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SUMMARY 

It has previously been shown that overexpression of Plk4 in human cells causes the 

recruitment of electron-dense material onto the proximal walls of parental centrioles 

(Habedanck et al., 2005), suggesting that Plk4 is able to trigger pro-centriole 

formation.  

Here, we have used a cell line allowing the temporally controlled expression of 

Plk4 to study the formation of centrioles in human cells. We show that Plk4 triggers 

the simultaneous formation of multiple pro-centrioles around each pre-existing 

centriole. These multiple centrioles form during S phase and persist as flower-like 

structures throughout G2 and M phase, before they disperse in response to 

disengagement during mitotic exit, giving rise to a typical centriole amplification 

phenotype. Through siRNA-mediated depletion of individual centrosomal proteins we 

have identified several gene products important for Plk4-controlled centriole 

biogenesis and assigned individual proteins to distinct steps in the assembly 

pathway. 

Furthermore, we have been able to correlate these functional data with 

morphological analyses using immuno-electron microscopy, revealing that Plk4, 

hSas-6, CPAP, Cep135, γ-tubulin and CP110 were required at different stages of 

pro-centriole formation and in association with different centriolar structures. 

Remarkably, hSas-6 associated only transiently with nascent pro-centrioles, whereas 

Cep135 and CPAP formed a core structure within the proximal lumen of both 

parental and nascent centrioles. Finally, CP110 was recruited early and then 

associated with the growing distal tips, indicating that centrioles elongate through 

insertion of α-/β-tubulin underneath a CP110 cap. Collectively, these data afford a 

comprehensive view of the assembly pathway underlying centriole biogenesis in 

human cells. 
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INTRODUCTION 

In most animal cells, the centrosome orchestrates the formation of the cytoplasmic 

microtubule (MT) network during interphase and the mitotic spindle during M phase 

(Doxsey et al., 2005; Luders and Stearns, 2007). The importance of the centrosome 

was already realized at the end of the 19th century upon its discovery by Theodor 

Boveri who posed many key questions about the regulation of centrosome number 

and its role during cancerogenesis. It has been now known for more than 30 years 

that centrosomes duplicate in S phase – simultaneously to DNA replication. Whereas 

the molecular mechanisms that restrict DNA replication to a single round per cell 

cycle are well understood (Blow and Dutta, 2005; Machida and Dutta, 2005), little is 

known about the mechanisms controlling centrosome duplication. However, any 

deviation from normal centrosome number may lead to the formation of either 

monopolar or multipolar spindles, characeristics that are often associated with 

aneuploidy, and that are a hallmark of many cancer cells (Brinkley, 2001; Carroll et 

al., 1999; Lingle et al., 1998; Pihan et al., 1998). Therefore, both centrosome number 

and the coordination between chromosomal and centrosomal replication must be 

tightly controlled within the cell cycle. Here, the basic structure and function of the 

centrosome will be introduced. Then, recent studies and their implication for our 

understanding of centriole assembly itself, and the regulatory mechanisms controlling 

centrosome duplication, will be presented.  

 

 

The structure of the centrosome 

The centrosome is a non-membraneous organelle of ~ 1µm3 volume that is usually 

located in close proximity to the nucleus (Bornens, 2002; Doxsey, 2001). As the 

major microtubule organizing centre (MTOC) (Bornens, 2002; Doxsey, 2001) it 

participates in a range of functions, including cytoskeletal organisation, cell shape, 

motility, organelle transport and cell signalling during interphase. In mitotic cells, 

centrosomes organize the bipolar spindle and ensure accurate chromosome 

segregation and cytokinesis. Despite some morphological differences, specifically in 

Drosophila and C. elegans, basic centrosomal structure and functions are 

evolutionarily conserved from lower eukaryotes to mammals (Beisson and Wright, 
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2003). In some organisms that have lost their ability to form centrosomes, e.g. higher 

plants, a centrosome-independent mechanism ensures the formation of a bipolar 

spindle during mitosis (Gadde and Heald, 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 1. The structure of the centrosome. 

Schematic view of the centrosome consisting of the centrioles and the surrounding PCM. At the 

proximal ends, the centrioles consist of microtubule triplets (A-, B-, C-tubule) while microtubule 

doublets are present at the distal ends (Bettencourt-Dias and Glover, 2007). 

 

 

The single centrosome present in a G1 phase cell comprises two centrioles 

embedded in a protein matrix, the so-called pericentriolar material (Figure 1) 

(Bornens, 2002). This pericentriolar matrix is an electron-dense fibrous lattice 

(Dictenberg et al., 1998) that is composed of more than 100 different proteins 

(Andersen et al., 2003). It functions as a docking site for proteins involved in 

microtubule nucleation and anchoring, notably the evolutionarily conserved γ-tubulin 

ring complex (γ-TuRC) and large coiled-coil proteins like AKAP450 and PCM-1 

(Balczon et al., 1994; Keryer et al., 2003). 

The two centrioles at the core of the centrosome are symmetrical barrel-

shaped arrays of nine microtubule triplets. They are structurally and functionally 

distinct in that only one is fully mature, as reflected by the presence of distal and 

subdistal appendages (Ishikawa et al., 2005; Lange and Gull, 1996; Vorobjev and 
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Chentsov Yu, 1982). Centrioles are interconvertible with basal bodies which are 

essential for the formation of cilia and flagella (Dutcher, 2003). 

During ciliogenesis, the mature centriole/basal body is positioned in close 

proximity to the plasma-membrane, and the ciliary axoneme extends from its distal 

end by the elongation of centriolar MTs (Figure 2). Depending on the structure of the 

axoneme, cilia and flagella can be motile or non-motile, determined by the presence 

(motile 9+2 structure) or absence (non-motile 9+0 structure) of two central MTs within 

the lumen of the axoneme. While motile cilia and flagella are important for locomotion 

and the transport of material over cellular surfaces, non-motile/primary cilia appear to 

function as transducers of sensory stimuli (Pazour and Witman, 2003; Satir and 

Christensen, 2007; Singla and Reiter, 2006).  

Recent studies have established convincing genetic links between centriole-

associated proteins implicated in ciliogenesis such as BBS proteins (Nachury et al., 

2007) and Odf2 (Ishikawa et al., 2005) and several human diseases (Badano et al., 

2006; Bond et al., 2005; Hildebrandt and Zhou, 2007; Singla and Reiter, 2006) For 

example, Odf2 localizes specifically to the distal appendages of the mature centriole 

and its knockout phenotype in mouse F9 embryonic carcinoma cells suggests a role 

of Odf2 in primary cilium formation (Ishikawa et al., 2005). Interestingly, primary cilia 

are present on the surface of most quiescent somatic cells in vertebrates (Marshall 

and Nonaka, 2006; Singla and Reiter, 2006) and play important roles in physiology, 

development and disease. So far, studies on cilia formation have primarily focused 

on molecular components responsible for intraflagellar transport (IFT) or intracellular 

transport of membranes to growing cilia (Beales et al., 2007; Nachury et al., 2007) – 

both essential for ciliogenesis. However, the signalling network that controls 

ciliogenesis and particularly the interconversion between centrioles and basal bodies 

during cell cycle progression, remains to be elucidated. 
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Figure 2. The Structure of cilia. 

Electron micrographs and schematic views of the flagella of green algae. The axoneme is a cylindrical 

array of nine doublet MTs that surround either two singlet MTs (9+2 structure) or lack central MTs 

(9+0 structure). The transition fibers extend from the distal end of the basal body to the cell 

membrane. It has been suggested that they can be part of a pore complex that controls the entry of 

molecules into the cilium. Scale bar 0.25 µm. CW, cartwheel (Bettencourt-Dias and Glover, 2007). 

 

 

The centrosome cycle 

A somatic cell enters the centriole cycle at the G1/S-transition with a single 

centrosome comprising two loosely associated centrioles (Figure 3). It is noteworthy 

that these two centrioles are morphologically dissimilar, as maturity markers like 

distal and subdistal appendages are exclusively found on the mature centriole, which 

has been assembled two cell cycles ago. The second centriole, which was 

assembled during the previous cell cycle, lacks these structures. 

Pro-centriole assembly at the proximal end of both pre-existing centrioles is 

initiated at the G1/S-transition. Concomitantly with S phase entry, exactly one 

procentriole assembles at an orthogonal angle at the proximal end of each parental 

centriole (Alvey, 1985; Kochanski and Borisy, 1990; Kuriyama and Borisy, 1981; 

Paintrand et al., 1992; Vorobjev and Chentsov Yu, 1982).  
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The pro-centrioles elongate during S and G2. Before the cell enters mitosis, 

centrosome size increases by the recruitment of additional γ-tubulin ring complexes 

(Palazzo et al., 2000), the second parental centriole also acquires distal appendages 

and the loose connection tethering the two parental centrioles is severed through cell 

cycle specific activation of several kinases, including Nek2, Cdk1 and Plk1 (Berdnik 

and Knoblich, 2002; Blangy et al., 1995; Fry et al., 1998; Giet et al., 1999; Glover et 

al., 1995; Golsteyn et al., 1995; Hannak et al., 2001; Lane and Nigg, 1996; Sawin 

and Mitchison, 1995). Although the composition of this tethering structure is 

unknown, the separation event is thought to be regulated via the phosphorylation 

tatus of C-Nap1. This protein is specifically located at the proximal end of the 

parental centriole and probably provides docking sites for other linker proteins (Fry et 

al., 1998; Mayor et al., 2000), notably rootletin (Bahe et al., 2005) and Cep68 (Graser 

et al., 2007). The phosphorylation status of C-Nap1 is balanced via activation of the 

centrosomal kinase Nek2 and the antagonistic protein phosphatase PP1α which is 

inactivated at the beginning of mitosis (Meraldi and Nigg, 2001). Dephosphorylation 

of C-Nap1 leads to its displacement from the centrioles, allowing centrosome 

separation to occur through the action of plus and minus-end directed motor proteins. 

The centriole pair at each pole of the bipolar mitotic spindle looses its orthogonal 

orientation and disengages at the end of mitosis and the cell enters G1 phase with 

one centrosome harbouring two loosely associated centrioles.  
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Figure 3. The centrosome cycle. 

The centrosome duplication cycle can be subdivided into several discrete steps. ‘Centriole duplication’ 

is initiated as the cell enters S phase. ‘Centriole elongation’ takes place during S and G2 phase. 

Before the cell enters mitosis, the centrosome undergoes ‘maturation’ and with exit from mitosis, the 

parental and daughter centrioles loose their orthononal association – an event formerly referred to as 

‘Centriole disorienation’, now termed ‘Centriole disengagement’ Now the two centrioles are licensed 

for a new round of duplication (Nigg, 2002). 

 

 

Kinases involved in the regulation of centriole duplication 

Several vertebrate kinases have been implicated in centriole duplication (Doxsey et 

al., 2005), but the most definitive evidence has accumulated supporting a role for 

Cdk2 together with cyclin E and/or A in regulating centriole duplication (Matsumoto et 

al., 1999; Meraldi et al., 1999; Tsou and Stearns, 2006). Interestingly, abnormal 

centriole duplication has also been observed in Drosophila wing disc cells depleted of 

Cdk1 (Vidwans et al., 2003). These cells not only show a prolonged S phase, but 

some daughter centrioles are characterized by an increase in length and most 

strikingly, in some of these cells, the parental centriole has acquired two daughter 

centrioles. However, a mechanistic understanding of Cdk requirement for centriole 
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duplication still needs to be achieved, and it remains possible that Cdk2 activity is 

necessary to advance cells into a permissive cell cycle stage, before centriole 

biogenesis can occur. 

A screen for genes required for embryonic development of C. elegans 

uncovered Zyg-1, a centrosomal kinase required for all developmental stages 

(O'Connell et al., 1998). Elegant genetic studies using reciprocal crosses between 

wild-type and mutant gametes revealed that Zyg-1 is essential for centriole 

duplication (O'Connell et al., 2001). Independently, the protein kinase Plk4 (also 

known as Sak; (Fode et al., 1994; Swallow et al., 2005)) has been identified as a key 

regulator of centriole duplication in both Drosophila (Bettencourt-Dias et al., 2005) 

and human cells (Habedanck et al., 2005). Although the two kinases lack obvious 

sequence homology, it is plausible that Plk4 represents a functional homologue of C. 

elegans Zyg-1. When Plk4 was absent, centriole duplication was abolished and 

centrioles were progressively lost in both vertebrate and invertebrate cells. Moreover, 

the spermatids of Drosophila Sak/Plk4 mutants lacked basal bodies and were 

therefore unable to form flagella (Bettencourt-Dias et al., 2005). When overexpressed 

in unfertilized eggs of Drosophila, Plk4 (Sak) induced the ‘de novo’ formation of 

centrioles, demonstrating that this kinase is able to induce centriole biogenesis even 

in the absence of pre-existing centrioles (Peel et al., 2007; Rodrigues-Martins et al., 

2007). Most strikingly, it has been shown that overexpression of Plk4 in human cell 

causes the recruitment of electron-dense material onto the proximal walls of parental 

centrioles, suggesting that Plk4 triggers multiple pro-centriole assembly via the 

enhanced recruitment of centriolar material (Habedanck et al., 2005). 

 

 

Maintenance of centrosome numbers 

The question of how cells keep centriole numbers constant over successive cell 

divisions remains an intriguing yet unresolved issue. When considering the 

centrosome cycle from a purely conceptual perspective, two different regulatory 

mechanisms seem appealing (Figure 4) (Nigg, 2007). One mechanism ensures that 

only one progeny centriole forms at each parental centriole (copy number control) 

and it is tempting to speculate that Plk4 is the master regulator of copy number 

control. 
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The other control mechanism ensures that centrioles duplicate exactly once 

and only once during each cell cycle (cell cycle control), being negatively regulated 

by a licensing mechanism that prevents inappropriate centriole re-duplication during 

G2 and M phase and positively regulated by high Cdk2 activity driving pro-centriole 

assembly only during S phase. The licensing mechanism mentioned here will be 

discussed in more detail in the following section.  

It is noteworthy that adherence to both rules is critical for the maintenance of 

constant centriole numbers, and deregulation of either one of the two control 

mechanisms is expected to give rise to aberrant centriole numbers and, 

consequently, to induce genomic instability. 

 

 

Figure 4. Two rules governing the centrosome cycle.  

(a) Centriole duplication in a normal cell cycle involves two centrioles (A and A’) giving rise to progeny 

(B and B’). This process is proposed to be controlled by two mechanisms. (b) The first mechanism 

imposes cell cycle control and ensures that centriole duplication takes place once and only once per 

cell cycle. Violation of this ‘once and only once’ per cell cycle rule results in re-duplication during S or 

G2 phase, leading to extra centrioles (C and C’). (c) The second mechanism imposes copy number 

control at each duplication event and limits the formation of pro-centrioles to one per pre-existing 
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centriole. Violation of this ‘one and only one’ per centriole rule results in the formation of multiple (pro-) 

centrioles (B1–B5 and B1’–B5’) per template (Nigg, 2007).  

 

 

Licensing of centriole duplication 

Cell fusion studies done by Wong and Stearns proposed a centrosome-intrinsic 

mechanism that allows duplication in S phase but blocks centriole re-duplication 

during G2 phase of the cell cycle (Wong and Stearns, 2003). Together with detailed 

electron microscopic descriptions of the centriole duplication cycle done in the 70s 

and 80s, these data gave rise to the idea of a ‘licensing’ model. According to this 

model, the engagement (meaning the tight orthogonal association) of the new pro-

centriole blocks further duplication until disengagement at the end of mitosis licenses 

the two centrioles for a new round of duplication. 

New data obtained by Tsou and Stearns strongly support this ‘licensing’ 

model. By studying centriole disengagement and pro-centriole assembly in Xenopus 

egg extracts using purified human centrosomes, activation of the protease separase 

was found to be required for centriole disengagement. In turn, this event was shown 

to be critical for the subsequent assembly of new procentrioles (Tsou and Stearns, 

2006). Before, separase was already well-known for its role in sister chromatid 

separation (Uhlmann et al., 2000). At the metaphase to anaphase transition, the 

‘anaphase-promoting complex/cyclosome’ (APC/C), an ubiquitin ligase, is activated 

and the separase inhibitors securin and cyclin B are targeted for degradation. 

Subsequently, centromeric cohesin is cleaved by active separase, allowing sister-

chromatids to finally separate.  

It remains to be determined whether separase acts directly on centrosomes, 

either by cleaving a centriolar ‘glue’ that links parental and daughter centrioles or acts 

indirectly on the centrosome, possibly through regulation of kinase and phosphatase 

activities that ultimately trigger centriole disengagement. 
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‘De novo’ centriole assembly pathways in mammalian cells 

The molecular mechanism by which the parental centriole is able to coordinate the 

assembly of a single daughter centriole perpendicularly to its surface is still unclear. 

The formation of centrioles and basal bodies has been extensively studied by 

electron microscopy (Anderson and Brenner, 1971; Brinkley et al., 1967; Chretien et 

al., 1997; Dippell, 1968; Kuriyama and Borisy, 1981; Mizukami and Gall, 1966; 

Sorokin, 1968; Vorobjev and Chentsov Yu, 1982). These studies have suggested the 

existence of two fundamentally distinct assembly pathways. Many ciliated cells, such 

as those in vertebrate respiratory tracts, can have 200-300 cilia per cell (Figure 5A). 

It is well established that these large numbers of centrioles are predominantly 

generated via an acentriolar assembly pathway. These multiple centrioles form 

around fibrous granules in the cytoplasm termed ‘deuterosomes’ (Figure 5C). 

Simultaneously, a minor fraction of basal bodies is still assembled from pre-existing 

centrioles in these cells which are also capable of assembling multiple pro-centrioles 

simultaneously (Figure 5B). The simultaneous formation of multiple basal bodies by 

‘deuterosomes’ was attributed to a ‘de novo’ assembly mechanism, whereas the 

duplication of centrioles in proliferating cells was thought to require pre-existing 

centrioles as ‘templates’ for the formation of progeny (Beisson and Wright, 2003; 

Hagiwara et al., 2004).  

However, recent experiments have blurred the distinctions between these two 

pathways and it now appears that pre-existing centrioles act primarily as solid-state 

platforms to accelerate the assembly process (Khodjakov et al., 2002; La Terra et al., 

2005; Rodrigues-Martins et al., 2007; Uetake et al., 2007). In particular, ‘de novo’ 

formation of centrioles was shown to be inducible, at least in certain tumor-derived 

cell lines like HeLa (Figure 5D), provided that resident centrioles were first removed 

by laser ablation or microsurgery (La Terra et al., 2005). In these studies, ‘de novo 

centriole assembly was observed to initiate with the formation of 2-10 centrin-positive 

aggregates during S phase. When these cells reached mitosis, all centrioles had 

acquired the typical canonical ultrastructure, were able to organize MTs and 

duplicate in the subsequent cell cycle. ‘De novo’ centriole assembly has also been 

described in acentriolar cells in Chlamomonas and Drosophila (Marshall et al., 2001; 

Peel et al., 2007; Rodrigues-Martins et al., 2007). 
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Taken together, these studies indicate that the presence of a single centriole is 

sufficient to inhibit ‘de novo’ formation, and that ‘de novo’ centriole formation takes 

place as the cells progress through S phase (La Terra et al., 2005; Marshall et al., 

2001). Therefore, regulation of ‘de novo’ centriole biogenesis seems similar to the 

canonical centriole cycle, albeit slower and unable to control the number of 

generated centrioles - while the presence of pre-existing centrioles restricts the 

numbers of new pro-centrioles to only one per template. How this ‘copy number 

control’ is implemented is presently not known, but the observed restriction, imposed 

by pre-existing centrioles, may suggest a process in which pro-centriole assembly in 

close proximity to a pre-existing centriole is kinetically favoured over ‘de novo’ 

assembly in the cytoplasm. 
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Figure 5. Atypical centriole assembly pathways. 

(A) The formation of cilia in a monkey oviduct. One of the two centrioles/basal bodies (red arrows) 

forms the cilium. (B) Multiple nearly mature basal bodies (arrow) associate with the parental centriole 

(arrowhead) from a monkey oviduct. (C) Deuterosomes with multiple nascent procentrioles. Scale bar 

(A-C) 0.25µm. (D) Pedigree of a cell born without centrioles. In cells labelled with centrin-GFP, 

centrioles in one of the poles of a mitotic spindle were laser-ablated. This cell gives rise to one cell 

with normal centriole number and another that lacks centrioles. Both continue to progress through the 

cell cycle with normal kinetics. When the cell without centrioles enters S phase, multiple centrin-

aggregates form. These pro-centriolar aggregates transform into morphologically complete centrioles 

by the time the cell enters mitosis. ‘De novo’ formed centrioles duplicate as the cell re-enters mitosis 

and normal centriole cycles resume (Bettencourt-Dias and Glover, 2007). 
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Templated centriole biogenesis in mammalian cells 

A proposed templating model holds considerable appeal for explaining how centriole 

duplication is initiated by coordinated recruitment of centriolar proteins to the parental 

centriole wall (Delattre and Gonczy, 2004). Careful electron microscopic studies in 

mammalian cells have revealed a filamentous corona forming around the proximal 

walls of parental centrioles and electron-dense material protruding into the proximal 

half of the elongating centriole (Anderson and Brenner, 1971; Sorokin, 1968). 

Moreover, a characteristic fibrous structure displaying 9-fold symmetry (termed 

‘cartwheel’) has been proposed to serve as a scaffold for the assembly of centriolar 

MTs (Figure 6) (Anderson and Brenner, 1971; Beisson and Wright, 2003; Cavalier-

Smith, 1974). Interest in this putative scaffolding structure has been refreshed by the 

recent identification of a cartwheel-associated coiled-coil protein, Bld10p, that plays a 

crucial role in centriole/basal body assembly in Chlamydomonas (Matsuura et al., 

2004). Genetic studies in lower eukaryotes such as Tetrahymena (Stemm-Wolf et al., 

2005) have also convincingly established an essential role for the calcium-binding 

protein centrin in basal body duplication (reviewed in (Salisbury, 2007)). 

 

 

 

 

 

 

 

Figure 6. Possible roles of cartwheels and Bld10 in basal body formation.  

Schematic diagramm showing the pathway of basal body formation. The bottom row shows the cross-

sectional view of basal bodies at the proximal end. The top row shows the longitudinal cross section. 

The cartwheel appears in an early stage of the assembly process. Microtubules emerge from the 

cartwheel filament tips and elongate distally during maturation. Bld10p may function in cartwheel 

assembly, possibly as a component of the cartwheel itself. The black ring in the first step is an 

amorphous structure appearing at the first step of basal body assembly; for clarity it is omitted in the 

diagrams of subsequent steps (Matsuura et al., 2004).  

 



20 

The role of centrins and Sfi1p in centrosome duplication 

Some proteins essential for centriole duplication are highly conserved throughout 

evolution. Centrins are a family of small calcium-binding proteins most closely related 

to the Calmodulin superfamily. First identified in the flagella of green algae, centrins 

have turned out to be ubiquitous, widely conserved proteins that are closely 

associated with centriolar structures (or spindle pole bodies) from yeast to human. 

The simple MTOC of budding yeast, the spindle pole body (SPB) is a tripartite 

structure consisting of an outer plaque that anchors γ-tubulin complexes and 

cytoplasmic MTs, a central plaque that is embedded in the nuclear envelope, and an 

inner plaque that anchors nuclear γ-tubulin and mitotic MTs (van Kreeveld Naone, 

2004). Cdc31p, the centrin homologue in budding yeast, localizes to a specialized 

area of the nuclear envelope, called the half-bridge, which has a critical role during 

initiation of SPB duplication (Adams and Kilmartin, 1999). The assembly of a 

daughter SPB is initiated from a satellite structure at the distal end of the bridge, 

which forms a duplication plaque on the cytoplasmic side of the bridge (Adams and 

Kilmartin, 1999). The SPB is then inserted into the nuclear envelope and assembly is 

completed before the two SPBs separate by cleavage of the bridge, leaving a half-

bridge with each new SPB.  

Centrin (Cdc31p) has an essential function during SPB duplication as 

temperature-sensitive mutants arrest with a single large SPB (Byers, 1981; Winey et 

al., 1991). Cdc31p interacts with three proteins in the half-bridge, Kar1p (Biggins and 

Rose, 1994; Spang et al., 1995); Mps3p (Jaspersen et al., 2002) and Sfi1p (Kilmartin, 

2003) (Kilmartin, 2003). The latter one, Sfi1p, binds multiple centrin molecules along 

a series of 23 internal conserved repeats (Kilmartin, 2003; Salisbury, 2004). Genetic 

studies with temperature-sensitive mutants show a requirement for Sfi1p during SPB 

duplication, cell cycle progression and mitotic spindle assembly. (Anderson et al., 

2007; Ma et al., 1999). Recent structural analyses of the Sfi1p-centrin complex and 

its asymmetric position within the SPB suggest a model for the initiation of SPB 

duplication (Figure 7), and provide a potential target for licensing this event (Jones 

and Winey, 2006). Immuno-electron microscopic (EM) localization of the Sfi1p N and 

C termini showed Sfi1p-centrin filaments spanning the length of the half-bridge with 

the N terminus localized at the SPB. This suggests that the half-bridge doubles in 

length by association of the Sfi1p C termini, thereby providing a new Sfi1p N 
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terminus to initiate SPB assembly (Li et al., 2006). Moreover, the assembly of Sfi1p 

at the half-bridge might license the SPB for duplication and may itself be regulated 

via Cdk activity (Jones and Winey, 2006). 

 

 

 

 

 

 

 

 

Figure 7. SPB duplication in Yeast.  

Diagram of single and paired SPBs showing the location of half-bridge and bridge components. This 

model of SPB duplication suggests that the Sfi1p N terminus is bound to SPB, whereas the free C 

terminus recruits another Sfi1p molecule, and subsequently recruites other proteins to the free N 

terminus and initiates assembly of a new SPB (Li et al., 2006). 

 

 

Originally, centrins were identified as the major components of several types 

of calcium-sensitive contractile fibers, such as the nuclear-basal body connectors 

and the distal striated fibers in unicellular green algae (Huang et al., 1988; Salisbury 

et al., 1984). Several studies have revealed a role for centrin in the assembly of basal 

bodies and flagella in lower eukaryotes (reviewed in (Salisbury, 2007)). Although 

homologous proteins of Sfi1p and centrin are present in human centrosomes 

(Kilmartin, 2003), it is unclear whether their essential function during centriole/basal 

body duplication is conserved. However, it is well established that centrin is one of 

the first proteins to localize at sites of newly forming centrioles, both in the templated 

and the ‘de novo’ assembly pathway (Figure 8) (Khodjakov et al., 2002; Klink and 

Wolniak, 2001; La Terra et al., 2005). 
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Figure 8. Centriole biogenesis in vertebrate cells. 

Pro-centrioles are assembled from a centrin-containing bud (I, in brown) during S phase by growing 

singlet (ii), doublet (iii) and triplet microtubules (green) which are progressively polyglutamylated (red 

lines). They transform into fully differentiated daughter centrioles (DC) after centriole disengagement. 

They further transform into differentiated mother centrioles (MC) during the next cell cycle by aquiring 

appendages and maturation markers. The proximo-distal differentiation of the MC is demonstrated by 

serial sections on the right (Bornens, 2002). 

 

 

Centriole biogenesis in C. elegans 

The molecular mechanisms of centriole biogenesis in mammalian cells remains 

poorly understood, but substantial progress has recently been made in invertebrate 

organisms. In Caenorhabditis elegans, a protein kinase, Zyg-1 (O'Connell et al., 

2001) and four putative structural proteins, termed Spd-2, Sas-4, Sas-5 and Sas-6 

are required for centriole duplication (Delattre et al., 2004; Kemp et al., 2004; Leidel 

et al., 2005; Leidel and Gonczy, 2003; Pelletier et al., 2004). Moreover, through 

elegant epistasis experiments and electron tomography, the five proteins could be 

shown to assemble sequentially on nascent pro-centrioles (Figure 9) (Delattre et al., 

2006; Pelletier et al., 2006). After fertilization of the C. elegans embryo, Spd-2 was 
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found to be recruited first to parental centrioles, mediated by cyclin-dependent 

kinase-2 (Cdk2), and was then required for centriolar localization of the other four 

proteins. Zyg-1 accumulated next and in turn was required for the subsequent 

recruitment of Sas-5 and Sas-6. Sas-4 was recruited last. This assembly pathway 

could be further resolved by remarkable structural studies using electron 

tomography. These data revealed that upon recruitment of Sas-5 and Sas-6, 

centriole assembly was initiated by the formation of a central tube. Following the 

subsequent recruitment of Sas-4, centriolar MTs were then assembled onto the 

periphery of this central tube. 

Sas-4 has been proposed to play a role in controlling centriole length by indirectly 

regulating protein recruitment and PCM size (Kirkham et al., 2003; Leidel and 

Gonczy, 2005). 

 

 

Figure 9. Centriole assembly in C. elegans. 

Cyclin-dependent kinase-2 (Cdk2) is important for recruiting spindle-defective protein-2 (Spd-2) to the 

mother centriole. Spd-2 is necessary for the recruitment of Zyg-1, which in turn is important for the 

recruitment of the Sas-5/Sas-6-complex, which is required for the formation of the inner centriole tube. 

At a later step, the formation of this tube is essential for the binding of Sas-4, with subsequent 

production of the surrounding MTs (Bettencourt-Dias and Glover, 2007). 

 

 

Interestingly, homologues of nematode Sas-4 and Sas-6 are also required for 

centriole biogenesis in Drosophila (Peel et al., 2007; Rodrigues-Martins et al., 2007). 

It is therefore tempting to speculate that fundamental aspects of centriole biogenesis 

have most likely been conserved during evolution. 
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Centriole biogenesis in human cells 

As discussed above, Plk4 is a master regulator of centriole duplication in human cells 

and a possible functional analogue of Zyg-1. According to sequence analyses, Spd-

2, Sas-4 and Sas-6 clearly have homologues in human cells, termed Cep192, CPAP 

(centrosomal P4.1-associated protein or CenpJ) and hSas-6, respectively (Andersen 

et al., 2003; Hung et al., 2000; Leidel et al., 2005; Leidel and Gonczy, 2005). CPAP 

has been shown to interact with γ-tubulin and was found in a mass-spectrometric 

analysis of the centrosome (Andersen et al., 2003; Hung et al., 2000). At that time, it 

was not known whether CPAP, like Sas-4, is essential for centriole duplication in 

human cells. However, recent studies in human cells have demonstrated a key role 

for hSas-6 in this process, as depletion of hSas-6 inhibited centriole duplication 

whereas overexpression of hSas-6 induced centriole overduplication (Leidel et al., 

2005). Furthermore, Plk4 function was found to depend on hSas-6 and CP110 – as 

depletion of either protein blocked Plk4-induced centriole overduplication 

(Habedanck et al., 2005). CP110 has been characterized as an in-vitro Cdk2 

substrate and is required for centriole re-duplication in S phase arrested cells (Chen 

et al., 2002). 

The γ-TuRC, which is required for the nucleation of cytoplasmic MTs, has also 

been implicated in centriole duplication (Haren et al., 2006; Luders et al., 2006). 

While Nedd-1/GCP-WD is required for centrosomal localization of the γ-TuRC and 

maintenance of centriole numbers in human cells, a requirement for γ-tubulin has 

only been reported in lower eukaryotes (Ruiz et al., 1999). Several other proteins and 

mechanisms, including Cdk2, CAMKII, SCF- and APC/C-dependent protein 

degradation have been suggested to play a role during centriole duplication (see 

Table 1). 
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Molecule Organism Assay Phenotype Refs 

SAK/Plk4/ 
Zyg-1 

Hs, Dm, 
Ce 

RNAi; mutations 
 
 
Overexpression 

No duplication;  
no re-duplication 
 
Amplification 

(Bettencourt-Dias et al., 2005); 
(Habedanck et al., 2005); 
(Pelletier et al., 2006);  
(Delattre et al., 2006); 
(O'Connell et al., 2001); 
(Rodrigues-Martins et al., 2007); 
(Peel et al., 2007) 

Spd-2 Ce RNAi; mutations No duplication; 
no recruitment of 
PCM 

(Pelletier et al., 2004);  
(Kemp et al., 2004) 

Sas-6-Sas-5 Hs (only 
Sas-6), 
Ce 

RNAi; mutations 
 
Overexpression 

No duplication; 
no re-duplication 
Amplification 

(Leidel et al., 2005); 
(Dammermann et al., 2004) 
 

Sas-4 Dm, Ce RNAi; mutations No duplication (Leidel and Gonczy, 2003); 
(Kirkham et al., 2003);  
(Basto et al., 2006) 

Cdk2 Hs, Mm, 
Xl, Ce 

Inhibition 
(dominant-
negative, 
chemical); RNAi 

Duplication can 
occur in its 
absence, no re-
duplication; 
defective Spd-2 
localization 

(Cowan and Hyman, 2006); 
(Meraldi et al., 1999); 
(Hinchcliffe et al., 1999); 
(Duensing et al., 2006) 

Centrin/ 
Cdc31p 

Hs, Sp,Sc, 
Cr, Pt 

RNAi; mutations No duplication (Hs, 
Sp, Sc); 
segregation of 
centrioles affected 
(Cr); geometry of 
duplication 
affected (Pt) 

(Paoletti et al., 2003);  
(Spang et al., 1993);  
(Ruiz et al., 2005);  
(Salisbury et al., 2002);  
(Koblenz et al., 2003)  

SFI1 Hs, Sc RNAi, mutations No duplication (Li et al., 2006);  
(Kilmartin, 2003) 

CP110 Hs RNAi No re-duplication (Chen et al., 2002) 

Nucleophos-
min 

Hs RNAi; inhibition of 
release from 
centrosome 

Amplification;  
no duplication 

(Budhu and Wang, 2005) 

γ-tubulin Hs, Dm, 
Ce, Pt, Tt 

RNAi, mutations No duplication (Ce, 
Hs, Tt); problems 
in centriolar 
structure, 
elongation and 
separation (Pt, 
Dm) 

(Dammermann et al., 2004); 
(Dutcher, 2004);  
(Haren et al., 2006);  
(Ruiz et al., 1999);  
(Raynaud-Messina et al., 2004) 

∆-tubulin Mm, Cr, Pt Mutations Doublets are 
formed (less cells 
with C-tubules) 

(Dutcher, 2003) 
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ε-tubulin Xl, Cr, Pt Mutations; 
immunodepletion 

Shorter centrioles, 
only singlets, no 
subsequent 
duplication;  
no duplication 

(Dutcher, 2003);  
(Chang et al., 2003) 

Bld10 Cr Mutations No duplication (Matsuura et al., 2004) 

Cep135 Hs Inhibition, RNAi 
 
Overexpression 

Disorganization of 
MTs 
Accumulation of 
particles 

(Ohta et al., 2002) 

CAMKII Xl Inhibition Blocks early steps 
in duplication 

(Sluder, 2004) 

Skp1, Skp2, 
Cul1, Slimb 
(SCF-
complex) 

Mm, Xl, 
Sc, Dm 

Mutations; 
inhibition 

Blocks separation 
of M-D pairs; 
blocks re-
duplication; 
increase in 
centrosome 
number 

(Sluder, 2004); 
(Wojcik et al., 2000);  
(Murphy, 2003);  
(Delattre and Gonczy, 2004); 
(Fuchs et al., 2004) 

p53 Hs Mutations Amplification (Fukasawa et al., 1996) ; 
(Shinmura et al., 2007) 

Separase Xl Inhibition Blocks centriole 
disengagement 

(Tsou and Stearns, 2006) 

 

Table 1. Proteins involved in centriole duplication. 

The term ‘inhibition’ is used here for inhibiting the function of a protein by dominant-negative mutants, 

chemical compounds or antibodies. ‘Re-duplication’ refers to centrosome amplification in S phase 

arrested cells. Ce, Caenorhabditis elegans; Cr, Chlamydomonas reinhardtii; D, daughter centriole; 

Dm, Drosophila melanogaster; Hs, Homo sapiens; M, mother centriole; Mm, Mus musculus; Pt 

Paramecium tetraurelia; PCM, pericentriolar material; Sc, Saccharomyces cerevisiae; Sp, 

Saccharomyces pombe; Tt, Tetrahymena thermophila; Xl, Xenopus laevis (Bettencourt-Dias and 

Glover, 2007). 

 

 

Centrosome abnormalities and cancer 

Theodor Bovery had already proposed a link between centrosome number, 

chromosome aneuploidy and tumorigenesis based on his observations of abnormal 

cell divisions in eggs of the nematode Ascaris megalocephala. He had observed that 

supernumerary centrosomes were accompanied by the formation of multipolar 

spindles and aberrant mitoses (Boveri, 1914; Goepfert, 2004). His proposal that 

centrosome aberrations might actively contribute to cancer development and 
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progression has gained renewed interest with the observation that several types of 

tumor cells exhibit centrosome amplification (Fukasawa et al., 1996; Ghadimi et al., 

2000; Lingle et al., 1998; Nigg, 2002; Pihan et al., 1998). However, it remains to be 

solved whether deregulation of centrosome numbers in tumor cells precedes 

aneuploidy or whether centrosome amplification is a cause of mitotic errors induced 

by oncogenic transformation (Nigg, 2002). 

 

 

 

 

 

 

 

 

 

Figure 10. The origins of centrosome amplification.  

A schematic diagram showing four pathways for acquiring extra copies of centrosomes. (adapted from 

(Goepfert, 2004)) 

 

 

 In principle, there are four possible mechanisms that allow cells to accumulate 

supernumerary centrosomes (Figure 10). Additional centrosomes can arise via 

deregulation of the centriole duplication process, as it has been observed in S phase 

arrested transformed U2OS and CHO cells. Experimentally, centriole overduplication 

can be induced by overexpression of hSas-6, Plk4 or human papillomavirus 

oncoprotein E7 (Duensing et al., 2007a; Habedanck et al., 2005; Leidel et al., 2005). 

Similarly, multiple centrosomes can be generated ‘de novo’, when the inhibitory pre-

existing centriole is destroyed by laser ablation (Khodjakov et al., 2002). 

Supernumerary MTOCs may also be obtained by splitting of centriole pairs or by 

centrosome fragmentation, induced by the overexpression of some PCM 

components (Oshimori et al., 2006; Thein et al., 2007). Regardless of the cause, all 
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these conditions lead to the generation of diploid or tetraploid cells harbouring 

abnormal centrosome numbers.  

Excess centrosome numbers accompanied by polyploidy may result from 

either cell fusion or cell division failure. The origin of polyploidy may be unrelated to 

centrosome biology but nevertheless lead to centrosome amplification and result in 

tumorigenesis (Fujiwara et al., 2005). Apart from numerical centrosome aberrations 

also structural aberrations effect centrosome function. Upregulated or downregulated 

microtubule nucleation capacity influences cell shape, polarity and motility of 

transformed tumor cells (Lingle et al., 2002; Lingle and Salisbury, 2001). 

Coalescence of excess centrosomes into two spindle poles in mitosis and into 

one MTOC during interphase has been reported in polyploid cells with amplified 

centrosomes (Brinkley, 2001; Rebacz et al., 2007). This ‘clustering’ mechanism 

enables transformed cells to survive aneuploidy and to form progeny cells that might 

be a driving force during tumorigenic transformation and cancer development.  

Although centrosome amplification can be cause or consequence of cancers, 

it is evident that there are several mechanisms existing in untransformed cells that 

tightly regulate centrosome numbers. Therefore, the centrosome itself or centrosomal 

related mechanisms e. g. controlling ‘centrosomal clustering’ may be potential targets 

of anti-cancer drugs, ideally inducing apoptosis very specifically only in transformed 

tumor cells. 
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AIMS OF THIS PROJECT 

Plk4, and its potential functional homologue Zyg-1 have been identified as master 

regulators of centriole duplication in human cells, Drosophila and C. elegans 

(Bettencourt-Dias et al., 2005; Habedanck et al., 2005; O'Connell et al., 2001). 

Furthermore, it was reported that Plk4 overexpression induces centriole 

overduplication via recruitment of excess electron-dense centriolar material onto the 

parental centrioles. The aim of this study was, first, to identify which centriolar 

proteins are excessively recruited upon Plk4 overexpression, second, to determine 

whether this protein recruitment indeed induces the assembly of complete centrioles 

and, based on this hypothesis, to analyze human centriole biogenesis at a molecular 

level. It remained to be solved whether the function of key proteins like Spd-2, Zyg-1, 

Sas-4 and Sas-6 is conserved from C. elegans to human and whether the potential 

cartwheel protein Bld10 has a functional human homologue. This study should also 

address the question of whether centrins and Sfi1p are as important for human 

centriole biogenesis as they are for SPB duplication in yeast. 
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RESULTS 

In the first section, polyclonal antibodies specific for hSfi1, Cep135 and CPAP will be 

characterized. These antibodies were then used to perform initial biochemical 

analyses of the endogenous proteins in human cells. In the second section, Plk4-

induced centriole biogenesis will be analyzed in human cells by diverse ‘high-

resolution based microscopic techniques’, with a specific focus on the roles of Plk4, 

hSas-6, CPAP, Cep135, CP110, centrin and hSfi1 in centriole assembly. Following 

on these results, an additional function of CP110 in the maintenance of centriole 

morphology will be presented in the third section. 

 

1. Initial biochemical characterization of the centrosomal proteins 

hSfi1, Cep135 and CPAP 

 

Production of polyclonal anti-hSfi1 antibodies 

Sequence analyses have identified potential Sfi1p homologues in various organisms 

including yeast, Chlamydomonas and human (Keller et al., 2005; Kilmartin, 2003). 

However, not much is known about the function of Sfi1 in human cells, except for its 

association with human centrin 2 and 3 (Kilmartin, 2003; Li et al., 2006). In order to 

study the potential role of hSfi1 in human centriole duplication, a polyclonal rabbit 

antibody was raised against a C-terminal fragment of recombinant hSfi1 (aa 1101-

1211, variant b). It has been reported that two splice variants of hSfi1p are expressed 

in human cells, differing only in the presence (variant a, 1242aa) or absence (variant 

b, 1211aa) of a short insertion of 31 amino acids at position 385 (Kilmartin, 2003). 

Therefore, the antigen used for generating the polyclonal antibody comprised a short 

coiled-coil region in the very C-terminal part and a short stretch of the more upstream 

located centrin-binding domain (Figure 11). Therefore, anti-hSfi1 antibodies target 

both hSfi1 isoforms. 
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Figure 11. Schematic representation of human hSfi1 (variant a and b).  

The centrally located centrin-binding domain is illustrated in orange. A short coiled-coil region has 

been identified at the very C terminus (green). Sequences used as antigens for antibody generation 

are indicated below in black. 

 

 

Reactivity of this antibody was examined by Western blot analysis (Figure 12). 

Anti-hSfi1 antibodies recognized several bands in total lysates of U2OS, RPE-1, 

293T and HeLaS3 cells. In agreement with the expected expression of two isoforms, 

a closely spaced double band at the size of ~120 kDa was recognized in isolated 

centrosomes purified from KE37 T-lymphoblastoid cells (Figure 12, arrow). Both 

hSfi1 isoforms could be specifically isolated from HeLaS3 cells via 

immunoprecipitation using purified anti-hSfi1 antibodies, demonstrating that 

additional bands detected in total cell lysates are most probably unspecific. Finally, 

antibody specificity was confirmed by siRNA. Depletion of hSfi1 in HeLaS3 cells 

using siRNA duplexes targeting both isoforms resulted in a complete loss of hSfi1 

protein from total cell lysates. 
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Figure 12. Specificity of anti-hSfi1 antibodies. 

Purified antibodies directed against hSfi1 were tested on Western blots using total cell lysates of 

U2OS, RPE-1, 293T, HeLaS3 cells and centrosome preparations from KE37 cells. Antibody specificity 

was confirmed by efficient protein depletion upon siRNA treatment and by immunoprecipitation of 

endogenous hSfi1 from HeLaS3 cells. Blotting against α-tubulin illustrates equal loading. Marker 

bands indicate 250kDa, 150kDa, 100kDa and 75kDa. 

 

 

Abundance of endogenous hSfi1 during the cell cycle 

Subsequently, hSfi1 protein expression was analyzed throughout the cell cycle. 

Expression of hSfi1 mRNA and hSfi1 protein was determined in synchronized total 

lysates of HeLaS3 cells (Figure 13). As determined by qRT-PCR, hSfi1 mRNA levels 

were low during G1 and late S phase but peaked at the beginning of S phase and in 

mitosis, reaching a ~4-fold increase when compared to G1 (Figure 13A and B). 

Interestingly, the protein levels of hSfi1 when analyzed by Wester blot did not reflect 

this fluctuation (Figure 13C). Protein levels of both isoforms appeared constant 

during the cell cycle. It is also noteworthy that no obvious mobility shift could be 

detected for either isoform as the cells progressed through the cell cycle. 
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Figure 13. hSfi1 expression during the cell cycle. 

(A, B) hSfi1 variant a (A) and variant b (B) mRNA levels across the cell cycle were determined in 

synchronized HeLaS3 cells, using qRT-PCR (see methods). (C) hSfi1 protein (arrow) levels 

throughout the cell cycle. HeLaS3 cells were arrested at the G1/S boundary by a double thymidine 

block or in M phase by a thymidine block followed by nocodazole treatment and release into fresh 

medium. Samples were harvested at the indicated time points and subjected to immunoblotting, using 

the antibodies indicated. CP: centrosome preparations from KE37 cells. Marker bands indicate 

250kDa, 150kDa and 100kDa. 
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Identification of proteins interacting with hSfi1 and centrin 

Whereas Spc110p has been identified as an interacting protein of Cdc31p and Sfi1p 

in yeast (Kilmartin, 2003), only very little is known about putative interaction partners 

for Sfi1 and centrins in human cells. HSfi1 and CP110, were both reported to interact 

with human centrin, while for hSfi1 there are no other interaction partners reported 

than centrin (Kilmartin, 2003; Tsang et al., 2006). 

In an unbiased approach to identify new centrosomal interaction partners, 

immunocomplexes were isolated from 293T cells using anti-hSfi1-and anti-centrin 

antibodies (20H5), respectively (Figure 14). These were separated by SDS-PAGE, 

stained with Coomassie Blue and analysed by mass-spectrometry (kindly performed 

by A. Ries, Max-Planck Institute of Biochemistry, Martinsried). Specific bands as well 

as some regions of unstained SDS-PAGE gel between prominently stained bands 

were investigated since these might contain low abundance proteins. As expected, 

endogenous hSfi1 was found to co-precipitate with both centrin 2 and 3, and vice 

versa. Additionally, both hSfi1 and centrins pulled down the DNA damage binding 

protein 1 DDB1 (Dualan et al., 1995), ubiquitin and different ubiquitin-related 

proteins. HSfi1 co-precipitated with a hypothetical ubiquitin ligase (P534), and centrin 

with another hypothetical ubiquitin activating enzyme E1. Other proteins were 

specifically co-precipitated with one but not the other protein. SUMO-2, a small 

putative centrosomal protein (FLJ14346) and a protein termed FLJ34068 were found 

in hSfi1-precipitates only, while XPC (Araki et al., 2001; Charbonnier et al., 2006; 

Nishi et al., 2005; Popescu et al., 2003; Thompson et al., 2006; Yang et al., 2006) 

and Importin beta were exclusively found in immunoprecipitates performed with anti-

centrin antibodies. Interestingly, FLJ34068 is highly similar to the regulatory subunit 

p65 of the protein phosphatase PP2A. Perhaps most strikingly, all components of the 

γ-tubulin ring complex (TuRC), namely γ-tubulin (GCP-1), GCP-2, -3, -4, -5, -6 could 

be identified in hSfi1 immunoprecipitates. 
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Figure 14. Mass-spectrometric analysis of hSfi1 and centrin-immunocomplexes. 

Endogenous hSfi1 (A) and centrin (B) was immunoprecipitated with anti-hSfi1- and anti-centrin 

antibodies, respectively. After separation by SDS-PAGE and staining with Coomassie Blue, the bands 

and regions indicated were excised and analyzed by mass-spectrometry. Unspecific mouse and rabbit 

IgGs were used as controls. Marker bands (MW) indicate 205kDa, 116kDa, 97kDa, 66kDa, 45kDa, 

29kDa and 20kDa. 

 



36 

 

Co-precipitation of hSfi1 with centrin 2/3 and γ-tubulin, GCP-2, -3, -4 were 

confirmed by Western blots (Figure 15). Further work will be required to investigate 

the potential physiological relevance of the interaction between hSfi1 and the γ-TuRC 

or a potential link to the ubiquitin-dependent degradation machinery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure15. Interaction of hSfi1 with γ-tubulin, GCP-2, -3, -4, centrin 2/3.  

HSfi1 immunoprecipitates were isolated using anti-hSfi1 antibodies, separated by SDS-PAGE and 

analyzed by immunoblotting using the antibodies indicated. Unspecific rabbit IgGs were used as 

control. 
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Production of polyclonal anti-Cep135 and anti-CPAP antibodies 

To study the centrosomal proteins Cep135 and CPAP in human cells, polyclonal 

antibodies were raised against C-terminal fragments of recombinant proteins (Figure 

16). Antibody specificity was analyzed by Western blot analysis (Figure 17) and the 

abundance of endogenous Cep135 and CPAP was analyzed in a cell cycle profile 

(Figure 18 and 19).  

 

 

 

 

 

 

Figure 16. Schematic representation of human Cep135 and CPAP. 

Coiled-coil regions are illustrated in green and a G-Box motive (CPAP, (Hung et al., 2000)) is indicated 

in blue. Domains used as antigens for antibody generation are indicated below in black. 

 

 

In agreement with the predicted protein size, anti-Cep135 antibodies 

recognized one major band of ~130 kDa in total lysates of U2OS, RPE-1, 293T and 

HeLaS3 cells and in isolated centrosomes (Figure 17). This band could also be 

detected in an immunoprecipitation of endogenous protein from HeLaS3 cells using 

anti-Cep135 antibodies (see lane 5). Interestingly, another minor band of ~90 kDa 

was additionally pulled down. It is tempting to speculate that this represents a shorter 

and less abundantly expressed isoform of Cep135 as this band can also be detected 

in isolated centrosomes. Finally, antibody specificity was confirmed by siRNA. The 

depletion of Cep135 in HeLaS3 cells resulted in a reduction of Cep135 protein levels 

(both the major and the minor band – data not shown) in total cell lysates. 

Similarly, anti-CPAP antibodies recognized a band of ~160 kDa in total lysates 

of U2OS, RPE-1, 293T and HeLaS3 cells and in isolated centrosomes purified from 

KE37 cells. This band could also be detected in an immunoprecipitation of 



38 

endogenous protein from HeLaS3 cells using anti-CPAP antibodies. Unfortunately, 

detection of endogenous CPAP on cell lysates and the isolation of CPAP 

immunoprecipitates was less efficient than for Cep135. This might be due to low 

protein abundance or to limited accessibility of the antigenic region. Nevertheless, 

antibody specificity could be confirmed by siRNA, as the depletion of CPAP in 

HeLaS3 cells resulted in a loss of CPAP reactivity in total cell lysates. It is 

noteworthy, that additional bands of various sizes were pulled down in 

immunoprecipitates using anti-CPAP antibodies. It still needs further analysis if these 

bands are specifically recognized by anti-CPAP antibodies and therefore might 

represent different CPAP isoforms or degradation products, or, alternatively, CPAP 

associated proteins. Considering that anti-CPAP antibodies recognize a major 

unspecific band of ~ 80 kDa, that is absent in centrosome preparations but persists 

after CPAP-depletion, it is possible that anti-CPAP antibodies also react 

unspecifically in immunoprecipitations. 
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Figure 17. Specificity of Cep135 and CPAP antibodies. 

Purified antibodies directed against Cep135 (A) and CPAP (B) were tested on Western blots using 

total cell lysates of U2OS, RPE-1, 293T, HeLaS3 cells and centrosome preparations from KE37 cells. 

Antibody specificity was confirmed by efficient protein depletion upon siRNA treatment and by 

immunoprecipitation of endogenous Cep135 or CPAP from HeLaS3 cells. Blotting against α-tubulin 

illustrates equal loading. Marker bands indicate 250kDa, 150kDa, 100 kDa, 75kDa (and 50kDa). 

 

 

Abundance of endogenous Cep135 and CPAP during the cell cycle 

Cep135 and CPAP protein expression during the cell cycle was analyzed in HeLaS3 

cells, both at the RNA- and at the protein level. As determined by qRT-PCR and 

Western blotting, both Cep135 mRNA- and protein levels showed little change during 

the cell cycle (Figure 18).  
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Figure 18. Cep135 expression during the cell cycle. 

(A) Cep135 mRNA levels across the cell cycle were determined in synchronized HeLaS3 cells, using 

qRT-PCR (see methods). (B) Cep135 protein levels throughout the cell cycle. HeLaS3 cells were 

arrested at the G1/S boundary by a double thymidine block or in M phase by a thymidine block 

followed by nocodazole treatment and release into fresh medium. Samples were harvested at the 

indicated time points and subjected to immunoblotting, using the antibodies indicated. 

 

 

CPAP mRNA levels showed moderate fluctuation during the cell cycle, 

peaking in early S phase and again in mitosis (Figure 19A). A slight increase in 

CPAP protein level upon entry into mitosis could also be observed on Western blots 

(Figure 19B). This slight increase was most obvious comparing the 10h- and 12h-

samples after S phase release, where the total protein amounts are definitely 

comparable, whereas other mitotic samples appear to contain slightly more total 
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protein (see α-tubulin, loading control). Interestingly, CPAP appears to be slightly 

upshifted during mitosis and potential posttranslational modifications on CPAP are 

under current investigation in our lab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. CPAP expression during the cell cycle.  

(A) CPAP mRNA levels across the cell cycle were determined in synchronized HeLaS3 cells, using 

qRT-PCR (see methods). (B) CPAP protein levels throughout the cell cycle. HeLaS3 cells were 

arrested at the G1/S boundary by a double thymidine block or in M phase by a thymidine block 

followed by nocodazole treatment and release into fresh medium. Samples were harvested at the 

indicated time points and subjected to immunoblotting, using the antibodies indicated. 
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2. Plk4-induced centriole biogenesis in human cells 

In the second and main section of this work, Plk4-induced centriole biogenesis will be 

described in detail by high-resolution immunofluorescence microscopy (IF) and 

electron microscopy (EM). This study focused specifically on the centriolar proteins 

hSas-6, CPAP, Cep135, γ-tubulin, CP110, centrin and hSfi1. Moreover, a new 

technique, termed 3dSIM, will be introduced as a powerful tool to study centriole 

assembly in future experiments. 

 

Cell cycle regulation of Plk4-induced centriole biogenesis 

Plk4 has been identified as a master regulator of centriole biogenesis in human cells 

and in Drosophila (Bettencourt-Dias et al., 2005; Habedanck et al., 2005). Most 

strikingly, excess Plk4 activity induced excessive recruitment of centriolar material to 

the parental centrioles (Habedanck et al., 2005). 

To determine whether overexpression of Plk4 in human cells is capable of 

triggering the formation of multiple complete centrioles, we generated a cell line that 

allows the temporally controlled expression of this kinase and examined centriole 

formation during cell cycle progression. As centrin constitutes an excellent marker for 

centriole formation in human cells (Bornens, 2002; Paoletti et al., 1996), anti-centrin 

antibodies (Baron et al., 1992) were used to monitor centriole assembly in these 

experiments (Figure 20).  

Already 16h after Plk4 induction, approximately 70% of asynchronously 

growing cells showed evidence of centriole amplification. They either displayed 

multiple scattered centrioles or multiple pro-centrioles arranged around each parental 

centriole, reminiscent of the petals of a flower (Figure 20A). Interestingly, flower-like 

structures could only be detected in Cyclin A-positive S and G2 phase cells (upper 

row), but not in Cyclin A-negative G1 cells, which instead contained multiple 

centrioles that appeared to be disengaged (lower row). Flower-like structures 

persisted during early stages of mitosis but then began to disassemble during late 

telophase (Figure 20B), consistent with the view that the disengagement of newly 

formed centrioles from parental centrioles occurs during exit from mitosis (Tsou and 

Stearns, 2006). These data demonstrate that overexpression of Plk4 induces the 

assembly of multiple pro-centrioles during S phase. These then elongate during G2 
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and persist in an engaged state with their parental centrioles until disengagement at 

the end of mitosis causes centriole scattering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Plk4-induced centriole biogenesis during cell cycle progression. 

Myc-Plk4 expression was induced for 16h in asynchronously growing U2OS cells before they were 

fixed and analyzed by immunofluorescence microscopy, using the antibodies indicated. (A) Interphase 

cells co-stained for centrin (20H5) and Cyclin A to indicate cell cycle position, and DNA (DAPI). Note 

that Cyclin A-positive cells (in S or G2 phase; upper row) show multiple centrioles in a flower-like 

arrangement, whereas Cyclin A-negative cells (in G1; lower row) show scattered (disengaged) 

centrioles. Insets show enlarged views of centriole ‘flowers’ and clusters, respectively. (B) Mitotic cells 

co-stained for centrin (rabbit antibody) and DNA (DAPI). Upper panels show overviews of 

representative prophase and telophase cells; lower panels show higher magnifications of the two 

poles in each cell to visualize flower-like structures. Scale bars indicate 10µM and 1µM (higher 

magnifications).  
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Simultaneous assembly of multiple pro-centrioles in G1/S 

We next asked whether the ability of Plk4 to induce the formation of multiple 

centrioles is regulated during the cell cycle and whether multiple pro-centrioles 

develop simultaneously or sequentially. After release from a nocodazole block in M 

phase, cells had to be incubated for 10-12 hours before flower-like structures could 

be seen (data not shown). In contrast, cells that were synchronized and held at the 

G1/S transition by aphidicolin responded to Plk4 induction by ‘flower’ formation within 

1-3 hours (Figure 21A). This indicates that cells need to reach a permissive cell cycle 

window (G1/S transition and early S phase) before they can respond to Plk4 activity. 

When using centrin staining as a marker for centriole assembly, the first visible 

evidence for Plk4-induced pro-centriole formation was the formation of a halo (or 

ring) around each parental centriole (see Figure 21B, 1h-Halo). Within these halos, a 

more intensely staining region could occasionally be discerned, suggesting that the 

one pro-centriole existing already at the onset of these experiments persisted on the 

parental centrioles. Halo formation could be seen in a significant fraction of cells 

already after 1 hour of Plk4 induction and was essentially complete after 3 hours 

(Figure 21A). At later times, each halo progressively resolved into a number of 

discrete nascent pro-centrioles. These new pro-centrioles appeared with very similar 

kinetics, indicating that they formed nearly simultaneously. A quantitative analysis of 

flower-like structures 16 hours after Plk4 induction revealed that most of them 

contained 6 centrin-positive pro-centrioles, although some variation in number could 

be seen (Figure 21B). The limited spatial resolution of these experiments masks the 

exact events occurring during the conversion of a halo structure to individualized pro-

centrioles, but analysis of the radial spacing of nascent pro-centrioles indicates that 

these structures formed randomly with regard to the circumference of the parental 

centriole (Figure 21B). 
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Figure 21. Multiple pro-centrioles form simultaneously in S phase. 

Cells were synchronized by aphidicolin treatment for 24h before Myc-Plk4 expression was induced for 

1h, 3h, 6h (A) and 16h (B) and pro-centriole formation was visualized using anti-centrin 2 staining. 

Histograms in A and B summarize, for each indicated time point, the percentages of cells showing a 

halo surrounding each parental centriole or the indicated numbers of pro-centrioles, respectively. At 

each time point 100 cells were analyzed. Centrin stainings (B) are shown to illustrate the appearance 

of a typical halo (1h) as well as flower-like structures with 2-7 pro-centrioles (16h). Note that the 

flower-like structures harbouring 2, 3 and 4 centrioles were taken from a cell that fortuitously contained 

3 parental centrioles. Scale bars denote 1µM. 
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Identification of key proteins in centriole assembly 

Our ability to control centriole biogenesis by induction of Plk4 provided a unique 

opportunity for studying the assembly process in time and space. To identify 

centrosomal proteins required for Plk4-induced centriole biogenesis, we first depleted 

nearly 30 candidate proteins (Andersen et al., 2003) by siRNA before inducing Plk4 

expression and examining (pro-)centriole formation by immunofluorescence 

microscopy (Figure 22). To discriminate between pro-centriolar intermediates and 

mature centrioles, all cells were co-stained with antibodies against centrin 2 and 

polyglutamylated tubulin, as markers for nascent centrioles and stable MTs typical of 

mature centrioles, respectively (Bornens, 2002). Results illustrated in histogramm A 

show the percentage of Plk4-induced centriole ‘flowers’. Compared to control (GL2-

treated) cells, a drastic (> 50 %) reduction in the formation of flower-like centriole 

structures was seen upon depletion of hSas-6, CPAP, Cep135, and CP110. To the 

extent that antibodies were available, successful depletion was assessed by 

immunofluorescence microscopy (black bars). In all other cases, qRT-PCR was used 

to determine transcript levels (grey bars). These analyses indicated that different 

transcripts were depleted to different levels (see Table 2). Therefore, it is possible 

that additional proteins required for centriole biogenesis have escaped detection in 

the above screen. For example, it is surprising that the above analysis revealed no 

requirement for Cep192 in centriole duplication, even though a putative invertebrate 

homologue of this protein (Spd-2 of Caenorhabditis elegans) is clearly required for 

initial centriole duplication after fertilization (Kemp et al., 2004; Pelletier et al., 2004). 

Whether this implies that human Cep192 is not required for centriole duplication in 

somatic cells or whether this negative result reflects incomplete depletion remains to 

be addressed in future studies. Taken together, this siRNA screen identified hSas-6, 

CPAP (the putative homologue of C. elegans Sas-4), Cep135 and CP110 as being 

indispensable for centriole biogenesis. 
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Figure 22. siRNA screen for proteins involved in centriole biogenesis. 

U2OS cells were treated for 48 hours with siRNA duplexes targeting the indicated centrosomal 

proteins, before Myc-Plk4 overexpression was induced for 16h and cells were analyzed by 

immunofluorescence microscopy. (A.) Histogram illustrating the percentages of cells showing Plk4-

induced centriole ‘flowers’. Results are from 3 independent experiments (n=100, each), bars indicate 

standard deviations. (B) Two representative examples of the results shown. Note that anti-centrin 

staining revealed strong inhibition of pro-centriole formation upon depletion of hSas-6, whereas 

depletion of ninein did not affect pro-centriole formation. Scale bar 1µM. 
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Localization of key proteins in centriole assembly 

High-resolution immunofluorescence microscopy was then used to determine at what 

stages the above proteins contribute to centriole assembly. Following induction of 

Plk4, nascent flower-like structures as well as disengaged multiple centrioles were 

stained with antibodies against Plk4, Cep135, hSas-6, CPAP, and CP110 as well as 

α- and γ-tubulin. Simultaneously, centrin staining was used to visualize both pro-

centrioles and mature centrioles (Paoletti et al., 1996). As summarized in Figure 23, 

different proteins displayed strikingly different localization patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Localization of proteins identified as essential for centriole biogenesis.  

Assembly of multiple pro-centrioles was triggered by 16h Myc-Plk4 induction in U2OS cells. All cells 

were stained for centrin (red) to identify both parental centrioles and pro-centrioles and co-stained for 

the indicated proteins (green). Panel A shows multiple pro-centrioles arranged in typical flower-like 

structures around parental centrioles (centres), whereas panel B shows centriole clusters after 

disengagement. Scale bar 1 µM. 
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Within the flower-like structures observed 16h after Plk4 induction (Figure 

23A), Plk4 accumulated in a ring-like pattern around the parental centrioles (see also 

Figure 25), and similar localizations were seen for Cep135, γ-tubulin and hSas-6 

(Figure 23A). However, compared to Plk4, Cep135 appeared to form a more 

compact structure, suggesting that it concentrates also within the lumen of the 

parental centriole (see below). In the case of hSas-6, the ring structure was not as 

smooth as that seen with Plk4, suggesting that hSas-6 does not decorate the surface 

of the parental centriolar cylinder but rather associates with nascent pro-centrioles. 

Staining for CPAP, α-tubulin and CP110, revealed star-like structures overlapping the 

nascent pro-centrioles, but, again, subtle differences were apparent. Compared to 

the localization of centrin, anti-CPAP antibodies clearly stained both the parental 

centriole and the proximal ends of nascent pro-centrioles, whereas α-tubulin was 

seen all along the length of the centrioles and CP110 could be detected primarily on 

the distal ends. Analysis of the multiple, Plk4-induced centrioles occurring in 

dispersed clusters (Figure 23B) revealed that Plk4, Cep135, CPAP, γ-tubulin, α-

tubulin and CP110 all co-localized with centrin-positive disengaged centrioles. In 

stark contrast, hSas-6 was undetectable on G1 phase centrioles (Figure 23B), 

indicating that this protein is transiently recruited to nascent pro-centrioles but 

subsequently displaced or degraded, possibly during centriole disengagement.  
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Figure 24. Localization of maturation markers on centriolar structures. 

Assembly of multiple pro-centrioles was triggered by 16h Myc-Plk4-induction in asynchronous U2OS 

cells. (A, B) Cells were stained for centrin (red) to identify both parental centrioles and pro-centrioles 

and co-stained for the indicated proteins (green). Panel A shows multiple pro-centrioles arranged in 

typical flower-like structures around parental centrioles (centres), whereas panel B shows centriole 

clusters after disengagement. (C) Interphase cell showing a nascent Plk4-induced flower-like 

structure. Note that the newly formed centrioles (the ‘petals’ on the flower) are already positive for α-

tubulin but still negative for GT335. (D) Prometaphase cell showing flower-like structures at both 

spindle poles. The left panel shows an overview, including DAPI staining, whereas the panels on the 

right show higher magnifications to illustrate the arrangement of centrioles at the two poles. Scale bar 

1 µM. 
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To examine the acquisition of centriole maturity markers during Plk4-induced 

centriole biogenesis, we also stained early flower-like structures and late disengaged 

centrioles for polyglutamylated tubulin, a marker for stabilized centriolar MTs 

(Bobinnec et al., 1998) and ODF-2, a marker for centriole maturation (Ishikawa et al., 

2005). As demonstrated by staining with GT335 antibody (Wolff et al., 1992), only 

parental centrioles were polyglutamylated during early centriole biogenesis, whereas 

the newly assembled tubulin of nascent pro-centrioles lacked this modification 

(Figure 24A and C). Likewise, ODF-2, a component of centriolar appendages 

(Ishikawa et al., 2005), could only be detected on one of the two parental centrioles, 

identifying it thereby as the fully mature parent (Figure 24A). At later stages, all 

centrioles in flower-like structures of mitotic cells (Figure 24D) and in centriole 

clusters of G1 phase cells (Figure 24B) stained positive for GT335, indicating that 

these centrioles were composed of polyglutamylated, stabilized MTs. In contrast, 

ODF-2 staining remained confined to only one centriole, the former parent, even in 

G1 cells with multiple disengaged centrioles (Figure 24B). This is consistent with the 

expectation that newly formed centrioles acquire appendages only during final 

maturation, which occurs in late G2 of next cell cycle (Bornens, 2002). Taken 

together, the above analysis demonstrates that overexpression of Plk4 induces the 

simultaneous formation of multiple complete centrioles. 

 

 

Delineation of a centriole assembly pathway 

The above results suggested that Plk4 localizes early on the proximal walls of 

parental centrioles, and then triggers the subsequent recruitment of essential 

centriolar proteins which assemble the nascent pro-centrioles. To corroborate this 

conclusion, we used siRNA to deplete individual proteins implicated in centriole 

biogenesis and then monitored pro-centriole formation in response to Plk4 induction. 

This approach made it possible to establish dependencies amongst individual 

proteins and visualize assembly intermediates.  

Following depletion of either hSas-6, CPAP, Cep135, γ-tubulin or CP110, Plk4 

still accumulated around the parental centrioles, exactly as it did in GL2-treated 

controls (Figure 25). This demonstrates that Plk4 localization does not depend on 
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any of the above proteins and supports the view that this kinase acts high up in a 

regulatory hierarchy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Delineation of a centriole assembly pathway.  

U2OS cells were transfected for 72h with siRNA duplexes targeting hSas-6 (A), CP110 (B), CPAP (C), 

Cep135 (D), γ-tubulin (E) or GL2 for control. Then, Myc-Plk4 was induced for 16h in the continued 

presence of siRNA duplexes and cells were processed for immunofluorescence microscopy, using 

anti-Myc antibodies. Scale bar 1µM. 

 

 

In contrast, the depletion of hSas-6 completely suppressed the Plk4-induced 

assembly of pro-centrioles and, as a consequence, all other proteins remained 

restricted to parental centrioles (Figure 26A and data not shown). Likewise, centriole 
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biogenesis was completely suppressed in response to depletion of CPAP (Figure 

26C, left panels). Some hSas-6 staining of parental centrioles could be seen in such 

cells, but since hSas-6 is not present within the lumen of parental centrioles (see 

Figures 23 and 30), we presume that this signal reflects residual hSas-6 associated 

with the centriolar surface. Most interestingly, pro-centriole formation also failed upon 

depletion of CP110, as visualized by centrin staining (Figure 26B, left panels), but in 

this case, ring-like structures clearly stained positive for hSas-6 (Figure 26B, right 

panels). This indicates that pro-centriole formation was blocked downstream of hSas-

6 recruitment. 

Similarly, centriole biogenesis was completely suppressed in response to 

depletion of Cep135 or γ-tubulin (Figure 26C, middle and right panels). Taken 

together, these data indicate that hSas-6, CPAP, Cep135 and γ-tubulin are recruited 

early after Plk4 induction to form nascent pro-centrioles. The four proteins were 

mutually dependent on each other and similarly required for further development of 

pro-centrioles, at least within the temporal and spatial resolution of these 

experiments. In contrast, CP110 clearly functions at a later stage. 
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Figure 26. Delineation of a centriole assembly pathway. 

U2OS cells were transfected for 72h with siRNA duplexes targeting hSas-6 (A), CP110 (B), CPAP (C), 

Cep135 (C), γ-tubulin (C) or GL2 for control. Then, Myc-Plk4 was induced for 16h in the continued 

presence of siRNA duplexes and cells were processed for immunofluorescence microscopy, using the 

antibodies indicated. Scale bar 1µM. (A) Depletion of hSas-6 completely abolishes centriole assembly. 

(B) Depletion of CP110 abolishes centriole assembly after hSas-6 has been recruited. (C) Pro-

centriole biogenesis is blocked in CPAP-, Cep135- and γ-tubulin-depleted cells. 
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The role of centrin and hSfi1 in human centriole biogenesis 

It has been reported that centrin 2 and 3 are expressed ubiquitously in somatic cells, 

whereas centrins 1 and 4 are restricted to multiciliated and flagellated cells (Gavet et 

al., 2003; Hart et al., 1999; Laoukili et al., 2000; Middendorp et al., 1997). Centrin 4 

has been identified in mouse and it is noteworthy that only centrin 1, 2 and 3 are 

found the the human genome, whereas no centrin 4 protein has ever been reported 

in the literature nor could be found by any database analysis. To rule out the 

possibility that centrin 1 might be expressed in human U2OS cells, we performed RT-

RNA with primers able to discriminate between centrin isoforms. Cells were induced 

for Plk4 expression and expression of centrins 1, 2, 3 and Myc-Plk4 in parallel was 

examined. As expected, solely expression of centrin 2 and 3 could be detected in 

Plk4-induced U2OS cells (Figure 27). 

 

 

 

 

 

 

 

 

 

Figure 27. Centrin expression in Plk4-transgenic U2OS cells.  

RT-PCR experiments with primers able to discriminate between centrin isoforms were used to 

examine the expression of centrins 1, 2 and 3 in U2OS cells induced for Plk4 expression. Myc-Plk4 

levels were examined in parallel. Lanes on the right show corresponding plasmid controls. 

 

 

To study the effect of centrin depletion on Plk4-induced pro-centriole 

formation, we focused on the two isoforms centrin 2 and 3 and protein depletion was 

achieved by 72h treatments of cells with siRNA duplexes targeting centrins 2 and 3 

(Figure 28). Considering that centrin 2 was previously reported to be required for 

centriole duplication in human cells (Salisbury et al., 2002), we were surprised to find 
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that induction of Plk4 in cells depleted of centrins 2 and 3 still induced both the 

formation of α-tubulin-positive pro-centrioles and, at later times, multiple disengaged 

centrioles, indistinguishable from controls (Figure 28A). Furthermore, centrin 

depletion produced no detectable adverse effects on the recruitment of CPAP, 

Cep135 or CP110 to nascent pro-centrioles (Figure 28B). Efficient depletion was 

confirmed using an antibody (20H5; (Baron et al., 1992) known to detect both 

centrins 2 and 3 (Middendorp et al., 1997; Paoletti et al., 1996). With regard to a 

possible compensatory role of other centrin isoforms, we emphasize that no human 

centrin 4 gene has yet been identified and RT-PCR revealed no evidence for 

expression of centrin 1 in the cells studied here (Figure 27).  

 

Figure 28. Formation of multiple centrioles in centrin-depleted cells. 

U2OS cells were treated as described in the legend to Figure 25, using siRNA duplexes targeting both 

centrin 2 and 3, or GL2 for control. Co-stainings were performed using the anti-centrin 2/3 reagent 

20H5 and the antibodies indicated. Scale bar 1µM. 
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Likewise, deletion of the centrin-binding protein hSfi1 did not abolish centriole 

assembly, as illustrated by hSfi1 and α-tubulin co-staining (Figure 29). Interestingly, 

hSfi1 depletion did abolish the incorporation of centrin into the newly forming pro-

centrioles, as indicated clearly by co-staining of hSfi1-depleted cells with centrin and 

α-tubulin (lower panels). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Formation of multiple centrioles in hSfi1-depleted cells.  

U2OS cells were treated as described in the legend to Figure 25, using siRNA duplexes targeting 

hSfi1, or GL2 for control. Co-stainings were performed using the anti-hSfi1, anti-centrin 2/3 reagent 

20H5 and anti-α-tubulin antibodies. Scale bar 1µM. 

 

 



58 

Taken together, although centrins and hSfi1 associate with nascent pro-

centrioles early during assembly, our data provide no evidence to indicate that they 

are required for Plk4-induced centriole biogenesis. Furthermore, these data 

demonstrate that hSfi1 is required for proper centrin incorporation into the 

assembling pro-centriole. Although the centrin scaffolding protein hSfi1 seems to be 

dispensable for centriole biogenesis, it might serve as a docking site for other 

centriolar or pericentriolar components as we can not rule out the possibility that 

hSfi1-depleted centrioles display altered ultrastructural morphology. A detailed 

ultrastructural analysis of hSfi1-depleted centrioles will definitely require electron 

microscopy. 

 

 

Analysis of centriole biogenesis by immuno-electron microscopy 

In a final series of experiments, immuno-electron microscopy was used to obtain 

more definitive insight into the localization of key proteins implicated in centriole 

biogenesis. As summarized in Figure 23, Plk4, hSas-6, CPAP, Cep135, CP110 and 

centrin 2 could be localized to distinct structures during early stages of pro-centriole 

assembly. Unfortunately, hSfi1 could not be visualized using the paraformaldehyd-

based fixation method. Myc-tagged Plk4 could be seen on the outer wall of parental 

centrioles and at the interface between parental and nascent pro-centrioles (Figure 

30A). A similar localization was also observed for endogenous hSas-6, although 

hSas-6 appeared to be associated more prominently with the nascent pro-centriole 

(Figure 30B and C). In contrast, CPAP and Cep135 were concentrated within the 

proximal lumen of both parental centrioles and pro-centrioles (Figure 30D and E). In 

particular, antibodies against Cep135 produced strong luminal staining within the 

proximal ends of centrioles as well as weaker staining along the centriolar surface 

(Figure 30E, right hand panel). Such a staining pattern might be expected for a 

protein that forms part of a putative cartwheel structure (Anderson and Brenner, 

1971; Cavalier-Smith, 1974). CP110 showed yet another, clearly distinct localization 

pattern. This protein was detected on the distal ends of both parental centrioles and 

nascent pro-centrioles (Figure 30F). Of particular interest, CP110 associated early 

with nascent pro-centrioles and then decorated the distal tips of all centrioles, 

regardless of their elongation state. This indicates that CP110 assembles into a cap-
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like structure early during pro-centriole formation and then remains on the distal end 

during centriole elongation, implying that α-/β-tubulin dimers are most likely inserted 

underneath a CP110 cap. Finally, centrin was seen within the lumen of both pro-

centrioles and parental centrioles (Figure 30G), consistent with previous results (La 

Terra et al., 2005; Paoletti et al., 1996) and confirming that this protein constitutes a 

genuine marker for both nascent centrioles and mature centrioles.  
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Figure 30. Analysis of centriole biogenesis by immuno-electron microscopy.  

Myc-Plk4 was induced (all samples except ‘C’) in U2OS cells for 16h before cells were processed for 

immuno-electron microscopy, using antibodies against the indicated proteins and anti-Myc antibodies 

for visualization of Myc-Plk4, followed by gold-labelled secondary α-rabbit or α-mouse antibodies. 

Schemes on the right indicate the localization of the individual proteins for clarity. Note that in panel C, 
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U2OS cells (carrying the Plk4 transgene) were processed for immuno-electron microscopy without 

induction of Plk4 expression and endogenous hSas-6 was then stained with anti-hSas-6 antibody. 

Scale bar 0.5µm. 

 

 

Analysis of centriole biogenesis by 3dSIM (structured illumination microscopy) 

Using state-of-the-art widefield deconvolution microscopy (see MATERIALS & 

METHODS), we have been able to examine protein interdependencies at a relatively 

high subcellular resolution. However, the limitation of this technique becomes 

obvious in our inability to examine detailed events happening at the very beginning of 

centriole assembly. Thus, it was not possible to distinguish if a protein is present only 

within the centriole lumen or on the surface of the parental centriole. Similarly, we 

were not able to discriminate between immunofluorescence signals at the proximal 

surface of the parental centriole and signals within the proximal region of the 

emerging pro-centrioles. Therefore, a higher spatial resolution would definitely be 

desirable in order to examine the exact localization of the proximal proteins hSas-6, 

CPAP, Cep135 and γ-tubulin and to gain more insight into their individual functions 

during centriole biogenesis. 

The fundamental limitation of conventional light microscopy is the diffraction 

limit (or Abbe limit) of resolution, that is, the smallest distance at which two distinct 

microscopic structures can be resolved. This limitation has its roots in the physical 

properties of light and the biological limitations of the human eye. As a result, objects 

that lie closer than 200-350 nm apart, can no longer be distinguished, but instead 

appear merged together. This limit does not apply for electron microscopy, but the 

increase of resolution frequently comes together with a loss of structure preservation 

and labeling specificity, due to limiting sample preparation methods. Recently a 

number of techniques have been developed to overcome this fundamental limitation, 

such as 4-Pi, STED or PALM microscopy (for review see (Hell, 2007). 

In collaboration with L. Schermelleh (Department of Biology II, Ludwig 

Maximilians University Munich (LMU)), we could apply a novel microscopy technique, 

3-dimensional structured illumination (3dSIM), to visualize Plk4-induced centriolar 

structures with subdiffraction limit resolution. The 3dSIM technology was developed 

and implemented in a custom-built microscope (termed OMX) in the laboratory of J. 
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W. Sedat (University of California, San Francisco). It extends the principle of 

structured illumination (Gustafsson, 2000) to three dimensions, thus improving the 

resolution by a factor of two beyond the diffraction limit in lateral (xy, ~100 nm) and 

axial (z, ~250 nm) direction and, at the same time, retaining all advantages of light 

microscopy. Notably, 3dSIM is currently the only extended-resolution imaging 

technique that allows detection of multiple wavelengths in the same sample, using 

standard fluorescent dyes and conventional slide preparation. So far, it has been 

used to study nuclear pore complexes and chromatin-related structures in human 

cells (Schermelleh et al., manuscript submitted). 

In an initial series of experiments, Plk4-induced centriole biogenesis was 

examined using anti-Plk4, anti-centrin 2 and anti-α-tubulin antibodies. Co-

immunostaining of Plk4 and centrin 2 clearly illustrates the accumulation of Plk4 

around the proximal end of the centriole, while centrin can be detected within the 

distal centriole lumen and on the assembling pro-centrioles (Figure 31A). High-

resolution 3dSIM images thus clearly confirm the localizations determined by light 

and electron microscopy (Figures 23 and 30).  

Similarly informative was a co-staining of Plk4 and α-tubulin (Figure 31B). Both 

the parental and the pro-centriolar structures could be resolved as hollow 

microtubule-based cylinders, separated from one another by the PCM. Plk4 could be 

detected around the parental centriole exactly at the sites where the new pro-

centrioles emerge. An additional weak Plk4-staining could also be detected inside the 

centriole lumen. Therefore, these images not only confirmed already existing EM-

data (Figure 30), but also demonstrate that Plk4 localizes exactly to sites where pro-

centriole assembly is initiated, rather than forming a ring-like structure. In contrast to 

previous EM-data, the problem of missing antibody-staining because of sample 

preparation or staining method is reduced here. Furthermore, this image clearly 

illustrates the spatial constraints that apply onto the newly emerging centrioles. 

Obviously, six equally distributed pro-centrioles completely fill out the radial surface 

provided by the parental centriole. This is consistent with our observation that most of 

the Plk4-induced centriolar structures contain 6 pro-centrioles. 

Co-immunostaining of centrin 2 and α-tubulin in disengaged centrioles 

illustrates that centrin is not only present in the distal region of the centriole, but can 

be detected along the whole length of the centriole lumen (Figure 31C).  
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Taken together, the advantages of 3dSIM have become obvious. As all 

images taken by 3dSIM are multi-color 3D image stacks - obtained by methanol 

fixation and with the use of standard fluorescent dyes – artefacts, caused by sample 

preparation and demanding fixation methods, can to our knowledge largely be 

excluded. 

Therefore, 3dSIM represents a valuable method to bridge the gap between 

conventional light microscopy and electron microscopy and is a powerful new tool to 

study processes like centriole assembly within the cellular environment.  
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Figure 31. 3dSIM imaging of Plk4-induced centriolar structures. 

Myc-Plk4 was induced in U2OS cells for 16h before cells were processed for IF-microscopy, using 

antibodies against the indicated proteins. Lower rows show additional merged images. Maximum 

intensity projections of 3d image stacks are shown. Scale bar 1 µm. All images presented here were 

kindly taken and processed by L. Schermelleh.  
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3. Maintenance of proper centriole morphology requires the distal 

capping protein CP110 

As demonstrated earlier (Figure 22 and 26), depletion of hSas-6, CPAP, Cep135, γ-

tubulin or CP110 abolishes Plk4-induced centriole biogenesis. Furthermore, these 

results demonstrated that depletion of any of the proximal centriolar proteins (hSas-6, 

CPAP, Cep135, γ-tubulin) induced an earlier block in the assembly process than 

depletion of the distal capping protein CP110 did.  

Here, we demonstrate that, additionally to this block of pro-centriole assembly, 

loss of CP110 specifically caused very characteristic morphological alterations at 

mature centrioles. Immunofluorescence staining of α-tubulin visualized microtubule-

based fiber-like extensions emanating from CP110-depleted centrioles (Figure 32). 

Interestingly, a very similar phenotype has also been observed in γ-tubulin-depleted 

cells (data not shown, preliminary results). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Microtubule-based fiber-like extensions emanating from CP110-depleted centrioles. 

U2OS cells were transfected for 72h with siRNA duplexes targeting CP110 or GL2 for control. Then, 

Myc-Plk4 was induced for 16h in the continued presence of siRNA duplexes and cells were processed 

for immunofluorescence microscopy, using anti-CP110 and anti-α-tubulin antibodies. Scale bar 1µM. 
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This phenotype could be reproduced in U2OS and HeLaS3 cells (data not 

shown), independently of Plk4-overexpression. To analyze these fiber-like extensions 

further, CP110-depleted cells were co-stained with α-tubulin and the proximal 

centriolar protein hSas-6. As reported earlier (Figures 23 and 30), hSas-6 can be 

detected at the proximal region of duplicating centrioles and in the interphase 

between parental centriole and pro-centriole later on. Upon CP110-depletion, hSas-6 

localization was unaltered (Figure 33). Microtubule-extensions appeared to emanate 

from both the parental centriole and the assembling pro-centriole – indicated by 

images showing a hSas-6-positive interphase region where two microtubule-

extensions originate from. Similarly, some fibrous structures emanating from all the 

petals of Plk4-induced flowers could be detected in CP110-depleted Myc-Plk4-U2OS 

cells (data not shown). However, fibres emanating from all petals were only rarely 

seen, as efficient CP110 depletion abolishes Plk4-induced flower assembly. 

Nevertheless, in some cells residual CP110-levels might allow initial pro-centriolar 

flower assembly, but might then not be functional enough to allow assembly and 

maintainance of stable centriolar capping structures. 

According to this morphological alterations in CP110-depleted cells, it is very 

tempting to hypothesize that CP110 is recruited early during centriole biogenesis, 

forms a capping structure at the very distal centriole end and then persists 

throughout centriolar development and maturation. This distal capping structure 

appears to be required to ensure proper centriole morphology probably by prohibiting 

addition of α/β-tubulin dimers to the distal centriole end. Careful examination of these 

structures by immunofluorescence staining for several centriolar marker proteins and 

electron microscopy or 3dSIM will reveal more about the nature and composition of 

these microtubule-based fiber-like centriole extensions. Further studies will also be 

required to elucidate whether the role of CP110 in pro-centriole assembly and 

centriole capping can be attributed to two independent functions. It is also possible 

that the loss of a basic structural CP110 function produces both the duplication block 

and the abnormal centriole morphology, depending on the ‘developmental stage’ of 

the centriole. 
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Figure 33. MT-extensions emanating from distal ends of parental centrioles and pro-centrioles 

in normal U2OS cells. 

U2OS cells were transfected for 72h with siRNA duplexes targeting CP110 or GL2 for control. Then, 

cells were processed for immunofluorescence microscopy, using anti-α-tubulin to visualize MT-

extensions and anti-hSas-6 to visualize the proximal centriole region. Scale bar 1µM. 
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DISCUSSION 

Here we have shown that overexpression of Plk4 in human cells induces the near-

simultaneous formation of multiple complete centrioles within a single S phase. 

Independently, Drosophila Plk4/Sak was reported to induce large numbers of 

centrioles even in a cell type (the unfertilized egg) that lacks a pre-existing centriole 

(Peel et al., 2007; Rodrigues-Martins et al., 2007). These studies thus identify Plk4 

as a key regulator of centriole biogenesis and strengthen the notion that pre-existing 

centrioles represent ‘solid-state platforms’ to facilitate centriole formation rather than 

genuine ‘templates’ (Nigg, 2007).  

 

 

Cell cycle control of Plk4-induced flower-like centriole structures 

Our analyses of synchronized cells revealed that Plk4 induced pro-centriole 

formation rapidly, provided that cells had reached a cell cycle stage permissive for 

centriole formation. This requirement falls in line with previous studies indicating that 

centrosome duplication depends on traverse of G1/S, as reflected by phosphorylation 

of the retinoblastoma protein, activation of the E2F transcription factor and activation 

of Cdk2 in a complex with cyclin E and/or A (Cowan and Hyman, 2006; Hinchcliffe et 

al., 1999; Lacey et al., 1999; Matsumoto et al., 1999; Meraldi et al., 1999). In 

response to Plk4 activation, nascent pro-centrioles initially grew off each parental 

centriole in an arrangement reminiscent of petals on a flower. Interestingly, these 

flower-like structures remained intact throughout S and G2 phase as well as most of 

M phase before they began to disassemble in late telophase, consistent with the 

proposal that centriole disengagement is triggered by Separase activity (Tsou and 

Stearns, 2006). At present, there is no information on the dimensions of the first 

‘seed’ structures that form on the surface of parental centrioles. Thus, it is interesting 

that the cylinders of parental centrioles most frequently supported the formation of six 

pro-centrioles, most likely reflecting steric constraints imposed by the dimensions of 

nascent precursor structures and their vicinity to the ‘solid-state assembly platform’. 
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Identification of proteins required for centriole biogenesis 

To identify human centrosomal proteins required for centriole biogenesis, we carried 

out a siRNA-based phenotypic screen. This approach positively identified hSas-6, 

CPAP, CP110, Cep135 and γ-tubulin as indispensable for centriole formation. A 

requirement for hSas-6 and CPAP in centriole formation was expected in view of 

previous studies in invertebrates (Basto et al., 2006; Leidel et al., 2005; Leidel and 

Gonczy, 2003; Peel et al., 2007; Rodrigues-Martins et al., 2007). Likewise, γ-tubulin 

had previously been shown to be required for basal body formation in the ciliate 

Paramecium (Ruiz et al., 1999) and structural similarity has been noted between 

Cep135 and Bld10, a component of a putative cartwheel structure implicated in basal 

body formation in Chlamydomonas (Matsuura et al., 2004). In the case of CP110, no 

invertebrate or protozoan homologue has previously been described. However, 

human CP110 was originally identified as a Cdk2 substrate required for centrosome 

over-duplication in S phase arrested cells (Chen et al., 2002). So, to the extent that 

homologues of the various proteins studied here exist in invertebrates or protozoans, 

these are likely to play functionally analogous roles.  

 At first glance, it may appear surprising that depletion of both centrins known 

to be expressed in U2OS cells (centrins 2 and 3) and the centrin-binding protein 

hSfi1 did not detectably interfere with Plk4-induced centriole biogenesis. The yeast 

centrin homologue Cdc31p is clearly required for spindle pole body duplication in 

Saccharomyces cerevisiae (Paoletti et al., 2003; Spang et al., 1995) and a previous 

siRNA study had proposed an essential role for mammalian centrin 2 in centrosome 

duplication (Salisbury et al., 2002). As with all siRNA experiments, we cannot 

rigorously exclude that residual, albeit undetectable, centrin protein may have 

conferred some functionality in our experiments. However, we emphasize that there 

is presently no genetic evidence to support a role for centrin-related proteins in 

centriole duplication in Drosophila or C. elegans (Azimzadeh, 2004), and studies in 

Paramecium indicate that centrins are required for basal body positioning rather than 

biogenesis (Ruiz et al., 2005). 

Our data also provide new data about the centrin-binding protein hSfi1p. As 

expected from data obtained in yeast, the human homologue of Sfi1p exactly co-

localizes with its binding partner centrin at the distal end of parental centrioles and 

procentrioles. While centriole assembly was unaltered in hSfi1-depleted cells, centrin 



70 

incorporation was clearly abolished. A strong interdependency between centrin and 

its scaffolding protein hSfi1 was confirmed biochemically, as centrin 2 and 3 were 

found in endogenous hSfi1 immunoprecipitations.  

However, despite its role in SPB duplication, the yeast Sfi1p homologue has 

also been implicated in cell cycle progression and assembly of the mitotic spindle. 

While in some conditional mutants of Sfi1p, binding of Cdc31p and SPB duplication 

was blocked, other conditional mutants of Sfi1p where binding to Cdc31p seemed 

unaffected, arrested with duplicated but unseparated spindle poles (Anderson et al., 

2007; Strawn and True, 2006). There is a growing body of evidence that, additional 

to its role in the initiation of SPB duplication, Sfi1p might also function in bridge 

splitting and in separation of the duplicated SPBs (Anderson et al., 2007; Li et al., 

2006). So far, there is not much known about separation of the SPB bridge, but 

interestingly, Cdc4 an F-box component of the ubiquitin ligase known as SCF, has 

been implicated in the process (Mathias et al., 1996). This suggests the possibility 

that an SCF substrate needs to be degraded, by ubiquitin-mediated proteolysis, for 

bridge separation to occur (Anderson et al., 2007). Consistent with this hypothesis is 

the observation that increased activity of the mitotic motor protein Cin8p is capable to 

suppress Sfi1p-mutants, thereby allowing duplicated SPBs to separate (Anderson et 

al., 2007). 

Although Sfi1p function in centrosome duplication does not seem to be 

conserved in higher eukaryotes, its function in SPB separation and spindle assembly 

might be conserved throughout evolution. In this context, a specific interaction of 

hSfi1 with all members of the γ-TuRC might indicate a new physiological function for 

hSfi1 in centrosome separation and mitotic spindle assembly. Interestingly, hSfi1 

additionally coprecipitated ubiquitin and ubiquitin-related proteins. Furthermore, Sfi1p 

has been identified as a in vitro Cdk1-substrate in yeast (Ubersax et al., 2003) and 

the human homologue harbours multiple (~20) destruction boxes (D-boxes, 

(http://elm.eu.org)) identified by the server ‘ELM – Functional sites in Proteins’) – 

indicating that Sfi1p might be targeted for ubiquitin-mediated degradation. 
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Delineation of a centriole assembly pathway in human cells 

We have used siRNA approaches to establish mutual dependencies between 

individual proteins implicated in centriole biogenesis and, in parallel, studied their 

localization by both high resolution fluorescence and immuno-electron microscopy. 

The results of these studies afford a comprehensive view of the centriole assembly 

pathway, as summarized schematically in Figure 34. Following activation of Plk4 on 

the surface of the parental centriole cylinder, we observed the rapid recruitment of 

hSas-6, CPAP, Cep135 and γ-tubulin. Whether these proteins are recruited at 

exactly the same time could not be resolved. However, they are unlikely to form a 

single complex because hSas-6 was recruited exclusively to the nascent pro-

centrioles, whereas CPAP and Cep135 could be seen within the proximal lumen of 

both parental and pro-centrioles (Figure 30) and similar intra-luminal localization has 

also been described for γ-tubulin (Fuller et al., 1995). Whereas γ-tubulin is likely to 

nucleate centriolar MTs, CPAP and Cep135 probably play scaffolding roles in early 

centriole biogenesis. Once incorporated, these three proteins remained associated 

with centrioles. In contrast, hSas-6 was lost from centrioles, presumably in the course 

of centriole disengagement, either through displacement or degradation. Finally, the 

time of assembly and localization of CP110 indicates that centrioles do not grow by 

tubulin addition to distal tips, but rather by insertion of tubulin underneath a CP110-

containing cap.  
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Figure 34. Model of centriole assembly in human cells.  

This scheme summarizes the salient features of the centriole assembly pathway that emerge from our 

siRNA and immuno-electron microscopy studies. Nascent pro-centriolar structures are depicted 

coding Plk4 in red, hSas-6 in green, CPAP, Cep135 and γ-tubulin in brown, α-tubulin in grey and 

CP110 in yellow. Polyglutamylation is indicated by x. For simplicity the parental centriole is depicted in 

grey, polyglutamylation on the parental centriole is omitted and only one nascent pro-centriole is 

shown. For detailed explanation see main text. 

 

 

Collectively, these findings strengthen the view that centriole and basal body 

formation are governed by an evolutionarily conserved mechanism (Delattre et al., 

2006). However, some of the proteins described here do not have obvious 

homologues in invertebrates and, conversely, Sas-5 has so far been identified only in 

nematodes (Delattre et al., 2004). Thus, a better understanding of centriole 

biogenesis will undoubtedly benefit from the continued study of the underlying 

mechanism in multiple organisms. 
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Abnormal centriole morphology in CP110-depleted cells 

This work also reports the identification and very initial examination of the 

morphological abnormalities induced on existing centrioles by CP110 depletion. Just 

recently, an elaborate study done by the Dynlacht lab (Spektor et al., 2007) was 

published, reporting that CP110 and a newly identified interacting protein, Cep97, 

collaborate to suppress ciliogenesis in cycling cells. The authors found the previously 

uncharacerized protein Cep97 to interact and co-localize with CP110. Moreover, 

centriolar localization of both proteins was interdependent, suggesting that Cep97 

and CP110 are coordinately recruited to the centrosome. Depletion of Cep97 by 

siRNA resulted in the formation of abnormal mitotic spindles and cytokinesis defects 

– as had previously been reported for CP110-depleted cells (Tsang et al., 2006). 

Most strikingly, depletion of Cep97 or CP110 in cycling U2OS cells induced formation 

of long filamentous structures emanating from the distal ends of centrioles (Figure 

35; reproduced from Spektor et al., 2007)). As these filaments could be positively 

stained for centriolar proteins (like centrin and polyglutamylated tubulin) as well as for 

ciliary marker proteins (like polaris, polycystin-2 (PC-2) and acetylated tubulin), the 

authors assumed, that these filamentous structures represent inappropriately 

assembled primary cilia. In line with this hypothesis, protein expression levels of both 

proteins in serum starved T98G cells were found to be low. 

Although assembly of a primary cilium can be induced by serum starvation in 

some cells, this has never been observed in U2OS. Therefore, the authors performed 

similar experiments in RPE-1 and mouse 3T3 cell – both capable to grow a primary 

cilium upon starvation – and observed a similar increase of ciliary markers in cycling 

cells. Further experiments performed in U2OS cells showed that expression of 

dominant negative Cep97 mutants mislocalized CP110 from the centrosome and 

gave also rise to filamentous structures resembling cilia. Finally, ectopic expression 

of CP110 strikingly suppressed primary cilia formation in serum-starved 3T3 cells.  
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Figure 35. Fiber-like extensions are positive for ciliary marker proteins. 

U2OS cells were transfected with siRNA duplexes targeting CP110 , Cep97 or ‘NS’ for control and 

stained with the indicated antibodies (top). Note that CP110 depletion results in disappearance of 

Cep97 from centrosomes and vice versa. Note also that fiber-like extensions are positive for centrin 

(A), polyglutamylated and acetylated tubulin (Ac. Tub, B) and polycystin-2 (PC-2, B) but negative for 

C-Nap1 (B). (Reproduced from Spektor et al., 2007). 

 

 

Taken together, the striking localization of CP110 at the centriolar distal end 

and the morphological alterations caused by CP110 depletion indicate that the distal 

capping protein CP110 has to be removed from the centriole in order to allow 

elongation of centriolar MTs at the distal end during ciliogenesis.  

Dynlacht and co-workers interpreted these microtubule-based centriolar 

extensions as primary cilia and imply that the absence of CP110 and Cep97 triggers 

the molecular mechanism of ciliogenesis in cycling somatic U2OS cells. Although this 

is possible, another interpretation seems more appealing to us. In particular, we 

consider it likely that the observed filamentous structures emanating from the 
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centrioles emerge simply via inappropriate addition of α/β-tubulin dimers onto the 

accessible centriole ends, rather than representing the assembly of genuine 

functional cilia. In support of this view, it is known that α/β-tubulin heterodimers do 

assemble onto isolated centrioles in-vitro (Gould and Borisy, 1977) (Figure 36A, 

reproduced from Gould and Borisy, 1977). A phenotype very reminiscent of CP110 

depletion has been reported in taxol-treated cells (Figure 36B, reproduced from 

(Raynaud-Messina et al., 2004)) and in mitotic cells depleted of γ-tubulin (Figure 36C, 

reproduced from Kuriyama et al., 1986) (Kuriyama et al., 1986; Raynaud-Messina et 

al., 2004). In these cells, centriolar microtubules are extremely elongated at their 

distal ends and they are even capable of forming an abnormal pseudo-spindle 

(Raynaud-Messina et al., 2004). Although our preliminary data of γ-tubulin-depleted 

interphase cells suggest that abnormal MT elongation occurs in a cell cycle 

independent manner, protection of centriolar MT ends by capping proteins and 

pericentriolar material might be of special importance during mitosis as the 

microtubule turnover at the centrosome is extremely high during this phase. It has 

been suggested already more than 40 years ago that regulatory proteins might block 

the distal ends of centrioles and thereby prevent centriolar elongation until a cell 

cycle regulated and very specific axonemal program triggers ciliogenesis in quiescent 

cells (Krishan and Buck, 1965; Raynaud-Messina et al., 2004). 

In future studies, it will be important to determine whether this ‘centriole 

elongation’ phenotype can specifically be attributed to the absence of CP110 and 

Cep97. Depletion or mislocalization of other centrosomal proteins might alter 

centriole morphology in a similar way, thereby producing similar phenotypes – as 

preliminary results suggest for γ-tubulin. Finally, only functional analyses of these 

hypothetical ciliary structures and careful ultrastructural examination by 3dSIM or 

electron microscopy will determine whether these structures are indeed functional 

and morphologically normal primary cilia or simply abnormally elongated centriolar 

microtubules. 
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Figure 36. Electron micrographs showing abnormal elongation of distal centriolar MTs. 

(A) Purified interphase centrioles after incubation with tubulin in polymerization buffer. Tubulin has 

polymerized onto a centriole pair (left, top), a pro-centriole (left, bottom), and a centriole/pro-centriole 

pair (right). In each case growth onto the distal end is favored (taken from (Gould and Borisy, 1977). 

(B) Whole-mount electron micrograph of centrioles isolated from taxol-treated cells. In most cases, 

microtubules were outgrowing from all of the triplet microtubules of centrioles (taken from (Raynaud-

Messina et al., 2004). (C) Elongation of the centriole microtubules. The spindle microtubules resulted 

at least partly from the elongation of the distal ends of centriolar microtubules (arrowheads) (taken 

from (Kuriyama et al., 1986). 

 

 

Copy number control and centriole amplification in tumor cells 

The Plk4-induced flower-structures described here emphasize that parental 

centrioles are competent to support the simultaneous formation of multiple centrioles, 

extending previous observations (Anderson and Brenner, 1971; Duensing et al., 

2007b; Vidwans et al., 2003). This clearly indicates that tight regulation of Plk4 

activity is critical for controlling centriole numbers (‘copy number control’ (Nigg, 
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2007)) and raises the question of what mechanisms normally limit pro-centriole 

formation to one copy per pre-existing centriole? On the premise that parental 

centrioles constitute solid-state platforms to facilitate assembly rather than genuine 

‘templates’, one plausible scenario would be that Plk4 marks potential assembly sites 

on the parental centriole cylinder by phosphorylating yet to be identified substrates. 

Plk4 activity is expected to be balanced by a counter-acting phosphatase and it will 

be crucial to determine whether mitogenic signalling and cell cycle cues operate 

through activation of Plk4, inhibition of the antagonistic phosphatase, or both. Next, a 

protein (hSas-6?) or protein complex present in limiting amounts might be recruited 

to a site marked by Plk4, thereby forming a ‘seed’ for a nascent pro-centriole. Under 

normal conditions, stabilization of a first seed (chosen at random) could constitute a 

rate-limiting step, whereas subsequent expansion of the nascent pro-centriolar 

structure would occur very rapidly, thereby consuming limiting material and 

preventing the utilization of secondary sites (akin to crystal growth). In response to 

excess Plk4 activity, however, multiple seeds can be stabilized simultaneously, 

leading to the concurrent formation of multiple pro-centrioles, as described here. 

Interestingly, formation of multiple pro-centrioles can apparently occur also on 

parental centrioles that already harbour one pro-centriole (Figure 21B). Live cell 

imaging will be required to determine whether the one pre-existing pro-centriole 

dissociates before the formation of multiple pro-centrioles, or whether new pro-

centrioles form next to the pre-existing one. In either case, the data show that excess 

Plk4 overrides an S phase control that normally limits pro-centriole formation to one 

per parental centriole (Nigg, 2007). 

 Simultaneous formation of multiple centrioles could represent one important 

mechanism for rapid centrosome amplification in tumor cells (Duensing et al., 

2007b). Thus, it will be interesting to examine how frequently Plk4 and/or other 

positive regulators of centriole biogenesis are upregulated in tumors. At first glance it 

may seem paradoxical that Plk4+/- mice are prone to form tumors comprising 

supernumerary centrosomes (Ko et al., 2005), since reduced levels of Plk4 are 

known to impair rather than enhance centrosome formation (Bettencourt-Dias et al., 

2005; Habedanck et al., 2005). However, the centrosome amplification seen in Plk4+/- 

cells may be explained by the cell division failures that occur upon depletion of Plk4, 

possibly as a consequence of abnormal spindle formation (Habedanck et al., 2005). 
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With the identification of Plk4 as a key regulator of centriole biogenesis the stage is 

now set for studying its cell cycle regulation in both normal cells and tumor cells. 

Moreover, a key challenge for the future will be to identify the physiological 

substrates of this kinase. 
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MATERIALS & METHODS 

Chemicals and materials 

All chemicals were purchased from Merck, Sigma-Aldrich Chemical Company 

(Sigma, St Louis, MO), Fluka-Biochemika, Switzerland, or Roth, unless otherwise 

stated. Components of growth media for E. coli and yeast were from Difco 

Laboratories or Merck. The Minigel system was purchased from Bio-Rad and the 

Hoefer SemiPHor Blotting system from Pharmacia-Biotech. Tabletop centrifuges 

were from Eppendorf. 

 

Sequence analysis 

For identifying motifs and domains, hSfi1, CPAP and Cep135 protein sequences 

were analysed using ScanProsite (Gattiker et al., 2002) whereas coiled-coil domains 

were scored using the COILS program (Lupas et al., 1991). All programs were 

accessed from by web interface on www.expasy.ch.  

 

Plasmid constructions 

All cloning procedures were performed according to standard techniques as 

described in Molecular Cloning, A Laboratory Manual, 2nd editition, Sambrook, 

J.,Fritsch, E.F., Maniatis, T., Cold Spring Harbor Laboratory Press 1989 and Current 

Protocols in Molecular Biology, Wiley, 1999. Restriction enzyme reactions were 

carried out as specified by the suppliers (NEB) and ligation reactions were done 

using T4 DNA Ligase (NEB). Extraction of DNA from agarose gels and preparation of 

plasmid DNA was performed using kits from QIAGEN according to the 

manufacturer’s instructions. For PCR reactions, the Pfu DNA polymerase PCR 

System was used as recommended by the manufacturer (Promega) and reactions 

were carried out in a RoboCycler Gradient 96 (Stratagene). All PCR products were 

checked by sequencing at Medigenomix (Martinsried, Germany). 

 

hSfi1 

Polymerase chain reaction was used to amplify full-length human hSfi1 from 

KIAA0542 clone (from Kazusa DNA Research Institute). The cDNA was then 

subcloned into the cloning vector pcDNA-TOPO4 (pCJW45.0, Table 4a). The 
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construct was verified by sequencing. For expression of recombinant hSfi1 

fragments, bp 3394-3726 were PCR amplified, inserted into the cloning vector 

pcDNA-TOPO4 (Jk14, Table 4a) and confirmed by sequencing. The construct was 

subcloned into the expression vector pMalpFN (JK15, Table 4a). Maltose-binding 

protein (MBP)-tagged C-terminal hSfi1 (aa 1101-1211) was expressed in E.coli strain 

BL21(DE3) and purified under denaturing conditions using standard protocols 

(QIAexpressionist system, Qiagen). MBP was cleaved off using Precision Protease 

(Roche) according to the manufacturers protocol. The almost identical hSfi1 fragment 

(aa 1100-1211) construct was subcloned into the expression vector pGEX-5X-2 

(Strategen, JK40, Table 4a), GST-tagged C-terminal hSfi1 (aa 1100-1211) was 

expressed in E.coli strain BL21(DE3) and purified under denaturing conditions using 

standard protocols (QIAexpressionist system, Qiagen). 

 

Cep135 

Polymerase chain reaction was used to amplify an incomplete cDNA of human 

Cep135 from the KIAA0635 clone (from Kazusa DNA Research Institute). The cDNA 

was then subcloned into a mammalian expression vector providing a C-terminal myc-

tag (pCJW206, Table 4a). The construct was verified by sequencing. For expression 

of a recombinant Cep135 fragment (bp 2236-3654) were PCR amplified, inserted into 

the cloning vector pcDNA-TOPO4 (JK67, Table 4a) and confirmed by sequencing. 

The construct was subcloned into the expression vectors pET28b+ (Novagene, JK68, 

Table 4a) and pGEX-5X-2 (Stratagene, JK69, Table 4a). His6- and GST-tagged C-

terminal Cep135 was expressed in E.coli strain BL21(DE3) and purified under 

denaturing conditions using standard protocols (QIAexpressionist system, Qiagen). 

 

CPAP 

Plasmids encoding CPAP (Hung et al., 2000) were kindly provided by Dr. T. Tang 

(Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan). For 

expression of a recombinant CPAP fragment, bp 3211-4011 were PCR amplified, 

inserted into the cloning vector pBSIISK (JK64, Table 4a) and confirmed by 

sequencing. The construct was subcloned into the expression vectors pET28b+ 

(Novagene, JK65, Table 4a) and pGEX-5X-2 (Stratagene, JK66, Table 4a). His6- 

and GST-tagged C-terminal CPAP was expressed in E.coli strain BL21(DE3) and 
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purified under denaturing conditions using standard protocols (QIAexpressionist 

system, Qiagen). 

 

Antibody Production 

Polyclonal antibodies were raised against hSfi1 (aa 1101-1211), Cep135 (aa 648-

1145) and CPAP (aa 1071-1337) (all Charles River Laboratories, Romans, France). 

Antibodies were affinity-purified using GST-tagged antigens bound to Affigel (Biorad) 

according to standard protocols. 

 

Cell culture and transfections. 

All cells were grown at 37°C in a 5% CO2 atmosphere. HeLa, U2OS or HEK293T 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented 

with 10% heat-inactivated fetal calf serum and penicillin-streptomycin (100 i.u./ml and 

100µg/ml, respectively, Gibco-BRL, Karlsruhe, Germany). HTERT-RPE1 cells were 

cultured in DMEM Nutrient Mixture F-12 Ham (Sigma, München, Germany) 

supplemented with 10% FCS (as above), penicillin-streptomycin (as above), 1% 

glutamine (PAN Biotech, Aidenbach, Germany; 200mM), and 0.35 % sodium 

bicarbonate (Sigma, Munich, Germany). 

The tetracyclin-inducible cell-line expressing Myc-tagged Plk4 was kindly 

provided by J. Westendorf (Department of Cell Biology, Max-Planck-Institute for 

Biochemistry, D-82152 Martinsried). It was generated by transfection of U2OS-Trex 

cells (Invitrogen). Stable transformants were established by selection for 2 weeks 

with 1 mg ml-1 G418 (Invitrogen) and 50µg ml-1 hygromycin (Merck, Darmstadt, 

Germany). U2OS-cells were cultured as described previously (Habedanck et al., 

2005) and Myc-Plk4 expression was induced by the addition of 1µg ml-1 of 

tetracyclin.  

 

siRNA-mediated protein depletion 

Centrosomal proteins were depleted using siRNA duplex oligonucleotides 

(Dharmacon Research Inc, Lafayette, CO and Qiagen, Hilden, Germany) siRNA 

target sequences are listed in Table 2. An oligoduplex targeting luciferase was used 

as control (GL2, (Elbashir et al., 2001). Transfections were performed using 
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Oligofectamin (Life Technologies, Karlsruhe, Germany) according to standard 

protocols.  

 

Cell extracts, immunoblotting and immunoprecipitations 

For immunblotting experiments, total cell extracts were washed once in PBS and 

lysed directly in gel sample buffer. For immunoprecipitations, total cell extracts of 

HEK293T or HeLaS3 cells were prepared by washing cells once in PBS, prior to lysis 

for 10 min (4°C) in (Co-) IP buffer (150 mM NaCl, 50 mM Tris-HCl pH8.0, 1% NP-40, 

1 mM PMSF, protease inhibitor cocktail tablets (Roche)). Lysates were cleared by 

centrifuging for 15 min at 16,000xg, 4°C and incubated with prot-G beads bearing 

anti-10µg hSfi1, CPAP, Cep135 antibodies (see Table 3) for 2h at 4°C. 

Immunocomplexes bound to beads were then washed thrice with Co-IP wash buffer. 

Immunoprecipitated proteins were eluted into Laemmli buffer, boiled for 8 min 

and separated by SDS-PAGE. Extracts were boiled for 5 min, and proteins resolved 

by SDS-PAGE. Immunoblotting was performed by electrophoretic transfer onto 

nitrocellulose membranes using a Semi-Phor blotting apparatus (Hoefer Scientific 

Instruments, San Francisco, CA). Proteins were visualized by Ponceau S staining, 

before blocking the membranes for one hour with blocking buffer (5% low-fat dried 

milk in 1x PBS + 0.1% Tween-20). Antibody incubations were carried out for 1-16h in 

blocking buffer, and bound IgGs were visualized using HRP conjugated goat anti-

mouse or anti-rabbit antibodies (Jackson Immunoresearch). Signals were detected 

by enhanced chemiluminescence using ECL Supersignal reagents (Pierce Chemical 

Co.). 

 

Cell cycle profiles of protein levels 

To monitor the levels of hSfi1, Cep135 and CPAP expression during cell cycle 

progression, HeLaS3 cells were arrested at the G1/S boundary by double thymidine 

block or in mitosis by thymidine nocodazole treatment and released into fresh 

medium. Samples harvested at the indicated time points were subjected to 

immunoblotting analyses with the indicated antibodies. 
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Immunofluorescence (IF) microscopy 

To maximize visualization of centrioles, cytoplasmic MTs were depolymerised by a 

1h cold treatment (4°C) before cells were permeabilized and fixed by incubation for  

30s in PBS, 0.5% Triton X-100, followed by 10min methanol (-20oC). After 

thouroughly washing in PBS, cells were incubated with primary antibodies (see Table 

3) in blocking buffer (3% BSA, PBS) for 1 hour at room temperature, followed by 

staining with Alexa-Fluor conjugated goat secondary antibodies (Molecular probes). 

Secondary antibodies were Alexa-Fluor-488/-555-conjugated IgGs (1:1000, 

Molecular Probes). DNA was stained with 4,6-diamidino-2-phenylindole (DAPI; 0.2 

µg/ml). Coverslips were mounted onto glass slides using mounting medium 

(phenylenediamine in 90% glycerol) and analysed using a Deltavision microscope on 

a Nikon TE200 base (Applied Precision, Issaquah, WA) equipped with an APOPLAN 

x100/1.4 n.a. oil-immersion objective. Serial optical sections obtained 0.2 µm apart 

along the Z-axis were processed using a deconvolution algorithm and projected into 

one picture using Softworx (Applied Precision). Exposure times and settings for 

image processing (deconvolution) were constant for all samples to be compared 

within any given experiment. Images were opened in Adobe Photoshop CS and then 

sized and placed in figures using Adobe Illustrator CS2 (Adobe Systems). 

 

Immuno-electron microscopy (EM) 

Electron microscopy was kindly performed by Y-D Stierhof (ZMBP, University of 

Tübingen, Germany). For electron microscopy, cells were grown on coverslips, fixed 

with 4% paraformaldehyd for 10 min, permeabilized with PBS+0.5% Triton X-100 for 

2 min. Blocking and primary antibody incubations were performed as described for IF 

microscopy, followed by goat anti-mouse and anti-rabbit IgG-Nanogold (1:50 

Nanoprobes) for 50 min.  

Cells were further fixed with 2.5% glutaraldehyd in PBS for 60 min, washed 

with distilled water, and Nanogold was silver-enhanced with HQ Silver (Nanoprobes) 

for 8.5 min or with silver lactate/gum arabicum for 40-45 min (Stierhof et al., 1991). 

After thouroughly washing with distilled water, cells were postfixed with 1% 

aqueousuranyl acetate, dehydrated in ethanol and embedded in epoxy resin 

(EPON®; Shell Chemical Co.). After polymerisation, the EPON® layer containing the 

cells was separated from the coverslip by dipping into liquid nitrogen. Ultrathin 
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sections were cut in parallel to the monolayer and stained with aqueous uranyl 

acetate and lead citrate. 

 

Mass-spectrometry 

Proteins isolated by co-immunoprecipitation with endogenous hSfi1 were kindly 

analysed by A. Ries and Dr. Roman Körner (Max-Planck Institute of Biochemistry, 

Martinsried, Germany) as previously described (Sauer et al., 2005). Briefly, 

Coomassie Blue stained protein bands were in-gel digested (Shevchenko et al., 

1996) by trypsin (Promega, sequencing grade). Peptides were desalted and 

concentrated using C18 extraction tips, and analysed with a CAPLC nano HPLC 

system (Waters, Milford) coupled to a Q-TOF mass spectrometer (Q-ToF, Ultima, 

Micromass, London, UK). Data were searched against the Mass Spectrometry 

Protein Sequence Database (MSDB, cscfserve. hh.med.ic.ac.uk/msdb.html) or the 

human International Protein Index database (www.ebi.ac.uk/IPI/IPIhelp.html) using 

in-house Mascot version 1.7 (www.matrixscience.com). Proteins identified by two or 

more peptides with a combined peptide score higher than 50 or by one single peptide 

with a score higher than 60 were considered significant, whereas all lower-scoring 

proteins were either included or discarded after inspection of individual spectra. 

 

Centrosome preparations 

Human centrosomes were purified from the T-lymphocyte KE-37 cell line according 

to the protocols reported in Andersen et al. (2003) and Moudjou and Bornens (1994). 

 

RT-PCR 

RNA purification was carried out using the QIAGEN RNeasy Mini Kit, according to 

the manufacturer`s protocol. Fragments of centrins 1, 2, 3 and Myc-Plk4 were 

amplified from isolated RNA using the Titan One Tube RT-PCR System (Roche) with 

isoform-specific primers. Control PCRs were performed using corresponding plasmid 

DNAs as templates. The following primers were used (5’-3’): 

Centrin 1: CCCAGCGCTGCCTCCACCGGC, CTCCTCGTTCACTTCGCCG  

Centrin 2: GCAAACATGGCATCAAGTTCTC, TTGCTCACTGACCTCTCCA  

Centrin 3: GTGAGCTTGTAGTGGA, CTCTTGGTTTATTTCTCCA  
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Myc-Plk4: GGAGGACCTGAACCTGGAG, 

CCTCGAGTCAACATAAAAGGATGGTCCAAT 

 

Quantitative Real-Time-PCR (qRT-PCR) 

Quantitative Real-Time-PCR was kindly performed by P. Descombes (Genomics 

Platform, Univ. of Geneva) and Sebastien Lavoie (Department of Cell Biology, Max-

Planck-Institute for Biochemistry, D-82152 Martinsried). To analyze expression levels 

of hSfi1, Cep135 and CPAP genes across the cell cycle, total RNA was extracted 

from HeLa S3 cells at different time points after release from a double thymidine 

block or a thymidine-nocodazole block using an Rneasy Mini Kit (QIAGEN, Hilden, 

Germany). For the analysis of siRNA efficiency, total RNA of HeLa S3 cells treated 

for 72 h with siRNA oligonucleotide duplexes targeting centrosomal protein genes 

(Table 2) was extracted. cDNAs were synthesized from the RNA samples using 

random hexamers and Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA) 

following the manufacturer’s instructions. PCR reactions contained cDNA, Power 

SYBR Green Master Mix (Applied Biosystems) and 300 nM of forward and reverse 

primers. Primers were designed with Primer Express Software (Applied Biosystems) 

and amplified fragment corresponded to an exon–exon junction. All primer 

sequences are available on request. qRT-PCR was carried out in optical 384-well 

plates and fluorescence was quantified with a Prism 7900 HT sequence detection 

system (Applied Biosystems). Samples were analyzed in triplicate and the raw data 

consisted of PCR cycle numbers required to reach a fluorescence threshold (Ct). 

Raw Ct values were obtained using SDS 2.0 (Applied Biosystems). The relative 

expression level of target genes was normalized according to geNorm 

(Vandesompele et al., 2002) using EEF1A1 (eukaryotic translation elongation factor 

a-1) and GusB (beta glucuronidase) genes as references to determine the 

normalization factor. The thermal profile recommended by Applied Biosystems was 

used for amplification (50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s 

and 60°C for 1 min). To verify the specificity of amplification, a melting curve analysis 

was included according to the thermal profile suggested by the manufacturer (95°C 

for 15 s, 60°C for 15 s, and 95°C for 15 s). The generated data were analyzed with 

SDS 2.2 software (Applied Biosystems). qRT-PCR results are listed in Table 2. 
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3dSIM image acquisition 

3dSI microscopy was kindly performed by L. Schermelleh (Department of Biology II, 

LMU Munich). The custom-built microscope platform, termed "OMX" (Optical 

Microscope, eXperimental) has been developed in the laboratory of J. W. Sedat 

(UCSF) and will be described in detail in Schermelleh et al. (manuscript submitted). 

In brief, light from one of three lasers (405 nm, 488 nm, or 532 nm) is passed through 

a holographic diffuser before being coupled to a multimode fiberoptic cable, which 

focuses the light onto a diffraction grating. The grating splits the incident light into 

multiple orders, the innermost three of which (orders 0, +1, -1) interfere in the image 

plane to produce a sinusoidal pattern with a line spacing of approximately 0.2 µm. 

The pattern was made to illuminate sequential planes of the sample by moving the 

stage in the z-direction with a step size of 0.125 µm. For each z-section, 5 phases of 

the sinusoidal pattern were recorded sequentially by translating the diffraction grating 

between exposures. Three z-stacks are recorded one after the other in this manner 

with three angular orientations of the diffraction grating, 60° apart. The objective used 

was 100x, 1.4 NA, oil-immersion (Olympus). Emitted light from the sample passes 

through a set of four dichroic mirrors, which direct light based on its wavelength into 

four independently controlled EMCCD cameras (512x512 pixel with size of 8x8 µm, 

Andor, Inc). For multifluorescence experiments the color channels were recorded 

sequentially. Exposure times were between 100-500 ms, yielding typically 1,000 to 

10,000 counts in a raw image of 16-bit dynamic range. To avoid extensive bleaching, 

a 300 ms pause was added between each exposure. Alignment of color channels 

was performed by custom Python scripts applying translation, rotation, and both 

isotropic and anisotropic scaling, using alignment parameters obtained from 

measurements with 100 nm multi-wavelength fluorescent beads (Molecular Probes) 

taken with the same camera setup as the biological samples. Raw images were 

saved to disk and processed with a dedicated algorithm (L. Shao, PhD thesis, UCSF) 

to reconstruct high-resolution information. Images were opened in Adobe Photoshop 

CS and then sized and placed in figures using Adobe Illustrator CS2 (Adobe 

Systems). 
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ABBREVIATIONS 

All units are abbreviated according to the International Unit System. 

AA: amino acid(s) 

ATP: adenosine 5´-triphosphate 

BSA: bovine serum albumin 

DAPI: 4´,6-diamidino-2-phenylindole 

DTT: dithiothreitol 

ECL: enhanced chemiluminescence 

EDTA: ethylenedinitrilotetraacetic acid 

EGFP: enhanced green fluorescent protein 

EM: electron microscopy 

FCS: Fetal calf serum 

GFP: green fluorescent protein 

HCl: hydrochloric acid 

HEPES: N-2-Hydroxyethylpiperazine-N`-2-ethane sulfonic acid 

IgG: Immunoglobulin G 

IP: Immunoprecipitation 

IPTG: isopropyl-beta-D-thiogalactopyranoside 

mAb: monoclonal antibody 

MTOC: microtubule organising centre 

PBS: Phosphate-buffered saline 

PCR: Polymerase chain reaction 

Plk4: Polo-like kinase 4 

PMSF: phenylmethylsulfonyl fluoride 

RNA: Ribonucleic Acid 

RT: room temperature 

SAK: Snk/Fnk akin kinase 

SDS-PAGE: Sodium dodecylsulfate polyacrylamid gelelectrophoresis 

siRNA: small interference Ribonucleic Acid 

SPB: Spindle Pole Body 

WT: wild-type 
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Table 2: List of siRNA oligos 

 

Gene Target sequence Oligo qRT-PCR (residual transcript) 

hSas-6 5’-AAGCACGTTAATCAGCTACAA-3’ 363 (Leidel et al., 2005) 

CPAP 5’-CCCAATGGAACTCGAAAGGAA-3’ 251 IF (+++) 

CPAP 5’-AAGGAAGATTGCACCAGTCAA-3’ 250 IF (+++) 

Cep135 5’-AAGCAGATTGAGCTAAGAGAA-3’ 275 IF (++) 

Cep135 5’-AAAGCTTATTGCTCATTTAAA-3’ 274 IF (++) 

CP110: 5’-TAGACTTATGCAGACAGATAA-3’ 291 IF (++) 

CP110 5’-CCCGAAATTATGCCAAAGTTA-3’ 290 IF (++) 

OFD-1 5’-CTCAGACAAGTTCGACATTTA-3’  IF (+) 

FOP 5’-AAGTGATCAGGCGCTGTCAAC-3’ 201 (Yan et al., 2006) 

Cap350 5’-ATGAACGATATCAGTGCTATA-3’ 377 (Yan et al., 2006) 

C-Nap-1 5’-CTGGAAGAGCGTCTAACTGAT-3’ 239 (Bahe et al., 2005) 

Pericentrin 5’-AAGCAGCTGAGCTGAAGGAGA-3’ 236 (Dammermann and Merdes, 2002) 

PCM-1 5’-AATCAGCTTCGTGATTCTCAG-3 405 (Dammermann and Merdes, 2002) 

Ninein 5’-GCGGAGCTCT CTGAAGTTAAA-3’ 299 IF (++) 

Nek-2 5’-TTACGAGGATGTTAAACTTAA-3’ 253 IF (+) 

Cep170 5’-GAAGGAATCCTCCAAGTCA-3’ 37/38 (Guarguaglini et al., 2005) 

Cep152 5’-GCGGATCCAACTGGAAATCTA-3’ 277 28% 

Cep192 5’-AACAGT GAATGTGCAAGTAAA-3’ 281 33% 

Cep57 5’-AGCCATCAAGGTCTAATGGAA-3’ 259 13 % 

Cep27 5’-CTGAAGAAAGTTATCTTTATA-3’ 255 14 % 

Cep41 5’-CACTGGTAACAG-TATGACTAA-3’ 257 23% 

Cep63 5’-CAACGCTTGAT TTATCAGCAA-3’ 260 12% 

Cep70 5’-GAAGATCGCATTGTCACTCAA-3’ 265 12% 

Cep72 5’-AGAGCTATGT-ATGATAATTAA-3’ 266 50% 

Cep76 5’-CTCGGTATTATAGGGCCAATA-3’ 268 15% 

Cep78 5’-CAGTTGTGTAAAG CTCTTAAA-3’ 270 10% 

Cep131 5’-CCCACTCAGCCCGGAACAATA-3’ 272 11% 

Cep164 5’-ACCACTGGGAATAGAAGACAA-3’ 278 5% 
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Cep290 5’-TAGCCTCGAAAG-ACTAGTTAA-3’ 285 23% 

Cep215 5’-GTGGAAGATCTCCTAACTAAA-3’ 283 17% 

γ-tubulin 5’-AAGGAGGACATGTTCAAGGAA-3’  (Luders et al., 2006) 

centrin 2 5’-AAGAGCAAAAGCAGGAGATCC-3’  218 (Salisbury et al., 2002) 

centrin 3 5’-CTGGTGACATTT AAAGAATTA-3’ 360 IF (++) 

 

 

Table 2. siRNA screen for proteins involved in centriole biogenesis. 

siRNA oligonucleotides:  IF* or qRT-PCR (residual transcript): 

 

*IF indicates that extent of depletion could be assessed by immunofluorescence 

microscopy: +++ nearly complete depletion (undetectable); ++ very good depletion 

(50-80%); + ca. 50 % depletion. Oligonucleotide duplexes were purchased from 

Dharmacon Research Inc., Layfayette, CO and Qiagen, Hilden, Germany. 
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Table 3: List of Antibodies 

Number Antigen Made in Dilution Comment 

 

Distributor/reference 

 

R1 HSfi1 Rabbit 1:200 Affinity purified This work 

R2 HSfi1 Rabbit n.d. Affinity purified, 

unspecific 

This work 

738 Cep135 Rabbit 1:1000 Affinity purified Kleylein-Sohn et al., 

2007 

719 Cep135 Rabbit 1:1000 Serum This work 

729 CPAP Rabbit 1:500(IF) 

1:200(WB) 

Affinity purified 

 

Kleylein-Sohn et al., 

2007 

730 CPAP Rabbit 1:500(IF) 

1:200(WB) 

Affinity purified This work 

91-390 HSas-6 Mouse Undiluted 

(IF) 

 

Hybridoma 

supernatant 

 

Kleylein-Sohn et al., 

2007-Kindly provided by 

M.LeClech 

95-381 CPAP Mouse undiluted 

(IF) 

Hybridoma 

supernatant 

Kleylein-Sohn et al., 

2007-Kindly provided by 

M.LeClech 

20H5 Centrin Mouse 1:3000 Affinity purified Kindly provided by 

J.Salisbury (Salisbury et 

al., 2002) 

R66/67 Centrin 2 Rabbit 1:500 Affinity purified Kleylein-Sohn et al., 

2007 

 ODF-2 Rabbit 1:1000 Affinity purified Ishikawa et al., 2005 
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R28 Cyclin A Rabbit 1:500 Affinity purified Maridor et al., 1993 

 

36-298-

4 

Plk1 Mouse 1:3 Hybridoma 

tissue culture 

supernatant 

Yamaguchi et al., 2005 

DM1A 
 

α-tubulin Mouse 1:5000 FITC-Coupled Sigma 

GTU-88 γ-tubulin 
 

Mouse 
 

1:1000 
 

 Sigma 
 

GT335 
 

Poly-
glutamylated 
tubulin 
 

Mouse 1:1000 
 

Affinity purified 
 

Kindly provided by B. 
Edde 
 

9E10 
 

Myc 
 

Mouse 
 

undiluted 
(IF) 
 

Hybridoma 
tissue culture 
supernatant 
 

Evan et al., 1985 
 

HE-12 
 

Cyclin E 
 

Mouse 1:5 
 

Hybridoma 
tissue culture 
supernatant 
 

Kindly provided by 
J.Bartek (Danish 
Cancer Society, 
Copenhagen 
 

519-689 
 

Plk4 
 

Rabbit 1:500 
 

Affinity purified 
 

Kindly provided by J. 
Westendorf 
 

- CP110 Rabbit 1:500 Affinity purified Kindly provided by 
B.Dynlacht (Chen et 
al., 2002) 
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Table 4: List of Plasmids and Primers 

 

Table 4a: Plasmids 

Plasmids pCSM45.0 and pCSM7.1 were generated by C. Wilkinson. 

 

Name Gene Species Insert Vector Tag 

pCSM45.0 Sfi1 human 1-1211 pcDNA4-Topo - 

JK14 Sfi1 human aa 1101-1211 pcDNA4-Topo - 

JK15 Sfi1 human aa 1101-1211 pMalpFN MBP 

JK36 Sfi1 human aa 1100-1211 pBS - 

JK40 Sfi1 human aa 1100-1211 pGEX-5X-2 GST 

pCSM7.1 Cep135 human aa 295-1140 pEGFP-C1 GFP 

JK67 Cep135 human aa 648-1140 pcDNA4-Topo - 

JK68 Cep135 human aa 648-1140 pCJW227 HIS 

JK69 Cep135 human aa 648-1140 pGEX-5X-2 GST 

JK64 CPAP human aa 1070-1338 pBS - 

JK65 CPAP human aa 1070-1338 PCJW227 HIS 

JK66 CPAP human aa 1070-1338 pGEX-5X-2 GST 
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Table 4b: Primers 

 

Primer-
name 

Sequence (5’ – 3’) Plasmids 

M2245 TTGGCCGGCCTGACCGACTGCAGCCGGAGGTCAGCCCAGCAG JK14, 
JK15 

M2246 TTGCGGCCGCCTAGTGGTGGTGGTGGTGGTGGCACAGGGCCTG 
CCGCAGGGCCT 

JK14, 
JK15 

M2746 GGATCCCCTTCTCAGCCACCAGGGCTGGGCC JK36, 
JK40 

M2307 CTCGAGGCACAGGGCCTGCCGCAGGGCCT JK36, 
JK40 

M3560 GAGAAGTGAGCTTGTAGTGGACAAAAC JK67, 
JK68, 

M3610 GGGATCCCCGCTCAAAAATTTAGCCATGTGG JK67, 
JK68, 

M3350 GGGATCCCCCTTGCGAACACATCTGTTCG JK64, 
JK65, 

M3354 CGTCGACCAGCTCCGTGTCCATTGACACATTAC JK64, 
JK65, 



94 

ACKNOWLEDGEMENTS 

First, I would like to thank Erich Nigg for giving me the opportunity of working in this 

lab and for his patience, trust and invaluable professional advice during the last 

years. Second, I would like to thank Angelika Böttger for writing the ‘Zweitgutachten’ 

for this work. My thanks must also go to York-Dieter Stierhof (ZMBP, University of 

Tübingen, Germany) for all electron microscopic analyses, Lothar Schermelleh 

(Department of Biology II, LMU Munich) for all 3dSIM microscopy and Patrik 

Descombes (Genomics Platform, Univ. of Geneva) for carrying out qRT-PCR 

experiments, and my special thanks go to Elena Nigg for expert technical assistance 

and for creating such a pleasant atmosphere in the lab. 

As little did I know about scientific work and thinking when I started, I am 

indepted to all my colleges in the department and the centrosome lab who helped 

and supported me, especially Martina Casenghi for all the technical and ‘intellectual’ 

support she offered me during my first months and Robert Habedanck, who 

supported me with his interest and knowledge in endless stimulating and enthusiastic 

scientific discussions. My heartfelt thanks go to Jens, Thorsten, Gernot and Ina for 

this enjoyable time together and I wish them all the best of luck and success in their 

research. I thank Sebastien Lavoie for sharing the office with me, helping me with 

numerous experiments, teaching me french-canadian culture, politics and cooking 

and, last but not least, for his friendship.  

Meiner besten Freundin Kati danke ich für ihre teure Freundschaft während all 

der Jahre und meinen Eltern und meiner Bernadette möchte ich von ganzem Herzen 

für Ihre grenzenlose Unterstützung und Liebe danken. 

 



95 

REFERENCES 

Adams, I.R., and Kilmartin, J.V. (1999). Localization of core spindle pole body (SPB) 

components during SPB duplication in Saccharomyces cerevisiae. The Journal of 

cell biology 145, 809-823. 

Alvey, P.L. (1985). An investigation of the centriole cycle using 3T3 and CHO cells. 

Journal of cell science 78, 147-162. 

Andersen, J.S., Wilkinson, C.J., Mayor, T., Mortensen, P., Nigg, E.A., and Mann, M. 

(2003). Proteomic characterization of the human centrosome by protein correlation 

profiling. Nature 426, 570-574. 

Anderson, R.G., and Brenner, R.M. (1971). The formation of basal bodies (centrioles) 

in the Rhesus monkey oviduct. J Cell Biol 50, 10-34. 

Anderson, V.E., Prudden, J., Prochnik, S., Giddings, T.H., Jr., and Hardwick, K.G. 

(2007). Novel sfi1 alleles uncover additional functions for Sfi1p in bipolar spindle 

assembly and function. Molecular biology of the cell 18, 2047-2056. 

Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., 

Ohkuma, Y., and Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is 

part of the xeroderma pigmentosum group C complex that initiates global genome 

nucleotide excision repair. The Journal of biological chemistry 276, 18665-18672. 

Azimzadeh, J.a.B., M. (2004). The Centrosome in Evolution, In 'Centrosomes in 

Development and Disease'. E.A.Nigg, editor. Weinheim: Wiley-VCH. pp. 93-122. 

Badano, J.L., Mitsuma, N., Beales, P.L., and Katsanis, N. (2006). The Ciliopathies: 

An Emerging Class of Human Genetic Disorders. Annu Rev Genomics Hum Genet 7, 

125-148. 

Bahe, S., Stierhof, Y.D., Wilkinson, C.J., Leiss, F., and Nigg, E.A. (2005). Rootletin 

forms centriole-associated filaments and functions in centrosome cohesion. J Cell 

Biol 171, 27-33. 



96 

Balczon, R., Bao, L., and Zimmer, W.E. (1994). PCM-1, A 228-kD centrosome 

autoantigen with a distinct cell cycle distribution. The Journal of cell biology 124, 783-

793. 

Baron, A.T., Greenwood, T.M., Bazinet, C.W., and Salisbury, J.L. (1992). Centrin is a 

component of the pericentriolar lattice. Biol Cell 76, 383-388. 

Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C.G., Khodjakov, A., and 

Raff, J.W. (2006). Flies without centrioles. Cell 125, 1375-1386. 

Beales, P.L., Bland, E., Tobin, J.L., Bacchelli, C., Tuysuz, B., Hill, J., Rix, S., 

Pearson, C.G., Kai, M., Hartley, J., et al. (2007). IFT80, which encodes a conserved 

intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. 

Nature genetics 39, 727-729. 

Beisson, J., and Wright, M. (2003). Basal body/centriole assembly and continuity. 

Curr Opin Cell Biol 15, 96-104. 

Berdnik, D., and Knoblich, J.A. (2002). Drosophila Aurora-A is required for 

centrosome maturation and actin-dependent asymmetric protein localization during 

mitosis. Curr Biol 12, 640-647. 

Bettencourt-Dias, M., and Glover, D.M. (2007). Centrosome biogenesis and function: 

centrosomics brings new understanding. Nature reviews 8, 451-463. 

Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, 

L., Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). 

SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15, 

2199-2207. 

Biggins, S., and Rose, M.D. (1994). Direct interaction between yeast spindle pole 

body components: Kar1p is required for Cdc31p localization to the spindle pole body. 

The Journal of cell biology 125, 843-852. 

Blangy, A., Lane, H.A., d'Herin, P., Harper, M., Kress, M., and Nigg, E.A. (1995). 

Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-

related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169. 



97 

Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. 

Nature reviews 6, 476-486. 

Bobinnec, Y., Moudjou, M., Fouquet, J.P., Desbruyeres, E., Edde, B., and Bornens, 

M. (1998). Glutamylation of centriole and cytoplasmic tubulin in proliferating non-

neuronal cells. Cell Motil Cytoskeleton 39, 223-232. 

Bond, J., Roberts, E., Springell, K., Lizarraga, S.B., Scott, S., Higgins, J., Hampshire, 

D.J., Morrison, E.E., Leal, G.F., Silva, E.O., et al. (2005). A centrosomal mechanism 

involving CDK5RAP2 and CENPJ controls brain size. Nature genetics 37, 353-355. 

Bornens, M. (2002). Centrosome composition and microtubule anchoring 

mechanisms. Curr Opin Cell Biol 14, 25-34. 

Boveri, T. (1914). Zur Frage der Entstehung maligner Tumoren. (English Translation: 

The Origin of Malignant Tumors, Williams and Wilkins, Baltimore, Maryland, 1929). 

Brinkley, B.R. (2001). Managing the centrosome numbers game: from chaos to 

stability in cancer cell division. Trends Cell Biol 11, 18-21. 

Brinkley, B.R., Stubblefield, E., and Hsu, T.C. (1967). The effects of colcemid 

inhibition and reversal on the fine structure of the mitotic apparatus of Chinese 

hamster cells in vitro. J Ultrastruct Res 19, 1-18. 

Budhu, A.S., and Wang, X.W. (2005). Loading and unloading: orchestrating 

centrosome duplication and spindle assembly by Ran/Crm1. Cell cycle (Georgetown, 

Tex 4, 1510-1514. 

Byers, B. (1981). Multiple roles of the spindle pole body in the life cycle of 

Saccharomyces cerevisiae. Molecular Genetics in Yeast, edited by D. von Wettstein, 

J. Friis, M. Kiellandbrandt and A. Stenderup. Munksgaard, Copenhagen. pp. 119-

133. 

Carroll, P.E., Okuda, M., Horn, H.F., Biddinger, P., Stambrook, P.J., Gleich, L.L., Li, 

Y.Q., Tarapore, P., and Fukasawa, K. (1999). Centrosome hyperamplification in 

human cancer: chromosome instability induced by p53 mutation and/or Mdm2 

overexpression. Oncogene 18, 1935-1944. 



98 

Cavalier-Smith, T. (1974). Basal body and flagellar development during the 

vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci 

16, 529-556. 

Chang, P., Giddings, T.H., Jr., Winey, M., and Stearns, T. (2003). Epsilon-tubulin is 

required for centriole duplication and microtubule organization. Nature cell biology 5, 

71-76. 

Charbonnier, J.B., Christova, P., Shosheva, A., Stura, E., Le Du, M.H., Blouquit, Y., 

Duchambon, P., Miron, S., and Craescu, C.T. (2006). Crystallization and preliminary 

X-ray diffraction data of the complex between human centrin 2 and a peptide from 

the protein XPC. Acta crystallographica 62, 649-651. 

Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, 

a cell cycle-dependent CDK substrate, regulates centrosome duplication in human 

cells. Dev Cell 3, 339-350. 

Chretien, D., Buendia, B., Fuller, S.D., and Karsenti, E. (1997). Reconstruction of the 

centrosome cycle from cryoelectron micrographs. J Struct Biol 120, 117-133. 

Cowan, C.R., and Hyman, A.A. (2006). Cyclin E-Cdk2 temporally regulates 

centrosome assembly and establishment of polarity in Caenorhabditis elegans 

embryos. Nat Cell Biol 8, 1441-1447. 

Dammermann, A., and Merdes, A. (2002). Assembly of centrosomal proteins and 

microtubule organization depends on PCM-1. J Cell Biol 159, 255-266. 

Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., and 

Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar 

material proteins. Developmental cell 7, 815-829. 

Delattre, M., Canard, C., and Gonczy, P. (2006). Sequential protein recruitment in C. 

elegans centriole formation. Curr Biol 16, 1844-1849. 

Delattre, M., and Gonczy, P. (2004). The arithmetic of centrosome biogenesis. J Cell 

Sci 117, 1619-1630. 



99 

Delattre, M., Leidel, S., Wani, K., Baumer, K., Bamat, J., Schnabel, H., Feichtinger, 

R., Schnabel, R., and Gonczy, P. (2004). Centriolar SAS-5 is required for 

centrosome duplication in C. elegans. Nat Cell Biol 6, 656-664. 

Dictenberg, J.B., Zimmerman, W., Sparks, C.A., Young, A., Vidair, C., Zheng, Y., 

Carrington, W., Fay, F.S., and Doxsey, S.J. (1998). Pericentrin and gamma-tubulin 

form a protein complex and are organized into a novel lattice at the centrosome. The 

Journal of cell biology 141, 163-174. 

Dippell, R.V. (1968). The development of basal bodies in paramecium. Proc Natl 

Acad Sci U S A 61, 461-468. 

Doxsey, S. (2001). Re-evaluating centrosome function. Nature reviews 2, 688-698. 

Doxsey, S., McCollum, D., and Theurkauf, W. (2005). Centrosomes in cellular 

regulation. Annual review of cell and developmental biology 21, 411-434. 

Dualan, R., Brody, T., Keeney, S., Nichols, A.F., Admon, A., and Linn, S. (1995). 

Chromosomal localization and cDNA cloning of the genes (DDB1 and DDB2) for the 

p127 and p48 subunits of a human damage-specific DNA binding protein. Genomics 

29, 62-69. 

Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S. 

(2007a). Centriole overduplication through the concurrent formation of multiple 

daughter centrioles at single maternal templates. Oncogene 26, 6280-6288. 

Duensing, A., Liu, Y., Perdreau, S.A., Kleylein-Sohn, J., Nigg, E.A., and Duensing, S. 

(2007b). Centriole overduplication through the concurrent formation of multiple 

daughter centrioles at single maternal templates. Oncogene. 

Duensing, A., Liu, Y., Tseng, M., Malumbres, M., Barbacid, M., and Duensing, S. 

(2006). Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication 

but required for oncogene-induced centrosome overduplication. Oncogene 25, 2943-

2949. 

Dutcher, S.K. (2003). Long-lost relatives reappear: identification of new members of 

the tubulin superfamily. Current opinion in microbiology 6, 634-640. 



100 

Dutcher, S.K. (2004). Dissection of Basal Body and Centriole Function in the 

Unicellular Green Alga Chlamydomonas reinhardtii, In 'Centrosomes in Development 

and Disease'. E.A.Nigg, editor. Weinheim: Wiley-VCH. pp. 71-92. 

Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 

(2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured 

mammalian cells. Nature 411, 494-498. 

Fode, C., Motro, B., Yousefi, S., Heffernan, M., and Dennis, J.W. (1994). Sak, a 

murine protein-serine/threonine kinase that is related to the Drosophila polo kinase 

and involved in cell proliferation. Proc Natl Acad Sci U S A 91, 6388-6392. 

Fry, A.M., Mayor, T., Meraldi, P., Stierhof, Y.D., Tanaka, K., and Nigg, E.A. (1998). 

C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell 

cycle-regulated protein kinase Nek2. The Journal of cell biology 141, 1563-1574. 

Fuchs, S.Y., Spiegelman, V.S., and Kumar, K.G. (2004). The many faces of beta-

TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23, 

2028-2036. 

Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E.V., Bronson, R.T., and Pellman, D. 

(2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null 

cells. Nature 437, 1043-1047. 

Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., and Vande Woude, G.F. (1996). 

Abnormal centrosome amplification in the absence of p53. Science (New York, NY 

271, 1744-1747. 

Fuller, S.D., Gowen, B.E., Reinsch, S., Sawyer, A., Buendia, B., Wepf, R., and 

Karsenti, E. (1995). The core of the mammalian centriole contains gamma-tubulin. 

Curr Biol 5, 1384-1393. 

Gadde, S., and Heald, R. (2004). Mechanisms and molecules of the mitotic spindle. 

Curr Biol 14, R797-805. 

Gattiker, A., Gasteiger, E., and Bairoch, A. (2002). ScanProsite: a reference 

implementation of a PROSITE scanning tool. Applied bioinformatics 1, 107-108. 



101 

Gavet, O., Alvarez, C., Gaspar, P., and Bornens, M. (2003). Centrin4p, a novel 

mammalian centrin specifically expressed in ciliated cells. Mol Biol Cell 14, 1818-

1834. 

Ghadimi, B.M., Sackett, D.L., Difilippantonio, M.J., Schrock, E., Neumann, T., Jauho, 

A., Auer, G., and Ried, T. (2000). Centrosome amplification and instability occurs 

exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates 

with numerical chromosomal aberrations. Genes, chromosomes & cancer 27, 183-

190. 

Giet, R., Uzbekov, R., Kireev, I., and Prigent, C. (1999). The Xenopus laevis 

centrosome aurora/Ipl1-related kinase. Biology of the cell / under the auspices of the 

European Cell Biology Organization 91, 461-470. 

Glover, D.M., Leibowitz, M.H., McLean, D.A., and Parry, H. (1995). Mutations in 

aurora prevent centrosome separation leading to the formation of monopolar 

spindles. Cell 81, 95-105. 

Goepfert, T.M.a.B., W.R. (2004). Centrosome Anomalies in Cancer: From Early 

Observations to Animal Models. In 'Centrosomes in Development and Disease'. 

E.A.Nigg, editor. Weinheim: Wiley-VCH.pp. 323-336. 

Golsteyn, R.M., Mundt, K.E., Fry, A.M., and Nigg, E.A. (1995). Cell cycle regulation 

of the activity and subcellular localization of Plk1, a human protein kinase implicated 

in mitotic spindle function. The Journal of cell biology 129, 1617-1628. 

Gould, R.R., and Borisy, G.G. (1977). The pericentriolar material in Chinese hamster 

ovary cells nucleates microtubule formation. J Cell Biol 73, 601-615. 

Graser, S., Stierhof, Y.D., Lavoie, S.B., Gassner, O.S., Lamla, S., Le Clech, M., and 

Nigg, E.A. (2007). Cep164, a novel centriole appendage protein required for primary 

cilium formation. The Journal of cell biology 179, 321-330. 

Guarguaglini, G., Duncan, P.I., Stierhof, Y.D., Holmstrom, T., Duensing, S., and 

Nigg, E.A. (2005). The forkhead-associated domain protein Cep170 interacts with 



102 

Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 16, 

1095-1107. 

Gustafsson, M.G. (2000). Surpassing the lateral resolution limit by a factor of two 

using structured illumination microscopy. Journal of microscopy 198, 82-87. 

Habedanck, R., Stierhof, Y.D., Wilkinson, C.J., and Nigg, E.A. (2005). The Polo 

kinase Plk4 functions in centriole duplication. Nat Cell Biol 7, 1140-1146. 

Hagiwara, H., Ohwada, N., and Takata, K. (2004). Cell biology of normal and 

abnormal ciliogenesis in the ciliated epithelium. International review of cytology 234, 

101-141. 

Hannak, E., Kirkham, M., Hyman, A.A., and Oegema, K. (2001). Aurora-A kinase is 

required for centrosome maturation in Caenorhabditis elegans. The Journal of cell 

biology 155, 1109-1116. 

Haren, L., Remy, M.H., Bazin, I., Callebaut, I., Wright, M., and Merdes, A. (2006). 

NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome 

is necessary for centriole duplication and spindle assembly. The Journal of cell 

biology 172, 505-515. 

Hart, P.E., Glantz, J.N., Orth, J.D., Poynter, G.M., and Salisbury, J.L. (1999). Testis-

specific murine centrin, Cetn1: genomic characterization and evidence for 

retroposition of a gene encoding a centrosome protein. Genomics 60, 111-120. 

Hell, S.W. (2007). Far-field optical nanoscopy. Science (New York, NY 316, 1153-

1158. 

Hildebrandt, F., and Zhou, W. (2007). Nephronophthisis-associated ciliopathies. J 

Am Soc Nephrol 18, 1855-1871. 

Hinchcliffe, E.H., Li, C., Thompson, E.A., Maller, J.L., and Sluder, G. (1999). 

Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in 

Xenopus egg extracts. Science 283, 851-854. 



103 

Huang, B., Mengersen, A., and Lee, V.D. (1988). Molecular cloning of cDNA for 

caltractin, a basal body-associated Ca2+-binding protein: homology in its protein 

sequence with calmodulin and the yeast CDC31 gene product. The Journal of cell 

biology 107, 133-140. 

Hung, L.Y., Tang, C.J., and Tang, T.K. (2000). Protein 4.1 R-135 interacts with a 

novel centrosomal protein (CPAP) which is associated with the gamma-tubulin 

complex. Mol Cell Biol 20, 7813-7825. 

Ishikawa, H., Kubo, A., Tsukita, S., and Tsukita, S. (2005). Odf2-deficient mother 

centrioles lack distal/subdistal appendages and the ability to generate primary cilia. 

Nat Cell Biol 7, 517-524. 

Jaspersen, S.L., Giddings, T.H., Jr., and Winey, M. (2002). Mps3p is a novel 

component of the yeast spindle pole body that interacts with the yeast centrin 

homologue Cdc31p. The Journal of cell biology 159, 945-956. 

Jones, M.H., and Winey, M. (2006). Centrosome duplication: is asymmetry the clue? 

Curr Biol 16, R808-810. 

Keller, L.C., Romijn, E.P., Zamora, I., Yates, J.R., 3rd, and Marshall, W.F. (2005). 

Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-

disease genes. Curr Biol 15, 1090-1098. 

Kemp, C.A., Kopish, K.R., Zipperlen, P., Ahringer, J., and O'Connell, K.F. (2004). 

Centrosome maturation and duplication in C. elegans require the coiled-coil protein 

SPD-2. Dev Cell 6, 511-523. 

Keryer, G., Witczak, O., Delouvee, A., Kemmner, W.A., Rouillard, D., Tasken, K., and 

Bornens, M. (2003). Dissociating the centrosomal matrix protein AKAP450 from 

centrioles impairs centriole duplication and cell cycle progression. Molecular biology 

of the cell 14, 2436-2446. 

Khodjakov, A., Rieder, C.L., Sluder, G., Cassels, G., Sibon, O., and Wang, C.L. 

(2002). De novo formation of centrosomes in vertebrate cells arrested during S 

phase. The Journal of cell biology 158, 1171-1181. 



104 

Kilmartin, J.V. (2003). Sfi1p has conserved centrin-binding sites and an essential 

function in budding yeast spindle pole body duplication. The Journal of cell biology 

162, 1211-1221. 

Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., and Hyman, A.A. (2003). 

SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575-

587. 

Klink, V.P., and Wolniak, S.M. (2001). Centrin is necessary for the formation of the 

motile apparatus in spermatids of Marsilea. Molecular biology of the cell 12, 761-776. 

Ko, M.A., Rosario, C.O., Hudson, J.W., Kulkarni, S., Pollett, A., Dennis, J.W., and 

Swallow, C.J. (2005). Plk4 haploinsufficiency causes mitotic infidelity and 

carcinogenesis. Nature genetics 37, 883-888. 

Koblenz, B., Schoppmeier, J., Grunow, A., and Lechtreck, K.F. (2003). Centrin 

deficiency in Chlamydomonas causes defects in basal body replication, segregation 

and maturation. J Cell Sci 116, 2635-2646. 

Kochanski, R.S., and Borisy, G.G. (1990). Mode of centriole duplication and 

distribution. The Journal of cell biology 110, 1599-1605. 

Krishan, A., and Buck, R.C. (1965). Structure of the Mitotic Spindle in L Strain 

Fibroblasts. J Cell Biol 24, 433-444. 

Kuriyama, R., and Borisy, G.G. (1981). Centriole cycle in Chinese hamster ovary 

cells as determined by whole-mount electron microscopy. The Journal of cell biology 

91, 814-821. 

Kuriyama, R., Dasgupta, S., and Borisy, G.G. (1986). Independence of centriole 

formation and initiation of DNA synthesis in Chinese hamster ovary cells. Cell motility 

and the cytoskeleton 6, 355-362. 

La Terra, S., English, C.N., Hergert, P., McEwen, B.F., Sluder, G., and Khodjakov, A. 

(2005). The de novo centriole assembly pathway in HeLa cells: cell cycle progression 

and centriole assembly/maturation. J Cell Biol 168, 713-722. 



105 

Lacey, K.R., Jackson, P.K., and Stearns, T. (1999). Cyclin-dependent kinase control 

of centrosome duplication. Proc Natl Acad Sci U S A 96, 2817-2822. 

Lane, H.A., and Nigg, E.A. (1996). Antibody microinjection reveals an essential role 

for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic 

centrosomes. The Journal of cell biology 135, 1701-1713. 

Lange, B.M., and Gull, K. (1996). Structure and function of the centriole in animal 

cells: progress and questions. Trends Cell Biol 6, 348-352. 

Laoukili, J., Perret, E., Middendorp, S., Houcine, O., Guennou, C., Marano, F., 

Bornens, M., and Tournier, F. (2000). Differential expression and cellular distribution 

of centrin isoforms during human ciliated cell differentiation in vitro. J Cell Sci 113 ( Pt 

8), 1355-1364. 

Leidel, S., Delattre, M., Cerutti, L., Baumer, K., and Gonczy, P. (2005). SAS-6 

defines a protein family required for centrosome duplication in C. elegans and in 

human cells. Nat Cell Biol 7, 115-125. 

Leidel, S., and Gonczy, P. (2003). SAS-4 is essential for centrosome duplication in C 

elegans and is recruited to daughter centrioles once per cell cycle. Dev Cell 4, 431-

439. 

Leidel, S., and Gonczy, P. (2005). Centrosome duplication and nematodes: recent 

insights from an old relationship. Developmental cell 9, 317-325. 

Li, S., Sandercock, A.M., Conduit, P., Robinson, C.V., Williams, R.L., and Kilmartin, 

J.V. (2006). Structural role of Sfi1p-centrin filaments in budding yeast spindle pole 

body duplication. The Journal of cell biology 173, 867-877. 

Lingle, W.L., Barrett, S.L., Negron, V.C., D'Assoro, A.B., Boeneman, K., Liu, W., 

Whitehead, C.M., Reynolds, C., and Salisbury, J.L. (2002). Centrosome amplification 

drives chromosomal instability in breast tumor development. Proceedings of the 

National Academy of Sciences of the United States of America 99, 1978-1983. 

Lingle, W.L., Lutz, W.H., Ingle, J.N., Maihle, N.J., and Salisbury, J.L. (1998). 

Centrosome hypertrophy in human breast tumors: implications for genomic stability 



106 

and cell polarity. Proceedings of the National Academy of Sciences of the United 

States of America 95, 2950-2955. 

Lingle, W.L., and Salisbury, J.L. (2001). Methods for the analysis of centrosome 

reproduction in cancer cells. Methods in cell biology 67, 325-336. 

Luders, J., Patel, U.K., and Stearns, T. (2006). GCP-WD is a gamma-tubulin 

targeting factor required for centrosomal and chromatin-mediated microtubule 

nucleation. Nature cell biology 8, 137-147. 

Luders, J., and Stearns, T. (2007). Microtubule-organizing centres: a re-evaluation. 

Nature reviews 8, 161-167. 

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein 

sequences. Science (New York, NY 252, 1162-1164. 

Ma, P., Winderickx, J., Nauwelaers, D., Dumortier, F., De Doncker, A., Thevelein, 

J.M., and Van Dijck, P. (1999). Deletion of SFI1, a novel suppressor of partial Ras-

cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) 

arrest. Yeast (Chichester, England) 15, 1097-1109. 

Machida, Y.J., and Dutta, A. (2005). Cellular checkpoint mechanisms monitoring 

proper initiation of DNA replication. The Journal of biological chemistry 280, 6253-

6256. 

Marshall, W.F., and Nonaka, S. (2006). Cilia: tuning in to the cell's antenna. Curr Biol 

16, R604-614. 

Marshall, W.F., Vucica, Y., and Rosenbaum, J.L. (2001). Kinetics and regulation of 

de novo centriole assembly. Implications for the mechanism of centriole duplication. 

Curr Biol 11, 308-317. 

Mathias, N., Johnson, S.L., Winey, M., Adams, A.E., Goetsch, L., Pringle, J.R., 

Byers, B., and Goebl, M.G. (1996). Cdc53p acts in concert with Cdc4p and Cdc34p 

to control the G1-to-S-phase transition and identifies a conserved family of proteins. 

Molecular and cellular biology 16, 6634-6643. 



107 

Matsumoto, Y., Hayashi, K., and Nishida, E. (1999). Cyclin-dependent kinase 2 

(Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9, 429-

432. 

Matsuura, K., Lefebvre, P.A., Kamiya, R., and Hirono, M. (2004). Bld10p, a novel 

protein essential for basal body assembly in Chlamydomonas: localization to the 

cartwheel, the first ninefold symmetrical structure appearing during assembly. J Cell 

Biol 165, 663-671. 

Mayor, T., Stierhof, Y.D., Tanaka, K., Fry, A.M., and Nigg, E.A. (2000). The 

centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome 

cohesion. The Journal of cell biology 151, 837-846. 

Meraldi, P., Lukas, J., Fry, A.M., Bartek, J., and Nigg, E.A. (1999). Centrosome 

duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 

1, 88-93. 

Meraldi, P., and Nigg, E.A. (2001). Centrosome cohesion is regulated by a balance of 

kinase and phosphatase activities. Journal of cell science 114, 3749-3757. 

Middendorp, S., Paoletti, A., Schiebel, E., and Bornens, M. (1997). Identification of a 

new mammalian centrin gene, more closely related to Saccharomyces cerevisiae 

CDC31 gene. Proc Natl Acad Sci U S A 94, 9141-9146. 

Mizukami, I., and Gall, J. (1966). Centriole replication. II. Sperm formation in the fern, 

Marsilea, and the cycad, Zamia. J Cell Biol 29, 97-111. 

Murphy, T.D. (2003). Drosophila skpA, a component of SCF ubiquitin ligases, 

regulates centrosome duplication independently of cyclin E accumulation. Journal of 

cell science 116, 2321-2332. 

Nachury, M.V., Loktev, A.V., Zhang, Q., Westlake, C.J., Peranen, J., Merdes, A., 

Slusarski, D.C., Scheller, R.H., Bazan, J.F., Sheffield, V.C., et al. (2007). A core 

complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary 

membrane biogenesis. Cell 129, 1201-1213. 



108 

Nigg, E.A. (2002). Centrosome aberrations: cause or consequence of cancer 

progression? Nature reviews 2, 815-825. 

Nigg, E.A. (2007). Centrosome duplication: of rules and licenses. Trends Cell Biol 17, 

215-221. 

Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K., 

and Hanaoka, F. (2005). Centrin 2 stimulates nucleotide excision repair by interacting 

with xeroderma pigmentosum group C protein. Molecular and cellular biology 25, 

5664-5674. 

O'Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., and 

White, J.G. (2001). The C. elegans zyg-1 gene encodes a regulator of centrosome 

duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558. 

O'Connell, K.F., Leys, C.M., and White, J.G. (1998). A genetic screen for 

temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 149, 

1303-1321. 

Ohta, T., Essner, R., Ryu, J.H., Palazzo, R.E., Uetake, Y., and Kuriyama, R. (2002). 

Characterization of Cep135, a novel coiled-coil centrosomal protein involved in 

microtubule organization in mammalian cells. J Cell Biol 156, 87-99. 

Oshimori, N., Ohsugi, M., and Yamamoto, T. (2006). The Plk1 target Kizuna 

stabilizes mitotic centrosomes to ensure spindle bipolarity. Nature cell biology 8, 

1095-1101. 

Paintrand, M., Moudjou, M., Delacroix, H., and Bornens, M. (1992). Centrosome 

organization and centriole architecture: their sensitivity to divalent cations. J Struct 

Biol 108, 107-128. 

Palazzo, R.E., Vogel, J.M., Schnackenberg, B.J., Hull, D.R., and Wu, X. (2000). 

Centrosome maturation. Current topics in developmental biology 49, 449-470. 

Paoletti, A., Bordes, N., Haddad, R., Schwartz, C.L., Chang, F., and Bornens, M. 

(2003). Fission yeast cdc31p is a component of the half-bridge and controls SPB 

duplication. Mol Biol Cell 14, 2793-2808. 



109 

Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J.L., and Bornens, M. (1996). 

Most of centrin in animal cells is not centrosome-associated and centrosomal centrin 

is confined to the distal lumen of centrioles. J Cell Sci 109 ( Pt 13), 3089-3102. 

Pazour, G.J., and Witman, G.B. (2003). The vertebrate primary cilium is a sensory 

organelle. Current opinion in cell biology 15, 105-110. 

Peel, N., Stevens, N.R., Basto, R., and Raff, J.W. (2007). Overexpressing Centriole-

Replication Proteins In Vivo Induces Centriole Overduplication and De Novo 

Formation. Curr Biol. 

Pelletier, L., O'Toole, E., Schwager, A., Hyman, A.A., and Muller-Reichert, T. (2006). 

Centriole assembly in Caenorhabditis elegans. Nature 444, 619-623. 

Pelletier, L., Ozlu, N., Hannak, E., Cowan, C., Habermann, B., Ruer, M., Muller-

Reichert, T., and Hyman, A.A. (2004). The Caenorhabditis elegans centrosomal 

protein SPD-2 is required for both pericentriolar material recruitment and centriole 

duplication. Curr Biol 14, 863-873. 

Pihan, G.A., Purohit, A., Wallace, J., Knecht, H., Woda, B., Quesenberry, P., and 

Doxsey, S.J. (1998). Centrosome defects and genetic instability in malignant tumors. 

Cancer research 58, 3974-3985. 

Popescu, A., Miron, S., Blouquit, Y., Duchambon, P., Christova, P., and Craescu, 

C.T. (2003). Xeroderma pigmentosum group C protein possesses a high affinity 

binding site to human centrin 2 and calmodulin. The Journal of biological chemistry 

278, 40252-40261. 

Raynaud-Messina, B., Mazzolini, L., Moisand, A., Cirinesi, A.M., and Wright, M. 

(2004). Elongation of centriolar microtubule triplets contributes to the formation of the 

mitotic spindle in gamma-tubulin-depleted cells. J Cell Sci 117, 5497-5507. 

Rebacz, B., Larsen, T.O., Clausen, M.H., Ronnest, M.H., Loffler, H., Ho, A.D., and 

Kramer, A. (2007). Identification of griseofulvin as an inhibitor of centrosomal 

clustering in a phenotype-based screen. Cancer research 67, 6342-6350. 



110 

Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D.M., and Bettencourt-

Dias, M. (2007). Revisiting the Role of the Mother Centriole in Centriole Biogenesis. 

Science. 

Ruiz, F., Beisson, J., Rossier, J., and Dupuis-Williams, P. (1999). Basal body 

duplication in Paramecium requires gamma-tubulin. Curr Biol 9, 43-46. 

Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J., and Koll, F. (2005). 

Centrin deficiency in Paramecium affects the geometry of basal-body duplication. 

Curr Biol 15, 2097-2106. 

Salisbury, J.L. (2004). Centrosomes: Sfi1p and centrin unravel a structural riddle. 

Curr Biol 14, R27-29. 

Salisbury, J.L. (2007). A mechanistic view on the evolutionary origin for centrin-based 

control of centriole duplication. Journal of cellular physiology 213, 420-428. 

Salisbury, J.L., Baron, A., Surek, B., and Melkonian, M. (1984). Striated flagellar 

roots: isolation and partial characterization of a calcium-modulated contractile 

organelle. The Journal of cell biology 99, 962-970. 

Salisbury, J.L., Suino, K.M., Busby, R., and Springett, M. (2002). Centrin-2 is 

required for centriole duplication in mammalian cells. Curr Biol 12, 1287-1292. 

Satir, P., and Christensen, S.T. (2007). Overview of structure and function of 

mammalian cilia. Annual review of physiology 69, 377-400. 

Sauer, G., Korner, R., Hanisch, A., Ries, A., Nigg, E.A., and Sillje, H.H. (2005). 

Proteome analysis of the human mitotic spindle. Mol Cell Proteomics 4, 35-43. 

Sawin, K.E., and Mitchison, T.J. (1995). Mutations in the kinesin-like protein Eg5 

disrupting localization to the mitotic spindle. Proceedings of the National Academy of 

Sciences of the United States of America 92, 4289-4293. 

Shinmura, K., Bennett, R.A., Tarapore, P., and Fukasawa, K. (2007). Direct evidence 

for the role of centrosomally localized p53 in the regulation of centrosome 

duplication. Oncogene 26, 2939-2944. 



111 

Singla, V., and Reiter, J.F. (2006). The primary cilium as the cell's antenna: signaling 

at a sensory organelle. Science (New York, NY 313, 629-633. 

Sluder, G. (2004). Centrosome Duplication and its Regulation in the Higher Animal 

Cell, In 'Centrosomes in Development and Disease'. E.A.Nigg, editor. Weinheim: 

Wiley-VCH. pp.167-189. 

Sorokin, S.P. (1968). Centriole formation and ciliogenesis. Aspen Emphysema Conf 

11, 213-216. 

Spang, A., Courtney, I., Fackler, U., Matzner, M., and Schiebel, E. (1993). The 

calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a 

component of the half bridge of the spindle pole body. The Journal of cell biology 

123, 405-416. 

Spang, A., Courtney, I., Grein, K., Matzner, M., and Schiebel, E. (1995). The 

Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle 

pole body. J Cell Biol 128, 863-877. 

Spektor, A., Tsang, W.Y., Khoo, D., and Dynlacht, B.D. (2007). Cep97 and CP110 

suppress a cilia assembly program. Cell 130, 678-690. 

Stemm-Wolf, A.J., Morgan, G., Giddings, T.H., Jr., White, E.A., Marchione, R., 

McDonald, H.B., and Winey, M. (2005). Basal body duplication and maintenance 

require one member of the Tetrahymena thermophila centrin gene family. Mol Biol 

Cell 16, 3606-3619. 

Stierhof, Y.D., Humbel, B.M., and Schwarz, H. (1991). Suitability of different silver 

enhancement methods applied to 1 nm colloidal gold particles: an immunoelectron 

microscopic study. Journal of electron microscopy technique 17, 336-343. 

Strawn, L.A., and True, H.L. (2006). Deletion of RNQ1 gene reveals novel functional 

relationship between divergently transcribed Bik1p/CLIP-170 and Sfi1p in spindle 

pole body separation. Current genetics 50, 347-366. 

Swallow, C.J., Ko, M.A., Siddiqui, N.U., Hudson, J.W., and Dennis, J.W. (2005). 

Sak/Plk4 and mitotic fidelity. Oncogene 24, 306-312. 



112 

Thein, K.H., Kleylein-Sohn, J., Nigg, E.A., and Gruneberg, U. (2007). Astrin is 

required for the maintenance of sister chromatid cohesion and centrosome integrity. 

The Journal of cell biology 178, 345-354. 

Thompson, J.R., Ryan, Z.C., Salisbury, J.L., and Kumar, R. (2006). The structure of 

the human centrin 2-xeroderma pigmentosum group C protein complex. The Journal 

of biological chemistry 281, 18746-18752. 

Tsang, W.Y., Spektor, A., Luciano, D.J., Indjeian, V.B., Chen, Z., Salisbury, J.L., 

Sanchez, I., and Dynlacht, B.D. (2006). CP110 cooperates with two calcium-binding 

proteins to regulate cytokinesis and genome stability. Mol Biol Cell 17, 3423-3434. 

Tsou, M.F., and Stearns, T. (2006). Mechanism limiting centrosome duplication to 

once per cell cycle. Nature 442, 947-951. 

Ubersax, J.A., Woodbury, E.L., Quang, P.N., Paraz, M., Blethrow, J.D., Shah, K., 

Shokat, K.M., and Morgan, D.O. (2003). Targets of the cyclin-dependent kinase 

Cdk1. Nature 425, 859-864. 

Uetake, Y., Loncarek, J., Nordberg, J.J., English, C.N., La Terra, S., Khodjakov, A., 

and Sluder, G. (2007). Cell cycle progression and de novo centriole assembly after 

centrosomal removal in untransformed human cells. J Cell Biol 176, 173-182. 

Uhlmann, F., Wernic, D., Poupart, M.A., Koonin, E.V., and Nasmyth, K. (2000). 

Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. 

Cell 103, 375-386. 

van Kreeveld Naone, S.a.W., M. (2004). The Budding Yeast Spindle Pole Body: A 

Centrosome Analog, In 'Centrosomes in Develpoment and Disease'. E.A.Nigg, editor. 

Weinheim: Wiley-VCH. pp.43-69. 

Vidwans, S.J., Wong, M.L., and O'Farrell, P.H. (2003). Anomalous centriole 

configurations are detected in Drosophila wing disc cells upon Cdk1 inactivation. J 

Cell Sci 116, 137-143. 

Vorobjev, I.A., and Chentsov Yu, S. (1982). Centrioles in the cell cycle. I. Epithelial 

cells. J Cell Biol 93, 938-949. 



113 

Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). MPS1 and MPS2: novel 

yeast genes defining distinct steps of spindle pole body duplication. The Journal of 

cell biology 114, 745-754. 

Wojcik, E.J., Glover, D.M., and Hays, T.S. (2000). The SCF ubiquitin ligase protein 

slimb regulates centrosome duplication in Drosophila. Curr Biol 10, 1131-1134. 

Wolff, A., de Nechaud, B., Chillet, D., Mazarguil, H., Desbruyeres, E., Audebert, S., 

Edde, B., Gros, F., and Denoulet, P. (1992). Distribution of glutamylated alpha and 

beta-tubulin in mouse tissues using a specific monoclonal antibody, GT335. 

European journal of cell biology 59, 425-432. 

Wong, C., and Stearns, T. (2003). Centrosome number is controlled by a 

centrosome-intrinsic block to reduplication. Nat Cell Biol 5, 539-544. 

Yan, X., Habedanck, R., and Nigg, E.A. (2006). A complex of two centrosomal 

proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol 

Cell 17, 634-644. 

Yang, A., Miron, S., Mouawad, L., Duchambon, P., Blouquit, Y., and Craescu, C.T. 

(2006). Flexibility and plasticity of human centrin 2 binding to the xeroderma 

pigmentosum group C protein (XPC) from nuclear excision repair. Biochemistry 45, 

3653-3663. 

 

 



114 

APPENDIX 

 

Parts of this work are published in: 

 

Kleylein-Sohn J., Westendorf J., Le Clech M., Habedanck R., Stierhof Y.-D. and Nigg 

E.A., Plk4-induced centriole biogenesis in human cells. Dev. Cell, 2007 

Aug;13(2):190-202 

 

 



115 

CURRICULUM VITAE 

 

Julia Kleylein-Sohn 

Date of birth: 20th March 1978 

Place of birth: Munich 

Nationality: German 

 

April 2004 – Present 

PhD Student at the Max-Planck Institute for Biochemistry, Martinsried, Germany 

Department of Cell Biology, 

Prof. E.A. Nigg 

 

October 1997 – February 2004 

Diploma (M.S.) Biology, 

Ludwigs-Maximilians-University, Munich, Germany 

 

1988 – 1997 

High School Diploma, 

Wilhelm-Hausenstein Gymnasium, Munich, Germany 

 

PUBLICATIONS: 

Kleylein-Sohn, J., Stierhof, Y-D., Westendorf, J., Le Clech, M. , Habedanck, R. and 

Nigg, E. A., Plk4-induced centriole biogenesis in human cells; 2007, Dev Cell. 

 

Thein, K. H., Kleylein-Sohn, J., Barr, F. A., Nigg, E. A. and Gruneberg, U., Astrin is 

required for the maintenance of sister chromatid cohesion and centrosome integrity, 

2007, J Cell Biol. 

 

Dünsing, A., Ying, L., Perdreau, S. A., Kleylein-Sohn, J., Nigg, E. A. and Dünsing, S., 

Centriole overduplication through the concurrent formation of multiple daughter 

centrioles at single maternal templates, 2007, Oncogene. 



116 

Rehberg, M., Kleylein-Sohn, J., Faix, J., Ho, T. H., Schulz, I., Graf, R., Dictyostelium 

LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, 

nucleus/centrosome linkage and actin dynamics, 2005, Mol Biol Cell. 

 

Gordon Research Conference ‘Cell Growth and Proliferation’, June 2007, 

Boston (USA, MN) 

Kleylein-Sohn, J., Stierhof, Y-D., Westendorf, J., LeClech, M., Habedanck, R. and 

Nigg, E. A. Posterpresentation: Plk4-induced centriole biogenesis in human cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


