
DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES 

DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE 

DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN 

 

 
 

HIGH ENERGY DENSITY MATERIALS  
BASED ON TETRAZOLE AND NITRAMINE 

COMPOUNDS 
– 

SYNTHESIS, SCALE-UP AND TESTING 
 

 
 

 
 
 
 

VORGELEGT VON 
  

JAN J. WEIGAND 
 

AUS 
  

REISBACH 
 

2005 



 
Erklärung 

 
 
Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. 
Januar 1998 von Prof. Dr. Thomas M. Klapötke betreut.  
 
 
 
 

Ehrenwörtliche Versicherung 
 
Diese Dissertation wurde selbständig, ohne unerlaubte Hilfsmittel erarbeitet. 
 
 
 
München, den 27. März 2005 
 
 
 
 
 
 
 
 
       ……………………………………… 
 
           (Jan J. Weigand) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dissertation eingereicht am:   27.04.2005 
 
1. Gutachter      Prof. Dr. Thomas M. Klapötke 
 
2. Gutacher     PD Dr. Axel Schulz 
 
Mündliche Prüfung am   25.05.2005 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Mom, I love you! 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      THOMAS, NIELS, ROSEMARIE, 
       DOMINIK, RENATE, PETER, 
        HARTMUT AND ZACHARY 
 
           Thank you! 
 
 



Acknowledgement  
 

 

 

 

I would like to thank Prof. Dr. Thomas M. Klapötke for all his guidance and encouragement 

during this study and for his invaluable mentorship.  

 

 

I would like to thank the group of Prof. Klapötke and the members of the Department of 

Chemistry and Biochemistry for support. 

 

 

 

 

     JJW thanks for a FCI scholarship, DO 171/46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axel, Thank you! 



 i

TABLE OF CONTENTS 

 

 

 

 

 

  Page 

TABLE OF CONTENTS…..…...……………………………………………………… i 

LIST OF TABLES………………………………………………………………...…… viii 

LIST OF FIGURES…………………………………………………………………….. xi 

LIST OF SCHEMES…………………………………………………………………… xvi 

 

 

CHAPTER 

 I INTRODUCTION 

 1. Classification of explosives …………………………………………….. 1 

 1.1 High Explosives…………………………………………………. 5 

 1.2 Propellants………………………………………………………. 6 

 1.3 Pyrotechnics……………………………………………………... 7 

 2. Drawbacks of Explosives……………………………………………….. 7 

 2.1 Pyrotechnic Compositions………………………………………. 7 

 2.2 Gas Generators…………………………………………………...8 

 2.3 Liquid Propellants……………………………………………….. 9 

 2.4 Primary Explosives………………………………………………9 

 2.5 Tetrazene as Sensitizer…………………………………………...10 

 3. High Energy Density Materials − A Solution ?…………………….…… 10 

 3.1 Relationship between Guanidines and Tetrazoles……………….. 12 

 3.2 Goals of this Study………………………………………………. 14 

 3.3 Experimental Techniques………………………………………... 20 

 3.3.1 Thermal Analysis………………………………………...20 

 TGA…………………………………………………….. 20 

 DSC…………………………………………………….. 21 



 ii

CHAPTER Page 

 

 Bomb Calorimetry……………………………………… 24 

 Explosion experiments………………………………….. 24 

 3.3.2 Sensitivity Tests………………………………………….25 

 Impact Sensitivity……………………………………….26 

 Friction Tester…………………………………………... 27 

 Koenen Test…………………………………………….. 28 

 4. References………………………………………………………………. 30 

 

 II 5-AMINOTETRAZOLE AND AZOTETRAZOLATES 

 1. Introduction……………………………………………………………... 34 

 1.1 Tetrazoles………………………………………………………... 34 

 1.1.1 Tautomerism…………………………………………….. 35 

 1.1.2 Stability…………………………………………………. 36 

 1.1.3 Acid/base properties……………………………...……... 37 

 1.1.4 5-Aminotetrazole monohydrate (5-AT, 13) …………….. 38 

 1.2 Azotetrazolates…………………………………………………... 39 

 2. Azidoformamidinium and Guanidinium 5,5’-Azotetrazolate Salts……... 41 

 2.1 Synthesis of AFZT, GZT, AGZTH, DAGZT and TAGZT…… 41 

 2.2 Result and Discussion………………………………………….... 43 

 2.2.1 Raman, IR  and NMR Spectroscopy…………..………… 43 

 2.2.2 Crystal structure of AFZT and AGZTH………………... 45 

 2.2.3 Thermodynamic aspects………………………………… 48 

 Heats of formation……………………………………… 48 

 Detonation pressure (P) and velocities (D)……………... 49 

 Impact and friction sensitivities………………………… 50 

 2.2.4 Thermal behavior………………………………………...50 

 DSC…………………………………………………….. 51 

 Explosion products……………………………………... 52 

 2.3 Conclusion………………………………………………………. 55 

 2.4 Experimental…………………………………………………….. 56 

 

 



 iii

CHAPTER Page 

 

 3. Hydrazinium 5,5’-Azotetrazolate Salts………………………………...... 61 

 3.1 Synthesis of HZT (26), HZTH (27), and DAD (28)…….……… 62 

 3.2 Patent……………….………………………………………….... 63 

 3.3 High Temperature and Pressure FTIR study of DAD (28)……… 78 

 3.3.1 Experimental Method……………..…………..………… 78 

 3.3.2 Experimental Results ………...………...………...……... 80 

 3.3.3 Discussion…………….………………………………… 88 

 3.3.4 Conclusion………………………………………………. 90 

 4. STANAG 4147 and 4582…….…………………………………………. 91 

 4.1 Compatibility tests of  HZT and HZTH with TLPs….…….....… 92 

 4.2 Compatibility tests of  TAGZT with TLPs………...…..……...… 95 

 4.3 Conclusion………………………………………………………. 97 

 5. References………………………………………………………………. 99 

 

 III N,N-BIS-(1(2)H-TETRAZOL-5-YL)-AMINE HYDRATE (BTA) 

 1. Introduction……………………………………………………………... 102 

 1.1 Pyrotechnic composition and primers …………………………... 102 

 1.2 Synthesis of H2bta (30)…...………...…………………………... 104 

 2. The Dianion of 5-Cyanoiminotetrazoline: C2N6
2- (CIT, 33).……...…..... 105 

 2.1 Introduction……...………………………………………….…… 105 

 2.2 Results and Discussion…………………………………………... 107 

 2.2.1 Synthesis and properties of CIT salts ………...………… 107 

 2.2.2 DSC of Cs2CIT (34)……………………...……………... 108 

 2.2.3 In Situ X-ray Powder Diffraction of Cs2CIT (34) ….…… 109 

 2.2.4 X-ray Structure of (iPrNH3)2CIT•MeOH (35) and 34…... 110 

 2.2.5 Structure and bonding of the CIT dianion………………. 113 

 2.2.6 Crystal Structure of [Pd(C2N6)(NH3)3]·H2O (36)……….. 115 

 2.2.7 The reaction of Cs2CIT with SO2……………………….. 118 

 2.2.8 Crystal Structure of Cs2CIT-SO3•SO2 (37)……………… 119 

 2.2.9 CIT versus CITSO3…………………...………………... 121 

 2.3 Conclusion............................…………………………………….. 122 

 2.4 Experimental……………………...……………………………... 123 



 iv

CHAPTER Page 

 

 3. H2bta as HNC ligand system.……………………………………...…..... 127 

 3.1 Alkali and alkaline earth metal salts……………………………... 127 

 3.1.1 Raman spectroscopy…………………………………….. 128 

 3.1.2 Crystal structure of Li2bta*5H2O (40)…………....…......  130 

 3.1.3 Crystal structure of Na2(bta)*2H2O (42)……...………… 132 

 3.1.4 Crystal structure of CsHbta*H2O (39), Rb2bta*H2O (43) 

 and Csbta*H2O (44)……………………………………. 134 

 3.1.5 Crystal structure of Cabta*5H2O (45) and  

 and Babta*5H2O (46)……………………………………136 

 3.1.6 Experimental…………………...………………………... 138 

 3.2 H2bta / (NH4)2[Cu(NH3)6] System………...…………………...... 143 

 3.2.1 Introduction……….…………………………………….. 143 

 3.2.2 Synthesis of Cu(bta)(NH3)2 (47), Cu(bta)(NH3)2*H2O (48) 

 and (NH4)2Cu(bta)2*2.5H2O (49)………………………. 143 

 3.2.3 Crystal structure of 47 and 48…………………………… 144 

 3.2.4 Magnetic properties of 47, 48 and 49……………...….… 150 

 3.2.5 Thermal decomposition and thermodynamic aspects…… 152 

 3.2.6 Conclusion………………………………………………. 154 

 3.2.7 Experimental……………………………………………. 155 

 3.3 H2bta / CuX2 (X = Cl-, ClO4
-) System………..………….........… 158 

 3.3.1 Introduction……….…………………………………….. 158 

 3.3.2 Synthesis…………………………………………………158 

 3.3.3 Molecular structure of  

 [CuCl2(H2bta)(H2O)]*2H2O (50)...................................... 159 

 3.3.4 Molecular structure of [CuCl(H2bta)2]Cl (51)……........... 160 

 3.3.5 Molecular structure of [CuCl2(H2bta)2]*2H2O (52)…….. 162 

 3.3.6 Molecular structure of [Cu(H2bta)2](ClO4)2*H2O (53)…. 162 

 3.3.7 Discussion........................................................................... 163 

 3.3.8 Experimental…………………...………………………... 166 

 3.4 Conclusion…............................................……..………….........… 167 

 4. References……..…………...……………………………………...…..... 168 

 



 v

CHAPTER Page 

 

 IV 1,5-DIAMINO-1H-TETRAZOLE (DAT) 

 1. Introduction……………………………………………………………... 173 

 1.1 DAT ……………………………………...……………………... 173 

 1.2 Energetic salts…..………………………………..……………… 174 

 1.3 Crystal building units…...………………………..……………… 175 

 2. HDAT+ / MeDAT+ salts………………………………………………… 177 

 2.1 Synthesis………………………………………………………… 178 

 2.2 IR spectroscopy……….……..……………...…………………… 179 

 2.3 15N Chemical Shifts and 1H-15N Coupling Constants…………… 182 

 2.4 1H and 13C NMR spectra………………………………………… 184 

 2.5 Molecular structure of HDATNO3 (59a), HDATClO4 (59b),  

 MeDATNO3 (61b) and MeDATN3 (61d)……………………... 186 

 2.6 Crystal structure of 59a, 61b, 59b and 61d……………………… 189 

 2.7 MeDATN(NO2)2 (61c)………………………………………...… 194 

 2.7.1 Crystal structure of 61c………………………………..… 195 

 2.7.2 Closed-shell interaction in 61c………………….………. 197 

 2.8 Thermodynamic aspects…..…………………………………...… 199 

 2.8.1 Heats of formation and detonation…...……………..…… 199 

 2.8.2 Detonation pressures and velocities………..……….…… 202 

 2.8.3 Sensitivity test…………………………………………... 202 

 2.8.4 Koenen test of 59c………………………………….…… 203 

 2.9 Thermal behavior ……..…….………………………………...… 204 

 2.9.1 DSC and TGA…………………….....……………..…… 205 

 2.9.2 Activation energy………...……….....……………..…… 208 

 2.9.3 Decomposition experiments.…….......……………..…… 208 

 Possible decomposition scheme for 61d………..…...….. 208 

 Possible decomposition scheme for 61b…….....……….. 212 

 Possible decomposition scheme for 61c……..………….. 215 

 2.10 Conclusion……....….…..…….……………………………...… 217 

 2.11 Experimental….....….…..…….……………………………...… 218 

 3. References…..……………...……………………………………...…..... 224 

 



 vi

CHAPTER Page 

 

 V 1,4-BIS-[TETRAZOL-5-YL]-1,4-DIMETHYL-2-TETRAZENES 

 1. Introduction……………………………………………………………... 229 

 1.1 Synthesis………..………………………...……………………... 230 

 1.1.1 A: Building of Nitrogen Chains…………………………. 230 

 1.1.2 B: Exchange of substituents…..…………………………. 232 

 1.2 Stability of 2-tetrazenes.………………......……………………... 233 

 1.3 1,4-Bis-[1-methyltetrazolyl-5-yl]-1,4-dimethyl-2-tetrazene (84)... 233 

 2. Substituted hydrazine derivatives…………………………..…………… 235 

 2.1 From cyanohydrazines…................................................................. 235 

 2.2 From thiosemicarbazides................................................................. 236 

 2.2.1 Possible mechanism of hydrazine decomposition………. 240 

 2.2.2 Properties of 88a-d………………………...……………. 243 

 2.2.3 Mass spectrometry of 88d………….....…...……………. 244 

 2.2.3 Raman and IR spectroscopy.……….....…...……………. 246 

 2.2.4 Crystal structure of 88a and 88b. …………………...…... 246 

 3. Oxidation of hydrazine derivatives 88a-d……………...…..…………… 249 

 3.1 Characterization of 84a-d...................…...….....…...……………. 254 

 3.1.1 Raman and IR spectroscopy…………………………….. 254 

 3.1.2 Mass spectrometry of 84b……………………...……….. 255 

 3.1.3 Mass spectrometry of 84d……………...……………….. 256 

 3.2 Molecular and Crystal structures of 84d and 104……......………. 257 

 4. Decomposition experiments of 84a and 84b……...…....…..…………… 261 

 5. Conclusion………...………………………..……...…...…..…………… 262 

 6. Experimental………………………………..……...…...…..…………… 263 

 7. References……..…………...……………………………………...…..... 272 

 

 VI NITRAMINES 

 1. N-Nitroso- and N-Nitraminotetrazoles...………………………………... 275 

 1.1 Synthesis and properties of N-Nitroso- a. N-Nitraminotetrazoles.. 276 

 1.2 Molecular Structures…………………………………………….. 278 

 1.3 NBO analysis……………………………………………………. 283 

 1.4 15N Chemical Shifts and 1H-15N Coupling Constants…………… 285 



 vii

CHAPTER Page 

 

 1.5 1H and 13C NMR spectra………………………………………… 287 

 1.6 Raman and IR spectroscopy……………………………………... 289 

 1.7 N,N Rotational Barriers…………………………………………. 289 

 1.8 Thermochemistry………………………………………………... 292 

 1.9 Conclusion………………………………………………………. 294 

 1.10 Experimental…...………………………………………………. 294 

 2. Mono- and Dinitrobiuret..........……...............…………………………... 300 

 2.1 Synthesis of MNB (113) and DNB (114)……………...………... 302 

 2.2 Raman and IR spectroscopy of MNB and DNB……..………….. 302 

 2.3 NMR spectroscopy of MNB and DNB……..…………..……….. 303 

 2.4 Molecular structure of MNB, DNB*H2O and DNB…....……….. 306 

 2.5 Reaction of DNB with base……………………………………... 308 

 2.5.1 Synthesis of DNB salts………………………………….. 308 

 2.5.2 IR spectroscopy…………………………………………. 309 

 2.5.3 Molecular structure of dipotassium dinitrobiuretate (117) 310 

 2.5.4 1H and 13C NMR of DNB and DNB salts……………….. 311 

 2.6 Decomposition of DNB in solution………………………............ 311 

 2.7 Thermochemistry of MNB and DNB………….……………........ 314 

 2.7.1 Thermal behavior…...…………………………..……….. 314 

 2.7.2 IR spectroscopy…………….…………………..……….. 318 

 2.7.3 Mass spectrometry...…..………………………..……….. 321 

 2.7.4 Discussion………....…..………………………..……….. 322 

 2.8 Explosive properties………………..………….……………........ 324 

 2.9 Conclusion………..………………..………….……………........ 325 

 2.10 Experimental...…..………………..………….……………........ 326 

 3. Sachstandsbetricht zur Studie E/E210/4D004/X5143..………..………... 329 

 4. References…………………………………………....………..………... 362 

 

APPENDIX A………………..………………………………………………………… 367 

APPENDIX B………………..………………………………………………………… 384 

Full List of Publications 

CV 



 viii

LIST OF TABLES 

TABLE Page 

1.1 Pyrotechnic composition generating different colored smoke…………………… 6 

1.2 Impact sensitivity of selected examples………………………………………….. 26 

1.3 Friction sensitivity of selected examples…………………………………………. 28 

1.4 Fragmentation degree ……………………………………………………………. 29 

1.5 Sensitivity guidelines…………………………………………………………….. 29 

2.1 Selected bond length and angles of the cations in AFZT and AGZT…………… 46 

2.2 Hydrogen bond geometry (Å, °) of AFZT and AGZTH……………………..….. 47 

2.3 Summary of the physico-chemical properties of the investigated salts…………... 49 

2.4 Peak positions and total shifts for peaks moving with pressure from Figure 2.11.. 81 

2.5 Peak positions and total shifts for peaks moving with pressure from Figure 2.13.. 84 

2.6 Peak positions and total shifts for peaks moving with pressure from Figure 2.14.. 84 

2.7 Measured samples and sample amount…………………………………………... 92 

2.8 Evolved energy and evaluated measurement time……………………………….. 93 

2.9 Maximum heat flow [µW g-1]……………………………………………………. 93 

2.10 Compatibility of HZT and HZTH toward STAB-0-DPA; t = 5 days…………… 94 

2.11 Measured samples and sample amounts………………………………………….. 95 

2.12 Results of the measurement……………………………………………………… 96 

3.1 Comparison of selected interatomic distance (Å) and bond angles (°) of the C2N6 111 

3.2 Observed Cs-N contacts and calculated vaelency units in 34……………………. 112 

3.3 Selected structural parameters (Å, °) of 36……………………………………..... 117 

3.4 Hydrogen bond geometry (Å, °) of 36………………………………………...…. 117 

3.5 Selected geometric parameters (Å, °) of 37….……………..…………………….. 120 

3.6 Observed Cs-N contacts and calculated valency units in 37…..…………………. 121 

3.7 Selected geometric parameters (Å, °) of 40 and 42……………………………… 131 

3.8 Hydrogen bond geometry (Å, °) of 40 and 42………………………………….... 134 

3.9 Selected geometric parameters (Å, °) of  47 and 48……………………………… 145 

3.10 Hydrogen bond geometry (Å, °) of 47 and 48………………………………...….. 147 

3.11 Physico-chemical properties of 47 and 48……………………………………….. 153 

4.1 Calculated and experimental IR and Raman data of 55, 59a and 61a………….… 182 

4.2 15N and 13C NMR chemical shifts………………………………………………... 184 

4.3 Comparison of Selected Interatomic Distance…………………………………… 188 

4.4 Hydrogen bond geometry (Å, °)…………………………………………………. 196 



 ix

4.5 Bond Critical Points in 61c………………………………………………...…….. 198 

4.6 Thermochemical Results of the Synthesized Salts 59a, 59b and 61b-d………..... 200 

4.7 Explosive Properties and Initial Safety Testing.…………………………………. 202 

4.8 Properties of the salts 61b-d related to the DSC and TGA measurements……….. 205 

4.9 Maximum exothermic responses of 61b-d as a function of scan speed………….. 207 

4.10 Observed mass (m/z) in the decomposition experiments of 61d………….……… 208 

4.11 Vibrational frequencies (cm-1) of the exp. observed molecules in the gas phase… 211 

5.1 Yields and mobile phase for the purification of 88a-d………………………….... 240 

5.2 Comparison of selected interatomic distance…………………………………….. 247 

5.3 Oxidations methods…………….....………………………………………………250 

5.4 Selected structural parameters of different tetrazenes……...…………………….. 259 

6.1 Synthesis of the 5-aminotetrazole derivatives 109a-c, 111a, 111c and 112a-c…... 278 

6.2 Comparison of selected interatomic distances (Å)……………………………….. 279 

6.3 Comparison of selected calculated Wiberg bond indices………………………… 284 

6.4 Summary of the NBO Analysis of 111a,c and 112a-c………………………...…. 284 

6.5 15N and 13C NMR chemical shifts………………………………………………... 285 

6.6 Potential Energy Barriersa (Kcal mol-1) for the Rotation about the N−N Bond….. 290 

6.7 Thermochemical properties of 112a and 112c……………………………...……. 293 

6.8 NMR data of biuret, MNB and DNB….……………….……………………..….. 304 

6.9 IR frequencies and modes in 116 and 117………………………………….……. 310 

6.10 1H and 13C NMR of DNB and deprotonated species……………………………... 312 

6.11 Residual products after the first decomposition step of MNB…………………… 317 

6.12 Maximum exothermic responses of MNB and DNB as a function of scan speed.. 317 

6.13 Vibrational frequencies (cm-1) of the experimentally observed molecules………. 322 

A-1 Frequency analysis of CIT dianion (33): B3LYP/aug-cc-pvDZ…………………. 367 

A-2 Frequency analysis of Cs2CIT (33): B3LYP/aug-cc-pvDZ………………………. 368 

A-3 Frequency analysis of CIT•SO3 (37): B3LYP/aug-cc-pvDZ…………………….. 369 

A-4 NPA Charges (B3LYP/aug-cc-pvDZ) [e]………………………………………... 369 

A-5 AIM and NBO charges…………………………………………………………... 370 

A-6 Cartesian coordinates from X-ray structure determination………………………. 371 

A-7 Parameters of the critical point analysis………………………………………….. 372 

A-8 G2/G3 method…………………………………………………………………… 374 

A-9 Mulliken and NBO (in brackets) charges [e]………………...…………………... 377 

A-10 Absolute Energies (in au) for Ground State and Transition States……………….. 378 



 x

A-11 Absolute Energies (in au) for Ground State and Transition States……………….. 378 

A-12 Absolute Energies (in au) for Ground State and Transition States……………….. 379 

A-13 Calculated and experimental IR and Raman frequencies of MNB………………. 380 

A-14 Calculated and experimental IR and Raman frequencies of DNB.………………. 381 

 



 xi

LIST OF FIGURES 

FIGURES Page 

1.1 Classification of Explosives……...………………………………………………. 2 

1.2 Structures of commonly used Explosives……..………………………………..... 2 

1.3 HEDMs and insensitive LPEMs…………………………………………………. 3 

1.4 HEDMs with a combination of an acyclic and cyclic moiety……………………. 12 

1.5 Nitrogen content of certain Tetrazoles and Salts………………………………… 15 

1.6 BAM drop hammer………………………………………………………………. 25 

1.7 BAM friction tester………………………………………………………………. 27 

1.8 Koenen Test……...………………………………………………………………. 28 

2.1 A view of the molecular structure of AFN……………………………………….. 28 

2.2 Raman spectra of 5,5-azotetrazolate salts………………………………………... 44 

2.3 A view of the molecular structure of AFZT……………………………………... 45 

2.4 A view of the molecular structure of AGZTH……………………………….….. 46 

2.5 DSC thermograph of the investigated salts (β = 10°C min-1)…………………….. 51 

2.6 Gas phase spectra of the decomposition products of the ZT salts………………... 52 

2.7 Dihydrazinium salt of [N4C-N=N-CN4]2-………………………………………... 61 

2.8 Original preparation procedure of dihydrazinium salt of [N4C-N=N-CN4]2-…….. 62 

2.9 Bassett-type HDAC experimental setup…………………………………………. 79 

2.10 Background file from the HDAC with no gasket and no sample………………… 80 

2.11 Room temperature pressure increase after a previous pressure cycle…………….. 81 

2.12 Spectra from temperature increase……………………………………………….. 82 

2.13 Compression and decompression cycle at room temperature…………………….. 83 

2.14 Compression and decompression cycle at room temperature…………………….. 85 

2.15 Spectra from temp. increase where the pressure was initially set to 2.12 Gpa…… 86 

2.16 Spectra from temp. increase where the pressure was initially set to 5.25 GPa…… 87 

2.17 Spectrum from a sample with no gasket…………………………………………. 88 

2.18 Decomposition temperature versus pressure……………………………………... 90 

2.19 HZT, STAB-0-DAP and mixture and STAB-0-DPA + HZTH…………………. 94 

2.20 HZTH, STAB-30-DAP and mixture…………………………………………….. 95 

2.21 TAGZT, STAB-0-DAP and mixture…………………………………………….. 96 

2.22 TAGZT, STAB-15-DAP and mixture……………………………………………97 

3.1 Promising HNC high energy materials…………………………………………... 102 

3.2 Selected carbon-nitrogen anions…………………………………………………. 106 



 xii

3.3 DSC experiments showing the decomposition of β-Cs2C2N6……………………. 108 

3.4 Temperature-dependent X-ray diffraction measurement………………………… 109 

3.5 Formula unit and labeling scheme for 35………………………………..……….. 110 

3.6 Formula unit and labeling scheme for 34……………………………………..….. 111 

3.7 Molecular model and numbering scheme of the C2N6…………………………… 112 

3.8 View of cesium coordination environment in Cs2CIT…………………………… 113 

3.9 Nine possible Lewis representations……………………………………………... 114 

3.10 π-Type MOs (B3LYP/aug-cc-pvTZ) of CIT displaying the 10π-8c-bond......…... 115 

3.11 The dimer [Pd(C2N6)(NH3)3]•H2O (36)………………………………………….. 116 

3.12 Formula unit and labeling scheme for 37………………………………………… 120 

3.13 View of cesium coordination environment in Cs2CIT-SO3•SO2 (37)……………. 121 

3.14 Best Lewis representation of CITSO3………...…………………………………. 122 

3.15 Subunit of the crystal structure in 38 along the [100] axis……………………….. 128 

3.16 Raman spectra of alkaline bta salts………………………………………………. 129 

3.17 Coordination environment of the two Li+ cations………………………………... 130 

3.18 Part of the crystal structure of 42………………………………………………… 132 

3.19 Part of the crystal structure of 42 showing the formation of the (010) sheet……... 133 

3.20 Main graphs sets in the 1D subunit of 39……………………………………...…. 135 

3.21 View along the [100] axis in 44………………………………………………….. 135 

3.22 View of the dimeric unit in 45…………………………………………………… 136 

3.23 View of the extended dimeric unit in 46…………………………………………. 137 

3.24 The coordination environment of the CuII ion in 47……………………………… 144 

3.25 Crystals structure of 48…………………………………………………………... 146 

3.26 Crystals structure of 48…………………………………………………………... 148 

3.27 View of the chain like structure in 49……………………………………………. 149 

3.28 Plot of χMT vs. T for 47 (A) and 48 (B) under an applied magnetic field of 0.5 T.. 150 

3.29 Plot of χMT vs. T for 49 under an applied magnetic field of 0.5 T……………….. 151 

3.30 DSC thermographs of 47 (left) and 49 (right)……………………………………. 152 

3.31 The coordination environment of the CuII ion in 47……………………………… 159 

3.32 The hydrogen-bonding system in 50……………………………………………... 160 

3.33 The coordination environment of the CuII ion in 51…………………..………….. 161 

3.34 The coordination environment of the CuII ion in 52…………………..………….. 162 

3.35 View of the molecular structure of 53………………………………………...….. 163 

3.36 IR spectra of 50, 51, 52 and 30…………………………………………………... 164 



 xiii

3.37 Raman experiment of 52…………………………………………………….…… 165 

3.38 Molecular arrangement of 54…………………………………………………….. 167 

4.1 Aminotetrazoles………………………………………………………………….. 173 

4.2 Scheme of the 2D organization pattern of [HGN+NO3
-]…………………………. 176 

4.3 Reaction products of DAT…………………………………...……………….….. 177 

4.4 IR spectra of 61a-d recorded in KBr……………………………………………... 181 

4.5 Proton broadband decoupled and coupled 15N NMR spectra of 55………………. 183 

4.6 1H-HMBC NMR spectrum of 61a………...……………………………...……… 185 

4.7 Formula unit and labeling scheme for 59a……………………………………….. 186 

4.8 Formula unit and labeling scheme for 59b……………………………………….. 187 

4.9 Formula unit and labeling scheme for 61b……………………………………….. 187 

4.10 Formula unit and labeling scheme for 61d……………………………………….. 189 

4.11 Surrounding of the NO3
- anion in the structure of 59a………………………….... 190 

4.12 Surrounding of the NO3
- anion in the structure of 61b………………………….... 192 

4.13 Surrounding of the ClO4
- anion in the structure of 59b…………………………... 193 

4.14 Surrounding of the N3
- anion in the structure of 61d……………………………... 194 

4.15 Formula unit and labeling scheme used for 61c………………………………..… 195 

4.16 View of the strand formed by alternating cations (MeDAT) and anions (DN)…... 196 

4.17 Koenen test of 59c (d = 2 mm)………...………………………………………… 203 

4.18 Koenen test of 59c (d = 6 mm)……………...…………………………………… 204 

4.19 DSC and TGA thermographs of 61b (β = 10°C/min)………..…………………... 205 

4.20 DSC and TGA thermographs of 61c (β = 10°C/min)………..…………………... 206 

4.21 DSC and TGA thermographs of 61d (β = 10°C/min)………..…………………... 206 

4.22 Gas phase IR spectrum of the decomposition products of 61d…......…………..... 209 

4.23 Infrared spectroscopic evolved gas analysis of 61d……………………………… 211 

4.24 Infrared spectroscopic evolved gas analysis of 61b…………………………..….. 212 

4.25 Gas phase IR spectrum of the decomposition products of 61b……………...…… 213 

4.26 Mass spectrum of the decomposition products of 61b…...………...…………..… 213 

4.27 13C-NMR spectra of decomposition products of 61b recorded in [d6]-DMSO…... 215 

4.28 Infrared spectroscopic evolved gas analysis of 61c……………..………………... 216 

4.29 Gas phase IR spectrum of the decomposition products of 61c…...………………. 216 

5.1 Five possibilities for the linkage of four di- and/or three-coordinated N-atoms….. 229 

5.2 1,4-bis-[tetrazolyl-5-yl]-2-tetrazenes…………………………………………….. 234 

5.3 DEI+ mass spectrum of 88b………………………………………………..…….. 245 



 xiv

5.4 Formula unit and labeling scheme for 88a…………………………………..…… 246 

5.5 Formula unit and labeling scheme for 88b…………………………………..…… 247 

5.6 Crystal arrangement of 88a viewed along the [100] axis………………………… 248 

5.7 Crystal arrangement of 88b viewed along the [010] axis………………………… 249 

5.8 Molecular structure of 105a……………………………………………………… 253 

5.9 DEI+ mass spectrum of 84b……………………………………………...………. 255 

5.10 DEI+ mass spectrum of 84d………………………………………………...……. 256 

5.11 ORTEP plot of the molecule structure of compound 84d………………………... 258 

5.12 View of the crystal structure of 84d along the [100] axis…...………………….... 259 

5.13 View of the molecular arrangement of 104……………………………..……..…. 260 

5.14 IR spectra of evolved gases from pyrolysis experiments of 88a and 88b………... 261 

6.1 Secondary explosives…………………………………………………………….. 275 

6.2 Connectivity and numbering scheme…………………………………………….. 279 

6.3 Molecular structures and labeling scheme for 109a, 111a and 112a……...…..…. 280 

6.4 Molecular structures and labeling scheme for 109c, 111c and 112c………….….. 281 

6.5 Molecular structure and labeling scheme 112b………………………..…………. 282 

6.6 Lewis representation of the donor-acceptor interaction of p-LP(N5)…………….. 283 

6.7 Connectivity and numbering scheme…………………………………………….. 284 

6.8 Temperature depended 1H and 13C{1H} NMR spectra of 112b…………..…...….. 288 

6.9 Resonance in N-nitrosamines…………………………………………………….. 289 

6.10 Optimized structures and transition states of N-nitrosoaminotetrazoles…..……… 291 

6.11 Examples of nitroureas………………………………………………………….... 301 

6.12 MNB and DNB……………………………………………………………….….. 301 

6.13 14,15N NMR spectra of biuret, MNB and DNB……………………………….….. 305 

6.14 Formula unit and labeling scheme for MNB………………………………..……. 306 

6.15 Formula unit and labeling scheme for DNB*H2O……………………………..… 307 

6.16 Formula unit and labeling scheme for DNB……………………………….…….. 308 

6.17 View of the molecular structure of 117……………………………………….….. 309 

6.18 View of the molecular structure of 117………………………………………..…. 310 

6.19 Decomposition of DNB in [d6]-DMSO solution………………………………… 313 

6.20 DSC thermographs of MNB (β = 5, 10, 15 and 20°C/min)……………………… 314 

6.21 TGA and DTGA thermograph of MNB…………………………………….…….315 

6.22 13C-NMR spectra of decomposition products of MNB……………………..……. 315 

6.23 DSC thermographs of DNB…………………………………………………..….. 317 



 xv

6.24 TG and DTG thermograph of DNB………………………………………...……. 318 

6.25 Infrared spectroscopic evolved gas analysis of MNB…………………...……….. 319 

6.26 Infrared spectroscopic evolved gas analysis of DNB………………...…………... 320 

6.27 IR spectra of HNCO and decomp. gases of MNB (190°C) and DNB (130°C)…... 320 

6.28 EI-mass spectrum (70 eV) of the decomposition gases of MNB……………...…. 321 

6.29 EI-mass spectrum (70 eV) of the decomposition gases of DNB…………………. 322 

6.30 Koenen test with DNB…………………………………………………...………. 325 

A-1 Numbering scheme of 61c used in calculation…………………………………… 371 

A-2 The electron density plot, ρ (r), and the Laplacian plot ρ (r), -∇ 2ρ (r)…………... 373 

A-3 ESP mapped onto electron density surface of 111c……………………………… 375 

A-3 ESP mapped onto electron density surface of 111a……………………………… 375 

A-3 ESP mapped onto electron density surface of 112c……………………………… 376 

A-3 ESP mapped onto electron density surface of 112b……………………………… 376 

A-3 ESP mapped onto electron density surface of 112a……………………………… 377 

 



 xvi

LIST OF SCHEMES 

SCHEMES Page 

1.1 Relationship between Guanidines and Tetrazoles ………………….……………. 13 

2.1 Tautomerism of Tetrazole………………………………………………………... 34 

2.2 Tautomerism of 5-Aminotetrazole and related derivatives…………...………….. 35 

2.3 Imidoyl azide − Tetrazole equilibrium………………………………………....… 36 

2.4 Typical decomposition pathway of 1,5-disubstituted tetrazoles………………….. 37 

2.5 Synthesis of 5-AT (14)…………………………………………………………... 38 

2.6 Oxidation of 5-AT to Na2ZT…………………………………………………….. 39 

2.7 Reaction of BaZT with (N2H5)2SO4……………………………………………... 40 

2.8 5-AT monohydrate………………………………………………………………. 41 

2.9 Synthesis of Azidoformamidinium and Guanidinium 5,5’-Azotetrazolate Salts… 42 

2.10 Simplified scheme of the initial decomposition pathway of the ZT salts………... 53 

2.11 Simplified scheme of the decomposition pathway of the AF cation……………... 54 

2.12 Simplified scheme of the decomposition pathway of the guanidinium cations…... 54 

3.1 Synthesis of H2bta (30)………………………………………………………….. 104 

3.2 Synthesis of CIT (33)……………………………………….…………………… 107 

3.3 Attempted synthesis of 37……………………………………….……………….. 118 

3.4 H2bta (30) with two reversible types of protonated and deprotonated mode…….. 127 

3.5 H2bta / CuX2 (X = Cl-, ClO4
-) System…………………………………………… 158 

4.1 Reaction of 5-AT (14) with HOSA under base condition …….…………………. 173 

4.2 Synthesis of DAT (55) according Gaponik et al…………………………………. 174 

4.3 Reaction products of DAT……..……………………………………………….... 177 

4.4 Synthesis of the metal salt of azidotetrazole……………………………………... 178 

4.5 Improved synthesis of 55………………………………..……………………….. 178 

4.6 Synthesis of 61a-d………………………………………...……………………... 179 

4.7 General Born-Haber energy cycle for the reactions [1]-[4]………………………. 199 

4.8 Possible decomposition pathway of 61d……..………………………………..…. 210 

4.9 Possible decomposition pathway of 61b……..…………………………..………. 214 

4.10 Possible decomposition pathway of 61c………..………………………….…….. 217 

5.1 Preparation of tetrazenes…………………………………………………………. 230 

5.2 Preparation of tetrakis(trimethylsilyl)-2-tetrazene……………….………………. 231 

5.3 Tetrazadiene complexes………………………………………………………….. 231 

5.4 From two “N1” and one “N2” or one “N3” and one “N1” fragment….…………. 232 



 xvii

5.5 Exchange of substituents….……………………………………………………… 232 

5.6 Decomposition pathways of 2-tetrazenes……………………………..………….. 233 

5.7 One-pot synthesis of 84b….……………………………………...……………… 234 

5.8 Synthetic targets……………………………………………………….…………. 235 

5.9 Synthesis of 88a..………………………………………………………………… 235 

5.10 Alkylation of 88a…..…………………………………………………………….. 236 

5.11 Synthesis of 88a from 2-methyl-thiosemicarbazide…..………………………….. 237 

5.12 Preparation of substituted thiosemicarbazide…………………………………….. 238 

5.13 Imidoyl azide-tetrazole ring-chain isomerism……………………………………. 239 

5.14 Preparation of 1,3-substituted thiosemicarbazides…….…………………………. 239 

5.15 Preparation of the substituted hydrazine derivatives 88a-d……………………… 240 

5.16 Oxygen induced formation of diazene I and hydroperoxide II…………………... 241 

5.17 Methyl group transfer of diazene I yielding III and IV…………..……………… 242 

5.18 Dimerization of  diazene I……………………………………………………...…243 

5.19 Formation of nitrosoamines VI…………………………………………..………. 243 

5.20 Proposed fragmentation path of 88b………..…………..………………………... 245 

5.21 Oxidation of 88a to 84a…………………………………………………....…….. 249 

5.22 Oxidation of 88a to 104………………………………………………………….. 251 

5.23 Oxidation of 88b-d to 84b-d……………………………………………….…….. 252 

5.24 Acid catalyzed decomposition of 88a-d…………………………………..……… 253 

5.25 Possible fragmentation pathway of 84b…………….……………………………. 255 

5.26 Possible fragmentation pathway of 84d…………………………………..……… 257 

6.1 Synthesis of N-nitroso- and N-nitraminotetrazoles……….............………………. 277 

6.2 Condensation of DNU with an alcohol to keto-RDX (K-6)……………………… 300 

6.3 Synthesis of MNB and DNB……………………………………………………... 302 

6.4 Preparation of mono or doubly deprotonated DNB salts………………………… 308 

6.5 Possible decomposition pathway of DNB monitored in [d6]-DMSO solution…... 312 

6.6 Possible decomposition pathway of MNB and DNB…………………………….. 323 

 

 



 - 1 -

C h a p t e r  I  

INTRODUCTION 

 1 Classification of explosives 

 Energetic materials (explosives, propellants and pyrotechnics) are used for both civilian 

and military applications. Ongoing worldwide research projects are currently developing 

pyrotechnics with reduced smoke and new explosives and propellants with higher performance 

or enhanced insensitivity to thermal or shock insults. An explosive substance is a solid or liquid 

substance (or mixture of substances) which is in itself capable by chemical reaction of 

producing gas at such a temperature and pressure and at such a speed as to cause damage to 

the surroundings. Pyrotechnic substances are included even when they do not evolve gases. 

NOTE: The use of the word "explosive" can have different meanings and 

interpretations. Reference to "an explosive" or "explosives" is commonly 

understood to mean substances or articles in Class 1 of the scheme of the UN 

Recommendations on the Transport of Dangerous Goods, that is those which 

are intentional explosives or have properties which when assessed under the 

test procedure of the Manual of Tests and Criteria place them in UN Class 1.1 

 Depending on their purpose, explosives are divided into three main types: high 

explosives, propellants and pyrotechnics (Figure 1.1). The output of a pyrotechnic produces 

some sort of audio-visual effect (based on a redox reaction of inorganic reducing agents and 

oxidizer compounds), whereas the output of high explosives is a detonation, and propellants 

serve to accelerate either projectiles, missiles or rockets.  

 

1.1 High Explosives 

 High explosives (Figure 1.1) can be grouped into primary and secondary explosives. 

Primary explosives are considered sensitive explosives in that they will detonate when subjected 

to a spark, flame, friction or a heated wire which causes a crystal to reach its ignition 

temperature. The most frequently used primary explosives are lead azide, lead 

trinitroresorcinate (lead styphnate), and tetrazolyl guanyltetrazene hydrate (tetrazene). In earlier 

times, mercury fulminate was also used (Figure 1.2).  
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Figure 1.1. Classification of explosives 

 

 A common problem for most primary explosives is the presence of lead, due to its 

corresponding environmental impact when the primary explosives are brought to function. 

Therefore lead-free primary explosives, e.g. 1,3,5-triazido-2,4,6-trinitrobenzene (TATNB),2 are 

preferred. The reaction of a primary explosive starts with a deflagration but within a few 

milliseconds or less becomes a detonation.   

 

 

Figure 1.2. Structures of commonly used explosives. 
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 This detonation is taken up by booster explosives (belonging to secondary explosives), 

which amplify the detonation and transmit it further to the main charge. Main charge explosives 

(e.g. Tetryl, TNT or PETN)3 produce the final effect (Figure 1.2). More modern ones are based 

on nitramine compounds like hexahydro-1,3,5-trinitro-S-triazine (RDX)4 or octahydro-1,3,5,7-

tetranitro-1,3,5,7-tetrazine (HMX).5 Main charge explosives can differ greatly and their 

composition depends strongly on their application. In the most cases those systems also contain 

special binders where the amount of binder can be as low as 5%. Blasting explosives can be 

very heterogeneous, e.g. ammonium nitrate (AN) used as oxidizer for a liquid fuel. Between 

these examples nearly every combination can be found.  

 

 In the field of main charge explosives, especially in military applications, many new 

energetic molecules have been synthesized (Figure 1.3).6 Based on computational simulations,7 

as well as experiences from the field of organic chemistry, high density explosive target 

molecules (so called high energy density materials: HEDMs) have been defined and can be 

achieved if the molecular structure contains fused ring and/or strained ring systems.  

 

 

Figure 1.3. HEDMs and insensitive LPEMs. 
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 Target molecules, like nitrated cubanes, are predicted to be shock-insensitive and very 

dense (1.9 − 2.2 g cm-3)8 with great potential as an explosive and a propellant. Although 

octanitrocubane has been synthesized recently, cubane chemistry is too complicated to produce 

quantities for use in corresponding charges (Figure 1.3).9 Another interesting cage structure, 

which can be synthesized quite easily, is based on the isowurtzitanes (Figure 1.3). The two 

most important molecules representing this class are the 2,4,6,8,10,12-(hexanitro-hexaaza)-

tetraazayclododecane (HINW, CL-20)10 and 4,10-dinitro-2,4,8,12-tetraoxa-4,10-diaza-

tetracyclododecane (TEX).11 CL-20, in its ε-crystal polymorph, has a density of 2.04 g cm-3, a 

decomposition temperature of 228 °C and a drop hammer height of 12−18 cm (e.g. PETN = 10 

cm). Highly nitrated small ring heterocycles and carbocycles are interesting as energetic 

materials too, because of the increased performance expected from the additional energy 

release (manifested in a higher heat of formation) upon opening of the strained ring system 

during decomposition. The most widely studied energetic small-ring compound to date is 

1,3,3-trinitroazetidine (TNAZ), a potentially melt-castable explosive that has been 

investigated as a possible replacement for TNT. TNAZ has a melting point of 103–104 °C, a 

crystal density of 1.84 g cm-3 and thermal stability of  >240 °C. TNAZ was first synthesized 

by Archibald et al.12 

 A different area of interest, which has been in focus for the last two decades, is the so 

called insensitive, less powerful (low performance) high explosive molecules (LPEMs). The 

field of the chemical base structures of these materials is very manifold, and therefore only a 

few prominent examples are given (Figure 1.4). The most traditional insensitive high explosive, 

1,3,5-triamino-2,4,6-trinitrobenzene (TATB), has an aromatic base structure and is currently the 

standard for heat resistant, insensitive explosives.13 Newer ones are related to the work of 

Pagoria et al. and Ritter et al., and are illustrated by two examples of dinitro-substituted  

pyridine and pyrazine heterocycles (Figure 1.3). Pagoria et al. synthesized 2,6-diamino-3,5-

dinitropyrazine-1-oxide (LLM-105)14 which has a density of 1.918 g cm-3 and a decomposition 

point of 354 °C. Ritter and Lichter reported the synthesis of 2,6-diamino-3,5-dinitropyridine-1-

oxide (ANPyO) with a density of 1.878 g cm-3 and an mp of  >340 °C (dec.).15 3-Nitro-1,2,4-

triazole-5-one (NTO), easily synthesized in two steps,16 is used in many new high explosive 

applications, especially in combination with RDX, designed to be less sensitive.17 One of the 

most promising new insensitive explosive is the recently reported 1,1-diamino-2,2-

dinitroethylene (FOX-7 or DADE) with a density of 1.885 g cm-3 and a drop hammer height 

value of 72 cm (HMX = 32 cm).18 It has the same oxygen balance as HMX and is predicted to 

have 85% of its performance. 
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 1.2 Propellants 

 Propellants (Figure 1.1) differ from primary and secondary explosives in that their prime 

objective is to deflagrate. By deflagrating, propellants build up relatively high pressures without 

the presence of a higher velocity shock wave. This allows work to be performed by the pressure 

increase and does not cause fracturing of the containment chamber. For example, if PETN were 

used in a rifle, the barrel would shatter, whereas black powder burns in a way that the pressure 

build up accelerates the bullet out of the barrel. For propellants, the chemistry of the 

compounds can be divided into three groups. Single based (SB), double based (DB) and semi-

nitramine/nitramine propellants belonging to the gelatinized nitrocellulose-based propellants 

(NC-based), which are most widely used in gun applications.19 Additionally to NC, DB 

propellants contain stabilized nitroglycerine (NG), or other nitroglycol compounds, so that the 

energy output of such charges can be enhanced. In the case of semi-nitramine/nitramine the 

same effect is established by adding certain nitramines to the NG matrix. A further group of 

propellants is based on a synthetic polymer binder system with an inorganic oxidizing system, 

commonly a perchlorate, and called composite propellant. Composite propellants are widely 

used for rocket propulsion.  

 Finally there are the liquid propellants, which are mainly used in space exploration and 

technology. Liquid propellants are divided into mono- and bi-propellants. Hydrazine, 

monomethylhydrazine (MMH), and unsymmetric dimethylhydrazine (UDMH) are liquid 

rocket fuels. They are used in a wide variety of rocket engines requiring high performance 

and long storage times. Hydrazine is most often used as a monopropellant (without an 

oxidizer) by decomposing it into hot gas with a catalyst. Up to 50% hydrazine is often mixed 

with MMH or UDMH fuels in order to improve performance. At room temperature and 

pressure, the hydrazine family of fuels is hypergolic (self-igniting) when mixed with various 

oxidizers such as N2O4, HNO3, Cl2, or F2. When used in a bipropellant system, hydrazine 

releases about half of its energy by decomposing into a hot gas and half by burning with an 

oxidizer. Although hydrazine can be burned with an oxidizer, safe combustion is difficult to 

achieve. Thus, it is not widely used in conjunction with an oxidizer; however, it is often used 

as an additive to enhance performance of the more stable-burning MMH and UDMH fuels. 

MMH and UDMH, which remain liquid over a –50 to +70°C temperature range, are high-

performance fuels used for missiles.20  
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1.3 Pyrotechnics 

 Pyrotechnics (Figure 1.1), the expression comes from the Greek words ‘pyros  fire, 

heat’ and ‘techne  art’,21 is one of the closely related subjects: high explosives, propellants 

and pyrotechnics itself. Since these three subjects have a more or less common physico-

chemical background, their function and purpose also overlap. But for pyrotechnics, the most 

obvious typical manifestation is that pyrotechnic composition produces beautiful optical and 

acoustical effects. Optical effects: Motion (rockets, fire wheels, bombs); Color (stars, different 

colored smoke); Sparks (candles, volcanoes, fountains). Acoustic effects: Bang (‘swissbanger’, 

thunderbangers, crackers); Whistle (wailing banshees, sirens); Rustle (cracklestars).22 A 

pyrotechnic process differs from ordinary combustion by not requiring the presence of ambient 

air.23 The exothermic reactions used in pyrotechnics are based on simple chemical redox 

reactions. For a long time experience was the fundamental base of pyrotechnics. By clever 

choice of reducing agents and oxidizers, as well as variation of the composition, the redox 

reaction can be influenced to obtain the desired, well-defined effects. In pyrotechnics the 

expression ‘effect’ includes: reaction rate, heat of reaction, reaction temperature, gas 

production, reaction products/glowing particles and colored light.  

Table 1.1. Pyrotechnic composition generating different colored smoke 
Substance/Color Yellow Red Green Blue 
KClO3 [wt. %]  25 28 28 
KNO3 [wt. %]  25    
S8 [wt. %] 16    
Wheat flour [wt. %]  15 15 15 
Sudan yellow [wt. %] 59  10  
Rhodamine B [wt. %]  24   
Para Red [wt. %]  36   
Methylene Blue [wt. %]   17 17 
Indigo Pure [wt. %]   30 40 

 

 Fireworks projectiles for example, typically include two components, an initial burst and 

a main burst. Black powder is one of the oldest pyrotechnic compositions and is typically used 

in both the initial and the main burst. The main burst includes smaller color-producing pellets 

referred to as “stars”. Igniting these stars during detonation of the main burst provides the light 

and color of a fireworks display. Typical compositions for a red star include: (1) potassium 

chlorate, strontium carbonate, charcoal, red gum (shellac), dextrin (or rice starch); (2) potassium 

perchlorate, strontium carbonate, charcoal, red gum (or shellac), dextrin (or ice starch) and 

polyvinyl chloride; or (3) strontium nitrate, red gum (or shellac), magnalium (an alloy of 
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aluminium and magnesium) and Parlon® chlorinated rubber (C6H6Cl4)n. Table 1.1 gives 

examples for pyrotechnic compositions generating different collared smoke.24 

 

2  Drawbacks of Explosives 

 Since the drawbacks of explosives omnipresent and they strongly depend on the purpose 

of the corresponding materials, only a few examples are given below.  

 

 2.1 Pyrotechnic Compositions 

 The burning of large quantities of conventionally pyrotechnics, for example used in 

propelling charges of fireworks projectiles, generates large amounts of smoke, and depending 

upon the particular weather conditions, such as wind direction, wind speed and relative 

humidity, the smoke can block the view of further fireworks or can envelop the audience. Most 

pyrotechnics compositions show a very high sensitivity to electrostatic discharge and friction, 

and as the distribution of particle size, and the morphology affect the sensitivity and the 

reactivity of pyrotechnic composition systems, special manufacturing demands makes the 

production difficult and dangerous. For example, the electrostatic charge of a human being is 

strong enough to initiate a tripping of certain pyrotechnic redox reactions. Furthermore, coloring 

of pyrotechnics is still a difficult subject as the absence of any metal ions (transition metals) is 

better for control of the fireworks color and eliminates any ash residue. Therefore, ammonium 

perchlorate and ammonium nitrate are preferred oxidizers. Although chlorates may be 

employed as an oxidizer, they are not preferred due to their extreme sensitivity. With respect to  

color, blue (in most cases resulting from copper salts) is difficult to realize. The other colors are 

easily produced by certain alkali or earth-alkali metals (e.g. red (strontium salts), green (barium 

alts), yellow (sodium salts)) which do not produce ash residue.  

 Low-smoke pyrotechnic composition including a high-nitrogen content, low carbon 

content energetic material together with the replacement of previous used colorants, e.g. cupric 

oxide (blue), by transition metal complexes with high-nitrogen, energetic ligands are sought. 
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 2.2 Gas Generators 

 There are several gas-generators for sudden pressurization or inflation, such as seat-belt 

tensioners,25 fire fighting equipment26 and inflating vehicle occupant passive restraint systems 

(known colloquially as "air bags").27 One kind of known inflators utilizes a quantity of stored 

compressed gas which is selectively released to inflate the air bag. A related type of inflator 

generates a gas source from a combustible gas-generating material which, upon ignition, 

provides a quantity of gas sufficient to inflate the air bag. Another inflator (known as a hybrid 

inflator), the air bag inflating gas is provided by the combination of a stored compressed gas 

and the combustion products of a gas generating material. Inflators which depend entirely or 

partially on the generation of gases by virtue of combustion of combustible materials have 

several disadvantages. For example, the burning of the propellant and the initiator materials in 

such inflators results in the production of undesired particulate matter. Thus, using inflators that 

are particulate-containing or which generate particulates upon combustion as part of a passive 

restraint system in a vehicle might result in undesirable particulates being released into the 

occupant zone of the vehicles and thereby inhaled by the occupants. In particular, asthmatic 

reactions may be caused by inhalation of particulate matter, creating a health risk for the 

occupants. For this reason, automobile manufacturers limit the quantity and type of particulates 

released by the inflator system. Insoluble particulates are preferred over soluble particulates, as 

the latter are believed to cause greater reaction. Particulates may arise from certain components 

of solid rocket propellants or gas generators and ignition systems, as well as through secondary 

combustion of inert components used in rocket and inflation systems. Reduction in the 

contribution of particulates from one or more of these components will result in a beneficial 

reduction in visible ("smoke-like") particulates for the whole assembly. Another problem is the 

toxicity of the released gases after the ignition of the gas generator (e.g. NH3, HCN, NOx, CO). 

In small gas generators sodium azide is often used.  Unfortunately, this chemical exhibits 

drawbacks concerning toxicity and yield of gas.  Other classical gas-generating agents are 

double base propellants.  However, they deliver toxic and reactive gases and their combustion 

temperatures are high. Alternative gas-generating compounds have been proposed, fuelled with 

double base propellants (DB), azodicarbonamide (ADCA), nitroguanidine or guanidine nitrate 

and oxidized with potassium nitrate (KNO3) or potassium perchlorate (KClO4).28  

 These systems show only partly improved properties with respect to the mentioned 

problems, and therefore the demand of new systems is imperative. 
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 2.3 Liquid Propellants 

 Hydrazines are used in propellant scenarios, whether as boost materials or in altitude 

control devices. Hydrazines, like hydrazine itself, MMH, UDMH and DMH have several 

shortcomings, most of which are inherent to the basic properties of the materials. They have 

relatively high vapor pressures at ambient temperature (e.g. hydrazine 12-14 torr), which leads 

to vapor toxicological problems, as they are extremely toxic, carcinogenic and mutagenic. The 

specific gravities are comparably low, approximately 1.0 g/cm3 at ambient temperature, which 

is related to storage problems. In contact with certain metals and oxygen, they tend to 

decompose easily, and under certain conditions, explosively. All of these properties can be 

significantly improved upon, with the use of new materials in monopropellant formulations.  

 There is a need and market for energetic propellant ingredients which are easily 

synthesized in high yield that have reduced vapor pressure at ambient temperature and 

otherwise overcome the above prior art shortcomings. 

 

 2.4 Primary Explosive 

 Modern primary explosives may be represented by lead azide as the main filling for 

detonators, and by lead styphnate as the main filling for primers, usually associated with 

tetrazene as a sensitizer.29 Lead azide ranked top amongst the conventional initiators, and is 

being most widely used in service detonators. In spite of its best initiating and filling properties, 

it suffers from certain drawbacks like, (a) high friction sensitivity, (b) tendency to undergo 

hydrolysis in the presence of moisture, (c) rapid deterioration in a carbon dioxide environment, 

and (d) incompatibility with copper (a component of the detonator fuze casing). Environmental 

impact of the presence of heavy metals when they are brought to function, is also major 

drawback of those primers. For example, those primers are responsible for the dangerously high 

level of lead found at some firing ranges. A 1991 survey, for instance, found that employees 

who had just cleaned a range run by FBI in Quantico, Virginia, had levels of lead in their blood 

almost ten times a high as US government health limit.30,31  

 Therefore high-energy-capacity transition metal complexes are sought to replace the 

conventional initiators to reduce the risks involved. 
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 2.5 Tetrazene as Sensitizer 

 Tetrazene (Figure 1.2) is slightly hygroscopic and stable at ambient temperature. It 

hydrolyses in boiling water evolving nitrogen gas. Its ignition temperature is lower than that of 

mercury fulminate, and it is slightly more sensitive to impact than mercury fulminate. The 

detonation properties of tetrazene depend on the density of the material, i.e. its compaction. 

Tetrazene will detonate when it is not compacted, but when pressed, it produces a weaker 

detonation. These compaction properties make the transition burning to detonation very 

difficult. Therefore, tetrazene is unsuitable for filling detonators. Tetrazene is used in ignition 

caps where a small amount is added to the explosive composition to improve its sensitivity to 

percussion and friction.32 

 A priming compound suitable for making percussion caps which meets military standards 

for example, including stability and sensitivity, and which compromises no toxic heavy metals, 

comprises 21-52 wt.% of an explosive compound. The explosive compound comprising ≥ 85 

wt.% potassium dinitrobenzofuroxan (KDNBF) as a main energetic ingredient and ≤ 15 wt.% 

tetrazene as a sensitizer, 48-70 wt.% anhydrous strontium nitrate and/or potassium nitrate as an 

oxidant. Optionally ≤ 15 wt.% of a fuel such as calcium silicide can be added.33 

 However, the use of tetrazene is diminished in some way due to its hygroscopic property 

and the low “melting point” of between 128-132 °C, which is comparatively low and unwanted. 

Tetrazene does not actually have a “melting point” but rather a decomposition point 

(decomposition point is the point at which the compound is separated into its constituents 

through chemical reaction). It is the decomposition point and the hygroscopic property which 

goes along with the longevity of ammunition.  

 Therefore an alternative to tetrazene is important. 

 

3  High Energy Density Materials − A Solution? 

 Since the generation of molecular nitrogen as an end product of a propulsion or explosion 

is highly desired in order to avoid environmental pollutions, health risks, as well as untraceable 

signatures, compounds containing a backbone of directly linked nitrogen atoms (nitrogen 

catenation) are of great interest. Compounds fulfilling these requirements could be regarded as a 

new generation of HEDMs (high energy density materials), which might be used as propellants, 
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explosives or gas generators, and therefore might serve as solutions for certain problems related 

to explosives, already pointed out in Drawbacks of Explosives (Chapter I, 2). 

 Up To date, there is no example of a neutral homopolyatomic nitrogen compound which 

could be used as HEDM, since neither thermodynamic nor kinetic stabilization with respect to 

decomposition into N2 has been achieved. Therefore, experimental investigations34 are elusive 

compared to the large number of theoretical studies.35 It seems that in the near future the azide 

anion and the more exotic species N5
+ 36 and possibly N5

- 37 are the only accessible 

homopolyatomic nitrogen species (beside N2). Note:  The polymerization of nitrogen in sodium 

azide at pressures as high as 120 GPa was reported.38  Although the polymeric form was 

preserved on decompression in the diamond anvil cell, transformation back to the starting azide 

form occurred under ambient conditions. Quite recently, a single-bonded cubic form of nitrogen 

was observed.  This material was synthesized directly from molecular nitrogen at temperatures 

above 2000 K and pressures above 110 GPa in a laser-heated diamond-cell.39  Although theory 

predicts that the cg-N could be metastable at atmospheric pressures, the authors of the high 

pressure study found that at room temperature cg-N is metastable only at pressures above 42 

GPa.  Only further experiments can show whether this new form of poly-nitrogen may ever be 

suitable for use as a high energy density material (HEDM).  

 An approach to overcome the thermodynamic and kinetic problems represents the 

modification of homoleptic polynitrogen compounds, by substitution of a nitrogen atom by a 

CR group (e.g. R = H, alkyl, aryl etc.). In such compounds the endothermic and highly 

energetic properties are conserved, however with larger activation barriers to decomposition. 

Compounds of this class are composed of nitrogen chains which may be (i) entirely acyclic, (ii) 

a combination of an acyclic and cyclic moiety; (iii) entirely cyclic or (iv) singly joined, non-

fused rings (cyclic-cyclic).40,41  

 The synthesis of these materials is very challenging because the reactants, intermediates, 

and desired products can have high endothermicities. These high endothermicities might make 

many of these compounds shock sensitive and extremely difficult to handle. Examples for 

known compounds, for example with a combination of an acyclic and cyclic moiety with six 

contiguous nitrogen atoms containing double bonds and tetrazolyl substituents, are the poorly 

described 1,6-bis-[tetrazoly-5-yl]-1,5-hexadiene42 and 1,3,4,6-tetrakis-[2-methyl-tetrazole-5-yl]-

1,5-hexadiene43 which tend to explode violently upon heating, friction or impact (Figure 1.4). 
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Figure 1.4. HEDMs with a combination of an acyclic and cyclic moiety 

 

 The goal of exploiting the potential of polynitrogen compounds for HEDM applications 

requires research to identify new target molecules that possess sufficient energy and kinetic 

stability to warrant attempts at their synthesis, to develop new methodology for their 

preparation, and to prepare amounts sufficient for the determination of their structures and 

properties. 

 Since new HEDMs are thought to be manageable with respect to the application in new 

propellants, primers, gas generators or pyrotechnics, the base structure of those compounds 

has to be chosen carefully to avoid any risks. 

 

 The enthalpy criteria of energetic materials are governed by their molecular structure, and 

therefore, the move to heterocycles with a higher nitrogen content (e.g. from imidazole 

( °∆ crystf H = 14.0 kcal/mol)44, over 1,2,4-triazole ( °∆ crystf H = 26.1 kcal/mol) to tetrazole 

( °∆ crystf H = 56.7 kcal/mol)45) the trend in the heats of formation is obvious.  The base structure 

of those stabilized potential polynitrogen compounds was chosen to be that of tetrazoles, 

particularly 5-amino-1H-tetrazoles, since these groups of compounds shows reasonable stability 

with a huge variety of different (including energetic) substituents.  

 3.1 Relationship between Guanidines and Tetrazoles 

 The chemistry of aminotetrazoles is related to the chemistry of guanidines, and therefore 

the latter serves as suitable precursors. Guanidine chemistry has extended over a period of more 

than 100 years, and many useful compounds have been identified. The uses of these compounds 

are highly diverse, ranging from biologically active molecules to highly energetic materials, 
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thus indicating the manifold usability of the guanidine moiety as building block.46 Thiele was 

the first to prepare guanidine derivatives, e.g. aminoguanidine in 1892, and has to be seen as the 

founder of the modern nitrogen-based high energy density materials.47  

 

 

Scheme 1.1. Relationship between Guanidines and Tetrazoles 

 

 The formal exchange of a hydrogen atom of guanidine successively by NH2 group leads 

to the family of guanidines: guanidine (G), aminoguanidine (AG), diaminoguanidine (DAG) 

and triaminoguanidine (TAG). In Scheme 1.1 (TAG not shown), the connectivity of guanidines 

and corresponding tetrazoles are displayed (corresponding nitrogen atoms are in bold) with 

respect to the later discussed fields of research (Chapter I, 3.2). In general, the reaction between 

HNO2 (“NO+”) and a hydrazine moiety (Scheme 1.1) can formally yield the corresponding 
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azide, in the case of AG  azidoformamidine (AF) and for DAG (only one equivalent HNO2) 

 N-amino-azidoformamidine (AAF). AF and AAF are only stable in their protonated forms 

(AAF only in solution) and undergo ring closure to the corresponding tetrazole derivative.48 For 

AF, 5-amino-1H-tetrazole (5-AT) is formed, and in the case of AAF, depending on how the 

ring closure proceed, formally 1,5-diamino-1H-tetrazole (DAT) or 5-hydrazino-1H-tetrazole 

(HyT) is obtained. The latter process is related to the Dimroth rearrangement − imidoyl azide-

tetrazole ring-chain isomerism − which was found to be typical for 1,5-diaminotetrazoles.49 

Azotetrazolates (ZTs) and 2-tetrazenes are obtained by a formal oxidation reaction, and N,N-

bis-(1(2)H-tetrazol-5-yl)-amine (BTA) is a derivative of 5-AT (Chapter III). 

 

 3.2 Goals of this Study 

The concept of a new class of high nitrogen content high energy material (HNC-HEMs) 

as an energetic component of propellants has evinced great interest recently. Presence of N–N 

and C–N bonds in HNC compounds confers positive heat of formation on them. Furthermore, 

HNC-HEMs produce more nitrogen gas per gram than most of the HEMs, resulting in 

inherently cooler combustion products, which is an attractive feature for gun propellants and 

gas generators. Low percentage of carbon and hydrogen in these compounds reduces the 

proportion of oxidized combustion products in comparison to conventional HEMs, resulting 

in formation of low mean molecular mass combustion products like methane. 

 The goal of this PhD thesis can be shortly summarized by the following expression: 

• Develop methods for the synthesis of the proposed target compounds or 

develop new synthesis and scale-up procedures for known materials.  

• Prepare sufficient amounts of material on the laboratory scale to allow 

the determination of the structure and the chemical and physical 

properties of these new materials. 

• Evaluate the potential of the known or new compounds for HEDM 

applications. 

 

 The concept of this thesis is partly summarized in Figure 1.5, which is related to the 

nitrogen content of certain tetrazole derivatives. 
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Figure 1.5. Nitrogen content of certain Tetrazoles and Salts 

 

 Chapter II: 

 The first part of Chapter II deals with energetic salts of the 5,5’-azotetrazolate anion with 

different guanidinium cations, including (bis(guanidinium) 5,5’-azotetrazolate (GZT), 

bis(aminoguanidinium) 5,5’-azotetrazolate (AGZT), bis(aminoguanidinium) 5,5’-azotetrazolate 

monohydrate (AGZTH), bis(diaminoguanidinium) 5,5’-azotetrazolate (DAGZT) and  

bis(triaminoguanidinium) 5,5’-azotetrazolate (TAGZT)) and (bis(azidoformamidinium) 5,5’-

azotetrazolate (AFZT)). AGZT was obtained according to the literature as the monohydrate 

(AGZTH) and DAGZT was synthesized for the first time. All salts were fully characterized by 

vibrational spectroscopy (IR, Raman), multinuclear NMR spectroscopy and elemental analysis. 

Safety testing (impact and friction sensitivity) was performed to find safe handling procedures. 

The crystal structures of AFZT and AGZTH, which crystallize in the monoclinic space groups 

P21/n and C2/c, were determined. The thermal decomposition of the salts was monitored by 

differential scanning calorimetry (DSC) and the gaseous products of the explosions of all 

compounds were identified with mass spectrometry and IR spectroscopy. The second part 

describes a new and safe synthesis of hydrazinium azotetrazolate in form of a patent. In the 
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third part the results of a high temperature and pressure FTIR study on dihydrazinium 

azotetrazolate dihydrazinate (DAD) will be discussed. The last part of Chapter II presents the 

results of compatibility as well stability tests of dihydrazinium azotetrazolate hydrate (HZTH), 

dihydrazinium azotetrazolate (HZT) and TAGZT in combination with certain propellant 

charges according STANAG 4582. 

 

 Chapter III: 

 Several salts (alkali, Cu, Ni, Pd and iPrNH2) of 5-cyanoiminotetrazoline (C2N6
2–, 5-

cyanoiminotetrazolinediide CIT) were investigated. A full characterization by means of X-ray, 

Raman, NMR techniques, mass spectrometry and elemental analysis is presented for the 
iPrNH2, Cs and Pd salts. The CIT dianion represents a nitrogen rich binary CN dianion and the 

cesium forms monoclinic crystals (a = 7.345(2) Å, b = 9.505(2) Å, c = 10.198(2) Å, β = 

92.12(3) °, space group P21/n, Z = 4). DSC and in situ temperature-dependent X-ray diffraction 

measurements of the cesium salt revealed an astonishing thermal stability accompanied by a 

reversible phase transition from the low temperature α modification to the metastable β 

modification at 253 °C. Above the melting point (334 °C), the cesium salt decomposes yielding 

cesium azide and cesium dicyan amide which decomposes under further heating under release 

of nitrogen. The reaction of Cs2CIT with SO2 resulted in the surprising formation of a new 

cesium salt with the 5-cyaniminotetrazoline-1-sulfonate dianion (Cs2CIT-SO3·SO2). This salt 

crystallizes in the monoclinic space group P21 with one SO2 solvent molecule (a = 8.0080(2) Å, 

b = 8.0183(2) Å, c = 9.8986(3) Å, β = 108.619(1) °, Z = 2). The structure and bonding of the 

10π dianion are discussed on the basis B3LYP/aug-cc-pvTZ computations (MO, NBO) and the 

three-dimensional array of the cesium salts with respect to the Csδ+–Nδ- in Cs2CIT compared to 

the Csδ+–Nδ- and Csδ+–Oδ- in Cs2CIT-SO3·SO2 is discussed. Due to the expected rich bonding 

modes of the CIT anions, the coordination chemistry with palladium was also studied, yielding 

monoclinic crystals of [Pd(CIT)(NH3)3]•H2O ( a = 7.988(2) Å, b = 8.375(2) Å, c = 13.541(3) Å, 

β = 104.56°, space group P21/n, Z = 4). In the solid state, the complex is composed of dimers, 

showing two agostic interactions and an unusual close interplanar π-π stacking of the tetrazole 

moiety of CIT ligand. The second part introduces the alkaline and alkaline earth metals salts of 

BTA. Since Cupric oxide is one of the most important additives used to a) catalyze 

decomposition reaction in gas generators in order to obtain cooler reaction gases b) as burning 

enhancer for AP based composite propellants and c) as coloring agent in pyrotechnics the H2bta 
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ligand system was investigated in this context. The third part discusses the reaction of Cu2+ ions 

in aqueous ammonia solution with H2bta. Depending on the reaction conditions three 

complexes were obtained: Cu(bta)(NH3)2 (47), Cu(bta)(NH3)2*H2O (48) and 

(NH4)2Cu(bta)2*2.5H2O (49). The crystal structures of 47 and 48 are discussed with respect to 

the coordination mode of bta, which mediates in the case of 47 and 48 weak superexchange 

interactions between the adjacent magnetic transition metal CuII cations. This antiferromagnetic 

interactions result from 1D copper chains over a disguised azide end to end bridge. 

Interestingly, the structural arrangement of 47 completely changes in the present of crystal 

water. Moreover, some physicochemical properties (e.g. heat of formation, friction and impact 

sensitivity, DSC) of these complexes with respect to high energetic materials are discussed. The 

last part of Chapter III discusses the H2bta / CuX2 (X = Cl-, ClO4
-) system, and it will be 

derived that H2bta might serve as ligand in new High-Energy-Capacity Copper(II) bta salts 

suitable for safe non-toxic PC formulations, as possibly photosensitive compounds utilized in 

laser detonators as well as colorants in pyrotechnic formulations. 

 

 Chapter IV: 

 The first part of Chapter IV discusses the synthesis of 1,5-Diamino-1H-tetrazole (55, 

DAT) and certain salts. DAT can easily be quaternized by the reaction with strong mineral 

acids yielding the poorly investigated 1,5-diaminotetrazolium nitrate (59a) and perchlorate 

(59b).  A new synthesis for 55 is introduced avoiding lead azide as hazardous byproduct.  The 

reaction of 1,5-diamino-1H-tetrazole with iodomethane (61a) followed by the metathesis of the 

iodide (61a) with silver nitrate (61b), silver dinitramide (61c) or silver azide (61d) leads to a 

new family of heterocyclic-based salts.  In all cases, stable salts were obtained and fully 

characterized by vibrational (IR, Raman), multinuclear NMR spectroscopy, mass spectrometry, 

elemental analysis, X-ray structure determination, as well as initial safety testing (impact and 

friction sensitivity).  Most of the salts exhibit good thermal stabilities and the perchlorate (59b) 

as well as the dinitramide (59c) have melting points well below 100°C, yet high decomposition 

onsets, defining them as new (59c), highly energetic ionic liquids.  Preliminary sensitivity 

testing of the crystalline compounds indicates for all compound rather low impact sensitivities, 

the highest being that of the perchlorate (59b) and the dinitramide (61c) with a value of 7 J.   In 

contrast, friction sensitivities of the perchlorate (59b, 60 N) and the dinitramide (61c, 24 N) are 

relatively high.  The enthalpies of combustion ( °∆ Hc ) of 61b-d were determined 
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experimentally using oxygen bomb calorimetry: °∆ Hc  (61b) = -2456 cal g-1, °∆ Hc  (61c) = -

2135 cal g-1 and °∆ Hc  (61d) = -3594 cal g-1.  The standard enthalpies of formation ( °∆ Hf ) of 

61b-d were obtained on the basis of quantum chemical computations using the G2 (G3) 

method:  °∆ Hf  (61b) = 41.7 (41.2) kcal mol-1, °∆ Hf  (61c) = 92.1 (91.1) kcal mol-1 and °∆ Hf  

(61d) = 161.6 (161.5) kcal mol-1.  The detonation velocities (D) and detonation pressures (P) of 

59b and 61b-d were calculated using the empirical equations by Kamlet and Jacobs:  D(59b) =  

8383 m s-1, P(59b) = 32.2 GPa; D(61b) = 7682 m s-1, P(61b) = 23.4 GPa; D(7c) = 8827 m s-1, 

P(7c) = 33.6 GPa; D(59d) = 7405 m s-1, P(59d) = 20.8 GPa.  For all compounds a structure 

determination by single crystal X-ray diffraction was performed.  61a and 61b crystallize in the 

monoclinic space groups C2/c and P21/n, respectively.  The salts of 55 crystallize in the 

orthorhombic space groups Pna21 (59a, 59d), and Fdd2 (61b).  The hydrogen bonded ring 

motifs, in the formalism of graph-set analysis of hydrogen-bond patterns is discussed and 

compared in the case of 59a, 59b and 61b. The second part of Chapter IV presents the thermal 

decomposition of the highly energetic 1,5-diamino-4-methyl-1H-tetrazolium nitrate (61b), 1,5-

diamino-4-methyl-1H-tetrazolium  dinitramide (61c) and 1,5-diamino-4-methyl-1H-tetrazolium 

azide (61d) were investigated by thermogravimetric analysis (TGA) and differential scanning 

calorimetry (DSC). Mass spectrometry and IR spectroscopy were used to identify the gaseous 

products. Decomposition appears in the cases of 61c and 61d to be initiated by a proton transfer 

to form the corresponding acid HN3 and HN3O4 whereas in the case of 61b a methyl group 

transfer to MeONO2 is observed as initial process. The gaseous products after the exothermic 

decomposition are comparable and are in agreement of the proposed decomposition pathways. 

The decomposition temperatures of 61b and 61c are significantly higher than that of 61d and 

were supported by evaluation the values of the activation energy according the method of 

Ozawa and Kissinger. 

 

 Chapter V: 

 Chapter V represents the continued work of the diploma thesis. The reduction of the 

eight-step-reaction for the preparation of the 1,4-bis-(1-dimethyl-1H-tetrazol-5-yl)-1,4-

dimethyl-2-tetrazene (84b) was reduced to a three step synthesis. The obtained overall yield of 

26% exceeds the former synthesis, which yielded 4%. Moreover, a general synthesis for the 

preparation of substituted (R = H, Me, allyl, cyclohexyl) 1,4-bis-(1R-1H-tetrazol-5-yl)-1,4-

dimethyl-2-tetrazene will be introduced. Two new products could also be confirmed by means 
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of single X-ray crystal structure determination. A new route to 1-methyl-1-tetrazolylhydrazines 

is introduced, which themselves are interesting compounds.  

 

 Chapter VI: 

 Since the search of new energetic compounds with increased performance is progressing 

relatively slow, the trend in the development of ‘New Products’ has rather to be seen in the 

manufacturing of blended and polymer-bonded explosives. In particular, extremely insensitive 

formulations are thought to meet the international standards. They are currently made by 

formulation of nitramine compounds, like RDX or HMX, and special additives.  N-

nitraminotetrazoles are potentially interesting materials as they might be used as modifiers of 

the combustion rates in rocket propellants, as cool gas generators or as additives in insensitive 

explosive formulations. The first part of Chapter VI discusses certain substituted N-

aminotetrazoles (with low carbon content). In the case of corresponding N-

nitrosoaminotetrazoles (111a, 111c) and secondary N-nitraminotetrazoles (112a-c) 

experimental data are in the most case not available and therefore these compounds are fully 

characterized by vibrational (IR, Raman) and multinuclear NMR spectroscopy (14N/15N, 1H, 
13C), mass spectrometry and elemental analysis. For most of the compounds the molecular 

structure in the solid state was determined by single crystal X-ray diffraction. In the case of two 

N-nitraminotetrazoles (112a,c) the physicochemical properties (e.g. D, P, °∆ Hf ) were 

evaluated. The heat of formation was calculated to be positive for 112a and 112c (+2.8 and 

+85.2 Kcal mol-1, respectively) and the calculated detonation velocity with 5988 (112a) and 

7181 (112c) m s-1 reaches values of TNT and nitroglycerin. The second part reports the 

investigation of mono- (MNB) and dinitrobiuret (DNB). Both compounds are for the first time 

structurally characterized and the initial safety testing has been performed indicating, that DNB 

is highly explosive. The thermal decomposition of two highly energetic materials, 

mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) were investigated by thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC) and are discussed in the third part 

of Chapter VI. Mass spectrometry and IR spectroscopy were used to identify the gaseous 

products. Decomposition appears in both cases to be initiated by the release of nitramine. The 

gaseous products after the exothermic decomposition are similar for MNB and DNB, but the 

decomposition temperature of MNB is significantly higher and leads to the formation of urea, 

biuret (imidodicarbonic diamide), triuret (diimidotricarbonic diamide), tetrauret 
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(triimidotetracarbonic diamide) and cyanuric acid (s-triazine-2,4,6(1H,3H,4H)-trione). The last 

part reports the synthesis of three novel nitramines. 

 

 3.3 Experimental Techniques 

 There are a variety of experimental techniques to characterize and quantify the physico-

chemical properties of explosives. Experimentation provides a better understanding of the 

energy content, the release of energy of a substance under various conditions. Such information 

is extremely important in assessing reactive hazards and managing risks; moreover, they are 

important to make a correct classification of certain explosives and help to understand the 

decomposition processes involved. 

 

 3.3.1 Thermal Analysis 

 An explosion, deflagration or other reactivity hazard involves conversion of stored 

chemical energy of the component into mechanical or heat energy, and it is the uncontrolled 

release of this stored energy that causes the damage in a reactive chemical incident, volitional in 

the case of high energetic materials. The reactivity of a substance is normally assessed by 

performing calorimetric measurements.50 Information about the amount of energy released and 

the rate of energy released for a energetic material can be obtained by performing calorimetric 

tests. There are several various calorimetric measurements possible. Moreover decomposition 

experiments are also important.  

 

 TGA: 

 The thermogravimetric Analysis (TGA) provides a graph of mass loss vs. temperature 

over a specified temperature range (up to 2000 °C). This analytical technique is widely used in 

polymer science, inorganic chemistry, fuel science, and geology to measure the loss of volatile 

components or thermal stability of a sample and can also be used for the investigation of 

explosives. The experiments are usually run with a temperature ramp of 5 or 10 °C min-1 and 

can be carried out in inert atmospheres, such as nitrogen, to study thermal stability or volatility, 

or in oxidizing atmospheres to study oxidative decomposition. The mass losses can be 
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characteristic of a material and, where the losses are in discrete steps, the TGA experiment can 

offer quantitative data on the course of a decomposition. The TGA also can be run in an 

isothermal mode, where the rate of weight loss at a fixed temperature is measured. This type of 

experiment can be used to predict loss rates of volatiles or decomposition rates for materials. 

 The following procedure describes a general TGA experiment, measurements deviating 

from this procedure will be stated: The samples were subjected to TGA analysis in a nitrogen 

atmosphere in open Al2O3 crucibles (sample weight ~ 1 − 5 mg) at a heating rate of 5 °C min-1 

with a thermogravimetric analyzer (Setaram DTA−TGA 92)51 in the temperature range from 

30°C − 750 °C. For the removal of moisture, the samples were dried in vacuo (if possible) for 

24 h at 40°C. 

 

 DSC: 

 A differential scanning calorimetry (DSC) can provide an overall indication of 

exothermic activity of the composition activity of the compound being tested and can help to 

assess potential reactive hazards. In a DSC, a sample and a reference are subjected to a 

continuously increasing temperature, and heat is added to the reference to maintain it at the 

temperature as the sample. This added heat compensates for the heat lost or gained as a 

consequence of an overall endothermic or exothermic reaction. When the heat generation 

(Watts) in the sample exceeds a particular value, the heat supply to the sample is cut-off, and 

this additional heat gain is attributed to exothermic activity within the sample. This cut-off value 

depends on the sensitivity of the particular instrument. In the case of an exothermic 

(endothermic) reaction, a peak is observed in a DSC thermograph. A base line is constructed 

from the initial heating mode, and another line is drawn to coincide with the initial rise due to 

the exotherm (endotherm). The temperature at the intersection of the two lines is called the 

onset temperature and corresponds to a detectable level of heat due to a chemical reaction. The 

energy released (-∆H) during the process is calculated as the area under the heat-supplied 

(Watts) and time curve. DSC is a popular screening tool because it is safe, since it involves a 

small amount of sample (for energetic materials less than 1mg is appropriate).  

 The kinetics of exothermic reactions are important in assessing the potential of materials 

and systems for thermal explosion. These parameters are for example accessible from the onset 

temperature (Tonset) determined by DSC, since it denotes a rate of chemical reaction. The 
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detected onset temperature is thus a measure of the reaction kinetics. There is considerable 

argument about such interpretation52, and therefore we decided to use the Standard Test Method 

for Arrhenius Kinetic Constants for Thermally Unstable Materials from American Society for 

Testing and Materials (ASTM) according to the ASTM protocol E 698 – 99 to estimate 

parameters like activation energy (Ea).53 The theoretical background of this procedure is based 

on the work of Ozawa54 and Kissinger55.  

 Autocatalytic and nth-order kinetics are the main features of decomposition reactions. 

They can be expressed as follows: For nth order kinetics,  

   nk
dt
d )1( αα

−=  (1) 

where α, the extent of decomposition, is defined as α = ∆Ht/∆HTotal, were ∆Ht and ∆HTotal are 

the enthalpy of the decomposition reaction at time t and the enthalpy of the decomposition 

reaction at the end of the decomposition, respectively; they can be determined from DSC 

thermograms (Peak maxima). The rate constant (k) can be expressed as 
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where A is the frequency factor. Then, 
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When the order of this reaction is properly assumed, a plot of ln k versus 1/T provides A and Ea. 

Kissinger55 proposed that 

                 pa RTE
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where β = dT/dt is the heating rate. By taking the logarithm of Eq. (4), we obtain the Kissinger 

equation: 
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From a plot of )/ln( 2
pTβ−  versus pT/1 , where pT is the peak temperature, and fitting to a 

straight line, the activation energy Ea can be calculated from the slope. The general equation for 

the reaction rate under isothermal conditions has been written as: 

           RTEn aeATf
dt
d /)( −= αα   (6) 

Under non-isothermal condition, at a constant heating rate β = dT/dt, an explicit temporal 

dependence of Eq. (6) can be derived, and together with Doyle’s approximation56 the linear 

equation of Ozawa-Flynn-Wall54 can be obtained: 
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From a plot of βlog versus pT/1 and fitting a straight line, the activation energy, Ea, can also be 

obtained from the slope. By using the Kissinger as well as the Ozawa method the activation 

energy can be determined without knowing the order of reaction. 

 

 In most cases of the investigated compounds, it is assumed that the rate constant follows 

the Arrhenius law and that the exothermic reaction can be considered as a single step; certainly 

the conversion at the maximum rate is independent of the heating rate, when this is linear. In 

order to get a better agreement of the activation energies determined according the Kissinger 

and Ozawa method, following the ASTM protocol, a refinement of the Kissinger activation 

energy (7) according (9) 
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using given D factors in 53 leads to very close agreements. 

 The following procedure describes a general DSC experiment, measurements deviating 

from this procedure will be stated: Samples ( ~ 0.3 − 1.5 mg) for DSC measurement were 

analyzed with a nitrogen flow of 20 mL/min in closed Al-containers with a hole (1 µm) on the 

top for gas release and a 0.003*3/16-in. disk was used to optimize good thermal contact 

between the sample and container (according ASTM E 698 – 99)53. The reference sample was 

an Al-container with air. Measurements were recorded between 30°C−400 °C. The sample and 
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the reference pan were heated in a differential scanning calorimeter (Perkin-Elmer Pyris 6 

DSC,57 calibrated by standard pure Indium and Zinc) at heating rates of 2, 5, 10, 15 and 20 °C. 

In the most cases the decomposition points are given at a scan rate of 10°C/min. For the 

removal of moisture, the samples were dried (if possible) in vacuo for 2 h at an appropriate.  

 

 Bomb calorimetry 

 For all calorimetric measurements a Parr 1356 bomb calorimeter (static jacket) equipped 

with a Parr 207A oxygen bomb for the combustion of highly energetic materials was used.58  

The samples (ca. 80 – 100 mg) were loaded in (energetically) calibrated Parr gelatine capsules 

(0.9 mL) and a Parr 45C10 alloy fuse wire was used for ignition. In all measurements a 

correction of 2.3 (IT) calories per cm wire burned has been applied and the bomb was examined 

for evidence of noncombusted carbon after each run.  A Parr 1755 Printer was furnished with 

the Parr 1356 calorimeter to produce a permanent record of all activities within the calorimeter.  

The reported values are the average of three single measurements.  The calorimeter was 

calibrated by combustion of certified benzoic acid (SRM, 39i, N.I.S.T) in oxygen atmosphere at 

a pressure of 3.05 MPa. Typical experimental results of the constant volume combustion energy 

( mcU∆ ) of the compounds are summarized in corresponding Chapters and are assigned.          

The standard molar enthalpy of combustion ( °∆ mcH ) was derived from 

nRTUH mcmc ∆+∆=∆ ° ( ∑=∆ inn (products, g) ∑− in (reactants, g); ∑ in is the total molar 

amount of gases in products or reactants). The enthalpy of formation, °∆ Hf , for each of the 

corresponding salts were calculated at 298.15 K using designed Hess thermochemical cycles.  

 

 Explosion experiments 

 For the analysis of the explosion gases of all compounds, a specially equipped IR-cell was 

loaded with about ~ 2 mg of the sample and evacuated. The sample holder of the IR cell was 

heated rapidly to 450°C to initiate the explosion. The explosion products were allowed to 

expand into the gas cell and the IR spectrum was recorded. For the recording of the mass 

spectra, a sample of about 1 mg of the compounds was rapidly heated to 450°C to initiate the 

explosion in a one side closed glass tube (length:  500 mm; diameter: 5 mm) connected to the 

reservoir of the mass spectrometer. The explosion gases were then analyzed by mass 
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spectrometry (JEOL MStation JMS 700)59 using electron impact (EI) mode (mass range 1 – 

120; 1 scans per second). In order to analyze the gases from the stepwise decomposition of the 

compounds, a specially equipped IR-cell was loaded with the compounds (~ 2 mg) and 

evacuated. The sample holder of the IR cell was heated at a rate of 1°C/min (CARBOLITE 

900°C Tube Furnace type MTF 9/15)60 and the reaction products were allowed to expand 

continuously into the gas cell. During this heating, IR-spectra were recorded continuously as a 

function of the heating rate using a Perkin-Elmer Spektrum One FT-IR57 instrument. 

 

 3.3.2 Sensitivity Test1 

 Calorimetric tests capture temperature-time response of a substance and are performed to 

detect thermal instability. However, the energy stored within the substance can be released by a 

variety of stimuli. Sensitivity is defined as the ease with which a substance subjected to external 

stimuli, such as shock, impact or heat, can undergo detonation.61 A few of the techniques used 

to determine the sensitivity1 of a material are discussed below.  

 

Figure 1.6. BAM drop hammer 
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 Impact Sensitivity 

 During impact tests, the impact of a drop-weight on a substance is assessed. The sample, 

placed between two flat, parallel, hardened steel surfaces, is subjected to an impact by dropping 

a weight. The impact may result in initiation depending on the sensitivity of the material, weight 

mass, and its drop height (impact energy). Initiation is observed by sound, light effects, smoke, 

or by inspection. The BAM impact apparatus, known to give fairly reproducible results, is 

shown in Figure 1.6. Typically drop weights having a mass of 1, 2, 5 or 10 kg are used and the 

lowest energy required to create a detonation is recorded. Thus drop-weight and drop-height at 

which the initiation of the sample occurs are the main parameters determined from impact 

testing. The drop height at which detonation is observed is thus a measure of impact sensitivity 

of an explosive. A typical experiment runs as following: A small amount of pre-weighed 

sample, usually around 20 mg, is placed in a brass cup for each test. 6 µm HMX was tested 

previously as a standard, giving value of 34 kg cm for five consecutive negative results.  Drop 

heights are measured with falling of 1 and 5 kg mass and a minimum drop height considered for 

six consecutive drops at a specific height and mass with no change in sample. The result is rated 

as “+”, if the lowest impact energy an explosion occurred (in six single trials) is ≤ 2 J. “+” 

indicates that the corresponding compound is too dangerous for transport. In the case of no 

explosion or impact > 2 J the result is rated as “-“. Table 1.2 gives some examples.  

 

Table 1.2. Impact sensitivity of selected examples 
Substance Impact energy [J] result 

Ethylnitrite 1 + 
N2H5ClO4 (dry) 2 + 
Pb(N3)2 2.5 - 
Lead styphnate  5 - 
Nitroglycerin (NG), liquid 1 + 
Hg(ONC)2 1 + 
PETN (dry) 3 - 
RDX (dry) 5 - 
Tetryl (dry) 4 - 
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 Friction Tester 

 The sample is placed on a rough ceramic plate and a force (created by different weights 

on the lever) is loaded on the sample trough a stationary pin in contact with the plate. The plate 

is motor driven trough a complete cycle pass beneath the pin. The test sample is subjected to the 

friction created by the rubbing of the pin against the plate. Normally the test is run with a pin 

load of 5 − 10 − 20 − 40 − 60 − 80 − 120 − 160 − 240 − 360 N or values in between depending 

of the weight and the used groove. Each experiment is evaluated with respect to “no reaction”, 

decomposition (change of color, smell) or explosion (bang, crackle, spark formation, ignition) 

and continued, by changing the pin load, until no explosion occurred within six single tests. A 

compound is classified as not friction sensitive if each single test with a friction load of 360 N 

was evaluated as decomposition or “no reaction”. The result is rated as “+”, if the lowest 

friction load an explosion occurred (in six single trials) is < 80 N. “+” indicates that the 

corresponding compound is too dangerous for transport. In the case of no explosion or friction ≥ 

80 N the result is rated as “-“. Table 1.3 gives some examples.  

 

Figure 1.7. BAM friction tester 
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Table 1.3. Friction sensitivity of selected examples 
Substance Friction energy [N] result 

HMX (dry) 80 - 
N2H5ClO4 (dry) 10 + 
Pb(N3)2

 (dry) 10 + 
Lead styphnate  2 + 
TNT 360 - 
Hg(ONC)2 10 + 
PETN (dry) 60 + 
RDX (dry) 120 - 
Hexanitrostilben 240 - 

 

 

 Koenen Test  

 

Figure 1.8. Koenen Test 

 The Koenen Test measures the effect of strong heating under confinement. The sample is 

contained in a drawn steel tube (27 cm3) equipped with an closure, which allows orifice plates 

with various apertures of diameters 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 8.0, 12.0 o 20.0 mm (Figure 1.8). 

The tube is heated with four calibrated propane burners. The result reported from such a test is 

the largest size orifice at which the tube is fragmented.  
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Table 1.4. Fragmentation degree 
Types of 

Fragments Description result 

0 Thimble is unchanged − 
A T. plate is dented in − 
B T. plate and sides are dented in − 
C T. plat is broken − 
D T. is teared up − 
E T. is put in two parts − 

F T. is destroyed in three or more big 
pieces, which can be connected Explosion 

G T. is destroyed into little pieces, top is 
undamaged Explosion 

H T. is damaged in a lot of little pieces, the 
top is damaged too 

Explosion 
 

 

 The first experiment is performed with a nozzle plate of any diameter. If an explosion 

occurs the next test will be done with an orifice plate with a 50 % bigger port diameter. This 

procedure is repeated until no explosion occurs. The appearance of the fragmentation degree 

decides if an explosion occurred or not. Table 1.4 shows the possible outcomes. A 

decomposition which leads to a partitioning of the thimble in three or more fragments is called 

an explosion. The valuation of a substance in order to its thermal sensitivity is combined in 

Table 1.5. 

Table 1.5. Validation guidelines 
Valuation Port diameter [mm] 

non sensitive Ø < 2 
few sensitive 2 ≤ Ø < 10 

sensitive  10 ≤ Ø < 16 
very sensitive 16 ≤ Ø < 20  

extreme sensitive Ø ≥ 20 
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C h a p t e r  I I  

5-AMINOTETRAZOLE AND AZOTETRAZOLATES 

 1 Introduction 

 The following introduction gives a short overview recording the properties of mono- and 

disubstituted tetrazoles and in particular, for 5-amino-1H-tetrazoles substituted at N1 and the 

oxidation of the parent 5-amino-1H-tetrazoles to the 5,5’-azotetrazolate dianion. 

 

 1.1 Tetrazoles 

 Tetrazoles survive a wide range of chemical environments such as strongly acidic and 

basic media, as well as oxidizing and reducing conditions. Therefore, these compounds are a 

unique family of heterocycles widely used in material science and many pharmaceutical 

applications.1  They can serve as metabolically stable surrogates for the carboxylic acid group,2 

as precursors to a variety of nitrogen-containing heterocycles by the Huisgen rearrangement,3 as 

simple lipophilic spacers displaying two substituents in the appropriate manner, and not last, as 

basic structures for the here discussed highly energetic materials. 

 Tetrazoles are five-membered, fully unsaturated 6π-heterocycles with one carbon and 

four nitrogen atoms. For the tetrazole itself, there are three different tautomers possible (I (1H-

tetrazole), II (2H-tetrazole) and III (5H-tetrazole)) which can interconvert by an [1,5]-

sigmatropic proton migration. The 5H-tetrazole III is not a stable member of this family, as it 

does not posses aromatic character (Scheme 2.1). 

 

 

Scheme 2.1. Tautomerism of Tetrazole 
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 1.1.1 Tautomerism 

 The tautomerism of 5-aminotetrazoles has been studied by Murphy4 and Katritzky.5 One 

of the regular features of heteroaromatic tautomerism is that amino-compounds exist 

predominantly as such with large KT values. This indicates that the 5-aminotetrazoles exist in 

the amino 1 rather than in the imino-form 2 (Scheme 2.2). Although the solvent can have 

significant effects on tautomeric equilibria,6 a change of the magnitude postulated for such a 

relatively minor change in solvent composition would be unprecedented. Finally, those 

equilibria, which involve two tautomers that are interconvertible by the breaking and forming 

solely of N-H or O-H bonds, are normally fast at RT on the NMR time scale, and time-averaged 

NMR spectra are found. 

 

 

Scheme 2.2. Tautomerism of 5-aminotetrazole and related derivatives 

 In contradiction to the exocyclic O- and S- species (3, X = O, S) which predominantly 

possesses the dihydrotetrazole structure 4 (Scheme 2.2), structural limitation with the 

predominance of the imino-form 2 for tetrazoles is stringent. Thus, for the alkyl substituted 

aminotetrazoles the amino form should be observed in the crystal structure determination in all 

cases as this pattern is connected with the aromatic and other mesomeric stabilisation energies 

of these compounds in a rational manner and agrees with the observation obtained during this 

work. 

 An interesting case is the imidoyl azide (5) − tetrazole (6) tautomerism, which is found 

especially for the orthocondensed tetrazoloheterocycles (Scheme 2.3). The transformation of a 

heterocyclic azide in the tetrazole isomer has been described in the literature as a case of 

tautomerism, as an azidoazomethine-tetrazole (imidamide-tetrazole) equilibria, as a 1,5-dipolar 

cyclization, and as a valence isomerization.7 It is well known that compounds with an azido 

group adjacent to a ring nitrogen atom may spontaneously cyclize to give a polycycle with a 

fused tetrazole ring or, at least, an equilibrium mixture of both. Especially in the case of 1,5-

diaminotetrazole, this tautomerism, know as Dimroth rearrangement, is important and will be 

pointed out in the corresponding Chapters. 



 - 36 -

 

Scheme 2.3. Imidoyl azide − Tetrazole equilibrium 

 In the case of the substituted azidoformamidine derivatives (5) which do not contain a 

ring nitrogen atom, an equilibrium between the open chain 5 and closed chain 6 isomers is often 

observed (Scheme 2.3). Substituents R1, R2 with electron withdrawing properties favor the azide 

form whereas substituents with donor abilities favor the tetrazole.8 Therefore, it may be 

expected that for small alkyl substituents R1, R2
 only the tetrazole will be observed. As the ring 

opening process is endothermic,9 raising the temperature should increase the amount of the 

open chain isomers. The polarity of solvent also has an influence on the equilibrium:  polar 

solvents favor tetrazole and nonpolare favor azide formation.10 Dipolar aprotic solvents are 

particularly suitable for resulting in ring closure.11 Acidic solutions, in which the imino nitrogen 

atom is protonated, stabilise the open chain isomer, while basic media stabalizes the tetrazole 

isomer. 

 

 1.1.2 Stability 

 Most of the 1,5- and 2,5-disubstituted tetrazoles are stable crystalline substances at RT. 

The melting points of the 1- and 2-unsubstituted derivatives are considerably higher than those 

of the corresponding 1,5- and 2,5-disubstituted compounds due to H-bridging. Inductive effects 

are responsible for the higher melting points of the 1-substituted compounds in comparison with 

to the 2-substituted isomers.12 Tetrazoles are quite polar and normally show good solubility in 

polar solvents.13 They show relatively high enthalpies of formation, for example for 1H-

tetrazole a value of 28.1 eV (648 Kcal mol-1) was found, which fits well with the calculated 

value of 27.7 eV.14 Therefore, tetrazoles represent energy-rich molecules. In most cases, 

tetrazoles are not stable at high temperatures and often start to decompose near their melting 

points. The ease of decomposition and the type of products formed during the thermal 

decomposition strongly depend on the character and the position of the substituents on the 

tetrazole ring (Scheme 2.4). 
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The thermolysis of the 1,5-disubstituted tetrazoles 7 proceeds in most cases via a ring opening 

to the α-azido-imines 8 and loss of N2, with the formation of an imino nitrene 9 (Scheme 2.4). 

Most of the isolated products, such as carbodiimids 10 and ortho-condensed imidazoles 11 can 

be derived from this intermediate.15 

 

 

Scheme 2.4. Typical decomposition pathway of 1,5-disubstituted tetrazoles 

 The thermolysis of certain tetrazole derivatives can run completely different and Scheme 

2.4 shows only one possibility. Since the stability of tetrazoles with respect to temperature are 

quite different, different decomposition pathways are expected and also observed during this 

study and are going to be highlighted in the corresponding Chapters. 

 

 1.1.3 Acid/base properties 

 Tetrazole and the 5-substituted derivatives are weak acids with pKa-values in the range of 

1,1 − 6,3, which is comparable with that of carbonic acids.16 The acidity increases in the case of 

5-arylsubstituted tetrazoles because of a better resonance stabilization of the anion. In the case 

of strong π-delocalization in the anion, e.g. 5-azido-1H-tetrazole,17 the acidity approaches that 

of a strong acid. The tetrazole ring itself shows a basicity lower than that of aniline. Typical 

pKb-values are found in the range of 9,7 (1-methyl-1H-tetrazol) to 12,9 (5-amino-1-phenyl-1H-

tetrazole). Protonation takes place preferentially at N4.18 Electrophiles attack tetrazoles usually 

at one of the ring nitrogen atoms.19 While acylation20 of 5-monosubstituted tetrazoles proceed in 

the most cases selectively at N(2), alkylation is not selective and yields mixtures of 1,5- and 2,5-

disubstituted tetrazoles.21 The position attacked by the electrophile strongly depends on the 

substituent at C5, the reaction conditions, and the reagent. 
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 1.1.4 5-Aminotetrazole monohydrate (5-AT, 14) 

 5-Aminotetrazole (5-AT, 14) is a valuable intermediate in the preparation of tetrazole 

compounds because of its varied reactions and its ease of preparation. It is obtained by the 

reaction of nitrous acid with aminoguanidine (Scheme 2.6, A)22 or by the reaction of hydrazoic 

acid with dicyandiamide (Scheme 2.5, B)23. The first reaction (A) forms azidoformamidinium 

nitrate (AFN, 13) (starting from aminoguanidinium nitrate AGN, 12) which after deprotonation 

rearranges to 5-AT. In the second reaction (B) the dicyandiamide (15) depolymerises to 

cyanamide (16), which then reacts with hydrazoic acid to give 5-AT. In both cases, 5-AT is 

obtained as monohydrate. 

 

Scheme 2.5. Synthesis of 5-AT (14) 

 Interestingly, although 13 has been known for a long time, no investigation with respect 

to the molecular structure is reported. During the investigation colorless crystals of 13 were 

obtained, suitable for a structure determination, and a few of the molecular graphs of 13 can be 

depicted from Figure 2.1. Only a short description of the structure is given below. 

 

Figure 2.1. A view of the molecular structure of AFN. 
Displaced ellipsoid are drawn at the 50 % probability 
level and hydrogen atoms are shown as small spheres of 
arbitrary radii. 
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 AFN crystallizes in the monoclinic space group P21/c with four formula units in the cell. 

The azidoformamidinium moiety is almost planar with C−N distances and interatomic angles 

similar to those found in the 1972 by Bärnigausen investigated azidoformamidinium chloride 

(torsion angle N1−N2−N3−N4 is 3.95(1)°).24 The nitrate and azidoformamidinium moieties are 

approximately coplanar, and within the same plane the nitrate groups are linked trough 

hydrogen bonds to the N atoms of the cations, forming sheet like layers. The crystal structure of 

AFN is related to the crystal structure of aminoguanidinium nitrate showing a closer packing of 

1.640 g cm-3 vs. 1.566 g cm-3, respectively.25  

 

 1.2 Azotetrazolates 

 5-AT is a comparable weak acid (Ka = 10-6).26 It can be easily oxidized under base 

condition, to corresponding azotetrazolate salts (ZT). At present, the most important reaction 

related to azotetrazolate is depicted in Scheme 2.6 and shows the oxidation of 5-AT in the 

presence of sodium hydroxide as base and potassium permanganate as oxidant.22 The product, 

disodium azotetrazolate pentahydrate (Na2ZT, 17) is at the moment the most important starting 

material used for preparation of a series of different types of azotetrazolates which might find 

application in new propellants, additives or explosives.  

 

 

Scheme 2.6. Oxidation of 5-AT to Na2ZT 

 With respect to the oxidation of amino substituted azoles, the stability of corresponding 

azo compounds is related to the number of heterocyclic nitrogen atoms present. Thus, the parent 

azotetrazole could not be isolated yet,27,28 but azotriazoles29 could be prepared. In the case of the 

corresponding salts, the stability of those compounds is completely different, and although most 

of these salts possess comparable high endothermicities they show unexpectedly high stabilities 

toward heat, friction and impact. The presence of the azo group as well as many donor sites of 

the anion for either van der Waals interaction or hydrogen bridges, dramatically increases the 

melting points and stabilities of corresponding salts and gives rise, in combination with certain 
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cations, to much higher positive heats of formation compared to salts of aminotetrazoles, 

polynitro and other nitrogen compounds. In principal, 5,5’-azotetrazolates are considered to 

belong to the field of high nitrogen content energetic materials and exciting, developing new 

field of HEDMs.  

 With respect to the previous work by Dr. Anton Hammerl during his PhD,30 the chemistry 

of disodium azotetrazolate pentahydrate (Na2ZT, 17) was investigated. The former work was 

mainly based on metathetical reactions of the barium 5,5’azotetrazolate pentahydrate (BaZT, 

18) with corresponding sulphates (e.g. (N2H5)2SO4; Scheme 2.6) yielding in most cases the 

expected products and barium sulphate as by-product. Since this method has some drawbacks, 

such as a) barium salts are problematic for an industrial up-scale, b) an additional preparation 

step (Na2ZT  BaZT) and c) BaSO4 turns out to be problematic during the purification step, 17 

was expected to be an appropriate replacement. 

 

 

Scheme 2.7. Reaction of BaZT with (N2H5)2SO4 
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 2 Azidoformamidinium and Guanidinium 5,5’-Azotetrazolate Salts 

Los Alamos National Laboratory (LANL), USA, reported the synthesis of three unique 

HNC materials based on azotetrazolate anion in combination with ammonium, guanidinium 

and triaminoguanidinium cationic species.31 These compounds are reported to have a 

combination of high positive heat of formation and insensitivity. The reported heat of 

formation for ammonium (AZT), guanidinium (GZT, 20) and triaminoguanidinium 

azotetrazolate (TAGZT, 23) salts are 98, 106 and 257 Kcal mol–1, respectively. Many other 

institutions all over the globe have been actively involved in the research and development 

work on azotetrazolate based HEMs.32 Still, additional work has to be done on these 

compounds in view of their increasing importance to complete the data of guanidinium 

derivatives of 5,5’-azotetrazolate as it has been realized that some compounds have not been 

investigated yet or are only insufficiently characterized. Bis(azidoformamidinium) 5,5’-

azotetrazolate (AFZT, 19), bis(guanidinium) 5,5’-azotetrazolate (GZT, 20), 

bis(aminoguanidinium) 5,5’-azotetrazolate (AGZT, 22) and bis(triaminoguanidinium) 5,5’-

azotetrazolate (TAGZT, 24) have already been described,32b,32b,g,f but AFZT has not been 

sufficiently characterized and the connectivity of the nitrogen atoms has not yet been 

unambiguously clarified. AGZT, which was synthesized according to 32f, was obtained as its 

monohydrate (AGZTH, 21), and bis(diaminoguanidinium) 5,5’-azotetrazolate (DAGZT, 23) 

has not been reported yet. 

 

 2.1 Synthesis of AFZT, GZT, AGZT, AGZTH, DAGZT and TAGZT 

 The starting material, 5-AT, can readily be obtained by a) interaction of dicyandiamide 

with sodium azide and hydrochloric acid or b) by the reaction of aminoguanidinium salts (e.g. 

nitrate) with HNO2 (Scheme 2.8).33  

 

 

Scheme 2.8. 5-AT monohydrate 
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 Following the path b) in reaction Scheme 2.8, it is possible to isolate azidoformamidinium 

chloride, sulfate or nitrate depending on the aminoguanidinium salt and the acid used and yields 

the corresponding azidoformamidinium salt for the later described synthesis of AFZT. 

 

 The oxidation of 5-AT with potassium permanganate in basic aqueous solution according 

to Thiele yields disodium 5,5’-azotetrazolate pentahydrate (Na2AT, Scheme 2.9).34 Na2AT is 

the source from which all the other azotetrazolates were synthesised. They were obtained from 

the reaction of the respective guanidium salts (AFZT, GZT, AGZTH, DAGZT and TAGZT) 

by adding a hot, aqueous solution of the guanidinium salt (e.g. X- = Cl, NO3) to a hot, aqueous 

solution of Na2AT followed by fractional crystallization of the azotetrazolates.32b In the case of 

GZT and AGZTH a yellow precipitate was formed almost immediately, whereas for DAGZT 

and TAGZT, the products crystallized from cold solution with the best results at a temperature 

of 5°C. Yields between 90-95% were obtained.  

 

 

Scheme 2.9. Synthesis of Azidoformamidinium and Guanidinium 5,5’-Azotetrazolate Salts 

 

 AGZT is formed in quantitative yield by dehydration of AGZTH in vacuo at a 

temperature of 100°C. Further recrystallization from hot water marginally increases the purity 
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accompanied by the loss of yield. AFZT was prepared from azidoformamidinium nitrate (AFN) 

and Na2AT with a yield of ~85 %. Here the temperature has to be carefully controlled, and the 

product has to be isolated very rapidly after crystallization as the product decomposes in 

solution. AFZT, dissolved in DMSO completely decomposes within 10 minutes under 

formation of nitrogen. AFZT also can be prepared from AGZTH by reaction of nitrous acid, 

which is formed in situ from ethylnitrite. Here the yield of AFZT is with 32 % (Scheme 2.9) 

much lower compared to the synthesis from AFN and Na2AT, as AFZT decomposes in 

solution. 

 

 2.2 Result and Discussion 

 The 5,5’-azotetrazolate salts were characterized and unequivocally identified by Raman 

and IR spectroscopy, NMR spectroscopy and elemental analysis. The crystal structures of GZT 

and TAGZT have already been reported.32h The crystal ctructures of AFZT and AGZTH were 

determined, while the structure of DAGZT could not be solved successfully due to a twin 

problem.  

 

 2.2.1 IR and Raman Spectroscopy  

 The 5,5’-azotetrazolate salts can be easily and rapidly identified by Raman and IR 

spectroscopy. Due to the Ci symmetry of the the 5,5’-azotetrazolate anion in the solid state, the 

symmetric C-Nazo vibration is found around 1384 cm-1 and the Nacyclic=Nacyclic stretching mode 

of the diazo group around 1480 cm-1 in the Raman spectrum (Figure 2.2). The azide vibration 

of AFZT is split due to the Ci symmetry of the crystal system. The Raman spectra are 

dominated by the vibrations of 5,5’-azotetrazolate, and therefore the IR spectra are better suited 

for the characterization of the cations. In the IR spectra, the asymmetric C-N3 stretching 

vibration of the 5,5´-azotetrazolate anion appears at ~1390 cm-1 and the asymmetric C-N2 

stretching mode of the azo group at ~735 cm-1.The IR spectra of the guanidinium 5,5’-

azotetrazolate salts contain a set of characteristic absorption bands: 3400-3000 cm-1 [ν(NH2), 

ν(NH)], 1680-1550 cm-1 [δ(NH), δ(NH2)], 1550-1350 cm-1 [ν tetrazolate ring, δ(NH)], 1350-

700 cm-1 [ν(NCN), ν(NN), ω(NNH2), γ(CN), δ tetrazolate ring], <700 cm-1 [δ out of plane bend 

(N–H), ω(NH2)]. The asymmetric stretching vibrations of the azide group in AFZT are found at 

2177 and 2120 cm-1 and the symmetric stretching vibration at 1240 cm-1. 
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Figure 2.2. Raman spectra of 5,5-azotetrazolate salts  

 

 In the 1H NMR the signals for NH and NH2 groups are found at the expected region as a 

singlet, while for DAGZT a dynamic behavior of the protons has been observed. In the 13C 

NMR the corresponding shifts for the carbon of the guanidinium moiety are found in the 

expected region, and the carbon resonances for the anion are found around 173 ppm, similar to 

the shifts previously reported.32 The molar peaks of all guanidinium cations as well as the 

azidoformamidinium cations were also detected in a FAB+ mass spectrometry experiment. The 

elemental analyses show excellent agreement with the calculated values. 
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 2.2.2 Crystal structure of AFZT and AGZTH 

 

 

Figure 2.3. A view of the molecular structure of AFZT, showing the atom-labeling scheme. The inversion centre in 
the middle of the molecule makes half of the molecule independent. Displacement ellipsoids are drawn at the 50% 
probability level and hydrogen atoms are shown as small spheres of a arbitrary radii. [Symmetry code: (i) -x, -y, -z.] 
 

 AFZT crystallizes in the monoclinic space group P21/n with 2 formula units per unit cell 

(Figure 2.3); AGZTH crystallizes in the monoclinic space group C 2/c with four formula units 

per unit cell (Figure 2.4). The bonding parameters of the 5,5’-azotetrazolate anion are in 

accordance with reported values of other 5,5’-azotetrazolate salts, and therefore a detailed 

discussion is abstained. Selected bond lengths and angles for the cations are presented in Table 

2.1.32c The azidoformamidinium cation of AFZT is a member of the series of (poly)azido 

derivatives of the guanidinium cation, in which the amino groups are successively replaced by 

N3-groups finally leading to the triazidocarbonium cation.24 As mentioned above, the 

aminoguanidinium cation can easily be transformed to the corresponding azide. As only few 

structures of this kind have been reported, a more detailed discussion is presented.35 The C–N 

bond lengths and angles of both cations are found to be shorter (1.308(4) – 1.388(4) Å) than the 

bond length of a C–N single bond (1.47 Å, Table 2.1), indicating the stabilization of the cations 

by the formation of a delocalized π system with a weak participation of the N3-group in the case 

of the azidoformamidinium cation. The bond angles around the planar C atom (sum of angles 

360°) in both cations are different, and for the aminoguanidinium cation they are slightly 

distorted. Here N6–C2–N6 is significantly larger and N6–C2–N8 and N7–C2–N8 significantly 

smaller than 120°. The distortion may be caused by the C2–N8 bond, which is significantly 

longer than the C2–N6 and C2–N7 bonds. Analysis of 177 reports on the dimension of the 

(NH2)2–C–NH– fragment in the Cambridge Structural Database36 reveals a mean dC–N = 

1.323(1) Å for the equivalent of the present C2–N6 and C2–N7 bonds and a mean dC–N = 

1.335(1) Å for the equivalent of the C2–N8 bond. The latter is in good agreement with the bond 

lengths given in Table 2.1, but the C2–N6 and C2–N7 bond length in the table are shorter than 
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the mean values from the database. This may be explained by the intramolecular interactions of 

H6B with N9 (N6–H6B····N9, 2.665(5) Å) and the α-effect of the N9H2 amino group, which is 

also consistent with a shorter C2–N7 (1.312(2) Å) bond length compared to the longer C2–N6 

(1.328(3) Å) bond length. 

 

Figure 2.4. A view of the molecular structure of AGZTH, showing the atom-labeling scheme. 
Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are shown as 
small spheres of a arbitrary radii. [Symmetry code: (iv) 1-x, -y, 1-z; (viii) 0.5-x, 1.5-y, 1-z; (ix) –x, y, 
0.5-z] 

 

 

Table 2.1. Selected bond length and angles of 
the cations in AFZT and AGZT 

                                                                          
 AFZT AGZTH
Å   
C2–N6 1.308(4) 1.328(3) 
C2–N7 1.303(4) 1.312(2) 

C2–N8 1.388(4) 1.341(3) 
N8–N9 1.255(4) 1.414(2) 
N9–N10 1.112(4) - 
°   
N6–C2–N7 123.1(3) 122.2(2) 
N6–C2–N8 123.9(3) 118.5(2) 
N7–C2–N8 113.5(2) 119.3(2) 
C2–N8–N9 116.2(2) 118.9(2) 
N8–N9–N10 169.8(3) - 
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 For the azidoformamidinium cation in AFZT, the situation is different and can be 

explained by the electron withdrawing effect of the azide group and the absence of 

intramolecular hydrogen bonds. The two almost identical C2–N6 and C2–N7 bonds lengths 

(1.308(4) Å and 1.303(4) Å, respectively) show that the delocalization of the π system over the 

molecule is restricted to the formamidinium part of the cation and indicate a weak π-interaction 

with the N3-group. The bond angles N6–C2–N7 and N6–C2–N8 are very similar (~ 123°) and 

greater than the N7–C2–N8 angle (~ 113°). The azido group is rotated out of the molecular 

plane by approximately 6° (C2–N6–N7–N8). The N–N bond lengths are in agreement with 

those found in other azides which are covalently bound to carbon.37 

 

Table 2.2. Hydrogen bond geometry (Å, °) of AFZT and AGZTH. 
D–H····A D–H H····A D····A D–H····A 
AFZT     
N6–H6A····N3 0.86 2.1706(5) 2.9976(5) 161.230(9) 
N6–H6B····N5i 0.86 2.1358(5) 2.9633(6) 161.313(8) 
N7–H7A····N4 0.86 2.0600(4) 2.9037(5) 166.69(1) 
N7–H7B····N2ii 0.86 2.0688(4) 2.9120(6) 166.511(8) 
     
AGZTH     
O1–H1····N3 0.97(3) 1.88(3) 2.842(2) 172(3) 
N8–H8····O1iii 0.89(2) 2.07(2) 2.884(2) 152(2) 
N6–H6B····N9a 0.90(2) 2.29(2) 2.665(3) 105(2) 
N6–H6A····N1 0.82(3) 2.40(3) 3.201(2) 165(3) 
N6–H6B····N9iv 0.90(2) 2.43(2) 3.247(3) 151(3) 
N7–H7A····N5 0.87(3) 2.07(3) 2.933(3) 170(2) 
N7–H7B····N4v 0.89(2) 2.05(2) 2.944(2) 179(3) 
N9–H9A····N8vi 0.90(3) 2.49(3) 3.288(2) 148(2) 
N9–H9B····N2vii 0.90(3) 2.29(2) 3.156(3) 162(2) 

a intramolecular hydrogen bond;  
Symmetry codes for AFZT: (i) 0.5+x, -0.5-y, 0.5+z; (ii) -0.5+x, -0.5-y, 
0.5+z; AGZTH: (iii) 0.5-x, 1.5+y, 0.5-z; (iv) 1-x, -y, 1-z; (v) 0.5-x, -0.5+y, 
0.5-z; (vi) 1-x, 1-y, 1-z ; (vii) -0.5+x, 0.5+y, z.  

 

 The analysis of the crystal packing in AFZT and AGZTH shows the existence of 

numerous N–H····N hydrogen bonds, which are well within the sum of the van der Waals radii 

of two nitrogen atom (rA(N) + rD(N) = 3.10 Å).38 The N–H–N bond angles indicate a strongly 

directional rather than a purely electrostatic interaction (Table 2.2). In AFZT, the hydrogen 

atoms H7A on N7 and H7B on N6 form two intermolecular N6–H6A····N3 and N7–H7A····N4 

hydrogen bonds with the external nitrogen atoms (N3, N4) of the 5,5’-azotetrazolate anion, 

yielding cation/anion pairs as depicted in Figure 2. The hydrogen bond ring motif, in the 
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formalism of graph-set analysis of hydrogen-bond patterns39 of the cation/anion pairs is 

characterized as )7(2
2R graph set. The center of the molecular unit contains the inversion centre. 

Together with two further hydrogen bonds, N6–H6B····N5i and N7–H7B····N2ii, a three-

dimensional supramolecular network is formed [symmetry code: (i) 0.5+x, -0.5-y, 0.5+z; (ii) -

0.5+x, -0.5-y, 0.5+z]. The hydrogen bond network of AGZTH is more complicated. The two 

main graph sets are characterized as )10(2
2R and )9(2

2R (Figure 2.4), forming strands which are 

connected to a three-dimensional network by the water molecule and the amino group (N9H2).  

 

 2.2.3 Thermodynamic aspects 

 

 Heats of formation 

 The heats of combustion for the compounds AFZT, AZTH and DAGZT were 

determined experimentally, and the molar enthalpy of formation of these samples were 

calculated from a designed Hess thermochemical cycle according to reactions [1-3] and are 

summarized in Table 2.3. 

 
AFZT:  C4H8N20 (s) + 6 O2 → 4 CO2 (g) + 4 H2O (l) + 10 N2 (g) [1] 

AGZTH:  C4H16N18O (s) + 7.5 O2 → 4 CO2 (g) + 8 H2O (l) + 9 N2 (g) [2]  

DAGZT:  C4H16N20 (s) + 8 O2 → 4 CO2 (g) + 8 H2O (l) + 10 N2 (g) [3]  

°°°° ∆−∆+∆=∆ mcmfmfmf HlOHHygCOHxH ),(),( 22  
 
 The heats of formation for GZT, AGZT and TAGZT have been taken from references 
32b,g,40 and are also presented in Table 2.3. With an increase in nitrogen atoms (> 75%), the 

standard enthalpies of formation of the 5,5’-azotetrazolate salts increase significantly. The 

enthalpy criteria of energetic materials are governed by their molecular structure, and therefore, 

the move to heterocycles with a higher nitrogen content (e.g. from imidazole ( °∆ crystf H = 14.0 

Kcal mol-1)41 over 1,2,4-triazole ( °∆ crystf H = 26.1 Kcal mol-1) to tetrazole ( °∆ crystf H = 56.7 Kcal 

mol-1)42) the trend in the heats of formation is obvious. The highest heats of formations of the 

investigated salts were found for TAGZT and AFZT with °∆ crystf H = 257 Kcal mol-1 and 

°∆ crystf H = 247.8 Kcal mol-1, respectively, and are in accordance with the increase in nitrogen 

atoms.  
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 Detonation pressure (P) and velocities (D) 

 From the obtained heats of formation and the densities obtained from the crystal structure 

determinations, some thermochemical properties have been calculated using the ICT-

Thermodynamic code.43 The heats of combustion (Table 2.3) have been used to calculate the 

expected detonation pressures (P) and detonation velocities (D), using the semi-empirical 

equations suggested by Kamlet and Jacobs (Eqs. [4] and [5], Table 2.3).44,45,46  

 

Table 2.3. Summary of the physico-chemical properties of the investigated salts 
 AFZT GZT AGZTH AGZT DAGZT TAGZT 
       
Formula C4H8N20 C4H12N16 C4H16N18O C4H14N18 C4H16N20 C4H18N22 
Molar Mass 336.24 284.14 332.18 314.16 344.19 374.33 
N [%] 83.31 78.84 75.87 80.22 81.36 82.32 
Ω [%]a -57.1 -78.8 -72.2 -76.4 -74.4 -72.7 
β[°C]: 
2 
5 
10 
15 
20 

 
128.81 
135.92 
141.69 
145.49 
148.22 
 

 
144.05 
253.70 
261.51 
266.13 
268.35 
 

 
- 

 
208.63 
217.46 
223.44 
226.54 
230.27 
 

 
185.93 
194.14 
200.93 
205.08 
208.24 
 

 
191.63 
201.63 
209.20 
213.74 
217.05 
 

Tint
b 127-145 250-265 215-230 215-230 191-208 193-212 

∆maxHc [J g-1] -850.62  -1364.2  - -1446.7 -1490.5 1599.2 
Ea [Kcal mol-1]d 38.18 ± 0.84 

38.02 ± 0.63 
49.64 ± 0.49 
49.21 ± 1.07 

- 50.50 ± 1.56 
49.90 ± 1.48 

43.51 ± 0.25 
43.15 ± 0.55 

39.18 ± 0.20 
39.07 ± 0.19 

-∆CUm [cal g-1]e 2672.1 - 3058.4 - 3178.9 - 
-∆CHm° [Kcal mol-1]f 897.3 - 1013.6 - 1094.5 - 
∆fHm° [Kcal mol-1]g +247.8 +98 +90.9 +104 +169.4 +257 
-∆EHm° [Kcal kg-1]h 772.6 426.1 474.5 418.0 585.1 784.1 
Density [g cm-3] 1.624 1.538m 1.559 1.540n 1.599o 1.602m 
Impact [J]i 3  32  > 40  15  4  4  
Friction [N]j 12 (+) > 360 (-) > 360 (-) > 360 (-) > 360 (-) 60 (+) 
P  [GPa]k 215.6 154.0 181.4 165.6 204.5 241.7 
D [m s-1]k 7201 6192 6690 6418 7045 7654 
Gas volume (25°C)l 
[ml g-1]m 

911 975 1101 999 1026 1058 

       
a Oxygen balance; b Range of decomposition (β = 10°C); c Heat of combustion from maximum exothermic step 
(DSC); d Ozawa and refined Kissinger activation energy according ASTM E 698–99 see ref. [54]; e 
Experimental constant volume combustion energy; f Experimental molar enthalpy of combustion; g Molar 
enthalpy of formation; h Calculated molar enthalpy of detonation, ICT Thermodynamic code see ref. [43];  isee 
Chapter I; j see Chapter I; k calculated from semi-empirical equations suggested by Kamlet and Jacobs see ref. 
[44-46]; l Assuming only gaseous products, ICT Thermodynamic code see ref. [43]; m ref. [32h]; n ref. [50]; o 
estimated from a structure determination. 

 

 The calculated detonation pressures lie in the range of TNT (P = 20.6 GPa)47 and the 

detonation velocities in the range of nitroglycerol for TAGZT (7610 ms-1 versus 7654 ms-1, 

respectively),48 similar to the calculated detonation pressures and velocities of hydrazinium 

5,5´-azotetrazolate.32c The calculated detonation pressures and detonation velocities increase in 
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the order of the densities of the 5,5’-azotetrazolate salts (GZT (1.417) < AGZT (1.540) ~ 

AGZTH (1.559) < DAGZT (1.599) < TAGZT (1.602) ~ AFZT (1.624)). Under the 

assumption that only gaseous products are formed, all salts show high calculated gas yields per 

gram (~ 1000 ml g-1) under standard temperature and pressure. 

 ϕρ 28 ]10[ KPaP =  [4]  

 )1(][ 2/11 ρϕµ BAsmmD +=−  [5]  
 

 Impact and friction sensitivities 

 Impact testing was carried out on a “BAM Fallhammer” in accordance to BAM 

regulations (see Chapter I, 3.3.2). Form Table 2.3 it can be depicted that the impact sensitivities 

increase from insensitive for AGZTH (>40 J) to sensitive for DAGZT (4 J) and TAGZT (4 J) 

to very sensitive AFZT (3 J), which is comparable to the highly used dry explosives RDX (5 J), 

Tetryl (4 J) or the more sensitive PETN (3 J).49  Interestingly, the friction sensitivities, which 

were determined with the BAM friction tester (see Chapter I, 3.3.2), are greater than 360N for 

GZT, AGZTH, AGZT and DAGZT > 360 N (Table 2.3) and lower than expected. For 

TAGZT (60 N) the friction sensitivity is similar to the very sensitive PETN (dry, 60N).  AFZT 

possesses the highest friction sensitivity with a value of 12 N, similar to lead azide (10 N). 

Therefore, AFZT should be classified as primer. 

 

 2.2.4 Thermal behavior  

 The thermal behavior of the salts has been investigated using Differential Scanning 

Calorimetry (DSC). The gaseous explosion products were detected by means of gas phase IR 

spectroscopy and mass spectrometry. Characteristic temperatures were identified by systematic 

variation of the heating rate (β = 2, 5, 10, 15 and 20 °C min-1) in the DSC experiments, and the 

energies of activation were calculated following the ASTM protocol. The estimated energies of 

activation of AFZT and TAGZT (Ozawa: 38.18 ± 0.84 kcal mol-1 and 39.18 ± 0.20 kcal mol-1, 

respectively) are in accordance with the observed sensitivities toward friction and impact (Table 

2.3). The higher activation energies for the decomposition of the other compounds is confirmed 

by their decreased sensibility (Table 2.3). Normally, one would expect that the formation of 

hydrogen bonds would stabilize the molecule and therefore lower the sensitivity. Thus an 
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increased number of NH groups in the series GZT, AGZT, DAGZT and TAGZT, should lead 

to decreased sensitivity, but, interestingly, the sensitivity increases with an increase of 

inherently energetic N-N bonds as well as the increase of density, yielding the observed 

sensitivity rank: AFZT > TAGZT > DAGZT >> AGZT > GZT > AGZTH. The small 

deviation by AGZTH is caused by the stabilization effect of the crystal water.  

 

 DSC 

 Figure 2.5 shows characteristic DSC thermographs of AFZT, GZT, AGZTH, DAGZT 

and TAGZT (β = 10 °C min-1). All five compounds show a distinctive exothermic step. The 

highest was found for GZT (Tmax 262 °C) and the lowest for AFZT (Tmax 142 °C). All 

compounds decompose almost free of solid residue under the formation of only gaseous 

products in the temperature range depicted in Table 2.3. The crystal water of AGZTH, is easily 

removed by simply heating the compound in vacuo above 100 °C as indicated by an 

endoterhmic signal in Figure 2.5, yielding AGZT in quantitative yields.  

 

 

Figure 2.5. DSC thermograph of the investigated salts (β = 10°C min-1) 
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 Explosion products 

 In all cases the major explosion product is nitrogen N2, which was identified with mass 

spectrometry by its characteristic mass fragment m/z 28, as well as by its characteristic purple 

gas-phase discharge color using a high-frequency brush electrode (Tesla coil). Figure 2.6 shows 

the explosion gases detected by gas-phase IR spectroscopy. For AFZT only hydrogen azide 

HN3, hydrogen cyanide HCN and traces of ammonia NH3 were detected as IR-active gaseous 

decomposition products. Surprisingly, the gas-phase IR spectra of the other salts are almost 

identical, indicating a similar explosion process.  Small amounts of hydrogen cyanide HCN 

were identified and in the IR spectra by a band at 2137 cm-1, a band at 1320 cm-1 indicates the 

formation of carbodiimide HNCNH rather than cyanamide (ν = 2364, 2328 cm-1). In the 

explosion of GZT, AGZT, DAGZT and TAGZT, HN3 has not been observed.  

 

 

Figure 2.6. Gas phase spectra of the decomposition products of the ZT salts 
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 The mass fragments m/z 14 (N+, N2
++), 16 (NH2

+), 17 (NH3·+), 26 (CN+), 27 (HCN·+) and 

28 (N2·+, NCNH+) were detected in the explosion gases of all compounds. Together with the 

fragments m/z 43 (HN3·+) for AFZT and m/z 42 (HNCNH·+) for GZT, AGZT, DAGZT and 

TAGZT, the gaseous products NH3, HCN, HNCNH and HN3 identified by IR spectroscopy can 

be confirmed. Traces of oxygen containing species like H2O or CO2 were not found.  

 

 The main difference in the composition of the gaseous explosion products of AFZT and 

the other 5,5’-azotetrazolate salts is the occurrence of HN3 for AFZT and the occurrence of 

carbodiimide for the other salts. The observed explosion products can be explained by a similar 

decomposition mechanism. The decomposition of the 5,5’-azotetrazolates anion proceeds via 

the protonated species. Previous investigations have shown that the decomposition of tetrazoles 

is initiated by ring opening reactions,50 in which the tetrazole ring decomposes either to the 

corresponding nitrile under release of hydrogen azide (Scheme 2.10, a)) or to the nitrilimines 

under release of elemental nitrogen (Scheme 2.10, b)). The latter seems to be the main 

decomposition step, due to the absence of HN3 in the IR as well as the mass spectra of GZT, 

AGZT, DAGZT and TAGZT.  

 

 

Scheme 2.10. Simplified scheme of the initial decomposition pathway of the ZT salts 
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 HN3 found after the explosion of AFZT can be explained by the in situ formation of 5-

amino-1H-tetrazole (5-AT), which decomposes under these conditions via a formal elimination 

of HN3 and cyanamide. Under the reaction conditions the cyanamide is not stable and 

decomposes to NH3, HCN and N2 (Scheme 2.11, a)).  The small amounts of ammonia in the IR 

as well as the mass spectra can be explained by the recombination of HN3 and NH3 to NH4N3 

(Scheme 2.11, b)) and its following decomposition to form N2, H2 and trace amounts of NH3.  

 

 

Scheme 2.11. Simplified scheme of the decomposition pathway of the AF cation 

 

 The decomposition of the guanidinium cations is started by the elimination of either 

ammonia (GZT) or hydrazine (AGZT, DAGZT and TAGZT), yielding the observed 

carbodiimide (Scheme 2.12, a)). The elimination of hydrazine was confirmed by the observation 

of m/z 32 (N2H4·+) in the mass spectra of AGZT, DAGZT and TAGZT. Hydrazine is not 

stable under the reaction conditions and decomposes according to known mechanisms51 to form 

N2, H2 and small amounts of ammonia and was therefore not observed in the IR spectra. 

According to Scheme 2.12 (b), consecutive gas phase decomposition reactions of carbodiimide 

leads to the evolution of more NH3, HCN and N2, as identified in the gaseous explosion 

products of the investigated salts.  

 

 

Scheme 2.12. Simplified scheme of the decomposition the 
guanidinium cations 
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 2.3 Conclusion 

 AFTZ and the investigated guanidinium 5,5’-azotetrazolates are interesting and useful 

high energetic materials, which are either already in use (GZT and TAGZT) or may yet find a 

wide application as gas generators for airbags, initiators or additives in solid rockets as low-

smoke propellant ingredients. In general, these salts exhibit good to reasonable physical 

properties, like high densities (> 1.50 g cm-3), good thermal stabilities (especially for 

guanidinium 5,5’-azotetrazolate), and distinctive decomposition temperatures between 140 and 

260°C.  Depending on their properties, these salts can be seen as examples of safe, manageable 

gas generators (GZT, AGZTH, AGZT) as their friction and impact sensitivities do not exceed 

values prescribed by the UN Recommendations on the Transport of Dangerous Goods. 

DAGZT and TAGZT have the sensitivity of secondary explosives and AFZT is a primary 

explosive.  All compounds have calculated detonation velocities and detonation pressures 

similar to already used explosives such as nitroglycerin.  The molar enthalpies of formation 

were calculated from the combustion energy obtained from the combustion with oxygen in a 

bomb calorimeter. In all cases, high combustion energies and high molar enthalpies of 

formation were obtained. A complete summary of explosive properties has been given and the 

crystal structure for AFZT and AGZTH have been reported for the first time and analysed in 

the formalism of graph-set analysis of hydrogen-bond patterns, indicating distinctive 

intermolecular hydrogen bonding playing an important role for the crystal packing.52  
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 2.3 Experimental 

 CAUTION: Azotetrazolates are highly energetic materials and tend to explode under 

certain conditions.  Appropriate safety precautions should be taken, especially when these 

compounds are prepared on a larger scale.  Laboratories and personnel should be properly 

grounded, and safety equipment such as Kevlar® gloves, leather coat, face shield and ear plugs 

should be worn at all times, especially in the case of AFZT and TAGZT. 

 

 General Method    

 All chemical reagents and analytical grade solvents were obtained from Sigma-Aldrich 

Fine chemicals Inc. and used as supplied. MeOH and EtOH were dried according to known 

procedures, freshly distilled and stored under nitrogen.  The 1H and 13C NMR spectra were 

recorded on a JEOL Eclipse 400 instrument in [d6]-DMSO at 25°C.  The chemical shifts are 

given relative to external tetramethylsilane (1H, 13C).  Infrared (IR) spectra were recorded on a 

Perkin-Elmer Spektrum One FT-IR instrument as KBr pellets at 20°C.  Raman spectra were 

recorded on a Perkin Elmer Spectrum 2000R NIR FT-Raman instrument equipped with a 

Nd:YAG laser (1064 nm).  The intensities are reported in % relative to the most intense peak 

and given in parenthesis.  Elemental analyses were performed with a Netsch Simultanous 

Thermal Analyser STA 429.  

 

 Bomb Calorimetry  

 For all calorimetric measurements a Parr 1356 bomb calorimeter (static jacket) equipped 

with a Parr 207A oxygen bomb for the combustion of highly energetic materials was used.53  

The samples (ca. 80 – 100 mg) were loaded in (energetically) calibrated Parr gelatine capsules 

(0.9 mL) and a Parr 45C10 alloy fuse wire was used for ignition. In all measurements a 

correction of 2.3 (IT) calories per cm wire burned has been applied and the bomb was examined 

for evidence of noncombusted carbon after each run.  A Parr 1755 Printer was furnished with 

the Parr 1356 calorimeter to produce a permanent record of all activities within the calorimeter.  

The reported values are the average of three single measurements.  The calorimeter was 

calibrated by combustion of certified benzoic acid (SRM, 39i, N.I.S.T) in oxygen atmosphere at 

a pressure of 3.05 MPa. 
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 DSC experiments  

 Samples ( ~ 0.35 mg) for DSC measurement were analyzed with a nitrogen flow of 20 

mL min-1 in closed Al-containers with a hole (1µm) on the top for gas release, and a 

0.003*3/16-in. disk was used to optimize good thermal contact between the sample and 

container (according ASTM E 698 – 99).54 The reference sample was an empty Al-container in 

atmosphere. Measurements were recorded between 30°C-350°C. The sample and the reference 

pan were heated in a differential scanning calorimeter (Perkin-Elmer Pyris 6 DSC, calibrated by 

standard pure Indium and Zinc) at heating rates of 2, 5, 10, 15 and 20 °C. The decomposition 

points are given at a scan rate of 10°C min-1. For the removal of moisture, the sample were 

dried in vacuo for 2 h at RT. AGZT was obtained by heating the corresponding hydrate, 

AGZTH, in vacuo for 4h at 110°C. The activation energy for the decomposition step was 

estimated by the method of Ozawa55 and Kissinger56 by following the differential heating rate 

method of the American Society for Testing and Materials (ASTM) according to the ASTM 

protocol E 698 – 99.54  

 

 Explosion experiments  

 For the analysis of the explosion gases of all compounds a specially equipped IR-cell was 

loaded with about ~2 mg of the sample and evacuated. The sample holder of the IR cell was 

heated rapidly to 450 °C to initiate the explosion. The explosion products were allowed to 

expand into the gas cell and the IR spectrum was recorded. For the recording of the mass 

spectra a sample of about 1 mg of the compounds was rapidly heated to 450°C to initiate the 

explosion in a one side closed glass tube (length:  500 mm; diameter: 5 mm) connected to the 

reservoir of the mass spectrometer. The explosion gases were then analyzed by mass 

spectrometry (JEOL MStation JMS 700) using electron impact (EI) mode (mass range 1 – 120; 

1 scans per second). 

 

 X-ray Crystallographic Analyses. 

 A X-ray quality crystal of AFZT (CCDC 266607) was mounted in a Pyrex capillary and 

the X-ray crystallographic data collected on a Nonius Mach3 diffractometer with graphite-

monochromated MoKα radiation (λ = 0.71073 Å).  The X-ray crystallographic data for 
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AGZTH (CCDC 266608) was collected on a Enraf-Nonius Kappa CCD diffractometer using 

graphite-monochromated MoKα radiation (λ = 0.71073 Å).  Unit cell parameters for AFZT 

were obtained from setting angles of a minimum of 25 carefully centered reflections having 2θ 

> 20°; the choice of the space group was based on systematically absent reflections and 

confirmed by the successful solution and refinements of the structures. The structures were 

solved by direct methods (SHELXS-86, SHELXS-97)57 and refined by means of full-matrix 

least-squares procedures using SHELXL-97.  Empirical absorption correction by Psi-scans was 

used for AFZT. In the case of AGZTH no absorption correction was applied. Crystallographic 

data are summarized in Appendix B.  Selected bond lengths and angles are given in Table 2.1.  

All non-hydrogen atoms were refined anisotropically.  In the case of AFZT the hydrogen atoms 

were included at geometrically idealized positions and refined.  They were assigned fixed 

isotropic temperature factors with the value of 1.2Beq of the atom to which they were bonded.  

The hydrogen atoms of compound AGZTH were located from the difference electron-density 

map and refined isotropically.  The azo group in AGZTH is disordered with a site occupation 

factor (SOF) ratio of 1:1. Further information on the crystal-structure determinations (excluding 

structure factors) has been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. 266607 and 266608.58  

 

 5,5’-Azotetrazolate salts GZT, AGZTH, DAGZT and TAGZT were prepared 

according to a modified, previously published procedure 31 as follows: To a hot solution (~ 70 – 

80 °C) of sodium 5,5’azotetrazolate pentahydrate (20 mmol) in 18 mL water a hot solution of 

the corresponding guanidinium salt (10 mmol, Cl- or NO3
-) in 35 mL water was added. While 

GZT and AGZTH precipitated immediately, while DAGZT and TAGZT crystallized after 3h 

at 5 °C. All products, which were purified by recrystallization from a minimum amount of 

water, were obtained with yields higher than 90 %. 

 

 Bis(guanidinium) 5,5’-azotetrazolate (GZT): 95 % yield; m.p. 242 °C (Tonset, decomp.);  

IR (KBr, cm-1): ν~ = 3445 (s), 3396 (s), 3198 (s), 3089 (s), 2825 (m), 2232 (w), 2083 (w), 1697 

(m), 1653 (s), 1585 (m), 1570 (m), 1399 (s), 1196 (w), 1049 (w), 768 (w), 737 (m), 576 (m), 

532 (s), 398 (w);  Raman (200mW, 25 °C, cm–1) ν~ = 3207 (1), 1483 (42), 1459 (2), 1422 (12), 

1386 (100), 1361 (3), 1197 (2), 1088 (13), 1058 (39), 1011 (5), 928 (7), 546 (2), 339 (1), 172 

(2), 154 (3); 1H-NMR ([d6]-DMSO) δ: 7.12 (s, 6H, NH2); 13C-NMR ([d6]-DMSO) δ: 157.6 
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(C), 172.6 (C); C4H12N16 (284.25): Calcd. C, 16.9; H, 4.3; N, 78.8 %; Found: C, 16.7; H, 4.3; N, 

78.7 %. 

 

 Bis(aminoguanidinium) 5,5’-azotetrazolate monohydrate (AGZTH): 93 % yield; m.p. 

218 °C (Tonset, decomp.);  IR (KBr, cm-1): ν~  = 3420 (s), 3335 (s), 3275 (s), 3058 (s), 2788 (m), 

2215 (w), 2095 (w), 1673 (s), 1645 (s), 1398 (s), 1203 (m), 1177 (w), 1164 (w), 1116 (M), 1054 

(w),1013 (w), 769 (m), 739 (s), 639 (m), 563 (m), 478 (s);  Raman (200mW, 25 °C, cm–1) ν~ = 

3268 (1), 1492 (50), 1422 (10), 1385 (100), 1360 (3), 1204 (2), 1180 (1), 1084 (20), 1062 (31), 

1041 (4), 946 (2), 926 (7), 519 (2), 350 (2), 155 (2); 1H-NMR ([d6]-DMSO) δ: 3.40 (s, 2H, 

H2O), 4.78 (s, 1H, NH), 7.40 (s, 6H, NH2); 13C-NMR ([d6]-DMSO) δ: 159.3 (C), 173.4 (C); 

C4H16N18O (333.18): Calcd. C, 14.4; H, 4.9; N, 75.9 %; Found: C, 14.2; H, 4.8; N, 75.9 %. 

 

 Bis(aminoguanidinium) 5,5’-azotetrazolate (AGZT): AGZT was obtained in 

quantitative yield by dehydration of AGZTH in vacuo at a temperature of 100°C. C4H14N18 

(314.16): Calcd. C, 15.3; H, 4.5; N, 80.2 %; Found: C, 15.1; H, 4.6; N, 80.5%. 

 

 Bis(diaminoguanidinium) 5,5’-azotetrazolate (DAGZT): 90 % yield; m.p. 196 °C 

(Tonset, decomp.);  IR (KBr, cm-1): ν~  = 3354 (s), 3324 (s), 3229 (s), 3131 (s), 2391 (w), 2195 

(w), 1690 (s), 1643 (s), 1595 (m), 1444 (m), 1397 (s), 1371 (m), 1330 (m), 1187 (s), 1175 (s), 

1027 (m), 996 (s), 958 (s), 765 (m), 740 (s), 668 (m),  564 (s), 360 (w);  Raman (200mW, 25 

°C, cm–1) ν~ = 3268 (2), 1482 (24), 1473 (31), 1419 (21), 1377 (100), 1352 (3), 1188 (5), 1084 

(5), 1070 (2), 1047 (24), 1038 (57), 927 (11), 343 (2), 180 (2), 142 (2); The compound exhibits 

dynamic behaviour in solution; 1H-NMR ([d6]-DMSO) δ: 4.67 (s, 4H), 7.28 (s, 2H), 8.74 (s, 

2H,); 13C-NMR ([d6]-DMSO) δ: 160.4 (C), 173.7 (C); C4H16N20 (344.19): Calcd. C, 14.0; H, 

4.7; N, 81.4 %; Found: C, 13.8; H, 4.9; N, 81.5 %. 

 

 Bis(triaminoguanidinium) 5,5’-azotetrazolate (TAGZT): 90 % yield; m.p. 203 °C 

(Tonset, decomp.);  IR (KBr, cm-1): ν~  =  3352 (m), 3335 (s), 3214 (s), 2397 (w), 2211 (w), 1680 

(s), 1587 (m), 1571 (m), 1386 (m), 1335 (m), 1186 (w), 1139 (s), 999 (s), 945 (s), 770 (w), 732 
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(m), 637 (m), 590 (m), 560 (m), 426 (w), 401 (w);  Raman (200mW, 25 °C, cm–1) ν~ = 3338 (1), 

3239 (2), 1471 (44), 1408 (19), 1371 (100), 1347 (3), 1189 (4), 1138 (1), 1071 (6), 1045 (56), 

921 (12), 884 (2), 642 (1), 333 (1), 158 (1); 1H-NMR ([d6]-DMSO) δ: 4.48 (s, 6H, NH2), 7.59 

(s, 3H, NH); 13C-NMR ([d6]-DMSO) δ: 159.6 (C), 173.9 (C); C4H18N22 (374.33): Calcd. C, 

12.8; H, 4.9; N, 82.3 %; Found: C, 12.7; H, 4.8; N, 81.2 %. 

 

 Bis(azidoformaidinium) 5,5’-azotetrazolate (AFZT): Method 1: To a hot solution (~ 70 

°C) of sodium 5,5’azotetrazolate pentahydrate (3.001 g, 10 mmol) in 35 mL water was added a 

hot solution of azidoformamidinium nitrate (2.964 g, 10 mmol) in 15 mL water. The orange 

solution was then cooled in an ice bath and the resulting orange crystals were immediately 

separated by filtration and washed with EtOH and Et2O yielding 2.85g AFZT (84.8 %). Method 

2: To a warm solution (40 °C) of AGZTH (3.32 g, 10 mmol) in 40 mL water ethylnitrite (1.5 

mL) was slowly added. The solution was kept at 40°C for 1h and then cooled to 5°C. Orange 

crystals were obtained and separated by filtration, washed with EtOH and Et2O yielding 1.08 g 

AFZT (32 %). During the crystallization process the formation of nitrogen was observed; m.p. 

134 °C (Tonset, decomp.);  IR (KBr, cm-1): ν~  =  3410 (m), 3219 (s), 3124 (s), 2980 (s), 2791 

(m), 2181 (s), 2120 (m), 1716 (s), 1495 (s), 1390 (s), 1243 (s), 1132 (m), 1061 (m), 906 (w), 

773 (w), 735 (s), 696 (m), 559 (w), 524 (m);  Raman (200mW, 25 °C, cm–1) ν~ = 2174 (1), 2119 

(1), 1477 (40), 1414 (12), 1381 (100), 1355 (3), 1309 (1), 1201 (2), 1138 (3), 1083 (28), 1070 

(34), 923 (10), 906 (3), 676 (1), 526 (2), 330 (1), 235 (1), 151 (2), 136 (2); 1H-NMR ([d6]-

DMSO) δ: 6.42 (s, 4H, NH2); 13C-NMR ([d6]-DMSO) δ: 159.6 (C), 169.6 (C); m/z (FAB+, 

xenon, 6keV, m-NBA matrix): 86 [CH4N5]+; C4H8N20 (336.24): Calcd. C, 14.3; H, 2.4; N, 83.3 

%; Found: C, 14.1; H, 2.8; N, 83.3 %. 
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 3 Hydrazinium 5,5’-Azotetrazolate Salts 

 It is known that 5,5’-azotetrazolate ([N4C-N=N-CN4]2-) salts decompose in acidic media 

under nitrogen evolution and formation of 5-hydrazino-1H-tetrazole (HyT, 25).59 Therefore, in 

the case of basic counterions like certain ammonium and guanidinium cations (Chapter II, 2), it 

was found that those salts are stable in the solid state and in most cases also in solution.32c-f,g,h 

The energy content of HNC materials is directly related to high heats of formation, which is 

attributed to increasing numbers of inherently energetic N−N and C−N bonds. Therefore, 

counterions with additional energetic N−N and possible no C−N bonds are sought. The 

simplest example of such a cation is the mono-protonated hydrazinium cation, N2H5
+. A series 

of interesting compounds, based on the N2H5
+-cation was recently developed by Hammerl et 

al.32c He described the synthesis of the dihydrazinium salt of [N4C-N=N-CN4]2- (HZT, 26), its 

monohydrate (HZTH, 27), and its dihydrazinate (DAD, 28) (Figure 2.7).  

 

 

Figure 2.7. Dihydrazinium salt of [N4C-N=N-CN4]2- 

 

 The compounds 26-28 are stable at room temperature and stored on air. They show 

reasonable insensitivity toward friction and impact, but detonate violently when the explosion is 

initiated, e.g. by rapid heating over the decomposition temperature or by using an initiator. 

These compounds appear to be quite promising for use as propellants. They represent new 

HEDMs with one of the highest nitrogen contents reported (79.0 % to 85.7 %). The 

applicability of these compounds as propellants is currently being tested in collaboration with 

the WIWEB, the ICT and the Indian Head Division, Naval Surface Warfare Centre. Since, for 

this purpose larger amounts of material are necessary and as the initial used synthesis 

procedures are not suitable for the preparation on a larger scale, the preparation of these 

compounds was reinvestigated.  
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 3.1 Synthesis of HZT, HZTH, and DAD 

 The original synthetic procedure from 32c (Figure 2_8) suffers from some drawbacks 

related to the disadvantageous use of BaZT in its hydrated as well dehydrated form, as well as 

the use of the very problematic anhydrous hydrazine: 

 

 

Figure 2.8. Original preparation procedure of dihydrazinium salt of 
[N4C-N=N-CN4]2-; 1  HZT; 2  HZTH (dihydrate is erroneous); 3  
DAD; published in Inorg. Chem. 2001 ref [32c].  

 

 The main disadvantages of the original synthesis are the use of anhydrous hydrazine as 

solvent and water free barium azotetrazolate (BaZT). Both compounds are quite hazardous. 

Anhydrous hydrazine is difficult to handle as it is extremely poisonous and tends to decompose 

explosively, especially in the presence of traces of metals. Water-free BaZT is extremely 

explosive and is difficult to prepare since it tends to explode during the dehydration process. It 

is known that heavy metal salts of 5,5’-azotetrazolates, particularly lead 5,5’azotetrazolate 

dihydroxide,34a,60 have been investigated for use as initiators. An industrial synthesis of 132 on a 

large scale is not practical using the original method. 

 The modified synthesis, which is based on the reaction of NaZT with appropriate 

hydrazine precursors was combined in a patent and filed as an application for a patent. The 

patent is currently being under examination at the Deutsche Patent und Markenamt. 
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 3.2 Patent 

 Patentansprüche  

1. Verfahren zur Herstellung einer Verbindung der Reihe Dihydrazinium 5,5’-

Azotetrazolat * x-Hydrazinat * y-Hydrat (0 ≤ x ≤ 2, 0 ≤ y ≤ 1) derart, dass die 

Verbindung als Produkt aus der Reaktion der beiden Edukte Alkalimetall 5,5’-

Azotetrazolat und Hydraziniumsalz erhalten wird und dass diese Reaktion in 

einem wässrigen Reaktionsmedium duchgeführt wird.  

 

2. Verfahren nach Anspruch 1, bei dem das Edukt Alkalimetall 5,5’-Azotetrazolat 

ein Dinatrium 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5) ist.  

 

3. Verfahren nach Anspruch 2, bei dem das Dinatrium 5,5’-Azotetrazolat * x-

Hydrat (x ≤ 5) aus einer vorgeschalteten Stufe erhalten wird, bei dem 5-Amino-

1H-tetrazol * x-Hydrat (x ≤ 1) mit Natronlauge und Kaliumpermanganat 

umgesetzt wird.  

 

4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem das im Anspruch 1 

genannte wässrige Reaktionsmedium kein Hydrazin aufweist . 
 

5. Verfahren nach einem der Ansprüche 1 bis 3, bei dem das im Anspruch 1 

genannte Reaktionsmedium ein Hydrazin/Wasser-Gemisch umfasst. 

 
6. Verfahren nach Anspruch 5, bei dem während der Reaktion der Hydrazingehalt 

eingestellt werden kann.  

 

7. Verfahren nach Anspruch  5 oder 6, bei dem während der in Anspruch 1 

genannten Reaktion dem Reaktionsmedium  wasserentziehende Salze 

zugesetzt werden. 

 

8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem nach Erhalt der 

Verbindungen aus der Reihe Dihydrazinium 5,5’-Azotetrazolat * x-Hydrazinat * 

y-Hydrat (0 ≤ x ≤ 2, 0 ≤ y ≤ 1) die Nebenprodukte durch Sublimation im Vakuum 

entfernt werden.  
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Verfahren zur Herstellung von  Explosivstoffen 
 
Die Erfindung betrifft die Herstellung von Explosivstoffen mit hohem Stickstoffgehalt.  

 

Die Salze der Reihe Dihydrazinium 5,5’-Azotetrazolat * x -Hydrazinat * y-Hydrat 

([N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * yH2O, wobei: 0 < x < 2, 0 < y < 1) stellen 

stickstoffreiche energetische Verbindungen dar, die in Kombination mit diversen 

Oxidationsmitteln zur Herstellung von Treibmitteln mit einem weitgehend 

rückstandslosen Abbrand verwendet werden können. 

 

Aus einem Fachaufsatz (A. Hammerl, T. M. Klapötke, H. Nöth, M. Warchhold, Inorg. 

Chem. 2001, 40, 3570-3575) ist ein Verfahren zur Herstellung von Verbindungen der 

vorgenannten Reihe Dihydrazinium 5,5’-Azotetrazolat * x -Hydrazinat * y-Hydrat (0 < x 

< 2, 0 < y < 1) bekannt geworden. 

 

In dem Fachaufsatz ist dargelegt, dass man die in Rede stehenden Verbindungen als 

Produkt aus der Reaktion der beiden Edukte Barium 5,5’-Azotetrazolat und 

Hydraziniumsulfat erhält (Seite 3571, Spalte 1, Absatz der Überschrift „Synthesis and 

Properties of Dihydrazinium 5,5’-Azotetrazolate Salts“). Ferner heißt es, dass das 

Hydraziniumsulfat ([N2H5]2+[SO4]2-) gebildet wird aus dem kommerziell erhältlichen 

[N2H6]2+[SO4]2-  und einem Equivalent  N2H4*H2O (Hydrazinhydrat)  in Wasser. 

 

Im Fachaufsatz ist ferner dargelegt (Seite 3575, zweite Spalte), dass je nach 

Reaktionsführung die nachfolgenden 3 Verbindungen, die in dieser Anmeldung als 

HZT, HZTH und DAD bezeichnet sind, erhalten werden: 

 

• HZT, ebenso Dihydrazinium 5,5’-Azotetrazolat, ebenso [N2H5]2+[N4C-N=N-

CN4]2-,  ebenso [N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * yH2O mit x = 0 und  y = 0: 

o HZT erhält man durch eine thermische Behandlung von HZTH. 

• HZTH, ebenso Dihydrazinium 5,5’-Azotetrazolat * Monohydrat, ebenso 

[N2H5]2+[N4C-N=N-CN4]2- * 1H2O, ebenso [N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * 

yH2O mit x = 0 und y = 1: 

o Erhalt von HZTH aus Barium 5,5’-Azotetrazolat und [N2H6]2+[SO4]2-  in 

Wasser mit einem Equivalent Hydraziniumhydrat.  
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o Im Fachaufsatz wird das HZTH als Dihydrat vorgestellt (x = 0, y = 2); 

dabei handelt es sich allerdings um einen Fehler. Der richtige 

Wassergehalt dieser Verbindung entspricht dem eines Monohydrates, 

was durch Kristallstrukturanalyse, TGA und Elementaranalyse bestätigt 

werden konnte.   

 

• DAD, ebenso Dihydrazinium 5,5’-Azotetrazolat * Dihydrazinat, ebenso 

([N2H5]2+[N4C-N=N-CN4]2- * 2N2H4, ebenso  [N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * 

yH2O mit x = 2 und y = 0: 

o DAD erhält man aus Barium 5,5’-Azotetrazolat und [N2H6]2+[SO4]2- in 

wasserfreiem Hydrazin. 

 
Im Falle des DAD muss, wie zuvor dargelegt, in hochexplosivem, wasserfreiem 

Hydrazin gearbeitet werden, welches zum Zwecke der Produktisolierung nach 

schwieriger Abtrennung des ausgefallenen Bariumsulfates abdestilliert werden muss. 

 

Bei den im Fachaufsatz vorgestellten Reaktionen  handelt es sich um eine 

Fällungsreaktion, bei der durch Umsetzung von wasserfreiem Barium 5,5’-

Azotetrazolat mit einem Hydraziniumsulfat durch Ausfällung des schwerlöslichen 

Bariumsulfates das Dihydrazinium 5,5’-Azotetrazolat in Lösung erhalten wird. Die 

Darstellung des Barium 5,5’-Azotetrazolat erfolgt in einer vorgeschalteten Reaktion, die 

nicht näher im Fachaufsatz beschrieben ist. Das wasserfreie Barium 5,5’-Azotetrazolat 

reagiert äußerst empfindlich auf Reibung, Schlag und Temperatur und ist daher extrem 

explosiv.  

 

Das bekannte, sehr aufwendige Verfahren basiert auf der Umsetzung des 

entsprechenden Barium 5,5’-Azotetrazolat. Bei Barium handelt es sich um ein 

Erdalkalimetall, welches zu den Schwermetallen zu zählen ist. Barium ist in Form 

seiner löslichen Salze hoch giftig und daher in großtechnische Synthesen zu 

vermeiden. Zudem ist Barium im Vergleich zu Natrium ausgesprochen teuer. Bei der 

Fällungsreaktion, ausgehend vom Bariumsalz, entsteht als Abfallprodukt Bariumsulfat, 

was ein Problem in Hinblick auf die Entsorgung darstellt.  

 

Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren zur Herstellung von 

stickstoffreichen Explosivstoffen zu schaffen, welches effizient und ökonomisch 
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arbeitet und bei dem solche Edukte eingesetzt werden, die eine großtechnische, 

gefahrlose Synthese ermöglichen.  

 

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruches 1 

gelöst. 

  

Die Synthese einer Verbindung der Reihe [N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * yH2O (0 

< x < 2, 0 < y < 1) erfolgt durch Metathesereaktion von einem Alkalimetall 5,5’-

Azotetrazolat (vorzugsweise dem Dinatrium 5,5’-Azotetrazolat Pentahydrat) und einem 

Hydraziniumsalz (vorzugsweise NO3
- oder Cl-). Im Vergleich zu der im Fachaufsatz 

beschriebenen Fällungsreaktion, handelt es sich bei dem neuen Verfahren um eine 

fraktionierte Kristallisation. Beide Edukte sind auch in großtechnischem Maßstab gut 

zu handhaben.  

 

Ein großer Vorteil liegt in der effizienten Ausgestaltung des Verfahren.  

 

In einem ersten Schritt wird ein Alkalimetall 5,5’-Azotetrazolat * x-Hydrat (vorzugsweise 

das Dinatrium 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5)) aus einer vorgeschaltenen Stufe 

erhalten (beispielsweise gemäß einem Unteranspruch). 

 

In einem zweiten Schritt wird das  erhaltene Alkalimetall 5,5’-Azotetrazolat * x-Hydrat 

(vorzugsweise das Dinatrium 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5)) in einem 

entsprechenden Lösungsmittelgemisch umgesetzt, wobei das entsprechende Produkt 

aus der Reaktionslösung beim Abkühlen auskristallisiert. Das Produkt kann durch 

einfache Filtration vom Reaktionsgemisch abgetrennt werden. Es wird in hohen 

Ausbeuten und einem hohen Reinheitsgrad erhalten. Bei den Nebenprodukten handelt 

es sich, je nach eingesetztem Hydraziniumsalz, um Natriumchlorid oder Natriumnitrat, 

welche keine Probleme in Hinblick auf  eine Entsorgung darstellen.  

 

Das zweistufige Verfahren ist dadurch möglich, dass als eines der beiden Edukte ein 

Alkalimetall 5,5’-Azotetrazolat verwendet wird. Der Vorteil der  Alkalimetall 5,5’-

Azotetrazolat-Salze gegenüber den Erdalkalimetallsalze ist deren bessere Löslichkeit 

in wässriger bzw. hyrdazinhaltigen-wässrigen Lösungen. Im Gegensatz dazu weisen 

die Hydrazinium Azotetrazolate ebenfalls eine schlechtere Löslichkeit auf, was eine 
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fraktionierte Kristallisation ermöglicht. Beim Bekannten führt eine gleiche Umsetzung 

von Hydraziniumsalzen mit Barium 5,5’-Azotetrazolat in wässriger bzw. 

hyrdazinhaltigen-wässrigen Lösungen zu einer Mischkristallisation von 

entsprechenden Barium- und Hydraziniumsalzen, und liefert daher keine phasenreine 

Produkte.  

 

Eine aufwendige Abtrennung von Nebenprodukten, wie zum Beispiel des BaSO4 beim 

bekannten Verfahren, wird vermieden. Zusätzlich liegt ein weiterer Vorteil in der sehr 

hohen Ausbeute und der Möglichkeit zur ökonomischen, industriellen Herstellung von 

hydrazinfreien Verbindungen, z.B. von Dihydrazinium 5,5’-Azotetrazolat * Monohydrat 

(HZTH, x = 0, y = 1) und Dihydrazinium 5,5’-Azotetrazolat  (HZT, x = 0, y = 0). Denn 

bezüglich der toxikologischen Einstufung weisen die Salze mit variierendem 

Hydrazingehalt eine Sicherheitsproblematik auf, die durch die Gesundheitsgefahren 

von Hydrazinlösungen im Syntheseschritt ausgehen. Deshalb sind die vorgenannten 

hydrazinfreien Verbindungen HZT und HZTH  von besonderem technischen Interesse. 

 

Eine Belastung durch eventuell abgegebenes Hydrazin aus DAD und anderen 

hydrazinhaltigen Salzen der Reihe [N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * yH2O (0 < x < 2, 

0 < y < 1) ist nicht gegeben, da Stabilitäts- und Druckbelastungstest bestätigen, dass 

auch unter extremen Drücken und Temperaturen nahe dem Zersetzungspunkt eine 

Abgabe von Hydrazin nicht statt findet.  

 

Die Reaktion der beiden Edukte Alkalimetal 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5) und 

Hydraziniumsalz wird in einem wässrigen Reaktionsmedium durchgeführt. Hierdurch 

erhöht sich die Sicherheit in einem großtechnischen Prozess.  

 

Gemäß einer Ausgestaltung der Erfindung ist das Edukt Alkalimetal 5,5’-Azotetrazolat 

* x-Hydrat (x ≤ 5) ein Dinatrium 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5). Vorzugsweise wird 

als Dinatrium 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5) die Verbindung Dinatrium 5,5’-

Azotetrazolat * Pentahydrat eingesetzt. 

 

Gemäß einer weiteren Ausgestaltung der Erfindung wird das Dinatrium 5,5’-

Azotetrazolat * x-Hydrat (x ≤ 5) aus einer vorgeschalteten Stufe erhalten, bei dem 5-
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Amino-1H-tetrazol * x-Hydrat (x ≤ 1) mit Natronlauge und Kaliumpermanganat 

umgesetzt wird.  

 

Gemäß einer weiteren Ausgestaltung der Erfindung weist das wässrige 

Reaktionsmedium kein Hydrazin auf. Dies dient der Herstellung von HZTH. 

 

Gemäß einer weiteren Ausgestaltung der Erfindung  umfasst das Reaktionsmedium 

ein Hydrazin/Wasser-Gemisch. Dieses Reaktionsmedium ist sicher zu handhaben 

(Hydrazingehalt ≤ 64 Vol-%) und kann in geschlossenen Apparaturen eingesetzt 

werden, was für den entsprechenden Operator keine gesundheitliche Belastung 

darstellt.  

 

Gemäß einer weiteren Ausgestaltung der Erfindung kann durch Einstellung des 

Hydrazingehaltes in vorteilhafter Weise der Wassergehalt der Produkte eingestellt 

werden (siehe die nachfolgende Tabelle 1). Dadurch lassen sich Produkte erhalten, 

die in Ihrem Stickstoffgehalt um bis zu 7% variieren.  

 

Gemäß einer weitern Ausgestaltung können während der Reaktion 

wasserentziehende Salze dem Reaktionsmedium zugesetzt werden. In Frage kommen 

die Salze wie z. B. NaCl oder NaNO3. Durch die Hydratation des entsprechenden 

Kations (z.B. [Na(H2O)6]+) ermöglicht man den Einsatz von verdünnten 

Hydrazin/Wasser Lösungen. Zusätzlich erzwingt man dadurch die Kristallisation des 

schlechter löslichen Salzes, hier den entsprechenden Hydraziniumsalzen, da das 

System mit einer anderen Spezies übersättigt wird (Verdrängungsprinzip). 

 
Gemäß einer weiteren Ausgestaltung der Erfindung werden die Nebenprodukte, wie 

auch das Wasser und das Hydrazin, durch Sublimation im Vakuum entfernt, um die 

erforderlichen Reinheiten zu erzielen. 

 

Die Erfindung wird nachfolgend an Hand mehrerer, in den Zeichnungen dargestellter 

Ausführungsbeispiele näher erläutert. Dabei zeigen: 

 

Fig. 1 nacheinander ablaufende Reaktionsgleichungen, die darlegen, wie man 

ausgehend vom 5-Amino-1H-tetrazol x-Hydrat (x ≤ 1) zu Verbindungen der Reihe  
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Dihydrazinium 5,5’-Azotetrazolat * x -Hydrazinat * y-Hydrat (0 < x < 2, 0 < y < 1) 

gelangt; 

Fig. 2 eine Reaktionsgleichung, die darlegt, wie man ausgehend von der Reihe  

Dihydrazinium 5,5’-Azotetrazolat * x -Hydrazinat * y-Hydrat (0 < x < 2, 0 < y < 1) zur 

Verbindung HZT gelangt; 

Fig. 3 eine Tabelle, die den Stickstoffgehalt der Verbindungen  in Abhängigkeit vom 

Verhältnis Hydrazin zu Wasser im Reaktionsmedium zeigt. 

 

Die Fig. 1 zeigt ein Verfahren zur Herstellung einer Verbindung der Reihe 

Dihydrazinium 5,5’-Azotetrazolat * x -Hydrazinat * y-Hydrat (0 < x < 2, 0 < y < 1), 

welche als Produkt aus der Reaktion der beiden Edukte Alkalimetall 5,5’-Azotetrazolat 

(am Beispiel Dinatrium 5,5’-Azotetrazolat * x-Hydrat (x ≤ 5)) und Hydraziniumsalz 

erhalten wird.  

 

Die vorgenannte Reihe weist verschiedene Grenzfälle auf, da, wie zuvor formelmäßig 

dargelegt, die Variable x Werte von 0 bis 2 und die Variable y Werte von 0 bis 1 

aufweisen kann.  

 

Wenn  x den Wert von 2 und y den Wert von 0 einnimmt, liegt die Verbindung (I) vor. 

Die Verbindung (I) weist die chemische Bezeichnung Dihydrazinium 5,5’-Azotetrazolat 

Dihydrazinat (DAD) auf. 

 

Die Verbindung (II) betrifft den Grenzfall, wonach x den Wert 0 und y den Wert 1 

einnimmt. Die zweite Verbindung stellt Dihydrazinium 5,5´-Azotetrazolat Monohydrat 

(HZTH) dar. 

 

Bei der Verbindung (III) nimmt sowohl x als auch y den Wert von 0 ein. Die dritte 

Verbindung ist mit Dihydrazinium 5,5´-Azotetrazolat (HZT) bezeichnet. 

 

Als Reaktionsmedium kann Wasser (HZTH) oder ein Hydrazin/Wasser-Gemisch 

(Salze der Reihe [N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * yH2O (x ≤ 2, y ≤ 1)) eingesetzt 

werden. Dieses Reaktionsmedium ist sicher zu handhaben (Hydrazingehalt ≤ 64 Vol.-

%) und kann in geschlossenen Apparaturen eingesetzt werden, was für den 

entsprechenden Operator keine gesundheitliche Belastung darstellt. Je nach 
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Anforderung kann der Gehalt an Hydrazin im gewünschten Produkt eingestellt werden. 

Fig. 3 zeigt das Kristallisationsverhalten der verschiedenen Phasen in Abhängigkeit 

vom Verhältnis Hydrazin : Wasser im Reaktionsmedium. Werden die Umsetzungen in 

Wasser als alleiniges Reaktionsmedium durchgeführt, so erhält man als Produkt HZTH 

(II) (N : 79.0 %), aus wasserfreiem Hydrazin  würde  man DAD (I) (N : 85.7%) erhalten. 

Auf Umsetzungen in wasserfreiem Hydrazin wird verzichtet, da aus konzentrierten, 

übersättigten Hydrazinhydrat Lösungen ebenfalls DAD (Reaktionsbeispiel 5) erhalten 

wird. Spricht man Hydrazinhydrat, so ist N2H5OH gemeint. Diese Verbindung ist 

kommerziell erhältlich und entspricht einem Hydrazingehalt von 64%. 

 

In Abhängigkeit von der Konzentration der eingesetzten Edukte zum 

Reaktionsmedium, z.B. Hydrazinhydrat (N2H4: 64,0%), variiert der 

Hydrazin/Wassergehalt in den Produkten der allgemeinen Zusammensetzung 

[N2H5]2+[N4C-N=N-CN4]2- * xN2H4 * yH2O (0 < x < 2, 0 < y < 1).  

 

Arbeitet man in Wasser als Lösungsmittel, so erhält man bei der Umsetzung eines 

entsprechenden Alkalimetall-Azotetrazolats (vorzugsweise dem Natriumsalz) und 

einem entsprechenden Hydraziniumsalz (vorzugsweise dem Chlorid) bei 

Temperaturen zwischen 80 und 90°C das HZTH (Synthesebeispiel 1). 

 

Arbeitet man in einer übersättigten Lösung eines entsprechenden Alkalimetall- 

Azotetrazolats (vorzugsweise dem Natriumsalz) und einem entsprechenden 

Hydraziniumsalz (vorzugsweise dem Chlorid) bei Temperaturen zwischen 50 und 90°C 

in Hydrazinhydrat (Hydrazin/Wasser-Gemisch?), so wird DAD erhalten 

(Synthesebeispiel 5).   

 

Die nachfolgende Tabelle 1 gibt Synthesebeispiele mit den entsprechenden 

Elementaranalysen von den dabei erhaltenen Produkten wieder. 
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Beispiel HZT * 
 xN2H4 * yH2O 

Elementaranalyse 
Soll 

 
Ist 

1 x = 0, y = 1 N: 79.0 C: 9.7 H: 4.9 N: 79.0 C: 9.7 H: 4.9 

N: 78.6 C: 9.5 H: 4.8 

N: 79.6 C: 9.7 H: 4.9a 

2 x = 1, y = 1 N: 80.0 C: 8.6 H: 5.7 N: 80.0 C: 8.5 H: 5.2 

3 x = 0.5, y = 0.5 N: 82.4 C: 9.4 H: 5.3 N: 82.3 C: 9.6 H: 5.4 

N: 83.3 C: 9.6 H: 5.4 

4 x = 1.5, y = 0.5 N: 82.9 C: 8.4 H: 6.0 N: 83.1 C: 8.8 H: 5.8 

5 x = 2, y = 0 N: 85.7 C: 8.3 H: 6.0 N: --.- C: 8.3 H: 6.0b 
a Verschiedene Ansätze 
b Stickstoffwert konnte bei dieser Probe aus technischen Gründen nicht 

bestimmt werden 
            Tabelle 1 

 

 

Hydraziniumchlorid ist kommerziell erhältlich und weist gegenüber dem 

Hydraziniumnitrat, welches stark hygroskopisch ist, eine bessere Handhabbarkeit auf.  

 

Dem Reaktionsmedium können wasserentziehende Salze (z.B. NaCl, NaNO3) 

zugesetzt werden, um die Reaktion auch in verdünnten Wasser/Hydrazin-Lösungen 

durchzuführen. Allerdings beobachtet man dann eine etwas geringere Ausbeute. 

 

Die Kristallisationstemperatur der Produkte hängt von der Konzentration des 

Hydrazingehaltes ab und liegt bei reinem Wasser bei 5°C und sinkt mit steigendem 

Hydrazingehalt bis -20°C. Die so erhaltenen Produkte kristallisieren in Form von feinen 

gelben Kristallen. In jedem Fall erhält man die Produkte in sehr hohen Ausbeuten 

(abhängig vom Reaktionsmedium zwischen 70 u. 90%) und Reinheiten von meist über 

98%. Die Produkte werden durch einfache Saugfiltration vom Reaktionsmedium 

abgetrennt und mit Alkohol (vorzugsweise EtOH) von anhaftendem Reaktionsmedium 

befreit. Zur weiteren Trocknung ist eine Behandlung mit Ethern oder andern 

aprotischen Lösungsmitteln möglich (vorzugsweise Diethylether). Als Nebenprodukt 

entsteht das entsprechende Alkalimetallsalz (vorzugsweise NaCl bzw. NaNO3), 

welches im Reaktionsmedium zurück bleibt. Eine Verunreinigung der Produkte mit 

diesem Alkalimetallsalz ist gering (< 1%), man beobachtet eher eine Verunreinigung 
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durch die entsprechenden Hydraziniumsalze (N2H5NO3 bzw. N2H5Cl), wobei die 

Reinheit für die meisten Anwendungen ausreichend ist.  

 

Das Edukt Alkalimetall-Azotetrazolat ist ein Dinatriumazotetrazolat *x-hydrat (x < 5), 

das aus einer vorgeschalteten Stufe erhalten wird, bei dem 5-Amino-1H-tetrazol 

*Hydrat mit Natronlauge und Kaliumpermanganat umgesetzt wird. Vorzugsweise wird 

als Dinatriumazotetrazolat *x-Hydrat (x < 5) die Verbindung Dinatrium 5,5’-

Azotetrazolat Pentanhydrat eingesetzt. 5-Amino-1H-tetrazol Monohydrat ist 

kommerziell erhältlich. Bezogen auf das 5-Amino-1H-tetrazol Monohydrat erhält man 

eine Gesamtausbeute an Dinatrium 5,5’-Azotetrazolat Pentahydrat von bis zu 75%. 

Die Fig. 1 zeigt Reaktionsgleichungen, die darlegen, wie man ausgehend vom 5-

Amino-1H-tetrazol Monohydrat zu den Verbindungen des Typs [N2H5]2+[N4C-N=N-

CN4]2-*xN2H4*yH2O (0 < x < 2, 0 < y < 1) gelangt. 

 

Ebenso kann in Abweichung zum dargestellten Ausführungsbeispiel das 

Dinatriumazotetrazolat *x-hydrat (x < 5) in jeder Form seiner Hydrate verwendet 

werden (x < 5). 

 

Die Nebenprodukte, wie auch das Wasser und das Hydrazin, werden durch 

Sublimation im Vakuum entfernt (vorzugsweise 105°C bei einem Druck von ca. 5*10-3 

bar; N2H5NO3, mp 70.7°C; N2H5Cl, mp 89°C). Dabei erhält man das solventfreie HZT 

(III), wie in Fig. 2 illustriert ist (Synthesebeispiel 6).  

 

 

Beispiel HZT * 
 xN2H4 * yH2O 

Elementaranalyse 
Soll für HZT 

Tempern (100°C/5*10-3bar)  
Ist 

1 x = 0, y = 1 N: 85.2 C: 10.4 H: 4.4 N: 85.3 C: 10.2 H: 4.2 

N: 85.1 C: 10.2 H: 4.2 

2 x = 1, y = 1 -//- N: 85.1 C: 10.5 H: 4.4 

3 x = 0.5, y = 0.5 -//- N: 86.1a C: 10.4 H: 4.5 

N: 86.1 C: 10.4 H: 4.6 

4 x = 1.5, y = 0.5 -//- N: 85.2 C: 10.2 H: 4.4 

5 x = 2, y = 0 -//- N: 85.1 C: 10.3 H: 4.4 
a Dieser hohe Stickstoffwert lässt sich nicht erklären  

             Tabelle 2 
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In der vorhergehenden Tabelle 2 sind die Elementaranalysen aller getrockneten 

Produkte zusammengefasst, die nach den oben angegebenen Synthesebeispielen 

erhalten wurden.  

 
Nachfolgend wird die Herstellung verschiedener Verbindungen erläutert:  
 
Beispiel 1 betreffend HZTH (II) (N: 85.2%): 
Zu einer heißen (80 – 90°C) Lösung von di(Natrium) 5,5’-Azotetrazolat (5,803 g, 20 

mmol) in 35 mL H2O wird eine heiße (60 – 70°C) Lösung von Hydraziniummonochlorid 

(2,740g , 40 mmol) in 5 ml Wasser gegeben. Bereits nach 5 Minuten beginnt das 

Produkt aus der Lösung auszukristallisieren. Zur Vervollständigung der Kristallisation 

lässt man den Ansatz ca. 2h bei 5°C stehen, trennt das Produkt von der Mutterlauge 

und wäscht mit EtOH und Et2O (4,871 g, 19,6 mmol, 98% Ausbeute). Das so erhaltene 

Produkt hat eine hohe Reinheit (> 98%), kann aber durch Umkristallisation aus Wasser 

weiter gereinigt (> 99%) werden (4,52g, 18,2 mmol, 91% Ausbeute).  

 
 
Beispiel 2 betreffend [N2H5]2

+[N4C-N=N-CN4]2
-*N2H4*H2O (N:80,0%): 

Dinatrium 5,5’-Azotetrazole *5H2O (5.803, 20 mmol) wird zu einer Lösung von 25 mL 

Hydrazinhydrat (Hydrazingehalt 64%) und 7,5 ml Wasser gegeben und auf 50°C bis 

70°C erhitzt. Zu dieser Lösung gibt man auf einmal Hydraziniumchlorid (2,74g, 40 

mmol) und rührt die erhaltene Mischung bei ca. 75°C, bis eine klare rot-orangefarbene 

Lösung entstanden ist. Die Kristallisation des Produktes erfolgt in Form von feinen 

gelben Nadeln bei – 18°C meist innerhalb von 2h. Die Kristalle werden durch 

Saugfiltration von der Mutterlauge getrennt und mittels EtOH von anhaftenden 

Lösungsmittelresten befreit. Waschen mit Et2O und Trocknung liefert [N2H5]2+[N4C-

N=N-CN4]2-*N2H4*H2O in 98 % Reinheit (3,47 g, 70 % Ausbeute). 

 
 
Beispiel 3 betreffend [N2H5]2

+[N4C-N=N-CN4]2
-*0,5N2H4*0,5H2O (N:82,4%): 

Dinatrium 5,5’-Azotetrazole *5H2O (4,353, 15 mmol) wird zu einer Lösung von 20 mL 

Hydrazinhydrat (Hydrazingehalt 64%) und 2.5 ml Wasser gegeben und auf 50°C bis 

70°C erhitzt. Zu dieser Lösung gibt man auf einmal Hydraziniumchlorid (2,055g, 30 

mmol) und rührt die erhaltene Mischung, bis eine klare rot-orangefarbene Lösung 
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entstanden ist. Die Kristallisation des Produktes erfolgt in Form von feinen gelben 

Nadeln bei – 18°C meist innerhalb von 2h. Die Kristalle werden durch Saugfiltration 

von der Mutterlauge getrennt (3,32g, 13,5 mmol) und aus Hydraziniumhydrat 

umkristallisiert. Durch Saugfiltration und Waschen mit EtOH und Et2O erhält man  

[N2H5]2+[N4C-N=N-CN4]2- * 0,5N2H4 * 0,5H2O in 99 % Reinheit (2,12 g, 55 % Ausbeute). 

Aus den Mutterlaugen lassen sich weiter Produktfraktionen gewinnen, die allerdings in 

Gehalt an Hydrazin/Wasser variieren. 

 

 

Beispiel 4 betreffend [N2H5]2
+[N4C-N=N-CN4]2

-*1,5N2H4*0,5H2O (N:82,9%): 
Dinatrium 5,5’-Azotetrazole *5H2O (4,353, 15 mmol) wird zu einer Lösung von 25 mL 

Hydrazinhydrat (Hydrazingehalt 64%) und 1.5 ml Wasser gegeben und auf 50°C bis 

70°C erhitzt. Zu dieser Lösung gibt man auf einmal Hydraziniumchlorid (2,055g, 30 

mmol) und rührt die erhaltene Mischung bei 75°C, bis eine klare rot-orangefarbene 

Lösung entstanden ist. Die Kristallisation des Produktes erfolgt in Form von feinen 

gelben Nadeln bei – 18°C meist innerhalb von 2h. Die Kristalle werden durch 

Saugfiltration von der Mutterlauge getrennt (3,32g, 90% Ausbeute). 

 

Beispiel 5 betreffend DAD (I) (N:85.7%): 
Zu 15 mL Hydrazinhydrat (Hydrazingehalt 64%) wird Dinatrium 5,5’-Azotetrazole 

*5H2O (5.803, 20 mmol) gegeben und auf 50°C bis 70°C erhitzt. Zu dieser Lösung gibt 

man auf einmal Hydraziniumchlorid (2.74g, 40 mmol) und rührt die erhaltene Mischung 

bei 75°C, bis eine klare, rot-orangefarbene Lösung entstanden ist. Die Kristallisation 

des Produktes erfolgt in Form von feinen gelben Nadeln bei – 18°C innerhalb von 2h. 

Die Kristalle werden durch Saugfiltration von der Mutterlauge getrennt und mittels 

EtOH von anhaftenden Lösungsmittelresten befreit. Waschen mit Et2O und Trocknung 

liefert [N2H5]2+[N4C-N=N-CN4]2–*2H2H4 in 99 % Reinheit (4,21 g, 85 % Ausbeute). 

 

 

Beispiel 6 betreffend HZT (III): 
HZT (III) wird quantitativ durch Ausheizen im Vakuum bei Temperaturen zwischen 80 

und 110°C der nach obigen Verfahren hergestellten Salze des Typs [N2H5]2+[N4C-

N=N-CN4]2- * xN2H4 * yH2O (0 < x < 2, 0 < y < 1) erhalten. HZT (III) lässt sich mit 

Oxidatoren verreiben und pressen (z.B. ADN). 
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Beispiel 7 betreffend DAD (I): 
DAD (I) wird in 75% Ausbeute durch Umkristallistation von HZT (III) aus 

Hydrazinhydrat (> 64%) erhalten. Eine Mischung von 10 g HZT und 15 g 

Hydrazinhydrat wird so lange erwärmt (70-90°C), bis eine klare gelb-orange Lösung 

entstanden ist. Beim Abkühlen (-5 °C) kristallisiert das DAD als feine gelbe Nadeln.  

 

Im Gegensatz zu den traditionellen energetischen Materialien (z.B. TNT, RDX oder 

HMX) verdanken die in Rede stehenden Verbindungen [Stickstoffgehalt variiert 

zwischen 79.0% (III) und 85.7% (I)] ihre hohen Energieinhalte hauptsächlich ihren 

hohen positiven Bildungsenthalpien ((I), 288 kcal/mol; (III), 205 kcal/mol) und nicht der 

Oxidation des zugrunde liegenden Kohlenwasserstoffgerüsts. Zusätzliche 

Verwendungsmöglichkeiten sind gegeben als Zusatz für pyrotechnische 

Formulierungen und Raketentreibstoffe (Hydrazin, MMH, UDMH) sowie als 

gaserzeugende Komponente in Formulierungen für Gasgeneratoren. DAD (I), HZTH 

(II) und HZT (III) zeigen gegenüber den meisten Oxidatoren gute Beständigkeiten.  

 

Als Oxidationsmittel können Nitrate, Perchlorate, Dinitramide von Ammonium, Natrium, 

Kalium, Magnesium, Calcium oder Eisen, und andere, vorzugsweise Ammonium 

Dinitramid (ADN) oder Peroxide von Zink, Calcium, Strontium oder Magnesium 

eingesetzt werden. In Bezug auf Treibmittel werden Peroxide dabei mit einem 

Sauerstoffwert eingesetzt, wie er aus stabilen Verbindungen erhalten werden kann. 

Für Zinkperoxid liegt dieser bei etwa 11 bis 14 Gew.-%. Das entsprechende 

Molverhältnis wird entsprechend dem Sauerstoffbedarf der jeweiligen Verbindung (I), 

(II) oder (III) angepasst und liegt dabei im Bereich von 1 : 2 bis 5,5. Calciumperoxid 

kann einen aktiven Sauerstoffwert von beispielsweise 18,62 Gew.-% aufweisen und 

wird vorteilhaft im Molverhältnis HEDM/Peroxid von 1 : 3 eingesetzt. Im allgemeinen 

können die oben genannten Peroxide im Molverhältnis 1 : 1 bis 20 eingesetzt werden. 

Es können Mischungen der Peroxide untereinander oder solche mit anderen 

Oxidationsmitteln eingesetzt werden. Andere Oxidationsmittel sind beispielsweise die 

oben erwähnten. Im Falle von DAD (I) und HZTH (II) kann es in Kombination mit 

diversen Oxidatoren zur vorübergehenden Verflüssigung aufgrund des im Kristall 

enthaltenen Hydrazins (I) bzw. Wassers (II) kommen. Bestimmte Mischungen 

verfestigen sich nach einer gewissen Zeit wieder (z.B. ADN als Oxidator) oder lassen 
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sich problemlos trocknen bei Temperaturen von vorzugsweise zwischen 60 und 

110°C. Dabei entweicht Hydrazin bzw. Wasser und es bleibt im wesentlichen HZT (III) 

als Treibstoff wirkende Komponente zurück. Darüber hinaus scheint es für bestimmte 

Anwendungen zweckmäßiger zu sein, die Salze der Reihe [N2H5]2+[N4C-N=N-CN4]2-

*xN2H4*yH2O      (0 < x < 2, 0 < y < 1) einzusetzen, da HZT (III) eine etwas erhöhte 

Schlagempfindlichkeit aufweist.  

 

Bei Einsatz von sauer reagierenden Oxidatoren (selten bei basich reagierenden) oder 

anderen sauer (selten bei basich reagierenden) reagierenden Zusätzen kann es zu 

Reaktionen mit den Verbindungen (I), (II) oder (III) kommen. Hier ist eine Beschichtung 

der entsprechenden Komponenten mit anorganischen oder organischen Materialien 

nach an sich bekannten Verfahren zweckmäßig.  

Aufgrund des hohen Stickstoffgehalts der Verbindungen  (I), (II) und (III) entstehen im 

Gemisch, mit oder ohne Oxidator, bei der thermischen/chemischen Umsetzung 

hauptsächlich N2 und H2O, neben wenig CO2 (schlecht detektierbare Signatur). Die 

Emissionen von energetischen Stoffen, insbesondere die von 

gesundheitsgefährdenden Gasen, dürfen bestimmte Grenzwerte der verschiedensten 

nationalen wie auch internationalen Regelwerke nicht überschreiten. Verbindungen mit 

hohem Stickstoffgehalt, wie die Verbindung (I), (II) oder (III), können hierzu 

entscheidend beitragen.   

 

 

Zusammenfassung 
 

Verfahren zur Herstellung von  Explosivstoffen 
 
Es soll ein neues Verfahren zur Herstellung von stickstoffreichen Explosivstoffen 

geschaffen werden, welches effizient arbeitet und bei dem solche Edukte eingesetzt 

werden, die eine großtechnische, gefahrlose Synthese ermöglichen.  

 

Das neue Verfahren dient der Herstellung einer Verbindung der Reihe Dihydrazinium 

5,5’-Azotetrazolat * x-Hydrazinat * y-Hydrat (0 ≤ x ≤ 2, 0 ≤ y ≤ 1). Dabei wird die 

Verbindung als Produkt aus der Reaktion der beiden Edukte Alkalimetall 5,5’-

Azotetrazolat und Hydraziniumsalz erhalten.  
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Fig 3. 

 

 

 

 3.3 High Temperature and Pressure FTIR study of DAD (28) 

 Hydrazinium DAD (28) sample were sent to Dr. Kerry A. Clark and Dr. Jared C. Gump 

from the Indian Head Division, Naval Surface Warfare Center in order to evaluate the stability 

of DAD towards high temperature and pressure in a Hydrothermal Diamond Anvil Cell 

(HDAC), monitored by means of FTIR measurements. The sample consisted of yellow rod-like 

crystals on the order of 150-200 µm in length and approximately 50 µm wide.  

 

 3.3.1 Experimental Method 

 A Hydrothermal Diamond Anvil Cell (HDAC) developed by Bassett61 was used to 

compress and heat the sample (Figure 2.9).  The basic design of this cell consists of two 

brilliantly cut diamonds with their culets polished flat.  The diamonds are positioned so that the 

culets are facing each other.  Heating coils are placed in contact with the table end of each 
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diamond to provide the heat source and thermocouple tips are placed close to each culet end to 

monitor the temperature.  A metal gasket with a hole in it is inserted between the two diamond 

culets.  The sample is placed inside the gasket hole, and pressure is applied by tightening three 

screws positioned around the cell, which draws the diamonds together. The HDAC used in 

these experiments had two type I diamonds.  Inconel 600 (nickel-chromium alloy) was used as 

the gasket material.  

 

 
Figure 2.9. Bassett-type HDAC experimental setup; ref [61] 

 

 Pressure in the HDAC was monitored using the ruby fluorescence technique.62  A piece of 

ruby is placed inside the gasket hole along with the sample.  When the pressure of the cell is 

increased, Raman spectroscopy can be used to observe shifts in the ruby R1 and R2 

fluorescence lines.  The sensitivity of these lines to pressure is well characterized, which allows 

the pressure on the sample to be determined.62  

 The FTIR used in these experiments is a ThermoNicolet Nexus 870 spectrometer.  The 

detector was a liquid nitrogen cooled MCT-A detector.  The number of scans for each spectrum 

was 200 with a resolution of 4. A background image was collected from the HDAC cell with no 

gasket and no sample.  This background spectrum is shown in Figure 2.10.  Due to the natural 

absorption of a type I diamond, the region from approximately 1100 cm-1 to 1335 cm-1 is not 

accessible.63 
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Figure 2.10. Background file from the HDAC with no gasket and no sample. The 
transmittance spectrum is typical for a type I diamond 

 

 3.3.2 Experimental Results 

 An initial experiment was performed with a 250 µm diameter, 127 µm thick gasket hole.  

The sample was packed into the hole along with a ruby piece. The IR signal was not able to 

penetrate this volume of sample.  With an increase in pressure some signal was able to penetrate 

the sample, however the gasket had deformed, limiting any further pressure increase.   

 To allow more signal to pass through the cell at a lower pressure, the initial gasket 

thickness was decreased by pre-indenting a 400 µm diameter gasket until the hole closed, then a 

new hole with a 150 µm diameter was drilled. The original gasket thickness was 127 µm. The 

thickness of the gasket was found to be unmeasurable, but likely to be in the order of 60-70 µm.  

The new hole was loaded with sample and a piece of ruby.  Without pressure there was still no 

signal penetrating.  Upon increasing pressure the sample began to become visibly more 

transparent, but very little IR signal was getting through.  As pressure continued to increase the 

sample began to appear darker. The pressure was realized, and it was found that the sample had 

become visibly much more translucent even at low pressure.  From that sample, IR spectra were 

recorded while the pressure was increasing again. The spectra from the resulting experiment can 

be depicted from Figure 2.11.  

 There are two regions in Figure 2.11 where the absorbance is saturated.  The region from 

1100 cm-1 to 1335 cm-1 is expected to be saturated in an absorbance plot because of the 

absorption from a type I diamond.  The region from ~ 2000 cm-1 to 2300 cm-1 is also a region of 
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high absorption for the type I diamond.63  Outside of the regions of maximum absorbance 

multiple peaks are visible.  Several of these peaks show changes with pressure.  Table 2.4 lists 

the peaks that shift position with pressure.   

 

 
Figure 2.11.  Room temperature pressure increase after a previous pressure cycle 

 

 All of these peaks move to a higher energy position with an increase in pressure.  The 

total shift over the 4.2 GPa from the initial pressure of 1.66 GPa to the maximum pressure of 

5.86 GPa is also shown in Table 2.4.  Clearly the peak originally at 869 cm-1 shows the largest 

change with pressure.  The peak labeled as 985 cm-1 is actually a group of peaks that are 

difficult to distinguish from each other, so the peak’s position is a best estimate of the center of 

the group. 

Table 2.4.  Peak positions and total shifts for peaks moving with 
pressure from Figure 2.11 

Peak Position 
@ 1.66 GPa 

Peak Position 
@ 5.86 GPa 

Total shift 
over 4.2 GPa

727 732 5 
740 748 8 
869 904 35 

985 (center of group) 1000 15 
1049 1056 7 
1409 1417 8 
1463 1481 18 
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 Besides position changes with pressure, it is noteworthy note that the overall quality of 

the spectra decreased with increasing pressure.  By 5.68 GPa several peaks were no longer able 

to be resolved due to the increase in background noise.   

 After reaching a pressure above 5 GPa, the cell was decompressed to determine if the 

changes due to pressure were reversible.  Upon full decompression to room pressure the sample 

darkened due to grain boundary formation.  The pressure was increased to 0.44 GPa to remove 

grain boundary distortion and “clear” the sample.  The decompressed spectrum is represented in 

Figure 2.11 by the pattern labeled at 0.44 GPa.  The peaks that had shifted to higher energy 

positions with an increase in pressure did return to positions of lower energy upon 

decompression.  The signal-to-noise level also improved once the pressure was released.  

 Because this sample was still loaded in the high temperature cell and was now giving 

strong IR signals, the pressure was left at 0.44 GPa and the temperature was increased.  It is 

important to note that at this point the sample had already been through two pressure cycles.  

The temperature was increased at an approximate rate of 4 oC /min. Initially a scan was taken 

after every 5 oC increase up to 60 oC.  No apparent changes were observed, so the next scan was 

taken after stabilizing and holding at 70 oC for one hour.     

 

 
Figure 2.12. Spectra from temperature increase after sample has undergone two pressure cycles and 
was left at 0.44 GPa.  The heating rate was ~4 oC/min. The sample was held at 70 oC from one hour 
before the 70 oC spectrum was taken. 
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 Three changes were apparent in the 70 oC scan.  First, the peak at 848 cm-1 was no longer 

visible above the background noise.  Second, the peak at 1452 cm-1 also was no longer visible. 

Finally, the peak originally at 1612 cm-1 appeared to shift to a lower energy position at 1587 cm-

1.  The temperature was again increased at a rate of  ~ 4 oC min-1 and scans taken at every 10 oC 

increment.  No further changes occurred until the sample thermally decomposed between 130 
oC and 140 oC.  The spectra from this experiment are shown in Figure 2.12. 

 

 For the next two experiments, a Merrill-Bassett diamond anvil cell without heating 

capability was used in order to simplify sample loading and to try to get a couple pressure-only 

measurements.  The gasket for the first cell was pre-indented and redrilled to a 250 µm hole 

diameter.  The sample was packed into the hole along with a piece of ruby.  The pressure was 

increased in the cell until a signal was received by the FTIR detector through the sample.  At 

this point the pressure was already at 6.1 GPa.  The spectrum is shown in Figure 2.13.  At 6.1 

GPa the spectrum has a lot of noise.   

 

 
Figure 2.13. Compression and decompression cycle at room temperature 

 

 While most of the peak regions that were visible in the first experiment can be seen here, 

several of the individual peaks are not distinguishable above the noise.  This seems to be most 

apparent from about 1500 cm-1 and higher.  With an increase in pressure the same peaks from 
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the first experiment that shift to higher wavenumber with an increase in pressure appear to 

follow the same trend here. Decompression was performed in smaller steps for this sample.  

Table 2.5 lists the shifts for the same peaks that were in Table 2.4, except this time the positions 

are taken from maximum pressure to minimum decompression pressure because all of the peaks 

become visible on decompression. There is one new peak that appears at the extreme low end of 

the wavenumber scale. It moves into the detectors range above 6 GPa, but since it is not always 

visible, it is not included on Table 2.5.  

 

Table 2.5.  Peak positions and total shifts for peaks moving with pressure 
from Figure 2.13 during decompression 

Peak Position 
@ 10.6 GPa 

Peak Position
@ 0.52 GPa 

Total shift 
over 10.08 GPa 

738 727 11 
755 736 19 
952 846 106 

(center of group) 
shifting but too much noise

970 − 

1066 (weak) 1046 20 
1419 1405 14 

1457 (weak) 1450 7 
 

 The second pressure experiment using the Merrill-Bassett cell had a pre-indented gasket 

with a 150 µm diameter hole.  For this sample, some IR signal was reaching the detector by 

0.64 GPa.  From Figure 2.14 it is evident that there is still a lot of absorption occurring, but 

some of the peaks that shift with pressure are already visible.  Upon increasing the sample 

pressure, the shifting of peaks to higher energy is again observed, as well as an increase in the 

noise.  Upon decompression, the noise reduces and the peaks return to their original positions.  

For Table 2.6, only the three lowest energy peaks are shown because they remain 

distinguishable from the noise.  

 

Table 2.6.  Peak positions and total shifts for the three 
lowest energy peaks moving with pressure from Figure 
2.14 during compression 
Peak Position
@ 0.64 GPa 

Peak Position
@ 9.37 GPa 

Total shift 
over 8.73 GPa

726 (weak) 732 6 
736 754 18 
846 925 79 
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Figure 2.14. Compression and decompression cycle at room temperature 

 

 The last three experiments were all performed in the HDAC with temperature.  In all three 

experiments the gasket was pre-indented and redrilled to a hole size of 150 µm in diameter.  For 

the first experiment, the pressure on the sample was increased in steps to 2.12 GPa.  The 

temperature was then increased at ~ 4 oC min-1 without actively changing the pressure.  Due to 

thermal expansion effects the lattice may expand and increase the pressure inside the cell as the 

temperature increases.  With the current experimental set-up, it is not possible to monitor the 

pressure while the cell is being heated inside the FTIR.  Once the cell was cooled and removed 

from the FTIR, a final pressure reading was taken.  For this experiment the cell did not return to 

2.12 GPa after cooling, but registered a pressure of 5.37 GPa.  

 Spectra were collected at 10 oC intervals.  A graph of the spectra is shown in Figure 2.15.  

Clearly there is a lot of noise, especially at the high wavenumber end of the spectra.  Increasing 

the temperature tended to increase the noise level.  From the peaks that can be distinguished 

from the noise, it appears that the temperature has little effect on peak position. In comparison 

with the results from the temperature experiment shown in Figure 2.12, it appears that the same 

two peaks which disappeared in that experiment at 70 oC also disappear in this experiment, but 

at a higher temperature (~100 oC).  It is more difficult to determine whether the peak which 

shifted position in Figure 2.12 has done so for this experiment due to the high level of noise in 

that region.  Also of note is the fact that the sample did not thermally decompose even by 170 
oC.  
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Figure 2.15. Spectra from temperature increase where the pressure was initially set to 2.12 Gpa.  The 
heating rate was ~4 oC/min.  Upon cooling the pressure was measured to be 5.37 GPa 

 

 The next temperature experiment was performed in the same manner as the last one 

except that the pressure was initially increased to 5.25 GPa.  Once again, the final pressure after 

cooling was not 5.25 GPa but 8.27 GPa.   For this experiment, the higher initial pressure and the 

noise from the temperature increase makes it difficult to say with certainty whether the two 

peaks (originally at 857 cm-1 and 1149 cm-1 at 0.96 GPa) disappear with increasing temperature.  

Upon cooling, the spectrum clears slightly, and the peak originally at 857 cm-1 is visible.  For 

this sample, a spectrum was taken after releasing the pressure, and both peaks (now at 852 cm-1 

and 1452 cm-1) are visible.  Also the sample did not thermally decompose by 140 oC.  Spectra 

from this experiment can be seen in Figure 2.16.  

 

 The final set of temperature experiments performed was used to determine an 

approximate temperature for thermal decomposition under ambient pressure.  In order to 

achieve ambient pressure conditions even at high temperatures in the cell, only a small amount 

of sample was placed in the gasket hole with air gaps present.  No ruby was used in this 
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experiment.  The spectra showed almost total absorption until decomposition occurred.  The 

background began to reduce by 120 oC, and by 130 oC the sample had fully decomposed.  

 

 
Figure 2.16. Spectra from temperature increase where the pressure was initially set to 5.25 GPa.  The 
heating rate was ~4 oC/min.  Upon cooling the pressure was measured to be 8.27 GPa.  A final spectrum 
was obtained at room temperature and pressure. 

 

 There was one final spectrum taken of the sample placed directly between the diamond 

faces with no gasket.  This loading allowed the sample to extrude out towards the side of the 

cell creating the thinnest possible sample layer.  This should provide the maximum amount of 

IR signal through the sample.  There is a small amount of pressure on the sample under these 

conditions.  The resulting spectrum is shown in Figure 2.17.  The typical absorption region 

from the type I diamond is still apparent from 1100 cm-1 to 1335 cm-1.  This spectrum shows 

much more detail in the higher wavenumber region above 2000 cm-1.  
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Figure 2.17. Spectrum from a sample with no gasket 

 

 3.3.3 Discussion 

 Identification of the peaks appearing in Figure 2.17 provides a more useful interpretation 

of the data obtained in this study.  Some comparison with published infrared spectra allows for 

certain regions to be assigned to specific vibrational modes.  The dominant spectral features 

appear in the region of 3300 cm-1 to 2600 cm-1.  This region is most likely associated with the 

stretching vibration of the primary amine salts (NH3
+), which is reported to have strong, broad 

absorption from 3200-2800 cm-1.  The smaller peaks appearing between 1500-1700 cm-1 may 

be related to the asymmetric and symmetric deformation vibrations of NH3
+ reported to be 

around 1625-1560 cm-1 and 1550-1505 cm-1 respectively.  The small, broad peak around 850 

cm-1 can reasonably be identified as the out-of-plane NH deformation vibration, which is 

reported to be a broad, medium strong peak appearing around 800 cm-1.  Secondary evidence 

for the assignment of the NH deformation vibration to the 850 cm-1 peak comes from the IR 

data on hydrazinium azotetrazolate.  As opposed to the hydrazinium azotetrazolate hydrazinate 

spectrum, the hydrazinium azotetrazolate spectrum does not show a peak in this region.  As the 

NH deformation would be due to the hydrazinate, it logically follows that if the 850 cm-1 peak is 

from an NH deformation that it should be absent in the hydrazinium azotetrazolate spectrum, 

which it is.  

 The pressure data clearly show that the peak most influenced by a change in pressure is 

the out-of-plane NH deformation (NH dop) peak.  Upon increasing pressure, the NH dop peak is 

shifted to higher energies.  A plausible physical interpretation of this phenomenon would be that 
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as the increase in pressure draws the molecules closer together they will tend to compress 

perpendicular to the most planar axis, forcing any out-of-plane components to be under a 

greater strain than components in the plane.  Therefore, it is reasonable to assume that being an 

out-of-plane vibration, NH dop would be influenced to a greater degree by pressure than other 

vibrations aligned along the plane.  The reversibility of the shift upon decreasing pressure 

implies that no permanent deformation of the molecule occurred up to the maximum pressure 

attained.  

 The temperature data appear to show little influence on peak position.  The largest change 

in peak position with temperature was an abrupt jump of the peak around 1612 cm-1 to 1587 cm-

1 when the sample temperature changed from 60 oC to 70 oC.  Accompanying this jump was the 

disappearance of the peaks at 848 cm-1 (believed to be the NH dop) and 1452 cm-1.  The peak 

jump was not distinguishable from the background noise in the two subsequent temperature 

scans.  The two peaks disappearing did appear to occur when the cell was left at 2.12 GPa and 

the temperature was increased, but most likely did not occur when the cell was left at 5.25 GPa 

the temperature was increased.  The disappearance of the two peaks could be associated with 

the removal of the hydrazinate at elevated temperatures.  An increase in pressure on the sample 

may be able to stabilize the hydrazinate in the molecule so it can withstand the temperature 

increase.  This would be a logical extension of the fact that the peak disappeared at a higher 

temperature when held at 2.12 GPa than at 0.44 GPa.  The fact that the sample did not thermally 

decompose at 130 oC when held above 2 GPa seems to imply that the molecule as a whole may 

become more thermally stable at increased pressure.  

 

 This is also in accordance with the variable temperature experiments, where the 

temperatures were increased by 10 oC increments.  The pressures listed on the Figure 2.18 are 

the pressures the cells registered before the temperature was increased.  Pressure is likely to 

increase as the temperature is increased due to thermal expansion.  Decomposition only 

occurred for two of the four temperature experiments. At ambient pressure, the spectra showed 

almost total absorption due to grain boundary scattering until decomposition occurred.  The 

background began to reduce by 120 oC, and by 130 oC the sample had fully decomposed.  For 

the 0.44 GPa experiment, full decomposition occurred at 140 oC.  The 2.12 and 5.25 GPa 

pressure experiments did not decompose by the maximum temperature obtained in their 

experiments (170 oC and 140 oC, respectively), when the cell began to lose temperature 

stability.  The HDAC should be able to achieve temperatures above 200 oC, but in practice 
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mechanical failures often inhibit this performance.  So at this point, the only conclusion which 

can be drawn from the pressure experiments above 0.44 is that the decomposition temperature is 

above the maximum obtained temperature (Figure 2.18).  

 

 
Figure 2.18. Decomposition temperature versus pressure.  The 2.12 and 5.25 GPa points have 
arrows denoting that the decomposition temperature is higher than the temperature shown 

 

 3.3.4 Conclusion 

 Samples of DAD were studied with FTIR spectroscopy under various temperature and 

pressure conditions.  An increase in pressure at ambient temperature caused several of the IR 

peaks to shift towards higher energy.  The largest shift occurred for the peak associated with the 

NH out-of-plane deformation vibration, implying that an increase in pressure imparts stress to 

that bond as it most likely is forcing it into the plane of the molecule.  All of the peaks that 

shifted under compression would return to their previous positions under decompression.   

 Increasing the temperature of the sample at room pressure produced thermal 

decomposition at about 130 oC.  Due to scattering of the IR light by grain boundaries, the IR 

spectra of the sample at ambient pressures showed almost uniform absorption.  Therefore, IR 

spectra from temperature experiments could only be obtained with some initial pressure applied.  

Temperature experiments were performed at 0.44, 2.12 and 5.25 GPa.  Only the 0.44 GPa 

experiment showed thermal decomposition, and this occurred at about 140 oC.  An increase in 

temperature influenced peak position very little, but the 0.44 and the 2.12 GPa temperature 

experiments showed the disappearance of two peaks, one of which is the peak associated with 
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the NH out-of-plane deformation vibration.  These peaks did not disappear during the 5.25 GPa 

temperature experiment.  This fact, plus the absence of thermal decomposition at 140 oC for the 

two higher pressure temperature runs, suggests that an increase in pressure may enhance the 

thermal stability of the hydrazinium azotetrazolate hydrazinate molecule.  

 

 4. STANAG 4147 and 4582 

 NATO standardisation agreements (STANAG) on the thermal (“chemical”) stability of 

propellants describe mutually acknowledged test procedures to facilitate cross procurement by 

avoiding repeated testing in different countries. The most important standard, which describes 

the testing and assessment of chemical compatibility, is STANAG 4147.64 According to this 

standard, the purpose of a compatibility test is “to provide evidence that a material may be used 

in an item of ammunition without detriment to the safety or reliability of an explosive with 

which it is in contact or proximity”. The individual compatibility tests are based on the different 

effects/phenomena, means: Chemical reactions between explosive and contact material can, on 

the explosive, increase the rate of binder degradation, stabilizer depletion, heat and gas 

production and weight loss. Furthermore, the sensitivity of the explosive can be increased. On 

the other hand, also chemical reactions on the contact material can be initiated, such as post 

curing and decomposition of binders and corrosion process in container materials.  

 At the moment the STANAG is under revision, since in particular vacuum stability test 

(VST), heat flow calorimetry test (HFC) and stabilizer depletion test artificially age relatively 

large amounts (several grams) of explosive, contact material and mixture under sealed 

(ammunition-like) conditions.  All three tests are perfectly suitable for nitrocellulose-based 

propellants; the VST and HFC tests are also suitable for high explosive and composite 

propellants. Due to the large sample masses, however, testing of primary explosives and 

pyrotechnics is too dangerous with these methods.  

 On the other hand, thermogravimetric analysis (TGA) and differential scanning 

calorimetry (DSC) uses very small samples (several milligrams). They are therefore suitable for 

the testing of primary explosives and pyrotechnics, whereas their applicability for propellants 

must be questioned.  

 In principal HFC methods are suitable to measure the quantity that can lead to thermal 

explosion, offering a more direct method. Moreover, interrupting an HFC experiment shortly 
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before an autocatalytical reaction starts allows the determination of relevant limits for the 

stabilizer consumption methods by analysis. In this contrast, the STANAG 4582 sets the basis 

for realistic and scientific proven tests times/temperatures than other ‘stability STANAGs’ 

(stabilized depletion, vacuum stabiliy). STANAG 4582 is suitable for explosives − NC based 

propellants stabilized with DPA (diphenylamine) by means of heat flow calorimetric 

measurements. Only the HFC allows a free choice of test temperature and corresponding test 

duration. It is based on an Arrhenius extrapolation to 10 years self life at 25 °C by assuming an 

activation energy of 28.7 Kcal mol-1 above 60 °C and 19.1 Kcal mol-1 below this temperature.65 

 

 The compatibility of TAGZT, HZT and HZTH with certain propellant charges “TLPs” 

has been tested by the WIWB (Dr. Wilker) according STANAG 4582. TAGZT, HZT and 

HZTH have been microcalorimetrically (HFC) tested as single component and as composite 

with different TLPs (STAB-0-DPA, STAB-15-DPA, STAB-30-DPA).66 STAB-0-DPA is a 

single and STAB-15/30-DPA a double gelatinized-based (NC based) propellant without any 

additional components, such as graphite, phlegmatizer or plasticizer. STAB-15-DPA and 

STAB-30-DPA contains diphenylamine (DPA) as stabilizer. 

 

 4.1 Compatibility tests of HZT a. HZTH with TLPs 

 In the HFC, measurements at 80 °C are performed with the pure test materials and in 

combination with the corresponding TLPs (STAB-0-DPA, STAB-30-DPA). The sample 

amounts of HZT and HZTH are summarized in Table 2.7. The test substances have not been 

incorporated into the TLPs, therefore, any interactions are only possible on the surfaces.  

 
Table 2.7.  Measured samples and sample amount 
substance TLP  STAB-0-DPA STAB-30-DPA 
 single component mixture  mixture 

HZTH   724 mg TLP 2166 mg,  
HZTH 412 mg 

TLP 2358 mg,  
HZTH 382 mg 

HZT   443 mg TLP 2327 mg,  
HZT 345 mg 

n. g. 

STAB-0-DPA 2886 mg - - 
STAB-30-DPA 2939 mg - - 
n.g. = not measured  
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 Table 2.8 summarizes the evolved energy and the evaluated measurement time. 

According to STANAG 4582, the required measurement time is 10.6 days at a temperature of 

80 °C. For the evaluation of the stability of the mixtures the maximum heat flow accounts 114 

µW g-1 at 80 °C. In all cases, the required measurement time could not be realized, since all 

mixtures did not show the required stabilities. In the case of HZTH/STAB-30-DPA, due to 

security reasons and to protect the corresponding measurement channel (explosive 

decomposition), the experiment was aborted already after 0.6 days. 

 

Table 2.8.  Evolved energy and evaluated measurement time 
substance TLP  STAB-0-DPA STAB-30-DPA 

 single component mixture mixture 

HZTH 14 J/g (5 d) 
        0.5 J/g (0.6 d) 

82 J/g (5 d) 11 J/g (0.6 d) 

HZT 58 J/g (5 d) 95 J/g (5 d) n. g. 

STAB-0-DPA   7 J/g (5 d) - - 

STAB-30-DPA 14 J/g (5 d) 
        3.3 J/g (0.6 d) 

- - 

n.g. = not measured  

 

 The maximum heat flow of every experiment is summarized Table 2.9. In the case of the 

TLPs and HZTH, the expected maximum heat flow is less than the maximum value of 114 µW 

g-1 at 80 °C, but HZT is more than three times higher in value than the limit, indicating already 

that this compound does not have even as pure substance the required stability.  

 

Table 2.9. Maximum heat flow [µW g-1]. Heat flow of the first Maxima are not 
recognized (within a value of 5 J g-1) 

substance TLP  STAB-0-DPA STAB-30-DPA 

 single component mixture mixture 

HZTH 26 367 259 

HZT 350 360 n. g. 

STAB-0-DPA   12 - - 

STAB-30-DPA   60 - - 
n.g. = not measured  
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 The analysis of the compatibility is summarized in Table 2.10.  The limit of the 

interreaction heat (QR) has to be lowered from 30 J g-1 to 14.2 J g-1 since only 5 days 

measurement time could be realized (extreme gas evolution) compared to the required 10.9 

days. The limit of D = mixture / mixturetheo is 3.0 and HZTH as well as HZTZ exceeds this 

value, indicating the incompatibility with the tested TLPs. 

 

Tabelle 2.10. Compatibility of HZT and HZTH toward STAB-0-DPA; t = 5 days 
 single component mixture mixture theo. QR D 

 [J/g] [J/g] [J/g] [J/g] [-] 

HZTH 14 82 12 70   6,8 

HZT 58 95 18 77   5,3 

STAB-0-DPA 12 - - - - 

 

 The corresponding thermographs of the experiments are depicted in Figure 2.19 and 

Figure 2.20. 

 

T = 80°C 
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Figure 2.19. HZT, STAB-0-DAP and mixture and STAB-0-DPA + HZTH 



 - 95 -

T = 80°C

    0

  100

  200

  300

Time, h3 6 9 12

P, µW/g

STAB-30-DPA

HZTH

STAB-30-DPA+HZTH

 

Figure 2.20. HZTH, STAB-30-DAP and mixture 

 

4.2 Compatibility tests TAGZT with TLPs 

 In the HFC, measurements at 80 °C are performed with the pure test materials and in 

combination with the corresponding TLPs (STAB-0-DPA, STAB-15-DPA). The sample 

amounts are summarized in Table 2.11. The test substances have not been incorporated into the 

TLPs, therefore, any interactions are only possible on the surfaces. 

 

Table 2.11.  Measured samples and sample amount 
substance 1 Substance  2 weight weight 
STAB-0-DPA - 2,886 g - 

STAB-15-DPA - 3,013 g - 

TAGZT - 0,373 g - 

STAB-0-DPA TAGZT 2,228 g 0,339 g 

STAB-15-DPA TAGZT 2,219 g 0,268 g 
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 The important parameters of the experiments are summarized in Table 2.12, and the 

corresponding thermographs are depicted in Figure 2.21 and Figure 2.22. From these two 

experiments, a good stability and compatibility of TAGZT with the used TLPs can be derived, 

indicating TAGZT to be a suitable component in new propellant formulation and should be 

further investigated. 

 

Table 2.12.  Results of the measurement 
substance 1 substance  2 Pmax [µW/g] Q [J/g]¹ QR [J/g] D [-] 

STAB-0-DPA -   8,5 10,5 - - 

STAB-15-DPA - 22,5 15,5 - - 

TAGZT - 13,8   7,9 - - 

STAB-0-DPA TAGZT 18,8 11,9 1,7 1,17 

STAB-15-DPA TAGZT 35,8 21,2 6,5 1,45 
1 Integration from 0 d to 9d 4h (due to defect measurement device) 
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Figure 2.21. TAGZT, STAB-0-DAP and mixture 
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Figure 2.22. TAGZT, STAB-15-DAP and mixture 

 

 4.2 Conclusion 

 HZT and HZTH are not compatible in mixtures with the discussed TLPs. In both cases 

the required measurement time of 10.9 days at 80 °C could not be archived since the developed 

gas blast lead in one case to the damage of the corresponding measurement channel, and the 

same appeared to happen in the other case and therefore were aborted. However, from the 

obtained data, the incompatibility as well as the instability of theses components could 

doubtless be derived. Since the interreaction of HZTH with STAB-30-DPA lead to extreme 

energy release, the test of the contact pair HZT / STAB-30-DPA was not conducted, expecting 

the same outcome. Interestingly, the incompatibility of the double based propellants with 

HZTH is more pronounced than compared to the single based STAB-0-DPA. Both propellants 

contain as enrergetic groups nitrates in form of gelatinized NC (single based), and additionally, 

in the case of double based propellant, stabilized nitroglycerin. The reason for this might be 
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found in the reaction of the hydrazinium cation with the nitrate groups. It seems that for HZT 

and HZTH, the hydrazinium ion serves as proton source for the ester cleavage of the nitrate 

groups rather than as base. This reaction is accelerated when nitroglycerin is present, which is 

known to decompose more easily than NC with respect to the nitrate groups. The presence of 

crystal water in HZTH compared to HZT does not play a significant role as almost an identical 

behavior in combination with STAB-0-DPA was observed. Therefore, it is questionable if 

hydrazinium based azotetrazolate salts ever could be used in combination with nitrate based 

(NC and NG) propellants.  

 

 If the assumption above is true, changing the counterion from the hydrazinium ion to the 

more base TGA cation a higher stability is expected, since the protonation ability of the TGA 

cation is extremely low. From the experimental point of view exactly this was observed. 

TAGZT is both compatible and stable in combination with the used propellants, indicating no 

interreaction between TGA cation and the NC (STAB-0-DPA) or NC / NG (STAB-15-DPA) 

based propellants occurred. At present, the other members of the guanidinium family are also 

tested according to STANAG 4582, but test results are not available yet. 
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C h a p t e r  I I I  

N,N-BIS-(1(2)H-TETRAZOL-5-YL)-AMINE HYDRATE (BTA) 

 1 Introduction 

 Neutral as well as ionic azides can undergo cycloaddition with cyano groups yielding a 

huge variety of different tetrazole derivatives.1 An interesting precursor for cycloaddition 

reactions with azide is the non-linear pseudohalide dicyanamide anion (N(CN)2
-), which 

exhibits a rich variety of bonding modes for coordination in for example 3d-complexes. 

Dicyanamide complexes have attracted much interest in recent years in the construction of 

supramolecular aggregates due to their intriguing network topologies and potential functions as 

new class of materials.2  

 The reaction of sodium dicyanamide with sodium azide under acid catalyzed condition 

yield the corresponding bis(tetrazolyl)amine as monohydrate (BTA).3 In the continuous search 

of novel energetic materials with high nitrogen content for application, for example as low-

smoke producing pyrotechnic compositions, gas generators, propellants and primers in primer 

charges (PC), high-energy-capacity transition metal complexes are of special interest and BTA 

might play an important role in future investigations as well applications.  

 

 1.1 Pyrotechnic composition and primers 

 A low-smoke pyrotechnic composition, for example, includes an high-nitrogen content 

(HNC), low carbon content energetic material, an oxidant and a colorant. The most promising 

high energy materials (HNC) suitable for low-smoke pyrotechnic composition may be derived 

from dihydrazino-s-tetrazine (dht, 29) and derivatives, N,N-bis-(1(2)H-tetrazol-5-yl)-amine 

mono-hydrate (H2bta, 30) and 5,5'-bis-1H-tetrazole (H2bt, 31) (Scheme 3.1).4  

 

 
Figure 3.1. Promising HNC high energy materials  
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 In addition to the high energetic material, efforts have dealt with the search for 

replacement colorants to be used in low smoke pyrotechnics composition in view of previous 

colorants, such as cupric oxide, barium nitrate, strontium nitrate and the like. U.S. Patent No. 

5,682,014 by Highsmith et al.5 describes metal salts of N,N-bis-(1(2)H-tetrazol-5-yl)-amine 

(H2bta, 30) as non-azide fuels for gas-generant compositions and Hiskey et al.4 introduced the 

metal salt as colorant in pyrotechnic compositions which can yield red, blue, green, yellow, 

purple, red-purple, and blue-green colors.  Various metals salts can be used as colorants or a 

coloring agent to generate selected colors for pyrotechnic composition as each metal of the 

periodic table has well-known spectra associated with the burning of those materials.6 An 

advantage of metal salts of high nitrogen materials is the low amount needed to be added to the 

pyrotechnic composition, which is in general less than 10 percent by weight to yield intense 

colors.  

 Furthermore, there is continued demand of new primer explosive systems (PC). Still, 

modern primary explosives (Chapter I) may be represented by lead azide as the main filling for 

detonators,7 and by lead styphnate as the main filling for primers, usually associated with 

tetrazene as a sensitizer.8 Recently, coordination compounds containing near stoichiometric fuel 

and oxidizer fractions have evinced great interest.9 The extensive study on the relationship 

between structure of coordination compound and explosive properties has been reported by 

various research groups.10 Nickel, copper and cobalt complexes appear suitable for detonator 

applications. For example, nickel hydrazinium nitrate (NHN)11 may find wide ranging 

applications in conventional detonators, whereas bis-(5-nitrotetrazolato-N2)-tetraamine cobalt 

perchlorate (BNCP)12 has emerged as an energy producing component for semi-conducting 

bridge (SCB) initiator applications. With respect to new PC’s, BTA was investigated to see if it 

could serve as new HNC ligand system for new transition metal-based primer explosives.   

 Interestingly, characterization of H2bta and its salts has not been reported yet. Therefore, a 

systematic investigation of the preparation and properties of 30 is important, and the recent 

results are going to be presented in this Chapter. One of the aims is to isolate and structurally 

characterize coordination polymers of certain metal salts exhibiting interesting frameworks with 

respect to the field of crystal engineering. As the amount of obtained crystal structure is beyond 

the scope of this work, only selected examples are going to be discussed.  
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 1.2 Synthesis of H2bta (30) 

 The first method of synthesizing N,N-bis-(1(2)H-tetrazol-5-yl)-amine (30) as its hydrate 

was  described by William Norris et al.,13 reacting sodium dicyanamide (NaN(CN)2), sodium 

azide, and trimethylammonium chloride in water under refluxing condition. Due to several 

disadvantages, different synthetic routes have been published, and they all fall into three main 

types: (1) reaction of sodium dicyanamide with hydrazoic acid, in situ prepared from sodium 

azide and a corresponding weak acid like trimethylammonium chloride, boric acid, ammonium 

chloride and the like;14 (2) reaction of sodium dicyanamide with sodium azide in the presence of 

a catalyst like zinc chloride, bromide or perchlorate, followed by an acid work-up;15 and (3) 

reaction of 5-AT with cyanogen bromide under base-catalyzed condition followed by a 

subsequent cycloaddition of azide under acid condition.  

 

 

Scheme 3.1. Synthesis of H2bta (30) 

 

 For reaction 1 and 2, the first reaction step yields certain metal complexes (e.g. Zn2+, Na+) 

as products which can be easily transformed to 30 by acidification. Treatment of 5-AT under 

base condition with cyanogen bromide results in the formation of the very interesting and 

poorly described dianion of 5-cyanoiminotetrazolin (CIT, 33), as sodium salt. Further treatment 

of the CIT salt with hydrazoic acid yields 30. This procedure is not described in literature in 

that way, and since the chemistry, as well as the dianion itself, is very interesting, a detailed 

discussion will be given in the next chapter before coming back to the chemistry of H2bta.  
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 2 The Dianion of 5-Cyanoiminotetrazoline: C2N6
2- (CIT)  

 2.1 Introduction 

 The most prominent binary carbon-nitrogen anion is the cyanide anion (CN-). The salts of 

the hydrogen cyanide belong to the most important chemicals used in industrial, pharmaceutical 

and agricultural processes.16 Among the binary carbon and nitrogen anions which have been 

reported, relatively few have alternating carbon-nitrogen connectivity,17 although such 

structures are highly stable. Due to the expected alternating connectivity in β-carbon nitride 

(C3N4), alternating binary carbon-nitrogen anions may qualify as precursors for the synthesis of 

β-C3N4, a material predicted to be harder than diamond.18 Moreover, non-alternating carbon-

nitrogen anions obtained from the family of polycyanocarbons have been examined as 

coordination ligands to metals and as the basis for supramolecular frameworks.19 The interest 

for practical applications of polycyanocarbons as electron acceptors or anions was also aroused 

for use as deeply colored dyes,20 catalysts21 and nonlinear optical materials.22 Among them, 

formation of highly conductive charge transfer (CT) complexes and ferro- or antiferromagnetic 

CT complexes23 have been most intensively investigated with respect to their properties as 

electron acceptors or anions by both chemists and physicists.24  

 Besides the carbon-nitrogen connectivity, there are other ways to systematically divide 

CN anions, such as the charge [singly charged ions, e.g. dicyan amide (DCA), NC-N-CN–;25 

doubly charged ions, e.g. cyan amide (CA), NCN2–,26N,N’,N’’-tricyanoguanidinate (TCG), 

C4N6
2–,17a or triply charged ions, e.g. tricyanomelaminate (TCMA),27 (NC-NCN)3

–] or the 

carbon-nitrogen stoichiometry. Using the carbon-nitrogen stoichiometry as criterion, CN anions 

may be grouped into three classes: (i) nitrogen-rich (e.g. NC-N-CN–, NCN2-), (ii) carbon-rich 

CN anions (e.g. tricyanomethanide (TCM),28 C(CN)3
–) and (iii) CN anions with the same 

number of carbon and nitrogen atoms (e.g. cyanide, CN–). Most of the nitrogen-rich CN anions 

are based on the tetrazole ring such as azidotetrazolate (AzT), CN7
–,29 cyanotetrazolate (CT),30 

C2N5
–, 5,5’-bistetrazolate (BT), C2N8

2–,31 5,5’-azotetrazolate (ZT), C2N10
2–,32 and 3,6-bis(2H-

tetrazol-5-yl)-1,2,4,5-tetrazinediide (BTT), C4N12
2–.33 The nitrogen-rich anions are of special 

interest, as they are salts with high nitrogen content, having high heats of formation and 

showing in most cases remarkable insensitivities to friction, electrostatic discharge, and shock. 

These features can be in most cases attributed to the delocalized π-system of these anions.34 The 

carbon-rich CN anions are mainly based on cyano – and polycyano groups. A compendium of 

selected anions is depicted in Scheme 3.2.  
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Figure 3.2. Selected carbon-nitrogen anions 

 

 Examples of polycyano organic anions are the tetracyano-2-azapropenide (TCAP), 

C6N5
2-, pentacyanoallylide (PCA), C8N5

-,35 hexacyanotrimethylenemethanediide (PCA), 

C10N6
2-,36 hexacyanodiazahexadienediide (HCDAH), C10N8

2-,37 tetracyano-1,1’,3,3’-

tetraazafulvalenediide (TCTAF), C10N8
2-,38 2-dicyanomethyl-1,1,3,4,5,5-

hexacyanopentadienediide (DHCP), C14N8
2-,39 and tri(dicyanomethylene)cyclopropanediide 

(HCP), C12N6
2-.36a 
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 A long forgotten and poorly characterized nitrogen-rich anion of this class represent the 5-

cyaniminotetrazolinediide (33), C2N6
2– - CIT,3 which can be obtained by the reaction of 

aminotetrazole (1) with cyanogen bromide under base condition (Scheme 1). 

 

 

Scheme 3.2. Synthesis of CIT (33) 

 

 The azido-N-cyanoformamidine (cyanoguanyl azide) (32) which is formed as an 

intermediate can be isolated as long as no base is present. In general, the tetrazole ring may exist 

in equilibrium with the acyclic imidoyl azide form, and depending on the substituent at the 

imidoyl fragment present, both isomers can be observed. Electron withdrawing groups such as 

CN or NO2 favor the open azide chain isomer, imidoyl azide, whereas electron donating groups 

(e.g. alkyl) or bases are required effecting the cyclization to the isomeric tetrazole.3,40,41  

 

 2.2 Results and Discussion 

 2.2.1 Synthesis and properties of CIT salts 

 The two step synthesis of 5-cyaniminotetrazoline salts (CIT) starts from amino-1H-

tetrazolium monohydrate (5-AT), which after neutralization with sodium hydroxide, was 

reacted with cyanogen bromide to give azido-N-cyanoformamidine (32). 32 represents an easily 

accessible source for an NCN-N3 unit. Treating a methanolic or ethanolic solution of 2 with 

bases (e.g. MOH, M = Li, Na, K, Cs; amines), immediate deprotonation and cyclization of 32 

can be observed resulting in the formation of the stable 5-cyaniminotetrazolinediide salts 

(Scheme 3.2). Raman and IR spectroscopy are particularly suitable to identify CIT salts very 

fast with the help of the CN stretching mode at ca. 2150 and the missing N3 stretching at 2190 

cm–1 (for approximate assignment of all normal modes on the basis of DFT calculation, see 

Appendix A Table A-1 –  A-3);  
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 Pure alkali and ammonium CIT salts are stable at ambient temperature, and are neither 

heat nor shock sensitive. To determine the thermal properties of CIT salts, combined IR and 

DSC experiments were carried out. DSC experiments of the cesium CIT salt (33) revealed three 

interesting features: (i) an endothermic reversible change of the modification at ca. 253° (∆H = 

34.8 J/g for α→β modification, Figure 3.3) which was supported by powder diffraction studies 

(Figure 3.4), (ii) melting at 335 °C (onset), and (iii) the decomposition of Cs2CIT after melting 

in cesium azide and caesium dicyanamide. It is assumed that the presence of an over the entire 

dianion delocalised π-system probably accounts for the remarkable kinetic stability of CIT salts 

(see below).  

 

 
Figure 3.3. DSC experiments showing the decomposition of β-Cs2C2N6 (left) and the non-reversibility after melting 
of β-Cs2C2N6 (right). 
 

 2.2.2 DSC of Cs2CIT (34) 

 The results of the different scanning calorimetry (DSC) experiments show that there are 

two endotherms (Figure 3.3, left), at 252 and 334 °C. The first endotherm is related to the 

transition of α-Cs2C2N6 to the metastable β-Cs2C2N6 modification, which is in accordance with 

the transformation that can be observed from the in situ data shown in Figure 3.4. The enthalpy 

of the strongly endothermic transformation was measured to be 34.8 J/g. The first transition was 

found to be reversible, which can be seen from the temperature-resolved in situ powder 

diffraction patterns in Figure 3.4. The second endotherm corresponds to the melting of β-

Cs2C2N6. This process is not reversible (Figure 3.3, right), which can be explained due to 

decomposition of 34 to CsN3 (mp 310 °C) and CsN(CN)2. Both compounds could be identified 

by their characteristic IR frequencies from a frozen-out sample of the melt. The cooling curve 
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(right) does not exhibit distinctive features which can be related to 34, and therefore is 

indicative of an irreversible conversion of 34 to CsN3 and CsN(CN)2. The obtained melt starts 

to decompose in an exothermic reaction under formation of nitrogen above 395 °C.  

 

 2.2.3 In Situ X-ray Powder Diffraction of Cs2CIT (34) 

 High-temperature in situ X-ray diffractometry was performed on a STOE Stadi P power 

diffractometer (Mo Kα1 radiation, λ = 70.093 pm), with an integrated furnace and unsealed 

glass capillaries as sample containers from 180-260 °C and 260–180 °C in one run. The data 

collection was done with a 2θ range of 4.0 – 22.0° and a single scan collection of 8 min under 

isothermic conditions. The sample was heated to the starting temperature by applying a heating 

rate of 1 °C min-1.  

 

 

Figure 3.4. Temperature-dependent X-ray diffraction measurement from 180 °C (top) to 260 °C and 260 °C to 204 
(bottom) °C between 4.0 and 22.0 in 2θ. To ensure a sufficient small time window for the detection off structural 
changes and to simultaneously maintain an acceptable data quality, the data acquisition time for a single scan was 
fixed to 8 min. A reversible phase transition between the α and β modification is observed. No overlap between of 
the different phases is observed. 
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 The sequences of X-ray powder patterns collected from 160 260 204 °C, respectively, 

are shown in Figure 3.4. A prominent feature of the variable-temperature studies is the absence 

of a unique onset temperature for the observed phase transition, and there is no transitory 

regime observed, where no reflections are detected, indicate the non occurrence of an 

amorphous phase or intermediate glas transition, indicating also the reversibility of the first 

transition of α-Cs2C2N6  β-Cs2C2N6  α-Cs2C2N6.  

 

 2.2.4 X-ray Crystal Structure of (iPrNH3)2CIT•MeOH (35) and Cs2CIT (34).  

 Figures 3.5 and 3.6 show the molecular units with the atom labeling scheme of 35 and 34, 

respectively. Selected bond lengths and angles are presented in Table 3.1. 35 crystallizes in the 

triclinic space group P-1 with two formula units in the cell, and 5 in the monoclinic space group 

P21/n with 4 units in the cell.  

 

 
Figure 3.5. Formula unit and labeling scheme for 35 (ORTEP Plot, thermal ellipsoid represents 
50% probability). 

 

 As shown in Figure 3.4, there are only small cation-anion interactions (hydrogen bridges) 

in the solid state structure of 35 (The bond distances and angles in the isopropylammonium and 

MeOH are as observed for many other salts with isopropylamine or MeOH as co-solvent and 



 - 111 -

therefore we abstain a discussion),42 in contrast to the very complex bonding situation between 

anions and cations in 34.  

 

Table 3.1. Comparison of selected interatomic distance (Å) and bond angles (°) of the C2N6 frame in 
34, 35, 36 and 37.a 
 34 36 35 37 CITb CIT-SO3

b 
 
Bond Length 

      

C1–N1 1.337(2) 1.344(3) 1.338(4) 1.359(6) 1.358 1.352 
N1–N2 1.348(2) 1.357(3) 1.362(4) 1.379(5) 1.355 1.359 
N2–N3 1.301(2) 1.298(3) 1.309(4) 1.274(6) 1.321 1.294 
N3–N4 1.348(2) 1.358(3) 1.357(4) 1.362(6) 1.358 1.366 
C1–N4 1.331(2) 1.335(3) 1.337(4) 1.330(7) 1.357 1.379 
C1–N5 1.368(2) 1.364(3) 1.388(4) 1.342(7) 1.387 1.344 
C2–N5 1.301(2) 1.299(3) 1.302(4) 1.318(7) 1.293 1.306 
C2–N6 1.159(2) 1.157(3) 1.174(4) 1.147(7) 1.197 1.186 
 
Bond Angle 

      

N1–C1–N4 111.2(1) 109.8(2) 112.6(3) 106.9(5) 110.9 106.7 
C1–N1–N2 104.8(1) 106.3(2) 104.0(2) 108.6(4) 104.9 106.4 
N1–N2–N3 109.5(1) 108.2(2) 109.5(2) 105.8(4) 109.7 112.0 
N2–N3–N4 109.6(1) 110.3(2) 109.8(2) 111.9(4) 109.7 106.5 
N3–N4–C1 104.9(1) 105.4(2) 104.1(2) 106.8(4) 104.8 108.5 
C1–N5–C2 116.1(1) 119.0(2) 116.8(3) 117.4(5) 123.6 121.0 
N5–C2–N6 175.9(2) 173.3(2) 174.0(3) 173.2(7) 171.6 172.2 

a for numbering see Figure 3.7; b theoretical gas phase data: B3LYP/aug-cc-pvTZ 

 

Figure  3.7. Molecular model and numbering 
scheme of the C2N6 frame in 5-cyanimino-
tetrazolinediide. 

 

 The structure of 34 consists of an infinite three-dimensional network of repeating Cs2CIT 

units. Each anion is bonded to twelve cesium cations while each Cs+ has contacts to nine Nδ– 

atoms in six different CIT anions (Figure 3.8) with Cs-N bond distances of 3.131(2) to 3.586(3) 

Å. All Coulombic interactions (listed in Table 3.2) are either larger than the sum of the ionic 

radii of Cs+ (1.92 Å, KZ = 9) and N3- (1.32 Å)43 or in the range, indicating that the structure is 

predominantly ionic. The sum of the calculated valency units for Cs1
+ and Cs2

+ accounts to 
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1.026 and 1.051, respectively, consistent with a single positive charge on both Cs+ and a doubly 

negatively charged CIT ion (Table 3.2).  

 

 

Figure 3.6. Formula unit and labeling scheme for 34 (ORTEP Plot, thermal 
ellipsoid represents 50% probability). 

 

 

Table 3.2. Observed Cs-N contacts and calculated valency units in 34 
contacta,b distance (Å) valency unitsc contacta,b distance (Å) valency unitsc 
      
Cs1–N1ii 3.403(3) 0.0969 Cs2–N1i 3.481(3) 0.0836 
Cs1–N2iii 3.290(3) 0.1213 Cs2–N2iv 3.302(3) 0.1184 
Cs1–N2v 3.505(3) 0.0799 Cs2–N3ii 3.324(3) 0.1136 
Cs1–N3vi 3.320(3) 0.1143 Cs2–N4 3.178(3) 0.1525 
Cs1–N3v 3.233(3) 0.1362 Cs2–N4vi 3.586(3) 0.0687 
Cs1–N4vi 3.131(2) 0.1679 Cs2–N5 3.483(3) 0.0832 
Cs1–N5 3.330(3) 0.1120 Cs2–N5vi 3.265(3) 0.1276 
Cs1–N5ii 3.571(3) 0.0706 Cs2–N6i 3.154(3) 0.1606 
Cs1–N6vii 3.266(3) 0.1273 Cs2–N6vii 3.208(3) 0.1433 
sum of 
valency units  

 1.0264   1.0515 

a Locations of contacts are shown in Figure 4. b Symmetry codes: (i) 1-x, 1-y, -z; (ii) 0.5-x, 0.5+y, 0.5-z; (iii) 1-x, 1-y, -z; (iv) -
0.5+x, 0.5-y, -0.5+z; (v) x, 1+y, z; (vi) -x, 1-y, -z; (vii) -0.5+x, 1.5-y, -0.5+z. c Valency units were calculated using Brown’s 
expression s = (R/R0)-N where R is the observed contact distance; R0 is the distance corresponding to a valency unit of 1, and N is 
a fitted constant. Values of R0 for contacts to N and O differ by an average of 0.10 to 0.15 Å for other nuclei; R0 for Cs–O is 
reported to be 2.24 Å, as no Cs–N contacts are given, R0 was set to 2.39 Å. The value of N for Cs–O contacts is 6.6, and this 
value was used for the Cs–N contacts. 
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Figure 3.8. View of cesium coordination environment in Cs2CIT 

 

 2.2.5 Structure and bonding of the CIT dianion.  

 In agreement with DFT calculations, the CIT anion (33) is almost planar in the solid state. 

The tetrazole ring in 34 and 35 is planar with the attached exocyclic nitrogen atom of the NCN 

moiety lying within the tetrazole plane (e.g. with a maximal deviation of 0.0034 Å in 35). The 

cyanoimino moiety is slightly outside of the tetrazole plane (<N4–C1–C2–N6; 35: 9.4(4)°, 34: 

5.4 (5)°). Similar to the situation found in covalent bound azides,44 a trans bent geometry is 

found for the NCN group (<NCN, 35: 175.9(2)°, 34: 174.0(3)°). Actually, the CIT dianion is 

isoelectronic to the related azidotetrazolate monoanion (replacement of the middle N atom of 

the azido group by C–), hence the hitherto unknown structure of azidotetrazolate can be 

expected to have similar features like those of CIT. As displayed in Table 3.1, the distances and 

angles of CIT in different salts are not significantly different. Thus it can be assumed that the 

geometry of the C2N6 dianion is little affected by coordination to a metal (X-ray data of 36, 

below) or substitution at a ring nitrogen (X-ray data of 37, below). The calculated gas phase 

geometry of CIT at B3LYP/aug-cc-pvTZ level of theory is similar to that found in the solid 

state and is given in Table 3.1.  

 As expected, for all CIT salts the N2–N3 bonds are significantly shorter than the N1–N2 

and C1–N1 bonds (Figure 3.7, e.g. 34: 1.309(4), 1.362(4), and 1.338(4) Å), which is 

comparable to the situation found in the structure of the cyano-tetrazolate.30 The C2-N6 bond 
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length is significantly smaller than all other C–N or N–N bond lengths, indicating a stronger π-

interaction along the cyano group of the NCN unit. The bond length found for the cyano group 

lies in a normal range (e.g. 35: 1.159(2) Å; 34: 1.174(4) for C2–N6; Table 2).45 These relatively 

short N–N and C–N bond lengths, together with the planarity, indicate the presence of 

delocalization of π-bonds over the whole anionic species. MO and NBO calculations displayed 

the existence of a 10π-electron, 8-center bond unit (Figures 3.9 and 3.10).46 In Figure 3.9, A 

and B are the energetically preferred Lewis representations of NNCM according to NBO 

analysis which is in agreement with the calculated Wiberg bond indices47 (WBI) and the 

calculated partial charges (Figure 3.9). Investigation of the intramolecular donor-acceptor 

interactions utilizing the NBO partitioning scheme, clearly indicates a highly delocalized 10π-

system according to resonance between Lewis representations A – I.  

 

 

Figure 3.9. Nine possible Lewis representations according to NBO analysis along 
with WBI’s (blue color) and NPA charges (red color). 
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 The calculated WBIs indicate a stronger π-bond along the NCN moiety and the N3-N4 

unit. The largest negative NPA net charge (NPA, natural population analysis) is found on the 

two N atoms of NCN unit. Summing the net charges of the NCN and the tetrazole moiety 

reveals for both units a negative charge close to -1 (NCN: -1.04; N4C: -0.96e).  

 

LUMO, 6 A" 
5 A'' 

4 A"  3 A3'' 

2 A" 1 A" 
Figure 3.10. π-Type MOs (B3LYP/aug-cc-pvTZ) of CIT displaying the 10π-8c-bond 

 

 

 2.2.6 Crystal structure of [Pd(C2N6)(NH3)3]·H2O (36)  

 Complexes of CN-species with transition metals are well known and often exhibit 

interesting magnetic properties.48 Due to the potential of being polydentate, several transition 

metal salts of CIT (M(cit)(NH3)2; M = Cu, Ni, Pd) were synthesized of which only the 

palladium complex will be introduced. These complexes are easily obtained from the reaction 

of the according transition metal(II)chlorides and 2 in ammonia solution.  

 The pale yellow palladium complex crystallizes in the monoclinic space group P21/n with 

4 units per cell. The structural data of 36 are presented in Tables 3.1 and 3.3, and the numbering 

scheme is depicted in Figure 3.11. The Pd atom lies in the center of a slightly distorted square-
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planar arrangement composed of three NH3 and one CIT ligand (coordination via N1 of the 

tetrazole ring), with N–Pd–N angles ranging from 89.58(9) to 90.22(9)° (mean deviation from 

the square plane is 0.0707 Å). All Pd-N distances are in the range of 2.008(2) to 2.046 (2) Å 

(Table 3.3) and lie well within the range of distances recorded previously.49 The CIT ligand is 

not part of the square-plane as the tetrazole ring is twisted by 31.1° (N7–N9–N1–C1). The 

molecular parameters are comparable with those found in 35 and 34 (Table 3.1). It is interesting 

to note that the cyanoimino group is not involved in any bonding to the Pd metal.  

 

 

Figure 3.11. (I) The dimer [Pd(C2N6)(NH3)3]•H2O (36), showing the atom-numbering scheme 
and displacement ellipsoid at 50% probability level; (II) Part of the crystal structure of 36, 
showing the π-π-stacking interaction which links the dimers to chains along [010] axis. Atoms 
marked with i are at the symmetry position –x, –y, –z. 
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Table 3.3. Selected structural parameters (Å, °) of 36 
    
Pd–N1 2.008(2) Pd–N8 2.043(2) 
Pd–N7 2.046(2) Pd–N9 2.043(2) 
    
N1–Pd–N7 90.22(9) N1–Pd–N8 176.90(8)
N7–Pd–N8 89.82(9) N7–Pd–N9 179.67(9)
N8–Pd–N9 90.37(9) Pd–N1–C1 132.5(2) 
N9–Pd–N1 89.57(9) Pd–N1–N2 120.9(2) 
    

 

 In the solid state, the complex is composed of dimers where the two complexes are related 

via an inversion centre. The long Pd–Pdi distance of 4.2743(2) Å in the dimer excludes the 

possibility of the existence of a metal-metal interaction. A closer inspection of the molecular 

structure as shown in Figure 3.11 reveals two agostic interactions (N7–H7C····Pd1i; d(Pd···N7)i 

= 3.536(3) Å; symmetry code: (i) -x, 1-y, -z) between the two Pd complex fragments forming 

the dimer. Apparently, these two interactions, together with an intermolecular hydrogen bond 

(N8–H8C····N2i), can be regarded as the driving force for the dimerization.  

 

Table 3.4. Hydrogen bond geometry (Å, °) of 36 
D–H····A D–H H····A D····A D–H····A 
     
O1–H1A···N6i 0.948(2) 2.072(3) 2.994(3) 164.0(2) 
O1–H1B···N4 0.947(3) 2.037(4) 2.966(4) 166.3(2) 
N7–H7A···O1ii 0.89(2) 2.11(1) 2.989(3) 172.4(9) 
N7–H7B···N4iii 0.891(1) 2.154(6) 3.031(4) 157.4(5) 
N8–H8B···N5iv 0.891(1) 2.16(1) 3.031(4) 167.4(9) 
N8–H8C···N2v 0.890(9) 2.187(1) 3.066(3) 169.1(7) 
N9–H9B···N6vi 0.890(8) 2.302(6) 3.151(4) 159.4(5) 

     
Symmetry codes: (i) -0.5+x, -0.5-y, -0.5+z; (ii) -0.5+x, 0.5-y, 0.5+z; 
(iii) -x, -y, -z; (iv) 0.5-x, 0.5+y, 0.5-z ; (v) –x, 1-y, -z ; (vi) x, 1+y, z. 

 

 Moreover, the dimers are linked by π-π-stacking interactions to chains along the [010] 

axis. The parallel tetrazole rings of the CIT ligands at (x, y, z) and (–x, –y, –z) have an 

interplanar stacking spacing of 3.307(2) Å. Additionally, several hydrogen bonds, including the 

water molecule, are found linking the dimers to a three dimensional network (Table 3.4).  
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 2.2.7 The reaction of Cs2CIT with SO2.  

 A frozen mixture of Cs2C2N6 (35) and SO2 reacts on thawing and formation of a bright 

yellow solution which turns into a deep red solution within a few minutes. From this solution a 

gummy residue separates within 20 minutes from which a pale yellow solution was separated 

after one day. From this pale yellow solution, dicesium 5-cyaniminotetrazoline-1-

sulfonatediide·SO2, Cs2CITSO3·SO2 (37) crystallized as pale yellow plates in an all over yield 

of 40% according eq [1]. Interestingly, the pale yellow crystals of 37 contain one SO2 molecule 

(solvent) per formula unit and are surprisingly stable at room temperature even without SO2 

atmosphere. The loss of SO2 starts only slowly from the surface of the crystals. It can be 

assumed that in the first reaction step SO2 is attached to the N1 atom of the tetrazole ring 

followed by oxidation to SO3 by SO2 yielding the total reaction 

 2 Cs2C2N6  +  3 SO2   ⎯⎯ →⎯ 2SO    2 Cs2C2N6SO3  +  1/8 S8       [1] 

 

 This reaction represents a typical disproportion reaction (3 SO2 → 2 SO3 + 1/8 S8). The 

reaction of Cs2CIT/SO2 system is related to the known reaction of CsF with SO2 resulting in 

CsSO3F and S8.50 Two more things are worth mentioning: (i) in contrast to the CsF/SO2 

reaction, no ultrasonic activation is needed for the spontaneous reaction of Cs2CIT with SO2,50 

and (ii) the related cesium cyano-tetrazolate was prepared in SO2 without any reaction with the 

solvent SO2.30  

 Unfortunately, the direct synthesis of 37 from CsN3 and CsN(CN)2 in SO2 according 

Scheme 3.3 did not yield the sulfonate 37.  

 

 

Scheme 3.3.  Attempted synthesis of 37 
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 It is known that neutral as well as ionic azides can undergo cycloaddition with cyano 

groups, and W. Beck et al.51 succeeded in the synthesis of bis(tetrazolate) dianions with 

complex metal azides. Also, the reaction of sodium dicyanamide with sodium azide under acid-

catalyzed condition yields the corresponding bis(tetrazolate)amine.3 It is also known that the 

reactivity of the 1,3-dipolar cycloaddition reaction of organic,52 inorganic,53 silyl,54 and 

complexes as well as alkali metal azides with nitriles is greatly enhanced by electron-

withdrawing groups bonded to the nitrile, and therefore there might be a chance for this 

reaction. Raman investigation of the obtained products (see experimental section) strongly 

supports the assumption that a condensation reaction took place, as no evidence for starting 

material (CsN3 and CsC(CN)2) was found. Unfortunately, also no evidence for the formation of 

the cesium CIT or CITSO3 was found. The reaction, which took place is still not understood 

and under further investigation.  

 

 2.2.8 Crystal Structure of Cs2CIT-SO3•SO2 (37)  

 To ensure that the crystal was representative of the whole sample, its Raman spectrum 

was recorded, and no difference from the crushed sample was found. 37 crystallizes in the 

monoclinic space group P21 with two formula units in the unit cell. Bond lengths and angles are 

summarized in Tables 3.1 and 3.5. A view of the molecular arrangement can be depicted from 

Figure 3.12. Formally, 37 can be regarded as a donor-acceptor complex of CIT (C2N6
2–) and 

SO3. However, upon “SO3 complexation” the structural parameters of the CIT frame is not 

much affected (Table 3.1). The largest deviations are found for N2-N3 distance (37: 1.274(6) vs. 

34: 1.309(4) Å) and the C2-N6 (CN group, 37: 1.147(7) vs. 34: 1.174(4) Å), indicating a 

stronger localization of the π bonds in 37 along the N2-N3 and C2-N6 units. The S-N distance 

of 1.738(4) Å represents a typical single bond (cf. 1.791 Å in SO3(N2O2)2–,55 and Σrcov(SN) = 

1.74 Å).43 The length of the sulfonate S–O bonds are in good agreement with those of known 

sulfonate salts55,56 and the sulfonate O atoms are approximately staggered with respect to the 

substituents on N1. The O–S–O angle in the sulfonate groups are increased due to the no longer 

balanced repulsion of the lone pairs, giving O–S–O angle greater than the tetrahedral angle of 

109.47°. The SO2 solvent molecule has regular bond lengths, and the O-S-O angle is 

comparable to those of the gas phase structure and therefore are not affected by the crystal 

lattice.50,57  
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Figure 3.12. Formula unit and labeling scheme for 37 (ORTEP Plot, thermal ellipsoid represents 
50% probability). 

 

Table 3.5. Selected geometric parameters (Å, °) of  37 
    
N1–S1 1.738(4) S1–O3 1.425(4)
S1–O1 1.434(4) S2–O4 1.423(5)
S1–O2 1.437(4) S2–O5 1.423(5)
    
    
O1–S1–O2 115.2(2) N1–S1–O2 103.6(2)
O1–S1–O3 116.5(3) N1–S1–O3 102.7(2)
O2–S1–O3 113.0(3) O4–S2–O5 117.3(2)
N1–S1–O1 103.6(2)   
    

 

 Both Cs+ cations possess a coordination number of ten, which is quite common for 

cesium salts.58 Cs1 has contacts to seven oxygen and three nitrogen atoms resulting from four 

dianions and two SO2 molecules. Cs2 has contacts to five oxygen and five nitrogen atoms 

resulting from five dianions and three SO2 molecules (Figure 3.13, Table 3.6). The SO2 solvent 

molecule always coordinates to five different Cs cations. As shown by the investigation of the 

valency units, the Cs-N and Cs-O interactions are essentially ionic. The sum of the valency 

units to Cs+ and the dianion is 1.9803, is consistent with a single positive charge on each Cs 

cation and two negative charges on the CITSO3 anion (Table 3.6).  
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Table 3.6. Observed Cs-N contacts and calculated valency units in 37 
contacta,b distance (Å) valency 

unitsc 
Contacta,b distance (Å) valency 

unitsc 
Cs1–O1i 3.034(4) 0.1350 Cs2–O1iv 3.390(4) 0.0649 
Cs1–O2 3.146 (4)  0.1061 Cs2–O2iv 3.147(3) 0.1061 
Cs1–O2ii 3.328(4) 0.0733 Cs2–O4iv (SO2) 3.277(5) 0.0812 
Cs1–O3iii 3.054(4) 0.1293 Cs2–O4viii (SO2) 3.743(5) 0.0337 
Cs1–O3ii 3.181(5) 0.0988 Cs2–O5ix (SO2) 3.406(5) 0.0629 
Cs1–O4 
(SO2) 

3.336(4) 0.0722 Cs2–N3 3.335(5) 0.1109 

Cs1–O5ii 
(SO2) 

3.537(4) 0.0491 Cs2–N3v 3.435(5) 0.0913 

Cs1–N2i 3.306(4) 0.1175 Cs2–N4 3.503(5) 0.0802 
Cs1–N5ii 3.287(5) 0.1221 Cs2–N6vi 3.127(5) 0.1697 
Cs1–N5 3.315(5) 0.1154 Cs2–N6vii 3.153(6) 0.1606 
sum of 
valency units  

 1.0188   0.9615 

a Locations of contacts are shown in Figure 10. b Symmetry codes for 7: (i) -x, -0.5+y, -z; (ii) 1-x, -0.5+y, -z; (iii) x, -1+y, z; (iv) x, y, 
1+z; (v) –x, 0.5+y, 1-z; (vi) -1+x, y, z; (vii) 1-x, 0.5+y, 1-z; (viii) –x, 0.5+y, -z; (ix) 1-x, y, z+1. c Valency units were calculated using 
Brown’s expression s = (R/R0)-N where R is the observed contact distance; R0 is the distance corresponding to a valency unit of 1, 
and N is a fitted constant. Values of R0 for contacts to N and O differ by an average of 0.10 to 0.15 Å for other nuclei; R0 for Cs–
O is reported to be 2.24 Å, as no Cs–N contacts are given, R0 was set to 2.39 Å. The value of N for Cs–O contacts is 6.6, and this 
value was used for the Cs–N contacts. 

 

Figure 3.13. View of cesium coordination environment in Cs2CIT-SO3•SO2 (37) 

 

 2.2.9 CIT versus CITSO3  

 The best Lewis representation, according to the NBO analysis along with the WBIs and 

partial charges, is displayed in Figure 3.14. The bond situation of the CIT subunit in CITSO3 

corresponds to the best representation found for the CIT anion. Investigation of the donor-

acceptor interaction displays similar delocalization effects as found for CIT, hence a similar 

resonance scheme as found for CIT (Figure 3.9) can be expected for CITSO3. Interestingly, the 
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C2-N6 distance of the NCN and the N2-N4 distance decrease upon addition of SO3, indicating a 

better localization of the triple bond along the CN group (WBI, 34: 2.46 vs.  37: 2.57) and a 

double bond along N2-N3 (WBI, 34: 1.50 vs.  37: 1.60). The S–N bond, as well as all S–O 

bonds, are highly polarized resulting in a large positive charge at S (+2.45e). Similar to the 

situation in the CIT anion, all N atoms attached to a carbon in the CITSO3 anion possess the 

largest negative charge, and for both species the most negatively charged N atom is the amido 

nitrogen followed by the terminal N atom of the NCN group. Upon addition, a considerable 

charge transfer occurs (qCT = 0.49e). The tetrazole ring transfers 0.33e and the NCN moiety 

0.16e, respectively, resulting in an overall negative charge for the CIT subunit of only 1.51e.  

 

 
Figure 3.14. Best Lewis representation of 
CITSO3 according to NBO analysis along with 
WBI’s (blue color) and NPA charges (red 
color). 

 

 2.3 Conclusions 

  An improved synthesis of CIT (CIT = C2N6
2–) salts and fully characterized a series of 

different CIT salts and complexes were reported for the first time. The CIT dianion represents a 

nitrogen-rich binary CN anion with surprisingly high thermal stability which decomposes in the 

case of the cesium salt (34) above 395 °C into cesium azide and cesium dicyan amide. The 

crystal structures of several CIT salts reveal the large coordination potential for CIT as ligand 

utilizing several mono- and bidentate modi. Surprisingly, Cs2CIT reacts with liquid SO2 in a 

disproportion reaction yielding a new anion, C2N6SO3
2– (CITSO3). The easy access of CIT 

salts may qualify them as a useful educts for the preparation of new charge transfer, ferro- or 

antiferrormagnetic complexes, as well as basis for supramolecular frameworks, contacting 

organic radical cation salts and in material science as precursor for novel ternary MxCyNz or 

binary CxNy systems.  
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 2.4 Experimental 

 Materials. All chemical reagents and solvents of analytical grade were obtained from 

Sigma-Aldrich Fine chemicals Inc. and used as supplied. Et2O, MeOH and EtOH were dried 

according known procedures, freshly distilled and stored under nitrogen.  

 

 General Procedure. All reactions in liquid SO2 were performed in two-bulb, two-valve 

Pyrex vessels incorporating 10 mL bulbs using techniques that have been described 

previously.59 Solid reagents and crystals were manipulated in a Brown Drybox containing an 

internal circulating drying unit.  The 1H, 13C and 14N/15N NMR spectra were recorded on a Jeol 

Eclipse 400 instrument.  The spectra were measured in [d6]-DMSO at 25°C.  The chemical 

shifts are given relative to tetramethylsilane (1H, 13C) or nitromethane (14N/15N) as external 

standards.  Coupling constants are given in Hz.  Infrared (IR) spectra were recorded on a 

Perkin-Elmer Spektrum One FT-IR instrument as KBr pellets at 20°C.  Raman spectra were 

recorded on a Perkin Elmer Spectrum 2000R NIR FT-Raman instrument equipped with a 

Nd:YAG laser (1064 nm).  The intensities are reported in % relative to the most intense peak 

and given in parenthesis.  Elemental analyses were performed with a Netsch Simultanous 

Thermal Analyser STA 429. Melting points were determined by differential scanning 

calorimeter (Perkin-Elmer Pyris 6 DSC, calibrated by standard pure Indium and Zinc). 

Measurements were performed at a heating rate of β = 10°C in closed Al-containers with a hole 

(1µm) on the top for gas release, and a 0.003*3/16-in. disk was used to optimize good thermal 

contact between the sample and the container with a nitrogen flow of 20 mL min-1. The 

reference sample was an Al-container with air.  

 

Synthesis of azido-N-cyanoformamidine (cyanoguanyl azide) (32). Amino-1H-

tetrazolium monohydrate (25.95 g, 0.25 mol), suspension in 40 mL of water, was brought in 

solution and neutralized by adding a concentrated solution of sodium hydroxide 

(phenolphthalein as indicator). To the cooled solution (0°C) 75 ml acetone and cyanogen 

bromide (27.0 g, 0.25 mol) were added in small portions while agitating. The reaction mixture 

was stirred for 3 hours at 0°C and 2 hours at RT. After that, the solution was extracted with 

Et2O (4 x 250 mL), and the ether solution was dried with anhydrous magnesium sulfate. Pure 2 

(19,94 g, 72.5%) was obtained after evaporation and re-crystallization from Et2O. m.p. 145 °C 

(dec.);  IR (KBr, cm-1): ν~ = 3355 (s), 3172 (s), 2707 (vw), 2659 (vw), 2456 (vw), 2187 (vs), 
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2161 (vs), 2131 (m, sh), 1646 (vs), 1562 (vs), 1497 (w), 1433 (vs), 1369 (m), 1243 (s), 1210 (s), 

1191 (s), 1031 (m), 888 (m), 718 (w), 705 (w), 635 (m), 603 (m), 539 (w), 445 (w);  Raman 

(200mW, 25 °C, cm–1) ν~ = 3289 (2), 3178 (6), 2187 (100), 2166 (35), 2127 (10), 1673 (4), 

1575 (15), 1564 (22), 1415 (40), 1373 (6), 1245 (9), 1191 (6), 1120 (2), 1027 (8), 894 (4), 720 

(6), 609 (35), 561 (2), 485 (5), 442 (28), 227 (75), 191 (20), 159 (81), 115 (16);  1H NMR ([d6]-

DMSO, 25°C) δ: 8.53 (s, NH), 8.79 (s, NH);  13C NMR ([d6]-DMSO, 25°C) δ: 114.2 (CN), 

163.3 (C); 15N NMR ([d6]-DMSO, 25°C) δ: -141.6 (N-NH2), -147.5 (CN), -176.1 (Nβ)60, -267,8 

(Nγ), -278.0 (Nα), -280.2 (N1-NH2, 1JNH = 91.1 Hz);  MS (DEI, 70 eV, >5%); m/z (%): 110 (48) 

[M+], 81 (38), 68 (10), 67 (6), 66 (6), 54(12), 53 (32), 52 (5), 42 (100), 41 (23), 40 (10), 38 (6), 

30 (55), 29 (21), 28 (36), 27 (18), 26 (7); C2H2N6 (110.08): calc. C, 22.34; H, 2.07; N, 75.50 %; 

found: C, 22.37; H, 2.05; N, 75.54 %. 

 

Isopropylammonium salt of 5-cyaniminotetrazoline, (iPrNH3)2CIT•MeOH, (35). To 

a slurry of 32 (11,01 g, 0,1 mol) in 60 mL EtOH isopropylamine (12.41 g, 0.21 mol) was added 

at once, and the solution allowed to warm spontaneously. The azide dissolves with immediate 

precipitation of the salt 35. The slurry was stirred for further 20 minutes and Et2O (150 mL) was 

added. The white, hygroscopic powder was separated by filtration, washed with ether and dried. 

Yield 22.0 g (96 %) of 35. X-ray-quality crystals of 35 • MeOH were grown from concentrated 

MeOH solution at RT in the course of 3 days. IR (KBr, cm-1): ν~ = 3041 (m), 2990 (s), 2941 (s), 

2832 (s), 2750 (s), 2655 (m), 2559 (m), 2554 (m), 2149 (vs), 1640 (m), 1532 (m), 1490 (vs), 

1394 (m), 1383 (w), 1358 (m), 1244 (m), 1224 (m), 1199 (m), 1164 (m), 1130 (m), 1055 (w), 

1038 (m), 954 (vw), 938 (vw), 801 (w), 760 (w), 571 (w), 478 (m);  Raman (200mW, 25 °C, 

cm–1) ν~ = 2984 (96), 2949 (95), 2933 (100), 2888 (69), 2749 (27), 2691 (16), 2562 (11), 2257 

(7), 2148 (85), 1624 (9), 1501 (98), 1466 (49), 1400 (11), 1373 (19), 1360 (31), 1228 (30), 1201 

(32), 1168 (16), 1132 (53), 1058 (82), 1019 (24), 957 (12), 940 (22), 804 (62), 763 (6), 570 

(40), 482 (24), 442 (74), 426 (38), 378 (13), 349 (17), 208 (45), 171 (34), 136 (34);  1H NMR 

([d6]-DMSO, 25°C) δ: 1.09 (d, 6H, 3J = 6.4 Hz), 3.17 (hept, 1H, 3J = 6.4 Hz), 6.82 (s, 3H);  13C 

NMR ([d6]-DMSO, 25°C) δ: 23.2 (CH3), 43.1 (CH), 124.0 (CN), 163.2 (C); m/z (FAB-, xenon, 

6keV, glycerine matrix) 109 [C2N6+H]-, 219 [2(C2N6+H)+H]-; C8H20N8 (228.30): calc. C, 

42.09; H, 8.83; N, 49.08 %; found: C, 41.86; H, 8.92; N, 49.13 %. 

 

Cesium salt of 5-cyaniminotetrazoline, Cs2CIT, (34). 32 (6.85 g, 30 mmol) was 

dissolved in 80 mL MeOH, and a solution of CsOH*H2O (10.08 g, 60 mmol) in 40 mL was 

added. The volatiles were removed under reduced pressure leaving a powdery white residue. 
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The residue was recrystallized from MeOH/Et2O (10.9 g, 97 %). m.p. 335°C;  IR (KBr, cm-1): 

ν~ = 2379 (w), 2136 (vs), 1714 (w), 1639 (w), 1590 (w), 1526 (s), 1495 (vs), 1364 (s), 1261 

(vw), 1217 (w), 1201 (w), 1190 (w), 1158 (vw), 1117 (w), 1042 (vw), 1003 (w), 791 (w), 763 

(m), 704 (w), 626 (vw), 579 (m);  Raman (200mW, 25 °C, cm–1) ν~ = 2123 (38), 2115 (61), 

1570 (7), 1521 (6), 1480 (26), 1469 (100), 1448 (8), 1358 (22), 1218 (12), 1183 (30), 1154 (8), 

1104 (27), 1035 (68), 997 (7), 785 (13), 761 (7), 567 (25), 441 (33), 348 (19), 187 (39), 161 

(10), 143 (7); 13C NMR ([d6]-DMSO, 25°C) δ: 128.1 (CN), 166.6 (C); m/z (FAB-, xenon, 6keV, 

NBA matrix) 109 [C2N6+H]-; C2Cs2N6 (373.87): calc. C, 6.43; Cs, 71.10; N, 22.48 %; found: C, 

6.56; N, 22.23 %. 

 

Triamine(CIT)palladium(II) monohydrate [Pd(C2N6)(NH3)3]•H2O (36). To a 

solution of 32 (220 mg, 2 mmol) in 5 mL water and 2 mL conc. NH3 a solution of 

tetraaminepalladium(II) chloride61 (490.9 mg, 2 mmol) in 5 ml H2O was added and heated for 

10 minutes to 75°C. Pale yellow plates of 6 (406 mg, 72%) crystallized after one week from the 

pale yellow solution. IR (KBr, cm-1): ν~ = 3444 (s), 3278 (s), 3164 (s), 3058 (s), 2923 (m), 285 

(w), 2128 (vs), 1637 (w), 1577 (w), 1518 (s), 1380 (m), 1325 (vw), 1281 (m), 1265 (m), 1230 

(m), 1115 (m), 861 (w), 837 (w), 786 (w), 748 (w), 569 (w), 501 (w), 478 (w);  Raman 

(200mW, 25 °C, cm–1) ν~ = 3279 (9), 3193 (10), 2123 (64), 1575 (5), 1514 (27), 1422 (3), 1377 

(8), 1318 (10), 1297 (15), 1266 (22), 1230 (14), 1151 (5), 1116 (25), 1097 (28), 1003 (16), 851 

(5), 788 (13), 751 (9), 573 (32), 509 (100), 487 (57), 364 (8), 257 (25), 219 (25), 154 (28); 

C2H11N9OPd (283.59): calc. C, 8.47; H, 3.91; N, 44.45%; found: C, 8.53; H, 3.82; N, 44.20%. 

 

Dicesium 5-cyaniminotetrazoline-1-sulfonatediide·SO2, Cs2CITSO3·SO2, (37). SO2 

(~ 10 mL) was condensed onto cooled (-196 °C) 34 (560 mg, 1.5 mmol), giving a bright yellow 

solution, which turned deep yellow, red and then brown after warming to RT. The reaction 

mixture was stirred for 1 day, and a clear, pale yellow solution containing a gummy residue was 

obtained. The solution was separated from the residue by filtration and reduced to half of its 

volume. After 1 week pale yellow crystals of 37 (312 mg, 40%) were obtained. IR (KBr, cm-1): 

ν~ = 2342 (vw), 2153 (s), 1642 (sh, m), 1588 (sh, m), 1556 (vs), 1529 (vs), 1378 (m), 1358 (s), 

1292 (vs), 1265 (vs), 1215 (sh, m), 1142 (m), 1125 (m), 1087 (s), 1042 (s), 742 (w), 629 (s), 

608 (s), 559 (m), 476 (w);  Raman (200mW, 25 °C, cm–1) ν~ = 2166 (23), 1546 (13), 1477 (3), 

1355 (4), 1303 (26), 1227 (13), 1144 (100), 1117 (8), 1086 (16), 1046 (47), 987 (7), 886 (3), 

793 (10), 621 (6), 601 (7), 545 (17), 531 (7), 480 (20), 398 (7), 338 (24), 297 (30), 208 (25), 
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135 (20); 13C NMR ([d6]-DMSO, 25°C) δ: 136.0 (CN), 164.1 (C); C2Cs2N6SO3*xSO2 (x=1, 

373.87): calc. C, 4.64; S,12.38; N, 16.22 %; found: C, 5.66; S, 9.30; N, 19.53 %. 

 

Attempted direct Synthesis of Cs2CITSO3·SO2, (37): In order to prepare 37 in a direct 

synthesis, SO2 (~10 mL) was condensed at -196 °C onto freshly prepared CsN3 (525 mg, 3 

mmol)62 and CsN(CN)2 (597 mg, 3 mmol), giving a bright yellow solution at room temperature. 

Within minutes, the solution became orange/red and a dark red oil starts to separate. The 

reaction mixture was stirred at room temperature for 1 day, and the obtained clear yellow 

solution separated from the formed red residue by filtration. Concentration of the yellow 

solution by dynamic vacuum (gas phase IR: SO2) yielded 0.135 g of a pale yellow product, 

soluble in MeOH. The Raman spectrum of the pale yellow solid, as well as of the red residue 

did not show any characteristic bands which could be assigned to CIT, CITSO3, CsN3 or 

CsN(CN)2. The red residue (1.245 g) dissolves in water under release of SO2, yielding a yellow 

solution. Both products are still under investigation. 

 

 

X-ray Analyses.  X-ray quality crystals of 35 and 36 were mounted in a Pyrex capillary and the 

X-ray crystallographic data collected on a Nonius Mach3 diffractometer with graphite-

monochromated MoKα radiation (λ = 0.71073 Å).  The X-ray crystallographic data for 5 and 7 

were collected on a Kappa CCD diffractometer using graphite-monochromated MoKα radiation 

(λ = 0.71073 Å).  Unit cell parameters of 4 and 6 were obtained from setting angles of a 

minimum of 25 carefully centered reflections having 2θ > 20°; the choice of the space groups 

was based on systematically absent reflections and confirmed by the successful solution and 

refinements of the structures.  The structures were solved by direct methods (SHELXS-86 (35, 

36), SHELXS-97 (34), SIR97 (37))63 and refined by means of full-matrix least-squares 

procedures using SHELXL-93 and SHELXL-97. Crystallographic data are summarized in 

Appendix B. Selected bond lengths and angles are available in Table 3.1, the numbering and the 

molecular model of the C2N6 frame in 5-cyaniminotetrazolinediide is given in Figure 3.7. All 

non-hydrogen atoms were refined anisotropically.  In the case of 35 and 36 the hydrogen atoms 

were included at geometrically idealized positions and refined.  They were assigned fixed 

isotropic temperature factors with the value of -1.2Beq of the atom to which they were bonded. 

Further information on the crystal-structure determinations (excluding structure factors) has 

been deposit with the Cambridge Crystallographic Data Centre as supplementary publication 

no.  267216(35), 267217(36), 267200(37) and 267201(34).64 
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 3. H2bta as HNC ligand system 

 As N,N-bis-(1(2)H-tetrazol-5-yl)-amine (H2bta) is a bidentate chelating ligand with multi-

proton donor sites, it is able to coordinate to a metal with three reversible types of protonated 

and deprotonated modes: neutral (H2bta), mono-deprotonated (monoanion, Hbta-), and di-

deprotonated (dianion, bta2-) types (Scheme 3.4).  

 

 
Scheme 3.4. H2bta (30) with two reversible types of protonated and 
deprotonated mode 

 

 Moreover, H2bta can be utilized as new bridging ligand for controlling the molecular 

architectures which, in combination with appropriate outer- and inner-sphere ligands, allows the 

variation of physicochemical and explosive properties within a wide range. H2bta and its 

deprotonated modes might serve as ligand in a new generation of high-performance energetic 

materials with increased safety. As in comparison to azide based PCs, the azide group is 

disguised in a aminotetrazole moiety, known to be stabilized due to the extended 6π system.  

 

 3. 1 Alkali and alkaline earth metal salts 

 The procedure used to prepare BTA differs from the procedures described in literature, 

and a detailed description can be found in the experimental part. BTA is formed as a white 

amorphous powder, and all attempts to crystallize it without any additional coordinated solvents 

(like DMSO) failed so far. The structure of the parent H2bta was obtained co-crystallized with 

the mono sodium salt in Na(Hbta)(H2bta)*3H2O (38). The synthesis for 38 can also be found in 

the experimental section, and a view of the subunit of the crystal structure of 38 is depicted in 

Figure 3.15; the structure is not going to be discussed in detail. 38 crystallizes in the 

orthorhombic crystal structure P212121 with four molecular units in the unit cell. Sodium is 

coordinated in a distorted octahedral manner by two nitrogen atoms from one H2bta and one 

Hbta- molecule and four oxygen atoms donated from the water molecules. The H2bta and one 
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Hbta- molecule are connected thus to yield 1D stacks orientated along the [100] axis. These 

stacks are inter-linked by strong Crieg-like hydrogen bridges forming a complicated polymeric 

structure.  

 
Figure 3.15. Subunit of the crystal structure in 38 along the [100] axis. (blue: 
nitrogen; gray: carbon; red: oxygen; white: hydrogen) 

 

 BTA is air stable and can be handled safely in hydrated from. It is not friction (> 360 N) 

and impact (> 40 J) sensitive and can be easily deprotonated with any hydroxide and carbonate 

of the alkaline or alkaline earth metals yielding, depending on the amount of added base, the 

corresponding mono-deprotonated (Cs+(Hbta-) (39) and the already mentioned mixed 

H2bta/hbta- type in Na(Hbta)(H2bta)*3H2O (38)) or di-deprotonated ((M+)2(bta2-) M+ = Li (40), 

K (41), Na (42), Rb (43), Cs (44); M2+bta2- M = Ca (45), Ba (46)) salts. Crystals of 41 could not 

be obtained due to twinning problems. 

 

 3.1.1 Raman spectroscopy 

 The bta salts can be easily and rapidly identified by Raman and IR spectroscopy, 

especially for the deprotonated bta2- (symmetry of the molecule C2v). In the IR spectra three 

strong vibrations are observed at ~ 1688, 1630 and 1510 cm-1 which can be addressed to the 

νasym (Ctet−N−Ctet), νasym (Ctet−N−Ctet + N−H) and νsym (Ctet−N−Ctet), respectively. In the Raman 
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experiment only the νsym (Ctet−N−Ctet) vibrations (~ 1500 cm-1) are observed as one of the 

strongest bands (Figure 3.16). Successively protonation (bta2-  Hbta-  H2bta) should lead 

in the case of the monodeprotonated species Hbta- to a splitting of this mode (νsym 

Ctet−N−Ctet’), which is confirmed by the Raman spectrum of CsHbat*H2O (39) (Figure 3.16). 

In the case of the H2bta (30), again only one vibration for the νsym (Ctet−N−Ctet) is observed, but 

shifted to higher wavenumber (1552 cm-1, Figure 3.16), since the vibration modes of the 

differently orientated tetrazole rings (Figure 3.15) are almost identical in energy. The Raman as 

well the IR spectra of the bta salts also contain a set of characteristic absorption bands: 3400-

3000 cm-1 [ν(NH)], 1750-1550 cm-1 [δ(NH), νasym (Ctet−N−Ctet)], 1550-1350 cm-1 [ν tetrazolate 

ring, δ(NH)], 1350-700 cm-1 [ν(NCN), ν(NN), ω(NNH2), γ(CN), δ tetrazolate ring], <700 cm-1 

[δ out of plane bend (N–H)].  

 
Figure 3.16. Raman spectra of alkaline bta salts 
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 3.1.2 Crystal structure of Li2bta*5H2O(40) 

 Since the coordination pattern of the lithium salt 40 differs markedly from the others, a 

detailed discussion is given below. 40 crystallizes in the monoclinic space group P21/n as 

pentahydrate which readily loses crystal water, stored on air. Weathered crystals of 40 

(Li2(bta)*xH2O) showing an crystal water content of  2 < x < 2.5. The asymmetric unit consists 

of two lithium cations, five water molecules and one bta ligand. The coordination environment 

of the Li+ is shown in Figure 3.17 (A). There are two differently coordinated Li+ ions: The 

lithium atoms are coordinated distorted tetrahedral in which Li1 is connected to two nitrogen 

atoms (N2, N6; bta as bidentate ligand) and two water molecules, whereas Li2 is connected 

only to one nitrogen atom but three water molecules (N8; bta as monodentate ligand).  

 

 

Figure 3.17. A: Coordination environment of the two Li+ cations and numbering scheme of the molecular graph in 
40 with 50% probability displacement ellipsoids; B: The dimeric subunit in 40 is related to the molecular graph by 
the symmetry operation 2-x, -y, -z. The dot indicates the inversion centre of this subunit; C: Packing diagram along 
the a axis, showing the layer sequence aba…; hydrogen atoms and hydrogen bonds are omit due to clarity. 
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 The distances found for Li–N lies between 1.963(2) Å and 2.07(1) Å and for Li–O 

between 1.922(2) Å and 1.972(1) Å which is typical for tetrahedral coordinated Li+ (Table 

3.7).65 The angular distribution around Li+ is more uniform, ranging from 103.0(2) to 121.0(2)°. 

The smallest subunit of the crystal structure of 40 is an inversion symmetrically dimeric unit 

linked over two hydrogen bonds N1i–H1i····O1 and O4–H4A····N4i
 [symmetry code: (i) 2-x, -y, 

-z] together (Figure 3.17, B). These subunits are connected extensively by hydrogen bonds to 

sheet like layers forming rings to align along the a and b axis. In that way, channels running 

within the layers along that direction, which can be depicted from Figure 3.17 (C). One layer, 

related to the next layer, is arranged in a reverse manner, and they are held together by only one 

type of hydrogen bond resulting from the interaction of two water molecules (O2–H2B····O3v; 

symmetry code: (i) 2-x, 0.5+y, 0.5-z) coordinated to the lithium atoms (Table 3.8). The lateral 

packing of the layers arranged in an antiparallel manner (layer sequence is aba…) is simply a 

consequence of the centrosymmetric nature of the space group.  

 

Table 3.7. Selected geometric parameters (Å, °) of  40 and 42 
    
Li2(bta)*5H2O (40)    
Li1–N2 2.026(5) Li2–N2 2.052(5) 
Li1–N6 2.07(1) Li2–N2 1.96(2) 
Li1–O1 1.939(8) Li2–N2 1.972(4) 
Li1–O2 1.95(2) Li2–N2 1.922(6) 
    
O1–Li1–N2 118.9(2) O3–Li2–N8 107.0(2) 
O1–Li1–N6 107.6(2) O3–Li2–O4 116.3(2) 
O1–Li1–O2 116.5(2) O3–Li2–O5 103.0(2) 
O2–Li1–N2 103.9(2) O4–Li2–N8 105.8(2) 
O2–Li1–N6 121.0(2) O5–Li2–N8 117.5(2) 
    
Na2(bta)*2H2O (42)    
Na1–N5i 2.584(4) Na1–O1iv 2.365(6) 
Na1–N9i 2.572(5) Na1–O2iv 2.399(2) 
Na1–N6ii 2.510(4)   
Na1–N8iii 2.584(4)   
    
O1–Na1–N5i 94.57(2) O2–Na1–N5i 103.54(2) 
O1–Na1–N9i 151.41(3) O2–Na1–N9i 84.55(2) 
O1–Na1–N6ii 106.62(2) O2–Na1–N6ii 171.69(3) 
O1–Na1–N8iii 83.26(2) O2–Na1–N8iii 82.90(2) 
    
Symmetry codes for Na2(bta)*2H2O (42): (i) -1+x, 0.5-y, z; (ii) x, 0.5-y, z; (iii) 1-x,-y-z; 
(iv) x, -0.5-y, z. 
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 3.1.3 Crystal structure of Na2(bta)*2H2O (42) 

 The sodium salt crystallizes in the monoclinic space group P21/m with four formula units 

in the unit cell. The numbering scheme and the coordination environment of the Na+ can be 

depicted from Figure 3.18. The water molecules and bta anion, as well as the sodium cations, 

lie in special positions in space group P21/m, with Z ′= 0.5. The Na+ cations are positioned at 

(¼, n/2 + ½, ¼) and (¾, n/2 + ½, ¾) (n = zero or integer) forming a 1D metal-ligand chain with 

a shorter Na–Na distance of 3.220(1)  [symmetry code: x, -0.5-y, z] and a longer Na–Na 

distance of 3.261(1) [symmetry code: x, 0.5-y, z] based on a reference sodium cation. Layers, 

consisting of water molecules and anions, lying on mirror planes which are found at y = (n/2 + 

¼) (n = zero or integer).  

 

 

Figure 3.18. Part of the crystal structure of 42 showing 
the ionic components and the coordination geometry of 
Na. Displacement ellipsoids are drawn at the 50% 
probability level. Compared to the bta2- anion as 
reference, atoms Na1a, O1a, O1b and N6j are at (1+x, y, 
z), N8d at (2-x, -0.5+y, -z), Na1e at (1+x, 0.5-y, z), O1f 
and O2g at (1+x, 1+y, z) and N8h at (2-x, 0.5+y, -z), 
respectively. 

 

 These layers are connected by the sodium cations. Each Na+ is six-coordinated and 

approximately octahedral (Table 3.8, Figure 3.18). The coordination atoms (4N + 2O) around 
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the Na+ lie in the anion at (1-x, -y, -z), (x, 0.5-y, z) and (-1+x, 0.5-y, z) (N donors), and at (x, -

0.5-y, z) (O donors). These metal-ligand interactions thus generate a chain of confacial NaN4O2 

octahedral running parallel to [010] (Figure 3.19), propagation of which by translation links all 

the ions and water molecules into a single-layered framework structure. 

 

 
Figure 3.19. Part of the crystal structure of 42 showing the formation of the (010) sheet built from )25(6

7R  and 

)9(3
3R rings. Atoms marked with an asterisk (*), hash (#), degree sign (°) or dollar sign ($) are at the symmetry 

positions (-1+x, y, z), (1-x, 0.5+y, 1-z), (2-x, 0.5+y, 1-z) and (-x, 0.5+y, -z), respectively. 
 

 In addition, the anions within each layer are linked over the water molecules into a 

continuous sheet by hydrogen bonds (Table 3.8, Figure 3.19). The water molecule O1 at (1-x, 

0.5+y, 1-z) and (2-x, 0.5+y, 1-z) acts as hydrogen donor to N2 and N3 (O1–H1A····N2 and O1–

H1B····N3) and together with the hydrogen bond N1–H1····N4i
 [symmetry code: (i) 1-x, y, z], 

chains parallel to [100] are generated. Adjacent [100] chains are linked by hydrogen bonds O2–

H2A···N3ii and O2–H2B···N7iv [symmetry codes: (ii) 1-x, -0.5+y, 1-z and (iv) –x, -0.5+y, -z] 

over the second water molecule (Table 3.8). In this manner, the [100] chains are linked into 

(010) sheets built from )25(6
7R  and )9(3

3R rings according the formalism of graph-set analysis 

of hydrogen-bond patterns.66  
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Table 3.8. Hydrogen bond geometry (Å, °) of 40 and 42 
D–H····A D–H H····A D····A D–H····A 
     
Li2(bta)*5H2O (40)     
N1–H1····O1i 0.860(3) 2.357(1) 3.14(1) 151.0(2) 
O1–H1A····O5ii 0.965(3) 1.914(9) 2.852(1) 163.3(2) 
O1–H1B····N3iii 0.921(7) 1.891(7) 2.79(1) 164.7(2) 
O2–H2A····N9iv 0.924(5) 1.874(7) 2.80(1) 174.9(2) 
O2–H2B····O3v 1.043(3) 2.008(4) 3.038(4) 169.0(2) 
O3–H3A···O4vi 0.906(8) 1.847(2) 2.74(2) 167.3(2) 
O3–H3B···O2iv 0.957(2) 2.225(3) 3.093(3) 150.3(2) 
O4–H4A····N4i 1.030(2) 1.747(3) 2.775(3) 175.7(2) 
O4–H4B····N7ii 0.943(5) 1.862(6) 2.79(1) 168.4(2) 
O5–H5A····N6vii 0.988(3) 2.262(2) 3.13(2) 146.2(2) 
O5–H5B····N5viii 0.913(4) 1.785(4) 2.692(6) 171.8(2) 
     
Na2(bta)*2H2O (42)     
N1–H1····N4i 0.76(3) 2.34(3) 3.10(1) 174(3) 
O1–H1A····N2ii 0.79(2) 1.99(2) 2.78(3) 175(2) 
O1–H1B····N3iii 0.79(2) 2.24(2) 3.02(3) 175(2) 
O2–H2A···N3ii 0.78(2) 2.14(2) 2.90(4) 165(2) 
O2–H2B···N7iv 0.77(2) 2.11(2) 2.89(2) 175(2) 
     
Symmetry codes for Li2(bta)*5H2O (40): (i) 2-x, -y, -z; (ii) 2-x, -1-y, -z; (iii) 1-x, -
y, -z; (iv) 1+x, y, z; (v) 2-x, 0.5+y, 0.5-z; (vi) 3-x, -1-y, -z ; (vii) 2-x, -0.5+y, 0.5-
z ; (viii) x, -1+y, z. Symmetry codes for Na2(bta)*2H2O (42): (i) 1-x, y, z; (ii) 1-x, 
-0.5+y, 1-z ; (iii) 2-x, -0.5+y, 1-z; (iv) –x, -0.5+y, -z. 

 

 3.1.4 Crystal structure of 39, 43 and 44 

 Since the crystal structures of 39, 43, 44 and 46 are related to the crystal structure of 42, 

and a detailed discussion would beyond the scope of this work, only a short description will be 

given. CsHbta*H2O (39) crystallizes in the triclinic crystal system P-1 with two formula units in 

the unit cell. The before-mentioned formalism of graph-set analysis of hydrogen-bond patterns 

according to Etter66 is a suitable tool to explain coordination polymers by means of repeating 

graph sets. The main graph sets in the structure of 39 is the )9(3
3R and the very common 

)8(2
2R (Figure 3.20). The )8(2

2R graph set represents the formation of a dimeric subunit of two 

bta molecules containing the inversion centre. The )9(3
3R has already been identified for 42 as 

liking unit of the bta moieties trough water molecules to strands, but here they serve also to the 

dimeric unit. Those units are linked through the cesium atoms and the )6(2
2R  graph set to a 1D 

strand which is further linked by cesium atoms together with adjacent strands to a 2D overall 

sheet like structure (not shown in Figure 3.20). 
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Figure 3.20. A: Main graphs sets in the 1D subunit of 39. (blue: nitrogen; gray: carbon; red: oxygen; green: cesium; 
white: hydrogen). 
 

 Cs2bta*H2O (44) crystallizes in the orthorhombic space group Pmc21 with two formula 

units in the unit cell. 44 forms also a 2D sheet like framework, but due to the lack of hydrogen 

donor atoms, however, only the formation of three types of hydrogen bonds are formed. Figure 

3.21 shows a few along the [100] axis, the same direction the 1D cesium chains running. The 

cesium atoms are located below and above these planes. 

 

 

Figure 3.21.  View along the [100] axis in 44. Cesium atoms are located 
above and below these sheets forming 1D metal chains. (blue: nitrogen; 
gray: carbon; red: oxygen; green: cesium; white: hydrogen) 
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 Rb2bta*H2O (43) crystallizes in the orthorhombic space group Pba2 with four formula 

units in the unit cell. The crystal structure of Rb2bta*H2O (43) is comparable the structure of 44, 

and due to the heavily disordered water molecules, a illustration is abstained.  

 

 3.1.5 Crystal structure of 45 and 46 

 Cabta*5H2O (45) crystallizes in the monoclinic space group P2/n with four formula units 

in the unit cell. The calcium salt of the bta dianion has an interesting feature. Calcium is seven 

coordinated, taking the form of a distorted overcapped octahedron in which four water 

molecules are directly linked to the metal, while the coordination is completed by two nitrogen 

atoms of an bta ligand  (bidentate) and one nitrogen atom of a second bta ligand (monodentate). 

A closer inspection of this arrangement reveals the possibility of a second calcium atom to be 

coordinated which is related in symmetry to the first calcium atom by 0.5-x, y, 0.5-y. The same 

accounts for the second bta ligand, forming an overall dimeric structure which is the 

consequence of the two folded rotation axis this space group has as symmetry element. Atoms 

O1 and O4 are unique since they lie on the two folded rotation axis. The numbering scheme and 

the symmetry relation of 45 is depicted in Figure 3.22.   

 

 

Figure 3.22.  View of the dimeric unit in 45 showing the atom-
numbering scheme and displacement ellipsoid at 50% probability level;. 
Atoms marked with i are at the symmetry position 0.5–x, y, 0.5–z. 
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 The bta ring in 45 is essentially planar, and all observed bond length are as observed in 

other bta complexes (e.g. see this Chapter, 4) and therefore are not going to be discussed. The 

obtained Ca−O and Ca−N distances (ranging from Ca1−N3 2.491(2) to Ca1−N3 2.529(2) and 

for Ca1−O3 2.295(6) to Ca1−N3 2.551(3)) lie in the range normally obtained for the 

coordination of Ca2+ with other N or O donor systems.67 These dimeric units are connected 

through several hydrogen bridges to an infinite three dimensional network.  

 

 The barium salt 46 crystallizes in the triclinic space group P-1 with two formula units in 

the unit cell. Moving from the comparable small calcium atom to the bigger barium atom leads 

to an almost identical arrangement of the cations and the bta ligands. Also, a dimeric subunit is 

formed with the difference that the half units are related via an inversion centre. Interestingly, 

since the coordination number of seven would difficult to be realized for Ba, in 46 a third bta 

ligand serves as addition N donor resulting in the formation of a chain like structure of the 

dimeric units together with an increasing of the coordination number to 9, typically for Ba 

structures. These chains are connected trough hydrogen bridges mediated by water molecules to 

an polymeric 3D structure. A view of the extended coordination mode by an additional bta 

ligand is depicted in Figure 3.23.  

 

 

Figure 3.23.  View of the extended dimeric unit in 46. Displacement ellipsoid at 50% 
probability level. (blue: nitrogen; gray: carbon; red: oxygen; yellow: barium; white: hydrogen) 
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 3.1.6 Experimental 

 H2bta*H2O (30):  

 Method 1: To a 500 ml three-neck reaction flask containing a refluxing suspension of 

sodium dicyanamide (8.9 g, 0.1 mol), sodium azide (13.0 g, 0.2 mol), 80 ml ethanol and 50 ml 

of water was added in the course of four hours 150 ml of 2M HCl. The reaction mixture was 

allowed to reflux for further 48 hours. After cooling to RT, 20 ml of conc. HCl was added and 

the white precipitate filtered off. The crude material was recrystallized from boiling water to 

give 15.22 g (89 % yield) of white, amorphous 30.  

 Method 2: To a solution of aminotetrazole monohydrate (10.31 g, 0.1 mol) and sodium 

hydroxide (4.00 g, 0.1 mol) in 40 ml of water and 25 ml EtOH was added pulverized cyanogen 

bromide (10.59 g, 0.1 mol) in small portion at 0°C. After stirring the solution for 2 hours at 0 °C 

and 3 hours at RT, sodium azide (6.50 g, 0.1 mol) was added. In the course of 3 hours, 75 ml 

2M HCl was added to the refluxing mixture and refluxing continued for further 48 hours. 1 

(13.5 g, 79 % yield) was obtained according the work up procedure outlined in method 1. m.p. 

263 (dec.) °C;  IR (KBr, cm–1): ν~ = 3456 (s), 3028 (s), 2932 (s), 2858 (s), 2671 (m), 2438 (m), 

1796 (w), 1656 (vs), 1611 (s), 1556 (s), 1454 (m), 1352 (m), 1337 (m), 1282 (m), 1263 (m), 

1154 (w), 1110 (m), 1072 (s), 1501 (s), 1036 (m), 1003 (m), 899 (m, br), 819 (m), 790 (m), 738 

(m), 690 (m), 503 (m, br), 406 (w); Raman (200mW, 25 °C, cm–1): ν~ = 3328 (11), 3120 (8, br), 

1649 (9), 1618 (34), 1552 (54), 1480 (22), 1455 (17), 1370 (17), 1346 (15), 1267 (25), 1226 

(26), 1151 (15), 1128 (15), 1073 (100), 1039 (42), 838 (7), 794 (17), 736 (9), 670 (7), 421 (22), 

409 (48), 381 (9), 348 (20), 321 (48), 172 (100), 147 (46);  1H NMR ([d6]-DMSO, 25°C) δ: 

5.94 (s, br); 13C NMR ([d6]-DMSO, 25°C) δ: 154.7 (C);  15N NMR ([d6]-DMSO, 25°C) δ: -

17.9 (N2), -123.8 (N1), -315.7 (NH); C2H5N9O (100.08): calcd. C, 14.3; H, 2.4; N, 83.3%; 

found: C, 14.1; H, 2.6; N, 83.1%. 

 

 Na(Hbta)(H2bta)*3H2O (38). According the above method 1, to a suspension of sodium 

dicyanamide (8.9 g, 0.1 mol), sodium azide (13.0 g, 02. mol), 80 ml ethanol and 50 ml water 

was added 75 ml 2M HCl and refluxed for further 48 hours. After cooling, rosettes of white 

needles crystallized slowly and the product was removed by filtration. The yield of the 

hydrated, acid sodium salt 38 was 3.44 g (18 % yield). Recrystallization from water gave 

colorless rods suitable for crystal structure determination. m.p. ~ 230 (dec.) °C; Raman 
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(200mW, 25 °C, cm–1): ν~ = 3326 (10), 3201 (11), 1693 (11), 1617 (35), 1551 (44), 1479 (21), 

1452 (27), 1370 (16), 1345 (32), 1298 (28), 1266 (27), 1225 (28), 1152 (21), 1138 (12), 1126 

(16), 1093 (36), 1073 (98), 1054 (43), 1039 (43), 997 (26), 838 (10), 792 (19), 759 (36), 735 

(13), 688 (9), 437 (24), 420 (26), 408 (52), 379 (12), 347 (21), 320 (58), 172 (100), 145 (50); 

NaC4H5N18*3H2O (382.24): calcd. C, 12.6; H, 2.9; N, 66.0 %; found: C, 12.5; H, 2.8; N, 66.0 

%. 

 

 

 General Procedure for the preparation of the alkali and alkaline earth metal bta 

salts. To N,N-bis-(1(2)H-tetrazol-5-yl)-amine monohydrate (1) in a sufficient amount of 

deionized water was added one (M+(Hbta-), M2+bta2-) or two (M2(bta)*xH2O) equivalents of 

the corresponding metal hydroxide or metal carbonate. The resulting mixtures were stirred and 

heated to boiling - in the case of the carbonates, heating was continued until the gas evolution 

faded. Where necessary, the reaction mixture were filtered hot to remove insoluble impurities 

and than cooled (~ 5°C) with vigorous stirring to precipitate the salts. The products were 

collected and air-dried. 

 

 Li2(bta)*5H2O (40): colorless prisms; X-ray-quality crystals were grown from 

concentrated water solution at RT in the course of several weeks. m.p. 185-187 °C;  IR (KBr, 

cm–1): ν~ = 3498 (vs), 3414 (vs), 338 (vs), 4161 (s), 3141 (s), 2941 (m), 2780 (m), 1787 (w), 

1656 (vs, sh), 1631 (vs), 1507 (s), 1477 (s), 1425 (m), 1322 (m), 1241 (m), 1141 (m), 1103 (w), 

1057 (s), 1031 (w), 1002 (s), 921 (w), 850 (w), 789 (w), 751 (w), 734 (w), 721 (vw), 617 (m), 

576 w), 490 (m);  Raman (200mW, 25 °C, cm–1): ν~ = 3398 (5), 3264 (6), 3123 (7), 2379 (4), 

1622 (17), 1589 (50), 1511 (100), 1474 (19), 1432 (27), 1323 (7), 1297 (25), 1244 (66), 1148 

(31), 1106 (29), 1090 (75), 1057 (26), 1034 (14), 999 (29), 851 (16), 792 (7), 751 (10), 739 (7), 

409 (23), 375 (26), 314 (40), 225 (16), 210 (16), 185 (48), 161 (62), 129 (13); Li2C2HN9*xH2O 

(x = 2: 201.00; X = 5: 255.05): (x = 2) calcd. C, 12.0; H, 2.5; N, 62.7%; found: C, 12.6; H, 2.3; 

N, 65.0%. 
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 Na2(bta)*2H2O (42): colorless plates; X-ray-quality crystals were grown from 

concentrated water solution at RT in the course of several weeks. m.p. 350 °C (dec.);  IR (KBr, 

cm–1): ν~ = 3544 (s), 3274 (vs), 3154 (s), 3074 (s), 2896 (s), 2259 (w), 1696 (m), 1644 (s), 1608 

(vs), 1518 (s), 1499 (vs), 1431 (m), 1305 (m), 1240 (m), 1234 (m), 1156 (w), 1141 (m), 1124 

(m), 1024 (m), 1011 (w), 849 (m), 793 (s), 725 (m), 716 (m), 685 (s, 579 (s), 453 (w);  Raman 

(200mW, 25 °C, cm–1): ν~ = 3286 (5), 3171 (3), 1612 (6), 1522 (100), 1423 (6), 1306 (2), 1242 

(26), 1218 (29), 1158 (3), 1141 (3), 1118 (19), 1078 (13), 1062 (59), 1024 (5), 1011 (7), 852 

(2), 792 (7), 762 (4), 664 (3), 414 (10), 347 (13), 325 (13), 185 (16), 166 (14), 150 (7), 136 (14); 
1H NMR ([d6]-DMSO, 25°C) δ: 8.56 (s), 3.41 (H2O); 13C NMR ([d6]-DMSO, 25°C) δ: 161.6 

(C); Na2C2HN9*2H2O (233.10): calcd. C, 10.3; H, 2.2; N, 54.1%; found: C, 10.3; H, 2.4; N, 

53.5%. 

 

 K2(bta)*H2O (41): colorless rods; Although several recrystallizatisation attempts from 

both, concentrated aqueous solutions at RT and concentrated DMSO-water solutions at 60°C 

yielded beautiful colorless rods, a X-ray structure determination was not successful due to an 

unsolvable twin problem. m.p. 247 °C (dec.);  IR (KBr, cm–1): ν~ = 3443 (s), 3271 (s), 3148 (s), 

3056 (vs), 2904 (s), 2809 (m), 2609 (w), 1688 (s), 1632 (vs), 1515 (vs), 1418 (m), 1404 (m), 

1306 (s), 1218 (s), 1156 (m), 1139 (s), 1117 (m), 1113 (m), 1011 (m), 1007 (m), 856 (m), 809 

(m), 750 (s), 731 (m), 677 (m);  Raman (200mW, 25 °C, cm–1): ν~ = 3280 (3), 3053 (5), 2903 

(3), 1632 (4), 1525 (62), 1421 (10), 1308 (4), 1219 (69), 1116 (25), 1052 (100), 1010 (10), 757 

(7), 405 (16), 350 (14), 308 (19), 156 (12); 1H NMR ([d6]-DMSO, 25°C) δ: 8.56 (s), 3.41 

(H2O); 13C NMR ([d6]-DMSO, 25°C) δ: 161.6 (C); K2C2HN9*H2O (247.30): calcd. C, 9.7; H, 

1.2; N, 51.0%; found: C, 9.8; H, 1.2; N, 51.1%. 

 

 Rb2(bta)*H2O (43): colorless plates; X-ray-quality crystals were grown from 

concentrated DMSO-water solution at 60°C in the course of 4 days. m.p. 340 °C (dec.);  IR 

(KBr, cm–1): ν~ = 3443 (s), 3269 (s), 3146 (m), 3068 (m), 2899 (m), 1630 (vs), 1513 (vs), 1417 

(m), 1303 (m), 1212 (m), 1153 (w), 1137 (m), 1119 (w), 1112 (w), 1010 (w), 855 (m), 750 (w), 

699 (w), 686 (m);  Raman (200mW, 25 °C, cm–1): ν~ = 3270 (6), 3152 (4), 3069 (5), 2899 (3), 

1617 (5), 1520 (72), 1419 (4), 1303 (4), 1208 (57), 1136 (5), 1115 (31), 1053 (100), 1009 (12), 

855 (3), 758 (6), 400 (15), 346 (13), 308 (23), 179 (8); Rb2C2H3N9O (340.04): calcd. C, 7.1; H, 

0.9; N, 37.0%; found: C, 7.1; H, 1.0; N, 36.4%. 
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 Cs2(bta)*H2O (44). colorless plates; X-ray-quality crystals were grown from 

concentrated DMSO-water solution at 60°C in the course of 2 days. m.p. 280 °C (dec.);  IR 

(KBr, cm–1): ν~ = 3444 (s), 3269 (s), 3158 (m), 3059 (m), 2901 (m), 1631 (vs), 1514 (vs), 1402 

(m), 1305 (m, shoulder), 1217 (m), 1155 (w), 1138 (m), 1117 (w), 1112 (w), 1007 (w), 856 (m), 

750 (w), 699 (w), 668 (w);  Raman (200mW, 25 °C, cm–1): ν~ = 3249 (6), 3148 (4), 3047 (5), 

1617 (2), 1522 (56), 1416 (9), 1301 (4), 1221 (22), 1213 (44), 1114 (24), 1052 (100), 1016 (11), 

1008 (10), 757 (5), 636 (4); 400 (17), 345 (13), 308 (21), 168 (9); 1H NMR (D2O, 25°C) δ: 7.33 

(s), 3.41 (H2O); 13C NMR (D2O, 25°C) δ: 162.8 (C); Cs2C2H3N9O (434.92): calcd. C, 5.5; H, 

0.7; N, 28.9%; found: C, 5.5; H, 0.7; N, 28.5%. 

 

 Cs(Hbta)*H2O (39): colorless plates; X-ray-quality crystals were grown from 

concentrated DMSO-water solution at 60°C in the course of 3 days. m.p. 240 °C (dec.);  IR 

(KBr, cm–1): ν~ = 3424 (s), 3262 (s), 3060 (m), 2904 (m), 1631 (vs), 1514 (s), 1515 (s, 

shoulder), 1306 (m), 1236 (vw), 1218 (w), 1155 (vw), 1138 (w), 1122 (w), 1112 (vw), 1057 

(vw), 1029 (m), 994 (w), 856 (vw), 793 (w), 749 (w), 657 (w);  Raman (200mW, 25 °C, cm–1): 

ν~ = 3002 (10), 2921 (11), 1629 (15), 1553 (80), 1500 (96), 1496 (15), 1434 (17), 1357 (30), 

1347 (27), 1321 (11), 1256 (16), 1203 (54), 1131 (28), 1115 (34), 1059 (100); 1033 (17), 1001 

(30), 842 (13), 776 (16), 749 (14), 406 (55), 381 (34), 348 (39), 312 (26), 161 (42), 147 (41); 1H 

NMR ([d6]-DMSO, 25°C) δ: 8.28 (s, br); 13C NMR ([d6]-DMSO, 25°C) δ: 156.8 (C); 

Cs2C2H3N9O (303.02): calcd. C, 7.9; H, 1.3; N, 41.6%; found: C, 8.6; H, 1.0; N, 41.2%. 

 

 Cabta*5H2O (45):  colorless blocks; X-ray-quality crystals were grown from 

concentrated water solution at RT in the course of 5 days. m.p. 274 °C (dec.);  IR (KBr, cm–1): 

ν~ = 3450 - 3100 (vs, br), 1608 (vs), 1537 (s), 1504 (s), 1423 (m), 1303 (m), 1278 (w), 1260 

(m), 1165 (w), 1140 (m), 1124 (w), 1085 (vw), 1026 (w), 852 (s), 795 (s), 748 (vs), 719 (vs);  

Raman (200mW, 25 °C, cm–1): ν~ = 3212 (5), 1599 (5), 1532 (100), 1499 (9), 1426 (7), 1281 

(21), 1262 (27), 1167 (4), 1139 (23), 1126 (21), 1085 (30), 1069 (45), 1027 (9), 1012 (7), 752 

(6), 410 (23), 363 (12), 316 (17), 225 (13), 149 (9), 128 (11); CaC2H3N9O5 (281.24): calcd. C, 

8.5; H, 3.9; N, 44.8%; found: C, 8.7; H, 3.9; N, 44.6%. 
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 Babta*5H2O (46):  colorless blocks; X-ray-quality crystals were grown from 

concentrated water solution at RT in the course of 5 days. m.p. 295 °C (dec.);  IR (KBr, cm–1): 

ν~ = 3450 - 3100 (vs, br), 1626 (vs), 1520 (s), 1421 (s), 1415 (s, shoulder), 1305 (m), 1261 (m), 

1247 (w), 1161 (w), 1140 (m), 1120 (w), 1072 (vw), 1011 (w), 859 (m), 793 (s), 747 (s), 635 

(m, br), 496 (m, br); 404 (m);  Raman (200mW, 25 °C, cm–1): ν~ = 3176 (7), 1622 (5), 1539 

(100), 1511 (30), 1422 (10), 1264 (38), 1251 (26), 1123 (44), 1075 (30), 1061 (75), 1011 (16), 

759 (6), 756 (9), 403 (29), 360 (19), 329 (23), 205 (12), 159 (21), 143 (23), 115(16); 

BaC2H3N9O5 (377.49): calcd. C, 6.4; H, 2.7; N, 33.4 %; found: C, 6.5; H, 2.5; N, 34.7%. 
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 3.2 H2bta / (NH4)2[Cu(NH3)6] System 

 3.2.1 Introduction 

 Cupric oxide is one of the most important additives used to a) catalyze decomposition 

reaction in gas generators in order to obtain cooler reaction gases b) as burning enhancer for AP 

based composite propellants and c) as coloring agent in pyrotechnics.6,68 In this context the 

reaction of Cu2+ ions in aqueous ammonia solution with H2bta was investigated. Depending on 

the reaction conditions three complexes were obtained: Cu(bta)(NH3)2 (47), 

Cu(bta)(NH3)2*H2O (48) and (NH4)2Cu(bta)2*2.5H2O (49). The crystal structures of 47 and 48 

are discussed with respect to the coordination mode of bta, which mediates in the case of 47 and 

48 weak superexchange interactions between the adjacent magnetic transition metal CuII 

cations. This antiferromagnetic interactions result from 1D copper chains over a disguised azide 

end to end bridge. Interestingly, the structural arrangement of 47 completely changes in the 

present of crystal water. Azide-containing clusters and networks showing depending on the 

bridging mode a diverse array of magnetic properties: e.g. symmetric double end-on azide 

bridges typically mediate strong ferromagnetic exchange whereas symmetric end-to-end bridges 

antiferromagentic exchange interactions. Moreover, some physicochemical properties (e.g. heat 

of formation, friction and impact sensitivity, DSC) of these complexes with respect to high 

energetic materials are discussed.  

 

 3.2.2 Synthesis 

 Compounds 47, 48 and 49 were synthesized by the direct combination of stoichiometric 

amounts (1:1, 1:1, 1:2, respectively) of CuCl2*2H2O in water and BTH in diluted ammonia 

solution (in the case of 48, conc. ammonia solution) under normal laboratory condition. 47 and 

48 can be easily synthesized in high batches within a short time and are obtained as light blue 

(47) or black-blue (48) precipitate, respectively. From diluted solution, 47 crystallizes as blue, 

thin rods, suitable for X-ray structure determinations within two days and 49 crystallizes as 

black-blue thin needles, which turned out to be not suitable for a structure determination. In the 

case of 47, X-ray quality crystals were obtained from conc. aqueous ammonia solution in an 

ammonia atmosphere within three weeks. In comparison to 47, 49 crystallized as big, deep-blue 

coarse crystals, octahedral in shape which looses, stored on air, slowly crystal water.  
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 3.2.3 Crystal structure of 47 and 48 

 Selected bond length and angles of compounds 47 and 48 are included in Table 3.9. Only 

one labeled diagram is shown (Figure 3.24, (47)), since the molecular arrangement of 48 is 

similar in shape. In the molecular arrangement of 47 and 48, each CuII ion is five-coordinated, 

with a distorted square-pyramidal geometry.  

 
Figure 3.24. The coordination environment of the CuII ion in 47, showing the 
atom numbering scheme. Displacement ellipsoid are drawn at the 50% 
probability level and H atoms are shown as spheres of arbitrary radii. 
[Symmetry code: i) -0.5-x, 0.5+y, 0.5-z.] 

 

 The basal plane is formed by the atoms N1 and N9 from one bidentate bta ligand, along 

with the atoms N10 and N11 from the two coordinated ammonia molecules, with a mean 

deviation of 0.2256 (47) and 0.0459 Å (48), respectively. The distortion from the square-

pyramidal geometry is more pronounced in the case of 47 compared to 48. With respect to the 

plane, in both cases the nitrogen atoms N1 and N11 lie below and N9 and N10 above this plane. 

A nitrogen molecule (N3i) occupies the apical position (symmetry code: (47): i) -0.5-x, 0.5+y, 

0.5-z; (48): i) x, 1.5-y, 0.5+z) with a rather long distance observed in 47 (2.319(2) Å) in contrast 

to 2 (2.269(2) Å). The Cu−N bond length to the nitrogen atoms of the bta ligand, ranging from 

1.977(2) to 1.999(2) Å (Table 2.9), are slightly shorter than the Cu−N bond length to the 
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coordinated ammonia molecules (2.004(2) to 2.033(2) Å) and are similar to those observed in 

comparable copper complexes with e.g. tetrazole or ammonia ligands.69 The copper atom is not 

in the basal plane, but is located 0.2064 (47) and 0.1884 (48) Å out of the mean basal plane 

towards N3i. According to the valence-bond theory, if a Cu (d9) ion is five-coordinated, there 

will be two probable coordination geometries around the metal ion, viz. trigonal-bipyramidal 

and square-pyramidal. In the former, the Cu ion adopts dsp3 or sp3d hybridization, and in the 

latter d2sp2 or sp2d2. These two configurations of a d9 ion possess approximately equal energy, 

and they can interconvert. The angular structural index parameter τ of the coordination 

polyhedron for the CuII ions in 47 and 48 has been calculated according Addison et al.70 The 

distortion value τ accounts in the case of 47 for 0.365 and for 48, 0.0545, respectively. The τ 

value for both cases indicate that the coordination geometry around each CuII ion in 47 and 48 is 

a distorted square pyramid, being less distorted for the latter, and that the Cu (d9) ions probably 

adopt sp2d2 hybrid orbitals to accept electrons from the ligands. This may be favorable to the 

paramagnetism and stability of 47 and 48.  

 
Table 3.9. Selected geometric parameters (Å, °) of  47 and 48 
 47 48   47 48 
       
N5–C1 1.362(2) 1.377(3)  N1–N2 1.353(2) 1.362(3) 
N5–C2 1.369(2) 1.375(3)  N8–N9 1.359(3) 1.364(2) 
C1–N1 1.345(2) 1.334(3)  N2–N3 1.306(3) 1.296(3) 
C2–N9 1.330(3) 1.337(3)  N7–N8 1.301(3) 1.301(3) 

C1–N4 1.325(3) 1.324(3)  N3–N4 1.362(2) 1.361(3) 

C2–N6 1.325(2) 1.329(3)  N6–N7 1.355(3) 1.363(3) 

       
Cu–N1 1.999(2) 1.997(2)     
Cu–N9 1.977(2) 1.996(2)     
Cu–N10 2.005(2) 2.033(2)     
Cu–N11 2.007(2) 2.004(2)     
Cu–N3a 2.319(2)i 2.269(2)i     
       
N1–Cu–N9 85.56(7) 85.40(8)  N3a–Cu–N10 87.01(7)i 91.75(9)i 
N1–Cu–N10 91.70(7) 89.63(9)  N3a–Cu–N11 99.87(9)i 97.95(8)i 
N1–Cu–N11 154.82(9) 166.98(9)  Cu–N1–N2 125.1(1) 123.5(1) 
N1–Cu–N3a 105.20(7)i 95.02(7)i  Cu–N1–C1 105.1(2) 131.1(2) 
N9–Cu–N10 176.74(8) 170.25(8)  Cua–N3–N2 119.3(1)ii 121.2(2)ii

N9–Cu–N11 91.32(8) 91.9(1)  Cua–N3–N4 127.4(1)ii 126.7(1)ii

N3a–Cu–N9 92.01(7)i 97.03(8)i  Cu–N9–N8 124.4(1) 124.5(1) 
N10–Cu–N11 91.92(8) 91.1(1)  Cu–N9–C2 129.9(2) 130.9(2) 
       

a 47: i) -0.5-x, 0.5+y, 0.5-z; ii) -0.5-x, -0.5+y, 0.5-z ; 48: i) x, 1.5-y, 0.5+z; ii) x, 1.5-y, -0.5+z 
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 The obvious deviation of the coordination around the CuII in 47 compared to 48 cannot be 

easily explained by the comparison of the molecular structures alone. A closer inspection of the 

crystal structure of 47 and 48 reveals a completely different picture of the molecular 

arrangements. In both complexes, each bta dianion acts as a tridentate ligand toward copper, 

connecting two CuII ions trough the N1, N9 and N3 nitrogen atoms, resulting in a one-

dimensional zigzag chain. The Cu···Cui separation was found to be 6.1350(3) Å in 47 (Figure 

3.25, I) and 6.116(1) Å in 48 (Figure 3.26, I), respectively (symmetry code: (47): i) -0.5-x, 

0.5+y, 0.5-z; (48): i) x, 1.5-y, 0.5+z).  

 

Figure 3.25. Crystals structure of 47. I: Chains along the b axis; ORTEP plot drawn at the 50% probability level. II: 
Perspective view of the chains connected trough hydrogen bonds to a pleated sheet.  
 

 The folded chains in 47 are orientated in a one-dimensional zigzag pattern along the 

crystallographic b axis. These chains, orientated in an anti-parallel manner, are linked over two 

strong hydrogen bonds (N11–H1····N7ii and N5–H7····N4v
 [symmetry code: (ii) -0.5+x, 0.5-y; 
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(v) -1-x, -y, -z]) to a pleated sheet (Figure 3.25, II).  The most important hydrogen-bonded ring 

motif of this sheet, in the formalism of graph-set analysis of hydrogen-bond patterns,66 is 

identified as )9(2
2R and the very common )8(2

2R . The sheet like structure in 47 reminds on the β-

pleated sheet structure of proteins. The pleated sheets are connected to a 3D network by further 

hydrogen bonds (Table 3.10). 

 

Table 3.10. Hydrogen bond geometry (Å, °) of 47 and 48 
D–H····A D–H H····A D····A D–H····A 
     
47     
N10–H1····N7ii 0.91(3) 2.30(3) 3.194(3) 167(2) 
N10–H2····N8iii 0.84(4) 2.33(3) 3.043(3) 142(3) 
N11–H4····N8a 0.78(3) 2.45(3) 2.982(3) 127(3) 
N11–H5····N6iv 0.92(4) 2.06(4) 2.927(3) 155(3) 
N5–H7····N4v 0.83(3) 2.14(3) 2.966(2) 177(2) 
     
48     
N10–H1····N7ii 0.88(3) 2.35(3) 3.191(3) 159(3) 
N11–H4····N8iii 0.90(4) 2.31(4) 3.203(3) 169(3) 
N11–H5····N8a 0.77(4) 2.52(4) 3.003(4) 122(3) 
N5–H7····N6iv 0.89(3) 2.05(3) 2.929(3) 172(2) 
N10–H3····O1 0.92(4) 2.03(4) 2.939(3) 170(3) 
O1–H1A····N4v 0.71(4) 2.28(4) 2.970(3) 166(5) 
O1–H1B····N7iii 0.83(4) 2.21(4) 3.015(3) 163(3) 
     
a intramolecular hydrogen bond;  
Symmetry codes for 47: i) -0.5-x, 0.5+y, 0.5-z; ii) -0.5+x, 0.5-y, 0.5+z; 
iii) 0.5-x, -0.5+y, 0.5-z; iv) 0.5+x, 0.5-y, 0.5+z; v) -1-x, -y, -z; 48: i) x, 
1.5-y, 0.5+z; ii) 2-x, -0.5+y, 0.5-z; iii) 2-x, 2-y, 1-z ; (iv) 3-x, 2-y, -z; (v) 
1+x, 1.5-y, 0.5+z.  

 

 In contrast to 47, the arrangement of the molecules in the crystal structure of 48 is 

different. Although 48 forms folded chains which are orientated in a one-dimensional zigzag 

pattern along the crystallographic c axis, these chains are not connected through hydrogen 

bonds to a pleated sheet. They are rather interlocking each other, forming fishbone-type sheets. 

The smallest subunit of two interlocking chains is depicted in Figure 3.26 (I). If at all, this 

interaction between such a dimeric unit might result from a electrostatic interaction, since the 

distance between the CuII-N3iii of 3.285(3) [symmetry code: (iii) 2-x, 2-y, 1-z] is much longer 

than the sum of the van der Waals radii (rA(Cu) + rD(N) = 2.95 Å),71 and therefore should rather be 

related to packing effects. One chain related to the next is counterrotated with respect to the 

running direction.  The resulting fish-bone type sheets are connected through the water 
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molecule, ammonia and the NH-group to a 3D network (Table 3.10). Again, the hydrogen bond 

N5–H7····N6iv
 [symmetry code: (iv) 3-x, 2-y, -z] results in the occurrence of the well known 

)8(2
2R graph set (not depicted in Figure 3.26), yet resulting from the interaction of the layers 

compared to 47. 

 

 

Figure 3.26. Crystals structure of 48. I: Chains along the c axis; ORTEP plot drawn at the 50% probability level. II: 
Perspective view of the chains connected trough interlocking 
 

 In the case of 49, a complete structure solution could not be performed due to unsolvable 

disorder of the crystal water molecules. Therefore a detailed discussion of the crystal structure is 

abstained. Figure 3.27 shows the coordination sphere around the copper centre of the complex 
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49, indicating a distorted square pyramidal arrangement with almost equal Cu−N distances in 

the equatorial position (ranging from 1.962 to 1.982 Å), and in contrast to 47 and 48, a very 

long apical Cu−N distance (2.864 Å vs. 2.319(2) and 2.269(2), Table 3.9) resulting in the 

formation of chain like stacks, orientated along the b axis. Since the apical distance is just 

slightly shorter then the sum of the van der Waals radii (rA(Cu) + rD(N) = 2.95 Å), this interaction 

should be seen as medium electrostatic interactions, giving rise to the assumption that the local 

symmetry at the copper center should be rather seen as a very distorted tetrahedron. This is in 

accordance with the EPR results (cubic environment with minor distortion) as well as the 

magnetic measurements, which indicates very weak superexchange between different copper 

centers.  

 

Figure 3.27.  View of the chain like structure in 49. Displacement 
ellipsoid at 50% probability level. (blue: nitrogen; gray: carbon; green: 
copper; white: hydrogen) 
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 3.2.4 Magnetic properties of 47, 48 and 49 

 The magnetic susceptibility of the three complexes has been measured in the temperature 

range 300 – 2 K. The temperature dependence of χMT is shown in Figure 3.28 for compound 47 

and 48 and in Figure 3.29  for compound 49.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28. Plot of χMT vs. T for 47 (A) and 48 (B) under an applied magnetic 
field of 0.5 T. Solid lines represent the best fit of the date with the model described 
in the text 
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Figure 3.29. Plot of χMT vs. T for 49 under an applied magnetic field of 0.5 T. 
Solid lines represent the best fit of the date with the model described in the text. 

 

 The χMT product at room temperature is with 0.47 cm³K/mol (47), 0.52 cm³K/mol (48) 

and 0.43 cm³K/mol (49) larger than the spin-only value of 0.37 expected for a single copper (II) 

ion (S = 1/2) assuming g = 2.00. Upon cooling χMT decreases significantly for compounds 47 

and 48, while the product is nearly constant in the case of compound 49. The magnetic behavior 

of compound 47 and 48 is characteristic for antiferromagnetic-coupled copper centers. In order 

to estimate the magnitude of the antiferromagnetic coupling, the magnetic data were fitted using 

the equation for equally spaced copper(II) ions first applied by Bonner and Fisher72 with the 

Hamiltonian in the form 

∑
−

=
+−=

1

1
1

n

i
AiAi SSJH  

 The magnetic data of all three complexes were fitted leading to the parameters J = -7.82 ± 

0.30; g = 2.26 ± 0.01 (compound 47), J = -5.95 ± 0.13; g = 2.39 ± 0.01 (compound 48) and J = -

0.38 ± 0.03; g = 2.11 ± 0.01 (compound 49). The antiferromagnetic coupling is rather weak in 

all three cases, especially for compound 49, where the distances to the apical nitrogen atom are 

rather long. The reason for the weak interaction is that the magnetic orbitals, describing the 

single electron on the copper centers are mainly of dx²-y² type. The bta dianion connecting the 

cupper centers through N1, N9 and N3 nitrogen atoms belong to the basal plane of Cu (N1 and 

N9), but occupies an axial position of the square pyramidal coordination sphere on the 

neighboring Cu (N3).  Consequently the interactions between the magnetic orbitals of the two 

copper centers are very weak leading to small coupling parameters. Similar observations were 

made for end-on azido-bridged copper complexes73 and oxalato bridged systems.74 An 
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explanation for the small differences in the coupling parameters of compound 47 and 48 cannot 

be found in the molecule structure of the two complexes.  

 

 The differences in the coordination environment of the copper centers are also reflected in 

the powder X-Band EPR spectra. The compounds 47 and 48 with the square pyramidal 

coordination environment exhibit spectra with a rhombic symmetry and clearly separated g 

values (g1 = 2.184, g2 = 2.094 and g3 = 2.045; giso = 2.108 for compound 47). In complex 49 

with the very long apical Cu-N distances and the local symmetry close to a distorted tetrahedron 

a spectrum of a cubic system with small distortion (giso = 2.087) is obtained.  

 

 3.2.5 Thermal decomposition and thermodynamic aspects 

 The DSC thermograms of 1 and 3 for different heating rates (β = 2, 5, 10 and 15 °C min-1) 

are presented in Figure 3.30. The decomposition undergoes in the case of 47 in two steps 

between 250 and 400 °C, and the final residue, estimated as copper, has the observed mass of 

26.2 % as against the calculated value of 25.5 %. The second step can only be noticed as a weak 

exothermic effect between 300 and 400 °C in the DSC. Interestingly, the decomposition is 

comparable to an ammoniacal complex of copper oxalate and indicates that the first 

decomposition step might be determined as the deammoniation of 47.75  

 

 

Figure 3.30. DSC thermographs of 47 (left) and 49 (right) (β = 2, 5, 10 and 20 °C/min) 
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 In the case of 49, the decomposition undergoes also in two steps, at which the first step 

corresponds to the loss of crystal water. This process is not well resolved in the DSC, since the 

release of water does not proceed stepwise. As indicated in the TGA experiment, the release of 

water occurs within a temperature range of 70 to 170 °C with a mass loss of 10.4 % (Calc.: 10.0 

%). The second exotherm occurs in a sharp temperature range at 250 to 270 °C with a mass loss 

of 80.0 % (Calcd.: 75.8 %).76 

 Table 3.11 shows that with increased heating rates, the temperature of the exothermic 

maxima also increases. The kinetics of exothermic reactions are important in assessing the 

potential of materials and systems for thermal explosion, and the activation energy for 

compound 49 (56.46 ± 0.16 Kcal mol-1) was estimated to be 9.5 Kcal mol-1 higher compared to 

48 (46.90 ± 0.16 Kcal mol-1) but still indicating a good thermal stability for both complexes.  

Table 3.11. Physico-chemical properties of 47 and 49 
 47 49 
   
Formula CuC2H7N11 CuC4H15N20O2.5 
Molar Mass 248.70 446.84 
N [%] 62.0 64.0 
Ω [%]a -48.3 -47.5 
β [°C] 
2 
5 
10 
15 

 
284.00 
295.80 
305.11 
310.46 

 
266.65 
275.14 
282.60 
287.31 

Tint
b 250-300; 300-400 70-150; 250-270 

∆maxHc  -434.5 J/g -508.3 J/g 
Ea [Kcal mol-1]d 46.90 ± 0.16 56.46 ± 1.16 
-∆CUm [cal g-1]e 2233.8 1989.3 
-∆CHm° [Kcal mol-1]f 555.5 862.7 
∆fHm° [Kcal mol-1]g +87.8 -29.2 
-∆EHm° [Kcal kg-1]h 398.2 236.5 
Density [g cm-3] 1.9882(2) 1.353l 
Impact [J]i > 40  > 40  
Friction [N]j > 360 (-) > 360 (-) 
Gas volume (25°C) 
[ml g-1]k 

819 837 

   
a Oxygen balance; b Range of decomposition by TGA (β = 5°C); c Heat of 
combustion from maximum exothermic step (DSC); d Activation energy 
according Ozawa ref. [77]; e Experimental constant volume combustion energy; 
f Experimental molar enthalpy of combustion; g Molar enthalpy of formation; h 
Calculated molar enthalpy of detonation, ICT Thermodynamic code see ref. 
[78];  i,j ref  [79]; k Assuming only gaseous products, ICT Thermodynamic code 
see ref. [78]; l estimated from a structure determination. 
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 For initial safety testing, the impact and friction sensitivity was tested according to BAM 

methods (see Chapter I, 3.3.2) with the “BAM Fallhammer” and “BAM friction tester”. Both 

compounds are insensitive toward impact (> 40 J) and friction (> 360 N) (Table 3.11).  

 The heats of combustion for the compounds 47 and 49 were determined experimentally, 

and the molar enthalpy of formation were calculated from a designed Hess thermochemical 

cycle according to reactions [1,2] and are summarized in Table 3.11.  

47:  CuC2H7N11 (s) + 6 O2 → CuO(s) + 2 CO2 (g) + 3.5 H2O (l) + 5.5 N2 (g) [1]  

49:  CuC4H14N20O2 (s) + 7 O2 → CuO(s) + 4 CO2 (g) + 7 H2O (l) + 10 N2 (g) [2]  

°°°°° ∆−∆+∆+∆=∆ mcmfmfmfmf HlOHHygCOHxsCuOHH ),(),(),( 22  

 The enthalpy criteria of energetic materials are governed by their molecular structure, and 

therefore, the move to heterocycles with a higher nitrogen content (e.g. from imidazole 

( °∆ crystf H = 14.0 kcal/mol)80, over 1,2,4-triazole ( °∆ crystf H = 26.1 kcal/mol) to tetrazole 

( °∆ crystf H = 56.7 kcal/mol)81) the trend in the heats of formation is obvious. Therefore, bta as 

ligand also should lead to increased heats of formation. From the obtained heats of formation 

and the densities obtained from the crystal structure determinations, some thermochemical 

properties have been calculated using the ICT-Thermodynamic code and are depicted in Table 

3.11.78  

 

 3.2.6 Conclusion 

 The H2bta / (NH4)2[Cu(NH3)6] system interesting which three representatives 

summarized in this Chapter 3.2. Depending on the reaction conditions Cu(bta)(NH3)2 (47), 

Cu(bta)(NH3)2*H2O (48) and (NH4)2Cu(bta)2*2.5H2O (49) could be synthesized, and in the 

case of 47 and 49, a scale up procedure is possible, since 47 and 48 are easily accessibly from 

cheap starting materials and riskless to handle. The complexes 47 and 49 are certainly of 

interest as additives in pyrotechnics, AP based propellants or other application as they show 

promising properties with respect to stability, sensitivity and energetic aspects. Furthermore, the 

crystal structures of 47 and 48 were discussed with respect to the coordination mode of bta, 

which mediates in the case of 47 and 48 weak superexchange interactions between the adjacent 

magnetic transition metal CuII cations, resulting from 1D copper chains over an disguised azide 

end to end bridge. The structural arrangement of 47 completely changes from a pleated layer-
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like structure reminds on the β-pleated sheet structure of proteins to fishbone-type sheets in the 

case of 48. These structural features have been discussed with respect to the occurrence of well 

known graph sets, already discussed in other motives found for bta complexes. It makes sense 

to compare azide-containing clusters and networks with the bta ligand since bta can be 

regarded as disguised azide. Depending on the bridging mode of the azide in such clusters and 

networks a diverse array of magnetic properties is observed: e.g. symmetric double end-on 

azide bridges typically mediate strong ferromagnetic exchange whereas symmetric end-to-end 

bridges antiferromagentic exchange interactions. The latter counts exactly for the bta ligand, as 

shown by the magnetic measurements performed on the investigated complexes. 

 

3.2.7 Experimental 

  

 CAUTION: Although the copper salts of BTA are kinetically stable compounds and 

turned out to be insensitive to friction (> 360 N) and impact (> 40 J), they are nonetheless 

energetic materials and appropriate safety precautions should be taken, especially when these 

compounds are prepared on a larger scale.  Laboratories and personnel should be properly 

grounded, and safety equipment such as Kevlar® gloves, leather coat, face shield and ear plugs 

are necessary, especially when manipulating BTA salts in dehydrated form.  

 

 All chemical reagents and solvents of analytical grade were obtained from Sigma-Aldrich 

Fine chemicals Inc. and used as supplied. Infrared (IR) spectra were recorded on a Perkin-Elmer 

Spektrum One FT-IR instrument as KBr pellets at 20°C. C, H and N determination were 

performed with a Netsch Simultanous Thermal Analyser STA 429.  

 

 [Cu(bta)(NH3)2] (47): Single crystals suitable for X-ray analysis were obtained as 

follows: To a hot solution (70 °C) containing BTA*H2O (342 mg, 2 mmol), 2.5 mL conc. NH3 

and 60 mL water was slowly added a solution of CuCl2*2H2O ( 170.5 mg, 1 mol) in 5 mL 

water, producing a dark green solution. From this solution (kept in a 500 mL beaker), blue rod 

like single crystals suitable for the structure determination were grown within 2 days. The 

reaction can be smoothly up-scaled to 100 mmol, giving 47 in 95% yield as light blue 
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precipitate. After crystallization, the product was collected and washed with EtOH. m.p. > 250 

°C (dec.);  IR (KBr, cm–1): ν~ = 3375 (m), 3325 (s), 3255 (m), 3134 (m), 3057 (m), 2919 (m), 

2826 (m), 1627 (vs), 1546 (s), 1499 (s), 1464 (m), 1446 (m), 1327 (m), 1235 (s), 1160 (w), 

1140 (w), 1123 (m), 1116 (m), 1093 (w), 1083 (w), 1017 (w), 853 (vw), 808 (w), 747 (s), 727 

(s), 678 (m), 620 (w), 440 (vw), 416 (w); CuC2H7N11 (248.70): calcd. C, 9.7; H, 2.8; N, 61.9 %; 

found: C, 9.8; H, 2.9; N, 61.7 %. 

 

 [Cu(bta)(NH3)2*H2O] (48): Single crystals suitable for X-ray analysis were obtained as 

follows: To a refluxing solution containing BTA*H2O (684 mg, 4 mmol), 20 mL conc. NH3 and 

10 mL water was slowly added a solution of CuCl2*2H2O (341 mg, 2 mol) in 10 mL water, 

producing a deep blue solution. After a few minutes 47 started to precipitate from this solution. 

The obtained mixture was refluxed for further 10 minutes and the precipitate filtered off. The 

obtained filtrate was kept in a closed flask from which in a approximately 3 weeks 48 

crystallized as big, dark blue crystals, octahedral in shape (yield 15%). 48, stored on air, loss 

slowly crystal water. IR (KBr, cm–1): ν~ = 3375 (m), 3327 (s), 3271 (s), 3170 (w), 3053 (w), 

2915 (w), 2823 (w), 1626 (vs), 1545 (s), 1499 (s), 1462 (w), 1445 (m), 1384 (vw), 1327 (w), 

1237 (s), 1160 (w), 1123 (m), 1093 (w), 1017 (w), 853 (vw), 807 (w), 747 (m), 726 (m), 679 

(w), 615 (w); CuC2H9N11O (266.71): calcd. C, 9.0; H, 3.4; N, 57.8 %; found: C, 9.1; H, 3.4; N, 

57.7 %. 

 

 [(NH4)2Cu(bta)2
*2.5H2O] (49): To a hot solution (70 °C) containing BTA*H2O (3.420 g, 

20 mmol), 10 mL conc. NH3 and 50 mL water, a solution of CuCl2*2H2O (1.705 g, 10 mol) in 

15 mL water was slowly added, producing a dark, black-green solution. This solution was 

stirred for further 30 minutes at 70 °C. After cooling, very fine blue-black needles of 3 

crystallized and were collected and washed with EtOH (yield 84 %). > 250 °C (dec.);  IR (KBr, 

cm–1): ν~ = 3415 (s), 3313 (m), 3159 (m), 3034 (s), 2921 (s), 2807 (m), 1635 (s, shoulder), 1626 

(vs), 1548 (s), 1502 (m), 1439 (vs, br), 1329 (m), 1257 (m), 1168 (w), 1124 (m), 1088 (w), 806 

(m), 746 (m), 688 (m); CuC4H15N20O2.5 (446.84): calcd. C, 10.8; H, 3.4; N, 62.7 %; found: C, 

11.0; H, 3.2; N, 62.8 %. 
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 X-ray Structure Determination. Crystals were obtained as described above.  The X-ray 

crystallographic data for 47 (CCDC 269320) were collected at 200 K on a STOE IPDS area 

detector, and for 48 (CCDC 269321) data were collected at 213 K on SIEMENS P4 

diffractometer equipped with a Siemens CCD area detector using graphite-monochromated 

MoKα radiation (λ = 0.71073 Å).  The structures were solved by direct methods (SIR97 (48) 

and SHELXS-97 (48))82 and refined by means of full-matrix least-squares procedures using 

SHELXL-97.  For 48, numerical absorption correction by SADABS and for 47, XRed was 

used.83 Crystallographic data are summarized in Appendix B.  Selected bond lengths and angles 

are available in Table 3.9.  All non-hydrogen atoms were refined anisotropically. The hydrogen 

atoms of compound 47 and 48 were located from difference electron-density map and refined 

isotropically.  

 

 Magnetic Measurements. Bulk magnetization measurements of pulverised samples were 

performed on a Quantum-Design-MPMSR-XL-SQUID-Magnetometer in a temperature range 

from 2 to 300 K. All measurements were carried out at two field strengths (0.2 and 0.5 T). 

Diamagnetic corrections were made using estimated values according to χdia ≈ -0.5×10-6 

Mcomplex.  

 

 EPR Measurements. EPR investigations were carried out on a ESP 300E (Bruker) 

instrument at room temperature on the solid.  

 

 DSC and TGA measurement were performed as described in Chapter I, 3.3.1. 
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 3.3 H2bta / CuX2 (X = Cl-, ClO4
-) System 

 3.3.1 Introduction 

 Domestically-produced standard priming explosives (PEs) allow production of reliable 

priming charges (PCs) meeting the requirements of modern engineering, industry, and building. 

However, requirements to PCs continuously rise; PCs with elevated safety with respect to 

mechanical impact and static electricity are required. In addition, environmental safety requires 

elimination of toxic metal ions (see above) from PC formulation. It is impossible to accomplish 

the above task with standard PCs. As already discussed, bta serves in its different coordination 

mode as stable ligand, already discussed for the H2bta / (NH4)2[Cu(NH3)6] system (this 

Chapter, 3.2). Since the occurrence of energetic oxygen rich cations is comparable few, 

counterions such as nitrate (NO3
-), dinitramide (N(NO2)2

-) or the perchlorate (ClO4
-) anion are 

required in combination with the bta ligand system. In such systems, of course, the bta needs to 

coordinate in its protonated form (H2bta). The following Chapter discusses the H2bta / CuX2 

(X = Cl-, ClO4
-) system, and it will be derived that H2bta might serve as ligand in new High-

Energy-Capacity Copper(II) bta salts suitable for safe non-toxic PC formulations, as possibly 

photosensitive compounds utilized in laser detonators as well as colorants in pyrotechnic 

formulations. 

 

 3.3.2 Synthesis 

 The reaction of CuCl2 in hydrochloric acid and H2bta strongly depends on the reaction 

conditions, like temperature, reaction time and concentration of the acid. The reaction of 1 eq. 

H2bta and 1 eq CuCl2 does not necessarily lead to the formation of the corresponding 1:1 

product.  

 
Scheme 3.5. H2bta / CuX2 (X = Cl-, ClO4

-) System 
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 All reactions were conducted in conc. hydrochloric acid or 35% perchloric acid (in the 

case of 53) and obtained according to Scheme 3.5. The complexes are crystalline, typically blue-

colored compounds and not soluble in water without decomposition. They were characterized 

by means of IR spectroscopy, elemental analysis and X-ray structure determination. The 

following chapter gives a short discussion of the molecular structures of 50, 51, 52 and 53. 

 

 3.3.3 Molecular structure of [CuCl2(H2bta)(H2O)]*2H2O (50) 

 Aquadichloro(bis(1H-tetrazolyl-5yl)-amino-κ2N,N’)copper(II) dihydrate (50) crystallizes 

in the triclinic space group P-1 with two formula units in the unit cell. The asymmetric unit of 

(50) consists of one [CuCl2(H2bta)(H2O)] unit and two solvent water molecules. The oxygen 

atom O3 of the solvent water is disordered with a site occupation factor (SOF) ratio of 0.58 : 

0.42. The Cu(II) ion is coordinated in a slightly distorted square-pyramidal mode to two N of 

the H2bta ligand, one chloro and one water molecule in the basal plane, with a second chloro 

ligand in the apical position (Figure 3.31, β = N9−Cu−Cl1; α = O1−Cu−N1  τ = 0.03)70.  

 

 

Figure 3.31. The coordination environment of the CuII ion in 50, showing the 
atom-labeling scheme. Displacement ellipsoid are drawn at the 50% 
probability level and H atoms are shown as spheres of arbitrary radii. For 
clarity only one position of O3 is depicted. Selected bond length [Å]: Cu−N1 
2.005(2), Cu−N9 1.969(2), Cu−O1 1.987(2), Cu−Cl1 2.244(7), Cu−Cl2 
2.5619(7); Selected bond angle [°]: N9−Cu−Cl1 165.86(6), O1−Cu−N1 
164.86(8), N9−Cu−O1 87.21(7), N9−Cu−N1 85.50(7), O1−Cu−Cl1 88.69(5), 
N1−Cu−Cl1 94.97(5), N9−Cu−Cl2 94.80(6), O1−Cu−Cl2 96.98(7); 
N1−Cu−Cl2 97.74(5) 
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 As a result of the intermolecular interaction of the apical chloro ligand of the monomer 

with the hydrogen atom of the secondary amine of another bta ligand (N5−H···Cl2i 3.063(2) 

[symmetry code: (i) 1-x, y, z]), a ladder-type chain is formed. The intermolecular hydrogen 

bonds stabilize the extended structure to a 3D network in which one of the water molecules 

(O3) of crystallization links three monomers to one another, acting as hydrogen-bond donor to 

two chloro ligands of two monomers (Cl2i, Cl1ii, [symmetry codes: (i) 1-x, y, z; (ii) -1+x, 1+y, 

z]), whereas the other water molecule (O2) links symmetry-related chains over a comparable 

weak hydrogen bond (O2−H···N3iii 3.176(2) [symmetry code: (iii) -x, -1-y, 1-z]).  A subunit of 

this arrangement can be depicted in Figure 3.32. These chains are further connected through the 

aqua ligand (O1) as well as the second chloro (Cl1) ligand to an infinite 3D network.  

 

 

Figure 3.32. The hydrogen-bonding system in 50. Displacement ellipsoid are drawn at the 50% probability level 
and H atoms are shown as spheres of arbitrary radii. [symmetry codes: (i) 1-x, y, z; (ii) -1+x, 1+y, z; (iii) –x, -1-y, 
1-z] 
 

 3.3.4 Molecular structure of [CuCl(H2bta)2]Cl (51) 

 Chlorobis(bis(1H-tetrazolyl-5yl)-amino-κ2N,N’)copper(II) chlorid (51) crystallizes in the 

triclinic space group P-1with two formula units in the unit cell. The most important geometric 

parameters can be depicted from the legend of Figure 3.33. In this complex, similar to 50, 
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copper is also five coordinated by four nitrogen atoms (N1, N9, N10 and N18) and one chloro 

ligand (Cl1). The Cu(II) ion displays again a distorted square-pyramidal coordination, being 

linked to three nitrogen atoms (N1, N9, N18) and one chloro ligand (Cl1) in the basal plane, and 

another nitrogen atom (N10) in the apical site (Figure 3.33, β = N9−Cu−N18; α = N1−Cu−Cl1 

 τ = 0.24)70. The Cu−N bond length in the basal plane ranges 1.995(2) − 2.010(2) Å, which is 

typical and also found in complexes with e.g. 1,10-phenantroline as ligand system.84 The basal 

Cu−Cl1 bond distance (2.2525(7) Å) is similar within experimental error, to those reported in 

related complexes.85 The bond distance found for the apical Cu−N accounts for 2.260(2) Å.  

The mean plane in the molecule is the six-membered H2bta chelate ring defined by atoms N1, 

C1, N5, C2, N9 and Cu which is planar with negligible distortion (average r.m.s. deviation form 

the six-atom plane is 0.0084 Å). The plane defined by N1, N9, N18 and Cl1, deviates from 

planarity (average r.m.s. deviation form the six-atom plane is 0.2463 Å), since the chloro ligand 

lies under this plane with a distance out of this least square plane of 0.8126 Å.  

 

 

Figure 3.33. The coordination environment of the CuII ion in 51, showing the atom-labeling 
scheme. Displacement ellipsoid are drawn at the 50% probability level and H atoms are shown as 
spheres of arbitrary radii. For clarity only one position of O3 is depicted. Selected bond length [Å]: 
Cu−N1 2.010(2), Cu−N9 1.996(2), Cu−N18 1.995(2), Cu−Cl1 2.2525(7), Cu−N10 2.260(2); 
Selected bond angle [°]: N9−Cu−N18 173.21(8), N1−Cu−Cl1 158.79(7), N18−Cu−N1 89.00(8), 
N18−Cu−N1 85.63(8), N18−Cu−Cl1 88.88(6), N9−Cu−Cl1 94.62(6), N18−Cu−N10 83.03(8), 
N9−Cu−N10 101.37(8); N1−Cu−N10 92.95(8) 
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 3.3.5 Molecular structure of [CuCl2(H2bta)2]*2H2O (52) 

 Dichlorobis(bis(1H-tetrazolyl-5yl)-amino-κ2N,N’)copper(II) dihydrate (51) crystallizes in 

the monoclinic space group P21/n with two formula units in the unit cell. The Cu atom in 52 lies 

on an inversion center, and thus the coordinated N atoms of the bta ligands form a perfect plane 

including the Cu2+ cation. The Cu atom has an elongated octahedral coordination, as shown in 

Figure 3.34. The nitrogen atoms of the H2bta coordinates in the equatorial plane, whereas the 

axial position are occupied by Cl atoms. The Cu−N and the Cu−Cl bond distances are 2.003(3) / 

2.016(3) and 2.822(6) Å, respectively, which are similar to the values found in analogous 

complexes in which Cl atoms adopt an axial position in a distorted octahedron around the Cu(II) 

atom and is typical for an Jahn-Teller distortion.86  

 

Figure 3.34. The coordination environment of the CuII ion in 52, showing the atom-labeling 
scheme. Displacement ellipsoid are drawn at the 50% probability level and H atoms are shown as 
spheres of arbitrary radii. For clarity only one position of O3 is depicted. Selected bond length [Å]: 
Cu−N1 2.003(3), Cu−N9 2.016(3), Cu−Cl1 2.822(6), Selected bond angle [°]: N1−Cu−N9 
84.61(1), N1−Cu−Cl1 87.52(3), N9−Cu−Cl1 96.59(3). [Symmetry code: (i) 1-x, -y, 2-x.] 

 

 

 3.3.5 Molecular structure of [Cu(H2bta)2](ClO4)2*H2O (53) 

 Bis(bis(1H-tetrazolyl-5yl)-amino-κ2N,N’)copper(II) perchlorate monohydrate   (52) 

crystallizes in the triclinic space group P-1with two formula units in the unit cell. In contrast to 

the other discussed copper salts the coordination sphere around the copper centre of the 

complex 53 indicates a distorted square pyramidal arrangement with almost equal Cu−N 

distances in the equatorial position (Figure 3.35). A detailed discussion is abstained.  
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Figure 3.35.  View of the molecular structure of 53. Displacement ellipsoid at 50% 
probability level. (blue: nitrogen; gray: carbon; green: copper; red: oxygen; yellow: 
chlorine, white: hydrogen) 

 

 

 3.3.7 Discussion 

 The IR spectra of the investigated salts contain the expected absorptions bands, already 

discussed for the alkaline bta salts and the protonated mode of the ligand (this Chapter, 3.3.1). 

Interestingly, the spectra of the investigated protonated copper complexes are very similar to the 

spectra of H2bta*H2O (30) as it monohydrate (Figure 3.36), indicating that the spectra are 

dominated by the absorption bands of the ligand. The IR spectra of compounds 50-53 contain 

for the ligand and the water molecules a set of characteristic absorption bands: 3500-3100 cm-1 

[ν (H2O), ν (N–H)], 3000-2850 [ν(N–H), overones], ~1700 [νasym (Ctet−N−Ctet)], 1680-1550 

[νasym (Ctet−N−Ctet + N−H)], 1550-1350  [νasym (Ctet−N−Ctet), ν tetrazole ring, ν (N5–H)] 1350-

700 [ν (N1–C–N4), ν (N–N), ν (CN),  tetrazole ring, δ(Η2Ο)], <700 [δ (out of plane bend  N–

H)].  The ν (NH) absorption bands in the IR spectra of crystalline compounds have a very 

complex shape.  Crystalline samples show in the region 2800-3500 several main absorption 

peaks which can be partly assigned to N–H bonds.  Due to the formation of intermolecular 
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hydrogen bonds in the crystalline network, a red shift of stretching modes establishes that the 

heteromolecular hydrogen-bond interaction between the N–H (donor) groups of the bta ligand 

are strong.  

 

 

Figure 3.36.  IR spectra of 50, 51, 52 and 30 

 

 Raman investigations of colored transition metal complexes fail in most cases, since the 

samples tend to show fluorescence. The attempt to record a Raman spectra of chlorobis(bis(1H-

tetrazolyl-5yl)-amino-κ2N,N’)copper(II) chlorid (51), resulted in the immediate explosion of the 

sample. In the case of 50 and 52 no reaction was observed, and 53 has not been tested yet. This 

observation is quite interesting, since modern concepts of the initiation of explosives with 

pulsed-laser radiation is based on the ignition at centers formed upon hypothesis of radiation 

absorption by optical microheterogeneities in separate crystals.87 This is also in accordance with 

the observation during these experiments. Depending on how the crystallization of 51 was 
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performed, it is possible to obtain different modification of the same substance. Interestingly 

only one type of crystal explodes in the Raman experiment. Sensitivity test of 51 reveals for all 

batches, however, a very good stability toward heat (decomposes in the DSC experiment above 

250°C), friction (160 N) and impact (no initiation with the test drop hammer). In Figure 3.37 

the results of the Raman experiment (Laser: Nd/YAG 1054 nm), performed with different laser 

power, is depicted. In all cases the first scan leads to explosion. 

 

 

Figure 3.37.  Raman experiment of 52 

 

 These are just preliminary results since these compounds are still being investigated. 

Especially the perchlorate 53 is of interest as it shows a good oxygen to fuel proportion (Ω = -

5.5 %) and first DSC investigations show a thermal stability of this compound up to 230 °C. It 

also was found that some of the investigated copper salts (e.g. 50 and 51) can be used to replace 

basic copper hydroxide or copper carbonate, originally used as blue colorant in “Bengalic Fire”, 

yielding brighter colors with an enhanced burning rate. A detailed description of this experiment 

is beyond the scope of the work.  
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 3.3.7 Experimental  

 CAUTION: Perchlorates are energetic materials and tend to explode under certain 

condition, appropriate safety precautions should be taken, especially when this compound is 

prepared on a larger scale. Laboratories and personnel should be properly grounded and 

safety equipment such as Kevlar® gloves, leather coat, face shield and ear plugs are necessary 

when manipulating 53.  

 [CuCl2(H2bta)(H2O)]*2H2O (50): Single crystals suitable for X-ray analysis were 

obtained as follows: To a warm (45 °C) solution of BTA*H2O (342 mg, 2 mmol) in 20 mL 

conc. HCl was added a solution of CuCl2*2H2O (341 mg, 2 mol) in 10 mL conc. HCl, 

producing a gree-blue solution. This solution was warmed for 5 minutes at 45°C and left for 

crystallization. After ~ 2 weeks 50 was obtained as blue-green crystals suitable for X-ray 

structure determination (yield 65%). 50, stored on air, loss crystal water. CuC2H9Cl2N9O3 

(341.60): calcd. C, 7.0; H, 2.7; N, 36.9 %; found: C, 7.3; H, 2.4; N, 37.2 %. 

 

 [CuCl(H2bta)2]Cl (51): Single crystals suitable for X-ray analysis were obtained as 

follows: To a refluxing solution of BTA*H2O (342 mg, 2 mmol) in 10 mL conc. HCl was added 

a solution of CuCl2*2H2O (170 mg, 1 mol) in 3 mL conc. HCl, producing a blue solution. This 

solution was refluxed for further 2 minutes and the heat immediately removed. After ~ 10 

minutes 51 was obtained as fine blue crystals suitable for X-ray structure determination (yield 

75%). CuC4H6Cl2N18 (440.66): calcd. C, 10.9; H, 1.4; N, 57.2; Cl, 16.1 %; found: C, 11.0; H, 

1.4; N, 57.3; Cl, 16.2 %. 

 

 [CuCl2(H2bta)2]*2H2O (52): Single crystals suitable for X-ray analysis were obtained as 

follows: To a solution of BTA*H2O (342 mg, 2 mmol) in 20 mL conc. HCl was added a 

solution of CuCl2*2H2O (170 mg, 1 mol) in 6 mL conc. HCl, producing a blue-green solution. 

From this solution, 52 was obtained as big, coarse blue crystals after two days (yield 75%). If 

the concentration of the BTA and copper salt is to high, 51 mixed with 52 is obtained. 

CuC4H6Cl2N18 (476.69): calcd. C, 10.8; H, 2.1; N, 52.9, Cl, 14.9 %; found: C, 10.1; H, 2.2; N, 

52.6; Cl, 14.6 %. 
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 [Cu(H2bta)2](ClO4)2*H2O (53): Single crystals suitable for X-ray analysis were obtained 

as follows: To a hot solution (75 °C) of BTA*H2O (342 mg, 2 mmol) in 15 mL water and 15 ml 

conc. perchloric acid was added a solution of Cu(ClO4)2*6H2O (370.5 mg, 1 mol) in 5 mL 

water producing a blue solution. This solution was heated for 4 h. Note: Take care, that the 

solution gets not dry and that no product start to crystallize during heating (extreme risk of 

explosion). From this solution, 52 was obtained as big, coarse blue plates after ~ 1 week (yield 

64%). CuC4H6Cl2N18 (586.67): calcd. C, 8.2; H, 1.4; N, 43.0, Cl, 12.1 %; found: C, 8.3; H, 1.4; 

N, 43.3 %.  

 

 3.4 Conclusion 

 Although only preliminary results are presented, copper BTA salts might play an 

important role in the development of safe non-toxic PC formulations, as possibly photosensitive 

compounds utilized in laser detonators (e.g. 51) as well as colorants in pyrotechnic 

formulations. Since the starting materials are cheap and the preparation is straight forward, BTA 

has a high potential as ingredient in explosive or propellant formulations too. Basic copper salts 

like 48 are predestined to serves as stabilizer in TLP or other explosive formulation because of 

the capability to catch protons. Interesting system could also be derived from complexes which 

prefer to have a octahedral coordination like Co3+. First investigations in this direction have 

already started and Figure 3.38 depicts the structural arrangement of [Co(H2bta)2(hbta)]Cl2 (54). 

This structure contains the first octahedral coordinated cobalt with 27 nitrogen atoms in its 

coordination sphere. The next step is the exchange of the Cl by ClO4! 

 
Figure 3.38. Molecular arrangement of 54. (blue: nitrogen; gray: carbon; 
green: chlorine; yellow: cobalt, white: hydrogen) 
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C h a p t e r  I V  

1,5-DIAMINO-1H-TETRAZOLE (DAT) 

 1 Introduction 

 1.2 DAT 

 Aminotetrazoles have the highest content of nitrogen among the organic substances (e.g. 82.3 

wt.% for 5-amino-1H-tetrazole 14 (5-AT) and 84.0 wt.% for 1,5-diamino-1H-tetrazole 55 (DAT), 

and in spite of their large positive enthalpies of formation1, they exhibit surprisingly high thermal 

stabilities (Figure 4.1).2 

 

 
Figure 4.1. Aminotetrazoles  

 

 Therefore, aminotetrazoles and certain derivatives are prospective materials for the 

generation of gases, as blowing agents, solid propellants and other combustible and thermally 

decomposing systems as already discussed for 5-AT in Chapter I. Interestingly, 55 and it’s 

derivatives had never been considered as gas-generating agents, and only little work has been done 

using 55 as a valuable intermediate in the preparation of high-energy-density materials (HEDMs)3 

or other useful tetrazole containing compounds.4 The reason for this might be the difficult 

accessibility of 55. So far only three synthetic methods for the preparation of 55 have been 

described. Based on the reaction of 14 as the sodium salt with hydroxylamine-O-sulfonic acid 

(HOSA), 55 is formed in a low yield (8,5%) together with the 2,5-diamino-2H-tetrazole isomer 56 

(Scheme 3.1).5   

 

 
Scheme 4.1. Reaction of 5-AT (14) with HOSA under base condition 
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 Gaponik et al.4a improved the 1933 reported synthesis of Stolle et al.6 who synthesized 55 by 

reacting thiosemicarbazide (57) with lead(II) oxide and sodium azide in a CO2 atmosphere in 

ethanol as solvent. 14 is converted into the corresponding carbodiimide (58) with lead(II) oxide, 

which reacts with in situ formed HN3 under ring closing to yield 56 (Scheme 4.2).  Unfortunately, 

this reaction leads to the formation of large amounts of lead azide as the side-product, which makes 

this synthesis problematic for an industrial scale.  

 

 

Scheme 4.2. Synthesis of DAT (55) according Gaponik et al.  

 

 Since the tetrazole derivatives represent fuels, appropriate oxidizers are important in order to 

realize corresponding propellant formulations. The parent aminotetrazoles can be protonated, and 

therefore salts with energetic oxygen rich cations, such as nitrate (NO3
-), dinitramide (N(NO2)2

-) or 

the perchlorate (ClO4
-) anion are sought.7  

 

 1.2 Energetic salts 

 Nitrate, dinitramide, perchlorate and azide salts of nitrogen rich cations have received major 

attention for a number of reasons: a high oxygen balance (nitrate, dinitramide and perchlorate 

salts), a high heat of formation ∆fH°, the release of large amounts of gases (e.g. N2) as favored 

explosion products and high values of the density ρ. At present, the search for high energy 

compounds is mainly directed towards molecular crystals made from neutral molecules. The reason 

for this is that ionic crystals normally have poor values of ∆fH°solid (solid state formation enthalpy 

may be estimated as ∆fH°solid = ∆fH°(gas)-Ecoh-RT) coming from high contribution of crystal 

cohesive energy (Ecoh). This contribution is comparably small for molecular crystals of covalent 

compounds, typically lower than 0.12 kcal/g,8 but for ionic crystals, Ecoh is typically one order of 

magnitude larger owing to the long-range electrostatic interactions between ions (e.g. low 

∆fH°solid(AN, ammonium nitrate) = -1.09 kcal/g due to significant cohesion of the crystal Ecoh(AN) 

= 2.08 kcal/g). To minimize the contribution of Ecoh, it is important to combine anions (e.g. nitrate, 

perchlorate or dinitramide anions for good oxidation abilities) with large cations in order to 
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increase the distance between charged groups.  Calculations on ethane and H3C-NH3
+ suggest a 

very high contribution of the ammonium group –NH3
+ to ∆fH° (~145 kcal/mol).9 Thus, some ionic 

crystals might provide valuable energetic constituents of propellants provided their cohesive energy 

is not too large. For example, the best known of the highly energetic nitrate and dinitramide salts 

are the oxidizers ammonium nitrate (AN) and ammonium dinitramide (ADN).10 In the case of 

nitrogen rich anions, hydrazinium azide11 and its organic derivatives12 were extensively 

investigated, which are in most cases unfortunately volatile and hygroscopic and also have 

relatively low densities.  

 

 1.3 Crystal building units 

 To understand the interplay of cations and anions within a network and predict important 

values like densities, Ecoh and ∆fH°, an algorithm is necessary for a predictable and controllable 

long-range molecular organization.13  Basically, the crystal structure of the material is a result of 

iterative self-assembling of the constituent molecular, co-molecular (bimolecular)14 or ion pair 

subunits, considered as fundamental crystal building units.  However, the prediction of solid-state 

structure of crystals is commonly frustrated by the complexity and lack of directionality of 

intermolecular forces. The packing control in three dimensions is elusive, owing to the numerous 

possible intermolecular interactions and multiplicity of structural possibilities.  Therefore it is 

important to have a closer look into the structural aspects which account for the interplay between 

such factors, as directional demands of the interactions and geometrical dictates the close-packing.  

In this context, it is also of interest to investigate known and new salts of aminotetrazoles especially 

with nitrate, dinitramide15 and azide as counter ions especially focused in the formation of robust 

hydrogen-bonded multidimensional networks within these salts.  The dimensionality and general 

structural feature of a multidimensional network depends on the modules which serve as 

‘topological directors’ and strongly depends on the symmetry of the ions.  A search in the 

Cambridge Structural Database (CSD) revealed that the crystal structure of guanidinium nitrate 

[HGN+NO3
-] consists of hydrogen-bonded polar layers, stacked in the third dimension by van der 

Waals interactions (Figure 4.2, I).16 The hydrogen bonded ring motif, in the formalism of graph-set 

analysis of hydrogen-bond patterns,17 which are found for [HGN+NO3
-] are the )12(3

6R and the very 

common )8(2
2R . The latter was also observed in other structures e.g. discussed in Chapter II (2.2.2) 

and Chapter III (3.1.3,4 and 3.2.3).  
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Figure 4.2. Scheme of the 2D organization pattern of [HGN+NO3
-] I and [HAGN+NO3

-] II through 
intermolecular hydrogen bonds. 

 

 As the bond pattern strongly depends on the symmetry of the cations, lowering symmetry by 

a formal introduction of an amino group should modify the hydrogen-bond connectivity pattern.  In 

the case of aminoguanidinium nitrate [HAGN+NO3
-],18 the terminal NH2 group is positioned in 

such a fashion that the hydrogen atoms appear above and below the plane of the rest of the 

molecule, and the lone pair is directed towards the hydrogen atom of one of the C=NH2 moieties 

forming an intramolecular bond with the motifs )5(S . The nitrate and aminoguanidinium moieties 

are approximately coplanar. Within the same plane the nitrate groups are linked through hydrogen 

bonds to the N atoms by hydrogen bonded ring motifs )4(2
1R , )4(2

2R , )6(2
2R , )8(2

2R  and  

)12(2
4R (Figure 1, II). Above and below this plane, the groups are bonded intermolecularly through 

the H atoms of the terminal amino group. In comparison to the above mentioned salts, and in order 

to gain further details of topological similarities of diaminotetrazolium salts, a closer inspection of 

the two- and three-dimensional hydrogen-bonded networks are going to be discussed for the new 

synthesized energetic salts.  
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 2. HDAT+ / MeDAT+ salts 

 Aminotetrazoles are heterocycles, rich in electron pairs.  The reaction with weak or strong 

acids leads with 14 (R = H, discussed elsewhere)19 and 55 (R = NH2) only with strong acids (X- = 

Cl, Br, I, NO3, ClO4, SO4, picrate)4a,20 to the formation of the corresponding salts (Scheme 4.3).  

 

 

Scheme 4.3. Protonation of 5-AT and DAT 

 

 Protonation of 14 and 55 can proceed both on the nitrogen atoms of the tetrazole ring and on 

the amino group(s).  It was determined to proceed unambiguously at the N4 atom of the ring 

(Scheme 4.3).21
 Nothing is known in the literature about the corresponding azide or dinitramide 

salts concerning the isolation of such salts.  

 

 The protonation of 55 with HNO3 (59a) and HClO4 (59b) as well as the quaternization with 

MeI and subsequently metathesis of the iodide with corresponding silver salts and a new derivative 

of 55, the 1-amino-4-methyl-5-imino-4,5-dihydro-1H-tetrazole 60 as its iodide, azide, nitrate and 

dinitramide salt (61a-d) were investigated during this thesis (Figure 4.3).  Also a new and 

improved synthesis of 55 was developed in order to make 55 accessible on a larger scale.  

 

 

Figure 4.3. Reaction products of DAT 
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 2.1 Synthesis 

 The synthesis strategy for 55 is based on the studies of Lieber et al. who treated 

diaminoguanidine nitrate (AGN, 12) with one and two molar portions of nitrous acid in a buffered 

acetic acid media.22 According to Lieber, the treatment of 12 with two moles of nitrous acid 

(MNO2 (M = Na, K) in acetic solution), yielded the corresponding alkali metal salt of tetrazolyl 

azide (62) as the only isolable product.23 

 

 

Scheme 4.4. Synthesis of the metal salt of azidotetrazole  

 

 The reaction with one equivalent of nitrous acid in acetic acid media resulted mainly in the 

recovery of 12 (80 to 95%) and in the isolation of a small quantity of the corresponding metal salt 

of tetrazolyl azide 62 (Scheme 4.4).  It is known, that the reaction of nitrous acid with 

aminoguanidine is strongly dependent on the reaction conditions, and aminoguanidine reacts with 

nitrous acid in three ways:  if the reaction is carried out in strong mineral acids, it leads to the 

formation of guanyl azide; in aqueous solution alone 1-guanyl-4-nitroso-aminoguanyltetrazene is 

formed, whereas in a solution of acetic acid ditetrazolyltriazene is obtained.24  In general, the 

reaction between HNO2 and a hydrazine moiety can yield the corresponding azide or result in the 

degradation of the hydrazine to the corresponding amine depending on the pH.25  

 

 

Scheme 4.5. Improved synthesis of 55  
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 Based on that, reaction conditions were modified and diaminoguanidinium chloride (AGCl, 

63) in hydrochloric acid used as starting material.  After the diazotation, the reaction mixture was 

carefully brought to pH 8 with sodium carbonate to deprotonate the intermediately-formed amino 

substituted azido guanyl chloride 64.  64 cyclizes under this reaction condition and 55 is formed in 

an overall yield of 58% (Scheme 4.5). 

 The preparation of 59a and 59b was easily archived by the reaction of 55 with the 

corresponding acids (see experimental section, 59a 93%, 59b 97% yield).  All attempts to prepare a 

corresponding HDAT+N3
- were unsuccessful due to the low acidity of HN3. It is known from other 

authors, that in high-nitrogen heterocyclic rings having amino groups attached to the ring there is 

an electronic interaction between the amino groups and the ring system.  As a consequence, a 

significant reduction of the basicity of the lone pair of the amino group is observed (e.g. 4-amino-

1,2,4-triazole has a pKa of 2.25,26 1H-1,2,4-triazole has a pKa of 10.04,27 while 1H-1,2,3-triazole 

has pKa of 8.226).  

 The 1,5-diamino-4-methyl-1H-tetrazolium iodide (61a) was prepared via the quaternization 

of 55 with iodomethane.  Due to the formal exchange of the proton at N4 by a methyl group, a 

lower acidity and hence a higher stability of the corresponding azide (61d) was expected. The 

reaction of 55 with MeI is regiospecific when performed in refluxing acetonitrile using an excess of 

MeI.  It yields 61a in an overall yield of 86%. The reaction of 55 with one equivalent MeI in 

refluxing EtOH yields a mixture of isomers which could not easily be separated.  By metathesis of 

61a with corresponding silver salts the nitrate (61b, X = NO3, 93%), dinitramide (61c, X = 

N(NO2)2, 85%) and azide (61d, X = N3, 90%) were obtained (Scheme 4.6). All salts were formed in 

good to excellent yields in high purity and could be re-crystallized from concentrated alcoholic 

solutions layered with diethyl ether. Compared to the low melting salts of 1,2,4- and 1,2,3-triazole 

systems introduced by Drake et al.28, two of our new salts can also be classified as ionic liquids,29 

59b (mp 97 °C) and 61c (mp 85 °C), the melting points of the others lies in average 40 °C higher 

(Table 6).  

 

 

Scheme 4.6. Synthesis of 61a-d  
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 2.2 IR spectroscopy 

 Vibrational spectroscopy was useful in qualitative analysis of all the salts especially to 

evaluate the formation of the hydrogen bond network.  In all spectra, the bands of the respective 

energetic anions (N3
-, ClO4

-, NO3
- and N(NO2)2

-) were obvious, and as these bands usually have 

characteristic fingerprints in both the infrared and the Raman spectra, they could be identified 

easily.  The nitrate anion, NO3
- usually has a strong stretch at 1345 cm-1 in the infrared and a strong 

band around 1043–1050 cm-1 in the Raman spectrum.30  The perchlorate anion, ClO4
-, has a strong 

broad stretch centered around 1119 cm-1 in the infrared spectra, and strong bands at 958 cm-1 and 

459 cm-1 in the Raman spectrum.31 The dinitramine anion, N(NO2)2
-, has strong stretches in the 

infrared spectrum at around 1530, 1445, 1345, 1183 and 1025 cm-1 and strong bands in the Raman 

at 1335 and 830 cm-1.32 For the azide anion, N3
-, characteristic bands at 2092 cm-1 and 1369 cm-1 

can be observed in the infrared and Raman spectra.33  The IR and Raman spectra of compounds 

59a-b and 61a-d contain for the cations a set of characteristic absorption bands: 3400-3100 cm-1 

[ν(N–H)], 3000-2850 [ν(C–H), 61a-d], ~1715 [ν(C1=N5)], 1680-1550 [δ(N6H2), δ(N5H2)], 1550-

1350 [ν, tetrazole ring, δas(CH3) 61a-d, δ(N4–H)], ~1380 [δ(CH3) 61a-d] 1350-700 [ν(N1–C1–

N4), ν(N–N), ω(N1–N6H2) 59a-b a. 61a-d, γ(CN), δ tetrazole ring], <700 [δ, out of plane bend N–

H), ω(N5H2). The ν(NH) absorption bands in the IR spectra of crystalline compounds 59a-b and 

61a-d have a complex shape depending on the mode of sample preparation.  Crystalline samples 

show in the region 3100-3400 several main absorption peaks which can be assigned to N–H bonds.  

Due to the formation of intermolecular hydrogen bonds in the crystalline network, a red shift of 

stretching modes establishes that the heteromolecular hydrogen-bond interaction between the N–H 

(donor) groups of the tetrazole moieties and the anion (acceptor) are strong (an increase from 25 

cm-1 to 40 cm-1 in the NH2 asymmetric stretching area was observed). In the case of the MeDAT+ 

salts these bands coalesce into mainly two broad bands having a complex shape (Figure 4.4).  In 

order to elucidate the nature of these bands, the spectra of compounds 59a-b and 61a-d were 

recorded in MeCN solutions.  Figure 4.4 shows as example the obtained spectra in solution of the 

MeDAT+ salts 61a-d.  With the help of DFT calculation (Table 4.1), it was possible to assign the 

stretching motions.  The positions of the absorption maxima and their intensity ratio changes 

significantly, indicating the strong contribution of intermolecular hydrogen bonds.  In solution the 

obtained spectra of 61a-d are identical. The bands at 3342(ν1), 3213(ν4), 3172(ν3) and 3142(ν5) 

cm-1 have been assigned to νasym(N5H2), νasym(N6H2), νsym(N5H2) and  νsym(N6H2), respectively 

and the band at 3262 (νob) cm-1 to the binary overtone of the ν (N6H2) (ν6). 
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Figure 4.4. IR spectra of 61a-d recorded in KBr and in CH3CN 
solution (*). 

 

 The bands observed in the spectra of crystalline samples but absent in the spectra of dilute 

solutions should be attributed to N–H bonds involved in intermolecular hydrogen bonding and 

those not involved in intramolecular N–H bonding.  Comparing the IR and Raman data of 55 with 

the corresponding protonated or methylated salts (e.g. 59a and 61b), some interesting results can be 

derived. Table 4.1 gives the obtained values of these derivatives in solution (IR) and in the solid 

state (Raman) compared to the calculated values. The scaled calculated frequencies agree well with 

the experimental data. In the case of protonation (methylation) a new band can be found at ~1715 

cm-1 (59a) or 1699 cm-1 (61a).  It can be assigned to the strongly coupled mode (ν7) between the ν 

(C1–N5) (ν8) and ν (N6H2) (ν6) and appears at significantly higher wavenumber. The 
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spectroscopic results are in accordance with a shortening of the C1–N5 bond and with a shorter 

bond length observed in the DAT salts (e.g. 1.302 (4) Å, 59a) as compared to the parent compound 

55 (1.334 (4) Å).34 These spectroscopic results are in excellent correlation with the crystallographic 

data (Table 4.3). 

 

Table 4.1. Calculated and experimental IR and Raman data of 55, 59a and 61a 
No. approx. 

assignmentb 

DATa calcdc IR/Raman 

int./act.d 

DAT+a calcdc IR/Raman 

int./act.d 

MeDAT+a calcdc IR/Raman 

int./act. d 

ν1  νasym(N5H2)  3324/3324 3711  
(3325) 

67.6/40.6 3345/3363 3697  
(3313) 

177.5/36.8 3335/3312 3707  
(3321) 

143.3/28.6 

ν2 ν(N4H) - - - 3321/3363 3625  
(3248) 

206.1/79.4 - - - 

ν3 νsym(N5H2) 3154/3193 3589 
(3216) 

49.2/131.8 3155/- 3561  
(3191) 

198.5/84.6 3216/3208 3571  
(3200) 

176.9/91.8 

ν4 νasym(N6H2) 3237/3243 3576  
(3204) 

21.3/66.3 3255/3274 3586  
(3213) 

65.1/50.7 3256/- 3586  
(3213) 

60.5/55.1 

ν5 νsym(N6H2) 3154/3154 3486  
(3123) 

4.4/160.2 3094/- 3488  
(3125) 

51.9/134.2 3105/- 3488  
(3125) 

48.8/151.2 

ν6 δ(N6H2) 1656/1670 1713  
(1669) 

154.9/8.2 1617 1686  
(1643) 

50.6/8.8 1614/1634 1684  
(1641) 

63.2/11.4 

ν7 ν(C1-N5)        
+ 
δsym(N6H2) 

1632/1623 1660  
(1618) 

176.1/16.0 1719 1766  
(1675) 

436.2/3.8 1699/1705 1755  
(1710) 

360.0/5.4 

ν8 δ(N5H2) -/1547 1589 
(1548) 

7.5/9.3 1565 1612  
(1571) 

19.9/4.9 1584/1607 1607  
(1566) 

30.1/4.7 

a Observed IR (in solution) and Raman spectra (in the solid state), freq in cm-1.  b The assignments are tentative due to interference form 
intermolecular hydrogen bonds and lattice vibrations.  c Frequencies (cm-1) calculated at B3LYP/6-31+G(d); the frequencies involving 
mainly stretching motions of N-H groups were scaled by an empirical factor of 0.8961, in the case of bending vibrations of the NH2 groups 
a scaling factor of 0.9745 were used to maximize their agreement with the observed values; scaled values are given in parentheses. d 
Calculated infrared intensities [km/mole] and Raman activities [Å4/amu] obtained from the B3LYP/6-31+G(d) calculations. 
 

 2.3 15N Chemical Shifts and 1H-15N Coupling Constants   

 In the case of 55, the assignment of the resonances was straightforward.  The 15N peaks of the 

amino substituents are well separated from those of the tetrazole ring.  The nitrogen with the 

bonded amino group (N1) is the one with the most pyrrole-like character, and its NMR signal is 

expected to appear at highest field compared to the signals of the other nitrogen atoms.35 The 
15N{1H}-NMR spectrum of DAT shows six signals for the six different nitrogen atoms. The signals 

of the NH2 groups appear as expected at high field and are strong and positive36 when the spectrum 

is recorded with broadband decoupling. This is due to the strong positive NOE, resulting from the 

directly bonded protons. With increasing nitrogen-proton distance the NOE changes its sign and 

causes a decrease of signal intensity. The dependency of signal intensity on the NOE can thus be 

nicely used to assign the 15N-signals in the tetrazole ring (Figure 4.5) and to differentiate between 

di- and three coordinated nitrogen atoms, as well as between the substituted and non-substituted 

nitrogen atoms.   
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Figure 4.5. Proton broadband decoupled (top) and coupled (bottom) 15N NMR spectra of 55 
recorded in d6-DMSO 

 

 The assignment of the peaks between the three 2-coordinated nitrogen atoms can be achieved 

mainly by the fact that N4 has one nitrogen and one carbon as nearest neighbors, whereas N2 and 

N3 are surrounded by nitrogen atoms. Therefore, the signals of N2 and N3 appear at lowest field 

owing to electronegativity effects. This is consistent with the trends observed for other comparable 
15N chemical shifts.37 The assignment of the peaks N2 and N3 can be achieved due to the α-effect 

of the NH2-group at N1. The electronegativity effect at N3 is lower than at N2, resulting in a low 

field NMR-signal for N2. In the proton coupled 15N NMR, where due to the pulse delay (3 s) the 

NOE is negligible small, all 15N NMR signals are positive. The 1J(1H–15N) couplings for the 

signals of the NH2-groups are clearly observed, yielding triplets with coupling constant of 74.6 Hz 

(N6) and 87.9 Hz (N5), respectively.  

 The 15N NMR chemical shift data of the neutral and protonated compounds are presented in 

Table 4.2.  The 15N protonation (methylation for 61a and 61d) induced shift (PIS) shows that in 

[d6]-DMSO (CD3OD) the protonated form displaces in all cases the same type of cations:  

protonation takes place at N4 of the ring. The greatest PIS effect was observed for N4 and is 

negative. In the case of the methylated derivative 61a,d, an upfiled shift of -89.2 ppm is observed. 

Protonation (methylation) of the azoles increases the electron demand of the ring favoring the 

perpendicular conformation of the amino group (N5) attached to the carbon atom (C1) of the 

tetrazole moiety.  In this way the amino lone pair can best interact with the azolium ring. The “PIS” 
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effect for N5 is in all cases positive. This observation is in agreement with other relevant studies, 

the two most significant reported the use of 15N NMR spectroscopy for the determination of the 

protonation site of C-aminopyrazoles38 and C-amino-1,2,4-triazoles.39  Due to fast proton exchange 

on the NMR time scale only in the case of 55 and 61a, J(1H–15N) couplings could be observed. 

Table 4.2. 15N and 13C NMR chemical shifts (ppm) and coupling constants (J, Hz) for the 
compounds studied. 

compouds a N1 N2 N3 N4 N5 N6 C1d 
5-ATb  -137.1  -13.1 -13.1 -137.1 -338.9 - 157.2b 

HATNO3b,e  -165.2  
[-28.1] 

-24.5  
[11.4] 

-24.5 
[-11.4] 

-165.2  
[-28.1] 

-329.1  
[9.8] 

- 152.4b 

55b -167.0 
2J 2.3 Hz 

-5.5 -20.8  -97.5 -338.3 
1J 87.9 Hz 

-315.2 
1J 74.6 Hz 

155.0b 

59ac -164.9  
[2.1] 

-21.9  
[-16.4]

-33.1 
[-12.3] 

-170.4  
[-72.9] 

-333.3  
[5.0] 

-319.6  
[-4.4] 

152.8b; 
151.2c  

59bc -169.4  
[-2.4] 

-20.5  
[-15.0]

-36.6  
[-15.8] 

-177.5  
[-80.0] 

-329.6  
[8.7] 

-317.9  
[-2.7] 

149.7c 

61ab  -167.9  
[-0.9] 
2J 1.7 Hz 

-24.0  
[-18.5]

-35.3  
[-14.5] 
3J 1.9 Hz

-186.0  
[-88.5] 
2J 2.0 Hz

-319.0  
[19.3] 

-307.3  
[7.9] 
1J 76.1 Hz 

148.1b 

61db -167.9  
[-0.9] 
2J 1.8 Hz 

-24.3  
[-18.8]

-35.9  
[-15.1] 

-186.7  
[-89.2] 
2J 2.0 Hz

-316.8  
[21.5] 

-308.8  
[6.4] 
1J 76.8 Hz 

147.5c 

PIS effect in parentheses; a all shifts were measured with respect to CH3NO2 internal standard; negative shifts are 
upfield from CH3NO2.b [d6]-DMSO. c CD3OD; d 13C NMR shift; e 5-amino-1H-tetrazolium nitrate. 

 

 

 2.4 1H and 13C NMR spectra   

 In the 1H NMR spectrum, for the resonance of the N–H bound protons only one signal was 

observed in the case of the protonated DAT derivatives 59a and 59b. Compared to the starting 

DAT 55, it is shifted upfield due to fast proton exchange. For the methylated derivatives for the 

iodide 61a and the azide 61d, two singlets could be observed, whereas in the case of the nitrate 61b 

and dinitramide 61c only one singlet was detected. Upon alkylation or protonation there is a slight 

up-filed shift observed for the 13C-NMR resonances (Table 4.2). This effect has been observed in 

several other nitrogen heterocycles upon protonation or alkylation of the heterocyclic ring system.40  

 

 The position of the nucleophilic attack during the quaternization of 55 with MeI resulting in 

61a was first determined by a 1H-HMBC NMR spectrum was performed. The methylation of the 

tetrazole ring at the 4-position results undoubtedly from the 1H-HMBC NMR spectrum (Figure 4.6; 
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1H-HMBC: 1H-13C heteronuclear multiple bond correlation experiment). In this method, the 13C-

satellites in the 1H-NMR spectrum are observed, which reduces acquisition time considerably, due 

to the higher sensitivity of 1H compared to that of 13C. The spectrum shown is also field gradient 

enhanced and was recorded using 8 Hz for the long range 13C,1H-coupling.  

 

 
Figure 4.6. 1H-HMBC NMR spectrum of 61a 

 

 The cross peaks between the signal of the ring carbon atom (δ = 148.0 ppm) and the N-Me 

group (δ = 3.84 ppm) as well as the C-NH2 (δ = 7.01 ppm) group results from a 13C,1H-coupling 

over 3 and 2 bonds, respectively. In the case of 2- or 3-methylation, no cross peak should be 

observed, because the 13C,1H-coupling constants of over four bonds is known to be much smaller.41 

 

 With the particular pulse sequence employed also cross peaks due to 1J(13C,1H) are observed. 

A value for 1J(13C,1H) of 140 Hz was used during the experiment. The two cross peaks between the 

N-Me 1H-signal and the Me-13C-signal correspond to the 13C-sattelits in the 1H-NMR spectrum; 

from their separation the 1J(13C,1H) coupling constant can be evaluated (144.8 Hz).  
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 2.5 Molecular structure of 59a, 59b, 61b and 61d 

 Figures 4.7 and 4.8 display the molecular units of 59a and 59b with atom labeling scheme.  

Selected bond lengths and angles are presented in Table 4.3. In accordance with other X-ray 

structure determinations, in 59a and 59b the DATH+ cations have also the structure in which the 

N4 atom is protonated (Scheme 4.3).  Both salts have as common features the molecular structure 

of the DATH+ moiety and its relative disposition with respect to the nitrate or perchlorate anion.  

 

 

Figure 4.7. Formula unit and labeling scheme for 59a (ORTEP Plot, thermal 
ellipsoid represents 50% probability). 

 

 The DATH+ cations are not different, within the limits of accuracy.21 The tetrazole ring is 

planar with the attached exocyclic nitrogen atoms lying within this plane (maximal deviation is 

0.046 Å for 59a and 0.074 Å for 59b of N6 from this plane).  The amino group attached to N1 is 

pyramidal and adopts a staggered conformation with respect to N2, similar to that observed for the 

unprotonated 55.34  This observation is consistent with a theoretical study concerning the 

hybridization and conformation of amino groups in N-aminoazoles of Foces-Foces et al.  They 

found that sp3 hybridization of the amino groups is favored over sp2, and that the amino lone pair 

adopts an eclipsed position with respect to the ring in monocyclic N-amino-azoles, including 1-

amino-1H-tetrazoles.42 The amino group attached to C1 is planar and lies in the plane of the 

tetrazole moiety (sum of angles 360°) indicating a strong interaction of the nitrogen lone pair with 

the π system of the tetrazole ring. This is consistent with the observation of a shorter C1–N5 bond 

found for the salts compared to the parent compound 55 (Table 4.3). Interestingly for unprotonated 

amino-C-azoles e.g. 4-aminopyrazoles two polymorphic forms are reported,43  The main difference 

consists in the conformation of the NH2 group with respect to the pyrazole ring:  an almost eclipsed 
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and a twisted form is found.  For 55 and for DATH+ cation, a strong π-delocalization in the N1–

C5–N4 fragment is found.  

 

 

Figure 4.8. Formula unit and labeling scheme for 59b (ORTEP Plot, thermal 
ellipsoid represents 50% probability). 

 

 The bond distances indicate discrete single and double bonds for the rest of the ring (Table 

2).  A closer inspection of the exocyclic bond lengths of the amino groups to the bonded atoms 

(C1–N5: 1.302(4) Å (59a) and 1.304 Å (59b); N1-N6: 1.385(2) Å (59a) and 1.387(2) Å (59a)) 

compared to the experimental N–N and C–N distances in HN=NH and H2N-NH2 (1.252 Å and 

1.449 Å, respectively) and H2C=NH and CH3-NH2 (1.273 Å and 1.471 Å, respectively) further 

supports this observation44 and displays   

 
Figure 4.9. Formula unit and labeling scheme for 59b (ORTEP Plot, thermal 
ellipsoid represents 50% probability). 
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the “hydrazinic” character of the amino group in the 1-position compared to the “aniline-like” 

character of the 5-amino group. The bond distances and angles in the perchlorate and nitrate anion 

are as observed for many other salts of nitrous or perchloric acids with amines and are omitted in 

Table 4.3.45 

 

Table 4.3. Comparison of Selected Interatomic Distance (Å) and Selected Bond Angles (deg) of 55, 59a, 59b 
and 61a-d. 

N2

N3N4
C1

N1

N6

N5
H

H
R

H
H

 
 55a 

- 
59a 
R = H 

59b 
R = H 

61a 
R = C2 

61b 
R = C2 

61c 
R = C2 

61d 
R = C2 

 
Bond Length 

       

N1-C1 1.345(1) 1.323(9) 1.340(3) 1.355(1) 1.340(4) 1.335(3) 1.328(6) 
N1-N2 1.363(1) 1.366(2) 1.368(2) 1.383(9) 1.364(4) 1.361(3) 1.373(6) 
N2-N3 1.279(1) 1.260(4) 1.272(3) 1.234(9) 1.280(4) 1.274(3) 1.275(6) 
N3-N4 1.367(1) 1.354(8) 1.361(3) 1.386(8) 1.354(4) 1.361(3) 1.362(6) 
N1-N6 1.383(1) 1.385(2) 1.387(2) 1.378(9) 1.388(3) 1.402(3) 1.390(5) 
C1-N4 1.327(1) 1.336(3) 1.333(3) 1.339(8) 1.341(3) 1.336(3) 1.321(6) 
C1-N5 1.334(1) 1.302(4) 1.304(3) 1.32(1) 1.299(4) 1.315(3) 1.321(7) 
N4-R - - - 1.42(1) 1.458(4) 1.445(3) 1.470(6) 
 
Bond Angle 

       

C1-N1-N2 108.84(8) 110.4(2) 110.4(2) 108.3(7) 110.4(2) 110.1(2) 109.8(4) 
N2-N1-N6 125.13(8) 124.5(1) 126.0(2) 125.7(6) 126.1(2) 124.3(2) 125.7(4) 
N5-C1-N1 123.87(9) 130.3(2) 127.1(2) 125.7(6) 127.3(3) 127.3(2) 126.0(5) 
C1-N4-N3 105.56(8) 110.0(2) 110.6(2) 108.2(7) 110.0(2) 110.0(2) 110.2(4) 
N3-N2-N1 105.79(8) 107.2(1) 107.4(2) 108.6(6) 107.1(2) 107.8(2) 107.2(4) 
C1-N1-N6 126.02(9) 125.1(1) 123.5(2) 125.8(6) 123.4(3) 125.6(2) 124.4(4) 
N5-C1-N4 128.17(8) 130.3(2) 129.2(2) 129.1(7) 128.7(3) 128.5(2) 129.2(5) 
N4-C1-N1 107.90(8) 103.7(1) 103.7(2) 105.2(9) 103.9(2) 104.2(2) 104.9(5) 
N2-N3-N4 111.92(9) 108.7(1) 108.0(2) 109.6(6) 108.5(2) 107.9(2) 107.9(4) 
C1-N4-R -  - 128.5(7) 128.2(3) 127.7(2) 128.8(4) 

a from ref [34] 

 

 In Figures 4.9 and 4.10 the molecular units of 61b and 61d are displayed.  In the salts the 

formal exchange of the proton at N4 by a methyl group shows only slightly differences in the 

molecular parameters found for MeDAT+ cation as compared to HDAT+ cation. Selected bond 

lengths and angles are contained in Table 4.3.  The above discussion for 59a and 59b also accounts 

for the MeDAT+ salts as the methyl group hardly influences the molecular parameters.  In all salts 

the bond distances and angles in the five-membered ring reflect the effect of protonation giving rise 

to an almost symmetrical ring with respect to an axis through C1 and the midpoint of the N2–N3 
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bond.  The small differences in the bond length and angles within the cations of the salts might be 

the result of packing effects in the crystals. 

 

 

Figure 4.10. Formula unit and labeling scheme for 59d (ORTEP Plot, 
thermal ellipsoid represents 50% probability). 

 

 2.6 Crystal structure of 59a, 59b, 61b and 61d 

 59a crystallizes in the monoclinic space group C2/c with eight formula units per unit cell.  

The nitrate 61b crystallizes in the orthorhombic space group Fdd2 with sixteen formula units per 

unit cell.  The X-ray analysis for this two compounds confirmed that the ratio of acid to base is 1:1, 

and the ions are connected through several kinds of hydrogen bonds (Table 4.4).  Analysis of the 

crystal packing of 59a and 61b showed the existence of numerous hydrogen bonds, such as strong 

(e.g. N4–H4····O1, 2.721(4) Å for 59a; N5–H5b····O1 2.853(4) Å for 61b; Table 4.4) and medium 

N–H····O contacts which are well within the sum of the van der Waals radii (rA(O) + rD(N) = 3.10 

Å).46  Also, the N–H–O angles of e.g. 151(2)° (N4–H4–O1) (59a) and 173(4)° (N4–H4–O1) (51b) 

are indicative of a strongly directional rather than purely electrostatic interaction.  The hydrogen 

atom H4 on N4 in 59a forms two intermolecular N4–H4····O1 and N4–H4····O2 hydrogen bonds 

with the two oxygen atoms (O1, O2) of the nitrate anion, yielding cation/anion pairs as depicted in 

Figure 4.11. The resulting graph set is characterized as )4(2
1R , and together with the graph set 

)6(2
2R , this module can be seen as the first order network. The cations are linked over hydrogen 

bonds N5–H5b····O2i and N6–H6b····O1ii
 [symmetry code: (i) 2-x, -y, 1-z; (ii) x, 1-y, -0,5+z] to 

infinitive chains which are characterized as )8(2
2C  graph set.   
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Figure 4.11. Surrounding of the NO3

- anion in the structure of 59a with hydrogen bonds to the cations marked as dotted 
lines (ORTEP Plot, thermal ellipsoid represents 50% probability). Only strong hydrogen bonds are displayed 
 

 Together with the repeating module )4(2
1R / )6(2

2R , a three-dimensional supramolecular 

network with a planar dimeric molecular unit as main module is formed ( )12(2
4R  graph set as the 

center of this unit contains the inversion centre).  This unit is already identified in 

diaminoguanidinium nitrate as the main two-dimensional building block (Figure 4.2, II).  These 

planar units are connected through N6–H6a····O1ii [symmetry code: (ii) x, 1-y, -0,5+z] in such a 

way that the planes are orientated almost perpendicular to the original unit. All contacts used for 

the discussion of graph-set analysis of hydrogen-bond patterns are shorter than the sum of the van 

der Waals radii (rA(O) + rD(N) = 3.10 Å).  There are also electrostatic interactions, which are longer 

than the sum of the van der Waals radii and involve weak hydrogen bond interactions (e.g. N5–

H5a····O3 3.361(2) Å and N6–H6a····O2 3201(3) Å).  They also contribute to the three-dimensional 

network.  There is no evidence of any aromatic π–π stacking interactions. Examination of the 

structure with PLATON 47 shows that there are no solvent-accessible voids in the crystal structure 

of 59a. 
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Table 4.4. Hydrogen bond geometry (Å, °) of 59a, 59b, 61b and 61d 
D–H····A D–H H····A D····A D–H····A 
     
59a     
N4–H4····O1 0.860(5) 1.937(2) 2.721(4) 151(2) 
N4–H4····O2 0.860(5) 2.32(2) 3.06(2) 144.0(2) 
N5–H5a····N6a 0.860(3) 2.64(2) 2.894(2) 98.5(2) 
N5–H5a····O3i 0.860(3) 2.66(1) 3.057(8) 109.2(2) 
N5–H5b····O2i 0.860(6) 2.16(1) 2.93(2) 148.3(2) 
N6–H6b····O1ii 0.873(4) 2.226(3) 3.014(5) 150.1(2) 
     
59b     
N5–H5a····N6 a 0.852(2) 2.649(1) 2.896(2) 98.17(1) 
N5–H5a····O2iii 0.852(2) 2.146(2) 2.944(4) 155.68(1) 
N5–H5b····O2iv 0.882(1) 2.460(3) 3.075(4) 127.28(1) 
N5–H5b····O1v 0.882(1) 2.210(4) 3.046(5) 157.99(1) 
N4–H4····O4vi 0.786(2) 2.059(6) 2.817(8) 162.14(2) 
     
61b     
N5–H5b····O1 0.83(4) 2.03(4) 2.853(4) 173(4) 
N5–H5a····N6a 0.77(4) 2.57(4) 2.895(4) 108(4) 
N5–H5a····O2vii 0.77(4) 2.24(4) 2.905(4) 145(5) 
N6–H6b····O3viii 0.87(4) 2.25(4) 3.039(3) 151(4) 
N6–H6a····O2ix 0.95(4) 2.18(4) 3.036(4) 149(3) 
     
61d     
N5–H5a····N6a 0.94(6) 2.65(6) 2.892(7) 95(4) 
N6–H6a····N7 1.04(6) 2.03(6) 3.029(7) 161(5) 
N6–H6b····N7x 0.96(7) 2.11(7) 2.973(6) 149(6) 
N5–H5a····N7xi 0.94(6) 2.00(6) 2.892(6) 159(5) 
N5–H5b····N9xii 1.01(5) 1.82(6) 2.830(6) 171(5) 
     

a intramolecular hydrogen bond;  
Symmetry codes for 59a: (i) 2-x, -y, 1-z; (ii) x, 1-y, -0.5+z.; 59b: (iii) 0.5-x, -0.5+y, 0.5-
z; (iv) 0.5+x, -0.5-y, -0.5+z; (v) -0.5+x, -0.5-y, 0.5+z; (vi) 1-x, -y, 1-z. ; 61b: (vii) -x, -y, 
z; (viii) 0.25-x, -0.25+y, 0.75+z; (ix) -x, -y, 1+z.; 61d: (x) –x, 1-y, 0.5+z; (xi) x, y, -1+z; 
(xii) 0.5+x, 1.5-y, -1+z. 

 

 The formal exchange of the hydrogen atom at N4 by a methyl group leads to a different 

arrangement of the ions in the case of 61b.  The motif changes completely, and the formation of 

planar dimeric units is no longer observed.  As expected and shown by calculations of the crystal 

densities of energetic materials, the introduction of a methyl group leads to lower densities due to 

bigger voids or unfilled space (ρ(59a) = 1.73 g cm-3;  ρ(7b)) = 1.51 g cm-3).48 The replacement of 

the hydrogen atom in 61b by a methyl group leads also to the formation of a three dimensional 

hydrogen bond network.  However, the mismatching of donor and acceptor sites placed on both 

counter ions, compared to [HAGN+NO3
-] (Figure 4.2, I) and 51b, leads to a significantly modified 

crystal organization and the appearance of only two ring graph sets ( )4(2
1R , )12(4

4R , Figure 4.12). 
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Figure 4.12. Surrounding of the NO3

- anion in the structure of 61b with hydrogen bonds to the cations marked as dotted 
lines (ORTEP Plot, thermal ellipsoid represents 50% probability). Only strong hydrogen bonds are displayed.  
 

 59b crystallizes in the monoclinic space group P21/n with four formula units per unit cell.  

Compared to 59a the exchange of the counter ion by the perchlorate ion leads in the case of 59b 

also to the formation of dimeric subunits ( )8(2
4R  graph set as the center of this unit contains the 

inversion centre), but due to the symmetry of the perchlorate anion (Td) these units lie not in one 

plane (Figure 4.13).  Interestingly, the main graph set subunit of 59a ( )12(2
4R ) is reduced in 59b to 

)8(2
4R which can be understood by the formal decrease of the bond angle at the central atom of the 

anion from 120° in the NO3
- anion to 109° in the  perchlorate anion.  

 Within the crystal structure of 59b only O1, O2 and O4 of the perchlorate anion are involved 

in the hydrogen bond interaction, the shortest O3 interaction of O3 (O3–N4) accounts for 3.321(2) 

Å without any hydrogen bond interaction. Therefore due to the formal symmetry change of the 

ClO4 moiety (tetrahedral) compared to the NO3 anion (planar) the reduction of the symmetry leads 

to a modified crystal organization and the observation of a new graph set ( )8(2
4R ). 

 

 The X-ray crystal structure of 61d (orthorhombic, space group Pna21, Figure 4.14) reveals 

that the azide anion links the cations over four strong hydrogen bridges (Table 4.4) in such a way, 

that N7 forms three hydrogen bridges (N6–H6a····N7, N6–H6b····N7x and N5–H5a····N7xi
 

[symmetry code: (x) –x, 1-y, 0.5+z; (xi) x, y, -1+z]) whereas N9 only one (N5–H5b····N9xii
 

[symmetry code: (xii) 0.5+x, 1.5-y, -1+z]).   
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Figure 4.13. Surrounding of the ClO4
- anion in the structure of 59b with hydrogen bonds to the cations marked as 

dotted lines (ORTEP Plot, thermal ellipsoid represents 50% probability). Only strong hydrogen bonds are displayed.  
 

 The different coordination pattern of the terminal nitrogen atoms of the azide group explains 

the observed difference in the N7–N8 (1.184(5) Å) and N8–N9 (1.170(5) Å) bond length.  The 

observed distances for NH····N hydrogen bonds agree well with the distances found in other ionic 

azide compounds.11,12 A rather unusual graph set ( )11(2
4R ) is found for 61d.  These motifs are 

connected in such a fashion trough a two folded axis, that infinitive chains are formed.  Together 

with the hydrogen bond between N5–H5b····N9xii this chains are connected to a three dimensional 

network. 
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Figure 4.14. Surrounding of the N3
- anion in the structure of 61d with hydrogen bonds to the cations marked as dotted 

lines (ORTEP Plot, thermal ellipsoid represents 50% probability). Only strong hydrogen bonds are displayed. The 
intramolecular hydrogen bond is omitted for clarity. 
 

 

 2.7 MeDATN(NO2)2 (61c) 

 The ability of the dinitramide (DN) anion to form stable oxygen-rich salts with high densities 

with a variety of cations49 makes DN a promising candidate in the development of new tetrazole 

based oxidizers. Such salts would be expected to possess both a high nitrogen and a high oxygen 

content. The combination of the oxygen-rich anion (DN) with a nitrogen-rich cation forms a class 

of energetic materials, whose energy is derived from their very high positive heat of formation 

(directly attributed to the large number of inherently energetic N-N, N-O and N-C bonds) as well as 

the combustion of the carbon atoms. Therefore, the 1,5-diamino-4-methyl-1H-tetrazolium 

dinitramide (61c) is of special interest, and the X-ray determination with respect to an so far not 

observed intriguing interaction of one nitro group with the tetrazolium cation (MeDAT+) utilizing 

the theory of atoms in molecules (AIM)50 is discussed in the following Chapter.  
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 2.7.1 Crystal structure of 61c 

 61c crystallizes in the orthorhombic space group P212121 with four formula units in the unit 

cell (numbering scheme of 61c is depicted in Figure 4.15, Table 4.3) as racemic twin. The structure 

contains one crystallographically independent cation and one anion. As the methyl group hardly 

influences the molecular parameter of the tetrazole moiety (MeDAT, see above), a detailed 

discussion is abstained. The overall geometry of the dinitramide ion is similar to that observed for 

other comparable dinitramide salts, like guanidinium and biguanidinium salts.49c,d The two N–N 

bond lengths are asymmetric (N7–N8 1.350(3) Å; N8–N9 1.391(3) Å; cf. a typical N=N double 

bond (1.245 Å);  N–N single bond (1.454 Å))51 and a NNN angles of 115.4(2)° was observed. The 

nitro groups are twisted out of the central NNN plane (O3-N9-N7-O1 -24.5(2)°). Hence, the local 

symmetry of the anion is C1. As known also form others 49a-d the metrical parameters of the DN ion 

are easily and strongly influenced by the environment. 

 

 
Figure 4.15. Left: Formula unit and labeling scheme used for 61c (Thermal ellipsoid represents 50% probability, 
structural parameter are given in Table 4.3). Selected AIM charges in parenthesis. Right: the gradient lines of the 
electron density and the projection of the molecular graph onto the N2-N4-O3 plane. The bond CP’s are shown as green 
circles and the ring CP’s are shown as brown rectangles. 
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 In Figure 4.16 the view along the a-axis is displayed showing the zigzag strand composed of 

alternating MeDAT and DN ions. Each strand is further connected by strong hydrogen bonds (N5–

H5a····O1i and N5–H5a····O2i [symmetry code: (i) -1+x, y, z]) forming a three-dimensional 

network (Table 4.4). In turn, these strands are formed by two different type of interactions: (1) a 

strong hydrogen bond between N5–H5b····O2ii (symmetry code: (ii) -0.5+x, 0.5-y, 1-z) and (2) a 

closed-shell interaction between the O atoms of one nitro group (O3-N9-O4) with the tetrazole 

moiety (Table 4.4). 

 

 

 

 

 

 

 

 

 

Figure 4.16. View of the strand formed by alternating cations (MeDAT) and anions (DN) displayed along the a-axis in 
61c. Short contacts between the cations and anions are shown by dotted (····, N5–H5b····O2) and dashed (- - - , 
O(dinitramide) and tetrazole moiety) lines, respectively. (ORTEP Plot, thermal ellipsoid represents 50% probability). 
 

Table 4.4. Hydrogen bond geometry (Å, °) and selected distances of DN to the 
tetrazole moiety in 61c. 

D–H····A D–H H····A D····A D–H····A 
7c     
N5–H5a····N6a 0.91(2) 2.69(3) 2.998(3) 98(2) 
N5–H5a····O1i 0.91(2) 2.23(1) 3.093(3) 160(3) 
N5–H5a····O2i 0.91(2) 2.51(3) 2.965(3) 111(2) 
N5–H5b····O2ii 0.89(1) 2.05(1) 2.921(3) 167(2) 
N1····O4iii   3.086(3)  
N2····O4iii   3.020(3)  
N4····O3iii   3.187(3)  
C1····O3iii   3.278(3)  

a) intramolecular hydrogen bond; Symmetry codes for 61c: (i) -1+x, y, z ; (ii) 
–0.5+x, 0.5-y, 1-z ; (iii) 1-x, 0.5+y, 1.5-z 
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 The interionic distances for the O4 and O3 contacts with the tetrazole ring are in the range of 

3.020(3) to 3.278(3) Å. For closed-shell interactions, there is a somewhat arbitrary dividing line 

between what is or is not an interaction when only the sum of the van der Waals radii are applied as 

criterion. Since the MeDAT is a non-spherical ion which is also able to form hydrogen bonds, it is 

hard to compare the anion-cation interactions with those in alkali DN salts which are observed in 

the range of 2.810(2) (K+[N3O4]-) to 3.534(6) Å (Cs+[N3O4]-).49b 

 

 2.7.2 Closed-shell interaction in 61c 

 What is the nature of bonding between the dinitramide anion and the tetrazolyl cation in 61a? 

Although further extensive hydrogen bonding could be possible, the anion and cation adopt an 

almost perpendicular arrangement (<(N2-N4-O3) = 91.64(9) °) with fairly short O3•••N4 and 

O4•••N2 contacts (d(O3-N4) = 3.18(3), d(O4-N2) = 3.020(3) Å). Selected AIM50 charges are given 

in Figure 4.15,52 and it is noted that all oxygen atoms carry a negative charge as expected whereas 

the nitrogen atoms of the tetrazole ring possess net charges which are also negative or close to zero 

(Figure 4.15, Appendix A Table A-5). The positive charge of the cation locates mainly at the two 

carbon and the hydrogen atoms of the amino groups. The negatively charged oxygen atoms of the 

dinitramide anion (qO3 = -0.55, qO4= -0.56e), however, are directed towards N2 and N4 (qN2 = 0.01, 

qN4 = -0.70e). In agreement with the larger negative charge on N4, the O4•••N2 distance is slightly 

longer (0.16 Å). Moreover, there is only a very small degree of charge transfer from the 

dinitramide anion to the tetrazolium cation (qct = 0.02e ).52 

 The theory of Atoms in Molecules50 was used to analyze the chemical bonding in 61c. This 

theory describes a molecule in terms of electron density, ρ(r), its gradient vector field, ∇ρ(r), 

Laplacian, ∇2ρ(r), and bond critical points, CP.50,53 The type of interaction is characterized by the 

sign and magnitude of the Laplacian of ρ(rb) at the bond critical point. If electronic charge is 

concentrated in the bond CP (∇2ρ(rb) < 0)) this type of interaction is referred to as shared 

interactions.50 Interactions which are dominated by contraction of charge away from the 

interatomic surface towards each nuclei (∇2ρ(rb) > 0) are called close-shell interactions. For 

closed-shell interaction, ρ(rb) is relatively low in value and the value of the ∇2ρ(rb) is positive. The 

sign of the Laplacian is determined by the positive curvature of ρ(rb) along the interaction line, as 

the exclusion principle leads to relative depletion of charge in the interatomic surface. In 61c, every 

expected covalent bond has been characterized by a negative Laplacian at the bond CP (Appendix 

A Table A-7). In addition to the expected bond path network, three (3,-1)54 unusual bond CP’s have 
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been found on the O3•••N4 (CP1), O4•••N2 (CP2) and O1•••O3 (CP3) lines (Figure 4.15). The 

origin of the latter bond CP (CP3) has been described recently by Pinkerton et al. as a bonding 

closed-shell type interaction between the negatively charged oxygen atoms belonging to different 

nitro groups.55 CP1 and CP2 are associated with an interaction between the atoms which are linked 

by these bond CP’s.  

 
Table 4.5. Bond Critical Points in 61c* 

* All quantities in atomic units, CP is a (3,–1) critical point, ρ is electron density, ∇2ρ is the Laplacian of ρ, λ1,2,3 
are eigenvalues of Hessian of ρ, G is the kinetic and V the potential energy density; B3LYP/6-311+G(3d,2p) 
density; X-ray structural data used. 

 

 A ring CP inside the O4-N2-N4-O3-N9 space was also found, thus the Poincaré-Hopf rule is 

satisfied.50 The calculated positive Laplacian of the electron density (∇2ρ(rb)) and the relatively 

low value of ρ(rb) at both bond critical points (CP1 and CP2) indicate that the O3•••N4 (CP1), 

O4•••N2 (CP2) contacts are dominated by bonding closed-shell interaction.56 The high values of 

the ratio G(rb)/ρ(rb) at the bond CP’s (0.77, and 0.70) and the ratio of the eigenvalues |λ1|/λ3 << 1 

support this conclusion (Table 4.5).57 Additional information about chemical bond type is available 

from the total electronic energy density Ee(rb) = G(rb) + V(rb). Closed-shell interactions are 

dominated by the kinetic energy density G(rb) in the region of the bond CP, G(rb) being slightly 

greater than potential energy density |V(rb)| and the energy density (Ee(rb) > 0) close to zero (Table 

4.5). 

 

 

 

 

 

 

 ρ(rb) ∇2ρ(rb) λ1 λ2 λ3 |λ1|/λ3 G(rb) V(rb) G(rb)/ρ(rb) 

CP1 0.008338 0.0296 -0.00651 -0.00142 0.03758 0.173 0.00645 -0.00549 0.77 

CP2 0.006762 0.0218 -0.00536 -0.00359 0.03077 0.174 0.00471 -0.00396 0.70 

CP3 0.021239 0.0893 -0.01876 -0.01843 0.12651 0.148 0.02027 -0.01822 0.95 
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 2.8 Thermodynamic aspects 

 2.8.1 Heats of formation and detonation 

 The heats of combustion for compounds 59b, 61b, 61c and 61d were determined 

experimentally and are summarized in Table 4.6.  The enthalpy of formation for the salts 59b, 61b, 

61c and 61d was calculated by following the Born-Haber energy cycles7c,58 (Scheme 4.7) according 

to reaction [1]-[4].  The reaction enthalpies ( HR∆ ) for reactions [5] and [6] were calculated using 

the parameterized ab initio molecular orbital methods Gaussian-2 (G2)59 and Gaussian-3 (G3).60 

 

 
Scheme 4.7. General Born-Haber energy cycle for the reactions [1]-[4]. For encoding compounds 59a, 59b and 61b-d 
see Table 4.6. 
 

 From the computed G2 and G3 enthalpies (Appendix A Table A-8) the reaction enthalpy 

HR∆ for reaction [5] was calculated to be -125.4 (G2) and -125.0 (G3) kcal mol-1 and for [6], -

341.1 (G2) and -335.4 (G3) kcal mol-1, respectively. 

 

[CH5N6]+[ClO4]- (s) → 1/x Cx (g) + 5/2 H2 (g) + 3 N2 (g) + 2 O2 (g) + 1/2 Cl2 (g) [1]  

[C2H7N6]+[N3]- (s)  → 2/x Cx (g) + 7/2 H2 (g) + 9/2 N2 (g)  [2]  

[C2H7N6]+[NO3]- (s) → 2/x Cx (g) + 7/2 H2 (g) + 7/2 N2 (g) + 3/2 O2 (g) [3]  

[C2H7N6]+[N(NO2)2]- (s) → 2/x Cx (g) + 7/2 H2 (g) + 9/2 N2 (g) + 2 O2 (g) [4]  

C2H6N7 (g) → C2H6 (g) + 3N2 (g) [5]  

CH4N6 (g) + HClO4 (g) → CO2 (g) + 3N2 (g) + 2 H2O (g) + HCl (g) [6]  
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Table 4.6. Thermochemical Results of the Synthesized Salts 59a, 59b and 61b-d. 
 abcdefa Ωb  

[%] 
 ρc   

[g/cm3] 
°∆ Hf

d °∆ .calcc H e °∆ .calcE H f .expUc∆ g °∆ .expHc
h Tm

i Td.i 

2aj 156103 -14.7 1.727 +60.7 -1993 -1245 -311 -1888 138 168 
2b 156014 -5.5 1.902 +45.9 

(+40.4) 
-1036 -928 -199 -972 97 192 

7b 276103 -40.6 1.506 +41.7 
(+41.2) 

-2645 -1039 -439 -2456 121 181 

7c 276304 -25.3 1.719 +92.1 
(+91.1) 

-2346 -1179 -478 -2135 85 184 

7d 276300 -76.4 1.417 +161.6 
(+161.5) 

-3744 -1028 -570 -3594 135 137 

a Encoded formula. b Oxygen balance. c Calculated density from X-ray structure. d Calculated molar enthalpy of formation in kcal 
mol-1 using G2 (G3) method. e Calculated molar enthalpy of combustion in cal g-1. f Calculated molar enthalpy of detonation in cal g-

1. g Experimental constant volume combustion energy in kcal mol-1. h Experimental molar enthalpy of combustion in cal g-1. i From 
DSC experiment (β = 10°C min-1), Tm (melting point), Td  (peak maximum temperature of the decomposition step), °C. j From Ref 
[7c]. 
 

The corresponding lattice enthalpies, LH∆ for salts MpXq, were derived from UPOT using the 

relationship provided by Jenkins et al. (eq. 1): 

 

RTnqnpUH XMPOTL ]22/()22/([ −+−+=∆  (eq. 1)  

 
where nM and nX depend on the nature of the ions, Mp+ and Xq-, and are equal to 3 for 

monoatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions.61  The 

equation for lattice potential energies UPOT (eq. 2) has the form  

 

])([2][ 3
1

1 βα +=
−−

mPOT VIkJmolU  (eq. 2)  

 
where α = 117.3 and β = 51.9 according to the stoichiometry of the salts 59b, 61b, 61c and 61d 

(MpXq; p = p = 1; I = ½(pq2-qp2) = 1).  Vm is the molecular volume (Vm = V/Z).  With the 

calculated enthalpies of reaction [5] and [6] and the experimentally known enthalpies of formation 

for HNO3 (g), HN3 (g), HN(NO2)2 (g, calcd.),62 C2H6 (g), CH4 (g), and N2 (g) (∆fH° (exp.); 

Appendix A Table A-8) and proton affinities (PA; Appendix A Table A-8), also calculated with G2 

and G3 methods, it was possible to calculate the standard enthalpies of formation for the salts 59b, 

61b, 61c and 61d.  Using the so obtained values for the enthalpies of formation and the literature 

values for the enthalpy of formation of H2O (l) (∆fH°(H2O) = -68.1 kcal mol-1)63,64, CO2 (g) 

(∆fH°(CO2) = -94.2 kcal mol-1)65, and HCl (g) (∆fH°(HCl) = -22.3 kcal mol-1)64, it was also 

possible to calculate the enthalpies of the (oxygen) combustion of the salts 59b, 61b, 61c and 61d  

according reaction [7]-[10]. 
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 [CH5N6]+[ClO4]- (s) → CO2 (g) + 2 H2O (l) + 3 N2 (g) + HCl (g) [7]  

 [C2H7N6]+[N3]- (s) + 15/4 O2 → 2 CO2 (g) + 7/2 H2O (l) + 9/2 N2 (g) [8]  

 [C2H7N6]+[NO3]- (s) + 9/4 O2 → 2 CO2 (g) + 7/2 H2O (l) + 7/2 N2 (g) [9]  

 [C2H7N6]+[N(NO2)2]- (s) + 7/4 O2 → 2 CO2 (g) + 7/2 H2O (l) + 9/2 N2 (g) [10]  

 
 Table A-8 (Appendix A) summarizes the thermochemical data needed for the calculations of 

the heats of formation of compounds 59b, 61b, 61c and 61d.  Table 4.6 shows a comparison of the 

experimentally determined and calculated heats of combustion (on the basis of the Born-Haber 

energy cycles, see Scheme 4.7) for the salts 59b, 61b, 61c and 61d. Typical experimental results 

(averaged over three measurements each) of the constant volume combustion energy ( Uc∆ ) of the 

new salts are given in Table 4.6.  The standard molar enthalpy of combustion ( °∆ Hc ) was derived 

from nRTUH cc ∆+∆=∆ ° ( ∑=∆ inn (products, g) ∑− in (reactants, g); ∑ in is the total molar 

amount of gases in products or reactants).  The obtained values are in reasonable agreement with 

the experimentally determined values with a deviation of less than 9 %, e.g. in the case of 61d, 
°∆ .calccH  and °∆ Hf were calculated to be -3744 kcal g-1 and 161.6 kcal mol-1, respectively which is 

in good agreement with the experimental obtained value of -3594 kcal g-1 ( °∆ .expHc ). 

 

 To determine the decomposition products and to assess more quantitatively the expected 

detonation properties of the salts 59b, 61b, 61c and 61d, the Kistiakowsky-Wilson Rule for salts 

59b and 61c (reaction [11] and [12]) and the modified K-W rule for 7b and 7d (reaction [13] and 

[14], Ω lower then -40%)66 were used to derive together with the experimentally known enthalpies 

of formation of H2O (g) (∆fH°(H2O) = -57.8 kcal mol-1)63,64, CO (g) (∆fH°(CO) = -26.5 kcal mol-

1)65 and HCl (g) (∆fH°(HCl) = -22.3 kcal mol-1)64 the enthalpies of detonation ( °∆ .calcE H ) for the 

salts 59b, 61b, 61c and 61d (see Table 4.6).  

 
[CH5N6]+[ClO4]- (s) → CO2 (g) + 2 H2O (g) + 3 N2 (g) + HCl (g) [11]  

 [C2H7N6]+[N(NO2)2] - (s) → 2 CO (g) + 2 H2O (g) + 9/2 N2 (g) + 3/2 H2 (g) [12]  

 [C2H7N6]+[NO3]- (s) → 1/x Cx + CO (g) + 2 H2O (g) + 7/2 N2 (g) + 3/2 H2 (g) [13]  

 [C2H7N6]+[N3]- (s) → 2/x Cx + 9/2 N2 (g) + 7/2 H2 (g) [14]  
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 2.8.2 Detonation pressures and velocities 

 The expected detonation pressures (P) and detonation velocities (D) were calculated using 

the semi-empirical equations suggested by Kamlet and Jacobs (Eqs. (3) and (4), Table 7).67,68 

 
ϕρ 28 ]10[ KPaP =  [3]  

)1(][ 2/11 ρϕµ BAsmmD +=−  [4]  

 
 For the compounds 59b, 61b, 61c and 61d the calculated detonation pressures lie in the range 

of P = 20.8 GPa (61d, comparable to TNT,69 P = 20.6 GPa) to P = 33.6 GPa (61c, comparable to 

RDX,69 P = 34.4 GPa). Detonation velocities are in the range of D = 7405 m s-1 (61d, comparable 

to nitroglycerin,70 D = 7610 m s-1) to D = 8827 m s-1 (61c, comparable to RDX,70 D = 8750 m s-1).  

In the case of the chloride free salts they correlate well with the increase of density (61d (1.417) < 

61b (1.506) < 61c (1.719) ≈ 59a (1.727)). 

 

 2.8.3 Sensitivity test 

 Impact testing was carried out on a “BAM Fallhammer” in accordance to the BAM Method 

(Chapter I, 2.2.3).71 From Table 4.7, it is obvious that there is a range in impact sensitivities, from 

insensitive for the nitrate 61b (>40 J) to the less sensitive azide 61d (15 J) compared to 59a (9 J), 

59b (7 J) and 61c (7 J).  However, in all cases the salts are less sensitive to impact than the highly 

used dry explosives RDX (5 J), Tetryl (4 J) or the more sensitive PETN (3 J).72 Interestingly, the 

friction sensitivity of the compounds is much higher than expected (Table 4.7).   

Table 4.7. Explosive Properties and Initial Safety Testing of the 
synthesized Salts 59a, 59b and 61b-d. 
 P 

[GPa] 
D 

[m s-1] 
Impacta 

[kg cm]; (Nm) 
Frictionb,c 

2a 33.3 8774 90 (9 J) 192 N (-) 
2b 32.2 8383 70 (7 J) 60 N (+) 
7b 23.4 7682 > 200 (>40 J) 120 N (-) 
7c 33.6 8827 70 (7 J) 24 N (+) 
7d 20.8 7405 150 (15 J) 192 N (-) 

a Insensitive > 40 J, less sensitive ≥ 35 J, sensitive ≥ 4, very sensitive ≤ 3 J. b 

Insensitive > 360 N, less sensitive = 360 N, sensitive < 360 N a. > 80 N, very 
sensitive ≤ 80 N, extreme sensitive ≤ 10 N. c According to the UN 
Recommendations on the Transport of Dangerous Goods (+) indicates: not safe for 
transport, ref  73a. 
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 In the case of the nitrates 59a and 61b and unexpectedly the azide 61d, the friction sensitivity 

- determined with the BAM friction tester (Chapter I, 2.2.3) - lies in the sensitivity range of 

common secondary explosives like RDX (dry, 120 N) or nitrocellulose (dry, 240 N). But the highly 

energetic salt 59b (60 N) should be handled with extreme care, as its friction sensitivity reaches 

values comparable to the very sensitive PETN (dry, 60N).  The dinitramide salt 61c posses the 

highest friction sensitivity with a value of 24 N which is still lower than the very sensitive lead 

azide (10 N). 

 

 2.8.4 Koenen test of 59c  

 HDATNO3 (59c) is a compound with a slightly negative oxygen balance (-14.7 %) and good 

density of 1.727 g cm-3. Figure 4.17 and 4.18 displace the results of the Koenen tests without 

additional oxidizer using two different orifice plates (Figure 4.17 (d = 2mm) and 4.18 (d = 6 mm)). 

In both cases, the test was accompanied with a strong detonation leading in the case of d = 2 mm to 

the occurrence of G type fragmentation and in the case of d = 6 mm to F. 

 

 
Figure 4.17. Koenen test of 59c (d = 2mm) 
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Figure 4.18. Koenen test of 59c (d = 6 mm) 

 

 As it can be depicted from Figure 4.17, the detonation occurred after ~ 4.5 second without 

visible occurrence of the formation of gases. Whereas in the case of the second test, illustrated in 

the second picture (Figure 4.18, left), the formation of huge amount of gases can be seen which are 

approximately ignite after 5.7 seconds before the detonation occurs. 

 

 2.9 Thermal behavior 

 The thermal decomposition of the highly energetic 1,5-diamino-4-methyl-1H-tetrazolium 

nitrate (61b), 1,5-diamino-4-methyl-1H-tetrazolium  dinitramide (61c) and 1,5-diamino-4-methyl-

1H-tetrazolium azide (61d) are interesting with respect to the their thermal behavior investigated 

by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and the results 

are going to presented in the following Chapters. Moreover, the explosion and decomposition 
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products were determined by means of IR spectroscopy, and mass spectrometry and reasonable 

decomposition pathways are discussed. 

 
Table 4.8. Properties of the salts 61b, 61c and 61d related to the DSC and TGA measurements 

 Tm
a Hm∆ b Td.c Tint

d Hmax∆ e purityf Mass lossg 
61b 121 122 181 185 – 

250 
 

2085 > 99% 33% (150-195°C) 
58% (195-275°C) 

61c 85 
(Tg 82 °C)h 

118 184 150 – 
230 

2823 > 98% 90% (150-250°C) 

61d 133 
(133)i 

181j 
(171)k 

137 137 – 
310 

 

916 > 98% 34% (105-160°C) 
36% (160-185°C) 
19% (185-310°C) 

a Melting point (onset) from DSC experiment (β = 10°C min-1), °C. b Enthalpy of melting J g-1. c Decomposition 
temperature (onset) from DSC experiment (β = 10°C min-1), °C. d Range of decomposition, °C. e Heat of 
combustion from maximum exothermic step, J g-1. f According the ASTM protocol E 928 – 96. g from TGA 
experiment (β = 10°C min-1). h Onset of phase transition.  h Melting point (onset) from DSC experiment (β = 10°C 
min-1) in closed Al-container °C. j Indicating a marked degree of sublimation around the melting temperature 
together with the start of the decomposition. k Enthalpy of melting J g-1 determined in closed Al-container. 

 

 2.9.1 DSC and TGA  

 DSC and TGA were used to evaluate the relative thermal stabilities of 61b, 61c and 61d and 

are measured under comparable condition (Al-containers with a hole (1 µm) on the top for gas 

release for DSC measurements). Figure 4.19-4.21 shows the obtained DSC and TGA thermographs 

of these salts. All three compounds have relatively low melting points (61a, mp 121°C (onset); 

61d, 135°C (onset)), with the lowest for the dinitramide salt (61c, 85°C (onset)) and start to 

decompose in the range of  175 – 250°C (2b), 150 – 230°C (2c) and 137 – 310°C (2d). The 

enthalpy of melting, Hm∆ , were found to be 122 (2b), 118 (2c) and 181 (2d) J g-1 (Table 4.8). 

 
Figure 4.19. DSC and TGA thermographs of 61b (β = 10°C/min) 
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Figure 4.20. DSC and TGA thermographs of 61c (β = 10°C/min) 

 
 61b shows three main signals which can be related to the melting, first endothermic signal, 

the main decomposition reaction (second exothermic signal) and third exothermic signal, which 

corresponds to condensation reaction of the residual fragments of the exothermic step. In the case 

of the azide 61d, two endothermic steps indicate a marked degree of sublimation around the 

melting temperature together with the start of the decomposition. Repeating the experiment with a 

closed Al-container with the same heating rate resulted in the coalescence of the two endothermic 

signals into one signal. The main decomposition step of 61d is found in the region of 160 – 220 °C 

and, comparable to 61b, the weak exothermic region (275 – 325°C) also corresponds to 

condensation reactions of residual fragments of the decomposition step.  

 

 

Figure 4.21. DSC and TGA thermographs of 61d (β = 10°C/min) 
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 The DSC curves of the investigated 61c is divided into three parts, the first one corresponds 

to a phase transition region which appears as one small endothermic reaction (Tg = 82 °C), the 

second part shortly after, is related to the melting region of 61c as a endothermic peak. The third 

exothermic peak corresponds to the decomposition reaction.  The purities of the compounds were 

determined to be higher than 98% by the evaluation of the corresponding melting peaks with the 

van’t Hoff equation according ASTM protocol E 928 – 96.73 

 All three salts do not decompose residual free in the temperature range of 50 – 400°C, as the 

mass loss in all case was determined by TGA to be ~ 90% (Table 4.8). The reason for this is found 

in the formation of condensation products with higher molecular mass, e.g. melam, melem or 

melom.74 These products decompose at higher temperatures (> 500°C) to volatile substances like 

cyanamide, hydrogen cyanide and ammonia.75 According to the mass loss derived from the TGA 

experiment, the dinitramide salt (61c) decomposes in one single step, whereas for 61b, two 

decomposition steps are determined and in the case of 61d three (Table 4.8). A closer inspection of 

the decomposition products of these salts reveals in all cases comparable decomposition pathways. 

 
Table 4.9. Maximum exothermic responses of 61b-d as a function of scan 
speed. 

S. no. β (°C/min) Tp (°C) Ea(kcal mol-1) 
Ozawa [28] 

Ea (kcal mol-1)a 
Kissinger [29] 

2b     
1 2 176.55 31.08 ±0.88 31.09 ±0.82 
2 5 186.58   
3 10 195.56   
4 20 205.48   
5 40 216.09   
2c     
1 2 177.12 32.89 ±1.08 32.91 ±1.01 
2 5 186.44   
3 10 195.23   
4 20 204.03   
5 40 214.64   
2d     
1 10 185.14 25.65 ±1.00 25.72 ±0.90 
2 15 190.93   
3 20 194.85   
4 30 201.13   
5 50 211.04   

a Refined Kissinger activation energy according ASTM E 698 – 99 [76]. 
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 2.9.2 Activation Energy 

 Differential scanning calorimetric studies have been carried out at five different heating rates 

(Table 4.9) to calculate the energy of activation by following the methods according the ASTM 

protocol.76 It is observed that the temperature of decomposition increases with the increased 

heating rate of heating of the sample. The calculated activation energy values are in the case of 61b 

and 61c comparable and have been found to be 31.1 kcal mol-1 (61b, Ozawa) and 32.9 kcal mol-1 

(61c, Ozawa), respectively. Compared to this, the activation energy of 61d was estimated to be 

26.7 kcal mol-1 (Ozawa). The activation energy values suggest that 61c is more thermally unstable 

than 61b and 61c indicating a different decomposition pathway, when compared in terms of 

calculated activation energies. The refined values of the activation energy obtained according the 

Kissinger method show an excellent correlation (Table 4.9). 

 
Table 4.10. Observed mass (m/z) in the decomposition 
experiments of 61d 

m/z 61b 61c 61d  
126 x x x (H2NCN)3 
81 x x  (HCN)3 
69 x x x 1,2,4-Triazole 
57 x x x MeN3, H2NNCNH
56  x   
54 x   (HCN)2 
46 x   MeONO2

* 
44 x x  CO2, N2O 
43   x HN3 
42   x H2NCN 
32 x   CH3OH 
30 x x  NO, H2CO 
29   x  
28 x x x CO, N2 
27 x  x HCN 
18 x x  H2O 
17 x x  NH3 
15   x  
14 x x x  

* mass peak not observed 

 

 2.9.3 Decomposition experiments 

 Possible decomposition scheme for 61d 

 The typical products detected during the decomposition of the azide 61d (by means of IR and 

mass spectrometry) are HN3 (m/z 43), NH4N3, HCN (m/z 27), NH3 (m/z 17), MeN3 (m/z 57), N2 
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(m/z 28) and traces of 1,2,4-triazole (m/z 69) (Table 4.10). Two distinctive temperature regimes 

have been identified for the decomposition of 61d. As it is typical for ammonium salts of hydrazoic 

acid, the release of HN3 starts at comparably low temperature and in the case of 61d, the 

appearance of HN3 in the IR spectra was already observed at about 60°C (Figure 4.22). This is not 

consistent with the TGA experiment where this temperature was determined to be ~ 105°C. One 

explanation for this observation is that the thermodynamic conditions for both experiments are 

different with respect to pressure. The IR experiment was carried out by thermal heating with a 

pressure of 5 µbar, whereas the TGA experiments had nitrogen as purge gas (20 mL min-1). The 

mass loss of the first step was determined to be ~ 34% which is in excellent agreement with the 

reaction process shown in Scheme 1 for the first step, the release of HN3. 

 

 

Figure 4.22. Gas phase IR spectrum of the decomposition products of 61d 
 

 The 1-amino-4-methyl-5-imino-4,5-dihydro-1H-tetrazole (60) which remains after the 

evolution of the HN3 decomposes under thermal stress to methyl azide (62) and the 

aminocyanamide (63), and this process also coincidences well with the observed mass loss of 36% 

(Table 4.9, Scheme 4.8, I) for the second step. In accordance with the observation of Levchik et 

al.77 the trimerization product of 63, 2,6,6-trihydrazino-1,3,5-triazine (64), was not detected as it is 

unstable at high temperatures and partially decomposes under ring-narrowing with the formation of 

1,2,4-triazole (65).78 
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Scheme 4.8. Possible decomposition pathway of 61d. 

 

 In the small amount of solid residue of the decomposition experiments, triazine structures 

crosslinked by -NH- could be identified by means of IR spectroscopy. The thermal decomposition 

residues after the third stage of weight loss (~ 10%) have IR spectra similar to those of the products 

of thermal decomposition of 5-aminotetrazole, showing characteristic absorptions (3400-3100, 

1670-1350, 810 and 780 cm-1) of condensed crosslinked melamine derivatives.79 The other possible 

decomposition route of 63 is the decomposition to HCN (67) under the formation of the 

corresponding unstable nitrene (66). 67 was also identified in the IR spectrum of the explosion 

products of 61d (Figure 4.22). 

 The TGA results are also in very good agreement with stepwise decomposition determined 

by IR spectroscopy. The identification of the decomposition gases allows the evaluation of the 

chemical processes during the thermal degradation of 61d. Figures 4.23 show those decomposition 

gases detected by IR spectroscopy and released during heating of 61d from 30 to 190°C. 

Ammonium azide (68) is produced from the recombination of ammonia NH3 and HN3, which is 

subsequently produced during the decomposition of 61d and illustrates the descent of the 
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intensities of the bands of HN3 in the IR spectra (Scheme 4.8, II,  Figure 4.23) at temperatures 

higher than 150°C. 68 was identified in the obtained sublimate. The mechanism for the 

decomposition of 60 becomes predominant as indicated by the increasing band around 2050 cm-1 

which belongs to MeN3 (62) (Figure 4.23). The vibrational frequencies of the experimentally 

observed IR-active gases are summarized in Table 4.11.  

 
Figure 4.23. Infrared spectroscopic evolved gas analysis of 61d 

 

Table 4.11. Vibrational frequencies (cm-1) of the experimentally observed molecules in the gas phase 
Species Frequencies ref 

HN3 3336 (m), 2140 (vs), 1264 (m), 1151 (vs), 607 (w), 607 (vw) [80] 
MeN3 2940 (m), 2818 (w), 2539 (vw), 2198 (s), 2104 (vs), 1466 (vw), 1450 (vw), 1284 (s), 

920 (w), 676 (w) 
[81] 

NH3 3336 (m), 1626 (s), 968 (vs), 933 (vs) [82] 
HCN 3311 (s), 2097 (w), 712 (vs) [80] 
MeONO2 2959 (m), 2917 (m), 1678 (vs), 1661 (vs), 1442 (m), 1430 (m), 1296 (s), 1287 (s), 

1278 (s), 1017 (s), 862 (s), 855 (s), 853 (s), 844 (s) 758 (m), 658 (m) 
[83] 

N2O 3891 (w), 3480 (m), 2809 (w), 2591 (m), 2488 (m), 2457 (vs), 2217 (vs), 1890 (w), 
1302 (vs), 1275 (vs), 1183 (m), 1155 (m), 694 (w), 588 (w) 

[84] 

CO2 3716 (w), 3609 (w), 2326 (vs), 741 (m), 667 (vs) [85] 
CO 2179 (vs), 2114 (vs) [85] 
H2O 3657 (s), 1595 (s) [80] 
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 Possible decomposition scheme for 61b 

 The thermal decomposition of 61b under reduced pressure in the temperature of 140 to 

300°C is shown in Figure 4.24. 61b melts at 121°C, and the melt is stable up to 190°C where 

shortly after, in accordance to the DSC experiment, decomposition occurs and a broad exothermic 

peak in the DSC, and a sudden rise of gaseous products in the IR spectra indicates a spontaneous 

decomposition. In comparison to AN, 61b shows a comparable decomposition region of ~ 185 – 

250 °C (AN 210°C and 260°C) which leads in contrast to AN to the formation of MeONO2 (70) 

(m/z 46, no mass peak observed) and only as a minor process to the formation of HNO3 (69, m/z 

63)86 (Scheme 4.9). 

 
Figure 4.24. Infrared spectroscopic evolved gas analysis of 61b 

 

 Compared to 61d and AN, in the case of 61b the main processes involve a methyl group 

transfer to 55 and methyl nitrate (70) and not a proton transfer to 69 (HN3 in the case of 61d) and 

60 (Scheme 4.9, I). The main process observed is the formation of 70 (m/z 46, no mass peak 

observed), which was found to be the major product (Figure 4.25) in the IR spectra of the 

explosion products as well as in the spectra of the decomposition experiments and could also be 

identified in the mass spectrometry experiments (Figure 4.26). Interestingly, under this reaction 
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condition, the decomposition pathway discussed in 74, which involves the imino form of DAT (55), 

undergoes not the decomposition with the evolution of HN3 (this was found in the case of 61d), but 

rather eliminates nitrogen from DAT (55) (Scheme 4.9, II). 

 

Figure 4.25. Gas phase IR spectrum of the decomposition products of 61b 
 
 The resulting unstable nitrene (71) decomposes to HCN, NH3 and N2 according Scheme 4.9 

and in a minor process to cyanamide which is less stable and dimerizes to dicyandiamide that 

reacts through an intermediate to melamine (72).87  

 

Figure 4.26. Mass spectrum of the decomposition products of 61b 
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 Cyanamide as gaseous product was also identified in the IR spectrum (Figure 4.25) but in the 

gas phase cyanamide decomposes to NH3, N2 and HCN and was therefore not detected in the mass 

spectrum due to the hot ionic source. 

 

 

Scheme 4.9. Possible decomposition pathway of 61b 

 The hydrogen cyanide undergoes in situ cyclotrimerization to the 1,3,5-triazine (73) (m/z 81, 

Figure 4.26), which is known to proceed under harsh condition 88 and was also identified in the IR 

as well as mass spectrum (Figure 4.25 and 4.26). In the case of 61b only small amount of MeN3 

indicate the partly decomposition of 55 according to Scheme 4.9 (II) resulting from a proton 

transfer. Nitric acid and MeN3 were found as components in the mass spectra of the residual 

explosion products in small quantities. 

 The 1,2,4-Triazole (65), 1-amino-4-methyl-5-imino-4,5-dihydro-1H-tetrazole (60), 1,5-

diamino-1H-tetrazole (55),  1,3,5-triazine (73) and  melamine (72)  could  be  identified by means 

of  13C NMR spectroscopy (Figure 4.27) and were found in the residue of the decomposition 

experiments.  Ammonium nitrate (74), resulting from the recombination of HNO3 and NH3, was 
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identified as one component of the obtained sublimate (Scheme 4.9, III) and explains the low 

concentration of ammonia. The thermal decomposition of 70 above 200°C leads to the formation of 

CH2O (m/z 30), CH3OH (m/z 32), H2O (m/z 18), CO (m/z 28), NO (m/z 30) and NO2 (m/z 46) 

(Scheme 4.7, IV).89 The thermal decomposition of AN during explosion processes leads to the 

formation of N2O (75) (m/z 44) and H2O (m/z 16) and explains the occurrence of 75 in the IR 

spectrum (Scheme 4.9, V). 

 

Figure 4.27. 13C-NMR spectra of decomposition products of 61b recorded in [d6]-DMSO 
 

 Possible decomposition scheme for 61c 

 Compared to 61b, 61c (melting point 85°C) shows a relatively stable melt up to ~ 150°C 

where shortly after, also in accordance with the DSC experiment, decomposition occurs, and a 

broad exothermic peak in the DSC and a sudden rise of gaseous products in the IR spectra indicates 

a spontaneous decomposition in one step. The thermal decomposition of 61c under reduced 

pressure in the temperature range from 40 to 220°C is depicted in Figure 4.28. Typical products 

observed during the decomposition of 61c are N2O (75) as the main product, MeN3 (62), MeONO2 

(70), 1,3,5-triazine (73), HCN (67), NH3 and H2O (Figure 4.29, Table 4). 

 The thermal decomposition is initiated by a proton transfer to subsequently produce 

dinitraminic acid HN3O4 (76) in the melt. According to 90, 76 decomposes under formation of N2O 
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(75) and HNO3 which produces 61b from the recombination of 55 and HNO3. This reaction 

process is shown in Scheme 4.10 (I) and explains the obtained decomposition products which are 

similar to those of 61b. No evidence, whether from the explosion experiments or the 

decomposition experiments, was found for the formation of DAT (55) (Scheme 4.10, II) and 

methyldinitramide (77). 

 
Figure 4.28. Infrared spectroscopic evolved gas analysis of 61c 

 

 

Figure 3.29. Gas phase IR spetrum of the decomposition products of 61c 
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 Interestingly, during the decomposition of 61c, the formation of NO2 was not observed which 

exclude the favored mechanism of decomposition of HN3O4 (76) to NO2 (78) and HNNO2 (79) 

according 91 at higher temperatures (Scheme 4.10, III). 

 

 

Scheme 4.10. Possible decomposition pathway of 61c 

 

 2.10 Conclusion 

 The new synthesis of DAT (55) provides a new and easier approach to the highly energetic 

salts 59a, 59b and 61b-c.  All new salts exhibit good to reasonable physical properties, like high 

densities (> 1.50 g cm-3), good thermal stabilities, and distinctive melting points around 100 °C.  

Depending on their properties, these salts can be seen as new examples of secondary explosives 

(59a, 61b, ~ 61d) or as primary explosives (61c and 61d).  All compounds show calculated 

detonation velocities and detonation pressure comparable to those of high explosives such as 

PETN, RDX or HMX.  The molar enthalpies of formation of the new salts were calculated from 

the combustion energy obtained from corresponding oxygen bomb calorimetric measurements and 

show in all cases high combustion energies and high molar enthalpies of formation.  From a closer 

inspection of the crystal structure, the intermolecular hydrogen bonding plays an important role for 

the crystal packing, and together with the formalism of graph-set analysis of hydrogen-bond 

patterns, interesting results could be derived. The novel salts 61b, 61c and 61d of 1-amino-4-

methyl-5-imino-4,5-dihydro-1H-tetrazole (60) are new energetic materials with high nitrogen 
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content. 61c is very sensitive to friction but shows a reasonable stability toward impact. According 

the UN guideline ST/SG/AC.10/11, 61c is not safe for transport but prilling of 61c might increase 

the stability toward friction. The predicted detonation performance is higher than those found for 

RDX and the oxygen balance is in a reasonable limit. Therefore, 61c might find application in 

liquid monopropellants, similar to HAN 92 and ADN 93 monopropellants. 61b and 61c are quite 

promising new materials, too, which might find application also as a supplement in 

monopropellants (61b) or as a new promising material for gas generating mixtures (61b, 61c and 

61d). Mass spectrometry and IR spectroscopy were used to identify the gaseous products. The 

decomposition appears in the cases of 61c and 61d to be initiated by a proton transfer to form the 

corresponding acid HN3 and HN3O4, whereas in the case of 61b, a methyl group transfer to 

MeONO2 is observed as initial process. The gaseous products after the exothermic decomposition 

are comparable and are in agreement of the proposed decomposition pathways. The decomposition 

temperatures of 61b and 61c are significantly higher than that of 61d and were supported by 

evaluation the values of the activation energy according to the method of Ozawa and Kissinger. All 

three compounds showing distinctive decomposition pathways which lead in the case of 61b and 

61c to the same products and in the case of 61d predominately to the formation of HN3 and MeN3. 

In all cases the major gaseous decomposition products are still highly endothermic compounds. 

 

 2.11 Experimental 

 CAUTION: Silver azide, silver dinitramide, aminotetrazoles and their derivatives are 

energetic materials and tend to explode under certain conditions.  Appropriate safety precautions 

should be taken, especially when these compounds are prepared on a larger scale.  Laboratories 

and personnel should be properly grounded, and safety equipment such as Kevlar® gloves, leather 

coat, face shield and ear plugs are necessary, especially in the case of 61c a. 61d. 

 

 All chemical reagents and solvents of analytical grade were obtained from Sigma-Aldrich 

Fine chemicals Inc. and used as supplied.  MeCN, MeOH and EtOH were dried according known 

procedures, freshly distilled and stored under nitrogen.  Silver azide and silver dinitramide29 were 

prepared according to known procedures.  The 1H, 13C and 14N/15N NMR spectra were recorded on 

a JEOl Eclipse 400 instrument.  The spectra were measured in [d6]-DMSO or CD3OD at 25°C.  

The chemical shifts are given relative to tetramethylsilane (1H, 13C) or nitromethane (14N/15N) as 
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external standards.  Coupling constants are given in Hz.  Infrared (IR) spectra were recorded on a 

Perkin-Elmer Spektrum One FT-IR instrument as KBr pellets at 20°C.  Raman spectra were 

recorded on a Perkin Elmer Spectrum 2000R NIR FT-Raman instrument equipped with a Nd:YAG 

laser (1064 nm).  The intensities are reported in % relative to the most intense peak and given in 

parenthesis.  Elemental analyses were performed with a Netsch Simultanous Thermal Analyser 

STA 429.  Melting points were determined by differential scanning calorimeter (Perkin-Elmer 

Pyris 6 DSC, calibrated by standard pure Indium and Zinc). Measurements were performed at a 

heating rate of β = 10°C in closed Al-containers with a hole (1 µm) on the top for gas release with 

a nitrogen flow of 20 mL min-1. The reference sample was an Al-container with air. 

 

 Synthesis of 1,5-Diamino-1H-tetrazole (55).  A solution of diaminoguanidinium chloride 

(1.507 g, 12 mmol) in 20 mL of water and 0,5 mL conc. HCl (37 %) was cooled to 0°C (some solid 

reprecipitated).  A solution of sodium nitrite (830 mg, 12 mmol) in 5 mL water was added slowly 

keeping the temperature at 0-2°C.  The solution obtained was allowed to stand in ice-water for 30 

minutes.  It was then brought to pH 8 with solid sodium carbonate and stirred for 20 minutes at 

40°C and subsequently evaporated to dryness under vacuum (water aspirator) in a stream of pure 

nitrogen.  The residue was extracted with hot EtOH (3 x 15 mL) leaving after evaporation pure 1,5-

diamino-1H-tetrazole which was recrystallized from water (700 mg, 7 mmol, 58 %);  m.p. 185-187 

°C;  IR (KBr, cm–1): ν~ = 3324 (vs), 3237 (s), 3154 (s), 1656 (vs), 1632 (sh), 1576 (m), 1329 (s), 

1134 (vw), 1109 (m), 1076 (m), 1001 (m), 932 (m), 788 (vw), 745 (w), 699 (w), 686 (m), 626 (sh), 

603 (m), 487 (vw);  Raman (200mW, 25 °C, cm–1): ν~ = 3323 (12), 3244 (11), 3154 (9), 1670 (9), 

1623 (5), 1547 (19), 1496 (5), 1329 (14), 1307 (18), 1133 (3), 1106 (14), 1978 (11), 1001 (5), 951 

(4), 792 (100), 698 (15), 323 (24), 231 (13), 140 (18);  1H NMR ([d6]-DMSO) δ: 6.35 (s, NH2), 

6.40 (s, NH2); 13C NMR ([d6]-DMSO, 25°C) δ: 155.0;  15N NMR ([d6]-DMSO, 25°C) δ: -5.5 

(N3), -20.8 (N2), -97.5 (N4), -167,8 (N1-NH2), -315.2 (N1-NH2, 1JNH = 74.6 Hz), -338.3 (C-NH2, 
1JNH = 87.9 Hz); MS (DEI, 70 eV, >5%); m/z (%): 101 (1) [M+ + 1], 100 (9) [M+], 75 (2), 56 (2), 

44 (6), 43 (100), 42 (11), 41 (3), 32 (4), 31 (3), 30 (23), 29 (16), 28 (24), 27 (11), 26 (1), 18 (5), 17 

(5), 16 (5), 13 (1);  CH4N6 (100.08): calcd. C, 12.0; H, 4.0; N, 84.0 %; found: C, 12.1; H, 3.9; N, 

83.7 %. 
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 Synthesis of 1,5-Diamino-1H-tetrazolium nitrate (59a).  (Method 1) 55 (1000.8 mg, 10 

mmol) and 1.4 mL of conc. HNO3 (65 %) were gently heated to give a clear solution.  Upon careful 

addition of Et2O (20 mL) to this solution, the product separated as white precipitate.  The 

precipitate was filtered and washed several times with Et2O to give 59a (1.50 g, 9.2 mmol, 92 %).  

Recrystallisation from EtOH/H2O yielded 59a as colorless plates.  (Method 2)9 2 (20g, 0.2 mol) 

was dissolved at 70 °C in a solution of 35 mL conc. HNO3 (65 %) and 20 mL H2O.  After cooling 

to room temperature, the solution was left at 5 °C for crystallization.  After filtration the product 

was washed with cold EtOH and dried in vacuo over P4O10 (30.5 g, 18.7 mmol , 93%);  m.p. 138-

139 °C;  IR (KBr, cm–1): ν~ = 3425 (s), 3341 (s), 3146 (w), 2961 (w), 2841 (w), 2806 (vw), 2659 

(w), 2472 (vw), 2346 (vw), 1726 (s), 1649 (vw), 1609 (w), 1494 (m), 1436 (w), 1384 (vs, NO3-), 

1305 (s), 1107 (m, 1039 (s), 976 (m), 841 (m), 728 (w), 710 (m), 660 (vw), 475 (m);  Raman 

(200mW, 25 °C, cm–1): ν~ = 3342 (6), 2997 (1), 1735 (1), 1567 (13), 1488 (7), 1465 (8), 1400 (4), 

1342 (9), 1092 (7), 1057 (30), 1042 (100, NO3
-), 745 (57), 730 (9), 718 (9), 401 (13), 151 (18), 136 

(11), 119 (9);  1H NMR (CD3OD) δ: 5.14 (s, -NH, NH2); 13C NMR (CD3OD, 25°C) δ: 151.2;  14N 

NMR (CD3OD, 25°C) δ: -11.6 (NO3
-),  -27.0 (N3, N2, ∆ν1/2 = 1503 Hz), -164 (N1-NH2, N4-H,  

∆ν1/2 = 1271 Hz), -343 (N1-NH2, C-NH2 ∆ν1/2 = 1329 Hz);  15N NMR (CD3OD, 25°C) δ: -11.6 

(NO3
-), -21.9 (N3), -33.1 (N2), -164,8 (N1-NH2), -170.4 (N4-H), -319.6 (N1-NH2), 333.3 (C-NH2);  

m/z (FAB+, xenon, 6keV, m-NBA matrix) 101 [DAT+H]+;  m/z (DEI) 100 [(M -HNO3) (9)], 45 

(21), 44 (5), 43 (100), 42 (11), 41 (4), 30 (22), 29 (15), 28 (25), 27 (9); CH5N7O3 (163.10): calcd. 

C, 7.4; H, 3.1; N, 60.1 %; found: C, 7.3; H, 3.1; N, 59.8 %. 

 

Synthesis of 1,5-Diamino-1H-tetrazolium perchlorate (59b).  (Method 1) DAT 55 

(1000.8 mg, 10 mmol) and 502 µL of HClO4 (70 %) were gently heated to give a clear solution.  

This solution was washed five times with Et2O (10 mL).  The resulting aqueous phase was 

overlayered with Et2O (20 mL) and left for crystallization.  After 1 week the perchlorate 59b starts 

to crystallize as large colorless plate (1.90 g, 9.5 mmol, 95 %).  (Method 2) A Schlenk flask was 

loaded with 55 (1000.8 mg, 10 mmol) and dry methanol (15 mL) was added via a syringe. 

Concentrated perchloric acid (837 mg, 10 mmol, 70%) was carefully added. The colorless 

homogenous reaction mixture was stirred for one hour at ambient temperature. Excellent crystals 

were formed from concentrated methanol solution layered with diethyl ether (1.85 g, 9.3 mmol, 93 

%). m.p. 97-98 °C; (KBr, cm-1): ν~ = 3416 (s), 3319 (s), 3151 (s), 3094 (s), 1718 (vs), 1616 (m), 

1563 (w), 1509 (vw), 1338 (m), 1290 (m), 1145 (vs), 1109 (vs), 1090 (vs), 1013 (m), 941 (m), 781 

(vw), 756 (m), 703 (m), 688 (m), 653 (m), 636 (s), 627 (s), 572 (m);  Raman (200mW, 25 °C, cm–
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1): ν~ = 3295 (4), 3219 (3), 1725 (4), 1637 (6), 1585 (3), 1512 (6), 1445 (7), 1316 (19), 1134 (8), 

1076 (7), 1036 (7), 1004 (6), 926 (100), 785 (64), 689 (9), 626 (18), 462 (27) 456 (27), 305 (22), 

257 (7), 141 (15);  1H NMR (CD3OD, 25°C) δ: 5.21 (s, -NH, NH2);  13C NMR (CD3OD, 25°C) δ: 

149.7;  14N NMR (CD3OD, 25°C) δ: -30 (N3, N2, ∆ν1/2 = 1936 Hz), -179 (N1-NH2, N4-H,  ∆ν1/2 = 

1329 Hz), -346 (N1-NH2, C-NH2, ∆ν1/2 = 1214 Hz);  15N NMR (CD3OD, 25°C) δ: -20.5 (N3), -

36.6 (N2), -169.4 (N1-NH2), -177.5 (N4-H), -317.9 (N1-NH2), 329.6 (C-NH2);  35Cl NMR 

(CD3OD) δ: 1.01 (s, ClO4
-);  m/z (FAB+, xenon, 6keV, m-NBA matrix) 101 [DAT+H]+;  

CH5N6ClO4 (200.54): calcd. C, 5.6; H, 2.5; N, 41.9 %; found: C, 5.9; H, 2.8; N, 41.5 %. 

 

 Synthesis of 1,5-Diamino-4-methyl-1H-tetrazolium iodide (61a).  To a solution of 55 

(1.50 g, 15 mmol) in 50 mL of MeCN was added an excess of MeI (6.4 mL, 90 mmol) and 

refluxed for 14h.  The color of the reaction mixture turned from colorless to deep red.  Colorless 

crystals start to separate from the cold solution after 5 days (750 mg, 20 %).  Another crop of the 

product was obtained by evaporation of the mother liquor in vacuo to half of its volume (2,4 g, 66 

%);  Total yield (86 %). (KBr, cm-1): ν~ = 3215 (s), 3068 (s), 1702 (vs), 1613 (m), 1571 (w), 1445 

(w), 1426 (w), 1392 (m), 1368 (w), 1245 (w), 1197 (w), 1117 (w), 1031 (m), 1001 (w), 913 (vw), 

787 (w), 773 (w), 707 (vw), 671 (vw), 634 (w), 606 (w), 586 (m), 528 (w);  Raman (200mW, 25 

°C, cm–1) ν~ = 3243 (19), 3168 (20), 3020 (7), 2940 (25), 1700 (6), 1613 (6), 1572 (7), 1524 (6), 

1445 (5), 1424 (5), 1390 (11), 1369 (24), 1190 (5), 1116 (6), 1025 (13), 998 (4), 788 (64), 602 (15), 

545 (5), 412 (6), 308 (9), 292 (11), 275 (7), 182 (11) ;  1H NMR ([d6]-DMSO, 25°C) δ: 3.84 (s, 

CH3), 7.01 (s, C-NH2), 8.97 (s, N-NH2) ;  13C NMR ([d6]-DMSO, 25°C) δ: 39.9 (CH3), 148.0 (C);  
15N NMR ([d6]-DMSO, 25°C) δ: -24.2 (N3), -35.5 (N2), -167,8 (N1-NH2), -215.6 (N4-Me), -309.1 

(N1-NH2), 320.0 (C-NH2);  m/z (FAB+, xenon, 6keV, m-NBA matrix): 115 [MeDAT]+;  C2H7IN6 

(242.02): calc. C, 9.9; H, 2.9; N, 34.7 %; found: C, 9.8; H, 2.9; N, 34.8 %. 

 

 Synthesis of 1,5-Diamino-4-methyl-1H-tetrazolium nitrate (61b). To a solution of 61a 

(1.21 g, 5 mmol) in 15 mL of MeOH/MeCN (1:1) was added AgNO3 (0.85 g,  5 mmol) and stirred 

for 30 min in the dark.  After removal of AgI the solvents were evaporated in vacuo and the residue 

recrystallized from MeOH/Et2O (728 mg, 4.7 mmol, 93 %).  m.p. 121-122 °C;  IR (KBr, cm-1): ν~ = 

3406 (vw), 3256 (w), 3216 (m), 3045 (s), 1699 (vs), 1614 (m), 1584 (vw), 1384 (vs; - NO3
-), 1356 

(vw), 1261 (w), 1198 (w), 1115 (w), 1036 (m), 1006 (w), 911 (m), 832 (w), 787 (vw), 774 (m), 670 
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(w), 635 (w), 605 (w), 579 (m), 525 (w);  Raman (200mW, 25 °C, cm–1) ν~ = 3312 (5), 3208 (5), 

3046 (4), 2965 (12), 1705 (2), 1634 (4), 1607 (3), 1531 (5), 1459 (5), 1376 (19), 1250 (2), 1122 (4), 

1049 (100), 985 (3), 871 (1), 793 (69), 721 (7), 609 (17), 326 (10), 304 (6), 193 (7), 131 (7);  1H 

NMR (CD3OD, 25°C) δ: 3.92 (s, CH3), 4.87 (s, C-NH2, N-NH2);  13C NMR (CD3OD, 25°C) δ: 

33.6 (CH3), 148.1 (C);  14N NMR (CD3OD, 25°C) δ: -33.0 (N2,N3, ∆ν1/2 = 1600 Hz), -190.6 (N1-

NH2,  ∆ν1/2 = 1480 Hz) -334.0 (N1-NH2, C-NH2 ∆ν1/2 = 910 Hz);  m/z (FAB+, xenon, 6keV, m-

NBA matrix): 115 [MeDAT]+;  m/z (FAB-, xenon, 6keV, m-NBA matrix): 62 [NO3]-;  C2H7N7O3 

(177.15): calcd. C, 13.6; H, 4.0; N, 55.4 %; found: C, 13.4; H, 3.8; N, 55.1 %. 

 

 Synthesis of 1,5-Diamino-4-methyl-1H-tetrazolium dinitramide (61c).  To a solution of 

61a (1.21 g, 5 mmol) in 20 mL of MeCN under N2 was added a solution of AgN(NO2)2 in 15 mL 

of MeCN (1070 mg, 5 mmol).94  After 1 hour the precipitated AgI was removed by filtration and 

the solution concentrated to half of its volume.  The solution was layered with Et2O and kept in the 

refrigerator.  Crystals deposit in the course of one week (940 mg, 4.3 mmol, 85%).  m.p. 85-86°C;  

IR (KBr, cm-1): ν~ = 3335 (s), 3282 (s), 3245 (s), 3198 (s), 3141 (s), 1709 (vs), 1632 (m), 1592 (w), 

1526 (vs), 1422 (vs), 1374 (m), 1322 (m), 1170 (vs, br), 1018 (vs), 961 (m), 944 (m), 819 (m), 791 

(m), 780 (m), 764 (m), 738 (m), 705 (m), 665 (vw), 603 (m), 581 (m), 523 (w);  Raman (200mW, 

25 °C, cm–1) ν~ = 3334 (9), 3284 (11), 3227 (10), 3047 (4), 2966 (12), 1708 (5), 1633 (7), 1589 (6), 

1526 (9), 1402 (14), 1375 (23), 1322 (65), 1252 (4), 1165 (6), 1123 (7), 1049 (35), 1018 (12), 946 

(10), 822 (36), 792 (100), 764 (8), 721 (3), 602 (20), 483 (21), 456 (7), 302 (22), 276 (12), 132 

(21);  1H NMR (CD3OD, 25°C) δ: 3.91 (s, CH3), 4.82 (s, C-NH2, N-NH2);  13C NMR (CD3OD, 

25°C) δ: 34.9 (CH3), 149.3 (C);  14N NMR (CD3OD, 25°C) δ: -12.4 (N(NO2)2
-, ∆ν1/2 = 60 Hz), -

60.4 (N3, N2, ∆ν1/2 = 850 Hz), -189.9 (N1-NH2, N4-Me, N(NO2)2
-
, ∆ν1/2 = 1120 Hz), -334.0 (N1-

NH2, C-NH2 ∆ν1/2 = 950 Hz);  m/z (FAB+, xenon, 6keV, m-NBA matrix): 115 [MeDAT]+;  m/z 

(FAB-, xenon, 6keV, m-NBA matrix): 106 [N(NO2)2]-; C2H7N9O4 (221.14): calc. C, 10.9; H, 3.2; 

N, 57.0 %; found: C, 11.1; H, 3.3; N, 56.4 %. 

 

 Synthesis of 1,5-Diamino-4-methyl-1H-tetrazolium azide (61d).  To a solution of 61a 

(1.21 g, 5 mmol) in 30 mL of H2O was added an excess of AgN3 (1.125g, 7,5 mmol) and stirred for 

24h in the dark.  After removing the excess AgN3 and AgI the water was evaporated in vacuo and 

the residue recrystallized from EtOH/Et2O (616 mg, 4 mmol, 90 %).  m.p. 135-137 °C (decomp.);  
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IR (KBr, cm-1): ν~ = 3264 (s, br), 3118 (s, br), 2939 (s, br), 2036 (vs), 1705 (vs), 1626 (s), 1454 (w), 

1422 (w), 1395 (m), 1372 (w), 1345 (w), 1245 (w), 1191 (w), 1120 (w), 1033 (w), 1004 (w), 911 

(vw), 792 (m), 734 (vw), 683 (s), 628 (m), 601 (w), 534 (w), 467 (w);  Raman (200mW, 25 °C, 

cm–1) ν~ = 3251 (11), 3173 (15), 3012 (9), 2950 (24), 1708 (15), 1604 (17), 1525 (16), 1426 (16), 

1395 (21), 1375 (33), 1340 (33), 1250 (17), 1194 (11), 1122 (14), 1031 (14), 871 (1), 793 (100), 

630 (11), 606 (28), 343 (27), 306 (14), 280 (14), 180 (64) ;  1H NMR ([d6]-DMSO, 25°C) δ: 3.77 

(s, CH3), 4.81 (s, C-NH2), 6.82 (s, N-NH2);  13C NMR ([d6]-DMSO, 25°C) δ: 33.8 (CH3), 147.5 

(C); 14N NMR ([d6]-DMSO, 25°C) δ: -133.2 (Nβ, ∆ν1/2 = 120 Hz), -277.6 (Nα,  ∆ν1/2 = 320 Hz);  
15N NMR (CD3OD, 25°C) δ: -23.5 (N3), -34.7 (N2), -134.4 (Nβ), -169,2 (N1-NH2), -187.4 (N4-H), 

-282.8 (Nα -323.7 (N1-NH2), 331.2 (C-NH2);  m/z (FAB+, xenon, 6keV, m-NBA matrix): 115 

[MeDAT]+;  m/z (FAB-, xenon, 6keV, m-NBA matrix): 42 [N3]-;  C2H7N9 (157.17): calc. C, 15.2; 

H, 4.5; N, 80.2 %; found: C, 15.0; H, 4.5; N, 80.1 %. 

 
 X-ray Analyses.  Crystals were obtained as described above. X-ray quality crystals of 59a 

(CCDC 261253) were mounted in a Pyrex capillary and the X-ray crystallographic data collected 

on a Nonius Mach3 diffractometer with graphite-monochromated MoKα radiation (λ = 0.71073 Å).  

The X-ray crystallographic data for 59b (CCDC 261252), 61a (CCDC 261254) and 61b (CCDC 

261255) were collected on a SIEMENS P4 diffractometer equipped with a Siemens CCD area 

detector, and for 61d (CCDC 261459), data were collected on a Nonius Kappa CCD diffractometer 

using graphite-monochromated MoKα radiation (λ = 0.71073 Å). Unit cell parameters for 59a were 

obtained from setting angles of a minimum of 25 carefully centered reflections having 2θ > 20°; 

the choice of the space group was based on systematically absent reflections and confirmed by the 

successful solution and refinements of the structures. The structures were solved by direct methods 

(SHELXS-86, SHELXS-97)95 and refined by means of full-matrix least-squares procedures using 

SHELXL-93 and SHELXL-97.  Empirical absorption correction by Psi-scans was used for 59b. In 

the case of 59b, 61a and 61b numerical absorption correction by SADABS and for 61d XRed was 

used. Crystallographic data are summarized in Appendix B. Selected bond lengths and angles are 

available in Table 4.3. All non-hydrogen atoms were refined anisotropically.  In the case of 59a the 

hydrogen atoms were included at geometrically idealized positions and refined.  They were 

assigned fixed isotropic temperature factors with the value of 1.2Beq of the atom to which they were 

bonded. The hydrogen atoms of compound 59b, 61a, 61b and 61d were located from difference 

electron-density map and refined isotropically.  In the case of 61a and 61d the hydrogen atoms of 

the methyl group were inserted in idealized position and were refined riding on the atom to which 

they were bonded (fixed isotropic temperature factors with the value of 1.2Beq).   
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C h a p t e r  V  

1,4-BIS-[TETRAZOL-5-YL]-1,4-DIMETHYL-2-TETRAZENES 

 1 Introduction 

 Although the great strength of the nitrogen-nitrogen triple bond relative to the 

corresponding double and single bonds (226 vs. 100 and 38 Kcal, respectively) strongly militate 

against the stability of molecules containing catenated nitrogen systems, a substantial number of 

such structures are in fact known. These range from 3-nitrogen systems such as the azide anion 

(N3
-) and 1,3-disubstituted triazenes (RN=N-NHR) through 4-, 5-, 6-, and 7- to 8- and, in one 

instance, 10-nitrogen chains.1 Whereas the higher parent “hydro-nitrogens” (HxNy) are 

generally unknown, or, at best, dangerously explosive, their substituted analogues frequently 

enjoy much greater stability, particularly when aryl substituents are present (Chapter I, 3). 

Among these systems, the linkage of four nitrogen atoms is of special interest as for example 

many 2-Tetrazenes show unexpected stability. There are five possibilities for the linkage of four 

di- and/or three-coordinated N-atoms to a chain (Figure 5.1). The weakest link in a chain 

always determines the overall strength, so it is imperative to search for target compounds 

devoid of any isolated N−N single bonds that cannot gain partial multiple bond character trough 

resonance with neighboring bonds. Therefore the saturated four-membered chain (Figure 5.1, I) 

and the 1-tetrazene (III) were excluded as base structure of the synthetic target molecules. Note: 

Tetrazene (Chapter I, 1.2) contains motive II (Figure 5.1) as base structure. IV and V has also 

been excluded.  

 

Figure 5.1. Five possibilities for the linkage of four di- 
and/or three-coordinated N-atoms 

 

 2-Tetrazenes were described for the first time in 1878 by E. Fischer,2 and since then have 

attracted considerable attention as a source of aminyl radicals and their products.3,4 The parent 
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compound, N4H4, was generated in 1975 from 1,1,4,4-tetrakis(trimethylsilyl)-2-tetrazene by N. 

Wiberg et al.5 It is isoelectronic with the butadiene dianion, thus representing an electron-rich 

compound. The electronic structure of the planar conformation has three occupied π MOs, of 

which the highest (HOMO) is antibonding. Therefore, the thermodynamically stability of N4H4 

is closely related to the shape of the π MO’s.6,7 2-Tetrazenes are expected to show interesting 

molecular and intramolecular hydrogen bonding, which makes them useful building blocks in 

(supra)molecular structures and nitrogen-rich polymers. 

 

 1.1 Synthesis 

 Tetrazenes can be prepared by the two methods shown in Scheme 5.2. (A) Building of 

nitrogen chains, and (B) exchange of substituents (mutual transformation of tetrazenes). 

 

 

Scheme 5.1. Preparation of tetrazenes 
 

 1.1.1 A: Building of Nitrogen Chains 

 Organic tetrazenes can be formed by the oxidation of 1,1-disubstituted hydrazines (from 

two “N2”-fragments) by various oxidizing agents: Angeli’s salt (Na2ONNO2),8 benzeneselenic 

acid,9,10 quinones,11,12 Br2, I2,13,14 t-BuOCl,15 HgO, MnO2,16,17  KMnO4,18 KBrO3,19 Pb(OAc)4 

etc.20  

Tetrazene formation from inorganic diazenes is a general reaction to yield the 

corresponding silyl derivative 83. Thus, besides Me3Si-N=N-SiMe3 (82), other silyldiazenes 

such as Me3Si-N=N-H, Me3Si-N=N-SiF3 and Me2Si(N=N-SiMe3)2 also react by dimerization 

of the azo system (Scheme 5.2).21 The direct oxidation of the N,N-bis(trimethylsilyl)hydrazine 

(80) does not yield the corresponding 2-tetrazene 83. 80 has to be first transformed to the 
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corresponding lithium derivative 81. Oxidation of 81 to the corresponding diazene 82 with 

subsequently cyclization yields 83. 

 
Scheme 5.2. Preparation of tetrakis(trimethylsilyl)-2-tetrazene 

 

 Another route to tetrazenes (examples given in Scheme 4.3) is the formation of a 

tetrazene adducts which are obtained from the free ligand and an appropriate metal halide. 

These tetrazadiene complexes are usually prepared by the treatment of suitable transition 

metal complexes with organic azides22 or diazonium salts23 and can be converted to the 2-

tetrazene by adding an appropriate electrophile.  

 

 
Scheme 5.3. Tetrazadiene complexes 

 
Beyond these possibilities to form the tetrazenes, it is possible to generate the 

tetrazenes from two “N1” and one “N2” fragments (Scheme 5.4, I) and from one “N3” and 

one “N1” fragments (Scheme 5.4, II).24,25 
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Scheme 5.4. From two “N1” and one “N2” or one “N3” and one “N1” fragment 

 The latter two synthetic routes are very useful to obtain 2-tetrazenes with different 

substitution pattern, depending on the electrophiles and amines being used. 

 

 1.1.2 B: Exchange of substituents 

 Using partially substituted or unsubstituted tetrazenes, e. g. (R3E)4-nN4Hn (n < 4; E = C, 

Si, Ge, Sn; R = (H), Alkyl, Aryl), which can be obtained from the protolysis of the 

corresponding tetrazenes, other tetrazenes are formed by silylation, germylation, stannylation or 

nucleophilic reaction with corresponding aryl-, alkyhalids (Scheme 5.5). By carrying out this 

reaction, it is in many cases advantageous to transform the tetrazenes (R3E)4-nN4Hn to 

tetrazinides (R3E)4-nN4Hn-mLim, which react at low temperatures with corresponding reactand e. 

g. dimethyl sulfate Me2SO4 or halides like R’3EX (E = Si, Ge, Sn; X = halogen)26.  

 

 
Scheme 5.5. Exchange of substituents  
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 1.2 Stability of 2-tetrazenes 

 Investigation on thermolysis and photolysis of Group IV derivatives of 2-tetrazenes show 

that these compounds decompose by free radical mechanism according to Eqs. [1] and [2] 

(Thermolysis Pathways I and II) as well as by non-free radical pathways [3] and [4] 

(Thermolysis Pathways III and IV; Scheme 5.6). The formed radicals abstracts instantly 

hydrogen from the chemical environment or react with reactant tetrazene or their thermolysis 

products. An isomerization of the tetrazene according to a 1,3-migration, photolytic 

transformation of trans- to cis-2-tetrazene and rotation of the azo-bound amino groups about the 

N-N single bond can proceed before or run parallel to the thermolysis or photolysis. The 

activation energies of these thermolysis reactions are often in a comparable range, so that the 

different reactions proceed side by side. The percentage share of the competing decompositions 

of the total thermolysis can be changed significantly by changing the reaction conditions.21a,27 

 

 

Scheme 5.6. Decomposition pathways of 2-tetrazenes 

 

 1.3 1,4-Bis-[1-methyltetrazolyl-5-yl]-1,4-dimethyl-2-tetrazene (84) 

 During the diploma thesis, the permethylated example 84b of the hitherto unknown 1,4-

bis-[tetrazolyl-5-yl]-2-tetrazene (85) (Figure 5.2) was synthesized.28  
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Figure 5.2. 1,4-bis-[tetrazolyl-5-yl]-2-tetrazenes 

 

 1,4-bis-[1-methyltetrazol-5-yl)-1,4-dimethyl-2-tetrazene 84b can be understood as a 

stable hexamere of diazomethane (C6N12H12 = 6*CH2N2) (Figure 5.2). It could be derived from 

a one pot reaction using 1-methyl-5-(methylamino)-1H-tetrazole 86 as starting material29. In the 

first step, 86 is converted to the N-nitrosoamino-1H-tetrazole 87, which is then reduced by 

Zn/CH3COOH to give the corresponding 1,1-substituted hydrazine derivative 88b. A following 

in situ oxidation, with the help of bromine in concentrated acetic acid (Scheme 5.7), gives the 

desired compound 84b. Re-crystallization from acetone/chloroform gave colorless rods suitable 

for single crystal X-ray structure determination. 

 

 

Scheme 5.7. One-pot synthesis of 84 

 

 84b is surprisingly stable and melts without decomposition at 159.8 - 159.9 °C. 84b is 

neither sensitive to friction (state force > 360 N), impact (drop hammer test; state energy > 30 

Nm) nor heat.30 Above 180°C, 84b deflagrates smokeless upon releasing large amounts of N2. 

Moreover, 84b is moderately soluble in several common organic solvents (e.g. chloroform, 

dichlormethane, benzene, acetone and DMSO) upon heating.  

 

 Introducing different substituents might result in new compounds, being suitable as 

phlegmatizers, monomers for energetic polymers or plasticizer, gas generators or primers.31 

New strategies to synthesize corresponding 1-substituted (R = H) and 1,1-substituted hydrazine 
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derivatives are required (88a-d). This project only concentrated on the modification of the 

substituents of the tetrazole moiety (Figure 5.8). The preparation of the parent compound (84a) 

and the introduction of the corresponding allyl (84c) and cyclo-hexyl (84d) groups in 4-bis-[1-

tetrazol-5-yl)-1,4-dimethyl-2-tetrazene were focused and the isolation of the yet not 

characterized methyl substituted hydrazine derivative (88b) (Scheme 5.8).  

 

 

Scheme 5.8. Synthetic targets 

 

 2. Substituted hydrazine derivatives 

 During the investigation of 84b it turned out that the reduction of a corresponding N-

nitrosoaminotetrazoles to the hydrazine derivatives is not suitable to gain high yields of the 

corresponding substituted hydrazine derivatives, and therefore other routs are required.  

 

 2.1 Cyanohydrazines 

 88a was obtained in high yields (72%) by the reaction of 1-cyano-1-methyl-hydrazine 

(89) which in situ formed hydrazoic acid in alcoholic solution. The required cyanohydrazine 96 

was obtained according a modified procedure of Ryckmans et al.32 96 was obtained as a 

colorless oil in a reasonable yield (60%) with sufficient purity by the reaction of MMH (95) 

with BrCN in DCM and Na2CO3 as base. From Scheme 5.9 the reaction sequence can be 

depicted. 96 can be easily identified by means of Raman spectroscopy by its characteristic 

stretching vibration of the CN group at 2208 cm-1.  

 

 

Scheme 5.9. Synthesis of 88a 
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 The reaction of 90 with HN3 gave the desired N-methyl-N-(1(2)H-tetrazol-5-yl)-hydrazine 

88a as monohydrate in moderate yield (less than 40% based on MMH). The reason for the low 

yield was found on the one hand by the loss of product during the separation procedure of the 

hydrazine derivative 90 and on the other hand on the insufficient amount of HN3 which was 

generated in situ by the reaction of conc. HCl and NaN3. As HN3 is very volatile, significant 

quantities of hydrazoic acid was lost while heating the reaction mixture at temperatures greater 

than 65°C through the condenser. Therefore, the procedure was changed in a way that, that the 

isolation of the hydrazine was not necessary and the loss of HN3 negligible. The MMH was 

reacted with cyanogen bromide in EtOH instead of DCM. After formation of the hydrazine, the 

inorganic salts were simply removed by filtration and the alcohol solution treated with excess of 

HN3 under reflux. The tetrazole 88a is obtained as a pure crystalline solid by concentrating and 

chilling the reaction mixture with a good overall yield of 72% (based on MMH). 

 For the substituted tetrazole derivatives 88b, 88c and 88d, in principle, alkylation reaction 

of 88a in form of an alkaline salt should lead to the corresponding tetrazoles on heating with 

appropriate alkyl halides (e.g. MeI, EtI, allyliodide). As already discussed in Chapter II (1.1), 

the reaction of tetrazolates with alkyl halides results in the formation of a mixture of the 5-

substituted-1N (88b-d) and 2-N-alkyl-tetrazoles (91-b) (Scheme 5.10). 

 

 
Scheme 5.10. Alkylation of 88a 

 

 2.2 Thiosemicarbazides 

 Since the use of huge amounts of hydrazoic acid is a hazard which needs to be avoided, 

and since the cyanohydrazines are not suitable for the preparation of the 1,1-substituted 

hydrazine 88b-d, a different method was needed. During the diploma thesis aminotetrazoles 

were prepared from corresponding thioureas.28 Thiosemicarbazides are amino substituted 

thioureas, and therefore it was expected that the reaction analogous to that of the 

aminotetrazoles might yield the corresponding hydrazine derivatives. This was tested for the N-

methyl-N-(1(2)H-tetrazol-5-yl)-hydrazine 88a. Following the reaction sequence Scheme 5.11 

the hydrazine derivative 88a could be obtained starting from the 2-methyl-thiosemicarbazid 92a 
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in 62 % yield. The thiosemicarbazide 92a was converted with MeI to the 2,S-

dimethylisothiosemicarabzide hydriodide (93a) followed by the treatment of the salt 93a with 

NaN3 in boiling EtOH. It is known that isothiorhonium salts can react with an azide source to 

the corresponding tetrazoles.33,34  

 

 
Scheme 5.11. Synthesis of 88a from 2-methyl-thiosemicarbazide 

 Different methods are known for the preparation of substituted thiosemicarbazides. One 

way uses an N-substituted carbamothioic chloride 94 and the monosubstituted hydrazine 89 

yielding 92b (Scheme 5.12, I).35 Another method uses a substituted isothiocyanate 95 and 89 

yielding 96 (Scheme 5.12, II).36 The usage of a MMH (89), CS2, an alkylating agent (yields 97 

as intermediate) and the corresponding amine 98 (Scheme 5.12, III),37 leads, similar to the 

reaction of the substituted isothiocyanate 95 with e.g. an aryl substituted hydrazine 99 (Scheme 

5.12, IV)70, to the formation of the undesired 1,4 substituted thiosemicarbazides 100 and 101. 
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Scheme 5.12. Preparation of substituted thiosemicarbazide 
 

 To avoid undesired side reactions, resulting from a possible Dimroth rearrangement-like 

imidoyl azide-tetrazole ring-chain isomerism of the generated tetrazolylhydrazines (102) 

(Scheme 5.13, I), which is part of the thermal behavior of substituted 1,5-diaminotetrazoles 

(103),38 only 2-methylsubstituted thiosemicarbazides were used. With the substitution at the 2-

position, the possibility of the rearrangement is blocked, leading to a fully regiospecific reaction 

to the desired substituted 5-hydrazinotetrazoles (88a-d) (Scheme 5.13, II). 
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Scheme 5.13. Imidoyl azide-tetrazole ring-chain isomerism  

 

 For the preparation of the thiosemicarbazides 92b-c, a modified procedure of Scovill et al. 

was used (Scheme 5.14).36,39 92a is commercially available. To a cold ethereal solution of the 

corresponding isothiocyanate was added an ethereal solution of MMH. The products separated 

as fine white precipitates giving 89% to 97% yield (92b (92 %), 92c (97 %), 92d (89 %)). The 

colorless solids was purified by washing with cold Et2O; no further purification was required. In 

all cases, the 2,4-substituted products were obtained, which can be explained by the α-effect of 

the hydrazine resulting in the regioselective reaction (Scheme 5.14). 

 

 

Scheme 5.14. Preparation of 1,3-substituted thiosemicarbazides 

 

 In the next step, the thiosemicarbazides 92a-d were transformed to the S-methyl-

isothiorhonium hydriodides 93a-d with MeI in refluxing ethanol. The obtained salts were not 

isolated. After the required reaction time of 4-6 hours (monitored by 1H NMR) the ethanol 

solution of isothiorhonium hydriodides 93a-d were cooled to 40 °C and treated with sodium 

azide (1.5 eq). Note: The cooling is recommended before adding the sodium azide, since it was 

observed that especially in the case of the methyl substituted derivative 93b, an extremely 

exothermic reaction can suddenly occur. After adding the azide, the reaction mixtures were 
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refluxed for 24 hours yielding a ~ 90 % yield of the products in solution (determined by means 

of NMR spectroscopy).  

 

 

Scheme 5.15. Preparation of the substituted hydrazine derivatives 88a-d 

 

 The purification of the products by means of extraction or recrystallization turned out to 

be problematic. The only suitable purification methods are the column chromatography on silica 

gel and for 88b and 88d, sublimation. Although yields were determined to be higher than 90 % 

in solution, only pure product in the range of 45 – 77 % were obtained (Table 5.1). The obtained 

yield for 88a is much lower compared to the method using the cyanohydrazines.  

 
Table 5.1. Yields and mobile phase for the purification of 88a-d 

R product yield [%] mobile phase Rf 
H 88a 45 (72)a EtOH / Et2O      1 : 8 0.36 

Me 88b 54 EtOH / Et2O      1 : 10 0.31 
Allyl 88c 77 DCM / AcOEt   1 : 1 0.33 

cyc-hexyl 88d 56 Et2O / AcOEt    1 : 1 0.33 
a obtained from the cyanohydrazine method 

 

 

 

 2.2.1 Possible mechanism of hydrazine decomposition 

 The highly decreased yields of 88a-d might be explained by the instability of the 

hydrazine derivatives towards oxygen and light, which explains also that the first attempts to 

isolate e.g. 88b by Butler and Scott were unsuccessful.40,41,42 Scheme 5.16 reveals a possible 
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decomposition pathway initiated by oxidation with oxygen to the corresponding hydroperoxide. 

The radical degradation leads over several steps to the diazene I and the substituted 1-(1H-

tetrazol-5-yl)-2-hydroperoxy-1-methylhydrazine II. 

 

 

Scheme 5.16. Oxygen induced formation of diazene I and hydroperoxide II 

 

 Different studies have shown, that hydrazines tend to be easily oxidized in presence of 

elemental oxygen, leading to various products. Considering the great loss of product, using the 

column chromatography for purification, it is obvious that a reaction that degradates the 

hydrazine derivatives, might have happened. Note: The proposed decomposition schemes are 

based on the observation of several by products which could be assigned by means of NMR 

experiments during the work up procedure, especially for 88a and b,  but should only give an 

idea what might have happened also based on observation from others mentioned in literature. 

In the case of 88a and 88b, the corresponding aminotetrazoles (Scheme 5.18, V) were obtained 

(both are also verified by a crystal structure determination, see below). For 88b, the 

corresponding nitroso derivative (Scheme 5.19, VI) could be doubtless identified (Chapter VI, 

I). Beyond the formation of the hydrazones (Scheme 5.17, III), the corresponding tetrazoles 
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(Scheme 5.17, IV), and evidence of the formation of the tetrazenes (Scheme 5.18, 84a-d) were 

observed. Possible reactions to form these side products are given in Scheme 5.17 – 5.19. The 

major gaseous products of the oxidation of the hydrazines were ammonia, nitrogen and 

methane. Taking a look at the appearing intermediates of these reactions, the 

tetrazolylmethyldiazene I plays an important role, resulting from the radical reaction of oxygen 

with the hydrazine derivative shown in Scheme 5.16. Transferring the known oxidation of the 

unsymmetrical dimethylhydrazine43,44 to our system, the formed species given in Scheme 5.16 

could be obtained. By assuming the formation of the tetrazolylmethyldiazene I, the formation of 

numerous products can be understood following the paths given in Scheme 5.17. Besides the 

formation of the hydrazones (III) and the tetrazoles (IV) can be explained referring to the work 

of Sisler et al. (Scheme 5.17).45 

 

 

Scheme 5.17. Methyl group transfer of diazene I yielding III and IV 

 

 A very important side reaction is the possible dimerization of the formed diazenes I to the 

corresponding tetrazenes and the following possible degradation to the aminotetrazoles (Scheme 

3.18, V). That has already been observed by Rademacher et al., investigating aryl substituted  2-

tetrazenes. 46 
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Scheme 5.18. Dimerization of  diazene I  

 Another important reaction is the formation of N-nitrosoamines (Scheme 5.19, VI) and 

water, resulting from the decomposition of II which was reported by Urry.43 A possible base-

catalyzed mechanism is outlined in Scheme 5.19. As also discussed by others, the formation of 

the N-nitrosoamines (VI) in the case of alkylsubstituted hydrazines is very likely and can have 

extreme differences in the magnitude of the yields. It has to be taken great care when 

manipulating these compounds since this class of compounds are known be highly carcinogenic 

and mutagenic. Therefore, the products should be handled cooled and if possible under inert 

atmosphere 

 

 

Scheme 5.19. Formation of nitrosoamines VI  

 

 2.2.2 Properties of 88a-d 

 The compound 88a forms colorless crystals, moderately soluble in water and alcohols like 

MeOH and EtOH. 88a has a high solubility in DMF and DMSO. Recrystallization from 

absolute EtOH provides this compound without crystal water. Suitable single crystals for X-ray 

structure determination were obtained by recrystallization from water and EtOH. 88a is an air 

stable not explosive compound, which decomposes smokeless without explosion at 

temperatures above 185°C. 

 Although compound 88b was meant to be stable only in solution, it was possible to isolate 

it for the first time and perform a full characterization by means of spectroscopic methods as 
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well as single X-ray crystal structure determination. The compound 88b forms colorless crystals 

and is moderately soluble in water, alcohols like MeOH and EtOH, DCM and Et2O. 88b is 

soluble in DMF and DMSO. Suitable single crystals for single X-ray crystal structure 

determination were obtained by recrystallization from DCM. 88b is a stable, not explosive 

compound, which melts at about 82 – 83 °C and can be purified by means of sublimation.  

 

The cyclohexyl derivative 88d and the allyl derivative 88c were also obtained in 

moderate yields. 88c was obtained as colorless oil, which turned slowly red when exposed to 

air and light. Both compounds could also be identified doubtless by means of spectroscopic 

methods. 88c is poorly soluble in Et2O, moderately soluble in EtOH, acetonitrile, water and 

very well soluble in DCM and DMSO, insoluble in n-heptane. 88d is moderately soluble in 

Et2O, and alcohols like EtOH and MeOH, and very good soluble in DCM and DMSO. 88d is 

not explosive and melts from 128 – 130 °C and starts to sublimate without decomposition at ~ 

200 °C. 

 

 2.2.4 Mass spectrometry of 88b 

 Since the mass spectra of 88a and 88b are comparable only the spectrum of 88b is going 

to be discussed in more detail. Enforcement of a DEI+ with compound 88b and MeOH as 

solvent leads to the mass spectrum depicted in Figure 5.3, which contains a strong  molecular 

peak at m/z 128 and a clear [M+1]+-peak, as it is usually for N-alkyl substituted tetrazoles. The 

fragmentation pattern of 88b is very complex. The main processes of this fragmentation can be 

depicted from Scheme 5.20. The peak with the highest intensity is the peak m/z 57, resulting 

from the formation of MeN3 (cleavage d, retro 1,3-dipolar cycloaddition). Surprisingly, the 

fragmentation pathway of the loss of N2 (cleavage c) is for the methyl substituted derivative 88b 

only of minor importance. The relatively weak peaks of m/z 85 and 84, compared with the 

strong peak at m/z 57, are evidence for the existence of this path. The cleavage of MeN3 (d) 

leads in several steps to the peaks at m/z 71, 56, 55, 46, 43 and 42. The α-cleavage of the methyl 

group or hydrazine moiety is responsible for the peaks at m/z 113 and m/z 83. The 

fragmentation of the tetrazole moiety, obtained from the α-cleavage, leads to the peaks at m/z 

83 and m/z 55 that are most probably daughter ions of this reaction. The peak at m/z 113 results 

either from the loss of the methyl group from the tetrazole or hydrazine moiety. The 

fragmentation paths b and c play only a minor role whereas path a (cleavage of N3 radical) is 
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not observed. Summarizing the observation it can be driven that the most important 

fragmentation pathway is: H2NNMe-CN4Me  MeN3 (m/z 57)  MeN2 (m/z 43), and 

H2NNMe-CN4Me  CH3N3 (m/z 57)  CH2N2 (m/z 45), H2N2 (m/z 30), HN2 (m/z 29), N2 (m/z 

28). In all cases, the formed cations are stabilized either by locating the positive charge on the 

nitrogen atom or by a delocalized π-system. 

 
Figure 5.3. DEI+ mass spectrum of 88b  

 
 
 

 

Scheme 5.20. Proposed fragmentation path of 88 
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 2.2.5 Raman and IR spectroscopy 

 The Raman and the IR data are in good agreement with other 1,1-substituted hydrazine 

derivatives. The highest vibration frequencies are due to N-H stretching vibrations and 

hydrogen bridges toward the water molecule (88a) and intermolecular interactions for 88b-d. 

The symmetric and anti-symmetric N-H stretching vibrations are clearly resolved in the IR and 

also in the Raman spectra in region between 3173 – 3314 cm-1. The stretching vibration of the 

CH-group is found in the region around 2930 cm-1 and was found to be more complex in the 

case of the ally and cylco-hexyl substituted compound 88c and 88d. The deformation mode for 

the water molecule is found at 1410 cm-1 as a very sharp and strong band (88a). As it is already 

known from other tetrazoles and the ab initio calculations of their spectra most of the modes are 

extensively mixed, and it is difficult to address them to a specific band. The C-N and N-N 

stretching and the C-H deformation modes are found in the region between 1700 and 1000 cm-1. 

Below this value the bands belong to the deformation modes of the ring and the out-of plane 

bends of the NH group. 

 

 2.2.4 Crystal structure determination of 88a and 88b 

 Figure 5.4 shows the molecular structure of 88a. It crystallizes in the monoclinic space 

group P21/c with four formula units in the unit cell. All observed bond length and angles of the 

hydrazine moiety as well as the tetrazole unit are in excellent agreement with those reported in 

literature and are compared with compound 88b in Table 5.2.  

 
Figure 5.4. Formula unit and labeling scheme for 88a 
(ORTEP Plot, thermal ellipsoid represents 50% 
probability). 
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 Figure 5.5 shows the molecular structure of 88b. 88b crystallizes in the orthorhombic 

space group Pbca with eight formula units in the unit cell. All observed bond distances and 

angles of the hydrazine moiety as well as the tetrazole unit are in excellent agreement with those 

reported in literature47 and are comparable to the unsubstituted derivative 88a (R = H). Table 

5.2 shows a comparison of selected bond lengths and bond angles. There are no differences 

found in the structural parameters of the tetrazole moiety, whereas in the case of 88a a 

shortening of the bonds compared to 88b in the hydrazine moiety is observed (Table 5.2). 

 

 

Figure 5.5. Formula unit and labeling scheme for 88b 
(ORTEP Plot, thermal ellipsoid represents 50% 
probability). 

 

Table 5.2. Comparison of selected interatomic distance (Å) and selected bond angles 
(deg) of 88a and 88b 
 88a 88b  88a 88b 
 Å      
N1-C1 1.333(2)  1.342(2) N5-C1 1.337(2) 1.371(2) 
N1-N2 1.345(2)  1.355(2) N5-N6 1.394(2) 1.432(2) 
N2-N3 1.280(2)  1.288(2) N1-C2 -  1.458(2) 
N3-N4 1.368(2)  1.365(2) N5-C3 1.440(2) 1.461(2) 
N4-C1 1.323(2)  1.324(2)    
      
 °      
C1-N1-N2 108.4(1)  108.0(1) C1-N5-C3 122.5(1) 115.7(1) 
N3-N2-N1 106.6(1)  106.8(1) N6-N5-C3 121.3(1) 115.4(1) 
N2-N3-N4 111.2(1)  110.9(1) N4-C1-N1 108.8(1) 108.7(1) 
C1-N4-N3 104.9(1)  105.6(1) N4-C1-N5 126.7(2) 125.9(1) 
C1-N5-N6 115.9(2)  113.2(1) N1-C1-N5 124.5(2) 126.1(1) 
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 This observation can be best explained by the occurrence of an intramolecular hydrogen 

bridge in the case of 88a (N1–H1····N6 2.704(4) Å; N1–H1–N6 94.5(1)°) leading to an almost 

planar structure of the molecule including the hydrazine moiety within this plane (torsion angle 

N3–N2–N5–N6 -177.7 (1) ° (88a) vs. N3–N2–N5–N6 141.91 ° (88b)). This arrangement in 88a 

is rather unusual since the lowest energy conformation in hydrazines is usually found to be 

gauche. But in the case of 88a the conformation of the two amino groups is different with 

respect to their orientation; they are almost rotated by 90° (94.2(1)°). This leads for the lone pair 

at the N5 nitrogen atom to a better conjugation with the π system of the tetrazole ring. In 

accordance with this, the observed N5–C1 bond as well as the N5–N6 bond is significantly 

shortened compared to those bonds in 88b (N5-C1 1.337(2) (88a) vs. 1.371(2) (88b); N5-N6 

1.394(2) (88a) vs. 1.432(2) (88b)). The obtained bond lengths found in the hydrazine moiety of 

88b are typical for unstrained hydrazines.  

 The crystal arrangement of compound 88a is composed of hydrogen bridges between the 

tetrazole and the water molecule, leading to the formation of chains as depicted in Figure 5.6. 

Within the chain, the tetrazole rings of all molecules lie approximately on a plane. Figure 5.6 

shows a view of the unit cell of 88a along the [100] axis. The chains are oriented parallel to the 

[010] axis. Within the chain the molecule are arranged in such way, that the planes of the 

molecules form a zigzag pattern (N1-H1···O1i 2.826(5); O1i-H1b···N4i 2.89(2), symmetry code: 

(i) 1-x, 0,5+y, 1.5-z). 

 

 

Figure 5.6. Crystal arrangement of 88a viewed along the [100] axis (ORTEP Plot, thermal ellipsoid represents 
50% probability). 
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 In the case of 88b also a chain-like structure is found in the crystal structure (Figure 5.7), 

resulting from a weak hydrogen bond (N6-H7···N4i 3.117(2); symmetry code: (i) -0.5-x, y, 0.5-

z). These chains are orientated parallel to [100] axis. Between those chains no interactions were 

observed.  

 

 

Figure 5.7. Crystal arrangement of 88b viewed along the [010] axis (ORTEP Plot, thermal ellipsoid represents 50% 
probability). 
 

 

 3. Oxidation of  hydrazine derivatives 88a-d 

 As already mentioned, different oxidations methods are used to transform 1,1-substituted 

hydrazine to the corresponding 2-tetrazenes. During this work many oxidation methods have 

been tried to convert the compound 88a into the desired tetrazene 84a (Scheme 5.21). The 

oxidation was carried out with bromine,48 HgO,49,50 KBrO3, NaOCl,51 KMnO4,52 Benzochinon53  

and Pb(OAc)4
54 in different medias. 

 

 

Scheme 5.21. Oxidation of 88a to 84a 
 

 Table 5.3 summarizes the used methods and the obtained yields of the tetrazene 84a. In 

all cases, the compound 88a was obtained only in small amounts, and the range of yields never 
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did overstep 33%. In almost every case the tetrazene precipitated out from the reaction solution 

as an amorphous colorless powder. 88a is poorly soluble in hot MeOH and EtOH, almost 

insoluble in H2O but shows reasonable solubility in DMSO and DMF. 84a is not very friction 

(192 N) or heat sensitive, but it detonates during the drop hammer test. Above 207 °C it 

decomposes smokeless.  

 The polarity of the solvent is important for the oxidation reaction and depends on the 

substituents of the hydrazines. In fact, aryl groups need aprotic solvents such as chloroform or 

diglyme, while with alkyl groups better yields are obtained in water or alcohols.55 Due to the 

poor solubility of 88a in organic solvent most of the oxidation reaction has been performed in 

acidic medium like acid/water, base or in some cases alcohols were used. According to 

Anderson et al.,48 the hydrazine derivative was dissolved in either HCl (2M) or TFA/H2O (1:1) 

at 0°C. To this solution was added bromine drop by drop until the color of bromine persisted for 

more than 5 minutes. The product precipitated from the reaction solution as a white colorless 

powder. It was isolated by filtration and washed with water until bromine free. In that way, 

yield between 8 and 15% of the compound 84a was obtained. 

Table 5.3. Oxidations methods 
Method 84a [%] 
  
Br2/HCl 15% 
Br2/TFA 8% 
  
HgO/pyridine 33% 
HgO/MeOH - 
HgO/KOH 13%a 
  
NaOCl/NaOH - 
NaOCl/6n HCl 14% 
NaOCl/AcOH 14% 
  
KMnO4/KOH - 
KMnO4/acetone - 
  
KBrO3/HCl conc. 20% 
  
Pb(OAc)4/pyridine - 
  
Benzochinon/MeOH - 

a as potassium salt 
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 Higher yields were obtained using a modified method from Bellamy et al.50 It was found 

out that the oxidation with HgO in alcohols did not form the corresponding tetrazene 84a. 

Although Rademacher et al.49 was very successful with this method, 88a did not react in this 

media, and therefore it was decided to change to base.56 Starting from the corresponding 

potassium salt of the hydrazine derivative, the potassium salt (104) of the tetrazene 84a was 

obtained in an all over yield of 14% (Scheme 5.22). 

 

 

Scheme 5.22. Oxidation of 88a to 104  
 

 The potassium salt 104 crystallized as trihydrate from the reaction solution after 4 

months. The structure is going to be discussed in a later Chapter. The highest yield was 

obtained (33 %) when using pyridine as solvent. In this case, the product was isolated by 

acidification with HCl of the Hg/HgO free aqueous pyridine solution. The product precipitated 

in form of an orange product. Hypochlorite as oxidation agent according Wieland et al.51 did 

only succeed when performing the reaction in acidic media (yield 14%). In basic media no 

product could be isolated. Therefore the reaction was performed in 6N HCl or acetic acid. In 

both cases the product precipitated from the reaction medium and was isolated as already 

mentioned above. Using NaOH solution as reaction media, the corresponding sodium salt was 

not obtained. Acidification of the solution did not lead to the precipitation of the tetrazene 88a. 

For the oxidation of the hydrazine 88a, potassium bromate in conc. HCl was also an efficient 

oxidant and yielded the corresponding tetrazene 84a in 20%. Oxidation of 88a using the 

systems KMnO4/KOH or acetone, Pb(OAc)4/pyridine or benzochinon/MeOH did not lead to the 

formation of 84a but to some interesting side products. In the case of benzochinon oxidation, a 

crystalline orange product precipitated from the reaction mixture but could not be identified yet. 

 In the case of 88b-c, only three different methods were tempted for the oxidation to the 

corresponding tetrazenes 84b-c. According Rademacher et al.49 the oxidation of the hydrazines 

88b-d in alcohol with HgO did not lead to any product. Only starting material could be 

recovered.  
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 Also, attempts using benzeneseleni acid, PhSeOOH, as oxidation reagent fails, although 

according to Back et al.,57 the oxidation of hydrazines to the tetrazenes should be quite 

successful accompanied with good yields. A great advantage of the benzeneselenic acid would 

have been the use as a catalyst with hydrogen peroxide as oxidation.58 Similar to the oxidation 

of 88a with Br2, the in situ oxidation with bromine in an ice-cooled acetic acid/water solution 

turned out to be also suitable to oxidize the corresponding hydrazines 88b-d. The desired 

tetrazenes 84b-d were obtained in moderate yields ranging from 13% (84c) to 49% (84b). The 

reaction needs to be carried out in acetic acid/water. Using DCM as example for a non-aqueous 

solvent leads only to the formation of the corresponding hydrazine hydrochlorids. The reaction 

was performed similar to the before-mentioned synthesis but using a diluted aqueous solution of 

bromine. During the addition of the bromine, the temperature had been kept at 0°C by using an 

ice bath. 

 

Scheme 5.23. Oxidation of 88b-d to 84b-d 

 

 In the case of 84c and 84d the products precipitated from the reaction mixture as an 

amorphous colorless or light brown powder. 84c and 84d were separated by filtration and 

washed until bromine free. For the methyl derivative 84b the product started to crystallize 

within one day, and after standing for another week fine thin needles were obtained. All 

compounds are insoluble in water and only poorly soluble in alcohols. The allyl (84c) and the 

cyclohexyl derivatives (84d) show a higher solubility in for example DCM and CHCl3 

compared to 84b. Single crystals of 84d suitable for X-ray structure determination were 

obtained by recrystallization from CHCl3. All three products show a good solubility in DMSO 

and DMF. They are not friction, heat or impact sensitive and can be stored on air and light. In 

the case of the methyl substituted derivative (84b) the synthesis was improved. The reaction 
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steps were minimized from eight to three with an increased overall yield of 26% compared to 

former 4%. 

 The low yields of the 2-tetrazenes might be explained by a degradation of 2-tetrazenes in 

acidic media. In acid solution, the decomposition proceeds over ionic intermediates, leading to 

the formation of N2, nitrenium- and ammonium-ions as well as to the amino-radical cation 

(Scheme 5.24). In all cases, the formation of the corresponding N-methyl-5-aminotetrazolium 

bromides 105a-d and aminotetrazolium bromides 106a-d again was identified by means of 

spectroscopic methods. In some cases the molecular arrangements were also determined by 

crystal structure determination. 

 

 

Scheme 5.24. Acid catalyzed decomposition of 88a-d  

 

 The example depicted in Figure 3.7 shows the molecular structure of 105a. The bromide 

forms air stable, not hygroscopic colorless prisms, which crystallizes in the monoclinic space 

group P21/n. 

 

Figure 5.8. Molecular structure of 105a viewed 
(ORTEP Plot, thermal ellipsoid represents 50% 
probability) 
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 3.1 Characterization of 88a-d 

 84a-d have been fully characterized and unequivocally identified by Raman and IR 

spectroscopy, high mass resolution spectrometry and NMR techniques. For 84d and 84a (as 

potassium salts 104) it was possible to confirm the structures by X-Ray structure determination. 

 

 3.1.1 Raman and IR spectroscopy 

 Raman and IR spectroscopy are particularly suitable to identify 84a-d quickly. Due to Ci 

symmetry of the molecules in the solid state the Nacyclic=Nacyclic stretching mode between the 

central N atoms  appears at 1492 cm–1 (84b), 1495 cm-1 (84c) and 1486 cm-1 (84d) only in the 

Raman spectrum, respectively, and represents the largest peak (Figure 5.9).  

 

 
Figure 5.9. Raman spectra of 84b-d 

 Whereas the νas(Nacyclic-Ctetrazole) is found only in the IR spectrum with the highest 

intensity at 1565 cm–1 (84b), 1560 cm-1 (84c) and 1560 cm-1 (84d) (cf. νs(Nacyclic-Ctetrazole) = 

1606 cm–1, 1597 cm-1 and 1591 cm-1 in the Raman spectrum). 



 - 255 -

 3.1.2 Mass spectrometry of 84b 

 Figure 5.9 shows the mass spectrum of 84b recorded in DEI+ mode. This compound also 

gives a molecule peak at m/z 252. The main fragmentation path of 84b is the α fragmentation at 

the azo group leading to m/z 140. The loss of nitrogen (m/z 28) leads to fragment m/z 112 

(Scheme 5.25). 

 
Figure 5.9. DEI+ mass spectrum of 84b  

 

 The asymmetrical breakdown of the tetrazene unit (Scheme 5.25) is accompanied by an 

isomerization of the trans-2-tetrazene to the cis-2-tetrazene.  The resonance stabilized radicals 

are then formed by hydrogen atom transfer over a six-membered transition state.  

 
Scheme 5.25. Possible fragmentation pathway of 84b 
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 This mechanism is in good accordance with the observed decomposition pathways of the 

tetrazenes in solution and yields the same products. The further fragmentations of these radical 

cations follow the rules for 5-substituted aminotetrazoles and will not be discussed here in 

detail.59 The peaks at m/z 83 and m/z 43 are most probably daughter ions of the fragmentation of 

the tetrazole moiety to methylisonitrile by a cycloreversion (MeNC + N3). 

 

 3.1.3 Mass spectrometry of 84d 

 Analyzing the spectra of 84d some differences are observed compared to the spectrum of 

84b. The spectrum given in Figure 5.10 also clearly shows the mass peak at m/z 388. Again the 

above mentioned fragmentations account, leading to the observation of m/z 208 and m/z 180 for 

the alpha cleavage. The isomerization and proton transfer accounts for m/z 209, 178, 151, 109 

and 83. The peaks at m/z 151, 109 and m/z 83 are typical for the fragmentation of the tetrazole 

moiety forming cyclohexylisonitril by a cycloreversion. The peaks lower than m/z 100 

correspond basically to the fragmentation of the cyclohexyl substituent. Interestingly, the peak 

at m/z 360 indicates the loss of the nitrogen from one of the tetrazole rings (Scheme 3.14). This 

process does not play an important role for 84a and 84b, but for 84d the cyclohexyl groups 

seem to stabilize the corresponding cation very well. The loss of nitrogen leads to m/z 360. 

 

 

Figure 5.10. DEI+ mass spectrum of 84d 
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Scheme 5.26. Possible fragmentation pathway of 84b 

 

 The alpha cleavage at the azo group leads to the fragments m/z 152 and m/z 208. Curious 

is m/z 279 which might result from the formation of a diaziridine which is speculative and 

should just be seen as a possibility. The latter process would result from proton transfer and 

degradation of the cyclohexyl group. 

 

 3.2 Molecular structure of 84d and 104 

 84d crystallizes in the monoclinic space group P21/n with two formula units in the unit 

cell. Selected bond length and bond angels are summarized in Table 5.4 and are compared to 

84b (R=Me) and the potassium salt 104 (R = K). Figure 5.11 depicts the molecular arrangement 

of 84d. Being in agreement with former computation and structure determination,28 the 

molecule adopts a nonplanar molecular structure (Ci symmetry) with two tetrazolyl substituents 

and an almost planar N4 chain (sum of the bond angles for all four N atoms is close to 360°), 

that is, however, in contrast to the structural features of the unsubstituted parent molecule N4H4 

(2-tetrazene)60,61 (see Table 5.4). Both tetrazolyl carbon atoms lie in the N4 plane, whereas both 
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tetrazole rings are twisted out of this plane (e.g. dihedral angle N4-C1-N5-N6: 153.2(3)°) which 

might result from the bulky cyclo-hexyl substituents. In comparison to the methyl derivative 

84b, where a good delocalization of the π system over the whole molecule was found, in the 

case of 84d the delocalization of the π electron density over the entire molecule is not possible.  

 

 

Figure 5.11. ORTEP plot of the molecule structure of compound 84d with thermal 
ellipsoid at 50% probability level. Cyclohexyl group not labeled due to clarity. 
Inversion centre lies in the middle of the molecule. 
 

 

 Moreover, there are significant differences between 88d and N4H4 with respect to the 

bond length. The bond length between the N atoms of the azo group (N6-N6’) increases 

considerably from 1.205 Å in N4H4 to 1.27(2) Å in 88d. On the other hand, the bond lengths of 

the formal N-N single bonds decrease from 1.429 Å (N4H4) to 1.379(5) Å (N5-N6), indicating a 

stronger delocalization of the azo π bond along the N4 moiety within 88d, which is also in 

accordance with the observed structural parameters found in 84b and 104 (Table 5.4). The 

influence of the cyclo-hexyl groups on the structural parameter of the tetrazole ring is not going 

to be discussed here in detail, as the observed bond lengths and bond angles within the tetrazole 

ring are in good agreement, compared to 84b and 104. The bond distances and angles within the 

cyclo-hexyl group are typical and agree well with those found in the literature.62 Within the 

crystal there are no significant intermolecular interactions observed. Figure 5.12 shows stacks 

formed by the molecules, which are arranged along the [100] axis. 
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Table 5.4. Selected structural parameters of different tetrazenes 

N

R'

R N N
N

R'

R
ω

Σ
N

 
 

NN-bond length dNN [Å], angle sum Σ
N [°], angle NNN  [°], torsion angle ω [°]  

(ω = 0° correspond to the LP of the R2N-moiety perpendicular to the N4-plane) 
 

 

 

Figure 5.12. View of the crystal structure of 84d along the [100] axis. ORTEP Plot, thermal ellipsoid 
represents 50% probability) 

NRR’ Ref. dN=N dN-N Σ
N  

NNN  ω 

NH2 [63] 1.21 1.43  ~ 330 109 ~ 0 

N[Si(CH3)3]2 [64] 1.27 1.39 360 112 2 

N(CH2CH2)2O [65] 1.25 1.39 349 113 0 

N(C(CH3)(C6H4Cl) [66] 1.25 1.38 351 114 0 

N(Si(CH3)3)(C6H5) [67] 1.25 1.39 358 112 16 

N(C2H4OH)(C6H5) [68] 1.254(1) 1.364(1) 358.6(5) 112.6(1) 0.9(2) 

84b [28] 1.261(2) 1.367(2) 359.8(4) 111.2(2) 0 

104  1.254(4) 1.37(1) 360.0(1) 111.05(1) 0 

84d  1.27(2) 1.379(5) 360.0(2) 110.6(2) 0 
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 104 crystallizes in the centro-symmetric monoclinic space group C2/c with four formula 

units in the unit cell (Figure 5.13). Crystallographic details, as well as selected bond length and 

bond angles are summarized in Table 5.4. 

 

 

Figure 5.13. View of the molecular arrangement of 104, showing the atom-
labeling scheme. Displacement ellipsoid are drawn at the 50% probability 
level and H atoms are shown as spheres of arbitrary radii. The third water 
molecule is omitted due to clarity. [Symmetry code: (i) -x, -y, 1-x.] 

 

 Compared to the 84b, 104 does not show obvious structure changes: The bond distance 

between the N atoms of the azo group (N=N 84b 1.261(1); 104 1.257(5) Å) is slightly shortened 

and the formal N-N single bond (N-N 84b 1.367(2); 104 1.381(1) Å) lengthened. In both 

compounds, the amino group atoms are in a planar environment as indicated by the sum of bond 

angles for which values of around 360° are found. The four nitrogen atoms of the 2-tetrazene 

unit and the directly bonded C atoms of the tetrazole ring are arranged in one plane. In contrast 

to 84b, where the tetrazole moieties are slightly rotated out of this plane (N4-C1-N5-N6: 

170.09(1)°), for 104 a value of 175.99(3)° is found. Also for 104 the C1-N5 bond length 

(1.381(7) Å) is much shorter than CN bond length found in azidoamidinium salt and other 

amino substituted tetrazoles (Chapter VI, I). This indicates also a strong π interaction of the 

tetrazole units with the tetrazene moiety, leading to a delocalized π-system over the whole 

molecule. The four nitrogen atoms of the 2-tetrazene units and the tetrazolate moieties show 

essentially coplanar arrangements. 
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 4. Decomposition experiments of 84a and 84b 

 
Figure 5.14. IR spectra of evolved gases from pyrolysis experiments of 88a and 88b 

 

 In order to determine the explosion gases of 84a and 84b, combined IR and MS pyrolysis 

experiments were carried out. Figure 5.14 shows the gaseous products obtained after the 

explosion of 84a and 84b. The pyrolysis was supported by mass spectrometry, and for 84a as 

only gaseous products ammonia, methane, hydrogen cyanide and traces of hydrazoic acid was 

observed. Compared to 84a these products are only found as traces in the case of 84b, 

indicating a different decomposition pathway.  

In order to determine the stepwise decomposition of 84b, the IR and MS pyrolysis 

experiments were analyzed more closely. The most important gaseous product observed were 

molecular nitrogen. N,N’-dimethylcarbodiimide (MeNCNMe, 107) was also found as 

decomposition product. Therefore, it is assumed that thermal stressing results in breaking the 

N5−N6 bonds which generates one equivalent molecular nitrogen and two equivalents of a 1-

methyl-(N-methyl)iminotetrazolyl radical (108). Under this condition, 108 opens yielding the 

azide form which decomposes under release of N3 radicals and 107. Recombination of two 

N3 radicals gives three equivalents of N2 leading to the overall Equation [1] with an energy 

release of ∆calc.G298=-927.6 kJ mol-1.69 

C6N12H21 (84b)  4N2  +  2MeNCNMe  (107)      [1] 



 - 262 -

 5. Conclusion 

 A new synthesis was introduced for the preparation of several alkyl substituted 

hydrazinotetrazoles yielding the products in a range of 54 to 77 % yield. Especially, 88a, 88b 

and 88c are interesting. 88a and 88b could be used as additives in propellant formulation or as 

propellants themselves with an appropriate oxidizer, since they can be seen as a solid version of 

MMH (N: 60.8 %), DMH (N: 46.6 %) and UDMH (N: 46.6 %) but with higher nitrogen content 

(88a (N: 73.7 %), 88b (N: 65.6 %)). Both compounds show remarkable stabilities and are easily 

obtained as colorless crystalline products from the reported procedures. Since 88b has an allyl 

group as substituents, polymerization reaction might be of interest yielding new energetic 

polymers. Corresponding investigations with Prof. Langhals are currently underway.  

 The reduction of the eight-step-reaction for the preparation of the 84b was reduced to a 

three step synthesis. The obtained overall yield of 26% exceeds the former synthesis, which 

yielded 4%. Moreover, a general synthesis for the preparation of substituted (R = H, Me, allyl, 

cyclohexyl) 1,4-bis-(1R-1H-tetrazol-5-yl)-1,4-dimethyl-2-tetrazene was developed. Two 

products could be confirmed by means of single X-ray crystal determination (84d, 104). 

Although the yields of the tetrazenes are still not satisfactory, the interest in these compounds is 

quite high. For example, the exchange of the methyl group in 84b to hydrogen in 84a 

completely changes the decomposition behavior, resulting also in a higher impact sensitivity of 

84a compared to 84b.  

 84a-d represents easily accessible new highly energetic density materials which may 

qualify as environmentally-friendly energetic sources and or as leading candidates for 

alternative energy storage media once the problem with the last oxidation step is solved. 

Moreover, the compounds are expected to show distinctive decomposition pathway (e.g. 84a 

and b) to molecular nitrogen and other still endothermic compounds like ammonia, methane 

and HN3. The properties of theses compounds might be tuned by the introduction of certain 

substituents. Hence, in combination with appropriate oxidizer this class of compounds could be 

utilized as a new gas generator or propellant which gives off exclusively non toxic gases in a 

propulsion process might serve as additive or phlegmatizers in explosives formulation.  
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 6. Experimental 

 CAUTION: Although the tetrazole and 2-tetrazene derivatives are kinetically stable 

compounds and most time insensitive to electrostatic discharge, friction and impact, they are 

nonetheless energetic materials and appropriate safety precautions should be taken, especially 

when compound 88a is prepared on a larger scale. Laboratories and personnel should be 

properly grounded. 

 

 1-Cyano-1-methyl-hydrazine (90): To a pre-cooled (0°C) solution of BrCN (4.5g, 42,5 

mmol) in 100 mL of dichloromethane, a mixture of MMH (2.0g, 42,5 mmol), sodium carbonate 

(2.5g, 21,3 mmol) and water (20 cm3) was added dropwise under vigorous stirring. The mixture 

was stirred until no further evolution of CO2 was observed. The two layers were separated and 

the aqueous phase extracted three times with methylene chloride. The organic phases were 

joined together and dried over magnesium sulphate. The solvent was removed under reduced 

pressure, affording 2.11g (70%) of an oil. Raman (200 mW, liquid) ν~ [cm-1]: 3334 (10), 3275 

(21), 3205 (17), 2982 (7), 2942 (10), 2905 (11), 2813 (11), 2208 (68), 1615 (4), 1443 (11), 1421 

(10), 1330 (3), 1162 (4), 1077 (4), 761 (100), 702 (9), 631 (3), 533 (5), 401 (13), 287 (10), 225 

(36); 1H NMR (CDCl3) δ: 3.14 (s, Me), 4.31 (br, NH2); 13C NMR (CDCl3) δ: 44.4 (CH3), 117.7 

(CN).  

 

 2,4-Dimethylthiosemicarbazide (92b): Methylisothiocyanate (36.5 g, 0.5 mol), 

dissolved in 100 mL diethylether, was added drop wise to an ice-cooled solution of 

methylhydrazine (23.0 g, 0.5 mol) in 100 mL diethylether over 1 h and stirred for another 2 h. 

The precipitated colorless solid was separated by filtration and washed with cold diethylether 

(54.6 g, 0.46 mol, 91.8 %). The obtained data are consistent with the published data.  

 

 4-Allyl-2-methylthiosemicarbazide (92c): A solution of methylhydrazine (19.3 g, 0.42 

mol) and 50 mL diethylether was slowly added to a cooled (ice bath) solution of 

allylisothiocyanate (40.0 g, 0.40 mol) in 200 mL diethylether. After the addition of MMH the 

slurry was stirred for further 2 h. The product was separated by filtration and washed several 

times with cold diethylether (56.2 g, 0.39 mol, 96.9 %). IR (KBr, cm-1): ν~  = 3320 (s), 3259 (s), 
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3173 (m), 3076 (w), 3012 (w), 2975 (w), 2921 (w), 2057 (vw), 1849 (vw), 1641 (m), 1623 (m), 

1523 (vs), 1449 (w), 1412 (w), 1370 (s), 1321 (m), 1260 (s), 1154 (w), 1086 (m), 1020 (w), 996 

(m), 951 (w), 924 (s), 910 (m), 885 (vs), 698 (m), 671 (m), 641 (m), 609 (w), 531 (vw), 474 

(vw), 445 (vw); Raman (200 mW, 25° C, cm-1): ν~ = 3332 (30), 3246 (20), 3175 (45), 3077 (23), 

3013 (35), 2980 (35), 2956 (27), 2925 (37), 1644 (100), 1619 (31), 1517 (13), 1426 (51), 1413 

(43), 1370 (23), 1289 (77), 1264 (30), 1222 (23), 1157 (7), 1090 (8), 1025 (13), 1004 (12), 951 

(27), 923 (20), 888 (20), 688 (57), 644 (36), 471 (30), 374 (50), 283 (13), 245 (20), 162 (43), 

141 (43); 1H-NMR ([d6]-DMSO) δ: 3.43 (s, 3H, CH3), 4.07 (t, J = 5.68 Hz, 2H, NCH2), 4.87 (s, 

2H, NH2), 5.02 (d, Jcis = 10.3 Hz, 1H),  5.09 (d, Jtrans = 17.2 Hz, 1H), 5.85 (ddt, J = 5.40 Hz, 

10.3 Hz, 17.3 Hz, 1H), 8.12 (t, J = 5.1, 1H, NH); 13C-NMR ([d6]-DMSO) δ: 43.1 (CH3), 47.1 

(NCH2), 115.7 (CH2CH), 136.2 (CHCH2), 181.6 (CS).  

 

 4-Cyclohexyl-2-methylthiosemicarbazide (92d): To a solution of cyclohexyl- 

isothiocyanate (26.00 g, 0.186 mol) in 50 mL diethylether was added a a solution of 

methylhydrazine (8.56 g, 0.186 mol) in 50 mL diethylether drop wise. Stirring was continued 

for 2 h at room temperature. After filtration and washing with Et2O, 92d was obtained as 

colorless solid (30.7 g, 0.165 mol, 88.7 %); IR (KBr, cm-1): ν~ = 3321 (s), 3258 (m), 3171 (m), 

3145 (m), 2933 (vs), 2849 (s), 2655 (vw), 2229 (vw), 2074 (vw), 1420 (s), 1627 (m), 1525 (vs), 

1467 (w), 1446 (m), 1408 (w), 1388 (m), 1368 (s), 1343 (m), 1325 (m), 1257 (w), 1245 (w), 

1217 (vw), 1187 (vw), 1156 (w), 1105 (w), 1098 (w), 1079(m), 1049 (vw), 1020 (w), 973 (m), 

902 (m), 885 (s), 843 (vw), 800 (vw), 783 (vw), 760 (vw), 737 (vw), 712 (vw), 669 (m), 607 

(w), 582 (w), 529 (vw), 489 (vw), 467 (vw), 453 (vw), 427 (vw), 408 (vw); Raman (200 mW, 

25 °C, cm-1): ν~ = 3322 (17), 3256 (31), 3148 (25), 2939 (75), 2900 (31), 2851 (100), 2658 (11), 

1642 (15), 1627 (15), 1442 (70), 1413 (23), 1348 (39), 1297 (19), 1258 (57), 1248 (38), 1215 

(15), 1191 (15), 1157 (11), 1075 (21), 1051 (28), 1029 (61), 975 (23), 887 (15), 845 (39), 801 

(73), 716 (72), 583 (8), 529 (43), 489 (37), 455 (34), 335 (40), 238 (23), 201 (27); 1H-NMR 

(CDCl3): δ =  1.12 – 1.97 (m, 10H), 3.57 (s, 3H, CH3), 3.73 (s, 2H, NH2), 4.09 (m, 1H, CH) 

7.66 (br. s, 1H, NH);13C-NMR (CDCl3): δ = 24.9 (C), 25.6 (C), 33.1 (C), 43.6 (CH3), 53.4 (C), 

180.6 (CS).  
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 N-Methyl-N-(1(2)H-tetrazol-5-yl)-hydrazine monohydrate (88a): A solution of 

MMH (23.02 g, 0,5 mol) in Ethanol (160 mL) was added dropwise to a cooled (0°C) and 

vigorously stirred solution of BrCN (52.96 g, 0,50 mol) in Ethanol (240 mL), H2O (4 mL) and 

Na2CO3 (26.5 g, 0,25 mol). After the addition (ca. 1,5 h) the reaction mixture was allowed to 

warm up to R.T., and stirring continued until the evolution of CO2 was finished. The insoluble 

salts were removed by filtration. To this clear solution, NaN3 (65g, 1 mol) and a mixture of 

conc. HCl (80 mL) in H2O (200 mL) (CAUTION, evolution of HN3, Fumehood!!!) was 

added. The reaction mixture was heated under reflux for 48h and solution concentrated in 

vacuo (HN3 !!!) to 1/3 of it’s volume. During this process the product precipitates as colorless 

crystals. Recrystallisation from water/ethanol gave the monohydrate 88a suitable for single 

crystal X-ray structure determination. Yield 47.78 g (362 mmol, 72 %); m.p. 185 °C 

(decomposition); ν~ (KBr)[cm-1]: 3429 (m, -NH), 3314 (s), 3212 (m), 3173 (m), 2936 (m), 

2779 (m), 2648 (m), 1674 (vs), 1597 (vs), 1461 (w), 1427 (w), 1411 (m),  1364 (vw), 1341 

(vw), 1279 (m, 1248 (m), 1181 (m), 1112 (w), 1027 (vs), 996 (m), 906 (s), 8881 (shoulder), 

734 (s), 681 (m), 621 (vw); Raman (200 mW) ν~ [cm-1]: 3314 (37), 3273 (22), 3214 (59), 3027 

(16), 2940 (41), 2815 (20), 1679 (58), 1595 (22), 1460 (29), 1429 (48), 1409 (50), 1367 (13), 

1320 (18), 1281 (88), 1252 (31), 1184 (29), 1110 (41), 1063 (100), 1027 (73), 996 (32), 916 

(56), 735 (14), 683 (14), 636 (88), 541 (56), 529 (41), 389 (68), 331 (18), 172 (65); 1H NMR 

([d6]-DMSO]) δ: 3.14 (s, -NH, NH2 due to fast proton exchange); 13C NMR ([d6]-DMSO]) δ: 

42.4 (CH3), 161.9 (C); 15N NMR ([d6]-DMSO]) δ: -10.1 (N2, N3, broad), -138.5 (N1, N4, 

broad), -296.7 (-NMe-NH2), -311.6 (-NMe-NH2); m/z (EI) 114 [(M) (100)], 111 (7), 99 (23), 

97 (10), 86 (10), 81 (6), 71 (11), 69 (11), 57 (27), 56 (12), 55 (14), 46 (9), 45 (26), 44 (36), 43 

(86), 42 (57), 41 (22), 40 (13), 30 (31), 29 (35), 28 (49), 27 (8), 18 (11), 17 (8), 16 (8), 15 

(51); C2H8N6O (132.11): Calc. C, 18.2; H, 6.1; N, 63.6%; Found: C, 18.6; H, 5.7; N, 63.6%. 

 

 N-Methyl-N-(1-methyl-1H-tetrazol-5-yl)-hydrazine (88b): To a solution of 2,4-

dimethylthiosemicarbazide 92b (4.76 g, 40 mmol) in 50 mL ethanol was added methyliodide 

(5.68 g, 40 mmol) and refluxed for 4 h (monitored by 1H NMR). After cooling the reaction 

mixture below 40°C, sodium azide (3.9 g, 60 mmol) was added and the reaction mixture 

refluxed for about 18 h (monitored by TLC or 13C-NMR) under nitrogen. After removing the 

solvents the oily residue was dissolved in dichloromethane to precipitate most of the sodium 

iodide. NaI was removed by filtration. The clear solution was concentrated and the product 
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purified by column chromatography (EtOH/Et2O 1:10) on silica gel (2.78 g, 22 mmol, 54 %). 

IR (KBr, cm-1): ν~ = 3309 (s), 3179 (m), 3009 (w), 2976 (m), 2916 (w), 2870 (w), 2790 (vw), 

2529 (vw), 2272 (vw), 2179 (vw), 1947 (vw), 1646 (vs), 1557 (vs), 1472 (s), 1452 (s), 1405 

(m), 1337 (w), 1316 (w), 1266 (m), 1204 (m), 1127 (m), 1100 (s), 1039 (s), 967 (w), 907 (s), 

802 (w), 746 (s), 717 (s), 693 (w), 624 (m), 525 (w), 459 (w);  Raman (200 mW, 25 °C, cm-1): 

ν~  = 3302 (12), 3224 (17), 3183 (15), 3011 (17), 2977 (35), 2913 (19), 2871 (12), 2792 (10), 

1648 (15), 1552 (17), 1475 (19), 1456 (19), 1408 (19), 1393 (12), 1318 (10), 1271 (38), 1202 

(6), 1130 (7), 1101 (22), 1045 (13), 968 (6), 905 (3), 729 (100), 624 (27), 521 (13), 463 (7), 394 

(19), 325 (17), 206 (15); 1H-NMR ([d6]-DMSO, 270 MHz): 3.11 (s, 3H, CH3), 3.96 (s, 3H, 

CH3), 4.83 (s, 2H, NH2);  13C-NMR ([d6]-DMSO) δ: 36.8 (CH3), 44.3 (CH3), 159.6 (C); m/z 

(DEI): 128 [M (28)], 113 (3), 97 (2), 83 (24), 57 (100), 43 (33), 28 (58), 18 (68), 15 (46); 

C3H8N6 (128.0810 found M+ 128.0807); C3H8N6 (128.14): calcd. C, 28.1; H, 6.3; N, 65.6 %; 

found: C, 27.9; H, 6.2; N, 65.5 %. 

 

 N-(1-Allyl-1H-tetrazol-5-yl)-N-methylhydrazine (88c): Methyliodide (2.86 g, 20 

mmol) was added to a solution of 4-allyl-2-methylthiosemicarbazide 92c (2.90 g, 20 mmol) in 

30 mL ethanol and refluxed for 4 h (monitored by 1H NMR). The solution was cooled below 

40°C and sodium azide (1.95 g, 30 mmol) was added. The reaction mixture was refluxed under 

nitrogen until all starting material was consumed (reaction should be monitored by TLC or 13C-

NMR, ca. 60 hours). After removal of the solvent, the residue was dissolved in dichloromethane 

to precipitate most of the sodium iodide and azide. After filtration, the DCM was removed in 

vacuo and the oily residue was purified by column chromatography (DMC:EtOAc 1:1) on silica 

gel to give pure 40b as a colorless oil (2.37 g, 15 mmol, 77.0 %). Raman (200 mW, 25° C, cm-

1): ν~ = 3765 (3), 3336 (14), 3283 (9), 3232 (20), 3092 (15), 3023 (30), 2991 (32), 2951 (27), 

2872 (14), 2802 (14), 1647 (100), 1557 (20), 1450 (21), 1413 (36), 1340 (27), 1292 (53), 1283 

(53), 1259 (50), 1103 (31), 996 (12), 940 (14), 769 (32), 764 (34), 741 (15), 692 (15), 633 (56), 

521 (12), 401 (30), 320 (19), 299 (19), 147 (50); 1H-NMR (CDCl3) δ: 3.20 (s, 3H, CH3), 3.98 

(s, 2H, NH2), 5.05 (m, 2H, CH2), 5.15 (d, 2H, NCH2), 5.90 (m, 1H, CH); 13C-NMR (CDCl3) δ: 

44.9 (CH3), 50.7 (CH2), 118.4 (CH2), 131.8 (CH), 158.4 (C); m/z (DEI): 154 [M (16)], 109 (6), 

99 (3), 83 (7), 45 (23), 41 (100), 28 (16), 15 (17); C5H10N6 (154.0967 found M+ 154.0970); 

calculated: C, 39.0; H, 6.5; N, 54.5 %; found: C, 39.2; H, 6.5; N, 54.1 %. 
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 N-(1-Cyclohexyl-1H-tetrazol-5-yl)-N-methylhydrazine (88d): 4-Cyclohexyl-2-methyl 

thiosemicarbazide 92d (19.5 g, 104 mmol) was dissolved in 150 mL ethanol and methyliodide 

(14.5 g, 102 mmol) was added. After refluxing for 4 h (monitored by 1H NMR), the solution 

was cooled below 40°C and sodium azide (9.75 g, 150 mmol) was added. The reaction mixture 

was refluxed under nitrogen until all starting material was consumed (monitored by TLC or 13C-

NMR, ca. 80 hours). After removal of the solvent, the residue was dissolved in dichloromethane 

to precipitate most of the sodium iodide and azide. After filtration, the DCM was removed in 

vacuo and the oily reddish residue was purified by column chromatography (Et2O/AcOEt 1:1) 

on silica gel to give pure 88d as a colorless solid (11.23 g, 58 mmol, 56.5 %). IR (KBr, cm-1): 

ν~  = 3337 (vs), 3229 (w), 2998 (w), 2937 (vs), 2925 (vs), 2853 (vs), 2792 (w), 2661 (vw), 2169 

(vw), 1636 (s), 1547 (vs), 1454 (vs), 1447 (vs), 1436 (s), 1412 (m), 1396 (w), 1342 (m), 1310 

(w), 1253 (m), 1216 (m), 1168 (m), 1141 (w), 1127 (m), 1105 (m), 1096 (m), 1053 (w), 1019 

(w), 1005 (m), 893 (s), 851 (w), 818 (w), 261 (w), 747 (s), 707 (vw), 629 (w). 583 (w), 510 

(vw), 483 (vw), 467 (w); Raman (200 mW, 25 °C, cm-1): ν~  = 3335  (21), 3233 (28), 3000 (16), 

2941 (100), 2926 (96), 2896 (45), 2855 (81), 2794 (14), 2661 (7), 1639 (15), 1535 (19), 1447 

(73), 1412 (20), 1336 (18), 1304 (22), 1274 (58), 1256 (35), 1197 (11), 1166 (10), 1144 (10), 

1109 (23), 1078 (15), 1051 (21), 1029 (33), 1004 (21), 897 (10), 855 (11), 820 (63), 791 (9), 

763 (53), 630 (38), 587 (33), 469 (13), 444 (21), 419 (12), 330 (20), 289 (37), 236 (16), 194 

(20), 124 (19); 1H-NMR ([d6]-DMSO) δ: 1.19 – 2.02 (m, 10H) 3.10 (s, 3H, CH3), 4.86 (s, 2H, 

NH2), 4.97 (m, 1H, NH); 13C-NMR ([d6]-DMSO) δ: 25.4 (C), 25.6 (CH3), 39.5 (C), 44.8 (C), 

158.9 (C); m/z (DEI): 196 [M+ (32)], 114 (76), 83 (85), 55 (100), 43 (72); C8H16N6 (196.1436 

found M+ 196.1439); calculated: C, 49.0; H, 8.2; N, 42.8 %; found: C, 48.8; H 8.1; N, 42.6 %. 

 

 1,4-bis-(1(2)H-Tetrazol-5-yl)-1,4-dimethyl-2-tetrazene (84a):  

 I Oxidation with bromine 

 in HCl: A solution of 88a (6.6g, 50 mmol) in 25 mL 2M HCl (25 mL) and water (25 mL) 

was cooled to 0 °C. To this solution Bromine was added drop wise until the orange color 

persisted. The reaction mixture was stirred for 1h at 0 °C and then the white precipitate 

separated by filtration and washed with cold water until bromine free (0.827g, 3.7 mmol, 15 %). 

The so obtained product was pure enough for further use and characterization; m.p. 200-207°C 
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(decomposition); ν~ (KBr)[cm-1]: 3438 (w, -NH), 2942 (m, Me), 2773 (m), 2671 (m), 1602 (vs), 

1583 (vs), 1454 (w), 1436 (m), 1426(m),  1405 (s), 1283 (w, 1243 (vw), 1157 (s), 1118 (w), 

1091 (w), 1049 (m), 1031 (m), 996 (m), 980 (s), 867 (w), 724 (w), 686 (w), 655 (m), 567 (vw); 

Raman (200 mW) ν~ [cm-1]: 3041 (2), 2995 (1), 2950 (6), 1624 (31), 1493 (100), 1453 (6), 1425 

(15), 1399 (23), 1390 (17), 1291 (5), 1236 (8), 1200 (11), 1123 (4), 1082 (13), 1048 (5), 998 

(3), 960 (9), 840 (2), 727 (1), 521 (13), 400 (3), 324 (5), 198 (9), 155 (8); 1H NMR ([d6]-

DMSO]) δ: 3.64 (s, Me); 13C NMR ([d6]-DMSO]) δ: 34.5 (CH3), 156.9 (C); m/z (DEI) 224 

[(M) (15)], 126 (8), 99 (31), 97 (6), 81 (8), 79 (8), 71 (45), 69 (6), 57 (7), 56 (5), 55 (9), 43 (15), 

42 (74), 41 (53), 40 (28), 39 (10), 38 (7), 29 (30), 28 (100), 27 (10); C4H6N12 (224.0995 found 

M+ 224.0980): Calc. C, 21.4; H, 3.6; N, 75.0%; Found: C, 20.9; H, 4.0; N, 74.3%. 

 

 in F3CCOOH: 88a ( 4.567g, 40 mmol) was dissolved in 50 mL CF3COOH and 50 mL 

H2O and cooled to 0°C. To this solution bromine was added drop wise until the reaction 

mixture shows the characteristic orange-brown color of bromine. The reaction mixture was kept 

12h at 0°C and the precipitate separated by filtration and washed with water until bromine free. 

By this method 350 mg (1,6 mmol, 8 %) of the tetrazene 84a was obtained.  

 

 II Oxidation with HgO 

 in pyridine: HgO (2.85g, 13mmol) was added slowly (ca. 1h) to a stirred solution of 88a 

(1g, 8.8 mmol) in pyridine (15 mL) at 0°C. After the addition of HgO the reaction mixture was 

stirred for further 6h. After filtration, H2O (20 mL) was added to the filtrate and the pH of the 

solution was adjusted to 1 by slowly adding conc. HCl (cooling required). The separated 

tetrazene 84a was filtered, washed with water and dried yielding 325 mg (1,5 mmol, 33%). 

 

 in MeOH: The oxidation of 88a (1g, 8.8 mmol) with HgO (4,75g, 22 mmol) in MeOH 

(25 mL) at 0°C does not yield the tetrazene 84a. During the addition of HgO the evolution of a 

gas was observed that was very likely to be N2. The by-products of this reaction where not 

determined.  
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 III Oxidation with NaOCl 

 in HCl: 88a (5g, 44mmol) was dissolved in 6 M HCl (100 mL) and cooled to 0°C.  

NaOCl solution in water (13%, 24 mL, 44 mmol) was added dropwise over 2 h. The mixture 

was kept stirring for further 30 min at 0°C. The precipitate was filtered, washed with water and 

EtOH. After drying 700 mg (3.1 mmol, 14 %) of tetrazene 84a was obtained. 

 

 in CH3COOH: NaOCl solution (13%, 2,4 mL, 4,4 mmol) was added slowly to a solution 

of 88a (500 mg, 4.4 mmol) in water (10 mL) at 0°C. After the addition the reaction mixture was 

cooled for further 2 h and the precipitate filtered. After washing with water, EtOH and Et2O, 60 

mg (0.3 mmol, 14%) of compound 84a was obtained.  

 

 IV Oxidation with KBrO3  

 A solution of 88a (1g, 8.8mmol) in conc. HCl (5mL) was cooled to 0°C and a solution of 

KBrO3 (0.49g, 2.9 mmol) in 5 mL was added in small portion very slowly. After the orange 

color of bromine persisted the addition of KBrO3 was stopped and the reaction mixture stirred 

for further 30 min at 0°C. The tetrazene 84a was separated by filtration, washed with water and 

EtOH yielding 200 mg (0.89mmol, 20%) of product. 

 

 1,4-bis-(1-Methyl-1H-tetrazol-5-yl)-1,4-dimethyl-2-tetrazene (84b): 1-Methyl-1-(1-

methyl-1H-tetrazol-5-yl)hydrazine 88b (1.02 g, 8 mmol) was dissolved in 20 mL of a 1 : 5 

mixture of acetic acid and water. To this solution, a saturated solution of bromine in water was 

added drop wise at 0°C until the brown color of the bromine solution persisted longer than 2 

minutes. During this addition, the product separates continuously. The suspension was kept at 

the fridge overnight and the product separated by filtration (493 mg, 1.95 mmol, 49%). m.p. 

159.8 - 159.9 °C; IR (KBr):ν~ = 3026 (vw), 1622 (m), 1568 (m), 1468 (s), 1411 (m), 1396 (w), 

1382 (vw), 1319 (vw), 1274 (vw), 1217 (w), 1117 (s), 1101 (m), 1039 (vw), 1006 (w), 962 

(vw,), 730 (w), 716 (w), 681 (vw), 656 (m), 468 (vw) cm-1; Raman (200 mW; 25 °C): ν~ = 3035 

(5), 2963 (8), 1606 (46), 1492 (100), 1467 (31), 1440 (16), 1402 (40), 1324 (4), 1294 (7), 1227 



 - 270 -

(20), 1166 (6), 1107 (17), 1040 (1), 959 (3), 856 (6), 730 (2), 693 (26), 538 (8), 365 (4), 322 (7), 

279 (4), 213 (6), 143 (11) cm-1; 1H NMR ( [d6]-DMSO): δ: 3.63 (s, 3H, CH3), 4.13 (s, 3H, 

CH3); 13C-NMR ([d6]-DMSO): δ: 35.7 (CH3), 39.8 (CH3), 154.9 (C); MS (70 eV): m/z (DEI) 

252 (40) [M+], 140 (39), 113 (9), 112 (6), 83 (100) [MeCN5
+], 55 (5), 43 (53), 42 (5) [N3

+], 41 

(6), 28 (22) [N2
+]; C6H12N12 (252.1290 found M+ 252.1308); calculated. C, 28.6; H, 4.8; N, 

66.6%; Found: C, 28.5; H, 5.0; N, 66.8%. 

 

 1,4-bis-(1-Allyl-1H-tetrazol-5-yl)-1,4-dimethyl-2-tetrazene (88c): 1-(1-Allyl-1H-

tetrazol-5-yl)-1-methylhydrazine 88c (0.5 g, 3.2 mmol) was dissolved in 10 mL of a 1 : 5 

mixture of acetic acid and water and cooled in an ice-bath to 0°C. To this solution, a saturated 

solution of bromine in water was added drop wise at 0°C until the brown color of the bromine 

solution persisted longer than 2 minutes. During this addition, the product separates 

continuously as a beige powder. The solvent was removed by filtration to and the obtained 

product was dried on air (60 mg, 0.20 mmol, 12.5 %). IR (KBr, cm-1): ν~ =  2936 (vw), 1685 

(vw), 1643 (vw), 1629 (vw), 1618 (vw), 1560 (vs), 1468 (w), 1442 (w), 1418 (w), 1407 (w), 

1345 (vw), 1331 (vw), 1276 (vw), 1262 (vw), 1219 (vw), 1169 (vw), 1123 (m), 1056 (w), 1006 

(m), 961 (vw), 775 (vw), 726 (vw), 684 (vw), 657 (w); Raman (200 mW, 25 °C, cm-1):  ν~  = 

3089 (5), 3032 (9), 2980 (10), 2956 (15), 1646 (14), 1597 (35), 1495 (100), 1464 (21), 1445 

(28), 1403 (38), 1347 (17), 1304 (12), 1228 (21), 1106 (15), 857 (7), 767 (5), 727 (4), 685 (7), 

649 (9), 603 (6), 536 (11), 426 (9), 349 (9), 323 (14), 251 (14), 163 (37); 1H-NMR (CDCl3) δ: 

3.68 (s, 3H, CH3), 5.05 (d, 1H, Jtrans = 16 Hz, CH2trans), 5.14 (d, 4H, J = 5 Hz, CH2), 5.31 (d, 1H, 

Jcic = 11.6 Hz, CH2cis), 5.99 (ddt, 2H, J = 5 Hz, 10.5 Hz, 17.2 Hz, CH); 13C-NMR (CDCl3) δ: 

35.8 (CH3), 51.1 (CH2), 119.0 (CH2), 130.55 (CH), 154.14 (C); m/z (DEI) 305 (4) [M+1], 304 

(25) [M+], 220 (7), 218 (8), 166 (14), 139 (23), 138 (21), 121 (5), 118 (5), 109 (55), 95 (4), 82 

(14), 81 (6), 69 (6), 68 (10), 57 (10), 56 (5), 55 (23), 54 (9), 53 (12), 43 (14), 42 (22), 41 (100), 

40 (6), 39 (31), 28 (16), 27 (7), 18 (7), 15 (8); C10H16N12 (304.1621 found M+ 304.1627).  

 

 1,4-bis-[1-Cyclohexyl-1H-tetrazol-5-yl)-1,4-dimethyl-2-tetrazene (84d): 1-(1-Cyclo 

hexyl-1H-tetrazol-5-yl)-1-methylhydrazine 88d (1 g, 5.1 mmol) was dissolved in 10 mL a 1:5 

mixture of acetic acid and water and cooled in an ice-bath to 0°C. To this solution, a saturated 

solution of bromine in water was added drop wise at 0°C until the brown color of the bromine 

solution persisted longer than 2 minutes. The product precipitated instantly as a beige powder 
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and was separated by filtration and dried on air (0.28 g, 0.72 mmol, 28.8 %).  IR (KBr, cm-1): 

ν~ =  2940 (w), 2925 (w), 2861 (w), 1560 (vs), 1472 (vw), 1437 (w), 1410 (w), 1387 (vw), 1342 

(vw), 1296 (vw), 1261 (vw), 1211 (vw), 1195 (vw),1166 (w), 1138 (m), 1096 (vw), 1064 (w), 

1018 (w), 901 (vw), 819 (vw), 802 (vw), 758 (vw), 735 (vw), 654 (w), 585 (w), 516 (w); 

Raman (200 mW, 25 °C, cm-1): ν~ =  3032 (5), 2949 (32), 2861 (32), 1591 (53), 1502 (37), 1486 

(100), 1448 (31), 1405 (53), 1338 (9), 1307 (10), 1285 (14), 1267 (13), 1225 (21), 1200 (10), 

1156 (7), 1102 (10), 1058 (8), 1033 (10), 971 (6), 866 (9), 818 (21), 746 (9), 701 (7), 575 (12), 

450 (13), 407 (12), 366 (9), 289 (32), 219 (9), 130 (16); 1H-NMR (CDCl3) δ: 1.30 – 2,03 (m, 

10H), 2.11 (s, 3H, CH3), 3.62 (s, 3H, NH2), 4.53 (m, 1H, NHHex); 13C-NMR (CDCl3) δ: 24.9 

(C), 25.7 (C), 32.9 (CH3), 36.0 (C), 59.4 (C), 153.9 (C); m/z (DEI): 181 (44), 110 (64), 71 (88), 

55 (100), 41 (56), 42 (21), 28 (16), 15 (18); m/z (DEI) 389 (14) [M+1], 388 (60) [M+], 360 (8), 

210 (4), 208 (10), 182 (6), 181 (23), 280 (30), 152 (16), 151 (99), 128 (5), 126 (6), 123 (4), 110 

(17), 100 (56), 99 (14), 98 (13), 96 (7), 84 (8), 83 (100), 82 (8), 81 (11), 71 (71), 69 (6), 67 (13), 

57 (11), 56 (5), 55 (78), 54 (7), 53 (5), 43 (11), 42 (12), 41 (37), 39 (8), 29 (6), 28 (8), 27 (8); 

C16H28N12 (388.2560 found M+ 388.2602).  
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C h a p t e r  V I  

NITRAMINES 

1. N-Nitroso- and N-Nitraminotetrazoles 

 An ideal explosive is powerful, safe and easy to handle, can be stockpiled for long periods 

in any climate and is hard to detonate except under precisely specified conditions. The history 

of high explosives goes back to 1885, were the first high explosive, 2,4,6-trinitrophenol (picric 

acid),1 was put into service in France. Due to some disadvantages – high melting point, reaction 

with metals as well its sensitivity – of this compound, it was substituted by another high 

explosive, fulfilling the expectations of the producers: 2,4,6-trinitrolouene (TNT)2; this 

compound is still used today in explosive mixtures.  

 The next generation of explosives with higher performance are the nitramine compounds 

hexahydro-1,3,5-trinitro-S-triazine (RDX)3 followed by octahydro-1,3,5,7-tetranitro-1,3,5,7-

tetrazine (HMX)4 (Figure 6.1). In the pure state these compounds are too sensitive and can only 

be used with insensitive additives or in mixtures with e.g. TNT. Since the search of new 

energetic compounds with increased performance is progressing relatively slowly, the trends 

and development of ‘New Products’ has rather to be seen in the manufacturing of blended and 

polymer-bounded explosives meeting the desired demands such as easy processing and 

handling together with keeping a high security level is the state-of-the-art. Currently, much 

effort is made in order to increase the safety of the explosive products on handling and in case 

of fire or other unwanted external influences like impact, falling and being fired upon. With 

respect to this, nitramines are of special interest and are going to be discussed in the following 

Chapters. 

 

 

Figure 6.1. Secondary explosives 
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 In continuation of the work described in the previous Chapters on compounds with a high 

nitrogen content the investigating of the chemistry of aminotetrazole derivatives with respect to 

their use as components in propellants and explosives5,6 is of special interest since they can be 

readily converted to corresponding N-nitroso- and N-nitraminotetrazoles. They are of interest, 

since they have two energetic sites: the nitroso/nitramino and the tetrazole moiety. Particularly 

N-nitraminotetrazoles are of interest, as they might be used as modifiers for the combustion 

rates in rocket propellants, as cool gas generators or other or as additives in special explosives 

and were investigated e.g. by Willer et al.7 

 Not much attention has been given to energetic materials based on nitraminotetrazoles, 

and important data, like NMR and crystal structures are missing for compounds already 

described in literature.8 Therefore it is important to reinvestigate the chemistry of certain 

nitraminotetrazoles, especially with respect to NMR, crystal structure and rotational barriers 

around the N−N bond and compare different synthetic routes. The synthesis in all cases is based 

on the conversion of the easily accessible N-aminotetrazoles,9 either by the direct nitration with 

nitrating agents (e.g. acetic anhydride/HNO3) or by dehydration of the corresponding nitrates 

with conc. sulfuric acid.10 The direct conversion of easily accessible N-nitrosaminotetrazoles to 

the corresponding nitramines by the action of peroxytrifluoroacetic acid, yielding the 

corresponding pure secondary nitramines, was also investigated. N-nitrosamines exhibit strong 

carcinogenic and mutagenic properties and are potential NO·/NO+ donors11 through homolytic 

and heterolytic cleavage of the N−NO bond, respectively. For N-nitrosaminotetrazoles similar 

properties should be expected. This class of compounds is only little investigated, however.12 In 

the following Chapters the synthesis, multinuclear NMR data and molecular structures in the 

crystal of N-nitrosaminotetrazoles (111a, 111c) are reported. The NMR data and molecular 

structures of the new nitroso compounds are compared to those of the corresponding N-

nitraminotetrazoles (112a-c).  

 

 1.1 Synthesis and properties of N-Nitroso- and N-Nitraminotetrazoles 

 The nitroso- (111a,c) and nitraminotetrazoles (112a-c) are prepared starting from the 

corresponding substituted 5-aminotetrazoles. The syntheses of the 5-aminotetrazoles belong to 

one of the following four main reaction types: (1) amino group or ring functionalization of 5-

aminotetrazoles,13,14 which often results in mixtures of isomers;15,16  (2) substitution of a leaving 

group in the tetrazole 5-position with amines;17 (3) various azide-mediated tetrazole ring 
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formation reactions (e.g. from cabodiimides,18 cyanamides19 or α-chloroformamidines20); and 

(4) reaction of aminoguanidine derivatives with sodium nitrite under acid condition.21,18 The 

latter reaction is the most convenient for the synthesis of the corresponding symmetric 

substituted 1-methyl-5-(methylamino)-1H-tetrazole (109a), 1-isopropyl-5-(isopropylamino)-

1H-tetrazole (109b) and 5,6-dihydro-7H-imidazolo[1,2-d]tetrazole (109c). 109a-c were 

obtained according known procedures from the substituted S-methyl-isothiouronium 

hydriodides (107a-c), which were first converted to the corresponding guanidinium derivatives 

(108a-c) with anhydrous hydrazine.  

 
Scheme 6.1. Synthesis of N-nitroso- and N-nitraminotetrazoles 



 278

 108a-c were then reacted with nitrous acid followed by a base workup to yield the 5-

aminotetrazoles in good overall yields (109a (82%), 109b (71%), 109c (75%), Scheme 6.1). The 

5-aminotetrazoles (109a-c) could all be directly converted to the corresponding 

nitraminotetrazoles (112a-c) using the nitration system acetic anhydride/nitric acid (Scheme 6.1, 

A) or via the corresponding nitrates (110a-c), as described by Garrison and Herbst22 for the 

nitration of 109a (Scheme 6.1, B). The obtained yield for 112c, by direct nitration differs from 

that mentioned in ref 23 by 7%, and in the case of the methyl substituted derivative (112a) a 

higher yield was obtained compared to Garrison and Herbst (Table 6.1).22 It is known from 

literature, that peroxytrifluoroacetic acid (CF3CO3H) has been found to be a unique reagent for 

the oxidation of nitrosamines24, and so far it seems that this reagent has never been used for the 

oxidation of nitrosaminotetrazoles. The corresponding nitrosoamines were obtained according 

known procedures only for 111a and 111c.22 In the case of 109b the reaction with nitrous acid 

resulted in the formation of a complex mixture of products from which it was not possible to 

isolate 111b. 111a and 111c were converted to 112a and 112c by CF3CO3H in DCM in 

excellent yields (82 % and 80 %, respectively, Scheme 6.1, C). 

 
Table 6.1. Synthesis of the 5-aminotetrazole derivatives 109a-c, 111a, 111c and 112a-c 

 comp yield [%]  
method A

 
method B

 
method C

mp (lit. mp) [°C] 

1 109a 82a    175.0-175.5 
2 109b 71a    163.5-164.0 
3 109c 75a    175.0-175.5 
4 111a 84b    46.0-47.0 (46-4722) 
5 111b -    − 
6 111c 94b    110.0-110.5 (−) 
7 112a  64c  81 (7522)b 82d 58.0-58.5 (5822) 
8 112b  66c 75b − 56.0-57.0 (−) 
9 112c  68c (7523) 64b 80d 150.0 dec. (16023) 

a based on the corresponding thiourea derivative. b based on the corresponding 5-aminotetrazoles. c based on the 
corresponding nitrate. d based on the corresponding 5-nitrosoaminotetrazole. 

 

 1.2 Molecular Structures 

 Selected data on the molecular geometry of the compounds 111a,c, 112a-c as well as the 

corresponding 5-aminotetrazoles 109a,c are given in Table 6.2 (N−X: 109a,c (X = H); 111a,c 

(X = NO); 112a-c (X = NO2). The molecular structures of 109a,c, 111a,c and 112a-c in the 

crystal are shown in Figures 6.3, 6.4 and 6.5, respectively. Compounds 109a and 112a (Figure 

6.3) crystallize in the orthorhombic space group Pbca with eight formula units in the unit cell; 
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109c (Figure 6.2) and 112b (Figure 6.5) in the monoclinic space group P21/n with four formula 

units in the unit cell. 

Table 6.2. Comparison of selected interatomic distances (Å), bond angles (°) and torsion 
angles (°) in 111a,c, 112a-c and 109a,ca 
 109a 111a 112a 109c 111c 112c 112b 
        
Bond Length [Å]        
C1−N1 1.343(2) 1.329(3) 1.336(3) 1.325(2) 1.319(2) 1.276(4) 1.338(2) 
N1−N2 1.362(2) 1.356(2) 1.341(3) 1.348(2) 1.348(2) 1.375(4) 1.341(2) 
N2−N3 1.291(2) 1.284(3) 1.299(3) 1.288(2) 1.299(2) 1.317(4) 1.303(2) 
N3−N4 1.374(2) 1.360(3) 1.359(3) 1.379(2) 1.384(2) 1.335(4) 1.358(2) 
N4−C1 1.330(2) 1.310(3) 1.308(3) 1.316(2) 1.312(2) 1.339(4) 1.315(2) 
C1−N5 1.338(2) 1.385(2) 1.391(3) 1.343(2) 1.378(2) 1.370(4) 1.397(2) 
N1−C2 1.451(2) 1.454(3) 1.457(3) 1.453(2) 1.459(2) 1.435(4) 1.480(2) 
N5−C3 1.451(2) 1.447(3) 1.460(3) 1.474(2) 1.486(2) 1.491(4) 1.486(2) 
N5−X        
N5−N6  1.335(3) 1.390(3)  1.331(2) 1.354(4) 1.376(2) 
N6−O1  1.227(2) 1.221(3)  1.223(2) 1.191(4) 1.214(2) 
N6−O2   1.220(3)   1.205(4) 1.225(2) 
        
Bond Angle [°]        
N4−C1−N5 126.6(1) 122.0(2) 125.9(2) 138.9(1) 139.4(1) 139.4(3) 126.5(1) 
N4−C1−N1 108.7(1) 110.2(2) 110.2(2) 109.7(1) 111.4(1) 111.1(1) 109.9(1) 
N1−C1−N5 124.7(2) 127.8(2) 123.7(2) 111.3(1) 109.2(1) 109.5(1) 123.6(1) 
N3−N2−N1 106.2(1) 106.3(2) 106.9(2) 105.4(1) 105.3(1) 102.1(3) 106.6(1) 
N2−N3−N4 111.3(1) 111.6(2) 110.7(2) 111.8(2) 112.0(1) 114.2(3) 111.0(1) 
C1−N4−N3 105.3(1) 104.6(2) 104.9(2) 104.0(1) 102.9(1) 102.7(3) 104.9(1) 
C1−N1−C2 129.5(2) 133.9(2) 130.1(2) 113.1(1) 115.1(1) 115.6(3) 130.5(1) 
N2−N1−C2 122.1(2) 118.7(2) 122.5(2) 137.0(1) 136.3(1) 134.5(3) 121.8(1) 
C1−N5−C3 120.3(2) 119.9(2) 120.6(2) 107.4(1) 110.1(1) 110.0(3) 123.0(1) 
N5−X        
C1−N5−N6  117.1(2) 116.2(2)  121.7(1) 125.0(3) 115.6(1) 
C3−N5−N6  123.0(2) 118.0(2)  127.1(1) 124.4(3) 119.5(1) 
N5−N6−O1  113.5(2) 115.8(2)  112.7(1) 114.9(3) 117.7(1) 
N5−N6−O2   117.2(2)   115.8(3) 116.3(1) 
O1−N6−O2   127.0(2)   129.3(4) 126.0(1) 
        
Torsion Angle [°]        
        
O1−N6−N5−C3  -1.4(3)   6.3(2)   
O1−N6−N5−C1  179.2(2)   172.8(1)   
N1−C1−N5−C3  3.8(3)   1.3(2)   
        

a for numbering see Figure 6.2  

 

Figure 6.2. Connectivity and 
numbering scheme for the 
substituted tetrazole moiety in 
109a,c, 111a,c and 112a-c. 
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 For 111a (Figure 6.3), 111c (Figure 6.4) and 112a (Figure 6.3) the structures were solved 

in the monoclinic space group P21/c with four units in the unit cell. Comparing all investigated 

compounds with respect to the tetrazole moiety and the exocyclic atoms N5 and C2 (i.e. the 

lengths of the N−C and N−N bonds as well as the corresponding bond angles) the tetrazole 

rings are approximately planar within the limits of accuracy (maximal deviation is 0.060(1) Å 

for 109c and 0.042(2) Å for 112a from this plane; Appendix B). The geometrical parameters 

found compare well to those observed for other tetrazole derivatives.25 The interatomic 

distances in the tetrazole rings are not equal, ranging from 1.284(3) to 1.384(2) Å. The amino 

groups in the aminotetrazoles 109a and 109c are planar in accord with a sp2 hybridization of the 

nitrogen atom. The angle sums around N5 are 356° (109a) and 351° (109c), respectively (Table 

6.2). Moreover, the C1−N5 bond lengths in 109a and 109c compared to those in the 

nitrosamines and nitramines are closer to those typical for C=N double bonds. In the case of the 

substitution of the proton by a nitroso or nitro group, an elongation of the C1−N5 bond is found, 

with a maximum of 1.397(2) Å for 112b. Depending on the nature of the substituent at N5, 

different features in the molecular structures of the investigated compounds were observed. 

 
Figure 6.3. Molecular structures and labeling scheme for 109a, 111a and 112a (ORTEP Plot, thermal ellipsoids 
represent 50% probability). 
 

 The formal exchange of the proton in 109a and 109c by a nitroso group leads to the N-

nitrosamines 111a (Figure 6.3) and 111c (Figure 6.4). The nitrosamine moiety in 111a and 

111c lies almost in the plane of the tetrazole ring; the dihedral angle between the tetrazole plane 

and the −N(NO)− plane is 3.8° for 111a and 7.2° for 111c. The relevant torsion angles are given 

in Table 6.2. It is known that nitroso groups exhibit orientational disorder in the solid state,26 

which often leads to situations in which both isomers, Z (cisoid with respect to C−N) and E 

(transoid with respect to C−N), occupy the same site in the crystal. However, the crystal 

structure of 3a and 3c reveals that the N-nitrosamine moiety is ordered and adopts the E 
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conformation (Figure 3 and 4). No residual electron density peaks were found in the nearest 

vicinity of this group in both compounds, indicating that the crystal indeed consists solely of the 

E rotamere. Compared to reported values of N-methyl-N-nitrosoanilines, the observed bond 

lengths differ dramatically.27 The bond distance C1−N5 in 111a (1.385(2) Å) and 111c 

(1.378(2) Å) is much shorter than corresponding C−N bonds in nitrosoanilines, which are 

typically longer than 1.43Å. The N5−N6 bond is much longer (1.335(3) Å (111a) and 1.331(2) 

Å (111c) vs. ~1.30 Å in N-methy-N-nitrosoanilines) and the N6−O1 bond (1.227(2) (111a) and 

1.223(2) (111c) Å) was found to be shortened by ~ 0.04 Å with respect to the corresponding 

bond length in nitrosoanilines. An explanation might be the better π-conjugation of the terazole 

moiety with the lone pair at the N5 compared to anilines, which results in a shortening of the 

C1−N5 bond together with an elongation of the N5−N6 bond (see below, NBO anaysis). Bond 

lengths and angles of the tetrazole fragments for both compounds agree well with the geometry 

of similar molecules bearing substituents inducing sp2 hybridization at the amino nitrogen atom 

N5. 

 

 
Figure 6.4. Molecular structures and labeling scheme for 109c, 111c and 112c (ORTEP Plot, thermal ellipsoids 
represent 50% probability) 
 

 Selected bond length and bond angles of 112a (Figure 6.3), 112b (Figure 6.5) and 112c 

(Figure 6.4) are contained in Table 6.2. For all three compounds the tetrazole ring and the 

arrangement around the nitrogen atoms of the nitramine moiety is planar within the limits of 

accuracy of the structure determination. The bond length and angles of the nitramine group for 

112a-c are comparable to those already reported.28 In all three cases the lone pair on N5 is 

stereochemically inactive, which makes the bond angles about N5 essentially trigonal planar 

(angle sums around N5: 352.6(2) (112a), 358.1(1) (112b) and 359.4(3) (112c), respectively). 

This is found to be typical for unstrained nitramine units.28 For 112c some differences with 

respect to certain structural parameters are observed. Compared to the nitramine moiety in 112a 
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and 112b which is almost perpendicular to the plane of the tetrazole ring (torsion angle 

N1−C1−N5−N6 -78.5(2) (112a) and -90.3(2) ° (112b)) the nitramine moiety in 112c lies in the 

same plane as the tetrazole ring (N1−C1−N5−N6 -176.28(1), indicating a possible interaction 

between the π-system of the tetrazole ring and the nitramine unit. The π-electron delocalization 

in 112c is reflected e.g. in the bond distance C1−N5 (1.370(4) Å) which was found to be 

shortened by ~0.03 Å compared to 112a (1.391(3) Å) and 112b (1.397(2) Å). This is also 

supported by the results of an NBO analysis (see below). In accordance with that the N5−N6 

bond was found to be unusually shortened in the case of 112c (1.354(4) Å) compared to 112a 

(1.390(3) Å) and 112b (1.376(2) Å). The differences of the non-bridged structures such as 6a 

and 112b compared to 112c can be best explained by repulsive interaction of the sp2-type lone 

pair at N4 and the electron density localized at O2 of the nitro groups. This interaction leads to 

the orthogonal structure in 112a and 112b since the O2 atom of the nitro group tries to be as 

distant as possible from N4. Consequently a large N4−O2 distance is found in 112a (3.510(1) 

Å) and 112b (3.329(1) Å, compared to a fairly short distance in 112c (2.880(2) Å).  

 Since densities of explosives are important for predicting explosive properties, a semi-

empirical computer program invented by Willer et al., China Lake, was used to predict the 

densities of compounds 112a-c. The predicted densities are 1.53 (112a), 1.27 (112b) and 1.71 

(112c) g cm-3. These agree remarkably well with the measured densities by X-ray 

crystallography (Appendix B, 1.522, 1.305 and 1.690 g cm-3, respectively) and also illustrate 

that cyclic compounds are much more dense than acyclic compounds.54 

 

 
Figure 6.5. Molecular structure and labeling scheme 
112b (ORTEP plot, thermal ellipsoids represent 50% 
probability). 
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 1.3 NBO analysis 

 A striking feature of the structure of all investigated tetrazolyl substituted nitroso- and 

nitramines is the almost planar environment of the nitrogen atom N5 (angle sums around N5 

ranging from 352.6(2) to 360.0(2)°, Table 6.2). As shown by NBO analysis,29 in all investigated 

species the lone pair at the nitrogen atom N5 is localized in a pure p-type atomic orbital. As a 

consequence the p-type lone pair at the nitrogen atom N5 (notation: p-LP(N5)) can be further 

delocalized resulting in intramolecular interactions (non-covalent effects). The best Lewis 

representation according to NBO is given in Figure 6.6 (A) and displays two double bonds 

between C1-N4 and N2-N3 of the tetrazolyl ring.  

 

 

Figure 6.6. Lewis representation of the donor-acceptor interaction of p-LP(N5) with π*(C1–N4) 
(B) and π*(O1-N6) (C), respectively 

 

 This finding is supported by the calculated Wiberg bond indices (Table 6.3). Investigation 

of the non-covalent effects reveales two main possibilities for delocalization: into the tetrazolyl 

ring (B) and into the NO- or NO2-group (C). For the planar systems (111a, 111c, 112c) there 

are two significant interactions of the nitrogen lone pair (p-LP(N5)) with the two unoccupied, 

localized antibonding π*(C1–N4) (B) and π*(O1-N6) (C) orbitals, which is described by the 

resonance between the Lewis representations A, B and C (Figure 6.6, Table 6.4). Moreover, 

delocalization into the NO- (111a, 111c) and NO2-group (112c) is always slightly favored over 

the ring delocalization as indicated by the sum of the intramolecular donor-acceptor energies 

(Table 6.4, e.g. in 111a ΣNO(54.2 kcal mol-1) > Σring(51.2 kcal mol-1)). For the two non-planar 

species (112a and 112b) the sum of the intramolecular donor-acceptor energies into the 

tetrazole moiety is as expected much smaller (Table 6.4, e.g. in 112a ΣNO2(51.2 kcal mol-1) > 

Σring(28.3 kcal mol-1)). A comparison of the planar structures of 111a and 111c, shows in the 

case of 111c an unfavorable charge distribution. This is displayed by the electrostatic potential 

(ESP) mapped on the electronic density surface (Appendix A Figure A-3) where a negatively 

charged tetrazole ring system is located next to the negatively charged nitroso group. In the case 
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of 111a due to the different arrangement of the nitramine moiety, which is rotated by 180° 

compared to 111c, such a repulsive interaction is not observed (Appendix A Figure A-4). 
 
Table 6.3. Comparison of selected calculated Wiberg bond indices 
(WBI) from the NBO analysis of 111a,c and 112a-c.a 

 111a 112a 111c 112c 112b 
      

Bond Length [Å]      
C1−N1 1.22 1.21 1.19 1.07 1.22 
N1−N2 1.18 1.23 1.18 0.87 1.23 
N2−N3 1.63 1.59 1.63 1.10 1.58 
N3−N4 1.30 1.32 1.28 1.01 1.33 
N4−C1 1.46 1.50 1.49 1.41 1.49 
C1−N5 1.05 1.00 1.04 0.92 0.98 
N1−C2 0.93 0.92 0.93 0.76 0.89 
N5−C3 0.92 0.93 0.91 0.73 0.89 
N5−N6 1.26 1.02 1.25 0.84 1.04 
N6−O1 1.71 1.48 1.73 1.13 1.47 
N6−O2  1.48  1.14 1.48 

a for numbering see Figure 6.7 

 

Figure 6.7. Connectivity and 
numbering scheme for the 
substituted tetrazole moiety in 
111a,c, 112a-c. 

 

 Therefore it can be concluded that the significant interaction of the nitrogen lone pair (p-

LP(N5)) with the two unoccupied, localized antibonding π*(C1–N4) (B) and π*(O1-N6) (C) 

orbitals, which describes the resonance between the Lewis representations A, B and C, is the 

driving force for the planarization of these systems.  

 
Table 6.4. Summary of the NBO Analysis of 111a,c and 112a-c (p-LP(N5) 

 σ/π*(XY) Donor-Acceptor Interactions in Kcal mol-1)a 
 111a 111c 112a 112b 112c 
p-LP(N5)  π∗(C1-N4) 47.9 48.5 7.7 0.8 47.4 
p-LP(N5)  σ∗(O1-N6) 50.4 54.8 40.1 43.6 45.2 
ΣNO/NO2

a 54.2 57.9 51.2 52.0 52.0 
Σring

a 51.2 50.9 28.3 22.9 50.3 
a the experimental data have been used in the NBO algorithm. 

 
 Interestingly, by oxidation of the nitroso group to the nitro group (112a and 112b) these 

non-bridges structures, as already discussed before, are no longer planar since the lone pair on 
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N4 and the electron density localized on the corresponding oxygen atom try to be as distant as 

possible from each other (Mullican and NBO charges on N4 and O2, Appendix A Table A-9). 

This situation is also nicely displayed by the corresponding ESP’s mapped onto the electron 

density surface (Appendix A Figure A-5 − A-7). In the case of 111c, from the electrostatic point 

of view the bridging ethylene unit forces this molecule in the unfavorable coplanar structure.  

 

 1.4 15N Chemical Shifts and 1H-15N Coupling Constants 

 The 15N NMR shifts and the values of the 15N,1H coupling constants are presented in 

Table 6.5. For all compounds the proton coupled as well as the proton decoupled NMR spectra 

(with full NOE) were recorded. The assignments are based on the analysis of the 15N,1H NMR 

coupling patterns in the proton decoupled NMR spectra and, where necessary, on the 

comparison with literature data.30 In previous reports the assignments were associated with the 

assumption that in tetrazoles N-1 and N-4 in general resonate at lower frequency whereas N-2 

and N-3 resonate at higher frequency, and that alkyl substitution results in a significant shift of 

the pyrrole-type nitrogen resonance to lower frequency.31 In accordance with this, it was found 

that the 15N NMR chemical shifts correlate well with the electron densities at the nitrogen atoms 

(see above) and together with the 15N,1H NMR coupling patterns the assignment of the 15N 

NMR signals to the nitrogen atoms of the tetrazole moiety was straightforward.  

 

Table 6.5. 15N and 13C NMR chemical shifts (ppm) and 15N,1H coupling constants (J, Hz) of the compounds studied. 
 N-1 N-2 N-3 N-4 N-5 X(N-6) C-1 

109aa -186.8 
2J(N1CH3) = 1.5 

-21.8 
3J(N2CH3) = 1.5 

1.8 -94.9 
3J(N4CH3) = 2.4 

-341.3 
1J(NH) = 91.5 

− 
(H) 

155.7b 

109ba -164.6 
2J(N1CH) = 2.6 

-28.8 
3J(N2CH) = 2.2 

2.5 -94.7 
 

-312.5 
1J(NH) = 86.8 

− 
(H) 

153.5b 

109ca -163.3 -29.2 
3J(N2CH2) = 1.8 

21.0 -104.1 
3J(N4CH2) = 2.2 

-349.2 
1J(NH) = 89.3 

− 
(H) 

165.8a 

111aa -168.0 
2J(N1CH3) = 2.0 

-9.1 
3J(N2CH3) = 1.7 

4.7 -72.8 -139.7 
2J(N5CH3) = 1.5 

172.7 
(NO)c 

153.3b 

111ca -153.5 
2J(N1CH2) = 1.9 

-23.5 24.9 -92.8 -144.6 167.4 
(NO) 

158.3b 

112aa -153.2 
2J(N1CH3) = 1.3 

-5.9 10.2 -58.9 
3J(N4CH3) = 2.2 

-219.6 -34.9 
(NO2) 

147.8b 

112ba -129.2 
2J(N1CH) = 2.2 

-10.1 
3J(N2CH) = 2.1 

13.3 -56.5 -202.2 -36.5 
(NO2) 

147.0b 

112ca -156.8 
2J(N1CH2) = 1.1 

-24.5 26.1 -83.2 -203.5 -42.0 
(NO2) 

158.6b 

a[d6]-DMSO; b [d6]-acetone; all shifts are given with respect to CH3NO2 (15N) and TMS (13C) as external standard; in the case of 15N 
NMR negative shifts are upfield from CH3NO2; c Coupling of protons α to the nitroso group to the nitroso nitrogen atom and are less 
then 1.0 Hz, for 111a (3J(15N-H) = 0.9 Hz) -  111c (3J(15N-H) = 0.8 Hz); 
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 The signal of the nitrogen atom (N-5) of the amino substituent for the aminotetrazoles 

109a-c could be assigned due to its chemical shift, well separated from the 15N NMR signals of 

the nitrogen atoms of the tetrazole moiety, as well as its splitting to a doublet in the proton 

coupled 15N NMR spectrum. The observed values for the one bond coupling constant are 

typical for 1J(15N,1H) of three-coordinate nitrogen and range from 86.8 to 91.5 Hz (Table 6.5).32 

For all the compounds 109a-c, 111a, 111c and 112a-c it was found that the 15N NMR chemical 

shifts of the nitrogen atoms of the tetrazole ring become more negative in the order N-3 < N-2 < 

N-4 < N-1. A more detailed insight into the electron charge distribution throughout the 

investigated compounds can be obtained from hybrid density functional theory (B3LYP). The 

optimized (B3LYP/6-31G(d,p))33 geometries of the compounds have been used to calculate the 

electron charge distribution. The results summarized in Table A-9 (Mullican and NBO charges, 

Appendix A), predict a general shift of electron charge towards the nitrosamino (111a and 111c) 

and nitramino (112a-c) group and simultaneously an extreme differentiation of electron density 

throughout the tetrazole moiety. From these results using the Mulliken populations the atoms of 

the tetrazole moiety show the highest electron density of the two coordinated nitrogen atoms at 

N4. For N2 and N3 the Mulliken population shows similar values, which are higher for N3 

compared to N2. However, as the Mulliken population analyses are known to be basis set 

dependent, also the results from a natural population analysis were included. They also give 

similar values for N2 and N3, but now the values for N2 are slightly higher.34 In addition, the 

nitrosamino as well the nitramino group carries an overall negative net charge, resulting in a 

substantial separation of charges between the tetrazole versus nitrosamino or nitramino moiety 

(Σq(tetrazole) = ~ +0.20−0.25e vs. Σq(nitrosamino/nitramino) = ~ -0.20−0.25e; Appendix A 

Table A-9).  

 In accordance to the aminotetrazoles discussed previously, the 15N NMR signal of the 

amino nitrogen (N5) of the nitrosaminotetrazoles 111a and 111c also appears upfield from the 

nitromethane reference, while the signal of the nitroso nitrogen (N6) is found far at low field. In 

the case of the nitrosotetrazoles 111a and 111c, the 15N chemical shift of the N=O nitrogen 

atom appears downfield relative to that of aliphatic nitrosamines in a range characteristic for 

aromatic nitrosamines, which also indicates extensive electron delocalization within the 

tetrazole moiety (NBO analyses).35 Comparing the investigated nitrosamines (5a and 5c) there 

is a remarkable upfield shift of 5.3 ppm from 5a (172.7 ppm) to 5c (167.4 ppm) which can be 

attributed to the different extent of crossconjugation into the tetrazole moiety, also observed in 

the NBO analysis.36,37  
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 The nitraminotetrazoles 112a-c in a given solvent ([d6]-DMSO) are good examples for 

the so called β-effect of alkyl groups. It has already been observed that nitrogen magnetic 

shielding decreases significantly in the following sequence of alkyl substitution at nitrogen for a 

given group X (X = tetrazole moiety).38   

CH3N(X) > RCH2N(X) > R2CHN(X) > R3CN(X) 

 R is an alkyl group, and X represents any atom or group of atoms. This is called the β-

effect as each step involves the introduction of a carbon atom at the β-position with respect to 

the nitrogen atom concerned, and produces a deshielding effect ∆σ = 6 to 12 ppm. In the present 

case, the replacement of the methyl group in 112a by the isopropyl (112b) or ethylene bridge 

(112c), respectively, produces a β-effect and a concomitant deshielding of the amino nitrogen 

(N5), ∆σ = about 17 ppm, just within the range expected. In the case of the nitrogen atom (N6) 

of the nitro group the signals are observed at the expected region (δ = -20 to -45 ppm).39 In the 

case of the 112c a pronounced upfield shift for N6 (as well as N4) is observed (112c (N6, -42.0 

ppm) vs. e.g. 112a (N6, -34.9 ppm)) which can be attributed to the intramolecular donor-

acceptor interaction of the π-system (see NBO analyses) of the tetrazole moiety with the 

nitramine unit (Table 6.4).  

 

 1.5 1H and 13C NMR spectra  

 In the 1H NMR spectra of 109a-c only one signal is observed for the N−H protons in the 

region (5.5 to 7.0 ppm), typical for secondary amines. The 1H and 13C NMR data of the alkyl 

groups are as expected. As becomes evident from Table 6.5, the formal exchange of the proton 

at N5 by a nitroso (111a,c) or nitro (112a-c) group leads to an upfield shift for the 

corresponding 13C NMR resonance. In the case of 111a and 111c only the E isomer was 

observed, indicating a restricted rotation along the N5−N6 bond (see below). In the case of 

109b and 112b a dynamic behavior in solution is observed, which can be attributed to the 

rotation of the isopropyl groups. The 1H and 13C{1H} NMR spectra of the nitramine 112b 

(Figure 6.8) are temperature dependent. They indicate, that rotation of the isopropyl groups 

became slow on the NMR time scale at low temperatures. At -65 °C four doublets are observed 

in the 1H NMR spectrum corresponding to four different methyl groups. Accordingly four 

signals are observed in the 13C NMR spectrum in the methyl region. Raising the temperature 

results in the pairwise coalescence of the 1H and 13C NMR signals of the methyl groups. In 
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addition to the dynamic behavior, the 1H spectra show an interesting temperature dependence of 

the chemical shifts of the CH-protons of the iPr groups. This temperature dependence is 

different for the two different CH-protons and causes their signals to overlap at low 

temperature. 

 

Figure 6.8. Temperature depended 1H and 13C{1H} NMR spectra of 112b 
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 1.6 Raman and IR spectroscopy 

 In contrast to alkyl substituted N-nitroso compounds, which exhibit a characteristicly 

weak band at 1445-1490 cm-1 (N=O stretching) in the IR and Raman spectra,40 the 

corresponding band in the Raman and IR spectra is found at higher wavenumbers (~1584 cm-1). 

According to the results of a frequency analysis (B3LYP/6-31G(d,p)), the ν(N=O) mode is 

coupled in the case of 111a with the ν(C1-N5) mode and for the bridged compound 111c with 

the ν(C1-N4) mode. They are split into two characteristic bands, a strong band at ~1580 cm-1 

and a medium band at ~1530 cm-1, respectively. In the case of 112a-c, the N−NO2 groups give 

rise to the strong absorption in the 1285-1299 (νsym(NO2)) and 1560-1595 (νasym(NO2)) cm-1 

regions and to a weak band at 945-970 (ν(N−N)) cm-1.41 The IR and Raman spectra of 

compounds 109a,c, 111a,c and 112a-c contain further characteristic absorption bands: 3250-

3100 cm-1 [ν(N–H) 109a,c], 3000-2850 [ν(C–H), 109a,c, 111a,c and 112a-c], 1680-1550 

[ν(N6H) 109a,c], 1550-1350 [ν, tetrazole ring, νas(CH3, CH2, CH), ν(N4–H)], ~1380 [ν(CH3 

CH2, CH)] 1350-700 [ν(N1–C1–N4), ν(N–N), ν(N6H), ν(CN), ν, tetrazole ring], <700 [ν, out 

of plane bend N–H), ν(N6H)].  

 

 1.7 N,N Rotational Barriers  

 The isomerization process which interchanges the alkyl groups e.g. in Me2NNO requires 

roughly 23 kcal mol-1.42 The mechanism is thought to involve rotation about the N−N bond 

rather than inversion of the nitroso nitrogen; calculations predict the latter to require activation 

energies which are four times as large as those of the rotation about the N−N bond.43 N-nitroso 

compounds generally exhibit planar structures, because rotational barriers along the N−NO 

bond44 are of similar magnitude compared to those of amides.45 This can be understood in terms 

of a resonance structure (Figure 6.9), which displays partial double bond character of the 

N−N(O) bond, in a manner similar to the N−C(O) bond in amides.  

 

Figure 6.9. Resonance in 
N-nitrosamines 
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 A series of different types of nitrosamines have been investigated with respect to their 

rotational barriers. From these investigations, rotational barriers of monocyclic five-membered 

N-nitrosamines as well as other monocyclic N-nitrosamines are estimated to be larger than 20-

21kcal mol-1.46  

 Rotational barriers with respect to the N−NO bonds were calculated with the Gaussian 98 

program (Table 6.6).33 The geometry optimizations were carried out at the B3LYP level of 

theory including the 6-31G(d,p) and 6-311+G(3df,2p) basis sets, using procedures implemented 

in the Gaussian molecular orbital packages. The calculated total energies for each ground state 

structure as well as transition states (Figure 6.10) are given in Tables A-10 − A-12 (Appendix 

A). Vibrational frequencies calculations were performed on all stationary points at the B3LYP 

level. Transition state structures were characterized by a single imaginary frequency, whereas 

the corresponding isomers (for 111a,c iso1 and iso2; for 112a and 112c only one ground state 

structure) had none. Two transitional rotational conformations of N-nitrosoamines were 

calculated for 111a and 111c, s-cis (sp_ts) and s-trans (ap_ts) conformations (NO bond syn-

periplanar (sp_ts) or anti-periplanar (ap_ts) with respect to the nitrogen lone pair, Figure 6.10). 

In both cases, the sp_ts conformation was favored over the ap_ts conformation (Table 6.6).  

 
Table 6.6. Potential Energy Barriersa (Kcal mol-1) for the Rotation about the N−N Bond in 111a,c a. 112a,c. 

compound 
theoret level 

syn rotation 
about N−N 

bond 
(sp_ts)a 

anti rotation 
about N−N 

bond 
(ap_ts) a 

 compound 
theoret level 

rotation 
about N−N 

bond 
(ts) a 

111a    112a  
B3LYP/6-31G(d,p) 21.4 (21.2) 25.2 (23.3)  B3LYP/6-31G(d,p) 12.8 (11.0) 
B3LYP/6-311+G(3df,2p) 21.1 23.9  B3LYP/6-311+G(3df,2p) 10.8 
      
111c    112c  
B3LYP/6-31G(d,p) 18.0 (18.0) 21.2 (21.3)  B3LYP/6-31G(d,p) 9.2 (9.4) 
B3LYP/6-311+G(3df,2p) 17.3 21.3  B3LYP/6-311+G(3df,2p) 8.5 

a uncorrected values in kcal mol-1; in parenthesis Gibbs free energy: ∆G‡(298 K; kcal mol-1). 

 

 This conformational preference can be interpreted in terms of repulsive interactions of the 

vicinal nitrogen lone pair of electrons of the amine and NO group in the s-trans rotated 

conformer. Rotational barriers about the N−NO bonds were evaluated on the basis of the most 

stable ground minimum structure of the nitrosamines 111a and 111c, and the values are shown 

in Table 6.6. The rotational barrier of the N-nitrosaminotetrazoles 111a and 111c was evaluated 

computationally to be 21.2 kcal mol-1 (111a) and 18.0 kcal mol-1 (111c) (B3LYP/6-31G(d,p)). 

These values compare well with those of the barriers of monocyclic nitrosamines.  
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Figure 6.10. Optimized structures and transition states of N-nitrosoaminotetrazoles 111a, 111c and N-
nitramino-tetrazoles 112a and 112c. 
 

 

 In the case of the N-nitraminotetrazoles 112a and 112c, the corresponding rotational 

barriers about the N−NO2 bonds were also evaluated on the basis of the most stable ground 

minimum structures (Figure 6.10), and the values are shown in Table 6.6. The barrier of 
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internal rotation around the N−N bond in e.g. the N,N-dimethylnitramine molecule was 

determined experimentally to 9 kcal mol-1 47 and estimated theoretically to 4 − 13 kcal mol-1.48 

The rotation of the NO2 group by 90°, i.e., perpendicular to the C1−N5−C3 plane, increases the 

N−N bond length and the arrangement of the C−N and N−N bonds around the amide nitrogen 

atom becomes tetrahedral.47 In the case of 112a and 112c rotational barriers of comparable 

magnitude where obtained with values of 11.0 and 9.4 kcal mol-1, respectively.  

 Interestingly, the computed barriers apparently seem to correlate with the observed bond 

angles C1−N5−C3, indicating that the low rotational barrier of the N−NO as well as at the 

N−NO2 bond of the investigated compounds is due to angle strain at the amino nitrogen atom 

(e.g. 110a 119.9(2)° vs. 110c 110.1(1)° and 112a 120.6(2)° vs. 112c 110.0(3)°).  

 

 1.8 Thermochemistry 

 The heats of combustion for the compounds 112a and 112c were determined 

experimentally, and the molar enthalpies of formation were calculated from a designed Hess 

thermochemical cycle according to reactions [1,2]. Typical experimental results (averaged over 

three measurements each) of the combustion energy at constant volume ( Uc∆ ) for the 

compounds are given in Table 6.7. The standard molar enthalpy of combustion ( °∆ Hc ) was 

derived from nRTUH cc ∆+∆=∆ ° ( ∑=∆ inn (products, g) ∑− in (reactants, g); ∑ in is the 

total molar amount of gases in products or reactants).  

 

6a:  C3H6N6O2 (s) + 3.5 O2 → 3 CO2 (g) + 3 H2O (l) + 3 N2 (g)  [1]  

6c:  C3H4N6O2 (s) + 3 O2 → 3 CO2 (g) + 2 H2O (l) + 3 N2 (g)  [2]  

°°°° ∆−∆+∆=∆ mcmfmfmf HlOHHygCOHxH ),(),( 22  
 

6a:  C3H6N6O2 (s) → 5/3C + CO + 1/3CO2 + 8/3H2 + 1/3 H2O + 3 N2  [3]  

6c:  C3H4N6O2 (s) → 5/3C + CO + 1/3CO2 + 5/3H2 + 1/3 H2O + 3 N2  [4]  

 The enthalpies of detonation ( °∆ mE H ) for 112a and 112c were calculated with the ICT 

Thermodynamic code.49 To assess more quantitatively the expected detonation properties of 6a 



 293

and 112c, the modified Kistiakowsky-Wilson Rule50 (reactions [3] and [4], Ω lower then -40%) 

was used to calculate the expected detonation pressures (P) and detonation velocities (D) as 

well as the semi-empirical equations suggested by Kamlet and Jacobs (Eqs. [5] and [6], Table 

6.7).51,52 The values thus obtained reach in the case of 112c those of TNT with respect to the 

detonation pressure (22.0 GPa vs. TNT,53 P = 20.6 GPa) and those of nitroglycerin with respect 

to the detonation velocity (7181 m s-1 vs. nitroglycerin,1 D = 7610 m s-1). Both compounds show 

a high gas yield, calculated with the ICT Thermodynamic code.  

 

ϕρ 28 ]10[ KPaP =  [5]  

)1(][ 2/11 ρϕµ BAsmmD +=−  [6]  

 

Table 6.7. Thermochemical properties of 112a and 112c 
 112a 112c 
Formula C3H6N6O2 C3H4N6O2 
Molar Mass 158.12 156.10 
N [%] 53.2 53.8 
Ω [%]a -70.8 61.5 
-∆CUm [cal/g]b 3119 3247 
-∆CHm° [kcal mol-1]c 489.9 503.9 
∆fHm° [kcal mol-1]d +2.8 +85.2 
-∆EHm° [kcal kg-1]e 549 1035 
Density [g cm-3]f 1.522 1.690 
Density [g cm-3] 
calcd.g 

1.53 1.71 

P  [GPa]h 14.3 22.0 
D [m s-1]h 5988 7181 
Gas volume (25°C) 
[ml g-1]i 

1010 934 

a Oxygen balance; b Experimental combustion energy at constant 
volume; c Experimental molar enthalpy of combustion; d Molar 
enthalpy of formation; e Calculated molar enthalpy of detonation, 
ICT Thermodynamic code see ref. [49]; f from crystal structure 
determination; g calcd. See ref [54]; h calculated from semi-
empirical equations suggested by Kamlet and Jacobs see ref. 
[51,52]; i Assuming only gaseous products, ICT Thermodynamic 
code see ref. [49]. 
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 1.9 Conclusion 

 Since experimental data and crystallographic parameters as well as rotational barriers of 

N-nitroso as well as N-nitraminotetrazole are rare in literature, simple examples with low carbon 

and hydrogen content with respect to those parameters were investigated. A detailed discussion 

of the 15N NMR data and structural parameters is given, and the intriguing bond situation is 

discussed in terms of natural bond analysis (NBO). The NBO analysis indicates for the 

nitrosotetrazoles 111a and 111c two significant interactions of the nitrogen lone pair (p-LP(N5)) 

with the two unoccupied, localized antibonding π*(C1–N4) and π*(O1-N6) orbitals. In the case 

of the none bridged nitro derivatives 112a and 112b the interaction with the antibonding 

π*(C1–N4) is no longer observed due to the rotation of the tetrazole moiety out of the nitramine 

plane. As the nitroso group is somewhat related to the structural features of amides, the special 

conformational behavior of the N-nitrosaminotetrazoles 111a and 111c is characterized by 

calculated high rotational barriers. They are found in the range typical for aromatic N-

nitrosamines and are almost double in magnitude compared to those of the corresponding nitro 

derivatives 112a and 112c. For 112a and 112c, the heat of formation was determined 

experimentally with bomb calorimetry resulting in positive values for both compounds. The 

heat of combustion estimated semi-empirically with the help of the thermochemical ICT code 

was used to calculated the gas yield, indicating in both cases high amounts of produced gases 

(1010 (112a) and 934 (112c) ml g-1).  

 

 1.10 Experimental 

 CAUTION: Although aminotetrazoles are kinetically stable and in most cases are 

insensitive to electrostatic discharge, friction, and impact, they are nonetheless energetic 

materials and appropriate safety precautions should be taken, especially in the case of the N-

nitrosamino- as well as the N-nitraminotetrazoles. Laboratories and personnel should be 

properly grounded, and safety equipment such as Kevlar® gloves, leather coat, face shield and 

ear plugs are necessary when compounds 112a and 112c are synthesized on a larger scale. 

Moreover, since N-nitrosamines are known to have strong carcinogenic and mutagenic 

properties, special care has to be taken when manipulating 111a and 111c.  
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 The amino-1H-tetrazoles were prepared according to previously published 

procedures.12,16 A detailed description of the procedure for 108a-c, 109a-c and the 

corresponding nitrates 110a-c can be found in 55.  

 

 General Procedure for the Preparation of 5-Nitrosoaminotetrazoles 111a and 111c: 

The nitrosoamines 111a and 111c were prepared following published procedures22: To a cooled 

solution of the respective amino-1H-tetrazole (25 mmol) in 50 mL of 2M HCl was slowly 

added a solution of sodium nitrite (1.73 g, 25 mmol) in 20 mL of water. During the addition the 

temperature was maintained between 0 and 5 °C. The resulting mixture was stirred at 5-10 °C 

for 30 minutes and then brought to pH 8 with anhydrous potassium carbonate. In the case of 

11a, the aqueous solution was extracted with DCM (3 x 100 mL) and the combined organic 

extracts washed with water (2 x 70 mL) and dried over MgSO4. After removing the solvent in 

vacuo the yellow residue was recrystallized from water/EtOH yielding light sensitive pale-

yellow plates (84 %). In the case of 5c, the crude product separated during the addition of the 

potassium carbonate. Recrystallization from water/EtOH yielded pale-yellow needles (94 %). 

 

 1-Methyl-5-(methylnitrosoamino)-1H-tetrazole (11a):  m.p. 46-47 °C; ν~ (KBr) [cm-1]: 

3040 (vw, -CH3), 2954 (vw, -CH3), 1626 (w), 1576 (vs, .
~

asymν NO), 1512 (m), 1464 (m), 1446 

(vs), 1455  (vs), 1415 (m), 1391 (m), 1318 (vw), 1277 (m, ν~ -N-N=N-+), 1225 (s, .
~

symν NO), 

1208 (m, ν~ tetrazole), 1125 (s, ν~ tetrazole), 1097 (s, ν~ tetrazole), 1037 (w, ν~ tetrazole), 973 

(m), 946 (s, ν~ -CH3N-NO), 814 (s), 730 (m), 701 (s), 691 (m), 519 (w), 462 (vw); Raman (200 

mW) ν~ [cm-1]: 3041 (11), 2966 (25), 1580 (100, .
~

asymν NO), 1511 (48), 1456 (11), 1418 (6), 

1393 (13), 1318 (7, ν~ -N-N=N-), 1278 (16, symν~ NO2), 1097 (7, ν~ tetrazole), 1041 (2, 

ν~ tetrazole), 947 (11, ν~ -CH3N-NO), 815 (9), 731 (4), 702 (37), 521 (6), 464 (23), 286 (4), 357 

(8), 326 (7), 231 (6), 199 (13); 1H NMR (CDCl3) δ: 3.58 (s, 3H, -CH3), 4.21 (s, 3H, CH3); 13C 

NMR ([d6]Acetone) δ: 32.1 (CH3), 37.4 (CH3), 153.3 (C); 14N NMR (CDCl3) δ: 170 (N-NO, 

∆ν1/2 = 1101 Hz), -6 (N2, N3 ∆ν1/2 = 1009 Hz), -75 (N4, ∆ν1/2 = 550 Hz), -141 (-NMe-NO, 

∆ν1/2 = 459 Hz), -173 (N1, ∆ν1/2 = 367 Hz); m/z (EI) 143 [(M + H+) (15)], 127 (36), 126 (10), 

113 (12), 83 (5), 71 (4), 70 (5), 69 (8), 52 (5), 43 (100), 42 (5), 41 (11), 40 (8), 30 (10), 28 (12), 

15 (25); C3H6N6O (142.12): Calcd. C, 25.4; H, 4.3; N, 59.1 %; Found:  C, 25.5; H, 4.3; N, 59.5 

%. 
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 7-nitroso-5,6-dihydro-7H-imidazolo[1,2-d]tetrazole (111c): m.p. 110-110.5 °C (dec.); 

ν~ (KBr)[cm-1]: 3028 (vw, -CH2), 1585 (vs, .
~

asymν NO), 1536 (m), 1473 (vs), 1455 (vs), 1430 

(m), 1358 (ms, 1315 (w), 1280 (vw), 1264 (s, ν~ -N-N=N-+), 1240 (s, .
~

symν NO), 1192 (s, 

ν~ tetrazole), 1157 (vs, ν~ tetrazole), 961 (m, ν~ -CH3N-NO), 803 (s), 763 (m), 726 (m), 687 

(vw), 604 (w), 516 (vw), 367 (vw), 337 (vw); Raman (200 mW) ν~ [cm-1]: 3028 (17), 2987 (20), 

2961 (22), 1584 (100, .
~

asymν NO), 1538 (27), 1481 (22), 1468 (21), 1456 (37), 1357 (2), 1316 

(13, ν~ -N-N=N-), 1263 (15, symν~ NO2), 1235 (8), 1206 (7, ν~ tetrazole), 1187 (6, ν~ tetrazole ), 

1158 (6, ν~ tetrazole ), 1045 (14, ν~ tetrazole), 963 (5, ν~ tetrazole), 933 (5, ν~ -CH3N-NO), 802 

(4), 764 (31), 729 (3), 605 (21), 518 (32), 409 (23), 365 (8), 349 (16), 207 (19), 126 (8 ); 1H 

NMR ([d6]DMSO) AA’BB’-spectrum (δA= 4.64, δB= 4.72, N = 31 Hz, CH2); 13C NMR 

([d6]Acetone) δ:  43.0 (CH2), 53.9 (CH2), 158.3 (C); m/z (EI) 140 [(M+) (100)], 109 (5), 96 (25), 

67 (9), 55 (60), 54 (27), 53 (44), 44 (5), 41 (5), 40 (7), 30 (51), 28 (90), 27 (15); C3H4N6O 

(140.10): Calcd. C, 25.7; H, 2.9; N, 60.0 %;  Found:  C, 25.6; H, 3.3; N, 59.7 %. 

 

 General Procedures for the Preparation of 5-Nitraminotetrazoles (112a-c): Method 

A: 112a-c: The amino-1H-tetrazoles 109a-c were transformed according to known procedures 

(for details see supporting information) to the corresponding amino-1H-tetrazolium nitrates.22 

The nitrate (20 mmol) was slowly added with stirring to cooled (~ -8 °C) conc. sulfuric acid 

(4.5 mL). During the addition of the nitrate the temperature of the reaction mixture should not 

exceed 0°C. After the addition the reaction mixture was stirred for further 10 minutes, quickly 

heated to 25 °C and poured onto 30 g of ice. The white crystalline solid was separated by 

filteration and washed with water until it became acid free and was recrystallized from an 

appropriate (see below) solvent. A second crop of product was obtained by extracting the 

aqueous solution with Et2O followed by the workup procedures described above. Method B: 

112a-c: The method described in 23 was used: To cooled acetic anhydride (5 g; ice-bath), 5 g 

100% nitric acid was added dropwise over 10 minutes. After 20 minutes, 25 mmol of the 

respective amino-1H-tetrazole was added in small portions over 10 minutes. The solution was 

stirred for further 20 minutes and then quenched on 25 g of crushed ice. The crude product was 

collected, washed until it became acid free and recrystallized from an appropriate (see below) 

solvent. Method C: 112a and 112c: To a well stirred suspension of 0.41 mL (15 mmol) of 90% 

hydrogen peroxide in 10 mL DCM (cooling with an ice-bath recommended) was added 2.60 

mL (18 mmol) of trifluoroacetic anhydride in one portion. After 5 minutes the solution was 
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allowed to warm to room temperature and 10 mmol of the corresponding nitrosamine in 5 mL 

of DCM was added drop-wise over a 30-minute period. During this addition an exothermic 

reaction occurred which caused the solution to boil. After the addition was completed the 

mixture was heated under reflux for one hour. The DCM solution was then washed with water 

(3 x 15 ml) and dried over MgSO4. The solvent was removed by distillation under reduced 

pressure and the residue was recrystallized from an appropriate (see below) solvent.  

 

 1-Methyl-5-(methylnitramino)-1H-tetrazole (112a): Recrystallization from benzene / 

pentane. m.p. 58-58.5 °C; ν~ (KBr) [cm-1]: 3038 (vw), 2961 (vw, -CH3), 2925 (vw, -CH3), 2854 

(vw, -CH3), 1576 (vs, asymν~ NO2), 1545 (m), 1487 (m), 1461 (m), 1430  (m), 1384 (w), 1314 (m, 

ν~ -N-N=N-+), 1294 (s, symν~ NO2), 1269 (m), 1214 (m, ν~ tetrazole), 1181 (m, ν~ tetrazole), 1127 

(m, ν~ tetrazole), 1093 (m, ν~ tetrazole), 1049 (w), 989 (w), 949 (m, ν~ -CH3N-NO2), 786 (m), 

761 (m), 748 (w), 606 (m); Raman (200 mW) ν~ [cm-1]: 3038 (33), 3025 (34), 2962 (99), 2829 

(9), 1551 (100, asymν~ NO2), 1488 (14), 1440 (25), 1418 (23), 1315 (27, ν~ -N-N=N-+), 1291 (33, 

symν~ NO2), 1270 (45, ν~ tetrazole), 1216 (26, ν~ tetrazole), 1153 (7, ν~ tetrazole), 1096 (15), 1051 

(8), 991 (10), 951 (38, ν~ -CH3N-NO2), 787 (70), 699 (63), 607 (32), 490 (40), 451 (27), 402 

(22), 321 (15), 280 (24), 254 (20), 142 (74); 1H NMR ([d6]Acetone) δ: 3.82 (s, 3H, CH3), 4.10 

(s, 3H, CH3); 13C NMR ([d6]Acetone) δ: 29.8 (CH3), 35.7 (CH3), 147.8 (C); 14N NMR 

([d6]Acetone) δ: 10 (N2, ∆ν1/2 = 578 Hz), -4 (N3,  ∆ν1/2 = 616 Hz), -35 (-CH3N-NO2, ∆ν1/2 = 23 

Hz), -58 (N4, ∆ν1/2 = 374 Hz), -155 (N1, ∆ν1/2 = 181 Hz), -219 (-CH3N-NO2, ∆ν1/2 = 919 Hz); 

m/z (CI, i-Buten) 159 [(M + H+) (100)]; C3H6N6O2 (158.12): Calcd. C, 22.8; H, 3.8; N, 53.2 %; 

Found:  C, 22.8; H, 3.9; N, 53.4 %. 

 

 1-Isopropyl-5-(isopropylnitramino)-1H-tetrazole (112b): Recrystallization from EtOH 

/ water. m.p. 56-57 °C; ν~ (KBr) [cm-1]: 2994 (vw, -iPr), 2971 (vw, -iPr), 2883 (vw, -iPr), 2847 

(vw, -iPr), 1567 (vs, asymν~ NO2), 1469 (w), 1461 (w), 1448  (vw), 1426 (m), 1401 (vw), 1391 

(w), 1385 (vw), 1375 (vw), 1350 (vw), 1321 (m, ν~ -N-N=N-+), 1288 (s, symν~ NO2), 1254 (vw), 

1243 (vw), 1182 (w, ν~ tetrazole), 1164 (w, ν~ tetrazole), 1137 (vw, ν~ tetrazole), 1125 (m, 

ν~ tetrazole), 1091 (w, ν~ tetrazole), 1062 (w, ν~ tetrazole ), 994 (vw), 970 (w, ν~ -CH3N-NO2), 

946 (vw), 934 (vw), 885 (vw), 792 (w), 760 (w), 736 (vw), 726 (vw), 668 (vw), 643 (vw), 589 
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(vw), 555; Raman (200 mW) ν~ [cm-1]: 2999 (100), 2990 (84), 2974 (80), 2946 (93), 2929 (69), 

2875 (28), 2773 (6), 2733 (11), 1576 (12), 1522 (83, asymν~ NO2), 1457 (53), 1398 (29), 1322 

(21), 1285 (40, ν~ -N-N=N-+), 1253 (41, symν~ NO2), 1183 (17, ν~ tetrazole), 1138 (29, 

ν~ tetrazole), 1092 (39, ν~ tetrazole), 1068 (29, ν~ tetrazole), 1048 (12), 994 (12), 948 (24, ν~ -

CH3N-NO2), 888 (45), 795 (60), 767 (12), 735 (10), 646 (42), 588 (19), 564 (19), 477 (41), 439 

(49), 377 (17), 349 (34), 317 (24), 295 (24), 152 (84), 119 (44); The compound shows in 

solution dynamic behavior. 1H NMR ([d6]Acetone, 25 °C) δ: 1.31 (s, 6H, CH(CH3)2), 1.58 (d, 

6H, 3J 6.6 Hz, -CH(CH3)2), 4.9 (septett, 1H, 3J 6.6 Hz, -CH(CH3)2), 5.07 (septett, 1H, 3J 6.6 Hz, 

-CH(CH3)2); ([d6]Acetone, -65 °C) δ: 1.03 (d, 3H, 3J 7.0 Hz, -CH3), 1.45 (d, 3H, 3J 6.4 Hz, -

CH3), 1.49 (d, 3H, 3J 6.6 Hz, -CH3), 1.56 (d, 3H, 3J 6.6 Hz, -CH3), 5.05 (septett, 2H, 3J 6.6 Hz, -

CH(CH3)2); 13C NMR ([d6]Acetone, 25 °C) δ: 18.6 (CH3), 21.1 (CH3), 51.3 (CH), 55.5 (CH), 

147.0 (C); ([d6]Acetone, -65 °C) δ: 18.3 (CH3), 18.3 (CH3), 21.6 (CH3), 22.0 (CH3), 50.8 (CH), 

54.9 (CH), 146.9 (C); 14N NMR ([d6]Acetone, 25°C) δ: 13  (N2, ∆ν1/2 = 666 Hz), -11 (N3,  

∆ν1/2 = 571 Hz), -36 (-iPrN-NO2, ∆ν1/2 = 24 Hz), -56 (N4, ∆ν1/2 = 435 Hz), -130 (N1, ∆ν1/2 = 

201 Hz), -200 (-iPrN-NO2, ∆ν1/2 = 989 Hz); m/z (CI, i-Buten) 215 [(M + H+) (18)], 210 (15), 

196 (15), 170 (100), 169 (18); m/z (DEI)  169 (37), 154 (12), 127 (24), 126 (10), 110 (9), 111 

(36), 99 (10), 86 (39), 85 (11), 14 (84), 80 (29), 69 (14), 64 (15), 58 (22), 57 (16), 48 (19), 43 

(100), 42 (21), 41 (30), 39 (9); C7H14N6O2 (214.23): Calcd. C, 39.3; H, 6.6; N, 39.2 %; Found:  

C, 39.2; H, 6.6; N, 39.4 %. 

 

 7-Nitro-5,6-dihydro-7H-imidazolo[1,2-d]tetrazole (112c): Recrystallization from 

acetone/water. m.p. 150 °C (dec.); ν~ (KBr) [cm-1]: 3035 (vw, -CH2), 3017 (vw, -CH2), 1592 

(vs, asymν~ NO2), 1550 (s, ν~  (C=N)), 1515 (m), 1472 (m), 1359 (s), 1335 (vs, ν~ -N-N=N-+), 1299 

(s, symν~ NO2), 1276 (m), 1235 (m), 1204 (m, ν~ tetrazole), 1186 (m, ν~ tetrazole), 1138 (w, 

ν~ tetrazole), 1108 (vw, ν~ tetrazole), 1041 (vw, ν~ tetrazole), 956 (w, ν~ -CH3N-NO2), 800 (w), 

763 (w), 747 (w), 715 (m), 683 (m), 527 (vw); Raman (200 mW) ν~ [cm-1]: 3035 (45), 3018 

(33), 2995 (52), 2976 (60), 2933 (12), 2902 (14), 1582 (59), 1552 (100, asymν~ NO2), 1495 (10), 

1471 (37), 1457 (25), 1378 (9), 1363 (18), 1291 (48, ν~ -N-N=N-+), 1268 (30), 1235 (60, 

symν~ NO2), 1207 (26), 1140 (17, ν~ tetrazole), 1109 (10, ν~ tetrazole), 1042 (60, ν~ tetrazole), 957 

(12, ν~ tetrazole), 935 (21, ν~ -CH3N-NO2), 801 (90), 763 (8), 719 (7), 683 (23), 527 (31), 441 

(29), 402 (42), 326 (22), 213 (29), 122 (21); 1H NMR ([d6]Acetone) AA’BB’-spectrum (δA= 
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4.85, δB= 5.36, N = 29 Hz, CH2); 13C NMR ([d6]Acetone) δ:  42.9 (CH2), 58.2 (CH2), 158.6 (C); 
14N NMR ([d6]Acetone) δ:  30 (N3, ∆ν1/2 = 238 Hz), -25 (N2, ∆ν1/2 = 262 Hz), -42 (-RN-NO2, 

∆ν1/2 = 24 Hz), -82 (N4, ∆ν1/2 = 190 Hz), -158 (N1, ∆ν1/2 = 142 Hz), -206 (-RN-NO2, ∆ν1/2 = 

476  Hz); m/z (DEI) [(M+) (34)], 111 (30), 98 (11), 55 (70), 54 (100), 53 (59), 52 (30), 46 (45), 

40 (13), 30 (53); C3H4N6O2 (156.10): Calcd: C, 23.1; H, 2.6; N, 53.8%; Found: C, 22.7; H, 2.7; 

N, 53.6%. 
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 2. Mono- and Dinitrobiuret 

 In the continuing search for new energetic materials to improve explosives and 

propellants, it is of interest to successfully utilize the formulations of monocyclic nitramines 

like hexahydro-1,2,5-trinitro-S-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine 

(HMX) and nitroaromatics like 2,4,6-trinitro toluene (TNT). However, owing to the number of 

accidents involving initiation of munitions by impact/shock, there is a need for the development 

of conciliatory materials having characteristics of insensitivity close to 1,3,5-triamino-2,4,6-

trinitrobenzene (TATB) and commensurate detonation performance. A member of the 

azaheterocyclic nitramine urea class, 2-oxo-1,3,5-trinitro-1,3,5-triazacyclohexane (Keto-RDX 

or K-6)56 exceeds the performance area of TNT or PETN, but a level higher than HMX cannot 

be achieved.57 As the presence of nitrourea moiety in a cyclic structure ensures high densities,58 

new azaheterocyclic nitramines are sought to meet the requirements of increased stability and 

insensitivity, coupled with high performance. Scheme 6.2 shows the synthetic route to Keto-

RDX starting from dinitrourea (DNU) and an alcohol. 

 

 

Scheme 6.2. Condensation of DNU with an alcohol to keto-RDX (K-6) 

 

 Several mono- and dinitroureas have been synthesised as energetic materials and have 

attractive densities and predicted performance. Most prominent examples are mono- and 

dinitroureas, and the explosives based on these base structures have in the most cases high 

densities (> 1.90 g cm-3). This can be attributed to the inherently high density of the urea frame 

work. The development of a simple procedure for the preparation of N,N’-dinitrourea has 

opened a new way to N-nitroamines starting from urea.59 The availability of N,N’-dinitrourea 

salts for example makes it possible to synthesize new compounds on their base structure.60 
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Figure 6.11. Examples of nitroureas 

 

 However, the dinitrurea explosives suffer from hydrolytic lability, restricting their use; 

but the mono-nitrourea compounds are fairly stable to hydrolysis and are relatively insensitive 

to shock. The earliest and best known examples of mono- and dinitroureas were 1,4,4,6-

tetranitroglycouril (TNGU) and 1,4-dinitroglycouril (DNGU) synthesized by Boileau et al.61 

Both TNGU and DNGU (Figure 6.11) were found to have a high crystal densities (2.04 and 

1.98 g cm-3). A comparison of DNGU and TNGU, with respect to their stability and sensitivity, 

is indicative of the general trend between mono- and dinitrourea explosives. TNGU is unstable 

in water while DNGU decomposed only slowly on treatment with boiling water. DNGU has a 

significant higher drop hammer value than TGNU and better thermal stability. DNGU has been, 

in fact, investigated as an insensitive energetic material that was proposed to be an alternative to 

RDX and TNT.62 Pagoria and coworkers synthesized a number of cyclic nitrourea explosives 

based on RDX and HMX with some attractive densities and the most interesting is certainly K-

6.63 

 Compared to the structurally similar RDX, Keto-RDX shows, depending on the crystal 

shape, comparable physical properties, but in the BAM impact testing all K-6 samples except 

one coarse crystal fraction revealed a pronounced sensitivity of 2.0 Nm, which approaches 

primary explosive behavior.64 It is to expect that energetic materials based on the cyclic 

nitramine structure of RDX and HMX might have a higher performance, if the elemental 

composition is only marginally modified, yielding good energy capability, thermal stability, as 

well as a method of preparation from readily available cheap starting materials.63 In this context, 

compared to nitrourea 65 the chemistry of the corresponding biuret derivatives mononitrobiuret 

(MNB) and 1,5-dinitrobiuret (DNB) as synthetic equivalents for the preparation of 

azaheterocyclic nitramine urea class derivatives has never been achieved (Figure 6.12). 

 
Figure 6.12. MNB and DNB 
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 2.1 Synthesis of MNB and DNB 

 Mononitrobiuret (113) was readily prepared by nitration of biuret 1 with HNO3/H2SO4. 

Dinitrobiuret (114) was obtained by the treatment of 113 with 100 % HNO3 according a 

modified procedure of Thiele et al (Scheme 6.3).66 For the entire reaction sequence (Scheme 

6.3), an overall yield of 46% was obtained starting from biuret (115). Both MNB  and DNB  

were characterized by IR, Raman, 1H, 13C, 14,15N NMR spectroscopy and single crystal X-ray 

diffraction. MNB is an air stable white solid which starts to decompose without melting at 153 

°C. It is soluble in common polar solvents and is not friction, impact or heat sensitive. DNB  is 

also an air stable white microcrystalline solid, but in contrast to MNB, is very friction, impact 

and heat sensitive. It will explode when heated above 127 °C, therefore appropiate saftey 

precaution should be taken when manipulating DNB. In the solid state, DNB is indefinitely 

stable. It is soluble in most organic solvents. The stability of the solution is dependend on the 

basisity of the solvent. For example, it readily decomposes in aqueous solution to N2O, CO2 and 

H2O (see below). 

 

 

Scheme 6.3. Synthesis of MNB and DNB 

 

 2.2 Raman and IR spectroscopy of MNB and DNB 

 The IR and Raman spectra of 113 and 114 are comparable. The assignment of most of the 

modes is complicated owing to the strong dependence of their band position upon strong 

interaction of MNB and DNB with the molecules in the solid state.67,68 This is particularly 

evident when comparing the gas phase IR and Raman data69,70 with the results obtained in the 

solid state.71 The approximate assignment of the normal modes is based on the infrared band 

contours, group frequencies, infrared intensities, Raman activities, and ab initio predictions, 

which are supported by a normal coordinate analysis.  

 Table A-12 and A-13 (Appendix A) displays the calculated and observed frequencies for 

MNB and DNB along with the qualitative description of the atoms or groups that dominate the 

motion in each case. The IR spectra of MNB and DNB themselves are not well characterized 
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but the vibrational spectra of the akin biuret-hydrate and metal complexes of biuret have been 

recorded and discussed in a few papers.72,73 By comparing the spectra of MNB and DNB it is 

possible to assign the stretching vibration at 3433 cm-1 (ν1) to the NH2 group of MNB and the 

band at 3291 cm-1 (ν2, MNB; v1, DNB) to the stretching vibration of the -CO-NH-CO- group of 

both compounds. The band at 3146 cm-1 (ν 3, MNB) and 3210 cm-1 (ν2, DNB) are attributed to 

the stretching vibration of the –NH-NO2 group. The bands at 3071, 2969 and 2805 cm-1 are a 

result of combinations or overtones of some modes rather than of vibrations of fundamental 

modes and are not listed in Table A-13 and A-14. The IR spectrum of MNB [DNB] shows four 

[four] bands between 1800 and 1550 cm-1, two [one] C=O stretching at 1739 and 1714 cm-1 

(ν5, ν6) [1764 cm-1 (ν3)] and one NH2 scissors (bending) at 1572 cm-1 (ν 8) for MNB. The 

splitting of the C=O band for DNB is not observed. The asymmetric stretching vibration of the 

NO2 group can be found at 1630 cm-1 (ν 7) for MNB, whereas in the case of DNB a splitting of 

this band into two bands (1630 (ν6), 1618 cm-1 (ν7)) is observed due to the C2 symmetry of the 

molecule. The symmetric stretching vibration of the NO2 group in MNB is found at 1366 cm-1 

(ν12), whereas for DNB two bands at 1336 and 1318 cm-1 (ν11, ν12) which are strongly coupled 

with other modes are found. Two in plane bends of the NH group for MNB can be found at 

1490 (ν9) and 1383 cm-1 (ν10), and in the case of DNB the expected three in plane bends are 

found at 1568, 1484 and 1464 cm-1 (ν8, ν9 and ν10). The bands at 1395, 1206 and 951 cm-1 (ν10, 

ν13 and ν15) [1393, 1275, 1143 and 1061 cm-1 (ν11, ν13, ν14 and ν15)] can in most cases only 

partly attributed to C-N stretching vibrations due to combination with N-H bending, NH2 

rocking and NO2 stretching vibrations. Mainly one [two] modes, ν16 [ν16, ν17], is associated with 

the N-NO2 stretching at 1006 cm-1 [1048 and 995 cm-1]. The bands below 900 cm-1 of MNB 

and DNB are assigned to out-of-plane bend, skeletal in and out-of-plane deformations, and our 

assignment of the corresponding modes (ν17- ν36 of MNB and ν18- ν42 of DNB) also agree with 

this propositions.  

 

 2.3 NMR spectroscopy of MNB and DNB 

 Comparison of the 1H-, 13C- and 15N-NMR data of mono- and dinitrobiuret with those of 

biuret reveals the influence of the nitro groups (Table 6.8). In DMSO proton exchange is slow 

on the NMR time scale and distinct signals are observed for the different amino protons. 

Introduction of a nitro group causes a shift of the 1H NMR signal of the adjacent NH proton to 

lower field. In contrast, the 13C NMR signal of the corresponding carbonyl group is shifted to 
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higher field. For MNB separate signals are observed for the two amino protons, indicating that 

rotation of the NH2 group is slow on the NMR time scale. Nitro substitution at the amino groups 

causes a low field shift of the 15N NMR signal of the corresponding amino nitrogen atom, which 

is found at δ = -181.8 (MNB) and  δ = -182.7 (DNB) in a range typical for δ15N of the amino 

group in nitramines.74 There is no effect of nitro substitution on δ15N of the central NH unit in 

the biuret framework (-254.8 to -259.4).  

 

 In the nitramine units of MNB and DNB the presence of the electron withdrawing nitro 

group causes an increase of the acidity and hence of the mobility of the adjacent NH proton. 

This becomes clearly evident in the 1H-coupled 15N NMR spectra. They show well resolved 

multiplets for the NH2 and the central NH moiety, while only a broad singlet is observed for the 

NO2-bonded NH unit (Figure 6.13). The proton decoupled 15N NMR spectra display clearly the 

different NOE effect, experienced by the nitrogen nuclei in NH2, NH and NO2 groups, which 

can be quite helpful for the assignment of the signals. For the NH2 groups strong positive NMR 

signals are observed. The signals are much weaker for the NH moieties and become even 

negative for the NO2 groups. In the case of MNB the intensity of the signal of the NO2 bonded 

nitrogen atom is lowered to such a extend by proton irradiation, that the signal almost vanishes, 

while it is clearly observable in the proton coupled 15N NMR spectrum. This demonstrates how 

dangerous it is to rely exclusively on proton decoupled NMR spectra when monitoring half spin 

nuclei with a negative magnetogyric ratio.  

 
Table 6.8. NMR data of biuret, MNB and DNB 
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Figure 6.13. 14,15N NMR spectra of biuret, MNB and DNB 
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 2.4 Molecular structure of MNB and DNB 

 MNB crystallizes in the monoclinic space group C1 with eight formula units in the unit 

cell. The two crystallographically different molecules display nearly identical bond length and 

angles. Following the described synthesis above, DNB is obtained without crystal water. The 

water free DNB crystallizes in the orthorhombic space group P212121 with two formula units in 

the unit cell. Careful recrystallization of DBN from aqueous methanol afforded DNB as 

monohydrate which, in contrast to the water free compound crystallizes in the monoclinic space 

group I2/a. Table 6.8 shows selected bond length of biuret, MNB, DNB*H2O and DNB and a 

view of the molecular arrangement of MNB, DNB*H2O and DNB is depicted in Figures 14 − 

16.  

 

Figure 6.14. Formula unit and labeling scheme for MNB (ORTEP Plot, thermal 
ellipsoid represents 50% probability). For clarity only one molecule of the 
asymmetric unit is depicted. 

 

 In the case of biuret, MNB and DNB*H2O, the biuret framework is planar within the 

limits of accuracy of the structure determination. The bond lengths and angles of the nitramine 

group in MNB and MNB*H2O are comparable to those already reported for nitramines.75  

Compared to the nitramine moieties in DNB*H2O, which lie in the plane of the biuret 

framework (torsion angle O2−C2−N3−N4 176.9(2)°), the nitramine moiety in MNB is slightly 

rotated out of this plane (O2−C2−N3−N4 157.7(3)°). The small deviation from planarity, 

observed for N3 (angle sum 352°) in MNB is in contrast to the planarity (sp2 hybridization) of 

N3 (N1) in DNB*H2O. The bond distance C2-N3 (C1−N1) in MNB and DNB*H2O (1.387(4) 
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and 1.403(2) Å, respectively) is shorter than a C−N single bond (1.47 Å) and C-N bond 

distances normally found for nitramines, which are typically longer than 1.42 Å.28 

 

Figure 6.15. Formula unit and labeling scheme for DNB*H2O (ORTEP Plot, thermal 
ellipsoid represents 50% probability). 

 

Table 6.8. Selected bond length of MNB, DNB*H2O and DNB 
Å Biureta MNB DNB*H2O DNB typical bond lengthb 

      
N1−C1 1.33(2) 1.319(4) 1.396(3) 1.380(4) C−N  1.47 
N2−C1 1.39(1) 1.404(4) 1.381(2) 1.381(4) C=N  1.28 
N2−C2 1.39(9) 1.360(3) 1.355(2) 1.389(3)  
N3−C2 1.36(1) 1.387(4) 1.403(2) 1.380(4) C−O  1.43 
N3−N4  1.382(3) 1.371(2) 1.384(4) C=N  1.20 
N1−N5   1.365(2) 1.381(4)  
     N−O  1.44 
C1−O1 1.25(5) 1.237(3) 1.200(2) 1.208(4) N=O  1.20 
C2−O2 1.24(6) 1.221(3) 1.210(2) 1.207(4)  
N4−O3  1.214(4) 1.217(2) 1.211(3)  
N4−O4  1.220(3) 1.218(2) 1.206(3)  
N5−O5   1.229(2) 1.216(4)  
N5−O6   1.214(2) 1.210(3)  
      

A from ref. [76]; b see ref. [77] 

 

 In contrast to DNB*H2O, the molecular arrangement in DNB is completely different. 

Both nitraminogroups are rotated by approximately 180° yielding an C2v symmetry of the 

molecule. The corresponding bonds are almost identical (Table 6.8), and the slightly deviation 

might be explained by packing effects within the crystal. Interestingly, in comparison to the 
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structural arrangement in DNB*H2O, the nitramine groups are also rotated out of the biuret 

base structure (torsion angle O2−C2−N3−N4 7.4(6)°) but showing a better delocalization of the 

π system over the whole molecule. This is indicated by the shorter, almost identical two bond 

length N2−C2 (DNB*H2O (1.355(2) Å) vs. DNB (1.389(3)Å)) and N2−C1 (DNB*H2O 

(1.381(2) Å) vs. DNB (1.381(4)Å)) for DNB, whereas those bonds in DNB*H2O showing a 

high degree of asymmetry. The latter finding might be explained by the strong hydrogen bridge 

in DNB*H2O (O7–H7B····O1, 2.818(2) Å). 

 

 

Figure 6.16. Formula unit and labeling scheme for DNB (ORTEP Plot, thermal ellipsoid represents 
50% probability). 

 

 2.5 Reaction of DNB with base 

 2.5.1 Synthesis of DNB salts 

 Treatment of DNB with base yields depending on the concentration of the added base, the 

salts of the mono and doubly deprotonated DNB, respectively. Thus the monopotassium 

dinitrobiuretate (116) precipitates in form of a waterfree, white powder when a methanolic 

solution of DNB is treated with a methanolic solution of KOH at temperatures below 5 °C.  

 

 
Scheme 6.4. Preparation of mono or doubly deprotonated DNB salts 
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 The corresponding salts of doubly deprotonated DNB are obtained by the treatment of 

cold aqueous (for e.g. the Ba-salt, alcoholic) solutions of DNB with two equivalents of a base 

(e.g. hydrazine hydrate (118), KOH (117), Ba(EtO)2 (119)). The obtained products are salted 

out by adding methanol. Careful recrystallization from aqueous alcoholic solutions yields the 

salt as colorless needles in yields higher than 60% (Scheme 6.4). Figure 6.17 depicts the IR 

spectra of 116 and 117.  

 

 2.5.2 IR spectroscopy 

With the help of the already discussed IR and Raman spectra of DNB and MNB, the 

assignment of the frequency modes is straight forward. Interestingly, 117 crystallizes as 

monohydrate.  

Table 6.9. IR frequencies and modes in 116 and 117 

 
Figure 6.17. IR spectra of 116 and 117 
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 The stretching vibration of the coordinated water appears, as expected, at 3487 cm-1. The 

other modes agree also and are depicted in Table 6.9. The stretching vibrations of the C=O for 

both compounds appears also as expected in the region around 1720 to 1740 cm-1 and are 

slightly shifted towards lower wavenumbers combared to the parent DNB. The symmetric and 

asymmetric stretching vibration appears for the nitramide at higher wavenumber (116 

νasym(NO2) 1580 cm-1), whereas deprotonation leads to an significant shift toward lower 

wavenumbers (116 νasym(NO2) 1469 cm-1 and 117 νasym(NO2) 1499 cm-1). The stretching 

vibrations for the N−H mode appears in the case of 117 as one sharp signal, whereas in the case 

of 116 several modes are obtained. Table 6.9 depicts a more detailed assignment of the 

observed modes of the IR experiment. 

 

 2.5.3 Molecular structure of dipotassium dinitrobiuretate (117) 

 Figure 6.18 display the molecular arrangement of the dipotassium salt of DNB. 

Interestingly, the molecular framework is the same compared to the water-free DNB but the 

nitramide moieties are rotated out of the biuret base structure. The potassium salt crystallizes in 

the triclinic space group P-1 with two formula units in the unit cell. A detailed discussion is 

abstained.  

 

Figure 6.18. View of the molecular structure of 117. Displacement 
ellipsoid at 50% probability level. (blue: nitrogen; gray: carbon; red: 
oxygen; yellow: potassium, white: hydrogen) 
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 2.5.4 1H and 13C NMR of DNB and DNB salts 

 With the help of NMR spectroscopy it is possible to determine the deprotonation mode of 

the corresponding DNB species in solution (for simplification:  DNB (parent) DNB- (mono 

deprotonated) and DNB2- (double deprotonated); Table 6.10). DNB is a fairly strong dibasic 

acid which is capable of undergoing stepwise ionization with formation of acid and neutral 

salts. This can be monitored by means of 1H and 13C NMR since in the case of the 

deprotonation of the DNB an upfield shift, as to expect since the acidity decreases, for the NH 

protons is observed, whereas in the 13C NMR experiment an downfield shift of the carbonyl 

signal (Table 6.10).  

Table 6.10. 1H and 13C NMR of DNB and deprotonated species 

 

 

 3. Decomposition of DNB in solution  

 In the solid state DNB and its salts are fairly stable. In solution, especially water or highly 

basic solvents like DMSO, DNB and its salts decomposes very fast under the formation of 

exclusively N2O, ammonia, CO2 and water. In solvents like acetone, DNB is relatively stable 

and 15N NMR spectra can be recorded. The first step of the decomposition of DNB in solution 

([d6]-DMSO) follows a similar acid-catalyzed pathway as proposed by Cox et al.78 The initial 

step is the isomerization of DNB to the aci-nitro form 120. The mechanism for this step is 

outlined in Scheme 6.5. The protonation of the aci-nitro form represents the rate determining 

step, which proceeds by a water mediated proton transfer from the nitrogen atom to one oxygen 

atom of the nitro group. Release of N2O (121) and (H2O) 122 forms an intermediate carbamine 

acid derivative 123 which decomposes immediately to nitrourea (124) and CO2 (125). This 

transformation can be nicely monitored by the upfield shift of the acidic protons and the 

increase of the peak intensity at 11.16 ppm in the 1H NMR spectra. Nitrourea itself is under this 

conditions also not stable and decomposes in contrast to the mechanism proposed by 
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Dewhurst79 not to isocyanic acid, but following the same pathway as outlined above to 

ammonia (126) and CO2. During this process the pH of the solution increases as the amount of 

DNB decreases. This leads to the formation of ammonium carbamate (128), which has a higher 

stability in neutral as well basic media. Due to the continuing decomposition of nitrourea (124) 

and the increasing amount of ammonia in solution, the proton exchange of NH3 and water 

becomes fast on the NMR time scale, resulting in one broad signal (Figure 6.19). Also the 

decomposition pathway of nitrourea (124) changes from an acid to a base catalyzed mechanism, 

which is indicated by the observation of nitramine (129) as ammonium salt 130. As final 

decomposition products, only traces of the corresponding ammonium salt of DNB and 

ammonium carbamate (128) are observed indicating an almost complete decomposition in 

solution. The whole process can be nicely monitored not only by 1H but also by 13C and 14N 

NMR spectroscopy and are also depicted in Figure 6.19.  

 

 

Scheme 6.5. Possible decomposition pathway of DNB monitored in [d6]-DMSO solution. 



 313

 

Figure 6.19. Decomposition of DNB in [d6]-DMSO solution monitored by 1H, 13C and 14N spectroscopy. 
Intensities are not scaled, especially the last spectra (t > 250 min.) are not displayed with the real absolute intensity.  
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 2.7 Thermochemistry of MNB and DNB 

 2.7.1 Thermal behavior 

 Figure 6.20 displays characteristic DSC thermographs of MNB at different heating rates. 

MNB decomposes without melting. The thermographs show, depending on the heating rate, up 

to five thermal effects (heating rate 20°C/min). The first decomposition step (~154 – 164°C) is 

exothermic followed by two or three weak endothermic signals at 210 – 240°C. In the last 

endothermic reaction at above 350°C complete degradation takes place (Figure 6.21). 

 

 

Figure 6.20. DSC thermographs of MNB (β = 5, 10, 15 and 20°C/min) 
 

 TGA measurements of MNB show a complete, residue-free thermal decomposition in 

three steps (Figure 6.21). The three decomposition steps can be observed by Differential 

Thermo-Gravimetric (DTGA) measurements at a heating rate of 10°C/min. The first step (at 

154 - 164°C) with a 59.5% weight loss corresponds to the formation of nitramide, water, 

dinitrogen monoxide and urea (sublimate). These products have been identified in the gas phase 

(by IR, mass spectrometry). As residual products of the first decomposition step a mixture of 
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biuret (9%), triuret (71%), tetrauret (7%) and cyanuric acid (13%) were identified (Figure 6.22, 

Table 6.11). 

 
Figure 6.21. TGA and DTGA thermograph of MNB (β = 10°C/min, nitrogen 
atmosphere) 

 

 The second step (210 – 260°C) with 23.0% weight loss corresponds to the decomposition 

of the urea derivatives by forming cyanuric acid and HNCO. The third step (> 350°C) with 

16.5% weight loss corresponds to the depolymerization of cyanuric acid with the release of 

HNCO.80 The thermograph of MNB (heating rate of 5°C/min) clearly shows three 

decomposition steps with a peak at 163°C for the first exothermic step.  

 

 
Figure 6.22. 13C-NMR spectra of decomposition products of MNB. 
For description the Table 6.11 
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 The energy evolved during the exothermic decomposition is 958 kJ/g. The data obtained 

at different heating rates are summarized in Table 6.12. 

 
Table 6.11. Residual products after the first decomposition step of MNB (154-164°C). 

assignment + biuret [81] * triuret [82] o tetrauret [82] # cyanuric acid [81] 

δ1H   NH2 

         -CO-NH-CO- 

6.79 (s, 4H) 

8.69 (s, 1H) 

7.20/6.96 (s, 4H) 

9.66 (s, 2H) 

7.37/7.01 (s, 4H) 

9.71 (s, 2H), 10.61 (s, 1H) 

 

11.10 (s, 3H) 

δ13C  -CO-NH- 

         -CO-NH2 

 

155.4 

152.8 

154.1 

152.0 

153.6 

149.9 

 

 It is seen from Table 6.12 that as the heating rate increases, the temperature of the 

exothermic maxima also increases. The energy of activation for the first decomposition step, as 

estimated by the method of Ozawa83 and Kissinger84, are 212 and 215 kJ/mol respectively, i.e. 

in close agreement.85 It should be noted that increased heating rates cause an exothermic peak to 

shift, in a way not necessarily related to the activation energy (e.g. melting). This depends 

among other things on the response of the instrument, the sample size, contact area and position 

of the sample on the DSC pan, as well as for energetic materials their ratio of area/volume 

which must be taken into account. Therefore the sample size was kept small to minimize 

temperature gradients within the sample and a 0.003*3/16-in. disk was used to optimize good 

thermal contact between the sample and container (according ASTM E 698 – 99).  

Table 6.12. Maximum exothermic responses of MNB and DNB as a 
function of scan speed. 
S. no. β (°C/min) Tp (°C) Ea(kJ/mol) 

Ozawa [23]
Ea (kJ/mol) 
Kissinger [24] 

     
MNB      
1 5 163.23 212 215 
2 10 168.34   
3 15 171.41   
4 20 172.79   
5 25 175.35   
     
DNB     
1 15 128.92 148  149 
2 20 130.83   
3 25 133.70   
4 30 134.94   
5 40 137.29   
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 Also the volatility of the compounds used was taken into account by testing the samples 

using a sealed hermetic container to prevent interferences from vaporization and weight loss of 

unreacted material. It was found that the use of a hermetic container or a high-pressure cell was 

not necessary for MNB, but was for DNB to make a good estimate of the activation energy. We 

assume that the rate constant follows the Arrhenius law and that the exothermic reaction can be 

considered as a single step; certainly the conversion at the maximum rate is independent of the 

heating rate, when this is linear. 

 

 Figure 6.23 shows characteristic DSC spectra of DNB with different heating rates. DNB 

decomposes without melting. The thermographs show, depending on the heating rate, three 

thermal effects; in the case of fast heating rates (above 10°C/min) only one single exothermic 

signal is observed. 

 

Figure 6.23. DSC thermographs of DNB (β = 1, 2, 3, 4, 5, 10, 15 and 20°C/min). 

 

 The DSC curves of DNB show clearly that the decomposition of DNB does not occur in a 

single step; the reactions of DNB between 120 and 130°C are not clearly resolved, indicating 

simultaneous or consecutive reactions steps. The energy evolved during decomposition is 1130 
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kJ/g. DNB has a lower thermal stability than MNB. As seen from Fig. 5, DNB shows three 

different activated reactions, which cannot be separated when the heating rate is higher than 

10°C/min. To evaluate the stability of DNB, the activation energy was estimated using the 

standard test method for the rate constant for thermally unstable materials85 at heating rates 

higher than 10°C/min and following the methods of Ozawa83 and Kissinger84 (Table 6.12). 

 Figure 6.24 shows the TGA (heating rate 1°C/min) and DTGA curve of DNB. The 

DTGA curve shows a sharp exotherm with a maximum at 123°C. The TGA curve reveals a 

characteristic, one-step mass decrement before the main spontaneous decomposition. The 

weight loss starts at 90°C and the rate of loss is constant and slow between 95 and 117°C. 

However, a sudden mass loss is observed immediately after 117°C and ends at 124°C. The total 

weight loss at 90 – 124°C was found to be 100% within experimental error. 

 

Figure 6.24. TG and DTG thermograph of DNB (β = 1°C/min, nitrogen atmosphere) 

 

 2.7.2 IR spectroscopy 

 The identification of the decomposition gases allows the evaluation of the chemical 

processes during the thermal degradation of MNB and DNB. Figures 6.25 and 6.26 show those 

decomposition gases detected by IR spectroscopy and released during heating for the 

exothermic step of MNB (160 – 192°C) and DNB (98 – 130°C). 
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Figure 6.25. Infrared spectroscopic evolved gas analysis of MNB 

 

 The vibrational frequencies of the experimentally observed IR-active gases are 

summarized in Table 6.13. In both cases thermal decomposition reaction yields HNCO, N2O, 

CO2 and H2O as gaseous products. The formation of gaseous products starts in the case of MNB 

slowly between 160 and 186°C (Figure 6.25). A sudden rise is observed shortly above 186°C, 

indicating a spontaneous decomposition. Continuing the heating of MNB up to 350°C shows 

only the formation of HNCO. No other decomposition gases could be detected after the first 

decomposition step. In the case of DNB (Figure 6.26) a regular rise in the formation of gaseous 

products is observed. This is not consistent with the TGA/DSC data. One explanation for this 

observation is that the thermodynamic conditions for both experiments are different with respect 

to pressure. The IR experiment was carried out by thermal heating with a pressure of 5 µbar, 

whereas the TGA/DSC experiments had nitrogen as purge gas (20 cc/min). It is known that 

DNB is labile in a vacuum, especially when heated. Heating a 200 mg sample of DNB at 60°C 

(5 µbar) for ~ 15 min gave a violent decomposition, resulting in a complete destruction of the 

glass vessel used. The exothermic decomposition of MNB and DNB leads to almost identical 

gas phase spectra (Figure 6.27), which are confirmed by mass spectrometry. 
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Figure 6.26. Infrared spectroscopic evolved gas analysis of DNB 

 

 

Figure 6.27. IR spectra of HNCO and decomposition gases of MNB 

(190°C) and DNB (130°C) 
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Table 6.13.Vibrational frequencies (cm-1) of the experimentally observed molecules 

Species Frequencies ref 

HNCO 3538 (s), 2279 (vs), 2253 (vs), 1327 (w), 777 (w), 657 (w), 577 
(w) 

[86] 

N2O 3891 (w), 3480 (m), 2809 (w), 2591 (m), 2488 (m), 2457 (vs), 
2217 (vs), 1890 (w), 
1302 (vs), 1275 (vs), 1183 (m), 1155 (m), 694 (w), 588 (w) 

[87] 

CO2 3716 (w), 3609 (w), 2326 (vs), 741 (m), 667 (vs) [88] 
H2O 3657 (s), 1595 (s) [89] 

 

 

 2.7.3 Mass spectrometry 

 In the MS experiments the following decomposition gases were detected by their 

characteristic mass fragments (see Figure 6.28 and 6.29): water (m/z = 17 and 18), dinitrogen 

monoxide (m/z = 14, 16, 28, 30 and 44), carbon dioxide (m/z = 12, 16, 28, 22 and 44) and 

isocyanic acid (m/z = 15, 28, 29, 42 and 43). For MNB the ion with m/z = 86 coincides with the 

fragmentation of MNB by mass spectrometric induced SNi reaction90, yielding the nitramide ion 

peak (m/z = 62) and the dimeric isocyanic acid (m/z = 86). The peak at m/z = 70 results from an 

α-cleavage of an NH2 radical of the dimeric isocyanic acid (m/z = 86). The ion m/z = 60 (from 

urea) accounts for the reaction of ammonia with isocyanic acid (Scheme 6.6) 

 
Figure 6.28. EI-mass spectrum (70 eV) of the decomposition gases of MNB 
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Figure 6.29. EI-mass spectrum (70 eV) of the decomposition gases of DNB 

 

and explains the absence of ammonia in the IR spectra. Also the fragmentation of DNB starts 

with the mass spectroscopic induced SNi-reaction 90 yielding the nitramide ion peak (m/z = 62).  

Ions with mass higher than m/z 62 are not found in the spectrum of DNB. The remaining peaks 

can be attributed to the decomposition products already discussed. 

 

 2.7.4 Discussion 

 The thermal decomposition of MNB and DNB is initiated by an intramolecular SNi-

reaction of the nitramide unit forming nitramide (I) and the corresponding unstable intermediate 

derivatives (II and III). Nitramide decomposes in the gas phase to N2O and water (IV), which 

reacts with gaseous isocyanic acid (V) to ammonia (VI) and carbon dioxide (VII). The 

intermediate of the decomposition of DNB leads directly to isocyanic acid, dinitrogen oxide and 

carbon dioxide, whereas in the case of MNB this intermediate decomposes to two molecules 

isocyanic acid (Scheme 6.7). The theoretical mass loss for the first exothermic decomposition 

step of MNB (60%) coincides well with the experimentally determined value (59.5%). The 

initial step leads for both MNB and DNB to the formation of N2O, CO2, H2O and HNCO. Due 

to the higher decomposition temperature of MNB during the decomposition step, the residue 

components HNCO (V) and NH3 (VI) react in the gas phase reaction to urea (VIII). This leads 

at higher temperature to a series of condensation products, such as biuret (IX), triuret (X), 
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tetrauret (XI) and cyanuric acid (XII).91 This result is consistent with the observation of several 

endothermic effects at 210 – 260 °C, as determined by DSC and the final complete residue-free 

decomposition above 350 °C.92 Urea, biuret and cyanuric acid were found in the sublimate after 

pyrolysis. In the case of DNB very small amounts of sublimate were obtained when the 

pyrolysis was carried out with a heating rate less than 3°C/min. This sublimate was identified as 

urea by mass spectrometry, but due to the low decomposition temperature, condensation 

products similar to those found after decomposition of MNB could not be observed. 

 

 

 

Scheme 6.6. Possible decomposition pathway of MNB and DNB 
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 2.7 Explosive properties 

 The heat of combustion (∆Hcom.) of DNB was determined experimentally using oxygen 

bomb calorimetry. The standard heat of formation (∆Hf°) was obtained on the basis of quantum 

chemical computations at the electron correlated ab initio MP2 level of theory using a correlated 

consistent double-zeta basis set (cc-pV-DZ).5c The detonation velocity (VOD) and and 

detonation pressure of DNB were calculated using the empirical equations by Kamlet and 

Jacobs (Chapter V, 2.8.2). Table 6.14 shows a comparison of obtained values with those of well 

known explosives. The explosive properties of DNB indicate that it is comparable with PETN. 

In contrast to PETN, RDX and HMX, DNB has a positive oxygen balances and therefore a 

further oxidizer in an explosive formulation is not needed. 

 

Table 6.14. Comparison of DNB with explsoives 

 

 

 In order to classify DNB as explosive, the “Koenen test” was applied. Figure 6.30 depicts 

the outcome of this experiment. For all tests the thimble was destroyed in three or more big 

pieces (8 g, 8 mm; classified as F) or destroyed into little pieces (8 g, 6 mm; classified as G). So 

far, an proper valuation of the sensitivity of DNB can not be given as no test with port diameter 

greater than 10 mm has been applied, but DNB is expected to lie between the classification of 

an sensitive to very sensitive explosive.  
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Figure 6.30. Koenen test with DNB  

 

 2.9 Conclusion 

 MNB and DNB are energetic materials showing a distinctive thermal behavior. 

Unfortunately, the thermal stability of DNB is not very promising for use as a propellant or 

explosive, because the decomposition starts at an onset temperature of 90°C and takes place in 

three steps. DNB decomposes spontaneously with an onset temperature of 132°C for a heating 

rate of 20°C/min. Only the decomposition gases N2O, CO2 and HNCO were generated. MNB 
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shows better thermal stability and decomposition starts at an onset temperature at 157°C for a 

heating rate of 5°C/min.  MNB decomposes in several steps forming urea, biuret, triuret, 

tetrauret and cyanuric acid. But, compared to the properties of DNU, both MNB and DNB are 

promising materials, which might be used as synthetic equivalents for the preparation of other 

new azaheterocyclic nitramines.93 

 

 2.10 Experimental 

 CAUTION: DNB is an energetic material and appropriate safety precautions should be 

taken, especially when this compound is prepared on a larger scale. Laboratories and 

personnel should be properly grounded, and safety equipment such as Kevlar® gloves, leather 

coat, face shield and ear plugs are necessary when manipulating DNB. 

 

 DSC and TGA experiments: DSC measurements were carried out as follows. Samples 

(MNB ~ 1 mg, DNB ~ 0.4 mg) were analyzed in closed Al-containers with a hole (1µm) on the 

top for gas release with a nitrogen flow of 20 mL/min. The reference sample was an Al-

container with air. Experiments were carried out from 30 °C-170 °C (DNB) and 30 °C-445 °C 

(MNB). The sample and the reference pan were heated in a differential scanning calorimeter 

(Perkin-Elmer Pyris 6 DSC, calibrated by standard pure Indium and Zinc) at different heating 

rates of  1, 2, 3, 4, 5, 10, 15, 20 and 25 °C for DNB and 5, 10, 15, 20 and 25 °C min-1 for MNB. 

MNB and DNB were subjected to TGA analysis in a nitrogen atmosphere in open Al2O3 

crucibles (sample weight ~ 1 mg) at two heating rates (1, 10 °C min-1 DNB) and 10°C min-1 for 

MNB with a thermogravimetric analyzer (Setaram DTA-TGA 92) in the temperature range 

from 30 °C-170 °C (DNB) and 30 °C-445 °C (MNB). For the removal of moisture, all samples 

were dried in vacuo for 24 h at 40°C. 

 

 Thermal decomposition experiments: In order to analyse the gases from the stepwise 

decomposition of the compounds, a specially equipped IR-cell was loaded with the compounds 

(~ 2 mg) and evacuated. The sample holder of the IR cell was heated at a rate of 1 °C min-1 

(CARBOLITE 900 °C Tube Furnace type MTF 9/15) and the reaction products were allowed to 

expand continuously into the gas cell. During this heating IR-spectra were recorded 
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continuously as a function of the heating rate using a Perkin-Elmer Spektrum One FT-IR 

instrument. In the case of MNB the IR cell was evacuated between the exothermic/endothermic 

steps, which had been determined by DSC. To record the mass spectra, a sample (~ 1mg) of the 

corresponding compound was heated at a heating rate of 1 °C min-1 (CARBOLITE 900 °C 

Tube Furnace type MTF 9/15) in a one side closed glass tube (length:  500 mm; diameter: 5 

mm) connected to the reservoir of the mass spectrometer (JEOL MStation JMS 700). In this 

case, the spectra were also recorded as a function of the heating rate. For MNB as well as DNB 

the residual decomposition products (e.g. sublimate and residue after the first and second 

decomposition step of MNB) were identified by means of mass spectrometry (EI and DEI 

mode) and NMR (1H, 13C) techniques. The 1H and 13C spectra were recorded on a JEOL Eclipse 

400 instrument in [d6]-DMSO, and chemical shifts were referenced to TMS. Reference data for 

urea, biuret and cyanuric acid were obtained from authentic samples (Aldrich) and in the case of 

triuret and tetrauret from 82.  

 

 Mononitrobiuret (113): Mononitrobiurte was obtained according to literature procedure 

[Fehler! Textmarke nicht definiert.]. m.p. 153 °C (dec.). IR ν~ (KBr)[cm-1]: 3433(s), 3291(s), 

3146(w), 3071(w), 2969(m), 2805(m), 1739(vs), 1630(vs), 1572(s), 1490(m), 1431(m), 

1383(m), 1335(s), 1200(s), 1117(w), 1072(w), 1015(w), 956(w), 826(w), 777(w), 756(m), 

717(w), 654(w), 598(m), 556(m), 502(w). Raman (200 mW) ν~ [cm-1]: 3292(22), 1714(32), 

1631(25), 1551(10), 1552(10),  1426(18), 1352(77), 1194(6), 1119(14), 1073(6), 1011(10), 

961(100), 770(13), 758(13), 729(8),  498(21), 435(20), 380(30), 302(25), 176(16), 142(19). 1H 

NMR ([d6]-DMSO): δ = 13.16 (s, 1H, -NHNO2), 9.32 (s, 1H, -NH-), 7.27 (s, 1H, -NH2), 7.08 

(s, 1H, -NH2). 13C{1H} NMR ([d6]-DMSO): δ = 153.8 (-CO-NH2), 148.8 (-CO-NHNO2). 14N 

NMR ([d6]-DMSO): δ = -41.7 (-NH-NO2, ∆ν1/2 = 0.5 Hz), -296.1 (-NH-, -NH2, ∆ν1/2 = 160 Hz). 
15N NMR ([d6]-DMSO): δ = -41.5 (s, -NH-NO2), -181.8 (s, -NH-NO2), -254.8 (d, 1JNH = 

90.4Hz, -NH-), 294.2 (t, 1JNH = 89.3Hz, -NH2). m/z (EI+) 148 [(M+) (2)], 102 (15), 86 (11), 70 

(12), 62 (3), 60 (5), 59 (2), 46 (19), 45 (3), 44 (100) 43 (55), 42 (18), 41 (1), 32 (2), 31 (8), 30 

(43), 29 (29), 28 (21), 27 (6), 26 (6), 18 (17), 17 (5), 16 (10), 15 (8), 14 (9), 12 (4). C2H4N4O4  

(148.08): Calc. C, 16.22; H, 2.72; N, 37.84% ; Found: C, 16.52; H, 2.91; N, 37.63%. 
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 1,5-Dinitrobiuret (114): To cooled 100% HNO3 (-10°C, 10 ml), MNB (3.84g, 30 mmol) 

was added in small portion under stirring in such a way that the temperature was held at -10°C. 

After the addition the reaction mixture was allowed to rise to 0°C and stirred for 2 hours at this 

temperature, leaving a clear solution. After removing the excess of HNO3 in vacuo at 0°C the 

white residue was kept over H2SO4/NaOH in an evacuated desiccator for 48 h. Recrystallization 

of the raw product form methanol yield pure DNB. Yield 2.65g (53%). m.p. 127 °C (dec.). IR 

ν~ (KBr) [cm-1]: 3401(w), 3291(m), 3210(m), 3063(w), 2969 (w), 2805(vw), 1764(vs), 1630(m), 

1618(s), 1568(s), 1484(w), 1464(m), 1336(m), 1318(s), 1261 (w), 1228 (w), 1154(m), 1080(m), 

1015(m), 990(w), 829(vw), 755(w), 737(w), 654(m), 638(m). Raman (200 mW) ν~ [cm-1]: 

3290(11), 3212(7), 1760(72), 1615(19), 1566(7), 1465(20), 1349(12), 1325(100), 1223(6), 

1056(92), 987(22), 828(8), 757(7), 733(2), 638 (5), 473(38), 258(27), 191(28), 161(2x 4). 1H 

NMR ([d6]-acetone): δ = 10.96 (s, 1H, -NHNO2), 9.19 (s, 1H, -NH-) ppm. 13C{1H} NMR ([d6]-

acetone): δ = 145.5 (-CO-) ppm. 14N NMR ([d6]-acetone): δ = -44.4 (-NH-NO2, ∆ν1/2 = 0.5Hz), 

-188.1 (-NH-NO2, ∆ν1/2 = 328Hz), -260.2 (-NH-, ∆ν1/2 = 25Hz) ppm. 15N NMR ([d6]-acetone): 

δ = -44.5 (s, -NH-NO2), -182.7 (s, -NH-NO2), -256.9 (d, 1JNH = 90.4Hz, -NH-) ppm. m/z (DEI+) 

193 [(M+) (2)], 147 (7), 132 (1), 117 (5), 102 (2), 101 (6), 70 (6), 69 (5), 46 (78), 45 (4), 44 

(100), 43 (53), 42 (11), 36 (2), 32 (2), 30 (96), 29 (26), 28 (34), 27 (4), 26 (5), 18 (15), 17 (6), 

16 (15), 15 (6), 14 (14), 12 (6). m/z (CI+, Isobutane) 194 [M++1]; C2H3N5O6  (193.08): Calc. C, 

12.44; H, 1.57; N, 36.27% ; Found: C, 12.38; H, 1.62; N, 36.53%. 
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Einleitung 
 

Aufgrund eingehender Studien  haben wir uns im ersten Teil dieses Projektes auf die Synthese 

neuartiger Oligo-/Poly-Nitramine beschränkt. Da bei den Synthesen das besondere Interesse 

auf der Substitution mit energiereichen Resten liegt, wobei bewusst auf Nitrogruppen (C-

NO2) verzichtet wurde, kommen als energiereiche Reste vorerst nur die Azid- (-N3) und 

Nitratogruppe (-ONO2) in Frage. Verbindungen mit Nitrato- und Azidgruppen erweisen sich 

als wesentlich günstiger, da sie bei Verbrennungsvorgängen wesentlich weniger Stickoxide 

bilden, im Gegensatz zu Nitroverbindungen, und dadurch eine bessere Umweltverträglichkeit 

versprechen. Ziel der Untersuchungen sind neuartige Nitramine, die als Komponenten für den 

Einsatz in TLP’s Einsatz finden könnten. Hierbei ist besonders darauf Wert zu legen, dass 

diese neuartigen Verbindungen einen möglichst hohen Stickstoffgehalt mit gleichzeitig 

ausgewogenem Kohlenstoff-Sauerstoff Verhältnis besitzen und die Synthese solcher 

Verbindungen möglichst kurz, sicher und billig gestaltet werden kann, was in Hinsicht auf ein 

späteres „Up-scale“-Verfahren von besonderem Interesse ist. 

 

Bekannt ist, dass Verbindungen mit Nitratoethylnitraminogruppen –N(NO2)-CH2CH2-ONO2, 

die sogenannten NENAs, als energieliefernde  Weichmacher und Bestandteile von 

Sprengstoffen und Treibladungspulvern eingesetzt werden. Neben Diethanolnitramindinitrat 

DINA werden vor allem Methyl-, Ethyl- und Butyl-NENA eingesetzt, die eine energetische 

NENA-Gruppierung neben einem innerten Alkylrest enthalten. Diese sind allerdings in ihrem 

Energiegehalt aufgrund des Alkylrestes wesentlich reduziert. Wir erwarten nun eine Erhöhung 

der Leistung, bei hoffentlich vertretbarer Empfindlichkeit, durch die Kombination von 

NENA-Gruppierungen mit oben angeführten energiereichen Substituenten.  

 

Die Herstellung von NENA-Verbindungen wird meist durch Umsetzung einer entsprechenden 

Hydroxyethylaminoverbindung mit Salpetersäure durchgeführt, wobei die entsprechenden -

NH- bzw. -OH Gruppierungen nitriert werden (Schema 1). Auf diese Weise werden die 

bekannten Verbindungen DINA, Methyl-NENA, Ethyl-NENA und Butyl-NENA erhalten. 
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Schema 1 

 

Kombinationen von NENAs mit Azidgruppen sind kaum untersucht oder nicht bekannt. Nach 

unserem Wissen gibt es gegenwärtig keine Verbindung, die neben einer NENA-Einheit eine 

Azidfunktion enthält. Beispiele (1,2 und 3) für denkbare Verbindungen sind in Figur 1 

aufgeführt.  

 

N
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N
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1   Ω = -31.1%   N : 40.8%

2   Ω = -28.6%   N : 40.0%

3   Ω = -27.1%   N : 39.6%

 
Figur 1 

 

Retrosynthetisch würde man die obigen Verbindungen aus den entsprechenden Chloriden 4 

herstellen, welche man wiederrum aus den entsprechenden Acetoxymethylnitraminen 5 

herhalten könnte (Schema 2, am Beispiel 1). Allerdings ist bekannt, dass die Abbaureaktionen 

von solchen Acetoxymethylnitraminen in saurem Medium zu recht unterschiedlichen 

Produkten führen kann, was am folgenden Beispiel dargestellt werden soll (Schema 2).  
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Beispiel:

1 4 5  
Schema 2 

 

Die Nitrierung der Kondensationsprodukte (9, 10) des Ethanolamins 7 mit Formaldehyd 8 

führt je nach Reaktionsbedingungen zu unterschiedlichen Produkten. Dabei ist das Verhältnis 

der Reaktionsprodukte abhängig von der Abbaureaktion entsprechender Acetoxymethylen-

nitramine im sauren Medium und führt unter stark sauren Bedingungen in der Regel zum 

Sechsring Hexogen 11 (Schema 3)  oder bleibt auf der Stufe des 1-Acetoxy-4-nitrato-2-nitro-

2-azabutans 12 oder  1-Acetoxy-8-nitrato-2,4,6-trinitro-2,4,6-triazaoctans 13 stehen. 
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Schema 3 
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Verbindung 12 und 13 stellen geeignete Edukte für die Synthese von 1 und 3 dar. Es gibt 

einige Arbeiten, die sich mit dem Austausch einer Nitratogruppe gegen ein Chlor bzw. 

Bromatom in Gegenwart einer Acetoxymethylnitramingruppierung beschäftigen. Diese 

Reaktionen sind in der Regel nicht besonders selektiv und liefern die gewünschten 

Halogenverbindungen 14 oder 15 meist nur in schlechten Ausbeuten (< 35%).  Schema 4 

zeigt eine solche Reaktion am Beispiel von 13. 
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Schema 4 

 

Untersuchungen bei der die Acetoxygruppierung einer Acetoxymethylnitramingruppierung 

gegen ein Halogenatom in Gegenwart von einer Nitratogruppe ausgetauscht werden kann, 

sind nicht bekannt (Schema 5). 
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Schema 5 

 

In diesem Zwischenbericht werden wir uns zunächst auf die Synthese von 3 und 

entsprechenden Modellverbindungen beschränken. 
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Synthese von 1-Azido-2,4,6-trinitro-2,4,6-triazaalkanen 
 

N R

NO2

NNN3

NO2NO2  
 

Die oben erwähnten Ergebnisse bezüglich der Kondensationsreaktion von Ethanolamin 7 und 

Formaldehyd 8, stammen aus einer russischen Arbeit aus dem Jahre 1981 (Russ. J. Org. 

Chem. 1981, 17, 623). Allerdings ließen sich die Ausbeuten bezüglich der dort vorgestellten 

Synthesen nur bedingt nachvollziehen, was dazu führte, eine andere jedoch ähnliche Synthese 

zu entwickeln. Bekannt ist, dass sich 1-methyl-3,5,7-triaza-1-azoniatricyclododecane nitrat 18 

in HNO3/Ac2O zum entsprechenden 1-Methyl-2,4,6-trinitro-2,4,6-triazaheptan 21 umsetzen 

lässt (J. Denkstein, V. Kaderabek. Czech. 98,248, Jan. 15, 19661, Appl. Nov. 13, 1959). Die 

dabei erhaltenen Ausbeuten liegen in einem Bereich von mehr als 70%. In der Literatur ist 

kaum etwas beschrieben über andere alkylsubstituierte Hexametylentetramin Salze. Aus 

diesem Grund stellten wir die entsprechenden Urotropinium Salze des Ethyamins 19 sowie 

des Ethanolamins 20 erstmals her und untersuchten deren Verhalten gegenüber 

Nitrierungsreaktionen (Schema 6).  
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AcO OAcR = Me (21, 72%)
       ET  (22, 80%)
       CH2CH2ONO2  (23, 76%)

 
Schema 6 

 

Die Kondensationsreaktion der entsprechenden Amine mit Formaldehyd und 

Ammoniumnitrat führte in allen Fällen zu den gut kristallisierbaren substituierten 

Urotropinium Nitraten 18, 19 und 20 in guten bis sehr guten Ausbeuten. Sie bilden farblose, 

an Luft stabile, wenig hygroskopische Kristalle, die sich auch über längern Zeitraum nicht 

merklich zersetzen. Sie schmelzen allerdings unter Zersetzung. Die Nitrierung der Salze 18, 

19 und 20 führt in allen Fällen zu den entsprechenden 2,4,6-Trinitro-2,4,6-triazaalkanen 21, 

22 und 23 in guten Ausbeuten und dem 1,3-Diacetyl-2-nitro-2-azapropan 24 als 
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Nebenprodukt. 24 kann durch Extraktion mit DCM leicht abgetrennt und durch Destillation 

gereinigt werden und stellt ein sinnvolles Edukt für die Synthese entsprechender 

Mononitramine laut Leistungsbeschreibung dar. Das dem Ethanolamin zugrunde liegende 

Triazaalkan 23 wird als Nitratoderivat erhalten. Die Nitrierungsreaktionen verlaufen analog 

zur Darstellung von RDX und können deshalb in schon bestehende Prozesse direkt 

übernommen werden. Die Ausgangsmaterialien sind zudem großtechnische Produkte und 

billig. Bei den bekannten Prozessen wird das Hexamethylentetramin durch das entsprechende 

Nitrat ersetzt. Optimale Reaktionsbedingungen könnten sicherlich zu höheren Ausbeuten 

führen, liegen aber schon bei der hier zugrunde liegenden Arbeit zwischen 70 und 80% (21, 

72%; 22, 80%, 23, 76%).  

 

Aufgrund der hohen Reaktivität der Nitroaminomethylacetate 21, 22 und 23 ist zu erwarten, 

dass sich die entsprechenden Verbindungen relativ leicht umestern (Schema 7, I z.B. mit 

100% HNO3 bei -40°C; wurde bisher noch nicht durchgeführt 25, 26 u. 27), oder in die 

entsprechenden Chloride 28, 29 u. 30 überführen lassen sollten (Schema 7, II).  
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       CH2CH2ONO2  (30)

I II

Schema 7 
 

Die relative Reaktivität der säurekatalysierten Hydrolyse der Acetate 21, 22 und 23 erklärt 

sich über die Stabilisierung des intermediär gebildeten Carbokations, entweder durch die p 

Orbitale des Aminostickstoffs oder eines Sauerstoff der Nitrogruppe (Schema 8).  
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Diese Hydrolyseempfindlichkeit nimmt mit zunehmender stärker des elektronenziehende 

Charakters der Substituenten ab, d.h. die Stabilität der Acetate nimmt mit der Anzahl der 

Nitramideinheiten im Molekül zu und führt damit zu einer Verringerung der Mobilität der 

Acetylgruppe. Daraus folgt für spätere Syntheseplanungen, dass 12 wesentlich 

hydrolyseempfindlicher sein sollte als 13.  

 

Im Bezug auf die Transformierung der entsprechenden Nitroaminomethylacetate können 

verschieden Methoden angewendet werden. Im Falle der Methyl und Ethylverbindung erhält 

man die Chloride in sehr guten Ausbeuten durch Umsetzung der entsprechenden Acetat  (21, 

22) durch Einleitung von trockenem HCl Gas in eine Suspension in wf. Dioxan. Die 

Reaktionszeit beträgt in der Regel ca. 6h und die Produkte können nach bekannten Methoden 

isoliert und gereinigt werden (Schema 9).  
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Schema 9 

 

Im Falle des Nitrats 23 wurde diese Methode noch nicht getestet, da wir ebenfalls die 

Substitution der Nitratgruppe erwartet hatten. Allerdings gehen wir davon aus, dass durch 
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entsprechende Modifizierung auch hier mit der Isolierung des Monochlorproduktes 30 zu 

rechnen ist. 

 

Die zweite Methode, die zur Substitution der Nitroaminomethylacetate 21, 22 und 23 

verwendet werden kann, ist die Umsetzung der Acetate in Trifluoressigsäure/conc. HCl (31%) 

(Schema 10).  
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Schema 10 

 

Der Vorteil dieser Reaktion liegt in den relativ kurzen Reaktionszeiten (in der Regel nach 2h 

beendet), der hohen Selektivität sowie der einfachen Aufarbeitung. Die Produkte fallen nach 

kurzer Zeit als feiner Niederschlag aus der Reaktionslösung aus und können durch einfache 

Saugfiltration abgetrennt werden. Waschen mit Wasser und Trocknung an Luft liefert schon 

sehr reine Produkte in moderaten bis guten Ausbeuten, die für weitere Umsetzungen eine 

ausreichende Reinheit aufweisen (28, 85%; 29, 85%, 30, 55%). Interessanterweise isoliert 

man im Falle von 23 tatsächlich das Monochlorierungsprodukt 30, allerdings noch in 

moderater Ausbeute. Grund für die schlechtere Ausbeute im Vergleich zu 28 und 29 dürfte 

die wohl doch erhöhte Reaktivität der Nitratogruppe gegenüber der Reaktionsmischung sein, 

die zu den erwarteten Nebenreaktionen führt. Allerdings sollten kurze Reaktionszeiten und 

tiefe Temperaturen noch zu einer signifikanten Verbesserung der Ausbeuten führen. 

Entsprechende Modifikationen sind geplant und werden gegenwärtig Bearbeitet. Das 

entsprechende Dichlorprodukt 31 wurde bis jetzt noch nicht isoliert, allerdings bestehen auch 

hier starke Bemühungen, diese Produkt zu isolieren, da das entsprechende 1,8-Diazido-2,4,6-

trinitro-2,4,6-nitrazaoctan 32 ebenfalls unbekannt ist (Schema 11).  
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Schema 11 

Die Überführung der so erhaltenen Chlorverbindungen in die Azide 33, 34 und 35 erfolgt 

durch gewöhnliche Substitutionsreaktionen mit Natriumazid in Aceton/Wasser (Schema 12).  
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Schema 12 

Dabei wird die entsprechende Chlorverbindung in Aceton gelöst und auf ca. 0°C gekühlt 

(Innenthermometer). Zu der Lösung wird eine wässrige Lösung von Natriumazid in der Art 

zugegeben, dass die Temperatur nicht über 10°C steigt. Das Aceton/Wasserverhältnis ist so zu 

wählen, dass nach Zugabe der gesamten Azidmenge (vorteilhaft ist die Zugabe von 1,5 eq) 

noch keine Fällung erfolgt. Der Ansatz wird danach für ca. 3h bei Raumtemperatur gerührt 

und dann mit der fünffachen Menge Wasser versetzt. Dabei scheiden sich die Produkte in der 

Regel erst ölig ab, erstarren dann aber nach ca. 10-15 min als feste weiße Masse. Die weiße 

Masse wird abgenutscht, mit Wasser gewaschen und nach Trocknung umkristallisiert. Die so 

erhaltenen Ausbeuten sind in der Regel höher als 75% (33, 78%; 34, 88%, 35, 82%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 338

Charakterisierung von 33, 34 und 35 
 

Bei der Identifizierung der neuen Verbindungen waren neben der IR und Raman-

Spektroskopie vor allem die NMR-Spektroskopie sowie die Massenspektroskopie dazu 

geeignet, bestimmte Strukturelemente eindeutig zu identifizieren.  

 

 
Abbildung 1. IR Spektren von 33, 34 und 35. 

So zeigt der Vergleich der IR- und Raman-Spektren der Verbindungen 33, 34 und 35 deutlich 

neben den Nitraminbanden (1555 cm-1 (νas), 1278 cm-1 (νsym)) die Absorptionsbanden der 

Nitratogruppe in 35 (1645 cm-1 (νas), 1275 cm-1 (νsym), letztere überlagert sich mit der 

Niraminbande) sowie die in allen Verbindungen vorhandene Absorptionsbanden der 

Azidgruppe (2160-2120 cm-1 (νas), ~1300 cm-1 (νsym)). Die weiteren Strukturelemente, wie 

CH2, CH3 Gruppen lassen sich dagegen nur schwer zuordnen, die Absorptionsbanden finden 
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sich allerdings in den zu erwartenden Bereichen (Abbildung 1, Die Proben waren aus 

Sicherheitsgründen nicht vollständig getrocknet).   

 

Eindeutig lassen sich die Verbindungen mit Hilfe der Kernspinresonanz identifizieren. 

Aufgrund der unsymmetrischen Struktur erwartet man für Verbindung 33 vier und für 

Verbindungen 34 und 35 fünf charakteristische  1H- sowie 13C- Signale. Tabelle 1 gibt eine 

Übersicht über die beobachten Signale und der Verschiebungen wieder.  

 

N

NO2

NNN3

NO2NO2

ONO2

1 2 3 4 5

 

 1 2 3 4 5 

33 
1H 
13C 

 
5.32 (s) 
65.9 

 
5.82 (s)
66.4 

 
5.72 (s) 
67.1 

 
3.43 (s) 
40.4 

 

34 
1H 
13C 

 
5.33 (s) 
65.9 

 
5.82 (s)
66.38 

 
5.75 (s) 
66.42 

 
3.86 (q) 
48.3 

 
1.20 (t) 
12.3 

35 
1H 
13C 

 
5.79 (s) 
65.1 

 
5.93 (s)
66.4 

 
5.90 (s) 
70.6 

 
4.27 (t) 
49.9 

 
4.79 (t) 
59.9 

Tabell 1. 1H- und 13C-NMR-Daten von 33, 34, 35  
in [d6]-DMSO; s = singulett, t = triplett, q = quartett 

 

Alle Spektren wurden in [d6]-DMSO aufgenommen und die Zuordnung erfolget anhand 

entsprechender 1H- bzw. 13C-Inkrement-Systeme (auf aufwendige 2D Experimente zur 

exakten Zuordnung der einzelnen Verschiebungen wurde hier verzichtet). Von den 

Verbindungen wurden ebenfalls Protonen gekoppelte sowie entkoppelte 15N Spektren 

aufgenommen (Abbildung 2-4). Dabei bezieht sich die 15N-NMR-Skala auf reines 

Nitromethan als externen Standard (δN = 0). Die chemische Verschiebung der beobachteten 

Resonanzen umfasst für die Verbindungen dabei einen Bereich von ca. 300 ppm. Für die 

Verbindungen 33 und 34 erwartet man 9 Resonanzen und im Falle von 35 10.  
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In gewisser Analogie zur 13C-NMR-Spektroskopie liegen die Resonanzen der mit den 

elektronegativen substituierten N-Atome der Nitramineinheiten bei tieferem Feld zwischen -

190 und -130 ppm. Die Nitrogruppen der Nitramineinheiten finden sich in einem engen 

Bereich um -32 ppm, wogegen die Nitratogruppe um ca. 10 ppm verschoben zu höherem Feld 

bei -42.5 ppm zu finden ist (35). Der Verschiebungsbereich der Azidgruppe (Nα = -304.5 ppm 

, Nβ = -190.8 ppm, Nγ = ~ -200 ppm; Konnektivität : R-NαNβNγ ) ist typische für kovalent 

gebundene Azide. Eine genaue Zuordnung der der einzelnen Nitramidgruppen bezüglich ihrer 

Position im Molekül wurde nicht getroffen. Mit Hilfe der NMR Spektren konnte die Struktur 

der einzelnen Nitraminen zweifelsfrei bestätigt werden.  
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Abbildung 3 

 

 
Abbildung 4 
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Massenspektroskopische Untersuchung von 33, 34 und 35. 

 

Die erhaltenen Produkte wurden ebenfalls massenspektroskopisch mittels DEI und DCI 

untersucht. Im Falle der DCI Untersuchungen wurde als Stoßgas Ammoniak verwendet, was 

in allen drei Fällen zu der Beobachtung der [M+NH4]+ Ionen führte und damit zweifelsfrei als 

Bestätigung der entsprechenden Verbindungen angesehen werden kann (33, m/z 297; 34, m/z 

311; 35, m/z 372). Die Elektronenstoß-Ionisation (EI) führte in allen drei Fällen nicht zur 

Beobachtung des Molekülpeaks, was mit der sehr leichten Fragmentierung der Verbindungen 

erklärt werden kann. In allen drei Fällen kommt es zu ähnlichen Fragmentierungen, die in 

Abbildung 5 allgemein zusammengefasst wurden. 

 

N3 N N N
R

NO2 NO2 NO2

a
b

c
d

f

e

 
Abbildung 5. Fragmentierungsschema 

 

In allen drei Fällen beobachtet man in den DEI Spektren von 33, 34 und 35 vor allem die den 

Norrish-Typ-I-Reaktionen (α-Spaltung, a, c, d, f) entsprechenden Fragmentierungen, wobei 

die Spaltung bevorzugt an den Heteroatomen (hier Stickstoffen) erfolgt. Die Ladung wird 

dabei durch das Heteroatom stabilisiert. Die zu diesen Fragmentierungen beobachteten 

Massen sind in Tabelle 2 aufgeführt.  

 

 a (m/z) b (m/z) c (m/z) d (m/z) e (m/z) f (m/z) 

33 204 / 75 (190) / 89  237 / 42 163 / 116 (149) / 130 46 

34 204 / 75a (190) / 103 251 / 42 177 / (116) (163) / 130 46 

35 204 / 75 (190) / 164 312 / 42 238 / 116 (224) / 130 46 (groß) 

Tabelle 2. Zahlen in Klammern, diese Massen werden entweder nicht oder nur mit sehr  
geringer Intensität beobachtet. 
a Fragment m/z 89 wird nicht beobachtet, stabilisiert sich durch Abspaltung von CH2.  
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Pfad b und e repräsentieren β-Spaltungen, wobei in den Massenspektren nur die entsprechend 

leichteren Fragmente gut beobachtet werden, d.h. die positive Ladung wird in diesen Fällen 

besser stabilisiert oder das schwerer Fragment hat nur eine geringe Stabilität und zerfällt 

augenblicklich zu leichtern Fragmenten. In allen Fällen beobachtet man die Massen mit m/z 

46 und 43 was NO2 (klein) und HN3 zugeordnet werden kann. Der Zerfall von 

Nitramingruppen über die Bildung von N2O wird in keinem Fall beobachtet, was darauf 

schließen lässt, dass Alkyl-substituierte Nitramine in der Gasphase nicht den postulierten 

Zerfallsweg über die Bildung von Distickstoffmonoxid eingehen können. Im Falle von 34 

beobachtet man einen Peak bei m/z 57, der eventuell dem Methylazid zugeordnet werden 

kann, im Falle von 33 wir dieser Peak nicht und im Falle von 35 nur mit sehr schwacher 

Intensität beobachtet. Wie zu erwarten wird die α-Spaltung der Nitrogruppe im Nitrat 35 zum 

Hauptprozess (m/z 46 Peak mit höchster Intensität).  
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Kristallstruktur von 1-Azido-2,4,6-trinitro-2,4,6-triazaoctan 34 
 

Bisher ist es uns nur im Falle des 1-Azido-2,4,6-trinitro-2,4,6-triazaoctan 34 gelungen dessen 

Identität auch durch ein Kristallstrukturanalyse zu belegen. Im Falle des Methylderivates 33  

konnte auf Grund zu hoher Moazität der Kristalle keine Strukturlösung erfolgen. Im Falle des 

Nitratoderivates 35 haben wir bisher noch keine geeigneten Einkristalle züchten können.  

 

1-Azido-2,4,6-trinitro-2,4,6-triazaoctan 34 kristallisiert in der triklinen Raumgruppe P-1 mit 

zwei Formeleinheiten in der Zelle. Aufgrund des ähnlichen Raumbedarfes der Azid- und 

Ethylgruppe kommt es im Kristall zu einer Fehlordnung dieser Gruppen. Abbildung 6 zeigt 

den ORTEP Plot eines Moleküls ohne Berücksichtigung dieser Fehlordnung.  

 
Abbildung 6. ORTEP plot of the molecular structure of compound 34 with thermal ellipsoid at 50% probability 
level and numbering scheme. Selceted bond length (Å) and angles (deg): O1-N7 1.230(2), O2-N7 1.229(3), O3-
N8 1.226(2), O4-N8 1.225(3), O5-N9 1.231(3), O6-N9 1.231(2), N1-N7 1.348(3), N1-C2 1.449(3), N1-C3 
1.450(3), N4-N5 1.215(4), N4-C5 1.460(4), N2-N8 1.366(3), N2-C3 1.445(3), N2-C4 1.443(3), N5-N6 1.129(4), 
N3-N9 1.362(3), N3-C4 1.456(3), N3-C5 1.444(3), C1-C2 1.527(7), N2-C3 1.445(3), N7-N1-C2 118.2(2), N7-
N1-C3 116.6(2), C2-N1-C3 122.6(2), N5-N4-C5 118.2(3), N8-N2-C3 118.1(2), N8-N2-C4 117.3(2), C3-N2-C4 
124.5(2), N4-N5-N6 170.8(3), O1-N7-O2 124.4(2), N9-N3-C4 117.1(2), N9-N3-C5 118.5(2), C4-N3-C5 
122.3(2), O2-N7-N1 117.0(2), O1-N7 -O2 124.4(2), O1-N7-N1  118.5(2), O3-N8-N2 117.3(2), O3-N8-O4 
125.7(2), O4-N8-N2 117.0(2), O5-N9-O6 124.8(2), O5-N9-N3 117.5(2), O6-N9-N3 117.7(2), N1-C2-C1 
112.7(3), N1-C3-N2 114.6(2), N2-C4-N3 114.1(2), N4-C5-N3 114.3(2) 
 

Die Abstände und Winkel sind für die dargestellte Graphik angegeben. Der andere Fall, bei 

dem die Ethylgruppe und die Azidgruppe den Platz tauschen, wird hier nicht besprochen, da 

es dabei zu keinen nennenswerten Änderungen in den Molekülparameter kommt. Die 
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gefunden Bindungsabstände sowie Winkel von 34 sind typisch für Nitraminen und 

Methylazidgruppen.  

Alle drei Nitramine Fragmente sind planar, die Abweichung der Atome von der CNNOOC 

Ebene ist kleiner als ±0.03 Å. Die planare Konfiguration des Aminostickstoffes (sp2-

Hybridisierung) wird ebenfalls durch die Geometrie der Fragmente (Summe der Winkel um 

den Aminstickstoff liegt bei allen drei Nitramineinheiten bei ~360°) bewiesen und deutet auf 

die mögliche p-π* Orbital Überlappung zwischen den freien Elektronenpaaren des 

Aminostickstoffatoms und den unbesetzten Orbitalen der Nitrogruppe hin, was zu einer 

höheren Elektronendichte der Sauerstoffatome der Nitrogruppen führt. Diese erhöhte 

Elektronendichte führt zu einer stärkeren gegenseitigen Abstoßung der Nitrogruppen 

verschiedener Moleküle und einer Schwächung intermolecularer O···O Kontakte, was als 

Erklärung für die vergleichsweise geringe Dichte dieser Verbindung (ρ = 1.581 g cm-3) 

herangezogen werden kann. Kurze intermolekular Wechselwirkung findet man zwischen 

O4···O4i (2.867(3) Å; i: -x, -y, 1-z) sowie O5···O5ii (2.940(3) Å; ii: 1-x, 1-y, 1-z), was die 

Anwesenheit, wenn auch nur schwacher dipolarer intermolekularer Wechselwirkungen 

bestätigt. Der kürzeste CH···O Abstand von 2.36(3) Å (O2···H21iii 2.36(3) Å, H21–C2 0.94(4) 

Å, O2···C2iii 3.166(4) Å, O2–H21iii–C2iii 140.4(2) °;  iii: 1+x, y, z) zeigt, dass es zwischen 

einzelnen Molekülen zu keinen merklichen Wasserstoffbrückenbindungen kommt, d.h. dass 

Wasserstoffbrückenbindungen nicht als strukturgebender Faktor in der Packung von 30 

angesehen werden können. Die Azidgruppe trägt ebenfalls nicht, wie auch bei anderen 

Azidonitramiden, zu intermolekularen Wechselwirkungen bei.  

 

 
Abbildung 7. Darstellung der Packung in 34. 
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Da die intermolekularen Wechselwirkungen hautsächlich auf die Nitrogruppen zurück zu 

führen sind, ist leicht zu verstehen, dass entlang der molekularen Achse dieser Verbindung es 

leicht zu Verschiebungen kommen kann, woraus ein höhere Platzbedarf resultiert. Kombiniert 

mit der dadurch verbundenen Fehlordnung im Bezug auf andere Moleküle, kommt es zu einer 

vergleichsweise geringen Dichte. Innerhalb der Moleküle liegen die Nitramineinheiten 

staggerd mit einem Winkel von ca. 120° um die Molekülachse angeordnet. Diese Anordnung 

minimiert ebenfalls die intermolekularen Wechselwirkungen. Wie man aus Abbildung 7 

ersehen kann liegen die Moleküle Seite an Seite gepackt im Molekül vor. Diese Anordnung 

führt zu einer parallelen Ausrichtung der Moleküle, die gestapelt zu einander liegen. Die 

Achsen dieser Ketten liegen dabei nahezu parallel zu der [001] Achse und sind aufgrund des 

vorhandenen Inversionszentrums alternierend zueinander angeordnet.  
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Thermisches Verhalten von 33, 34 und 35 

 

Abbildungen 8 – 10 zeigen die DSC Thermogramme der Verbindungen 33, 34 und 35. Wie 

man deutlich aus den Graphiken entnehmen kann, besitzen alle drei Verbindungen einen 

endothermen Peak bei 102.5 – 104.3 °C (33, β = 2 °C/min), 121.5 – 122.8 °C (34, β = 2 

°C/min) und 81.2 – 82.7 °C (35, β = 2 °C/min), was den Schmelzpunkt der entsprechenden 

Verbindungen repräsentiert. Alle drei Verbindungen zeigen einen starken exothermen Peak 

mit einem Tmax von 199.5 (33), 197.3 (34) und 187.7 (35) °C.  

 

 
Abbildung 8. DSC Thermogramm von 33. 

 

Um den Prozess genauer zu verstehen, nach welchem Mechanismus diese Verbindungen 

zerfallen, haben wir mit Hilfe der Ozawa bzw. Kissinger Methode die Aktivierungsenergien 

abgeschätzt (Tabelle 3). Dabei stellt sich heraus, dass der Prozess der Zersetzung für alle  

 

S. no. β  

(°C/min) 

Tp (°C) 

33             34           35 

Ea(Kcal/mol), Ozawa 

33             34           35 

Ea (Kcal/mol), Kissinger 

33             34           35 

1 2 199.47     197.30     187.71  31.6          31.5        31.5     31.6          31.6        31.5   
2 5 212.27     209.44     199.31  
3 10 222.24     218.86     208.50  
4 20 232.36     229.54     218.40  
5 40 242.61     240.16     229.02  

  Table 3 
  Maximum exothermic responses of 33, 34 and 35 as a function of scan speed 
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drei Verbindungen anscheinend nach dem gleichen Mechanismus abläuft. Für diese 

Verbindungen wurden Aktivierungsenergien (EA) von ca. 31 kcal/mol bestimmt, wobei die 

Werte, bestimmt nach Ozawa ausgezeichnet mit den Werten nach Kissinger übereinstimmen.  

 

 
Abbildung 9. DSC Thermogramm von 34. 

 
Abbildung 10. DSC Thermogramm von 35. 
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Von Untersuchungen andere, vergleichbarer Nitramide ist bekannt, dass die Zersetzung 

wahrscheinlich initiiert wird durch den Bruch der N-NO2 Einheit unter gleichzeitiger 

Freisetzung von NO2. Dabei wird dieser Prozess unterstütz durch die Stickstoffabspaltung von 

der Azidgruppe (C-N3  CN + N2) und der Zersetzung des verbleibenden Moleküls, mit der 

damit verbundenen Freisetzung von thermischer Energie. Diese Prozesse beschleunigen den 

Zersetzungsprozess, was durch die Beobachtung eines starken exothermen Peaks in der DSC 

belegt wird. Interessanterweise beobachtet man in den Massenspektren von 33 und 34 eine 

vergleichsweise geringe Neigung zu Spaltung der N-NO2 Gruppe, was durch die relativ 

geringe Intensität des Massepeaks von m/z 46 beobachtet werden kann. Sicherlich spielen in 

der Massenspektroskopie andere Effekte eine tragende Rolle bezüglich der Fragmentierung, 

allerdings müssen auch thermische Reaktionen im Massenspektrometer in Betracht gezogen 

werden, da der Verdampfungsvorgang sowie Stoßreaktionen in der Gasphase eine 

Temperaturerhöhung  und damit Energieerhöhung der Moleküle mit sich bringt, was unter 

anderem zu katalysierten thermische Zerfallsprozessen führen kann. Würde man von solchen 

Prozessen ausgehe, dann wäre der eigentliche Zersetzungsprozess in der Fragmentierung der 

Moleküle in kleinere Nitramineinheit, als primärer Prozess zu sehen. Zudem scheint es 

eigenartig zu sein, dass man im Falle der Nitratoverbindung 35 eine gleiche 

Aktivierungsenergie berechnet wird wie für 33 und 34. Bekanntlich ist die N-O Bindung von 

Nitratoverbindungen leichter zu Spalten als die N-NO2 Bindung in Nitramine. Da man nun für 

alle drei Verbindungen nahezu die gleiche Aktivierungsenergie berechnet, kann es sich bei 

dem primären Zersetzungsprozess nicht um die Spaltung der N-NO2 Gruppe handeln.  
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Experimenteller Teil: 

 

Preparation of 1-alkyl-3,5,7-triaza-1-azoniatricyclododecane nitrate 18 

 

N
N

N

N

R NO3

R = Me (18)
       ET  (19)
       CH2CH2OH  (20)  

 

A 2.0 liter, three-neck round-bottom flask equipped with a reflux condenser, a mechanical 

stirrer, a thermometer, and a dropping funnel was charged with 100.0 g (1.25 moles) of 

ammonium nitrate (AN), and 1,25 moles of 50% aqueous solution of the corresponding amine 

(18: methylamine; 19: ethylamine; 20: 1-aminoethanole). To the above well-agitated mixture 

was slowly added 608.0 g (7.5 moles) of 37% aqueous formaldehyde, while maintaining the 

temperature between 45° and 50°C. After completion the addition and while continuing 

vigorous agitation, 175.0 g (3 moles) of 29% aqueous ammonia was introduced at such a rate 

as to maintain the temperature between 45° and 50°C. Stirring was continued for additional 2 

hours while the temperature fell gradually to the ambient. The resulting water clear solution 

was concentrated until the precipitation of the salts (18: (92%); 19: (90%); 20 (82%)). The so 

obtained salts are pure enough for further reaction. Further crops of product were obtained by 

evaporating of the mother liquor and crystallization. 
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Analytical data: 

 

1-Methyl-3,5,7-triaza-1-azoniatricyclododecane nitrate 18 

N
N

N

N

Me NO3
 

 

m.p. 185 °C (melts under decomp.); IR (KBr, cm–1): ν~ = 3022 (vw), 2977 (vw), 2960 (w),  

(s), 2398 (vw), 1763 (vw), 1743 (vw), 1637 (w), 1618 (w), 1466 (m), 1384 (vs), 1354 (s, 

shoulder), 1264 (w), 1246 (s), 1148 (w), 1079 (vw), 1043 (s), 1015 (s), 995 (s), 958 (s), 817 

(s), 787 (m), 649 (s), 501 (m); Raman (200mW, 25 °C, cm–1): ν~ = 3024 (23), 2994 (67), 2964 

(57), 2922 (26), 2867 (11), 1664 (3), 1469 (19), 1452 (16), 1369 (18), 1315 (11), 1266 (4), 

1248 (5), 1149 (12), 1082 (5), 1041 (100), 1021 (9), 996 (6), 961 (28), 852 (4), 826 (16), 788 

(16), 718 (53), 654 (13), 596 (17), 505 (21), 488(19), 451 (41), 407 (4), 290 (7); 1H NMR 

(CD3OD) δ: 2.55 (s, CH3), 4.54 (d, 3H, 3J = 12.5 Hz), 4.70 (d, 3H, 3J = 12.5 Hz), 5.09 (s, 

3xCH2); 13C NMR (CD3OD, 25°C) δ: 41.8 (CH3), 70.5 (CH2), 80.5 (CH2); 14N NMR 

(CD3OD, 25°C) δ: -4.2 (NO3
-, ∆ν1/2 = 72 Hz),  -332.9 (Nring, ∆ν1/2 = 672 Hz), -351.3 (N-Me,  

∆ν1/2 = 82 Hz); m/z (FAB+, xenon, 6keV, glycerin matrix) 155 [C6H12N4-Me]+; calcd. C, 

38.70; H, 6.96; N, 32.24%; found: C, 38.56; H, 6.84; N, 32.25%. 

 

 

1-Ethyl-3,5,7-triaza-1-azoniatricyclododecane nitrate 19 

N
N

N

N

Et NO3
 

 

m.p. 132 °C (decomp.); IR (KBr, cm–1): ν~ = 2997 (vw), 2964 (w), 2892 (vw), 2410 (vw), 

1767 (vw), 1746 (vw), 1635 (vw), 1616 (vw), 1461 (m), 1384 (vs), 1370 (vs, shoulder), 1320 

(s), 1293 (m), 1267 (s), 1226 (s), 1132 (s), 1116 (w), 1052 (m), 1041 (m), 1023 (s), 996 (vs), 

902 (w), 858 (w), 827 (s), 781 (s), 705 (w), 651 (m), 578 (vw), 500 (m); Raman (200mW, 25 

°C, cm–1): ν~ = 3013 (38), 2997 (60), 2961 (72), 1663 (2), 1471 (12), 1446 (24), 1357 (22), 

1321 (6), 1296 (7), 1270 (4), 1231 (4), 1153 (5), 1133 (14), 1117 (5), 1081 (4), 1042 (100), 

1025 (10), 998 (19), 903 (12), 864 (4), 783 (16), 708 (56), 649 (7), 580 (21), 504 (23), 448 

(29), 4123 (22), 337 (13), 207 (4); 1H NMR (CD3OD) δ: 1.29 (t, CH3, 3J = 7.4 Hz), 2.96 (q, 

CH2, 3J = 7.4 Hz),  4.58 (d, 3H, 3J = 12.6 Hz), 4.70 (d, 3H, 3J = 12.6 Hz), 5.13 (s, 3xCH2); 13C 
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NMR (CD3OD, 25°C) δ: 4.5 (CH3), 51.8 (CH2), 70.8 (CH2), 78.3 (CH2); 14N NMR (CD3OD, 

25°C) δ: -4.2 (NO3
-, ∆ν1/2 = 74 Hz),  -339.9 (Nring, ∆ν1/2 = 722 Hz), -347.6 (N-Et,  ∆ν1/2 = 73 

Hz); m/z (FAB+, xenon, 6keV, NBA matrix) 169 [C6H12N4-Et]+; calcd. C, 41.55; H, 7.33; N, 

30.31%; found: C, 41.42; H, 7.33; N, 30.31%. 

 

 

1-(2-Hydroxyethyl)-3,5,7-triaza-1-azoniatricyclododecane nitrate 20 

N
N

N

N

NO3

OH

 
 

m.p. 133 °C (melts with decomp.); IR (KBr, cm–1): ν~ = 3234 (s), 3010 (w), 2969 (w); 2938 

(w), 2888 (w), 2396 (vw), 1763 (vw), 1753 (vw), 1636 (w), 1617 (w), 1475 (s), 1451 (w), 

1384 (vs), 1357 (s, shoulder), 1295 (m), 1268 (s), 1225 (m), 1199 (m), 1128 (m), 1095 (w), 

1073 (s), 1046 (m), 996 (s), 981 (s), 916 (m), 879 (w), 859 (w), 825 (s), 809 (s), 785 (m), 707 

(w), 651 (s), 522 (w), 502 (m); Raman (200mW, 25 °C, cm–1): ν~ = 3274 (2), 3016 (24), 2991 

(44), 2965 (54), 1468 (19), 1452 (19), 1408 (7), 1387 (11), 1354 (17), 1331 (10), 1296 (11), 

1256 (4), 1227 (6), 1208 (4), 1129 (15), 1086 (9), 1072 (9), 1047 (100), 1007 (9), 987 (12), 

918 (24), 880 (7), 834 (12), 809 (12), 788 (19), 709 (69), 653 (11), 582 (23), 505 (31), 474 

(14), 450 (27), 405 (7), 312 (10), 256 (6), 136 (5); 1H NMR ([d6]-DMSO, 25°C) δ: 2.85 (t, 

CH2, 3J = 8 Hz), 3.79 (t, CH2, 3J = 8.0 Hz),  4.47 (d, 3H, 3J = 12.7 Hz), 4.60 (d, 3H, 3J = 12.7 

Hz), 5.13 (s, 3xCH2), 5.38 (br, 1H); 13C NMR ([d6]-DMSO, 25°C) δ: 53.7 (CH2), 58.9 (CH2), 

70.5 (CH2), 79.2 (CH2); 14N NMR ([d6]-DMSO, 25°C) δ: 1.5 (NO3
-, ∆ν1/2 = 85 Hz), -340.7 

(N-CH2CH2OH,  ∆ν1/2 = 102 Hz); m/z (FAB+, xenon, 6keV, NBA matrix) 185 [C6H12N4-

CH2CH2OH]+; calcd. C, 38.86; H, 6.93; N, 28.32%; found: C, 38.62; H, 6.66; N, 28.38%. 
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1-Acetoxy-2,4,6-trinitro-2,4,6-triazaheptane 21 

 

N N N

NO2 NO2 NO2

AcO  
 

A mixture of 1-methyl-3,5,7-triaza-1-azoniatricyclododecane nitrate 19 (30 g, 138 mmol) and 

acetic acid (49 ml), was added within 30 minutes to a pale yellow solution of HNO3 (52ml, 

99%) and acetic anhydride (48 ml) below the temperature of 20°C. The temperature was 

raised under agitation to 75°C and kept there for 15 minutes. The product 21 precipitated out 

of solution by cooling to -5°C (23.8 g). The reaction mixture yields after dilution with water 

another crop of product (5.8 g) giving an all over yield of 72% calculated on 19. m.p. 150-154 

°C ; IR (KBr, cm–1): ν~ = 3064 (vw), 3054 (vw), 3015 (vw), 3002 (vw), 2948 (vw), 1747 (s), 

1660 (vw), 1567 (s), 1523 (m), 1545 (m), 1444 (s), 1417 (m), 1378 (w), 1282 (vs), 1253 (s), 

1238 (m), 1222 (s), 1198 (m), 1137 (m), 1100 (w), 1049 (vw), 1027 (s), 1013 (m), 947 (w), 

949 (m), 938 (s), 878 (w), 861 (w), 851 (vw), 826 (w), 767 (m), 720 (vw), 678 (w), 646 (m), 

627 (w), 604 (w), 497 (vw), 471 (vw), 427 (vw); Raman (200mW, 25 °C, cm–1): ν~ = 3066 

(24), 3027 (34), 3001 (73), 2947 (59), 1751 (14), 1563 (14), 1527 (14), 1455 (31), 1418 (26), 

1408 (26), 1379 (18), 1350 (25), 1333 (22), 1307 (69), 1274 (40), 1211 (10), 1196 (10), 1137 

(8), 1102 (15), 1028 (16), 1013 (28), 970 (17), 950 (19), 878 (36), 864 (100), 853 (77), 830 

(56), 775 (8), 724 (19), 681 (19), 644 (55), 605 (23), 487 (22), 450 (20), 428 (19), 361 (20), 

258 (31), 246 (32), 141 (56); 1H NMR ([d6]-DMSO, 25°C) δ: 2.05 (s, CH3), 2.08 (s, CH3), 

5.73 (s, CH2), 5.78 (s, CH2), 5.87 (s, CH2); 13C NMR ([d6]-DMSO, 25°C) δ: 21.1 (CH3), 31.2 

(CH3), 65.5 (CH2), 66.9 (CH2), 72.7 (CH2), 170.8 (CO); 14N NMR ([d6]-DMSO, 25°C) δ: -

29.2 (NO2, ∆ν1/2 = 124 Hz), -33.1 (NO2,  ∆ν1/2 = 173 Hz); m/z (DEI) 237 [M+ - Acetyl (29)], 

221 [M+ - MeNNO2 (4)], 163 (11), 148 (4), 147 (69), 117 (26), 116 (9), 90 (4), 89 (100), 73 

(15), 59 (4), 45 (12), 43 (78), 42 (49), 30 (8), 28 (6), 15 (6); m/z (DCI, NH3)  314 [M + NH4
+ 

(19)], 163 (4), 147 (47), 117 (10), 116 (10), 106 (9), 94 (5), 90 (5), 89 (100), 73 (6), 60 (12), 

59 (8), 47 (7), 46 (14), 43 (48), 42 (42), 41 (19). 
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1-Acetoxy-2,4,6-trinitro-2,4,6-triazaoctane 22 

 

N N N

NO2 NO2 NO2

AcO  
 

The preparation of this compound follows the same procedure as outlined for 1-acetoxy-2,4,6-

trinitro-2,4,6-triazaheptane 21. The product 22 also precipitated out of solution by cooling to -

5°C. Yields range between 75 and 80%. 

 

m.p. 115-117 °C ; IR (KBr, cm–1): ν~ = 3051 (vw), 2997 (vw), 2987 (vw), 1748 (s), 1657 

(vw), 1563 (vs), 1519 (m), 1447 (s), 1418 (m), 1384 (w), 1369 (w), 1281 (vs), 1256 (m), 1220 

(s), 1186 (w), 1133 (w), 1103 (w), 1047 (w), 1025 (m), 994 (vw), 966 (w), 939 (m), 876 (vw), 

865 (vw), 824 (vw), 788 (vw), 773 (w), 765 (m), 717 (vw), 672 (w), 645 (w), 620 (w), 599 

(w), 497 (vw); Raman (200mW, 25 °C, cm–1): ν~ = 3047 (39), 2997 (86), 2946 (72), 1752 

(13), 1567 (14), 1529 (14), 1460 (41), 1414 (31), 1404 (26), 1384 (22), 1349 (26), 1335 (29), 

1302 (76), 1272 (40), 1202 (8), 1136 (6), 1089 (17), 1053 (24), 1026 (16), 1011 (14), 968 

(13), 941 (29), 868 (100), 827 (51), 776 (6), 720 (11), 676 (18), 643 (46), 617 (13), 602 (22), 

498 (16), 469 (14), 406 (18), 345 (14), 231 (27), 139 (46); 1H NMR ([d6]-DMSO, 25°C) δ: 

1.20 (t, CH3, 3J = 8.0 Hz), 2.06 (s, CH3), 3.87 (q, CH2, 3J = 8.0 Hz),  5.76 (s, CH2), 5.79 (s, 

CH3), 5.88 (s, CH2); 13C NMR ([d6]-DMSO, 25°C) δ: 12.3 (CH3), 21.09 (CH3), 48.4 (CH2), 

65.3 (CH2), 65.6 (CH2), 72.7 (CH2), 170.7 (CO); 14N NMR ([d6]-DMSO, 25°C) δ: -30.4 

(NO2, ∆ν1/2 = 132 Hz), -32.9 (NO2, ∆ν1/2  = 124 Hz); m/z (DEI) 221 [M+ - EtNNO2 (5)], 177 

(7), 148 (5), 147 (100), 130 (6), 117 (38), 103 (79), 73 (17), 57 (37), 56 (9), 46 (7), 43 (49), 

42 (36), 30 (6), 29 (5), 28 (7); m/z (DCI,  NH3)  328 [M + NH4
+ (23)], 177 (5), 147 (75), 130 

(10), 120 (9), 118 (5), 117 (15), 103 (100), 84 (9), 82 (13), 73 (10), 60 (14), 58 (5), 57 (50), 

56 (16), 47 (7), 46 (19), 43 (37), 42 (53); calcd. C, 27.10; H, 4.55; N, 29.09%; found: C, 

26.43; H, 4.44; N, 27.32%. 
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1-Acetoxy-8-nitrato-2,4,6-trinitro-2,4,6-triazaoctane 23 

 

N N N

NO2 NO2 NO2

AcO
ONO2  

 

A mixture of 1-(2-hydroxyethyl)-3,5,7-triaza-1-azoniatricyclododecane nitrate 20 (34.12 g, 

138 mmol) and acetic acid (49 ml), was added within 30 minutes to a pale yellow solution of 

HNO3 (52ml, 99%) and acetic anhydride (48 ml) below the temperature of 20°C. The 

temperature was raised under agitation to 75°C and kept there for 15 minutes. Controlling of 

the temperature is important as reaction is exothermic and temperatures above 75°C have to 

be avoided (prepared ice bath). After cooling to ambient temperature the reaction mixture was 

quenched by pouring on ice and extracted with DCM. The collected DCM fractions were 

dried over MgSO4 and all volatile components removed in vacuo. The product 20 precipitated 

after addition of Et2O/EtOH to the oily residue as pale yellow powder (38.9 g, 76%). The 

ether solution contains 1,3-diacetoxy-2-nitro-2-azapropane 24. m.p. 106.0-107.5 °C ; IR 

(KBr, cm–1): ν~ = 3066 (vw), 3054 (vw), 3013 (vw), 1755 (s), 1633 (s), 1581 (s), 1531 (s), 

1435 (m), 1412 (w), 1371 (w), 1280 (vs), 1244 (s), 1215 (s), 1199 (m), 1168 (m), 1121 (w), 

1051 (vw), 1028 (m), 1008 (m), 987 (w), 974 (w), 929 (s), 890 (m), 857 (w), 846 (w), 830 

(w), 768 (m), 711 (w), 643 (vw), 622 (w), 604 (w), 508 (vw); Raman (200mW, 25 °C, cm–1): 

ν~ = 3067 (20), 3054 (25), 3017 (66), 2977 (36), 2941 (38), 1757 (18), 1625 (8), 1534 (18), 

1457 (25), 1434 (26), 1407 (26), 1382 (36), 1361 (24), 1335 (18), 1305 (100), 1280 (28), 

1267 (19), 1244 (15), 1220 (10), 1198 (8), 1170 (7), 1076 (10), 1052 (21), 1027 (16), 1011 

(35), 989 (17), 929 (33), 888 (21), 859 (52), 847 (77), 832 (84), 772 (5), 713 (10), 672 (22), 

658 (32), 645 (38), 622 (16), 605 (17), 562 (44), 495 (20), 464 (13), 436 (12), 396 (10), 362 

(13), 295 (13), 247 (32), 194 (19), 131 (145); 1H NMR ([d6]-DMSO, 25°C) δ: 2.07 (s, CH3), 

4.28 (t, CH2, 2J = 8.0 Hz), 4.79 (t, CH2, 2J = 8.0 Hz), 5.79 (s, 2xCH2), 5.88 (s, CH2); 13C NMR 

([d6]-DMSO, 25°C) δ: 21.1 (CH3), 49.9 (CH2), 65.5 (CH2), 66.4 (CH2), 70.6 (CH2), 72.6 

(CH2), 170.8 (CO); 14N NMR ([d6]-DMSO, 25°C) δ: -32.7 (NO2/NO3
-, ∆ν1/2 = 278 Hz), -41.3 

(NO2,  ∆ν1/2 = 204 Hz); m/z (DEI) 238 [M+ - AcOCH2NNO2 (2)], 221 [M+ - O2NOCH2NNO2 

(4)], 164 (15), 147 (95), 117 (42), 116 (9), 89 (9), 85 (7), 83 (12), 73 (16), 60 (7), 46 (50), 45 

(9), 44 (10), 43 (100), 42 (74), 30 (45), 29 (13), 28 (17); m/z (DCI, NH3)  389 [M + NH4
+ 

(19)], 191 (5), 190 (5), 164 (14), 148 (6), 147 (95), 119 (15), 117 (19), 89 (6), 87 (6), 73 (14), 

72 (7), 60 (22), 47 (16), 46 (100) 45 (5), 44 (7), 43 (60), 42 (86), 41 (18); calcd. C, 22.65; H, 

3.53; N, 26.41%; found: C, 22.69; H, 3.52; N, 26.52%. 
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1-Chloro-2,4,6-trinitro-2,4,6-triazaheptane 28 

 

N N N

NO2 NO2 NO2

Cl  
 

Method A:  

 

To a mixture of trifluoroacetic acid (45,6 g, 0,4 mol) and conc. HCl (12 ml, 31%) was added 

in one portion 1-acetoxy-2,4,6-trinitro-2,4,6-triazaheptane 21 (6 g, 20 mmol). After stirring 

for a few minutes at room temperature the mixture became clear and shortly afterwards a 

heavy white precipitate was formed. Stirring was continued for another 2.5 hours at room 

temperature. The solid was collected by suction filtration, washed with distilled water, and 

dried in vacuo. Collected was 4,63 g (85 %) of 28, recryst. from DCM/hexane. 

 

Method B: 

 

Hydrogen chloride was bubbled through a suspension of 1-acetoxy-2,4,6-trinitro-2,4,6-

triazaheptane 21 (6 g, 20 mmol) in dioxane (30 ml) with stirring for 15-30 minutes. The 

reaction mixture was stirred at 0°C for 2 h and then at 20°C for 5 h. The solution was 

concentrated in vacuo and then water (60 ml) was added. The precipitated colorless solid was 

collected by suction filtration, washed with distilled water until acid free and dried in vacuo. 

Collected was 5,23 g (93 %) of 28, recryst. from DCM/hexane. 

 

 

m.p. 125-127 °C ; IR (KBr, cm–1): ν~ = 3089 (vw), 3033 (vw), 2956 (vw), 2926 (vw), 1557 

(s), 1570 (s), 1526 (s), 1457 (m), 1448 (m), 1413 (w), 1384 (vw), 1306 (m), 1281 (vs), 1257 

(vs), 1220 (m), 1154 (w), 1108 (m), 1083 (w), 1022 (w), 946 (m), 915 (w), 765 (m), 670 (w), 

650 (w), 621 (w), 602 (w); Raman (200mW, 25 °C, cm–1): ν~ = 3089 (11), 3034 (28), 2996 

(30), 2996 (45), 2955 (19), 2888 (7), 2766 (2), 1552 (9), 1450 (20), 1414 (19), 1386 (7), 1352 

(17), 1313(36), 1283 (32), 1261 (15), 1157 (4), 1108 (15), 1085 (7), 1027 (11), 952 (16), 916 

(19), 876 (18), 860 (100), 773 (5), 708 (13), 677 (63), 653 (28), 629 (41), 601 (17), 460 (16), 

417 (18), 358 (14), 274 (14), 261 (16), 233 (21), 161 (36), 127 (22); 1H NMR ([d6]-DMSO, 

25°C) δ: 3.44 (s, CH3), 5.75 (s, CH2), 5.90 (s, CH2), 5.93 (s, CH2); 13C NMR ([d6]-DMSO, 

25°C) δ: 40.4 (CH3), 59.9 (CH2), 65.1 (CH2), 67.0 (CH2); 14N NMR ([d6]-DMSO, 25°C) δ: -
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29.0 (NO2, ∆ν1/2 = 126 Hz), -33.1 (NO2,  ∆ν1/2 = 170 Hz), -35.2 (NO2,  ∆ν1/2 = 152 Hz); m/z 

(DEI) 197 [M+ - MeNNO2 (22)], 163 (8), 125 (27), 123 (82), 116 (5), 89 (100), 46 (13), 43 

(52), 42 (85), 30 (9), 28 (6); m/z (DCI, NH3)  290 [M + NH4
+ (13)], 143 (6), 125 (15), 123 

(46), 116 (6), 106 (6), 98 (5), 94 (5), 89 (199), 78 (6), 59 (6), 46 (17), 45 (5), 43 (31), 42 (71); 

calcd. C, 17.62; H, 3.33; N, 30.83%; found: C, 17.93; H, 3.33; N, 30.61%. 

 

 

1-Chloro-2,4,6-trinitro-2,4,6-triazaoctane 29 

 

N N N

NO2 NO2 NO2

Cl  
 

The preparation of this compound follows the same procedure as outlined for 1-chloro-2,4,6-

trinitro-2,4,6-triazaheptane 28 according method 1 or 2. Yields range between 85 and 92%. 

 

m.p. 109.0-112.2 °C ; IR (KBr, cm–1): ν~ = 3085 (vw), 3032 (vw), 2982 (vw), 2939 (vw), 1559 

(s), 1520 (s), 1442 (s), 1409 (m), 1382 (vw), 1275 (vs), 1249 (s), 1237 (m), 1205 (w), 1155 

(w), 1106 (w), 1079 (m), 1041 (w), 971 (w), 938 (m), 913 (m), 871 (vw), 856 (vw), 790 (vw), 

765 (m), 670 (w), 649 (w), 635 (vw), 619 (m), 597 (m), 476 (vw), 428 (vw); Raman (200mW, 

25 °C, cm–1): ν~ = 3020 (30), 2991 (53), 2940 (25), 2880 (10), 1557 (10), 1536 (19), 1452 

(32), 1412 (20), 1391 (15), 1356 (30), 1336 (16), 1315 (43), 1271 (36), 1159 (6), 1105 (9), 

1081 (29), 1044 (12), 934 (22), 919 (12), 859 (100), 831 (17), 791 (7), 770 (6), 702 (22), 673 

(60), 650 (36), 637 (39), 619 (14), 596 (14), 476 (21), 433 (26), 380 (14), 357 (17), 258 (18), 

219 (30), 162 (40), 135 (53); 1H NMR ([d6]-DMSO, 25°C) δ: 1.20 (t, CH3, 3J = 8.0 Hz), 3.88 

(q, CH2, 3J = 8.0 Hz),  5.78 (s, CH2), 5.90 (s, CH3), 5.94 (s, CH2); 13C NMR ([d6]-DMSO, 

25°C) δ: 12.3 (CH3), 48.3 (CH2), 65.2 (CH2), 66.3 (CH2), 74.2 (CH2); 14N NMR ([d6]-DMSO, 

25°C) δ: -30.3 (NO2, ∆ν1/2 = 127 Hz), -33.1 (NO2, ∆ν1/2  = 135 Hz); m/z (DEI) 197 [M+ - 

EtNNO2 (22)], 177 (5), 125 (33), 123 (100), 103 (67), 57 (39), 46 (10), 42 (75), 30 (6), 29 (6), 

28 (8); m/z (DCI, NH3)  304 [M + NH4
+ (4)], 125 (19), 123 (60), 120 (5), 112 (9), 103 (93), 85 

(15), 83 (23), 78 (6), 57 (49), 56 (15), 47 (6), 46 (26), 43 (100), 42 (5); calcd. C, 20.95; H, 

3.87; N, 29.3%; found: C, 20.90; H, 3.86; N, 29.35%. 
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1-Chloro-8-nitrato-2,4,6-trinitro-2,4,6-triazaoctane 30 

 

N N N

NO2 NO2 NO2

Cl
ONO2  

 

The preparation of this compound follows the same procedure as outlined for 1-chloro-2,4,6-

trinitro-2,4,6-triazaheptane 28 according method 1. Yields range between 45 and 55%. 

 

m.p. 85.9-88.6 °C ; IR (KBr, cm–1): ν~ = 3074 (w), 3033 (w), 2952 (vw), 1643 (s), 1563 (s), 

1554 (s), 1461 (m), 1440 (s), 1412 (m), 1387 (vw), 1363 (vw), 1275 (vs), 1236 (m), 1182 (w), 

1144 (m), 1103 (m), 1071 (m), 1048 (m), 1016 (m), 980 (w), 938 (s), 910 (s), 895 (m), 853 

(w), 766 (m), 714 (vw), 700 (vw), 672 (w), 646 (w), 630 (vw), 607 (m), 566 (w), 495 (vw), 

474 (vw), 457 (vw), 426 (vw); Raman (200mW, 25 °C, cm–1): ν~ = 3073 (11), 3033 (25), 3012 

(33), 2991 (54), 2904 (6), 1561 (14), 1527 (9), 1462 (20), 1444 (22), 1410 (19), 1389 (18), 

1349 (23), 1313 (48), 1280 (38), 1146 (7), 1103 (10), 1072 (13), 1052 (16), 1017 (8), 982 (9), 

939 (18), 909 (20), 858 (100), 770 (7), 701 (18), 673 (50), 650 (42), 632 (27), 567 (29), 496 

(29), 457 (15), 405 (20), 362 (18), 303 (12), 241 (22), 198 (22), 163 (43), 142 (44); 1H NMR 

([d6]-DMSO, 25°C) δ: 4.27 (t, CH2, 3J = 8.2 Hz), 4.79 (t, CH2, 3J = 8.2 Hz),  5.79 (s, CH2), 

5.90 (s, CH3), 5.93 (s, CH2); 13C NMR ([d6]-DMSO, 25°C) δ: 49,9 (CH2), 59.9 (CH2), 65.1 

(CH2), 66.4 (CH2), 70.6 (CH2); 14N NMR ([d6]-DMSO, 25°C) δ: -31.2 (NO2, ∆ν1/2 = 282 Hz), 

-41.2 (-ONO2, ∆ν1/2 = 143 Hz);  m/z (DEI) 271 [M+ - ClCH2 (2)], 238 (5), 199 (6), 197 (47), 

164 (33), 147 (7), 125 (40), 123 (100), 117 (5), 76 (7), 46 (62), 44 (12), 43 (8), 42 (99), 41 

(8), 30 (24), 29 (11); calcd. C, 17.28; H, 2.90; N, 28.20%; found: C, 17.61; H, 2.96; N, 

27.40%. 
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1-Azido-2,4,6-trinitro-2,4,6-triazaheptane 33 

 

N N N

NO2 NO2 NO2

N3  
 

1-Chloro-2,4,6-trinitro-2,4,6-triazaheptane 28 (2.726 g, 10 mmol) was dissolved in 30 ml 

acetone under nitrogen and cooled. A solution of sodium azide (1.035 g, 16 mmol) water (5 

ml) was added at such a rate that the temperature did not exceed 10°C. After 4 hours the clear 

solution was diluted with water (50 ml) and the precipitated solid collected by suction 

filtration, washed with distilled water, and dried in vacuo. Recryst from acetone/diethyl ether 

yielded 33 as colorless plates (2.17 g, 78%). 

m.p. 102.5-104.3 °C ; IR (KBr, cm–1): ν~ = 3060 (vw), 3042 (w), 2997 (vw), 2956 (vw), 2151 

(m), 2116 (m), 1638 (w), 1615 (m), 1559 (vs), 1526 (s), 1455 (m), 1438 (m), 1416 (w), 1403 

(w), 1388 (w), 1331 (m), 1278 (vs), 1257 (s), 1235 (s), 1170 (m), 1119 (m), 1080 (w), 1021 

(m), 996 (m), 984 (w), 954 (w), 937 /s), 910 (w), 895 (w), 864 (w), 852 (w), 766 (s), 693 

(vw), 643 (m), 629 (m), 608 (m), 480 (vw), 436 (vw); Raman (200mW, 25 °C, cm–1): ν~ = 

3066 (12), 3031 (29), 3044 (34), 300 (45), 2965 (36), 2136 (4), 2109 (9), 1532 (15), 1455 

(29), 1417 (16), 1404 (24), 1389 (33), 1360 (22), 1301 (41), 1235 (35), 1174 (6), 1128 (6), 

1085 (12), 943 (15), 913 (17), 895 (18), 858 (100), 704 (8), 657 (22), 644 (30), 610 (9), 481 

(13), 459 (12), 416 (9), 358 (16), 263 (18), 246 (26), 218 (44); 1H NMR ([d6]-DMSO, 25°C) 

δ: 3.43 (s, CH3), 5.32 (s, CH2), 5.72 (s, CH2), 5.81 (s, CH2); 13C NMR ([d6]-DMSO, 25°C) δ: 

40.4 (CH3), 65.9 (CH2), 66.4 (CH2), 67.1 (CH2); 14N NMR ([d6]-DMSO, 25°C) δ: -28.7 

(NO2, ∆ν1/2 = 99 Hz), -31.5 (NO2,  ∆ν1/2 = 156 Hz), -134.2 (Nβ,  ∆ν1/2 = 280 Hz), -167.1 (Nγ,  

∆ν1/2 = 1240 Hz); m/z (DEI) 237 [M+ - N3 (3)], 204, [M+ - MeNNO2 (3)], 163 [M+ - 

N3CH2NNO2 (27)], 147 (4), 130 (8), 116 (4), 89 (100), 75 (21), 59 (4), 46 (23), 43 (46), 42 

(36), 30 (16), 29 (5), 28 (27), 27 (5), 18 (27), 17 (6), 15 (5); m/z (DCI, NH3)  297 [M + NH4
+ 

(2)], 237 (3), 204 (2), 163 (4), 147 (5), 130 (3), 106 (10), 89 (100), 75 (10); calcd. C, 17.21; 

H, 3.325; N, 45.16%; found: C, 17.38; H, 3.25; N, 45.13%. 
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1-Azido-2,4,6-trinitro-2,4,6-triazaoctane 34 

 

N N N

NO2 NO2 NO2

N3  
 

The preparation of this compound follows the same procedure as outlined for 1-azido-2,4,6-

trinitro-2,4,6-triazaheptane 33. Recryst. from MeOH/diethyl ether yields 34 as colorless plates 

(88%). 

 

m.p. 121.5-122.8 °C ; IR (KBr, cm–1): ν~ = 3055 (vw), 3031 (vw), 2981 (vw), 2939 (vw), 2130 

(m), 2083 (m), 1555 (vs), 1530 (s), 1451 (m), 1417 (m), 1378 (vw), 1325 (w), 1277 (vs), 1249 

(m), 1224 (m), 1203 (w), 1169 (w), 1121 (w), 1086 (m), 1038 (w), 968 (w), 932 (m), 883 (w), 

866 (vw), 792 (vw), 766z (m), 629 (vw), 602 (m); Raman (200mW, 25 °C, cm–1): ν~ = 3055 

(14), 3037 (29), 2995 (52), 2943 (23), 2883 (10), 2133 (3), 2084 (3), 1561 (10), 1536 (12), 

1516 (7),  1454 (28), 1418 (17), 1395 (19), 1380 (16), 1355 (24), 1331 (18), 1300 (18), 1281 

(24), 1246 (14), 1223 (17), 1084 (25), 1041 (12), 973 (9), 934 (9), 884 (28), 854 (100), 837 

(15), 679 (7), 645 (22), 616 (8), 474 (16), 445 (12), 429 (9), 383 (12), 257 (19), 238 (35), 192 

(29), 167 (29), 137 (20); 1H NMR ([d6]-DMSO, 25°C) δ: 1.20 (t, CH3, 3J = 8.0 Hz), 3.86 (q, 

CH2, 3J = 8.0 Hz),  5.33 (s, CH2), 5.75 (s, CH3), 5.82 (s, CH2); 13C NMR ([d6]-DMSO, 25°C) 

δ: 12.3 (CH3), 48.4 (CH2), 65.9 (CH2), 66.38 (CH2), 66.42 (CH2); 14N NMR ([d6]-DMSO, 

25°C) δ: -26.3 (NO2, ∆ν1/2 = 245 Hz), -130.4 (Nβ,  ∆ν1/2 = 284 Hz), -162.4 (Nγ,  ∆ν1/2 = 1293 

Hz); m/z (DEI) 251 [M+ - N3 (2)], 204, [M+ - EtNNO2 (7)], 177 [M+ - N3CH2NNO2 (23)], 130 

(19), 103 (100), 75 (45), 57 (53), 56 (11), 45 (27), 43 (5), 42 (48), 30 (18), 29 (11), 28 (34), 

27 (5), 18 (12), 17 (3), 15 (3); m/z (DCI, NH3)  311 [M + NH4
+ (2)], 247 (4), 204 (4), 177 (9), 

130 (7), 120 (11), 108 (10), 103 (100), 75 (10), 57 (45), 46 (41), 42 (52); calcd. C, 20.48; H, 

3.78; N, 43.00%; found: C, 20.48; H, 3.62; N, 43.21%. 
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1-Azido-8-nitrato-2,4,6-trinitro-2,4,6-triazaoctane 35 

 

N N N

NO2 NO2 NO2

N3 ONO2  
The preparation of this compound follows the same procedure as outlined for 1-azido-2,4,6-

trinitro-2,4,6-triazaheptane 33. Recryst. from MeOH/diethyl ether yields 35 as colorless plates 

(82%). 

m.p. 81.2 – 82.7 °C ; IR (KBr, cm–1): ν~ = 3074 (w), 3033 (w), 2952 (vw), 1643 (s), 1563 (s), 

1554 (s), 1461 (m), 1440 (s), 1412 (m), 1387 (vw), 1363 (vw), 1275 (vs), 1236 (m), 1182 (w), 

1144 (m), 1103 (m), 1071 (m), 1048 (m), 1016 (m), 980 (w), 938 (s), 910 (s), 895 (m), 853 

(w), 766 (m), 714 (vw), 700 (vw), 672 (w), 646 (w), 630 (vw), 607 (m), 566 (w), 495 (vw), 

474 (vw), 457 (vw), 426 (vw); Raman (200mW, 25 °C, cm–1): ν~ = 3073 (11), 3033 (25), 3012 

(33), 2991 (54), 2904 (6), 1561 (14), 1527 (9), 1462 (20), 1444 (22), 1410 (19), 1389 (18), 

1349 (23), 1313 (48), 1280 (38), 1146 (7), 1103 (10), 1072 (13), 1052 (16), 1017 (8), 982 (9), 

939 (18), 909 (20), 858 (100), 770 (7), 701 (18), 673 (50), 650 (42), 632 (27), 567 (29), 496 

(29), 457 (15), 405 (20), 362 (18), 303 (12), 241 (22), 198 (22), 163 (43), 142 (44); 1H NMR 

([d6]-DMSO, 25°C) δ: 4.27 (t, CH2, 3J = 8.2 Hz), 4.79 (t, CH2, 3J = 8.2 Hz),  5.79 (s, CH2), 

5.90 (s, CH3), 5.93 (s, CH2); 13C NMR ([d6]-DMSO, 25°C) δ: 49,9 (CH2), 59.9 (CH2), 65.1 

(CH2), 66.4 (CH2), 70.6 (CH2); 14N NMR ([d6]-DMSO, 25°C) δ: -31.2 (NO2, ∆ν1/2 = 282 Hz);  

m/z (DEI) 312 [M+ - N3 (3)], 278 (2), 238 (30), 204 (17), 164 (74), 147 (11), 130 (24), 120 

(6), 119 (9), 117 (6), 102 (4), 89 (3), 88 (6), 87 (3), 75 (61), 73 (8), 71 (5), 60 (3), 58 (3), 56 

(6), 55 (3), 46 (100), 44 (29), 43 (12), 42 (93), 30 (51), 29 (30), 28 (44), 27 (4), 15 (4); m/z 

(DCI, NH3)  372 [M + NH4
+ (3)], 181 (5), 169 (3), 164 (16), 147 (4), 130 (4), 119 (18), 117 

(4), 116 (3), 89 (4), 88 (3), 87 (4), 75 (12), 74 (7), 73 (8), 72 (10), 71 (6), 70 (4), 59 (3), 57 

(4), 56 (3), 55 (3), 47 (15), 46 (100), 45 (8), 44 (9), 43 (15), 42 (76), 41 (19), 39 (4), 35 (19), 

33 (41), 32 (24), 31 (28), 30 (84), 29 (16) 28 (13); calcd. C, 16.95; H, 2.85; N, 39.55%; found: 

C, 17.57; H, 2.85; N, 39.00%. 
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A P P E N D I X  A  

COMPUTATIONAL DETAILS 

Chapter III, 2 

 The structural and vibrational data of all considered species were calculated by using the 

hybrid density functional theory (B3LYP) with the program package Gaussian 98.1 Different types 

of basis sets were used: aug-cc-pvYZ (Y = D, T). Both basis sets gave essentially the same results. 

Here, the focus has been mainly that on the B3LYP/aug-cc-pvTZ results with respect to the 

structural data. All stationary points were characterized by a frequency analysis at the B3LYP/aug-

cc-pvDZ level. The computed frequencies for all species and approximate assignments are given in 

Tables A1-3. NBO2 analyses and MO analyses were carried out to investigate the bonding at the 

aug-cc-pvDZ level utilizing the optimized B3LYP/aug-cc-pvTZ geometry (Table A-4). Note: There 

may well be significant differences among gas-phase, solution, and solid-state data. 

 

Table A-1. Frequency analysis of CIT dianion (33): B3LYP/aug-cc-pvDZ.a,b 
# symmetry Wave number 

[cm-1] 
IR intensity 
[km mole-1] 

Raman activity 
[Å4/amu] 

Approx. assign. 

1       A'      78.9192         3.8304  0.2278 γ N4C-NCN 
2       A'      140.7846        5.3885  9.3542 δ N4C-NCN 
3       A"      330.2255        1.9292  3.6212 γ N4C-NCN 
4       A'      441.7789        6.0610  10.6096 δ N4C-NCN 
5       A'      550.0069        0.5861  5.1018 δ N4C-NCN 
6       A"      581.0759        6.4400  2.8953 γNCN, NCN 
7       A"      731.7222        0.0010  0.0390 γNNNN, N4C 
8       ?A      757.9463        12.8732  9.1257 δNCN, NCN 
9       ?A      768.5212        4.8446  0.6824 γNCN, N4C 
10      A'      1002.7240       6.7036  17.1445 νoopNN, N4C 
11      A'      1041.0467       1.6107  13.5452 δNCN, N4C 
12      A'      1114.5413       10.9189  10.9372 νoopNN, N4C 
13      A'      1125.1043       4.4977  12.2219 νipNN, N4C 
14      A'      1194.5724       26.4712  25.5281 νN2N3, N4C 
15      A'      1245.7092       9.2964  1.2812 νCN, N-CN + νipCN, N4C 
16      A'      1350.8385       66.4477  9.3865 νoopNCN, N4C 
17      A'      1513.0517       699.3810  171.5100 νCN, C-NCN 
18      A'      2137.3550       1411.2991  228.6968 νCN, CNC-N 

a ip = in phase, oop = out-of-phase, b for numbering scheme see Figure 3.7 (Chapter III) 
 

 

 



 - 368 -

 

 

 

Table A-2. Frequency analysis of Cs2CIT (33): B3LYP/aug-cc-pvDZ.a,b 
# Wave number 

[cm-1] 
IR intensity 
[km mole-1] 

Raman activity 
[Å4/amu] 

Approx. assign. 

1      25.8899         28.7020 0.3636 γ Cs-CIT 
2      59.1460         11.3162 0.3701 δ Cs-CIT 
3      73.5744         0.8058 3.9523 γ all 
4      87.6685         20.0206 0.0149 δ all 
5      98.8395         3.2954 0.1961 γ all 
6      121.4175        3.2500 0.2829 δ all 
7      150.8811        76.2516 0.2877 νCs-N 
8      188.5583        13.7678 6.3482 δ N4C-NCN 
9      335.9261        0.5951 0.9856 γN4C-NCN 
10      437.5899        3.2081 5.9868 δ CIT 
11      579.0460        0.2129 6.6400 δ CIT 
12      594.1566        7.6087 0.1165 γNCN, NCN 
13      734.3617        0.0003 0.2475 γNNNN, N4C 
14      772.8719        5.6383 0.7887 γNCN, N4C 
15      799.1775        4.3785 2.9348 δNCN, NCN 
16      1023.7755       10.3321 5.5804 νoopNN, N4C 
17      1070.0532       5.1799 5.1056 δNCN, N4C 
18      1118.2668       6.9052 8.1806 νN2N5, N4C 
19      1122.8167       10.3181 5.1320 νN3N4, N4C 
20      1230.8993       30.9216 4.7051 νCN, N-CN + νN2N3, N4C 
21      1272.9695       6.8557 14.4751 νN2N3, N4C 
22      1404.8822       90.6536 9.4679 νNCN, N4C 
23      1497.5531       521.1193 101.6795 νCN, C-NCN 
24      2197.9778       907.9263 145.9248 νCN, CNC-N 

a ip = in phase, oop = out-of-phase, b for numbering scheme see Figure 3.7 (Chapter III) 
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Table A-3. Frequency analysis of CIT•SO3 (37): B3LYP/aug-cc-pvDZ.a,b 
# Wave number 

[cm-1] 
IR intensity 
[km mole-1] 

Raman activity 
[Å4/amu] 

Approx. assign. 

1      26.9789         0.0002  1.2490 γall 
2      79.3075         6.5780  3.3838 γall 
3      93.8184         2.3201  4.3252 δall 
4      119.2595        0.0923  0.6100 γall 
5      176.6699        2.4730  6.1266 δ all 
6      255.4018        11.3446  11.6013 δ all 
7      274.7550        0.2128  0.5381 γall 
8      283.0548        5.8386  7.2535 δ all 
9      349.9590        2.6950  0.8306 γall 
10      454.2033        19.2543  9.4068 δ all 
11      500.1190        19.4296  1.4597 δSO3 
12      508.5516        4.2114  2.3128 δ all 
13      561.7957        339.3190  1.0832 ν SN + δSO3 
14      577.4616        6.8417  0.0465 γNCN, NCN 
15      579.3746        24.0113  13.7352 δN4C,NCN 
16      692.8165        2.2190  0.1308 γNNNN, N4C 
17      746.4333        6.4215  0.0405 γNCN, N4C 
18      777.2932        0.3167  8.0122 δNCN, NCN 
19      948.2741        194.1638  44.6246 νipSO 
20      994.1525        4.0411  7.6154 ν N4C 
21      1065.1707       133.4219  19.6916 ν N4C 
22      1101.4984       0.6036  4.6696 νN3N6, N4C 
23      1136.0139       15.1459  14.6451 νN2N5, N4C 
24      1173.3389       197.7116  5.6857 νoopSO 
25      1176.9733       295.7906  8.9949 νoopSO 
26      1246.6248       37.9325  16.3647 νipCN, N4C + νCN, N-CN 
27      1307.8301       85.5381  38.0480 νN2N3, N4C 
28      1348.3833       79.4370  8.2532 νoopNCN, N4C 
29      1589.1918       971.7955  24.5763 νCN, C-NCN 
30      2195.9401       1062.8321  374.3944 νCN, CNC-N 

a ip = in phase, oop = out-of-phase, b for numbering scheme see Figure 3.7 (Chapter III) 
 

 

 

Table A-4. NPA Charges (B3LYP/aug-cc-pvDZ) [e] 
 CIT (32) CIT-SO3 (37) 

C  1 0.48772 0.58528 
C  2 0.50689 0.50807 
N  1 -0.48757 -0.45406 
N  2 -0.23922 -0.14644 
N  3 -0.24034 -0.11930 
N  4 -0.48328 -0.49418 
N  5 -0.77149 -0.71950 
N  6 -0.7727 -0.67108 
S  1 - 2.45395 
O  1 - -0.98565 
O  2 - -0.97856 
O  3 - -0.97852 
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 Chapter IV, 2.7.2 

 In order to analyze the chemical bonding in 61c the theory of Atoms in Molecules was used 

to define the atomic contribution within 61c.3 AIM and NBO analyses4 were carried out to 

investigate the charge transfer from the dinitramide (DN) anion to the tetrazolium cation at the SCF 

level (B3LYP/6-6311+G(3d,2p) utilizing the geometry obtained from the X-ray structure analysis. 

Details of the NBO charges and AIM charges are summarized in Table A-5. The numbering 

scheme of 61c is different from that of the structure determination and is depicted in Figure A-1. 

Table A-6 gives the Cartesian coordinates of the molecular model obtained from crystals structure 

analysis and Table A-7 gives the parameters of the important critical points (CP’s) of 61c. The 

electron density plot, ρ (r), and the Laplacian plot ρ (r), -∇ 2ρ (r), of the projection of the (61c) 

molecular graph onto the N2-N4-O3 plane is depicted in Figure A-2. 

 

Table A-5. AIM and NBO charges.  
 AIM charges  

B3LYP/6-311+G(3d,2p) 
NBO charges  
B3LYP/6-311+G(3d,2p) 

O1 -0,49743 -0,4428 
N2 0,62742 0,5699 
O3 -0,50015 -0,4501 
N4 -0,14682 -0,2631 
N5 0,64061 0,5824 
O6 -0,54736 -0,4738 
O7 -0,55789 -0,5049 
N8 -0,41601 -0,0765 
N9 0,00912 0,0135 
N10 0,00725 0,0111 
N11 -0,62501 -0,5553 
C12 1,44031 0,6409 
H13 0,38173 0,3546 
H14 0,43781 0,3705 
N15 -0,70428 -0,1954 
N16 -1,04831 -0,6758 
C17 1,18670 -0,2906 
H18 0,43897 0,3839 
H19 0,45312 0,3983 
H20 -0,12336 0,1987 
H21 -0,26660 0,2025 
H22 -0,17951 0,2020 
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Figure A-1. Numbering scheme of 61c used in 
calculation. 

 

Table A-6. Cartesian coordinates from X-ray structure determination 
as input for the calculations.  

Atomic 
Type 

 
 
x 

Coordinates 
(Angstroms) 

y 

 
 
z 

O -3.25028700 1.03480600 0.92032700 
N -3.57281600 0.10523900 0.18208800 
O -4.77269700 -0.17578400 0.00427200 
N -2.73726000 -0.73571300 -0.46430300 
N -1.40445000 -0.34028600 -0.49999500 
O -0.99960400 0.78987900 -0.26964300 
O -0.66737400 -1.26012800 -0.86427900 
N 2.19827300 -1.01150800 0.25288900 
N 2.33393300 -1.02117500 -1.10089000 
N 2.32795900 0.18823300 -1.50119000 
N 2.13765000 -2.16375200 1.04847200 
C 2.08565400 0.24336500 0.69339300 
H 2.86360400 -2.66012200 0.80064700 
H 1.40938600 -2.64417900 0.80582100 
N 2.17804400 0.98848600 -0.41116600 
N 1.91728700 0.63922500 1.93575400 
C 2.09930600 2.42793900 -0.51590100 
H 2.06883900 1.49003500 2.15785400 
H 1.99391900 0.02452600 2.60034900 
H 2.85698900 2.82676500 -0.23814000 
H 2.26922200 2.60977500 -1.30330400 
H 1.29763700 2.67395200 -0.30521300 
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Table A-7. Parameters of the critical point analysis  

 
 
CP1 between N4-O3: 

(3, -1) critical point of RHO, electron density: 
Coordinates:( 1.62891025, -2.01193462, -1.50340591) 
VALUES 
Rho(r) 8.33752507e-003 
|GRAD(Rho(r))| 4.27829156e-018 
GRAD(Rho(r)) x 3.57786717e-018 
GRAD(Rho(r)) y 2.26327204e-018 
GRAD(Rho(r)) z -6.16639986e-019 
(-1/4)Del**2(Rho(r)) -7.41275639e-003 
G(r) 6.45411734e-003 
K(r) -9.58639046e-004 
L(r) -7.41275639e-003 
 
 
CP2 between N2-O4: 

(3, -1) critical point of RHO, electron density: 
Coordinates:( 1.15736661, 1.51012015, -0.54587990) 
VALUES 
Rho(r) 6.76168106e-003 
|GRAD(Rho(r))| 2.57736370e-018 
GRAD(Rho(r)) x -1.72455908e-018 
GRAD(Rho(r)) y -1.45181447e-018 
GRAD(Rho(r)) z -1.24937360e-018 
(-1/4)Del**2(Rho(r)) -5.45507232e-003 
G(r) 4.70918273e-003 
K(r) -7.45889591e-004 
L(r) -5.45507232e-003 
V(r) -3.96329314e-003 
 
 
CP3 between O3-O1: 

(3, -1) critical point of RHO, electron density: 
Coordinates:( -4.00636017, 1.70639039, 0.61083447) 
VALUES 
Rho(r) 2.12394179e-002 
|GRAD(Rho(r))| 9.14850795e-018 
GRAD(Rho(r)) x -8.67361738e-018 
GRAD(Rho(r)) y 1.30104261e-018 
GRAD(Rho(r)) z 2.60208521e-018 
(-1/4)Del**2(Rho(r)) -2.23288399e-002 
G(r) 2.02752931e-002 
K(r) -2.05354678e-003 
L(r) -2.23288399e-002 
V(r) -1.82217463e-002 
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(3, -3) critical point of RHO, electron density: 
Corresponding atom: O 1 
Coordinates:( -6.14215407, 1.95549083, 1.73915961) 
 
(3, -3) critical point of RHO, electron density: 
Corresponding atom: O 6 
Coordinates:( -1.88898071, 1.49264340, -0.50955417) 
 
(3, -3) critical point of RHO, electron density: 
Corresponding atom: O 7 
Coordinates:( -1.26115998, -2.38128787, -1.63324606) 
 
(3, -3) critical point of RHO, electron density: 
Corresponding atom: N 9 
Coordinates:( 4.41049164, -1.92972726, -2.08036995) 
 
(3, -3) critical point of RHO, electron density: 
Corresponding atom: N 15 
Coordinates:( 4.11590749, 1.86796564, -0.77699214) 
 

 

 

Figure A-2. The electron density plot, ρ (r), and the Laplacian plot ρ (r), -∇ 2ρ (r), of 
the projection of the 61c molecular graph onto the N2-N4-O3 plane  
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 Chapter IV, 2.8 

 
Table A-8a G2/G3 method 

 DAT HDAT+ MeDAT HMeDAT+ ClO4
- HClO4 

point group C1 Cs Cs Cs Td Cs 
ZPEa 0.079389 0.091559 0.105743 0.118056 0.015252 0.026449 
NIMAG 0 0 0 0 0 0 
E0 (G2)a -368.396819 -368.738380 -407.603452 -407.972034 -760.115976 -760.591452 
E0 (G3)a -368.718381 -369.061258 -407.970890 -408.340207 -760.631127 -761.106607 
E298 (G2)a -368.390688 -368.732110 -407.595421 -407.963903 -760.111942 -760.586685 
E298 (G3)a -368.712250 -369.054989 -407.962859 -408.332077 -760.627092 -761.101841 
H298 (G2)a -368.389744 -368.731166 -407.594477 -407.962959 -760.110998 -760.585741 
H298 (G3)a -368.711306 -369.054045 -407.961915 -408.331132 -760.626148 -761.100897 
∆fH°(exp.)b                   
PA (G2)a  214.25  231.23  297.91 
PA (G3)a  215.07  231.69  297.91 
PA (exp.)a

       292.6 ± 8.45 
a) a.u. (atomic energy unit) = 1 Hartree = 627.509 kcal mol-1 
b) kcal mol-1 

 

Table A-8b 
 NO3

- HNO3 N3O4
- HN3O4 N3

- 
point group D3h Cs C2 Cs D∞h 
ZPEa 0.014506 0.026815 0.028806 0.041787 0.011035 
NIMAG 0 0 0 0 0 
E0 (G2)a -280.044857 -280.558755 -464.444405 -464.935204 -164.017017 
E0 (G3)a -280.234048 -280.748610 -464.772241 -465.262982 -164.153878 
E298 (G2)a -280.041714 -280.555298 -464.438773 -464.929237 -164.014421 
E298 (G3)a -280.230906 -280.745153 -464.766608 -465.257014 -164.151282 
H298 (G2)a -280.040770 -280.554254 -464.437828 -464.928293 -164.013477 
H298 (G3)a -280.229962 -280.744209 -464.765664 -465.256070 -164.150338 
∆fH°(exp.)b  -32.16  29.97  
PA (G2)a  322.22  307.77  
PA (G3)a  322.69  307.73  
PA (exp.)a

   324.50 ± 0.208  297.0 ± 0.209  
a) a.u. (atomic energy unit) = 1 Hartree = 627.509 kcal mol-1 
b) kcal mol-1 

 

Table A-8c 
 HN3 HCl CH4 C2H6 N2 
point group Cs C∞v Td D3d D∞h 
ZPEa 0.020720 0.006481 0.ß42658 0.071216 0.005610 
NIMAG 0 0 0 0 0 
E0 (G2)a -164.560422 -460.340176 -40.410891 -79.630881 -109.392625 
E0 (G3)a -164.698609 -460.654665 -40.457626 -79.723394 -109.484021 
E298 (G2)a -164.557181 -460.337816 -40.408020 -79.627340 -109.390264 
E298 (G3)a -164.695368 -460.652304 -40.454755 -79.719854 -109.481661 
H298 (G2)a -164.556237 -460.336872 -40.407075 -79.626396 -109.389320 
H298 (G3)a -164.694424 -460.651360 -40.453810 -79.718910 -109.480717 
∆fH°(exp.)b 71.110 -22.3011 -17.8912 -20.0413 0 
PA (G2)a 340.59     
PA (G3)a 341.42     
PA (exp.)a

  343.9 ± 2.214     
a) a.u. (atomic energy unit) = 1 Hartree = 627.509 kcal mol-1 
b) kcal mol-1 
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 Chapter VI, 1.3 

 

 
Figure A-3. ESP mapped onto electron density surface of 111c 

 

 

 
Figure A-4. ESP mapped onto electron density surface of 111a 
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Figure A-5. ESP mapped onto electron density surface of 112c 

 

 

 

 
Figure A-6. ESP mapped onto electron density surface of 112a 
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Figure A-7. ESP mapped onto electron density surface of 112b. 

 

 

 

Table A-9a. Mullican and NBO (in brackets) charges [e] for  109a,c, 111a,c and 112a-c.a 
 N-1 N-2 N-3 N-4 C-1 C-2a E 
109a -0.332 

(-0.253) 
-0.069 
(-0.088) 

-0.095 
(-0.059) 

-0.367 
(-0.384) 

0.649 
(0.549) 

0.258 
(0.258) 

0.045 
(0.023) 

109c -0.321 
(-0.261) 

-0-071 
(-0.074) 

-0.093 
(-0.061) 

-0.375 
(-0.367) 

0.678 
(0.546) 

0.258 
(0.242) 

0.076 
(0.025) 

111a -0.333 
(-0.227) 

-0.051 
(-0.067) 

-0.078 
(-0.051) 

-0.354 
(-0.354) 

0.730 
(0.536) 

0.293 
(0.290)  

0.207 
(0.127) 

111c -0.338 
(-0.236) 

-0.054 
(-0.058) 

-0.081 
(-0.051) 

-0.334 
(-0.321) 

0.779 
(0.540) 

0.273 
(0.259) 

0.245 
(0.133) 

112a -0.280 
(-0.197) 

-0.050 
(-0.060) 

-0.085 
(-0.059) 

-0.315 
(-0.320) 

0.659 
(0.507) 

0.292 
(0.292) 

0.221 
(0.162) 

112b -0.334 
(-0.238) 

-0.052 
(-0.056) 

-0.081 
(-0.050) 

-0.323 
(-0.310) 

0.747 
(0.528) 

0.278 
(0.260) 

0.235 
(0.134) 

112c -0.275 
(-0.196) 

-0.054 
(-0.068) 

-0.083 
(-0.061) 

-0.313 
(-0.320) 

0.656 
(0.510) 

0.305 
(0.304) 

0.236 
(0.169) 

a Mullican and NBO charges from the optimized structures calculated at B3LYP/6-31G(d,p); b 
hydrogen atoms summed into the heavy atoms; c hydrogen atom summed into heavy atom (N) 
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Table A-9a. Mulliken and NBO (in brackets) charges [e] for  109a,c, 111a,c and 112a-c.a 
 N-5 N-6 O-1 O-2 C-3a E 
109a -0.263c 

(-0.253) 
− − − 0.217 

(0.230) 
-0.045 
(-0.023) 

109c -0.260c 

(-0.238) 
− − − 0.182 

(0.214) 
-0.076 
(-0.025) 

111a -0.325 
(-0.245) 

0.169 
(0.203) 

-0.340 
(-0.358) 

− 0.288 
(0.271) 

-0.207 
(-0.127) 

111c -0.375 
(-0.266) 

0.192 
(0.261) 

-0.331 
(-0.365) 

− 0.267 
(0.237)  

-0.245 
(-0.133) 

112a -0.377 
(-0.324) 

0.628 
(0.670) 

-0.373 
(-0.381) 

-0.393 
(-0.408) 

0.294 
(0.281) 

-0.221 
(-0.162) 

112b -0.395 
(-0.310) 

0.623 
(0.673) 

-0.383 
(-0.401) 

-0.344 
(-0.352) 

0.264 
(0.256) 

-0.235 
(-0.134) 

112c -0.394 
(-0.332) 

0.636 
(0.674) 

-0.381 
(-0.393) 

-0.397 
(-0.412) 

0.303 
(0.294) 

0.236 
(-0.169) 

a Mulliken and NBO charges from the optimized structures calculated at B3LYP/6-
31G(d,p); b hydrogen atoms summed into the heavy atoms; c hydrogen atom summed 
into heavy atom (N) 

 

Table A-10. Absolute Energies (in au) for Ground State and Transition States for rotation 
as Optimized at the corresponding Level of Theory. 
Theroretical method 111a_iso1 111a_iso2 111a_sp_ts 111a_ap_ts 
-Etot     
B3LYP/6-31G(d,p) 521.539532 521.537093 521.505501 521.499358 
B3LYP/6-311+G(3df,2p) 521.712895 521.711023 521.679253 521.674844 
∆E     
B3LYP/6-31G(d,p)  -1.5 -21.4 -25.2 
B3LYP/6-311+G(3df,2p)  -1.2 -21.1 -23.9 
     
-E0(6-31G(d,p)) 521.422376 521.417594 521.389298 521.385733 
-H298(6-31G(d,p)) 521.411962 521.407261 521.379148 521.375505 
-G298(6-31G(d,p)) 521.4580375 521.452444 521.424202 521.420895 
∆H‡  -2.9 -20.6 -22.8 
∆G‡  -3.5 -21.2 -23.3 
a At 298 K: ∆H‡ and ∆G‡ in kcal mol-1 
 

 

Table A-11.  Absolute Energies (in au) for Ground State and Transition States for rotation 
as Optimized at the corresponding Level of Theory. 
Theroretical method 111c_iso1 111c_iso2 111c_sp_ts 111c_ap_ts 
-Etot     
B3LYP/6-31G(d,p) 520.305804 520.299963 520.277137 520.272227 
B3LYP/6-311+G(3df,2p) 520.479444 520.473416 520.451912 520.445549 
∆E     
B3LYP/6-31G(d,p)  -3.7 -18.0 -21.1 
B3LYP/6-311+G(3df,2p)  -3.8 -17.3 -21.3 
     
-E0(6-31G(d,p)) 520.209726 520.204082 520.182146 520.177070 
-H298(6-31G(d,p)) 520.200969 520.195258 520.173938 520.168871 
-G298(6-31G(d,p)) 520.243552 520.238149 520.214877 520.209666 
∆H‡  -3.6 -17.0 -20.1 
∆G‡  -3.4 -18.0 -21.3 
a At 298 K: ∆H‡ and ∆G‡ in kcal mol-1 
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Table A-12.. Absolute Energies (in au) for Ground State and Transition States for rotation as Optimized at 
the corresponding Level of Theory. 
Theroretical method 112a 112a_ts  112c 112c_ts 
-Etot      
B3LYP/6-31G(d,p) 596.722138 596.701800  595.486083 595.471423 
B3LYP/6-311+G(3df,2p) 596.924042 596.906893  595.690348 595.676786 
∆E      
B3LYP/6-31G(d,p)  -12.8   -9.2 
B3LYP/6-311+G(3df,2p)  -10.8   -8.5 
      
-E0(6-31G(d,p)) 596.596719 596.580065  595.384026 595.370146 
-H298(6-31G(d,p)) 596.585655 596.569694  595.374808 595.361709 
-G298(6-31G(d,p)) 596.633017 596.615461  595.418268 595.403306 
∆H‡  -10.0   -8.2 
∆G‡  -11.0   -9.4 
a At 298 K: ∆H‡ and ∆G‡ in kcal mol-1 
 
 

 

 Chapter VI, 2.2 
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Figure A-8. Labeling of the atoms in (a) MNB (113), (b) DNB (114). 

 

 Densitiy Functional Theory (DFT)15 methods were carried out with the standard Pople 6-

31G(d,p) basis set. As DFT methods, the Becke exchange functional (B)16 and Becke’s three-

parameter exchange functional (B3)17,18 in combination with both the correlational functional of 

Lee, Yang and Parr (LYP),19 and with the P8620,21 were selected. These procedures are 

implemented in the Gaussian-98 A11 program package.1 The ground state minimum geometry and 

vibrational frequencies were determined, with the keyword OPT, by minimising the energy with 

respect to all geometrical parameters without imposing molecular symmetry constrains in the case 

of MNB (113). In the gas phase DNB (113) was found out to posses C2 symmetry. 
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Table A-13. Calculated and experimental IR and Raman frequencies of MNB 
Vib. 
No. 

approx. assignment calcd.a 
 

IR 
int.b 

Raman 
act.b  

calcd.c IR 
int.d 

Raman 
act.d 

MNB 
obs. IRe,f  

 
Ramang 

         - 
ν1 ν (NH2)  3737 124.7 62.1 3640 112.4 92.4 3433 - 
ν2 ν (N-H)  3629 103.6 65.5 3520 81.0 87.6 3291 3291 
ν3 ν (N-H)  3562 70.2 137.7 3424 107.7 166.9 3146 3233 
ν4 ν (N-H)  3560 167.0 2.3 3421 139.6 1.6 - - 
ν5 ν (C9=O)  1855 467.6 10.6 1802 387.6 14.9 1739vs - 
ν6 ν (C2=O) 1803 245.2 19.6 1741 196.3 21.4 1714mg 1714 
ν7 νasym (N7O2) 1706 324.4 2.2 1639 251.4 2.7 1630vs 1631 
ν8 δsym (N10H2) 1610 249.2 11.7 1549 256.2 14.6 1572s 1577 
ν9 in plane bend (N3-H) 1540 554.8 16.2 1478 558.8 29.1 1490m 1522 
ν10 νasym (N3-C5-N10) + ν (N4-

NO2)  
1395 128.7 13.0 1328 120.4 16.2 1431m 1425 

ν11 in plane bend (N4-H)  1385 31.1 11.1 1319 17.4 5.5 1383m - 
ν12 νsym (N7O2) 1366 424.7 2.5 1309 334.2 6.6 1335s 1352 
ν13 νasym (N3-C2-N4) + ν (N7-

O11) + in plane bend (N3-H) 
1206 268.4 1.6 1148 224.4 3.2 1200s 1194 

ν14 ρ (N4-H, C-N5H2, rocking) 1142 9.2 3.3 1103 5.7 3.9 1117w 1119 
ν15 νsym (N3-C2-N4) + � (C-

N5H2, rocking) 
1074 101.0 4.8 1018 60.3 6.8 1072w 1074 

ν16 νsym (N7-NO2) 1006 63.4 7.2 939 147.1 11.6 1015w 1011 
ν17 in plane bend (C5-N3) 951 16.0 15.0 918 11.2 19.6 956w 961 
ν18 in plane bend (C2-N4-NO2) 780 17.6 3.3 751 19.8 3.2 777w 770 
ν19 out of plane bend (N-H) 776 30.2 0.4 750 19.6 1.1 756m 758 
ν20 out of plane bend (N-H) 764 14.6 1.0 729 2.8 0.9 717w 728 
ν21 out of plane bend (N-H) 734 8.6 1.0 706 2.6 0.9  - 
ν22 δ (C5-N3-C2)  728 4.9 0.6 696 5.1 1.2 654w - 
ν23 out of plane bend (N3-H)  699 73.7 0.7 670 71.9 0.8 598m - 
ν24 ω (N10H2) 626 5.6 2.1 620 6.1 1.9 - - 
ν25 out of plane bend (N4-H) 559 35.2 0.6 550 145.9 3.2 556m - 
ν26 δ 552 150.1 2.0 533 22.9 1.1 502w 498 
ν27 δ 481 10.3 3.8 459 12.5 5.1 - 435 
ν28 δ 416 4.4 2.7 399 6.7 3.6 - 380 
ν29 δ 362 2.7 2.3 349 3.7 2.5 - - 
ν30 out of plane bend (N10H2) 338 226.5 1.8 315 212.3 2.3 - 301 
ν31 δ 289 36.5 1.6 278 34.4 2.2 - 212 
ν32 δ 151 0.6 0.3 147 0.6 0.6 - 176 
ν33 δ 133 1.0 0.9 127 1.8 0.7 - 141 
ν34 δ 94 0.1 0.3 94 0.7 0.6 - - 
ν35 δ 69 0.5 0.4 62 1.8 0.3 - - 
ν36 δ 27 0.1 0.5 44 0.2 0.7 - - 

a Calculated at Becke3LYP/6-31G(d,p); unscaled. 
b Calculated infrared intensities [km/mole] and Raman activities [Å4/amu] obtained from the Becke3LYP/6-31G(d,p). 
c Calculated at BP86/6-31G(d,p); unscaled 

d Calculated infrared intensities [km/mole] and Raman activities [Å4/amu] obtained from the BP86/6-31G(d,p). 
e Observed IR [KBr] and Raman spectra in solid state. 
f vs = 90-100%, s = 70-90%, m = 40-70%, w = 10-40%, vw <10%. 
f Shoulder 
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Table A-14. Calculated and experimental IR and Raman frequencies of DNB 
Vib. 
No. 

approx. assignment calcd.a 
 

IR 
int.b 

Raman 
act.b  

calcd.c IR 
int.d 

Raman 
act.d 

DNB  
obs. IRe,f  

 
Ramane 

          
ν1 ν (N-H)  3620 49.8 124.1 3514 41.5 162.0 3291m 3290 
ν2 ν (N-H)  3619 164.4 8.9 3513 133.0 10.4 3210m 3212 
ν3 ν (N-H)  3422 191.5 73.9 3253 167.8 107.3 3063w 3061 
ν4 ν sym(C=O) 1892 479.5 44.3 1823 386.3 57.3 1764s 1760 
ν5 ν asym (C=O) 1818 51.4 51.4 1755 68.9 0.3 - - 
ν6 νasym (NO2) 1713 7.9 7.9 1647 359.3 7.4 1630s - 
ν7 νasym (NO2) 1712 467.6 6.0 1646 6.2 1.1 1618s 1615 
ν8 in plane bend (N2-H) 1546 1457.9 13.2 1483 1406.8 12.9 1568s 1566 
ν9 in plane bend νasym 

(N7(8)-H) 
1399 7.6 3.8 1331 74.8 25.9 1484w - 

ν10 in plane bend νsym (N7(8)-
H) 

1398 46.9 1.6 1326 4.7 6.6 1464m 1465 

ν11 νsym (NO2) + νsym (C4-
N2-C3) 

1393 249.2 39.1 1325 83.0 12.1 1336m 1349 

ν12 νsym (NO2) + in plane 
bend (N-H) 

1379 99.8 1.9 1312 93.0 1.3 1318s 1325 

ν13 νsym (N2-C3(4)-N7(8)) 1275 539.6 2.7 1214 518.2 4.5 1228w 1223 
ν14 νasym (C4-N2-C3) 1143 89.9 0.8 1087 64.8 1.4 1162mg - 
ν15 νasym (C3(4)-N7(8) 1061 119.9 5.1 1012 72.7 7.6 1154m - 
ν16 νsym (N-NO2) 1048 116.5 1.9 977 84.3 2.6 1080m - 
ν17 νasym (N-NO2) 995 53.2 0.6 923 111.2 41.6 1056m 1056 
ν18 δ (C4-N2-C3) + ν sym (N-

NO2) 
978 32.4 31.7 917 136.8 1.3 990w 987 

ν19 out of plane bend (N2-H) 
+ δ (NO2) 

794 6.9 1.9 764 0.2 2.5 829vw 828 

ν20 δ (C4-N2-C3) 791 0.5 1.3 762 6.9 1.1 - - 
ν21 out of plane bend (N2-H) 785 9.3 0.2 761 17.4 1.1 - - 
ν22 δ (N-NO2)  770 19.1 5.3 735 10.3 5.8 - 762 
ν23 γ asym (N11(12))  759 0.3 0.2 719 0.8 0.2 - - 
ν24 out of plane bend (N2-H) 749 38.6 0.6 719 21.1 0.7 755w 757 
ν25 γ sym (N11(12)) 737 95.2 0.0 700 78.2 0.3 737w 733 
ν26 γ asym (N3(4)) 701 0.0 0.6 671 0.0 0.6 - - 
ν27 δ 611 97.6 0.8 586 206.0 0.4 654m - 
ν28 out of plane bend (N7(9)-

H) 
591 0.2 2.5 581 1.0 2.7 - - 

ν29 out of plane bend νasym 
(N7(9)-H) 

589 225.1 3.3 573 86.6 6.0 638m 638 

ν30 out of plane bend νsym 
(N10H2) 

450 0.1 5.8 422 0.4 9.2 - - 

ν31 δ 435 16.1 1.0 410 18.8 1.7 - 473 
ν32 δ 376 7.3 3.2 360 5.8 3.6 - - 
ν33 δ 348 4.8 2.1 334 5.1 2.7 - - 
ν34 δ 270 0.2 2.2 256 0.1 2.8 - 258 
ν35 δ 220 25.9 0-1 209 21.9 0.3 - 191 
ν36 γ sym (N2) 158 2.2 0.5 151 3.4 0.4 - 161 
ν37 δ 98 0.4 0.2 103 0.5 0.4 - - 
ν38 δ 87 0.0 0.8 86 0.1 0.6 - - 

a Calculated at Becke3LYP/6-31G(d,p); unscaled. 
b Calculated infrared intensities [km/mole] and Raman activities [Å4/amu] obtained from the Becke3LYP/6-31G(d,p). 
c Calculated at BP86/6-31G(d,p); unscaled. 
d Calculated infrared intensities [km/mole] and Raman activities [Å4/amu] obtained from the BP86/6-31G(d,p). 
e Observed IR [KBr] and Raman spectra in solid state. 
f vs = 90-100%, s = 70-90%, m = 40-70%, w = 10-40%, vw <10%. 
g Shoulder 
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
    
 13 19 21 
    
    
Formula CH4N6O3 C4H8N2 C4H16N18O 
Formula weight (g mol-1) 148.10 336.30 332.35 
Crystal system monoclinic monoclinic monoclinic 
Space group P21/c P 21/n C 2/c 
Color / habit coloress plate yellow/organg 

plate 
yellow rod 

Size 0.30 x 0.20 x 0.10 0.57 x 0.43 x 0.20 0.40 x 0.05 x 0.03 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

7.109(2) 
7.299(2) 
11.649(2)  
90.0 
96.990(3) 
90.0 

9.928(2) 
6.9088(8) 
10.026(2)  
90.0 
90.16(2) 
90.0 

19.421(4) 
3.7296(7) 
20.570(4) 
90.0 
108.14(3) 
90.0 

V, Å3 599.9(2) 687.6(2) 1415.9(5) 
Z 4 2 4 
ρcalc., g cm-3 1.640 1.624 1.559 
µ, mm-1  0.153 0.129 0.125 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 192(2) 295(2) 200(2) 
Reflection collected 3061 2357 13402 
Independent reflection 1017 1070 1617 
Rint 0.089 0.0105 0.1034 
Observed reflection 611 1052 956 
F(000) 304 344 696 
R1

a (obs) 0.0940 0.0449 0.0998 
wR2

b (all data) 0.1035 0.1167 0.1197 
Weighting schemeb  0.0388, 0.0000 0.0217, 1.8189 0.0614, 0.0000 
GooF 0.993 1.049 1.010 
No. parameters 107 110 148 
Device type Siemens P4 Nonius Mach3 Kappa CCD 
Solution  SHELXS−97 SHELXS−86 SHELXS−97 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction − psi-scan − 
CCDC − 266607 266608 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 34  35  36 
    
    
Formula C2Cs2N6 C9H24N8O C2H11N9OPd 
Formula weight (g mol-1) 373.90 260.36 283.60 
Crystal system monoclinic triclinic monoclinic 
Space group P21/n P-1 P21/n 
Color / habit colorless block colorless plate yellow parallelepipel 
Size 0.25 x 0.09 x 0.07 0.57 x 0.40 x 0.33 0.53 x 0.47 x 0.20 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

7.345(2) 
9.505(2) 
10.198(2) 
90.0 
93.12(3)) 
90.0 

7.141(2) 
9.539(2) 
12.817(4)  
72.51(2) 
85.21(2) 
67.39(2) 

7.988(2) 
8.375(2) 
13.541(3) 
90.0 
104.56(3) 
90.0 

V, Å3 710.9(2) 768.3(3) 876.8(3) 
Z 4 2 4 
ρcalc., g cm-3 3.493 1.125 2.148 
µ, mm-1  10.185 0.080 2.098 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 295(2) 295(2) 
Reflection collected 11869 2520 1846 
Independent reflection 1612 2396 1719 
Rint 0.0430 0.0080 0.0079 
Observed reflection 1524 1977 1668 
F(000) 656 284 560 
R1

a (obs) 0.0175 0.0529 0.0195 
wR2

b (all data) 0.0405 0.1104 0.0533 
Weighting schemeb  0.0107, 0.4285 0.0545, 0.2685 0.0286, 0.9463 
GooF 1.224 0.995 1.157 
No. parameters 91 170 119 
Device type Kappa CCD Nonius Mach3 Nonius Mach3 
Solution  SHELXS−97 SHELXS−86 SHELXS−97 
Refinement SHELXL−97 SHELXL−93 SHELXL−97 
Absorption correction numerical psi-scan psi-scan 
CCDC 267201 267216 267217 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 37 38  38 
    
    
Formula C2Cs2N6O5S2 NaC4H5N18*3H2O CsC2H2N9*H2O 
Formula weight (g mol-1) 518.02 382.30 303.05 
Crystal system monoclinic orthorhombic triclinic 
Space group P21 P212121 P-1 
Color / habit coloreless platelet colorless plate colorless plate 
Size 0.20 x 0.10 x 0.03 0.27 x 0.40 x 0.57 0.30 x 0.25 x 0.10 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

8.0080(2) 
8.0183(2) 
9.8986(3) 
90.0 
108.619(1) 
90.0 

6.3914(5) 
12.445(1) 
18.482(3)  
90 
90 
90 

5.477(1) 
6.992(1) 
10.917(2) 
104.61(3) 
90.91(3) 
98.02(3) 

V, Å3 602.33(3) 1470.1(3) 400.0(1) 
Z 2 4 2 
ρcalc., g cm-3 2.856 1.727 2.516 
µ, mm-1  6.417 0.168 4.607 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 293(2) 213(2) 
Reflection collected 7607 2743 1475 
Independent reflection 2752 2316 1322 
Rint 0.069 0.077 0.0128 
Observed reflection 2583 2201 1201 
F(000) 472 784 284 
R1

a (obs) 0.0287 0.0426 0.0404 
wR2

b (all data) 0.0605 0.1253 0.0978 
Weighting schemeb  0.0206, 0.000 0.0687, 0.9271 0.0814, 0.000 
GooF 1.019 1.125 1.040 
No. parameters 154 236 130 
Device type Kappa CCD Nonius Mach3 Siemens P4 
Solution  SIR97 SHELXS−93 SHELXS−97 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction numerical psi-scan SADABS 
CCDC 267200 − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 40 42 43  
    
    
Formula Li2C2HN9*5H2O Na2C2HN9*2H2O Rb2C2HN9*H2O 
Formula weight (g mol-1) 255.08 233.13 340.07 
Crystal system monoclinic monoclinic orthorhombic 
Space group P21/n P21/m Pba2 
Color / habit colorless prism coloreless platelet colorless plate 
Size 0.20 x 0.40 x 0.53 0.07 x 0.40 x 0.53 0.07 x 0.27 x 0.53 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

8.311(2) 
10.538(3) 
12.882(3) 
90 
91.89(2) 
90 

5.9316(4) 
6.480(1) 
10.807(2) 
90 
97.116(9) 
90 

24.900(3) 
9.614(1) 
3.9332(9) 
90 
90 
90 

V, Å3 1127.4 (4) 412.2(1) 941.5(3) 
Z 4 2 4 
ρcalc., g cm-3 1.502 1.878 1.727 
µ, mm-1  0.132 0.242 2.399 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 293(2) 293(2) 293(2) 
Reflection collected 1900 1500 1836 
Independent reflection 1767 712 1472 
Rint 0.004 0.008 0.0095 
Observed reflection 1550 680 1257 
F(000) 528 236 640 
R1

a (obs) 0.0447 0.0261 0.0331 
wR2

b (all data) 0.1049 0.0691 0.0682 
Weighting schemeb  0.0534, 0.6178 0.0418, 0.2070 0.0434, 0.0682 
GooF 1.098 1.064 1.001 
No. parameters 164 99 140 
Device type Nonius Mach3 Nonius Mach3 Nonius Mach3 
Solution  SHELXS−93 SHELXS−93 SHELXS−93 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction psi-scan psi-scan psi-scan 
CCDC − − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 44 45  46 
    
    
Formula Cs2C2HN9*5H2O CaC2HN9*5H2O BaC2HN9*5H2O 
Formula weight (g mol-1) 434.95 281.28 360.52 
Crystal system orthorhombic monoclinic triclinic 
Space group Pmc21 P2/n P-1 
Color / habit colorless plate colorless plate colorless plate 
Size 0.27 x 0.27 x 0.04 0.10 x 0.27 x 0.53 0.10 x 0.27 x 0.33 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

4.119(2) 
12.378(2) 
10.065(2) 
90 
90 
90 

11.809(1) 
6.964(1) 
13.572(2) 
90 
101.08 
90 

6.7410(9) 
9.084(1) 
9.488(7) 
97.702(9) 
103.514(8) 
108.19(1) 

V, Å3 513.2(3) 1095.3(3) 518.7(1) 
Z 2 4 2 
ρcalc., g cm-3 2.815 1.706 2.308 
µ, mm-1  7.092 0.606 3.850 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 293(2) 293(2) 293(2) 
Reflection collected 1218 1805 1937 
Independent reflection 1148 1773 1817 
Rint 0.0241 0.0093 0.0064 
Observed reflection 1141 1489 1795 
F(000) 392 584 344 
R1

a (obs) 0.0348 0.0392 0.0125 
wR2

b (all data) 0.0908 0.0964 0.0350 
Weighting schemeb  0.0785, 0.3568 0.0496, 1.3286 0.0198, 0.5474 
GooF 1.088 1.024 1.085 
No. parameters 186 156 171 
Device type Nonius Mach3 Nonius Mach3 Nonius Mach3 
Solution  SHELXS−93 SHELXS−93 SHELXS−93 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction psi-scan psi-scan psi-scan 
CCDC − − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 47 48  50 
    
    
Formula CuC2H7N11 CuC2H9N11O CuC2H5N9Cl2O*5H2O 
Formula weight (g mol-1) 248.70 266.71 341.62 
Crystal system monoclinic monoclinic triclinic 
Space group P21/n P21/c P-1 
Color / habit blue rods blue prism blue stick 
Size 0.25 x 0.10 x 0.06 0.30 x 0.25 x 0.15 0.57 x 0.33 x 0.27 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

6.3778(5) 
9.1886(7) 
14.2064(9)  
90 
93.633(8) 
90 

7.596(2) 
13.056(3) 
9.170(2) 
90 
94.20(3) 
90 

7.2027(8) 
8.289(3) 
9.998(2) 
79.47(2) 
78.948(8) 
82.097(1) 

V, Å3 830.9(1) 907.0(3) 573.1(2) 
Z 4 4 2 
ρcalc., g cm-3 1.9882 1.953 1.980 
µ, mm-1  2.611 2.407 2.387 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 213(2) 295(2) 
Reflection collected 6667 4087 2490 
Independent reflection 1992 1741 2322 
Rint 0.0395 0.00234 0.0152 
Observed reflection 1595 1557 2183 
F(000) 500 540 342 
R1

a (obs) 0.0241 0.0294 0.0235 
wR2

b (all data) 0.0561 0.0695 0.0615 
Weighting schemeb  0.0339, 0.0000 0.0436, 0.3853 0.0302, 0.3383 
GooF 0.950 1.058 1.130 
No. parameters 155 172 166 
Device type STOE IPDS Siemens P4 Nonius Mach3 
Solution  SIR97 SHELXS−97 SHELXS−93 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction numerical SADABS psi-scan 
CCDC 269320 269321 − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 51 52  53 
    
    
Formula CuC4H6N18Cl2 CuC4H6N18Cl2*2H2O CuC4H8N18Cl2O9 
Formula weight (g mol-1) 440.71 447.74 586.72 
Crystal system triclinic monoclinic triclinic 
Space group P-1 P21/n P-1 
Color / habit blue plate pale-blue  plate blue platelet 
Size 0.30 x 0.27 x 0.10 0.27 x 0.20 x 0.07 0.47 x 0.37 x 0.23 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

7.561(1) 
10.612(2) 
11.299(2)  
115.88(2) 
96.806(1) 
106.82(2) 

9.749(3) 
6.822(4) 
12.347(5) 
90 
96.83(3) 
90 

7.620(2) 
11.930(2) 
12.076(2) 
113.39(3) 
103.27(3) 
103.33(3) 

V, Å3 748.5(2) 815.3(6) 914.9(5) 
Z 2 2 2 
ρcalc., g cm-3 1.9955 1.942 2.130 
µ, mm-1  1.854 1.719 1.581 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 295(2) 295(2) 295(2) 
Reflection collected 2477 1336 3828 
Independent reflection 2342 1273 3543 
Rint 0.0085 0.0430 0.0095 
Observed reflection 2178 1118 3267 
F(000) 438 478 586 
R1

a (obs) 0.0252 0.0392 0.0426 
wR2

b (all data) 0.0589 0.0318 0.0394 
Weighting schemeb  0.0275, 0.6072 0.00391, 1.2099 0.0621, 1.2531 
GooF 1.063 1.115 1.046 
No. parameters 226 124 356 
Device type STOE IPDS Nonius Mach3 Nonius Mach3 
Solution  SHELXS−93 SHELXS−93 SHELXS−93 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction psi-scan psi-scan psi-scan 
CCDC − − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 54 59a  59b 
    
    
Formula CoC6H8N27Cl2 CH5N6

+NO3
- CH5N6

+ClO4
- 

Formula weight (g mol-1) 588.22 163.12 200.56 
Crystal system tetragonal monoclinic monoclinic 
Space group I-4 C2/c P21/n 
Color / habit red rhomb colorless plate colorless rhomb 
Size 0.16 x 0.28 x 0.45 0.53 x 0.47 x 0.20 0.30 x 0.30 x 0.20 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

10.4773(6) 
10.4773(6) 
17.9842(11) 
90 
90 
90 

17.898(3) 
5.2292(8) 
14.479(2) 
90 
112.23(1) 
90 

9.063(3) 
5.013(1) 
15.659(4) 
90 
100.022(5) 
90 

V, Å3 1974.2(2) 1254.5(3) 700.5(4) 
Z 4 8 4 
ρcalc., g cm-3 1.979 1.727 1.902 
µ, mm-1  1.209 0.159 0.537 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 293(2) 193(2) 
Reflection collected 8608 1027 3744 
Independent reflection 2374 981 1447 
Rint 0.047 0.015 0.0731 
Observed reflection 2225 900 1225 
F(000) 1176 672 408 
R1

a (obs) 0.0248 0.0346 0.0466 
wR2

b (all data) 0.0539 0.0861 0.1061 
Weighting schemeb  0.0315, 0.0000 0.00446, 1.452 0.0598, 0.1484 
GooF 1.020 1.050 1.068 
No. parameters 176 101 129 
Device type Kappa CCD Nonius Mach3 Siemens P4 
Solution  SHELXL−97 SHELXS−86 SHELXS−97 
Refinement SHELXL−97 SHELXL−93 SHELXL−97 
Absorption correction − psi-scan SADABS 
CCDC − 261253 261252 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 61a 61b  61c 
    
    
Formula C2H7N6

+I- C2H7N6
+NO3

- CH5N6
+N(NO2)4

- 
Formula weight (g mol-1) 227.12 163.12 221.17 
Crystal system orthorhombic orthorhombic orthorhombic 
Space group Pna21 Fdd2 P212121 
Color / habit colorless prism colorless plate colorless block 
Size 0.20 x 0.20 x 0.10 0.40 x 0.20 x 0.10 0.23 x 0.15 x 0.05 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

8.9104(9) 
16.506(2) 
5.4554(6) 
90 
90 
90 

18.547(2) 
30.709(8) 
5.4554(2) 
90 
90 
90 

5.2632(2) 
12.3766(5) 
13.1225(6) 
90 
90 
90 

V, Å3 802.35(2) 3125.8(5) 854.81(6) 
Z 4 16 4 
ρcalc., g cm-3 1.880 1.506 1.719 
µ, mm-1  3.910 0.134 0.156 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 213(2) 200(2) 
Reflection collected 4473 4017 8108 
Independent reflection 1612 1230 1513 
Rint 0.0549 0.0861 0.067 
Observed reflection 1104 983 1192 
F(000) 452 1472 456 
R1

a (obs) 0.0488 0.0587 0.0363 
wR2

b (all data) 0.0740 0.1176 0.0888 
Weighting schemeb  0.0430, 0.000 0.0736, 0.000 0.0510, 0.000 
GooF 0.868 1.050 1.020 
No. parameters 93 137 129 
Device type Siemens P4 Siemens P4 Kappa CCD 
Solution  SHELXS−97 SHELXS−97 SIR97 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction SADABS SADABS − 
CCDC 261254 261255 258034 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 61d 88a 88b 
    
    
Formula C2H7N6

+N3
- C2H6N6*H2O C3H8N6 

Formula weight (g mol-1) 157.17 132.14 128.14 
Crystal system orthorhombic monoclinic orthorhombic 
Space group Pna21 P21/c Pbca 
Color / habit colorless rod colorless plate colorless block 
Size 0.26 x 0.05 x 0.02 0.20 x 0.43 x 0.57 0.11 x 0.15 x 0.18 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

7.815(2) 
17.913(4) 
5.262(1) 
90 
90 
90 

6.2614(6) 
13.655(2) 
7.063(1) 
90 
98.662(9) 
90 

11.4361(3) 
7.4653(2) 
14.5448(4) 
90 
90 
90 

V, Å3 736.7(3) 597.0(1) 1241.75(6) 
Z 4 4 8 
ρcalc., g cm-3 1.417 1.470 1.371 
µ, mm-1  0.111 0.119 0.101 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 293(2) 200(2) 
Reflection collected 6387 2302 9213 
Independent reflection 1157 1048 1098 
Rint 0.1045 0.0262 0.046 
Observed reflection 705 916 862 
F(000) 328 280 544 
R1

a (obs) 0.1172 0.0439 0.0369 
wR2

b (all data) 0.1290 0.1233 0.0927 
Weighting schemeb  0.0504, 0.0000 0.0693, 01.779 0.0440, 0.2661 
GooF 0.976 1.098 1.060 
No. parameters 113 81 115 
Device type STOE IPDS Nonius Mach3 Kappa CCD 
Solution  SHELXL−97 SHELXS−86 SIR97 
Refinement SHELXL−97 SHELXL−93 SHELXL−97 
Absorption correction numerical psi-scan numerical 
CCDC 261459 − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0
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0

2
cc FFPyPxPFw −=++=

−
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 105a 106a 84d 
    
    
Formula C2H6N5

+Br- C2H6N5 C16H28N12 
Formula weight (g mol-1) 180.03 99.11 388.50 
Crystal system monoclinic monoclinic monoclinic 
Space group P21/n P21/n P21/n 
Color / habit colorless plate colorless plate colorless rod 
Size 0.20 x 0.20 x 0.10 0.20 x 0.40 x 0.57 0.22 x 0.05 x 0.03 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

5.5296(7) 
8.929(1) 
12.849(2) 
90 
102.069(9) 
90 

4.948(1) 
13.737(5) 
6.912(1) 
90 
108.73(2) 
90 

5.442(1) 
12.598(3) 
14.262(3) 
90 
94.89(2) 
90 

V, Å3 620.3(1) 445.0(2) 974.2(3) 
Z 4 4 2 
ρcalc., g cm-3 1.928 1.479 1.324 
µ, mm-1  6.529 0.112 0.090 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 193(2) 293(2) 292(2) 
Reflection collected 2700 757 10917 
Independent reflection 850 698 1714 
Rint 0.0331 0.0293 0.1497 
Observed reflection 679 534 783 
F(000) 352 208 416 
R1

a (obs) 0.0495 0.0644 0.0969 
wR2

b (all data) 0.1100 0.1383 0.1676 
Weighting schemeb  0.0896, 0.000 0.0811, 0.1448 0.0310, 0.0000 
GooF 0.957 1.084 0.891 
No. parameters 77 66 184 
Device type Siemens P4 Nonius Mach3 Kappa CCD 
Solution  SHELXS−97 SHELXS−86 SHELXL−97 
Refinement SHELXL−97 SHELXL−93 SHELXL−97 
Absorption correction SADABS psi-scan numerical 
CCDC − − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0
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0

2
cc FFPyPxPFw −=++=

−
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 104 109a 109b 
    
    
Formula K2C4H6N12*3H2O C4H7N5 C3H5N5 
Formula weight (g mol-1) 354.46 113.12 111.12 
Crystal system monoclinic orthorhombic monoclinic 
Space group C2/c Pbca P21/n 
Color / habit colorless rods colorless rods Yellow plate 
Size 0.27 x 0.33 x 0.57 0.20 x 0.06 x 0.06 0.53 X 0.47 x 0.27 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

18.756(5) 
10.248(2) 
7.2643(2) 
90 
90.02(3) 
90 

9.9999(4) 
7.6682(3) 
14.192(5) 
90 
90 
90 

7.4471(9) 
6.8100(6) 
10.200(1) 
90 
110.613(9) 
90 

V, Å3 1396.3(6) 1088.24(7) 484.19(9) 
Z 4 8 4 
ρcalc., g cm-3 1.686 1.381 1.524 
µ, mm-1  0.712 0.101 0.122 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 293(2) 200(2) 295(2) 
Reflection collected 1138 10739 897 
Independent reflection 1102 1240 847 
Rint 0.0196 0.0655 0.0029 
Observed reflection 1055 822 749 
F(000) 728 480 232 
R1

a (obs) 0.0263 0.0861 0.0417 
wR2

b (all data) 0.0709 0.1477 0.1023 
Weighting schemeb  0.0392, 0.0000 0.0921, 0.0260 0.0507, 0.1298 
GooF 1.030 1.030 1.097 
No. parameters 96 101 78 
Device type Nonius Mach3 Kappa CCD Nonius Mach3 
Solution  SHELXS−86 SHELXL−97 SHELXS−86 
Refinement SHELXL−93 SHELXL−97 SHELXL−93 
Absorption correction psi-scan numerical psi-scan 
CCDC − 269259 269260 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0
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0

2
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−
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 111a 111c 112a 
    
    
Formula C4H6N6O C3H4N6O C4H6N6O2 
Formula weight (g mol-1) 142.14 140.10 158.12 
Crystal system monoclinic monoclinic orthorhombic 
Space group P21/c P21/c Pbca 
Color / habit colorless plates colorless plate colorless plate 
Size 0.53 x 0.37 x 0.20 0.20 x 0.35 x 0.13 0.24 X 0.10 x 0.04 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

14.045(2) 
5.788(2) 
8.231(5) 
90 
102.28(2) 
90 

6.0853(2) 
8.1184(3) 
11.6028(4) 
90 
99.647(2) 
90 

5.9553(4) 
13.284(1) 
17.444(2) 
90 
90 
90 

V, Å3 653.8(3) 565.11(3) 1380.0(2) 
Z 4 4 8 
ρcalc., g cm-3 1.444 1.647 1.522 
µ, mm-1  0.115 0.132 0.128 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 295(2) 200(2) 200(2) 
Reflection collected 1107 8273 6175 
Independent reflection 1023 1289 1199 
Rint 0.0213 0.0338 0.0508 
Observed reflection 854 1089 1486 
F(000) 296 288 456 
R1

a (obs) 0.0566 0.0505 0.0735 
wR2

b (all data) 0.1221 0.1170 0.0943 
Weighting schemeb  0.0630, 0.2299 0.0734, 0.0931 0.0534, 0.0000 
GooF 1.042 1.057 0.878 
No. parameters 93 108 124 
Device type Nonius Mach3 Kappa CCD Kappa CCD 
Solution  SHELXS−86 SIR97 SIR97 
Refinement SHELXL−93 SHELXL−97 SHELXL−97 
Absorption correction psi-scan numerical numerical 
CCDC 269261 269262 269263 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0
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0

2
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−
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 112b 112c 113 
    
    
Formula C7H14N6O2 C3H4N6O2 C2H4N4O4 
Formula weight (g mol-1) 214.23 156.12 148.08 
Crystal system monoclinic monoclinic monoclinic 
Space group P21/n P21/c P21/c 
Color / habit colorless plates colorless plate colorless plates 
Size 0.42 x 0.14 x 0.04 0.20 x 0.47 x 0.53 0.23 x 0.10 x 0.04 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

8.609(1) 
12.5135(9) 
10.579(1) 
90 
106.90(1) 
90 

6.2083(8) 
8.683(1) 
11.651(2) 
90 
102.31(1) 
90 

16.6440(8) 
10.5023(5) 
6.3862(4) 
90 
106.353(2) 
90 

V, Å3 1090.5(2) 613.7(2) 1071.2(1) 
Z 4 4 8 
ρcalc., g cm-3 1.305 1.690 1.837(2) 
µ, mm-1  0.100 0.143 0.175 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 295(2) 200(2) 
Reflection collected 9229 1049 12484 
Independent reflection 2544 953 2343 
Rint 0.0508 0.0100 0.0529 
Observed reflection 1486 753 1951 
F(000) 456 320 608 
R1

a (obs) 0.0837 0.0711 0.0594 
wR2

b (all data) 0.0976 0.1384 0.1006 
Weighting schemeb  0.0522, 0.0000 0.0463, 0.8519 0.0463, 0.5709 
GooF 0.877 1.041 1.093 
No. parameters 192 100 212 
Device type STOE IPDS Nonius Mach3 Kappa CCD 
Solution  SIR97 SHELXS−86 SIR97 
Refinement SHELXL−97 SHELXL−93 SHELXL−97 
Absorption correction numerical psi-scan numerical 
CCDC 269264 269265 − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
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0

2
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−
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
    
 114 114a 117 
    
    
Formula C2H3N5O6*H2O C2H3N5O6 K2C2HN5O6*H2O 
Formula weight (g mol-1) 211.09 193.08 287.27 
Crystal system monoclinic orthorhombic triclinic 
Space group I2/a P212121 P-1 
Color / habit colorless plates colorless block colorless prism 
Size 0.29 x 0.08 x 0.03 0.40 x 0.15 x 0.10 0.07 x 0.11 x 0.17 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

16.516(2) 
4.5873(3) 
20.657(2) 
90 
105.44(1) 
90 

4.6497(9) 
9.805(2) 
13.990(3) 
90 
90 
90 

6.8514(2) 
6.8965(2) 
10.5849(4) 
105.713(1) 
106.048(1) 
97.328(1) 

V, Å3 1508.6(3) 637.8(2) 451.48(3) 
Z 8 4 2 
ρcalc., g cm-3 1.859(4) 2.011 2.113(2) 
µ, mm-1  0.186 0.199 1.085 
λMoKα Å 0.71073 0.71073 0.71073 
T, K 200(2) 213(2) 200(2) 
Reflection collected 5094 2945 6794 
Independent reflection 1775 1512 2038 
Rint 0.0463 0.0526 0.037 
Observed reflection 1085 793 1720 
F(000) 864 392 288 
R1

a (obs) 0.0753 0.0457 0.0381 
wR2

b (all data) 0.0811 0.0833 0.0644 
Weighting schemeb  0.0415, 0.0000 0.0305, 0.0000 0.0161, 0.1785 
GooF 0.852 0.852 1.077 
No. parameters 147 130 157 
Device type STOE IPDS Siemens P4 Kappa CCD 
Solution  SHELXL−97 SHELXS−97 SIR97 
Refinement SHELXL−97 SHELXL−97 SHELXL−97 
Absorption correction numerical SADABS numerical 
CCDC − − − 
    

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= , where ( ) ( )[ ] ( ) 3/2, 22
0
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0

2
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−
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A P P E N D I X  B  

CRYSTAL DATA 

 
 
 
  
 34 (Sachstands- 
        bericht) 
  
Formula C5H11N9O6 
Formula weight (g mol-1) 293.23 
Crystal system triclinic 
Space group P-1 
Color / habit colorless plates 
Size 0.05 x 0.18 x 0.25 
a, Å 
b, Å 
c, Å 
a,deg. 
β,deg. 
y,deg. 

6.4156(3) 
9.6462(5) 
11.2536(8) 
112.136(2) 
105.175(2) 
91.8209(2) 

V, Å3 615.95(6) 
Z 2 
ρcalc., g cm-3 1.581(3) 
µ, mm-1  0.141 
λMoKα Å 0.71073 
T, K 200(2) 
Reflection collected 6737 
Independent reflection 2119 
Rint 0.043 
Observed reflection 1415 
F(000) 304 
R1

a (obs) 0.0780 
wR2

b (all data) 0.1177 
Weighting schemeb  0.00609, 0.0000 
GooF 1.035 
No. parameters 231 
Device type STOE IPDS 
Solution  SHELXL−97 
Refinement SHELXL−97 
Absorption correction numerical 
CCDC − 
  

a
./ 001 ∑∑ −= FFFR c
 b ( ) ( )[ ] 2/12

0
222

02 ][/][ FwFFwwR c ∑∑ −= ,  

where ( ) ( )[ ] ( ) 3/2, 22
0

122
0

2
cc FFPyPxPFw −=++=

−
σ  
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