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AbstratThe purpose of this thesis is to investigate the interplay of anomaly anellation andgeneralized Chern-Simons terms in four-dimensional hiral gauge theory. The inlusionof generalized Chern-Simons terms and additional axioni ouplings allows to relax theonstraints whih are otherwise imposed by anomaly-freedom. There has been a lot of reentinterest in the phenomenology of these additional ouplings. Possible models that makeuse of this are provided by interseting brane models in orientifold ompati�ations of thetype II string theories. If the mass of the anomalous U(1)-gauge boson is low enough, thesemodels predit small signals that might be detetable in near-future ollider experiments.We start with a detailed disussion of generalized Chern-Simons terms and establish theonnetion of generalized Chern-Simons terms with the anellation of anomalies via theGreen-Shwarz mehanism. With this at hand, we investigate the situation in general N = 1supersymmetri �eld theories with generalized Chern-Simons terms. Two simple onsistenyonditions are shown to enode strong onstraints on the allowed anomalies for di�erenttypes of gauge groups. The results even apply to N = 1 matter-oupled supergravitygeneralizing previously known ations.In N = 1 supersymmetry or in theories without supersymmtry, the rigid symmtries ofthe vetor and salar setor are not diretly related. The rigid symmetry group is a subset ofthe produt of the sympleti duality transformations that at on the vetor �elds and theisometry group of the salar manifold of the hiral multiplets. If nontrivial eleti/magnetiduality transformations are involved, the �elds before and after suh a symmetry operationare not related by a loal �eld transformation. In order to use the standard proedure forgauging a rigid symmetry, one therefore �rst has to swith to a sympleti duality framein whih the relevant symmetries at by loal �eld transformations only. This obviouslybreaks the original duality ovariane. Reently an alternative method has been proposedthat allows one to formally maintain the full duality ovariane at eah step of the gaugingproedure. This method requires the extension of the usual gauge degrees of freedom andthe partile ontent, whih leads to a new formulation of four-dimensional gauge theories.i



In one major part of this thesis we are going to display to what extent one has to modifythe existing formalism in order to allow for the anellation of quantum gauge anomaliesvia the Green-Shwarz mehanism. The results might be relevant for ertain N = 1 uxompati�ations with anomalous fermioni spetrum.At the end of this thesis we omment on a puzzle in the literature on supersymmetri �eldtheories with massive tensor �elds. These our naturally in the low-energy e�etive ation ofertain IIB orientifold ompati�ations with uxes, where they give rise to salar potentialsthat are not of the standard supersymmetry form. The potential ontains a term that doesnot arise from eliminating an auxiliary �eld. We will larify the origin of this term and displaythe relation to a standard D-term potential. In an appendix it is expliitly shown how theselow energy e�etive ations might be onneted to the formulation of four-didmensional gaugetheories disussed at earlier stages of this thesis.
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InhaltsangabeIn dieser Dissertation untersuhen wir die Rolle verallgemeinerte Chern-Simons Termein vierdimensionalen hiralen Eihtheorien, genauer, wie Anomlien weggehoben werdenk�onnen. Unter Einbeziehung von verallgemeinerten Chern-Simons Termen und zus�atzlihenaxionishen Kopplungen ist man in der Lage die Bedingungen, die Abwesenheit vonAnomalien garantieren, zu entsh�arfen. Ph�anomenologishe Modelle, die gerade dieseArt von Kopplungen beinhalten, sind seit einiger Zeit Mittelpunkt reger Untersuhungen.M�oglihe Realisierungen f�ur entsprehende Modelle sind zum Beispiel durh sih shneidendeBranen-Modelle in Orientifoldkompakti�zierungen von Typ II Stringtheorien gegeben. DieVorhersagen der ph�anomenologishen Untersuhungen dieser Modelle k�onnten sogar in naherZukunft in Kollisionsexperimenten nahgepr�uft werden, falls nur die Masse des anomalenU(1)-Eihbosons klein genug ist.Nah einer kurzen Einf�uhrung in Quantenanomalien diskutieren wir im Detail die verall-gemeinerten Chern-Simons Terme und erl�autern unter welhen Umst�anden sie mit Hilfe einesMehanismus nah Green und Shwarz zum Wegfall von Anomalien f�uhren k�onnen. Dieseersten Ergebnisse erlauben eine umfassende Untersuhung der entsprehenden Situation inallgemeinen N = 1 supersymmetrishen Feldtheorien mit verallgemeinerten Chern-SimonsTermen. Wie gezeigt wird, k�onnen die starken Anforderungen, die sih aus der Abwesenheitvon Anomalien untershiedliher Eihgruppen ergeben, durh zwei einfahe Bedingungenzum Ausdruk gebraht werden. Dies gilt ebenfalls in N = 1 Supergravitationstheorien mitKopplungen an massive Felder, bekannte Wirkungen verallgemeinernd.Globale Symmetrien jener Sektoren, die Vektorfelder und Skalarfelder enthalten, stehenin N = 1 Supersymmetrie oder in niht supersymmetrishen Theorien in keiner direktenVerbindung. Die globale Symmetriegruppe ist eine Untergruppe des Produkts der symplek-tishen Dualit�atstransformationen, die auf die Vektorfelder wirken und der Isometriegruppeder skalaren Mannigfaltigkeit der hiralen Multipletts dar. Nihtriviale Transformationender elektish/magnetishen Dualit�at wirken derart auf Felder, dass diese niht mehr ineiner lokalen Beziehung mit den transformierten Feldern stehen. Wenn man nun eineiii



globale Symmetrie standardgem�a� eihen will, dann mu� man erst in einen symplektishenDualit�atsrahmen wehseln, in dem die Felder �uber lokale Transformationen untereinanderin Beziehung stehen. Dies briht o�ensihtlih die urspr�unglihe Dualit�atskovarianz. Vorniht all zu langer Zeit wurde eine alternative Methode vorgeshlagen, die es erlaubt,bei jedem Shritt des Eihprozesses die volle formale Dualit�atskovarianz zu bewahren.Diese Methode verlangt eine Erweiterung der gew�ohnlihen Eihfreiheitsgrade und dieEinf�uhrung neuer Felder. Auf diese Art wird eine neue Formulierung der Eihtheorien invier Dimensionen erreiht. In einem der Hauptteile der Dissertation werden wir sehen, wiegenau nun dieser Formalismus modi�ziert werden muss, damit auh Quantenanomalien mitHilfe des Mehanismus nah Green und Shwarz entfernt werden k�onnen. Diese Resultatesind relevant f�ur gewisse N = 1 Flusskompakti�zierungen mit anomalem Fermionspektrum.Am Ende der Dissertation wenden wir uns einem Punkt zu, der in der Literatur zu super-symmetrishen Feldtheorien mit massiven Tensorfeldern angemerkt wurde. Diese Theorienersheinen f�ur gew�ohnlih in den e�ektiven Niederenergie-Wirkungen gewisser IIB Orien-tifoldusskompati�zierungen und erzeugen Potentiale f�ur Skalarfelder von aussergew�ohnliherForm. Diese Potentiale enthalten einen Term, der niht aus der Elimination eines Hilfsfeldesresultiert. Wir werden diesen Punkt kl�aren und auh die Beziehung dieser Potentiale zugew�ohnlihen D-Term Potentialen aufzeigen. Im Anhang zu dieser Arbeit ist dargestellt, wiegenau diese e�ektiven Niederenergie-Wirkungen mit einigen der zuvor erw�ahnten vierdimen-sionalen Eihtheorien in Zusammenhang stehen.
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1 IntrodutionIn quantum physis an anomaly is the failure of a symmetry of the lassial theory to be asymmetry of the full quantum theory. In hiral gauge theories an anomaly of the gauge sym-metry may our beause the hirality of the gauge interations may ause loop ontributions(e.g. to n-point funtions) that violate the symmetries of the lassial ation. For quantumgauge theories this is fatal, as suh a gauge anomaly leads to a loss of renormalizeability.To avoid this, one usually has to impose a number of nontrivial onstraints on the possibleharges of the hiral fermions in suh a way that the anomaly is absent. Without introduingany new partile or interation, this amounts to demanding that the anomalous Feynman dia-grams anel. The vanishing of all anomalous one-loop diagrams already provides a suÆientondition for anomaly-freedom to all loop orders [1℄.It is possible to relax these onstraints if gauge variations of the lassial ation are ableto anel some of the anomalous one-loop ontributions. In this ase the lassial ation itselfannot be gauge invariant, of ourse. In the simplest example, the ation ontains an axionioupling of a salar a(x) to the �eld strength of some vetor �eld of the form aF ^ F , wherea(x) transforms with a shift under some Abelian gauge symmetry with gauge parameter �(x),i.e. Æa(x) / �(x). An Abelian anomaly may be exatly anelled by the gauge variation ofthis axioni oupling, whih is proportional to �F ^ F . This is a simple four-dimensionalexample of the Green-Shwarz mehanism [2℄.The salar a(x) is usually alled \axion" and its kineti term has to be of St�ukelberg-typein order to be gauge invariant, i.e. proportional to (��a�A�)2. The St�ukelberg oupling im-plements the shift symmetry via an Abelian gauge boson that gains a mass due to its ouplingto the axion. If the mass of suh a gauge boson is low enough and if it has suitable inter-ations with the Standard Model partiles, it may lead to observable signals in near-futureollider experiments. There has reently been quite some interest in the phenomenologialstudies of suh anomalous Z 0-type bosons [3{16℄. A natural framework for suh models isprovided by interseting brane models in type II orientifolds1 beause the four-dimensionalGreen-Shwarz mehanism is rather generi in these kind of models [23℄.Interestingly, the Green-Shwarz mehanism alone is often not enough to anel all on-1More details on interseting brane models an be found in, e.g., [17{22℄ and referenes therein.1



1 INTRODUCTIONtributions from gauge anomalies in these orientifold ompati�ations [12, 13℄2. Espeiallythe anellation of mixed Abelian anomalies between anomalous and non-anomalous Abelianfators is in general not ahieved by the Green-Shwarz mehanism alone. Instead, one needsthe help of topologial terms, so-alled generalized Chern-Simons terms, whih are not gaugeinvariant. In general, it is the ombination of the Green-Shwarz mehanism and the gen-eralized Chern-Simons terms whih possibly anels the omplete gauge anomaly. In [12℄3the question was raised, how to generate the generalized Chern-Simons terms from ertainstring ompati�ations. It was shown that the generalized Chern-Simons terms are a generifeature of the orientifold models we referred to above and may lead to new observable signalsof Z 0-bosons. Another possibility was mentioned in [26℄ where ertain ux and generalizedSherk-Shwarz ompati�ations [27,28℄ were used to explain possible origins. There is alsothe possibility to obtain N = 2 supergravity theories with generalized Chern-Simons termsfrom ordinary dimensional redution of ertain �ve dimensional N = 2 supergravity theorieswith tensor multiplets4 [29℄.It should be emphasized that the generalized Chern-Simons terms need not neessarilyappear in ombination with the Green-Shwarz mehanism and anomalies. Originally, theseterms were �rst disovered in extended gauged supergravity theories [32℄ whih are manifestlyfree of anomalies due to the usual inompatibility of hiral gauge interations with extendedsupersymmetry in four dimensions. This motivated the disussions in [26{29, 33{39℄ whihdemonstrated how generalized Chern-Simons terms anel axioni shifts in di�erent lassialsetups. In all these ases the absene of gauge anomalies imposes strong restritions on theform of possible gauged axioni shift symmetries.In light of the above mentioned possible phenomenologial appliations and given theirgeneri ourene in various string theory ompati�ations, it is surprising that the generalinterplay between the Green-Shwarz mehanism, generalized Chern-Simons terms andN = 1supersymmetry was not very well understood until rather reently. It is the purpose of thisthesis to give a systemati aount of these issues as they were developed in [88℄ during thepast years.2For related phenomenologial work, see also [14{16,24, 25℄3The basi ideas are presented by means of a simple toy model in [13℄.4These �ve dimensional N = 2 supergravity theories are disussed in [30, 31℄.2



The outline of this thesis is as follows. In setion 2, we review the most important fatsabout quantum anomalies in hiral gauge theories. We will illustrate how the triangle diagramauses a violation of the onservation law of axial urrents. Then we will review how theanomaly an also be understood by the Jaobian of the path integral measure under axialtransformations. With this at hand we will present the Wess-Zumino onsisteny onditionand, at the end of setion 2, we will shortly omment on some general aspets of anomalyanellation.In setion 3, we onstrut generalized Chern-Simons terms along the lines of [34℄. Wewill further show that there are no nontrivial generalized Chern-Simons terms for semisimplegauge groups. This motivates a short disussion of the example of a gauge group withthe struture Abelian�semisimple. The setion ends with a generalization of the methoddeveloped in [34℄ so as to be able to inorporate anomalies into the formalism.Setion 4 summarizes the most important formulae onerning the gauge setor of globaland loal N = 1 supersymmetry whih will be of major onern in the subsequent setion 5.After the introdutory setions 2 to 4, we will apply, in setion 5, the results of setion 3 togauged isometries on the target manifold of salar �elds in global and loal N = 1 supersym-metry and generalize previous work. Therefore, we begin by gauging an Abelian isometry inglobal N = 1 supersymmetry and show when it is neessary to add generalized Chern-Simonsterms to the gauge setor presented in setion 4 suh that the resulting ation is invariantunder the gauged isometries. After having generalized the results to gauged nonabelianisometries, we will display under whih onditions gauge anomalies are possibly anelled.Furthermore, we investigate the onservation of supersymmetry in presene of gauged isome-tries. After this is aomplished, we will extend the results to N = 1 supergravity. We willillustrate the anellation proedure for a gauge group of the form Abelian�semisimple.In setion 6, we will show that four-dimensional gauge theories with Green-Shwarzanomaly anellation and possible generalized Chern-Simons terms admit a formulation thatis manifestly ovariant with respet to eletri/magneti duality transformations. This gen-eralizes previous work on the sympletially ovariant formulation of anomaly-free gaugetheories and may have interesting appliations, e.g., for ux ompati�ation with interset-ing branes.In setion 7 we disuss the ation for a massive tensor multiplet oupled to hiral and3



1 INTRODUCTIONvetor multiplets in the N = 1 super�eld formalism. We ompute the D-term potential andshow that it is equivalent to a potential in standard form explaining an earlier result by [90℄.The ation an be regarded as the supersymmetrization of a speial Abelian gauge of thetheory presented in setion 6. The preise onnetion is illustrated in appendix E.The onlusion is found in setion 8, and notations and onventions, as well as tehnialdetails to several alulations, are summarized in the appendies.

4



2 Quantum anomaliesA quantum theory is alled anomalous if there is an exat symmetry of the lassial ationwhih is not preserved as a symmetry after quantization. When for gauge theories the quan-tum ation is not gauge invariant, then the quantum theory is not renormalizable. The reasonis that so-alled Ward-identities, whih are absolutely neessary for the renormalization pro-edure to be well-de�ned, do not hold.Anomalies are not only a possible feature of gauge symmetries, but may also arise forglobal symmetries of the lassial ation. Contrary to quantum gauge theories, in the aseof the global symmetry this is not neessarily a problem but may instead lead to interestingmeasurable physial e�ets as, for example, the deay of the pion into gamma rays shows.Historially, the observed deay rates in experiments did not math the theoretial predi-tions. Only one the ontribution of the global anomaly was onsidered, very good agreementbetween experiment and theory ould be obtained. The anomaly does not spoil renormal-ization here beause no Ward-identity is violated. This example also shows that an anomalyis not simply a mathematial problem aused by the formalism but has a lear physial in-terpretation. In fat, an anomaly is a onsequene of the non-invariane of the quantummeasure in the path integral formulation as demonstrated by Fujikawa [41℄. Nevertheless,already triangle diagrams show whether a given theory is anomalous or free of anomalies,whih will be reviewed in the next setion. In setion 2.2, we illustrate how the anomalyappears in the path integral formalism. The onsistent anomaly is explained in setion 2.3and the Wess-Zumino onsisteny ondition is presented. Finally, in setion 2.4, we ommentbriey on the anellation of anomalies.2.1 Triangle anomalyGauge symmetry and renormalization are losely related topis. In gauge theory, the renor-malization proedure makes use of identities that relate di�erent Green's funtions. Theseidentities were proven by Ward [42℄ and Takahashi [43℄ and are hene alled \Ward-Takahashiidentities". The validity of the Ward-Takahashi identities is not automati when hiralfermions are in the theory. More expliitly, one has to hek whether there are diagramsthat introdue anomalous terms, preventing the Ward-Takahashi identities from reprodu-5



2 QUANTUM ANOMALIESing themselves reursively at higher orders in perturbation theory. In a theory with hiralfermions5 the three-point funtionsT���(q; k1; k2) � h0jT [J5� (q)J�(k1)J�(k2)℄j0i ; (2.1)T��(q; k1; k2) � h0jT [P (q)J�(k1)J�(k2)℄j0i (2.2)ause suh anomalous terms that violate the Ward-Takahashi identities. Here P (q) representsthe pseudosalar urrent whih is expliitly given by P = � 5 . The Feynman graphs thatillustrate (2.1) and (2.2) are, to lowest order, triangle graphs with two external photons andone axial vetor in the �rst ase and a pseudosalar (if present) for the seond ase.Applying the standard Feynman rules to the Feynman diagrams displayed in �gure 1 allows

Figure 1: These diagrams ause ontributions that violate expliitly the Ward-Takahashiidentities. The graphi is taken from [1℄.5Consider a Lagrangian where the fermion is denoted by  and ouples to a vetor �eld A� and to an axialvetor �eld A5�. The Lagrangian is given by L(A5�; A�) = � (���+A��+A5��5) , for example. Note thatthe given Lagrangian desribes also the oupling of a vetor �eld to the eletromagneti urrent representedby J� = � � and of an axial vetor �eld oupling to the axial vetor urrent J5� = � �5 .6



2.1 Triangle anomalyone to write down the expliit expressions for (2.1) and (2.2), whih are given byT���(q; k1; k2) = �iZ d4p(2�)4 �tr ip�� �m�5 i(p� q)�� �m� i(p� k1)�� �m�++tr ip�� �m�5 i(p� q)�� �m� i(p� k2)�� �m�� (2.3)T��(q; k1; k2) = �iZ d4p(2�)4 �tr ip�� �m5 i(p� q)�� �m� i(p� k1)�� �m�++tr ip�� �m5 i(p� q)�� �m� i(p� k2)�� �m�� (2.4)where q := k1 + k2. In order to �nd the Ward-Takahashi identity for the axial vetor, onehas to ompute q�T��� . A useful identity is1p�� �mq��5 1p�� � q�� �m = 1p�� �m5 + 5 1p�� � q�� �m+2m 1p�� �m5 1p�� � q�� �m ; (2.5)whih an be easily proven by multiplying (2.5) from the left side by (p�� �m) and fromthe right side by (p�� � q�� �m). With the help of the identity (2.5) one an replae the�rst two frations in (2.3) by the right hand side of (2.5), and it is not diÆult to see thatwe have q�T��� = R1�� +R2�� + 2mT�� ; (2.6)where R1�� and R2�� denote integrals that are aused by the �rst two terms on the right handside of (2.5). The axial Ward-Takahashi identity isq�T��� = 2mT�� ; (2.7)and we see that (2.6) violates (2.7) by the remaining terms R1�� and R2�� . These remainingterms do not vanish beause, when written out with the help of Feynman rules, they resultin linearly divergent integrals that lead to ambiguities in the momentum route of the trianglegraph.The amplitude T�� (2.2) is onvergent beause the apparent linear and logarithmi diver-genies disappear in the atual omputation. The alulation is not repeated here but anbe found in the lassial letures on anomalies by Jakiw ( [44, 45℄) and in any textbook onquantum �eld theory, e.g. [46,47℄. An additional useful referene is the book of Bertlmann [1℄.7



2 QUANTUM ANOMALIESThe resulting anomalous Ward-Takahashi identity is equivalent to the modi�ed onservationlaw for the axial urrent ��J5� = 2mP (x) +A ; (2.8)where the anomaly, A, is given byA = e2(4�)2 "����F ��F �� : (2.9)This is the famous Adler-Bell-Jakiw anomaly [48,49℄, where F�� is the Abelian �eld strengthde�ned by F�� = 2�[�A�℄.6The anomaly (2.9) is independent of the fermion mass and therefore violates the urrentonservation of the massless theory.The Ward-Takahashi identity of the vetor urrents is ful�lled whih is a onsequene of ahosen momentum route.Observe that attahing new photon lines to one loop diagrams, whih is equivalent to turningthe triangle diagram into a quadrangle or in general n-angle diagram, generates an inte-gral that is at least logarithmially divergent: T����::: for fermioni loops with more thanfour external photons attahed to it. This an be understood heuristially by noting thatthe super�ial degrees of divergene of the higher order diagrams are less than one and themomentum-routing ambiguity does not exist for those diagrams. This summarizes the theo-rem by Adler and Bardeen [50℄, that states that radiative orretions in higher orders do notalter (2.8) and, thus, the anomaly is already totally determined by the triangle diagram.2.2 Path integral and anomalyAdler and Bardeen proposed in their theorem that the full struture of the hiral anomaly isgiven by the triangle anomaly [50℄ and does not reeive ontributions from further radiativeorretions. This suggests that the anomaly should even exist beyond perturbation theory.Fujikawa was the �rst to reognize that in the path integral formalism the anomaly orre-sponds to the Jaobian of a 5-transformation of the quantum measure [41℄. One an see6Here and in the following, [ ℄ and ( ) denote, respetively, antisymmetrization and symmetrization with\strength one", i.e., [ab℄ = 12 (ab� ba) et. 8



2.2 Path integral and anomalythis as follows: Let there be massless fermioni �elds in the theory transforming nontriviallyunder hiral gauge transformations as  ! ei�5 ;� ! � ei�5 : (2.10)The important steps in Fujikawa's method are �rst to de�ne the path integral measure moreaurately by deomposing the spinors  and � into eigenfuntions of the Dira operator andseond to determine the Jaobian of the path integral measure under hirality transforma-tions. The Jaobian of in�nitesimal transformations will be exatly the anomaly.The eigenvetors jni of the operator D are given by:D��jni = �njni ; (2.11)and the spinors deompose aording to (x) = Xn anhxjni ; (2.12)� (x) = Xn hnjxi�bn ; (2.13)where the deomposition oeÆients an and �bn are independent Grassmann objets. TheseoeÆients at hand, we are able to re-express the path integral measures D D � aordingto D D � = Yn DanD�bn ; (2.14)beause the set of eigenvetors jni is omplete and orthonormal, i.e. hnjmi = Ænm. In orderto determine the behaviour of the objets an and �bn under hiral transformations, we onsiderthe rotated spinor  0(x) = ei�5 (x) : (2.15)After deomposing both sides of (2.15) into the eigenvetors jni, and using the orthonormalityof the eigenvetors, one �nds thata0n = Xm Cnmam ;Cnm := Z dx hnjxiei�(x)5 hxjmi : (2.16)9



2 QUANTUM ANOMALIESThe Grassmann measure transforms with the inverse determinant and, therefore, the pathintegral measure transforms with �det(Cnm)�1�2, whih has to be determined. Making useof detC = etr log(C) and onsidering in�nitesimally small transformations, one an deom-pose the logarithm around the unity matrix. Then, the Jaobian J of in�nitesimal hiralitytransformations is given by J = e�2i R dx � ~tr(5) : (2.17)Observe, that the funtional trae ~tr(5) is de�ned through the eigenvetors ~tr(5) :=Pnhnjxi5hxjni.7 This trae is atually divergent, and we have to regulate the sum. Asthe regulator we use the onvergent fator exp �� (�nM )2� and take the limit M !1. Then,we an manipulate the regulated exponent of (2.17) and after introduing unity operators ofthe form R d4k jkihkj and by using ompleteness of the set fjnig, we �ndlimM!1 ~tr(5e�(�nM )2) = limM!1Z d4k(2�)4 eik�x(5e�(D��M )2)e�ik�x :We deompose the operator �D���2 into an odd piee proportional to [�; � ℄ and an evenpiee proportional to f�; �g = 2g�� so that we have �D���2 = D�D� + 14 [�; � ℄F �� .After resaling the momentum and deomposing the exponential, there is only one term thatsurvives in the limit M !1 (the term quadrati in the �eld strength), and we obtain:~tr(5) = � 132�2 "����F ��F �� : (2.18)Inserting this bak into (2.17) we indeed �nd the anomaly (2.9), or in other words, the pathintegral measure transforms with the JaobianJ = e i16�2 R dx �(x)"����F��F�� : (2.19)However, as we did not expand the path integral, this result is valid beyond any perturbativeexpansion. In the path integral piture the anomaly is explained by the non-invariane ofthe path integral measure under hirality transformations. The formal reason for the non-invariane an be traed bak to the funtional trae ~tr5, whih is singular.7Note, that ~tr(5) is not equal to the -matrix trae tr(5) = 0.10



2.3 Consistent anomaly2.3 Consistent anomalySo far we have only onsidered Abelian symmetries. If we want to generalize the aboveonepts to the nonabelian ase, then the expression (2.18) will of ourse no longer representthe full anomaly. The naive extension of (2.9), in whih the �eld strength is replaed by itsovariant ounterpart, is not orret beause the ontribution of quadrangle diagrams andpentagon diagrams, though �nite, violates the nonabelian struture. The aess throughdiagrams beomes now more ompliated and so let us hoose the more onvenient way bymeans of the path integral. As a �rst step, we de�ne Green's funtions with the help of thegenerating funtional, whih is given byZ[A�℄ = Z D � D e� R d4x ( � ��� +A� � � ) ; (2.20)where the gauge �elds are treated as external �elds and soures for the fermions are ig-nored. For the proof of renormalizeability it is suitable to use onneted Green funtions,but the generating funtional Z[A℄ ontains both onneted and disonneted diagrams. Theonneted Green funtions are generated by W [A℄ de�ned byZ[A�℄ = e�W [A�℄ : (2.21)For the anomaly we only need to onsider the fermioni part of the theory, so (2.21), given by(2.20), is really all we need from the full quantum ation. Let the gauge group be generatedby TA satisfying the algebra [TA; TB ℄ = fABCTC , where fABC are the struture onstants.In�nitesimal gauge transformations that at on the ation (2.21) are de�ned by the operatorsXA(x) = DC�A ÆÆAC� (x):= ���ÆCA + fABCAB� (x)� ÆÆAC� (x) : (2.22)It an be shown that these operators ful�l the algebra given by[XA(x);XB(y)℄ = fABCXC(x)Æ(x � y) ; (2.23)and that the gauge variation of W [A℄ is given byÆW [�℄ := Z d4x�A(x)XA(x)W [A�℄= Z d4x�A(x)hDC�A j�C(x)ion. (2.24)11



2 QUANTUM ANOMALIESwhere hj�Cion. = 1Z[A℄ R D � D ( � �TC )e� R d4xL( � ; ;A) is the expetation value of the on-neted urrent. We an easily see that for an invariant quantum ation, ÆW [�℄ = 0, theurrent is ovariantly onserved, hDC�Aj�Cion. = 0. However, if the theory is anomalous, thenthe generating funtional of onneted Green funtions satis�es ÆW [�℄ = �AAA, and in orderto be onsistent with the gauge algebra (2.23), the anomaly has to obey the onditionXA(x)AB �XB(y)AA = fABCAC Æ(x� y) ; (2.25)whih is the so-alled \Wess-Zumino onsisteny ondition" [51℄. We an also see that thenaive nonabelian extension of (2.9), where the Abelian �eld strengths are replaed by theirnonabelian ounterparts, is not orret beause it violates (2.25).An expliit solution of (2.25) is given byAC = 124�2 "����tr[TC��(A���A� + 12A�A�A�)℄ ; (2.26)whih represents exatly Bardeen's result [52℄ found from fermion loop omputations. Thissolution is not unique beause one an add loal polynomials of the external gauge �elds f [A℄to (2.26) and obtain another solution. These loal polynomials an be indued, e.g., when therenormalization proedure is hanged. The 2-point Green funtions of two vetor urrents, forexample, have a renormalization ambiguity beause their Lorentz invariant extensions to testfuntions are not unique [53℄. For the quantum ation, this means that ~W [A℄ =W [A℄ + f [A℄and the generating funtional reeives a phase fator Z[A℄eif [A℄. A phase fator, however,does not a�et the transition probability and is not observable. Consequently, we an alsoall a theory anomalous, if there does not exist a loal polynomial of the external gauge�elds, suh that (2.26) is e�etively anelled. Possible loal polynomials are given by Chern-Simons terms or generalized Chern-Simons terms (depending on the dimension). In thefollowing setion we will disuss these topologial terms, espeially the generalized Chern-Simons terms beause these are of speial interest in four dimensions.2.4 Canellation of anomaliesAlthough there are attempts to live with anomalous theories, see for example [54℄ and [55℄,in renormalizable theories, anomalies must not our. This implies severe restritions onthe physial ontent of a theory. In vetor-like models all fermions ouple symmetrially in12



2.4 Canellation of anomaliesboth hiral setors and any potential gauge anomaly in the left-handed setor is anelledby the anomaly of the right-handed fermions. In hiral gauge theories, by ontrast, anomalyanellation is not automati and the anellation requires a areful balane of the fermionigauge quantum numbers, as, e.g., in the standard model.Another possibility to anel anomalies is to introdue a ounterterm into the ation, withpartiles that transform appropriately under gauge transformations suh that the anomalyis ompensated. As mentioned in the introdution, a simple Abelian example is given by theinteration "���� ia(x)F��F�� ; (2.27)where the salar, a(x) varies under the gauge symmetry aording toÆa(x) = i�(x) : (2.28)Then the variation of the interation (2.27) is able to anel the Abelian anomaly (2.9).When the gauge theory is nonabelian then the full onsistent anomaly annot be anelledby this mehanism. The Green-Shwarz anomaly anellation mehanism in 10-dimensionalsupergravity and super Yang-Mills theory is a sophistiated generalization of this simpleexample, see for example [2℄ and [56℄.
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3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS3 Lie algebra ohomology and generalized Chern-SimonstermsIn generi e�etive �eld theories one has salar �eld dependent funtions appearing in frontof the gauge kineti terms, i.e. in front of F��F�� and F^F . Here in general, the nonabelian�eld strength two form is de�ned asFC := dAC � 12fABCAA ^AB : (3.1)Supersymmetri theories, for example, often generalize the gauge setor to inorporate anontrivial gauge kineti funtion fAB that depends on a set of salar �elds, as is furtherexplained in setion 4.1. Compatibility with supersymmetry onstrains this funtion and so,for instane, in N = 1 supersymmetry it is required to be a holomorphi funtion of theomplex salars of the hiral multiplets.The Lagrangian will ontain a nontrivial F ^ F term when the imaginary part of thegauge kineti funtion is nontrivial. In the literature this term is sometimes referred to as a\Peei-Quinn term" and readsLPQ = i Im fAB FA ^ FB : (3.2)The interation given in equation (2.27) atually represents a speial ase of (3.2) where wejust have a U(1) gauge symmetry (and hene only one index, whih may be dropped), andthe gauge kineti funtion is given by the axioni salar a(x), i.e. f = 4 a(x).In the remainder, the exterior produt ^ is understood and will no longer be written outexpliitly.Under the gauge transformation of the onnetion one-forms AC = AC� dx�, whih readÆAC = D�C := d�C + fABC�AAB ; (3.3)the �eld strength two forms (3.1) transform ovariantly, i.e. ifÆFC = fABC�AFB : (3.4)Clearly, the Lagrangian (3.2) is invariant under (3.3) if the gauge kineti funtion transformsin the symmetri produt of two adjoint representations, i.e. ifÆfAB = 2�CfC(ADfB)D : (3.5)14



More generally, however, there is still the possibility to relax (3.5) aording toÆfAB = 2�CfC(ADfB)D + iCAB;D�D ; (3.6)so as to allow for onstant shifts in the gauge kineti funtion. Here CAB;D is a real onstanttensor satisfying the onstraints C(AB;D) = 0 ; (3.7)12CAB;DfEFD � CDB;[EfF ℄AD � CDA;[EfF ℄BD = 0 : (3.8)This more general transformation (3.6) an be indued if the salar �elds transform nontriv-ially under the gauge group and appear in a ertain way in fAB, but we will address this laterin more detail.Obviously, one we allow for these shifts, the Lagrangian (3.2) is no longer invariant under(3.3) and (3.6). Its variation is instead given byÆLPQ = iCAB;D�DFAFB : (3.9)If we only onsider the lassial ation, the variation (3.9) an only be anelled by new termsadded to LPQ, the so alled generalized Chern-Simons terms [32, 34℄. In this setion we willshow how a lassially gauge invariant ation generalizing (3.2) an be onstruted by usingthe tehniques of [34℄. In the following subsetion we introdue Lie algebra valued formsC(A;F) and analyze them by means of ohomologial tehniques. This method allows oneto understand the origin of the onstraints (3.7) and (3.8). The onstraint (3.7) demands theforms C(A;F) to be homogeneous in the �eld strength and the gauge onnetion separately.Then, for forms C(A;F) whose oeÆients satisfy (3.7) we an identify the onstraint (3.8)as the onstraint demanding C(A;F) to be losed with respet to the exterior derivative.After speifying the transformation properties of the gauge kineti funtion, we are ableto onstrut the gauge invariant extension of the Peei-Quinn term, whih is obtained byinluding generalized Chern-Simons terms.In subsetion 3.2 we �nd that there are no non-trivial generalized Chern-Simons termsfor semisimple gauge groups and present the example of a gauge group that has the formAbelian�semisimple in setion 3.3. The results of these subsetions are disussed in moredetail in appendix A, where the results are proven by methods of Lie algebra ohomology.15



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSFinally, in subsetion 3.4, we generalize the formalism developed in [34℄ in order to allowfor forms that do not need to satisfy the onstraint (3.7). We will see that the Peei-Quinnterm and the generalized Chern-Simons term are no longer gauge invariant one we give upthe onstraint (3.7). The only possibility to anel the gauge non-invariane in suh a aseis to onsider anomalies.Before we onstrut the generalized Chern-Simons terms, I would like to give a few om-ments on `ordinary' Chern-Simons terms [57℄ that should illustrate the di�erene betweenordinary and generalized Chern-Simons terms. The onstrution of `ordinary' Chern-Simonsforms is usually done by means of so alled harateristi or invariant polynomials Pn. Theharateristi polynomials Pn(F) are symmetri funtions of degree n in the �eld strengthform F and invariant under the ation of the gauge symmetry group. Therefore, the hara-teristi polynomials satisfy Pn(Fg) = Pn(F) where we denoted the gauge transformed �eldstrength by Fg. With the help of the Biani identityDF := dF + [A;F ℄ = 0 ; (3.10)it an be proven that the invariant polynomials are losed, i.e. dPn(F) = 0. A theorem byChern and Weil states that the ohomology lasses of Pn(F) do not depend on the hoieof the onnetion form A and haraterize the de Rham ohomology group [58℄. Then, theohomology lasses of invariant polynomials Pn(F) of degree n are further haraterized bythe Chern-Simons terms Qn�1(A;F) whih are forms of degree (n� 1), i.e.Pn(F) = dQn�1(A;F) (3.11)Integrals of harateristi polynomials are topologial invariants. Let us onsider, for exam-ple, in four dimensions a harateristi polynomial of the form P4(F) = tr(FF) whih isinvariant beause of P4(Fg) = tr(gFg�1gFg�1) = tr(FF) = P4(F). Then this harateristipolynomial leads to the three-dimensional Chern-Simons form Q3(A;F) = tr[AdA + 32A3℄.8Observe, that Chern-Simons forms are in general odd dimensional while generalized Chern-Simons forms live in even dimensions as we will see.8Sine the determinant is invariant under the adjoint of the gauge symmetry, i.e. det( ) = det �g�1( )g�if g represents an element of the gauge group, one an also obtain invariant polynomials with the help ofthe determinant. However, the orresponding Chern-Simons forms are not related to the one obtained fromP4(F) = tr(FF) as onsidered in the example. 16



3.1 Generalized Chern-Simons forms3.1 Generalized Chern-Simons formsGeneralized Chern-Simons terms annot be onstruted from harateristi polynomials be-ause there are no odd dimensional invariant polynomials in the �eld strength. To set thestage we onsider a �ve-form C(A;F) de�ned asC(A;F) := CAB;DADFAFB ; (3.12)and do not limit ourselves to four spaetime dimensions.Note the peuliar struture of the indies of the onstant tensor CAB;D: the index or-responding to that arried by the gauge onnetion is separated from the indies that arearried by the �eld strengths by a omma. Therefore, the onstant tensor is symmetri inits �rst two indies whih is also onsistent with (3.6). Furthermore, observe that the formC(A;F) does not represent an invariant or harateristi polynomial as mentioned in theontext of ordinary Chern-Simons terms beause C(A;F) depends expliitly on the gaugeonnetion. There is no problem in generalizing (3.12) to forms of arbitrary degree in A andF by introduing onstant tensors of the form CA1:::An;D1:::Dm. Nevertheless, here we fous onthe form (3.12), whih leads to the gauge invariant generalization of (3.2) in four dimensions.Using (3.1) and (3.10) we an ompute the exterior derivative of (3.12), whih leads todC(A;F) = CAB;DFDFAFB + �12CAB;DfDEF + fDAECDB;F + fDBECAD;F�AEAFFAFB :Comparing this result with the onstraints (3.7) and (3.8) shows that these orrespond todemanding that C(A;F) is homogenous9 and losed, i.e. dC(A;F) = 0. On the other hand,we an de�ne an algebrai operator(DC)AB;EF := 12CAB;DfDEF � CDB;[FfDE℄A �CAD;[FfDE℄B ; (3.13)satisfying D2 = 0 beause of d2 = 0 (this an also be diretly proven from (3.13) by usingthe Jaobi identity on the struture onstants). Hene, we an say that as d2 leads to thede Rham ohomology, D2 = 0 leads to Lie algebra ohomology of forms C(A;F) satisfyingthe onstraints (3.7) and (3.8). For a losed form C, i.e. if CAB;D ful�ls the equations9Observe that we all C(A;F) a homogeneous form, following [34℄, if dC(A;F) is homogeneous in A andF separately. The onstraint (3.7) is satis�ed by homogeneous forms. Homogeneity enables one to de�nealgebrai operators ating on the oeÆients CAB;D of homogeneous forms.17



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS(3.7) and (3.8), the equivalene lasses of all C 0 in the ohomology are, for some four-formZ = ZABFAFB , given by C 0 = C + dZ. So if the ohomology lass is trivial, then we haveC = dZ and C is d-exat.10 We will see later when this is the ase.At this point it is suitable to disuss the transformation properties of the salars thatappear in the gauge kineti funtion fAB. We assume that the salar �elds zi transformunder gauge transformation as Æzi = �AkiA(z) ; (3.14)where the vetor �elds11 kA = kiA�i de�ne a (possibly nonlinear) realization of the gaugegroup and satisfy kjA�jkiB � kjB�jkiA = fABCkiC : (3.15)As transformations of the salars in general indue transformations of the gauge kinetifuntion, let us assume that (3.14) indues the transformation (3.6), i.e.,Æ(Im fAB) := kjD�j(Im fAB)�D= 2fD(AE� Im fB)E��D + CAB;D�D : (3.16)Then, in order to make use of the form C(A;F) as de�ned in (3.12), let us onsider thefollowing Lie algebra-valued formkjD�j(Im fAB)ADFAFB : (3.17)With the help of the Bianhi identity (3.10) and the variation of the gauge kineti funtion(3.16), this an be written askjD�j(Im fAB)ADFAFB = � Im fABd(FAFB) + CAB;DADFAFB : (3.18)Due to the hain-rule, we furthermore haved(Im fAB)(z)FAFB = �j(Im fAB)dzjFAFB ; (3.19)10Note that from dZ we an de�ne the ation of an algebrai operator on ZAB in total analogy with equation(3.13) for CAB;D, suh that CAB;D = (DZ)AB;D . The algebrai operator (DZ)AB;D is de�ned as in equation(A.5), whih for the ase at hand reads (DZ)AB;D = 2fD(AEZB)E .11These vetor �elds are not spaetime vetor �elds, but are vetors on the salar manifold.18



3.1 Generalized Chern-Simons formsfrom whih we subtrat (3.18) to �nally obtain�j(Im fAB)(dzj � kjDAD)FAFB = d �(Im fAB)FAFB�� CAB;DADFAFB : (3.20)Let us have a loser look at this result and �nd out about its impliations.Firstly, the left hand side of (3.20) is gauge invariant beause dzj � kjDAD is the gaugeovariant derivative for the salar �elds zi, and from (3.16) we see that �j(Im fAB) transformsovariantly as CAB;D is a onstant. Consequently, the left hand side of (3.20) represents aninvariant Lagrangian in 5 dimensions.Seondly, let us onsider the right hand side of (3.20). We an see that any shift of CAB;Dby an exat (in the Lie algebra ohomology) piee (DZ)AB;D = 2fD(AEZB)E leads to a shiftof the �ve form C(A;F) by an exat form dZ, as was explained in footnote 10. Aordingto (3.20), this exat form dZ an then be absorbed by a shift Im fAB ! Im fAB + ZAB , asis also suggested by (3.16). Therefore, we an say that any exat ontributions of C an beabsorbed by a rede�nition of the gauge kineti funtion by a onstant imaginary shift.Now, that we have an invariant ation in �ve dimensions, we want to pave the way toobtain invariane in four dimensions. If we demand that CAB;D satis�es the onstraints(3.7) and (3.8), we know that C(A;F) is losed. It then follows from Poinar�e's lemma thatloally there exists a form !, suh that C = d!. In order to �nd an expliit expression for!, we single out one oordinate t and require AD(t) = tAD with AD depending only on theremaining oordinates. After introduing dt = d+ �tdt and de�ningHA(t) := tdA� 12 t2fBCAABAC ; (3.21)we an verify the following formulaeFC(t) = HC(t) + dtAC ; (3.22)FA(t)FB(t) = HA(t)HB(t) + 2dtA(BHA)(t) : (3.23)As by assumption C(A;F) is a losed form, the partiular t-dependent form C(A(t);F(t)),onstruted from the de�nitions made above, is losed, too �the reason is that the onstantsCAB;D satisfy the onstraints (3.7) and (3.8)�. Then it is not diÆult to prove that0 = dtC(A(t);F(t)) = dt�tC(A(t);F(t)) + dC(A(t);F(t))= dt�tC(A(t);F(t)) + dC(A(t);H(t)) + 2t dt d(CAB;CACABHA) : (3.24)19



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSThe seond term in the last line vanishes, whih one sees very easily one the term is writtenin its omponent formdC(A(t);H(t)) = d[CAB;DAD(t)HA(t)HB(t)℄ : (3.25)If we now absorb the fator t by resaling, At! A, then it follows from the de�nition (3.21),that H(t) ! F , and (3.25) beomes dC(A;F) whih vanishes beause C(A;F) is losed.Finally, integrating (3.24) over t leaves us withC(A;F) = d ��2CAB;D Z 10 dt tADABHA(t)� : (3.26)Inserting (3.21), the integral an be omputed, and we �nd! = �23CBC;DADAB(dAC � 38fEFCAEAF ) : (3.27)From the arguments below (3.20) we know that d[Im fABFAFB ℄�C(A;F) is a gauge invariantexpression in �ve dimensions and, onsequently, � Im fABFAFB � !� represents a gaugeinvariant Lagrangian in four dimensions. Conretely, the gauge invariant extension of thePeei-Quinn Lagrangian readsLPQ + LGCS = i Im fABFAFB + 2i3 CBC;DADAB(dAC � 38fEFCAEAF ) ; (3.28)where the seond term is the so alled generalized Chern-Simons term.These onsiderations are quite general and allow the extension of the transformation lawfor the gauge kineti funtion by a onstant imaginary shift iCAB;D when at the same timethe Peei-Quinn term is aompanied by the generalized Chern-Simons term. The proedureis not limited to four dimensions and an be easily generalized to arbitrary even dimensions.The generalized Peei-Quinn term then beomes the 2n form fA1A2:::An FA1FA2 :::FAn andstarting from the (2n+ 1) form C(A;F) = CA1:::An;DADFA1 : : :FAn the same proedure asoutlined above determines the orresponding generalized Chern-Simons form to be! = �Z 10 dt n tCA1A2:::An;D ADAA1HA2(t) : : : HAn(t) : (3.29)The Abelian ase is simply obtained by setting all struture onstants to zero, and thegeneralized Chern-Simons term for an Abelian gauge theory is given byLGCS = 2i3 CBC;DADABdAC : (3.30)20



3.2 Generalized Chern-Simons terms and semisimple groups3.2 Generalized Chern-Simons terms and semisimple groupsAs we presented in the previous subsetion, when CAB;D is D-exat it an be absorbed byrede�ning the gauge kineti funtion and, as a onsequene, the new Peei-Quinn termbeomes gauge invariant. Now, we will show this is the ase for semisimple algebras, whihmeans that the main appliation of generalized Chern-Simons terms is for non-semisimplegauge algebras.We start with the result that ifCAB;C = 2fC(ADZB)D ; (3.31)for a onstant real symmetri matrix ZAB , the Chern-Simons term an be reabsorbed intothe Peei-Quinn term using f 0AB = fAB + iZAB : (3.32)In fat, one easily heks that with the substitution (3.31) in the transformation law of thegauge kineti funtion (3.6), the C-terms are absorbed by the rede�nition (3.32). Equation(3.31) an be written asCAB;C = TC;ABDEZDE ; TC;ABDE � 2fC(A(DÆE)B) : (3.33)In the ase that the algebra is semisimple, one an always onstrut a ZAB suh that thisequation is valid for any CAB;C :ZAB = C2(T )�1ABCDTE;CDGHgEFCGH;F ; (3.34)where gAB and C2(T )�1 are the inverses of the Cartan-Killing metrigAB = fACDfBDC ; (3.35)and, respetively, the Casimir operator de�ned byC2(T )CDEF := gABTA;CDGHTB;GHEF : (3.36)These inverses exist for semisimple groups. To show that (3.34) leads to (3.33) one needs theonstraint (3.8), whih an be brought to the following formgHDTH � �12CCfDEC + T[D � CE℄� = 0 : (3.37)21



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSWe have dropped doublet symmetri indies here, using the notation � for ontrations ofsuh double indies. Furthermore, this impliesgABTE � TB � CA = C2(T ) � CE ; (3.38)with whih the mentioned onlusions an easily be obtained.This result an be also obtained from a ohomologial analysis and we refer the interestedreader to appendix A.1.3.3 Appliation: Abelian�semisimpleThe simplest nontrivial appliation are gauge groups of the form Abelian�semisimple forwhih one obtains an interesting result. Abelian generalized Chern-Simons terms are nottrivial, but as we ould show, the purely semisimple terms are. However, the diret produtof an Abelian gauge group with a semisimple gauge group is not trivial again, espeially it hasa nontrivial mixed setor, whih is going to be investigated in greater detail in the following.To reet the produt struture, we split the adjoint indies A;B; ::: into indies a; b; ; ::: forthe Abelian part and adjoint indies x; y; z; w; ::: for the semisimple part. Due to the groupstruture, only the struture onstants of the type fxyz are nonzero. As before, we de�ne ahomogeneous �ve-form C(A;F), whih is given byC(A;F) = 2C(xb);aAaFxF b + Cxy;aAaFxFy + 2C(ax);yAyF aFx ; (3.39)with onstants Cxb;a, Cbx;a, Cxy;a, Cax;y and Cya;x. The losure relations an be diretlyobtained from (3.8) by simply inserting Abelian and semisimple indies12 and we are led tofvxuCvb;a = 0 (3.40)fvxyCbv;a = 0 (3.41)fu(yvCx)v;a = 0 (3.42)fuyvCax;v + fxyvCav;u � fxuvCav;y = 0 (3.43)fuyvCxa;v + fxyvCva;u � fxuvCva;y = 0 : (3.44)These relations already lead to various interesting results. By de�nition, a semisimple Liealgebra has no Abelian ideals. This implies, in partiular, that there annot be any non-trivial12In appendix A.2 we apply the developed formalism and demonstrate that it leads to the same result.22



3.4 Nonhomogeneous forms and anomaliesnull eigenvetor of the struture onstants, so that (3.40) and (3.41) implyCxb;a � 0 ; (3.45)Cbx;a � 0 : (3.46)Equation (3.42) means that Cxy;a is for eah a, a symmetri invariant tensor in the adjointrepresentation of the semisimple part of the gauge group. Cxy;a therefore has to be pro-portional to the Cartan-Killing metri gxy of the semisimple Lie algebra. Thus, we haveCxy;a = Bagxy where the Ba's are arbitrary but onstant. The only nontrivial part of (3.39)is C(A;F) = 2C(xy);aAaFxFy + (Cya;x + Cay;x)AxF aFy : (3.47)What we have done is to simply apply the formalism developed earlier in this setion to themixed part of a gauge group with the struture Abelian�semisimple. The purely Abelianpart is not trivial and leads to the Chern-Simons term (3.30). After the ohomologialanalysis we found that the only nontrivial generalized Chern-Simons terms in the mixedsetor of Abelian�semisimple are determined by the �ve form (3.47) and, onsequently, thegeneralized Chern-Simons terms of the mixed setor readLGCS = 4i3 C(xy);aAaAx(dAy � 38frsyArAs) + 2i3 Cya;xAxAydAa ++2i3 Cay;xAxAa(dAy � 38frsyArAs) : (3.48)beause all the other omponents of the onstant tensor C vanish due to ohomologialreasons. Observe, that if we do not allow for o�-diagonal elements of the gauge kinetifuntion, i.e. fax = fxa = 0, then the generalized Chern-Simons term in the mixed setor isgiven by LGCS = 4i3 C(xy);aAaAx(dAy � 38frsyArAs) : (3.49)The purely semisimple part of C an be absorbed into the gauge kineti funtion by rede�-nition. This mathes the situation enountered in [12℄ without anomalies.3.4 Nonhomogeneous forms and anomaliesIn terms of Lie algebra ohomology, the onstraints on C(A;F), the equations (3.7) and (3.8),have a lear meaning. The �rst equation onstrains C(A;F) to be a homogeneous form whih23



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSis losed under the algebrai operator D de�ned in (3.13) if it satis�es the onstraint (3.8).However, is the formalism still valid for nonhomogeneous forms or, in other words, an theonstraint (3.7) be relaxed?In order to understand this, let C(A;F) be nonhomogeneous, i.e. C(AB;D) 6= 0. Conse-quently, C(A;F) annot be losed either, but is insteaddC(A;F) = C(AB;D)FDFAFB : (3.50)Clearly, the omputation that led to the generalized Chern-Simons term (3.27) annot bevalid anymore. More preisely, instead of (3.24) one now hasC(AB;D)FD(t)FA(t)FB(t) = dt�tC(A(t);F(t)) + dC(A(t);H(t)) ++2t dt d�CAB;DADABHA� : (3.51)By using (3.22) one an prove easily that the left hand side deomposes aording toC(AB;D)FD(t)FA(t)FB(t) = C(AB;D)HD(t)HA(t)HB(t) ++3dtC(AB;D)AD(t)HA(t)HB(t) : (3.52)Of ourse the seond term on the right hand side of (3.51) no longer vanishes either but ausesthe ontribution C(AB;D)HD(t)HA(t)HB(t) that anels the orresponding term in equation(3.52). Therefore, (3.26) reeives an extra ontribution and is replaed byC(A;F) = 3C(D;AB) Z 10 dtAD(t)HA(t)HB(t)��2CAB;Dd �Z 10 dtAD(t)AB(t)HA(t)� : (3.53)We see, that the nonvanishing totally symmetri part of CAB;D introdues the �ve-dimensional form Q5(A;F) = 3C(D;AB) Z 10 dtAD(t)HA(t)HB(t) (3.54)This form is nothing else but the �ve-dimensional Chern-Simons term orresponding to theinvariant polynomial P6(F) = C(D;AB)FDFAFB . As the nonhomogeneous form C(A;F) isno longer losed, there does not exist a form !, suh that C = d! or, equivalently, the Chern-Simons form Q5 is not representable by a oboundary, i.e. there is no !0 suh that Q5 = d!0.24



3.4 Nonhomogeneous forms and anomaliesConsequently, the �ve-dimensional form d(Im fABFAFB) � C(A;F) annot be representedby the oboundary (3.28) of homogeneous forms. Furthermore, it is no longer gauge invariantbeause Q5 is not gauge invariant. However, this is only a problem in theories that are freeof quantum anomalies. The solution is given by the desent equations [59{62℄. By means ofthis set of equations, Stora and Zumino ould relate the Chern-Simons forms Q2n�1 to theonsistent anomaly A2n�2(�; A) in 2n� 2 dimensions. The desent equation relevant for ourase is Æ�Q5(A;F) = dA(�; A) ; (3.55)representing the gauge variation of the Chern-Simons form as the oboundary of the four-dimensional onsistent anomaly. Applying a gauge variation to d(Im fABFAFB)� C(A;F),we haved �Æ�(fABFAFB)�� d �2CAB;DÆ��Z 10 dtAD(t)AB(t)HA(t)��+ d [A(�; A)℄ ; (3.56)whih is equal to zero beause of (3.20) as the steps leading to (3.20) are quite general and donot depend on C(A;F) being homogeneous or not. The tensor CAB;D in (3.6), however, is nolonger restrited to its mixed symmetri part alone but now also ontains a totally symmetripart. Therefore, it an be deomposed into its totally symmetri part C(s)AB;D and a part ofmixed symmetry C(m)AB;D, i.e. CAB;D = C(s)AB;D +C(m)AB;D : (3.57)The generalized Chern-Simons term is still only proportional to the mixed symmetri part.The totally symmetri part is to be exatly anelled by the anomaly as (3.56) shows. Notethat (3.54) an only be onsistent with (3.55) if the totally symmetri part of CAB;D, C(s)AB;D =C(AB;D) is related to the quantum anomaly (we will disuss this in greater detail in setion5.2).We see that the onstraint (3.7) an be relaxed to allow for nonhomogeneous formsC(A;F). As a onsequene, the four-dimensional ation (3.28) is no longer gauge invariantbeause the generalized Chern-Simons term is still only proportional to the mixed symmetripart of the tensor CAB;D. The left over variation proportional to C(AB;D) may be anelledby the anomaly if a suitable fermion spetrum exists. Hene, nonhomogeneous forms C(A;F)25



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSare the appropriate forms neessary in appliations to anomalous theories in order to absorbthe anomaly. The ohomologial reason is that the nonhomogeneous forms introdue the�ve-dimensional Chern-Simons form Q5 into the ohomologial disussion, whih in turn isrelated to the anomaly in four dimensions by the Stora-Zumino desent equation (3.55). Con-sequently, the gauge variation of (3.28) does no longer vanish, but is given by the negative ofthe gauge anomaly, i.e. Æ��LPQ + LGCS� = �A(�; A) : (3.58)This result goes beyond the work of [34℄ and allows for nonhomogeneous forms.At the end of this setion, let us disuss again the example of a gauge group with thestruture Abelian�semisimple. We set all o�-diagonal elements of the gauge kineti funtionto zero, i.e. fax = 0. The onstraints (3.40) to (3.44) do not hange for nonhomogeneousforms (although they do not imply losure anymore), but are now valid for the full oeÆientCAB;D = C(s)AB;D+C(m)AB;D. Nevertheless, the impliations drawn from (3.40) to (3.44) are stillvalid and, onsequently, the only nontrivial part of a �ve-dimensional nonhomogeneous formC(A;F) is determined by Cxy;a, i.e. Cxy;a 6= 0. Deomposing Cxy;a, we obtainC(s)xy;a = C(s)ax;y = 13Cxy;a ; (3.59)C(m)xy;a = 23Cxy;a ; (3.60)C(m)ax;y = �13Cxy;a : (3.61)Thus, we see that the generalized Chern-Simons term in the mixed setor is still given by(3.49). However, there are new ontributions due to the totally symmetri tensors C(s)xy;aand C(s)ax;y whih ause nontrivial gauge variations of LPQ + LGCS. Canellation of theseremaining ontributions an only be ahieved with the help of mixed gauge anomalies, butwe will disuss this example in more detail in setion 5.4, where we will expliitly larifythe relation of the symmetri oeÆients C(s) to the quantum anomaly and show how mixedquantum anomalies anel the remaining gauge variations.
26



4 N = 1 SupersymmetryIn the early 1960s, Gell-Mann and Ne'eman, proposed a way to arrange the known hadronsinto a uni�ed framework and, in this way, brought some order into a whole zoo of partilesthat had been found until then [63℄. The suess of their model is based on a global SU(3)symmetry whih puts partiles of the same spin into SU(3)-multiplets. This model auseda lot of enthusiasm, and e�orts were made to unite partiles of di�erent spin as well. In thenon-relativisti regime this ould be ahieved by an SU(6) model, whih made preditionsthat were quite well approximated by experimental data [64{66℄. Unfortunately, furtherattempts to onstrut the relativisti versions of suh models, in whih the internal symmetrygroup is nontrivially entangled with the Poinar�e group to form a so-alled Master group,failed. All these e�orts to reate a Master group did not sueed beause the Master groupsalways had nonphysial properties suh as an in�nite number of partiles in eah irreduiblerepresentation or ontinuous mass spetra. After Coleman and Mandula proved a no-gotheorem, that stated that every nontrivial union of the Poinar�e group with an internalsymmetry group within the framework of ordinary Lie algebras would yield an essentiallytrivial S-matrix [67℄, all these e�orts seemed to be leading nowhere.In 1971, a new symmetry was found from the Neveu-Shwarz-Ramond superstring [68{72℄that Wess and Zumino extended to quantum �eld theories in four dimensions [73℄.13 As anovel feature, some of the generators of the symmetry algebra satisfy antiommuting rela-tions instead of ommutation relations. This, however, evaded the Coleman-Mandula theo-rem beause the assumptions made in its proof onsidered only symmetry generators withommutation relations. This new symmetry, alled supersymmetry, does not only represent amathematial oddity, but provided the grounds for nontrivially entangling the Poinar�e groupwith internal symmetry groups. To date, there is no diret experimental hint for supersym-metry being realized in nature but it has many properties that justify further investigation.It is for example the only known symmetry, that an protet fundamental salars, suh asthe Higgs �eld, from obtaining huge radiative orretions up to very high energy sales (this13Unknown to Wess and Zumino at that time, this symmetry had already appeared in a pair of paperspublished in the Soviet Union. In 1971, Gol'fand and Likhtman had extended the algebra of the Poinar�egroup to a superalgebra and had even onstruted supersymmetri �eld theories in four dimensions [74℄. Thepaper displayed few details and was generally ignored until muh later.27



4 N = 1 SUPERSYMMETRYis the so-alled \hierarhy problem") where more fundamental theories like grand unifyingtheories or superstring theory ould supersede the standard model.Another feature of supersymmetry is the improved renormalization evolution of the threegauge oupling onstants of the standard model. These oupling onstants do not exatlymeet at a ommon energy sale if we use the renormalization group equations obtained fromthe standard model. With the addition of supersymmetry, gauge oupling uni�ation an beahieved in onsisteny with phenomenologial onstraints.There is extensive observational evidene for an additional omponent of the matter den-sity in the universe that goes under the name dark matter. Dark matter partiles mustbe eletrially neutral, otherwise they would satter light and, thus, be diretly observable.The lightest of the additional hypothetial partiles found in supersymmetri models (alled\lightest supersymmetri partile") is a possible andidate for dark matter.In setion 4.1 we introdue global N = 1 supersymmetry and disuss briey supersymme-try in the gauge setor. We will see that a nontrivial gauge kineti funtion indues severalnew interations in the gauge setor. For future referene we quote the supersymmetri gaugesetor and the neessary supersymmetry transformations.In setion 4.2 we briey motivate N = 1 supergravity and we present the gauge setor ofN = 1 supergravity together with the supergravity transformations.4.1 Global SupersymmetrySupersymmetry is a symmetry relating bosons and fermions and, therefore, we an make anansatz for in�nitesimal supersymmetry transformations with parameter " to behave roughlyas Æf = "b ; (4.1)Æb = �"f : (4.2)These transformation laws are only shemati and bosons are represented by b, while f standsfor fermions. Although, equations (4.1) and (4.2) are of a rather symboli nature, we analready draw several important onlusions from them. The �rst is, that the transformationparameter " is antiommuting, instead of ommuting as in usual symmetry transformations,28



4.1 Global Supersymmetrybeause the left hand side of (4.1), and therefore also the right hand side, has to be fermioni,i.e. antiommuting. The parameter " arries spin 12 in supersymmetry [75℄.In natural units (~ =  = 1) the ation beomes dimensionless and the dimension ofmass and length are inverse to one another. The derivative operator has then positive massdimension (inverse length), i.e. [��℄ = 1. From the Dira ation for the fermion and the Klein-Gordon ation for the salar we therefore obtain the anonial mass dimension for fermioniand bosoni �elds in four spaetime dimensions: [f ℄ = 32 and [b℄ = 1. The transformationlaw for bosons (4.2) would then lead us to ["℄ = �12 , whih would be inonsistent with (4.1).The simplest way to obtain an algebra linear in the elementary �elds without introduingnew dimensionful parameters is to assumeÆf = �"��b ; (4.3)whih together with (4.2) is onsistent with ["℄ = �12 . Thus, already for dimensional reasons,transformation laws for a symmetry relating fermions and bosons must have the form (4.1)and (4.3), and the derivative in (4.3) an be understood as the mismath in derivativesbetween the Dira and the Klein-Gordon equation. The last impliation of this onerns theommutator of two transformations, whih we an expet to have the form[Æ("1); Æ("2)℄b / (�"2�"1)��b (4.4)for bosons and equivalently for fermions. The ommutator of two supersymmetry transforma-tions auses a translation in spaetime and this result is found in any globally supersymmetrimodel.Now let us onstrut a globally supersymmetri model with gauge �elds, as this plays animportant role in setion 5. The Abelian ase is onvenient to begin with, and it leads toresults that are straightforwardly generalized to the nonabelian ase.Supersymmetry relates fermions and bosons, and, onsequently, the gauge �elds ometogether with fermioni partners, so-alled gaugini14. A �rst ansatz for a supersymmetrigauge kineti ation is Lgk = �14F��F �� � 12 ������ (4.5)14The gaugini are partiles of spin 12 . 29



4 N = 1 SUPERSYMMETRYwhere we inorporated the gaugino, �, by means of a kineti term. Notations and onventionsare summarized in appendix B. The �rst term represents the usual Maxwell Lagrangian. Letus de�ne the transformation laws of the �elds in aordane with (4.1) and (4.3) byÆ� = ���"��A� = 12���"F�� (4.6)Æ�� = �12 �"���F�� (4.7)ÆA� = �12 �"�� : (4.8)Here, ��� := 14 [�; � ℄ are the generators of SO(1,3) in the spinor representation. Thetransformation behaviour of the �eld strength an be read o� from (4.24) to beÆF�� = �"[���℄� : (4.9)Using this, the variation of the Maxwell term in (4.5) is then easily written downÆ(�14F��F ��) = �12F �� �"���� : (4.10)The variation of the seond term of (4.5) is a little bit more involved, and relations suh as(B.4) and (B.5) are onvenient for the relevant omputations. The variation of the seondterm of (4.5) is found to beÆ(�12 ������) = 12F �� �"����� i8"����F�� �"5���� : (4.11)Altogether, the variation of (4.5) givesÆLgk = � i8"����F�� �"5���� : (4.12)Observe, that (4.12) atually vanishes, beause after a partial integration the variation be-omes proportional to "������F�� whih is identially zero due to the Bianhi-identity. Thus,we have proven that (4.5) is invariant under the transformations (4.6) and (4.8). We are not�nished yet beause ounting the degrees of freedom, we �nd for the fermion 4 degrees offreedom, while the vetor �eld only provides 3 degrees of freedom o�-shell. On-shell, however,the number of degrees of freedom for the gaugino is 2, just as for the vetor �eld. So on-shellthe degrees of freedom are equal for fermions and bosons. To balane the degrees of freedom,we introdue another real salar �eld D15 that has algebrai equations of motion and, thus,15The auxiliary �eld D is also needed for the supersymmetry algebra to lose o�-shell.30



4.1 Global Supersymmetryan be eliminated on-shell. The additional term in the Lagrangian ontaining the auxiliary�eld is 12D2. This auxiliary �eld has to transform into the gaugino, and the transformationlaw for the fermion has to be extended by a term ontaining D. Note, that D is a real �eld.The Lagrangian16 Lgk = �14F��F �� � 12 ������+ 12D2 (4.13)is indeed invariant under the variationsÆ� = 12���"F�� + i25"D (4.14)ÆD = i2 �"5���� (4.15)and (4.8) beause the extra variation of the Dira ation proportional to D preisely anelsagainst the variation of the auxiliary Lagrangian.The ation (4.5) an be generalized by means of a gauge kineti funtion f(z). Thegauge kineti funtion depends on a set of salar �elds and if then again supersymmetry isdemanded, the superpartners of these salars must be taken into aount, too. So let therebe salar �elds zi and their orresponding superpartners �i. In omplete analogy, one �ndsthat the Lagrangian Lmatter = Xi ���zi��zi + 2��iL����i � F iF i� (4.16)whih onsists of omplex salar �elds zi and their orresponding fermioni superpartners �i.The matter Lagrangian is invariant under the following supersymmetry transformationsÆzi = �"L�iL ; (4.17)Æ�iL = 12�"R��zi + 12F i"L : (4.18)ÆF i = �"R����iL : (4.19)We used the hiral projetions �iL = 12(1 + 5)�i and "R = 12(1 � 5)". The supermultipletontaining this salar and this fermion is aompanied by a omplex auxiliary �eld, F i, that16The Lagrangian (4.13) an be obtained by superspae methods, too. Superspae is introdued in appendixC. 31



4 N = 1 SUPERSYMMETRYbalanes the o�-shell degrees of freedom. It is important to note that, aording to (4.17)and the hain rule, the gauge kineti funtion will transform under supersymmetry, i.e.,Æf(z) = �if(z)�"�i : (4.20)Observe that the gauge kineti funtion is impliitly spaetime dependent through its depen-dene on salar �elds. At several steps that led to (4.11) we used a partial integration, whihin presene of a nontrivial gauge kineti funtion will produe new terms in (4.12) propor-tional to ��f(z) = �if(z)��zi where �i = �=�zi. Observe that espeially the term (4.12) willnot vanish anymore, but will ontribute with i8"������Re f(z)�"5��F�� to the supersym-metry variation. In addition to these ontributions, one has to take Æ[Re f(z)℄F��F �� intoaount, whih has to be anelled, too. Adding ounterterms that anel these variationsand taking the variations of the ounterterms into aount, one is led indutively to an in-variant Lagrangian after a �nite number of steps.17 The omputation is standard and willnot be repeated here but instead let us give the �nal result as given in, e.g., [76, 77℄. Thesupersymmetri Lagrangian ontaining nV vetormultiplets (FA; �A;DA), A = 1 : : : nV , anda nontrivial gauge kineti funtion fAB is given byLgk = �14 Re f(z)ABFA��F�� B � 12 Re f(z)AB��A�D��B + 12 Re f(z)ABDADB ++18 Im f(z)AB"����FA��FB�� + i4(D� Im f(z)AB)��A5��B ++� i2�if(z)AB ��iL�ALDB � 12�if(z)ABFA�� ��iL����BL�14F i�if(z)AB��AL�BL + 14 ��iL�jL�i�jf(z)AB��AL�BL + h..� (4.21)where we de�ned the ovariant derivativesD� Im fAB = �� Im fAB � 2AC� fC(ADfB)D ; (4.22)D��A = ���A �AB� �CfBCA : (4.23)The Lagrangian (4.21) is invariant under the supersymmetry transformations of the gauge17Note that the super�eld formalism as introdued in the appendix C leads also to the result that will bepresented in equation (4.21). 32



4.2 The gauge setor of N = 1 supergravitysetor ÆAC� = �12 �"��C : (4.24)Æ�C = 12���"FC�� + i25"DC (4.25)ÆDC = i2 �"5���� (4.26)and (4.17), (4.18), (4.19) of the matter setor. Observe, that hiral projetions appear in theinvariant Lagrangian, where �L = 12 (1 + 5)� and �R = 12 (1� 5)�.Observe that a nontrivial gauge kineti funtion introdues a CP-violating oupling18 Im f(z)AB"����FA��FB�� whih is exatly of the form as the Peei-Quinn term disussedin the previous setion.Note that the nonabelian �eld strength F appears in equation (4.21). In order that theLagrangian be invariant under gauge and supersymmetry, the gauge kineti funtion musttransform in the symmetri produt of two adjoint representations. It is one of the maintopis of this thesis to generalize the transformation property of the gauge kineti funtionand to disuss the ompatibility with N = 1 supersymmetry.The disussion of setion 3 showed, that a generalization of the gauge transformation off needs new terms in the bosoni part of the e�etive ation. Before we ome to a disus-sion of the their onsequenes, let us �rst also briey introdue the salient features of loalsupersymmetry.4.2 The gauge setor of N = 1 supergravityWe onsidered global N = 1 supersymmetry in the previous subsetion. The transformationparameter " was a onstant spinor. In loal supersymmetry, however, the transformationparameter " is no longer a onstant spinor but beomes spaetime dependent, i.e. " ="(x). Then it follows immediately from (4.4) that also the translations beome spaetimedependent through "(x) and di�er from point to point as general oordinate transformations(the ommutator of two supersymmetry transformations auses translations over distanesd� / �"2�"1). Thus, a theory that is symmetri under loal supersymmetry needs gravityand for that reason is alled supergravity. The fermioni superpartner of the metri is alledgravitino,  �, and arries spin 32 . It is a vetorial spinor (or a spinorial vetor). In supergravity33



4 N = 1 SUPERSYMMETRYthe transformation law relating the metri to its superpartner is given by18Æg�� = � � (��)" : (4.27)As gravity is present, the ation of supergravity must ontain the Einstein-Hilbert ationwhih represents the kineti term of the metri while the orresponding term for the grav-itino is given by the so alled Rarita-Shwinger ation written down in 1941 by Rarita andShwinger [78℄. The Rarita-Shwinger ation is quadrati in the gravitino and ontains onespaetime derivative.In general, the ation of supergravity is a ompliated Lagrangian that is divided intodi�erent setors [76,77℄ suh as, for instane, a setor ontaining the Einstein-Hilbert ationand the Rarita-Shwinger ation together with four-fermion terms that are neessary to renderthis pure supergravity setor invariant under loal supersymmetry. The setor of main interestto us is the gauge setor with nontrivial gauge kineti funtion beause it is investigatedfurther in setion 5.3. This setor ontains the kineti terms of the gauge supermultiplet.The gauge setor of N = 1 supergravity is given in [77℄, for example, and here we repeat itfor future referene:Lgauge = Re fAB(z)[�e4FA��F �� A � e2 ��A�D̂��B + 12DADB + e4 � ������B (FA�� + F ovA�� )℄��e4"���� Im fAB(z)FA��FB�� + ie4(D� Im fAB(z))��A5��B ++fe2�ifAB(z)[��i(���� F̂ ovA�� + iDA)�BL � 12(F i + � �R��iL)��AL�BL ℄ ++e4�i�jfAB(z)��i�j��AL�BL + h..g : (4.28)18In this subsetion, as well as in setion 5.3, we deal with urved spae and adopt a di�erent notationin these subsetions. Greek indies �; �; �; : : : will represent urved spaetime indies, while Latin indiesa; b; ; : : : denote at Lorentz-indies. Note that in this notation � = ae�a is spaetime dependent via thevierbein e�a (see footnote 19 for further information on the vierbein), ontrary to a whih is a onstant Diramatrix. Furthermore, note that the Plank mass is set to one.34



4.2 The gauge setor of N = 1 supergravityIn this expression, D� = �� �AC� ÆC + 12!�ab�ab (4.29)D̂� = �� �AC� ÆC + 12!�ab( )�ab (4.30)!�ab( ) = !�ab + 12 � �[a b℄ + 14 � a� b (4.31)F̂ ovA�� = F ovA�� � 12"����F ov �� A (4.32)F ov�� = 2�[�A�℄ + � [��℄� ; (4.33)and we have de�ned the determinant of the vierbein19 e := det(ea�) = pjdet(g��)j. Notethat the spin onnetion !�ab( ) ontains  -torsion. ÆC denotes in�nitesimal transformationsof the Yang-Mills symmetry. The objet denoted by F ov is alled \superovariant �eldstrength" beause it transforms under supersymmetry in an expression that does not ontainany term proportional to ��". The transformation laws for loal supersymmetry on theindependent �elds (transformation laws for the auxiliary �elds are omitted) are given byÆea� = 12 �"a � (4.34)Æ � = (�� + 12!�ab( )�ab)" (4.35)Æzi = �"L�i (4.36)Æ�i = 12�(D�zi � � ��)"R + 12Fi"L (4.37)ÆAC� = �12 �"��C (4.38)Æ�A = 12���F ovA�� "+ 12i5"DA (4.39)The gauge setor (4.28) ontains besides four-fermion interations an interation of the form �F�� , whih is not renormalizable. In ontrast to global supersymmetry, where renormaliz-able models exist, in supergravity nonrenormalizable ouplings are always present, but theseouplings are suppressed by powers of the Plank mass.19The vierbein de�nes loal orthonormal frames in whih g�� = �abea�eb� . From (4.27) one �nds Æea� =12 �"a �. It is not diÆult to prove that Æe = e2 �"� � beause for a matrixM , the variation of the determinantis given by Æ det(M) = det(M)tr(M�1ÆM). If one takes the vierbein as a matrix, then the variation of itsdeterminant Æe is easily found. 35



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRY5 Generalized Chern-Simons terms and hiral anomalies inN = 1 SupersymmetryIn the previous setion we presented the supersymmetri gauge setor onsisting of the Yang-Mills ation together with kineti terms for the superpartners and displayed the supersymme-try transformation laws. We saw that with a nontrivial gauge kineti funtion that dependson a set of salars, several new ouplings of the gauge �elds and gaugini to these salar �eldsand their superpartners arise. Among those new terms in the Lagrangian is a CP-violatingterm of the form (Im fAB)FA ^ FB whih is often referred to as \Peei-Quinn term". Ob-viously, the Lagrangian (4.21) is not only invariant under global supersymmetry but alsounder nonabelian gauge transformations, if only the gauge kineti funtion transforms ap-propriately [76℄. This orresponds to the transformation law (3.5) given in setion 3. In thatsetion, however, we also presented a possible extension by means of a onstant shift (3.6), un-der whih the Peei-Quinn term is no longer invariant,20 and the generalized Chern-Simonsterms had to be added to the Peei-Quinn term in order to restore gauge-invariane. A su-per�eld expression orresponding to generalized Chern-Simons terms was introdued in [26℄,but the authors restrited themselves to the speial ase of a linear gauge kineti funtionand only onsidered Abelian gauge �elds and global supersymmetry.21 As we will see, thesuper�eld formalism is only appliable for shift tensors CAB;C that are mixed symmetri inits indies while the disussion of setion 3.4 proved that it is the symmetri part of CAB;Cthat an possibly anel anomalies. A �rst omplete disussion of generalized Chern-Simonsterms and hiral anomalies in N = 1 supersymmetry and supergravity was done in [88℄ (thesupersymmetrization of setion 3) and will be disussed in this setion. This is a new resultand it is one of the major topis of this thesis.In subsetion 5.1 we will onsider anomaly-free theories and we will allow for gaugedisometries on the salar manifold in global supersymmetry. It will be shown, that the preseneof the gauged isometries violates the supersymmetry transformation laws as displayed insetion 4. The supersymmetry transformation laws will be ovariantized with respet to20The possible extension (3.6) was already mentioned for N = 2 supergravity in [32℄ and later in [77℄ forN = 1 supersymmetry, but the extra terms neessary for its onsisteny were not onsidered.21A super�eld expression for the nonabelian generalized Chern-Simons term in Wess-Zumino gauge is givenin the end of [26℄. 36



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetrythe gauged isometries, whih is done aording to [84℄. As the Peei-Quinn term has tobe aompanied by the generalized Chern-Simons term, we will add an N = 1 super�eldexpression of the generalized Chern-Simons term to the gauge setor ofN = 1 supersymmetry.The proof that this new ation is indeed invariant under supersymmetry (where some of thesupersymmetry transformations are ovariantized with respet to the gauged isometries) isdone in omputing the variations that appear due to the modi�ations in the transformationlaws and in showing that these ontributions anel.In subsetion 5.2 we will allow for a symmetri part of the tensor CAB;C and show howthis an possibly anel anomalies. To do so, we introdue a derivative that is ovariantwith respet to the gauged isometries and give up the N = 1 super�eld expression of thegeneralized Chern-Simons term.In subsetion 5.3 we show how the results found forN = 1 supersymmetry an be extendedto N = 1 supergravity.In subsetion 5.4 we will illustrate the results found in this setion by means of theexample of a gauge group of the form Abelian�semisimple. This ompletes earlier disussionsof setion 3Finally, the results of this setion are summarized in subsetion 5.5.5.1 Gauged isometries and generalized Chern-Simons terms in global su-persymmetryFor simpliity, let us onsider a U(1)n gauge theory, where the gauge �elds are labelled byindies A; B; : : : = 1; : : : ; n. Furthermore, let us assume that the salar �elds zi transformnontrivially under the gauge symmetry asÆ�zi = kiC(z)�C ; (5.1)where kiC(z) are the Killing-vetors of the isometry on the target spae of the salar �elds.A diret onsequene is that the gauge kineti funtion will in general no longer transformtrivially. Instead, by applying the hain rule, one obtainsÆ�fAB(z) = �ifABkiC�C : (5.2)Also the �elds �i transform under the isometry group beause they are the superpartnersof the salars zi. Let Æ" denote the supersymmetry transformations and let Æ� stand for37



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYtransformations with gauge parameter �. Then, on the one hand, we have from (3.14)Æ�Æ"zi = �"LÆ��iL ; (5.3)while, on the other hand, it isÆ"Æ�zi = �jkiC�CÆ"zj = �"L(�jkiC�C�j)L : (5.4)As supersymmetry transformations and gauge transformations ommute [75℄, we �nd fromomparing the above expressions that �i transforms under the isometry asÆ��iL = �jkiC�C�jL : (5.5)If the transformations (5.1) and (5.5) are present, then (4.21) is no longer invariant and newterms have to be introdued in order to restore invariane under supersymmetry. We ouldalready see in setion 3 that one the gauge kineti funtion transforms with a onstant shift,new terms must be added in order to restore gauge invariane. These terms, the general-ized Chern-Simons terms, were at that point expliitly alulated but not in the ontext ofsupersymmetry. The experiene with supersymmetry suggests that the bosoni generalizedChern-Simons term will be aompanied with a term involving ouplings to gaugini. However,from the disussion in setion 3 we know that the generalized Chern-Simons term alone annotbe gauge invariant (otherwise it ould not be used to anel gauge variations) and, therefore,a manifest supersymmetri extension of the generalized Chern-Simons term by itself annotexist. This is a ruial point, so let us disuss it in more detail: If an ation is invariantunder supersymmetry, it should also be gauge invariant. So, for example, the supersymmetrytransformation Æ"�i as given in (4.18) does not ommute with the gauge transformation (5.5)anymore22. Starting from (4.18), we �nd for the ommutator [Æ"; Æ�℄�iL = 12�"RkiC���C andin order that the ommutator vanishes, the partial derivative in (4.18) has to be replaed bya ovariant derivative. The ation of the generators of supersymmetry on �i in the preseneof (5.1) is no longer given by (4.18) beause the ommutation relations of the supersymmetryalgebra are no longer satis�ed. In the presene of (5.1) the ation of the generator of super-symmetry on �i is obtained from [Æ"; Æ�℄�i = 0 instead. The same is found for the variation22Æ"zi is not altered, i.e., it is the same as in equation (4.17) beause [Æ"; Æ�℄zi = 0.38



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetryof the auxiliary �eld Æ"F i and in total the transformation laws onsistent with (5.1) and (5.5)are Æ"zi = �"L�iL (5.6)Æ"�iL = 12�"RD�zi + 12F i"L (5.7)Æ" ��iL = �12 �"R�D�zi + 12F i�"L (5.8)Æ"F i = �"R�D��iL + �"R�ARkiA (5.9)where the ovariant derivatives are de�ned as followsD�zi = ��zi �AC� kiC ; (5.10)D��i = ���i �AC� �jkiC�j : (5.11)The new supersymmetry transformations (5.6), (5.7) and (5.9) take expliitly the gaugetransformations into aount, as demonstrated by the gauge ovariant derivatives and thelast term in (5.9). It originates in the requirement that supersymmetry does not only respetthe gauge invariane of the auxiliary �eld, but both symmetries still ommute with eahother23. The Abelian generalized Chern-Simons terms of global N = 1 supersymmetry weregiven in [26℄24 and for future referene we quote the resultLN=1GCS = 16CAB;C"����AC�AB� FA�� � i4CAB;CAC� ��A5��B (5.12)where CAB;C is a real onstant tensor that has to satisfy the onstraintC(AB;C) = 0 (5.13)23The whole problemati is present in superspae formalism, too. There this subtlety arises beause after theWess-Zumino gauge is �xed, the original supersymmetry of superspae (transformations indued by Q and Qyating on the super�elds) is broken and has to be replaed by a ombination of the superspae supersymmetryand the gauge symmetry. The Wess-Zumino gauge is violated by supersymmetry transformations induedby Q and Qy and only after applying a gauge transformation one is brought bak into Wess-Zumino gaugeagain. This an also be understood from the supersymmetry algebra. After the Wess-Zumino gauge is �xed,the antiommutation relation fQ�;Qy_�g = ��� _�(�� � AA� ÆA) [84℄ shows mixing between supersymmetry andgauge symmetries (ÆA denotes the gauge transformation). This implies that if an ation is invariant undersupersymmetry, it should also be gauge invariant.24The authors restrited themselves to linear gauge kineti funtions.39



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYin agreement with equation (3.7) found in setion 3 in the ontext of Lie algebra ohomol-ogy. The �rst term of (5.12) is the Abelian version of the generalized Chern-Simons termenountered in setion 3 as equation (3.30), while the other term represents the oupling ofthe vetor �eld to the pseudovetor urrent of the gaugini. The possible oupling AC� ��A��Bvanishes identially beause of C[AB℄;C = 0. Note, that the tensor CAB;C is mixed symmetriin the sense that its total symmetri part vanishes but it is symmetri in its �rst two indies.Observe further that equation (5.12) is neither gauge invariant nor supersymmetri.25It remains to show that (4.21) together with (5.12) is invariant under (5.6), (5.7) and(5.9). This is easily done by observing that if we replae the ovariant derivatives in thesupersymmetry transformation laws (5.6), (5.7) and (5.9) by partial derivatives and removethe last term in Æ"F i then of ourse we obtain bak the supersymmetry transformationsunder whih Lgk, given by (4.21), is invariant. Therefore, we have to hek whether the extraterms that appear in the variation of Lgk anel against Æ"LN=1GCS when the salars transformnontrivially under gauged isometries (5.1).There are the following three terms in (4.21) that ause new ontributions to the variationÆ"Lgk:� The term �14F i�ifAB��AL�BL and its hermitian onjugate �14F � i�if�AB��AR�BR auses anextra variation of the form�14�ifABkiC �"R�CR��AL�BL � 14�if�ABk� iC �"L�CL ��AR�BR (5.14)due to the last term in (5.9).� Another new variation omes from Æ"� in i2�ifAB ��iL�ALDB and its hermitian onjugate� i2�if�AB ��iR�ARDB whih is+ i4�ifABkiCAC�DB�"R��AL � i4�if�ABk� iC AC�DB�"L��AR : (5.15)� The term �12�ifABFA�� ��iL����BL and its hermitian onjugate �12�if�ABFA�� ��iR����BR on-tribute to Æ"Lgk with�14�ifABkiCA�C �"R��BLFA�� + i8"����kiC�ifABFA��AC� �"R5��BL ��14�if�ABk� iC A�CFA�� �"L��BR + i8"����k� iC �if�ABFA��AC� �"L5��BR : (5.16)25In [26℄ the authors give a superspae expression for (5.12) (in Wess-Zumino gauge) but we will see that itis not manifestly supersymmetri. 40



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetryNow let us ompute the variations of the Chern-Simons terms. For the bosoni term we haveCAB;CÆ"("����AC�AB� FA��) = +32 � CAB;C"�����"��BAC� FA�� (5.17)while the variation of the vetor potential in the fermioni term gives� i4CAB;C(Æ"AC� )��A5��B = � i2CAB;C(�"�B)(��A5�C)= � i4CAB;C �"�B��C5�A + i4CAB;C �"5�B��C�A (5.18)whih is proven by help of the rearrangement formulae given in appendix B. The re-maining ontribution of the fermioni part of the generalized Chern-Simons term is ausedby the extra variation in the transformation law for the gaugini. We have to ompute� i4CAB;CAC� Æ"(��A5��B) whih is found to be� i4CAB;CA� CFA�� �"�5�B + 18"����CAB;CFA��AC� �"��B + 14CAB;CAC� �"��BDA : (5.19)If the gauge setor together with the generalized Chern-Simons terms (5.12) is invariant undersupersymmetry, then the variations determined above have to anel among themselves. Ob-viously, the variations of the generalized Chern-Simons terms do not anel among themselves�the ontribution (5.18) an only be anelled by another three gaugini interation whih isgiven by (5.14)�. Thus, the generalized Chern-Simons term of global N = 1 supersymmetrygiven in equation (5.12) is not by itself invariant under supersymmetry and the superspaeexpression from whih it originates [26℄ is not manifestly supersymmetri.In order that variations of the gauge setor anel against variations from the generalizedChern-Simons terms, the onstants CAB;C and �ifABkiC have to be related. A loser look at(5.14) and (5.18) shows, that if �ifABkiC = iCAB;C (5.20)�if�ABk� iC = �iCAB;C (5.21)then both variations add up to zero. The reason is that (5.14) an be brought to the form� i4CAB;C(�"R�BR��CL�AL + �"L�BL ��CR�AR) = � i8CAB;C �"�B��C5�A + i8CAB;C �"�A��C5�Awhih taken together with (5.18) leads to the equation for the shift tensor2CCA;B + CAB;C = 3C(AB;C) = 0 (5.22)41



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYwhere the onstraint (5.13) is used in the last equality. Thus, the ontribution of (5.14)and (5.18) is proportional to the symmetri part of the shift tensor C(AB;C) and vanishes.Furthermore, it is not diÆult to see that the last term of (5.19) anels against (5.15).26The �rst term of the �rst and the seond line of (5.16) together with the �rst term of (5.19)add up to zero.27 The remaining ontributions from (5.16) and (5.19) add up to give2814"����CAB;CFA��AC� �"��B ; (5.23)whih anels exatly the variation of the purely bosoni generalized Chern-Simons term(5.17) given by �14"����CAB;CFA��AC� �"��B .This, however, does not yet omplete the proof that (4.21) together with the generalizedChern-Simons terms (5.12) is indeed invariant under supersymmetry. The supersymmetryvariation of the four-fermion interation 14 ��iL�jL�i�jfAB��AL�BL reeives the ontribution fromthe ovariant derivative in (5.7), too, and auses the variation14 �"R��iLAC� kiC�i�jfAB��AL�BL : (5.24)The same happens to the term �14F i�ifAB��AL�BL whih auses the variation14 �"R��jLAC� �jkiC�ifAB��AL�BL (5.25)due to the ovariant derivative in (5.9). Note, that beause CAB;C is onstant,taking aderivative of (5.20) with respet to �j yields�jkiC�ifAB = �kiC�j�ifAB ; (5.26)and the two variations drop out without the need of extra terms. So, indeed, the gaugesetor (4.21) together with the generalized Chern-Simons terms (5.12) is invariant under thesupersymmetry transformations (5.6) to (5.9) in the presene of gauged isometries.Now we are going to show that the fermioni term (5.12) an be used to de�ne a newderivative that is ovariant with respet to gauged isometries. The isometries atually indueshifts beause from (5.2) and (5.20) we an see that the gauge kineti funtion is shifted byan imaginary onstant: Æ�fAB = iCAB;C�C (5.27)26A useful relation is �"R��L + �"L��R = �"��.27This an be seen from ��"R��L + �"L��R = ��"�5�.28This makes use of ��"R5��L + �"L5��R = �"��.42



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetryThe only terms of (4.21) that are a�eted by this shift are found in the seond line. The �rstterm is the Peei-Quinn term, that was treated in 3, and the seond term is proportionalto the axial gaugino urrent. All the other terms are either proportional to Re fAB or itsderivative and, thus, are not a�eted.The term proportional to the axial gaugino urrent transforms under the gauged isometryas 14Æ�(�� Im fAB)��A5��B = i4Æ�AC�CAB;C��A5��B (5.28)whih is anelled by the variation of the orresponding fermioni generalized Chern-Simonsterm. If we now introdue the new derivativeD�fAB := ��fAB � iCAB;CAC� (5.29)whih transforms ovariantly under the shift symmetry (5.27), then we have done nothingelse but absorbed the fermioni generalized Chern-Simons term of (5.12) into (5.29). Fromthis point of view, it does not surprise that [26℄ found (5.12), though it was obtained forlinear gauge kineti funtions and through superspae tehniques.Now let us turn to the nonabelian isometries. The Lagrangian orresponding to (4.21) butinvariant under loal nonabelian gauge symmetries is obtained from (4.21) by substitutingpartial derivatives by ovariant derivatives and the Abelian �eld strengths by their ovari-ant ounterparts FA�� = 2�[�AA�℄ + fBCAAB�AC� . The same is valid for the supersymmetrytransformations. The fermioni part of the generalized Chern-Simons term (5.12) is madeinvariant under nonabelian gauge transformations by introduing a ovariant derivative. Thepure bosoni generalized Chern-Simons term was determined in setion 3 and is given byLGCS = 16"����CAB;CAB�AC� FA�� + 18"����CAB;CfDEAAD� AE� AC� AB� (5.30)where FA�� represents the Abelian part of the nonabelian �eld strength FA�� = FA�� +fDEAAD� AE� . The onstant tensors CAB;C have to ful�l two onstraints, as given in (3.7)and (3.8): C(AB;C) = 0 ; (5.31)CCB;AfDEA + 2CAC;[EfD℄BA + 2CAB;[EfD℄CA = 0 : (5.32)43



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYThe supersymmetry variation of the �rst term of (5.30) was omputed in (5.17) so it onlyremains to vary the seond term under supersymmetry. With the help of the onstraints(5.31) and (5.32) one an show thatCAB;CfDEA"����Æ�AD� AE� AC� AB� � = "���� �2CAE;DfBCA �CAE;BfDCA��CAB;DfECA� (ÆAB� )AC� AD� AE�= 2CAB;CfDEA "���� �"��BAC� AD� AE� : (5.33)The variation (5.33) ompletes the Abelian �eld strength in (5.17) to form the nonabelian �eldstrength FA��. Therefore we �nd for the variation of the nonabelian generalized Chern-Simonsterm ÆLGCS = 14"����CAB;D�"��BAD� FA�� (5.34)and we see that the results of the Abelian disussion an be straight-forwardly extended tothe nonabelian ase.5.2 Gauged isometries and anomalies in global N = 1 supersymmetryIn the previous subsetion we found that one isometries on the target spae of the salar�elds are gauged, the original supersymmetry transformations no longer ommute with gaugesymmetries. The new supersymmetry transformations are obtained from the old ones by re-plaing partial derivatives by gauge ovariant derivatives. Furthermore, one has to introduea new term into the transformation of the auxiliary �eld F i that ouples gaugini to Killingvetors. After these extensions in the transformation laws we saw that the Lagrangian (4.21)is no longer invariant under supersymmetry. In order to restore supersymmetry we had toovariantize the derivative29 in the term (D0� Im fAB)��A5��B with respet to the gaugedisometries and we added generalized Chern-Simons terms (5.30) to the ation. We showedthat this new ation is indeed invariant under supersymmetry again. This is only a speialase beause the in�nitesimal shift an in general have a nontrivial totally symmetri part,i.e., �if(ABkiC) 6= 0 : (5.35)29The derivative D0� is de�ned by D0� Im fAB := �� Im fAB � 2AC� fC(AD Im fB)D in aordane with (4.22).44



5.2 Gauged isometries and anomalies in global N = 1 supersymmetryThen, CAB;C as de�ned in (5.20) and the onstant tensor used for the generalized Chern-Simons terms (5.30) are no longer idential. As noted before, the onstant tensor of thegeneralized Chern-Simons terms, from now on denoted by CCSAB;C , is mixed symmetri. Thatmeans that it is symmetri in its �rst two indies and its totally symmetri part vanishes.From the deomposition of a tensor of degree three it follows that for vanishing totallysymmetri part it must be antisymmetri in its last two indies. This disussion showsthat there is a di�erene between CCSAB;C from the generalized Chern-Simons terms and theshift CAB;C if that ontains in addition to a part of mixed symmetry a part that is totallysymmetri in all indies (this is onsistent with the disussion in setion 3.4). Hene, thegeneralized Chern-Simons terms (5.30) an only possibly anel ontributions from Æ"Lgk, ifthe mixed symmetri part of the shifts CAB;C is equal to CCSAB;C , i.e. ifCAB;C = C(AB;C) +CCSAB;C : (5.36)It is important to observe that the term� i4CAB;CAC� ��A5��B (5.37)is needed to render the derivative of the imaginary part of the gauge kineti funtion, i.e.of �D0� Im fAB��A�5��, ovariant with respet to the gauged isometry. This goes beyondthe treatment of [26℄, where the mixed symmetri part of the term (5.37) was found to bea member of the Chern-Simons super�eld in superspae. The part proportional to C(AB;C)annot be obtained in a known way from a super�eld expression for the generalized Chern-Simons term as given in [26℄, due to the symmetry properties of CCSAB;C , i.e. the onstraint(5.13). As equation (5.12) is not supersymmetri in the Wess-Zumino gauge, it is better notto follow the lines of [26℄ and to still onsider (5.30) as the generalized Chern-Simons termfor supersymmetri theories. The fermioni term (5.37) is then used to gauge D0� Im fAB withrespet to the shift symmetry. Another important point to note is that now (5.22) does notvanish anymore and leaves an unanelled ontribution to the supersymmetry variation givenby �3i4 C(AB;C)[�"R�BR��CL�AL � �"L�BL ��CR�AR℄ : (5.38)45



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYIn the same way, the generalized Chern-Simons terms annot anel the orresponding vari-ations in (5.16) and (5.19) but it leaves the ontribution to the supersymmetry variation�14C(AB;C)"���� �"��BAC� FA�� + 18C(AB;C)fDEA"���� �"��BAC� AD� AE� : (5.39)Hene, for general shifts, where C(AB;C) 6= 0, the ation Lgk + LGCS is no longer supersym-metri. This tells us that we annot even expet the ation to be gauge invariant. In fat,the gauge variation leads to a non-invariane that is given byi8"���� �C(AB;C)FA��FB�� + (C(AB;D)fCEB + 32C(AB;C)fDEB)AD� AE� FA����C : (5.40)This expression is similar to the onsistent form of the anomaly. The total anomaly, however,is given by the supersymmetry anomaly and the gauge anomaly. A full ohomologial analysisof anomalies in supergravity was made by Brandt in [79℄ and [80℄. His result is that the totalanomaly onsisting of the gauge anomaly AC�C and the supersymmetry anomaly �"A" isgiven by AC = � i8"����[dABCFA��FB�� + (dABDfCEB + 32dABCfDEB)AD� AE� FA�� ℄ (5.41)�"A" = 3i4 dABC [�"R�BR��CL�AL � �"L�BL ��CR�AR℄ + 14dABC"���� �"��BAC� FA�� ��18dABCfDEA"���� �"��BAC� AD� AE� (5.42)where dABC denote total symmetri tensors that haraterize the anomaly and are determinedby the Wess-Zumino onsisteny ondition (2.25). The gauge anomaly given by (5.41) leadsto the onsistent anomaly (2.26), if one hooses the symmetri tensor to be of the formdABC = i24�2 tr�TAfTB ; TCg�. The anomaly originates from hiral fermions in the mattersetor.In omparing the expressions (5.38) and (5.39) with the supersymmetry anomaly (5.42)and the gauge variation (5.40) with the onsistent gauge anomaly (5.41), we see that theanomalies anel the left over ontributions in the supersymmetry and gauge variation pre-isely if C(AB;C) = dABC .Hene, generalized Chern-Simons terms and gauged isometries that introdue shifts inthe gauge kineti funtion anel hiral anomalies if the shifts satisfyCAB;C = dABC + CGCSAB;C : (5.43)46



5.3 Generalized Chern-Simons terms in SupergravityThis on�rms the disussion in setion (3.4). There the totally symmetri part of C ausedthe Chern-Simons �ve-form that again is related to the anomaly by the desent equation(3.55), implying that the anomaly an be anelled if dABC = C(AB;C).5.3 Generalized Chern-Simons terms in SupergravityIn going from global supersymmetry to supergravity, there appear terms in the gauge setorof supergravity that were not there in global supersymmetry. As it was demonstrated in theprevious setion, the Lagrangian (4.28) is invariant under the loal supersymmetry transfor-mations (4.34) to (4.39). In total analogy to the rigid ase, when isometries on the targetspae are gauged, the derivatives in the transformation laws for the hiral fermions �i andthe auxiliary �elds F i have to be ovariantized with respet to the gauged isometries and thelast term of (5.9) is present, too. This in turn auses again new ontributions in the variationof (4.28) under loal supersymmetry. Also the term proportional to D� Im fAB has to beextended to transform ovariantly under gauged isometries by introduing the new terme i4CAB;CAC� ��A�5�B : (5.44)This term auses new variations30 under supersymmetry due to Æ"e, Æ"� and the termÆextra" �A = 12���"� � ���� (5.45)that arises beause of F�� ! Fov�� in supergravity (4.39). The ontributions due to Æ"e, Æ"�and (5.45) are found to be equal toe i8CAB;CAC� [�"� ���A�5�B � � ���A�"�5�B � � ���A�"5��B + ��A�5�B �"� �℄ ++e18"����CAB;CAC� � ���A�"��B : (5.46)The ontribution from ovariantizing the derivative with respet to gauged isometries in thetransformation law of �i will ause extra variations in the variation of terms that ouple to�i. There are two relevant terms oupling to �i:� The �rst term is �12e�ifAB ��iL����LF̂A��+h.. whih gives rise to the termi8eCAB;CAC� �"�5�A � � ���B � � ���B�� 18e"����CAB;CAC� �"��B � ���A : (5.47)30We reall that the matries a represent the at spae Dira matries and are onstant, as opposed to �whih are dressed with a vierbein and, onsequently, it is Æ"� = Æ"e�aa.47



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYThese terms already anel the seond, third and �fth term of (5.46).� Another ontribution is aused by the term whih is given by�14e�ifAB � �R��iL��AL�BL+h.. and ouples the gravitino to �i. It leaves the un-anelled variationi16eCAB;CAC� � � ���"��A5�B � � ���5"��A�B� (5.48)� The last ontribution that has to be onsidered originates from the variation of theauxiliary �eld F i in �14 e��ifAB�F i��AL�BL+h.., i.e. through the ovariant derivative of� in ÆF i: Æ"F i = �"R�D��i + : : : = �12 �"R��D̂�zi �R + : : := 12kiCAC� �"R�� �R + : : : : (5.49)Therefore, the extra variation is given by+ i16eCAB;CAC� ��"��5 ���A�B � �"�� ���A5�B� : (5.50)With help of the rearrangement formulae for spinor bilinears, one �nds that (5.48) and (5.50)anel the �rst and the fourth term of (5.46). Also in N = 1 supergravity all the extra ontri-butions to the supersymmetry variation that were not present in the supersymmetry variationof the supergravity ation (4.28) vanish without the need of extra terms (e.g. generalizationsof the generalized Chern-Simons terms due to supergravity). The variation of the generalizedChern-Simons terms themselves is not inuened by the transition from rigid supersymme-try to supergravity beause it depends only on the vetor �elds AC� , whose supersymmetrytransformations have no gravitino orretions in N = 1 supergravity.When heking the gauge invariane of terms proportional to the gravitino, one �nds thatneither terms involving the real part of the gauge kineti funtion, Re fAB, nor its derivativesviolate the gauge invariane of (4.28). The only ontributions that violate gauge invarianeome from the purely imaginary parts of the gauge kineti funtion Im fAB . On the otherhand, no extra terms proportional to Im fAB appear when one goes from rigid supersymmetryto supergravity. Hene, the gauge variation of (4.28) does not ontain any gravitino whih48



5.4 Reduing to Abelian�semisimpleis onsistent with the result that neither the supersymmetry variation of (4.28) nor thegeneralized Chern-Simons term (5.30) ontain gravitini.Consequently, the method of gauging isometries of the target spae as developed in theprevious subsetion for rigid supersymmetry an be applied straightforwardly to N = 1supergravity, and anomalies are anelled in aordane with rigid supersymmetry.5.4 Reduing to Abelian�semisimpleSemisimple groups do not lead to non-trivial generalized Chern-Simons terms as shown insetion 3.2. Furthermore, in setion 3.3 we disussed the example of the diret produtof an Abelian gauge group with a semisimple gauge group. Now we want to further restritourselves to the produt of a one-dimensional Abelian fator and a semisimple group, denotedby G: U(1)�G. This will allow us to larify the relation between the results developed hereand in previous work, in partiular [81,82℄. In these papers, the authors study the strutureof quantum onsisteny onditions of N = 1 supergravity. More preisely, they larify theanomaly anellation onditions (required by the quantum onsisteny) for a U(1)�G gaugegroup. We introdue the notations F�� and Gx�� for the Abelian and semisimple �eld strengths,respetively.In this ase, one an look at \mixed" anomalies, whih are the ones proportional toTr(QTxTy), where Q is the U(1) harge operator and Tx are the generators of the semisimplealgebra. Following [82, Set.2.2℄, one an add ounterterms represented by Lt suh thatthe mixed anomalies proportional to �x anel and one remains with those that are of theform �0"���� Tr (QG��G��), where �0 is the Abelian gauge parameter. Shematially, thisorresponds to Anomalies: �xAxmixedon + �0A0mixed onÆ(�)Lt : ��xAxmixed on � �0A0mixed on+ �0A0mixedovsum: 0 + �0A0mixedov (5.51)where the subsripts \on" and \ov" denote the onsistent and ovariant anomalies, respe-tively. The ounterterms Lt have the following form:Lt = 13Z"����C�Tr hQ �A���A� + 34A�A�A�� i ; Z = 14�2 ; (5.52)49



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYwhere C� and A� are the gauge �elds for the Abelian and semisimple gauge groups respe-tively. The expressions for the anomalies are:Axmixed on = �13Z"���� Tr hT xQ�� �C���W� + 14C�W�W�� i ;A0mixed on = �16Z"���� Tr hQ�� �W���W� + 12W�W�W�� i ;A0mixed ov = �18"���� Tr hQG��G��i : (5.53)The remaining anomaly A0mixedov is typially anelled by the Green-Shwarz mehanism.This will be now ompared with the results of the urrent setion and setion 3 reduedto the ase U(1) � G. The index A is split into 0 for the U(1) and x for the semisimplegroup generators. We expet the generalized Chern-Simons terms (5.30) to be equivalent tothe ounterterms in [82℄ and the role of the Green-Shwarz mehanism is played by a U(1)variation of the kineti terms fxy, hene by a C-tensor with non-trivial omponents Cxy;0.The disussion that led to (3.45) and (3.46) an be transferred to the present ase and itfollows that C0x;0 = C00;x = 0 : (5.54)The Cxy;0's are proportional to the Cartan-Killing metri in eah simple fator as explainedin setion 3.3 and we write here Cxy;0 = Z Tr(QTxTy) ; (5.55)where Z ould be arbitrary, but our results will math the results of [82℄ for the value of Zin (5.52). Note that this is in total agreement with setion 3.3If we do not allow for o�-diagonal elements of the gauge kineti funtion fAB, we havef0x = 0 ) C0x;y = 0 : (5.56)The omponents C00;0 and Cxy;z may be nonzero, but here we shall be only onerned withthe mixed omponents, i.e. we have only (5.55) di�erent from zero.If we redue the gauge variation Æ�� Im fABFA ^ FB� using (5.54) and (5.55), we obtainhÆ(�)Ŝf imixed = Z d4xh18Z�0"���� Tr (QG��G��) i : (5.57)50



5.4 Reduing to Abelian�semisimpleIt is suitable to split (5.55) into a totally symmetri and a part of mixed symmetry, whihleads to C(s)xy;0 = C(s)0x;y = 13Cxy;0 = 13Z Tr(QTxTy) ;C(m)xy;0 = 23Cxy;0 = 23Z Tr(QTxTy) ; C(m)0x;y = �13Cxy;0 = �13Z Tr(QTxTy) : (5.58)Note that this is onsistent with the disussion in setion 3.4, i.e. with the equations (3.59)to (3.61). In the previous setions, it was shown that for a �nal gauge and supersymmetryinvariant theory the mixed symmetri part has to be identi�ed with the onstant tensor infront of the generalized Chern-Simons term, i.e. CCS = C(m). Therefore, the mixed part ofthe generalized Chern-Simons term, (5.30), beomes in this ase:[SCS℄mixed = Z d4x h13ZC�"���� Tr �Q �A���A� + 34A�A�A��� i ; (5.59)whih mathes (5.52) and is onsistent with equation (3.49).Finally, from reduing the onsistent anomaly (5.41) we �nd, using dABC = C(s)ABC , thatthe mixed anomalies are given byA0 = �16Z"���� Tr �Q�� �A���A� + 12A�A�A��� ;Ax = �13Z"���� Tr �T xQ�� �C���A� + 14C�A�A��� ; (5.60)whih math exatly (5.53).Let us summarize the results of our omparison with [82℄:(i) The mixed part of the GCS ation (5.59) is indeed equal to the ounterterms (5.52),introdued in [82℄.(ii) The onsistent anomalies (5.60) math those in the �rst two lines of (5.53). As wementioned above, the ounterterm has modi�ed the resulting anomaly to the ovariantform in the last line of (5.53).(iii) We see that the variation of the kineti term for the vetor �elds (5.57) may anel thismixed ovariant anomaly (this is the Green-Shwarz mehanism).51



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYTaking all together, we an summarize the anellation proedure shematially as follows:Anomalies: �xAxmixed on + �0A0mixed onÆ(�)L(CS) : ��xAxmixedon � �0A0mixed on+ �0A0mixedovÆ(�)Ŝf : � �0A0mixedovsum: 0 + 0 (5.61)
5.5 SummaryIn the beginning of this setion we showed that gauged isometries on the target spae ofsalar �elds modi�ed the supersymmetry transformations of the gauge supermultiplet foundin setion 4.1. We had to extend the partial derivative in the supersymmetry transformationÆ�iL to a ovariant derivative (5.7) and to introdue the term �"R�ARkiA into the supersymmetrytransformation of F i aording to [84℄. We know from the disussion in setion 3 that thegauge transformation Æ�zi (5.1) in general auses a gauge variation of the Peei-Quinn-typeterm Im fABFAFB , whih may be anelled in ertain ases by a generalized Chern-Simonsterm. This motivated to add a term to the gauge setor of global N = 1 supersymmetry,that is equal to the extension of the generalized Chern-Simons term to N = 1 supersymmetrypresented in [26℄. The new term onsists of the usual bosoni Chern-Simons term (5.30)together with the fermioni term i4CAB;CAC� ��A5��B ; (5.62)where CAB;C is mixed symmetri in its indies. We showed that if the gauged isometries in-due an imaginary shift in the gauge kineti funtion (5.27), then the variations of the gaugesetor, the generalized Chern-Simons terms and the fermioni term (5.62) under supersym-metry anel provided the onstraint C(AB;C) = 0 holds. If ont the other hand, C(AB;C) 6= 0,it is suitable to use the fermioni term in order to de�ne the gauge ovariant derivativeD� Im fAB = �� Im fAB � 2AC� fC(AD Im fB)D � iAC�CAB;C ; (5.63)and not to add it to the generalized Chern-Simons term (5.30). Note that now there is thefull tensor CAB;C in equation (5.63), i.e. CAB;C = C(s)AB;C + C(m)AB;C .52



5.5 SummaryNow that we have relaxed the onstraint C(AB;C) = 0 and allowed for a nontrivial totallysymmetri part C(AB;C), this auses new ontributions to the gauge and supersymmetryvariations that no longer vanish. The important observation is that the gauge and supersym-metry non-invariane indued by C(AB;C) 6= 0 an only be anelled if there are gauge andsupersymmetry anomalies and we demandC(AB;C) = dABC ; (5.64)where the symmetri tensor dABC haraterizes the anomaly.After performing the analysis in globalN = 1 supersymmetry, we ould extend our resultsto N = 1 supergravity. It turns out that the generalized Chern-Simons term (5.30) does notneed any gravitino orretion and an thus be added as suh to matter-oupled supergravityations.Thus, the results of this setion provide an extension to the general framework of oupledhiral and vetor multiplets in global and loal N = 1 supersymmetry to inlude the generalform of gauged axioni shifts, generalized Chern-Simons terms and anomalies.31

31We should emphasize that we only onsidered anomalies of gauge symmetries that are gauged by el-ementary vetor �elds. The interplay with K�ahler anomalies in supergravity theories an be an involvedsubjet [81, 82℄, whih was not studied. Also we did not onsider gravitational anomalies.53



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIES6 Sympletially ovariant formalism and anomalies in hiralgauge theoriesIn this setion we introdue a formulation of hiral gauge theories whih is manifestly ovariantwith respet to eletri/magneti duality. For anomaly-free gauge theories as they our inextended supergravity, this formulation was �rst presented in [83℄. Maintaining ovarianeat eah step is ahieved by introduing the so-alled embedding tensor. A set of onstraintson the embedding tensor and extra gauge invarianes make sure that the degrees of freedomremain unhanged. We will see that in addition to the usual gauge variations of gaugetheory extra gauge variations appear whih ause violations of the Bianhi identity and theJaobi identity. Consequently, the �eld strength tensor orresponding to the vetor �eldswill no longer transform ovariantly. Therefore, the authors of [83℄ introdue tensor �eldswhih transform under the gauge variation suh that the ombination of the �eld strengthtensor together with the tensor �elds transforms ovariantly again. For this to work, one hasto add two topologial terms in order to obtain a gauge invariant ation that is invariantwith respet to the gauge transformations. The gauge invariane relies heavily on the set ofonstraints of the embedding tensor given in [83℄. We will show that it is possible to relaxone of these onstraints in order to a allow for a nontrivial totally symmetri tensor. We willdisplay how this totally symmetri tensor leads to a gauge non-invariane of the Lagrangiangiven in [83℄. We will further show how one an anel this gauge non-invariane by gaugeanomalies, if the totally symmetri tensor desribes anomalies in a sympletially ovariantway and give the neessary ondition. In this sense we an say that the results of this setiongeneralize the Green-Shwarz mehanism [2℄ to beome a \sympletially ovariant Green-Shwarz mehanism". In making a speial hoie for the embedding tensor one reovers theresults of the previous hapter for the purely bosoni setor. In subsetion 6.4 we give anexpliit example that goes beyond the disussion of [83℄ and show how the relaxation of oneonstraint allows a possible anellation by anomalies. This setion represents another majortopi of this thesis and is based on the work [40℄.The outline of this setion is as follows. In subsetion 6.1 we will give the sympletiallyovariant framework of [83℄ in a more general treatment. Then in subsetion 6.2 we showhow the formalism of [83℄ has to be modi�ed in order to aommodate quantum anomalies.54



6.1 Eletri/magneti duality without anomaliesIn subsetion 6.3 we hoose purely eletri gaugings and obtain bak earlier results.We eshout our results with a simple nontrivial example in subsetion 6.4. The main results of thissetion are summarized in subsetion 6.5.In this setion the notation is hanged to the one of [40℄ so as to make the generalizationof [83℄ more transparent.6.1 Eletri/magneti duality without anomaliesIn this subsetion we will introdue eletri/magneti duality and display the main resultsof [83℄.6.1.1 Eletri/magneti duality and the onventional gaugingIn the absene of harged �elds, a gauge invariant four-dimensional Lagrangian of n Abelianvetor �elds A��(� = 1; : : : ; n) only depends on their urls F��� � 2�[�A�℄�. De�ning thedual magneti �eld strengths G�� � := "���� �L�F��� ; (6.1)the Bianhi identities and �eld equations an be brought to the following form�[�F��℄� = 0 ; (6.2)�[�G��℄ � = 0 : (6.3)This formulation allows to ombine the eletri Abelian �eld strengths, F���, and theirmagneti duals, G�� �, into a 2n-plet, F��M , suh that FM = (F�; G�). Therefore, (6.2) and(6.3) an be written in the following ompat way:�[�F��℄M = 0 : (6.4)It is rather obvious that equation (6.4) is invariant under general linear transformationsFM ! F 0M = SMNFN ; where SMN = 0�U�� Z��W�� V��1A ; (6.5)but a relation of the type (6.1) is only possible for sympleti matries SMN 2 Sp(2n;R).Thus, the admissible rotations SMN form the group Sp(2n;R):ST
S = 
; (6.6)55



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESwith the sympleti metri, 
MN , given by
MN = 0� 0 
��
�� 0 1A = 0� 0 Æ���Æ�� 0 1A : (6.7)We de�ne 
MN via 
MN
NP = �ÆMP . Note that the omponents of 
MN should not bewritten as 
�� et., as these di�er from (6.7) by the fator of (�1).Starting point is a kineti Lagrangian of the formLgk = +14 ImN��F���F ��� � 18"���� ReN��F���F��� ; (6.8)where N�� denotes the gauge kineti funtion32. Applying an eletri/magneti dualitytransformation to (6.8) leads to a new Lagrangian, L0gk(F 0), whih is of a similar form, butwith a new gauge kineti funtionN�� ! N 0�� = (VN +W )�
�(U + ZN )�1�
� : (6.9)The subset of Sp(2n;R) symmetries (of �eld equations and Bianhi identities) for whih theLagrangian remains unhanged, in the sense that L0(F 0(F )) = L(F ), are invarianes of theation. In a di�erent duality frame, the Lagrangian might have a di�erent set of invarianes.From the spaetime point of view, these are all rigid (\global") symmetries and sometimesthese global symmetries an be gauged. For the onventional gaugings [26℄ one has to restritto the transformations that leave the Lagrangian invariant, whih implies that Z�� in thematries SMN of (6.5) has to vanish. In the ontext of sympletially ovariant gaugings [83℄,however, this restrition an be relaxed. We will ome bak to these more general gaugingsin setion 6.1.2.When the symmetry is gauged, ovariant derivatives and �eld strengths are introdued asusual. In the standard way of gauging, this an be implemented solely with the eletri vetor�elds A�
 and the orresponding eletri gauge parameters �
. The gaugeable sympletitransformation, S, must thus be of the in�nitesimal formSMN = ÆMN � �
S
MN : (6.10)32The gauge kineti funtion fAB , as used so far, orresponds in this setion to �iN ���.56



6.1 Eletri/magneti duality without anomaliesAording to our de�nition (6.5), these in�nitesimal sympleti transformations at on the�eld strengths by multipliation with the matries S�MN from the left. Following the on-ventions of [83℄, however, we will use matries X
MN to desribe the in�nitesimal sympletiation via multipliation from the right:ÆF��M = F 0��M � F��M = ��
F��NX
NM ; i.e. X
NM = S
MN : (6.11)Then, for standard eletri gaugings we have the transformationÆ0� F���G�� �1A = ��
0�X
�� 0X
�� X
��1A0� F���G�� �1A ; (6.12)where X
�� = �X
�� = f
�� must be the struture onstants of the gauge algebra33, andX��� = X�(��) would give rise to the axioni shifts34 mentioned in setions 3 and 5.Then the gauging proeeds in the usual way by introduing ovariant derivatives (�� �A��Æ�), where the Æ� are the gauge generators in a suitable representation of the matter�elds (see (5.1), for example). One also introdues ovariant �eld strengths and possiblyGCS terms as desribed below. As we assume the absene of quantum anomalies in thissubsetion, we have to require X(���) = 0 in aordane with the results found in setions 3and 5.6.1.2 The sympletially ovariant gaugingWe will now turn to the more general gauging of symmetries. The group that will be gaugedis a subgroup of the rigid symmetry group. What we mean by the rigid symmetry groupis a bit more subtle in N = 1 supersymmetry (or theories without supersymmetry) thanin extended supersymmetry. This is due to the fat that in extended supersymmetry thevetors are supersymmetrially related to salar �elds, and therefore their rigid symmetriesare onneted to the symmetries of salar manifolds.In N = 1 supersymmetry or in theories without supersymmetry, the rigid symmetriesof the vetor and salar setor are not diretly related. Then the rigid symmetry group,Grigid, is a subset of the produt of the sympleti duality transformations that at on thevetor �elds and the isometry group of the salar manifold of the hiral multiplets: Grigid �33In previous setions denoted by fABC .34The shifts CAB;C are translated by X��
 = C�
;� for the hoie made in (6.10).57



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESSp(2n;R)�Iso(Msalar). In N = 1 supergravity, this means that the ation of the symmetriesis given by elements (g1; g2) of Sp(2n;R) � Iso(Msalar) that are ompatible with (6.9) inthe sense that the sympleti ation (6.9) of g1 on the matrix N is indued by the isometryg2 on the salar manifold. These are rigid (\global") symmetries provided they also leavethe rest of the theory (deriving from salar potentials, et.) invariant [85℄. In this sense, therelevant isometries are those that respet the K�ahler struture (i.e. the isometries have to begenerated by holomorphi Killing vetors) and that also leave the superpotential invariant (insupergravity, the superpotential should transform aording to the K�ahler transformations).35The generators of Grigid will be denoted by Æ�, � = 1; : : : ; dim(Grigid). These generatorsat on the di�erent �elds of the theory either via Killing vetors Æ� = K� = Ki� ���i de�ningin�nitesimal isometries on the salar manifold, or with ertain matrix representations36, e.g.Æ��i = ��j(t�)j i.On the �eld strengths F��M = (F���; G�� �), these rigid symmetries must at by multi-pliation with in�nitesimal sympleti matries37 (t�)MP ; i.e., we have(t�)[MP
N ℄P = 0 : (6.13)In order to gauge a subgroup, Gloal � Grigid, the 2n-dimensional vetor spae spanned bythe vetor �elds38 A�M has to be projeted onto the Lie algebra of Gloal, whih is formallydone with the so-alled embedding tensor �M� = (���;���). Equivalently, �M� ompletelydetermines the gauge group Gloal via the deomposition of the gauge group generators, whihwe will denote by ~XM , into the generators of the rigid invariane group Grigid:~XM := �M�Æ�: (6.14)35Note that this may inlude ases where either the sympleti transformation g1 or the isometry g2 istrivial. Another speial ase is when the isometry g2 is non-trivial, but N does not transform under it, ashappens, e.g, when N = i is onstant. Grigid is in general a genuine subgroup of Sp(2n;R) � Iso(Msalar),even in the latter ase of onstant N .36The struture onstants de�ned by [Æ�; Æ� ℄ = f��Æ lead for the matries to [t�; t�℄ = �f��t .37These matries might be trivial, e.g., for Abelian symmetry groups that only at on the salars (and/orthe fermions) and that do not give rise to axioni shifts of the kineti matrix N��.38The equations of motion (6.3) imply the existene of magneti gauge potentials, A��, via G�� � =2�[�A�℄�. The magneti gauge potentials obtained in this way are in turn related to the eletri vetorpotentials, A��, by nonloal �eld rede�nitions. The eletri and magneti vetor �elds an be ombined intoa 2n-plet, AM� , suh that AM = (A�; A�). 58



6.1 Eletri/magneti duality without anomaliesThe gauge generators ~XM enter the gauge ovariant derivatives of matter �elds,D� = �� �A�M ~XM = �� �A�����Æ� �A�����Æ� ; (6.15)where the generators Æ� are meant to either at as representation matries on the fermionsor as Killing vetors on the salar �elds, as mentioned above. On the �eld strengths of thevetor potentials, the generators Æ� at by multipliation with the matries (t�)NP , so that(6.14) is represented by matries (XM )NP whose elements we denote as XMNP and whoseantisymmetri part in the lower indies appears in the �eld strengthsF��M = 2�[�A�℄M +X[NP ℄MA�NA�P ; XNPM = �N�(t�)PM : (6.16)The sympleti property (6.13) impliesXM [NQ
P ℄Q = 0 ; XMQ[N
P ℄Q = 0 : (6.17)In the remainder of this paper, the symmetrized ontration X(MNQ
P )Q will play an im-portant rôle. We therefore give this tensor a speial name and denote it by DMNP :DMNP = X(MNQ
P )Q : (6.18)Note that this is really just a de�nition and no new onstraint. Using the de�nition (6.18),one an hek that 2X(MN)Q
RQ +XRMQ
NQ = 3DMNR ;i.e. X(MN)P = 12
PRXRMQ
NQ + 32DMNR
RP : (6.19)6.1.2.1 Constraints on the embedding tensor The embedding tensor �M� has tosatisfy a number of onsisteny onditions. Closure of the gauge algebra and loality require,respetively, the quadrati onstraintslosure: f���M��N� = (t�)NP�M��P  ; (6.20)loality: 
MN�M��N� = 0 , ��[����℄ = 0 ; (6.21)where f�� are the struture onstants of the rigid invariane group Grigid, see footnote 36.The onstraint (6.20) also expresses the invariane of the embedding tensor under Grigid.59



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESAnother onstraint, besides (6.20) and (6.21), was inferred in [83℄ from supersymmetry on-straints in N = 8 supergravityDMNR � X(MNQ
R)Q = 0 : (6.22)This onstraint eliminates some of the representations of the rigid symmetry group and istherefore sometimes alled the \representation onstraint". One an atually show that theloality onstraint is not independent of (6.20) and (6.22), apart from spei� ases where(t�)MN has a trivial ation on the vetor �elds.However, we will neither use the loality onstraint (6.21) nor the representation on-straint (6.22). We will, instead, need another onstraint in setion 6.1.2.4, whose meaning wewill disuss in setion 6.2. Before oming to that new onstraint, we thus only use the losureonstraint (6.20). This onstraint reets the invariane of the embedding tensor under Gloaland it implies for the matries XM the relation[XM ;XN ℄ = �XMNP XP : (6.23)This learly shows that the gauge group generators ommute into eah other with `strutureonstants' given by X[MN ℄P . In general, XMNP also ontains a non-trivial symmetri part,X(MN)P . The antisymmetry of the left hand side of (6.23) only requires that the ontrationX(MN)P�P� vanishes, as is also diretly visible from (6.20). Therefore one hasX(MN)P�P � = 0 ! X(MN)PXPQR = 0 : (6.24)Writing out (6.23) expliitly givesXMQPXNPR �XNQPXMPR +XMNPXPQR = 0 : (6.25)Antisymmetrizing in [MNQ℄, we an split the seond fator of eah term into the antisym-metri and symmetri part, XMNP = X[MN ℄P + X(MN)P , and this gives a violation of theJaobi identity for X[MN ℄P asX[MN ℄PX[QP ℄R +X[QM ℄PX[NP ℄R +X[NQ℄PX[MP ℄R= �13 �X[MN ℄PX(QP )R +X[QM ℄PX(NP )R +X[NQ℄PX(MP )R� : (6.26)60



6.1 Eletri/magneti duality without anomaliesOther relevant onsequenes of (6.25) an be obtained by (anti)symmetrizing in MQ. Thisgives, using also (6.24), the two equationsX(MQ)PXNPR �XNQPX(MP )R �XNMPX(QP )R = 0 ;X[MQ℄PXNPR �XNQPX[MP ℄R +XNMPX[QP ℄R = 0 : (6.27)6.1.2.2 Gauge transformations An important onsequene of the nonvanishing sym-metri part X(MN)P is the violation of the Jaobi identity (6.26). This is the prize one hasto pay for the sympletially ovariant treatment in whih both eletri and magneti vetorpotentials appear at the same time. In order to ompensate for this violation and in orderto make sure that the number of propagating degrees of freedom is the same as before, oneimposes an additional gauge invariane in addition to the usual non-Abelian transformation���M +X[PQ℄MA�P�Q and extends the gauge transformation of the vetor potentials toÆA�M = D��M �X(NP )M��NP ; D��M = ���M +XPQMA�P�Q ; (6.28)where we introdued the ovariant derivative D��M , and new vetor-like gauge parame-ters ��NP , symmetri in the upper indies. The extra terms X(PQ)MA�P�Q and the �-transformations ontained in (6.28) allow one to gauge away the vetor �elds that orrespondto the diretions in whih the Jaobi identity is violated, i.e., diretions in the kernel of theembedding tensor (see (6.24)).It is important to notie that the modi�ed gauge transformations (6.28) still lose on thegauge �elds and thus form a Lie algebra. Indeed, if we split (6.28) into two parts,ÆA�M = Æ(�)A�M + Æ(�)A�M ; (6.29)the ommutation relations are[Æ(�1); Æ(�2)℄A�M = Æ(�3)A�M + Æ(�3)A�M ;[Æ(�); Æ(�)℄A�M = [Æ(�1); Æ(�2)℄A�M = 0 ; (6.30)with �M3 = X[NP ℄M�N1 �P2 ;�3�PN = �(P1 D��N)2 � �(P2 D��N)1 : (6.31)61



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESTo prove that the terms that are quadrati in the matries XM in the left-hand side of (6.30)follow this rule, one uses (6.27). Due to (6.24) and (6.28), however, the usual properties ofthe �eld strength F��M = 2�[�A�℄M + X[PQ℄MA�PA�Q (6.32)are hanged. In partiular, it will no longer ful�ll the Bianhi identity, whih now must bereplaed byD[�F��℄M = X(NP )MA[�NF��℄P � 13X(PN)MX[QR℄P A[�NA�QA�℄R : (6.33)Furthermore, F��M does not transform ovariantly under a gauge transformation (6.28).Instead, we haveÆF��M = 2D[�ÆA�℄M � 2X(PQ)MA[�P ÆA�℄Q= XNQM F��N�Q � 2X(NP )MD[���℄NP � 2X(PQ)MA[�P ÆA�℄Q ; (6.34)where the ovariant derivative is (both expressions are useful and related by (6.27))X(NP )MD���NP = �� �X(NP )M��NP �+A�RXRQMX(NP )Q��NP ;D���NP = ����NP +XQRPA�Q��NR +XQRNA�Q��PR : (6.35)Therefore, if we want to deform the gauge kineti Lagrangian Lgk and aommodate eletriand magneti gauge �elds, F��M annot be used to onstrut gauge-ovariant kineti terms.For this reason, the authors of [83℄ introdued tensor �elds B�� �, later in [86℄ to bedesribed by B��MN , symmetri in (MN), and with them modi�ed �eld strengthsH��M = F��M +X(NP )MB��NP : (6.36)We will onsider gauge transformations of the antisymmetri tensors of the formÆB��NP = 2D[���℄NP + 2A[�(N ÆA�℄P ) +�B��NP ; (6.37)where �B��NP depends on the gauge parameter �Q, but we do not �x it further at thispoint. Together with (6.34), this then implies39ÆH��M = XNQM�QH��N +X(NP )M�B��NP : (6.38)39Note that F��N in the seond line of (6.34) an be replaed by H��N due to (6.24).62



6.1 Eletri/magneti duality without anomalies6.1.2.3 The kineti Lagrangian As the �eld strength does not transform ovariantlyanymore, the Lagrangian (6.8) annot be invariant. Invariane an be restored in extending(6.8) as we will show now. The �rst step towards a gauge invariant ation is to replae F���in Lg:k:, (6.8), by H��� beause if �B��NP = 0, then HM�� transforms ovariantly under(6.28). So in this ase the new kineti LagrangianLg:k: = 14eI��H���H��� � 18R��"����H���H��� ; (6.39)is indeed invariant. Here again I�� and R�� denote, respetively, ImN�� and ReN��. Thedual �eld strength to H��� is given byG�� � � "���� �L�H��� = R��H��� + 12e"���� I��H�� � ; (6.40)and, onsequently, the Lagrangian and its transformations an be written asLg:k: = �18"����H���G��� ;ÆLg:k: = �14"����G�� �ÆH���+18"�����Q �H���XQ��H��� � 2H���XQ��G��� � G�� �XQ��G���� ; (6.41)In the third line, we used the in�nitesimal form of (6.9):Æ(�)N�� = �Mh�XM�� + 2XM(��N�)� +N��XM��N��i : (6.42)The seond line of (6.41) an be rewritten as a ovariant expression whenG��M = �G��� ; G���� with G��� � H��� ; (6.43)is introdued. In using (6.38), we obtain for the variation of the gauge kineti LagrangianÆLg:k: = "���� ��14G�� � ��QXPQ�H��P +X(NP )��B��NP �+18G��MG��N�QXQMR
NR� : (6.44)Even if �B��NP = 0, the newly proposed form for Lg:k: in (6.39) is still not gauge invariant.This should not ome as a surprise beause (6.42) ontains a onstant shift (i.e., the termproportional to XM��), whih requires the addition of extra terms to the Lagrangian (insetion 5 and 3 we had to add the generalized Chern-Simons terms to absorb onstant shifts63



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESin the gauge kineti funtion). Also the last term on the right hand side of (6.42) gives extraontributions that are quadrati in the kineti funtion. In the next steps we will see thatbesides GCS terms, also terms linear and quadrati in the tensor �eld are required to restoregauge invariane. We start with the disussion of the latter terms.6.1.2.4 Topologial terms for the B-�eld and a new onstraint The seond steptowards gauge invariane is made by adding topologial terms linear and quadrati in thetensor �eld B��NP to the gauge kineti term (6.39), namelyLtop;B = 14"���� X(NP )�B��NP �F�� � + 12 X(RS)�B��RS� : (6.45)Note that this term vanishes for purely eletri gaugings beause there one has X(NP )� = 0�as an be seen from the disussion around (6.12)�. Consequently, the tensor �elds deouplefrom the theory in eletri gaugings.We reall that, up to now, only the losure onstraint (6.20) has been used. Now, however,one new but not independent onstraint is imposed:X(NP )M
MQX(RS)Q = 0 : (6.46)It will be shown later that this onstraint is atually implied by the loality onstraint (6.21)and the original representation onstraint of [83℄, i.e. (6.22). As it turns out, even therelaxation of the onstraint (6.22) to allow for nontrivial DMNR 6= 0 will still imply (6.46).The onstraint (6.46) simply means thatX(NP )�X(RS)� = X(NP )�X(RS)� : (6.47)A onsequene of this onstraint that is quite useful for omputations follows from the �rstof (6.19) and (6.24): X(PQ)RDMNR = 0 : (6.48)The variation of Ltop;B isÆLtop;B = 14 "����X(NP )� �H��� ÆB��NP +B��NP ÆF���� (6.49)= 14 "����X(NP )� �H��� ÆB��NP + 2B��NP �D�ÆA�� �X(RS)�AR� ÆAS� �� :64



6.1 Eletri/magneti duality without anomalies6.1.2.5 Generalized Chern-Simons terms If there is a onstant shift by XM�� in(6.42) we know from the arguments in setion 5 that generalized Chern-Simons terms areneessary. In [83℄, the authors introdued a generalized Chern-Simons term of the form(these are the last two lines in what they alled Ltop in their equation (4.3))LGCS = "����A�MA�N �13 XMN � ��A�� + 16XMN���A�� + 18XMN �XPQ�A�PA�Q� :(6.50)Using (6.25) antisymmetrized in [MNQ℄ and the de�nition of DMNP in (6.18), one an writeits variation asÆLGCS = "���� �12F���D�ÆA�� � 12F���X(NP )�A�NÆA�P�DMNPA�MÆA�N ���A�P + 38XRSPA�RA�S�� : (6.51)modulo total derivatives. Finally, ombining the variation of the generalized Chern-Simonsterm with (6.49) results inÆ (Ltop;B + LGCS) = "���� �12H���D�ÆA�� + 14H���X(NP )� �ÆB��NP � 2A�NÆA�P ��DMNPA�MÆA�N ���A�P + 38XRSPA�RA�S�� : (6.52)6.1.2.6 Variation of the total ation The results of the previous paragraphs allow usto disuss the symmetry variation of the total LagrangianLV T = Lg:k: + Ltop;B + LGCS ; (6.53)built from (6.39), (6.45) and (6.50). In agreement with [83℄ we will �nd that (6.53) is indeedinvariant under (6.28). In order to see this, we �rst hek the invariane of (6.53) with respetto the �-transformations. One an see diretly from (6.44) that the gauge-kineti terms areinvariant as no �-term appears in their variation. The seond line of (6.52) also learlyvanishes beause any �-transformation is proportional to the symmetri part X(MN)P and isprojeted to zero by DRSP due to (6.48). This leaves us with the �rst line of (6.52). If weuse (6.37) and (6.28), this an be written in a sympletially ovariant form:Æ�LV T = �12"����H��MX(NP )Q
MQD���NP : (6.54)65



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESThe B-terms in H, see (6.36), are proportional to X(RS)M and thus give a vanishing on-tribution due to our new onstraint (6.46). For the F terms we an perform an integrationby parts40 and then aording to (6.33) there are again only terms proportional to X(RS)Mleading to the same onlusion. Therefore, the �-variation of the total ation vanishes.Thus, we only have to onsider the �M gauge transformations. In aordane with (6.34),the D�ÆA��-term in (6.52) an be replaed by 12�QXNQ�H��N (see again footnote 39). Onean then obtain a sympletially ovariant expression when this is ombined with the �rstterm of (6.44) (the �rst term on the right hand side of (6.55) below). Adding also theremaining terms of (6.52) and (6.44), one obtains, using (6.37),ÆLV T = "���� �14G��M�QXNQR
MRH��N + 18G��MG��N�QXQMR
NR+14(H� G)�� �X(NP )��B��NP�DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� : (6.55)We observe that if the H in the �rst line was a G, eqs. (6.17) and (6.19) would allow oneto write the �rst line as an expression proportional to DMNP . This leads to the �rst line in(6.56) below. The seond observation is that the identity (H�G)� = 0 allows one to rewritethe seond line of (6.55) in a sympletially ovariant way, so that, altogether, we haveÆLV T = "���� �14G��M�QXNQR
MR(H� G)��N + 38G��MG��N�QDQMN�14(H�G)��M
MRX(NP )R�B��NP�DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� : (6.56)By hoosing �B��NP = ��NG��P � �PG��N ; (6.57)the result (6.56) beomesÆLV T = "���� �38�QDMNQ �2G��M (H� G)��N + G��MG��N��DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� ; (6.58)40Integration by parts with the ovariant derivatives is allowed beause (6.25) an be read as the invarianeof the tensor X and (6.17) as the invariane of 
. 66



6.1 Eletri/magneti duality without anomalieswhih is then proportional to DMNP , and hene zero when the original representation on-straint (6.22) is imposed.Our goal is to generalize this for theories with quantum anomalies. These anomaliesdepend only on the gauge vetors. However, the �eld strengths G, (6.40) also depends on thematrix N whih itself generially depends on salar �elds. Therefore, we want to onsidermodi�ed transformations of the antisymmetri tensors suh that G does not appear in the�nal result.To ahieve this, we would like to replae (6.57) by a transformation suh thatX(NP )R�B��NP = �2X(NP )R�NG��P + 32
RMDMNQ�Q(H� G)��N : (6.59)Indeed, inserting this in (6.56) would lead toÆLV T = "���� �38�QDMNQF��MF��N�DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� ; (6.60)where we have used (6.48) to delete ontributions oming from the B��NP term in H��M (f.(6.36)).The �rst term on the right hand side of (6.59) would follow from (6.57), but the seondterm annot in general be obtained from assigning transformations to B��NP (ompare with(6.19)). Indeed, self-onsisteny of (6.59) requires that the seond term on the right hand sidebe proportional to X(NP )R, whih imposes a further onstraint on DMNP . We will see in se-tion 6.2.3 how we an nevertheless justify the transformation law (6.59) by introduing otherantisymmetri tensors. For the moment, we just aept (6.59) and explore its onsequenes.Expanding (6.60) using (6.16) and (6.28) and using a partial integration, (6.60) an berewritten as ÆLV T = �A[�℄ ; (6.61)where A[�℄ = �12"�����PDMNP��A�M��A�N�14"�����P �DMNRX[PS℄N + 32DMNPX[RS℄N���A�MA�RA�S : (6.62)This expression formally looks like a sympletially ovariant generalization of the eletrionsistent anomaly (5.41) whih we enountered in setion 5. Notie, however, that at this67



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESpoint this is really only a formal analogy, as the tensor DMNP has, a priori, no onnetionwith quantum anomalies. We will study the meaning of this analogy in more detail in thenext setion. To prove (6.61), one uses (6.48) and the preservation of DMNP under gaugetransformations, whih follows from preservation of X, see (6.25), and of 
, see (6.17), andreads XM(NP DQR)P = 0 : (6.63)For the terms quarti in the gauge �elds, one needs the following onsequene of (6.63):(XRSM XPQN DLMN )[RSPL℄ = �(XRSM XPMN DLQN +XRSM XPLN DQMN )[RSPL℄= �(XRSM XPLN DQMN )[RSPL℄ ; (6.64)where the �nal line uses (6.26) and again (6.48).Let us summarize the result of our alulation up to the present point. We have used theation (6.53) and onsidered its transformations under (6.28) and (6.37), where �B��NP wasundetermined. We used the losure onstraint (6.20) and one new onstraint (6.46). It wasshown that the hoie (6.57) leads to invariane ifDMNP vanishes, whih is the representationonstraint (6.22) used in the anomaly-free ase studied in [83℄. However, when we use the moregeneral transformation (6.59) in the ase DMNP 6= 0 instead, we obtain the non-vanishinglassial variation (6.61). The orresponding expression (6.62) formally looks very similar toa sympletially ovariant generalization of the eletri onsistent quantum anomaly.In order to fully justify and understand this result, we are then left with the followingthree open issues, whih we will disuss in the following setion:(i) The expression (6.62) for the non-vanishing lassial variation of the ation has to berelated to quantum anomalies so that gauge invariane an be restored at the level ofthe quantum e�etive ation, in analogy to the eletri ase desribed in setions 3 and5. This will be done in setion 6.2.1.(ii) The meaning of the new onstraint (6.46) that was used to obtain (6.61) has to belari�ed. This is subjet of setion 6.2.2.(iii) We have to show how the transformation (6.59), whih also underlies the result (6.61),an be realized. This will be done in setion 6.2.3.68



6.2 Gauge invariane of the e�etive ation with anomalies6.2 Gauge invariane of the e�etive ation with anomalies6.2.1 Sympletially ovariant anomaliesIn setion 6.1, we disussed the algebrai onstraints that were imposed on the embeddingtensor in ref. [83℄ and that allowed the onstrution of a gauge invariant Lagrangian witheletri and magneti gauge potentials as well as tensor �elds. Two of these onstraints,(6.20) and (6.21), had a very lear physial motivation and ensured the losure of the gaugealgebra and the mutual loality of all interating �elds. The physial origin of the thirdonstraint, the representation onstraint, (6.22), on the other hand, remained a bit obsure.In order to understand its meaning, we speialize it to its purely eletri omponents,X(��
) = 0 : (6.65)Given that the omponents X��
 generate axioni shift symmetries (remember the �rst termon the right hand side of (6.42)), we an identify them with the orresponding symbols CABCin setion 5, and reognize (6.65) as the ondition for the absene of quantum anomalies forthe eletri gauge bosons (see (5.43)). It is therefore suggestive to interpret (6.22) as theondition for the absene of quantum anomalies for all gauge �elds (i.e. for the eletri andthe magneti gauge �elds), and one expets that in the presene of quantum anomalies, thisonstraint an be relaxed. We will show that the relaxation onsists in assuming that thesymmetri tensor DMNP de�ned by (6.18) is of the form41DMNP = dMNP ; (6.66)for a symmetri tensor dMNP whih desribes the quantum gauge anomalies due to an anoma-lous spetrum of hiral fermions. In fat, one expets quantum anomalies from the loops ofthese fermions,  , whih interat with the gauge �elds via minimal ouplings� �(�� �A�����Æ� �A�����Æ�) : (6.67)Therefore, the anomalies ontain { for eah external gauge �eld (or gauge parameter) { anembedding tensor, i.e. dMNP has the following partiular form:dMNP = �M��N��P d�� ; (6.68)41The possibility to impose a relation suh as (6.66) is by no means guaranteed for all types of gauge groups(see e.g. [87℄ for a short disussion in the purely eletri ase studied in [88℄).69



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESwith d�� being a onstant symmetri tensor. In the familiar ontext of a theory with aat salar manifold, onstant fermioni transformation matries, t�, and the orrespondingminimal ouplings, the tensor dMNP is simply proportional todMNP / �M��N��P Tr(ft�; t�gtg; (6.69)where the trae is over the representation matries of the fermions.42We showed that the generalization of the onsistent anomaly (5.41) in a sympletiallyovariant way leads to an expression of the form (6.62) with the DMNP -tensor replaed bydMNP . Indeed, the onstraint (6.66) implies the anellation of this quantum gauge anomalyby the lassial gauge variation (6.61). Note that it is neessary for this anellation that theanomaly tensor dMNP is really onstant (i.e., independent of the salar �elds). We expetthis onstany to be generally true for the same topologial reasons that imply the onstanyof d��
 in the onventional eletri gaugings. In this way we have already addressed the �rstissue of the end of the previous setion. We are now going to show how the onstraint (6.66)suÆes also to address the other two issues, (ii) and (iii).6.2.2 The new onstraintWe now omment on the onstraint (6.46):X(NP )M
MQX(RS)Q = 0 : (6.70)We will show that this equation holds if the loality onstraint is satis�ed, and (6.66) isimposed on DMNP with dMNP of the partiular form given in (6.68). To larify this, weintrodue as in [83℄ the `zero mode tensor'43ZM� = 12
MN�N� ; i.e. 8<: Z�� = 12��� ;Z�� = �12��� : (6.71)One then obtains, using (6.19), the de�nition of X in (6.16) and (6.68) thatX(NP )M = ZM���NP ; (6.72)42One might wonder how the magneti vetor �elds A�� an give rise to anomalous triangle diagrams, asthey have no propagator due to the lak of a kineti term. However, it is the amputated diagram with internalfermion lines that one has to onsider.43Note that the omponents of 
MN have signs opposite to those of 
MN as given in (6.7).70



6.2 Gauge invariane of the e�etive ation with anomaliesfor some tensor ��NP = ��PN . Due to the fat that we allow the symmetri tensor DMNP in(6.18) to be non-zero and impose the onstraint (6.66), this tensor ��NP is not the analogousquantity alled d�MN in [83℄44, but an be written as��NP = (t�)NQ
PQ � 3d���N��P  : (6.73)However, the expliit form of this expression will not be relevant. We will only need thatX(NP )M is proportional to ZM�.Now we will �nally use the loality onstraint (6.21), whih impliesZ�[�Z��℄ = 0 ; i.e. ZM�ZN�
MN = 0 : (6.74)and, thus, leads to the desired result (6.70).The tensor ZM� an be alled zero-mode tensor as e.g. the violation of the usual Jaobiidentity (seond line of (6.26)) is proportional to it. We now show that it also de�nes zeromodes of DMNR. Indeed, another onsequene of the loality onstraint isXMNP
MQ��Q = 0 ! XMNPZM� = 0 ; XQMP
QSXSNR = 0 : (6.75)With (6.19) and (6.24) this implies DMNRZR� = 0 : (6.76)Note that we did not need (6.66) to ahieve this last result, but that the equation is onsistentwith it.6.2.3 New antisymmetri tensorsFinally, in this setion we will justify the transformation (6.59), without requiring furtheronstraints on the D-tensor. That transformation gives an expression for X(NP )R�B��NPthat is not obviously a ontration with the tensor X(NP )R (due to the seond term on theright hand side of (6.59)). We an therefore in general not assign a transformation of B��NPsuh that its ontration with X(NP )R gives (6.59). To overome this problem, we will have44We use ��MN in this work to denote the analogue (or better: generalization) of what was alled d�MNin [83℄, beause d�MN is reserved in the present paper to denote the quantity �M��Nd�� (f eq. (6.84))related to the quantum anomalies. 71



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESto hange the set of independent antisymmetri tensors. The B��MN annot be onsideredas independent �elds in order to realize (6.59). We will, as it was done along the lines of [83℄,introdue a new set of independent antisymmetri tensors, given by B�� � for any � denotinga rigid symmetry.The �elds B��NP and their assoiated gauge parameters �NP appeared in the relevantformulae in the form X(NP )MB��NP or X(NP )M�NP , see e.g. in (6.28), (6.34), (6.36) and(6.45). Now, as we have the form (6.72), this an be written asX(NP )MB��NP = ZM���MNB��MN : (6.77)Therefore, we will replae ��MNB��MN ! B�� � : (6.78)and onsider the B�� � as the independent antisymmetri tensors. Thus, there is one tensorfor every generator of the rigid symmetry group and the replaement implies thatX(NP )MB��NP ! ZM�B�� � : (6.79)We also introdue a orresponding set of independent gauge parameters ��� through thesubstitution: ��MN��MN ! ��� : (6.80)This allows us to reformulate all the equations in the previous subsetions in terms of B�� �and ���. It is now, for instane,:ÆA�M = D��M � ZM���� ; (6.81)H��M = F��M + ZM�B�� � ; (6.82)Ltop;B = 14"���� Z��B�� � �F�� � + 12 Z��B�� �� : (6.83)We will show that onsidering B�� � as the independent variables, we are ready to solve theremaining third issue mentioned at the end of setion 6.1. To this end, we �rst note that allthe alulations in setion 6.1 remain valid when (6.79) and (6.81)-(6.83) are used to expresseverything in terms of the new variables B�� � and ���. The equations (6.46) and (6.48) weused in setion 6.1 are now simply replaed by (6.74) and (6.76), respetively.72



6.2 Gauge invariane of the e�etive ation with anomaliesFollowing (6.68), we are able to setdMNP = �M�d�NP ; d�NP = d���N��P  ; (6.84)and, onsequently, an de�ne (bearing in mind (6.72))ÆB�� � = 2D[���℄� + 2��NPA[�NÆA�℄P +�B�� � ;�B�� � = �2��NP�NG��P + 3d�NP�N (H� G)��P ; (6.85)to reprodue (6.59). Here the left-hand side of (6.59) is replaed aording to (6.79) and theovariant derivative is de�ned asD[���℄� = �[���℄� + f���P �A[�P��℄  : (6.86)Of ourse, (6.85) is only �xed modulo terms that vanish upon ontration with the embeddingtensor.So let us summarize what we have found out. In this setion we have seen, so far, that itis possible to relax the representation onstraint (6.22) used in ref. [83℄ to the more generalondition (6.66) if one allows for quantum anomalies. The physial interpretation of theoriginal representation onstraint (6.22) of [83℄ is thus the absene of quantum anomalies.Due to these onstraints we obtained the equation (6.72), whih allowed us to introduethe B�� � as independent variables. All the alulations of setion 6.1.2 are then valid withthe substitutions given in (6.79) and (6.80). We did not impose (6.72) in setion 6.1.2, andtherefore we ould at that stage only work with B��NP . However, now we onlude thatwe need the B�� � as independent �elds and will further only onsider these antisymmetritensors.The results of this setion an alternatively be viewed as a ovariantization of the results ofsetion 5 and [12,88℄ with respet to eletri/magneti duality transformations.45 To furtherhek the onsisteny of our results, we will in the next setion redue our treatment to apurely eletri gauging and show that the results of setion 5 an be reprodued.45We have not disussed the omplete embedding into N = 1 supersymmetry here, whih would inlude allfermioni terms as well as the supersymmetry transformations of all the �elds. This is beyond the sope ofthis thesis. 73



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIES6.3 Purely eletri gaugingsLet us �rst expliitly write down DMNP in its eletri and magneti omponents:D��� = X(���) ;3D��� = X��� � 2X(��)� ;3D��� = �X��� + 2X(��)� ;D��� = �X(���) : (6.87)In the ase of a purely eletri gauging, the only non-vanishing omponents of the embeddingtensor are eletri: �M� = (���; 0) : (6.88)Therefore also X�NP = 0 and (6.68) implies that the only non-zero omponents of DMNP =dMNP are D��
. Therefore, (6.87) redue toD��
 = X(��
) ; X(�
)� = 0 ; X
�� = 0 : (6.89)The non-vanishing entries of the gauge generators are X��� and X�
� = �X��
 = X[�
℄�,the latter satisfying the Jaobi identities sine the right hand side of (6.26) for MNQR alleletri indies vanishes. The X[�
℄� an be identi�ed with the struture onstants of thegauge group that were alled fABC in setion 5. The X��
 orrespond to the shifts in (5.20).The �rst relation in (6.89) then orresponds to C(AB;C) = dABC .The loality onstraint is trivially satis�ed and the losure relation redues to (5.32) asexpeted.At the level of the ation LVT, all tensor �elds drop out sine, when we express everythingin terms of the new tensors B�� �, these tensors always appear ontrated with a fator��� = 0. In partiular, the topologial terms Ltop;B vanish and the modi�ed �eld strengthsfor the eletri vetor �elds H��� redue to ordinary �eld strengths:H��� = 2�[�A�℄� +X[
�℄�A�
A�� : (6.90)Also the GCS terms (6.50) redue to the analogue form of (5.30) in purely eletri gaugings.Finally, the gauge variation of LVT redues to minus the ordinary onsistent gauge anomaly.74



6.4 A simple example of magneti gaugingThis onludes our reinvestigation of the eletri gauging with axioni shift symmetries,generalized Chern-Simons terms and quantum anomalies as it follows from our more gen-eral sympletially ovariant treatment. We showed that the more general theory reduesonsistently to the known ase of a purely eletri gauging.6.4 A simple example of magneti gaugingThe above results an be shown by means of a simple example that already provides anontrivial symmetri tensor DMNP . Let us now briey illustrate the above results by meansof a simple example. We onsider a theory with a rigid symmetry group embedded in theeletri/magneti duality group Sp(2;R). The embedding into the sympleti transformationsis given byt1MN =0� 1 00 �1 1A ; t2MN = 0� 0 01 0 1A ; t3MN = 0� 0 10 0 1A ; (6.91)i.e. t211 = 1. Let us onsider the following subset of duality transformations:SMN = ÆMN � �PXPNM ; with generators XPMN = 0� 0 0XP 11 0 1A ; (6.92)where �P is the rigid transformation parameter. The tensor X is related to the embeddingof the symmetries in the sympleti algebra using the embedding tensor,XPMN = 3X�=1�P�t�MN : (6.93)We have thus hosen the embedding tensor�P 1 = 0 ; �P 2 = XP 11 ; �P 3 = 0 : (6.94)The task is to promote SMN to a gauge transformation, i.e., to take �N = �N (x) spaetimedependent and to identify the XPMN with the gauge generators. This obviously orrespondsto a magneti gauging, beause (6.89) is violated. However, the loality onstraint (6.21)is automatially satis�ed, as only the index value � = 2 appears, and losure of the gaugealgebra spanned by the XPMN requires that (6.20) is imposed, where only the right-hand side75



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESis non-trivial. It is neessary that �12 = 0, and the only gauge generators that are onsistentwith this onstraint areXPMN = (X1MN ; X1MN ) ; with X1MN = 0 ; X1MN = 0� 0 0X111 0 1A : (6.95)Note that this hoie still violates the original linear representation onstraint (6.22) beause(6.87) leads to D111 = �X111 6= 0. However, this is not an obstale in performing the gaugingwith generators XPMN given in (6.95). In order to do so we introdue a sympleti vetor�eld A�M whih ontains an eletri and a magneti part, A�1 and A�1. Only the magnetivetor �eld ouples to matter via ovariant derivatives sine the embedding tensor projetsout the eletri part. In what follows, we also assume the presene of anomalous ouplingsbetween the magneti vetor �eld and hiral fermions whih justi�es the nonzero X111 6= 0beause it will give rise to anomaly anellation terms in the lassial gauge variation of theation. More preisely, we will have to require that�12 = X111 ; �X111 = d111 = (X111)3 ~d222 ; (6.96)where we introdued ~d222 as the omponent of d�� .There is the kineti term for the eletri vetor �elds:Lg:k: = 14 e I H��1H�� 1 � 18 R "����H��1H��1; (6.97)where we introdued the modi�ed �eld strength (6.82)H��1 = 2�[�A�℄1 + 12X111B��2 ; (6.98)and whose variation has to be omputed. Observe that it depends on a tensor �eld B��2beause in (6.94) it was hosen a magneti gauging. However, it transforms ovariantlyunder ÆA�1 = ���1 +X111A� 1�1 � 12X111��2 ;ÆB��2 = 2�[���℄2 + 4A[� 1��℄�1 � 6�1�[�A�℄ 1 � �1G�� 1 ;ÆA�1 = ���1 : (6.99)76



6.4 A simple example of magneti gaugingwhih follows from (6.85) sine the only nonzero omponent of �2MN is �211 = 2 and ford2MN we have only d211 = �1. One an hek thatÆH��1 = �12X111�1(H+ G)�� 1 ; withH�� 1 = F�� 1 = 2�[�A�℄1 ; G�� 1 � RH��1 + 12eI"����H�� 1 : (6.100)Under gauge variations, the real and imaginary part of the kineti funtion transform asfollows (f. (6.42)): ÆI = 2�1X111RI ; ÆR = �1X111 �R2 � I2� : (6.101)From this one obtains the gauge variation of the kineti term, given byÆLg:k: = 14"�����1X111G�� 1��A�1 : (6.102)whih orresponds to (6.44) in our present gauge (6.94).In a seond step, we add the topologial term (6.83)Ltop;B = 14"����X111B��2�[�A�℄ 1 : (6.103)The gauge variation of this term is equal to (up to a total derivative)ÆLtop;B = �14�1X111"���� (��A� 1) (2��A� 1 + G�� 1) : (6.104)Note that the generalized Chern-Simons term (6.50) vanishes in this ase. In ombining(6.102) and (6.104), one derivesÆ (Lg:k: + Ltop;B) = �12�1X111 (��A� 1) (��A� 1) "���� : (6.105)This anels the magneti gauge anomaly whose form an be derived from (6.62),A[�℄ = �12"�����1d111 (��A� 1) (��A� 1) (6.106)if we remember that X111 = �D111 = �d111. Note that the eletri gauge �elds do notappear reeting the fat that the eletri gauge �elds do not ouple to hiral fermions.A simple fermioni spetrum that ould yield suh an anomaly (6.106) is given by,e.g., three hiral fermions with anonial kineti terms and quantum numbers Q =(�1); (�1); (+2) under the U(1) gauged by A� 1. Indeed, with this spetrum, we wouldhave Tr(Q) = 0, i.e., vanishing gravitational anomaly, but a ubi Abelian gauge anomalyd111 / Tr(Q3) = +6. 77



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIES6.5 SummaryIn setion 6.1.2 we argued that the rigid symmetry group Grigid is a subset of the produt ofthe sympleti duality transformations that at on the vetor �elds and the isometry groupof the salar manifold of the hiral multiplets in N = 1 supersymmetry or in theories withoutsupersymmetry. The reason is that the rigid symmetries of the vetor and salar setor arenot diretly related in these theories. On the �elds strengths F��M = (F���; G�� �) these rigidsymmetries at by multipliation with in�nitesimal sympleti matries (t�)MP for whih wehave (t�)[MP
N ℄P = 0 where 
NP is the sympleti metri given by (6.7). The gauging of asubgroup, Gloal � Grigid, is ahieved by projeting the 2n-dimensional vetor spae spannedby the vetor �elds A�M onto the Lie algebra of Gloal whih is done by the embeddingtensor �M�. The generators of Gloal deompose aording to (XM )NP = �M�(t�)NPwhose omponents are denoted by XMNP . The embedding tensor has to satisfy a number ofonsisteny onditions: f���M��N� = (t�)NP�M��P  ;
MN�M��N� = 0 , ��[����℄ = 0 : (6.107)Closure of the gauge algebra requires the �rst line of (6.107), while the onstraint displayed inthe seond line of (6.107) is required by loality. The losure onstraint reets the invarianeof the embedding tensor under Gloal and it implies for the matries XM the relation[XM ;XN ℄ = �XMNPXP : (6.108)It is ruial to observe that the `struture onstants' given by XMNP ontain also an ingeneral nontrivial symmetri part X(MN)P . The antisymmetry of the left hand side of (6.108)only requires that the ontration X(MN)P�P � vanishes. This gives a violation of the Jaobiidentity (6.26) whih an be ompensated in extending the gauge transformation of the vetorpotentials toÆA�M = D��M �X(NP )M��NP ; D��M = ���M +XPQMA�P�Q ; (6.109)where we introdued the ovariant derivative D��M , and new vetor-like gauge parameters��NP , symmetri in the upper indies. Consequently, the �eld strength F��M = 2�[�A�℄M +78



6.5 SummaryX[PQ℄MA�PA�Q does no longer transform ovariantly (6.34) and violates the Bianhi-identity(6.33). As another onsequene we �nd that a gauge kineti Lagrangian of the formLgk = +14 ImN��F���F ��� � 18"���� ReN��F���F��� ; (6.110)annot be gauge invariant under transformations (6.109) either. In [83℄ it was shown thatthe LagrangianLV T = 14eI��H���H��� � 18R��"����H���H��� ++14"���� X(NP )�B��NP �F�� � + 12 X(RS)�B��RS�++"����A�MA�N �13 XMN � ��A�� + 16XMN���A��++ 18XMN �XPQ�A�PA�Q� ; (6.111)with H as in (6.36), is indeed invariant under the gauge transformations (6.109) if the em-bedding tensor satis�es the additional onstraintDMNR := X(MNQ
R)Q = 0 (6.112)We ould show in this thesis that the gauge variation of (6.111) for nontrivial DMNR 6= 0does no longer vanish but is instead given byÆLV T = �12"�����PDMNP��A�M��A�N�14"�����P �DMNRX[PS℄N + 32DMNPX[RS℄N���A�MA�RA�S : (6.113)whih formally looks like the onsistent anomaly [40℄. Canellation of (6.113) is only possiblein presene of anomalies and if one relaxes the onstraint (6.112) aording toDMNR = dMNRwhere the symmetri tensor dMNR desribes gauge anomalies. In fat, one an expet gaugeanomalies due to an anomalous spetrum of hiral fermions  whih interat with gauge �eldsvia minimal ouplings � �(���A�����Æ��A�����Æ�) . In the disussion of setion 2 welearned that the oupling of gauge �elds to hiral fermions auses anomalous ontributions tothe onservation law of the axial urrents whih are to lowest order given by triangle diagrams.The eletri vetor �elds and the magneti vetor �elds generate suh anomalous ontributionsdue to their oupling to hiral fermions in total analogy to the disussion of setion 2.1. Theonstraint DMNR = dMNR implies the anellation of this quantum anomaly by the lassial79



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESvariation of (6.111). In this sense we showed how the Green-Shwarz mehanism is appliedin a sympletially ovariant way (sympletially ovariant Green-Shwarz mehanism).In setion 6.4 we expliitly displayed how an Abelian magneti gauge violates (6.112).Furthermore, we gave the example of an anomalous spetrum of hiral fermions that possiblyanels the lassial gauge variation in this example.The results of this setion are new and generalize the work [83℄, as presented in [40℄.
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7 Abelian gauging and D-term potential in N = 1 supersym-metryIn the previous setion, we disussed the sympletially ovariant formulation of the gaugesetor with a nontrivial gauge kineti funtion that transforms with a shift under gaugedisometry transformations of the target spae. The sympletially ovariant treatment requiredthe introdution of magneti vetor �elds that are dual to the original eletri vetor �eldsand do not possess a kineti term. The additional degrees of freedom represented by themagneti vetor �elds are ompensated by additional gauge transformations. Invariane ofthe Lagrangian under the gauge transformations is restored by new ouplings. Among thesenew ouplings is a topologial term (6.45) that ouples an antisymmetri tensor �eld to themagneti vetor �elds. In appendix E we show that the ation (6.53) redues to (E.11) forAbelian gaugings if the gauge setor is oupled to a nonlinear sigma model with gauged shiftsymmetries and the magneti vetor �elds are eliminated by their equations of motion. Weobserve that in the Lagrangian (E.11) there are eletri vetors and tensor �elds left, i.e.(E.11) ontains a kineti term and a mass term for the tensor �eld, where the mass is givenby the embedding tensor. There is also a topologial oupling of the tensor �eld to the eletrivetors among other ouplings whih are of minor interest. The topologial oupling of thetensor �eld to the eletri vetors is of similar type as (6.45). Interestingly, in [90℄ the authorsdisuss theories with massive tensor multiplets in global N = 1 supersymmetry where thebosoni setor ontains exatly those ouplings enountered in (E.11). Partly motivated bythe results of orientifold ompati�ations [91, 92℄, the authors of [90℄ proposed an N = 1super�eld ation for a massive tensor multiplet oupled to several vetor hiral multiplets.Furthermore, the authors omputed the omponent form of that ation and dedued thefollowing potentialV / ��e� + 2m�Imf��� [(Ref)�1℄�
 �e
 + 2Imf
�m�� ++4Ref��m�m�� ; (7.1)where f�� denotes the gauge kineti funtion. The potential (7.1) is not only determined byauxiliary �elds but ontains a diret mass term for the salar in the tensor multiplet (thelast term in �7.1)� whih does not arise from eliminating an auxiliary �eld. In this sense,81



7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N = 1 SUPERSYMMETRYthe disussion that follows is onneted to the Abelian gauge of the sympletially ovariantformalism presented in the previous setion.In this setion we will show that the potential (7.1) is atually equivalent to a D-termpotential in its standard form as given in [93℄, for example. In order to do so, we will add atotal derivative to the ation used in [90℄. The advantage over the proedure used in [90℄ isthat we are now able to absorb the topologial ouplings of the tensor �elds to the eletrivetors into the gauge kineti term by a suitable rede�ntion of the gauge kineti funtion.The gauge kineti Lagrangian has the advantage that it is easier dualized than the Lagrangianused in [90℄. It is suitable to rotate the �elds and ouplings to a speial frame and then todetermine the D-term potential. In this frame the potential is given in its standard form anda omponent expression is obtained after eliminating the auxiliary �elds with help of theirequations of motion. The potential (7.1) is found one we rotate the speial frame bak to itsoriginal form and, thus, the potential (7.1) is equivalent to a D-term potential in standardform.The authors of [90℄ start from the following Lagrangian2�K(L)�D + �f��(N)(W� � 2im��)T �(W� � 2im��) + 2e��T �(W� � im��) + h..�F (7.2)where the tensor �eld is ontained in the spinor super�eld46 � and the eletri �eld strengthis part of the super�eld W� where the index � ounts the number of U(1) vetor�elds,� = 1; : : : ; k (for notational issues onsult appendix C). The �eld strength of the tensor �eldis part of the linear multiplet L and the kineti term, whih in the simplest ase would be ofthe form L2, is generalized by the real funtion K(L). The gauge kineti oupling funtionf��(N) represents now a funtion of hiral super�elds N and, thus, is itself a super�eld.Before dualizing the theory of the massive tensor multiplet we add to (7.2) a total derivativeterm 2i Im �W T �W �j��� = � i2F ^F whih, therefore, does not a�et the equations of motion.Thus, in simply adding �2 e�e�2e
m
 � Im �(W�)T �W��, we obtain the following Lagrangian2�K(L)�D + � ~f��(N)(W� � 2im��)T �(W� � 2im��) + h..�F (7.3)where the gauge kineti funtion is rede�ned aording to~f��(N) := f��(N) + i2 � e�e�e
m
 (7.4)46Consult appendix C for more details on the spinor super�eld and the linear multiplet.82



The Lagrangian (7.3) is more onvenient to dualize beause the last term in (7.2) is nowabsorbed into the rede�nition of the ouplings. We have to onstrut a �rst order Lagrangianbefore we an dualize (7.3). In the �rst order Lagrangian one does not onsider L to bea linear multiplet, instead one imposes a onstraint on L by means of a real Lagrangianmultiplier 
 [89℄. Then, by eliminating the Lagrange multiplier, L is onstrained to be alinear super�eld. The �rst order Lagrangian reads2�K(L)�D + � ~f��(N)(WA � 2im��)T �(W� � 2im��) + h..�F ��2�e�m�
L� i4e�
DT �(W� � 2im��)�D (7.5)where L represents an arbitrary real super�eld. Elimination of �� from the ation is doneby varying L and �� in (7.5), leading to�LK = e�m�
 ; (7.6)0 = ~f��m�(W�� � 2im���)T �+ i8e�m�( �DT �D)D�
 : (7.7)For further omputation it is onvenient to rotate the k vetor �elds by an operator S suhthat the \vetor" (Sm)� has only one omponent denoted by m, i.e. (Sm)� = (m; 0; :::; 0)T .Furthermore we make the de�nitions� e0� := (eS�1)�� W 0� := (SW )�� g�� := [(S�1)T ~fS�1℄�� .The purpose to introdue the new basis is to onsiderably simplify the dualization. Afterresaling 
 aording to e01
 ! 
 we see that (7.5) and (7.6) imply a Legendre transfor-mation in the sense that U(
) := [�K(L) +m
L℄ (7.8)de�nes a real funtion of U(
). The Legendre transformed Lagrangian is then�2�U(
)℄D + �g11(N)(W 01 � 2im�)T �(W 01 � 2im�) ++2ga1(N)(W 0a)T �(W 01 � 2im�) + h..�F + �� i4
DT �(W 01 ��2im��)�D + �gab(W 0a)T �W 0b + h..�F ; (7.9)a; b = 2; : : : ; k 83



7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N = 1 SUPERSYMMETRYWith the help of the other equation of motion for the spinor super�eld (7.7) one obtains asa result the Lagangian of the dual theory given by� � �D2D
 W 0a �0� (64g11)�1 � i8 ga1g11� i8 ga1g11 gab � ga1gb1g11 1A0� �D2D
W 0a 1A+ h..�F ��2�U(
)�D (7.10)In what follows, the matrix desribing the ouplings of 
 and W 0a will be denoted by f̂��.In supersymmetri theories the D-term ontribution to the salar potential isV = 12Ref̂��D�D� (7.11)and the D-term is given byD� � (Ref̂��)�1( i2kj� �K��j + ..) (7.12)Here K is the K�ahlerpotential and kj� denotes the Killing vetor of the gauged isometry. TheKilling vetor is onstant for the shift symmetry �! �+i. Furthermore, the K�ahlerpotentialan only depend on the real part of the salar �eld � beause otherwise the shift symmetryould not be an isometry of the salar manifold. Hene, K(�; ��) = K(Re�) and it followsdiretly for the salar potential thatV � (Re f̂11)�1(K 0)2 (7.13)At this point it is suitable to resale again 
 in order to get rid of the fator 18 . Furthermore,let us display (Ref̂)�1(Ref̂)�1 = 0� Reg11 + Img1�[(Reg)�1℄��Img�1 �Img1�[(Reg)�1℄�a�Img1�[(Reg)�1℄�b [(Reg)�1℄ab 1A (7.14)In order to �x saling fators in front of terms involving 
, the kineti term U(
) has to beexpanded into its omponent �elds. The expansion is arried out in more detail in appendixF, and the result isU(
)jD = 12U 0(C) � [D(x) + 12�C(x)℄ + 14U 00(C) � [12(M2 +N2)� �!�� 12A�A���� + 14 �!���!℄ ++ i16U 000(C) � [�M �!5! +N �!! + �!�5!mA�℄ + 164U (4)(C) � �!!�!! (7.15)84



Here, U (n) denotes the nth derivative after C(x). At this point, it is onvenient to resale thereal super�eld 
 one again but this time we absorb the fator m appearing in the Legendretransformation 
 ! 1m
 (7.16)This resaling does not only bring the Legendre transformation into a normalized form, butwill also simplify the reverse transformation to the old basis system.Next, the auxiliary �eld D has to be eliminated. In order to ahieve this, we introdue a new�eld strength super�eld, orresponding to 
, aording to:W (
)� := �14( �D5D)D�
: (7.17)If we want to still keep the normalization of the F -term in formula (7.10) then anotherresaling is neessary. Now, in onsidering all the salings, done so far, then altogether thesuper�eld 
 must be resaled after (7.10) as follows
 ! � 2m
 : (7.18)Having a look at the deomposition into omponent �elds, we an read o� the D-terms ofthe Lagrangian where the tensor �elds are eliminated by their equations of motion. The Ddependent terms are found in (7.15) and aording to (7.11) in the potential. Colleting allthese terms leaves us with12U 0D
 + 12 � 4m2 � (Ref̂)11(D
)2 + 2m � (Ref̂)1aD
Da ++12 � (Ref̂)abDaDb (7.19)The equations of motion for the auxiliary �eld are obtained from the variation after D
 andDa, respetively, and are given by12U 0 + 4m2 � (Ref̂)11D
 + 2m � (Ref̂)1aDa = 0 (7.20)(Ref̂)abDb + 2m � (Ref̂)1aD
 = 0 (7.21)These equations are equivalent to the following equations at the omponent level of the85



7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N = 1 SUPERSYMMETRYoupling matrix f̂ (see appendix F for more details)0 = 12U 0 + 4m2 � Reg11jg11j2 �D
 � 2m � Img1aReg11 �Reg1aImg11jg11j2 �Da (7.22)0 = [Regab + 1jg11j2 � (Reg11Img1aImg1b �Reg11Reg1aReg1b ��Img1aReg1bImg11 �Reg1aImg1bImg11)℄Db � 2m � 1jg11j2 ��(Img1aReg11 �Reg1aImg11) �D
 (7.23)After some alulation (given in appendix F), one �nds that the auxiliary �elds are given byDb = �m4 U 0 � [(Reg)�1℄bAImgA1 (7.24)D
 = �m28 U 0 � (Img1A[(Reg)�1℄ABImgB1 +Reg11) (7.25)These expressions an be ompared with the expression for the inverse of the oupling matrix�Re f̂� (7.14) and the omponents of the inverse matrix an be identi�ed in the followingway [(Ref̂)�1℄11 = � 8m2U 0 �D
 (7.26)[(Ref̂)�1℄1a = 4mU 0 �Da (7.27)Reintroduing these identi�ations into the D-terms (7.19) of the omponent deompositionand arrying out the alulation leads to the following result for the potentialV = 4(U 0)2m232 � [Reg11 + Img1�[(Reg)�1℄��Img�1℄ : (7.28)At this point we make the rotation S�1(m; 0; :::; 0)T = mA that brings us bak to the originalbasis for the eletri and magneti oupling, and we obtainV = 4(U 0)232 � [Re ~f�� m�m� +m� Im ~f��[(Re ~f)�1℄�
Im ~f
� m�℄ : (7.29)After expanding ~f aording to (7.4) we �nd that this is nothing else butV = 132(U 0)2 ��e� + 2m�Imf��� [(Ref)�1℄�
 �e
 + 2Imf
�m��++4Ref��m�m�� (7.30)whih is in total agreement with the expression that was obtained for the potential in [90℄.The disussion shows that atually the potential (7.30) is sympletially equivalent to a D-term potential in its standard form (7.11). In [90℄ the authors ould not onnet this potential86



with a potential of standard form. However, we demonstrated that the expliit mass termfor the salar in the tensor multiplet is absorbed by the rede�nition of the gauge kinetifuntion (7.4) due to the possibility to add total derivatives to the ation. This on�rms thatneither generalized Chern-Simons terms nor the topologial B-term ause any new nontrivialontribution to the standard D-term potential in N = 1 supersymmetry.
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8 CONCLUSION8 ConlusionIn this thesis we studied quantum anomalies and generalized Chern-Simons terms in hiralgauge theory. We disussed this topi in global and loal N = 1 supersymmetry and ingeneral gauge theories that are ovariant with respet to eletri/magneti duality. Thisgeneralized previous works [26,34,83℄, in whih only lassially gauge invariant theories withanomaly-free fermioni spetra were onsidered.We began our disussion with generalized Chern-Simons terms along the lines of [34℄. Theauthors of that paper showed how generalized Chern-Simons terms an anel ertain onstantshifts of the gauge kineti funtion in the ontext of Lie algebra ohomology. The generalizedChern-Simons terms originate from Lie algebra valued forms C(A;F) that are de�ned byonstant tensors CAB;C whih have to satisfy the onstraint C(AB;C) = 0 inter alia. It ispossible to show that the onstraints orrespond to the requirement of C(A;F) being losedwith respet to the exterior derivative. The ompliated formalism leads then diretly to theresult that in semisimple gauge theories one an always absorb the generalized Chern-Simonsterms by a rede�nition of the gauge kineti funtion. We generalized the forms C(A;F) byrelaxing the losure ondition suh that we allowed for forms with nontrivial symmetri partC(AB;C). Consequently, these more general forms were no longer losed, whih apparentlyviolated the proedure to onstrut generalized Chern-Simons terms. However, with the helpof the Stora-Zumino desent equations we were able to show that only the generalized Chern-Simons terms together with suitable gauge anomalies ould anel the onstant shifts of thegauge kineti funtion. This generalizes the results of [34℄ and onludes setion 3.In setion 5, we studied the onsisteny onditions that ensure the gauge and supersym-metry invariane of global and loal matter oupled N = 1 supersymmetry theories withPeei-Quinn terms, generalized Chern-Simons terms and quantum anomalies. Eah of thesethree ingredients de�nes a onstant three index tensor:(i) The gauge non-invariane of the Peei-Quinn terms is proportional to a onstant imag-inary shift of the gauge kineti funtion parameterized by a tensor CAB;C . This tensorin general splits into a ompletely symmetri part and a part of mixed symmetry,C(s)AB;C +C(m)AB;C .(ii) Generalized Chern-Simons terms are de�ned by a tensor, C(CS)AB;C , of mixed symmetry.88



(iii) Quantum gauge anomalies of hiral fermions are proportional to a ompletely symmetritensor dABC .We found that the full quantum e�etive ation is only gauge invariant and supersymmetriif CAB;C = C(CS)AB;C + dABC : (8.1)The inlusion of the quantum anomalies enoded in a non-trivial tensor dABC is the keyfeature that distinguishes N = 1 theories from theories with extended supersymmetry as thelatter theories annot have hiral gauge interations and hene no quantum anomalies.First we performed our analysis in global N = 1 supersymmetry and later also in N = 1 su-pergravity. The interesting result is that the Chern-Simons term does not need any gravitinoorretions when added as suh to the matter-oupled supergravity ations. This ompletesthe omprehension of N = 1 supersymmetry, generalizing earlier work of [26℄ on Abelian gen-eralized Chern-Simons terms in global N = 1 supersymmetry without quantum anomalies.In [12℄, orientifold ompati�ations with anomalous fermion spetra were studied, in whihthe hiral anomalies are anelled by a mixture of the Green-Shwarz mehanism and gen-eralized Chern-Simons terms. The analysis in [12℄ was mainly onerned with the gaugeinvariane of the bosoni part of the ation and revealed the generi presene of a ompletelysymmetri and a mixed part in CAB;C and the generi neessity of generalized Chern-Simonsterms. Our results show how suh theories an be embedded into the framework of N = 1supergravity and supplements the phenomenologial disussions of [12℄ by the fermioni ou-plings in a supersymmetri setting. The fermioni ouplings were used in the presentationof [96℄ where the disussion of [12℄ was lifted to an extension of the MSSM based on ourresults.In setion 6 we have shown how general gauge theories with axioni shift symmetries,generalized Chern-Simons terms and quantum anomalies [88℄ an be formulated in a waythat is ovariant with respet to eletri/magneti duality transformations. This generalizesprevious work of [83℄, in whih only lassially gauge invariant theories with anomaly-freefermioni spetra were onsidered. Whereas the work [83℄ was modelling extended (and heneautomatially anomaly-free) gauged supergravity theories, our results here an be applied togeneral N = 1 gauged supergravity theories with possibly anomalous fermioni spetra. Suh89



8 CONCLUSIONanomalous fermioni spetra are a natural feature of many string ompati�ations, notablyof interseting brane models in type II orientifold ompati�ations [16{22℄, where also GCSterms frequently our [12℄. Espeially in ombination with bakground uxes, suh ompat-i�ations may naturally lead to four-dimensional ations with tensor �elds and gaugings inunusual duality frames. Our formulation aommodates all these non-standard formulations,just as ref. [83℄ does in the anomaly-free ase.At a tehnial level, our results were obtained by relaxing the so-alled representation on-straint to allow for a symmetri three-tensor dMNP that parameterizes the quantum anomaly.In ontrast to the other onstraints for the embedding tensor, this modi�ed representationonstraint is not homogeneous in the embedding tensor, whih is a novel feature in thisformalism. Also our treatment gave an interpretation for the physial meaning of the \repre-sentation" onstraint: In its original form used in [83℄, it simply states the absene of quantumanomalies. It is interesting, but in retrospet not surprising, that the extended supergravitytheories from whih the original onstraint has been derived in [83℄, need this onstraint fortheir internal lassial onsisteny.In setion 7 we reinvestigated the result of [90℄ who proposed an N = 1 super�eld ationfor one massive tensor multiplet oupled to vetor and hiral multiplets. The potential or-responding to this theory displayed a diret mass term for the salar in the tensor multipletwhih apparently violated the form of the D-term potential. We demonstrated that this`unusual' form of the potential is atually equivalent to a standard form. The reason is thatthe diret mass term for the salar in the tensor multiplet an be absorbed by a suitablerede�nition of the gauge kineti funtion by means of a total derivative.The theory of massive tensor multiplets represents the supersymmetrization of a speialAbelian gauging of the manifestly sympletially ovariant framework proposed in [83℄ andpresented in appendix E.We are led to the onlusion that neither the generalized Chern-Simons terms nor the topo-logial ouplings to the tensor �elds ause ontributions that violate the standard form of theD-term potential.In this thesis we have neither touhed the topi of gravitational anomalies nor of K�ahleranomalies [81, 82, 97{105℄ in N = 1 supergravity.The results of this thesis an be taken as the starting point for phenomenologial models90



suh as [96℄. We ould show that in the framework N = 1 supersymmetry, as disussedin [81, 82, 96℄, one has to take additional fermioni ouplingsC(AB;D)AD� ��A5��B (8.2)into aount. These new fermioni ouplings had not been onsidered before (probably be-ause to date it is not lear how they ould originate from a super�eld expression) and itwould be interesting to study expliit N = 1 string ompati�ations within the frameworkused in this thesis.
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A APPENDIXA Tehnial details on Lie algebra ohomologyA.1 The Laplae equation of Lie algebra ohomologyIn setion 3.2 we found that generalized Chern-Simons terms are trivial for semisimple al-gebras. In this appendix we want to demonstrate how ohomologial arguments lead to thesame result.The Cartan-Killing metri is de�ned as gAB := �fALKfBKL and assumed to exist aswell as to be invertible. This will allow us to onstrut another operator I besides thealgebrai operator D. We still introdue some notational issues, that will simplify someof the upoming omputations and allow easily for generalizations. It is again suitable tointrodue the operator (TA)EFCD := fACE ÆFD + fADF ÆEC : (A.1)Note, that with this generator at hand, we an bring (3.5) into the form ÆfAB =�C(TC)DFAB fDF . In order to redue lutter, we further introdue a single Greek multi-index� := AB, representing the two indies A and B that it is now (TA)EFCD ! (TA)��. Thisis equivalent to the � notation for ontrations of suh double indies introdued in setion3.2. Observe that with this multi-index at hand we an write C�;D instead of CAB;D and,furthermore, FAFB ! F�. When we ompute the Bianhi identity for F�, starting fromd(FAFB), we �nd dF� = �(TD)��ADF� : (A.2)With help of the Cartan-Killing metri we an introdue a new operator, alled I, whih isde�ned as (IC)�;D1:::Dn := (n+ 1)C�;ED1:::DngEF (TF )�� : (A.3)Note that this operator lowers the amount of indies after the omma by one, as opposedto D, whih inreases the amount of indies after the omma by one. There is still anotherpossibility to generate this operator, by introduing a new operation � whih ats triviallyon the gauge onnetion, �AD = 0, while on the multilinear �eld strength form it ats as�F� = [(TA)F ℄�gAB ��AB . This form will be onvenient to use in appliations suh as the92



A.1 The Laplae equation of Lie algebra ohomologyexample of an Abelian�semisimple gauge group. Therefore, the operator that is not hangingthe amount of indies is given as DI + ID, that is formally similar to the Laplae operatorin Cartan alulus. Let us try to evaluate this Laplae operator ating on C�;D. Followingthe de�nitions (3.13) and (A.3), we �nd the following relevant relations(DC)�;AB = 12 fABDC�;D + C�;[B(TA℄)�� ; (A.4)(DC)�;A = (TA)�� C� ; (A.5)(IC)� = (TA)�� C�;B gAB ; (A.6)(IC)�;A = 2 (TC)�� C�;BA gBC : (A.7)The equation (A.5) is proven by ating on C�F� with the exterior derivative and making useof (A.2). From (A.5) and (A.6) we an read o�[D(IC)℄�;A = (TA)�� C;D (TB)� gBD ; (A.8)while (A.4) and (A.7) give[I(DC)℄�;A = C�;E gBD fDAE (TB)�� + 2 (TB)�� gBDC;[A(TD℄)� : (A.9)The �rst term in (A.9) an be manipulated as followsgBD fADE (TB)�� = gAG fEGD (TD)��= gAG [TE;TG℄��= �gEB [TA;TB ℄�� ;where in the �rst line we used the Cartan-Killing metri to pull indies up and down. In theseond line we made use of [TA;TB℄ = fABCTC whih is true when the metri is invertible.Inserting this result bak into (A.9), we obtain[I(DC)℄�;A = C;AgBD(TB)��(TD)� � C;D (TB)� (TA)�� gBD : (A.10)Adding (A.10) and (A.8) together, we �nd the Laplae equation[(DI + ID)C℄�;D = C�;D C2(T )�� ; (A.11)where we had de�ned the Casimir operatorC2(T )� := gAB (TA)� (TB)�� (A.12)93



A APPENDIXof the gauge group. We see, that the ation of the Laplaian on the forms C is proportionalto the Casimir operator. From (A.11) we an read of a very important result. For gaugegroups that possess a nonsingular Cartan-Killing metri, i.e. semisimple gauge groups, everylosed form C is exat. The Laplae equation does not only tell us that the ohomology lassis trivial but provides us with an expliit expression for C, namely,C�;D = [D(IC)℄�;D C�12 (T )�� (A.13)whih is equivalent to (3.34). There are no generalized Chern-Simons terms for semisimplegroups neessary beause they an be always absorbed into a rede�nition of the gauge kinetifuntion itself.A.2 Appliation: Abelian�semisimpleThe results of setion 3.3 an be obtained with help of Lie algebra ohomology as well. Itmight not be too instrutive to do so, but it is a onsisteny hek for the developed formalismand shows, how the formalism is applied.The produt struture is again reeted by splitting the adjoint indies A;B; ::: intoindies a; b; ; ::: for the Abelian part and adjoint indies x; y; z; w; ::: for the semisimple part.Due to the group struture, only the struture onstants of the type fxyz are nonzero. The�ve-form C(A;F) orresponding to the mixed group struture is de�ned byC(A;F) = 2C(xb);aAaFxF b + Cxy;aAaFxFy + 2C(ax);yAyF aFx ; (A.14)with onstants Cxb;a, Cbx;a, Cxy;a, Cax;y and Cya;x. In order to be able to de�ne the operatorD, we have to evaluate the exterior derivative ating on C. The omputation whih makesuse of the struture equations and the Bianhi identities of Abelian�semisimple leads todC(A;F) = (Cxy;a + Cax;y + Cya;x)FxFyF a ++(Cvb;afxyv + Cbv;afxyv)AaAxFyF b ++(fu(yvCx)v;a + fu(yvCx)v;a)AuAaFxFy ++(fuyvCv;(xa) + 2C(va);[yfu℄xv)AuAyFxF a (A.15)Observe that for C(A;F) to be homogenous in the �eld strength forms, the �rst line has to94



A.2 Appliation: Abelian�semisimplevanish, whih requires the omponents of C(A;F) to satisfyC(ya;x) = 0 : (A.16)Now we an write down the ation of an algebrai operator on the oeÆients of C(A;F)dC(A;F) = 2(DC)(yb);axAaAxFyF b + (DC)xy;uaAuAaFxFy ++2(DC)(xa);uyAuAyFxF a ; (A.17)where we de�ne (DC)ax;(yb) := C(vb);afxyv (A.18)(DC)xy;ua := 2fvu(yCx)v;a (A.19)(DC)(xa);uy := 12C(xa);vfuyv + C(va);[yfu℄xv : (A.20)Hene, the algebrai ondition for C(A;F) being losed are obtained in setting above relationsto zero and we obtain fvxuCvb;a = 0 (A.21)fvxyCbv;a = 0 (A.22)fu(yvCx)v;a = 0 (A.23)fuyvCax;v + fxyvCav;u � fxuvCav;y = 0 (A.24)fuyvCxa;v + fxyvCva;u � fxuvCva;y = 0 ; (A.25)whih are exatly equal to the relations (3.40) to (3.44).As before, we have to de�ne the operator I whih allows us to ompute the Laplaeequation for this ase. It is onvenient to do this by means of � whih is de�ned by thefollowing relations � [F Fx℄ := (fvyxÆb)F bFygzv ��Az ; (A.26)� [FxFy℄ := (fuvxÆyz + fuzyÆxv )FvFzguw ��Aw ; (A.27)while �A = 0 for Abelian or semisimple gauge onnetions. It is not a diÆult but a littlelengthy omputation to verify that the ation of the operators ID and DI on the di�erent95



B APPENDIXomponents of C(A;F) and the only nonvanishing ontributions areI(DC)xy;a = 2Csv;afuyvfrxsgru + 2Cxv;aC2(f)vy (A.28)I(DC)(ax);y = C(av);yC2(f)vx � C(as);vfuksfyxkgru (A.29)D(IC)(ax);y = C(av);ufrsvfyxsgru : (A.30)These relations lead diretly to the Laplae equation for the example of anAbelian�semisimple gauge group(�d+ d�)C(A;F) = 2Csv;afvuyf srxgru + 2Cxv;aC2(f)vy + C(av);yC2(f)vx (A.31)Observe that the �rst term represents an inhomogenous term. This means that a possiblegeneralized Chern-Simons term proportional to Cxy;a annot be trivial, i.e., it annot beabsorbed into a rede�nition of the gauge kineti funtion, even if C is a losed form. In setion3.3 we ould show from the losure onstraint that it is atually of the form Cxy;a = Bagxywith the Ba's being arbitrary but onstant.B Notation and onventionsNotations and onventions are hosen in agreement with [106℄. We use the Minkowski metri� = diag(�1;+1;+1;+1) and the epsilon tensor "0123 = +1. The Dira matries satisfyf�; �g = 2��� and 5 := i0123. The generators of the spinor representation of SO(1,3)are de�ned as ��� := 14 [�; � ℄. Obviously, the gamma matries ful�l[����℄ = �i"����5 (B.1)beause both sides are ompletely antisymmetri. The fator �i appears due to our de�nitionof 5. Contrating both sides with � from the right, one an derive[���℄ = �i"����5� : (B.2)Another useful relation is 2���� = [���℄ + ���� � ���� (B.3)96



whih is almost trivial if one onsiders the three nontrivial ases � 6= � 6= �, � = � 6= � and� 6= � = � separately. Then, it is not diÆult to derive the following two relations���� = 12(g��� � g��� � i"����5�) ; (B.4)���� = 12(g��� � g��� � i"����5�) ; (B.5)that are quite useful for atual omputations.The Dira matries are given in a speial representation by0 = �i0� 0 11 0 1A ; i = �i0� 0 �i��i 0 1A ; 5 = 0� 1 00 �1 1A (B.6)with the usual Pauli-matries�1 = 0� 0 11 0 1A ; �2 = 0� 0 �ii 0 1A ; �3 = 0� 1 00 �1 1A : (B.7)The Dira onjugated spinor is de�ned by �u = uy� where� := i0 =0� 0 11 0 1A (B.8)and uy = u�T. We use Majorana spinors u = 0� e��� 1A where e is the antisymmetri matrixe = 0� 0 1�1 0 1A : (B.9)Majorana spinors are required to ful�lu� = ��5�u (B.10)and the matrix � is de�ned aording to � = diag(e; e). The harge onjugation matrix isde�ned by C = 2� = ��5 (B.11)97



B APPENDIXand, then, for a Majorana spinor one has �u = uTC. The gamma matries obeyC�C�1 = �T� ; (B.12)C5C�1 = T5 ; (B.13)C���C�1 = ��T�� ; (B.14)C�5C�1 = (5�)T : (B.15)This allows one to prove easily ���� = ����� and similar relations beause C is antisym-metri CT = �C and C2 = �1. In total we have for antiommuting Majorana spinors��� = ��� (B.16)���� = ����� (B.17)������ = ������� (B.18)��5� = ��5� (B.19)��5�� = ��5�� (B.20)(B.21)A very useful tool in order to manipulate bilinear of spinors are rearrangement formulas.For spinors �, they are obtained from ��� and the fat that the set of 16 ovariant matriesf1; �; ��� ; 5; 5�g is omplete and 1 represents the unity. This means that any 4 � 4matrix an be deomposed into a superposition of these, espeially ���. Taking Lorentzinvariane into aount, an expansion is given by��� = a � (���) + b � �(����) +  � ���(������) + d � 5(��5�) ++e � 5�(��5��) (B.22)where a; b; ; d; e are onstants that have to be determined. It is immediately obvious thatb =  = 0 beause of (B.17) and (B.18). The remaining onstants are found in multiplyingfrom the right with f1; 5; 5�g and taking the trae, one obtains��� = 14(���) + 145�(��5��)� 145(��5�) : (B.23)98



A lot of useful relations an be obtained from (B.23) in multiplying on the right with C ordeomposing � into its left- and right-handed parts. In this way one �nds(�"�)(���) = �(�"5�)(��5�) (B.24)(�"5��)(��5��) = ����(�"5�)(��5�) (B.25)(�"��)(��5��) = �4(�"�)(��5�) (B.26)(�"5�)(���) = �(�"�)(��5�) (B.27)(���)2 = �(��5�)2 (B.28)(��5��)(��5��) = ����(��5�)2 (B.29)�R��L�L = �R��5� (B.30)2��L��R = ���5�� (B.31)Note that beause spinors are antiommuting objets, produts of more than two spinorsvanish, i.e. �L��L�L = 0 and �R��R�R = 0.Any produt of �ve and more omponents of � vanishes, so that the list of nontrivial produtsof spinor omponents is given by���� = 14(�5)��(���) + 14(��)��(��5��) + 14���(��5�) (B.32)����� = �14(��5�)[���� � (�5)��(5�) � ���� ++(�5)�(5�)� + ���� � (�5)�(5�)�℄ (B.33)������Æ = 116(���)2[����Æ � (�5)��(�5)Æ � ����Æ ++(�5)�(�5)�Æ + ����Æ � (�5)�(�5)�Æ℄ (B.34)From the relation (B.34) it follows that(���)(��5�) = 0 (B.35)whih is a useful relation one omputations in superspae are performed.The Lagrangian is real but some �elds are desribed by omplex valued objets. Termsinvolving these omplex �elds ome always together with their hermitian onjugates so thate�etively the real part of these terms appear. For bilinears of Majorana spinors one �nds(��1M�2) = (��1��5M���5�2) (B.36)99



C APPENDIXwhere we made use of (B.10) and the fat that omplex onjugation interhanges the spinors.In the representation for the gamma matries given in (B.6) it is ��5����5 = � and, thus,�CM�C1� = +M for M = 1; �; ��� (B.37)�CM�C1� = �M for M = 5; �� (B.38)from whih one �nds the properties of bilinears under omplex onjugation(��1M�2)� = +(��1M�2) for M = 1; �; ��� (B.39)(��1M�2)� = �(��1M�2) for M = 5; 5� (B.40)C SuperspaeA onvenient tool to treat omputations in global N = 1 supersymmetry is given by su-perspae. For supergravity it is not so helpful anymore, beause before one an enjoy theonveniene of superspae, one has to introdue di�erential geometry in urved superspaeand one has to impose onstraints whih is a lot of work. However, for global supersymmetrythere are not so many new onepts neessary before one is able to use the advantages ofsuperspae. Hereby, the spaetime oordinates x� are extended by fermioni oordinates thatare represented by a four-omponent Majorana spinor ��. Due to the symmetry propertiesof bilinears of spinors (B.17) and (B.18) it is immediately lear that ���� = ������ = 0.Furthermore, as � has only four omponents, any power series in � terminates after quartiorder. The formulas (B.32), (B.33) and (B.34) suggest, that any produt of two spinors isproportional to a linear ombination of (���), (���5�) and (�5�), while a produt of threespinors only is proportional to (��5�) and a produt of four �s is proportional to (���)2. Withthis at hand, we an express the most general funtion of x� and �, alled a super�eld, asS(x; �) = C(x)� i��5 (x) � i2(��5�)M(x)� 12(���)N(x) ++ i2(��5��)A�(x)� i(��5�)���(x)� i2(��5�)����� (x) ++14(���)2(D(x) + 12����C(x)) : (C.1)It is onvenient to separate ����C(x) and ��� (x) from D and �, respetively, as willbeome lear in a moment. The omponent �elds � and  are fermioni while A� is a vetor100



�eld. The remaining �elds are salar or pseudosalar �elds, depending also on whether S(x; �)is a salar �eld.Supersymmetry transformations are generated by the in�nitesimal operatorsQ = 5� ��� + �� ��x� ; (C.2)�Q = ��� � 5��� ��x� : (C.3)The transformation laws of the �elds ontained in S(x; �) are found fromÆS = (�"Q)S (C.4)and in using the rearrangement formulas from the previous setion to put eah term into itsorresponding form proportional to a standard bilinear in �. The advantage of super�eldsis that if S1 and S2 are super�elds, then S = S1S2 is again a super�eld. Also super�eldsautomatially provide representations of the supersymmetry algebra on �elds. Note that thesuperpartners are also haraterized by the expansion in �.Besides (C.2) and (C.3), one an de�ne another di�erential operators in superspae byD = 5� ��� � �� ��x� (C.5)�D = ��� + 5��� ��x� (C.6)where the only di�erene to (C.2) and (C.3) is a hange in sign. This hange, however, isresponsible that the antiommuter fD;Qg = 0 (C.7)between the generator of supersymmetry and the di�erential operator D vanishes. In turn,(�"Q) ommutes with D and besides the arbitrary polynomial funtion of S(x; �) being asuper�eld, their superderivatives DS, DDS, et. are super�elds as well. In other words, thesuperderivatives are used in order to impose onstraints on the general super�eld S(x; �).Requiring that the super�eld is real, i.e. S(x; �) = S�(x; �), one obtains the so-alled realsuper�eld. Usually it is denoted by V (x; �) and formally given by the same expression (C.1),but with only real omponent �elds. There is a ertain arbitrariness in the expansion of the101



C APPENDIXmost general super�eld and we an hose as well
(x; �) = B(x)� 12 ��(1 + 5)! � 12(��(1 + 5)�)P (x) ++12(��5��)��W (x)� 12(��5�)��(1 + 5)���!(x) ++18(���)2����B(x)) (C.8)where B(x), P (x) and W (x) are arbitrary omplex funtions of spaetime and the spinoris an arbitrary Majorana spinor. With help of the omplex onjugation formulas for spinorbilinears, (B.39) and (B.40), one an determine the omplex onjugated super�eld to (C.8).It is not diÆult to see that V (x; �)+Im
(x; �) allow to gauge away the nonphysial degreesof freedom in the real super�eld aording toC(x) ! C(x)� ImB(x) (C.9) (x) !  (x) + !(x) (C.10)M(x) ! M(x)�ReP (x) (C.11)N(x) ! N + ImP (x) (C.12)A� ! A� + ��W (x) (C.13)while the transformation of the vetor �eld ats like a gauge transformation. Thus, we seethat the arbitrariness in the general super�eld allows one to put the real super�eld into theform V (x; �) = i2(��5��)A� � i(��5�)���+ 14(���)2D(x) (C.14)whih is the so alled \Wess-Zumino gauge". So far we have treated Abelian gauge theories.The nonabelian generalization is not as easy, but in Wess-Zumino gauge, the orrespondingreal super�eld is obtained from (C.14) by replaing the Abelian objets with the orrespondingnonabelian ounterparts.The supersymmetry transformations, obtained from applying the operator �"Q to the realsuper�eld, are the same transformations as found in the text by the Noether method, i.e.(4.24), (4.25) and (4.26). We observe that the transformation of the auxiliary �eld, (4.26), isproportional to a derivative and on the other side, the auxiliary �eld is given by the highestomponent in the deomposition after �, the so alled D-term.102



The hiral multiplet is given by the hiral super�eld B whih is determined by0 = �DB : (C.15)In its deomposition we �nd the salar �eld z, the fermioni superpartner � and the auxiliary�eld F whih is as in the gauge setor, the highest omponent proportional to (���)2.Inhiral multiplets, the term proportional to (���) is alled the F -term. The transformationsunder supersymmetry are the same as given in (4.17) to (6.34) in the ontext of the Noethermethod. We will not go into too muh detail, but fous on the super�eld, that ontains the�eld strength. The url multiplet, as it is oasionally alled, is de�ned through the relationW� := �14(DT �D)D�V (x; �) : (C.16)A rather simple form of this super�eld is found, when one uses oordinates x�+ := x� +1=2(��5��). Then the left hiral super�eld, ontaining the �eld srength, readsWL(x; �) = i�L(x+) + 2i����LF��(x+) + i(�TL��L)����R(x+) + �LD(x+) : (C.17)With help of the formulae given in appendix B, one �nds for the projetion to the F -term12 Re[WL����WL�℄F = �12 ������� 14F ��F�� + 12D2 (C.18)whih is the same as (4.13). Note, that the imaginary part Im �WL5WL ontains the totalderivative 14"����F��F�� .Another super�eld whih is used in setion 7 ontains the antisymmetri tensor �eld. Asthe url super�eld, it is a hiral super�eld and in aordane with (C.15) it is de�ned viaDTR� = 0 : (C.19)The tensor �eld provides o� shell 6 degrees of freedom of whih 2 are rendered unphysialbeause B�� there is the freedom to add 2�[���℄ for suitable ��. One four omponentMajorana spinor is not enough to balane the degrees of freedom o�-shell but two Majoranaspinors are. The two bosoni degrees of freedom that are still missing are provided by aomplex salar. From this one an write down the �-expansion of the spinor super�eld as� = �� �12C + ���B���� + ���(� + �5���) : (C.20)103



D APPENDIXThe �eld strength of B�� is ontained in the linear super�eld L whih is obtained from thespinor super�eld by L := 12DT� ����� (C.21)The expliit expansion of L is not of immediate importane and that is why it is not quotedhere. An expansion an be found in [90℄, for example.D Some diret alulations of setion 6In this appendix we prove some formulas used in setion 6 by diret alulations. We willtry to keep this appendix as self-ontained as possible that the reader is not fored to thumbtoo muh bak and forth.D.1 The Bianhi identityIn this appendix we want to prove the Bianhi identity (6.33).In order to do so we have to ompute the ation of the ovariant derivative on the �eldstrength (6.32): D[�F��℄M = �[�F��℄M +XNPMA[�NF��℄P (D.1)The two terms of (D.1) are alulated separately:� The omputation of the �rst term in (D.1) gives�[�F��℄M = 2�[���A�℄M +X[NP ℄M�[�(A�NA�℄P )= �2X[NP ℄MA[�N��A�℄P : (D.2)� The seond term is found to be given byXNPMA[�NF��℄P = XNPMA[�N��A�℄P +X[QR℄PXNPMA[�NA�QA�℄R (D.3)where we used the result of the auxiliary alulation (D.4).Putting (D.2) and (D.3) together we obtain the Bianhi identity:D[�F��℄M = 2X(NP )MA[�N��A�℄P +X[QR℄PXNPMA[�NA�QA�℄R104



D.2 Gauge variation of F��MAuxiliary alulation:X[QR℄PXNPMA[�NA�QA�℄R = X[QR℄PXNPM � 16 � (A�NA�QA�R +A�NA�QA�℄R ++A�NA�QA�℄R �A�NA�QA�R �A�NA�QA�℄R �A�NA�QA�R)= 13A�NA�QA�R (X[QR℄PXNPM +X[NQ℄PXRPM +X[RN ℄PXQPM )= 13A�NA�QA�R �X[QR℄PX(NP )M +X[NQ℄PX(RP )M++X[RN ℄PX(QP )M �X(P [N)MXQR℄P �= 23X(PN)MX[QR℄PA[�NA�QA�℄R (D.4)We made use of the Jaobi identity (6.26) in order to obtain (D.4).D.2 Gauge variation of F��MIn this appendix we will ompute the gauge variation of the �eld strength with respet to(6.28). The relevant formulae are:F��M = 2�[�A�℄M +X[PQ℄M A�PA�Q ; (D.5)ÆA�M = D��M � ZM���� ; (D.6)D��M = ���M +XPQM A�P�Q ; (D.7)[XM ;XN ℄ = �X[MN ℄PXP : (D.8)Furthermore, we make use of the auxiliary alulation:� Let us determine the gauge variation of the �rst term in (D.5). In order to do so weomputeÆ(��A�M ) = ��(ÆA�M )= ��D��M � ZM������= �����M +XPQM ��A�P�Q +XPQM A�P���Q � ZM������(D.9)105



D APPENDIXand in using (D.5), we obtain from (D.9):
Æ(2�[�A�℄M ) = XPQM [��A�P � ��A�P ℄�Q +XPQM [A�P���Q �A�P���Q℄��ZM�[����� � �����℄= XPQM F��P�Q �2 XPQMX[RS℄PA�RA�S�Q � 2XPQM A[�P��℄�Q ��2ZM��[���℄� : (D.10)

� Next we alulate the variation of the seond term of (D.5):
Æ(X[PQ℄M A�PA�Q) = X[PQ℄M (ÆA�PA�Q +A�P ÆA�Q)= X[PQ℄M (D��PA�Q � ZP����A�Q +A�PD��Q �A�P���ZQ�)= X[PQ℄M (A�Q���P +XRSPA�RA�Q�S +A�P���Q ++XRSQA�PA�R�S � ZP����A�Q �A�P���ZQ�)= X[PQ℄M (A�Q���P +A�P���Q) ++X[PQ℄M (XRSPA�RA�Q�S +XRSQA�PA�R�S)��X[PQ℄M (ZP����A�Q +A�P���ZQ�)= X[PQ℄M (A�P���Q �A�P���Q) ++X[QR℄MXPSQA�PA�R�S +X[PQ℄MXRSQA�PA�R�S ��X[PQ℄M (�ZQ����A�P +A�P���ZQ�)= 2X[PQ℄M A[�P��℄�Q ++(�XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S ��X[PQ℄MZQ� A[�P��℄� (D.11)106



D.2 Gauge variation of F��MThe variation of the �eld strength (D.5) under (D.6) is given by (D.10) and (D.11), whih isadded up and simpli�ed aording to:ÆF��M = XPQM F��P�Q �XPQMX[RS℄PA�RA�S�Q � 2XPQM A[�P��℄�Q ��2ZM��[���℄� + 2X[PQ℄M A[�P��℄�Q ++(�XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S � 2X[PQ℄MZQ� A[�P��℄�= XPQM F��P�Q � 2X(PQ)M A[�P��℄�Q ++(�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S ��2ZM��[���℄� � 2X[PQ℄MZQ� A[�P��℄� (D.12)Now, let us have a loser look at the last line of (D.12) but before let us remember the losureonstraint (6.20) whih is displayed again:f�� �P �S� +�Q��P (t)SQ = 0 : (D.13)With help of (D.13), we an manipulate the last term of the last line of (D.12) as follows:�2X[PQ℄MZQ�A[�P��℄� = �XPQMZQ�A[�P��℄�= �[12XPQM
QR�R�℄A[�P��℄�= �[12�Q�(�XPRL
MS
LS
QR)℄A[�P��℄�= �[12�Q�(�XPSL
MS
LR
QR)℄A[�P��℄�= �[�12�Q�XPSQ
MS ℄A[�P��℄�= �[12f���P �S�
MS ℄A[�P��℄�= �ZM�f���P A[�P��℄�= �2ZM�f���P A[�P��℄� + ZQ�XPQMA[�P��℄�= �2ZM�f���P A[�P��℄� + ZQ�XPQMA[�P��℄�= �2ZM�f���P A[�P��℄� + 2X(PQ)MZQ�A[�P��℄�(D.14)where we made use of XP [RL
S℄L = 0 and of loality in the form XQPMZQ� = 0. Notethat we have just proven the relation2X[PQ℄MZQ� = ZM�f���P  (D.15)107



D APPENDIXIf we de�ne the ovariant derivative of a tensor �eld aording toD���� := ��X� + f���P A�P��� ; (D.16)then we obtain for (D.12) the following expression:ÆF��M = XPQM F��P�Q � 2ZM�D[���℄� ++(�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S ��2X(PQ)MA[�P ���℄�Q � ZQ���℄�� : (D.17)Now, let us have a loser look at the terms in (D.17) proportional to A�PA�R�S :�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M == �X[PR℄QX[QS℄M �X[PS℄QX[RQ℄M +X[RS℄QX[PQ℄M ��X[PR℄QX(QS)M �X(PS)QX[RQ℄M +X(RS)QX[PQ℄M == X[PR℄QX[SQ℄M +X[SP ℄QX[RQ℄M +X[RS℄QX[PQ℄M ��X[PR℄QX(QS)M �X(PS)QX[RQ℄M +X(RS)QX[PQ℄M (D.18)The �rst line of (D.18) satis�es the modi�ed Jaobi identity (6.26) �repeated down in equation(D.19)� due to (D.6)X[MN ℄PX[QP ℄R +X[QM ℄PX[NP ℄R +X[NQ℄PX[MP ℄R = �X(P [Q)RXMN ℄P: (D.19)Then we an manipulate the �rst line of (D.18) as follows:X[PR℄QX[SQ℄M +X[SP ℄QX[RQ℄M +X[RS℄QX[PQ℄M = �X(Q[S)MXPR℄Q= �13 � [X(QS)MX[PR℄Q +X(QR)MX[SP ℄Q +X(QP )MX[RS℄Q℄= �13 � [X[PR℄QX(QS)M +X[SP ℄QX(QR)M +X[RS℄QX(QP )M ℄108



D.3 Gauge variation of the generalized Chern-Simons termLet us ontinue with the seond line in (D.18)�X[PR℄QX(QS)M �X(PS)QX[RQ℄M +X(RS)QX[PQ℄M == 14 � [�XPRQXQSM �XPRQXSQM +XRPQXQSM +XRPQXSQM �XPSQXRQM �XSPQXRQM+XPSQXQRM +XSPQXQRM +XRSQXPQM +XSRQXPQM �XRSQXQPM �XSRQXQPM ℄= 14 � [XRPQXSQM �XSPQXRQM +XSRQXPQM �XPRQXSQM +XRSQXPQM �XPSQXRQM+XPSQXQRM +XSPQXQRM �XRSQXQPM �XSRQXQPM +XRPQXQSM �XPRQXQSM ℄= 14 � [�X[RS℄QXQPM �X[SP ℄QXQRM �X[RP ℄QXQSM ++XPSQXQRM +XSPQXQRM �XRSQXQPM �XSRQXQPM +XRPQXQSM �XPRQXQSM ℄= 14 � [�X[RS℄QXQPM �X[SP ℄QXQRM +X[RP ℄QXQSM ℄= 14 � [X[RS℄QX[PQ℄M +X[SP ℄QX[RQ℄M +X[PR℄QX[SQ℄M �X[RS℄QX(PQ)M �X[SP ℄QX(RQ)M ��X[PR℄QX(SQ)M ℄= 14 � [�X[PRQX(S℄Q)M � 3 �X[PRQX(S℄Q)M ℄= �X[PRQX(S℄Q)M (D.20)where we made use of (D.8), (D.19) and loality in form of XQPRZQ�. If we add the �rstline in (D.18) to (D.20), we obtain(�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S = �2X[RSQX(P ℄Q)MA�PA�R�S ;whih ompletes the partial derivative in the last line of (D.17) to form a ovariant deriva-tive. From (D.6) we �nally see, how the �eld strength F��M transforms under the gaugetransformation (6.99), i.e., we haveÆF��M = XPQMF��P�Q � 2ZM�D[���℄� � 2X(PQ)MA[�P ÆA�℄Q : (D.21)D.3 Gauge variation of the generalized Chern-Simons termWe want to show that the gauge variation of the generalized Chern-Simons term (6.50) isgiven by (6.51), i.e.,ÆLGCS = 12 ����� �F���D�ÆA�� �F���X(PQ)�AP� ÆAQ� ��������DMNP AM� ÆAN� ���AP� + 38 XRSP AR� AS�� : (D.22)109



D APPENDIXFor future referene we want to denote the �rst line of (D.22) by � and expand � in termsof the vetor �elds. Consequently, we have� := 12 ����� �F���D�ÆA�� �F���X(PQ)�AP� ÆAQ� � == ����� ���A�� ��ÆA�� + 12 XPQ�AP� AQ� ��ÆA�� + ��A�� AP� ÆAQ� X[PQ℄��X(PQ)M 
MN ��AN� AP� ÆAQ� + 12 XPQ�XRS�AP� AQ� AR� ÆAS��12 XPQ�X(RS)�AP� AQ� AR� ÆAS�� : (D.23)Let us prove the equation (D.22) �rst for the A3 (e.g. AA�ÆA) and then for the A4 terms(i.e. AAAÆA).The A3-terms. ÆLGCSjA3 = (a) + (b) + () + (d) ;(a) = 23 ����� X[MN ℄�AM� ÆAN� ��A�� ;(b) = 13 ����� XMN�AM� AN� ��ÆA�� ;() = 13 ����� X[MN ℄�AM� ÆAN� ��A�� ;(d) = 16 ����� XMN�AM� AN� ��ÆA�� : (D.24)We an group some of those terms in sympleti invariant expressions:(b) + (d) = ����� ��13 XMNP 
PQAM� AN� ��ÆAQ� + 12 XMN�AM� AN� ��ÆA��� ;(a) + () = ����� �13 X[MN ℄P 
PQAM� ÆAN� ��AQ� +X[MN ℄�AM� ÆAN� ��A��� : (D.25)We an now ompute the sum(a) + (b) + () + (d) = ����� �12 XMN�AM� AN� ��ÆA�� +X[MN ℄�AM� ÆAN� ��A��+13 X[MN ℄P 
PQAM� ÆAN� ��AQ� � 13 XMNP 
PQAM� AN� ��ÆAQ� � :(D.26)110



D.3 Gauge variation of the generalized Chern-Simons termModulo total derivatives we an rewrite the last two terms of (D.26) in the following way:����� �13 X[MN ℄P 
PQAM� ÆAN� ��AQ� � 13 XMNP 
PQAM� AN� ��ÆAQ� � == 13 ����� �X[MN ℄P 
PQ � 2X[MQ℄P 
PN� AM� ÆAN� ��AQ� == 16 ����� �XMNP 
PQ �XNMP 
PQ � 2XMQP 
PN+2 (�3DMNQ �XMNP 
PQ �XNMP 
PQ)� AM� ÆAN� ��AQ� == ������ (X(MN)P 
PQ +DMNQ)AM� ÆAN� ��AQ� : (D.27)Where we have used the de�nition of DMNQ (6.18). From this we onlude thatÆLGCSjA3 = (a) + (b) + () + (d) = ����� �12 XMN�AM� AN� ��ÆA�� +X[MN ℄�AM� ÆAN� ��A���X(MN)P 
PQAM� ÆAN� ��AQ� �� �����DMNQAM� ÆAN� ��AQ� == �jA3 � �����DMNQAM� ÆAN� ��AQ� : (D.28)The A4 terms in ÆLGCS are readily omputed by noting thatLGCSjA4 = 18 ����� XMN�XPQ�AM� AN� AP� AQ� : (D.29)We an then writeÆLGCSjA4 = 14 ����� �XMN�X[PQ℄� +XMN�X[PQ℄�� AM� AN� AP� ÆAQ� : (D.30)Now let us ompare the above expression with the A4 terms in (D.23):�jA4 = 12 ����� �XMN�XPQ� �XMN�X(PQ)�� AM� AN� AP� ÆAQ� == 14 ����� �XMNRXPQS 
RS +XMN�XPQ� �XMN�XQP�� AM� AN� AP� ÆAQ� == 14 ����� �XMNRXPQS 
RS +XMNRX(PQ)S 
RS +XMN�X[PQ℄�+ XMN�X[PQ℄�� AM� AN� AP� ÆAQ� == ÆLGCSjA4 ++14 
RS ����� �XMNRXPQS +XMNRX(PQ)S� AM� AN� AP� ÆAQ� : (D.31)111



E APPENDIXNow let us onsider the last term of (D.31) and show that it is proportional to the DMNP .We use the following properties�XMNRXPQS 
RS +XMNRX(PQ)S 
RS�[MNP ℄ == 12 �3XMNRXPQS 
RS +XMNRXQPS 
RS�[MNP ℄ == 12 �3XMNRXPQS 
RS + 3XMNR dQPR �XMNRXRP S 
QS �XMNRXPQS 
RS�[MNP ℄ == 32 X[MNRDP ℄QR + 12 �2XMNRXPRS 
QS �XMNRXRP S 
QS�[MNP ℄ == 32 X[MNR dP ℄QR ; (D.32)where we have used the onstraint (6.20) in the form:�2XMNRXPRS 
QS �XMNRXRP S 
QS�[MNP ℄ = 0 : (D.33)From the above result and equation (D.31) we onlude that�jA4 = ÆLGCSjA4 + 38 �����XMNR dPQRAM� AN� AP� ÆAQ� : (D.34)Equations (D.28) and (D.34) imply together (D.22) whih onludes the proof.E Abelian GaugingIn this appendix we are going to show how the Abelian gauging of the sympletially ovariantformalism of setion 6 leads to models with massive tensor �elds as disussed in [29, 89, 90,107{110℄. The disussion is along the lines of [83℄ but presented in more detail beause thenthe onnetion to [90℄ beomes more lear.The Abelian gauging is obtained from the ungauged rigid symmetry group Grigid bydeomposing it into GV �GM where GV and GM at exlusively on vetor and matter �elds,respetively. Therefore, the generators deompose into mutually ommuting sets ft�g =ftAg � ftag where only tA ats nontrivially on vetor �elds and the generators ta at merelyin the matter setor. Also the embedding tensor �M� deomposes de�ning the generators ofthe gauge group, XM = �MAtA + �Mata. The losure onstraint (6.20) splits up into twoseparate equations fABC�MA�NB � (tA)NP�MA�PC = 0 (E.1)fab�Ma�Nb � (ta)NP�Ma�P  = 0 (E.2)112



and the seond equation leads to an additional and independent onstraint��[a��b℄ = 0 : (E.3)It is �MA = 0 for Abelian gaugings without axioni shifts. Consequently, the generalizedChern-Simons terms vanish and the Lagrangian takes the simple formLV T = 14I�� H���H�� � + 18R��"����H���H��� ��18"������a B�� aF�� � + 132"������a��b B�� aB�� b (E.4)where H��� := F��� + 12��aB�� a (E.5)The magneti vetor �elds an be eliminated from (E.4) by their equations of motionÆLÆA� = d ÆLÆdA� (E.6)whih are algebrai and not dynamial beause the magneti vetor �elds do not possessany kineti terms. Before we an do so, let us speify the oupling to the matter setor. Inthe ase that we onsider we will assume that the matter ouplings are given by a nonlinearsigma model with gauged isometries of its target spae. The oordinates of the target spaeare represented by f�x; qig and its metri Gnm only depends on the subset f�xg. In otherwords, the sigma model is invariant under onstant shifts of fqig. Then the gauging of theisometries leads to the ovariant derivativesD�qi := ��qi ���iA�� ��� i A�� (E.7)and, hene, the nonlinear sigma model is given byLmatter = 12Gxy(�)���x���y + 12Gxi(�)���xD�qi + 12Gix(�)D�qi���x ++12Gij(�)D�qiD�qj (E.8)Now we are able to use (E.6) and determine the equations of motion for the magneti vetor�elds: Gxi(�)��i���x +Gij(�)��jD�qi = 12��i"������B�� i: (E.9)113



F APPENDIXSolving this equation for the magneti vetor �eld��iA�� = (��qi ��� i A��)� 12(G�1)ji(�) � "������B�� j (E.10)it is possible to eliminate the magneti vetor �eld from the Lagrangian and we obtainL = 14I�� H���H�� � + 18R��"����H���H��� + 18�� i "���� B�� i F�� � ++18(G�1)ji(�) � "������B�� i � "���� ��B�� j ++ 132��i �� j "���� B�� i B�� j + : : : (E.11)where ellipsis denote the rest of the oupling terms that are not of onern for us. We seethat for the Abelian gauging after eliminating the magneti vetor �elds by its equations ofmotion one ends up with a Lagrangian that, in addition to eletri �elds, onsists of a kinetiterm for the tensor �elds and the topologial oupling of B�� a to the eletri �eld strength.The Lagrangian (E.11) reprodues the results of [94℄ and [95℄. In [90℄ the authors disussedthe supersymmetrization of (E.11) whih will be reinvestigated in setion 7.F Details on the alulations of setion 7In agreement with (C.1), let the expansion of a real super�eld be given as
(x; �; ��) = C(x)� i��5!(x)� i2 ��5�M(x)� 12 ���N(x)+ i2 ���5�A�(x)� i(��5�)���(x)� i2(��5�)�����!(x) + (F.1)+14 ������(D(x) + 12�C(x)): (F.2)In order to evaluate the D-term of U(
) we Taylor expand U(
) around 
j�=��=0 and projetout the ������ omponent. In order to do so, it is onvenient to introdue X := 
�
j and wean see that X5 = 0. Hene,U(
) = U(
j+X) = U(
)j+ �U�CX + 12! �2U�C2X2 + : : :+ 14! �4U�C4X4: (F.3)114



As we are interested in the D-term of this expression, we need the following resultsXj������ = 14(D + 12�C) (F.4)X2j������ = 18(M2 +N2)� 14 �!�� 18A�A���� + 116 �!���! (F.5)X3j������ = � 3i16M �!5! + 3i16N �!! + 3i16 �!�5!mA� (F.6)X4j������ = 316 �!!�!! (F.7)where we made use of the rearrangement formulae presented in appendix B. Inserting thisbak into the Taylor expansion leaves us withU(
)j������ = 14U 0(C) �D(x) + 12�C(x)�+ 18U 00(C) �12(M2 +N2)� �!�� 12A�A����++14 �!���!�+ i32U 000(C) [�M �!5! +N �!! + �!�5!mA�℄ ++ 1128U (4)(C)�!!�!! (F.8)Other important relations for evaluating the gauge oupling matrix are(Re f̂)11 = Re g11jg11j2 (F.9)(Re f̂)1a = Re(ig1ag�11)jg11j2 = � Im g1a Re g11 �Re g1a Im g11jg11j2 (F.10)(Re f̂)ab = Re(gab � g1ag1bg�11jg11j2 ) == Re gab + 1jg11j2 � (Re g11 Im g1a Im g1b �Re g11Re g1aRe g1b �� Im g1aRe g1b Im g11 �Re g1a Im g1b Im g11) (F.11)With the help of the above given relations, we get from (7.20), (7.21) to (7.22), (7.23). Nowif we solve (7.22) in terms of D
D
 = Dbm2 (Im g1b � Re g1b Im g11Re g11 )� m28 jg11j2Re g11U 0 (F.12)and insert it into (7.23), we �nd thatDb[Re gab � Re g1aRe gb1Re g11 ℄ = �m4 U 0(Im g1a � Re g1a Im g11Re g11 ) (F.13)115



F APPENDIXThe equation an be further modi�ed in ating with [(Re g)�1℄�a from the left. The left handside therefore gives[(Re g)�1℄�a(Re ga � Re g1a Re g1Re g11 )D = [(Re g)�1℄�aRe gaD � [(Re g)�1℄�aRe g1a Re g1Re g11 D= (Æ� � [(Re g)�1℄�1Re g1)D � (Æ�1 � [(Re g)�1℄�1Re g11)Re g1DRe g11 = (Æ� � Æ�1 Re g1Re g11 )D(F.14)while on the other hand we have for the right hand side�(Re g)�1��a�Im g1a � Re g1a Im g11Re g11 � = � �Æ�1 � [(Re g)�1℄�1Re g11� Im g11Re g11 ++ �(Re g)�1��a Im ga1= [(Re g)�1℄�� Im g�1 � Æ�1 (F.15)and, thus, we have(Æ� � Æ�1 Re g1Re g11 )D = �m4 U 0 � ��(Re g)�1��� Im g�1 � Æ�1 � (F.16)Now we see that if � = b, then we haveDb = �m4 U 0 � [(Re g)�1℄b� Im g�1 (F.17)
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