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Zusammenfassung

Das Konzept selbstorganisierter Kritizitdt wurde eingefiihrt um das Auftreten fraktaler
Strukturen in verschiedenen natiirlichen Phénomenen besser zu verstehen. Selbstorgan-
isierter Kritizitat liegt die Idee zugrunde, dass eine interne Dynamik ein System zu einem
stationdren Zustand fiihrt, der sich durch Wechselbeziehungen fiir die Potenzgesetze in
Zeit und Ort gelten charakterisiert. Wir untersuchen die zwei bekanntesten Modelle, die
eingefithrt wurden, um das Phinomen selbstorganisierter Kritizitdt zu studieren.

Das erste der Modelle ist das Waldbrandmodell. In einem Waldbrandmodell ist ein
jeder Knoten eines Graphen entweder frei oder durch einen Baum belegt. Freie Knoten
werden entsprechend unabhéngiger Poisson Prozesse mit Rate eins belegt. Unabhéngig
davon tritt an einem jeden Knoten Entziindung (durch Blitzschlag) auf, entsprechend
unabhéngiger Poisson Prozesse mit Rate A > 0. Wenn sich ein Knoten entziindet, so
wird die gesamte Zusammenhangskomponente belegter Knoten des entziindeten Knotens
unverziiglich frei.

Es ist bekannt, dass im unendlichen Volumen Waldbrandprozesse zu einer jeden
Blitzschlagrate A > 0 existieren. Der Existenzbeweis ist ziemlich abstrakt und im-
pliziert nicht die Eindeutigkeit. Des Weiteren beantwortet die Konstruktion nicht die
Frage, ob ein Waldbrandprozess auf einem Graphen G mit unendlichem Volumen mess-
bar bezliglich seiner treibenden Poisson Prozesse ist. Motiviert durch diese Fragen zeigen
wir die fast sichere Konvergenz einer Folge von Waldbrandprozessen auf endlichen, gegen
den Graphen G wachsender Teilgraphen beziiglich ihrer treibenden Poisson Prozesse. Der
Beweis ist ziemlich allgemeingiiltig und umfasst alle Graphen mit beschrinktem Verzwei-
gungsgrad, alle positiven Blitzschlagraten A > 0, und eine relativ grofe Klasse von An-
fangsbedingungen. Einer der Hauptbestandteile des Beweises ist eine Abschéitzung des
Abfalls der Grokenverteilung der Zusammenhangskomponenten in einem Waldbrand-
modell. Fiir v > 0 betrachten wir die Wahrscheinlichkeit, dass die Zusammenhangskom-
ponente eines Knoten x zu einer Zeit ¢t > ~ grofer als m ist, bedingt auf die Konfigu-
ration einiger weiterer Zusammenhangskomponenten zur Zeit ¢. Wir zeigen, dass diese
bedingte Wahrscheinlichkeit im Limes m gegen unendlich gegen Null konvergiert; uni-
form in der Wahl des Knoten xz, der Zeit t > ~ und der Konfiguration der weiteren
Zusammenhangskomponenten auf die wir bedingen. Als Konsequenz der fast sicheren
Konvergenz erhalten wir die Messbarkeit und Eindeutigkeit beziiglich der treibenden
Poisson Prozesse, und die Markov Eigenschaft.

Das zweite untersuchte Modell ist das Abelsche Sandstapelmodell. Es sei A eine
endliche Teilmenge des zweidimensionalen Gitters Z2. Wir betrachten das folgende Sand-
stapelmodell auf A: Ein jeder Knoten in A enthilt einen Sandstapel mit einer Héhe von
ein bis vier Sandkérnern. Zu diskreten Zeitpunkten wihlen wir zufillig einen Knoten
v € A und fiigen ein Sandkorn zu dem Knoten v hinzu. Falls nach dem Hinzufiigen des
Sandkorns die Hohe des Stapels bei v echt grofer als vier ist, so fillt der Stapel zusam-
men. Das heift, vier Sandkorner verlassen den Knoten v, und ein jeder Nachbar mit
Abstand eins von v erhilt eines dieser Sandkorner. Falls es nach dem Zusammenfallen
des Stapels bei v weitere Stapel mit eine Hohe strikt grober als vier gibt, so lassen wir
diese zusammenfallen, bis wir eine Konfiguration erhalten in der alle Stapel eine Hohe
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zwischen eins und vier haben.

Wir untersuchen den Skalenlimes des Feldes von Seiten mit Hohe eins in solch einem
Sandstapelmodell. Genauer gesagt, wir identifizieren den Skalenlimes der Kovarianz
davon Hohe eins bei zwei makroskopisch voneinander entfernten Knoten zu haben. Wir
zeigen, dass dieser Skalenlimes konform kovariant ist. Dariiber hinaus zeigen wir einen
zentralen Grenzwertsatz fiir das Feld der Knoten mit Héhe. Unsere Resultate basieren
auf einer Darstellung der gemeinsamen Intensitdten der Indikatorfunktionen die Héhe
eins anzeigen, welche einer blockdeterminantalen Struktur dhnlich ist.



Abstract

The concept of self-organized criticality was proposed as an explanation for the occur-
rence of fractal structures in diverse natural phenomena. Roughly speaking the idea
behind self-organized criticality is that a dynamic drives a system towards a station-
ary state that is characterized by power law correlations in space and time. We study
two of the most famous models that were introduced as models exhibiting self-organized
criticality.

The first of them is the forest fire model. In a forest fire model each site (vertex) of
a graph is either vacant or occupied by a tree. Vacant sites get occupied according to
independent rate 1 Poisson processes. Independently, at each sites ignition (by lightning)
occurs according to independent Poisson processes that have rate A > 0. When a site is
ignited its whole cluster of occupied sites becomes vacant instantaneously.

It is known that infinite volume forest fire processes exist for all ignition rates A > 0.
The proof of existence is rather abstract, and does not imply uniqueness. Nor does
the construction answer the question whether infinite volume forest fire processes are
measurable with respect to their driving Poisson processes. Motivated by these questions,
we show the almost sure infinite volume convergence for forest fire models with respect
to their driving Poisson processes. Our proof is quite general and covers all graphs
with bounded vertex, all positive ignition rates A > 0, and a quite large set of initial
configurations. One of the main ingredients of the proof is an estimate for the decay of
the cluster size distribution in a forest fire model. For v > 0, we study the probability
that the cluster at site z and time ¢t > « is larger than m, conditioned on the configuration
of some further clusters at time t. We show that as m tend to infinity, this conditional
probability decays to zero. The convergence is uniform in the choice of the site x, the
time ¢, and the configuration of the further clusters we condition on. Being a consequence
of almost sure infinite volume convergence, we obtain uniqueness and measurability with
respect to the driving Poisson processes, and the Markov property.

The second model in focus is the Abelian sandpile model. Let A be a finite subset
of the two-dimensional integer lattice. We consider the following sandpile model on A:
each vertex in A contains a sandpile with a height between one and four sand grains. At
discrete times, we choose a site v € A randomly and add a sand grain at the site v. If
after adding the sand grain the height at the site v is strictly larger than four, then the
site topples. That is, four sand grains leave the site v, and each distance-one-neighbour
of v gets one of these grains. If after toppling the site v there are other sites with a
height strictly larger than four, we continue by toppling these sites until we obtain a
configuration where all sites have a height between one and four.

We study the scaling limit for the height one field in such a sandpile model. More
precisely, we identify the scaling limit for the covariance of having height one at two
macroscopically distant sites. We show that this scaling limit is conformally covariant.
Furthermore, we show a central limit theorem for the sandpile height one field. Our
results are based on a representation of the height one joint intensities that is close to a
block-determinantal structure.
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Chapter 1

Introduction

1.1 Self-organized criticality

Many systems like a collection of electrons, a pile of sand grains, a bucket of fluid, or an
ecosystem consist of many components that have some internal mechanism of interaction.
Additionally to these internal interactions, there may be some driving external forces like
a magnetic field, or a lightning that hits and ignites a tree in a forest. Driven by its
external forces and its internal interactions, such a system will evolve in time. What
happens? Does the behaviour depend crucially on the details of the system, or is there
some simplifying mechanism that produces a typical behaviour shared by a large class
of systems?

In [26] Mandelbrot discovered that many naturally occurring objects like mountain
ranges, river networks, or coastlines are best described as fractals. Fractal structures
frequently come along with correlation functions that show non-trivial power law be-
haviour.

Systems that exhibit correlations with power law decay over a wide range of length
scales are said to have critical correlations. This is because correlations much larger than
the length scale of interactions were first studied in equilibrium statistical mechanics
in the neighbourhood of the critical phase transition. But, to observe such critical
phenomena in equilibrium systems, one needs to fine-tune some physical parameters to
specific critical values, something rather unlikely for a naturally occurring process.

In [3] P. Bak, C. Tang and K. Wiesenfeld argued that the dynamics which gives
rise to the power law correlations seen in nature must not involve any fine tuning of
parameters. It must be that some internal mechanism drives the system to a state that
shows equilibrium critical phenomena. They coined the term ‘self-organized criticality’
to name such mechanisms. Phenomena in many fields of science have been claimed to
exhibit self-organized criticality. It begun with sandpiles, earthquakes and forest fires.
Next came electric breakdown, motion of magnetic flux lines in superconductors, water
droplets on surfaces, dynamics of magnetic domains, and growing interfaces. Later on
self-organized criticality models were applied to economics, and proposed as a way of
understanding biological evolution. Various physical situations where the concept may
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apply are discussed in [16]. However, so far there does not exist a mathematical, nor a
generally accepted definition of what self-organized criticality is.

In this work, we study two of the most famous models that were introduced as models
exhibiting self-organized criticality: the forest fire process and the Abelian sandpile
model. More precisely, we show almost sure infinite volume limit convergence for forest
fire processes. And we study the scaling limit for the Abelian sandpile height one field.

1.2 Almost sure infinite volume convergence for forest fire
processes

In a forest fire model on a graph G = (V, E) each site (vertex) z € V has two possible
states: either the site x is vacant, or occupied by a tree. The driving forces are two
independent families of independent Poisson processes (G z)i>0, € V, and (I;4)i>0,
z € V. We call (Gtz)i>0, x € V, the growth processes. They have rate parameter 1. If
one of them jumps the corresponding site gets occupied, respectively remains occupied.
The processes (It ,)i>0, * € V, have rate parameter A > 0. We call them the ignition
processes. At the jump times of the ignition process at a site x € V, the site  and
its whole cluster burn down instantaneously. That is, the maximal nearest neighbour
connected subset containing x and being occupied at each site gets vacant. Our forest
fire model is a continuous time version of the Drossel-Schwabl forest fire model which
has received much attention in the physics literature. See e.g. [9], [13] and [30].

The mathematical consideration of the forest fire process begun with [5]. Here J.
van den Berg and A. A. Jarai study the density of vacant sites and the cluster size
distribution for forest fires on Z. Likewise restricted to the case of forest fires on Z, in
[6] R. Brouwer and J. Pennanen show that there exists at least one stationary measure,
and study the cluster size distribution in stationary state. For forest fires on Z? with all
sites vacant at time 0, the paper [4] discusses the behaviour near the ‘critical time’ ¢..
Here t. is defined by the relation 1 — exp(—t.) = pz, where pf is the critical probability
for site percolation on Z? d € N. A percolation like assumption provided, it is shown
that for fixed t > t., as simultaneously A — 0 and m — oo, the probability that some
tree at distance smaller than m from 0 is burnt before time ¢ does not converge to 1.

The existence of forest fire processes on Z%, d > 2, for all parameter A > 0 is shown
in [I0]. A sequence of forest fire processes on finite sets A Z%, the existence of weakly
convergent subsequences, and Kolmogorov’s Extension Theorem are used to define a
process 1 on Z% The key observation [[I0], Lemma 18] to show that 7 satisfies the
definition of a forest fire process is that the probability that a given non-empty cluster
grows on its boundary before it gets hit by ignition is bounded by 2d/(2d+ \). However,
due to the weak convergence, the construction does not imply the measurability of infinite
volume forest fire processes with respect to their driving growth and ignition processes,
nor their uniqueness. Closely related to this is the question whether the finite volume
forest fire processes converge almost surely with respect to their driving growth and
ignition processes.

In [11] subcritical site percolation is used to dominate the forest fire process and
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answer the latter questions affirmatively for the graph Z¢ and A > (1 — p)/p¢. But [I1]
does not cover the case of major interest, where the parameter A is small. Furthermore
[L1] restricts to forest fire processes with all sites vacant at initial time 0.

The main result of this work is the almost sure infinite volume limit convergence
for forest fire processes with respect to their driving growth and ignition processes.
Our result covers all ignition rates A > 0, and all graphs where there exists a bound
d € N for the vertex degree. The only assumption we have to make concerns the initial
configuration: let

Px,m =P (|C(),Z| > m)

be the probability that the cluster at site x € V and initial time 0 is bigger than
m € N. Our assumption is that there exists m € N so that for all x € V the probability
P, ,, is smaller than some constant D) 4 < 1, even if we additionally condition on the
configuration of some further clusters. Here D) 4 is a constant that depends on the
ignition rate A and the bound for the vertex degree d. This assumption is satisfied
for a quite general class of initial configurations. For example all configurations where
the cluster size is bounded by a constant are covered. Another covered configuration is
independent site percolation on Z¢, as long as there are no infinite clusters.

Using the infinite volume convergence, we are able to answer our original question:
we show that an infinite volume forest fire process is measurable with respect to its
driving growth and ignition processes. Furthermore, we are able to show the Markov
property for such forest fire processes.

In the course of the proof of almost sure convergence, we study the cluster size
distribution. As a result, for all ¥ > 0 and all 6 > 0 we explicitly give a m = m, s > 0
such that for all ¢ > ~, all finite B,D C V,and all x € V' \ D

P (|Ct,a:‘ > m‘ UyeB Ct,y = D) < 6.

Here we write C , for the cluster at site x and time ¢, and | - | to denote the cardinality.
Our results for the forest fire model are represented in Chapter [2l We start with a
formal introduction to the forest fire model in Section R.I1 Our main results are stated

in Section 2.2] and proven in Sections [2.3]- [2.6]

1.3 Scaling limit for the Abelian sandpile height one field

The Abelian sandpile model was introduced by P. Bak, C. Tang and K. Wiesenfeld [3| 2],
and generalized by D. Dhar [§]. The model is defined on a finite lattice. We consider
finite cut-out portions A C Z? of the two-dimensional square lattice. Every site in v € A
has a positive integer valued height variable 7,. We call n, the height at the site v € A.
The system evolves discrete in time.

The dynamics of one time step is defined with respect to a toppling matrix. We
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explain the dynamics corresponding to the discrete Laplacian in A:

4 if v =w;
Apr(v,w) =< =1 if jv —w| =1; all v,w € A.

0 otherwise,

At each time step we pick a site v € A randomly, and increase its height by one. If
the height of the site v became larger than Aj(v,v) = 4, the site v is called unstable.
It relaxes by toppling whereby four sand grains leave the site v, and each distance one
neighbours gets one grain. If after toppling the site v there is any unstable site remaining,
it is toppled, too. In case of toppling a site at the boundary of A, some grains are removed
from the system. This process continues until all sites of A are stable, that is, have a
height of at most four.

The mathematical study of the Abelian sandpile model was initiated by D. Dhar [§],
who coined the name Abelian. He gave an characterization of the configurations that
occur in the stationary state with positive probability. In [25] S.N. Majumdar and D.
Dhar revealed a correspondence between such configurations and spanning trees. In [I]
S.R. Athreya and A.A. Jarai use this correspondence to study the infinite volume limit
for the stationary distribution of Abelian sandpile models. They show the existence of
the infinite volume limit in the weak sense. For a mathematical introduction to the
Abelian sandpile model and further results see the review papers |14, 22], 27].

In [24] S.N. Majumdar and D. Dhar develop a powerful method to calculate the
probability of specific subconfigurations in stationary state. In particular, they show that
the covariance of having height one at two sites separated by distance r decays as r~%.
Their method has been extensively used and extended in the physics literature to support
the conjecture that the scaling limit of the Abelian sandpile model can be described by
a logarithmic conformal field theory (see e.g. [29, 23] [15] and [28]). Although the special
case of the height one field seems to be well understood in the physics literature, we did
not find any mathematical discussion of its scaling limit.

We study the scaling limit for the height one field of the two-dimensional Abelian
sandpile model. Let U C C = R? be a bounded connected domain with smooth boundary,
and U, := U/eNZ2, ¢ > 0. We write uy, for the stationary distribution of the sandpile
model on U.. Let hy,(v) denote the indicator function of having height one at the site
v € Ue, and write E[hy,] to denote its expectation with respect to py,.. For every u € U
and all € > 0 let u, € Ue within O(1) of u/e.

Our first result concerns the covariance of having height one at two macroscopically
distant sites: let v,w € U, v # w, be two points in the interior of U. Then as ¢ — 0
the covariance of hy, (ve) and hy, (we) rescaled by €4 tends to a finite limit Covy (v, w)
which is conformally covariant with scale dimension 2. Here by conformal covariance
with scale dimension 2 we mean that for any conformal isomorphism f : U +— U’

Covy (v, w) = | f'(v)]* - |f'(w)|? - Cover (f(v), f(w)).

More generally, we give an explicit and conformally covariant representation for the
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scaling limit of the rescaled and centred height one joint moments

VE[ [T (hv. (ve) — Elhws ()|

veV

where V' C U is a set of finitely many points in the interior of U.

Furthermore, we show that the sandpile height one field converges to Gaussian white
noise in the following sense. Let n > 1 and for all 1 <i <mnlet f; : U — R be a smooth
function with support compactly contained in U. We integrate these test function over
the centred height one field. For all 1 <4 <mn let

fiohy, = Tv 3" filev) - (hu. (v) — Elhy, (v)]),

veUe

where V is a positive constant. We show that as e tends to zero the random variables
fiohy., 1 <i < n, converge in distribution to jointly normal random variables with
mean zero and covariance matrix

(f fi(z)fj(z)dz>1g’j§n'

The results are based on a representation of the height one joint intensities that is
close to a block-determinantal structure.

We present our results for the Abelian sandpile model in Chapter [3] In Section
we start with an introduction to the model, and review some of its basic properties.
Thereafter, we state our main results in Section and prove them in Sections -
3.6
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Chapter 2

Almost sure infinite volume
convergence for forest fire processes

In this chapter we present our results for the forest fire model. We show for certain
initial configurations the almost sure infinite volume convergence for forest fire models
on graphs with bounded vertex degree with respect to their driving growth and ignition
processes, for all positive ignition rates. Furthermore, we show that in a forest fire model
the cluster size distribution decays uniformly in space and time.

In Section 2.1l we introduce the forest fire model. We state our main results in
Section and prove them subject to three key propositions in Section [2.3] The key

propositions are proven in Sections [2.4] -

2.1 The forest fire process

In this section we introduce the forest fire process. From now on let the graph G = (V, E)
be a connected graph with vertex set V, and E its set of undirected edges. Here by
undirected we mean {z,y} = {y,z} for all {z,y} € E. We say that a graph G = (V, E)
is connected, if for all z,y € V, x # y, there exists {{vi,v2},...,{vn—1,vn}} C E such
that v1 = x and v, = y. Furthermore, we suppose that the vertex degree of GG is bounded.
That is, we suppose the existence of d € N := {1,2,...} so that every site v € V has at
most d neighbours. Here we say that two sites v,w € V are neighbours if {v,w} € E.
In a forest fire process on G every site x € V is either vacant or occupied by a tree.
We write 7; , = 0 to denote that the site € V is vacant at time ¢t > 0, and 7, = 1
if it is occupied. To describe the dynamics, we assign a pair of independent Poisson
processes (Gt z)i>0 and (It z)i>0 to each site x € V', independently of all other sites. The
processes (Gt z)i>0zcy have rate parameter 1 and are called the growth processes. If
one of them jumps, there is a growth attempt at the corresponding site. The site gets
occupied, respectively remains occupied if it has already been occupied. The processes
(Itz)t>02ev are called the ignition processes and have rate parameter A > 0. At the
jump times of the ignition process at a site x € V, the site « and its whole cluster
burn down instantaneously. Here by cluster at x we mean the maximal connected set

7
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of occupied sites containing the site . For a formal definition of the term cluster, we
introduce the term path first.

Definition 1 (Path). Let z € V, S C V and n € N. A path of length n that connects
the site x to a site in S is a vector (p;)i<i<n € V" that has the following properties:

(i) for all 1 <4 < mn the sites p;,_; and p; are neighbours, that is, {p;_1,p;} € E;
(ii) the path consists of distinct sites, that is, p; # pj for all 1 <1 # j < n;
(iii) the path starts at = and ends at a site in S, that is, py = z and p, € S.

We write PATH,,(z,S) C V"™ to denote the set of paths of length n that connect
the site = to a site in S, and define PATH(z, S) := Ugeny PATH(x, S). For every path
73 S PATH(J,‘, S), 73 = (pi)lgigk; let PV = {pi, 1 S 7 S k‘}

Definition 2 (Cluster). Let x € V and t > 0. We write
Cio = {y € V|3P € PATH(z,y)Vp € Py : i = 1}
to denote the cluster at site x and time ¢.
We define the forest fire process formally. We write Ng := N U {0}.

Definition 3 (Forest fire process). A forest fire process on G with parameter A\ > 0 is
a process (Nez, Gta, Itz),cy With values in ({0, 1} x Np x NO)V, t > 0, that has the
following properties:

(a) the processes (Gt z)i>0 and (It 4)i>0, € V, are independent Poisson processes with
parameters 1 and A, respectively. They are independent of the initial configuration

(770,95)16\/5

(b) forall z € V the process (1,2, Gt,z, Itz )t>0 is cadlag. That is, it is right continuous,
and for all ¢ > 0 the left limit (1~ ,, Gy 4, [i- 5) = lims ot s<t(Nse, Gszs Ls,2)
exists;

(c) forallz € Vand allt >0

e if there is the growth of a tree at the site x at time ¢, then the site z is
occupied at time t:

{Gt*,x < Gt,w} C {nt,w = 1}

e if the site x gets occupied at time ¢, then there must be the growth of a tree
at the site x at time ¢:

{nt*,x < nt,x} - {Gt*,x < Gt,m}
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e if the site z is hit by ignition at time ¢, then all sites of the cluster at = get
vacant at time ¢:

{It*,x < It,a:} C {Vy €EC-, My = 0}

e if the site z gets vacant at time ¢, then the cluster at x is hit by ignition at
time ¢:

(h-2>ma) C{eEC o: Iy < Iy

Remark 1. For a more convenient notation, in the definition of a forest fire process we
define the growth and ignition processes as follows. We require that

(i) the jump times of the growth and ignition processes are distinct. That is, there do
not exist two growth processes, a growth and an ignition process, or two ignition
processes that jump at the same time;

(ii) for all € V' it holds limy_—.oc Gt = 00 and limy_.oo Iy, = 00.

Remark 2. In [10] the existence of forest fire processes on Z", n > 2, for all parameter
A > 0 is shown. The key observation [[10], Lemma 18] is the fact that the probability that
a given non-empty cluster grows on its boundary before it gets hit by ignition is bounded
by 2n/(2n + A). This and therefore the existence result of [10] has a straightforward
generalization to the case of arbitrary graphs with bounded vertex degree.

Let the process (12, G, It7$)t>0,z€\/ be a forest fire process on G. To be able to
state our results in the next section, we introduce some more notation. The main result
is the almost sure infinite volume limit convergence for forest fire processes, where we
consider forest fire processes on the following sequence of finite volume sub graphs of G.

Definition 4 (The subgraph G,). For all x € V and n € N let
B,(z) :={z € V|d(z,2z) < n}
denote the box with centre x and radius n, where
d(z,y) = min {n € No| PATH, 11 (z,y) # 0} .
We write

Gn = (Bn, {{z,y} € E!x,y € B,})
to denote the subgraph induced by B, := B, (0), where 0 € V' is a distinguished site.

Definition 5 (The forest fire process on G,). For n € N let (77;7;)7Gt,anIt,:E)tZO,xeBn

denote the forest fire process on G,, with configuration (79 )zcp, at initial time 0. That
is, the processes n(™, n € N, are living on the same probability space as the process
n, and are driven by the same growth and ignition processes as n. For all n € N the
processes (™ and 7 coincide on the set B, at time 0.
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One of the motivations to show infinite volume convergence is the question whether
an infinite volume forest fire process is measurable with respect to its driving growth
and ignition processes. We introduce the according o-field.

Definition 6 (The o-field GZ;). For all ¢ > 0 and B C V let
GZy(B) :==6(n02,Gsy, Ly : 0< s < t,x € V,y € B)

denote the completion of the o-field generated by the initial configuration and the growth
and ignition events that occur on B during the time interval [0,t]. For abbreviation let

gIt = gIt(V)

Remark 3. 1t is easy to see that a finite volume forest fire process is uniquely determined
by its initial configuration and its driving growth and ignition processes (see e.g. [10]
for the sketch of a recursive construction of finite volume forest fire processes). For all

n € N, for all £ > 0 the process (ngg)0§3§t7x63n is measurable with respect to the o-field
GZ,. Hence, for all n € N, for all ¢ > 0 the process (né@)ogsgt,xegn is independent of
the increments of the growth and ignition processes after time ¢.

As mentioned in the introduction, our results are restricted to a special class of initial
configurations.

Definition 7 (Conditioned cluster size bound). For all s > 0, 6 > 0 and m € N, we
say that n has CCSB(s, d, m), if the following holds: let B, D C V finite and z € V' \ D.
Then conditioned on the occurrence of UyegCs, = D the probability that the cluster at
x is bigger than m at time s is smaller than or equal to . And almost surely the cluster
at z is finite at time s. More formally, for all finite B,D C V, for all zx € V' \ D

P (’Cs,:v| > m, UyEBCs,y = D) S (5 . P (UyEBCS,y = D)
and P (|Cs ;| = 00) = 0, where | - | denotes the cardinality.

Remark 4. Our results restrict to the case where there exists m € N so that the forest fire
process has CCSB(0, \/(4d?), m), where d is the bound for the vertex degree, and \ is the
ignition rate. The following initial configurations are examples of such configurations:

(i) the empty initial configuration with all sites vacant at time 0;

(i) every initial configuration (1o)zey where there exists m > 0 such that for all
x € V the relation P (|Cp .| > m) = 0 holds;

(iii) independent site percolation on Z™ with no infinite clusters, n > 1.

2.2 Statement of the main results

We are now ready to state the main results. Let G = (V, E) be a connected graph with
vertex degree bounded by d > 2.

Our central theorem states almost sure infinite volume limit convergence for the
sequence of forest fire processes on the sub graphs G,,, n € N.
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Theorem 1 (Almost sure infinite volume convergence). Let A > 0 and let the pro-
cess (Mzy G, It,m)t>0 . be a forest fire process on G with parameter A\ that has

CCSB(0,\/(4d?),m) for some m € N. For all n € N let n\"™) be the forest fire process
on G, coupled ton, as defined in Definition[5. Then the sequence of forest fire processes
(W(n))neN converges to the forest fire process n uniformly on compact sets almost surely.
That is, for all t > 0 and every finite S C V it holds

lim P | sup sup sup|ns, — 1| >0] =o0.
n—oo I>n 0<s<tx€S '

For the cluster size distribution we have the following result.

Theorem 2 (Uniform decay of the cluster size distribution). Let the forest fire process
(t2s Gt It»m)tzo,zev be as in Theorem . For every v > 0 there exists a function
My xd :|0,1] — N so that for all 6 €]0,1], for all s > ~ the forest fire process n has
CCSB(s, d,m.4(9)).

The explicit formula for m, »4(0) is stated in Section Proposition As last
result, we state the measurability and uniqueness of the forest fire process with respect
to its driving growth and ignition processes, and the Markov property.

Theorem 3. Let (0t ,, Gz, Itx) be as in Theorem ,

t>0,zeV

(a) (Uniqueness) Lel (7,2, Gra, Ita)isg qcp be a forest fire process on the same proba-
bility space as n that has the following properties: the forest fire process 7 is driven
by the same growth and ignition processes as the forest fire process 1. Both forest
fire processes have the same initial configuration, that is, (o z)zev = (N02)zev -
Then with probability one both forest fire process are equal:

PVt >0V2 €V iy =ney) =1
(b) (Measurability) For all t > 0 the process (Nsz)y<s<y zey 15 GLi-measurable;

(¢) (Markov Property) For allt > 0 and allt' > t, for all A€ o (ny,:x€V) we
have

P (nt’,x € A’(”%,x)()gsgt,er) =P (nt’,ac € A}(nt,x)ze\/)

almost surely.

2.3 Key propositions and proof of the main results

Throughout the remainder of this chapter let G = (V, E) be a connected graph with
vertex degree bounded by d > 2. Let (15, G, Itvx)t>0,x€V be a forest fire process on
G with parameter A > 0 that has CCSB(0, \/(4d?), m) for some m € N. For all n € N
we write 77(”) to denote the (finite volume) forest fire processes on G,, coupled to 7, as
defined in Definition Bl
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2.3.1 Organization of the proof of Theorems [1] -

We organized the presentation of the proof of Theorems/[I]- B]into three key propositions.
We state them in Section [2.3.3] and prove Theorems [I] - [3] subject to them in Section

The three key propositions are independently proven in Sections and [2.6]

Theorems 1 - 3

( Proposition 3 W
Proof of
Proposition 3

( Proposition 1 W ( Proposition 2 W

Proof of i Proof of i

Proposition 1 Proposition 2

Figure 2.1: Proof of Theorems [I] -

Prior to giving the key propositions, we introduce an auxiliary process.

2.3.2 The blur process

We introduce an auxiliary process in this section. Given S C V finite, ¢ > 0 and the
state of the forest fire process on the set S at time ¢, we have the following goal. After
time t we want to keep track of a set of sites whose state can be determined without
considering the growth and ignition processes that occur outside the set S.

Informally speaking, at time s > ¢ we mark those sites whose status might depend
on the growth and ignition jumps that occurred outside the set S during [t, s]. We call
these sites (t,.S)-blurred at time s, where we proceed as follows. If the cluster at a given
site z € S is not a subset of the set S at time ¢, then the site z is (¢, .5)-blurred at time ¢:
it might be that shortly after time ¢ the cluster at x gets hit by an ignition that occurs
outside the set S. At time s > ¢ an occupied site z € S gets (¢, S)-blurred, if its cluster
gets connected to a site y € S that has already been (t,.5)-blurred: it might be that the
site y is occupied and thus the site  might get vacant due to an ignition that hits the
cluster at y.

Definition 8 (Boundary). For S C V let
98 :={xeV\S|FyeS:{z,y} € E}
denote the boundary of S, and S := S U OS.

The next definition formalizes the blur process. Here with slight abuse of notation,
we write C; , := x in case of 7y, = 0.

Definition 9 (Blur process). Let ¢t > 0 and S C V finite. The (¢, S)-blur process is a
right continuous process (ﬁﬁﬁ)meg with values in {0,2}°, s > ¢, that has the following
properties: for all z € S
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(a) the site x is (¢,5)-blurred at time ¢, if and only if the cluster at x is connected to
the boundary of S:

t,x

s {2 it Cp o NOS #0,

0 else;

(b) for all s > t, ﬁﬁji = 2 implies ﬁi;i =2 for all & > s. That is, a (¢,.5)-blurred site
remains (t,S)-blurred forever;

(c) for all s >t the site x is (¢, .5)-blurred at time s, if and only if the set C , contains
a site that has been (¢, S)-blurred before time s:

{BLy =2} = {Bz €CerNS: Y :2}

Remark 5. The proof of existence of the blur process is part of the proof of Lemma [1] in
Section

2.3.3 Key propositions

In this section we state the three key proposition our proof of Theorems [I] - [3|is based
on.
The first proposition concerns the blur process.

Proposition 1. Let t > 0,t' >t, m € N, x € B,, and |l > m. Suppose that the forest
fire processes n\®) | k > 1, and the forest fire process n coincide on the set By, at time t,
but differ at the site x within the time interval [t,t']. Then the site x is (t, By,)-blurred
at time t':

k k t,Bm
{sup sup [ney — 77£;| =0,sup sup |nyz — 77;,)1‘ > 0} - { Vo 2}-
k>l yeBpm, k> t<s'<t/

The second proposition considers the probability that a given site is (¢, By, )-blurred
at time ¢ + €.

Proposition 2. For all m € N there exists €y, > 0 with the following property. Lett > 0
and suppose that the forest fire process has CCSB(t, \/(4d?),m). Furthermore, suppose
that we have almost sure infinite volume convergence at time t, that is,

n—oo

lim P(sup |n, — 17§2| >0)=0 allye V.
I>n

Then for all x € V, as n tends to infinity the probability that the site x is (t, By)-
blurred at time t + €, tends to zero:

lim P (g%, =2) =0

n—00 t+em,T
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The assumption of almost sure convergence at time ¢ in Proposition [2] has the fol-
lowing reason: Remark [3|implies that the configuration of the (finite volume) forest fire
processes (™, n € N, at time ¢ is independent of the increments of the growth and
ignition after time ¢. The almost sure convergence at time ¢ allows us to carry this fact
over to the forest fire process 7.

The next proposition states that almost sure infinite volume limit convergence at
time ¢ implies that the assumption on the cluster size distribution in Proposition [2| holds
at time t. Here we need infinite volume limit convergence, since for technical reasons we
are going to study the cluster size distribution for finite volume forest fire processes first.

Definition 10 (The bound m. »4(d)). For all v > 0 and all § €]0,1] let

Moy 2,d(0) 1= <[<8d3(Nw\,d(5) —-1) N 1)} V(M a(6) v d)> Ny x,a(8) |

20
where
In(2) — In(0)
N. 0) :=
12dl0) [ln(d—i—)\) —In(d) |’
0
) =<¢—In(1-
eonat® = {1 (1= gy ) f
and
~ [In(8) —In(79)
My »,a(0) == [)\6%/\#(5) :
Here for all s,s € R we write [s] := min{z € Z|z > s}, sV s := max{s,s'} and

s A s :=min{s, s'}.

Proposition 3. Let v > 0, t > ~v and suppose we have almost sure infinite volume
convergence at time t, that is,

lim P(sup |n, — nt(g\ >0)=0 ally e V.
n—oo I>n ’

Then for all 6 €]0,1] the forest fire process n has CCSB(t,d,m xa(0)).

We sketch the proof of Theorem [I] subject to Propositions [I} 2] and [3] For all n € N,
the forest fire processes n and (™ coincide on the set B, at time 0. By assumption
there exists a mo € N such that the forest fire process 7 has CCSB(0, \/(4d?), my).
Therefore Proposition [2[ yields the existence of v > 0 so that lim,, .. P(ﬁ?,jx” = 2) =0
for all x € V. Along with Proposition [I] this implies infinite volume limit convergence
up to time ~y. Thus Proposition [3| shows that there exists m € N so that the forest fire
process has CCSB(v, A/(4d?),m). Along with Proposition [2| we obtain the existence of
€ > 0 such that lim, o P( ;YEE"I =2) =0 for all x € V. Combining this, the infinite
volume limit convergence up to time « and Proposition [I] we obtain infinite volume limit
convergence up to time v+ €. Hence, the assumption of Proposition [3]is satisfied at time
~v 4 €. Going on recursively, we obtain Theorem
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2.3.4 Proof of the main results

We proof Theorems [I] - [3] subject to Propositions [I] - [3]in this section.

Proof of Theorem [1] subject to Propositions|[1] -[3 Forallt > 0,alln € Nand all S C B,
let

l
E(n,t,S) = {sup Sup sup |ns 5 — ni,?m\ > 0} )

I>n 0<s/'<tzeS

There exists m € N such that the forest fire process has CCSB(0, \/(4d?), m). For all
n € N the configuration of the forest fire processes 17 and 7™ coincide on the set B, at
time 0. Therefore Proposition [2] provides the existence of v > 0 such that for all x € V

lim P (895" =2) =o0.

n—oo

Thus applying Proposition [I] we obtain for all finite S C V'

lim P (&(n,v,S)) < nler;OZP(E(n,v,m))

e zes
< 1 O’Bn = =
< lim » P ()7 =2)=0.
zeS
That is,
lim P (sup sup sup |1, — ng% > 0) =0 (2.1)
n—oo I>n 0<s<tzcS

holds for ¢t = v for all finite S C V.

To conclude the theorem we show the existence of € > 0 so that if holds at time
t=s, s >, for all finite S C V, then holds at time ¢ = s + € for all finite S C V.
In particular, the choice of € does not depend on the choice of s > ~.

Let s > ~ and suppose that holds for t = s for all finite S C V. Then from
Proposition (3| there exists m., € N so that the forest fire process has CCSB(s, ﬁ, Mey).
Thus Proposition [2] provides the existence of € > 0 so that for all z € V

lim P (ﬁjﬁ"x - 2) ~0. (2.2)
n— 00 ’
Note that the choice of € does not depend on the choice of s > 7.

Let x € V and m € N such that x € B,,, and let n > m. On the complement of
E(n,t, By,) it holds

0
sup sup sup ’ns’,y - 773'7y| = 0.
0<s<s’ I>n yEBm
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This implies
E(n,s + 6,2) \ E(n, s, Bp)

l
C {sup sup |15y —n{)| =0,sup sup |ny, — nﬁf?m\ > 0} :
I>n yeBm I>n s<s'<s+e

Proposition [I] yields

P(E(n,s+e,2)) < P(E(n,s, Bn)) + P (021 = 2) . (2.3)

Let 6 > 0. From there exists M € N so that P(ﬁgﬁ% = 2) < 6/2. From our
induction hypothesis there exists Nog = No(M) € N so that P (E(No, s, By)) < §/2.
With this choice of Ny and M, and the monotonicity of the event £ (N, s + €, x)
imply P (£ (N,s+¢€,2)) < for all N > Ny. This shows for t = s + € for all finite
ScV.

We conclude the theorem. In the first step, we showed that there exists v > 0 such
that holds for t = ~ for all finite S C V. In the second step, we show the existence
of € > 0 so that if holds at time ¢t = s for all finite S C V, then holds at time

t = s+ € for all finite S C V. Hence, Theorem [I| follows by induction. O

Proof of Theorem [9 subject to Theorem[1 and Proposition[3 Theorem [2]follows directly
from Theorem [I] and Proposition O

Proof of Theorem [3 subject to Theorem[1] and [ We use Theorem [I] and [2] to conclude
the theorem.

(a) Let 7 be as in Theorem [3| let t > 0 and S C V finite. Then from the almost sure
convergence proven in Theorem

lim P | sup sup sup \ns,x - nﬁl?r! >0 =0
n—00 I>n 0<s<t z€S ’

and
lim P (Sup sup sup |7s o — ngl)x\ > 0> =0.
n—00 I>n 0<s<t zeS
This implies
P(3s€[0,t] Iz € S : Moz # Nsw) = 0.
The assertion follows.

(b) Let ¢ > 0. As mentioned in Remark , the processes (ngﬂ))ogsgt,zeBm n € N, are
measurable with respect to GZ;. Therefore Theorem [I] implies that for all finite
S C V the process (1)sq)o<s<tazes is GZ;-measurable. The GZ;-measurability of
(Ns,2)o<s<tzev follows.
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(c) Let t > 0 and t! >t Forall s >0and x € V let éw = Giqsz — Gip and
Iy = Iiysp — It . From (a) the process (Us,w)se[o,t},xev is GT;-measurable. The
increments of the growth and ignition processes after time ¢ are independent of the

o-field GZ;. This implies for all B € 0(Gs4,155 : s € [0, —t],x € V) and all
Ceo(gz:zeV)

P(BNC|GL;) =1¢ - P (B|GL:) = 1¢ - P (B|(t2)wev)
=P (B N C‘(T]t,a:)xEV)

almost surely. It follows for all A € GZ, ¢
P (A‘gzt) =P (A‘(nt,x)xe\/) (2.4)

almost surely, where

GIp = &(nt,x,Gs,x,I&x 1S € [O,t/ —tl,x € V).

For all s > 0 and all z € V' let 75 & = 7452, and note that (s 2, Gs .z, Ls2)s>0,2cv
satisfies the definition of a forest fire process on G with parameter A and initial
configuration (7 ,)zcy. Theorem [2| implies the existence of m € N such that
the forest fire process 1 has CCSB(t, A\/(4d?),m). Hence, the forest fire process
fj has CCSB(0, \/(4d?), m), and part (a) implies that (ny z)zev = (Ty—tz)zev 18
measurable with respect to GZ; ;. That is, holds for all A € o (77t/,x tx € V).
Applying the GT;-measurability of (9s.z)sejo,,zev again, we obtain

P(A‘(nsw)se[(],t],xe\/) =P <P (A|gIt) (7787x)s€[0,t],x€V)

=P (A‘(nt,x)mEV) a.s.

forall Aco (77,5/7:,3 1x € V).

2.4 Proof of Proposition
We proof Proposition [I]in this section. First we prove the following version of it.

Lemma 1. For allt > 0 and all finite S C V the (t,S)-blur process exists and has the
following property: let x € S, t' >t and n > 1 such that S C B,,. Suppose that the
processes n and 17(”) coincide on the set S at time t, and that the site x is not (t, S)-blurred
at time t'. Then they coincide at the site x at time t':

{vy €Sy = m(,’;‘,),ﬁf/’i = 0} = {”t’w - m(ffi}
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Proof. Let t, ', S and n as in the lemma. The proof of the lemma is based on a recursive
construction of the blur process. The set of sites that are not (¢, S)-blurred at time ¢t =: 9
is

B(0) :={y € S|CryndS =0}.
Recursively for all 4 € N let
B(i) = B(i = 1) \Uzev(i-1)Cr . (B(i):==0if B(i — 1) = 0),
where
mi=min{t > 71| e V(i—1): Gy > Gr,y} (min{(} := o0)
is the first time after 7;_1 at which one of the growth processes on
V(i—1):={yeB(i—1)|oy ¢ B(i—1)}

jumps.
By induction on ¢ € Ny we show the following:

(i) the (¢,5)-blur process is well defined up to time 7, and B(i) is the set of those
sites in S that are not (¢,.9)-blurred at time 7;;

(ii) at time 7; the entire set V(¢) is vacant with respect to 7, that is, n,, ., = 0 for all
z € V(i)

(iii) suppose that the processes n and 7™ coincide on the set B(—1) := S at time 7p.
Then they coincide on B(i — 1) throughout [, 7;].

We begin with the induction. The sites in B(0) are those sites in S that are not
(t, S)-blurred at time 79. Hence, Cr, . NS = () for all z € V(0). Every site z € Vj has
a neighbour y so that y € B(0), that is, Cy,, N dS # 0. It follows that at time 7y the
entire set V(0) is vacant with respect to 7.

In the induction step k — k + 1 suppose (i), (ii) and (iii) for ¢ = k. The set V' (k)
satisfies 0 (B(k) \ V(k)) C V (k). The set V (k) is vacant at time 7, and the definition
of the time 711 implies that the set V (k) remains vacant throughout |7, 75+1[. That is,
Csy C B(k) for all s € [y, 741 and all y € B(k). Therefore, during the time interval
[Tk, Tk+1[ none of the sites in B(k) can get vacant due to an ignition that occurs outside
the set B(k). Hence, throughout [7%,7+1[ the configuration of n on B(k) is uniquely
determined by its configuration on B(k) at time 73 and the finitely many growth and
ignition jumps that occur on B(k) within [7x, 7g11[. At time 7441 a site z € V(k) gets
occupied. Thus, since growth and ignition jumps occur at distinct times, all sites except
for z remain unchanged at time 7;41. This implies that the configuration on B(k) at time
Tr+1 and the growth and ignition jumps that occur on B(k) within [7x, 7x+1] determine
the configuration of  on B(k) at time 7;11. Since the processes 1 and n™ are adapted
to the same family of growth and ignition processes, this implies the following: if n and
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n™ coincide on the set B(k) at time 73, then they coincide on the set B(k) throughout
[Tk, Tk+1]- Along with B(k) C B(k—1) we conclude (iii) for ¢ = k+ 1, where we use that
(iii) holds for i = k.

The sites in B(k) are those sites in S that are not (¢,S)-blurred at time 7. For
all s € [, k1] and y € B(k) we have Cs, C B(k). Thus none of the sites of B(k)
get (t,S)-blurred within [y, 7x1+1[. Let y € B(k) and suppose that y is (t,.5)-blurred
at time 7,11. Then at time 751 the cluster at y is connected to a site that has been
(t, S)-blurred before. That is, Cr, ., , ¢ B(k) holds. Therefore, 0 (B(k) \ V(k)) C V (k)
implies the existence of z € V(k) so that y € C,,,, .. Conversely, every site y € B(k)
that satisfies y € C~, ., . for some z € V(k) is (¢, S)-blurred at time 74 ;. This shows (i)
fori =k +1.

Let y € V(k 4+ 1). Then either y € V(k) and Cr, ., , = 0 or y € 9C;, , . for some
z € V(k). In both cases, the site y is vacant at time 754;. We obtain (ii) for i = k + 1.

We conclude the lemma: let € S and suppose that the site x is not (¢, S)-blurred
at time #', and that the processes 1 and (™ coincide on the set S at time t. Then
lim; oo 7; = oo implies the existence of i € Ny such that ¢’ € [r;, 7;41[. Since x is not
(t,S)-blurred at time ', we have « € B(i). From (iii) the processes n and 7™ coincide
on the set B(i) throughout [0, 7;4+1]. Hence, they coincide at the site x at time t'. O

Proof of Proposition [l Let t > 0, m € N, k > m and x € B,,. Lemma [I] implies the
following for all s > ¢. Suppose that n and n®) coincide on By, at time ¢, but differ at
the site = at time s. Then the site x is (¢, By,)-blurred at time s. This implies for all
t' >t

{Vy € By, : Nty = 7715];)7 ds € [t,t/] *MNs,x 7’é ng:c)}

C {3sett]: th—Z}C{ﬁth—Q}

Here to get the second relation, we use that a (¢, By, )-blurred site remains (¢, By, )-blurred
forever. Proposition [I] follows. O

2.5 Proof of Proposition

2.5.1 Organization of the proof of Proposition

Let t > 0 and x € V. To show Proposition [2| we have to show the existence of € > 0 such
that

lim P (3%, =2) =o0.

n—oo

But due to the strong dependence of Bff;x = 2 on the configuration of 7 on B,, at time

t, it seems to be difficult to estimate the probability directly. Therefore, we estimate the
probability that the set of blurred sites reaches the site x from k clusters away. More

formally, we study ﬂf f:; ®) = 2, where Cy 4 (k) is defined as follows.
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Definition 11 (The set C;,(k)). For all t > 0 and all x € V' we define
Ci (1) == m,
and recursively for all k > 2:
Cra(k) =Cra(k—=1) U ) Gy
y€d Cy o (k—1)
Here we write Cy , := x in case of n;, = 0.
To conclude Proposition [2] we are going to use the following Proposition.

Proposition 4. Let m € N, t > 0, and € > 0 so that P(Geo > 0) < 1/(4md?). Suppose
that the forest fire process has CCSB(t,\/(4d%),m), and almost sure infinite volume
convergence at time t:

lim P(supln,. — 2| >0)=0 all zeV. (2.5)

Then for allz €V and all k € N

k—1
,Ct,z k 3
P (s —2 cml <o) < (§)

To prove Proposition 2] we are going to proceed as follows. We start in Section [2.5.2]
(General properties for the blur process) by showing some general properties for the blur
process. In Section (Growth and ignition estimates for the blur process) we use
the growth and ignition processes to estimate some events described in terms of the blur
process. Thereafter, in Section m (Estimates for the proof of Proposition {4)) we use
the results of Section to derive the two key estimates the proof of Proposition [] is
based on. We use them and results of Section to prove Proposition H] in Section
2.5.5 (Proof of Proposition [). Finally, in Section [2.5.6] (Proof of Proposition [2)) we
use Proposition ] and results from Section to conclude Proposition 2] Figure
illustrates the way the single parts of the proof of Proposition [2] depend on each other.

2.5.2 General properties for the blur process

In this section we show two general properties for the blur process. Throughout this
section let t > 0 and S C V finite. We start with a definition.

Definition 12 (The times ﬂfgs and 7,). For all z € S let
B4 := min {5 > t‘ﬁgjg = 2}

be the first time at which the site x is (¢,.5)-blurred. We write 79 := ¢ and for all
1<n<|S|

Tp 1= min {ﬁfp’sax € S‘/ﬁgs > 7—nfl} (mln{@} = OO)

to denote the nth time at which a new site gets (¢, S)-blurred.
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[ Proof of Proposition 2 j
} 1
( Proof of Proposition 4

A *

(Estimates for the proof of Proposition 4 )
(General properties 1 | Lemmata  and 10 )
for the blur process *
LLemmataZand.& J (Growth and ignition est. for the blur process
\Lemmata 4-8 )

Figure 2.2: Proof of Proposition

Let R C S. We compare the (¢, R)- and the (¢,S)-blur process. If a site 2 € R is
(t,S)-blurred at some time s > ¢, then until time s the set of (¢,5)-blurred grew from
the boundary of S to the site . Since R is a subset of S, it is likely to assume that then
at time s the set of (¢, R)-blurred contains the site =, too. This implies that if a site
x € Ris (t,8)-blurred then it is (¢, R)-blurred, too. The next lemma states this kind of
monotonicity formally.

Lemma 2 (Monotonicity of the blur process). Let R C S, x € R. Then gLt < ﬁ;’s.

Proof. Let R as in the Lemma. By induction on 0 < i < |S| we show the following for all
x € R. If the site x is (¢,.5)-blurred at time 7;, then it is (¢, R)-blurred. More formally,
we show that 5;’5 < 7; implies ﬂi’R <.

Let x € R and suppose that the site x is (¢, S) blurred at time 7p. Then at time ¢ the
cluster at z is connected to the boundary of S. Or more formally, we have C;,N9S # 0.
Hence, R C S and x € R imply C;, NOR # 0. It follows gLl < 7.

In the induction step ¢ — i + 1, we suppose that ﬁfv’s < 7; implies BE’R < 7; for all
r € R. Let x € R and suppose that the site x is (¢, S)-blurred at time 7;,1. Then at
time 7,41 the cluster at x is connected to a site y € S that is (¢, S)-blurred at time 7;.
In case of y € R the induction hypothesis implies that the site y is (¢, R)-blurred at time
7;. Otherwise if y ¢ R, then 2 € R implies that at time 7,1 the cluster at = contains a
site z € OR. Such a site is (¢, R)-blurred at time 79, and hence at time 7;. In both cases
at time 7,4 the cluster at x is connected to a site that is (¢, R)-blurred at time 7;. That
is, the site z is (¢, R)-blurred at time 7.

We conclude the lemma. Let z € R. If ﬂﬁ;s < 00, there exists 0 < i < |S]| so that

fc’s = 7;. We showed that ﬁi’s = 7; implies ﬁfc’R < 7;. It follows Bi’R < Bé’s. O

The definition of the blur process implies that if a site x € S is (¢, 5)-blurred, then
there exists a path of (¢, S)-blurred sites that connects the site = to the boundary of S.
We study such paths in the next lemma.
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Definition 13 (BlurPath). For ¢/ > ¢, z € S and W C V let

BP;;S(x,W) _ { 3(pi)1<i<n € PATH(z,0S) : (pi)1<i<n € (S\ W)™, }

Vi<i<n:gpl, <ppd <t

denote the existence of a path (p;)i<i<n € PATH(x,0S) that connects the site x to the
boundary of S with the following properties:

(i) the path consists of sites in S\ W only;

(i) for all 1 < i < n the site p; does not get (¢, 5)-blurred before the site p;1 ;. The
site py is (¢, S)-blurred at time t'.

Lemma 3 (Existence of a BlurPath). For allt' >t and all z € S

{855 < '} € BPSS (2, 0).
That is, if s site © € S is (t,S)-blurred at time t' > t, then BP;}S(:U, 0) occurs.
Proof. We show by induction on 0 <4 < |S] for all z € S

{85 <7} C BPtT’iS(z,Q)).

To begin the induction, let 4 = 0 and y € S. Suppose that the site y is (¢, S)-blurred at
time 79 = t. Then the cluster at y is connected to the boundary of S and all sites of the
cluster at y are (¢, S)-blurred at time 79. This implies the existence of a path showing
that BP%%(y, 0) occurs.

Let 1 <4 < |S|. As induction hypothesis suppose for all z € S

{825 <} BP0,

Let y € S and suppose that y is (¢, 5)-blurred at time 7;. Then at time 7; the entire
set Cr,, NS is (¢,5)-blurred, and there exists a site in Cr, , N S that has already been
(t,S)-blurred at time 7;_1. Thus there exists a path (p;)1<i<; € PATH(x, S) with the
following properties:

(i) for all 1 <1 < j, the site p; € S gets blurred at time 7;, that is, ﬂ;,’ls =

(ii) the site p; € S is (t,S)-blurred at time 7;_1, that is, the induction hypothesis

implies the occurrence of BPi’il(pj, 0).

Let (p))o<i<m € PATH(p;,0S) be a path showing that BPtT’il(pj,®) occurs. Then

p;€ Sforall 0<I<m,and Bf)’lil < ﬁf,}s < 71 for all 0 <1 < m. We concatenate the

disjoint paths (p;)1<i<; and (p))o<i<m: for all 1 <1 < j+ m let

N D if 1 <1 <y;
b= .
pg_j otherwise.
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Then p; € S for all 1 <1 < j+m, and ﬁ;zi

(P1)1<i<j+m shows that BP%:%(y, ) occurs.

We conclude the lemma: let ¢/ > t, z € S, and suppose that the site = is (¢,5)-
blurred at time ¢’. Then there exists 0 <4 < |S| so that ﬂgg < 7; <t'. This implies the
occurrence of BP%%(z,0)), and hence the occurrence of BP,; 5(z,0). O

< By <miforall 1 <1< j+m. Thatis,

2.5.3 Growth and ignition estimates for the blur process

In this section we show that some events in terms of the blur process imply the occurrence
of some growth and ignition events. Later on in Section 2.5.4] (Estimates for the proof
of Proposition {4]) we use these growth and ignition events to derive the key estimates we
need to prove Proposition

Throughout this section let t > 0 and S C V finite. As in the definition of the blur
process, we write Cs , := x in case of ns, = 0, and m = x in case of n,- , = 0, all
s>0and z € S.

Lemma 4. Let x € S and suppose 5> t. Then there s the growth of a tree on the
set S at time ﬁx , and the site x is occupzed at time ﬁz .

Proof. Let x € S and suppose b := ﬂi’s > t. Then the set C,, contains a site that
has been (t,S)-blurred before time b. That is, there exists y € Cj,, so that ﬁé’s

Since the site x is not (¢, S)-blurred before time b, for all 0 < s < b the set Cs, does
not contain a site that has been (¢, 5)-blurred before time s. This implies C},- , C S,
and ﬂi’s >ball z € m. That is, there exists w € Cp,, so that w ¢ m. It follows
that the site x is occupied at time b, and that at time b the cluster at = grows on its
boundary. Using m C S, we conclude that there is the growth of a tree on the set S
at time b. O

Definition 14 (The time o). For all z € V we define
0'; ;= min {5 > t‘n&x = ()}
to be the first time s > ¢ the site x is vacant.

Definition 15 (The event Gy p). For all ' > ¢ and all F C V we write
Gy F = {Vy e F:Giy < thjy}

to describe the event that at each site of the set F' there occurs the growth of a tree in
between time ¢ and t'.

Lemma 5. For all x € S the set { S U;} s empty.

Proof. The definition of the blur process implies that if a 81te xeSis vacant at tlme t,
then it is not (t S) blurred at time t. That is, the relation o =t implies B

In case of 35° > t from Lemmalthere is the growth of tree on the set S at tlme ﬂ
Conversely, the relation of > ¢ 1mphes that the site z gets vacant at time ol that is,
that there occurs an ignition at time ol. It follows ﬁx # ol since growth and ignition
jumps occur at distinct times. O
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Lemma 6 (Site vacant first, then whole cluster vacant first). Let x € S. If after time t
the site x has been vacant before it gets (t,S)-blurred, then all sites of the set Cy, have
been vacant before they get (t,S)-blurred:

{Ui<ﬂi’s}:{VyE@:yGS,UZ<B;’S}

Proof. The relation ¢!, < 3%° implies that the site z is not (¢, S)-blurred at time ¢. That
is, the relation C;;, C S holds. The definition of the blur process implies that if a site
y € S is vacant at time ¢, then it is not (¢,5)-blurred at time ¢. We obtain

(ot < BYS} C {Croc S} C {VyedCy, yeS,a < 855,

The time o, is the first time s > ¢ the site z € S is vacant. In particular, none of the sites
of the set Cp, get vacant during the time interval [¢,o%[. Otherwise the entire cluster
at « would get vacant. We conclude Cs, O Cy, for all s € [t, a;[. Thus, if there would

exists y € Cy, so that Bé’s < ol, then Bfgs < ol would hold. This shows that Bfgs > ol
implies ﬂf,’s > ol for all y € Cy,. At time ol the cluster at z is hit by ignition and all

its sites get vacant. Therefore, we have UZ = ol for all y € Cy,. We obtain

{ob < BLS} c{VyeCiniye S o, =0l <pL°}
C{VyeCia:y€eS o, <pi"},
where we use Lemma 5[ to conclude the second equality. O

Lemma 7 (Occurrence of a growth). Let x € S and t' > t. Suppose that after time t the
site x is vacant before it gets (t,S)-blurred, and that the site x is (t,S)-blurred at time
t'. Then there must occur the growth of a tree at the site x in between time t and t':

{o} < BLs < '} C Gy

Proof. Let x € S, t > t, and suppose ol < BLYS < #. The relation o < B4 implies

;’S > t. Thus from Lemma 4| the site x € S is occupied at time BL7. The site x is
vacant at time o, and we have t < ¢! < ﬁi’s < t'. Hence, there must occur the growth
of a tree in between time t and t'. O

Definition 16 (The event GBI). For R C V we write

GrowthBeforelgnition, (R, S) := GBI;(R, S)
= {EL’I,' € Rds > tVy esS: It,y = Is,vat,s,m}

to describe the event that after time ¢ there occurs the growth of a tree on the set R
before the set S gets hit by ignition. For all ¢ >t and all z € V, we write

GBIt’t/ (x, S) = GBIt(Q?, S) N Gt,t’,x

if we additionally require that such a growth occurs at the site z until time ¢'.
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Lemma 8 (Occurrence of GBI). Let t' > t and x,y € S. Suppose that the site y is
vacant at time t, and that y is (t,S)-blurred at time t' and before time ol.. Then after
time t there must have been the growth of a tree at the site y before time t', and before

the set Cy . has been hit by ignition:
{ﬁgtjs < Uivﬁfjs < tlynt,y = O} C GBIt7t’(y’ Ct,:r)

Proof. Let t' > t, let z,y € S, and suppose ﬁ;’s < ol. Then the site z is occupied
throughout [¢, ﬁfjs]. That is, the set Cy, does not get hit by ignition within [¢, ﬂfjs}. We
obtain

(0 <o} e (v e G =10 ).

Suppose that the site y is vacant at time ¢. Then Lemma |5 implies ﬁ;’s > t. Along with
Lemmathis shows that the site y is occupied at time ﬁfj . Since y is vacant at time ¢,
this implies the growth of a tree at y in between time ¢ and ﬁé’s. We obtain

(8% < 00,8, <ty = 0}

C {VZ S Ct@ : It,z = Iﬁ;’s,z’ Gtﬁ;,syy,ﬁ?tjs < t,} (@ GBItﬂg/(y, Ct@).

2.5.4 Estimates for the proof of Proposition

We derive the two estimates the proof of Proposition 4] is based on. Throughout this
section let m, €, ¢, x and k as in Proposition 4 and suppose CCSB(t, \/(4d?), m) and
([2.5). Then from CCSB(t, \/(4d?), m) except on a null set there does not exist an infinite
cluster at time ¢. For a more convenient notation, we restrict the forest fire process to
the complement of the latter null set throughout this section. For abbreviation, let
C := Ct,(k), and write {s < BYCY to denote {z € C,s < B¢} all z € V and s > 0

The estimates the proof of Proposition [4is based on are quite technical. To motivate
them, we give a rough sketch of the proof of Proposition ﬁrst. From Lemma (Existence
of a BlurPath) we have

P (ﬁttfw —2,|C| < oo) s (BPﬁfE(:c, @)) .

To estimate the right hand site, we successively split up the event BPif6 (x,0): let P be
a path showing the occurrence of the latter event. The definition of the set C implies
that on its way from z to the boundary of C the path P intersects at least k (possibly
empty) neighbouring clusters. Starting at the cluster at 2 we jump from one of the latter
clusters to the next one. After i — 1 jumps we reach a cluster at some site y € C; ,(1).

We distinguish whether y gets (¢,C)-blurred before or after time O’Z:
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o ;’C < O'Z implies GBI) We suppose that y gets (¢,C)-blurred before time az, that
is, fjc < UZ. Then let z € 0Cyy be the site at which the path P leaves the
set Cy, the last time. We apply the lemmata from Section to conclude the
occurrence of GBI ¢yc(2,Cy). In the next step we jump to the next (possibly
empty) cluster the path P passes on its way from z to the boundary. Our choice
of z to be the last site at which the path P leaves the set Cy, the last time has
the following reason. Each time we arrive at a cluster, we derive the occurrence of
an event described by increments of the growth and ignition processes on or next
to the cluster. To estimate their probabilities we want them to be independent.
The event GBIy ¢y(z,C},) depends on the increments of the growth and ignition
events that occur on the set U Cy,, after time t. Thus after visiting the cluster at

y we do not want to re-enter the cluster at y again;

o ;,c > O'Z implies growths along a sub path) Suppose that y gets (t,C)-blurred
after time O‘;, that is, suppose ﬁfjc > a;;. We choose z € 9Cy, to be the site at
which the path P leaves the set Cy, the first time. We write P to denote the
sites of the sub path of P that connects the sites y and z. Using the lemmata
from Section we conclude the occurrence of Gty p. In the next step we
jump to the next (possibly empty) cluster the path P passes on its way from z to
the boundary. In difference from the latter case, it might be that on its way from
z to the boundary the path P re-enters the set cluster at y. The event Gy p
depends on the increments of the growth processes on the set P. Thus to assure
independence we have to take care that we do not use these increments in one of
the later steps again.

Altogether after i — 1 jumps we have gained the following information. Upon our travel
we derived an event described by increments of the growth and ignition processes on a
finite set B C V. And we know the configuration of the visited clusters, that is, we
know UwepCl . Furthermore, we are aware of the remaining tail of P connecting a site
y € Cy 4 (i) to the boundary of C. For a formal statement of the latter, we introduce the
event SPREAD (y, i, B). Here the occurrence of the set B and a further event £(B) has
technical reasons and is due to the possibility of re-entering a cluster a second time.

Definition 17 (The event SPREAD). Let 1 <i <k, B C V finite and y € V. We write
SPREAD (y,i, B) := {£(B),y € Cy.o(0), BP{£. (4, B) |

Here

£B) = () ({o} < B¢} U{C:. C B}).

z€EB

denotes the event that for all z € B the cluster at z at time t is a subset of B, or it holds
t t,C
oL, < Bz,
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Definition 18 (The set Cy). For all y € V' let
Cy = {S - V‘y €5, |5 <o0,S is connected}
denote the possible configurations of the cluster at y, provided it is non-empty.

Definition 19 (The o-field ZNCR). We write
INCRt(B) =0 (Gt—f—s,y — Gt,yv It_i'_S’y — It,y 52> 0,y € B)

to denote the o-field generated by the increments of the growth and ignition processes
on the set B C V after time ¢ > 0.

The next lemma formalizes the distinction we sketched above. We are going to use the
lemma to successively split up the probability P(BPii(w, (Z))) = P( SPREAD (z,1,0).

Lemma 9. Let B,D CV finite, GI;(B) € INCR(B), y € V and 1 < i < k. Then the
probability
P (GL(B), UwepCtw = D, SPREAD (y, i, B)) (2.6)

s smaller than or equal to the sum of

GIt B z C) Cty = C UwEBth —D
Woepy 2, 2 2P < SPREAD (y/,i+1,BUC U z)
CeCy z€0Cy' €0z
cnB=0) *¢B

and
Z ZZ Z Z (GIthv) Cty—CUwEBth—D>
CeCy 2€0C neEN PEPATH,, (y,2) y' €0z SPREAD (y i+ L, BU PV)
Py NB=0

GIt B y) nty - 0 UwEBth - D
liyen) % ( SPREAD (y/,i + 1, BUy) '
y' €0y

Here we write GIy(B,z,C) to denote the intersection of the independent events
GIy(B) and GBIy 44(2,C), and GI;(B, Py ) for the intersection of the independent events
GIt(B> and Gt,tJre,’PV-

Proof. Let B, D, y and i as in the lemma. If y € B, then SPREAD (y, 7, B) is the empty
set. Thus it sufﬁces to study the case y ¢ B. From Lemma [5| the set {O‘Z = ﬁé’c} is

empty. If ﬂ , we proceed as sketched in (ﬂy > UZ implies GBI) and show

{SPREAD (4,4, B), B < oy}

Ct,y =C, GBIt,t—i—e(Zv C))
U uu { SPREAD (y/,i + 1,BUCU2) [~ (2.7)
ceCy zzegag Yy €0z
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Otherwise, if ﬂ;’c > ai, the method described in (ﬂé’c > UZ implies growths along a sub
path) yields

{SPREAD (y,i, B), B, > o} }

Ct,y — 07 Gt,t—i—e,Pva
cyu U u { SPREAD (v/,i +1, BUPy)
CeCy z€0C PePATH(y,z) y' €0z
PyNB=()

Nty = O, Gt,t+e,ya
Y LE% { SPREAD (y/,i + 1, BUy) } ' (2.8)
Yy Y

In the summation in the lemma, the independence of the events GBI ie(z,C) and
G By(B) arises from the disjointness of the sets C'U z and B. To obtain this disjointness,
we are going to show

{UuweBCtw =D,E(B), B¢ <ol} c{CiynB =10,y ¢ D}. (2.9)

Note that the relation (2.7), (2.8) and (2.9)) imply the lemma. It remains to prove these

relations.

Proof of 1’ We proceed as in (ﬂ;’c > 0?’; implies GBI). The relation B;’C < 05 implies
Nty = 1, and there does not exist infinite clusters at time ¢t. We condition on the shape
of the cluster at y at time ¢, and obtain

{BL¢ < 0! SPREAD (y,i, B) }
= |J {Cuy=C, B¢ <0ol,SPREAD (y,, B)} . (2.10)
cec,

The occurrence of SPREAD (y, i, B) implies y € C; () and BPife(y, B). That is, there
exists a path (p)1<i<n € PATH(y, 0C) so that

(P)i<i<n € (C\ B)"; (2.11)

and

ﬁ;}i < B]Z}S <t+4e all 1 <l < n. (2.12)

Let C' € Cy and suppose Cy, = C. Starting at the site y = pi, there exists a site in
z € C at which the path (p1)1<i<n leaves the set C the last time. More precisely, let
ji=max {1 <Il<n|pcC}

and z := p;. We show z € 9C, z ¢ B, and j < n. By definition 9C N Cy (i) = 0, and
y € Cy (i) implies C' C Cy 4 (i). Therefore, we have 9C N C = (). Along with p, € 9C it
follows j < n and z € 9C. From (2.11)) we conclude z ¢ B.
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Let 3 := pj41. Then (2.12) implies ﬂéc < ﬁtc <t+e and y € 0z and z € Cyqli)
imply ¢ € Cyo(i + 1). Furthermore, (p;);+1<i<n € PATH(y/,0C), and ( and our
choice of j imply

(p1)j+1<i<n € (C\ (BUCU2))" .

Together with (2.12) it follows that the path (p;);41<i<n shows that BP;(:6 (v, BUCUZ2z)
occurs. Altogether, we obtain

{Ciy = C, B¢ < ol SPREAD (y,i,B)}
Cpry=C, B¢ <ot B < i <t+e,
U U { ' et’é (i+1), BP'C (4 (', B uyc U2),EB) | (2.13)
z€0C y'€0z Yy t.x t+e\Y s
z¢B
Let z € OC and suppose Cy, = C. Then the site z is vacant at time ¢. It follows
{Cry = C. B¢ <ol € < BLC <t +¢,E(B)}
C{Cry=C. B¢ <oy, BC <t+em. =0}
Application of Lemma [§ (Occurrence of GBI) provides
{Ctvy = C7 /3;76 < 0276,?6 <t+ €Mtz = O}
C {Chy = C,GBl44c(2,C), B <t +em.=0}.

If the site z is vacant at time ¢, then ¢! = 0. From Lemma [5| the set {0} = ic} is
empty. It follows

(Cry = C,BC <t+em.=0}C{Cy,=0C0 <pfycECU2).
Altogether, this shows
[Cry = C. B¢ <ol B5C < BLC < t+¢,E(B)}
C{Cy = C,GBl14(2,C),E(CU2)}.
Combining with we obtain
{Ciy=C,B° < o}, SPREAD (y,i,B)}
c | U {Cuy=CGBlL c(2,C),SPREAD (y,i+1,BUCUz) }.
zZEé')BC y' €Dz
Along with (2.10), this concludes the prove of (2.7).
Proof of (2.8)). The proof of is the formal analogon to (65’6 > JZ implies growths
along a sub path). We consider the case n;, = 1 first. Then
{nt,y =1, ﬁ;’c > U;, SPREAD (y, 1, B)}

U {Cie=C, 8¢ > 0! ,SPREAD (y,i,B)} . (2.14)
Ccec,
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Let C € Cy and suppose {C; , = C, SPREAD (y, ¢, B)}. Let (p;)1<i<n € PATH(y, 9C) be
a path showing the occurrence of BPife(y, B). Then the path (p;)1<i<, satisfies
and (2.12). In the proof of we picked the site at which the path (p;)1<i<p leaves
the set C' the last time, and showed that such a site is an element of dC. Hence

j:=min{l <l <n|p € 0C}

is well defined, and z := p; is the first site at which the path (p;)1<;<,, intersects the set
dC. We write P := (p;)1<i<;, and note that our choice of j implies z € C and Py C C.
From and it follows Py < C\ B, and B5° < t + ¢ for all w € Py. As in
the proof of we obtain j <n, 3 :=pjr1 € Cy»(i+1), and that (p;);4+1<i<n is path

showing the occurrence of BPii(y’ , BUPy). Altogether, we have

{Ciy=C,B° >0}, SPREAD (y,i,B)}

c U U U { Ct’y:C’BZC>U§,V1é)G'PvzﬁZ;CSt—}—E, } (2.15)
/ ; t, / : :
2e0C PePATH(y,z) yoo: L Y € Crali+ 1), BPY (Y, BUPY), £(B)

Py CC\B

t
Yy
vacant first, then whole cluster vacant first) all sites w € C' get (¢,C)-blurred after time
ot,. By Lemma [7] (Occurrence of a growth) if a site w € C gets (t,C)-blurred in between
time of, and t+¢, then there must have been the growth of a tree at the site x in between
time ¢t and t + €. Therefore we have for all A C C

Suppose that the site y gets (¢,C)-blurred after time o,. Then from Lemma @ (Site

{Ct,y:Ca/BZC > O'Z,V’w GAZBZ;C §t+6}
C {VwGA:UZ} <ﬁff§t—|—e,} C {Griten,E(A)}.

Combing with (2.14) and (2.15]) it follows

{my = 1,65 > ol SPREAD (y,i, B)}

Ciy =C,Gry py,
cyu u u { SPREAD (y/,i +1,BUPy) |
CeCy z€0C PePATH(y,z) y' €0z
PyNB=()

In case of 17;, = 0 the same arguments as above provide

(= 0.0 > o}, SPREAD (3,7, B)}

C U 77t,y = Oa Gt7t+57y7
hert SPREAD (y/,i+1,BUy) |~
Yy Y

This concludes the proof of (2.8).

Proof of (2.9). The relation (2.9) is
{UweBCiw = D,E(B),B¢ <ol} c{CiyNB=0,y¢ D}.
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We start the proof of (2.9) by showing that the set
{£(B), B¢ <ol Cryn B #0}

is empty. Suppose that C¢, N B # 0. Then there exists a site z € B such that y € C ,
holds. From Lemma [6] ( Site vacant first, then whole cluster vacant first) if z would get
(t,C)-blurred after time of, the site y would get (¢,C)-blurred after time o}. Thus we
obtain

{£(B),B¢ <ol,CLynB#0} C{E(B),3z€B: B¢ <olyeCy.}.
The event £(B) implies that for all z € B it holds f5¢ > ol, or Cy, C B. We conclude
{£(B),32eB: B <ol,yeC.} C{32€B:C,, CByeC} =0

where we use y ¢ B.
We conclude (2.9). Since the set {5 (B) ,ﬂfjc < aé, CiyNB # @} is empty, we have

{UwEBCt,w = Dag (B) ’5;,C < U;} - {UwEBCt,w = Dvct,y NB= 0} .

Suppose that Uy,ecpCrw = D occurs. In case of y € D there exists a z € B such that
z € Cy. In particular, UyepCtyp = D and y € D imply Cy,, N B # (). Hence

{UwEBCt,w = D, Ct,y NB= @} C {y ¢ D, Ct,y NB= @} .
OJ

Lemma @ enables us to successively split up the probability P(BPifE(az, 0)). In the
next lemma we estimate the sums we obtain by doing so.

Lemma 10. Let B, D, GI{(B), and y as in Lemma[9 Then the sum of

lyepy >, >, Y. P(GL(B,2,C),Cry = C,UyepCruw = D)

CeCy ZeaCy €0z
cnB=p) *¢B

and

> 2> 2. > PGBPY),Ciy=C UuepCru = D)

CeCy z€0C neNPePATH, (y,z) y' €0z
PyNB=0

+1{y€B} Z GIt B y Mty = 0, UwEBth = D)
y' €y

18 smaller than or equal to

P (GL(B),UwepCiw = D).

>~ w
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Proof. Let B, D, GI;(B) and y as in the lemma. Let C' € Cy, K C V such that KNB = ()
and GI;(K) € ZNCR(K). The occurrence of the event {Ct, = C,UyepCrw = D} is
determined by the configuration of the forest fire process n on the finite set C U D U B.
Hence, the almost sure infinite volume convergence at time ¢, , implies

P (Glt(B)a GIt(K)v Ct,y = Ca UwEBCt,w = D)
= lim P (Glt(B),GIt(K),Ct(Z) = C’ U’LUEBCt(Z? = D)

n—oo

Let n € N so that CUD UB C B,. From Remark [3| the configuration of the finite
volume forest fire process n(™ at time ¢ is independent of the increments of the growth
and ignition processes after time t. Furthermore, the disjointness of K and B implies
that the increments of the growth and ignition processes on K and B are independent.
Hence,

P (GI(B), GLi(K), Cfy) = C,UyepCyl) = D)

— P(GI,(B))- P(GL(K)) - P (C§ ) = C,UpepC™) = D) ,

n
7y w
and using (2.5)) again it follows

P(Glt(B),GIt(K), Ct,y = C’ UwGBCt,w = D)
= P(GI(B)) - P(GI(K)) - P (Cty = C,UnwepCrw = D).

Therefore, to show the lemma it suffices to show

Lygpy Y. Y P(GBlye(2,0)) - P(Cry = C,UuepCraw = D)
CeCy z€dC

1
< 1d : P(UweBCt,w = D) (2‘16)

and

> Y Y P(Gurery)  P(Cry = C,UuesCrw = D)

CeC,U{0} 2€0C neN PEPATH,, (y,2)
2
< 2 P(UuesCiw=D). (217)
Here in the summation in (2.17) we write OC := y in case of C' = ().
We show ([2.17) first. The vertex degree of the graph G is bounded by d. That is, for
all n € N there exist at most d"~! different paths with origin y and length n. Therefore,
the choice of € provides for all C' € C, U {0}

2.2 2. PGuer)<d, 3 PG>0
2€0C neN PePATH,, (y,2) neNPEPATH,, (y,0C)
<y a1
= (4md?)" ~ 4d’
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It follows (2.17)). To prove (2.16]), we distinguish whether at time ¢ the cluster at y is
bigger than m, or not. Note that since the vertex degree is bounded by d, |9S| < d|S]|
for all finite, non-empty S C V. Thus for C' € Cy, such that |C| < m,

md 1
< < = —. .
Z P (GBI 41(2,C)) < Z P(Gep>0) < s = o (2.18)
zeoC z€0C
For C € O satisfying |C| > m, we obtain
oC d
Z P (GBlLi11c(2,C)) < Z P (GBILi(z,C)) = _loc] < —. (2.19)
’ 1+ AC] — A
z€oC z€0C
We assumed CCSB(t, \/(4d?),m), that is, in particular
A
Liygpy - P (|Cty|l > m,UnepCiw = D) < iE P (UyepCiw = D).
Combining with (2.18) and (2.19)), it follows
l{yQD} Z Z P(GBL&’H_E(Z,C)) (Cty C UwEBth = )
CEC, 200
(L AN P (UuenCro = D) = 2 - P(UnenCru = D).
Ad N\ 442 weBVtw — Ad weBLVtw =
This shows (2.16). O

2.5.5 Proof of Proposition

We prove Proposition [4] in this section.
Proof of Proposition[jl Let m € N, t > 0, and € > 0 as in Proposition [4 and suppose
CCSB(t, \/(4d?),m) and (2.5). From CCSB(t, \/(4d?),m) except on a null set there

does not exist an infinite cluster at time ¢. We restrict the forest fire process to the
complement of the latter null set. We have to show that for all z € V and all k € N

t,.Ct.z(K) 3\
<ﬂt+5tag:0 2) < (4) :
Let x € V and k € N. Lemma |3| (Existence of a BlurPath) implies

(ﬁ;ff;; - 2) — P (SPREAD (z,1,0)).

Applying Lemma [9] successively k£ — 1 times and thereafter using Lemma [I0] to estimate
the derived sum yields the desired result. O
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2.5.6 Proof of Proposition
In this section we give the proof of Proposition

Proof of Proposition[d Let t > 0, x € V and m € N, and choose ¢ > 0 such that
P(Gep > 0) < 1/(4md?). Suppose CCSB(¢, A/(4d?), m) and (2.5). Let M € N such that
x € Byy. Lemma [2{ (Monotonicity of the blur process) implies for all n > M

t,B, t,Br,
{BtJre,:;rl = 2} C {ﬁtJre,x = 2} :
That is, to show lim,, o, P (ﬁfﬁ”x = 2) = 0, it suffices to show that the set
t,By,
E = m { t+e,:c:2}
n>M

is a null set. Let k € N. From CCSB(t, \/(4md?), m), with probability one there does
not exist an infinite cluster at time ¢. Hence, except on a null set AV, the set Cy (k) is
finite. Along with Lemma [2| (Monotonicity of the blur process) we get

E\N C {Eln > M Coalk) € B Bl =2} © {@ﬁfg(k) =2,|Coalh)] < oo}

Application of Proposition [ yields

= 3 k
P(E) < P (8™ =2,| Cualh)] < ) < <4> |

This shows P (E) < (3/4)% all k € N, that is, P (E) = 0. The proposition follows. [

2.6 Proof of Proposition

2.6.1 Organization of the proof of Proposition
Our proof of Proposition [3|is based on the following finite volume version of Theorem

Proposition 5 (Theorem [2]restricted to finite volume). Let v > 0 and suppose that the
graph G = (V, E) is finite volume. Let m, xq as in Proposition @ Then for all § €]0,1],
for all s > ~ the forest fire process 1 has CCSB(s, §,mgx~(5)).

Due to its length, we split the proof of Proposition [f]into several lemmata. We sketch
the underlying intuition first.

Let ¢ > 0 and € V. Our goal is to choose m > 0 such that |C} ;| > m has small
probability. We distinguish three major cases, and estimate their probabilities separately.

e (Site vacant before) Suppose that the site = is vacant within [t — €, ] for some
€ €]0,7]. From |C; 5| > m the site z is occupied at time ¢. Thus there must occur
the growth of a tree at = in between time ¢ — € and ¢. We can choose € €]0, ] such
that the latter has small probability;
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e (Site occupied before, cluster large) If the site z is occupied throughout [t — €, ],
then the cluster at  must not get hit by ignition in between time ¢t — € and t. An
event with small probability, provided the size of the cluster at = at time ¢t — € is
larger than some M = M (e) > 0;

e (Site occupied before, cluster small) The last case is the case where the size of
the cluster at = at time ¢ — € is smaller than or equal to M, and x is occupied
throughout [t — ¢,t]. More formally, we have to show that we can choose m such
that

{|Ci—ea| < M,|Cty| >m,Vs et —e€,t]:ns, =1}

has small probability. Since the site z is occupied throughout [t — €, t], the cluster
at = must not get hit by ignition during [t — €, t]. First we can choose N such that
the probability that the cluster at x grows more than N times without getting hit
by ignition is small. To grow from size M to size m >> M within less than N
growth steps, at least at one of the at most IV growth steps the cluster at x has to
get connected to a comparatively big cluster. We are going to show that we can
choose m so that this event has small probability.

That is, to estimate the probability of |Cy,| > m we use events described by the in-
crements of the growth and ignition processes after time ¢ — e. But, to obtain the full
statement of Proposition |9, we have to condition on the occurrence of UjcpCi, = D
additionally. This event obviously depends on the growth and ignition jumps that occur
in between time ¢t — ¢ and ¢. To handle this, we introduce the domain of dependence,
a minimal space time region DOD C V x [0,¢] with the property that the occurrence
of UiepCt,y = D is measurable with respect to the initial configuration and the growth
and ignition jumps that occur on DOD. The consideration of the domain of dependence
and the thereby required measurability with respect to the growth and ignition processes
explain why we restrict Theorem [2| to finite volume first.

The further organization is as follows. In Section we introduce the domain
of dependence. In the first part of the section (Basic properties of the domain of de-
pendence) we show the most important properties of the domain of dependence. In
particular, we show that the domain of dependence is measurable with respect to the
initial configuration and the growth and ignition jumps that occur on it. In the second
part (Working with the domain of dependence) of Section we use this property to
estimate the probabilities of some growth and ignition events, uniformly in the condition
UteCty = D. Thereafter, in Section we use the results of Section to formal-
ize the three cases sketched above. Finally, we show Proposition [5]in Section and
conclude Proposition [3]in Section Figure illustrates the way the single parts
of the proof of Proposition [3| depend on each other.

2.6.2 The domain of dependence

In this section we introduce the domain of dependence. We show some of its basic
properties, and how to work with it. All lemmata of this section restrict to the case
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( Proof of Proposition 3 )
( Proof of Proposition 4 j
( The domain of dependence w Estimates for the proof of

Basic properties of the domain of dependence Proposition 4

Lemn}ata 'LL -4 . Lemmata 18 - 21

Working with the domain of dependence

Lemmata 14 - 17

Figure 2.3: Proof of Proposition

where the graph G = (V, E) is finite volume.

We explain the domain of dependence less formally first. Here we restrict to the
special case Cy,, = C for some y € V, C € Cy and ¢y > 0. Let Dy := C and 0 < e < tp.
If Cy = C, then Dy := OC is vacant at time to. Going back in time there is a
smallest time §(1) < ¢¢ such that the set D} has been vacant throughout [§(1),?o]. This
boundary of vacant sites blocks fires caused by ignitions outside the set Dy. We are
going to use this to show that Cj,, = C' is determined with respect to the configuration
of the forest fire process on Dy at time §(1) and the growth and ignition jumps that
occur on Dy X [6(1), o). In the next step, we choose a sufficiently large set D; D Dy such
that D] := 9Dy is vacant throughout [t1,d(1)] for some t; < §(1). We define 6(2) to
be the smallest time such that the set D] is vacant throughout the entire time interval
[0(2),6(1)]. We proceed as in the previous step, and go on recursively until we reach
time £y — €.

From now on throughout the remainder of this section let B, Dy C V, € > 0 and
to > €. To handle the general case, we note that {UycpCl,,y = Do} # () implies

{UyeBClyy = Do} = {Yy € Dg : 4y y = 1,Vz € D : .- = 0} (2.20)
Here W := 0W U (B\ W) for W C V.
For abbreviation, for all W C V, S C [0,00[ and a € {0,1} let
[nsaw = a} i= {¥(s,w) € S x W : 1y = a}

denote the event that all sites of the set W are vacant (a = 0), respectively occupied
(a = 1) throughout the entire time set S. In case of S x W = (), we define {ngw = a}
to denote the sure event.

Definition 20 (The domain of dependence). Let 6(0) := to, Dy := Dy, Df, := D}, and
suppose 7, p; = 0. Recursively for all 0 < i < [V] let

36 +1) == min {s € [to — €, 5(0)] .00 = 0}
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be the smallest time s € [tg—¢, §(¢)] such that all sites of the set D are vacant throughout
the time interval [s,d(7)]. Here

T s oG +1) =ty —e

denotes the union of D; and the cluster that gets vacant at time 6(i + 1). The domain
of dependence is

DOD :=V x [0,6([V|+1)]u | {D:uDj} x[0,8(i)].

0<i<|V|
We write
8z :=min {0 < i < |V|+1|(z,6(i)) € DOD}

for the last time the site x € V is part of the domain of dependence.

Basic properties of the domain of dependence. We now show some important
properties of the domain of dependence.

Lemma 11 (On the shape of the domain of dependence). In case of Ntg,0py = 0:
(i) the domain of dependence is well defined;
(it) for all 1 <i <|V| the sets D} and D; \ D;—1 are vacant at time 0(3);

(111) (V| 4+ 1) =to —e;

(iv) if a site x € V' \ Dy is part of the domain of dependence after time tyg — €, then it
18 vacant at time Oy:

{mo,pg) = 0,0, > to — 6} - {mo,Dé = Oan&gm = 0}

Proof. Suppose Nto, DYy = 0.
Proof of (i) and (ii). We prove (i) and (ii) by induction on 0 < 7 < n + 1. From
Mo, 0y, = 0, the set Dy is vacant at time 6(0).

In the induction step i — 1 — 4, suppose that 0(i — 1) is well defined and that D]_;
is vacant at time 6(¢ — 1). Then 6(¢) is well defined, and D;_, is vacant at time (7).

In case of 6(i) = to — €, we have D; = D,y and D} = D,_,, and thus the sets
D} and D; \ D;—; are vacant at time 0(7). Suppose 0(i) > to — ¢, and let y € 9D;.
Then either y € 9Cs;)- , for some x € D;_;, or y € D;_; and Cs;y-, = (). Both
cases imply 75(;)-, = 0. From §(i) > to — € a site of D;_; gets vacant at time 6(i).
That is, there occurs an ignition on V' at time (7). Thus, since growth and ignition
jumps occur at distinct times, the site y remains vacant at time (7). Hence, the set
OD; is vacant at time §(i). Furthermore, since D]_; is vacant at time §(7), it follows



38 Almost sure infinite volume convergence for forest fire processes

that D; \ Di—1 = Upep:_ Cs(s)- o 1s vacant at time 6(i). Finally, B\ D;—1 C D;_; and
D;—1 C D; imply B\ D; C D._,. Thus, since D,_, is vacant at time 0(¢), the set B\ D;
is vacant at time (7).

Proof of (i1). Let 1 < i < |V| and suppose 6(i) > to —e. Then a site of D]_; gets vacant
at time 6(i). Thus, the set D; \ Di—1 = Uzep:  Cs;)- o is non-empty. We conclude
Di| > |Di—1| + 1. Therefore, §(|V'|) > to — € implies [Djy| > |V, and hence Dy =V
and D[y, = 0. It follows 6(|V]+1) = to — €.

Proof of (iv). Let x € V' \ Dy and suppose d; > to — €. From 0(|V| + 1) = tg — € there
exists 0 < ¢ < |V| such that d, = d(i).

In case of 6, = §(0), the choice of z € V' \ Dy implies z € D{,. By assumption, the
set Dy, is vacant at time §(0). Let 1 < i < |V/| and suppose ¢, = d(i). If z € D;_; would
hold, we would have 0, > ¢(i — 1). This shows x € D, U (D; \ D;_1). From part (ii) the
sets D; \ D;—1 and D} are vacant at time 6(7). It follows that the site = is vacant at time
(7). O

The next lemma states that the domain of dependence is self-determined in the
following sense: the configuration of the domain of dependence is measurable with respect
to the initial configuration and the growth and ignition jumps hat occur on it. We define
the according o-field.

Definition 21 (The o-field DOD). Forall 1 <i < |V|let t; € [to—€,ti—1] and D; C V.
Let

DOD(t;,D; : 1 <i < |V|) :za(QItO_e(V)U U gIti(DiuDg))
0<i<|V|

be the o-field generated by the initial configuration and the growth and ignition jumps
that occur within the space time set

Vx[0to—€eu | J {DiuDj}x0,t]

0<i<|V|
Lemma 12 (The domain of dependence is self-determined). For all 1 < i < |V| let
t; € [to — €,ti—1] and D; CV such that D; D D;_1. Then the event
{nto,Do = 1’77t()7D(l) = O,Vl S ) S |V| . (S(Z) S ti,Di = Dz}

is measurable with respect to the o-field DOD(t;, D; : 1 <1i < |V]).

Proof. For all 1 < i < |V| let t; € [to — €,t;—1] and D; C V such that D; D D;_;. For
abbreviation, we write DOD := DOD(t;, D; : 1 < i < |V]). Without less of generality we
can assume Dy # V, since otherwise DOD = GZ;,(V') would imply the lemma (the graph
G is finite volume, and hence the configuration of the forest fire process on V' x [0, to] is
GZ:,(V)-measurable). Let

ji=max {0 <i < |V||D; # V,t; # to — €}
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and 7j11 := tj1, where tjy 4y :=1tg — €. Forall 0 <@ < j let

T = max{s € [Ti+17ti”77[n+1,s[,D; = 0}

be the last time s € [r;41,¢;] such that all sites of D] are vacant during [7;41, s].

The proof consists of the following steps. We use an induction on j+1 > k > 0 to
show that the time 73 and the configuration of the forest fire process on the space time
set

M(k) =V x[0,7:1]U |J {D:iuDj} x[0,7]

k<i<j

are DOD-measurable. Thereafter, by induction on 0 < k£ < j+ 1 we show that the event
Ex N {10 = to} is DOD-measurable, where

Ep = {Uto,Do =Ly p, =0,V1<i<k:6(i) <t;,D; = Di}'

Finally, we obtain the DOD-measurability of £y, N {70 = to}, and conclude the lemma
by showing 5|V| = g\V| N {7’0 = to}.

We start with the proof of the DOD-measurability of the configuration on the sets
M(k), j+1>k>0.

Our choice of 741 implies that at least one of the relations Dj11 = V and 7j41 = to—¢
holds. Hence, we have GZ.._,(V) C DOD. Since G is finite volume, this implies the
DOD-measurability of the configuration of the forest fire process on M (j + 1).

In the induction step k — k — 1, suppose that 73 and the configuration on M (k) are
DOD-measurable. Then {Dj_1 U D;_,} C {D; U D} } implies that the configuration
on Dy_1 UDj_, at time 73, is DOD-measurable. If one of the sites of Dj,_, is occupied
at time 7y, then 7,1 = 7, and M (k — 1) equals M (k). We suppose that the entire set
Dj._, is vacant at time 7. Then 75, is the minimum of ¢;_; and the first time after 7,
at which a growth on Dj_, occurs. That is, the time 7,1 is DOD-measurable, and the
entire set D}, is vacant throughout |1y, 741 [. Furthermore, along with dDy_1 C D}_,
this implies that throughout [y, 7,_1[ the configuration on Djy_; does not depend on
the growth and ignition jumps that occur outside the set Di_;. In other words, on the
time-space set Dy_1 X [1x, Tk—1[ the forest fire process n evolves as a forest fire process
on Dj_; conditioned on having configuration (1, y)yep, , at time 7. Therefore, the
configuration on {Dy_1 U D}_} X [, Tk—1[ is DOD-measurable. At time 7;_; either
a site of D} _, gets occupied, or all sites of D), remain vacant. In case of the former,
the configuration on Dj_; remains unchanged at time 75_1, since growth and ignition
jumps occur at distinct times. In case of the latter, the set D;_, is vacant throughout
the entire time interval [rg,7x—1]. In both cases it follows that the configuration on
{Dx—1UDj_,} % [k, Tk—1] is DOD-measurable. Along with the induction hypothesis,
we obtain the DOD-measurability of the configuration on M(k — 1).

We go on by showing that the events & N {m =tp}, 0 < k < j + 1, are measurable
with respect to DOD.
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From the last step, the time 79 and the configuration of the forest fire process on
M(0) are DOD-measurable. Thus, restricted to {79 = o} the configuration of the forest
fire process on {Dy U D{} x [0,6(0)] is DOD-measurable. In particular, this shows the
DOD-measurability of the event & N {1 = to}. We note & N {1 =to} C {5(0) < 1p}.

In the induction step £ — k 4 1 our induction hypothesis is as follows. We suppose
that & N {1y = to} is DOD-measurable, and that & N{ry = to} C {d(k) < 71 }. Further-
more, we suppose that restricted to & N {79 = to} the time §(k) and the configuration
of the forest fire process on {Dj U D;.} x [0, (k)] are DOD-measurable.

Suppose the occurrence of & N {1 = to}. Then D) = D, from Lemma |11 (On the
shape of the domain of dependence) the set Dj is vacant at time §(k), and the time
d(k + 1) is the smallest time s € [tg — €, d(k)] such that all sites of the set Dj, are vacant
throughout the time interval [s,d(k)]. Therefore, the induction hypothesis implies the
DOD-measurability of 6(k + 1). Moreover, the occurrence of & N {ry = to} implies
d(k) < 7k, and the set Dj is vacant throughout [m411, 7x[. It follows that the set Dj is
vacant throughout [1p41 A 6(k),0(k)]. Along with tg — € < 741 < tg+1, we conclude
k1 N{mo = to} C {d(k+1) < 741 < tg41}. In the previous step we showed that
the configuration of the forest fire process on M(0), and therefore the configuration on
{Dry1U Dy 1} x [0, 741] is DOD-measurable. The time 6(k + 1) is DOD-measurable,
and satisfies §(k + 1) < 7541. It follows that the configuration of the forest fire process
on {Dyy1U Dy 1} % [0,0x41] is DOD-measurable. In particular, this shows the DOD-
measurability of 11 N {7'0 = t()} =&, N {7'0 =to,Dx4+1 = Dk+1}.

We conclude the DOD-measurability of &N {9 = to}. If the event & 11N {10 = to}
occurs, then Dji1 = Djq; and 6(j + 1) < tjy1. Our choice of j implies that at least
one of the relations Dj;y1 = V and t; 41 = tg — € holds. Thus from the definition of the
domain of dependence, it holds D; = D41 and 6(I) = tg —eforall j+1 <1 < |V].
Hence,

Evin{mo=to} =&rin{ro=to} N{Vj+1 <1< |V]:6() <t;, Dy = Di}
= j+1ﬁ{70:t0}ﬂ{Vj+1<l§ |V| :Dl:DjJrl}.

That is, the DOD-measurability of €41 N {19 = to} implies the DOD-measurability of
5|V| N{m =to}.

To conclude &y = &y N {710 = to}, we show &y C {(i) < 7} by induction on
j+12>142>0. If j <|V] the occurrence of &y implies 6(j + 1) < tj41 = 7j41.
Otherwise in case of j = |V|, Lemma [L1| (On the shape of the domain of dependence)
yields §(|V]+1) = to — € = Ty |41-

In the induction step i + 1 — i suppose &y C {0(i + 1) < 7q1}. If 6(7) < 7iga,
then 7,11 < 7; provides (i) < 7;. Assume 7,11 < (i) and the occurrence of &v|- Then
§(i) < t;, the set D} is vacant throughout [0(:i + 1),d(7)], and our induction hypothesis
implies (i + 1) < 741 < 0(7). Thus, the set D/ is vacant throughout [7;41,6(¢)]. The
time 7; is the last time s € [7;41, ;] such that all sites of D} are vacant during [r41, s|.
We conclude (i) < 7;, where we use 0(i) < t;.

The induction yields &y = &y N{§(0) < 7o}. Along with to = §(0) and 7(0) < to,
we obtain &y = &y N {0 = to}. This concludes the proof of the lemma, since we
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showed the DOD-measurability of &y N {79 = to}. O

To prove Proposition [f] we estimate the probability that some growth and ignition
events occur within time tg — € and to. Intuitively spoken, to handle the fact that we
are conditioning on the configuration on Dy U D}, at time ¢y, we use the domain of
dependence as follows. From Lemma (12| (The domain of dependence is self-determined)
the occurrence of {ny,p, = 1,74, p; = 0} is measurable with respect to the growth and
ignition jumps that occur within the domain of dependence. Therefore, the occurrence
of {Nty,00 = 1, M4y, D, = 0} is independent from growth and ignition jumps that occur on
a space time set that is distinct from the domain of dependence. The next two lemmata
provide us with tools to show that at after a given time a given site is not part of the
domain of dependence.

Lemma 13 (All time occupied, then not part of DOD). Suppose Mooy, = 0 and let
s € [to—e€,to]. If a site x € V'\ Dy is occupied throughout the entire time interval [s, to],
then x s not part of the domain of dependence after time s:

{nto,D/O = 0,800 = 1} c {mo,Dg =0,0p < 8}

Proof. Suppose ny, py = 0 and let 2 € V \ Dy. Lemma [L1] (On the shape of the domain
of dependence) states that if d(x) > to — €, then the site x is vacant at time d,. We
obtain for all s € [ty — €, to]

{nto,D(’) = 07633 > S} = {77t0,D(’) = 075$ > Sy Nsp,x = 0}
C {771507D(/) =0, 3’ € [S,to] Myt g = O} .
This shows the assertion. O

Lemma 14 (Site not part of DOD, then whole cluster not part of DOD). Let z € V' and
s > tog—e. Suppose Nto,0y, = 0, and that the site x is not part of the domain of dependence
after time s. Then none of the sites of Cs, are part of the domain of dependence after
time s:

{Uto,D{) =0,0, < S} C {Uto,Dg =0,Vye Csp:dy < 5} (2.21)

Furthermore, for all z € 0Cs , there does not grow a tree at the site z in between time s
and 6, V s:

{ Mooy = 0,00 <sh < {mypy =0.%2 €0Css: Goo = Govez ) (222)

Proof. Let s > ty — € and suppose Nto,pp, = 0. For all y € Vit holds 0y < to. That is,
s > tg implies and (2.22). Therefore, we assume s € [ty — €, to|.

Lemma (11} (On the shape of the domain of dependence) states 6(|V| + 1) = tg — €.
Hence, s € [tg — ¢, to] yields the existence of 0 <1 < |V| so that s € [6(i + 1),0()[.
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Let 0 < i <|V]and x € V. In the next step, we show that if s € [§(i + 1),d(¢)[ and
0z < s, then Cs , N{D; UD,} = (. More formally, we show

(o, = 0,5 € [+ 1), 6()[, 6, < s}

c {mo,Dg = 0,5 € [6(i +1),8(i)[, Cs.o N {D; UD;} = (ZJ} : (2.23)

Suppose s € [§(i + 1),6(i)[ and 0, < s. For all y € D; UD} it holds &, > d(i) > s. It
follows = ¢ D; UD,. The entire set D is vacant throughout [0(i + 1), d(¢)[, and therefore
at time s. A cluster does not contain any vacant sites. Along with 9D; C D} and = ¢ D;
it follows Cs , N {D; UD;} = (.

For all y € V, by definition y ¢ D; U D} implies 6, < §(i + 1). It follows

{ho,py = 0,5 € 6(i +1),0()[,y & D; U D} |

= {mo,py = 0, € [0 + 1), (1)1, 8y < 83+ 1)} < {mypy = 0,0, < s

Along with (2.23)) this concludes the proof of ([2.21)).
To show (2.22)), we first show for all y € V that s € [6(i + 1),0(i)[ and y & D; imply

Gs,y = Géy\/s,y:

{ Mooy =0.5 €106 +1), 6@y € Di} € {mypy =0,Goy = Goyvey}  (220)

Let y € V\ D, and suppose s € [0(i+1),6(i)[. Then either y € V\{D; UD;}, or y € D,.

First we suppose y & D; UD,. Then §, < d(i + 1). Hence, s € [0(i + 1), 0(¢)[ implies
oy Vs =sand Gsy = Gs,vsy-

Now we suppose y € D;. Then there exists 0 < j < i so that 6(j) = dy. Let ¢ > 1> j.
Then y € D; UD;, and by definition D; N D] = (). Hence, y € D implies y € D;. The set
Dj is vacant throughout [§(I + 1),4(1)], and hence the site y is. It follows that the site y
is vacant, throughout [§(i + 1),d,]. Thus, s € [6(7 4 1),0(i)[ implies Gy = Gs,vs,y-

By definition dD; C D;. Therefore, Cs, N {D; UD;} = O implies OCs, N D; = 0.
Along with this yields

{1,y = 0,5 € [8(i +1),6()[, Coe 0 {D; UD}} = 0}
c {ntm% = 0,5 € [0(i +1),8()[,0Cs.0 N D; = @}
C {nto,D() =0,Vz € 80371‘ : Gs,z = G(SZVS,Z} .

Combining with (2.23)), we obtain (2.22)). O

Working with the domain of dependence. We now show how to use the domain of
dependence to estimate the probabilities of some key events, uniformly in the condition

{nto,Do = 1777t0,D’ = 0}'
0
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We cousider the following situation first. Suppose that the site x € V is occupied
throughout [to—e, to]. Then the cluster at x must not get hit by ignition during [to—e¢, to].
The configuration of the (finite volume) forest fire process up to time ty—e is independent
of the increments of the growth and ignition processes after time tg — e. We obtain for
CeC,

P (n[tofe,to},x = 17 Ct()—e,x - C) < P (V?J €C: ]to—s,y - It(),yv Cto—f,:c - C)
= P(l.g=0) P(Ciyc =C).
The next lemma states that the same relation holds, even if we condition on the occur-
rence of {n, p, = L,y = 0}.

Lemma 15 (All time occupied, then no ignition). Let € V' \ Dy and C € C,,. Then

P (n[to—e,to},m =1, Ctofe,:r = C, Tito, Dy = 1vnt0,D6 = 0>

<P (Ie,O = 0)‘C| P (Cto—e,z = 07 Tlto, Dy = 17nt0,D6 = 0) .

Proof. Suppose that Nto,0) = 0, that the site x € V' \ Dg is occupied during the time
interval [to — €,o], and that Cyy—c, = C for some C € C . Then from Lemma [13[ (All
time occupied, then not part of DOD) the site x is not part of the domain of dependence
after time ty—e. Therefore, Lemma (Site not part of DOD, then whole cluster not part
of DOD) yields that the whole cluster at z is not part of the domain of dependence after
time o — €. It follows that the sets C' and D)y U D"V‘ are disjoint. Furthermore, if the

site z is occupied throughout [tg — €, to], there must not occur an ignition on Ct_¢ » = C
within [ty — €, tg]. Formally, we obtain

P (n[to—s,to],x = 130)
<P (v;g € C: Liy—ey = Iyy, C N (D UD)y)) = @,c) ,

where C := {Cy—co = C,Miy,0, = 1,M4,,py, = 0}. Conditioning on the shape of the
domain of dependence yields

P (Vy € C: Liy—ey = Iy, C 1 (D UDYy)) = @,c)

= Y PWeC: Iy cy=1Iy,V1<i<|V|:D;=D;C),
(Di)1<i<|v|ES

where

S = {(D¢)1<z’<IVI

Vi<i<|V]:Di-y CD;CV, }
Cm(D|V|uD|’V|) =0 ’

For (Dj)i<i<|v| € S, from Lemma (12| (The domain of dependence is self-determined)

CV1<i<|V]:D;=Di} o (gzto_e(V) UGTi,(Dyy U D"V|)) .
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Hence, the disjointness of Dy U D|’V| and C implies

P(Vy€C:lLy_cy=1I,, V1 <i<|V|:D; = D;,C)
<P(lo=0)°.PNVI<i<|V|:D;=D;C),

where we use {Vy € C : Iyy—ey = Ity y} € ZINCR4y—(C). Summing up again we obtain
Y P(e=0PW1<i<|V]:Di=D;0)

(Di)i<i<|v|ES

<P(Io=0)-P(C).
]

Let 7 > tg — € be a finite GZ.(V)-stopping time. It follows easily (see e.g. [10]) that
the increments of the growth and ignition processes after time 7 are independent of the
configuration of the (finite volume) forest fire process 7 until time 7. Furthermore, these
increments are distributed as after time 0. This implies for x € V., C € C, and C' C 0C

P (GBL.(C",C),Cyrp = C) = P (GBIo(C’,C)) - P(Crp = C)
|

o) L =0)

In the next lemma we extend this observation to the case where we condition on the
occurrence of {ny,p, = 1,7, p; = 0} additionally.

Lemma 16 (Estimate GBI). Let z € V, C € C,, C' C 9C and

EeqGZ, ::U(A‘VSZO:{TSS}QAGQIS).

Then
P (GBL(C',C), Cra = C,8, <7, B, 1.0, = L1y 3y = 0)
< e P (Cm =C, E, N,y = 1, M. 01 = 0) (2.25)
T+ NC 0D
and

P (GBI (C',C), Cra = C,8, < to = €, B, io,py = 1,70 = 0)
C7]

S m . P (CT,J: = 07 5.15 S tO - €,E17 ntO,DO — 1’77’507D6 — O) . (226)

In the course of the proof of this and the next lemma, we are going to approximate
the times 7 and 6(7), 1 < ¢ < |V], by discrete times. Prior to the proof of Lemma [16| we
introduce the notation we are going to use.
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Let n € Nand for all 1 <i < |V| let
DI
T .—;mln{kENo‘kZT-n}
and
1
5 (i) :== = min {k € No|k > 6(i) - n} .
n

Let 60 (0) = 6(0), ™ (|V| +1) = §(]V| +1). For all y € V the time §, is the last time
the site y is part of the domain of dependence. We approximate theses times, too. For
all y € V let iy € {0,...,|V|+ 1} so that 6, = 0(iy), and write &E,n) = 6 (iy).

To approximate the shape of the domain of dependence, let S,, be the set of those
s = (k,d(1),....d(|V), D1,..., D)) € (1/n)No)V 1 x VIVl such that

(i) k>tg—eand d(1) < to+ 1/n;
(ii) forall 1 <i <|V|, D;—1 C D; and d(i) > d(i + 1) (d(|V|+ 1) :=to — €);
For s = (k,d(1),...,d(|V]), D1,..., D) € Sy we write

DOD(s) ==V x [0,d([V|+1)]u | {D;UD}} x[0,d(i)],
0<i<|V|

where d(0) := tg. For all z € V we choose z5 € {0,...,|V|+ 1} so that d(zs) is the last
time at which the site z is part of the set DOD(s):

2z :=min {0 < i < [V|+1|(z,d(i)) € DOD(s)}

Proof of Lemma([16] Let x, C, C' and E as in the lemma. Suppose Nto,0py = 0, Crp=0C
and 6, < 7. Lemma [14] (Site not part of DOD, then whole cluster not part of DOD)
implies 0, < 7 all y € C, and G-, = G5,y all z € C'. Therefore, we have

P (GBL/(C',C),Cyp = C,8, < 7, E,C)

—_p GBIT(C/,C),\V/Z eC: G‘r,z = G5z\/7',zv
- Cre=CVyecC:,<1,EC ’

(2.27)
where C := {1n,,p, = LM,y = 0}. Let
GBI(r,9.) := {Ez €C'Is> (TVI)VY €C: Grys. 520 Iry = Sy}
and note that
GBL.(C",C)N{Vz € C": G;, = Gs.vr.} C GBI(7,4.).
Hence, transforms into

P (GBL.(C",C),Crp = C, 0, < 7,E,C)
= P (GBI(7,0.),Cr», =C,Vye C: 0, <1,E,C).
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The finitely many growth and ignition processes on C'U C’ are right continuous and
integer valued. Therefore

P (GBI(7,4.),Crp =C,Vye C: 6, <1,E,C)
— lim P (GBI(T(”), 8™), Cra=C¥yeC:d, < E,c) :

n—oo

Let n € N. Suppose that 6, < 7 all y € C. Then the set C'x|r,00[ and the domain
of dependence are disjoint. This motivates the choice of S, ¢ to be the set of those
s = (k,d(1),...,d(|V|), D1,...,Dy|) € Sp so that the sets C'x]k, oo and DOD(s) are
disjoint. We obtain

P (GBI(T(”), 8M), Cra=C ¥y eC 16, <, E,c)
< Y  P(GBI(s),DOD(s), E(s)),

SGSn C

where we write for s = (k,d(1),...,d(|V]), D1,..., Djy)

E(s) := {Cm =C, 7" = k,E} ,
DOD(s) := {c,\ﬂ <i<|V|:8™ @) = d(i),D; = Di} ,

and

GBI(s) := {32 c(C'3s > (kVd(zs))Vy e C: G(k\/d(zs)) SZ, =1 ,y}

Let s € Spo, s = (k,d(1),...,d(|V]), D1,..., D). Lemma (The domain of depen-
dence is self-determined) and E(s) € GZy (V') imply

{E(s),DOD(s)} € a(QIk | 6Zaw(Diu D ))
0<i<|V|
The event GBI(s) is measurable with respect to the o-field
a<z/vcvzk(0) u Y INCR(kvd(ZS))(z)>.
zeC’

The sets C'x]k,oo[ and DOD(s) are disjoint. By our choice of z the same holds for
all z € C' for the sets zx]k V d(zs), 00[ and DOD(s). This implies independence of the
latter two o-fields. In particular, we get

P(GBI(s),DOD(s), E(s)) = P(GBI(s)) - P(DOD(s), E(s))

|
STESYel P(DOD(s), E(s)),
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where we use

P(GBI(s)) < P(GBL(C',C)) = C/EI'MC'

Summing up again we obtain

]
P(GBI(s),DOD(s), E(s)) < —t——u - P(Crp = C, E,C).
D P(GBI(s), DOD(s), E(s) < 1571y - P (Cra = O B.C)
SES,,c
This shows (2.25).

We note that 6, < to— e if and only if z & Dy UD|’V|. Thus, to show (2.26)) we refine
Sp,c so that for all (k,d(1),...,d(|V]), D1,...,Dyy|) € Sp,c we have x € Djy | U D|’V|.
Then summing up yields

Y P(DOD(s),E(s)) < P (cm = C,x ¢ Djy| U D)y, E,c)
SESmc
=P(Crp=0C,6, <ty—¢E,C).
We obtain ([2.26]). O
We now consider the following situation. Suppose 7 < tp and that the site x € V is
vacant within [, ¢g], but occupied at time ¢y. Then there must be the growth of a tree
at the site x € V in between time 7 and ty. From g — e < 7 < ¢g this implies the growth

of a tree in between time 7 and 7 + €. We obtain for F € GZ,

P<T <tp,ds € [T, tO] MNs,x = Ovnto,:v = 17E)
< P(GT,T—FG,:B?E) =P (GG,O > 0) P (E>

For W C V and s > 0 let
GIV = 0(GT, UTINCR(W))

be the o-field generated by the initial configuration and the growth and ignition jumps
that occur within the space time set {V x [0, s]} U{W X [0, 00[}. We write

QIZV::U(A}VSZO:{TSS}OAEQIZV).

Lemma 17 (Vacant then occupied implies growth). Let W C V, z € V\ (DoUW) and
E € GIYV. Then

P (T <to,ds € [Ta tO] s = O¢nt0,x = 17E777t0,D6 = Oanto,DO = 1)

< P(Geo > 0) - P (E gy = 0.0, = 1)



48 Almost sure infinite volume convergence for forest fire processes

Proof. Let W, x and F as in the lemma. Suppose that 7 < tg. In case of §, > 7 we
have §, > ty — ¢, and Lemma, (On the shape of the domain of dependence) implies
n5, = 0. That is, if the site x is vacant within [r,to], then the site = is vacant within
[TV 0z,t0]. Suppose that the site x is vacant within [TV d,,tg], but occupied at time
to. Then there must occur the growth of a tree at x in between time 7V J, and .
From tg — € < 7V §; < tg this implies the growth of a tree in between time 7V J, and
(1 V d;) + €. Formally, we have

P (T S tO? ds € [T7 tO] : 778,33 - 0777t0,$ = 17 E7 nto,D6 = 07 771507D0 = 1)

<P (G7v6m7(T\/6x)+€7z7 E, nto,D(’] = O,Uto,Do = 1) .

The growth process at the site x takes values in Ny and is right continuous. This implies

P (GT\/@,T\/(SQ;—Fe,a:an Nto, 04 = 05 Mtg,Dy = 1)

= jim P (GT(”)V6§Cn>,T(")V5,§cn)+e,w’E’ntOvDé =0, "lto,Do = 1) '

n—oo

Let n € N. For s = (k,d(1),...,d(|V|),D1,...,Dyy|) € Sy let E(s) := {7(") =k, E},
GR(5) = Grvd(z,)kvd(zs)+ea> and DOD(s) be defined as in the proof of Lemma
Then it holds

P (GT(")V(S;TL>,T(")V(53(5n>+e,x’ E7 T,to,D(/) = 07 Mto,Dy = 1)
= Y P(GR(s),DOD(s), E(s)).

SES’I’L

Let s = (k,d(1),...,d(|V]), D1,...,Djy|) € Sn. Lemma (The domain of dependence
is self-determined) along with E(s) € GZ}/ (V) implies

0<i<|V|

The event GR(s) is measurable with respect to the o-field ZNCRyya(a,)(x). The sets
xx]k V d(zs),o00] and DOD(s) are disjoint, and x ¢ W provides the same for the sets
xx|kVd(xs),oo[ and {V x [0, k]} U{W x [0, 00[}. This implies independence of the latter
two o-fields. We obtain

P(GR(s),DOD(s), E(s)) = P(Geo > 0) - P(DOD(s), E(s)).
Summing up again we get

> P(GR(s),DOD(s), E(s))

SES,
= P(GE,O > 0) - P (E777t0,D6 = OvntO,DO = 1) :

This concludes the proof of the lemma. O
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2.6.3 Estimates for the proof of Proposition

In Section we sketched the three cases (Site vacant before), (Site occupied before,
cluster large) and (Site occupied before, cluster small), the proof of Proposition [5| is
based on. In this section we estimate these three cases formally . All lemmata of this
section restrict to the case where the graph G = (V, E) is finite volume. Throughout
this section let € >0, t >¢, B,D CV,x € V\ D and m > 1.

We formalize the distinction between the cases first.

Lemma 18 (Case distinction). It holds
P (|Cte| > m,UyepCiy = D)

- Z P (n[t—&t],x =1, ‘Ct,$| >m, Ci—ee = Co,UyeBCly = D)
C()ecw
+P(3seft—et]:nse=0,[Cral >m,UyepCty = D). (2.28)
Proof. Either the site = is occupied throughout [t — €,t], or not. In case of the former,

the site x is occupied at time ¢ — e. Thus conditioning on the shape of the cluster at z
at time ¢ — € yields the lemma. O

We estimate the summands of the right hand site of (2.28). We start with the
analogon to (Site vacant before).

Lemma 19 (Site vacant before). We have
P(3selt—et]:nse =0,|Cra| > m,UyepCty = D)
<P (Gep>0)- P(UyepCry = D).

Proof. We suppose {UyepCry = D} # 0, since otherwise the assertion is obvious. If the
cluster at x at time ¢ is bigger than m, then the site x is occupied at time ¢t. Along with

(2.20) this shows
P(3se[t—et]:ns. =0,|Cre| >m,UycpCyy = D)
< P (ElS € [t - 67t] Ns,x = Ovnt,x = 1)77t,D’ = Oﬂ?t,D = 1) )

where D’ := 0D U (B \ D). Application of Lemma [17| (Vacant then occupied implies
growth) provides

P (38 € [t - E,t] sz = 077]t,:t = ]-a N, D' = 0, Nt,D = 1)
< P(Gao >0)-P (UyeBCt,y =D),

where we use (2.20]) again. O

Let Cy € C,. Depending on the size of Cj, we proceed as described in (Site occupied
before, cluster large), respectively (Site occupied before, cluster small) to estimate the
probability

P (n[tfgt},x = 17 |Ct,x’ >m, Ct—e,x = COJ UyGBCt,y = D) .
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We formalize (Site occupied before, cluster large) first. For abbreviation we write
C:={Ci—ce = Co,m,p = 1,mpr =0},

where D' := 90D U{D \ B}.
Lemma 20 (Site occupied before, cluster large). [t holds

P (n[t,e’t],x =1,|Ctz| > m, Ci—cp = Co,UyepCry = D)

< P(Io=0)%. P(Ci_c\p = Co,UyepCiy = D).
Proof. As in Lemma , implies that it suffices to show

P (nt—cqa = 1,0) < P(Io = 0)/%1- P(C).

This is the statement of Lemma [15| (All time occupied, then no ignition). O

We are going to use Lemma [20] if the size of Cy is sufficiently large (compared to €).
It remains to consider (Site occupied before, cluster small).

Lemma 21 (Site occupied before, cluster small). Let N € N and suppose ¥/m > |Co|Vd.
Then

P (n[tfe,t],x = 17 ‘Ct,z’ > m, Ct—e,z = C’O? UyEBCt,y - D)

< (CN 4+ D(N,m)) - P(Ci—ep = Co,UyepCly = D).
Here C :=d/(d+ \) bounds the probability that after a given time the cluster at x grows
before it gets hit by ignition. And

3
D(N,m) = (N—1)~ <P(Ge,0 >O)‘d+ >\(1\V;177L1)>

derives as a bound for the probability that during [t — €, t] the cluster at x gets bigger than
m within less than N growth steps.

Proof. Let N € N and suppose ¥/m > |Cy| V d. We show
P (Mj—cqe = 1,Cral >m,C) < (CN + D(N,m)) - P(C). (2.29)

First we distinguish whether the cluster at  grew more than N times in between time
t — e and t, or not. To do so, let 79 := t — € and recursively for all n € N, let 7, be the
first time after 7,1 at which either the cluster at x is hit by ignition, or at which there
occurs the growth of a tree next to it. Formally, we define

Ty, := Iin {S > Tn—lyA(Tn—la S)} )
where

A(Tp—1,8) = {Ely €0Cr,  a: Grn,l,s,y} U {Ely €eCr, _12: ITn*l,&y} .
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Here with slight abuse of notation we write 0C;, | » = x if 0, , , = 0. That is, if the
site x is vacant at time 7,_1, then the time 7,, is the first time after 7,,_1 at which there
occurs the growth of a tree at the site x. We distinguish whether 7v < ¢, and obtain

P (n[tfe,t},x =1, |Ct,a:’ > m,C)
<P (TN < tvn[t—f,t],x = 176) + P (TN > t?”[t—e,t],x =1, ‘Ct,x| > m,C) .

Hence, (2.29) follows if we show
P (v <t ng—cye =1,C) <CV-P(C) (2.30)
and

P (18 > t,M—eq)0 = 1, |Crel > m,C) < D(N,m)- P (C). (2.31)

We first prove (2.30)), and then (2.31)).

Proof of . To prove we proceed as follows. Suppose 7y < ¢, and that the site
x is occupied throughout [t —€,t]. Then the site = is occupied at time 7, all 1 <n < N.
We show that this implies the following for all 1 < n < N: after time 7,_1 the cluster
at = grows before it gets hit by ignition, that is, the event GBI, ,(0C, | +,Cr, | 2)
holds. Then we use Lemma |16 (Estimate GBI) to estimate the probability of the latter
event.

Suppose 7 pr = 0, and that the site = is occupied throughout [t — €,t]. Lemma
(All time occupied, then not part of DOD) implies 0, <t — ¢, where we use z € V' \ D.
If 7nv < tand nyg_cy, =1, then for all 0 <7 < N the site x is occupied at time 7;. We
conclude

P(tnv <t,Mpey)o =1,C) <P (0, <t—€eV0<i<N:np.=1,C). (2.32)

Let 0 < n < N and suppose that the site x is occupied at time 7,_; and at time 7,.
Then there is the growth of a tree on 0C, |, at time 7,: otherwise the cluster at z
would be hit by ignition at time 7,,, and hence the site x would be vacant. That is,
after time 7,1 there occurs the growth of a tree on 9C-,, , ;, before C;, | , gets hit by
ignition. Formally, we have

P, <t—eV0<i<n:n,,=1C)
=P (GBL,,_,(0C:,_,4,Cry 1 2), 0z <t—€Y0<i<n—1:n,,=10C).

n

We condition on the shape of the cluster at x and time 7,,_1, apply Lemma (Estimate
GBI), and obtain

P (GBITn_l((")CTn_LI, Cry12):0a <t—eVO<i<n—1:n,,= l,C)

‘aCn’ C’T_ x:Cn 5x§t—€
< _— n—1, ) s '
CEE:C 10C,| + X|Cy P VO<i<n—1:n,,=1C
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For all C), € Cy, we have |0C,| < d - |Cy|, and therefore

0C, |+ NCul — ~ |0Cu ]+ ACul =~ d+A d+ X
It follows

P, <t—e¥0<i<n:ing,=1,C)
d

< -

—d+ A

Using this to successively estimate the right hand site of (2.32) provides (2.30).

Proof of (2.31)). The intuition underlying the proof of (2.31)) is the following. Suppose
that the cluster at x is large (larger than some m € N) at time ¢, but comparatively

small (smaller than ¥/m) at time ¢ —e. Furthermore suppose that the cluster at x grows
less than N times within ¢t — € and ¢. Then at least at one of the at most N — 1 growth
steps the cluster at = must grow a comparatively large amount of sites. We are going to
show that this event has small probability.

In the first step we distinguish at which growth step the cluster at z grows an amount
of sites that is comparatively large enough. Suppose C;_., = Cp and |Cy | > m. Then
our choice of Cy provides |Cy, | < ¥/m. Hence, the cluster at z must grow at least one
time in between time 7y and ¢, that is, we have 7 < ¢. We distinct on the occurrence of
1Cr 2] < ( ¥/m)?, and obtain

“P(0y<t—eV0<i<n—1:n,,=1C).

P (TN > Mt—etle = L, |Ctal > m,C)
2
<P (‘CTOJC‘ < Wa ’CTLJC‘ > (W) 1 S T, Mt—et],x = 17C>

2
+ P <‘C.,-17x| < (W) ,’Ct,a:| >m, T <t< TN Mt—et]x = 1,C> .

We apply the same argument to the cluster at x at time 71, and obtain for the second
summand

P (’Cﬁ@’ < ( W)2 , ‘Ct@’ >m,m <t< TN Mt—et],x = 1,C)
<P (’Cﬁ,x‘ < ( W)Q ) |C7'2,ac > ( W)g T2 ST Mt—e,t],x = 17C)
(

3
+P (‘CTQ,H < %) ) ’Ct,r| >m,m <t< TN Mt—et],x = 17C> .

Going on iteratively it follows
P (TN > tﬂ?[t—e,t]@ = 1, ’Ct,m‘ > m,C)
N-1 n+1
< Z P < Crel < ( W)nv‘cm,m‘ > (¥/m) ) ) )
n=1

Tn < tan[t—e,t},z =1,C

Here, to see that the iteration ends after N — 1 steps, we use that 7ny_1 <t < 7n and
|Ciz| > m imply |Cry_, 2| > m.
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If at some growth step the cluster at  grows a comparatively large amount of sites,
then at this growth step the cluster at = must get connected to a comparatively large
cluster. We now estimate the minimal size for such a cluster to be comparatively large
enough. Let 1 <n < N — 1, and suppose |Cy, .| < (¥/m)" and |Cy, | > (N/m)" .
Then there occurs the growth of a tree on 9C, | , at time 7,,. Furthermore, 7,, <t and
Mit—e,t],e = 1 imply 07, » =1, and hence C7, _, » = C), for some C, € Cy. It follows

<‘C7'n Ll = ( W)n ) ‘CTn,I| > ( W)n—H T < t>”][t—e,t],x = 176)

< Z Z < Tn—1, — Cnv |C7'n,x| > ( 1{/?):;2’ ) )

C,eC yeac Tn71a7n7y7 Tn S t? T][t—ﬁt},df
n x
Cul<( V)"

Let C,, € C, such that |C,| < (¥/m)", let y € OC,, and suppose that

1
{CTn—1,$ = Lny |C‘Fn7$| > (W)n+ ?GTn—lmiyaTn < tan[t—e,t],x = 1,C}

occurs. Then throughout [7,—1, 7,[ the cluster at = equals C),, and at time 7, the cluster
at x grows at the site y. Growth and ignition jumps occur at distinct times. Hence, no
site gets vacant at time 7,, and the site y is the only site that gets occupied at time 7.
It follows that at time 7, the cluster at x is the union of C),, the site y and the clusters
that contained a neighbour of y:
Crie=CnUfy}u (J C-. (2.33)
2€0y\Cr,

Along with |C,,| < (¥/m)" this yields

Croal < (¥V/m)"+1+(d—1)- max |C o

2€0y\Ch,
Hence, |C;, 2| > ( V/m)™ ™! implies the existence of z € dy \ Cy, so that
1 1
o (Vm)"" - (Ym)" =1 (Ym)" - (Vm)"
Tn ,2! — d —1 - d . )

where the second inequality is due to ¥/m > d.

That is, there exists z € 9y \ C, so that |C,- .| = M. To be able to use Lemmata
(Vacant then occupied implies growth) and |16} . Estlmate GBI) later on, we show z € D.

Let z € 9y \ C,, and suppose |CTn ’Z] > M. From (2.33) we have z € C, . Hence,
Nirp,t],e = L implies 9 4 . = 1. Lemma [13] (All time occupied, then not part of DOD)
and z € V'\ D imply 6, < 7,,. Along with Lemma [14] (Site not part of DOD, then whole
cluster not part of DOD) it follows d, < 7,,. In case of 7, < t, this implies ¢, < t and
therefore z ¢ D. Otherwise in case of 7, = ¢, the relations np; = 0, 9D C D’ and
x € V\ D imply C;, N D = (), and in particular z ¢ D.
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Altogether, we obtain
1
P (CT"”’HC = Cn, |Cr,y 0] > ( W)n+ s Grt gy T S8 Mt—e,t],x = 170)

< Z P ( GCT"—lvm = CZ?lCT{,Z’ > ]\417 ; > ‘
Tn—1,T; ,7— ~ U, = ,
2€0y\{C,UD} n—1,Tn,Ys ‘N Nl t],2

Let z € 9y \ {C, U D} and
0, :=min{s > Tn_1‘|Cs,z\ >M} AT,

be the minimum of 7, and the first time s > 7,1 at which the cluster at z is bigger
than or equal to M. FKither the site z is occupied throughout the entire time interval
[Th—1,Tn], or not. Furthermore, |Cr; .| > M implies o, < 7,. It follows

P (CT"_l’J: = M |C‘r§,z‘ > M,Gr 7y Tn < tvm‘rn,t},z = 17C)
< Py(n,Ch,y,2) + Pi(n,Cp,y, 2),

where

PO(TI Cn Yy Z) =P ( Canflyz - Cn?GTnfl,Tnay7Tn_1 S t’ )

ds € [Tn—lat] MNs,z = Oant,z = 17C
and

Pl(n7Cn7y7Z) =P (CT

n

_1,T = Ch,0. <7, <, GTn,th,y?n[az,t},z = 1)6) .
Altogether, we obtain

P (TN > t777[t—e,t],x =1, ‘Ct@’ > m7C)

< Z Z Z Z (PO(an,y, z) + Pi(n, Cn,y,z)>.

That is, to prove (2.31) it suffices to show for all 1 <n < N —1

> > > Ry(n,Cnyy,z) <d-P(Gey > 0)- P(C) (2.34)

Cn€Cy  y€dCh 1cay\{CrUD}
|Cn | < ( X/m)

and

3

<
Cn€Cy y€ICh zeiy\{CrUD} (v :
|Cn | < ( N/m)
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The proof of is based on Lemma [17] (Vacant then occupied implies growth), and
to prove we are going to use (Estimate GBI).

We start we the proof of . Let 1 < n < N —1and C,, € C, such that
|Cn| < (¥/m)". Let y € OC,, z € Oy \ {Cy, U D} and suppose Cy,, , » = Cp. Then 7, is
the first time after 7,_1 at which either there occurs a growth on 0C),, or there occurs
an ignition on C),. Therefore, we have

{Cf;—n717x = C’m G’Tnflﬂ'nay}

. Crn_l,:c =Cp, 35> 11 GTn_1,s,y7
|\ VwedC, \{y}:Gr =G, VWWEC,: I, w=1Isw |~

That Is, {C'ro,a: = Cy, Crnfl,a: = Cm GTn,hm,y} € QI%"_
then occupied implies growth) implies

Hence, Lemma (Vacant

1°

Py(n,Ch,y,2) < P(Geo >0) - P (CT

n

—1,x — Ch, GTn_l,Tn7y7C) . (236)

For w € 9C,, if {Crn,l,z = Cn,GTn,l,Tn,w} occurs, then the growth process at the
site w jumps at time 7,. Growth jumps occur at distinct times. It follows that the events
{Cr 1o =Cn,Gr_ | rpw}, wE OCy, are disjoint. We obtain

S Y S PG >0)-P(Crio = Cu Gy €)

CreCy N y€eICy, z€0yY
|Cal <( N/m)

<d-P(Geo>0)-P(C).

This shows (2.34). For the proof of (2.35)) suppose that
{C'rnfl,x = Cn702 < Tn S t) GTnflyTnﬁl/?n[Uz,t],Z — 176}

occurs. Then the growth process at the site y jumps at time 7,. It follows Gg, 7, -
Furthermore, 7, . = 1 implies that the cluster at the site z does not get hit by
ignition within [0, 7,]. That is, I, = Ir, 4 for all u € C,, .. Hence, GBI,_(y,Cy, .)
occurs. Since the site z € V' \ D is occupied throughout [o,t], Lemma (13| (All time
occupied, then not part of DOD) implies ¢, < o,. Formally, we have

Pi(n,Cp,y,z) < P (CT

n

—1,x — Cna GBIOZ(Z/, CU'Z,Z)7($Z <o, < Tn7c) .

The relation o, < 7, implies |Cy, .| > M. From y € 9C,, and o, < 7, the site y is
vacant at time o,. Along with z € Jy it follows y € 0C,, .. From Lemma (16| (Estimate
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GBI) we obtain

P (C’rnfhsr = CnyGBIo-z (y,CUZ’Z%(SZ <o, < 7—n7c)
S Z P (CTn—l,a: - Cn7CUZ,Z = C, GBIO'Z (y, 0)7(52 S O-Z7C)
ceC,
yedC,|C|>M
1
ceC,
|C|>M
1

<sqp P (Criie =)

Summing up we get

2 Nmn
> > Z@'P(le,x=0m6)<d(k‘]\/;).P(c),

CreCy " yedCy z€yY
|Cn|<( N/m)

where we use |0C,| < d-|Cy]| all C,, € C,. Inserting the definition of M provides

& (Ym)" _ d (Y/m)" _ &
ME o ((ymytt = ymyt) - A=)
This shows (2.35)). O

2.6.4 Proof of Proposition
In this section we use Lemmata [I§]- 2] to show Proposition [5

Proof of Proposition[5 Let v > 0 and suppose that the graph G = (V, E) is finite
volume. Let § > 0. We write N := Ny 4(6), € := €yxa(0), mo := My q4(6) and
m :=ma,xq(6) with the notation from Definition [10}

Lett >, BCV,DCV and € V \ D. Lemma [1§] (Case distinction) implies

P (|Ct x| > m,UyepCty = D)

= Z P (n[tfe,t],:p = 17 ’Ct,ar| >m, Ct—s,a: = CO: UyEBCt,y = D)
CoGCz
+P(3set—et] 05z =0,Cz| >m,UyepCry = D).

We use Lemmata [19] - 21] to estimate the right hand site of this equation. Lemma
(Site vacant before) provides

P(3selt—et]:nse =0,|Cra| > m,UyepCty = D)

o
§ é . P(UyGBCt,y == D) .
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Let Cy € Cy. In case of |Cy| > mp we have
P(I = 0)\% < P(Ig = 0)™ = ()" <
and along with Lemma [20| (Site occupied before, cluster large) it follows
P (n[t,e’t],m =1,|Co| >m,Ci—cp = Co,UyepCry = D)

76
< 3 P (Cico = Co,UyenCry = D).

Suppose that |Cy| < mg. Then {/m > |Cy| V d. Thus Lemma [21| (Site occupied before,
cluster small) provides

P (n[t—e,t],x =1, |Ct,x| >m, the,x = 007 UyEBCt,y = D)
< (CN + D(N, m)) -P (Ct—e,a: = CO? UyGBCtJ/ = D) ’

where C' :=d/(d+ \) and

3
D(N,m) := (N — 1) (P(GE,O >0)-d+ A(f%/d’m—1)> .

Note that N, € and m are chosen such that OV < §/2,

P(Go>0)=1—e°< &Z(]\f_l)
and
d? 26
(V=1 < SN -T)
It follows
R R e

Altogether, we get

Z P (U[t—e,t},z =1L|Ca|l >m,Cico = Co,UyepCiy = D)
CoeCy

70
S g . P (UyeBCt’y - D) .

This shows

P (|Ct,:c‘ >m, UyEBCt,y = D) <4§-P (UyGBOt,y = D) .
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2.6.5 Proof of Proposition
Finally, we show Proposition

Proof of Proposition[3 Let v > 0, § > 0 and m := m, q(). Let ¢ > ~ and suppose
almost sure infinite volume convergence at time ¢:

lim P(supln, —ni0] >0)=0 allyeV. (2.37)
n—oo I>n ’
Let B, D C V finite, and x € V' \ D. The occurrence of the event

{|Cta| > m,UyepCiy = D}

is determined by the status of the forest fire process i on the finite set By, (z)UBUD at
time ¢. Therefore, the almost sure infinite volume convergence at time ¢, (2.37)), implies

P (|Cyel > m,UyenCry = D) = Tim P (17| > m,UyepCly) = D)
<9- lim P (UyeBCt(,Z) = D) =0 P(UyepCiy = D),
where we use that the finite volume forest fire processes (ngz))tzo’ye B,, n > 1, have

CCSB(t, 8, m) (Proposition [5).
This shows P(|Cyz| > mqyra(0')) < 6 all & > 0. It follows P (|Ctp| =00) =0. O



Chapter 3

Scaling limit for the Abelian
sandpile height one field

In this chapter we study the scaling limit for the height one field of the two-dimensional
Abelian sandpile model. We identify the scaling limit for the covariance of having height
one at two macroscopically distant sites, and show that it is conformally covariant.
Furthermore, we show a central limit theorem for the sandpile height one field. The
results are based on a representation of the height one joint intensities that is close to
a block-determinantal structure. In Section B.Il we start with an introduction to the
model, and review some of its basic properties. Thereafter, in Section we state our
main results, and prove them in Sections [3.3] -

3.1 The Abelian sandpile model

This section introduces the Abelian sandpile model, based on the works [14] and [27].

3.1.1 The model

Let A be a finite subset of Z2. The sandpile model on A is defined with respect to a
toppling matrix.

Definition 22 (Toppling matrices). A matrix A € ZM4 is a toppling matrix on A, if
it satisfies the following conditions:

(i) for all v,w € A, v # w, A(v,w) = A(w,v) < 0;
(ii) for all v € A, A(v,v) > 1;
(iii) for allv € A, > cp Av,w) > 0;

(iv) for all v; € A there exists n € N := {1,2,...}, and v; € A, 2 < i < n, such that
Y ower A(vn, w) > 0 and A(v;—1,v;) < 0forall 1 <i < n.

99
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The forth condition in the definition of a toppling matrix is fundamental to have a
well defined toppling rule later on.

Let A be a toppling matrix on A. In a sandpile model on A every site v € A has a
height n, € N.

Definition 23 (Stable configurations). Let (1,)uen € N* be a height configuration. A
site v € A is called stable with respect to the toppling matrix A, if n, < A(v,v). We
write QA = [[,call,...,A(v,v)} to denote the set of height configurations that are
stable with respect to A. A site that is not stable is called unstable.

The dynamics of the sandpile model corresponding to the toppling matrix A is as
follows. Let (ny)ven € Qa be a stable height configuration. We choose a site v € A
and increase the height at v by one. If the site v became unstable, that is, in case of
ny +1 > A(v,v) we topple v according to A. For all w € A we decrease the height
at w by A(v,w). It might be that from toppling the site v, one or more sites w # v
became unstable. Then we continue by toppling all unstable sites until we obtain a stable
configuration. For a formal statement, we introduce the addition operator a, a.

Definition 24 (The addition operator). Let {v1,..., vy} be an enumeration of the set
V. We define the toppling transformation Tx : N* — Qa by

|4

N
7= i (T[70)) (o) (3.1)
i=1

N—oo

Here for all = (4 )wer € N*, for all w € A

Nw — A(v,w) if n(v) > A(v,v);

N otherwise.

(To(m)y = {

For all v € A we define the addition operator a, a : Qa +— Qa by

ay,A (1) = Ta(n"),
where (17°)w 1= Nw + L{y—w}, W € A
The addition operator is well defined (see e.g. [27]):
Remark 6. As a consequence of the forth condition in Definition 22} the limit in (3.1)
exists. And for all n € Qa the configuration a, A(n) is independent of the chosen
enumeration of V. This is the famous ‘Abelian’ property.

The Abelian sandpile model is defined as a Markov chain.

Definition 25 (The Abelian sandpile model). The Abelian sandpile model correspond-
ing to the toppling matrix A is a discrete time Markov chain {¢, : n > 0} on Qa with
the following transition operator: given a configuration in Qa, we pick a site v € A
according to the uniform distribution on A, and apply the addition operator a, A to the
configuration. We write Pa , to denote the Markov measure of the chain starting from
n € Qa.
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Definition 26 (Recurrent configurations). We call a configuration n € Qa recurrent
with respect to A, if

Pa (Cn = 7 for infinitely many n) =1.
We write Ra := {n € Qa|n is recurrent} for the set of recurrent configurations.
We recall two results discovered by D. Dhar and S.N. Majumdar in [§] and [24] (see

[27] for an alternative proof).

Remark 7. The number of recurrent configurations satisfies
|Ra| = det(A).

There exists a unique measure ua that is invariant with respect to the Abelian sandpile
model corresponding to A. It is the uniform measure on the set of recurrent configura-
tions RAa.

This work focuses on the Abelian sandpile height one field.

Definition 27 (The height one indicator function). For allv € Alet ha(v) : Qa +— {0,1}
denote the indicator function of having height one at the site v.

In our notation of the height one indicator function we use the index A to denote
the measure we take expectations with respect to: E[hA(v)] means the expectation of
ha(v) with respect to the measure pa.

Our main results concern the sandpile model corresponding to the discrete Laplacian
with open boundary conditions.

Definition 28 (The discrete Laplacian Ay ). For all v,w € A let

4 if v =uw;
Ap(v,w) =< =1 if jv —w| = 1;
0 otherwise.

We note that A is a toppling matrix on A, and write Q, Ra, pa and hp(-) to
denote Qa,, Ra,, pa, and ha, ().

3.1.2 The thermodynamic limit

Let A, := [-n,n]?2NZ2. In [1] S.R. Athreya and A.A. Jarai show that as n — oo the mea-
sures up, weakly converge to a translation invariant measure pg on Qg := {1,2, 3, 4}22.

Lemma 22 ([14], Theorem 4.1). The limit po = limy, o0 pa,, exists in the sense of weak
convergence. [y s translation invariant.

For all v € Z? let ho(v) : Qo +— {0, 1} denote the indicator function of having height
one at the site v.
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3.2 Statement of the main results

From now on throughout the remainder let U C C = R? be a bounded connected domain
with smooth boundary. We write C2°(U) to denote the set of smooth functions f : U — R
with support compactly contained in U. For all € > 0 let U, := U/e N Z2. For every
u € U let €, > 0 so that for all € €]0,¢,] there exists u. € Ue such that |u/e — ue| < 2.
Our first result concerns the scaling limit for the covariance of having height one at two
macroscopically distant points.

3.2.1 Conformal scaling for the height one joint moments

Let v,w be two distinct points in the interior of U, and Cov (hy, (ve), hu, (we)) be the
covariance of having height one at the sites v. and w, in a sandpile model on U.. Then
rescaled by e~ this covariance converges to a finite limit which is conformally covariant
with scale dimension 2. More formally, we have for the height one joint moments of a
finite set of points in the interior of U:

Theorem 4 (Conformal scaling for the height one joint moments). Let V- C U be a set
of finitely many points in the interior of U. Then as € — 0 the rescaled joint moment

E—QIVIE[ TT (k. (v0) — Elhw, (v))
veV

tends to a finite limit Ey (v : v € V) which is conformally covariant with scale dimension
2.

By conformal covariance with scale dimension 2 we mean that for any conformal
isomorphism f : U — U’

Ey (v:veV)=Ey (f):veV)- [T ()P
veV

To obtain Theorem [4] we derive an explicit representation for Ey (v : v € V). The formula

is given in Section [3.2.3]
Our next result concerns the scaling limit for the height one field itself.
3.2.2 Scaling limit for the height one field

In the scaling limit the Abelian sandpile height one field converges to Gaussian white
noise in the following sense.

Theorem 5 (Scaling limit for the height one field). Let n > 1 and for all 1 <1i < n let
fi € CX(U). Then as € — 0 the random variables

fiohu, = —= 3 filer) - (ho(v) = Elhor (0)]), 1< i<n

’UGUE
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converge in distribution to jointly normal random variables with mean zero and covari-
ance matrix

Here V denotes

and satisfies 0 <V =Y 5 Cov(ho(0), ho(v)) < oc.

Note that we use two different scalings in Theorem [ and Theorem [5] This has the
following reason. In a sandpile model the covariance of having height one at two points
with distance r decays as r—%. That is, for two distinct points v,w in the interior of
U, as e tends to zero Cov (hy, (ve), hu, (we)) decays as (e/|v — w|)*. Hence, in Theorem
we have to rescale the covariance by e 4. Conversely, the variance of f; ¢ hy, is
a sum including all the covariance terms Cov (hy, (ue), hu,(zc)) where ue, ze € U are
microscopically close to each other. These covariance terms are O(1). Thus, to obtain a
finite variance in Theorem |5 we have to rescale the covariance by e 2. As a consequence,
the limit in Theorem [5] ignores the way the fluctuations of the height one variables are

spatially coupled.

3.2.3 Scaling limit for the height one joint cumulants

We now give the representation for Ey (v : v € V). The explicit formula is given in terms
of the scaling limits for the height one joint cumulants.

Definition 29 (Cumulants). Let X be a random variable with all moments finite. We
define the cumulants k,(X), n € N, to be the Taylor coefficients of the logarithm of the
characteristic function:

(it)"
!

log Efexp(itX)] = Z Fn(X) -
n=1

Given a finite family (X,)yey of random variables with all moments finite, we write
k(Xy : v € V) to denote the joint cumulant of (X,),ey. That is,

E[HXU [[+&X:veB), (3.2)

veV } IE€l(V) Bell

where

(V) = {{Al,--- A}

neNVI<i£j<n:0#A CV,
AiNA; =0,U A=V

denotes the set of partitions of V.
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Remark 8. Let (X,)yey as in Definition We note that uniquely defines the
joint cumulants: suppose |V| = 1, that is, V' = {v} for some v. Then implies
k(Xy) = E[X,]. In case of |V| =2, V = {v,w}, then x(X,) = E[X,], c«(Xy) = E[Xy]
and imply

K(Xy, Xo) = E[X, - X,] — E[X,] - E[X,].

Proceeding by an induction based on (3.2)), we obtain the assertion.

Remark 9. Let X be a random variable with all moments finite, and write X; := X for
all # € N. Faa die Bruno’s Formula provides the following relation between cumulants
and moments (see e.g. [20]):

Ex"= Y  [[as&x), neN

Hell({1,...,n}) BEI
Hence, using an induction on n € N it follows x(X; : 1 <i < n) = k,(X). Finally, we
note that joint cumulants are multilinear.

To express the scaling limit for the height one joint cumulants, we use the continuous
Green’s function. We write 0, and 9, to denote the derivative in direction of the real,

respectively imaginary axis. For a function f : U* — R let aéi) f denote the 9,-derivative

)

of f as a function of the ith variable, provided it exists. Similarly we define 879 and

write A := (83(31))2 + (8§1>)2 to denote the continuous Laplacian in C.

Definition 30 (The continuous Green’s function). Let g7 denote the continuous Green’s
function on U. That is, gy is the real valued function satisfying —Agy (-, w) = 0, on
U x U in the sense of distributions, and which is zero when v is on the boundary of U.

To state the explicit formula for Eyy (v: v € V), we need one more definition.
Definition 31 (Cycles). Let V be a finite set. We write
S(V):={¢:V — V|¢ bijective}
to denote the set permutations of V', and
Seya(V) :={c € S(V)|VD # P CV : o(P) # P}
for the full cycles of V. Here o(P) := Upep{co(p)} is the image of P under o.

Theorem 6 (Scaling limit for the height one joint cumulants). Let V' as in Theorem
and suppose |V| > 2. Then as € — 0 the rescaled joint cumulant 6_2|V|I€(hU€(UE) v eV)
converges to

ky(v:veV):= eld Z Z H a;ii)a](ﬁ)@QU (v,0(v)).

UEScycl(V) (k“)veve{%y}v veV

Here C = (2/7) — (4/7?) = m - E [ho(0)].
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Remark 10. Let V as in Theorem [4 and write xy(v) := 0 for v € V. Then Theorem [§]
along with (3.2) yields

Bulo:v € V) = ling V1| TT (ho. (o) = Blhu (00)

e—0
veV
= Z HnU(v:veB).
TIeIl(V) Bell

The further organization of this chapter is as follows. Our results are based on an
expression for the height one joint cumulants in terms of differences of discrete Green’s
functions. In Section (The height one field in finite volume) we use a correspondence
of sandpile models and spanning trees, and the matrix tree theorem to derive this expres-
sion. Thereafter, we use the theory of harmonic functions to study the asymptotics of the
Green’s function differences in Section (Green’s function asymptotics). We combine
results of Sections[3.3]and [3.4] to conclude Theorems [ and []in Section (Scaling limit
for the height one joint cumulants). Independently of the proof of Theorems 4| and @,
using the method of moments and results of Sections and we prove Theorem [5|in
Section (Scaling limit for the sandpile height one field).

[ Theorem A j

i

[SCaling limit, for the sandpile
height one field

(Theorems 4 and 6 ]

}

(Scaling limit for the height one

joint cumulants

\Lemma RY:Y Propositions & - &

A A g | Lemmata 36, - 38
s ; : : ? N
Green’s function asymptotics
\Lemmata 28 - 34 )
__("The height one field in finite volume )
\Lemmata 23 - 27 )

Figure 3.1: Proof of Theorems [ - [6]

3.3 The height one field in finite volume

In this section we study the height one field for finite A C Z2. In the first part of this
section we are going to recall a characterization of recurrent configurations. Thereafter,
we use the burning test to calculate height one probabilities for the sandpile model
corresponding to the discrete Laplacian Ap. Finally, in the last part of this section we
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combinatory decompose the height one probabilities to derive expressions for the height
one joint cumulants.

We write A := A U OA, where
ON :={veZ’\APw e A:|v—w| =1}

denotes the set of those sites in the complement of A that have a distance-one-neighbour
in A.

3.3.1 The burning test

We recall a characterization of recurrent configurations which was first discovered by D.
Dhar and S. N. Majumdar in [8] and [24]. Let A be a toppling matrix on A. Then a
configuration n = (7y)vepr € Qa is recurrent with respect to A, if and only if it passes
the following burning test. For all V' C A and all v € V' we say that the site v is burnable
in V, if

m>— Y Alv,w).

weV\{v}

In the first step of the burning test, burn the set V; of those sites v € A that are burnable
in A. Iterate this procedure with A1 := A\ Vj and burn the sites v € A; that are burnable
in Ay, and so on. If and only if at the end all sites are burned, the configuration passes
the burning test, that is, is recurrent with respect to A.

More formally, a configuration n € Qa is recurrent with respect to A, if and only if
it is A-burnable as follows.

Definition 32 (The burning test). Let C C Aand n € [[ c{1,...,A(v,v)}. Then nis
C-burnable with respect to A, if there exists a bijection v : {1,...,|C|} — C as follows:
for every 1 < j < |C| the site v(j) is burnable in C; := C'\ {v(i),1 < i < j — 1}, that is,

hg) > = Y A w).

weC;\{v(5)}

We now consider the sandpile model that corresponds to the discrete Laplacian Ajy.
The burning test implies the following Lemma, which appears in a similar version in [21].

Lemma 23. Letv € A and C C A\{v} such that D, := {v£l,v+i,v£1+i} C C. Fiz an
arbitrary configuration oc = (o¢(w)) e € Qo = {1,2,3,4}C so that ps(nc = o) > 0,
and oc(w) = 4 for all w € Dy. Here nc := (qw)wec- Then for all A C Qq,y, and all
events B C Qp\ () that depend on the configuration on v := A\ {v} only,

A
pa(mw € A,mue € Blne = o¢) = |4| - pa(mwe € Blne = o¢).
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Proof. Let v, C and o¢ as in the lemma, and let n € ) so that no = o¢. To burn the
site v, we have to burn a neighbour of v first. All sites of D, have maximal height four.
That is, if we are able to burn a neighbour of v, we can burn the entire set D, without
burning any further site of A \ D,. After burning all neighbours of v, we are able to
burn the site v independently of its height. That is, n belongs to Ry, if and only if 7,e
is v°-burnable with respect to Ap. It follows

ZneR,\ Lin,eay - YneeBme=oc}
Z??GRA 1{Uc=Uc}
_ vaeﬂv Lpeay - ZﬁeR}{ L, ceBiic=0c)

ZnER,\ 1{7Ic=00}

pa(ne € A,mye € Blne = o¢) =

4]
||

“pa(nee € Blne = oc¢),

where RY C Q. denotes the set of sub configurations that are v°-burnable with respect
to Ap. O

3.3.2 Height one probabilities

We use the burning test to calculate height one probabilities for the sandpile model
corresponding to the discrete Laplacian Ay. We start with a characterization for the
height one field.

We glue the sites (vertices) of OA together to be one site v, and write AY := AU{v}.
That is, [v —v| =0, and for all v € A, |v —v| = |v — v| = min,egp |v — w|. To denote
the set of paths that connect two sites v, w € AY, we write

PATH (v, w) := {{vi, 1<i<n}CA

neNjv =v,0, =w,
V1<i§n:|vi_1—vi\:1 '

Lemma 24 (Characterization of the height one field). The probability of having height
one at each site of a set V C A, that is,

E[Ule—[th(U)]

is non-zero if and only if
(i) the set V' does not contain any neighbours: |v —w| # 1 for all v,w € V;

(i) for every site v € A\'V there exists a path P € PATH(v,v) so that P and V are
disjoint.

Proof. Suppose we have height one at two neighbours v,w € A, |[v — w| = 1. Then
from the burning test, to burn the site v, we have to burn all neighbours of v first, in
particular the site w. Conversely, to burn the site w, we have to burn the site v first.
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Hence, a configuration that has height one on v and w is not burnable. That is, such a
configuration is not recurrent and occurs with probability zero.

Let V' C A so that |[v — w| # 1 for all v,w € V. Suppose that there exists a site
v € A\ V with the property that for all P € PATH(v,v) we have PNV # (). Then
W := {w € A|FP € PATH(v,w) : PNV = (0} satisfies 9W C V. We suppose that all
sites of the set OW have height one. Then to burn a site of OW, we have to burn a site
of W first. But to burn a site of W, we have to burn a site of W first. It follows that
every configuration that has height one on OW is not A-burnable with respect to Ay,
that is, occurs with probability zero. In particular, every configuration that has height
one on V occurs with probability zero.

We suppose that for all v € A\ V there exists P, € PATH(v,v) so that P, NV = .
Then the configuration 7 that has height four on A\ V and height one on V' is A-burnable
with respect to Ay as follows. First we burn every site w € A\ V using the path P, that
connects w to the site v. The set V' does not contain any neighbours. Thus after burning
the set A\ V, we can burn the entire set V. That is, 7 is A-burnable with respect to Ay
and occurs with probability 1/|Ra|. O

In [24] S. N. Majumdar and D. Dhar use determinantal formulas to express the
probabilities of certain height configurations in stationary state. We use their method to
obtain an explicit expression for height one probabilities. The representation is in terms
of differences of the Green’s function on A.

Definition 33 (The Green’s function on A). We define G € R through G := A}*,
and call G the Green’s function on A.

Definition 34 (The difference operators). Let V C Z2, and for all a + ib € Z? let
Vaviv :={v € Vv +a+ib e V}. We define the difference operators

o :CV x €V =" x CY, o) f(v,w) == f(v+1,w) = f(v,w),

o)V x Vs CV x Y, ) f(v,w) == f(v—1,w) — f(v,w),
and

o cV x ¥ Vi x Y, oW fv,w) = f(v+i,w) — f(v,w),

o) CV x v -V x TV, o) f(v,w) = f(v—i,w) — f(v,w).

Similarly, we define 89(62), 8752), 8 and 0® with respect to the second variable.

—x —y

Lemma 25 (Height one probabilities). Let V' C A such that for allv,v' € V, [v—v'| # 1
and Ov C A. Then the probability of having height one at each site of V satisfies

| T )] = det (110 = Ka(00), iy
veV
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where
8§1)8§2)G,\(v,v’) 89(01)3,2:2611\(0,1)’) 89(61)3352)61/;(1),1)’)
Kx(v,v) = | 0DoPGa(v, ") 0N0DGA(v,0) 0MoPGr(v,v) |,
NP Gx(v,v") NoEGA(v,v) VP G, )

and 1{,—,y denotes the product of the identity matriz and the indicator funclion of
{v="1"}.

Proof. Let V as in the lemma. We call E := {{v,w} C A|[v—w| =1} the set of edges.
For all edges {v,w} € E let the weight za, ({v,w}) induced by Ap be

—Ap (v, w) itv,w e A;

HJAA({U,U)}) = {ZZ'GA AA(Z,Z,) if {U7w} — {27 y} for a z € A.

We modify the weights induced by Ap as follows. For every v € V we decrease the
weight of the three edges connecting the site v to its neighbours in V;(v) := {v+t1,v+i}
by one. That is, we modify the toppling matrix by setting

Ag=Ar+ ) B,
veV

where

-3 fv=u=uw;
-1 ifu=we N;v);
1 if {u,w} = {v,v'} for a v’ € N;(v);

0 otherwise.

Here we note that from |v —v'| # 1 for v,v’ € V, we do not decrease the weight of the
same edge two times. Thus for all v € V and all v' € N;(v) the weight induced by Ag
satisfies za, ({v,v'}) = —Ag(v,v’) = 0.

In the first step we show

E[ 11 hA(v)] = m = det (1 +Ga- Y BU), (3.3)

veV veV

where AXI = (G implies the second equality.

Suppose that there exists v; € A\ V such that for all P € PATH(v;,v) we have
PNV # 0. Then from Lemma[24] (Characterization of the height one field) the left hand
side of equals zero. To show that the same holds for det(Ag), we use the matrix
tree theorem. From the matrix tree theorem (see e.g. [32]), det(A¢g) is the Ag-weighted
number of spanning trees of A U v:

det(de) = 3 T zae({vw})

TeT {v,w}eT



70 Scaling limit for the Abelian sandpile height one field

Here 7 is the set of spanning trees of AUv, were a spanning tree is viewed as a subset of
E. Let T € T be spanning tree of AUwv, and By = {{Ui,vi+1}, 1<i< n} CT, v #vj
forall 1 <i # j < n+1, be its branch that connects the site v to the site v,+1 = v.
We note that Pp := {v;,1 <i < n+ 1} satisfies Pg € PATH(v1,v). Hence, our choice
of v1 implies P NV = (). That is, there exists 2 < j < n so that v; € V. Along with
vj—1 # vj4+1 it follows that the branch B, and hence the spanning tree 7' contains an
edge {v,v'} that connects a site v € V to a site v € N;(v). Such an edge has Ag-weight
zA, ({v,v'}) = 0. We conclude det(Ag) = 0.

Suppose that for every v € A\ V there exists P € PATH(v,v) so that P and V are
disjoint. Then Ag is a toppling matrix, and the set of configurations that are recurrent
with respect to Ag satisfies |[Rg| = det(Ag). We write ¢ : Z* — Z* for the map that
is defined by successively for all v € V' decreasing the height by one at all sites of N;(v).
More formally, for all n = (9y)wen € Z* let

(1) = <nw -y 1{weM(v)}>

veV wEA

From the burning test, in a recurrent configuration a site with height £ has less than &
neighbours with height one. This implies ¢(n) € Qa, for n € Ry v, where Ry v denotes
the set of configurations in R that have height one on V. Furthermore, it is easy to see
that each sequence that burns a configuration n € R v with respect to Ay, burns ¢(n)
with respect Ag. Hence, ¢(n) € R¢g for n € Rp,y. Along with similar considerations
for ¢~ 1, it follows that ¢ defines a one-to-one mapping of Ra,v onto Rg. Therefore, we
have

Ravl  [Rel _ det(Ag)
E = 2 = = .
[Eh“”)] Ral ~ [Ral ~ det(B)

This concludes the proof of .

For a shorter notation, we suppress the dependence on A and write G(v,w) instead
of Gp(v,w) in the following. Using elementary row and column operations (see Remark
below) it follows

det (1 +Ga- Y Bv> = det (L{y=v} + Gowr * B), ey (3.4)
veV
where
-3 1 1 1
1 -1 0 0
B = 1 0 -1 0
1 0 0 -1

and G, .+ denotes
G(v,v") G(v,v' +1) G(v,v' —1) G(v,v' +1)
Gv+1,v) Gv+1,v+1) Gv+1,v—1) G+ 1,0 +1)
Gv—1,v) Gv—-1,v+1) Glv—-1,v—-1) Gv—1,v+1)
Gv+1i,v) Go+i,v'+1) Go+i,v —1) Gv+i,v +1)
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In the next step, adding the second, third and forth column to the first column, and
subtracting the first row from the second third and forth row in each block, we obtain

— det (1{U:U,} —Gyw - B

det (L{y=ur} + Gow * B), ey

)U,U’GV '
Here G, denotes

G(v,v") G(v,v' +1) G(v,v' —1) G(v v +1)
oG, ) aVGw, v +1) dNGw, v —1) MG, v +1)
oMGw,v) aNGw v +1) dNGw, v —1) g G(v,v + i)
aVGw,v) oG, +1) VG, v —1) a“ G(v,v' +1)

v,

and

o O o O

0 ) aPGw, ) AP G(w, )
0 daPGw,v) aNaPGw, ) aNoP G (v, )
0o o )aé )G(v,v ) 3(_1928(22)7(}'(7), v') 8(_1%852)6’(1),1)’)
0 dMoPGw,v) oMo G, ) NP G (v, v
This shows
det (1{U:v/} — CNJW,/ : B>U,U’EV = det (1{U:U/} — K(v, v’))w),ev .
Along with and this concludes the proof of the lemma. O

We sketch the row and column operations underlying ([3.4).

Remark 11. Let VW C A so that VUW = A. Let (Gyw)v,wen € RAXA, (Apw)vwev €
RY*V and (Byw)vwew € RV*W. For U, U’ C A we abbreviate Guu = (Gow)veUwet’ -
We write X .=V \W, Y :=VnNW, Z:=W\V and

Gxx Gxy Gxz Gxy Axx Axy 0 0

oy Gyvx Gyvy Gyz Gyy | | Avx Ayy 0 0
’ Gzx Gzy Ggzz Gzy 0 0 Bzz Bzy
Gyx Gyy Gyz Gyy 0 0 Byz Byy

Elementary row and column operations that leave the unit matrix unchanged transform
E into

Gxx Gxy Gxz Gxy Axx Axy 0 0
P Gyx Gyvy Gyz Gyy | | Avx Ayy 0 0
’ Gzx Gzy Gzz Gzy 0 Bzy Bzz Bzy

0 0 0 0 0 Byy Byz Byy
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The matrix E equals

Gxx Gxy Gxz 0 Ax x Axy 0 0

Gyvx Gyy Gyz 0 Avx Ayy +Byy Byz Byy

Gzx Gzy Gzz 0 0 Bzy Bz 7z Bzy
0 0 0 0 0 0 0 0

It follows det(1 + E) = det(1 + F'), where

Gxx Gxy Gxz Ax x Axy 0
F:=| Gyx Gyy Gyz | | Avx Ayy +Byy Byz
Gzx Gzy Gzz 0 Bzy Bz 7

Remark 12. The idea to consider the modified matrix Ag to calculate the probabilities
of specific sub configurations is due to S. N. Majumdar and D. Dhar [24]. G. Piroux and
P. Ruelle extended their method in [28].

3.3.3 Height one joint cumulants

We now combinatory decompose the height one joint moments into the height one joint
cumulants.

Our presentation for the height one joint moments has a block-determinantal struc-
ture. The block indexed by the sites v,w € A is the three by three matrix

(1) — 80P G (v, w))

i,je{x,—x,y}

—x

For notational reasons for every v € A let v*, v™" and v¥ denote three distinguishable

copies of v, and write

i wi — . 12
(kA (v ’wj))ivje{ﬂfv—%y} T (l{vl:w]} — 0 8j GA(v’w))i,jE{x,fx,y}.

Here z, —z and y are simple indexes. For V C A let V* := |, o {v",v™%, 0¥} and write

Seva(V) :i={o e SV # P CV : g (P™) # P}
for the set of permutations of V* that do not operate as a permutation on P® for a
proper non-empty subset P of V. In our definition of the sets V¥ and Sf}%’d(V) the
index Ty denotes that they are defined with respect to the three copies v, v=% and v¥
each v € V.

During the proof of Theorem [ we are going to introduce two distinguishable copies
(v, x) and (v, y) for every site v € A. Again = and y will be simple indexes. As equivalents
to the sets V¥ and Sf;”d(V) we are going to define V¥ and Sz (V), where the index
xy denotes that we are in the situation of two copies (v,x) and (v,y) each v € V.

We start with the height one joint cumulants for sets V' C A where all sites have a

distance greater than one.
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Lemma 26 (Height one joint cumulants). Let V C A as in Lemma [25 Then the joint
cumulant k (hp(v) : v € V) satisfies

K(ha(v) v eV) = Z sign(o H ka (v,0( (3.5)

STV (V) eV

Proof. Let V as in the Lemma[25] The proof of the lemma is based on the representation
of the height one joint moments shown in Lemma [25| (Height one probabilities), and the
decomposition of joint moments into joint cumulants .

For P C V and o € S(V¥) we write op : P*™ — V% to denote o restricted to P%Y.
For IT € II(V') let

cycl

STV = {a € S(VW)|VP €Tl : op € ST (P )} .
Then
SV™) = > SV,
ITell(V)

where > denotes the disjoint union. Hence, Lemma (Height one probabilities) implies

E[HhA(v)]: > sign(o) J] ka(v.o(

veV oceS(Vay) veVTY

:Z Z sign(o Hk:Ava

HEN(V) gesZ(v) vev

= > I > signo) [] kav,o(v). (3.6)

TIell(V) Pell o’ESzyl(P) vePTY

Using this, an induction on |V|] and (3.2) yields the lemma. First suppose |V| =1, that

is, V' = {v} for some v € A. Then from (3.2)) it holds E[hx(v)] = k(ha(v)). Hence, (3.6)
implies (3.5). In the induction step n — n + 1 suppose that (3.5)) holds for all V' C A so
that |V| < n. Let V C A so that |V| =n + 1. Then from (3.2)

kK(Xy:veV) [HX] Yo J[s&Xv:vep). (3.7)

veV eM(V) Pell
A{V}

For all IT € TI(V') so that IT # {V}, for all B € II it holds |B| < n. Thus, we can use
the induction hypothesis to express the cumulants that occur on the right hand site of

(3.7). Comparing with (3.6) yields (3.5)). O

In the next lemma we consider the height one joint cumulants that are not covered
by Lemma 26] For all n € N we write (n) := {i,1 <14 < n}.

Lemma 27 (Height one joint cumulants including neighbours). Let n € N, n > 2, and
for all1 <i<nletv;, € A. For B C (n) we write kK (B) := K (ha(v;) : i € B).
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(i) If va € Ovy, then

R((n) ==  wPU{}) x({(m)\{PU{1}}).
PC(m)\{1,2}

(1) If v1 = va, then

R((n)=r(mM\{1) - Y s@PU{Y) &)\ {PU1}}).
PC(n)\{1,2}

Here 3 pc )\ (1,0} denotes the sum over all P C (n) \ {1,2} including the emply set.

Proof. The proof of the lemma is based on the decomposition of joint moments into joint
cumulants (3.2), and Lemma 4] (Characterization of the height one field).

Let n and v;, 1 < ¢ < n, as in the lemma. For P C (n) \ {1,2} let IIp((n)) denote
the set of those II € II({n)) such that either {1,2} U P € II, or there exists P’ C P so
that {1} U P’ € Il and {2} U P\ P' € IL. Then II((n)) = >_pc 1,23 1LP((n)). Hence,

(32) implies
E[iljlh/\(vi)]_ S o I

PC(n)\{1,2} TIETT p((n)) BEI

=K(m)\{1,2})+ > Z [] «(B)- K(P), (3.8)
PC(n)\{1,2} TIeII({n)\({1,2}UP)) Bell

where K(P) := k({1,2} UP) + > picp ({1} UP') - ({2} UP\ P).
Proof of (i). Suppose v € Ov;. Then Lemma (Characterization of the height one
field) gives E[[[;; ha(vi)] = 0. Along with (3.8) it follows

=K((m\{L2h+ Y > I xB)- K(P),

PC(n)\{1,2} Hell({n)\({1,2}UP)) BEll

and an induction on n > 2 yields K((n) \ {1,2}) = 0. This is the first assertion.
Proof of (ii). Suppose vo = v;. We show

K({m) \ {1,2}) = s({n) \ {1})

by induction on n > 2. Note that v; = vy implies h(vi) - h(va) = h(v2), and hence
E[[TiZ, ha(vi)] = E[ITiZz ha(vi)]-
For n = 2 from (3.8)) we have

K((2)\ {1,2}) = E[ha(v1) - ha(v2)] = E[ha(v2)] = & (ha(v2)) = £((2) \ {1})-
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In the induction step n — 1 — n, we suppose that K((k) \ {1,2}) = ((k) \ {1}) for all
2<k<n-—1. Then K(P)=r(PU{2}) for P C (n)\ {1,2}, and (3.8) yields

[H Uz:|_ () \{1,2}) + £({n) \ {1})
= Z > [ #(B) - w(PU{2}) +w((n) \ {1})

n)\{1,2} TIETI((n)\ ({1,2}UP)) BeIl

= 1;[ E[Hh/\(vi)].

el ((n)\{1}) B =2
Along with E[TT?" ; ha(vi)] = E[[ ;-5 ha(v;)] this concludes the induction step. O

3.4 Green’s function asymptotics

In this section we study the Green’s function differences that occur in our expression for
the joint cumulants. We restrict our representation to the 81(,1)85;2)—difference. The same
proofs yield similar results for the 89(61)8752)—, the 01" 0{?- and the 851)81(/2) -difference. First
we introduce the Classical Green’s function on Z?, and recall it’s asymptotic behaviour.

We compare the 8351)63(62)—diﬂ'erence of the Classical Green’s function and of the Green’s
function on U, and use the theory of harmonic functions to estimate the difference.

Thereafter, we use the derived results to study the convergence behaviour of the 851)83(52)—
difference of the Green’s function on U, in the limit ¢ — 0.

Definition 35 (The discrete Laplacian Ag). We write
Ag == 0NoM + %)l
to denote the discrete Laplacian in Z2.

Remark 13. The Green’s function G : A X A — R naturally extends to a function on
A x A by setting G (v, w) := 0 all v,w € A so that {v,w}NIA # (). Then for all v,w € A
it holds AgGa(v,w) = 1{y—y}- That is, G is 1/4 times the Green function of simple
random walk in A, killed on exit from A.

Definition 36 (The Classical Green’s function Gy). For all v,w € Z? let
G()(T},’IU) = _(1/4)a(w - U)7

where a denotes the potential kernel of simple random walk on the plane. We call G
the Classical Green’s function on the plane, and note AgGo(v, w) = 1{,—yy all v,w € 7?2
([19], Section 1.6).

In [12] Y. Fukai and K. Uchiyama prove an asymptotic expansion for the potential
kernel a of simple random walk on the plane.
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Lemma 28 ([12], Remark 2). For v = (vg,vy) € Z* as |v] — oo

1 ()
Col0) = =g g+ Gt Con Q5+ 1

for some constants Cy, Cy and Cs. Here we say for f,g: Z? — R that g(v) = O(h(v))
as |v| — oo, if there exist C > 0 and R > 0 so that |v| > R implies |g(v)| < C - h(v).

Lemma [28] implies the following asymptotic expansion for the Green’s function dif-
ferences.

Lemma 29 (Asymptotic expansion for the Green’s function differences). As |v| — oo
1
2 -2
92 Go(0,v) = —Re 5 +0 (lv]7%)

and

1 _
Mo Gy (0,v) = Im — +0 (Jo]7?).

2
Proof. Lemma 28] yields

MO Go(0,v) = Go(0,v + 1 — i) — Go(0,v + 1) — Go(0,v — ) + Go(0,0)
1
:%A+CQ-B+03-C+O(|UI_3),

where we write

A:=—log|lv+1—i|+log|v+ 1| +log|v —i| — log |v],
B -:(Ux + 1)2(% —1)? _ (v + 1)21]5 _ U?c(”y —1)? vgvg
’ |lv+1—14[6 |v+ 16 lv — 1|6 |v]6

=0 (jvl™)

and

- 1 1 1 +1
Clod1—d2 o122 Ju—d2  |u?

=0 (Jv]™?).

Using log(1 + 2) = z 4+ O(|2]?), we get

(v+1)(v—1) i _4
A=Rel —F——— | =—-Re——=+0
eOg(v(U—l—l—i) ev(v—l—l—z’)+ (M )
1 _
This shows the second statement. Similarly, the first statement follows from Lemma
and log [v] — log |v + 1| = —Re (1/v) + O (Jv|72). O
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Definition 37 (Harmonic functions). We say that a function f : C +— R is harmonic on
C cZ? if Agf(v) =0 forall v e C.

To estimate harmonic functions we have the following lemma.

Lemma 30 ([I9], Theorem 1.7.1). There exists a constant C' > 0 with the following
property: for all n € N if a function f : Cp, — R is harmonic on Cy := {z € Z2Hz| < n},
then

0,/(0)] < max {|f()|.v € G} - .

We estimate the Green’s function differences in the next lemma.

Lemma 31 (Estimates for the Green’s function differences). Let D C U so that the
distance of D and OU is nonvanishing, that is, dist(D,0U) := inf(, ,)epxov |* —y| > 0.
Then there exist cp > 0 and ep > 0 as follows. For all € €]0,¢ep|, restricted to D, x D

the difference of the 83(/1)89(62)—diﬁer6nce quotients of the Classical Green’s function and
the Green’s function on U is bounded by cp. More formally, for all € €]0,ep], for all
v,w € D,

10D Gy (v, w) — INIP Go(v,w)| < ep - €.

) z Yy T

And for all € €]0,¢ep], for all v,w € D, the 81(,1)8§;2)—diﬁerence of the Green’s function on
U. satisfies

Y 1 if v=w.

1 - .
}wamm@wﬂﬁw-{ww Fo#w;

Proof. Let D as in the lemma. For all € > 0 and all v € U, w € U, we write
HE(Uv U)) = £2)G0(U7 U}) - a:(BQ)GUe (U) ’LU)

Here as in Remark [13] we write Gy, (v,w) := 0 in case of {v,w} N OU. # 0. For all
(v,w) € OUc x Ue we have Hc(v,w) = den (v,w). Thus Lemma (Asymptotic
expansion for the Green’s function differences) and dist(D,dU) > 0 imply the existence
of ¢p > 0 and ép > 0 so that for all € €]0, €p], for all (v,w) € U, x D,

H. (v, w)| < ép - e. (3.9)

For all w € D, the function H.(-,w) : U, + R is harmonic on U.. Therefore, the
maximum principle for harmonic functions implies that holds for all € €]0, ép], for
all (v,w) € U x De. Using Lemma and dist(D,0U) > 0, we obtain the first assertion.
As a consequence there exist ¢p > 0 and ép > 0 with the property that for all € €]0, ép],
for all v,w € D¢

1000 Gy, (v, w)| < |0NOP Go(v,w)| + ép - €.

Therefore, Lemma [29] and the boundedness of D imply the second statement. O



78 Scaling limit for the Abelian sandpile height one field

The next Lemma is well known for differences of the Green’s function that restrict to
one variable (see e.g. [7] §3, or compare with [I7] Lemma 17). However, in the literature
we did not see a proof that directly extends to the case of differences with respect to
both variables of the Green’s function.

Lemma 32 (Convergence of the Green’s function differences). Let v and w be points
in the interior of U, v # w. Then as € tends to zero the second difference quotient
(1/62)82,(,1)8?)GU6 (ve, we) converges to 8351)83(;2)gy(v, w).

To identify the 89(52)—derivative of the continuous Green’s function g;7, we show the
following lemma first.

Lemma 33. Let w be a point in the interior of U. Then 63(52)gU(z,w) as a function of

z 18 continuous up to the boundary of U, where it vanishes.

Proof. Let w be a point in the interior of U and choose R > 0 such that Dy C U, where
Dp:={z¢€ (CHw — 2| < R}. Then as a function of v, gy (v, w) is harmonic on U \ Dp.
Let (Bt)t>0 be a two-dimensional Brownian motion. We write P, and E, for probabilities
and expectations, if (By)i>¢ is started in By =v € U\ Dg. Then for all v € U\ Dp, (see

e.g. [I8])
gu (v, w) = Ey [9(Bre, w)],
where
7 :=inf{t >0: B, ¢ U\ Dg}.

That is, for v e U \ Dgr

1
0P gy (v, w) = lim = (gu(v,w +¢€) — gu(v,w))

= lim E]EU [9(Bre,w 4+ €) — g(Bre,w)].

e—0 €

The continuous Green’s function gy (z,w) vanishes for z on the boundary of U. We
obtain for all v € U \ Dpr

|8§2)9U(v,w)‘ <C-P,(By €0Dg),
where

C:= sup ‘8:](62)gU(z,w)’ < 00.
ZG@DR

It follows for z on the boundary of U

lim ’87(62)9(](1),10)‘ < C-lim P(B;c € 9Dg) = 0.

v—z
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Definition 38 (The Landau symbols O and o). Let g, h :]0, co[— R be two functions. We
write g(e) = O(h(e)) if there exist constants C' > 0 and ¢y > 0 so that |h(e)| < C-g(e) for
all € €]0, eg]. If we wish to imply that the constants may depend on some further quantity
a, we write Oy(g(€)). Similarly, we write h(e) = o(g(e)) in case of lim._.o h(€)/g(€e) = 0.

Proof of Lemma[34 Let v and w be two points in the interior of U, v # w. For all e > 0,
for all z € U, let

Ge(2) == (1/€)0P) Gy, (2, we)
and

Go(2) := (1/)8P Go(z, we).

Let H, : U. — R be the harmonic function with the same boundary values which the
function f(z) := Re (27 (w — €z)) " assumes for z € U,. The function G, is zero on the
boundary, and ew, is within O,,(€) of w. Along with Lemma 29| (Asymptotic expansion
for the Green’s function differences) it follows for all z € U,

G.(2) = Golz) = Hl2) = Re g~ Re e+ 09
= Oy(€).

Therefore, the maximum principle for harmonic functions implies

sup [Ge(2) — Go(z) — He(2)| = Oule),

zGUe

and Lemma [30] yields
1
an (ge(ve) - gU(UG) - HG(UG)) = O’wy’U(e)‘

Let h : U — R be the harmonic function with the same boundary values which the
function f(z) := Re (2m(w — 2)) " assumes for z € U. Let H, : eU. — R be defined
by He(v) := He(v/e). In [7] it is shown that as e — 0 the function H. converges to
the function h, and that for any region lying entirely within U the difference quotients
of H, tend uniformly towards the corresponding partial derivatives of h. In particular,
as ¢ tends to zero H(eve) = Hc(ve) tends to h(v), and (1/€)d,H (eve) = (1/€)0yHe(vc)
tends to dyh(v). Along with Lemma 29| (Asymptotic expansion for the Green’s function
differences) this shows that as € tends to zero G.(v¢) tends to

1

—Re I (w —v) + h(v) =: g(v),

and (1/€)Gc(ve) = (1/e2)0M 0P Gy (ve, we) tends to

1 ~
Im o———— + 9yh(v) = 9yg(v).

2m(w — v)
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The function § has boundary values zero and a single ‘pole’ of residue (27)~! at w. Along
with Lemma [33[it follows g(v) = g(CQ)gU(v, w). We conclude 0yg(v) = 851)8552)9(](11,10).
O

We have one more estimate for the Green’s function differences.

Lemma 34 (Convergence of the Green’s function differences on the diagonal). For v in
the interior of U

lin% NP Gy (ve,ve) = lim VIR Gy (ve, ve) =

e—0 4 7Y ’

N~ N~

1im 9V Gy, (ve, ve) = lim 9N0E) G, (ve, ve) =

e—0

3|

and

992 _ 1,2
251(1)8"” 0, Gy, (ve, ve) 5 + —

Proof. Let v € U. From Lemma (31| (Estimates for the Green’s function differences) we
have

NP Gy, (ve,ve) — BN OP Gy (ve, ve) | = Ou(€2).

Explicit values for the potential kernel a of simple random walk on the plane are known
[[31], page 148] and yield

AP Gy (v, v) = —%(a(l i) —a(—i) — a(1) + a(0)) = % _ %

This shows lim._.q 8?51)83(52)6'(]6 (ve,ve) = 1/2 —1/m. The other relations follow along the
same lines. O

3.5 Scaling limit for the height one joint cumulants

We show Theorem [] and Theorem [6] in this section. We proceed as follows. Let V
be defined as in Theorem @, and write V; := Upey{vc}. In Lemma @ we derived an
expression of the height one joint cumulant x(hy. (v) : v € V¢) in terms of the matrices

i, g - o (1) 5(2)
(ku. (v ,wj))me{x’_x,y} = (1{1,1:1”]} —0;70; GUC(U?w))i,jE{z,—x,y} v,w € V.

In Lemmata [34] (Convergence of the Green’s function differences on the diagonal) and
(Convergence of the Green’s function differences) we studied the limit € — 0 of the
second differences of the Green’s function on U.. In the next lemma, Lemma we
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combine these results to express lime .o e 2VIk(hy, (v) : v € V) in terms of the 2 x 2
matrices (AU ((v,1), (w,j))) v,w €V, given by

i.je{zy}’
if v=w and i =j,
0 if v= di#j
Ay ((v,1), (w, j)) == (1) 5(2) 1 coean Z.#]A’
—0,70;"gu(v,w) ifv#wandi=yj,
82.(1)8](.2§9U(v, w) otherwise.

Here (v,z) and (v,y) denote two distinguishable copies of the site v € V. Thereafter,
we use this expression to show Theorems [4] and [6]
To state Lemma [35] we have to introduce some more notation. For all P C V let

P = UUEP{(U7$)? (Uay)}' Let
S (V)= {oe S(VH¥)|V0# P CV:o(PW)# P}

cycl

denote the set of permutations of V*¥ that do not operate as a permutation on P*Y for
a proper non-empty subset P of V. We write

(V) = {o e SV e Vo) nov| =1},

to denote the permutations in Sf;’CI(V) where for every v € V' the set v*¥ and the image
of v™¥ have exactly one point in common. In the definition of P*¥ and Sfyyd(V) the index
xy denotes the correspondence to the case of two copies (v, z) and (v,y) each v € V.

Lemma 35. As e — 0 the rescaled joint cumulant ¢ 2Vk(hy, (v) : v € V) tends to

(i_:z)"”' > sign(e) [ Av(e.o0).

) veVay

Proof. Lemma 26| (Height one joint cumulants) gives

k(hy (v):veV,) = Z sign(o) H ku, (v,0(v)).

oSty (Ve) veVTY

Let v,w € V so that v # w, and let 4,j € {z,—z,y}. Lemma 34 (Convergence of the
Green’s function differences on the diagonal) gives explicit values for lim,_o ky, (v%, v2).

From Lemma (Convergence of the Green’s function differences) as e tends to zero
(1/€®)ky, (v, wl) tends to —651)852)gy(v,w). For all o € Sf;’d(Ve) and all v € V; the sets
v® and o(v™) have at most two points in common. Let

S5V = {o € STV € Vet o(w™) 07| =2},

be the set of those permutations in Sf;"d(V) where for every v € V; the set v™ and the

image of v® have exactly two points in common. Then

Clo) i= | {v’ € VP¥|o(v') & o™} |
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satisfies C(c) = |V| for o € S3Y(V.), and C(o) > |V] for 0 € S*¥

cycl(‘/ﬁ) \ Sgiy(Vg) It
follows

lim e 2Vlg (hy, (v) : v € V)

e—0
. . D ku, (v',0(v"))
= l% Z 51gn(a) Hﬁ k., (’UZa U(UZ)) g e
oEeSTY (VL) vieVEY VeV
o(v')ev®y o(v')gv™Y

= Z sign(o) H ku (v,0(v)),

oeSY(V) vEVTY
where (ky (v, Uj))i,je{x,fz,y} =: ki (v,w) is given by

1 1_2 1_1
Y (4, ) 122 217 T 1
k7 (v,o)=1[ 5—2 = = —

U ’ 3
TT 121 "2

™ 2 ™ 2 2

respectively for v # w

_ - a(cl)ag)gU(v,w) 83(51)052)9U(an) —3§:1)8352)9U(”’w)
kg ww) = | oMo gy (w.w) 0P gy (v.w) 90 g (v, w)
~0N 0P gu(v,w) OV gu(v,w)  ~85" 0 gu (v, w)

Adding the second row to the first row, and the second column to the first column
transforms kY (v, v) into

_ 2-4 1-2 2
7T
k‘Uy(v,v) = 1—% % %—% ’
2 7 121 "1
s T 2 2
respectively k@y(v, w) for v # w into
_ 0 0 0
ki (v,w):=| 0 — :S:l)a:g)gU(v, w) a;g;l)@y)gy(v, w)

0 NP gy (w,w)  —MolP gy (v, w)

Another row and column operation that leaves k7 (v, w) unchanged in case of v # w,

transforms E@y(v, v) into

3 e

o o |
oA O
I~ o O

This implies the representation stated in the lemma. O
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We now use Lemma [35] to show Theorem [6l

Proof of Theorem [l In Lemma [35] we showed that as € — 0 the rescaled joint cumulant
e 2WVlk(hy,(v) : v € V) tends to

(2-%) X s IT Avivow)

seSTY(V) veve

The assertion of Theorem [f] is basically a transformation of this representation. Let
o € S7Y(V) such that

I Av (v.o(w) #0. (3.10)
veV Y
For all v € V it holds Ay ((v,x), (v,vy)) = Au((v,y), (v,z)) = 0 and |o(v™¥) N V™| = 1.
Hence, (3.10) implies the existence of (h")yev € {z,y}" so that o((v, h")) = (v, h") for
all v € V. We write k¥ := {x,y} \ h¥ and conclude

o €SV, (k")vev) == {o € STY(V)|Vv € V : a((v,h")) = (v,h")}.
Along with AU((’U,JJ), (v, x)) = AU((U, ), (v,y)) =1 all v € V, this implies

Z sign(o H Ay (v,o(v

seSTY(V) veven

- Z Z sign(o H AU v k%), o((v, k”))) (3.11)

(k)vev €y} o€S(Vi(k)vev) veV

Let (k¥)pev € {x,y}". To further simplify we construct a one-to-one mapping
of S(V, (k")vev) onto Seyc(V). For all ¢ € S(V, (k")vev) and v € V there exists a
unique v, € V so that o((v, k")) = (vs, k¥). We define ¢ : S(V, (k¥)yev) — S(V) by
d(0)(v) := v, for v € V, and note that ¢ is injective. Furthermore, if there would exist
o€ S(V,(kV)yey) and 0 # P C V so that ¢(o)(P) = P, then o(P*) = P would hold.

Thus, S(V, (k”)vev) C Scyd(V) implies ¢ : S(V, (k")yev) — Seye1 (V). The inverse of ¢,
¢t Seya(V) = S(V, (k¥)pev) exists and is given by ¢~ (o)((v,k?)) := (o(v), k7))
and ¢~ 1(o)((v,h")) := (v,h¥), v € V. In particular, ¢ is a one-to-one mapping of

S(V, (k¥)vev) onto Seyci (V). We obtain

Z sign(o H Au((v, k"), 0((v, k"))

o€S(V,(k")vev) vev

==V T v (0, k), (0 (), k7))

UEScycl(V) veV

= — Z H 6k};)8(a(v)gU U U(T}))

€Sy (V) veV

where we use sign(o) = sign(¢(0)) = (=1)!VI=! for o € S(V, (k")yev). This concludes
the proof of the theorem. O
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We proceed with the proof of Theorem

Proof of Theorem[) Let f : U +— U’ be a conformal isomorphism, and let u,v,w € V
such that v # v # w. The continuous Green’s function is conformally invariant, that
is, satisfies gu(u,v) = gu/(f(u), f(v)) = (9ur © F)(u,v), where F(u,v) := (f(u), f(v)).
Therefore, we obtain for k%, k" € {x,y}

> o oa (we) - 9000w (v,w)

kve{z,y}
= 30 o) (gur o F) (uv) - 000 (gur o F) (0, w)
kve{z,y}
= 1f@P Y o (00 0 F) (wv) -0 (00 gu) o F) (v,w).

kve{z,y}
where we use that f satisfies the Cauchy-Riemann equations. It follows for o € S(V)

Z H 8kv (r(q})gU v,0(v))

(k¥)veve{z,y}V veV

- (Hlf’(v)l2>-( | > (000200 0 F) (v.00).
ku

We conclude

ky(v:veV) <H|f > ~ky(fv) v e V).

veV

Along with Theorem [6] and Remark [I0] this shows Theorem O

3.6 Scaling limit for the sandpile height one field

We are going to use the method of moments to prove Theorem That is, we show
that the cumulants of the test integrals from Theorem [5] converge to the cumulants of a
normal distribution.

Due to its length, we split the proof of Theorem [5| into the following propositions.
Since the random variables considered in Theorem |5/ contain the term 1/ \/)7, we have to
assure well definedness first:

Proposition 6 (V is well defined). Let V be defined as in Theorem [ Then V is well
defined and satisfies

0<V =" Cov(ho(0),ho(v)) < oo.
vEZ?

Our proof of Theorem [7|is based on the convergence of the cumulants. For all n > 3
the nth cumulant of a normal distributed random variable is zero.
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Proposition 7 (Higher cumulants vanish). Let f € C*(U) and n > 3. Then as € — 0
the nth cumulant of f o hy. tends to zero.

To identify the covariance matrix we have the following proposition.

Proposition 8 (The covariance matrix). Let f,g € C°(U). Then as € — 0 the covari-
ance of f o hy, and g o hy, converges to [, f(2)g(z)dz.

Our proofs of Propositions [0}, [7] and [§] are based on the same estimate for the height
one joint cumulants.

3.6.1 Estimate for the height one joint cumulants

In this section we derive the key estimate the proofs of Propositions [6] - [§] are based on.
We begin with a short motivation of the estimate. Let f € C®(U), n > 2 and
D :=supp(f) :={z € U|f(z) # 0}. The nth cumulant of f ¢ hy, satisfies

i (f o) = (W) > (:f<>) (o, (w) 1 << ).

Therefore, we estimate

SR |k (hy (v;) 1 1<i<n)| (3.12)
VL yenes v €D
|vi—vj|>1 fori#j

First we consider the joint cumulants.

Lemma 36 (Estimate for the joint cumulants). Let n > 2 and D C U such that
dist(D,0U) > 0. Then there exist cp, > 0 and ep > 0 with the following property.
Let € €]0,ep|, and V C D so that |V| =n and |[v —w| # 1 all v,w € V. Then it holds

|’€(hUe(v):v€V)‘§CD,n' Z Hw

O'GSCycl(V) veV

Proof. Let D C U so that dist(D,8U) > 0, and let n > 2. Lemma [26] (Height one joint
cumulants) along with Lemma [31| (Estimates for the Green’s function differences) imply
the existence of ¢cp > 0 and ep > 0 with the following property. Let e €]0,ep] and
V C De so that |[V| =n and |[v —w| # 1 all v,w € V. For all i,j € {x, —z,y} and all
u,w €V let

1 .
S o if v # w;
k(u,w]) . {|1 | if v=w.

Then
k(b (0) v eV < (ep)* > ] k(o). (3.13)

aesfyycl(\/) veEVTY
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To estimate the right hand side of (3.13) we show that for every o € S*¥

Cycl(V) there exists
a OJ € Scycl(V> Satisfying

I F (o) <45 ] U_;W (3.14)

veVZY veV

Let 0 € Sfyycl(V). To show (3.14) we consider the orbits of o. For all v € V™ let

orbity (v) = Uiso{c!(v)} be the orbit of o at v. Let ORBIT,(v) be the orbit of o
at v projected onto V', that is, let ORBIT,(v) be the minimal subset of V' such that
orbit, (v) C {ORBIT,(v)}*. We proceed as follows. We choose a minimal set P C V%
so that the sets ORBIT,(p), p € P, cover the set V in an appropriate way. Then
we show that for every p € P the permutation o € Sf;/d(V) induces a permutation
0p € Seyel(ORBIT,(p)). Finally, we use the permutations o,, p € P, to construct a
permutation o’ € Seya (V) satistying (3.14).

First we define what we mean by a minimal set P C V¥ so that the sets ORBIT,(p),
p € P, cover the set V in an appropriate way: we say that P C V® is an appropriate
orbit-covering of V', if

(i) for all p € P the set ORBIT,(p) is non-trivial: | ORBIT,(p)| > 2;

(i) the set P does not contain two elements of the same orbit: for all p,p’ € P, p # p/
implies orbit, (p) N orbit, (p’) = 0;

(iif) for all § # P" € P it holds (Upepr ORBIT4(p)) N (Upep\ pr ORBIT,(p)) # 0;
(iv) the sets ORBIT,(p), p € P, cover V. That is, it holds Upep ORBIT,(p) = V.

We show the existence of an appropriate orbit-covering of V. We note that o € Sfyyd(V)
implies the existence of p € V¥ such that | ORBIT,(p)| > 2. If ORBIT,(p) = V, then
P := {p} is an appropriate orbit-covering of V. Otherwise, we successively extend P
until we reach an appropriate orbit-covering of V', where we proceed as follows. Let
0 # P C V%, and suppose P, := U,ep ORBIT,(p) # V. Then there exists p’ € Py \ P
with the property that ORBIT,(p') ¢ P,. Otherwise we would have o(Py¥) = P¥Y, in
contradiction to o € S*Y_ (V). We note that such a p’ satisfies ORBIT,(p') N P, # 0,

cycl

| ORBIT,(p')| > 2, and orbit, (p’) N orbity(p) = @ for all p € P. Furthermore,
(Upepr ORBIT4(p)) N (Upep\pr ORBIT,(p)) #0  all @ # P C P
and ORBIT,(p') N P, # () imply
(Upepr ORBIT,(p)) N (Upetpugpryp e ORBIT,(p)) #0  all 0 # P C {PU{p'}}.

Thus |P,| < | ORBIT,(p') U P,| assures that extending P finitely many times yields an
appropriate orbit-covering of V.
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Let P C V¥ be an appropriate orbit-covering of V. For all p,p’ € P so that p # p’
it holds orbit,(p) Norbit,(p’) = 0. Hence, 0 < k(v,w) <1 all v,w € V® implies

Il *wocn<]I] 1] FE@ow). (3.15)

veEVTY PEP vEorbity (p)

To handle the right hand site of (3.15)) let p € P. We show that the permutation o
induces a permutation o, € Scyc1(ORBIT4(p)) so that

[ kwow)<+4™  T] _ (3.16)

_ 2
veEorbits (p) veEORBIT, (p) ‘U O'p(U)|

Let vg € V such that p € v3”. Let 7o = 0, and recursively for all 1 <4 < | ORBIT, (p)]
let

Ti = min{k > 7'1'71|0’k(p) ¢ {Uo@a---v ;Byl }

and v; € ORBIT,(p) so that ¢ (p) € vfy. We write v|orBIT, (p)| = v0, and define
0p € Seyet(ORBIT4(p)) by 0p(v;) 1= vi11, 0 < i < |ORBIT,(p)|. For u,v,w € Z?* such
that u # v # w # u the triangle inequality |[u — w| < |u — v| + |[v — w| yields

1 1 1
ju—ol* Jo—wP ™ fu—w*

Therefore, for all 0 < ¢ < | ORBIT,(p)|

T'H»l*l

IT * (Ul(p),ffl“(p)) <4

l=T;
where 7| orBrT, (p)| := | Orbity(p)|. That is,

| ORBIT, (p)|—1 7i41—1

[ ko) = H I1 #(o'@.o" )

vEorbity (p) I=m;
| ORBIT, (p)|—1

1 2 1
< (47" H v — vis1? 47 H 2

=0 vEORBIT, (p) [v = op(v)]

This shows (3.16)). Along with (3.15)) it follows

[T kwewy < - I] ]] |v—01p(v)2 (3.17)

veV®Y pEP veORBIT,(p)

for some o), € Seya1(T5(p)), p € P.



88 Scaling limit for the Abelian sandpile height one field

To conclude (3.14)), we use the permutations o, p € P, to construct a permutation
o’ € Seyal(V) such that

1 e 1
O N ! S 1

pEP veORBIT, (p)

Here we proceed as follows. Similarly as in the previous step, we obtain the following.
Let A, B C V such that ANB # (), let 04 € Seyai(A) and let op € Seyc1(A). Then there
exists a o¢ € Seyel(A U B) such that

H \U—UA H |’U—0‘B 3 <4 H % (3.19)

vEA vEAUB [v —oc(v)|

This enables us to estimate the right hand side of (3.17): let § # P’ C P so that
O1 1= Upepr ORBIT, (p) # V. Suppose that for all p € P either O1 N ORBIT,(p) = 0
or ORBIT,(p) C O; holds. Let P := {p € P|ORBIT,(p) C O1} and note that P
satisfies Upep ORBIT,(p) = O; # V. That is, there exists 0§ # P C P such that
(Uyep ORBIT (v)) N (Uyep\p ORBIT,(v)) = (0, a contradiction since the set P is an
appropriate orbit-covering of V. This shows O1 N ORBIT,(p) # 0 and T,(p) ¢ O for
some p € P\ P'. Along with it follows that for every o1 € Scya(O1) and every
0p € Seyel(Ss(p)) there exists a 02 € Seya1(O1 U Sy(p)) so that

! . o
11 \v—m RO | T | R ey

ve0y vESs(p) vEO1US5(p)

Using this successively to estimate the right hand side of (3.17), we obtain (3.18). Along
with (3.17)) it follows (3.14)), and combining with (3.13) yields the lemma. O

Lemma [36| (Estimate for the joint cumulants) enables us to estimate (3.12)).

Lemma 37 (Key estimate for the proof of Theorem [f). Let D C U, dist(D,9U) > 0
Then for all m > 2 it holds

Y [k (w) 1 <i <) | = Op (702).
Ulvu-funeDe
[vi—vj|>1 for i#j

Proof. Let D C U so that dist(D,dU) > 0, and let n > 2. From Lemma [36] (Estimate
for the joint cumulants) it suffices to show

n—1
1 1
(n+2)/2 . . —
¢ > (1:[ % ) PR Opn(1). (3.20)

2
—
'Ul:-'-vUnGDe l+1|
v;#vj fori#j

We do this by induction on n > 2.
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For n = 2 it holds €2|D,| = Op(1), and thus

1 1
62‘ Z méez-ZZWZOD(l).

v1,v2E€D, v1€D, z€72
v1F£vg z#0

In the induction step k — 1 — k suppose that (3.20) holds for n = k — 1. Let v1, vg_1
and v € D, so that vy # vg_1 # vk # vo. In case of |vg_1 — vi| < |ug — v1] the triangle
inequality [vg—1 — v1] < [vg—1 — vg| + [vk — v1] < 2+ |vg — v1] implies

1 1 1 4
e e L | R [ e

A similar relation holds in case of |vg_1 — vg| > |vp — v1|. We obtain

k-1 1 1
(h+2)/2 .
‘ > <H [v; — v; > o — o1 [?

V1,V EDe =1
vi#v; fori#j

k2
1 1
k+1)/2
< kD2 < [ m > Ar— - C(v1, v—1), (3.21)

— 0412

v1,Up—1€De =1
v;#v;j fori#j

where

4'61/2

C(vl,vk_l) L= Z W‘F Z

vp€DN\{v1} v €D\ {vK—1

4.¢/2
} k-1 — v |
For v,w € D, we have ¢ - |[v —w| = Op(1). Therefore, we obtain
Cluy,vp-1) = Y |Zl5/2 -Op(1) = Op(1).
z€Z2\{0}
Along with the induction hypothesis and this concludes the induction step. [
A further consequence of Lemma [36]is the following lemma.

Lemma 38 (Estimate for the covariances). For all € > 0, for all v € D, it holds

> |k (ho, (v), hu.(w)) | = Op(1),

weED,

and

iy (&30 Inlhus (0, b ()] ) = 0.

e—0
v, wWE D¢

lv—w[>1/v/€
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Proof. Lemma [36| (Estimate for the joint cumulants) implies for all € > 0, for all v, w €
D, |U - w| > 1,

1

o —wft

|k (hy, (v), hu (w))]| = Op(1).

It follows

S J6 (hes (0), hu, ()| = Op(1) + 3 — - Op(1) = Op(1),
]
weDe Z€Z2

|z]>1

and

1
. 2 1 _
111rnO <e . gED \k(hy, (v), hu(w))]) llmo 522 EL -Op(1) = 0.

VW e ze

fo—w|>1/ Ve 21>1/\/e

3.6.2 Proof of Propositions [6], [7] and

In preparation for the proof of Proposition @] (V is well defined) we state some remarks
on the height one covariance in infinite volume.

Remark 14. In Lemma (Height one joint cumulants) we showed that for all n € N,
for all v,w € A, so that |[v —w| > 1 it holds

K (ha, (v),ha, ()= Y sign(e) [ ka, (wo(w).

oeSty ({vw}) ue{v,w}try

Here ka, (u',27) = 1giu — 87?1)8](-2)67’/\"(11,2). Let v,w € Z% v # w. As in the
proof of Lemma (Estimates for the Green’s function differences) it follows for all
ut, 20 € {v,w}®

lim 8,0 Gy, (u, ) = 98P Go(u, 2),

n—~oo ¢ J

and therefore

lim ky, (u',27) = Liyizziy — 82-(1)8§2)G0(u, z) =t ko (u',27) .

n—oo

Along with the weak convergence stated in Lemma, [22] this shows

k(ho(v), ho(w)) = > sign(o) J[  ko(u,o(w). (3.22)

Uesci?cl({%w}) ue{v,w}mv

Hence, the translation invariance of the Classical Green’s function implies for v, w € Z?

# (ho(v), ho(w)) = & (Ro(0), ho(w — v)). (3.23)
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Lemma [29] (Asymptotic expansion for the Green’s function differences) and (3.22) provide
the existence of ¢ > 0 such that for all v,w € Z2, v # w,

w(ho()hotw)| < ¢ ST sign(o) [ R(uolw),

aesf;/d({v,w}) ue{v,w}rv

where k is defined as in (3.13). We proceed as in our estimate for the right hand site of
(3-13)), and obtain the existence of ¢ > 0 so that for all v, w € Z?, v # w,

1

|k (ho(v), ho(w))] < c- o= wlt

(3.24)

Let D C U so that dist(D,dU) > 0. From Lemma[31] (Estimates for the Green’s function
differences) there exist cp > 0 and ep > 0 with the following property. Let € €]0, ep]
and u’, 2/ € DY, Then |ky, (ui,zj) | <¢p and }k‘UE (ui,zj) — ko (ui,zj) ‘ < ¢p-€2. Thus
and Lemma 26 (Height one joint cumulants) imply the existence of ¢, > 0 and
€/, > 0 so that for all € €]0, €)5], for all v,w € D,

[ (hu, (0), hu, () — K(ho(0), ho(w))] < )y - €2 (3.25)
Next we prove Proposition [6] (V is well defined).

Proof of Proposition[6, For B C Z? finite let ho(B) := Y., .5 ho(v). For all n > 1 let

vEB

= iy Vlhold) =

> #l(ho(0), ho(v — w)).

v,WEA,

|An]

To show Proposition [6] we have to show that

V.= lim V,

n—oo

is well defined and satisfies 0 < V = > 72 k(ho(0), ho(v)) < oo. First we show well-
definedness and finiteness. Thereafter, we use Lemma [23| to conclude V > 0.

Note that (3.24]) implies
> k(o (0), ho(v))| < oo

vEZ?2

Hence, to show that V := lim,,_.o V, is well defined and finite, it suffices to show

lim V, = Y £(ho(0), ho(v)). (3.26)

n—oo
veZ?

Using (3.24) we obtain
Tim 3™ [s(ho(0), ho(v))] =0,

vEZ2\Ap,
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and
1
lim ™ > |k(ho(0), ho(v — w))| < lim > Jk(ho(0), ho(2))| =0
e 18n v,weglxl " OOZEZZ\An

Therefore, to conclude (3.26)) it remains to show that as n tends to infinity

Ro:= 3 w(ho(0), ho(v)) — ’Al‘ S (ho(0), ho(v — w))
veEA, n v, WEA,
v—wEA,
= |A1| > (Al = {(u,w) € AZJu—w = v}]) - £(ho(0), ho(v))
n ’UGAn

tends to zero. For all n € N, for all v € A,, we have
|An| > ’ {(u,w) € Ai‘u —w=v} ’ > |Ay,| — 6n|v|.
It follows

6
IR,| < &

<AL > [ol- Ik (ho(0), ho(v))].

vEN,

Hence, implies lim,, .o R, = 0. It remains to show ¥V > 0.

To show V > 0 we are going to use Lemma [23] as follows. Let n > 1 be odd and
A/, == A, N2Z2%. We condition on the configuration on A, \ A/, and consider those sites
v € A, where all sites of D, have height four. By Lemmathe conditioned distribution
of the height variable at such a site is the uniform distribution on {1,2,3,4}. This
enables us to estimate the conditional variance of ho(A,,).

Let 0 = (Jw)weAn\A; € Qp,\ar, such that po(na,\ar = o) >0, and write

Vy = {UEAMVUJEDU:UU,ZZI}.
From Lemma 3| for & > n

Vi A, = o] = > V[ko(0)] +V[ha, (8 \ Vo), = 0]

vEV,
3
> > V()] = 55 [Vl
vEV,
Therefore, the weak convergence implies
3
V[ho(An)|mann, = 0] > 6 Vo,
and the law of total variance yields
3
[Anl - Vi > E[V(ho(An)|na,nar)] > T E[ko(v)]. (3.27)

veEN],
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Here ko(v) denotes the indicator function of {Vw € D, : 0, = 4}, and E[ko(v)] its
expectation with respect to ug.

Let v € Z2 To estimate E[ko(v)] we count recurrent configurations where all sites
w € D, have maximal height four: let k& € N so that v € Ag. For 0 = (0y)wen, € Ra,
let

#(0) € Ra,p, '=1{0 € Ra,|Vw € D, : o(w) = 4}
be defined by

4  ifw e Dy;

oy Otherwise.

(¢(0)),, = {

Then [¢~1(0”")| < 48 for all o’ € Ry, p,. It follows

[Raw,D,| R 1
E — ks v > k >
[kAk (U)] ’RAk’ = 48. ’RAk’ = 48

In particular, this shows E[ko(v)] = limg_ E[ka, (v)] > 478. Along with (3.27) we get

. . 3 |A/2n+1| 1
= > —_ > .
1% nlgg() Vi > nhilgo 410 |Agy, | = 3-410

O]

The estimate proven in Lemma 37| (Key estimate for the proof of Theorem [5|) enables
us to show Proposition [7| (Higher cumulants vanish).

Proof of Proposition[7. Let f € C°(U), D := supp(f) and n > 3. The nth cumulant of
f o hy, satisfies

o) = () - X <in1f(6v¢)> o (hy () 1 <0 < ).

V1,4, Un €D
Since f is bounded, to prove lime_.g &y, (f © hy,) = 0 it suffices to show
"> k(. (v) 1 1<i<n)| = Opn(Ve). (3.28)
'Ulv---vvneDe
Lemma [37| (Key estimate for the proof of Theorem [5)) implies
3" |k(huv) s 1<i<n) | =0pn (V) + > Bne:On(l),
V1,...,un €D e€{0,+1,%i}

where

By = en-z ’/ﬁ(hUE(vi):lgign))’.

V1 yeeeyUn €EDe
v1t+e=v2
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It remains to show B, . = Op , (\/e) for all e € {0,£1, £i}. We do this by induction on
n > 3. In the induction step k¥ — 1 — k suppose that for all 3 < n < k — 1 the relation
holds, respectively note that Lemma (Key estimate for the proof of Theorem
provides

-y |r(hu(v1),hu,(v2)) |

v1,v2€D¢

=O0p()+€- > |r(h.(01) hy,(v2)) | = Op(1). (3.29)
v1,v2€ D¢
|v1—v2|>1

Lemma [27] (Height one joint cumulants including neighbours) gives for all e € {0, £1, i}

B <6k Z > k(b (vi) si € P - [w(ho, (vi) i € (k) \ Py

E)\{1,2} v1,...,ux €EDe
v1+e=v2

+ > rlho (i) 2 <P < R)), (3.30)

V2,..., U, EDe¢

where P} := P U{1}. The induction hypothesis in case of k > 3, respectively (3.29)) for
k = 3 implies

To handle the other summands in (3.30)), let e € {0, £1,+i} and P C (k) \ {1,2}. First
suppose that P = (). For all v; € D, we have |k(hy, (v1))| = E[hy, (v1)] < 1. Therefore,
the induction hypothesis, respectively (3.29) provides

-y Ik (hu ()| - |k (ho(v) :2 < i < k)|
V1 4.y U €D
v1t+e=v2

<" > |r(hy(vi) 2 <i < k)| =Opule).

V2,..., U €D¢

The same estimate holds for P = (k)\ {1, 2}. It remains to study the case 1 < |P| < k—2.
Suppose 1 = |P| < k — 2, without loss of generality let P = {v;}. Then

&30 k(o (01), ho, (o) |- [k (o, (v) 2 < i < k= 1))

V1,0 €De
v1+e=v2
= > k() 2<i <k =1 > |k (b (v2 =€), hu (k) |
V2.,V 1 EDe v €D

=" > |k (ho(v):2<i<k—1)[-Op(1) = Opxle),

V2., —1€De
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where the second equality is due to first equation in Lemma (Estimate for the co-
variances) , and the third equality follows from the induction hypothesis, respectively
(13.29).

We suppose 1 < |P| < k—2. Then |P1| > 3 and |(k) \ P1| > 2. Hence, the induction

hypothesis and ([3.29) imply

- Iwlho, (vi) si € Pyl - |w(ho, (v) 2 i € (k) \ P)

V] 4eeey U €EDe
v1t+e=v2
< (EP” DRI P1>) - (e’“’” S Y Inlhu () s e k) P1>|)
(vi)iep, €DE ! (v3)ie (ky\py €D
=Op,p|(V€) - Opj—ip, (1) = Opr(Ve).
Altogether, this shows By . = Op i (v/€)- O

We now prove Proposition [§| (The covariance matrix).

Proof of Proposition[8 Let f,g € C°(U) and D := supp(f)Usupp(g). Using the bound-
edness of f and g, and the second equation from Lemma (Estimate for the covariances)
we get

V-k(fohy,gohy)=¢" Z flev)g(ew)k(hy. (v), hy. (w)) + o(1).
v,weUe

jo—w|<1/ye

From ([3.25) there exist ¢cp > 0 and ep such that for all € €]0, ep]

ST (0. (0), ho () — K(Ro(v), ho(w))] < € - ep - d,
v, WE D¢

jo—w|<1/ Ve

where d. := |D,| - [{w € Z* : |lw| < 1/y/€}|. We note ¢* - d. = o(1) and obtain

Ver(fohu,gohu) =€ flev)glew)r(ho(v), ho(w)) +o(1).
v,weUe

o—w|<1/Ve

Our choice of g € C2° implies the existence of Cy > 0 so that for all 21,2 € U it holds
lg(z1) — g(22)] < Cy - |21 — 22|. That is, for all € > 0, all v,w € U with |[v —w| < 1/4/e,
we have |g(ev) — g(ew)| < Cy - /€. Therefore, ([3.24)) implies

- lglev) = glew)| - |r(ho(v), ho(w))| = o(1).
v,weUe

lv—w[<1/v/e
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It follows

Ver(fohu,gohy) =€ f(ev)g(ev)r(ho(v), ho(w)) + o(1)
v,weU,

[v—w|<1/\/€
= (Y #(ho(0), ho(v)) - /U F(2)g(2)dz + o(1),

vEZ2

where the second equality is due to (3.23)) and (3.24). Along with (3.26) this concludes
the proof of the proposition. d

3.6.3 Proof of Theorem
Finally, we show Theorem [5]

Proof of Theorem[J Let n € N and for all 1 <i < nlet f; € C(U) and t; € R. In
Proposition @ (V is well defined) it is proven 0 < V = > .2 Cov(ho(0), ho(v)) < oo.
Therefore, the family of random variables f; ¢ hy, 1 < i < n, is well defined. We
write f:= Y " t;fi, and note Y, ti - (fiohy) = fohy and f € CZ®(U). From
Propositions [§| (The covariance matrix) and [7] (Higher cumulants vanish) as e tends to
zero the cumulants of f ¢ hy, converge to the cumulants of the normal distribution with
mean zero and variance fU f?(2)dz. This is equivalent to convergence of the moments
which in turn implies convergence in distribution. From Proposition [§for all 1 <i,j <mn
as € — 0 the covariance of f; o hy, and f; o hy, tends to [, fi(2)fj(z)dz. O
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