. Zum anderen kann die $t\to m$-Umwandlung auch durch die hohen Zugspannungen induziert werden, die an der Spitzte eines sich ausdehnenden Risses immer vorhanden sind. Die vorliegenden Zugspannungen vermindern den Matrixdruck auf die umgebenden Zirkoniumoxidteilchen und es kommt zur $t\to m$-Umwandlung. Das größere Volumen der entstehenden monoklinen Kristallform führt wiederum zu einer lokalen Druckspannung im Bereich der Rissspitze. Das weitere Risswachstum wird so durch das Zusammendrängen der Rissflanken erschwert [54, 119].

Zusätzlich können durch die Abwesenheit des hydrostatischen Drucks spontane Umwandlungen von Zirkoniumoxidpartikeln an oder nahe der freien Oberfläche auftreten. Dadurch kann sich die Festigkeit der oberflächlichen Schichten gegenüber des inneren Gefüges stark erhöhen und somit eine komprimierte Oberflächenschicht ausbilden. Die Keramik ist damit weniger empfindlich gegenüber kleinen Oberflächendefekten, besitzt also eine gewisse Schadenstoleranz [121, 128]. Dieser Effekt wirkt jedoch nur dann, wenn die kritische Rissgröße der Defekte die Abmessungen der unter Druck stehenden Transformationszone nicht überschreitet.

Abb. 2: Umwandlungsverstärkung [92].

2.2 CAD/CAM–Verfahren

2.2.1 Definition

2.2.2 Entwicklung der CAD/CAM Systeme

Bis Mitte der neunziger Jahre ging deshalb das Interesse an CAD/CAM-Entwicklungen wieder zurück und man konzentrierte sich auf die analogen Systeme, die als Kopierschleifverfahren ohne computergesteuerte Komponenten auskam. Doch in den letzten zehn Jahren ebnete die rasante Entwicklung in der Chiptechnologie und den Fertigungsverfahren den computerunterstützten Systemen den Weg, so dass heute nahezu jede Dental-Firma an einem eigenen CAD/CAM-System arbeitet, mit dem mittlerweile vor allem oder ausschließlich Zirkoniumoxid verarbeitet wird [126].

2.2.3 Dentale Systeme

Gleichzeitig bietet diese Technologie durch eine stärkere Automatisierung der Herstellungsabläufe sowohl die Möglichkeit einer Zeit- als auch einer Kostenersparnis bei gleich bleibend hoher Produktionsqualität [80, 91]. Im Bereich der Zahnmedizin beschreibt der Begriff CAD die Konstruktion eines Zahnersatzes mit Hilfe computerbasierter Gestaltungsprogramme und der Begriff CAM die Herstellung der Restauration durch automatisierte Fräs/Schleifeinheiten. Gegenüber dem industriellen CAD/CAM-Einsatz mit der Möglichkeit, viele gleichartige Werkstücke automatisch herzustellen, wird in der Zahnmedizin vielmehr gefordert, dass die Form der Restaurationen individuell der jeweiligen Patientensituation angepasst wird. Damit ist jede Arbeit mit hohen Anforderungen an die Genauigkeit sowie an die funktionellen und ästhetischen Eigenschaften verbunden [141]. Erst in den letzten Jahren ist es durch den technologischen Fortschritt im Bereich der Datenverarbeitung und der Prozesstechnik gelungen, die Bedingungen zu erfüllen und dadurch die CAD/CAM-Technologie effektiv für die Zahnmedizin nutzbar zu machen [6].
Bei den konventionellen Herstellungsverfahren in der Zahntechnik wie den „Lost-Wax“- oder Sintertechniken erfolgt die Erstellung der Restaurationen mit additiven Maßnahmen, bei den maschinellen Methoden hingegen kommen subtraktive Prozesse zum Einsatz, durch welche die Werkstücke aus einem vorgefertigten Materialblock herausgearbeitet werden.

Die maschinellen Herstellungsmethoden können weiter in computergestützte, das heißt CAD/CAM-Verfahren und analoge Verfahren, wie z. B. das Kopierfräsen oder das Erodierverfahren unterteilt werden.

CAM-Systeme nehmen eine Stellung zwischen den Analog-Verfahren auf der einen und den CAD/CAM-Verfahren auf der anderen Seite ein. Ähnlich den Analogverfahren ist die Erstellung einer Vorform der angestrebten Restauration notwendig, die man abtastet und digitalisiert. Der erhobene Datensatz wird danach aufbereitet und an eine CNC-Fräseinheit übermittelt [134].

Im Gegensatz dazu ist bei den Labside-Verfahren eine konventionelle Abformung und Modellherstellung notwendig. Die eingescannte Modellsituation dient als Grundlage für die weitere Herstellung, die entweder im zahntechnischen Labor oder einem ausgelagerten Fräszentrum stattfindet [40].

2.3 Werkstoffkundliche Parameter von Keramiken

2.3.1 Biegefestigkeit

2.3.2 Weibull-Analyse

Der Weibullmodul ist somit ein Maß für die Homogenität der Fehlerverteilung in einem Werkstoff, der als werkstoffspezifische Größe auch Fertigungstechnische Aspekte einschließt. Oxidkeramiken, die unter industriellen Bedingungen für den Einsatz durch CAD/CAM-Systeme gefertigt werden, weisen einen hohen Weibullmodul von ca. 20 auf. Im Dentallabor gefertigte Keramiken haben hingegen einen Weibullmodul von 5 bis 15 [85, 132].

2.3.3 Risszähigkeit

Ausgangspunkt für solche Rissbildungen sind Gefügefehler, die in Form von Poren, Einlagerungen oder bearbeitungsinduzierte Schädigungen auftreten. Der Widerstand, den die Keramik einem sich ausbreitenden Riss in Abhängigkeit von der Spannung und der Risslänge entgegengesetzt, wird als Risszähigkeit bzw. Bruchzähigkeit bezeichnet [86].

Die kritische Risszähigkeit K_{IC} (Einheit MPa·m$^{1/2}$) stellt einen Grenzwert dar, bei dem instabiles Risswachstum auftritt. Die Rissausbreitung kann auch nicht mehr durch Entlastung gestoppt werden und es kommt zum Sprödbruch.

Je höher der Messwert für die Risszähigkeit liegt, umso günstiger ist bei gleicher Fehlerverteilung im Werkstoff das Langzeitverhalten [85, 86].
Metalle erreichen Werte von 60 bis 100 $\text{MPa} \cdot \text{m}^{\frac{1}{2}}$. Für einfache Gläser werden Messwerte von 0,7 bis 1 $\text{MPa} \cdot \text{m}^{\frac{1}{2}}$ erzielt. Yttriumstabilisiertes Zirkoniumoxid liegt mit Werten von 7 bis 10 $\text{MPa} \cdot \text{m}^{\frac{1}{2}}$ noch im Sprödbruchbereich, weist jedoch die höchste verfügbare Risszähigkeit (Tab. 2) im dentalkeramischen Bereich auf [85].

<table>
<thead>
<tr>
<th>Material</th>
<th>Biegefestigkeit $\sigma_{83,21%}$ [MPa]</th>
<th>Weibullmodul m [-]</th>
<th>Risszähigkeit K_{IC} [MPa·m$^{\frac{1}{2}}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duceram® Transpa</td>
<td>63</td>
<td>8,4</td>
<td>1,06 ± 0,14</td>
</tr>
<tr>
<td>Dicor®</td>
<td>76</td>
<td>5,5</td>
<td>0,78 ± 0,10</td>
</tr>
<tr>
<td>Empress®-1</td>
<td>89</td>
<td>8,6</td>
<td>1,17 ± 0,08</td>
</tr>
<tr>
<td>Empress®-2</td>
<td>289</td>
<td>8,8</td>
<td>2,48 ± 0,22</td>
</tr>
<tr>
<td>In-Ceram®-Alumina</td>
<td>290</td>
<td>4,6</td>
<td>5,00 ± 0,39</td>
</tr>
<tr>
<td>Zirkoniumdioxid</td>
<td>937</td>
<td>18,4</td>
<td>9,42 ± 1,51</td>
</tr>
</tbody>
</table>

Tab. 2: Mechanische Kennwerte verschiedener Dentalkeramiken (nach Marx et al [85]).
2.4 Einflussfaktoren auf die Festigkeit vollkeramischer Restaurationen

Es gibt verschiedene Faktoren, welche die Bruchfestigkeit vollkeramischer Restaurationen beeinflussen. In-vivo ist jedes zahnärztliche Werkstück diesen Bedingungen ausgesetzt. Bei In-vitro-Untersuchungen sollten diese Faktoren ebenfalls berücksichtigt werden, um möglichst realitätsnahe Aussagen über die Belastbarkeit treffen zu können, die unter In-vivo Bedingungen zu erwarten ist [71].

2.4.1 Mechanische Wechselbelastung

In der Mundhöhle sind zahnärztliche Restaurationen bei täglich bis zu 14.000 Kontakten zwischen den Ober- und Unterkieferzähnen ständig mechanischen Wechselbelastungen ausgesetzt. Die Kontakte der artikulierenden Zahnreihen treten beim Schlucken, beim Kauen, beim Sprechen, bei reflektorischen Leerbewegungen und bei Parafunktionen auf [113, 115].

Die auftretenden Kräfte führen zwar nicht zum sofortigen Bruch der Restaurationen, jedoch kommt es zu einer verstärkten unterkritischen Rissausbreitung. Unter unterkritischem Risswachstum versteht man die langsame Ausbreitung eines vorhandenen oder entstandenen Mikrorisses der keramischen Oberfläche unter Dauerbelastung bis zu einer kritischen Größe. Diese vermindert die mechanische Festigkeit und führt letztendlich zum Versagen des Werkstücks [62].

2.4.2 Korrosion

2.4.3 Thermische Wechselbelastung

Die Festigkeit keramischer Materialien wird auch durch wechselnde thermische Belastungen herabgesetzt, wie sie bei Temperaturschwankungen während der Aufnahme warmer und kalter Speisen und beim Atmen auftreten. In der Literatur werden für auftretende Extremtemperaturen Werte zwischen 0 °C und +67 °C während der Nahrungsaufnahme angegeben [57].
Nach verschiedenen Untersuchungen führt dies im Bereich der Restaurationen zu Temperaturen von +5 °C bis +55 °C. Schätzungs- werte, wie oft diese Temperaturwechsel während der klinischen Lebensdauer eines eingegliederten Zahnersatzes von ca. 10 bis 15 Jahren auftreten, schwanken zwischen 5000 bis 50.000 Zyklen [18, 57, 75].
2.4.4 Oberflächenbeschaffenheit

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Beschreibung</th>
<th>Ursache</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riefen</td>
<td>Unbeabsichtigte grabenförmige Spur, die so tief ist, dass sie durch weitere Bearbeitungsverfahren nicht mehr beseitigt werden kann</td>
<td>Fehlerhafte Vorbearbeitung, unzweckmäßige Bearbeitung</td>
<td></td>
</tr>
<tr>
<td>Kratzer</td>
<td>Zufällige tiefenförmige Beschädigung</td>
<td>Äußere Einwirkung, aber nicht durch Bearbeitung verursacht</td>
<td></td>
</tr>
<tr>
<td>Riss</td>
<td>Örtlich begrenzte Trennung des Werkstoffgelages von geringer Breite, aber großer Länge und Tiefe</td>
<td>Innere und/oder äußere Spannungsbeanspruchungen</td>
<td></td>
</tr>
<tr>
<td>Pore</td>
<td>Zufällig, örtlich bedingte Vertiefung auf der Oberfläche mit steiler Böschung und scharfkantigem Übergang zur Oberfläche</td>
<td>Werkstoffbedingt</td>
<td></td>
</tr>
<tr>
<td>Streifen</td>
<td>Markierungen auf der Oberfläche mit geringer Tiefe, aber größerer Längen- und Breitenausdehnung</td>
<td>Örtliche Glättungen während der Bearbeitung</td>
<td></td>
</tr>
</tbody>
</table>

Abb.3: Oberflächenfehler nach DIN 4761 [4]
Bei keramischen Oberflächen treten alle in der DIN genannten Oberflächencharakteristika auf. Diese reichen jedoch für eine eindeutige Beschreibung nicht aus [4, 5]. In Abbildung 4 sind daher die in der Norm genannten Oberflächenfehler durch typische Oberflächencharakteristika keramischer Werkstoffe ergänzt.

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Ursache</th>
<th>Prinzipskizze</th>
<th>REM-Aufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glatt (smooth)</td>
<td>mit Mikrokörnungen bearbeitete Oberfläche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riefen (grooves)</td>
<td>Duktile Zerspanung unterhalb der kritischen Spanungsdicke mit gebundenem Korn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riss (crack)</td>
<td>thermische Einflüsse beim Brand, Bearbeitung über kritischer Spanungsdicke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kratzer (scratch)</td>
<td>Verschiebung von groben Körnern bei der Feinbearbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pore (pore)</td>
<td>Werkstoffbedingte Verunreinigung (gewollt/ungewollt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulden (hollowed surface)</td>
<td>Oberflächenprägung nach Tribokontakten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interkristalline Ausbrüche (intercrystalline break-outs)</td>
<td>Trennen von Oberflächen mit groben Diamantkörnungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausbruchsgründe (grounds of break-outs)</td>
<td>Abplatzungen von Partikeln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strukturlos zerkliefen (unstructured fissured surface)</td>
<td>Bearbeitung mit losem Korn oder gebrannte Oberflächen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufwerfung (pile)</td>
<td>Entlastung nach starken Druckspannungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scholle (clod)</td>
<td>durch Bearbeitung lösender Parikel überhalb einer Pore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abplatzung (split off)</td>
<td>durch Druck- oder Zugspannungen gelöster Parikel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuppe (scale)</td>
<td>durch Bearbeitung erzeugter Riss quer zur Bearbeitungsrichtung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schichtung (lamination)</td>
<td>nach Tribokontakten entstehende Materialanhäufung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufschmelzung (melting)</td>
<td>Laserbearbeitung, Hot-spot Temperaturen beim Schleifen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.5 Mechanische Vorschädigung

Wie bereits oben beschrieben, ist eine Vorschädigung bei Keramiken oftmals der Ausgangspunkt für ein schleichend fortschreitendes, unterkritisches Risswachstum. Der festigkeitsmindernde Einfluss einer mechanischen Vorschädigung auf Keramiken wurde bereits in verschiedenen Untersuchungen gezeigt [35, 75, 79, 143].

Im Rahmen des Herstellungsprozesses zahnärztlicher Restaurationen können insbesondere während der Bearbeitung durch den Zahntechniker Schäden auftreten [34, 67, 96, 111].
2.4.5.1 Schleifen

Die beim Schleifen mit ungeometrischen Schneiden auftretenden Vorgänge werden anhand eines Einzeldiamantkornes (Abb.5) erläutert.

Aufgrund der Mehrfachbelastung beim Schleifprozess können Longitudinalrisse eine erhebliche Ausdehnung annehmen und die Festigkeit quer zur Schleifrichtung erheblich reduzieren. Sie beeinflussen maßgeblich die Bauteilfestigkeit [53].

Da die Entstehung lateraler Risse von der Eindruckkraft des Schleifpartikels abhängig ist, führen höhere Eindruckkräfte zur verstärkten Bildung von radialen Rissen, zu höherem Materialabtrag und damit zur verstärkten Randzonenschädigung [53, 74, 84].

Abb. 6: Werkstofftrennung und Rissbildung an sprödharten Werkstoffen [74, 84]

<table>
<thead>
<tr>
<th>Werkstoffeigenschaften</th>
<th>plastischer Materialabtrag</th>
<th>Sprödbruch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korngröße</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>Rißzähigkeit</td>
<td>↗</td>
<td>↘</td>
</tr>
<tr>
<td>Schleifparameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schleifkorngröße</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>Schnittgeschwindigkeit</td>
<td>↗</td>
<td>↘</td>
</tr>
<tr>
<td>Vorschubgeschwindigkeit</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>Zustellung</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>Einzelkornspanungsdicke</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>Schleifprozeß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraft pro Schleifkorn</td>
<td>↘</td>
<td>↗</td>
</tr>
<tr>
<td>spezifische Schleifenergie</td>
<td>↗</td>
<td>↘</td>
</tr>
<tr>
<td>spezifische Schleifkraft</td>
<td>↗</td>
<td>↘</td>
</tr>
</tbody>
</table>

Tabelle 3: Einflussgrößen des Materialabtrages [49]

2.4.5.2 Korundstrahlen

Mechanische Oberflächenbehandlungen wie Korundstrahlen können dem Zirkoniumoxidgerüst zum Teil überkritische Energiemengen zuführen, was zu einer großflächigen Verzerrung des Kristallgitters oder sogar zur Phasenumwandlung und dadurch zur Schwächung des Zirkoniumoxids bis zu 30 % führen kann [11, 130, 133, 134, 136, 137]. Für die Verblendung hat dies zur Folge, dass sich an der Grenzfläche komplexe Spannungsverläufe aufbauen können, die zum sofortigen Versagen, aber auch zu unterkritischem Risswachstum und daraus resultierenden Spätschäden an der Restauration führen können, ähnlich wie beim Schleifen von Zirkoniumoxid. Monoklines Zirkoniumoxid besitzt im Gegensatz zum tetragonalen ZrO$_2$ einen geringeren WAK von etwa 7·10-6/K-1 [137].
Dieser Effekt kann unter anderem durch die röntgenographische Phasenanalyse [Abb.7] nachgewiesen werden.

Abb. 7: Röntgendiffрактометр с Y-TZP (blue) и его фазовую ось после корундовой стрельбы (red) [137].

3.2 Umbau der Linearschleifvorrichtung

Um diese Untersuchung durchführen zu können, wurde eine Schleifvorrichtung von der Firma bredent/ Senden zur Verfügung gestellt (Abb.11). Damit in diesem speziellen Versuchsaufbau alle Anforderungen erfüllt werden konnten, mussten vorerst einige Veränderungen an der Schleifvorrichtung vorgenommen werden.

![Abb.9: Linearschleifvorrichtung vor dem Umbau](image)
3.2.1 Anfertigung der Turbinenhalterung

Eine der Anforderungen dieser Arbeit war, die Proben mit einer wassergekühlten Turbine (Abb. 12) zu bearbeiten, wie sie auch der Zahntechniker zum Bearbeiten der gesinterten Zirkoniumoxidgerüste im Labor verwendet. Da die Schleifvorrichtung nur eine Handstückhalterung besaß, musste eine spezielle Halterung für die Turbine Turbo-Jet der Firma acurata/ Thurmansbang angefertigt werden.

Dazu wurden in einem speziell angefertigten Aluminiumblock zwei Bohrungen vorgenommen (Abb. 12). Eine Bohrung diente zur Befestigung der Turbinenhalterung an die Schleifvorrichtung, die zweite Bohrung wurde dem Durchmesser der Turbine angepasst und mit einem Schlitz versehen, um eine Feststellschraube anbringen zu können (Abb. 13).
Diese war zur exakten Höheneinstellung der Turbine notwendig. Zusätzlich wurde eine Passfräsung angebracht, um die Turbine in Mittelstellung zum Längsschlitten zu bringen. (Schlosserei/ Fa. Angermaier/ Haag).

Abb. 12: Turbinenhalterung in Bohr- u. Fräsmaschine

Abb. 13: Fertige Turbinenhalterung
3.2.2 Anfertigung der Schraubvorrichtung

3.2.3 Anfertigung der Planparallelplatten

Abb.16: Probenhalter in Planparallelschleifer

Abb.17: Probenhalter mit Fase
3.2.4 Justierung der Schleifvorrichtung

Nachdem alle Umbauteile an die Linearschleifvorrichtung angebracht worden waren, musste vor Beginn der Schleifarbeiten eine Feinjustierung erfolgen. Dafür wurde die Messuhr mit einer Vorrichtung so an der Turbinenhalterung befestigt, dass der Taster der Messuhr an dem Probenhalter justiert werden konnte (Abb. 18).

Abb.18: Feinjustierung des Längsschlittens

Material und Methode

Abb. 19: Kompletter Versuchsaufbau
3.3 Herstellung der Proben

3.3.1 Schneiden und Sintern der Proben

Die verwendete ISO-Norm schreibt Probeplättchen mit einem Durchmesser von 12 bis 16 mm, einer Dicke von 1,0 bis 1,4 mm und planparallelen Seiten mit einer Toleranz von 0,05 mm vor. Um dies zu erreichen, wurden vorgesinterte Rohlinge (Kavo Everest ZS/ Germany) mit dem Accutom 2 (Struers/ Willich) in 2 mm dicke Scheiben geschnitten (Abb. 21). Um den Zirkonoxidrohling beim Schneiden nicht zu schädigen, wurde eine Schneidehilfe (Abb. 20) aufgeklebt (Uhu Endfest 300/Henkel/Düsseldorf) und diese im Einspannrahmen befestigt.

Nach dem Schneiden erfolgte das Sintern über acht Stunden bei 1500 °C im Everest Brennofen. Alle Proben hatten nach dem Sintern eine Dicke von 1,5 mm bis 1,6 mm.
3.3.2 Planparallelschleifen der Proben

Um die Anforderungen des biaxialen Versuchsaufbaus genau zu erfüllen, wurden alle Proben anschließend mit der Schleifmaschine Abramin (Struers/ Willich) parallel geschliffen. Dazu wurden jeweils acht Proben auf einen Stahlprobenhalter aufgewachsen (Ocon-200Quarz Wax/ Logitech/ Glasgow). Der Stahlprobenhalter erwies sich in Vorversuchen im Vergleich zum Aluminiumprobenhalter geeigneter, da durch das erhöhte Eigengewicht des Stahles der Anpressdruck auf das Diamantschleifpapier höher ist und damit die Proben gleichmäßiger geschliffen werden. Der erste Schleifdurchgang erfolgte mit einem Diamantschleifpapier der Körnung 40 μm, der Feinschliff mit der Körnung 20 μm. Waren die Proben auf einer Seite plan geschliffen, wurden sie gewendet und analog auf der anderen Seite geschliffen.

Abb. 22: Proben auf Trägerplatte

Abb. 23: Proben beim Schleifdurchgang
Daraus resultierten planparallele Proben mit einer Genauigkeit von +/- 10 μm (fünfmal genauer, als eigentlich durch den Versuchsaufbau gefordert).

Abb. 24: Proben beim Messvorgang

Die Überprüfung der Dicke und Parallelität der Proben erfolgte grob mit der Mikrometerschraube (Abb. 24) und Messuhr. Alle Proben wiesen nach diesem Vorgang im Durchschnitt eine Dicke von 1,4 mm auf.
3.4 Bearbeitung der Proben

3.4.1 Probenverteilung

3.4.2 Schleifen der Proben

Die mit den Diamanten zu beschleifende Seite sollte in der Zugzone des biaxialen Versuchsaufbaus liegen. Der Vorgang des Beschleifens wurde mit der umkonstruierten Linearbeschleifvorrichtung durchgeführt. Dazu wurden jeweils 5 Proben mit direktem Kontakt punkt nebeneinander so auf den Stahlprobenhalter mit Wachs (Ocon-200Quarz Wax/ Logitech/ Glasgow) aufgeklebt, dass alle Plättchen mit der oberen und unteren Fase des Stahlträgers bündig abschlossen.
Material und Methode

Abb.26: Erhitzen des Stahlprobenvhalters mit Wachs

Abb.27: Proben auf Stahlprobenvhalter

Das Schleifen der Proben erfolgte nach folgendem Vorgehen: Mit einem Filzstift wurde die zu beschleifende Seite des Prüfkörpers bemalt. Dies war zur objektiven Kontrolle des Bearbeitungsvorgangs notwendig, damit ein einheitliches Schliffbild gewährleistet werden konnte. Damit der Andruck des Schleifkörpers an die Proben exakt definiert und reproduziert werden konnten, wurde mit einer Shimstockfolie (Hanel 8µm/ roeko/ Langenau) der Abstand zwischen Probekörper und Schleifkörper eingestellt (die Shimstockfolie war mit leichtem Widerstand durchziehbar). Für diesen Vorgang konnte der Querschlitten, der mit der Messuhr justierbar war, bewegt werden. Um für alle Durchgänge einen gleichen Andruck bestimmen zu können, wurde nach dieser Justierung (Abb.28) die Messuhr auf Null gestellt. Anschließend wurde die Messuhr auf 0.03 mm (Abb.29) Schleifdicke eingestellt.
3.4.3 Korundstrahlen der Proben

Das Korundstrahlen der Proben erfolgt nach folgendem Vorgehen: Mit einem Filzstift wurde eine komplette Seite eines Prüfkörpers bemalt, anschließend wurde die Farbe wieder abgestrahlt (Abb. 32; Sandmaster FG 3-82/ Wulsag/ Zofingen/ Schweiz), bis sie komplett entfernt war. Das gewährleistete, dass die komplette Oberfläche der Probe gestrahlt wurde. Alle Proben wurden mit zwei bar, 50 μm Strahlgut, aus einem Abstand von 1 cm bearbeitet. 20 Proben wurden einmal abgestrahlt, 20 Proben wurden dreimal abgestrahlt.

Abb. 32: Korundstrahlgerät
3.5 Rasterelektronenmikroskopaufnahmen (REM)

Von jeder Serie wurden nach der Bearbeitung Rasterelektronenmikroskopaufnahmen (Supra™ 55VP/ Cemini®/ Zeiss) angefertigt. Nach mehrmaligem Reinigen der Proben mit Alkohol im Ultraschallbad wurden die Proben auf einen Probenteller (0“5“ Aluminium Specimen Stubs/ Agar) geklebt (Leit-Taps/ Plano/ Marburg) und anschließend 1,5 Minuten unter Argon-Atmosphäre bei 15mA in einer Sputteranlage (SCD 030, Balzers/ Union) mit Gold bedampft.

Die besputterten Proben wurden im Rasterelektronenmikroskop (Abb. 34) bei 200-facher und 500-facher Vergrößerung dargestellt. Um eine etwaige Verzerrung des Bildes zu vermeiden, wurde darauf geachtet, eine möglichst senkrechte Aufsicht auf die Schnitte zu bekommen.
Abb. 34: Rasterelektronenmikroskop
3.6 Bestimmung der Dicke und Parallelität der Proben

Die genaue Dicke und Parallelität der Prüfkörper bestimmte folgendes Verfahren: Die Probe wurde auf eine Schablone aufgelegt und ein Strich im 45 Gradwinkel gezogen, dann wurde die Probe um 90 Grad gedreht und die Prozedur wiederholt. Der Schnittpunkt der Linien beschreibt den exakten Mittelpunkt des Probekörpers.

3.7 Alterung der Proben

Die zu alternden Proben wurden zufällig aus den jeweiligen Untergruppen ausgewählt und wurden anschließend über die fiktive Tragedauer von 5 Jahren gealtert. Dazu wurden sie im „Münchner Kausimulator“ 1,2 Millionen Lastwechseln und 10000 Temperaturwechseln von 5 °C auf 55 °C unterzogen.

Die Lasteinwirkung erfolgte zentral auf die Probe mit 50 N. In Anlehnung an den biaxialen Bruchversuch wurde der Stempel möglichst dünn (3 mm Durchmesser) gewählt und zur Vermeidung von Punktlasten, analog zu bereits in der Poliklinik durchgeführten Untersuchungen, mit einem Schrumpfschlauch ummantelt.
3.8 Bruchtest

Anschließend wurden alle Proben in der Universalprüfmaschine (Zwick/ Ulm) bis zu ihrem Bruch belastet. Dabei lag die bearbeitete Seite in der Zugzone. Um die Fehlermöglichkeit zu minimieren, die Streuung der Ergebnisse so gering wie möglich zu halten und ein reproduzierbares Vorgehen sicherzustellen, wurde eine Positionierungshilfe für das Einlegen der Probekörper verwendet.

Abb.39: Probenaufnahme und Positionierungshilfe

Die Vorschubgeschwindigkeit des Stempels betrug 0,5 mm pro Minute. Die Universalprüfmaschine trug die gemessenen Werte in einem Spannungsdehnungsdiagramm auf und ermittelt die Bruchlast.

Abb.40: Stempel und Probe
3.9 Statistische Auswertung

Maximum: größter gemessener Wert, der kein Ausreißer / Extremwert ist

Median: Wert, über und unter dem jeweils die Hälfte der Werte liegen

Minimum: kleinster gemessener Wert, der kein Ausreißer / Extremwert ist

Abb. 41: Erklärung des Box-Plots

Das Signifikanzniveau wurde auf p< 0.05 festgelegt.
3.10 Berechnung der Biegefestigkeit

Aus den gewonnenen Bruchlasten ist es möglich, die Biegefestigkeit der einzelnen Proben nach folgender Formel zu errechnen:

\[S = -0,2387 \frac{P (X-Y)}{d^2} \]

Hierin ist:
- \(S \) die maximale Biegefestigkeit in Megapascal
- \(P \) die Gesamtbruchlast in Newton
- \(X = (1+v) \ln\left(\frac{r_2}{r_3}\right)^2 + \frac{(1-v)}{2}\left(\frac{r_2}{r_3}\right)^2 \)
- \(Y = (1+v)\left[1 + \ln\left(\frac{r_1}{r_3}\right)^2\right] + (1-v)(r_1-r_3)^2 \)

Hierin ist:
- \(v \) die Poisson-Verteilung, Wert hier 0,2387
- \(r_1 \) der Radius der Trägerscheibe in mm
- \(r_2 \) der Radius des belasteten Bereichs in mm
- \(r_3 \) der Radius des Probekörpers in mm
- \(d \) die Dicke des Probekörpers bei Bruchbeginn in mm
4 Ergebnisse

4.1 Biegefestigkeitswerte der Oberflächenbearbeitung

4.1.1 Rot-Ring bearbeitet, nicht gealtert

Abb.42: Säulendiagramm der Rot-Ring bearbeiteten nicht gealterten Proben

Tab.4: Biegefestigkeitswerte der Rot-Ring bearbeiteten nicht gealterten Proben

<table>
<thead>
<tr>
<th>Rot-Ring bearbeitet</th>
<th>Probennummer</th>
<th>Biegefestigkeit in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>897,28</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>866,20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>879,89</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>975,24</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>900,67</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1084,30</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1130,57</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>831,27</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>894,19</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>870,80</td>
</tr>
</tbody>
</table>
4.1.2 Blau-Ring bearbeitet, nicht gealtert

Bei den Proben, die mit Blau-Ring Diamanten bearbeitet wurden, lagen die errechneten Biegefestigkeiten zwischen 665,48 MPa und 1025,54 MPa. Der Mittelwert lag bei 871,32 MPa mit einer Standardabweichung von ± 102,24 MPa.

Abb. 43: Säulendiagramm der Blau-Ring bearbeiteten nicht gealterten Proben

<table>
<thead>
<tr>
<th>Blau-Ring bearbeitet</th>
<th>Biegefestigkeit in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probennummer:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>897,99</td>
</tr>
<tr>
<td>2</td>
<td>736,03</td>
</tr>
<tr>
<td>3</td>
<td>773,16</td>
</tr>
<tr>
<td>4</td>
<td>832,67</td>
</tr>
<tr>
<td>5</td>
<td>665,48</td>
</tr>
<tr>
<td>6</td>
<td>771,40</td>
</tr>
<tr>
<td>7</td>
<td>1025,54</td>
</tr>
<tr>
<td>8</td>
<td>838,71</td>
</tr>
<tr>
<td>9</td>
<td>920,67</td>
</tr>
<tr>
<td>10</td>
<td>809,43</td>
</tr>
</tbody>
</table>

Tab. 5: Biegefestigkeitswerte der Blau-Ring bearbeiteten nicht gealterten Proben
4.1.3 Grün-Ring bearbeitet, nicht gealtert

Die Proben, die mit Grün-Ring Diamanten bearbeitet wurden, lieferten einen Maximalwert von 1011,00 MPa und einen Minimalwert von 645,04 MPa. Daraus errechnete sich eine mittlere Biegefestigkeit von 844,09 MPa mit einer Standardabweichung von ± 109,74 MPa.

![Säulendiagramm der Grün-Ring bearbeiteten nicht gealterten Proben](image)

Tab.6: Biegefestigkeitswerte der Grün-Ring bearbeiteten nicht gealterten Proben

<table>
<thead>
<tr>
<th>Grün-Ring bearbeitet</th>
<th>Biegefestigkeit in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probennummer:</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1011,00</td>
</tr>
<tr>
<td>2</td>
<td>704,37</td>
</tr>
<tr>
<td>3</td>
<td>868,39</td>
</tr>
<tr>
<td>4</td>
<td>867,41</td>
</tr>
<tr>
<td>5</td>
<td>714,29</td>
</tr>
<tr>
<td>6</td>
<td>731,15</td>
</tr>
<tr>
<td>7</td>
<td>776,75</td>
</tr>
<tr>
<td>8</td>
<td>645,04</td>
</tr>
<tr>
<td>9</td>
<td>763,86</td>
</tr>
<tr>
<td>10</td>
<td>887,48</td>
</tr>
</tbody>
</table>
4.1.4 1x korundgestrahlt, nicht gealtert

Abb.45: Säulendiagramm der einmal korundgestrahlten nicht gealterten Proben

Tab.7: Biegefestigkeitswerte der einmal korundgestrahlten nicht gealterten Proben
4.1.5 3x korundgestrahlt, nicht gealtert

Bei den Proben, die 3x korundgestrahlt wurden, lagen die errechneten Biegefestigkeiten zwischen 1165,13 MPa und 896,40 MPa. Der Mittelwert lag bei 1040,00 MPa mit einer Standardabweichung von ± 112,72 MPa.

![3x korundgestrahlt](image)

Abb.46: Säulendiagramm der dreimal korundgestrahlten nicht gealterten Proben

<table>
<thead>
<tr>
<th>Probennummer</th>
<th>Biegefestigkeit in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>996,23</td>
</tr>
<tr>
<td>2</td>
<td>1165,13</td>
</tr>
<tr>
<td>3</td>
<td>896,40</td>
</tr>
<tr>
<td>4</td>
<td>982,76</td>
</tr>
<tr>
<td>5</td>
<td>1074,89</td>
</tr>
<tr>
<td>6</td>
<td>956,12</td>
</tr>
<tr>
<td>7</td>
<td>946,93</td>
</tr>
<tr>
<td>8</td>
<td>1126,38</td>
</tr>
<tr>
<td>9</td>
<td>1005,68</td>
</tr>
<tr>
<td>10</td>
<td>775,86</td>
</tr>
</tbody>
</table>

Tab.8: Biegefestigkeitswerte der dreimal korundgestrahlten nicht gealterten Proben
4.1.6 Unbearbeitet, nicht gealtert

![Säulendiagramm der unbearbeiteten nicht gealterten Proben](image-url)

Abb. 47: Säulendiagramm der unbearbeiteten nicht gealterten Proben

<table>
<thead>
<tr>
<th>Unbearbeitet</th>
<th>Biegefestigkeit in MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probennummer</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1797,45</td>
</tr>
<tr>
<td>2</td>
<td>1418,57</td>
</tr>
<tr>
<td>3</td>
<td>1699,86</td>
</tr>
<tr>
<td>4</td>
<td>1434,65</td>
</tr>
<tr>
<td>5</td>
<td>1705,54</td>
</tr>
<tr>
<td>6</td>
<td>1711,54</td>
</tr>
<tr>
<td>7</td>
<td>1667,25</td>
</tr>
<tr>
<td>8</td>
<td>1681,05</td>
</tr>
<tr>
<td>9</td>
<td>1132,62</td>
</tr>
<tr>
<td>10</td>
<td>1638,40</td>
</tr>
<tr>
<td>11</td>
<td>1481,62</td>
</tr>
<tr>
<td>12</td>
<td>1591,39</td>
</tr>
<tr>
<td>13</td>
<td>1434,81</td>
</tr>
<tr>
<td>14</td>
<td>1272,93</td>
</tr>
<tr>
<td>15</td>
<td>1416,45</td>
</tr>
<tr>
<td>16</td>
<td>1731,07</td>
</tr>
</tbody>
</table>

Tab. 9: Biegefestigkeitswerte der unbearbeiteten nicht gealterten Proben
4.2 Vergleich aller untersuchten Proben

Betrachtet man die Mittelwerte der Biegefestigkeiten und will so eine Rangfolge der Auswirkung auf die Oberflächenbearbeitung erstellen, so stehen an der Spitze die unbearbeiteten Proben mit 1529,95 MPa, gefolgt von den dreimal korundgestrahlten Proben mit 1065,97 MPa.

4.3 Vergleich der nicht gealterten mit den gealterten Proben

Abb. 49: Boxplot-Diagramm der nicht gealterten Proben

Abb. 50: Boxplot-Diagramm der gealterten Proben
4.4 Vergleich der bearbeiteten Proben

Vergleicht man die Rot-Ring bearbeiteten Proben mit den Grün-Ring bearbeiteten Proben, lässt sich statistisch gesehen ein signifikanter Unterschied von 0.009 errechnen. Beim Vergleich der Rot-Ring bearbeiteten Proben mit den Blau-Ring bearbeiteten Proben lässt ein signifikanter Unterschied mit einem Wert von 0.043 erkennen.

<table>
<thead>
<tr>
<th>Vergleich</th>
<th>Signifikanz p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rot-Ring / Grün-Ring</td>
<td>0.009</td>
</tr>
<tr>
<td>Rot-Ring / Blau-Ring</td>
<td>0.043</td>
</tr>
<tr>
<td>Blau-Ring / Grün-Ring</td>
<td>0.436</td>
</tr>
<tr>
<td>1x korundgestrahlt / 3x korundgestrahlt</td>
<td>0.481</td>
</tr>
</tbody>
</table>

Tab.10: Signifikanzwerte der verglichenen Proben anhand des Mann-Whitney-U Tests
4.5 Berechnung des Weibull-Moduls

In diesem Diagramm sind die Weibull-Module m nebeneinander aufgetragen, wobei der rote Balken die nicht gealterten und der graue die gealterten Proben anzeigt.

Abb. 52: Grafische Darstellung des Weibull-Moduls

Oberflächenbearbeitung 1: Rot-Ring
Oberflächenbearbeitung 2: Blau-Ring
Oberflächenbearbeitung 3: Grün-Ring
Oberflächenbearbeitung 4: 1x korundgestrahlt
Oberflächenbearbeitung 5: 3x korundgestrahlt

<table>
<thead>
<tr>
<th>Oberflächenbearbeitung</th>
<th>Nicht gealtert</th>
<th>Gealtert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rot-Ring bearbeitet</td>
<td>9,32</td>
<td>13,64</td>
</tr>
<tr>
<td>Blau-Ring bearbeitet</td>
<td>8,72</td>
<td>8,91</td>
</tr>
<tr>
<td>Grün-Ring bearbeitet</td>
<td>7,81</td>
<td>10,95</td>
</tr>
<tr>
<td>1x korundgestrahlt</td>
<td>7,79</td>
<td>9,8</td>
</tr>
<tr>
<td>3x korundgestrahlt</td>
<td>10,6</td>
<td>6,89</td>
</tr>
</tbody>
</table>

Tab. 11: Werte des Weibull-Moduls

Vergleicht man die nicht gealterten Proben mit den gealterten Proben anhand des Weibull-Moduls, so liefern die gealterten Proben - mit Ausnahme der 3x korundgestrahlteten Proben - in allen Bearbeitungsformen einen höheren Weibullparameter als die nicht gealterten Proben.
4.6 Substanzabtrag der unterschiedlichen Bearbeitungsformen

Da alle Proben im Durchschnitt vor der Bearbeitung eine Dicke von 1,4 mm aufwiesen, konnte in dieser Arbeit auch eine Aussage über den Substanzabtrag, der durch die unterschiedliche Bearbeitung resultierte, gemacht werden.

<table>
<thead>
<tr>
<th>Bearbeitungsformen</th>
<th>Gemittelte Dicke nach Bearbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rot-Ring bearbeitet</td>
<td>1,374 mm</td>
</tr>
<tr>
<td>Blau-Ring bearbeitet</td>
<td>1,394 mm</td>
</tr>
<tr>
<td>Grün-Ring bearbeitet</td>
<td>1,394 mm</td>
</tr>
<tr>
<td>1x korundgestrahlt</td>
<td>1,398 mm</td>
</tr>
<tr>
<td>3x korundgestrahlt</td>
<td>1,397 mm</td>
</tr>
</tbody>
</table>

Tab.12: Gemittelte Dicken nach unterschiedlichen Bearbeitungsformen

4.7 Auswertung der REM-Aufnahmen

4.7.1 Rot-Ring bearbeitet

Nach der Bearbeitung mit einem Rot-Ring Diamanten stellt sich bei beiden Vergrößerungen ein gleichmäßiges Schliffbild mit Riefen dar. Es sind keine unbearbeiteten Flächen zu erkennen. Quer zur Bearbeitungsrichtung sind kleine Risse erkennbar. In der 200-fachen Vergrößerung lassen sich am rechten Bildrand kleine Schuppen erkennen.
4.7.2 Blau-Ring bearbeitet

4.7.3 Grün-Ring bearbeitet

4.7.4 1x korundgestrahlt

Nach einmaligem Korundstrahlen stellt sich in beiden Vergrößerungen eine strukturlose, zerklüftete Oberfläche dar, die typischerweise bei Bearbeitung mit losem Korn zustande kommt.
4.7.5 3x korundgestrahlt

Nach dreimaligem Abstrahlen der Proben entsteht eine noch größere strukturlose, zerklüftete Oberfläche. Bei 500facher Vergrößerung lassen sich sogar Abplatzungen und Aufwerfungen erkennen.
4.7.6 Unbearbeitet

In beiden Vergrößerungen lassen sich nur unbearbeitete Oberflächen erkennen. Es sind keine Inhomogenitäten erkennbar.
5 Diskussion

5.1 Zirkoniumoxid

5.2 In-vitro-Untersuchung

5.3 Material und Methode

5.3.1 Versuchsaufbau

Um den dafür benötigten Versuchsaufbau so praxisnah wie möglich gestalten zu können und darüber hinaus eine Reproduzierbarkeit zu gewährleisten, war für diese spezielle Untersuchung der Umbau einer Linearschleifvorrichtung notwendig.
Da auch im Labor die gesinterten Zirkoniumoxidgerüste sowohl mit Wasserkühlung als auch mit einer Turbine nachbearbeitet werden - wie auch einige Hersteller empfehlen [50, 135] - musste eine spezielle Turbinenhalterung für die Linearschleifvorrichtung hergestellt werden. Diese wurde so konstruiert, dass die Turbine rasterlos in der Höhe einstellbar war. Zusätzlich war bei der Konstruktion zu beachten, dass die Feststellschraube für die Diamantschleifkörper frei zugängig war, damit beim Wechsel der Schleifkörper an der Feineinstellung nichts verändert werden musste.

Die Festlegung des Gewichtes, mit dem der Schlitten über die Umlenkrolle bewegt wurde, gestaltete sich in diesem Versuchsaufbau sehr schwierig.
Hierfür mussten mehrere Probedurchläufe absolviert werden, da für alle drei Diamantkörnungen ein gleiches Gewicht bestimmt werden musste. Da aber jede Körnung eine andere Oberflächenreibung auf dem Probekörper aufwies, konnte der Vorschub nicht exakt für alle Bearbeitungsformen gleich definiert werden. Der Rot-Ring Diamant hatte durch seine sehr glatte Oberfläche eine wesentlich geringere Reibung auf den Prüfkörpern als der Blau-Ring und der Grün-Ring Diamant. Auch beim Schleifvorgang selbst war der Vorlauf nicht auf der ganzen Oberfläche gleich. Durch die runde Form der Proben lief der Schleifkörper wegen der größeren Auflagefläche in der Mitte langsamer als am Rand.

5.3.2 Herstellung der Proben

Das Ziel der Probenaufbereitung sah vor, die Bestimmung des biaxialen Bruchversuchs nach EN ISO 6872 zu erfüllen. Hierfür mussten die Probenplättchen mit einem Durchmesser von 15 mm, einer Dicke von 1,4 mm und planparallelen Seiten mit einer Toleranz von 0,05 mm hergestellt werden.
Die vom Hersteller vorgesinterten Rohlinge sind durch die industrielle Herstellung sehr fein und homogen und ließen sich gut bearbeiten.

Dies muss aber auch unter ausreichender Wasserkühlung und mit nicht zu hohem Anpressdruck geschehen. Ansonsten splittert der Rohling oder es werden Mikroschäden gesetzt, die zu einem frühzeitigen Bruch der Versorgung führen können [79].

So wurden die Weißkörper mit dem Accutom 2 (Struers / Willich) unter dauernder Wasserkühlung und leichtem Vorschub von 3 mm/min in 40 Scheiben a 2 mm geschnitten. Das Sintern erfolgt im herstellereigenen Brennofen nach Herstellerangaben, um eine vorhersehbare Schrumpfung und damit sehr homogene Prüfkörper zu erhalten. Dies entspricht der Herstellung von Zahnersatz aus Zirkoniumoxid. Unter wiederholter ständiger Wasserkühlung wurden mit der Schleifmaschine Abramin (Struers/Willich) die gesinterten Keramikscheiben planparallel auf die vorgeschriebenen Maße geschliffen. Dabei musste darauf geachtet werden, dass in der Vorbereitung die Prüfscheiben exakt plan und in einem bestimmten Abstand auf den Stahlprobenhalter mit Wachs (Ocon-200-Quarz Wax/ Logitech/ Glasgow) fixiert wurden. Wurde ein Prüfkörper nicht genau plan auf dem Halter befestigt, konnte dieser auch nicht planparallel geschliffen werden und erfüllte so die Norm nicht. Zwar kann auch diese Bearbeitung der Proben schon einen entscheidenden Einfluss auf die Biegefestigkeit haben, aber die unbearbeiteten Proben, die in dieser Arbeit als Vergleichsgruppe herangezogen wurden, musste für diese Untersuchung der gleichen Prozedur unterzogen werden, da diese ebenso der ISO-Norm entsprachen mussten.

Das genaue Einstellen des Substanzabtrages an der Schleifmaschine stellte sich als schwierig heraus. Zwar konnte man eine Einstellung auf 1/100 mm vornehmen, doch das Messen der Keramikscheibendicke war durch die Maschine ungenau. Zum einen war der Substanzabtrag nicht identisch mit der Adjustierung der Einstellschraube am Gerät, zum anderen waren die Proben vor dem Schleifvorgang nicht alle gleich dick.

So war es erforderlich, die Zirkoniumscheiben immer wieder vom Probenhalter abzunehmen und deren Dicke nachzumessen.
Die Körnung des Diamantschleifpapiers wechselte von 40 \(\mu m\) auf 20 \(\mu m\) im Endschliff, um eine sehr glatte und feine Oberfläche zu erreichen. Mit der Säuberung (Alkohol, Solvitan/Voco/Cuxhaven) waren die Probenplättchen nun bereit zum Bearbeiten.

5.3.3 Bearbeitung der Proben

Keramische Materialien können Spannungspitzen nur schlecht kompensieren. Diese Spannungen konzentrieren sich an Defekten oder Mikrorissen, die dann zu Ausgangspunkten von Rissen werden können und sich durch langsames Risswachstum weiter ausbreiten und damit die Belastbarkeit der Restauration vermindern [53].

Durch die identische Probengeometrie aller Proben sowie die exakten reproduzierbaren Bedingungen während des Schädigungsprozesses sind mögliche Dimensionsabweichungen zwischen den einzelnen Schadstellen zu vernachlässigen. Der Einfluss einer mechanischen Vorschädigung an klinknahen Restaurationen wurde bislang noch nicht untersucht. Zang et al. benutzte einen sphärischen Indenter, um eine Vorschädigung zu erzeugen [143, 144], ebenso wie Lee et al., die zusätzlich noch einen Ritz an der Oberfläche anbrachten [75]. Kliniknähere Schädigungen nahmen Fischer et al. mit Hilfe eines rotierenden Diamantschleifers bei unterschiedlichen Anpressdrücken und Umdrehungsgeschwindigkeiten vor [35]. Ähnliche Versuchsbedingungen wurden in einer Arbeit von Luthardt et al. gewählt [79].
Die genannten Autoren beschrieben allesamt eine signifikante Abnahme der Festigkeit infolge der Bearbeitung. Alle bisherigen Arbeiten zur mechanischen Schädigung von Zirkoniumoxidkeramik wurden an Probekörpern einfacher Geometrie durchgeführt, wie auch in dieser Arbeit.

Für die Bearbeitung der Proben wurden diese mit direktem Kontaktpunkt nebeneinander so auf den Stahlprobenhalter mit Wachs aufgeklebt, dass alle Proben mit der oberen und unteren Fase des Probenhauters bündig abschlossen. Auch hier musste exakt darauf geachtet werden, dass die Proben plan aufgeklebt wurden, um eine planparallele Bearbeitung gewährleisten zu können. Das Beschleifen der Proben erfolgte nach folgendem Procedere: Mit einem Filzstift wurde die zu beschleifende Seite des Prüfkörpers bemalt, damit das gleichmäßige und einheitliche bearbeiten kontrolliert werden konnte.

Nach dem Vorgang der genauen Einstellung wurde die Messuhr auf Null gestellt. Anschließend wurde der Horizontalschlitten so weit nach links gefahren bis die Messuhr 0.03 mm Schleifdicke anzeigte.

Dies gestaltete sich wegen der Lagertoleranz des Diamanten in der Turbine sehr schwierig, da bei größerem Andruck der Diamantschleifkörper nicht mehr plan auf dem Probeplättchen auflag. Das hatte zur Folge, dass die Proben bei einem einmaligen Bearbeiten nur an der oberen Seite beschliffen werden konnten (Abb. 65).

Damit alle oben genannten Faktoren beachtet werden konnten, wurden die Proben mit leichtem Andruck, aber dafür mehrmalig geschliffen.
Zunächst erfolgte das Beschleifen der Proben auf einer Seite. Anschließend wurde der Probenhalter gewendet und die andere Hälfte der Proben analog bearbeitet. Hier wäre daran zu denken, dass die mehrmalige Bearbeitung die Proben zu sehr geschädigt hat, jedoch wurde kein signifikanter Unterschied zwischen den Rot-Ring bearbeiteten und den 1x korundgestrahlten Proben ermittelt.

Die Vorschädigung keramischer Prüfkörper fand bereits in zahlreichen Untersuchungen Anwendung, um die Bruchzähigkeit zu bestimmen bzw. den Einfluss auf die Dauerfestigkeit aufzuzeigen. Tinschert et al. [131] schädigten vollkeramische Prüfkörper aus mit Zirkoniumoxidanteilen modifizierter InCeram Alumina-Keramik mit einem 100 µm dicken Sägeblatt und einer relativen Kerbtiefe von 50-80 µm, bevor an ihnen ein Biegeversuch durchgeführt wurde.

Diskussion

In der Literatur finden sich gegensätzliche Angaben zum Einfluss des Strahlprozesses auf die Festigkeit von Zirkoniumoxidkeramiken. Während Zhang et al. von einer signifikanten Abnahme der Festigkeit durch auftretende Defekte an der Keramikoberfläche berichten [144], wurde in zahlreichen anderen Untersuchungen ein festigkeitssteigernder Einfluss des Strahlprozesses gefunden, der auf Druckspannungen im Bereich der oberflächlichen Schichten zurückgeführt wird [21, 44, 68].

Die Proben, die korundgestrahlt wurden, wurden ebenfalls mit Filzstift bemalt. Anschließend wurde überall auf der Probe mit dem Sandmaster FG 3-82 / 50 my bei 2 bar gestrahlt, bis die Farbe ganz entfernt war. Somit konnte gewährleistet werden, dass die komplette Oberfläche der Probe gestrahlt wurde.

5.3.4 Alterung

Als Faktoren bei der Simulation einer mehrjährigen Tragedauer kamen die Wasserlagerung sowie eine thermische und mechanische Wechselbelastung zum Einsatz. Dazu sind jeweils zehn Proben jeder Bearbeitungsform zufällig ausgewählt und im „Münchner Kausimulator“ bei 1,2 Millionen Lastwechseln und 10000 Temperaturwechseln von 5 °C auf 55 °C (entspricht einer 5 Jahresbelastung) gealtert worden. Die Lasteinleitung erfolgte zentral auf die Probe mit 50 N. An Anlehnung an den biaxialen Bruchversuch wurde der Stempel möglichst dünn (3 mm Durchmesser) gewählt und zur Vermeidung von Punktlasten, analog zu bereits in der Poliklinik durchgeführten Untersuchungen, mit einem Schrumpfschlauch ummantelt. Die Probe wurde auf einem mit Polyamid ausgekleideten Hohlzylinder gelagert.

Die Behandlung sollte die zyklischen Temperatur Schwankungen simulieren, denen Zahnersatz bei der Aufnahme unterschiedlicher Nahrungsmittel und Getränke sowie durch die Atemluft ausgesetzt ist. Die wechselnden thermischen Belastungen können innerhalb eines Werkstoffs zu Spannungen führen, durch die wiederum eine Rissbildung begünstigt wird. Gerade Keramiken sind aufgrund ihrer Sprödigkeit empfindlich gegenüber Spannungen, die sich in einem Risswachstum manifestieren [1]. Überraschenderweise hatte die Alterung in dieser Untersuchung trotz der Bearbeitung keinen signifikanten Einfluss auf die Biegefestigkeit von Zirkoniumoxid.
Eine denkbare Möglichkeit wäre, dass durch die Bearbeitung die Keramik unter eine gewisse Vorspannung gesetzt wurde und sie somit widerstandsfähiger gegen Kraft von außen ist. Denkbar wäre auch, dass sich durch das Beschleifen mit der Turbine (300 000 U/min) feine Schleifpartikel durch die Hitze in die Defekte eingefügt haben und es somit zu keinem so hohen Festigkeitsverlust der Keramik kam.

5.3.5 Bestimmung der Dicke und Parallelität

Da der Andruck bei allen bearbeiteten Proben gleich war, lässt sich diese Feststellung anhand der groben Körnung der Blau-Ring und Grün-Ring Diamanten erklären.

Als Ergebnis dieser Feststellung ist zu sagen, dass für einen notwendigen Substanzabtrag ein Rot-Ring Diamant empfehlenswert ist, weil dieser bei gleichem Andruck mehr Substanz abträgt.

5.3.6 Bruchversuch

Zuletzt wurden alle Prüfkörper in der Universalprüfmaschine (Zwick / Ulm) biaxial bis zum vollständigen Bruch belastet. Durch die Sprödigkeit keramischer Werkstoffe kommt es bei zu hoher Belastung zu einer Komplettfraktur [14, 24, 33, 41, 46, 113].

Die Schwierigkeit lag in der genauen Fixierung des Stempels im Probenmittelpunkt, der einen idealen Druckaufbau gewährleisten soll. Zwar war die Mitte vorher markiert worden, doch beim Einlegen der Keramikscheiben in die Prüfmaschine war die Kontrolle nur rein optisch möglich (Abb. 66).

Doch die Vorteile des biaxialen Biegetests gegenüber anderen sind die verlässlicheren Festigkeitsdaten und die geringere Empfindlichkeit hinsichtlich der Verarbeitungsfehler [38].

Nach dem Messen der Bruchkräfte wurde die Biegefestigkeit der Proben errechnet und statistisch miteinander verglichen. Hierfür kam das Statistikprogramm SPSS 14.0 (SPSS-Inc.Chicago/USA) zur Anwendung.
5.4 Ergebnisse

Viele Hersteller empfehlen das Schleifen von Zirkoniumdioxid ausschließlich mit feinen Diamanten [49, 141], was durch diese Untersuchung unterstützend bestätigt werden kann.

Die Blau-Ring bearbeiteten Proben wiesen als einzige Bearbeitungsform statistisch gesehen nach der Alterung eine signifikant geringere Festigkeit auf.

Dies lässt sich dadurch erklären, dass bei dieser Bearbeitungsform das größte Schliffbild entstanden ist. Betrachtet man hierzu die REM-Aufnahmen der unterschiedlichen Bearbeitungsformen, so lässt sich erkennen, dass die Blau-Ring bearbeiteten Proben das ungleichmäßigste Schliffbild und die defektreichste Oberfläche nach der Bearbeitung aufwiesen.
Es ist bekannt, dass konventionelle Keramiken unter Wassereinfluss, bedingt durch den Rebinder-Effekt und die Spannungsrissskorrosion, einer Festigkeitsminderung unterliegen. Der Rebinder-Effekt besagt, dass in Mikrorisse eindringende Flüssigkeit, wie z. B. Speichel, einen nach innen gerichteten Druck erzeugen, der zur Vergrößerung bestehender Risse beiträgt [45].

Betrachtet man die REM-Aufnahmen, stellt sich die Frage, warum die Bearbeitung mit einem Grün-Ring Diamanten scheinbar keine so großen Defekte verursacht. Dies lässt sich vielleicht anhand des Versuchsaufbaus erklären.

Wie bereits erwähnt wurde der Andruck für alle Körnungen gleich definiert, doch stellte sich die Einstellung wegen der Lagertoleranz der Diamanten in der Turbine sehr schwierig dar. Gerade bei den Grün-Ring Diamanten war es nicht möglich, die ganze Fläche des Schleifkörpers an die Proben anlegen zu lassen, da die grob abstehenden Diamantkörner dies verhinderten. Somit entstand trotz der größeren Diamantierung kein größeres Schliffbild, denn die vorstehenden Diamantkörner bewirkten nur ein Ritzen auf der Oberfläche. Dadurch war auch die Vorschädigung nicht so groß.
Bei den Schleifarbeiten mit den Rot-Ring Diamanten gestaltete sich die Einstellung am leichtesten. Außerdem erhielt man mit dieser Bearbeitungsform das homogenste Schliffbild.

Da aber jede Bearbeitung eine Vorschädigung des Zirkoniumoxids mit sich bringt, stellt sich die Frage, warum alle anderen Bearbeitungsformen keine signifikanten Unterschiede nach der Alterung aufweisen. Denkbar wäre eine zu kurze Wasserlagerung während der Alterungssimulation.

Rosentritt et al. gehen davon aus, dass eine Feuchtigkeitsexposition von nur wenigen Tagen lediglich zu einer oberflächlichen Diffusion von Wassermolekülen in die Keramik führt. Die schon durch die alleinige Anwesenheit von Wasser ausgelösten Degradationsprozesse üben in dieser Zeit nur einen geringen Einfluss auf die Gesamtfestigkeit der Restauration aus [113]. Drummond beispielsweise beschreibt, dass es erst nach ca. 300 Tagen zu einer geringen Abnahme der Festigkeit von Zirkoniumoxid im wässrigen Milieu kommt [25].

Ein anderer Grund, warum die Alterung in dieser Arbeit keinen entscheidenden Einfluss auf die Festigkeit von Zirkoniumoxid hatte, wäre eine zu geringe Kaukraft in dieser Untersuchung.

Unter diesem Gesichtspunkt erscheint eine Steigerung der Schwellast durchaus berechtigt, da so die Belastbarkeit der Restaurationen auch unter stärkerer mechanischer Beanspruchung, sei es durch Bruxismus oder sehr harte Nahrung, besser abgeschätzt werden kann.

Interessant ist, dass ein einmaliges Korundstrahlen im Vergleich zur Rot-Ring Diamant Bearbeitung keine signifikanten Unterschiede zeigt. Diese Feststellung belegt, dass sogar ein einmaliges Korundstrahlen keinen geringeren Einfluss auf die Biegefestigkeit hat.

6 Zusammenfassung

Das Ziel dieser In-vitro-Studie war es, die Biegefestigkeit von Zirkoniumdioxid nach unterschiedlicher Oberflächenbearbeitung und künstlicher Alterung zu untersuchen. Die Probenaufbereitung sah vor, die Bestimmung des biaxialen Bruchversuchs nach EN ISO 6872 zu erfüllen. Dazu wurden 100 Probenplättchen mit einem Durchmesser von 15 mm, einer Dicke von 1,4 mm und planparallelen Seiten mit einer Toleranz von 0,05 mm hergestellt. Für jede der fünf unterschiedlichen Bearbeitungsformen waren 20 Plättchen vorgesehen: Rot-Ring-Diamant, Blau-Ring-Diamant, Grün-Ring-Diamant, einmal korundstrahlen, dreimal korundstrahlen.

Als Ergebnis dieser Untersuchung stellte sich heraus, dass jede Bearbeitung einen entscheidenden Einfluss auf die Biegefestigkeit von Zirkoniumdioxid hat, wobei sich jedoch das Korundstrahlen am wenigsten auswirkt, aber dafür am wenigsten Abtrag bringt. Bei den Schleifuntersuchungen überragt der Rot Ring Diamant, der zudem noch den höchsten Substanzabtrag lieferte.

6.1 Schlussfolgerung für die Praxis

Diese aufwändige Untersuchung bestätigt, dass die Unversehrtheit und Glätte der Oberfläche des gesinterten Zirkonoxidgerüstes entscheidend für die Biegefestigkeit ist. Jede Nacharbeitung verursacht eine Schädigung des Zirkoniumdioxids und somit einen Qualitätsverlust, deshalb sollte sie wenn möglich vermieden werden.

Auch Korundstrahlen, wie es oft zum Säubern der Gerüste verwendet wird, sollte vermieden werden, da es bei dieser Bearbeitungsform zur Schwächung des Zirkonoxids kommen kann. [11, 130, 133, 134, 136, 137]. Bereiche, die im klinischen Einsatz stark unter Zugbelastung stehen, wie zum Beispiel Konnektoren bei Brückenkonstruktionen, sollten nach Möglichkeit ausgespart werden. Zwar kehrt ein Regenerationsbrand die Phasenumwandlungen an der Oberfläche um, er ist aber nicht geeignet, die entstandenen Mikrorisse, die durch grobe Nachbearbeitungen entstandene sind, wieder rückgängig zu machen [51].

Abschließend ist als Ergebnis zu dieser Untersuchung festzuhalten, dass mit jeder Oberflächenbearbeitung ein Biegefestigkeitsverlust einhergeht.
7 Literaturverzeichnis

Quintessenz 44, 529-542; 689-697 (1993).

13. Cales B.: Zirconia as a sliding material: histologic, laboratory and clinical data.

47. **Hahn R., Löst C.:** Konventionelle Dentalporzellane versus bruchzähe Hochleistungskeramiken.

48. **Hannink R. H. J., Kelly P. M., Meddle B.C.:** Transformation toughening in zirconia containing ceramics.

49. **Hennicke, H.W.:** Zum Begriff Keramik und zur Einteilung keramischer Werkstoffe.

50. **Herstellerinformation: Degu Dent**

51. **Herstellerinformation: Präparations- u. Verarbeitungsgrundlagen.**
Lava, 3MESPE

52. **Herstellerinformation: Vita In-Ceram**

53. **Hessert R:** Bearbeitungseigenspannungen, Randschichtschädigungen und Festigkeiten geschliffener Al2O3 – und ZrO2 – Keramiken.
Diss Univ Karlsruhe (1998).

Hanser Verlag, München (1997).

60. **Informationszentrum Technische Keramik:** Brevier Technische Keramik. Fahner Verlag, Lauf (1999).

64. **Kappert H. F., Knode H., Manzotti L.**: Metallfreie Brücken für den Seitenzahnbereich.

68. **Kosmac T., Oblak C., Jevnikar P., Funduk N., Marion L.**: Strength and reliability of surface treated Y – TZP dental ceramics.

69. **Kosmac T., Oblak C., Jevnikar P., Funduk N., Marion L.**: The effect of surface grinding and sandblasting on flexural strength and reliability of Y – TZP zirconia ceramic.

90. **Mehl A.:** Moderne CAD/CAM-Technologie in der Zahnheilkunde.
 www.ag-keramik.de

91. **Mehl A.:** Sind CAD/CAM und Vollkeramik die richtigen Partner?
 www.ag-keramik.de

93. **Munz D., Fett T.:** Mechanisches Verhalten keramischer Werkstoffe.

94. **Nielsen R.:** Zirconium and zirconium compounds. In: Gerhartz, W. (Hrsg.):
 Ullmann`s Encyclopedia of Industrial Chemistry.

95. **Nose T., Fujii T.:** Evaluation of fracture toughness for ceramic materials by a single-edge-precracked-beam method.

96. **Oh W., Gotzen N., Anusavice K. J.:** Influence of connector design on fracture probability of ceramic fixed-partial dentures.

97. **Opferkuch S. Zmt.:** Das richtige Werkzeug.
 Dental-labor LIV, Heft 5/(2006).

98. **Pfeiffer P., Marx R.:** Temperaturbelastungen von Adhäsivbrücken und ihre Auswirkungen auf die Verbundfestigkeit der Klebeverbindung.
3M ESPE AG; 82229 Seefeld (2004).

100. **Pröbster L.**: Die Entwicklung der vollkeramischen Restauration – ein historischer Abriss (I).

101. **Pröbster L.**: Klinische Langzeiterfahrungen mit Vollkeramikkronen aus In-Ceram.
Quintessenz 48, 1639-1646 (1997).

102. **Pröbster L.**: Sind vollkeramische Kronen und Brücken wissenschaftlich anerkannt?

106. **Rheinberger V.**: Materialtechnologie und Eigenschaften einer neuen Lithiumdisilicat Glaskeramik.

Quintessenz Zahntechnik 27, 1036-1042 (2001).

Dtsch Zahnärztl Z 58, 559-569 (2003).

123. Strub J.R., Beshnidt S. M.: Fracture strength of 5 different all-ceramics crown systems.

126. Suttor D.: Zur wirtschaftlichen Fertigung vollkeramischer Zirkonoxid-
Restaurationen: Ob grün, gesintert oder gehippt – ein Vergleich lohnt sich.

127. Thiel N.: Vita In-Ceram-Spinell, Verarbeitungsanleitung.
Vita Zahnfabrik, Bad Säckingen (2002).

128. Tietz H. D.: Technische Keramik: Aufbau, Eigenschaften, Herstellung,
Bearbeitung, Prüfung.
VDI-Verlag, Düsseldorf (1994).

hochfesten Strukturkeramik.

resistance of lithium disilicate- , aluminia- , and zirconia-based three-unit fixed
partial dentures: a laboratory study.

zirkonoxidverstärkter In-Ceram Aluminia-Keramik.

132. Tinschert J., Zwez D., Marx R.: Bruchwahrscheinlichkeit von verschiedenen
Materialien für vollkeramische Restaurationen.
133. **Türp J. C.**: Sind Vollkeramikbrücken praxisreif?

134. **Völkl L.**: Cercon – Das CAM-Vollkeramiksystem von Degussa Dental.

135. **Van Ramos., Sieber C.**: Zur Vollverblendung von Zirkonoxidgerüsten und zur
 Individualisierung von geschliffenen Feldspatkronen.
 Verarbeitungsanleitung Vita VM9, Stand 3 (2007).

136. **Vollkeramik München – Arbeitsgruppe**.
 Poliklinik für Zahnärztliche Prothetik. www.zirkondioxid.de

137. **Warnecke G., Rosenberger U., Wimmer J.**: Mikrovorgänge bei Schleifen von
 Hochleistungskeramik.

138. **Weber H., Netuschil L.**: Biokompatibilität und Plaquewachstum bei
 unterschiedlichen Restaurationsmaterialien.

139. **Weber W., Rieger W., Clause, J., Schmotzer M.**: Zirconia-aluminia: a alternative
 bearing for hip arthroplasty.

140. **Weibull W.**: A statistical distribution funktion of wide application.

141. **Witkowski, S.**: Computer Intefrated Manufacturing (CIM) als Konzept für das
 zahntechnische Labor.
Etablissement Dentaire Ivoclar, Europäische Patentanmeldung 0 231 773 (1987).

144. Zhang Y., Lawn B.R., Rekow E. D., Thompson V. P.: Effect of sandblasting on the
long-term performance of dental ceramics.

145. Zimmer D., Gerds T., Strub J.R.: Survival rate of IPS-Empress 2 all-ceramic
crowns and bridges: three year's results.
8 Materialliste

- Alkohol

- Voco Solvitan - Reinigungslösung / Cuxhaven

- Zirkoniumdioxiplättchen - Kavo Everest ZS / Germany

- Uhu Endfest 300 / Henkel / Düsseldorf

- Diamantschleifpapier - Körnung 40 µm, 20 µm / Struers / Willich

- Klebewachs - Ocon-200-Quarz Wax / Logitech / Glasgow

- Hanel Shimstock-Metallfolie 8µm / roeko / Langenau

- Diamanten / bredent / Senden
 Rot Ring ISO 806314158/514/014; Ref.-No.: E158FF14; Lot.-No.: 970731
 Blau Ring ISO 8063148158/524/014; Ref.-No.: E158NF14; Lot.-No.: 9805
 Grün Ring ISO 806314158/534/014; Ref.-No.: E158CF14; Lot.-No.: 9751

- Probenträger (REM) - 0,75“ Aluminium Specimen Stubs / Agar

- Klebetabs (REM) - Leit – Taps / Plano / Marburg
9 Danksagung

Mein besonderer Dank richtet sich an all diejenigen, die mich während der Zeit der Forschung- und Diskussionsarbeit begleitet und unterstützt haben, ohne deren Hilfe der erfolgreiche Abschluss der Dissertationsschrift weitaus schwerer gewesen wäre.

Mein Dank gilt Herrn Professor Dr. Dr. h.c. W. Gernet, Direktor der Poliklinik für Zahnärztliche Prothetik der LMU München, für die Bereitstellung der Dissertationsarbeit und Nutzungsmöglichkeit der Einrichtung der Klinik.

Oberarzt Dr. F. Beuer danke ich besonders für die immer schnelle, kompetente, freundliche Beratung und Hilfe bei der praktischen und schriftlichen Fertigstellung dieser Arbeit.

Herrn Dr. Dipl. Ing. K. Erdelt danke ich für die technische Unterstützung vor allem in Fragen der Datenverarbeitung.

Zuletzt danke ich meinem Freund M. Anzenhofer für seine Rücksichtnahme und sein Verständnis für so manche Laune, zu der ich mich während dieser Arbeit hinreißen ließ.
10 Lebenslauf

Angaben zur Person

Nachname, Vorname: Gruber, Monika
Geburtsdatum: 17. September 1972
Geburtsort: Haag
Staatsangehörigkeit: deutsch
Konfession: römisch-katholisch
Familienstand: ledig

Schulbildung:

September 1979 – Juli 1985: Grund u. Teilhauptschule Maitenbeth

Berufsbildung:

Beruf:

Hochschulbildung:

April 2001 – Juli 2006: Studium der Zahnmedizin an der Ludwig-Maximilian-Universität in München
Oktober 2002: Naturwissenschaftliche Vorprüfung
September 2003: Zahnärztliche Prüfung
Juli 2006: Approbation als Zahnärztin

Beruf:

Seit Oktober 2006: Assistentin in der Zahnarztpraxis Dr. Mathias in Kirchseeon