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Abstract 
 

 
The ability of neurons to regenerate in the adult mammalian central nervous 

system (CNS) is often poor, leading to persistent deficits after injury. Failure of 

axon regeneration in the CNS has been attributed to the presence of an extrinsic 

inhibitory environment and to an intrinsic limitation to support growth. 

Remarkably, in adult primary sensory neurons of the dorsal root ganglia (DRG), 

a peripheral lesion primes neurons to grow and to override the inhibitory 

environment. Under this condition not only their peripheral axons regrow, but 

also their injured central axons coursing in the spinal cord regenerate. However, 

the nature of the signal that is sensed by the cell upon peripheral lesion to initiate 

the regenerative response is poorly understood.  

This study started from the hypothesis that electrical silencing caused by 

peripheral deafferentiation is an important signal to trigger axon regrowth in 

adult DRG neurons. I first examined the effect of electrical activity on axon 

growth of cultured DRG neurons. I found that either chronic depolarization or 

electrical field stimulation strongly inhibits axon outgrowth in cultured DRG 

neurons. The inhibitory effect depends on Ca2+ influx through L-type voltage-

gated calcium channels and involves transcriptional changes. Consistently, after 

a peripheral lesion, L-type current is diminished and the L-type pore-forming 

subunit Cav1.2 is downregulated. To determine whether the lack of L-type 

channels is sufficient to promote axon growth, mice lacking the pore-forming 

subunit of L-type channel, Cav1.2, in the nervous system were generated. 

Neurons isolated from adult Cav1.2 knockout (KO) mice grew more extensively 

than those from their control littermates.  

Taken together, these data provide evidence that electrical activity is a limiting 

factor for axon growth in adult DRG neurons and that releasing this “brake” is 

sufficient to induce axon growth. My results further suggest that electrical 

silencing might promote axon regeneration in vivo. Consequently, I have 
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attempted to apply this knowledge to a model of spinal cord injury. However, 

these in vivo experiments have been so far hampered by technical limitations. 

Further endeavors are currently in progress.  
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1. Introduction 

 

 

All nervous system functions such as motion, sensation and cognition depend on 

the rich diversity of nerve cells and their interconnections via axon pathways that 

form complex functional neuronal circuits. During evolution, however, circuit 

complexity seems to have developed at the expense of regenerative ability 

(Popovich and Longbrake, 2008). Whereas axons in the adult central nervous 

system (CNS) of “lower” vertebrates regenerate e.g. in optic nerves of fish or in 

the spinal cords of lampreys, axons do not regenerate in the adult mammalian 

CNS. Consequently, injury leads to permanent disconnection and loss of 

function. Therefore, the understanding of the basic mechanisms that hinder 

regeneration in the adult mammalian CNS is crucial for the development of 

strategies to promote recovery of circuit connectivity and function.  

This study investigates the mechanisms that prevent adult primary sensory 

neurons to regenerate after spinal cord injury. The following chapters introduce 

the mechanisms of axon growth and of the failure of regeneration after spinal 

cord injury. The subsequent chapters are dedicated to the signal we propose to 

inhibit regeneration, namely electrical activity.   

 

 

1.1 Axon growth and axon regeneration in the mammalian nervous 

system 

 

How is the complex mammalian nervous system formed in the first place?  

The establishment of the proper connections among nerve cells during 

development takes place in a period of massive growth and plasticity. A 

remarkable feature of embryonic neurons is their ability to sustain axon growth 
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over long distances while searching for their appropriate targets (Figure 1A). 

Such rapid growth involves the coordinate actions of producing membrane and 

cytoskeleton elements in great amounts, transporting them to the right location 

and inserting them into the growing axon (Goldberg, 2003). To keep up with this 

high demand of cellular elements, longer axons may also rely on local axonal 

translation, in addition to the import of proteins synthesized in the cell body (Lin 

and Holt, 2008). In support of this idea, recent studies showed the presence of 

ribosomes, translation initiation factors and mRNAs in developing mammalian 

axons. Local axonal translation also seems to mediate axonal response to several 

stimuli.  

At the tip of the growing axon, the growth cone senses the extracellular 

environment and determines the course and rate of axon growth (reviewed by 

Guan and Rao, 2003; Wen and Zheng, 2006). Diffusible or substrate-bound 

molecules present in the environment may either serve as attractants or 

repellents to influence the direction of growth-cone extension. To decipher the 

environmental cues, growth cones are enriched in guidance receptors which 

recognize molecules like netrins, slits, semaphorins, and ephrins, as well as cell-

adhesion proteins that respond, e.g. to laminin. To steer axon growth, growth 

cones have a complex signaling network to translate ligand binding into 

pathfinding decisions. Although the molecular mechanisms through which these 

extracellular signals are integrated by the growing axon are not well defined, it is 

clear that most of the activated signaling cascades converge onto the 

cytoskeleton. Axon growth and turning involve a coordinated cross-talk between 

actin filaments and microtubules, the dynamic components of the cytoskeleton 

(Pak et al., 2008; Wen and Zheng, 2006).  
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Figure 1 l Axon growth versus axon regeneration in the mammalian nervous system. 
A l During embryonic development, neurons support extensive axon growth to reach 
their appropriate targets and form a functional neural circuitry. At the tip of the growing 
axon, the growth cone (GC) explores the environment and responds to various trophic 
and guidance molecules. B l In the adult CNS (in red), severed axons stall at the lesion 
site and form retraction bulbs (RB) at their distal ends, representing the failure of 
regeneration. C l In the adult PNS (in red), severed axons can re-grow and often re-wire. 
 

 

It has been suggested that the mechanism of axon growth is not a default 

pathway but must be specifically signaled (Goldberg, 2003; Goldberg et al., 2002). 

This signaling pathway is thought to decrease sharply when axons contact their 

targets, which occurs around birth. Upon growth cone arrival at the targeted 
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place, contact with the appropriate cell would transform the growth cone from a 

high motile structure into a stable synaptic terminal. Target contact would thus 

signal the switch from a “growth mode” to a “functional mode”. Consistent with 

this idea, it was shown that spinal cord axons lose the ability to regenerate 

between P8 and P20 (Kalil and Reh, 1982), and Purkinje cells show a decline in 

growth ability at P0 (Dusart et al., 1997).  

Therefore, it is not surprising that injured adult CNS neurons fail to revert to a 

rapidly regenerating mode and their axons stall at the lesion site (Figure 1B). 

Curiously, the inability to regenerate is a special feature of the central nervous 

system. Injured axons of peripheral nervous system (PNS) neurons do regenerate 

and often reestablish contact with their targets (Figure 1C). The reasons for this 

dichotomy between CNS and PNS regeneration will be addressed in further 

detail in chapter 1.3, in the context of spinal cord injury.  

Although the extent to which axon regeneration represents a recapitulation of 

axon growth during development is still subject of debate, the high similarities 

found between both processes strongly suggest that it might be possible to re-

apply basic developmental mechanisms to the adult context (Harel and 

Strittmatter, 2006; Snider et al., 2002; Ylera and Bradke, 2006). 

 



Introduction 
 

 

 
 

7

1.2 Spinal cord injury (SCI)  

 

The spinal cord transmits signals between the brain and body through long 

axonal pathways. The ascending sensory pathways conduct information from 

peripheral targets, such as skin and muscle, to the central nervous system. The 

descending motor pathways deliver information from the brain to the peripheral 

organs and muscles (Figure 2A).  

 

 

 
 
Figure 2 l Anatomy of the spinal cord. A l Primary sensory neurons collect information 
from noci-, thermo- and mechanoreceptors in the peripheral targets and convey it to the 
spinal cord and subsequently to the brain (right side). Motor neurons receive 
information from cortical, brainstem and spinal axons and transmit it to target organs 
and muscles (left side). B l Schematic representation of the human CNS. The spinal cord 
is organized in 4 major segments: cervical, thoracic, lumbar and sacral. An injury to the 
spinal cord results in loss of sensation or functional control of areas below the level of 
injury. Modified from (Thuret et al., 2006) and www.wingsforlife.com.  

http://www.wingsforlife.com/
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The spinal cord is segmentally arranged and the function of each segment 

depends on connections with supraspinal sites for all conscious or voluntary 

actions. Injury as a result of contusion, compression, or transection disrupts the 

normal function of the spinal cord below the level of injury (Figure 2B). Common 

symptoms range from loss of movement or sensation, to the inability to control 

bladder, bowel or cardiovascular function.  

Although some neurons die as a result of injury, those symptoms reflect more 

the permanent interruption of the flow of information from the surviving 

neurons. Attempts of the severed axons to regenerate spontaneously can occur, 

but are often limited to short-distance compensatory sproutings (Blesch and 

Tuszynski, 2008; Bradbury and McMahon, 2006). No treatment to date can 

promote substantial functional recovery after spinal cord injury. The standard 

initial procedure aims to reduce secondary damage and cell death, often 

involving stabilization of the spine and administration of steroids to minimize 

inflammation. Afterwards, treatment is limited to physical therapy. A list of the 

therapies currently under research can be found in (Rossignol et al., 2007; Thuret 

et al., 2006), or at www.clinicaltrials.gov.  

 

 

1.2.1 The factors that hinder regeneration after spinal cord injury 

 

In seeking new ways to restore the connections of severed axons, one needs to 

understand why it fails. Failure of axon regeneration after SCI has been generally 

attributed to 1) the presence of an extrinsic inhibitory environment and 2) a 

limited intrinsic growth competence. 

The extracellular inhibitory environment develops gradually after injury and 

ultimately forms a compact glial scar (Figure 3). As a consequence of the blood-

brain-barrier (BBB) breakdown, the lesion site is quickly filled with blood and 

invaded by macrophages, meningeal fibroblasts and vascular endothelial cells     

http://www.clinicaltrials.gov/
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(Popovich et al., 1997; Sroga et al., 2003; Zhang et al., 1997). Around the lesion 

area, astrocytes become activated, hypertrophic and extend processes into the 

lesion site, forming a dense network. The injury also affects oligodendrocytes 

and damages the myelin structure surrounding the axons.  

 

 
 

Figure 3 l Schematic representation of the injury site. After injury, a glia scar is formed 
primarily by reactive astrocytes. Several other cell types invade the lesion site too and 
secrete extracellular inhibitory molecules. Severed axons are repulsed by the increasing 
gradient of inhibitory molecules and lacking the ability to support growth and overcome 
inhibition, they stall at the lesion site forming retraction bulbs. Adapted from (Silver and 
Miller, 2004).     
 
Besides forming a physical barrier, these altered cells also create a molecular 

barrier, up-regulating a variety of secreted and transmembrane growth 

inhibitory proteins. These include Nogo, oligodendrocyte myelin glycoprotein 

(OMgp), and myelin-associated glycoprotein (MAG) that are present in 

oligodendrocytes and their myelin debris, as well as chondroitin sulfate 

proteoglycans (CSPGs), semaphoring 4D and ephrin B3 produced by reactive 

astrocytes and oligodendrocyte precursor cells (Caroni et al., 1988; Filbin, 2003; 
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Silver and Miller, 2004). Because neurons express receptor complexes for several 

of these molecular cues, growth cones collapse and axons are repelled. Among 

the signaling mechanisms that mediate growth cone collapse are the activation of 

the RhoA pathway and the elevation in intracellular calcium (Yiu and He, 2006). 

Although the glial scar serves to stabilize the CNS tissue and to prevent an 

overwhelming inflammatory response (Okada et al., 2006; Popovich and 

Longbrake, 2008), it constitutes an impenetrable barrier which hinders long-

distance regeneration.  

In addition to the hostile extrinsic environment, adult neurons are not prepared 

to support axonal growth, i.e they are growth incompetent.  The fact that adult 

neurons differ substantially from their embryonic counterparts in growth ability 

was evidenced by cell culture studies. When retinal ganglion cells (Chen et al., 

1995; Goldberg et al., 2002) or DRG neurons (Fawcett et al., 1989) are isolated 

from animals of varying developmental ages and cultured under the same 

conditions, embryonic neurons extend axons at much higher rates than adult 

neurons. Moreover, neurons develop responsiveness to Nogo (Bandtlow and 

Loschinger, 1997) as they mature, and their response to MAG switches from 

growth-promoting to growth-inhibiting (Mukhopadhyay et al., 1994). These 

results clearly demonstrate that neurons undergo a profound loss in their 

intrinsic growth competence and increase responsiveness to inhibitory cues as 

they mature. 

Therefore, therapeutic strategies to successfully promote regeneration must act 

on both extracellular and intracellular components. Besides finding ways to 

create a more permissive extrinsic environment, we need to learn more about the 

molecular mechanisms that can revert adult neurons to their embryonic axon 

growth ability to “rejuvenate” them. Primary sensory neurons are a good model 

to study intrinsic growth competence. Because they constitute the focus of this 

study, they will be presented in more detail in the next chapter.  
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1.3 Primary sensory neurons and the conditioning paradigm 

 

1.3.1 One neuron, two different responses to injury 

 

Primary sensory neurons of the dorsal root ganglia (DRG) present a 

pseudounipolar morphology, with two long axonal branches stemming from a 

single axon (Figure 4A). One axonal branch extends in the PNS and terminates at 

the skin or muscle, the other axonal branch enters the CNS.  

DRG neurons are a diversified population of neurons (Purves et al., 2001). Based 

on their function, they can be divided into nociceptor-, thermoceptor-, and 

mechanoreceptor- afferent fibers. Nociceptor- and thermoceptor- afferents 

provide pain and temperature sensation. Mechanoreceptor- afferents code for 

touch and proprioception. Proprioceptors (meaning “receptors for the self”) are 

located at the muscle spindles, Golgi tendon organs and joints, and give a sense 

of position and movement of one´s own limbs and body without using vision. 

This information is essential for the accurate performance of complex 

movements. Depending on whether they belong to the mechanosensory system 

or to the pain and temperature system, the first-order axons carrying information 

from the receptors have different patterns of termination in the spinal cord 

(Figure 4A, red and blue lines).  

The mechanosensory DRG neurons, whose axons ascend in the spinal cord, 

provide a useful model to study central regeneration. Whereas the peripheral 

axonal branch regenerates after injury, the central axon does not regenerate when 

lesioned (Ramon y Cajal, 1928) (Figure 4B). Initially, this differential regenerative 

response was attributed solely to the extracellular environment, which is growth 

encouraging in the PNS but growth inhibitory in the CNS (David and Aguayo, 

1981). However, the discovery that a preceeding lesion to their peripheral 

branches can promote regeneration of the severed axons in the spinal cord 
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challenged this idea (Neumann and Woolf, 1999; Richardson and Issa, 1984). It 

proved that neurons can indeed regenerate in the adult CNS if they are primed 

to do so. This paradigm, named “conditioning”, shows that mature neurons can 

be reprogrammed to support growth. Nowadays, it is considered one of the most 

robust regeneration paradigms. 

 

Figure 4 l Mechanosensory DRG neurons and their response to injury. A l Lumbar 
DRG neuron subtypes and their central pattern projections. Large myelinated, 
mechanosensory fibers (blue line) ascend in the spinal cord and terminate at the caudal 
medulla. Second- and third- order neurons (dashed blue line) deliver the information 
from the medulla to the primary sensory cortex. Collateral branches of mechanosensory 
fibers are present at the lumbar level, where they synapse onto motor neurons, and at 
the thoracic level where they communicate to neurons innervating the cerebellum. Small 
unmyelinated, pain- and temperature- fibers (red line) synapse immediately at the level 
where they enter in the spinal cord. Second- and third- order neurons (dashed red line) 
carry the information from there to the thalamus and farther to the primary sensory 
cortex. Modified from (Purves et al., 2001). B l DRG neurons regenerate after a 
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peripheral nerve lesion, but not after central nerve lesion. Importantly, when a 
conditioning peripheral lesion precedes a central lesion, axon regeneration is promoted 
both in the PNS and the CNS tissues.  
 

 

Although the conditioning paradigm is known for a long time, the underlying 

cellular mechanisms remain poorly understood. Importantly, the growth-

promoting effect can be replicated in cell culture to study the conditioning 

paradigm. Whereas isolated naïve neurons extend neurites only after 2-3 days, 

neurons subjected to a peripheral lesion a few days before isolation show robust 

neurite growth already at 24 h in culture (Hu-Tsai et al., 1994; Smith and Skene, 

1997).   

 

 

1.3.2 The knowns and unknowns about the conditioning paradigm 

 

Since the conditioning effect was first described, there has been an ever growing 

list of proteins whose expression or activity is reported to be altered in the DRG 

after peripheral lesion (Raivich and Makwana, 2007; Snider et al., 2002; Ylera and 

Bradke, 2006). It is important to note, though, that the functional roles of several 

of those identified molecules remain undefined, not being possible to determine 

which ones are strictly necessary for the growth response. Here, I summarize all 

molecules strictly involved in the conditioning paradigm, based on the following 

criteria: 1) their expression level or activity is altered upon peripheral lesion; 2) 

they promote axon growth in DRG neurons; 3) they are necessary for the 

conditioning effect (Figure 5). 

It is known that the switch of adult DRG neurons to a growth mode requires de 

novo transcription of genes specific for axon elongation (Smith and Skene, 1997). 

Accordingly, several transcription factors namely c-Jun, CREB and ATF3 
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(Herdegen et al., 1992; Seijffers et al., 2007; Tsujino et al., 2000), STAT3 (Qiu et al., 

2005) and RARβ2 (Zhelyaznik and Mey, 2006) appear activated  in a period of 

hours to days after injury. They play a key role in changing the gene expression 

profile in the injured neurons, leading to the transcription of regeneration-

associated genes (RAG) that mount the growth response.  

Among the RAGs there are cytosolic molecules that regulate the interaction 

between the cell surface and the cytoskeleton core of the growing axon. For 

example, the growth cone proteins GAP43 and CAP23 are upregulated after 

injury eliciting growth (Bomze et al., 2001). They interact with calmodulin, actin 

filaments and phosphoinositides, and regulate actin cytoskeleton 

polymerization, organization and disassembly. The Small Proline-Rich Repeat 

Protein 1A (SPRR1A) also appears upregulated by a peripheral lesion (Bonilla et 

al., 2002). It mediates the reorganization of the actin and microtubule 

cytoskeleton.    

A modified expression of cell-adhesion molecules on the cell surface of the 

injured neuron appears to be another essential factor to promote growth and 

overcome extracellular inhibition. Axotomized neurons upregulate a variety of 

cell surface molecules which promote neurite outgrowth, namely α7β1 integrins 

which bind to the extracellular matrix component laminin (Condic, 2001; Werner 

et al., 2000), ninjurin involved in hemophilic binding (Araki and Milbrandt, 

1996), and FLTR3 which can form complexes with FGF receptors and promote 

FGF signaling (Robinson et al., 2004; Tanabe et al., 2003). Signal integration at the 

growth cone in response to extracellular inhibitory molecules is also modified 

after conditioning.  Myelin components bind to a receptor complex composed of 

NgR, LINGO and either p75 or TROY and inhibit growth via activation of the 

RhoA signaling pathway. However, conditioning leads to an increase of the 

intracellular cAMP pathway which interferes with the RhoA pathway, thereby 

preventing growth inhibition (Cai et al., 1999).  
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Figure 5 l Signaling pathways involved in peripheral axon regeneration of DRG 
neurons. A wide variety of molecules has been involved in the conditioning effect, 
including transcription factors, cytoskeleton proteins, molecular motors, cell-adhesion 
molecules and membrane receptors. How such coordinated program is brought into 
action in response to peripheral injury is unclear. In part, the growth program may be 
elicited by neurotrophins (NT3, NGF) and cytokines (IL-6, LIF), which are 
overexpressed by peripheral nerves in response to injury. Neurotrophic signals trigger 
cAMP elevation, blocking inhibition by myelin and activating CREB. Cytokines may 
activate axoplasmic proteins containing nuclear localization signals, which are then 
transported to the cell body by fast axonal transport (0.4 m / day) via the β-importin-
dynein motor complex. The encircled numbers in the diagram refer to the following 
publications: 1) (Cafferty et al., 2004; Ramer et al., 2000); 2) (Hanz et al., 2003); 3) 
(Neumann et al., 2002; Qiu et al., 2002); 4) (Raivich et al., 2004; Seijffers et al., 2007); 5) 
(Gao et al., 2004); 6) (Qiu et al., 2005); 7) (Wong et al., 2006); 8) (Bomze et al., 2001); 9) 
(Bonilla et al., 2002); 10) (Condic, 2001; Werner et al., 2000); 11) (Araki and Milbrandt, 
1996); 12) (Robinson et al., 2004; Tanabe et al., 2003); 13) (Cai et al., 1999); 14) (Zhou et al., 
2004); 15) (Yoshimura et al., 2005).  
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Despite these major advances, the more elementary questions regarding the 

conditioning paradigm remain unanswered. What is the nature of the signal that 

ascends from the peripheral lesion site to the cell body to trigger the growth 

response? How to explain that growth is induced after peripheral but not after 

central lesion? It has been proposed that a peripheral lesion may activate the 

regenerative program either by i) exposing the tip of the injured axon to growth 

promoting positive signals present in the reactive PNS tissue or ii) interrupting 

the retrograde transport of growth inhibiting negative signals from the 

peripheral target. Molecules such as neurotrophins and cytokines have been 

identified as extracellular positive signals (Figure 5), as they are upregulated in 

peripheral nerves as early as 2 h after injury and promote growth of DRG 

neurons both in vitro and in vivo (Cafferty et al., 2004; Cafferty et al., 2001; Ramer 

et al., 2000). However, they do not fully reproduce the growth induced by a 

conditioning lesion (Cafferty et al., 2004; Smith and Skene, 1997), suggesting that 

additional signaling mechanisms are required for successful regeneration. No 

intracellular negative signals have been identified so far.  
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1.4 Electrical activity 

 

Neurons are excitable cells that generate electrical signals to communicate within 

the nervous system. Remarkably, electrical activity is not only essential for 

neuronal function, but it also has a key role in circuitry assembly. Several studies 

in the past have highlighted the role of electrical activity in a wide variety of 

developmental processes, ranging from neuronal proliferation, migration and 

differentiation to synaptic formation and refinement (Hanson and Landmesser, 

2004; Hubel and Wiesel, 1970; Spitzer, 2006; Sretavan et al., 1988; Zhang and Poo, 

2001). Although the initial neuronal connections are guided largely by intrinsic 

developmental genetic programs, signaling by electrical activity can intermingle 

with regulatory mechanisms controlling gene expression and signal 

transduction. Changes in firing patterns may provide instructive information to 

the developing neuron regarding the developmental or functional state of the cell 

(Fields, 1998). Thus, electrical activity seems to be required to implement those 

hardwired programs in a temporally and spatially appropriate manner (Spitzer, 

2006).  

 

Given the prominent role of electrical activity during nervous system 

development, surprisingly little is known regarding its potential during 

adulthood. An interesting question is whether electrical activity still plays an 

important role when the structure of the adult CNS is disrupted, for example 

after spinal cord injury. In this study, the influence of electrical activity on the 

regenerative ability of adult sensory neurons is explored. 
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1.4.1 Effects of electrical activity on axon outgrowth 

 

In cultured embryonic neurons, electrical activity can steer the growth cone and 

modulate axonal extension in a cell-type dependent manner. For instance, 

electrical stimulation potentiates axon growth in rat retinal ganglion cells 

(Goldberg et al., 2002) and sympathetic motor neurons (Singh and Miller, 2005). 

By contrast, electrical activity stops axon growth in mouse primary sensory 

neurons (Fields et al., 1990). The effect of electrical activity in adult cultured 

neurons has not been studied. 

Activity-induced depolarization of the cell membrane triggers influx of Ca2+ ions, 

which is often amplified by the Ca2+-induced-Ca2+-release mechanism from 

internal stores (endoplasmic reticulum and mitochondria). Elevations in 

intracellular calcium levels ([Ca2+]i) can occur as localized or global events 

(Figure 6). Voltage-gated calcium channels (VGCC) are present in the cell 

membrane and open in response to membrane depolarization, constituting an 

important route of Ca2+ entry. Several types of VGCC have been identified, 

showing different kinetic, functional and pharmacological properties (Catterall, 

2000) (table 1 in results).  

Changes in [Ca2+]i translate an electrical signal into biochemical signals (Hille, 

2001), and therefore play a central role in regulating the neuronal response to 

electrical activity (Spitzer, 2006; Zheng and Poo, 2007). Indeed, it was shown that 

spontaneous as well as elicited Ca2+ increases can regulate axon extension in a 

variety of neuronal types (Bixby and Spitzer, 1984; Gomez et al., 1995; Gomez 

and Spitzer, 1999; Gu and Spitzer, 1995; Tang et al., 2003). In addition to 

mediating the effects of electrical activity, calcium signals also mediate the 

actions of several environmental cues. Extracellular gradients of attractants such 

as netrin-1 (Hong et al., 2000) and brain-derived neurotrophic factor BDNF (Song 

et al., 1997), or of repellents such as MAG (Henley et al., 2004; Wong et al., 2002) 

and Sema3A (Nishiyama et al., 2008) induce growth cone turning in a Ca2+-
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dependent manner. Therefore, both attractive and repulsive cues trigger calcium 

increases to affect axon guidance. Removal of extracellular calcium abolishes the 

growth cone response. Importantly, Ca2+ can also integrate local and global 

signals, generating different growth cone responses under different 

environmental conditions. For example, brief electrical pulses that raise [Ca2+]i 

can enhance netrin-induced attraction and convert MAG-inducing repulsion into 

attraction (Ming et al., 2001).  

 

 

Figure 6 l Types of Ca2+ signals in growing neurons. Ca2+ signals range from A l highly 
localized signals at the growth cones to B l global events involving the entire growth 
cone or even the whole neuron. Detail of A in C. C l When Ca2+ signals are localized to 
one side of the growth cone, they lead to asymmetric activation of effector proteins to 
steer the axon. Instead, global Ca2+ signals are more likely to control axon elongation. 
The unique combination of the calcium signal properties and the type of neuron dictates 
the outcome of electrical activity. MTs, microtubules. Modified from (Gomez and Zheng, 
2006; Zheng and Poo, 2007). 
 
 
As evidenced from the aforementioned experiments, electrical activity and 

calcium signals are not universal regulators of axon growth. They have wide-

ranging effects on growth cone guidance and axon extension. These seemingly 
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contradictory results were once unified under the “set-point hypothesis”, which 

suggested that each neuron has an optimal range to support maximal outgrowth, 

above or under which growth is inhibited (al-Mohanna et al., 1992; Henley and 

Poo, 2004; Kater and Mills, 1991). Nonetheless, Ca2+-mediated actions are more 

complex than simple changes in resting intracellular calcium levels. They depend 

on the combination of several other factors, including the spatiotemporal 

characteristics of the Ca2+ signals, the membrane channels and receptors involved 

in the process and the intracellular machinery through which the neuron 

integrates the signals it receives (Bootman et al., 2002; Henley and Poo, 2004; 

Zheng, 2000). All these factors determine the activation of downstream targets 

and the consequent response to the stimulus. In this context, it is important to 

notice that the neuronal properties themselves can vary accordingly to neuronal 

age, as it is the case of ion channel expression (Spitzer et al., 2002), or intracellular 

cAMP/cGMP ratio (Nishiyama et al., 2003). Neuronal age is therefore another 

factor that might alter the response to neural activity.   

 

Eventhough the precise molecular mechanisms that mediate growth cone 

responses remain largely unknown, some important players have been identified 

(Gomez and Zheng, 2006). On one hand, Ca2+ signals can interact with 

components of the cytoskeleton to modulate the growth cone behavior. Actin 

filaments are particularly sensitive to [Ca2+]i. Several cytoskeleton binding 

proteins are regulated by calcium, namely the small Rho GTPases, Ca2+-activated 

protease calpain and the actin-binding protein gelsolin. On the other hand, Ca2+ 

signals can act on second-messenger signaling cascades, altering cellular 

differentiation via gene transcription, or for e.g. increasing the density of trophic 

receptors on the surface of both RGCs and hippocampal neurons to potentiate 

growth by trophic factors.  
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1.4.2 Electrical excitability of primary sensory neurons  

 

In developing DRG neurons, as in other neurons, electrical activity falls into 3 

phases: an initial silent period, a spontaneous active phase and a stimulus-

evoked active period (Fitzgerald, 1987).  

The strong parallelisms found between the action potential (AP) firing patterns 

and the developmental processes of DRG neurons led to the idea that electrical 

activity acts as a landmark for the development of these neurons (Fields, 1998) 

(Figure 7A-C). The idea has been then supported by in vitro studies showing that 

the firing pattern influences a wide range of sensory developmental events. 

Initially, DRG neurons derived from neural crest cells emerge from the dorsal 

margin of the neural tube and migrate to the dorsal root ganglia. The period 

between E10 and E17 is of stunning axon outgrowth with each DRG neuron 

extending two axonal branches in opposite directions.  At this stage, electrical 

silencing seems to be crucial to support axon growth, as electrical stimulation of 

embryonic DRG neurons rapidly stops axon elongation (Fields et al., 1990). The 

central axon terminals reach the spinal cord at E12 and extend collaterals to the 

gray matter around E15 (Fitzgerald, 1991). The peripheral branch reaches the 

peripheral target at around E17. At this time, neurons start to fire spontaneously, 

independent of sensory input and with low frequency (<0.5 Hz) bursts. The 

process of synaptogenesis begins, and remodeling of the initial connections takes 

place in an activity-dependent manner. Stimulated afferents from DRG neurons 

projecting to ventral spinal cord neurons become strengthened, while non-

stimulated afferents get weakened (Nelson et al., 1989). Around the time of birth, 

sensory end terminals are fully differentiated, synapses are established, and 

neurons start to fire vigorously in response to sensory input. Stimulus-evoked 

activity is characterized by high frequency (10-20 Hz) bursts and can last as long 

as 10 seconds. Myelination begins at this stage and continues into the postnatal 

period. Electrical activity can also affect myelination, either controlling the 
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expression of cell adhesion molecules (Itoh et al., 1995) or mediating neuron-glia 

communication (Fields and Burnstock, 2006). 
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Figure 7 l Morphology meets function in primary sensory neurons (in previous page).  
l A-C l Physiological properties of developing DRG neurons. The different 
developmental epochs of DRG neurons are accompanied by changes in their firing 
patterns. A l Extensive axon growth takes place when neurons are still electrically silent. 
B l Muscle spindle differentiation and synaptogenesis occurs during a period of 
spontaneous activity. C l Myelination takes place when the contact with the peripheral 
target is established and neurons fire vigorously in response to sensory input. Red arrow 
indicates the direction of AP propagation, i.e. information flow. Detail of C in D. 
Modified from (Fields, 1998). D l Proprioception mediated by the spindle organ in 
skeletal muscle. Stretch of the muscle fibers causes mechanical deformation of the 
sensory endings membrane. Mechanoreceptors in the nerve membrane are linked to the 
cytoskeleton and therefore open in response to stretch, allowing the influx of Na+ and 
Ca2+. They generate a receptor potential that diffuses passively until the AP-trigger area. 
Adapted from (Gardner and Martin, 2000). 
 

How are action potentials generated in response to sensory input? Despite the 

great diversity among the DRG neuronal population, they all transduce sensory 

information in the same fundamental way (Gardner and Martin, 2000). Sensory 

stimuli applied to skin or muscle activate specific ion channels present at the 

nerve endings, which generate a receptor potential. In the particular case of 

mechanoreception, stimuli such as pressure or muscle tension cause mechanical 

deformation of the cell membrane of the nerve terminal, which in turn opens 

stretch-sensitive channels named mechanoreceptors (Figure 7D). The receptor 

potential then propagates passively for a few µm until it reaches the AP-trigger 

area where a high density of Na+ channels generates APs. There, if the receptor 

potential is sufficiently large, it triggers an AP that propagates actively along the 

peripheral and central axonal branches. 
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1.5 The thesis project 

 

As outlined in the previous chapters, adult neurons cannot regenerate in the 

CNS partly due to a restricted growth competence. A better understanding of the 

cellular and molecular mechanisms that control growth ability is therefore 

essential to find new ways to promote repair in the adult nervous system.  

This thesis project aims to understand the cellular basis of the conditioning 

paradigm established in primary sensory neurons, investigating the signals that 

trigger growth competence after peripheral lesion. The initial hypothesis was 

that electrical activity still suppresses axon growth in adult primary sensory 

neurons, and that a key event induced by peripheral lesion is electrical silencing. 

It is important to note that DRG neurons receive sensory input via their 

peripheral axon and therefore peripheral deafferentiation renders neurons silent. 

On the other hand, injury to the central branch leaves neurons electrically active. 

It thereby also explains why peripheral lesion, but not central lesion, leads to 

axon regrowth.  

To validate our hypothesis, I first set out to examine the effect of electrical 

activity on axon growth of cultured adult DRG neurons. Having observed that 

electrical activity strongly inhibits axon growth, I investigated the downstream 

events mediating growth inhibition. I found that inhibition involves Ca2+ influx 

through L-type channels and de novo transcription of growth inhibitory genes.  

Next, I analyzed how peripheral lesion changes the electrophysiological 

properties of DRG neurons. I have shown that peripheral lesion leads to a 

reduction in L-type current that is accompanied by a downregulation of the L-

type pore-forming subunit Cav1.2 protein. These results suggested that 

electrophysiological changes might be associated with an increased growth 

competence, and raised the question of whether lack of the L-type channels 

would be sufficient to induce growth in adult DRG neurons. To this end, we 

genetically ablated the Cav1.2 protein in the nervous system and assessed growth 
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competence in culture. I found that neurons isolated from adult Cav1.2 knockout 

(KO) mice grew more extensively than those from their control littermates.  

Further studies were aimed to implement this knowledge in an in vivo situation, 

but were so far inconclusive. They included 1) long-term blockade of AP 

propagation in the sciatic nerve of rats, and subsequent analyses of growth 

competence; 2) assessment of sensory fiber regeneration after spinal cord injury 

in Cav1.2 KO in comparison to control mice.     
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2. Results 
 

 

2.1 Electrical activity inhibits axon growth in adult DRG neurons  

 

I first investigated whether electrical activity affects neurite outgrowth in 

cultured adult sensory DRG neurons. These neurons are usually electrically 

silent in culture, as they are deprived of their innervation targets and they do not 

form synaptic connections with other DRG neurons (Scott, 1977). In order to 

mimic an electrically active state, I followed two approaches: chronic 

depolarization by high extracellular K+ and electric field stimulation.  

In the first approach, I depolarized neurons by incubating them in culture media 

containing 40 mM KCl and compared neurite outgrowth to control neurons 3 

days after plating. This treatment alters the physiological electrochemical 

gradient for K+ ion - which normally maintains the cell membrane at the resting 

membrane potential of -70 mV - and thereby depolarizes the cell membrane to 

about -20 mV (following the Nernst equation) (Lu et al., 2006). I found that 

membrane depolarization drastically reduces the number of neurons with 

neurites (Figure 8 A-D and 1I) as well as neurite their neurite length (Figure 8J). 

While 74 ± 3.4 % of neurons show neurites after 3 days in control conditions, only 

29 ± 3.5 % of the depolarized neurons form neurites. Among the neurons forming 

neurites, a reduction in average neurite length from 209 ± 54.1 µm in control 

neurons to 70 ± 6.9 µm in depolarized neurons was also observed.  To assure that 

inhibition of growth was not caused by a higher medium osmolarity, I examined 

neurons cultured in medium with equally high osmolarity achieved by addition 

of 40 mM NaCl. I observed no differences in growth when compared to control 

neurons (Figure 8E and 8F). As an additional control, I confirmed that cells 

cultured under depolarizing conditions remain viable. Depolarized cells 

returned to control medium for 3 additional days showed extensive neurite 
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outgrowth (Figure 8 G-H). Thus, these results show that depolarization inhibits 

axon outgrowth in cultured adult DRG neurons. 

 

 
 
Figure 8 l Depolarization inhibits axon outgrowth on adult dorsal root ganglion 
(DRG) neurons. Neurons were isolated from adult rats and cultured on poly-lysine for 3 
days in A and B l control, C and D l 40 mM KCl- or E and F l 40 mM NaCl- containing 
media. G and H l Neurons treated for 3 days with 40 mM KCl, and subsequently 
replaced in control media for 3 additional days. Scale bar, 25 µm. I l Quantification 
showing the percent of neurons bearing neurites (mean ± SEM; 3 independent 
experiments). ***P<0.001. J l The longest axon on about 300 neurons per condition was 
measured (mean ± SEM).  
 

To study whether more physiological levels of activity can also inhibit growth, I 

next assessed the effect of electrical stimulation in growing neurites. In order to 

stimulate neurons to fire action potentials (APs), I applied brief trains of voltage 

pulses intercalated with long off periods (Figure 9A), in a pattern that resembles 

their sensory stimulus evoked activity (Fitzgerald, 1987). Through separate 
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patch-clamp experiments, I validated that the stimuli were suprathreshold, i.e. 

neurons fire APs in response to the stimulation paradigm (Figure 9B).  

 
Figure 9 l Electrical activity halts axon elongation. Neurons were cultured on laminin-
coated coverslips containing an orientation grid to allow re-localization of the same 
neurite over time. Brief electric pulses were applied to the neurons through two 
electrodes placed in the culture dish. A l Illustration of the stimulus pattern applied to 
the cells. B l Whole-cell recording, showing that cells fire an action potential in response 
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to each electric pulse (arrows). l C-E l Only neurites growing during the first hour 
without any stimulus (0 – 1 h) were further evaluated for their growth under C l no 
stimulation, D l stimulation, and E l stimulation in the presence of 1 µM TTX, for another 
hour (1 – 2 h). Filled arrow head points to the tip of the process, and its distance to the 
open arrow heads indicates the growth of the neurite. The identity of the neurite was 
confirmed in the end of the experiment by fixing and staining the cells with Tuj-1 
antibody. Scale bar, 10 µm. F l Data analysis comparing axon growth rates on the 2 time 
periods for individual neurites (mean ± SEM; n > 20 neurites for each condition). 
***P<0.001. 
 

 

Elongation of individual neurites was evaluated in periods of electrical silence 

and activity. Whereas neurites grew at a constant growth rate when no 

stimulation was applied to the cells (Figure 9C), neurite growth rate was reduced 

to approximately 40% with the onset of electrical stimulation (Figure 9D and 9F). 

Cessation of growth could be largely prevented by the addition of the Na+ 

channel blocker tetrodotoxin (TTX) (Figure 9E), showing that inhibition is 

dependent on AP firing. Taken together, these findings demonstrate that 

electrical activity impairs the growth ability of adult DRG neurons. This argues 

that electrical silencing is necessary for axon growth.  
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2.2 Axon growth inhibition is mediated by L-type voltage-gated Ca2+ 

channels and involves transcription of growth inhibitors 

 

To gain insight into the mediators of axon growth inhibition, I looked for factors 

that could counterbalance the effect of electrical activity on DRG neurons. I 

therefore examined growth of depolarized neurons in the presence of specific 

VGCC blockers after 40 h in culture. Five different types of VGCC have been 

described to coexist in DRG neurons, T/P/Q/N and L-type, differing in their 

kinetics and pharmacological properties as listed in table 1 (see page 36) 

(Catterall, 2000; Rusin and Moises, 1995; Tsien et al., 1988). The low-voltage-

activated T-type current is rapidly inactivated by keeping the cells at a 

depolarized membrane potential of about -20 mV, which occurs in the presence 

of high K+. Thus, only the high-voltage-activated calcium currents (P/Q/N and 

L-type) are likely to mediate the effect of electrical activity. Growth inhibition 

persisted in the presence of w-conotoxin MVIIC which blocks P/Q/N-type 

channels (Figure 10C and 10E), suggesting that these channels are not involved 

in inhibition induced by high K+. In contrast, growth inhibition was partly 

prevented by specifically blocking the L-type channels with nifedipine (Figure 

10D). The percentage of neurons bearing neurites was significantly higher in 

depolarized cells treated with nifedipine (27 ± 3.0 %) than that of non-treated 

depolarized neurons (8 ± 0.5 %). Conversely, L-type channel activation by the 

agonist BayK impaired growth (Figure 10A and 10B; 47 ± 5.0 % in control cells 

versus 30 ± 3.5 % in BayK-treated cells). These data indicate that the inhibitory 

effect of electrical activity on axon growth is, at least in part, dependent on L-

type channel activation.  

Previous studies suggest that L-type Ca2+ channels regulate different cellular 

functions by modulating gene expression (Greer and Greenberg, 2008; West et 

al., 2002). Therefore, I sought to test whether depolarization inhibits axon growth 
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by inducing the expression of growth inhibitory genes. This possibility implies 

that growth under depolarizing conditions can be rescued when gene 

transcription is blocked. Since a discrete initial period of de novo gene 

transcription is itself necessary to support growth, I assessed the role of growth 

inhibitors at a later time point in culture, when neurons can grow for a period of 

12 h in the absence of transcription (Smith and Skene, 1997). Therefore, blockers 

of gene transcription were added to cells for 12 h after an initial period of 40 h in 

culture, concomitant to depolarization evoked by 40 mM KCl.  

 

Figure 10 l Axon growth inhibition is mediated by L-type calcium current. Dissociated 
neurons were grown on poly-lysine for 40 h in the conditions as indicated. To determine 
the effect of L-type Ca2+ current activation, neurons were grown in the A l absence or B l 
presence of the L-type Ca2+ channel agonist Bay K 8644 (10 µM). The contribution of the 
different voltage gated Ca2+ currents to the inhibitory effect of neuron depolarization 
was assessed using specific channel blockers. Neurons were depolarized with 40 mM 
KCl alone C l or in the presence of D l L-type channel blocker nifedipine (10 µM) or E l 
general blocker for the other HVA Ca2+ currents w-conotoxin MVIIC (200 nM). Scale bar, 
25 µm. F l Quantification of neurite formation under the different treatments (mean ± 
SEM; 3 independent experiments).  * P<0.05.  
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When gene transcription was blocked by DRB, an inhibitor of RNA polymerase 

II, depolarization did not inhibit growth (Figure 11A-C and 11E). A similar result 

was obtained using another inhibitor of RNA polymerase II, α-amanitin (Figure 

11D). The percentage of cells extending neurites in control, depolarized DRB-

treated and depolarized amanitin-treated neurons was 59 ± 1.8, 59 ± 4.4 and 58 ± 

5.1 %, respectively. These findings suggest that electrical activity triggers the 

expression of growth inhibitory factors that may interfere with the growth-

associated genetic program. 

 

 
Figure 11 l Axon growth inhibition involves transcription of growth inhibitory genes. 
Cells were grown for 40 h on poly-lysine in control media, and thereafter in the 
mentioned media for a period of 12 h. A l Neurons cultured for 52 h in control media. l 
B-D l Neurons incubated in 40 mM KCl for the last 12 h in the B l absence or presence of 
gene transcription blockers, C l 40 µM DRB (C) or D l 500 nM α-amanitin. Scale bar, 25 
µm. E l Quantification of neurite outgrowth (mean ± SEM; 3 independent experiments).  
 

I next analyzed the response of DRG neurons to peripheral lesion, looking in 

particular for changes in their electrophysiological properties.  
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2.3 Peripheral nerve lesioned (PNL) neurons are not inhibited by neuron 

depolarization  

 

A peripheral lesion strongly enhances the growth ability of the affected DRG 

neurons. Whereas naïve (unlesioned) neurons are quiescent during the first 24h 

after plating and require approximately 2-3 days to extend neurites, neurons 

subjected to a peripheral injury 3-7 days before isolation show robust neurite 

growth already at 24 h in culture (Neumann et al., 2002; Smith and Skene, 1997).  

To further study whether electrical activity is determinant for the enhanced 

growth ability seen in adult DRG neurons after peripheral lesion, I next explored 

changes in the electrophysiological properties of PNL neurons that might allow 

them to circumvent inhibition and promote growth. I observed that unlike naïve 

neurons (Figure 8A-D), neurite growth on PNL neurons is not impaired by 

depolarization (Figure 12A, B and 12E). Incubation in 40 mM KCl does not 

significantly affect the number of PNL neurons extending neurites (58 ± 1.9 % 

versus 53 ± 1.9 %). Therefore, I next sought to identify the level of the inhibitory 

pathway at which insensitivity to electrical activity is conferred. A possible cause 

for insensitivity could be altered plasma membrane properties triggered by the 

lesion, specifically a reduced calcium influx. To assess this possibility, I asked 

whether an increase in [Ca2+]i would inhibit growth of PNL neurons. To this end, 

I incubated neurons in caffeine to induce Ca2+ release from intracellular stores, 

and thereby resulting in an elevation of [Ca2+]i. I observed that incubation in 

caffeine substantially decreased outgrowth on PNL neurons (Figure 12C). 

Whereas 58 ± 1.9 % of the control neurons formed neurites, only 3 ± 0.9 % of the 

caffeine-treated neurons extended neurites. Because caffeine treated neurons 

grew neurites after the washout (Figure 12D), the inhibitory effect on axon 

growth is likely to be associated to an elevation in [Ca2+]i and not to a decrease in 

cell viability. Notably, other pathways activated by caffeine, e.g. increase in 

intracellular cAMP level which was shown to enhance growth of adult DRG 
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neurons (Neumann et al., 2002), were not sufficient to counteract the inhibitory 

effect. These findings suggest that insensitivity to electrical activity after 

peripheral injury is conferred by a reduced Ca2+ influx.  

 

Figure 12 l Peripheral nerve lesioned (PNL) neurons are not inhibited by 
depolarization. l A-E l Neurons were isolated from rats subjected to peripheral axotomy 
3-7 days before culture, and plated on poly-lysine for 1 day. Cells grown in A l control 
and B l 40 mM KCl media show extensive neurite formation, whereas cells cultured in C 
l 10 mM caffeine media (caff) exhibit fewer processes. D l Neurons cultured in media 
containing 10 mM caffeine for 1 day, and subsequently in control media for an 
additional day. Scale bar, 25 µm. E l Quantification showing the percent of neurons 
forming neurites (mean ± SEM; 3 independent experiments). ***P<0.001, n.s. not 
statistically different. l F-I l Increase in [Ca2+]i upon KCl stimulation was assessed by 
Ca2+ imaging. Representative images of the relative fluorescence changes (∆F/F0) show 
a stronger calcium signal on l G, phase picture F l naïve neurons than on l I, phase 
picture H l PNL neurons. Color scale represents relative fluorescence intensities. J l 
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Average of the maximum ∆F/F0 values obtained for each control or PNL neuron (mean 
± SEM; n > 35 neurons per condition).   ** P<0.01. Scale bar, 25 µm.  
 

To test this idea I loaded DRG neurons with the calcium indicator Oregon Green 

BAPTA-1 AM and measured the elevation in [Ca2+]i in response to a pulse of 

high K+. A small but significant decrease in [Ca2+]i response was measured in 

PNL neurons (Figure 12H-J) in comparison to naïve neurons (Figure 12F and 

12G). This result shows that intracellular Ca2+ levels are altered after a peripheral 

injury, leading to a smaller Ca2+ signal upon depolarization. Overall, these data 

suggest that peripheral lesion triggers electrophysiological changes that allow 

adult DRG neurons to escape the growth inhibitory effects of electrical activity.  

 

Table 1 l Types of voltage-gated calcium channels in DRG neurons. HVA, high-

voltage activated; LVA, low-voltage activated. Adapted from (Hille, 2001).  

 

  Slow, persistent   Fast, inactivating 
  HVA   HVA LVA 

Tsien type L   P, Q, R T 
Nomenclature Cav1.x  Cav2.x Cav3.x 

Opens at -30 mV  -20 mV -70 mV 
Channel openings continual reopening  long burst brief burst, inactivation 
Inactivation range -60 to -10 mV  -120 to -30 mV -100 to -60 mV 

Inactivation  very slow (>500 ms)  partial (50-80ms) complete (20-50 ms) 
Blocked by Nifedipine    Conotoxin MVIIC   

 



Results 
 

 

 
 

37

2.4 L-type Ca2+ channels are downregulated after peripheral axotomy  

 

Since L-type Ca2+ channel activity mediates growth inhibition, I presumed a 

reduction of this particular current after peripheral lesion. To assess this 

possibility, I performed voltage-clamp recordings in dissociated DRG neurons to 

compare the L-type current amplitude in naïve and PNL neurons. Calcium 

currents mediated by T-type and L-type channels were isolated by recording in 

an extracellular solution free of Na+ and K+ ions, and by additionally blocking 

P/Q/N-type calcium currents with w-conotoxin MVIIC. Currents were evoked 

by a series of 50 msec voltage steps from a holding potential of either -90 mV or 

-40 mV. I observed the presence of two different cell types in culture, 

distinguishable by their current profile evoked from a holding potential of -90 

mV, as previously described (Baccei and Kocsis, 2000). Type 1 neurons possessed 

only a high-voltage activated, slowly inactivating L-type calcium current (Figure 

13A-C), representing approximately 70% of the neuronal population in cell 

culture. Type 2 neurons showed both a low-voltage activated, fast inactivating T-

type calcium current and the high-voltage activated, slowly inactivating L-type 

component (Figure 13D-F). They represent approximately 30% of the neuronal 

population. The L-type current amplitude in type 2 neurons is significantly 

smaller than in type 1 neurons (Figure 13C and 13F). Therefore, differences in L-

type current amplitude between naïve and PNL neurons were evaluated 

separately for type 1 and type 2 cells. By holding the neurons at -40 mV to 

inactivate the T-type current (present in type 2 cells) and then stepping to the 

various test potentials L-type currents were isolated (Figure 13A,B and 13D,E, 

right traces). I found that peripheral injury significantly reduced the L-type 

current amplitude in type 1 neurons (Figure 13A-C, and Figure 13G; -5.0 ± 0.57 

versus -3.2 ± 0.54 nA). No difference in current amplitude was observed between 

naïve and PNL type 2 neurons (Figure 13D-F; -0.93 ± 0.14 versus -1.42 ± 0.43 nA). 
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igure 13 l L-type Ca2+ current is reduced after peripheral nerve lesion. Voltage-clamp 

However, holding the neurons at -40 mV also partially inactivates the L-type 

current (compare e.g. left and right traces in figure 13A).  

 

F
recordings were performed in control and PNL neurons, in the presence of 200 nM w-
conotoxin MVIIC.  l A, B and D, E, left traces  l Neurons were classified as type 1 or type 
2 based on their current profile evoked from a holding potential of -90 mV. Type 1 
neurons present only slow- inactivating currents, whereas type 2 neurons present both 
slow- and fast-inactivating currents. In control cells, 71% (15/21) were type 1 and 29% 
(6/21) were type 2. Type frequency was not affected by peripheral injury. To compare L-
current amplitude between control and PNL neurons, cells were also recorded from a 
holding potential of -40 mV, which lacks the fast inactivating T- component. l A,B, right 
traces and C l Representative traces of type 1 neurons, h.p. -40 mV, showing that L-
current amplitude is reduced after peripheral lesion. l D,E, right traces and F l 
Representative traces of type 2 neurons, h.p. -40 mV, showing that L- current amplitude 
is not affected by peripheral lesion. Note that type 2 cells have a characteristic small L-
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onsidering only type 1 neurons, which present solely the L-type current in the 

 is caused by a 

ther, these findings show a reduction of L-type currents attributed to 

current. C and F plots show the current-voltage (I-V) relationship for the 4 cells 
presented here. G l Average of L-current peak amplitudes recorded from control and 
PNL neurons at h.p. of -40 mV. (mean ± SEM; 21 neurons per condition) * P<0.05; n.s. 
not statistically different. h.p. holding potential H l Western Blot showing reduction of 
Cav1.2 expression on the DRGs after peripheral lesion. ERK1/2 staining was used as a 
loading control. A reduction in Cav1.2 levels was observed in 9 out of 12 analyzed 
animals.  
 

C

recordings, the comparison between naïve and PNL neurons can be made at a 

holding potential of -90 mV. In this case, a more striking reduction of the L-type 

current after peripheral lesion is observed (6.0 ± 0.71 versus -3.4 ± 0.66 nA; 

**P<0.01). These data demonstrate that the L-type current amplitude is 

significantly decreased in DRG neurons after peripheral lesion. 

To test whether a reduction of L-type channel conductance

reduction in the protein levels, I next compared the amount of the pore-forming 

subunit of the L-type channel protein in naïve and PNL ganglia. Although two 

isoforms - Cav1.2 and Cav1.3 – can constitute the pore of L-type channels, the 

Cav1.2 is predominantly expressed in medium and large diameter DRG neurons 

(Yusaf et al., 2001) (Figure 14A). Western blot analysis revealed a lower Cav1.2 

protein level in PNL ganglia (Figure 13H), suggesting that peripheral nerve 

lesion induces a downregulation of L-type channel protein expression in DRG 

neurons.  

Taken toge

a decrease in L-type channel protein in the cell membrane of PNL neurons. 
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2.5. Lack of L-type channels enhances axon growth  

 

Electrical activity inhibits axon growth through activation of L-type channels and 

leads to the transcription of growth inhibitory genes. Moreover, there is 

downregulation of L-type channels after peripheral injury, suggesting that loss of 

L-type channel activity is required to promote axon growth. This raises the 

question of whether the absence of this channel type is sufficient to promote 

growth of adult DRG neurons. 

 

2.5.1 Ablation of Cav1.2 channel subunit in the nervous system 

 

Using the Cre recombinase system, a mouse line with an inactivation of the 

Cav1.2 gene (CACNA1C) in the whole CNS was generated (Figure 14B). Cav1.2 

knock-out (KO) mice were generated by Nicole Langwieser and Sven 

Moosmang, at the Institute of Pharmacology and Toxicology, Technical-

University-Munich, Germany. Cav1.2 KO mice are viable and exhibit normal life 

expectancy, body weight and breeding. Mating with the reporter Rosa 26 line 

showed that nestin-Cre mice have a strong Cre recombinase activity in DRG 

neurons (Figure 14C). Using Western Blot analysis, we confirmed that the Cav1.2 

protein is absent from DRGs as well as from the whole brain of conditional KO 

animals (Figure 14D and 14E). There were no compensatory changes of the 

Cav1.3 protein level in the Cav1.2 KO DRG, as demonstrated by semi-

quantitative RT-PCR (Figure 14F).  

 

2.5.2 Cav1.2 KO neurons show enhanced outgrowth in cell culture 

 

I next investigated whether genetic inactivation of Cav1.2 L-type calcium 

channels is sufficient to promote axon growth in adult DRG neurons. To this end, 
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I isolated naïve neurons from control and Cav1.2 KO animals and evaluated 

outgrowth after 18h in culture. 

 

Figure 14 l Genetic inactivation of the CaV1.2 gene in the nervous system. A l In-situ 
hybridization showing Cav1.2 and Cav1.3 mRNA expression in the dorsal root ganglia. 
AS, antisense; S, sense. B l Schematic representation of the wild type (WT), the floxed 
(L2) and the knockout (L1) Cav1.2 alleles. The numbers indicate the exon number. C l 
Reporter stain showing X-Gal expression under the Nestin promoter in the DRG. 
Western analysis of protein from D l DRG and E l whole brain, using an anti-CaV1.2 
antibody, shows the loss of the CaV1.2 protein. ERK1/2 was used as loading control. F l 
RT-PCR demonstrating lack of up-regulation of the Cav1.3 mRNA in the Cav1.2 KO 
mice. Analyses were performed by Nicole Langwieser, at the Technical-University-
Munich, Germany.   
 

KO neurons exhibited a more robust outgrowth in comparison to control 

neurons (Figure 15A, B, E and 15F), indicating that loss of L-type channel activity 

is sufficient to enhance the growth ability of adult DRG neurons. Moreover, by 

comparison with neurons previously subjected to a peripheral axotomy, I found 

that loss of L-type channel activity induces approximately 40% of the growth 

enhancement seen in PNL neurons (Figure 15 B and 15C).  
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Figure 15 l Lack of L-type Ca2+ channels triggers growth competence in adult DRG 

neurons. l A and B l Neurons were isolated from control or CaV1.2 knockout adult mice 

and cultured on laminin for 18 h. l  C and D l Neurons subjected to peripheral axotomy 

5 days before isolation. E l Quantification showing that loss of L-current potentiates 

neurite formation in DRG neurons (mean ± SEM; 9 KO mice per condition) ***P<0.001. F 

l The longest axon on each neuron was measured (mean ± SEM). 

 

An open question was whether the loss of L-type channels is involved in the 

mechanism enhancing axon growth after peripheral lesion. To address this 

question, I performed conditioning lesions in the KO animals. In case that L-type 

channel downregulation and peripheral lesioning are independent events, one 

would expect their effects to be cumulative.  Instead, in case that L-type channel 

downregulation is part of the conditioning paradigm one would expect that 

there is no additive effect. In support of the latter possibility, I found that 
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conditioned KO neurons grew to a similar extent as the conditioned control 

neurons (Figure 15C and 15D). These findings demonstrate that lack of L-type 

Ca2+ channels is an important component of the conditioning effect, and essential 

to promote axon growth in adult DRG neurons.  
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2.6 Translating the knowledge to a spinal cord injury model  

 

From the previous experiments, we conclude that electrical activity suppresses 

axon growth competence in cultured adult DRG neurons. We argue that in vivo, 

the electrical impulses that continuously arrive at the cell body from the 

periphery inhibit axon growth in adult DRG neurons. After spinal cord injury, 

neurons remain connected to their peripheral targets and would thus be 

suppressed to grow.  

How can this information be applied to promote regeneration after spinal cord 

injury? In the first attempt, I assessed the effect of blocking AP propagation from 

the peripheral nerve endings to the cell body. In the second attempt, I tested 

whether the absence of L-type current would be sufficient to promote 

regeneration after spinal cord injury.  

 

2.6.1 In vivo blockade of sciatic nerve transmission  

 

Since spinal cord lesion experiments are long–lasting, extremely laborious and 

require extensive animal care, an “in vivo - in vitro” approach was chosen to first 

evaluate the potential of the treatment. To this end, I blocked AP propagation in 

the sciatic nerve of rats and assessed growth competence in culture. Only if 

sciatic nerve blockade proved to boost the growth competence of adult DRG 

neurons in vitro, I would evaluate axon regeneration after spinal cord injury.  

Long-term blockade of AP propagation was achieved by two previously 

described methods (Xie et al., 2005) (see Figure 21 in Materials and Methods). In 

the first approach, the sciatic nerve was perfused with 780 µM TTX at a rate of 1 

µl/h, following the implantation of a TTX-filled osmotic pump. The local 

delivery to the sciatic nerve was assured by connecting the pump to a catheter, 

which in turn connects to a cuff surrounding the nerve. In the second approach, a 

200 mg bupivacaine-OH depot was applied around the sciatic nerve. Both TTX 
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and bupivacaine block sodium channels, although by different mechanisms. 

Whereas TTX blocks the outer pore of sodium channels, local anesthetics such as 

bupivacaine cross the cell membrane and bind in the inner pore of sodium 

channels (Hille, 2001).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 l Sciatic nerve blockade does not improve growth competence of adult DRG 
neurons in vitro. Three days after surgery, neurons were isolated and grown for 24 h on 
poly-lysine. A l Neurons from the contralateral naïve side. l B and C l Neurons 
dissociated from rats where an osmotic pump, filled with either B l H2O or C l TTX, was 
installed. (D, E) Neurons isolated from rats exposed to D l gelfoam or E l bupivacaine. F 
l Neurons subjected to peripheral nerve lesion (PNL). Scale bar, 25 µm. G l 
Quantification of neurite outgrowth (mean ± SEM; 3 independent experiments). n.s. not 
statistically different.  
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An important requirement for these experiments is that the treatment leaves the 

sciatic nerve intact, which could otherwise mimic a peripheral lesion and lead to 

a misinterpretation of the results. This was verified by Wenrui Xie and confirmed 

by us, based on the histological analysis of control and treated sciatic nerves.  

The efficacy of both methods in blocking AP propagation was evident in the 

animal behavior: rats would drag the affected hind limb during the full duration 

of the treatment. When assessing the effect of sciatic nerve blockade in axon 

growth, I found that TTX block does not increase the growth competence of 

cultured adult DRG neurons (Figure 16A, 16C and 16F). A similar result was 

obtained after bupivacaine treatment (Figure 16E and 16G). Although there is a 

small increase in the number of neurons extending neurites in the TTX- and 

bupivacaine- treated neurons when compared to naïve neurons (Figure 16G), this 

is not likely to be a direct effect of the blockade. Indeed, the mere manipulation 

to install the osmotic pump with the cuff or to place powder around the sciatic 

nerve seems to be sufficient to cause a small increase in the growth competence 

of the neurons (Figure 16B and 16D, respectively). A similar growth potential is 

observed in water- and TTX-perfused neurons (15 ± 9.2 versus 13 ± 2.5%), and in 

gelfoam- and bupivacaine-exposed neurons (12 ± 1.2 versus 13 ± 1.3%). A slight 

degeneration or inflammation of the nerve due to the manipulation might be the 

cause of such an effect. Hence, these results suggest that there is no specific effect 

of blocking AP propagation on the growth competence of cultured adult DRG 

neurons.  

These negative results might reflect either the absence of an effect of AP blockade 

or technical limitations at different levels. A major caveat of this experiment is 

definitely the lack of in vivo recordings to validate the initial assumption. 

Additional considerations are made in section 3.4 of the discussion.



Results 
 

 

 
 

47

 2.6.2 Spinal cord regeneration in Cav1.2 KO mice  

 

The previous data showed that neurons isolated from Cav1.2 KO mice grow 

better in culture than those from their control littermates. The growth 

competence induced by the loss of Cav1.2 protein is about 40% of that triggered 

by a peripheral lesion (Figure 15). This raised the question of whether Cav1.2 KO 

animals show improved axon regeneration after spinal cord injury.  

Since the ascending axons of the DRG neurons are confined to the dorsal 

columns of the spinal cord (see Figure 22A in Materials and Methods), a dorsal 

column lesion (DCL) is sufficient to transect all the central axons from the DRG 

neurons. Therefore, I performed DCL at T9-T10 level in control and Cav1.2 KO 

mice, and allowed the animals to recover for 4 weeks. As a positive control for 

regeneration, I included a third group of conditioned mice whose peripheral 

nerve had been cut 1 week before sectioning the dorsal column. To be able to 

visualize the regenerating fibers afterwards, cholera-toxin β-subunit (CTB) was 

injected into the left sciatic nerve of the injured animals, labeling the DRG 

neurons from L4 and L5 ganglia. Five days after CTB tracing, mice were perfused 

with 4% PFA and their spinal cords analyzed by histology (see details in Figure 

22B-D, Materials and Methods).  

In the majority of control mice (4/5), I observed that the ascending CTB-fibers 

stop at or behind the center of the lesion (Figure 17A and 17B). In one of the 

control animals though, some fibers were found approximately 150 µm beyond 

the lesion site (Figure 17I). According to the conditioning paradigm, it is 

expected that performing a peripheral lesion before sectioning the dorsal column 

dramatically increases fiber sprouting into the lesion site. However, in 

conditioned mice, I found that most of the ascending fibers also stall at the lesion 

site (Figure 17I).  Only half of the conditioned mice (3/6) showed 1-2 fibers 

growing beyond the lesion site, and never extending farther than 200-300 µm 

from the centre of the lesion (Figure 17C and 17D).  
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Figure 17 l Spinal cord injury in the C57bl6/sv129 mice. Part I (in previous page). 
l A-H l 20 µm horizontal sections of the injured spinal cord; rostral is left and caudal is 
right. A and B l Four weeks after DCL in control animals, CTB-traced axons approach 
the lesion site but do not cross it (arrow head).  Black line indicates the lesion site. Detail 
of A in B, high magnification. C and D l Four weeks after DCL in conditioned animals, 
CTB-traced axons are also stalled at the lesion site. In some mice, 1 or 2 fibers are seen 
beyond the lesion site, but never farther than 200-300 µm beyond the lesion (arrow 
head). Detail of C in D. l E - H l Lesion area is identified based on E l laminin and F l 
GFAP staining. Replicate of the section shown in A. High magnification of the GFAP 
staining G l in the center of the lesion area and H l outside the lesion area. I l 
Quantification of axon “regeneration”, showing individual values for control (open 
circles) and conditioned (filled circles) mice. The bars indicate the average for each 
group. N= 5 for control and N= 6 for conditioned mice. n.s. not statistically different. J l 
Transversal section of the spinal cord, at the level where the injury was performed (T9-
T10), showing the average extent of the lesion. Scale bar, 200 µm, unless otherwise 
specified.  
 

These results reveal the poor regenerative ability of the ascending sensory fibers 

in mice, even after peripheral lesion. In addition, they indicate a high intra-group 

variability in response to injury. Consequently, the average extent of fiber 

regeneration in control mice is not significantly different from that of 

conditioned mice (-200 ± 113.7 versus 38 ± 68.2 µm, respectively). Failing to 

observe a “clear-cut” difference between control and conditioned animals, I 

concluded that within such a narrow window it is not possible to assess 

regeneration in Cav1.2 KO mice. This was also verified experimentally, as no 

significant difference in regeneration was observed in the Cav1.2 KO group (data 

not shown).     

To facilitate the identification of the lesion site, replicate sections of the injured 

spinal cord were also stained for laminin and glial fibrillary acidic protein 

(GFAP) (Figure 17E-H). Laminin is a component of the extracellular matrix that 

is overexpressed after injury and accumulates at the lesion site; its staining is also 

associated with endothelial cells surrounding the lesion zone (Risling et al., 
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1993). GFAP allows the visualization of astrocytes and provides a delimitation of 

the lesion area (Camand et al., 2004; Okada et al., 2006). The center of the lesion 

contains reactive astrocytes that extend numerous processes, forming a dense 

network called the glial scar (Figure 17G). Surrounding the lesion area, GFAP-

positive astrocytes appear at a lower density than in the glial scar and exhibit a 

stellate morphology (Figure 17H).  

The laminin and GFAP staining also allowed an estimation of the lesion 

extension. Based on the analyses of sequential sections obtained at different 

depths of the spinal cord, an average value of deepness and broadness of the 

lesion was calculated. These are represented in a transversal section of the spinal 

cord stained for myelin-binding protein (MBP), to better visualize how the lesion 

affects the white and the gray matter. The lesion does not only affect the white 

matter where the sensory afferent tracts are, but also causes damage to the 

surrounding gray matter (Figure 17J). The more extended the lesion is, the more 

inhibitory the glial scar is. Even if neurons are primed to grow after peripheral 

lesion, they might not regenerate because the entire surrounding tissue is hostile. 

Therefore, one possible explanation for the poor regenerative ability seen under 

these conditions is the large extension of the lesion area.  

I next investigated whether a smaller lesion could counteract this problem, 

allowing a certain extent of axon regeneration. The experiments were performed 

as mentioned above, except that the dorsal column was sectioned using smaller 

scissors.  

In both control and conditioned mice, I observed fibers extending far beyond the 

lesion site, some at 1-2 mm from the center of the lesion (Figure 18A and 18B, 

arrow heads). Moreover, they appear to run in parallel bundles. These features 

pointed to the presence of unlesioned, spared fibers rather than regenerating 

fibers.  

 



Results 
 

 

 
 

51

 

 
 

Figure 18 l Spinal cord injury in the C57bl6/sv129 mice. Part II. l A and B l Horizontal 
view of the injured spinal cord, in A l control and B l conditioned mice. Rostral is left 
and caudal is right. Black line indicates the lesion site. In both cases, most of the fibers 
terminate at the lesion site but some extend far beyond the lesion and in parallel bundles 
(arrow heads). l C and D l Transversal section of the medulla obtained from C l control 
(same mouse as in A) and D l conditioned (same mouse as in B) mice, confirming the 
presence of spared fibers (arrow heads). E l Transversal section of the intact spinal cord 
at the level where injury was performed (T9-T10), showing the average extent of the 
lesion.  Scale bar, 200 µm, unless otherwise specified. N=6 for control and N=7 for 
conditioned mice.  
 

To analyze this possibility, I checked for the presence of labeled fibers in 

transversal sections of the caudal medulla. This is where the ascending axons of 

the mechanoreceptive DRG neurons terminate (see Figure 4 in Introduction). 
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Because the lesion site is at a distance of many millimeters from the medulla, it is 

extremely unlikely that injured fibers can regrow that far. Consequently, the 

appearance of traced fibers at the medullar level indicates that they were spared 

by the lesion. I observed CTB-labeled fibers in all animals (Figure 18D and 18E), 

consistent with the idea of spared fibers. The estimated extension of the lesion 

shows that only the dorsal column is affected (Figure 18C). If the cut is not 

perfectly centered (the most likely case), it is possible that some fibers are spared 

by the lesion. Unfortunately, the presence of spared fibers invalidate the 

quantification of regenerating fibers, as it is impossible to distinguish between 

these two types of fibers by this method.        

Taken together, these results indicate that it is not possible to assess sensory fiber 

regeneration in mice with conventional methods. Bigger lesions prevent any 

regeneration or sprouting to take place, smaller lesions leave some fibers spared 

invalidating quantification. The difference between both lesion extensions is 

approximately 200 µm, which is beyond the cutting precision that can be 

achieved by hand in a living animal.  

 

In summary, the work presented here provides in vitro evidence that axon 

regrowth in adult DRG neurons is prevented by electrical activity. The inhibitory 

effect of electrical activity is mediated by activation of L-type channels and 

involves changes in gene transcription. Importantly, the absence of L-type 

calcium channels is sufficient to boost the growth competence of adult DRG 

neurons. Whether this knowledge can be applied to promote axon regeneration 

after spinal cord regeneration is an exciting possibility, but remains to be proven.   

 



Discussion 
 

 

 
 

53

3. Discussion 
 

 

Embryonic neurons grow their axons over long distances to connect with their 

appropriate targets. As the neuron matures, the genetic program associated with 

axon growth is gradually suppressed. In adult sensory DRG neurons, however, a 

conditioning peripheral lesion reactivates the genetic program to promote axon 

regeneration (Ylera and Bradke, 2006). The cellular basis of this switch on growth 

competence is poorly understood. This study provides evidence for an activity-

dependent mechanism regulating the intrinsic growth competence of adult 

primary sensory neurons (Figure 30). Electrical activity leads to calcium influx 

through L-type channels and to the transcription of growth inhibitory factors, 

thereby preventing axon growth. Electrical silencing and the associated lack of L-

type Ca2+ channel currents are sufficient to promote axon regrowth.  

 

3.1 Electrical activity as the “intrinsic negative signal” for axon growth of 

primary sensory neurons 

 

I showed that electrical activity significantly inhibits axon growth of cultured 

adult DRG neurons, as assessed by either chronic depolarization or electric field 

stimulation. These results are in agreement with those from earlier studies 

performed in embryonic DRG neurons (Fields et al., 1990; Robson and Burgoyne, 

1989), and reveal that the mechanism of axon growth inhibition by electrical 

activity is conserved in adult neurons. It was important to confirm the effect in 

adult neurons as the expression of ion channels, which dictate the response to 

electrical stimulation, can be altered during the developmental process (Spitzer 

et al., 2002). Because the stimulation protocol used in our experiments was 

designed to resemble the normal AP firing pattern of adult sensory neurons 

(Fitzgerald, 1987), our findings support the initial hypothesis that normal levels 
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of activity experienced by functional adult DRG neurons can indeed inhibit axon 

growth. Interestingly, cultured adult DRG neurons become growth competent 1-

2 days after isolation, a situation which may derive from the fact that these 

neurons are electrically silent in culture. 

 

Axon growth inhibition by electrical activity seems to be a special feature of 

primary sensory neurons. It has been previously suggested that electrical activity 

acts as a physiological sensor of the sensory neuron to be connected to the 

peripheral target cell (Fields et al., 1990; Peckol et al., 1999). While other neuronal 

cell types receive input largely via their dendrites, the receiving element in DRG 

neurons is their peripheral axon. Hence, the onset of electrical activity may bring 

an important signaling mechanism to suppress further axon growth, 

representing the transition from a growth phase into a functional, 

neurotransmission phase. This study supports the idea that in the adult system 

only a peripheral lesion deprives neurons from electrical activity, setting them in 

a growth competent state. By contrast, after central lesion neurons remain 

electrically active and are kept growth incompetent.  

Remarkably considering the history of neurobiology, a somewhat similar 

hypothesis to ours was first formulated in 1897 (Cragg, 1970; Gehuchten, 1897). 

They observed that adult DRG neurons show marked cell body reaction after 

peripheral axotomy, but no reaction after central axotomy. As an explanation, 

they suggested that what causes the cell body reaction is the loss of action 

potentials! However, instead of interpreting this reaction as a sign of 

regeneration, they erroneously thought it represented a process of cell death. 
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3.2 Possible mechanism of axon growth inhibition by electrical activity 

 

This study implicates the L-type Ca2+ channel as a mediator of axon growth 

inhibition by electrical activity, since the block of L-type channels partially 

prevented axon growth inhibition in depolarized neurons. Furthermore, three 

lines of evidence for the involvement of the L-type Ca2+ channels in the 

conditioning lesion effect are provided: first, a peripheral lesion leads to a 

downregulation of L-type channel activity; second, genetic inactivation of this 

channel type is sufficient to enhance the growth ability of naïve adult DRG 

neurons in culture; third, genetic inactivation of the Cav1.2 channels does not 

further improve growth on PNL neurons, suggesting that lack of L-type channels 

is a component of the conditioning effect.  

Ca2+ influx through L-type channels may further stimulates release of Ca2+ from 

internal stores to inhibit growth. Two types of Ca2+ stores are known to exist in 

DRG neurons. One type is rich in ryanodine receptor (RyR) and mainly present 

in the cell body, and the other is rich in IP3 receptors and appears in the cell body 

and cell processes (Thayer et al., 1988). I found that axon growth is inhibited in 

the presence of caffeine, which is known to mobilize Ca2+ from RyR stores. 

Importantly, it has been previously shown that caffeine triggers [Ca2+]i 

oscillations in DRG neurons similar to those originated by the Ca2+-induced-

Ca2+-release mechanism from internal stores (Ouyang et al., 2005). Moreover, 

functional coupling of L-type channels to RyR in neurons has been shown by 

previous studies (Liljelund et al., 2000; Ouardouz et al., 2003). Although further 

investigations are required to clearly draw the pathway leading to growth 

inhibition, our results present the first evidence that Ca2+ release from internal 

stores via RyR is involved in the process. 

DRG neurons seem to be particularly slow in their ability to buffer intracellular 

calcium elevations. [Ca2+]i increases rapidly in response to depolarization and it 

is maintained at high concentration for a much longer period than in several 
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other neuronal types (Thayer et al., 1988). This feature may allow Ca2+ elevations 

to have a long-range, determinant effect in DRG neurons.  

 

 
 

Figure 19 l Electrical activity controls growth competence in adult primary sensory 
neurons. Proposed model based on the results obtained in this study. A l Neurons 
generate APs in response to sensory input and propagate them through the peripheral 
and central branches. Activity-induced depolarization activates L-type VGCC present in 
the cell body, causing a global elevation in [Ca2+]i in association with Ca2+ release from 
intracellular stores. This leads to the expression of growth inhibitory genes that suppress 
axon growth. Lesion to their central axons causes disconnection from the central 
synaptic targets but their cell body still receives electrical signals from the peripheral 
targets. B l Peripheral injury causes loss of sensory input and therefore silences the 
neurons. As the cell body gets deprived from electrical signals, growth inhibitors are not 
expressed, and the “brake” is released.  
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The involvement of L-type channels in this process raises the interesting 

possibility that electrical activity may interfere with the genetic program 

controlling growth in sensory neurons, as this particular channel type is known 

to regulate gene transcription in several ways. Not only can Ca2+ influx through 

L-type channels regulate the activity of several Ca2+-dependent transcription 

factors and transcriptional repressors (Dolmetsch, 2003; Greer and Greenberg, 

2008), but also can the carboxyl-terminus of L-type channels translocate to the 

nucleus and act itself as a transcription factor (CCAT) (Gomez-Ospina et al., 

2006). In this context, our demonstration that transcription blockers abrogate the 

inhibitory effect of depolarization indicates the expression of growth inhibitory 

genes. The unanswered question is now whether those genes act in the nucleus 

to suppress the growth genetic program or if they act locally at the growth cone. 

Future studies will be necessary to clarify this issue.  

In addition to a long-term effect at the gene transcriptional level, electrical 

activity may also have a short-term effect in the growth of adult DRG neurons in 

culture. The electric field stimulation experiments show that growth inhibition is 

visible within 1h of stimulation. Although immediate early genes might account 

for this fast response, it is possible that other mechanisms operate at this early 

time period. For instance, short-term effects of electrical activity may involve 

changes in cytoskeletal structure and dynamic that alter growth cone behavior 

and axon extension (Zheng and Poo, 2007).  

It is noteworthy that the data presented here contrasts with the general idea that 

axon growth is an instructive pathway, which needs to be specifically signaled. 

Instead, our data suggest that axon growth is a default pathway at least for 

primary sensory neurons. After contacting their targets, further growth is 

actively inhibited by the expression of growth inhibitory genes.  
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3.3 Reduction in Ca2+ influx after peripheral lesion  

 

At the time of axonal injury, there is a large Ca2+ influx from the extracellular 

space through the cut end that is important for rapid membrane resealing and 

GC formation (Geddis and Rehder, 2003; Gitler and Spira, 1998). However, this 

acute elevation in [Ca2+]i  turns back to resting levels within a few minutes (Ziv 

and Spira, 1993). An interesting finding from our studies is that, at a longer term, 

a peripheral lesion leads to a reduction in Ca2+ influx. By semi-quantitative Ca2+ 

imaging analysis, I found that PNL neurons show a smaller elevation in [Ca2+]i in 

response to high K+ than naïve neurons. Our result is based on the assumption 

that basal levels of [Ca2+]i are not altered after lesion, which is supported by a 

previous study (Hayashida et al., 2006) using a ratiometric Ca2+ indicator. By 

voltage-clamp analysis, I showed that L-type channel activity is reduced in PNL 

neurons when compared to naïve neurons. Our Western Blot analysis on the 

Cav1.2 protein content of PNL and naïve ganglia confirmed a downregulation of 

the protein after lesion. These results are consistent with previous investigations 

showing that Ca2+ entry is downregulated in DRG neurons after peripheral 

injury in rats (Abdulla and Smith, 2001a; Baccei and Kocsis, 2000; Kim et al., 

2001). In addition, our results established the link between a more specific 

electrophysiological change - the reduction of L-type channel activity - and axon 

regeneration. It therefore corroborates with the lack of sensory input after 

peripheral injury, to provide further evidence that electrical silencing is 

necessary for axon growth.  

 

It is a surprising result though, that L-type voltage-gated Ca2+ channels are 

downregulated at the protein level after a peripheral axotomy, because the lack 

of sensory input alone would be enough to render these channels inactive. A 

possible explanation for a coordinated downregulation of Ca2+ influx after injury 
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is the fact that several other pathways converge to Ca2+ to inhibit axon 

regeneration after injury, notably those targeted by extracellular growth 

inhibitory molecules. For instance, large rises in intracellular calcium are 

necessary to mediate growth cone retraction upon contact with sulphate 

proteoglycans (Snow et al., 1994), MAG (Wong et al., 2002) and Nogo (Bandtlow 

et al., 1993). Therefore, reduction of Ca2+ influx through L-type channels might be 

important to enhance the intrinsic growth competence and to prevent inhibition 

by extracellular molecules, both relevant factors in the context of spinal cord 

injury. Another possible explanation is that homeostatic mechanisms could 

generate spontaneous activity in response to peripheral injury, leading to some 

extent to L-type channel activation even in the absence of sensory input. 

Homeostasis is thought to maintain certain levels of activity when electrical 

input is altered (Turrigiano et al., 1998). Indeed, a small percentage of peripheral 

deafferentiated fibers does produce ongoing discharges (Abdulla and Smith, 

2001b; Michaelis et al., 2000) that may account for the commonly observed 

symptoms after peripheral injury, such as neuropathic pain.  
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3.4. The role of electrical activity in spinal cord regeneration  

 

Our results suggest that, after spinal cord injury, electrical silencing or interfering 

with the aforementioned inhibitory mechanism may promote regeneration of 

primary sensory neurons. During my thesis project, two attempts have been 

made in this direction.  

First, I assessed the effect of sciatic nerve blockade on the growth ability of DRG 

neurons. No improvement of growth competence was seen on DRG neurons 

innervating the silenced sciatic nerves. A clear and final interpretation of these 

negative results will require in vivo recordings to assess the effectiveness of the 

drugs in preventing AP propagation. Although their effectiveness is supported 

by the observation that rats drag their foot after treatment, it is important to note 

that the sciatic nerve is composed of both motor and sensory fibers, and block of 

motor fibers alone would yield a similar result. Are mechanoreceptive fibers also 

fully blocked after treatment? What is the contribution of TTX-insensitive Na+ 

channels for AP propagation? The literature provides some clues to the answers. 

A complete blockade of APs in mechanosensory fibers was observed after TTX 

application (Wall et al., 1982). The presence of TTX-insensitive channels in DRG 

neurons is known, but it was shown that bupivacaine blocks sodium channels 

which are insensitive to TTX (Roy and Narahashi, 1992; Scholz and Vogel, 2000). 

Therefore, the lack of an effect after treatment with either drug rather indicates 

that blockade of AP propagation does not promote growth in DRG neurons. Still, 

a major limitation of this approach is that sciatic nerve blockade prevents 

propagation of APs at the mid-thigh level but does not prevent its generation at 

the peripheral nerve endings. In case a second messenger signal is generated at 

that point, it might be able to propagate until the cell body and exert its effects, 

even in the absence of APs; the highly diffusible IP3 messenger (Kasai and 

Petersen, 1994) is a potential candidate. Because sciatic nerve afferents innervate 
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several targets, such as muscle, skin and tendons in the hind limb of the animal, 

it is practically impossible to block AP generation in all these nerve terminals.  

Next, I assessed sensory fiber regeneration after spinal cord injury in the Cav1.2 

KO mice, in comparison to control mice. The requirement for this experiment 

though was to observe a significant difference in fiber regeneration between 

control and conditioned animals, i.e between negative and positive controls. This 

requirement was not fulfilled. Although several reports exist on the in vivo 

conditioning effect in rats, fewer exist in mice. The major reason lies in the very 

limited regenerative responses in mice elicited by conditioning after whole 

dorsal column lesion when compared to rats (Neumann and Woolf, 1999; 

Seijffers et al., 2007). Regeneration in mice may be visible in experiments that do 

not affect the whole dorsal column, but only part of it. However, other 

techniques must be employed, whose analysis is not affected by the presence of 

spared fibers. One such technique is in vivo imaging whereby individual GFP 

axons can be analyzed at several time points after injury (Erturk et al., 2007; 

Kerschensteiner et al., 2005). I am currently working to establish the Cav1.2 KO 

GFP mouse line.  

 

How does our model fit into the current knowledge?  

Some studies in the past have proposed a rather positive role for electrical 

activity in sensory axon regeneration. Application of weak electrical fields (about 

10 mV/mm) at the site of injury has been described to improve recovery of the 

propriospinal intersegmental reflex in guinea pigs (Borgens et al., 1987). A more 

recent study suggested that electrical stimulation of the sciatic nerve promotes 

regeneration of the central injured sensory fibers (Udina et al., 2008). Although 

seemingly contradictory to our results, such discrepancies may be due to 

differences in the stimulation protocol. Different spatiotemporal characteristics of 

the changes in [Ca2+]i can activate different downstream targets and therefore 

generate diverse cellular responses (Gomez and Zheng, 2006; Zheng and Poo, 
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2007). In my experiments, a strong electrical field is applied to DRG cell bodies to 

mimic the normal physiological activity experienced by adult DRG neurons. The 

analysis indicates a global Ca2+ signal that elicits a nuclear response, leading to 

long-term modifications of the genetic program of the cell. By contrast, the weak 

electrical fields are applied to the injured tips. Curiously, their effect is strictly 

dependent on the positioning of the negative and positive poles, with neurites 

growing toward the negative pole and retracting when facing the positive pole 

(Patel and Poo, 1982). The effect of weak electrical fields has been associated with 

a reduction of the initial cationic current that enters the axonal tip preventing 

massive retraction (Roederer et al., 1983) and remodeling of actin and 

microtubule cytoskeleton (Rajnicek et al., 2006a; Rajnicek et al., 2006b). As for the 

electrical stimulation of the sciatic nerve, it will be important to discard a 

possible effect of nerve degeneration due to the manipulation and therefore 

“indirectly” conditioning.  

A recent study in lamprey though proposes that a reduction in voltage-gated 

calcium channels is necessary for axon regeneration after spinal cord injury 

(McClellan et al., 2008). Unlike higher vertebrates, lamprey shows spontaneous 

regeneration after spinal cord transection. In this report, it was show that spinal 

cord neurons display changes in their firing patterns after injury, which is 

associated with a significant reduction in mRNA levels of voltage-gated calcium 

channels. At longer recovery times (2-3 months), when reconnection is 

established, the electrophysiological properties of axotomized neurons resemble 

those of intact neurons. Hence they suggest that these changes, which are a 

consequence of injury, are also critical for axonal regeneration. This is the first 

link between axotomy-induced changes in the electrophysiological properties of 

neurons and their regenerative ability. Interestingly, this idea finds parallel in 

our data on the conditioning effect in primary sensory neurons. Perhaps the 

downregulation of voltage-gated calcium channels is part of a more general 

regeneration program in vertebrates.  
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3.5. Concluding remarks 

 

This study focused on one of the most robust regeneration paradigms, the 

conditioning paradigm, to understand the cellular mechanisms that determine 

growth competence in adult primary sensory neurons. Our data provide 

evidence that electrical activity is an “intrinsic negative signal” controlling the 

growth competence of these neurons. The inhibitory mechanism involves 

calcium influx through L-type calcium current and leads to transcriptional 

changes. Absence of L-type calcium channels is sufficient to boost their growth 

competence.  

These data suggest that electrical activity hinders regeneration of sensory 

neurons after spinal cord injury. In developing strategies for spinal cord 

regeneration, it may be important to consider electrical activity as an intrinsic 

factor that can act complementary and synergistically with extracellular factors, 

to release the pre-imposed “brake” and to prime neurons to grow.  
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4. Materials and methods 

 

 

4.1 Materials   

 

4.1.1 Chemicals. High-purity chemicals were purchased from the companies 

Merck, Invitrogen, Roth, and Sigma-Aldrich. All water used to prepare solutions 

was filtered with the “Milli-Q-Water System” (Millipore). Special supplies are 

mentioned in detail with the according material or method.  

 

4.1.2 Pharmacological reagents. Bay K 8644 and w-conotoxin MVIIC were 

obtained from Tocris Bioscience; nifedipine, 5,6-dichlorobenzimidazole riboside 

(DRB), α-amanitin, caffeine and bupivacaine from Sigma-Aldrich; tetrodotoxin 

(TTX) from Alomone Labs.  

 

4.1.3 Media, solutions and special preparations 

 

Borate buffer pH 8.5 
     Boric acid                    1.2 g 
     Borax                            1.9 g 
     Dissolve in 400 mL of distilled water; adjust pH to 8.5.  
 

Complete NeuroBasal media 
Neurobasal Medium (Gibco)                  48 ml 
B-27 Supplement (Gibco)        1 ml  
Glutamine (Gibco)        0.5 ml 
Pen Strep antibiotic (Gibco)       0.5 ml 
Filter sterilize with 22 µm filter. 

 

NeuroBasal media with 5% horse serum 
Neurobasal Medium                                  45 ml 
B-27 Supplement        1 ml 
Glutamine         0.5 ml 
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Pen Strep antibiotic                   0.5 ml 
Horse Serum (Sigma; heat inactivated)   2.5 ml 

      Filter sterilize with 22 µm filter. 
 

Hank´s balanced salt solution (HBSS), buffered with 10 mM HEPES 
     Add 5 mL HEPES (1 M) pH 7.25 to 500 mL HBSS (Gibco)  

 
Collagenase type I solution 
     Dilute 1g of collagenase in HBSS buffer to a final concentration of 3000 U/mL.  
      Sterilize through a 0.22µm filter. 
 
Phosphate-buffered saline (PBS) (immunocytochemistry) 
     NaCl                                 8 g 
     KCl                                   0.2 g 
     Na2HPO4                         1.15 g    
     KH2PO4                0.24 g 
     Dissolve in 1L of distilled water and adjust pH to 7.4. Sterilize by autoclaving. 
 

 
16% PFA / sucrose (immunocytochemistry) 
     PFA powder                  160 g 
     Sucrose                       160 g 
     ~3-4 pellets of NaOH 
     Dissolve in 1L PBS under the fume hood. Adjust pH to 7.4. Filter solution  

through paper filter.  
 

Synthesis of bupivacaine-OH powder 
1 g of bupivacaine-Cl (Sigma) is dissolved in 50 mL H2O, and 1N NaOH is 
slowly added to the solution forming a white precipitate. The precipitate is 
collected by paper filtering, rinsed in fresh H2O, and dried ON under vacuum 
and heat.  
 

Phosphate-buffered saline (PBS) (mice perfusion) 
     NaCl                                 9 g 
     Na2HPO4                         11.5 g    
     NaH2PO4                2.3 g 
     Dissolve in 1L of distilled water and adjust pH to 7.4. 
 
4% PFA (mice perfusion) 
     PFA powder      80 g 
     ~3-4 pellets of NaOH 
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     Dissolve in 2L PBS under the fume hood. Adjust pH to 7.4. Filter solution 
through paper filter.  

 

Tris-Buffered Saline (TBS) (staining for laminin, GFAP and myelin) 
     Trizma base                                6.6 g 
     NaCl                                             7.3 g 
     Dissolve in 1L of distilled water and adjust pH to 8.0.  

 

Tris-Buffered Saline (TBS) (staining for CTB) 
     Trizma base                                12 g 
     NaCl                                             9 g 
     Dissolve in 1L of distilled water and adjust pH to 7.4.  

 

4.1.4 Antibodies 

 

Primary antibodies: 

Antibody Dilution  Type Supplier 

Class III β-tubulin (Tuj-1) 1:1000 mouse  Covance 

CTB 1:10.000 goat List Biological  

Laminin 1:100 rabbit Sigma 

GFAP 1:400 mouse Sigma 

myelin-binding protein (MBP) 1:50 rat Chemicon 

 

Secondary antibodies: 

Specificity Dilution  Fluorochrome Supplier 

Mouse 1:500 Alexa Fluor 555 Invitrogen 

Mouse 1:200 Alexa Fluor 568 Invitrogen 

Rabbit 1:200 Alexa Fluor 488 Invitrogen 

Rat 1:200 Alexa Fluor 568 Invitrogen 

 

Additional for the CTB staining: 

Vectastain Elite ABC Kit, goat IgG (Vector Laboratories) 

DAB (Sigma) 
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4.1.5 Equipment  

Inverted epifluorescence microscope (Zeiss), equipped with a CCD camera. 

Electrical stimulus generator device (STG1004, Multichannel Systems) 

Electrical stimulus isolator (Hivotronic) 

Lid of a 12-well cell culture plate equipped with pairs of platinum wires (home-

made by the personnel of the MPI Workshop) 

Digital-Multimeter (Conrad) 

Osmotic pumps (model 2001, Alzet) 

 

4.1.6 Instruments: 

 

DRG dissection tools: 

Scalpel No. 10003-12 

Rongeurs curved No. 16000-14 

Cutters No. 16140-11 

Scissors angled to side No. 15006-09 

Forceps Dumont No. 5 
 

Surgery tools: 

Forceps with small teeth, No. 11027-12 

Scalpel No. 10003-12 

Forceps curved, serrated No. 11052-10 

Scissors Toughcut No. 14058-09, used for PNL 

Needle holder No. 12002-12 

Alm retractor No. 17008-07 

Forceps with small teeth No. 11071-10 

Micro curette No. 10081-10 

Rongeurs curved No. 16221-14 

Scissors 2.5 mm cutting edge No. 15001-08, used for SCI 
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Scissors 2 mm cutting edge No. 15000-03, used for SCI 

Forceps to apply suture clips No. 12018-12 

Forceps Dumont No. 5 

All above mentioned tools were purchased from Fine Science Tools. 

 

4.1.7 Cav1.2 knock-out (KO) mouse line 

Cav1.2 KO mice were generated by Nicole Langwieser and Sven Moosmang, at 

the Institute of Pharmacology and Toxicology, Technical-University-Munich, 

Germany. Two CACNA1C (Cav1.2) alleles were obtained by Cre-mediated 

recombination in embryonic stem cells, L1 and L2 (Seisenberger et al., 2000). In 

L1, exons 14 and 15 which encode the IIS5 and IIS6 transmembrane segments 

and the pore loop in domain II were deleted. Additionally, this deletion causes 

an incorrect splicing from exon 13 to part of an intron upstream of exon 16, and 

thereby generates a premature stop codon in exon 16 and a loss of function allele. 

L2 contains the 'floxed' exons 14 and 15 and encodes a functional CACNA1C 

gene. To generate control and KO mice, the Cav1.2+/L1 mouse was crossed with a 

mouse expressing a Cre recombinase under control of the Nestin promoter 

(Nestin-Cre) (Tronche et al., 1999). The resulting Cav1.2+/L1, Nestin-Cre+/tg mice 

were then mated with Cav1.2L2/L2 mice, to obtain the nervous system specific 

knockout Cav1.2L1/L2 Nestin-Cre+/tg mice and the control Cav1.2+/L2 Nestin-

Cre+/tg mice. The mouse line was maintained in a bl6/sv129 mixed background. 

Cav1.2 KO mice are viable and exhibit normal life expectancy, body weight and 

breeding. There are no obvious morphological abnormalities.  
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4.2. Methods 

 

 

4.2.1 Coating of cell culture dishes. Poly-L-lysine (Sigma-Aldrich) was 

dissolved in Borate Buffer at a concentration of 1 mg/mL and the solution 

filtered through a 0.22 µm pore syringe. Poly-L-lysine solution was added to 

slide wells (Nunc) or glass coverslips (Marienfeld) and left at room temperature 

overnight. Subsequently, poly-L-lysine was aspirated off and each well washed 3 

times with sterile water. For an additional coat of laminin, a solution of laminin 

(Roche) was prepared in complete Neurobasal media at a concentration of 50 

µg/mL. A volume of approximately 100 µl of laminin solution was added to the 

wells or coverslips. They were placed inside the incubator for at least 2h before 

cell culture.  

 

4.2.2 Dissociated DRG neuronal culture. The dorsal root ganglia projecting 

peripherally to the sciatic nerve, L4 and L5, were dissected from adult Sprague-

Dawley rats (200-250 g). Isolated DRGs were incubated for 90 min with 

collagenase type I (3000 U/mL, Worthington Biochemical), followed by 15 min 

with 0.25% trypsin (Sigma-Aldrich), at 370C. Enzymatic digestion was stopped 

by addition of NeuroBasal medium containing 5% horse serum, and neurons 

were collected by centrifugation at 600 rpm for 5 min. Neurons were 

resuspended in complete NeuroBasal media and plated onto poly-L-lysine 

coated dishes. In the specified cases, dishes were additionally coated with 

laminin. Cells were kept at 370C in a humidified atmosphere containing 5% CO2. 

All the chemicals were directly added to neuronal culture medium at the 

indicated concentration and time in culture. DRG neurons from adult 

C57Bl6/sv129 mice (2-3 months old) were isolated by a similar procedure, except 

that collagenase treatment was reduced to 45 min.  
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Our study comprises only mechanosensory medium- to large- DRG neurons (30-

50 µm cell body diameter), whose central axons course in the spinal cord and are 

thus affected by central injury (see Figure 4 in Introduction). They are the 

majority of neurons under these culture conditions.  

 

4.2.3 Immunocytochemistry. After the indicated time in culture, neurons were 

fixed with 4% PFA for 15-20 min at room temperature. The remaining PFA was 

quenched with ammonium chloride solution for 10 min. Following an extraction 

step with 0.1% Triton X-100 in PBS for 5 min, cells were incubated in blocking 

solution for 1 h, in primary antibody solution for an additional 1 h and in 

secondary antibody for 30 min. Slides were mounted using Gel Mount (Sigma).  

 

4.2.4 Quantification of neurite outgrowth in vitro. Neurons were stained 

for neuronal class III ß-tubulin with Tuj-1 antibody. The percentage of neurons 

forming neurites was obtained by counting the number of cells that showed one 

or more processes longer than the cell body diameter. To measure neurite length, 

images of random neurons were collected and analyzed using custom made 

functions in Scion Image Software. 

 

4.2.5 Electrical field stimulation. Cells were cultured on laminin-coated 

coverslips containing an orientation grid (cellocate, Eppendorf), and used for 

experiment 18 – 24 h after plating. Because NeuroBasal medium has a sub-

physiological concentration of Na+, 60 mM NaCl was added to the medium at 

the time of plating and for all conditions. The growth of individual neurites was 

monitored by collecting images at 1 h intervals, in two subsequent periods. The 

initial period (0 – 1 h) was sought to confirm neurite growth previously to any of 

the tested conditions, whereas the second period (1 – 2 h) aimed to assess growth 

under no stimulation, stimulation or stimulation in the presence of TTX 
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conditions. In the time between imaging, cells were kept inside the incubator. For 

electrical stimulation of the neurons, depolarizing voltage pulses (200 pulses at 

20 Hz, 60 V) were originated from a pulse generator associated with a stimulus 

isolator, and delivered to the cells every 5 min through two parallel platinum 

wires (1 cm long, distance 1.2 cm) placed in the cell culture dish. The rate of axon 

growth (µm/h) before and after the test condition was compared for individual 

neurites.  

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 20 l Set up for electric field stimulation. Electric pulses are (1) originated by a 
stimulus generator device, (2) amplified by a stimulus isolator and (3) transmitted to the 
cells via pairs of parallel electrodes. The coverslips with neurons placed in the wells fall 
between the pairs of electrodes.  
 

4.2.6 Calcium imaging. At 18 – 24 h after plating, cells were incubated with 8 

µM Oregon Green BAPTA-1 AM (Molecular Probes, Kd=170nM) for 1 h at 37oC 

and 5% CO2.  The coverslip was then transferred to a flow chamber with 

temperature controlled at 35oC, and perfused with HBSS buffer containing (in 

mM): 137 NaCl, 4.5 NaHCO3, 0.4 NaH2PO4, 3.3 CaCl2, 5.4 KCl, 0.4 KH2PO4, 

0.5MgCl2, 0.4 MgSO4, 5.6 D-glucose. Fluorescence images were acquired at a 

frequency of 0.7 Hz for 2 min, through a CCD camera controlled with Winview 
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software (Roper Scientific). Cells were observed with a 32x objective. KCl 

responses were induced at 30 sec of recording, by changing the perfusion 

solution from low to high K+ (40 mM). Only medium and large diameter (>30 

µm) DRG neurons were included in the quantifications. Values of relative 

fluorescence change (∆F/F0) were calculated for the entire cell body area, using 

custom made applications in Image J. F0 is the baseline fluorescence. Background 

light levels were determined in an area that did not contain a cell, and subtracted 

from the measured fluorescent values. The maximum ∆F/F0 value was 

determined for each cell and averaged. ∆F/F0 images were obtained based on 5 

baseline frames and 5 signal frames. Data analysis and image processing were 

done using macros developed by Christian Lohmann.  

 

4.2.7 Patch-clamp recordings. Medium to large (>30 µm diam) DRG neurons 

were recorded at 37oC, after 3 – 8 h in culture. Electrodes were pulled to 1.8 - 2.5 

MΩ and filled with internal solution containing (in mM): 120 cesium 

methanesulfonate, 4.5 MgCl2, 9 HEPES, 11 EGTA, 14 tris-phosphocreatine, 4 

Na2ATP, 0.3 tris-GTP, 1 CaCl2. The extracellular solution was based on the 

previously described (Lu et al., 2006), and contained (in mM): 110 choline 

chloride, 30 tetraethylammonium chloride (TEA), 0.6 MgCl2, 2.5 CaCl2, 40 

glucose, 10 HEPES, 0.4 ascorbic acid, 3 myo-inositol, 2 sodium pyruvate. pH was 

adjusted to 7.4 with TEA-OH, and osmolarity was approximately 320 mOsm/Kg. 

In order to block P/Q/N- currents, 200 nM w-conotoxin MVIIC was also added 

to the bath solution. Recordings were performed in voltage clamp mode with a 

HEKA EPC10 amplifier and using Patchmaster software (HEKA). Series 

resistance was typically 3-7 MΩ and was compensated for by 75-85%. Cells with 

more than 10 MΩ of series resistance were not included in the data analysis. Ca2+ 

currents were evoked by 50 msec voltage commands ranging from -70 mV to +50 

mV in successive 5 mV increments, from a 200 msec holding potential of -90 mV 

or -40 mV. Data was analyzed with pClamp software (Axon Instruments). The 
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peak amplitude of L-type current was determined from a holding potential of -40 

mV, whereby the L-current is isolated. The response of naïve DRG neurons to 

electrical field stimulation was recorded using as extracellular solution HBSS and 

as intracellular solution (in mM): 120 K-gluconate, 4 MgCl2, 10 HEPES, 5 EGTA, 

10 tris-phosphocreatine, 4 Na2ATP, 0.3 tris-GTP, 0.5 CaCl2. 

These experiments were done in collaboration with Achim Klug at the 

Department of Neurobiology, Ludwig-Maximilian-University Munich, Germany. 

 

4.2.8 Western Blot analysis. The tissue was pulverized under liquid nitrogen 

and boiled in 2% SDS / 50 mM Tris for 10 min. The resulting homogenates (75 µg 

of protein) were separated by 10% SDS–PAGE, blotted on a PVDF membrane 

(Millipore) and probed with a Cav1.2-specific antibody. Equal loading of slots 

was ascertained by the use of an ERK1/2 (Upstate Biotechnologies). Antibodies 

were visualized by the ECL system (NEN). This assay was done by Nicole 

Langwieser at the Technical-University-Munich, Germany. 

 

4.2.9 Surgery. All animal experiments were performed in accordance with the 

animal handling laws of the government (Regierung von Oberbayern, No: 

209.1/211-2531-115/02). Adult rats (200-250 g) were anesthetized by 

intraperitoneal injection of a 1:1 combination of ketamine (WDT) and xylazine 

(Bayer). Adult mice (2-3 months old) were anesthetized by intraperitoneal 

injection of a mixture containing midazolam (Roche, 5 mg/Kg), medetomidine 

(Pfizer, 2 mg/Kg), and fentanyl (Hexal, 0.06 mg/Kg). After surgery, mice were 

woken up by injection of a mixture containing flumazenil (Pfeizer, 2.5 mg/Kg), 

atipamezole (Roche, 0.5 mg/Kg) and naloxone (Curamed, 1.2 mg/Kg). 

 

Peripheral nerve lesion (PNL), in either rats or mice: the left sciatic nerve was 

exposed at the mid-thigh level, ligated and sectioned distally to the ligation. 

Animals were allowed to recover for 3-7 days, before isolating the DRG neurons.  
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Sciatic nerve blockade, in rats: (i) osmotic pump filled with TTX or H2O (control) – 

the osmotic pump was filled with 780 µM TTX or H20, connected to a self-made 

catheter from silastic tube (Dow Corning), and incubated ON in saline solution. 

The left sciatic nerve was exposed, the cuff at the catheter end was carefully 

placed around the nerve, and the attached osmotic pump was inserted under the 

skin (Figure 21A) (ii) bupivacaine or gelfoam (control) – the left sciatic nerve was 

exposed at the mid-thigh level, and retractors were used to keep the muscle 

cavity wide open while depositing 200 mg of bupivacaine-OH (Sigma) or 

gelfoam (Pharmacia) powder around the nerve (Figure 21B). Animals were 

allowed to recover for 3 days, before isolating the DRG neurons (Figure 21C). 

 

 
Figure 21 l Surgerical procedure to block AP propagation in the rat sciatic nerve. A l 
An osmotic pump delivers 1 µl / h of 780 µM TTX to the sciatic nerve, via a catheter 
connected to a cuff that surrounds the nerve. B l 200 mg of bupivacaine-OH are 
deposited around the sciatic nerve. C l Blockade is maintained during 3 days, and its 
effect on the growth ability of neurons is assessed afterwards in cell culture.  
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Dorsal column lesion (DCL), in mice: the spinal cord was exposed by a hemi-

laminectomy at T9-T10 and the dorsal column was transected bilaterally using 

fine scissors. The wound was closed and the mice were allowed to recover for 4 

weeks. In the conditioning paradigm, mice underwent a left sciatic nerve lesion 7 

days before the spinal cord injury (Figure 22). Post-operative care included 

subcutaneous injection of 15 µl buprenorphin (0.32 mg/mL solution; Essex 

Pharma) once after surgery and 25 µl antibiotic (7.5% Borgal solution; Hoechst 

Russel Vet) daily for 5 days. 

 

 
Figure 22 l Details of the spinal cord injury experiments. A l Transversal section of the 
spinal cord showing the position of the main ascending sensory tracts in violet. 
Collateral branches are not shown. B l Bilateral lesion to the dorsal column is performed 
with micro scissors C l After animal perfusion, the spinal cord comprising the lesion 
area is sliced in 20 µm horizontal sections. D l Time course of the in vivo experiment. 
PNL – peripheral nerve lesion; DCL – dorsal column lesion; wkpo – weeks post-
operation.  
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Neuronal tracing, in mice - Four days before perfusion, DRG neurons were 

retrogradely labeled by performing a crush in the left sciatic nerve to facilitate 

uptake, and subsequently injecting 3 µl cholera toxin B subunit (1% CTB 

dissolved in distillated water; List Biological Laboratories) using a Hamilton 

syringe with a 31- G needle. CTB is taken up selectively by medium- to large- 

DRG neurons (LaMotte CC 1991 J. Comp Neurol). 

 

4.2.10 Tissue processing. Mice were anesthetized by peritoneal injection of 8% 

chloralhydrate and perfused transcardially with 4% PFA in PBS. Spinal cord and 

brain were carefully dissected out, and the tissues were left ON in 4% PFA, 

followed by 5 h in 15% sucrose in PBS and ON in 30% sucrose in PBS. Spinal 

cords and medullas were embedded in optimal cutting temperature (OCT) 

compound. Tissues were sectioned horizontally or transversally, as specified, at 

20 µm on a cryostat. Horizontal sections were collected serially on 5 different 

slides, such that each section in a single slide represents 100 µm in spinal cord 

deepness.   

 

4.2.11 Immunohistochemistry. To assess fiber regeneration, tissue sections 

were incubated in anti-CTB antibody and processed for peroxidase activity using 

DAB as a substrate. To evaluate the extension of the lesion, tissue sections were 

stained for laminin, glial fibrillary acidic protein (GFAP), and myelin-binding 

protein (MBP).  

 

4.2.12 Quantification of axon regeneration. For each animal, four SC sections 

collected at approximately 100, 200, 300 and 400 µm deepness were analyzed, 

covering the whole dorsal column. The distance from the lesion center to the 

fiber extending further rostrally was measured, and the longest fiber for each 

animal was indicated. 
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4.2.13 Statistics. For all data sets, the arithmetic average (x), the standard 

deviation (SD) and the standard error of the mean (SEM) were calculated using 

Microsoft Excel. The significance of the data was analyzed using Student’s T-test, 

considering significant * p<0.05, ** p<0.01 and *** p<0.001.  
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