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Prüfungskommission:
Prof. Dr. Fabien Morel, LMU (1. Berichterstatter)
Prof. Anthony Bak, PhD, Universität Bielefeld (2. Berichterstatter)
Prof. Dr. Hans-Jürgen Schneider, LMU
Prof. Dr. Otto Forster, LMU
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ZUSAMMENFASSUNG
Das Hauptthema dieser Arbeit sind lineare algebraische Gruppen G, pro-

jektiveG-homogene Varietäten (getwistete Flaggenvarietäten) und deren Chow
Motive mit Z-Koeffizienten. Wir untersuchen das Zerlegungsverhalten der
Objekten dieser Kategorie und interessieren uns insbesondere für die Frage
unter welchen Umständen zwei Objekte dieser Kategorie isomorph sind. Von
besonderer Bedeutung sind für uns die Zerlegungen der Ausnahmevarietäten,
wobei die verallgemeinerten Rost Motive auftreten. Mittels dieser Zerlegun-
gen untersuchen wir u.a. die Chow Gruppen dieser Varietäten.

Eine der wichtigsten Hilfsmittel in den Beweisen von unseren Resultate
sind Hasse Diagramme. Diese Diagramme erlauben es das Rechnen in den
Chow Ringen von projektiven homogenen Varietäten zu visualisieren und er-
wiesen sich dadurch als ein effizientes Instrument in der Theorie der Chow
Motive. Eine wichtige Rolle spielen auch die Zerlegungseigenschaften der ein-
fachen algebraischen Gruppen, deren Tits Algebren, sowie Rost’s Nilpoten-
zsatz.

****
Die wichtigsten und die interessantesten Ergebnisse sind die Folgenden:

Theorem. Das Krull-Schmidt Theorem gilt nicht in der Kategorie der Chow
Motive M(PGL1(A),Z), wobei A eine zentral einfache Algebra vom Grad 5
ist.

Theorem. Seien X und Y zwei nicht isomorphe getwistete Flaggenvarietäten
von der Dimension kleiner oder gleich 5 vom inneren Typ über einem Körper
k der Charakteristik ungleich 2, dessen Chow Motive isomorph sind.

1. Angenommen es ist Xs := X ×k ks ' Ys := Y ×k ks. Dann gilt:
Entweder

(a) X ' SB(A) und Y ' SB(Aop) sind Severi-Brauer Varietäten, die
einer zentral einfachen Algebra A und ihrer Opposite-Algebra Aop

entsprechen, wobei deg(A) = 3, 4, 5, 6 und exp(A) > 2, oder

(b) X ' SB2,3(A) und Y ' SB2,3(A
op), wobei die zentral einfache

Algebra A den Grad 4 und den Exponenten 4 hat.

2. Angenommen es ist Xs 6' Ys. Dann gilt: Entweder

(a) X ' Pn und Y ' Qn für ungerade 1 < n ≤ 5, oder
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(b) X ' SB1,3(A) und Y ' SB2,3(A
′), wobei deg(A) = 4 und A ' A′

oder A′op, oder

(c) X ' ξ(G/P1) und Y ' ξ(G/P2) sind die getwisteten Formen von
den Varietäten G/Pi, i = 1, 2, wobei G eine Ausnahmegruppe
vom Typ G2 ist und die Pi eine ihrer maximalen parabolischen
Untergruppen sind, oder

(d) X ' G2/P2 und Y ' P5.

Theorem. Sei k ein Körper der Charakteristik ungleich 2 und 3. Sei X
eine projektive G-homogene Varietät über k, wobei G eine anisotrope Gruppe
vom Typ F4 ist, die aus der 1. Tits-Konstruktion hervorgeht. Angenommen,
dass über einem separablen Abschluß X zu Gs/P isomorph ist, wobei P die
maximale parabolische Untergruppe ist, die den ersten (letzten) drei Ecken
des Dynkin Diagramms F4 entspricht. Dann gilt die folgende Zerlegung des
Chow Motivs von X mit Z-Koeffizienten

M(X) ∼= ⊕7
i=0R(i),

wobei das Motiv R = (X, p) ein verallgemeinertes Rost Motiv mit Z-Koeffizienten
ist, d.h. dass es sich über einem separablen Abschluß ks von k als die direkte
Summe von Lefschetz Motiven Z⊕ Z(4)⊕ Z(8) darstellen lässt.

Theorem. Angennomen wir sind in der Situation des letzten Theorems.
Seien X1 und X2 zwei projektive homogene Varietäten, die den ersten drei
bzw. den letzten drei Ecken des Dynkin Diagramms entsprechen. Dann sind
die Motive von X1 und X2 isomorph.

Theorem. Sei G eine anisotrope Gruppe vom Typ F4, die mit Hilfe der
1. Tits-Konstruktion entstand. Sei X eine projektive homogene Varietät,
die über einem algebraischen Abschluß zu Gs/P4 isomorph ist, wobei P4 die
parabolische Untegruppe von Gs ist, die den ersten drei Ecken des Dynkin
Diagramms F4 entspricht. Dann hat die Gruppe CH∗(X) Torsion in der
Kodimension 13 (Dimension 2).

Theorem. Seien A eine zentral einfache Algebra vom Grad 3 über einem
Körper k, c ∈ k∗, und D = D(A, c) eine Varietät, die durch Galois Abstieg
von der Varietät

{α⊕ β ∈ (A⊕ A)s | rk(α⊕ β) = 3, Nrd(α) = cNrd(β)}/GL1(As),
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entstanden ist, wobei GL1(As) auf As ⊕ As durch die Linksmultiplikation
wirkt. Dann gilt

M(D) ' R⊕ (⊕5
i=1R

′(i)),

wobei R ein Motiv ist, das über einem algebraischen Abschluß zu Z⊕Z(4)⊕
Z(8) isomorph ist und R′ 'M(SB(A)).
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SUMMARY
The main topic of our investigations are linear algebraic groups G, projec-

tive G-homogeneous varieties (twisted flag varieties), and their Chow motives
with Z-coefficients. We investigate decompositions and isomorphism criteria
in this category. Of particular impotance are for us the motivic decompo-
sitions of exceptional varieties, where the generalized Rost motives appear.
Using these decompositions we investigate the Chow groups of these varieties.

One of the main ingredients of the proof of our results is the usage of
Hasse diagrams. These diagrams allow visualizing of the calculations in the
Chow rings of projective homogeneous varieties and turn out to be a very
efficient tool in the theory of Chow motives. Further important ingredients
of the proofs are the splitting properties of simple algebraic groups, their Tits
algebras, and the Rost nilpotence theorem.

****
The most important and interesting results are the following ones:

Theorem. The Krull-Schmidt theorem fails in the category of Chow motives
M(PGL1(A),Z), where A is a central simple division algebra of degree 5.

Theorem. Let X and Y be non-isomorphic twisted flag varieties of dimen-
sion less than or equal to 5 of inner type over a field k of characteristic not
2, which have isomorphic Chow motives.

1. If Xs := X ×k ks ' Ys := Y ×k ks, then either

(a) X ' SB(A) and Y ' SB(Aop) are Severi-Brauer varieties corre-
sponding to a central simple algebra A and its opposite Aop, where
deg(A) = 3, 4, 5, 6 and exp(A) > 2, or

(b) X ' SB2,3(A) and Y ' SB2,3(A
op), where the central simple alge-

bra A has degree 4 and exponent 4.

2. If Xs 6' Ys, then either

(a) X ' Pn and Y ' Qn for odd 1 < n ≤ 5, or

(b) X ' SB1,3(A) and Y ' SB2,3(A
′), where deg(A) = 4 and A '

A′, A′op, or

(c) X ' ξ(G/P1) and Y ' ξ(G/P2) are the twisted forms of the variety
G/Pi, i = 1, 2, where G is an exceptional group of type G2 and Pi

is one of its maximal parabolic subgroups, or
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(d) X ' G2/P2 and Y ' P5.

Theorem. Let k be a field of characteristic different from 2 and 3. Let X be
a projective G-homogeneous variety over k, where G is an anisotropic group
of type F4 obtained by the first Tits process, such that over a separable closure
it becomes isomorphic to Gs/P , where P is the maximal parabolic subgroup
corresponding to the first (last) three vertices of the respective Dynkin dia-
gram. Then the (integral) Chow motive of X decomposes as

M(X) ∼= ⊕7
i=0R(i),

where the motive R = (X, p) is the (integral) generalized Rost motive, i.e.,
over a separable closure ks of k it splits as the direct sum of Lefschetz motives
Z⊕ Z(4)⊕ Z(8).

Theorem. Under the hypotheses of the previous theorem let X1 and X2 be
two projective homogeneous varieties corresponding to the maximal parabolic
subgroups generated by the last (first) three vertices of the Dynkin diagram
respectively. Then the motives of X1 and X2 are isomorphic.

Theorem. Let G be an anisotropic group of type F4 of the 1st Tits process.
Consider the projective homogeneous variety X such that over a separable
closure it becomes isomorphic to Gs/P4, where P4 is the standard parabolic
subgroup of Gs, corresponding to the first three vertices of the Dynkin diagram
F4 (we follow the enumeration of Bourbaki). Then the group CH∗(X) has
torsion in codimension 13 (dimension 2).

Theorem. Let A denote a central simple algebra of degree 3 over a field k,
c ∈ k∗, and D = D(A, c) denote a variety obtained by Galois descent from
the variety

{α⊕ β ∈ (A⊕ A)s | rk(α⊕ β) = 3, Nrd(α) = cNrd(β)}/GL1(As),

where GL1(As) acts on As ⊕ As by the left multiplication. Then

M(D) ' R⊕ (⊕5
i=1R

′(i)),

where R is a motive such that over a separably closed field it becomes iso-
morphic to Z⊕ Z(4)⊕ Z(8) and R′ 'M(SB(A)).
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1 Introduction

The present thesis is devoted to study of projective homogeneous varieties
and their Chow motives.

One of the motivations for this problem is the recent progress achieved
in proving celebrated conjectures relating Galois cohomology and Milnor K-
theory. Namely, Milnor’s conjecture was proven and proofs of the Bloch-Kato
conjecture were proposed by Voevodsky, Rost, and Suslin in the series of pa-
pers ([SV96], [Ro98], [SV99], [FSV00], [Vo01], [Vo03]). One of the main
ingredients of those proofs are norm varieties and their motivic decomposi-
tions. Observe that the general construction of norm varieties provided by
Rost is very implicit as well as their motivic decompositions. An attempt to
describe explicitely some norm varieties and their motivic decompositions is
made in the thesis (see Chapters 5, 7 and 9).

The text is organized as follows. Chapter 2 describes background infor-
mation on motivic categories and Chow rings. In Chapter 3 we introduce the
notion of a Hasse diagram and explain its connection with Chow rings. We
also translate the result of [CGM] about a decomposition of the motive of
an isotropic projective homogeneous variety into this framework. Chapter 4
deals with motivic isomorphisms in the category of projective homogeneous
varieties in the completely split case. The result of this Chapter was obtained
in the seminar “Motivic decompositions of projective homogeneous varieties”
taken place in Bielefeld University, 2004. I use it in Chapter 6, so I decided
to put it into my thesis.

The main purpose of Chapter 5 is to express the Chow motive of a twisted
flag variety in terms of motives of “minimal” flags, i.e., those G-homogeneous
varieties that correspond to maximal parabolic subgroups of G. As a by-
product, a counter-example to the uniqueness of a direct sum decomposition
in the category of Chow motives with integral coefficients is provided. The
results of this Chapter are joint work with B. Calmès, V. Petrov, and K. Zain-
oulline.

Chapter 6 can be viewed as a further application of the methods and
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results obtained by N. Karpenko [Ka00]. Namely, we give a complete classi-
fication of motivic isomorphisms of projective homogeneous varieties of inner
type of dimension up to 5. In this Chapter the results of the previous one play
a crucial role. The results of this Chapter is a joint work with K. Zainoulline.

In Chapter 7 we provide a shortened and explicit construction of a gen-
eralized Rost motive for a norm variety that corresponds to a symbol (3, 3).
By the next result, we provide the first known “purely exceptional” example
of two non-isomorphic varieties with isomorphic motives. The results of this
Chapter is a joint work with S. Nikolenko and K. Zainoulline.

In Chapter 8 we investigate the torsion part of the Chow group of some
F4-variety. We find a torsion element using motivic decomposition of the
previous Chapter.

The last Chapter is devoted to certain twisted forms of a smooth hyper-
plane section of Gr(3, 6). These varieties have a lot of interesting geometrical
properties. We provide a complete decomposition of the Chow motives of
these varieties.

The present thesis is a very natural continuation of the celebrated papers
of O. Izhboldin, N. Karpenko, A. Merkurjev, M. Rost, A. Vishik and others
(see references).
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of the present thesis.

2 Category of Chow motives

2.1 Preliminaries

In the present section, we introduce the category of Chow motives following
[Ma68]. We formulate and prove the Grassmann Bundle Theorem. At the
end we recall the notion of a functor of points following [Ka01, section 8] and
provide some examples.

2.1 (Chow motives). Let k be a field and Vark be the category of smooth pro-
jective varieties over k. We define the category Cork of correspondences over
k. Its objects are smooth projective varieties over k. As morphisms, called
correspondences, we set Mor(X, Y ) :=

∐n
l=1 CHdl

(Xl×Y ), where X1, . . . , Xn

are the irreducible components of X of dimensions d1, . . . , dn. For any two
correspondences α ∈ CH(X × Y ) and β ∈ CH(Y × Z) we define the compo-
sition β ◦ α ∈ CH(X × Z)

β ◦ α = pr13∗(pr∗12(α) · pr∗23(β)),

where prij denotes the projection on the i-th and j-th factors of X × Y × Z
respectively and prij∗, pr∗ij denote the induced push-forwards and pull-backs
for Chow groups. Observe that the composition ◦ induces the ring structure
on the abelian group EndM(X). The unit element of this ring is the class of
the diagonal ∆X .

The pseudo-abelian completion of Cork is called the category of Chow
motives and is denoted by Mk. The objects of Mk are pairs (X, p), where
X is a smooth projective variety and p ∈ Mor(X,X) is a projector, that is,
p ◦ p = p. The motive (X,∆X) will be denoted by M(X).

2.2. By construction, Mk is a tensor additive category, where the tensor
product is given by the usual product (X, p) ⊗ (Y, q) = (X × Y, p × q). For
any cycle α we denote by αt the corresponding transposed cycle. Moreover,
the Chow functor CH: Vark → Z-Ab (to the category of Z-graded abelian
groups) factors through Mk, i.e., one has the commutative diagram of func-
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tors
Vark

CH //

Γ ##GGGGGGGG Z-Ab

Mk

r

;;wwwwwwwww

where Γ: f 7→ Γf is the graph and r : (X, p) 7→ Im(p?) is the realization.

2.3. Consider the morphism (e, id) : {pt} × P1 → P1 × P1. The image by
means of the induced push-forward (e, id)∗(1) doesn’t depend on the choice
of a point e : {pt} → P1 and defines a projector in CH1(P1 × P1) denoted by
p1. The motive Z(1) := L := (P1, p1) is called the Lefschetz motive. For a
motive M and a nonnegative integer i we denote by M(i) = M ⊗ L⊗i its
twist.

We will extensively use the following fact that easily follows from Manin’s
Identity Principle [Ma68, p. 450] and the Grassmann Bundle Theorem for
Chow groups [Ful].

2.4 Proposition (Grassmann Bundle Theorem). Let X be a variety over k
and E be a vector bundle over X of rank n. Then the motive of the Grassmann
bundle Gr(d, E) over X is isomorphic to

M(Gr(d, E)) '
⊕

λ

M(X)(d(n− d)− |λ|),

where the sum is taken over all partitions λ = (λ1, . . . , λd) such that n− d ≥
λ1 ≥ . . . ≥ λd ≥ 0.

Proof. We follow the notation of [Ma68]. Denote Gr(d, E) by Y and the
canonical projection of Y to X by ψ. It is known (see [Ful, Prop. 14.6.5])
that CH∗(Y ) as CH∗(X)-module (via ψ∗) has a basis consisting of elements
∆λ ∈ CH|λ|(Y ) parameterized by partitions λ. For any partition λ denote
by λop the partition defined by λop

i = n − d − λd+1−i. Then for every two
partitions λ and µ with |λ| + |µ| ≤ d(n − d) and any element a ∈ CH∗(X)
the following duality formula holds (see [Ful, Prop. 14.6.3]):

ψ∗(∆λ∆µψ
∗(a)) =

{
a, µ = λop,

0, otherwise.
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For every partition λ, we define an element fλ of End(M(Y )) inductively.
For the unique partition λmax with |λmax| = d(n−d) set fλmax = c(ψ)◦ c(ψ)t.
Now, by the decreasing induction on |λ|, set

fλ = fλmax ◦ c∆λop ◦ (∆Y −
∑
|µ|>|λ|

c∆µ ◦ fµ).

Finally, set pλ = c∆λ
◦ fλ.

Now, the duality formula implies that

(pλ)e(
∑

µ

∆µψ
∗(aµ)) = ∆λψ

∗(aλ).

Therefore, by Manin’s identity principle, the pλ form a complete orthogonal
system of projectors. The identification of their images with twisted motives
of X can be done as in [Ma68, §7] and we omit it.

2.5 (Functors of Points). In sections 5.3, 5.5 and 5.6 we use the functorial
language, that is consider k-schemes as functors from the category of k-
algebras to the category of sets. Fix a scheme X. By an X-algebra we mean
a pair (R, x), where R is a k-algebra and x is an element of X(R). X-algebras
form a category with obvious morphisms. The morphisms ϕ : Y → X can be
considered as the functors from the category of X-algebras to the category
of sets, by sending a pair (R, x) to its preimage in Y (R).

2.6. Let X be a variety over k. To any vector bundle F over X we can
associate the Grassmann bundle Y = Gr(d,F). Fix an X-algebra (R, x).
The value of the functor corresponding to Gr(d,F) at (R, x) is the set of
direct summands of rank d of the projective R-module Fx ⊗k R (cf. [Ka01,
section 9]), where Fx = F(R, x).

Next, we need to recall some properties of rational cycles on projective
homogeneous varieties.

2.7. Let G be a split linear algebraic group over k. Let X be a projective
G-homogeneous variety, i.e., X = G/P , where P is a parabolic subgroup of
G. The abelian group structure of CH(X), as well as its ring structure, is
well-known. Namely, X has a cellular filtration and the generators of the
Chow groups of the bases of this filtration correspond to the free additive
generators of CH(X) (see [Ka01]). Note that the product of two projective
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homogeneous varieties X × Y has a cellular filtration as well, and CH∗(X ×
Y ) ' CH∗(X)⊗CH∗(Y ) as graded rings. The correspondence product of two
homogeneous cycles α = fα×gα ∈ CH(X×Y ) and β = fβ×gβ ∈ CH(Y ×X)
is given by (cf. [Bo03, Lem. 5])

(fβ × gβ) ◦ (fα × gα) = deg(gα · fβ)(fα × gβ),

where deg : CH(Y ) → CH({pt}) = Z is the degree map.

2.8. From now on we assume that all varieties under consideration are irre-
ducible. Moreover, in view of the duality given by the transposition of cycles,
we freely switch between covariant and contravariant notation for the Chow
motives.

Let X be a projective variety of dimension n over a field k. Let ks be a
separable closure of the field k. Consider the scalar extension Xs = X ×k ks.
We say a cycle J ∈ CH(Xs) is rational if it lies in the image of the pull-
back homomorphism CH(X) → CH(Xs). For instance, there is an obvious
rational cycle ∆Xs on CHn(Xs × Xs) that is given by the diagonal class.
Clearly, all linear combinations, intersections and correspondence products
of rational cycles are rational.

2.9. We will use the following fact (see [CGM, Cor. 8.3]) that follows from
the Rost Nilpotence Theorem. Let X be a twisted flag variety and ps be
a non-trivial rational projector in CHn(Xs × Xs), i.e., ps ◦ ps = ps. Then
there exists a non-trivial projector p on CHn(X ×X) such that p×k ks = ps.
Hence, the existence of a non-trivial rational projector ps on CHn(Xs ×Xs)
gives rise to the decomposition of the Chow motive of X

M(X) ∼= (X, p)⊕ (X,∆X − p).

2.10. Observe that

Mor((X, p)(m), (Y, q)(l)) = q ◦ CHdim X+m−l(X, Y ) ◦ p.

An isomorphism between twisted motives (X, p)(m) and (Y, q)(l) is given by
correspondences j1 ∈ q◦CHdim X+m−l(X×Y )◦p and j2 ∈ p◦CHdim Y +l−m(Y ×
X) ◦ q such that j1 ◦ j2 = q and j2 ◦ j1 = p. If X and Y are twisted flag
varieties then by the Rost nilpotence theorem (see [CM06, Theorem 8.2] and
[CGM, Corollary 8.4]) it suffices to give a rational j1 and some j2 satisfying
these conditions over a separable closure (note that j2 will automatically be
rational).

12



2.2 Rational cycles on projective homogeneous vari-
eties

Several techniques are available to produce rational cycles. We shall use the
following:

(i) Consider a variety Y and a morphism X → Y such that Xs = Ys×Y X,
where Ys = Y ×k ks. Then any rational cycle on CH(Ys) gives rise to a
rational cycle on CH(Xs) by the induced pull-back CH(Ys) → CH(Xs).

(ii) Consider a variety Y and a projective morphism Y → X such that Ys =
Xs ×X Y . Then any rational cycle on CH(Ys) gives rise to a rational
cycle on CH(Xs) by the induced push-forward CH(Ys) → CH(Xs).

(iii) Let X and Y be projective homogeneous varieties over k that split com-
pletely over the function fields k(Y ) and k(X) respectively. Consider
the following diagram

CHi(X × Y )

f
��

g // CHi(Xs × Ys)

fs

��
CHi(Xk(Y ))

= // CHi(Xks(Ys))

where the vertical arrows are surjective by [IK00, §5]. Now take any
cycle α ∈ CHi(Xs × Ys), i ≤ dimX. Let β = g(f−1(fs(α))). Then
fs(β) = fs(α) and β is rational. Hence, β = α + J , where J ∈ Kerfs,
and we conclude that α + J ∈ CHi(Xs × Ys) is rational.

3 Hasse diagrams

3.1 Notation

Let k be a field, G a Chevalley group over k, i.e., a split algebraic (semi)simple
group defined over k.

Consider an irreducible linear representation π : G → GL(V ) of G on a
k-vector space V . Let T be a split maximal torus of G defined over k. An
element λ ∈ T ∗ = Hom(T, k∗) is called a character. If

V λ = {v ∈ V | ∀ t ∈ T π(t)v = λ(t)v} 6= 0,
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then it is called a weight space and the corresponding character λ is called a
weight.

By definition the dimension of V λ is the multiplicity of λ. As Λ(π) we
denote the set of all weights of π. We also use the following notation: Λ(π)
the set of all weights of π with multiplicities, Λ

∗
(π) the set of all nonzero

weights, and Λ∗(π) the set of all nonzero weights with multiplicities.
If π = Ad: G → GL(Lie(G)) is the adjoint representation of G, then

Λ
∗
(Ad) =: Φ is the root system of G. We choose a set of simple roots

Π = {α1, . . . , αl} (l = rk Φ = dimT ) of Φ.
There exists a highest weight ω such that any other weight of π has the

form ω −
∑l

i=1miαi, mi ∈ Z≥0 (in additive notation).
We construct a labelled graph which is called a weight diagram as follows.

Its vertices are the elements of Λ(π). Two vertices λ and µ are connected by
an edge going from µ to λ with a label i iff λ− µ = αi.

The following fact is well known.

3.1 (Chevalley). The representation π is uniquely determined by the set of
its weights or by its highest weight.

By xα(ξ) we denote the elementary root unipotents of G, or the elemen-
tary Steinberg generators (α ∈ Φ, ξ ∈ k). Consider

wα(ε) := xα(ε)x−α(−ε−1)xα(ε) ∈ G, ε ∈ k∗.

The group W̃ := 〈wα(1), α ∈ Φ(or Π)〉 is the extended Weyl group.
The ordinary Weyl groupW acts naturally on the set of weights of the rep-

resentation π. We say that π is a microweight representation, if all its weights
lie in one orbit under this action. There exists a weight basis {vλ}λ∈Λ(π) of V .

It has several nice properties. E.g., for all λ ∈ Λ∗(π) and for all w ∈ W̃ there
exists ν ∈ Λ∗(π) such that wvλ = vν or wvλ = −vν . The vectors vλ ∈ V λ

are called weight vectors. For a precise definition and further properties of
weight vectors see [Va90, ch. 1].

3.2 Hasse diagrams and Chow rings

3.2. To each projective homogeneous variety X we may associate an oriented
labeled graph H called Hasse diagram. It is known that the ring structure
of CH(X) is determined by H. In the present section we recall several facts
concerning relations between Hasse diagrams and Chow rings. For a precise
reference on this account see [De74], [Hi82a], and [Ko91].
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3.3. Let G be a split simple algebraic group defined over a field k. We fix a
split maximal torus T in G and a Borel subgroup B of G containing T and
defined over k. Denote by Φ the root system of G, by Π = {α1, . . . , αrk G}
the set of simple roots of Φ corresponding to B, by W the Weyl group, and
by S = {s1 = sα1 , . . . , srk G = sαrk G

} the corresponding set of fundamental
reflections.

Let P = PΘ be a (standard) parabolic subgroup corresponding to a subset
Θ ⊂ Π, i.e., P = BWΘB, where WΘ = 〈sθ, θ ∈ Θ〉. Denote

WΘ = {w ∈ W | ∀αi ∈ Θ l(wsi) = l(w) + 1},

where l is the length function. The pairing

WΘ ×WΘ → W (w, v) 7→ wv

is a bijection and l(wv) = l(w) + l(v). It is easy to see that WΘ consists
of all representatives in the left cosets W/WΘ which have minimal length.
Sometimes it is also convenient to consider the set of all representatives of
maximal length. We shall denote this set as ΘW . Observe that there is a
bijection WΘ → ΘW given by v 7→ vwθ, where wθ is the longest element of
WΘ. The longest element of WΘ corresponds to the longest element w0 of
the Weyl group.

3.4. To a subset Θ of the finite set Π we associate an oriented labelled
graph, which we call a Hasse diagram and denote by HW (Θ). This graph is
constructed as follows. The vertices of this graph are the elements of WΘ.
There is an edge from a vertex w to a vertex w′ with a label i if and only if
l(w) < l(w′) and w′ = siw. The example of such a graph is provided in 7.8.
Observe that the diagram HW (∅) coincides with the Cayley graph associated
to the pair (W,S).

3.5 Lemma. The assignment HW : Θ 7→ HW (Θ) is a contravariant functor
from the category of subsets of the finite set Π (with embeddings as mor-
phisms) to the category of oriented graphs.

Proof. It is enough to embed the diagram HW (Θ) to the diagram HW (∅).
We do this as follows. We identify the vertices of HW (Θ) with the subset of
vertices of HW (∅) by means of the bijection WΘ → ΘW . Then the edge from
w to w′ of ΘW ⊂ W has a label i if and only if l(w) < l(w′) and w′ = siw (as
elements of W ). Clearly, the obtained graph will coincide with HW (Θ).
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3.6. Now consider the Chow ring of a projective homogeneous variety G/PΘ.
It is well known that CH(G/PΘ) is a free abelian group with a basis given
by the varieties [Xw] that correspond to the vertices w of the Hasse diagram
HW (Θ). The degree of the basis element [Xw] corresponds to the minimal
number of edges needed to connect the respective vertex w with wθ (which
is the longest one). The multiplicative structure of CH(G/PΘ) depends only
on the root system of G and the diagram HW (Θ).

3.7 Lemma. The contravariant functor CH: Θ 7→ CH(G/PΘ) factors through
the category of Hasse diagrams HW , i.e., the pull-back (ring inclusion)

CH(G/PΘ′) ↪→ CH(G/PΘ)

arising from the embedding Θ ⊂ Θ′ is induced by the embedding of the re-
spective Hasse diagrams HW (Θ′) ⊂ HW (Θ).

3.8 Corollary. Let B be a Borel subgroup of G and P its (standard) parabolic
subgroup. Then CH(G/P ) is a subring of CH(G/B). The generators of
CH(G/P ) are [Xw], where w ∈ ΘW ⊂ W . The cycle [Xw] in CH(G/P ) has
codimension l(w0)− l(w).

Proof. Apply the lemma to the case B = P∅ and P = PΘ′ .

Hence, in order to compute CH(G/P ) it is enough to compute CH(X),
where X = G/B is the variety of complete flags. The following results
provide tools to perform such computations.

3.9 (Poincaré duality). In order to multiply two basis elements h and g of
CH(G/P ) such that deg h + deg g = dimG/P we use the following formula
(see [Ko91, 1.4]):

[Xw] · [Xw′ ] = δw,w0w′wθ
· [pt].

3.10 (Pieri’s formula). In order to multiply two basis elements of CH(X) one
of which is of codimension 1 we use the following formula (see [De74, Cor. 2
of 4.4]):

[Xw0sα ][Xw] =
∑

β∈Φ+, l(wsβ)=l(w)−1

〈β∨, ωα〉[Xwsβ
],

where the sum runs through the set of positive roots β ∈ Φ+, sα denotes
the simple reflection corresponding to α and ω̄α is the fundamental weight
corresponding to α. Here [Xw0sα ] is the element of codimension 1.
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3.11 (Giambelli’s formula). Let P = P (Φ) be the weight space. We denote
as ω̄1, . . . ω̄l the basis of P consisting of fundamental weights. The symmetric
algebra S∗(P ) is isomorphic to Z[ω̄1, . . . ω̄l]. The Weyl group W acts on P ,
hence, on S∗(P ). Namely, for a simple root αi,

wαi
(ω̄j) =

{
ω̄i − αi, i = j,

ω̄j, otherwise.

We define a linear map c : S∗(P ) → CH∗(G/B) as follows. For a homoge-
neous u ∈ Z[ω̄1, . . . , ω̄l]

c(u) =
∑

w∈W, l(w)=deg(u)

∆w(u)[Xw0w],

where for w = wα1 . . . wαk
we denote by ∆w the composition of derivations

∆α1 ◦ . . . ◦ ∆αk
and the derivation ∆αi

: S∗(P ) → S∗−1(P ) is defined by

∆αi
(u) =

u−wαi (u)

αi
. Then (see [Hi82a, ch. IV, 2.4])

[Xw] = c(∆w−1(
d

|W |
)),

where d is the product of all positive roots in S∗(P ). In other words, the
element ∆w−1( d

|W |) ∈ c
−1([Xw]).

Hence, in order to multiply two basis elements h, g ∈ CH(X) take their
preimages under the map c and multiply them in S∗(P )⊗Z Q = Q[ω̄1, . . . ω̄l].
Then apply c to their product.

3.3 Hasse diagrams

In this section we collect some information concerning Hasse diagrams in
general. In particular, we explain the connection between Hasse diagrams
and the Chernousov-Gille-Merkurjev method of a motivic decomposition of
an isotropic projective homogeneous variety.

We start with some general remarks.

3.12. Every Hasse diagram can be considered as a thin building. Hasse
diagrams describe the weak Bruhat order of Schubert cells. The weight
diagram for a microweight representation of a split simple algebraic group
coincides with the respective Hasse diagram (see [PSV, 1.1 and 2.2]).
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3.13. For microweight representations we can extract a lot of information
about the representation itself from the Hasse diagram purely combinatori-
ally.

Let us give some examples. Let G be a Chevalley group and π its mi-
croweight representation. The branching rules can be described as follows. If
we restrict π to a subsystem subgroup of G we just need do erase/add some
edges of the respective Hasse diagram (weight diagram) (see [PSV, 3.7]).

The tensor product of two representations of the same group and its de-
composition into irreducible representations can be described as some com-
binatorial operations on the Hasse graph. For details see [Kash], [PSV, 3.6].

As an application of the rules described there we can “fold” the diagram
corresponding to the representation (E6, ω̄1) to the representation (F4, ω̄4).
First one should identify the labels i, j on the edges of (E6, ω̄1) by the relation

i ∼ j ⇔ the images of i and j under the folding E6 → F4 coincide.

After that one should apply the rules of [PSV, 3.6] to the middle squares of
the resulting diagram. After this procedure one obtains the weight diagram
(F4, ω̄4).

3.14. The equations on the orbit of the highest weight vector are hidden in
the Hasse diagram (see [PSV, 3.8] and [Va97, 3.3]).

The action of the elementary transvections, the action of the Weyl group
can be seen from the picture ([PSV, 3.4] and [Va97, 2.3]).

Centers and axis of the elementary transvections can also be obtained
from the Hasse diagram. Consider the case of the Freudenthal transvections
(see [Va90], [Va97]). Take an elementary transvection xα(ξ) of the simply-
connected Chevalley group of type E6 in the representation with the highest
weight ω̄1. Consider the decomposition of α = αi1 + . . .+ αim into a sum of
simple roots and find in the Hasse diagram, corresponding to this represen-
tation, all paths with labels i1, . . . , im (in any order). There are precisely six
such paths (the residue of a transvection of E6 equals six).

Let vλ1 , . . . , vλ6 (resp. vµ1 , . . . , vµ6) denote weight vectors which are initial
(resp. terminal) points of these paths. Take any vectors x ∈ 〈vλ1 , . . . , vλ6〉
and y ∈ 〈vµ1 , . . . , vµ6〉. The Freudenthal transvection, constructed by x and
y, will lie in the same root subgroup as xα(ξ). Moreover, any center and
axis of any transvection from this root subgroup can be obtained in this way.
Note that in general position such vectors x and y give a non-trivial element
of the root subgroup.
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Recall (see [Va97, § 4.1] and [SV68]) that a Freudenthal transvection is
given by the following formula:

Tuv(ξ)x = x+ (v, x)ξu− ξv × (u× x),

where u ∈ V , v ∈ V ∗, ξ ∈ k, vu = 0, u× u = 0, and v × v = 0. The vectors
u and v are called the center and the axis of the transvection Tuv.

3.15. In fact, we can find multilinear invariants for some representations.
E.g., the cubic form of E6 is a particular case of the following construction.

Let G be a Chevalley group and π : G → GL(V ) its microweight repre-
sentation.

Fix m ≥ 1 and consider the set

M = {vλ1 , . . . , vλm}

of (distinct) weight vectors (λi ∈ Λ
∗
(π)) such that all differences

λi − λj /∈ Φ.

The group W̃ acts naturally on the monomials

axν1 . . . xνm ∈ k[xλ, λ ∈ Λ(π)],

where a ∈ k, νi ∈ Λ(π). Namely,

w(axν1 . . . xνm) := a(−1)pxw(ν1) . . . xw(νm),

where p = #{1 ≤ i ≤ m | for some λ ∈ Λ(π)wvνi = −vλ(λ depends on i)},
and W̃ acts on the weights naturally (there is a natural epimorphism W̃ �
W , where W is the ordinary Weyl group).

Consider the orbit of the monomial xλ1 . . . xλm under the action of W̃ :

q :=
∑
w∈fW

w(xλ1 . . . xλm),

f := the (full) polarization of q.

It is obvious that q and f are W̃ -invariant.
Taking the representation with the highest weight ω̄1 of the simply-

connected Chevalley group of type E6 one obtains a trilinear form being
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preserved by E6. This form is the norm form of the split simple exceptional
27-dimensional Jordan algebra.

Using this construction we also get the pfaffian invariant of the repre-
sentation (An, ω̄2) and some quadratic invariants, e.g., the bilinear form for
(Dn, ω̄1). In general, one should not expect that the algorithm above will
give a G-invariant form. In general, one should take sums by several orbits
of the extended Weyl group.

3.16. The double cosets WP\W/WQ are obtained by the branching rules (see
[PSV, 3.3]).

The generating function f (see 4.2 below) has the following property: the
i-th coefficient of f(G,P ) equals the number of vertices in the respective
Hasse diagram at the distance i from the leftmost one.

This coefficient is also equal to rk CHi(G/P ). Hence we can study these
ranks using the combinatorial structure of the Hasse diagrams. E.g., it follows
from the results of Stanley (see [Hi82a]) that

rk CHi(G/P ) ≤ rk CHi+1(G/P ),

where i ≤ [dim(G/P )/2]. From this interpretation it is also obvious that
rk CHi(G/P ) = rk CHn−i(G/P ) for any P , where n = dim(G/P ) (Poincaré
duality).

There is also a combinatorial interpretation of Pieri’s formula for the
multiplication in the Chow rings of projective homogeneous varieties (see
[Hi82b, cor. 3.3]).

3.17. There is a very nice interpretation of the Chernousov-Gille-Merkurjev
method of a motivic decomposition of an isotropic projective homogeneous
variety (see [CGM]). The crucial point here are the branching rules for
computing the double cosets of the Weyl group.

We shall illustrate this method in the case when G is a simple adjoint
algebraic group and P is a maximal parabolic subgroup of G defined over the
base field (G/P has a rational point). Apart from this, we assume that the
∗-action of the Galois group on the set of the double cosets WP\W/WP is
trivial (see [CGM]). The case of an arbitrary parabolic subgroup is similar.

Suppose P = Pi is the maximal parabolic subgroup corresponding to the
i-th root αi ∈ Π. Using the branching rules we construct the double cosets
WP\W/WP cutting the Hasse diagram (G,P ) along the edges with a label i
(we draw the Hasse diagram assuming that G is split). The diagram splits
into several parts which we denote as Hj.
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Consider the semisimple part GP of the Levi subgroup of P . This is
a group of type Π \ {αi} (we delete the i-th simple root from the Dynkin
diagram of G).

Fix a component Hj. Consider the set of labels {i1, . . . il} on its edges,
whose initial vertex is the rightmost one. Recall that the Hasse diagram is
an oriented graph and the rightmost vertex of Hj is the vertex, which is a
terminal one for no edges.

For each root is (1 ≤ s ≤ l) there exists a unique simple component (GP )is

of GP which Dynkin diagram contains the root with number is (the enumer-
ation of roots of the simple components of GP inherits the enumeration of
roots of GP , which inherits the enumeration of roots of G).

Consider the variety Zj = (GP )i1/Qi1 × . . .× (GP )il/Qil , where Qis is the
maximal parabolic subgroup of (GP )is , corresponding to the root is. Now the
Hasse sub-diagram Hj coincides with the Hasse diagram (GP , Qj), where the
parabolic subgroup Qj corresponds to the product of parabolic subgroups
Qis . In turn, this last Hasse diagram is the product of the Hasse diagrams
(GP )is/Qis , 1 ≤ s ≤ l.

In notation of [CGM] the varieties Zj coincide with the varieties ZDj
over a

separably closed field. They are precisely the building blocks of the motive of
G/P . It is important to notice that the Hasse diagrams just give information
how the varieties ZDj

look like after the base change to a separably closed
field.

4 Motivic isomorphisms in the split case

4.1 Notation

Let G be a split simple algebraic group defined over a field k. We fix a split
maximal torus T in G and a Borel subgroup B containing T and defined
over k. Denote by Φ the root system of G, by Π the set of simple roots of Φ
corresponding to B, by W the Weyl group, and by S the corresponding set
of fundamental reflections.

For a smooth projective variety X we denote as M(X) its motive in the
category of Chow motives (see [Ma68] and [Ka01] for the detailed description
of the category of Chow motives).

We would like to get a complete solution to the following problem:
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4.1 Problem. When the motives of two projective split homogeneous vari-
eties are isomorphic?

4.2 Main theorem

Let P = PΘ be a (standard) parabolic subgroup, where Θ ⊂ Π, P = BWΘB,
WΘ = 〈sθ, θ ∈ Θ〉.

Denote

WΘ = {w ∈ W | ∀αi ∈ Θ l(wsi) = l(w) + 1},

where l is the length function. The pairing

WΘ ×WΘ → W

(w, v) 7→ wv

is a bijection and l(wv) = l(w) + l(v) (see [Ko91]).
It is easy to see that WΘ consists of all representatives in the cosets

W/WΘ which have minimal length.
We know

M(G/P ) ' ⊕w∈ WΘL⊗l(w),

where L is the Lefschetz motive (see [Ko91]).
Consider the following function

(G,P ) 7→ f(G,P ) =
∑

w∈WΘ

xl(w) ∈ Z[x].

It is obvious that M(G/P ) 'M(G′/P ′) if and only if f(G,P ) = f(G′, P ′).
For a subgroup V ≤ W denote

r(V ) =
∑
w∈V

xl(w) ∈ Z.

It is clear that f(G,P )r(WΘ) = r(W ), i.e., f(G,P ) = r(W )
r(WΘ)

= r(W )
r(W1)...r(Wk)

,
where WΘ = W1 × . . . ×Wk and Wi are the Weyl groups of the irreducible
parts of WΘ.

We need the following well known theorem of Solomon (see [Ca72]).

22



4.2 Proposition.

r(W ) =
l∏

i=1

xdi(W ) − 1

x− 1
,

where di(W ) are the degrees of the basic polynomial invariants of W (see
[Ca72] and [PV94]).

G di(G)
Al 2, 3, . . . , l + 1

Bl,Cl 2, 4, . . . , 2l
Dl 2, 4, . . . , 2l − 2, l
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30

In order to answer the question when the motives of two varieties G/P
and G′/P ′ are isomorphic, we need to do some computations. M(G/P ) '
M(G′/P ′) if and only if

r(W )

r(W1) . . . r(Wk)
=

r(W ′)

r(W ′
1) . . . r(W

′
k′)
,

where W ′ = W (G′) and Wi, W
′
j are the irreducible parts as above.

It is easy to see that∏
a∈A

xa − 1

x− 1
=

∏
b∈B

xb − 1

x− 1
⇔ A = B,

where A and B are some multisets of indices (i.e., the same factors in the
formula above can occur several times). For a subgroup V ≤ W consider the
following function

v(V ) =
l∑

i=1

vdi(V ),

where vi are independent variables of some vector space (e.g., QZ).
We have M(G/P ) 'M(G′/P ′) if and only if

v(W )− v(W1)− . . .− v(Wk) = v(W ′)− v(W ′
1)− . . .− v(W ′

k′),
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i.e., Φ−Φ1− . . .−Φk = Φ′−Φ′
1− . . .−Φ′

k′ , where Φi (resp. Φ′
j) are the root

subsystems of Φ = Φ(G) (resp. Φ′ = Φ(G′)) corresponding to Wi (resp. W ′
j)

(we can see this subsystems on the Dynkin diagram of G (resp. G′): just
delete the vertices corresponding to P (resp. P ′)).

4.3 Theorem. M(G/P ) ' M(G′/P ′) in the category of Chow motives if
and only if (at least) one of the following conditions holds

1. G/P ' G′/P ′ (e.g., Cl − Cl−1 = A2l−1 − A2l−2 and Dl+1 − Al = Bl −
Al−1).

2. W (G) = W (G′), W (P ) ' W (P ′) (as W (P ) we denote the Weyl group
of the semisimple part of P ).

3. Bl − Bl−1 = A2l−1 − A2l−2 (the quadric Q2l−1 and the projective space
P2l−1).

4. Dl+1 − Al = Cl − Al−1.

5. Bl−Bk−A2k−2−. . .−Am−
∑

A = Bl−Bm−A2k−1−. . .−A2m+1−
∑

A.

6. Dl+1 −Dk+1 − A2k−2 − . . .− Am − Ak−1 − Am −
∑

A =
Dl+1 −Dm+1 − A2k−1 − . . .− A2m+1 − Ak − Am−1 −

∑
A.

7. G2 − A1 = A5 − A4 = B3 − B2.

Everywhere in the list above B can be substituted by C and vice versa.

Proof. We should analyze all cases when the above identity on v can be
fulfilled. We must start with Φ and Φ′ s.t. the degree of v(W (Φ)) is equal
to the degree of v(W (Φ′)). After that, we look at the next term (we order
the terms by their degrees) of the polynomial v(W (Φ)) or v(W (Φ′)) which
doesn’t cancel. We should subtract some polynomial v corresponding to a
root subsystem of Φ or Φ′ in order to kill this term. Going further case by
case we obtain the full list of the theorem.

4.4 Remark. By a result of Demazure if G/P ' G′/P ′ then G ' G′

apart from the following cases: G2/P1 ' B3/P1, Cn/P1 ' A2n−1/P1 '
A2n−1/P2n−1, Bn/Pn ' Dn+1/Pn ' Dn+1/Pn+1.
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5 Chow motives of twisted flag varieties

Let G be an adjoint simple algebraic group of inner type over a field k. Let
X be a twisted flag variety, i.e., a projective G-homogeneous variety over
k. The main purpose of this chapter is to express the Chow motive of X in
terms of the motives of “minimal” flags, i.e., those G-homogeneous varieties
that correspond to maximal parabolic subgroups of G.

Observe that the motive of an isotropic G-homogeneous variety can be
decomposed in terms of the motives of simpler G-homogeneous varieties us-
ing the techniques developed by Chernousov, Gille, Merkurjev [CGM] and
Karpenko [Ka01]. For G-varieties, when G is isotropic, one obtains a sim-
ilar decomposition following the arguments of Brosnan [Br05]. In the case
of G-varieties, where G is anisotropic, no general decomposition methods
are known except several particular cases of quadrics (see for example Rost
[Ro98]) and Severi-Brauer varieties (see Karpenko [Ka95]).

In the present chapter we provide methods that allow to decompose the
motives of some anisotropic twisted flag G-varieties, where the root system
of G is of types An, Bn, Cn, G2 and F4, i.e., has a Dynkin diagram which
does not branch.

As an application, we provide another counter-example to the uniqueness
of a direct sum decomposition in the category of Chow motives with inte-
gral coefficients (see 5.6). Observe that such a counter-example was already
constructed by Chernousov and Merkurjev (see [CM06, Example 9.4]) and
is given by a G-homogeneous variety, where G is a product of two simple
groups. Our example is given by a G-variety, where G is a simple group.

The chapter is organized as follows. In section 5.2 we state the main
results. In the other sections we give proofs of the results for varieties of
type An (section 5.3), of types Bn and Cn (section 5.5), and exceptional
varieties of types G2 and F4 (section 5.6). Section 5.4 is devoted to the
motivic decomposition of generalized Severi-Brauer varieties.

5.1 Notation and Conventions

By G we denote an adjoint simple algebraic group of inner type over k and
by n its rank. G′ stands for a split group of the same type as G. All varieties
that appear in the chapter are projective G-homogeneous varieties over k.
They can be considered as twisted forms of the varieties G′/P , where P is
a parabolic subgroup of G′. The Chow motive of a variety X is denoted by
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M(X). By A we denote a central simple algebra over k of index ind(A) and
by SB(A) the corresponding Severi-Brauer variety. I is always a right ideal
of A and rdim I stands for its reduced dimension. V is a vector space over k.

By λ = (λ1, λ2, . . . , λl) we denote a partition λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0 with
|λ| = λ1 + λ2 + . . . + λl. Integers d1, d2, . . ., dk always satisfy the condition
1 ≤ d1 < d2 < . . . < dk ≤ n and are the dimensions of some flag. For each
i = 0, . . . , k we define δi to be the difference di+1 − di (assuming here d0 = 0
and dk+1 = n+ 1).

5.2 Statements of Results

We follow [MPW96, Appendix] and [CG06] for the description of projective
G-homogeneous varieties that appear below. According to the type of the
group G, we obtain the following results.

An: In this case G = PGL1(A), where A is a central simple algebra of
degree n + 1, n > 0, and the set of points of a projective G-homogeneous
variety X can be identified with the set of flags of (right) ideals

X(d1, . . . , dk) = {I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ A}

of fixed reduced dimensions 1 ≤ d1 < d2 < . . . < dk ≤ n. Observe that this
variety is a twisted form of G′/P , where P is the standard parabolic subgroup
corresponding to the simple roots on the Dynkin diagram, numbered by di.

◦
1

◦
2

◦
3

◦
n−2

◦
n−1

◦
n

The following result reduces the computation of the motive of X to the
motives of “smaller” flags.

5.1 Theorem. Suppose that gcd(ind(A), d1, . . . , d̂m, . . . , dk) = 1, then

M(X(d1, . . . , dk)) '
⊕

λ

M(X(d1, . . . , d̂m, . . . , dk))(δmδm−1 − |λ|),

where the sum is taken over all partitions λ = (λ1, . . . , λδm−1) such that
δm ≥ λ1 ≥ . . . ≥ λδm−1 ≥ 0.

Proof. See 5.21.
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As a consequence, for the variety of complete flags we obtain

5.2 Corollary. The motive of the variety X = X(1, . . . , n) of complete flags
is isomorphic to

M(X) '
n(n−1)/2⊕

i=0

M(SB(A))(i)⊕ai ,

where the ai are the coefficients of the polynomial ϕn(z) =
∑

i aiz
i =

∏n
k=2

zk−1
z−1

.

Proof. Apply Theorem 5.1 recursively to the sequence of varietiesX(1, . . . , n),
X(1, . . . , n− 1), . . ., X(1, 2) and X(1) = SB(A).

Another interesting example is the “incidence” variety X(1, n):

5.3 Corollary. The motive of X(1, n) is isomorphic to

M(X(1, n)) '
n−1⊕
i=0

M(SB(A))(i).

In order to complete the picture we need to know how to decompose the
motive of a “minimal” flag, i.e., a generalized Severi-Brauer variety.

Note that for some rings of coefficients (fields, discrete valuation rings) one
easily obtains the desired decomposition using the Krull-Schmidt Theorem
(the uniqueness of a direct sum decomposition). More precisely, consider
the subcategory M(G,R) of the category of motives with coefficients in a
ring R that is the pseudo-abelian completion of the category of motives of
projective G-homogeneous varieties (see [CM06, section 8]). Then we have
the following

5.4 Proposition. Let X(d) = SBd(A), 1 < d < n, be a generalized Severi-
Brauer variety for a central simple algebra A of degree n + 1 such that
gcd(ind(A), d) = 1. Let R be a ring such that the Krull-Schmidt Theorem
holds in the category M(G,R). Then the motive of SBd(A) with coefficients
in R is isomorphic to

M(SBd(A)) '
⊕
i∈I

M(SB(A))(i)⊕ai ,

where the integers ai are the coefficients of the polynomial ϕn(z)
ϕd(z)ϕn+1−d(z)

at

terms zi and the set of indices I = {i | ai 6= 0}.
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Proof. See 5.23.

It turns out that the motives of some generalized Severi-Brauer varieties
with integral coefficients can still be decomposed but in a slightly unexpected
way.

5.5 Theorem. Let SB2(A) be a generalized Severi-Brauer variety for a di-
vision algebra of degree 5. Then there is an isomorphism

M(SB2(A)) 'M(SB(B))⊕M(SB(B))(2),

where B is a division algebra Brauer-equivalent to the tensor square A⊗2.

Proof. See 5.30.

As an immediate consequence of Theorems 5.1 and 5.5 we obtain

5.6 Corollary. The Krull-Schmidt Theorem fails in the category of motives
M(PGL1(A),Z), where A is a division algebra of degree 5.

Proof. Apply Theorem 5.1 recursively to the sequences of varietiesX(1, 2), X(1)
andX(1, 2), X(2), whereX(1, 2) is the twisted flagG-variety forG = PGL1(A).
We obtain two decompositions of the motive of X(1, 2)

3⊕
i=0

M(SB(A))(i) 'M(X(1, 2)) 'M(SB2(A))⊕M(SB2(A))(1).

Applying now Theorem 5.5 to the components of the second decomposi-
tion, we obtain two different decompositions of the motive M(X(1, 2)) into
indecomposable objects

3⊕
i=0

M(SB(A))(i) 'M(X(1, 2)) '
3⊕

i=0

M(SB(B))(i).

By [Ka95, Theorem. 2.2.1] and [Ka00, Criterion 7.1] the motives M(SB(A))
and M(SB(B)) are indecomposable and non-isomorphic. This finishes the
proof of the corollary.

5.7 Remark. Observe that the counter-example provided by Chernousov
and Merkurjev (see [CM06, Ex.9.4]) is the product of two Severi-Brauer
varieties X = SB(A)×SB(B) which is a G-homogeneous variety for the semi-
simple group G = PGL1(A) × PGL1(B), where A and B are two division
algebras satisfying some conditions. The example that we provide, i.e., the
flag X(1, 2), is a G-homogeneous variety for the simple group G = PGL1(A).
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Bn: We assume that the characteristic of the base field k is different from
2. It is known that G = O+(V, q), where (V, q) is a regular quadratic space
of dimension 2n + 1, n > 0, and projective G-homogeneous varieties can be
described as flags of totally q-isotropic subspaces

X(d1, . . . , dk) = {V1 ⊂ . . . ⊂ Vk ⊂ V }.

of fixed dimensions 1 ≤ d1 < . . . < dk ≤ n. Observe that this variety is
a twisted form of G′/P , where P is the standard parabolic subgroup corre-
sponding to the simple roots on the Dynkin diagram, numbered by di.

◦
1

◦
2

◦
3

◦
n−2

◦
n−1

> ◦
n

The following result shows that some motives of flag varieties can be decom-
posed into a direct sum of twisted motives of “smaller” flags.

5.8 Theorem. Suppose that m < k, then

M(X(d1, . . . , dk)) '
⊕

λ

M(X(d1, . . . , d̂m, . . . , dk))(δmδm−1 − |λ|),

where the sum is taken over all partitions λ = (λ1, . . . , λδm−1) such that
δm ≥ λ1 ≥ . . . ≥ λδm−1 ≥ 0.

Proof. See 5.35.

In particular, for the variety of complete flags we obtain a formula similar
to the one of Corollary 5.2.

5.9 Corollary. The motive of the variety of complete flags X = X(1, 2, . . . , n)
is isomorphic to

M(X) '
n(n−1)/2⊕

i=0

M(X(n))(i)⊕ai ,

where the ai are the coefficients of the polynomial ϕn(z) =
∑

i aiz
i =

∏n
k=2

zk−1
z−1

,
and X(n) is the twisted form of the maximal orthogonal Grassmannian.
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Cn: We assume that the characteristic of the base field k is different from
2. In this case G = Aut(A, σ), where A is a central simple algebra of degree
2n, n ≥ 2, with an involution σ of symplectic type on A, and a projective
G-homogeneous variety can be described as the set of flags of (right) ideals

X(d1, . . . , dk) = {I1 ⊂ . . . ⊂ Ik ⊂ A | Ii ⊆ I⊥i }

of fixed reduced dimensions 1 ≤ d1 < . . . < dk ≤ n, where I⊥ = {x ∈ A |
σ(x)I = 0} is the right ideal of reduced dimension 2n− rdim I. Observe that
this variety is a twisted form of G′/P , where P is the standard parabolic sub-
group corresponding to the simple roots on the Dynkin diagram, numbered
by di.

◦
1

◦
2

◦
3

◦
n−2

◦
n−1

< ◦
n

Again, the motives of some flag varieties can be decomposed into a direct
sum of twisted motives of “smaller” flags.

5.10 Theorem. Suppose that di is odd for some i < k and dk − dk−1 = 1.
Then

M(X(d1, . . . , dk)) '
2n−2dk−1−1⊕

i=0

M(X(d1, . . . , dk−1))(i).

In particular, for the variety of complete flags we obtain

5.11 Corollary. The motive of the variety of complete flags X = X(1, 2, . . . , n)
is isomorphic to

M(X(1, . . . , n)) '
n(n−1)⊕

i=0

M(SB(A))(i)⊕ai ,

where ai are the coefficients of the polynomial ψn(z) =
∏n−1

k=1
z2k−1
z−1

.

G2: We suppose that the characteristic of k is not 2. It is known that
G = Aut(C), where C is a Cayley algebra over k. By an i-space, where
i = 1, 2, we mean an i-dimensional subspace Vi of C such that uv = 0
for every u, v ∈ Vi. The only flag variety corresponding to a non-maximal
parabolic is the variety of complete flags X(1, 2) which is described as follows

X(1, 2) = {V1 ⊂ V2 | Vi is a i-subspace of C}.
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We enumerate the simple roots on the Dynkin diagram as follows:

◦
1

< ◦
2

In this case we obtain

5.12 Theorem. The motive of the variety of complete flags X = X(1, 2) is
isomorphic to

M(X) 'M(X(2))⊕M(X(2))(1).

Proof. See 5.45

Observe that by the result of Bonnet [Bo03] the motives of X(1) and
X(2) are isomorphic (here X(1) is a 5-dimensional quadric).

F4: We suppose that the characteristic of k is not 2 and 3. It is known that
G = Aut(J), where J is an exceptional simple Jordan algebra of dimension 27
over k. Set I = {1, 2, 3, 6}. By an i-space, i ∈ I, we mean an i-dimensional
subspace V of J such that every u, v ∈ V satisfy the following condition:

tr(u) = 0, u× v = 0, and if i < 6 then u(va) = v(ua) for all a ∈ J.

A projective G-homogeneous variety can be described as the set of flags of
subspaces

X(d1, . . . , dk) = {V1 ⊂ . . . ⊂ Vk | Vi is a di-subspace of J}.

where the integers d1 < . . . < dk are taken from the set I. Observe that this
variety is a twisted form of G′/P , where P is the standard parabolic subgroup
corresponding to the simple roots on the Dynkin diagram, numbered by di.

◦
1

◦
2

< ◦
3

◦
6

In this case we obtain

5.13 Theorem. Suppose that m < k and either dm+1 < 6 or dm = 1, then

M(X(d1, . . . , dk)) '
⊕

λ

M(X(d1, . . . , d̂m, . . . , dk))(δmδm−1 − |λ|),

where the sum is taken over all partitions λ = (λ1, . . . , λδm−1) such that
δm ≥ λ1 ≥ . . . ≥ λδm−1 ≥ 0.

Proof. See 5.50.
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5.3 Groups of type An

The goal of the present section is to prove Theorem 5.1 and Proposition 5.4.
We use the notation of section 5.2.

5.14. Let G be an adjoint group of inner type An defined over a field k. It is
well known that G = PGL1(A), where A is a central simple algebra of degree
n + 1 and points of projective G-homogeneous varieties are flags of (right)
ideals of A

X(d1, . . . , dk) = {I1 ⊂ . . . ⊂ Ik ⊂ A | rdim Ii = di}.

For convenience we set d0 = 0, dk+1 = n+ 1, I0 = 0, Ik+1 = A.

5.15. The value of the functor of points corresponding to the varietyX(d1, . . . , dk)
at a k-algebra R (see 2.5) equals the set of all flags I1 ⊂ . . . ⊂ Ik of right
ideals of AR = A⊗k R having the following properties (see [IK00, section 4])

• the injection of AR-modules Ii ↪→ AR splits;

• rdim Ii = di.

5.16. On the scheme X = X(d1, . . . , dk) there are “tautological” vector bun-
dles Ji, i = 0, . . . , k+ 1, of ranks (n+ 1)di. The value of Ji on an X-algebra
(R, x), where x = (I1, . . . , Ik), is the ideal Ii considered as a projective R-
module. The bundle Ji also has a structure of a right AX-module, where AX

is the constant sheaf of algebras on X determined by A.
For every m ∈ {1, . . . , k} there exists an obvious morphism

X(d1, . . . , dk) → X(d1, . . . , d̂m, . . . , dk)

(I1, . . . , Ik) 7→ (I1, . . . , Îm, . . . , Ik)

that turns X(d1, . . . , dk) into an X(d1, . . . , d̂m, . . . , dk)-scheme.

5.17 Lemma. Denote X(d1, . . . , dk) by Y and X(d1, . . . , d̂m, . . . , dk) by X.
Assume there exists a vector bundle E over X such that AX ' EndOX

(E).
Consider the vector bundle

F = Jm+1E/Jm−1E = Jm+1/Jm−1 ⊗AX
E

of rank dm+1 − dm−1. Then Y as a scheme over X can be identified with the
Grassmann bundle Z = Gr(dm − dm−1,F) over X.
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Proof. We use essentially the same method as in [IK00, Proposition 4.3].
Fix an X-algebra (R, x) where x = (I1, . . . , Îm, . . . , Ik). The fiber of Y

over x, i.e., the value at (R, x), can be identified with the set of all ideals
Im satisfying the conditions 5.15 such that Im−1 ⊂ Im ⊂ Im+1. The fiber of
Z over x is the set of all R-submodules N of Fy = F(R, y) such that the
injection N ↪→ Fy splits and rkRN = dm − dm−1.

We define a natural bijection between the fibers of Y and Z over x as
follows.

Consider the following mutually inverse bijections between the set of all
right ideals of reduced dimension r in AR (satisfying 5.15) and the set of all
direct summands of rank r of the R-module Ex

Φ: I 7→ IEx

Ψ: N 7→ HomR(Ex, N) ⊂ EndR(Ex) ' AR

Observe that these bijections preserve the respective inclusions of ideals and
modules. So the ideals of reduced dimension dm between Im−1 and Im cor-
respond to the submodules of rank dm between Im−1Ex and Im+1Ex, and,
therefore, to the submodules of rank dm+1 − dm−1 in Im+1Ex/Im−1Ex = Fx.
This gives the desired natural bijection on the fibers.

5.18 Lemma. Suppose that gcd(ind(A), d1, . . . , dk) = 1. Then there exists
a vector bundle E over X = X(d1, . . . , dk) of rank n + 1 such that AX '
EndOX

(E).

Proof. We have to prove that the class [AX ] in Br(X) is trivial. Since X is
a regular Noetherian scheme the canonical map

Br(X) → Br(K)

where K = k(X) is the function field of X, is injective by [Gr, 1.10] and
[AG60, Theorem 7.2]. So it is enough to prove that A⊗k K splits. But the
generic point of X defines a flag of ideals of A ⊗k K of reduced dimensions
d1, . . . , dk. Since the index ind(A⊗k K) divides d1, . . . , dk and indA, by the
assumption of the lemma it must be equal to 1. So A⊗k K is split and this
finishes the proof of the lemma.

5.19 Remark. In the case d1 = 1 one can take E = J ∨
1 .
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5.20 Remark. It can be shown using the Index Reduction Formula (see
[MPW96]) that the condition on the gcd is necessary and sufficient for the
central simple algebra Ak(X) to be split.

We are now ready to finish the proof of Theorem 5.1.

5.21 (Proof of Theorem 5.1). By Lemma 5.18 there exists a vector bundle
E over X = X(d1, . . . , d̂m, . . . , dk) of rank n + 1 such that AX ' EndOX

(E).
By Lemma 5.17 we conclude that Y = X(d1, . . . , dk) is a Grassmann bundle
over X. Now by Proposition 2.4 we obtain the isomorphism of Theorem 5.1.

5.22 Remark. Note that the assumption of Theorem 5.1 on the reduced
dimensions d1, . . . , dk is essential. Indeed, suppose the Theorem holds for any
twisted flag variety. Consider the flag X = X(1, d) with gcd(ind(A), d) > 1.
Then we have an isomorphism of motives

M(X) '
d−1⊕
i=0

M(SBd(A))(i)

which appears after applying Theorem to the flags X(1, d) and X(d). Con-
sider the group CH0(X) = MorMk

(M(pt),M(X)). The isomorphism above
induces the isomorphism of groups

Coker(CH0(X)
res−→ CH0(Xks))

∼= Coker(CH0(SBd(A))
res−→ CH0(Gr(d, n+ 1)))

∼= Z/( ind(A)
gcd(ind(A),d)

)Z,

where res is the pull-back induced by the scalar extension ks/k (here ks

denotes a separable closure of k) and the last isomorphism follows by [Bl91,
Theorem 3]. On the other hand, applying Theorem 5.1 to the flags X(1, d)
and X(1) we obtain an isomorphism

M(X) '
⊕

λ

M(SB(A))((n+ 1− d)(d− 1)− |λ|)

which induces the isomorphism of groups

Coker(CH0(X)
res−→ CH0(Xks))

∼= Coker(CH0(SB(A))
res−→ CH0(Pn))

∼= Z/ ind(A)Z,

that leads to a contradiction.
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We now prove Proposition 5.4.

5.23 (Proof of Proposition 5.4). Let G = PGL1(A) and let M(G,R) be the
tensor category of Chow motives of G-homogeneous varieties with coefficients
in a ring R for which the Krull-Schmidt theorem holds. It is the case, e.g.,
when R is a field or, more general, a discrete valuation ring (see [CM06,
Theorem 9.6]).

Consider the G-homogeneous variety X(1, d), 1 < d < n. Applying
Theorem 5.1 to the sequences of flags X(1, d), X(d) and X(1, d), X(1). We
obtain two isomorphisms in M(G,R)

d−1⊕
i=0

M(SBd(A))(i) 'M(X) '
⊕

λ

M(SB(A))((n+ 1−d)(d−1)−|λ|), (*)

where the sum on the right hand side is taken over all partitions λ =
(λ1, . . . , λd−1) such that n + 1 − d ≥ λ1 ≥ . . . ≥ λd−1 ≥ 0. Since the
Krull-Schmidt Theorem holds in M(G,R), the motive SB(A) has a unique
decomposition into the direct sum of indecomposable objects Hi, i ∈ I, and
their twists

M(SB(A)) '
⊕
i∈I

(⊕j∈Ji
Hi(j)).

Consider the subcategory M(G,R)I additively generated by the motives
Hi, i ∈ I, and their twists. The abelian group of isomorphism classes of
objects of this category can be equipped with a structure of a free module
over the polynomial ring R[z]. Namely, multiplication by z is given by the
twist. Clearly, the classes [Hi], i ∈ I, form the basis of this R[z]-module.

By (*) we have M(SBd(A)) ∈ M(G,R)I and the isomorphisms (*) can
be rewritten as

zd − 1

z − 1
[SBd(A)] =

ϕn(z)

ϕd−1(z)ϕn+1−d(z)
[SB(A)]

=
zd − 1

z − 1

ϕn(z)

ϕd(z)ϕn+1−d(z)
[SB(A)]

where ϕn(z) =
∏n

k=2
zk−1
z−1

. This immediately implies the equality

[SBd(A)] =
ϕn(z)

ϕd(z)ϕn+1−d(z)
[SB(A)],

i.e., the isomorphism in M(G,R)I between M(SBd(A)) and the respective
sum of twists of M(SB(A)). This finishes the proof of the proposition.
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5.4 Motivic decomposition of SB2(A)

This section is devoted to the proof of Theorem 5.5.
We now recall some properties of Grassmann varieties and describe their

Chow rings.

5.24. Consider the Grassmann variety Gr(d, n+1), 1 ≤ d ≤ n, of d-planes in
the (n+1)-dimensional affine space. It has dimension d(n+1−d). A twisted
form of it is a generalized Severi-Brauer variety SBd(A), where A is a central
simple algebra of degree n+ 1. For any two integers d and d′, 1 ≤ d, d′ ≤ n,
there is the product diagram

Gr(d, n+ 1)×Gr(d′, n+ 1)
Seg //

��

Gr(dd′, (n+ 1)2)

��
SBd(A)× SBd′(A

op)
Seg // SBdd′(A⊗k A

op)

(1)

where the horizontal arrows are Segre embeddings given by the tensor prod-
uct of ideals (resp. linear subspaces) and the vertical arrows are canonical
maps induced by the scalar extension ks/k (here ks is a separable closure of
k).

5.25. The diagram (1) induces the commutative diagram of rings

CH(Gr(d, n+ 1)×Gr(d′, n+ 1)) CH(Gr(dd′, (n+ 1)2))
Seg∗oo

CH(SBd(A)× SBd′(A
op))

res

OO

CH(SBdd′(A⊗k A
op))

Seg∗oo

' res

OO
(2)

Observe that the right vertical arrow is an isomorphism since A⊗kA
op splits.

Consider a vector bundle E over Gr(dd′, (n + 1)2). It is easy to see
that the pull-back of the total Chern class Seg∗(c(E)) is a rational cycle
on CH(Gr(d, n+ 1)×Gr(d′, n+ 1)) = CH(Gr(d, n+ 1))⊗CH(Gr(d′, n+ 1)).
In particular, if E = τdd′ is the tautological bundle of Gr(dd′, (n + 1)2) we
obtain the following

5.26 Lemma. The total Chern class c(pr∗1τd ⊗ pr∗2τd′) of the tensor product
of the pull-backs (induced by the projection maps) of the tautological bundles
τd and τd′ of Gr(d, n+ 1) and Gr(d′, n+ 1) respectively is rational.
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From now on we restrict ourselves to the case n = 4, d = 2 and d′ = 1,
i.e., to the Grassmannian Gr(2, 5) and the projective space P4 = Gr(1, 5).

5.27. We describe the generators and relations of the Chow ring CH(Gr(2, 5))
following [Ful, section 14.7]. Set σm = cm(Q), m = 1, 2, 3, where Q = O5/τ2
is the universal quotient bundle of rank 3 over Gr(2, 5). It is known that
the elements σm generate the Chow ring CH(Gr(2, 5)). More precisely, as
an abelian group this ring is generated by the Schubert cycles ∆λ(σ) that
are parameterized by all partitions λ = (λ1, λ2) such that 3 ≥ λ1 ≥ λ2 ≥ 0.
In particular, σm = ∆(m,0), m = 1, 2, 3. For other generators we set the
following notation g2 = ∆(1,1), g3 = ∆(2,1), h4 = ∆(3,1), g4 = ∆(2,2), g5 =
∆(3,2), pt = ∆(3,3). These generators corresponds to the vertices of the Hasse
diagram of Gr(2, 5)

σ3

||
|| BB

BB

h4

~~
~~ AA

AA
σ2

}}
}}

}
AA

AA
A

pt g5

BB
BB

g3

||
|| BB

BB
σ1

||
||

1

g4 g2

The multiplication rules can be determined using Pieri’s formulae

∆λ · σm =
∑

µ

∆µ,

where the sum is taken over all partitions µ = (µ1, µ2) such that 3 ≥ µ1 ≥
λ1 ≥ µ2 ≥ λ2 ≥ 0.

5.28. Consider the tautological bundle τ2 of the Grassmannian Gr(2, 5). Its
total Chern class is

c(τ2) = c(Q)−1 =
1

1 + σ1 + σ2 + σ3

= 1− σ1 − σ2 + σ2
1 + . . .

where the rest consists of the summands of degree greater than 2. Hence, we
obtain c1(τ2) = −σ1 and c2(τ2) = −σ2 + σ2

1 = g2.

5.29. The Chow ring of the projective space P4 can be identified with the
factor ring Z[H]/(H5), where H = c1(O(1)) is the class of a hyperplane
section. Thus, the first Chern class of the tautological bundle of P4 equals
to c1(τ1) = c1(O(−1)) = −H.
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We are now ready to prove Theorem 5.5.

5.30 (Proof of Theorem 5.5). By Lemma 5.26 we obtain the following rational
cycles in CH∗(Gr(2, 5)× P4)

r = c1(pr∗1(τ2)⊗ pr∗2(τ1)) = c1(pr∗1(τ2) + 2c1(pr∗2(τ1)) = −σ1 × 1− 2(1×H),

ρ = c2(pr∗1(τ2)⊗ pr∗2(τ1)) = c2(pr∗1(τ2)) + c1(pr∗1(τ2))c1(pr∗2(τ1)) + c1(pr∗2(τ1))
2

= g2 × 1 + σ1 ×H + 1×H2

For two cycles x and y we shall write x =5 y if there exists a cycle z
such that x− y = 5z. Note that =5 is an equivalence relation that preserves
rationality of cycles. Then the following cycles are rational

ρ2 =5 1×H4 + 2σ1 ×H3 + (σ2 + 3g2)×H2 + 2g3 ×H + g4 × 1,

ρ3 =5 (3σ2 + g2)×H4 + (σ3 + 3g3)×H3 + (g4 + 3h4)×H2 + 3g5 ×H + pt× 1.

and a direct computation shows that ρ3 ◦ (ρ2)t =5 ∆P4 is the class of the
diagonal in CH4(P4 × P4).

Consider the composition

(ρ2)t ◦ ρ3 =5(3σ2 + g2)× g4 + (2σ3 + g3)× g3

+ (g4 + 3h4)× (σ2 − 2g2) + g5 × σ1 + pt× 1.

Note that the right-hand side is a rational projector (over Z) and, therefore,
by the Rost Nilpotence Theorem (see [CGM, Corollary 8.3]) has the form
p×k ks where p is a projector in End(M(SB2(A))). The latter determines an
object (SB2(A), p) in the category of motives (actually in M(G,Z)) which
we denoted by H.

Set q = ∆SB2(A) − p. We then show that

(M(SB2(A)), q) ' (M(SB2(A)), pt) ' H(2),

which gives the claimed decomposition M(SB2(A)) ' H⊕H(2).
Observe that an isomorphism (SB2(A), q) ' (SB2(A), pt) is given by the

two mutually inverse motivic isomorphisms pt
s◦qs and qs◦pt

s over ks which are
rational. An isomorphism H(2) ' (M(SB2(A)), pt) is given by the following
two cycles

j1 = (3σ2 + g2)× pt− (2σ3 + g3)× g5

+ (g4 + 3h4)× (g4 + 3h4)− g5 × (2σ3 + g3) + pt× (3σ2 + g2),

j2 = 1× g4 − σ1 × g3 + (σ2 − 2g2)× (σ2 − 2g2)− g3 × σ1 + g4 × 1.
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Note that j1 is rational, since j1 =5 (1× (3σ2 + g2))p, and 1× (3σ2 + g2) =5

3(ρ+ r2)t ◦ ρ2 is rational.
Since A is a division algebra of degree 5, there is a division algebra B of

degree 5 Brauer-equivalent to the tensor square A⊗2. We claim that H '
M(SB(B)). By the exact sequence (see [Ka00, Remark 7.17])

CH1(SB(Aop)× SB(B))
resFs/F // CH1(P4 × P4)

H×1 7→[Aop]

1×H 7→[B]
// Br(F ) (3)

the following cycle in CH1(P4 × P4) is rational

u =2H × 1 + 1×H.

Therefore the cycles

α = pt× 1 + g5×H − (g4 + 3h4)×H2− (g3 + 2σ3)×H3 + (3σ2 + g2)×H4

≡ u4 ◦ ρ3,

β = 1× g4 −H × g3 −H2 × (σ2 − 2g2) +H3 × σ1 +H4 × 1 ≡ (ρ2)t ◦ (u4)t

are rational. A direct computation shows that α ◦ β = ∆P4 and β ◦ α = ps.
Therefore, the by Rost nilpotence theorem H ' M(SB(B)). This finishes
the proof of the theorem.

5.5 Groups of types Bn and Cn

The goal of the present section is to prove Theorems 5.8 and 5.10.

5.31. Let G be an adjoint group of type Bn. From now on we suppose that
the characteristic of k is not 2. It is known that G = O+(V, q), where (V, q) is
a regular quadratic space of dimension 2n+1 and projective G-homogeneous
varieties can be described as flags of q-totally isotropic subspaces

X(d1, . . . , dk) = {V1 ⊂ . . . ⊂ Vk ⊂ V | dimVi = di}.

5.32. The value of the functor corresponding to the variety X(d1, . . . , dk) at
a k-algebra R equals the set of all flags V1 ⊂ . . . ⊂ Vk, where Vi is a qR-totally
isotropic direct summand of VR of rank di.

For convenience we set d0 = 0, V0 = 0.
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5.33. On the scheme X = X(d1, . . . , dk) there are “tautological” vector bun-
dles Vi of ranks di. The value of Vi on an X-algebra (R, x) is Vi, where
x = (V1, . . . , Vk). For every m there exists an obvious morphism

X(d1, . . . , dk) → X(d1, . . . , d̂m, . . . , dk)

(V1, . . . , Vk) 7→ (V1, . . . , V̂m, . . . , Vk)

which makes X(d1, . . . , dk) into a X(d1, . . . , d̂m, . . . , dk)-scheme.

5.34 Lemma. Denote X(d1, . . . , dk) by Y and X(d1, . . . , d̂m, . . . , dk)) by X.
Suppose that m < k. Then Y as a scheme over X can be identified with the
Grassmann bundle Z = Gr(dm − dm−1,Vm+1/Vm−1) over X.

Proof. Fix an X-algebra (R, x), where x = (V1, . . . , V̂m, . . . , Vk). We define a
natural bijection between the fibers over the point x of Y and Z as follows.
The fiber of Y over x can be identified with the set of all direct summands Vm

of VR of rank dm such that Vm−1 ⊂ Vm ⊂ Vm+1 (note that Vm is automatically
qR-isotropic since Vm+1 is so). This fiber is clearly isomorphic to the fiber of Z
over x which is the set of all direct summands of (Vm+1/Vm−1)x = Vm+1/Vm−1

of rank dm.

5.35 (Proof of Theorem 5.8). Applying Lemma 5.34 to the varieties Y =
X(d1, . . . , dk) and X = X(d1, . . . , d̂m, . . . , dk). We obtain that Y is a Grass-
mann bundle over X. To finish the proof we apply Proposition 2.4.

5.36. Let G be an adjoint group of type Cn over k. It is known that G =
Aut(A, σ), where A is a central simple algebra of degree 2n with an involution
σ of symplectic type on A, and projective G-homogeneous varieties can be
described as flags of (right) ideals of A

X(d1, . . . , dk) = {I1 ⊂ . . . ⊂ Ik ⊂ A | Ii ⊆ I⊥i , rdim Ii = di}.

Here I⊥ = {x ∈ A | σ(x)I = 0} is a right ideal of reduced dimension
2n− rdim I.

5.37. The value of the functor corresponding to the variety X(d1, . . . , dk) at
a k-algebra R equals to the set of all flags I1 ⊂ . . . ⊂ Ik of right ideals of
AR = A⊗k R having the following properties

• the injection of AR-modules Ii ↪→ AR splits;
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• Ii ⊆ I⊥i ;

• rdim Ii = di.

For convenience we set I0 = 0.

5.38. On the scheme X = X(d1, . . . , dk) there are “tautological” vector
bundles Ji of ranks 2ndi and their “orthogonal complements” J ⊥

i of rank
2n(2n − di). The value of Ji (resp. J ⊥

i ) on an X-algebra (R, x), where
x = (I1, . . . , Ik), is Ii (resp. I⊥i ) considered as a projective R-module. The
bundles Ji and J ⊥

i also have structures of right AX-modules, where AX is a
constant sheaf of algebras on X determined by A. There exists an obvious
morphism

X(d1, . . . , dk) → X(d1, . . . , dk−1)

(I1, . . . , Ik) 7→ (I1, . . . , Ik−1),

which makes X(d1, . . . , dk) into a X(d1, . . . , dk−1)-scheme.

5.39 Lemma. Denote X(d1, . . . , dk) by Y and X(d1, . . . , dk−1) by X. Sup-
pose that dk = dk−1 + 1 and there exists a vector bundle E over X such that
AX ' EndOX

(E). Consider the vector bundle

F = J ⊥
k−1E/Jk−1E = J ⊥

k−1/Jk−1 ⊗AX
E

of rank 2(n − dk−1). Then Y as a scheme over X can be identified with the
projective bundle Z = P(F) = Gr(1,F) over X.

Proof. Fix anX-algebra (R, x), where x = (I1, . . . , Ik−1). We define a natural
bijection between the fibers over the point x of Y and Z. The fiber of Y
can be identified with the set of all ideals Ik containing Ik−1 and satisfying
the conditions 5.37. The fiber of Z is the set of all direct summands of
Fx = F(R, x) of rank 1.

The involution σ induces an isomorphism h : Ex ⊗ L → E∗x for some in-
vertible R-module L (see [Knus, Lemma III.8.2.2]) such that

σ(f)⊗ 1 = h−1f ∗h for all f ∈ A
h∗can⊗ 1 = −h

where can: Ex → E∗∗x is the canonical isomorphism.
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Let U1 and U2 be direct summands of Ex. We write U2 ⊆ U⊥
1 if h(u ⊗

l)(v) = 0 for all u ∈ U1, v ∈ U2, l ∈ L. We call a direct summand U of
Ex totally isotropic if U ⊆ U⊥. Note that any direct summand of rank 1 is
totally isotropic (it can be proved easily using localization).

Define Φ and Ψ as in the proof of Theorem 5.17. Direct computations
show that I1 ⊆ I⊥2 if and only if Φ(I1) ⊆ Φ(I2)

⊥.
So the fiber of Y over x is naturally isomorphic to the set of all totally

isotropic direct summands Uk of Ex of rank dk containing Uk−1 = Φ(Ik). One
can represent Uk as the direct sum Uk−1 ⊕ U where U is a direct summand
of rank 1 (since dk = dk−1 + 1). This U is totally isotropic and, therefore,
Uk is totally isotropic if and only if Uk ⊆ U⊥

k−1. Hence the set of all Uk−1 is
naturally isomorphic to the set of all direct summands of Φ(I⊥k−1) of rank dk

containing Φ(Ik−1). The latter can be identified with P(Fx). This finishes
the proof of the lemma.

We are now ready to prove Theorem 5.10.

5.40 (Proof of Theorem 5.10). Consider the flag varieties Y = X(d1, . . . , dk)
and X(d1, . . . , dk−1). Since indA = 2r for some r and there is an odd di, we
have gcd(ind(A), d1, . . . , dk−1) = 1. By Lemma 5.18 there exists a bundle E
over X such that AX = EndOX

(E). Applying Lemma 5.39 to the varieties X,
Y and the bundle E , we obtain that Y is a projective bundle over X. Now
we use Proposition 2.4 to finish the proof.

5.6 Groups of types G2 and F4

This section is devoted to the proofs of Theorems 5.12 and 5.13.

5.41. Let G be a group of type G2. We suppose that characteristic of k is
not 2. It is known that G = Aut(C) where C is a Cayley algebra over k. By
i-space where i = 1, 2 we mean an i-dimensional subspace Vi of C such that
uv = 0 for every u, v ∈ Vi.

The only flag variety corresponding to a non-maximal parabolic is the
complete flag variety X(1, 2) which is described as follows (see [Bo03]):

X(1, 2) = {V1 ⊂ V2 | Vi is a i-subspace of C}.

Similarly one can describe the homogeneous flag variety corresponding to
the maximal parabolic

X(2) = {V | V is a 2-subspace of C}.
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5.42. Let R be a k-algebra. By an i-submodule in CR = C ⊗k R we mean a
direct summand Vi of CR of rank i such that uv = 0 for every two elements
u, v ∈ Vi. The value of the functor corresponding to the variety X(1, 2)
(respectively X(2)) at a k-algebra R equals the set of all flags V1 ⊂ V2

(respectively submodules V2) where Vi is an i-submodule of CR.

5.43. On the scheme X = X(2) there is a “tautological” vector bundle V of
rank 2. The value of V on an X-algebra (R, x) is V , where x = V .

There exists an obvious morphism

X(1, 2) → X(2)

(V1, V2) 7→ V2

which makes X(1, 2) into an X(2)-scheme.

5.44 Lemma. X(1, 2) as a scheme over X(2) can be identified with the
projective bundle P(V) = Gr(1,V) over X(2).

Proof. The proof goes as in Bn-case (note that if V2 is a 2-submodule then
each of its direct summands of rank 1 is a 1-submodule).

5.45 (Proof of Theorem 5.12). Apply Lemma 5.44 and Proposition 2.4.

5.46. Let G be a group of type F4. We suppose that characteristic of k is not
2, 3. It is known that G = Aut(J) where J is an exceptional simple Jordan
algebra of dimension 27 over k. Set I = {1, 2, 3, 6}. By i-space where i ∈ I
we mean an i-dimensional subspace Vi of J such that every u, v ∈ Vi satisfy
the following condition:

tr(u) = 0, u× v = 0, and if i < 6 then u(va) = v(ua) for all a ∈ J.

It is known that projective G-homogeneous varieties are parameterized by
sequences of numbers d1 < . . . < dk from I and can be described as follows:

X(d1, . . . , dk) = {V1 ⊂ . . . ⊂ Vk | Vi is a di-subspace of A}.

5.47. Let R be a k-algebra. By an i-submodule in JR = J ⊗k R we mean
a direct summand Vi of JR of rank i such that every two elements u, v ∈ Vi

satisfy the conditions above. The value of the functor corresponding to the
variety X(d1, . . . , dk) at a k-algebra R equals the set of all flags V1 ⊂ . . . ⊂ Vk

where Vi is a di-submodule of JR.
For convenience we set d0 = 0, V0 = 0.
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5.48. On the scheme X = X(d1, . . . , dk) there are “tautological” vector bun-
dles Vi of rank di. The value of Vi on an X-algebra (R, x) is Vi, where
x = (V1, . . . , Vk).

There exists an obvious morphism

X(d1, . . . , dk) → X(d1, . . . , d̂m, . . . , dk)

(V1, . . . , Vk) 7→ (V1, . . . , V̂m, . . . , Vk)

which makes X(d1, . . . , dk) into a X(d1, . . . , d̂m, . . . , dk)-scheme.

5.49 Lemma. Denote X(d1, . . . , dk) by Y and X(d1, . . . , d̂m, . . . , dk) by X.
Suppose that m < k and either dm+1 < 6 or dm = 1. Then Y as a
scheme over X can be identified with the Grassmann bundle Z = Gr(dm −
dm−1,Vm+1/Vm−1) over X.

Proof. The proof goes as in Bn-case (note that under our restrictions if Vm+1

is a dm+1-submodule then each of its direct summands of rank dm is a dm-
submodule).

5.50 (Proof of Theorem 5.13). Applying Lemma 5.49 to the varieties Y =
X(d1, . . . , dk) and X = X(d1, . . . , d̂m, . . . , dk), we obtain that Y is a Grass-
mann bundle over X. To finish the proof it remains to apply Proposition 2.4.

6 Classification of motives of projective ho-

mogeneous varieties up to dimension 5

6.1 Introduction

The present chapter can be viewed as a further application of the methods
and results obtained by N. Karpenko [Ka00].

Let k be a field of characteristic not 2 and ks denote its separable closure.
For a variety X over k we denote by Xs the base change X×k ks. Recall (see
[MPW96, section 1]) that X is a twisted flag variety of inner type over k if
X is a twisted form ξ(G/P ) of the variety G/P , where G is a split simple
adjoint algebraic group and the 1-cocycle ξ ∈ Z1(k,G(ks)).

The present chapter is devoted to the following

6.1 Problem. Describe all pairs (X, Y ) of non-isomorphic twisted flag va-
rieties X and Y of inner type over k, which have isomorphic Chow motives.
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This problem can be subdivided into two subproblems:

(i) Describe all such pairs (X, Y ) with Xs ' Ys;

(ii) Describe all such pairs (X, Y ) with Xs 6' Ys.

Let us briefly recall what is known so far. The complete solution of
the problem (i) is known for quadrics and Severi-Brauer varieties due to
Izhboldin, Karpenko, Merkurjev, Rost, Vishik and others (see [I98], [Ka95],
[Ka00], [Ro98], [Vi03]). Concerning (ii), an example (of dimension 5) was
provided by Bonnet in [Bo03]. It deals with twisted flag varieties of type G2.

In the present chapter we provide a complete solution of the mentioned
above problem for projective homogeneous varieties of dimension less than
6. Namely, we prove the following (using the notation of 6.6)

6.2 Theorem. Let X and Y be non-isomorphic twisted flag varieties of
dimension ≤ 5 of inner type over k, which have isomorphic Chow motives.

1. If Xs ' Ys, then either

(a) X = SB(A) and Y = SB(Aop) are Severi-Brauer varieties corre-
sponding to a central simple algebra A and its opposite Aop respec-
tively, where deg(A) = 3, 4, 5, 6 and exp(A) > 2, or

(b) X = SB2,3(A) and Y = SB2,3(A
op), where the central simple alge-

bra A has degree 4 and exponent 4.

2. If Xs 6' Ys, then either

(a) X = Pn and Y = Qn for odd 1 < n ≤ 5, or

(b) X = SB1,3(A) and Y = SB2,3(A
′), where deg(A) = deg(A′) = 4

and A ' A′, A′op, or

(c) X = ξ(G/P1) and Y = ξ(G/P2) are the twisted forms of the variety
G/Pi, i = 1, 2, where G is the split exceptional group of type G2

and Pi is one of its maximal parabolic subgroups, or

(d) X = G2/P2 and Y = P5.

6.3 Remark. Observe that the case X = ξ(G2/P1) and Y = ξ(G2/P2) of
the theorem is the example of Bonnet mentioned above and, hence, is the
minimal one in the sense of dimension.
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6.4 Remark. The case X = SB1,3(A) and Y = SB2,3(A
′) with A ' A′, A′op

provides another minimal example of two non-isomorphic varieties, which
have isomorphic Chow motives.

Apart from Theorem 6.2, for every prime p > 3, we provide new examples
of twisted flag varieties of type Ap−1 that satisfy conditions (i) and (ii).
Namely, we prove the following

6.5 Theorem. Let X = SBd1,...,dk
(A) and Y = SBe1,...,ek

(A′) be twisted flag
varieties of inner type An, n ≥ 2, over k, where the central simple algebras
A and A′ have exponents 1, 2, 3, 4, or 6. Assume that

(i) M(Xs) 'M(Ys);

(ii) d1 = 1 or dk = n

(iii) e1 = 1 or ek = n.

Then M(X) 'M(Y ) ⇔ A ' A′ or A′op.

The chapter is organized as follows. In section 6.2 we consider the case
of a split group and state several facts which will be extensively used in the
proofs. Section 6.3 is devoted to the case by case proof of Theorem 6.2. In
section 6.4 we prove Theorem 6.5 and provide several results that we need
for the proof of Theorem 6.2.

6.2 Preliminaries

In the chapter we use the following notation.

6.6. Let G be a split simple algebraic group defined over a field k. We fix a
split maximal torus T of G and a Borel subgroup B of G containing T and
defined over k. Denote by Φ the root system of G, by Π = {α1, . . . , αrk G}
the set of simple roots of Φ corresponding to B, by W the Weyl group, and
by S = {s1, . . . , srk G} the corresponding set of fundamental reflections. Let
PΘ be the standard parabolic subgroup corresponding to a subset Θ ⊂ Π,
i.e., PΘ = BWΘB, where WΘ = 〈si, αi ∈ Θ〉. Denote by Pi the maximal
parabolic subgroup PΠ\{αi}. By Φ/PΘ we denote the flag variety G/PΘ. The
root enumeration follows Bourbaki.

The notation SBn1,...,nr(A), 1 ≤ n1 < . . . < nr ≤ n, is used for the twisted
form of the variety An/PΘ, where Θ = Π \ {αn1 , . . . , αnr} and A is a central
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simple algebra of degree n + 1 corresponding to the twisting. Observe that
SBn1,...,nr(A) = X(A;n1, . . . , nr) in the notation of [MPW96, Appendix] and
SB(A) = SB1(A) is the usual Severi-Brauer variety defined by A. By ind(A)
we denote the index of A and by exp(A) its exponent. The split projective
quadric of dimension n is denoted by Qn.

6.7. According to [Ko91] the Chow motive of the flag variety X = G/PΘ,
when G is a split group, is isomorphic to

M(X) '
dim X⊕
i=0

Z(i)⊕ai(X),

where the positive integers (ranks) ai(X) are the coefficients of the generating
polynomial pX(z) =

∑dim X
i=0 ai(X)zi. The latter is defined by the following

explicit formula:

pX(z) = (
rk G∏
i=1

zdi(WΘ) − 1

z − 1
)/(

m∏
j=1

∏
i

zdi(Wj) − 1

z − 1
).

Here W1 × . . .×Wm is the decomposition of WΘ into a product of the Weyl
groups corresponding to the irreducible root systems and di(Wj) are the
degrees of the respective fundamental polynomial invariants (see [Ca72, 9.4
A]).

The coefficients ai(X) can be also computed as follows (see [Ko91]):

ai(X) = #{w ∈ W | ∀αi ∈ Θ l(wsi) = l(w) + 1, l(w) = i}.

The dimension of a projective homogeneous variety X can be computed
by the following formula:

dimX = (
∑

i

di(G)− rkG)−
∑

j

(
∑

i

di(Pj)− rkPj) = |Φ+| − |Φ+
P |.

The following observation follows from the above isomorphism.

6.8. The motives of flag varieties X and Y of dimension n over a sep-
arably closed field are isomorphic iff the corresponding sequences of ranks
(a0(X), . . . , an(X)) and (a0(Y ), . . . , an(Y )) are equal.

We shall need the following two facts:
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6.9. (See [Ka00, Criterion 7.1]) Let A, A′ be central simple algebras over k
and SB(A), SB(A′) be the respective Severi-Brauer varieties. Then

M(SB(A)) 'M(SB(A′)) ⇔ A ' A′, A′op.

6.10. (See [I98, Cor. 2.9 and Prop. 3.1]) Let q, q′ be regular quadratic forms
of rank n and Xq, Xq′ be the respective projective quadrics. If n is odd or
n < 7, then

M(Xq) 'M(Xq′) ⇔ Xq ' Xq′ .

Finally, we shall need the following observation:

6.11. (See [Ka00, Proof of Lemma 2.3]) Let X and Y be smooth projective
varieties over k with isomorphic Chow motives. Then there is an isomorphism
of abelian groups

Coker(CH0(X)
res−→ CH0(Xs)) ' Coker(CH0(Y )

res−→ CH0(Ys)).

6.3 Small dimensions

In this section we classify all pairs (X, Y ) of non-isomorphic twisted flag
varieties of inner type over k of dimension ≤ 5 with isomorphic Chow motives
and, hence, prove Theorem 6.2.

Dimension 1. Twisted flag varieties of dimension 1 are the twisted forms
of the projective line P1. The twisted forms of P1 are Severi-Brauer varieties
SB(H), where H is a quaternion algebra. By 6.9

M(SB(H)) 'M(SB(H ′)) ⇔ H ' H ′, H ′op

Since H ' Hop, we conclude that the motives are isomorphic iff the varieties
are isomorphic.

Dimension 2. All twisted flag varieties of dimension 2 are the twisted
forms of the projective space P2 or the split quadric surface Q2 ' P1 × P1.
Observe that Q2 is a projective homogeneous variety for a group of type D2

which is not simple, but semisimple. Nevertheless, we shall consider this case
too.

The motives of P2 and Q2 are not isomorphic, since the respective se-
quences of ranks (1, 1, 1) and (1, 2, 1) are different.
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The twisted forms of Q2 of inner type over k are 2-dimensional quadrics
(see [Inv, Cor. (15.12)]). By 6.10 the motives of two quadrics of dimension 2
are isomorphic iff the quadrics are isomorphic.

The twisted forms of P2 are Severi-Brauer varieties SB(A), where A is a
central simple algebra of degree 3. Again by 6.9 we have

M(SB(A)) 'M(SB(A′)) ⇔ A ' A′, A′op.

Since the varieties SB(A) and SB(Aop) are isomorphic iff A is split, we con-
clude that all pairs of non-isomorphic varieties with isomorphic motives are
of the kind (SB(A), SB(Aop)), where A is a division algebra of degree 3.

Dimension 3. Computing the generating functions (see 6.7) we conclude
that there are only three projective homogeneous varieties of dimension 3
over ks. Namely, the projective space P3, the quadric Q3 and the variety of
complete flags A2/B (B denotes a Borel subgroup). The respective sequences
of ranks look as follows:

P3 ' A3/P1 : (1, 1, 1, 1)
Q3 ' B2/P1 : (1, 1, 1, 1)

A2/B : (1, 2, 2, 1)

In particular, we see that the motives of P3 and Q3 are isomorphic but the
motives of Q3 and A2/B are not.

By 6.9 all non-isomorphic twisted forms of P3, which have isomorphic
motives, form pairs (SB(A), SB(Aop)), where A is a division algebra of degree
4 and exponent 4. Observe that all non-isomorphic twisted forms of Q3 are
quadrics as well and by 6.10 the motive of a quadric determines this quadric
uniquely. Therefore it remains to describe all possible motivic isomorphisms
between the twisted forms ξP3 and ζQ

3 and the twisted forms ξ(A2/B) and

ζ(A2/B) of the variety of complete flags A2/B.
According to Corollary 6.18 there are no non-isomorphic twisted forms of

A2/B with isomorphic Chow motives. And the next lemma shows that there
are no such (non-trivial) twisted forms of P3 and Q3.

6.12 Lemma. Let ξ, ζ be 1-cocycles. Then M(ξP3) ' M(ζQ
3) iff ξ and ζ

are trivial.

Proof. This is a particular case of a more general result (see Lemma 6.16)
proven using the Index Reduction Formula. Here we give an elementary
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proof. It uses only well-known facts about quadrics and Severi-Brauer vari-
eties.

Observe that any twisted form of P3 is a Severi-Brauer variety SB(A) for
some central simple algebra A of degree 4 and any twisted form of Q3 is a
non-singular quadric of dimension 3.

As in 6.11 for a variety X consider the abelian group Coker(CH0(X) →
CH0(Xs)). IfX = SB(A) is a Severi-Brauer variety of a central simple algebra
A, then this cokernel is equal to Z/ ind(A)Z (see [Ka00]), where ind(A) is
the index of A. In particular, this cokernel is trivial iff A is split. If X is
a quadric then this cokernel is trivial iff X is isotropic. In the case X is an
anisotropic quadric this cokernel is isomorphic to Z/2Z.

In our case we have two varieties X = SB(A) and Y = ζQ
3 with isomor-

phic motives. Hence, by 6.11 the respective cokernels must be isomorphic.
Hence, if the quadric Y is isotropic, then the algebra A is split. The latter

implies that the motive M(SB(A)) splits into a direct sum of the Lefschetz
motives and so is M(Y ), i.e., Y is split as well by 6.10.

Assume q is anisotropic, then there exists a quadratic field extension l/k
such that the Witt index of Yl = Y ×k l is one (see [Vi03, §7.2]). Since the
motives of X and Y are still isomorphic over l, we conclude that A is split
over l. Then Yl is split as well. This leads to a contradiction.

6.13 Remark. Observe that the pair of twisted forms (ξ(B2/P1), ξ(B2/P2))
can be viewed as a low-dimensional analog of the pair (ξ(G2/P1), ξ(G2/P2))
considered by Bonnet. The lemma says that contrary to the G2-case the
motives of ξ(B2/P1) and ξ(B2/P2) are not isomorphic (if ξ is non-trivial).

Dimension 4. There are three non-isomorphic projective homogeneous
varieties of dimension 4 over ks. Namely, the projective space P4, the 4-
dimensional quadric Q4 ' Gr(2, 4) and the variety of complete flags B2/B.
The respective sequences of ranks in these cases are all different and look as
follows:

P4 ' A4/P1 : (1, 1, 1, 1, 1)
Q4 ' A3/P2 : (1, 1, 2, 1, 1)

B2/B : (1, 2, 2, 2, 1)

Hence, the motives of P4, Q4 and B2/B are non-isomorphic to each other.
By 6.9 all non-isomorphic twisted forms of P4 with isomorphic motives

form pairs (SB(A), SB(Aop)), where A is a division algebra of degree 5. By
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Corollary 6.20 there are no non-isomorphic twisted forms of B2/B with iso-
morphic Chow motives. Therefore the only case left is the case of inner
twisted forms of Q4.

The inner forms of Q4 are the generalized Severi-Brauer varieties SB2(A),
where A is a central simple algebra of degree 4. The next lemma shows that
there are no non-isomorphic forms of SB2(A), which have isomorphic motives.

6.14 Lemma. Let A, A′ be central simple algebras of degree 4. Then

M(SB2(A)) 'M(SB2(A
′)) ⇔ SB2(A) ' SB2(A

′)

Proof. Let M(SB2(A)) ' M(SB2(A
′)). It suffices to prove that for all field

extensions l/k one has ind(Al) = ind(A′l). Indeed, by [Ka00, Lemma 7.13]
〈A〉 = 〈A′〉 in Br(k), hence, A ' A′ or A′op. But SB2(A) ' SB2(A

op) for any
central simple algebra A of degree 4.

Assume that there exists a field extension l/k such that ind(Al) 6= ind(A′l).
Depending on the indices of A and A′ we distinguish the following cases:

Case 1. ind(A) = 4 and ind(A′) = 1 or 2.
In this case SB2(A

′) has a rational point. By [Inv, Case A3 = D3], the
variety SB2(A

′) is an isotropic quadric, hence, the group

Coker(CH0(SB2(A
′)) → CH0(SB2(A

′
ks

))

is trivial. By 6.11 the cokernel

Coker(CH0(SB2(A)) → CH0(SB2(Aks))

must be trivial as well. If exp(A) = 2, then A is a biquaternion algebra and
by [Inv, Cor. (15.33)] SB2(A) is an anisotropic quadric. Then the cokernel
above must be isomorphic to Z/2Z, a contradiction. If exp(A) = 4, then by
[Inv, Cor. (15.33)] A ' C±(B, σ, f), where (B, σ, f) ∈ 1D3 and B is a central
simple algebra of degree 6 and index 2. Therefore the cokernel above must
be again isomorphic to Z/2Z, a contradiction.

Case 2. ind(A) = 2 and ind(A′) = 1.
In this case A′ is split, hence, the corresponding variety is a split quadric.

On the other hand, SB2(A) ' Xq, where q is some 6-dimensional quadratic
form and Xq is the corresponding projective quadric. Using 6.10, we conclude
that SB2(A) ' SB2(A

′), a contradiction.
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Dimension 5. There are five non-isomorphic projective homogeneous vari-
eties over ks of dimension 5. Namely, the projective space P5, the quadric Q5,
the exceptional Fano variety G2/P2, the flag varieties A3/P{α1} and A3/P{α2}.
The respective sequences of ranks look as follows:

P5 ' A5/P1 : (1, 1, 1, 1, 1, 1)
Q5 ' B3/P1 : (1, 1, 1, 1, 1, 1)

G2/P2 : (1, 1, 1, 1, 1, 1)
A3/P{α1} ' A3/P{α3} : (1, 2, 3, 3, 2, 1)

A3/P{α2} : (1, 2, 3, 3, 2, 1)

Therefore, the motives of P5, Q5 and G2/P2 are isomorphic and the motives
of A3/P{α1} and A3/P{α2} are isomorphic.

As mentioned before, the twisted forms of P5 and Q5 were completely
classified up to motivic isomorphisms by Karpenko and Izhboldin (see 6.9 and
6.10). Namely, all such non-isomorphic forms are of the kind (SB(A), SB(Aop)),
where A is a central simple algebra of degree 6 with exp(A) > 2. Moreover,
by Lemma 6.16 there there is only one pair (ξP5, ζQ

5) of twisted forms with
isomorphic motives.

By the result of Bonnet [Bo03] the motive of a twisted form ξ(G2/P2) is
isomorphic to the motive of ξ(G2/P1), which is a 5-dimensional quadric.

By Corollary 6.19 the motives of the twisted forms of A3/P{α1} and
A3/P{α2} are isomorphic iff the respective central simple algebras of degree 4
are isomorphic or opposite. This provides the last example (see Theorem 6.2)
of a pair of non-isomorphic varieties of dimension 5 with isomorphic motives.

6.4 Arbitrary dimensions

In the present section we prove several classification results. We start with
the following

6.15 Lemma. Let X and Y be twisted flag varieties of inner type over k
with isomorphic Chow motives. Assume X is not of type E8 and splits over
its function field k(X), i.e., the group corresponding to X splits over k(X).
Then X splits over the function field of Y .

Proof. Since the motives are isomorphic, there is an isomorphism of cokernels
(see 6.11) and, hence, an isomorphism of cokernels over k(Y )

Coker(CH0(Xk(Y )) → CH0(Xk(Y )s)) ' Coker(CH0(Yk(Y )) → CH0(Yk(Y )s))
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Since Yk(Y ) is isotropic, the right cokernel is trivial and so is the left one.
The fact that the map res : CH0(Xk(Y )) → CH0(Xk(Y )s) is surjective and the
group CH0(Xk(Y )s) is a free abelian group of rank one generated by the class
of a rational point [pt] implies that the preimage res−1([pt]) is a 0-cycle of
degree 1 in CH0(Xk(Y )). Then, by [To04, Q. 0.2] Xk(Y ) is isotropic. Since X
splits over its function field, Xk(Y ) splits as well.

6.16 Lemma. Let γ, δ be 1-cocycles and X = γPn, Y = δQ
n be the respective

twisted forms for n > 1 odd. Then

M(X) 'M(Y ) ⇔ γ and δ are trivial.

Proof. Observe that X is a Severi-Brauer variety corresponding to a central
simple algebra A and Y is an n-dimensional quadric.

Assume thatM(X) 'M(Y ) and γ is not trivial. By Lemma 6.15 applied
to X and Y , the algebra Ak(Y ) splits, i.e., ind(Ak(Y )) = 1. On the other hand
by the Index Reduction Formula (see [MPW96]) we obtain

ind(Ak(Y )) = min{ind(A), 2(n−1)/2 ind(A⊗k C0(q))} > 1,

where C0(q) is the even part of the Clifford algebra of the quadratic form
corresponding to Y . This leads to a contradiction.

Note that the same proof works for twisted forms of types Bn and Cn.
Namely,

6.17 Proposition. Let γ, δ be 1-cocycles and X = γ(Cn/Pl), Y = δ(Bn/Pl)
be the respective twisted forms for an odd 1 ≤ l < n. Then

M(X) 'M(Y ) ⇔ γ and δ are trivial.

The rest of this section is devoted to the twisted forms of flag varieties.
In particular, we obtain the description of motivic isomorphisms for twisted
forms of the flag varieties A2/B, B2/B and A3/P{αi}, i = 1, 2, 3. We start
with the proof of Theorem 6.5.

Proof of Theorem 6.5. W.l.o.g. we may assume that d1 = e1 = 1. Assume
M(X) 'M(Y ). Since X and Y are twisted forms of flags “containing” the
subspace of a minimal dimension, the motives of X and Y can be decomposed
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into a direct sum of twisted motives of Severi-Brauer varieties (see 5.1).
Namely,

M(X) '
⊕

i

M(SB(A))(i), M(Y ) '
⊕

j

M(SB(A′))(j). (*)

This together with 6.11 implies the isomorphism of abelian groups

Coker(CH0(SB(A)) → CH0(Pn)) ' Coker(CH0(SB(A′)) → CH0(Pn))

and, hence, the isomorphism Z/ ind(A)Z ' Z/ ind(A′)Z, i.e., ind(A) =
ind(A′). Since the motivic isomorphism is preserved under the base exten-
sions, we obtain that ind(Al) = ind(A′l) for any finite field extension l/k. The
latter is equivalent to the condition 〈A〉 = 〈A′〉 in Br(k). By conditions of
the theorem this is equivalent to A ' A′ or A′op.

In the opposite direction, let A ' A′ or A′op. By conditions (i)-(iii) one
has two motivic decompositions (*) with the same sets of indices {i} and
{j}. Now according to 6.9 the motives of SB(A) and SB(A′) are isomorphic
and, hence, so are M(X) and M(Y ).

The following obvious consequences of Theorem 6.5 are used in the proof
of Theorem 6.2.

6.18 Corollary. Let X and Y be twisted forms of the variety of complete
flags An/B. Let A and A′ denote the central simple algebras corresponding
to X and Y respectively. Assume that exp(A), exp(A′) equal 1, 2, 3, 4 or 6.
Then

M(X) 'M(Y ) ⇔ X ' Y.

6.19 Corollary. Let X = SB1,3(A) and Y = SB2,3(A
′). Then

M(X) 'M(Y ) ⇔ A ' A′ or A′op.

6.20 Corollary. Let X and Y be twisted forms of the variety of complete
flags B2/B. Then

M(X) 'M(Y ) ⇔ X ' Y.

Proof. The proof repeats the proof of 6.5 observing that the motivic decom-
positions (*) are provided in 5.9.
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6.5 Incidence varieties

In this section we give elementary proofs of some particular cases of the
classification theorem above.

Let us fix some notation. Let X, Y be any smooth projective varieties.
For any cycle J onX we denote as J its image in CH(Xs) under the restriction
map resks/k. If ϕ : X → Y is a morphism, then ϕ denotes its scalar extension
ϕ×k ks.

A cycle J on X is called rational if it lies in the image of the pull-back
homomorphism CH(X) → CH(Xs).

First we consider the variety G/B, where G is the split group of type A2.
The ring CH((G/B)s) has generators

[X1], [Xs1s2s1 ] = 1, [Xs1s2 ] := h, [Xs2s1 ] := g, [Xs1 ] = g2, [Xs2 ] = h2.

We calculated the multiplicative structure using Pieri’s formula.
Consider the smooth projective morphism ϕ : γ(G/B) → γ(G/P1) (γ is a

1-cocycle). The corresponding push-forward morphism ϕ∗ acts on the gen-
erators as follows:

1 7→ 0, h 7→ 0, g 7→ 1, g2 7→ h, h2 7→ 0, [X1] 7→ h2.

6.21 Proposition. Let X, X ′ be inner twisted forms of G/B, where G is
the split group of type A2 and B its Borel subgroup. Then

M(X) 'M(X ′) ⇔ X ' X ′.

Proof. Denote as A, A′ the central simple algebras of degree 3 corresponding
to X = γ(G/B) and X ′ = γ′(G/B). Let J be a motivic isomorphism between
X and X ′. J has the following form:

J = a11× [X1] + a2[X1]× 1 + a3h× h2 + a4h× g2

+ a5g × h2 + a6g × g2 + a7h
2 × h+ a8h

2 × g

+ a9g
2 × h+ a10g

2 × g ∈ CH3((G/B)s × (G/B)s),

where ai ∈ Z. Since all object under consideration split completely over a
suitable field extension of degree 3, we may work modulo 3 w.l.o.g. Since J
is an isomorphism, it has a summand ±g2 × . . .
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We claim that there exists a maximal standard parabolic subgroup P ′ in
G such that the push-forward map

(ϕ∗ × ϕ′∗)(J) = ±h× 1 + a1× h′ ∈ CH1((G/P1)s × (G/P ′)s)

for some a ∈ {0,±1} (ϕ′ : γ′(G/B) → γ′(G/P
′)).

Since push-forwards preserve rationality of cycles, the cycle h×1±a1×h′
is rational. If a = ±1, then we apply the theorem of Karpenko which says
that the cycle h×1±1×h′ is rational if and only if A ' A′, A′op (see [Ka00]).

If a = 0, then h is rational because of the structure of the Picard group
of γ(G/P1) (see [MT95]). Hence A is split. Therefore A′ is split.

It remains to notice that the varieties X and X ′ are isomorphic (see [Inv,
Prop. (1.19)]), if A ' A′op.

Case B2/B. Let G be the split group of type B2. The ring CH(G/B) has
generators

[X1], [Xs2s1s2s1 ] = 1, [Xs1s2s1 ] := h, [Xs2s1s2 ] := g,

[Xs1s2 ] = g(2), [Xs2s1 ] = h2, [Xs2 ] = g(3) = gg(2), [Xs1 ] = h3.

We calculated the multiplicative structure using Pieri’s formula.
Consider the smooth projective morphism ϕ : γ(G/B) → γ(G/P2). The

variety γ(G/P2) is a twisted form of P3. The corresponding push-forward
morphism ϕ∗ acts on the generators as follows:

1 7→ 0, h 7→ 0, g 7→ 1, g(2) 7→ h,

h2 7→ 0, [X1] 7→ h2, h3 7→ 0, g(3) 7→ h2.

6.22 Proposition. Let X and X ′ be twisted forms of G/B, where G is the
split group of type B2 and B its Borel subgroup. Then

M(X) 'M(X ′) ⇔ X ' X ′.

Proof. We have X = γ(G/B) and X ′ = γ′(G/B). Denote as A, A′ the
central simple algebras of degree 3 corresponding to γ(G/P2) and γ′(G/P2).
Let J ∈ CH4(X ×X ′) be a motivic isomorphism between X and X ′.

We proceed similar to the case A2/B. W.l.o.g. we may work modulo 4.
Apply the push-forward map ϕ∗×ϕ′∗ to J , where ϕ′ is a projection γ′(G/B) →
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γ′(G/P1) or γ′(G/B) → γ′(G/P2). The image of J lies in CH2(γ(G/P2) ×
γ′(G/P

′)) for some P ′ (P ′ is either P1 or P2).
Apply now the pull-back homomorphism

CH2(γ(G/P2)× γ′(G/P
′)) → CH2(γ(G/P2)× γ′(G/B)).

Again using some push-forward ϕ′′ we get a (rational) cycle r in CH1(γ(G/P2)×
γ′(G/P

′′)) (P ′′ is either P1 or P2). Since J is an isomorphism, we can always
choose P ′, P ′′ in such a way that r = ±h× 1 + a1× d′, where d′ is either h
or g in CH1((G/B)s), a ∈ Z/4.

If d′ is g (the generator for a quadric) or a = 0, then d′ is rational.
Therefore h × 1 is rational. Hence A is split. If d′ corresponds to h and
a = ±1, then applying Karpenko’s arguments we get A ' A′, A′op. If a = ±2,
then we apply the same arguments to A and A′ interchanged. We get that
the cycle h× 1 + a′1× d is rational. So it remains to consider only the case,
when d = h and a′ = ±2. In this case indA′ = 2. Therefore h×1 is rational.
Hence A is split.

Since A = C0(q) ' Aop, where q is the 5-dimensional quadratic form
corresponding to γG, we are done.

Using similar arguments it can be shown that

M(X) 'M(X ′) ⇔ X ' X ′,

if X, X ′ are twisted forms of G/B, where G is a split group of type G2 and
B its Borel subgroup. We leave this as an exercise.

7 The case of dimension 15

The main motivation for this chapter was the result of N. Karpenko where
he gave a shortened construction of a Rost motive for a norm quadric [Ka98].
In the present chapter we provide a shortened and explicit construction of
a generalized Rost motive for a norm variety that corresponds to a symbol
(3, 3). The latter is given by the Rost-Serre invariant g3 for an Albert algebra.
Namely, we prove the following

7.1 Theorem. Let k be a field of characteristic different from 2 and 3. Let
X be a projective G-homogeneous variety over k, where G is an anisotropic
group of type F4 obtained by the first Tits process, such that over a separable
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closure it becomes isomorphic to Gs/P , where P is the maximal parabolic sub-
group corresponding to the first (last) three vertices of the respective Dynkin
diagram. Then the (integral) Chow motive of X decomposes as

M(X) ∼= ⊕7
i=0R(i),

where the motive R = (X, p) is the (integral) generalized Rost motive, i.e.,
over a separable closure ks of k it splits as the direct sum of Lefschetz motives
Z⊕ Z(4)⊕ Z(8).

By the next result, we provide the first known “purely exceptional” ex-
ample of two non-isomorphic varieties with isomorphic motives. Recall that
a similar result for groups of type G2 obtained in [Bo03] provides a motivic
isomorphism between a quadric and a Fano variety.

7.2 Theorem. Under the hypotheses of theorem 7.1 let X1 and X2 be two
projective homogeneous varieties corresponding to the maximal parabolic sub-
groups generated by the first (last) three vertices of the Dynkin diagram re-
spectively. Then the motives of X1 and X2 are isomorphic.

7.3. Our proof uses well-known facts concerning linear algebraic groups and
projective homogeneous varieties, a computer program that computes the
Chow ring CH(G/P ) for a split group G, the Rost Nilpotence Theorem and
several procedures that allow to produce rational cycles on CH(G/P ×G/P ).
Moreover, the proof works not only for projective homogeneous varieties
of type F4. Applying the similar arguments to Pfister quadrics and their
maximal neighbours one obtains the well-known decompositions into Rost
motives [Ro98]. For exceptional groups of type G2 one immediately obtains
the motivic decomposition of the variety G2/P2 together with the motivic
isomorphism found by J.-P. Bonnet [Bo03].

7.4. The chapter is organized as follows. In Section 7.1 we apply the formulae
introduced in Section 3.2 to projective homogeneous varieties X1 and X2 of
type F4. In Section 7.2 we prove Theorem 7.1. Section 7.3 is devoted to the
proof of Theorem 7.2.

7.1 Projective homogeneous varieties of type F4

7.5. From now on, we assume that the characteristics of the base field k is
not equal to 2 or 3. In the present section we remind several well-known
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facts concerning Albert algebras, groups of type F4 and respective projective
homogeneous varieties (see [PR94], [Inv], [Ga97]). At the end we provide
partial computations of the Chow rings of these varieties.

We start with the following observation concerning the Picard group of a
projective homogeneous variety of type F4

7.6 Lemma. Let X be a projective homogeneous variety such that over a
separable closure it becomes isomorphic to G/P , where G is a split group of
type F4 and P its maximal parabolic subgroup. Let X ′ = X×k ks be its scalar
extension to a separable closure ks. Then the Picard group Pic(X ′) is a free
abelian group of rank 1 with a rational generator.

Proof. Since P is maximal, Pic(X ′) is a free abelian group of rank 1. We use
the following exact sequence (see [Ar82] and [MT95, 2.3]):

0 −→ PicX −→ (PicX ′)Γ αX−−→ Br(k),

where Γ = Gal(ks/k) is the absolute Galois group and Br(k) the Brauer
group of k. The map αX is explicitly described in [MT95] in terms of Tits
classes. Since groups of type F4 are adjoint and simply-connected, their Tits
classes are trivial and so is αX . Since Γ acts trivially on Pic(X ′) and the
image of αX is trivial, we have Pic(X) ' Pic(X ′).

7.7. It is well known that the classification of algebraic groups of type F4 is
equivalent to the classification of Albert algebras (those are 27-dimensional
exceptional simple Jordan algebras). All Albert algebras can be obtained
from one of the two Tits constructions.

An Albert algebra A obtained by the first Tits construction is produced
from a central simple algebra of degree 3. By using the Rost-Serre invariant
g3 (if the input central simple algebra is split, then g3 = 0) one can show that
for the respective group G = Aut(A) only two Tits diagrams ([Ti66, Table
II]) are allowed, namely the completely split case and the anisotropic case.
This means that

(i) anisotropic G splits completely by a cubic field extension;

(ii) for each i the variety Xi of maximal parabolic subgroups of G of type
i splits completely over the function field k(Xj), j = 1, 2, 3, 4.
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7.8. From this point on we consider a split group G of type F4. Let X1 =
G/P1 and X2 = G/P4 be projective homogeneous varieties, corresponding to
maximal parabolic subgroups P1 and P4 generated by the last {2, 3, 4} and
the first {1, 2, 3} three vertices of the Dynkin diagram

◦
1

◦
2

> ◦
3

◦
4

Varieties X1 and X2 are not isomorphic and have dimension 15. We provide
the Hasse diagrams (graphs) for X1:

◦ 1 //◦ 2
@@

@@

◦
@@

@@ ◦
@@

@@

2 ~~~~ ◦
@@

@@ ◦
@@

@@

◦
1
◦

2
◦

3
◦

~~~~

2
@@

@@ ◦
~~~~

@@
@@ ◦

2
//◦

~~~~

3
@@

@@ ◦
~~~~

@@
@@ ◦

3
◦

2
◦

1
◦

◦
~~~~

1
@@

@@ ◦ 3

~~~~ ◦
~~~~

4
@@

@@ ◦ 2

~~~~

◦ 4

~~~~ ◦ 1

~~~~

and X2:

◦ 4 //◦ 3
@@

@@

◦
@@

@@ ◦
@@

@@

3 ~~~~ ◦
@@

@@ ◦
@@

@@

◦
4
◦

3
◦

2
◦

~~~~

3
@@

@@ ◦
~~~~

@@
@@ ◦

3
//◦

~~~~

2
@@

@@ ◦
~~~~

@@
@@ ◦

2
◦

3
◦

4
◦

◦
~~~~

4
@@

@@ ◦ 2

~~~~ ◦
~~~~

1
@@

@@ ◦ 3

~~~~

◦ 1

~~~~ ◦ 4

~~~~

We draw the diagrams in such a way that the labels on the opposite sides of
a parallelogram are equal and in that case we omit all labels but one.

Recall that (see 3.6) the vertices of this graph correspond to the basis
elements of the Chow group CH(X2). The rightmost vertex is the unit class
1 = [Xwθ ] and the leftmost one is the class of a 0-cycle of degree 1.

7.9. We denote the basis elements of the respective Chow groups as follows

CHi(X1) =

{
〈hi

1〉, i = 0 . . . 3, 12 . . . 15,

〈hi
1, g

i
1〉, i = 4 . . . 11.

CHi(X2) =

{
〈hi

2〉, i = 0 . . . 3, 12 . . . 15,

〈hi
2, g

i
2〉, i = 4 . . . 11.

The generators hi correspond to the upper vertices of the respective Hasse
diagrams, and gi to the lower ones (if the corresponding rank is 2).
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7.10. Applying 3.9 we immediately obtain the following partial multiplica-
tion table

hs
kg

15−s
k = 0, hs

kh
15−s
k = gs

kg
15−s
k = h15

k ,

where k = 1, 2, for all s.

7.11. By Pieri’s formula 3.10 we obtain the following partial multiplication
tables for CH(X1):

h1
1h

1
1 = h2

1, h1
1h

2
1 = 2h3

1, h1
1h

3
1 = 2h4

1 + g4
1, h1

1h
4
1 = h5

1,

h1
1g

4
1 = 2h5

1 + g5
1, h1

1h
5
1 = 2h6

1 + g6
1, h1

1g
5
1 = 2g6

1, h1
1h

6
1 = h7

1 + g7
1,

h1
1g

6
1 = 2g7

1, h1
1h

7
1 = 2h8

1 + g8
1, h1

1g
7
1 = h8

1 + 2g8
1, h1

1h
8
1 = h9

1,

h1
1g

8
1 = h9

1 + 2g9
1, h1

1h
9
1 = 2h10

1 , h1
1g

9
1 = h10

1 + 2g10
1 , h1

1h
10
1 = h11

1 + 2g11
1 ,

h1
1g

10
1 = g11

1 , h1
1h

11
1 = 2h12

1 , h1
1g

11
1 = h12

1 , h1
1h

12
1 = 2h13

1 ,

h1
1h

13
1 = h14

1 , h1
1h

14
1 = h15

1 .

for CH(X2):

h1
2h

1
2 = h2

2, h1
2h

2
2 = h3

2, h1
2h

3
2 = h4

2 + g4
2, h1

2h
4
2 = h5

2,

h1
2g

4
2 = h5

2 + g5
2, h1

2h
5
2 = h6

2 + g6
2, h1

2g
5
2 = g6

2, h1
2h

6
2 = h7

2 + g7
2,

h1
2g

6
2 = g7

2, h1
2h

7
2 = 2h8

2 + g8
2, h1

2g
7
2 = h8

2 + 2g8
2, h1

2h
8
2 = h9

2,

h1
2g

8
2 = h9

2 + g9
2, h1

2h
9
2 = h10

2 , h1
2g

9
2 = h10

2 + g10
2 , h1

2h
10
2 = h11

2 + g11
2 ,

h1
2g

10
2 = g11

2 , h1
2h

11
2 = h12

2 , h1
2g

11
2 = h12

2 , h1
2h

12
2 = h13

2 ,

h1
2h

13
2 = h14

2 , h1
2h

14
2 = h15

2 .

7.12. Observe that the multiplication tables 7.11 can be visualized by means
of the Hasse diagrams. Namely, for the variety X1 consider the following
graph which is obtained from the respective Hasse diagram by adding a few
more edges and erasing all the labels:

◦

;;
;;

;;
;; ◦

@@
@@

��
��

��
��

◦
@@

@@ ◦
@@

@@

~~~~ ◦
@@

@@
@@

@@ ◦
@@

@@
@@

@@

◦ ◦ ◦ ◦
~~~~
~~~~
@@

@@ ◦
~~~~
~~~~
@@

@@ ◦ ◦
~~~~
@@

@@
@@

@@ ◦
~~~~
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and for X2:
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The multiplication rules can be restored from this graph as follows: for a
vertex u (that corresponds to a basis element of the Chow group) we set

h1
iu =

∑
u→v

v,

where the sum runs through all the edges going from u one step to the right
(cf. [Hi82b, Cor. 3.3]), i = 1, 2.

7.13. Applying Giambelli’s formula 3.11 we obtain the following products
which will be essentially used in the next section (see Appendix)

g4
1g

4
1 = 6h8

1 + 8g8
1, g4

2g
4
2 = 3h8

2 + 4g8
2.

7.2 Construction of rational projectors

The goal of the present section is to prove Theorem 7.1.

7.14. According to 2.9 in order to decompose the motive M(X) it is enough
to construct rational projectors on CH15(X ′ × X ′), where X ′ = X ×k ks.
Observe that our anisotropic group G of type F4 is obtained by the first
Tits construction, so by 7.7(i) there is a splitting field extension of degree
3. Therefore, for any basis element h of CH(X ′) the cycle 3h is rational (it
follows immediately by transfer arguments). Hence, in order to construct
rational cycles in CH(X ′×X ′) it is enough to work modulo 3. We shall write
x =3 y iff x − y = 3z for some cycle z. Please note that all results hold for
Chow groups with integral coefficients.

7.15. Recall that the cycles h1
1 and h1

2 are rational by Lemma 7.6. Hence,
their powers (h1

1)
i and (h1

2)
i, i = 2 . . . 7, are rational as well. Using multipli-

cation tables 7.11 or their graph interpretation 7.12 we immediately obtain
the following rational cycles: in codimensions 2 through 7 for CH(X ′

1):

h2
1, h

3
1, h

4
1 − g4

1, h
5
1 + g5

1, h
6
1, h

7
1 + g7

1,
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and for CH(X ′
2):

h2
2, h

3
2, h

4
2 + g4

2, g
5
2 − h5

2, h
6
2, h

7
2 + g7

2.

7.16. Apply the arguments of 2.2(iii) to CH4(X ′
2 × X ′

1) (this can be done
because all the properties for X ′

1 and X ′
2 hold by 7.7(ii)). There exists a

rational cycle α1 ∈ CH4(X ′
2×X ′

1) such that f ′(α1) = g4
2×1. This cycle must

have the following form:

α1 = g4
2 × 1 + a1h

3
2 × h1

1 + a2h
2
2 × h2

1 + a3h
1
2 × h3

1 + a41× h4
1 + a′1× g4

1,

where ai, a
′ ∈ {−1, 0, 1}. We may reduce α1 by adding cycles that are known

to be rational (by 7.15) to

α1 = (g4
2 × 1) + a′(1× g4

1).

Repeating the same procedure for a rational cycle α2 ∈ CH4(X ′
2 ×X ′

1) such
that f ′(α2) = 1× g4

1 and reducing it we obtain the rational cycle

α2 = b(g4
2 × 1) + (1× g4

1),

where b ∈ {−1, 0, 1}. Hence, there is a rational cycle of the form

r = g4
2 × 1− a(1× g4

1),

where a ∈ {−1, 1}.

7.17. To obtain a rational projector p1 we proceed as follows. First, we
obtain the following rational cycles in CH(X ′

2 ×X ′
1) modulo 3.

r2 = (g4
2 × 1− a · 1× g4

1)2 =3 g
8
2 × 1 + a(g4

2 × g4
1)− 1× g8

1,

r1 = (1× (h7
1 + g7

1))r2 =3 g
8
2 × (h7

1 + g7
1)− 1× h15

1 − a(g4
2 × (g11

1 + h11
1 )),

r2 = ((h7
2 + g7

2)× 1)r2 =3 −(h7
2 + g7

2)× g8
1 + h15

2 × 1 + a((g11
2 − h11

2 )× g4
1),

r3 = (h1
2 × h6

1)r
2 =3 −h1

2 × h14
1 + (g9

2 + h9
2)× h6

1 + a((h5
2 + g5

2)× (g10
1 − h10

1 )),

r4 = (h6
2 × h1

1)r
2 =3 h

6
2 × (g9

1 − h9
1) + h14

2 × h1
1 + a((h10

2 + g10
2 )× (h5

1 − g5
1)),

r5 = (h2
2× (h5

1 +g5
1))r2 =3 h

2
2×h13

1 +(g10
2 −h10

2 )× (h5
1 +g5

1)+a((h6
2−g6

2)×g9
1),

r6 = ((g5
2−h5

2)×h2
1))r

2 =3 −h13
2 ×h2

1−(g5
2−h5

2)×(h10
1 +g10

1 )+a(g9
2×(h6

1+g6
1)),

r7 = (h3
2 × (h4

1 − g4
1))r2 =3 h

3
2 × h12

1 − h11
2 × (h4

1 − g4
1) + a(h7

2 × (g8
1 − h8

1)),

r8 = ((h4
2 + g4

2)× h3
1)r

2 =3 −h12
2 × h3

1 + (h4
2 + g4

2)× h11
1 + a((h8

2 − g8
2)× h7

1).
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7.18. To obtain motivic decompositions, we need to find rational projectors
in CH(X ′

1 ×X ′
1) and CH(X ′

2 ×X ′
2). By compositioning (still modulo 3), we

obtain the following rational cycles:

−(r2 ◦ rt
1) =3 h

15
1 × 1 + (g11

1 + h11
1 )× g4

1 + (g7
1 + h7

1)× g8
1 =: p0,

−(r4 ◦ rt
3) =3 h

14
1 × h1

1 + (h10
1 − g10

1 )× (g5
1 + 2h5

1) + h6
1 × (h9

1 − g9
1) =: p1,

−(r6 ◦ rt
5) =3 h

13
1 × h2

1 − (h5
1 + g5

1)× (h10
1 − 2g10

1 ) + g9
1 × (h6

1 + g6
1) =: p2,

−(r8◦rt
7) =3 h

12
1 ×h3

1 +(h8
1−g8

1)×h7
1 +(h4

1−g4
1)×h11

1 ∈ CH15(X ′
1×X ′

1) =: p3;

−(rt
1 ◦ r2) =3 h

15
2 × 1 + (g11

2 − h11
2 )× g4

2 + (g7
2 + h7

2)× g8
2 =: q0,

−(rt
4 ◦ r3) =3 h

1
2 × h14

2 + (g9
2 + h9

2)× h6
2 − (h5

2 + g5
2)× (−2h10

2 + g10
2 ) =: q1,

−(rt
6 ◦ r5) =3 h

2
2 × h13

2 − (g10
2 − h10

2 )× (−2g5
2 − h5

2) + (g6
2 − h6

2)× g9
2 =: q2,

−(rt
7◦r8) =3 h

12
2 ×h3

2 +(h4
2 +g4

2)×h11
2 +(h8

2−g8
2)×h7

2 ∈ CH15(X ′
2×X ′

2) =: q3.

It remains to note that

pi ◦ pi = pi in CH15(X ′
1 ×X ′

1),

qi ◦ qi = qi in CH15(X ′
2 ×X ′

2),

where the equalities hold with integral coefficients (not just modulo 3).
Also note that

p0 + p1 + p2 + p3 + pt
0 + pt

1 + pt
2 + pt

3 = ∆X′
1
,

q0 + q1 + q2 + q3 + qt
0 + qt

1 + qt
2 + qt

3 = ∆X′
2
,

where ∆X′
i

are the diagonal cycles, and all these projectors are orthogonal to
each other. Hence, by 2.9 we obtain the decomposition of the motive of X1

and X2:

M(X1) = (X1, p0)⊕ (X1, p1)⊕ (X1, p2)⊕ (X1, p3)⊕
(X1, p

t
0)⊕ (X1, p

t
1)⊕ (X1, p

t
2)⊕ (X1, p

t
3),

M(X2) = (X2, q0)⊕ (X2, q1)⊕ (X2, q2)⊕ (X2, q3)⊕
(X2, q

t
0)⊕ (X2, q

t
1)⊕ (X2, q

t
1)⊕ (X2, q

t
3),

It is also easy to see that over the separable closure ks the motives (X1, p0)
and (X2, q0) split as a direct sums of the Lefschetz motives Z⊕Z(4)⊕Z(8).
Indeed, the images of the realizations of p0 and q0 are free abelian groups
〈1, g4

1, g
8
1〉 and 〈1, g4

2, g
8
2〉 respectively.
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7.3 Motivic isomorphism between M(X1) and M(X2)

The goal of this section is to prove Theorem 7.2.

7.19. We continue to use the notation from the previous section. Consider
the following cycle in CH15(X ′

2 ×X ′
1)

J = g8
2 × g7

1 − 1× h15
1 − ag4

2 × g11
1 − ah12

2 × h3
1 + ah4

2 × h11
1 + h8

2 × h7
1

− g7
2 × g8

1 + h15
2 × 1 + ag11

2 × g4
1 + ah3

2 × h12
1 − ah11

2 × h4
1 − h7

2 × h8
1

− h1
2 × h14

1 + h9
2 × h6

1 + ah5
2 × h10

1 − ag5
2 × g10

1 + ah13
2 × h2

1 − g9
2 × g6

1

− h6
2 × h9

1 + h14
2 × h1

1 − ah2
2 × h13

1 + g6
2 × g9

1 + ag10
2 × g5

1 − ah10
2 × h5

1.

Observe that
J ◦ (−J t) = ∆X′

1
, (−J t) ◦ J = ∆X′

2
.

In other words, the correspondence J provides a motivic isomorphism be-
tween X ′

2 and X ′
1 with the inverse (−J)t. On the other hand,

J =3 (r1 + ar8) + (r2 + ar7) + (r3 − ar6) + (r4 − ar5)

and, hence, is rational. Theorem 7.2 is proved.

8 Torsion part of CH∗(F4/P4)

In [Vo03] Voevodsky constructed a direct summand of the Chow motive of a
norm variety corresponding to a symbol (n, p). This direct summand is called
a generalized Rost motive. It has been conjectured that for norm varieties
in the sense of Rost the torsion elements of Chow groups in the realization
of the generalized Rost motive are concentrated in dimensions pi − 1, i > 0.
This was proved by Karpenko and Merkurjev in the case of norm quadrics.

The goal of the present Chapter is to provide an evidence of this conjec-
ture for the F4-varieties considered above and to prove the following theorem.

8.1 Theorem. Let G be an anisotropic group of type F4 of the 1st Tits pro-
cess. Consider the projective homogeneous variety X such that over a separa-
ble closure it becomes isomorphic to Gs/P4, where P4 is the standard parabolic
subgroup of Gs, corresponding to the first three vertices of the Dynkin dia-
gram F4 (we follow the enumeration of Bourbaki). Then the group CH∗(X)
has torsion in codimension 13 (dimension 2).
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According to the conjecture this element is the only torsion element in
the realization of the generalized Rost motive q0 constructed in the previous
Chapter.

The proof of the theorem is similar to that of Karpenko-Merkurjev’s theo-
rem on the structure of the torsion part in the Chow group of a norm quadric
([KM02, cor. 4.9]). Our main tool will be the Steenrod operations modulo 3.

In notation of Chapter 7 there exists a projector ρ ∈ CH15(X) such that

ρs = 1× h(15) + g(4) × (g(11) − h(11)) + g(8) × (g(7) + h(7)) ∈ CH15(Xs).

In Chapter 7 this projector was denoted as q0. Note that we perform all
computation modulo 3.

8.2 Lemma.

c(TXs) = 1− h+ h2 − h3 + h4 − h5 + h6 − h7,

c(TXs)
−1 = 1 + h.

Proof. These formulae immediately follow from the following one:

c(TXs) = c(

dim(TXs )∏
i=1

(1− hi)),

where hi are the weights of the tangent bundle TXs , and the map

c : Z[ω̄1, . . . ω̄n] → CH∗(Xs) (n = rkG)

was described above.

8.3 Corollary.
c(TX)−1 = 1 + h+ e2 + d,

for some torsion element e2 ∈ CH2(X) and some element d ∈ CH≥3(X).

8.4 Lemma. Let S be the total Steenrod operation modulo 3 and h be a
hyperplane section of X ↪→ P25 (note that Pic(Xs) is rational). Then

S(ρs) = 1× h(15) + S(g(4))× (g(11) − h(11)) + S(g(8))× (g(7) + h(7)),

ρs?(hi) = 0, if i 6= 7.

66



Proof. It suffices to calculate S(g(11) − h(11)) and S(g(7) + h(7)).

S(g(7) + h(7)) = S(−h7) = −(S(h))7 = −(h+ h3)7 = −h7 = g(7) + h(7).

Calculating degrees by the Pieri formula, it is easy to see that the Schubert
varieties corresponding to the cycles g(11) and h(11) are isomorphic to P4. By
the Riemann-Roch theorem

S(g) = c(TXs)f
g
∗ (SP4(P4)c(TP4)−1),

where g = g(11) or h(11) and f g : g ↪→ X.
Therefore S(g) = c(TXs)f

g
∗ ((1 + H)−5) = c(TXs)f

g
∗ (1 + H + H3 + H4),

where H is a hyperplane section of P4. Therefore S(g) = c(TXs)(g + h(12) +
h(14) + h(15)) and S(g(11) − h(11)) = (g(11) − h(11))c(TXs) = g(11) − h(11) by
8.2.

8.5 Lemma.

S(ρ?(α)) = SX×X(ρ)?(SX(α)c(TX)−1), α ∈ CH(X).

This lemma is nothing else as Lemma 3.1 in [KM02].

8.6 Corollary.

S(ρ?(hi)) = S(ρ)?(hi(1 + h2)ic(TX)−1).

The following lemma is obvious:

8.7 Lemma. For all α ∈ CHi(Xs) and i ≥ 8, deg(hiα) is divisible by 3.

8.8 Lemma. If CH0(X) has no torsion, then

Sk(ρ)?(hi) = 0

for k = 15−i
2

, k > 0, i ≥ 8.

Proof. In the sequel we shall use this lemma only for i = 13. By the as-
sumption the degree map deg : CH0(X) → Z is injective. This map is the
multiplication by 3, since X is a variety of the 1st Tits process (see [PR94,
Cor. on page 205]).
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Therefore it suffices to prove that deg(Sk(ρ)?(hi)) is divisible by 9. Now
we proceed similar to [KM02, Cor. 4.5]. We have

deg(Sk(ρ)?(hi)) = deg(pr2∗(S
k(ρ)pr∗1(h

i)))

= deg(pr1∗(S
k(ρ)pr∗1(h

i))) = deg(hipr1∗(S
k(ρ))).

Since the degree does not change under the scalar extensions, it suffices
to calculate it over ks. By the definition

pr1∗(a× b) =

{
a, if dim a = dim a× b, i.e., deg b = 15,

0, otherwise.

By Lemma 8.4 for k > 0 Sk(ρs) has no summands a × b, where deg b =
15. Therefore pr1∗(S

k(ρ)) is divisible by 3. Now we are done because of
Lemma 8.7.

8.9 Lemma. If CH0(X) has no torsion, then

S1(ρ?(h13)) = ρ?(h15).

Proof. By Corollary 8.6

S(ρ?(hi)) = S(ρ)?(hi(1 + h2)ic(TX)−1).

Therefore S1(ρ?(h13)) = 15-codimensional component of S(ρ)?(h13(1+h2)13c(TX)−1).
We are done because of Lemma 8.8 and Corollary 8.3, since h13e2 = 0.

8.10 Lemma. If CH0(X) has no torsion, then

ρ?(h15) = h15.

Proof. By the assumption the degree map deg : CH0(X) → Z is injective.
Therefore it suffices to prove that ρs acts on CH0(Xs) identically. But this
is obvious.

8.11 Lemma. Under the assumptions of Theorem 8.1 if CH0(X) has no
torsion, then h15 is nontrivial.

Proof. The statement follows from the fact that X is anisotropic of the 1st
Tits construction and deg h15 = 78.

Now we are able to prove Theorem 8.1. Assume that CH15(X) = CH0(X)
has no torsion. By Lemma 8.4 ρs?(h13) = 0. The previous lemmas imply that
ρ?(h13) 6= 0. Hence ρ?(h13) is a nontrivial torsion element in CH13(X). It
remains to notice that indeed CH15(X) = CH0(X) has no torsion (this was
announced by M. Rost and proved in [PSZ05]).
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9 Motivic decomposition of a compactifica-

tion of a Merkurjev-Suslin variety

9.1 Introduction

In the present chapter we study certain twisted forms of a smooth hyperplane
section of Gr(3, 6). These twisted forms are smooth SL1(A)-equivariant com-
pactifications of a Merkurjev-Suslin variety corresponding to a central simple
algebra A of degree 3. On the other hand, these twisted forms are norm va-
rieties corresponding to symbols in KM

3 /3 given by the Serre-Rost invariant
g3. In the present paper we provide a complete decomposition of the Chow
motives of these varieties.

The history of this question goes back to Rost and Voevodsky. Namely,
Rost obtained the celebrated decomposition of a norm quadric (see [Ro98])
and later Voevodsky found some direct summand, called a generalized Rost
motive, in the Chow motive of any norm variety (see [Vo03]). Note that the
F4-varieties from chapter 7 can be considered as a mod-3 analog of a Pfister
quadric (more precisely, of a maximal Pfister neighbour). In turn, our variety
can be considered as a mod-3 analog of a norm quadric.

The main ingredients of our proofs are results of Bia lynicki-Birula [BB73],
the Lefschetz hyperplane theorem, and the Segre embedding.

9.2 Decomposition

9.1. We use Galois descent language, i.e., identify a (quasi-projective) variety
X over a field k with the variety Xs = X ×Spec k Spec ks over a separable clo-
sure ks equipped with an action of the absolute Galois group Γ = Gal(ks/k).
The set of k-rational points of X is precisely the set of ks-rational points of
Xs stable under the action of Γ.

The generating function for a variety X is, by definition, the polynomial∑
ait

i ∈ Z[t] with ai = rk CHi(X).
The structure of the Chow ring of a Grassmann variety is of particular

interest for us. We do a lot of computations using formulae from Schubert
calculus (see [Ful] 14.7).

From now on we assume the characteristic of the base field k is 0.
It is well-known (see [GH, Ch. 1, § 5, p. 193]) that the Grassmann variety

Gr(l, n) can be represented as the variety of l× n matrices of rank l modulo
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an obvious action of the group GLl. Having this in mind we give the following
definition.

9.2 Definition. Let A be a central simple algebra of degree 3 over a field k,
c ∈ k∗. Fix an isomorphism As ' M3(ks). Consider the variety D = D(A, c)
obtained by Galois descent from the variety

{α⊕β ∈ (A⊕A)s ' M3,6(ks) | rk(α⊕β) = 3, Nrd(α) = cNrd(β)}/GL1(As),

where GL1(As) acts on As ⊕ As by the left multiplication.
This variety was first considered by M. Rost.

Consider the Plücker embedding of Gr(3, 6) into a projective space (see
[GH, Ch. 1, § 5, p. 209]). It is obvious that under this embedding for all c
the variety D(M3(k), c) is a hyperplane section of Gr(3, 6).

9.3 Lemma. The variety D is smooth.

Proof. (M. Florence) We can assume k is separably closed. Consider first the
variety

V = {α⊕ β ∈ M3(k)⊕M3(k) = M3,6(k) | rk(α⊕ β) = 3, det(α) = c det(β)}.

An easy computation of differentials shows that V is smooth. The variety V
is a GL3-torsor over D and, since GL3 is smooth, this torsor is locally trivial
for étale topology. Therefore to prove its smoothness we can assume that
this torsor is split.

Since D×k GL3 is smooth, D×k M3 is also smooth. Therefore it suffices
to prove that if D×k A1 is smooth, then D is smooth. But this is true for any
variety. Indeed, for any point x on D we have T(x,0)(D×kA1) = TxD⊕T0A1 =
TxD ⊕ k and dimTxD = dimT(x,0)(D ×k A1) − 1 = dim(D ×k A1) − 1 =
dimD.

9.4 Remark. One can associate to the variety D a Serre-Rost invariant
g3(D) = (A) ∪ (c) ∈ H3(k,Z/3) (see [Inv, § 40]). This invariant is trivial if
and only if D is isotropic.

It is easy to see that D0 := MS(A, c) := {a ∈ A | Nrd(a) = c} is an
open orbit under the natural right SL1(A)- or SL1(A) × SL1(A)-action on
D. Namely, the open orbit consists of all α ⊕ β with rk(α) = 3. D0 is
called a Merkurjev-Suslin variety. In other words, the variety D(A, c) is a
smooth SL1(A)-equivariant compactification of the Merkurjev-Suslin variety
MS(A, c).

Denote as ı : D → SB3(M2(A)) the corresponding closed embedding.
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9.5 Lemma. For the variety Ds the following properties hold.
1. There exists a Gm-action on Ds with 18 fixed points. In particular, Ds

is a cellular variety.
2. The generating function for CH(Ds) is equal to g = t8 + t7 + 2t6 +

3t5 + 4t4 + 3t3 + 2t2 + t+ 1.
3. Picard group Pic(Ds) is rational.

Proof. 1. We can assume c = 1. The right action of Gm on Ds is induced by
the following action:

(M3(ks)⊕M3(ks))×Gm(ks) → M3(ks)⊕M3(ks)

(α⊕ β, λ) 7→ α diag(λ, λ5, λ6)⊕ β diag(λ2, λ3, λ7)

Note that this action is compatible with the left action of GL3(ks).
The 18 fixed points of D are the

(
6
3

)
= 20 3-dimensional standard sub-

spaces of Gr(3, 6) minus 2 subspaces, generated by the first and by the last
3 basis vectors.

2. By the Lefschetz hyperplane theorem (see [GH]) the pull-back ı∗s is

an isomorphism in codimensions i < dim(Gr(3,6))−1
2

. Therefore rk CHi(Ds) =
rk CHi(Gr(3, 6)) for such i’s. Since Poincaré duality holds, we have rk CHi(Ds) =

rk CHi(Gr(3, 6)) for i < dim(Gr(3,6))−1
2

= 4.
It remains to determine only the rank in the middle codimension. To do

this observe that rk CH∗(Ds) = 18 (see [BB73]). Therefore rk CH4(Ds) =
2 rk CH4(Gr(3, 6))− 2 = 4.

3. Consider the following commutative diagram:

Pic(SB3(M2(A))) ı∗ //

��

Pic(D)

res∗

��
Pic(Gr(3, 6))

ı∗s // Pic(Ds)

(4)

where the vertical arrows are the morphisms of scalar extension. By the Lef-
schetz hyperplane theorem the map ı∗s restricted to Pic(Gr(3, 6)) is an iso-
morphism. Since Pic(SB3(M2(A))) is rational (see [MT95] and Lemma 7.6),
i.e., the left vertical arrow is an isomorphism, the restriction map res∗ is
surjective. On the other hand, it follows from the Hochschild-Serre spectral
sequence (see [Ar82, § 2]) that Pic(D) can be identified with a subgroup of
Z. We are done.
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9.6 Remark. It immediately follows from this Lemma that the variety D
is not a twisted flag variety. Indeed, the generating functions of all twisted
flag varieties over a separabely closed field are well-known and all of them
are different from the generating function of Ds.

9.7. We must determine partially the multiplicative structure of CH(Ds). By
the Lefschetz hyperplane theorem the generators in codimensions 0, 1, 2, and
3 are pull-backs of the canonical generators ∆(0,0,0), ∆(1,0,0), ∆(1,1,0), ∆(2,0,0),
∆(1,1,1), ∆(2,1,0), ∆(3,0,0) of Gr(3, 6) (see [Ful, 14.7]). We denote these pull-

backs as 1, h1, h
(1)
2 , h

(2)
2 , h

(1)
3 , h

(2)
3 , and h

(3)
3 respectively. In codimension 4 the

pull-back is injective and the pull-backs h
(1)
4 := ı∗s(∆(2,1,1)), h

(2)
4 := ı∗s(∆(2,2,0)),

h
(3)
4 := ı∗s(∆(3,1,0)), where ı is as above, form a subbasis of CH4(Ds).

Consider the following diagram:

h
(1)
3

BB
BB

h
(1)
2

||||

BB
BB

h
(1)
4

1 h1

�����

??
??

? h
(2)
3

||||

BB
BB

h
(2)
4

h
(2)
2

||||

BB
BB

h
(3)
4

h
(3)
3

||||

Since pull-backs are ring homomorphisms, it immediately follows that

h1 · u =
∑
u→v

v,

where u is a vertex in the diagram, which corresponds to a generator of
codimension less than 4, and the sum runs through all the edges going from
u one step to the right.

Next we compute some products in the middle codimension.
Since ∆(3,1,0)∆(2,1,1) = ∆2

(2,2,0) = 0 and ∆2
(2,1,1) = ∆2

(3,1,0) = ∆(2,2,0)∆(2,1,1) =

∆(2,2,0)∆(3,1,0) = ∆(3,3,2) (see [Ful, 14.7]), we have h
(1)
4 h

(3)
4 = (h

(2)
4 )2 = 0 and

(h
(1)
4 )2 = (h

(3)
4 )2 = h

(2)
4 h

(3)
4 = h

(1)
4 h

(2)
4 = ı∗s(∆(3,3,2)) = pt, where pt denotes the

class of a rational point on Ds.
The next theorem shows that the Chow motive of D with Z/3-coefficients

is decomposable. Note that for any cycle h in CH(Ds) or in CH(Ds × Ds)
the cycle 3h is rational.
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9.8 Theorem. Let A denote a central simple algebra of degree 3 over a field
k, c ∈ k∗, and D = D(A, c). Then

M(D) ' R⊕ (⊕5
i=1R

′(i)),

where R is a motive such that over a separably closed field it becomes iso-
morphic to Z⊕ Z(4)⊕ Z(8) and R′ 'M(SB(A)).

Proof. Consider the following commutative diagram (see 5.24):

Ds × P2
ıs×ids //

��

Gr(3, 6)× P2
Segs //

��

Gr(3, 18)

��
D × SB(Aop)

ı×id // SB3(M2(A))× SB(Aop)
Seg // SB3(M2(A)⊗k Aop)

(5)

where the right horizontal arrows are Segre embeddings given by the ten-
sor product of ideals (resp. linear subspaces) and the vertical arrows are
canonical maps induced by the scalar extension ks/k.

This diagram induces the commutative diagram of rings

Ch∗(Ds × P2) Ch∗(Gr(3, 6)× P2)
(ıs×ids)∗

oo Ch∗(Gr(3, 18))
Seg∗s

oo

Ch∗(D × SB(Aop))

OO

Ch∗(SB3(M2(A))× SB(Aop))
(ı×id)∗
oo

OO

Ch∗(SB3(M2(A)⊗k Aop))

'

OO

Seg∗
oo

(6)
Observe that the right vertical arrow is an isomorphism since M2(A) ⊗ Aop

splits.
Let τ3 and τ1 be tautological vector bundles on Gr(3, 6) and P2 respec-

tively and let e denote the Euler class (the top Chern class). By Lemma 5.26
the cycle (ıs× ids)

∗(e(pr∗1τ3⊗pr∗2τ1)) ∈ Ch(Ds×P2) is rational. A straightfor-
ward computation (cf. 5.29 and 5.30) shows that r := −(ıs × ids)

∗(e(pr∗1τ3 ⊗
pr∗2τ1)) = h

(1)
3 × 1 +h

(1)
2 ×H +h1×H2 ∈ Ch3(Ds×P2), where H is the class

of a smooth hyperplane section of P2.
Define the following rational cycles ρi = r(hi

1 × 1) ∈ Ch3+i(Ds × P2) for
i = 1, . . . , 4, ρ0 = r + h3

1 × 1 ∈ Ch3(Ds × P2) and ρ′1 = r(h1 × 1) + h4
1 × 1.

A straightforward computation using the multiplication rules in 9.7 shows
that (−ρ′1) ◦ ρt

3 as well as (−ρ4−i) ◦ ρt
i ∈ Ch2(P2 × P2) is the diagonal ∆P2 .

Moreover, the opposite compositions (−ρ0)
t ◦ ρ4, (−ρ1)

t ◦ ρ3, (−ρ2)
t ◦ ρ2,

(−ρ3)
t ◦ ρ′1, and (−ρ4)

t ◦ ρ0 give rational pairwise orthogonal idempotents in
Ch8(Ds ×Ds).
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To finish the proof of the theorem it remains by 2.10 to lift all these
rational cycles ρi, ρ

t
j to Ch(D×SB(Aop)) and to Ch(SB(Aop)×D) respectively

in such a way that the corresponding compositions of their preimages give
the diagonal ∆SB(Aop).

Fix an i = 0, . . . , 4. Consider first any preimage α ∈ Ch(D × SB(Aop))
of −ρ4−i and any preimage β ∈ Ch(SB(Aop) × D) of ρt

i. The image of the
composition α◦β under the restriction map is the diagonal ∆P2 . Therefore by
the Rost Nilpotence theorem for Severi-Brauer varieties α◦β = ∆SB(Aop) +n,
where n is a nilpotent element in End(M(SB(Aop))). Since n is nilpotent
α ◦ β is invertible and ((∆SB(Aop) + n)−1 ◦ α) ◦ β = ∆SB(Aop). In other words,
we can take (∆SB(Aop) +n)−1 ◦α as a preimage of −ρ4−i and β as a preimage
of ρt

i.
Denote as R the remaining direct summand of the motive of D. Compar-

ing the left and the right hand sides of the decomposition over ks it is easy
to see that Rs ' Z⊕ Z(4)⊕ Z(8).
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Borel. Invent. Math. 39 (1977), 179–186.

[Fe72] J.C. Ferrar. Strictly regular elements in Freudenthal triple sys-
tems. Trans. Amer. Math. Soc. 174 (1972), 313–331.

[FSV00] E. Friedlander, A. Suslin, V. Voevodsky. Cycles, transfers, and mo-
tivic homology theories. Annals of mathematics studies. Princeton
Univ. Press, 2000.

[Ful] W. Fulton. Intersection Theory. Second edition, Springer-Verlag,
Berlin-Heidelberg, 1998.

[Ga97] S. Garibaldi. Twisted flag varieties of exceptional groups. Preprint,
1997.

[Ga01a] R.S. Garibaldi. Structurable algebras and groups of type E6 and
E7. J. of Algebra 236 (2001), 651–691.

[Ga01c] R.S. Garibaldi. Groups of type E7 over arbitrary fields. Comm.
Alg. 29 (2001), no. 6 , 2689–2710.

[Ga01b] R.S. Garibaldi. The Rost invariant has trivial kernel for quasi-split
groups of low rank. Comment. Math. Helv. 76 (2001), 684–711.

[GH] P. Griffiths, J. Harris. Principles of algebraic geometry. John Wiley
& Sons, 1978.

[Gr58] A. Grothendieck. Sur quelques propriétés fondamentales en théorie
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Appendix I

The multiplication table for X1:

h4h4 = h8 + g8, h4h5 = 2h9 + 2g9, h4h6 = 2h10 + g10, h4h7 = h11 + 2g11,

h4h8 = h12, h4h9 = 2h13, h4h10 = h14, h4g4 = 2h8 + 3g8,

h4g5 = h9 + 2g9, h4g6 = 2h10 + 2g10, h4g7 = h11 + 3g11, h4g8 = 2h12,

h4g9 = h13, h4g10 = 0, g4g4 = 6h8 + 8g8, g4g5 = 4h9 + 4g9,

g4g6 = 6h10 + 4g10, g4g7 = 3h11 + 8g11, g4g8 = 6h12, g4g9 = 4h13,

g4g10 = h14, g4h5 = 5h9 + 6g9, g4h6 = 5h10 + 4g10, g4h7 = 2h11 + 6g11,

g4h8 = 2h12, g4h9 = 4h13, g4h10 = 2h14, h5h5 = 6h10 + 4g10,

h5h6 = 2h11 + 5g11, h5h7 = 4h12, h5h8 = 2h13, h5h9 = 2h14,

h5g5 = 4h10 + 4g10, h5g6 = 2h11 + 6g11, h5g7 = 5h12, h5g8 = 4h13,

h5g9 = h14, g5g5 = 4h10, g5g6 = 2h11 + 4g11, g5g7 = 4h12,

g5g8 = 4h13, g5g9 = 2h14, g5h6 = h11 + 4g11, g5h7 = 2h12,

g5h8 = 0, g5h9 = 0, h6h6 = 3h12, h6h7 = 3h13,

h6h8 = h14, h6g6 = 3h12, h6g7 = 3h13, h6g8 = h14,

g6g6 = 4h12, g6g7 = 4h13, g6g8 = 2h14, g6h7 = 2h13,

g6h8 = 0, h7h7 = 2h14, h7g7 = h14, g7g7 = 2h14.
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The multiplication table for X2:

h4h4 = 2h8 + 2g8, h4h5 = 4h9 + 2g9, h4h6 = 4h10 + g10, h4h7 = 2h11 + 2g11,

h4h8 = h12, h4h9 = h13, h4h10 = h14, h4g4 = 2h8 + 3g8,

h4g5 = h9 + g9, h4g6 = 2h10 + g10, h4g7 = 2h11 + 3g11, h4g8 = 2h12,

h4g9 = h13, h4g10 = 0, g4g4 = 3h8 + 4g8, g4g5 = 2h9 + g9,

g4g6 = 3h10 + g10, g4g7 = 3h11 + 4g11, g4g8 = 3h12, g4g9 = 2h13,

g4g10 = h14, g4h5 = 5h9 + 3g9, g4h6 = 5h10 + 2g10, g4h7 = 2h11 + 3g11,

g4h8 = h12, g4h9 = h13, g4h10 = h14, h5h5 = 6h10 + 2g10,

h5h6 = 4h11 + 5g11, h5h7 = 4h12, h5h8 = h13, h5h9 = h14,

h5g5 = 2h10 + g10, h5g6 = 2h11 + 3g11, h5g7 = 5h12, h5g8 = 2h13,

h5g9 = h14, g5g5 = h10, g5g6 = h11 + g11, g5g7 = 2h12,

g5g8 = h13, g5g9 = h14, g5h6 = h11 + 2g11, g5h7 = h12,

g5h8 = 0, g5h9 = 0, h6h6 = 6h12, h6h7 = 3h13,

h6h8 = h14, h6g6 = 3h12, h6g7 = 3h13, h6g8 = h14,

g6g6 = 2h12, g6g7 = 2h13, g6g8 = h14, g6h7 = h13,

g6h8 = 0, h7h7 = 2h14, h7g7 = h14, g7g7 = 2h14.

Appendix II

In this appendix we describe how we obtained the necessary multiplication
tables. Our root enumeration follows Bourbaki ([Bou]). We fix an orthonor-
mal base {e1, e2, e3, e4} in R4. F4 has the following simple roots:

α1 = e3 − e2, α2 = e2 − e1,

α3 = e1, α4 = −1

2
e1 −

1

2
e2 −

1

2
e3 +

1

2
e4.

The set of fundamental weights:

ω̄1 = e3 + e4, ω̄2 = e2 + e3 + 2e4,

ω̄3 =
1

2
e1 +

1

2
e2 +

1

2
e3 +

3

2
e4, ω̄4 = e4.

For the expressions of other positive roots by the base roots we refer to
[Bou]. We list the expressions of these roots in the basis of the fundamental
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weights:

−ω̄3 + 2ω̄4, − ω̄2 + 2ω̄3 − ω̄4, −ω̄1 + 2ω̄2 − 2ω̄3, 2ω̄1 − ω̄2,

−ω̄2 + ω̄3 + ω̄4, − ω̄1 + ω̄2 − ω̄4, −ω̄1 + 2ω̄3 − 2ω̄4, ω̄1 + ω̄2 − 2ω̄3,

−ω̄1 + ω̄2 − ω̄3 + ω̄4, ω̄1 − ω̄4, −ω̄1 + 2ω̄4, ω̄1 − ω̄2 + 2ω̄3 − 2ω̄4,

−ω̄1 + ω̄3, ω̄1 − ω̄3 + ω̄4, ω̄1 − ω̄2 + 2ω̄4, ω̄2 − 2ω̄4,

ω̄1 − ω̄2 + ω̄3, ω̄2 − 2ω̄3 + 2ω̄4, ω̄2 − ω̄3, − ω̄2 + 2ω̄3,

ω̄3 − ω̄4, − ω̄1 + ω̄2, ω̄4, ω̄1.

Using the Giambelli formula, we obtain the preimages of g4
i in S∗(P )⊗ZQ.

Here is the list:

g4
1 = c(

11

6
ω̄2

1ω̄
2
4 +

3

4
ω̄2

1ω̄
2
2 −

4

3
ω̄1ω̄2ω̄

2
3 +

11

6
ω̄2

1ω̄
2
3 −

2

3
ω̄1ω̄2ω̄3ω̄4 +

11

12
ω̄4

1+

1

6
ω̄4

2 −
4

3
ω̄2ω̄

2
3ω̄4 +

4

3
ω̄2ω̄3ω̄

2
4 +

2

3
ω̄2

2ω̄3ω̄4 +
2

3
ω̄1ω̄2ω̄

2
4 −

11

6
ω̄2

1ω̄3ω̄4+

2ω̄1ω̄
2
3ω̄4 − 2ω̄1ω̄3ω̄

2
4 −

7

12
ω̄3

1ω̄2 −
11

6
ω̄2

1ω̄2ω̄3 +
4

3
ω̄1ω̄

2
2ω̄3 +

2

3
ω̄2

2ω̄
2
3−

2

3
ω̄3

2ω̄3 −
1

3
ω̄1ω̄

3
2 −

2

3
ω̄2

2ω̄
2
4),

g4
2 = c(

11

6
ω̄4

4 −
7

6
ω̄3ω̄

3
4 +

11

12
ω̄2

1ω̄
2
4 +

3

2
ω̄2

3ω̄
2
4 −

11

6
ω̄2ω̄3ω̄

2
4 +

11

12
ω̄2

2ω̄
2
4−

11

12
ω̄1ω̄2ω̄

2
4 −

2

3
ω̄3

3ω̄4 −
1

2
ω̄2

1ω̄2ω̄4 +
1

3
ω̄2

1ω̄3ω̄4 +
4

3
ω̄2ω̄

2
3ω̄4 +

1

2
ω̄1ω̄

2
2ω̄4−

2

3
ω̄2

2ω̄3ω̄4 −
1

3
ω̄1ω̄2ω̄3ω̄4 +

1

3
ω̄4

3 −
1

3
ω̄1ω̄

2
2ω̄3 +

1

3
ω̄1ω̄2ω̄

2
3 −

1

3
ω̄2

1ω̄
2
3+

1

3
ω̄2

1ω̄2ω̄3 +
1

3
ω̄2

2ω̄
2
3 −

2

3
ω̄2ω̄

3
3).

Multiplying the correspondent polynomials and taking the c function, we
find the products.
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