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I   Summary 

Nascent chains emerge from ribosomes in a vectorial fashion and are prone to 

aggregation in the highly crowded environment of the cell. Ribosome associated 

chaperones, which are present in all kingdoms of life, bind to and prevent aggregation of 

the elongating nascent chains during translation. Trigger Factor (TF) is such a eubacterial 

chaperone, which interacts with the ribosome associated nascent chains. It is a 48 kDa 

protein with three domains, an N-terminal domain responsible for ribosome binding, a 

middle domain with PPIase function and a C-terminal domain with chaperone activity. 

Ribosome binding is essential for TF’s interactions with nascent chains. TF is not 

regulated by nucleotides or chaperones and cooperates with the downstream DnaK/J 

chaperone system in chaperoning nascent chains.  

In this study the interactions of TF with nascent chains have been investigated in 

vitro in a coupled transcription/translation system (PURE system) reconstituted from 

purified components. In the first part of the study, a site-specific photocrosslinking 

technique was employed to identify the regions of TF that were in close proximity to the 

nascent chains during translation. In the second part, TF-nascent chain interactions have 

been monitored in real-time using fluorescence technology.  

Photocrosslinking experiments revealed that all of the domains of TF were 

adjacent to luciferase nascent chains during translation. The PPIase domain interacted 

with nascent chains in a length dependent manner. Less hydrophobic nascent chains such 

as those of α-Synuclein displayed much weaker crosslinking to the PPIase domain 

compared to the other regions of TF. The above data is consistent with the previous 

observation that the PPIase domain acts as a secondary binding site for nascent chains 

(Kaiser et al., 2006; Tomic et al., 2006). In addition, the interaction of the PPIase domain 

with nascent chains was found to be independent of its PPIase activity. TF forms dimers 

in solution but only the monomeric form interacts with the ribosomes (Patzelt et al., 

2002). Photocrosslinking of the labeled TF proteins revealed that the substrate-binding 

site of a monomer is within the dimer interface, thus explaining the inability of the 

dimeric form to interact with the ribosome-nascent chain complexes (RNCs). 



SUMMARY 
 

2

TF-ribosome interactions in real time has previously been documented by our 

laboratory (Kaiser et al., 2006) and TF was found to dissociate from the ribosomes with a 

half-time (t1/2 value) of ~ 10-12 s. The t1/2 value of TF dissociation from the ribosome was 

independent of the translation status of the ribosomes. However, TF underwent a 

conformational change upon ribosome binding and the t1/2 value of this conformation was 

found to be higher than that of ribosome dissociation, depending on the nascent chain’s 

hydrophobicity. This was thought to be the t1/2 value of TF dissociation from the nascent 

chains (Kaiser et al., 2006).  

In the second part of this study, experiments were performed to directly measure 

TF-nascent chain interactions in real time. TF was labeled with an environmentally 

sensitive fluorophore (NBD) at regions that were in close proximity to the nascent chain 

based on photocrosslinking experiments. The interactions of labeled TF were found to be 

dependent on hydrophobic segments in the nascent chains. The dissociation of TF from 

nascent chains was then documented. During dissociation from the nascent chains, TF 

labeled with NBD at the C-terminal domain had two reaction phases, a fast phase and a 

slow phase. These two phases varied dependent on the nascent chains tested. The 

presence of two phases may reflect the existence of multiple conformations of the C-

terminal domain of TF in solution (Yao et al., 2008). 

TF labeled with NBD at the interface between the C-terminal and PPIase domains 

was utilized to accurately monitor its dissociation from the nascent chains as it was found 

to be mono-phasic. In this case the dissociation from Luc- and GatD-RNCs occurred with 

a t1/2 value of 111 ± 7 s and 25 ± 2, respectively. In both the cases, the t1/2 values of TF 

dissociation from the nascent chains were longer than the t1/2 value of TF dissociation 

from the ribosomes translating the respective nascent chains. This confirms that TF 

remains associated with the nascent chains for an additional time even after its ribosome 

dissociation, depending on the hydrophobicity of the nascent chains. 

These studies have revealed the role of different domains of TF in nascent chain 

interactions and facilitated the observation of these interactions in real time during 

translation. Results of this work contribute towards our understanding of the interplay of 

chaperones with ribosomes and provide insight into the coupling of translation and 

chaperone-assisted protein folding. The techniques developed here to investigate TF-
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nascent chain interaction may prove useful in the analysis of other factors that act early in 

the folding process, such as the signal recognition particle and the DnaK (Hsp70) 

chaperone systems. 
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II   Introduction  
 
II.1 Translation and protein folding 

Protein synthesis, or translation, is the process in which the genetic information 

contained in the form of mRNA is converted into a polypeptide chain. In all kingdoms of 

life translation occurs in specialized complexes called ribosomes, which are made of 

RNA and protein. Ribosomes catalyze the assembly of individual amino acids to yield 

polypeptide chains. Numerous additional essential factors, including tRNA synthetases, 

initiation, elongation and termination factors, etc, function in concert with the ribosomes 

in this process. The energetic requirements for translation are met by the hydrolysis of 

GTP. Once the polypeptide chain is synthesized on the ribosome, it has to reach its 

unique three-dimensional (3-D) conformation to be able to perform its destined biological 

function. The process by which the linear polypeptide chains are transformed into their 

proper conformation is called “protein folding”. In vitro the final active structure can be 

attained by the polypeptide alone, referred to as spontaneous folding. In vivo, folding in 

many cases is accomplished with the aid of a class of proteins known as molecular 

chaperones. Both of these processes will be discussed below. 

 

II.1.1 Levels and determinants of protein structure 
 

The primary structure of proteins is the linear sequence of amino acids in the 

polypeptide chain that is specified by the genetic information. Secondary structure is the 

ordered arrangement or conformation of amino acids in localized regions of the 

polypeptide chain. Hydrogen bonding plays an important role in stabilizing these folding 

patterns. The two main forms of secondary structure are the α-helix and the β-pleated 

sheet.  

The tertiary structure of a polypeptide or protein is the arrangement of secondary 

structural elements in three-dimensional space. The term quaternary structure is used to 

describe the assembly of two or more folded protein molecules (subunits or monomers) 

into complexes. Such complexes may be homo- or hetero oligomeric. 
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 In a polypeptide chain, the N-Cα and Cα-C bonds are free to rotate and are 

represented by the torsion angles Phi (φ) and Psi (ψ) respectively (Figure 1). No rotation 

occurs around the axis formed by the peptide bond (represented by omega (ω), not shown 

in Figure 1) due to the planar nature of the peptide bonds.  

 

 
 

Figure 1: Torsion angles in a fully extended polypeptide chain 
Each amino acid in a polypeptide chain contributes three bonds to its backbone. 
The peptide bond is planar. The N-Cα and the Cα-C bonds represented by φ and 
ψ allow rotation of the backbone. 
  

These two torsion angles (φ, ψ) define the conformation of the polypeptide 

backbone and a graphical representation of these two angles gives rise to the 

“Ramachandran Plot”. Calculating the energy contained in various pairs of φ and ψ 

angles led to the identification of the two most stable conformations known as the α and 

β conformations (Ramachandran and Sasisekharan, 1968). 

An initial introduction to protein folding dynamics often begins with the 

understanding of Levinthal’s paradox. Each bond connecting amino acids can have 

several (e.g., 3) possible conformational states, so that a protein of, say, 100 amino acids 

could exist in 3100 or 5 X 1047 configurations. Even if a folding protein were able to 

sample this conformational space at a rate of 1013 per second, or 3 x 1020 per year, it would 

take 1027 years to try them all (Levinthal et al., 1962; Zwanzig et al., 1992). Since proteins 

fold in a biologically relevant time scale, this suggests that a random conformational 

search cannot be the basis of the folding process. Rather, folding is likely to proceed via 

transient folding intermediates. These intermediates, often involving local folded 

elements are stabilized and dictate further downstream folding by reducing the large 

number of theoretically possible conformations. 
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II.1.2 Protein folding in vitro 

Spontaneous re-folding in vitro was demonstrated in pioneering experiments by 

Christian Anfinsen with denatured ribonuclease A upon dilution into a non-denaturing 

buffer (Anfinsen, 1972, 1973; Taniuchi and Anfinsen, 1969). These experiments 

established the central dogma that the amino acid sequence contains sufficient 

information to specify the 3-D structure of the protein.  

Several models have been proposed to describe the protein folding process. The 

hydrophobic collapse model is one of the models which explain the mechanism of protein 

folding (Figure 2). This model can be partitioned into three different stages; the first stage 

involves a specific or non-specific collapse of the polypeptide chain. The second stage is 

the formation of secondary and tertiary structures. This could be due to local and 

nonlocal, native and non-native interactions. The third stage is the desolvation of the 

protein chain as it folds to lower energy conformations (Ferguson and Fersht, 2003). The 

hydrophobic collapse model is supported by the view that hydrophobic driving forces 

provided by the expulsion of water (desolvation) from the burial of non-polar surfaces is 

enough to induce collapse (Kauzmann, 1959). The hydrophobic collapse model also led 

to the idea of molten globule formation, proposing that secondary structures are formed 

in the process of collapse. 

Another model proposed for explaining protein folding is the “Framework model” 

(Figure 2). Support for this model came from studies on small, relatively stable helical 

peptides. This model suggests that secondary structures fold first followed by docking of 

these structures to yield native, folded protein (Kim and Baldwin, 1982, 1990). 

The hydrophobic collapse model and the framework model converged to give a 

unified mechanism for folding called the “Nucleation-condensation” mechanism (Figure 

2). This mechanism explains that some proteins could fold by simple two-state kinetics, 

without the accumulation of folding intermediates. It proposes that the formation of both 

long range and native hydrophobic interactions in the transition state during folding 

stabilize the inherent weak secondary structures. (Daggett and Fersht, 2003). 
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Figure 2: Models for protein folding 

The hydrophobic collapse and the framework models. The nucleation-
condensation model unites features from both of the two models, as it invokes 
the formation of both long range interactions and other native hydrophobic 
interactions. D and N denote the denatured and native state respectively. 
Adapted from Daggett and Fersht, 2003.  
 

A “folding funnel” cartoon represents the theoretical formulation of protein 

folding in an energy landscape perspective (Clark, 2004) (Figure 3). This describes the in 

vitro progression of an isolated polypeptide chain from an ensemble of random 

conformations to the native structure at the global energy minimum. As a protein chain 

folds to lower energy conformations it might populate intermediate states (IA and IB) i.e. 

local energy minimum in folding landscape known also as kinetic traps. The number and 

depth of the kinetic traps on the landscape represent the degree of frustration of the 

polypeptide sequence (Onuchic, 1997). During the folding process, if a polypeptide chain 

becomes trapped in a local minimum, it may eventually aggregate. Current folding 

funnels however cannot explain this off-pathway behavior, which is particularly 

important in explaining protein folding in vivo. This is mainly due to the fact that 

collisions between partially folded structures, an intrinsic feature of the actual folding 

process are not explained in the folding funnel hypothesis. To control the problem of 

aggregation, cells have evolved a machinery of molecular chaperones. 
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Figure 3: Protein folding funnel diagram 
Unfolded proteins populating a wide range of conformations enter the top of the 
funnel. During their travel down the funnel towards the native conformation, they 
might populate intermediates with local energy minima represented as IA and IB. 
If the polypeptide escapes the local minima it would attain the native structure 
with the lowest possible energy. Depending on the depth of the kinetic trap 
protein molecules might get trapped irreversibly or eventually aggregate. 
Adapted from Clark, 2004.    
 

II.1.3 Protein folding in the cell 
 

The central dogma of molecular biology is the flow of genetic information from 

DNA to RNA and subsequent decoding of the message from RNA to protein. Although 

linear polypeptides are formed as a result of translation, to attain their biologically active 

structure they have to be folded properly. When folding in vivo, a protein is confronted 

with various additional problems compared to the situation of in vitro folding. Nascent 

polypeptides synthesized on the ribosomes expose hydrophobic patches during their 

synthesis. The whole sequence of the protein is not available for folding into its complete 

3-D structure before its synthesis is completed. This problem is compounded in bacteria 
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because of a fast translation speed of 4-20 residues per second compared to ~ 5 residues 

per second in eukaryotes (Mathews 2000). This poses a high risk of aggregation to the 

incomplete polypeptide chains, which are in a highly crowded environment, in contrast to 

the dilute milieu used in refolding in vitro. For a majority of proteins this environment 

would hinder productive folding. Complications due to aberrant protein folding and 

aggregation can result in severe cellular dysfunctions leading to a number of human 

diseases (Barral et al., 2004).  

Cells have evolved mechanisms to prevent unproductive interactions between 

nascent and newly synthesized polypeptide chains with the aid of specialized proteins 

called molecular chaperones. Molecular chaperones generally bind to the folding 

intermediates of polypeptides, thereby preventing their aggregation (Young et al., 2004). 

In addition they assist the folding of certain proteins by repeated cycles of binding and 

release. Interestingly, different types of chaperones form a network to chaperone 

polypeptides at different stages of folding (Figure 4). Chaperones also play a role in 

preventing cellular toxicity that is due to the formation of protein aggregates observed in 

several neurodegenerative diseases (Barral et al., 2004; Behrends et al., 2006; Chan et al., 

2000; Schaffar et al., 2004; Warrick et al., 1999). 

 

II.2 Molecular chaperones 

Molecular chaperones prevent aggregation of nonnative proteins both during de 

novo folding and also during stress. Figure 4 presents a model of the chaperone pathways 

in the cytosol in the three kingdoms of life. Although most of the chaperones are 

constitutively expressed in cells, many of them are also known as heat shock or stress 

proteins, as their expression is increased under stress, such as heat stress. These proteins 

are called as heat shock proteins (Hsps). Chaperones can be broadly classified into four 

groups: ribosome-associated chaperones, Hsps70s, chaperonins and small Hsps. Some of 

them act on substrate proteins through repeated binding and release cycles until the native 

structure is attained. On many occasions they are regulated by their ATPase activity and 

also by their respective cofactors, so called co-chaperones. 
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Figure 4: Models for chaperone-assisted protein folding in the cytosol  

Native protein is denoted as N. (A) Chaperone systems in Eubacteria. Trigger 
Factor (TF) is the first chaperone to interact with the majority of nascent 
polypeptides. ~ 65-80% proteins attain their native structure without further 
assistance. Nascent chains would then interact with the DnaK chaperone 
system. About 10 to 15% of chains interact with the GroEL and GroES 
chaperonin system. GroEL does not interact with nascent chains directly and a 
fraction of substrates once they exit the DnaK system rely on GroEL for further 
assistance. (B) Archaea. The DnaK chaperone system does not exist in all the 
archaeal members. The presence of the ribosome-bound NAC homolog and the 
interaction of nascent chains with Prefoldin (PFD) have not yet been confirmed. 
(C) Eukarya. Like TF in bacteria, NAC plays a major role in chaperoning nascent 
chains in eukarya. A majority of small nascent chains may fold upon release from 
the ribosomes without further assistance. At least 15-20% of chains reach their 
native states by Hsp70 and Hsp40 action and a fraction of them are transferred 
to Hsp90 for further folding. About 10% of chains are then co- or post-
translationally transferred to the chaperonin TRiC with the assistance of PFD. 
Adapted from Hartl and Hayer-Hartl, 2002. 
 

Chaperones act sequentially along the folding pathway. There are chaperones that 

act on protein substrates at specific stages of their biogenesis. For example, there are 

ribosome-associated chaperones in all kingdoms of life, which act on nascent 

polypeptides immediately after translation. Trigger Factor (TF) and the signal recognition 
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particle (SRP) in E. coli, NAC, RAC and Zuotin in eukaryotes are some examples of 

ribosome-associated chaperones. Hsp70s are another class of chaperones found to be 

associated with the nascent chains. Chaperonins are the third class of chaperones, which 

generally act at the later stages of protein folding. There are other chaperone systems 

found in all kingdoms of life, for instance, Hsp90 and Prefoldin which have a variety of 

roles other than folding, including the maturation and conformational activation of 

substrates, and the transfer of substrates to other chaperone systems. 

 The remainder of this section will briefly describe the structure and function of 

these various chaperones and focus in more detail on Trigger Factor (TF), a bacterial 

ribosome associated chaperone. 
 

II.2.1 The DnaK chaperone system and it’s interaction with nascent 

chains 
 

Members of the Hsp70 family exist in eubacteria, eukaryotes and some archaea, 

as well as in eukaryotic organelles, mitochondria and the endoplasmic reticulum. The 

Hsp70 homolog in eubacteria is known as DnaK and is well characterized. DnaK acts 

along with its co-chaperones DnaJ (Hsp40 homolog) and GrpE, its nucleotide exchange 

factor (NEF). It consists of two domains, an N-terminal ATPase domain, and a C-

terminal substrate-binding domain (SBD). The ATP bound state of DnaK has low affinity 

for substrates (Pierpaoli et al., 1997; Theyssen et al., 1996). DnaJ stimulates the ATPase 

activity of DnaK, generating the ADP-bound state of DnaK, which has high affinity for 

its substrates. GrpE releases the bound nucleotide from DnaK (Harrison et al., 1997) and 

rebinding of ATP by DnaK promotes substrate release from DnaK, thereby completing 

the cycle (Figure 5).  

DnaJ has an N-terminal “J” domain characteristic of all Hsp40s, that stimulates 

the ATPase activity of DnaK (Pellecchia et al., 2000). The C-terminal domain of DnaJ 

functions in substrate binding and there is evidence that DnaJ targets substrates to DnaK 

through its SBD in addition to stimulating its ATPase activity (Langer et al., 1992; 

Rudiger et al., 2001; Sha et al., 2000). GrpE is a homodimer that interacts with the N-

terminal domain of DnaK. The dimer interface of GrpE encompasses two long paired N-
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terminal α-helices (Harrison et al., 1997). GrpE stimulates nucleotide exchange by 

stabilizing the open conformation of the ATPase domain of DnaK and, as a result, 

triggers substrate release from DnaK (Harrison, 2003; Harrison et al., 1997). In addition 

to nucleotide exchange, GrpE also plays a role in the release of tightly bound substrates 

from DnaK independent of the nucleotide bound status of DnaK (Brehmer et al., 2004; 

Harrison et al., 1997). This is accomplished by the interaction of its long N-terminal 

domain with the substrate domain of DnaK. But the in vivo significance of this function 

remains to be investigated. 

 
 

Figure 5: Reaction cycle of the DnaK system  

J, E and S denote DnaJ (orange), GrpE (light blue) and substrate peptide 
(purple), respectively. DnaK is shown in green. Rapid peptide binding and 
dissociation occurs in the ATP-bound state of DnaK. The N-terminal J domain of 
DnaJ accelerates ATP hydrolysis by DnaK. Stable substrate binding by DnaK is 
achieved in its ADP-bound state. The C-terminal domain of DnaJ recognizes 
hydrophobic surfaces on nascent chains and targets them to DnaK. GrpE 
induces ADP release from DnaK and upon ATP rebinding by DnaK, substrate 
dissociates from DnaK, completing the reaction cycle. Adapted from Hartl and 
Hayer-Hartl, 2002. 
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DnaK was shown to interact with newly synthesized polypeptides although it was 

never shown to interact directly with the ribosomal exit site during translation (Teter et 

al., 1999). Studies from immobilized peptides have shown that DnaK recognizes a 

hydrophobic core of four to five residues flanked by approximately four basic residues 

(Rudiger et al., 1997). This explains the ability of DnaK to bind to hydrophobic 

polypeptide segments, which is a common feature in nascent chains and unfolded 

proteins. The DnaK system cooperates with TF in delaying the folding of certain 

multidomain proteins with respect to translation, thereby increasing their yield (Agashe et 

al., 2004). Although dnaK deletion strains (ΔdnaK) do not have any observable growth 

defects at temperatures of 30 °C- 37 °C, the combined knockout of both tig and dnaK is 

lethal to cells at the same temperatures but not at lower temperatures (Genevaux et al., 

2004). This implies the role of DnaK in chaperoning nascent chains and its functional 

cooperation with TF. Indeed, the combined deletion of both tig and dnaK (ΔtigΔdnaK) 

reduced the folding efficiency of a model protein, Luciferase, and also resulted in the 

aggregation of at least 40 cytosolic proteins and a 2.5-fold increase in aggregation of 

preexisting proteins in vivo (Deuerling et al., 1999). 

Pulse chase experiments in intact spheroplasts have demonstrated that DnaK 

interacts with nascent chains of 30-75 kDa with a specific preference between 45-66 kDa 

(Teter et al., 1999). The interaction of DnaK with the nascent chains was modulated by 

TF. Similar pulse chase experiments performed in Δtig strains have revealed that DnaK 

was able to interact with shorter lengths of nascent chains, below 22 kDa (Teter et al., 

1999). Alternatively chemical crosslinking experiments in in vitro translation systems 

have suggested that both TF and DnaK compete with each other for substrate binding 

(Deuerling et al., 2003). However, in the above experiments TF was found to interact 

with the nascent chains under physiological concentrations while addition of at least a 10-

fold excess of DnaK was necessary to observe its interaction with the nascent chains. 

This confirms that TF has an advantage over DnaK in binding to the nascent chains by 

virtue of its ribosome binding ability. 
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II.2.2 Chaperonins 
 

Chaperonins are cylindrical double-ringed multimeric complexes encompassing a 

central cavity in each ring. There are two classes of chaperonins: Group I chaperonins, 

also known as Hsp60s, exist in eubacteria, mitochondria and chloroplasts whereas group 

II chaperonins are found in archaea and the eukaryotic cytosol. The Group I chaperonins 

consist of two ring structures stacked back-to-back, each ring containing seven subunits. 

They cooperate along with their Hsp10 co-chaperones during the folding cycle. The 

Group II chaperonins contain 8-9 subunits per ring and are independent of a Hsp10 co-

chaperone. Both groups of chaperonins are regulated by ATP binding and hydrolysis. The 

central hydrophobic cavity within them provides space for the substrate protein to 

undergo multiple rounds of binding and dissociation until its native conformation is 

attained. 

 

II.2.2.1 Group I chaperonins  

GroEL, an essential protein in eubacteria, along with its co-chaperone GroES 

binds to non-native polypeptide substrates and releases them into the central cavity where 

the substrate’s native structure can be attained (Figure 6). GroEL and GroES, collectively 

called GroE prevent aggregation in the cell by encapsulating individual polypeptide 

chains and allowing their folding to occur in isolation from other proteins (Brinker et al., 

2001; Mayhew et al., 1996; Weissman et al., 1996). This action of the GroE chaperone is 

accomplished by ATP binding and hydrolysis. At physiological concentrations, ATP 

binds within the seven sites of one ring. Binding of GroES is dependent on the presence 

of ATP as it binds to the ring that is occupied by ATP. ATP binding induces an allosteric 

movement in the polypeptide binding apical domains and provide competency for GroES 

binding to the ATP bound ring (Ranson et al., 2001). A large body movement in the 

apical domain, due to GroES binding, drives the release of the polypeptide into the now 

hydrophilic, encapsulated cavity called the cis-cavity, where folding commences 

(Mayhew et al., 1996; Ranson et al., 2006; Weissman et al., 1995; Xu et al., 1997). ATP 

hydrolysis in the cis-cavity weakens the affinity of GroEL for GroES and allows the 

binding of ATP in the opposite ring, the so-called trans-cavity (Rye et al., 1997). Binding 
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of ATP in the trans ring creates an allosteric signal allowing the release of GroES, 

substrate polypeptide and ADP from this cis ring. The substrate from the cis ring at this 

point will be folded or in a partially folded state. ATP binding to the trans ring begins the 

cycle anew, whereby the former trans ring becomes the new cis ring. Thus, the two rings 

switch back and forth as cis and trans forms triggered by ATP binding, facilitating 

substrate release and capture by the rings until its native structure is attained. If the chain 

has internalized its hydrophobic residues or regions as a result of folding, it finally 

remains free in the cytosol. 

 

 
 

Figure 6: Protein folding reaction in the GroEL-GroES cage  

The folding intermediate bound by GroEL is denoted by I and native protein 
folded inside the cage by N. Folding occurs with the help of ATP hydrolysis. 
Multiple rounds of chaperonin action are needed for some substrates to achieve 
the N state. Both I and the N state accumulate after each round of binding and 
release. The substrate, upon achieving the N state, leaves the cage but the I 
state is rebound by GroEL and the chaperonin cycle might continue until the N 
state is attained. Adapted from Hartl and Hayer-Hartl, 2002. 

 

II.2.2.2 Group II chaperonins 

Group II chaperonins are oligomeric, high molecular weight chaperones found in 

archaea and the eukaryotic cytosol. The Group II chaperonin TCP-1 ring complex (TRiC, 

also called as CCT for Chaperone Containing TCP1, (t-complex peptide 1)) is present in 

the eukaryotic cytosol. Thermosome is another Group II chaperonin, which is found in 

archaea. Unlike GroEL, the Group II chaperonins function without any known cofactors. 
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The crystal structure of the thermosome, an archaeal version of TRiC, indicates that 

substrates of up to 50 kDa can be encapsulated in the central cavity (Ditzel et al., 1998).  

The essential role of TRiC is highlighted by its absolute requirement for folding a 

subset of essential proteins. Although initially thought of as a chaperonin known to fold 

only actin and tubulin, later proteomic studies have identified many non-cytoskeletal 

proteins as additional substrates. A substantial fraction of these contain tryptophan-

aspartic acid (WD40) repeat domains (Ho et al., 2002). TRiC recognizes a variety of 

substrates that exceed the size of its central cavity. One possible explanation is that TRiC 

sequentially binds to and folds individual domains of these large substrates. A 

commonality of TRiC substrates is that most of them function only as oligomeric 

complexes (e.g., actin polymerization, VHL and CDC20) (Camasses et al., 2003; 

Feldman et al., 1999). As in the case of GroEL, ATP binding and hydrolysis-driven 

conformational changes mediate the folding of the substrate by TRiC action. 

 

II.2.3 Other chaperone systems 
 

Hsp90 belong to a class of ATP dependent chaperones, which play an essential 

role in maintaining the activity of numerous signaling proteins, steroid hormone 

receptors, transcription factors and kinases. They generally do not act at the early stages 

of protein folding, rather at the late folding stages of substrates that require activation by 

other factors (Jakob et al., 1995; Nathan et al., 1997). The bacterial homolog of Hsp90 is 

called HtpG and does not require any co-chaperones for its action. Eukaryotic Hsp90 

cooperates with a variety of co-chaperones, which regulate the function of both Hsp90 

and Hsp70. These co-chaperones bind to Hsp90 via a domain containing a 34 amino acid, 

helix-turn-helix tetratricopeptide repeat (TPR) motif. The TPR domains have been 

identified to be fused to other TPR domains recognizing Hsp70. Hop, one such co-

chaperone with a TPR domain (Scheufler et al., 2000), transfers the substrate 

polypeptides from Hsp70 to Hsp90 (Prodromou et al., 1999) leading to the maturation of 

substrates. 

Prefoldin or GimC (for genes involved in microtubule biogenesis complex) is 

thought to stabilize and deliver polypeptide nascent chains to TRiC for their folding. It is 

a heterohexameric protein found in archaea and eukaryotes (Leroux et al., 1999; 
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Vainberg et al., 1998). The loss of GimC is not lethal in yeast but causes a reduced 

efficiency in actin and tubulin folding (Vainberg et al., 1998).  

 

II.2.4 Ribosome associated chaperones 
 

II.2.4.1 Eukaryotic ribosome associated chaperones 

Eukaryotes posses ribosome-associated chaperones that are unrelated to bacterial 

Trigger factor (TF). One such chaperone family is the NAC (Nascent chain Associated 

Complex). Like TF, NAC also associates with ribosomes in a 1:1 stoiciometry (Rospert 

et al., 2002). It is a highly conserved protein complex in eukaryotes and consists of two 

subunits, α NAC (33kDa) and the β NAC (22kDa). Although both the subunits interact 

with the nascent chains, only β NAC interacts with the ribosomes (Wegrzyn et al., 2006). 

With prokaryotic ribosomes, it was shown that NAC occupies the same location on the 

ribosomes as TF and SRP, suggesting a common strategy utilized by the ribosome- 

associated chaperones to interact with the nascent chains (Ferbitz et al., 2004; Pool et al., 

2002; Spreter et al., 2005; Wegrzyn et al., 2006). 

Two ribosome-associated Hsp70 homologs are present in the yeast 

Saccharomyces cerevisiae, Ssb1 and Ssb2 (Pfund et al., 1998). They exist as a complex 

with Ssz1p and Zuotin. This complex has also been called RAC (Ribosome Associated 

Complex) (Gautschi et al., 2001). These components form a functional chaperone triad 

for the nascent chains emerging from the ribosome. RAC plays a role in recruiting Ssb to 

the nascent polypeptides and the J domain of Zuotin is essential for this function 

(Gautschi et al., 2002). There are speculations that Ssz1p might modulate the ability of 

Zuotin to interact with Ssb1/2p (Gautschi et al., 2002).   

 
II.2.4.2 Prokaryotic ribosome associated chaperones 

In prokaryotes there are two major ribosome associated factors, TF and the SRP 

(Signal Recognition Particle). Both interact with nascent chains during translation. The 

following section summarizes what is known about the interplay of SRP and TF at the 

ribosomal exit tunnel. 
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II.2.4.2.1 The Signal Recognition Particle and Trigger Factor 

The SRP pathway is required for the targeting of IMPs (inner membrane proteins) 

to the plasma membrane (de Gier et al., 1996; Macfarlane and Muller, 1995; Seluanov 

and Bibi, 1997). It is present as a ribonucleoprotein complex in all organisms but with 

varied composition of protein to RNA (Figure 7). In eubacteria it contains a protein 

called Ffh (54 homolog) and a 4.5S RNA. Ffh has three domains, N, G and the M 

domain. The M domain binds both the 4.5S RNA and the emerging signal peptide of the 

nascent chain. By mutational studies it was found that SRP binding to the nascent chains 

is dependent on the hydrophobicity of the signal peptide (Valent et al., 1997).  

Recent structural studies have shown that TF and SRP both bind to L23 on the 

50S ribosomal subunit (Ferbitz et al., 2004; Schlunzen et al., 2005; Halic et al., 2006). TF 

interacts with a large fraction of nascent chains while SRP was thought to interact more 

specifically with the IMPs. The question arises about how these chaperones select their 

substrates. Crosslinking studies to address this question have suggested that SRP is the 

major interacting partner with nascent IMPs whereas TF has a low affinity for IMPs 

during the early stages of synthesis (Beck et al., 2000). SRP and TF might selectively 

bind their substrates by competing for binding to the ribosome and SRP exerting an 

advantage over TF in binding to IMPs because of its high affinity for the signal sequence 

(Ullers et al., 2003). Alternatively, SRP and TF may co-exist on the ribosome and TF is 

released from the ribosomes once FtsY (SRP receptor) binds to the SRP-RNCs 

(Buskiewicz et al., 2004; Schlunzen et al., 2005). Hence, the exact mechanism of nascent 

chain sorting by TF and SRP during the early stages of synthesis is unclear and remains 

to be investigated. 
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Figure 7: Schematic representation of SRP and SR components in the three 

kingdoms of life  

Eubacteria on the top, Archaea in the middle and Eukaryotes on the bottom. The 
colour code is blue (Ffh/SRP54; NG domain in dark blue, M domain in light blue), 
cyan (SRP19), grey (SRP68/72), green (SRP9/14), black (RNA). The SRP 
receptor is shown in pink (FtsY, SRα; NG domain in light pink, A domain in dark 
pink) and violet (SRβ). Adapted from Luirink and Sinning, 2004. 
 

II.3 Trigger Factor  

As TF is the major focus of this dissertation, we shall begin with a brief overview 

of its function and discovery. In later sections each aspect of TF’s structure and function 

will be discussed in detail. In eubacteria, the ribosome associated Trigger Factor (TF) 

encoded by the tig gene is the first chaperone to interact with nascent chains and is absent 

in eukaryotes. Originally, TF was identified as a protein involved in the secretion of 
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secretory proteins (Crooke et al., 1988a; Crooke et al., 1988b; Crooke and Wickner, 

1987). Later it was found to be a peptidyl prolyl isomerase (PPIase) associated with 

ribosomes (Stoller et al., 1995). It was then shown to possess PPIase activity towards 

small chromogeneic substrates and to improve the refolding of model substrates whose 

peptidyl prolyl isomerisation was rate limiting (Hesterkamp and Bukau, 1996). TF 

associates with ribosomes with a 1:1 stoiciometry through the ribosomal protein L23 

close to the exit tunnel (Kramer et al., 2002). The concentration of TF (40-50 μM) is in 

excess over ribosomes (30 μM), hence there exists an equilibrium between the ribosome- 

bound and non-ribosome bound TF. TF is a modular protein with three domains, an N-

terminal ribosome binding domain, middle PPIase domain and a C-terminal domain 

proposed to be the substrate-binding domain (Ferbitz et al., 2004). PPIase activity is 

dispensable for TF function as TF binding to substrate proteins is independent of proline 

residues (Kramer et al., 2004a). 

Structures of TF and co-crystals of the ribosome-binding domain of TF along with 

the 50S ribosomal subunit led to predictions about TF-nascent chain interactions (Baram 

et al., 2005; Ferbitz et al., 2004; Schlunzen et al., 2005). TF has also been shown to 

protect nascent polypepides from proteolytic degradation in vitro (Hoffmann et al., 2006; 

Tomic et al., 2006). A real-time observation of TF interaction with translating ribosomes 

has been reported from our laboratory (Kaiser et al., 2006). 

 

II.3.1 TF-ribosome interactions 
 

It was initially shown that the N-terminal domain of TF interacts with the 50S 

subunit of the ribosome (Hesterkamp et al., 1997). Later, the exact region on the 

ribosome where TF binds was identified as proteins L23 and L29, with L23 playing the 

major role in TF binding (Kramer et al., 2002). Aligning the N-terminal domains of 

several TF homologues identified a sequence of 17 amino acids called the “TF signature” 

sequence, which is a highly conserved yet unstructured region. Three residues in this 

exposed region F44, R45, K46, were shown to mediate TF-ribosome binding. The mutant 

protein, TF FRK/AAA, did not yield observable crosslinks to the ribosomal protein L23 

or to ribosome-bound nascent chains. Mutations in the L23 protein of residues V16, S17 

and E18 to alanine, yielding L23 VSE/AAA, prevented TF binding to the ribosome. In 
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particular the involvement of residue E18 in binding, which is located at the rim of the 

polypeptide exit tunnel, indicates that TF is optimally positioned to interact with the 

nascent chains exiting the ribosomal tunnel (Kramer et al., 2002). 

Maier and colleagues performed the initial experiments addressing the kinetics of 

the TF-ribosome interaction (Maier et al., 2003). From binding and displacement 

reactions using fluorescently labeled TF and non-translating ribosomes they showed that 

the affinity of the TF-ribosome interaction is ~ 1 μM and the lifetime of the complex was 

~ 30 s at 20 ºC. Using these measurements and also the displacement kinetics of TF with 

unfolded substrate proteins, which is in the range of 100 ms (Maier et al., 2001), they 

modeled that TF binds and releases from nascent chains staying bound to the ribosomes, 

thereby preventing their aggregation. This model of TF-ribosome-nascent chain 

interactions was built based on the weak affinity TF exerts towards unfolded substrates in 

solution. However, this may not reflect the properties of TF’s interaction with nascent 

chains, because TF attains a more open conformation upon ribosome binding (Kaiser et 

al., 2006). The affinity of this activated TF towards nascent chains might be different 

than the affinity of TF towards unfolded substrates in solution. 

 

II.3.2 Structure of TF and explanation for nascent chain interactions 
 

The X-ray crystal structure of Vibrio cholerae TF (VCTF), which is 70% 

homologous to E. coli TF, was solved at 2.5 Å resolution (Ludlam et al., 2004) and 

shortly thereafter E. coli TF was solved at 2.7 Å resolution (Ferbitz et al., 2004). The 

structure folds into a unique extended shape much longer than expected for a 48 kDa 

protein. The N-terminal domain is solely responsible for ribosome binding, as reported 

earlier, the middle PPIase domain is located at the opposite end of the molecule and the 

C-terminal domain contributes the back and two arms to the molecule (Figure 8). The 

PPIase domain is connected to the N-terminal domain by means of a “linker” extending 

along the back of the TF. The C-terminal domain adds two extended “arms” to the core 

of the protein and it is structurally similar to the chaperone domain of SurA (Ferbitz et 

al., 2004). The characteristic “signature motif” is located between the two helices α1 and 

α2 containing the ribosome-binding region. It was calculated that at least 3500 Å2 of 
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surface area is buried through intertwining of the “arms” and inner portion of the N-

terminal domain. 

The co-crystals of Haloarcula marismortuii 50S ribosomal subunit along with the 

N-terminal domain of E. coli TF (H50S-EcTFa) were solved to 3.5 Å resolution and this 

structure allowed the whole chaperone to be modeled on to the 50S ribosome through the 

ribosome-binding domain (Figure 8). Based on this model, it was proposed that the 

nascent chains interact with a “crevice” of TF that is formed by helices from the N-

terminal domain and the “arms” of the C-terminal domain. This crevice exposes its 

hydrophobic inner surface towards the polypeptide exit tunnel. The PPIase domain might 

interact with the nascent chains during their late stages of synthesis. The same study also 

proposed that the affinity of TF for the ribosome could be stabilized with the presence of 

a nascent chain due to hydrophobic interactions between TF and the nascent chain. The 

“folding space” formed between the ribosome and TF was calculated to be large enough 

to accommodate a domain size of at least 14 kDa (Ferbitz et al., 2004). 
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Figure 8: Overview of the TF-50S complex  

Full-length TF positioned by superimposition onto the ribosome-bound fragment 
(residues 1-144) is shown as C -trace together with a slice of 50S along the 
peptide exit with a modelled nascent chain (magenta), extending from the 
peptidyl transferase centre (PTC). Coloring, ribosome binding domain in red, 
PPIase domain in yellow, arm 1 and arm 2 in green and blue respectively. 
Colouring of the ribosomal proteins L29 in turquoise, L23 in green and L19 in 
bluish green. Adapted from Ferbitz et al., 2004.  
  

The details derived from the co-crystal structures in this study may not provide an 

entirely accurate view of TF-ribosome interactions for two major reasons, first, only one 

third of the N-terminal domain (35 residues) was used to assign the structural details and 

second, TF does not exist in archaea, which was the source of the 50S subunit. 

The co-crystal structure of a homologous complex of Deinococcus radiodurans 

50S ribosomal subunit along with the ribosome-binding domain of TF were solved with 

the aim of providing a clearer picture (Baram et al., 2005; Schlunzen et al., 2005). In the 

study by Schluenzen and colleagues, a contact between helix α2 in the TF-BD (TF-

ribosome binding domain) with the 30 Å long extension of L24, was observed. This 

extension is specific to bacteria and is missing in the H. marismortuii ribosome (Figure 

9). This extension would significantly occupy the proposed “molecular cradle” of TF, 

making any folding events in this space less likely. Interaction of the tip of L24 with the 
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TF-BD could shift the position of helix α2 by 40° in the ribosome-bound form relatively 

to the unbound form. This conformational change in α2 opens up a channel from the exit 

tunnel to the end of the TF body (Schlunzen et al., 2005). 

             

Figure 9: The molecular cradle is envisaged by the extension of L24  

(A) Model of the full-length TF (dark red) with the ribosome binding domain (red) 
on the 50S subunit, with ribosomal proteins L23 (green), L29 (orange), the 
globular domain of L24 (yellow) and the extension of L24 (gold). (B) The path of 
the nascent chain. Model of the nascent polypeptide chain (dark blue) exiting the 
tunnel (black arrow), passing the tip of extension of L24 and entering into the 
hydrophobic crevice in the binding domain of the TF. The molecular cradle is 
severely restricted by the extension of L24 (gold) between the ribosome binding 
domain and the arm 1 of TF. Adapted from Schlunzen et al., 2005. 
 

   In the study by Baram et al., analysis of the co-crystal structures revealed that the 

ribosome-bound form of TF has an altered conformation compared to the unbound form. 

Superimposing the unbound form on the location of the bound form shows that in the 

unbound form, helix α2 is too far away to interact with both L23 and L29 and this 

conformational change might play a role in TF docking onto the 50S subunit (Figure 10). 

The altered conformational change also forces helices α1 and α3 to move away from each 

other, thereby separating helix α3 from the β-sheets exposing a hydrophobic pocket near 

the opening of the ribosomal exit tunnel. This hydrophobic environment may be essential 

in providing binding sites for the growing nascent chain. Furthermore, it was found that 

the elongated loop of L23 that is specific to eubacteria extends into the tunnel opening 

and is predicted to interact with the nascent chains in the tunnel, which was not observed 

in the H50S-EcTFa structure. An interaction of TF with the regions of this loop was 
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observed in this structure, which may enable efficient TF interaction with the nascent 

chains. 

 

 
 

Figure 10: Conformational rearrangements in TF ribosome binding domain 

(TF-BD) upon association with the ribosome  

TF-BD (ribosome binding domain of TF) is represented by its main chain, 
whereas the ribosomal components are shown in space-filling representation. 
Ribosome bound TF-BD, orange; ribosome unbound TF-BD (green), L23 (blue), 
23S rRNA (light gray). (A). Superposition of the folds of unbound and bound TF-
BD. To obtain this image, loop L1 and helix α1 of the unbound TF-BD were 
aligned with those of the bound TF-BD. (B). A view from the ribosomal exit tunnel 
into the exposed hydrophobic pocket, created by the bound conformation of TF-
BD. (C). A hypothetical view of the structure formed by TF-BD binding at its 
unbound conformation. This indicates that the bound conformation could create a 
folding pocket because of the separation of helix α1 and helix α3 interactions and 
with the β-sheet which exposes hydrophobic regions facing the exit tunnel. 
Adapted from Baram et al., 2005. 
 

These studies initially suggested that there is a conformational change in TF upon 

binding to the ribosome that exposes a hydrophobic pocket, which could be necessary for 

TF function in binding aggregation-prone hydrophobic sequences in growing nascent 

chains. 

In vivo, TF is present in a 2-3 fold molar excess over ribosomes and associates 

with the ribosomes in a 1:1 stoiciometry. Therefore the majority of TF is free in the 

cytosol, suggesting equilibrium between these two forms. Analytical ultracentrifugation 

experiments indicated that there exists an equilibrium between the monomeric and 

dimeric forms of TF with a dissociation constant of 18 μM (Patzelt et al., 2002) and 1.8 
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μM (Maier et al., 2003). The N- and the C-terminal domains were thought to contribute 

towards dimer formation in isolation or in combination with other domains, as shown by 

glutaraldehyde crosslinking (Patzelt et al., 2002). Experiments from the same group also 

suggested that only monomers associate with the ribosomes.  

C-terminal deletions of TF failed to dimerize and also displayed reduced 

chaperone activity in vitro (Zeng et al., 2006). Inter-molecular FRET experiments and 

model building suggested that the substrate-binding domain might be occluded in the 

dimer (Kaiser et al., 2006). This might explain the inability of dimeric TF to bind to 

ribosome-nascent chain complexes. Taking all-previous experiments together, the C-

terminal domain is likely to form part of the dimer interface. 

 Interestingly, in vitro studies by Liu and colleagues have shown that dimeric TF 

has the ability to hold folding intermediates and prevent them from aggregating, 

suggesting other possible extra-ribosomal functions of TF (Liu et al., 2005) and hinting at 

some chaperone functions of the dimeric TF 

 

II.3.3 TF-substrate interactions 
 

The chaperone role of TF was identified when it was found to promote the folding 

of denatured GAPDH (Huang et al., 2000). By analyzing peptide arrays from several 

protein structures revealed that most TF binding sites were buried in the hydrophobic 

interior of the molecules (Patzelt et al., 2001). The catalysis of RNase T1 refolding was 

efficient only with the full length TF and not by the isolated PPIase domain although 

catalysis is actually carried out by the PPIase domain (Scholz et al., 1997). This indicated 

that the other domains cooperate with the PPIase domain to enhance its activity.  

Independent studies were then carried out to identify the role of different domains 

in TF function (Genevaux et al., 2004; Kramer et al., 2004b). Genevaux and colleagues 

showed that substitutions known to abolish ribosome binding or deletion of the TF 

“signature motif” had only mild a effect in in vivo complementation assays compared to 

the complete deletion of the N-terminal domain. Based on this, it was reasoned that those 

specific mutations did not completely abolish ribosome binding in vivo (Kramer et al., 

2002). In contrast, Kramer and colleagues have shown that the N-terminal domain alone 

was enough to function in the in vivo complementation assay, although this was not 
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observed by Genevaux and colleagues. In both the studies, a TF mutant containing the N- 

and C-terminal domains without the PPIase domain (NC TF) complemented the loss of 

tig and dnaK at 37 °C suggesting the C-terminal domain contributes to the major 

chaperone activity of TF. 

Other experiments were done to address the chaperone role of the C-terminal 

domain of TF (Hoffmann et al., 2006; Merz et al., 2006; Tomic et al., 2006). In the 

studies by Tomic et al. and Hoffmann et al., protease protection experiments were 

employed to emphasize that TF protects nascent chains on the ribosome from protease 

digestion. Protease protection experiments by Hoffmann and colleagues suggested that 

TF protects nascent chains of length which would fit the proposed cradle of TF. Tomic 

and colleagues have shown that the TF protects nascent chains from protease digestion 

which exceed the size of the putative cradle. The lack of protease protection of longer 

nascent chains as observed in Hoffmann et al could be due to the nature of the chosen 

model substrate. Hence the protection mediated by TF might be a result of the 

hydrophobic interactions between nascent chains and TF and is not due to TF forming a 

shielded folding environment around the ribosomal exit tunnel. Both the studies implied 

that the NC TF provided a more or less similar level of protection as compared to full-

length TF and the presence of the PPIase domain played only a minor role. In the study 

by Merz and colleagues, deletion of the C-terminal 53 residues of TF completely 

abolished the in vitro chaperone activity. Since this deletion would destabilize the entire 

C-terminal domain (Merz et al., 2006), the loss of chaperone function might be attributed 

globally to the entire C-terminal domain rather than specifically to those 53 residues.  

Real time experiments from our laboratory using fluorescently labeled TF have 

shown that TF dissociates from either translating or non-translating ribosomes with a t1/2 

value of ~ 10-12 s at 30 ºC. This indicates that the presence of a nascent chain does not 

strongly influence the duration of TF interactions with the ribosome. FRET experiments 

showed that TF attains a more open conformation upon binding to the ribosome, which is 

stabilized during binding to translating ribosomes (Kaiser et al., 2006). Interestingly, this 

conformational change persisted depending on the nascent chain being translated and was 

found to decay with a t1/2 value of as long as ~ 35 s. The t1/2 value of this conformational 

change varied between nascent chains relative to the extent of their hydrophobic motifs. 
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These findings suggested that TF dissociates from the ribosome but can remain 

associated with the nascent chain for an additional length of time, with multiple TF 

molecules being involved in preventing nascent chain aggregation. Similar FRET 

experiments demonstrated that the PPIase domain offers an additional binding site on TF 

but the nature of this interaction with the nascent chain remain to be investigated. 
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II.4 Aim of the study  

 TF is a ribosome-associated chaperone that initially interacts with nascent chains 

during their translation. Alone or together with the downstream DnaK chaperone system, 

TF plays an important role in the transformation of nascent polypeptides into functional 

proteins (Agashe et al., 2004; Deuerling et al., 1999; Teter et al., 1999). The structure of 

TF is modular, consisting of an N-terminal ribosome binding domain, middle PPIase 

domain and a C-terminal domain. The regions of TF that interact with the nascent chains 

during translation remain poorly understood. Identifying and characterizing these regions 

forms the primary aim of this study.  

Cell free transcription/translation in a system consisting exclusively of purified 

components (PURE system) was employed to investigate the interactions between 

nascent chains and added TF or its mutant versions. Photocrosslinking experiments with 

site specifically labeled TF (pBpa-TF) were performed to identify the regions of TF 

adjacent to the nascent chains. The multi-domain model protein Firefly luciferase (Luc) 

was used as a substrate for TF. The interaction of TF with nascent chains less 

hydrophobic than Luc was also analyzed. The relationship of TF sites involved in nascent 

chain interactions and dimerization was also investigated. 

A second aim of this study was to develop an experimental system to monitor the 

interaction of TF with nascent chains directly and in real time during translation. This 

was achieved by incorporating an environmentally sensitive fluorophore, NBD, at the 

sites of TF that are in close contact with the nascent polypeptides. Using this system the 

kinetics of TF binding and release from various nascent chains was measured and 

compared with the kinetics of TF binding and dissociation from the ribosome. Together 

these studies provided detailed insights in the function of TF in protecting nascent and 

newly-synthesized proteins during the initial phase of folding.  
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III   Materials and Methods 
 

III.1 Chemicals 

Unless specified, chemicals used in this work were of pro analysi grade and 

purchased from Fluka (Deisenhofen, Germany), Calbiochem (Bad Soden, Germany), 

Merck (Darmstadt, Germany), Sigma-Aldrich (Steinheim, Germany), Roth (Karlsruhe, 

Germany) or Roche (Mannheim, Germany). 

 

Amersham Pharmacia Biotech (Freiburg, Germany): ECL plus detection kit, Protein A 

Sepharose 

Bachem (Weil am Rhein, Germany): p-benzoyl-L-phenylalanine 

BioMol (Hamburg, Germany): IPTG 

BioRad (Munich, Germany): Ethidium Bromide, Bradford Assay 

Difco (Heidelberg, Germany): Bacto tryptone, Bacto yeast extract, Bacto agar 

Fermentas (St. Leon-Rot, Germany): GeneRuler 1kb DNA Ladder, GeneRuler 100bp 

DNA Ladder 

Invitrogen (Karlsruhe, Germany): BADAN, IANBD ester, Protein markers for SDS-

PAGE 

Merck (Darmstadt, Germany): Ampicillin 

New England Biolabs (Frankfurt a. Main, Germany): Restriction endonucleases, T4 

DNA Ligase, Calf Intestinal Alkaline Phosphatase (CIAP) 

Post Genome Institute (Tokyo, Japan): PURE system II classic translation system 

Qiagen (Hilden, Germany): Ni-NTA Agarose 

Roche (Basel, Switzerland): RNase A, Benzonase, EDTA free Complete Protease 

Inhibitor 

Schleicher & Schuell (Dassel, Germany): Protran Nitrocellulose Transfer Membrane 

Stratagene (Amsterdam, Netherlands): Herculase DNA polymerase 
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III.2 Materials and Instrumentation 

Abimed (Langenfeld, Germany): Gilson Pipetman 2, 10, 20, 100, 200 and 1000 μl 

Amersham Pharmacia Biotech (Freiburg, Germany): ÄKTA Explorer 100 

chromatography system, chromatography columns: HiTrap-Q, HiTrap chelating column, 

HiPrep desalting column, NAP-5, NAP-10, NAP-25 desalting columns, EPS 300 

electrophoresis power supply 

Amicon (Beverly, MA, USA): Concentration devices (Centricon) 

Avestin (Mannheim, Germany): EmulsiFlex C5 homogenizer 

Applied biosystems (Darmstadt, Germany): GeneAmp PCR system 2400  

Beckman (Munich, Germany):  DU 640 UV/VIS Spectrophotometer, Avanti J-25 

centrifuge with rotors JLA 10.500 and JA 25.50, Optima LE 80k ultracentrifuge with 

TLA rotor 

Berthold (Bad-Wildbad, Germany): Luminometer Lumat LB 9507 

BioRad (Munich, Germany): MiniProtean 2 electrophoresis chamber, Tank blot 

system, Gene Pulser Xcell electroporation device, Gene Pulser electroporation cuvettes 

Eppendorf (Hamburg, Germany): 5415C and 5417R centrifuges,  Thermomixer Comfort 

Fisher Scientific (Schwerte, Germany): Accumet Basic pH meter 

Fuji (Tokyo, Japan): FLA 2000 Phosphorimager, ImageReader LAS-3000 

LOT-Oriel (Darmstadt, Germany): Mercury arc lamp (500 W) 

Mettler Toledo (Gießen, Germany): AG285 and PB602 balances 

Millipore (Eschborn, Germany): Millex SV Filter Units, pore size 0.22 µM, Steritop GP 

Filter Units, pore size 0.22 µM, MilliQ plus deionization system 

MWG BiotechAG (Göttingen, Germany): Gel documentation system BioCapt 

New Brunswick Scientific (Nürtingen, Germany): Innova 4430 incubator 

Raytest (Straubenhardt, Germany): AIDA version 2.31 gel imaging software 

SA-Instruments (New Jersey, USA): fluorescence spectrometer Fluorolog-3 

Savant (Strasbourg, France): SGD 2000 slab gel dryer 

WTW (Weilheim, Germany): pH-Meter pH538 
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III.3 Media and buffers 

III.3.1 Media 
 
LB medium  

10 g/l bacto tryptone, 5 g/l bacto yeast extract, 10 g/l NaCl, pH adjusted to 7.0 with 

NaOH 

LB agar  

16 g/l Bacto agar dissolved in LB medium 

 

III.3.2 Buffers 
 
4x SDS sample buffer  

240 mM Tris (pH 6.8), 8% SDS (w/v), 40% glycerol, 1.4 M β-Mercaptoethanol, 0.02% 

bromphenol blue 

10x DNA loading buffer  

2 g/l Orange G, 2 g/l Bromophenol Blue, 2 g/l Xylene cyanol FF, 0.37 g/l EDTA di-

sodium salt di-hydrate, 500 g/l sucrose 

PBS (Phosphate buffered saline) 

137 mM NaCl, 2.68 mM KCl, 10.1 mM Na2HPO4, 1.76 mM NaH2PO4, pH adjusted to 7.4 

with HCl 

SDS-PAGE electrophoresis buffer  

50 mM Tris-HCl pH 8.3, 380 mM glycine, 0.1% (w/v) SDS 

TAE-buffer 

242 g/l Tris base, 57.1 ml/l acetic acid, 50 mM EDTA 

TBS (Tris buffered saline) 

25 mM Tris-HCl, pH 7.2, 150 mM NaCl 

TBST (TBS + Tween 20) 

0.1% Tween 20 in TBS 

0.5 M Sucrose cushion 

0.5 M Sucrose, 15 mM MgCl2, 100 mM KoAc, 20 mM HEPES (pH 7.5) 
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Luciferase dilution buffer  

25 mM Tris-phosphate pH 7.8, 2 mM DTT, 2 mM CDTA, 10% glycerol, 1% Triton X-

100, 1 mg/ml BSA (w/v) 

Transfer buffer for Western blotting 

25 mM Tris, 192 mM glycine, 20% methanol (v/v), pH 8.4 

RIPA buffer 

20 mM HEPES (pH 7.5), 140 mM KCL, 1% (w/v) sodium deoxycholate, 1% (v/v) NP40, 

0.1% (w/v) SDS 

 

III.4 DNA manipulations 

III.4.1 General molecular biology methods 
 
 All routine molecular biology methods (e.g. agarose gel electrophoresis, DNA 

quantification, competent cell preparation and transformation of bacterial cells, etc.) were 

performed according to “Molecular Cloning” (Sambrook 1989) unless otherwise stated. 

Plasmid DNA was purified from E. coli DH5α cells using QIAprep kits (Qiagen) 

according to the manufacturer’s protocol. Primers for cloning were purchased from 

Metabion (Martinsried, Germany); DNA sequencing was performed by Medigenomix 

(Martinsried, Germany), the sequencing facility (Core facility, MPI Biochemistry, 

Martinsried, Germany) or Sequiserve (Vaterstetten, Germany). PCR and gel purification 

of DNA were done with Wizard SV Gel and PCR Clean-Up System (Promega).  

 For all the PCR reactions, Herculase DNA polymerase (Stratagene) along with its 

buffer supplied by the manufacturer was utilized. Typically a 50 μl PCR reaction was set 

up with 20 ng template DNA, 20 pmol of each of the primers, 200 μM of each of the 

dNTPs, 1X enzyme buffer (containing Mg2+ ions) and 1 unit of the enzyme. Denaturation 

was set at 94 ºC for 1 min, annealing at 52 ºC for 30 s and extension at 72 ºC depending 

on the length of the insert to be amplified. After an initial denaturation of 2 min, the 

above-mentioned steps were performed for 25 cycles. When performing colony PCR, a 

single bacterial colony was picked with a sterile pipette and utilized as a source of DNA 

instead of purified DNA. 
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Oligonucleotides for cloning  

Primer Sequence 

TF FOR 5’ GGA GGA ATT AAC CAT GGA AGT TTC AGT TGA AAC 

CAC 3’ 

TF REV 5’ TTT TTG TTC GGG CCC CGC CTG CTG GTT CAT CAG 

CTC 3’ 

S7 FOR 5’ GAT ATA CAT ATG CCA CGT CGT CGC GTC ATT GG 3’ 

S7 REV 5’ CCG CTC GAG TCA ATT TAA GTA GCC CAA AGCG 3’ 

 

 The TF FOR and TF REV primers were used for cloning in pBAD vector and the 

S7 FOR and S7 REV primers were used for cloning in pET 22b vector. The restriction 

endonuclease sites introduced for cloning are highlighted in red. 

 

Oligonucleotides for site-directed mutagenesis 

Primer Sequence 

TF 14 FOR 5’ CTT GGC CGC TAG GTA ACG ATT 3’ 

TF 14 REV 5’ AAT CGT TAC CTA GCG GCC AAG 3’ 

TF 34 FOR 5’ GAG CTG GTC TAG GTT GCG AAA 3’ 

TF 34 REV 5’ TTT CGC AAC CTA GAC CAG CTC 3’ 

TF 73 FOR 5’ CTG ATG AGC TAG AAC TTC ATT 3’ 

TF 73 REV 5’ AAT GAA GTT CTA GCT CAT CAG 3’ 

TF 88 FOR 5’ AAT CCG GCT TAG GCA CCG ACT 3’ 

TF 88 REV 5’ AGT CGG TGC CTA AGC CGG ATT 3’ 

TF 118 FOR 5’ GAA GTT GAA CTG TAG GGT CTG GAA GCG 3’ 

TF 118 REV 5’ CGC TTC CAG ACC CTA CAG TTC AAC TTC 3’ 

TF 168 FOR 5’ GTA ACC ATC GAC TAG ACC GGT TCT 3’ 

TF 168 REV 5’ AGA ACC GGT CTA GTC GAT GGT TAC 3’ 

TF 177 FOR 5’ GAC GGC GAA GAG TAG GAA GGC GGT 3’ 

TF 177 REV 5’ ACC GCC TTC CTA CTC TTC GCC GTC 3’ 

TF 185 FOR 5’ AAA GCG TCT GAT TAG GTA CTG GCG 3’ 

TF 185 REV 5’ CGC CAG TAC CTA ATC AGA CGC TTT 3’ 

TF 198 FOR 5’ ATG ATC CCG GGC TAG GAA GAC GGT 3’ 
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TF 198 REV 5’ ACC GTC TTC CTA GCC CGG GAT CAT 3’ 

TF 233 FOR 5’ AAA GCA GCG AAA TAG GCT ATC AAC 3’ 

TF 233 REV 5’ GTT GAT AGC CTA TTT CGC TGC TTT 3’ 

TF 320 FOR 5’ CGC CAG GCT GCA TAG CGT TTC GGT 3’ 

TF 320 REV 5’ ACC GAA ACG CTA TGC AGC CTG GCG 3’ 

TF 322 FOR 5’ GCT GCA CAG CGT TAG GGT GGC AAC 3’ 

TF 322 REV 5’ GTT GCC ACC CTA ACG CTG TGC AGC 3’ 

TF 373 FOR 5’ GGC CTG ATC GAA TAG ATG GCT TCT GCG 3’ 

TF 373 REV 5’ CGC AGA AGC CAT CTA TTC GAT CAG GCC 3’ 

TF 377 FOR 5’ GAG ATG GCT TCT TAG TAC GAA GAT 3’ 

TF 377 REV 5’ ATC TTC GTA CTA AGA AGC CAT CTC 3’ 

TF 378 FOR 5’ ATG GCT TCT GCG TAG GAA GAT CCG 3’ 

TF 378 REV 5’ CGG ATC TTC CTA CGC AGA AGC CAT 3’ 

TF 387 FOR 5’ GAA GTT ATC GAG TAG TAC AGC AAA 3’ 

TF 387 REV 5’ TTT GCT GTA CTA CTC GAT AAC TTC 3’ 

TF 419 FOR 5’ GCG AAA GTG ACT TAG AAA GAA ACC 3’ 

TF 419 REV 5’ GGT TTC TTT CTA AGT CAC TTT CGC 3’ 

 

Stop codons contained within the primers are highlighted in red.   

 

Trigger Factor (TF) constructs used in this study  

 Plasmid Description 

pBAD TF wild type trigger factor (TF) 

pBAD TF FRK/AAA Ribosome binding deficient TF 

pBAD TF 14 R14TAG mutation 

pBAD TF 34 N34TAG mutation 

pBAD TF 73 R73TAG mutation 

pBAD TF 88 G88TAG mutation 

pBAD TF 118 Q118TAG mutation 

pBAD TF 168 F168TAG mutation 

pBAD TF 177 F177TAG mutation 

pBAD TF 185 F185TAG mutation 



MATERIALS AND METHODS 
 

36

pBAD TF 198 F198TAG mutation 

pBAD TF 233 F233TAG mutation 

pBAD TF 320 Q320TAG mutation 

pBAD TF 320 FRK/AAA Q320TAG mutation in the ribosome 

binding deficient mutant 

pBAD TF 322 Q322TAG mutation 

pBAD TF 373 E373TAG mutation 

pBAD TF 377 A377TAG mutation 

pBAD TF 378 Y378TAG mutation 

pBAD TF 387 F387TAG mutation 

pBAD TF 419 E419TAG mutation 

pPROEX TF wild type TF  

pPROEX TF FRK/AAA Ribosome binding deficient TF 

pPROEX TF14 R14C mutation 

pPROEX TF150 T150C mutation 

pPROEX TF326 E326C mutation 

pPROEX TF326 FRK/AAA E326C mutation in the ribosome 

binding deficient mutant 

pPROEX TF376 S376C mutation 

 

 

III.4.2 Cloning of E. coli TF in pBAD vector 
 

The ORF of TF was amplified by colony PCR from E. coli MC4100 cells using 

primers TF FOR and TF REV which were designed to incorporate Nco I and Apa I sites, 

respectively. The DNA fragments generated after colony PCR were eluted from agarose 

gel and stored in nuclease free (NF) water. The purified DNA was digested with Nco I 

and Apa I restriction endonucleases, subjected to PCR clean up and eluted with NF water. 

The plasmid backbone (pBAD) was also digested with Nco I and Apa I enzymes and 

subsequently dephosphorylated with calf intestinal alkaline phosphatase (CIAP). The 

vector backbone was purified and eluted with NF water. For the ligation reaction, both 

the purified vector and insert were incubated with 400 units of T4 DNA ligase at 16 °C 

for 16 h. In a control reaction NF water was added instead of the insert.  
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The whole ligation reaction was transformed into chemically competent DH5α 

cells and plated on LBTet plates and incubated overnight at 37 ºC. Single colonies were 

inoculated in LBTet for overnight cultures. Cultures were harvested and plasmids were 

prepared. The presence of the insert was confirmed by restriction digestion with Nco I 

and Apa I enzymes. Positive clones were confirmed additionally by sequencing the DNA.   

 

III.4.3 Cloning of E. coli S7 in pET 22b vector 
 
 The ORF for the E. coli small ribosomal protein S7 was amplified using primers 

S7 FOR and S7 REV by colony PCR from E. coli MC4100 cells. S7 FOR and S7 REV 

primers were designed to include Nde I and Xho I sites, respectively. The insert was 

amplified and digested with Nde I and Xho I. The pET 22b vector (Invitrogen) was cut 

with the same enzymes and the insert was ligated with the linear vector as mentioned 

above. Positive clones were confirmed by restriction digestion and sequencing.        

 

III.4.4 Site directed mutagenesis  
 

Site directed mutagenesis was employed to introduce TAG-amber (Amb) codons 

in the ORF of TF. Primers were designed such that they incorporate the mutations in the 

middle of their sequence and they were complementary to each other. 20 ng of the 

template DNA per 50 μl PCR reaction was mixed with 20 pmol of each of the primers, 

200 μM dNTPs, 1X enzyme buffer and 1 unit of Herculase DNA polymerase. Elongation 

was performed at 72 °C for 6 min. The PCR products were digested with 1 μl of Dpn I 

for an hour at 37 ºC to cleave the parental DNA. 20 μl of the PCR reaction was used to 

transform chemically competent DH5α cells and plated on LBTet plates. The plates were 

incubated overnight at 37 ºC. Cells were harvested and plasmids were prepared. The 

presence of mutations was confirmed by DNA sequencing.  

 The pBAD TF vectors were constructed in this study and were designed for 

incorporation of pBpa. The pPROEX cysteine mutants were from our laboratory 

collection and utilized for labeling with fluorescent dyes.  
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III.4.5 Other constructs used in this study 
 

Plasmid Description Reference 

pET 3a Luc Firefly luciferase for expression in the 

PURE system 

Kaiser 2006 

pET 15b Luc Firefly luciferase for expression in the 

PURE system 

Tomic 2006 

α-Syn Mouse α-Synuclein for expression in 

the PURE system 

Tomic 2006 

pET 22b S7 E. coli small ribosomal protein S7 for 

expression in the PURE system 

This study 

pET 22b GatD E. coli GatD for expression in the 

PURE system 

Kaiser 2006 

 

III.4.6 Preparation of linear template DNA for in vitro translation in the 

PURE system 
 

Linear DNA templates for protein production in the PURE system were amplified 

from their respective plasmids using Herculase DNA polymerase. The DNA templates 

were amplified to have all the regulatory components for in vitro translation such as the 

promoter for T7 RNA polymerase and the ribosomal binding site. Subsequent to PCR 

amplification, template DNA was subjected to PCR clean-up, eluted and stored in NF 

water. pET 15b Luc was used for preparing Luc DNA templates involving 

photocrosslinking experiments and pET 3a Luc was used for the same reason in 

fluorescence experiments. 

   

III.5 Protein preparative methods 

III.5.1 Expression of TF proteins in the presence of the pBpa 
 

E. coli MG1655 electro competent cells were transformed with ~ 100 ng of pBAD 

WT TF or TF amber mutants along with pBk pBpa plasmids and were plated at 37 °C for 

overnight in LBKanTet plates. Single colonies were inoculated in LBKanTet media and grown 
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overnight at 37 °C. Secondary cultures were inoculated from the overnight cultures and 

grown in the presence of either 0.2% arabinose or 1 mM pBpa or in the presence or 

absence of both with shaking at 37 °C. Equal amounts of cells from all the cultures were 

pelleted and resuspended in SDS sample loading buffer. The samples were heated at 95 

ºC, loaded onto a 12% SDS gel, transferred to nitrocellulose membrane and blotted 

against anti-TF antibodies as primary and anti-IgG as secondary antibodies. The 

expression levels of the TF amber mutants compared to endogenous TF were determined.   

 

III.5.2 Purification of pBpa labeled TF 
 

BL21 (DE3) chemically competent cells were transformed with pBAD vectors 

harboring WT TF or TF amber mutants along with pBK pBpa. The cells were grown in 

LBKanTet plates and overnight cultures were inoculated with the single colonies obtained. 

The overnight culture was diluted into 3 l of LBKanTet and grown till A600nm 0.6. Cultures 

were induced with 0.2% arabinose, 1 mM pBpa, 50 ml of 1 M K2HPO4 and 20 ml of 1 M 

KH2PO4 and cells were grown for 8 h after induction. Cells were harvested by 

centrifugation, resuspended in PBS and flash frozen in liquid nitrogen. The cell 

resuspension was thawed at 37 °C, incubated with a tablet of EDTA free Complete 

Protease Inhibitor (CPI), 10 U/ml benzonase and 0.5 mg/ml lysozyme for 30 min on ice. 

Cells were passed at least three times through the Emulsiflex C5 Homogenizer to ensure 

complete lysis. The lysate was centrifuged and cleared by centrifugation at 50,000 g, for 

60 min at 4 ºC.  

The cleared lysate was passed over 1 ml of Ni2+-NTA agarose in a BioRad econo 

column pre-equilibrated with PBS. The flow through (FT) was passed over Ni-NTA for 

three additional times to ensure efficient binding of the protein. The matrix was 

subsequently washed with 10 mM and 25 mM imidazole in PBS. The bound His6 tagged 

protein was eluted with 250 mM imidazole in PBS. The purified protein was pooled and 

dialyzed against 20 mM Tris-HCl pH 7.0 and passed over a Resource Q anion exchange 

column pre-equilibrated in the same buffer. The column was subjected to an increasing 

linear gradient of 1 M NaCl in 20 mM Tris-HCl pH 7.0. The bound protein eluted around 
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150 mM NaCl. Fractions of purified protein were pooled, dialyzed against 20 mM Tris-

HCl pH 7.0, concentrated using centricon and stored in amber colored tubes at –80 ºC.      

 

III.5.3 Purification of TF  
  
 BL21 (DE3) chemically competent cells were transformed with pPROEX-HTa 

plasmids encoding TF or TF mutants and plated on LBAmp plates. Secondary cultures in    

3 l LBAmp were grown until an A600nm 0.6 was reached, induced with 1 mM IPTG and 

grown for 4 h post induction. Cells were harvested, washed, resuspended in PBS, lysed 

and the lysate was cleared in the same manner as described in the above section. Cleared 

lysate was passed over a HiTrap chelating column charged with Ni2+ and pre-equilibrated 

with PBS. The column was washed with 10 mM and 25 mM imidazole in PBS and the 

bound protein was eluted with 250 mM imidazole in PBS. Fractions of purified protein 

were pooled, desalted in a HiPrep desalting column to remove imidazole.  

 Purified TF in PBS was subjected to TEV protease digestion in the presence of     

2 mM DTT for removal of the N-terminal His6 sequence. The reaction mix was passed 

onto the HiTrap chelating column charged with Ni2+ to remove the uncleaved protein and 

the His6 tagged TEV protease, which would bind to the column by virtue of its His6 tag. 

Purified protein without the His6 tag was collected in the flowthrough, pooled, 

concentrated and aliquoted in small fractions and stored at –80 ºC.         

 

III.5.4 In vitro translation in the PURE system 
 

In vitro translations were performed in the PURE system (Shimizu 2001). 

Template DNA [10 ng/μl] was added to the reconstituted PURE system along with other 

additional components (1 μM pBpa labeled TF, 0.8 μCi/μl 35S-methioine) and incubated 

at 30 °C for ~ 50 min. Translation was arrested by the addition of 0.2 μl of 

chloramphenicol from a 34 mg/ml stock and incubated on ice for 5 min.   

 

III.5.5 Photocrosslinking of pBpa-TF to RNCs 
 

Translation reactions were performed as mentioned above. Typically 25 μl of the 

translation reactions were transferred to a 1.5 ml Eppendorf tube and placed in a metal 
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tube holder on ice. The samples were placed under a 500 W mercury arc lamp at a 

distance of ~ 12 cm from the lamp. A filter combination that provides a 300-400 nm 

bandpass was used. Negative control reactions for light dependency were wrapped in 

aluminum foil and placed on ice in the same room. A small aliquot was withdrawn from 

the tubes to serve as a “total” sample prior to separation of the ribosome-nascent chain 

complexes and the supernatant.   

 

III.5.6 Separation of ribosome-nascent chain complexes (RNCs) 
 

Typically a 25 μl reaction of the translated product was layered over a 100 μl 

sucrose cushion and centrifuged at 100,000 rpm for 20 min at 4 °C in Optima TLX 

ultracentrifuge. The supernatant was aspirated from pellet by gentle pipetting. The pellet 

was air-dried and subjected to RNase A digestion (see below). The total protein in the 

supernatant was precipitated by the addition of an equal volume of 50% trichloroacetic 

acid (TCA) (v/v) followed by centrifugation at 14,000 rpm for 15 min. The supernatant 

was gently aspirated with vacuum and the pellet was washed with 1 ml of 100% acetone. 

The supernatant was again gently aspirated, the pellet was air dried and resuspended in 

SDS loading buffer. 

 

III.5.7 RNase A Digestion 
 
 To digest the terminal peptidyl-tRNA (p-tRNA) associated with the ribosome- 

nascent chains, RNase A digestion was performed. The ribosomal pellet fraction obtained 

after centrifugation in the ultracentrifuge (see above section) was air dried and 

resuspended in 100 μl of NF water. Protease free RNase A and EDTA were added to a 

final concentration of 100 μg/ml and 10 mM respectively, resuspended thoroughly and 

incubated at 37 ºC for 10 min. The samples were TCA precipitated and resuspended in 

SDS loading buffer. 

 

III.5.8 Site specific labeling of single cysteine TF proteins 
 

Dyes for site-specific labeling utilized in this study were 6-bromoacetyl-2- 

dimethyl-aminonaphthalene (BADAN) and N-((2-(iodoacetoxy)ethyl)- N-methyl)amino-
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7-nitrobenz-2-oxa- 1,3-diazole (IANBD ester). Desalting steps in the course of site-

specific labeling procedures were performed using Sephadex G-25 desalting columns 

(Nap-5 columns).  

Typically, ~ 75 nmol of TF single cysteine mutant protein was incubated with 150 

nmol tris-(2-carboxyethyl) phosphine (TCEP) in 150 μl PBS for 10 min at 25 °C to 

completely reduce cysteine thiol groups. A 4-fold molar excess of the fluorescent dye and 

400 μl of 20 mM Tris-HCl, pH 7.5 were added. The reaction was allowed to proceed for 

90 min at 25 °C in the dark. β-mercapto-ethanol (β-ME) was added to a final 

concentration of 10 mM to quench the reaction. Excess dye and β-ME were removed by 

desalting the protein into PBS. The eluate was concentrated to ~ 500 μl in centricon tubes 

and desalted into PBS again. The eluate was again concentrated 2- to 3-fold and small 

aliquots of the labeled protein were flash-frozen in liquid nitrogen and stored at –80 °C in 

the dark.  

 The extent of labeling was calculated based on the molar absorptivity coefficient 

of 23000 M-1 cm-1 for NBD and 21000 M-1 cm-1 for BADAN. The concentration of the 

total protein was calculated by the Bradford method (Bradford 1976). The ratio of the 

amount of the labeled protein to the total protein will yield the labeling efficiency. For 

example the extent of the NBD labeling is calculated by, 

 

Moles dye per mole protein = A472 * dilution factor / 23,000 * protein concentration (M) 

 

where 23,000 and 21,000 are the approximate molar extinction coefficients of 

NBD and BADAN at 472 nm and 397 nm respectively. 

  

III.6 Protein analytical methods 

III.6.1 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 
 

SDS-PAGE was performed using a discontinuous buffer system under denaturing 

and reducing conditions (Laemmli, 1970). Typically, gels were poured with a 5% 
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polyacrylamide (v/v) stacking gel on top of a 9-15% polyacrylamide separating gel, 

depending on the required resolution. SDS loading buffer was added to the protein 

samples to a 1x concentration. Prior to loading, samples were heated at 95 °C for 5 min. 

Electrophoresis was carried out at a constant current of 30 mA/gel in running buffer. 

Stacking gel: 5% acrylamide/bisacrylamide (30:0.8), 130 mM Tris pH 6.8, 0.1% SDS, 

0.1% TEMED, 0.1% ammonium persulfate 

Separating gel: 9-15% acrylamide/bisacrylamide (30:0.8), 0.75 M Tris pH 8.8, 0.1% 

SDS, 0.1% TEMED, 0.05% ammonium persulfate 

4x SDS sample buffer: 240 mM Tris pH 6.8, 8% SDS, 40% glycerol, 1.4 M 

β-Mercaptoethanol, 0.02% bromphenol blue 

Running buffer: 50 mM Tris-Base, 380 mM glycine, 0.1% SDS 

Coomassie stain: 0.1% Coomassie Brilliant Blue R250, 30% methanol, 10% acetic acid 

Destain solution: 30% methanol, 10% acetic acid 

 

III.6.2 Autoradiography 
 

Samples containing radiolabeled proteins were subjected to SDS-PAGE. After 

electrophoresis, gels were fixed in 50% methanol, 12% acetic acid, briefly rinsed in water 

and dried on Whatman paper in a Slab Gel Dryer SGD 2000 for 50 min at 76 °C. Dried 

gels were exposed to a phospho-imaging plate (Fuji) overnight. The imaging plate was 

analyzed using an FLA 200 imaging system (Raytest). Band intensities were quantified 

using the AIDA software version 2.31 (Raytest). 

 

III.6.3 Western blotting 
 

Western blotting was carried out in a semi-dry blotting unit. After separation by 

SDS-PAGE, proteins were transferred onto a nitrocellulose membrane by applying a 

constant current of ~ 1 mA/cm2 gel size in transfer buffer for 1 h. 

Blocking was carried out with 5% skimmed milk powder in TBST for 1 h. The 

membranes were then incubated with primary antibody (diluted in 5% milk-TBST) for 

1 h at room temperature or overnight at 4 °C, followed by the incubation with 

HRP-conjugated secondary antibody (diluted 1:2000 in 5% milk-TBST) for 1 h at room 
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temperature. Extensive washing between the incubation steps was performed with TBST. 

Immunodetection was carried out with the ECL system (Amersham Pharmacia) and 

developed with ImageReader (Fuji LAS-3000). 

 

III.6.4 Immunoprecipitation 
 
 Typically 25 μl of the crosslinked samples were added to 650 μl of RIPA buffer 

and 30 μl of TF-antiserum and rocked overnight at 4 ºC. The samples were spun at top 

speed in a Beckmann tabletop centrifuge to remove any particulate aggregates. The 

supernatant was transferred to a new Eppendorf tube and 40 μl of Protein A sepharose 

(1:1 w/v) and 15% BSA (w/v) delipidated in RIPA buffer were added. The samples were 

then rocked for 2 h at 4 ºC. The beads were washed 3 times with 750 μl of RIPA buffer. 

The bound protein was eluted from the beads with 40 μl SDS loading buffer. The samples 

were heated at 95 ºC and loaded on SDS-PAGE. The dried gels were exposed to the 

autoradiographic screens and scanned. 

 

III.6.5 Quantification of proteins 
 

Purified, unmodified proteins were quantified by absorbance spectroscopy at 280 

nm in 6 M Guanidine-HCl, 20 mM Na2PO4, pH 6.5 using calculated extinction 

coefficients (Gill and von Hippel, 1989). Extinction coefficient of TF (ε280 nm) = 15,930 

M−1cm−1. Fluorescently labeled proteins were quantified in a colorimetric assay (Bio-Rad 

Protein Assay, BioRad) based on the method developed by Bradford (Bradford, 1976). 

As a reference, a calibration curve with the respective unmodified protein was prepared. 

 

III.6.6 In vivo functionality test for TF single site mutants 
 

E. coli MG1655 ΔtigΔdnaK cells were transformed with pBAD WT TF, TF 

FRK/AAA or TF amber mutants along with pBk pBpa and grown at 23 °C for 36 h in 

LBKanTet plates. Single colonies were inoculated in LBKanTet and grown overnight at 23 

°C. Cells were serially diluted in LBKanTet plates in the presence of either 0.2% arabinose 

or 1 mM pBpa or in the presence or absence of both and incubated at 23 °C, 30 °C, 34 °C 

and 37 °C overnight. 
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III.6.7 Luciferase activity measurements 
 
 pET 3a vector encoding the Firefly Luciferase (Pyrococcus pyralis) gene was 

translated in the PURE system in the presence of either 5 μM WT TF or other TF variants 

and 0.8 μCi/μl 35S-methionine for ~ 50 min at 30 ºC. In a control reaction, translation was 

performed in the absence of TF. To measure enzymatic activity 2 μl aliquots were diluted 

into 200 μl of Luciferase dilution buffer. 2 μl of the above mixture was added to 48 μl of 

Luciferase assay buffer (Promega) and firefly luminescence was measured in the 

luminometer. Simultaneously a fraction of the translation reactions was loaded on SDS-

PAGE and the amount of Luciferase protein synthesized was calculated by 

autoradiography. Specific activity of Luciferase was calculated by dividing the enzymatic 

activity with the amount of protein synthesized. 

 

III.7 Fluorescence measurements 

III.7.1 Overview 
 

All buffers used in spectroscopic measurements were filtered and degassed. 

Spectra and kinetic traces were collected on a Fluorolog 3 fluorometer (Jobin Yvon) at 

the indicated temperatures. The bandwidth of the excitation and emission light was 

adjusted to yield a maximum of ~ 106 counts per second (cps). To correct for the 

fluctuations in the excitation light source, the reference signal (R) was recorded along 

with the actual signal (S) in the course of all the measurements. S/R was used for data 

evaluation. 

 

III.7.2 RCM-RNase T1 refolding 
 

Reduction, carboxymethylation and refolding of RNase T1 were done according 

to the previously published protocol (Mucke and Schmid, 1992). Typically, 0.24 pmol of 

RNase T1 was dissolved in 275 μl of 0.2 M Tris/HCl, pH 8.7, containing 7.0 M GdmCl 

and 2 mM EDTA. The protein was reduced by adding 30 μl of a 0.2 M DTT solution (in 

0.2 M Tris/HCl, pH 8.7, 7.0 M GdmC1, and 2 mM EDTA) to give a final concentration 
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of 20 mM DTT and incubated at 25 °C for 2 h. The reduced protein was subsequently 

carboxymethylated by adding 60 μl of 0.6 M iodoacetate solution in 0.2 M Tris/HCl, pH 

7.5 and incubated for 5 min in the dark. The reaction was stopped by adding 100 μl of 0.5 

M reduced glutathione in 0.2 M Tris/HCl, pH 7.5. The modified protein (RCM-RNase 

T1) was immediately separated from the reagents by gel filtration over a NAP-5 column, 

equilibrated with 0.1 M sodium acetate, pH 5.0. The protein was stored in solution at       

4 °C. 

Folding kinetics was initiated by a ~ 30-fold dilution of unfolded RCM-RNase T1 

in the buffer containing 2.0 M NaC1. The kinetics was followed by the change in 

fluorescence at 320 nm after excitation at 268 nm. All kinetic experiments were carried 

out in 0.1 M Tris/HCl, pH 8.0 at 15 °C. 

 

III.7.3 Equilibrium fluorescence measurements 
 

Emission spectra were obtained with increments in excitation wavelength of 1 nm 

and an integration time of 0.25 s per data point. Measurements were recorded in triplicate 

and averaged. Measurements with TFB and TFNBD were performed with the final 

concentration of labeled protein of 250 nM. TFB was excited at 387 nm and emission 

spectra were collected from 410 nm to 600 nm. TFNBD was excited at 472 nm and 

emission spectra were collected at 500 nm to 650 nm. For monitoring TF-ribosome 

binding, 1 μM of the labeled TF was incubated with 1 μM purified ribosomes.  

 

III.7.4 Kinetic fluorescence measurements 
 

For monitoring changes in TF fluorescence during translation, 250 nM of labeled 

TF was added to the PURE system in the absence of the template DNA. The reactions 

were transferred to a cuvette prewarmed to 30 ºC. Once a steady signal was reached, ~ 

after 3 min from the start of measurement, translation was initiated upon addition of 

DNA at a final concentration of 10 ng/μl. The change in fluorescence was monitored as 

translation proceeded. 
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For the kinetic analysis of TF binding to ribosomes, 250 nM of TF labeled with 

BADAN at position 14 was used. For analysis of TF binding to nascent chains, 250 nM 

of TF labeled with NBD at the indicated positions was utilized.  

 

III.7.5 Competition experiments 
 

For displacement of labeled TF with the unlabeled TF during translation, excess 

unlabeled WT TF (competitor) at a final concentration of 20 μM was added to the 

translation reaction. The competitor was generally added once the fluorescence of the 

labeled TF has reached steady state. 

 

III.7.6 Evaluation of the kinetic data  
 
 Data from the competition experiments were analyzed using a three parameter 

single exponential function or a five parameter double exponential function depending on 

the best fit. 

 Data for a single exponential function were analyzed using the equation 1, 

  y = y0+ae-bx  (Eq. 1)   
  and data for a double exponential function were analyzed using the equation 2, 

                                      y = y0+ae-bx + ce-dx (Eq. 2) 
 

where y0 is the initial value, a and c represent the amplitudes, b and d represent 

the time constants. The time constant b is used to calculate the half-time in the single 

exponential reactions and time constants b and d are used to calculate both the half-times 

in a double exponential reaction by the equations 

   

   t1/2 = ln(2)/b  (Eq. 3)  

 

and      t1/2 = ln(2)/d  (Eq. 4) 
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IV   Results 
 

IV.1 In vitro translation in the PURE system and site-specific 

photocrosslinking experiments with pBpa-TF 

The goal of this part of the study was to investigate nascent chain interacting sites 

on TF. To achieve this, a photocrosslinking approach was utilized. TF, labeled site-

specifically with a photoactivable crosslinker was employed for this purpose. Translation 

reactions for examining TF-nascent chain interactions were carried out in the PURE 

system. The PURE system is a reconstituted translation reaction consisting of purified 

components from E. coli, namely 32 translation factors, purified ribosomes, 46 tRNAs, 

the 20 amino acids and factors required for the energy regeneration (Shimizu et al., 

2001). The PURE system is superior to conventional translation systems is that it lacks 

contaminating proteases and nucleases. 

There are two major advantages of employing the PURE system in nascent chain-

chaperone interaction studies, the first being the absence of chaperone components, 

which are present in considerable amounts in crude bacterial translation lysates. As a 

result, the role of specific chaperones and the exact concentrations required in exerting 

chaperone action can be examined by adding defined quantities of the respective factors 

(Shimizu et al., 2005). As a second advantage, the PURE system facilitates the 

production of ribosome-stalled nascent chains. PCR fragments of DNA as templates can 

be used to initialize transcription-translation. When the stop codons in the DNA template 

are omitted, the translated nascent polypeptides will be stalled at the P site of the peptidyl 

transferase center and is not released from the ribosome (Kaiser et al., 2006; Tomic et al., 

2006). The stalled nascent chains produced in this manner are stable over a long period of 

time (Matsuura et al., 2007) due to the absence of the SsrA system in the PURE system, 

which has a role in disrupting ribosome-stalled nascent chain complexes (Keiler et al., 

1996). The PURE system is also suitable for fluorescence experiments because it is 

devoid of contaminants that might contribute to background fluorescence. 

To identify the regions of TF interacting with the nascent chains during 

translation, a UV inducible site-specific photocrosslinking approach was utilized. para-
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Benzoyl-L-phenylalanine (pBpa), an unnatural amino acid-benzophenone derivative 

(Dorman and Prestwich, 1994) was used as the photoreactive probe throughout all the 

photocrosslinking experiments (Chin et al., 2002). pBpa is not sensitive to ambient light 

but is excited at  ~ 320 nm. It specifically reacts with C-H bonds even in the presence of 

solvent water (Dorman and Prestwich, 1994). The reversible excitation of benzophenone 

facilitates repeated excitation of pBpa to the triplet-excited state, which results in 

improved crosslinking yields (Kauer et al., 1986). The reactive moiety of the 

benzophenone is centered at the ketone oxygen with a radius of 3.1 Å and hence regions 

of nascent chains that are within this distance from the reactive site of pBpa, can form 

covalent bonds with the pBpa labeled residue upon exposure to UV light (Dorman and 

Prestwich, 1994). pBpa was incorporated into TF in a site-specific manner. Thus, 

photocrosslinking allowed the identification of specific regions in TF that interact with 

nascent chains. 

   

IV.1.1 Incorporation of pBpa into TF and charecterization of pBpa-TF 
 

To investigate the interaction of TF with nascent chains, surface-exposed sites in 

TF were chosen for the incorporation of pBpa (Figure 12). These sites were distributed 

over all three domains of TF. When ribosome-bound, TF is predicted to expose a 

hydrophobic crevice, formed by the N- and the C-terminal domains, towards the 

ribosomal exit tunnel, for association with nascent chains (Ferbitz et al., 2004). As 

negative controls for nascent chain interactions, several sites exposed on the back of the 

molecule facing away from ribosome exit site were investigated. These sites were 

mutated to amber stop codons (TAG) for pBpa incorporation. Site-specific incorporation 

of pBpa into TF mutants was carried out in vivo using an orthogonal pair of 

Methanococcus janaschii tyrosyl tRNAamb and tyrosyl tRNA synthetase with the addition 

of 1 mM pBpa to the growth media (Figure 11). The M. janaschii tyrosyl tRNA 

synthetase specifically aminoacylates its orthogonal tRNA pair with pBpa which in turn 

incorporates pBpa at an amber codon, but is not aminoacylated by the endogenous tRNA 

synthetases (Chin et al., 2002; Chin and Schultz, 2002). In the absence of suppression by 

the pBpa-tRNA, pBpa is not incorporated during TF expression. As a result, only 
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truncated TF molecules are synthesized which will not contribute towards photoadduct 

formation. 

 

 
Figure 11: Incorporation of pBpa in vivo 

E. coli cells were transformed with plasmids pBK pBpa that encodes a mutant           
M. janaschii tyrosyl-tRNA synthetase (green) and a pBAD vector that encodes a 
mutant M. janaschii tyrosyl tRNAamb. The mutant tyrosyl-tRNA synthetase 
specifically aminoacylates pBpa (stars) onto the mutant tyrosyl tRNAamb

 (3). The 
pBAD vector also encodes TF with an inframe amber codon (TAG) at a specific 
position (for example at position 320 as shown in the figure) under an arabinose 
promoter (red). The aminoacylated M. janaschii tyrosyl tRNAamb incorporates 
pBpa in response to the amber codon during translation (4) resulting in TF 
labeled with pBpa at a specific position. The mutant tRNA synthetase does not 
aminoacylate endogenous tRNA with pBpa (2) and the mutant tRNA is not 
aminoacylated with the endogenous tRNA synthetases (1). 
 

Positions R14, N34, R73 and G88 in the N-terminal domain of TF were chosen as 

possible nascent chain interaction sites. F168, F177, F185, F198 and F233 were selected 

in the PPIase domain, while Q320 and F322 were chosen in arm 1 and E373, A377, Y378 

and F387 in arm 2 of the C-terminal domain. Positions Q118 and E419 on the back of the 
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proposed substrate-binding crevice served as negative controls. The mutation at position 

Q320 was also introduced in the FRK/AAA TF background to serve as a negative control 

for ribosome-dependent TF interactions with the nascent chains (Figure 12). 

 

 
 

Figure 12: The crystal structure of E. coli TF (pdb-code 1w26) 
The three domains of TF are shown in different colors: N-terminal domain in red, 
PPIase domain in yellow, arm 1 and arm 2 of C-terminal domain in green and 
blue, respectively. The numbers denote the residues chosen for pBpa 
incorporation. 
 

IV.1.1.1 Expression of pBpa-labeled TF 

Expression of TF amber mutants was performed in E. coli MG1655 cells in the 

presence of 0.2% arabinose and 1 mM pBpa. The expression levels were analyzed by 

Western blotting with anti-TF antibodies. WT TF was expressed to substantially higher 

levels compared than pBpa-TF because its expression is independent of the incorporation 

of pBpa (Figure 13, lane 1). pBpa-TF was expressed at levels comparable to endogenous 

TF. Truncated TF proteins were observed with TF labeled at positions 373, 377, 378, 

384, and 387 resulted from incomplete suppression by pBpa-tRNA at the amber codons 

(Figure 13, lanes 3, 4, 5, 6 and 7). 
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Figure 13:  Expression of the pBpa-TF variants in vivo 
E. coli MG1655 cells transformed with pBK pBpa along with plasmids encoding 
either of pBAD TF mutants were grown in LBKanTet. The cultures were induced 
with 1 mM pBpa in the absence of arabinose (Upper panel), or induced with 0.2% 
arabinose and 1 mM pBpa (Lower panel) at an A600nm 0.6 and grown for 4 h post 
induction. Cells were pelleted, lysed in SDS sample buffer, separated on SDS-
PAGE and blotted against anti-TF antibodies.  
 

IV.1.1.2 In vivo complementation of the synthetic lethal phenotype of ΔtigΔdnaK by 

pBpa-TF 

Modifying TF with pBpa in vivo offered the advantage of screening for the 

functionality of pBpa-labeled TF. E. coli cells lacking both TF and DnaK exhibit 

synthetic lethality (in this case, inability to grow above 30 °C) due to defective protein 

folding (Deuerling et al., 1999; Teter et al., 1999). Cultures of E. coli MG1655 

ΔtigΔdnaK cells transformed with the corresponding arabinose-regulated pBAD TF 

mutants and pBK pBpa were grown overnight at 16 ºC. Cultures were serially diluted on 

LBKanTet plates containing both arabinose and pBpa and incubated at 37 °C (Figure 14 A). 

Since all the mutant proteins were expressed as a result of suppression by pBpa at the 

amber codons (Figure 13), the ability of the mutants to rescue the phenotype was taken as 

a measure of their functionality in vivo. Failure to rescue this phenotype might be due to 
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the lack of chaperone function of the TF mutants, structural alterations or misfolding 

introduced as a consequence of the presence of pBpa.    

As a control, cells were also spotted on plates lacking pBpa. This allowed the 

expression of the proteins in the presence of arabinose, but full-length proteins were not 

synthesized because of the absence of pBpa and hence no rescue would be observed 

(Figure 14 B). Overexpression of TF is toxic to cells due to impairment of cell division 

processes (Guthrie and Wickner, 1990), and in the absence of DnaK and DnaJ this 

toxicity is further intensified (Genevaux et al., 2004). Since the overexpression of WT TF 

from the pBAD vector was toxic to the cells due to its high expression levels (Figure 13 

lane 1), WT TF was cloned downstream of an IPTG inducible promoter in the pOFX 

vector and used for controlled expression at lower levels. 
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Figure 14: In vivo activity of pBpa-TF variants 

(A). Serial dilutions of E. coli MG1655 ΔtigΔdnaK overnight cultures harboring 
plasmids pBK pBpa and the corresponding pBAD TF mutants in LBKanTet plates 
supplemented with 0.2% arabinose and 1 mM pBpa. The plates were incubated 
at 37 ºC overnight. WT TF was cloned in the IPTG-controlled pOFX vector and 
grown in the presence of 250 mM IPTG. (B). Cells were spotted on plates lacking 
pBpa. 
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TF-mutants labeled with pBpa at positions 34, 88, 118, 185, 233, 320, 373 and 

419 partially rescued the synthetically lethal phenotype (Figure 14 A) and were therefore 

used in subsequent crosslinking experiments. TF FRK/AAA 320 did not complement the 

phenotype, consistent with ribosome-binding being essential for in vivo function (Kramer 

et al., 2004b). The rest of the positions 14, 73, 168, 177, 198, 322, 377, 378 and 387 did 

not rescue the phenotype and were not chosen for further experiments. 

 

 

 
 

Figure 15: pBpa-TF positions that rescued the ΔtigΔdnaK synthetic lethal 

phenotype 
The three domains of TF are shown in color as in Figure 12. Positions highlighted 
in gray are mutants that did not rescue the ΔtigΔdnaK phenotype. Positions 
shown in black are mutants that rescued the ΔtigΔdnaK phenotype and were 
utilized for further crosslinking experiments. 
 

IV.1.1.3 Tryptophan fluorescence of pBpa-TF 
 

The intrinsic tryptophan fluorescence of proteins can be used as a measure of their 

conformational properties (Lakowicz 1999). To verify the structural integrity of pBpa-

TF; fluorescence emission of the single tryptophan residue in TF (W151) was analyzed. 
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Fluorescence emission of pBpa-TF were recorded after excitation at 295 nm and 

normalized. The emission maxima (345 nm) of all the pBpa-TF were similar to WT TF 

suggesting that the global conformation of pBpa-TF were not affected by the presence of 

pBpa (Figure 16). The fluorescence emission maxima at 360 nm when TF was denatured 

in 6 M Guanidium Hydrochloride serves as reference spectra for the unfolded protein.  

 

 
 

Figure 16: Tryptophan fluorescence of pBpa-TF  

Fluorescence emission scans of WT TF and pBpa-TF were recorded after 
excitation at 295 nm and normalized to unity. The fluorescence maxima of all 
pBpa-TF were similar to WT TF, suggesting that pBpa incorporation did not alter 
their global conformation. Measurements were performed with 2 μM TF in 20 mM 
Tris-HCl, pH 7.0. 
 

IV.1.2 Photocrosslinking of pBpa-TF to RNCs 
 

The inability of the rest of the sites (14, 73, 168, 177, 198, 322, 377, 378 and 387) 

to rescue the phenotype could be due to either the alterations introduced to TF’s structure 

or misfolding by pBpa. These possibilities were not investigated further. Based on the in 

vivo complementation assay (Figure 14), pBpa-TF variants that rescued the synthetic 

lethal phenotype of ΔtigΔdnaK were purified and used in crosslinking experiments.  

Firefly luciferase (Luc) was chosen as the translated model substrate throughout 

the crosslinking experiments because earlier studies had shown that the specific activity 
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of luciferase increased in the presence of TF (Agashe et al., 2004). Moreover, TF was 

shown to interact directly with Luc nascent chains upon in vitro translation and 

photocrosslinking with the reactive probes incorporated in the nascent chain (Tomic et 

al., 2006). 

For all the crosslinking experiments, stalled nascent chains of Luc 60, 77, 125 and 

164 residues in length (Luc 60mer, Luc 77mer, Luc 125mer and Luc 164mer 

respectively) were used. The ribosomal exit tunnel can accommodate at least 28-40 

residues as based on proteolysis experiments (Blobel and Sabatini, 1970; Malkin and 

Rich, 1967; Sabatini and Blobel, 1970). Nascent chains are thought to remain largely 

unfolded in the hydrophilic exit tunnel (Nissen et al., 2000). However, some degree of α-

helix formation was observed with the hydrophobic segments of trans-membrane proteins 

(Woolhead et al., 2004). Luc 60mer was the shortest nascent chain used and considering 

the aforementioned observations the ~ 20-30 N-terminal residues would be expected to 

be exposed outside the polypeptide exit tunnel. Likewise, in the Luc 77mer ~ 35-45 

residues, in the Luc 125mer ~ 85-95 residues and in the Luc 164mer ~ 125-135 residues 

would be exposed outside the ribosomal tunnel. 

Translations were performed in the PURE system in the presence of 1 μM pBpa-

TF and 35S-methionine for ~ 50 min and nascent chains were stabilized with the addition 

of 230 μg/ml chloramphenicol. Subsequent to translation, photocrosslinking was 

performed as described (see Materials and Methods). The ribosome associated nascent 

chains were then separated by ultracentrifugation on a sucrose cushion. RNase A 

digestion was performed on the ribosome associated pellet fractions to digest the 

peptidyl-tRNA. Samples were resolved on SDS-PAGE, followed by autoradiography and 

shown in all the experiments below. Authenticity of the crosslinks were confirmed by 

their light and probe dependency as no crosslinks were observed with WT TF and in the 

absence of UV light. Immunoprecipitations were carried out with anti-TF antibodies to 

confirm the identity of the crosslink products. 

 

IV.1.2.1 Photocrosslinking of pBpa-TF to Luc-RNCs 

To obtain initial insights into TF-nascent chain interactions by photocrosslinking 

with pBpa-TF, Luc nascent chains 77 and 164mers were utilized. pBpa-TF labeled at 
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position 320 (TF320) in the tip of arm 1 of the C-terminal domain was used because 

nascent chains were predicted to interact with the hydrophobic crevice formed by the C-

terminal domain (Ferbitz et al., 2004; Ludlam et al., 2004). Labeling at positions 233 and 

185 (TF233, TF185) in the PPIase domain was used to probe nascent chain interactions 

because these residues were identified to form a hydrophobic surface for substrate 

interaction based on homology modeling with the S. cerevisiae PPIase, FKBP12, as a 

template (Patzelt et al., 2001). Position 419 (TF419) was employed to test whether 

nascent chains also interact with the back of the TF molecule.  

 

 
 

Figure 17: Photocrosslinking of pBpa-TF to Luc-RNCs 

In vitro translations were performed in the PURE system to generate 35S-
methionine labeled Luc 77mer or 164mer nascent chains (A and B, respectively) 
in the presence of 1 μM pBpa-TF. The samples were crosslinked under UV light 
for 60 min for reactions in (A) and 2 min for reactions in (B). Samples not 
irradiated are indicated on top of the gel. (A). TF320 and TF233 crosslinked to 
Luc 77mer (lanes 2 and 3). (B). TF320, TF233, TF419, TF185 and TF320 
FRK/AAA crosslinked to Luc 164mer (lanes 10 to 14). Black arrows indicate 
hydrolyzed nascent chains and open arrows indicate crosslinked nascent chains.          
 

 TF320 crosslinked to Luc 77mer (Figure 17, lane 2) but TF233 did not crosslink 

to this nascent chain (Figure 17, lane 3). TF320 and TF233 both crosslinked to Luc 

164mer (Figure 17, lanes 10 and 11). TF 320 FRK/AAA did not crosslink to Luc 164mer 

confirming that the interaction of TF320 with nascent chains requires binding to the 
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ribosome (Figure 17, lane 14). TF185 also failed to crosslink to Luc 164mer (Figure 17, 

lane 13). The absence of photoadducts with TF419 confirmed that the nascent chains 

interact with the inner hydrophobic crevice as they elongate and do not interact with the 

back of the molecule (Figure 17, lane 12). A prolonged crosslinking time of 60 min was 

used to produce efficient crosslinking with Luc 77mer. Prolonged crosslinking also 

served to demonstrate the complete absence of TF233-Luc 77mer crosslinking. As will 

be discussed the absence of crosslinking could be due to the inability of the short Luc 

77mer to reach position 233 in the PPIase domain.  

To confirm the authenticity of the photoadducts, immunoprecipitations (IPs) of 

the 35S-methionine labeled crosslinked samples were performed with anti-TF antibodies 

(see Materials and Methods). Figure 18 shows a representative IPs of TF320 crosslinking 

to Luc 77mer and Luc 164mer (Figure 18, lanes 1 and 2). As seen in lanes 1 and 2, the 

photoadducts obtained with Luc 77mer and Luc 164mer were immunoprecipitated with 

anti-TF antibodies, confirming that the photoadducts contain both TF and the nascent 

chain. The ribosome binding deficient TF-mutant, TF320 FRK/AAA, yielded 

substantially weaker crosslinks with the nascent chains tested (Figure 18, lanes 3 and 4).  
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Figure 18: Immunoprecipitation of pBpa-TF-nascent chain photoadducts 

with anti-TF antibodies 

Luc 77mer and Luc 164mer was generated in the PURE system (as indicated in 
the Fig) in the presence of 35S-methionine and 1 μM TF320 or TF320 FRK/AAA 
or WT TF (as shown in the top of the gel) and crosslinked with UV for 15 min. 
Samples not irradiated with UV were indicated on the top of the gel. The 
photoadducts obtained with Luc 77mer and Luc 164mer in the presence of 
TF320 were immunoprecipitated with anti-TF antibodies confirming the presence 
of TF in the photoadducts (lanes 1 and 2). Open arrows indicate crosslinked 
nascent chains. The black arrow (lane 2) indicates p-tRNA of the TF320-
Luc164mer photoadduct. 
 

 The above experiment demonstrated that TF-nascent chain interactions can be 

followed by photocrosslinking. The nascent chains were in close proximity to both the C-

terminal domain and the PPIase domain in a length-dependent manner but not with the 

back of the molecule. Photoadduct formation was also dependent on ribosome binding as 

TF320 FRK/AAA yielded photoadducts with strongly reduced efficiency. A fraction of 

Luc 164mer nascent chains were immunoprecipitated with anti-TF antibodies probably 

due to non-specific interaction of Luc 164mer with the antibodies or with the Protein A 

sepharose. These initial results provided the basis for a systematic study of the role of the 

three domains of TF in nascent chain binding. 
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IV.1.2.2 Crosslinking of the N-terminal domain of TF to Luc-RNCs 

The N-terminal domain of TF binds to the ribosome close to the exit tunnel and is 

positioned to interact with the nascent chains during translation (Ferbitz et al., 2004; 

Kramer et al., 2002). In complex with the ribosome, residues 34 and 88 of TF are both 

surface exposed but residue 34 is in close vicinity of the flexible loop carrying the 

“signature motif” sequence (43GFRxGxxP50) that is responsible for ribosome-binding. 

Residue 88 is located in the interior of the N-terminal domain, at least 50 Å from the 

“signature motif” sequence (Figure 12) (Ferbitz et al., 2004). TF34 crosslinked to Luc 

nascent chains 60, 77 and 164 mers in a light-dependent manner (Figure 19, lanes 5, 11 

and 17). This confirms that the nascent chains emerging from the ribosome interact with 

the region of TF close to the polypeptide exit tunnel. None of the nascent chain lengths 

tested showed detectable crosslinks to TF88 (Figure 19, lanes 6, 12 and 18), suggesting 

that this residue is not in close proximity to the nascent chain. 
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Figure 19: Photocrosslinking of TF N-terminal domain variants to Luc-

RNCs 

In vitro translations were performed in the PURE system to generate 35S-
methionine labeled Luc 60mer, 77mer or 164mer nascent chains (A, B and C, 
respectively) in the presence of 1 μM pBpa-TF. Reactions were crosslinked 
under UV light for 15 min for reactions in (A) and (B). Samples were crosslinked 
for 2 min for reactions in (C). (A). TF34 and TF88 crosslinked to Luc 60mer 
(lanes 5 and 6). (B). TF34 and TF88 crosslinked to Luc 77mer (lanes 11 and 12). 
(C). TF34 and TF88 crosslinked to Luc 164mer (lanes 17 and 18). TF320 was 
utilized as a positive control throughout all the experiments. Black arrows indicate 
hydrolyzed nascent chains and open arrows indicate crosslinked nascent chains.          
 

IV.1.2.3 Crosslinking of the C-terminal domain of TF to Luc-RNCs 

The C-terminal domain forms the crevice of the TF molecule and has two arm- 

like projections from its main body, called arm 1 and arm 2 (Figure 12). Residues 320 

and 373 were chosen to represent arm 1 and arm 2 respectively, to investigate nascent 

chain interactions with the C-terminal domain. On exit from the ribosome, nascent chains 

are predicted to interact with the inner surface of TF that contain exposed hydrophobic 

residues (Ferbitz et al., 2004; Ludlam et al., 2004). Sites 118 and 419 on the back of the 

molecule were chosen as controls (Figure 12). 
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Figure 20: Photocrosslinking of TF C-terminal domain variants to Luc-

RNCs 

In vitro translations were performed in the PURE system to generate 35S-
methionine labeled Luc 60mer, 77mer or 164mer nascent chains (A, B and C, 
respectively) in the presence of 1 μM pBpa-TF. The samples were crosslinked 
under UV light for 15 min for reactions in (A), (B) and (D). Samples were 
crosslinked for 2 min for reactions in (C). (A). TF320, TF320 FRK/AAA, TF373 
and TF419 crosslinked to Luc 60mer (lanes 5 to 8). (B). TF320, TF320 FRK/AAA, 
TF373 and TF419 crosslinked to Luc 77mer (lanes 13 to 16).  (C). TF320, TF320 
FRK/AAA, TF373 and TF419 crosslinked to Luc 164mer (lanes 21 to 24). (D). 
TF118 crosslinked to Luc 77mer or Luc 164mer (lanes 30 and 32). Black arrows 
indicate hydrolyzed nascent chains and open arrows indicate crosslinked 
nascent chains. 
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 TF320 and TF373 crosslinked to Luc nascent chains 60, 77 and 164 mers (Figure 

20, lanes 5, 7, 13, 15, 21 and 23) in a light dependent manner. None of the nascent chains 

tested crosslinked to TF320 FRK/AAA (Figure 20, lanes 6, 14 and 22), TF118 (Figure 

20, lanes 30 and 32) or TF419 (Figure 20, lanes 8, 16 and 24). The lack of crosslinking 

with TF118 and TF419 suggests that nascent chains interact with the inner hydrophobic 

crevice of TF as they elongate and not with the back of the molecule. 

 

IV.1.2.4 Crosslinking of the PPIase domain of TF to Luc-RNCs 

In the 3-D structure of TF, the N-terminal domain and the PPIase domains are 

positioned at opposite ends. The PPIase domain is connected to the N-terminal domain 

via a long linker that extends across the back of the molecule (Ferbitz et al., 2004; 

Ludlam et al., 2004). Although the PPIase domain was shown to catalyze the refolding 

substrates that rely on prolyl isomerisation (Scholz et al., 1997), its importance in nascent 

chain binding if any remained to be addressed. Importantly in this context, the PPIase 

domain is dispensable for TF function in vivo (Genevaux et al., 2004; Kramer et al., 

2004). Residues 185 and 233 were chosen in the PPIase domain for pBpa incorporation 

and subsequent crosslinking experiments. 
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Figure 21: Photocrosslinking of the TF PPIase domain variants to Luc-

RNCs 

In vitro translations were performed in the PURE system to generate 35S-
methionine labeled Luc 60mer, 77mer or 164mer nascent chains (A, B and C, 
respectively) in the presence of 1 μM pBpa-TF. The samples were crosslinked 
under UV light for 15 min for reactions in (A) and (B) and for 2 min in (C). (A). 
TF233 and TF185 crosslinked to Luc 60mer (lanes 5 and 6). B. TF233 and 
TF185 crosslinked to Luc 77mer (lanes 11 and 12). (C). TF233 and TF185 
crosslinked to Luc 164mer (lanes 17 and 18). Black arrows indicate hydrolyzed 
nascent chains and open arrows indicate crosslinked nascent chains. 
 

Interestingly, the crosslinking of nascent chains to the PPIase domain displayed 

clear length-dependence. TF233 and TF185 both crosslinked to Luc 60mer (Figure 21, 

lanes 5 and 6) but neither of them crosslinked to Luc 77mer (Figure 21, lanes 11 and 12). 

TF233 crosslinked to Luc 164mer but TF185 did not crosslink to Luc 164mer (Figure 21, 

lanes 17 and 18). The length of the ribosomal exit tunnel is ~ 100 Å (Ban et al., 2000) 

and the calculated distance between TF34, close to the exit tunnel, and TF233 is 87 Å. 

Based on calculations as mentioned earlier (Section IV.1.2), the Luc 60mer nascent 

chains must be in rather extended conformation (210 Å) to reach the probe at position 

185 or 233, far from the ribosomal exit tunnel. Crosslinking of these probe sites to the 

Luc 60mer indicates that at least a portion of the nascent chain is maintained in an 

extended conformation by TF. This might also explain the loss of interaction of TF88 

with nascent chains, as this residue is in the interior of the molecule as mentioned above 

(Figure 19). Neither TF185 nor TF233 crosslinked to the Luc 77mer. On the other hand, 
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only TF233 crosslinked to the Luc 164mer. This suggests that different portions of Luc 

nascent chains are adjacent to the probe position at 233 as the chain elongates from 60 to 

164 amino acids. Thus, it appears that the nascent chains can move relative to TF during 

translation. 

 

IV.1.2.5 TF crosslinking to α-Synuclein-RNCs 

Luc nascent chains interacted with all three major domains of TF during 

translation. The interactions of the domains of TF with other nascent chains were 

examined next. α-Synuclein (α-Syn) was chosen as a natively unfolded model protein. 

Previous experiments had shown that α-Syn is in close proximity to TF by 

photocrosslinking experiments with crosslinker incorporated in the nascent chains 

(Tomic et al., 2006). Although in this study α-Syn nascent chains crosslinked to TF, they 

were not protected from protease digestion by TF, suggesting the absence of stable 

complex formation. α-Syn has no substantial hydrophobic regions compared to Luc, as 

judged by hydrophobicity plots (Kaiser et al., 2006) (Figure 22 B and C). α-Syn 140mer 

nascent chains were generated in the PURE system and crosslinking was performed with 

all the pBpa-TF variants. TF34, TF320, TF373 and TF233 crosslinked to α-Syn 140mer 

nascent chains (Figure 22 A, lanes 1, 3, 5 and 7), although the crosslinking efficiency was 

weaker with TF233. Crosslinks were not detectable with both TF88 and TF185 (Figure 

22 A, lanes 2 and 8). 
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Figure 22: Site-specific photocrosslinking of pBpa-TF to α-Syn-RNCs and 

hydrophobicity analysis of the nascent chain substrates 
(A). In vitro translation of 35S-methionine labeled α-Syn 140mer in the PURE 
system in the presence of the indicated pBpa-TF. The samples were crosslinked 
under UV light for 15 min. Hydrolyzed nascent chains are indicated by black 
arrows. Open arrows indicate photoadducts between pBpa-TF and nascent 
chains. Analysis of mean hydrophobicity of Luc (B) and α-Syn (C). Using a 
window of 11 residues the mean hydrophobicity of each sequence was 
calculated according to the previously published method (Kaiser et al., 2006). If a 
sequence of maximum 5 consecutive residues have a mean hydrophobicity of    
< -0.5 kcal/mol, they are predicted to bind to TF with high probability. Luc has 
three such regions to mediate increased TF binding while α-Syn has no such 
regions. 
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To directly compare the crosslinking efficiency of Luc and α-Syn nascent chains 

to the C-terminal domain and the PPIase domain, TF320 and TF233 were crosslinked to 

either Luc 125mer or α-Syn 140mer nascent chains. TF320 and TF233 crosslinked to Luc 

125mer with similar efficiency (Figure 23, lanes 1 and 2). TF320 crosslinked less 

efficiently to α-Syn 140mer than to Luc 125mer while the crosslinking efficiency of 

TF233 to α-Syn 140mer was reduced substantially (Figure 23, lanes 3 and 4). This would 

be consistent with the absence of strong hydrophobic patches in α-Syn nascent chains 

(Figure 22 C), which might mediate the nascent chain’s interaction with the PPIase 

domain. 

 

 
Figure 23: Comparison of crosslinking efficiency between TF320 and TF233 

to Luc and α-Syn-RNCs 

In vitro translations of 35S-methionine labeled Luc 125mer (lanes 1 and 2) or α-
Syn 140mer (lanes 3 and 4) in the PURE system in the presence of either 1 μM 
TF320 (lanes 1 and 3) or 1 μM TF233 (lanes 2 and 4). Samples were irradiated 
with UV light for 15 min. Black arrows indicate hydrolyzed nascent chains and 
open arrows indicate crosslinked nascent chains. 
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IV.1.2.6 Nature of PPIase domain-nascent chain interactions 

The PPIase domain displayed length and position-dependent crosslinks to Luc 

nascent chains and also differential crosslinking efficiency between Luc and α-Syn 

nascent chains (Figures 21, 22 and 23). Although the PPIase domain interacted with the 

nascent chains during translation, it was not clear whether the interaction involves 

enzymatic activity of this domain. Interestingly, mutation of residue F233 in the PPIase 

domain, which was crosslinked to nascent chains, has been shown to cause a marked 

reduction in prolyl isomerisation activity in vitro (Tradler et al., 1997). To test the PPIase 

activity of TF labeled with pBpa at residue 233, refolding of reduced carboxymethylated 

RNase T1 (RCM-RNase T1) was analyzed. Two native disulfide bonds are broken in this 

form of RNase T1 and remain unfolded in the absence of NaCl (Mucke and Schmid, 

1992). RCM-RNase T1 is converted into its folded and active form in the presence of 

NaCl. Slow cis-trans isomerisation of the Try38-Pro39 prolyl bond is the rate-limiting 

step of RCM-RNase T1 refolding, which is accelerated in the presence of PPI in a 

concentration dependent manner (Scholz et al., 1997; Schonbrunner et al., 1991) (Figure 

24). 

Refolding of RCM-RNase T1 in 0.1 M Tris-HCl, pH 8.0 was initiated by a 30-

fold dilution into 2.0 M NaCl in the same buffer in the presence of 1 μM WT TF, TF233, 

TF320, NC TF or in the absence of TF. TF320 was utilized as control to demonstrate that 

the presence of pBpa did not affect the ability of TF in the refolding reaction. Folding 

was monitored by the increase in intrinsic tryptophan fluorescence of RCM-RNase T1 as 

it approaches its natively folded structure. 1 μM WT TF was able to accelerate the rate ~ 

30 fold compared to spontaneous refolding (Figure 24 A and B). The rate of refolding by 

TF233 was ~ 10 fold slower compared to WT TF (Figure 24 A and B), indicating its 

markedly reduced PPIase activity. TF320 was as active as WT TF in the refolding 

reaction, suggesting that the presence of the pBpa per se does not hinder its PPIase 

activity (Figure 24 A). 
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Figure 24: Refolding of RCM-RNase T1 

(A). Refolding kinetics of 1 μM RCM-RNase T1 in 2.0 M NaCl, 0.1 M Tris-HCl pH 
8.0 and 1 μM WT TF, TF233, TF320, NC TF or in the absence of TF. The 
refolding was carried out at 15 ºC. The change in fluorescence at 320 nm was 
monitored after excitation at 268 nm. (B). Representation of the rates of RCM-
RNase T1 refolding in the presence of TF variants. 
  

IV.1.3 Identification of the TF dimer interface by photocrosslinking 
 

Non-ribosome bound TF forms dimers with the kD of ~2 µM but only the 

monomeric form binds to the ribosome (Patzelt et al., 2002). The monomer-dimer 

equilibrium follows rapid kinetics with a t1/2 value of ~ 1 s, as determined by inter-

molecular FRET (Kaiser et al., 2006). In the same study it was shown that the TF dimer 
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equilibrium is shifted to the monomer upon addition of ribosomes. Model building based 

on inter-molecular FRET data indicated that the substrate binding site of TF may be 

buried in the dimeric form suggesting the inability of dimeric TF to bind to the ribosome 

associated nascent chains (Kaiser et al., 2006). 

Photocrosslinking of pBpa-TF was performed with the aim of examining the 

positions in TF that are at the dimer interface. pBpa-TF variants at a final concentration 

of 5 μM, favoring dimer formation, were exposed to UV light to induce crosslinks 

between the labeled proteins and their dimer partner. 

 

 
 

Figure 25: Identification of TF dimer interface 

pBpa-TF at a final concentration of 5 μM with the sites labeled as indicated were 
crosslinked with UV. Samples were subjected to western blotting against the C-
terminal Myc tag. (A). Samples crosslinked under UV light for 15 min. (B). 
Samples not irradiated. (C). TF domain structure colored as in Figure 12 with the 
probe positions indicated. Residues marked in green indicate photoadduct 
formation and residues in red indicate sites that did not result in photoadduct 
formation. 
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Light and probe-dependent crosslinks appeared with positions 34, 320 and 373 in 

the N- and C-terminal domains (Figure 25 A, lanes 2, 6 and 8). Inter-molecular crosslinks 

with position 320 appeared also in the FRK/AAA mutant (Figure 25 A, lane 7). No 

detectable crosslinks were observed with positions 88, 233, 185 or 419. Two 

photoadducts appeared with TF34. This could be due to the flexibility of this region that 

might be adjacent to different sites of its dimer partner. As a result, dimers crosslinked at 

different sites would migrate with different mobilities on SDS-PAGE. Interestingly some 

of the sites involved in the dimer interface were also the sites which crosslinked to the 

nascent chains (TF34, TF320 and TF373 (Figures 19 and 20)). The above observation 

confirms that the substrate binding site of at least one subunit in the dimer is at the dimer 

interface. 

 

In summary, the crosslinking experiments revealed that all the three domains of 

TF were in close proximity to luciferase nascent chains during translation. All the nascent 

chains tested interacted with the N- and the C-terminal domains while the PPIase domain 

displayed length dependent interactions. Luc nascent chains as short as 60 residues 

crosslinked to the PPIase domain. α-Syn nascent chains, which are less hydrophobic than 

Luc crosslinked less efficiently to the PPIase domain compared to the N- and the C-

terminal domains. The phenomenon of both length and hydrophobicity dependent 

interactions of PPIase domain with the nascent chains might be because it acts as a 

secondary site for binding nascent chains dependent on their conformation and 

hydrophobicity. The interaction of PPIase domain with the nascent chains was also 

independent of the PPIase activity. The substrate binding-site of at least one subunit in 

the dimer was found to be at the dimer interface based on crosslinking experiments. This 

explains the inability of the dimeric TF to interact with the ribosome-nascent chain 

complexes. The burial of substrate binding sites in the dimeric TF could be also a 

mechanism by which TF do not interact with other cellular proteins and as a result, 

confined as a ribosome-associated chaperone. 
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IV.2 Trigger factor-nascent chain interactions monitored by 

real-time fluorescence measurements 

As mentioned earlier, TF interactions with the ribosomes have been extensively 

studied and TF was shown to dissociate from the ribosomes with a t1/2 value of ~ 10-12 s. 

Data from intra-molecular FRET experiments showed that TF undergoes a 

conformational change upon binding to the ribosomes and this conformational change is 

stabilized by the presence of a nascent chain. The t1/2 value of the conformational 

relaxation from this state upon dissociation of TF from the ribosome was found to be 

dependent on the presence of hydrophobic amino acid residues in the nascent chains and 

was as high as ~ 35 s. This phenomenon suggested prolonged interaction of TF with 

nascent chains (Kaiser et al., 2006) but, a direct experimental set-up to address TF 

interactions and dissociation from the nascent chains was still lacking. Hence in this 

study, a fluorescence-based approach to examine TF-nascent chain interactions directly 

and in real-time was employed. Fluorescence spectroscopy can be used to monitor 

biomolecular interactions in real-time by recording time-dependent changes in 

fluorescence signals and this is possible during the course of a translation reaction 

(Kaiser et al., 2006). To attain this, TF must be labeled with a fluorescent probe that has 

the ability to alter its fluorescence intensity in a hydrophobic environment characteristic 

of a non-native, nascent polypeptide. N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-

nitrobenz-2-oxa-1,3-diazole, an ester derivative of IANBD (NBD) was utilized for this 

purpose. NBD as a fluorescent probe is highly sensitive to changes in the environment of 

the fluorophore. It has been successfully used in previous studies mostly involving 

trafficking of proteins across biomembranes, because the fluorescence intensity of NBD 

increases appreciably when it encounters a more hydrophobic environment (Flanagan et 

al., 2003; Ramachandran et al., 2002; Ramachandran and Schmid, 2008). Initially, 

position 326 in arm 1 of the C-terminal domain of TF was chosen as a site for NBD 

(TF326-NBD) incorporation, because in previous crosslinking experiments pBpa-TF 

incorporated in the arm 1 (TF320) yielded photoadducts with the nascent chains tested 

(Figure 20). 
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Luciferase (Luc) was used as a substrate for TF326-NBD to monitor TF-nascent 

chain interactions in real-time, as previously described in Section IV.1.2 Various cysteine 

mutants of TF were purified as mentioned earlier (see Materials and Methods). NBD was 

coupled to the single cysteine residue in TF. The E326C mutation was also introduced in 

the TF FRK/AAA version to serve as a control for the ribosome-dependence of TF- 

nascent chain interactions. 

 

IV.2.1 TF interactions with RNCs 
 
IV.2.1.1 Characterization of TF labeled with NBD 

TF326-NBD was chosen specifically to monitor TF-nascent chain interactions. To 

confirm that the presence of the NBD moiety at position 326 does not alter its 

fluorescence intensity upon interaction with the ribosomes, 1 μM of TF326-NBD was 

incubated with 1 μM of purified ribosomes and emission scans were recorded. TF326-

NBD showed no detectable changes in the emission maxima in the presence of 

ribosomes, indicating that NBD coupled at position 326 does not monitor TF’s 

interaction with the ribosomes during non-translating conditions (Figure 26 B). As a 

positive control, 1 μM TFB (TF R14C BADAN) was incubated with 1 μM ribosomes to 

report TF binding to the ribosomes (Maier et al., 2003). The fluorescence of TFB 

decreases in the presence of ribosomes, indicative of ribosome binding (Figure 26 A).  
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Figure 26: Fluorescence emission spectra of TF R14C BADAN (TFB), 

TF326-NBD in the presence of ribosomes 

The labeled proteins were incubated with ribosomes for 10 min at 30 ºC to attain 
equilibrium. Emission spectra of 1 μM of TFB (A) or TF326-NBD (B) were 
recorded alone or in the presence of 1 μM ribosomes at 30 ºC. TFB was excited 
at 397 nm and TF326-NBD was excited at 472 nm. The fluorescence emission of 
the labeled proteins in the absence of ribosomes was normalized to one. 
  

Additionally co-sedimentation analyses of the labeled proteins with the purified 

ribosomes were performed to demonstrate their ribosome binding (Figure 27). 

Stoiciometric amounts of the labeled proteins were observed in the pellet fraction when 

present along with the ribosomes (Figure 27 A, lanes 7 to 10, B, lanes 1 to 6), indicative 

of ribosome binding compared to when the proteins were present in the absence of 

ribosomes (Figure 27 A, lanes 1 to 4, C, 1 to 6). 
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Figure 27: Co-sedimentation of WT TF and labeled TF proteins along with 

non-translating ribosomes 

1 μM of WT TF or labeled TF proteins as indicated were incubated with 
equimolar concentrations of ribosomes for 10 min at 30 ºC. The ribosome 
associated pellet fraction (P) was separated from the non-ribosome associated 
fraction (S) by centrifugation at 100,000 rpm for 45 min through a 0.5 M sucrose 
cushion and loaded on SDS-PAGE, (A), lanes 7 to 10 and (B), lanes 3 and 4. As 
a control, the same procedure was performed in the absence of ribosomes, (A), 
lanes 1 to 4 and (C), lanes 3 and 4. The black arrows indicate the position of TF. 
Similar co-sedimentation analyses were performed with other TFNBD proteins 
and shown in this figure, which will be discussed in detail later in this section. 
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To confirm that the presence of the NBD moiety does not change TF’s ability to 

chaperone nascent chains, translation of Luc was carried out in the presence of TF326-

NBD. Luc was translated in the presence of 35S-methionine and either 5 μM WT TF or 5 

μM TF326-NBD. The activity of Luc synthesized was measured after 50 min of 

translation by chemiluminescence in the luminometer. Specific activity of Luc was 

calculated as mentioned earlier (see Materials and Methods) (Figure 28). 

 

 
 
Figure 28: Chaperone activity of TF326-NBD 
Luc was translated in the PURE system in the presence of 35S-methionine and 
either 5 μM of WT TF or TF326-NBD. Luc activity was measured in the 
luminometer after ~ 50 min of translation and the amount of Luc protein 
synthesized was quantified by autoradiography. The specific activity was 
calculated by dividing the Luc activity by the amount of protein made. The Luc 
specific activity in a control reaction without any added TF was to 1. 
 

 As seen in Figure 28, the presence of TF326-NBD increased the specific activity 

of Luc by a factor of ~ 2 fold, which is similar to the effect of WT TF as reported earlier 

(Agashe et al., 2004). This confirms that TF326-NBD is as active as WT TF in 

chaperoning nascent chains. 

 

IV.2.1.2 Recruitment of TF to RNCs 

To monitor the kinetics of TF interactions with RNCs, translation of Luc nascent 

chains was performed in the PURE system in the presence of 250 nM TF326-NBD. In all 

experiments involving NBD, the samples were excited at 472 nm and emission was 
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monitored at 536 nm. The PURE system was reconstituted with TF326-NBD in a 

prewarmed cuvette at 30 ºC and incubated for ~ 2-3 min until a stable fluorescence signal 

was observed. Translation was initiated by the addition of DNA at a final concentration 

of 10 ng/μl and TF326-NBD emission at 536 nm was followed over time as translation 

proceeded. In a parallel reaction, translation was carried out in the presence of 35S-

methionine and aliquots were taken at regular intervals for SDS-PAGE and subsequent 

autoradiography to document the profile of the nascent chain synthesis (Figure 29, 

bottom panel). To document that the recruitment of TF to translating ribosomes is indeed 

due to translation, a similar experiment was performed in the absence of DNA. 

To confirm that the interaction of TF326-NBD with the RNCs is dependent on TF 

binding to the ribosomes, experiments were performed with the ribosome binding 

deficient version of TF. TF FRK/AAA326 was added to the PURE system and translation 

was initiated with the addition of Luc DNA. The emission of TF FRK/AAA326 was 

likewise monitored as translation proceeded (Figure 29 top panel).   
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Figure 29: TF326-NBD recruitment to Luc-RNCs monitored in real-time 
Top panel-The PURE system was supplemented with either 250 nM TF326-NBD 
(red) or TF FRK/AAA 326 (blue). Translation was initiated with the addition of Luc 
DNA and the fluorescence of TF326-NBD was monitored in real-time. The 
fluorescence change of TF326-NBD was also monitored in the absence of DNA 
(green). The change in fluorescence divided by the initial fluorescence (F-F0/F0) 
was plotted against time. Bottom panel-the production of Luc protein was 
documented by 35S-methionine incorporation and autoradiography of the band 
corresponding to the full-length (F.L) protein synthesized. Saturation of TF326-
NBD fluorescence occurred when protein synthesis was taking place at a steady 
state. 
 

From the above experiments, it is evident that the observed fluorescence signal 

change of TF326-NBD over time is dependent on ribosome binding and also on 

translation (Figure 29). As mentioned earlier, NBD’s fluorescence intensity increases in a 

more hydrophobic environment. Hence, the increase in fluorescence intensity of TF326-

NBD during translation of Luc nascent chains would be due to the interaction of TF326-

NBD with the more hydrophobic Luc nascent chains. To confirm this, interaction of 
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TF326-NBD with nascent chains that were less hydrophobic than Luc was tested. For this 

purpose, S7, the bacterial small ribosomal protein, and α-Syn were chosen. Translation of 

S7 and α-Syn nascent chains and fluorescence measurements were performed as below 

(Figure 30 A). 
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Figure 30: TF326-NBD recruitment to S7-RNCs and α-Syn-RNCs and 

translation of the nascent chain constructs 
(A). The PURE system was reconstituted with TF326-NBD and translation was 
initiated with the addition of either Luc (red), S7 (blue) or α-Syn (green) DNA. The 
fluorescence of TF326-NBD was monitored in real-time as translation proceeded. 
The fluorescence of TF326-NBD reached a F-F0/F0 value of ~ 0.6 for Luc 
nascent chains and a value of < 0.05 for S7 and α-Syn nascent chains. (B). 
Translation of Luc, S7 and α-Syn nascent chains in the presence of 35S-
methionine in the PURE system. Translation was initiated by the addition of 
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either Luc, S7 or α-Syn DNA in the reconstituted PURE system and proceeded 
for ~ 50 min. The total (T) fraction was subjected to ultracentrifugation to 
separate the ribosome-associated pellet (P) and the supernatant fraction (S) (see 
Materials and Methods). Only 1/4th of the reaction was loaded representing the 
“Total” while the rest of the reaction was loaded for both the “Pellet” and 
“Supernatant” fractions. Black arrows indicate hydrolyzed nascent chains and 
open arrows indicate peptidyl-tRNA. Translation profiles of other nascent chains-
Luc 550mer, Luc 164mer, Luc 125mer and rpoB 190mer used elsewhere in the 
study are also shown. 
  

As shown in Figure 30 A, during translation of S7 or α-Syn nascent chains, 

TF326-NBD did not undergo an appreciable fluorescence change compared to Luc 

nascent chains, although S7 and α-Syn chains were translated as efficiently as Luc chains 

under the experimental conditions (Figure 30 B). Hydrophobicity analysis of S7 and α-

Syn proteins revealed that both lack strong hydrophobic patches present in Luc nascent 

chains, which are predicted to mediate TF’s interaction with nascent chains (Figure 31 A, 

22 B and C) (Kaiser et al., 2006). The lack of these hydrophobic patches would explain 

the reduced interaction of TF326-NBD with S7 and α-Syn. 



RESULTS 
 

83

 
 

Figure 31: Hydrophobicity analysis of S7 and other nascent chain 

substrates 
(A). The mean hydrophobicity of S7 using a window of 11 residues was 
calculated as described in Fig 22. S7 lacks significant hydrophobic regions 
predicted to mediate its interaction with TF which are otherwise present in Luc. 
Hydrophobocity analysis of other nascent chain substrates which appear later in 
the study-GatD (B) and rpoB 190mer (C) were also performed in a similar 
manner. 
 

IV.2.1.3 Recruitment of additional TF molecules towards elongating nascent chains 

It has been suggested that additional TF molecules can be recruited to RNCs 

during translation dependent on the size and hydrophobicity of the nascent chains 

(Agashe et al., 2004). The recruitment of multiple TF molecules to elongating chains 

could be a mechanism by which TF prevents nascent chain aggregation and misfolding in 
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a highly crowded environment. Luc is a multidomain protein, which was predicted to 

recruit additional TF molecules to the ribosomes during its translation (Agashe et al., 

2004). In Luc there are three hydrophobic patches above the threshold level that might 

mediate interaction with TF (Figure 22B). The first hydrophobic patch is positioned in 

between 90-100 residues from the N-terminus followed by the second patch between 

230-240 residues and the last between 280-290 residues (Figure 22 B). The presence of 

these multiple hydrophobic patches allowed us to investigate the recruitment of 

additional TF molecules during translation of Luc nascent chains. Luc chains of 77, 164, 

520, 550 or full-length were synthesized and the interaction of TF326-NBD with these 

nascent chains was recorded (Figure 32). 

 

 

 
 

Figure 32: TF recruitment during Luc nascent chain elongation 

The PURE system was reconstituted with TF326-NBD and translation was 
initiated with the addition of Luc 77mer (brown), Luc 164mer (blue), Luc 520mer 
(grey), Luc 550mer (green) or Luc F.L DNA (red). The change in TF326-NBD 
fluorescence was monitored as translation proceeded. TF326-NBD when present 
during translation of Luc 77mer showed no detectable fluorescence change and 
in the case of Luc 164mer showed an intermediate change. During translation of 
Luc 520mer, 550mer or F.L, TF326-NBD underwent a similar fluorescence 
change greater than that observed with Luc 164mer. 
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As shown in Figure 32, TF326-NBD when present during translation of Luc 

77mer showed a negligible fluorescence change. This would be consistent with the 

absence of hydrophobic patches in the Luc 77mer. An intermediate fluorescence change 

corresponding to a F-F0/F0 of ~ 0.22 was observed after translation of Luc 164mer, which 

could be due to the exposure of the first hydrophobic patch outside the ribosomal exit 

tunnel. Translation of either Luc 520mer, Luc 550mer or F.L nascent chains resulted in a 

much greater fluorescence change with a F-F0/F0 of ~ 0.5-0.6 concomitant with the 

exposure of all the hydrophobic patches in the full-length protein outside the ribosomal 

exit tunnel. 

 

IV.2.2 Kinetics of TF dissociation from RNCs 
 

Since TF326-NBD offered the advantage of monitoring TF’s interaction with the 

nascent chains in real-time, the kinetics of its dissociation from the nascent chains was 

next investigated. The dissociation of TF326-NBD was followed upon addition of excess 

unlabeled WT TF at a final concentration of 20 μM once saturation of TF326-NBD 

binding to the RNCs had occurred. After the addition of unlabeled TF, the t1/2 value at 

which TF326-NBD dissociated from the RNCs was calculated from the rate of the 

dissociation reaction (Equations 3 and 4, see Materials and Methods). To confirm that the 

displacement of TF326-NBD with the unlabeled TF is dependent on ribosome binding, a 

similar competition experiment was performed with the addition of excess unlabeled 

FRK/AAA mutant of TF (Figure 33 A). 
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Figure 33: Dissociation of TF326-NBD from Luc-RNCs with excess 

unlabeled TF 
(A). Excess unlabeled TF was added to the PURE system translating Luc 
nascent chains in the presence of TF326-NBD after saturation of its fluorescence 
had occurred (black). TF326-NBD dissociation from the nascent chains was best 
fitted to a five parameter double exponential function (black line). No remarkable 
competition was observed with TF FRK/AAA as the competitor (red). The change 
in amplitude of TF326-NBD fluorescence was normalized to unity. (B). t1/2 values 
for TF326-NBD dissociation from Luc-RNCs. 
 

The best fit of the data from the dissociation experiments was to a double 

exponential function and not to a single exponential function. This suggests the presence 

of two processes occurring during the dissociation reaction. The first phase is fast with a 
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t1/2 value of 14 ± 2 s and the second phase is slow with a t1/2 value of 102 ± 16 s (Figure 

33 B). 

To investigate nascent chain dependent changes in the dissociation process, GatD 

was used as another substrate of TF as it has hydrophobic patches shown to mediate TF-

nascent chain interactions (Figure 31 B). The relaxation of TF to its compact state, 

presumably reflecting nascent chain dissociation, was shown to occur with a t1/2 value of 

~26 s from GatD-RNCs  (Kaiser et al., 2006). TF326-NBD interaction with GatD-RNCs 

was monitored in real-time and its dissociation from GatD-RNCs was carried out (Figure 

34). 
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Figure 34: Dissociation of TF326-NBD from Luc- and GatD-RNCs with 

excess unlabeled TF 

(A). Excess unlabeled TF was added to the PURE system, which had translated 
either Luc (blue) or GatD (red) nascent chains in the presence of TF326-NBD 
once its fluorescence saturation has occurred. (B). As observed with Luc-RNCs, 
TF326-NBD dissociation from GatD-RNCs was best fitted to a double 
exponential function (blue and red lines respectively). The change in amplitude 
was normalized to unity. (C). t1/2 values for TF326-NBD dissociation from GatD-
RNCs (black bars) and Luc-RNCs (grey bars). 
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TF326-NBD underwent a similar fluorescence change during translation of GatD 

nascent chains as was observed in the case of Luc nascent chains (Figure 34 A). The 

dissociation of TF326-NBD from GatD-RNCs also followed biexponential kinetics as 

observed with Luc-RNCs (Figure 34 B). However, the kinetic phases of dissociation 

obtained during TF326-NBD dissociation from GatD-RNCs were faster than those 

obtained from Luc-RNCs. Both the fast phase (14 ± 2 s and 7.5 ± 1.5 s from Luc and 

GatD-RNCs respectively) and the slow phase (102 ± 16 s and 31.5 ± 9 s from Luc and 

GatD-RNCs respectively) varied considerably between the Luc and GatD-RNCs (Figure 

34 C).  

During the dissociation of TF326-NBD from both Luc- and GatD-RNCs, the 

amplitudes corresponding to both the phases were similar to each other. The amplitudes 

corresponding to both the fast and slow phases during the dissociation of TF326-NBD 

from Luc-RNCs were 47.3 ± 6.3 % and 42.5 ± 4 % respectively. In the case of TF326-

NBD dissociation from GatD-RNCs the amplitudes for the fast and slow phases were 

46.6 ± 9 % and 42.3 ± 8.5 % respectively (Figure 36).  

To gain a better understanding regarding the biphasic nature of TF dissociation 

from these nascent chains, an additional site in TF was chosen for labeling with NBD. 

S376 in the tip of arm 2 was utilized for monitoring its interaction with the nascent chains 

(TF376-NBD). Similar competition experiments were performed to study the dissociation 

of TF376-NBD from Luc- and GatD-RNCs. 
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Figure 35: Dissociation of TF376-NBD from Luc- and GatD-RNCs with 

excess unlabeled TF 

(A). Excess unlabeled TF was added to the PURE system, which had translated 
either Luc (blue) or GatD nascent chains (red) in the presence of TF376-NBD. 
(B). As observed with TF326-NBD, dissociation of TF376-NBD from both Luc- 
and GatD-RNCs had a biphasic nature (blue and red lines respectively). The 
change in amplitude was normalized to unity. (C). t1/2 values for TF376-NBD 
dissociation from GatD-RNCs (black bars) and Luc-RNCs (grey bars). 

 

TF376-NBD showed a fluorescence change corresponding to F-F0/F0 of 0.7 and 

1.0 during translation of Luc and GatD nascent chains, respectively (Figure 35 A). The 

dissociation of TF376-NBD from Luc- and GatD-RNCs also followed biexponential 
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kinetics as observed with TF326-NBD (Figure 35 B). Both the first t1/2 value (8 ± 2 s and 

8.2 ± 0.15 s from Luc- and GatD-RNCs respectively) and the second t1/2 value (88.5 ± 

22.5 s and 78.5 ± 3 s from Luc- and GatD-RNCs respectively) did not vary considerably 

during TF376-NBD dissociation from both the RNCs (Figure 35 C). This was different 

from what was observed with TF326-NBD for which both the kinetics phases varied 

between the Luc and GatD chains. 

The striking difference between TF326-NBD and TF376-NBD is the rate of the 

slow phase during their dissociation from GatD-RNCs which occurred with a t1/2 value of 

31.5 ± 9 s and 78.5 ± 3 s respectively. The fractional amplitudes which correspond to this 

phase were 42.3 ± 8.5 % and 23.7 ± 1.2 % respectively. The reason for the difference in 

the rate of the slow phase between TF326-NBD and TF376-NBD dissociation from 

GatD-RNCs could because an increasing population of TF376-NBD dissociated from 

GatD-RNCs faster (71.5 ± 1.5 %) compared to TF326-NBD (46.6 ± 9 %) (Figure 36).       

 

 
 

Figure 36: Fractional amplitudes corresponding to both the t1/2 values 

during dissociation of TF326-NBD or TF376-NBD from Luc- and GatD-RNCs  
The fractional amplitudes corresponding to both the fast and the slow phases 
during the dissociation of TF326-NBD from GatD-RNCs and Luc-RNCs (brown 
and orange respectively) and TF376-NBD from GatD-RNCs and Luc-RNCs (light 
green and dark green respectively). 
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 Two possible explanations may be offered for the biphasic nature of the 

dissociation reactions. The first might be that one of the rates represents TF326-NBD or 

TF376-NBD dissociating from regions other than the nascent chain. Inspection of the 

structural model of TF by Ferbitz and colleagues (Figure 8) (Ferbitz et al., 2004), 

suggests that the closest distance from the ribosomal surface to the tip of both the arms 

(where the NBD is attached) is ~ 10 Å, but a direct contact between the arms and the 

ribosome was not observed. An interaction of the arms with the ribosomal surface due to 

the flexible nature of TF (Yao et al., 2008) during translation might also cause a 

fluorescence change, which could give rise to one of the processes observed during the 

dissociation of TF326-NBD and TF376-NBD from the nascent chains. Currently, the first 

possibility is explored before the second. 

 To confirm this hypothesis, translation of the rpoB 190mer nascent chains was 

performed in the presence of TFB, TF326-NBD or TF376-NBD. The rpoB 190mer 

nascent chains lack the hydrophobic patches predicted to have high affinity for TF 

binding compared to Luc and GatD (Figure 31 C). During translation of rpoB 190mer, 

TFB underwent a fluorescence change and reached a level corresponding to ~ 65%, 

indicative of increased ribosome binding (Figure 37). However, TF326-NBD and TF376-

NBD showed a negligible fluorescence change during rpoB 190mer translation (Figure 

37), indicating their weak affinity towards rpoB 190mer nascent chains. If the initial fast 

phase observed during the dissociation of both TF326-NBD and TF376-NBD were due to 

TF release from the ribosomes, it should also be present during the translation of rpoB 

190mer nascent chains as TFB was recruited to rpoB 190mer-RNCs. Since no 

fluorescence change of TF326-NBD and TF376-NBD was observed during the 

translation of rpoB 190mer nascent chains, the initial fast phase observed during their 

dissociation from Luc- and GatD-RNCs is unlikely to be due to their release from the 

ribosomes. 
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Figure 37: Recruitment of TFB, TF326-NBD and TF376-NBD towards rpoB 

190mer-RNCs  

Translation of rpoB 190mer-RNCs in the presence of TFB (green), TF326-NBD 
(red) or TF376-NBD (blue). TFB showed a decrease in fluorescence indicative of 
ribosome binding, but TF326-NBD and TF376-NBD underwent only negligible 
fluorescence changes. The black arrow indicates the time when unlabeled TF 
was added as a competitor. 
 

The second possible explanation for the fast dissociation phase could involve the 

flexibility of the C-terminal domain of TF. Recent NMR measurements on the C-terminal 

domain of E. coli TF have shown that it exists in multiple conformations in solution (Yao 

et al., 2008) other than those observed in the crystal structure (Ferbitz et al., 2004). The 

biphasic nature observed during the dissociation of TF326-NBD and TF376-NBD from 

the nascent chains could thus be due to different conformational populations of TF bound 

to the nascent chain, which might dissociate at different rates. 

To gain further insight into TF dissociation from the nascent chains, a position in 

TF other than the C-terminal domain was chosen for labeling with NBD. T150, which is 

at the interface between the C-terminal domain and the PPIase domain was selected for 

this purpose. The fluorescence intensity of TF376-NBD and TF150-NBD was not altered 

in the presence of ribosomes, as was observed with TF326-NBD (Figure 38 A), and also 

the labeled proteins also retained the chaperone activity similar to the WT TF (Figure 38 

B). 
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Figure 38: Ribosome binding and chaperone activity of TF376-NBD and 

TF150-NBD  

(A). Emission spectra of 1 μM of the labeled TF proteins alone or in the presence 
of 1 μM ribosomes were recorded (see Materials and Methods) (B). Luc was 
translated in the PURE system in the presence of 35S-methionine and 5 μM of 
WT TF, TF150-NBD, TF326-NBD or TF376-NBD and specific activity of Luc was 
calculated. 
      

TF150-NBD showed a fluorescence change corresponding to an F-F0/F0 of 0.25 

during translation of Luc and GatD nascent chains (Figure 39 A). The F-F0/F0 value 

observed in this case is not as high as observed with TF326-NBD and TF376-NBD. This 

would be consistent with the interpretation that the PPIase domain is a secondary site for 

nascent chain binding. Alternatively, TF150-NBD could be in a less hydrophobic 

environment than TF326-NBD or TF376-NBD when TF is bound to the nascent chains. 
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Figure 39: Dissociation of TF150-NBD from Luc- and GatD-RNCs with 

excess unlabeled TF  

(A). Excess unlabeled TF was added to the PURE system, which had translated 
Luc (blue) or GatD (red) nascent chains in the presence of TF150-NBD after 
saturation of TF150-NBD fluorescence had occurred. (B). The dissociation of 
TF150-NBD from both Luc- and GatD-RNCs was fit to a single exponential 
function (blue and red lines respectively). The change in amplitude was 
normalized to unity. C. t1/2 values for TF150-NBD dissociation from GatD- and 
Luc-RNCs. 
  

The dissociation of TF150-NBD from both the RNCs occurred with a single 

phase (Figure 39 B) corresponding to a t1/2 value of 111 ± 7 s and 25 ± 2 s from Luc- and 

GatD-RNCs, respectively (Figure 39 C). Thus the initial fast phase observed during the 

dissociation of TF326-NBD and TF376-NBD from both the RNCs is absent in the case of 

TF150-NBD. Since the fast phase is not observed in the case of TF150-NBD, it could be 
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possible that in the case of TF labeled with NBD in the C-terminal domain, the fast phase 

represents the dissociation of multiple conformations of TF from the nascent chain due to 

the flexible nature of the C-terminal domain. The t1/2 value of dissociation of TF150-

NBD from both the RNCs, which is greater than the dissociation of TFB from these 

RNCs (t1/2 value 14.5 ± 0.5 s and 14.5 ± 1.5 s from Luc- and GatD-RNCs, respectively) 

(Figure 40 A, B), would imply that TF stays associated with the nascent chains after its 

dissociation from the ribosomes.  

 

 
 

Figure 40: Dissociation of TFB from Luc- and GatD-RNCs  

(A). Dissociation of TFB from Luc- (red) or GatD-RNCs (blue) was achieved by 
the addition of excess unlabeled TF to the PURE system translating either Luc or 
GatD nascent chains. The dissociation of TFB from Luc- and GatD-RNCs was fit 
to single exponential function and occurred with a t1/2 value of 14.5 ± 0.5 s and 
14.5 ± 1.5 s respectively. The change in amplitude of TFB fluorescence was 
normalized to unity. (B). Comparison of the t1/2 values of TFB (black bars) and 
TF150-NBD dissociation (grey bars) from Luc- and GatD-RNCs. 
 

The difference in the rate of TF150-NBD dissociation from both the RNCs could 

be attributed to the greater number of hydrophobic regions of Luc compared to GatD 

nascent chains. A higher t1/2 value observed in the case of Luc-RNCs could be correlated 

to the more hydrophobic nature of Luc than the GatD nascent chains (Figures 22 B and 

31 B). 
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V   Discussion 

During translation nascent polypeptides emerge from ribosomes in a vectorial 

fashion into the highly crowded environment of the cytosol in which they are prone to 

aggregate (Feldman and Frydman, 2000; Hartl and Hayer-Hartl, 2002; Young et al., 

2004). All kingdoms of life have therefore evolved ribosome associated chaperones (Ito, 

2005), which bind to and prevent aggregation of the elongating polypeptide chains. TF is 

such a ribosome-associated chaperone present in eubacteria that interacts with the 50S 

ribosomal subunit through the L23 and L29 proteins (Kramer et al., 2002). The goal of 

the experiments performed in this thesis was to identify the regions on TF that interact 

with the nascent chains. Additionally the interactions of TF with nascent chains were also 

studied in real-time to learn more about the mechanism of TF-assisted de novo folding. 

 Experiments to identify the domains of TF adjacent to the nascent chain as it 

emerges from the ribosome utilized a site-specific photocrosslinking approach with a 

photoactivable probe specifically attached to TF. All translation experiments were done 

in the reconstituted PURE system. We determined that the N-, C- and the PPIase domains 

of TF were all adjacent to Luc nascent chains even when the nascent chain was only 60 

residues in length. The length dependence of nascent chain interactions with the domains 

of TF was also examined and it was observed that the PPIase domain interacted with 

short nascent chains and long nascent chains, but not with intermediate chain lengths 

tested. We propose that the PPIase domain might act as a secondary binding site. 

Additionally the N- and the C-terminal domains were observed to crosslink in the non-

ribosome bound TF dimer. 

 Initial kinetic experiments to examine TF-ribosome interactions were performed 

in our laboratory (Kaiser et al., 2006). However, experiments to directly measure TF-

nascent chain interactions had been lacking. Sites on TF were chosen for labeling with 

fluorescent probes in order to monitor its interaction with nascent chains, based on the 

observations from the photocrosslinking experiments. The association of NBD labeled 

TF with the nascent chains was investigated and found to be dependent on the 

hydrophobic regions of the nascent chain. The kinetics of TF dissociation from Luc and 

GatD nascent chains was examined and was found to be slower compared to the 
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dissociation of TF from the ribosomes. The process of dissociation from the nascent 

chains had two reaction phases in some cases, depending on the location of the 

fluorescent probe.  

In the following sections the results observed during this study will be discussed 

in detail. 

 

V.1 Interaction of the domains of TF with nascent chains 

 In this study, all the domains of TF were shown to be in close proximity with the 

nascent chains by photocrosslinking, dependant on the length and properties of nascent 

chains. TF carrying the crosslinker at position 34 in the N-domain (TF34) crosslinked 

with all the nascent chains tested (Figure 19). Crosslinking of TF34 to the nascent chains, 

which is located close to the TF sequence for ribosome binding, confirms that the nascent 

chains are adjacent to regions of TF close to the ribosomal exit tunnel, as was predicted 

(Kramer et al., 2002). Moreover, the N-terminal domain has been shown to adopt a 

different conformation upon ribosome binding, exposing a hydrophobic cavity providing 

a binding area for the nascent chain (Figure 10) (Baram et al., 2005). Hence the 

interactions with the N-terminal domain could play a role in preventing aggregation of 

the nascent chains by shielding exposed hydrophobic sites. Another site in the N-terminal 

domain, TF88, failed to crosslink with the nascent chains (Figure 19), although it was 

surface exposed on the inside of the binding crevice (Figure 12). Absence of TF88 

crosslinking may be explained if the nascent chains were maintained in a linear 

conformation across the top of the crevice. However, a negative crosslinking result may 

also have technical reasons and should not be over interpreted. 

 The central chaperone domain of TF crosslinked with all the nascent chains 

tested. This C-terminal domain is composed of two distinct arm-like structures, the arm 1 

and arm 2. It was calculated that the C-terminal domain exposes ~ 3500 Å2 of surface 

area between the arms, providing space for a protein domain as large as 14 kDa (Ferbitz 

et al., 2004). TF labeled with pBpa at residues 320 and 373, in the arm 1 and arm 2, 

respectively, crosslinked with all the nascent chains tested, implying that both the arms 

are in close proximity to the nascent chains (Figure 20). Nascent chains as short as 60 
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residues, which would expose only ~ 20-25 residues outside the exit tunnel were also 

adjacent to both the arms. Nascent chains were predicted to interact with the hydrophobic 

crevice formed by the N- and C-terminal domains as they exit the ribosomal tunnel 

(Ferbitz et al., 2004). To test this hypothesis, controls were performed with probes placed 

on the back of the TF crevice. TF118 and TF419 yielded no detectable crosslinks to the 

nascent chains tested, supporting the view that the nascent chains interact only with the 

highly hydrophobic crevice and not with the back of the molecule (Figure 20). 

 The PPIase domain also crosslinked with the nascent chains and displayed length 

dependant interactions (Figure 21). Interestingly, the PPIase domain crosslinked with Luc 

nascent chains as short as 60 residues. Based on the crystal structure of E. coli TF 

(Ferbitz et al., 2004), the distance between position 34, close to the exit tunnel, and 

position 233 in the PPIase domain is 87 Å. This would be the minimum distance as TF 

adopts a more open conformation upon ribosome binding (Kaiser et al., 2006). The length 

of the ribosomal exit tunnel is ~ 100 Å (Ban et al., 2000). Hence a nascent chain of 60 

residues would need to be maintained in a linear conformation (210 Å) to crosslink to the 

probe at position 233. The crosslinking of Luc 60mer with TF34 in the N-terminal 

domain, with both the arms in the C-terminal domain and to position 233 in the PPIase 

domain indicates that at least a portion of Luc nascent chains interact with both the arms 

and remain in a rather extended conformation until they reach the PPIase domain. This 

argument is further strengthened by the absence of crosslinking of TF88 with the nascent 

chains that lies in the interior of the hydrophobic crevice. Interaction in an extended state 

could be in agreement with the observation that TF delays the folding of Luc relative to 

its translation (Agashe et al., 2004). 

 Both the probe positions in the PPIase domain, TF185 and TF233, failed to 

crosslink to Luc 77mer even though TF233 crosslinked to Luc 164mer (Figure 21). The 

crosslinking of probes in the PPIase domain with Luc 60mer and 164mer but not with 

Luc 77mer suggests that the nascent chains move relative to TF. A plausible explanation 

for the observed length dependence of interactions with the PPIase domain is that the 

PPIase domain may function as an auxiliary binding site only for some nascent chains, a 

phenomenon that may be dependent on the conformation of the nascent chain. 
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 Interestingly, the PPIase domain’s interaction with the nascent chains did not 

involve its peptidyl prolyl isomerisation function. One of the probe sites in the PPIase 

domain, F233, was previously shown to have markedly reduced PPIase activity when 

mutated to a tyrosine residue (Tradler et al., 1997). To show that TF233 also had reduced 

PPIase activity, refolding of RCM-RNase T1 was conducted with TF233. The rate-

limiting step in the refolding of this protein is the slow prolyl isomerisation of Pro39, 

which is accelerated in the presence of an active PPI. The rate of refolding in the 

presence of TF233 was ~ 10 fold slower compared to the presence of WT TF (Figure 24), 

confirming that the PPIase domain interactions with the nascent chains do not involve its 

prolyl isomerisation activity. 

        

V.2 Differential interaction of TF with nascent chains 

 To investigate whether the domains of TF interact in a similar manner with 

different types of nascent chains, α-Synuclein (α-Syn) was used as another model 

substrate. Although α-Syn nascent chains were in close proximity to TF during 

translation, they were not shielded by TF from protease digestion (Tomic et al., 2006). α-

Syn nascent chains were generated in the PURE system (Figure 30 B) and 

photocrosslinking was performed with all the pBpa-TF variants available. α-Syn nascent 

chains expose only little hydrophobicity when compared to Luc nascent chains (Figure 22 

B and C). Although TF34, TF320 and TF373 crosslinked to α-Syn nascent chains of 140 

residues, TF233 showed much weaker crosslinking compared to the other positions 

(Figures 22 A and 23). This would be consistent with the view that the PPIase domain 

acts as an additional binding site for some nascent chains that expose significant 

hydrophobic surfaces (Kaiser et al., 2006). 

 

V.3 Dimerization interface of TF 

 TF binds to the ribosomes as a monomer but also exists in free solution as a dimer 

(Patzelt et al., 2002). The excess of TF (50 μM) in vivo, compared to the ribosomes (30 

μM) (Lill et al., 1988), suggests that there exists a considerable population of dimeric TF 

in the cytosol. Addition of ribosomes stabilizes the monomeric form of TF (Kaiser et al., 
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2006), emphasizing that the dimeric form does not interact with the ribosomes. Patzelt 

and colleagues have reported by non-specific glutaraldehyde crosslinking that the N- and 

C-terminal domains are at the dimer interface (Patzelt et al., 2002). Model building based 

on inter-molecular FRET data suggested that the arms of the C-terminal domain are at the 

dimer interface, with the monomers positioned perpendicular to each other (Kaiser et al., 

2006). The pBpa-TF offered the advantage of identifying specific aspects of the dimer 

interface by crosslinking the labeled proteins in solution in the absence of ribosomes. 

Crosslinking was performed at TF concentrations favoring dimer formation.  

 Crosslinking with the purified proteins revealed that TF34, TF320, TF320 

FRK/AAA and TF373 yielded inter-molecular crosslinks (Figure 25). Interestingly, the 

sites involved in the dimer formation were sites which also crosslinked to the nascent 

chains (TF34, TF320 and TF373) (Figures 19 and 20). Thus, based on this approach, the 

proposed substrate-binding site of at least one of the monomers is at the dimer interface. 

A “crevice to crevice” model in which both the substrate binding sites are at the dimer 

interface is supported by the assumption that TF419 is not at the dimer interface, based 

on the negative crosslinking obtained with TF419 under conditions in which TF dimers 

are populated (Figure 25). 

 

V.4 TF-nascent chain interactions monitored by real-time 

fluorescence experiments 

 Structural studies on E. coli TF and modeling based on the co-crystal structure of 

the TF ribosome binding domain and the 50S ribosomal subunit of H. marismortuii have 

suggested that the hydrophobic crevice formed by the arms of the C-terminal domain in 

its ribosome bound form might accommodate a domain upto 14 kDa in size (Ferbitz et 

al., 2004). This model suggests that TF provides space for the nascent chains to fold 

immediately after they exit the tunnel. However, the co-crystal structure of the 

homologous complex of D. radiodurans 50S ribosomal subunit and 100 of the 112 

residues comprising the ribosome-binding domain of TF revealed that a bacterial specific 

extension in ribosomal protein L24, absent in archaeabacteria, might occupy the 

“molecular cradle” proposed by Ferbitz and colleagues (Figure 9) (Schlunzen et al., 
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2005). This suggests that any significant folding of small domains might not occur in the 

crevice formed by the C-terminal domain as was predicted by Ferbitz and colleagues.  

Earlier reports based on the high affinity of TF for ribosomes (Maier et al., 2003) 

and its low affinity for short oligopeptides (Maier et al., 2001) suggested that TF might 

remain bound to the ribosomes till a major fraction of the nascent chains have been 

synthesized. However, this might not reflect TF’s interaction with the nascent chains 

during translation. TF’s interaction with the ribosomes during translation has been 

documented kinetically and TF was found to dissociate from the ribosomes with a t1/2 

value of ~ 10-12 s. Importantly the dissociation was found to be independent of the 

translation status of the ribosomes (Kaiser et al., 2006). However, a recent study 

employing purified RNCs revealed that the nascent chain might act as a timer for TF 

dissociation from the ribosome (Rutkowska et al., 2007). Purified RNCs rather than 

translating ribosomes were utilized in these experiments with the aim of studying the 

interaction of TF with defined homogeneous population of ribosome-associated nascent 

chains. However, whether, these experiments reflect the dynamics of TF interaction with 

translating ribosomes remain to be seen. 

 Intra-molecular FRET experiments have shown that TF attains a more open 

conformation upon binding to the ribosomes and that this conformational change is 

stabilized during translation. The t1/2 value for relaxation from this conformational 

change (molecular compaction) was ~ 35 s during translation of Luc nascent chains, 

presumably owing to a strong interaction of TF with hydrophobic regions in Luc nascent 

chains (Kaiser et al., 2006). Based on TF-ribosome dissociation and TF’s molecular 

compaction data, it was concluded that TF’s interactions with the nascent chains persist 

even after TF has dissociated from the ribosomes. To test this proposal, we sought to set 

up a system to directly measure TF-nascent chain interactions. 

 A fluorescent probe with the ability to undergo a change in its fluorescence 

intensity upon binding to the nascent chains was used in these experiments. IANBD 

(NBD) was used because it undergoes an appreciable fluorescence change in a 

hydrophobic environment. Initially, TF was labeled with NBD in arm 1 of the C-terminal 

domain (E326), because arm 1 was found to be in close proximity to the nascent chains 

(Figure 20). TF326-NBD, when present during translation of Luc nascent chains showed 
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substantial increase in fluorescence intensity but not during translation of S7 and α-Syn 

nascent chains (Figure 30 A). This is consistent with the expectation that NBD would 

undergo a fluorescence increase in a hydrophobic environment, such as that of Luc 

nascent chains, but not with a less hydrophobic environment of S7 and α-Syn nascent 

chains, even though it may be adjacent to them.  

 Recruitment of additional TF molecules towards elongating nascent chains would 

be a mechanism by which TF might prevent aggregation of nascent chains. Earlier 

experiments from our laboratory have suggested that more than one TF molecule might 

be associated with a nascent chain depending on its size and hydrophobicity (Agashe et 

al., 2004). Luc nascent chains have three hydrophobic patches that are predicted to have 

high affinity for TF binding (Kaiser et al., 2006). Luc F.L, Luc 550mer and Luc 520mer 

nascent chains have all of their hydrophobic regions exposed outside of the exit tunnel, 

Luc 164mer has only one such hydrophobic segment exposed. The pronounced increase 

in TF326-NBD fluorescence during translation of Luc F.L, Luc 550mer or Luc 520mer 

compared to Luc 164mer (Figure 32) might be due to the recruitment of additional TF 

molecules towards elongating nascent chains. The increase in fluorescence intensity is 

not due to the translation efficiency because Luc 164mer was translated as efficiently as 

the longer nascent chains (Figure 30 B). Alternatively, the increase in fluorescence 

intensity might also be due to a single TF326-NBD in a more hydrophobic environment 

contributed by the longer nascent chain in the absence of additional TF molecules. 

  

V.5 Kinetic characterization of TF dissociation from nascent 

chains 

 To examine the kinetics of TF dissociation from nascent chains, dissociation of 

TF326-NBD from Luc-RNCs was measured upon addition of excess unlabeled TF. 

Interestingly, the dissociation was found to have biphasic kinetics. The initial phase was 

fast and occurred with a t1/2 value 14 ± 2 s. The second phase was slow and had a t1/2 

value of 102 ± 16 s (Figure 33). Similar displacement experiments performed with GatD-

RNCs also yielded a biphasic nature of dissociation, although both the phases were faster 

compared to TF326-NBD dissociation from Luc-RNCs (Figure 34). Since the respective 
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phases differed between the dissociation from Luc- and GatD-RNCs, this prompted us to 

investigate which of the two phases actually represents TF dissociation from the nascent 

chains. 

 To address this, another position in the C-terminal domain was chosen (TF376-

NBD) and similar dissociation experiments were performed. Interestingly the dissociation 

of TF376-NBD from both the RNCs was also determined to be biphasic (Figure 35). In 

contrast to TF326-NBD, for TF376-NBD dissociation the respective half-times did not 

vary between the two RNCs. 

A closer look at the structural model built with full-length TF on the 50S 

ribosomal subunit revealed that the closest approach of both arms of the C-terminal 

domain to the ribosomal surface is 10 Å (Figure 8) (Ferbitz et al., 2004). According to the 

authors, a direct contact between the arms and the ribosomal surface was not observed. 

To confirm whether the arms of the C-terminal domain interact with the ribosomal 

surface during translation and give rise to one of the phases observed during the 

dissociation process, translation of rpoB 190mer nascent chains in the presence of TFB, 

TF326-NBD and TF376-NBD was performed. During translation of rpoB 190mer 

nascent chains, which expose very little hydrophobicity (Figure 31 C), TF326-NBD and 

TF376-NBD underwent only a negligible change in fluorescence, although TFB showed 

a considerable fluorescence decrease, indicative of TFB binding to rpoB 190mer-RNCs 

(Figure 37). If the first phase observed during the dissociation of TF326-NBD and 

TF376-NBD from either Luc- or GatD- RNCs was due to their release from the 

ribosomes, it should also be observed in the case of rpoB 190mer-RNCs, since TFB 

bound to rpoB 190mer-RNCs. This suggests that the observed phases do not report 

TF326-NBD or TF376-NBD dissociation from the ribosomes. 

 A possible reason for the biphasic nature during dissociation could be due to the 

flexibility of the C-terminal domain. In a recent NMR study, it was shown that the C-

terminal domain exists in multiple conformations in solution (Yao et al., 2008) and may 

differ from the conformation observed in the crystal structure (Ferbitz et al., 2004). As a 

result, if the nascent chain-bound C-terminal domain exists in multiple conformations due 

to its flexible nature, it might dissociate from the nascent chains at different rates 

depending on the stability of the various conformations. 
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To obtain further insights into TF dissociation from the nascent chains, a position 

in the PPIase domain (TF150-NBD) was chosen for analysis. TF150-NBD showed an 

intermediate fluorescence change during translation of Luc and GatD nascent chains 

(Figure 39), compared to TF326-NBD and TF376-NBD, consistent with the fact that the 

PPIase domain acts as a secondary site for nascent chain binding. Interestingly, the 

dissociation of TF150-NBD from both these RNCs occurred with a single phase. This 

suggests that the process of TF dissociation from the nascent chains is more accurately 

monitored with this probe position. The dissociation of TF150-NBD from Luc- and 

GatD-RNCs occurred with a t1/2 value of 111 ± 7 s and 25 ± 2 s, respectively (Figure 39). 

The t1/2 values of TF150-NBD dissociation from both these RNCs are higher than the t1/2 

values of TFB dissociation (t1/2 value 14.5 ± 0.5 s and 14.5 ± 1.5 s from Luc- and GatD-

RNCs, respectively) (Figure 40). This implies that TF-nascent chain interactions persist 

even after TF had dissociated from the ribosomes. 

The rate of TF150-NBD dissociation, which is slower from Luc-RNCs than 

GatD-RNCs, could be attributed to the more hydrophobic nature of Luc nascent chains 

compared to GatD (Figures 22 B and 31 B). Therefore the duration of TF interaction with 

the nascent chains could be dictated by the degree of hydrophobicity per individual 

region or the number of hydrophobic regions per nascent chain. The dissociation of 

TF150-NBD from GatD-RNCs, which occurs with a t1/2 value of 25 ± 2 s, matches 

closely with the rate of molecular compaction of TF from GatD-RNCs (t1/2 value ~ 24 s) 

(Kaiser et al., 2006). But interestingly, TF150-NBD dissociation from Luc-RNCs (t1/2 

value of 111 ± 7 s) occurs with a slower rate compared to the rate of molecular 

compaction of TF from Luc-RNCs (t1/2 value of ~ 35 s), indicating that TF interaction 

with more hydrophobic nascent chains persist even after its molecular compaction has 

occurred. 

 

V.6 Overview of TF-nascent chain interactions 

 In this study the interactions of TF with nascent chains have been analyzed by 

site-specific photocrosslinking and real-time fluorescence experiments. Data from 

photocrosslinking experiments demonstrate that all the domains of TF are adjacent to the 
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nascent chains during translation. Interestingly, a portion of Luc nascent chains was 

maintained in a linear conformation until the chain reached the PPIase domain. This 

interaction may serve to prevent the formation of any premature structure or off-pathway 

aggregation. The N- and C-terminal domains of TF interacted with all the nascent chains 

tested but the PPIase domain displayed a length dependent interaction. Nascent chains 

less hydrophobic than Luc interacted less efficiently with the PPIase domain. The above 

observations along with the previously published data suggest that the PPIase domain 

acts as a secondary binding site for nascent chains, the primary site being the NC domain 

(Kaiser et al., 2006; Tomic et al., 2006). Photocrosslinking of purified pBpa-TF revealed 

that the nascent chain binding sites are at the dimer interface. This would be a regulatory 

mechanism by which the monomeric TF interacts with the ribosome-nascent chain 

complexes and the extra-ribosomal dimeric TF loses its ability to interact with the 

substrates. This mechanism might prevent any non-specific interaction of TF with already 

synthesized cellular proteins; confining its role in folding assistance to the ribosome.  

 TF dissociates from the ribosomes with a t1/2 value of ~ 10-12 s and this was 

found to be independent of the translation status of the ribosomes (Kaiser et al., 2006). 

The dissociation of TF from the nascent chains in this study was found to have a biphasic 

nature, suggesting the simultaneous occurrence of the two processes. This behavior might 

be due to the presence of different conformations of the C-terminal domain in solution 

(Yao et al., 2008). The flexibility of the C-domain might be important in accommodating 

nascent chains with diverse properties during translation. With a probe placed in the 

PPIase domain, the process of TF dissociation from nascent chains was accurately 

monitored. The dissociation occurred with a t1/2 value of 111 ± 7 s and 25 ± 2 s from Luc- 

and GatD-RNCs, respectively. Taken together, the kinetics of TF dissociation from 

ribosomes (Kaiser et al., 2006) and from nascent chains confirm that the interactions of 

TF with the nascent chains persist even after TF has dissociated from the ribosomes. The 

exact duration of interaction might be dictated by the extent of a nascent chain’s 

hydrophobicity. 

The prolonged association of TF with the nascent chains after its departure from 

the ribosome might provide an opportunity for additional TF molecules to be recruited 

towards elongating, aggregation prone-nascent chains during translation (Agashe et al., 



DISCUSSION 
 

107

2004). Burial of hydrophobic regions in the nascent chains during the process of folding 

results in the displacement of TF (Kaiser et al., 2006). It will be interesting to investigate 

whether the multiple TF molecules present in larger nascent chain are released in a step-

wise or sequential manner as folding towards the native state is initiated. 
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VII   Appendices 

VII.1 Abbreviations 
 
aa  aminoacid 

ADP   adenosine 5-diphosphate 

Amp   ampicillin 

APS   ammonium peroxodisulfate 

ATP   adenosine 5'-triphosphate 

BADAN  6-bromoacetyl-2-dimethyl-aminonaphthalene 

BSA   albumin bovine serum 

CDTA  trans 1,2-diaminocyclohexane-N,N,N′N′-tetraacetic acid 

CIAP  Calf Intestinal Alkaline Phosphatase 

DNA   deoxyribonucleic acid 

DNase   desoxyribonuclease 

DTT   dithiothreitol 

E. coli   Escherichia coli 

EDTA  ethylenediaminetetraacetic acid 

FKBP  FK506 Binding Protein 

FL   firefly luciferase 

FRET   fluorescence resonance energy transfer 

g   acceleration of gravity, 9.81 m/s2 

GAPDH glyceraldehyde 3-phosphate dehydrogenase 

GatD   galactitol-1-phosphate 5-dehydrogenase 

GTP  guanosine 5’-triphosphate 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP  horseradish peroxidase 

Hsp   heat shock protein 

IANBD N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole 

IPTG   isopropyl-β-D-1-thiogalactopyranoside 

Kan   kanamycin 

LB   Luria Bertani 
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Luc   luciferase 

mRNA   messenger RNA 

NAC   nascent chain associated complex 

NC   PPIase-deletion mutant of TF 

NTA   nitrilo-triacetic acid 

OAc   acetate 

OD   optical density 

PAGE   PolyAcrylamide Gel Electrophoresis 

pBpa  para-Benzoyl-L-phenylalanine 

PBS   phosphate buffered saline 

PCR   Polymerase Chain Reaction 

PDB   Protein Data Bank. http://www.rcsb.org/pdb/ 

PPIase   peptidyl prolyl isomerase 

psi   Pound per square inch (6894.76 Pa) 

RAC   ribosome associated complex 

RIPA  Radioimmunoprecipitation assay 

RNA   ribonucleic acid 

RNase A  ribonuclease A 

RPL   ribosomal protein of the large subunit 

RPS   ribosomal protein of the small subunit 

rRNA   ribosomal RNA 

S. cerevisiae  Saccharomyces cerevisiae 

SAP   shrimp alkaline phosphatase 

SDS   sodiumdodecylsulfate 

Tet  tetracycline 

TCA   trichloroacetic acid 

TCEP   tris-(2-carboxyethyl)phosphine 

TEMED  N,N,N',N'-tetramethylethylenediamine 

Tet   tetracycline 

TEV   tobacco etch virus 

TF   trigger factor 
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tig   gene encoding TF 

TRiC   TCP1 Ring Complex 

Tris-HCl  tris(hydroxymethyl)aminomethane hydrochloride 

UV  ultraviolet 

WT  wildtype 
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