LMU

a s . Ludwig
Institut Maximilians—
fu r Universitit___
Informatik Miinchen

IMPLEMENTATION OF WEB QUERY
LANGUAGES RECONSIDERED

BEYOND TREE AND SINGLE-LANGUAGE ALGEBRAS
AT (ALMOST) NO COST

TIM FURCHE

MUNICH 2008

LMU

a s . Ludwig
Institut Maximilians—
fu r Universitit___
Informatik Miinchen

IMPLEMENTATION OF WEB QUERY
LANGUAGES RECONSIDERED

BEYOND TREE AND SINGLE-LANGUAGE ALGEBRAS
AT (ALMOST) NO COST

TIM FURCHE

DISSERTATION

an der Fakultit fir Mathematik, Informatik und Statistik
der Ludwig-Maximilians Universitit Miinchen

Miinchen

vorgelegt von
TIM FURCHE

aus Tiibingen

Miinchen, den 10. April 2008

ERSTGUTACHTER: FRANCOIS BRY
ZWEITGUTACHTER: GEORG GOTTLOB

Tag der MUNDLICHEN PRU- 8. MAI 2008
FUNG:

Tim Furche: Implementation of Web Query Languages Reconsidered—Beyond
Tree and Single-Language Algebras at (almost) No Cost, PH.D. thesis, © 8.
Mai 2008

ABSTRACT

Visions of the next generation Web such as the “Semantic Web” or the
“Web 2.0” have triggered the emergence of a multitude of data formats.
These formats have different characteristics as far as the shape of data is
concerned (for example tree- vs. graph-shaped). They are accompanied
by a puzzlingly large number of query languages each limited to one data
format. Thus, a key feature of the Web, namely to make it possible to access
anything published by anyone, is compromised.

This thesis is devoted to versatile query languages capable of accessing
data in a variety of Web formats. The issue is addressed from three an-
gles: language design, common, yet uniform semantics, and common, yet
uniform evaluation.

First, we consider the query language Xcerpt as an example of the advo-
cated class of versatile Web query languages. Using this concrete exemplar
allows us to clarify and discuss the vision of versatility in detail.

Second, a number of query languages, XPath, XQuery, SPARQL, and
Xcerpt, are translated into a common intermediary language, C!qLog. This
language has a purely logical semantics, which makes it easily amenable
to optimizations. As a side effect, this provides the, to the best of our
knowledge, first logical semantics for XQuery and SPARQL. It is a very
useful tool for understanding the commonalities and differences of the
considered languages.

Third, the intermediate logical language is translated into a query algebra,
clQcAG. The core feature of CIQCAG is that it scales from tree- to graph-
shaped data and queries without efficiency losses when tree-data and -
queries are considered: it is shown that, in these cases, optimal complexities
are achieved. CIQCAG is also shown to evaluate each of the aforementioned
query languages with a complexity at least as good as the best known
evaluation methods so far. For example, navigational XPath is evaluated
with space complexity O(q - d) and time complexity O(q - n) where q is
the query size, n the data size, and d the depth of the (tree-shaped) data.

ClQCAG is further shown to provide linear time and space evaluation
of tree-shaped queries for a larger class of graph-shaped data than any
method previously proposed. This larger class of graph-shaped data, called
continuous-image graphs, short CIGs, is introduced for the first time in this
thesis. A (directed) graph is a c1G if its nodes can be totally ordered in such
a manner that, for this order, the children of any node form a continuous

interval.

ClQcAG achieves these properties by employing a novel data structure,
called sequence map, that allows an efficient evaluation of tree-shaped
queries, or of tree-shaped cores of graph-shaped queries on any graph-
shaped data. While being ideally suited to trees and ciGs, the data structure
gracefully degrades to unrestricted graphs. It yields a remarkably efficient
evaluation on graph-shaped data that only a few edges prevent from being
trees or CIGs.

ZUSAMMENFASSUNG

Zukunftsvisionen iiber das Web der Zukunft, angepriesen unter Begriften
wie dem ,,Semantische Web“ oder dem ,Web 2.0 haben in den letzten
Jahren die Entwicklung einer Vielzahl von neuen Datenformaten ausgelst.
Nicht nur unterscheiden sich diese Formate im Hinblick auf die erlaubte
Struktur (beispielsweise Baum- vs. Graph-Daten), sie haben auch eine
Myriade von Anfragesprachen mit sich gebracht, zumeist auf jeweils ein
Format eingeschrankt. Damit droht eine zentrale Eigenschaft des Webs, die
Fahigkeit auf jedwede Information zugreifen, wer immer sie verdffentlicht
hat, verloren zu gehen.

Um dieses Problem anzugehen, ist diese Arbeit ,versatilen®, also vielsei-
tig einsetzbaren, Anfragesprachen fiir das Web gewidmet. Vielseitigkeit
wird aus drei Perspektiven betrachtet: Sprachentwurf, Semantik, und Aus-
wertung. Diese drei Perspektiven dienen als Leitfaden fiir die gesamte
Arbeit:

Zu Beginn wird die Anfragesprache Xcerpt als ein Beispiel fiir die Klasse
der ,versatilen“ Anfragesprachen vorgestellt und eine Reihe von konkreten
Einsatzszenarien fiir solche Anfragesprachen diskutiert.

Der zweite Teil der Arbeit zeigt auf, wie eine Reihe von Anfragesprachen,
genauer XPath, XQuery, SPARQL und Xcerpt, in eine einheitliche Zwi-
schensprache, genannt clqLog, {ibersetzt werden kann. clqLog hat eine rein
logische Semantik, die eine ideale Basis fiir Optimierungen und algebrai-
sche Umschreibungen bietet wie im dritten Teil gezeigt. Ein Seiteneffekt
der Ubersetzung ist die, unseres Wissens nach, erste rein logische Seman-
tik fiir XQuery und SPARQL. clqLog entpuppt sich auch als hervorragende
Basis fiir die Untersuchung von Ahnlichkeiten wie Besonderheiten der
betrachteten Sprachen.

Der zentrale Beitrag der Arbeit wird im dritten Teil vorgestellt: die
ClQcAG Anfrage-Algebra, die zur Implementierung von clqLog (und damit
aller oben genannten Sprachen) verwendet wird. Im Zentrum von ClQcAG

steht die Fahigkeit mit unterschiedlich strukturierten Daten und Anfra-
gen gleichermaflen effizient umgehen zu kénnen: Insbesondere, zeigt die
Arbeit, dass die Auswertung mit clQcAG sowohl fiir Baum- als auch fiir
Graph-Daten optimale Komplexitit besitzt. ClQcAG ist dadurch imstan-
de jede der oben genannten Anfragesprachen wenigstens so gut wie die
besten bisher bekannten Ansitze auswerten zu konnen. Navigationelles
XPath, beispielsweise, kann durch clocAG mit O(q - d) Speicher- und
O(q - n) Zeitkomplexitit ausgewertet werden (dabei ist g die Anfrage-, n
die Datengrofle und d die Tiefe der (Baum-) Daten).

Schliefllich erlaubt clocAG die Auswertung von Baum-Anfragen mit
linearer Zeit und linearem Speicher auf einer grofieren Klasse von Graph-
Daten als alle bisherigen Ansétze. Diese Klasse von Graph-Daten, gen-
nannt ,,continuous image graphs®, kurz cigs, wird in dieser Arbeit erstmalig
vorgestellt. Ein Graph fallt in diese Klasse, sobald seine Knoten so geordnet
werden konnen, dass, tiber diese Ordnung, die Kinder jedes Knotens ein
kontinuierliches Intervall bilden.

Diese Eigenschaften erreicht clocAG durch den Einsatz einer neuartigen
Datenstruktur, genannt sequence map, die die effiziente Auswertung von
Baum-Anfragen (oder -Teilanfragen) auf beliebigen Graph-Daten erlaubt.
Die Datenstruktur ist ideal fiir Bium- und ciG-Daten geeignet, kann aber
auch fiir allgemeine Graph-Daten eingesetzt werden. Dabei erhilt man
eine bemerkenswert effiziente Auswertung, wenn die Graphen nahezu
die Form von Bdumen oder c1Gs haben mit nur wenigen abweichenden
Kanten.

ACKNOWLEDGMENTS

This thesis has been a source of great joy for me, despite the fact that it
has dominated most of my professional (and, all too often, other) life for
a good four years. Just as this thesis, none of that joy would have been
possible without a great many persons in my life. I am deeply ingratiated
to all those persons, but can only highlight a select few here.

Undoubtedly, the person that has been the greatest source of ideas,
knowledge, support, and encouragement has been Frangois Bry, my thesis
advisor. I am deeply thankful to him for his patience and open-mindedness
without loosing sight of what needs to be done, hundreds of discussions
on topics of the thesis, life as a researcher, and about anything else, and,
last but not least, his leadership in the REWERSE project that has not only
funded my position but also allowed me to make contacts and friends with
researchers from all over Europe.

The two persons that have taught me most about how to do research and
have fun doing it, are certainly Dan Olteanu, with whom I spend incredible
years working on XPath and SPEX, and Tim Geisler, who introduced me
to the world of XML and the joy of teaching. With the constant support
of Norbert Eisinger, I have been able to preserve that joy even in the
face of contradictory or even nonsensical regulations, barely working
administrations, and crumbling buildings.

They are just three examples of the incredible luck I have had regarding
my colleagues in the Munich group of Frangois. The work with Sacha
Berger, Clemens Ley, Benedikt Linse, Andreas Schroeder, and Antonius
Weinzierl has not only been immensely fruitful for this thesis, I have also
enjoyed working, talking, and just being around you a whole lot. The same
applies for Michael Eckert, Andreas Hausler, Alex Kohn, Michael Kraus,
Bernhard Lorenz, Hans-Jiirgen Ohlbach, Paula-Lavinia Patranjan, Martin
Sachenbacher, Sebastian Schaffert, Stephanie Spranger, Edgar Stoffel, Felix
Weigel, and Christoph Wieser.

Undeservedly, the REWERSE project has allowed me to be part of
another great “family” of researchers including Uwe Afimann, who taught
me much about life as a researcher (and how to get lost in Lisbon), Jakob
Henriksson, who got me over my dislike of software engineering, Thomas
Eiter and Roman Schindlauer, who have not only made my life writing
REWERSE reports so very easy but also have constantly been inspiring
me with their research, Massimo Marchiori, who will always be the face

of Venice for me, Jan Maluszynski, whose encouragement, patience, and
unending energy amazes me, Pierro Bonatti, Daniel Olmedilla, and Stefano
Bertolo, who always challenged us with new perspectives and insight into
our work and its relations in REWERSE and outside, to name just a few.

Even when having fun, there are times one looks for motivation and
inspiration. One of the persons whose style and quality of research have
been a constant inspiration is, starting in the days working on XPath with
Dan, Georg Gottlob who has also been so kind to review and help improve
this thesis.

Though it took me some time to understand that, a great personal and
professional inspiration for me has also been my brother, Filipp Furche,
who has, in his own, subtle way, always encouraged me to follow the things
I could find enjoyment and satisfaction in.

Whenever motivation is in short supply, my mother is willing to lend a
supportive ear and to find the right worlds to keep you going. She has also
been so kind to review parts of this thesis, as has been Farrol Kahn and
Thomas Hohler, who has, for all my time in Munich, been the best supplier
of simple, unadulterated fun. Though some of my old friends had to suffer
a bit of neglect in the last months, them sticking by me, even when not
fully reciprocated, has been truly humbling. Thank you Axel Eilenberger,
in particular.

Finally, let me close by expressing my deep-felt gratitude to the support
team in the Munich group: Ellen Lilge, Ingeborg von Troschke, Martin
Josko, Stefanie Heidmann, and Uta Schwertel. Without Stefanie Heidmann
I'would still be trying to understand how to properly fill out the hundreds of
forms one encounters in a public institution in Germany. Uta Schwertel is
not only one of the kindest persons I know, but has done the most amazing
job as manager of the REWERSE project, even when facing researchers
that stretched every deadline to the utter limit (or beyond).

This research has been co-funded by the European Commission and
by the Swiss Federal Office for Education and Science within the 6th
Framework Programme project REWERSE number 506779 (cf. http://
rewerse.net).

http://rewerse.net
http://rewerse.net

PUBLICATIONS

Some ideas and figures have appeared previously in the following publica-

tions:

ON THE VISION OF VERSATILE WEB QUERY LANGUAGES

(1) Frangois Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian
Schaffert, and Sacha Berger. Querying the Web Reconsidered: De-
sign Principles for Versatile Web Query Languages. Journal of
Semantic Web and Information Systems, 1(2), 2005.

(2) Francgois Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian
Schaffert, and Sacha Berger. Querying the Web Reconsidered: De-
sign Principles for Versatile Web Query Languages. In Amit Sheth
and Miltiadis D. Lytras, editors, Sermantic Web-Based Information
Systems: State-of-the-Art Applications, chapter 8. CyberTech Publish-
ing, 2007.

SURVEYS AND TUTORIALS ON WEB QUERY LANGUAGES:

(3) James Bailey, Francois Bry, Tim Furche, and Sebastian Schaffert.
Web and Semantic Web Query Languages: A Survey. In Jan Matuszynski
and Norbert Eisinger, editors, Tutorial Lectures Int’l. Summer School
‘Reasoning Web’, number 3564 in Lecture Notes in Computer Science,
pages 35-133. Springer, 2005.

(4) Tim Furche, Benedikt Linse, Francois Bry, Dimitris Plexousakis, and
Georg Gottlob. RDF Querying: Language Constructs and Evalua-
tion Methods Compared. In Tutorial Lectures Int’l. Summer School
‘Reasoning Web’, volume 4126 of Lecture Notes in Computer Science,
pages 1-52. Springer, 2006.

(5) James Bailey, Frangois Bry, Tim Furche, Benedikt Linse, Paula-
Lavinia Pétranjan, and Sebastian Schaffert. Rich Clients need Rich
Interfaces: Query Languages for XML and RDF Access on the Web.
In Proc. of German XML-Tage, 2006. URL http://www.pms.ifi.
Imu.de/publikationen/#PMS-FB-2006-14

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-14
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-14

(6)

Francois Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg
Gottlob, Clemens Ley, Benedikt Linse, Reinhard Pichler, and Fang
Wei. Foundations of Rule-Based Query Answering. In Grigoris
Antoniou, Uwe Aflmann, Cristina Baroglio, Stefan Decker, Nicola
Henze, Paula-Lavinia Patranjan, and Robert Tolksdorf, editors, Tu-
torial Lectures Int’l. Summer School ‘Reasoning Web’, number 3564
in Lecture Notes in Computer Science. Springer, 2007.

ON XCERPT 2.0

LANGUAGE SPECIFICATION

(7)

(8)

Francois Bry, Tim Furche, and Sebastian Schaffert. Initial Draft of
a Language Syntax (Xcerpt 2.0 Beta). Deliverable I4-D6, Network
of Excellence REWERSE (Reasoning on the Web with Rules and
Semantics), 2006. URLhttp://rewerse.net/deliverables/ml18/
i4-d6.pdf*

Tim Furche, Francois Bry, and Sebastian Schaffert. Xcerpt 2.0: Speci-
fication of the (Core) Language Syntax. Deliverable [4-D12, Network
of Excellence REWERSE (Reasoning on the Web with Rules and
Semantics), 2007. URL http://rewerse.net/deliverables/m36/
i4-d12.pdf?

VERSATILITY AND RDF ACCESS IN XCERPT

1

(9)

(10)

Tim Furche, Frangois Bry, and Oliver Bolzer. XML Perspectives
on RDF Querying: Towards integrated Access to Data and Meta-
data on the Web. In Proc. GI-Workshop on Grundlagen von Daten-
banken, pages 43-47, 2005. URL http://www.pms.ifi.lmu.de/
publikationen/#PMS-FB-2005-13

Tim Furche, Frangois Bry, and Oliver Bolzer. Marriages of Conve-
nience: Triples and Graphs, RDF and XML. In Proc. Int’l. Workshop
on Principles and Practice of Semantic Web Reasoning (PPSWR),
volume 3703 of Lecture Notes in Computer Science, pages 72—84.
Springer, 2005. URLhttp://www.pms.ifi.1lmu.de/publikationen/
#PMS-FB-2005-38

All REWERSE deliverables have been peer reviewed both within the research project
REWERSE and by the external reviewing panel appointed by the EU.

http://rewerse.net/deliverables/m18/i4-d6.pdf
http://rewerse.net/deliverables/m18/i4-d6.pdf
http://rewerse.net/deliverables/m36/i4-d12.pdf
http://rewerse.net/deliverables/m36/i4-d12.pdf
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-13
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-13
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-38
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-38

(11) Frangois Bry, Tim Furche, and Benedikt Linse. Let’s Mix It: Versatile
Access to Web Data in Xcerpt. In Proc. of Workshop on Information
Integration on the Web (IIWeb), 2006. URL http://www.pms.ifi.
Imu.de/publikationen/#PMS-FB-2006-16

(12) Francois Bry, Tim Furche, and Benedikt Linse. Data Model and
Query Constructs for Versatile Web Query Languages: State-of-the-
Art and Challenges for Xcerpt. In Proc. Int’l. Workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR), pages 90-104,
2006

(13) Frangois Bry, Tim Furche, Clemens Ley, and Benedikt Linse. RD-
FLog: Filling in the Blanks in RDF Querying. Technical Report
PMS-FB-2008-01, University of Munich, 2007. URL http://www.
pms.ifi.lmu.de/publikationen/#PMS-FB-2008-01

MODULES FOR XCERPT

(14) Uwe Aflmann, Sacha Berger, Francois Bry, Tim Furche, Jakob Hen-
riksson, and Paula-Lavinia Patranjan. A Generic Module System
for Web Rule Languages: Divide and Rule. In Proc. Int’l. RuleML
Symp. on Rule Interchange and Applications, 2007. URL http:
//www.pms.ifi.lmu.de/publikationen/.

(15) Uwe Aflimann, Sacha Berger, Francois Bry, Tim Furche, Jakob Hen-
riksson, and Jendrik Johannes. Modular Web Queries—From Rules
to Stores. In Proc. Int’l. Workshop on Scalable Semantic Web Knowl-
edge Base Systems (SSWS), 2007. URL http://www.pms.ifi.lmu.
de/publikationen/.

QUERYING AND UPDATE:

(16) Frangois Bry, Tim Furche, Paula-Lavinia Pitranjan, and Sebastian
Schaffert. Data Retrieval and Evolution on the (Semantic) Web: A
Deductive Approach. In Proc. Int’l. Workshop on Principles and Prac-
tice of Semantic Web Reasoning (PPSWR), volume 3208 of Lecture
Notes in Computer Science, pages 34—-49. Springer, 2004.

XCERPT SYSTEM DEMONSTRATIONS:

(17) Sacha Berger, Francois Bry, Oliver Bolzer, Tim Furche, Sebastian
Schaffert, and Christoph Wieser. Xcerpt and visXcerpt: Twin Query

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-16
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-16
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-01
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-01
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/

(18)

(19)

(20)

(21)

CASE

(22)

(23)

(24)

Languages for the Semantic Web. In Proc. Int’l. Semantic Web Conf.
(ISWC), 2004. URLhttp://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2004-23.

Sacha Berger, Francois Bry, Oliver Bolzer, Tim Furche, Sebastian
Schaffert, and Christoph Wieser. Querying the Standard and Se-
mantic Web using Xcerpt and visXcerpt. In Proc. European Seman-
tic Web Conf. (ESWC), 2005. URL http: //www.pms.ifi.lmu.de/
publikationen/#PMS-FB-2005-16.

Sacha Berger, Francois Bry, and Tim Furche. Xcerpt and visXcerpt:
Integrating Web Querying. In Informal Proc. ACM SIGPLAN Work-
shop on Programming Language Technologies for XML (Plan-X),
page 84, 2006.

Sacha Berger, Frangois Bry, Tim Furche, Benedikt Linse, and An-
dreas Schroeder. Effective and Efficient Data Access in the Versatile
Web Query Language Xcerpt. In Proc. Int’l. Workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR), pages 219-224,
2006

Sacha Berger, Frangois Bry, Tim Furche, Benedikt Linse, and An-
dreas Schroeder. Beyond XML and RDF: The Versatile Web Query
Language Xcerpt. In Proc. Int’l. World Wide Web Conf. (WWW),
pages 1053-1054, 2006.

STUDIES:

Andreas Doms, Tim Furche, Albert Burger, and Michael Schroeder.
How to Query the GeneOntology. In Symposium on Knowledge
Representation in Bioinformatics (KRBIO), 2005. URL http://www.
pms.ifi.lmu.de/publikationen/#PMS-FB-2005-15.

Loic Royer, Benedikt Linse, Thomas Wachter, Tim Furche, Frangois
Bry, and Michael Schroeder. Querying the Semantic Web: A Case
Study. In Revolutionizing Knowledge Discovery in the Life Sciences.
Springer, 2006

Frangois Bry, Tim Furche, Alina Hang, and Benedikt Linse. GRD-
DLing with Xcerpt: Learn one, get one free! In Proc. European
Semantic Web Conf. (ESWC), 2007

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-23
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-23
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-16
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-16
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-15
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-15

FORMALIZING AND REWRITING WEB QUERY LANGUAGES

XPATH AND XPATH REWRITING:

(25) Dan Olteanu, Holger Meuss, Tim Furche, and Frangois Bry. XPath:
Looking Forward. In Proc. EDBT Workshop on XML-Based Data
Management, volume 2490 of Lecture Notes in Computer Science.
Springer, 2002. *

XCERPT OPTIMIZATION:

(26) Sacha Berger, Francois Bry, Tim Furche, and Andreas J. Hausler.
Completing Queries: Rewriting of Incomplete Web Queries under
Schema Constraints. In Massimo Marchiori, Jeff Z. Pan, and Chris-
tian de Sainte Marie, editors, Proc. Int’l. Conf. on Web Reasoning
and Rule Systems (RR), 2007.

EVALUATION OF WEB QUERY LANGUAGES
STREAMED EVALUATION OF XPATH QUERIES:

(27) Frangois Bry, Tim Furche, and Dan Olteanu. Datenstrome. Infor-
matik Spektrum, 27(2), 2004. URL http://www.pms.ifi.1lmu.de/
publikationen/#PMS-FB-2004-2

(28) Dan Olteanu, Tim Furche, and Francois Bry. Evaluating Complex
Queries against XML streams with Polynomial Combined Complex-
ity. In Proc. British National Conf. on Databases (BNCOD), pages
31-44, 2003. URL http://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2003-15.

(29) Dan Olteanu, Tim Furche, and Francois Bry. An Efficient Single-
Pass Query Evaluator for XML Data Streams. In Data Streams
Track,Proc. ACM Symp. on Applied Computing (SAC), pages 627-631,
2004.

2 This article is the result of prior work but closely related to and of significant impact on
the issues presented in this thesis.

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-2
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-2
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2003-15
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2003-15

EVALUATION OF n-ARY CONJUNCTIVE QUERIES:

(30) Frangois Bry, Tim Furche, Benedikt Linse, and Andreas Schroeder.
Efficient Evaluation of n-ary Conjunctive Queries over Trees and
Graphs. In Proc. ACM Int’l. Workshop on Web Information and Data
Management (WIDM). ACM Press, 2006. URL http://www.pms.
ifi.1mu.de/publikationen/#PMS-FB-2006-32.

IMPLEMENTATION OF WEB QUERY ENGINES

(31) Frangois Bry, Fatih Coskun, Serap Durmaz, Tim Furche, Dan Olteanu,
and Markus Spannagel. The XML Stream Query Processor SPEX. In
Proc. Int’l. Conf. on Data Engineering (ICDE), pages 1120-1121, 2005.
URLhttp://www.pms.ifi.Ilmu.de/publikationen/#PMS-FB-2005-1.

(32) Frangois Bry, Tim Furche, and Benedikt Linse. AMachoS - Abstract
Machine for Xcerpt: Architecture and Principles. In Proc. Int’l.
Workshop on Principles and Practice of Semantic Web Reasoning
(PPSWR), pages 105-119, 2006

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-32
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-32
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-1

CONTENTS

INTRODUCTION

11 Vision and Exemplar: Xcerpt2.o
1.2 Common Formal Foundation: CIQLog
1.3 Evaluation: CIQCAG Algebra

| USE CASES. VERSATILE WEB QUERYING

2

VERSATILE WEB QUERIES—THE VISION
2.1 Introduction,

2.2 DesignPrinciples,

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6

Versatility: Data, Syntax, and Interface
Data Selection: Pattern-based, Incomplete
Answers: Arbitrary XML, Ranked
Rule-Based, Chaining, and Recursion
Reasoning Capabilities.
Querying and Evolution

23 RelatedWork
24 Exemplars.

2.4.1
2.4.2

Case Study: XQuery
Case Study: Xcerpt

25 Conclusion

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS
AND EXAMPLES

31 Introduction,
3.2 Xcerpt 2.0: Overview in 5000 Words

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

Xcerpt: ARough Sketch
Xcerpt2.0: DataModel
A Syntax for Data: (Data) Terms
A Syntax for Queries: (Query) Terms
A Syntax for Results: (Construct) Terms
A Syntax for Programs: Rules

3.3 Versatility 101: Versatile Queries by Example

3.3.1
3.3.2
3.3.3
3.3.4

Web Format Basics
Format Versatility
Schema Versatility
Representational Versatility

W NN -

XX

Contents

3.4 Adding Identity: From Heraklitto Codd 65
3.4.1 Object Identity in Data Management 67
3.4.2 Object Identity in Xcerpt2.0 69
3.5 Modules: From Separation to Encapsulation 75
3.5.1 Module Extension by Example 77
3.5.2 Framework for rule language module systems . . 81
3.5.3 Module systemalgebra 83
3.5.4 Modulesfor Xcerpt. 91
3.5.5 Modular Xcerpt—Requirements and Constructs 94
3.5.6 Refining Stores: Instance Stores 98
357 RelatedWork 99
3.5.8 Conclusions and Outlook 100
3.6 Conclusion 100
FROM XML TO RDF—W3C’'S GRDDL 101
41 Introduction, 101
42 Setting L 102
4.3 From XML to RDF—the W3CWay 106
4.4 From XML to RDF—the XcerptWay 108
45 RelatedWork 112
4.6 Comparison and Conclusion 112

THEORY. A FORMAL PERSPECTIVE ON WEB QUERIES
115

DATA MODEL—RELATIONS OVER TREES AND GRAPHS 117
51 Introduction 117
520 DataGraphs 119
5.3 XML: Essentials and Formal Representation 122
531 XMLinsooWords 122
5.3.2 Mapping XML to Data Graphs 124
5.3.3 TransparentLinks 125
5.4 RDF: Essentials and Formal Representation 126
5.1 RDFinsooWords 126
5.4.2 Mapping RDF to Data Graphs 127
55 XcerptDataTerms. 129
5.51 Xcerpt Data TermsinsooWords. 129
5.6 Relationson Data Graphs. 130
5.6.1 Binary Relational Structures 131
5.6.2 A Relational Schema for Data Graphs 132

5.6.3 Properties of Nodes and Edges: Labels and Positions 133

Contents

5.6.4 Structural Relations 135
5.6.5, OrderRelations. 136
5.6.6 Equivalence Relations 137
5.6.7 Inverse and Complement 142
5.6.8 Examplerelations 142
57 Conclusion 143

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS 145

6.1 Introduction 145
62 CIQLogSyntax 146
6.21 ComplexHeads. 147
6.3 CIQLogSemantics. 150
6.3.1 Expressiveness and Complexity 151
6.3.2 Deep and Shallow Copies 152
6.3.3 Algebraic Semantics 153
6.4 Data Graphs in CIQLog: Extensional and Intensional Re-
Iations 156
6.5 Non-recursiveCIQLog 158
6.5.1 Reachability in Data Graphs 159
6.5.2 Equivalencein Data Graphs 159
653 Examples, 162

PRACTICE. CASE STUDIES: XCERPT, XQUERY, SPARQL
165

TRANSLATING XCERPT 2.0 167
71 Introduction 167
72 Non-recursive, Single-Rule Core Xcerpt 167
721 FormalSyntax 169
73 Xcerpt Semantics by Example 172
7.4 Translating Non-recursive Core Xcerpt 177
741 Rules, 178
742 ConstructTerms 180
7.4.3 Queriesand Query Terms 183

75 From Non-recursive, single-rule Core Xcerpt to Full Xcerpt 191

TRANSLATING XQUERY 193
81 Introduction 193
8.2 TranslatingXPath 194
8.21 Syntaxand Semantics 196
822 Translation 197

8.3 From XPath to Composition-Free XQuery 200

XXi

xxii

Contents

10

1

8.3.1 Composition-Free XQuery in 1000 Words
832 Syntax oL
833 Semantics
83.4 Translation
835 Equivalence,
8.4 Beyond Composition-free XQuery
85 Conclusion

TRANSLATING SPARQL

91 Introduction,
9.2 SPARQL Syntax and Semantics in 1000 Words
9.3 Translating SPARQL Queries
9.4 From SPARQL to Rules: RDFLog
9.5 Conclusion

THEORY. CIQCAG: SCALING FROM TREES TO GRAPHS

233

PRINCIPLES AND MOTIVATION

101 Introduction

10.2 Data Beyond Trees: Continuous-Image Graphs

10.3 Sequence Map: Structure-aware Storage of Results
10.3.1 Sequence Map for Trees and Continuous-Image

Graphs

10.3.2 Sequence Maps for Diamond-Free DAG Queries
10.3.3 Representing intermediary results: A Comparison

10.4 Queries Beyond Trees: Graphs with Tree Core.
10.4.1 Operator Overview
10.4.2 Tree Cores and Hypertrees

10.5 Complexity and Contributions

SEQUENCE MAP

1.1 Introduction,

11.2 Sequence Map: Definition
11.2.1 Consistent and Inconsistent Sequence Maps . . .

235
235
239

244

248
250
250
252
254
256
257

263
263
264
270

1n.2.2 Answers: Consistent and Complete Sequence Maps 275

11.3 On The Influence of Data Shape
11.3.1 Exploiting Tree-Shape of Data: Single Interval

Pointers

11.3.2 Beyond Trees: Consecutive Ones Property

11.3.3 Open Questions: Beyond Single Intervals

11.4 Space Bounds for Sequence Maps

275

Contents

11.4.1 Linear Space Bounds for Trees and CIGs 289

11.5 Sequence Map Variations
11.5.1 Purely Relational Sequence Map . . .

11.5.2 Multi-Order Sequence Map for Diamond-Free

DAG Queries

12 SEQUENCE MAP OPERATORS
12.1 Introduction and Overview.
12.2. Interval Access to a Relational Structure . . .
12.2.1 Storing and Managing Interval Sets .
12.3 Initialize (from Relation)
124 Combine
1241 Join
1242 Union
12.4.3 Difference
125 Reduce
1251 Project oL
1252 Select.
1253 Propagate
126 Rename
12.7 Back to Relations: Extract.
12.8 Algebraic Equivalences
12.9 Iterator Implementation
12.9.1 Optimal Space Bounds for Tree Data

13 CIQCAG: GRAPH QUERIES WITH COMPLEX HEADS
13.1 Graph Queries and Map Expansion
13.2 Translationby Example
13.3 CIQLog Translation

13.3.1 Translation Function
13.4 Iterationand Recursion
135 Conclusion

V PRACTICE. THE CIQCAG PROTOTYPE

14 PROTOTYPE AND EXPERIMENTAL EVALUATION
141 Introduction
14.2 CIQCAGPrototype
14.3 Experimental Evaluation

14.3.1 Effect of Sequence Map
14.3.2 Effect of Non-Tree Edges
14.3.3 Effect of Data Shape

xxiii

XXiv

CONTENTS

14.3.4 Effect of Query Shape.

14.4 Outlook: Principles of the CIQCAG Processor

14.5 Conclusion

15 CONCLUSION
15.1 Perspectives and Further Work
15.1.1 Continuous-Image Graphs . .

15.1.2 [Iterator Implementation of the Sequence Map . .

15.1.3 Interval Representation of Arbitrary Graphs . . .
15.1.4 Beyond Intervals: CIQCAG for Graph Queries
15.1.5 Supporting Full XPath, XQuery, SPARQL, and

Xcerpt Lo

15.1.6 A Virtual Machine for Web Queries

15.1.7 Versatile Queries for Beginners
List of Figures
List of Tables

List of Algorithms

385
386
387
388
388
389

389
389
390

391

393

396

INTRODUCTION

11 Vision and Exemplar: Xcerpt2.0 2
1.2 Common Formal Foundation: CIQLog 2
1.3 Evaluation: CIQCAG Algebra 3

When we reflect about the ingredients of today’s success of the World-
Wide Web, one ingredient seems to be essential: easy access to information
from diverse sources, each publishing without central control. The enabling
technology has been, arguably, the use of a single universal representation
format, HTML and its variants. This allows easy access requiring only
some form of HTML browser: everyone can collect and aggregate infor-
mation, e.g., for indexing such as Google does, or for extracting personal
information as Spam-Bots do. Surprisingly, this picture changes, when
we move to the Web 2.0, the Semantic Web, or whatever other vision of
the next generation Web currently en vogue. For these visions we happily
build islands: an XML island, an RDF island, a JSON island, an OWL
island, a Topic maps island, etc. Of course, there is often legitimate rea-
son to use different representation formats for different kinds of data on
the Web. Furthermore, significant resources have been committed to the
deployment of various XML and, to a lesser extent, RDF islands.

Unless we assume that all information nicely fits into one and only one
of these islands, we have to consider that, increasingly, Web applications
will not only process HTML, but also XML, JSON, RDE, OWL, etc. This is
already true for most Web 2.0 applications. When we build such applica-
tions, however, we do not want to care about the actual data formats but
focus on the task of the application.

In this work, we present a solution to this challenge. We argue that
query languages such as XSTL, XQuery, SPARQL, XPath, or Xcerpt, which
have seen significant success for accessing each of the data islands, should
make it easier for the user to access data in different formats. We call for
such versatile query languages as tools to bridge the data islands and to
allow the integration of data in XML, RDFE, Topic Maps, or whatever other
format. Though choosing a different solution, the W3C has recognized
the importance of such scenarios in the recent GRDDL [77] standard, an
approach to bring XML data and microformats to the RDF island.

INTRODUCTION

Naturally, we do not stop at the call for such query languages but use
that only as the starting point to cast a novel perspective on Web querying,
its formal foundation and evaluation. Altogether, this work is divided in
three parts:

11 VISION AND EXEMPLAR: XCERPT 2.0

First, (Part I) we elaborate on the vision of versatile query languages and
discuss how that vision has guided the refinement of Xcerpt [188, 187]
towards Xcerpt 2.0. Furthermore, we illustrate the use of Xcerpt for use
cases developed by the W3C in the context of GRDDL and contrast this
approach with the use of separate query languages for XML and RDF as
proposed by the W3C. This highlights the advantages of versatile query
languages when integrating data from diverse sources with different data
formats.

1.2 COMMON FORMAL FOUNDATION: CIQLOG

Second, we introduce (Part II) as a formal foundation for Web queries
against any data format, clqLog, a rule-based query language tailored to
semi-structured queries. ClQLog is a slightly modified variant of datalog,,,,,,
i.e., datalog extended with negation and value invention, or ILOG [132].
cloLog is used as a tool to map most major Web query languages into the
same formal framework in Part III. Specifically, the considered languages
are XPath, XQuery, Xcerpt, and SPARQL.

The common data model and query language CloLog and the translations
from these languages into clqLog yield

(1) a purely logical semantics for XPath, XQuery, Xcerpt, and SPARQL.
For XQuery and SPARQL, this is the first purely logical semantics,
to the best of our knowledge.

(2) a better understanding of commonalities and differences between
these languages. In particular, the step from XPath to (composition-
free) XQuery illustrates how only a small number of additional fea-
tures dramatically affects the semantics and evaluation of XQuery.

(3) together with the ClQcAG algebra (and the translation from clqLog to
ClQcAG in Chapter 13),

(a) aspaceoptimal implementation of navigational XPath with space
complexity O(q - d) and time complexity O(q - n) where q is the
query size, n the data size, and d the depth of the tree data.

1.3 EVALUATION: CIQCAG ALGEBRA

(b) the first implementation for SPARQL with polynomial-time com-
plexity for tree queries on arbitrary graphs and linear complexity on
tree and certain graph data (see below).

(c) efficient implementations for Xcerpt and XQuery that scale over
different data and query shapes, i.e., that provide on each restricted
class time and space complexity rivaling the best known approaches
limited to that class.

(4) a foundation for the integration of queries from several of these
languages (with additional clqLog interface rules to properly expose
data from queries in one language to queries of another language).

1.3 EVALUATION: CIQCAG ALGEBRA

Third, we consider the evaluation of clqLog queries and versatile Web query
languages focused on the following question: What is the cost of the move
from specialized Web query languages to versatile ones comes, considering
time or space complexity?

We assign meaning to things by enumerating their features (or prop-
erties or attributes) and placing them in relation with other things. This
enables us to distinguish, classify, and, eventually, act upon such things.
The same applies to digital data items: to find, analyse, classify, and, even-
tually, use as basis for actions we need to place data items in relation to
other data items: A book to its author, a bank transaction to the bank, the
source and the target of the transaction, a patient to its treatment history,
its doctor, etc.

How we describe these relations between data items (as well as their
features) is the purview of data models. Recently the relational data model,
tailored to relations of arbitrary shape, has been complemented by semi-
structured data models tailored to Web data. What sets these data models
apart from relational data is an even greater focus on relations or links
while delegating features or attributes to second-class citizens or dropping
them entirely, as in RDE. At the same time most of these data models share
a strong hierarchical bias: XML is most often considered tree data.' RDF
and other ontology languages allow arbitrary graphs but ontologies often
have dominantly hierarchical “backbones’, formed, e.g., by subclass or
part-of relations. To summarize, structure is a central property of data and
data models determine what shape those structures may take.

1 Though ID-links justify a more graph-like view of XML. Similarly, many XML applications
add non-tree linking mechanisms such as HTML hypertext links.

INTRODUCTION

When we want to actually do something with the data represented in
any of these data models, we use queries. Again, exploiting the relations
among sought-for data items is essential: to find all authors of books on a
given topic, to find the bank with the highest transaction count, to identify
an illness by analysing patterns in a patient’s health records. Thus queries
mirror the structure of the sought-for data, though often with a richer
vocabulary, allowing, e.g., for recursive relation traversal or don’t-care
parts: a patient is chronically ill if there is some illness (we don’t care which
illness) that recurs regularly in that patient’s health records. Queries may
contain additional derived (i.e., not explicitly represented or “extensional”)
relations—such as equalities or order between the value of data items.
The shape of a query is, thus, not limited to the shape of the data but
may contain additional relations. To summarize, as for data, structure is a
central feature of queries and mirrors the structure of the sought-for data.
However, the structure of a query is linked to the structure of the query
only if we consider exclusively extensional relations in the query.

The reason we should care about the shape of data or queries is a growing
canon of approaches that obtain better complexity and performance for
query evaluation if certain limits are imposed on the shape of data, queries,
or both.

If we consider arbitrary data, we have little reliable means for compact-
ing relation information. On tree data, in contrast, we can use any number
of encodings, e.g., interval encodings [86, 85], hierarchical or path-based
labeling [173], or schemes based on structural summaries [200]. In essence,
these encodings exploit the observation that structural relations in ordered
trees follow certain rules, e.g., each node has a unique parent, the descen-
dants of each node are contained in the descendants of all its ancestors,
each node has a unique following and preceeding sibling, etc. Interval
encodings on trees, e.g., allow us to compact closure relations quadratic in
the tree size into a linear size interval encoding.

For queries, we can make a similar observation: if we allow arbitrary
“links” in a query, we need to manage relations between bindings for all
nodes in the query at once. However, the relations between the nodes
may be limited, e.g., if the query is tree shaped (and this holds also for
graph-shaped data), bindings for each node are directly related only to
bindings of its “parent”. In fact, if we consider the answers to a query
as a relation with the nodes as columns, answers of a tree-shaped query
always exhibit multivalued dependencies [91]: In fact, we can normalize
or decompose such a relation for a query with n nodes into # — 1 separate
relations that together faithfully represent the original relation (lossless-join
decomposition to binary relations over each pair of adjacent variables in
the query). This allows us to compact an otherwise potentially exponential

1.3 EVALUATION: CIQCAG ALGEBRA

answer (in the data size) into a polynomial representation.

Neither observation is particularly new: acyclic or tree queries on rela-
tional data as interesting polynomial-time subclass have been studied, e.g.,
in [203] and [110]. More recently, the increasing popularity of Web data
such as XML triggered renewed interest and reinvestigation of tree data
and tree queries as interesting restrictions of general relational structures
and queries. Several novel techniques tailored to XML data and XPath or
similar tree queries have shown the benefit of exploiting the hierarchical
nature of the data for efficient query evaluation: polynomial twig joins
[48]; XPath evaluation [113]; polynomial evaluation of tree queries against
XML streams [9, 171, 168], linear tree labeling schemes [119, 200] allowing
constant time access to structural closure relations such as descendant or
following; and path indices [71] enabling constant time evaluation of path
queries.

As stated, these techniques have received considerable attention when
data and queries are tree shaped. However, data often contains some non-
tree aspects, even if the tree aspects are dominant, e.g., 1p-links in XML
or many ontologies (such as the GeneOntology [87]). Practical queries
(such as XQuery or Xcerpt) often go beyond tree queries, e.g., to express
value or identity joins, even if they contain a majority of structural con-
ditions. Driven by such considerations, interest in adapting above tech-
niques beyond trees is growing (e.g., labeling and reachability for graph
data [199, 195] or hypertree decomposition for polynomial queries beyond
trees [108]).

Therefore, we explore in this work means of building on the above
mentioned techniques but pushing them beyond trees. We orient this
exploration along the following two questions:

(1) Can we find an interesting and practically relevant class of (data)
graphs that is a proper superset of trees, yet to which algorithms such
as twig joins [48], so far limited to trees or DAGs [70], can be extended
without affecting (time and space) complexity?

(2) Can we integrate the above technologies in the processing of general
graph queries in such a way that (often significant) hierarchical compo-
nents can be evaluated using polynomial algorithms, limiting the degrada-
tion of query complexity to non-tree parts of the query? This is particularly
desirable as we observe that data and, particularly, queries are often mostly
trees with only limited non-tree parts, but any non-tree part renders most
of the techniques discussed above for tree queries inapplicable.

In the following, we answer both questions essentially positive by intro-
ducing a novel algebra, called ClQcAG, the compositional, interval-based
query and composition algebra for graphs. clQcAG is a fully algebraic ap-
proach to querying Web data (be it in XML, RDE, or other semi-structured

6

INTRODUCTION

shape) that is build around two central contributions:

()

(2)

anovel characterization of (data) graphs admissible to interval-based
compaction. For this new class of data, called continuous-image
graphs (or ciGs for short), we can provide linear-space and almost
linear-time algorithms for evaluating tree queries rivaling the best
known algorithms for tree data.

An algebra for a two-phase evaluation of queries separating a tree
core of the query (evaluated in the first phase) from the remaining
non-tree constraints (evaluated in a second phase). The operations
of the algebra closely mirror relational algebra (and can, in fact, be
implemented in standard SQL), but (a) a novel data structure influ-
enced by Xcerpt’s memoization matrix [187, 52] and the complete
answer aggregates approach [161] allows for exponentially more suc-
cinct storage of intermediate results for the tree core of a query. To-
gether with a set of operators on this data structure, called sequence
map, this enables CIQcAG to (b) evaluate almost-tree queries with
nearly polynomial time limiting the degradation in performance to
non-tree parts of the query. (c) Finally, the algebra is tailored to be
agnostic of the actual realization of the used relations. This makes
it particularly easy to integrate approaches for arbitrary derived re-
lations and indices in addition to extensional relations, reachability
indices such as interval labeling [116] for tree data or [195] for graph
data and path indices such as DataGuides [107] or [71] for tree data.

Part I

USE CASES. VERSATILE WEB
QUERYING

VERSATILE WEB QUERIES—THE

VISION
2.1 Introduction 9
2.2 DesignPrinciples 13
2.2.1 Versatility: Data, Syntax, and Interface 13
2.2.2 Data Selection: Pattern-based, Incomplete 15
2.2.3 Answers: Arbitrary XML, Ranked 18
2.2.4 Rule-Based, Chaining, and Recursion 20
2.2.5 Reasoning Capabilities 22
2.2.6 Queryingand Evolution 23
23 RelatedWork 24
24 Exemplars 27
2.4.1 Case Study: XQuery 27
2.4.2 Case Study: Xcerpt 29
25 Conclusion 30

This chapter is a based closely on [58] and [61] with
slight refinements and a preview of how the discussed
principles are realized in this work.

21 INTRODUCTION

We present in this work a novel perspective on Web query languages that
starts with the vision of a versatile Web query language presented in this
chapter. At its core, this vision calls for languages capable of integrating
access to diverse Web formats. We show how this vision has guided the
development and refinement of Xcerpt 2.0 in Chapter 3. We illustrate
how that refinement can be used to implement a versatile query scenario
proposed by the W3C, the querying of XML micro-formats through RDF
views by means of GRDDL in Chapter 4.

However, in this work we go beyond the single-language perspective of ~ from format to
this chapter and introduce in Part II a formal foundation for Web queries language
that is expressive enough to capture diverse languages such as Xcerpt, ~ versatility
XPath, XQuery, and SPARQL as demonstrated in Part III. Though that

10

Why versatility
matters ...

VERSATILE WEB QUERIES—THE VISION

framework is expressive, it still exhibits efficient evaluation of different
kinds of Web queries such that, as shown in Part IV, the evaluation of
tree queries on tree data is space optimal and rivals the time complexity
of the best known previous approaches. At the same time, the approach
can also handle tree queries on graph data, often even with the same
complexity as on tree data (if the graph is a continuous-image graph).
Even graph queries are handled and performance degeneration is limited
to the non-tree portion of the query.

We demonstrate by this that versatile query languages as proposed in
this chapter can be implemented just as query languages specialized to
the existing Web formats. Furthermore, we show that even if there is no
versatility on the language level, e.g., if we employ XQuery for XML access
and SPARQL for RDF access, those queries can be realized in the proposed
formal framework (and thus, e.g., profit from query optimization beyond
the borders of each language) and, given a suitable but, compared to a full
versatile query language, rather small integration interface, even access
results of each other. Such interfaces can, e.g., be SPARQL XML result
formats [19] or SPARQL annotations'.

Nevertheless, all this does not alleviate the effort for the query program-
mer to handle different query paradigms, e.g., XQuery and SPARQL, in
addition to different data formats. We believe that an integration within a
language, as argued in the following, is preferable to integration between
languages.

After a decade of experience with research proposals as well as standard-
ized query languages for the conventional Web and following the recent
emergence of query languages for the Semantic Web a reconsideration of
design principles for Web and Semantic Web query languages is called for.

The “Semantic Web” is an endeavor widely publicized in 2001 by an
influential but also controversial article from Tim Berners-Lee, James
Hendler, and Ora Lassila [33]. The “Semantic Web” vision is that of the
current Web which consists of (X)HTML and documents in other XML
formats extended by metadata specifying the meaning of these documents
in forms usable by both human beings and computers.

One might see the Semantic Web metadata added to today’s Web doc-
uments as “semantic indices” similar to encyclopedias. A considerable
advantage over paper-printed encyclopedias is that the relationships ex-
pressed by Semantic Web metadata can be followed by computers, very
much like hyperlinks, and be used for drawing conclusion using automated
reasoning methods:

1 http://www.w3.org/2007/01/SPAT/

http://www.w3.org/2007/01/SPAT/

2.1 INTRODUCTION

“For the Semantic Web to function, computers must have
access to structured collections of information and sets of infer-
ence rules that they can use to conduct automated reasoning.”

[33]

A number of formalisms have been proposed in recent years for rep-
resenting Semantic Web metadata, e.g., RDF [150, 142], Topic Maps [133],
and OWL [157]. Whereas RDF and Topic Maps provide merely a syntax
for representing assertions on relationships like “a text T' is authored by
person P”, schema or ontology languages such as RDFS [45] and OWL
allow to state properties of the terms used in such assertions, e.g., that
no “person” can be a “text”. Building upon descriptions of resources and
their schemas (as detailed in the “architectural road map” for the Semantic
Web [32]), rules expressed in e.g., SWRL [127] or RuleML [37], allow the
specification of actions to be taken, knowledge to be derived, or constraints
to be enforced.

Essential for realizing this vision is the integrated access to all kinds
of data represented in any of these representation formalisms or even in
standard Web languages such as (X)HTML, SVG. Considering the large
amount and the distributed storage of data already available on the Web,
the efficient and convenient access to such data becomes the enabling
requirement for the Semantic Web vision. It has been recognized that
reasonably high-level, declarative query languages are needed for such
efficient and convenient access, as they allow to separate the actual data
storage from the view of the data a query programmer operates on. This
chapter presents a novel position on design principles for guiding the
development of query languages that allow access to both standard and
Semantic Web data. We believe, it is worthwhile to reconsider principles
that have been stated almost a decade ago for query languages such as
XML-QL [84] and XQuery [35], then agnostic of the challenges imposed
by the emerging Semantic Web.

Three principles are at the core of the vision of a versatile Web query
language:

(1) Asdiscussed above, the same query language should provide con-
venient and efficient access to any kind of data expected to be
found on the Semantic Web, e.g., to documents written in (X)HTML
as well as to RDF descriptions of these documents and even to on-
tologies. Only by intertwining data from all the different layers of
the Semantic Web, that vision can be realized in its full potential.

(2) Convenience for the user of the query language requires the reuse
of knowledge obtained in another context. Therefore, the query lan-
guage should be based upon the principles of referential trans-

11

Principles of
versatility

12

VERSATILE WEB QUERIES—THE VISION

parency and answer-closedness realized by rules and patterns.
Together, these principles allow (1) for querying existing and con-
structing new data by a form-filling approach (similar to, but
arguably more expressive than, the query-by-example paradigm
[205, 204]), and (2) for basic reasoning capabilities including the
provision of different views of the same data, even represented in
different Web formalisms.

(3) The decentralized and heterogeneous nature of the Web requires

query languages that allow queries and answers to be incomplete:
In queries, only known parts of the requested information are speci-
fied, similar to a form leaving other parts incomplete. Conversely,
the answer to a query may leave out uninteresting parts of the match-
ing data.

It is worth noting that the above stated core principles and the more
detailed discussion of the design principles in Section 2.2 are describing
general principles of query languages, rather than specific issues of an im-
plementation or storage system. Therefore, implementation issues, such as
processing model (in-memory vs. database vs. data stream) or distributed
query evaluation, are not discussed here. Rather, the language require-
ments are considered independently of such issues, but allow for further
extensions or restrictions of the language, if necessary for a particular set-
ting or application. That the implementation of a versatile query language,
though covering access to diverse formats with differing characteristics
(e.g., graph vs. tree shape), does not have to suffer performance penalties
compared to specialized languages is shown in Part IV where we give an
evaluation approach that fits itself to the particularities of the encountered
data achieving the same or better complexity for each case as the best
known specialized approaches.

These design principles result for a large part from experience in the
design of Web query languages by the authors, in particular from the
experience in designing the Web query language Xcerpt [188] whose de-
velopment and refinement has, on the other hand, been influenced by
these principles as outlined in Chapter 3. Though Xcerpt is influenced by
these principles, it does not (not even in its second incarnation, Xcerpt
2.0) realize all of the below discussed principles. In particular, work on
update and evolution languages based on Xcerpt continues as does the
investigation of visualization and verbalization. These aspects of a versatile
language are not considered further in this thesis.

2.2 DESIGN PRINCIPLES

22 DESIGN PRINCIPLES

The rest of this chapter is organized around thirteen design principles
deemed essential for versatile Web query languages: starting with prin-
ciples concerning the dual use of a query language for both Web and
Semantic Web data (Section 2.2.1) and the specific requirements on how
to specify data selection (Section 2.2.2) and the make-up of an answer
(Section 2.2.3), further principles regarding declarativity and structuring
of query programs (Section 2.2.4) and reasoning support (Section 2.2.5)
and finally those regarding the relation of querying and evolution (Sec-
tion 2.2.6) are outlined.

2.2.1 VERSATILITY: DATA, SYNTAX, AND INTERFACE

SINGLE QUERY LANGUAGE FOR STANDARD AND SEMANTIC WEB.
hypothesis of this chapter is that a common query language for both conven-
tional Web and Semantic Web applications is desirable (this requirement
for a Web query language has also been expressed by other authors, e.g.,
in [166]). There are two reasons for this hypothesis:

First, in many cases data is not inherently “conventional Web data” or
“Semantic Web data”. Instead, it is the usage that gives data a “conventional
Web” or “Semantic Web” status. Consider for example a computer science
encyclopedia. It can be queried like any other Web document using a Web
query language. If its encyclopedia relationships (formalizing expressions
such as “see”, “see also”, “use instead” commonly used in traditional ency-
clopedia) are marked up, e.g., HTML hypertext links, XLink [83] or any
other ad hoc or generic formalism as one might expect from an online
encyclopedia, then the encyclopedia can also be used as “Semantic Web
data’, i.e. as metadata, in retrieving computer science texts (e.g., the ency-
clopedia could relate a query referring to “Linux” to Web content referring
to “operating systems of the 9os”) or enhance the rendering of Web con-
tents (e.g. adding hypertext links from some words to their definitions in
the encyclopedia).

Second, Semantic Web applications will most likely combine and inter-
twine queries to Web data and to metadata (or Semantic Web data) in
all possible manners. There is no reason to assume that Semantic Web
applications will rely only on metadata or that querying of conventional
Web data and Semantic Web data will take place in two (or several) succes-
sive querying phases referring each to data of one single kind. Consider
again the computer science encyclopedia example. Instead of one single
encyclopedia, one might use several encyclopedias that might be listed in

13

14

VERSATILE WEB QUERIES—THE VISION

a (conventional Web) document. Retrieving the encyclopedias requires
a conventional Web query. Merging the encyclopedias is likely to call
for specific features of a Semantic Web query language. Enhancing the
rendering of a conventional Web document using the resulting (merged)
encyclopedia is likely to require (a) conventional Web queries (for re-
trieving conventional Web documents and the addresses of the relevant
encyclopedias), (b) Semantic Web queries (for merging the encyclopedias),
(c) mixed conventional and Semantic Web queries (for adding hypertext
links from words defined in the (merged) encyclopedia).

INTEGRATED VIEW OF STANDARD AND SEMANTIC WEB: GRAPH
DATA. Both XML (and semi-structured data in general), as predomi-
nantly used on the (standard) Web, and RDE, the envisioned standard for
representing Semantic Web data, can be represented in a graph data model.
Although XML is often seen as a tree model only (cf. XML Information
Set [81] and the XQuery data model [94]), it does provide nonhierarchical
relations, e.g., by using ID/IDREF or hypertext links.

Similar to the proposal for an integrated data model and (model-theoretic)
Semantics of XML and RDF presented in [176], a query language for both
standard and Semantic Web must be able to query any such data in a natu-
ral way. In particular, an abstraction of the various linking mechanisms is
desirable for easy query formulation: One approach is the automatic deref-
erencing of ID/IDREF-links in XML data, another the unified treatment
of typed relations provided both in RDF and XLink.

The restriction to hierarchical (i.e., acyclic) relations is not realistic
beyond the simplest Semantic Web use cases. Even if each relation for
itself is acyclic, inference based not only on relations of a single type must
be able to cope with cycles. Therefore, a (rooted) graph data model is called
for.

THREE SYNTAXES: XML, COMPACT HUMAN-READABLE, AND VI-
SUAL.
It is desirable that a query language for the (conventional and/or Semantic)
Web has an XML syntax, to allow easy exchange and manipulation of query
programs on the Web. Nevertheless, a second, more compact syntax easier
for humans to read and write is desirable. Therefore, two textual syntaxes
should be provided: a purely term-oriented XML syntax and another one
which combines term expressions with non-term expressions like most
programming languages. This other syntax should be more compact than
the XML syntax and better readable for human beings. Both syntaxes
should be interchangeable (the translation being a low cost process).
Third, a visual syntax can greatly increase the accessibility of the lan-

2.2 DESIGN PRINCIPLES

guage, in particular for non-experts. This visual syntax should be a mere
rendering of the textual language, a novel approach to developing a visual
language with several advantages: It results in a visual language tightly
connected to the textual language, namely it is a rendering of the textual
language. This tight connection makes it possible to use both, the visual
and the textual language, in the development of applications. Last but
not least, a visual query language conceived as a hypertext application is
especially accessible for Web and Semantic Web application developers.

MODELING, VERBALIZING, AND VISUALIZING. (1) Authoringand
Modeling. Authoring correct and consistent queries often requires consid-
erable effort from the query programmer. Therefore, semi-automated or
fully-automated tool support both for authoring and for reading and un-
derstanding queries is essential. (2) Verbalization. For verbalizing queries,
as well as their in- and output, some form of controlled natural language
processing is promising and can provide an interface to the query language
for untrained users. The importance of such a seemingly free-form, “natu-
ral” interface for the Web is demonstrated by the wide-spread success of
Web search engines. (3) Visualization. As discussed above, a visualization
based on styling of queries is highly advantageous in a Semantic Web
setting. As demonstrated in [28], it can also serve as a foundation for in-
teractive features such as authoring of queries. On this foundation, more
advanced authoring tools, e.g., for verification and validation of queries,
can be implemented.

2.2.2 DATA SELECTION: PATTERN-BASED, INCOMPLETE

Every query language has to define means for accessing or selecting data.
This section discusses principles for data selection in a Web context.

PATTERN QUERIES. Patterns (as used, e.g., in Xcerpt [188] and XML-
QL [84]) provide an expressive and yet easy-to-use mechanism for speci-
tying the characteristics of data sought for. In contrast to path expressions
(as used, e.g., in XPath [73] and languages building upon it), they allow an
easy realization of answer-closedness (see below) in the spirit of “query by
example” query languages. Query patterns are especially well suited for
a visual language because they give queries a structure very close to the
structure of possible answers. One might say that query patterns are like
forms, answers like form fillings.

15

16

VERSATILE WEB QUERIES—THE VISION

INCOMPLETE QUERY SPECIFICATIONS Incomplete queries specify
only part of the data to retrieve: e.g. only some of the children of an
XML element (referring to the tree representation of XML data called
“incompleteness in breadth”) or an element at unspecified nesting depth
(referring to the tree representation of XML data called “incompleteness
in depth”). Such queries are important on the conventional Web because
of its heterogeneity: one often knows only part of the structure of the XML
documents to retrieve.

Incomplete queries specifying only part of the data to retrieve are also
important on the Semantic Web. There are three reasons for this: first,
“Semantic Web data” such as RDF or Topic Map data might be found in
different (XML) formats that are in general easier to compare in terms
of only some salient features. Second, the merging of “Semantic Web
data” is often done in terms of components common to distinct data
items. Third, most Semantic Web data standards allow data items with
optional components. In addition, query languages for the conventional
and Semantic Web should ease retrieving only parts of (completely or
incompletely specified) data items.

INCOMPLETE DATA SELECTIONS Because Web data is heterogeneous
in its structure, one is often interested in “incomplete answers”. Two kinds
of incomplete answers can be considered. First, one might not be inter-
ested in some of the children of an XML (sub-) document retrieved by a
query. Second, one might be interested in some child elements if they are
available but would accept answers without such elements.

An example of the first case would be a query against a list of students
asking for the name of students having an email address but specifying
that the email address should not be delivered with the answer.

An example of the second case would be a query against an address
book asking for names, email addresses, and if available cellular phone
numbers.

But, the limitation of an answer to “interesting” parts of the selected
data is helpful not only for XML data. A common desire when querying
descriptions of Web sites, documents, or other resources stored in RDF
is to query a “description” of a resource, i.e., everything related to the
resource helping to understand or identify it. In this case, one might for
example want to retrieve only data related by at most # relations to the
original resource and also avoid following certain relation types not helpful
in identifying a resource.

POLYNOMIAL CORE. The design principles discussed in this docu-
ment point towards a general-purpose, and due to general recursion most

2.2 DESIGN PRINCIPLES

likely Turing-complete, database programming language. However, it is
essential that for the most frequently used queries, small upper bounds on
the resources taken to evaluate queries (such as main memory and query
evaluation time) can be guaranteed. As a consequence, it is desirable to
identify an interesting and useful fragment of a query language for which
termination can be guaranteed and which can be evaluated efficiently.

When studying the complexity of database query languages, one dis-
tinguishes between at least three complexity measures, data complexity
(where the database is considered to be the input and the query is as-
sumed fixed), query complexity (where the database is assumed fixed and
the query is the input), and combined complexity, which takes both the
database and the query as input and expresses the complexity of query
evaluation for the language in terms of the sizes of both [196].

For a given language, query and combined complexity are usually much
higher than data complexity. (In most relational query languages, by one
exponential factor harder, e.g. in PSPACE vs. LOGSPACE-complete for
first-order queries and EXPTIME-complete vs. PTIME-complete for Dat-
alog, cf. [2].) On the other hand, since data sizes are usually much larger
than query sizes, the data complexity of a query language is the dominating
measure of the hardness of queries.

One complexity class which is usually identified with efficiently solvable
problems (or queries) is that of all problems solvable in polynomial time.
PTIME queries can still be rather inefficient on large databases. Another,
even more desirable class of queries would thus be that of those queries
solvable in linear time in the size of the data.

Database theory provides us with a number of negative results on the
complexity of query languages that suggest that neither polynomial-time
query complexity nor linear-time data complexity are feasible for data-
transformation languages that construct complex structures as the result.
For example, even conjunctive relational queries are NP-complete with
respect to query complexity [69]. Conjunctive queries can only apply
selection, projection, and joins to the input data, all features that are among
the requirements for query languages for the Semantic Web. There are a
number of structural classes of tractable (polynomial-time) conjunctive
queries, such as those of so-called “bounded tree-width” [95] or “bounded
hypertree-width” [109, 111], but these restrictions are not transparent or
easy to grasp by users. Moreover, even if such restrictions are made, general
data transformation queries only need very basic features (such as joins or
pairing) to produce query results that are of super-linear size compared to
the size of the input. That is, just writing the results of such queries is not
feasible in linear time.

If one considers more restrictive queries that view data as graphs, or

17

18

VERSATILE WEB QUERIES—THE VISION

more precisely, as trees, and only select nodes of these trees, there are a
number of positive results. The most important is the one that monadic
(i.e., node-selecting) queries in monadic second-order logic on trees are in
linear time with respect to data complexity [79] (but have non-elementary
query complexity [115]). Reasoning on the Semantic Web naturally hap-
pens on graph data, and results for trees remain relevant because many
graphs are trees. However, the linear time results already fail if very simple
comparisons of data values in the trees are permitted.

Thus, the best we can hope for in a data transformation query language
fragment for reasoning on the Semantic Web is PTIME data complexity.
This is usually rather easy to achieve in query languages, by controlling
the expressiveness of higher-order quantification and of recursion. In
particular the latter is relevant in the context of the design principles laid
out here. A PTIME upper bound on the data complexity of recursive
query languages is achieved by either disallowing recursion or imposing
an appropriate monotonicity requirement (such as those which form the
basis of PTIME data complexity in standard Datalog or Datalog with
inflationary fixpoint semantics [2]).

Finding a large fragment of a database programming language and de-
termining its precise complexity is an important first step. However, even
more important than worst-case complexity bounds is the efficiency of
query evaluation in practice. This leads to the problem of query optimiza-
tion. Optimization is usually also best done on restricted query language
fragments, in particular if such fragments exhibit alternative algebraic,
logical, or game-theoretic characterizations.

2.2.3 ANSWERS: ARBITRARY XML, RANKED

ANSWERS AS ARBITRARY XML DATA. XML is the lingua franca of
data interchange on the Web. As a consequence, answers should be express-
ible in every possible XML application. This includes both text without
mark-up and freely chosen mark-up and structure. This requirement is
obvious and widely accepted for conventional Web query languages. Se-
mantic Web query languages, too, should be capable of delivering answers
in every possible XML application so as to make it possible for instance
to mediate between RDF and XTM (an XML serialization of Topic Maps,
cf. [175]) data or to translate RDF data from one RDF syntax into another
RDF syntax.

ANSWER RANKING AND TOP-K ANSWERS. In contrast to queries
posed to most databases, queries posed to the conventional and Semantic

2.2 DESIGN PRINCIPLES

Web might have a rather unpredictable number of answers. As a conse-
quence, it is often desirable to rank answers according to some application-
dependent criteria. Therefore, Web and Semantic Web query languages
should offer (a) basic means for specifying ranking criteria and, (b) for
efficiency reasons, evaluation methods computing only the top-k answers
(i.e., a given number k of best-ranked answers according to a user-specified
ranking criterion).

QUERY PROGRAMS: DECLARATIVE, RULE BASED. The following
design principles concern the design of query programs beyond the data
selection facilities discussed in Section 2.2.2.

REFERENTIAL TRANSPARENCY. This property means that, within a
definition scope, all occurrences of an expression have the same value, i.e.,
denote the same data. Referential transparency is an essential, precisely
defined trait of the rather vague notion of “declarativity”.

Referential transparency is a typical feature of modern functional pro-
gramming languages. For example, evaluating the expression f 5 in the
language Haskell will always yield the same value (assuming the same
definition of f is used). Contrast with languages like C or Java: the expres-
sion £(5) might yield different results every time it is called because its
definition depends on constantly changing state information.

Referentially transparent programs are easier to understand and there-
fore easier to develop, maintain, and optimize as referential transparency
allows query optimizers to dynamically rearrange the evaluation order of
(sub-) expressions, e.g., for evaluating in a “lazy manner” or computing an
optimal query evaluation plan. Therefore, referential transparency surely
is one of the essential properties a query language for the Web should
satisfy.

ANSWER-CLOSEDNESS. Wecalla querylanguage “answer-closed” if re-
placing a sub-query in a compound query by a possible (not necessarily ac-
tual) single answer always yields a syntactically valid query. Answer-closed
query languages ensure in particular that every data item, i.e. every possible
answer to some query, is a syntactically valid query. Functional programs
can—but are not required to—be answer-closed. Logic programming lan-
guages are answer-closed but SQL is not. E.g., the answer person(a) to the
Datalog query person(X) is itself a possible query, while the answer “name
=2 ” to the SQL query SELECT name FROM person cannot (without sig-
nificant syntactical changes) be used as a query. Answer-closedness, is the
distinguishing property of the “query by example” paradigm [205], even
though it is called differently there, separating it from previous approaches

19

20

VERSATILE WEB QUERIES—THE VISION

for query languages. Answer-closedness eases the specification of queries
because it keeps limited the unavoidable shift in syntax from the data
sought for and the query specifying these data.

To illustrate the importance of answer-closedness in the Web context,
assume an XML document containing a list of books with titles, authors,
and prices (cf. for instance the XML Query Use Case XMP [68]). The
XPath [73] query

1 /bib/book/title/text ()

selects the (text of) titles of books, while a similar query in the (answer-
closed) language Xcerpt is

1 bib{{ book{{ title{ var T } }} }}

XPath does not allow to substitute, e.g., the string “Data on the Web”
for the query, and is thus not answer-closed. In Xcerpt, on the other hand,
the following is both an answer to the above query and a perfectly valid
query in itself:

1 bib{ book{ title{ "Data on the Web" } } }

Answer-closedness is useful, e.g., when joining several documents. For
instance, a query could first select book titles in a person’s favorite book
list and then substitute these titles in the query above:

v and {
my-favorite-books {{ title { var T } }},
3 bib {{ book {{ title { var T } }} }}
¥

2.2.4 RULE-BASED, CHAINING, AND RECURSION

RULE-BASED. Rules are understood here as means to specify inferred,
maybe virtual, data in terms of queries, i.e., what is called “views” in
(relational) databases, regardless of whether this data is materialized or
not. Views, i.e., rule-defined data, are desirable for both conventional and
Semantic Web applications. There are three reasons for this:

First, view definitions or rules are a means for achieving the so-called
“separation of concerns” in query programs, i.e., the stepwise specifica-
tions of data to retrieve and/or to construct. In other words, rules and
view definitions are a means for “procedural abstraction’, i.e., rules (view
definitions, resp.) are the Prolog and Datalog (SQL, resp.) counterpart of
functions and/or procedures.

Second, rules and view definitions give rise to easily specifying inference
methods needed, e.g., by Semantic Web applications.

2.2 DESIGN PRINCIPLES

Third, rules and view definitions are means for “data mediation”. Data
mediation means translating data to a common format from different
sources. Data mediation is needed both on today’s Web and on the emerg-
ing Semantic Web because of their heterogeneity.

BACKWARD AND FORWARD CHAINING. On the Web, backward
chaining, i.e., computing answers starting from rule heads, is in general
preferable to forward chaining, i.e., computing answers from rule’s bodies.
While forward chaining is in general considered to be more efficient then
backward chaining, there are many situations where backward chaining
is necessary, in particular when dealing with Web data. For example, a
query might dynamically query Web pages depending on the results of
previous queries and thus unknown in advance. Thus, a forward chain-
ing evaluation would require to consider the whole Web, which is clearly
unfeasible.

RECURSION. On the Web, recursion is needed at least

- for traversing arbitrary-length paths in the data structure,

- for querying on the standard Web when complex transformations

are needed,
- for querying on the Semantic Web when inference rules are involved.
Note that a free recursion is often desirable and that recursive traversals

of XML document as offered by the recursive computation model of XSLT
1.0 are not sufficient.

SEPARATION OF QUERIES AND CONSTRUCTIONS. Two standard
and symmetrical approaches are widespread, as far as query and program-
ming languages for the Web are concerned:

- Queries or programs are embedded in a Web page or Web page
skeleton giving the structure of answers or data returned by calls to
the programs.

- Parts of a Web page specifying the structure of the data returned
to a query or program evaluation are embedded in the queries or
programs.

It is a hypothesis of this chapter that both approaches to queries or
programs are hard to read (and, therefore, to write and to maintain).

Instead of either approach, a strict separation of queries and “construc-
tions”, i.e., expressions specifying the structure of answers, is desirable.
With a rule-based language, constructions are rule heads and queries are
rule bodies. In order to relate a rule’s construction to a rule’s query, (logic
programming) variables can be employed.

21

Specific
Reasoning as
Theories

22

VERSATILE WEB QUERIES—THE VISION

The construction of complex results often requires considerable compu-
tation. The separation of querying and construction presented here allows
for the separate optimization of both aspects, allowing easier adoption of
efficient evaluation techniques.

2.2.5 REASONING CAPABILITIES

Versatility (cf. Section 2.2.1) allows access to data in different representa-
tion formats, thereby addressing format heterogeneity. However in a Web
context, data will often be heterogeneous not only in the chosen represen-
tation format but also in terms, structure, etc. Reasoning capabilities offer
a means for the query author to deal with heterogeneous data and to infer
new data.

SPECIFIC REASONING AS THEORIES. Many practical applications
require special forms of reasoning: for instance, efficient equality reasoning
is often performed using the so-called paramodulation rule instead of the
equality axioms (transitivity, substitution, and symmetry). Also, temporal
data might require conversions between different time zones and/or cal-
endar systems that are expressed in a simpler format and more efficiently
performed using arithmetic instead of logical axioms. Finally, reasoning
with intervals of possible values instead of exact values, e.g., for appoint-
ment scheduling, is conveniently expressed and efficiently performed with
constraint programming.

For this reason, it is desirable that a query language for the (conventional
and Semantic) Web can be extended with so-called “theories” implement-
ing specific forms of reasoning.

Such “theory extensions” can be realized in two manners: (1) A theory
can be implemented as an extension of the run time system of the query
language with additional language constructs for using the extension.
(2) A theory can be implemented using the query language itself and made
available to users of this query language through program libraries. In this
case, theories are implemented by rules and queries. Based upon, e.g., the
XML syntax of the query language (cf. 2.12) such rule bases can then be
queried using the query language itself and maintained and updated by a
reactive language such as XChange [53].

QUERYING ONTOLOGIES AND ONTOLOGY-AWARE QUERYING. In
a Semantic Web context, ontologies can be used in several alternative ways:
First, they can be dealt with by a specialized ontology reasoner (the main
disadvantage being the impossibility of adding new domain-specific con-

2.2 DESIGN PRINCIPLES

structs). Second, they can be regarded as descriptions to be used by a set of
rules implementing the Semantics of the constructs employed by the ontol-
ogy. (This is similar to a meta-interpreter and may be slow.) Alternatively,
the ontology may be “compiled” to a set of rules.

As discussed in the previous point, the query language should allow for
both approaches: extending the query language by specific theory reason-
ers for a certain ontology language, e.g., OWL-DL, as well as the ability to
use rules written in the query language as means for implementing (at least
certain aspects) of an ontology language. Examples for such aspects are the
transitivity of the subsumption hierarchy represented in many ontologies
or the type inference based on domain and range restrictions of properties.

The latter approach is based upon the ability to query the ontology
together with the data classified by the ontology. This is possible due to the
first design principle. Stated in terms of ontologies, we believe that a query
language should be designed in such a way that it can query standard
Web data, e.g., an article published on a Web site in some XML document
format, meta-data describing such Web data, e.g., resource descriptions in
RDF stating author, usage restrictions, relations to other resources, reviews,
etc., and the ontology that provides the concepts and their relations for
the resource description in RDE

2.2.6 QUERYING AND EVOLUTION

When considering the vision of the Semantic Web, the ability to cope
with both quickly evolving and rather static data is crucial. The design
principles for a Web query language discussed in the remainder of this
section are mostly agnostic of changes in the data: only a “snapshot” of the
current data is considered for querying; synchronization and distribution
issues are transparent to the query programmer.

In many cases, such an approach is very appropriate and allows the query
programmer to concentrate on the correct specification of the query intent.
However, there are also a large number of cases where information about
changes in the data and the propagation of such and similar events is called
for: e.g., in event notification, change detection, and publish-subscribe
systems.

For programming the reactive behavior of such systems, one often
employs “event-condition-action”- (or ECA-) rules. We believe that the
specification of both queries on occurring events (the “event” part of ECA-
rules) and on the condition of the data, that should hold for a specific
action to be performed, should be closely related to or even embed the
general purpose query language whose principles are discussed here (cf.

23

24

VERSATILE WEB QUERIES—THE VISION

the reactive language XChange [53] integrating the query language Xcerpt).

23 RELATED WORK

Although there have been numerous approaches for accessing Web data,
few approaches consider the kind of versatility asked for by the vision of
versatile query language outlined here. This section briefly discusses how
the design principles introduced above relate to selected query languages
for XML and RDF data, but does not aim at a full survey over current Web
query languages as presented, e.g., in [16] and [100].

VERSATILITY. Most previous approaches to Web query languages be-
yond format-agnostic information retrieval systems such as search engines
have focused on access to one particular kind of data only, e.g., to XML, or
RDF data. Therefore such languages fall short of realizing the design prin-
ciples on versatility described in Section 2.2.1. Connected to the realization
that the vision of a “Semantic Web” requires joint access to XML and RDF
data, versatility (at least when restricted to these two W3C representation
standards) has been increasingly recognized as a desirable if not necessary
characteristic of a Web query language, e.g., in [176]. The charter of the
W3C working group on RDF Data Access even asks “for RDF data to be
accessible within an XML Query context [... and] a way to take a piece of
RDF Query abstract syntax and map it into a piece of XML Query” [182].
This recognition, however, has mostly lead to approaches where ac-
cess to RDF data is added to already established XML query languages:
[184] proposes a library of XQuery accessor functions for normalizing
RDF/XML and querying the resulting RDF triples. Notably, the functions
for normalizing and querying are actually implemented in XQuery. In
contrast, TreeHugger [194] provides a set of (external) extension functions
for XSLT (1.0) [72]. Both approaches suffer from the lack of expressiveness
of the XQuery and XSLT data model when considering RDF data: XQuery
and XSLT consider XML data as tree data where references (expressed
using ID/IDREF) have to be resolved explicitly, e.g., by a join or a special-
ized function. Therefore, [184] maps RDF graphs to a flat, triple-like XML
structure requiring explicit, value-based joins for graph traversal. Tree-
Hugger maps the RDF graph to an XML tree, thus using the more efficient
structural access where possible, however requiring special treatment of
RDF graphs that are not tree shaped. None of these approaches fulfills
the design principles proposed in Section 2.1 entirely, but they represent
important steps in the direction of a versatile Web query language.

2.3 RELATED WORK

DATA SELECTION. For the remainder of the design principles, Web
query languages specialized for a certain representation format such as
XML or RDF are worth considering. One of the most enlightening views
on the state-of-the-art in both XML and RDF query languages is a view
considering how data selection is specified in these languages. Both data
formats allow structured information and data selection facilities empha-
size the selection of data based on its own structure and its position in
some context, e.g., an XML document or an RDF graph. For specifying
such structural relations, three approaches can be observed:

(1) Purely relational, where the structural relations are represented sim-
ply as relations, e.g., child (CONTEXT,X) A descendant (X,Y) for selecting
the descendants of a child of some node CONTEXT. This style is used in
several RDF query languages, e.g., the widely used RDQL [163] and cur-
rent drafts of the upcoming W3C RDF query language SPARQL [183].
For XML querying, this style has proven convenient for formal considera-
tions of, e.g., expressiveness and complexity of query languages. In actual
Web query languages it can be observed only sparsely, e.g., in the Web
extraction language Elog [18].

(2) Path-based, where the query language allows several structural
relations along a path in the tree of graph structure to be expressed without
explicit joins, e.g., child: : */descendant: : » for selecting the descendants
of childs of the context. This style, originating in object-oriented query
languages, is used in the most popular XML query languages such as
XPath [73], XSLT [72], and XQuery [35], but also in a number of other
XML query languages, e.g., in XPathLog [156] that shows that this style of
data selection can also be used for data updates. Several ideas to extend
this style to RDF query languages have been discussed, but only RQL
[138] proposes a full RDF query language using path expressions for data
selection.

(3) Pattern-based, as discussed in Section 2.2.2. This style is used, e.g.,
in XML-QL [84] and Xcerpt, but is also well established for relational
databases in the form “query-by-example” and datalog.

Most Web query languages consider to some extent incomplete query
specifications as Web data is inherently inconsistent and few assumptions
about the schema of the data can be guaranteed. However, only few query
languages take the two flavors of incomplete data selection discussed in
Section 2.2.2 into account (e.g., Xcerpt and SPARQL [183]).

Polynomial cores have been investigated most notably for XPath (and
therefore by extension XQuery [35] and XSLT [72]), the results are pre-
sented, e.g., in [113, 144, 21, 22].

25

26

VERSATILE WEB QUERIES—THE VISION

ANSWERS. Naturally, most XML query languages can construct an-
swers in arbitrary XML. This is, however, not true of RDF query languages,
many of which such as RDQL [163] do not even allow the construction of
arbitrary RDEF, but rather outputs only (n-ary) tuples of variable bindings.

Answer ranking and top-k answers have historically rarely been pro-
vided by the core of Web query languages, but rather have been added as
an extension, see e.g., [10], a W3C initiative on adding full-text search and
answer ranking to XPath and XQuery [35]. In relational databases, on the
other hand, top-k answers are a very common language feature.

QUERY PROGRAMS. Declarativity and referential transparency have
long been acknowledged as important design principles for any query lan-
guage, as a declaratively specified query is more amenable to optimization
while also easing query authoring in many cases.

Most of the Web query languages claim to be declarative languages
and, oftentimes, to offer a referentially transparent syntax. In the case of
XQuery, the referential transparency of the language is doubtful due to
side effects during element construction. For instance, the XQuery

let $x = <a/> return $x is $x

where is is the XQuery node comparator, i.e., tests whether two nodes are
identical, evaluates to true, whereas the query <a/> is <a/> evaluates to
false, although it is obtained from the first query by replacing all occur-
rences of $x with its value.* The reason for this behavior lies in the way
elements are constructed in XQuery: In the first query a single (empty) a is
created, which is (of course) identical to itself. However, in the second case,
two a elements are constructed, which are not identical (and therefore the
node identity comparison using is fails). Interestingly, this behavior is
related to XQuery’s violation of design principle 2.4.4, that stipulates that
querying and construction should be separated in a query language.

In contrast to referential transparency, answer-closedness can not be
observed in many Web query languages. With the exception of Xcerpt, Web
query languages provide, if at all, only a limited form of answer-closedness,
where only certain answers can also be used as queries.

Related to answer-closedness is the desire to be able to easily recognize
the result of a query. This can be achieved by a strict separation of querying
and construction, where the construction specifies a kind of form filled
with data selected by the query. Such a strict separation is not used in most
XML query languages, but can be observed in many RDF query languages,

2 This has been pointed out, in a slight variation, by Dana Florescu on the XML-DEV
mailing list, see http://lists.xml.org/archives/xml{}-dev/200412/msg00228.html.

http://lists.xml.org/archives/xml{}-dev/200412/msg00228.html

2.4 EXEMPLARS

e.g., RDF and SPARQL, due to the restricted form of construction consid-
ered in these languages (following a similar syntax as SQL, but restricting
the SELECT clause to, e.g., lists of variables).

Section 2.2.4 proposes the use of (possibly recursive) rules for separation
of concern, view specification. This has been a popular choice for Web
query languages (e.g., XSLT [72], Algae?, in particular when combined
with reasoning capabilities (e.g., in TRIPLE [193], XPathLog [156]).

REASONING CAPABILITIES. Reasoning capabilities are, as discussed
in Section 2.2.5, very convenient means to handle and enrich heteroge-
neous Web data. Nevertheless, the number of XML query languages fea-
turing built-in reasoning capabilities is rather limited, examples being
XPathLog [156] and Xcerpt. In contrast, several RDF query languages
provide at least limited forms of reasoning (e.g., for computing the transi-
tive closure of arbitrary relations), e.g., TRIPLE, Algae. Some RDF query
languages also consider ontology-aware querying with RDFS [45] as on-
tology language. For XML query languages, this has not been considered
at length.

2.4 EXEMPLARS

In addition to the broad discussion of previous Web query languages by
the presented design principles, the following two section illustrates two
languages in more detail, viz. XQuery and Xcerpt.

2.4.1 CASE STUDY: XQUERY

XQuery is the soon-to-be W3C recommendation for querying XML data.
It is characterized by (1) the use of XPath navigation for data access, (2) the
use of FLWOR expressions, a form of iterations, to iterate over the result of
query expressions, and (3) a mix of construction and querying allowing for
compact, but at times hard to read queries.
In the following, we give a brief overview of XQuery in terms of the
design principles from this chapter:
(1) Versatility: XQuery has been carefully tailored to querying XML
data with a data model that closely resembles the XML Information
Set [81], which describes the information model of an XML docu-
ment. Other data representation formats have not been considered
during the development, though [Robie et al., 2001] proposes the

3 http://www.w3.0rg/2004/06/20-rules/

27

http://www.w3.org/2004/06/20-rules/

28

VERSATILE WEB QUERIES—THE VISION

(2)

(3)

(4)

use of XQuery to query RDF data. Following the XML Information
Set, XML data is viewed in XQuery as tree shaped with no special
consideration of ID/IDREEF links in the data model. This is part of
the reason, why [184] can not make use of XQueries descendant
axes for traversal in the RDF graph. Two syntaxes for XQuery have
been proposed by the W3C, a compact expression syntax that is
not an XML format though some of its expressions resemble XML
elements and a full XML syntax, called XQueryX, that essentially
provides access to the parse tree of an XQuery expression as XML.
XQBE [42] is a visual interface for a subset of XQuery.

Data Selection: Instead of pattern- (or example-) based selection
of data, XQuery uses navigation in XML documents with XPath.
XPath is well suited for simple selection tasks, but suffers in the con-
text of a full query language from two weaknesses: First, navigation
can become complex due to the multitude of XPath’s axes that allow
great freedom at navigation in the document, though [170] show
that the reverse axes of XPath do not add to the expressive power of
XQuery. Together with the challenge to provide efficient evaluation
for all of these axes, this has let the developers of XQuery to make
most of XPath’s axes optional. Second, XPath has been designed as
a unary selection language. When multiple related pieces of infor-
mation are to be selected (n-ary queries), XPath expressions must
be transformed into full XQuery FLWOR expressions. Incomplete-
ness of queries is supported through several XQuery operators, e.g.,
incompleteness in depth through the descendant axis. Incomplete
answers can be achieved but require some additional reconstruc-
tion of the input. It has been shown in [113] that the complexity of
evaluating XPath expressions is polynomial. A larger polynomial
core for XQuery is still under investigation.

Answers: XQuery is able to create answers in arbitrary XML formats.
No direct support for top-k answers is provided though the effect
can be achieved in some cases using positional predicates. Answer
ranking is not considered in the context of XQuery, but a recent
proposal for a full-text extension of XQuery also considers ranking,
cf. [10].

Query Programs: XQuery does not use rules, but rather functions
to provide a form of separation of concerns. Though referential
transparency has been a part of the design goals of XQuery; it is
doubtful whether this goal has been reached. Indeed, the main
reason for the lack of referential transparency are the side-effects
of construction expressions, that is avoided in other languages by a
strict separation of querying and construction as argued for in the

2.4 EXEMPLARS

design principles. Finally, XQuery expressions are closed under the
data model, but fail to be answer-closed due to the use of navigation
for data access.

(5) Reasoning Capabilities: XQuery does not provide any language
constructs for reasoning support.

2.4.2 CASE STUDY: XCERPT

Xcerpt [188] is a Web query language developed in the European Network
of Excellence REWERSE* that aims, in the spirit of the versatility principle,
at an intertwined access to different forms of Web data, in particular to
RDF and XML. Xcerpt queries are expressed using patterns for XML data
like in the query-by-example paradigm and rules like in logic program-
ming. Xcerpt also adds a number of novel constructs to pattern-based XML
query languages, e.g., optional query parts and expressive, yet declarative
grouping constructs.

In the following, we give a brief overview of Xcerpt in terms of the

design principles from this chapter. For more details see Chapter 3.

(1) Versatility: Xcerpt has been specifically designed to provide access
to different representation formats that can be mapped to a graph-
based semi-structured data model. Nevertheless, the prime focus of
the past development has been access to XML data. Better integra-
tion of RDF data is currently investigated. Xcerpt offers a compact,
term syntax inspired by logic programming languages and an alter-
native compact, XML-style syntax that very much resembles XML
but annotates elements with additional query constructs. Both these
syntaxes are primarily intended for use by humans. An XML syn-
tax similar to XQueryX provides the means of easy programmatic
manipulation through XML tools. Finally, visXcerpt [25] provides a
visual interface and editor based on Web standards such as CSS and
ECMA script.

(2) Data Selection: Xcerpt uses patterns for data selection. Xcerpt’s
patterns can be incomplete in breadth and depth and may contain
optional or negated parts. Furthermore, variables may occur in vir-
tually any place in these patterns making n-ary queries, as well
as joins easy and concise to express. No results on a polynomial
core for Xcerpt have been published, but sub-languages and their
computational properties are under investigation.

(3) Answers: As XQuery, Xcerpt is able to create answers in arbitrary

4 http://rewerse.net/

29

http://rewerse.net/

30

VERSATILE WEB QUERIES—THE VISION

XML formats. Top-k queries are supported directly using the first
construct. However, so far only basic arithmetic expressions can be
used for ranking. Also no efficient algorithms for evaluating Xcerpt
top-k queries have been published so far.

(4) Query Programs: In constrast to XQuery, Xcerpt uses rules to ex-
press views, to mediate data from different sources, to separate
reusable parts of a query, and to realize basic reasoning. Xcerpt is
both referentially transparent and answer-closed.

(5) Reasoning Capabilities: Xcerpt’s rules provide a basic reasoning
mechanism. Though the current prototypes use backward chaining,
a forward chaining evaluation of Xcerpt is conceivable. The inte-
gration of domain specific and advanced ontology reasoners into
Xcerpt is being investigated, however no results have been published
so far.

Xcerpt’s versatile features have been further refined in the development

of the first major revision of Xcerpt, called Xcerpt 2.0, discussed in the
next chapter.

25 CONCLUSION

In this chapter, design principles for (Semantic) Web query languages have
been derived from the experience with previous conventional Web query
language proposals from both academia and industry as well as recent
Semantic Web query activities.

In contrast to most previous proposals, these design principles are fo-
cused on versatile query languages, i.e., query languages able to query
data in any of the heterogeneous representation formats used in both the
standard and the Semantic Web.

As argued in Section 2.4, most previous approaches to Web query lan-
guages fail to address the design principles proposed in this chapter, most
notably very few consider access to heterogeneous representation formats.

The Web query language Xcerpt [188] that already reflects many of these
design principles has been further refined to a true versatile query language
along the principles outlined in this chapter. The results are discussed in
the following chapter.

We believe that versatile query languages will be essential for providing
efficient and effective access to data on the Web of the future: effective
as the use of data from different representation formats allows to serve
better answers, e.g., by enriching, filtering, or ranking data with metadata
available in other representation formats. Efficient as previous approaches
suffer from the separation of data access by representation formats requir-

2.5 CONCLUSION

ing either multiple query languages or hard to comprehend and expensive
data transformations.

In the following chapters, we use most of these principles to guide the
presentation of Xcerpt 2.0 as a versatile Web query language. We illustrate
its versatile querying capabilities along a few use cases in Chapters 3 and
4 (that can also serve to better illustrate the principles outlined in this
chapter). In Parts II and III, we show that existing Web query languages
can be translated into a common, format versatile data model and datalog-
like query language. This is exploited in the final parts of the thesis, where
we turn to the evaluation of versatile query language and address the
concern that versatility comes at too high a price considering complexity
and practical performance of query languages (see Part IV).

31

VERSATILE WEB QUERIES WITH
XCERPT 2.0—CONSTRUCTS AND
EXAMPLES

31 Introduction 34
3.2 Xcerpt 2.0: Overview in 5000 Words 35
3.2.1 Xcerpt: ARough Sketch 35
3.2.2 Xcerpt2.o: DataModel 38
3.2.3 A Syntax for Data: (Data) Terms 40
3.2.4 A Syntax for Queries: (Query) Terms 42
3.2.5 A Syntax for Results: (Construct) Terms 46
3.2.6 A Syntax for Programs:Rules 50
3.3 Versatility 101: Versatile Queries by Example 51
3.3.1 Web Format Basics 53
3.3.2 Format Versatility 54
3.3.3 Schema Versatility 62
3.3.4 Representational Versatility 63
3.4 Adding Identity: From Heraklitto Codd 65
3.4.1 Object Identity in Data Management 67
3.4.2 Object Identity in Xcerpt2.0 69
3.5 Modules: From Separation to Encapsulation 75
3.5.1 Module Extension by Example 77
3.5.2 Framework for rule language module systems . . 81
3.5.3 Module system algebra 83
3.5.4 Modules for Xcerpt 91

3.5.5 Modular Xcerpt—Requirements and Constructs 94

3.5.6 Refining Stores: Instance Stores 98
3.5.7 Related Work 99
3.5.8 Conclusions and Outlook 100
3.6 Conclusion 100

Section 3.3 is closely based on [51], Section 3.5 on
[13]and [12].

34 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

31 INTRODUCTION

The vision and principles of a versatile Web query language capable of
accessing Web data in different formats, yet not less suitable for each format
than a language specialized to that format have guided the continuing
development of the Xcerpt [54, 187] query language. Xcerpt as described
in [187] has originally been developed with focus on XML data, though
viewed as graph data as in the XML Information Set [81] (by resolving
1D/IDREF links in the data model). Nevertheless, the design of the language
has been, from the beginning, carefully tailored to enable also other Web
data formats such as RDF [150] or Topic Maps [133].

This foundation has been exploited to refine Xcerpt, its semantics and
formal foundation, and its evaluation towards the vision of versatility out-
lined in the previous chapter. In this chapter, we focus on refinements to
the language Xcerpt itself. In Part II, we describe an integrated formal
perspective on Web data models and queries and demonstrate in Chapter 7
how to describe Xcerpt and its data model in terms of that formal frame-
work (an extension of datalog with value invention). Moreover, we extend
the framework to include other Web query languages like XPath, XQuery,
and SPARQL, thus opening the door for versatility not only on the level
of the data but even on the level of the language. In Part IV, we finally
show that versatility does not have to come at a price in performance or
evaluation complexity: The CIQcAG algebra is proposed that allows the eval-
uation of Xcerpt, XPath, XQuery, SPARQL, and many other Web query
languages but is capable of delivering optimal or at least competitive time
and space complexity for restricted cases such as XPath (tree queries on
tree data). CIQcAG also extends previous results for (tree) query evaluation
on tree data to a substantially larger class of graph data, viz. continuous
image graphs. As Chapter 7 connects Xcerpt to our formal foundation for
Web data and queries, Chapter 13 connects that framework to ClQcAG by
showing how to compile Web queries to CIQcAG expressions.

Returning to the topic of this chapter, we focus, as stated on the refine-
ment of the Xcerpt language towards the vision of versatility. The result is
called Xcerpt 2.0 and is, in many ways, a summary of one of the strings of
work in the REWERSE working group on “Reasoning-aware Querying”.
The following chapter presents some of the highlights of that refinement
but refrains to address all the technical details (such as the full grammars,
the language meta model, etc.). These details can be found in several deliv-
erables and publications of the aforementioned working group, on which
this chapter also draws notably: Xcerpt 2.0 is first drafted in [59] and fully
specified in [101] which also contains a discussion of node identity and the
proper graph data model of Xcerpt 2.0, both REWERSE deliverables. The

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS

versatile aspects of Xcerpt 2.0 are first described in [51]. Finally, the mod-
ule extensions of Xcerpt 2.0 are based on the modularization framework
described in [13] and realized with the REWERSE composition framework
Reuseware’ and has previously been published in [12]. In the following,
we first briefly recall Xcerpt 2.0 in Section 3.2, focusing on differences to
previous versions of Xcerpt. Then we illustrate the versatility of Xcerpt by
a number of examples in Section 3.3. Finally, we highlight two particular
issues where the design of Xcerpt 2.0 differs notably from that of previous
versions: (1) adding node (or object or surrogate) identity to Xcerpt and
thus moving from infinite regular trees to graphs as data model in Sec-
tion 3.4. (2) modules with parameters for Xcerpt (and any rule language)
in Section 3.5. Though neither of these issues is, in and by itself, novel—
XQuery uses node identity, the effect of object identity on query languages
in general has also long been investigated, e.g., [1]; regular path expressions
have been studied extensively for object-oriented and semi-structure data
and are used, e.g., in Lorel [3]; modules for rule languages such as Prolog
and Datalog have been considered, e.g., in [47]. However, their applica-
tion to Xcerpt illustrates the progress of Xcerpt towards flexible, versatile
Web queries. In particular, node identity and modules can be considered
essential features of a versatile Web query language as node identity is,
arguably, necessary to properly support, e.g., occurrence queries in cyclic
data or change tracking due to updates. The versatile access to Web data
often requires mediating views or rules that give provide an integrated
view of data from different sources. Encapsulating such views in modules
ensures proper encapsulation of data and separation of concern on the
level of tasks or rule sets rather than rules.

32 XCERPT 2.0: OVERVIEW IN 5000 WORDS

3.2.1 XCERPT: A ROUGH SKETCH

Xcerpt is a semi-structured query language for the Web, but very much
unique among the exemplars of that type of query languages (for an
overview see [16] and [100]) in that it combines aspects of different lan-
guages in novel ways aiming towards a versatile query language as defined
in [58, 61] and Chapter 2.

(1) In its use of a graph data model, it stands closely to early semi-
structured query languages such as Lorel [3] than to current W3C

1 http://reuseware.org/

35

http://reuseware.org/

36 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

XML query languages such as XPath, XQuery, or XPath. A graph
data model enables Xcerpt to faithfully represent 1p/IDREF-links in
XML as well as arbitrary RDF graphs. Previous versions of Xcerpt
[187] lack (node or object) identity and are thus better characterized
as having infinite regular trees as data model, cf. [80, 1]. However,
Xcerpt 2.0 introduces full node identity and identity variables and
thus moves towards a graph data model as in Lorel or object-oriented
databases. For details see Section 3.4.

(2) Initsaim to address all specificities of XML with great care, it re-
sembles current W3C recommended XML query languages such as
XSLT [72] or XQuery [35]. Xcerpt is tailored to XML in numerous
ways, e.g., by proper support for attributes, namespaces [44], XML
base [151], comments, and processing-instructions. This is achieved
without sacrificing the conceptual simplicity and syntactical concise-
ness of the language. Some aspects of XML are treated differently
than in the W3C query languages, e.g., the transparent resolution
of non-hierarchical relations.

(3) In using (slightly enriched) patterns (or templates or examples)
of the sought-for data for querying, it resembles the “query-by-
example” paradigm [205] and XML query languages such as XML-
QL [84]. In contrast, current XPath, XSLT, and XQuery use naviga-
tional access to XML data which is very convenient for unary selec-
tion where path expressions can be used , but quickly becomes un-
wieldy for n-ary queries where more complex, often nested FLWOR
loops must be employed.

(4) In offering a consistent extension of XML to overcome certain re-
strictions of XML, that seem arbitrary in the context of Web query-
ing and Xcerpt in particular, it is ready to incorporate access to data
represented in richer data representation formats. Instances of such
features are siblings whose relative order is irrelevant (and can not
be queried) and more flexible label alphabets.

(5) In providing (syntactical) extensions for querying, among others,
RDE, Xcerpt becomes a versatile query language (as defined in

(58]).

(6) In astrict separation of querying and construction and in its use
of logical variables and deductive rules, it resembles logic program-
ming languages or Datalog. In contrast, SQL and XQuery, e.g., mix
construction and querying (nested queries) and use explicit refer-
ences to views rather than rule chaining.

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS

Most of these characteristics hold also for earlier versions of Xcerpt, but
are further strengthened in Xcerpt 2.0. This holds particularly for items 1,
2, and 5 and, in general, strengthens Xcerpt’s character as a versatile query
language in the sense of Chapter 2.

As briefly mentioned above, Xcerpt uses to a large extent the same
concepts for data and queries in that each data item can also serve as
a query and a query is mostly an example or pattern of sought-for data.
Instead of using separate concepts and syntax for queries (as in navigational
query languages such as XQuery [35]), Xcerpt uses terms for representing
both data and queries. All data terms are also query terms, but there are
some additional constructs in query terms, that allow (a) the extraction
of data by using logical variables, (b) the specification of queries that are
only incomplete patterns of the data, i.e., where more nodes may occur in
the data than specified in the query, and (c) the specification of formulas
in terms, i.e., conjunction, disjunction, negation, optionality etc:

- Logical Variables. In query terms, logical variables are used to
indicate which data is to be selected and to join data (indicated by
multiple occurrences of the same variable as in logic programming
languages). The result of a query is conceptually a set of tuples
each representing a combination of bindings (or matches) for all
the variables occurring in the query term. For each tuple, a data
term must exist that matches the query where all the variables are
substituted by the bindings of the tuple.

- Separation of Querying and Construction. In contrast to query
languages such as SQL or XQuery, construction and querying are
strictly separate in Xcerpt, in particular there are no nested queries in
Xcerpt (rather rules and rule chaining is used). The data constructed
by a rule is specified in construct terms, that contain variables from
the corresponding query terms acting as placeholders for selected
data. Additionally construct terms make use of gouping constructs
to return all or some of the alternative bindings of a variable.

- Incomplete Patterns. In most cases, queries specify just enough
restrictions on the data to be returned, as required by the query
intent, rather than specifying full or “total” patterns of the data.
Xcerpt supports such queries by providing constructs to express that
a pattern is incomplete in breadth (i.e., there can be more children
than specified), depth (i.e., there can be additional nodes and edges
between the matched nodes) etc.

- Terms as Formulas. Query terms are not only augmented by vari-
ables, but also by constructs for expressing negation, disjunction,

37

38

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

conjunction, and optionality.

In the remainder of this section, we briefly outline Xcerpts data model
and data terms, highlighting the changes in Xcerpt 2.0 compared to previ-
ous versions. Then, we discuss how construct and query terms differ from
data terms.

3.2.2 XCERPT 2.0: DATA MODEL

As stated above, Xcerpt 2.0 usesa GRAPH DATA MODEL. More precisely,
Xcert provides access to one or more data graphs (that are usually stored
in data units called “documents” identified by IRIs [90]). Each data graph
is a rooted, directed, node-labeled, ordered, unranked graph with two types
of nodes:

Definition 3.1 (Element nodes). Element (or structural) nodes represent
XML elements or similar sTRUCTURED data items (e.g., resources in RDF)
that contain a list of references to further nodes (the node’s children).

Each element node is decorated further with a dictionary (or associative
list) of (XML-style) ATTRIBUTES. Some attributes are predefined and
exist at all nodes, viz. the label and namespace IRI (cf. [44]), others are
specified in the data, e.g., as XML attributes. Just like in XML, attributes are
single valued and unordered, i.e., for each attribute name (dictionary key)
a single value exists and the order of the key-value pairs is not significant
and can not be queried. Attributes may be hereditary, i.e., shared by all
descendants of a node unless there is an intermediary node that provides
a differing value for that attribute. Examples for hereditary attributes are
namespaces [44] and base IRIs [151] in XML documents.

In contrast to Xcerpt 1.0, element nodes in Xcerpt have an implicit
object or surrogate identity and there are three kinds of equality between
element nodes: label (or shallow) equality, structural (or deep) equality,
and identity-based equality. The first holds if they have the same label but
ignores any child nodes, the second if they have the same label and for
each child of one node there is a corresponding child of the other node
that are themselves deep equal (in presence of order, the corresponding
children must be in the same order), the third only between a node and
itself. For details on node identity see Section 3.4.

Element nodes closely resemble ELEMENT INFORMATION ITEMS
from [81]. The handling of attributes, however, deviates notably from
the XML information set to emphasize the distinction of elements and
attributes: attributes are simple key-value pair, where the key is an XML

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS

name (and thus may consist in prefix, IRI, and local name) and the value
is an arbitrary string. No further information can be attached to attributes.

Each element node has zero or more edges to other nodes, called its
cHILDREN. These edges are always ordered. However, in contrast to pure
XML, one can specify whether this order is significant, i.e., whether it has
to be preserved during storage or transformation and can be queried. All
element nodes originating from XML documents are by default ordered.
Element nodes where the order is significant are called ordered, element
nodes where the order is insignificant unordered. There are no further
restrictions on the edges, i.e., the graph may be cyclic, may have loops, and
multi-edges, i.e., the same two nodes may be connected by several nodes,
e.g., if a node is the 2nd, 4th, and 12th children of another one.

(XML) element nodes are the ONLY COMPLEX DATA STRUCTURE
in Xcerpt. Other complex data structure such as lists (or sequences), ho-
mogeneous or heterogeneous records, sets, and dictionaries (or associative
lists) can be simulated as terms, but no specific support is offered.

The only other node type is that of atomic or content nodes:

Definition 3.2 (Content nodes). Content (or atomic) nodes represent
data items that are considered UNSTRUCTURED in the context of Xcerpt,
i.e., they contain no list of references to further nodes and thus always play
the role of leaf nodes in the data graph.

Content nodes can be further distinguished into

(1) TExT NODES that represent the textual content of element nodes.
The only attribute of a text node is the string it represents. The same
restrictions as for text nodes in XSLT [72], XQuery, and XPath [94]
apply, i.e., (1) text nodes never represent an empty string, (2) two text
nodes can never be direct siblings of each other. Two nodes are direct
siblings, if either they are children of the same ordered element node
and are consecutive in the children order or they are children of the
same unordered element node. Thus, an unordered element node
may not have more than one text node child. If two text nodes are
constructed as direct siblings they are collapsed.

(2) coMMENT NODES that represent comments, i.e., annotations on
the actual data that are not meant for machine processing. As text
nodes, they have only one attribute: the content of the comment.
However, in contrast to text nodes no further restrictions are placed
on comment nodes.

(3) PROCESSING INSTRUCTION NODES that represent processing
instructions, i.e., annotations on the actual data that are meant for

39

40 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

processing by specific “target” services. They carry two attributes,
the content of the processing instruction (usually some form of
instructions for the “target” service) and the name of the “target”
service.

In Chapter 5, the formal notion of clqLog data graphs is introduced which
are a (slight) generalization of Xcerpt data graphs and a mapping from
the Xcerpt data model to clqLog data graphs is discussed. This mapping
faithfully represents all of the above issues.

3.23 A SYNTAX FOR DATA: (DATA) TERMS

As syntax for representing data in the above data model, Xcerpt chooses
terms. However, these Xcerpt terms extended standard logic terms in sev-
eral ways to accommodate the richer data model of Xcerpt: We need to add
means to represent ordered and unordered terms, cyclic data, attributes,
and hereditary information.

An Xcerpt term is called a data term if it maps directly to a data graph as
defined in Section 3.2.2. For that, it may only contain four types of terms:

(1) AToMIC OR CONTENT data terms that represent a content node.
The most common atomic data term is a simple string representing
a text node.

(2) sTRUCTURED data terms that represents an element node in the
data model.

(3) REFERENCES to other (structured) data terms expressed by a term
identifier.

(4) DECLARATION OF HEREDITARY ATTRIBUTES such as names-
pace or XML base [151] declarations defining a scope for those at-
tributes.

Figure 1 gives an example of an Xcerpt data term drawn from the domain
of bibliography management: Mixing typical bibliographic records (similar
to Bibtex or DBLP) with actual content (represented as XHTML or in a
Docbook-style format) it combines

- so-called document-oriented with data-oriented XML, i.e., data
with flexible, recursive structure and data with rather rigid and flat
structure. Recursive structure is used, e.g., for the content of articles
in Docbook-style format.

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS 41

1 affiliation["Governor, Cicilia"]]
author["Marcus Aemilius Lepidus"

bib
,{ . 3 affiliation["Gens Aemilia"]]
2 journal.adm @ journal{ " 3 -
B = A - author["Marcus Tullius Tiro'
title["Applied Data Management"] L N X .
. s affiliation["Secretary, M. T. Cicero"]]
4 editors[]

editor-in-chief["Titus Pomponius Atticus"]
6 editor(region="Africa")["Marcus Aemilius
Aemilianus"]
editor(region="Gaul")["Aulus Hirtius"
8 affiliation["Governor, Transalpine Gaul"]]

7 title["Space- and Time-Optimal Data Storage on
Wax Tablets"]
in(scrolls="1-94")[* journal.adm]
9 content (type="xhtml") [

declare
editor(region="Cilicia")["Marcus Tullius —
(_ 8 " LN us futiu ns-default="http://www.w3.0rg/1999/xhtml"
Cicero body[
" affiliation["Governor, Cilicia”]] " N
1 <!-- incomplete due to melted letters on
ublisher["Titus Pomponius Atticus"] tablet ~—
” 501umes[E B hl(id="contributions")["Contributions”]
. hl["A History of Data Storage: From Stone
14 journal.adm.v10 @ volume["
N to Parchment"]
Jjournal.adm.v10.nl @ " e s
" : . " 15 p["Despite " cite[A
number (type="special-issue"){ .
. " . . article.66.scaurus.qumran] ...]
16 title["Data Processing Challenges in the oAl
Age of Wax Tablets"] . " oo T @
. . . . 17 1i[em[strong["Homeric"] Age:" 1 ... 1]
editorial[A articles.66.cicero.wax] 3 . N BN
- 1i[em["Age of the " strong["Kings"]
18 year["60"] g]
month["july"]] .
19
20 }
hi(id="tiro")["Notae Tironi "
journal.adm.v10.n2 @ number{ . S . lrﬁ ?[_o a¢ lennlanae Yy
e 21 img(title="Tironian et" src=...)[]
2 year["60"] " X in "
month["november"] Bl TS GHEREH i
) a(href="#contributions")[... 1]
* 5 h1(id="tachygraphy")["Challenges for
1 N
q Tachygraphy on Wax"]
* 1 p["Though conditions for writing on wax
. tablets are adverse
2
5 to tach hy, t in "
conf.dmme @ proceedings{ » DRLEEEG Y .sys”ems @
: a(href="#tiro")[... 1]
30 editors[]
editor["Marcus Aemilius Lepidus"]
n affiliation ["Consul, SPQR" 1] > 3
editor["Gaius Julius Caesar Octavianus"]
o q 29
editor["M Ant v
3 1 * t arcus ek 1 inproc.44.brutus @ inproceedings{
the
< 3 authors[.
" . s author["Marcus Antonius™
Advancements in Data Management for Military . N .
- . P 33 affiliation["Consul, SPQR"] 1]
and Civil Application D 3 o
" 1 author["Decimus Junius Brutus
3 N 35 affiliation["Governor, Cisalpine Gaul"]]
invited-papers[]
Ainproc.44.brutus
e p. 37 title["Efficient Management of Rapidly
Aarticle.66.scaurus.qumran : "
1 Changing Personal Records"]
4

in(scrolls="24-48")[A conf.dmmc]
39 content (type="docbook") [
declare ns-default
http://example.org/ns/docbook/simplified/1.0"

abbrev["DMMC"]
44 year["44"]
month["july"]
4 location["Mutina"]

ublisher["SPQR" 1 o section[info[title["Introduction"]]
" }p section[info[title["Contributions"] 1]
* 3 para["The most notable contributions of

this article include:"

so article.66.scaurus.qumran @ article{ Tist (type="ordered")[

author["Marcus Aemilius Scaurus"

item|
52 affiliation["Tribun, Gnaeus Pompeius Magnus" » L " " " P
11 para["A new " em["methodology"]
to ..., cf. "
title["From Wax Tablets to P: i: Th
. e[CaS:":tu::”]a D @ Hpils We @i . pageref(idref="inproc.44.brutus.s1")[
5 " a0z 17
11s="102-112" A 1.adm.v10.n1
o ﬁi:zlitnss[oL JE LA DL] figure[title["Chart of Desertions"]
56 cite(ref="article.66.cicero.wax")[] * aral ,,Alsmg,,[c‘i‘t‘e[] !
cite(type="formatted")["M. Aemilius Scaurus B . .
(104): A Case for Aarticle.66.cicero.wax] ...]
5 Permanent Storage of Senate Proceedings. o] I
In: M. Aemilius)]
Scaurus, ed. (104): " » ;
6o i["Princeps Senatus: Honor and »]
Responsibility"] 5 . .
" Chapter 2, 14-88."] inproc.44.brutus.sl @ section[
. 1 ! I ' ° 57 info[title["Acknowledgements"]]
*] para["We would like to thank the editors of
64 q q
cite[Ajournal.adm.v10.nl] ...
article.66.cicero.wax @ article{ >] Bl Agfe v 1 1
66 authors|[.]
author["Marcus Tullius Cicero" ' 3
6}

Figure 1. Exemplary Xcerpt Data Term

42 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

- normalized with de-normalized representation of data (e.g., author
information is duplicated for each authored paper, whereas the
information about the journal is represented once and referenced
in other parts),

- hierarchical with delimiter-based structuring of data (e.g., (X)HTML
style sections delimited by consecutive hn elements vs. nested sec-
tions as, e.g., in DocBook),

- resolved and unresolved links. Where links are used to normalize
the data (e.g., in case of journal information of a an article), these
links are resolved to Xcerpt references. Other links (e.g., the link
to another section in the content of an article) are left unresolved
as they must be distinguished from “normal” nesting, e.g., links to
other sections in the content of an article (like “cf. Section 10”).

Structured data terms (line 1, 2, 3, etc.) are distinguished by a label
(optionally preceded by a term identifier delimited by @ and followed by
a set of key-value attributes in parentheses) followed by either a curly
brace or a square bracket enclosing the children of the term. Curly braces
indicate that the order is immaterial, square brackets that it is significant.

Content data terms in this example are string children (line 3, 5, 6, 7,
etc.) of structured data terms (enclosed in double quotes) and comments
(line 79) denoted as in XML.

References (line 73, 82, etc.) are denoted using » and are followed by a
term identifier that must be “defined” by placing the same term identifier
followed by @in front of a structured term (line 2, 29, 50, etc.). The reference
is resolved by adding the referred structured term at the place of the
reference in the list of children of the reference’s parent.

Hereditary attributes are introduced using declare blocks (line 107)
and hand down their attribute list to all terms in their scope (here the
following term and its descendants).

For more details on the syntax of data terms see [101].

3.2.4 A SYNTAX FOR QUERIES: (QUERY) TERMS

Query terms specify “patterns” or “examples” of the sought-for data. In
fact, any data term is also a query term, but query terms contain three
additional aspects beyond data terms: (1) Logical variables are added to
selected nodes, attributes, and labels, (2) Incompleteness allows queries to
specify only relevant portions of a “pattern” stating where matching data
terms may contain additional data (and where not). (3) Term formulas
allow the conjunction, disjunction, and negation of query terms.

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS

To better understand these extensions, an intuition of the answer no-
tion in Xcerpt is needed. The questions, which data and construct terms
match with a query term, and what the answer (i.e., the substitution multi-
set) for a query term is, are formally addressed in [187]. At the root of
Xcerpt’s answer notion stands an extended form of rooted graph simulation
(cf. [164, 125] and [104, 88] for more recent work on efficient algorithms for
computing simulation and bisimulation). This extension of the classical
notion is necessary to accommodate incomplete patterns. In Chapter 7, we
discuss an alternative, but equivalent characterization of Xcerpt queries
by translation to clqLog (as introduced in Chapter 6), a variant of datalog
with value invention.

Intuitively, a query term without any of the extensions discussed in the
following matches only with a data term that has exactly the same shape
modulo reordering of direct sub-terms in unordered structured terms and
of attributes in any terms. The full details are left to [101] and Chapter 7.

VARIABLES. Variables in query terms are used for three purposes: (a)
to specify which parts of a matched (construct or data) term are “selected”
by the query and can be used in the corresponding construct term, (b) to
specify joins, i.e., multiple occurrences of the same data term or literal value
(usually unknown at time of query authoring), and (c) to specify arithmetic
or other conditions involving (literal) values of variables. Variables may
occur in place of structured or content terms, term labels, and attributes.
Such variables may occur by itself indicating that they match with any
term, label, or attribute that can occur at their position in the pattern
or with additional restrictions that limit the shape of the term, label, or
attribute and follow the variable separated by —. In Xcerpt 2.0, we also
allow variables in place of term identifiers (called then “identity variables”
indicated by idvar).

INCOMPLETE PATTERNS. Xcerpt introduces a number of concepts
to allow query terms to be incomplete patterns of the sought-for data, that
may specify only what is needed to distinguish relevant from irrelevant
data. In contrast to many other query languages (such as XQuery and
SQL) that assume that a query specifies only parts of the sought-for data
and make it difficult to specify queries where no additional data may occur,
Xcerpt patterns make it obvious where a query term is incomplete and
where not. This is a property that is particularly welcome in the context of
semi-structured data as here the schema of the data is often unknown or
variable, allowing, e.g., optional or repeated children.

(Structured) query terms can be incomplete with respect to

(1) INCOMPLETENESS IN BREADTH, ie., only a subset of the actual

43

44 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

children of a term is specified. Such a structured query term is called
partial and indicated by double instead of single braces or brackets.
If a term is not partial, it is called total as discussed above.

Partial terms are obviously essential for dealing with semi-structured
data, where the schema of the data may allow for repetition or omis-
sions of data (both in breadth and depth). Thus, queries can not
specify total (or complete) patterns for the data.

However, partial terms also introduce a number of new challenges
in a pattern language such as Xcerpt—that do not occur, e.g., in
logic programming languages such as Prolog, where term arity and
children order of two matching terms are always the same.

First, assume an ordered query term ¢ that specifies only a partial
list of children. Then the position (among its siblings) of a match m’
for a child of m may (and will in most cases) differ from the position
of m among its siblings (i.e., among g’s children). However, in many
cases access to the (sibling) position is needed, e.g., to obtain the first
child or immediate following sibling of a matched term. Therefore,
Xcerpt provides access to the sibling position through the position
modifier position n.

Second, though one may not be able to specify how all of the children
of a sought-for term ought to be shaped like, one might be able to
specify how they ought not to be shaped. Again, this makes sense
only in a partial term, as in a total term the shape of all children must
be explicitly stated. Xcerpt uses the without modifier to express this
subterm negation.

(2) INCOMPLETENESS IN ORDER: As discussed above, data and con-
struct terms may already be distinguished in ordered and unordered
terms. Often, however, one might not care about the order in which
matches for the sub-terms in a query occur in the data, even if the
data itself is ordered. Xcerpt acknowledges this fact by allowing
query terms that are unordered to match with ordered terms, but
not the other way around. Le,, if the query specifies the order is
significant then only data where the order is significant as well can
match with that query; if the query however indicates that the order
may be ignored, then also data is considered that is ordered, how-
ever the sub-terms of the query are matched in any order with the
sub-terms of the data.

(3) INCOMPLETENESS IN DEPTH: Semi-structured data may not only
vary in the number, order, and repetition of children, but also in
how elements are nested. E.g., in (X)HTML most inline elements
such as em may occur in most block-level elements such as p or
div, but may also be nested inside each other. Thus selecting all em

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS

elements in an (X)HTML document in a pattern requires a means
to specify patterns that are incomplete in depth, i.e., that contain
sub-terms that are not direct sub-terms of their parent but stand in
another structural relation to it, e.g., occurring at any depth under
their parent or occurring at depth 5 under their parent.

To express such incompleteness in depth Xcerpt provides the desc
modifier, similar in its basic form to the descendant axis in XPath.
In contrast to XPath (and thus XSLT and XQuery) but as in regular
path expressions, Xcerpt 2.0 also provides a more expressive variant
of the desc modifier that allows direct expression of constraints
such as “occurs at depth 5 under its parent” or “occurs at any depth
under its parent but with only div elements in between its parent
and itself”, see [101].

(4) opTioNAL PARTS: One of the most distinguishing features of semi-
structured data in contrast to, e.g., relational data aside is the al-
lowance for optional information, i.e., information that occurs in
some elements of a certain type but is missing in others of the same
type. Though testing for the existence or absence of such optional
information has been a focus in many semi-structured and XML
query languages (most notably structural predicates in XPath), se-
lecting of or construction based on optional information has been
far less closely investigated. Xcerpt provides query authors with a
unified concept for handling optional information in the context of
testing, selection, and construction, quite in contrast to mainstream
XML query languages such as XQuery and XSLT.

Just like in construct terms, the optional modifier is used in query
terms to indicate which parts of a query may be missing without
affecting the matching of the remainder of the query.

(5) INCOMPLETE STRING MATCHING: Finally, like in the relational
case, queries often may not be able to specify literal content or
identifiers completely, but rather query for data where the literal
content or the identifiers falls into some class, specified in Xcerpt
by means of POSIX.1 regular expressions enhanced with variable
bindings: additionally to using POSIX’s numeric backreferences,
Xcerpt allows subexpressions to be bound to Xcerpt literal variables.
This allows the extraction and insertion of data from the rest of the
Xcerpt query into the regular expression.

To illustrate these features of Xcerpt query terms consider two example
query terms The first selects articles (binding them to the variable X) in a
bibliography as in Figure 1, but only if they contain at any depth an author
element with only content “Cicero” (the “only” is due to the single braces
for the author which indicate that this is a total query term and thus that

45

46

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

there may be no additional children in a matching data term). Due to
the desc authors at any depth are matched and thus also articles that cite
articles with author “Cicero” are matched:

bib{{
2 var X — article{{
desc author{
4 "Cicero"
}
s 33

The second query term is a slight variant where we show the effect of
multiple occurrences of the same variable: It selects again authors but this
time only if they have the same author as some other article (and the
author is a direct child due to the absence of a desc).

bib{{
2 var X — article{{
author{
4 var Y
3

6 article{{ author{ var Y } }} }}

The final example illustrates the difference between normal and identity
variables as discussed in Section 3.4: It selects articles that are cited by at
least two different articles. Optionally, it also selects their citations list, but

the absence of such a list does not preclude the parent article to be included
in the bindings for X.

bib{{
> article{{ cite{{
var Article — idvar cited @ article{{
4 optional var Citation — citations{{ }}
133
¢ article{{ cite{{ idvar cited @ article{{ }} }} }}

For a more detailed discussion of query terms and their matching see
Section 7.3.

3.25 A SYNTAX FOR RESULTS: (CONSTRUCT) TERMS

Given the bindings for variables in a query term, construct terms are used
to create new data (terms) based on these bindings and the specification
of the resulting data given by the construct term itself.

As such a construct term is essentially a data term extended with vari-
ables, as in query terms, in place of structured terms, labels, or attributes.

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS 47

We also allow identity variables in construct terms indicating reference
instead of copy semantics for that term.

There are two major differences between Xcerpt result construction
(and similar query languages for structured data) when compared to fixed-
arity Datalog or Prolog: (1) Given, for instance, bindings for authors and
titles, one would like to create author elements that contain for each author
all (arbitrarily many) corresponding titles. Explicit support for grouping
constructs in the scope of other data is needed to express that form of
construction. (2) Given, for instance, bindings for authors and titles, one
would like to create author elements that contain the name of the author
and, if available, its affiliation and all other authors with the same affiliation
wrapped in a related element. Since, the data does not contain affiliations
for all authors, we use optional query terms to select that information.
Correspondingly, we use conditional or optional construction in the head
such that only if there is a matching affiliation for an author the related
element and its content is created.

Consider, for example, the following substitutions for the variables
Author, Title, and Publication given as result of a query:

Author Title Publication

“Cicero” “Data Processing ..” null

“Cicero” “Space and ..” journal®
“Antonius” “Advancements ..” null
“Antonius” “Efficient Manage..” proceedings®

“Tiro” “Space and ..” journal®

Notice, that Publication is an optional variable.
Then the following construct term

result[
> all author[var Author]]

results in the single data term

result[
» author["Cicero"]
author["Antonius"]
4+ author["Tiro"]]

Notice, how Xcerpt defaults to grouping by structural equivalence and thus
treats the two substitutions with author “Cicero” as one group, constructing
only a single result data term for them.

48 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

If we add Title as free variable in the scope of the grouping modifier,
the grouping variables and thus the groups change:

result[
> all author[
var Author
4 title[var Title]

11
Leading to the result:

1 result[
author["Cicero"

3 title["Data Processing ..."]]
author["Cicero"

5 title["Space and ..."]]
author["Antonius"

7 title["Advancements ..."]]
author["Antonius"

9 title["Efficient Manage..."]]
author["Tiro"
n title["Space and ..."]]

]

Now the substitutions for author and title are both considered for forming
a group, leading to more groups!

Nesting grouping modifiers also affects the free variables, e.g., in the
following construct term Title is no longer free for the out all only for
the inner.

result[
> all author[
var Author
4 all title[var Title]

s]
Thus the result on the sample substitutions is:

result[
> author["Cicero"
title["Data Processing ..."]
4 title["Space and ..."]
]
s author["Antonius"
title["Advancements ..."]
8 title["Efficient Manage..."]
]

o author["Tiro"

3.2 XCERPT 2.0: OVERVIEW IN 5000 WORDS

title["Space and ..."]]
12]

Combining grouping an optional modifiers can lead to surprisingly
expressive constructs:

result[
> all author[
var Author
4 all (title[var Title]
optional var Publication
6 with-default standalone[1)
]
s]

Results in the following data term:

result[
> author["Cicero"
title["Data Processing ..."]
4 standalone[]
]
s author["Cicero"
title["Space and ..."]
8 journal.adm @ journal[...]
1
10 author["Antonius"
title["Advancements ..."]

" standalone[]

]
14 author["Antonius"
title["Efficient Manage..."]
16 conf.dmmc @ proceedings[...]
]
1 author["Tiro"
title["Space and ..."]
20 journal.adm @ journall[...]

]
22]

Again, the full details of construct terms are discussed in [101] and
further examples of construct terms and their instantiation can be found
in Section 7.3.

49

50

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

3.2.6 A SYNTAX FOR PROGRAMS: RULES

Query and construct terms are combined to form rules with query terms as
body and construct terms as head. The body of rules may also be formulas
over query terms.

The following example shows an Xcerpt rule that combines one of the
above example query terms with a simple construct term that puts all the
selected articles “on a shelf”:

CONSTRUCT
> shelf{ all var X }
FROM
4+ bib{{
var X — article{{
6 author{
var Y
8 3
article{{ author{ var Y } }} }}
1o END

Rules can be seen as “views” specifying how to obtain documents shaped
in the form of the construct term by evaluating the query against Web
resources (e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to
form complex query programs, i.e., rules may query the results of other
rules.

This concludes our first look at Xcerpt 2.0. In the following sections,
we highlight most of the major additions (or revisions) of Xcerpt 2.0
compared to previous versions. We omit minor revisions to syntax and
language structure such as (1) the dedicated attribute syntax, (2) details of
the support for hereditary attributes, and (3) term lists in without, grouping,
and optional (query or construct) terms which allows Xcerpt to cope with
delimiter-based XML data such as XHTML [177]or Apples plist format
[11]. These are discussed in more detail in [101]. For Xcerpt 2.0, we have
also developed a significantly improved RDF access layer compared to
basic RDF support as detailed in [38]. This RDF access layer is described
in [180] and largely omitted here.

In Parts IT and I1I, we return several times to Xcerpt and discuss in more
detail its data model, queries, and semantics in terms of a translation to
clqLog.

Before we turn to the specific language features, the next section estab-
lishes the use of Xcerpt as a versatile query language along a number of
examples.

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE 51

Web Application

il
]}

Representational Versatility:
— representational variants in same schema

DocBook: multiple ways to represent authors, sections
(sectl,...,sect5 vs. section), etc.
FOAF: naming, association of homepages or topics

Schema Versatility:
— same information in different schemata

DocBook: co-authorship as a form of foaf:knows,
author affiliation
FOAF: foaf:knows, person’s affiliation/institution

Format Versatility:
— different Web formats for data
— often directly linked to different schemata

19Ae1 ssaddy ejeq S|1IILSIIA

DocBook/DBLP: in XML
FOAF: in any RDF format (RDF/A, RDF/XML, RXR, ...)

Data Data Data
Source Source Source

Figure 2. Versatile Data Access on the Web

33 VERSATILITY 101: VERSATILE QUERIES BY EXAM-
PLE

Web query languages are tailored to the efficient and effective manipula-
tion of such data. However, conventional Web query languages such as
XQuery, XSLT, or SPARQL focus only on one of the different data for-
mats available on the Web and provide little to ease the integration of the
heterogeneous schemata or representations. We argue in Chapter 2 that
versatility, i.e., the ability to handle in the same query program heteroge-
neous formats, schemata, and representations, is a crucial property of Web
query languages, in particular to provide a convenient platform for the
development of applications needing integrated access to different Web
data sources. As defined in Chapter 2, a language is versatile if it provides
means to handle heterogeneous data. One can distinguish three forms of
versatility in Web query languages based on the origin of the heterogeneity
that is considered by the language (summarized in Figure 2):

Format versatility: We call a language format versatile if it is able to
query data in different (Web) formats such as XML, RDE, and Topic Maps.
Whereas in the case of XML there is a precise mapping between seri-
alization and data model, RDF and Topic Maps exhibit many different
serialization formats, e.g., for RDF RDF/XML, RDF/A, and RXR. The
open and rapidly changing nature of the Web prevents that a small set of
“built-in” formats suffices to achieve format versatility. If versatility beyond

52

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

mere serialization differences is desired, the different data models have to
be taken into consideration, cf. [176].

Schema versatility: Schema versatility is a slightly more elusive prop-
erty of a query language linked to its ability to handle data represented
according to different schemata. Ideally, the schema differences are han-
dled transparently, e.g., by integrating the different schemata according to
some given schema mapping. Such schema mappings may be specified,
e.g., in RDFS, the RDF vocabulary description language, or in OWL, the
Web ontology language. Direct or programmed support for schema map-
pings enables a query formulated according to one of the schemata to be
evaluated against data in any of them.

Representational versatility: Web data is partially or semi-structured
rather than fully structured like relational data. Therefore, even within the
same schema, data may be represented in different ways, both w.r.t. struc-
ture and datatype. Web query languages should be able to take these repre-
sentational variants into account, but in contrast to format and schema
heterogeneity representational variants can not be handled transparently:
For instance, different ways to represent a section in DocBook (sect1 vs.
section) carry additional semantics and must be distinguished in some
contexts, whereas in many cases they can be considered the same. Such
distinctions should be expressible in a versatile query language, allowing
the programmer to choose the appropriate solution.

Xcerpt [188, 187] is one of the few Web query languages that address
all three forms of versatility. It is a semi-structured query language, but
very much unique among such languages: (1) In its use of a graph data
model, it stands more closely to semi-structured query languages like
Lorel than to recent mainstream XML query languages. (2) In its aim
to address all specificities of XML, it resembles more mainstream XML
query languages such as XSLT or XQuery. (3) In using (slightly enriched)
patterns (or templates or examples) of the sought-for data for querying, it
resembles more the “query-by-example” paradigm [204] than mainstream
XML query languages using navigational access. (4) In its strict separation
of querying and construction in rules it allows an easy transformation and
interfacing of different rules. (5) In its use of rules as procedural abstraction
or view mechanism, it provides a foundation for reasoning and mediation.

Following a short introduction to the data formats considered, the
remainder of the article further details the three forms of versatility along
concrete examples realized in Xcerpt. Special emphasize is placed on the
identification of general principles needed or useful for a versatile Web
query language.

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE

3.31 WEB FORMAT BASICS

Web data is currently, as far as it is not image, video, or layout-centric,
mostly represented as semi-structured data, marked up either as XML
(most often in the form of XHTML) or in one of the serializations of RDF
(most often in the form of RSS). The discussion of versatile data access
in Sections 3.3.2—-3.3.4 uses data in both formats. To this end, the salient
features of the two data representation formats are shortly summarized
here.

XML [43]isa generic markup language for semi-structured data that has
found widespread adoption both for data exchange and data representation
on the Web (and beyond). Its data model is essentially a tree of nodes
corresponding to elements (such as h1 or title in HTML) of the XML
document. The tree structure reflects the nesting of elements in the serial
XML document. Elements may contain text content represented as text
node children in the data model. Other features of XML include attributes,
namespaces, and processing instructions, for details see [81].

Where XML data is used in the following sections, the examples are
mostly drawn from a list of articles, papers, conferences, etc. in the style
of DBLP?, but with additional information about the actual content of the
paper in DocBook format®. Figure 3 shows a visual representation of parts
of the sample XML document (with fictional journal information) using
Xcerpt’s visual companion language visXcerpt [23].

RDFE [150] is the prevalent standard for representing metadata in the
(Semantic) Web. RDF data is sets of triples or statements of the form
(Subject, Property, Object). RDF’s data model is a directed graph, whose
nodes correspond to subjects and objects of statements and whose arcs
correspond to their properties relating subjects and objects. Nodes are
labeled by either (1) URIs describing (Web) resources, or (2) literals (i.e.,
scalar data such as strings or numbers), or (3) are unlabeled, being so-called
anonymous or blank nodes. Blank nodes are commonly used to group or
“aggregate” properties. Edges are always labeled by URIs indicating the
type of relation between its subject and object.

RDEFS allows one to define so-called “RDF Schemata” or ontologies,
similar to object-oriented data models. Based on RDFS, inference rules
can be specified, for instance the transitivity of the class hierarchy.

2 http://www.informatik.uni-trier.de/~ley/db/

3 http://www.oasis-open.org/docbook/

53

http://www.informatik.uni-trier.de/~ley/db/
http://www.oasis-open.org/docbook/

54 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

Identifier and label of elements

ol e ————— —_— .
journal_adm @ journal A Ordered vs. unordered children list
|| itie] _~

[Applied Data Management / |
editors| __—

Marcus Aemilius Aemilianus I

[publisher| Element nesting (child relation)

Titus Pomponius Atticus / |
volumes| €—————
=

journal_adm_v10 @ volume! . . . uyp "

journal_adm_v10_n1 @ number|
Data Prccessmg()&%ﬁg{m the Age of Wax Tablets |

editori

BD reference to articles_66_cicero_wax |
[mont
journal_adm_v10_n2 @ number

conf_dmmc @ proceedings| article_66_scaurus_qumran @ article
article_66_cicero_wax @ article] inproc_44_brutus @ inproceedings

Figure 3. Visual Rendering of Sample XML Data

RDF can be serialized in various formats, the most frequent being XML.
Early approaches to RDF serialization have raised considerable criticism
due to their complexity. As a consequence, a surprisingly large number of
RDF serialization have been proposed, cf. [16] for a survey of serialization
formats.

In the following, example data based on the “Friend of a Friend” (FOAF)
project* is used. FOAF is an RDF vocabulary describing mostly foaf:Persons
by properties such as foaf:name, foaf:mbox, foaf:homepage, foaf:interest, etc.
Furthermore, it allows to establish “social networks” of persons using
foaf:knows, foaf:Project, foaf:Group, foaf:Organization, and foaf:member.

3.3.2 FORMAT VERSATILITY

The most basic type of versatility a query language for the (Semantic) Web
should posses, is format versatility. Data on the Web is encountered in
many different XML markup languages. In contrast, metadata is usually
represented in RDF or Topic Maps. However, XML serializations exist for
both of these meta data standards, which makes their integration with XML
data easier. Therefore, it has been proposed, e.g., in [184], that an ordinary

4 http://www.foaf-project.org/

http://www.foaf-project.org/

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE

XML query language such as XQuery already provides all necessary means
to integrate data from these different formats. However, using ordinary
XML query languages for such an integration proves to be infeasible for a
number of reasons:

(1) Limitations of the XML Data Model: The W3C’s data model for XML,
the XML Infoset [81], deviates from most other semi-structured data
models (including those of RDF and Topic Maps) in two notable ways:
it is tree-shaped, handling non-hierarchical relations as “second class”
relations, and it assumes that the order among the children of a node is
always relevant. These limitations are true neither for RDF nor Topic Maps
and make format versatile extensions of ordinary XML query languages
such as XQuery or XSLT difficult at best: Either the approach has to tackle
“slicing” up an RDF or Topic Maps graph in XML trees [197], leading to
very unnatural queries, or relational representations are used to represent
RDF triples or Topic Maps assertions, e.g., in [184].

(2) Multitude of Serialization Formats: Topic Maps and, to an even
greater degree, RDF exhibit numerous structured text and XML serializa-
tion formats, e.g., the W3C syntax for RDF RDF/XML [20], a syntax for
embedding RDF in arbitrary XHTML documents RDF/A [4], and Turtle,
the RDF triple syntax adopted for W3C’s SPARQL. A format versatile
language should thus be able to adopt to rapidly emerging serialization
variants.

(3) Transparent Integration: Integrating data from different formats with
ordinary XML query languages can be quite cumbersome and unnatural,
as the integration must be performed as part of each query accessing the
integrated data. Xcerpt rules represent a high level construct that can be
used to provide a uniform logical view over XML markup languages and
RDF serializations.

On the other hand, existing RDF and Topic Maps query languages
are equally unsuited for XML processing, partially due to the limited
expressiveness of most of these languages (including the W3C’s SPARQL),
partially due to the specificities of XML related to its document markup
origins not considered in these languages.

Therefore, a proper versatile query language is called for that has trans-
parent support for different formats and a data model capable of seamlessly,
but without loss of (relevant) information, integrating semi-structured
data on the Web represented in either XML, RDEF, or Topic Maps.

The remainder of this section illustrates this point along a number of
examples realized in Xcerpt. The above mentioned data sources, a DBLP-
like article collection and FOAF data are used.

The combination of both of these sources allows, e.g., “to find the phone
numbers and Web sites of authors for a given article” (1). Moreover, assum-

55

56

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

ing that co-authors personally know each other, the co-author relation
could be inferred from the article collection and used to enhance the exist-
ing foaf:knows property (2). Finally, FOAF data might be used to display
the images of authors of scientific papers for visitors of the DBLP query
interface (3).

There is a plethora of similar use cases, e.g., leveraging data from Ama-
zon combined with interests of persons expressed in FOAF or using Google
Maps to display geographical distributions of friends, groups, people with
similar interests, etc. Geographical information is a particular rich field of
applications where heterogeneous data sources need integration.

Often geographical information is provided in form of XML, e.g., in
form of GML (geography markup language) or the, more high-level, CIA
factbook information. This could be combined with data from the open
directory portal, cf. http://dmoz.org/rdf/. One might be interested in
companies that are located in Polish cities with a given minimum pop-
ulation. While the information about the cities is available in XML for-
mat in CIA factbook, lists of companies in a city are provided in RD-
F/XML format by the ODP. A natural difficulty in integrating XML and
RDF data is that XML does not intrinsically support the notion of glob-
ally unique identifiers as the URI/IRIs in RDFE. While the topic Poland
holds a globally unique identifier in the ODP database (namely http:
//dmoz.org/rdf/Regional/Europe/Poland), the element that represents
Poland in the CIA factbook is not associated with a unique URI. Therefore,
joining information about a data item from both sources must depend on
properties of the data item not on an unique identifier. An OWL mapping
might be used to specify so called inverse functional properties that are
like primary keys in relational data, cf. Section 3.3.3.

From XML to RDF

Xcerpt is tailored in many aspects closely to XML, making the access to
XML data like speaking ones “mother tongue” In this section we show
how the co-author relation (indicated by the name dblp:coauthor) can be
extracted from the DBLP-like article collection. Consider the following
fragment:

bib(){
. article.66.cicero.wax @ article(){
authors() [
4 author()[name(){ "Marcus Tullius Cicero" }
affiliation()["Governor, Cicilia"]]
6 author()[name(){ "Marcus Aemilius Lepidus" }]]
title()["Data Storage on Wax Tablets"] }

http://dmoz.org/rdf/
http://dmoz.org/rdf/Regional/Europe/Poland
http://dmoz.org/rdf/Regional/Europe/Poland

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE

From this XML fragment it can be deduced that there are persons with
the names “Marcus Tullius Cicero” and “Marcus Aemilius Lepidus” who
are co-author of each other. XML does not associate unique identifiers with
the elements in a document. Hence, blank nodes must be used to represent
these persons in the corresponding RDF graph. The rules below transform
the DBLP-like article collection to a set of RDF-like triples containing
all dblp:coauthor predicates for authors of the same paper. For simplicity,
it is assumed that names are unique within the article collection. If this
assumption does not hold, additional properties of the author such as his
affiliation could be leveraged to resolve such name conflicts in some cases.

Two queries are needed to extract this information from the article
collection. First we need to establish a b-node for each distinct author
name:

1 CONSTRUCT
DISTINCT-NAMES{ all distinct name[var AName] }
; FROM
bib{{ _ {{ # Article, Inproceeding, Techreport, ...
P desc author{{ name{ var AName } }} }} }}
END

An author name is found in the XML article collection in name children
of author elements under top-level entries representing articles, theses,
technical reports, etc. Since there may be elements between entry and
author (e.g., authorgroup or affiliation) Xcerpts desc modifier is used to
indicate that authors at any depth are to be included. In the construct part
of the rule, a temporary store for the names is created that contains one
child for each distinct binding of the variable AName.

In a second rule, we query the result of the first one: For each pair of au-
thors within the same top-level entry (i.e., publication) the (automatically
assigned) ID of the corresponding name element as created by the previous
rule is queried and used as the local ID of the b-node for that author.

CONSTRUCT
> RDF-STORE{
all (triple[value(idvar AID1), "dblp:coauthor",

4 value(idvar AID2)]) }
FROM
¢ and (
DISTINCT-NAMES{{
8 idvar AID1 @ name[var ANamel]

idvar AID2 @ name[var AName2] }}
10 bib{{ /.+/{{
desc author{{ name{ var ANamel } }}
12 desc author{{ name{ var AName2 } }} }} }})

57

58

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

END

NORMALIZING RDE OR FROM RDE TO RDF. As mentioned above,
a multitude of serializations for RDF in XML and structured text exists
and frequently new serialization formats are adopted. Therefore, built-in
support for one or even a small number of these serialization formats
alone is not sufficient. Alternatively or additionally, a versatile Web query
language should provide user definable mappings from arbitrary RDF
serializations to a uniform or normalized view of RDF used as target for
queries. In other words, the various physical representations of RDF must
be mapped to a logical view of RDE.

This section illustrates such mappings as Xcerpt rules for some of the
available RDF serialization, viz. RDF/XML [20], and RDF/A [4]. Fortu-
nately, this can be achieved independently of the schema of the RDF data,
which means that the examples of this section work just as well for any
other vocabulary than FOAE

In a semi-structured query language two possible logical views of RDF
are most reasonable: RDF as (relational) triples and as proper graph.” For
many queries the second view is more favorable, as it allows the leveraging
of expressive graph traversal operators such as descendant or regular path
expressions in queries. However, for simplicity a triple view of RDF as
in the above examples is assumed in the following. For a more detailed
discussion of choosing an appropriate logical view on RDF see [98].

TRANSFORMING RDF/XML TO TRIPLES. Thestandard serialization
format for RDF is RDF/XML [20], a W3C recommendation since 2004
very close to the original 1999 RDF syntax. Surprisingly, it is very diffi-
cult to parse this serialization format as it has a high degree of variability.
This originates partially from the design goal that the syntax allows terse
statements of large XML graphs without unnecessary repetition or dupli-
cation in the syntax leading to a large number of abbreviations and purely
syntactical variants, making reading and processing of RDF/XML non
trivial. The following example document shows a few fictive statements in
RDF/XML about “Marcus T. Cicero” based on the FOAF vocabulary:

1 <?xml version="1.0" encoding="utf-8"?7>
<rdf:RDF ... >

;3 <jur:Lawyer rdf:about="people:m_t_cicero"

5 Obviously, any structure in between could also be chosen, however, as [197] shows it is far
from obvious to choose a good “slicing” of the RDF graph that determines which relations
are expressed through direct links and which through value references.

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE

foaf:name="Marcus T. Cicero">
<foaf:member rdf:resource="pol:Optimates" />
<foaf:depiction>
7 <rdf:Description>

<foaf:creator
9 rdf:resource="people:m_t_cicero" />

</rdf:Description>
" </foaf:depiction>
</rdf:Description></rdf:RDF>

Description elements represent resources occurring as subjects in RDF
triples. They contain elements or attributes that define their properties.
The object of a statement is attached as attribute value, as element content,
or as value of the special rdf:resource attribute. Thus, the above RDF/XML
document defines the following RDF triples (in Turtle notation).

people:m_t_cicero foaf:name "Marcus T. Cicero".
> people:m_t_cicero rdf:type <jur:Lawyer>.
people:m_t_cicero foaf:member pol:Optimates.
4+ people:m_t_cicero foaf:depiction _:bust_17.
_:bust_17 rdf:creator people:m_t_cicero .

This example gives only a glimpse at the many variants allowed in
RDF/XML. For more details on the variants and a full description on how
to use Xcerpt to transform RDF/XML in a triple view of RDF are given in
(38].

A brief look at one of the transformation rules suffices to demonstrate
the level of versatility needed to integrate such formats:

1 CONSTRUCT
RDF-STORE{ all triple[var SURI, var PURI, var OURI] }
; FROM
and(
s rdf-subjects {{
idvar S @ _{{ var PURI ((rdf:resource=var OURI)){{

7 1t 1 1,
node-to-triple-value[idvar Subject, var SubjURI])

o END

The rule uses two helper rules rdf-subjects and node-to-uri to find all subject
resources in the RDF/XML document (this requires a recursive traversal
of the document, as subject resources may occur at any depth and are
only distinguishable from properties and objects through their structural
position). The second helper rule is node-to-uri that associates nodes in the
RDF/XML document with URIs (needed to resolve relative URISs, assign
“URIs” to blank nodes etc.). The above rule selects for each subject node
the immediate children of that node, which represent the properties of the

59

60

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

subject node. Finally, the URI of the object is selected from the value of
the rdf:resource attribute of the property. Obviously, this rule only covers
one of the many cases how triples are represented, it can, e.g., not handle
literal objects or nested objects.

TRANSFORMING RDF/A TO TRIPLES. RDF/A [4]isarecent W3C
editor’s draft proposing a new serialization of RDF that allows to embed
RDF statements as attributes in any possible XML markup language, such
as XHTML or SVG. An example RDF/A fragment is shown in the following
listing.
1 <p about="http://senate.spqr/m_t_cicero">
For many years, Marcus T.
; Cicero is a recognized name, both as a lawyer and as
s a senator. He is a member of the conservative Optimates
; party. He has also created <span href="[_:bust_17]"
rev="foaf:depiction" rel="foaf:creator">Bust 17

9 depicting himself.</p>

This RDF/A fragment represents the same triples as the above RDF/XML
document: Subjects of statements are indicated by the about attribute,
predicates by one of the attributes property (if the object of the statement is
a literal), rel (if the object of the statement is a URI) and rev (if the statement
is to be read in the reverse direction). In case the objects of statements are
literals, in RDF/A they are either included in the element with the subject
and predicate attributes or in a content attribute, which takes precedence.
If the object is an UR], it is included in an href attribute.

The different ways RDF triples may be embedded in XHTML (or any
other XML markup language) can be covered in the disjuncts of a single
Xcerpt rule:

1 CONSTRUCT
RDF-STORE{ all triple[var S, var P, var O] }
5 FROM
or (
s desc _((about=var S, property=var P, without content=_))
{{var Object}}
; desc _((about=var S, rel=var P, href=var 0)){{ }}
desc _((about=var 0, rev=var P, href=var S)){{ }},
s desc _((about=var S, property=var P, content=var 0)){{}})
END

Not all possible embeddings of triples in the RDF/A syntax are covered
by this rule: Is the about attribute absent for an element with a property

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE

attribute, the subject of the corresponding statement is resolved by subject
resolution, cf. Section 3.3.4.

There are also other, non-W3C RDF serialization formats that are more
regular and become very similar to the logical triple view of RDF discussed
in this section.

FROM TRIPLES TO GRAPHS. Given the triple view, one can formu-
late easily expressive queries against the RDF data. However, whenever the
queries involve path traversals, in particular arbitrary length path traver-
sals (e.g., to traverse the transitive closure of a relation) complex and often
recursive rules are needed.

However, if RDF is considered as a graph, where similar as in RDF/XML
subjects contain properties which in itself contain links to objects of state-
ments, then such queries can be expressed with descendant or regular
path expressions as available in most XML and semi-structured query
languages.

In the spirit of versatility, Xcerpt provides access to both logical views.
The following rule transforms the triple into a graph view.

CONSTRUCT

> RDF-GRAPH-STORE {
all var Subject @ var Subject {
4 all optional var Predicate { Avar Object },
all optional var Predicate { var Literal } } }
s FROM
RDF-TRIPLE-STORE[
8 triple[var Subject, var Predicate,
optional var Literal — literal{{}},

10 optional var Object — /.x/]]

END

From Topic Maps to RDF

Topic Maps being an ISO standard fitting similar purposes as RDE, it is
often desirable to draw information from both of these semantic Web data
formats simultaneously. The large amount of research aiming at easing
the interoperability amongst both formats, cf. [178], is an indicator for
the necessity of a versatile query language like Xcerpt that allows the
aggregation of information from both formats.

A possible procedure for integrating Topic Maps with other formats
would be the transformation of topics and associations to sets of triples in a

similar way as the transformation of the DBLP-like article collection above.

There are several kinds of triples that may be extracted from a topic map:

61

62

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

the type of the topic, its name, and named occurrences of the topic. The
transformation of topics to RDF-like triples—and therefore the integration
of information from Topic Maps and RDF—is obtained quite naturally
using a format versatile query language and is therefore omitted for space
reasons.

3.3.3 SCHEMA VERSATILITY

Schema versatility builds upon format versatility in the sense that the inte-
gration of information from different resources in many cases requires that
the employed query language is both format versatile and schema versatile.
In fact, it is unlikely that pieces of information gathered from sources in
different formats make use of the same schema. As an example reconsider
the integration of information from the DBLP-like article collection and
FOAF descriptions. While both sources of information have been brought
into a uniform triple notation thanks to format versatility, the schemata
of both sources remain unassociated. This is where schema mappings
specified, e.g., in the W3C’s RDFS vocabulary definition language or in
the Web Ontology Language (OWL) come into play.

Both languages provide some means to establish a mapping between
classes and properties in different schemata, though the mapping con-
cepts of RDFS are very limited. A schema mapping might, e.g., state that
dblp:coAuthorOf is a subproperty of foaf:knows, i.e., that all resources that
stand in dblp:coAuthorOf relation also stand in foaf:knows relation.

If the query language supports reasoning with RDFS and/or OWL, it
suffices to include such schema mappings into the considered data. The
query engine then infers the appropriate tuples. Xcerpt provides such rea-
soning support for RDFS in form of a rule library that also illustrates how
user defined schema mappings (e.g., going beyond the mapping constructs
of either RDFS or OWL) can be supported in a query language. Xcerpt’s
RDFS rule library is described in more detail in [38, 98]. Here, it suffices to
give an impression of the kind of rules needed to realize RDFS reasoning:

1 CONSTRUCT
RDFS-STORE{
3 optional all triple[var Subject, var SuperPr, var Object]
optional all var BasicTriple }
s FROM
or (
; RDF-STORE{{
triple[var SubPr, "rdfs:subPropertyOf", var SuperPr]
9 triple[var Subject, var SubPr, var Object] }}
RDF-STORE{{ var BasicTriple }})

3.3 VERSATILITY 101: VERSATILE QUERIES BY EXAMPLE 63

u END

The rule queries the RDF-STORE for all triples with predicate rdfs:subPropertyOf.
Such triples connect a sub-property SubPr to a super-property SuperPr.
In the inferred RDFS-STORE a new triple is inserted for each basic triple
with the sub-property as predicate. Additionally, all the basic triples are
included as well.

Beyond simple equivalences or specialization relations, schema map-
pings may contain more elaborate information, e.g., that a property of
an object is a primary key, i.e., its values uniquely identify that object. In
OWL this is specified by typing the property as owl:InverseFunctionalProperty.
This information can be used to recognize that two objects, even if they
are identified differently (most commonly at least one of them is a blank
node) are indeed the same. In the example case, ISBNs or DOIs of books
and articles qualify for inverse functional properties. This allows to infer
equivalence of individual books even if the schema mapping contains only
equivalences on properties and classes.

Schema versatility often goes hand in hand with the two other forms
of versatility: Often different schemata originate from different formats
used for the data; often different schemata use different representations for
the same data. The link between schema and representational versatility is
further investigated in the following section.

3.3.4 REPRESENTATIONAL VERSATILITY

Even within the same schema, the represenation of information may vary
to a great extent, and the semi-structured nature of data on the Web
requires that an adequate query language can handle heterogeneous and
incomplete data and complex nested structures. RDF/A is an example for
an XML schema that allows a great degree of representational diversity.
Especially the concept of subject resolution, which has been mentioned
in Section 3.3.2, requires that a Web query language that is supposed to
handle RDF/A is representationally versatile. Subject resolution in RDF/A
means that in the absence of an about attribute, the subject of a statement is
searched for as the value of the nearest available about attribute of enclosing
elements.

In order to extract also triples of this kind, the rule from Section 3.3.2
must be adjusted to use Xcerpt’s regular path expressions. The second
disjunct of the above rule would read as follows.

1 desc _ ((about=var Subject)){{
desc(!(_[about=_]))=*
3 ((rel=var Predicate, href=var Object)){{ }}

64

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

i3

The FOAF vocabulary specification provides many different ways to
specify the name of a person, such as foaf:firstName, foaf:nick, foaf:givenname,
foaf:family_name, foaf:name, and foaf:surname. The automatic creation of an
address book from a set of FOAF descriptions requires that all or some of
these possibilities are taken into account. Undoubtedly, a representationally
versatile query language must provide a construct that allows certain parts
of semi-structured data to be optional, in the sense that they are to be
retrieved if present, but that the query need not fail if they are absent.
The following Xcerpt rule transforms a set of FOAF descriptions into an
address book making intensive use of the optional construct.

CONSTRUCT
> addressbook[
all address|[

4 mbox[var Mbox],
firstname[optional var FirstName, optional var GivenName],
6 familyname[optional var FamilyName, optional var Surname],
optional name[var Name]]]
s FROM

foaf:Person{{
10 foaf:mbox{ var Mbox },
optional foaf:firstName{ var FirstName },
12 optional foaf:family_name{ var FamilyName },
optional foaf:surname{ var Surname },
14 optional foaf:name{ var Name },
optional foaf:givenname{ var GivenName } }}
16 END

In construct terms, optional marks the enclosed subterms as optional,
i.e., they are only included in the result, if there are bindings for the free
variables in the scope of the optional. Therefore, the element name in
the above rule is only included, if the query part of the rule succeeded to
match the Name variable.

Note that the rule is written based on the assumption that there is no
major semantic difference neither between surnames and family names,
nor between first names and given names. Furthermore, it is assumed
that a single FOAF description does not contain both a family name and
a surname or a first name and a given name. If this is not the case, a
precedence could be given to, e.g., firstName and familyName and realized
with Xcerpt’s conditional construction.

Concluding, the above examples illustrate how Xcerpt is a first step
towards realizing the vision of versatile query languages outlined in Chap-
ter 2 and makes access to heterogeneous data sources almost as easy as

3.4 ADDING IDENTITY: FROM HERAKLIT TO CODD

access to homogeneous sources. This versatile nature of Xcerpt is further
strengthened by a number of features discussed in the following sections.

3.4 ADDING IDENTITY: FROM HERAKLIT TO CODD

Managing structured or semi-structured data involves the determination
of what defines the identity of a data item (be it a node in a tree, graph, or
network, an object, a relational tuple, a term, or an XML element). Identity
of concepts in data management, most notably for joining, grouping and
aggregation, as well as for the representation of cyclic structures.

“What constitutes the identity of a data item or entity?” is a question that
has been answered, both in philosophy and in mathematics and computer
science, essentially in two ways: based on the extension (or structure and
value) of the entity or separate from it (and then represented through a
surrogate).

EXTENSIONAL IDENTITY. Extensional identity defines identity based
on the extension (or structure and value) of an entity. Variants of ex-
tensional identity are Leibniz’s law® of the identity of indiscernibles, i.e.,
the principle that if two entities have the same properties and thus are
indiscernible they must be one and the same. Another example of this
view of identity is the axiom of extensionality in Zermelo-Fraenkel or Von
Neumann-Bernays-Godel set theory stating that a set is uniquely defined
by its members.

Extensional identity has a number of desirable properties, most notably
the compositional nature of identity, i.e., the identity of an entity is defined
based on the identity of its components. However, it is insufficient to
reason about identity of entities in the face of changes, as pointed out by
Heracleitus around 500 B.C.:

notapoior Toiow avtoiow éubaivovary Etepa kai ETepa

Udara émppel-
You cannot step twice into the same river; for fresh waters are
flowing in upon you. (HERACLEITUS, Fragment 12)

He postulates that the composition or extension of an object defines
its identity and that the composition of any object changes in time. Thus,
nothing retains its identity for any time at all, there are no persistent
objects.

6 So named and extensively studied by Willard V. Quine.

65

66

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

This problem has been addressed both in philosophy and in mathemat-
ics and computer science by separating the extension of an object from its
identity.

SURROGATE IDENTITY. Surrogate identity defines the identity of an
entity independent from its value as an external surrogate. In computer
science surrogate identity is more often referred to as object identity. The
use of identity separate from value has three implications (cf. [14] and
[140])

- In a model with surrogate identity, naturally two notions of object
equivalence exist: two entities can be identical (they are the same
entity) or they can be equal (they have the same value).

- If identity is separate from value, combining the same two parts
multiple times may lead to entities of different identity. That is, it is
possible that two distinct entities share the same (meaning identical,
not just same value) properties or sub-entities.”

- Updates or changes on the value of an entity are possible without
changing its identity, thus allowing the tracking of changes over
time.

In [14] value, structure, and location independence are identified as
essential attributes of surrogate identity in data management. An identifier
or identity surrogate is value and structure independent if the identity is
not affected by changes of the value or internal structure of an entity. It is
location independent if the identity is not affected by movement of objects
among physical locations or address spaces.

Object identity in object-oriented data bases following the ODMG data
model fulfill all three requirements. Identity management through primary
keys as in relational databases violates value independence (leading to
Codd’s extension to the relation model [74] with separate surrogates for
identity). Since object-oriented programming languages are usually not
concerned with persistent data, their object identifiers often violate the
location independence leading to anomalies if objects are moved (e.g., in
Java’s RMI approach).

Surrogate or object identity poses, among others, two challenges for
query and programming languages based on a data model supporting
this form of identity: First, where for extensional identity a single form of
equality (viz. the value and structure of an entity) suffices, object identity
induces at least two, often three flavors of equality (and thus three different
joins): Two entities may be equal wrt. identity (i.e., their identity surrogates

7 In other words, composition is no longer an identity preserving operation.

3.4 ADDING IDENTITY: FROM HERAKLIT TO CODD

are equivalent) or value. If entities are complex, i.e., can be composed from
other objects, one can further distinguish between “shallow” and “deep”
value equality: Two entities are “shallow” equivalent if their value is equal
and their components are the same objects (i.e., equal w.r.t. identity) and
“deep” equivalent if their value is equal and the values of their components
are equal. Evidently, “shallow” value-based equality can be defined on top
of identity-based and “deep” value-based equality.

The same distinction also occurs when constructing new entities based
on entities selected in a query: A selected entity may be linked as a compo-
nent of a constructed entity (object sharing) or a “deep” or “shallow” copy
may be used as component.

Summarizing, surrogate or object identity is the richer notation than
extensional identity addressing in particular object sharing and updates,
but conversely also requires a slightly more complex set of operators in
query language and processor.

Following a short outlook at related work on object identity in data
management, the advantages and challenges for introducing surrogate
identity in Xcerpt 2.0 are investigated.

3.4.1 OBJECT IDENTITY IN DATA MANAGEMENT

The need for surrogate identity in contrast to extensional identity as in early
proposals of the relational data model has been argued for by Codd in [74],
as early as 1979. He acknowledges the need for unique and permanent iden-
tifiers for database entities and argues that user-defined, user-controlled
primary keys as in the original relational model are not sufficient. Rather
permanent surrogates are suggested to avoid anomalies resulting from user-
defined primary keys with external semantics that is subject to change.

In [140] an extensive review of the implications of object identity in
data management is presented. The need for object identity arises if it is
desired to “distinguish objects from one another regardless of their content,
location, or addressability” [140]. This desire might stem from the need for
dynamic objects, i.e., objects whose properties change over time without
loosing their identity, or versioning as well as from object sharing.

[140] argues that identity should neither be based on address (-ability)
as in imperative programming languages (variables) nor on data values (in
the form of identifier keys) as in relational databases, but rather a separate
concept maintained and guaranteed by the database management system.

Following [140], programming and query languages can be classified in
two dimensions by their support for object identity: the first dimension
represents to what degree the identity is managed by the system vs. the

67

68 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

REPRESENTATION
A

Smalltalk-80
Java
OPAL
built-in XPath GEM oQL
XQuery
XSLT

i Pascal

user supplied Prolog UNIX shell
name SQL

QBE

SQL

data value QBE

TEMPORAL

withina between between
program or transactions structural

transaction reorganizations
— —
temporary data persistent data

Figure 4. Identity in Programming and Query Languages

3.4 ADDING IDENTITY: FROM HERAKLIT TO CODD

user, the second dimension represents to what degree identity is preserved
over time and changes, see Figure 4.

Problems of user defined identity keys as used in relational databases
lie in the fact that they cannot be allowed to change, although they are
user-defined descriptive data. This is especially a problem if the identifier
carries some external semantics, such as social security numbers, ISBNs,
etc. The second problem is that identifiers can not provide identity for
some subsets of attributes.

The value of object identities (OIDs) as query language primitives is
investigated in [1]. It is shown that o1Ds are useful for

- object sharing and cycles in data,
- set operations,
- expressing any computable database query.

The data model proposed in [1] generalizes the relational data model, most
complex-object data models, and the logical data model [145]. At the core
of this data model stands a mapping from o1Ds to so-called o-values, i.e.,
either constants or complex values containing constants or further o1ps.
Repeated applications of the o1p-mapping yield pure values that are regular
infinite trees. Thus trees with o1Ds can be considered finite representations
of infinite structures.

The o1p-mapping function is partial, i.e., there may be o1bs with no
mapping for representing incomplete information.

It is shown that “a primitive for 01D invention must be in the language ...
if unbounded structures are to be constructed” [1]. Unbounded structures
include arbitrary sets, bags, and graph structures.

Lorel [3] represents a semi-structured query language that supports
both extensional and object identity. Objects may be shared, but not all
“data items” (e.g., paths and sets) are objects, and thus not all have identity.
In Lorel construction defaults to object sharing and grouping defaults to
duplicate elimination based on o1ps.

3.4.2 OBJECT IDENTITY IN XCERPT 2.0

In the classification scheme established in the previous section, previous
versions of Xcerpt supports extensional identity exclusively. Before pre-
senting arguments for surrogate identity, a closer look at the data model
of Xcerpt 1.0 as defined in [188] is needed.

69

70 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

article [article [
sect [. sect [
para ["Wie froh ..."] para ["Wie froh ..."]

4 title ["First"]

4 title ["First"] .
intro @ sect [

intro @ sect [

. . 6 title ["First"]
6 title ["First"]
sect [
sect [] . .
. s " 8 title ["First"]
8 title ["First" 1]
. sect [
Aintro .)
] 10 title ["First"]
h] sect [
] 12 title ["First"]
N Aintro

1 111111

Figure 5. Cyclic Xcerpt Data Terms

Xcerpt 1.0: Regular Infinite Trees

In contrast to claims in prior descriptions of Xcerpt 1.0, the data model
of Xcerpt is indeed not much so based on graphs, as on regular infinite
trees. This is in part due to the lack of object sharing at the level of the
data model (rather than only in the serialization of data) and thus very
much related to the topic of this article. After [80] a (possibly infinite) tree
t is called regular, if under structural equality the set of all its (possibly
infinite) subtrees is finite. Acyclic Xcerpt 1.0 data terms can be seen as
finite regular trees, cyclic Xcerpt 1.0 data terms as infinite regular trees,
since their number of subtrees is finite under structural equality. Consider,
e.g., the two data terms in Figure 5.

Both data terms have the same five subtrees, viz. the subtree rooted
at article’, sect?, para?, title*, and sect’. Evidently, the number of explicit
representations of the cycle in the data term does not affect the number of
subtrees.

This result is unsurprising in the light of [1], where it is shown that a
graph-shaped object-oriented data model (with object sharing) can be
reduced to a regular infinite tree, if one ignores object identity replacing
(recursively) each object reference with the value of the object. The in-
formed reader will notice that the latter is the conceptual modus operandi
of Xcerpt 1.0.

The cause of this limitation is a desirable property of Xcerpt 1.0, viz.
that parent-child and 1p/1DREF-links are indistinguishable in the data

3.4 ADDING IDENTITY: FROM HERAKLIT TO CODD

model and in queries. This means in other worlds, that Xcerpt does not
distinguish between object copy and object reference or sharing.

In a pure tree data model this is indeed no limitation at all, since in
a tree data model the position of an object (i.e., the position among its
siblings and (recursively defined) the identity of its parent node) is suf-
ficient for a unique identification of that object. However, in graphs this
does not suffice due to object sharing, i.e., the occurrence of the identical
object at different positions. Positional identity would, e.g., in the data
term a{ x@b{}, Ax} result in two a children of the b with different iden-
tity. Considering the example x@a{x, Ax} one sees how this “positional”
identity leads to infinitely many objects, if the term contains cyclic refer-
ences, and thus to infinite (but regular) trees. This is also the root cause
why there is no Xcerpt query that can distinguish between the data term
a{ x@b{}, »x}and the data term a{ b{}, b{} }. Neither is there a query
that can distinguish the two data terms in Figure s.

Indeed, positional identity is already used in Xcerpt 1.0 to some extent,
viz. in the index injectivity property of the simulation relation.

To sum up, currently Xcerpt 1.0 uses a data model based on regular
infinite trees but for serialization (and in-memory representation) these
regular trees are represented as finite and, in general, cyclic graphs. The
following section argues that there are at least three reasons to uses full
object identity, as Xcerpt 2.0 does, and, as an immediate consequence, to
use a proper graph data model.

Object Identity: Updates, Sharing,

Historically, there are two main incentives for object identity vs. exten-
sional identity in data management systems, viz. object sharing and object
updates. Both apply also for Xcerpt. Additionally, object identity is needed
in Xcerpt to properly support an important class of queries, viz. occurrence
queries.

OBJECT UPDATES. Under extensional identity object updates and
transformations are indistinguishable. In particular, it is not possible to
track changes to objects over time. Object identity, on the other hand,
allows the tracking of object updates. E.g., event queries of the form “if
a certain object is changed twice within 10 minutes” require some form
of object identity. As argued above, it is possible to simulate object iden-
tity through extensional identity, but this leads to a violation of the value
independence and places the burden of managing the identity on the user.

71

72

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

OBJECT SHARING. If objectidentity is provided in a data management
system, object sharing is almost always desirable to make views, rules, or
similar “procedural abstraction” mechanisms transparent. Without object
sharing, such procedural abstractions have a side-effect, namely that all
objects in their result get a new identity, even if they are extracted from
queried data. This makes identity joins over rule boarders infeasible (see
XQuery’s violation of referential transparency by combination of element
construction and let, cf. Section 2.4.1).

Occurrence Queries: Possibly the strongest argument for object iden-
tity is, however, the need for occurrence queries. Occurrence queries ask
for occurrences of certain data items in the data base. Examples of occur-
rence queries are, e.g., “How many title elements occur in the first section?”,
“List all occurrences of title in the first section!”, or “For each supplier count
the average number of items per order (where an order may contain the
same item several times)!”.

In Xcerpt occurrence queries are only supported as “distinct” occurrence
queries, i.e., in the form “How many distinct title elements occur in the first
section?”. It is not possible to count the actual occurrences, if some of them
share the same structure, as they are considered identical in this case. One
might think that a simple solution here could be to use bags to gather these
occurrences (instead of sets as in the current semantics of Xcerpt). This,
however, suffices not as a solution: Consider, e.g., the following query term
against the first data term of Figure 5:

article [[

> position 1 sect {{
var X — desc title {{ }}

+ 3}

The query asks “Find all occurrences of title elements at any depth in the first
section.”

How many bindings for X should this query return on the given data? If
one assumes duplicate elimination based on extensional identity (structure
and value of terms), a single binding for X is returned. If no duplicate elim-
ination takes place, however, i.e., in the case of an occurrence query where
simply all the occurrences are of interest, there are infinite occurrences
under the section. This becomes more obvious if one considers the same
data with a longer cycle as in the second data term of Figure 5. To better
illustrate the point, Figure 6 shows a visual representation of the data.

As argued above, in Xcerpt 1.0 both data terms represent the same
infinite regular tree and thus the answer to this query must be the same.
No bound for the number of occurrences of title in the first section can be
given. Indeed, this is the expected answer, if one assumes a data model of

3.4 ADDING IDENTITY: FROM HERAKLIT TO CODD

Coe D O

Wie froh bim

ich, dag ich
weg bin!

o "
First title sect
Section
™
Wie froh b: .. . n .
ich, o8 ich title title First™ title
weg bin Section
title First™ (" title First™ First™) (" title
Section Section Section

First™ First™ First™
Section Section Section
(a) Short Cycle (b) Long Cycle

Figure 6. Structure-equivalent Data Terms with Different Cycle Length

regular infinite trees as Xcerpt does (see above).

If one assumes duplicate elimination based on object identity, the query
returns different answers on the two data terms, as they are no longer
identical (they represent different graphs), viz. three bindings for the first
data term and five for the second.

The following two tables summarize the differences between the result
for the query term on the two data terms with different forms of duplicate

elimination:
duplicate elimination X
value-based title["First"]
identity-based 16,18
none 45,15, 0, "2, t'4, 116, ..
duplicate elimination X
value-based title["First"]
identity-based 4,16, 88, o, 12

6 18 6
none 4, t°, 1%, t'°, t'3, 14, ', ...

To conclude, unrestricted occurrence queries are not expressible in
Xcerpt 1.0 (only distinct occurrence queries are). But unrestricted occur-
rence queries are an essential class of queries. Their introduction on a
regular infinite tree data model is however at least problematic, at worst

73

74

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

impossible. On a graph data model with object identity they are easy to
handle, but an obvious consequence is the loss of Xcerpt’s property to
handle reference and child links indistinguishably.

Supporting Identity in Xcerpt 2.0: Language Constructs

Xcerpt 2.0, as defined in Section 3.2 and in [101] uses node identity and
a proper graph model with an equivalence based on node identity (in
addition to label and deep equality). To support this data model Xcerpt is
extended by the following constructs:

(1) Identity variables are (temporary) representatives for the identity
surrogate of a node. In query terms, they may occur instead of term
identifiers, e.g., desc idvar ID @ a {{}} and on term level (like nor-
mal variables) in which case they match with the identity surrogate
of any node that can occur at that position. To separate them from
other variables in query terms, this is not true for construct terms.
Therefore a different keyword, e.g., idvar, is used to emphasize the
difference.

Queries may contain identity joins expressed simply by repeated
occurrence of the same identity variable. This means that queries
can define the length of the cycle, but arbitrary cycle length queries
can still be expressed using descendant or qualified descendant.
Cyclic queries using “pseudo identifiers” are treated in the same way
but do not allow the propagation of identity to the head of a rule.
Xcerpt 2.0 cyclic queries are not only easier to evaluate, but also
have a clear strict and immediate meaning.
Joins on non-identity variables remain pure value joins.
In construct terms, object sharing is achieved by using identity
variables instead of normal variables, indicating that a link to the
object represented by the surrogate is to be constructed. A normal
variable still indicates just a deep copy of the value.
(5) When creating unbounded structures, i.e., in the case of grouping,
surrogate invention is needed: E.g., if the result should contain an a
with itself as child for each binding of some variable the link between

(2

~

~

(3

S

the two must be established using surrogate invention. The syntax
in Xcerpt 2.0 is as follows:

CONSTRUCT
. result [
all new_id(invention_label) @ a [
4 Alast_id(invention_label)
] group-by var X
s]

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

FROM
s var X —desc title {{ }}
END

More complex object sharing structures can be expressed by rule
chaining.
The above extension leaves the issue of serialization of identity surro-
gates to the implementation. For XML, we expect the use of ID/IDREF
attributes, but the shape of the ids is left to the implementation.

Modules are software units that group together parts of different programs
and knowledge (or data structures) and that usually serve a specific pur-
pose. For any practically applied programming language modules are an
essential feature, as they make large scale projects tractable by humans.
Modules not only facilitate the integration of existing applications and soft-
ware into complex projects, they also offer a flexible solution to application
development where part of the application logic is subject to change.

The work presented in this chapter first advocates the need and advan-
tages of modularizing rule-based languages. The rule-based paradigm
offers elegant and flexible means of application programming at a high-
level of abstraction. During the last couple of years, a considerable number
of initiatives have focused on using rules on the Web (e.g. RuleML, R2ML,
XSLT, RIF Core etc.).

However, unless these rule languages are conceived with proper support
for encoding knowledge using modular designs, their contributions to
the Web are arguably doomed to exist in isolation, hence with no easy
mechanism for integration of valuable information. Many of the existing
rule languages on the Web do not provide support for such modular
designs. The rationale behind this is the focus on the initially more crucial
concerns relating to the development of the languages.

The main difference between the module system presented here and
previous work on module systems is, that our approach focuses on gener-
icity. That is, the approach is applicable to many rule languages with only
small adaptation to syntactic and semantic properties of the language to
be supported with constructs for modularization. The concept is based on
rewriting modular programs into semantically equivalent non-modular
programs, hence not forcing the evaluation of the hosting language to be
adapted to some operational module semantics. This approach not only
enables reuseability for current languages, it is arguably also applicable
to forthcoming rule languages. The presented module system hence ar-

75

35 MODULES: FROM SEPARATION TO ENCAPSULATION

76

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

guably enables reuseability in two aspects—it not only supports users of
languages to design programs in a modular fashion, it also encourages
tool and language architects to augment their rule languages by reusing
the abstract module system. Last but not least: the module system is easy
in several aspects. First, it is very easy for language developers to apply
due to the employment of reduction semantics of a given modularized
rule language to its un-modular predecessor. Second, the reduction se-
mantics is kept simple. There is just one operator, yet it is sufficient to
model a quite rich modular landscape including visibility, scoped module
use, parametric modules etc., though we disallow recursive modules, for
reasons of simplicity. Third, the implementation of the abstract module
system can be achieved using existing language composition tools, for ex-
ample, Reuseware.® A concrete modularized language is achieved by mere
instantiation of the abstract implementation, making the implementation
of the abstract module system fast and easy.

The abstract module system is then applied to extend Xcerpt with mod-
ules. Modules allow a separation of concern not just on the basis of single
rules but on the basis of larger conceptual units of a query program. For
example, one part of a Web application is often concerned with extracting
data from a set of sources, such as a set of Web pages. At the next step, the
data might have to be syndicated into a common view and format. From
this syndicated data, some new implicit data could possibly be derived.
Finally, the resulting data set should be displayed in an appropriate human-
readable form, for example, by being displayed in a well-structured Web
page (see Section 3.5.4 for an example). These different steps taken by the
application have to do with different concerns of the overall realization,
such as data extraction, data management and data display. Furthermore,
each of the concerns deals with different schemata, but the knowledge
of the schemata can be hidden and encapsulated within each concern -
within each module. In contrast, exposing all these concerns in one mono-
lithic query program not only becomes very hard to understand, but is
also impossible to manage as a change in some part may affect any other
part.

For Xcerpt, we propose a module system that (a) demonstrates how
Web query languages can profit from modules by partitioning the query
program as well as its execution; (b) provides an easy, yet powerful module
extension for Xcerpt that shows how well-suited rule-based languages
are for component-based reuse; (c) is based on a single new concept, viz.
“stores”; and (d) uses a reduction semantics exploiting the power of a

8 http://reuseware.org

http://reuseware.org

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

language with views. This semantics enables the reuse of the existing query
engine making the design of the module system easier and its deployment
less time consuming.

3.5.1 MODULE EXTENSION BY EXAMPLE

Rules in a particular language are usually specified in a rule set, a finite set
of (possibly) related rules. Recall from above, that we focus our work on
so-called deductive rules. A deductive rule consists of a head and a body
and has the following form:

head :- body

where body and head are finite sequences of atomic formulas of the rule
language. The formulas of each set are composed using (language specific)
logical connectives. The implication operator : - binds the two rule parts
together. Rules are read “if the body holds, then the head also holds”
Usually, rule parts share variables: the variable substitutions obtained by
evaluating the body are used to construct new data in the head.

In the following we extend a concrete rule language with modules. By
following our proposed approach, which is formalized in Section 3.5.3,
one can afford to abstract away from a particular data model or specific
capabilities supported by a rule language and - most important - not to
change the semantics of the language.

Datalog as an Example Rule Language

In the introductory part we mentioned Datalog as an example rule lan-
guage based on deductive rules. Datalog is a well-known database query
language often used for demonstrating different kinds of research results
(e.g. query optimization). Datalog-like languages have been successfully
employed, e.g. for Web data extraction in Lixto®. The strong similarities
between Datalog and RIF Core suggest that the ideas followed for modu-
larizing Datalog could be also applied to RIF Core.

In Datalog, the head is usually considered to be a singleton set and
the body a finite set of Datalog atoms connected via conjunction (A).
A Datalog atom is an n-ary predicate of the form p(a,,...,a,), where
a;(1 < i < n) are constant symbols or variables. As such, a Datalog rule
may take the following form:

9 Data extraction with Lixto, http://www.lixto.com/1li/liview/action/display/
frmLiID/12/

77

http://www.lixto.com/li/liview/action/display/frmLiID/12/
http://www.lixto.com/li/liview/action/display/frmLiID/12/

78

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

1 gold-customer(Cust) :- rentals(Cust,Nr,2006), Nr > 10.

to be understood as defining that Cust is a gold customer if the number
Nr of car rentals Cust made in 2006 is greater than 10.

Rules are associated a semantics, which is specific to each rule language
and cannot be described in general terms. For the case of Datalog, seman-
tics is given by definition of a least Herbrand model of a rule-set. We don't
go into details regarding the semantics, since our work on modularizing
Datalog preserves the language’s semantics.

Datalog, and more general deductive rules, infer new knowledge (called
intensional knowledge) from existing, explicitly given knowledge. As al-
ready recognized [141], there is a need to ’limit’ the amount of data used in
performing inference on the Web - a big and open source of knowledge.
Thus, the notion of scoped inference has emerged. The idea is to perform
inference within a scope of explicitly given knowledge sources. One elegant
solution for implementing scoped inference is to use modules for separat-
ing the knowledge. In such a case, the inference is performed within a
module. Since inference is essential on the Web and, thus, modules for
rule languages such as Datalog, let’s see how we could modularize Datalog!

Module Extension for Datalog

This section gives a light introduction to modularizing a rule language
such as Datalog that should ease the understanding of the formal operators
proposed in Section 3.5.2. We consider as framework for our examples
the EU-Rent'® case study, a specification of business requirements for a
fictitious car rental company. Initially developed by Model Systems Ltd.,
EU-Rent is promoted by the business rules community as a scenario for
demonstrating capabilities of business rules products.

The concrete scenario we use for showing advantages of introducing
modularization in rule languages is similar to the use case for rule inter-
change ‘Managing Inter-Organizational Business Policies and Practices,
published by the W3C Rule Interchange Format Working Group in the 2nd
W3C Working Draft of ‘RIF Use Cases and Requirements. The car rental
company EU-Rent operates in different EU countries. Thus, the company
needs to comply with existing EU regulations and each of its branches
needs also to comply with the regulations of the country it operates in.

The EU-Rent company heavily uses rule-based technologies for con-
ducting its business. This was a straightforward choice of technology from

10 EU-Rent case study, http://www.businessrulesgroup.org/egsbrg.shtml

http://www.businessrulesgroup.org/egsbrg.shtml

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

LEGEND:
— \ {regional | @
7 Policies . | seen as rules)
Branches ! Llaw Library | |~—
;o 1| ™ I(explanatory)

. Beriin / 1| toray or Category
pNY Branch S !
¢ e).
/ | Module Bimports
; ! i Regulations | Module A
'
1| Madrid [' B

1| Branch v

EU Insurance
Regulations Policies Policies | |

:
'EU-Rent Library () i

I
Corporate| |

1| Corporate
1| Statistics

Figure 7. EU-Rent Use Case: Module Structure

the IT landscape, since rule languages are more than suitable for imple-
menting company’s policies. Moreover, EU regulations are also given as
(business) rules.

Different sets of rules come into play for most of the company’s rental
services, such as advance reservations for car rentals or maintenance of
cars at an EU-Rent branch. A set of rules implement, as touched on above,
the company’s policies (e.g. that the lowest price offered for a rental must be
honored). These rules are used by each of the EU-Rent branches. Another
set of rules implements the policies used at a particular EU-Rent branch,
as they are free to adapt their business to the requirements of the market
they address (of course, as long as they remain in conformance with the
EU-Rent company-level rules). As is the case for EU regulations, EU-Rent
branches might need to comply with existing national regulations—an
extra set of rules to be considered.

We have illustrated so far a typical scenario for data integration. The sets
of rules our EU-Rent company needs to integrate for its services may be
stored locally at each branch or in a distributed manner (e.g. company level
rules are stored only at EU-Rent Head Quarter and EU and national rule
stores exist on different servers for the corresponding regulations). Rules
might change at the company level and regulations might also change
both at EU and at national level. So as to avoid the propagation of such
changes every time they occur, a distributed and modularized approach
to the EU-Rent implementation would be a suitable solution.

An architectural overview of the scenario described so far is given above.
The overview sketches a possible modularization of rules employed by the
EU-Rent company. Modules are represented here as boxes. An example
EU-Rent branch, the Paris branch, subdivides its vehicle and customer data
as well as its policies into different modules, hence separating concerns for

79

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

gaining clarity and ease maintenance. The module ParisBranch imports
the defined modules and, thus, uses their rules together with those defined
in ParisBranch. Such module dependencies (i.e., imports) are indicated
by arrows between boxes.

Modules can be imported and their rules can be defined as private or
public. Private rules are not visible, i.e. the knowledge inferred by such
rules can not be accessed directly in modules importing them. A statement
private import M2 in a module M1 makes all rules of M2 private within
M1 and thus invisible to the modules importing M1. Rules defined as public
can be used directly in modules importing them. By importing a module
M as public makes its (public) rules visible in all modules importing M.

In the following we specify an excerpt of the module ParisBranch in
Datalog:

1 import private Vehicles
import private Customers
; import private BranchPolicies
import private CorporatePolicies (regional-law =
"FrenchRegulations")
s public vehicle(X) :- voiture(X).
public vehicle(X) :- bicyclette(X).

In the following we turn our attention toa CorporateStatistics, an-
other module depicted in our architecture. This module imports CorporatePolicies,
but also all branch modules (such as ParisBranch, MadridBranch, and
BerlinBranch), a task doomed to produce vast naming clashes of symbols
defined in the imported modules. To overcome the problem, a qualified
import is to be used: Imported modules get local names that are further
used to disambiguate the symbols. Thus, one can smoothly use knowledge
inferred by different, imported rules with same heads.

The following example shows how Datalog can be extended with a
qualified import. To have an overview over the status of EU-Rent vehicles,
the notion of an old vehicle is defined differently for the different branches.
The modules ParisBranch, MunichBranch, and MadrdidBranch get the
local names m1, m2, and m3, respectively. The local names are associated
with the module using @.

import private CorporatePolicies
> import ParisBranch @ ml
import MunichBranch @ m2
4+ import MadridBranch @ m3
private old-vehicle(V) :- ml.vehicle(V), manufactured(V,Y), Y <
1990.
s private old-vehicle(V) :- m2.vehicle(V), manufactured(V,Y), Y <
2000.

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

private old-vehicle(V) :- m3.vehicle(V), manufactured(V,Y), Y <
1995.

The simple module-based architecture and the given module exam-
ples show a couple of advantages of such a module-based approach. We
have already touched on the separation of concerns when describing the
modules of Paris branch as having each a well-defined purpose. Modules
such as EURegulations and FrenchRegulations can be reused by other
applications too (not only by new established EU-Rent branches, but also
by other companies). It could even be published by government agencies
on the Web. A module-based implementation is much more flexible and
less error-prone than one without modules; this eases considerably the
extensibility of the implementation.

3.5.2 FRAMEWORK FOR RULE LANGUAGE MODULE SYSTEMS

In Section 3.5.1 we saw an example of how it is possible to modularize rule-
sets—in this case for Datalog—and that it is important to ensure separation
(or encapsulation) of the different modules. We choose to enforce this
separation statically, i.e., at compile time, due to our desire to reuse—rather
than extend—existing rule engines that do not have an understanding of
modules. An added advantage is a clean and simple semantics based on
concepts already familiar to the users of the supported rule language.

We are interested in extending what is done for Datalog in Section 3.5.1 to
a general framework for rule languages. The notion of modules is arguably
important not only for Datalog, but for any rule language lacking such an
important concept.

However, our reduction semantics for module operators poses some
requirements to the expressiveness of a rule language: To describe these
requirements, we first introduce in the following a few notions and as-
sumptions on rule languages that give us formal means to talk about a
rule language in general. Second, we establish the single requirement we
ask from a rule language to be amenable to our module framework: the
provision of rule dependency (or rule chaining).

In the next section, we then use these notions to describe the single
operator needed to formally define our approach to modules for rule
languages. We show that, if the rule language supports (database) views,
that single operator suffices to obtain a powerful, yet simple to understand
and realize module semantics. Even in absence of (database) views, we
can obtain the same result (from the perspective of the module system’s
semantics) by adding two additional operators.

81

82

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

RULE LANGUAGES. For the purpose of this work, we can take a very
abstract view of a rule language: A rule language is any language where
(1) programs are finite sequences of rules of the language; (2) rules con-
sist of one head and one body, where the body and the head are finite
sequences of rule parts; (3) rule parts' are, for the purpose of this work,
arbitrary. They are not further structured though they may in fact be neg-
ative literals or complex structures. Body rule parts can be understood
as a kind of condition and head rule parts as a kind of result, action, or
other consequence of the rule. We use indices to identify a rule within a
program as well as head or body parts within a rule. Note, that we do not
pose any limitations to the shape of the body parts or the connectors used
(conjunction, disjunction, etc.).

RULE DEPENDENCY. Surprisingly, we care very little about the actual
shape of rule parts, let alone their semantics. The only critical requirement
needed by our framework is that the rule language has a concept of rule
chaining or rule dependency. That is, one rule may depend on another for
proper processing.

Definition 3.3 (Rule dependency). With a program P, a (necessarily finite)
relation A ¢ N* x N? can be associated such that (r,, b,7,, h) € A iff the
condition expressed by the b-th body part of rule r, is dependent on results
of the h-th head part of the r,-th rule in P (such as derived data, actions
taken, state changes, or triggered events), i.e., it may be affected by that
head part’s evaluation.

Controlling rule (or rule part) dependency can take different forms in
different rule languages: in Datalog, predicate symbol provide one (easy)
means to partition the dependency space; in XSLT, modes can serve a
similar purpose; in Xcerpt, the labels of root terms; etc. However, the reali-
sation of the dependency relation is left to the rule language. We assume
merely that it can be manipulated arbitrarily, though the module system
never introduces cycles in the dependency relation if they do not already
exist. Thus the rule language does not need to support recursive rules for
the reduction semantics to be applicable, however, if present, recursive
rules pose no challenge. We do, however, assume that the dependencies
between modules are non-recursive.

Observe, that these rewritings may in fact affect the constants used in
the program. However, constants are manipulated in such a way that, for

11 We refrain from calling rule parts literals, as they may be, e.g., entire formulas or other
constructs such as actions that are not always considered logical literals.

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

each module, there is an isomorphism between the rewritten program and
the original program. Assuming a generic [2] rule language, this renaming
has no effect on the semantics of the program.

The module extension framework requires the ability to express an
arbitrary (acyclic) dependency relation, however poses no restrictions on
the shape of A for a module-free program. Indeed, for any module-free
rule program P the unrestricted relation with all pairs of head parts and
body parts forms a perfectly acceptable A relation on P.

We only require the ability to express acyclic dependency relations as the
discussed module algebra does not allow cycles in the module composition
for simplicity’s sake.

Most rule languages that allow some form of rule chaining, e.g., data-
log, SWRL, SQL, Xcerpt, R,G,, easily fulfill this requirement. However,
it precludes rule languages such as CSS where all rules operate on the
same input and no rule chaining is possible. Interestingly, though CSS
already provides its own module concept, that module concept provides
no information hiding, the central aim of our approach: Rules from all
imported modules are merged into one sequence of rules and all applied
to the input data, only precedence, not applicability, may be affected by
the structuring in modules.

REDUCTION SEMANTICS. Why do we impose the requirement to
express arbitrary dependency relations on a rule language to be amenable
to our module framework? The reason is that we aim for a reduction
semantics where all the additions introduced by the module framework
are reduced to expressions of the original language. To achieve this we
need a certain expressiveness which is ensured by this requirement.

Consider, for instance, the Module “CorporateStatistics” in Section 3.5.1.
Let’s focus only on old-vehicle and the three vehicle predicates from the three
local branches. Using the semantics defined in the following section, we
obtain a program containing also all rules from the included modules
plus a dependency relation that enforces that only certain body parts of
old-vehicle depend on the vehicle definition from each of the local branches.
This dependency relation can be realized in datalog, e.g., by properly rewrit-
ing the predicate symbols through prefixing predicates from each of the
qualified modules with a unique prefix.

3.5.3 MODULE SYSTEM ALGEBRA

Remember, that the main aim of this work is to allow a rule program to be
divided into conceptually independent collections (modules) of rules with

83

84

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

well-defined interfaces between these collections.

For this purpose, we introduce in Section 3.5.3 a formal notion of a
collection of rules, called “module”, and its public interface, i.e., that subset
of rules that constitutes the (public) interface of the module. Building on
this definition, we introduce an algebra (consisting in a single operator) for
composing modules in Section 3.5.3 together with a reduction semantics,
i.e., a means of reducing programs containing such operators to module-
free programs.

OPERATORS BY EXAMPLE. Before we turn to the formal definitions,
let’s again consider the EU-Rent use case from Section 3.5.1, focusing on
the three modules “CorporateStatistics”, “CorporatePolicies”, and “ParisBranch”.

We can define all the import parts of these modules using the module
algebra introduced in the following. We use A x B for indicating that a
module B is imported into module A and A inherits the public interface
of B (cf. import public), A x B to indicate private import (cf. import
private), and A xg B for scoped import (cf. import ... @) where S are
pointers to all rule parts addressing a specific module. Note, that public
and private import can actually be reduced to the scoped import if the
language provides views.

Using these operators we can build formal module composition expres-
sions corresponding to the surface syntax from Section 3.5.1 as follows:

CorporatePolicies’” = (CorporatePolicies x InsurancePolicies) s EURegulations
CorporatePoIicies},mh = CorporatePolicies’ x FrenchRegulations
ParisBranch” = (((ParisBranch w Vehicles) s Customers) BranchPolicies)
n CorporatePoliciesy,,,,.,
CorporateStatistics” = (((CorporateStatistics » CorporatePolicies”) x,) ParisBranch”)
% (,1) MunichBranch”) » .,y MadridBranch’

MunichBranch” = ...

Thus, given a set of basic modules, each import statement is translated
into a module algebra expression that creates a new module, viz. the se-
mantics of the import statement. Unsurprisingly, parameterized modules
lead to multiple “versions” of similar module composition expressions that
only differ in instantiations of the parameters.

Defining Modules

We use module identifiers as means to refer to modules, e.g., when im-
porting modules. Some means of resolving module identifiers to modules

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

(stored, e.g., in files, in a database, or on the Web) is assumed, but not
further detailed here.

Definition 3.4 (Module). A module M is a triple (Rpgrv, Rpys, A) € R x
R x N* where R is the set of all finite sequences over the set of permissible
rules for a given rule language. We call Ry, the private, R,y5 the public
rules of M, and A the dependency relation for M. For the purpose of
numbering rules, we consider R = Rpp;y © Rpyp'? the sequence of all rules
in M.

We call a module’s public rules its “interface” When importing this
module, only these rules become accessible to the importing module in
the sense that rule bodies in the importing module may depend also on the
public rules of the imported module but not on its private rules. Though
the module composition discussed in this section does not rely on any
further information about a module, a module should be accompanied
by additional information for its users: documentation about the purpose
of the module, what to expect from the modules interface, what other
modules it relies on, etc.

Figure 8 shows an exemplary configuration of a program (which is
just a module where R, is empty) together with two modules A and B.
Where the program consists of a single sequence of (private) rules, the
rules of each of the modules are partitioned into private and public rules.
The allowed dependency relation A is represented in the following way:

All body parts in each of the areas ", %, and . are depending on all
head parts in the same area and no other head parts. No access or import
of modules takes place, thus no inter-module dependencies exists in A
between rule parts from one of the modules with each other or with the
(main) program.

Notice, that for the dependency within a module the partitioning in
private and public plays no role whatsoever. Body parts in private rules
may access head parts from public rules and vice versa.

Module Composition

Module composition operators allow the (principled, i.e., via their public
interface) definition of inter-module dependencies. Our module algebra
(in contrast to previous approaches) needs only a single fundamental
module composition operator. Further operators can then be constructed

12 o denotes sequence concatenation, i.e., s; © s, returns the sequence starting with the
elements of s, followed by the elements of s,, preserving the order of each sequence.

85

86 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

LIIIIIII I I 0007

V722222727777272777777

-0

R

Module A Module B Program

A3AIIALILLIALIANIANIANNANN NN
ANAAUNNUNNNNNUNNNNNNNNNNNNNNNNY
A
N
N
N
N
N
N
~
N
N
N
N
N
N
N
N
N
N
N
N

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

private private

Figure 8. Program and two defined modules without imports

from a combination of that fundamental operator and (standard database)
views. However, we also discuss an immediate definition of these operators
for languages where the view based approach is not applicable or desirable.

scoPED IMPORT. The fundamental module composition operator is
called the scoped import operator. Its name stems from the fact that it
allows to specify not only which module to import but also which of the
rules of the importing module or program may be affected by that import
and thus the scope of a module’s import.

Informally, the scoped import of B in A uses two modules A and B and
a set S of body parts from A that form the scope of the module import. It
combines the rules from B with the rules from A and extends the depen-
dency relation from all body parts in S to all public rules from B. No other
dependencies between rules from A and B are established.

To illustrate this consider again the configuration from Figure 8. Assume
that we import (1) module A into B with a scope limited to body part 3 of
rule Rg, and that (2) we import the result into the main program limiting
the scope to body parts 2 and 3 of rule Rp,. Third, we import module A
also directly into the main program with scope body part 1 of Rp,.

This can be compactly expressed by the following module composition
expression:

(P20, 13) (B A)) %(10) A

As usual, such expressions are best read inside out: We import the result
of importing A into B with scope {(2,3)} into P with scope {(1,2), (1,3)}
and then also import A with scope {(1,1)}. The result of this expression is
shown in Figure 9.

Formally, we first introduce the concept of (module) scope.

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

R

private .

private

7777777777777777777

Module B

N N N N N N N N N N N N N N N N N NN NN NNY

Module A

Figure 9. Scoped import of (1) module A into body part 3 of rule Rp, and into body
part 1 of rule Rp, and (2) of (the expanded) module B into body part 2
and 3 of rule Rp,. into the main program

Definition 3.5 (Scope). Let M = (Rpryy,> Rpus, A) be a module (or pro-
gram if Ryyy is the empty sequence). Then a set of body parts from M is
called a scope in M. More precisely, a scope S in M is a set of pairs from
N? such that each pair identifies one rule and one body part within that
rule.

For instance, the scope {(1,2), (1,3), (4,2) } comprises for program P
from Figure 8 the body parts 2 and 3 of rule 1 and the body part 2 of rule 4.

Second, we need a notation for adjusting a given dependency relation
when adding rules. It turns out, a single operation (slide) suffices for our
purposes:

Definition 3.6 (Dependency slide). Given a dependency relation A, slide
computes a new dependency relation by sliding all rules in the slide window
W = [s+1,s + length + 1] in such a way that the slide window afterwards
starts at s,y + 12

slide(A, s, length, spe,) = {(r1, b, 7, h) : (r;, b, 1y, h) € A
r_ Snew+1+(7’1_5) ifTIEW
r otherwise

, Snew +1+ (r,—s) ifr,e W

ATy =

r otherwise

With this, a scoped import becomes a straightforward module compo-
sition:

87

88

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

private private

R

N NNANNNNNANNANANNNNNNNNNNNNY

Module A Module B Program

Figure 10. Private import of A into B and B into the main program

Definition 3.7 (Scoped import x). Let M’ = (R}, Ry, A') and M =

PRIV
(R} > RYs, A”) be two modules and S a scope in M'. Then

Ryys = R,

PUB’

, "o o " "
M xg M" := (RPRIV = Ripry © Rppyy © R

PUB’

! "
Aljiged U Dgligea Y Dinter), Where

= Aligea = Slide(A”S Ry | > |Rbus| » [Reriv]) is the dependency relation
of the importing module M’ with the public rules slided to the very
end of the rule sequence of the new module (i.e., after the rules from
M/,),

= Aligeq = slide(A”, 1, |R} o + [Ryus| > |[Rbriy|) is the dependency rela-
tion of the imported module M’ with all its rules slided between the
private and the public rules of the importing module (they have to
be “between” because they are part of the private rules of the new
module),

= Ainter = {(r1,b,7,,h) : (r;,b) € S A Farule in Rypyy with index
r, and head part h: r, > |R}. | + |Rl:,|} the inter-dependencies
between rules from the importing and rules from the imported
module. We simply allow each body part in the scope to depend
on all the public rules of the imported module. This suffices for
our purpose, but we could also choose a more precise dependency
relation (e.g., by testing whether a body part can at all match with a

head part).

Note, that the main difficulty in this definition is the slightly tedious man-
agement of the dependency relation when the sequence of rules changes.
We, nevertheless, chose an explicit sequence notation for rule programs
to emphasize that this approach is entirely capable of handling languages
where the order of rules affects the semantics or evaluation and thus should
be preserved.

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

PUBLIC AND PRIVATE IMPORT. Two more import operators suffice
to make our module algebra sufficiently expressive to formalize the module
system discussed in Section 3.5.1 as well as module systems for languages
such as XQuery or Xcerpt.

In fact, if the language provides a (database) view concept, the single
scoped import operator suffices as the two remaining ones can be de-
fined using views on top of scoped imports. Before introducing these
rewritings, we briefly introduce the public and private import operator.
Formal definitions are omitted for conciseness reasons, but can be fairly
straightforwardly derived from the definition for the scoped import.

All three operators hide information resulting from private rules in a
module, however the public information is made accessible in different
ways by each of the operators: The scoped import operator makes the
information from the public interface of B accessible only to explicitly
marked rules. The private and public import operators, in contrast, make
all information from the public interface of B accessible to all rules of A.
They differ only w.r.t. cascading module import, i.e., when a module A
that imports another modules B is itself imported. In that case the public
import operator (x) makes the public interface of B part of the public
interface of A, whereas the private import operator (x) keeps the import
of B hidden.

Figure 10 shows the effect of the private import operator on the configu-
ration from Figure 8 using the module composition expression P s (B A):
Module B imports module A privately and the main program imports
module B privately. In both cases, the immediate effect is the same: The
body parts of B get access to the head parts in A’s public rules and the body
parts of the main program P get access to the head parts in B’s public rules.
The import of A into B is hidden entirely from the main program. This
contrasts to the public import in the expression P x (B x A). There the main
program’s body parts also depend on the head parts in A’s (and not only
B’s) public rules.

RECURSIVE MODULE COMPOSITION. So far, we have only consid-
ered non-recursive module composition and only acyclic dependency
relations. However, if the target language supports cyclic dependency
relations, we can also allow recursive module composition. For that pur-
pose we introduce a module assignment operator such that module-id :=
module-expression associates the given module identifier with the module
obtained from a given module expression. Furthermore, we all module
identifier to occur instead of any module composition expression as de-
fined above. A module identifier is always mapped to the same module.

89

90 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

Rz

/2777777777

-/ public/
XL it

private

private

Y

AT NNNNNNNNNNNNANNNNNNNNNNNNNNN

Y

Module A Module B Program

Figure 11. Scoped import of B into A with B importing A itself

For instance, the following import expression
M:=A X(1,1) (B ><1(2)3) M)

yields the dependency depicted in Figure 11 where the first body part of
rule 1in A depends on the public rules of B which in turn depend on all
rules in B including rule 2 whose third body part depends on the public
rules in A which depend on all rules in A including rule 1.

When realizing recursive module composition in Xcerpt using Reuse-
ware [124] as described below we need to carry a mapping from module
identifiers to store identifiers to ensure that multiple occurrences of the
same identifier are translated with the same store identifier.

OPERATOR REWRITING. As stated above, we can express both public
and private import using additional views (i.e., deductive rule) plus a
scoped import, if the rule language provides view.

Theorem 3.1 (Rewriting x). Let M" = (R}, Ropss A), M = (RY, o Ri L AT
be modules and M = (Ryyv, Rpys, A) = M'xM" . Then, M* = (R,,,,., RL,;©

PRIV’ ““PUB

R, A") xg M" is (up to the helper predicate R) equivalent to M if

R=[h:-h:hisahead partin R}]
8 = {(81) ¢ Ry | + Ry < 1 < Ry + [Rps| + [R[}-

The gist is the introduction of “bridging” rules that are dependent on
no rule in the existing module but whose body parts are the scope of the
import of M".

Note, that we use one rule for each public head part of the imported
module. If the language provides for body parts that match any head part

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

(e.g., by allowing higher-order variables or treating predicate symbols like
constant symbols like in RDF), this can be reduced to a single additional
rule. In both cases, however, the rewriting is linear in the size of the original
modules.

For private import, an analogous corollary holds (where the “bridge”
rules are placed into the private rules of the module and the dependency
relation properly adapted).

3.5.4 MODULES FOR XCERPT

Using the formal foundation for modules in rule languages, we show in the
remainder of this section, how to add modules to Xcerpt using the above
framework to provide the semantics for the proposed module extension.
First, we illustrate the ideas along a use case, then we define the precise
language constructs and show how to realize the module extension by
reduction to module-free Xcerpt and observe that the semantics of that
realization is exactly as prescribed by the above module system.

Use case: Music aggregation with the Web Music Library

Query: “Collect info on album Result: <?xml ...?> __.
“Are You Experienced?””
Music Collection L 5
Framework Interface ¥

Modules |\ Data

Data display layer

| [Jimi Hendrix Experience | |

1
1
—— : Are You Experienced?
lew Albums Album Mashup | |
RSS Feed Creator ! D
1| |l |
rS 1 |y
Data inference layer 1] : Music Ontology
1
Discogs Audioscrobbler | | RDF(S) ! @
Artist Information Recommenations Inference Engine 1 JAY
' N ’
Eas '
Data extraction layer 1] 1 [e—
1
1
‘Amazon CD Cover Information iTunes Purchase (X)HTML
Image Extractor Web Crawler Links Extractor | Webpages
1

Figure 12. Many query languages only allow writing monolithic queries, while
modular query development greatly increases reuse and ease of pro-
gramming,.

The use case illustrated in Figure 12 presents a library (called MusicLi-
brary) of functionality useful for coping with music and information about
music found on the (Semantic) Web. At an (arguably) lower layer, infor-
mation is extracted from various established Web sites like amazon. com or

91

92

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

discogs.org. The extraction has to be handled differently for every web
site, but is valuable for many users and applications. For example, many
of the currently established desktop music players exploit the album or
CD images of Amazon to display cover art while playing back music. En-
capsulating reusable queries dealing with a particular information source
allow for flexible maintenance and propagation to a larger user base. The
legacy information as found on external Web sites is then converted to an
internal representation loosely based on the Music Ontology [105]. Music
Ontology is an RDFS-based standard, hence knowledge inference and rea-
soning on—possibly incomplete—Music Ontology data can be achieved
using an RDFS reasoner. Since such a reasoner is usable in many different
fields of applications, it is implemented and provided as an Xcerpt module
and included in the main library, hence allowing for its reuse. Perhaps
more interesting to the end user, various modules providing pleasant vi-
sualizations of gathered information or predefined query skeletons can
be provided in the library. Such modules can also be provided by third
parties or, last but not least, as part of an application using the Web Music
Library. We show only small extracts of the actual modules for space and
presentation reasons.

Realizing Musical Modules in Xcerpt

How can we today realize this application in Xcerpt? In the absence of
modules we have to carefully craft a single query program with a consider-
able number of rules (well over three dozens if we follow the basic design
presented below) at each step taking great care that the rules do not, by
chance, interfere with each other. Furthermore, we have to update the
whole query program as soon as any information source changes, since
this information is hard-coded in the program.

In the presence of a module extension, the task becomes a lot less daunt-
ing: Let us start from the top with a user program that gathers information
about Jimi Hendrix from all the sources described in Figure 12. For that, it
relies on a module called MusicLibrary (discussed above). The library is not a
mere database, it is an interface to various ways of reasoning about musical
information available on the Web. To the user the complexity remains hid-
den. The user just poses his query to the module without caring whether
the data is extensional or intensional and how it is obtained. The module
system ensures that, regardless of the actual rules and their distribution
between modules, there is no chance for interference by rules of different
sub-modules used within MusicLibrary.

1 IMPORT "MusicLibrary"

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

3 GOAL
html [body [
5 hl ["Records by Jimi Hendrix"],
table [tr [td ["Record”], td ["Year"] 1,
; all tr [td [var R], td [var Y]]]
11
o FROM
in "MusicLibrary" (
u desc record { artist ["Jimi Hendrix"],
title [var R], year[var Y] })
13 END

The MusicLibrary module itself is integrating data and knowledge of other
modules the same way as the user program. It has to provide the informa-
tion, and only the desired information, to the user of the module. Some
rules may be necessary internally in the module to achieve the task, but
should not be directly visible to the user of the module. The visible parts
of the module are hence public, the others (implicitly) private.

Apart from using knowledge of other modules, modules may also re-
ceive data provided by importing modules. Musiclibrary accesses data ex-
tracted by a module gathering MusicBrainz metadata, feeds it to a module for
converting that data to Music Ontology knowledge (Musicbrainz2ZMOFacts),
and finally injects that knowledge to an RDEFS reasoner (using the MO-
Ontology-Reasoner module). It also accesses discogs. org directly and feeds
the acquired data into another instance of the MO-Ontology-Reasoner. To
distinguish multiple instances of the reasoner, each instance is given an
alias (using the @ construct), which can be used the same way as the mod-
ule identifier when querying, or sending data to, a module. In this way,
modules also give rise to scoped reasoning where consequences only apply
in a certain scope (or module), but are not (automatically) propagated
outside of that scope. In particular, knowledge in different scopes may, if
considered globally, be inconsistent, but within each scope be consistent.

1 MODULE "MusicLibrary"

IMPORT "MusicBrainz"
; IMPORT "Musicbrainz2MOFacts"

IMPORT "MO-Ontology-Reasoner" @ "reasoner-for-musicBrains"
s IMPORT "MO-Ontology-Reasoner" @ "reasoner-for-discogs"

7 CONSTRUCT public var KNOWLEDGE

FROM in "reasoner-for-musicBrains" (var KNOWLEDGE) END
9

CONSTRUCT public var KNOWLEDGE
1 FROM in "reasoner-for-discogs" (var KNOWLEDGE) END

93

94 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

13 CONSTRUCT to "reasoner-for-musicBrains" (var FACTS)
FROM in "Musicbrainz2MOFacts" (var FACTS) END

15
CONSTRUCT to "Musicbrainz2MOFacts" (var METADATA)
7 FROM in "MusicBrainz"(metadata [[var METADATA]]) END

19 CONSTRUCT discogs-document-for-crawler[all HREF]
FROM in document(iri="http://www.discogs.org") (desc a [[href
[var HREF]]]) END

Finally, let us glance at the MO-Ontology-Reasoner module which is one of
the modules that not only extracts data but is injected with data to operate
on. Hence, one of the queries is adorned with the public keyword, indi-
cating that chaining is to be performed against the rules of the importing
module that pass input data to the reasoner. Those facts, together with
the ontology definition (and any domain dependent reasoning we would
like to perform on the music ontology data) are sent to an RDFS reasoner
module, whose consequences are then made publicly available. This RDFS
reasoner is an example of a highly reusable module that can be shared
among many different modules. It implements the RDF semantic in the
(graph-based) query language Xcerpt (cf. [49] for details).

MODULE "MO-Ontology-Reasoner"
> IMPORT "RDFS-Reasoner"

4+ CONSTRUCT public var KNOWLEDGE

FROM in "RDFS-Reasoner" (var KNOWLEDGE) END
6

CONSTRUCT to "RDFS-Reasoner" (var FACTS)
s FROM public var FACTS END

10 CONSTRUCT to "RDFS-Reasoner" (var MO)
FROM in document (type="xmlrdf"
iri="http://purl.org/ontology/mo/") (var MO) END

3.5.5 MODULAR XCERPT—REQUIREMENTS AND CONSTRUCTS

We have seen that modules can greatly ease the development of complex
Web queries (as observed increasingly) and how to apply them in examples.
Before we discuss the principles of the semantics in Section 3.5.5, let us
first summarize the core concepts and constructs introduced. We divide
the presentation of the concepts in two parts: from the perspective of the
module programmer and of the module user.

Module programmers need constructs for defining sets of rules and ways

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

of declaring appropriate access to the module—interfaces for proper en-
capsulation. To allow module authors to encapsulate modules, visibility
constructs are employed. For each rule of the module, the construct term
and the query term (if present) is associated with a visibility concept: pub-
lic or private. Only public visibility is specifically specified, otherwise the
default visibility private is used to encourage encapsulation.

MODULE DECLARATION: We can group sets of rules into modules and
give such a set an identifier. This module can than be imported into
other modules or programs.

(module) == ‘MODULE’ (module-id) (import)* (rules)*

MODULE INTERFACES: We can declare allowed access points to a mod-
ule to facilitate encapsulation and proper interfaces. Any construct
term can be annotated with public to indicate that it can be queried
by importing modules (see below).

(interface-out) == ‘public’ (construct-term)

Conversely, importing modules may provision data to an imported
module (see ‘module provision’ below). This data is exclusively
queried by query terms marked with public in the imported mod-
ule.

(interface-in) == ‘public’ (query-term)

In other words, a module programmer defines the name and the in- and
output interfaces of a module. The input of a module is accessed or queried
by public query terms, the output of a module is formed by public construct
terms. A module should also be complemented by documentation for the
user describing its task and interfaces.

Module users need to be able to (a) declare which modules they want to
use in a program, to (b) query the public interfaces of such modules, and
to (c) provide data to such modules.

MODULE IMPORTATION: We can import modules into other modules
or programs. The only effect of a module is that the module identifier
(or its alias, if an alias is used) becomes available for use in module
querying or provision statements. In practice, module identifiers
are often rather long and complex URIs which makes the use of
(short and easy to read) aliases advisable in most cases.

(import) == ‘IMPORT (module-id) (‘@ (alias-id))?

MODULE QUERYING: We can query the consequences of the public con-
struct terms of a module. The given query term is matched only

95

96 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

against the results from public rules of the given module but neither
against those from that module’s private rules nor against other rules
from the current module.

(module-access) == ‘in’ (module-id) ‘C (query-term))’

MODULE PROVISION: We can feed or provision data to the public query
terms of a module. The result of a rule with such a construct term
is only considered for public query terms in the given module, not
for query terms in the current module or for query terms from the
given module that are not marked public.

(module-provision) == ‘to’ (module-id) ‘C (construct-term) ‘)’

With only these three operations, a module user can flexibly compose
modules (even multiple instances of the same module) while all the en-
capsulation is taken care of by the module system without further user
intervention.

So far, all module access is always explicitly scoped with the module
identifier. In a language with views such as Xcerpt, this suffices as we always
can add a bridging rule (such as the first rule in the MusicLibrary module
from Section 3.5.4) that makes all data obtained from the public interface
of an imported module available to other rules in the importing module
(without need for qualification). We provide two additional variants of
module import for convenience that cover this case. They only differ in the
way they affect module cascading: “import public’ (module-id) makes
all data provided by the public interface of module module-id available
to all unqualified rules in the importing module and also adds it to the
public interface of that module whereas ‘import private’ {(module-id)
only makes it available to the unqualified rules.

Reducing Xcerpt Modules—Stores

The dual objectives of our approach are to (a) keep the module system
simple and easy to use and to (b) allow the reuse of existing language tools
and engines without modification. These two objectives actually go hand
in hand, as a reduction semantics for modules (i.e., a semantics that is
based on the semantics of the module-free language) proves to be elegant
and easy to understand and naturally fulfills the second objective.

To allow users to truly think in terms of modules and make use of this
abstraction, it is important to ensure proper and valid module interac-
tivity statically before applying the module-unaware query engine to the
involved rules. Thus, only the intended rule dependencies must be present
in the merged rules—we have no way of enforcing rule separations during
rule execution.

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION 97

For the Xcerpt module system we ensure proper rule dependencies
using the notion of stores. Intuitively, a store is a designated data area
where data and queries are appropriately redirected to adhere to the proper
access of rules as specified by the module programmer. A store is associated
with an identifier and consists of a private, in and out part. Intuitively, the
private part is intended for data access internal to the module only and
the in and out parts for input and output data of that module. That is,
data to be processed by the module will be injected into the in part of the
store and data constructed by the module—upon request from another
module—will reside in the out part of the store and can be queried by an
importing module.

module “http://xcerpt.org/rdfs_reasoner.m”

CONSTRUCT CONSTRUCT CONSTRUCT
——— public
FROM FROM FROM
. external { ... } —|—
END END END

|
|
! i
! I
! |
| 1 |
:k }:
[ol
store “http://xcerpt.org/rdfs_reasoner.m”
Figure 13. Module stores consists of three distinct areas to ensure encapsulation of
data.

Stores can already be simulated using the existing Xcerpt mechanisms.
Let us first assume that for each module we have one associated store that
is identified by the same (unique) identifier. The construct terms and query
terms of each rule in an imported module as well as rules using in or to
for module access or provision in an importing module are modified such
that the appropriate store is referenced:
in <module-id> (<query>) —> store [id [<module-id>], access ["out"], <query>]
to <module-id> (<construct») store [id [<module-id>], access ["in"], <construct>]

CONSTRUCT <c> FROM <g> END — CONSTRUCT store [id [<module-id>], access["private"], <c>]
FROM store [id [<module-id>], access["private"], <g>] END

Some rules in the imported module are exempted from this transfor-
mation, viz. construct terms in goals (producing results for the end user),

query terms specifically referencing an external resource (such as an XML
document or other module) rather than the internal module store. Also, if
the query term is a complex query it might be necessary to propagate the
store specification inside the query (e.g., over disjunctions, negation, etc.).

98

VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

However, these details are omitted here for space reasons.’

3.5.6 REFINING STORES: INSTANCE STORES

The store concept described above ensures basic encapsulation capabilities
for Xcerpt modules and is attractive for its simplicity. However, there are
certain situations where associating one store per module is not sufficient.
Consider the situation where two modules (A,B) imports a third one (C)
and both A and B injects data into the store associated with C. In such a case,
after module C has processed the data, module A may receive data initially
injected by module B. As such, modules A and B are not kept separate
violating one of the core premises of our desire for modules. This is not a
limit of the store approach, but due to the assumption of the existence of
one store per module.

module A module B module A module B

CONSTRUCT ‘

FROM
to{C}
END

FROM FROM
to{C}

CONSTRUCT
FROM

CONSTRUCT ‘ CONSTRUCT

I
K

—]—=

imports

syodut
imports
spodut

store C<A>
<g>D210)s ||

module C module C

(@) (b)

Figure 14. To improve encapsulation one store per module communication instance
can be used.

To address this problem, we associate stores not with a module but with
a module import. This can be seen as instantiating a store for each module
import with the identifier of the importing module. We thus end up with
two stores C<A> and C, due to two import operators. A similar case
where this is needed is when we use the same module but with different
“feeds” using aliases. This is the case in the Music Library module presented
in Section 3.5.4 where aliases (using @) were used to force such separations.

13 But available with examples at http://www.reuseware.org/modularxcerptexample.

http://www.reuseware.org/modularxcerptexample

3.5 MODULES: FROM SEPARATION TO ENCAPSULATION

Implementation.

Not only is it an advantage to reuse the query engine in executing the
transformed and merged rules, it is also beneficial if existing technology
can be used to realize the above-described transformations. To achieve
this, we realize the module system via composition in the Reuseware
Composition Framework [124]. The composition framework allows for
the development of a light-weight composition system responsible for
handling the augmented constructs related to modules. The composition
framework allows both to extend the Xcerpt language with the additional
syntactic constructs and to handle the transformation and merging of the
involved rules in the manner described above to enforce encapsulation.
The details of this implementation are left out for space reasons, but are
available at http://www.reuseware.org/modularxcerptexample.

3.5.7 RELATED WORK

Despite the apparent lack of modules in many Web rule languages, module
extensions for logic programming and other rule languages have been
considered for a long time in research. We believe, that one of the reasons
that they are still not part of the “standard repertoire” of a rule language
lies in the complexity of many previous approaches.

For space reasons, we can only highlight a few selected approaches.
First, in logic programming module extensions for Prolog and similar
languages have fairly early been considered, cf., e.g., [41, 186, 75]. Miller
[162] proposes a module extension for Prolog that includes parameterized
modules similar in style to those as discussed in Section 3.5.1 and is the
first to place a clear emphasis on strict (i.e., not to overcome) information
hiding. In contrast to our approach, the proposed semantics requires an
extension of standard logic programming (with implication in goals and
rule bodies).

A reduction semantics, as used in here, is proposed in [137], though
extra logical run-time support predicates are provided to allow module
handling at run-time. However, the approach lacks support for module
parameters and a clear semantics (most notable in the distinction between
import and merge operation).

The most comprehensive treatment of modules in logic programming is
presented in [47]. The proposed algebra is reminiscent of prior approaches
[30] for first-order logic modules in algebraic specification formalisms
(such as [202]). It shares a powerful expressiveness (far beyond our ap-
proach) and beautiful algebraic properties thanks to a full set of opera-
tors such as union, intersection, encapsulation, etc. The price, however,

99

http://www.reuseware.org/modularxcerptexample

100 VERSATILE WEB QUERIES WITH XCERPT 2.0—CONSTRUCTS AND EXAMPLES

is that these approaches are far more complex. We believe, that a single
well-designed union (or combination) operation together with a strong
reliance on views as an established and well-understood mechanism in
rule languages is not only easier to grasp but also easier to realize. E.g.,
intersection and renaming operations as proposed in [30] can be handled
by our module algebra through a combination of scoped imports and
views. More recently, modules have also been considered in the context of
distributed evaluation [106] which is beyond the scope of our paper.

3.5.8 CONCLUSIONS AND OUTLOOK

We argue that one ingredient to cope with size and diversity of information
on the (Semantic) Web is modular query authoring and execution. We
show advantages along a concrete use case dealing with music information
aggregation on the Web. Furthermore, we demonstrate how it is possible to
augment existing query languages—here focused on the language Xcerpt—
with new constructs while reusing already developed semantics and query
engines thanks to a reduction semantics approach. The proposed module
system is simple to use (in contrast to many approaches from logic pro-
gramming) yet provides better encapsulation and more advanced features
(such as scoping and paramterization) than module systems for XSLT or
XQuery.

The proposed module system has been formalized, integrated into
Xcerpt 2.0, and implemented using the Reuseware Composition Frame-
work. In further work, we would like to exploit existing techniques and
tools such as Xcerpt’s type system [201] for improving module composition.
We are also investigating how similar techniques can be applied to add or
improve module systems for other (non-rule based) query languages (for
example, the module system of XSLT).

3.6 CONCLUSION

In the previous sections we outline how Xcerpt has evolved to even better
support the vision of versatile query languages outlined in the previous
section. The next chapter illustrates the use of Xcerpt for versatile Web
querying along a use case proposed by the W3C and compares it to the
use of multiple, specialized query languages.

FROM XML TO RDF—W3C’S
GRDDL

41 Introduction 101
42 Setting L 102
43 From XML to RDF—the W3CWay 106
4.4 From XML to RDF—the Xcerpt Way 108
45 RelatedWork 112
4.6 Comparison and Conclusion 112

This chapter is a loosely based on [62].

41 INTRODUCTION

In the last years, the Semantic Web has significantly gained momentum,
and the amount of RDF data on the Web has been increasing exponentially
ever since the publication of the RDF recommendation. However, a great
amount of such semantic data is intermingled with HTML and XML
through the help of microformats' such as hCalendar*, embedded RDE,
and RDF/A[4].

To deal with this situation, the W3C proposes the GRDDL, Gleaning
Resource Descriptions From Dialects of Languages, framework for the ex-
traction of Semantic Web information from HTML and XML documents:

“GRDDL is a mechanism for Gleaning Resource Descrip-
tions from Dialects of Languages. [1t] introduces markup based
on existing standards for declaring that an XML document in-
cludes data compatible with the Resource De-scription Frame-
work (RDF) and for linking to algorithms (typically represented
in XSLT), for extracting this data from the document.” [77]

1 http://microformats.org/

2 http://microformats.org/wiki/hcalendar

Introducing
GRDDL

http://microformats.org/
http://microformats.org/wiki/hcalendar

GRDDL use
cases

hCalendar

102

FROM XML TO RDF—W3C)S GRDDL

The idea behind GRDDL is to associate an XML document containing
embedded RDF information with one or more transformation programs—
which [77] proposes to write in XSLT [72]. These transformation programs
are specifically written to extract the RDF information from the document.

The W3C also published a collection of descriptions of use-cases as a
motivation for employing the GRDDL method. One of these use-cases is
the scheduling of a meeting between friends who publish their calendars
either as hcalendar, embedded RDF?, RDFa or RSS 1.0 on their homepages.
In a first step, the XSLT-stylesheets associated with the homepages are
used for harvesting the RDF information from the homepages, and the
resulting RDF graphs are combined in a single RDF model. In a second
step, SPARQL [183] is used to query the RDF data and find a date for the
meeting that fits in everybody’s schedule.

Our system implements this use case in two different manners. The first
implementation follows the recommendation of the GRDDL standard,
employing an XSLT processor and a SPARQL implementation (in our
case Jena *). The second implementation uses Xcerpt [188, 51], a versatile
Web and Semantic Web query language for both processing stages. The
implementation of these use-cases uncovers difficulties and challenges
in the authoring of GRDDL algorithms in XSLT and also in Xcerpt, and
highlights advantages and disadvantages of both approaches.

42 SETTING

hCalendar’ is a calendaring and events format based on the iCalendar
standard®, which is used for embedding RDF data about calendars and
events in arbitrary XML—but mostly in XHTML—documents. hCalendar
data typically includes information about the title, description, start, end
of an event and may also specify its duration and frequency.

The following HTML fragment shows a barebone use of the hCalendar
format embedded in XHTML:

<html><head><title>Family Calendars</title></head>

2 <body> ...
<h2>Robert’s Schedule</h2>
4 <div class="vevent'">

<h3 class="summary">Fashion Week</h1>

http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
http://jena.sourceforge.net/

http://microformats.org/wiki/hcalendar

A VN A W

http://www.ietf.org/rfc/rfc2445. txt

http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
http://jena.sourceforge.net/
http://microformats.org/wiki/hcalendar
http://www.ietf.org/rfc/rfc2445.txt

16

4.2 SETTING

<p class="description">Well-known fashion designers will
present their new autumn collection</p>
<p>
02/10/2007 from 10:00 until
<abbr class="dtend" title="2007-10-02T10:30Z">
10:30</abbr></p>

<p>Location: New York</p>

<p>For ticket reservation contact:

<a class="url"

href="mailto:nancy.wu@fashionweek.com">Nancy
Wu</p>
</div>
<body></html>

The hCalendar annotations are hidden in class attributes of appropriate
XHTML elements (creating “neutral” elements div and span where nec-
essary). Thus, unless the Website author specifically requests styling for
hCalendar annotations (by means of CSS stylesheets), the embedding of
hCalendar annotations has no effect on the visual rendering of the data
which is given in Figure 15 (where we depict calendar information with
color highlights).

Browser Rendering: Event Data in (X)HTML

Fashion Week

Well-known fashion designers will present their new autumn collection.
02/10/2007 from 10:00 until 10:30.

Location: New York

For ticket reservation contact: Nancy Wu

Figure 15. Browser rendering of example data

In most real-life HTML files enriched with hCalendar data found on
the Web the usage of the vocabulary is more involved. In particular vevent
tags may be nested within each other, and the data exhibits a very irregular
structure driven by the structure of the Website’s HTML markup rather
than by the even structure. hCalendar is used on an increasing number
of Websites, e.g., Yahoos upcoming of O'Reilley’s conference websites, cf.
Figure 16.

Querying directly the XHTML data if we are only interested in the
calendar information is fairly involved and brittle, i.e., small changes to the
structure of the XHTML data that do not affect the hCalendar annotations

103

From XML to
RDF

104 FROM XML TO RDF—W3C)S GRDDL

2 YAHOO! company

“org

g

My Upcoming / My Scrapbook | My Friends' Events | Explore Events | Add New Event» Search: co)

Search Active Events

Events |3) computer science Search E) subscribe ~

Metros Active Events Undiscovered =Collapse Active listings.

Anywhere
Near Me
Results 1 to 38 of 38 for computer science
Categories! Today YIRB Brain Jam: Qingfeng Huang (PARC) Yahoo! Research Berkeley
Al 44 people EIZnE
Music
" Sun, 411 CFP: Second European Conference on Technology Enhanced Learning CcFP
fester Galway, GWY
Kt 1 person y
Sports
Other Mon, 412 Mobile Monday Barcelona Auditorium University of Pompeu Fabra
Tags: mobilemonday mobile monday barcelona
Barcelona, BCN
o 1 person
Au Tue,4/3 Ergonomics in the OFFICE Haworth
1 Shanahai, SH _
This weekend —
Next weekend
Next7 days Thu,4/5 SVASE MAIN EVENT: An
Pick another day 3 people

Thu,4/5 SVASE Event: 'VC Break

2 people

Web 2 O > REQUEST AN INVITATION

OCTOBER 17-19, 2007
SUMMIT SAN FRANCISCO, CALIFORNIA

Request an Invitation ~Conference + \Spansors Press/Media . More Web 2.0

Discovering the Web's'

Figure 16. Exemplary website with embedded hCalendar information

may easily break queries. To avoid this, we use a view on the XHTML
data that extracts only the relevant calendar information. Furthermore,
we would like to be able to retrieve event data from different Web sites and
process it, e.g., to “select and list all events taking place in Innsbruck during
June 2007” (use-case 1), to “compare events from different sources, e.g., to
find events visited by me and the colleague, I want to meet” (use-case 2),
and to “analyze the event data, e.g., to find suitable free slots for a meeting”
(use-case 3). We might also want to re-publish mesh-ups of the event data,
e.g., on a Google Map.

All this suggests RDF as an ideal format for the view of the calendar data
since RDF has been developed as integration format for data from different
sources and there is already considerable calendar information that is
directly represented in RDE. The RDF graph resulting from representing
hCalendar data in RDF is depicted in Figure 17 and shows the full schedule
of Robert and additional scheduling information for Tamara.

On this graph, we can formulate any of the above queries as if the data
is originally represented in RDE

However, the task of retrieving the RDF triples from the files is a non-
trivial task. Our system follows two complementary approaches for solving
this Use-Case. In the first version, it uses XSLT to transform the HTML files
into RDF/XML files only including the relevant RDF data. The resulting

105

4.2 SETTING

eJe(] Tepua[eDY U0 MIIA J(TY £1 21ndry

¢ © ©

i 4
0£:0T Jep MR L20-0T-2002, gp:7z, fep R 8T-20-002.,
aum
0 awn fep q q Kep 0
«50-90-200¢,, 0 uondinsap \ pud s (99M uoLysed, _1sesg ay3 q .
q 00:60 q pue Aineag,
§ 0 apn ﬁ; uondinsap
fep 5 LOMJ /S1UDAD 3 2299/SIUdAD
awn «2n4qsuur,, /BewAu/* -+ //:d1ay /Rempeouq/*//:diay

M Ly Tup

uonexo| N\
Al R T N
1diy Suane bas:Jpu - [e2)] 4 tepused @ nea @ wenl @
ity opou-q D puabar
«O°M DLiuewss A_ Jepua|ed Jepus|ed
pue @douabL| Jeaewey/ - //:d11y /aa3qoa/ -+ //:day

- 191Ul ssaulsng
uL suoLiedL|dde
Swa1SAS 01XL7 9yl,,

106 FROM XML TO RDF—W3C)S GRDDL

RDF/XML files are then loaded into a Jena RDF repository and SPARQL is
used to schedule a meeting that fits the time constraints of all participants.
In the second approach, Xcerpt is used both for the extraction of the RDF
triples and for scheduling the meeting.

43 FROM XML TO RDF—THE W3C WAY

Two-stage The GRDDL recommendation [77] suggests the use of XSLT for the trans-
architecture formation from XML to RDF and SPARQL for querying the resulting RDF
triples. The architecture of this approach is illustrated in Figure 18.

Architecture: Transform—Materialize—Query

XSLT SPARQL
Stylesheet Query
e b
XSLT % SPARQL
Processor Processor
X(V] O J

Figure 18. Architecture of W3C Approach

It is a two step processing where the XSLT processor first extracts all
RDF triples contained in the given XML document and then, separately,
the SPARQL processor answers any queries on that collection of RDF
triples.

The following XSLT expression shows a brief way of finding the de-
scription for a given event (represented by an XML-element stored in
the variable $this_event). A rather involved XPath query extracts the
relevant text node which is then stored in an XSLT variable for reuse in
the construction of the RDF/XML. The reason for the surprisingly compli-
cated expression is the presence of nested event descriptions (represented
by elements with vevent class attribute). A description may occur at any
depth below the event element with the vevent class attribute, but only
relates to the current event if there is no other event in-between the two
elements.

<xsl:variable name="description"
2 select="descendant: :*[@class="description’]
[not(ancestor: :«[@class="vevent’]
4 [ancestor::«[.=\$this_event]])]" />

Using conditional axis as proposed in [154], this can be expressed far more
compact. To harvest complete RDF descriptions for hCalendar-embedded

4.3 FROM XML TO RDE—THE W3C WAY 107

events, the same has to be done for their summaries, locations, start and
end dates, etc.

The transformation is further complicated by the fact that an element
in XHTML may carry many class names which are then listed as a list in
the class attribute, e.g., class="vevent navigation" to indicate that the
carrying element has class names vevent and navigation.

Another challenge for the transformation from embedded hCalendar
tags to RDF/XML is the conversion of the dates given in the format rec-
ommended by RFC 33397 to a structured representation of the date which
allows for a more human-friendly querying of the RDF data with SPARQL.

The resulting XSLT stylesheet for hCalendar (which is not the most ~ XSLT stylesheet
complicated microformat) thus is already far to long for inclusion here,
but to give an impression consider Figure 19 where we show the full (>
500 lines) stylesheet and an excerpt of that stylesheet concerned with
description and summary extraction.

Transform: Full XSLT Stylesheet

<xsl:template match-"*[matc
<rdf:Description ut
<xsl:apply-templates se

<xsl:apply-templates

CLEUOUSWN -

</rdf:Description>
</xsl:template>

[

-

Figure 19. XSLT Transformation Stylesheet, excerpt

In accordance to the GRDDL use-case, our system uses the collected SPARQL queries
RDF data to find a date which fits into the schedules of all potential partic-

7 http://www.fags.org/rfcs/rfc3339.html

http://www.faqs.org/rfcs/rfc3339.html

108 FROM XML TO RDF—W3C)S GRDDL

ipants. SPARQL was designed to be a clean small language, which can do
just enough in the context of querying RDF, without sacrificing its easy and
efficient implementation. The developers of the SPARQL recommendation
decided not to include negation, but negation as failure can be simulated in
SPARQL with its optional triple patterns and filtering for bound variables.
SPARQL is well suited for the first use-case which is easily formulated as
follows:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
» PREFIX cal: <http://www.example.org/Calendar#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4
SELECT ?title ?sTime
s WHERE { ?x dc:title ?title. ?x a cal:Event.
?x cal:date ?date. ?date cal:startMonth ?sMonth.
s ?x cal:location ?location.
OPTIONAL (?date cal:startTime ?sTime).
10 FILTER (?location = ’'Innsbruck’ AND ?sMonth = 6). }

Here, we select title and sTime (start time) of events with location “Inns-
bruck” and month 6. The start time may be missing and is then reported
asnil.

The second use case can be formulated similarly. However, for the third
use case, we can only give a SPARQL formulation, if we look for a specific
time slot as in the following query:

SELECT ?title, ?x, ?y
> WHERE { ?x dc:title ?title. ?x cal:date ?y.
?y cal:startDay ?start. ?y cal:endDay ?end.
4 ?y cal:startTime ?sTime. ?y cal:endTime ?eTime
FILTER (
6 ((?start = ?end && ?start = "2007-10-02" &&
?sTime <"12:00" && ?eTime > "11:00")

s || (?start != ?end && ?start = "2007-10-02" &&
?sTime <"12:00")
w || (?start != ?end && ?end = "2007-10-02"
&& ?eTime > "11:00")
» || (?start < "2007-10-02" && ?end > "2007-10-02"))
). }

44 FROM XML TO RDF—THE XCERPT WAY

In contrast to XSLT or SPARQL, Xcerpt is capable of accessing both XML
(tree-shaped) and RDF (graph-shaped) data. Thus, we can implement the
entire use case directly in Xcerpt. We can employ the same basic architec-

4.4 FROM XML TO RDF—THE XCERPT WAY

Architecture: Query on View—On Demand Transformation

Xcerpt
Query

find transformation Xcerpt
module > Module

r jreuseware
\ ¥ composition framework

Xcerpt
Compiler

Xcerpt
—
Processor

Answer

Reuseware for
module
composition

XML Document

RDF Graph
(internal view)

Figure 21. On-demand architecture using Xcerpt

ture as in [77], i.e., first extracting all triples, now with Xcerpt instead of
XSLT, then querying the resulting graph with Xcerpt, see Figure 20.

Architecture: Transform—Materialize—Query

Xcerpt
. Processor

XML Document RDF Graph Answer

Figure 20. Two-stage architecture using Xcerpt

However, with Xcerpt we can also use a single stage architecture (cf.
Figure 21) where the transformation is described by Xcerpt rules that are
evaluated on-demand driven by the RDF queries formulated on the result
of these views. The “goal”-driven Xcerpt engine is ideally suited to ensure
that only relevant parts of the XML document are actually converted (and
not the entire set of triples as in the two-stage approach).

Providing RDF views on the calendar data is not quite as challenging as
in XSLT. The basic view is as follows (_ denotes the anonymous variable

109

Single-stage
architecture

From RDF to
XML

110

RDF queries

FROM XML TO RDF—W3C)S GRDDL

used here as label wildcard):

1 CONSTRUCT
rdf:RDF[all cal:Event[
3 cal:summary[var Summary],
cal:description[var Description], ...]]
5 FROM
html {{ body {{
; desc _ ((class="vevent")) {{
optional desc _ ((class="summary")) {
9 var Summary },
optional desc _ ((class="description")) {
n var Description },
-3 3R
13 END

However, here we do not treat nested events properly. This can be addressed
by a mix of patterns and “anti”-patterns similar to the XSLT solution. How-
ever, Xcerpt 2.0 provides a more convenient way (similar to conditional
axes [154] for XPath), viz. the qualified descendant as discussed in [101].
With that we can write:

. html {{ body {{
desc _ ((class="vevent")) {{
3 optional desc (! _ ((class="vevent")))=
_ ((class="summary")) { var Summary },

5 optional desc (! _ ((class="vevent")))=
_ ((class="description")) { var Description }, ... }}
3

On these views, we can then easily implement all use cases discussed
above: For use-case 1, we observe that Xcerpt provides a graph view of RDF
rather than a triple view as in SPARQL. This is very intuitive for nested
conditions as relations are immediately visible due to the query structure
rather than established by variables. Furthermore, where SPARQL is lim-
ited to binding tuples or basic RDF graphs as result, Xcerpt can construct
arbitrary XML or RDF data using its powerful grouping constructs. For
use-case 1, the following Xcerpt rule extracts the relevant data and wraps
it into a XHTML unordered list for presentation.

DECLARE ns-default "http://www.example.org/Calendar#"
2 ns-prefix dc = "http://purl.org/dc/elements/1.1/"
ns-prefix rdf = "http://.../22-rdf-syntax-ns#"
4+ CONSTRUCT
ul [all 1i[var Title " at " var sTime]]
¢ FROM
var Event {{

4.4 FROM XML TO RDF—THE XCERPT WAY

8 --rdf:type— Event{{ }},
--dc:title— literal{ var Title },
10 --date— _ {{ --startMonth— 1literal{ "6" },

optional --startTime— literal{ var sTime } }},
--location— literal{ "Innsbruck" }

3
1 END

Note, that we use -...-> notation for traversing RDF edges. This is a
syntactic refinement of the basic Xcerpt syntax further discussed in [49].
In basic Xcerpt 2.0, we obtain the same result using, e.g., rdf: type{...}

instead of -rdf:type->
Finding events that both Tamara and Robert are scheduled to visit, is

just as easy in Xcerpt:

DECLARE ns-default "http://www.example.org/Calendar#"
CONSTRUCT
4 ul [all 1i[var Title]]
FROM
s and (
"http://.../robert/calendar" {{
8 --rdf:type— Calendar{{ }},
desc var Event {{
10 --rdf:type— Event{{ }},
--dc:title— 1literal{ var Title } }} }},
12 "http://.../tamara/calendar" {{
--rdf:type— Calendar{{ }},
14 desc var Event {{ }} }})
END

In contrast to SPARQL, Xcerpt can find arbitrary free slots, but for
comparison we show the same query as for SPARQL, viz. finding events

that overlap a given time slot:

1+ CONSTRUCT
_ [var Title, var Event, var Date]
; FROM
var Event {{ --rdf:type— Event{{ }},
--dc:title— 1literal{ var Title },
--date— var Date {{
--startDay— literal{ var sDay },
--startTime— literal{ var sTime },
--endDay— literal{ var eDay },
--endTime— literal{ var eTime } }} }}
u WHERE((sDay = eDay and sDay = "2007-10-02"
and sTime < "12:00" and eTime > "11:00") or

111

112

FROM XML TO RDF—W3C)S GRDDL

13 (sDay != eDay and sDay = "2007-10-02"
and sTime < "12:00") or
15 (sDay != eDay and eDay = "2007-10-02"
and eTime > "11:00") or
7 (sDay < "2007-10-02" and eDay > "2007-10-02"))
END

45 RELATED WORK

Although GRDDL has become recommendation only very recently several
implementations of the GRDDL mechanisms already exist, and also several
of its use-cases have been implemented.

The Jena GRDLL reader is a GRDDL implementation for the Jena Se-
mantic Web framework and automatically detects and applies stylesheets
referenced within HTML pages for the purpose of extraction of RDF in-
formation. In contrast to our approach, it isn’t an implementation of the
use case itself, but of the GRDDL mechanism. Note that there are several
other implementations of the GRDDL mechanism®.

The W3C also published an online GRDDL demo?, which allows to
extract embedded FOAF, Creative Commons, RSS, Dublin Core and
GeoURL data. In contrast to our approach, it does not deal with hCalendar
data and it only implements the first step of a GRDDL use case.

Dan Conolly published an XSLT stylesheet'® for extracting hcal infor-
mation from XHTML. In contrast to our system, it does not deal with
nested events, does not compare alternative ways for implementation, and
again only deals with the first stage of the GRDDL use-cases.

46 COMPARISON AND CONCLUSION

If we compare the two approaches, the differences are fairly obvious. The
W3C approach profits from the use of standard XML and RDF query
languages which are widely implemented. It is also likely, that over time
a library of transformations from micro-formats to RDF triples in XSLT
will become available which alleviates the burden of authoring the com-
plex stylesheet. Nevertheless, the use of two different languages poses a
considerable burden on use and deployment of this approach. Further-

8 http://esw.w3.org/topic/GrddlImplementations
9 http://www.w3.0rg/2003/11/rdf-in-xhtml-demo

10 http://www.w3.org/2002/12/cal/glean-hcal.xsl

http://esw.w3.org/topic/GrddlImplementations
http://www.w3.org/2003/11/rdf-in-xhtml-demo
http://www.w3.org/2002/12/cal/glean-hcal.xsl

4.6 COMPARISON AND CONCLUSION

more, the proposed architecture calls for a separate transformation of all
RDF triples that can be extracted from the XML document. Though a
common evaluation framework for languages such as XQuery, XSLT, and
SPARQL as presented in Parts II to IV is a first step towards alleviating
this problem, current implementations of XSLT or SPARQL do not allow
for cross-language optimization.

In the Xcerpt case the arguments are almost inverted. We can employ
a single language for the whole use case and can transform triples on-
demand. Also, Xcerpt is far more expressive than SPARQL which allows
us to express more interesting queries on the transformed tuples. However,
Xcerpt is a non-standard query language with only prototypical implemen-
tations that is not widely adopted.

Summarizing, the presented system constitutes the first complete im-
plementation of the GRDDL use-case and allows to draw the following
conclusions: (1) Extracting RDF information from microformats is a non-
trivial task and calls for expressive and user-friendly query languages
specifically aimed at querying heterogeneous XML data. (2) For usability
as well as efficiency purposes it is desirable to have a language that is both
capable of extracting the relevant information and of further semantic
processing. (3) Although SPARQL is a very well-specified and expected to
become the most widely used RDF query language, it lacks some features—
most notably grouping which limit its use in our examples. In [63] it is
discussed how SPARQL can be extended with more expressive grouping
constructs without increase in query complexity. Currently, these limi-
tations of SPARQL queries mean that it must be embedded in a more
powerful general purpose programming language to solve all the GRDDL
use cases. (4) While Xcerpt is still a research prototype, it already shows
that versatile, pattern-oriented and rule-based querying has the potential
to considerably ease the authoring of data intensive web-applications.

GRDDL is an example of a use case, developed independently of the
vision of versatile query languages and Xcerpt as discussed in the previous
chapters, that illustrates the need for these approaches. It also underlines,
that an evaluation framework capable of integrating different Web query
languages as discussed in the remaining parts of this work is called for.

This use case concludes our glimpse at the refinement of Xcerpt’s ver-
satile aspect towards Xcerpt 2.0. In the following parts, we first discuss
a novel formal foundation, called clqLog, for Web query languages that
allows us, as discussed in Part III to capture the semantics of many diverse
Web query languages. Then, we discuss how queries expressed as such
can be efficiently evaluated using the ClQcAG algebra and how that algebra
is implemented. Though this discussion, at times, leads us quite far away
from Xcerpt, we repeatedly come back to Xcerpt, when discussing the

113

114

FROM XML TO RDF—W3C)S GRDDL

relation of Xcerpt’s data model to that of ClqLog in Section 5.5, when dis-
cussing ClQLog queries and their relation to Xcerpt or XQuery expressions
in Section 6.5.3, and finally when considering the translation of (core)
Xcerpt queries in Chapter 7.

Part I1

THEORY. A FORMAL
PERSPECTIVE ON WEB
QUERIES

DATA MODEL—RELATIONS OVER
TREES AND GRAPHS

5. Introduction 117
52 DataGraphs 119
5.3 XML: Essentials and Formal Representation 122
5.3.1 XMLinsooWords 122
5.3.2 Mapping XML to Data Graphs 124
5.3.3 TransparentLinks. 125
5.4 RDF: Essentials and Formal Representation 126
5.4.1 RDFinsooWords 126
5.4.2 Mapping RDF to Data Graphs 127
55 XcerptDataTerms 129
5.5.1 Xcerpt Data Terms in 500 Words 129
5.6 Relationson Data Graphs 130
5.6.1 Binary Relational Structures 131
5.6.2 A Relational Schema for Data Graphs 132

5.6.3 Properties of Nodes and Edges: Labels and Positions 133

5.6.4 Structural Relations. 135
5.6.5 OrderRelations 136
5.6.6 Equivalence Relations 137
5.6.7 Inverse and Complement 142
5.6.8 Examplerelations 142
57 Conclusion 143

5. INTRODUCTION

Versatile languages such as Xcerpt are one avenue for addressing the frag-
mentation of Web data formats. In this chapter, we start with the second
avenue: a uniform, purely logical semantics for many Web query languages,
including versatile ones such as Xcerpt. The semantics is provided by clqLog,

18

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

Chapter 9
(SPARQL Query)
no built-ins
Chapter 7
Xcerpt Program

CIQCAG
Chapter 8 Ll Translation Compilation
Program Expression
no built-ins, no set op. Chapter 13

Chapter 8
(XQuery Program)
non-compositional, Core

Figure 22. Overview of Parts III and IV Translation from Web Query languages to
clqoLog and then to ClQcAG

a variant of datalog with negation and value invention specifically adapted
to the Web setting and to be able to handle data of different shapes.

The reason for introducing ClqLog is for it to serve as the uniform se-
mantics for many Web query languages, but also to provide a means for
evaluating these languages with the clQcAG algebra introduced in Part IV.
Figure 22 illustrates this approach and relates it to parts and chapters of
this thesis.

Before we turn to the translation of the individual languages, the next
two chapters introduce first a uniform data model for Web data and second
the language ClqQLog as generalization of common Web languages.

The data model of clqLog and ClQcAG (as described in Chapter 6 and
PartIV) are arbitrary binary relational structures. To bridge the gap to XML
and RDF query languages such as XQuery or SPARQL, we first introduce
in this chapter a common view of Web data as node and edge labeled
graphs (Section 5.2) together with mappings from XML (Section 5.3) and
RDF (Section 5.4). These mappings are, for the most part, simple and
intuitive. On these data graphs we define a set of unary or binary relations
for querying the structure of the graph (Section 5.6.4), the relative position
of edges and labels in that graph (Section 5.6.5, the labels of edges and
nodes (Section 5.6.3), and edge and nodes equivalent wrt. label, position, or
structure (Section 5.6.6. These relations are closely related to XPath's axes
and other formalizations of relations on XML data, but exhibit a number
of distinct features to properly address arbitrary shapes of the underlying
data graphs and the effect of edge labels (see, e.g., the definition of child-
and descendant-like traversal relations in Section 5.6.4). Such relations can
then be part of binary relational structures as used by clqLog and ClQcAG.

5.2 DATA GRAPHS 119

52 DATA GRAPHS

From the perspective of their data model, many Web representation for- pg, graphs
mats such as XML, RDE, and Topic Maps have a lot of commonalities: the

data is semi-structured, tree- or graph-shaped, and sometimes ordered,

sometimes not (XML elements vs. XML attributes, RDF sequence con-

tainers vs. bag containers). We choose (finite unranked) labeled ordered

directed graphs as common data model for Web data:

Definition 5.1 (Data graph). A query is evaluated against a data graph D
over finite label alphabets X for edges and Xy for nodes. D is a 6-tuple

(N>E)R) Q:D))

where N is the set of nodes of the graph, E ¢ N x N — N the set of edges,
R c N the set of root vertices, € : (N - Zy) U (E — Xg) the labeling
function on nodes and edges, and the order specification © ¢ N x Zp.
For simplicity, we assume N n E = & and that £ is total on edges, but
may be partial on nodes. Note, that an edge (#, i, m) maps a pair of a
(source) node n and an edge position i to a (sink) node m, thus there
are no two distinct edges with the same source and edge position. As
usual, outdeg(n) = |{(n,i,n") € E}| denotes the degree of a node, i.e., the
number of outgoing edges.

D is an ordered graph, i.e., the order of the children of a node is signifi- Order
cant. Since the order is relative to the parent and a child may occur under
several parents (in fact, it may also occur several times under the same par-
ent), the order is associated with the edge rather than with the child node.
The order specification O allows both ordered and unordered data (e.g.,
unordered XML attributes and ordered XML sub-elements, RDF bag and
sequence containers) in the same graph: the order among the A-labeled
outgoing edges of a node n is significant only if (n, 1) € O. We choose to
record the position of a A-labeled edge even if (1, 1) ¢ O. This allows for
bag-like data with duplicates represented by multiple edges between same
nodes and a consistent signature of edges.
D’s nodes may be labeled by virtue of the single (partial) node labeling Node labels
function £. For the sake of conciseness, we choose a single labeling func-
tion. In practice, there might be cases where different labeling functions
are advisable, e.g., one for element labels and one for string values in XML
data, or one for resource URIs and one for literals in RDF data.
Edge labels from X are used to distinguish different relations among ~ Edge labels
nodes in N. For an edge e = (p, i, ¢) with £(e) = A, we call ¢ a A-child or
simply a child of p. In the following, we use the edge labels CHILD and VALUE
to model (element) containment and string value in an XML document.

120

Multiple root
nodes

Identity

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

Marcus Ulpius Traianus Mesopotamia

i
Nerva @

)
1 v‘-v\\\s\/

2
/

Publius Aurelius Hadrianus AferYo/v

Trajan

o
o

1

-/

-NOS— +

Titus Aurelius Fulvus Sop

g

Hadrian

.""*lfz‘Jz’\;\rabia Petraea

9

Lucius Ceionius ‘Commodus Verus

OS— »

»

g Magys Annius Verus o,
Z Z
Antomu%

Lucius Aelius

SO

@

Lucius Verus

3
1
»
Commodus @

4"C~a'ledonia

-----RULER--~

Septimus Severus

Figure 23. Exemplary Data Graph

The former represents the XML element hierarchy, the latter associates text
nodes with element nodes. In case of RDF data, the respective property
URI is used as edge label.

The definition allows multiple root nodes, e.g., if there are several con-
nected components in the graph. Any node may be a root node, in particu-
lar root nodes may, in contrast to usual rooted graph models, have parents.
Intuitively, root nodes are simply highlighted “entrance” points into the
graph that can be chosen arbitrarily when defining the data graph: If the
data graph is a single XML document there will be a single such root node,
however this formalization also covers collections of XML documents
(as in XQuery) and RDF graphs where, e.g., each subject node can be
considered a root node. In the following, we assume that each node in
a data graph is part of a rooted connected component, i.e., is either a root
node itself or reachable from a root node.

Following Codd’s surrogate extension [74] for the relational data model,

5.2 DATA GRAPHS

we choose surrogate or object identity for nodes and edges, i.e., nodes and
edges have identity separate from their “value” or structure. This contrasts
with the basic relational data model that uses extensional identity (i.e., the
value of a data item defines its identity, and thus two data items with same
value necessarily have the same identity). Surrogate identity allows an
intuitive and clean semantics for querying cyclic data instances, whereas
cyclic data instances under extensional identity lead to infinite regular trees
(cf. [80]) which have questionable properties for certain classes of queries,
most prominently occurrence queries. Furthermore, [1] shows that graphs
with object identity can, up to identity, be seen as finite representations
of infinite regular trees. In this respect, data graphs are similar to object-
oriented data models. XQuery’s data model [94] also uses node identities
separate from node values, but limits the data to trees.

Figure 23 shows a data graph depicting roman emperors of the Nervan-
Antonine dynasty and some of their ruled provinces. Labels are depicted
in sans-serif close to the labeled node, edges are decorated with their
position index (near the start of the edge, e.g., - -) and label (near the end
of the edge, e.g., ——), a root node is indicated by a sink-only edge (like
—(2). The data graph contains two kinds of edges, soN edges (colored in
dark red), and RULER edges (colored in blue). For referencing, nodes are
numbered and we refer, e.g., to the node with label Nerva as d, (for second
data graph node).

Formally, Figure 23 depicts the data graph D = (N, E, R, £, O) with

N={dy....dg} R={d,d,}

121

Example

E = {(dD 1, d4), (dzg 1) d4)) (d37 1, d7)3 (d4) 13 dls)) (d4s 27 d16)) (d43 3’ d17)’
(d41 4, d7)) (dS) 1, dS)) (d6) 1, dlo)) (d7)1a d16)) (d7)2) d17)) (d7) 3 dlo))

(dy,4,dg),...}

€ = {d, > M. Ulpius Trai., d, — Nerva, d, — P. Aur. Hadr. Afer, d, — Trajan

(dy,1,d,) — soN, (d,,1,d,) — soN, (d;,1,d,) — SON,

(dy>1,d,5) — RULER, (d,,2,d,s) = RULER, (d,,3,d,,) > RULER,

(dy>4,d,) > soN,...}
D=0

In the following sections, we briefly outline, how XML documents, RDF
graphs, and Xcerpt data terms can all be faithfully mapped to data graphs.

ye e

122 DATA MODEL—RELATIONS OVER TREES AND GRAPHS

53 XML: ESSENTIALS AND FORMAL REPRESENTATION

XML [43] is, by now, certainly the foremost data representation format for
the Web and for semi-structured data in general. It has been adopted in
a stupendous number of application domains, ranging from document
markup (XHTML, Docbook [198]) over video annotation (MPEG 7 [152])
and music libraries (iTunes') to preference files (Apple’s property lists
[11]), build scripts (Apache Ant?*), and XSLT [139] stylesheets. XML is also
frequently adopted for serialization of (semantically) richer data represen-
tation formats such as RDF or TopicMaps.

XML data The following presentation of and mapping for XML documents is

model defined oriented along the XML Infoset [81] which describes the information

by XML Infoset content of an XML document. The XQuery data model [94] is, for the
most parts, closely aligned with this view of XML documents.

Following the XML Infoset, we provide a graph shaped view of XML
data containing valid 1D/IDREF links. This contrasts with the XQuery data
model, where such links are not resolved. In the following, ID/IDREF links
are distinguished from the parent/child links expressed by the element
hierarchy in accordance to the XML Infoset specification. For many appli-
cations this separation is unnecessary and even harmful which motivates
us to briefly discuss an alternative mapping of 1D/IDREF links to data graphs
in Section 5.3.3.

5.3.1 XML IN 500 WORDS

Element The core provision of XML is a syntax for representing hierarchical data.
hierarchy Data items are called elements in XML and enclosed in start and end
tags, both carrying the same tag names or labels. <author>. . .</author> is
an example of such an element. In the place of ...’ we can write other
elements or character data as children of that element. The following listing
shows a small XML fragment that illustrates elements and element nesting:

<conference xmlns:dc="http://purl.org/dc/elements/1.1/"
2 dc:title="Storage Media">
<dc:date>44 B.C.</dc:date>
4+ <paper title="Wax Tablets" id="pl" cites="p2">
<author>Cicero<!—— incomplete! ——></author>
s </paper>

1 http://www.apple.com/itunes/

2 http://ant.apache.org/

http://www.apple.com/itunes/
http://ant.apache.org/

5.3 XML: ESSENTIALS AND FORMAL REPRESENTATION

<paper id="p2" cites="pl">
8 <author>Hirtius</author>
</paper>
10 <pc><member>Cicero</member>
<member>Atticus</member></pc>
» </conference>

In addition, we can observe attributes (name, value pairs associated with
start tags) that are essentially like elements but may only contain character
data, no other nested attributes or elements. Also, by definition, element
order is significant, attribute order is not. For instance

<pc><member>Atticus</member><member>Cicero</member></pc>
represents different information than the pc element in lines 10-11, but
<paper cites="pl" id="p2"><author>Hirtius</author></paper>

represents the same element information item (inter-element white space
is ignored) as lines 7-9.

Elements, attributes, and character data are XMLs most common infor-
mation types. In addition, XML documents may also contain comments
(line 5), processing instructions (name-value pair with specific semantics
that can be placed anywhere an element can be placed), document level
information (such as the XML or the document type declarations), entities,
and notations. The mapping easily provides for these information types
and their specifics, but details are omitted here for the sake of conciseness.

On top of these information types, two additional facilities relevant to
the mapping from XML to data graphs are introduced in XML by subse-
quent specifications: Namespaces [44] and Base URIs [151]. Namespaces
allow the partitioning of element labels used in a document into different
namespaces, identified by a URL Thus, an element is no longer labeled
with a single label but with a triple consisting of the local name, the names-
pace prefix, and the namespace URI. E.g., for the dc:date element in line
3, the local name is date, the namespace prefix is dc, and the namespace
URI (called “name” in [81]) ishttp://purl.org/dc/elements/1.1/. The
latter can be derived by looking for a namespace declaration for the prefix
dc. Such a declaration is shown in line 1: xmlns:dc="http://... It associates
the prefix dc with the given URI in the scope of the current element, i.e.,
for that element and all elements contained within unless there is another
nested declaration for dc, in which case that declaration takes precedence.
Thus, we can associate with each element a set of in-scope namespaces,
i.e., of pairs namespace prefix and URI, that are valid in the scope of that
element. Base URIs [151] are used to resolve relative URIs in an XML
document. They are associated with elements using xml:base="http://...

123

Attributes:
unordered

Comments,
processing
instructions, . ..

Namespaces
and base URls

124 DATA MODEL—RELATIONS OVER TREES AND GRAPHS

conferer%é)\

4 1

5
9 o ey
can®? / f\v %O M
date @ i

paper paper

=N

ﬂ'IlHC)

i %,
‘Cicero’ ‘incomplete!’

Figure 24. Exemplary Data Graph: XML Conference Data

and, as namespaces, are inherited to contained elements unless a nested
xml:base declaration takes precedence.

In the next section, we describe how we map the basic information items
as well as derived and inheritable information such as namespaces and
XML Base URISs to data graphs. It is worth highlighting that the mapping
can be easily extended to cover additional information items (such as
entities, notations, and processing instructions or information items typed
by XML Schema [92] types) as well as other forms of heritable information.

5.3.2 MAPPING XML TO DATA GRAPHS

Sample XML In Figure 24, a data graph for the above XML document is shown: As
data before, edges are decorated with their position index (e.g., - - -) and label
(e.g., —), aroot node is indicated by a sink-only edge (like —®). Nodes

representing literal character content are differentiated using gray (like
@) instead of blue color, their labels enclosed in single quotes. The order
specification is not presented in the figure. With the order specification
O = N x {CHILD, VALUE, COMMENT, REF}, i.e., order is significant for
all CHILD, VALUE, COMMENT, and REF edges, but not for ATTR, INSCOPE,
NS, PREFIX, and NAME edges, the graph faithfully represents the XML
information set corresponding with the above fragment. As in [81], the
children of an element are ordered and include element, comment, and
character data children. Also, for any attribute with type idref or idrefs, the

5.3 XML: ESSENTIALS AND FORMAL REPRESENTATION

conferencﬁ)\
2 7 3 4 5 5

4
%

‘http://../1a/

Figure 25. Exemplary Data Graph: XML Conference Data with Transparent id/idref-
links

attribute information item contains an ordered list of element information
items referenced by that attribute, here expressed using REF edges. This,
again, mirrors [81] but deviates from the XQuery data model [94] and
many other (purely tree-shaped) views of XML.

In Figure 24, we place ATTR, NS, and INSCOPE edges after CHILD, COM-
MENT, and VALUE edges, however, this is an arbitrary choice. As long as
the order between edges of the latter kind is preserved, the order of the
position of the remaining edges is insignificant.

5.3.3 TRANSPARENT LINKS

In the mapping scheme illustrated by Figure 24, we choose to represent
id/idref-links as in [81]. However, in many applications, a treatment of such
links in the same way as parent/child-relations is preferable. In this case,
we place the linked elements, in order, at the beginning of the child list of
the element containing the attribute.

If an element contains no other information items (no attributes, el-
ements, comments, etc.), we may also choose to replace the element by
the reference. This allows arbitrary placement of id/idref-referenced ele-
ments within the child list of a parent element. Furthermore, it allows the
transparent resolution of links expressed using reference elements such as
XHTML: a or DocbooK’s Link.

1 > ‘Storage Media’

125

126 DATA MODEL—RELATIONS OVER TREES AND GRAPHS

54 RDF: ESSENTIALS AND FORMAL REPRESENTATION

In addition to XML, we also demonstrate how to map RDF [150, 142, 122]
graphs to datagraphs. RDF is, though much less common than XML, a
widespread choice for interchanging (meta-) data together with descrip-
tions of the schema of that data.

Following the recent SPARQL [183] proposal, we choose to support the
mapping of RDF graphs under simple entailment as defined in [122]. In
contrast to SPARQL, we omit typed literals and named graphs [66], both
optional features of RDF (or extensions thereof) for simplicity. Both can
be easily added to the described mapping, e.g., each named graph can be
represented as a separate connected component, the graph representatives
distinguished as root nodes of the data graph.

5.41 RDF IN 500 WORDS

RDF graphs contain simple statements about resources (which, in other
contexts, are be called “entities”, “objects”, etc., i.e., elements of the domain
that may partake in relations). Statements are triples consisting of subject,
predicate, and object, all of which are resources. If we want to refer to a
specific resource, we use (supposedly globally unique) URIs, if we want to
refer to a resource for which we know that it exists and maybe some of its
properties, we use blank nodes which play the role of existential quantifiers
in logic. However, blank nodes may not occur in predicate position. Finally,
for convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey see [38]),
such as RDF/XML [20], an XML dialect for representing RDE, or Turtle
[15] which is also used in SPARQL. The following Turtle data represents
roughly the same data as the XML document discussed in the previous
section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
. @prefix dct: <http:/purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.0rg/2001/vcard—rdf/3.0#> .
+ @prefix bib: <http://www.edutella.org/bibtex#> .
@prefix ulp: <http://example.org/roman/libraries/ulpia#f> .
s ulp:cicero-46-wt a bib:Article ; dc:title "Wax Tablets" ;
dc:creator [a rdf:Seq ;
8 rdf:_1 ulp:cicero ; rdf:_2 ulp:tiro] ;
ulp:cites ulp:hirtius-47-bc ;
10 dct:isPartOf ulp:conf-46-mutina .
ulp:cicero a bib:Person ; vcard:FN "M. T. Cicero" .
1» ulp:tiro a bib:Person ; vcard:FN "M. T. Tiro" .

5.4 RDF: ESSENTIALS AND FORMAL REPRESENTATION

ulp:hirtius-47-bc a bib:Article ;
14 ulp:cites ulp:cicero-46-wt ;
dct:isPartOf ulp:conf-46-mutina .
16 ulp:conf-46-mutina a bib:InProceedings ;
rdfs:label "Storage Media" .

Following the definition of namespace prefixes used in the remainder
of the Turtle document (omitting common RDF namespaces), each line
contains one or more statements separated by colon or semi-colon. If
separated by semi-colon, the subject of the previous statement is carried
over. E.g., line 6 reads as ulp:cicero-46-wt is a bib:Article and has dc:title “Wax
Tablets”. Lines 7—9 show a blank node: the creator of the article is neither
Cicero nor Tiro, but some unnamed resource that is a sequence of those
two authors.

RDF Interpretations are used to provide meaning to an RDF graph. URIs
in subject or object position are interpreted as arbitrary objects, such as
people, trains or web pages. An URI in predicate position is interpreted as
a set of pairs of objects such as train connections, coauthor relationships
or links between webpages. The set of resources that RDF graphs make
statements about is called the domain of the RDF graph.

Finally blank nodes are used to express existential knowledge or to
group information in RDF graphs. Each blank node is interpreted as a
domain element but its interpretation is not fixed: An interpretation is a
model of an RDF graph iff there is an interpretation for the blank nodes
such that for every triple, the interpretation of the subject and object is an
element of the interpretation of the predicate. An RDF graph g is said to
entail an RDF graph h if every model of g is also a model of .

As the definition of an interpretation resembles the definition used in
logic, it is possible to view an RDF graph as a formula. This formula has
an atom for every triple. URIs and literals are represented by constants,
while blank nodes are represented by existential variables.

5.4.2 MAPPING RDF TO DATA GRAPHS

This RDF data is mapped to a data graph as shown in Figure 26. In the case
of RDF the order of the edges is mostly irrelevant, only for the sequence
container ([6] in Figure 26) we choose to order the RDF:_i edges. This
allows for a more convenient querying of elements in a sequence, cf. [138].
We choose to consider all named resources, i.e., all resources with URI
label (depicted as light blue round nodes O in Figure 26), as root nodes
of the RDF graph. This choice, however, does not affect the remainder
of this article. Recall, that root nodes are nothing more than specifically

127

from RDF to
data graphs

128

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

bib:InProceedings

RO .m @ Storage Media’
RDFQ EL
ulp:conf-46-mutina @

’ DCT 1sSPARTOF
DCT:IS ARTOF @ ulp:hirtius-47-bc
ulp cicero- 46 wt

‘Wax Tablets’ : x
DC:CREATOR DR %Qg);j}
_:blank bib:Article
rdf:Seq @w‘m’ '
2 3
/ 1%1-‘:,2

RDF:_1

) ulp:tiro
ulp:cicero e
> 2
P
ARD:

Figure 26. Exemplary Data Graph: RDF Conference Data

marked entrance points into the graph. Otherwise they are unrestricted,
in particular they may have incoming edges. There is a single node in the
graph for each named resource that occurs in the RDF data. The same literal
may occur multiple times. Each blank node is depicted as a rectangular
node (e.g.,[6]). As in Turtle [15] and SPARQL, blank nodes are labeled with
local identifiers prefixed by _:. There is one node for each blank node in
the RDF data.

This mapping faithfully represents the RDF graph (under simple en-
tailment), but does not guarantee that the representation is minimal in
the sense that there is no smaller data graph that represents an equivalent
RDF graph. For an RDF graph containing blank nodes, there may be a
more compact representation that eliminates some of these blank nodes
that express redundant information. E.g., if we add a statement “there are
two articles that cite each other” using two blank nodes for the involved
article, this information is redundant as it already follows from the origi-
nal data (ulp:cicero-46-wt and ulp:hirtius-47-bc cite each other). The mapping
from RDF graphs to data graphs preserves such redundancy. However, the
representation is minimal if the input RDF graph is minimal (or lean in
the sense of [122]). For each RDF graph, an equivalent lean graph exists

5.5 XCERPT DATA TERMS 129

and its computation is DP-complete?.

Representing the actual input graph (and not an equivalent minimal
one) is necessary to support queries such as selecting the blank nodes in
an RDF graph (as per SPARQLs isBlank operator). Only if we disallow
queries that can distinguish blank nodes from named resources, the lean
graph returns the same answers for all queries as the original graph.

RDF provides a number of high-level modeling concepts such as collec-
tions (list), containers (bag, sequences, and alternatives), reification (the
representation of a statement as a resource). There is no need to explicitly
support such concepts in the mapping to data graphs, however, as all of
them are reduced to certain conjunctions of basic RDF triples and thus
provided implicitly. E.g., lines 7-8 in the above data show the pattern for
sequence containers: A resource (often unnamed, i.e., represented by a
blank node) is typed as an rdf:Seq and the elements of the sequence are
connected using rdf:_i predicates. For details on the triple patterns for
other high-level modeling concepts, see [142].

55 XCERPT DATA TERMS

We conclude our consideration of data graphs and their relation to data
representation formats for the Web with a brief look at Xcerpt data terms.
The formal description of the mapping is presented as part of Chapter 7.
Here, we illustrate the basic ideas and how they relate to the mappings for
XML and RDF data.

5.5.1 XCERPT DATA TERMS IN 500 WORDS

Recall from Chapter 3, the general shape of Xcerpt data terms: they are hier-
archical (i.e., tree shaped) representations of graph-shaped, semi-structured
data. To obtain a hierarchical representation of a graph, referable term iden-
tifiers and references are introduced that allow to express non-hierarchical
relations. Term identifiers are like 1D attributes in XML (or blank node
identifiers in many RDF serializations) identifiers for data items that are
unique in the context of a data collection (usually a document). References
are similar to IDREF attributes in XML but occur in place of elements
(rather than as attributes of a special type) and are transparently resolved,
i.e., the case of a term containing a reference to another term cannot be
distinguished from the case where the term contains the other term as a

3 Recall, that DP is the class of all decision problems, that can be expressed as the intersec-
tion of an NP- and a co-NP-problem.

130

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

direct child.
The following Xcerpt data term yields the data graph from Figure 25:

1 declare ns-prefix dc = "http://purl.org/dc/elements/1.1/"
conference(dc:title="Storage Media") [
; dc:date ["44 B.C."]
pl @ paper(title="Wax Tablets") [
5 Ap2
author ["Cicero"
7 xcerpt:comment{ "incomplete!"}]
1
9 p2 @ paper [
Apl
n author ["Hirtius"]
1

i3 pc[member["Cicero"]

member["Atticus"]]

15]

Note that namespace declarations enclose the element (or element list)
that are in the scope of that declaration, i.e., that may use the defined pre-
fixes. Attributes are associated with term labels using parentheses, whereas
the children of a term are contained in brackets or braces. Brackets indi-
cate that the order of the children is significant, braces that it is not. The
above fragment only uses brackets to yield the same data graph as an XML
document where children are always ordered. However, we could just as
well use braces in the above data, if, e.g., the order of papers or the order
of members in a program committee is not significant.

56 RELATIONS ON DATA GRAPHS

As formal basis for the query language clqLog and the algebra ClQcAG dis-
cussed in the following chapters, we adopt (binary) relational structures.
In fact, both can be used to query arbitrary binary relational structures.
For the formalization and evaluation of Web query languages such as
Xcerpt, XQuery, and SPARQL, however, we choose a specific relational
schema (defining the arity and names of available relations). We show
how to obtain instances for this schema (i.e., the actual relations) from
data graphs as described above. This bridges between the notion of data
graphs that is close to the intuitive shape of semi-structured data on the
Web as queried by Xcerpt, XQuery, or SPARQL, and the formal notation
of relational structures that is more convenient for the purpose of defining
the semantics and evaluation of clqLog and ClQcAG.

The relations defined in the following are familiar from query languages

5.6 RELATIONS ON DATA GRAPHS

such as XPath and their formal treatments in, e.g., [160, 170, 112] with
three major exceptions: (1) As we discuss graphs with labeled edges, we
provide relations for accessing both nodes and edges as well as their con-
nections where most other collections of relations on semi-structured
trees or graphs either consider only nodes or only edges as the domain
of the relations. (2) Since edges are labeled, we extend classical structural
relations such as child and descendant in XPath to specify a set of edge labels
to be traversed. This allows, e.g., to limit a descendant traversal to only nodes
reachable by all child edges in Figure 24, excluding node reachable by a mix
of child and ref edges (the latter indicating the traversal of an ID/IDREF link).
The same applies to horizontal or positional relations such as following or
following-sibling. (3) Following many object-oriented query languages as
well as Xcerpt and XQuery, we introduce a deep equality on nodes such
that two nodes are deep equal if the structures rooted at those nodes are, to
some extent, compatible. “Compatible” may be an isomorphism between
the substructures or just simulation, for details see Section 5.6.6.

Note that the domain of the attributes of these relations are either the
nodes or the edges of the data graph, or the set of integers. The active
domains are the same for nodes and edges. For integers, however, the
active domain is a finite subset of all integers with a size bound by the
maximum out-degree d of a node in the data graph (and thus by the
number of edges). In all cases, but pos, this set is {1,...,d}. In the case of
pos, the size of the set is also bound by d, but the contained integers are
arbitrary.

5.6.1 BINARY RELATIONAL STRUCTURES

First, we briefly recall a (standard) definition, following [2], for relational
structures but limited to binary relations:
Both clqLog and ClQcAG operate on a (slightly extended)* relational struc-

131

Data: binary

ture D as data. D is defined over a relational schema ¥ = (R, [U,],..., Ry [Uy]) relational

and a finite domain N of nodes (or objects or elements or records) in the
data graph. Each R;[U;] is a relation schema consisting in a relation name
and a finite, nonempty set of attribute names, We assume an equality re-
lation = on the nodes that relates each node to itself only (identity). D
is a tuple (RP, ..., RkD, 0). Each RP is a finite, unary or binary relation
over N with name R;. For a relation R, ar(R) denotes its arity. We extend
D with an order mapping O that associates with each (binary) R; a total

4 The deviation lies in the addition of order for each relation. Furthermore, we restrict
ourselves to binary relations.

structures

132

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

order on the domain (of nodes) N such that all # € rng R; are before all
n’ € N~ rngR;.> We denote with O(D) = {0: 3R; € D: O(R;) = 0} the
set of (total) orders to which the relations in D are mapped. These (total)
orders serve to represent the image of each node in a relation as one or
more continuous intervals over the order associated with that relation.
Choosing an appropriate order for a relation is discussed in Sections 11.3.1
(for tree data) and 11.3.2 (for cIG data).

5.6.2 A RELATIONAL SCHEMA FOR DATA GRAPHS

cloLog and ClQcAG operate on arbitrary relational structures, though they
profit from relational structures where some or all relations are tree, forest,
or c1G shaped. In the following, we outline a particular relational schema
containing relations on data graphs (as introduced in Section 5.2) that is
used to realize Xcerpt, XQuery, and SPARQL queries in clqLog (and thus
ClQCAG).

Given a data graph D = (N, E, R, £, ©) over node labels Xy and edge
labels X, we choose as domain N’ = NUEU {1,...,max({i : 3n,n’ :
(n,i,n") € E}) U Xy U X, i.e., the union of the disjoint sets of nodes,
of edges, of integers from 1 to the maximum edge position, and of node
and edge labels. Note that each of the sets, and thus N’ too, is finite. We
add node and edge labels as well as (edge position) integers to the set of
nodes and edges to keep the relational schema for querying data graphs
independent of the actual graph.®

Table 1 gives a summary of the relations defined in the following together
with their relation schema. It is worth emphasizing that not all of these
relations are used in the translation of each language. Rather, for the most
part we limit ourselves to specific label sets S (mostly, the singleton sets)
and only consider a small number of path relations. Furthermore, not all
relations must be extensional. In fact, in Chapter 6, we briefly discuss a
set of minimal set of extensional relations and show how to specify the
remaining relations as intensional rules on top of this minimal set in clQLog.

In the following, let £ = Xy U 2 be the set of node and edge labels
and P(Z) be the power set over X. Furthermore on a domain D, we
denote with R, o R, = {(n,m) e D*:3n’ e D: (n',m) e R, A (n,n") €

5 Here and in the following we denote the domain and range of a function f : N - M
by dom f and rng f, resp.:dom f = {n € N : 3minM : f(n) =m} andrngf = {me M :
IneN: f(n)=m}.

6 Alternatively, we can use one (unary) position relation for each edge position and one

(unary) label test relation for each edge or node label in the data. Since both are finite sets,
the resulting relations still form a relational schema.

5.6 RELATIONS ON DATA GRAPHS 133

node edge node-node node-edge edge-edge
identity = = =
structure pathf’ I 0, —0

position @’ @, pos <<S,<<i,<<i,<s>‘i:<i <S,<i><i=%

label g, Lab® 2, Lab® = = =

arity indeg®, outdeg®
ordered 0,08

root root

Table 1. Summary of query relations (S is a set of labels from Zy U 2g)

R,} the composition of two binary relations R, and R, and with RF =
RoRo...oR k compositions of R with itself. For a binary relation R let
—_—

k times

R(n) ={me NUE: (n,m) € R} be the “images” of n under R.

5.6.3 PROPERTIES OF NODES AND EDGES: LABELS AND POSITIONS

Property relations test a certain “local” property of a node or edge without
relating it to other nodes and edges. Instead, they associate an edge or
node, e.g., with its label or its position among siblings or, resp., edges with
the same source.

LABEL RELATION. To obtain the label of a node or edge, we make the
labeling function of a data graph accessible as a binary label relation that
identifies all edges and nodes with their label:

={(t,0) e (NUE)x2:8(¢t) = 0}

For any finite set of labels S c P(X), we provide as convenience the label
test relation

lab® = {te NUE: () €S} = [J{t e NUE: £(t,0)}

o€S

For brevity, we write for singleton sets S = {1} just Lab" and omit the
index for § = X. Note, that Lab = Lab> is not necessarily N U E since there
may be nodes (though no edges) without label, i.e., Lab>* = E, but Lab™ is
not necessarily N. For the translations discussed in Part III, we only use

134

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

label relations with singleton label sets S. In this case, the number of label
relations is bound by the size of 2 U X .

POSITION RELATION. To test for the position of an edge among the
edges with the same source or of a node among its siblings, the position
relation @3 associates an edge e with 1+ the number of edges with the
same source that (1) are ordered (i.e., have a label in O(n) where 7 is
the common source), (2) have alabel in S € P(X), and (3) have an edge
position preceding the edge position of e. We increment the number of
edges by 1 to achieve node positions between 1 and outdeg(n) where n is
the source of an edge (rather than o and outdeg(# — 1)). For nodes, @°
associates a node n with whatever any edge with # as sink is associated
with under @°:

@ ={(e,i+1) e ExN:e=(nk,m)Ag(e)eO(n)
AM{e'=(nl,m")eE:2(e') e SNO(n) Al <k} =i}
u{(n,i)eNxN:3eeE:e=(n',k,n) r@°(e,i)}

Notice, that an edge in @3 is not itself required to be labeled with a label in
S. Rather, this can be achieved by an additional label relation on the edge.
Note, that @° is a function (for each S) on edges, but for a node there may,
in general, be several positions associated with it: This is the case for any
node with multiple incoming edges. On tree data, @’ is a function also
on nodes. Again we write only A for singleton sets S = {1} and omit the
index S for § = X. For the translations discussed in Part III, we only use
position relations with singleton label sets S. In this case, the number of
position relations is bound by the size of 2 U Zy.

For edges, we also provide a relation to retrieve the actual edge position:

pos={(e,i) e ExN:3n,n" e N:e=(n,i,n")}

DEGREE RELATIONS. To test for the number of in- or out-edges of a
node, there are, for each S € P(X), in- and out-degree relations indeg® and
outdeg® that associate each node with its in- resp. out-degree, counting
only edges labeled from S:

indeg® = {(c,i) e N x N} : [{e=(p,j.c) e E:2(e) e S}|=1i}

outdeg® = {(p,i) e Nx N} : [{e = (p,j,c) € E: ¢(e) € S}| = i}
Notice, that the degree is defined over the number of edges labeled from
S, not the number of child nodes reached over edges labeled from S. If

the graph is simple, i.e., contains no multi-edges, both definitions are
equivalent. But in the presence of multi-edges the given definition leads

5.6 RELATIONS ON DATA GRAPHS

to more intuitive (and higher) degrees than a definition based on child
nodes. The same abbreviations as above for singleton sets and S = X are
used.

ORDERED RELATION. Forany finite set of labels S € P(Z), we provide
as convenience the order specification test relation

OS5 ={neN:VYoeS:9O(n,s)}
The order specification O is exposed directly.

ROOT RELATION. Finally, there is a root node relation root = R ¢ N
that identifies all root nodes in the data graph.

5.6.4 STRUCTURAL RELATIONS

The primitives for traversing the structure of the graph data are relations
that connect nodes with incident edges or nodes with other nodes reach-
able via (arbitrary or fixed length) paths.

SOURCE AND SINK RELATIONS. Traversal from edge to node and
vice versa is achieved using the source and sink relations.

o>={(ne)e NxE:JieN,n e N:(n,i,n’)=¢e}
—o={(n,e)e NxE:3ieN,n e N:(n',i,n) =e}
—o and o— relate a node to all its in- resp. out-edges. To retrieve only
one particular edge, e.g., the i-th out-edge, a combination of o~ and @ can

be used. To retrieve edges with a specific edge label o— can be combined
with Lab.

PATH RELATIONS. Structural node-node relations relate nodes that
are connected by fixed length or arbitrary length paths (i.e., sequences of
edges). Forany S € P(X), i, j € Nu { oo} we define the path relation

pathf)j: {(n,m)eN*:3i<k<je,...,ex€En,....,n_, eN:
o~5(n,e,) A —0%(m, er) AlLab’ (ex)A

f/_\boS(m,ez) noeS (g erys) A Lab(en))}

Intuitively, two nodes are in pathf) j relation, if there is a path with length
between i and j that connects the two nodes. For i = j = 1, this ren-
ders the direct edge (or child) relation between nodes. On XML data

135

136

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

represented as in Figure 24 this renders, for i = 0,j = co and § =
{CHILD, COMMENT, VALUE}, XPath’s descendant-or-self, for i = 1,j = oo,
XPath’s descendant or Xcerpt’s desc. For the translations discussed in Part I1I,
we only use those three types of path (child, descendant, and descendant-
or-self).

If i = j = 1, we omit the interval index, if i = 0, j = co we use *, if
i=1,j=ocoweuse+asindex. If S = £ we omit the label index, if S = {1}
we write A; ; for pathl{j}.

5.6.5 ORDER RELATIONS

The following relations are successor and order relations on edges and
nodes based on the relative position of the edges or nodes under a common
parent or ancestor. For each type, there is a (non-transitive) successor
relation and a transitive order relation. The order relations are proper
(strict partial) orders only for edges, for nodes (due to multi-edges, i.e.,
several edges with same source and sink but different edge position) the
relations are strict preorders, i.e., not anti-symmetric. E.g., if a is connected
by the first and sixth edge to b and by the third edge to ¢, c is both a
following sibling (b <<, ¢) of b and its preceding sibling (¢ <<, b).

ORDER RELATIONS ON EDGES. Since graphs may carry order, we

can compare two edges wrt. their relative position within the out-edges of

a common parent. For all S € P(X), we define the direct <%, the transitive

<, and the transitive reflexive edge sibling relation <5:

<S={(e,e’) e E*:0+(n,e) no—~(n,e’) Alab®(e) A Lab® (')A
@ (e,i)rn@%(e/,i+1)}

S={(e,e') € E*:0~(n,e) Ano~(n,e') nlab®(e) A Lab’(e')A
@°(e,i) n@* (e, j) ni < j}

<S={(e,e') e E>:0~(n,e) no~(n,e’) Alab®(e) A Lab®(e')A
@ (e,i)n@° (e j) ni<j}

Intuitively, <5 relates (under the common parent node) each edge to its
immediate successors among the edges with label in § 0 O(n). It is an
injective function even in presence of multi-edges. <5 relates (under a
common parent node p) each node to all following edges outgoing from
p with label in S 0 O(n). As in the case of @5, the labels S are only used
to limit the considered edges.

5.6 RELATIONS ON DATA GRAPHS

ORDER RELATIONS ON NODES. There are two types of positional
relations on nodes: those relating siblings under a common parent and
their generalization to the entire graph, i.e., positional relations relating
arbitrary nodes in a given graph.
Forany S € P(X), there is a direct <5, a transitive <5, and a transitive
reflexive node sibling relation <.
«<5={(n,m) e N*: —~o(n,e) A—~o(m,e') ne< e}
S={(n,m) e N*: —o(n,e) A—~o(m,e') ne< e’}
«<5={(n,m) e N*: ~o(n,e) A—~o(m,e') ne<S e}

$ must have a

It follows from the definition of <5, that two nodes in <
common parent. On nodes, < is a function only on trees. Again the same

abbreviations as above for singleton sets and § = X are used.
S

For all S € P(X), there is also a transitive <3, a transitive reflexive <3,

N

and a direct following relation <> on nodes.

={(n,m) e N*: 0’ <5 m' npath®(n’, n) A path (m’, m)}

S
<«
S ={(n,m) e N*:n' <3 m' npath®(n’, n) A pathl (m’, m)}
<8 $ S
Intuitively, «3 relates 7 to all nodes m that follow n within the subgraph
induced by all edges with label in S. Notice that, <3 (x,y) == 3y’ <5
(x,y") only if <% is acyclic and thus irreflexive. If «$ is cyclic, there is no
direct following for all nodes on the cycle.
On XML data represented as in Figure 24,
following-sibling, «$™** XPath’s following axis.

CHILD
<

represents XPath’s

5.6.6 EQUIVALENCE RELATIONS

The previous binary relations relate nodes and edges based on how they
are connected in the data graph. Equally important is the ability to relate
two nodes based on their local properties, e.g., their label, structure, or
arity. In this section, we introduce several equivalence relations based on
such properties.

LABEL EQUIVALENCE RELATION. The label equivalence relation =
relates all nodes or edges that have the same label.

2={(t,5,) e (NUE)*: I eZ:2(t,) =A=2(¢t,)}

137

={(n,m)eN*n<Smadn’ eN:n<Sn' an' «Smvpath(n',n)}

138

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

IDENTITY EQUIVALENCE RELATION. The identity equivalence rela-
tion = relates each node or edge to itself and itself only.

2={(t,t) e (NUE)*}

POSITION EQUIVALENCE RELATION. Forany S € P(Z), the posi-
tion equivalence relation =5 relates all edges that occur at the same position
among the out-edges of their respective sources.

=S={(e,¢’) e E*:JieN:@%(e,i) n@° (¢, i)}

Again we use only A for singleton sets S = {1} and omit the index S for
S=Z.

STRUCTURAL EQUIVALENCE RELATION. As thelabel equivalence
relation stand to the label relation, structural equivalence relations stand to
edge and position relations. They relate nodes not based on the equivalence
of their local properties, but on the equivalence of their structure, i.e., of
the subgraph rooted at the respective node. Unfortunately, since they are
dealing in equivalence not between atomic values like label equivalence
relations but between structured values, their semantics and evaluation
is considerably more complex. In the following, we introduce a flexible
structural equivalence relation, referred to following common notation as
deep equal. The introduced relation is flexible enough to cover a large set
of existing or desirable specific structural equivalence relations:

XQuery, e.g., provides the deep-equal function that identifies pairs of
nodes with a structure that is equivalent w.r.t. the XQuery data model
(thus, e.g., disregarding attribute ordering and in-scope namespaces). [144]
shows that the presence of deep-equal does not affect the complexity of
composition-free XQuery. Recall, that composition-free XQuery is a re-
striction of XQuery similar to the algebra discussed in this work, where the
domain of all query operators is limited to the input document. However,
XQuery operates only on ordered tree data, where deep-equal (i.e., ordered
tree isomorphism) is linear [6]. The generalization of XQuery’s deep-equal
to general unordered graphs, however, subsumes to graph isomorphism
which is believed not to be in P and which exhibits, for the general case,
only exponential-time deterministic algorithms [143]. However, there exist
efficient algorithm for rather large classes of graphs, e.g., planar graphs
[126].

Moreover different queries might require different notions of deep join:
order may be significant or insignificant, certain edges or nodes (e.g., rep-
resenting comments in XML) may be entirely ignored, and non-injective
mappings may be acceptable to establish equivalence. From what occurs in

5.6 RELATIONS ON DATA GRAPHS

®-. © @ -
VT EE
(a) No Injectivity (b) Edge Bijective
fONE @ O -@
6 7 ed 6 5
© Node Bietie 0 e 6 Node Becte

Figure 27. deep equal: effect of injectivity

practical XML and RDF query languages, these variances can be classified
in three dimensions:

(1) WHAT SHOULD BE MAPPED BIJECTIVELY? In some cases, two
nodes are considered equal already if all the structural information from
one node occurs in some form in the other and vice versa. It is not required
that multiple occurrences of same information is carried over. This roughly
corresponds to simulation [164] as equivalence relation. On the other
extreme, one might consider two nodes equivalent only when they are
fully isomorph. This is, e.g., the semantics of XQuery’s deep-equal.

What makes these cases different is whether the mapping between the two
nodes and their respective substructures is bijective or not. More precisely,
one can distinguish deep equals by the “degree” of bijectivity required:

(a) Type cover: The first choice lies in whether we demand that the map-
ping is (i) not bijective at all, (i) bijective only on edges, (iii) bijective
only on nodes, or (iv) bijective on both. On trees, case (i) to (iv) are
obviously equivalent, but in presence of multi-edges or cycles dif-
ferences emerge. Figure 27 illustrates the differences between the
different forms.

(b) Structural cover: Aside from the question which types are covered
by the mapping, a further variance lies in the structural extent of the
cover: either (i) the entire (reachable) subgraphs rooted at the two
nodes, (ii) only adjacent edges and nodes, or (iii) only outgoing edges
and children. In trees all three forms are equivalent, but in graphs
the latter two are less restrictive than the first: Figure (a) shows an
example of two graphs that are equivalent under (jii), but not under
(i) or (ii). In general, (iii) can not distinguish DAGs from trees in all

139

140

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

(a) Multi-parent nodes (b) Cycle length

Figure 28. deep equal: effect of cover for equivalence mapping

cases. Figure (b) shows a case where (i) considers the two graphs
equivalent, but (i) does not. In general, (i) fails to distinguish graphs
with cycles differing only in cycle length.

(2) WHAT SHOULD BE MAPPED AT ALL? Some parts of the struc-
ture may be excluded, e.g., comments in XML data or annotation proper-
ties (such as rdfs:seeAlso or rdfs:label) in RD data. The deep equal presented
below allows to limit the mapping to certain given edge labels L.

(3) WHAT SHOULD BE MAPPED IN ORDER? In some cases, one
might be interested in preserving the order of the data (if it is ordered at
all). However, in other cases (in particular for non-bijective mappings) the
order may be irrelevant. As in the previous case, the deep equal presented
here allows to limit the order-respecting edge labels Lo c L.

Figure 29 shows the formal definition of the generalized deep equal
relation £ (omitting analogous variant 2b): We define four variants of £
that differ, as explained above, in what nodes and edges are mapped and
whether the mapping is bijective. The basic case, £, maps only adjacent
nodes and edges (more precisely, eds are edge positions in the context of
each node). Its bijective variant, ;;, also only maps adjacent nodes and
edges, but does so using a bijective mapping. Analog variants, 2, and 2, p;j,
exist for the case where all nodes and edges in the subgraph are mapped.
Again, if L and Lo are Xy we omit the superscript.

All definitions use ~ to express first that each L-child of the first node
must be mapped to a corresponding child of the second node such that
the two children are deep equal. Second, the definition ensures that the
order of edges, where they are ordered in the first place and covered in
Lo, is preserved by the mapping. The definition takes care that the order
specification of the data takes precedence over Lo, i.e., membership in

5.6 RELATIONS ON DATA GRAPHS 141

nds" :N > o(N) = {(n,Ny) [ne NAN, = {n" e N: I e L: A(n,n")} u{n}}
ndsk :N — p(N) = {(n,Na) | ne NANy = {n e N:3 e L: Ay (n,n")} u{n}}
eds" :N » p(N) = {(n,En) |n e NAE, ={(n,i) e NxN:3n" ends: (n,n’,i) e E}}
edsk :N - p(N) = {(n,Ey) | ne NAE, = {(n',i) e NxN:3n',n" ends* : (n',n",i) e E}}
~Ploz{(n,m,f,g,2) |VeneN,ieN:e=(n,cn,i) €EAL(e) e L =
3i" e N:g(n,i) = (mi') ne' = (m, fcn),i') € En= (e,e’)A 250 (cn, f(en))
A(AeLonO(n) = VA eLonO(n),keN:
" = (m f(ca) k) € EAL(") =X Ak <i = T : g(mk) = (m k') AK <i')
eblo= {(n,m) e N*| =izpe (n,m) A O(n) = O(m) A (3f :nds (n) — nds™(m), f : nds’ (m) — nds* (n),
gredst(n) » eds" (m), g" seds" (m) - eds" (n) : A PO (n,m, fLg, 2)n B0 (mon, f, g, 2))}
g;f% {(n,m) e N*| =ippe (n,m) A O(n) = O(m) A (3f :nds*(n) — nds"(m), g : eds" (n) — eds" (m) :
£, gbijectiven ~L0 (n,m, f, g, 2) A ~HEO (mym, £, 67, 25)) }
2bro L(n,m) e N* | 2 (n,m) AO(n) = O(m) A (3f :ndsk (n) — ndsk (m), g : edst (n) — edst (m) :
A~EEO (nm, fLg, 2 A ~PEO (mon, £ 87 24)))
oL,Lo_

L= {(n,m) e N*| = (n,m) AO(n) = O(m) A (3f : ndsk (n) — ndsk (m), g : edsk (n) — eds’ (m) :

f. g bijectiven ~10 (n,m, fL g, 2 pi) A ~EEO (mun, £ g7 200)) }

Figure 29. DEEP EQUAL (Lo c L c Zp)

142

DATA MODEL—RELATIONS OVER TREES AND GRAPHS

Lo preserves order of respective edges only if the edges are considered
ordered in the data.

5.6.7 INVERSE AND COMPLEMENT

We conclude the set of relations on data graphs by inverse and complement
relations for each of the previously defined ones.

COMPLEMENT RELATIONS. For each of the basic binary relations R
on nodes and/or edges (but not on integers), we introduce the complement

relation
(NUE)>~ R if R c N UE label or identity equivalence relation
N>\ R if R ¢ N? structural equiv., path, or node order rel.
7= E*\R if R c E? edge order

(NxE)~NR ifRc N x E source or sink relation

N\R if R c N root relation

NUE~NR if R c NUE and not R c N label relation

In clolog and the ClQcAG algebra these relations are not strictly needed and
can be simulated by a complement operation over the original relation.

INVERSE RELATIONS. For each of the basic binary relations R, we also
introduce the inverse relation R™* = {(x, y) € (NUE)? : R(y, x) }. Though
these relations do not add to the expressiveness of conjunctive queries as de-
fined here (cf,, e.g., [170]) they can be exploited to rewrite certain classes of
graph queries to tree queries as described in [169]. Consider, e.g., the graph
query Q(m) — cHILD(v,,V,) A CHILD(V;, ¥,) A CHILD(V,, v,). This can
be rewritten to Q’(m) — cHILD(v,, v,) ACHILD *(v,, v;) ACHILD(V,, v,),
where the relation between v, and v, is inverted making the query tree-
shaped.

5.6.8 EXAMPLE RELATIONS

We conclude the discussion of relations on data graphs by looking back to
the data from Figure 23. For that data, Table 2 gives some of the relations
derived from the data graph in accordance to the above definitions.

5.7 CONCLUSION 143

Lab™™ = {(d4>3> d5)> (d4> 2, d10)> (dll’ 2 d14)’ (d“s’ dzo)}

LabPAPEr = {d4,dn} Lab Crero’ _ {ds,dw}

z= {(d7> d12)> (d4, du)» (d8> d17)’ (d16’ dls)’ o }

2= {(dd), (), ..., (1, do), (d1, b)), ..}

2= {(ds,d\)} £ — {(dy, dyy), (dys i), (dres dis) }
o= {(dl) (db 1, dz)): (dh (d1> 2, d4))’ .- } —0= {(d2> (dl’ 1 dl))’ (d4’ (d" 2, d4))’ e }
CHILD = {(dp dz)) (dn d4), (d1> d11)> (dU dls)’ (d4’ d7)’ . }

CHILDx = {(d\, d.), (d, d,), (di, d,), (dr, dun), (drs dra), - -}

pathiHILD,COMMENT,VALUE — {(dl,d2)> (dn d3), (dl, d4), (dl, d7), (dl, dg), (dn dg); (dl, du), .. }

@ = {(dlla?))’ (du) 1)’ ((d1’3’ dll)’3)’ ((dlo’ 1 d“)’l)’ o }

«<={(d,,d,),(ds,dn), (du,dss), ...} <4={(d»,d,), (ds,dun1), (ds, ds5), ...}
«={(d;sdy),....(ds,drs),...} «<+={(d;,d,), (ds, ds), (ds> ds), ...}

Table 2. (Partial) instances for data graph relations on Figure 23

57 CONCLUSION

The data model, an ordered, semi-structure data graph with node and edge
labels, for ClqLog and ClQCAG is an abstraction of data models for common
Web query languages. As such, it provides a rich set of relations on data
graphs, discussed in Section 5.6, for lqLog enabling ClqLog to be the target
of for the translate of large fragments of Xcerpt, XQuery, and SPARQL, see
Part III. The data model also proves to be sufficiently expressive to capture
both XML and RDF data, as well as Xcerpt data terms (which have, as XML,
many different types of data items structured rather freely into arbitrary
graphs, as in RDF). Before turning to the translation from XQuery, Xcerpt,
and SPARQL, we outline lQLog, our formal query language on query data
graphs in the following chapter.

QUERIES—CIQLOG: DATALOG-
WITH COMPLEX RULE HEADS

61 Introduction 145
6.2 CIQLogSyntax 146
6.2.1 ComplexHeads 147
6.3 CIQLogSemantics 150
6.3.1 Expressiveness and Complexity 151
6.3.2 Deep and Shallow Copies 152
6.3.3 Algebraic Semantics 153
6.4 Data Graphs in CIQLog: Extensional and Intensional Re-
lations 156
6.5 Non-recursive CIQLog 158
6.5.1 Reachability in Data Graphs 159
6.5.2 Equivalence in Data Graphs 159
6.5.3 Examples. 162

61 INTRODUCTION

As formal foundation for Web queries, we introduce ClqLog, a rule-based
query language tailored to semi-structured queries. ClQLog is a slightly
modified variant of datalogy,,,, i.e., datalog extended with negation and
value invention, which is most prominently represented by ILOG [132].
We only consider binary relations, but extend datalog,;,,, with a partial order
on edges (in the spirit of IDLOG [191]) and some (syntactic) conveniences
such as conjunction in rule heads and disjunction in rule bodies. For most
of the translations in Part IIT and the translation to CIQcAG, we focus on
the weakly recursive fragment of clolog, denoted as clqLog"®. Following
[132], a cloLog program is weakly recursive, if there is no recursion through
value invention.

Note, that clqLog’s value invention is, as that of ILOG [132] or RDF query
languages such as RDFLog [63], based on the essential observation that
the actual invented value (in our case node or edge) carries no information

146

Safety: range
restriction

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

whatsoever. Only its membership in relations is material. The same applies
for edge positions: We do not care how they are represented (though we
usually choose integers) as long as they carry the correct order relations. In
particular, there is no requirement that the edge positions are consecutive
and thus no need for a successor relation. This allows for more flexibility
in the realization of edge positions in the algebra.

62 CIQLOG SYNTAX

In the following, we briefly summarize the syntax and semantics of clqLog:
A clqLog rule R consists of a query head and a query body. The query body
is a (quantifier-free) formula over binary and unary atoms. Each atom is
a relation over query variables from the underlying relational structure
D. The domain of the query variables is the domain of D. The query head
is mostly a conjunction of atoms over answer variables and outlined in
detail below in Section 6.2.1. All answer variables must occur also in the
body of the query. All other variables in the query body are existentially
quantified [2].

Each variable must be either a node, edge, edge position, or label variable,
i.e., the domain of each variable is either node, edge, edge position, or
label. If a rule contains a variable that occurs at the position of two or more
attributes with different domains, this rule is invalid, otherwise it is valid.

Answer variables are variables that occur in the head outside of the
condition of a conditional expression. The usual safety restrictions [2] for
datalog apply to ensure that all rules are range-restricted: For each negation,
all answer variables must occur also in a positive expression in the rule
body. For each disjunction, all nested expressions have the same answer

program) u= (rule)*

rule) head) ‘< (expression)

expression) u= (atom) | (negation) | (conjunction) | (disjunction)

(
{
{
(

relation) ‘C (variable) (*,” (variable))? ‘)’

>

negation) u= - ‘C (expression))

conjunction) == ‘(’(expression) ‘N’ (expression) ‘)’

(
(
(
(atom)
(
(
(

disjunction) == ‘((expression) ‘v’{expression))’

Table 3. cloLog syntax (without heads)

6.2 CIQLOG SYNTAX

(head) = (hexpression)

(hexpression) = (hatom) | (hconjunction) | (conditional)

(hatom) = (hrelation) ‘C (hterm) (*,” (hterm))? ‘)’

(hterm) = (variable) | (invention) | (order) | (aggregation)

(invention) = newiiiir:g;:;ce ey (€ (variable)+)’)?

(aggregation) := (sum| count|max|min|avg) ‘C (variable) ‘)’

(order) = Order(order-rery C {order)?, (offset), (variable)*)’

(hconjunction) == ‘((hexpression) ‘A’ (hexpression))’

(conditional) == ‘if (condition) ‘then’ (hexpression) ‘else’
(hexpression)

(condition) == (variable) (‘=" | ‘#’) ‘nil’

(offset) u= (integer)

Table 4. Heads of clqLog rules

variables. Finally, each answer variable must also occur in the body.

6.2.1 COMPLEX HEADS

clqLog differs notably from standard datalog in the shape of rule heads, as
specified in Table 4:

(1) VALUE AND ORDER INVENTION: C/QLog allows terms over an-
swer variables for rule and order invention where datalog™ allows only
constants and variables. Value invention is the same as in datalog,;,,, though
we use a term notation as in datalog;bj: A value invention term is a term
over the invention variables with function symbol new parametrized by an
equivalence relation and an identifier. The identifier allows multiple value
invention statements in the same head each returning a distinct set of new
values. The equivalence relation is used to determine when two binding
tuples for the invention variables are considered equivalent (and thus yield
the same new value). Otherwise, a value invention term is interpreted as
any other function term on nodes or edges and maps to either a node,
edge, or edge position (but not a label as new labels can not be invented).
As for variables in the body, value invention terms may occur either at the
position of node-, edge-, or edge position-valued attributes. If the same
value invention term occurs at the position of two or more attributes with

147

148 QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

different domains, that rule is invalid. In the following, we only consider
valid clqLog rules.

Order invention terms are similar but map to integer values (rather than
nodes, edges, or edge positions). Furthermore, they are parametrized by
order relations rather than equivalence relations. Order terms are used
to control position among elements and are nested to allow the expres-
sion of complex sequences resulting from nested grouping expressions in
languages such as XQuery or Xcerpt.

To illustrate the use of order terms, first consider the following example:
Given binding tuples over the variables x,, x; and x., we want to construct
a new node for each distinct value of x,. For this task we can use value in-
vention terms for creating a new node, e.g., new'® (x,). This term provides
a new node for each distinct value of x, (w.r.t.).

As children of this node, alist of b’s and C’s is asked for, but in such a way that
for each distinct value of x;, a new b is created and for each distinct value of
x. a new C. These new nodes should be children of the node created above
for the corresponding value of x,. Furthermore, a c created for a value of
x. should be placed after the b created for the corresponding value of x,
with only C’s inbetween. To achieve this we use the following order terms:
t, = orderc,, (T, 0, xp) and t, = order., (order, (T,1,), 0, x.). E.g., for the
binding tuples (x, = 14, % = 15, X, = 1) and (x, = 14, Xp = 24, X = 1) We
obtain t,, = orderc, (T,0,1) und ¢t,, = order.,, (orderc, (T,1,15), 0,1,) for
the first tupleand ¢, , = orderc, (T, 0,2,) und ¢, , = order. (orderc, (T,1,24),0,1.)
for the second tuple. We say for two order terms f, = order., (g, 0,%) and
t, = orderc, (g',0',X") that t, < t, in two cases: (a) If g = ¢’ and X <y X" or
X =y %" and o < o'. This case covers the comparison of two order terms at
the same “level”. In the above example, the order terms ¢, , and ¢, ,, e.g., are
at the same level and thus can be compared directly. Direct comparison is
performed by looking at the binding vectors ¥ and X’ and, if those are the
same, using the offsets 0 and o' as “tie brakers”. (b) If g # g’, we look also
at the nested order terms: Intuitively, we look for the outermost two order
terms contained in ¢, and ¢, that are comparable using <, i.e, that have the
same order term as first component g. Formally, ¢, < ¢, if there are order
terms ¢/ and ¢, with ¢/ = ¢, or ¢/ contained in ¢, and] respectively such
that () ¢/ < ¢, and (ii) there are no two order terms ¢!’ in ¢, and ¢, in ¢, such
that ¢ > ¢! and t! contained in ¢’ and ¢, contained in #]'.

In the above example, ¢,, < t,, as t,, contains the order term t;’l =
order, (T,1,1;) such that £ | > t,, (since they have the same first compo-
nent and binding vectors, but the offset of ¢, , is larger than the offset of
t) by <tpast, <t (1, <y2p) b, <t,ast, <t witht the
first component of ¢, ,. The reason order terms are chosen this way is to
allow flexible translation of grouping expressions from languages such as

6.2 CIQLOG SYNTAX 149

XQuery and Xcerpt where in the same context grouping expressions for
entirely different variables may occur, e.g., in

1 for $a in //a return
<a>
3 for $b in $a//b return
(, for $c in $b//c return <c/>)
5

where in the a we have a sequence of b and ¢ nodes such that each b
node is followed by as many ¢ nodes as there are ¢ descendants of the
corresponding //a//b element (in the input document). The above order
terms can then be employed to translate such a query, as shown in detail
in Chapter 8.

We use T to denote the “empty” order term that is neither smaller nor
larger than any other term (but used to complete top-level order terms)
and equal only to itself. Order terms contain T or other order terms as
order terms for their first component. The nesting is only on the first
argument and thus linear. As usual, X and y may be empty. The empty
tuple is equal only to itself and stands in <y relation to no other tuple.
Order invention terms may only occur in place of edge position-valued
attributes. <y is an order relation on (named) tuples of nodes or edges.
A typical example of <y is the component-wise lexical order <, on the
label of those nodes or edges: E.g., (a : x,,b : x,) <jex (@ : y1,b 1 ¥,)
if £(x,) is in lexical order before £(y,) or both labels are the same and
L(x,) is in lexical order before £(y,). For further examples of order terms
see Chapters 7 and 8.

(2) CONDITIONAL CONSTRUCTION: For convenience, we allow con-
ditional construction in the head: some part of the head depends on a
condition on an answer variable (viz., that variable being nil or not).
Conditional construction 4 A if X = nil then hc, else hc, <— b, can
be rewritten to rules without conditional constructions as follows:

hAhe, «<— bAX =nil
2 h A hc, «— bAX # nil

(3) AGGREGATION: As ILOG, clqLog extends rule heads with aggrega-
tion on integers in the spirit of [147]. Variables occurring in aggregation
functions may not occur outside of aggregation functions. We denote
with aggVars(R) the aggregation variables of a rule R, with stdVars(R) =
Vars(R) \ aggVars(R) all non-aggregation variables. Aggregation has no
further effect on expressiveness and complexity in presence of value in-
vention.

Adapting the notation of [132], we call an invention atom an expression
containing either new or order terms. The relation name of that atom is

150

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

called an invention relation name. A rule is a non-invention rule, if it con-
tains no invention atom in the head, otherwise it is an invention rule. A
weakly recursive ClQLog program (or cloLog™® program) is a ClqLog program
where no invention rule depends (directly or indirectly) on another inven-
tion rule. We say that a program P has cascading value invention, if there
are two invention rules R, R such that R depends on R’.

Only the first extension has an effect on the expressive power of clQLog.
It makes ClqLog essentially an ILOG [132] variant extended with (partial)
order on edges (though it has no successor relation in contrast to IDLOG
[191]).

For value invention terms, we mostly omit the equivalence relation in
the following assuming identity =.

63 CIQLOG SEMANTICS

We characterize the semantics of ClqLog in three ways in the following:

(1) The intuitive semantics of a CIQLOg program is that of a logic program
with aggregates [123] where we replace all occurrences of new and
order in the result by unique new nodes, edges, or edge positions. The
last operation is similar to un-Skolemization [82, 63], see Chapter 2.

(2) Together with the observation, that new and order are thus noth-
ing else but Skolem terms with implicit relations on the results of
order that can, as well, be expressed by additional clqLog rules, we
notice that the semantics of ClqLog can be defined by reduction of
ILOG [132] whose semantics is based on Skolem terms and logic
programming with aggregates.

(3) Finally, we give an algebraic semantics based on fixpoint and rela-
tional algebra operations that is useful both for the translations in
Part I1I and for the equivalence to the ClQcAG algebra.

In the following, we assume that disjunction in the body and conditional
construction in the head is removed as outlined above.

Definition 6.1 (Logic-based Semantics of C/QLog). Let P be a range-restricted,
valid clqLog program. Then let S be the semantic of P considered as a logic
program (with aggregates). If § is infinite, the semantics of P is undefined.
Otherwise, we replace each value invention terms in S with a new node,
edge, or edge position (depending on the domain of the attribute it occurs
in; recall that if P is valid, it occurs in only one of these three types of

6.3 CIQLOG SEMANTICS

attributes). Order invention terms are replaced with edge positions such
that the order constraints between order invention terms are preserved'.

6.3.1 EXPRESSIVENESS AND COMPLEXITY

This characterization gives an intuitive and easy semantics for clqLog. To
judge expressiveness, complexity, and completeness properties of ClqLog
the second, equivalent, characterization of the semantic of ClqLog programs
by means of ILOG is more helpful. The following theorem establishes that
clqLog is essentially a variant of ILOG:

Theorem 6.1. ClQLog has the same expressiveness, complexity, and com-
pleteness properties as ILOG [132].

Proof. Each ILOG program containing only binary relations is a clqLog
program if we replace each invention symbol with a new (with new iden-
tifier) over all non-invention variables of the invention atom. For ILOG
programs with n-ary relations we construct a binary decomposition of the
n-ary relations as in RDFLog [63].

On the other hand, each clqLog without order terms can be transformed
into an equivalent ILOG program in the following way:

(1) For each invention term ¢, introduce a new creation rule containing
a new predicate over the invention variables of t and one invention symbol.
In each rule using ¢, add an atom querying that rule in the body and replace
t with the variable bound to the attribute at the position of the invention
symbol. The resulting program is an ILOG program (contains only datalog
rules and ILOG invention rules). Its semantic is the same as that of the
clqLog program since invention symbols are replaced by Skolem terms in
the semantics of ILOG.

(2) Each order term can be transformed analogously, but introduce
cascading value invention.

(3) Aggregates are also allowed in ILOG.
The result of the ILOG program is up to an isomorphism between new
OIDs and node, edge, and edge positions equivalent to the result of the
ClQLog program.]

Corollary 6.1. From the reduction to ILOG, it follows that

(1) cloLog expresses all computable queries modulo copy removal, cf. [132].
Two answers are equivalent up to ‘copy removal” if they differ only in

1 This can be achieved by determining some partial order on the order invention terms
and assigning edge positions (integers) in accordance to that partial order.

151

152

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

invented values and those invented values are structurally equivalent
(according to a given form of structural equivalence as discussed in
Section 5.6.6, here we consider isomorphism). In other words, there
may be additional copies of invented values as long as they share the
same properties and relations. This issue is closely related to the is-
sue of lean vs. non-lean RDF graphs as answers in languages such as
SPARQL or RDFLog [63].

(2) clalogis (list) constructive complete (in the sense of [64]), cf. [65]. Es-
sentially, (list) constructive queries is designed to capture precisely the
queries expressible in languages such as clqLog or ILOG. It coincides
with the class of queries where the new domain elements in the output
can be viewed as hereditarily finite lists constructed over the domain
elements of the input. Hereditary finite lists are lists constructed over
a given set U of “ur-elements” from the input domain such that each
element of the list is either from U or a hereditary finite list over U.

(3) claLog is not determinate complete (in the sense of [2]), cf. [64]. Thus,
there are determinate queries that specify the specific shape for in-
vented values (and thus are no longer domain-preserving) in the an-
swer that can not be expressed in ClQLog.

(4) already (negation) stratified ClqLog expresses all computable queries
modulo copy removal, cf. [65].

In particular, if we limit recursion to non-invention rules, we can “post-
pone” value invention to the very end of query evaluation:

Corollary 6.2. The weakly recursive ClqLog fragment c1QLog"® has the same
data and program complexity as datalog™: P-, resp., NEXPTIME-complete.

If recursion is prohibited entirely, value invention again has no effect
on complexity:

Corollary 6.3. Non-recursive ClQLog, i.e., CIQLog where recursion is not al-
lowed for any set of rules, has the same data and program complexity as
non-recursive datalog™: in AC,, resp., PSPACE-complete.

6.3.2 DEEP AND SHALLOW COPIES

In presence of value invention, the creation of shallow and deep copies of a
data item are often considered essential facilities. For C/QLog we consider
shallow and deep copy for nodes only (since edges and edge positions have
no “structure”). The shallow copy of a node is a new node with the same
label, if any, and the same children as the original node. The deep copy

6.3 CIQLOG SEMANTICS

of a node n is a new node n’ such that n and n" have the same label and
for each out-going edge of # to a child ¢, there is an outgoing edge for n’
with the same label and same edge position to a child ¢, such that ¢, and
cn are themselves deep copies.

We add shallow and deep clone relations to clQLog heads, denoted as
deep-copy(X,Y) and shallow-copy(X,Y) where Y is a new node and X is the
original node. In full clqLog, shallow and deep copy can be implemented
as the following rules:

L(Y,L)
. «— deep-copy(X,Y) A £(X,L) A —0—~(X, E).
L(Y,L) A o—~(Y,new, (X,Z)) A —~O(new, (X,Z) ,new, (X,Z)) A

4 pos(new, (X,Z),EPos) A deep-copy(Z,new, (X,Z))
«— deep-copy(X, Y) A £(X, L) A 0—~(X, E) A —0(Z, E) A pos(E,
EPos).
. LQ(Y,L)

«— shallow-copy(X,Y) A £(X,L) A —=0—(X,E).
5 2(Y,L) A o—~(Y,new, (X,Z2)) A —0(Z,new, (X,Z)) A pos(new, (X,Z),EPos)
«— shallow-copy(X,Y) A 2(X,L) A 0—~(X,E) A —0(Z,E) A pos(E,EPos).

However, the resulting program has necessarily cascading value inven-
tion. Furthermore, the rule-based realization is, in general, less efficient
than a specialized operator. To provide deep- and shallow-copy also to
cloLog"™®, we define them as specialized operators with the above semantics.
Note, that both deep- and shallow-copy are linear time, constant addi-
tional space operations and run in O(|N| + |E|). They are considered value
invention operators and, thus, may in /0Log"® not occur in recursive rules.

6.3.3 ALGEBRAIC SEMANTICS

A third characterization of the ClQLog semantics is given by a translation of
cloLog rules to relational algebra expressions with value invention. Com-
bined with a fixpoint operator, the resulting expressions yield a semantics
of clqLog. The target language is roughly while,,,, of [2], but uses inven-
tion terms instead of a dedicated invention relation. The advantage of this
characterization is that it yields a very compact semantics closely based on
relation algebra expressions, in particular, for clqLog"® and non-recursive
clqLog.

In the following, we denote, for any sub-formula g of a rule R, with
free(g) the variables in g that also occur in R outside of g. For a set of
attributes A = {a,,...,a,} let t € D* be an |A|-ary tuple (a, : v,,...,a,
vy,) over the domain D with [a;] the value of ¢ for attribute a;. We allow
for partial relational structures D where relation instances exists only for

153

154

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

[head < expr] = [head], ([expr],)

[rel(xs, ... %) 1, ={te DU (t[x],..., t[xa]) € [rel 1, }
[-(expr) 1, ={teD*: A=free(expr) At e D* \ ma([expr],)}
I[(exprl A expr,)]lb = 7'[A([[exlt7rl]lb x [[expr2]]b), A = free(expr, A expr,)
I[(expr1 Vv expr,)]lb = [[7'L'A(expr1]lb) U 7'[A([[expr2]lb), A = free(expr,)
[expr], (B) = subst(expr,)

I[(hexprl A hexpr,)]lh = [[hexpr1]lh W IIhexprZ]]h

|[if c then hexpr, else hexpr,]]h = IIhexpr1]]h if [c], = true, I[hexpr2]]h otherwise
O, =2

[rel(t.,....ta) 1, ={rel— {t;,....tu}}
[x=nil], = true if x = nil, false otherwise
[x #nil], = true if x # nil, false otherwise
[[deep-copy(x, y) I, = deep-copy(x, y)

[shallow-copy(x, y) 1, = shallow-copy(x, y)

Table 5. Algebraic cloLog Semantics (D the domain of the relational structure)

a subset of the relations in the underlying relational schema. We denote
that a set of tuples T over attributes U is an instance of a relation schema
RN[U] by RN + T and consider a partial relational structure as a set of
such mappings. A partial relational structure is complete wrt. a relational
schema § if it contains mappings for all relation schemas in S. We call
D' = D, w D, the union of partial relational structures such that D' =
{RN— T,uT,:RNw~ T, € D, ARN ~ T, € D, } where RN +~ & if there
is no mapping of RN in a relational structure.

Head formulas E are instantiated by substitution, denoted by subst(E, 3)
which returns the set of all expressions E replacing variable occurrences
by bindings from S3:

subst(E,B) = ¢ ([[E{x/t[x] : x e stdVars(E)}

temggvars(z) (B)
{sum(y)/ D {t'[y]: " € BAt=gavas(e) (')} : y € aggVars(E) }
{max(y)/ max{t'[y]: t € BAt=rgaase)(t')} : y € aggVars(E)}
{min(y)/min{'[y]: t" € BAt = mgqvas(r) (t')} : y € aggVars(E) }
{ave(y)/avg{t'[y]: t' € B At = Mgavas(r) (1)} : ¥ € aggVars(E) }
{count(y)/ [{#'[y]: 1" € BAt = myqvas(ey (')}] - y € aggVars(E)}]|,)

6.3 CIQLOG SEMANTICS 155

For aggregation free formulas, this resumes to standard substitution, whereas
aggregation expressions are substituted by their respective aggregation
function over the aggregated values of the aggregation variables.

Using these definitions, Table 5 gives the algebraic semantics of a ClqLog
rule. Recall, that all rules are range-restricted. We use [], to define the
semantics of the body of a rule, []I, that of a head. The body of a rule
results in a single relation over the free variables of the query. The head
of a rule is evaluated once for each tuple resulting from the evaluation
of the body of the query, each time replacing all the occurrences of all
query variables by their bindings. A deep copy operation is replaced by
a relational structure D containing y and a copy of all nodes reachable
from x as well as their relations. A shallow copy operation is replaced by a
relational structure D containing y, the same label relation on y as exists
on x, and all nodes reachable from x (excluding x) and their relations as
well as edges from y to all children of x. The result of []I}, is a pre-instance
in the sense of [132], i.e., it still contains value and order invention terms.
These are replaced by new nodes, edges, and edge positions accordingly
as described above. Computing an instance from an pre-instance can be
done by assembling the order invention terms in a partial order, and then
replacing them according to that order. Nested order terms do not pose a
challenge, as we can replace the nested terms by first ordering the depth
1 terms, then add the depth 2 (respecting the order among the depth 1
terms contained in those depth 2 terms, etc. Together with the replacement
of node invention terms that computation is in O(o - log o) time using
O(log o) additional space where o is the size of the pre-instance, assuming
in-place sorting. Thus, the replacement of value and order invention terms
does not affect the overall complexity of evaluating a single rule in clqLog
(which is the complexity of relational algebra, i.e., in L wrt. data complexity,
PSPACE wrt. query complexity).

To obtain a semantics for full c/QLog we complement the above evalua-
tion of a single rule (given the current set of derived facts represented as a
relational structure) by a standard fixpoint operator (or iteration construct
such as used in [2] for while,,,,).

Theorem 6.2. A single application of the fixpoint operator on the algebraic
semantics yields an equivalent result as a single application of the fixpoint
operator on the logic-based semantics.

Proof. For simplicity, we assume stratified negation. Recall, from [65] that,
in contrast to Datalog, the restriction to negation stratified programs does
not limit the expressiveness of ILOG and thus clqLog. Furthermore, we
limit ourselves to rules without conjunction, conditional construction,
and deep or shallow copy in the head or disjunction in the body (all these

156 QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

features can be rewritten to equivalent clQLog programs beforehand).

It is easy to verify that the algebraic semantics given in Table 5 on
rules without those features represents all facts derivable from the given
relational structure (representing the facts derived by the last application
of the fixpoint operator) by the rule. Note, that the result is a relational
structure containing a non-empty instance for exactly one relation, viz.
the one of the head atom.]

This concludes our discussion of the ClqLog semantics. Before we put
clqLog to work in evaluating Xcerpt, XQuery, and SPARQL in Part III, we
discuss in the following, briefly, the querying of data graphs as introduced
in Chapter 5, as well as the fragment of ClqLog used primarily for the
translations in Part III.

6.4 DATA GRAPHS IN CIQLOG: EXTENSIONAL AND IN-
TENSIONAL RELATIONS

In ClqLog, only a small set of relations on data graphs need to be extensional,
i.e., represented as sets of tuples. The remaining relations can be realized
by intensional definitions as clQLog rules on top of this set.

The basic, extensional relations are, unsurprisingly, o, —o, pos, root, £, O
which together provide access to all information in a data graph: about an
edge, we know source, sink, edge position, and label, about a node, label,
whether it is a root, its incoming and outgoing edges.

The remaining relations from Chapter 5 can be realized on top of these
five basic relations by a set of clqLog rules as shown in Figure 30. Rules
for inverse and complement relations are defined as usual. Note, that R is
only defined for relations R on nodes and/or edges (not on integers) both
of which are finite domains that can be enumerated using o—, —o, and
root. We only show rules for one case of deep equal, the remaining cases
are similar, though considerably more involved if bijective mappings are
required as we need to track the actual mapping to ensure bijectivity.

In Figure 30, we give rules for arbitrary label sets {1,,...,1,} (line1
ff.) and path lengths (i, j in line 15-18). Both path lengths and label sets
are size limited by the label alphabet, resp. the number of edges in the data.
However, we usually assume a much smaller number of such relations for
any particular query task. E.g., in Part III each of the discussed translation
uses no at most ternary label sets and no more than two or three path

relations.
Common We use some abbreviations for common expressions over data graph
expressions over relations in cloLog heads: First, instead of new'® (x,, . . ., x,,) we write simply
data graph id, (x4, . ..,%,). Second, we use RN(n, m, i) for o—~(n,id) A —o(m,id) A

relations

6.4 DATA GRAPHS IN CIQLOG: EXTENSIONAL AND INTENSIONAL RELATIONS

20

24

26

28

30

34

— DX, M) VO,) V...V O, A

@S(E, count(EPos’)+1)

«— pos(E,EPos) A o—~(N,E) A o—~(N,E’) A LabS(E’) A £(E’, EL) A
O(N, EL) A pos(E’,EPos’) A EPos < EPos’.

@° (N,EPos)

«— —O(N,E) A @°(E,EPos).

indeg® (N, count(E)) «— —o(N,E) A LabS(E).
outdeg® (N, count(E)) «— o—(N,E) A Lab®(E).

— i<jA AN = N)AO~(N,E) A Lab(E) A
—O(Ny,E2) A Path, .o i1y, i (N, ND)
pathy ;(N,N) «<— o< j.

path; (N,N”)

<S(E,E’) «— @3 (E,EPos) A @°(E’,EPos+1).

<$(E,E’) «— @°(E,EPos) A @ (E’,EPos’) A EPos < EPos’.
<$(E,E’) «— @%(E,EPos) A @°(E’,EPos’) A EPos < EPos’.
<S(N,N’) «— —Oo(N,E) A ~Oo(N’,E’) AE <5 E’.

<3 (N,N’) «— —O(N,E) A ~O(N’,E’) AE <5 E’.

«S(N,N’) «— —O(N,E) A ~Oo(N’,E’) AE <5 E’.

«<S(N,N’) «— pathS (N,M) A pathS (N? , M) AM <5 M.
S N,N7) — pathS (N, M) A pathS (N , M) AM <5 M.

SON) — NS N AN < MAM «§ N v pathS (M,N")).

=(X,X’) «— 2(X,I) A 8X’,1).

=(N,N) «— 0—~(N,E) V —~0(N,E) V root(N).
=(E,E) «— o—(N,E).

=S (E,E’) «— @°(E,EPos) A @°(E’,EPos).

2(N,N’) «— N = N,

=(N,N")

«~— N 2 N A =(0—~(N,E) A =0o(M,E) A
-(0—=(N",E’) A oM’ ,E’) AM = M")).

Figure 30. clqLog rules for intensional data graph relations

157

158

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

L(id, RN) Apos(id, i) where id is a new value invention term not used in the
rest of the program. Third, we use RN(n, m) for o—~(n,id) A —o(m,id) A
€(id, RN) A pos(id,id") where id and id" are new value invention terms not
used in the rest of the program. In the latter case, we do not care about
the actual edge position and thus allow an arbitrary one. It should only be
used if (n,RN) ¢ O.

65 NON-RECURSIVE CIQLOG

Given these low numbers of actually used relations, the evaluation of c/qLog
queries profits from precomputing of or providing special access operators
to most or all of the derived relations discussed before. This allows us to
define the final sub-language of ClqLog, non-recursive or single-rule clqLog.
A non-recursive ClQLog program consists in a single, non-recursive ClQLog
rule (that may use any of the data graph relations). Thus its semantics can,
given special access operators or precomputation of all data graph relations,
be specified without use of a fixpoint or similar recursion construct as
shown in Table 5. Yet such programs are equivalent to c/0L0g"® programs
comprised of the single rule of the original program and the rules from
Figure 30 for the derived data graph relations. Note, that for non-recursive
cloLog the restriction to a single-rule has no effect on expressiveness due
to disjunction in rule bodies and conditional construction in the head.
Single-rule clqLog considerably simplifies the correctness proofs in Part III
as well as the transformation to ClQcAG.

We assume in the following that the head of a single-rule clqLog program
is not matched against its body. This can be achieved by adding a root
node to the head of that rule with a label that is not matched by an added
root node test in the body (and connections between that root node and
all nodes and edges in the query). In the following, we omit these parts of
a lqLog rule when talking about non-recursive clqLog.

Precomputing these relations is acceptable for unary or integer-valued
relations such as Lab, @ or indeg. However, for node-node or edge-edge
relations such as path relations, order relations or equivalence relations,
the space cost may be prohibitive and thus specialized operators might be
preferable.

Using the approaches outlined in the following sections, we obtain for
all cloLog relations (except deep equal) constant membership test at a space
cost of only O(|D|) = O(|N| + |E|). On tree data, this is obviously O(|N|).

6.5 NON-RECURSIVE CIQLOG

6.5.1 REACHABILITY IN DATA GRAPHS

Order and path relations can be seen as variants of reachability on the un-
derlying base relations. For tree data, membership in closure relations can
be tested in constant or almost constant time (e.g., using interval encodings
[86] or other labeling schemes such as [200]). However, for graph data
this is not so obvious. Fortunately, there has been considerable research
on reachability or closure relations and their indexing in arbitrary graph
data in recent years. Table 7 summarizes the most relevant approaches for
our work. Theoretically, we can obtain constant time for the membership
test if we store the full transitive closure matrix. However, for large graphs
this is clearly infeasible. Therefore, two classes of approaches have been
developed that allow with significantly lower space to obtain sub-linear
time for membership test.

The first class are based on the idea of a 2-hop cover [76]: Instead of
storing a full transitive closure, we allow that reachable nodes are reached
via at most one other node (i.e., in two “hops”). More precisely, each node
n is labeled with two connection sets, in(n) and out(n). in(n) contains a
set of nodes that can reach n, out(n) a set of nodes that are reachable from
n. Both sets are assigned in such a way, that a node m is reachable from
n iff out(n) U in(m) # @. Unfortunately, computing the optimal 2-hop
cover is NP-hard and even advanced approximation algorithms [189] have
still rather high complexity.

A different approach [5, 70, 199, 195] is to use interval encoding for label-
ing a tree core and treating the remaining non-tree edges separately. This
allows for sublinear or even constant membership test, though constant
membership test incurs lower but still considerable indexing cost, e.g., in
Dual Labeling [199] where a full transitive closure over the non-tree edges
is build. GRIPP [195] and SSPI [70] use a different trade-off by attaching
additional interval labels to non-tree edges. This leads to linear index size
and time at the cost of increased query time.

For a specialized reachability test operator in lqLog we can choose any of
the approaches. For the following, we assume constant time membership,
since that is easily achieved on trees and feasible with approaches such as
Dual Labeling even for graphs.

6.5.2 EQUIVALENCE IN DATA GRAPHS

Most of the equivalence relations can, again, be easily computed from
unary base relations such as £. However, this is not the case for deep
equality. Indeed, the deep equality comes at a considerable higher cost

159

160 QUERIES—CIQLOG: DATALOG—

WITH COMPLEX RULE HEADS

approach characteristics query time index time index size
Shortest path [174] noindex O(n+e) - -
Transitive closure full reachability matrix 0@1) O(n?) O(n*)
2-Hop [76] 2-hop cover?® O(Ve) <O(n) O(n*) O(n- Ve)
HOPI [189] 2-hop cover, improved approximation al- ~ O(\/e) < O(n) O(n?) O(n- Ve)
gorithm
Graph labeling [5] interval-based tree labeling and propaga- O(n)° O(n?) O(n*)*
tion of intervals of non-tree descendants.
SSPI[70] interval-based tree labeling and recursive O(e-n) O(n+e) O(n+e)
traversal of non-tree edges
Dual labeling [199] interval-based tree labeling and transitive o@)° O(n+e+ey) O(n+eg)
closure over non-tree edges
GRIPP [195] interval-based tree labeling plus additional O(e-n) O(n+e) O(n+e)

interval labels for edges with incoming
non-tree edges

a Index time for approximation algorithm in [76].

b More precisely, the number of intervals per node. E.g., in a bipartite graph this can be up to n, but in most
(sparse) graphs this is likely considerably lower than #.

¢ More precisely, the total number of interval labels.

d [199] introduces also a variant of dual labeling with O (log e,) query time using a, in practical cases, considerably

smaller index. However, worst case index size remains unchanged.

Table 7. Cost of Membership Test for Closure Relations. n, e: number of nodes, edges

in the data, ey: number of non-tree edges, i.e., if T(D) is a spanning tree for D with

edges Er(p), then ey = |Ep \ Er(pyl-

6.5 NON-RECURSIVE CIQLOG

than, e.g., label equality, in particular if the data is unordered. First, if the
data is fully ordered and Lo = L then deep equal is in O(j(|E|)) where E
are the edges of the data graph. The same applies if either edge or node
labels are keys, i.e., partition the child nodes of each node in the data in
singleton sets. A straightforward parallel traversal of the two subgraphs
suffices to test equivalence. In case of XML data, e.g., the data is ordered
except for attributes. Attribute labels, however, are keys and thus do not
need to be ordered for linear time complexity.

If the data is tree shaped but unordered, deep equal reduces to general
tree isomorphism which can still be solved in linear time due to [126].
Moreover, for composition-free languages such as non-recursive c/qLog"®
or single-rule clqLog where invented nodes are never queried and thus
node invention can be seen as a post-processing step, deep equal does not
add to the expressiveness of the query language if the data is tree shaped
(cf. [144] on composition-free XQuery).

If the deep equality is not injective, but the data graph-shaped the com-
plexity becomes polynomial as the problem essentially reduces to bisimula-
tion [88]. However, on unordered graphs testing injective deep join of two
nodes subsumes to graph isomorphism and thus is commonly believed
to exhibit no polynomial algorithm (regardless of whether we consider
the full subgraph or only the children or adjacent nodes for injectivity).
However, even for this general case there exist reasonably fast algorithms,
e.g., [158, 96].

Thus in presence of deep equal we either have to accept that member-
ship tests for deep equal induce considerable, in most cases exponential
additional cost, or we have to reconcile to precomputation of deep equal
(which can be done once at a cost of O(|N|” - |E||E|) time). Obviously this
relation can be precomputed in O(#n* x n) for tree data. Using subtree
isomorphism algorithms, we can further reduce the time complexity by a
linear factor. Whether there is a better algorithm for precomputing this
relation in the general case, remains an open problem.

As a closing remark on deep equality over graphs, notice that the pre-
computation does not subsume to subgraph isomorphism. This is due to
the fact, that deep equal considers only two nodes together with all their
respective descendants. General subgraph isomorphism considers any
node induced subgraph of the target graph (or any connected subgraph
for connected subgraph isomorphism).

161

162 QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

conference conference

member e title paper e

conference @
g
5
F
paper Cz
author |:3

ATIHD

paper

o
paper paper title
<t

cite cite

WLLV
YLLV

cite

z

paper | 4 paper e paper | 4 paper e

=
]]
3 3

a9y

(c) Qf (identity anti-join) (d) Qf (sibling order)

Figure 31. Exemplary Query Graphs

6.5.3 EXAMPLES

To illustrate, that the restriction to non-recursive clQLog (with all data
graph relations) still yields many interesting queries, we discuss a few
examples of non-recursive ClQLog queries and, in a preview of Part III,
show counterparts in Xcerpt or XQuery.

Let us first consider only the bodies of clqLog rules. Figure 31 shows
graphical representations for four such clqLog rule bodies (or queries)
against the data from Figure 24. This common, intuitive representation
of queries as graphs is used throughout this paper: Query variables are
represented as nodes with labels and values, as well as root nodes repre-
sented as in data graphs. Edges annotated with relation names represent
atoms connecting query variables. Answer variables are marked by darker
rectangles whereas normal variables are indicated by lighter circles.

6.5 NON-RECURSIVE CIQLOG

The first query (Figure (a)) selects paper authors that are also members
(of the pc) at a named conference. Although the visual representation is
already graph-, rather than tree-shaped, this query can still be expressed
in XPath (using abbreviated syntax for closure axis), which, if we disregard
functions and equality, only expresses tree-shaped queries.

/conference//paper/author[text() =
2 /conference[@title]/member/text ()]

The following gives the textual representation of the query as a clqLog rule
body (assuming only v, occurs in the head and is thus the only answer
variable):

«~— 2(v,,conference) A CHILDy (vy,v,) A

> L(v,,paper) A CHILD(V,,v;) A £(v;,author) A VALUE(vs,v,) A
L (vs,conference) A ATTR(vs,vs) A L(vs,title) A CHILD4 (vs,v6) A
4 Q(ve,member) A VALUE(Vs, Vv;) A 2(V,, V,).

Path relations are abbreviated here since the label sets are singleton in all
cases.

On the other hand, the second query (Figure (a)), though still unary,
already requires a language with multiple variables such as XQuery or
Xcerpt. Intuitively, this is the case so as to be able to express that matched
bindings for v, and v¢ are connected to the same binding for v,. In XQuery,
e.g., QP can be expressed as

for $c in /conference[@title], $a in $c//paper/author
» where $c/member = $a
return $a

It selects an author only if he is also a (pc) member at the same conference.
Where the difference between the two queries is quite large in XQuery,
cloLog uses nearly the same queries omitting the label test for the second
conference node and connecting all its children to v,:

. «— 2(v,,conference) A ATTR(v;,Vv5) A L(v5,title) A CHILD4 (v;,V,) A
L(v,,paper) A CHILD(v,,v;) A £(v;,author) A VALUE(V;,V,) A
3 CHILD, (v;,V5) A £(vs,member) A VALUE(Vs, V¢) A 2(V,, Ve)-

Finally, the two queries Q¢ and Q? show how the same query intent (viz.,
to select papers that are cited in two different papers at the same conference
together with the name of that conference) can be expressed differently: QJ
uses a negated equality condition between to ensure that its two different
papers, Q° uses order to ensure the same. However, the two queries are
only equivalent if (a) CHILD edges outgoing from conferences are ordered
and (b) if there are no multi-edges between conferences and papers (which
is always the case if the data is tree shaped). Otherwise, <<, is no longer
necessarily anti-reflexive.

163

164

QUERIES—CIQLOG: DATALOG— WITH COMPLEX RULE HEADS

Both queries can be expressed only in languages with multiple vari-
ables. The following Xcerpt query term is equivalent to query Q3 (up to
representation of 1D/IDREF links):

1 conference{{
paper{{ cite{{

s var Paper — idvar cited @ paper{{ }} }} }}
paper{{ cite{{

5 idvar cited @ paper{{ }} }} }}
name{{ var Name }} }}

Notice, that the anti-join is not expressed explicitly, but rather guaranteed
by Xcerpt’s injective mapping for sibling nodes (cf. [188] and Chapters 3
and 7). In ClQLog, we obtain:

«— L(v,,conference) A CHILD(V;,V,) A CHILD(V;,Vs) A
> L(v,,paper) A ATTR(V,,v;) A L£(v5,Cite) A REF(V;,v,) A L
(v4,paper) A
L(vs,paper) A ATTR(vs, v6) A £(ve,Cite) A REF(Ve,v,) A £
(v, paper) A
4 =y, v5) A =(2(V,,vs)) A ATTR(V,v5) A L(vs,title).

Finally, Q® can be expressed in XQuery as follows:

for $c in /conference, $n in $c/name, $pl in $c/paper,
2 $cited = $pl/@cite->paper
where (some $p2 in $c/paper satisfies $pl << $p2 and
4 (some $cited2 in $p2/@cite->paper
satisfies $cited is $cited2))

s return ($cited, $name)

For clqLog, the textual form is mostly as QZ, but uses in line 4 <, instead
of a negated identity equivalence. In clqLog, the child relation between
v, and v, is implied by the order relation between v, and v; and may be
omitted (this can be achieved in XQuery by using the optional following
axis).
«—— L(v,,conference) A CHILD(V;,V,) A CHILD(V;,Vs) A

2 L(v,,paper) A ATTR(V,,v;) A £(v;,Cite) A REF(v;,V,) A £

(v4,paper) A

L(vs,paper) A ATTR(Vs, v6) A L(vs,Cite) A REF(Vs,V,) A £

(v, paper) A

4 (v, Vo) A Ky (Vy, Vs) A ATTR(V;,Vs) A L(vs,title) .

Part III

PRACTICE. CASE STUDIES:
XCERPT, XQUERY, SPARQL

7.1

TRANSLATING XCERPT 2.0

71 Introduction 167
72 Non-recursive, Single-Rule Core Xcerpt 167
7.2.1 FormalSyntax 169
73 Xcerpt Semanticsby Example 172
7.4 Translating Non-recursive Core Xcerpt 177
7.4.1 Rules 178
7.4.2 Construct Terms 180
7.4.3 Queries and Query Terms 183

75 From Non-recursive, single-rule Core Xcerpt to Full Xcerpt 191

INTRODUCTION

In Part I, we have introduced Xcerpt 2.0 as an example of a versatile Web
query language and argued that versatility is increasingly becoming an
essential requirement for Web queries. With clqLog we have the formal
foundation to demonstrate how to translate queries in different languages
and on different data formats into the same formal framework that can be
evaluated using the ClQcAG algebra introduced in Part IV.

The following discussion of the translation of Xcerpt 2.0 starts with a
fragment only, viz. non-recursive, single-rule Core Xcerpt which can be
translated into a single non-recursive clqLog rule (and thus be evaluated
by a single ClQcAG expression). We first define that fragment and its syntax
in Section 7.2, then illustrate its semantics along examples in Section 7.3.
The semantics is fully aligned with full Xcerpt. The actual translation of
non-recursive, single-rule Xcerpt is covered in Section 7.4 and concluded
by an outlook towards the translation of full Xcerpt in Section 7.5.

72 NON-RECURSIVE, SINGLE-RULE CORE XCERPT

We choose a fragment of the rule-based, Web and Semantic Web query
language Xcerpt [188]. Before we characterize the language fragment, this
chapter gives a brief recall of some of Xcerpt’s most relevant features in the

168 TRANSLATING XCERPT 2.0

context of this translation. For a proper introduction please see Chapter 3

and [188].
Introducing An Xcerpt program consists of a finite set of Xcerpt rules. The rules of a
Xcerpt program are used to derive new, or transform existing, data from existing

data (i.e. the data being queried). Construct rules are used to produce
intermediate results while goal rules form the output of programs.

While Xcerpt works directly on XML or RDF data, it has its own data for-
mat for modeling XML documents or RDF graphs, viz. Xcerpt data terms.
For example, the XML snippet <book><title>White Mughals</title></book>
corresponds to the data term book [title ["White Mughals"] 1. The
data term syntax makes it easy to reference XML document structures in
queries and extends XML slightly, most notably by allowing unordered
data and making references first class citizens (thus moving from a tree to
a proper graph data model).

For instance, in the following query the construct rule defines data about
books and their authors which is then queried by the goal. Intuitively, the
rules can be read as deductive rules (like in, say, Datalog): if the body (after
FROM) holds, then the head (following CONSTRUCT or GOAL) holds. A rule
with an empty body is interpreted as a fact, i.e., the head always holds.

GOAL
> authors [var X]
FROM
+ book [[author [var X] 1]
END
6
CONSTRUCT book [title ["White Mughals"],
8 author ["William Dalrymple"]] END

Terms Xcerpt query terms are used for querying data terms and intuitively
describe patterns of data terms. Query terms are used with a pattern
matching technique' to match data terms. Query terms can be configured
to take partiality and/or ordering of the underlying data terms into account
during matching (indicated by different types of brackets). Query terms
may also contain (logic) variables. If so, successful matching with data
terms results in variable bindings used by Xcerpt rules for deriving new
data terms. Matching, for instance, against the XML snippet above the
query term book [title [var X]] with results in the variable binding
{X/"White Mughals"}.In addition to the query term types discussed in
[187], we also consider non-injective ordered and unordered query terms
indicated by three braces or brackets, respectively.

1 Called simulation unification. For details of this technique, please refer to [187].

7.2 NON-RECURSIVE, SINGLE-RULE CORE XCERPT

Construct terms are essentially data terms with variables. The variable
binding produced via query terms in the body of a rule can be applied
to the construct term in the head of the rule in order to derive new data
terms. For the example above we obtain the data term authors ["William
Dalrymple"] as result.

Definition 7.1 (Non-recursive Single-rule Xcerpt). Let P be an Xcerpt
program. Then, P is a non-recursive, single-rule Xcerpt program, if it
consists of a single GOAL rule and arbitrary many data terms.

In other words, there is a single rule whose body is evaluated a given
set of data terms. If the body matches, the head is then evaluated given
the bindings generated by the body.

721 FORMAL SYNTAX

In the following, we omit some of Xcerpt’'s more advanced features to
allow for a translation that is reasonably compact and easy to follow. The
most prominent omitted features are query terms involving optional
or except and construct terms with some, first, declare blocks, order
specifications, and conditions. Most of these limitations are purely for
presentation reasons and the omitted constructs can easily be integrated
in the translation presented here. This is, however, not the case for except
which is not supported by non-recursive, single-rule clqLog as it requires
composition, i.e., first the sub-terms excluded by except are removed
from a surrounding sub-graph binding, then that binding is used in the
remainder of the query (e.g., for deep equality). This can be realized by
multiple clqLog rules, but not in non-recursive, single-rule clqLog as defined
in Chapter 6.4.

We call the resulting language fragment non-recursive, single-rule Core
Xcerpt, abbreviated as Xcerpt®®"*** and specify its full grammar in Fig-
ure 32 (using common EBNF-like notation).

The usual semantic restriction for Xcerpt rules apply, e.g., range restric-
tion (each variable occurring in the head must also occur positively in
each body disjunct where both not and without are considered as nega-
tive expressions); without may not occur in total query terms (indicated
by single brackets or braces as in title [var X]); an identity variable can
only occur with idvar, a label variable only in label and term position, but
not with —, idvar, or position, a position variable only with position;
without and position may not occur for top-level terms; each referenced
term identifier is defined somewhere; no term identifier is defined twice.

In the following, we assume a few additional restrictions to allow for
a concise and easy to follow description of the translation: (1) We do not

169

Core Xcerpt

Limitations of
the translation

170 TRANSLATING XCERPT 2.0

(rule) == ‘GOAL’ (cterm) ‘FROM {(query) ‘END’
(cterm) z= ((identifier) ‘@)? (label) (hchildren) | " (string)
| (reference) | (id-variable) | (variable)
| (grouping)
(grouping) == ‘all’ (cterm) ‘group-by’ ‘C (variable)+)’
(hchildren) == 0 (cterm)* Y | ‘[’ (cterm)* ‘T’
(query) z= ‘and’ ‘C (query)‘,” (query) Y’

| or”C (query)’,” {query) Y’
| (not’ ‘(’ <query> (),
| (qterm)
(qterm) u= (term-id)? (position)? (label) (qchildren) | " (string)
| (reference)
| (variable) (‘= (gterm))?
| (‘desc’ | ‘without’) (gterm)

(term-id) u= ((identifier) | (id-variable)) ‘@

(reference) u= ‘N (identifier)

(position) == ‘position’ ({number) | (variable))
(qchildren) == L ((qterm) ,’)* Y | ‘[({qterm) *,)* 7

| L ((qterm) ,)* 3Y | [0 ((qterm) ,’)* 17
| {0 ((gterm) > 33 | ‘LI ((gterm) “,’2)* 117

(variable) u= ‘var’ (identifier)
(id-variable) == ‘idvar’ (identifier)
(label) z= (variable) | (identifier) | ‘¥

Figure 32. Syntax of non-recursive, single-rule Core Xcerpt

7.2 NON-RECURSIVE, SINGLE-RULE CORE XCERPT

conference [

. title ["Storage Media"] date ["44 B.C."]

pl @ paper [title ["Wax Tablets"]
4 Ap2 author ["Cicero"]

]
¢ p2 @ paper [

Apl author ["Hirtius"]

s]

pc[member["Cicero"] member["Atticus"]]
0]

Figure 33. Xcerpt™®"**® dataterm on conferences and papers

consider nested grouping lists as in
all a[var X, all (var Y, d)]

(2) We consider node injectivity instead of position injectivity for matching
injective term specifications such as a{{b, var X}} or a{b, var X} where
b and var X must be connected by edges with different edge positions to a
in standard Xcerpt, where we consider that var X binds only to different
nodes than b. (3) We consider « as abbreviation for the Xcerpt regular
expression /. */ that indicates that the label of a query term may be arbi-
trary. (4) We omit XML specificities present in full Xcerpt terms for such
as comments, processing-instructions, attributes, namespaces. (5) We nor-
malize grouping expressions (all ... group-by) such that all free variables
in each grouping expression are listed in the group-by clause of that group-
ing. In full Xcerpt, this is not necessary but possible and yields a grouping
expression with the same semantics.

Before we turn to a more detailed examination of the semantics of
Xcerpt query and construct terms in the following section, we give a first
intuition by the following two examples on a slight simplification of the
data introduced in Section 5.5. Figure 33 shows a Core Xcerpt data term
where namespaces and comments are removed and attributes are changed
to elements, if compared to the data term from Section 5.5.

On that data term, the Xcerpt®®"*s* rule in Figure 34 selects papers
containing “Cicero” as author and “puts them in a shelf”.

To illustrate the difference between references and copies of query terms
consider the final two rules and their query terms shown in Figure 35: the
left query term returns all papers such that there is another paper with at
least one (structurally) same author, the right hand returns only papers
where the identical author term is used in both cases (rather than just a

171

core,NR,SR

Xcerpt
examples

172 TRANSLATING XCERPT 2.0
GOAL
> shelf{ all var X group-by(var X) }
FROM
+ conference{{
var X — paper{{
s desc author{{ "Cicero" }} }} }}
END
Figure 34. Xcerpt®®"**® rule to extract Cicero’s papers to a shelf
1 GOAL
helf{ all X by (o
she all var X group-by(var
X)‘;"“* - . shelf{ all var X group-by(var
X) }
5 FROM
FROM
conference{{

4+ conference{{
var X — paper{{
var X — paper{{

author{{ .
= 6 idvar A @ author{{
B Lo
paper{{ author{{ var v }3 3 ' D}
1 paper{{ idvar A @ author }} }}
10 END

END

Figure 35. Structural versus identity equivalence in Xcerpt

structurally equivalent one).

73 XCERPT SEMANTICS BY EXAMPLE

An Xcerpt term is essentially a labeled list of children. In addition to the
label, we also record whether a term is ordered and, if it is a query term,
if it is total or partial injective or partial non-injective. Recall, that a query
term specifies a query by exemplifying (think QBE [205]) the shape of
the matched data terms. However, to be effective, we leave out certain
parts of that shape and focus only on the parts relevant to the query intent.
Leaving out certain parts is achieved by various forms of incompleteness:
regarding the structural relations by moving from child to descendant
relations (indicated by the desc keyword), regarding how complete the list
of given children is using the three latter properties above: If a query term
is total, there may be no children of a matching query term in addition

7.3 XCERPT SEMANTICS BY EXAMPLE

to the ones matched by each of the query termy’s children. If partial, there
may be additional ones. If the query term is in addition injective, each
of its children is mapped to a unique child of a matching data term. We
denote ordered query terms with square brackets, otherwise we use curly
braces. For total terms we use single such brackets, for partial injective
double, for partial non-injective triple.

The data term on conferences in Figure 33 serves as an example for total
terms since data (and construct) terms only contain this term type. Query
terms also contain partial terms as evidenced by the query examples in
Figures 34 and 35.

173

174 TRANSLATING XCERPT 2.0

Query term Data terms
T af{ } <af{ }al]
#b{ }
T2 a[] < al 1]
#b{ La{ }
73 a{ b} <a{ b}
£a{b, b}
T4 a{b, b} <a{ b, b}
f4a{b }La{b, b, b}
P1 a{{ b }} <a{b Ya{c, b,d}a{b, b}
fa{ %
P2 a[[b, c 1] <a[b, c J;a[d, b, e, c]
#al c, b la{b, c}
N a{{{ b, b }}} <albla{c, b, d}a{b, b}
fal l;a{ }
12 a[[[b, b, d 11] <al b, dlal ¢, b, d]
f#al d, b I;a{ }
D1 a{ desc b } <a[b l;al c{ b, e} I,
fa{d, c{b} }
D2 a{ desc b, desc c } <al b, e[c]I
f$a{ b, c, d }af elb, c] }
D3 a{{ desc b, desc c }} <al b, e[c] la{ b, c, d}
¥ a{ e[b, cl };
D4 a{{{ desc b, desc c }}} < a[b,e[c]]; a{b,c,d}; a{e[b,c]};
W1 a{{ b, without(c), d }} <al b, d 1;
#a{b, ¢, d}a{c, b, d}
W2 a[[b, without(c), d 1] <a[b, d J;al ¢, b, d];
#al b, ¢, d
W3 a[[b, without(c, d), <al b, e J;a[b, ¢, e I;
e 1] fal b, c,d, el
W4 a[[b, without(c), <a[b, e];
without(d), e 1] ¢a[l b, ¢, e J;al b, ¢, d, e I;

Table 9. Query terms and matching data (; separates different data terms)

MATCHING QUERY TERMS. Table g illustrates how these properties
affect the matching of query terms against data terms by example. For
space reasons, we omit in query terms empty double braces and in data

7.3 XCERPT SEMANTICS BY EXAMPLE

term empty single braces, i.e., ¢ reads c{{ }}ina queryterm and c{ }in
a data term. We denote matching using < (simulation unification from
in [187], but here we consider only data terms on the right hand), non
matching with £.

The first examples T1-T4 illustrate matching of ordered and unordered
total query terms. Note, that unordered query terms match against ordered
data terms (since the use of the curly braces indicates only that we do not
care about the order). In total query terms both terms have exactly the
same number of children in all cases. This is what sets partial query terms
(P1-P2, I1-12) apart from total query terms. Here, we may have additional
query terms in the data that are ignored. For partial non-injective query
terms (I1-12), two children of the query may even match to the same data
term.

The remaining examples of Table ¢ illustrate the two query term mod-
ifiers, desc and without. The former allows matching at any depth (cf.
D1-D4). Totality and injectivity are still enforced between the children of
a matching data term (observe the difference between D2, D3, and D4).
The latter forbids the existence of a data term matching its enclosed query
terms, cf. W1-W4. It may even take a list of query terms, in which case
(W3) the query fails, if the entire list (and not just some subset of it) fails.
This contrasts with the use of multiple withouts as in W4.

175

176 TRANSLATING XCERPT 2.0

Query term Data terms Bindings

vl a{ var X } <a[b] {X/v}
fa{ Y;al b, c]

V2 a{{ var X }} <al b, ¢ I {X/b, X/c}
fa{ }

V3 a{{ var X, var X }} <a[b, b J;a{ ¢, b, b, d } {X/b1, X/bs}
fal b, c ha{ b}

V4 a{{{ var X, var X }}} <a[b, b l;a{ ¢, b, b, d} {X /0., X/b,}
<a{b} {X/b}
fa{ b, c}

V5 a{ var X{ var X } } <al b{ "b"} 1, {X/“p"}
#a{ b, c }

V6 af{ var X —»c, var X } <al ¢, cl {X/v}
fa{ b, b}

V7 af{ desc var X } <al c{b, e[f173} 1 {X/e{...}, X/b, X/e[...]1,X/f}
fa{d, c{b} }

V8 af{{var X, without(var X)}} =<al[b J;al b, c I; {X/b}
fa{ b, b }al b, bl

Table 11. Query terms containing variables and their bindings

The last remaining feature of query terms are variables, the effect of
which on term matching is illustrated in Table 11: Essentially, a variable
matches any single term (or label, or position, or node, if so placed), but
matches are recorded in the bindings of the query. If a variable occurs mul-
tiple times (V3), the matched query terms must be structurally equivalent
(deep equal, cf. Section 5.6.6). A variable may occur as a label (Vs), in
which case it is bound to the value of the label and can only match with
other labels or character data (as the “b” in V5). A variable may occur as
in a term restriction before — (V6), in which case the right hand query
term restricts the matching bindings for X. Finally, it can be combined
with desc and without with the expected result (V7 V8).

INSTANTIATING CONSTRUCT TERMS. Once the body of a rule is
matched against the input data, the bindings for the answer variables can
be used to instantiate the construct term of an Xcerpt™®"**® rule. Again,
we illustrate the semantics of construct terms along a number of examples,
cf. Table 13, using the following binding tuples for answer variables X and

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT 177
Construct term Result data
Cl oa{b, c} L oafb, ¢}
C2 af id @ b, ~id } £ a{ id’ @ b, Aid’ }
G af var X } £ af b}
C4 af var X, var Y } i>€:1{bu§1}
61 af{ all var X group-by(var X)} £ a{ b, by, byle, f1}
G2 all a{ var X group-by(var X)} L afb, 3}, a{b, }, af by[e, f] }
G3 all a{ all var X group-by(var X), £ a{ b,, b,, bs[e, f1, ¢, },
var Y } group-by(var Y) a{ by, bsle, f1, c, }
G4 all a{ } group-by(var Y) g a{ }, a{ }

Table 13. Construct terms and their instantiation

B ={{X/b,,Y/c,},{X/b,,Y/c,}, {X/bs[e, £1,Y/c,},
{x/b,,Y/c,},{X/bs[e, £1,Y/c,}}

If a construct term contains no variables (C1-Cz2), the only resulting
data term has the exact same shape, possibly renaming local identifiers
for references (Cz2). If it contains variables outside grouping expressions
(C3, C4) these are instantiated by some of their bindings (we choose here
the first binding). Grouping expressions iterate over the bindings of their
grouping variables and instantiate their contained construct term once for
each binding tuple of the grouping variables. The scope of the grouping
expression defines, in this case which parts of the construct term are
repeated (G1, G2). It is not necessary that the contained construct terms
actually contain the occurrences of the grouping variables (G4), though
that is usually the case. Employing nested grouping terms as in G3, we can
create complex nestings of related bindings, here, e.g., for each binding of
Y the corresponding bindings of X are grouped as siblings.

74 TRANSLATING NON-RECURSIVE CORE XCERPT

With the syntax and intuitive semantics of Xcerpt®®"*® established, we
can turn to the actual translation. The translation is split in three parts, the
translation of construct terms to clqLog rule heads, the translation of query

178

4

6

TRANSLATING XCERPT 2.0

terms to C/QLog rule bodies, and the “glue’, the translation of Xcerpt®N®k

rules to ClqLog rules. We start off with the translation of rules and a “grand
example” that illustrates the principles of the translations. The details of
construct and query term translation are discussed in the remainder of
this section.

7.41 RULES

Recall, that a Xcerpt®®"*S% program consists of a single Core Xcerpt GOAL
rule. Such a rule is translated by the trycep: translation function: as follows:

trxeerpt (GOAL head FROM query END) = C «— Q where (&, Q) = tq(body)
C =tc(&)(head)

It translates the body first, redirecting the resulting environment con-
taining associations of Xcerpt (answer) variables to ClqLog variables to the
translation of the head of the input rule. Finally, the translation of the body
and head are combined into the translation of the full rule. The translation
functions for head and body, tc and tq, are defined below in Sections 7.4.2
and Section 7.4.3. Here and in the following, we denote the set of common
edge labels with L = {CHILD, COMMENT, VALUE}.

EXAMPLES. Before turning to the precise definitions of those transla-
tion functions, let us return to the example data and rule from Figures 33
and 34.

Xcerpt data terms can be translated to clqLog (thus giving a formal
definition for the mapping described in Section 5.5) by the translation
function for Xcerpt rule heads using an empty environment as input. The
environment can be empty since it is responsible only for passing Xcerpt
to ClqLog variable mappings and data terms contain no Xcerpt variables.

The data term D in Figure 33 is translated by tc(@) (D) into the following
cloLog rule:

root(id;) A £(id,, conference) A OF(id;) A cHILD(id;, id,, order(T,1)) A CHILD
(id,, id;, order(T,2)) A cHiLD(id,, idy, order(T,3)) A cHILD(id,, ids,
order(T,4)) A cHILD(id,, id¢, order(T,5)) A
Q(id,, title) A OL(idy) A VALUE(id,, ids, order(T,1)) A £(id,;, "Storage
Media") A
2(id;, date) A OL(id;) A VALUE(id;, idy;, order(T,1)) A €(idy,, "44 B.C.") A
2(id,, paper) A OL(id,) A caLp(id,, id,,, order(T,1)) A cHILD(id,, ids,
order(T,2)) A cHILD(id,, id;,, order(T,3)) A
2(idy:, title) A OF(idy) A VALUE(id,s, id4n, order(T,1)) A £(id,,, "Wax
Tablets") A
2(id,,, author) A O (id,,) A VALUE(id,s, idg, order(T,1)) A 2(idss,
"Cicero") A

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT

e N\
¢ conference
authors g
- 5
2 +
- ;_
B Ak o ER paper
1 =~
@ T T
1 A N g
____fn..%%(% he)
RN author
N RRRCCLrrrooeert -)

Figure 36. Resulting clqLog rule

2(id;, paper) A O (ids) A cump(ids, id,, order(T,1)) A cHILD(ids, ids;,
order(T,2)) A
8 2(ids;, author) A OF(ids;) A VALUE(ids;, idsiy, order(T,1)) A £(idsy,
"Hirtius") A
2(ids, pc) A OL(ids) A cHILD(idg, ids;, order(T,1)) A cHILD(idg, ids,,
order(T,2)) A
10 Q(ids,, member) A OL(idg;) A VALUE(ids,, idg, order(T,1)) A £(idey,
"Cicero") A
2(idg,, member) A OF(ide,) A VALUE(idss, idesr, order(T,1)) A 2(ides,
"Atticus") <— true.

The relations are all ordered as the data term is deliberately similar to the

XML fragment from Section 5.3 and thus contains only ordered terms.
However, in general, Xcerpt data terms may also contain unordered terms.

Here, and in the following we use two abbreviations for head formulas:
. child(id,(%,),id,(%.),0)

where o is some order term and X,, X, are variable lists, abstracts the edge
construction necessary in clqLog and thus is an abbreviation for (with idy
a new identifier):

 source(id; (%,),idn(X,)),, sink(id,(X,),idn(%,)),,
position(idy(%,),0))
In the same way, child(id,(%,),id,(%.)) is an abbreviation for ((with
idy, idar new identifiers):
source(id; (%) ,idn(X,)),, sink(id,(%,),idn(%.)),,
position(idy(X,),idm(X,))
To illustrate the full translation, first consider the following very simple

Xcerpt rule selecting all authors of papers and grouping them under a new
root authors:

179

180

TRANSLATING XCERPT 2.0

conference

‘Cicero’

Figure 37. clqLog rule for Xcerpt program from Figure 34

1 GOAL

authors{ all var X group-by(var X) }
;5 FROM

conference{{ desc paper{{ var X — author }} }}
s END

If we translate this Xcerpt rule to C/QLog we obtain the query visualized
in Figure 36 (using the visualization from Chapter 6 and additionally
depicting the scope of a grouping variable by red rectangles: as well as

1+ root(id,) A £(id;, authors) A cHILD(id,, id,(v;)) A deep-copy(vs, id,(v3))
«— root(vy) A L(v;, conference) A CHILD; (v;, V,) A £(v,, paper) A CHILD
(v, v3) A £(v3, author).

Finally, we reconsider the example rule from Figure 34, an Xcerpt rule
querying that data and selecting all papers with author “Cicero” and “puts
them on a shelf”. Applying tryerp: to that rule yields the cloLog program
depicted in Figure 37 and given in textual form in the following:

root(id,) A £(id;, shelf) A cHILD(id;, id,(v,)) A deep-copy(v,, ids(v2))

» «— root(vy) A £(v,, conference) A CHILD(v,, V,) A £(Vv,, paper) A CHILD4
(v, v3) A £(v;, author) A VALUE(v;, v4), £(v,, "Cicero").

7.4.2 CONSTRUCT TERMS

With the intuition from the above examples, the translation of construct
terms using tc can be discussed in more detail. The full specification of tc
and its helper functions ¢, for translating actual construct terms, and

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT

tCiapel> for translating labels of construct terms, is given in Table 16. We
normalize construct terms such that there are no variables outside (all)
grouping terms. If there are such variables we wrap an all around the en-
tire construct term with the all variables outside any other all as grouping
variables. For instance, a{var X} becomes all a{var X} group-by(var X).
tc adds a root atom and then delegates the translation to tcs.s,. This al-
lows us to translate all query terms in the same way, yet yields the necessary
root atom for top-level query terms. t¢,,, is called with the environment £
as only parameter which is passed to tc by trycep: and contains the mappings
form Xcerpt variables to ClQLog query variables in the translation of the
rule body. We write £ + (X, v) to add a mapping from the Xcerpt variable
X to the clqLog variable v into £. In addition to those mappings, we let the
environment contain the current grouping (or iteration) variables, a se-
quence accessed as £ .iter. We use list concatenation (o) to append variables
to £.iter. ¢,y returns a pair (C,v) where C is the cloLog formula resulting
from the translation of the passed Xcerpt expression and v the variable
associated with the top-level node in the translation of the expression.
For each kind of construct term, there is a matching rule for tCe,,
in Table 16. The translation of most cases is fairly straightforward. The
most involved cases are the structure terms (the first two cases) where we
distinguish ordered and unordered terms. For both, we translate the child
terms and connect their top-level variables to the variable of the current
term by either cHILD or VALUE. The label is translated using the helper
function tCi4p.; (which distinguishes between the translation of plain labels
and of variables). Strings are translated like terms with empty, unordered
term lists (case 3); references (like the term identifier part of a structured
term) by retrieving an existing clqLog variable for the Xcerpt identifier tid
or creating a new one and storing that mapping in the environment & (case
4). Standard variables are translated using deep-copy, id-variables by simply
retrieving the mapped query variable (recall that rules are range restricted
and thus such a binding always exists), case 5-6. Finally, grouping terms
are translated by adding the grouping variables to the sequence of iteration
variables used for the translation of all contained construct terms, case 7.

EXAMPLES. We conclude the illustration of the translation function for
construct terms by a collection of construct terms from Table 13 together
with their clqQLog translation. Table 18 shows the translation to clqLog for
some of these construct terms. For convenience, we use X and Y to denote
the query variables mapped to X and Y in a given environment &, i.e.,
E(X) and £(Y). Recall, that the result is an expression containing some
query variables that are replaced with their bindings for each binding tuple
in turn.

181

182 TRANSLATING XCERPT 2.0

function term cloLog expression
tc(&)(cterm) =root(v)AC where (£',C,v) = tcem(E){cterm)
tCem (E)(tid @ label{t,, ..., tx3}) =(&orn(vsm) A ATE(V,ng) ALAC A .. AC,v)

where v = E(tid) if defined, otherwise v = id(&..iter) with id new identifier
L= tC/abe/(g, V)(/&bﬁ‘/)
r; = VALUE if ¢; is "string™, r; = CHILD otherwise
E, = & + (tid, v) (&1, Ciini) = tem(Eim) (1)

tcem(E)(tid @ labell t,, . .., ti]) = (&, (v, ny,order (7,1, E.iter)) A ... A (v, ng,order (T, k, E.iter)) A
OV, CHILD) ALAC A ... ACy,v)
where v = E(tid) if defined, otherwise v = id(&.iter) with id new identifier
ri = VALUE if ¢; is "string™, r; = CHILD otherwise
L= '[C/abe/(g, V)(/&b(—?/)
go = 5 + (tid,V) (&,C,-, n,’) = tCre,m(gi_l)(ti)

tCrerm (E) ("' string") =(&,L,v) wherev =id(&.iter) with id new identifier
L= tC/abe/(S, v) (string)
tCrerm () (Aid) = (& + (tid,v), T,v),v) wherev = E(tid) if defined, otherwise
v = id(&.iter) with id new identifier
tCtem(E) (var X) = (&, deep-copy(E(X),v),v) wherev =id(&.iter) and id new identifier
tCerm (€) (idvar X) =(&,T1,E(X))

tCem(&)(all ¢ group-by(X,,..., Xu)) =tem(E')(t) where & = &€ with &' iter = E.iter o [E(X), ..., E(Xn)]

tCiabel (€, v) (label) = &(v, label)
tCiabel(E, v)(var X) =2 (v,E(X))

Table 16. Translating Xcerpt construct terms

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT 183

Construct term cloLog expression

o root(id;) A £(id;,a) A cHILD(id;,id,) A

¢ alb, o} 2(id,,b) A cHILD(id; ,idy) A £(id;,c)

root(idy) A €(id;,a) A OL(id,)
€2 a[id @b, Aid] X cup(id,,id, ,order(T,1)) A €(id;,b) A
CcHILD(id; ,id, ,order(T,2))

3 af{ var X } X normalized to G2.

x root(id;) A L£(id;,a) A cHILD(id,,id, (X)) A

G a{ all var X group-by(var X)} L, TG

root (id; (X)) A £(id,(X),a) A
cHILD(id; (X),id, (X)) A deep-copy(X, id, (X))

=

G2 all a{ var X group-by(var X)}

root(id, (Y)) A 2(id,(Y),a) A
G3 all a{ all var X group-by(var X), — cHILD(id, (Y),id, (Y, X)) A deep-copy(X, id,(Y, X)) A

var Y } group-by(var Y) cHILD(id; (Y),id; (Y)) A deep-copy(Y, id;(Y))
G4 all a{ } group-by(var Y) 5 root(id, (Y)) A €(id, (Y),a)

Table 18. Construct terms and their ClQLog translations

7-4.3 QUERIES AND QUERY TERMS

Bodies of Xcerpt rules are translated using tq. Again, we us an environ-
ment £ to record already established mappings between Xcerpt and clqLog
variables. For queries we do not record iteration or grouping variables as
there are no grouping expression in queries. The environment additionally
contains isLabel(X) and isTerm(X, v) terms for Xcerpt variables X and clqLog
variables v. The former indicates that X is known to have occurred as a label
variable. The latter that X has occurred in term position and is represented
by y in the clqLog expression. These are used to establish proper variable
occurrences in label and term position. As before, we use + to add these
terms to a given environment £. We do use an additional helper structure
for the translation of query terms, viz. V = (v4, Vo, Vo, 1y, 7, 7), and
denote each component by V.V, etc. and with () the empty V. V holds
the clqLog variable for the parent term of the term to be translated (v;), the
variables for left and right siblings of that term (V. and V_,, respectively)

184

TRANSLATING XCERPT 2.0

and the relations to these variables (4 for parent, r for left siblings, r_,
for right siblings).

An Xcerpt rule body is first translated using tq which takes care of all
top-level disjunction, conjunction, or negations. Note, that for disjunctions
and conjunctions we propagate the environment return by the translation
of the first operand (&, in case 2 and 3) to the translation of the second
operand. Thus Xcerpt variables occurring in both disjuncts are mapped to
the same ClQLog variable. This assumes that, as usual, non-answer variables
are standardized apart for each disjunct. After translating any top-level
expressions, we turn to the evaluation of the top-level query terms which
we root and translate using tq,,,,,, (case 5 of trycerpt). tq,,,, carries, in addition
to the Xcerpt term to be translated, three parameters: the environment
£, a clqLog variable for the current term (which may be 1 indicating that
no variable has been allocated for the term yet), and the context variables
V. Initially, there is no clqLog variable for the current term yet (and thus
the second parameter is 1) and also no context variables V as a top-level
Xcerpt term has no parent or sibling terms.

As for tCserm, tqy,,,, is specified by one case for each of the possible query
terms. Cases 1-6 cover “prefixes” of full query terms, e.g., term identifiers,
term restrictions, position specifications, or descendant modifiers. Cases
7-10 cover the four basic query term kinds, structured (case 7), character
data (case 8), reference (case 9), and variable (case 10). Finally, case 11
covers without with may contain an entire term list and is thus a bit of the

“odd man out” in the translation of query terms.

For tq,,,,,» we use five helper functions depicted in Table 22. (1) Bottom
up, tq,,,,; creates a clQLog expression for all the relations in a given V with
a given current variable v.,,. It is used for the translation of each of the
base term kinds (case 7-10 of tq,,,,,)- (2) 1q,,, turns a Xcerpt variable into
a CloLog variable using the specified equivalence relation eq. If the Xcerpt
variable is already defined in the current environment the stored clqLog
variable is retrieved and an equivalence atom is emitted, otherwise we
simply record a new mapping from the given Xcerpt X variable to the
cloLog variable v. A special treatment of label variables as in the translation
of construct terms is provided. (3) tq;,;,; translates just the label of a struc-
tured term: if it is the wildcard =, no relation is added (any node fulfills that
restriction), if it is a proper label a corresponding label relation is omitted,
if it is variable a similar translation as for tq,,,, takes place but we mark
the variable by isLabel in the environment to ensure that other occurrences
of that variable are connected using ~ and no other equivalence relation.
(4) tq,p,;;4 translates child lists of a structure term selected by the clqLog
variable v;. Basically, it distinguishes the six term list types (total, partial
injective, partial non-injective, each combined with order or unorder) and

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT 185

function term cloLog expression
ta(query) = tq(2)(query)

tq(€){and(t,, t.)) = (£,(QiAQy)) where (£,Q) =tq(E)(t) (&£,Q) =tq(&)(r)
1q(E){or(t, .)) =(&,(QvQ,)) where (&,Q) =tq(E)(t) (&2, Q) =tq(&) (1)
tq(€){not (1)) =(£',-(Q)) where (£',Q) =tq(£)(t)
tq(&){qterm) = (&', root(r)AQ) where (&',r,Q) = 1tq,,, (&, L, ()){qterm)

e (€, v, V) (tid @ t) =(&',{v},Q) wherev = &(tid) if defined otherwise, if v = 1, v new variable

(E,V,Q) = Gy (€ 4 (tidhv), 1, V) 1)
Gy (€, v, V) (idvar X @ t) =(&",{v},EAQ) wherev = E(tid) if defined otherwise, if v = L, v new variable

(€',E) =1q,,(&,v,=)(X)
(£",V,Q) = G (", v, V)(1)
Gy (€5 v, V) (position nume t) = (&, {v},@" (v,num)AQ whereifv = 1, v new variable
(E,V,Q) =G (€, v, V(1)
Gy (€, v, V) (positionvar X @t) = (E",{v}, EAQ whereifv = 1, v new variable
(&E) =19,,(&,v,=0)(X)
(E7,V,Q) = Gy (€12 V)(1)
Gy (E,v, V) {var X — t) =(&",{v},E'AQ whereifv = 1, v new variable
(€', E) =1q,,,(€, v, 2)(X)
if isLabel(X) € &, E" = E A outdeg(v, o) otherwise
E'=Eand&" =& + {isTerm(X,v) }
(E",V,Q) =19, (E",V)(1)
Gy (€, v, V) (desc t) =(&",{v}, FananQ whereifv = 1, v new variable
Fiat = Wy (v5 V)
(E",V,Q) = tqun (&, L, (v, @, @, patht, T, 7)) (¢)
t0yerm (€, v, V) {label children) = (&,, v, EAF,AFsyuq) whereif v = L, v new variable
(& Fr) = 10,,(E, v){label)
(&, F2) = tqu4(&:, v)(children)
Fatnuct = W (v, V)
G,y (€, v, V) (" string") = (&',v, FAFguq) whereif v = 1, v new variable
(€', F) = tGupe(E, v) {string)
Fiua = Wgye(v5 V)

Gy (€, v, V) (Atid) = (& + (tid,v), v, Fsua) Wherev = E(tid) if defined, otherwise v new variable
Firyer = tqsm/ct(v’ V)
e (€, v, V) {var X) = (&',v, EAFguq) whereif v = 1, v new variable

((C:I) E) = tqvar(g’ v, %)(X>
Fitner = tqslru(f(v’ V)

Gy (€5 v, V) (without tlist) =1q,(E, V) (tlist)

Table 20. Translating Xcerpt query terms: queries and query terms

186

TRANSLATING XCERPT 2.0

calls for each tq,;;,, with different parameters. The relation to the parent
variable is always path” where L = {CHILD, COMMENT, VALUE} as stated
above. But between the siblings, the relations vary: In the unordered, par-
tial, non-injective case, there are no such relations at all (indicated by T),
in the case of partial, but injective terms we add complemented identity
join, in the case of total terms we add a limitation on the out-degree of the
parent (case 3). When combined with order, we obtain transitive-reflexive
sibling order for partial, non-injective, transitive sibling order for partial,
injective, and, again, an additional out-degree constraint for the total case
(cases 4-6). (5) The actual formula of the relations between the variables
is defined in tq,;;,, which is called whenever translating lists of query terms
(i.e., in tq,,;;; and in the without case of tq,,,,,). t9,;,; does not merely
translate the given lists in the given order, but delays the translation of
negative sub-terms until all positive ones are translated. This is necessary
to allow the relations between negative and positive sub-terms (even ones
after the negative sub-term) to be contained in the scope of the —. Other-
wise, we demand the existence of such a relation rather than demand its
non-existence. Nevertheless we ensure that all relations are enforced by
gathering the ClQLog variables returned by the translation of all positive
sub-terms to the right of a negative one in that sub-terms Viright.
To illustrate tq,;,, consider the Xcept query term

al[b, without(c, without(d)), without(e), f 1]

Itis necessary to ensure that in the resulting ClqLog expression all references
to a ClqLog variable for the translation of, e.g., ¢ are within a negation. This
includes sibling relations to, e.g., the translation of f. Otherwise we would,
falsely, require that there has to be a (following) sibling relation to f-labeled
node, instead of requiring that there is no ¢ with such a relation.
Returning to tq,,,,, in Table 20, we see that all the “prefixes” of a query
term (case 1-6) are translated along the same scheme: if necessary, we
take a new variable and add some relations on that variable to the output
of the translation of the contained query term. For the identifier case
(case 1) we only modify the term environment. Identity variables (case 2),
position variables (case 4), and term restrictions (case 5) are translated
using appropriate =, =g, and 2, respectively, between the involved clqLog
variables. Descendant sub-terms are a bit like the translation of a singleton
term list using tq,;;,,: we do not need to establish any relations to left or
right siblings (as there are none) but can directly translate the single child,
but using the transitive closure path® instead of path” as relation between
parent and child variable. The translation of the basic terms (case 7-10)
is fairly straightforward: we translated label parts, if there are any, then
children, if there are any, and finally establish structural relations between

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT 187

function term cloLog expression

tqt/ist(g’ V)<t1’ teeo tﬂ) = (5,‘, U Vi+» /\t, positive Fin- (/\t,- negative Fi)
where&, =&, V, = V.V
t; positive: Vi = Vi, Vi =@, VI = U, Vi VT = VLV
t; negative: V" = @, Vi7 = Vi, VI = Uy Vi, V)" = Uy Vi UVLVL
(&, Vi, Fi) = Qe (Eizrs L, (Vovy, A \/i'[ght, V., Vra,Vors))

10,0 (€, 1) ({{{ thist}3}) = (E,F) where (£, V,F) =tq,,(&, (v, @, @, path, T, T)) (tlist)
1qeyig (€, v) (£L tist3}) = (£,F) where (£, V,F) =tqu,(E, (v, @, @, path”, =, =)) tlist)
100 (€ v) ({ tist}) = (&, outdeg” (v, 1) A F)

where (£, V, F) = tq,,(E, (v, @, @, path”, =, Z)) (tlist)

n number of terms in tlist

tqg (€, vi)(LLL thist111) = (E,9%(v,)AF) where (£, V,F) =1tq,,(&, (vi, @, @, path”, <&, <)) (tlist)
100 (&> v) (LI thist11) = (&,9"(vy)AF) where (£, V,F) = 1q,,(E, (v, @, @, path*, <, <)) (tlist)
100 (E> v) (L tist]) = (&, outdeg" (v, n) A O (v,) A F)

where (£, V, F) = tq,,(E, (v, @, @, path”, <&, «%))(tlist)
n_number of terms in tlist

t1per (€5 V) (%) =(&1)

10,0/ (€, v) (label) = (&,2(v, label))
(€ +islabel(X),= (v,E(X) AF)) i3I :(x,v") e £ and

Qe (€, v){var X) = F = Aitem(x,v)ee Outdeg(v, o)
(€ + (X, v) + isLabel(x), T) otherwise

(E,v=EX)) if I :islabel(X) e EA (X, V) € &

19, (€, v.eq)(X) =1(E,veq£(X)) i 3 islabel(X) ¢ E A (X,v) €
(E+ (X,v), T) otherwise
tqsrrucr(vfu”’ V) = TT(VT, chrr) A /\ T (Vl, chrr) A /\ [(Vra chrr)
vieVe veeVo,
tqstruct(vfu”’ V) = rT(VT, chfr) fro=rc=T

Table 22. Translating Xcerpt query terms: term lists, variables, and labels

188

TRANSLATING XCERPT 2.0

the parent and sibling variables using tq,,,,.;-

ExXAMPLES. To illustrate the translation of query terms, we once again
turn back to the examples from Section 7.3, in this case the example query
terms in Tables 9 and 11. Tables 24 and 26 show the translation to clqQLog
for some of these query terms as well as the environment passed to the
translation of a corresponding rule head. If these query terms occur as
top-level query terms, we have to add a root relation on the top-level clqLog
variable that we omit in the following for space reasons.

7.4 TRANSLATING NON-RECURSIVE CORE XCERPT

189

Query term cloLog expression
t
T a{} Sem vy, a) A outdeg” (v, ,0)
Werm L L
T2 a[] — 2(v;,a) A outdeg” (v;,0) A O (v;)
t erm
3 a{b} Jem, 9y, a) A outdegt (v, 1) A CHILD(V1,v2) A €(vs,b)
T4 aib, b3 em L(vy,a) A outdegl (v,,2) A CHILDivl,vz) A €(v,,b) A
CHILD(V,,v3) A £(v3,b) A v, = vy
t
Pl a{{ b }} Zem, @(vy,a) A CHILD(v,v,) A €(v,,b)
them L(vyi,a) A OL(vy) A CHILD(vy,v,) A €(v,,b) A
P2 al[b, ¢ 1] —
CHILD(V,,V3) A £(v3,0) AV, K4 V3
It U U
N at{{b, b }}} e L(Vy1,8) A CHILD(Vy,V,) A £(v,,b) A
CHILD(V,,Vv3) A £(v3,b)
a Q(v;,a) A OF(vy) A CHILD(v,,v,) A £(v,,b) A
12 a[[[b, b, d 1]1] -, CHILD(V,,V3) A £(v3,b) A CHILD(V;,V,) A £(vy,d) A
Vo Ky V3 AV, Ky V4 AV Ky Vy
L
1
DI af desc b } Gem L(vy,a) A outdeg (V‘,'l) A CHILD(V;,V,) A
- CHILDy (V,,V3) A £(v3, b)
" L(vy,a) A outdegL (v1,2) A CHILD(V,,V,) A
D2 af{ desc b, desc c } —m, CHILD(V;,V3) A V, = V3 A CHILD« (V5,V4) A
£(vy,b) A CHILD (v3,Vs) A £(Vs,C)
q L£(vy,a) A CHILD(Vy,V,) A
D3 a{{ desc b, desc c }} 0, CHILD(V;,V3) A Vo = V3 A CHILD4 (V,,V,) A
2(v4,b) A CHILD (v3,Vs) A £(vs,C)
t
D4 a{{{ desc b, desc c }}} Gem L(Vy,a) A CHILD(V,,V,) A CHILD(V;,V3) A
I I CHILDy (V,,V4) A £(v4,b) A CHILD (v3,Vs) A £(vs,c)
. £(vy,a) A CHILD(Vy,V,) A £(V,,b) A CHILD(Vy,V3) A
W1 a{{ b, without(c), d }} M Q(vy,d) Avy C= vy A
—(CHILD(vy,v4) A €(vy,0) Avs C= vy Avs C= vy)
, (vy,a) A OF(v,) A CHILD(V,,V,) A £(v,,b) A
W2 a[[b, without(c), d 11 e, CHILD(V;,V3) A £(v3,d) A vy, <4 V3 A

S(CHILD (v, V) A Q(V4,0) AV, K4 V4 A Vg <4 V3)

190 TRANSLATING XCERPT 2.0
Notice in Table 24 in particular the subtle, but essential differences
in the translations for total (T1-T2), partial, but injective (P1-P2), and
partial and non-injective (I1-12) query terms. I2 is an example where more
than necessary sibling relations are generated. This is the case for all order
relations between siblings as the translation above does not exploit their
transitivity. This can be easily recognized and removed in a post-processing
step. Alternatively, one can adapt the translation to handle ordered and
unordered term lists differently. D1, D4 show that when translating desc
we always generate an intermediate child step to express sibling relations
on that child step. However, if there are no such relations (because it is the
only sub-term or because we are in a partial, non-injective term) we can
avoid the child step and use pathfr instead of path” followed by path’. Again
this is a general equivalence for clQLog queries on data graph relations and
can be optimized in a post-processing.
Query term clqLog expression £
V1 a{ var X } N £(vy,a) A outdeg” (v,,1) A CHILD(v;,V,) {(X,v2)}
V2 var X }} M L(vy,a) A CHILD(V,,V,) {(X,v2)}
V3 var X, var X 3} tqtﬂ) Q(vl,a)‘/\ CHILD(V:,VZ) A CHILD(Vy,V3) A (% v2)}
Vo C= vz AV, 2 g
V4 a{{{ var X, var X }}} M 2(vy,a) A CHILD(V;,V,) A CHILD(V;,V3) AV, £ v, {(X,v2)}
) tem L(Vy,a) A CHILD(V;,V,) A CHILD(V,,V3) A {(X,v2),
v var X{ var X } } outdeg” (v5,0) A v, = v, isLabel(X) }
U U
V6 var X —c, var X } M L(vl,ao) A CHILD(Vy,V,) A £(V,, €) A CHILD(Vy,V3) A (%)}
vV, 2 V3
) L
VI af desc var X } e L(v1,a) A outdeg” (v1,1) A CHILD(V;,v,) A (%)}
— CHILD (V,,V3)
V8 a{{var X, without(var Sem £(v1,8) A CHILD(V, V) A —(cHILD(v,,v3) A (%))

X1}

v, C=v3A vV, 2 v3)

Table 26. Query terms containing variables and their ClqLog translation

Query terms with variables are considered in Table 26. Notice, in par-

75 FROM NON-RECURSIVE, SINGLE-RULE CORE XCERPT TO FULL XCERPT

ticular V3 and V6 that illustrate multiple occurrences of the same variable
in a total or partial, injective query term: here we demand that matches
for the two terms are not the same node (i.e., in the complement relation
of =) but have the same label and structure (i.e., stand in 2 relation). In Vs,
the effect of a label occurrence of a variable is illustrated.

It is easy to see from the translation functions that the following result
holds (considering that each case covers at least one Xcerpt construct and
no case introduce duplication of the translation of its sub-expressions).

Theorem 7.1. The size of the ClqQLog expression Q returned by txep: for a
given Xcerpt rule P is linear in the size of P.

75 FROM NON-RECURSIVE, SINGLE-RULE CORE XCERPT
TO FULL XCERPT

In the previous sections, we focus on Xcerpt®®"**R j e the non-recursive,
single-rule fragment of Xcerpt. Notice, however, that the above translation
generates a ClQLog rule from a Core Xcerpt rule and is applicable whether
there are only one or many rules in a translated Xcerpt program.

Thus, for translating full Core Xcerpt, i.e., possibly recursive, multi-rule
Xcerpt but with the restrictions from Section 7.2 wrt. each rule, we can
use the above translation unchanged. Some improvements of the resulting
cloLog program can be achieved by exploiting that Xcerpt programs are
grouping and negation stratified. Before the translation, we select one such
stratification and rewrite the program to introduce root terms with unique
labels for each stratum. This allows for easier recognition of said strata
after the translation to clqLog, where we only have to consider the root
variable and its label to limit rule chaining to each stratum.

Moving from Core Xcerpt to full Xcerpt is less obvious. Aside from
numerous, but essentially easy specificities such as namespaces, attributes,
comments, processing-instructions etc. there are a few constructs that
merit a closer consideration. Among them are:

(1) optional TERMS: Optional QUERY terms can be rewritten to combi-

nations of without and or but require specific treatment in heads.?
For that clqLog provides conditional construction which precisely
addresses optional construct terms.

(2) order-by CLAUSES: order-by clauses in Xcerpt allow for different

lists of order variables than grouping variables whereas Xcerpt®®NfsR
always assumes that both lists are identical. This is supported by

2 This is the case, as we can not always split the Xcerpt rule in two rules on the Xcerpt level
due to grouping expressions.

191

192

TRANSLATING XCERPT 2.0

(3)

(4)

(5)

cloLog (the variable lists in order do not have to coincide with the
ones in new) and can be easily added to the translation by a new
£ .order sequence of variables.

GROUPING OVER TERM LISTS instead of single terms yields re-
sults not expressible in Xcerpt@®"*SR: arb, all(var X, var v), d

yields

alb, X1, Vi, X2y V2, .-y Xu, Vn, dl

where x; is the binding for X in the i-th binding tuple, i.e., bindings
for X and Y are paired wrt. term order. This can be accommodated
in the translation by nesting order expressions as in the translation
of XQuery (cf. Chapter 8).

ADDITIONAL GROUPING EXPRESSIONS such as some and first
groupings are to some extent expressible using aggregation operators
in cloLog. However, in general, some is not expressible in clqLog as its
result is non-deterministic and ClQLog expresses only deterministic
queries (up to isomorphisms on invented values).

CONDITIONS IN XCERPT QUERY TERMS can be translated to
cloLog if appropriate relations or functions are available (or added)
to clqQLog.

TRANSLATING XQUERY

81 Introduction 193
82 TranslatingXPath 194
821 Syntaxand Semantics 196
8.2.2 Translation. 197
8.3 From XPath to Composition-Free XQuery 200
8.3.1 Composition-Free XQuery in 1000 Words 200
8.3.2 Syntax 201
8.3.3 Semantics 203
8.3.4 Translation. 206
8.3.5 Equivalence 216
8.4 Beyond Composition-free XQuery 217
85 Conclusion. 218

81 INTRODUCTION

Among XML query languages, XPath and, increasingly, XQuery play the
dominant role to such an extent that motivating their use in this work
has become superfluous. XPath’s properties, evaluation, complexity, con-
tainment, etc. have been studied extensively in recent years, for a survey
see [22]. For XQuery, most research still focuses on implementation and
evaluation aspects, e.g., [93, 155, 39]. In the following, we present a novel
semantics for XPath and XQuery by translation to clqLog that also serves
as foundation for the evaluation of XPath and XQuery with the ClQcAG
algebra defined in Part I'V. Together with the ClQcAG algebra, we achieve
the first implementation of XQuery that scales from tree queries to graph
queries, from tree data to graph data. Its time and space complexity is as
good as or better than the complexities of previous systems limited to, e.g.,
tree queries on tree data (for details on the complexity see Part IV).

The translation of XPath and XQuery to clqLog is the focus of this chapter.
For the most part, we use navigational XPath (introduced in [113]) and

194

Introducing
XPath

XPath examples

TRANSLATING XQUERY

composition-free Core XQuery' (introduced in [144]), two important and
convenient fragments of XPath and XQuery that can be translated to non-
recursive ClQLog. The extension to full XQuery is only briefly outlined in
Section 8.4. The essential limitation of both fragments compared to the
full languages is that all relations in the query are only on nodes of the
input tree but not on nodes by the query itself. This limitation is similar to
the limitation to Xcerpt®®"®S® in Chapter 7.

In addition to providing a path for implementing XPath and XQuery
using ClQCAG, the translation also gives a purely logical semantics for both
languages where previous semantics for XQuery are functional or algebraic
(see also Table 31). This sheds new light on some of the differences between
composition-free XQuery on the one hand and XPath on the other hand,
in particular, on the effect of nested for loops and element construction
in XQuery.

82 TRANSLATING XPATH

Unary selection of XML elements is, by now, almost always done using
XPath or some variant of XPath (such as XPointer). XPath provides an
elegant and compact way of describing “paths” in an XML document
(represented as in to Chapter 5.3 but without resolution of ID/IDREF links).
Paths are made up of “steps” each specifying a direction, called axis, in
which to navigate through the document, e.g., child, following, or ancestor,
cf. Figure 38 for the full set of axes. Together with the axis, a step contains
a restriction on the type or label of the data items to be selected, called
node test. Node tests may be labels of element or attribute nodes, node
kind wildcards such as * (any node with some label), element(), node(), text(),
or comment(). Any step may be adorned by one or more qualifiers each
expressing additional restrictions on the selected nodes. Compared to
languages such as XQuery, Xcerpt, or even SPARQL, the most distinctive
teature of XPath is the lack of explicit variables. This makes it impossible to
express n-ary queries and limits XPath, for the most part, to two-variable
logic [153, 36].

For instance, the XPath expression /descendant: :paper/child: : author
consists of two steps, the first selecting paper elements that are descendants
of the root (“of the root” is indicated by the leading slash), the second
selecting author children of such paper elements. More interesting queries
can be expressed by exploiting XPath’s qualifiers, e.g., the following XPath
expression that selects all authors that are also PC members of a conference

1 In the following, we omit the “Core” where no confusion is possible.

8.2 TRANSLATING XPATH 195

X
os®©
20
self
b parent
| child

preceding-sibling

following-sibling

descendant

Figure 38. XPath axis (from [103])

196 TRANSLATING XQUERY

(more precisely that have node children with the same label):

/child: : conference/descendant: : paper/child: :author[child: :node()

2 /child: :conference/child: :member/child: :node()]

In addition to the strict axis plus node test notation, XPath uses also an
abbreviated syntax where child axis may be omitted, descendant is (roughly)
abbreviated by // etc. In the following, we only use the full syntax. We
also limit ourselves to the core feature of XPath as discussed here and
thus present a view of XPath similar to Navigational XPath of [112] and
[22]. Due to [170], we also limit ourselves to forward axes such as child and
following, rewriting expressions with reverse axes such as parent, ancestor, or
preceding where necessary.

8.2.1 SYNTAX AND SEMANTICS

XML tree as Following [22], we define the semantics of XPath over a relational structure
relational as introduced in Section 5.6.1: An XML-tree is considered a relational
structure structure T over the schema ((Labh)kz, Reitd> Ruest-sbling, relRoot). The

nodes of this tree are labeled using the symbols from ¢ which are queried
using £* (note, that) is a single label not a label set as in the graph relations
of Chapter 5). The parent-child relations are represented by Rpig. The order
between siblings is represented by Ryestsipiing. The root node of the tree is
identified by root. It is easy to see that this view of XML trees (which is
as in [22] or [144]), makes an XML-tree a specific instance of a ClQLog
data graph, cf. Chapter 5. There are some additional derived relations,
ViZ. Ryescendant> the transitive, Ryescendantorself the transitive reflexive closure
of Repitds Reollowing-sibling» the transitive closure of Rpextsibiing> Rseif relating each
node to itself, and Rfgjowing the composition of Ry . iant-orseli © Riollowing-sibling ©
Ryescendant-or-self- Finally, we can compare nodes based on their label using =
which contains all pairs of nodes with same label.

Syntax of The syntax of navigational XPath is defined as follows (again following
navigational [112] and [22]):
XPath
(path) u= (step) | (step) /’ (path) | (path) ‘U (path) | /> {path)
(step) u= (axis) ‘12" (node-test) | (step)[’(qualifier)‘1’
(axis) == ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ | ‘following’
(node-test) = (label) | ‘node()’
(qualifier) == (path) | (path) ‘N (path) | {path) ‘V’(path) | ‘=’ (path)

| 1ab()’ =N
| (path) =" (path)

8.2 TRANSLATING XPATH 197
I axis Thyoges (1) ={(n": Raxis(n,n")}
A Tioes () ={(n": Lab" (n")}
[node O Tyodes (1) = Nodes(T)
[axis: :ntlquall [l (n) ={n":n" € [axis Dyoses A 1" € [1t Tyoges A [qual gy (1)}
[step/path [l (1) ={n":n" e[step g (n) A 1" €[path]| e (n')}
[[pathl U path,]]Nodes (n) = I[pathl]lNodeS (n)u I[pm‘h2]lNodeS (n)
[path 1, (n) = [path]|y (1) = @
[[pal‘h1 A path,]]BOO‘ (n) = I[path1]IBOO‘ (n) A I[path2]IBOO‘ (n)
[[pathl vV path,]]BOO‘ (n) = I[path1]laoo\ (n)v I[path2]laoo\ (n)
[-path],y (1) == [path g, ()
[1abO) = A gy (n) = Lab* (n)
[[pal‘h1 = path,]]Bool (n) =3n',n":n € I[path1]]Nodes (n)an" e |[path2]lNodes (n)
Az (n',n")

Table 27. Semantics for navigational XPath (following [22])

The semantics of a navigational XPath expression over a relational struc-
ture T representing an XML tree (as defined above) is defined in Table 27
by means of [Tlyoges (72) where 7 is a node, called context node. [Tiyodes (1)
associates each XPath expression and context node with a set of nodes that
constitutes the semantics of that expression if evaluated with the given
context node. It uses [g, (7) for the semantics of qualifiers under a
context node #.

For details on the semantics as well as differences to full XPath see [22].

8.2.2 TRANSLATION

Semantics of
navigational
XPath

Consider again the above examples. The first (/descendant : : paper/child: : authox)g/ation

is translated to the following ClqLog rule:

ans(v;) «<— root(v,) A CHILD; (V,,V,) A L(v,,paper) A
> CHILD(V,,Vv;) A £(v;,author)

We use ans as the canonical answer predicate containing the (single) an-
swer variable whose bindings represent the results of an XPath expression.
Just as the original expression, the body of the clqLog rule selects descen-
dants of the root with label paper and of those the author children. The

examples

Translation
function

198

2

4

TRANSLATING XQUERY

latter are propagated to the head of the rule.
The second example is as follows

/child: : conference/descendant: : paper/child: : author[child: :node()

/child: : conference/child: :member/child: :node()]
and translated similarly but illustrates qualifiers and nested queries:

ans(v,) <— root(v,) A CHILD(V,,V,) A L(v,,conference) A
CHILD, (V,,V;) A £(v;,paper) A CHILD(v;,v,) A £(v,,author) A
CHILD(V4,Vs) A 2(vs,W,) A root(w;) A CHILD(W;,W,) A
£(w,,conference) A CHILD(w,,w;) A £(w;, member) A CHILD(w;,wW,)

In general, we translate a navigational XPath expression using the trxpath
specified in Table 29. trypy returns a ClQLog formula that realizes the
given XPath expression as well as an answer variable. We wrap (Q,w) =
trxpath (L, 1) where 1 is an arbitrary variable into a CloLog rule ans(w) «—
Q.

The translation in Table 29 is fairly straightforward. In a slight abuse
of notation, we allow the direct use trypa, in a formula. In this case we
ignore the second return value (i.e., the answer variable). The transla-
tion is parametrized by the parent variable v and the current variable v'.
Axis are mapped to corresponding relations using the helper function
relation(axis)), as are label node-steps (cases 1-3). relation(axis) is defined
in the obvious way:

relation(child) = cuiLp relation(descendant) = cHILD,

relation(descendant-or-self) = cHiLD, relation(next-sibling) = <« "

CHILD
+

CHILD

relation(following) = «¢

relation(following-sibling) = «

Steps are translated by translating axis, node-test, and qualifier separately.
For the translation of the qualifier a new variable is created and the qualifier
is translated with the old current variable as parent and the new variable
as current variable. Notice, how we ignore the answer variable returned
by the qualifier. This small difference to the translation of a path outside a
qualifier implements the existential semantics of XPath qualifiers. Together
with the path operator / (cases 5-6), the qualifier is the only context-
changing expression where we move from one query variable to the next
one. The inner path operator (case 5) translates the leftmost step and then
continues with the translation of the remainder of the path using a new
current variable. Absolute XPath expressions (expressions starting with
/) are translated in case 7 where we use fresh variables rather than v and
v'. Thus, the only possible link between nested absolute expressions is
the answer variable (which is used, e.g., for unions or joins). In unions,

8.2 TRANSLATING XPATH 199

function XPath expression cloLog expression
trypath (v, ") axis) = (relation(axis) (v,v"),v")
trypath (v, v) () =(L(v,1),v")
trypath (v, v') (node () =(T,v")
trypan (v, v") {axis: : node-test[qualifier]) = (trxpatn (v, v"){axis) A trxpan (v, v'){node-test) A trxean (v', v""){qualifier), v")

where v"’ is a new variable

tryean (v, v") (step/ path) = (tan (v, V') (step)AF, w) where v s a new variable
(F,w) = trhean (v, v"")(path)

trypatn (v, v") (/ path) = (ro0t(v")AF, w) wherev”,v" are new variables
(F,w) = trxean (v, v""") (path)

trypan (v, v"){path, U path,) =(FEVE)A(W=w,vw=w),w)
where w is a new variable
(Fn Wl) = trXPath(V> V’)(Path1> (Fz) Wz) = tr)(Path(V, V,)<path2>

o (920" (path, v path,) = ((FVE.),w.) where (Fw,) = (v, path)
(F;_, Wz) = trXPath(V> V,)(path2>

trypan (v, v")path, A path,) = (F,AF,,w,) where (F,, w,) = trypan (v, v")(path,)
(Es, wy) = trypan (v, v")(path,)

trypan (v, v") (—path) = (=(F),w) where (F,w) = trxpan (v, v"){—path)
trypath (v, v')(Lab() = 1) =(L2(v,A),v)
tryean (v, v"){path, = path,) =(FAF, AWy 2wy,wy)

where (F,, w,) = trpan (v, v')(path,) (Fa, w2) = trypann (v, v"){path,)

Table 29. Translating navigational XPath

200

Introducing
composition-
free

TRANSLATING XQUERY

conjunctions, disjunctions, and joins (cases 7-9, 12) we translate each
operand separately but combine the result differently, most notably for
conjunction, disjunction, and join (cases 8, 9, 12) we do not care about
the answer variable (they only occur in qualifiers where, as described
above, we drop answer variables anyway). Finally, label equality (case 11) is
translated just like a labeled node test (case 2), but on the parent variable
instead of the current variable due to the “context” switch of the qualifier.

Theorem 8.1. Let P be a navigational XPath expression and (Q,w) =
trxpath (L, L)(P). Then the relation ans defined by ans(w) «— Qs [P Jnodes
and the size of Q is linear in the size of P.

Proof (Sketch). First, consider only path expression without qualifiers. It
is easy to see that, given appropriate base relations, the resulting cloLog
expressions express the same query as the XPath expressions. Note, that
the answer variable is by translation the variable for the last step, as in
XPath. With qualifiers, the same observation holds (as answer variables
returned by paths in qualifiers are ignored by definition, see case 4). Note
that the join in case 12 is a label join (as in the semantics of navigational
XPath). In full XPath = is a join on the string value of a node, which is a
notion covered neither in navigational XPath as defined in [22] nor by the
clolog translation.

It is easy to see from Table 29, that the resulting clqLog expression: each
case translates at least one construct in P and in no case is the result of a
sub-translation duplicated. O

83 FROM XPATH TO COMPOSITION-FREE XQUERY

Turning from XPath to a larger fragment of XQuery that is amenable to
translation into ClQLog, we choose non-compositional XQuery as defined
in [144] (though we follow more closely the variant in [21]).

8.3.1 COMPOSITION-FREE XQUERY IN 1000 WORDS

Though not nearly as common as XPath, XQuery has nevertheless achieved
the status of predominant XML query language, at least as far as database
products and research are concerned (in total, XSLT [72] is probably still
more widely supported and used). XQuery is essentially an extension of
XPath (though some of its axis are only optional in XQuery), but most
of XPath becomes syntactic sugar in XQuery. This is particularly true for
XPath qualifiers which can be reduced to where or if clauses in XQuery.
Indeed, the XQuery standard is accompanied [89] by a normalization of
XQuery to a core dialect of the language.

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY

Here, we consider first an important, if somewhat academic fragment
of XQuery, viz. composition-free XQuery as defined in [144] and [21].
It is slightly academic as we restrict the syntax far more than necessary
to minimize the constructs to be consider for the formal semantics of
composition-free XQuery as well as for the translation to clqLog. However,
many of the restrictions to the syntax can be dropped (e.g., we could inte-
grate full navigational XPath as discussed in Section 8.2) without affecting
expressiveness and complexity, see also [21]. The only real restriction of
composition-free XQuery in comparison to full XQuery is that it disal-
lows any querying of constructed nodes, i.e., the domain of all relations is
limited to the input nodes. This limitation clearly does not hold for full
XQuery (even if we do not consider user-defined functions) and its effect
on expressiveness and complexity is discussed in detail in [144].

(Composition-free) XQuery is built around controlled iterations over
nodes of the input tree, expressed using for expressions. Controlled itera-
tion is important for XQuery as it founded on sequences of nodes rather
than sets of nodes (as XPath 1.0 and clqLog). In this respect it is more
similar to languages such as DAPLEX [192] or OQL [67] than to XPath or
Xcerpt. (For) loops use XPath expressions for navigation and XML-look-a-
likes for element construction all of which can be, essentially, freely nested.
The following query gives an example of XQuery expressions. It creates a
paperlist containing one author element for each author in the input XML
tree (bound here and in the following to the canonical input variable $inp).
For each such author, the nested for loop creates a list of all its papers. The
latter expression can be more elegantly expressed in full XQuery using
XPath qualifiers or where clauses but here it is shown in the “normalized”
syntax of composition-free XQuery after [144].

<paperlist>
» for $a in $inp/descendant::author return
<author> for $p in $inp/descendant: :paper return
4 if some $x in $p/child::author satisfies deep-equal($x, $a)
then $p
6 </author>
</paperlist>

8.3.2 SYNTAX

A full definition of the syntax of composition-free XQuery as used here
is given in Table 30. It deviates only marginally from [144] and [21]. In
addition to the specification in Table 30, the usual semantic restrictions
apply, e.g., the label of the start and end tags must be the same, variables

201

Example

202

Three forms of
equality

Restrictions

TRANSLATING XQUERY

(query) z= (query) (query) | (element) | (variable)
| (step) | (iteration) | (conditional)
(element) n= ‘< (label) >’ (query) ‘< (/label) >
| < “lab((variable) *)>" (query) </’ ‘lab(’ (variable)
()>)
(step) u= (variable))’ (axis) ‘: " (node-test)
(iteration) z= ‘for’ (variable) ‘in’ (step) ‘return’ (query)
(conditional) == ‘if (condition) ‘then’ (query)
(condition) == (variable) ‘=" (variable) | (variable) ‘=" ‘<’ (label) />’ |
‘true’

| ‘some’ (variable) ‘in’ (step) ‘satisfies’ (condition)
| (condition) ‘and’ (condition) | (condition) ‘or’
(condition) | ‘not’ (condition)

(axis) == ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ | ‘following’

(node-test) = (label) | ‘node()’
(variable) u= ‘$'(identifier)

Table 30. Syntax of composition-free XQuery

must be defined (using for) before use, etc. As stated, there is one exception
from the latter, viz. the canonical input variable $inp which is always bound
to the input XML tree.

In Table 30, we use a general equality. XQuery provides in fact three
kinds of equality, viz. node, atomic (or value), and deep equality which
correspond roughly to =, =, and 2;;; of clqLog data graphs. For all forms of
equality the productions of Table 30 apply.

Again, compared to full XQuery the principle omission is the ability to
query constructed nodes or values. In the syntax, this leads most promi-
nently to the restriction of expressions following in in a for, i.e., expres-
sions that provide bindings for variables, to XPath steps with variables.
This way variables are always bound only to nodes from the input tree (any-
thing reachable from $inp using XPath expressions). Another important
omission is the absence of let clauses, which provide set-valued variables
to XQuery. Conditional expressions are normalized to if clauses, where
XQuery offers XPath qualifiers, where clauses, and if clauses.

Though order-by clauses are omitted, the result of an XQuery expres-

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY

sion is always an ordered tree and the order of node construction must
be precisely preserved (as given by the iteration of the for clauses which
iterated over their respective node sequences mostly in document order).

8.3.3 SEMANTICS

The formal semantics for composition-free XQuery is, for the most part,
closely aligned with the one for XPath discussed above. Again we con-
sidered an XML tree a relational structure T over the schema ((Lab") cs,
Reild> Rnestsibling» 100t). The nodes of this tree are labeled using the symbols
from ¢ which are queried using £* (note, that A is a single label not a
label set as in the graph relations of Chapter s5). The parent-child rela-
tions are represented by Repig. The order between siblings is represented by
Rpestsibiing- The root node of the tree is identified by root. It is easy to see that
this view of XML trees (which is as in [22] or [144]), makes an XML-tree
a specific instance of a clqLog data graph, cf. Chapter 5. There are some
additional derived relations, Viz. Rgescendant> the transitive, Ryescendant-orself the
transitive reflexive closure of Reig> Rigllowing-sibling> the transitive closure of
Riext-siblings Rseif relating each node to itself, and Rygjiowing the composition of
R(;elscendam-or-self
based on their label using = which contains all pairs of nodes with same
label. In addition to the XPath relations, XQuery also considers two more

© Rfo\low'mg»siblmg © Rescendantor-self- Finaﬂ}’, Wwe can compare nodes

forms of equality: one based on node identity, =p,4es Which relates each
node to itself, and deep equality =g, which holds for two nodes if there
exists an isomorphism between their respective sub-trees.

For example, the XML document <a>, , <c>;<c/>,</c> (de-
noting node id’s by integer subscripts) is represented as T = (Lab® =
(1}, Lab” = {2},Lab" = {3,4}, Ranis = {(1,2), (1,3), (3, 4)}> Ruestsiing =
{(2,3)},r00t = {1}) over the label alphabet {a, b, c}. All other relations
can be derived from this definition, see also Chapter 6.

In the following, we also allow unions of such structures, i.e., XML
“forests”. The semantics of a composition-free XQuery expression is then
defined, following [21], using []| over a given such forest and a list of
nodes from that forest € = [e,, . . ., e,] that represent bindings for variables
X1, ..., X,. For that, we assume that all variables are first renamed to x;
such that i is the number of variables in whose scope x; is declared and
assuming that $inp is scoped over the entire query. E.g., the query

for $x in $inp/child::a return

2 for $y in $x/child::b return $x
for $z in $inp/child::c return

4 for $v in $inp/child::d return $v

203

XML trees as
relational
structures

Semantics of
composition-
free

XQuery

204

Explaining the
semantics

TRANSLATING XQUERY

becomes

for $2 in $1/child::a return

2 for $3 in $2/child::b return $2
for $2 in $1/child::c return

4 for $3 in $1/child::d return $3

In the following, we assume that queries are in the latter form.

Table 31 specifies the semantics of composition-free XQuery on an XML
forest F and a binding vector € = [e,, ..., e, | which is initially of length 1
containing bindings for $inp, i.e., usually one (or more, if querying XML
collections) root node(s).

The semantics uses three auxiliary notions. (1) w is the union on pairs of
XML forests and binding vectors such that (F,, €,)w(F,, €,) = (F,UF,, é,0
€,) where o is list (or vector) concatenation and the union of XML forests
is defined component by component. (2) @ is the intersection on pairs of
XML forests and binding vectors such that (F,, €,) @ (F,, €,) = (F,, [e; €
€, : e; € &,]). Note, that we only preserve F, (and thus m is not associative).
However, for the purpose of the semantics the choice of the XML forest is
arbitrary as m is only used for the semantics of conditions for which only
the existence or non existence (and not their actual value) of bindings is rel-
evant for the semantics of the full query. (3) construct(1, (F, [wy, ..., wx]))
denotes construction of a new tree where [is a label, F is an XML forest and
[w, ..., w,]isavector of nodes in F. It returns a pair (FUT’, [root(T")])
where T’ is a tree over a new set of nodes whose root root(T") is labeled
with I and with the i-th subtree of root(T”") isomorphic to the sub-tree
rooted at w; in F. Furthermore construct is assumed to return a tree with
a distinct set of nodes each time it is called. This corresponds to value
invention in ClQLOQ.

Using these definitions, the semantics is fairly straightforward. In [21],
Benedikt and Koch point out that most of the condition expressions (cases
10, 12-16) can be reduced to other XQuery expressions and thus do not
need to be addressed in the semantics. We choose to give their definitions
directly as the resulting expressions are no longer in composition-free
XQuery.

The crucial parts of the semantics are cases 2 and 3, that illustrate element
construction, case 7 that illustrates iteration, and case 8, the semantics of
conditionals. The other cases are very similar to XPath and mostly just
return appropriate binding vectors but leave F unchanged. Element con-
struction (case 2 and 3) is achieved using the aforementioned construct
function and returns a forest containing the newly constructed tree and
bindings pointing to that tree’s root node. Iteration using for has almost
exactly the same semantics as the path separator / in XPath: the return

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY

[O1(Fé) =D
[<I>q</1>] (F,€) = construct(L, [g || (F, €))
[<lab($x;)>q</lab($x;>] (F, [ess ..., en])
= construct(lab(e;), [g] (F, [es, - - -» en]))
[$x;: 1 (F, [es. .., en]) =(F,[ei])
[$xi/axis: : 1] (F,[es,- .., en]) =(F, [d:RM,-S(ei,d)/\Labl(d)]
|[q] qz]](F, €) :I[queryl]](F,E)Lﬂl[queryl]](F,E)
[for $x; insreturnq] (F,€) = U-Jﬂq] (F,é-1) where (F,1) = [s] (F,¢)

lel

_ {[[query]] (F,é) ifm([cond] (F,¢€)) #]
(F.[D otherwise

[if cond then q] (F, €)

[$xi/axis: :node)] (F, [ei, ..., en]) = (F,[d : Raxis(ei, d)])

[some $x; ins satisfies c]| (F,€é) = for $x; insreturnc] (F,¢)
F) € ife,‘ =e;
[5x:=$x; | (F.[ewr-. .. ea]) _JELeD) j
(F,[D otherwise

(F,[ei]) if = atomic equal and Lab' (e;)

if = deep equal, Lab’ (ei),
and ﬁ d: Rchud(e,', d)

(F,[]) otherwise

o
)
[
~
1l
—~
e
—
)
[
~

[$xi=<I/>](F.[e...,

[corc. T (F,é) =[al(F.é)wlc](F,¢é)

[candc,] (F,€) =[al(F,é)mlc.](F,¢€)

ot 1)] {(F, [oat())) if (' [1) = L€l (.)
(F.[D otherwise

[true] (F,¢) = (F, [root(F)])

Table 31. Semantics for composition-free XQuery (following [21])

205

Example

206

TRANSLATING XQUERY

expression is evaluated in the context of the in part, just like the subordi-
nate path is evaluated in the context of the superordinate one. Indeed, the
XQuery normalization transforms path expressions consisting of multiple
steps to for loops as in composition-free XQuery. The difference is, of
course, that the semantics of the return may be nodes from a newly con-
structed tree. It is crucial that this is the case only for the semantics of the
return expression, not for that of the in expression which never modifies
the given XML forest. In full XQuery, this does not hold, the in is followed
by an arbitrary expression. Finally, conditionals are (again reminiscent
of qualifiers in XPath) translated using a non-empty test on the bindings
returned by the condition.

Note that the relations of the input forest are never changed. We may add
new forests, but those do not have any relations to the input forest.

It is worth noting, that the semantics is uniform for boolean-valued
conditions and for node-valued expressions (in contrast to the XPath case
in Section 8.2). This follows [21] and allows a more compact definition of
the semantics, at the cost of slightly surprising definitions for boolean op-
erations and true in the latter part of the semantics. In the translation, we
separate boolean-valued conditions from other expressions by a separate
translation function as in the XPath case.

8.3.4 TRANSLATION

For the translation of composition-free XQuery, the main challenge lies in
the “constructive” part of composition-free XQuery not in the selection
part. In fact, compared to XPath, the selection part is enriched by only
three significant features: the ability to use variables and thus to refer back
to previously established bindings, the presence of deep-equal, and the
ability to sequence expressions and thus their results. Moreover, the latter
is the only feature that is challenging for the translation as it requires
somewhat more sophisticated management of sibling order than in the
translation for XPath. In a sense, this is already part of the constructive
part, i.e., element construction and the translation of the results of queries
contained in element construction. This is what ends up in the head of a
cloLog rule (which in the XPath case above is always a single atom over the
unary answer variable).

Consider again the XQuery example from above:

<paperlist>

» for $a in $inp/descendant::author return
<author> for $p in $inp/descendant::paper return
4 if some $x in $p/child::author satisfies deep-equal($x, $a)
then $p

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY

6 </author>
</paperlist>

What is the result of this query, if there is no author in the document?
What if there is an author with no paper? In XPath, if any part of a path
(disregarding or for the moment) has no match the entire query has no
match. In XQuery, this is not the case. The above example always yields
at least a paperlist element. It may be empty, if there are no authors in the
document but it may never be absent. The some for the inner loop: The
author element is constructed and included in the result for any author
in the input even if there is no paper for an author. Of course, we change
this behavior by placing additional if clauses. But in general, an XQuery
expression may always return an empty set of nodes, but never causes
other expressions not contained in it to fail.

TRANSLATION EXAMPLE. Continuing with this example, how can
we express the same query as a c/0L0g (in fact, cloLog"?) rule? The following
clolog rule shows the answer to that question:

 root(id; (7)) A O(id; (i), cHILD) A
cHILD(id, (i),id(i),order(T,0)) A £(id,(i),paperlist) A O
(id,(i),cHILD) A
s if v, #nil then (
cHiLp(id, (i),id; (i, v,),order (order(T,0),0,v,)) A £(id;(i,v),
author) A
s if v, # nil then (
if v; # nil then (
; cHILD (id; (i,v,), id,(i,v:,v.),order(order(T,0),0,v,)) A
deep-copy (id, (i, v, v2),v2))))
o «— root(i) A (CHILD+(1', v.) A &(v,, author) A
(cHILD; (i, v,) A £(v,, paper) A

n (CHILD(V,, v3) A £(v;, author) A v; 25 v,
V vy =nil)
13 V v, =nil)
Vv v, =nil)

The same abbreviations of head formulas as in the translation of Xcerpt
in Chapter 7 are used:

cHILD(id, (X,),id,(%,),0)

abstracts the edge construction necessary in clqLog and thus is an abbreva-
tion for

v o—(idy (X%,) ,idN (%,)) A —0(id,(X,) ,idn (X)) A pos(idy(X,),order(T,0))

207

Abbreviating
construction

208

Conditional
construction

Order terms

Adding outside
the outer loop

TRANSLATING XQUERY

We also implicitly omit the document order < as parameter for all order
terms. That is, two binding vectors for the same query variables are or-
dered by looking at the bindings of the query variables in sequence and
considering their relative position in document order < (which is provided,
e.g., by cHILD, (n,n") v «$""P(n, n’), i.e., n is before n’ if it is a ancestor
of n' or before n' in «{™*°,

The most notable difference to the translations for XPath or even Xcerpt
is the extraordinary amount of conditional construction (and correspond-
ing vv = nil for some variable v). As discussed above, this is due to the
nature of XQuery expressions where non matching sub-expression often
do not affect the matching of their superordinate expressions. Each of the
conditionals “guards” one sub-expression and ensures that it is omitted
from the result if there are no bindings for the guard variable (but without
affecting the remainder of the head construction).

The other striking feature of the translation are the unusually (and at
first glance, unnecessarily) complex order terms (e.g., line 4 and line 7).
They are necessary to allow arbitrary occurrences of for loops (and thus
arbitrarily long sequences of constructed elements) to occur in arbitrary
positions in sequences of XQuery expressions within the same element
constructor. First, notice, that the order terms in line 4 and 7 are the same.
This is possibly since order is only relevant between edges with the same
source and these order terms are on edges with different source. In the
translation below this is reflected by “resetting” the nesting of order terms
at any element construction (cases 2, 3 in Table 34).

To further illustrate the need for nested order terms, let’s add another
XQuery expression before the outer for loop but within the paperlist ele-
ment:

1 <paperlist>
<abc>()</abe>
; for $a in $inp/descendant::author return
<author> for $p in $inp/descendant::paper return
5 if some $x in $p/child::author satisfies deep-equal($x, $a)
then $p
7 </author>
</paperlist>

The body of the resulting cloLog rule is unchanged, but in the head we have
to construct the new element, but also to adapt the order terms (omitting
the unchanged body):

root(id;(i)) A O(id,(i),cHILD) A
> cHILD(id,(7),id,(i),order(T,0)) A £(id,(i),paperlist) A O
(id,(i),CcHILD) A
cHILD(id, (i) ,id,(i),order(T,0)) A €(id,(i),abc) A O(id,(i),CHILD) A

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY 209

s+ if v, #nil then (
cHILD(id, (i) ,id; (i, 1) , order (order(T,1),0,v:)) A L(id; (i, 1),
author) A
6 if v, # nil then (
if v; # nil then (
8 cHILD(idy (i, v,), id4(i,v1,v,),0rder(order(T,0),0,v,)) A
deep-copy (id, (i, v, v2),v2))))

In line 5, we no longer use offset o but offset 1. That is ¢, = order(T,0),
the order term for the new abg, is always smaller (wrt. the order on order
invention terms defined in Section 6.2.1) than ¢, = order(order(T,1), 0,v,))
regardless of the binding for v,. Here, that is the case as the parent order
term of t, is the same as t, up to the offset which is higher and thus #, < ¢,.
Similar changes occur if the added element is at the end or a for loop (in
which case the parent order terms of the elements created by the original
and by the new for loop are the same, except for the offset).
Instead of adding abc before the loop, we might also want to add it Adding inside

within the loop: the outer loop

1 <paperlist>
for $a in $inp/descendant::author return
3 <abc>()</abc>
<author> for $p in $inp/descendant: :paper return
5 if some $x in $p/child::author satisfies deep-equal($x, $a)
then $p

7 </author>

</paperlist>

Again, this can be addressed by adapting the order terms, in this case the
new element shares the same order term as the author element contained
in the loop, but with a smaller offset:

root(id;(i)) A O(id,(i),cHILD) A
> cHILD(id,(7),id,(i),order(T,0)) A £(id,(i),paperlist) A O
(id,(i),cHILD) A
if v, # nil then (
4 cHILD(id, (i) ,id, (i, v:),order (order(T,0),0,v:)) A 2(id,(i,v:),abc) A
O(id, (i, v1),CHILD) A
6 cHILD(id, (i) ,id;(i,v,),order (order(T,0),1,v:)) A £(id;(i,v.),

author) A
if v, # nil then (
8 if v; # nil then (
cHILD(id; (i,v,), id4(i,v1,v,),order(order(T,0),0,v,)) A
10 deep-copy (id, (7,1, v2) ,v2))))
The nesting level of order terms increases only if for loops are contained Eliminating
within each other without intermediate element construction as in the intermediary

element
construction

210 TRANSLATING XQUERY

final example (where we delete the author around the inner loop).

<paperlist>
. for $a in $inp/descendant::author return
<abc>()</abc>
4 for $p in $inp/descendant::paper return
if some $x in $p/child::author satisfies deep-equal($x, $a)
6 then $p
</paperlist>

Now the order terms for the elements created by the inner loop depend
on the order terms for the outer loop. It is still ensured, that the order term
for the abc is before the order terms of all the elements in the inner loop
since it is the same as their parent order term except for the offset which
is smaller.

v root(id (i)) A O(id,(i),CcHILD) A
cHiLp(id, (i),id,(i),order(T,0)) A £(id,(i),paperlist) A ©
(id, (i), cHILD) A
s if v, #nil then (
cHILD(id,(i),id,(i,v,),order(order(T,0),0,v,)) A £
(ids (i,v,),abc) A O(id,(i,v:),CHILD) A
5 if v, # nil then (
if v; # nil then (
; cHILD(id, (i), id;(i,v:,v,)
,order (order (order(T,0),1,v,),0,v,)) A
deep-copy (id; (i, v1,v,),v2))))

TRANSLATION FUNCTION. Thetranslation of composition-free XQuery
expressions to C!QLog is specified by trxquery. As for the translation of Xcerpt,
we use an environment £ containing mappings from XQuery variables
to cloLog variables and the list of current iteration variables. In addition,
we use O to hold information about the current order term. O is a triple
(g : term, o : offset, i : order vars) where g is the current parent order term,
o the current offset, and i the list of order variables. We use O.g, O.0, and
O.i to refer to each of the components. If there is no parent order term,
we use the canonical empty order term T from Section 6.2.1. Finally, we
write order () as abbreviation for order (O.g, O.0, O.i).

Given an XQuery expression P, trxquery computes a corresponding ClQLog
expression as follows:

trxquey (P) = root(re) A O (rc) A C «— root(ry) A Q
where r, be a new variable, r. = id(r,) with id a new identifier
(C, Q) = trxquey (&, (T, 0,[]), 7){P) with
(inp,rq) € £ and E.iter = [r4].

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY 211

As for Xcerpt, this is mainly a wrapper adding root restrictions and root
construction around the result of the actual translation which is computed
by trxquery with a new environment initialized to contain a mapping for the
canonical XQuery input variable $inp to the root of the XML document
and an iteration sequence containing only the clqLog variable correspond-
ing to $inp. Thus, for each root node of the input document (of which
there is exactly one, if the input is an XML tree, but may be several if we
allow XML forests) a (distinct) result for P is computed. The order envi-
ronment O is initialized with (T, 0, []), i.e., the empty order term, offset
0, and no iteration variables. Finally, we also pass r, the parent construct
variable to trxquey

function XQuery cloLog expression
trXQuevy(£>O)p)<()> :(T’T)
trxqueny (€, O, p){<I> q </1>) = (2(v,1) A cHiLD(p, v, order(0)) A DM (v) A C, Q)

where v = id(&.iter) and id a new identifier

(G, Q) = txauey (€, (T 0, [1), P)(4)

tryquey (€, O, p)(<lab($x;)> q </1lab($x;>) = (2 (E(xi),v) A CHILD(p, v, order(O)) A DM (v) A C, Q)
where v = id(&.iter) and id a new identifier

(G, Q) = trxauen (&, (T5 0, (1), P){4)

trxquey (€, O, p)($xi) = (deep-copy(E(xi),v) A CHILD(p, v, order (O)), T)
where v = id(&.iter) and id a new identifier

trxquey (€, O, p)($xi/step) = (ifr # nilthendeep-copy(r,v) A CHILD(p, v, order (Q)), (Qs v r =nil))
where (Q;,) = tqc(E")($x;/step) with £ = € but £'.iter = E.itero r
v =id(&.iter o r) and id a new identifier

trXQuevy(£> O, p)(ﬁb q;.) = (CIACZ) Ql/\Qz) where (C1> Q)) = tr)(Query(g) O;p)(q1>
(C,, Q,) = trxquey (&, (0.8, 0.0 +1,0.i), p){q.)
query sequence is left-associative, i.e., g, no sequence

trxquey (€, O, p){for $x; in s return q) =(ifr #nilthenC, (Q; A Q Vv r = nil))
where (Q;,) = tqc(E)(s) with & = &€ but &”.iter = E.itero r
(C, Q) = trxquey (E" + (x1, 1), (order (0), 0, 1), p){q)

trxquey (€, O, p)(1f cond then q) = (ifr#nilthenC,(Qc A Q Vv r=nil))
where (Q., r) = tqc(E)(cond)
(C, Q) = thxauey (£, 0, p)(q)

Table 34. Translating composition-free XQuery

The trxquery (€, O, p) is specified in full in Table 34. As stated, it takes an

212

Understanding
the translation
function

Translating
conditions

Copy semantics

TRANSLATING XQUERY

environment &, an order environment O, a parent construct variable, and,
of course, the XQuery expression as parameter. It returns a pair (C, Q) of
clqLog formulas, C a conjunction of head atoms, Q a body formula. The
intuitive semantics of tryquery is that the result of C applied to the bindings
provided by Q (i.e., C «— Q) is isomorphic to the result of the XQuery
expression under the given £, O, and parent construct variable (resp. its
XQuery counterpart).

The translation uses a helper function tqc for the translation of XQuery
conditions which is given in Table 36. Before turning to tqc, note the struc-
tural similarities between trxquey and the above semantics for composition-
free XQuery (which is due to [144, 21]). In contrast to that semantics,
however, the translation has to split up the XQuery expression into a spec-
ification of the construction (for the clqLog rule head) and a clqLog query
expressing relations on the nodes of the input tree. This split makes the
nature of XQuery expressions, whether they are mainly about querying
the input nodes or about creating output, eminently visible in trxquer. E.g.,
element construction (cases 2-3) does not affect the query (the Q part), but
only the construction. On the other hand, all the conditions (in Table 36)
used, e.g., for the in expression of for loops (case 7) only result in query
formula and have influence on the construction. Regarding, the order
environment O and its management, it is worth pointing out, that ele-
ment construction resets that environment (cases 2-3) by using a (T, 0,[])
for the translation of contained expressions. In contrast, iteration (case
7) adds to the nesting depth of order terms of contained expressions by
using (order(order(Q), o, r) as order environment for the translation of
nested expressions. Finally, a sequence of queries (case 6) translates the
first query with the given order environment, but increases the offset for
each following query. For case 6, we assume that query sequence opera-
tor is left-associative, i.e., g, does not consist in a sequence of two other
queries.

As stated, conditions are translated using tqc specified in Table 36, which
also takes an environment £ in addition to the condition to be translated
and returns pairs of C/QLog body formulas and query variables. The returned
query variable identifies a newly created variable, if there is any. It uses
the same helper function relation(axis) as the translation of XPath, see
Section 8.2.2.

In one aspect, we deviate slightly from XQuery and the above semantics
for composition-free XQuery: we always construct new forest whereas
XQuery expressions may return simply lists of bindings into the existing
data. In other words, we implicitly assume a root element around any
XQuery expression to be translated. Without this assumption the result
computed by our translation is only correct up to node identity wrt. the

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY 213

function XQuery cloLog expression

tqc(E)($xi/axis: : 1) = (relation(axis) (E(xi),v) A (v, 1),v)
where v = id(&.iter) and id new identifier

tqc(&)($xi/axis: :node()) = (relation(axis) (£(x;),v) wherev = id(&.iter) and id a new identifier

(E(xi) =E(xj),E(xi)) if =is node equal
tqe(€)($xi = $x;) =V (E(xi) = E(x;),E(xi)) if =is atomic equal
(E(xi) 2b5 E(x), E(xi)) if =is deep equal

(false,r) if = is node equal and r new var.
tqc(€)($xi =<1/>) =V (R(E(x:), 1), E(x:)) if = is atomic equal
(R(&(xi),1) noutdeg(E(xi),0),E(x;)) if =is deep equal

tqc(€)(q: and g.) =(QAQ.AT=(r #nil A7, #nil),r)
where r is a new variable
(Qu) =19c(€){(q:)
(Qas12) =19c(€)(q2)

tqe(€){q: or g2) =((QVQ)Ar=(rn#nilvr, #nil),r)
where r is a new variable
(Qi, 1) =tqc(E){q:)
(Qas 1) =19c(€)(q2)

tqc(€)(not q) =(~(Q),r) where (Q,r) =tqc(£){q)

tqc(E)(true) = (r = true,r) where ris a new variable (true arbitrary not-nil value)

tqc(E)(some $x; in s satisfies c) = ((Q; A Q Vv r=nil),r")
where (Q,,) = tqc(E)(s) with £ = € but £".iter = E.itero r
(Q.1") =1qc(E" + (x> 7)){c)

Table 36. Translating composition-free XQuery: conditions

214

TRANSLATING XQUERY

above semantics. This can be addressed by distinguishing between expres-
sions within (at least one) element constructors and those outside of any
element constructors. For the latter, we use, instead of deep-copy, direct
references to variables and their bindings in the head.

ORDER EXAMPLE. We conclude with a further illustration of the role
of order terms in XQuery. Consider the following XQuery program that
generates a list of a, b,c, and d tags under a common root r, but the or-
der and number of those tags depends on the number of bindings for

$inp/descendant: : «:

<r>
. for $x in $inp/descendant::* return
<a>()
4 for $y in $inp/descendant::* return
for $z in $inp/descendant::* return
6 () <c>()</c>
<d>()</d>
8 </T>

Assuming, for instance, that $inp/descendant: : »: matches exactly two
nodes in the input, the resulting XML document looks as follows:

8.3 FROM XPATH TO COMPOSITION-FREE XQUERY

<r>
. <a />
 <c /> <c /> <c /> <c />
s <d />
<a />
6 <c /> <c /> <c /> <c />
<d />
8 </T>

The query returns as many sequences of a and d elements surrounding se-
quences of b and c elements as there are matches for $inp/descendant : : ».The
inner sequence of b’ and C’s is also repeated once for each match. In clqLog,
we use node invention terms with appropriate grouping variables to obtain

as many new nodes as there are matches, and order (invention) terms to

ensure that their order is correct. Applying trxquey to the above program

yields:

root(id;(i)) A O(id,(i),cHILD) A
> cHILD(id, (7),id,(i),order(T,0)) A £(id,(i),r) A O(id,(i),CHILD) A
if v, #nil then (
+ cHILD(id,(i),id;(i,v,),order(order(T,0),0,v,)) A £(id;(i,v,), a) A
if v, # nil then (if v; # nil then (
6 CHILD
(id, () ,id4 (i, v1, v, v;), order (order (order(T,0),1,v,),0,v,,v5)) A
L(id, (i,v1,v2), b) A
8 CHILD
(id, (1) ,ids (4, v1, v, v3) ,order (order (order(T,0),1,v:),1,v,,v3)) A
Q(ids(i,v1,v2), €)) A
o cHILD(id,(7),ids(i, 1), order(order(T,0),2,v,)) A £(ids(i,v:), d))
<«~— root(i) A (CHILD+(i, Y1) A

" (CHILD; (i, Vv,) A
(CHILD(V,, V3) A
14 V v; =nil)
V v, =nil)
16 V oy, = nil)

Notice, how the order terms for the construction of b and ¢ elements have
the same parent order term which in turn is between the order term of
the a and of the d children of 1.

With this example, we conclude the illustration of the translation func-
tion for composition-free XQuery expressions to clqLog. Before a brief
outlook on an extension of that translation to a larger fragment of XQuery,
the next section discusses the equivalence between the translation function
and the above semantics for composition-free XQuery from [21].

215

216

TRANSLATING XQUERY

8.3.5 EQUIVALENCE

To establish equivalence between the semantics of composition-free XQuery
after [21] given in Table 31 and the semantic of a /qLog rule generated by
trxquery for a given composition-free XQuery expression P, first consider
that XML forests as used in the semantics are merely a special case of
clqLog data graphs (under the mapping from axis to data graph relations
given by relation in Section 8.2.2.

Thus, we have to establish that the data graph constructed by the clqLog
rule resulting from a translation of P is isomorphic to the XML forest F
returned by Table 31 on P if restricted to the sub-trees rooted at the binding
nodes e.

For simplicity, we assume in the following that P is wrapped in some
root element root. This avoids having to consider multiple binding nodes
(and thus forests instead of trees). It also addresses that above remark,
that the clqLog semantics is always a new tree, whereas Table 31 allows
fragments of an original tree to be returned. However, up to node identity
the two forms are equivalent.

Theorem 8.2. The semantics of the C1QLog expression Q returned by tryquey
for a given XQuery expression P is equivalent to the semantics of P under
Table 31 up to node identity. Furthermore, the size of Q is linear in the size
of P.

Proof (Sketch). The proof is by structural induction over the shape of an
XQuery expression.

For case 1 (()), both semantics do not change the bindings of any vari-
ables and do not add any construction. In particular, if <root>()</root>
is the entire program both semantics are obviously equivalent (both return
a tree with single, empty node root (cf. the trycer; Wrapper above and case 2
in both semantics).

For case 2 and 3, element construction, add a root node with given label
around the bindings returned by the evaluation of their child expressions.
The iteration is on bindings in ¢, resp. iteration variables in £.iter which are
in all cases unchanged from the call of the semantics function to nested
calls except for the iteration case (case 7), where they are extended in both
semantics in the same way, see below.

For case 4, observe that both semantics construct a tree isomorphic
to the one rooted at a binding e; for x;. However, []| returns directly
(F, [ei]), whereas trxquey returns a deep-copy of the subtree rooted at e;.
If we disregard node identity, however, the two subtrees are equivalent.

For case 5, the same observation holds. In addition to case 4, both
semantics add restrictions to the returned bindings, as expressed by the

8.4 BEYOND COMPOSITION-FREE XQUERY 217

path expression. In the case of tryquey this is achieved by the call to tqc. For
[1 we also need to consider case 9.

For case 6, the sequence of two queries, both semantics delegate the
translation to recursive calls on the operands and combine the result using
union resp. conjunction. Note, that the involved order terms of trxquey
are covered in []| simply by concatenating the bindings returned by the
second query after the end of the bindings of the first query (see definition
of win Section 8.3.3.

For case 7, we observe that both semantics delegate the translation,
though tryquery uses tqc for the in expression. This is nevertheless equiva-
lent, as an in expression in composition-free XQuery may only contain
a step. This is not true of XQuery where exactly this case can not always
be translated to a single clqLog rule. The iteration variables are in both
cases extended in the same way (by the single variable bound in the in
expression).

Analog observations hold for case 8.

If one remembers that cases 10-15 of [] handle expressions that only
occur in conditions (but not in general query contexts), it is easy to verify
that they are equivalent to the corresponding cases of tqc.

Again it is easy to see that the size of Q is linear in the size of P by
considering that each case translates at least one construct from Q (or
defers entirely to another translation function) and no duplication of sub-
results is introduced in any case. o

84 BEYOND COMPOSITION-FREE XQUERY

In the previous sections, we have considered two important fragments
of XQuery, viz. navigational XPath and composition-free XQuery, and
shown ho to translate them into clqLog™®.

We have chosen composition-free XQuery as it limits all relations to
nodes of the input tree, just like in cloLog™®. However, in full cloLog we can
also query invented nodes resulting from a previous rule application. We
can exploit this to translate a larger fragment of query, viz. XQuery without
user-defined functions. Intuitively, each expression is partitioned into a
sequence of rules such that a following rule depends only on preceding
ones. Whenever we construct data, that is then queried, we introduce a
new rule.

Incidentally, this approach is used and described in more detail in [148]
where a translation from XQuery to Xcerpt is defined. In fact, we can
use that translation to first create an Xcerpt program for a given XQuery
expression and then translate that Xcerpt program to clqLog as described

218

TRANSLATING XQUERY

in Section 8.

In both cases, the resulting C/qQLog program is non-recursive since each
rule depends only on rules generated from nested XQuery expressions.
This coincides with results from [144] where it is shown that XQuery
without user-defined functions and deep-equal has NEXPTIME-complete
query complexity, just as non-recursive ClQLog (recall that non-recursive
cloLog has the same complexity as non-recursive logic programming).

Finally, for full XQuery we have to consider user-defined, possibly re-
cursive functions and the full operator library of XQuery [149]. The prior
can be translated by the same scheme as above, but now a rule may depend
also on the results of itself or rules generated from superordinate expres-
sions. The latter can be provided as predefined relations or, where possible,
implemented as clqLog rules, and does not add to the expressiveness of full
clqLog.

85 CONCLUSION

clolog is designed as an abstraction of the core aspects of Web query
languages. Its non-recursive fragment c/oLog"® is well-suited to specify and
implement diverse query languages without query composition. In this
chapter, we show how navigational XPath and a large fragment of XQuery,
composition-free XQuery as defined in [144], can be translated to ClqLog
while preserving the standard semantics.

The translation also highlights one of the core differences between XPath
(and, to some extent, Xcerpt) and XQuery: Where we can consider naviga-
tional XPath without caring about the precise iteration order and consider
the semantics of XPath-expressions as sets of nodes, XQuery provides a
much greater control over the iteration order on binding nodes and the
order of constructed elements in the result. Though this certainly is bene-
ficial in some cases, there are many queries for which such precise control
is pointless. This has been recognized in the design of XQuery through
the addition of the unordered operator which, essentially, switches from
sequence- to (multi-) set-based semantics. Xcerpt takes the dual approach:
We assume that in most cases the query author is not all that much con-
cerned about the order of result elements. If that is not the case, a grouping
expression may be adorned by an explicit order-by clause. Another reason
for the more involved order terms in the translation of XQuery compared
to Xcerpt is that we specifically disallow lists of terms in Xcerpt grouping
expressions in Chapter 7, though Xcerpt 2.0 provides these expressions. If
we allow such expressions as in, e.g., r[a, all(b, c)group-by(var X), dl,
we arrive at similarly involved order terms as in the translation of XQuery

8.5 CONCLUSION 219

presented here.
Together with the IQcAG algebra the above translation gives as an effi-

cient and in many cases optimal evaluation of composition-free XQuery
(and navigational XPath). For composition-free XQuery on tree, forest, or
even CIG data, we obtain O(q - n) time and space bounds if the query is
tree shaped and O(ns + q- n) where q is the size of the query, n the size of
the data and g, the number of answer variables or variables with non-tree
edges in the query. On XML data, the space bound is even O(q - d), cf.
Section 12.9. The detailed complexities of C/QcAG are discussed in Part IV.
The translation from clQLog to ClQcAG in Chapter 13.

TRANSLATING SPARQL

9.1 Introduction 221
9.2 SPARQL Syntax and Semantics in 1000 Words 222
9.3 Translating SPARQL Queries 226
9.4 From SPARQL to Rules: RDFLog 230
95 Conclusion. 230

91 INTRODUCTION

Compared with XML query languages, the field of RDF query languages is
less mature and has not received as much attention from research. Recently,
the W3C has started to derive a standard RDF query language, called
SPARQL [183], that is, visibly influenced by languages such as RDQL [163],
RQL[138], and SeRQL[46], aiming to create a stable foundation for use,
implementation, and research on RDF databases and query languages.
Fundamentally, SPARQL is a fairly simple query language in the spirit of
basic subsets of SQL or OQL. However, the specifics of RDF have lead to a
number of unusual features that, arguably, make SPARQL more suited to
RDF querying than previous approaches such as RDQL [163]. However,
the price is a more involved semantics complemented by a tendency in
[183] to redefine or ignore established notions from relational and XML
query languages rather than build upon them.

Nevertheless, SPARQL is expected to become the “lingua franca” of
RDF querying and thus well worth further investigation. In the following
sections, we first briefly introduce into SPARQL and its semantics (based
on [179] and [181] but extended to full SPARQL queries rather than only
patterns). From the discussion of the semantics, we turn to the translation
from SPARQL to cloLog™® which turns out to be closely aligned with the
semantics of [179]. The translation is also the first purely logical semantics
for SPARQL which hints at how to integrate SPARQL with rule-based
reasoning approaches prolific on the Semantic Web. We briefly discuss
along one such approach, viz. RDFLog, the effects of extending SPARQL
with rules on the translation to clqLog.

222

9.2

TRANSLATING SPARQL

bib:InProceedings
RPELYPE K@ ‘Storage Media'
S EL

ulp:conf-46-mutina

@E:@_E DCT:SPARTOF

‘Wax Tablets’

DCT:ISPARTOF

ulp:hirtius-47-bc

ulp:cicero

@w;FN

‘M. T. Cicero’

Rbp.

Lypg Rd
bib:Article

RDEIIYPE

bib:Person g va
(0

‘M. T. Tiro’

Figure 39. Exemplary Data Graph: RDF Conference Data (simplification of Fig-
ure 26 omitting the sequence container and edge positions)

EXAMPLE. InSection 5.4, weintroduce RDF and its data model together
with a mapping to clqLog data graphs. Recall, the sample data used there,
which is depicted again in Figure 39 and represents articles in a given
conference and their authors.

The following SPARQL query selects from that graph all articles created
by someone with the full-name “M. T. Cicero” and returns a new graph
where the dc:creator relation of the original graph is inverted to my:published.!

CONSTRUCT { ?p my:published ?a }
> WHERE { ?a rdf:type bib:Article AND ?a dc:creator ?p
AND ?p vcard:FN ‘M. T. Cicero’ }

The query illustrates SPARQLSs fundamental query construct: a pattern
(s, p,0) for RDF triples (whose components are usually thought of as
subject, predicate, object). Any RDF triple is also a triple pattern, but triple
patterns allow variables for each component. Furthermore, SPARQL also
allows literals in subject position, anticipating the same change also in RDF

1 Here, and in the following we use namespace prefixes to abbreviate IRIs. The usual IRIs
are assumed for rdf, rdfs, dc (dublin core), foaf (friend-of-a-friend), vcard vocabularies. my is a
prefix bound to an arbitrary IRI.

SPARQL SYNTAX AND SEMANTICS IN 1000 WORDS

9.2 SPARQL SYNTAX AND SEMANTICS IN 1000 WORDS 223

itself. We use the variant syntax for SPARQL discussed in [179] to ease the
definition of syntax and semantics of the language. For instance, standard
SPARQL, uses . instead of AND for triple conjunction. We consider two
forms of SPARQL queries, viz. SELECT queries that return list of variable
bindings and CONSTRUCT queries that return new RDF graphs. Triple pat-
terns contained in a CONSTRUCT clause (or “template”) are instantiated with
the variable bindings provided by the evaluation of the triple pattern in
the WHERE clause. We omit named graphs and assume that all queries are
on the single input graph. An extension of the discussion to named graphs
is easy (and partially demonstrated in [181]) but only distracts from the
salient points of the discussion.

The full grammar of SPARQL queries as considered here (extending
[179] by CONSTRUCT queries) is as follows:

(query) = ‘CONSTRUCT’ (template) ‘WHERE’ (pattern)
| ‘SELECT (variable)+ ‘WHERE (pattern)

(template) == (triple) | (template) ‘AND’ (template) | ‘{’ template ‘}’
(triple) u= (resource)’,” (predicate)‘,” (resource)
(resource) == (iri) | (variable) | (literal) | (blank)
(predicate) == (iri) | (variable)
(variable) u= ‘7 (identifier)
(pattern) u= (triple) | ‘0’ (pattern) ‘¥
| (pattern) ‘FILTER ‘C (condition))’ |
| (pattern) ‘AND’ (pattern) | (pattern) UNION® (pattern)
| (pattern) MINUS’ (pattern) | (pattern) ‘OPT’ (pattern)
(condition) := (variable) ‘=" (variable) | (variable) ‘=" ((literal)|(iri))
| ‘BOUNDC (variable))’ | isBLANK((variable))’
| ‘AsLITERALC (variable) ‘)’ | ‘isIRI((variable) ‘)’
| (negation) | (conjunction) | (disjunction)
(negation) = ‘=’(condition)
(conjunction) == (condition) ‘A’ (condition)
(disjunction) == (condition) ‘v’ (condition)

We pose some additional syntactic restrictions: SPARQL queries are
range-restricted, i.e., all variables in the “head” (CONSTRUCT or SELECT
clause) also occurs in the “body” (WHERE clause) of the query. We assume
error-free SPARQL expressions (in contrast to [179] and [181]), i.e., for each
FILTER expression all variables occurring in the (right-hand) condition
must also occur in the (left-hand) pattern. The first limitation is as in stan-
dard SPARQL, the second is allowed in standard SPARQL but can easily

224

TRANSLATING SPARQL

recognized a-priori and rewritten to the canonical false FILTER expression
(as FILTER expressions with unbound variables raise errors which, in turn,
are treated as a false filter, see “effective boolean value” in [183].

Finally, we allow only valid RDF constructions in CONSTRUCT clauses, i.e.,
no literal may occur as a subject, all variables occurring in subject position
are never bound to literals, and all variables occurring in predicate position
are only ever bound to IRIs (but not to literals or blank nodes). The first
condition can be enforced statically, the others by adding appropriate
isIRI or negated isLITERAL filters to the query body.

Following [181], we define the semantics of SPARQL queries based on
substitutions. A substitution 0 = (v,, n,,..., vy : n;) with v; € Vars(Q) A
n; € nodes(D)} for a query Q over a data graph D (as in Section 5.4) maps
some variables from Q to nodes in D. For a substitution 6 we denote with
dom(0) the variables mapped by 0. Given a triple pattern ¢ = (s, p,0), we
denote with 6 the application of 8 to ¢ replacing all occurrences of vari-
ables mapped in 6 by their mapping in ¢. For a triple (s, p, 0) containing
no variables, we say (s, p,0) € D if there is a p labeled edge between s and
o labeled nodes in D.

On sets of substitutions the usual relational operations &, U, and \ apply.
We define the (left) semi-join R< S = (Rx S) U (RN S).

Finally, given a template ¢, i.e., a conjunction of triple patterns, std(¢)
returns ¢ but replacing each blank node identifier (i.e., strings of the form
_:identifier) with a new blank node identifier not occurring in D and
not created by a prior application of std. Intuitively, std(¢) creates a new
instance of ¢ such that the blank nodes of two instances (and any instance
with the input graph) do not overlap.

Using these definitions, Table 37 gives the semantics of SPARQL SELECT
and CONSTRUCT queries by means of [[TP. 1 TP translates the WHERE clause
using [J&, and a CONSTRUCT clause, if present, using []]gaph. For a SELECT
query, we project the set of substitutions returned by [Jey to the set of
answer variables V. For a CONSTRUCT query we apply each substitution
6 € [P12, to anew instance of the template ¢ contained in the CONSTRUCT
clause created using std. Applying a substitutions is straightforward except
that triples containing one or more variables that bound to nil by 6 are
omitted entirely.

The semantics of a SPARQL pattern P contained in the WHERE clause is
given by [P]” and produces a set of substitutions (or bindings) for vari-
ablesin P. Triple patterns t (case 1) are evaluated to the set of substitutions 6
such that the t0 contains no more variables and falls in D. Pattern composi-
tions AND, UNION, MINUS, and OPT are reduced to the appropriate operations
on sets of substitutions (cases 2—4). FILTER expressions (case 5) are again
evaluated straightforwardly, as restrictions on the substitutions returned

9.2 SPARQL SYNTAX AND SEMANTICS IN 1000 WORDS 225

[(s ps0) [0 ={6:dom(0) = Vars((s, p,0)) At0 € D}
D D D
I[pattern AND pattern,]LubsI = [[pattern,]Lubst X |[pattern,]Lubst
D D D
I[pattern UNION pattern,]]Subst = [[pattern,]Lubst u I[pattern,]Lubst
D D D
|[pattern MINUS pattern,]]Subs‘ = [[pattern,]Lubst N I[pattern,]Lubst
D D D
I[patternl OPTpatternz]]Subst = [[patternl]]Subst > [[patternz]]Subs‘r
[pattern FILTER condition]]lebst = {0 € [pattern]]gbsI : Vars(condition) c dom(0)

A [condition Ty, (8)}

[condition, A condition, e (8) = [condition, Tl (8) A [condition, 5y (6)

[condition, v condition, I (8) = [condition, T (8) V [condition, 15 ()

[—condition g, (8) = — [condition [l (8)

[BounD(?v)]2, (6) =v@ #nil

[isLITERAL(?v) |2, (6) =vhel

[isIRI(?v)]]5Ool (0) =vfel

[isBLANK(?v)]2, (8) =vheB

[?v = literal 5 () =v0 = literal

[72u=2vIe, (0) =uf =v0 Aub #nil

[[l‘riple]]é)raph (0) = tripled if Vv € Vars(triple) : v0 # nil, T otherwise
I[template1 AND template,]]gaph (0) = II template,]IGDraph (0)u [[template,]l];aph (9)

[CONSTRUCT ¢ WHERE p]|” =Uperpyo,, [5td(1) Dgaen (6)

[SELECT V WHERE p ||” =7y (L P Is:)

Table 37. Semantics for SPARQL

226

TRANSLATING SPARQL

by the (left-hand) pattern with the boolean formula that is provided by
[12, for the condition of the filter expression. Vars(condition) c dom(6)
is not strictly necessary as it merely restates that we only consider error-free
SPARQL queries.

93 TRANSLATING SPARQL QUERIES

Translating SPARQL to clqLog is, for the most part, a direct mirror of the
semantics in Table 37. The main difference is when translating CONSTRUCT
clauses. Here, we create value invention terms for each resource in the
template that depend on all variables in the CONSTRUCT clause. This imple-
ments std in the above semantics, i.e., the instantiation of the blank nodes
for each substitution (i.e., binding tuple). This implies, however, that the
result is not the data graph representation of an RDF graph in the sense
of Section 5.4 since it may contain several nodes with the same (IRI or
literal) label. he translation of WHERE clauses, though, does not use repeated
variable occurrences in the body but separate variables for each subject,
predicate, or object and label variables for common occurrences of the
same SPARQL variable. Thus it can not distinguish between a graph with
several nodes with the same label (each carrying some but not all proper-
ties of the named resource) and one where all these nodes are collapsed.
Nevertheless, we may want to create a proper data graph representation
by collapsing all such nodes. This can be achieved in clqLog by a simple
graph transformation on all nodes with the same label that exploits that
value invention in ClQLog can be parametrized with an equivalence rela-
tion. Usually, we assume node equality =, but in this case we employ label
equality 2 and thus create only one node in the transformed graph per
unique node or edge label in the input graph.

TRANSLATION EXAMPLES. To illustrate this point and the general
translation more closely, consider again the above SPARQL example:

1 CONSTRUCT { ?p my:published ?a }
WHERE { ?a rdf:type bib:Article AND ?a dc:creator ?p
3 AND ?p vcard:FN ‘M. T. Cicero’ }

In ClqLog, we can express the same query constructing a new graph with
two nodes and one edge per binding tuple for p and a. Here and in the
following examples we omit conditionals if all variables are non-optional
and use prefix abbreviations also for clqLog labels:

1 2(0d, (A),vp) A o—(id,(A),id,(A)) A £(id,(A),my:published) A
—o(id;(A),id, (A)) A 2(id;(A),va)
3 «— L(8;,Va) A O—=(s1,p:) A L(py,rdf:type) A

9.3 TRANSLATING SPARQL QUERIES

—0(0;, p1) A £(0,,bib:Article) A
5 L2(s,,Va) A O—=(5,,p,) A &(p,,dc:creator) A —0(0,, p,) A L
(02,vp) A
L(s5,Vp) A O—=(s3,p3) A L(p;,veard:FN) A —0(05,p;) A
7 L(05, ‘M. T. Cicero’)

The above clqLog rule illustrates the general translation scheme: each triple
pattern in the body is separately translated using new variables for subject,
predicate, and object. If any of those is a SPARQL variable, we add a
label restriction on the respective variable and a label variable that is the
associated ClQLog variable of that SPARQL variable. In the head, triple
patterns are also translated independently, but now label restrictions are
established with query variables (line 2). All node value expressions in the
head are over all variables in the CONSTRUCT clause (abbreviated above as
A = [va,v,]). This includes possible optional variables (see next example).
As equivalence relation we use here equality on labels, not node identity.

In contrast to Xcerpt, XPath, and XQuery, we do not include root rela-
tions though if desired appropriate relations (e.g., to each named resource)
can be easily added.

The second example focuses on the effect of OPT clauses and blank nodes
in the head:

1 CONSTRUCT { _:group my:member ?a AND ?a my:otherAuthor ?p2 }
WHERE { ?a rdf:type bib:Article AND ?a dc:creator ?p
3 AND ?p vcard:FN ‘M. T. Cicero’

OPT { ?a dc:creator ?p2 FILTER (- ?p = ?p2) } }

We select in addition any further creators of a paper authored by Cicero. We
return a graph over the article and the optional further creator. _:group is
a blank node (with local identifier group. In clqLog we obtain the following
rule for this SPARQL query (with A = [v, vp,v,,])

L(id,(A), _:id,(A)) A o—(id;(A),id,(A)) A £(id,(A),my:member) A
2 —o(id;(A),id,(A)) A L(id;(A),va) A
if vy, # nil A p, # nil then
. 2(id, (A),va) A o—~(id,(A),ids(A)) A £
(ids(A) ,my: otherAuthor) A
—o(ids(A),ids (A)) A L(ids (A),vp,) «~—
s L(s1,va) A O—=(s1,p1) A L(p,,rdf:type) A —0(0,, p) A L
(0,,bib:Article) A
2(52,Va) A O—=>(S2,P2) A L(p,,dc:creator) A —0(0,,p.) A £(05,Vp) A
s L£(s3,Vp) A O—=(s;3,p3) A £(p;,vcard:FEN) A —0(0;,p;) A £
(03, ‘M.T.Cicero’) A
(2(s4,va) A O—=(s4,p4) A L(p,,dc:creator) A —0(0,,ps) A
o £(04,Vp,) A =(Vp £Vp,) V s, =nil A
ps=nil A 0, =nil A vp, =nil)

227

228 TRANSLATING SPARQL

First, in the body the optional is realized by an disjunction where the
second part sets all newly introduced variables of the sub-expression to
nil, thus ensuring that the query never fails due to the optional part (but
the variables are nil in case of failure). In the head, we add a conditional
around all triple pattern containing optional variables. Notice, how we use
value invention to instantiate a new blank node for each binding pair in
line 1.

function SPARQL expression cloLog expression

trspanqL {CONSTRUCT template WHERE pattern) = C «— Q where (C,v) = tsh(E")(template)

(&, Q) = tsp(){pattern)
&' = & with &' iter = Vars(template)

trsparqL {SELECT ¥4, . . ., v WHERE pattern) =ans(EW),....E(v)) — Q
where (€, Q) = tsp(2)(pattern)

tsh(&) (literal) = (L(v, 'literal'),v) where v = id(&.iter) with id new identifier
tsh(&) (iri) = (L(v,ir),v) wherev =id(&.iter) with id new identifier
tsh(&)(?vid) = ((v,&(vid)),v) wherev =id(&.iter) with id new identifier
tsh(E)((s, p,0)) = (if Cthen F; A Fy A Fo A0—(v5,vp) A —0(Vo,Vp), ¥s)
where C = (v, #nil A ... A v, #nil) where {v,,..., v} = Vars((s, p,0))

(Fovs) =tsh(€)(s) (Fpvp) = tsh(E)(p)
(Fo,vo) =1sh(E)(o)
tsh(E)(t, AND 1,) = (F,AF,,v,) where (F,,v,) = tsh(€)(t)
(F,,v,) = tsh(E) (L)

Table 39. Translating SPARQL queries and CONSTRUCT clauses

TRANSLATION FUNCTION. Guided by these examples, we can turn
to the translation function for SPARQL, trspagqu, as specified in Table 39. It
employs two helper functions, tsh for translating CONSTRUCT clauses and tsp
for translating WHERE clauses. As for the translation of Xcerpt and XQuery
we use an environment containing mapping from SPARQL variables to
those of clqLog and a list of iteration variables that is always the set of all
variables occurring in the CONSTRUCT clause (case 1 in Table 39). Notice
the use of NewVars in the translation of OPT that retrieves all variables
introduced in the sub-pattern under a OPT (i.e., variables not retrieved
from the environment). These variables are then used in the second part
of the disjunction.

9.3 TRANSLATING SPARQL QUERIES

function SPARQL expression cloLog expression
tsr(&) {literal) =(&,2(v, literal'),v) where v is a new variable
tsr(E) (i) =(&,2(v,iri),v) wherev is a new variable
tsr(&)(?vid) = (&€ + {(vid, 1)}, (v, 1),v)

where v is a new variable and I = € (vid) if defined, otherwise a new variable

5p(E)((s. 1 0)) = (o F A Fy N Fo n 0= (V1) A —-0(v0, ;)
where (&, F;,vs) =tsr(E)(s) (Eps Fpovp) = 51(E:)(p)
(&0, Fo,vo0) = t51(Ep)(0)

tsp(E){p. AND p,) = (&, EAF:) where (£,,F) =tsp(£)(p.)
(&, F) = tsp(&){p-)
tsp(€)(p, UNTON p.) = (&, FivF,) where (£, F,) = tsp(E)(p:)
(&, F) =t5p(£){p-)
tsp(E){p, MINUS p) = (& Fina(Fy)) where (8, F) = tsp(€){p.)
(&, F) = tsp(€)(p2)
15p(€) (p: OPT p2) = (Ex FA(F:VE,) where (€, F) = 5p(€) (p.)

(&, F) =tsp(€){p2)

Fy = Vyenewvars(F, yuliewvars () (V = nil)

tsp(€)(p: FILTER p.) = (&, Fintsc(&)(p2)) where (€, F) = tsp(€)(p:)
tsc(E)(er A ca) =ts(E){a) Atsc(E)(ez)

tsc(€)(e v ca) =ts(&){a) vis(E)(e2)

tsc(€)(-c) =-(tse(€){c))

tsc(E)(?vid, = ?vid,) =& (vidy) = E(vid,)

tsc(£)(2vid = literal) = E(vid,) = "literal

tsc(€)(2vid= iri = &(vid) = i

tsc(£) (BOUND(2vid)) = £(vid) # nil

tsc(€)(isBLANK(2vid)) = E(vid) = _: (identifier)

tsc(€)(isLITERAL(?vid)) = E(vid) = “(string)’

tsc(€)(isIRI(?vid)) = =(ts¢(€){isLITERAL(?vid)) v tsc(€)(isBLANK(?vid)))

Table 41. Translating SPARQL patterns and conditions

229

230

TRANSLATING SPARQL

The translation of SPARQL construct patterns is fairly unremarkable.
Notice that variables are translated by retrieving the related label variable
from the environment.

SPARQL patterns are translated using tsp, specified in Table 41, and its
helpers tsr (for resources) and tsc (for conditions). Subjects, predicates, and
objects are translated by always creating new variables and placing label
restrictions on those variables. When translating SPARQL variables, we
establish label restrictions with the associated label variable of clqLog (I in
case 3 of Table 41). Otherwise the translation is fairly straightforward.

We conclude the translation of SPARQL with the conjecture that the
graph constructed by trspapql P contains (in the sense defined above), up to
consistent renaming of blank nodes, the same triples as [P]°.
Conjecture 9.1. For a given SPARQL CONSTRUCT query P there is a mapping
f on literals, IRIs, and blank nodes, that is the identity on literals and IRIs,
such a triple (s, p, 0) € T if and only if (f(s), f(p), f(0)) € [P]° where
T is in the graph obtained from the evaluation of trspagq, P.

9.4 FROM SPARQL TO RULES: RDFLOG

SPARQL queries can be considered as non-recursive, single-rule expres-
sions. There have been some approaches to extending SPARQL with rules,
e.g., [181], or to embed SPARQL queries in a rule-based query language.

The above translation yields a single clqLog rule for each SPARQL query.
Obviously, we can allow a program to contain many such rules which then
can provide input to each other.

However, there are a number of challenges when adding rules to an RDF
query language that are better addressed in RDFLog [63]. Most notably,
SPARQLSs heads always group over all answer variables which limits the
kind of queries that can be expressed significantly (at no gain in complexity
as shown in [63].

With the same observation as for the previous languages, it is easy to
see from the translation functions that the following result holds

Theorem 9.1. The size of the ClqLog expression Q returned by trspapqs for a
given SPARQL query P is linear in the size of P.

95 CONCLUSION

Compared with the translations for XQuery and Xcerpt, SPARQL is an
easy target for translation to ClQLog. The main difficulty lies in the graph
construction not in the query patterns. We have employed a translation

9.5 CONCLUSION

scheme using label variables above. This emphasizes that SPARQLs do-
main is better thought of as IRIs, literals, and blank node identifiers. This
deviates from the common view of the domain of an RDF graph as nodes,
as the suggested in the RDF model theory. However, it coincides with
the perspective on RDF in [179] and [181]. For the most part, we could
nevertheless also employ a node-based translation scheme but then the
result construction becomes far more involved.

231

Part IV

THEORY. CIQCAG: SCALING
FROM TREES TO GRAPHS

PRINCIPLES AND MOTIVATION

101 Introduction 235
10.2 Data Beyond Trees: Continuous-Image Graphs 239
10.3 Sequence Map: Structure-aware Storage of Results 244

10.3.1 Sequence Map for Trees and Continuous-Image
Graphs 248

10.3.2 Sequence Maps for Diamond-Free DAG Queries 250

10.3.3 Representing intermediary results: A Comparison 250

10.4 Queries Beyond Trees: Graphs with Tree Core 252
10.41 Operator Overview 254
10.4.2 Tree Cores and Hypertrees. 256
10.5 Complexity and Contributions 257

100 INTRODUCTION

We assign meaning to things by enumerating their features (or properties Structure is a
or attributes) and placing them in relation with other things. This enables central feature
us to distinguish, classify, and, eventually, act upon such things. The same of data

applies to digital data items: to find, analyse, classify, and, eventually, use
as basis for actions we need to place data items in relation to other data
items: A book to its author, a bank transaction to the bank, the source and
the target of the transaction, a patient to its treatment history, its doctor,
etc.

How we describe these relations between data items (as well as their
features) is the purview of data models. Recently the relational data model,
tailored to relations of arbitrary shape, has been complemented by semi-
structured data models tailored to Web data. What sets these data models
apart from relational data is an even greater focus on relations or links
while delegating features or attributes to second-class citizens or dropping
them entirely, as in RDE. At the same time most of these data models share
a strong hierarchical bias: XML is most often considered tree data.' RDF

1 Though ID-links justify a more graph-like view of XML.

236

Structure is also
a central
feature of
queries

Limits are good

PRINCIPLES AND MOTIVATION

and other ontology languages allow arbitrary graphs but ontologies often
have dominantly hierarchical “backbones”, formed, e.g., by subclass or
part-of relations. To summarize, structure is a central property of data and
data models determine what shape those structures may take.

When we want to actually do something with the data represented in
any of these data models, we use queries. Again, exploiting the relations
among sought-for data items is essential: to find all authors of books
on a given topic, to find the bank with the highest transaction count, to
identify an illness by analysing patterns in a patient’s health records. Thus
queries mirror the structure of the sought-for data, though often with a
richer vocabulary, allowing, e.g., for recursive relation traversal or don’t-
care parts: a patient is chronically ill if there is some illness (we don't
care which illness) that recurs regularly in that patient’s health records.
Queries may contain additional derived (i.e.., not explicitly represented
or “extensional”) relations—such as equalities or order between the value
of data items. The shape of a query is, thus, not limited to the shape of
the data but may contain additional relations. Only if we limit a query to
extensional relations must the shape of the query mirror (a substructure)
of the shape of the data. For instance, when querying tree data queries may
take the only the shape of trees, if we allow only extensional relations?, but
may have arbitrary shape if we allow derived relations. To summarize, as
for data, structure is a central feature of queries and mirrors the structure
of the sought-for data. However, the structure of a query is linked to the
structure of the query only if we consider exclusively extensional relations
in the query.

The reason we should care about the shape of the data or queriesis a
growing canon of approaches that obtain better complexity and perfor-
mance for query evaluation if certain limits are imposed on the shape of
data, queries, or both.

If we consider arbitrary data, we have little reliable means for compact-
ing relation information. On ordered tree data, in contrast, we can use
any number of encodings, e.g., interval encodings [86, 85], hierarchical
or path-based labeling [173], or schemes based on structural summaries
[200]. In essence, these encodings exploit that structural relations in trees
follow certain rules, e.g., each node has a unique parent, the descendants
of each node are among the descendants of all its ancestors, each node

2 Even allowing transitive closure on extensional relations allows already for queries where
there are, e.g., two paths between two query nodes. However, as shown in [170] for XPath
and in [167] for the general case of tree queries, such graph shaped queries can always be
reduced to sets of tree-shaped queries—though potentially for the cost of an exponential
increase in query size.

10.1 INTRODUCTION

has a unique following and preceeding sibling, etc. Interval encodings on
trees, e.g., allow us to compact closure relations quadratic in the tree size
into a linear size interval encoding.

For queries, we can make a similar observation: if we allow arbitrary
“links” in a query, we need to manage relations between bindings for all
nodes in the query at once. However, the relations between the nodes may
be limited, e.g., if the query is tree shaped, bindings for each node are
directly related only to bindings of its “parent”. In fact, if we consider the
answers to a query as a relation with the nodes as columns, answers of a tree-
shaped query always exhibit multivalued dependencies [91]: In fact, we can
normalize or decompose such a relation for a query with n nodes into n—1
separate relations that together faithfully represent the original relation
(lossless-join decomposition to binary relations over each pair of adjacent
variables in the query). This allows us to compact an otherwise potentially
exponential answer (in the data size) into a polynomial representation.

Neither observation is particularly new: acyclic or tree queries on rela-
tional data as interesting polynomial-time subclass have been studied, e.g.,
in [203] and [110]. More recently, the increasing popularity of Web data
such as XML triggered renewed interest and reinvestigation of tree data
and tree queries as interesting restrictions of general relational structures
and queries. Several novel techniques tailored to XML data and XPath or
similar tree queries have shown the benefit of exploiting the hierarchical
nature of the data for efficient query evaluation: polynomial twig joins
[48]; XPath evaluation [113]; polynomial evaluation of tree queries against
XML streams [9, 171, 168], linear tree labeling schemes [119, 200] allowing
constant time access to structural closure relations such as descendant or
following; and path indices [71] enabling constant time evaluation of path
queries.

As stated, these techniques have received considerable attention when
data and queries are tree shaped. However, data often contains some non-
tree aspects, even if the tree aspects are dominant, e.g., 1p-links in XML
or many ontologies (such as the GeneOntology [87]). Practical queries
(such as XQuery or Xcerpt) often go beyond tree queries, e.g., to express
value or identity joins, even if they contain a majority of structural con-
ditions. Driven by such considerations, interest in adapting above tech-
niques beyond trees is growing (e.g., labeling and reachability for graph
data [199, 195] or hypertree decomposition for polynomial queries beyond
trees [108]).

Therefore, we explore in this work means of building on the above
mentioned techniques but pushing them beyond trees. We orient this
exploration along the following two questions:

(1) Can we find an interesting and practically relevant class of (data)

237

Beyond trees

238

Our solution:
ClQCAG algebra
build around a
novel
characterization
of compactable
graphs and a
novel data
structure for
representing
intermediate
query results

Expressiveness

PRINCIPLES AND MOTIVATION

graphs that is a proper superset of trees, yet to which algorithms such as
twig joins [48], so far limited to trees or DAGs (directed acyclic graphs)
[70], can be extended without affecting (time and space) complexity?

(2) Second, we observe that data and, particularly, queries are often
mostly trees with only limited non-tree parts. However, any non-tree part
makes most of the techniques discussed above for tree queries inapplicable.
Can we integrate the above technologies in the processing of general graph
queries in such a way that (often significant) hierarchical components can
be evaluated using polynomial algorithms, limiting the degradation of
query complexity to non-tree parts of the query?

In the following, we answer both questions essentially positively by in-
troducing a novel algebra, called clQcAG, the compositional, interval-based
query and composition algebra for graphs. C/QcAG is a fully algebraic ap-
proach to querying Web data (be it in XML, RDE, or other semi-structured
shape) that is build around two central contributions:

(1) anovel characterization of (data) graphs admissible to interval-based
compaction. For this new class of data, called continuous-image
graphs (or ciGs for short), we can provide linear-space and almost
linear-time algorithms for evaluating tree queries rivaling the best
known algorithms for tree data.

(2) An algebra for a two-phase evaluation of queries separating a tree
core of the query from the remaining non-tree constraints. The op-
erations of the algebra closely mirror relational algebra (and can, in
fact, be implemented in standard SQL), but (a) a novel data struc-
ture influenced by Xcerpt’s memoization matrix [187, 52] and the
complete answer aggregates approach [161] allows for exponentially
more succinct storage of intermediate results for the tree core of
a query. Together with a set of operators on this data structure,
called sequence map, this enables C/QcAG to (b) evaluate almost-
tree queries with nearly polynomial time limiting the degradation
in performance to non-tree parts of the query. (c) Finally, the alge-
bra is tailored to be agnostic of the actual realization of the used
relations. This makes it particularly easy to integrate approaches
for arbitrary derived relations and indices in addition to extensional
relations, reachability indices such as interval labeling [116] for tree
data or [195] for graph data and path indices such as DataGuides
[107] or [71] for tree data.

In the following chapters, we focus on the basic query and construc-
tion algebra which covers non-recursive, single-rule Xcerpt as well as
non-compositional XQuery (as defined in [144]), see Part III. However,

10.2 DATA BEYOND TREES: CONTINUOUS-IMAGE GRAPHS 239

in Section 13.4 we briefly discuss an extension of this algebra with an iter-
ation operator. This extension allows the evaluation of full Xcerpt and a
considerably larger fragment of XQuery than otherwise covered.

Before we begin the formal introduction of algebra in Chapters 11 and 12, Overview
the remainder of this chapter serves to give a first intuition of the ClQcAG
algebra. First, we briefly (Section 10.2) introduce continuous-image graphs
as a class of graph data where the proposed algebra performs as well as the
best approaches for tree data. This is achieved using the sequence map data
structure, a novel representation of intermediary results of tree queries (or
tree cores of graph queries), introduced in Section 10.3. This data structure
is embedded into the CIQcAG algebra in Section 10.4 where we give a first
glance at the structure of the algebra and its evaluation phases. We wrap
up this introduction with a brief overview of complexity results for the
discussed algebra, as well as a first comparison with existing approaches
in Section 10.5.

102 DATA BEYOND TREES: CONTINUOUS-IMAGE GRAPHS

Tree data, as argued above, allows us to represent relations on that data
more compactly, e.g., using various interval-based labeling schemes. Here,
we introduce a new class of graphs, called continuous-image graphs (or c1Gs
for short), that generalize features of tree data in such a way that we can
evaluate (tree) queries on CIGs with the same time and space complexity
as techniques such as twig joins [48] which are limited to tree data only.

Continuous-image graphs are a proper superset of (ordered) trees. On Characterization
trees we require that each node has at most one parent. For continuous- of continuous
image graph

image graphs, however, we only ask that we can find a single order on all
nodes of the graph such that the children of each parent form a continuous
interval in that order. Formally, we define a continuous-image graph by
means of the image interval property (a generalization of corresponding
properties of tree-shaped relations or closure relations of tree-shaped base

@5%}9(@
®
-0 4 ¥

Figure 40. Sharing: On the Limits of Continuous-image Graphs

240

Testing for
ClGs:
consecutive
ones property

PRINCIPLES AND MOTIVATION

® O
@586 eé@
oo 4 ¥

Figure 41. Sharing: On the Limits of Continuous-image Graphs

relations, as discussed in Section 11.3). Recall that we denote with R(#)
for a node n € N and a binary relation R over the domain N the set
{n" e N:(n,n")eR}.

Definition 10.1 (Continuous-image Graph). Let R be a binary relation
over a domain (of nodes) N. Then R is a continuous-image graph, short
CIG, if it carries the image interval property: there is a total order <; on
N with the induced sequence S over N such that for all nodes n € N,
R(n)=@orR(n) ={S[s],...,S[e]:s<eeN}.

The definition of continuous image graphs allows graphs where some
or all children of two parents are “shared” (in contrast to trees where this
is never allowed). However, it limits the degree of sharing: Figure 41 shows
two minimal graphs that are not ciGs. Incidentally, both graphs are acyclic
and, if we take away any one edge in either graph, the resulting graph
becomes a c1G. The second graph is actually the smallest (w.r.t. the number
of nodes and edges) graph that is not a c1G. The first is only edge minimal
but illustrates an easy to grasp sufficient but not necessary condition for
violating the image interval property: if a node has at least three parents
and each of the parents has at least one (other) child not shared by the
others then the graph can not be a c1G.

On continuous-image graphs we can exploit similar techniques for
compacting structural relations as on trees, most notably representing the
nodes related to a given node as a single, continuous interval and thus
with constant space. This applies also for derived relations such as closure
(XPath’s descendant) or order relations (XPath’s following-sibling) on cigs.

Moreover, whether a given graph is a c1G (and in what order its node
must be sorted to arrive at continuous intervals for each parent’s children)
is just another way of saying that its adjacency matrix carries the consecu-
tive ones property [97]. For the consecutive-ones problem [40] gives the
first linear time (in the size of the matrix) algorithm based on so called PQ-
trees, a compact representation for permutations of rows in a matrix. More

10.2 DATA BEYOND TREES: CONTINUOUS-IMAGE GRAPHS

recent refinements in [120] and [130] show that simpler algorithms, e.g.,
based on the PC-tree [129], can be achieved. We adapt these algorithms
to obtain a linear time (in the size of the adjacency matrix) algorithm for
deciding whether a graph is a c16 and computing a ciG-order.

From a practical perspective, CiGs are actually quite common, in partic-
ular, where time-related or hierarchical data is involved: If relations, e.g.,
between Germany and kings, are time-related, it is quite likely that there
will be some overlapping, e.g., for periods where two persons were king
of Germany at the same time. Similarly, hierarchical data often has some
limited anomalies that make a modelling as strict tree data impossible.
Figure 42 shows actual data® on relations between the family (red nodes,
non-ruling member @, co-emperor or heir designate , emperors (2))
of the Roman emperors in the time of the “Five Good Emperors” (Edward
Gibbon) in the 2nd century. It also shows, for actual emperors, which of
the four new provinces (1)) added to the roman empire in this period
each emperor ruled (the other provinces remained mostly unchanged
and are therefore omitted). Arrows between family members indicate,
natural or adoptive, fathership*. Arrows between emperors and provinces
show rulership, different colors are used to distinguish different emperors.
Despite the rather complicated shape of the relations (they are obviously
not tree-shaped and there is considerable overlapping, in particular w.r.t.
province rulership).

The previous example also highlights the intuition behind continuous-
image graphs: we allow some overlapping between among the children of
different nodes, but only in such a way that the images can still be repre-
sented (over some order on the nodes) as continuous intervals. Figure 43
illustrates the intervals on the Roman provinces for representing the ruled
provinces of each emperor: With the given order on the provinces, each
image is a single interval (e.g., Trajan I-III and Septimus Severus II-IV)
even though the data is clearly not tree-shaped (or a closure relation of a
tree-shaped relation).

How continuous-image graphs differ from tree-shaped data (or closure
relations over tree-shaped data) is further detailed in Figure 44: Tree data
carries the image disjointness property as, under the order on the nodes
induced by a breadth-first traversal, the nodes in the image of any parent
node in the tree form a continuous, non-overlapping interval. Closure

3 The name and status of the province between the wall of Hadrian and the wall of Antonius
Pius in northern Britain is controversial. For simplicity, we refer to it as “Caledonia’, though
that actually denotes all land north of Hadrian’s wall.

4 Note that all emperors of the Nervan-Antonian dynasty except Nerva and Commodus
were adopted by their predecessor and are therefore often referred to as “Adoptive Emperors”

241

Practical CIGs

242 PRINCIPLES AND MOTIVATION

Marcus Ulpius Traianus Mesopotamia

Nerva @ v@

Publius Aurelius Hadrianus Afe

Titus Aurelius Fulvus N | . e Arabia Petraea

Hadrian

Marcus Annius Verus

Antonius Pius

Dacia

Marcus Aurelius Jits

Y

Commodus @

.""'-C__aledonia

4
Septimus Severus @ @

O ruling emperor (“augustus”) D co-emperor ("“caesar”) Q non-ruling family member

——— parent-child relation e > ruled relation

Figure 42. “The Five Good Emperors” (after Edward Gibbon), their relations, and
provinces.

10.2 DATA BEYOND TREES: CONTINUOUS-IMAGE GRAPHS 243

Mesopotamia

Nerva i
Trajan :
. =
Hadrian by
s

Antonius Pius

/7
snpowwo)
snijaIny snyiepy
n

shid SniuojuY
Sn1aA3S snwindas

Commodus

Marcus Aurelius @ @

Caledonia

Septimus Severus @

Figure 43. Overlapping of province children in the “The Five Good Emperors”
example, Figure 40

244

Locality of
dependencies in
tree queries

PRINCIPLES AND MOTIVATION

® & © & ©

g6 B ®

Tree: Continuous-Image Graph:
COOOOOOBEO OXOXOXOROXOROXOXO)
L14 \;24 L7J _pJ ; ‘ ‘L37JJ
Closure over Tree:
COOOOCOBOO
[g |

Figure 44. Overlapping of images in trees, closure relations over trees, and
continuous-image graphs

relations over tree data (i.e., relations such as XPath’s descendant) carry the
image containment property as, e.g., under the order on the nodes induced
by a depth-first traversal, again the nodes in the image of any parent node
form a continuous interval and overlapping is limited: either two such
intervals do not overlap at all or one is contained within the other.
Continuous-image graphs (as shown in the right of Figure 44) carry, as
stated above, the image interval property, i.e., there is some order on the
nodes such that the nodes in the image of each parent form a continuous
interval. Here, the intervals may overlap arbitrarily as illustrated in Fig-
ure 44. However, in contrast to the tree or closure relation over tree case
the required order on the nodes is no longer known a-priori but must be
determined for each graph using, e.g., the above described algorithms.

103 SEQUENCE MAP: STRUCTURE-AWARE STORAGE

OF TREE CORE RESULTS

When we evaluate tree queries, we can observe that for determining
matches for a given query node only the match for its parent and child in
the query tree are relevant. Intuitively, this “locality” property holds as in
a tree there is at most one path between two nodes. To illustrate, consider,
e.g., the XPath query //a//b//c selecting ¢ descendants of b descendants of
a’s. Say there are n s in the data nested into each other with m b’s nested

10.3 SEQUENCE MAP: STRUCTURE-AWARE STORAGE OF RESULTS

Imperial Family Member

¢
Imperial Family Member Type Name Province .

Name E]

Figure 45. Selecting sons, type, name, and ruled provinces for all members of the
imperial family in the data of Figure 42.

inside the a’s and finally inside the b’s (again nested in each other) I C.
Then a naive evaluation of the above query considers all triples (a, b, ¢) in
the data, i.e., n x m x [triples. However, whether a cis a descendant of a b is
independent of whether a b is a descendant of an a. Ifa b is a descendant of
several a’s makes no difference for determining its ¢ descendants. It suffices
to determine in at most n x m time and space all b’s that are descendants
of a, followed by a separate determination of all C’s that are descendants of
such b’s in at most m x [time and space.

Indeed, if we consider the answer relation for a tree query, i.e., the
relation with the complete bindings as rows and the query’s nodes as
columns, this relation always exhibits multivalue dependencies [91]: We
can normalize or decompose such a relation for a query with n nodes
into n — 1 separate relations that together faithfully represent the original
relation (and from which the original relation can be reconstructed using
n—1joins). This allows us to compact an otherwise potentially exponential
answer (in the data size) into a polynomial representation.

This is the first principle of the sequence map: decompose the query into
separate binding sequences for each query node with “links” or pointers
relating bindings of different nodes. We thus obtain an exponentially more
succinct data structure for (intermediary) answers of tree queries than if
using standard (flat) relational algebra. In this sense, a sequence map can
be considered a fully decomposed column store for the answer relation.

245

Multivalue
dependencies

Full
decomposition
like column
store

246 PRINCIPLES AND MOTIVATION

Imp-ID Type Name Son-ID Ruled-ID Ruled-Name
1 non-ruling Marcus Ulpius Traianus 4 - -
2 augustus Nerva 4 - -
3 non-ruling P. Aurelius Hadrianus Afer 6 - -
4 augustus Trajan 6 | Mesopotamia
4 augustus Trajan 6 Il Arabia Petraea
4 augustus Trajan 6 Il Dacia
5 non-ruling Titus Aurelius Fulvus 9 - -
6 augustus Hadrian 9 I Arabia Petraea
6 augustus Hadrian 10 I Arabia Petraea
6 augustus Hadrian 9 Il Dacia
6 augustus Hadrian 10 Il Dacia
7 non-ruling L. Ceionius Commodus Verus 10 - -
8 non-ruling M. Annius Verus 1 - -
9 augustus Antonius Pius " Il Arabia Petraea
9 augustus Antonius Pius 12 Il Arabia Petraea
9 augustus Antonius Pius 1" Ili Dacia
9 augustus Antonius Pius 12 Il Dacia
9 augustus Antonius Pius 1 Y Caledonia
9 augustus Antonius Pius 12 Y Caledonia
10 caesar Lucius Aelius 12 - -
1" augustus Marcus Aurelius 13 Il Arabia Petraea
" augustus Marcus Aurelius 13 Il Dacia
12 caesar Lucius Verus - - -
13 augustus Commodus - Il Arabia Petraea
13 augustus Commodus - Il Dacia
14 augustus Septimus Severus - Il Arabia
14 augustus Septimus Severus - Il Arabia
14 augustus Septimus Severus - v Caledonia

Figure 46. Answers for query from Figure 45, single, flat relation.

10.3 SEQUENCE MAP: STRUCTURE-AWARE STORAGE OF RESULTS

Imp-ID Type Name Imp-ID Son-ID Imp-ID Prov-ID
1 non-ruling Marcus Ulpius Traianus 1 4 4 |
2 augustus Nerva

. . . 2 4 4 Il
3 non-ruling P. Aurelius Hadrianus Afer 3 6 4 "
4 augustus Trajan 4 6 6 I
5 non-ruling Titus Aurelius Fulvus 5 9 6 il
6 augustus Hadrian 6 9 9 I
7 non-ruling L. Ceionius Commodus Verus 6 10 9 il
8 non-ruling M. Annius Verus 7 10 9 v
9 augustus Antonius Pius 8 1 13 I
10 caesar Lucius Aelius 9 1 13 "
" augustus Marcus Aurelius 9 1 1 I
12 caesar Lucius Verus
13 augustus Commodus 1? :; 12 :1/'
14 augustus Septimus Severus
Prov-ID Name
| Mesopotamia
Il Avrabia Petraea
Il Dacia
v Caledonia

Figure 47. Answers for query from Figure 45, multiple relations, normalized, no
multivalue dependencies.

To illustrate this, consider the query in Figure 45 on the data of Figure 42.
The query selects sons and ruled provinces of members of the imperial
family. We also record type and name of the family member and name
of the province to easier talk about the retrieved data. The answers for
such a query, if expressed, e.g., in relational algebra or any language using
standard, flat relations to represent n-ary answers, against the data from
Figure 42 yields the flat relation represented in Figure 46. As argued above,
we can detect multivalue dependencies and thus redundancies, e.g., from
emperor to province, from province to province name, from emperor
(Imp-ID) to type and name.

To avoid these redundancies, we first decompose or normalize this rela-
tion along the multivalue dependencies as in Figure 47. For the sequence
map, we use always a full decomposition, i.e., we would also partition type
and name into separate tables as in a column store.

247

Example
decomposition

248 PRINCIPLES AND MOTIVATION

Imp-ID Son Range

1 4

2 4

3 6 e~
4 6 4 (]

5 9 6 1]

6 9-10 9 -1V

7 10 13 Il

8 " 14 A%

9 11-12 -
10 12

" 13

Figure 48. Answers for query from Figure 45, multiple relations, interval pointers.
The first table from Figure 47 remains unchanged.

10.3.1 SEQUENCE MAP FOR TREES AND CONTINUOUS-IMAGE GRAPHS

Interval pointers Once we have partitioned the answer relation into what subsumes to only
link tables as in column stores, we can observe even more regularities
(and thus possibilities for compaction) if the underlying data is a tree
or continuous-image graph. Look again at the data in Figure 42 and the
resulting answer representation in Figure 47: Most emperors have not
only ruled one of the new provinces Mesopotamia, Arabia Petraea, Dacia,
and Caledonia but several. However, since the data is a continuous-image
graph there is an order (indeed, the order of the province IDs if interpreted
as roman numerals) on the provinces such that the provinces ruled by
each emperor form a continuous interval w.r.t. that order. Thus we can
actually represent the same information much more compactly using
interval pointers or links as in Figure 48 where we do the same also for
the father-son relation (although there is far less gain since most emperors
already have only a single son).

Instead of a single relation spanning 28 rows and 6 columns (168 cells),
we have thus reduced the information to 5-2 +11-2 + 14 - 3 = 74 cells.
This compaction increases exponentially if there are longer paths in a tree
query (e.g., if the provinces would be connected to further information
not related to the emperors). It increases quadratically with the increasing
size of the tables, e.g., if we added the remaining n provinces of the Roman
empire ruled by all emperors in our data we would end up with 7 - n
additional rows of 6 columns in the first case (each of the 7 emperors in
our data ruled all these provinces), but only 7 - 2 additional cells when

10.3 SEQUENCE MAP: STRUCTURE-AWARE STORAGE OF RESULTS

Septimus S.

Commodus

M. Aurelius

Caledonia

S

<

A
Dacia

---------- R L
~ao - II""
! Arabia
Antonius P. |<......... |3?lN‘9 lpl 2[7’4‘ ,“ x

1~
70|

Mesopotamid

Hadrian <«

Province

Trajan <

Emperor

Name

Figure 49. Sequence Map: Example. For a query selecting roman emperors together with

their name and ruled provinces on the data of Figure 42.

using multiple relations and interval pointers. A detailed study of the space
complexity of sequence maps is given in Section 11.4 and summarized
below in Section 10.5.

Formally, we introduce the sequence map Si on a relational structure
D and a query Q in Chapter 11 as a mapping from a set of query nodes V/
to sequences of matches for that query node. A match for query node v in
itself is the actual data node or edge v is matched with and a set of pairs
of child nodes of v to start and end positions. Intuitively, it connects the
match for v to matches of its child nodes in the tree query. We obtain in
this way a data structure as shown in Figure 49 for a query selecting roman
emperors with their names and ruled provinces on the data of Figure 42.

Note, that we allow for each child node of v multiple intervals. If the
data is a cIG, it is guaranteed that only a single interval is needed and thus

the overall space complexity of a sequence map is linear in the data size.

However, we can also employ a sequence map for non-ciG graphs. In this
case, we often still benefit from the interval pointers, but in worst-case we
might need |N U E| many interval pointers to relate to all bindings of a
child variable. Overall, a sequence map for non-c1G graphs thus may use

249

250

Diamond-free
DAG queries:
multiple order
numbers per
query node

Data structure
for intermediary
results

PRINCIPLES AND MOTIVATION

up to quadratic space in the data size.

10.3.2 SEQUENCE MAPS FOR DIAMOND-FREE DAG QUERIES

Beyond tree queries, the sequence map data structure can also be used,
with a slight modification, for diamond-free DAG queries. Diamond-free
DAG queries are queries in the shape of a DAG where there are no two
distinct paths between two nodes (and thus no diamond-shaped sub-
graph). Diamond-free DAG queries are also used in [171, 169] (there named
single-join DAG queries).

If we consider diamond-free DAG queries, there may be nodes in the
query that have multiple parents. However, as for tree queries only the
parent and child nodes are relevant to decide whether a data item is a
match for a query node. The multiple parents, however, may be connected
using different relations, e.g., XPath’s child, descendant, and following rela-
tions. Above, we only demand that for each relation the continuous-image
property of the data graph holds. If we have DAG queries this might lead
to different, possibly incompatible orders for the image relations (e.g., child
needs a breadth-first order to obtain continuous-images vs. depth-first
order for descendant). However, we do not need to “strengthen” the cic
property for diamond-free DAG queries. Rather, a node with multiple
parents carries a separate “order” number for each different incoming
relation with incompatible orders and interval pointers are resolved as
range queries over the appropriate order number. Though this increases
the space need this is justified by the accompanying increase in query size.
For details, see Section 10.3.2.

10.3.3 REPRESENTING INTERMEDIARY RESULTS: A COMPARISON

As stated above, the sequence map is heavily influenced by previous data
structures for representing intermediary answers of tree queries. Figure 50
shows the most relevant influences. Complexity and supported data shapes
are compared in Section 10.5 below after discussing the actual evaluation
of tree queries using the sequence map data structure. Here, we illustrate
that the above discussed choices when designing a data structure for in-
termediary answers of tree queries are actually present in many related
systems: We can find systems such as Xcerpt 1.0 [187], many early XPath
processors (according to [112]), and tree algebras such as TAX [135] that
use exponential size for storing all combinations of matches for each query
node explicitly. [112] shows that XPath queries can in fact be evaluated in
polynomial time and space, which is independently verified in SPEX [168],

10.3 SEQUENCE MAP: STRUCTURE-AWARE STORAGE OF RESULTS

keys pointers

SPEX [168] clQcAG

CAA [160]

sequences

Pathfinder [119]

twig joins [48]
relational ClQcAG 8)

(ENF)
Xcerpt 1.5 [52];
NENF (graph)

sets

Xcerpt 1.0 [187],

Polynom. XPath [112] NENE (tree)
ree

Figure 50. Data structures for intermediary results (of a tree query)

the first streaming processor for navigational XPath with all structural
axes. Like SPEX and ClQcAG, complete answer aggregates [160] use interval
compaction for relating matches between different nodes in a tree query.
CAAs are also most closely related to ClQcAG w.r.t. the decomposition of
the answer relation: fully decomposed without multivalue dependencies.
In contrast, Pathfinder [39] uses standard relational algebra but for the
evaluation of structural joins a novel staircase join [118] is employed that
exploits the same interval principles used in CAAs and CQcAG.
Streaming or cursor-based approaches such as twig join approaches
[48, 70] consider the data in a certain order rather than all at once. In
such a model, it is possible and desirable to skip irrelevant portions of
the input stream (or relations) and to prune partial answers as soon as it
is clear that we can not complete such answers. Recent versions of SPEX
[57,168] contain as most twig join approaches, mechanisms to skip over
parts of the stream (at least for some query nodes) if there can not be a
match (e.g., because there is no match for a parent node and we know
that matches for parent nodes must come before matches for child nodes).
Both twig joins and SPEX also prune results as soon as possible. However,
twig joins are limited to vertical relations (child and descendant) whereas
SPEX and ClQcAG can evaluate all XPath axes, though only on tree data. In
Section 12.9 we discuss briefly a cursor interface for the CIQcAG algebra that
iterates over the basic relations in order (of storage or ciG property). In
general graphs, however, skipping and pruning is impossible, since we can
never be sure that there are no more related matches. The ci1G property is
also too weak to ensure that we can skip and prune as match as on tree

251

Streams and
skipping or
pruning

Principles of
ClQcAG

252

PRINCIPLES AND MOTIVATION

data. However, in Section 12.9.1 we give a condition on the cig-order of
parent and child nodes in a tree query that, if it holds, ensures that these
orders are “compatible” enough to allow as much skipping and pruning
as in twig join approaches. This condition is more general than basic tree
data, but more restrictive than the c1G property discussed above.

To summarize, though ClQcAG’s sequence map is similar in its principles
to several of the related approaches in Figure 50, it combines efficient
intermediary answer storage as in CAAs with fully algebraic processing as
in Pathfinder and efficient skipping and pruning as in twig joins.

Furthermore, where most of the related approaches are limited to tree
data (with the notable exception of Xcerpt), ClQcAG allows processing of
many graphs, viz. CIGs, as efficient as previous approaches allow for trees.

The sequence map data structure is exploited in the ClQcAG algebra for
processing both tree and arbitrary graph queries. ClQcAG takes advantage
of sequence maps to store intermediary results for the entire or for the
tree core of a query as described in the following section.

104 QUERIES BEYOND TREES: GRAPHS WITH TREE

CORE

The sequence map enables us to store (intermediary) answers to tree que-
ries efficiently, in particular if the data is c1G-shaped. However, what if the
query is not of tree shape?

Our answer to that question is the ClQcAG algebra. Instead of treating only
tree queries (like the above mentioned approaches for XML) or entirely
dropping the advantages tree queries offers (as standard relational algebra
does), ClQCAG separates query processing in two phases: in the first phase
we exploit efficient algorithms for tree queries evaluating a tree core of the
original query. Any remaining parts of the query, if any, are evaluated on
top of the resulting sequence map from the tree core evaluation.

ClQCAG is (1) designed around the sequence map data structure and, if
used in conjunction with a sequence map, achieves the same or better time
and space complexity for c1G data graphs as the best known approaches
for tree data. (2) immediately familiar to anyone with knowledge on the
standard relational algebra. In fact, the semantics of all C/QcAG operators
is purely relational (can be expressed in terms of standard relational al-
gebra®). Using the sequence map and its associated algorithms provides
an equivalent yet more efficient implementation of the ClQcAG operators.

5 With value invention, grouping, and ordering, if construction of new graphs is also
considered.

10.4 QUERIES BEYOND TREES: GRAPHS WITH TREE CORE 253

CIQCAG
Data Graph

CIQCAG
. Engine

CIQCAG
. COmpiler
CIQCAG
Expression

Xcerpt Xcerpt

Query . Translator
XQuery

. Translator

SPARQL
. Translator

FO Query over
Data Graph
with Complex
Head

Answer

CIQCAG
. COmpiler

SPARQL
Query

Figure 51. CIQCAG Architecture

(3) able to process tree and graph queries efficiently by means of a three-
stage evaluation: in the map construction stage a tree core of the query is
computed and specific operators allow the efficient evaluation of that tree
core. In the map expansion stage the remaining non-tree relations are con-
sidered. Finally, there is a set of result construction operators that allow the
construction of new data graphs (where the previous two stages operate
exclusively on the input data). (4) for most of the presentation, limited
to composition-free queries (in the sense of [144]), but in Section 13.4 we
discuss the addition of iteration and recursion on top of the three stage
processing described here. (5) able to be combined with most approaches
for indexing Web data such as reachability indices [116, 195] or path indices
[107, 71] as well as other “computed” or derived relations such as computed
closure relations, complex binary path expressions [31], etc. This allows a
great flexibility in choosing how a relation is actually realized: extensional,
using some index or labeling scheme, computed ad-hoc, etc. (6) accompa-
nied by a rich set of algebraic laws, many familiar from relational algebra,
but with some additions to handle new operators and the specificity of the
multi-stage evaluation.

Based on these principles, however, there are still a number of trade-offs Realization
when realizing the ClQcAG algebra, cf. Section 12.1 for details. Most are
related to how the “links” between the decomposed relations in a sequence
map are realized. In the purely relational variant we use table with order
numbers and range queries. Though theoretically only slightly more costly
than the other variants (O(log n) instead of O(1) for deciding whether two
matches for parent-child query nodes are related), practical performance
of range queries is often disappointing in current relational databases (cf.
[119]). In [52], we proposed a representation of the links by nesting (and
sharing) of matches for child nodes within parent nodes (similar to nested

ClQcAG for
actual Web

query
languages

Overview of
ClQCAG
operators

254

PRINCIPLES AND MOTIVATION

relational data but with sharing to avoid duplication). Though this yields
better lookup time, we pay with quadratic space in worst-case even for tree
and c1G data. The third variant uses ordered relations (like SQL tables) and
random access to rows in these ordered relations. This allows for constant
lookup time and (in case of tree or c1G data) linear space, but comes at the
cost of slightly more involved reorganization, cf. Section 12.

The above principles also make ClQcAG eminently suitable for imple-
menting practical Web query languages. Indeed, in Part III, we show how
to translate (large subsets of) XQuery, Xcerpt, and SPARQL into ClqLog, a
high-level calculus for clQcAG, which is then translated into ClQcAG expres-
sions as detailed in Section 13 and illustrated in Figure 51. CIQcAG is flexible
enough to evaluate programs in any of these languages and to actually mix
them within the same query. It is worth noting, that both the translation
from (composition-free) XQuery to cloLog and the equivalence of calculus
and algebra are accompanied by formal proofs. CIQcAG is, thus, one of the
few formally correct algebras for (composition-free) XQuery.

10.4.1 OPERATOR OVERVIEW

The main operators of the CIQcAG algebra are immediately familiar from
relational algebra. However, CIQcAG operator’s differ in a few noteworthy
points (the full details as well as the operators’ implementation on top of
the sequence map are explained in Chapter 12): (1) There are three sets of
operators, as shown in Table 50, one for each stage of the query evalua-
tion. Mostly identical to their relational counterpart are the operators for
map expansion (renaming p, join x, union U, difference —, projection 7,
and duplicate elimination). However, we add an operator for accessing
specific columns from a sequence map computed in the previous stage as
flat relation (f). (2) For map construction, we also introduce a new access
operator y that creates a sequence map from a given relation R. The other
operators closely mirror relational operators and thus the operators of
the map expansion phase, but there is one more addition: the propaga-
tion operator. (3) When we restrict the values for a given column in a
classical, flat relation (e.g., by selection or join), we can omit tuples with
values violating the selection or join criterion in a single pass over the
table. However, the sequence maps store the (so far) computed answers
like a column store. Though this allows more efficient storage in face of
multivalue dependencies as in tree queries, eliminating values in a sin-
gle column no longer immediately affects other columns. Rather when
a value is eliminated in one column we have to propagate this fact to all
related columns (and from there on recursively). CIQcAG provides for this

10.4 QUERIES BEYOND TREES: GRAPHS WITH TREE CORE

access join (conjunction) union difference

f,v(D,Q)H,(D,QR) WP O KD (5,8 Uss) X(S,S)

projection, rename selection propagation expansion

v (S), Py, (S) 59(s) BY(S), DY (S) Fv(S)

Table 50. Overview of sequence map operators in CIQcAG (all operators return a
single sequence map S except £ which returns a (standard) relation)

propagation an explicit operator, the up- and down propagation operators
@* and @v. This allows us to perform several value restrictions on the
same column before propagation all eliminated values at once, rather than
propagation after each restriction. The price is that a sequence map may,
after a restriction and before the corresponding propagation, be in an in-
consistent state, where values in one column link to no longer valid values
of another one. However, this price is clearly offset by the gain in com-
plexity and performance: Implicit propagation at each restriction raises
the worst-case complexity of query evaluation by a multiplicative factor q
(query size). Using explicit separate propagation, it suffices to propagate
each column’s values to its parent columns once at the end of the map
construction leading to an additive factor of q x n. This is ensured by the
translation of CIQLog to CIQCAG (to ensure correct answers) as described in
Chapter 13. For more details on explicit propagation see Section 12. (4) Fi-
nally, result construction is similar to other complex value algebras (cf.
[119, 144] with operators for value invention ¥, ordering (w), conditional
construction, and graph construction.

To illustrate, how these operators play together to implement a typical
Web query consider the query in Figure 52 ([#] indicates a answer node, all
other nodes are existentially quantified; #;4 indicates a anti-join based on
node identity). This is a graph query, but a spanning tree covers almost the
entire query. The query is realized in CIQcAG by the following expression
(we decide to treat the sON edge from 2 to 4 as only non-tree edge®):

6 The tree core of a query is not unique at all: We could also have chosen to consider also
the #;4 as non-tree or to duplicate node 4 and introduce a identity join between the original
and the duplicated node in the map expansion phase.

255

Query example

256 PRINCIPLES AND MOTIVATION

Imperial Family Member Imperial Family Member
S 2,

‘Emperor’ ‘Emperor’

Imperial Family Member

Figure 52. Selecting all sons of Roman emperors that have a double claim to the
throne (two (distinct) fathers that where both emperors).

Foow,((B, (D, Q) % 7y, (Hy,,, (D, Q) % i, (D, Q, Emperor’)))
M 0, (D, Q) %n 7y, (Hy,,,. (D, Q) ®q iy, (D, Q, Emperor')))

Within the flatten operator, we find the expression responsible for eval-
uating the tree part of the query: we join sequence maps for type and
son edges as well as label restrictions for nodes 3 and 5. Since we are not
interested in the actual matches for 3 and 5 we use semi-joins instead of
full joins. In the non-tree part we grab v, and v, from the sequence map
(v, is not needed any more) and join them with the soN relation between
v, and v,. The result is projected to v, as this is the only answer node.

10.4.2 TREE CORES AND HYPERTREES

Tree As seen in the previous example, we have considerable leeway how to
cores—how to choose the tree core of a graph query. We discuss choosing a good tree
compute them core very briefly in Chapter 13. In addition to usual considerations about

selectivity and size of the involved relations, we have in our case an addi-
tional guide: if at all possible the chosen relations should carry the cig
property, i.e., exhibit an order on the data nodes such that the image of a
node forms a continuous interval.

Hypertree For relational queries, it has been shown that acyclic or tree queries

decompositions are not the largest class of polynomial time queries. Rather queries with
bounded tree- or hypertree-width [108] can still be evaluated in poly-
nomial time. Nevertheless, we choose a tree decomposition. Hypertree
decompositions yield groups of query nodes (variables) that are strongly
connected in a query, but loosely connected with the rest of the query. If
there is a bound on the size of these groups, we can evaluate each group
separately and only expose the few connection points to the rest of the
query. In contrast, for tree queries the groups are always single query nodes.
For our purpose, however, hypertree decompositions seem less attractive

10.5 COMPLEXITY AND CONTRIBUTIONS 257

than for standard relational queries for two reasons: (1) to treat multiple
incoming edges (even if there number is bound by some constant) the
sequence map data structure needs to be extended considerably and (2) the
CIG property also needs to be adapted to guarantee one order among all
relations involved in a hypertree node. In addition, the integration of tech-
niques such as path indices and twig joins that have been developed for
tree queries with ClQcAG is almost free if we consider tree cores, but is less
than obvious if we consider hypertree decompositions.

However, for future work a closer inspection of hypertree decomposi-
tions (and, in particular, their effect on the c1G property) would be strongly
desirable, see also Chapter 15.1.

105 COMPLEXITY AND CONTRIBUTIONS

With a first intuition on the data structures and operations that form the
ClQCAG algebra, we can turn to investigate some of its properties. For a de-
tailed analysis of the space complexity of the sequence map see Section 11.4,
the complexity of query evaluation with C/QcAG is analysed in Chapter 12.

Table 52 summarizes the complexity results for query evaluation with Space and time
the ClQcAG algebra (using the sequence map as data structure). It is worth complexity of
highlighting data and query space complexity are both linear for tree clQcaG query
and cIG data and tree queries. Also note, that there is no penalty at all evaluation
to going from tree data to CIG data, but arbitrary graph data does incur
a linear penalty (both in space and time). The logarithmic factor in the
time complexity can be discarded, if we assume that all relations can be
accessed in c1G order. This is possible, since the c1G property is a static
property of the data and does not depend on the query. Otherwise, we
need to sort relations to add them to the sequence map. For Table 52, we
assume the latter.

One factor in the time complexity of CIQcAG is the cost of the member- ~ Membership
ship test in a relation. For extensional relations this is constant. However, test

as argued above, ClQCAG is also well suited to handle derived relations such
as descendant with out without index. In this cases m may in fact have
significant influence on the query evaluation. For the evaluation of the
Web query languages discussed in Part III (Xcerpt, XQuery, SPARQL),
extensional relations and structural closure relations (XPath’s descendant,
following, etc.) suffice. As discussed in Section 6.5.1, for tree data, mem-
bership in closure relations can be tested in constant or almost constant
time (e.g., using interval encodings [86] or other labeling schemes such as
[200]). However, for graph data this is not so obvious. Fortunately, there
has been considerable research on reachability or closure relations and

258

PRINCIPLES AND MOTIVATION

queries) _ _
m path queries tree queries graph queries

tree T=0(q-n) T=0(q-n) O(n%8 + Tiree)
$=0(q-n) $=0(q-n) O(n% + Strec)
G T=0(q-n) T=0(q-n) O(n? + Tiree)
S=0(q-n) S=0(q-n) O(n% + Siree)

gaph T=0(q-n*-m) T=0(q-n*-m) O(n% + Tiee)
S=0(q-n*) S=0(q-n*) O(n? + Stree)

Table 52. Complexity of query evaluation with CIQCAG algebra (g query size, n
data size, m complexity of membership test—assumed constant for all
tree, forest, or c1G shaped relations, q,: number of “graph” variables, i.e.,
variables with multiple incoming query edges)

their indexing in arbitrary graph data in recent years. Table 54 summarizes
the most relevant approaches for our work. Theoretically, we can obtain
constant time for the membership test if we store the full transitive closure
matrix. However, for large graphs this is clearly infeasible. Therefore, two
classes of approaches have been developed that allow with significantly
lower space to obtain sub-linear time for membership test.

The first class are based on the idea of a 2-hop cover [76]: Instead of
storing a full transitive closure, we allow that reachable nodes are reached
via at most one other node (i.e., in two “hops”). More precisely, each node
n is labeled with two connection sets, in(n) and out(n). in(n) contains a
set of nodes that can reach n, out(n) a set of nodes that are reachable from
n. Both sets are assigned in such a way, that a node m is reachable from
n iff out(n) U in(m) # @. Unfortunately, computing the optimal 2-hop
cover is NP-hard and even improved approximation algorithms [189] have
still rather high complexity.

10.5 COMPLEXITY AND CONTRIBUTIONS 259

approach characteristics query time index time index size
Shortest path [174] no index O(n+e) - -
Transitive closure full reachability matrix O(1) O(n*) O(n*)
2-Hop [76] 2-hop cover? O(Ve) <O(n) O(n*) O(n- Ve)
HOPI [189] 2-hop cover, improved approximation al- ~ O(/e) < O(n) O(n*) O(n-+/e)
gorithm
Graph labeling [5] interval-based tree labeling and propaga- O(n)° O(n®) Oo(n*)*
tion of intervals of non-tree descendants.
SSPI[70] interval-based tree labeling and recursive O(e—-n) O(n+e) O(n+e)
traversal of non-tree edges
Dual labeling [199] interval-based tree labeling and transitive o)’ O(n+e+ey) O(n+eg)
closure over non-tree edges
GRIPP [195] interval-based tree labeling plus additional O(e—-n) O(n+e) O(n+e)

interval labels for edges with incoming
non-tree edges

a Index time for approximation algorithm in [76].

b More precisely, the number of intervals per node. E.g., in a bipartite graph this can be up to n, but in most
(sparse) graphs this is likely considerably lower than n.

¢ More precisely, the total number of interval labels.

d [199] introduces also a variant of dual labeling with O(log e¢) query time using a, in practical cases, considerably
smaller index. However, worst case index size remains unchanged.

Table 54. Cost of Membership Test for Closure Relations. 7, e: number of nodes, edges
in the data, eg: number of non-tree edges, i.e., if T(D) is a spanning tree for D

with edges Er(p), then eg = |[Ep \ Ey(p)|.

260

Comparison
with existing
approaches for
Web query
evaluation

Contributions

PRINCIPLES AND MOTIVATION

A different approach [5, 70, 199, 195] is to use interval encoding for label-
ing a tree core and treating the remaining non-tree edges separately. This
allows for sublinear or even constant membership test, though constant
membership test incurs lower but still considerable indexing cost, e.g., in
Dual Labeling [199] where a full transitive closure over the non-tree edges
is build. GRIPP [195] and SSPI [70] use a different trade-off by attaching
additional interval labels to non-tree edges. This leads to linear index size
and time at the cost of increased query time.

For clQcAG we can choose any of the approaches. For the following, we
assume constant time membership, since that is easily achieved on trees
and feasible with approaches such as Dual Labeling even for graphs.

With this understanding about the complexity of query evaluation with
ClQCAG, we can move to compare ClQcAG with representative approaches for
Web querying developed in recent years (mostly for XML data). Table 56
summarizes this comparison: It shows that ClQcAG rivals the best known
approaches for tree data (twig joins and SPEX), but in contrast to those
approaches extends the same complexity to c1G data and can also, albeit
at a cost, handle graph queries (like structural joins used in most other
XML or RDF algebras). Note, that in all cases we consider pointers of
constant size (as done in [48], [168], and [160]). In fact, all approaches
need an additional log n multiplicative factor if pointer size is taken into
consideration.

To summarize, CIQCAG is a novel algebra for Web queries that

- isbased on a novel data structure for efficient storage of intermediary
results of tree queries that is exponentially more succinct than purely
relational approaches.

- extends previous approaches for querying tree data to a larger class
of data graphs, called continous-image graphs. The c1G property can
be tested in polynomial time and is independent of the query.

- rivals the best known approaches for tree query evaluation on tree
data yet extends their properties (complexity and skipping, cf. Sec-
tion 12.9.1) to CIG data.

- gracefully degrades with the increasing “graphness” of data and que-
ries .

- allows for easy integration of derived relations and indices such as
interval labeling, graph reachability indices, path indices, etc.

- provides a provable correct evaluation for large, relevant fragments
of practical query languages, viz. XQuery, Xcerpt, and SPARQL.

10.5 COMPLEXITY AND CONTRIBUTIONS 261

query type time space
Structural Joins path queries path index:
decompose query; test each structural con- (DataGuide [107], IndexFabric [78], [71])?
strain individually; join the results; O(mpay) ~ O(d) O(n); O(d - n) index
no path index, standard join [7, 116,
112])
O(nle +q-n-logn-m)b O(nls +q-n*)

no path index, structure-aware join, ([39];
tree data only)

O(nl* +q-n) O(nls +q-n*)
tree queries with path index (tree/DAG data only)
O(nla+b-n-logn-mpa)) O(ns +b-n*)
no path index
O(nla +q-n-logn-m) O(nla +q-n*)
graph queries O(n?) O(n?)
Twig or Stack Joins tree data O(g-n)° O(q-n+n-d)?

holistic (single operator) [48]; partial an-

swers in g stacks; parent pointers connect

stack entries;

limited to only child/descendant relations graph data O(g-n*+e) O(q-n+e)f
in trees and DAGs [70]; “longer” skip dis-

tance when using indices [Jiang];

SPEX (and similar streaming engines) O(q-n*)? O(q-n-d)"
[171, 168]; similar to twig join but with

a single input stream and pointers real-

ized as conditions; additionally supports

horizontal axes; skipping added in [57];

Complete Answer Aggregates O(q-n-logn-d) O(g-n-d)
[160]; manages all answers as CIQCAG; w/o closure axes O(q-n-logn) O(q-n)
limited to tree data and structural relations

(e.g., no value joins); similar to twig join

without stack management

ClQcAG tree queries O(gq-n) O(gq-n)

sequence map variant; skipping may O(q-n*-m) O(q-n*)

reduce average case graph queries O(nis +q-n)' O(nis +q-n)'
O(nle +q-n*-m) O(nle +q-n*)

a limited to unary path queries with only child/descendant relations against trees
b skipping reduces average case by using indices such as [116], XR-Tree [136], BIRD [200]

¢ More precisely, O(q - max(b;, d)) where b; is the average of bindings per query variable. Both b; and d are, in worst case, n. b; < n
only if the selectivity of the node tests in the query is high.

d Answers are progressively generated.
More precisely, O(q - max(b;, d)*) where b; is the average of bindings per query variable. Both b; and d are, in worst case, n
Answers are progressively generated.

Lower complexity for limited fragments, e.g., O(q - n - d) if only vertical axes are present.

= 08 N o®

In some fringe cases, complexity degenerates to O(q - n - d + n*), for details see [168]. Answers are progressively generated.

~.

For tree and continuous-image graphs.

Table 56. Comparison of Related Approaches. n: number of nodes in the data, d: depth,
resp. diameter of data; e: number of edges; g: size of query, q,: number of result
or answer variables; gg: number of “graph” variables, i.e., variables with multiple
incoming query edges; m maximum time complexity for relation membership

test; 1,4, time complexity for path index access.

Overview

262

PRINCIPLES AND MOTIVATION

In the following three chapters, we illustrate C/QcAG and its properties
in more details. Chapter 11 presents the sequence map data structure, its
formal definition, and properties (including space complexity). Chapter 12
introduces the operators of the ClQcAG algebra together with purely rela-
tional semantics, algorithms based for a realization using the sequence
map data structure, and their complexity. We conclude the presentation
of the algebra in Chapter 13 by showing the equivalence with the clqLog
calculus (see Chapter 6), how to compute the tree core of a graph query,
and proofing a number of algebraic equivalences for optimizing CIQcAG
expressions.

SEQUENCE MAP

111 Introduction 263
1.2 Sequence Map: Definition 264
1.21 Consistent and Inconsistent Sequence Maps . . . 270

11.2.2 Answers: Consistent and Complete Sequence Maps 275

1.3 On The Influence of Data Shape 275
131 Exploiting Tree-Shape of Data: Single Interval

Pointers, 276

11.3.2 Beyond Trees: Consecutive Ones Property 279

11.3.3 Open Questions: Beyond Single Intervals 283

11.4 Space Bounds for Sequence Maps 288

11.41 Linear Space Bounds for Trees and CIGs 289

11.5 Sequence Map Variations 290

11.5.1 Purely Relational Sequence Map 290

11.5.2 Multi-Order Sequence Map for Diamond-Free
DAGQueries, 291

111 INTRODUCTION

As discussed in the previous section, the sequence map data structure
stands at the core of the CIQcAG algebra: It allows us the polynomial, in
many cases even linear, storage of (intermediary) answers to a tree core of
a query. For tree queries all evaluation is done directly on the sequence
map, for graph queries we must evaluate the remaining non-tree relations
separately, but still profit in most cases greatly by reducing the size of the
non-tree answers.

Let us briefly recall, from the previous section, the main motivations
for designing a new data structure:

(1) When we evaluate tree queries, we can observe that for determining
matches for a given query node only the match for its parent and
child in the query tree are relevant.

264

11

SEQUENCE MAP

(2) Indeed, if we consider the answer relation for a tree query, i.e., the
relation with the complete bindings as rows and the query’s nodes
as columns, this relation always exhibits multivalued dependencies

[o1].

(3) To avoid these dependencies, we fully decompose the answer rela-
tion as in a column store: binding sequences for each query node
with “links” or pointers relating bindings of different nodes. This
gives us an exponentially more succinct storage than a flat relation.

(4) Once we have partitioned the answer relation into what subsumes to
only link tables as in column stores, we can observe even more regu-
larities (and thus possibilities for compaction) if the underlying data
is a tree or continuous-image graph. These regularities allow us to
represent the image of a node under as a single, continuous interval
and thus yield an even smaller representation of the intermediary
answers.

In the remainder of this section, we illustrate how these principles and
observations are exploited in the definition of the sequence map data
structure to obtain a space optimal data structure for tree queries on tree,
forest, and c1G data (linear space data complexity). The same data structure
can also be used on arbitrary graph data where it is more compact, for most
cases, than a decomposed relation without interval pointers, though its
worst-case space complexity is the same. We start this illustration with the
formal definition of the sequence map in Section 11.2, continue it by taking
a closer look at the effect of data shape on the interval representation of
related answers in sequence maps (cf. Section 11.3, and conclude with a
study of the space complexity of the sequence map in Section 11.4. We also
briefly glance at some variations of the basic sequence map that allow us
to cover a slightly larger fragment of queries albeit at a slight increase in
the time complexity of most operations on the sequence map (which are
discussed in the next chapter).

2 SEQUENCE MAP: A DATA-STRUCTURE FOR THE

DECOMPOSED REPRESENTATION OF INTERMEDI-
ARY ANSWERS TO TREE QUERIES

To hold intermediary results of tree cores of queries, we define a com-
pact data structure, called SEQUENCE MAP. As sketched above, this data
structure holds (intermediary) results of n-ary tree queries while avoiding
the multivalued dependencies that occur if flat relations are employed for
this purpose. By avoiding these dependencies and storing the results fully

11.2 SEQUENCE MAP: DEFINITION

decomposed, we obtain an exponentially more succinct data structure
than a flat relation.

Additionally, we exploit the properties of the queried data: Where the
data permits (as in the case of trees and cI1Gs), we compact the pointers
(sometimes also called “links”, references, or foreign keys) between the
decomposed representations for bindings of different variables into inter-
vals. For this, we store bindings of each variable as a single sequence with
interval points to related child variables associated to each binding.

Formally, we define a sequence map over the queried data and the (tree)
query to be evaluated. As data, we consider a (slightly extended)* relational
structure D. D is defined over a relational schema X = (R,[U,], ..., Rg[Uk])
and a finite domain N of nodes (or objects or elements or records) in the
data. Each R;[U;] is a relation schema consisting in a relation name and
a nonempty set of attribute names. We assume an equality relation =
on the nodes that relates each node to itself only (identity). D is a tuple
(RP,...,RP,0).Each R is a finite, unary or binary relation over N with
name R;. For a relation R, ar(R) denotes its arity. We extend D with an
order mapping O that associates with each (binary) R; a total order on
N such that all n € rng R; are before all n” € N \ rng R;. We denote with
O(D) ={o0:3R; € D: O(R;) = o} the set of orders to which the relations
in D are mapped. These orders serve to represent the image of each node
in a relation as one or more continuous intervals over the order associated
with that relation. Choosing an appropriate order for a relation is discussed
in Sections 11.3.1 (for tree data) and 11.3.2 (for c1G data).

Note, that we do not assume that all relations in D are extensional. Rather
some might be derived (e.g., as closure) from other relations. See Chapter 5
for a discussion on relations to represent XML and RDF documents and
how to use these relations to translate XQuery and Xcerpt queries into
ClQCAG expressions.

For the example data in Figure 42, appropriate relations are the son-
relation between members of the imperial family, the ruled-relation be-
tween emperors and (newly constituted) provinces. For both relation the
node IDs in Figure 42 give a suitable associated order that allows the repre-
sentation of the relation with a single interval pointer per parent node as
described in Section 11.3.1. We use unary relations to classify nodes by type.
In this case, we use type relations for imperial family members, emperors,
co-emperors, and provinces each. Furthermore, we explicitly represent
names of provinces and family members attached by a name relation.

1 The deviation lies in the addition of order for each relation. Furthermore, we restrict
ourselves to binary relations.

265

Data: binary
relational
structures

Derived
relations

Queries: trees

Sequences

266

SEQUENCE MAP

Figure s53. Selecting all Roman emperors together with their name and ruled
provinces.

A sequence map is used to store intermediate results for one specific
tree query. A tree query, in our context, is any tree over a set of variables (or
query nodes or attributes of the result relation). Each node is a query vari-
able, each edge is labeled with a relation that must hold between bindings
for the query variables connected by the edge. Formally, a query Q, over a
relational schema X using the relation names R, for unary relations and the
relation names R, for binary relations, isatree* (V, Ly, E = VxV,r, Lg).
The set of variables V' serve as nodes of the tree with the root r and are
labeled with (sets of) relation names by Ly : V — 2™ Edges in E connect
pairs of variables and are labeled with the labeling function £: E - R,
connects each edge in Q with a relation name.

Definition 11.1 (Children, Parent, and Relation in Queries). For each
variable (or node) v in Q, we denote with

(1) children(v) = {v' € V': (v,v") € E} the child variables of v;

(2) parent(v) =" where (v/,v) € E, the parent variable of v or 1 if v is
the root.

(3) rel(v) = L((parent(v),v)) the name of the relation between the
parent variable and v or L if v is the root.

In the following, we assume that all relations used in a query Q are also
defined in the relational structure D the query is evaluated against.

Figure 53 illustrates an example query tree with the nodes {1, 2,3}, the
edges {(1,2), (1,3)}, theroot 1, the edge labeling {(1,2) - RULED, (1,3) —
NAME}, and the node labeling {1 — Emperor}.

Bindings for variables are stored in the sequence map fully decomposed,
one sequence per variable.

Definition 11.2 (Sequence). A sSEQUENCE S from some (finite) set N
is a finite sequence on N, or more formally a bijective function from

2 In fact, sequence maps can be used for forest an diamond-free DAG queries, see Sec-
tion 11.5.2. For clarity of presentation, we limit ourselves here to tree queries.

11.2 SEQUENCE MAP: DEFINITION

{1,...,|N]|} to N. For a sequence S, the i*" element of the sequence is S(i)
and is sometimes denoted as S[i] to emphasize that S is a sequence. i is
referred to as index of S[i] in S.

Note, that we allow only duplicate free sequences in this definition, i.e.,
an € N occurs at most once in a sequence S. Therefore, we can denote
with §7'(n) the index of n in S.

For a finite set N, we define the set of all subsequences, denoted SubSeq(N),
astheset {S:{1,...,k} > N': N' c N Ak =|N'| A S bijective}.

We call a sequence S € SubSeq(N) consistent with an order <y over N if
for all n,, n, € N it holds that, if there are i, j with S[i] = n, and S[j] = n,,
then n, <y n, implies i < j. If <y is total, n, <y n, iff i < j.

Finally, any total order on N is naturally represented by a sequence over
N and vice versa:

Definition 11.3 (Induced sequence). Let < be a total order over some
domain N. Then S. is called the induced sequence for < over N if S_[i] =
n e Nwith |[{n" € N:n' <n}| =i. S. is, by definition, consistent with <.

Obviously, computing the induced sequence is the same as sorting N
w.r.t. < and thus has Q(nlogn) time complexity.

Definition 11.4 (Sequence Map). ASEQUENCE MA Pgi’% on an (extended)
relational structure D and a (tree) query Q over D is a mapping from the
set of variables Vars(Q) to sequences of bindings for these variables to
nodes in D. For each variable binding, we also record a set of intervals of
related bindings for each child variable. This way, a binding b for a variable
v (at index i) is associated with a set of triples (v’, s, e) that indicates that
all bindings b’ with index s < j < e for the child variable v’ € children(v)
are related to b.

Let Intervals = {(i, j) € N*>: i < j} be the set of all intervals of integers.
Then, we obtain the following signature for a sequence map:

S 2 Vars(Q) — SubSeq(Nodes(D) — 2Yes(Q)xIntervals)

Note, that in each sub-sequence each n € Nodes(D) occurs at most once
and is associated to a single set of pairs of variables and intervals.

For any v € V, we write sm(v) to indicate the sequence of bindings for
v. With binding(ls)’r%(v) [i]) we denote the actual binding node in the i-th
entry for v (or some distinct value 1 with L > n for all n € Nodes(D) if
i > [sm(v)]), with intervalsvf(gi%(v) [i]) the set of intervals associated with
v' in the i-the entry for v in the sequence map (or @ if i > |Ls)r% (v)]). Finally,
we write Nodes, ([s)n% (v)[1]) to indicate the set of bindings for v' covered
by an interval in intervals, (I;rr%)(v) [i]).

267

Sequence Map:
formal
definition

268

SEQUENCE MAP

In addition to the above signature, we place three further restrictions
D, (
on any sequence map s:

, D,C)

(1) Foreachvariable v and index i, the set of intervals intervals,, (sn% i)
is non-overlapping. A set M of intervals is non-overlapping if, for
each pair of intervals (s,, e,), (., €,) € M, it holds that s, < s, iff
e; <s,.

(2) For each Variable v, child variable v/ of v, and index i, all inter-
vals in Intervalsv (Sm(v)[]) are grounded in Sh. An 1nterva1 (s,e) €
Intervalsvr(sm(v)[]) is grounded in Sifs<e< |Sm(v')|

D,Q . . .
(3) For each v # root(Q), the sequence sm(v) is consistent with the
order associated with rel(v)? in D.

(4) Finally, we record for each sequence map, the set of edges in Q
covered b that sequence map. This set of edges is denoted by
edgeCover(sm) c (dom sm)2 N Edges(Q) c Vars(Q)>. A sequence
map may only contain references between bindings for variable
pairs contained in its edge cover: For each palr of variables v, v’ €
Vars(Q) with binding indices i < [Dm(v)| i’ [Dm(v')| such that
Is?m(v’)[e Nodesvf(srg(v)[]), it must hold that (v, v") € edgeCover(sm)

Together the above restrictions guarantee that, with each binding of a
variable v, there are at most associated | N| intervals over the bindings for
v' € children(v) in a sequence map: The set of associated intervals does not
contain duplicate intervals (since it is a set), each interval covers at least
one index, no two intervals overlap, and all intervals are grounded. Thus
we can, at most, have [[sm)| < |N| intervals each covering one of the
bindings of v/ in the sequence map.

To illustrate the notion of sequence map consider again the query in
Figure 53. The sequence map representing all answers to that query against
the data in Figure 42 is illustrated in Figure 54: From bindings for “Emper-
ors” (i.e., members of the unary type relation Emperor) we reference related
bindings for name and province (where we use the name of the province
instead of the ID for ease of presentation). The relations are expressed as
intervals associated with the abbreviated query variable (N for name, P for
province). Observe, that since the data is c1G shaped and the bindings are
ordered accordingly we need always only single intervals. We abbreviate
single element intervals as standard pointers.

It is worth emphasizing that we allow multiple intervals to represent the
related bindings for a child variable. This is necessary to represent answers
to queries on arbitrary graphs. As discussed in Sections 11.3.1 and 11.3.2,
we can guarantee a single continuous interval for more restrictive shapes

Septimus S.

11.2 SEQUENCE MAP: DEFINITION

conm e TS [
e ryciee
O I e e
S S s

Trajan

Name

Figure 54. Sequence Map: Example. For the query from Figure 53 on the data of Figure 42.

Emperor

< N

70|

Caledonia

{ <

A
A Dacia
DX
A
! Arabia
il A

17

! Mesopotamiq
1’ «

Province

269

270

SEQUENCE MAP

of data, viz. trees, forest, and ciGs. Even for arbitrary graphs the use of
interval pointers is beneficial in many cases, cf. Section 11.3.3.

A sequence map serves as a compact representation of an answer rela-
tion. This relation can be retrieved from a sequence map as follows:

D, . .
Definition 11.5 (Induced relation). Let Sii be a sequence map with associ-
D,
ated edge cover EC. Let U = dom Si = {Vieosvip={veVars(Q): In e
D, D,Q. .
Nodes(D) : n € sn(12(v)} Then St induces a relation R:3 such that

RS ={(bs,..., bi) € Nodes(D)* : Tk e N : Siri(v;) [k] = bin
((vi,vj) €EC = bj € Nodesvj(ls)i%(v,»)[k]))}

Note, that this implies that for pairs of variables that are not in the edge
cover of the sequence map all combinations of bindings are included in
the induced relation.

In Section 12.7, we introduce the sequence map extraction that allows
to extract bindings of one or more variables from a sequence map in form
of a relation. If bindings for all variables in S are extracted, this operation
yields exactly the induced relation.

The empty relation is induced by the empty sequence map, denoted by
g’rﬁg. It is also induced by a sequence map where some of the “links” im-
posed by the query are missing, e.g., if for some child variable all bindings
of its parent variable include no interval pointers to bindings of the child
variable. In this sense, such a sequence map and the empty sequence map
can be considered equivalent:

D, D,

Definition 11.6 (Equivalent sequence maps). Let sn(%1 and sn(%2 be two
, ,Q . . .

sequence maps. We call sm, and sm, equivalent, if they induce the same

relation. However, they may differ, e.g., in the chosen order of elements,

the intervals used, etc.

Note, that a sequence map does not need to map all variables in Vars(Q).
If some variables are not mapped, the resulting answer is incomplete w.r.t.
any constraints in Q involving the missing variables. In other words, absent
variables are ignored when considering the induced relation of a sequence
map. In the following section, we define a class of sequence maps, called
complete sequence maps, that represents an answer relation to a full query
rather than to only a part of a query.

11.2.1 CONSISTENT AND INCONSISTENT SEQUENCE MAPS

Sequence maps store (intermediary) answers to tree queries decomposed.
They are an exponentially more succinct store than flat relations. On flat

11.2 SEQUENCE MAP: DEFINITION

relations, if we restrict bindings of one variable we implicitly affect bindings
for all variables since each tuple in the answer relation represents one
particular assignment of bindings to query variables. Assume, e.g., we
drop all tuples where the binding of v has a value < 10. A binding b’ for
some other variable v' may, however, only occur together with bindings
for v that have value < 10. Thus dropping the above tuples also drops all
occurrences of b’

On sequence maps, however, bindings are stored per variable (or col-
umn of the flat relation). Thus, when we modify bindings for one variable,
bindings for other variables are not implicitly affected, rather these changes
must be explicitly propagated. Details of this propagation are discussed
later in Section 12. Intuitively, in the above case b’ remains among the
bindings of v’ still pointing (assuming, for simplicity, that v’ is the parent
variable of v) to the now dropped bindings for v. However, b’ could be
dropped without loosing any proper answer (there is no way to extend b’
bindings for v’ to full answers). In a sense, such a sequence map is incon-
sistent as there are bindings for v’ that refer to invalidated (or “bombed”)
bindings for v. We can address this in two ways: (1) Immediate propa-
gation: All operations on a sequence map that restrict variable bindings
for one variable (or column) ensure before the conclusion of the opera-
tion that those restrictions are propagated to all possibly affected variables.
(2) Separate propagation from (local) restriction: Operations on a sequence
map may restrict bindings of one or more variables without immediately
propagating the effect to other connected variables. The advantage is that
we can perform a series of restrictions on one or even a subset of the query
variables and only at the end of that series propagate all changes at once.
The disadvantage is that we have to mark temporary inconsistencies and
must ensure that they are propagated at some point. However, we can
simulate the first case by following each operation on the sequence map
immediately by a propagation to all related variables.

In the following, we adopt the second approach since it is more flexible
and requires, for many queries, significantly less propagation operation. To
support this approach we introduce the concept of inconsistent sequence
map, i.e., sequence maps where some restrictions on variable bindings
have not yet been fully propagated.

To distinguish invalidated variable bindings, we mark each invalidated
variable binding with a failure marker 7 from a (finite) set of failure mark-
ers 3% with |B| < |[Nodes(D)|. Furthermore, we extend the signature of a

3 For consistency, we use a set of failure markers to be able to continue to consider a
sequence as duplicate free.

271

Explicit
propagation
and temporary
inconsistency

Inconsistent
sequence map

272

SEQUENCE MAP

sequence map to include failure markers:
Sin : Vars(Q) — SubSeq((Nodes(D) — 2'@s(QxIntervalsy ; i3y

We limit the number of failure markers by the number of nodes in
D, since failed bindings only result from invalidating existing bindings
and a sequence map can, for a single variable, contain at most [Nodes(D)|
bindings. Note also, that we do not need to record related bindings (for
child variables) if a binding is “bombed”. Also, by definition of the induced
relation of a sequence map, failure markers do not affect the induced
relation as all bindings in a induced relation must be nodes from D.

Failure markers address the invalidation of entire bindings for a variable
(e.g., due to additional unary constraints). Another form of local restriction,
however, is the removal of references to bindings of a child variable in the
bindings of a parent variable. E.g., the province of Mesopotamia in the
sequence map of Figure 54 is related only to emperor Trajan. If we remove
the reference from Trajan to Mesopotamia, i.e., change the P interval
of the emperor with ID 4 to 2 — 3 instead of 1 — 3. (or “bomb” Trajan),
Mesopotamia is not any more part of any full answer to the query and
could thus be dropped. So, again, the sequence map retains information
that, if we propagate immediately, could be dropped. We call bindings
such as Mesopotamia dangling bindings. A dangling binding # is direct,
if there is no binding for the immediate parent variable with an interval
pointer covering n. Otherwise it is indirect.

Definition 11.7 (Consistent and inconsistent sequence maps). A sequence
D,
map S is called inconsistent, i (1) it contains any “failed” blndlngs 7€B,
or (2) it contains any “dangling” b1nd1ng, i.e, abinding b € sm(v) for some
. ’ D, Q
variable v such that v" = parent(v), v/ € dom s, and there is no i € N such
D, . C .
that b € Nodesv(sr1(12(v’) [i]). Otherwise it is called consistent.

The notion of equivalent sequence maps immediately extends to incon-
sistent sequence maps (note that the bindings in the induced relation are
from Nodes(Q) excluding #). In Section 12.5.3 we introduce an algorithm
for efficiently propagating changes in a sequence map. Using this algorithm,
we obtain the following result:

Theorem 11.1. Let sm be gn inconsistent se%uence map. Then there is a
consistent sequence map Sm equivalent to sm This sequence map can be
computed in O(§ - n - i) where § = |d0msm| n = |Nodes(D)|, and i the
maximum number of intervals per binding in Sim. For tree, forest, and c1G
datai=1

Proof. See Section 12.5.3. O

11.2 SEQUENCE MAP: DEFINITION

Figure 55 illustrates a more complex sequence map than the one from
Figure 54. It is inconsistent since there are some failure markers and bind-
ing d,, for variable v, is dangling. Furthermore, if the failure markers are
propagated d, for v, is also dropped (there are no proper related bindings
for v, which in consequence makes also d,, in v, dangling.

Even if we consider only consistent sequence maps, there are multiple
sequence maps with the same induced relation: They contain the same
bindings for each variable, but the interval pointers between bindings may
vary as long as they cover the same set of bindings. E.g., in one sequence
map a binding may contain {(v,1,3)} to point to bindings of v, in another
{(v,1,1), (v,2,2),(v,3,3)}, and in yet another {(v,1,2), (v,3,3) }. How-
ever, there is a unique minimal interval representation for the interval
pointers of each binding (here the one of the first sequence map):

Definition 11.8 (Interval-minimal sequence map). A sequence map Sii is
called interval-minimal, if the set of interval pointers for any binding in
St is minimal, i.e., there is no smaller set of interval pointers that covers
the same bindings for each child variable.

Theorem 11.2. A interval-minimal, consistent sequence map is uniquely
identified by its induced relation, i.e., there is no other interval-minimal,
consistent sequence map with the same induced relation.

Proof. Let R be the induced relation of a given sequence map S. Then,
(1) we can not add or remove a binding for any variable v € dom S: If
we add a binding for a single variable, the binding is dangling and the
resulting sequence map is not consistent. If we add a binding and reference
if from some interval pointer of some binding for the parent variable,
the induced relation is no longer the same but contains additional tuples.
(2) we can not extend or shrink, collapse or divide an interval pointer for
a binding n of v € dom S. If we extend an interval pointer i and the added
indices (which are adjacent to i) are covered in the old interval set, then
the original set of intervals is not minimal (as we could collapse i with
the interval pointer covering the adjacent indices). If the added indices
are not covered in the old interval set, we introduce new tuples into the
induced relation. Analog for shrinking, we remove tuples in the induced
relation. For collapsing and dividing, either the original interval set is not
minimal (if we can collapse) or the resulting interval set is not minimal (if
we divide). O

273

SEQUENCE MAP

274

dyy

d18

di,

dll

dio

Figure 55. Inconsistent Sequence Map.

11.3 ON THE INFLUENCE OF DATA SHAPE 275

11.2.2 ANSWERS: CONSISTENT AND COMPLETE SEQUENCE MAPS

Sequence maps may be only a partial mapping of query variables to bind-
ings and thus contain only partial or intermediary answers to a query,
many of which may actually not contribute to any complete answer of the

query.

Deﬁlz)igion 11.9 (Complete sequence map). For a tree query Q a sequence
map si is called complete if (1) all variables of Q are covered by the se-
quence map: dom s = Vars(Q); (2) all relations of Q are covered in all
bindings for the involved variables: for all v,v’ € Vars(Q) it holds that
v = parent(v") if and only if, for all i < [1;|1(12(v)|, intervals, s (Is)r%(v)[z]) +
(3) all relations in the sequence map are covered by the query: forall v, v’ €
Vars(Q) it holds that if there is a i € N such that intervalsvz(si%(v)[i]) * O,
then v = parent(v").

Complete sequence maps can still be inconsistent, though failure mark-
ers can only occur for leaf variables (for inner variables, they violate con-
dition (2) of the definition as there are no related bindings to a failure
marker by definition). “Dangling” bindings may occur for any variable.

In Chapters 13, we show how to translate a tree query Q into sequence
map operations in such a way, that the resulting sequence map represent
the correct answers to Q if evaluated against D. The resulting sequence
maps are always both consistent and complete.

However, before we can compile queries into sequence map operations,
we first need to define those operations in Chapter 12. Before we can define
the operations, we establish a number of properties for sequence maps
on different shapes of data in Section 11.3. With these properties, we can
establish, in Section 11.4 bounds for the space needed to represent (inter-
mediary) results of a tree query in a sequence map for the different kinds of
data. These results are used, finally, to define operations on sequence maps
such as creation of sequence maps, projection, join, union, subtraction,
and propagation to remove inconsistencies, cf. Section 12. We conclude
with a number of variants of the sequence map, in particular, a purely
relational sequence map.

1.3 ON THE INFLUENCE OF DATA SHAPE

Sequence maps are capable of representing (intermediary) answers to tree
queries on any relational structure as defined above. However, when we
pose certain restrictions on the shape of the relations involved, we can
place bounds on the number of intervals required to represent relations

276 SEQUENCE MAP

between bindings of adjacent query nodes and thus on the size of the
sequence map.

11.3.1 EXPLOITING TREE-SHAPE OF DATA: SINGLE INTERVAL POINT-
ERS

Tree data exhibits a number of regularities that have been exploited by
most previous approaches to querying structural relations on tree data:
labeling schemes such as pre-/post-encoding [86, 116]allow constant time,
constant space membership test of tree-shaped relations as well as their
closure (descendant or ancestor in XPath); similarly, twig join approaches
[48] exploit the fact that in tree shaped data, their is at most one parent for
each node in the data and at most d related nodes, with d depth of the tree,
if the closure relation is considered, i.e., at most d ancestor nodes; like twig
joins, we exploit limits on the number of parents and ancestors of a node
in SPEX. Additionally, we observe that, for horizontal closure relations,
the bounds are less favorable, e.g., breadth of tree for following-sibling and
size of tree for following. But also for horizontal relations we observe that
the images for nodes follow certain patterns (e.g., the followings of a node
are a subset of the followings of all its pre-order predecessors).

In the following, we give alternative characterisations of tree-shaped
relations and their transitive closures that allow us to identify in what way
we can order the domain to allow a linear representation of the related
nodes in the given relation. Furthermore, we use these characterisations
to show in Section 11.3.2 how to go beyond tree data and still maintain the
linear representation.

Direct structural To start with, let us consider relations that directly form trees, i.e., direct
relations in structural relations such as child, next-sibling, and next (in the sense of [112]).
trees: image If we look at how the images of nodes are shaped under these relations,

disjointness we can note that the images of two different nodes never overlap. We call

this property image disjointness:

Definition 11.10 (Image Disjointness Property). Let R be a binary relation
over some domain N. Then R is said to carry the IMAGE DISJOINTNESS
property, if and only if, for any two nodes n, # n, € N, it holds that
R(n))nR(n,) =024

We choose this formulation of image disjointness as it immediately
induces a set of orders on N that guarantee that the image of anode n e N
can be represented as a single interval: keep each R(n) together (with

4 Recall, the we denote with R(n) = {n’ e N: (n,n") e R"}.

11.3 ON THE INFLUENCE OF DATA SHAPE

arbitrary “internal” order) but choose an arbitrary order among the R(n).
More formally, Let <4rpisrary be some arbitrary total order on N, <4om some
total order on dom R, and <, a total order on each R(n) for n € domR.
Then < is a total order on N with

n<,n ifm=m'
<={(n,n") € (rngR)* : n e R(m)An" € R(m")A }
m <qom M ifm#m’

All n ¢ rng R either follow or precede the n € rngR.

It is easy to see that a sequence over N consistent with any such order
allows the representation of the images of any node # under R as a single
interval.

In terms of orders on the tree, any breadth-first traversal induces such
an order. Whether the traversal is top-down or bottom-up, left-to-right,
or right-to-left is immaterial. In fact, the order in which the nodes of the
tree are visited is entirely arbitrary as long as the children of each node are
visited together.

The image disjointness property captures exactly all tree- and forest-
shaped relations:

Theorem11.3. Let R be a binary relation over some domain N. Then (N, R)
is a forest iff R carries the image disjointness property.

Proof. Recall, that a (directed rooted) tree is a rooted connected simple
graph with a unique simple path between the root and any other node. A
forest is a disjoint union of trees, i.e., we all multiple roots but each node
is part of exactly one tree. In other words, there is only one root per node
from which that node is reachable and, as in a tree, there is a unique simple
path between that root and the node.

If (N, R) isa forestand n, # n, € N, then R(n,) N R(n,) = @: any node
n’ € R(n,) n R(n,) violates the forest property as it is either, if #,’s root is
different from n,, reachable from multiple roots (i.e., (N, R) is no disjoint
union of trees) or, if n, and #, have the same root, there are two unique
simple paths between the root and »n’ by appending »’ to the path from
the root to n, and to n,.

If R has the image disjointness property, then let roots(R) = {n € N :}
n’ € N:(n',n) € R}. (1) Each node n € N is reachable from at most one
root r € roots(R): If n is directly reachable (a child) from r then it can not
be directly reachable from any other #n’ € N including any r € roots(R)
due to the image interval property and as r is not reachable from any node
in n by definition of roots(R). If n is indirectly reachable from r the same
argument can be made recursively for the nodes in the path from r to n.
(2) For each node n € N, there is a unique path from its root r to n. If

277

278 SEQUENCE MAP

there are two distinct paths from r to # then either n or some node on the
path from r to n lies in the image of two distinct nodes in violation of the

image interval property. O
Structural However, on tree data also closure relations can be represented and
closure tested in linear time and space, e.g., the descendants of a node. In fact, for
relations in any of the structural closure relations such as descendant, ancestor, following,
trees: image following-sibling, etc. we can observe the same. However, the images of two
containment distinct nodes are clearly not distinct in these cases. E.g., the descendants

of a child are always a subset of the descendants of its parent. For all these
relations, the images of two different nodes can overlap, but on tree data
only in a “disciplined” manner: either they do not overlap at all or one is
entirely contained in the other. We formalize this property as follows:

Definition 11.11 (Image Containment Property). Let R be a binary relation
over some domain N. Then R is said to carry the IMAGE CONTAINMENT
property, if and only if, for any two nodes n, # n, € N, it holds that
R(n,) nR(n,) #+ @ implies that R(n,) c R(n,) v R(n,) c R(n,).

Again, given this property we can readily define an order over N such
that the images of each node can be represented as a single, continuous
interval: the containment of images constitute a hierarchy on the domain
of R. As long as that hierarchy is respected by the order, the images of a
node can be represented as a single, continuous interval on a sequence
over N consistent with that order.

More formally, let <,, be some order on R(n) for each n € dom R. Let
direct(n) for some n € rng R be the n” € dom R such that n € R(n') and
there is no n”" € dom R such that n € R(n"") and R(n"") c R(n"). Finally,
let <4om be an arbitrary order on dom R and <;,= {(n,n") € (domR)?:
R(n) c R(n") v (R(n)nR(n") = @An <gom n')}. Then < is a total order
on N with

<m 4 'f — 4
<={(n,n") € (rngR)* : m = direct(n)Am’ = direct(n")A w1 nmem

m<ipgm' ifmz+m'

All n ¢ rng R either follow or precede the n € rng R.
The image containment property captures exactly closure relations over
forest-shaped base relations:

Theorem 11.4. Let R be a binary relation over N. Then R carries the image
containment property if and only if there is a forest-shaped base relation R’
such that R is the transitive closure of R.

11.3 ON THE INFLUENCE OF DATA SHAPE

Proof. If R is the transitive closure of a forest-shaped relation R and
m e R(n), m € R(n"). Then either n is an ancestor of n’ or the other way
round as R’ is a forest, i.e., R(n) c R(n’) or vice versa.

If R carries the image containment property, let R" = {(n,n’) € N> :
R(n")# @AR(n") cR(n)AdmeN:R(n'") c R(m)AR(m) c R(n)}u
{(n,n")e N*:n" e R(n)A I meN:n"eR(m)AR(m)cR(n)}. The
first set represents the hierarchy of the inner nodes, the second set the leaf
nodes. Then (N, R’) is a forest, since (1) leaf nodes I have by definition a
single parent: if there are two n + n’ € N with € R(n) and I € R(n") but
neither R(n) c R(n’) nor R(n") c R(n) (otherwise n or n’ do not fulfill
the condition for parents of lead nodes), then R(n)nR(n") + @ but neither
is subset of the other in violation of the image containment property of
R. (2) inner nodes i have also a single parent: if there are two nodes n, n’
with i ¢ R(n) and i ¢ R(n") but no m,m’ € N with i ¢ R(m) c R(n)
and i c R(m") c R(n"), then R(n) N R(n") # &, yet neither is a subset of
the other. Thus, the image containment property is violated. O

11.3.2 BEYOND TREES: CONSECUTIVE ONES PROPERTY

Tree data, as argued above, allows us to represent relations on that data
more compact, e.g., using various interval-based labeling schemes. Here,
we introduce a new class of graphs, called continuous-image graphs (or C1Gs
for short), that generalize features of tree data in such a way that we can
evaluate (tree) queries on CIGs with the same time and space complexity
as techniques such as twig joins [48] which are limited to tree data only.
Moreover, we show that even skipping and pruning techniques used for
tree data carry over to continuous-image graphs (cf. Section 12.9.1).

Recall from the previous chapter that continuous-image graphs are a
proper superset of (ordered) trees. On trees we require that each node
has at most one parent. For continuous-image graphs, however, we only
ask that we can find a single order on all nodes of the graph such that the
children of each parent form a continuous interval in that order.

Formally, we define a c1G (in Section 10.2) as an arbitrary relation (or
graph) that carries the following property:

Definition 11.12 (Image interval property). Let R be a binary relation
over some domain N. Then R is said to carry the IMAGE INTERVAL
property, if and only if there exists a total order <; on N with its induced
sequence S over N such that for all nodes n € N, R(n) = @ or R(n) =
{S[s],...,S[e] :s < eeN}

This property merely formalizes the above observation that one means
of compacting a binary relation on N (for linear space storage with linear

279

Characterization
of continuous
image graph

cigs: Image
interval
property

280

Deciding the
image interval
property

SEQUENCE MAP

time membership test) is through the use of intervals. Here, we demand
that there is an order and thus a sequence over N that allows us such an
interval representation.

The image interval property is a generalization of both image disjoint-
ness and image containment but characterizes a strictly larger class of
relations.

Theorem 11.5. Let R be a binary relation over some domain N. If R carries
the image disjointness (image containment) property, then R also carries the
image interval property.

Proof. For relation with image disjointness or image containment property,
we choose an order over N as described when defining the two properties.
Together with any such order, R fulfils the definition of image interval
property.]

Theorem 11.6. The image interval property covers a strictly larger class of
relations than either the image disjointness or the image containment prop-
erty.

Proof. Figure 42 as well as Figure 56 show relations that carry the image
interval property but do not carry either image disjointness or image
containment. In general, ciGs allow more freedom in overlapping than
relations with image containment property: two nodes may share some
but not all nodes in their image. However, as discussed above, cf. Figure 41,
they still pose a limit on the sharing. O

It is easy to see, that the weakest of the three properties, image dis-
jointness, can be tested in quadratic time over the size of the domain.
Surprisingly, the same holds for the image interval property: For that we
observe that it is merely another formulation of to the consecutive-ones
property introduced for {o,1} matrices in [97]. A {0,1} matrix is said to
exhibit the consecutive-ones property if its rows may be permuted in such
a way as to make the ones in each column consecutive.

Theorem 11.7. Let R be a binary relation over some domain N. Then R car-
ries the image interval property iff its adjacency matrix carries the consecutive-
ones property.

Proof. Recall, that the adjacency matrix of a binary relation R ¢ N*isa
quadratic {o,1} matrix M where rows and columns correspond to the
nodes in N and M (i, j) = 1iff the nodes corresponding to the ith row and
jth column stand in relation R. Let My be a corresponding matrix for a
relation R. My exhibits the consecutive-ones property if and only if the
image interval property holds for R: Each column represents the images of

11.3 ON THE INFLUENCE OF DATA SHAPE

anode. A permutation of the rows is merely a specific order of the nodes
in N. Thus, if a permutation of the rows exists such that the ones in each
column are consecutive, then an order on the nodes in N exists such that
the images of each node form a single continuous interval on the sequence
of nodes represented by the row permutation. O

For the consecutive-ones problem [40] gives the first linear time (in
the size of the matrix) algorithm based on so called PQ-trees, a compact
representation for permutations of rows (or columns) in a matrix. Consider
the relation represented in Figure 56 as an adjacency matrix. It is neither
forest-shaped (e.g., 1 has many parents: (A,1), (A,2),...) nor does it carry
the image containment property (2 is in image of both A and B but neither
image is a subset of the other).

However, we can compute a PQ-tree for this relation that represents all
permutations of column orders such that the 1s are consecutive in each
row. This PQ-tree is shown in Figure 57. A PQ-tree contains, as the name
suggests, two kinds of inner nodes: Q nodes and P nodes. P nodes indicate
that any permutation of its children guarantees consecutive 1s in each row.
Q nodes indicate that its children must be traversed in order or in the
inverse order. For Figure 57 this means, that the PQ-tree represents the
permutations 4271356, 4271536, 4217356, 4217536, 6357124, 6351724, 6537124,
6531724.

Figure (b) shows one such permutation where, indeed, the 1s are con-
secutive in all rows. It is also easy to see that we can flip 7 and 1, as well as
3 and 5 arbitrarily (they are each identical). And, of course, we can invert
the order of the columns without violating the consecutive ones property.

The PQ-tree algorithm gives us a quadratic decision algorithm whether
any given relation carries the image interval property (details cf. [40]).

Theorem 11.8. Let R be a binary relation over some domain N. Then de-
ciding whether R carries the image interval property and computing a cor-
responding order <; has space and time complexity O(|N|*)

More recent refinements of the PQ-tree, viz. the PC-tree described in
[129, 131], give a slightly simpler test for the consecutive-ones property
(albeit with the same complexity). Figure 58 shows the PC-tree for the
relation in Figure 56. In a PC-tree, we have again two kinds of inner nodes:
P nodes where we can freely permute the children and C (or cyclic) nodes
where we can only traverse the children either in clockwise or in counter-
clockwise order.

281

282 SEQUENCE MAP

A 1 1 o 1 o o 1
B 1 1 1 o 1 o 1

C 1.0 1 0 1 1 1

(a) Adjacency matrix representation of a
sample relation

4 2 7 1 3 5 6

A 1 1 1 1 o o o

o]

o 1 1 1 1 1 o

(6] o 1 1 1 1 1

(b) Consecutive-ones permutation of rela-
tion from (a)

Figure 56. Relation with (1-) interval property

| Q

Lo |
® O ® ® ©

Figure 57. PQ-Tree for Relation in Figure 56

Figure 58. PC-Tree for Relation in Figure 56

11.3 ON THE INFLUENCE OF DATA SHAPE

11.3.3 OPEN QUESTIONS: BEYOND SINGLE INTERVALS

With the image interval property, we now have a characterisation of a large
class of graphs that contains all forest-shaped relations and their closures,
yet covers a substantially larger class of graphs. This characterisation allows
us, as for forest-shaped relations, to use a single interval to represent the
related nodes of any node in a relation carrying the property. Moreover,
deciding whether a relation carries that property is decidable in quadratic
time and gives, as a by-product, an appropriate order. Note, that the deci-
sion is entirely independent of the query and can thus be computed when
storing the relation rather than an query evaluation time.

Bounded Intervals: k-Interval Property

The image interval property ensures that we need at most one interval to
represent the image of a node under a relation. Linear time representation
and linear time membership test, however, can also be achieved if we relax
that a bit more: If there is a (preferably small) k € N independent of | N| that
represents an upper limit to the number of intervals needed to represent
the image of a node, that still gives us a linear space representation and
linear time membership test.

Thus, even for a relation R that carries the k-interval property for a
small k € N we can still profit from the sequence map representation over
a plain relational representation:

Definition 11.13 (Image k-interval property). Let R be a binary relation
over some domain N and k € N. Then R is said to carry the k-IMAGE
INTERVAL property, if and only if there exists a total order <; on N with
its induced sequence S over N such that for all nodes n € N, R(n) = @ or

283

R(n) ={S[s:],.-.,S[e.], S[s2)>--->S[ex],---»S[s1],... S[er] = si < esnl <k}

If we modify the relation as in Figure 59 by adding 4 to the image of
A and 6 to the image of C, the resulting relation does no longer carry
the consecutive-ones property (and thus has no associated PQ-tree). It
carries, however, the 2-interval property as illustrated by the permutation
in Figure 59. Furthermore, it also has a corresponding PC-tree (in fact, the
same as the original relation). This is due to the fact that PC-trees actually
test for the circular-ones property circular-ones property, as defined in
[131]. The circular ones property of a {0, 1}-matrix indicates that there is a
permutation of the rows such that either the os or the 1s are consecutive
in each column. It is called “circular ones” as, the 1s are still consecutive
in all columns if we consider the matrix circular, i.e., after the last row we
continue with the first row.

284

SEQUENCE MAP

Whether there is a polynomial decision algorithm for the general k-
interval property, remains an open question though the test for “circular
ones” points towards a decision algorithm for k = 2. In the following, we
use only the 1-interval property characterising c1G data.

Arbitrary, but Optimal Intervals for Arbitrary Graphs

Even on arbitrary graphs, where we can no longer guarantee liner space
representation and linear time membership test, we nevertheless can often
profit from selecting a suitable order on the nodes of N: for most graph
the number of intervals needed to represent the images of a node is often
much lower than the worst case of O(|N]).

To characterise such an order, we first define the (minimal) interval
representation for a relation R:

Definition 11.14 (Minimal interval representation of a relation). Let R c
N? be a (finite) binary relation and < a total order over N. Let Sc be the
induced sequence over N for <. Then I : dom R — 2/} s called
the minimal interval representation of R over < if (s,e) € I(n) for any
n e domRiff forall s < i < e: (n,S[i]) € R (all elements in the interval
are in R(n)),s =10r (n,S[s—1]) ¢ Rand e = |Sc| or (n,S[e +1]) ¢ R
(there is no larger interval over S, that also fulfils the first condition and
includes (s, e)).

Note, that the intervals in I(#) are non-overlapping and cover R(n)
for each n € dom R. They are non-overlapping, as (s, €,), (5., €,) € I(n)
with s, < s, < e, either e, < e, which means (s,, e,) violates the second
condition of the definition or e, > e, which means both violate the second
condition and (s,, e,) must be included in I(n) by definition.

Using the notion of interval representation, we can now define the
minimal interval representation and thus the cost of representing a relation
by intervals over some given order <.

Definition 11.15 (Interval cost of a relation). Let I € Z.(R) be the minimal
interval representation of a relation R under <. Then we call IN.(R) =
Y nen |I(n)] the size of I and the interval cost for R under <.

This gives us the cost of representing a relation R under an order on N.
What we would like to find, is an order on N with the lowest cost for the
representation:

Definition 11.16 (Interval-optimal order). Let R c N? be a (finite) binary
relation and O the set of all total orders over N. Then an order <€ O is
called interval optimal if its associated interval cost INc(R) is minimal
among the interval costs of all orders over R.

11.3 ON THE INFLUENCE OF DATA SHAPE

Obviously, we can find the interval-optimal order by trying each per-
mutation of the nodes in N. As for the k-interval property, it is an open
question whether there is a polynomial decision algorithm for the optimal
interval order.

For a given order <, however, we can compute a minimal interval repre-
sentation in polynomial time by Algorithm 1.

Algorithm 1: Compute interval representation from relation

input : Relation R total order < over rngR.
output: Interval representation I of R.

1 S « induced sequence for < over rng R;

2 [« ;5

3 foreach n e domR do

4 Intervals < &;

5 start < 1;

6 fori < 1to|S|do

7 if (n,S[i]) € R and start = | then
8 L start < i;

° if (n,S[i]) ¢ R and start # | then
10 Intervals < Intervals U {(start, i —1) } ;
1 start < 1

12 if start # 1 then

13 L Intervals « Intervals U {(start, |S])} ;
u | I« Tu{(n,Intervals)};

s return |

-

Theorem 11.9. Algorithm 1 computes the minimal interval representation

of the input relation R under the order < in time O(n”) where n = |Nodes(R)|.

Proof. Let I be the result of Algorithm 1 for a given R under the order
<and S. the induced sequence over rngR for <. Then I is the minimal
interval representation of R under < as (1) there is an interval (s, e) € I(n)
for each n’ € R(n) such thats < S7'(n") < e (as at each n’ € R(n) either a
new interval is started, 1. 7-8, or an open interval is continued); (2) for all
intervals (s,e) € I(n) and s <i < e, Sc[i] € R(n) (asif Sc[i] ¢ R(n) the
previous interval is closed at i — 1, 1. 911, or start = 1); (3) for all intervals
(s,e) € I(n) eithers =10r Sc[s—1] ¢ R(n) (if S<[s—1] € R(n) then s can
not be the start of an interval as the interval either starts at s — 1, 1. 7-9, or
before); (4) for all intervals (s, e) € I(n) either e = |S.| or Sc[e+1] ¢ R(n)

285

286

SEQUENCE MAP

(onlyif Sc[e +1] ¢ R(n) or we are at the end of the sequence is an interval
added with the current interval position as end index).

Algorithm 1 runs in |[domR| - |rng R| = O(|Nodes(R)|): the induced
sequence can be computed in O(#logn). The main loop (1. 3-14) iterates
over all elements in dom R, the inner loop over the elements of S which
are all elements in rng R. O

11.3 ON THE INFLUENCE OF DATA SHAPE

1 2 3 4 5 6 7
A 1 1 o 1 o 1 1
B 1 1 1 o 1 o 1
C 1.0 1 1 1 1 1

(a) Adjacency matrix representation of a
sample relation with 2-interval property

4 2 7 1 3 5 6
A 1 1 1 1 o o 1
B o 1 1 1 1 1 o
C 1.0 1 1 1 1 1

(b) Permutation of relation from (a) illustrat-
ing the circular-ones property

Figure 59. Relation with 2-interval property

287

288

11.

SEQUENCE MAP

4 SPACE BOUNDS FOR SEQUENCE MAPS

With the above properties of data represented in sequence maps, we can
now give precise characterisations of the space used by a sequence map
sim over a relational structure D and a query Q.

Theorem 11.10. Let St be a se uence map over a relational structure D
and a query Q. Then the size 0fs'r§12 is bounded by O(q-n-i) < O(q-n?*)
where n = |Nodes(D)|,q = |Vars(Q)|, and i is the maximum number of
intervals needed to represent the image of a node n € N under any query
relation R and the order O(R) associated with R in D.

For trees and cIGs, this result immediately gives linear space complexity
for the sequence map as shown in the following Section 11.4.1.

Proof. Recall, the signature of a sequence map from Section 11.2:

sm: Vars(Q) — SubSeq(Nodes(D) — 2"2rs(Q)xntervals)

Each of the g variables in Vars(Q) is mapped to a sub-sequence over
Nodes(D) each of which is associated with a subset of Vars(Q) x Intervals.
Since sequences are by definition (see Section 11.2) duplicate-free, the size
of each sub-sequence over Nodes(D) is bounded by n = |[Nodes(D)|. Thus,
we have at most g - n bindings represented in a sequence map. However,
each binding is associated with a sub-set over Vars(Q) x Intervals the size
of which is bounded by g - i where i is the maximum number of intervals
needed to represent the image of a node n € N under any query relation
R and its associated order O(R).

This indicates a bound of g - n - g - i. However, for each variable v, its
bindings are referenced only from bindings of its parent variable v/, but
not from the bindings of any other variable. Thus, for each variable, we
have at most 7 - i intervals referencing bindings of that variable and the
total size of the associated interval sets is limited by q - - i.

In total, we arrive at a bound of g for the bindings and abound of g- -
for the interval sets and thus at an overall bound of g-n+q-n-i = O(g-n-i).

Note, that i < n, as all intervals are, by definition of a sequence map,
non-overlapping and grounded: Since they are grounded, the largest index
covered by any interval is bounded by 7 (the maximum length of the
sequence of child variable bindings). Since they are non-overlapping, there
are at most 7 intervals to cover a sequence from 1 to n, viz. n intervals of
size 1.

The edge cover associated with a sequence map does not affect the space
complexity: since Q is a tree query, there are at most g — 1 edges in Q and
thus in the edge cover of a sequence map for Q. O

11.4 SPACE BOUNDS FOR SEQUENCE MAPS

Note, that the above result holds for arbitrary relations and tree queries.
It shows that the sequence map provides a polynomial storage for (interme-
diary) answers of tree queries on arbitrary relations, i.e., an exponentially
more succinct storage than flat relations.

11.4.1 LINEAR SPACE BOUNDS FOR TREES AND CIGS

Together with the results from the previous sections we can immediately
infer a number of conditions when the sequence map provides linear data
complexity for answer storage:

Corollary 11.1. Let S be a sequence map over a relational structure D
and a query Q. Let all query relations carry the image disjointness, image
containment, or image interval property together with their associated order
O(R) in D. Then thesize ofl;h(% is bounded by O(q-n) where n = |Nodes(D)|
and q = |Vars(Q)|.

Proof. For relations that fulfill one of these properties, i = 1since the R(n)
can be represented as a single interval for each n € Nodes(D) over the
induced sequence for O(R). m]

Since image disjointness, containment and interval are precise charac-
terisations of tree/forest-shaped relations, closure relations over tree/forest-
shaped relations, or ciG-shaped relations resp., we can also state this result
as follows:

Corollary 11.2. Let'si bea sequence map over a relational structure D and
a query Q. Let all query relations be tree- or forest-shaped, closure relations
over tree- or forest-shaped relations, or c1G-shaped. Then the size of S is
bounded by O(q - n) where n = |Nodes(D)| and q = |Vars(Q)|.

Note, if all variables in Q are answer variables (in other words, if we
evaluate Q by pattern matching in the classification of [190]), this bound
becomes tight if we ensure that only nodes from N are retained in the
sequence map that are actual matches for the full query, cf. Section 12.9
for details and conditions on the data needed to ensure that property.

Analogously, for relations with k-interval property we have at most k
intervals needed to represent the image of each node an thus O(q - 1 - k)
space bound.

Corollary 11.3. Let'si bea sequence map over a relational structure D and
a query Q. Let all query relations carry the k-image interval groperty to-
gether with their associated order O(R) in D. Then the size ojls)’m is bounded
by O(q-n- k) where n = |[Nodes(D)| and q = |Vars(Q)|.

289

290 SEQUENCE MAP

Finally, note that these results hold also for inconsistent sequence maps
as the number of failure markers is bounded by |N| as well as the number
of “dangling” bindings (since the latter are nodes from N).

The space bounds for sequence maps established in this section form
the foundation for the time complexity of the sequence map operations
discussed in Section 12. Before, we turn to the sequence map operations
and thus the clQcAG algebra proper, we finish our discussion of the sequence
map data structure by a brief outlook on variants of the sequence map: a
purely relational variant of the sequence map and a variant of the sequence
map supporting not only tree queries but also some graph queries, viz.
diamond-free DAG queries.

1.5 SEQUENCE MAP VARIATIONS
11.51 PURELY RELATIONAL SEQUENCE MAP

As defined above, the sequence map uses sequences to represent bindings
and associates with each binding a set of variable-interval pairs. Both
are features that are not provided by pure relational databases (though
sequences and order, e.g., are provided in SQL and most practical DBS).

Definition 11.17 (Purely relational sequence map). A purely relational
sequence map, denoted s)in *, over a relational structure D and a query Q is

a set of relations: For each variable v in Q, there is a relation R, € si% * with
schema (index € N, binding € Nodes(D), child variable € children(v), start index €
N, end index € N). Each tuple in R, stores a node binding together with

its index and one interval of related nodes for one child variable.

In contrast to the definition of a sequence map in Section 11.2, we du-
plicate the index and binding node information for each related child
variable interval. To obtain the related bindings of some child variable v’
for a given binding of the parent variable v, we evaluate a range query on
Ry for all tuples with index between start index and end index.

Though general range queries require O(nlogn) time to iterate all
nodes in a given interval, we can exploit in this case the fact that the index
column can be stored as a sequence or ordered relation allowing indexed
access and O(n) time iteration. In this sense, the sequence map as defined
in Section 10.3 can be seen as a specific realisation of the purely relational
sequence map with linear time iteration for related bindings of a given
node.

11.5 SEQUENCE MAP VARIATIONS 291

11.5.2 MULTI-ORDER SEQUENCE MAP FOR DIAMOND-FREE G QUE-
RIES

The above definitions of a sequence map allow only tree queries (or tree
cores of arbitrary queries). However, we can in fact extend the sequence
map approach also to forest queries and even certain classes of DAG
queries. In fact, the above definitions are also amenable to forest queries.
Beyond forest queries, we can still use the sequence map for diamond-free
DAG queries, albeit with a slight modification. Diamond-free DAG queries
are queries in the shape of a DAG where there are no two distinct paths
between two nodes (and thus no diamond-shaped sub-graph). Diamond-
free DAG queries are also used, e.g., in [171, 169] (there named single-join
DAG queries).

If we consider diamond-free DAG queries, there may be nodes in the
query that have multiple parents. However, as for tree queries only the
parent and child nodes are relevant to decide whether a data item is a match
for a query node. The multiple parents, however, may be connected using
different relations, e.g., XPath’s child, descendant, and following relations. In
the above definitions, we only demand that for each relation the continuous-
image property of the data holds. If we have DAG queries this might lead
to different, possibly incompatible orders for the image relations (e.g.,
child needs a breadth-first order to obtain continuous-images vs. depth-
first order for descendant). However, we do not need to “strengthen” the
CIG property for diamond-free DAG queries. Rather, we use the purely
relational variant of the sequence map but add in R, one separate index
column for each different incoming relation of v with incompatible orders
and interval pointers are resolved as range queries over the appropriate
order number.

The downside of this adaptation is that we can now no longer use the
index for ordered storage of the relation as there are several index columns.
Therefore, we have to fall back to general, O(nlogn) time range que-
ries rather than indexed access. For most of the operations discussed in
Section 12, this increases the time complexity with a logarithmic factor.
Moreover, range queries are in most practical SQL database systems not
very efficient, cf. [119], if compared with indexed access.

SEQUENCE MAP OPERATORS

12.1 Introduction and Overview 293
12.2 Interval Access to a Relational Structure 296
12.2.1 Storing and Managing Interval Sets 298
12.3 Initialize (from Relation) 299
124 Combine 302
1241 Join e 304
1242 Union 320
12.43 Difference 324
125 Reduce 328
12.5.1 Project L. 328
1252 Select 330
1253 Propagate 332
126 Rename. 340
12.7 Backto Relations: Extract 341
12.8 Algebraic Equivalences 349
12.9 Iterator Implementation 354
12.9.1 Optimal Space Bounds for Tree Data 359

122 INTRODUCTION AND OVERVIEW

In this chapter, we concentrate on the first set of operators in the ClQcAG
algebra, the operators for constructing and manipulating a sequence map.
The remaining operators are discussed in Chapter 13. The sequence map
operators, summarized in Table 58, roughly fall into three groups: initial-
ization or access operators (Section 12.3) create a sequence map from a
given relation, combination operators (Section 12.4) such as join, union,
and difference combine two sequence maps, and reduction operators (Sec-
tion 12.5) such as projection, selection, or propagation drop some of the
bindings contained in a sequence map. The role of the “odd men out” is
played by the extraction operator (Section 12.7) that returns parts of the

294

Query example

SEQUENCE MAP OPERATORS

access join (conjunction) union difference

f,0(D,Q) H,(D,QR) WD HD kD (s Uss) XSS

projection, rename selection propagation expansion

v (8)s Py, (S) #9(8) BHS). DY) Fu(S)

Table 58. Overview of sequence map operators in CIQcAG (all operators return a
single sequence map S except f which returns a (standard) relation)

induced relation of its input sequence map and plays the bridge between
sequence maps, used in the evaluation of the tree core of a query, and
relations, used in the evaluation of the remaining query, if there is any.

The sequence map operators closely mirror their relational counter-
parts, where such exists. In general, they are defined by reduction to the
relational counterpart on the induced relation(s) of the input sequence
map(s). In contrast to relations, however, sequence maps are, in general,
not closed under union, difference, or even projection, see Section 12.4.
This is addressed by placing certain restrictions on the input sequence
maps for each of these operators.

The three most unusual operators are the sequence map join, propaga-
tion, and extraction. For the two latter operators, the reason is mostly that
there are no relational counterparts. For the sequence map join the main
reason is that we present a number of variants for the sequence map join
with different characteristics. Most notably, we introduce (as we also do
for selection and initialization) both consistent and inconsistent variants
(marked with a 7 as superscript) of the join: The former ensures that a
resulting sequence map is consistent if the input sequence maps are, the
latter allows and in many cases introduces inconsistencies. However, as
discussed in Section 12.4.1, the use of the inconsistent variant actually
yields, in general, an evaluation plan with lower complexity. This is the
case, as we propagate inconsistencies once per query variable rather than
at each join.

To illustrate, how these operators play together to implement a typical
Web query consider again the query in Figure 52 and the spanning tree for
that query shown in Figure 60. Note, that we mark also v, as answer node
(i.e., with a red rectangle [). This is necessary as both v, and v, are used in
the non-tree part of the query. We can evaluate this (spanning) tree query
using sequence maps with many different sequence map expressions (see

12.1 INTRODUCTION AND OVERVIEW 295

Imperial Family Member

Imperial Family Member

‘Emperor’ Imperial Family Member

° qdAL

‘Emperor’

Figure 60. Spanning tree for the query from Figure 52

Section 12.8 for equivalences between ClQcAG expressions formed from
sequence map operators).

One approach is to use the, in most cases more efficient, inconsistent
variants of the operators where possible, at the price of additional propa-
gation operations at the end of the query:

Frav, ("5‘/: (‘th(
(i, (D, Q) &' i, (i, (D, Q) &' iy, (D, @, Emperor))
W i, (D,Q) ' #, (i), (D,Q) ¥ i, (D, Q. Emperor))

Instead of the semi-join operators we could also choose (inconsistent)
join operators. However, we could not replace the inconsistent joins with
consistent ones without adapting also the contained expressions as consis-
tent join operators require that the input sequence maps are consistent.

A variant using only consistent operators is, nevertheless, also possible
and, as expected, even more compact:

Frow, ((By,, (D, Q) ¥y 7y, (Hy, 0, (D, Q) Wy iy, (D, Q, Emperor’)))
e by, (D, Q) %in 7y, (Hy,,, (D, Q) %n i, (D, Q, Emperor)))

Here, we use a join variant (denoted by a n subscript) that allows only
input sequence maps with disjoint edge covers and is slightly more efficient
than the general join, &, which could be employed here as well.

For more examples, see Section 12.8 and 12.9.

The sequence map operators are introduced as sequence-at-a-time oper- Sequence-at-a-
ators, i.e., given one or more input sequence maps they compute all their time vs. iterator
results at once. In Section 12.9, we show how to obtain a iterator-based scheme
evaluation where results are generated tuple-at-a-time. The disadvantage
of that scheme is that we are no longer free to rearrange the expression

296

12.2

SEQUENCE MAP OPERATORS

of the ClQcAG expression, but rather cluster all expressions modifying val-
ues for a certain variable. Also, for general graph or even cIG queries the
benefit of a tuple-at-a-time evaluation is fairly low as there are no bounds
on the number of nodes related to a single node under a given relation
and thus all previously computed answers may still be related to nodes
(matching with their parent variable) that come “later” in the processing.

On tree or forest data, however, there are such bounds: Namely, the
number of parents of a node is limited by 1 for direct tree relations, i.e.,
relations with image disjointness property, and by d for closure relations,
i.e., relations with image containment property, where d is the depth of
the base relation. However, the presence of closure relations still prevents
effective pruning of already considered bindings in a sequence map unless
we assume that the orders associated with the incoming relations of all
pairs of parent-child variables are consistent, i.e., if a node n, is before
another node #, in the parent order, all the nodes in #,’s image are before
or the same as the nodes in n,’s image. An example of such relations are
child and descendant from XPath and, actually, all pairs of base relation and
corresponding closure relation. For queries containing only such order-
compatible relations, we can prune already considered bindings earlier
than in the general case and arrive at a tighter bound for the space used
by their evaluation, viz. O(q - d) which coincides with the lower bound
for such queries shown in [190].

Before we turn to the actual operators, we briefly outline the physical
storage for a relational structure:

In Section 11.2, we define a relational structure D asa tuple (R?, ..., RZ, OP)

over some relational schema (R,[U,],..., R[Ux]). O associates with
each binary relation RID a total order on the (finite) domain.

For the description of the ClQcAG operators, we assume a specific way of
accessing a given relational structure (which provides the logical descrip-
tion of the queried data):

(1) For each order <ye rng OP, we access the nodes of D in the induced
sequence of <y over Nodes(D). Recall, that <y is a total order and thus has
a unique induced sequence that faithfully represents that order. Intuitively,
instead of querying pairs of nodes (#,, n,) with n, <y n, we iterate over
all nodes of D such that a node # is accessed at index i,, where n, <y 1,
iff iy, < ip,.

For each induced sequence of an order <z= OP(R) we also store the
“flip” index flip_, € N such that, for all i < flip_ , S, [i] € rng R and, for

INTERVAL ACCESS TO A RELATIONAL STRUCTURE

12.2 INTERVAL ACCESS TO A RELATIONAL STRUCTURE

all j > flip_,, S, [j] ¢ rngR. Recall, from the definition of a relational
structure in Section 11.2, that in the associated order <y of each relation
R all nodes in rng R precede all nodes not in rng R. Thus, each induced
sequence has a (unique) flip index.

(2) Each binary relation R is accessed through its minimal interval rep-
resentation I(R) over its associated order OP (R). Recall, that a minimal
interval representation maps each node in n € dom R to the minimal set of
intervals needed to represent R(n) over the induced sequence of O (R).

From Theorem 11.9 and the fact that the induced sequence of a total
order can be computed in O(nlogn), we conclude that, even if we store
the relations and orders in D as sets of pairs (or tables), we can provide
the above access in polynomial time:

Corollary 12.1. Let D = (RP,...,R?, 0) be a relational structure and m
be the maximum cost of membership test for R?, ..., RP. Then its physical
storage can be computed in O (k - |[Nodes(D)|* - m).

If all relations in D are extensional, we assume m to be constant and thus
O(k - [Nodes(D)|*) as bound for the computation of the physical storage.

In the following, we assume that the iteration over the induced se-
quences is in O(n), membership test is constant, and the iteration over
the interval representations I(#n) of a single node is in O(|I(n)]).

These time bounds can be achieved for arbitrary relations with associ-
ated order < by storing the induced sequence for each order (at the same
cost as storing the orders itself) and storing for each binary relation its
minimal interval representation. The minimal interval representation I.
can be stored in O(|L|) < O(n - max{|I(n)|: n e dom R} -logn) space
(if we assume constant pointer size, we can drop the logarithmic factor).

For tree, forest, and c1G data, this yields linear space in the number of
nodes in D, for arbitrary relations the same or less space than storing the
relation as a table of pairs.

It should also be noted, that the above time and space bounds can be
achieved for structural relations over tree or forest data using an interval la-
beling of the elements in the tree, e.g., pre/post-encoding [86, 116] or BIRD
[200]: Given two nodes, we can determine in constant time whether they
are child, parent, descendant, ancestor, following, preceding, following-
sibling, preceding-sibling, etc. just from looking at the node labels. We
can also iterate over all, e.g., descendants of a node by a single range query
on the pre- and post-values. The advantage of such labeling schemes is
that they encode an entire set of structural relations using only # - [where
[is the size of a label space. For most of these encodings, [is in the same
order as the size of a pointer to a sequence over #, i.e., [< logn.

297

298

SEQUENCE MAP OPERATORS

In the following, we record bindings for all query variables in the order
associated with the relation the incoming edge of the variable is labeled
with in the query. For root variables we use some fixed, but arbitrary order
<s4." Thus, in a query Q against a relational structure D, we can associate
with each query variable v € Vars(Q) an order <, such that

<std if v root variable
<,=

OP(rel(v,)P) otherwise

12.2.1 STORING AND MANAGING INTERVAL SETS

Bindings in a sequence map may be associated with a set of intervals and
their associated child variables, i.e., a relation over Vars(Q) x N x N. For
each binding and child variable, the intervals are non-overlapping. We
assume that this set is stored partitioned by child variable and, for each
such variable, the non-overlapping intervals are in order of their start
index.

For the sequence map operations, we introduce four algorithms on
such interval sets (or, where convenient, on interval sets for a single child
variable): Adapt, Algorithm 8, slides and/or shrinks a set of intervals with
the help of a change set, that maps indices of the sequence those intervals
reference to a indices of a subsequence of that sentence such that the same
binding is at the position of the index in the original sequence as at the po-
sition of its image in the subsequence. For details, see Section 12.4.1. JoinInts,
Algorithm 9, computes the minimal interval sets representing the join (or
intersection) of the two interval sets. Differencelnts, Algorithm 14, computes
the minimal interval set representing the difference of two interval sets.
Unionints, Algorithm 25, computes the minimal interval set representing
the union of two interval sets. All three algorithms construct the new
interval set ordered by increasing start index.

Note, that all these algorithms are linear in the size of the input sets as
they can exploit (1) that the interval sets are stored in order of their start
index and (2) that the intervals in each set are non-overlapping. The or-
dered storage allows us to avoid sorting the intervals. Thus, the complexity
for these algorithm does not contradict results on interval merge or union,
e.g., in [128].

1 The fixed order ensures that over several constraints for the same root variable bindings
are recorded in the same order. This is exploited in the (merge) join algorithm discussed in
Section 12.4.1.

12.3 INITIALIZE (FROM RELATION)

123 INITIALIZE (FROM RELATION)

The basic operation when constructing a sequence map representing the
answers of a tree query is the initialization of a sequence map from a single
given relation such that the resulting sequence map represents the given
relation. There are two variants of the initialization operation, one for
unary relations and one for binary relations. These are separate as for
binary relations we need to store not only bindings for the two query
variables involved but also interval pointers between those relations.

Initializing a sequence map with a unary relation is essentially the same
as turning a unary relation into a sequence over the order associated with
its query variable. The result is a consistent sequence map such that its
induced relation represents the given unary relation:

Definition 12.1 (Initialization of unary relations). Let D be a relational
structure, Q a tree query, v € Vars(Q), and R a relation with relation name
in £D(v). Then, #,(D, Q, R) returns a consistent sequence map $in such
that

(1) R is the induced relation of gnL\) (represents the unary relation on v)

and

(2) grg .= grﬁ (contains bindings only for v).

The edge cover associated with (D, Q, R) is empty.

Algorithm 2 computes such a sequence map for a given input relation.
The resulting sequence map is consistent as there are no failure markers
(the algorithm does not introduce any and the nodes in S are distinct from
any failure marker) and no dangling bindings (as there are bindings in the
sequence map only for v and, thus, the parent of v, if there is any, is not in
the sequence map’s domain).

At first glance, asking for a consistent sequence map is the obvious
choice for this operator. However, e.g., when the selectivity for a unary
relation is very low, we can actually profit from an inconsistent sequence
map containing an entry for all nodes in D but failure markers where those
entries are not in the given unary relation as this slightly simplifies, e.g.,
the join algorithm (cf. Section 12.4.1). As with all inconsistent versions of
the ClQcAG algebra, the price is that to obtain correct answers, we need
to add specific propagation operators (at the end of the processing), see
Section 12.5.3.

We denote with .uf,(D, Q, R) the sequence map initialization where
we allow also inconsistent sequence maps and realize this operation by
replacing lines 1-7 as follows:

S « induced sequence for <, over Nodes(D) ;

299

Initialization of
unary relations

Dropping
consistency

300 SEQUENCE MAP OPERATORS

Algorithm 2: (i, (D, Q, R)
input : Relational structure D, tree query Q, variable v € Vars(Q),
unary relation R with relation name in £9(v).
output: Consistent sequence map representation of R and associated

edge cover.

1 S <« induced sequence for <, over Nodes(D) ;
2 S, ~ J;

3] <13

4 fori < 1to|S|do

5 if S[i] € R then

6 L S'[j] < S[il;

7 je it

s return {(v,S')}, @

foreach i < 1to |S| do
if S[i] ¢ R then
L L S[i] « ¢
return {(v,S)}
Here, we employ in-place editing of the sequence S and merely “bomb”
entries not in the given relation with a failure marker.

Theorem 12.1. Both, {,(D,Q,R) and #i(D, Q. R), can be computed in
O(n - m) where n = |Nodes(D)| and m is the cost for the membership test
in R.

Proof. Algorithm 2 computes ¢, (D, Q, R). It loops over |S| = |Nodes(D))|
elements of S. For each element, the membership in R is tested. The same
reasoning applies to the modified version of Algorithm 2 for computing

#,(D,Q,R). O
Initialization of For a binary relation, we not only need to record bindings for two
binary relations variables, the relations parent and child variable, but also the interval

pointers referencing related bindings from bindings of the parent variable
to bindings of the child variable. Again, we require that the resulting
sequence map is consistent.

Definition 12.2 (Initialization of binary relations). Let D be a relational
structure, Q a tree query, al)l(zlv vy, v, € Vars(Q). Then ¢, , (D, Q) returns
a consistent sequence map S such that
(1) rel(v,)? is the induced relation of S (represents the relation be-
tween v, and v,) and

12.3 INITIALIZE (FROM RELATION) 301

(2) g’rﬁvhvz =$in (contains bindings only for v, and v,).
The associated edge cover for i, ,, (D, Q) is {(v,,v,)}.

Recall, that by the definition of a sequence map (part (3)), the bind-
ings of v, in ¢, , (D, Q) are ordered by O(rel(v,)?) and those of v, by
O(rel(v,)?).

Algorithm 3 computes such a sequence map in linear time:

Algorithm 3: :l;l'vhvz (D,Q)
input : Relational structure D, tree query Q, variables
v, v, € Vars(Q).
output: Consistent sequence map representation of rel(v,)?.

1+ [« minimal interval representation of rel(v,)? ;
2 S, < induced sequence for <,, over Nodes(D) ;

3 Sl <g;

4 j<1;

s fori<1tolS,|do

6 if I(S,[i]) + @ then

7 L S 01 < ([l I(S[1]) 5

8 j<j+1;
s S, < induced sequence for <,, over Nodes(D) ;

.....

Theorem 12.2. (i, , (D, Q) can be computed in O(n - m;) where n =
|Nodes(D)| and my is the cost for accessing I(n) for any node n € Nodes(D).

Proof. Algorithm 3 computes a consistent sequence map with the induced
relation rel(v,)?: The sequence map is consistent as there are no failure
markers (the algorithm does not introduce failure markers and the entries
in §, and S, are nodes from D, not failure markers) and no dangling
bindings (the parent variable of v,, if there is any, is not mapped; for v,,
each binding has a corresponding binding of v, by definition of flip_). The
induced relation of the sequence map is rel(v,)?: For each pair (n,,1,) €
rel(vz) , 1, is in sm(vl) by the construction of S in line 3-7; n, is in
sm(vz) as all n, € rngrel(v,)" are associated with an index < flip_ by
definition. Finally, since I is an 1nterval representation of rel(v,)P there
isan 1nterval in I(n,) and thus in sm(vl) such that the index associated
with 7, in sm(vz) is in that interval.

Given an interval representation of rel(v,)? and m; time access to I(n)
for each n € Nodes(D), Algorithm 3 runs in time O(n - m;): it loops over

Dropping
consistency

302

12.

SEQUENCE MAP OPERATORS

at most n elements of S,, for each obtaining I(#). The restriction of S, to
elements before flip_ can be done in O([S,]) < O(n) time. |

As for the unary initialization, we can define a variant of the binary
initialization that drops the consistency requirement from the above defini-
tion. We denoted this variant as Mﬁv (D, Q). Algorithm 4 marks bindings
for v, with no related bindings for v, with a failure marker (instead of drop-
ping them) and does not limit S, to only those elements in rngrel(v,)P. It
has obviously the same time complexity as the one computing a consis-
tent sequence map, but operates in-place, i.e., without building a second
sequence for bindings of v,.

Algorithm 4: .Miv (D,Q)

input : Relational structure D, tree query Q, variables
vy, v, € Vars(Q).
output: Sequence map representation of rel(v,)?.

1+ I « minimal interval representation of rel(v,)? ;
2> S, < induced sequence for <, over Nodes(D) ;

3 fori < 1to|S,| do

4 if I(S,[i]) # @ then

s | [Sl < (SHLISLD) 5

6 else

7 L S\[i]< 4

8 S, < induced sequence for <,, over Nodes(D) ;

o return {(v,,S]), (v5,$,) } {(vi,v2)}

4 COMBINE

Once a sequence map is initialized by a single unary or binary relation,
we need to be able to combine multiple sequence maps to evaluate a tree
query containing more than one relation.

The essential operation for combining sequence maps is the join in
analogy to a natural join on relations: take two sequence maps and, for
all shared variables, retain bindings contained in both sequence maps, for
variables occurring only in one sequence map, retain the bindings in those
sequence map. In fact, this corresponds to a join of the induced relations
of the two sequence maps and yields an important property of sequence
maps: They are closed under join, i.e., the join of the induced relations of
two sequence maps can be represented as a sequence map, cf. Theorem 12.9.

12.4 COMBINE

303

S,: s
dy [V, 1] y dy [+ ds 3¢)

S.: I N 4
1° -
dy [v, [1]t y dy _ v d, 12 Vv,

V1 V, V3

Figure 61. Sequence maps for illustrating “separate union” problem

There is no direct analog to the relational cross product, since a sequence
map, in contrast to a relation, may not contain more than one sequence
of bindings for a variable/attribute. If we join two sequence maps with
disjoint domains, the result is, as in the relational case, the cross product
(of the induced relations).

For the evaluation of proper tree queries, join is the only combine oper-
ation needed. However, we also investigate two more combine operations,
union and difference with similar semantics to those for relations. These
allow also queries where some parts are negated or alternatives to other
parts to be evaluated in a sequence map (rather than on the level of flat
relations, cf. Chapter 13). Intersection is omitted as it can be expressed
through union and difference and, moreover, as the natural join yields
intersection if the domain and edge covers of the input sequence maps are
the same.

As for the corresponding operations on relations, we place certain re-
strictions on the shape of the sequence maps allowed in these operations:
At least the involved sequence maps must map the same variables (i.e., the
same nodes of the underlying query are covered) and edge cover (i.e., the
same edges of the underlying query are covered). However, it turns out
that this restriction does not suffice for combining sequence maps with
union or difference:

Consider the sequence maps S, and S, in Figure 61 (S, = {vl ~{(1,d, ~
{(vs 1)) }ve = {(1, d; — {(Va’l’ nH V3 = {(1,d, = g)}}, S, =
{n > {0 do > {1,)N} vs = {(nds = {(v) D vs > {(14ds -
@)}}). The induced relations are R, = {(d,,d;,d,)}and R, = {(d,,d;,ds)}
and R, UR, = {(d,,d;,d,), (d,,d;,ds)}. This is (1) different from the
induced relation {(d,, d;,d,), (d,, d;, ds), (d,,d;,d,), (d,, d;, ds) } of se-
quence map S; which is the result if we “union” the bindings for adjacent

304

SEQUENCE MAP OPERATORS

pairs of variables independently (as we can do for the join). Nevertheless,
S, is the smallest sequence map whose induced relation contains R, U R,.
(2) a relation that can not be represented by any sequence map as it does
not exhibit a lossless-join decomposition into binary relations over each
pair of adjacent variables. In fact, there are no multivalue dependencies
in R, U R,. Similar observations apply for difference, thus yielding the
following result:

Theorem 12.3. The union (difference) of the induced relations of two se-
quence maps is, in general, not an induced relation of any sequence map.

To obtain a union and difference operation on sequence maps that is well-
defined and intuitive w.r.t. the induced relations of the involved sequence
maps, we restrict union and difference to single-variable or single-edge
sequence maps: A single-variable sequence map contains bindings for a
single query variable only (and, thus, has an empty edge cover). A single-
edge sequence map contains bindings for two adjacent query variables v
and v’ and has an associated edge cover {(v,v'}.

On single-variable (single-edge) sequence maps, we can define union
and difference operations such that the result is a single-variable (single-
edge) sequence map and such that the union or difference of the induced
relations of two single-variable (single-edge) sequence maps is the induced
relation of the resulting sequence map.

12.4.1 JOIN

The first combination operator for sequence maps, (sml, sin 2) joins two
sequence maps into one, such that the resulting sequence map represents
the natural join of the two induced relations of the two input sequence
maps. We first introduce a more restrictive variant of the general join that
limits the overlapping between the edges covered by two sequence map.
This allows us to carry over the interval pointers from the input sequence
maps unchanged or only slightly adapted.

Definition 12.3 (Sequence map join (disjoint edge covers)). Let D be a
relational structure, Q a tree query, and S,, S, two sequence maps for D
over Q such that their asséczated edge covers are disjoint. Then % (Sl, S,)
returns a sequence map sm3 such that
(1) theinduced relation of sin sm, is the natural join of the induced relations
ofS and S,, i.e, Rsm Rs, ® Rg,.

(2) Sm3 |d0m S,udom S,
eitherin S, orin S,).

sm3 (contains bindings only for variables mapped

12.4 COMBINE

The associated edge cover for 'b?l'f](Sl, S,) is the union of the edge covers
associated with S, and S,.

Note that this definition yields a sequence map that leaves bindings for
non-shared variables unchanged from either sequence map (correspond
to attributes of their induced relations that occur only in one of the two re-
lations, for these attributes the relational join subsumes to a cross product
and thus retains any combination of the bindings). For shared variables,
only those bindings are retained that occur in both sequence maps. This
also applies to the (interval pointer) references from bindings of a parent
variable v to a child variable v/ of v: They are contained only in one of
the sequence maps (due to the edge cover restriction), for the other se-
quence map the induced relation records any combination of bindings by
definition (cf. Section 11.2).

The restriction on the edge covers on S, and S, is imposed to ensure
that for any pair of variables v, v’ only one of the sequence maps may
contain interval pointers from v to v/, though sequence maps may contain
bindings for v and v'. In other words, each edge of the query is enforced
by at most one of the two sequence maps.

For a given ClQcAG expression, the edge cover of each sequence map
(created as result of any sub-expression) can be determined statically,
without knowledge about the data the expression is to be evaluated against:
For each ClQcAG operation, we define here either how the edge cover is
computed from its input (for combine and reduce operations) or the edge
cover is independent from the input data (initialization). Thus, we can also
statically determine whether a ClQcAG join expression is valid or violates
the edge cover restriction defined above.

The above definition does not demand that the resulting sequence map
is consistent. Therefore, Algorithm 5 computes a sequence map that repre-
sents the join of the induced relations as demanded in the definition of
'bh'li(), but may be inconsistent: It “bombs” bindings not contained in both
sequence maps rather than dropping them entirely. This has the effect that
interval points can remain unchanged (but no reference an interval con-
taining possibly bombed entries). Note, that interval pointers to bindings
of a variable occur only in one of the two sequence maps as the incoming
edge of each variable is unique (since the query is tree-shaped) and the
edge covers are disjoint (and thus the unique incoming edge is only cov-
ered by one of the two sequence maps). This allows line 16 where we simply
throw together intervals from both sequence maps. Finally, observe that
by the definition of the initialization of a sequence map, bindings for the
same query variable occur in the same order in all sequence maps for that
query. Thus the bindings of a variable shared between the two sequence

305

Edge covers:
disjoint

Computing
sequence map
join with
disjoint edge
cover

SEQUENCE MAP OPERATORS

Algorithm s: 'Ea'é (S1,S,)

input : Sequence maps S, and S, with disjoint edge covers
output: Sequence map res representing the join of the induced
relations of the input maps

1 EC, < edgeCover(S,); BC, < edgeCover(S,);
2 AllVars <+ dom S, udom S,;

3 SharedVars < dom S; ndom S,;

4 16S« I3

s foreach v € AllVars do
6 if v ¢ dom S, then res < resu {(v,S,(v))};
7 elseif v ¢ dom S, then res < resu {(v,S,(v))};

8 else //v is in both
// 1is the primary (fallback if v is in neither edge cover)

° iter < S, (v); alt < S,(v) 5

10 if (v/,v) € EC, for some v' then

and edge covers disjoint)

1 | iter < S,(v);alt < Si(v);

12 S« @i, j k<1,

13 while i < |iter| do

14 (n,,1) < nextBinding(S,(v), i);
(n,, j) < nextBinding(S,(v), j); if n, = n, then // Retain
binding if same

15 S[k] = (n,,intervals (iter[i]) u intervals (alt[j])) ;

16 i+ j+s ke

17 elseif n, < n, then // “bomb” if in iter but not in alt

18 S[k] = é;

19 i++; k++;

20 else // skip binding if in alt but not in iter

21 ‘ j++;

23 res < resu {(v,S)};

24

25 returnres

// v is sink in EC,, thus the order and number of entries
must be as in 2 (it can not be sink in EC, as Q tree query

12.4 COMBINE

maps to be joined are ordered the same.

These observations are exploited in Algorithm 5 to give a merge-join
[102] style algorithm for the join of two sequence maps with disjoint edge
cover that has linear time complexity in the (combined) size of the input
sequence maps. Since the bindings are already in the same order, we can
omit the sort phase of the merge join and immediately merge the two
binding sequences. However, we need to ensure that not only the order but
also the number of bindings (and the position of eventual failure markers,
cf. lines 18-20) reflects that for the same variable v in the sequence map
where v’s incoming edge is in the edge cover (lines 9-11).

Algorithm 6: NextBinding(S, i)
input : Sequence S containing, possibly, failure markers and start

index i
output: The next element in S at or after i that is not a failure marker
and its index or (o0, 00) if no such binding exists

1 for j < ito|S|do

2 L if S[j] is not a failure marker then break;

3 if j =S| and S[j] failure marker then return (oo,) ;
4 return (S[j],)

Theorem 12.4. Algorithm 5 computes %% (S,,S,) for sequence maps with
disjoint edge cover and set of shared variables Shared in O(b%9" . i) <
O(|Shared| - n - i) time where b'' is the total number of bindings associ-
ated in either sequence map with a variable in Shared and i is the maximum
number of intervals associated with any such binding. For tree, forest, and
CIG data i = 1, for arbitrary graph data i < n.

Proof. Algorithm 5 computes S = 'D?fﬂ(Sl, S,): For any variable v, if a
binding for v occurs in the induced relation of both sequence maps, it
occurs also in S due to lines 15-17. If v’s incoming edge is in the edge cover
of one of the sequence maps §’, lines 9-11 ensure that the sequence of
bindings for v is the same (except that some bindings are “bombed”) in §
asin §'. For the parent v/ of v, if a binding is retained the set of intervals
from both sequence maps are copied en block. There are only intervals
in 8’ (as (v/,v) is not in the edge cover of the other sequence map) and
thus only those relations between bindings of v and v’ as in the induced
relation of §’ are retained. This is proper as in the induced relation of
the other sequence map all bindings of v are related to all bindings of
v’ by definition of the induced relation. Both input sequences may be
inconsistent: The presence of failure markers in either sequence does not

307

308

Consistent
sequence map

SEQUENCE MAP OPERATORS

affect the correctness of the algorithm: failure markers in alt are skipped,
failure markers in iter are retained (lines 15-17) as intended. Dangling
bindings do not affect the algorithm.

Algorithm 5 loops over all shared variables of S, and S, and for each
such variable it iterates over all bindings in the primary sequence map iter
and corresponding bindings in alt, skipping, if necessary, bindings in alt
not in iter. In the loop lines 13-22 i or j is incremented (possibly multiple
times, if failure markers are skipped in NextBinding) until either i > |iter].
If j ever becomes > |alt| subsequent calls of binding(()alt[j]) return, by
definition, a value larger than all n € Nodes(D).

Thus the algorithm touches, for each shared variable, each entry in either
sequence map at most once (and touches one proper (not a failure mark)

entry in each step of the loop 13-22). Thus it runs in O (b5, - i) where

bl s the total number of bindings in both sequence maps for a shared
variable and i is the maximum number of intervals per binding. This is
bound by O(|Shared| - # - i) for any sequence map (including sequence

maps for arbitrary graphs) as shown in Section 11.4. O

It is worth pointing out, that in a ClQcAG expression for a tree query
any variable is shared at most once for each in- or outgoing edge and for
each unary relation associated with the variable. Thus, even if there are
O(q) joins in the expression, the accumulated number of shared variables
among all those joins is also only O(q) an thus the complexity for only
those joins is bounded by O(q - n - 7).

Consistent Join

In contrast to the map initialization, joining two sequence maps becomes
considerably more complicated if we modify the definition to require that
the resulting sequence map is consistent.

Definition 12.4 (Consistent sequence map join (disjoint edge covers)).
Let D be a relational structure, Q a tree query, and S,, S, two consistent
sequence maps for D over Q such that their associated edge covers are
disjoint. Then % (S,, S,) returns a consistent sequence map sth3 that also
fulfills all the conditions for %7 (S,, S,).

When computing the consistent join sequence map, we have to adapt
the interval referencing from one binding to a sequence of bindings of one
of its child variables. This is necessary even if both input sequence maps
are consistent, as some bindings may occur in one but not in the other
sequence map and thus intervals shrink or even collapse.

We can use the previous algorithm for the possibly inconsistent variant
as a starting point. However, we process now all variables that are either

12.4 COMBINE

shared or from which a shared variable is reachable by edges covered by
the union of the edge covers of the input sequence map. This is necessary,
as changes to one variable v have to be propagated to its parent v/, as some
of the parents bindings may reference only bindings for v that are dropped.
Such bindings for v/ must be dropped and, accordingly, may affect bindings
for the parent of v and so on. These variables are processed in inverse
topological order w.r.t. the edges in the edge covers of the two sequence
maps, i.e., child variables before parent variables. For each variable, we
record how the indices of bindings have changed: Let i be an index for
a binding » of variable v in one of the sequence map. Then, (1) if n also
occurs in the other sequence map, we retain n and log (v, |, i, k) where k
is the new index for n and | is the type of the log entry, here a mapping
for a retained binding. (2) if # does not occur in the other sequence map,
we drop it and log both the index (in the original sequence of bindings
for v) of the next retained entry (with type <) and of the last preceding
retained entry (with type «).

With these change logs we can then adapt the intervals referring to
bindings of v when we process the parent variable for v later (it comes
after v in inverse topological order).

Algorithm 7 gives the computation of the consistent join for sequence
maps with disjoint edge covers and reflects these modifications from Al-
gorithm 5. Note, that for each variable and index there is either a | entry
in the change log or both a <> and a —.

We use an additional helper function Adapt that is detailed in Algo-
rithm 8 and actually applies a “change log” to a set of intervals: For each
interval, we look at the start index. If it has a < entry (and thus the refer-
enced binding is not retained) we set s to the index in that entry, i.e., the
index (in the original sequence of bindings) of the next retained binding.
The same we do for the end index, but with its < entry, if there is any.
After these adaptations, the start and end index might actually overlap
if all bindings in the original interval have been dropped. Note, that the
border cases are covered as we use oo to indicate that the start index is no
“outside” the sequence and o to indicate that the end index is “outside’, cf.
line 21 and 24 in Algorithm 7 if the first element is bombed its < becomes
o and line 26 if the last (or last few) element is bombed.

If that is not the case, the new start and end indices are retained and we
can retrieve their | entries with the indices in the new sequence. Finally, we
ensure that intervals separated in the original sequence by entries dropped
in the new sequence collapse (lines 9—12). This guarantees that the new set
of intervals is actually minimal.

It is worth pointing out, that Adapt requires that the intervals are non-
overlapping (as is guaranteed if they come from a sequence map, by defi-

309

Adapt intervals

310 SEQUENCE MAP OPERATORS

Algorithm 7: %~(S,,S,)

=

18

19
20

21

22
23
24
25
26
27
28

30

input : Consistent S; and S, with disjoint edge covers
output: Consistent sequence map representing the join of the input maps

EC, < edgeCover(S,); EC, < edgeCover(S,); Shared < dom S, N dom S,;
PendingVars < {v € Vars(Q) : v €

Shared v

3J path from v to v/ in Ec, U EC, with v/ € Shared};

res < @; AdaptedVars < @ Log < {(S:, @), (S., @) };

while PendingVars + & do

// Select some variable v without children

v € {v' € PendingVars :3 v € PendingVars : parent(v'") = v'} ;

// last records the start of the current interval of dropped bindings, oo indicates that
there is no such interval

last; < lasty < oojiter < S;;alt « 8558 < & i, j, k < 135

if v ¢ dom S, then iter < S,;alt < 1;

if v ¢ dom S, then alt < L;

while i < |iter(v)| do

I < @&; n, < binding(iter(v)[i]);

n, < binding(alt(v)[j]) or n, ifalt = 1;

// Compute the adapted intervals (if necessary) and “bomb” entry if all
intervals dropped

if (v,v') € EC, U EC, for some variable v/ then

I, < intervals (iter(v)[i]); I, < intervals (alt(v)[j]) or @ ifalt = 1;

I < Adapt(I,, Log(iter)) U Adapt(I,, Log(alt));
if I=@thenn, « o

if n, = n, then // retain binding if same

STK] < (. 1);

// Log: i changes to k; i next good binding for all “bombed” bindings
directly before i (if there are none last; = o0)

Log(iter) « Log(iter) U {(v, !, i, k)} U {(v, =, 1,i) :last; <1 < i}

Log(alt) « Log(alt) u {(v,{,j, k) } u{(v,=>,1,j) :lasty <1< j}i++;

JH+; ks lasty < lasty < oo; // incr. counters; reset last
elseif n, < n, then // skip binding if in iter but not in alt
last; < min(lasty, i); // start of current interval of only “bombs”

// Record the last “good” binding before i

| Log(iter) < Log(iter) U {(v, <, i,last; — 1) }; i++;

else // skip binding if in alt but not in iter
lasty < min(lasty,) ;

Log(alt) < Log(alt) u {(v, <, j,lasty —1)}; j++

set next “good” binding for open “bombed” intervals to oo in Log;
PendingVars < PendingVars \ {v}; AdaptedVars « AdaptedVars u {v};
| res<resu{(v,8)};

copy bindings for variables not in AdaptedVars to res
return res

12.4 COMBINE

nition of a sequence map). The generated intervals are again overlapping
for log entries resulting from Algorithm 7.

For example for the interval set {(v,3,5), (v,7,7), (v,10,12)} over a
sequence from 1 to 12 and the log entries {(v, =, 3,4), (v, <,3,0), (v, |

311

,4:2),(6,,5,7), (v, <,5,4), (v, 1,7,3), (v,=,8,9), (v,<,8,7), (v, 1,9, 4), (v, >

,0),(v,<,10,9), (v,=,12,00), (v,<,12,9),...} (the log is larger but
the remaining entries are not of interest). From the log, we can conclude
that only the bindings for 4, 7, 9 are retained. The interval [3, 5] collapses
to the interval [1,1] (the old 4 is now the 1st binding) and then collapses
with [7, 7] that is now [2, 2]. The interval [10, 12] is dropped entirely. Thus
the adapted set of intervals is {[1, 2]} (note that 9, now 3, is not covered
by the intervals in this set).

Theorem 12.5. Algorithm 8 computes the adapted set of intervals for a given
set of intervals I and a change log L in O(|1|) time assuming constant mem-
bership test in L.

Proof. Note, that L contains for each pair (v, i) either one | or one <
and one < entry. Thus L’s size is bounded by O(q - n) where for a given
sequence map St and constant membership test can be realized by an
array over variables and indices, each cell containing either the | or the <
and < entry, with the same space bound.

The iteration over the intervals in order of start indices (line 4) is linear,
since the intervals are stored ordered, cf. Section 12.2.1.

The algorithm iterates over all intervals in I and for each interval per-
forms a series of membership tests in L or simply copies the interval if
there are no change entries for the involved variable. o

The advantage of () vs. %% () is quite obvious: we get a consistent
and thus in most cases smaller resulting sequence map. The sequence
map computed by F«ﬁ(), on the other hand, most likely contains some
redundancies. This effect is all the more pronounced the more selective
the involved sequence maps are.

However, the computation of %, () is also significantly more involved
than that of %/ (). It requires O(|V| - n) additional space for the change
log. V is the set of variables that are either shared or from which a shared
variable is reachable by edges in the union of the edge covers of the input
sequence maps (PendingVars in line 3). Where %7 () ignores non-shared
variables (and can copy all intervals en-block), & () must touch all shared
variables and their ancestors. For each of these, it iterates over all its asso-
ciated intervals to adapt their start and end index. Thus, the total number
of intervals associated to any binding for a variable in V forms a lower
bound for % (). Algorithm 7 runs in O(b3' - i) where bi5! is the total

Comparison of
the two
approaches

312 SEQUENCE MAP OPERATORS

Algorithm 8: Adapt(Ints, Log)

input : Non-overlapping set of intervals Ints and set of “log” entries
Log as generated from Algorithm 7
output: Set of intervals modified according to Log

1 Newlnts < & ;
// For variables with entries in the “Log”: adapt
> foreach v € 7,(Log) do

3 lastStart < oo; lastEnd < oo;

4 foreach (v, s, € Ints in order of start index do
5 if (v, =, s,next) € Log then s < next;

6 if (v, <, e, prev) € Log then e < prey;

7 if s > e then continue;

// Now there must be | entries for s and e, as — and < entries
always reference “good” entries or co or o which are
excluded above

8 (v, 1,8, Snew)> (V5 1, €, enew) € LOG 5

// If we cannot extend the last interval, add it ...
9 if lastEnd # spey + 1 then
10 Newlnts < NewlInts U {(v, lastStart, lastEnd) };
11 L lastStart = spew 3

// ... otherwise lastStart remains unchanged
12 lastEnd < epey ;

// Collect remaining interval
13 if lastStart # oo then Newlnts < NewlInts U {(v, lastStart, lastEnd) };

// For variables without entries in the “Log”: copy
4 foreach (v,s, e) € Ints with v ¢ m,(Log) do
15 L Newlnts < {(v,s,e)};

6 return NewInts

-

-

12.4 COMBINE

number of bindings for all variables in V in both sequence maps and i the
maximal number of intervals per binding. This is bounded by O(q - n - 1)
where i is the maximal number of intervals per binding. For tree, forest,
and c1G queries i = 1, for arbitrary queries i < #, cf. Section 11.4.

Theorem 12.6. Algorithm 7 computes %(S,, S,) for sequence maps with
disjoint edge cover in O(bi3' - i) < O(q-n-i) time where i is the maximal
number of intervals per binding and bi3"! is the total number of bindings
for shared variables or variables from which shared variables are reachable
by edges in the union of the edge covers of the two sequence maps, n =
|Nodes(D)| and q = |Vars(Q)|. It requires O(|V| - n) additional space for
the change log.

Proof. Algorithm 7 computes S = ¥(S,,S,): A tuple t € Rg, x Rg,, iff
for all variables v with t[v] = n (1) n occurs among the bindings of v in
both sequence maps and thus among the bindings of v in the resulting
sequence map (lines 16-18) and, (2) for all variables v’ with (v, v) in the
edge cover of either sequence map, the interval pointer in all bindings for
v' are adapted using the change log (note that only one of sequence maps
contains bindings for v’ with interval pointers to v since the edge covers
are disjoint. The change log contains a mapping from each index i of S,
to an index k in the result sequence map, if the binding with index i is
retained. Otherwise, it references back and forward to the last previous and
next following index of a binding that is not dropped. Adapt adapts the old
intervals to the new indices. If all bindings in an interval are dropped, the
interval is removed. If all bindings for v in all intervals for a binding n of v/
are dropped (and thus, one of the sequence maps contains no tuples with
bindings for v in any of the intervals for n and thus no tuple containing
n), n is eliminated (cf. line 15 and 19-21).

The result of Algorithm 7 is consistent: There are no failure markers
as the algorithm does not introduce any (and the input sequence maps
are consistent). If there are no dangling bindings in the original sequence
maps, then there are no dangling bindings in the resulting sequence map,
as any binding that is retained and is covered in the original sequence
map is also covered in the new sequence map by the construction of the
adapted intervals (lines 17-18 and lines 21 and 24).

The algorithm loops over the variables in AllVars, each iteration removing
one variable until AllVars is empty. For the inner loop reasoning analog to
Algorithm 5 applies except if the binding is retained: Then we also call
Adapt which requires time linear in the size of the intervals.

As Algorithm 5, the algorithm touches each entry in either sequence
map at most once (and touches one such entry in each step of the loop
13-25), but for each entry it can not copy all intervals en block, but needs

313

314

SEQUENCE MAP OPERATORS

to adapt each interval. Thus it runs in O((bs, + bs,) - i) where bi is the
total number of bindings in a sequence map and i the maximal number of
intervals per binding. This is bound by O(q - n - i) for any sequence map
(including sequence maps for arbitrary graphs) as shown in Section 11.4.
Regarding the space bound, see Adaptintervals and the proof of Theo-
rem 12.5.]

Note that the algorithm actually handles and even corrects failure mark-
ers in the input sequence maps, but does not allow dangling bindings if
the result is expected to be consistent. In other words, we could weaken
the requirement that both input sequence maps are consistent to only that
they do not contain dangling bindings.

Though, at the first glance, the time bounds for the two algorithms are
similar, the above observation that variables in ClQcAG expressions for tree
queries are shared at most once per edge and at most once per associated
unary relation, does not hold. Rather, variables with many descendants
in the query are likely to be considered in many joins, in particular if the
constraints of a query a enforced in bottom-up fashion. In general, this
means that for a ClQcAG expression with g joins evaluating a tree query we
incur a total cost of O(q - q - n - i) for the processing of all joins. This is an
increase by a multiplicative factor g compared to the use of Nﬂ()

If we compare this result with the combination of the possibly inconsis-
tent Mﬁ() with the propagate operator (cf. Section 12.5.3) we can observe
the essential advantage of allowing (temporarily) inconsistent sequence
maps: If we use explicit propagate we can touch and adapt the intervals of
each variable once (after all restrictions for that variable and its descen-
dant variables have been evaluated). With implicit propagate, we have to
potentially “touch” them in each join and thus introduce an additional
multiplicative factor in the order of the size of the query. For details, see
Section 12.5.3.

For the join, as for many of the operators defined in the following, there
is a variant for consistent and a variant for inconsistent variants, the prior re-
quiring consistent sequence maps and returning consistent sequence maps,
the latter allowing any sequence map and returning sequence maps with
possible inconsistencies. All operators for consistent sequence preserve
interval-minimality, i.e., if given interval-minimal, consistent sequence
maps as input, they produce interval minimal consistent sequence maps.
The propagation operator actually ensure that the resulting sequence map
is interval-minimal.

12.4 COMBINE

vy Vv, V3
V1 Vs V3

- d dy ds

A s d, d, d,

Figure 62. Relations R, and R, where join on decomposed relations seems insuffi-
cient

General Join

The second variation of the sequence map join revolves around the restric-
tion to sequence maps with disjoint edge covers. What is the effect if we
allow the edge covers to overlap?

If we relax the edge cover restriction, we allow that both sequence maps
represent some subset of the possible combinations of bindings for, e.g., the
three variables v,, v,, v;. At first glance, this seems to make it impossible
to join such sequence maps and represent the result as a sequence map
(rather than a relation where we track combinations of all variables rather
than only references from v, to v, and, separately, from v, to v;). Figure 62
shows two such relations where we can not join separately: If we consider
only references from v, to v,, we retain the pair (d;, d;). If we consider
only references from v, to v;, we retain the pair (d;, d,) since both pairs
occur in each relation. Thus the resulting sequence map represents the
relation {(d,, d;, d,)} which is different from R, R,.

However, the reason for this behavior is that R, from Figure 62 can actu-
ally not be represented as a sequence map (it does not exhibit a lossless-join
decomposition into binary relations over the pairs of adjacent attributes):
Should we reference d,, ds, or both from d,’s binding for v,? In contrast
to R,, all relations representable as a sequence map actually ensure that if
there is any tuple with (#, n") as bindings for v,, v, then, for any combina-
tion of values for the remaining variables (here v,), there must be a tuple
with (n, n") as bindings for v,, v,, cf. Section 11.2. In our example R, must
be extended with the tuples (d,, d;,d,) and (d,, d;, d;) to be amenable
for representation as sequence map.

This property is what makes it possible to define a variant of the sequence
map join that allows overlapping edge cover yet still computes the join for
each adjacent pair of variables separately. Thus we can define the general
sequence map join as follows:

Definition 12.5 (General sequence map join). Let D be a relational struc-
ture, Q a tree query, and S,, S, two arbitrary (consistent) sequence maps
for D over Q. Then i (S1,S,) (%(S,, S,)returns a (consistent) sequence

315

Relaxing the
edge cover
restriction

Computing the
general
sequence map
join

316 SEQUENCE MAP OPERATORS

map gn% that also fulfills all the conditions for F«'ﬁ (81, S,).

Algorithms for this join variant can be fairly easily derived from the
Algorithms for 'b'a'ré and % : The previous algorithms for a sequence map
join use a union (line 16 in Algorithm 5, line 17 in Algorithm 7) to combine
intervals from both sequence maps, since we know that one of the two sets
of intervals is always empty (otherwise the edge covers overlap) and thus
no further “joining” is necessary. For the general sequence map join, both
sequence maps may contain interval pointers for the same edge and we
have to ensure that only those references are retained for that an interval
pointer exists in both input sequence maps.

Joining intervals To compute %(S,, S,), we modify line 14 in Algorithm 7 to use a new
function Joinints, instead of U to combine the two adapted sets of intervals.
This function is defined in Algorithm 9. First, for variables covered in both
interval sets, we iterate (lines 3-16) in parallel over the two sets of intervals
(that are non-overlapping and thus can be ordered, e.g., by start index).
For each interval, we look obtain the next intervals of the other set as long
as there is an overlapping or the interval is entirely to the right. In the latter
case, we take another interval from the first set etc. For variables covered
only in one interval set, we simply retain the existing intervals. With this
adaptation, we obtain an algorithm for ().

Note, that JoinInts is surprisingly simple as both sets contain non-overlapping
intervals. Thus a simple traversal in the order of the start (or, equivalently,
end) indices is possible. An alternative is the use of an interval tree or, since
our intervals are non-overlapping, even of B-trees indexing start and end
intervals. Though interval trees are, in general, very efficient (logarithmic)
at answering point or stab queries (where we give an index and retrieve all
intervals containing that index), we can exploit here that we are interested
in the full interval cover instead of a single point query. Realizing Joinints
as a sequence of point queries (for all covered indices of a child relation)
is possible, but comes at a higher complexity (by the logarithmic look-up
time factor) than the above algorithm.

The algorithm touches each interval in both sets A and B exactly once.
Each interval in A may be compared to several intervals of B, though all
but the last of these are not compared to any other from interval from A.
In total, this gives a bound of O(|A| + |B|). We assume that the access to
the intervals in order of the start indices (lines 4—5) is constant for each
interval and linear for the entire set. In other words, we assume that the
intervals are stored ordered by the start index (cf. Section 12.2.1).

Theorem12.7. Algorithm 9 computes the join over the set of non-overlapping
intervals I, and I, in O(|L,| + |L,|) time.

12.4 COMBINE

Algorithm 9: JoinInts(Intervals,, Intervals,)

input : Two sets Intervals,, Intervals, of non-overlapping intervals with
associated variables

output: Minimal, non-overlapping set of intervals covering all indices
contained in intervals of both sets

1 Newlntervals < & ;

2 start < 1 ;
3 foreach v € m,(Intervals,) N 7, (Intervals,) do
4 (v, s,, €,) < interval in Intervals, with minimal start index s,;
5 (v, s,, €,) < interval in Intervals, with minimal start index s,;
6 while true do
7 while ¢, < s, do
// Current (s,, e,) do not overlap, get the next
8 Intervals, < Intervals, N {(v,s,,€,)};
9 if Intervals, = & then break 2 (line 6);
10 (v, s,, €,) < interval in Intervals, with minimal start index
$a5

// There is some overlapping

1 if s, < e, then

12 NewlIntervals «

| Newlntervals u {(v, max(s,,s,), min(e,, e,) };

13 if e, < e, ors, > e, then
// Current (s,, e,) do not overlap (any further), get the
next
14 Intervals, < Intervals, \~ {(v,s,,e,)}s
15 if Intervals, = & then break (line 6);
16 (v, 5,, €,) < interval in Intervals, with minimal start index
S15

17 foreach v e m, (Intervals,) ~ 7, (Intervals,) do
18 L NewIntervals < Newlintervals u {(v, s, e) € Intervals, };

o foreach v € 7 (Intervals,) \ 7, (Intervals,) do
20 L NewIntervals < NewlIntervals u {(v, s, e) € Intervals, };

—

21 return NewlIntervals ;

317

318

Inconsistent
general join

Sequence maps
are closed
under join

SEQUENCE MAP OPERATORS

Thus, the use of join interval does not significantly affect the complexity
of Algorithm 7:

Theorem 12.8. Algorithm 7 with Joinints instead of U in line 14, computes
% (8., S,) for sequence maps with disjoint edge cover in O(b'' - i) <
O(q - n- i) time where i is the maximal number of intervals per binding
and b5' is the total number of bindings for shared variables or variables
from which shared variables are reachable by edges in the union of the edge
covers of the two sequence maps, n = |Nodes(D)| and q = |Vars(Q)|. It
requires O(|V| - n) additional space for the change log.

Proof. The modified algorithm ensures that the resulting sequence map
contains a reference from a binding » for variable v to a binding »’ for a
variable v' if and only if both input sequence maps contain such a reference.

In addition to the argument %, we can observe one more case: a pair
of variables v, v’ is in the edge cover of both sequence maps. In this case,
any tuple ¢ in the induced relation of either sequence map with ¢[v] = n
and t[v'] = n’ implies that there is an interval pointer in the set associated
with n among the bindings for v that covers the index of #” in the bindings
of v/. If t is in both sequence maps, such pointers exists in both of them
and ¢ is also in the join of the two induced relations. Then JoinInts ensures
that there is an interval pointers in the new sequence map from # to an
interval containing the index of #n” among the bindings for v'. With the
observation that the same holds for every pair of variables, we obtain that
t is in the induced relation of the resulting sequence map.

The complexity follows from Theorems 12.6 and 12.7. O

For the variant that accepts possibly inconsistent sequence maps as
result, denoted with %? (8., S,), the modifications are a bit more extensive
and move the inconsistent variant closer to the consistent one: we need to
introduce change tracking for the secondary sequence (alt in Algorithm s5)
and use those changes to adapt the intervals in alt so that we can join them
with the intervals from iter (that, as before, do not need to be adapted).
However, as for Algorithm 5 and in contrast to the consistent case, only
intervals of shared variables and their direct parents, but not of other
ancestor variables, must be adopted. The the move from union to Joinints
does not affect the cost for a single variable, however, we also need to cover
direct parent variables. Since each shared variable has a unique parent
(if any), this, nevertheless, increases the required time only a constant
multiplicative factor.

Since we are now able to compute the join of two arbitrary sequence
maps such that the induced relation of the resulting sequence map is the
natural join of the induced relation of the input sequence maps, we can
conclude the following theorem:

12.4 COMBINE

Theorem 12.9. For any two sequence maps S,, S,, the join of their induced
relations can be represented as a sequence map.

As discussed above, the reason this statement holds is that the induced
relations of the input sequence maps themselves can be represented in
a sequence map and thus have lossless-join decompositions to binary
relations over each pair of adjacent variables. Therefore, either a particular
binding pair for two adjacent variables is eliminated from all binding
tuples (if it is only in one of the sequence maps) or from none. In both
cases, the resulting relation still is fully decomposable and thus can be
represented by a sequence map.

Semi-Join

As a convenience, we also introduce a specific (left) semi-join operator
! (81, S,). The definitions and algorithms can be easily derived from the
join operator and are only sketched here. First we adopt the (possibly
inconsistent) definition of % ():

Definition 12.6 (Sequence map semi-join (disjoint edge covers)). Let D
be a relational structure, Q a tree query, and S, S, two sequence maps
for D over Q such that their associated edge covers are disjoint and S, is a
single-variable sequence map. Then ! (8., S,) returns a sequence map
ls)h(i such that
(1) the induced relation of Is)n% is the left semi-join of the induced rela-
tions of S, and S, i.e., R}, = Rg, < Rg,.
(2) grﬁ3 ldom $,udom s, = Is)i'n3 (contains bindings only for variables mapped
eitherin S, orin S,).
The associated edge cover for ! (81, S,) is the edge covers associated with
S,

We limit the second sequence map to a single-variable sequence map to
avoid cases, where the resulting relation no longer exhibits a full join de-
composition and can thus not be represented in a sequence map. Thus, the
semi-join operators is often combined with a projection (see Section 12.5.1)
to a single variable.

We can compute ! by a slightly modified version of Algorithm 5: We
drop line 7 and thus do not retain bindings for variables only in the second
sequence map. Furthermore, in line 15 we only retain intervals from iter not
from alt (i.e., we drop the second operand from the union). The resulting
algorithm computes 5 with the same complexity as Algorithm s.

An analog modification for Algorithm 7 yields a consistent sequence
map (we copy only bindings from the first sequence map in line 26 and

319

320

Union sequence
maps

SEQUENCE MAP OPERATORS

drop I, and all its references in lines 12-15. Again, the change does not
affect significantly the complexity of the algorithm.

12.4.2 UNION

Where the sequence map join requires that only bindings of shared vari-
ables that are contained in both input sequence maps are retained, the
sequence map union, denoted by U(), accepts bindings contained in either
sequence map.

The union (and difference) of sequence maps is defined in the follow-
ing onl for single-variable or single-edge sequence maps. A sequence
map Sifi over a relational structure D and a tree query Q is called single-
variable, iff |dom SM]| = 1. It is called single-edge, iff dom i = {v,v'} and
edgeCover(sm) {(v,v")}, ie, if there i isa single edge in the edge cover
of St and the only variables mapped by Si are that edge’s source and sink.
This restriction allows that union is well-defined and closed over such
sequence maps and in accordance to the union over the induced relations
of their input sequence maps.

Definition 12.7 (Sequence map union). Let D be a relational structure, Q
atree query, and S, S, two single-variable sequence maps or two single-
edge sequence maps for D over Q with dom S, = dom S, and the same
associated edge cover (empty if single-variable, the same single edge if
single-edge). Th(en U(S,,S,) returns a (single-variable or single-edge)
sequence map sim, such that

(1) the induced relation Ry of srg3 is Ryl = Rs, URs,, i.e.,, the union

of the induced relations of S, and S,.
D,Q

(2) Sm3|dom S,udom S,
eitherin S, orin S,).

The associated edge cover for U(S;, S,) is the edge cover associated with S,
and S,, i.e,, either empty if both input sequence maps are single-variable

= grr% (contains bindings only for variables mapped

or the single edge in their edge cover.

The limitation to single-variable and single-edge sequence maps mirrors
the restrictions for relational union (same schema for both relations).
However, the limitation is necessarily stronger, as discussed above.

Algorithm 10 gives an implementation of this operator. Notice, the
similarity and differences to Algorithm 7: Though the main skeleton is
similar, we actually retain bindings in each of the cases in lines 11-22, only
failure markers are skipped (line 10). We also only record | mappings from
old indices to new ones, but no < and — mappings.

If both input maps are single-edge, the child variable is processed first
(by means of line 5) and, for each index of any binding (except for failure

12.4 COMBINE

Algorithm 10: U(S,, S,)

input : Single-variable or single-edge Sequence maps S, and S, as in
Definition 12.7

output: Sequence map res representing the union of the induced
relations of the input maps

1 SharedVars < dom S, (= dom S, ndom S,) ;
2 EC < edgeCover(S,) (= edgeCover(S,));
3 Log < {(S; ~= @), (S, — @) }; res <« @;

4 while SharedVars # & do

5 v e {v' € SharedVars : v’ € SharedVars : (v"',v') € BC} ;

6 S<&i,j k<1

7 | whilei<|S,(v)|orj<|S,(v)| do
// bindings returns oo for index out of bound

8 n, < binding(S, (v)[i]); n, < binding(S,(v)[j]);
// intervals returns & for index out of bound

9 I+
RecreateInts(S,intervals(S,(v)[;]),intervals(S,(v)[j]), Log);

10 if n, = 4 then i++ elseif n, = 7 then JH+

1 else if n, = n, then

12 Log(S,) < Log(S,) u{(v,!,i,k)};

13 Log($.) « Log(Sz) U {(v, 4, js k) }s5

14 i+ s ke

15 else if n, < n, then

16 S[k] < (n,, I);

17 Log(S,) < Log(S,) u{(v,!,i,k)};

18 i++; k++;

19 else if then

20 S[k] <« (71;_,1);

2 Log($,) « Log(Sz) U {(v,4, s k) }s

22 JH+s ks

23 res < resu{(v,9)};

24 SharedVars < SharedVars \ {v};

5 return res

N

321

322

SEQUENCE MAP OPERATORS

markers) for both sequence maps a mapping to the new index is established.
Note, that all interval sets are empty and thus line 9 has no effect. Second,
the parent variable is processed using the change log for the child variable.
Now, there are interval sets pointing to bindings of the child variable
and these intervals are adapted to the new indices in line 9 by means
of Recreatelnts. Algorithm 11 shows how Recreatelnts is realized: For each
variable covered by the passed interval sets (if called from Algorithm 10,
there is always only a single such variable), we recreate the intervals. We
can not simply adapt the intervals as in Adapt, Algorithm 8 (which is
limited by the number of intervals in the input set), since within the range
of an interval additional bindings (from the “opposite” sequence map)
are introduce that are not actually mapped to that parent binding. This is
impossible in the case of join and difference, where we only restrict but do
not extent the bindings contained in each of the input sequence maps.

Algorithm 11: Recreatelnts(S, I, I,, Log)

input : Sequence map S, non-overlapping interval sets I, I,, and
change log Log
output: Set of intervals modified according to Log

1 Newlints <« @& 5
// For variables with entries in either interval set ...
> foreachv € 7,(I,) um,(1,) do

3 i« j« k< 1;start < oo;
4 for k < 1to |S(v)| do
5 n < S(v)[k];
6 (v, },idx;, k) € Log or idx, < o;
7 (v, ,idx,, k) € Log or idx, < o;
8 covered < false;
° if FallsIn(idx,, 7, ,(I,)) then
10 L I, < FallsIn(idx,, 7, 5(1,)); covered < true;
1 if FallsIn(idx,, 7, ;(1,)) then
12 L I, < FallsIn(idx,, 7, ;(I,)); covered < true;
13 if covered = true and start = co then start < k;
14 else if covered = false and start + co then
15 Newlnts < NewlInts U { (v, start, k —1) };
16 L start < oo;
// Collect remaining interval
17 if start # oo then NewlInts < Newints U {(v, start, |S(v)]) }s

s return Newints

—

12.4 COMBINE 323

Algorithm 12: FallsIn(index, I)

input : Index idx and non-overlapping interval set I
output: The interval set I’ containing only those intervals from I that

cover or follow idx, or false if idx not covered by I

1 foreach (s, e) € I in increasing order on start index s do
2 if idx < s then break;

3 if idx < e then return;

4 I<Tu{(s,e)};

// idx is not covered by any interval in I
s return false;

Depending on whether the input sequence maps are consistent (contain
dangling bindings), we obtain the following result:

Theorem 12.10. Algorithm 11 recreates a minimal set of non-overlapping
interval pointers to bindings in a given sequence map S such that the index of
each binding covered by an interval in that set is mapped by a given change
log Log to an index covered in the set of intervals I, or the set of intervals I,.
It computes this set in O(b'2' + |1,| + |L,|) where b'0'%! is the total number
of bindings for variables occurring in I, or 1, if the input sequence maps
contain no dangling bindings, O(b'' - (|1, + |L,|)) otherwise.

Proof. The set of generated intervals is minimal and non-overlapping as
the next index after any end index is either out-of-bound (line 15) or not
covered by any interval (line 12-14) and the previous index before any start
index is either out-of-bound or not covered by any interval (an interval
starts only in line 11 and only if start is co which is only the case at the
beginning of the loop, line 3, or if the preceding index is not covered,
line 12-14). Thus, we can expand neither interval. Also all intervals are by
construction non-overlapping.

For each index k that lies in an interval, there is an old index idx, (or
idx,) such that the old index lies in one of the intervals of I, (or I,), line
9-11. Otherwise, it is not covered by an interval, line 12-14.

For the complexity, consider the loop 4-15 over the bindings for any
variable in 7, (I,) U 7, (I,). For each iteration, we call Fallsin which returns
either the interval covering the index (and removes all previous intervals)
or false.

If the underlying sequence map contains no dangling bindings each
binding is covered by some index and the total run-time is bound by
O(b%'! + |I,| +|1,]) as each call to Fallsin runs in amortised constant time.
If there are dangling bindings, however, for those bindings there is an

324 SEQUENCE MAP OPERATORS

associated old index, but this old index is not covered by any interval.
Thus, in worst case, Fallsin runs in |I| for each call. O

If both input maps are single-variable, we can actually eliminate the
change log and all references to it. We can also eliminate line g entirely,
though Recreatelnts anyway returns immediately in this case as the interval
sets are always empty.

With this observation the following corollary follows directly from
Theorem 12.4 and Theorem 12.10:

Corollary 12.2. Algorithm 10 computes G(S,, S,) for consistent single-variable
or single-edge sequence maps with shared domain Shared and edge cover in
O(bsharedbshared) < O(|Shared|-n*) time where bspapeq is the maximum num-
ber of bindings associated in either sequence map with a variable in Shared.

If either input map is inconsistent O (bspared - Dshared + b?ﬁ;fée . b?ﬁ;fée i) <
O(|Shared| - n* - i) where b?:;fd is the maximum number of dangling bind-
ings associated in either sequence map with a variable in Shared, i is the
maximum number of intervals associated with any such binding. For tree,
forest, and cIG data i = 1, for arbitrary graph data i < n.

There is no specific version that generates consistent sequence maps,
as the above algorithm ensure that the resulting sequence map contains
no failure markers if neither input sequence maps contained any (for
shared variables, failure markers are actually removed due to NextBinding,
for others the existing bindings are copied in line 3-4). Furthermore, if
neither input sequence maps contains dangling bindings, no such bindings
are introduced (all interval pointers remain untouched as do the binding
sequences they reference due to the second condition imposed on the
input sequence maps in Definition 12.7.

12.4.3 DIFFERENCE

The final combination operation for the sequence map removes bindings
from a given sequence map if they are also contained in another sequence
map. We pose much the same restrictions as on the sequence maps serving
as input for the union operator.

Definition 12.8 (Sequence map difference). Let D be a relational structure,
Q atree query, and S,, S, two single-variable sequence maps or two single-
edge sequence maps for D over Q with dom S, = dom S, and the same
associated edge cover (empty if single-variable, the same single edge if
single-edge). Then N(S,,S,) returns a (single-variable or single-edge)
sequence map sm3 such that

12.4 COMBINE

D,Q . . .
(1) the induced relation R of sn(123 is R = R, \ Rg,, i.e., the differ-
ence of the induced relations of S, and S,.
D,Q . T .
ldom s Udom s. = SM; (contains bindings only for variables mapped
eitherin S; orin S,).
The associated edge cover for X(S,, S,) is the edge cover associated with S,
and S,, i.e., either empty if both input sequence maps are single-variable
or the single edge in their edge cover.

N\ can be computed by an algorithm similar to the one for inconsistent
sequence map join with the same time and space properties, cf. Algo-
rithm 13.

It uses a helper function Differencelnts that computes the difference be-
tween two given sets of intervals. Algorithm 13 computes a possibly incon-
sistent sequence map. Since the input is either single-variable or single-
edge we refrain from defining a consistent version as it can be achieved
with the same complexity by a @} followed by @+ where v is either the
single variable covered by the two sequence maps or the child variable in
the edge cover.

Since we only consider single-edge sequence maps, the disadvantages
of the join with overlapping edge sets (in contrast to the one with disjoint
edge sets) are not exhibited by the sequence map difference.

Theorem 12.11. Algorithm 14 computes a minimal, non-overlapping se-
quence of intervals representing the union of two sequences of intervals I,
and I, in O(|L| + |L,|) time and constant additional space.

Proof. Algorithm 14 computes minimal, non-overlapping intervals by the
same observation as for Algorithm 8: an interval is added only, if it is
clear that the next binding after its end index is covered also in the second
sequence map and thus should not be included in the result (line 7 and 11).

The result of Algorithm 14 is the difference of the intervals in the input
sequences: if a binding is covered by an interval in I, but not in I,, then
it is either entirely before any interval in I, (lines 6-8) or it is partially
overlapping (lines 10-13) in which case we split, if some prefix of it is not
covered in I, (line 11) and continue with any suffix (if there is any).

The algorithm relies on the fact that the interval sets are ordered by
increasing start index and non-overlapping. This allows us to infer that, if
an interval from I, lies before the first (remaining) interval from I,, then
it lies before all intervals of I, and vice versa. Thus deciding overlapping
becomes amortised constant rather than linear in the size of the intervals.

Algorithm 14 runs in O(|,| + |I,|) as in each iteration of the loop 3-14
either i or j or both are incremented. Getting the next interval from I, and
I, (line 4-5) is by assumption constant, as is adding an interval at the end
of Nexintervals (lines 7, 11). O

325

326 SEQUENCE MAP OPERATORS

Algorithm 13: X(S,, S,)

input : Single-variable or single-edge Sequence maps S, and S, as in
Definition 12.8

output: Sequence map res representing the difference of the induced
relations of the input maps

1 SharedVars < dom S, (= dom S, ndom S,); res < S;;

if |SharedVars| = 1 then
// Single-variable sequence maps

N

3 let v be the single variable in SharedVars;
4 res(v) « &
5 while i < |S,(v)| do
// bindings returns oo for index out of bound
6 n, < binding(S,(v)[i]); n, < binding(S,(v)[j]);
7 if n, = n, then i++; j++;
8 else if n, < n, then
9 res(v)[k] < (n,,1);
10 L i+4; k++;
u else if n, = 7 then i++;
12 else j++;
13 else

// Single-edge sequence maps

14 let ¢ be the child, p the parent variable in SharedVars;
15 i, j, k < 1;

16 | whilei<|S,(p)|do

// bindings returns oo for index out of bound
17 n, < binding(S,(v)[i]); n, < binding(S,(v)[j]);
// intervals returns & for index out of bound
18 if n, = n, then
19 I < DifferenceInts(7,,(intervals(S,(v)[i])),
7,5 (intervals (S, (v) [1)))s
20 if I = @ then n, < / else res(v)[k] < (n,,I); k++;
21 445 j++;
22 else if n, < n, or n, = 4 then
23 res(v)[k] < (n,,1);
24 i++; k++;
25 else j++;

26 returnres

12.4 COMBINE

Algorithm 14: Differencelnts(Intervals,, Intervals,)

input : Two sequences Intervals,, Intervals, of non-overlapping
intervals (without associated variables) in order of start index

output: Minimal, non-overlapping sequence of intervals covering all
indices contained in intervals of the first input sequence, but
not in the second

1 Newlintervals < & ;

2 i,j, k < 1;

3 while i < |Intervals,| or j < |Intervals,| do

4 (v, 51, €,) < Intervals, [i] or oo if i > |Intervals,|;

5 (v, 5, €,) < Intervals, [i] or oo if j > |Intervals, [;

6 if e, <s, then // (51, €,) before (s,, e,)
7 Newlntervals[k] < (s, e,); k++;

8 i++;

9 elseif e, <s, then j++; // (s, ;) before (s, e;)
10 else // (51, €,) overlaps (s,, e,)
1 if s, <'s, then Newlintervals[k] < (1,5, —1); k++;

12 if e, < e, then Intervals,[i] < (e, +1,¢,);

13 J++s

14 else i++;

15

6 return NewlIntervals ;

-

327

328

SEQUENCE MAP OPERATORS

125 REDUCE

Given a single input map, we can perform several operations on that
sequence map in isolation that drop certain variables (projection), certain
bindings (selection), or propagate changes from bindings of one variable
to those for another (propagate) removing any inconsistencies w.r.t. the
propagated pair.

Sequence maps are closed under projection and propagation, but under
selection only if we allow only conditions that refer only to one variable or
to two variables adjacent in the edge cover of the sequence map.

12.5.1 PROJECT

Projection is defined analogous to relational projection: We retain only
bindings for variables specified in the projection, bindings for other vari-
ables are dropped (including interval pointers to those bindings). Formally,
we define the sequence map projection as follows:

Definition 12.9 (Sequence map projection). Let D be arelational structure,
Q atree query, S a sequence maps for D over Q, and V c dom S a sub-set
of variables in Q such that for each pair (v,v") € V? either v, v’ have no
least common ancestor, lca(v,;v"), in the edge cover of S or all variables
on the path from Ica(v,v") to v and v/, respectively, are also in V.
Then, 7y (S) returns a sequence map s)m3 such that
(1) the induced relation Ry of srg3 is Ry = my (Rs), i.e., the projec-
t10n to V of the induced relations of S.
(2) sm3| doms§ = Is?i&(: Is)n%|v) (contains bindings only for variables
mapped in S).
The associated edge cover for 7y (S) is edgeCover(S) n V2.

The restriction on the shape of V ensures, that there is no variable
with parent in dom § \ V but ancestor in V w.r.t. the edge cover of S. In
that case, the parent must be removed, however, it is needed to represent
which bindings for the ancestor relate to which bindings of the descendant.
Simply dropping the parent’s bindings yields a cross product between the
bindings of ancestor and descendant and thus more tuples than allows
by the definition. The alternative to the restriction is that the resulting
sequence map is no longer over D and Q but over a query Q' and relational
structure D’ such that (1) the variables of Q" are as in Q and the edges are
Edges(Q)~ (V xdom Sudom Sx V') UEdges(Q)nV>u& with E{(v,, vy) €
Vidv,...,vp,edom SNV (vy,v,),..., (vi_y, vk) € EdgesQ}. (2) For
each such edge (v,, vy) € &, there is a new relation name R in the relational
schema for D’ that is the label of that edge in Q' and relation instance

12.5 REDUCE

RP"in D’ such that RP = 7k (Ry Myey Ry w,0y ooy, Ry) if R; s the
relation name of the edge between v; and v;,. In the following, we only
present the first approach.

The above definition allows both consistent and inconsistent sequence
maps as result of 7. However, Algorithm 15 ensures that, if the input
sequence map is consistent, the result is consistent. If the input sequence
map is inconsistent, the result is only consistent, if the inconsistencies are
limited to bindings of variables not contained in the projection set.

Algorithm 15 gives a straightforward implementation for the sequence
map projection: For all variables in the projection set V c dom S we either
copy the bindings of the variable unchanged, if none of its children (in the
edge cover of the input sequence map) are dropped, or copy them retaining
only interval pointers to variables in V (line 7 o,¢y selects those tuples
from intervals (S(v)[i]) that have a variable from V as first component).

Algorithm 15: 7y (S)

input : Sequence map S over a query Q and set of variables
V cdoms$S

output: Sequence map res representing the projection of S to the
variables in V

1 res < & // All variables with a covered edge to a dropped child
> DropParent < {v € V: 3v' e dom S \ V : (v,v") € edgeCover(S) };

3 foreachv e V do

4 if v € DropParent then

5 res(v) < @

6 foreach i < 1to |S(v)| do

7 L res(v)[i] < (binding(S(v)[i]), orev (intervals (S(v)[i])));

s | elseres(v) < S(v);

o return res

Theorem 12.12. Algorithm 15 computes 7y (S) for a sequence map S and
a projection set V. c domS in O(bigel, i +|V]) < O(q-n-i) time
and constant additional space where i is the maximal number of intervals
per binding and bg;g;;éa,em is the total number of bindings for variables with

children indom S \ V.

Proof. The resulting sequence map for Algorithm 15 retains bindings (line
3) and interval pointers (line 7) only for variables from V. For variables
from V neither the bindings nor the interval pointers are touched. To-
gether with the edge cover {(v,v") € edgeCover(S) : v,v' € V} asin

329

330

SEQUENCE MAP OPERATORS

Definition 12.9, this yields an induced relation that is the projection to V'
of the induced relation of the input sequence map.

The Algorithm loops over all variables in V and either copies the bind-
ings unchanged (line 8) or touches each binding and modifies it by drop-
ping the non-V interval pointers (line 4-7), thus touching each (of maxi-
mum i) intervals associated with that binding.

If the data is tree, forest, or c1G shaped, i = 1. O

Note, that each variable has a unique parent, if any, in a tree query. Thus,
even if a CIQcAG expression for evaluating a given tree query drops all
but one variable, whether in a single project operation, or in a sequence
of g — 1 projections, at most g — 1 variables become “drop parents, i.e.,
variables with dropped child variable, over the whole expression and, thus,
the overall complexity for the projections is also bounded by O(g - n - i).

Obviously, the result of a projection is a sequence map and 7y can be
applied to any sequence map S with V c dom S.

12.5.2 SELECT

Sequence map selection we also based on relational selection: We retain
only bindings that fulfill a given selection condition. However, in contrast
to relational selection, conditions may not relate multiple variables. Rather
each condition may only reference a single variable from the query. This
restriction is necessary to ensure the tree query property, where only
relations between variables adjacent in the tree query are allowed. Consider,
e.g., the sequence map S shown in Figure 63: A selection on the induced
relation of S with a condition v, = v, (reading = as node identity) yields the
relation {(d,,d;,d,), (d,,d;,d,)}. This relation can not be represented
as a sequence map, since it can no longer be decomposed into binary
relations over the pairs of adjacent variables without loss: only the d, (not
the d,) binding for v, remains related to the d, binding for v,. However,
both remain related to d, (as (d,, d;, d,) remains in the relation). Thus,
either we allow also (d,, d;, d,) (and (d,, d;, d,) by retaining an interval
pointer 1-2 in d, or we drop all references from d, to bindings for v;, thus
yielding a sequence map representing the empty relation.

Thus we define the sequence map selection as follows:

Definition 12.10 (Sequence map selection). Let D be a relational structure,
Q a tree query, S a sequencé maps for Dover Q, and c a single atom
containing (possibly mugigle) references to a single variable. Then Jf (S)
returns a sequence map sin, such tglgt
(1) the induced relation R3¢ of sm; is Ry = 0c(Rs), i.e., the selection
on ¢ over the induced relations of S.

12.5 REDUCE

4

I
1
1
i |
1
- 1
I

o
d, [V.JE 1] v d, ,, d,
N v

-

Vi Vs V3

Figure 63. Sequence maps for illustrating the single-variable condition restriction
for &

(2) grﬁi ldoms = [s)n% (contains bindings only for variables mapped in S).

The associated edge cover for 0{, (S) is the same as for S.

We allow in the definition only a single atom, since conjunctions, dis-
junctions, and quantification can be achieved by combining selection with
union, join, or difference. As a convenience, we can easily extend ¢ to con-
junctions and/or disjunctions of atoms, all over the same single variable,
without changes to the algorithms and results.

Algorithm 16 gives a straightforward implementation for the inconsis-
tent case: Here, we merely “bomb” all bindings where ¢ does not hold if
we replace v with its binding in ¢ (line 3). Since the number and order of
bindings is untouched, the interval pointers can remain unchanged (but
now possibly point to some or all failure markers).

Algorithm 16: 57 (S)
input : Sequence map S over a query Q and condition ¢ on variable
v edom$S
output: Possibly inconsistent sequence map res representing the

selection of only bindings for v from S matching ¢
1 1es < S5

» foreach i < 1to |res(v)| do
s | if ~c{v/res(v)[i]} then res(v)[i] < 4

4 return res

Theorem 12.13. Algorithm 16 computes Eé(S)for a sequence map S and
a condition ¢ over a single variable v in O(b, - m.) < O(n - m.) time and
constant additional space where m. is the maximum time for evaluating ¢

331

332

Consistent
sequence map
selection

SEQUENCE MAP OPERATORS

if all references to v are replaced by a binding for v in S and b, the number
of bindings for v in S. For most conditions, m, is constant.

Proof. Algorithm 16 computes 3{,(8): No v binding for that ¢ does not
hold is retained (line 2-3). All bindings for other variables are untouched
(line 1).

It is obviously bounded by the number of bindings for v in § (line 2),
for each of which c¢ is evaluated in line 3. O

Definition 12.10 allows the input to be inconsistent and a inconsistent
sequence maps as result of . As for most other operators, we can drop this
restrictions and require consistent sequence maps as input and result. We
denote the resulting operation with . The required changes are similar to
the case of the sequence map join (cf. Section 12.4.1): We introduce a change
log for the changes applied to the variable v involved in ¢ and use this
change log to adapt the intervals of the parent variable of v. Since we may
also drop bindings for the parent variable (where all related bindings for v
are dropped), we need to propagate such changes upwards in the query to
all ancestors to v. The corresponding algorithm is given in Algorithm 17
and shows roughly the same relation to the above Algorithm for & as
Algorithm 7 to Algorithm s.

Theorem 12.14. Algorithm 17 computes 0y (S) for a consistent sequence
map S and a condition c over a single variable v in O (b3 (max (i, m.)) <
O(g-n-max(i, m.)) time and O(n) additional space where m_ is the max-
imum time for evaluating c if all references to v are replaced by a binding for
v in S, i the maximum number of associated intervals for a binding in S, and
bi9'! the total number of bindings for all variables in V = {v' € dom S : 3
path from v’ to v in edgeCover(S)}.

12.5.3 PROPAGATE

As discussed above, in particular for the sequence map join in Section 12.4.1,
many of the previous operators are easier to implement with better com-
plexity if we allow the results to be inconsistent. Though this advantage
may, to some extent, be offset by the increase in result size, if the involved
operations are selective, we can still profit in many cases from inconsis-
tent sequence maps: Instead of propagating changes from a often small
subset of variables involved in an operation to all variables after each oper-
ation, we propagate these changes once at the end of an entire sequence of
operations.

For some operations, however, a consistent sequence map is either re-
quired or beneficial. This is particularly true for f, which extracts bindings

12.5 REDUCE

Algorithm 17: 5.(S)

-

10

-

1

-
N

13
14
15
16
17
18
19
20
21

22

23

24

25
26

27
28

29

input : Consistent sequence map S over a query Q and condition ¢
on variable v € dom S

output: Consistent sequence map res representing the selection of
only bindings for v from S for which ¢ holds

EC < edgeCover(S);
res < S;

// Process the selection variable
res(v) < @ k < 1; Log < @; last « oo;
fori < 1to |S(v)| do
if c{v/S(v)[i]} then
res(v)[k] < S(v)[i];
Log < Logu {(v, 4,5, k)}u{(v,=>, 1, i) :last< I <i};

k++; last « oo;

else
L last < min(last, i); Log < Log U {(v, <, i,last—1) };

if last # co then

L Log < Logu {(v, =, 1, 00) :last < I < |S(v)|}
// Process the ancestors of the selection variable
Ancestors < {v' € dom S : 3 path from v’ to v in EC}
foreach v’ € Ancestors in topological order w.r.t. EC do
NoDrop < true;
res(v') < @ k < 1; last « oo;
fori < 1to |S(v')| do
I < Adapt(intervals (S(v")[i]),Log);
if I = @ then
last < min(last, i);
Log < Logu {(v', <, i,last —1) };

NoDrop <« false;

else
res(v')[i] < (binding(S(v")[i]),1);
Log « Logu {(v', 1, i, k) u{(v,=>, 1, i) :last< I <i};

k++; last < oo;

if NoDrop then break;
if last # oo then
L Log « Logu {(v',—=,1,00) s last < I < [S(V)[}

return res

333

334

SEQUENCE MAP OPERATORS

for some variables from a sequence map. Consider, e.g., that we are in-
terested only in the bindings of a single variable v. If the given sequence
S map is consistent, it suffices to return the bindings in S(v), without
even considering the other variables or the relation of them to v. This
is possible, since every binding n € S(v) occurs in at least one tuple of
the induced relation of S (i.e., can be extended to a full answer if S is
complete). If, however, S may be inconsistent, a binding #n € S(v) (or, for
that matter, its parents or their parents ...) may be dangling in which case
there is no binding for v’s parent and n does not contribute to a tuple in
the induced relation. If # is a failure marker, it does not contribute to the
induced relation by definition and, worse, bindings for v’s parent may only
be related to failure markers among the binding for v and thus, in fact,
also not contribute to the induced relation.

To enable this mode of processing, we require explicit propagation
operators, that, progressively, ensure that a resulting sequence map is
consistent. For the two types of inconsistency, two different operators are
provided:

(1) @}(S) removes all failure markers from the bindings of v and, if
there is a parent v/ of v covered by S, adopts the interval pointers of v
accordingly. This may lead to some bindings of v/ without related bindings
for v. These bindings can no longer contribute to a tuple in the induced
relation of S and are thus “bombed”. This way we move the consistency up
one level in the (tree) query, from v to its unique parent v'. Since v’ is the
only variable whose bindings have interval pointers to bindings of v, no
other variable is directly affected. However, to remove all failure markers
from S, we need to perform @3 (S) for all variables covered by S in inverse
topological order (i.e., child before parent).

(2) @+(S) discovers and removes all “dangling” bindings of v. Note,

that this may affect the interval pointers from v’ = parent(v) to v: They
may “slide” to the left, as “dangling” bindings for v are removed from the
beginning of the binding sequence S(v), and merge with the previous
interval(s), if all the intermediary bindings are dangling. The number of
related bindings of v, however, remains unchanged for each binding of
v'. Therefore, the sequence of bindings for v’ remains the same, only the
interval pointers change. To remove all “dangling” bindings from S, we
need to perform @+ for all non-root variables covered by $ in topological
order (i.e., parent before child).
If we perform first @} (S) for all variables by S in inverse topological order,
then @+ (S) in the inverse order, the resulting sequence map is consistent,
see Theorem 12.17.

Formally, we define the up-propagation operator as follows:

12.5 REDUCE

Definition 12.11 (Sequence map propagation). Let D be a relational struc-
ture, Q a tree query, S a sequence maps for D over Q, and™v € dom S a
variable covered by S. Then @} (S) (@+(S)) returns a sequence map Lsni
such that:
(1) the 1nduced relatlon Ryt of sm3 is unchanged, i.e., R3¢ = Rs.
(2) sm3 ldoms = sm3 (contains bindings only for variables mapped in S).
For &+ (S) in addition to 1 and 2 it also holds that
(3a) there are no failure markers in sm3 (v) (among the bindings for v).
For &+ (S) in addition to 1and 2 it also holds that
(3b) there are no direct dangling bindings in sm3(v) i.e., no bindings of
v that are not covered by some interval pointer of a binding for v’s
parent in the edge cover of S, if there is such a parent.
The associated edge cover for @4 (S) (@+(S)) is the edge cover of the input
sequence map.

Note that, for of @+ (S), if v is a root node in Q or v/ = parent(v) in Q but
(v',v) ¢ edgeCover(S), the above condition (3b) implies that no binding
of v is dangling.

We require that w.r.t. v (and only v) the result of @4(S) (@+(S)) is
consistent wrt. failure markers (direct dangling bindings) even if S contains
failure markers (direct dangling bindings) for v. However, for all other
variables there may still be (direct) dangling bindings or failure markers.
In fact, to remove failure markers from the bindings of v we need, in
general, to adapt the bindings of any variable with an edge to v in the edge
cover. Since Q is a tree query, there is a single such variable, v'. When
we adapt the interval pointers referring from bindings of v’ to bindings
of v, we may end up with bindings for v’ with no corresponding binding
for v. Those bindings are then “bombed”. Thus, we may actually introduce
failure markers for v'. Those failure markers may, e.g., be propagated and
removed by a later @,%(S") where S’ is the result of @}(S).

Algorithm 18 shows in detail, how to compute @*. It is, basically, the
“consistency” component of Algorithm 7 for a single variable. It is divided
in two phases, one for v and one for its parent, if there is any: (1) In lines 2-
9, we remove all failure markers from S(v) and store the result in §’. This
yields a change log mapping indices for bindings in S(v) to indices in S’.
The change log is shaped exactly the same as the change log for Algorithm 7:
For each retained binding a | entry associating the old index to the index
in §'. For each dropped binding (i.e., failure marker), a < and a — entry
referencing the index of the last preceding and next following retained
binding. (2) This change log is used in the second phase, lines 10-16, to
adapt each of the interval pointers from bindings for v’ to bindings for v.
At the end of phase 2 all intervals reference now indices in S’ rather than in

335

336

SEQUENCE MAP OPERATORS

S(v). Note, that, if all interval pointers of a binding are dropped (because
they pointed only to failure markers), that binding is itself “bomb’ed (line
13).

Algorithm 18: @} (S)
input : Sequence map S over a query Q and variable v € dom §
output: Sequence map res representing the induced relation for S

with no failure markers among the bindings of v

=

EC < edgeCover(S); res « S;

// 1—Child Phase: For v, remove failure markers
2 8« @ k < 1;L0g < @; last « oo;
fori < 1to|S(v)| do
4 | if S(v) =7 then last < min(last, i);
Log < Logu {(v, <, i,last —1)};

[

5 else

6 S'[k] < S()[i];

7 Log « Logu {(v,{,i, k) u{(v,=>,1,i):last< I <i};
8 k++; last < oo;

o if last # oo then Log < Logu {(v,=,1,00) :last <1 < |S(v)|}

// 2—Parent Phase: For parent v', shrink intervals
w0 if (v/,v) € EC forav' € dom S then

1 take that v/ (there is at most one);

12 res(v') « &

13 fori < 1to|S(v")| do

14 I < Adapt(intervals(S(v')[i]), Log);

15 if I = @ then res(v')[i] < #; // We introduce a failure
marker!

16 else res(v')[i] < (binding(S(v")[i]),1);

17 return res

Theorem 12.15. Algorithm 18 computes @3 (S) for a sequence map S and
variable v € dom S O(b, + b, - i) < O(n - i) time and O(b,) < O(n)
additional space where i is the maximum number of associated intervals
pointing to v for any binding in S, and b, (b,+) the number of bindings for
v (v if v’ e dom S with (v',v) € edgeCover(S) or o otherwise) in S.

Proof. Algorithm 18 computes a sequence map S’ such that S’(v) contains
no failure markers. It contains no failure markers due to line 4.
S’ has the same induced relation as the input sequence map, as only

12.5 REDUCE

failure markers are dropped which do not contribute to a tuple contained
in the induced relation by Definition 11.5.

Phase 1 of the algorithm runs in O(b,) time as it iterates over all bind-
ings for v in S. For each such binding, the entry is copied to the new
sequence map and the change log is updated (in constant time).

Phase 2 runs in constant time if there is no parent in Ec, otherwise in
O(b, - i) time, as it iterate over the bindings for v in S. For each such
binding, they call Adapt which runes, by Theorem 12.5 in time i where i is
the maximum number of intervals pointing to v associated with a binding
of v' (which are the only bindings pointing to v). O

For @v, we obtain a similar algorithm 19 with three phases: In the first
phase, the skip index for the parent v' of v (if there is any) is created: It
contains for each index i of a binding of v the maximum end index of
any interval pointer starting at i and associated with a binding of v'. The
second phase uses the skip index find all dangling bindings in a single
pass over the bindings of v. In a third phase, the interval pointers from
v’ to v are slided (and, possibly, merged) to adapt to the new sequence
of bindings for v. In detail: (1) In the first parent phase, we build a skip
index Skip that initially points to o for all indices in §’. Whenever we find
an (adapted, i.e., already pointing to S’) interval that starts at an index s,
we set the skip index for s to the maximum of its current value and the
end index e of the interval.

At the end of phase 2 the skip index records, for each index i, the
maximum end index of any interval that starts at 7 (or o if there is none).
(2) The skip index is used in the second phase, lines 17-25, for a second
pass over the bindings of the child variable. Here, we consider for each
binding, if it lies within a interval of one of the bindings for the parent
variable. This is recognized using the skip index: maxEnd always points to
the highest end point of any interval whose start index we have already
passed. If maxEnd is smaller than the current index and the current index
is not a start index (Skip(i) = o), we have found a dangling binding that
must be eliminated. Otherwise, we copy the binding and update maxEnd
(with the maximum end index of an interval that starts at the current
index, if it is larger than maxEnd). (3) Finally, in a third phase we slide the
intervals of all bindings for the parent variable to adapt to the changes to
the sequence of bindings for the child variable in the previous step. Note,
that this step does not introduce any new dangling bindings, as intervals
do not shrink in this phase, but only slide since the bindings associated
with start and end indices can not have been dropped in the previous
phase (they are, after all, covered by at least the current interval). Thus,
there are | entries in the change log for them (line 24) and the interval

337

338

SEQUENCE MAP OPERATORS

is simply slided according to those entries and possibly collapsed with a
previous interval (if the only bindings between the two intervals have been
dangling bindings and thus dropped in the previous phase.

Algorithm 19: &+ (S)
input : Sequence map S over a query Q and variable v € dom S
output: Sequence map res representing the induced relation for S

with no direct dangling bindings among the bindings of v
1 EC < edgeCover(S); res « S;

> if (v/,v) € Ec then

3 take that unique v';

// 1—Parent Phase: Compute skip index

4 Skip < {(i,0) 1< i< |8} res(v') « @

5 foreach (n,1) € S(v') do

6 L foreach (s,e) € I do Skip(s) < max(Skip(s), e);

// 2—Child Phase: For v, drop dangling bindings
// maxknd maximum end point of any ‘open” interval

7 maxEnd < o5 res(v) < @ k < 15 Log « @ last < oo; i < 1;
8 fori < 1to|S’| do

° if maxEnd < i and Skip(i) = o then

10 L last < min(last, i); maxEnd < o;

1 else

12 res(v)[k] < S(v)[i];

3 Log < Logu {(v, },i,k)};

14 k-++; last < oo; maxEnd < max(maxEnd, Skip(i));

// 3—Parent Phase: For v', slide intervals

15 for i < 1to |res(v’)| do

16 if res(v") = 7 then continue;

17 I « Adapt(intervals(res(v')[i]), Log);
18 res(v')[i] < (binding(res(v')[i]),I);

19 return res

Theorem 12.16. Algorithm 19 computes &+ (S) for a sequence map S and
variable v € dom S O(b, + b, - i) < O(n - i) time and O(b,) < O(n)
additional space where i is the maximum number of associated intervals
pointing to v for any binding in S, and b, (b,) the number of bindings for
v (v if v/ e dom S with (v/,v) € edgeCover(S) or o otherwise) in S.

Proof. Algorithm 19 computes a sequence map S’ such that S’(v) contains

12.5 REDUCE

no direct dangling bindings. Due to lines 17-25, it contains no direct
dangling binding, since, for each direct dangling binding »# with index i,
Skip(i) = o (there can be no interval with i as start index otherwise 7 is
not dangling) and there is no previous index j < i that is the start index
of an interval that cover i (i.e., with end index > i). Thus maxEnd < i, all
conditions of line 19 are fulfilled, and the binding is dropped.

S’ has the same induced relation as the input sequence map, as only dan-
gling bindings are dropped which do not contribute to a tuple contained
in the induced relation by Definition 11.5.

Phase 1 and 3 of the algorithm run in O(b,/ - i) time, as they both
iterate over the bindings for v’ in S. For each such binding, phase 1 iterates
over all its i intervals and updates the skip index (single comparison and
assignment). Phase 3 calls Adapt which runs, by Theorem 12.5, in time i
where i is the maximum number of intervals pointing to v associated with
a binding of v'.

Phase 2 of the algorithm runs in O(b,) time as they both iterate at most
over all bindings for v in S (phase 3 already skips failure markers). For
each such binding, the entry is copied to the new sequence map and the
change log is updated (in constant time). O

From these results, we can immediately conclude the following result:

Theorem 12.17. Let S be an inconsistent seguence map. Then there is a
consistent sequence map St equivalent to S, This sequence map can be
computed in O(q - n - i) where § = \dom[s)i%L n = |Nodes(D)|, and i the
maximum number of intervals per binding in S. For tree, forest, and cic
datai=1

Proof. To compute the consistent sequence map S’ from the inconsistent
input sequence map S, we use a ClQcAG-expression using @* and @+. Let
dom S = {v,,..., v} such that, for any v;, v; with v; < v; wrt. the topologi-
cal order on dom S induced by edgeCover(S) (i.e., v < v if 3 path from v’ to
v in edgeCover(S)), itholds that i < j. Then the following C/QcAG-expression
computes a consistent sequence map that is equivalent to S:

D@ .. @ (@@ A (@2(9))..))..0)

The resulting sequence map is consistent, as it contains: (1) no failure
markers for any v;, as there is a @4 (£;) for each v; and only @4 (&;) with
j < i may create failure markers for v; (viz. @}(&,) for all children v of
v;), all of which are contained in &;. (2) no direct dangling bindings for
any v;, as there is a @ (&;) only @*s and @ (&;) with j > i influence the
bindings of the parent of v; and all these are contained in £. (3) no indirect
dangling bindings as there are no direct dangling bindings.

339

340

SEQUENCE MAP OPERATORS

The clQcAG-expression has a size of 2 - [dom S| and consists only of @+
and @* expressions, all of which operate on S or a sequence map smaller
than S. Thus, all of them are bound by O(# - i) where i is the maximum
number of intervals per binding in S.

Overall, the computation is thus bound by O(|dom §| - # - 7). m]

In the rest of this work, we use often sequences v,, . .., v, of variables
instead of a single variable as index for @* (@+). This notation is a shorthand
for a sequence of n nested @* (@+) expressions each for one variable in the
order of the variables in the index sequence.

126 RENAME

For convenience, we briefly discuss an analog to the rename operator on
(named) relational algebra, though it is not used in Chapter 13.

Definition 12.12 (Sequence map renaming).” Let D be a relational struc-
ture, Q a tree query, S a sequence maps for D over Q, and v, e dom S, v, €
Vars(Q) \ dom S. Then £, _,,, (S) returns a sequence map S’ such that
(1) the induced relation R}.$ of s’ is Ry = py,—v, (Rs), ie., the in-
duced relation of the input sequence map with attribute v, renamed
to v,.
(2) S’ ldoms = S’ (contains bindings only for variables mapped in S).
The associated edge cover for f,, _,, (S) is the edge cover of the input
sequence map with all occurrences for v, replaced by v,.

Note, that f,, _,,, can be applied only, if v, is not covered by S and if
v, has at least the same in- and outgoing edges in Q as v, has in the edge
cover of S. This limits the applicability compared to the relational case.

Algorithm 20 shows how to compute the sequence map rename oper-
ation. Note, that only bindings for the parent of v,, if there is any in the
edge cover of S, are processed.

Theorem 12.18. Algorithm 20 computes P, ., (S) for a sequence map S
and variables and v, € dom S, v, € Vars(Q) ~ dom S in O(bpareni(v,) - 1) <
O(n-i) time and constant additional space where byzeny(y,) is the number of
bindings for the parent of v, in S and i the maximum number of associated
intervals associated with such a binding.

12.7 BACK TO RELATIONS: EXTRACT 341

Algorithm 20: p,, _,, (S)
input : Sequence map S over a query Q two variables v, €e dom S,
v, € Vars(Q) N\ dom S
output: Sequence map res representing the induced relation of S with
y, renamed to v,

res < S;
// All variables with a covered edge to v,
2 ParentVars < {v e dom S : (v, v,) € edgeCover(S)};

-

3 foreach v € ParentVars do

4 res(v) « &

foreach i < 1to |S(v)| do

6 I < 0,4, (intevals(S(v)[i])) u {v,} x
75,3(012y, (intervals (S(v)[i])))
res(v)[i] < (binding(S(v)[i]),1);

8 res(v,) < res(v,);
o res < res\ {(vi,res(v;))};
10 return res

w

N

127 BACK TO RELATIONS: EXTRACT

Fittingly, we conclude the introduction and definition of the sequence
map operators in C/QcAG with the sequence map extraction, where we
obtain the variable bindings for a subset V of a sequence maps variables
as a relation. A tuple t = (v, : n,,..., v, @ nx) is contained in that rela-
tion, if V = {v,,..., v} and t is in the projection to V of the induced
relation of the sequence map S. Thus, for each v; : n; there is an index
I such that binding(S(v;)[!]) = n; and, if (v,v") € edgeCover(I), then
v:netand v’ : n' € tif there are indices I, I such that S(v)[1] = (n,]),
binding(S(v")[1']) = n” and I is covered by some interval in I. If the data
is tree, forest, or c1G shaped, |I| < 1 and I’ must lie within the boundaries
of the single interval in I.
Formally, we define the sequence map extract operator as follows:

Definition 12.13 (Sequence map extraction). Let D be a relational struc-
ture, Q a tree query, S a sequence maps for D over Q with the induced
relation Rg,and V = {v,,..., v} c dom . Then fy (S) returns a relation
R = ﬂv(Rs).

By definition, Fqom sS returns exactly the induced relation of S, yielding
an algorithm for computing the induced relation.

342

SEQUENCE MAP OPERATORS

Algorithm 21: £y (S)

input : Sequence map S and variables V = {v,,..., v} c dom S
output: 77, _,, (Rs)

1 res < {};

> RootVars < {v e dom S :Av" : (v,v") € edgeCover(S)};
3 foreach v € RootVars do

4 L res < res x Relation(S,v,1,|S(v)|);

s returnm, ,, (res) or @ifres = {()}

.....

First, we present a naive version of f that always computes the induced
relation and simply applies a relational projection to the computed relation.
It is presented in Algorithm 21 and uses Algorithm 22 to compute the
induced relation for each connected component.

Theorem 12.19. Algorithm 21 computes py (S) for a sequence map S and a
set of variables V c dom S in O(blfomsl) < O(n?) where b, is the maxi-
mum number of “good” bindings (neither failure markers nor dangling) for
a variable in S.

Proof. The result of Algorithm 21 is the projection to V of the induced
relation of S: Relation computes the induced relation for each connected
component of the edge cover Ec of S rooted at one of the root vars. This
is extended to the full induced relation in line 4 (note that there are no
covered edges between variables from different connected components
and thus a mere cross product suffices.

Algorithm 22 computes the induced relation for each connected compo-
nent of the edge cover: it combines each binding for the root variable (line
5) with all bindings generated for each of its children (w.r.t. the edge cover
of §), line 6-9. If all bindings for v are either failure markers or dangling,
@ is returned (and, if this is the only all to Relation for v, the entire induced
relation becomes &.

Algorithm 22 performs, for each root variable (lines 3-4 in Algorithm 21),
the expansion of the induced relation over all descendant variables. The
outer loop (lines 2-6) iterates over all elements of the given interval. There
are at most b™ < b < n such elements. For each such element, it iterates
(lines 4-5) over all its associated intervals of which there are at most
i < n per child variable of which there are at most by where by is the
maximum degree of a variable in the edge cover associated with S. For
each such interval, a recursive call to Relation with an interval of maximum
size b™ < b < n (line 5). The recursive calls return, if a leaf variable in
the edge cover of S is found, at a recursion depth of at most dy. where

12.7 BACK TO RELATIONS: EXTRACT

dy is the maximum depth of the edge cover associated with S. Overall,
Algorithm 22 runs in O((bgc - b™ - i)%< + 0) where o is the size of the
result relation.

The result relation is bound by b, (§)!4 where § is the number of de-
scendant variables of a node v in Ec and b, (§) is the maximum number
of “good” bindings for any variable in 4.

In Algorithm 21, we always compute the full induced relation (lines 3-4)
only to drop bindings for variables not in V in line 5. The complexity of
Algorithm 21 is dominated by the time and space for construction and
storing the induced relation and thus by (9(!)‘:l om S|). O

Algorithm 22: Relation(S, v, start, end)

input : Sequence map S, variable v € dom S, start and end index
output: Relation containing one tuple for each combination of
bindings for v and each of its children represented in S

1 Childvars < {v' e dom S : (v, v") € edgeCover(S)}; res < {{)};
» for i « start to min(end, |S(v)|) do

s | () < S(Ov)[il;

4 if n = / then continue;

s | Re{(vin)}h

6 foreach v’ € Childvars n 7, (I) do

7 R' < R;R «+ @

8 foreach (v/,start’,end’) € I do

9 L R+ RU (R’ x Relation(S,v/,start’,end"));
10 res < resuU R;

-

1 return res

In most cases, we are not interested to compute the full induced relation,
but only in a few of the variables covered by a sequence map. It is also
not sufficient to use 7 to remove all the variables we are not interested
in as 77 is limited w.r.t. the shape of the variable sets allowed (no variable
with parent outside the projection set but ancestor within is allowed). The
above algorithm, however, always computes the entire induced relation
even for parts of the query not relevant for the variables we are actually
interested in and that are specified in V.

Therefore, we present a second algorithm Algorithm 23 that tries to
minimize the amount of unnecessary expansion of the sequence map
under the assumption that the input sequence map is consistent. Recall that
using the two propagation operators we can obtain a consistent sequence
map in O(b - |[dom S| - i) time.

343

344

SEQUENCE MAP OPERATORS

Algorithm 23: v (S)

input : Sequence map S and variables V = {v,,..., v} c dom S
output: 77, _,, (Rs)

s < {())

2 AncestorVars < CurrentVars < V;

// Compute all ancestors
3 while CurrentVars # @ do

4 v € CurrentVars;

5 if 3:v" € dom S \ AncestorVars : (v/,v) € EC then
6 AncestorVars < AncestorVars U {v'};

7 L CurrentVars < CurrentVars U {v'};

8 CurrentVars < CurrentVars n {v};

// Take all root variables that are ancestors
o RootVars < {v e dom S :3v' € dom S : (v,v") € edgeCover(S)};
10 foreach v € RootVars do
1 L res « res x ProjectedRelationy ™" (S, v, {1 > (1, |S(v)])});

12 return res

Intuitively, by assuming a consistent sequence map, we can avoid even
looking at bindings for variables that do not lead to (i.e., are ancestors of)
variables in V. Furthermore, even, for variables that lead to variables in
V, we do not really care about actual bindings, but only that it is related
to bindings of a child variable that leads to a variable in V. If a variable
has more than one child variable that is an ancestor of a variable in V'
(we call such a variable a branch variable in Algorithm 23), only then, it
is necessary to ensure that only combinations of bindings contributed by
each of the child variables are accepted that have a common binding for
the parent.

This intuition is realized in Algorithm 23 by first marking (by inclusion
in AncestorVars) in lines 2—8 all ancestors of a variable in V.

This set of ancestors is used in lines 9-11 to compute the projected
relation of any connected component rooted (w.r.t. the edge cover) at a
variable that is in V' or ancestor of a variable in V.

For each such variable, we call Algorithm 24 with a sequence of intervals
containing one single interval over all bindings for that variable in S.

Algorithm 24 computes the projection to V of the induced relation of the
component rooted at v. However, it avoids, where possible, to compute the
induced relation for the variables not in V. For this, the central observation
is that, if a variable is neither part of V nor the least common ancestor of

12.7 BACK TO RELATIONS: EXTRACT

Algorithm 24: ProjectedRelation“‘} (S,v,Z,inLCA)

1

2

11

13

14

15
16

17

19

20

22

23

24

25

input : Sequence map S, set of variables V' c dom S, variable
v e dom S, sequence Z of non-overlapping sets of intervals in
order of start index

output: Projection of the induced relation of S to V

Childvars < {v" : (v,v") € edgeCover(S)};
if v € V then
// Result variable: we need to return bindings for the variable in
the result.
res < &;
foreach (s,e) € do
fori < sto e do
(n.1) < SOl R < {(v:n));

foreach v’ € 7,(I) n ChildVars do

R <«
L R x ProjectedRelationy (S, V', 7, (0=, (I)), true);

res < resuU R;

else if |ChildVars| > 1 then

// Branch variable: we need to ensure that bindings from two
branches are connected to the same binding of the branch
variable before combining

res < &;

foreach (s,e) € do

fori < sto e do

(n,I) < SW)[il; R < {()};

foreach v’ € 7,(I) n ChildVars do

R <«
L R x ProjectedRelationy (S, V', 7, (0=, (1)), true);

res < resuU R;

else if |ChildVars| = 1 then
// Skip variable: we can “skip” to the next variable.
v' € ChildVars;
if inLCA = true then
// We care that only bindings covered by any of the intervals in
T are considered

Currentints < &;
foreach (s,e) € do

for i < stoedo

Currentints <
L UnionInts(Currentints, intervals, (S(v)[i]))s

res < ProjectedRelationy (S, v', Currentints, inLCA);

IR D - " . mes = A T/ o ININDY 1 -/A N

345

346

SEQUENCE MAP OPERATORS

two variables in V, it has only a single child that is ancestor of a variable in
V (otherwise it would be least common ancestor of all pairs of variables in
V where one is contained in the sub-trees rooted at one of the children and
the other in the sub-tree of the other child). For computing the projection
to V of the induced relation, it matters in this case not which binding of
the parent is connected to which binding of the child. It only matters that
a bindings of the child variable is related to any binding of the parent (and
even that only matters if we are in a sub-tree rooted at the least-common
ancestor of at least one pair of variables in V, otherwise we just go to the
next variable, line 24). This is exploited in line 23 by computing the union
over the intervals of all parent bindings. Observe, that the union of non-
overlapping intervals, as computed by Algorithm 25, is still a (minimal)
sequence of non-overlapping intervals and can be computed efficiently
(in linear time over the two sequences of intervals). We can then continue
with that single sequence of intervals. In comparison, at a branch variable
(with more than one child in the ancestors A of a variable in V') we call
ProjectedRelation for each binding. In the worst case, the intervals associated
with each binding overlap entirely and ProjectedRelation is called for each
binding with an interval set that covers as many bindings of the child as
the single interval set computed for a skip variable (lines 18-25).

To compute that single interval we use Unionints, the last of the operations
on sets of intervals, as shown in Algorithm 2s.

Theorem 12.20. Algorithm 25 computes a minimal, non-overlapping se-
quence of intervals representing the union of two sequences of intervals I,
and I, in O(|I| + |L,|) time and constant additional space.

Proof. Algorithm 25 computes minimal, non-overlapping intervals by the
same observation as for Algorithm 8: an interval is added only, if it is clear
that the next binding after its end index is not covered (line 18) or if the
end of the sequence is reached (line 23).

The result of Algorithm 25 are the union of the intervals in the input
sequences: if a binding is covered by either interval in I, or I,, then either
that interval overlaps with some interval in the other sequence (line 13-16)
and we extend the currently active interval by all bindings covered in these
overlapping intervals (lines 20-22) or start a new interval covering these
bindings (line 17-19). If it does not overlap (lines 7-12), we also either
extend or create a new interval, but only for the bindings covered by the
interval itself.

The algorithm relies on the fact that the interval sets are ordered by
increasing start index and non-overlapping. This allows us to infer that, if
an interval from I, lies before the first (remaining) interval from I,, then
it lies before all intervals of I, and vice versa. Thus deciding overlapping

12.7 BACK TO RELATIONS: EXTRACT

Algorithm 25: UnionlInts(Intervals,, Intervals,)

input : Two sequences Intervals,, Intervals, of non-overlapping
intervals (without associated variables) in order of start index

output: Minimal, non-overlapping sequence of intervals covering all
indices contained in intervals of either input sequence, in
order of start index

1 Newlintervals < & ;
2 start < oo; end < o;

3 0,), k<1

4 while i < |Intervals, | or j < |Intervals,| do

5 (v, 81, €,) < Intervals, [] or oo if i > |Intervals,|;

6 (v, 82, €,) < Intervals, [i] or oo if j > |Intervals,[;

7 if e, <s, then // (51, e,) before (s,, e,)
8 S Sse < e

9 i++;

10 elseif e, <s, then // (5., €,) before (sy, e,)
11 § < S5 € < €55

12 j++;

3 else // (51, e,) overlaps (s,, e,)
14 s < min(s,,s,);

15 e < max(e,, e,);

16 i++; j++;

17 if end < s then

18 if start + oo then Newlntervals[k] < (start, end); k++;

19 start < s; end < e;
20 else

21 start < min(start,s); // only for illustration, always start < s
22 end < max(end, e);

23 if start # oo then Newintervals[k] < (start, end); k++;
24 return Newlntervals ;

347

348

SEQUENCE MAP OPERATORS

becomes amortised constant rather than linear in the size of the intervals.

Algorithm 25 runs in O(|I,| + |I,|) as in each iteration of the loop 4-22
either i or j or both are incremented. Getting the next interval from I, and
I, (line 5-6) is by assumption constant, as is adding an interval at the end
of NexIntervals (line 18). O

From this result, we can derive the following properties of f depending
on the number of variables in V, the number of least common ancestors
of (pairs of) variables in V, and the size of the sub-tree rooted at such least
common ancestors.

Theorem 12.21. Algorithm 21 computes v (S) for a sequence map S and a
set of variables V c dom S in (’)(bl‘y‘ b2, + b3, +|dom S|) < O(n* +nV+
|dom S|) where V = Vu{v e domS: I #v" € V : lcag.(v',v") = v}
is the set of all variables in V and their least common ancestors in EC =
edgeCover(S), W = {v e dom S : 3 path fromv' € V tov} \ V is the set of
all variables in a sub-tree rooted at a variable in V except V, and by is the
maximum number of bindings for a variable in a set of variables N or 1 if
N=g.

Proof. In Algorithm 21, computing the ancestors of any variable in V'
is bound by O(]dom §|) time by stopping the mark process whenever a
previously marked ancestor is found (line 5). This means, at worst each
variable in dom S is marked once by lines 5-7.

Algorithm 24 is called for each root of a connected component contain-
ing with variables in V' (determined by looking at AncestorVars).

If Algorithm 24 is called with a skip node and is in inLCA mode, it
first computes a single sequence of intervals from the sequences for each
bindings. This is done in O(b - (i + b)) = O(b?*) as the size of a non-
overlapping sequence of intervals and thus the size of Currentints is bound
by b and we compute the union of the intervals of each of the b bindings
with Currentints. Then it calls itself once with a single sequence of intervals
for the child variable of v. If it is not in inLCA mode, we just skip to the next
variable (constant time).

On a tree, forest, or c1G data, the second interval sequence of Unionints
is always a single interval. In this case, storing the current intervals in an
interval tree and querying and modifying that interval tree with each of
the single intervals associated with a binding can be done in O(b-log(b))
time rather than O(b*) as the unmodified Algorithm 25. However, in
the general case, an interval tree based algorithm performs worse, as the
interval sequence associated with each binding is already of size i < b and
thus the overall time is O(b* - log(b)).

If Algorithm 24 is called with a branch or result variable, it calls itself
once for each child variable and interval set associated with a binding of v.

12.8 ALGEBRAIC EQUIVALENCES 349

Each such interval set is bound by b and the number of calls are bound by

b x by where by is the maximum degree of the edge cover of S.
Overall, there are |V| branch and result nodes and thus the overall run

time is bound by O(blY! - b2,, + b2,)). O

If V = {v} for some variable v, then we can omit the computation of
the ancestors and the call to project relation and directly return the set of
all binding(S(v)[i]) for i < |S(v)|. This yields an algorithm linear in the
number of bindings for v.

For | V| > 1, however, the algorithm needs to know the lca’s of each pair
of variables in V and the path from these lca’s to a variable in V. There
is a wealth of well-established approaches for finding the least common
ancestor [121, 8] that, at a linear pre-processing cost for the tree (here the
query), allow constant look-up of the least common ancestor. However,
since we also need the path between Ica(v,v') and v, v/, the gains by
adopting such an approach are limited.

With £ the set of operators on sequence maps is complete. The following
sections conclude the discussion of the operators by highlighting some of
their properties.

128 ALGEBRAIC EQUIVALENCES

The sequence map operations defined above as part of the ClQcAG algebra
mirror, where possible, closely relational algebra expressions. This is re-
flected not only in the definitions throughout the previous sections which
reduce most of the operations to operations on the induced relations of the
involved sequence maps, but also in the algebraic properties that govern
these operations. In the following, we briefly summarize and compare the
most important algebraic laws that govern the the sequence map opera-
tions. Particularly, we consider the effect of consistent and inconsistent
operator variants and the propagation operators.

In the following, we denote with c(S) the edge cover of a sequence map
S, sm(R) a sequence map with the induced relation R, and Sy = sm(2) a
sequence map with induced relation Ry, = @. For brevity, when there are
both consistent and inconsistent variants of an operator that exhibit the
same laws, we denote that with (/). Note, however, that either all, or none
of the operators in each formula are of the consistent variant.

NEUTRAL AND ABSORBING ELEMENT LAWS. For U and X, any
single-variable or single-edge sequence map with induced relation & is a
the neutral element. Note, that there are, as for most other relations, many

350

SEQUENCE MAP OPERATORS

(N1) SUSy< S (N2) SUS<S
(N3) SN Sy oS
(N4) SO Sy < Syt (Ns) SOS<S

* Precondition: EC(Sg) = EC(S), both single-variable or both single-edge

+ Precondition: Ec(Sg) NEC(S) = @

Table 61. Neutral and absorbing elements for combination operators (6 ¢
e (f) e (8) w(f)
{6)

sequence maps that represent s as long as we allow inconsistent (where fail-
ure markers alone give Nodes(D)4°™ S variations of a consistent sequence
map that represent the same induced sequence) or not interval-minimal
(where non minimal interval sets give up to 2"°**(®) variants) sequence
maps. For & ri, Sg forms is an absorbing element. Table 61 summarizes the
laws for neutral and absorbing elements. We can also observe, that %)
and U return the unmodified input sequence map if it is combined with
itself.

COMMUTATIVE, ASSOCIATIVE, AND DISTRIBUTIVE LAWS. Fig-
ure 62 summarizes commutative, associative, distributive, and de-Morgan
laws for sequence map combination operators: U and all join variants are
commutative and associative as is easy to see from their definition (C1-Cs,
A1-A3). Moreover, a variation (DM1-DM2) of de-Morgan laws hold for <,
U, and W) (which takes the place of N in usual set-theoretic formulations
of de-Morgan laws), but only if all involved sequence maps are either all
single-variable or all single-edge and have the same edge cover. This is,
in fact, the precondition for all laws involving X\ or U. Recall, that in this
case 5D is equivalent to intersection as all variables and edges are shared.
'ﬁ«'g) can not be used, here, as it prohibits overlapping edge covers (which
are required by U and X). For the same reason, only %) and U distribute
over each other (D1-D2) on all single-edge or all single-variable sequence
maps, but not ‘»’«'2“ . Finally, distribution between the two join types ‘»‘«'Ef)
and %) is limited, 154',@ distributes over () (D3), but, in general, not
the other way around.

Table 62. The commutative and associative laws are easy to verify in the
respective definition. For the de-Morgan laws, consider that a tuple is in
the induced relation of S, X' (S, U S,) ifit is in R, but neither in Rg, nor
inRg,.Itisin (S, ¥'S,) &) (8, X'8,) ifitis both in Ry, but notin Rs, and

12.8 ALGEBRAIC EQUIVALENCES

(C1) S, US, <S8, Us,

(C2) s, 5D, o8, %P gt
(C3) §, %D s, o8, %P,

(A1) (S, US,)US, <8 U(S,US,)

(A2) (8,50 8,)u0 s, o 8,560 (8,60 5,7
(A3) (8, %D s5,) 5D s o5 w? (5,50 s,)

(DM1) S, X (S, USy) < (8 X8,) 5P (5, ¥s,)

(DM2) 8, X (8, 5 8)) & (8,1 8,) U (S, XS,)
(D1) S U(SuDS) o (5,US,)wD (5,US,)
(D2) §, 5 (5,U8,) (58 s,)U (s, 5D s,)
(D3) 8,50 (8,50 8) o (8,50) 5D (8,50 5,1
Dq) KD (5,08) < (5% s,)0 s kP s,

* Precondition: EC(S;) = EC(S,) = EC(S;3), S1, S5, S; all single-variable or all single-edge

+ Precondition: Ec(S,) NEC(S,) = &, Ec(S,) NEC(S;) = &, EC(S,) NEC(S;) =@
Precondition: Ec(S;) NEC(S,) = @, Ec(S1) NEC(S;) = @

Table 62. Commutative, associative, distributive, de Morgan laws (0 ¢
{'»h'r(f),'bh'(f)})

351

352 SEQUENCE MAP OPERATORS

(81) D@D ($)) « 50(s)

(s2) F9(8,08,) < 5(s,) 05D(S,) (S2a) TS, 98,) « Fe(S) ¢ Te(S.)
(83) F9(5,08,) < 5H(8) 08, (S3a) (S, 98,) < 7.(S) ¢S,
(S4) 9(5,68,) <8 059 (s,)* (S4a) TS, 98,) < S ¢ Gc(S,)

* Precondition: Vars(c) € dom S, ndom S,
+ Precondition: Vars(c) € dom S, \ dom S,
% Precondition: Vars(c¢) € dom S, \ dom S,

in Rg, but not in Rg,. This is the case due to the precondition that the edge
covers of all three sequence maps are the same. Thus, Rs, x Rg, = Rg, N Rg,.
Analog for DMa.

For the distributive laws D1 and D2, the core observation is again that
all involved sequence maps have the same edge cover. Thus the induced
relation of % (¥) is the intersection of the induced relations of its input
sequence maps.

For D3, consider that S, '»'«'2“ (S, %) S,) is a valid expression only
if ec(S, ¥ 8,) nEc(S,) = Ec(S,) UEC(S,) NEC(S,) = @. Thus it is
valid if ec(S,) N ec(S;) = @ and Ec(S,) N EC(S;) = @, in which case also
(8, %) 8,) %® (s, %D s,) is valid. O

SELECTION. Selection is generally a good candidate for optimization,
pushing selections (a fast but possibly fairly selective operation) inside of an
expression thus limiting the size of intermediary results. Also selection can
generally be propagated “down” into an expression: Selection distributes
over U, 7, X’ and Y\, see Table 63. For % and %, we need to ensure that
the consistency of the input sequence maps is retained and thus can only
push ¢ inside (regardless of the outer selection variant), cf. (S2a, S3a, S4a).

..(4)

For X' and , we can actually drop the selection around S, in (S2), since

we only retain tuples from the first input sequence map.

PROJECTION. In contrast to selection, we can only propagate selec-
tion “down” in an expression to the point where the projection condition
that V ¢ dom S and, for all pairs v, € V all variables on the path from
Ica(v,v") to each variable are in V still hold in the sub-expressions. Con-
versely, an expression might benefit from introducing additional projec-

12.8 ALGEBRAIC EQUIVALENCES 353

(P1) Fy(7vi(S)) < Fyur(S)’ (P2) v (5D(8)) & 5D (Hv(S))!
(P3) 7v(S, 08,) < v (8)) 0 7. ()t (Pa) 7iv(S K9 8,) o 7y (s) KD g2

* Precondition: the projection condition holds for V, V/ and no pair of variables from
v e Vandv' € V' has a common ancestor in the edge cover of S

t Precondition: Vars(c) ¢ V

% Precondition: V; U V, = V, V; (V,) fulfills the projection condition for S, (S,) with
domS, NV NV,=@ (domS,nV\V, =)

Table 64. Projection laws (6 € {b'q'r(f), FIS2RY!

(@1) @ (S) & 8 (@2) »(S) < S
(@3) (8, 68,) < S, 08, (@4) (T (S)) < Fc(S)*

(@5) @(H,(D,Q,R)) < lr(D,Q)v (@6) @(k,,,,(D,Q)) <y, (D,Q)

* Precondition: v € dom S equivalence does not preserve consistency
T Precondition: v € dom S equivalence does not preserve consistency
% Precondition: S;, S, consistent

§ Precondition: S consistent

tions to get rid of attributes not used in the remainder of an expression as
early as possible, viz. immediately after the innermost expression referenc-
ing them.

Given two sets of variables V and V' such that the projection condition
on S holds for both sets and no pair v € V, v’ € V' has a common ancestor
in the edge cover of S, we can combine a sequence of projections for these
two sets into a single projection for V' u V' (P1). Projection and selection
can be arbitrarily ordered as long as Vars(c) ¢ V (P2). Finally, 7 distributes
over '»‘«'ﬁf), M (f), i>'<'(é) if there are subsets V;, V, of V such that each subset
affects one of the input sequence maps but not the other. For i>'<'(é), we can
omit the projection on S, since only bindings from §, are retained.

PROPAGATION. Both propagation operators do not affect the induced
sequence only the consistency state. Thus, as long as we are only interested
in the induced sequence, we can add or remove propagation operators arbi-
trarily (@1-@2). Finally, for each of the consistent sequence map operators

354

SEQUENCE MAP OPERATORS

(such as %, or \) we can drop any surrounding propagation operators if
the input sequence maps are consistent itself (@3-6).

EXTRACT. Extract returns a relation rather than a sequence map. Thus
it can not be distributed over any of the sequence map operations. However,
it may interact with relational expressions as discussed in Chapter 13.

This concludes the brief overview of the most important algebraic laws
for sequence map operators in C/QcAG. Before we extend the sequence
map operators that are limited to the evaluation of tree queries, to the full
ClQCAG algebra with (standard relational) operators for the evaluation of
non-tree parts of an arbitrary query and operators for construction and
iteration, we briefly outline in the following section an iterator model for
the physical realisation of the sequence map operators.

129 ITERATOR IMPLEMENTATION

Iterator or stream model has proved essential for the scalable evaluation
of relational queries, see, e.g., [114]. Here, we briefly outline how ClQcAG’s
sequence map operators can be implemented in an iterator model that
reduces the space complexity of the evaluation compared to the sequence-
at-a-time model discussed above. This holds in particular on tree or forest
data and if the number of variables that are either part of the answer or used
in the non-tree part of the query (i.e., the number of variables extracted
by F) is small compared to the full number of variables in the query.

Let v (€) be a clQcAG expression such that € contains only join, semi-
join, selection and initialization operators. We limit the operators to keep
the discussion brief, but we can extend the approach to allow also projec-
tion, union, and difference. Note, that we can order € in such a way that
all unary conditions (i.e., the unary initialization operators and joins to
connect them) for each query variable v are clustered and the result of all
these unary conditions is connected by a single join to the expressions
representing the conditions on each child variable of v. We denote with
L(v) the unary conditions relating to v and with £(v) the full expression
for v including the expressions for its children.

Consider the query in Figure 64. It can be realized by the ClQcAG expres-

12.9 ITERATOR IMPLEMENTATION 355

Figure 64. Example query for iterator approach

sion £, (€) where
L(V!)
—_—

€ =i, (D,Q,Labely) % &, , (D,Q) % H,, (D,Q)
W i, (D, Q,Label)
% Hy, ., (D, Q)
% iy, . (D,Q)H,, (D, Q,Label))
% i, (D, Q,Labelo) % i, (D, Q,Aity_,)
% (D, Q) % i, (D,Q,Labely) £(vs)
%y, (D,Q)

E()

This is an example of the general shape of an expression such that it
is amenable to the iterator approach discussed in this section. Figure 65
illustrates this shape in detail: blue colored parts of the query together
with their root represent the part of the query rooted at the correspond-
ing variable v, i.e., £(v). The yellow colored parts represent the unary
conditions for each variable, i.e., £(v). For each query variable v, there
is a representing node (indicated by = and labeled with the variable in
Figure 64). Under this node we find, in general, two children: one for £(v)
and one join node grouping all of v’s children (we use here a multi-way join
instead of a sequence of binary joins to simplify the presentation). For each
child variable v’ of v, this node has a connection node t, (D, Q) and the
representative join node for v'. Some variables have no unary restrictions,
some no children in which case the respective parts are omitted (see v,). If
a variable has neither, we use the connection node as representative node
for that variable (see v5, v,).

Based on this ordering of the CIQcAG expression, we can now define
a processing scheme that computes the resulting sequence map for the

356 SEQUENCE MAP OPERATORS

L(n): /}i{\ E(n):

i, (D, Q,Label,))

/

s (D, Q) “GD
/\

i, (D, Q, Labely)
L(v,):

iy, (D, Q)

¥, (D, Q, Label./)

¥, (D, Q,Arity_,)

¥y (D, Q, Label.yr)
L(ve):

'[4'1,4 (D, Q, Label.s
L(v,):
W ()

g0, (D2 Q

Figure 65. Operator tree for query from Figure 64

12.9 ITERATOR IMPLEMENTATION

entire expression incrementally, outputs potential answers as soon as there
is an extension to a full answer, and discards potential answers as soon as
there can be no more extension to a full answer.

The fundamental observation for this scheme is that all unary operators
are already implemented in an iterator fashion, see Section 12, i.e., as a
single pass over the input sequence using, for each binding in the sequence,
only conditions on that binding itself (and not on any other binding) to
determine its inclusion or exclusion from the result.

For % and ¢, ,(D, Q), this is not so easy to see from the Algorithms
in Section 12. In the following, we focus on these two operators to detail
the incremental processing scheme. First, we annotate each join with the
intersection of the variables of the sequence maps computed by its children.
For all variable nodes in Figure 65, this yields a single variable, viz. the
one shown as label in Figure 65. For the semi-joins (which only connect
unary operators), this yields also a single variable (viz. the variable their
parent is annotated with). For child joins, i.e., joins with one {, (D, Q)
and, possibly, one variable node, this yields the two variables v, v’ (note
that the multi-way joins in Figure 65 are realized as a sequence of binary
joins) such that v = parent(v').

The first change is that an operator no longer computes the entire result
sequence map at once, but that each operator provides an interface with
three functions next, out, and close. This extends the iterator interface used,
e.g., in [114] for relational operators with out and modifies the semantics
for next: We can call next on each operator with or without a pair (variable,
binding).

Unary initialization, if called without such a pair, compute the next
binding in their result sequence and return that binding (or false if there
are no more bindings), remembering the point in the result sequence
reached by the computation as well as the computed partial sequence of
bindings; if called with such a binding pair they return the binding, if it is
included in the result sequence and the variable is consistent. They also
advance the computation of that result sequence up to the point where the
binding is computed, if necessary (i.e., if the binding has not already been
computed). Otherwise they return false.

A join remembers the all bindings returned by its first operand as well
as the last pair next was called with. If next is called on a join and the passed
pair is the same as in the last call, it calls the right operand’s next with the
last remembered pair returned by the first operand. If that call returns false
or the passed pair is different from the last call, it calls the left operand’s
next with the passed pair, if there is any, and returns false if that call returns
false. Otherwise, it remembers the new pair returned and calls next on the
right operand with that pair. If that returns false, we loop and call next on

357

Outline of the
iterator
processing
scheme

Processing
Figure 65

358

SEQUENCE MAP OPERATORS

the left operand again etc. As soon as the right operand’s next returns a
pair, that pair is returned.

For binary initialization operators for v, v', we return for a call with next
(1) ifa pair (v'/, n) is passed with v = v, and n is in the partial sequence of
bindings for v already computed, we return the next binding for v’ related
to n (i.e., covered by an interval pointer associated with) together with
v/, if there is none return false. Otherwise, we expand the partial sequence
of bindings for v until we find # or the first binding n’ with n > n’ wrt. the
order associated to the relation between v and v'. If we find n, return the
first binding for v’ related to n, if there is any, together with v'. Otherwise
return false. (2) if no pair is passed, we take the first binding » for v where
not all related bindings for v’ have been generated (and return false if
there is no such binding). For that binding, we compute the next binding
for v and return that binding. Note, that the binary initialization stores the
partial binding sequences for v and v’ as well as all interval pointers from
bindings in the partial binding sequence for v to bindings of v’ for which
not all covered bindings have been returned by next. For each such binding
n in the partial binding sequence of v, we also store a single pointer into
the sequence of bindings for v/ indicating the last returned binding for v/
that is related to n.

The second function close removes from all operators the current state,
i.e., resets the iterations (as for the iterator approach on relational operators
discussed in [114]).

The final function of the iterator interface, out, each operand calls out on
its child operators. In addition, if an operator is a variable node, it outputs
the current binding for the variable it is labeled with together with any
intervals associated with it.

The query is embedded in an outer loop, that calls next on the first
operand of the query (for queries with size > 1 always a join). If the call
returns true, it calls out on that join and continues the loop. Otherwise it
terminates.

Consider again the operator tree from Figure 65: First next is called on the
top-level join. The join calls its first operand ({,, (D, Q, Label-,) without
parameter. ¢, (D, Q, Label,/) returns the first node in the document with
label ‘a’. With that binding for v, the top-level join calls the “child join”
That join calls first f, ,, (D, Q) with the binding pair and then with the
result the variable join node for v,, ... Two observations are crucial here:
Except for the leftmost, all initialization operators are always called with a
binding pair. Partial sequence maps are stored in initialization operators
(joins only retain the last successful binding from the second operand).
E.g. ,,,, (D, Q) builds a sequence map consisting of bindings for v, in
the associated order of the relation between v, and v,, and bindings for v,

12.9 ITERATOR IMPLEMENTATION

in the associated order of the relation between v, and v;. Only bindings
for v, are “restricted” by binding pairs passed in next, not bindings for v;.
This avoids dropping intermittent bindings for v, and thus allows to keep
the interval pointers as given by the interval representation discussed in
Section 12.2. Each of these sequence maps is bound by O(# x i) where n
is the number of nodes in D and i the maximum size of an interval per
binding. For join operators that are also variable nodes, we also store a
sequence map over the bindings of the variable the node is labeled with.
These sequence map are bound by O(n) since we do not retain intervals
and can, at no additional cost, be ordered in the associated order of the
incoming edge of the variable the join is labeled with.

12.9.1 OPTIMAL SPACE BOUNDS FOR TREE DATA

In contrast to the operators discussed in Section 12, here we compute
sequence maps incrementally. For tree data, we can profit from another
regularity to further decrease the space complexity: Recall, that tree data
corresponds to relations with image disjointness property and, if we also
allow closure axis, with image containment property. For a relation with
image disjointness property, the number of parents of a node is bound
by 1. In other words, as soon as we have found a single parent for a node,
there can be no further nodes related to it among the bindings for the
parent variable. For a relation R with image containment, the number of
parents is limited by the depth of the forest represented by the relation
whose closure is R (by Theorem 11.4 there is such a forest-shaped base
relation for each R). Consider, e.g., XPath closure relations descendant,
following, or following-sibling. For descendant the base relation is child and as
such the number of parents under descendant is limited by the depth of the
queried XML tree. For following, the base relation is the relation associating
with each element the next element in document order. For that relation,
the number of ancestors is limited only by the size of the XML tree. For
following-sibling it is the relation that associates with each node the next
element in document order that has the same parent. Thus, the number of
ancestors is limited by the degree of the XML tree.

How can we exploit this observation in the iterator algorithm sketched
above? The aim is to reduce the size of the partial sequence maps and the
stores in join operators by deleting nodes as soon as they can no longer
contribute to any further match under the assumption that all relations
carry image containment or image disjointness property. We know, that as
soon as a binding is related to 1, resp. d (depth of base relation), different
bindings of its parent, it can not contribute to any further and, thus no

359

Tighter space
limits for tree
data

360

From individual
relations to
consistent
orders

SEQUENCE MAP OPERATORS

longer needs to be stored. However, for image containment the related
bindings may scattered over the entire binding sequence for the parent
variable and thus a binding added at the beginning of the processing (i.e.,
related to the first binding of the parent variable) may be amenable to be
removed only at the very end (if the last binding of the parent variable is
also related to it).

Thus, we impose a further property to hold for the relations used in a
query, that guarantees us that all parent bindings related to a given child
binding are “clustered” together. It also ensures, that there are no parent
bindings n that are related to child bindings prior to child bindings related
to parent bindings prior to n:

Definition 12.14 (Order-compatible query). Let D be a relational structure
and Q a query on D. Then Q is called order-compatible if, for each pair
(v,v") of parent-child variables in Q with rel(v) = R and rel(+v') = R/,
it holds that n < n’ implies that, for all nodes ¢ € R'(n),c’ € R'(n'),
¢, eR'(n)nR'(n")orc<p .

Intuitively, the two orders associated with the parent and the child
variable are compatible in the sense that if a given child binding is either
related to a binding of the parent or neither it or any child bindings after
the given one are related to a binding of the parent.

The class of order-compatible queries is interesting because of the fol-
lowing result:

Theorem 12.22. For a tree query Q containing only a single, forest-shaped
base relation R and its closure relation C there are orders for R and C such
that Q is order-compatible and the images of all nodes under R and C form
a single continuous interval under the respective orders.

Proof. In the following, we consider only tree based relations for simplic-
ity. However, for forest we simply add some fix order on the connected
components of the forest to the definitions.

Order the children of each node in R in some order and call the ordered
tree induced by R and this order T. Choose as order for R the breadth-
first left-to-right preorder traversal <;, of T. Choose as order for C the
depth-first left-to-right preorder traversal <; of T.

Then, if n <}, n’, either n ancestor of n’ (<, is preorder) and R'(n’) c
R’(n) or there is an ancestor a of n and an ancestor a’ of n’ such that a is
a preceding sibling of a’ (and both are children of lca(a, a”)). Then, also
a <. a’ (since the depth-first traversal is left-to-right) and all descendants
of a come before all descendants of a’ in <. In particular any ¢ € C(#n) is
a descendant of a, any ¢’ € C(n’) a descendant of a’ and thus c <. ¢’. O

12.9 ITERATOR IMPLEMENTATION

This yields, e.g., that tree queries containing only child and descendant.

Corollary 12.3. Tree queries containing only child and descendant are order-
compatible (for some orders on child and descendant, resp.).

Under these assumptions (tree or forest data, order-compatible query
wrt. the associated orders of the involved relations), we can now adapt
the algorithm: (1) As soon as we find no more child bindings for a parent,
that parent is dropped from the sequence map of a binary initialization
operator, since the data is tree shaped and thus each parent has a single
interval pointer. (2) Each child binding is dropped as soon as the first
parent binding is encountered, that does not relate to it, since no further
parent binding can related to that child binding. (3) When next is called
for a binary initialization operator, we alternate between the two binding
sequences: We find the first binding for the parent together with its first
related binding for the child. The next call to next returns not the next
binding for the child variable related to current parent binding (as in the
original algorithm), but the next parent binding related to the current
child binding. If there is no such binding left, we delete the child binding
and continue with the first binding of the parent variable that has yet more
related bindings for the child variable (and delete all parents before that
parent binding). We let the binary initialization operator report the deleted
bindings (as pairs of variable and the largest deleted bindings) as a further
result of next to its parent (join) operator. (4) For unary initialization
operators, we only store the last binding. (5) In a join operator, we delete
all binding up to and including the delete bindings returned by a next and
propagate them upwards, unless they are for the variable the join is labeled
with. If the left operand of the join operator is no binary initialization
operator, that join operator only stores the last binding.

Theorem 12.23. For order-compatible queries on tree or forest data, the
above algorithm runs in O(q - n + o) time and O(q - d + o) space where o
is the size of the output, q is the size of the query, n the size of the data, and
d the depth of the tree or forest.

Proof. The modifications of the algorithm do not affect correctness. For the
binary initialization operators this follows from the forest shape of the data
and the order-compatibility of the query. For the join operators without
left binary initialization operator, there is either always an ancestor join
operator that memoizes the bindings (e.g., for the “child join” operators
in Figure 65) or it is the top-level join. For unary initialization operators,
we can observe that same fact. The reason this holds is that the query
is connected and tree-shaped. Thus for each variable except for the root
variable there is a binary initialization operator (and a corresponding

361

Pruning for the
iterator scheme

362

SEQUENCE MAP OPERATORS

join) that “generates” bindings for the variable from bindings of the parent
variable.

The time complexity is the same as for the sequence-at-a-time operators
from Section 12. Note that we operate on tree or forest data and thus the
number of intervals per binding is at most 1.

It retains the complexity of the set-at-a-time algorithm by memoizing
already computed bindings in variable join nodes and initialization op-
erators, as described above. The deletion of bindings does not affect the
complexity (it adds an additive factor of n to the complexity).

However, by alternating between parent and child nodes we can ensure
that all the partial binding sequences in the sequence maps of the binary
initialization operators contain at most d bindings for the parent variable
and at most 1 binding for the child variable.

The memoization structures in the join operators remove bindings at
the same time as their sub-ordinate binary initialization operators. Thus,
they are also bound by d. O

Corollary 12.4. Queries containing only XPath’s child and descendant rela-
tion are evaluated by the above algorithm in O(g-n+o) time and O(q-d+o)
space where o is the size of the output, q is the size of the query, n the size
of the data, and d the depth of the tree or forest.

The last results are optimal wrt. data complexity as they coincide with
the Q(d + o) lower bound for the data complexity of such queries shown
in [190].

However, it is an open question, whether order-compatible queries are
the largest class of queries that can be evaluated with this complexity.

CIQCAG: GRAPH QUERIES WITH
COMPLEX HEADS

13.1 Graph Queries and Map Expansion 363
13.2 Translationby Example 364
13.3 CIQLog Translation 367

13.3.1 Translation Function 368
13.4 Iterationand Recursion. 370
135 Conclusion. 370

In the previous chapters, we have highlighted how C/QcAG handles tree
queries or tree cores of arbitrary queries: It employs a novel data structure,
the sequence map, and its operations to exploit interval properties and
representations of the underlying data and thus provide highly scalable
(linear time and space) evaluation of tree queries for tree and many graph
data sets.

Moving beyond tree queries, we turn in this chapter to arbitrary (graph-
shaped) queries as defined in Chapter 6. This is complemented by a trans-
lation from ClqLog as introduced there to the CIQCAG algebra. The journey is
split in two steps: first we illustrate how non-recursive, single-rule clqLog
expressions are realized in ClQCAG: a tree core is expressed using the se-
quence map operators discussed in the previous chapter and remaining
cloLog features (non-tree query parts and construction) are plugged on-top
of that using standard relational algebra. Second, glance at full c/qLog by dis-
cussing options for adding recursion to the ClQcAG algebra. The latter part
is merely an outlook, with the current prototype choosing, merely for ease
of implementation, a naive forward chaining operator with inflationary
semantics.

131 GRAPH QUERIES AND MAP EXPANSION

Using the sequence map operators discussed in the previous chapters,
we can express arbitrary tree queries. With the extract operator, f, the
sequence map algebra already provides a bridge from results of the tree
query evaluation (represented succinctly in a sequence map) to standard

364

CIQCAG: GRAPH QUERIES WITH COMPLEX HEADS

relations. Thus, we can employ standard relational operators to express
any part of a query that is not part of a given tree core of the query. We
employ in the following three operators in addition to those of the textbook
relational algebra of, e.g., [2]. All three are common extensions provided
in many practical SQL databases.

(1) We add a assignment operator that allows for sharing of query parts
(in particular of the underlying tree query) on the level of the algebra. This
is a common extension (cf. [2], often in conjunction) with iteration and
sequencing/composition, see Section 13.4. It does not affect the expressive-
ness (or complexity) of the algebra. We use syntax and semantics as in
[2].

(2) We add a value invention operator tyey(y,,....v,) (R) that extends the
relation R with a new attribute new which contains a new value for each

.....

unique group over the grouping attributes v,, . .., vy. It is a slight variation
of the new operator in [2] or languages with value invention such as ILog.
In practical SQL databases it can be realized, e.g., using the numbering
operator described next.

(3) We add a numbering operator vorger:(order’ o,v,.....v,) (R) that extends
the relation R with a new attribute order such that given a sort order on
integers and values for vy, . . ., v the values of order consecutively number
the groups in R over the grouping attributes v,, ..., v¢. The additional
values order’ and offset o serve to implement the nested order terms as
described in Chapter 6. In practical databases, the numbering operator is
provided in form of DENSE_RANK in SQL:1999 [159] or ordered relations as
used in Monet [39], see also [117].

Numeric aggregation and aggregation terms are treated as usual, cf.
[102], and omitted for space reasons in the following.

Before we turn to the detailed translation function from clQLog to CIQCAG
that demonstrates the use of these operators for evaluating non-tree parts
of a query, let us reconsider some of the lqLog queries from Part III and
their ClQcAG equivalents.

132 TRANSLATION BY EXAMPLE

We start with a very simple example from Section 8.2, where we consider
the translation of XPath. The clqoLog rule shown below expresses a (tree-
shaped) query and the selection of a single variable (here v;) into the
answer relation:

1 ans(v;) «<— root(v,) A CHILD4(V;,Vv,) A £(v,,paper) A
CHILD(V,,Vv;) A £(v;,author)

13.2 TRANSLATION BY EXAMPLE 365

In ClQCAG, the entire body can be realized using sequence map operators
from Chapter 12 as it is tree shaped. Here and in the following we use
sequence map operators that may introduce inconsistencies. Therefore,
we have to add propagation operators before extracting the results (via f)
from the sequence map. We can, as well, employ only consistent operators
in which case we can omit the propagation.

ANS :

7, (BINDINGS)

Fu, (&4 (@4 ((H,,(D, Q,root) % iy, ,, (D, Q)
i, (D, Q. 'paper’)) 53 iy, (D, Q)

st l, (D, Q,author))))

As in the following example, we separate the evaluation of the body in
a relation called BINDINGS. This allows us to reference the result multiple

BINDINGS :

times.
Turning to a more complex example from Section 7.4 (Xcerpt transla-
tion), we consider a fairly complex head in the following clqLog rule:

root(id,) A £(id,, authors) A cHILD(id,, id,(v3)) A deep-copy(vs, id>(v3))
> <«— root(vy) A £(v,, conference) A CHILD4(vy, V,) A £(v,, paper) A CHILD
(vy, v3) A £(v;, author).

Again the body is essentially tree shaped and can thus be realized using
only sequence map operators:

BINDINGS := £, (@ ¥ (@ ((#,,(D, Q,root) %! 4, (D, Q, conference’)
, T
4y, (D, Q) 5 iy, (D, Q, paper)) 5 i, ., (D, Q)
% i, (D, Q,"author'))))
Suppose we add another relation cHILD(v,, v;) to the query. Either that
new relation or the existing connection between v, and v, can not be part
of the tree core of the query and thus must be realized using standard
relational expressions. The main change is that we need to extract also v,
from the sequence map using £ (and thus slightly rearrange the sequence
map expression to maintain bindings for v,). Outside of the sequence map
expression standard relational algebra is used to perform the additional
join:
BINDINGS := 7Ty, (P15, (Path,) x Fv“h(?ﬁ&(%ﬁ%(iﬁg(?ﬁé(
i, (D, Q,ro0t) % #, (D, Q, conference’)
st i, (D,Q) % Ui, (D,Q, paper) % i, , (D, Q)

W i, (D, Q, "author')))))))

366 CIQCAG: GRAPH QUERIES WITH COMPLEX HEADS

Translating the head is a bit more involved. The reason lies, on the one
hand, with the order and node invention, but even more with the deep-copy
construct. First, recall (from Section 7.4) that the head

root(id;) A €(id;, authors) A cHILD(id,, id,(v;)) A deep-copy(v;,
id,(vs5))

is actually an abbreviation for

i root(id;) A £(id;, authors) A o—(id,,

id; (v3)) A —o(id,(v5), id;(v5)) A
5 pos(ids(vy),ids(vs)) A deep-copy(vs, id,(v;))

It is also worth pointing out that, as discussed in Chapter 6, we do not
construct all clqLog relations but only those that can not be derived from
others, i.e., the extensional relations source, —o, pos, root, £, O.

When translating a head, we first introduce a new relation for each
unique value invention or order invention term. The relation extends the
binding tuples constructed by the expression corresponding to the clqLog
body with appropriate new values or order numbers. Here we have four
such relations (we choose to name the last one differently to highlight that
it contains order numbers):

ID, := lyeys() (BINDINGS)

ID, := lyews:(v,) (BINDINGS)

ID; = lLyeys(y,) (BINDINGS)
ORDER; = Lyyder:(y,) (BINDINGS)

Second, for each deep-copy we have to determine the reachable nodes and
edges between those and for each such node and edge create corresponding
new nodes or edges:

REACHABLE-NODES,, := 77, (BINDINGS) X p,_,, ,_a(path,)
REACHABLE-EDGES,, := T, o/ddg(REACHABLE-NODES,,
X Plﬂold,ZHoldEdg(o_'))
N 7Ty, oldEdg(REACHABLE-NODES,,
X P1o0ld,2—oldEdg (—9))
COPIED-NODES,, := Luey:(y, old) (REACHABLE-NODES,,)

COPIED-EDGESy, := lyewEdg:(v, 0ldEdg) (REACHABLE-EDGES,,)

Notice, how we record both the grouping value v, and the original nodes
or edges. This allows us to copy the correct properties by adding the new
nodes (edges) to all relations that also contained the old nodes (edges):

13.3 CIQLOG TRANSLATION 367

ROOT-COPY := Tpey(p1-014(F00t) X COPIED-NODES,,)

SOURCE-COPY :

”new,neWEdg (P1—>old,2—>oldEdg (O_') X COPIED'NODESV3

X COPIED—EDGESV3

We do this for all base relations but show only the first few. The remaining
base relations are treated analogously.

The final result of the clqLog rule are then new assignments for the
base relations that are constructed by a union of the relations just created
and whatever is specified directly in the rule head. Here, e.g., we create

additional entries in root, £, o—~, —o, and pos as these occur in the rule
head.

root := 7rpew(ID,) UROOT-COPY
€ = My, (1Dy) x {(‘authors’)} U LABEL-cOPY
O— := Tlyewsnew; (ID; ¥ ID;) U SOURCE-COPY
—0 I= Tlnewanews;(ID, X ID;) U SINK-COPY
POS 1= Tuews order(ID; X ORDER;) U POSITION-COPY
0O := ORDERED-COPY

133 CIQLOG TRANSLATION

Formally, we specify the translation function below. The first step of the
translation is to determine a spanning tree over the body of the clqLog
query. To allow for efficient computation of the spanning tree, we assume
a highly simplified cost function that assigns weights directly to unary and
binary relations in the query regardless of their position relative to other
relations. Such a cost function can only be a very rough approximation
of the actual cost, but allows us to use any of the efficient spanning tree
algorithms, cf. [6].

If we use cost functions where the cost of operators depends on their rel-
ative position, these algorithms can no longer be applied and the problem
of determining an optimal spanning tree becomes NP-complete (like other
constrained spanning tree problems, e.g., the Optimum Communication
Spanning Tree problem).

Finding an eflicient heuristic that yields nearly optimal spanning trees
under such cost functions remains an open problem.

368 CIQCAG: GRAPH QUERIES WITH COMPLEX HEADS

13.3.1 TRANSLATION FUNCTION

Given a conjunction of clqLog literals, we assume that we can compute a
tree core tree-core for that conjunction and denote the variables in tree-core
Vr, all other variables V.

First, we transform each clqQLog rule into the form

. head «— b, vb,v...vb;

where each b; is a conjunction of the form tree-core(b;) A The body of
such rules is translated by the translation function tbody given in Table 67.

function clolog expression ClQcAG expression
tbody(rel(var,, var,)) = Prsvan,a—var, (1el)
tbody(rel(var)) = proar(rel)
tbody(expr, v expr,) = 1y, (tbody(expr,)) U my,, (tbody(expr,))

thody(tree-core A expr) = Fy, (@F(... 3 H(@A(.. (@4(S))...))...)) w my,, (thody(expr))
where Vg, = Vars(tree-core) n (Vars(expr) u Vg)
Vg, = Vars(expr) n (Vars(tree-core) U Vg)
S = ttree(tree-core)
V1, ..., Vg variables of S in topological order induced by the edge cover of S

thody(expr, A expr,) = my;, (tbody(expr,)) w 7y, (tbody(expr,))
where Vg, = Vars(expr,) n (Vars(expr,) U Ve)
Vg, = Vars(expr,) n (Vars(expr,) U Vg)

tbody(expr, A —~(expr,)) = tbody(expr,) ~ tbody(expr, A expr,)

Table 67. Translating clqLog rule bodies

Most notably, for the translation of the tree core(s) a second translation
function ttree detailed in Table 69 is used. It employs sequence map opera-
tors where thody uses standard relational operators. It also uses a helper
function lcag (V) with V set of variables which returns the set of all least
common ancestors of any pair of variables from V in the query Q.

Finally, the head of a clqLog rule is translated by thead as illustrated in the
above example: (1) for each node and order invention term a corresponding
relation using a invention or numbering operator to invent the new values
is introduced (2) for each deep-copy all reachable nodes and edges between

13.3 CIQLOG TRANSLATION 369

function cloLog expression ClQcAG expression
ttree(rel(var,, var,)) = U, (D, Q)
ttree(rel(var)) =t (D, Q, rel)
ttree(reh (var) v rel,(var)) = ttree(rel, (var)) U ttree(rel, (var))

ttree(rel, (var,, var,) v rel, (var,, var,)) = ttree(rel,(var,, var,)) U ttree(rel, (var,, var,))

ttree(expr, A expr,) = 7oy, (ttree(expr,)) 6 vy, (ttree(expr,))
where Vg, = Vi Ulcaq(Vg,) with Vi, = Vars(expr,) n (Vars(expr,) U Vg)
VE, = Vg, Ulcaq(Vg,) with Vg, = Vars(expr,) n (Vars(expr,) U V)
i if Ve € Vg,

0=15%" Ve c Vg

w? otherwise

Table 69. Translating ClqLog tree cores

them are copied and the properties of the original nodes transferred. (3) for
each other atom in the head, we add a corresponding expression to the
union representing the atom’s base relation.

Theorem 13.1. The result of the above translation from ClQLog to CIQCAG is
a CIQCAG expression that implements the semantics of the ClQLog rule and is
linear in the size of the ClqLog rule.

Proof. For the most part the algebraic semantics of clqLog in Table 5 is
closely reflected in the translation function. For the translation of the tree
core, see Chapter 12 for proofs that the sequence map operators have the
same effect on the induced relation of the sequence map as the standard
relational operators.

For the translation of the head, the crucial issues are, once again, the
handling of order and node invention. The corresponding operators are
specifically aligned with the semantics of order and node invention as
discussed in Chapter 6.

Itis easy to recognize that the resulting expression is linear, if one realizes
that we use assignment expressions to avoid repeating sub-expressions
that occur in multiple places (e.g., the BINDINGS relation that occurs in
each node invention relation and thus, if naively repeated each time results

370

CIQCAG: GRAPH QUERIES WITH COMPLEX HEADS

in a quadratic size for the resulting expression. Note, that the translation
of deep-equal introduces a rather large, but constant number of ClQcAG
expressions. ml

13.4 ITERATION AND RECURSION

Following Abiteboul [2], we complete the ClQcAG algebra (so as to support
full cloLog) by an iteration operator while. For simplicity, we assume an
inflationary semantics for the assignment operator in a while. To translate
a general clQLog program (with inflationary semantics), we enclose the rela-
tion assignments generated by the above rule in while loops that terminate
if there are no more changes. Obviously, termination is not guaranteed
in contrast to datalog as recursion over value invention terms (cascading
value invention) may create an unbounded, possibly infinite number of
new values.

Combining the ClQcAG algebra with alternative semantics for recursion
is a topic of ongoing investigations and remains, for this work, an open
question.

135 CONCLUSION

The translation from clqLog to ClQcAG concludes our journey that starts in
Chapter 5 where we ask how to formalize Web queries. With clqLog we
have a convenient, logical foundation of Web query languages as diverse as
XQuery, Xcerpt, XPath, and SPARQL (see Part IIT) that is complemented
by an efficient, scalable query algebra, CIQCAG, that realizes tree queries even
on many graphs in linear time and space, surpassing previous approaches
significantly. In this chapter, we conclude the consideration of ClqQcAG by
(very briefly) outlining how to realize non-tree parts of a query as well as
construction in standard relational algebra with value and order invention
operators (provided by most practical SQL database systems).

To complete the picture, we turn in the remaining chapter to the imple-
mentation of CIQcAG and evaluate the discussed approach experimentally.

PartV

PRACTICE. THE CIQCAG
PROTOTYPE

PROTOTYPE AND EXPERIMENTAL
EVALUATION

141 Introduction 373
142 CIQCAGPrototype 374
14.3 Experimental Evaluation 376
14.3.1 Effectof Sequence Map 377
14.3.2 Effectof Non-TreeEdges 378
14.3.3 Effectof DataShape 378
14.3.4 Effectof Query Shape. 379
14.4 Outlook: Principles of the CIQCAG Processor 380
145 Conclusion. 384

141 INTRODUCTION

In Part IV we introduce the ClQcAG algebra and discuss its properties. In
this chapter, we experimentally verify these properties, most notably the
following three properties: (1) Tree queries can be evaluated by the ClQcAG
algebra in linear time and space on both tree data and continuous-image
graphs (c1Gs), i.e., graphs with some order on the nodes such that the
children of each node form a continuous interval. (2) Graph queries can
be evaluated in two phases, first some spanning tree of the query, then
the remaining non-tree relations. Only answer nodes and nodes with non-
tree edges are considered also in the graph phase. Thus, only these nodes
contribute to the exponent of the complexity O(nf:) where n is the size
of the data and g, the number of answer nodes and nodes with non-tree
edges. (3) Furthermore, we introduce the sequence map data structure
and argue that even for many non-ciG graphs it provides a more efficient
(interval) representation than standard relational algebra. It is an open
issue how to efficiently find the optimal order of the nodes of a graph to
obtain a minimal interval representation. However, in practical graphs we
observe often a strong hierarchical component with few non-hierarchical
outliers. In such cases the order obtained for the hierarchical component

374

PROTOTYPE AND EXPERIMENTAL EVALUATION

forms a good starting point as basis for compact interval representation of
the whole graph.

We start with a brief discussion of the ClQcAG prototype and then present
a number of experiments that investigate the above properties. The exper-
iments fully support the theoretical results from previous chapters and
demonstrate that, even with the currently rather basic prototype, query
evaluation with ClQcAG performs exceptionally well for practical queries
and data with response times for 15-20 variable queries on 25-50 MB data
sets well below 1 sec.

142 CIQCAG PROTOTYPE

The ClQCAG prototype is still under development. A preliminary version
has been used to perform the tests described below. The current version is
a rather preliminary version. It only implements the core elements of the
ClQcAG approach, as depicted in Figure 66.

(1) The translation of large parts of the Web query languages XPath,
XQuery, Xcerpt, and SPARQL, as described in Part II1, into clqLog
queries forms the first part of the prototype. It consider mostly the
composition-free or non-recursive fragment of these languages and
are, consciously, limited to the language core described in Part III.
The result are ClQLog queries.

(2) The ClQcAG compiler translates ClQLog queries to CIQCAG expressions.
The current implementation is rather basic and computes an arbi-
trary spanning tree to separate tree core from non-tree relations
(unless the query is already tree shaped). The result of the algebra
compiler are ClQCAG expressions.

(3) The tree query processor is based on a straightforward implementa-
tion of the sequence map and its operators as described in Chap-
ters 11 and 12. Currently only the sequence map operators generated
by the algebra compiler are supported. This excludes, e.g., union,
difference, and rename. Though the algebra compiler can generate ei-
ther the consistent or the inconsistent variants of the sequence map
operators, the tree query processor currently only implements the
latter. Recall from Section 12.1, that allowing inconsistent sequence
maps as result of an operator yields, in many cases, more efficient
(and simpler) realizations of the various operators. The price is the
need for additional propagation operators, see Section 12.5.3 that
remove any inconsistencies before extracting the correct answers

375

14.2 CIQCAG PROTOTYPE

MITATIAQ :2d£10101d 50| *99 2InSL]

1uelIeA JUS]SISUODUI Ajluo—
siojesado dew dusanbas—

10ss3304d A19nQ 3341

UOIIUIAUL J3PIO pUB SPOU—
eigable |euone|pi—

10ss330.d A1anD ydean

o
=}
n
>
o
o
X
§=

padeys-aaaL

uepea
1U1SISUOD-UOU PUB JUBISISUOD—
9941 Buluueds Aieniqie—

uonejidwo) 5y>0I1D

J0ssad04d Jo Juapuadapul—

weiboig abenbue| Jod s|npow suo—

60101D

uonejsues] 60101D

910 ‘|euoisodwod-uou

weaboud Aianpx

*do 195 ou ‘sul-}jing ou

K1anp yredx

A

w_s‘_.w_mc_m ‘9AISIND3J-Uuou

welboid 1d1aox

sul-jing ou

Aienp T04HVdS

376

PROTOTYPE AND EXPERIMENTAL EVALUATION

from the sequence map. The tree query processor can be used sep-
arately from the graph query processor (if the entire query is tree
shaped).

(4) The graph query processor implements the full clqcAG algebra. For
sequence map operations it calls the tree query processor. Non-tree
relations, node, and order invention are implemented directly in
the graph query processor. Both the graph and the tree processor
currently have only very crude data access layers: both expect rela-
tions in interval representation as input without attempting to find
more optimal representations. This is considered to be performed
by a separate data access or indexing component that pre-computes
optimal (or at least almost optimal) interval representations of given
data and stores the data in that representation. However, the current
prototype does not include such a component, but leaves that task
to the user.

It is worth pointing out that the clqLog translation and the ClQcAG com-
piler are independent components with well-defined interfaces (ClqLog
queries and CIQCAG expressions, resp.). In fact, in the current prototype
they are not even implemented in the same programming language: The
core processors are implemented in C++, whereas the translation and
compiler are a combination of ANTLR' and Java. The current prototype is
based on the one used in [52].

143 EXPERIMENTAL EVALUATION

SETUP. The experimental evaluation is based on both synthetic and on
real data. The data is assumed in interval representation with the relations
discussed in Chapter II. All tests show the processing time without data
parsing. The tests have been executed on an AMD Athlon 2400XP CPU
with 1GB main memory. The implementation currently uses only a single
core. Each measurement is averaged over 500 runs. For the tests, we have
used queries manually written in ClQcAG rather than the output of the
compiler. However, the queries are close to what the compiler generates
for basic XPath, Xcerpt, and XQuery queries. We have not yet studied the
effect of the frequent label joins in the SPARQL translation.

Synthetic data is used to confirm the complexity of the presented algo-
rithms. The real data scenarios stem from the University of Washington

1 http://www.antlr.org/

http://www.antlr.org/

14.3 EXPERIMENTAL EVALUATION

10000 F T T T T
without tree processor

T 1000 F with tree processor -------]
E []
§ 100F E
(2]
L 10 b 1
5 [O —O--O—-0--0—-O]
é b ‘@_0«049”9”@”6"9 ©roeTe]
£ e .
[0} L+ 1
£ 01F ~]

F o]

0.01 L 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

query size (variables)

Figure 67. Effect of Sequence Map Operators (over query size) (data synthetic, uniform,
deeply nested; bindings for query variables overlap considerably)

XMLData repository?, and demonstrate the competitiveness of the algo-
rithms.

14.3.1 EFFECT OF SEQUENCE MAP

First, we consider the effect of using specialized operators for the evaluation
of tree queries. For that, we compare the evaluation time of the same
query, once realized with standard relational operators and evaluated in
the graph query processor, once realized with sequence map operations
and evaluated in the tree query processor. As expected, time (see Figure 67)
and space (not shown) usage of the evaluation are roughly linear in the
number of variables for the second case, but exponential for the first case.
This validates the practical soundness of using an algebra with specialized
tree query operators.

For the experiment we use uniform, deeply nested XML data and a
fairly unselective query composed of successive descendant-or-self (path,,)
with a single answer variable. The latter suppresses the influence of answer
variables on the result as discussed in the following. It is worth pointing out
that, in and by itself, this is not a surprising result as similar observations
for acyclic or tree queries [110] that can, e.g., be realized with a semi-join
operator [146] are well-established. However, here we consider a rather
rich algebra of sequence map operators, including forms of union and
difference. Furthermore, the interval representation allows for linear space
representations even of n-ary queries where the semi-join algebra and

2 http://www.cs.washington.edu/research/xmldatasets/

377

http://www.cs.washington.edu/research/xmldatasets/

378

PROTOTYPE AND EXPERIMENTAL EVALUATION

10000 T

T T T T T T T
non-tree (answer) variables
tree variables -------

1000 F

100

10

time (msec, logarithmic)

o
[

0.01 - 1 1 1 1 1 1 1 1

number

Figure 68. Effect of Tree vs. Non-Tree Variables (data and query as before)

similar approaches require at least quadratic space.

14.3.2 EFFECT OF NON-TREE EDGES

In contrast to the previous experiment, increasing the number of answer
variables or variables with incident non-tree edges considerably affects the
evaluation time. Figure 68 compares the effect of increasing the two types
of variables, those occurring also in non-tree relations or in the answer
with those occurring only in tree relations and not in the answer. The
latter have, as in the previous experiment, little effect on the processing
time. The former, however, significantly increase query processing time,
thus emphasizing the complexity result for graph queries from Chapter 13:
O(n% - n-q,), where g, is the number of variables in the answer or in
non-tree relations and ¢q; the number of variables that occur only in tree
relations but not in the answer.

Again the experiment uses synthetic queries and data. The data is rather
small and the selectivity, as in the previous case, is not significantly affected
by the number of variables. Thus, this is certainly an extreme setting for
studying the effect of non-tree variables. In most practical cases, it can,
e.g., be expected that not all bindings of one answer variable are related to
those of all bindings of another as in this case.

14.3.3 EFFECT OF DATA SHAPE

For the final two experiments, we use real-life XML datasets from the
above mentioned repository. In the first experiment, we illustrate the effect
of the data shape on the query evaluation time. To compare tree, CIG, and
graph data we start with the tree-shaped Nasa dataset from above. To that
data, we add non-tree edges in such a way that the result is still cic data.

14.3 EXPERIMENTAL EVALUATION

T
Bl
1

1000

800 gel s K]

time (msec)
[e2]
o
o
T

400

tree data
200 ClQ data ------- 7]
graph data —
O 1 1 1
0 5 10 15 20 25

data size (MB)

Figure 69. Query Evaluation Time over Different Data Shapes (tree query)

The number of added edges is such that each node has on average between
2 and 3 parents, i.e., the resulting data contains about 2.5 times the number
of edges as the original tree data. Finally, we add to the resulting data set
arbitrary additional non-tree edges, but also delete some edges to obtain
the graph data set. We delete edges to create non-continuous intervals. The
resulting data has about 3 times the number of edges as the original tree
data. The interval representation of the graph data is over the same order
on the nodes as for the ciG data set (and thus not necessarily optimal).
It requires multiple intervals to represent the images of most nodes, on
average about 3 intervals per node. Finally, the used query is tree-shaped,
contains about 15 variables, and matches with about 5% of the data.

Under this setup, Figure 69 shows that, indeed, the performance of tree
query evaluation is nearly the same on cIG data as on tree data. Further-
more, it is clearly linear and is very competitive, even though the current
prototype is only a very basic implementation. For graph data, as expected,
the query evaluation time increases faster, but is still rather acceptable
with about 1 sec for a 10 MB fragment of the Nasa dataset.

14.3.4 EFFECT OF QUERY SHAPE.

The final experiment considers, again, the effect of the query shape, but
now on a real-life data set, viz. the MONDIAL? database of geographical
information and with realistic queries. The data is tree shaped. In particular,
the graph query contains only a small (about 20%) amount of non-tree
variables. The queries are otherwise fairly involved compared to the above
examples but are also far more selective than the queries of the other
experiments. The results in Figure 70 again emphasize the linear time

3 http://www.dbis.informatik.uni-goettingen.de/Mondial/

379

http://www.dbis.informatik.uni-goettingen.de/Mondial/

380 PROTOTYPE AND EXPERIMENTAL EVALUATION

600 T T T gréph que'ry — T . I | ’
ol tree query -------- / — 1
e T ox xS S~ X
B 400 | XXX _
@»)
£ 300 | B _
o } ‘
5 200 /2</,><’ _47_‘4,,4.,+,,+”+“$”+/_
/x, »+rr+-—+~—+~+~
100 | O _
K
0 XV‘"4FT>§H+ L b =1 il lay oy I +
0 100 200 300 400 500 600 700 800 900 1000
data size (kB)

Figure 70. Query Evaluation Time over Different Query Shapes (Mondial dataset)

processing for tree queries and show that practical graph queries can often
also be evaluated efficiently by the proposed approach.

144 OUTLOOK: PRINCIPLES OF THE CIQCAG PROCES-
SOR

The current ClQcAG prototype is fairly basic, but will be further towards a
flexible, distributed evaluation engine for Web query languages. The basic
architecture and principles for that next-generation CIQcAG processor are
described in [50]. In the following, we briefly summarize the most impor-
tant points of that architecture to highlight the planned future development
of the ClQcAG processor:

“EXECUTE ANYWHERE”—UNIFIED QUERY EXECUTION ENVIRON-
MENT. clolog and the CIQcAG algebra provides a unified execution en-
vironment for Web queries written in a multitude of query languages

(as demonstrated in Part III. In this respect, CIQcAG can be considered

a similar foundation for Web query languages as multi-language virtual

or abstract machines for standard programming languages. The most

common examples of multi-language virtual machines is the Common

Language Infrastructure [134] used prominently for executing Cj, but also

the Java Virtual Machine is increasingly used as target for a wide variety
of languages.

In the case of Web queries, a unified execution environment brings

a number of unique advantages: (1) The distributed execution of queries

and query programs requires that the language implementations are highly
interoperable down to the level of answer representation and execution

strategies. A high degree of interoperability allows, e.g., the distribution

of partial queries among query nodes (see below). The CIQcAG algebra is

14.4 OUTLOOK: PRINCIPLES OF THE CIQCAG PROCESSOR

an a suitable mechanism to ensure implementation interoperability as its
operations are fairly fine granular and well-specified allowing the control-
ling query node fine granular control over the query execution at other
(“slave”) nodes. (2) A rigid definition of the operational semantics as pro-
vided by an the ClQcAG algebra allows not only a better understanding
and communication of the evaluation algorithms, it also makes query ex-
ecution more predictable, i.e., once compiled a query should behave in a
predictable behavior on all implementations. This is an increasingly impor-
tant property as it eases query authoring and allows better error handling
for distributed query evaluation. (3) Finally, a unified query execution
environment makes the transmission and distribution of compiled queries
and even parts of compiled queries among query nodes feasible, enabling
easy adaptation to changes in the network of available query nodes, see
below.

“COMPILE ONCE”—SEPARATION OF COMPILATION AND EXECU-
TION.

Currently, the CIQCcAG processor targets the in-memory processing of que-
ries against XML, RDE or other Web data that may be local and persistent
(e.g., an XML database or local XML documents), but just as well may have
to be accessed remotely (e.g., a remote XML document) or may be volatile
(e.g., in case of SOAP messages or Web Service access). In other words, it
is assumed that most of the queried data is not under (central) control of
a query execution environment like in a traditional database setting, but
rather that the queried data is often distributed or volatile. This, naturally,
limits the application of traditional indexing and predictive optimization
techniques, that rely on local management of data and statistic knowledge
about that managed data.

Nevertheless algebraic optimization techniques (that rely solely on knowl-
edge about the query and possibly the schema of the data, but not on
knowledge about the actual instance of data to be queried) and ad-hoc
indices that are created during execution time still have their place under
this circumstances.

In particular, such a setting allows for a clean separation of compilation
and execution: The high-level Web queries in XQuery, XPath, Xcerpt, or
SPARQL are translated into C/QcAG expressions separately from its execu-
tion. The translation may be separated by time (at another time) and space
(at another query node) from the actual execution of the query. This is
essential to enable the distribution of pre-compiled, globally optimized
ClQcAG expressions evaluating (parts of) queries over distributed query
nodes.

Extensive static optimization. This separation also makes more extensive

381

382

PROTOTYPE AND EXPERIMENTAL EVALUATION

static optimization feasible than traditionally applied in an in-memory
setting (e.g., in XSLT processors such as Saxon* or Xalan’).

“COMPILE, CLASSIFY, EXECUTE”—UNIFIED EVALUATION ALGO-
RITHM. Aside of traditional tasks such as dead (or tautological) branch
elimination, detection of unsatisfiable queries, operator order optimization
and selection between different realizations for the same high-level query
constructs, the ClQcAG compiler has another essential task: the classification
of each query in the query program by its features, e.g., whether a query is
a path, tree, or graph query (cf. [170, 52]) or which parts of the data are
relevant for the query evaluation.

“DISTRIBUTE ANY PART —PARTIAL QUERY EVALUATION. Once
compilation and execution are separate, the possibility exists that one query
node compiles the high-level Web queries to ClQcAG code using knowledge
about the query and possibly the schema of the data to optimize (globally)
the query plan expressed in the clQcAG code. The result of this translation
can then be distributed among several query nodes, e.g., if these nodes
have more efficient means to access the resources involved in the query.

Indeed, once at the level of CIQcAG code it is not only possible to dis-
tribute, say, entire ClQLog rules or sets of clQLog rules, but even parts of
rules (e.g., query conjuncts) or even smaller units. Figure 71 illustrates
such a distributed query processing scenario using Xcerpt as high-level
language (though any other language, and with some care, also a mixture
of languages is possible): Applications use one of the control APIs (obtain-
ing, e.g., entire XML documents or separate variable bindings) to execute
a query at a given Xcerpt node. This implementation of Xcerpt transforms
the query into ClQcAG code and hands this code over to its own CIQCAG
engine. Depending on additional information about the data accessed in
the query, this lQcAG node might decide to evaluate only some parts of
the query locally (e.g., those operating exclusively on local data and those
joining data from different sources) and send all the remaining query parts
to other ClQcAG nodes that are likely to have more efficient access to the
relevant data.

In contrast to distribution on the level of a high-level query language
such as Xcerpt, distribution on the level of CIQcAG has two main advantages:
the distributed query parts can be of finer granularity and the “controlling”
node can have, by means of code transformation and hint sections, better

4 http://www.saxonica.com/

5 http://xml.apache.org/xalan-j/

http://www.saxonica.com/
http://xml.apache.org/xalan-j/

383

14.4 OUTLOOK: PRINCIPLES OF THE CIQCAG PROCESSOR

SIoMmIaN 9poN A1ond) £ 211y

—_
aseqeiep ‘69—
Juawindop ‘ba— DINIBS GIM "B9— INIBS I "Ba—
24n0s eje([eI07] 2)In0§ e)e()0WY 21n06 eje(AJOWDY
—
1 | !
L'Th yun
3poN punfuod 3poN apoN
DYDDID faanb DYDDID 5YJ0ID
Fep v AT ALED 6 9B4IIUI BUl|-pURWIWOD
' Z £al uonedjjdd
L _& uuc:.—: C _.U DU .EOu Hy ey Ty LTy Oy nesi| \
f13nb £13nb Sy ey iy :w.mmﬁ_ua
‘e
y SPON| |, [l weiboid ydiady
44 punfuod DYOOD
f13nb °PoN
YO0 nndwod \ IdY 210125 GRM
fonp / uonediddy
u Nl d
........ ;T 9po 19D’
apoN : PON ¥ X
DYD0ID
aseqejep ‘69—
uawndop ‘69— awbas 2pod
aseqejep ‘Ho— 9)4no0s eje(|07 wawibas (ener) 14y [013U0D
Juawinoop ‘69— fouapuadag uonedijddy
23In0g e3eq [0207] JuswBag JuiH ~
<qP0 9vI0D

384

PROTOTYPE AND EXPERIMENTAL EVALUATION

control of the “slave” nodes.

Notice, that CIQcAG enables such query distribution, but does not by itself
provide the necessary infrastructure (e.g., for registration and management
of query nodes). It is assumed that this infrastructure is provided by outside

means.

145 CONCLUSION

Though the current prototype is only a fairly preliminary implementation

of the ClQcAG algebra, the above experiments already clearly demonstrate
the viability of the approach. Employing interval representations of rela-
tions and specialized sequence map operators for tree query evaluation,
the ClQcAG prototype achieves:

()

(2)

(3)

(4)

Linear time and space evaluation for tree queries on tree and cI1G
data. In fact, the experiments show that there is no significant differ-
ence in evaluation time between tree and ci1G data. In other words,
non-tree edges come for free w.r.t. query evaluation as long as the
resulting graph still carries the c1G property.

Even for arbitrary graph data interval representations yield an ef-
ficient basis for evaluation since they provide, except for extreme
cases, compact representations of related nodes at little extra cost.

The separate processing of tree core for graph queries yields for many
practical graph queries a significant improvement, in particular as
most graph queries have only limited non-tree edges.

All major complexity results from the previous chapters are validated
by the above experimental evaluation.

It is expected that work on the prototype will continue in the future.
In particular, a full implementation of the ClQcAG algebra, more extensive
experimental evaluations, and the realization of the architecture described

in the previous chapter are topics for future work.

CONCLUSION

151 Perspectives and Further Work 386
1511 Continuous-Image Graphs. 387
15.1.2 Iterator Implementation of the Sequence Map . . 388
15.1.3 Interval Representation of Arbitrary Graphs. . . 388

15.1.4 Beyond Intervals: CIQCAG for Graph Queries . 389
15.1.5 Supporting Full XPath, XQuery, SPARQL, and

Xcerpt 389
15.1.6 A Virtual Machine for Web Queries 389
15.1.7 Versatile Queries for Beginners 390

In three parts, this thesis illustrates perspectives to overcome the increas-
ing fragmentation of the Web in HTML, XML, RDF, OWL, etc. islands.
The fundamental results are:

(1)

(2)

A versatile query language—that can access data in many Web for-
mats and in many shapes—is viable as demonstrated by Xcerpt 2.0
in Chapter 3. Furthermore, it does not need to sacrifice ease of use
for each of the formats as illustrated along the GRDDL use case in
Chapter 4.

Though the fragmentation of the Web has also introduced a plethora
of query languages, each specialized to one data format, a uniform,
purely logical semantics for such widely varying languages as XPath,
XQuery, SPARQL, and Xcerpt is provided in Part II and III. For
this purpose, we introduce clqLog as a slightly modified variant of
datalog,,,,,, i.e., datalog extended with negation and value invention.
We show that all the above languages can be faithfully translated
into clqLog.

As a side effect, we obtain the first, to the best of our knowledge,
purely logical semantics of XQuery and SPARQL and illustrate com-
monalities and differences between these languages. Furthermore,
the uniform semantics allows us to expect that, in many cases, inte-
gration of queries in these different languages is possible.

386

CONCLUSION

(3) The uniform semantics for Web query languages provides by clqLog
is complemented in Part IV by the clQcAG algebra used for imple-
menting ClQLog queries. CIQCAG is the first algebra for Web queries
that scales with query and data shape: For tree queries it provides
linear time and space evaluation (cf. Section 11.4 and Chapter 12) on
tree data and thus the same complexity as the best known approaches
for that setting. Furthermore, it extends the same complexity also to
a far larger, novel class of graphs, called continuous-image graphs
(Sections 10.2 and 11.3) that can still be processed with linear time
and space. In this respect the move from trees to continuous-image
graphs comes for free w.r.t. query evaluation time. But also on arbi-
trary graph data, the ClQcAG algebra can provide significant speed-up
(as experimentally verified in Chapter 14) compared with prior ap-
proaches, in particular if the graph is removed from a tree or ciG
only by a few edges.

For graph queries, ClQcAG evaluates a tree core of the query first
(with, for tree and cI1G data, linear or, for arbitrary graphs, at worst
quadratic time and space complexity). Only those parts of the query
with relations not covered by the tree core are then processed using
standard relational operators, thus reducing the complexity of query
evaluation to size of those non-tree parts of a query (see Chapter 13).
Combined with the exceptionally efficient evaluation for tree queries
discussed above, this yields an overall highly competitive engine for
evaluating Web queries.

With the results on continuous-image graphs, the clQcAG algebra extends
the limits of previously known approaches with linear time and space
query evaluation considerably into the realm of graph-shaped data. This
not only makes versatile query languages and multi-language engines
for Web queries more feasible, it also gives an indication how some of
the techniques developed for XML and similar, mostly tree-shaped, data
formats can be extended or adapted for use with less restricted, graph-
shaped data such as RDE

151 PERSPECTIVES AND FURTHER WORK

Obviously, this work provides only a first few attempts at addressing the
increasing fragmentation of the Web into islands of diverging data formats.
In the following, we briefly highlight a few venues for further work.

15.1.1

15.1 PERSPECTIVES AND FURTHER WORK

CONTINUOUS-IMAGE GRAPHS

As mentioned in Chapter 10, there are a number of questions that have

arisen in our investigation of continuous-image graphs as a class of data

where tree queries can be evaluated in linear time and space:

(1)

()

(3)

Though we have illustrated the use of c1Gs by a number of examples,
a principled investigation of the frequency of ciGs in practical data
sets is certainly desirable. In general, studies on the precise char-
acteristics of Web or Semantic Web data are few and far between.
Issues such as the average and maximum degree of concepts in
Ontologies or their overall organization (e.g., around hierarchical
components) can significantly affect the performance of querying
and reasoning with such data, yet are often ignored. This work il-
lustrates that a more precise characterisation of Web data (beyond
tree- vs. graph-shaped) can be helpful in addressing some of the
scalability concerns raised in the context of the Semantic Web.

In particular, further investigating the amount and significance of
non-tree (or non-ciG) edges would allow a better understanding
when interval representations of arbitrary graphs are useful to speed
up query evaluation.

In this work, the nodes in the image of each node of a ciG are
required to form a single continuous interval. For many graphs, no
order on the nodes may exists such that there is a single such interval,
but only orders such that there are k such intervals where k is some
small integer. Such graphs are then still amenable to linear time
and space evaluation with sequence maps. However as indicated in
Section 11.3.3, it is an open question whether there is a polynomial
decision algorithm for the k-image interval property. Though the
test for “circular ones” points towards such an algorithm for k = 2,
there does not seem to be such an obvious extension of the decision
algorithm for k =1 to cases with k > 2.

In Section 10.3.2, we briefly discuss that the sequence map can also
handle diamond-free DAG queries while retaining the same data
complexity. The query complexity only remains the same, for ob-
vious reasons, if we measure the size of a query as the number of
edges (i.e., atoms in a ClQLog expression) rather than the number of
nodes (i.e., variables in a ClqLog expression). However, a detailed con-
sideration of diamond-free DAG queries remains open, yet might
yield interesting results as there is some evidence [170, 167] that such
queries occur frequently, at least in the XPath context.

387

388

CONCLUSION

(4) Similarly, we have limited ourselves in this work to tree queries
though there are larger classes of queries with polynomial query
evaluation time, viz. queries with bounded hypertree width [109]. As
discussed in Section 10.4.2, it is not obvious whether and how the
notion of cIGs can be combined with such queries. A straightfor-
ward adaptation by extending the cIG property to guarantee one
order for all relations in a hypertree node seems considerably more
restrictive than the basic notion of a c1G graph. Whether there are
more promising ways to adapt the sequence map data structure
and the notion of cias for queries with bounded hypertree width
remains an open question.

15.1.2 ITERATOR IMPLEMENTATION OF THE SEQUENCE MAP

The sequence map is the means in CIQcAG to provide linear time and space
evaluation of tree queries on tree and cIG data. In Section 12.9, we discuss
how an iterator implementation of the sequence map operators allows the
skipping and pruning of intermediary results at the earliest possible time
if certain additional restrictions are placed on the relations in the query.
In particular, we obtain thus O(d - q) instead of O(n - q) space bounds
for order-compatible queries such as XPath queries containing only child
and descendant.

Order-compatible queries enjoy the above improved complexity as they
allow us to isolate possible images of a node in a sub-structure of the data
sub-linear w.r.t. to the data size n. However, it is an open question whether
this class of queries precisely captures all queries where such an isolation
is possible.

15.1.3 INTERVAL REPRESENTATION OF ARBITRARY GRAPHS

The sequence map uses interval representations of relations to achieve
linear time and space complexity for tree and ciG data when evaluating
tree queries. Furthermore, the use of interval representations is useful also
for arbitrary graphs (as experimentally verified in Section 14).

However, whether there is a polynomial algorithm for finding the op-
timal interval order or whether the problem is (as we suspect) indeed
NP-complete remains an open question.

15.1 PERSPECTIVES AND FURTHER WORK

15.1.4 BEYOND INTERVALS: CIQCAG FOR GRAPH QUERIES

The core idea of the ClQcAG algebra is to use the efficient processing of tree
queries provided by the sequence map operators and use it to evaluate as
much of a given query as possible, before turning to standard relational
operators.

In Chapter 13, we use, however, an arbitrary spanning tree to separate
the tree core from the rest of the query. Better strategies for this separation
will be investigated in future work, in particular how optimal tree cores can
be approximated efficiently in presence of realistic (global) cost functions.
For now, finding an efficient heuristic that yields nearly optimal spanning
trees under such cost functions remains an open problem.

The non-tree part of the ClQcAG algebra is currently fairly basic and is a
topic of ongoing investigation. In the context of Semantic Web queries, a
particularly relevant topic is the integration of efficient recursion operators,
as surveyed recently in [60].

15.1.5 SUPPORTING FULL XPATH, XQUERY, SPARQL, AND XCERPT

Though we show how to translate large fragments of XQuery, SPARQL,
XPath, and Xcerpt into clQLog and argue that most of the remaining fea-
tures can be addressed in clqLog, full translations require additional work.
Considering the promising results from Chapter 14, we believe that, in
particular for emerging languages such as SPARQL, ClQcAG-based imple-
mentations can considerably outperform existing implementations.

However, to that end both the translation and the current C/QcAG proto-
type require further work. Of particular interest is also the recent desire
to access XML data from SPARQL by means of XPath, a scenario that
provides an ideal match for the capabilities of ClQcAG.

389

15.1.6 VERSATILE DATA ACCESS IN THE WEB: A VIRTUAL MACHINE

FOR WEB QUERIES

With clQcAG we have proposed an evaluation for an entire set of Web query
languages that is nevertheless capable of evaluating each of these languages
with as good a complexity as any previous approach designed specifically
for one of these languages.

Thus, we have now the ability to provide a formal basis for the inter-
change of queries and even (intermediary) result interchange regardless
of the surface language either user or data provider prefers. Currently
providers dictate the interface language for accessing “their” data: Web

390

CONCLUSION

service APIs or “access points” with either proprietary query languages or
SPARQL, XPath, or XQuery. Anyone who wants to access that data has to
adapt to the provider.

With cloLog and CIQcAG, not only is the interface language becoming
less important, we can also consider them as first steps towards a common
virtual machine for Web queries, similar to the CLI [134] for conventional
programming languages.

Naturally, many issues such as security and policies for data access,
distribution, etc. are yet to be solved before we can achieve a uniform
access layer for Web data.

15.1.7 VERSATILE QUERIES FOR BEGINNERS

Finally, though Xcerpt 2.0 has turned out to be a great exemplar for the
vision of versatile Web query languages, its use requires, just as in the case
of XQuery or even SPARQL, considerable expertise. In an ideal work, a
versatile query language should allow the author to formulate his query
intent easily and without knowledge about the format the data is stored in.
To that end we are currently investigating:

(1) Visual interfaces and languages for versatile Web queries based on
prior work on visXcerpt [23, 25].

(2) Drastically simplified query languages in a Semantic Wiki setting
(which, to some extent, can be seen as the Web in a really small box)
where the author can query the structure of data in the same way,
whether it is stored in XML documents or RDF metadata. This work
is inspired by and partially founded by the “Knowledge in a Wiki”
(KIWTI)! project.

(3) Conceptual query languages are getting increased attention for sim-
ilar reasons in the Semantic Web context. With clqLog and ClQcAG
we provide an ideal foundation for realizing such languages where
the user can specify the query intent conceptually and the language
processor transforms that query intent in specific queries on data
in any Web format.

1 http://www.kiwi-project.eu/

http://www.kiwi-project.eu/

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Figure 7
Figure 8

Figure 9

Figure 10
Figure 11

Figure 12

Figure 13
Figure 14

Figure 15
Figure 16

Figure 17
Figure 18
Figure 19
Figure 21
Figure 20
Figure 22

Figure 23

Exemplary Xcerpt Data Term 41

Versatile Data Access on the Web 51

Visual Rendering of Sample XML Data 54
Identity in Programming and Query Languages 68
Cyclic Xcerpt Data Terms 70
Structure-equivalent Data Terms with Different Cy-
cle Length 73

EU-Rent Use Case: Module Structure 79
Program and two defined modules without im-
ports 86

Scoped import of (1) module A into body part 3 of
rule Rp, and into body part 1 of rule Rp, and (2) of
(the expanded) module B into body part 2 and 3 of
rule Rp,. into the main program 87

Private import of A into B and B into the main pro-
gram 88

Scoped import of B into A with B importing A it-
self 90

Many query languages only allow writing mono-
lithic queries, while modular query development
greatly increases reuse and ease of programming. 91
Module stores consists of three distinct areas to
ensure encapsulation of data. 97

To improve encapsulation one store per module
communication instance can be used. 98
Browser rendering of example data 103
Exemplary website with embedded hCalendar in-
formation 104

RDF View on hCalendar Data 105
Architecture of W3C Approach 106

XSLT Transformation Stylesheet, excerpt 107
On-demand architecture using Xcerpt 109
Two-stage architecture using Xcerpt 109
Overview of Parts IIT and IV Translation from Web
Query languages to CqLog and then to CIQCAG 118
Exemplary Data Graph 120

392

List of Figures

Figure 24
Figure 25

Figure 26
Figure 27
Figure 28

Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

Figure 35
Figure 36
Figure 37

Figure 38
Figure 39

Figure 40
Figure 41
Figure 42
Figure 43

Figure 44

Figure 45

Figure 46
Figure 47

Figure 48

Figure 49

Exemplary Data Graph: XML Conference Data 124
Exemplary Data Graph: XML Conference Data
with Transparent id/idref-links 125

Exemplary Data Graph: RDF Conference Data 128
deep equal: effect of injectivity 139

deep equal: effect of cover for equivalence map-
ping 140

DEEP EQUAL (Lpc Lc Xg) 141

cloLog rules for intensional data graph relations 157
Exemplary Query Graphs 162

Syntax of non-recursive, single-rule Core Xcerpt 170
Xcerpt®®NRSR dataterm on conferences and papers 171
Xcerpt®®"’SR rule to extract Cicero’s papers to a
shelf 172

Structural versus identity equivalence in Xcerpt 172
Resulting clqlog rule 179

clqLog rule for Xcerpt program from Figure34 180
XPath axis (from [103]) 195

Exemplary Data Graph: RDF Conference Data
(simplification of Figure 26 omitting the sequence
container and edge positions) 222

Sharing: On the Limits of Continuous-image Graphs 239
Sharing: On the Limits of Continuous-image Graphs 240
“The Five Good Emperors” (after Edward Gibbon),
their relations, and provinces. 242

Overlapping of province children in the “The Five
Good Emperors” example, Figure 40 243
Overlapping of images in trees, closure relations
over trees, and continuous-image graphs 244
Selecting sons, type, name, and ruled provinces for

all members of the imperial family in the data of
Figure 42. 245

Answers for query from Figure 45, single, flat rela-
tion. 246

Answers for query from Figure 45, multiple rela-
tions, normalized, no multivalue dependencies. 247
Answers for query from Figure 45, multiple rela-
tions, interval pointers. The first table from Fig-
ure 47 remains unchanged. 248

Sequence Map: Example. For a query selecting roman
emperors together with their name and ruled provinces on the

data of Figure 42. 249

Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69

Figure 70

Figure 71

List of Figures

Data structures for intermediary results (of a tree
query) 251

CIQCAG Architecture 253

Selecting all sons of Roman emperors that have a
double claim to the throne (two (distinct) fathers
that where both emperors). 256

Selecting all Roman emperors together with their
name and ruled provinces. 266

Sequence Map: Example. For the query from Figure 53
on the data of Figure 42. 269

Inconsistent Sequence Map. 274

Relation with (1-) interval property 282
PQ-Tree for Relation in Figure 56 282

PC-Tree for Relation in Figure 56 282

Relation with 2-interval property 287
Spanning tree for the query from Figure 52 295
Sequence maps for illustrating “separate union” prob-
lem 303

Relations R, and R, where join on decomposed
relations seems insufficient 315

Sequence maps for illustrating the single-variable
condition restriction for & 331

Example query for iterator approach 355
Operator tree for query from Figure 64 356
ClQcAG Prototype: Overview 375

Effect of Sequence Map Operators (over query size)
(data synthetic, uniform, deeply nested; bindings for query variables
overlap considerably) 377

Effect of Tree vs. Non-Tree Variables (data and query as
before) 378

Query Evaluation Time over Different Data Shapes
(tree query) 379

Query Evaluation Time over Different Query Shapes
(Mondial dataset) 380

Query Node Network 383

393

LIST OF TABLES

Table 1 Summary of query relations (S is a set of labels
from Xy U ZE) 133

Table 2 (Partial) instances for data graph relations on Fig-
ure23 143

Table 3 cloLog syntax (without heads) 146

Table 4 Heads of clqLog rules 147

Table 5 Algebraic cloLog Semantics (D the domain of the
relational structure) 154

Table 7 Cost of Membership Test for Closure Relations. #, e:

number of nodes, edges in the data, eg: number of non-tree

edges, i.e., if T(D) is a spanning tree for D with edges Er(p),

then eg = |[Ep \ Eq(p)l- 160
Table 9 Query terms and matching data (; separates differ-
ent data terms) 174
Table 11 Query terms containing variables and their bind-
ings 176
Table 13 Construct terms and their instantiation 177
Table 16 Translating Xcerpt construct terms 182
Table 18 Construct terms and their C/QLog translations 183
Table 20 Translating Xcerpt query terms: queries and query
terms 185
Table 22 Translating Xcerpt query terms: term lists, vari-
ables, and labels 187
Table 24 Query terms and their ClQLog translation 189
Table 26 Query terms containing variables and their clqLog
translation 190
Table 27 Semantics for navigational XPath (following [22]) 197
Table 29 Translating navigational XPath 199
Table 30 Syntax of composition-free XQuery 202
Table 31 Semantics for composition-free XQuery (following
[21]) 205
Table 34 Translating composition-free XQuery 211
Table 36 Translating composition-free XQuery: conditions 213
Table 37 Semantics for SPARQL 225
Table 39 Translating SPARQL queries and CONSTRUCT clauses 228

Table 41 Translating SPARQL patterns and conditions 229

396

List of Tables

Table 50

Table 52

Table 54

Table 56

Table 58

Table 61

Table 62

Table 63
Table 64
Table 65
Table 67
Table 69

Overview of sequence map operators in ClQcAG (all
operators return a single sequence map S except f
which returns a (standard) relation) 255
Complexity of query evaluation with CIQCAG alge-
bra (q query size, n data size, m complexity of mem-
bership test—assumed constant for all tree, forest,
or CIG shaped relations, q,: number of “graph” vari-
ables, i.e., variables with multiple incoming query
edges) 258

Cost of Membership Test for Closure Relations. #, e:
number of nodes, edges in the data, eg: number of non-tree
edges, i.e., if T(D) is a spanning tree for D with edges E1(p),
then eg = |[Ep \ Er(p)l- 259

Comparison of Related Approaches. n: number of
nodes in the data, d: depth, resp. diameter of data; e: number of
edges; g: size of query, g,: number of result or answer variables;
qg: number of “graph” variables, i.e., variables with multiple
incoming query edges; m maximum time complexity for rela-
tion membership test; 7,4, time complexity for path index
access. 261

Overview of sequence map operators in ClQcAG (all
operators return a single sequence map S except £
which returns a (standard) relation) 294
Neutral and absorbing elements for combination
operators (6 ¢ {'b'«'(mé), }®), Eé(f)}) 350
Commutative, associative, distributive, de Morgan
laws (0 e {&, %)) 351

Translating clqLog rule bodies 368
Translating clQLog tree cores 369

352

353

LIST OF ALGORITHMS

O N NV A~ WD

e e < e e
SERERREBE Y5 KE&EREG

Compute interval representation from relation 285
By(DyQuR) v o 300
Uy o (DyQ) oot 301
'ﬁil,vz (DyQ) v e 302
5 (85,80) o 306
NextBinding(S,1) 307
MA(S1,82) v o 310
Adapt(Ints,Log)o 312
JoinInts(Intervals,, Intervals,) 317
U(S1,8,) v v o 321
Recreatelnts(S, I,, I,,Log) 322
FallsIn(index, I) 323
N(SSs) v 326
Differencelnts(Intervals,, Intervals,) 327
Tv(S) o e e 329
of (S) v v 331
Tc(S) oot 333
DY(S) 336
DV(S) 338
P (S) e o e 341
Fv(S) v o 342
Relation(S,v,start,end) 343
Fv(S) oo 344
ProjectedRelation’ (S,v,Z,inlCA) 345

Unionlnts(Intervals,, Intervals,) 347

COMMON ACRONYMS

AMayoS

CIQCAG

IETF
IRI

1SO

MPEG

RDF
UML
URI
W3cC
XHTML
XML

XSLT

Abstract Machine for Xcerpt on Semi-structured Data, see
Part V

Compositional, interval-based Query and Construction Algebra
for (Tree and Graph) Queries, see Part IV

Internet Engineering Task Force, http://www.ietf.org/
Internationalized Resource Identifier, [90]

International Organization for Standardization,
http://www.iso.org/

Moving Picture Experts Group,
http://www.chiariglione.org/mpeg/

Application Programming Interface, [150, 142]

Unified Modeling Language, [165]

Uniform Resource Identifier, [34]

The World Wide Web Consortium, http://www.w3.org/
Extensible HyperText Markup Language, [177]

Extensible Markup Language, [43]

Extensible Stylesheet Language (XSL) Transformations, [72]

http://www.ietf.org/
http://www.iso.org/
http://www.chiariglione.org/mpeg/
http://www.w3.org/

BIBLIOGRAPHY

1]

(3]

(5]

(6]

(7]

Serge Abiteboul and Paris C. Kanellakis. Object Identity as a Query
Language Primitive. Journal of the ACM, 45(5):798-842, 1998. ISSN
0004-5411. doi: http://doi.acm.org/10.1145/290179.290182. URL
http://portal.acm.org/citation.cfm?id=290182.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley Publishing Co., Boston, MA, USA,
1995. ISBN 0-201-53771-0. URL http://db.bell-1abs.com/user/
hull/FoundDB.html.

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom,
and Janet L. Wienerm. The Lorel Query Language for Semistruc-
tured Data. Intl. Journal on Digital Libraries, 1(1):68-88, 1997. URL
http://www-db.stanford.edu/lore/pubs/lorel96.pdf.

Ben Adida and Mark Birbeck. RDF/A Primer 1.0—Embedding RDF
in XHTML. Internal draft, W3C, 2006. URL http://www.w3.org/
2001/sw/BestPractices/HTML/2006-01-24-rdfa-primer.

R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient Management
of Transitive Relationships in Large Data and Knowledge Bases. In
Proc. ACM Symp. on Management of Data (SIGMOD), pages 253-
262, New York, NY, USA, 1989. ACM. ISBN 0-89791-317-5. doi:
http://doi.acm.org/10.1145/67544.66950.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1974. ISBN 0201000296.

Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Pa-
tel, Divesh Srivastava, and Yuqing Wu. Structural Joins: A Primi-
tive for Efficient XML Query Pattern Matching. In Proc. Int. Conf.
on Data Engineering, page 141, Washington, DC, USA, 2002. IEEE
Computer Society. URL http://www.eecs.umich.edu/~jignesh/
publ/xmljoin-ICDE.pdf.

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe.
Nearest common ancestors: a survey and a new distributed algo-
rithm. In Proc. ACM Symp. on Parallel Algorithms and Architectures

http://portal.acm.org/citation.cfm?id=290182
http://db.bell-labs.com/user/hull/FoundDB.html
http://db.bell-labs.com/user/hull/FoundDB.html
http://www-db.stanford.edu/lore/pubs/lorel96.pdf
http://www.w3.org/2001/sw/BestPractices/HTML/2006-01-24-rdfa-primer
http://www.w3.org/2001/sw/BestPractices/HTML/2006-01-24-rdfa-primer
http://www.eecs.umich.edu/~jignesh/publ/xmljoin-ICDE.pdf
http://www.eecs.umich.edu/~jignesh/publ/xmljoin-ICDE.pdf

402

BIBLIOGRAPHY

[10]

(SPAA), pages 258-264, New York, NY, USA, 2002. ACM. ISBN
1-58113-529-7. doi: http://doi.acm.org/10.1145/564870.564914.

Mehmet Altinel and Michael J. Franklin. Efficient Filtering of XML
Documents for Selective Dissemination of Information. In Proc.
Int’l. Conf. on Very Large Data Bases (VLDB), pages 53—64, San Fran-
cisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN
1-55860-715-3.

Sihem Amer-Yahia, Chavdar Botev, Stephen Buxton, Pat Case,
Jochen Doerre, Darin McBeath, Michael Rys, and Jayavel Shan-
mugasundaram. XQuery 1.0 and XPath 2.0 Full-Text. Technical
Report Working Draft, W3C, 2005. URL http://www.w3.org/TR/
xquery-full-text/.

[11] plist — Property List Format. Apple Inc., 2003. URL

[12]

[13]

[14]

[15]

http://developer.apple.com/documentation/Darwin/
Reference/ManPages/man5/plist.5.html.

Uwe Afimann, Sacha Berger, Francois Bry, Tim Furche, Jakob Hen-
riksson, and Jendrik Johannes. Modular Web Queries—From Rules
to Stores. In Proc. Int’l. Workshop on Scalable Semantic Web Knowl-
edge Base Systems (SSWS), 2007. URL http://www.pms.ifi.lmu.
de/publikationen/. .

Uwe Afimann, Sacha Berger, Francois Bry, Tim Furche, Jakob Hen-
riksson, and Paula-Lavinia Patranjan. A Generic Module Sys-
tem for Web Rule Languages: Divide and Rule. In Proc. Int’l
RuleML Symp. on Rule Interchange and Applications, 2007. URL
http://www.pms.ifi.lmu.de/publikationen/. .

Malcolm Atkinson, David DeWitt, David Maier, Fran¢ois Bancil-
hon, Klaus Dittrich, and Stanley Zdonik. The Object-oriented
Database System Manifesto. In Frangois Bancilhon, Claude De-
lobel, and Paris Kanellakis, editors, Building an Object-oriented
Database System: The Story of O2, Morgan Kaufmann Series In
Data Management Systems, chapter 1, pages 1-20. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1992. ISBN 1-55860-
169-4. URL http://www.cs.cmu.edu/People/clamen/0O0DBMS/
Manifesto/htManifesto/Manifesto.html.

David Backett. Turtle—Terse RDF Triple Language. Technical
report, Institute for Learning and Research Technology, University
of Bristol, 2007. URL http://www.dajobe.org/2004/01/turtle/.

http://www.w3.org/TR/xquery-full-text/
http://www.w3.org/TR/xquery-full-text/
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/
http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto/Manifesto.html
http://www.cs.cmu.edu/People/clamen/OODBMS/Manifesto/htManifesto/Manifesto.html
http://www.dajobe.org/2004/01/turtle/

[16]

[17]

(18]

[19]

[20]

[21]

[24]

[25]

BIBLIOGRAPHY

James Bailey, Francois Bry, Tim Furche, and Sebastian Schaffert.
Web and Semantic Web Query Languages: A Survey. In Jan
Matuszynski and Norbert Eisinger, editors, Tutorial Lectures Int’l.
Summer School ‘Reasoning Web’, number 3564 in Lecture Notes in
Computer Science, pages 35-133. Springer, 2005. .

James Bailey, Francois Bry, Tim Furche, Benedikt Linse, Paula-
Lavinia Patrinjan, and Sebastian Schaffert. Rich Clients need Rich
Interfaces: Query Languages for XML and RDF Access on the Web.
In Proc. of German XML-Tage, 2006. URL http://www.pms.ifi.
Imu.de/publikationen/#PMS-FB-2006-14.

Robert Baumgartner, Sergio Flesca, and Georg Gottlob. The Elog
Web Extraction Language. In Proc. Int’l. Conf. on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR), pages 548—560,
London, UK, 2001. Springer-Verlag. ISBN 3-540-42957-3.

Dave Beckett and Jeen Broekstra. SPARQL Query Results XML
Format. Proposed recommendation, W3C, 2007. URL http: //www.
w3.org/TR/rdf-sparql-XMLres/.

Dave Beckett and Brian McBride. RDF/XML Syntax Specification
(Revised). Recommendation, W3C, 2004. URL http://www.w3.
org/TR/rdf-syntax-grammar/.

Michael Benedikt and Christoph Koch. Interpreting Tree-to-Tree
Queries. In Proc. Int’l. Symp. on Automata, Languages and Pro-
gramming (ICALP), pages 552—564, 2006.

Michael Benedikt and Christoph Koch. XPath Leashed. ACM
Computing Surveys, 2007.

Sacha Berger, Frang¢ois Bry, Oliver Bolzer, Tim Furche, Sebastian
Schaffert, and Christoph Wieser. Xcerpt and visXcerpt: Twin
Query Languages for the Semantic Web. In Proc. Int’l. Seman-
tic Web Conf. (ISWC), 2004. URL http://www.pms.ifi.1lmu.de/
publikationen/#PMS-FB-2004-23. .

Sacha Berger, Frangois Bry, Oliver Bolzer, Tim Furche, Sebastian
Schaffert, and Christoph Wieser. Querying the Standard and Se-
mantic Web using Xcerpt and visXcerpt. In Proc. European Seman-
tic Web Conf. (ESWC), 2005. URL http://www.pms.ifi.lmu.de/
publikationen/#PMS-FB-2005-16. .

Sacha Berger, Fran¢ois Bry, and Tim Furche. Xcerpt and visX-
cerpt: Integrating Web Querying. In Informal Proc. ACM SIGPLAN

403

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-14
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-14
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-synt ax-grammar/
http://www.w3.org/TR/rdf-synt ax-grammar/
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-23
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-23
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-16
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-16

404

BIBLIOGRAPHY

[26]

[27]

(28]

[29]

(30]

(32]

(33]

(34]

Workshop on Programming Language Technologies for XML (Plan-
X), page 84, 2006. .

Sacha Berger, Frangois Bry, Tim Furche, Benedikt Linse, and An-
dreas Schroeder. Beyond XML and RDF: The Versatile Web Query
Language Xcerpt. In Proc. Int’l. World Wide Web Conf. (WWW),
pages 1053-1054, 2006. .

Sacha Berger, Francois Bry, Tim Furche, Benedikt Linse, and An-
dreas Schroeder. Effective and Efficient Data Access in the Versatile
Web Query Language Xcerpt. In Proc. Int’l. Workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR), pages 219-224,
2006.

Sacha Berger, Francois Bry, Tim Furche, and Christoph Wieser.
Visual Languages: A Matter of Style. In Proc. Workshop on Visual
Languages and Logic (VLL), 2007. URL http://www.pms.ifi.lmu.
de/publikationen/.

Sacha Berger, Francois Bry, Tim Furche, and Andreas J. Hausler.
Completing Queries: Rewriting of Incomplete Web Queries under
Schema Constraints. In Massimo Marchiori, Jeff Z. Pan, and Chris-
tian de Sainte Marie, editors, Proc. Int’l. Conf. on Web Reasoning
and Rule Systems (RR), 2007. .

J. A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of
the ACM, 37(2):335-372, 1990. ISSN 0004-5411. doi: http://doi.acm.
0rg/10.1145/77600.77621.

Alexandru Berlea and Helmut Seidl. Binary Queries for Doc-
ument Trees. Nordic Journal of Computing, 11(1):41-71, 2004.
URL http://atseidl2.informatik.tu-muenchen.de/~berlea/
publications/njc/binaries.pdf.

Tim Berners-Lee. Semantic Web Road Map. Online only, 1998.
URL http://www.w3.0org/DesignIssues/Semantic.html.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic
Web. Scientific American, 2001.

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Re-
source Identifier (URI): Generic Syntax. Standard RFC 3986, The
Internet Society (ISOC) / Internet Engineering Task Force (IETF),
2005.

http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/
http://atseidl2.informatik.tu-muenchen.de/~berlea/publications/njc/binaries.pdf
http://atseidl2.informatik.tu-muenchen.de/~berlea/publications/njc/binaries.pdf
http://www.w3.org/DesignIssues/Semantic.html

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

Scott Boag, Don Chamberlin, Mary E. Fernandez, Daniela Florescu,
Jonathan Robie, and Jérome Siméon. XQuery 1.0: An XML Query
Language. Working draft, W3C, 2005. URL http://www.w3.org/
TR/xquery/.

Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas
Schwentick, and Luc Segoufin. Two-variable Logic on Data Trees
and XML Reasoning. In Proc. ACM Symp. on Principles of Database
Systems (PODS), pages 10-19, New York, NY, USA, 2006. ACM.
ISBN 1-59593-318-2. doi: http://doi.acm.org/10.1145/1142351.1142354.

Harold Boley. The Rule Markup Language: RDF-XML Data Model,
XML Schema Hierarchy, and XSL Transformations. In Intl. Conf.
on Applications of Prolog, pages 5-22, 2001. URL http://iit-iti.
nrc-cnrc.gc.ca/publications/nrc-47086_e.html.

Oliver Bolzer. Towards Data-Integration on the Semantic Web:
Querying RDF with Xcerpt. Diplomarbeit/diploma thesis, Uni-
versity of Munich, 2005. URL http://www.pms.ifi.lmu.de/
publikationen/#DA_Oliver.Bolzer.

Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: a fast XQuery
Processor powered by a Relational Engine. In Proc. ACM Symp.
on Management of Data (SIGMOD), pages 479-490, New York, NY,
USA, 2006. ACM Press. ISBN 1-59593-434-0. doi: http://doi.acm.
0rg/10.1145/1142473.1142527.

Kellogg S. Booth and George S. Lueker. Linear Algorithms to
Recognize Interval Graphs and Test for the Consecutive Ones
Property. In Proc. of ACM Symposium on Theory of Comput-
ing, pages 255265, New York, NY, USA, 1975. ACM Press. doi:
http://doi.acm.org/10.1145/800116.803776.

K. A. Bowen and R. A. Kowalski. Amalgamating Language and
Metalanguage in Logic Programming. In K. Clark and S. A. Tarn-
lund, editors, Logic Programming, Apic Studies in Data Processing.
Academic Press, Inc., 1983.

Daniele Braga, Alessandro Campi, Stefano Ceri, and Enrico Au-
gurusa. XQuery by Example. In Proc. Int’l. World Wide Web
Conf. (WWW), 2003. URL http://www2003.org/cdrom/papers/
poster/p291/p291-braga.html.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
Francois Yergeau. Extensible Markup Language (XML) 1.0 (Third

405

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47086_e.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-47086_e.html
http://www.pms.ifi.lmu.de/publikationen/#DA_Oliver.Bolzer
http://www.pms.ifi.lmu.de/publikationen/#DA_Oliver.Bolzer
http://www2003.org/cdrom/papers/poster/p291/p291-braga.html
http://www2003.org/cdrom/papers/poster/p291/p291-braga.html

406

BIBLIOGRAPHY

[47]

(48]

[49]

[50]

[51]

Edition). Recommendation, W3C, 2004. URL http://www.w3.
org/TR/REC-xml/.

Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin.
Namespaces in XML (2nd Edition). Recommendation, W3C, 2006.
URL http://www.w3.org/TR/REC-xml-names/.

Dan Brickley and R.\V. Guha. RDF Vocabulary Description Lan-
guage. Recommendation, W3C, 2004. URL http://www.w3.org/
TR/rdf-schema/.

Jeen Broekstra and Arjohn Kampman. An RDF Query and Trans-
formation Language. In Semantic Web and Peer-to-Peer, chapter 2,
pages 23-39. Springer, 2006.

Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco
Turini. Modular logic programming. ACM Trans. Program. Lang.
Syst., 16(4):1361-1398, 1994. ISSN 0164-0925. doi: http://doi.acm.
0rg/10.1145/183432.183528.

Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig
Joins: Optimal XML Pattern Matching. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 310-321, New York, NY,
USA, 2002. ACM Press. ISBN 1-58113-497-5. doi: http://doi.acm.
0rg/10.1145/564691.564727. URL http://www.research.att.com/
~divesh/papers/bks2002-twigjoin.pdf.

Frangois Bry, Tim Furche, and Benedikt Linse. Data Model and
Query Constructs for Versatile Web Query Languages: State-of-the-
Artand Challenges for Xcerpt. In Proc. Int’l. Workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR), pages 90-104,
2006.

Francois Bry, Tim Furche, and Benedikt Linse. AMachoS - Ab-
stract Machine for Xcerpt: Architecture and Principles. In Proc.
Int’l. Workshop on Principles and Practice of Semantic Web Reason-
ing (PPSWR), pages 105-119, 2006.

Frangois Bry, Tim Furche, and Benedikt Linse. Let’s Mix It: Versatile
Access to Web Data in Xcerpt. In Proc. of Workshop on Information
Integration on the Web (IIWeb), 2006. URL http://www.pms.ifi.
Imu.de/publikationen/#PMS-FB-2006-16.

Frangois Bry, Tim Furche, Benedikt Linse, and Andreas Schroeder.
Efficient Evaluation of n-ary Conjunctive Queries over Trees and
Graphs. In Proc. ACM Int’l. Workshop on Web Information and

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.research.att.com/~divesh/papers/bks2002-twigjoin.pdf
http://www.research.att.com/~divesh/papers/bks2002-twigjoin.pdf
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-16
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-16

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

BIBLIOGRAPHY

Data Management (WIDM). ACM Press, 2006. URL http: //www.
pms.ifi.lmu.de/publikationen/#PMS-FB-2006-32. .

Francois Bry and Paula-Lavinia Patranjan. Reactivity on the Web:
Paradigms and Applications of the Language XChange. In Proc.
ACM Symp. on Applied Computing (SAC). ACM, 2005. URL http:
//rewerse.net/publications.html#REWERSE-RP-2004-41.

Francois Bry and Sebastian Schaffert. A Gentle Introduction into
Xcerpt, a Rule-based Query and Transformation Language for XML.
In Proc. Intl. Workshop on Rule Markup Languages for Business
Rules on the Semantic Web, 2002. URL http://www.pms.ifi.lmu.
de/publikationen/#PMS-FB-2002-11.

Francois Bry, Tim Furche, and Dan Olteanu. Datenstréme. Infor-
matik Spektrum, 27(2), 2004. URL http://www.pms.ifi.1lmu.de/
publikationen/#PMS-FB-2004-2.

Francois Bry, Tim Furche, Paula-Lavinia Patranjan, and Sebastian
Schaffert. Data Retrieval and Evolution on the (Semantic) Web:
A Deductive Approach. In Proc. Int’l. Workshop on Principles and
Practice of Semantic Web Reasoning (PPSWR), volume 3208 of Lec-
ture Notes in Computer Science, pages 34—49. Springer, 2004. .

Frangois Bry, Fatih Coskun, Serap Durmaz, Tim Furche, Dan
Olteanu, and Markus Spannagel. The XML Stream Query Processor
SPEX. In Proc. Int’l. Conf. on Data Engineering (ICDE), pages 1120—
1121, 2005. URL http://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2005-1. .

Francois Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebas-
tian Schaffert, and Sacha Berger. Querying the Web Reconsidered:
Design Principles for Versatile Web Query Languages. Journal of
Semantic Web and Information Systems, 1(2), 2005. .

Frangois Bry, Tim Furche, and Sebastian Schaffert. Initial Draft of a
Language Syntax (Xcerpt 2.0 Beta). Deliverable 14-D6, Network of
Excellence REWERSE (Reasoning on the Web with Rules and Se-
mantics), 2006. URL http://rewerse.net/deliverables/ml18/
i4-d6.pdf.

Frangois Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg
Gottlob, Clemens Ley, Benedikt Linse, Reinhard Pichler, and Fang
Wei. Foundations of Rule-Based Query Answering. In Grigoris
Antoniou, Uwe Aflimann, Cristina Baroglio, Stefan Decker, Nicola

407

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-32
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2006-32
http://rewerse.net/publications.html#REWERSE-RP-2004-41
http://rewerse.net/publications.html#REWERSE-RP-2004-41
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2002-11
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2002-11
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-2
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-2
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-1
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-1
http://rewerse.net/deliverables/m18/i4-d6.pdf
http://rewerse.net/deliverables/m18/i4-d6.pdf

408

BIBLIOGRAPHY

[61]

[62]

(64]

[66]

[67]

Henze, Paula-Lavinia Pdtranjan, and Robert Tolksdorf, editors, Tu-
torial Lectures Int’l. Summer School ‘Reasoning Web’, number 3564
in Lecture Notes in Computer Science. Springer, 2007. .

Frangois Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian
Schaffert, and Sacha Berger. Querying the Web Reconsidered: De-
sign Principles for Versatile Web Query Languages. In Amit Sheth
and Miltiadis D. Lytras, editors, Semantic Web-Based Information
Systems: State-of-the-Art Applications, chapter 8. CyberTech Pub-
lishing, 2007. .

Francois Bry, Tim Furche, Alina Hang, and Benedikt Linse. GRD-
DLing with Xcerpt: Learn one, get one free! In Proc. European
Semantic Web Conf. (ESWC), 2007.

Francois Bry, Tim Furche, Clemens Ley, and Benedikt Linse. RD-
FLog: Filling in the Blanks in RDF Querying. Technical Report
PMS-FB-2008-01, University of Munich, 2007. URL http: //www.
pms.ifi.lmu.de/publikationen/#PMS-FB-2008-01.

Jan Van Den Bussche, Dirk Van Gucht, Marc Andries, and Marc
Gyssens. On the Completeness of Object-creating Database Trans-
formation Languages. Journal of the ACM, 44(2):272-319,1997. ISSN
0004-5411. doi: http://doi.acm.org/10.1145/256303.256311.

Luca Cabibbo. The Expressive Power of Stratified Logic Programs
with Value Invention. Information and Computation, 147(1):22-56,
1998. ISSN 0890-5401. doi: http://dx.doi.org/10.1006/inc0.1998.
2734.

Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stick-
ler. Named Graphs, Provenance and Trust. In Proc. Int’l. World
Wide Web Conf. (WWW), pages 613-622, New York, NY, USA, 200s.
ACM. ISBN 1-59593-046-9. doi: http://doi.acm.org/10.1145/1060745.
1060835.

R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David
Jordan, Craig Russell, Olaf Schadow, Torsten Stanienda, and Fer-
nando Velez, editors. Object Data Standard: ODMG 3.0. Morgan
Kaufmann, 200o0.

Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo
Marchiori, and Jonathan Robie. XML Query Use Cases. Work-
ing group note, W3C, 2007. URL http://www.w3.org/TR/
xquery-use-cases/.

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-01
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2008-01
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

[77]

BIBLIOGRAPHY

Ashok K. Chandra and Philip M. Merlin. Optimal Implementation
of Conjunctive Queries in Relational Data Bases. In Proc. ACM
Symp. on Theory of Computing (STOC), pages 77-90, New York,
NY, USA, 1977. ACM Press. doi: http://doi.acm.org/10.1145/800105.
803397.

Li Chen, Amarnath Gupta, and M. Erdem Kurul. Stack-based
Algorithms for Pattern Matching on DAGs. In Proc. Int’l. Conf. on
Very Large Data Bases (VLDB), pages 493—-504. VLDB Endowment,
2005. ISBN 1-59593-154-6.

Zhiyuan Chen, Johannes Gehrke, Flip Korn, Nick Koudas, Jayavel
Shanmugasundaram, and Divesh Srivastava. Index Structures for
Matching XML Twigs using Relational Query Processors. Data
& Knowledge Engineering (DKE), 60(2):283-302, 2007. ISSN 0169-
023X. doi: http://dx.doi.org/10.1016/j.datak.2006.03.003.

James Clark. XSL Transformations, Version 1.0. Recommendation,
W3C, 1999. URL http://www.w3.org/TR/xslt.

James Clark and Steve DeRose. XML Path Language (XPath) Ver-
sion 1.0. Recommendation, W3C, 1999. URL http://www.w3.org/
TR/xpath/.

Edgar E. Codd. Extending the Database Relational Model to Cap-
ture more Meaning. ACM Transactions on Database Systems, 4(4):
397-434, 1979. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/
320107.320109. URL http://portal.acm.org/citation.cfm?id=
320109.

Michael Codish, Saumya K. Debray, and Roberto Giacobazzi. Com-
positional analysis of modular logic programs. In Proc. ACM Symp.
on Principles of Programming Languages (POPL), pages 451-464,
New York, NY, USA, 1993. ACM Press. ISBN 0-89791-560-7. doi:
http://doi.acm.org/10.1145/158511.158703.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reacha-
bility and Distance Queries via 2-hop Labels. In Proc. ACM Sym-
posium on Discrete Algorithms, pages 937-946, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Mathematics. ISBN
0-89871-513-X. URL http://portal.acm.org/citation.cfm?id=
545381.545503.

Dan Connolly. Gleaning Resource Descriptions from Dialects of
Languages (GRDDL). Recommendation, W3C, 2007. URL http:
//www.w3.org/TR/grddl/.

409

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://portal.acm.org/citation.cfm?id=320109
http://portal.acm.org/citation.cfm?id=320109
http://portal.acm.org/citation.cfm?id=545381.545503
http://portal.acm.org/citation.cfm?id=545381.545503
http://www.w3.org/TR/grddl/
http://www.w3.org/TR/grddl/

410

BIBLIOGRAPHY

(78]

[79]

[80]

(81]

(82]

[83]

(85]

(87]

Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason,
and Moshe Shadmon. A Fast Index for Semistructured Data. In
Proc. Int. Conf. on Very Large Databases, pages 341-350, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-
55860-804-4. URL http://www.vldb.org/conf/2001/P341.pdf.

Brouno Courcelle. Graph Rewriting: an Algebraic and Logic Ap-
proach. In Handbook of Theoretical Computer Science, volume 2,
chapter 2, pages 193—242. Elsevier Science Publishers B.V., Cam-
bridge, MA, USA, 1990. ISBN 0-444-88074-7.

Bruno Courcelle. Fundamental Properties of Infinite Trees. Theo-
retical Computer Science, 25:95-169, 1983.

John Cowan and Richard Tobin. XML Information Set (2nd
Ed.). Recommendation, W3C, 2004. URL http://www.w3.org/
TR/xml-infoset/.

Philip T. Cox and Tomasz Pietrzykowski. A Complete, Nonredun-
dant Algorithm for Reversed Skolemization. In Proc. Int’l. Conf. on
Automated Deduction (CADE), pages 374-385, London, UK, 1980.
Springer-Verlag. ISBN 3-540-10009-1.

Steve DeRose, Eve Maier, and David Orchard. XML Linking Lan-
guage (XLink) Version 1.0. Recommendation, W3C, 2001. URL
http://www.w3.0rg/TR/x1ink/.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and
Dan Suciu. A Query Language for XML. In Proc. Int’l. World Wide
Web Conf. (WWW), 1999. URL http://www.research.att.com/
~mff/xmlgql/doc/files/final.html.

P. Dietz and D. Sleator. Two Algorithms for Maintaining Order in
a List. In Proc. ACM Symp. on Theory of Computing (STOC), pages
365-372, New York, NY, USA, 1987. ACM. ISBN 0-89791-221-7. doi:
http://doi.acm.org/10.1145/28395.28434.

Paul E Dietz. Maintaining Order in a Linked List. In Proc. ACM
Symp. on Theory of Computing (STOC), pages 122-127, New York,
NY, USA, 1982. ACM. ISBN 0-89791-070-2. doi: http://doi.acm.
0rg/10.1145/800070.802184.

Andreas Doms, Tim Furche, Albert Burger, and Michael Schroeder.
How to Query the GeneOntology. In Symposium on Knowledge
Representation in Bioinformatics (KRBIO), 2005. URL http: //www.
pms.ifi.lmu.de/publikationen/#PMS-FB-2005-15. .

http://www.vldb.org/conf/2001/P341.pdf
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xlink/
http://www.research.att.com/~mff/xmlql/doc/files/final.html
http://www.research.att.com/~mff/xmlql/doc/files/final.html
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-15
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-15

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

BIBLIOGRAPHY

Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient
Algorithm for Computing Bisimulation Equivalence. Theoretical
Computer Science, 311(1-3):221-256, 2004. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/S0304-3975(03)00361-X. URL http://
www.dimi.uniud.it/~policrit/Papers/tcsb959.pdf.

Denise Draper, Peter Frankhauser, Mary Ferndndez, Ashok Malho-
tra, Kristoffer Rose, Michael Rys, Jérome Siméon, and Philip Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. Recommendation,
W3C, 2007. URL http://www.w3.org/TR/xquery-semantics/.

M. Duerst and M. Suignard. Internationalized Resource Identifiers
(IRIs). RFC (Request for Comments) 3987, IEEE, 2005. URL http:
//www.fags.org/rfcs/rfc3987.html.

Ronald Fagin. Multivalued Dependencies and a New Normal Form
for Relational Databases. ACM Transactions on Database Systems,
2(3):262-278, 1977. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/
320557.320571.

David C. Fallside and Priscilla Walmsley. XML Schema Part o:
Primer Second Edition. Recommendation, W3C, 2004. URL http:
//www.w3.org/TR/xmlschema-0/.

Mary Fernandez, Jérdme Siméon, Byron Choi, Amélie Marian, and
Gargi Sur. Implementing XQuery 1.0 : The Galax Experience. In
Proc. Int’'l. Conf. on Very Large Data Bases (VLDB), 2003. URL
http://www.vldb.org/conf/2003/papers/S35P07 .pdf.

Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy,
and Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model.
Recommendation, W3C, 2007. URL http://www.w3.org/TR/
xpath-datamodel/.

Jorg Flum, Markus Frick, and Martin Grohe. Query Evaluation
via Tree-Decompositions. Journal of the ACM, 49(6):716-752, 2002.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/602220.602222.

P. Foggia, C. Sansone, and M. Vento. An Improved Algorithm for
Matching Large Graphs. In Proc. Int’l. Workshop on Graph-based
Representations, 2001.

D. R. Fulkerson and O. A. Gross. Incidence Matrices and Interval
Graphs. Pacific Journal of Mathematics, 15(3):835-855, 1965.

411

http://www.dimi.uniud.it/~policrit/Papers/tcsb959.pdf
http://www.dimi.uniud.it/~policrit/Papers/tcsb959.pdf
http://www.w3.org/TR/xquery-semantics/
http://www.faqs.org/rfcs/rfc3987.html
http://www.faqs.org/rfcs/rfc3987.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.vldb.org/conf/2003/papers/S35P07.pdf
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

412

BIBLIOGRAPHY

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Tim Furche, Frangois Bry, and Oliver Bolzer. Marriages of Con-
venience: Triples and Graphs, RDF and XML. In Proc. Int’l.
Workshop on Principles and Practice of Semantic Web Reason-
ing (PPSWR), volume 3703 of Lecture Notes in Computer Science,
pages 72-84. Springer, 2005. URL http://www.pms.ifi.1lmu.de/
publikationen/#PMS-FB-2005-38.

Tim Furche, Frangois Bry, and Oliver Bolzer. XML Perspectives
on RDF Querying: Towards integrated Access to Data and Meta-
data on the Web. In Proc. GI-Workshop on Grundlagen von Daten-
banken, pages 43-47, 2005. URL http://www.pms.ifi.lmu.de/
publikationen/#PMS-FB-2005-13.

Tim Furche, Benedikt Linse, Francois Bry, Dimitris Plexousakis,
and Georg Gottlob. RDF Querying: Language Constructs and
Evaluation Methods Compared. In Tutorial Lectures Int’l. Summer
School ‘Reasoning Web’, volume 4126 of Lecture Notes in Computer
Science, pages 1-52. Springer, 2006. .

Tim Furche, Francois Bry, and Sebastian Schaffert. Xcerpt 2.0: Speci-
fication of the (Core) Language Syntax. Deliverable I4-D12, Network
of Excellence REWERSE (Reasoning on the Web with Rules and
Semantics), 2007. URL http://rewerse.net/deliverables/m36/
i4-d12.pdf.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall, 2002.

Pierre Genevés and Jean-Yves Vion-Dury. XPath Formal Semantics
and Beyond: A Coq-Based Approach. In Proc. Int’l. Conf. on Theo-
rem Proving in Higher Order Logics (TPHOLs), pages 181-198, Salt
Lake City, Utah, United States, August 2004. University Of Utah.

R. Gentilini, C. Piazza, and A. Policriti. From Bisimulation to
Simulation: Coarsest Partition Problems. Journal of Automated
Reasoning, 31(1):73-103, 2003. ISSN 0168-7433. doi: http://dx.doi.
org/10.1023/A:1027328830731. URL http://www.dimi.uniud.it/
~policrit/Papers/JAR_finale.pdf.

Frédérick Giasson and Yves Raimond. Music Ontology Specifi-
cation. Specification, Zitgist LLC, 2007. URL http://purl.org/
ontology/mo/.

Adrian Giurca and Dorel Savulea. An Algebra of Logic Programs
with Applications in Distributed Environments. In Annales of

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-38
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-38
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-13
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2005-13
http://rewerse.net/deliverables/m36/i4-d12.pdf
http://rewerse.net/deliverables/m36/i4-d12.pdf
http://www.dimi.uniud.it/~policrit/Papers/JAR_finale.pdf
http://www.dimi.uniud.it/~policrit/Papers/JAR_finale.pdf
http://purl.org/ontology/mo/
http://purl.org/ontology/mo/

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

Craiova University, volume XXVIII of Mathematics and Computer
Science Series, pages 147-159, 2001.

Roy Goldman and Jennifer Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases. In
Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pages 436-445,
San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
ISBN 1-55860-470-7.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree
Decompositions and Tractable Queries. In Proc. ACM Symp. on
Principles of Database Systems (PODS), pages 21-32, New York, NY,
USA, 1999. ACM Press. ISBN 1-58113-062-7. doi: http://doi.acm.
0rg/10.1145/303976.303979.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree
Decompositions and Tractable Queries. In Proc. ACM Symp. on
Principles of Database Systems (PODS), pages 21-32, New York, NY,
USA, 1999. ACM. ISBN 1-58113-062-7. doi: http://doi.acm.org/10.
1145/303976.303979.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. The Com-
plexity of Acyclic Conjunctive Queries. Journal of the ACM, 48(3):
431-498, 2001. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/
382780.382783. URL http://portal.acm.org/citation.cfm?id=
382783.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree
Decompositions and Tractable Queries. Journal of Computer and
System Sciences, 64(3):579—627, 2002.

Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient
Algorithms for Processing XPath Queries. ACM Transactions on
Database Systems, 2005. URL http://www.infosys.uni-sb.de/
~koch/download/todsl.pdf.

Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin.
The Complexity of XPath Query Evaluation and XML Typing.
Journal of the ACM, 2005. URL http://www-db.cs.uni-sb.de/
~koch/download/jacm2.pdf.

Goetz Graefe. Query Evaluation Techniques for Large Databases.
ACM Computing Surveys, 25(2):73-169, 1993. ISSN 0360-0300. doi:
http://doi.acm.org/10.1145/152610.152611.

413

http://portal.acm.org/citation.cfm?id=382783
http://portal.acm.org/citation.cfm?id=382783
http://www.infosys.uni-sb.de/~koch/download/tods1.pdf
http://www.infosys.uni-sb.de/~koch/download/tods1.pdf
http://www-db.cs.uni-sb.de/~koch/download/jacm2.pdf
http://www-db.cs.uni-sb.de/~koch/download/jacm2.pdf

414

BIBLIOGRAPHY

[115]

[116]

(117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Martin Grohe and Nicole Schweikardt. Comparing the Succinctness
of Monadic Query Languages over Finite Trees. In Proc. Workshop
on Computer Science Logic (CSL), 2003.

Thorsten Grust. Accelerating XPath Location Steps. In Proc. ACM
Symp. on Management of Data (SIGMOD), 2002. URL http: //www.
in.tu-clausthal.de/~grust/files/xpath-accel.pdf.

Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue
- XQuery: Fluent. In Proc. Twente Data Management Workshop on
XML Databases and Information Retrieval, 2004. URL http: //www.
in.tu-clausthal.de/~grust/files/algebra-mapping.pdf.

Torsten Grust, Maurice van Keulen, and Jens Teubner. Stair-
case Join: Teach A Relational DBMS to Watch its (Axis)
Steps. In Proc. Int. Conf. on Very Large Databases, 2003. URL
http://www.inf.uni-konstanz.de/~teubner/publications/
watch-axis-steps.pdf.

Torsten Grust, Maurice Van Keulen, and Jens Teubner. Accelerating
XPath Evaluation in any RDBMS. ACM Transactions on Database
Systems, 29(1):91-131, 2004. ISSN 0362-5915. doi: http://doi.acm.
01g/10.1145/974750.974754.

Michel Habib, Ross McConnell, Christophe Paul, and Laurent Vien-
not. Lex-BFS and Partition Refinement, with Applications to Transi-
tive Orientation, Interval Graph Recognition and Consecutive Ones
Testing. Theoretical Computer Science, 234(1-2):59—84, 2000. ISSN
0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(97)00241-7.

Dov Harel and Robert Endre Tarjan. Fast Algorithms for Finding
Nearest Common Ancestors. SIAM Journal of Computing, 13(2):338-
355, 1984. ISSN 0097-5397. doi: http://dx.doi.org/10.1137/0213024.

Patrick Hayes and Brian McBride. RDF Semantics. Recommenda-
tion, W3C, 2004.

Lauri Hella, Leonid Libkin, Juha Nurmonen, and Limsoon Wong.
Logics with Aggregate Operators. Journal of the ACM, 48(4):880-
907, 2001. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/502090.
502100.

Jakob Henriksson, Jendrik Johannes, Steffen Zschaler, and Uwe
Afimann. Reuseware—Adding Modularity to Your Language of
Choice. Journal of Object Technology, 6(9 (Special Issue. TOOLS
EUROPE 2007)):127-146, 2007.

http://www.in.tu-clausthal.de/~grust/files/xpath-accel.pdf
http://www.in.tu-clausthal.de/~grust/files/xpath-accel.pdf
http://www.in.tu-clausthal.de/~grust/files/algebra-mapping.pdf
http://www.in.tu-clausthal.de/~grust/files/algebra-mapping.pdf
http://www.inf.uni-konstanz.de/~teubner/publications/watch-axis-steps.pdf
http://www.inf.uni-konstanz.de/~teubner/publications/watch-axis-steps.pdf

[125]

[126]

[127]

[128]

[129]

[130]

[131]

(132]

[133]

[134]

[135]

BIBLIOGRAPHY

M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing
Simulations on Finite and Infinite Graphs. In Proc. Symp. on Foun-
dations of Computer Science (FOCS), page 453, Washington, DC,
USA, 1995. IEEE Computer Society. ISBN 0-8186-7183-1.

J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomor-
phism of planar graphs. In Proc. ACM Symposium on Theory of
Computing, pages 172-184, New York, NY, USA, 1974. ACM Press.
doi: http://doi.acm.org/10.1145/800119.803896.

Ian Horrocks, Peter E. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grossof, and Mike Dean. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. Member submission,
W3C, 2004. URL http://www.w3.org/Submission/SWRL/.

Sun-Yuan Hsieh. The Interval-Merging Problem. Information Sys-
tems, 177(2):519-524, 2007.

Wen-Lian Hsu. PC-Trees vs. PQ-Trees. In Proc. Int’l. Conf. on
Computing and Combinatorics, volume 2108 of LNCS, 2001.

Wen-Lian Hsu. A Simple Test for the Consecutive Ones Property.
Journal of Algorithms, 43(1):1-16, 2002. ISSN 0196-6774. doi: http:
//dx.doi.org/10.1006/jagm.2001.1205.

Wen-Lian Hsu and Ross M. McConnell. PC Trees and Circular-ones
Arrangements. Theoretical Computer Science, 296(1):99-116, 2003.
ISSN 0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(02)
00435-8.

Richard Hull and Masatoshi Yoshikawa. ILOG: Declarative Creation
and Manipulation of Object Identifiers. In Proc. Int’l. Conf. on Very
Large Data Bases (VLDB), pages 455-468, San Francisco, CA, USA,
1990. Morgan Kaufmann Publishers Inc. ISBN 0-55860-149-X.

ISO/IEC 13250 Topic Maps. International Organization for Standard-
ization (ISO), 2nd edition, 2002. URL http://wwwl.y12.doe.gov/
capabilities/sgml/sc34/document/0322.htm.

ISO/IEC. 23271, Common Language Infrastructure (CLI). Interna-
tional Standard 23271, ISO/IEC, 2003.

H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and Keith
Thompson. TAX: A Tree Algebra for XML. In Proc. Int. Workshop
on Database Programming Languages, 2001. URL http: //www.cs.
ubc.ca/~laks/tax-dbplOl-cr.pdf.

415

http://www.w3.org/Submission/SWRL/
http://www1.y12.doe.gov/capabilities/sgml/sc34/document/0322.htm
http://www1.y12.doe.gov/capabilities/sgml/sc34/document/0322.htm
http://www.cs.ubc.ca/~laks/tax-dbpl01-cr.pdf
http://www.cs.ubc.ca/~laks/tax-dbpl01-cr.pdf

416

BIBLIOGRAPHY

[136]

(137]

(138]

[139]

[140]

(141]

[142]

[143]

[144]

H. Jiang, H. Lu, W. Wang, and B. Ooi. XR-Tree: Indexing XML
Data for Efficient Structural Join. In Proc. Int’l. Conf. on Data En-
gineering (ICDE), pages 253-264, 2003. URL citeseer.ist.psu.
edu/jiang03xrtree.html.

Isambo Karali, Evangelos Pelecanos, and Constantin Halatsis. A
Versatile Module system for Prolog Mapped to Flat Prolog. In
Proc. ACM Symp. on Applied Computing (SAC), pages 578-585, New
York, NY, USA, 1993. ACM Press. ISBN 0-89791-567-4. doi: http:
//doi.acm.org/10.1145/162754.168687.

Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dim-
itris Plexousakis, and Michel Scholl. RQL: a Declarative Query
Language for RDE In Proc. Int’l. World Wide Web Conf. (WWW),
pages 592-603, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-
449-5. doi: http://doi.acm.org/10.1145/511446.511524.

Michael Kay. XSL Transformations, Version 2.0. Recommendation,
W3C, 2007.

Setrag N. Khoshafian and George P. Copeland. Object Identity.
In Proc. Intl. Conf. on Object-oriented Programming Systems, Lan-
guages and Applications, pages 406-416, New York, NY, USA, 1986.
ACM Press. ISBN 0-89791-204-7. doi: http://doi.acm.org/10.1145/
28697.28739. URL http://portal.acm.org/citation.cfm?id=
28739.

Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter Fensel. A
Realistic Architecture for the Semantic Web. In Proc. Int’l. Conf. on
Rules and Rule Markup Languages for the Semantic Web (RuleML),
volume 3791 of LNCS, pages 17-29. Springer, 2005.

Graham Klyne, Jeremy J. Carroll, and Brian McBride. Resource
Description Framework (RDF): Concepts and Abstract Syntax. Rec-
ommendation, W3C, 2004.

Johannes Kébler, Uwe Schoning, and Jacobo Tordn. The Graph
Isomorphism Problem: Its Structural Complexity. Progress in Theo-
retical Computer Science. Birkhduser/Springer-Verlag, 1993.

Christoph Koch. On the Complexity of Nonrecursive XQuery
and Functional Query Languages on Complex Values. tods, 31(4),
2006. URL http://www.infosys.uni-sb.de/~koch/download/
0503062 . pdf.

citeseer.ist.psu.edu/jiang03xrtree.html
citeseer.ist.psu.edu/jiang03xrtree.html
http://portal.acm.org/citation.cfm?id=28739
http://portal.acm.org/citation.cfm?id=28739
http://www.infosys.uni-sb.de/~koch/download/0503062.pdf
http://www.infosys.uni-sb.de/~koch/download/0503062.pdf

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

BIBLIOGRAPHY

Gabriel M. Kuper and Moshe Y. Vardi. The Logical Data Model.
ACM Transactions on Database Systems, 18(3):379-413, 1993. ISSN
0362-5915. doi: http://doi.acm.org/10.1145/155271.155274. URL http:
//portal.acm.org/citation.cfm?id=155274.

Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz, and Jan Van den
Bussche. The Semijoin Algebra and the Guarded Fragment. Journal
of Logic, Language and Information, 14(3):331-343, 2005.

Leonid Libkin and Limsoon Wong. Query Languages for Bags and
Aggregate Functions. J. Comput. Syst. Sci., 55(2):241-272, 1997. ISSN
0022-0000. doi: http://dx.doi.org/10.1006/jcss.1997.1523.

Benedikt Linse. Automatic Translation between XQuery and
Xcerpt. Diplomarbeit/diploma thesis, Institute for Informatics,
University of Munich, 2006. URL http://www.pms.ifi.lmu.de/
publikationen/#DA_Benedikt.Linse.

Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and
XPath 2.0 Functions and Operators. Recommendation, W3C, 2007.
URL http://www.w3.0org/TR/xpath-functions/.

Frank Manola, Eric Miller, and Brian McBride. RDF Primer. Rec-
ommendation, W3C, 2004.

Jonathan Marsh. XML Base. Recommendation, W3C, 2001. URL
http://www.w3.org/TR/xmlbase/.

José M. Martinez. MPEG-7 Overview. Technical Report ISO/IEC
JTC1/SC29/WG11N6828, INTERNATIONAL ORGANISATION
FOR STANDARDISATION (ISO), 2004. URL http://www.
chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm.

Maarten Marx. First Order Paths in Ordered Trees. In Proc. Int’l.
Conf. on Database Theory (ICDT), pages 114-128, 2005. URL http:
//staff.science.uva.nl/~marx/pub/recent/icdt05.pdf.

Maarten Marx. Conditional XPath, the First Order Complete XPath
Dialect. In Proc. ACM Symposium on Principles of Database Systems,
pages 13—22. ACM, 6 2004. URL http://turing.wins.uva.nl/
~marx/pub/recent/pods04.pdf.

Norman May, Sven Helmer, Carl-Christian Kanne, and
Guido Moerkotte. XQuery Processing in Natix with an
Emphasis on Join Ordering. In Proc. of Int. Workshop
on XQuery Implementation, Experience and Perspectives,

417

http://portal.acm.org/citation.cfm?id=155274
http://portal.acm.org/citation.cfm?id=155274
http://www.pms.ifi.lmu.de/publikationen/#DA_Benedikt.Linse
http://www.pms.ifi.lmu.de/publikationen/#DA_Benedikt.Linse
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xmlbase/
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://staff.science.uva.nl/~marx/pub/recent/icdt05.pdf
http://staff.science.uva.nl/~marx/pub/recent/icdt05.pdf
http://turing.wins.uva.nl/~marx/pub/recent/pods04.pdf
http://turing.wins.uva.nl/~marx/pub/recent/pods04.pdf

418

BIBLIOGRAPHY

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

2004. URL http://pi3.informatik.uni-mannheim.de/
old/publications/ximep2004-joinorder.ps.

Wolfgang May. XPath-Logic and XPathLog: A Logic-Programming
Style XML Data Manipulation Language. Theory and Practice of
Logic Programming, 3(4):499-526, 2004.

Deborah L. McGuinness and Frank van Harmelen. OWL Web
Ontology Language—Overview. Recommendation, W3C, 2004.
URL http://www.w3.0org/TR/owl-features/.

B. D. McKay. Practical Graph Isomorphism. In Proc. Conf. on
Numerical Mathematics and Computing, 1980.

Jim Melton. Advanced SQL: 1999—Understanding Object-
Relational and Other Advanced Features. Morgan Kaufmann Pub-
lishers Inc., 2002.

Holger Meuss and Klaus U. Schulz. Complete Answer Aggregates for
Treelike Databases: A Novel Approach to Combine Querying and
Navigation. ACM Transactions on Information Systems, 19(2):161—
215, 2001. ISSN 1046-8188. doi: http://doi.acm.org/10.1145/382979.
383042. URL http://www.cis.uni-muenchen.de/people/Meuss/
Pub/TOISO01.pdf.

Holger Meuss, Klaus U. Schulz, and Francois Bry. Towards Ag-
gregated Answers for Semistructured Data. In Proc. Intl. Conf. on
Database Theory, pages 346-360. Springer-Verlag, 2001. ISBN 3-540-
41456-8. URL http://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2000-15.

Dale Miller. A Theory of Modules for Logic Programming. In Proc.
IEEE Symp. on Logic Programming, pages 106-114, 1986.

Libby Miller, Andy Seaborne, and Alberto Reggiori. Three Imple-
mentations of SquishQL, a Simple RDF Query Language. In Proc.
Int’l. Semantic Web Conf. (ISWC), June 2002.

Robin Milner. An Algebraic Definition of Simulation Between
Programs. In Proc. Intl. Joint Conf. on Artificial Intelligence, pages
481-489, 1971.

Object Management Group. UML 2.0 Superstructure Specification.
Specification, Object Management Group, 2005. URL http: //www.
omg.org/technology/documents/formal/uml.htm.

http://pi3.informatik.uni-mannheim.de/old/publications/ximep2004-joinorder.ps
http://pi3.informatik.uni-mannheim.de/old/publications/ximep2004-joinorder.ps
http://www.w3.org/TR/owl-features/
http://www.cis.uni-muenchen.de/people/Meuss/Pub/TOIS01.pdf
http://www.cis.uni-muenchen.de/people/Meuss/Pub/TOIS01.pdf
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2000-15
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2000-15
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

[166]

[167]

[168]

[169]

[170]

[171]

[172]

(173]

[174]

[175]

BIBLIOGRAPHY

Frank Olken and John McCarthy. Requirements and Desiderata for
an XML Query Language. In Proc. W3C QL'98 - Query Languages
1998, December 1998.

Dan Olteanu. Forward Node-selecting Queries over Trees. ACM
Transactions on Database Systems, 32(1):3, 2007. ISSN 0362-5915.
doi: http://doi.acm.org/10.1145/1206049.1206052.

Dan Olteanu. SPEX: Streamed and Progressive Evaluation of XPath.
IEEE Transactions on Knowledge and Data Engineering, 2007.

Dan Olteanu. Evaluation of XPath Queries against XML Streams.
Dissertation/doctoral thesis, University of Munich, 2005.

Dan Olteanu, Holger Meuss, Tim Furche, and Frangois Bry. XPath:
Looking Forward. In Proc. EDBT Workshop on XML-Based Data
Management, volume 2490 of Lecture Notes in Computer Science.
Springer, 2002. .

Dan Olteanu, Tim Furche, and Francois Bry. Evaluating Complex
Queries against XML streams with Polynomial Combined Complex-
ity. In Proc. British National Conf. on Databases (BNCOD), pages
31-44, 2003. URL http://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2003-15. .

Dan Olteanu, Tim Furche, and Francois Bry. An Efficient Single-
Pass Query Evaluator for XML Data Streams. In Data Streams
Track,Proc. ACM Symp. on Applied Computing (SAC), pages 627-
631, 2004. .

Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon
Schaller, and Nigel Westbury. ORDPATHs: Insert-friendly XML
Node Labels. In Proc. ACM Symp. on Management of Data (SIG-
MOD), pages 903-908. ACM Press, 2004. ISBN 1-58113-859-8. doi:
http://doi.acm.org/10.1145/1007568.1007686. URL http://www.cs.
umb . edu/~poneil/ordpath.pdf.

Robert Paige and Robert E. Tarjan. Three Partition Refinement
Algorithms. SIAM Journal of Computing, 16(6):973-989, 1987. ISSN
0097-5397. doi: http://dx.doi.org/10.1137/0216062.

Jack Park and Sam Hunting, editors. XML Topic Maps: Creating
and Using Topic Maps for the Web. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN 0201749602.

419

http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2003-15
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2003-15
http://www.cs.umb.edu/~poneil/ordpath.pdf
http://www.cs.umb.edu/~poneil/ordpath.pdf

420

BIBLIOGRAPHY

(176]

[177]

(178]

[179]

[180]

[181]

[182]

(183]

(184]

(185]

Peter Patel-Schneider and Jerome Simeon. The Yin/Yang Web: XML
Syntax and RDF Semantics. In Proc. Intl. World Wide Web Con-
ference, May 2002. URL http://www2002.o0rg/CDROM/refereed/
231/.

Steven Pemberton and the W3C HTML Working Group. XHTML
1.0: The Extensible HyperText Markup Language. Recommendation,
W3C, 2000.

Steve Pepper, Fabio Vitali, Lars Marius Garshol, Nicola Gessa, and
Valentina Presutti. A Survey of RDF/Topic Maps Interoperability
Proposals. Working group note, W3C, 2006. URL http://www.w3.
org/TR/rdftm-survey/.

Jorge Perez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
Complexity of SPARQL. In Proc. Int’l. Semantic Web Conf. (ISWC),
2006.

Alexander Pohl. RDF Querying in Xcerpt: Language Constructs
and Implementation. Diplomarbeit/diploma thesis, University of
Munich, 2008.

Axel Polleres. From SPARQL to Rules (and Back). In Proc. Int’l.
World Wide Web Conf. (WWW), pages 787-796, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-654-7. doi: http://doi.acm.org/
10.1145/1242572.1242679.

Eric Prudhommeaux. RDF Data Access Working Group Charter
(W3C). Online only, 2003. URL http://www.w3.o0rg/2003/12/
swa/dawg-charter.

Eric Prudhommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. Proposed recommendation, W3C, 2007. URL
http://www.w3.org/TR/rdf-sparql-query/

Jonathan Robie. The Syntactic Web. In Proc. XML Conference and
Exhibition, 2001. URL http://www.idealliance.org/papers/
xml12001/papers/html/03-01-04.html.

Loic Royer, Benedikt Linse, Thomas Wichter, Tim Furche, Frangois
Bry, and Michael Schroeder. Querying the Semantic Web: A Case
Study. In Revolutionizing Knowledge Discovery in the Life Sciences.
Springer, 2006.

http://www2002.org/CDROM/refereed/231/
http://www2002.org/CDROM/refereed/231/
http://www.w3.org/TR/rdftm-survey/
http://www.w3.org/TR/rdftm-survey/
http://www.w3.org/2003/12/swa/dawg-charter
http://www.w3.org/2003/12/swa/dawg-charter
http://www.w3.org/TR/rdf-sparql-query/
http://www.idealliance.org/pa pers/xml2001/papers/html/03-01-04.html
http://www.idealliance.org/pa pers/xml2001/papers/html/03-01-04.html

[186]

(187]

[188]

(189]

[190]

[191]

[192]

(193]

[194]

[195]

BIBLIOGRAPHY

D. T. Sannella and L. A. Wallen. A Calculus for the Construction
of Modular Prolog Programs. Journal of Logic Programming, 12(1-
2):147-177, 1992. ISSN 0743-1066. doi: http://dx.doi.org/10.1016/
0743-1066(92)90042-2.

Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transfor-
mation Language for the Web. Dissertation/doctoral thesis, Uni-
versity of Munich, 2004. URL http://www.pms.ifi.lmu.de/
publikationen/#PMS-DISS-2004-1.

Sebastian Schaffert and Frangois Bry. Querying the Web Re-
considered: A Practical Introduction to Xcerpt. In Proc. Ex-
treme Markup Languages (Int’l. Conf. on Markup Theory & Prac-
tice), 2004. URL http://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2004-7.

R. Schenkel, A. Theobald, and G. Weikum. HOPI: An Efficient
Connection Index for Complex XML Document Collections.
In Proc. Extending Database Technology, 2004. URL http:
//wwwcs.uni-paderborn.de/cs/ag-boettcher/lehre/SS04/
seminar/download/edbt04.HOPI.An.Efficient.Connection.
Index.for.Complex.XML.Document.Collections.pdf.

Mirit Shalem and Ziv Bar-Yossef. The Space Complexity of Pro-
cessing XML Twig Queries over Indexed Documents. In Proc. Int’l.
Conf. on Data Engineering (ICDE), 2008.

Yeh-Heng Shen. IDLOG: Extending the Expressive Power of De-
ductive Database Languages. In Proc. ACM Symp. on Management
of Data (SIGMOD), pages 54-63, New York, NY, USA, 1990. ACM.
ISBN 0-89791-365-5. doi: http://doi.acm.org/10.1145/93597.93621.

David W. Shipman. The Functional Data Model and the Data Lan-
guages DAPLEX. ACM Transactions on Database Systems, 6(1):140-
173, 1981. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/319540.
319561. URL http://portal.acm.org/citation.cfm?id=319561.

Michael Sintek and Stefan Decker. TRIPLE—A Query, Inference,
and Transformation Language for the Semantic Web. In Proc. Int’l.
Semantic Web Conf. (ISWC), 2002.

Damian Steer. TreeHugger 1.0 Introduction. Online only, 2003.
URL http://www.semanticplanet.com/2003/08/rdft/spec.

Silke Trif}l and Ulf Leser. Fast and Practical Indexing and Querying
of Very Large Graphs. In Proc. ACM Symp. on Management of Data

421

http://www.pms.ifi.lmu.de/publikationen/#PMS-DISS-2004-1
http://www.pms.ifi.lmu.de/publikationen/#PMS-DISS-2004-1
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-7
http://www.pms.ifi.lmu.de/publikationen/#PMS-FB-2004-7
http://wwwcs.uni-paderborn.de/cs/ag-boettcher/lehre/SS04/seminar/download/edbt04.HOPI.An.Efficient.Connection.Index.for.Complex.XML.Document.Collections.pdf
http://wwwcs.uni-paderborn.de/cs/ag-boettcher/lehre/SS04/seminar/download/edbt04.HOPI.An.Efficient.Connection.Index.for.Complex.XML.Document.Collections.pdf
http://wwwcs.uni-paderborn.de/cs/ag-boettcher/lehre/SS04/seminar/download/edbt04.HOPI.An.Efficient.Connection.Index.for.Complex.XML.Document.Collections.pdf
http://wwwcs.uni-paderborn.de/cs/ag-boettcher/lehre/SS04/seminar/download/edbt04.HOPI.An.Efficient.Connection.Index.for.Complex.XML.Document.Collections.pdf
http://portal.acm.org/citation.cfm?id=319561
http://www.semanticplanet.com/2003/08/rdft/spec

422

BIBLIOGRAPHY

[196]

[197]

(198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

(SIGMOD), pages 845-856, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-686-8. doi: http://doi.acm.org/10.1145/1247480.1247573.

M. Vardi. The Complexity of Relational Query Languages. In Proc.
ACM Symp. on Theory of Computing (STOC), pages 137-146, San
Francisco, 1982.

Norman Walsh. RDF Twig: accessing RDF graphs in
XSLT. In Proc. Extreme Markup Languages, 2003. URL
http://www.mulberrytech.com/Extreme/Proceedings/
xslfo-pdf/2003/Walsh01/EML2003Walsh01.pdf.

Norman Walsh and Leonard Muellner. DocBook: The Definitive
Guide. O?Reilly, 1999. URL http://www.oreilly.com/catalog/
docbook/.

Haixun Wang, Hao Hez, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu.
Dual Labeling: Answering Graph Reachability Queries in Constant
Time. In Proc. Int’l. Conf. on Data Engineering (ICDE), page 75,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN o-
7695-2570-9. doi: http://dx.doi.org/10.1109/ICDE.2006.53.

Felix Weigel, Klaus U. Schulz, and Holger Meuss. The BIRD Num-
bering Scheme for XML and Tree Databases — Deciding and Re-
constructing Tree Relations Using Efficient Arithmetic Operations.
In Proc. Int’l. XML Database Symposium (XSym), volume 3671 of
LNCS, pages 49—67. Springer-Verlag, 2005.

Artur Wilk and Wlodzimierz Drabent. A Prototype of a Descrip-
tive Type System for Xcerpt. In Proc. Int’l. Workshop on Principles
and Practice of Semantic Web Reasoning (PPSWR), volume 4187 of
LNCS, pages 262—275. Springer, 2006. URL http://www.pms.ifi.
Imu.de/publikationen/#REWERSE-RP-2006-043.

Martin Wirsing. Structured Algebraic Specifications: A Kernel
Language. Theoretical Computer Science, 42(2):123-244, 1986. ISSN
0304-3975.

M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proc.
Int. Conf. on Very Large Data Bases, pages 82-94, 1981.

Moshe M. Zloof. Query By Example: A Data Base Language. IBM
Systems Journal, 16(4):324-343, 1977.

Moshé M. Zloof. Query By Example. In AFIPS National Computer
Conference, 1975.

http://www.mulberrytech.com/Extreme/Proceedings/xslfo-pdf/2003/Walsh01/EML2003Walsh01.pdf
http://www.mulberrytech.com/Extreme/Proceedings/xslfo-pdf/2003/Walsh01/EML2003Walsh01.pdf
http://www.oreilly.com/catalog/docbook/
http://www.oreilly.com/catalog/docbook/
http://www.pms.ifi.lmu.de/publikationen/#REWERSE-RP-2006-043
http://www.pms.ifi.lmu.de/publikationen/#REWERSE-RP-2006-043

ABOUT THE AUTHOR

I have a passion for thinking about, designing, and realizing next gener-
ation Web systems. This passion has driven and still drives most of my
research interests and activities. Within this general topic, my interest lies
mostly in efficient access to Web data through declarative query languages
or similar facilities. Rich declarative interfaces make it possible to access
and reuse Web data in novel ways (cf. mash-ups). I have worked on practi-
cal aspects of efficient query evaluation against unbounded streams, an
enabling technology for the (near real-time) detection of alarm conditions
in, e.g., sensor streams. More recently, my focus has been on the develop-
ment of versatile Web query languages, in particular on the refinement
as well as the study of theoretical properties and efficient evaluation of
Xcerpt, a declarative, logic-based Web query language.

CURRICULUM VITAE

1976 born in Tiibingen, Baden-Wiirttemberg, Germany

1996 High-school graduation (Abitur) with distinction in com-
puter science

1998-2003 Diploma student in computer science and computational
linguistics at the Ludwig-Maximilians Universitit Miinchen,
supported by a scholarship of the German National Aca-
demic Foundation

2003 Diploma graduation with distinction with thesis on “Opti-
mizing Multiple Queries against XML Streams”

2004-2008 Research assistant at chair of Prof. Francois Bry, Ludwig-
Maximilians Universitit Miinchen, as part of the EU Net-
work of Excellence REWERSE (assistant coordinator work-
ing group “Reasoning-aware Querying”)

2008-now Research and teaching assistant at chair of Prof. Francois
Bry

LEBENSLAUF

Tim Jakob Furche

geboren am 3. Dezember 1976 in Tiibingen, Baden-
Wiirttemberg, Deutschland

1996 Abitur mit Auszeichnung in Informatik
1997 Datenbankentwickler an der Diakonissenanstalt Stuttgart,
Deutschland

1998-2003 Diplomstudium in Informatik mit Nebenfach Computerlin-
guistik an der Ludwig-Maximilians Universitit Miinchen
mit einem Stipendium der Studienstiftung des Deutschen
Volkes

2003 Diplompriifung mit Auszeichnung, Thema der Diplomar-
beit “Optimizing Multiple Queries against XML Streams”

2004-2008 Wissenschaftlicher Mitarbeiter am Lehrstuhl Prof. Frangois
Bry, Ludwig-Maximilians Universitdt Miinchen, im Rah-
men des EU Network of Excellence REWERSE (Assistant
coordinator der Arbeitsgruppe “Reasoning-aware Query-
ing”)

2008-now Wissenschaftlicher Mitarbeiter am Lehrstuhl Prof. Francois
Bry

	Abstract
	Zusammenfassung
	Acknowledgments
	Publications
	Contents
	1 Introduction
	1.1 Vision and Exemplar: Xcerpt 2.0
	1.2 Common Formal Foundation: CIQLog
	1.3 Evaluation: CIQCAG Algebra

	Use Cases. Versatile Web Querying
	2 Versatile Web Queries—The Vision
	2.1 Introduction
	2.2 Design Principles
	2.2.1 Versatility: Data, Syntax, and Interface
	2.2.2 Data Selection: Pattern-based, Incomplete
	2.2.3 Answers: Arbitrary XML, Ranked
	2.2.4 Rule-Based, Chaining, and Recursion
	2.2.5 Reasoning Capabilities
	2.2.6 Querying and Evolution

	2.3 Related Work
	2.4 Exemplars
	2.4.1 Case Study: XQuery
	2.4.2 Case Study: Xcerpt

	2.5 Conclusion

	3 Versatile Web Queries with Xcerpt 2.0—Constructs and Examples
	3.1 Introduction
	3.2 Xcerpt 2.0: Overview in 5000 Words
	3.2.1 Xcerpt: A Rough Sketch
	3.2.2 Xcerpt 2.0: Data Model
	3.2.3 A Syntax for Data: (Data) Terms
	3.2.4 A Syntax for Queries: (Query) Terms
	3.2.5 A Syntax for Results: (Construct) Terms
	3.2.6 A Syntax for Programs: Rules

	3.3 Versatility 101: Versatile Queries by Example
	3.3.1 Web Format Basics
	3.3.2 Format Versatility
	3.3.3 Schema Versatility
	3.3.4 Representational Versatility

	3.4 Adding Identity: From Heraklit to Codd
	3.4.1 Object Identity in Data Management
	3.4.2 Object Identity in Xcerpt 2.0

	3.5 Modules: From Separation to Encapsulation
	3.5.1 Module Extension by Example
	3.5.2 Framework for rule language module systems
	3.5.3 Module system algebra
	3.5.4 Modules for Xcerpt
	3.5.5 Modular Xcerpt—Requirements and Constructs
	3.5.6 Refining Stores: Instance Stores
	3.5.7 Related Work
	3.5.8 Conclusions and Outlook

	3.6 Conclusion

	4 From XML to RDF—W3C's GRDDL
	4.1 Introduction
	4.2 Setting
	4.3 From XML to RDF—the W3C Way
	4.4 From XML to RDF—the Xcerpt Way
	4.5 Related Work
	4.6 Comparison and Conclusion

	Theory. A Formal Perspective on Web Queries
	5 Data Model—Relations over Trees and Graphs
	5.1 Introduction
	5.2 Data Graphs
	5.3 XML: Essentials and Formal Representation
	5.3.1 XML in 500 Words
	5.3.2 Mapping XML to Data Graphs
	5.3.3 Transparent Links

	5.4 RDF: Essentials and Formal Representation
	5.4.1 RDF in 500 Words
	5.4.2 Mapping RDF to Data Graphs

	5.5 Xcerpt Data Terms
	5.5.1 Xcerpt Data Terms in 500 Words

	5.6 Relations on Data Graphs
	5.6.1 Binary Relational Structures
	5.6.2 A Relational Schema for Data Graphs
	5.6.3 Properties of Nodes and Edges: Labels and Positions
	5.6.4 Structural Relations
	5.6.5 Order Relations
	5.6.6 Equivalence Relations
	5.6.7 Inverse and Complement
	5.6.8 Example relations

	5.7 Conclusion

	6 Queries—CIQLog: Datalog with Complex Rule Heads
	6.1 Introduction
	6.2 CIQLog Syntax
	6.2.1 Complex Heads

	6.3 CIQLog Semantics
	6.3.1 Expressiveness and Complexity
	6.3.2 Deep and Shallow Copies
	6.3.3 Algebraic Semantics

	6.4 Data Graphs in CIQLog: Extensional and Intensional Relations
	6.5 Non-recursive CIQLog
	6.5.1 Reachability in Data Graphs
	6.5.2 Equivalence in Data Graphs
	6.5.3 Examples

	Practice. Case Studies: Xcerpt, XQuery, SPARQL
	7 Translating Xcerpt 2.0
	7.1 Introduction
	7.2 Non-recursive, Single-Rule Core Xcerpt
	7.2.1 Formal Syntax

	7.3 Xcerpt Semantics by Example
	7.4 Translating Non-recursive Core Xcerpt
	7.4.1 Rules
	7.4.2 Construct Terms
	7.4.3 Queries and Query Terms

	7.5 From Non-recursive, single-rule Core Xcerpt to Full Xcerpt

	8 Translating XQuery
	8.1 Introduction
	8.2 Translating XPath
	8.2.1 Syntax and Semantics
	8.2.2 Translation

	8.3 From XPath to Composition-Free XQuery
	8.3.1 Composition-Free XQuery in 1000 Words
	8.3.2 Syntax
	8.3.3 Semantics
	8.3.4 Translation
	8.3.5 Equivalence

	8.4 Beyond Composition-free XQuery
	8.5 Conclusion

	9 Translating SPARQL
	9.1 Introduction
	9.2 SPARQL Syntax and Semantics in 1000 Words
	9.3 Translating SPARQL Queries
	9.4 From SPARQL to Rules: RDFLog
	9.5 Conclusion

	Theory. CIQCAG: Scaling from Trees to Graphs
	10 Principles and Motivation
	10.1 Introduction
	10.2 Data Beyond Trees: Continuous-Image Graphs
	10.3 Sequence Map: Structure-aware Storage of Results
	10.3.1 Sequence Map for Trees and Continuous-Image Graphs
	10.3.2 Sequence Maps for Diamond-Free DAG Queries
	10.3.3 Representing intermediary results: A Comparison

	10.4 Queries Beyond Trees: Graphs with Tree Core
	10.4.1 Operator Overview
	10.4.2 Tree Cores and Hypertrees

	10.5 Complexity and Contributions

	11 Sequence Map
	11.1 Introduction
	11.2 Sequence Map: Definition
	11.2.1 Consistent and Inconsistent Sequence Maps
	11.2.2 Answers: Consistent and Complete Sequence Maps

	11.3 On The Influence of Data Shape
	11.3.1 Exploiting Tree-Shape of Data: Single Interval Pointers
	11.3.2 Beyond Trees: Consecutive Ones Property
	11.3.3 Open Questions: Beyond Single Intervals

	11.4 Space Bounds for Sequence Maps
	11.4.1 Linear Space Bounds for Trees and CIGs

	11.5 Sequence Map Variations
	11.5.1 Purely Relational Sequence Map
	11.5.2 Multi-Order Sequence Map for Diamond-Free DAG Queries

	12 Sequence Map Operators
	12.1 Introduction and Overview
	12.2 Interval Access to a Relational Structure
	12.2.1 Storing and Managing Interval Sets

	12.3 Initialize (from Relation)
	12.4 Combine
	12.4.1 Join
	12.4.2 Union
	12.4.3 Difference

	12.5 Reduce
	12.5.1 Project
	12.5.2 Select
	12.5.3 Propagate

	12.6 Rename
	12.7 Back to Relations: Extract
	12.8 Algebraic Equivalences
	12.9 Iterator Implementation
	12.9.1 Optimal Space Bounds for Tree Data

	13 CIQCAG: Graph Queries with Complex Heads
	13.1 Graph Queries and Map Expansion
	13.2 Translation by Example
	13.3 CIQLog Translation
	13.3.1 Translation Function

	13.4 Iteration and Recursion
	13.5 Conclusion

	Practice. The CIQCAG Prototype
	14 Prototype and Experimental Evaluation
	14.1 Introduction
	14.2 CIQCAG Prototype
	14.3 Experimental Evaluation
	14.3.1 Effect of Sequence Map
	14.3.2 Effect of Non-Tree Edges
	14.3.3 Effect of Data Shape
	14.3.4 Effect of Query Shape.

	14.4 Outlook: Principles of the CIQCAG Processor
	14.5 Conclusion

	15 Conclusion
	15.1 Perspectives and Further Work
	15.1.1 Continuous-Image Graphs
	15.1.2 Iterator Implementation of the Sequence Map
	15.1.3 Interval Representation of Arbitrary Graphs
	15.1.4 Beyond Intervals: CIQCAG for Graph Queries
	15.1.5 Supporting Full XPath, XQuery, SPARQL, and Xcerpt
	15.1.6 A Virtual Machine for Web Queries
	15.1.7 Versatile Queries for Beginners

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Algorithms
	List of Algorithms
	Acronyms

	Bibliography
	About the Author

