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Abstract

This thesis is a cumulative dissertation that consists of three papers.

The first paper addresses the issue of screening of a charged dust particle suspended in the plasma-wall
transition layer of a plasma discharge. This problem is one of the fundamental issues in the physics of
complex (dusty) plasmas, because the screening of charged dust particles determines the interaction forces
between them and thus governs their dynamics. The kinetic model proposed in this paper considers a
point charge embedded in a weakly-ionized plasma with ion drift. The latter is considered to be due to
an external electric field and assumed to be mobility-limited. Here, “mobility-limited” means that the
acceleration of ions in the external field is balanced by collisions of ions with neutrals and that this balance
determines the drift velocity. The embedded point charge (i.e., a charged dust particle) perturbs the
ion drift, and the resulting potential distribution around the dust particle is calculated. The results are
proven to be in agreement with existing measurements performed in the plasma-wall transition layer of a
rf plasma discharge. One of the important applications of this work is related to the possibility of tuning
the pair interaction potential between dust particles by applying an external oscillating electric field. In
particular, such a tuning allows studying electrorheological properties of strongly coupled systems on all
relevant time scales. First experiments of this kind have already been performed onboard the International
Space Station.

The second paper deals with the dust-lattice waves — oscillations of charged dust particles forming a
crystalline structure in a plasma. The role of anisotropic screening of dust particles and variations of their
charges is investigated. It is well known that the mentioned effects lead to non-Hamiltonian dynamics of
dust particles and, as a result, can trigger an instability of the dust-lattice waves. This instability has
been already observed in experiments. The new result is that the mutual influence of particles on their
charges, not considered in the analysis of the dust-lattice waves before, is shown to be capable of making
a significant contribution to this instability.

The third paper examines whether a similar instability can be observed in a cluster formed by two or
three charged dust particles. It is found that an instability due to the non-Hamiltonian dynamics is only
possible when the interparticle separation in the cluster is such that certain cluster eigenfrequencies are

sufficiently close to each other.






Zusammenfassung

Diese Dissertation ist eine kumulative Dissertation und besteht aus drei Arbeiten.

Die erste Arbeit beschéftigt sich mit der Abschirmung des in einer Plasmarandschicht zur Schwebe
gebrachten geladenen Staubteilchens. Dieses Problem ist von fundamentaler Bedeutung fiir die Physik
der komplexen (staubigen) Plasmen, weil die Abschirmung die Form der Wechselwirkungen und somit die
Dynamik der geladenen Staubteilchen bestimmt. In der Arbeit wird ein kinetisches Modell vorgeschlagen,
in welchem ein Staubteilchen als eine Punktladung betrachtet wird, die sich in einem schwach ionisierten
Plasma mit einer Ionendrift befindet. Es wird angenommen, dass die Ionendrift durch ein externes elek-
trisches Feld verursacht wird und dass diese Ionendrift der Mobilitdt der Ionen entspricht. Dies bedeutet,
dass die Beschleunigung der Ionen im externen elektrischen Feld durch Ionen-Neutralteilchen-Stofle aus-
geglichen wird und dass diese Kompensation die Geschwindigkeit der Ionendrift bestimmt. Die Punkt-
ladung (d.h. das Staubteilchen) stort diese Ionendrift, und in der vorliegenden Arbeit wird die resultierende
Potentialverteilung des Staubteilchens im Plasma berechnet. Zudem wird festgestellt, dass die Resultate
mit den frither in RF-Entladungen durchgefiihrten Experimenten konsistent sind. Die iibergreifende Be-
deutung dieser Untersuchung liegt in der Moglichkeit, damit durch ein externes elektrisches Wechselfeld das
bindre Wechselwirkungspotential der Staubteilchen von auflen zu steuern und somit z.B. elektrorheologis-
che Eigenschaften von stark wechselwirkenden Systemen von Partikeln sichtbar zu machen und dynamisch
auf allen relevanten Zeitskalen zu untersuchen. Erste Messungen dieser Art sind in Experimenten auf der
Internationalen Raumstation bereits erfolgreich durchgefiihrt worden.

Die zweite Arbeit beschéftigt sich mit den sogenannten Staub-Gitter-Wellen (dust-lattice waves). Das
sind Wellen, die durch Schwankungen der geladenen Staubteilchen, die eine Kristallstruktur im Plasma
bilden, entstehen. In der vorliegenden Arbeit wird die Rolle sowohl der Anisotropie der Abschirmung der
Staubteilchen als auch der Variation ihrer Ladungen untersucht. Wie bekannt fiihren diese Effekte zu nicht-
Hamiltonischer Dynamik der Staubteilchen und kénnen daher eine Instabilitit der Staub-Gitter-Wellen
auslosen. Solche Effekte sind in Experimenten bereits beobachtet worden. Das neue Ergebnis besteht
darin, dass der gegenseitige Einfluss der Staubteilchen auf ihre Ladungen, ein Effekt, welcher bisher bei
der Analyse der Staub-Gitter-Wellen noch nicht beriicksichtigt wurde, einen wichtigen Beitrag zu dieser
Instabilitat leisten kann.

In der dritten Arbeit wird untersucht, ob eine dhnliche Instabilitéit in Partikelclustern, welche nur aus
zwei oder drei Staubteilchen bestehen, beobachtet werden kann. Es wurde festgestellt, dass eine dhnliche In-
stabilitdt, die durch nicht-Hamiltonische Dynamik verursacht ist, nur dann moglich ist, wenn der Teilchen-

abstand so gewéhlt wird, dass bestimmte Eigenfrequenzen des Clusters gut miteinander iibereinstimmen.






AHHOTALIUA

Hacrosimas auccepranus siBIsieTCs KyMyJISTUBHON IUCCEPTALlMei M COCTOHT U3 TpeX padoT.

IlepBast pabora mocBsmIEHa SKPAHUPOBAHWIO 3aPSDKEHHOW TMBIIEBOM YACTHIBI, JICBUTHPYEMOIl B
MPUAJIEKTPOHOM CJIO€ TUIa3MEHHOTrO paspsia. DTa 3ajava sBIsieTcs OAHOW M3 (yHIaMeHTalbHBIX NpoOiieM
(U3MKM TBUICBOM IUIa3MBbl, TaK KaK ODKPAaHWPOBAHWE 3apsDKEHHBIX MBIIEBBIX YaCTHI[ ONPENEISET CHIIBI
B3aHMO,ZleI71CTBHﬂ MCXKJY HUMH U MOITOMY ONPECACTACT UX JUHAMHUKY. B crarbe NpeIOKEHA KUHCTUYCCKAsL
MOJIeNIb, B KOTOPOH paccMaTpHBAETCsl TOYEUHBIH 3apsi, MOMEIICHHBIH B CIa00MOHM3MPOBAHHYIO IIa3My C
MOHHBIM npeiipom. [Ipenmonaraercsi, 4TO HOHHBIA aApeld BbI3BaH BHEIIHUM JJIEKTPUUECKUM IIOJEM H
COOTBETCTBYET MOOMJIBHOCTH MOHOB. [locnennee o3HavaeT, 4To MoApasyMeBaeTcsi OamaHc MEXIy yCKOPEHHUEM
HMOHOB BO BHEIIIHEM 3JIEKTPUUYECKOM MOJE€ U CTOJIKHOBEHHMSIMU MOHOB C HEHTpasaMu, KOTOPbIA M ompenenser
cKOpocTh apeiida. BHeceHHbI ToueUHbIH 3apsia (T.€., 3apsHKeHHast MblIeBast YaCTHIA) BO3MYIIACT Apeid HOHOB,
1 obOpasyloleecs: pacrpeesieHle MOTEeHIMana BOKPYT MbUIEBONH YacTHIBI BBIYMCIEHO B HacTodlled padore.
Pe3ynbpTaThl HAXOIATCS B COTNIACHU C paHee OMyOIMKOBAHHBIMU PE3yJbTaTaMH W3MEPEHHUI, BBIMOJIHEHHBIMH B
MPURJIEKTPOIHOM CJIO€ PaJMOYacTOTHOTO IMUIA3MEHHOTo paspsifa. OMHO M3 BaXHBIX MPUIOKEHUH ATOH paboThI
CBA3aHO C BO3MOXXHOCTBIO pETYJUPOBAHUS IOTEHLUAla MApPHOrO B3aUMOJECHCTBUS MBUIEBBIX YacTUI]
MOCPEJCTBOM MPUIIOKEHHS] BHELIHETO OCLUMIUPYIOWEro 3JIEKTPUUECKoro mnoisis. B yacTHOCTH, Takoe
peryJupoBaHuE MO3BOMSET H3ydyaTh SJIEKTPOPEOTOTHYECKHE CBOWCTBA CHCTEM, B KOTOPBIX MOTEHIMANbHAS
SHEPrus MapHOro B3aMMOJAEHCTBHS YaCTHIl MPEBBIMIAET X KMHETHUYECKYIO DHEPruro. IlepBble dKCIEpHUMEHTBI
TaKOTo THUMA y)ke OBbLIM MpoBeNieHbI Ha 6opTy MexayHapoanoit Kocmuueckoit CtaHiuy.

[Ipenmerom wnccnenoBaHMsT BTOPOW padOTHI SIBISIIOTCS TAaK Ha3bIBAEMBIE ITBUIEKPHCTAUINUECKHE
BOJIHBI — KOJIeOaHUsI 3apsOKEHHBIX MBIIEBBIX YacTHIl, 00pa3ylolmnX KPHCTAUTMUECKYIO CTPYKTYpYy B IuIa3Me.
HccnenoBana posib KaKk aHU30TPONUHU SKPAaHUPOBAHUS MbLIEBBIX YacTHIl, TaKk M Bapuauumid ux 3apsgoB. Kax
HU3BCCTHO, OTH BQ)(DCKTI)I MPpUBOJAT K HEraMUJIbTOHOBOM JAHAMUKC MbUICBLIX YaCTUIl U MTO3TOMY MOT'YT BbI3BAaTh
HEYyCTOWYMBOCTh MBUICKPUCTAIIMYECKUX BOJIH, KOTOpas yxe Oblnia oOHapyxeHa B 3kcrepuMeHTax. Hosblii
pe3yabTaT 3aKI0YaeTCs B TOM, YTO B3aMMHOE BIIMSIHME NBUIEBBIX YAaCTHUIl HA WX 3apsifibl, KOTOPOE PaHEE HE
YUUTBHIBAJIOCH NPU aHAIM3€ IMBUIEKPUCTAUIMYECKUX BOJH, MOXXET OOECNeYnTbh 3HAUMTENbHBII BKIAX B JTY
HEYCTONYHUBOCTb.

B Tpetneii paboTe MccienoBaHO, MOXET M MOJ00HAsT HEYCTONYMBOCTH HAOMIOAATHCS B KiacTepe,
COCTOSIIEM M3 JIByX WM TpeX IMbUIEBBIX dacTul. [lodydeHo, dYTo mojno0Hash HEyCTOWYHMBOCTH M3-32
HETaMHJIbTOHOBOH JMHAMUKHA MOXXET BO3HUKHYTh TOJIBKO TOrAQ, KOTZA PACCTOSIHUE MEXIY IbLIEBBIMH
yacTHLaMK OJIM3KO K PE30HAHCHOMY 3HAYEHHIO, TP KOTOPOM OIpeJielIeHHbIe COOCTBEHHBIE YaCTOTHI KiacTepa
COBMAJAIOT.
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Chapter 1
Introduction

The present cumulative thesis deals with the field of complex (dusty) plasmas and addresses
one of the fundamental issues in this field — screening /interaction of charged dust particles
levitated in the (pre)sheath region [plasma-wall transition layer] of a plasma discharge. In
addition, instabilities of dust plasma crystals and clusters, due to non-reciprocal interaction
forces between dust particles and variations of their charges, are investigated as well. These
instabilities highlight non-Hamiltonian dynamics of charged dust particles in a plasma.
This chapter provides an introduction to the papers enclosed to the present thesis. In
this chapter, very specific details and formulas are avoided. In the next chapter, it is
explained what is done in the papers enclosed. A theoretical background necessary for a

detailed reading of the papers is placed in Appendix [A]

1.1 Complex plasmas

Complex (dusty) plasma is a plasma where a third charged species — the charged dust par-
ticles — is present (see, e.g., reviews [1,2,3,4]). The dust particles in complex plasmas are
electrically charged by collection of plasma electrons and ions as well as by photoemission
or secondary electron emission. In laboratory and industrial plasmas usually the collection
processes dominate and the particles acquire a high negative charge. (A typical dust grain
of a few pum in diameter in a typical glow discharge will have an equilibrium negative
charge of ~ 10* electrons). Complex plasmas are ubiquitous in technological applications
(e.g., in microchip production, in plasma deposition techniques) as well as in astrophysical

situations (e.g., formation of stars and planetary systems, planetary rings and comet tails,
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interstellar dust clouds, dust in the Earth’s magnetosphere and ionosphere). Moreover, an
important feature of complex plasmas is the introduction of strongly coupled phenomena
into the plasma. Here, “strongly coupled” means that the interaction energy of dust parti-
cles exceeds their thermal kinetic energy. This includes observations of both liquid-like and
solid-like states in complex plasmas as well as phase transitions. The solid-like, crystalline
state — so-called “plasma (dust) crystal” — represents a two or three-dimensional lattice
structure formed by the dust particles. The fact that dynamic processes in systems of
dust particles become visible on the kinetic level makes the field of complex plasmas of
interest to neighboring disciplines such as condensed matter or material science. The field
of complex plasmas is relatively new (active investigation began in 1994 when the dust
crystals were obtained in the laboratory conditions) and rapidly evolving (approx. 200

publications per year).

1.1.1 Experimental setups

Many experiments in the field of complex plasmas are performed in radio-frequency (rf)
discharges. The so-called Gaseous Electronic Conference (GEC) cell [5] is frequently used,
with the electrode diameter of 10-15 ¢cm and electrode separation of 2-4 cm (see Fig. [L.1).
The electrodes are placed in a vacuum chamber. Usually, the lower electrode is connected to
a rf generator (at frequency 13.56 MHz) via a blocking capacitor and a matching network,
whereas the upper electrode is grounded. The chamber is filled by a noble gas, most
frequently argon, at the room temperature and pressure of 0.5-100 Pa. Typically, the
peak-to-peak voltage applied to the powered electrode is 50-500 V.

Under these conditions, probe measurements performed near the horizontal midplane
of the discharge yield the plasma density of the order of 108-10° cm™ (i.e., the ionization
fraction is usually of the order of 107%-1077) and the electron temperature of a few eV.
Because of the extremely small ionization fraction, ions collide with neutrals much more
frequently than with each other or electrons. For this reason, there exists a certain region
near the midplane of the discharge — called here the “bulk region”, or “bulk” — where
ions are in/near thermal equilibrium with neutrals. The rf frequency appears to be much
larger than the ion plasma frequency and much less than the electron plasma frequency.
Therefore, while electrons respond to the rf electric field, ions respond to the time-averaged

field only. Because in the bulk region the electrons have larger velocities than ions and the
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Figure 1.1: Principal scheme of rf experimental setup.

time-averaged current through the discharge should be zero due to the blocking capacitor,
there appears a significant time-averaged electric field near the electrodes: This field repels
electrons from the electrodes and attracts ions to the electrodes from the bulk region, thus
maintaining the balance between the ion and electron fluxes on either of the electrodes.
Because of some geometric asymmetry of the discharge, the powered electrode usually
acquires a negative time-averaged self-bias potential of 20-40% of the peak-to-peak voltage

at the powered electrode.

Then, dust particles — melamine-formaldehyde, silica, or even metallic grains, typically

of a few pum in diameter — are introduced into the discharge. The grains collect free
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ions and electrons from the plasma and thus instantaneously acquire equilibrium negative
charges determined by the balance of the ion and electron fluxes on the grain surface.
Because of the inhomogeneity of the discharge, these fluxes depend on the exact position
of the grain in the discharge. Therefore, the grain charge exhibits adjustments as the grain
moves through the discharge.

Since the grains are charged, the electric field force acts on them, in addition to gravity.
Because of their large mass, grains (and even ions, as stated above) respond to the time-
averaged electric field only. The time-averaged electric field is zero somewhere near the
horizontal midplane of the discharge and increases towards either of the electrodes (see,
e.g., simulations of Ref. [6]). Given the fact that the time-averaged electric field is directed
towards the electrode approached, the grain levitation is only possible near the lower
electrode. If the grains are not too heavy, an equilibrium levitation position exists. The
equilibrium position is stable with respect to vertical oscillations, because the time-averaged
electric field increases as the electrode approached. However, a horizontal confinement may
be necessary, otherwise the particles may escape from the space between the electrodes.
Because of the mutual electrostatic repulsion of particles, inducing a horizontal confinement
may be particularly important when many particles should be levitated simultaneously. A
horizontal confinement can be easily induced, for example, by placing a conductive ring
on the lower electrode or, alternatively, by machining a cavity in the lower electrode. The
particles are usually illuminated by a laser beam which is transformed into a sheet of
~ 100 pm thick. The light scattered by the particles is recorded by a video camera with a
resolution sufficient to resolve individual grains.

The described experimental setup allows studying a variety of phenomena, ranging
from manipulations of a single dust particle as a fine probe in the plasma-wall transition
layer [7], to observations of wave propagation in dust crystals [§8] and phase transitions [9].
In many cases, a single horizontal layer with a crystalline structure is formed by the
dust particles (two-dimensional dust crystal), with the interparticle separation of 0.1-
1 mm [10,/11] and reciprocal time scale of dust dynamics (e.g., the Einstein frequency)
of 10-100 s~!. Processes occurring on these temporal scales can be easily resolved by an
appropriate video camera.

It is necessary to note that not all experiments in the field of complex plasmas are
performed using the setup described above. In fact, there have been experiments in direct

current (dc) discharges [12] and under microgravity conditions [13], as well.
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1.2 Grain screening

The interaction between charged grains is not simply a Coulomb interaction. In fact,
the dust particles are not in vacuum — they are in the background plasma which mod-
ifies/screens the Coulomb field of a dust particle. Here, there are two important things
to realize: (i) In the plasma-wall transition layer the kinetic energies of ions and electrons
are usually high enough so that grains induce weak perturbations of the ion and electron
densities (i.e., the region of nonlinear screening around a grain is usually much smaller than
the characteristic screening length), and therefore the perturbations induced by different
grains can be considered independently and then linearly summarized, (ii) the grain masses
are high enough so that the time scale of dust dynamics and plasma time scales are far
separated (i.e., the plasma quasistatically reacts to the motion of grains), and the char-
acteristic grain velocities are negligible as compared to the characteristic ion and electron
velocities. For all these reasons, the dynamics of grains can be described by a certain pair
interaction potential determined by the distribution of the electrostatic potential around a
single stationary dust particle in a plasma, and the force on the first grain from the second
one is the product of the charge of the first grain and the gradient of the potential induced
by the second grain in the plasma. (However, the summation of these pair interaction
forces is only valid when the amount of dust is not large enough to give rise to collective
effects [14]).

Many phenomena in complex plasmas strongly depend on this pair interaction law. For
example, attractive forces between grains may give rise to spontaneous formation of dust
“molecules” comprising of a few particles [15]. Not yet observed critical point and gas to
fluid transitions are believed to be only possible in the presence of attractive forces between
grains [16]. Non-reciprocal interaction forces (actio # reactio) lead to non-Hamiltonian
dynamics of dust grains, as will be discussed in Subsection [1.3] Hence, the problem of
screening/interaction of grains [especially in the plasma-wall transition layer where they

are usually levitated] is one of the fundamental issues in the physics of complex plasmas.

1.2.1 Measurements

Up to now, the most precise measurements of the inter-grain interaction forces in the
typical setup described in Subsection were performed by Konopka et al. [17,[18].
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During the first step of the experiment, a single particle was levitated. The horizontal
motion of the particle was activated by a horizontal electric probe introduced into the
discharge chamber. An analysis of the recorded particle trajectory in the horizontal plane
allowed to determine the horizontal confinement potential. During the second step, two
particles identical to that levitated before were levitated simultaneously. The particles
aligned themselves horizontally (i.e., perpendicular to the ion drift), approximately in the
same horizontal plane as a single particle was levitated before. Now, the electric probe
was used to activate a simultaneous horizontal motion of the two particles. During their
motion, the particles almost did not deviate from the initial horizontal plane. Analysis of
their trajectories in the horizontal plane allowed to reconstruct the energy of the “horizontal
interaction” between particles as a function of distance between them, since the horizontal
confinement potential was determined during the first step of the experiment. Within
the experimental uncertainties and considered range of distances between the particles, no
deviation from the Debye-Hiickel (Yukawa) screening potential, ¢ = (Q/r) exp(—r/)), was
found. (Here, r is the distance from the particle, @ is the particle charge, A is the screening
length characterizing the Debye-Hiickel potential).

Also, there have been some “indirect” measurements of the interaction forces. For
example, the analysis of the measured frequencies of particle oscillations in different clusters
formed by a few particles aligned horizontally could not reveal deviations from the Debye-
Hiickel potential, as well [19,20].

The aforementioned experiments dealt with the particles aligned horizontally. At the
same time, there have been experiments with two particles levitated at different heights
because of their different sizes/masses [21,[22]. In spite of large experimental uncertainties,
these experiments revealed that the interaction forces are non-reciprocal (i.e., actio #
reactio). In particular, the lower particle strongly tended to occupy the position below the

upper particle, whereas the upper particle almost did not “feel” the lower one.

1.2.2 Theories

The electric field which levitates the charged grains against gravity causes ions to drift
towards the electrode and thus makes their distribution highly anisotropic: In many cases,
the drift velocity in the region of grain levitation is believed to be much larger than the

thermal velocity of neutrals. In this case, the classical Debye-Hiickel screening is irrelevant
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for the description of the ion contribution to grain screening.

The problem of the electron contribution to the grain screening is even more compli-
cated, because electrons respond to the rf electric field, as stated above. Simulations [6}23]
and recent spectroscopic measurements [24] suggest that in the sheath region the electrons
may have quite different velocity distributions during different phases of the rf period and
that these distributions may be quite different from Maxwellian.

Unfortunately, there have been no convincing measurements of plasma parameters in
the region of grain levitation. In particular, the ratio of the mean kinetic energy of ions
to the mean kinetic energy of electrons and the shapes of the ion and electron velocity
distributions are not known.

As a consequence, there have been many grain screening theories [25, 26,127,128, 29,30,
31,132,33,34] based on quite different assumptions. Not surprisingly, the results given by
different models are different. Some models yield a series of potential minima and maxima
below the grain — the so-called “oscillatory wake potential” [25] 26} 27,28,129,30]. Some
models give that two like-charged grains aligned perpendicular to the ion drift can attract
each other electrostatically [31]. A review of different models is given in Appendix [A]

It is not surprising that the simplest conception which is in agreement with existing
experimental data has gained popularity. According to this conception, ions have too large
drift kinetic energy to participate in screening. Thus, the primary contribution to the
grain screening is attributed to electrons [1}2/|35,36]. Any effects related to either the
time variations of the electron velocity distribution or possible anisotropy of the latter are
neglected. Thus, the grain potential is assumed to be of the Debye-Hiickel form with the
local electron Debye length. (At the same time, this Debye-Hiickel potential is believed to
be somewhat disturbed below the grain because of the focusing of the ion drift [26,30]. This
serves as an explanation why non-reciprocal forces were observed in some experiments).

As a consequence, many phenomena in complex plasmas have been theoretically studied
by assuming the Debye-Hiickel interaction potential. In this manner, waves in dust crystals
[37], waves in dust fluids [38], phase transitions [39], and dust viscosity |40] have been
investigated. Apparently, the most frequently cited evidence for the justification of the
applicability of the Debye-Hiickel interaction potential is the aforementioned experiment
by Konopka et al. [17,/18].

However, the arguments for the aforementioned conception are not convincing enough.

First of all, measurements of Konopka et al. [17,|18] were performed in a limited range of
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distances between grains, 0.5-2 mm, while the deduced screening length was ~ 0.5 mm
which is comparable with the distance range itself. Given the fact of marked experimental
uncertainties, one could argue that other theories might be not in contradiction with the
results of these measurements, as well. In this regard, a quantitative comparison of other
models with this experiment could be very helpful. Furthermore, there are some evidences
which suggest that the grain screening in the plasma-wall transition layer under typical
conditions could be primarily due to ions and not electrons. The first evidence comes
from the fact that, in the experiment by Konopka et al. [17,/18], the deduced screening
length (in the plasma-wall transition layer) turned out to be about, or in some cases
smaller than the electron Debye length measured in the bulk [18]. If the screening of
grains was primarily due to electrons, the deduced screening length would be in contrast
always significantly larger than the electron Debye length measured in the bulk, because
the electron density decreases and the mean kinetic energy of electrons increases as the
electrode approached [6]. The second evidence is related to the value of the grain charge
deduced in the experiment [17,[18]. This value allows to find the electric field levitating the
grains against gravity. The obtained value of the electric field, in turn, allows to obtain
an estimate for the ion drift kinetic energy in the region of grain levitation, by assuming
a mobility-limited drift. (The assumption of the mobility-limited drift gives an upper
estimate of the ion drift kinetic energy). This upper estimate appears to be somewhat
smaller than the mean electron kinetic energy measured in the bulk. This suggests that the
mean kinetic energy of ions in the region of grain levitation is smaller than that of electrons
and, hence, ions — not electrons — should play the primary role in grain screening, at

least under conditions of the experiment [17,/18].

1.3 Non-Hamiltonian dynamics of grains

The interaction forces between grains were experimentally shown to be non-reciprocal (i.e.,
actio # reactio) [21,[22]. Of course, the non-reciprocity of the interaction forces between
grains does not imply a violation of the third Newton’s law itself. In the presence of the
ion drift, the screening cloud around a grain is not spherically symmetric: An excess of
the positive charge — the so-called wake — is accumulated behind the grain due to ion
focusing (see Fig. . These plasma wakes behind grains act as a third body and lead to

non-reciprocal interaction forces between grains.
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Figure 1.2: Tllustration of non-reciprocal interaction forces between grains G1 and G2. S1,
S2 — screening clouds around grains G1 and G2, respectively. Fgi._ g2 — direct Coulomb
force exerted on the grain G1 by the grain G2. Fgi_go — sum of the Coulomb forces
exerted on the grain G1 by the charges of the screening cloud S2. The vector sum of
Fgi_qgo and Fgigo is denoted as F;. The forces exerted on the grain G2 due to the

presence of the grain G1 are denoted in a similar manner.

Non-reciprocal interaction forces F; # —F, between two particles can be regarded as if
a certain “external” force (F; 4+ F3)/2 would act on each of the two particles, in addition
to reciprocal forces £(F; — F3)/2. This “external” force (F; + F3)/2 depends on the
relative positions of the two particles with respect to each other. If two particles return to
their initial positions after some motion, the work done by this force during this motion
is generally non-zero and, hence, energy is not conserved in this system. The physical
reason for the energy nonconservation is that such systems of grains are not closed systems

because of the presence of the plasma.

There is another effect — variations of grain charges — which also leads to the energy
non-conservation. As stated above, the grain charge is determined by the balance of the ion
and electron fluxes on the grain surface. Because of the discharge inhomogeneity, the grain
charge is a function of the exact position of the grain in the discharge . Furthermore, the
ion and electrons fluxes on the grain surface and, hence, the grain charge can be influenced
by other grains . Because of the charge variations, the interaction forces between the

grains are not simply functions of the relative coordinates of the grains with respect to each
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other, but rather the interaction forces are functions of the absolute positions of the grains
in the discharge. In this case, if the particles return to their initial positions after some
motion, the work done by the interaction forces during this motion is generally non-zero,
even in the case when the interaction forces are reciprocal [42|. The latter fact can be
easily realized when one considers two particles interacting via the Coulomb forces, with
the particle’s charges being a function of the height. In this case, the work done by the
interaction forces during, e.g., the following motion is obviously non-zero: (i) Initially, the
two particles are at the same height and infinitely far away from each other, then (ii)
the particles are approached to each other up to a certain distance, remaining at the same
height as initially, then (iii) the particles are simultaneously shifted to a certain new height,
and, finally, (iv) they are removed to infinite separation from each other, remaining at the
same height as at the end of the vertical shift.

Finally, there is a third factor — variations of grain screening — which also leads to
the energy nonconservation. Because of the discharge inhomogeneity, the grain screening
depends on the exact position of the grain in the discharge. This dependence leads to the
energy nonconservation in a similar manner as the grain charge variations.

Realistically, all of the three factors — non-reciprocal forces, charge variations, and
screening variations — are present simultaneously. These factors and the associated effects
should not be considered independently; in fact, some interesting effects are only possible
in the simultaneous presence of some of the three aforementioned factors [43].

However small the charge/screening variations and non-reciprocity of the interaction
forces are, they lead to the energy non-conservation, and such systems of charged dust
particles in a plasma cannot be described in terms of the Hamiltonian dynamics [1]. The
non-Hamiltonian dynamics of dust grains makes a complex plasma a convenient model
to study non-Hamiltonian dynamical systems which are of fundamental physical interest
[44,45] and have a long history in mechanics.

The non-Hamiltonian dynamics of grains was demonstrated in the experiment reported
by Ivlev et al. [11]. In this experiment, a horizontal crystalline monolayer (i.e., a two-
dimensional dust crystal) was formed by the grains in a horizontal confinement potential.
Then, additional grains were gradually injected and the interparticle distance in the mono-
layer decreased accordingly. When the interparticle distance became less than a certain
threshold, the crystal spontaneously “melted” — the amplitudes of the vertical and hor-

izontal vibrations of the particles drastically increased and became comparable with the
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interparticle distance. However, it was possible to return the system to a stable crystalline
monolayer by increasing the gas pressure. If the gas pressure was sufficiently high, the
system never melted. In the latter case, when the interparticle distance became less than a
certain threshold, the monolayer transformed into a bi-layer system. To explain the melt-
ing, Ivlev et al. [11] theoretically demonstrated that the non-reciprocity of the interaction
forces can trigger an instability of the monolayer. This instability represents a growth over
time of otherwise stable particle oscillations in a dust lattice and is only possible when
the dust-neutral friction is sufficiently small. The latter fact explains why no melting was
observed at high pressures. Lately, Yaroshenko et al. [43] pointed out that the presence of
the vertical gradient of the grain charge might significantly contribute to this instability.
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1. Introduction




Chapter 2
Cumulative thesis

The results of this cumulative thesis are published in three papers enclosed to this thesis:

e R. Kompaneets, U. Konopka, A. V. Ivlev, V. Tsytovich, and G. Morfill, Potential
around a charged dust particle in a collisional sheath, Phys. Plasmas 14, 052108
(2007).

e R. Kompaneets, A. V. Ivlev, V. Tsytovich, and G. Morfill, Dust-lattice waves: Role of
charge variations and anisotropy of dust-dust interaction, Phys. Plasmas 12, 062107
(2005).

e R. Kompaneets, S. V. Vladimirov, A. V. Ivlev, V. Tsytovich, and G. Morfill, Dust
clusters with non-Hamiltonian particle dynamics, Phys. Plasmas 13, 072104 (2006).

The objectives, methods, results and conclusions of the papers listed above are sum-
marized below. The full list of publications, including those with results not included to

this thesis, is given separately (see Contents).

2.1 Potential around a charged dust particle in a col-

lisional sheath

2.1.1 Objective

The objective is to test the hypothesis that the grain screening in the plasma-wall transition

layer under typical conditions might be primarily due to ions and not electrons. For this
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purpose, the corresponding model of the grain screening is developed and quantitatively

compared with the experiment of Konopka et al. [17,/18].

2.1.2 Methods

As a basis of the proposed model, a recent kinetic model [32,133] is taken. The model
[32,33] assumes a mobility-limited ion drift in a homogeneous external electric field. Here,
“mobility-limited” means that the acceleration of ions in this external electric field is
balanced by collisions with neutrals and that this balance determines the drift velocity.
A charged grain treated as a non-absorbing point charge is considered to perturb this
balance. No assumption is made about the ratio of the effective length of grain screening
to the ion-neutral collision length. Therefore, the ion drift perturbed by the grain is not
assumed to be mobility-limited.

With respect to the model [32,133], a further improvement has been made in the
present work: While the model [32,33] assumes a velocity-independent ion-neutral col-
lision frequency, the present work deals with the realistic case of velocity-independent
cross-section [46]. Also, in the present work, the electron density is considered to be not
perturbed by the grain and thus the screening is attributed to ions only. [The (time-
averaged) electron density is assumed to be equal to the (unperturbed by the grain) ion
density, so that the proposed model is relevant to the so-called presheath — that part of
the plasma-wall transition layer where the plasma is still (almost) quasineutral]. Further,
the velocity of the ion drift is assumed to be much larger than the thermal velocity of
neutrals, and for this reason the thermal motion of neutrals is completely excluded from
the consideration. The assumptions made allow to express the result — the potential dis-
tribution in plasma around the grain — via definite integrals. The obtained expression is

quantitatively compared with the experiment of Konopka et al. [17}/18].

2.1.3 Results

The model is found to be in a very good agreement with the experimental data. The
normalized squared deviation from the data is approximately the same as that given by
the Debye-Hiickel potential (see Fig. , b). However, outside the distance range where
the measurements |17,/18] were performed, the Debye-Hiickel fit and the fit by the proposed
model dramatically deviate from each other (see Fig. ) For the given experimental
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Figure 2.1: Comparison of experiment by Konopka et al. [17,{18] with the proposed model of
grain screening and the Debye-Hiickel potential. a, b) Vertical axis is the interaction energy
relative to infinite separation. Since the interaction energy was measured not relative to
infinite separation, an unknown constant (offset) should be added to the measured energies
as one of the fit parameters. The value of this offset is found to be not the same for both
fits. The experimental data are shown with this offset added. ¢) Comparison of the fits
(shown in a and b) with each other. Vertical axis is the interaction energy relative to infinite
separation, multiplied by the distance between grains. (Unscreened Coulomb interaction

would be a straight horizontal line).
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conditions [17,[18], one of the model assumptions — unperturbed drift being mobility-
limited — is found to be at the edge of applicability because of the inhomogeneity of the
vertical electric field. (The inhomogeneity length of the vertical electric field is estimated
from the measured frequency of vertical oscillations of a single particle and is found to
be about the ion-neutral collision length). All other model assumptions, including the
assumption that the ion drift velocity is much larger than the thermal velocity of neutrals,

are found to be well justified, based on the parameter values deduced from the fit.

2.1.4 Conclusion

The results demonstrate that the experiment [17,[18] cannot be used as justification of
either the applicability of the Debye-Hiickel potential or the dominant role of electrons in
grain screening. Therefore, more experiments are necessary to unravel the issue. Because
of the all-importance of this problem to the field of complex plasmas, such experiments are

currently being planned at the institution of this author [47].

2.2 Dust-lattice waves: Role of charge variations and

anisotropy of dust-dust interaction

2.2.1 Objective

The objective is to investigate theoretically whether the mutual influence of particles on
their charges could significantly contribute to the monolayer instability observed in the
experiment reported by Ivlev et al. [11]. In the original paper by Ivlev et al. [11], the
instability was explained by only the non-reciprocity of the interaction forces, whereas
Yaroshenko et al. [43] pointed out that the simultaneous presence of the vertical gradient
of the grain charge might significantly increase the effect. Thus, the objective of the present
paper is to additionally include the charge variations due to change in the distances between

the particles and thus obtain the “whole picture”.
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2.2.2 Methods

Similar to papers by Ivlev et al. |11] and Yaroshenko et al. [43], the so-called chain model
is employed. The chain model considers an infinite horizontal chain of particles, instead of
a two-dimensional crystal structure. In the chain model, the particles are only allowed to
move in the longitudinal and vertical directions. Each particle is assumed to interact with
the neighboring particles only; the forces from the more distant particles are neglected. In
the present work, the grain screening potential is assumed to be an arbitrary function of
the relative coordinates of the observer with respect to the grain, which allows accounting
for the non-reciprocity of the interaction forces. The vertical gradient of the grain charge is
included as well. Concerning the mutual influence of the grains on their charges, the grain
charge is assumed to be influenced by the neighboring particles only. The “horizontal”
gradient of the grain charge, i.e., the derivative of the grain charge with respect to the
inter-particle separation in the chain, is considered as a free parameter.

In the framework of this model, the dispersion relation of the dust-lattice waves (i.e.,
oscillations of dust particles in the dust lattice) is obtained and analyzed. Then, a nu-
merical example with realistic parameter values is presented. In this numerical example,
the interaction potential is assumed to be the sum of the Debye-Hiickel potential and an
additional dipole-like term which introduces the non-reciprocity of the interaction forces.
As discussed above, the applicability of the Debye-Hiickel potential is not well justified
and the grain potential may be of other form. Nevertheless, a numerical example with
the Debye-Hiickel potential and dipole term is useful to illustrate the general expressions

obtained.

2.2.3 Results

The parameter responsible for the instability — coefficient of coupling between the longi-
tudinal and vertical transverse modes — is found to be the sum of four important terms,
each caused by a different physical mechanism. Of these four terms, the first two were
considered earlier by Ivlev et al. [11] and Yaroshenko et al. [43], respectively. The two
remaining terms are new and are only possible in the presence of the “horizontal” gradient
of the grain charge.

Under typical conditions, the “horizontal” gradient of the grain charge is believed to be

significantly less than the vertical one. Probably for this reason the “horizontal” gradient
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of the grain charge was not accounted for before in the analysis of the dust-lattice waves.
The present study shows that, to compare the effects caused by the vertical and “horizon-
tal” gradients of the grain charge, one should compare not the gradients themselves, but
rather one should compare the product of the vertical gradient of the grain charge and
the horizontal inter-grain repulsion force with the product of the “horizontal” gradient of
the grain charge and the vertical electric field force levitating the grains against gravity.
Usually, the vertical electric field force is much larger than the horizontal inter-grain inter-
action forces. Therefore, the “horizontal” gradient of the grain charge may be important

even when it is less than the vertical one.

Furthermore, the presence of the “horizontal” gradient of the grain charge gives rise to
a new effect: When the vertical and “horizontal” gradients of the grain charge are present
simultaneously, the instability due to the non-Hamiltonian dynamics can be triggered even

when the interaction forces are reciprocal.

The instability is triggered when all of the following conditions are satisfied:

e The branches of the longitudinal and vertical transverse modes should intersect with
each other [in the (w,k)-plane]. From the practical standpoint, this condition im-
plies that the interparticle distance in the monolayer should be less than a certain
threshold.

e The coefficient of coupling between the longitudinal and vertical transverse modes,
which is determined by the charge gradients and the “degree of non-reciprocity” of

the interaction forces, should be of the proper sign.

e The dust-neutral friction should not suppress the instability. Therefore, the gas

pressure should be not too high.

2.2.4 Conclusion

It is found that the mutual influence of particles on their charges might significantly con-

tribute to the monolayer instability observed in the experiment reported by Ivlev et al. [11].
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2.3 Dust clusters with non-Hamiltonian particle dy-

namics

2.3.1 Objective

The objective is to theoretically investigate whether a system of a few dust particles can
exhibit something similar to the monolayer instability reported by Ivlev et al. [11]. Can the
non-Hamiltonian dynamics of dust particles trigger an instability of 2- or 3-particle clusters
aligned perpendicular to the ion drift? Observation of such instability could not only
clearly demonstrate the non-Hamiltonian dynamics of dust particles but also might provide

important information about non-reciprocal interaction forces and/or charge variations.

2.3.2 Methods

Expressions for eigenfrequencies of 2- and 3-particle clusters aligned horizontally (i.e., per-
pendicular to the ion drift) are obtained. The clusters are considered to be horizontally
confined by a parabolic potential, so that the interparticle separation is determined by the
balance of the horizontal confinement and mutual repulsion of particles. In the 3-particle
cluster, the particles are considered to form an equilateral triangle — as observed in ex-
periments [19,20] — and not a string. The grain screening potential is assumed to be an
arbitrary function of both the relative position of the observer with respect to the grain
and vertical position of the grain itself. This allows accounting for both the screening
variations and the non-reciprocity of the interaction forces. The vertical gradient of the
grain charge is included as well. However, the “horizontal” gradient of the grain charge is

not included, in order not to make the analysis too complicated.

The derived expressions are analyzed to assess the possibility of an instability. Then, a
numerical example with realistic parameter values is presented. In this numerical example,
the interaction potential is assumed to be the sum of the Debye-Hiickel interaction potential
and an additional dipole-like term which introduces the non-reciprocity of the interaction

forces.
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2.3.3 Results

It is found that an instability due to the non-Hamiltonian dynamics of dust grains can
indeed be triggered, similar to a monolayer: The non-Hamiltonian dynamics of grains can
cause a gradual growth over time of otherwise stable oscillations of grains in a cluster. The

instability is triggered when all of the following conditions are satisfied:

e Two certain cluster eigenfrequencies should be sufficiently close to each other. From
the practical standpoint, this implies that the horizontal confinement should be varied
during experiment until the interparticle distance becomes close to the resonance

value.

e The “coupling coefficient” (between those modes whose eigenfrequencies are close to
each other, according to the preceding condition) determined by the charge gradient,
screening variations, and “degree of non-reciprocity” of the interaction forces should

be of the proper sign.

e The dust-neutral friction should not suppress the instability. Therefore, the gas
pressure should be not too high.

As compared with the instability condition for a monolayer [11,|43|, the instability
condition for a cluster is somewhat similar. However, there is one important difference. In
the case of a cluster, the interparticle distance should be adjusted to a certain resonance
value. In the case of a monolayer, the interparticle distance should be simply less than a
certain threshold.

A numerical example is shown in Fig. 2.2

2.3.4 Conclusion

The instability is found to be theoretically possible, but hardly “realizable” in experiments.
The main difficulty is related to the necessity of the adjustment of the interparticle distance

to a certain resonance value.
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Figure 2.2: The calculated squared eigenfrequencies of N = 2 and N = 3 clusters in a par-
abolic horizontal confinement potential. The two left graphs show the case of the Debye-Hiickel
screening potential. The case shown in the two right graphs additionally includes (1) a (particle-
wake) dipole term in the grain screening potential, which is responsible for the non-reciprocal
interaction, and (2) vertical gradients of (a) the screening length, (b) particle charge, and (c)
horizontal confinement potential. The vertical axis shows the squared eigenfrequencies normal-
ized by @Q?/(MM3), the horizontal axis is the interparticle distance in the cluster, normalized by
A. (Here @Q is the equilibrium particle charge, M is the grain mass, and \ is the screening length
characterizing the Debye-Hiickel potential). All the parameter values are taken as measured
and/or estimated in experimental works by Konopka et al. [17,|1§]. In all graphs, the imaginary
parts of all squared frequencies are zero except the imaginary parts shown by the dash lines (the

corresponding real parts are shown by the thick lines).
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Chapter 3
Summary and future work

The first paper enclosed to this thesis deals with one of the fundamental issues in the
physics of complex plasmas — screening/interaction of charged grains suspended in the
plasma-wall transition layer. In the complex plasma community, there exists a strong belief
that, under typical conditions, the pair interaction potential is of the Debye-Hiickel form
and is determined by electrons. In part, this belief is based on direct measurements by
Konopka et al. [17,|18] who did not find noticeable deviations of the measured potential
from the Debye-Hiickel form. In the present work, attention is drawn to some evidences
against this belief and it is suggested that the grain screening might be primarily due to
ions and not electrons. The present work proposes a kinetic model for the grain screening,
attributing screening to ions only. The proposed model is proven to be in full agreement
with the mentioned experiment by Konopka et al. [17,/18]. At the same time, the proposed
model suggests significant deviations from the Debye-Hiickel potential outside the range
of distances where the measurements [17,|18] were performed. Therefore, given the all-
importance of the problem for the field of complex plasmas, further research is necessary

to clarify the issue. This research includes but is not limited to:

o Computation and numerical analysis of the dispersion relation for the ion-acoustic
waves in the framework of the proposed kinetic model. It is necessary to assess and
prove the stability of the ion drift in a homogeneous external electric field, which is
assumed by the model. Moreover, the ion-acoustic modes in the presence of the ion

drift are of general importance for the physics of plasmas.
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e Measurements of the intergrain interaction energy in a broader range of distances may
help to clarify the issue, since the grain screening potential given by the proposed
model and the Debye-Hiickel potential dramatically deviate from each other outside

the distance range where the measurements [17,/18] were performed.

e Development of a model which combines both modeling of the plasma-wall transition
layer and grain screening in the plasma-wall transition layer would ideally be nec-
essary, because such approach would allow accounting for the inhomogeneity of the

electric field and plasma parameters in the plasma-wall transition layer.

e Fatension of the proposed model of grain screening to the case of a finite ratio of
the ion drift velocity to the thermal velocity of neutrals is important for microgravity

experiments.

One of the important applications of this work is related to the possibility of tuning the
pair interaction potential by applying external fields [48]. The possibility to obtain and tune
an attraction between particles provides a very convenient tool to study electrorheological
properties of strongly coupled systems. With respect to “usual” electrorheological fluids,
complex plasmas have an important advantage: The particle motion in complex plasmas is
not strongly affected by the neutral gas friction, while the dynamical processes in “usual”
electrorheological fluids are strongly damped by the background fluid and thus cannot be
observed on their “original” time scales.

First experiments devoted to the study of electrorheological properties of complex plas-
mas were performed under microgravity conditions onboard the International Space Station
in January 2007 [49]. In these experiments, a linearly oscillating electric field was applied
to cause oscillations of the ion drift, with the frequency being in between the inverse ion
plasma and grain dynamics time scales. The interaction forces between grains under such
conditions are reciprocal, because non-reciprocal forces are averaged out due to oscillations
of the ion drift, and thus the non-Hamiltonian dynamical effects due to non-reciprocity of
the interaction forces are excluded. When the amplitude of the applied field exceeded a
certain threshold, the particles exhibited a phase transition: They arranged themselves
into strings aligned along the direction of oscillations of the ion drift. This suggests that
the (averaged over oscillations of the ion drift) interaction potential had an attractive part

in the direction of oscillations of the ion drift.
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Non-Hamiltonian dynamics of dust particles, considered in the second and third papers
enclosed to this thesis, is closely connected with the issue of the intergrain interaction
considered in the first paper. In particular, the proposed model of grain screening gives a
certain expression for the effective particle-wake dipole moment (see enclosed papers for
details). This effective particle-wake dipole moment is responsible for the non-reciprocity
of the interaction forces and leads to non-Hamiltonian dynamics of dust particles. How-
ever, not only the non-reciprocity of the interaction forces can lead to non-Hamiltonian
dynamics of dust particles. Charge and screening variations, each taken alone, lead to
non-Hamiltonian dynamics, as well. One of the results obtained in the second paper is
that all these three factors should not be considered separately, because the combination
of these factors gives rise to some new important effects.

As shown in the second and third papers enclosed, the non-Hamiltonian dynamics of
grains can trigger instabilities, both for monolayers and finite clusters. Such instabilities
are critical phenomena (i.e., they are either present or absent for given conditions) and can
be easily visualized. Therefore, they may be used for plasma diagnostics in the plasma-wall

transition layer.
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Appendix A

Appendix: Theoretical background

This Appendix addresses the specific details of the main topic of this cumulative thesis
— grain screening in a plasma with ion drift — and is organized in the following way.
First, various theoretical models of grain screening are reviewed. Then, the applicability
of the models is assessed by discussing both the properties of the ion-neutral collisions
and existing measurements of ion and electron velocity distributions in the plasma-wall

transition layer.

A.1 Models of grain screening

A.1.1 General approach

Almost all existing models of grain screening assume an infinite homogeneous plasma with
ion drift. Although plasma discharges are not homogeneous, this approach may be justified
when the plasma parameters do not change significantly on the characteristic length of grain
screening.

A derivation of the potential distribution around a grain generally involves the following

three steps:

1. Formulation of kinetic equations for the distribution functions of plasma species.
2. Setting of the boundary conditions far from the grain.

3. Solution.

These steps are separately discussed below.
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Kinetic equation

For ions, the steady-state kinetic equation [50] is

of _BOf _

or m Ov

St[f], (A.1)

A%

where f = f(r,v) is the ion velocity distribution function, E = E(r) is the electric field,
e > 0 is the elementary charge (all ions are assumed to be singly ionized), m is the ion
mass, St[f] is the collision operator describing the ion-neutral collisions. (The ion-ion and
ion-electron collisions, ionization, and absorption of ions on the grain are usually neglected
and thus are not included in the collision operator). For typical conditions, only binary
ion-neutral collisions should be taken into account. The velocity distribution of neutrals
(present in the collision operator) is assumed to be homogeneous Maxwellian with constant
temperature and density. The exact form of the collision operator is determined by the
expression for the differential cross-section. Such a collision operator has the following

properties:

e the collision operator conserves the number of ions, i.e.,
/ St[f(r,v)] dv = 0, (A.2)
e the collision operator is linear, i.e.,
Stlaf + Bg] = aSt[f] + GStlg] (A.3)

where f,g = f,g(r,v) and «, f = «, 5(r),

e the collision operator yields zero for a Maxwellian velocity distribution of ions if the

temperature of this Maxwellian distribution is equal to the temperature of neutrals.

Some models employ the hydrodynamic (fluid) equations instead of the kinetic equation
. In fact, the hydrodynamic equations — the continuity and momentum equations —
are derived from the kinetic equation under the assumption that the ion velocity distrib-
ution f(r,v) is shifted Maxwellian, with the temperature and drift velocity dependent on
spatial coordinates [50]. This assumption is indeed applicable when the ion-ion collisions
are frequent enough to “maxwellize” the ion velocity distribution. But this is not the case

in typical complex plasmas experiments, because in these experiments ions collide with
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neutrals much more frequently than with each other, and, as a consequence, the velocity
distributions of ions in electric fields are generally not shifted Maxwellian. For this reason,
fluid models of grain screening will not be discussed here, although they are sometimes
used in literature without any justification (e.g., see Refs. [51,52]).

Concerning electrons, some models assume that the (time-averaged) electron density
is not perturbed at all by the grain [33]. However, the majority of models assume the
Boltzmann response [25,26,27,28},29, 30,131,132} 34|,

Ne = Ne,o €XP (?) , (A.4)

where n, = n.(r) is the (time-averaged) electron density, n. g is the (time-averaged) electron
density far from the grain, ¢ = ¢(r) is the (time-averaged) potential induced by the grain,
and T, is the (effective) electron temperature. As will be discussed in Subsection [A.2.3] such
approach is not well justified for grain screening in the plasma-wall transition layer, and,
strictly speaking, the time-dependent kinetic equation for the electron velocity distribution
function is necessary if the electron response should be taken into account.
The kinetic equations are closed by the Poisson equation,

((;]j_) =4m(n — ne)e + 4rQo(r), (A.5)
where n = n(r) = [ f(v,r)dv is the ion density, @ is the grain charge, d(r) is the delta-
function. The delta-function approximation is well justified by the fact that the grain size

is typically two orders of magnitude smaller than the effective length of grain screening.

Boundary conditions far from the grain

Far from the grain (i.e., for r — o0), a spatially homogeneous ion distribution f, =
fo(v) and a spatially homogeneous electric field Eq are usually assumed, as stated above.
According to Eq. (A.1), the distribution fy is given by

Eodh il (A6)
The solution of Eq. depends on the exact form of the collision operator and is gener-
ally not of the shifted Maxwellian form. Further, the plasma is assumed to be quasineutral
far from the grain [ng = n.o where ng = [ fo(v) dv is the ion density far from the grain,

otherwise the Poisson equation ((A.5|) is not satisfied.
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The question generally arises as to whether the state far from the grain, defined above,
is stable with respect to the ion-acoustic waves. The question requires a derivation of the
corresponding dispersion relation [50]. The answer may depend on parameter values and
the exact form of the collision operator. The analysis of the dispersion relation usually can
be only performed numerically and sometimes yields infinite number of solutions/modes
(e.g., the higher-order Landau modes [53,54] ), which makes it difficult to assess the stability.
Because of the difficulty of proving the stability, it might be acceptable not to perform the

stability analysis when no instability mechanism is expected a priori.

Solution

Solution of the kinetic equations with the boundary conditions discussed above gives the
grain potential ¢ = ¢(r) defined as

¢

i E — Ey, ?l, o = 0. (A.7)

Usually, the so-called linear approximation is used, i.e., the so-called linearized grain
potential is found. The linearized grain potential is the first term in the expansion of the
grain potential ¢(r) in a series of the grain charge (). This approach is justified when the
region of nonlinear screening around the grain is small enough. Further, the notation ¢
will be understood as the linearized grain potential.

The linear approximation significantly simplifies the solution which can now be per-

formed in the following way. The Fourier transforms are considered:
() = / o (k) exp(ikr) dk, (A.8)

Flr,v) = fo(v) + / Fur(k, v) exp(ikr) dk. (A.9)
Substitution of Egs. (A.8) and (A.9)) to Eq. (A.1)) and subsequent linearization give

E 'k d
ikaLF 1 e afl,F ! €¢Fﬁ
m Ov m dv

= St/ (A.10)

Then, fir(k,v) should be expressed via k, v, and ¢r(k), by solving Eq. (A.10) with the
boundary condition fir(k, V)] = 0. Then, the static ion susceptibility (k) should be

vV—00

calculated according to
dme ny p(k)

k]2 dr(k)

(k) = (A.11)
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where
e (k) = / Fur(k, v) dv. (A.12)
Using the Fourier transform of the delta-function
1
5) = Gy / exp(ikr) dk (A.13)

and assuming that the electron density is not perturbed by the grain, one can substitute
Egs. (A.8), (A.9), (A.11)), (A.12)), and (A.13)) to the Poisson equation (A.5)) and thus obtain

Q 1

k)= . A14
P = o L+ 1) —
Therefore, the grain potential is given by
exp zkr
dk. Al
T o2 / 1k|?[1 (A.15)

Including the electron Boltzmann response [Eq. 1) results in adding the electron sus-
ceptibility x.(k) = (Apelk|)™ to the ion susceptibility x(k) in the denominator in Eq.
(A.15). Here Ap. = [T./(47n.0e?)]Y/? is the electron Debye length.

A.1.2 Debye-Hiickel potential

This Subsection deals with the case where (i) the electric field is absent (Ey = 0) and (ii)

the (unperturbed by the grain) velocity distribution of ions is Maxwellian,

fo(v) = nog®y (v, T), (A.16)

Ou(v, T) = (QZLT)M exp (-mz‘ﬁ) (A.17)

is the Maxwellian distribution normalized by the ion density, 7" is the temperature char-
acterizing the Maxwellian distribution. In Eq. , the temperature 7' is considered
to be equal to the neutral temperature, so that St[fy] = 0 and, hence, condition is
satisfied. In this case, the solution of Eq. is

where

fip(v) = —a;Fm)@M(v,T), (A.18)

irrespectively of the exact form of the collision operator. [This is because the equality

St[fir] = O takes place. This equality is proven by the linearity (A.3) of the collision
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operator and the fact that fy (A.16) and f;r (A.18) have the same velocity dependence].
Therefore, the ion susceptibility (A.11)) is

1
k)= 5+

T
Ap =/ —— A.20
b 4mnge? ( )

is the ion Debye length (radius). For the susceptibility (A.19)), the integration in Eq. (A.15))

can be performed analytically and yields

oo Qo). "

This is the classical Debye-Hiickel potential [50]. If the Boltzmann electron response is
included, then the result (A.21)) will be changed as follows: The Ap will be replaced by
ADADe/\/AE + A%,

(A.19)

where

A.1.3 Collisionless case: Drift in the absence of field

This Subsection deals with the case where (i) the external electric field is absent /neglected
(Eog = 0), (ii) the collision operator term in Eq. is absent/neglected, and (iii) the
unperturbed velocity distribution of ions fj is anisotropic (in the direction of the ion drift).
In this case, the solution of Eq. takes the form

epp . dfo 1
= k—— A.22
i m  dvkv—i0’ ( )
which gives the ion susceptibility (A.11]) to be
2
V() = — e [y dv (A.23)

“mlk]2) Tdvkv—i0

The term —i0 is included to avoid the singularity. The inclusion of this term can be
“justified”, e.g., by accounting for an infinitely small collision operator term St|f; r] which
is then replaced by —0 - f1 [50].

Existing calculations of the potential for the susceptibility are discussed

below.
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Isotropic distribution

If the distribution fy is isotropic (i.e, fo depends only on |v|), then the ion susceptibility
(A.23) is
(

9 = ST [ v (A.24)

The susceptibility (A.24)) is of the same form as (A.19)), with the only difference that the
A% is replaced by m/[(4m)%e? [;° fo(v) d|v]]. Therefore, the grain potential ¢(r) is again
of the Debye-Hiickel form. This example demonstrates that the Debye-Hiickel potential is

possible not only for the Maxwellian velocity distribution.

Potential at large distances: General statement for anisotropic distribution

Montgomery et al. [55] investigated the asymptotic behavior of the potential (A.15]) at
large distances, for the susceptibility (A.23). They found that the potential generally falls

off as the inverse third power of the distance |r|, i.e.,

o(r) = ’3317(9) +o <|r1]3> : r — 00, (A.25)

where 6 is the angle between r and the direction of the ion drift. Montgomery et al.
expressed F(0) via definite integrals which contain fj.

Eq. (A.25) demonstrates that the Debye-Hiickel screening is violated in anisotropic
plasmas.
Shifted Maxwellian distribution
If the distribution fj is shifted Maxwellian,

fo(v) =ngPy(v —u,T), (A.26)

where u is the ion drift velocity, T is the temperature characterizing this shifted Maxwellian
distribution, then the ion susceptibility (A.23)) is

1 1 t t?
exp (— )dt, (A.27)

k) = / -
M= e var i (Ker) — 0 2

where A\p = /T /(4mnge?) is the ion Debye radius corresponding to the temperature 7,

vp = /T /m is the “thermal” velocity.
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Weakly shifted Mazxwellian distribution. Assuming that the susceptibility is given by
Eq. (A.27), Cooper [56] derived the expansion of the potential (A.15) in a series of u, up
to the |u|?-term inclusive. In particular, he found that the function F(6) [see Eq. (A.25))]

was

+o(ju®’), u—0. (A.28)

T U v3,

2
F(0) = A} [— §Mcosé’— <g - 1) [ul (1 —3cos?0)

Eq. implies that two like-charged grains aligned perpendicular to the ion drift will
attract each other electrostatically if the distance between the particles is large enough.
Eq. also implies that the interaction forces between particles aligned perpendicular
to the drift have non-zero components in the direction of the ion drift. The latter fact
demonstrates that the interaction forces are not reciprocal.

Strongly shifted Mazwellian distribution. In the case T'— 0 (i.e., when the distribution
fo is a shifted delta-function), the ion susceptibility is

Arnge? 1

x(k) = ——— (ku — 707" (A.29)

There have been many calculations of the potential for the susceptibility , in
most cases with the Boltzmann electron response included [25,26,27,28]. These calculations
demonstrate that a series of potential minima and maxima can be formed “behind” the
grain.

General case. Peter [57] calculated the potential for the susceptibility
for |u| = UT\/Z BUT\/§, 7UT\/§, 1507v/2. His graph for |u| = 3vrv/2 demonstrates a series
of at least 11 potential extrema “behind” the test particle. The possibility of attraction
between like-charged particles aligned perpendicular to the drift is evident in his graphs
obtained for |u| = vrv/2 and |u| = 3vrV/2.

Lampe et al. [30] performed calculations with the Boltzmann electron response included.
For the considered parameter regime (7, = 157, 0.25 < ]u]/\/m < 1.5), the potential
upstream and to the side was found to be close to the Debye-Hiickel potential, at least up
to several screening lengths. In figures presented by Lampe et al., at least one potential
extremum “behind” the grain was always evident. No evidence of attraction forces between
like-charged grains aligned perpendicular to the drift was demonstrated.

Benkadda et al. [31] also performed calculations with the Boltzmann electron response

included. They assumed a shifted Maxwellian distribution with different upstream, down-
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stream, and perpendicular temperatures and demonstrated the possibility of attraction

between like-charged grains aligned perpendicular to the drift.

A.1.4 Finite collisionality

To consider the case of finite collisionality, one needs to choose a certain collision operator
in Eq. (A.1)). The only collision operator employed so far to calculate the grain potential is
the so-called BGK (Bhatnagar-Gross-Krook) collision operator. In the following, existing

calculations performed by using the BGK collision operator are discussed.

BGK collision operator

The BGK collision operator is based on two assumptions:
e Only the charge exchange collisions are taken into account.
e The collision frequency is velocity independent.

The applicability of the two listed assumptions will be discussed in Subsection [A.2.1]
The BGK collision operator has the following form:

St[f(r,v)] = —vf(r,v) + v (v, T) / F(r,v') dv', (A.30)

where v is the collision frequency, 7T;, is the neutral temperature.
For the BGK collision operator (A.30), Eq. (A.6) gives the unperturbed velocity dis-

tribution of ions fy in the form [32]
7 Eot
fQ(V) = ’]’LO/CI)M (V — %, Tn> eft dt. (A31)
0

Therefore, the ion velocity distribution is a superposition of shifted Maxwellian distributions
with exponential weights. Integration in Eq. (A.31]) yields [58]

2 2 2
no T UTy, [ | Ut = Urn
_ o [Tur _ e ] o ) A.32
fo(v) (QWZZM):’»M\/Q u eXp( 202, * 2u? U> [ e < vrny/2 )1 a )

where v, = /T, /m is the thermal velocity of neutrals, v and v, are respectively the

longitudinal and perpendicular components of the velocity v with respect to the direction of
the ion drift (i.e., with respect to Eg), u = e|Eq|/(mv), and erf(z) = (2//7) [y exp(—t?) dt
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Figure A.1: Longitudinal velocity distributions of ions in homogeneous electric fields, cal-
culated by using the BGK ion-neutral collision operator. Vertical axis is the ion velocity
distribution normalized by the ion density and integrated over the velocity components per-
pendicular to the direction of the electric field. Horizontal axis is the longitudinal velocity
normalized by the thermal velocity of neutrals. Different distributions shown correspond
to different electric fields. The drift velocities u corresponding to these electric fields are

indicated in units of the thermal velocity of neutrals vp,.

is the error function. The mean velocity [ v fo(v)dv/ng appears to be equal to u [58] and,
hence, proportional to the applied electric field Ey.

Fig. shows the distribution function for different u/vr,. It can be seen
that the shape of the distribution function is different from the shape of a shifted
Maxwellian distribution, particularly when the ratio u/vp, is large.

The ion susceptibility (A.11]) takes the form [33]32]

_ dmnge®  B(k)
) = T A

(A.33)

where
o0

AK) = [ expl-w(k,n)]d, (A.34)
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[ nexp[=¥(k, 1))
Bk) = 1+ ikjun/v

. 2
ik | ('k‘UT”> ] %, (A.36)
1%

(A.35)

1
U(k,n) =n+5

14

kj is the longitudinal component of the wave number k [i.e., k) = kE,/|Eq|].
Schweigert et al. [34] calculated the potential (A.15)) for the susceptibility (A.33)), with

the Boltzmann electron response included. In the graphs presented by them, an extremum
of the potential downstream the grain is sometimes quite evident, whereas no evidence of
possibility of attraction between like-charged grains aligned perpendicular to the ion drift
can be seen.

If one considers the limit |Eq|,v — 0, u = e|Eq|/(mv) — const (i.e., “collisionless”

limit with finite drift velocity) and then the limit r — oo, one obtains [59]

B(r) = |rQ|3FBGK<e) +o <1> e (A.37)

rf?

In the limit of small drift velocities u, the function Fpgk is [59)

+o(u?), u—0, (A.38)

8 u T\ u?
FBGK(Q) = )‘%,Tn [—\/;,UTn cos 0 + (2 — 2) E(l — 3COS2 0)

where Ap 7, = /T,/(4mnge?). Egs. (A.37) and (A.38)) demonstrate that attraction forces

between like-charged grains aligned perpendicular to the drift are impossible in the limit
considered. This is in contrast to the case of shifted Maxwellian distribution [see Eqs.
and (A.28))]. The reason for the difference is related to the fact that the distribution
(A.32) is different from a shifted Maxwellian distribution (A.26).

A.2 Discussion of model assumptions

As discussed above, there have been various models of grain screening with different as-
sumptions. The present Section addresses the applicability of the assumptions of the

models.



38 A. Appendix: Theoretical background

A.2.1 TIon-neutral collisions

The exact form of the collision operator is determined by the assumptions about micro-
scopic description of the ion-neutral collisions. Therefore, to construct the correct ion-
neutral collision operator, one should understand the physics of the ion-neutral collisions.
The present Subsection addresses this issue.

There are three important processes contributing to the ion-neutral collisions [60]:

e Polarization scattering. The physics of the polarization scattering is related to the
electrostatic interaction between an ion and the dipole moment induced on a neutral
by the electric field of the ion. The corresponding transport cross-section is [60]

ae?

Up =27 ?, (A39)

where € is the incident kinetic energy, « is the polarizability of the neutral. For argon,
the polarizability is a & 11aj where ag = 0.529 x 107® cm is the Bohr radius [60].
Because of the dependence o, o 1/4/€, the polarization scattering dominates over
other processes at small kinetic energies (e.g., for energies corresponding to the room

temperature).

e Charge exchange. A charge exchange is not a true collision. Rather, it is a quantum-
mechanical process of resonance tunneling of a single electron from a neutral to an
ion. The result of this process is a new ion moving with the incident (i.e., before the
“collision”) neutral velocity and a new neutral moving with the incident ion velocity.
For argon and incident kinetic energies of 107! — 10 eV, the charge exchange cross
section is ~ 5 x 10715 ¢m? and is almost velocity-independent [61]. (The theoretical
approach yields a weak logarithmic dependence [60]). The corresponding transport
cross-section is two times larger [60] and, therefore, is ~ 107! cm?. The comparison
of the latter value with the cross-section (A.39) gives that the charge exchange dom-
inates over polarization scattering when incident kinetic energies € are larger than
~ 0.1 eV.

o Gas-kinetic collisions. The physics of the gas-kinetic collisions is the same as that of
the neutral-neutral collisions (i.e., it is related to the short-range repulsion forces).

The gas kinetic collisions can be well modeled by a hard sphere interaction. The
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Figure A.2: Measured dependence of the ion drift velocity on the applied electric field.
Vertical axis is the ratio of the drift velocity u to the thermal velocity of neutrals vyy,.
Horizontal axis is the ratio of the applied electric field Ey to the neutral density n,. The
shown experimental data are taken from Ref. [62]. The measurements were performed

in argon at 7,, = 300 K. The straight lines illustrate that u/vr, < Ey/n, and u/vr,
\/ Eo/n, for small and large u/vr,, respectively.

gas-kinetic cross-section (almost) does not depend on the velocity, similar to charge-
exchange collisions. For argon, the gas-kinetic cross-section is &~ 4 - 107! cm? [60].
(In the framework of the hard sphere model, the transport cross section is exactly
equal to the collision cross section). Therefore, for argon, the gas-kinetic collisions
are always somewhat less frequent than the charge-exchange collisions (see also Fig.

2.13 of Ref. [60]).

One should keep in mind that collisions of “mixed” types may occur. That is, an ion
and a neutral interacting with each other due to polarization may exhibit a gas kinetic
collision accompanied by the charge transfer.

From what is stated above it follows that the BGK collision operator is generally not
applicable. This is particularly evident when one analyzes the dependence of the ion
drift velocity u on the electric field Ey. As stated above, the BGK collision operator
implies a linear dependence (u o< Ep). At the same time, measurements [62}46] performed

at the room temperature demonstrate that v o« /Ey at large drift velocities (see Fig.
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A.2)). Nevertheless, the BGK collision operator is believed to provide (qualitatively) correct

results for the grain screening at small drift velocities [63].

A.2.2 Ion velocity distributions

This Subsection discusses measurements of ion velocity distributions in electric fields under
conditions when the drift velocity exceeds the thermal velocity of neutrals.

Zeuner and Meichsner [64] performed measurements of the ion velocity distributions
by sampling ions through an aperture in the grounded electrode of a rf discharge. They
demonstrated that the shape of the ion velocity distribution is different in two limiting

cases.

e The first limiting case occurs when the gas pressure is small enough and/or the rf
power is large enough so that the ion motion near the electrode is inertia-limited (bal-
listic). In this limiting case, in the measured velocity distribution the mean velocity
of ions was much larger than the dispersion of velocities. Therefore, the frequently
used assumption that the (unperturbed by the grain) ion velocity distribution is a

shifted delta-function (or shifted Maxwellian) is reasonable in this case.

e The second limiting case occurs when the gas pressure is large enough and/or the rf
power is small enough so that the ion motion near the electrode is mobility-limited.
In this limiting case, the shape of the measured velocity distribution was quite differ-
ent from the shape of a shifted Maxwellian distribution. In particular, the velocity
corresponding to the maximum of the velocity distribution function was much less

than the mean velocity. Note that the distribution (A.32)) has the same property for

u > vy, (see Fig. [A.1).

Similar observations were made by Olthoff et al. [65].

Rao et al. [66] performed precise measurements of the ion velocity distributions in the
case of mobility-limited drift. They found the longitudinal velocity distribution to be well
described by

¥ annmvﬁ
/QWULfQ(V) dv, = const x exp | ————— |, v > 0, (A.40)
0 2€E0

whereas almost no ions were present for v < 0. Here o is a constant which was interpreted

by Rao et al. to be the charge exchange cross section, n, is the neutral density. Eq.
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(A.40) shows the inapplicability of the distribution (A.32)). Indeed, in the limit u > vy,
(i.e., vy, — 0 at constant u), the distribution ([A.32)) integrated over velocity components

perpendicular to the direction of the electric field is

Yl

/27rvlf0(v) dv, = % exp (_u) , v >0, (A.41)
0

whereas fo = 0 for vy < 0. The distribution (A.41)) is different from the measured distri-
bution (A.40]). The reason for the difference is that the BGK collision operator implies a

velocity-independent collision frequency.

A.2.3 Electron velocity distributions

By performing probe measurements, Godyak and Piejak [67] demonstrated that the veloc-
ity distribution of electrons can be not Maxwellian but rather bi-Maxwellian, even in the
bulk region.

Surendra and Graves [6] performed particle-in-cell-simulations of a rf discharge. They
found that, in the sheath region, the electron density can significantly vary during the rf
period. They also found that the mean kinetic energy of electrons significantly increases
as either of the electrodes approached.

Recently, Gans et al. [24] performed spectroscopic measurements of phase-resolved elec-
tron kinetic energy distributions in the sheath region. The fit by a shifted Maxwellian
distribution to the experimental data obtained 1-4 mm in front of the powered electrode
during the field-reversal phase yielded the temperature of a few eV and drift kinetic en-
ergy (i.e., the shift) of 10-20 eV. Similar results were obtained in simulations by Vender
and Boswell [23]. They obtained that the direction of the shift (towards or outwards the
electrode) depends on the phase of the rf period.

To conclude, the behavior of electrons in the sheath region of a rf discharge may be
rather complicated, since electrons respond to the rf electric field. This questions the

applicability of the assumption of the Boltzmann electron response [Eq. (A.4))].

A.3 Summary: Which model when?

Three limiting regimes of screening of a grain levitated in the plasma-wall transition layer

are generally possible:
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1. When the local electron Debye length is less than the effective length of grain screen-
ing due to ions (the simplest estimate for the latter is [e;/(47n;e?)]'/? where ¢; is the
local mean kinetic energy of ions and n; is the local ion density), then the screening
should be primarily due to electrons. In this case, the grain screening potential is of
the Debye-Hiickel form with the local electron Debye length. However, the Debye-
Hiickel potential may be violated because of the anisotropy and time variations of

the velocity distribution of electrons, since electrons respond to the rf electric field.

2. When the local electron Debye length is greater than the effective length of grain

screening due to ions, then the screening should be primarily due to ions. Here, two

limiting regimes are possible:

(a) When the ion-neutral collisions are rare enough, the ion motion in the region
of grain levitation is ballistic. In this case, the theories discussed in Subsection
[A 1.3l should be relevant.

(b) When the ion-neutral collisions are frequent enough so that the inhomogeneity
length of the vertical electric field in the region of grain levitation is larger than
the ion-neutral collision length, the (unperturbed by the grain) ion motion is
mobility-limited. In this case, a theory similar to the BGK model is required, but
(especially in the case of large ion drift velocity) with assumption of velocity-
independent cross section, instead of the assumption of velocity-independent
collision frequency. Such a theory is proposed in the first paper enclosed to this

thesis.
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By employing a self-consistent kinetic approach, an analytical expression is derived for the potential
of a test charge in a weakly ionized plasma with ion drift. The drift is assumed to be due to an
external electric field, with the velocity being mobility-limited and much larger than the thermal
velocity of neutrals. The derived expression is proven to be in excellent agreement with the
measurements by Konopka et al. [Phys. Rev. Lett. 84, 891 (2000)] performed in the sheath region
of a rf discharge. © 2007 American Institute of Physics. [DOI: 10.1063/1.2730498]

I. INTRODUCTION

Many experiments in the field of complex (dusty) plas-
mas are performed in weakly ionized low-pressure radiofre-
quency (rf) discharges (gas pressure 1—-10 Pa, gas tempera-
ture 300 K, frequency 13.56 MHz, and ionization fraction
1075-1077; see Refs. 1 and 2). Microparticles (grains of a
few um in diameter) embedded in a plasma acquire large
negative charges (~10*) determined by the balance of col-
lecting free ions and electrons. Under gravity conditions,
charged microparticles levitate in the sheath region near the
lower electrode, where the vertical electric field is sufficient
to compensate for gravity. This electric field causes ions to
drift toward the electrode and makes their velocity distribu-
tion highly anisotropic. The determination of the (electro-
static) interaction of grains in such conditions is one of the
fundamental issues in the physics of complex plasmas.

The issue is complicated by the fact that the values of
many relevant parameters in the region of grain levitation are
not well known. In particular, one of the most important
parameters is the ratio of the ion and electron local effective
Debye lengths, +(g;/€e,)(n,/n;), where &;, and n;, are the
local mean kinetic energies and densities, respectively. This
parameter is believed to determine the relative contribution
of ions and electrons to grain screening.3’4 In the quasineutral
bulk plasma, where ions are in equilibrium with neutrals and
the electron temperature is usually of a few eV, we have
g;/e,~1072. Hence, grain screening in the bulk plasma is
mostly due to ions. Mean kinetic energy of ions increases
towards the electrode and can exceed the bulk electron
temperatulre.5 On the other hand, the ratio n,/n; decreases.®’
Moreover, the mean kinetic energy of electrons g, can dra-
matically increase because of their response to the time
variations of the electric ﬁeld,678 as the time variations of the
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electric field can be particularly high in the sheath region.ﬁ’8
(Usually, the discharge frequency is less than the electron
plasma frequency but greater than the ion plasma frequency,
so that electrons respond to the time variations of the electric
field and ions do not.”) The resulting dependence of the
parameter +/(g;/¢,)(n,/n;) on the distance from the electrode
and, in particular, its value at the grain levitation height are
not known.

Nevertheless, the screening is often attributed to elec-
trons rather than to ions,1’2’4’9 with the resulting interaction
potential being the Yukawa (Debye-Hiickel) potential with
the local electron Debye length (except for the wake region
downstream).'*!! Apparently, the most frequently cited “evi-
dence” for the Yukawa interaction is the experiment by
Konopka et al.,"*"* who did not find deviations from the
Yukawa interaction by analyzing trajectories of two interact-
ing particles levitated at the same height from the electrode.

However, no quantitative comparison of the aforemen-
tioned experimentlz’13 with other models has been performed
to exclude other possibilities. Moreover, the screening length
deduced in the experimentlz’13 turned out to be about, or in
some cases smaller than, the electron Debye length measured
in the bulk;" if the screening would be primarily due to
electrons, the former should always be larger than the latter.
Furthermore, the grain charge deduced in the experimentu’13
allows us to find the electric field, supporting the grains
against gravity; this, in turn, allows us to obtain an upper
(i.e., mobility-limited) estimate for the ion drift kinetic en-
ergy. The latter appears to be somewhat smaller than the
mean kinetic energy of electrons measured in the bulk. This
suggests that the screening could be primarily due to ions
and not electrons.

If ions indeed play the primary role in grain screening,
then an essential question is as follows: Is the ion drift in the
region of particle levitation inertia- or mobility-limited? In
the former case, the assumption that the ion velocity distri-

© 2007 American Institute of Physics
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bution is a shifted delta function (or shifted Maxwellian) is
reasonable,” which is usually employed in models for grain
screening.lo’l1’14718 However, in many experiments the ion
drift in the region of grain levitation is rather mobility-
limited. This coupled with the dominating role of the charge-
exchange collisions' can make the ion velocity distribution
quite different from the shifted delta-function/Maxwellian
form®****  and change the ion response function
drarnatically,zl’22 which should lead to a principally different
grain screening. The model of Refs. 21 and 22 calculates the
ion response function for the case of velocity-independent
collision frequency, whereas no model has been suggested
for the realistic case of a velocity-independent cross
section.”

Il. OBJECTIVE

The objective of the present paper is to derive an expres-
sion for grain screening in the sheath region with mobility-
limited ion drift, attributing screening to ions only, and to

. . . . 12,13
compare the derived expression with the experiment.

Ill. METHODS: MODEL AND EXPERIMENT
A. Model assumptions
Our model is based on the following assumptions:

(1) Only the charge-exchange collisions are taken into ac-
count, i.e., gas-kinetic and polarization collisions are
neglected.

(ii)  The ion-neutral cross section is velocity-independent.

(ili) ~ Without the grain, a mobility-limited ion drift in a
homogeneous electric field is assumed (i.e., the bal-
ance between acceleration in the electric field and col-
lisions with neutrals is assumed); note that the time-
averaged electric field is considered, as ions are
assumed not to respond to the time variations of the
electric field.

(iv)  The ion drift velocity substantially exceeds the ther-
mal velocity of neutrals (therefore, we consider the
velocity distribution of neutrals to be the delta func-
tion).

(v)  Grain is considered to be a nonabsorbing point
charge.

(vi)  The nonlinear screening region near the grain is neg-
ligibly small (therefore we employ the linear-response
formalism).

(vii) The electron response is negligible.

Note that no assumption is made about the ratio of the ion-
neutral “mean” free path to the effective length of grain
screening. Therefore, the ion drift perturbed by the grain is
not assumed to be mobility-limited.

B. Model equations

We consider a point test charge Q immersed in a weakly
ionized plasma and located in the origin of Cartesian coordi-
nates. Far from the test charge, the electric field is E; and
directed along the z axis.

For ions, we use the steady-state kinetic equation

Phys. Plasmas 14, 052108 (2007)

7 EJ
VI B

oy -l f+ 5(V)fv’€‘1f(r,v’)dv’, (1)

where f=f(r,v) is the ion distribution function, ¢>0 is the
elementary charge, m is the ion/neutral mass, E=E(r) is the
electric field, €=(on,)”" is the ion-neutral “mean” free path,
o is the ion-neutral cross section assumed to be velocity-
independent, n, is the neutral density, and &(v) is the delta
function.

Kinetic equation (1) is coupled with the Poisson equa-
tion,

% =47m(n-n,)e +4mQ8(r), 2)

where n=n(r)=[f(r,v)dv is the ion density, n, is the elec-
tron density, which is assumed to be homogeneous and not
influenced by the test charge, and &(r) is the delta function.

Far from the test charge (i.e., for r— o), we assume a
spatially homogeneous ion distribution f,=/,(v) and a spa-
tially homogeneous electric field E, directed along the z axis.
The distribution f|, is derived from Eq. (1) to be

2 2
fo=no\/w—”;H exp(— %)av»a(uy), v,>0, (3

whereas for v, <0 we have f,=0. Here T}=¢E{ is the field-
induced “temperature” characterizing such half-Maxwellian
distribution, and ny=[f,(v)dv is the ion density far from the
test charge. (Note that similar distributions were directly
measured in experirnentss’24 and obtained in simulations.”")
Also, as follows from Eq. (2), there should be ny=n,.
We are interested in the test charge potential ¢=¢(r).
Mathematically, it is defined by
¢

—_:E—Eo,

pe Hle—=0. (4)

In the present work, we consider the linearized test
charge potential only. The linearized test charge potential is
defined as the first term in expansion of the test charge po-
tential in a series of Q. Further, the notation ¢ will be un-
derstood as the linearized test charge potential.

The described model mathematically defines the linear-
ized test charge potential ¢ as a function of spatial coordi-
nates and the following parameters: (i) charge Q, (ii) “field-
induced” ion Debye length N=[eEy{/(4mnye?)]"?, and (iii)
ion-neutral “mean” free path €; no other parameters are re-
quired.

C. Experimental data

Although measurements'>"> were performed for differ-

ent gases, gas pressures, rf peak-to-peak voltages, and grain
sizes (see Ref. 13), we only consider the measurements per-
formed in argon at 2.7 Pa, rf peak-to-peak voltage 145V,
particle diameter 8.9 um, and particle material density
1510 kg/m?. (Analysis of other measurements gives similar
results.) The gas temperature was 7,=293 K and the dis-
charge frequency was 13.56 MHz.
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TABLE I. Experimentally measured interaction energy between two par-
ticles (levitated at the same height from the lower electrode) as a function of
distance between them. The table shows not the interaction energy relative
to infinite separation: To get the latter, a certain unknown constant (offset)
should be added to the given values of the energy.

Distance Energy

(mm) (eV)

0.5777 157.6+5.6
0.6254 129.9+5.1
0.6709 104.5+4.7
0.7261 83.8+4.3
0.7865 71.6+4.1
0.8471 54.8+5.3
0.8850 47.6+£54
0.9357 38.5+5.1
0.9882 31.7+4.6
1.0310 28.0+5.6
1.0905 222+5.5
1.1280 19.3+5.6
1.1788 16.1+£5.3
1.2436 11.6+4.9
1.2930 9.3+£5.2
1.3312 7.0+£4.8
1.3966 8.4+4.4
1.4435 9.8+3.5
1.4864 52+44
1.5429 53+43
1.5932 4.1x4.1
1.6357 3.2+32
1.6911 3.5+3.5

The interaction energy between two particles (levitated
at the same height from the lower electrode) was measured
as a function of distance between them (see Table I). Note
that the interaction energy was measured not relative to infi-
nite separation (see caption to Table I).

D. Fitting procedure

To fit the experimental data by our model, we first de-
termine the ion-neutral “mean” free path £=(n,0)”". We de-
termine o as follows: Eq. (3) gives the ion drift velocity
|[vfo(v)dv|/ng in the form \2e/(mma) X VEy/n,, and we re-
quire that the proportionality coefficient between the ion drift
velocity and VE,/n, should be the same as that measured
experimentally for argon in Ref. 23. This gives 0=6.5
X 1071% cm? and, hence, the ion-neutral “mean” free path €
~2.3 mm.

Having the “mean” free path defined, the linearized po-
tential ¢ contains two unknown parameters: the particle
charge Q and “field-induced” ion Debye length A. Therefore,
the fit to the experimental data has three degrees of freedom:
0O, \, and the offset AW (to be added to the measured inter-
action energies given in Table I). We find the best fit by
minimizing the normalized squared deviation,

Phys. Plasmas 14, 052108 (2007)

N

1 > ﬁ[wi + AW = Wy (r, O.M) T, (5)

2:
N-vig o]

X

where W; is the measured interaction energy at distance r;, o;
is the error for W; [Table I provides the data in the format
(r;,Wix0,)], Wy(r;,O,\) is the interaction energy (relative
to infinite separation) given by our theory (Wy=0 ¢, where
¢ is calculated for |r|=r; and r directed perpendicular to the
7z axis, i.e., perpendicular to the ion drift), »=3 is the number
of the degrees of freedom, and N=23 is the number of ex-
perimental points.

By employing an analogous procedure, we also fit the
experimental data by the Yukawa interaction potential,
Wy(ri, Qy,Ay) =(Q%/r)exp(=r;/\y). The latter fit has three
degrees of freedom as well: Qy, Ay, and the offset AWy to
be added to the measured interaction energies.

IV. RESULTS
A. Theoretical expression

Our model gives the following analytical expression for
the linearized test charge potential:

20 = explit(z/€)]
P(r,,z)= %Re—fo dtm

2 2
r 7+ (€IN)"X(¢
XKO(—H/—( )2 0). (6)
¢ 1+ (€/N)Y(2)
Here r, is the distance from the test charge in the plane
perpendicular to the ion drift, and z is the distance along the
drift. Further, K|, is the zero-order modified Bessel function

of the second kind.” Equation (6) is expressed in terms of
two functions,

X(t)=1-V1+it,

2\1 +itf1 da 1
Y(t) = - . 7
® it Jo [1+it(1-=a®) it(1+ir) ™

In Egs. (6) and (7), the square root with positive real part is
to be taken. The mathematical derivation of Eq. (6) is given
in the Appendix.

B. Comparison with experiment

Results of the comparison with experiment are shown in
Fig. 1.

Both the fit by Eq. (6) and the fit by the Yukawa poten-
tial describe very well the experimental data. The normalized
squared deviations appear to be approximately the same for
both fits: x*~0.160 and x*~0.143 for Eq. (6) and the
Yukawa potential, respectively. Such small values of x*
(relative to unity) can be explained by possible overestima-
tion of errors.

However, outside the distance range where the measure-
ments were performed, the fit by Eq. (6) and the Yukawa fit
behave very differently (see Fig. 2). At large distances, Eq.
(6) has power scaling (¢ rf) and, hence, falls off much
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FIG. 1. Comparison of experiment with our theoretical expression [Eq. (6)]
and Yukawa potential. Vertical axis is the interaction energy relative to in-
finite separation. The horizontal axis is the distance between the charged
grains. Since the interaction energy was measured not relative to infinite
separation, an unknown constant (offset) to be added to the measured ener-
gies is one of the fit parameters. The value of this offset is found to be not
the same for both fits. The experimental data are shown with this offset
added. Fit by Eq. (6) yields the grain charge Q=~-2.05X 10%, “field-
induced” ion Debye length A =0.62 mm, and the offset AW=3.4 eV (to be
added to the energies given in Table I). Yukawa fit yields the grain charge
0y=-1.66 X 10%, screening length \y=~0.39 mm, and the offset AWy
~0.16 eV.

slower than the Yukawa potential. At small distances, the
difference between the fits is significant as well (approxi-
mately a factor of 2).

V. DISCUSSION
A. Determination of local plasma parameters

By fitting the measured interaction energy with our
theory, one can determine not only the particle charge Q but
also some information about the local plasma parameters.
Namely, based on the value of the “field-induced” Debye
length N, one can obtain the ratio of the electric field to the
ion density (since N=[eEy€/(4mnye*)]"?). Further informa-
tion about plasma parameters can be obtained by considering
the balance of vertical forces acting on the grains. For ex-
ample, if we neglect the ion drag force'” and simply use
—QE,=Mg, where M~5.6x 10710 g is the particle mass, we
obtain the electric field Ey=17 V/cm, field-induced “tem-
perature” of ions T j=eEy{ ~3.8 eV, and the ion density n,
~5.5%10% cm™. The deduced ion density appears to be
about the plasma density measured in the midplane of the
discharge, 6% 10® cm>+50%."> The ion densities in the
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FIG. 2. Comparison of the fit by our theoretical expression [Eq. (6)] with
the Yukawa fit. The vertical axis is the interaction energy relative to infinite
separation, multiplied by the distance between grains. The horizontal axis is
the distance between grains. (Unscreened Coulomb interaction would be a
straight horizontal line.) Parameters of both fits are given in the caption to
Fig. 1.

midplane and at the particle levitation height could indeed be
close to each other or at least be of the same order, as the
particles were levitated at the height =~8.5 mm (relative to
the lower electrode) and the electrode separation was only
30 mm.

The question about the accuracy of the deduced values
of O and A is essential. To estimate the accuracy, we find
numerically the region [in (Q, N, AW) space] where the x*
exceeds the aforementioned value 0.160 no more than by a
factor of 2. Projections of this region to the Q and the \ axis
determine the uncertainties of Q and \, respectively. These
uncertainties appear to be about +20%.

B. Check of the model assumptions

Let us now consider all the assumptions listed in Sec.
IIT A. Assumptions (i) and (ii) are justified by available ex-
perimental data.'"”* The validity of all other assumptions is
the question of particular experimental conditions. In the fol-
lowing, we check the model assumptions for the considered
experimental conditions.'>"> Concerning assumption (i),
the inhomogeneity length of the electric field, Ly=E/E’, can
be found by Ly=g/w?, where w,/(2m)~ 15 Hz is the mea-
sured resonance frequency of vertical oscillations of a single
particle'3 and g is the acceleration of gravity. (Here, charge
variations' are neglected.) This gives Ly~ 1 mm, which is
somewhat greater than the observed screening scale,
~0.5 mm, but somewhat smaller than the ion-neutral
“mean” free path, £~2.3 mm. The latter fact suggests that
the conditions of this particular experimentlz’13 are at the
edge of applicability of the mobility-limited drift assump-
tion. Further, assumption (iv) is justified by the fact that the
ratio of the ion drift velocity \2eEq{/(7m) to the thermal
velocity of neutrals \f"Tn/ m is =9.8, based on the parameter
values deduced from the fit. Assumptions (v) and (vi) are
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justified by the fact that both the absorption impact param-
eter min(a, \|Qlea/T,) (see Refs. 1 and 2) and the Coulomb
radius |Q|e/ T} are of the same order as the particle radius a,
which is two orders of magnitude smaller than the observed
screening scale, ~0.5 mm. Concerning assumption (vii), the
electron temperature in the midplane of the discharge was
measured to be 2.2 eV,'z‘13 which corresponds to the mean
kinetic energy of 3/2X2.2 eV=3.3 eV. As mentioned in the
Introduction, the mean kinetic energy of electrons in the re-
gion of particle levitation can be even larger. At the same
time, our fit yields the mean kinetic energy of ions (in the
region of particle levitation) to be T;/2~1.9 eV. Also, the
Poisson equation E/Lg=4m(n;—n,)e coupled with the found
values of Lg, n(=ny), and E(=E,) gives n,/n;~0.85. This
supports the idea that the screening should be primarily due
to ions and not electrons.

To conclude, the experimentlz’13 corresponds to the edge
of applicability of the mobility-limited drift assumption [i.e.,
assumption (iii)], whereas all other assumptions are more or
less well justified. Thus, the experimental conditions'*"? are
not best suitable to check our theory, yet they provide excel-
lent agreement between experimental results and our model
within experimental uncertainties.

C. Potential at large distances

One can easily derive from Eq. (6) the asymptotic be-
havior of the potential at large distances: We introduce the
distance r from the test charge and angle 6 with respect to
the ion drift direction via r, =rsin 6 and z=r cos . Using
the integral representation K(x)= [ exp(—x cosh &)d¢ valid
for Re(x) >0 (see Ref. 25) and employing new variable of
integration 7=tr, we expand the integrand in a series of 1/r.
Then we can perform integration over 7 and & analytically,
which gives the asymptotic potential,

_ Q_wa(#)” (L)
¢=- € 2 \l+cos?o +o P ®

Thus, at large distances the test charge produces a
dipole-like field, with the dipole moment |Q|\?/€. For a
negatively charged grain (Q <0), this dipole moment is di-
rected along the ion drift. Note the difference from the pure
dipole field, due to the additional anisotropic factor [2/(1
+cos? ).

It is well known that, in a collisionless plasma with ar-
bitrary anisotropic ion velocity distribution, the potential of a
non-absorbing point charge at large distances generally has
the 1/73 dependence.26 Hence, the collisions included in our
model are essential in the formation of the 1/r* potential
derived above. This conclusion is supported by the results of
Stenflo er al.,”’ who considered a slowly moving non-
absorbing point charge in an isotropic collisional plasma and
obtained an inverse squared dependence as well.

Unscreened dipole potentials have already been used as
model interaction potentials to investigate instabilities of
dust-lattice waves™?*’ and modes of finite clusters.” Our ex-
pression (8) not only justifies such unscreened dipole poten-
tials but also provides the value of the corresponding dipole
moment.
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D. Applicability of Eq. (6)

The range of applicability of Eq. (6) is restricted by the
assumptions listed in Sec. III A. In particular, the ion drift
should be mobility-limited and, simultaneously, the drift ve-
locity should be much greater than the thermal velocity of
neutrals. Measurements’ clearly demonstrate that the two lat-
ter conditions can indeed be satisfied simultaneously with a
good margin, allowing for a certain range of applicability of
our model.

Although the present paper is rather devoted to charge
screening in rf discharges, the obtained expression (6) can be
applied to direct-current (dc) discharges as well. (Again, all
the assumptions listed in Sec. IIT A should be checked for
particular experimental conditions.) Measurements”' per-
formed in a dc discharge demonstrate that all our assump-
tions can be satisfied even in weakly collisional discharges:
In a weakly collisional discharge, there exists the so-called
presheath where the ion drift is mobility-limited, with the
drift kinetic energy being in between the neutral and electron
temperatures.

Our model assumes a spatially homogeneous electric
field. Realistically, inhomogeneity is always present in the
sheath region. The question naturally arises as to what is the
characteristic inhomogeneity scale of the electric field, Ly
=E/E’, at which our result (6) is no longer valid. The inho-
mogeneity may also restrict the range of distances from the
grain where the derived potential (6) is valid. We emphasize
that Ly should be at least greater than €, otherwise the drift is
not mobility-limited, leading to a quite different ion velocity
distribution, which, in turn, should lead to a principally dif-
ferent grain screening.

Strictly speaking, the model assumption of a homoge-
neous electric field implies a quasineutral plasma. Indeed,
the inhomogeneity length of the electric field is connected
with the degree of plasma quasineutrality via the Poisson
equation, E/Lg=41(n;—n,)e, which gives Ly=(\*/€)n;/(n;
—-n,). (Here, we omit the subscript “0” used throughout the
paper for E, and n, and assume n,>n,.) The aforementioned
condition of the drift being mobility-limited, L;> ¢, takes
the form

(5)2 LB )

€) nj—n,

For a quasineutral plasma region (n;—n,<<n;), condition (9)
is satisfied for a wide range of values of the ratio N/€. For an
essentially nonquasineutral plasma region (n;—n,~n,), e.g.,
deep in the sheath, condition (9) is only satisfied when
(N/€)*>1. This should be taken into account by possible
applications of our model.

E. Stability

The question arises as to whether and when the equilib-
rium given by Eq. (3) is stable (with respect to ion-acoustic
waves). (If it is not, then our approach is not justified.) To
answer the question, a derivation of the corresponding dis-
persion relation (within the model considered) is necessary.
A derivation of the dispersion relation and subsequent stabil-
ity analysis is much more difficult than the derivation of the
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static potential (6). Note that the classical situation of the
two-stream instability—one-component collisionless plasma
with the velocity distribution being a sum of an otherwise
stable distribution and an additional term representing a
beam’>—is different from our case of collisional plasma with
the half-Maxwellian velocity distribution (3) formed by the
balance of acceleration in the electric field and collisions
with neutrals. Another case of the two-stream instability—
ions and electrons flowing with respect to each other’*—is
irrelevant as well, because, in our model, electron response is
neglected. Therefore, we see no physical reason for instabil-
ity and so an investigation of the dispersion relation is be-
yond the scope of the present paper.

VL. CONCLUSION

Our model attributes grain screening to ions only. As-
suming a mobility-limited ion drift with velocity much larger
than the thermal velocity of neutrals, we derived an analyti-
cal expression for grain screening (6), which appeared to be
generally not of the Yukawa (Debye-Hiickel) form. Both our
expression (6) and the Yukawa potential are in excellent
agreement with the experiment.lz‘13 At the same time, our
expression (6) strongly suggests that measurements per-
formed in a broader range of distances should reveal signifi-
cant deviations from the Yukawa potential. Hence, the ex-
periment of Refs. 12 and 13 cannot be used as justification
for either the Yukawa potential or the dominant role of elec-
trons in grain screening, and more experiments are necessary
to resolve the issue.
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APPENDIX: DERIVATION OF EQ. (6)
The linearized potential of the point test charge Q has
the form

R Jolk 7 )exp(ikiz)
Prie)= wL dkjo e T+ x k)]

(A1)

where J, is the zero-order Bessel function of the first kind,
and x;(kj,k,) is the ion susceptibility for the wave vector
whose components along and perpendicular to the ion drift
are k; and k |, respectively.

To derive the ion susceptibility y; from Egs. (1) and (3),
we consider a perturbation of the potential in the form
¢, exp(ik | x+ikjz) with ¢;=const and find the resulting lin-
ear perturbation of the distribution function, f(r,v)—7fy(v)
=f,(v)exp(ik  x+ikz). Substituting in Eq. (1), we obtain
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¢Ey 7y

(l.kil)x + l.k”l)Z + €_1U)f1 +
m dv

Z

=%<kL(9_fO+kll%> +€"5(v)jf1(V')U'dV'- (A2)

m o 2

Then, substitution f,(v)=A(v)exp[-mW¥(v)/(2T})], with
W(v)=(kyp,+2k v,)ilv,+vv + %(vz—vg)ln(v +v.), reduces
Eq. (A2) to the equation

eE, 0A (mW)
—0 = (... —, A3
m ov, (-Jexp 27T, (A43)

where (--+) denotes the right-hand side of Eq. (A2). Direct
integration of Eq. (A3) with the boundary condition
fily—=0 gives A(v)=0 for ©v,<0 and A(v)
=8(v,)- v, [alv)+(m/T)J+- -]+ 8v,)- 8 (v,)-[Bv.)

+y(v,) v+ -] for v, >0, respectively, where & (v,) is the
derivative of the delta-function, functions a(v.) and ¥(v,)
can be expressed through elementary functions, function
B(v,) can be expressed through the Fresnel sine and cosine
integrals or, alternatively, through the error function of com-
plex argument,25 J is the integral standing in the right-hand
side of Eq. (A2) [J=[f,(v')v'dv'], and the ellipsis denotes
the higher-order terms with respect to v,, which are not im-
portant for subsequent calculations because these terms are
multiplied either by &v,) or &' (v,). Now, substitution f;(v)
=A(v)exp[-mWV¥(v)/(2T})] [with A(v) determined above] to
J=[fi(v')v'dv’ gives the value of J [here, the formula
2.8 (1)-g(t)dt=—g'(0) is useful], which completes the solu-
tion of Eq. (A2). Using the definition y,=—[4me/ (kﬁ
+k2)1 f1(v)dv/ ¢, we finally derive the ion susceptibility,

xilkpk ) = [X(k€) + K> €2Y (ky0)], (A4)

(ki + KDN?

where functions X and Y are defined by Eq. (7).

For the susceptibility (A4), the integration over k| in Eq.
(A1) can be performed analytically,25 which gives the final
expression (6).
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Dust-lattice waves: Role of charge variations and anisotropy
of dust-dust interaction
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Dust-lattice waves are studied in the framework of the one-dimensional particle string model. The
dust-dust interaction potential is assumed to have an arbitrary dependence on the vertical and
horizontal coordinates, which allows to take into account the wake field effects. Both the vertical
and horizontal charge variations are also included into the model. The model yields the coupling
between the vertical and horizonf&ngitudina) modes: the coupling coefficient is the sum of six
terms, each caused by a different physical mechanism. It is shown that the coupling can trigger the
resonance oscillatory instability, which has been already observed in experiments. It is also shown
that a nonoscillatory instability can appear at small wave numbers due to the coupling.

© 2005 American Institute of PhysidDOI: 10.1063/1.1926650

I. INTRODUCTION tron fluxes on the particle surfagsome models for dust
charging are discussed in Refs. 15 and. Because of the
Dust-lattice waves represent the oscillations of chargeghhomogeneity of the electric field of the sheath, the ion flow
dust particles forming crystalline structures in a pIasm_aSpeed depends on the height, and, hence, the charge depends
There has been a number of experiments on dust-latticgy, ¢he height as well. In addition, the ion and electron fluxes
waves in two-dimensionalD) dust crygtals in rf dlscharge on the particle surface can be influenced by neighboring dust
plasmas(see Refs. 16 In these experiments, a horizontal particles, which also leads to dust charge variations. All these

layer with crystalline structure was formed by negativelyfeatures may induce new physical effects unusual for Cou-

charged dust particles in the sheath at the lower electrod?, b or Debve_HickelYuk ‘ ft q
where the electrostatic force compensated for gravity. In agomp or Lebye—ruc elYukawg systems often used as a

dition, there have been experiments on dust-lattice waves ifi0de! to study processes in dusty plasmas.

1D dust crystaldsee Refs. 6 and @f and dc discharges, In Ref. 17, it is shown that the anisotropy of the dust-
form a particle chain. and horizontal(longitudina) modes, which can cause the

In the laboratory experiments, the motion of individual resonance oscillatory instability near the intersection point of
dust particles can be easily observed, which makes the duthie modes. In Ref. 18, another mechanism of the coupling is
crystal a convenient model to study the fundamental physicdibound. The latter is related to the simultaneous presence of
processes such as propagation of waves in crystals and phate anisotropy of the dust-dust interaction and dust charge
transitions. On the other hand, the system of charged dusfariations due to vertical displacements. The contribution of
particles in a plasma has some important features distinhe mechanism of Ref. 18 to the coupling coefficient is pro-
guishing it from many other physical systems. The first im-portional to the product of the particle-wake dipole moment
portant feature is that the dust-dust interaction is anisotropiGyng the charge gradient in the vertical direction, while the
The strong electric field supporting the particles againstgntribution of the mechanism of Ref. 17 is quadratic with
gravity causes ion streamin(@sually, the ion flow speed is respect to the particle-wake dipole moment.

believed to be superthermalvhich leads to the anisotropy In the present paper, we use the 1D particle string model

of the electrostatic potential induced by a dust particle: an . . . . . . .
excess of the positive charge is accumulated “behind” th with interaction between neighboring particless in Refs.

negatively charged dust particle due to ion focudisee nu- 7 and 18 and mcIude_ Into the model not only the aniso-
merical simulation&® theoretical studie® 2 and fOPY of the dust-dust interaction and dust charge variations

experiment?‘“). It is important to note that the energy of due to vertical d.isplacenjents but also dust charge variations
particles interacting via such a potential is not consefved.dué to change in the distance between particles. We show
The second important feature which results in the energjhat the resulting coupling coefficient is the sum of six terms
nonconservation is that the charge of dust particles is nofincluding the two terms investigated before in Refs. 17 and
constant: the charge is given by the balance of ion and eledS8, respectively All the six terms correspond to different

physical mechanisms of the coupling. Under typical labora-
dAlso at Moscow Institute of Physics and Technology, Institutsky pereuloktory conditions, two of four new terms can be comparable
9, Dolgoprudny, 141700 Moskovskaya oblast, Russia. Electronic mailyyith the two previously investigated terms, while two re-
komp@mpe.mpg.de . . t .

aining terms are relatively small. We also investigate the

PAlso at General Physics Institute of the Russian Academy of Sciences!,ﬂ 3 )
Vavilova 38, 117942 Moscow, Russia. instabilities that can be caused by the coupling.
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Il. THEORY G dE(2) A3
eO: E(O)_, el: A
dz |=Q

A. Model description Q
We consider an infinite string of dust particles with equi- L O QA
librium charge(-Q) <0 and equilibrium separatiob. The K==, Og=——, (= —,
equilibrium positions of dust particles are on the horizontal x A Q Q
axis. The z axis is directed vertically downward. We consider )
the motion of particles to be in the xz plane. The forces  ox=fA% 0, =A%
acting on the dust particles are the gravity force, the force of
the electric field of the sheath, the dust-dust interaction, and 9= fxd®, 02,7 f.A% 0= f A%,
the dust-neutral friction. In the xz plane, the electric field of
the sheath is directed vertically downward and depends onl
on the coordinate: E=E(z). As for the dust-dust interaction,
we consider only interaction with neighboring dust particles ~ The linearized equations take the following form:
and apply the following model: each dust particle induces the 2

: 9 d“(SXn) d(&Xn)
electrostatic potential given by =—y

L. Dispersion relation

+ (&nﬂ - 2é"(‘n + é"(—n—l)o'xx

- a2~ 7 dt

$n(%,2) = (= Q) (X = Xa|, 2~ Z,), (1)

! ) " " - (&ml - éin—l)o'xz"' (5an+1 - 5an—1)0'xv (6)

where(-Q,) <0 is the momentary value of the charge of the

nth particle,x, andz, are the coordinates of theh particle, d%(8z,) d(6Z,)

f(|x—x,,z—2z,) is some function of the specified arguments. a2 7 at + (OZney = 262 + 620-1) 077~ (e

We use a power series expansion of this function near

[x=x,|=L, z-2,=0: = Mi-1)Oxz =~ (pey + 280G + 31 0,

f([x = o], 2= ) = fo + ([x = x| = L) + (2= ) f, + 5[ ~ (&0n)€o = (6Z)ey, (7

=l = ot 3220z (= i = (o1 = o)+ (7o), (®)
—“LD(@=z)fet o () where &,=8Q,/Q, H,=I\, 52,=5z,/\, the timet is

Concerning the dust charge variations, we apply the follownormalized byA¥*/M/Q, the dimensionless parametgr

ing model: the linear perturba’[ions of the dust Charge argo describes the dust-neutral friction. ASSUming the pertur-
given by bations are proportional to efiRnx—iwt), we obtain the dis-

8Qn = (e — Mn-1)Q + (827)Q;, 3) persion relation

2+ iyw - QAK) [w? +iyo - Q2(K)] = UKk), 9
where the symbob is used to designate the deviations from L™+ iy = Gl JLo"+ire - 0] = Uk ©
the equilibrium valuesdQ,=Q,-Q is the perturbation of the where
absolute _value of thath pgmcle chargebxn:gn—nL is the Qﬁ(k) = & o, S (Kil2) + 0, SIFP(KK)], (10)
perturbation of thex coordinate of thenth particle, 5z,=z,.

Note that we do not include explicitly the ion drag force 2y — o &+ + Ao SirP(kkl2) + 4 2(Kkl2
into the model. If we include the ion drag for@fy(2) in o) = €1+ &ty + o, SiT(kid2) + 4o, cos(kd2),

the downward z direction, the linear perturbation of the total (1)
vertical force from the sheath will be given b§fQ,E(2) .

~Q¥fa(2)]=Ql dE(2)/d2 o~ Q dfy,(2)/dZ o] 62+ [E(0) Ue(k) = 4 Sirf(ki)l = 05, + 03030, = 03l + 08,080
-2Qf4(0)]18Q,. Therefore, including the ion drag force is — 40,050 COL(K/2) + 400,00, COL(KK/2)].

equivalent to replacing the values B0) and dE(z)/dZ,- (12)
by the corresponding effective values.

Also note that, in our model, the force balance in the  DiscussionWe have two modecharacterized by, (k)
equilibrium reads as follows: the gravity is compensated byand (), (k)] damped by the dust-neutral friction and coupled
the electric field of the sheath and the vertical components ofiith each other through the coupling coefficidnt(k). The

the forces from the two neighboring dust particles, frequencies); (k) and Q,(k) are respectively the horizontal
Mg = QE(0) + 2Q?f,, (4) and vertical _frequencies in the following sense. If we assume
_ _ _ that the particles can move only along the x dkis., we use
whereM is the dust masg is the gravity constant. 6z,=0 instead of considering forces in the vertical direc-

tion), Q,(k) will be the frequency of these horizontal oscil-
lations. Analogously, if we assume that the particles can
move only vertically(i.e., we usedx,=0), the frequency of

To normalize distances, we use some arbitrary length these vertical oscillations will b€, (k).
This length\ can be associated, for example, with the Debye  For the reader’s convenience, we mention what signs of
radius or the length of the dust-dust interaction. The set ofthe dimensionless parametdisq. (5)] are believed to be
our dimensionless parameters is as follows: relevant to the laboratory experiments. The parameggrs

B. Dimensionless parameters
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ande, are naturally positive. It means that the electric field ismotion is similar: when one particle is shifted vertically with
directed downward and decreases with the height. The paespect to another particle, it implies a variation of the hori-
rameterso,, o, Oy, 0,5, Oxs (1) 0,<0 (the horizontal com-  zontal force from the wake of the latter particle.

ponent of the interaction force is repulsjyéi) o,,>0 (the (ii) The physics of the second coupling tetm,o,q, is
horizontal repulsion force decreases with the distance at horizonsidered in Ref. 18 and is as follows: while the influence
zontal displacemenys(iii) o,< 0 (the vertical component of of the horizontal motion on the vertical motion is related to
the dust-dust interaction force in the equilibrium is directedthe anisotropy of the dust-dust interactiéms in the first
downward, because an excess of the positive charge is acci@rm), the influence of the vertical motion on the horizontal
mulated “below” the particle (iv) o,,>0 (the absolute motion is related to the dust charge variations due to vertical
value of this vertical component decreases with the interpardisplacements: when two particles are shifted in the vertical
ticle distance at horizontal displacementnd(v) o,,<0 (as  direction, the charges of the particles change, and, therefore,
for spherically symmetric repulsipnThe parameterg, and  the horizontal repulsion forces between the two particles are
g, can be of any sign. changed as well.

Concerning the horizontal frequendy, (k) [Eq. (10)], (iii) The third coupling term o,,0.&, is similar to the
the first term in Eq(10) is simply the dust-dust interaction preceding one. Now the horizontal dust charge variations
without dust charge variations, while the second term is recause the influence of the horizontal motion on the vertical
sponsible for the horizontal dust charge variations. motion (the vertical force of the electric field of the sheath is

As for the vertical frequenc§), (k) [Eq. (11)], the terms  perturbed by the horizontal charge variatipnshile the in-
e,+e,0, describe the vertical oscillations of a single dustfluence of the vertical motion on the horizontal motion is due
particle with dust charge variations. The term to the anisotropy of the dust-dust interacti@s in the first
40,,sirP(kk/2) is simply the dust-dust interaction without term).
dust charge variations. The last term in Ebl) combines the (iv) The physics of the fourth coupling term,q,q,e
effects of the vertical dust charge variations and the presem@mbines the influence of the horizontal and vertical motion
of the vertical dust-dust interaction forces in the equilibrium.0n each other due to charge variations only.

Now we discuss the Coupling Coefficiemc(k) [Eq (V) The fifth and sixth terms are much less than the third
(12)]. From the physical point of view, the coupling meansand fourth terms, respectively, &3> || (i.e., the force of
that the horizontal motion of particles influences the verticafthe electric field of the sheath is much greater than the ver-
motion, and, simultaneously, the vertical motion influencedical component of the dust-dust interaction force in the equi-
the horizontal motion—a feedback takes place. All the sixlibrium).
terms of expressiofil2) represent different physical mecha-
nisms of the feedback.

(i) The first coupling term oﬁz is considered in Ref. 17 In this section, we perform the stability analysis of the
and is related only to the anisotropy of the dust-dust interacelispersion relation(9) with any arbitrary real functions
tion. The wake “behind” one particle induces the vertical Q2(k), Q2(k), U (k) [e.g.,Qa(k), Q%K) can be negative, and
force on another particle. When the horizontal distance bebl (k) can be largé We use onlyy>0. All the four solutions
tween the particles changes, the vertical force changes ad the dispersion relatiof®) can be written in the following
well. The influence of the vertical motion on the horizontal form:

D. Stability analysis

. 2 1
©=- '57 * \/ - (%) + 510700 + ik £\ - Q0T + AU(K)]. (13)
|
The instability conditions for a givek are as follows. Qﬁ(k)Qg(k) < UK, (16)
(i) When[Q3(k) - Q2(k)]?+4U (k) <0, we have oscilla-
tory instability if otherwise the system is stable.

Discussion We suppose that, for a givég QF and Q2
I[Q2(K) - QZ(K) ]2 + 4U(K)| > 2/2[Q2(k) + Q3(k)], (14)  are positive. In the case of no coupling and no friction, the
eigenfrequencies of the system coincide with the horizontal
otherwise the system is stable; 0}, and verticalQ), frequencies. With increasing of the abso-
(i) When [Qf(k)—Qﬁ(k)]2+4UC(k)>0, we have lute value of the coupling coefficierd., the eigenfrequen-

nonoscillatory instability if any of the following is satisfied: /€S change as follows: in the case of positive coupling co-
efficient(U.>0), the lower eigenfrequency decreases, while

5 5 the upper eigenfrequency increast® eigenfrequencies be-
Qi(k) + Q;(k) <0, (15 come further removed from each othen the case of nega-
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tive coupling coefficien{U.<0), the lower eigenfrequency other at the boundary of the first Brillouin zoflec=7). The
increases, while the upper eigenfrequency decre@bes corresponding value of the parameiers given by
eigenfrequencies become closdvioreover, at some value of 2

. . . . S K +3k+3
the negative coupling coefficierthis value is given by e+ €y, = 4————— exp(- «). (20)
(Q2-02)?+4U.=0], the eigenfrequencies become equal to K

each pther. Further increa_sing of th_e absolute value of thﬁlote that the coupling coefficiend (k) is equal to zero at
negative — coupling ~coefficient trigger the resonanceys hoyndary of the first Brillouin zonsee Eq.(12)]. Fur-
instability—imaginary parts of the eigenfrequencies appeafyqr decreasing of the interparticle distance leads to the fol-

and are of opposite signs, while the real parts remain equal ing: the crossing poink.,...becomes situated before the
each other. Concerning the case of the positive coupling Coﬁoundary of the first Brillouin zone, thereford (kyo.) be-

efficiegt,zthe lower ei.genfrequency become_s equal {0 2810 glymes nonzero, and, therefore, the oscillatory instaljity.

UC,:,Qth' At further_lncreaglng of.t.he positive coup!|ng co- (17)] can occur. We write down the instability condition.

efficient, the nonoscillatory instability of the lower eigenfre- Neglecting the fifth and sixth terms in EQL2) (e,> |o-), we
Zl/)

quency appears. From the physical point of view, the positive, <ot the coupling coefficieri (k) in the form U.(K)
feedback becomes sufficient to overcome the restorin u sin(k«), whereu is independent ok

forces, which implies that the initial particle configuration is

no longer a ground stste. u=4(- a§Z+ 0y20%0z = Ty A€ + 0%0x0,€0) - (21)
In the case of the presence of the friction, the condition

for the resonance oscillatory instability also requires that th

friction should be small enoughcondition (14)]. On the

other hand, the presence of the friction does not affect the <,

condition for the nonoscillatory instabiliyeq. (16)]. 22)
For a system with weak coupling, the resonance oscilla- K+ 2+ 2

tory instability can occur only in the case of crossing of the  |u] > 722—(91+ €0,

horizontal O,(k) and vertical(),(k) frequencies at somk. KH 3K+ 3

The instability condition is " {1 ~ (1 _ kP exp(x)(e; +egd) )2] -1

UC(kCI'OSQ < 0’ |UC(kCI'OSQ| > Vzﬂgross (17) 2(K2 + 3K * 3)

where (kcross QCI’OSQ is the Crossing point. In this case, the If condition (22) is not satisfied before the interpal’tide dis-
oscillatory instability occurs in a small interval of wave num- tance becomes too small €(k) becomes negative near the

e find the crossing poinikgoss Qerosd @nd write the insta-
ility condition [Eq. (17)] in the following form:

bers near the crossing point. boundary of the first Brillouin zone, the nonoscillatory insta-
bility appears first{condition (16) becomes satisfigd the
E. Oscillatory instability  [Eq. (14)] particles are pushed out of the string due to mutual repulsion

exceeding the vertical confinement. The corresponding value
In this section, we consider the following case: the an-of the parametex is given by

isotropy of the dust-dust interaction and the horizontal dust

charge variations are small corrections to the simplest model e+ ey, = 4ialexp(— K). (23)
where (i) the dust-dust interaction is described by the K

Debye—Hickel(Yukawa potential, (i) the dust charge de-
pends on the coordinateand is not influenced by the neigh-
boring particles. We choose the lengthused to normalize
distances in Eq(5) to be the screening length. For the
screened  Coulomb interaction ¢,(r)=(-Q,)exp(—|r
=ro//N)/|r=r,| (wherer, is the current position of theth
particle, we have

Numerical exampleThe physics described above in the
present section was observed in the experiment of Ref. 5
performed at the pressure of 2.8 Pa: while injecting new dust
particles into the 2D plasma crystal, the meltisgcillatory
instability) occurred at some value of the interparticle dis-
tance. It was possible to stop the melting by increasing the
pressure(up to 5—-10 Ppa If the pressure was sufficiently

K>+ 2k + 2 high, the system never melted. In the latter case, when the
IxT T s expl(= «), (18 nhumber of the particles exceeded a certain threshold, the
monolayer transformed into a bilayer system.
Kk+1 We substitute into our model the parameters of the ex-
U227~ 3 exp(— k). (19)  periment of Ref. 5. For the pressure of 2.8 Pa, the following

measurements were made. It was found by analyzing the
Thus, the horizontal and vertical modes are approximatelyorizontal trajectories of two interacting particles that the
given respectively by2(k) =40y, sirf(kk/2) and Qﬁ(k)=el dust-dust interaction can be approximately described by the
+ey0,+40,,Sirf(kk/ 2), whereo,, and o,, are given respec- screened Coulomb potential with the absolute value of the
tively by Egs.(18) and (19). For largex, the vertical fre- chargeQ=15 50@ (wheree is the absolute value of the elec-
qguency is greater than the horizontal frequency atlany  tron charge and the screening length=0.5 mm. The reso-
we inject new particles to the system in order to decrease theance vertical frequency of a single particle was measured to
interparticle distance, the following physics takes place. Thése w,/27~15.5 Hz. The dust mass wag~5.5x 10710 g.
horizontal and vertical frequencies become equal to eacfhus we finde1+e0q2:wf)\3M/Q2z11.8. Solving Eq(20),
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we find the parametek at which the intersection of the
modes occurs at the boundary of the first Brillouin zore:
~0.96. Solving Eq(23), we find the parametex at which

Phys. Plasmas 12, 062107 (2005)

(i) the horizontal mode is given b@ﬁ(k)=4oxxsinz(k;</2)
[i.e., the last term in Eq(10) can be neglectddwhere oy,
>0, (i) the vertical mode is given by)?(k)=e,+ey,

the vertical mode becomes unstable due to mutual repulsion4o,,sir’(kx/2) [i.e., the last term in Eq(11) can be ne-

of dust particlesk=0.66. Therefore, in our model, the melt-
ing can occur at 0.66 «<0.96. The pressure of 2.8 Pa cor-
responds toy=(4x/3)n,m,a’v1 A%/ (QVM)~0.095, where
n, is the neutral densityn, is the neutral masén the ex-
periment, argon was usgd is the dust radiugin the ex-
periment,a=4.45 um), v,=V8T,/ 7m, is the mean neutral
speed(the neutral temperatufrg, is assumed to be the room
temperaturel ;=300 K) (see Ref. 19 The expression in the
right-hand side of Eq(22) behaves in the range 0.66«
<0.96 as follows: atc=0.96, the expression takes the infi-
nitely large value; with decreasing the value of the expres-
sion decreases; at=0.77, the expression takes the mini-
mum value of=0.074; with further decreasing, the value
of the expression increases; finally, /4= 0.66, the expres-
sion takes the value 0#0.087. Thus, in our model, the
melting at the pressure of 2.8 Pa means that, at sofnem
the range 0.66. k<< 0.96, the parameteris negative, and its
absolute value exceeds at least 0.074.

We discuss what terms in E(R1) could give a signifi-
cant contribution to the parameteof —0.074. For estimates,

we consider the simplest model where the dust-dust intera

glected, (iii) Qﬁ(k)>0 for anyk (i.e., e;+eyq,>0 ande;
+eyq,+40,,>0), (iv) the coupling coefficient isU.(k)
=usir?(kk), whereu is independent ok (i.e., &> |d3)). In

this case, it can be easily shown that the expression
Q%(k)Q(k)/sir?(kk) takes the minimal value &— 0. Thus,

the instability condition takes the form

U> (& + €l oy (25)

Condition (25) does not depend or, which suggests that
this is a “configurational” instability.

Ill. CONCLUSIONS

Using the 1D particle string model, we have shown that
the coefficient of coupling between the horizontaingitu-
dinal) and vertical modes is the sum of six terms, each
caused by a different physical mechanism. The first four are
related respectively toil) only anisotropy of the dust-dust
interaction; (2) anisotropy of the dust-dust interaction and
vertical dust charge variation$3) anisotropy of the dust-
éi_ust interaction and horizontal dust charge variatiods;

tion is the sum of the screened Coulomb potential and thé(ertical and horizontal dust charge variations. In the labora-

nonscreened dipole field, i.e.,

(_ Qn) exp(— )+

|r B rn|
r)=
¢’n( ) |r _ rn|
where the dipole momef, is assumed to be directed down-

N

(r-ry-P,
|r - rn|3

(24)

tory experiments, all these four terms can be comparable
with each other, while two remaining terms are negligible if
the force of the electric field of the sheath is much greater
than the vertical component of the dust-dust interaction in
the equilibrium state.

The coupling can trigger the resonance oscillatory insta-

ward and proportional to the momentary value of the particleoi”ty_ In most experiments, the coupling is assumed to be

charge. In this model, the parameterg o,,, and o, are

exactly the same as for the pure screened Coulomb intera

tion [o,=—(k+1)exp(-«)/ k%, oy and o,, are given by re-
spectively Eqgs.(18) and (19)], while o,=-p/«® and oy,

=3p/ «* wherep is the absolute value of the dipole moment
P, in units of QA. We perform estimates assuming that the

interparticle distance is as close as possibke, k= 0.66),

weak, and, therefore, the instability condition actually means
) intersection of the modegji) the negative sign of the
coupling coefficient, andiii) the neutral pressure is less than
some threshold proportional to the square root of the abso-
lute value of the coupling coefficient.

If the coupling is positive and sufficiently strong, it can
trigger a nonoscillatory instability at small wave numbers.

so that the coupling is expected to be the strongest. The firgt, o o responding instability condition does not contain the

term in Eq.(21) gives the value ofu of —0.074 forp=9
X 1073, For thisp, the second term in E@21) is equal to the
first term atg,~ 0.07. We find the parameteg present in the
last two terms as follows:QE=Mg, which gives g,
=Mg\2/Q?~24. Assuming the parametepsand g, are as
found above, we find that @~ 6x 1072 all the four terms

neutral pressure.
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The modes of clusters formed by two or three charged dust particles in a plasma are analyzed. The
non-Hamiltonian dynamics of the particles is taken into account, which includes (i) nonreciprocal
interaction forces due to wake effects and (ii) spatial variations of the particle charge and shielding
parameters. It is shown that these effects can trigger an oscillatory instability under realistic
experimental conditions. An experiment is suggested to observe this instability. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2212396]

I. INTRODUCTION

Systems of charged dust particles in an inhomogeneous
plasma with ion flow (e.g., in the plasma sheath) are charac-
terized by nonreciprocal interaction forces (i.e., actio
# reactio due to the so-called wake fields' ') as well as by
spatial variations of the particle charge“_15 and shielding pa-
rameters. Such systems cannot be described by a Hamil-
tonian and, hence, energy is not conserved in such systems.
The physical reason for the energy nonconservation is that
such systems are not closed systems because of the presence
of the plasma. This makes a complex (dusty) plasma a con-
venient model to study non-Hamiltonian dynamical systems
which are of fundamental physical interest (see, e.g., Refs.
16 and 17, and references herein) and have a long history in
mechanics."®

One of the properties different from those of Hamil-
tonian systems was revealed in the experiment of Ref. 19
where the melting of particle monolayer was observed. The
dust crystal melted when the neutral friction was not suffi-
cient to suppress the oscillatory instability of coupled in-
plane longitudinal and out-of-plane dust-lattice modes.”**
Such oscillatory instability would be impossible for a Hamil-
tonian dynamical system because of the energy conservation.

The question arises whether the same physics can be
observed in a system of a few dust particles. In the present
paper, we show that an oscillatory instability due to the non-
Hamiltonian particle dynamics is possible for 2- and
3-particle clusters and could be observed in experiments and
used for plasma diagnostics.

The paper is organized in the following way: The model

“Electronic mail: komp @mpe.mpg.de

1070-664X/2006/13(7)/072104/9/$23.00

13, 072104-1

description and the equations of motion are followed by the
mode analysis performed in the case of reciprocal interaction
forces and no variations of the particle charge and shielding
parameters (i.e., in the case of Hamiltonian particle dynam-
ics). Then, the role of charge/shielding variations and the
nonreciprocity of the interaction forces is shown: the mode
frequencies and instability conditions are obtained in analyti-
cal form and the instability mechanism is explained. A nu-
merical example is followed by conclusions where an experi-
ment is suggested.

Il. THEORY
A. Model description

We consider N=2 (and, separately, N=3) dust particles
with masses m and charges —Q(z) <0 dependent on the z
coordinate (the z axis is directed downward). In equilibrium,
the particle positions are in the horizontal plane z=0. We
denote Q(0)=Q,. In equilibrium, the interparticle distance is
L (for N=3, the particle positions form an equilateral triangle
with side L).

The forces acting on the particles are gravity, the electric
field of the sheath, the electrostatic dust-dust interaction, and
the neutral friction.

The electric field of the sheath is the sum of the vertical
field E=E(z) directed downward [we denote E(0)=FE,] and
the field given by the electrostatic potential

O(r,z)=-b(z) - 1 (1)

responsible for the horizontal confinement of the particles.
Here r is the distance from the z axis. We denote 5(0)=b,
and introduce b, and b, as the corresponding derivatives of
the function b(z) evaluated at z=0.

© 2006 American Institute of Physics
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FIG. 1. Sketch of the particle coordinates.

Concerning the electrostatic dust-dust interaction, we
employ the following model: each particle induces an elec-
trostatic potential given by

$=-0(2) - f(A,A,.2), (2)

where A, is the horizontal distance from the particle, A, is
the vertical distance from the particle in the z direction, and
z is the z coordinate of the particle. We introduce f;, f,, .,
fup etc. as the corresponding derivatives of the function
S(A,,A,,z) evaluated at A,=L, A, =0, z=0.

The neutral friction is F,=—Cyv, where v is the particle
velocity.

Note that the ion drag force'? is not explicitly included
in our model. Instead of this, we can assume that E(z) is the
“effective” electric field so that the ion drag force is already
included in Q(z)E(z).

B. Force balance in equilibrium

In equilibrium, the interaction force exerted on one par-
ticle by another has the horizontal component —Qgf; directed
from the latter particle and the vertical component —Q(zjl')
directed downward [see Eq. (2)].

The horizontal force exerted on each particle by all other
particles is balanced by the horizontal confinement potential
®(r,z). The equation for the latter balance allows us to ex-
press b, through the given interparticle distance L:

NQuf,

b() - 2L s (3)
where, as it was mentioned above, N=2,3.

The vertical forces acting on each particle are gravity,
the vertical component of the electric field of the sheath and
the vertical components of the interparticle interaction
forces. Note that the z component of the electric field of the
sheath is E(z) —d®(r,z)/dz where the latter term is due to the
vertical dependence of the horizontal confinement potential
®(r,z). Thus, the vertical force balance equation is as fol-
lows:

(N+1)L?

200
o~ W=D, =0. (4)

mg = QoEq — Qb

[For N=2,3, the squared distance of the particles from the z
axis can be written as (N+1)L?/12.]

C. Equations of motion

We use cylindrical coordinates (Fig. 1): the distances ry,

Phys. Plasmas 13, 072104 (2006)

ry (and r3, for N=3) of the particles from the z axis, the
azimuthal angles 6,, 6, (and 6;) counted from a fixed radial
direction clockwise if viewed from above, and the z coordi-
nates z,, z, (and z3). For N=3, the particles are numbered 1,
2, 3 in the positive 6 direction.

In these coordinates, the equations of motion are

Fn/mzfn_rn(en)z,

Fofm=r,0,+27,0, F,/m=%, (5)
where F,,, F,q F,, are, respectively, the radial, azimuthal,
and z components of the net force on the nth particle. These
components are defined with respect to the momentary posi-
tion of the nth particle.

The net force on the nth particle is given by
F,=-0(z,)E,—Ct,, where E, is the sum of the electric
field of the sheath and the electric fields induced by all other
particles at the point r, corresponding to the momentary po-
sition of the nth particle. Thus, we obtain

ob
Fn == Q(Zn)E(Zn)ez + Q(Zn) E

I‘=l‘n

vy 0

-C rl.'n > (6)
k#n or /

r=r,

where e, is the unit vector in the z direction, @ is the hori-
zontal confinement potential given by Eq. (1), and ¢(r) is
the electrostatic potential induced by the kth particle. Thus,
we find F,,, F,y F,;:

J
Fnr == 2Q(Zn)b(zn)rn - Q(Zn) E Q(Zk) ;‘nk - Cfrfﬂ’
k#n Tn
anz - % 2 Q(Zk) afnk - Cfrrnén’
Fn k#n ‘90}1
db

Fnz =mg — Q(Zn)E(Zn) - Q(Zn)ri d(zn)

<n

7
~06) S 0 L - . )

k#n &Zn

where f,; is the value of the function f [see Eq. (2)] for
Ap=[r2 417 =2r,r cos(6,— 012, Ay=2,~ 24 2=2.

D. Dimensionless parameters

We introduce the dimensionless parameters which are
the values of the original parameters in units where (i) Qg
=1, (ii) m=1, and (iii) distances are in units of some arbi-
trary length A (this length \ can be associated, for example,
with the length of the dust-dust interaction):
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L Eg\? C, |\
K=", ey= = Y= e id -,
A 0y’ Oy Y m
dE(z)| N\ dO(z) A
e, = - q;= P (8)
dz |.0Qo dz |,2Qo

We also introduce the dimensionless parameters characteriz-
ing (i) the interaction potential:

o, :f;l)\z, o, :f;)\z, fo :f;'z)\S, e, 9)

and (ii) the z dependence of the horizontal confinement po-
tential:

’ "y 2

b\ b\

—_ - .
IBZ_ bO ’ IBZZ bO

(10)
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E. Linearized equations of motion

The linearized equations take the form

d? d
ﬁ£+7dr£+M£=0’ (11)

where ¢ is the time normalized by Vm\*/Q,,

'C:(llr’llﬂ’llp ---’lNr’lNB’lNz)T’ (12)

L Lug, 1. are the dimensionless (i.e., normalized by \) dis-
placements of the nth particle in the r, 6, and z directions,
respectively, and

D F (oK =203k 0 Ty = B0y,
M=(7 D)’ D= 0 —oy/Kk 0 ,
o= B0y 0 e.+eq. + 0y, +q.0,— (Bg.+ L) oyl4
q:0n+ Opy = Oyjy D FF
O'h/K 0 (N=2), M=|F. D F,|,
Ouh — Oyt 4.0y + 0y, f+ F_ D

(oppk—303)2k

(&%KSWWK 0

-
(th - :Bzo-h) V3

0

(O-Uh :820-/1)\/3 0 e; + €oq; + 2o-vv + 2qZO'U - (:quz + ﬁzz)(ThK/Z
[~ [~
Boyx—oldc  (oyk+ o)\3ldk (05, + q.04— oy)\V3/2
F.=| ¥(opKr+ a-h)\E/4;< (= omr+30)/4k  =(oy,— 0. — q.04,)/2 |(N=3). (13)

Oy V312 0,2

All the solutions of Eq. (11) can be written as follows:

3N
L(t)=Re E [CJ-’Jr exp(—iw; ;) + C; _exp(-iw; N1L;,
j=1
(14)
where C; . are arbitrary complex constants,
2 _ 02
Wi tiyw; =07, (15)

QJZ are the eigenvalues of the matrix M, and £ ; are the
corresponding eigenvectors of the matrix M. Note that the
QJZ. are the dimensionless squared mode frequencies in the
absence of friction.

F. The case of Hamiltonian dynamics
In this subsection, we consider the case where:

* The interaction forces are reciprocal (o, =0,,=0,,=0);

— Oy +q.0,+ 0y,

* The particle charge and shielding are independent of the
particle position (¢,=0;,,=0);

e And, for simplicity, the horizontal confinement potential is
independent of the height (B,=/..=0).

Note that the presence/absence of the vertical dependence of
the horizontal confinement potential has nothing to do with
the system’s dynamics being Hamiltonian or not.

For N=2, we have the following modes (Q L)) (we
will omit the subscripts in the Qz)

+ The “horizontal rotation” mode: Q?=0

e The two “horizontal sloshing” modes (a whole cluster
horizontal shift): O’=-20,/«;

* The “breathing” mode [Fig. 2(a)]: Q*=2(0y,— 0,/ K);

e The “vertical sloshing” mode (a whole cluster vertical
shift): Q%=e.;

¢ The “vertical shear” mode [Fig. 2(b)]: O*=e_+20,,.

For N=3, we have
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FIG. 2. Modes of N=2 (a), (b) and N=3 (c), (d), (e) clusters in the case
where (i) the interaction forces are reciprocal, (ii) the particle charge and
shielding are independent of the particle position, and (iii) the horizontal
confinement potential is independent of the height. The numbers represent
the relative magnitudes of the particle displacements. Trivial modes corre-
sponding to the horizontal rotation and whole cluster vertical and horizontal
shifts are not shown.

e The “horizontal rotation” mode: Q%=0;

e The two “horizontal sloshing” modes (a whole cluster
horizontal shift): Q*=-30,/k;

* The “breathing” mode [Fig. 2(c)]: Q>=3(0y,— 0,/ &);

* The two “kink” modes [Fig. 2(d)]: Q*=3(0y,— 03,/ k)/2;

e The “vertical sloshing” mode (a whole cluster vertical
shift): Q%=e;

e The two “vertical shear” modes [Fig. 2(e)]: Q°=e,+30,,.

G. The general case of non-Hamiltonian dynamics

Now, we consider the general case, i.e., the case where
(i) the interaction forces are nonreciprocal, (ii) the particle
charge and shielding depend on the particle position, and (iii)
the horizontal confinement potential depends on the height.
In this case, the horizontal displacements of the particles
cause vertical force variations and, simultaneously, the verti-
cal displacements cause horizontal force variations—a feed-
back takes place. As a result, some horizontal modes become
coupled with some vertical modes and, hence, some eigen-
frequencies correspond to the simultaneous in- and out-of-
plane motion.

1. Frequencies of the coupled “breathing”
and “vertical sloshing” modes

As we will see, the coupled “breathing” and “vertical
sloshing” modes are of the most interest for realistic experi-
mental conditions. The corresponding particle motion simul-
taneously satisfies the following relations:

Ly=b(=l3), Lg=lhy=l) =0,

llzz 12z(:l3z)~ (16)
This gives the following equation for the Qj?:
(@Q*-A)(Q*-B)=C, (17)

where the subscripts in the QJZ are omitted,

A =N(ow,— oy/x), (18)

B=e.+eyq.+2(N-1)g.0,+ (N-1)o,,
- (N_ 1)(quz + Bzz)a-hK/"" (19)

C= (2N - 3)(20-1)]1 - O-hﬁz)(o-hz + q:.0n— ﬂzo-h) . (20)
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The parameters A and B are, respectively, the squared
“horizontal” and “vertical” frequencies in the following
sense. If we assume that the particles can move only radially
(i.e., we use ,,=/,.=13.=0 instead of considering the vertical
forces), the parameter A will be the squared dimensionless
frequency of these radial oscillations (in the absence of fric-
tion). Analogously, if we assume that the particles can move
only vertically (i.e., we use [,,=[,,=15,=0), the squared di-
mensionless frequency of these vertical oscillations will be
B. The coupling coefficient C characterizes the coupling be-
tween the radial and vertical motion.

2. Instability condition

We perform the stability analysis of Eq. (17) for arbi-
trary real parameters A, B, C, and y>0. We rewrite Eq. (17)
in the form

(0 +iyw—-A)(w*+iyo—-B)=C (21)

[see Eq. (15)]. All the four solutions @ of Eq. (21) can be
easily found analytically. (We have a quadratic equation with
respect to w’+iyw. After solving it, we have to solve a qua-
dratic equation with respect to w.) The analysis of the ana-
lytic expression for all the four solutions gives the following
instability conditions:

e We have an oscillatory instability [i.e., a solution with
Im(w) >0 and Re(w) #0)] if
(A-B)*+4C<0 (22)
and
|(A-B)*+4C|> 2y (A +B). (23)
e We have a nonoscillatory instability [i.e., a solution with
Im(w) >0 and Re(w)=0)] if
(A-B)?>+4C=0 (24)

and any of the following is satisfied:
A+B<0 (25)
or

AB<C. (26)

3. The case of weak coupling

We assume that the parameters A, B, C, and vy are some
functions of the controlling parameters. These controlling pa-
rameters can be the neutral pressure, the discharge power, the
particle size/mass, parameter(s) responsible for the horizon-
tal confinement potential (e.g., if the horizontal confinement
potential is induced by a conductive ring placed on the lower
electrode, then the radius and thickness of this ring can be
considered as controlling parameters). We assume that, for
some range of the controlling parameters, the parameters A
and B are always positive. Then, for this range of the con-
trolling parameters, an oscillatory instability occurs when

(A-B)?+4C<-29(A+B) (27)

and a nonoscillatory instability occurs when
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AB<C (28)

[see Egs. (22)—(26)].

We assume that, for the considered range of the control-
ling parameters, the absolute value of the mode coupling
coefficient C is always small and the parameters A and B are
finite (i.e., the coupling between the modes is weak). In this
case, a nonoscillatory instability is impossible [see Eq. (28)].
Concerning oscillatory instability, the left-hand side of Eq.
(27) can be negative only in the vicinity of point(s)/
surface(s) (in the space of the controlling parameters) given
by equation A=B. If, for some point satisfying A=B, the
following is satisfied:

C<0, |C|>+A, (29)

then an oscillatory instability occurs in the vicinity of this
point [see Eq. (27)]. Note that, in the absence of friction

(y=0),

e the only condition for the existence of oscillatory instabil-
ity near the resonance A=B is the negative sign of the
mode coupling coefficient C;

* When the mode coupling coefficient C is negative and in-
finitely small, the increment of the instability is infinitely
small as well.

4. Parameter signs relevant to the laboratory
experiments

We specify what signs of the parameters are relevant to
the laboratory experiments (see, e.g., measurements of Ref.
23): (i) 03, <0 (the horizontal component of the force exerted
on one particle by another is repulsive), (ii) o;,;,>0 (this
horizontal repulsion force decreases with the interparticle
distance at horizontal displacements), (iii) o, <O [the verti-
cal component of the force exerted on one particle by another
is directed downward (an excess of the positive charge, i.c.,
wake, is accumulated “below” the latter particle due to ion
focusing)], (iv) o,,>0 (the absolute value of this vertical
component decreases with the interparticle distance at hori-
zontal displacements), (v) o,,<0 (as for spherically sym-
metric repulsion), (vi) 03,,<0 (the ratio of the horizontal
repulsion force exerted on one particle by another to the
squared particle charge increases when both particles are si-
multaneously shifted in the downward direction, i.e., particle
charge shielding becomes weaker as the lower electrode ap-
proached), (vii) B,>0 (the horizontal confinement becomes
stronger as the lower electrode approached, which is typical
when the horizontal confinement potential is induced by a
conductive ring placed on the lower electrode or by a cavity
machined into the lower electrode), and (viii) ¢.>0 (the
negative particle charge increases as the lower electrode ap-
proached).

5. Physics of the instability

For simplicity of explanation of the instability mecha-
nism, we assume that the signs of the parameters are as
specified in the previous subsection.

When the particles are equally radially displaced from
their equilibrium positions to each other, the vertical force

Phys. Plasmas 13, 072104 (2006)

balance becomes disturbed because of the variations of the
vertical forces exerted on each particle by (i) other particle(s)
[i.e., wakes of the other particle(s)] and (ii) the vertical elec-
tric field induced due to the vertical dependence of the hori-
zontal confinement potential ®(r,z). Hence, there appears a
net vertical force on each particle. This force is directed
downward when the particles are shifted fo each other. On
the other hand, when the particles are equally displaced from
their equilibrium positions in the downward direction, then,
according to the condition C<<0 in the instability condition
(29), there should appear a net horizontal repulsive force on
each particle. This implies that increased mutual interparticle
repulsion (due to both increased negative particle charge and
weakened shielding) should be stronger than increased hori-
zontal confinement. If it is satisfied and the resonance be-
tween the “horizontal” and “vertical” frequencies takes place
(A=B), then the dynamics of particle motion satisfying Eq.
(16) is equivalent to the dynamics of a two-dimensional har-
monic oscillator in the field of a force whose components are
such linear combinations of the displacement components
that the lines of this force are closed elliptical lines. This
implies two modes corresponding respectively to damped
and growing rotation-like motions in opposite directions
around the equilibrium point. The condition |C| > y?A in Eq.
(29) means that the friction should be not sufficient to sup-
press this growth.

6. Other modes

The analysis of all other modes is given in the Appendix
. The main conclusion of this analysis is as follows:

e If the parameter signs are as specified in Sec. II G 4;

e oy,k+0,>0 (i.e., the product of the horizontal repulsion
force and the interparticle distance decreases with the in-
terparticle distance at horizontal displacements);

¢ the coupling between the modes is weak;

then the coupling between these modes cannot trigger an
instability (even in the absence of friction).

H. Numerical example

We employ the following model: the particle potential is
the sum of the screened Coulomb potential [with screening
length \,(z) dependent on the particle z coordinate] and the
dipole field which is the simplest model of the wake field,
ie.,

(]5,, — Q(Zn) exp{— |r_rn|:| "

- |r - rn| )\s(zn)

The particle-wake dipole moment P(z) is assumed to be di-
rected downward (an excess of the positive charge is accu-
mulated “below” the negatively charged particle due to ion
focusing).

This model is reasonable since the experiments of Refs.
23 and 25 show that, for plasma conditions considered be-
low, the horizontal forces between the particles levitated in
the same horizontal plane are described by the screened Cou-
lomb potential. Also, the only parameters responsible for the

(I’ - rn) ) P(Zn)
|I’ - rn|3

(30)
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effect of nonreciprocal interaction forces and present in the
linearized equations of motion are a,, o, 0, [see Eq. (13)].
Of these parameters, only o, is present in the expressions
for the mode coupling coefficients [see Egs. (20), (A6),
(A13), and (A14)]. Hence, the dipole moment P(0) can be
treated as the “effective” dipole moment which gives the
same value of the parameter o, (for given interparticle dis-
tance) as the real wake field and, hence, gives the same con-
tributions to the mode coupling coefficients as the real wake
field.

We choose the length N used to normalize distances in
Eq. (8) to be equal to \((0). Thus, we obtain

k+1 p
Op=- K2 e -, O-U = Ev
(K +2K+2) e K+1
Opp = K3 e, v K’s e,
3p e P4.—p
O-Uh=F? O-hz=_)\s"e > vz_%’ (31)
where
|P(0)| d\(z)
p = 9 )\S,Z - - 9
Qo\,(0) dz | .-
1 d|P(z
. LdP@l) (32)
QO dZ z=0

We use the parameters of the experiment of Ref. 19:

e 0,=15500¢ (where e is the elementary charge),

* \(0)=0.5 mm,

* neutral (argon) pressure P,=2.8 Pa,

e neutral temperature 7,=300 K,

e particle radius a=4.45 um,

e m=5.5x10"10g,

« vertical frequency of a single particle w,/27=15.5 Hz.
We find

4 2 )\3
,y:_ﬂ-w1l_x0.] (33)
3 QO m

(the Epstein neutral friction*), where n,=P,/kT, is the neu-
tral density, m, is the neutral mass (the gas was argon, as
mentioned above), vy, = V8kT,/ wm,, k is the Boltzmann con-
stant.

Since the vertical forces due to (i) wake effects and (ii)
the vertical electric field induced due to the vertical depen-
dence of the horizontal confinement potential ®(r,z) are
small with respect to gravity and the electric field of the
sheath, we neglect

« all forces except mg and Q\E, in the vertical force balance
equation for equilibrium [Eq. (4)];

e the difference between the equilibrium vertical positions of
a single particle and a cluster, as well as the corresponding
difference in the particle charge and other parameters;

Phys. Plasmas 13, 072104 (2006)

* all terms except e +eyq, in the expression for the squared
“vertical” frequency B [Eq. (19)].

Thus, we find
mg\? o> N°m
o= "S- =24, e +epg =t ~ 12. (34)
0 9

Solving equation A=B [where A is given by Eq. (18),
B=e,+e(q, as mentioned above, oy, and gy, are given by Eq.
(31)], we find that the resonance A=B occurs at k=0.77 and
k=0.88 for N=2 and N=3, respectively. Thus, an oscillatory
instability of the coupled “breathing” and “vertical sloshing”
modes is possible only in the vicinity of these values of «.
This instability occurs if

(17p + 1.4B)[0.5N,, + 1.4(q,— B)] = 0.1(N=2), (35)

3(10p + BI[0.4AN, .+ (¢.— B)] = 0.1(N=3), (36)

according to the instability condition (29), the expression for
the mode coupling coefficient (20) and Eq. (31).

The measurements of Ref. 23 performed under the same
conditions give the parameters A, and g, to be positive and
~0.2. Concerning the parameter S,, the horizontal confine-
ment potential in the experiment of Ref. 23 was induced by a
copper ring placed on the lower electrode, leading to the
parameter B, being positive and ~0.2. For p, we can expect
p~0.1 (see, e.g., Fig. 2 of Ref. 8). Thus, the conditions
concerned approximately correspond to the instability
threshold and, therefore, the instability could be observed
under similar conditions or, probably, under a smaller neutral
pressure like in the experiment of Ref. 26 on 3-, 4-, and
7-particle clusters.

In Fig. 3, all mode frequencies are shown as functions of
the interparticle distance for the parameters concerned. The
QJZ are calculated directly from the matrix M [Eq. (13)]
without neglecting any terms. We can see that, when the
interpartcle distance is large enough, the frequency of the
“vertical sloshing” mode is much larger than that of the
“breathing” mode. With decreasing the interparticle distance
(i.e., with increasing the horizontal confinement), the latter
frequency increases so that at some distance the resonance
takes place. An oscillatory instability is possible in the vicin-
ity of this distance. At some distance less than the mentioned
resonance distance, the “vertical shear” mode becomes un-
stable and the particles are pushed out of the plane due to
mutual repulsion.

lll. CONCLUSIONS

To conclude, we have shown that, under realistic experi-
mental conditions, the non-Hamiltonian dynamics of dust
particles can give rise to an oscillatory instability of 2- and
3-particle clusters when the interparticle distance is close to
the resonance value at which the frequencies of the “breath-
ing” and “vertical sloshing” modes coincide. In addition to
the mentioned resonance condition, the negative sign of the
mode coupling coefficient and the smallness of the neutral
friction are required for this instability.
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S d) J
e) h)
n
0
A 1 1
0.4 0.6 0.8 1 K

FIG. 3. Squared mode frequencies (in the absence of friction) sz as func-
tions of the interparticle distance «; the case where the interaction potential
is the sum of the screened Coulomb potential and the potential of a dipole
field which is taken as a model of the wake field. The units are such that the
particle mass, the absolute value of the particle charge, and the screening
length are equal to unity. Calculations are performed for ey=24, e,+e(q,
=12, which corresponds to the experiment of Ivlev et al. (Ref. 19). The left
figures correspond to the case where (i) the interaction forces are reciprocal
[i.e., no dipole field (p=0)], (ii) the particle charge and the screening length
are independent of the particle position (g,=\, =0), (iii) the horizontal
confinement potential is independent of the height (8.=..=0). The modes
are denoted in accordance with Fig. 2. The modes corresponding to the
horizontal rotation and whole cluster vertical and horizontal shifts are de-
noted by (r), (v), (h), respectively. In the right figures, the role of the non-
reciprocity of interaction forces, charge/shielding variations, and the vertical
dependence of the horizontal confinement potential is shown for typical
values of the corresponding parameters (p=0.1, N, .=¢.=.=0.2, the param-
eters 3., and p, are practically unimportant and are taken to be 8,.=0, p,
=pgq.). The nonzero imaginary parts of the sz are shown by the dashed
lines. The real parts corresponding to these nonzero imaginary parts are
shown by the thick lines. It can be seen that an oscillatory instability appears
near the interparticle distance corresponding to the crossing point of the
curves of the “breathing” (a), (c) and “vertical sloshing” (v) modes. Note
that the “vertical shear” mode (b),(e) is still stable at this interparticle
distance.

An experiment can be suggested to observe this instabil-
ity, where the interparticle distance could be varied by
changing the horizontal confinement potential. The instabil-
ity could be identified as a significant increase of particle
oscillation amplitudes (i.e., excitation of nonlinear oscilla-
tions) at some value of the interparticle distance. This would
be a clear demonstration of the non-Hamiltonian dynamics
of dust particles in a plasma. In addition, this instability can
be used for plasma diagnostics in the sheath where the dust
particles are usually levitated in the laboratory experiments.
For example, in the case of the screened Coulomb interaction
in the horizontal plane, the measured resonance interparticle
distance L,, the vertical and horizontal frequencies of a
single particle (w,/2 and w,/2 1, respectively), and the par-
ticle mass m give the particle charge Q and the screening
length A by solving the following system of two equations:

Phys. Plasmas 13, 072104 (2006)

K>+ 3K,+3 ) W \om (37)
—— —exp(—«,) = ,
Kf P Q?
K+ 1 w,zl)\?m
N exp(—k,)=—3—, 38

where «,=L,/\, N is the number of particles in the cluster
considered (N=2 or N=3).
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APPENDIX

In this Appendix we perform the analysis of all modes in
the general case of non-Hamiltonian dynamics.

1. N=2 cluster
For N=2, we have the following modes.

* The “horizontal rotation” mode: Q%=0.

e The two coupled “breathing” and “vertical sloshing”
modes considered in the main text of the present paper.

e The “horizontal transverse sloshing” mode. The corre-
sponding motion simultaneously satisfies the following re-
lations:

Ly=0,=0, Lg==le L;=05,=0. (A1)

The frequency is given by Q>=-20,/k.

e The two coupled “horizontal longitudinal sloshing” and
“vertical shear” modes. The corresponding motion simul-
taneously satisfies the following relations:

hy==byn lig=he=0, L == (A2)
The frequencies are given by

(Q*-A)(Q*-B)=C, (A3)
where

A=-20)/k, (A4)

B=e.+eyq.+20,,— 0,.~ (B.q.+ B.) oykl4, (AS)
and the mode coupling coefficient Cis given by

C= (=20 + 04 + 0y, + 4,0,) 4B (A6)

Equation (A3) has the same form as Eq. (17) and, hence,
we can directly apply the results of the stability analysis of

Eq. (17). In particular, in the case of small |C| (weak cou-
pling between the modes) and finite A,B>0, an oscillatory
instability occurs near the resonance A=B if
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C<0, |C]>y4A (A7)

[see Eq. (29)]. For the parameter signs relevant to the labo-

ratory experiments (see Sec. I G 4), the parameter Cis al-
ways positive and, hence, the instability condition (A7) can-
not be satisfied.

2. N=3 cluster
For N=3, we have the following modes.

* The “horizontal rotation” mode: Q*=0.

e The two coupled “breathing” and “vertical sloshing”
modes considered in the main text of the present paper.

e The coupled “vertical shear,” “horizontal sloshing,” and
“kink” modes. Each mode is doubly degenerated and,
hence, the matter concerns six modes. The corresponding
equation for the frequencies can be obtained by consider-
ing particle motion which simultaneously satisfies the fol-
lowing relations:

llr=_2l2r=_2l3r’ 110=07 120=_l307

llZ:_2122:_213Z' (AS)

(Of course, the subscripts 1, 2, 3 can be rearranged.) This
gives

(Q2 - ‘/Vhsl)l:(()2 - Vvkink)(‘(12 - sth) - Cl] = C2» (A9)
where
thl=_30-h/K’ (AIO)

sth =e;+epq;+ 3va +q.0y,— 0y, — (quz + Bzz)ghklz’
(A11)

Wiink = 3(o, — 03/ )12, (A12)

3
Cl = E[O%h - 40-}“810-011 + zozhﬁf + (O-hz + qZO.h)a'th]v

(A13)

9
Cz = Zﬁza'h((fhh + O'h/K)[ZO'Uh - Oy, = (Bz + qz)o-h]‘

(A14)

In contrast to Eq. (17), Eq. (A9) is cubic with respect to
0 and, hence, it is difficult to find the solutions analytically
and analyze them. However, the stability analysis can be
easily performed in the case of weak coupling of the modes.

We assume that |C;| and |C,| are small (i.e., the coupling
between the modes is weak) and that Wy, W.g,, and Wy
are finite and positive. In this case, an instability is possible
only when two of three parameters Wy, W, Wiin are suf-
ficiently close to each other (i.e., a resonance takes place).
[Otherwise, Eq. (A9) has three real solutions O slightly dif-
ferent from Wy, Wy, Wiink. respectively.] We consider all
three possible resonances separately.

Resonance W, =W, ,: We consider the case where Wy
and W, are close to each other and significantly different
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from Wi, In this case, the first solution of Eq. (A9) is real
and approximately equal to Wy;,.. Since the two remaining
solutions are close to Wy, we replace Q>—W,, by Wyg
— Wiink in Eq. (A9) to find these solutions. Thus, we obtain

C, )_ c,
Wisi = Wiink/  Whsi = Wiink
(A15)

(()2 - thl) (Qz - sth -

Equation (A15) has the same form as Eq. (17) and, hence,
the instability condition has the same form as Eq. (29):

Chsl,vsh < 0’ |Chsl,vsh| > 'yZthh (A16)

where Chg ysn=Co/ (Wpg—Wiine). Using Egs. (A10), (A12),
and (A14), we obtain
3

Chst,vsh = 5(— 20+ 0uB. + O + 4.04) 04 B-. (A17)
For the parameter signs relevant to the laboratory experi-
ments (see Sec. I G 4), the parameter Cy 4, is always posi-
tive and, hence, instability condition (A16) cannot be satis-
fied.

Resonance W;,,=W,,: We consider the case where
Wiink and W, are close to each other and significantly dif-
ferent from W, In this case, the first solution of Eq. (A9) is
real and approximately equal to W,. Since the two remain-
ing solutions are close to Wi, we replace Q°—W, by
Wiink— Wha in Eq. (A9) to find these solutions. Thus, we
obtain

G

(Qz - Wkink)(Q2 W) =C+ ————.
. Wiink = Whl

(A18)
Equation (A18) has the same form as Eq. (17) and, hence,
the instability condition has the same form as Eq. (29):

| Crinkvshl > ¥ Wik (A19)

where Ckink,vsh= C1+C2/(Wkink_WhSl)' USing EqS (AIO) and
(A12)—(A14), we obtain

Ckink,vsh < 0’

3
Chink.vsh = E(U A (A20)
Thus, Cyvsn 18 always positive and, hence, the instability
condition (A19) cannot be satisfied.
Resonance W, =W;: Using the same technique, we
obtain the instability condition

| Cratiinkl > V" Whl,

where  Cig kink=Ca/ (Wyink—Wyg). Note that the equation
W= Wiink 18 equivalent to o;,;,k+d;,=0 [see Egs. (A10) and
(A12)]. Hence, the resonance Wyg=W,;, is impossible as
long as oy;,k+0;,>0 (i.e., the product of the horizontal re-
pulsion force and the interparticle distance decreases with the
interparticle distance).

Chsikink < 0, (A21)
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