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Zusammenfassung.

Wir beweisen, dass für eine geschlossene 1-Form auf einer geschlosse-
nen, orientierten, zusammenhängenden differenzierbaren Mannigfaltigkeit,
intrinsische Harmonizität gleichbedeutend ist mit Transitivität und lokaler
intrinsischer Harmonizität. Wir untersuchen beide Eigenschaften getrennt.
Wir betrachten Morse 1-Formen, die auf dem Rand des Inneren der Menge
nicht-transitiver Formen bezüglich der C1 Topologie liegen. Wir zeigen,
dass die Kern-Blätterung einer solchen 1-Form mindestens ein singuläres
geschlossenes Blatt hat, das mehr als eine Nullstelle der Form enthält. Für
die Betrachtung der lokalen intrinsischen Harmonizität beschränken wir uns
auf den Fall von Manifaltigkeiten der Dimension zwei. Es stellt sich heraus,
dass die Frage nach lokaler intrinsischer Harmonizität dann gleichbedeutend
ist mit einer Frage aus der Singularitäten-Theorie differenzierbarer Funktio-
nen. Wir geben ein Kriterium dafür, dass eine differenzierbare Funktion auf
R

2 in der Nähe von (0, 0) diffeomorph äquivalent zu ihrem Term höchster
Ordnung ist, unter der Annahme, dass (0, 0) ein isolierter kritischer Punkt
der Funktion ist.
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Summary.

We prove that for a closed 1-form on a closed oriented connected smooth
manifold intrinsic harmonicity is equivalent to transitivity together with local
intrinsic harmonicity. Then we study the two properties separately. We
consider Morse 1-forms which lie on the boundary of the interior of the set of
nontransitive forms with respect to the C1 topology. We show that such a 1-
form has at least 1 singular closed leaf of its kernel foliation containing more
than one zero of the form. For local intrinsic harmonicity we restrict our
attention to the case of dimension two. Then it turns out that the question
of local intrinsic harmonicity is equivalent to a question from the singularity
theory of smooth functions. We give a criterion for a smooth function on
R

2 to be diffeomorphically equivalent to its leading order term near (0, 0),
assuming that (0, 0) is an isolated critical point for the function.
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Chapter 1

Introduction

1.1 History of intrinsic characterization of har-

monic forms.

Let X be a connected orientable n-dimensional manifold without boundary,
equipped with an orientation and a Riemannian metric g. Having these two
structures at hand and given any k = 0, 1, ..., n we can define the Hodge-star
operator — a bundle map between the bundle of exterior k-forms and the
bundle of exterior (n− k)-forms

?g : Λk(T ?X) −→ Λn−k(T ?X).

The precise definition will be given in Section 2.1. The Hodge-star operator
on bundles induces a map on forms — sections of these bundles:

Ωk(X) −→ Ωn−k(X),

denoted by the same symbol ?g. The Hodge-star operator on forms allows
us to introduce the co-differential d?g : Ωk −→ Ωk−1, by the formula d?g =
(−1)kn+n+1 ?g d?g.

We define the Dirac operator (d+d?g) : Ω?(X) −→ Ω?(X). We can square
the Dirac operator to get the Laplace operator (d+ d?g)

2.
If X is compact, then for any k = 0, 1, ..., n we give the space Ωk(X) an

L2-inner product (, )g by setting (α, β)g =
∫
M
α∧ ?gβ. The co-differential d?g

happens to be the formal adjoint to the exterior derivative d : Ωk −→ Ωk+1

under this inner product.

11
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We will be mainly interested in developing theory on manifolds that are
closed, i.e. compact without boundary. In these cases our manifold will be
usually denoted by M . But it is useful (e.g. for local analysis on M) to have
some of the main concepts defined also on open manifolds, i.e. noncompact
without boundary. In those cases, when the manifold under consideration is
not necessarily assumed to be compact, it will be denoted by X.

Definition 1. Let (M, g) be a closed oriented Riemannian manifold. A k-
form α on it is called harmonic if it belongs to the kernel of the Laplace
operator.

Note that we define the notion of harmonicity only for compact manifolds.
In this case the kernels of Laplace and the Dirac operators coincide. Indeed if
(d+d?)2α = 0, then (dd?α+d?dα, α)g = 0 and hence (d?α, d?α)g+(dα, dα)g =
0, so (d+ d?)α = 0. Therefore harmonic forms α are exactly those which are
simultaneously closed (dα = 0) and co-closed (d?gα = 0).

It is crucial to note that the closedness of the form is a property which
depends only on the smooth structure of the manifold M , whereas the co-
closedness depends on the Riemannian metric — the additional structure we
put on M . So a form only has a chance to be harmonic if it is closed and
then it may or may not be harmonic depending on what Riemannian metric
we put on M .

Note that if we change the orientation of X, then the Hodge-star ?g
operator will change its sign, but the co-differential d?g = (−1)kn+n+1 ?g d?g
will not. This means that for the discussion of co-closedness or harmonicity
the choice of the orientation on X is irrelevant, but it is important that X
is orientable, for the construction of ?g to work. For the sake of determinacy
we give M an orientation once and forever.

Definition 2. A closed k-form α on a closed manifold M is called intrinsi-
cally harmonic if there exists a Riemannian metric g on M , which makes it
harmonic.

The following natural problem arises: to give an intrinsic characterization
of intrinsically harmonic forms. For k = 0 these are constant functions and
for k = n these are exactly the volume forms. The question turns out to be
more subtle in the intermediate degrees. The following definitions will help
us to separate easier cases from more difficult ones.
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Definition 3. A k-form α on a manifold M is said to have nondegenerate
zeros (or to be generic) if considered as a section of the bundle ΛkT ?M it is
transverse to the zero section.

For functions to have nondegenerate zeros simply means to have nonzero
differentials at their zeros. For forms of degree satisfying 1 < k < n − 1 to
have nondegenerate zeros means to have no zeros at all.

Definition 4. A closed 1-form α with nondegenerate zeros is called Morse.

For a closed 1-form α to have a nondegenerate zero at p is the same as
for its local primitive function f (usually normalized by f(p) = 0) to have
a Morse-type singularity at this point. What makes life much easier in the
case of Morse singularities is the Morse Lemma, which says that a function is
diffeomorphically equivalent to a constant plus the algebraic sum of squares
near a Morse singularity.

For closed forms with nondegenerate zeros a complete characterization of
intrinsic harmonicity was given in degree 1 by Calabi in 1969 and in degree
n− 1 by Honda in 1996, cf. [5] and [11]. To give a unified formulation for 1
and (n− 1)-forms, we need one more definition.

Definition 5. A closed k-form α is called locally intrinsically harmonic if
there exists a neighbourhood U of its zero set and a Riemannian metric gU
on U , such that d ?gU α = 0.

Theorem 1 (Calabi [5], Honda [11]). Let k ∈ {1, n − 1}. For a closed
generic k-form α on a closed oriented connected n-manifold M to be intrin-
sically harmonic it is necessary and sufficient that
(a) the form α is locally intrinsically harmonic and
(b) the form α is transitive.

Here transitive means that there exists a closed k dimensional subman-
ifold Np through every point p from the complement to the zero set of ω
such that α|Np is a volume form on Np. An immediate observation is that for
1-forms local intrinsic harmonicity is simply a condition on the Morse indices
of the zeros: for local intrinsic harmonicity it is necessary and sufficient that
there are no zeros of index 0 or n. Since transitivity implies the absence of
zeros of index 0 and n, we get the following version of the above theorem for
1-forms.
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Theorem 2 (Calabi [5]). A closed Morse 1-form ω on a closed oriented
connected n-manifold M is intrinsically harmonic if and only if it is transi-
tive.

For the discussion of local intrinsic harmonicity in the case of (n − 1)-
forms the reader is referred to the thesis of Honda cf. [11].

For a closed 1-form transitivity is a property of its kernel foliation. For a
general account on both classical results and recent advances in the field see
Farber’s book [7].

Very little seems to be known about the question of intrinsic characteriza-
tion in other degrees. Let us make a couple of remarks, illustrating potential
difficulties. The simplest case of a form of a higher degree would be a 2-form
on a 4-manifold. A generic 2-form on a 4-manifold does not have any zeros
at all. So let α be a nowhere zero closed 2-form on a 4-manifold. Moreover
assume α has constant rank. For dimension reasons we have only two possi-
bilities for the rank of α — 2 or 4. In the last case the form α is symplectic,
and therefore is harmonic for any metric g which is compatible with α. The
question of intrinsic harmonicity is answered trivially and positively in this
case. So the only potentially interesting case is when α has constant rank 2.
It turns out that this case presents serious difficulties. The following exam-
ple was suggested to the author by J. Latschev. This example shows, that
transitivity is not sufficient for harmonicity.

Example 1. Let M be the total space of the nontrivial S2-bundle ξ =
(S2 −→ M

π−→ S2) over S2. It is easy to see that there exists a section s
of ξ through every point of M . Let dvolS2 be a volume form on the base S2

and set α := π?dvol. The form α is a closed 2-form of constant rank 2 on
the 4-dimensional manifold M , where the fibers of ξ are the leaves of the 2-
dimensional kernel foliation of α. Sections of ξ provide closed 2-dimensional
submanifolds of M to which α restricts as a volume form, so α is transitive.
But α is not (!) intrinsically harmonic. Assume by contradiction, that there
exists a Riemannian metric g on M such that the form ψ := ?gα is closed.
The form ψ has constant rank 2 and the leaves of the kernel foliation of ψ
are transverse to those of α, i.e. to the fibers of ξ. Take any leaf L of the
kernel foliation of ψ. The restriction πL : L −→ S2 is a submersion and
therefore for dimension reasons a covering map. So L is diffeomorphic to S2.
So the total space M of ξ admits a foliation by closed leaves transverse to
the fibers with every leaf intersecting every fiber exactly once contradicting
the nontriviality of ξ.
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This tells us that for generic closed 2-forms of constant rank 2 on 4-
manifolds transitivity does not imply intrinsic harmonicity. Whether or not
intrinsic harmonicity implies transitivity for such forms is not clear at the
moment. The relationship between transitivity and intrinsic harmonicity in
this case is a subject for future work.

So from now on we restrict our attention to the case of 1-forms. A fairly
straightforward argument shows that transitive closed 1-forms form an open
set in the set of all Morse forms with respect to the C1 topology. That is
for a Morse form transitivity survives under C1 small perturbations. As an
immediate consequence of this observation and Theorem 2 we get

Theorem 3. Intrinsically harmonic 1-forms on a closed manifold constitute
an open set with respect to the C1 topology in the set of Morse forms.

We close this section by raising a question: how much of this remains true
if we do not assume the zeros of ω to be nondegenerate? It will be answered
in part later in this chapter.

1.2 Remarks on the notation.

Throughout the paper M denotes a closed smooth manifold of dimension n
and ω a closed 1-form on it. We let S denote the zero set {p ∈M |ω(p) = 0}
of ω and F denote the restriction of the (singular) kernel foliation of ω to
its regular set M \ S. So F is a regular foliation on a possibly noncompact
manifold. Very often (e.g. when perturbing ω or considering sequences of
forms converging to ω) we have to consider another closed form on the man-
ifold M . It may be denoted ω̃ or ωm. Then its zero set will be denoted by S̃
respectively Sm and the regular part of the kernel foliation by F̃ respectively
Fm.

When working globally on M we use the letter n only to denote the
dimension of M . When discussing issues completely unrelated to M (say
we discuss something happening near the origin in R2 and there is no M
entering the discussion at all) we felt free to make an occasional use of n
to denote things like the degree of a polynomial or an induction parameter.
This should not cause a confusion.

We write H?(M) to denote the singular homology of M with integer
coefficients: H?(M,Z). We tried not to overuse this convention and write
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H?(M,Z) explicitly in places requiring the usage of other coefficient rings as
well.

We never explicitly use the Laplace operator (d+ d?g)
2, so we do not give

it a special name. But we do use the following operator on functions:

4g : C∞(X) −→ Ωn(X),

which converts a smooth function f into a top degree form 4gf := d ?g df .
The operator 4g will be called the Laplace-Beltrami operator.

If a function belongs to the kernel of the Laplace-Beltrami operator, then
we call it harmonic. On compact manifolds this notion coincides with the
previously defined (considering a function as a 0-form).

1.3 Transitivity versus nontransitivity.

In this section we work in the space of Morse forms with respect to the
C1 topology. As was remarked at the end of Section 1.1 for Morse forms
transitivity survives under C1 small perturbations. As a highlight for Chapter
4 we take up the following question: what happens to nontransitivity under
C1 small perturbations? Clearly, given a Morse 1-form on the boundary of
the set of transitive forms (which is the same as the boundary of the set of
nontransitive forms), there exists a small C1-perturbation which makes the
form transitive, i.e. destroys nontransitivity. It is tempting to assert that
such boundary forms have some special properties concerning their kernel
foliation. Assume for simplicity that a nontransitive 1-form ω1 has integral
cohomology class and assume that it is joined to a transitive 1-form ω0 by
a path {ωt}t∈[0,1] of closed Morse forms within its cohomology class. It is
always possible to find such a path, see the paper by K. Honda [12]. The
cohomology class being constant within the deformation crucially simplifies
the subsequent discussion. For every t ∈ [0, 1] we consider the leaf space
Γt for the (singular) kernel foliation of ωt. That is Γt is obtained from M
by collapsing the leaves (singular or nonsingular) of the kernel foliation of
ωt to points. The cohomology class [ωt] being integral implies that Γt is
a Hausdorff space. Moreover, Γt is a directed graph, where every edge is
directed according to the increase of the local primitive function of ω. Let
us see how many edges we have at every vertex. First, there are no zeros of
ωt of index 0 or n, because ω0 does not have such zeros due to transitivity,
and then as t increases from 0 to 1 to create such a zero we would have
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to leave the space of Morse forms. Assume now that for some t ∈ [0, 1]
no two zeros of a form ωt of index 1 or n − 1 lie on one singular closed
leave. Such a form ωt is called non-heteroclinic (a more precise definition of
non-heteroclinicity will be given in Section 4.2). Then every zero of ωt of
index 1 or n− 1 when projected to Γt becomes a vertex where 3 edges come
together. The zeros of ωt of index greater than 1, but smaller than n − 1
do not give rise to vertices of the graph Γt. We say that a directed graph
Γ is Calabi if there exists a closed positive path through every edge. Here
“positive path” means a path which goes along every edge in the positive
direction. Note that ωt being transitive/nontransitive exactly corresponds to
the graph Γt being Calabi/non-Calabi. Deforming a nontransitive form ω1

to a transitive form ω0 comes down to deforming a non-Calabi graph Γ1 to
a Calabi graph Γ0, i.e. changing the homotopy type of the graph. It means,
that we can not perform such a homotopy through non-heteroclinic forms:
there should exist a t0 such that ωt0 is heteroclinic (i.e. there is a pair of zeros
of ωt0 of index 1 or n − 1 which lie on one singular closed leaf of the kernel
foliation of ωt0). Passing through ωt0 as our t increases means passing from
transitivity to non-transitivity. This discussion suggests that a 1-form which
lies on the boundary between transitive and nontransitive forms should be
heteroclinic. Before we give a precise version of the theorem we were able
to prove, we would like to discuss one subtle issue. In the formulation of
this we need to consider the interior of the set of nontransitive forms in the
space of Morse forms with respect to the C1 topology. Those Morse forms
which have zeros of index 0 or n trivially belong to the interior of the set of
nontransitive forms, but it is not a priori clear that this interior contains at
least one Morse form without zeros of index 0 or n. In Section 4.5 we give
two examples of manifolds and Morse forms on them without zeros of index
0 or n which belong to the interior of the set of nontransitive forms. See also
Section 6.4.

Theorem 4. Let ω be a Morse form that belongs to the closure of the interior
of the set of nontransitive forms in the space of Morse forms with respect to
the C1 topology. Assume that ω is non-heteroclinic. Then ω belongs to the
interior of the set of nontransitive forms.

We give the main ideas for the proof. It is useful to work with a slightly
modified definition of transitivity: instead of asking to have a closed transver-
sal through every point in the complement to the zero set of ω we ask that
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every two points from this complement can be joined by an ω-positive path.
The two definitions turn out to be equivalent.

Since ω is a C1-limit of nontransitive forms, it is also a nontransitive form.
It is not very difficult to show (see characterization theorems in Chapter 4,
more precisely Theorem 17), that nontransitivity is equivalent to the exis-
tence of a set of singular closed leaves P1, ...,Pl of the kernel foliation of ω,
which represent the zero in Hn−1(M). More precisely, [P1] + ... + [Pl] = 0,
where [Pi] denotes the image of Pi in Hn−1(M) and the co-orientation of
Pi is the direction of the decrease of the local primitive function of ω. A
rough geometric idea why such a collection obstructs transitivity is that for
homology reasons P1, ...,Pl separates M into two parts: “inside” and “out-
side”. Now points from the “inside” can not be joined to the points in the
“outside” by ω-positive paths, because such a path would have to cross the
boundary P1∪ ...∪Pl in the “wrong” direction — recall the co-orientation of
Pi. Consider an open neighbourhood Ui of Pi, which retracts to Pi. Clearly,
ω|Ui is exact. Consider a closed Morse 1-form ω̃ sufficiently C1-close to ω.

Assume for the moment, that ω̃|Ui is exact (this is not easy obtain).
Because Pi contains not more than 1 zero of ω of index 1 or n− 1, we find a
singular closed leaf P̃i of ω̃ near Pi carrying the same element in homology
as Pi, i.e. [P̃i] = [Pi]. This means that [P̃1] + ... + [P̃l] = 0, i.e. the
set P̃1, ..., P̃l by the characterization theorem (see Chapter 4 Theorem 17)
obstructs transitivity of ω̃. Once we are able to perform this for any closed
Morse 1-form sufficiently C1 close to ω, we get that ω belongs to the interior
of the set of nontransitive forms.

The key problem here is that we have assumed ω̃|Ui to be exact. One
way to get the exactness of ω̃|Ui would be to have proportionality between
the cohomology classes of ω and ω̃, that is [ω̃] = c[ω] for some c ∈ R. In
the case of b1(M) = 1 this is automatically true. In the case b1(M) > 1 the
above proportionality fails in general and we have to work harder. The idea
is to ensure that the image of Pi in H1(M,Z) consists of torsion elements.
For this we first assume for simplicity that H1(M,Z) has no torsion and then
C1-approximate ω by a sequence {ωm}m∈N of nontransitive closed 1-forms,
each ωm lying in the interior of the set of nontransitive forms. The case
when H1(M,Z) has torsion requires a bit more of notation and is dealt with
in Section 4.4. We view ωm as a homomorphism

[ωm] : H1(M,Z) −→ R,



1.4. GENERAL ZERO SETS. 19

or, tensoring everything with R, as a homomorphism

[ωm]R : H1(M,R) −→ R .

Consider the kernel Ker[ωm] respectively Ker[ωm]R of the homomorphism
[ωm] respectively [ωm]R. Clearly, Ker[ωm]R is a codimension 1 linear subspace
in the R-linear space H1(M,R) and Ker[ωm] = Ker[ωm]R∩H1(M,Z), where
H1(M,Z) is viewed the integer lattice in H1(M,R). The set of codimension
1-subspaces missing the integer lattice completely is dense in the set of all
codimension 1-subspaces, in our case it means that by perturbing ωm slightly
in the C1 topology, we can achieve that

Ker[ωm] = Ker[ωm]R ∩H1(M,Z) = {0}.
Since ωm was in the interior of the set of nontransitive forms, it remains
nontransitive after a small perturbation. Let Pm be a singular closed leaf
of ωm. Now Ker[ωm] = {0} implies that the image of Pm in H1(M,Z) is
trivial. Let the set P1

m, ...,P lm of singular closed leaves of ωm which obstruct
transitivity of ωm as in the characterization theorem. If we can establish that
the singular closed leaf P im of ωm “converges” to a singular closed leaf Pi of
ω as m→∞ in any reasonable sense, then we are done, because convergence
of singular closed leaves implies stabilization of their images in H1(M,Z)
and therefore we get a set P1, ...,Pl of singular closed leaves of ω obstructing
transitivity of ω and with the property that the image of Pi in H1(M,Z) is
trivial, finishing the argument as explained above. Unfortunately, justifica-
tion of “convergence” is not so easy. In general closed leaves of ωm do not
have to converge to closed leaves of ω when ωm −→ ω. For a baby example
illustrating the difficulties consider the 2-torus with angular coordinates φ, θ
on it and set ω = dφ and ωm = dφ + rmdθ, where {rm}m∈N is a sequence of
rational numbers, converging to zero. Closed leaves of ωm in this example
do not converge to closed leaves of ω in any reasonable sense and the reason
is that the cohomology classes of ωm vary. Establishing the convergence is
the heart of the whole argument. This is explained in Section 4.3. The key
idea is to establish certain upper bound on the diameters of singular closed
leaves of ωn which are of interest for us.

1.4 General zero sets.

So far we have assumed all the zeros of ω to be nondegenerate, in other words
ω to be Morse. Things get much more exciting if we relax the nondegeneracy
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of zeros of ω. First of all transitivity alone does not imply harmonicity as
we shall see later. So one can not hope for a direct analog of Theorem 2.
Nevertheless, Theorem 1 repeated verbatim (see Theorem 7) remains true
for closed 1-forms with arbitrary zero sets. This is the content of Chapter 3.
The proof works exactly like Calabi’s with two technical modifications that
we briefly describe below, see Chapter 3 for details.

The first modification occurs when we go from intrinsic harmonicity to
transitivity. We need to replace the geometric argument of Calabi (which
implicitly uses nondegeneracy of the zeros of ω) by an argument closer to
dynamical systems in spirit. Namely, the Hodge dual ?gω =: ψ of ω is a
closed (n − 1)-form on M transverse to ω, meaning that ω ∧ ψ > 0 (with
respect to a distinguished volume form dvol which orients our manifold) on
the complement of the (common) zero set S of ω and ψ. Define a vector field
X on M by the equation iXdvol = ψ. Since X spans the kernel of ψ, it is
transverse to the kernel foliation of ω away of S. By the Cartan formula the
vector field X preserves the volume form dvol. Now an easy argument based
on the Poincaré-recurrence theorem applied to X gives us closed transversals
to the kernel foliation to ω, verifying transitivity.

The second modification occurs when we go from transitivity plus local
intrinsic harmonicity to intrinsic harmonicity. At the last stage we end up
with a closed (n − 1)-form ψ

′′
, which serves as a transversal to ω in some

neighbourhood U of S (that is ω ∧ ψ|U\S > 0) and a closed form ψ
′
, which

serves as a transversal to ω away of S and vanishes near S. Roughly speaking
the proof is then concluded by gluing ψ

′′
and ψ

′
to give a global closed (n−1)-

form ψ, serving as a transversal to ω. Then we define the desired Riemannian
metric g by declaring it to make ω and ψ orthogonal to each other. The slight
technical subtlety in gluing the forms ψ

′′
and ψ

′
is that we need the form

ψ
′′

to be exact near S for the gluing to work out correctly. This is of course
clear when S is a discrete set of points. For general S we use local intrinsic
harmonicity of ω to say that S is the zero set of a solution to a first order
elliptic partial differential equation. Then we apply the result by C. Bär [3]
to conclude that S is contained in at most a countable union of submanifolds
of codimension 2. The Countable sum Theorem tells us that the covering
dimension of S is at most n−2. Just like de-Rham cohomology is zero above
the dimension of a manifold, Čech cohomology is zero above the covering
dimension. In our case it gives us that the (n − 1)-st Čech cohomology of
S is zero. The continuity property of Čech cohomology, cf. [4] (Section 14
“Continuity”, Theorem 14.4) implies that after shrinking U if necessary, we



1.5. QUESTIONS FROM SINGULARITY THEORY. 21

can assume that ψ
′′

is exact.

1.5 Questions from singularity theory.

Chapter 5 is devoted to the study of local intrinsic harmonicity. Recall that
with nondegenerate zeros, the question whether the form is locally intrin-
sically harmonic or not is answered in purely topological terms: the Morse
index of ω at a nondegenerate zero p (determined by the principal part of
ω at p) should be different from 0 and n. Allowing general zeros makes the
question of local intrinsic harmonicity almost untractable. This is mainly
because the answer starts depending not only on the principal part of ω near
a (degenerate) zero p, but also on higher order terms and, unfortunately, in
a complicated way. To make things easier we restrict to the case n = 2.
The above cited theorem by Bär in this case amounts to the zero set S be-
ing discrete. So we can assume that we work on R2 near the origin — the
unique zero of ω = df . Normalize f(0, 0) = 0. If ω is co-closed with respect
to some Riemannian metric, then f is harmonic with respect to this metric
and therefore is a real part of a holomorphic function, where holomorphic
has to be understood with respect to the complex structure induced by the
metric. So after a coordinate change, we can achieve that f = Re(x + iy)m

for some integer m ≥ 2. So we see that local intrinsic harmonicity for df is
the same as for f to be equivalent to Re(x + iy)m under some coordinate
change locally around the origin. Therefore, the question is reduced to the
following problem from the theory of singularities of smooth functions: un-
der what conditions can the function f = Re(x + iy)m + h.o. be brought to
the form Re(x+ iy)m by a smooth change of coordinates around zero? Here
h.o. denotes the terms of order higher than m. The answer is given by the
following theorem, which is the highlight of Chapter 5.

Theorem 5. Let f = Re(x + iy)m + h.o. be a function defined on an open
ball around the origin in R2, where h.o. denotes the terms in the Taylor ex-
pansion around the origin of order higher than m. Then for m = 1, 2, 3, 4 the
function f can always be brought to the form Re(x+iy)m by a smooth change
of coordinates in some open ball around zero. For m > 4, the sufficient con-
dition for such a coordinate transformation to exist is that h.o. starts with
the order 2m− 3 or higher.

We pause to give a little history. In late 50th early 60th J.Nash and
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J. Moser developed a theory which enables one to write clever implicit func-
tion theorems in the smooth category. The theory grew out of the famous
Nash embedding theorem from 1956. In 1968 Samoilenko (cf. [17]) used this
theory to prove a fundamental result in singularity theory. Every smooth
function near an isolated critical point of finite order is equivalent under
some coordinate change to its truncated Taylor series at this point. This is a
qualitative result: we know the function is equivalent to a polynomial and to
give an upper bound on the degree of the polynomial is a separate question.
In 1972 Arnold (cf. [1]) used a clever “Lie algebraic” trick, which together
with the result by Samoilenko gives a very efficient criterion (Lemma 3.2 in
[1]) to decide that a function is equivalent a given polynomial. In particular
it allows us to decide when a function is equivalent to its leading term. The-
orem 5 essentially follows from Arnold’s criterion by means of an elementary
algebra trick, which uses that we are in dimension 2.

We develop an alternative approach to Theorem 5 which does not rely on
the work of Nash, Moser, Samoilenko and Arnold. It uses the equivalence
between the above question from singularity theory and the harmonicity of
f around zero, and proceeds as follows.

Step 1: we write out the equation

4gf = 0 (1.1)

in coordinates and view it as a singular nonlinear first order partial differential
equation for g.

Step2: we insert the formal Taylor power series for g in (1.1) and do a
power series argument (Section 5.2). We arrive at a system of linear equations
in every degree. Solvability of this linear system is a crucial point. In Section
5.3 we upgrade the elementary algebra trick by bringing Cauchy-Riemann
operators into play to establish solvability of linear systems arising from the
power series argument. This gives us the formal solution to Equation (1.1)
near the origin. A classical result from analysis going back to the early 20-th
century (see for example the paper by Mirkil [16]) tells us that there exists
an actual Riemannian metric g having the Taylor power series as prescribed
by the formal solution above. The metric g will satisfy Equation (1.1) up to
an error exponentially small near the origin. This is done in Section 5.4.

Step 3: we correct the Riemannian metric g in an exponentially small
fashion to make it satisfy (1.1) without any error at all. This is done in
Section 5.5. Closer examining the power series argument for the case m =
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2 leads us to the following result, which seems unaccessible by “classical”
methods from singularity theory.

Theorem 6. Let f = Re(x + iy)2 + h.o. and h = Im(x + iy)2 + h.o. be
smooth functions on an open ball around (0, 0) in R2 where the notation h.o.
stands for the terms of order 3 and higher. Then there exists a Riemannian
metric g which makes f harmonic on some open ball around zero and 4gh is
exponentially small around zero. Moreover the Taylor expansion at zero for
the conformal structure induced by g is uniquely determined.

Of course, we would like to have4gh equal to zero, not just exponentially
small, but it is not clear how to make the final step (Section 5.5) work for
both f and h simultaneously.

Chapter 6 is a logical continuation of the previous one. We consider a
smooth function f on R2 with f(0, 0) = 0 and df(0,0) = 0. Let m ≥ 2 be
the order of its leading power in Taylor expansion around the origin. We ask
exactly the same question as we asked in Chapter 5: When can f be brought
by a smooth change of variables to the normal form f0 = Re(x+iy)m in some
open neighbourhood of the origin? Theorem 5 suggests that this question
should be “finite dimensional”. In Section 6.1 we make the last sentence
precise using the language of germs and jets of functions.

In brief, we introduce the following objects: Am — the space of smooth
functions on R2 of order m at the origin (the leading term in the Taylor
expansion is of order m); GAm — the space of germs at (0, 0) of functions
from Am; the space of jets Jetmr := Am/Ar+1, for r ≥ m — truncated Taylor
series, starting at the order m and going up to the order r; the group of
diffeomorphisms of R2 fixing the origin — Diff and the (finite dimensional!)
Lie group Diffr which consists of truncations of the elements of Diff at
the origin neglecting the terms in the Taylor series of orders greater than r.
The group Diff acts on the spaces GAm on the right by composition and
the action descends to an action on the spaces of jets Jetmr . Moreover, there
is a well-defined action of the group Diffr on the space Jetmm+r−1. The germ
of a function f is denoted by {f} and the r-th jet by {f}r.

It turns out that the above question about the equivalence of f and
the normal form f0 under a coordinate change can be reformulated in the
language of germs: does the germ {f} of f lie on the orbit of the germ {f0}
of f0 = Re(x+ iy)m under the action of the group Diff? The main result of
Section 6.1 (Theorem 28) is the following: the germ {f} ∈ GAm lies on the
orbit of the germ {f0} in GAm under the action of Diff if and only if the jet
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{f}m+r−1 ∈ Jetmm+r−1 belongs to the orbit of the jet {f0}m+r−1 in Jetmm+r−1

under the action of the group Diffr for r = max(1,m − 3). Note that
the latter is a finite dimensional representation of a finite dimensional group.
Motivated by Theorem 28 we interpret the codimension of the orbit {f0}Diff
of {f0} in GAm under the action of Diff as the codimension of the orbit
{f0}m+r−1Diffr of {f0}m+r−1 in Jetmm+r−1 for r = max(1,m − 3). And the
latter codimension can be easily computed and is equal to 1

2
(m−2)(m−3) (the

first half of Proposition 17). The second half of this proposition computes
the codimension of {f0}5Diff1 in Jet55, which happens to be equal to 2. This
little computation is used to give a smooth function f̃ on R2 arbitrarily C∞

close to Re(x+iy)5, having Re(x+iy)5 as the leading term but not equivalent
to Re(x+iy)5 under a coordinate change in any open neighbourhood of (0, 0).

In Section 6.2 we consider intrinsic harmonicity for (not necessarily Morse)
closed 1-forms on surfaces and go back to the question “how many terms in
the Taylor expansion near a degenerate zero do we have to control to keep
track of intrinsic harmonicity?” It turns out that the topology of the surface
can give a certain upper bound. Indeed, let our surface have genus g > 1.
Then the Poincare-Hopf theorem together with an easy Morse theoretic ar-
gument show that the highest singularity we can allow for ω in order to have
a chance for intrinsic harmonicity is of order g − 1 (that is the leading term
should be of the form dRe(x+ iy)g). So if we control the first max(g, 2g− 4)
Taylor coefficients at every zero of a closed 1-form on the surface of genus g
that would be enough to ensure local intrinsic harmonicity.

In Section 6.3 we give an example of a closed intrinsically harmonic 1-form
ω on the surface of genus 5 with the following two properties. It has exactly
two zeros p and p′ and it looks like d(x + iy)5 in an appropriate coordinate
system near each zero. There exists a closed not locally intrinsically harmonic
transitive 1-form ω̃ arbitrarily C∞ close to ω with the same zero set {p, p′}
and with the principal parts at these zeros being the same as for the form
ω. The construction of ω̃ uses the function f̃ above as a local model near
p and p′. This tells us that in the presence of degenerate zeros intrinsic
harmonicity can not be detected by topological tools and that openness of
the set of intrinsically harmonic 1-forms fails.

In Section 6.4 we outline possible directions for future work.



Chapter 2

Preliminaries

2.1 Hodge-star operator.

In this section we recall the definition of the Hodge-star operator as a bundle
map and compute it explicitly for n = 2.

Take a point x ∈ M . Let e1, ..., en be an orthonormal basis for TxM
defining the correct orientation. Let f1, f2, ..., fn be the dual basis for T ?xM .
We equip T ?xM with the inner product, by declaring the basis f1, f2, ..., fn
to be orthonormal. The set {fj1 ∧ fj2 ∧ ... ∧ fjk}j1<j2<...<jk , jl ∈ {1, ..., n}
forms a basis for the vector space Λk(T ?xM). We give this space an inner
product by declaring this basis to be orthonormal. We define the linear map
?g (Hodge-star) form Λk(T ?xM) to Λn−k(T ?xM), by saying what it does to the
above basis. By definition

?g(fj1 ∧ fj2 ∧ ... ∧ fjk) = sign(j1, ..., jk)fi1 ∧ fi2 ∧ ... ∧ fin−k ,

where the integers i1 < i2 < ... < in−k form the complementary set to
{j1, jk, ..., jn} in {1, 2, ..., n} and the sign(j1, ..., jk) is chosen to be plus or
minus so that

fj1 ∧ fj2 ∧ ... ∧ fjk ∧ ?g(fj1 ∧ fj2 ∧ ... ∧ fjk) = f1 ∧ ... ∧ fn,

i.e. according to the orientation. Letting the point x run over the whole
manifold M gives us the bundle map ?g. Note that if the dimension n of
the manifold M is even and k = n/2, then the Hodge-star operator does not
change under rescalings of the metric, i.e. it depends only on the conformal
structure. As a warm up and also a preparation for the future we write out

25
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explicit formulas for ?g in the case M = R2 (standard orientation), k = 1. Let
the Riemannian metric g be defined by the matrix {gij}i,j=1,2 in the standard
coordinates (x, y), that is g11 = g(∂x, ∂x), g12 = g(∂x, ∂y), g22 = g(∂y, ∂y).
Recall that the Riemannian metric g on TR2 induces the one on T ?R2, we
denote the induced Riemannian metric by the same letter g and consider
g11 = g(dx, dx), g12 = g(dx, dy), g22 = g(dy, dy). As it easily follows from
how we introduced inner products on dual spaces, the matrix {gij}i,j=1,2

is the inverse to the matrix {gij}i,j=1,2. We want to compute the Hodge
star on Λ1T ?R2. Since we are in the middle dimension, we can rescale the
Riemannian metric g as we like. It will be a standing convention throughout
the paper to fix the rescaling (for the particular example of Λ1T ?R2) in such
a way that det{gij}i,j=1,2 = det{gij}i,j=1,2 = 1. It is an easy exercise that
with the convention we have the formulas for the Hodge-star are

?gdx = −g12dx+ g11dy

and

?gdy = −g22dx+ g12dy,

so it brings adx+ bdy to (−g12a− g22b)dx+ (g11a+ g12b)dy, i.e. in standard
coordinates (dx, dy) the Hodge-star operator is given by the following matrix:(
−g12 −g22

g11 g12

)
. In particular, the Laplace-Beltrami operator writes out as

4gf = [(g12fx + g22fy)y + (g11fx + g12fy)x]dx ∧ dy.

2.2 Homogeneous polynomials.

In this section we recall some elementary facts about homogeneous poly-
nomials in two variables. Let P : R2 −→ R be a homogeneous polyno-
mial of the n-th degree (degP = n). Then there is a positive constant
C such that |P (x, y)| ≤ C(x2 + y2)

n
2 for all (x, y) ∈ R2 . The zero set

KerP = {(x, y) ∈ R
2|P (x, y) = 0} of the polynomial P is either a 1-

point set {(0, 0)} or a finite union of lines through the origin (1-dimensional
linear subspaces) (we leave off the trivial case of the zero polynomial). If
KerP = {(0, 0)}, then there are positive constants c, C such that

c(x2 + y2)
n
2 ≤ |P (x, y)| ≤ C(x2 + y2)

n
2 . (2.1)
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Assume now that KerP = ∪i∈I l1i , where l1i ⊂ R
2 is a linear subspace of

dimension 1 and I is finite. We take a small positive δ and set

Coneδi (P ) = {(ξ, η) ∈ R2 \ {(0, 0)}| dist((ξ, η), l1i )

dist((ξ, η), (0, 0))
< δ}

and
Ωδ(P ) = R2 \ ∪i∈IConei.

Then there are positive constants cδ and Cδ such that

cδ(x
2 + y2)

n
2 ≤ |P |Ωδ(P )(x, y)| ≤ Cδ(x

2 + y2)
n
2 . (2.2)

Definition 6. For a smooth function σ defined locally around the origin in
R

2, the expression rn[σ] will denote its n-th term in the Taylor expansion,
which is a homogeneous polynomial in (x, y) of degree n. The expression rn[·]
has the same meaning for 2-forms which are then identified with functions
by means of the fixed volume form dx ∧ dy.

2.3 Exponentially small functions.

In this section we recall some facts about the ideal of functions exponentially
small near a point. We denote the set of infinitely differentiable functions
defined in some open neighbourhood of (0, 0) ∈ R2 with vanishing Taylor
series at (0, 0) ∈ R2 by O(exp). This is an ideal in the ring of all (locally
defined) smooth functions, i.e. a multiplication of an element from O(exp)
with any smooth function gives us again a function of the class O(exp). This
class respects the operation of taking derivatives, i.e. partial derivatives of
all orders taken from an O(exp)-function belong to O(exp) (algebraically,
O(exp) is a differential ideal). The following criterion is a standard way to
check that a given function belongs to the class O(exp).

Lemma 1. Let the function φ be smooth in a punctured neighbourhood of
(0, 0). If φ decays at (0, 0) together with all its derivatives faster than any
polynomial, then the continuation of φ across the origin by 0 belongs to the
class O(exp).

Proof. It suffices to prove that all partial derivatives of φ at (0, 0) exist and
vanish. Take for instance the first partial derivative with respect to x, namely

∂xφ(0,0) := lim
h→0

φ(h, 0)− φ(0, 0)

h
= lim

h→0

φ(h, 0)

h
.
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The last limit exists and vanishes, since φ decays at (0, 0) faster than any
polynomial. Similarly, ∂yφ(0,0) = 0. For the partial derivatives of the second
order similar procedure works. It uses that the partial derivatives of φ of
the first order decay faster than any polynomial. Proceeding inductively one
shows that all partial derivatives of φ at (0, 0) exist and vanish. �

This has an immediate application.

Lemma 2. Let the function φ be of the class O(exp) and σ be a (locally
defined) smooth function which has zero of finite order at (0, 0) and does
not vanish in a punctured neighbourhood of (0, 0). Then the ratio φ

σ
is well

defined locally around the origin and belongs to the class O(exp).

Proof. Writing out a partial derivative of some order of the fraction φ
σ

gives
us a fraction whose numerator decays faster than any polynomial and the
denominator is equal to σn for some natural n. The function σ having iso-
lated zero of finite order at (0, 0) implies that its leading term P in Taylor
expansion at (0, 0) has the unique zero at (0, 0). Therefore (see Inequality
(2.1)) P and hence σn can be estimated from below by c(x2 +y2)n/2 for some
positive constant c. Altogether, the fraction, representing the partial deriva-
tive decays faster than any polynomial at (0, 0). Application of the previous
lemma to φ

σ
finishes the proof.�

There is one more technical remark that we will need in future. Let φ be
of the class O(exp) and σ be a (locally defined) smooth function which has
a zero of finite order at (0, 0). Let the homogeneous polynomial P be the
leading term in the Taylor series of σ at (0, 0). Assume that KerP = ∪i∈I l1i ,
where l1i ⊂ R

2 is a linear subspace of dimension 1 with finite I and take
a small positive δ to define Ωδ(P ) as in the previous section. Then φ

σ
|Ωδ(P )

decays at (0, 0) together with all its derivatives faster than any polynomial
(Inequality (2.2) is used for the proof).

These facts about the class O(exp) will be used freely later on without
special references. In calculations, by abuse of notation, we will sometimes
denote an O(exp)-function by the symbol O(exp). The O(exp) notation for
2-forms defined in a neighbourhood of (0, 0) ∈ R2 transfers by means of a
fixed volume form.



Chapter 3

Characterization of intrinsically
harmonic 1-forms

In this chapter we generalize Calabi’s characterization of intrinsically har-
monic 1-forms (cf. [5]) from Morse 1-forms to arbitrary closed 1-forms, i.e.
we allow arbitrary zero sets. After we finish the proof of the characteriza-
tion theorem we turn our attention to the Morse case. In the Morse case
the characterization theorem is simply the equivalence between transitivity
and intrinsic harmonicity. We use this to prove that the set of intrinsically
harmonic 1-forms is open in the set of Morse forms with respect to the C1

topology. The author would like to thank J. Latschev, who suggested the
“global” part of the proof. For the local part we need a refinement of the
Morse Lemma, essentially giving a certain lower bound on the size of the
Morse neighbourhood of a critical point of a Morse function. This is done in
the Appendix.

We are working on a smooth closed oriented n-dimensional manifold M
with a closed 1-form ω on it; S denotes the zero set {p ∈ M |ω(p) = 0} of
ω and F denotes the restriction of the (singular) kernel foliation of ω to its
regular set M \ S. We begin by recalling the concept of transitivity in the
specific situation of 1-forms.

Definition 7. A closed 1-form ω is called transitive if for any point p ∈M\S
there is a closed (strictly) ω-positive smooth path γ : S1 −→ M through p.
Here “ω-positive” means that ω(γ̇(t)) > 0 for all t ∈ S1 = R/Z. That is to
say that there exists a closed transversal to the kernel foliation of ω through
every point of our manifold which does not lie in the zero set of ω.

29
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We also recall the concept of local intrinsic harmonicity.

Definition 8. A closed 1-form ω is called locally intrinsically harmonic if
there exists an open neighbourhood U of its zero set S and a Riemannian
metric gU on U which makes the restriction ω|U co-closed.

The following theorem goes back to the classical result by Calabi cf. [5].

Theorem 7. For a closed 1-form ω on a closed oriented connected n-manifold
M to be intrinsically harmonic it is necessary and sufficient that
(a) the form ω is locally intrinsically harmonic and
(b) the form ω is transitive.

Proof. For necessity assume, there exists a Riemannian metric g which makes
ω harmonic. Condition (a) is obviously satisfied. To show Condition (b) we
recall a classical result from dynamical systems — the Poincaré-recurrence
theorem.

Proposition 1. Let (Ω,Σ, µ) be a probability space. Let {φt}t∈R be a measure
preserving dynamical system on it. Assume that A is a σ-algebra element of
positive measure. Then for any positive N there exists n0 greater then N
such that

µ(A ∩ φn0(A)) > 0.

To apply this proposition in our situation we set Ω to be our manifold
M , the σ-algebra Σ to be the usual borelian σ-algebra, and µ to be the
probability measure defined by a distinguished volume form dvol on M with
total volume equal to one. Furthermore, let the vector field X be defined by
the following equation: iXdvol = ?gω. Note that X is transverse to the kernel
foliation of ω outside S. By Cartan formula, we see that LXdvol = 0. Let
{φt}t∈R be the flow of X on M . In our setting {φt}t∈R becomes a measure
preserving dynamical system on (Ω,Σ, µ). Let now p be a given point in
M \ S. Let (ξ̄,Φ) be a bi-foliated closed chart around p, i.e. ξ̄ is a closed
subset of M , containing an open neighbourhood of p and

Φ : ξ̄ −→ B × I,

is a diffeomorphism, where B is a closed ball in Rn−1 and I = [0, 1] is a unit
time interval. Moreover, under the diffeomorphism Φ flowlines of {φt}t∈R
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correspond to the vertical leaves b × I, b ∈ B and integral submanifolds of
the kernel foliation of ω correspond to the horizontal leaves B × t, t ∈ I.
In further considerations we identify ξ̄ with its image under Φ. Since ξ̄ is
compact, all points of ξ̄ will leave it by some time N , as you follow the flow
{φt}t∈R. We set A := ξ̄ and apply Proposition 1 with the above choices of
Ω,Σ, µ, A,N . This gives us a trajectory of {φt}t∈R which leaves ξ̄ at some
point (b1, 1) and then enters it again for the first time at some point (b0, 0).
Let us denote the flowline between (b1, 1) and (b0, 0) by c̃. It is clear that
except for its end points the path c̃ lies outside ξ̄. Now we close up this
flowline artificially inside the bifoliated chart ξ̄, by connecting (b0, 0) and
(b1, 1) with a smooth path ĉ through p, transverse to the horizontal leaves
B × t, t ∈ I. Clearly, this can be done in such a way that the concatenation
c of the paths c̃ and ĉ is smooth. So as c is a smooth closed ω-positive path
and the point p was arbitrary, we have that the form ω is transitive. This is
Condition (b).

For sufficiency assume that conditions (a) and (b) hold true. Let U
be a neighbourhood of S such that ω|U is co-closed with respect to some
Riemannian metric gU on U . As it follows from the lemma below U can be
chosen so small that the form ?gUωU is exact.

Lemma 3. Let (X, g) be a smooth oriented n-dimensional Riemannian man-
ifold without boundary. Let S be a compact zero set of a 1-form γ on X which
is both closed and co-closed. There exists an open neighbourhood U of S, such
that for any closed (n− 1)-form ψ on X the restriction ψ|U is exact.

Proof. The form γ is a solution to a first order linear elliptic equation

(d+ d?)γ = 0, (3.1)

where d+ d? = d+ ?d? is a Dirac operator on X. Locally (3.1) is equivalent
to 4gf = 0, where f is a local primitive function of γ and 4g denotes
Laplace-Beltrami operator for the metric g. So, we can apply the result by
Aronszajn, cf.[2], to get that the Dirac operator on 1-forms possesses the
strong unique continuation property. Then we apply the theorem by C. Bär
(cf. [3]) to find a sequence {Lk}k∈N of submanifolds of X of codimension at
least 2, with S ⊂

⋃
k∈N Lk. Since every submanifold Sk can be countably

exhausted by compact ones (possibly with boundary), we may without loss
of generality assume that each Lk is compact, possibly with boundary. Set
Zk = S ∩ Lk. Let dim denote the covering dimension of a topological space.
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Then dimZk ≤ n−2, since Lk is a compact manifold (possibly with boundary)
of dimension at most n− 2 and Zk ⊂ Lk. Since S =

⋃
k∈N Zk and every Zk is

closed in S, the Countable sum Theorem (cf. [6] Theorem 7.2.1 on the page
394) implies that dimS ≤ n− 2. This, in turn, implies that Hn−1

Čech
(S) = 0.

Take a sequence {Uj}j∈N of open neighbourhoods Uj of S such that
Uj+1 ⊂ Uj and ∩j∈NUj = S with U0 = X. The continuity property of
Čech cohomology, cf. [4] (section 14 “Continuity”, Theorem 14.4) implies
that lim−→Hn−1

Čech
(Uj) = 0, but Uj is manifold, hence Čech cohomology of it is

the same as de Rham and finite dimensional. So we have that a direct limit
of a sequence of finite dimensional vector spaces vanishes. This implies that
for j big enough the image of the 0-th vector space of the sequence in the j-th
one vanishes. In other words if i : Uj −→ X denotes the obvious inclusion,
then i?Hn−1(X) is the trivial subspace of Hn−1(Uj). Take U := Uj.�

So, we can pick a primitive (n − 2)-form α on U : (dα = ?gUω|U). Us-
ing transitivity of the form ω, by a standard “thickening of a transversal
argument” we obtain, that given a point m ∈ M \ S, there exists an open
neighbourhood Wm of it, diffeomorphic to S1 × B, where B is an open ball
in Rn−1 centered at the origin. More precisely, let γ : S1 −→M be a smooth
ω-positive path through m ∈ M \ S, which we have be the transitivity of
ω. Let Wm ⊂ M \ S be a small tubular neighbourhood of γ(S1) in M . The
neighbourhood Wm is the total space of a Dn−1-bundle ξ over S1, where
Dn−1 is the closed unit disk in Rn−1. Every fiber of ξ is a connected com-
ponent of the intersection of a certain leaf of the kernel foliation of ω with
Wm. Since Wm is a total space of a bundle over S1, it can be realized as
a mapping torus, i.e. Wm is diffeomorphic to Dn−1 × [0, 1]/ ∼, where the
equivalence relation is given by (x, 0) ∼ (φ(x), 1) and φ is diffeomorphism of
Dn−1. Since Wm is orientable, the diffeomorphism φ is orientation preserv-
ing and therefore isotopic to the identity. Therefore, the bundle ξ is trivial,
i.e. Wm is diffeomorphic to P = Dn−1 × S1. For a moment we identify Wm

with P via this diffeomorphism. Let x1, ..., xn−1 be the coordinates on Dn−1

and let θ be the S1 coordinate on P . In these coordinates the form ω|Wm

writes out as fdθ, where f is a smooth function on P with df ∧ dθ = 0. Let
ρ : [0, 1] −→ R be a smooth cut-off function: ρ|[0,1/5] = 1, ρ|[4/5,1] = 0. Set
ψm = ρ(x2

1 + ...+x2
n−1)dx1∧ ...∧dxn−1. Clearly, the (n−1)-form ψm is closed,

vanishes in a neighbourhood of the boundary of P and the top degree form
Θ := ω ∧ ψm satisfies the following properties: Θ is nonnegative everywhere
and Θ > 0 in some neighbourhood Vm of γ(S1). Vanishing of ψm near the
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boundary of P implies that ψm vanishes in some open neighbourhood Um of
S with Um ⊂ U . This construction almost literally follows the one given by
Calabi in [5].

Since M \U is compact it can be covered by Vm1 , ..., Vml for some natural
number l, where m1, ...ml ∈M \ U . Set

U0 := Um1 ∩ ... ∩ Uml ,

V := Vm1 ∪ ... ∪ Vml
and

ψ
′
:= Σl

i=1ψmi .

Note, that U0 ⊂M \ V ⊂ U and ψ
′|U0 = 0.

We pause for a moment to summarize what we have. We have an open
neighbourhood U of S with an (n − 2)-form α on U such that dα = ?gUω;
open sets U0 and V with U0 ⊂M \V ⊂ U and an (n−1)-form ψ

′
with ψ

′ ∧ω
bounded away form zero on V , nonnegative everywhere and satisfying ψ

′|U0 =
0. This allows us to finish the proof with the standard gluing argument. We
let φ be a smooth function with φ|M\V = 1 and φ|M\U = 0. Such a function
φ exists since both sets M \ V and M \ U are closed and the first one is
contained in the complement of the second. Set α

′′
= φα and ψ

′′
= dα

′′
.

Note that ψ
′′|M\V = dα|M\V = ?gUω|M\V . Consider a closed form

ψ = Kψ
′
+ ψ

′′

for sufficiently large positive constant K. We claim that the form ψ has the
following properties:
(i) ψ|U0 = ?gUω|U0 ,
(ii)ω ∧ ψ > 0 everywhere on M \ S.
Indeed, since ψ

′|U0 = 0, we have that

ψ|U0 = ψ′′|U0 = ?gUω|U0 .

This shows the first property. For the second one consider

ψM\V = Kψ
′|M\V + ψ

′′|M\V = Kψ
′|M\V + ?gU |M\V ,

multiplying with ω gives us

ω ∧ ψ|M\V = Kω ∧ ψ′|M\V + ω ∧ ?gUω|M\V .
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The last expression is the sum of two nonnegative terms, the second one
being strictly positive outside S. We are left the expression ω ∧ψ, restricted
to V . Since ω ∧ ψ′|V is bounded away from zero, we have that

ω ∧ ψ|V = Kω ∧ ψ′|V + ω ∧ ψ′′|V > 0

for sufficiently large positive constant K.
Now, having the form ψ with the properties above we construct the de-

sired metric g by gluing. Let φU , φV be a partition of unity, subordinate to
the cover U, V . Let g

′′
be any metric on V , making ω and ψ orthogonal to

each other. Consider the metric g̃ = φUgU + φV g
′′

on M . It makes ω and
ψ orthogonal everywhere on M and ?g̃ω|U0 = ?gUω|U0 = ψ|U0 . Consider the
following orthogonal decomposition of the tangent bundle of M \ S:

g̃ = g̃|Kerω ⊕ g̃|Kerψ.

There exists and unique smooth function f̃ : M \ S −→ R, such that for the
metric

g = f̃ g̃|Kerω ⊕ g̃|Kerψ
on M \ S we have that ?gω|M\S = ψ|M\S. Note, that f̃ |U0 = 1, therefore
g|U0\S = g̃|U0\S, and hence g can be C∞-regularly continued across points of
S by just setting g|S = g̃|S. This means that the metric g is well-defined
everywhere on M . The equation

?gω = ψ

holds on M \ S, by the choice of f̃ and it also holds on U0, by the first
property of the form ψ because g|U0 = g̃|U0 = gU |U0 . Thus, since, the form ψ
is closed we obtain that the form ω is co-closed with respect to the metric g
everywhere on M . �

Next, we turn our attention to what happens in the nondegenerate case.
We begin with two obvious remarks. The first remark is that for Morse forms
local intrinsic harmonicity is equivalent to the absence zeros of index 0 or n.
The second remark is that for Morse forms transitivity implies local intrinsic
harmonicity. Note, that in the second remark the nondegeneracy assumption
can not be weakened. There are examples of transitive forms with isolated
but degenerate zeros which are not locally intrinsically harmonic, see Section
6.3. For Morse forms Theorem 7 takes the following form.
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Theorem 8. Let ω be a closed Morse 1-form on a closed oriented connected
n-manifold M . Then ω is intrinsically harmonic if and only if it is transitive.

We elaborate a little on the concept of transitivity. Note that to check
transitivity for a Morse locally intrinsically harmonic form it is not necessary
to look for a closed transversal to F through every point of M \S. Firstly, it
is enough to find a closed transversal through every leaf of F , and secondly
since every leaf of F intersects M \U (for U — an open neighbourhood of S
small enough) it is enough to find a closed transversal through every leaf of
the restriction F|M\U . These observations lead to the following theorem

Theorem 9. The set of transitive forms is C1-open in the set of Morse
forms.

Proof. Let ω be a closed transitive Morse 1-form on M . According to Lemma
20 in the Appendix we can chose a C1-open neighbourhood U of ω and a
disjoint union U of Morse neighbourhoods of zeros of ω so small that for any
ω̃ ∈ U any connected component Û of U serves as a Morse neighbourhood
for ω̃, i.e. a primitive function of ω in Û , can be brought the canonical Morse
form with the same Morse index. Therefore, there exists an (n − 2)-form α̃
on U with dα̃ = ?gU ω̃U .

We cover M \ U be finitely many open neighbourhoods Vm1 , ..., Vml , as
in the proof of Theorem 7. Every Vmj is diffeomorphic to S1 × B. A closed
transversal γj through mj corresponds to S1×0. We set V := Vm1 ∪ ...∪Vml .
Recall that M \U ⊂ V . Note that now a finite number of closed transversals
{γj}j=1,...,1 intersect all the leaves of F . Now we turn to our perturbed form
ω̃. By shrinking U , if necessary, we can achieve that every γj is positive
the for perturbed form ω̃. Since every leaf of F̃ (the kernel foliation of ω̃
restricted to M \ S̃) intersects nonempty with M \ U and therefore with V
the old transversals {γj}j=1,...,1 serve as transversals to the new foliation F̃
intersecting all(!) the leaves of F̃ . Therefore the form ω̃ is also transitive. �

Together with Theorem 8 this gives us the following

Theorem 10. The set of intrinsically harmonic forms is C1-open in the set
of Morse forms.
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Chapter 4

Transitivity versus
nontransitivity under small
perturbations

The general setup for this chapter is the same as for the previous one: a
closed oriented n-dimensional manifold M and a closed 1-form ω on it. In this
chapter a slight change in terminology happens: what previously was called
transitivity (existence of closed transversals through every nonsingular point
of the kernel foliation of ω ) will now be called “weak transitivity”, because
we want to reserve the word “transitivity” for a slightly more technical and
seemingly stronger property. Eventually, the two properties turn out to be
the same, so we can just drop “weakly” afterwards. This way our treatment
of the concept of transitivity becomes a slight variation of that given by
Calabi in [5]. The main technical tools developed in this chapter (upland,
lowland, different versions of transitivity) appear in [5], maybe in a slightly
different setups. We give a little summary of what happens in this chapter
section by section. In Section 4.1 we discuss the properties of transitivity in
the most general case possible — the zero set S of the 1-form ω is allowed to
be arbitrary. The culmination of this technical section is Theorem 11 which
essentially says that a form ω is nontransitive if and only if a certain set of
closed leaves of the foliation F separates the (possibly noncompact) manifold
M \ S. This theorem will be a key tool for everything else in this chapter.
In Section 4.2 we assume that ω is a Morse form and see how Theorem 11
rewrites and what applications it has. Let us mention two of the applications
right now. The first one is Theorem 15 which says that if a Morse 1-form

37
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does not have zeros of index 0, 1, n − 1 and n, then it is transitive. The
second one, Theorem 16 is a purely topological statement about foliations,
it says that if a Morse 1-form has at least one zero of index 0 or n and at
least one leaf, which is not closed in M \ S, then it must have at least one
zero of index 1 or n − 1. The culmination of the section is Theorem 17 —
a Morse version of Theorem 11. It says that nontransitivity is equivalent
to the existence of a set of “singular closed leaves” P1, ...,Pl of F , which
induce zero in Hn−1(M). An important tool for the main theorem is the
“No Blow up” theorem which imposes a certain diameter bound on such
singular closed leaves. In Section 4.3 we deal with convergent sequences of
Morse forms ωm converging to ω with respect to the C1 topology. We give
a criterion under which a sequence of “singular closed leaves” Pm of Fm
converges to the “singular closed leaf” P of F . An essential ingredient for
this is the “No Blow up” theorem. In Section 4.4 we use all the technique
we have worked out by then (especially the convergence theorem) to prove
the main theorem of this chapter — Theorem 22. Its formulation was given
and the proof was sketched in the introduction. In Section 4.5 we give some
illustrating examples.

4.1 Generalities.

We begin by introducing the (modified) concept of transitivity.

Definition 9. We say that a closed 1-form ω on M is transitive provided
that for any two points p, q ∈ M \ S there exists a smooth path γ joining p
and q, such that ω(γ̇) > 0 all along φ including the endpoints p and q. In
other words: for any two points from M \ S one is reachable from the other
by an ω-positive path.

We recall basic facts and concepts related to transitivity.

Definition 10. Given a point p ∈ M \ S we define its upland Up to be the
set of points reachable from p be an ω-positive path and similarly Lp — the
lowland to be the set of points reachable from p by an ω-negative path (with
the obvious meaning of ω-negative).

Note that by definition Up is connected and that the relation that one
point lies in the upland of the other is transitive, i.e. p2 ∈ Up1 and p3 ∈ Up2

imply that p3 ∈ Up1 .
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Each of the following is equivalent to saying that ω is transitive:
i) Up = M \ S for all p ∈M \ S,
ii)there exists p ∈M \ S with Up = Lp = M \ S.
Now given a point p ∈M \S we derive some topological consequences about
the upland Up and its boundary ∂Up. Of course, similar discussions apply to
the lowland Lp and its boundary ∂Lp.

Proposition 2. Let p ∈M \ S be a point. Then its upland Up is open.

Proof. Consider a foliated chart U for the foliation F around a point q ∈ Up
such that the leaves of the restricted foliation F|U are connected. Let f be
a suitably normalized local primitive function of ω on U , i.e. df = ω|U and
f(q) = 0. The leaves of F|U are simply the level sets of f . Then it is easy
to see that {f > 0} ⊂ Up. In words: all the points which lie “above” q
(have bigger values of f) also belong to Up. Moreover, if q ∈ Up then we can
consider an ω-positive path γ : [0, 1] −→ M with γ(0) = p, γ(1) = q and
take an intersection γ[0, 1]∩U which is an open subset of γ([0, 1]). Therefore
there exists t ∈ (0, 1) (maybe very close to 1) such that γ(t) ∈ U . The point
γ(t) is by construction ω-positive reachable from p and lies below q in U .
This amounts to saying that for q ∈ Up not only the points in U above q
belong to Up but also some of the points below q belong to Up. From this it
is clear that there is an open neighbourhood V of q in U with V ⊂ Up �

The following (technical) lemma is a key tool for the sequence of propo-
sitions and lemmas below and most of the later assertions.

Lemma 4. Let U be an open connected subset of M with the following prop-
erties:

IB1 the restriction ω|U is exact, i.e. ω|U = df for some smooth function f
on U ,

IB2 the boundary ∂U of U does not intersect S and consists of two parts:
one is F-saturated (consists of leaves of F), the other is invariant under
the local flow of some gradient-like vector field ξ for f (ξ-invariant).
Moreover the image of the F-saturated part of ∂U under the map f is
contained in the boundary of f(U).

IB3 the leaves of F escape some small neighbourhood V of S ∩ U ,

IB4 the level sets of f are connected.



40 CHAPTER 4. TRANSITIVITY VERSUS NONTRANSITIVITY

Then for any two points q, q̃ ∈ U \ S with f(q̃) > f(q) we have that q̃ ∈ Uq.

Definition 11. The conditions IB1, IB2, IB3 and IB4 above will be ab-
breviated as IB conditions. An open connected subset U of M satisfying the
IB conditions will be called an IB set.

Proof. We start at q and follow the flowline of ξ upwards until one of the
following three things happens:

1) we have reached q1 with f(q1) = f(q̃),

2) we have reached V ,

3) we have reached ∂U .

It will be straightforward to finish the proof if we have 1), so we consider
what happens if we are faced with 2) or 3). In the case of 2) we move along
the leaf we have reached by then to escape V and start moving upwards along
the flowlines of ξ again. In the case of 3) by the IB2 property of U , we have
that ∂U consists of two parts: one is F -saturated and the other ξ-invariant.
Assume that we have arrived at the F -saturated part. Clearly the value of
the function f at the point we have arrived to is not the infimum of f . Then
the second part of the IB2 property implies that the value of the function f
at this point must be the supremum of f . This means that we should have
stopped earlier, since we had 1) already. Therefore, we can assume that in
the case of 3) we have arrived at the ξ invariant part of ∂U . It means that we
can start to travel upwards ξ remaining on ∂U at the same time. It is easy
to see that this program will terminate at finitely many steps, meaning we
eventually arrive at 1). Then connect q1 to q̃ inside the level set {f = f(q1)}.
This is possible since the level sets of f are connected. The last step is to
modify this path to an ω-positive one inside a small open neighbourhood of
those parts of the path which go along the leaves of F . This shows that
q̃ ∈ Uq. �

Lemma 5. Let U be an IB set and let p ∈ M \ S be a point. Then there
exists s ∈ R, such that the following inclusions are true: ({f > s} \ S) ⊂ Up
and {f ≤ s} ⊂M \ Up. In particular (∂Up \ S) ∩ U = {f = s}.

Proof. Given any pair of points q, q̃ ∈ U \S with f(q̃) > f(q), Lemma 4 tells
us that q ∈ Up implies that q̃ ∈ Up. This is so because “lying in the upland
of” defines a transitive relation. Now since U is connected, its image I under
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f is a bounded interval in R. If (M \Up)∩ (U \S) = ∅, then we take s to be
any number to the left of I, else we set s = sup{f(q)|q ∈ (M \Up)∩ (U \S)}.
The inclusion ({f > s} \ S) ⊂ Up is clear since otherwise we have a point
q ∈ (M \ Up) ∩ (U \ S) with f(q) > s, contradicting the definition of s. It
remains to show the inclusion {f ≤ s} ⊂ M \ Up. Assume by contradiction,
that there is a point q ∈ Up, with f(q) ≤ s. Since Up is open and q is a
regular point of f , we can find q1 ∈ Up with f(q1) = s1 < s. Consider the
set of points fs1s := {s1 < f(q̃) ≤ s} \ S. By the observation above we have
that fs1s ⊂ Up, but this contradicts the definition of s. �

We suggest the following way of visualizing Lemma 5. The points of
U \ S are coloured in three different colours: red, black and blue depending
on whether the value of the function f at a point is greater, equal or smaller
than s respectively. The points of S which happen to lie in {f ≤ s} can
also be coloured in black or blue accordingly. This allows us to think of red
points as points in Up, blue — as in the interior of M \ Up, black — as in
the boundary of the interior of M \ Up, separating between red and blue.
With this “red-black-blue” picture in mind the proofs of the following three
statements are clear.

Proposition 3. The sets Up, M \ Up and ∂Up are F saturated.

Proposition 4. Let p ∈ M \ S be a point. Then Up ∪ ∂Up \ S is a n-
dimensional submanifold of M with boundary ∂Up \ S.

Proposition 3 says in particular that the smooth part of ∂Up consists of
leaves of F , but as we will now see not every leaf of F can serve as a part of
∂Up. In fact, the topological behavior of such a leaf is very much constrained.
The next definition is the first step in making the “very much constrained”
precise.

Definition 12. Let L be a leaf of F . We say that the leaf is nonwinding,
if for every IB foliated chart U , we have that L enters U at most once, i.e.
|π0(U ∩ L)| ≤ 1

The following two lemmas are crucial. The first one being immediate
from Lemma 5.

Lemma 6. Let L be a leaf of F . Assume that L is a part of ∂Up. Then L
is nonwinding.
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Lemma 7. Let L be a nonwinding leaf of F . Let p0 be a nondegenerate zero
of ω. Let U be a Morse neighbourhood of p0 which satisfies IB1, IB2, IB3 and
instead of IB4 one has that the level sets of f can have at most 2 connected
components. Then L can enter U at most twice, i.e. |π0(U ∩ L)| ≤ 2.

Proof. Assume by contradiction, that L enters U at least three times. Then
regardless of what the Morse index of p0 is, we can find an IB-foliated chart
V ⊂ U near p0, such that L enters V at least twice, contradicting Lemma 6.
�

Note, that we can shrink any foliated chart to produce an IB one and
any Morse neighbourhood to make it satisfy the assumptions of Lemma 7. In
particular, if ω is a Morse form, then there exists an atlas for M with finitely
many (M is compact) such foliated charts and Morse neighbourhoods.

The following assertion is a direct corollary of Lemmas 6 and 7.

Lemma 8. Let L be a leaf of F . Assume that L is a part of ∂Up. Let p0

be a nondegenerate zero of ω. Let U be a Morse neighbourhood of p0 as in
Lemma 7. Then L can enter U at most twice, i.e. |π0(U ∩ L)| ≤ 2.

Proposition 5. Let L be a leaf of F . Assume that L ⊂ ∂Up. Let ClL denote
the closure of L. Then ClL \ L ⊂ S. In other words, L is closed in M \ S.

Proof. Assume by contradiction there is a point s ∈ ClL with s 6∈ L and
s 6∈ S. Consider an IB foliated chart around s. The leaf L enters this chart
infinitely (!) many times, contradicting Lemma 6. �

Proposition 6. Let L be a closed (in M \ S) leaf of F such that its closure
(in M) ClL has an open connected F-saturated neighbourhood U satisfying
IB conditions. Assume that L ⊂ ∂Up. Then p ∈ L. In particular, there is at
most one leaf closed (in M \ S) leaf L admitting a neighbourhood as above
with L ⊂ ∂Up, e.g. ∂Up can contain at most one regular closed leaf of F .

Proof. Let f a be primitive function of ω|U with the normalization f |ClL = 0.
By Lemma 5 the level set {f = 0} separates U \ S into two parts:

U+ = {f > 0} \ S ⊂ Up

and
U− = {f < 0} ⊂M \ Up.

Taking any point p+ ∈ U+ and following the ω-positive path joining p and
p+ backwards (from p+ to p) we see that p ∈ U and hence p ∈ L. �



4.1. GENERALITIES. 43

The above sequence of assertions (Propositions 3, 4, 5, 6 and Lemmas 6,
8) can be summarized as follows. The smooth part of ∂Up is a finite union
Kp of leaves of F closed in M \ S. Moreover at most one member of Kp

admits a neighbourhood U as in Proposition 6. Furthermore, every member
of Kp must satisfy conclusions of Lemmas 6, 8. This motivates the following
discussions.

Definition 13. The set of leaves of F which are closed in M \ S will be
denoted by K0

ω. We define a characteristic set Kω to be the set of leaves L
of F satisfying the following three conditions:
(i) The leaf L belongs to the set K0

ω.
(ii) The leaf L is not (!) closed in M .
(iii)The closure ClL (in M) of L does not (!) admit an open connected F-
saturated neighbourhood satisfying IB conditions.
Note, that (iii) implies (ii). We denote by Kw

ω the subset of Kω, which con-
sists of nonwinding leaves of F . Where the upper w stands for “nonwinding”.

We will also need to consider the closures of the leaves which constitute
the sets K0

ω, Kω and Kw
ω .

Definition 14. We introduce C0
ω := {P = ClL|L ∈ K0

ω}, Cω := {P =
ClL|L ∈ Kω} and Cw

ω := {P = ClL|L ∈ Kw
ω }.

Definition 15. A pair (M,ω) of a manifold and closed 1-form will be called
a foliated manifold. The class of foliated manifolds (M,ω) such that there is
a point p ∈ M \ S with Lp not closed in M \ S or Lp is closed in M \ S,
but its closure ClLp in M does not admit an open connected F-saturated
neighbourhood satisfying IB conditions will be denoted by C.

Proposition 4 suggests that transitivity of ω must have something to do
with the following question: is there a nonempty finite set K of leaves L of
F such that M \ (S ∪ (∪L∈KL)) is not connected? If we look at Proposition
4 more precisely, then we see that ∂Up \ S has a canonical orientation as
a boundary of Up ∪ ∂Up \ S and this orientation is consistent with the co-
orientation of ∂Up \S defined by the direction of decrease of a local primitive
function of ω. So before we can formulate a rigorous theorem, orientation
questions have to be take care of. In what follows, M is given a definite
choice of an orientation. The canonical orientation of a leaf L of F is defined
to be consistent with the orientation of M and the co-orientation of L defined
by the direction the decrease of a local primitive function f of ω.
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Theorem 11. Let ω be a closed form on a closed oriented manifold M . Then
the following assertions are equivalent.

1) The form ω is nontransitive.

2) There is a nonempty subset K of K0
ω, such that ∪L∈KL bounds an n-

dimensional submanifold Mn in M \S and the boundary orientation of
any L ∈ K coincides with the canonical one.

Assume in addition that (M,ω) ∈ C. Then each of the above assertions is
equivalent to the following assertion.

3) There is a nonempty subset K of Kw
ω , such that ∪L∈KL bounds an n-

dimensional submanifold Mn in M \S and the boundary orientation of
any L ∈ K coincides with the canonical one.

Proof. For the implication from 2) to 1) consider a pair (p, q) of points in
M \S with p ∈Mn and q ∈ (M \S) \Mn. Note that q is not reachable from
p by an ω-positive path, since if it were so the path would have to intersect
∂Mn outwards and at the intersection point q̃ the ω-positivity of the path
would contradict the fact that the boundary orientation of Lq̃ coincides with
the canonical one. For the implication form 1) to 2) take any point p ∈M \S.
Since ω is nontransitive either Up 6= M \ S or Lp 6= M \ S is true. We can
assume without loss of generality that Up 6= M \S. Now ∂Up\S is nonempty.
By Proposition 3 and we have that ∂Up \ S is a union of closed (in M \ S)
leaves of F . Moreover, it is clear that the boundary orientation of ∂Up \ S
coincides with the canonical one. Assume now that (M,ω) ∈ C. Then we
could have chosen p as in the definition of C. By Propositions 3 - 6 and the
choice of p it is clear that any leaf L ⊂ ∂Up belongs to the set Kω. Moreover,
by Lemma 6, the leaf L is nonwinding. This proves the implication from 1)
to 3). The implication from 3) to 2) is clear, because Kw

ω ⊂ Kω ⊂ K0
ω. �

The first application of this theorem exploiting the equivalence of 1) and
2) is a statement that transitivity is the same that weak transitivity.

Proposition 7. A closed 1-form ω is transitive if and only if it is weakly
transitive.

Proof. Assume that ω is transitive. Consider a point p ∈ M \ S. Since
Up = M \ S, we have in particular that p ∈ Up. This gives us a closed
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transversal through p, possibly not smooth at p. We perturb the transversal
near p, if necessary to obtain smoothness.

For the converse assume that ω is not transitive, then by Theorem 11
there exists is a nonempty set K of closed (in M \ S) leaves of F such that
∂Mn = ∪L∈KL bounds an n-dimensional submanifold Mn in M \ S and
the boundary orientation of ∂Mn coincides with the canonical one. Take
any point p ∈ ∂Mn. Assume by contradiction that we can find a closed
transversal γ to F through p. This leads to two observations eventually
contradicting each other. Note that geometric intersection number of γ with
∂Mn is positive (p ∈ γ ∩ ∂Mn). Furthermore algebraic contributions to
the algebraic intersection number iγ,∂Mn of γ with ∂Mn at all the points
q ∈ γ ∩ ∂Mn are negative. This is so because the boundary orientation of
∂Mn coincides with the canonical one and γ is ω-positive. This leads to the
first observation: iγ,∂Mn 6= 0. The second observation is that iγ,∂Mn = 0,
because ∂Mn separates M \ S. This is a contradiction.�

At first glance, the part of Theorem 11, which states equivalence between
1) and 3) is hardly ever applicable, since the definition of the set Kω looks
somewhat complicated. This is to some extent true, in this generality it is
hard to say much more than we have said already, but in the next section we
proceed to the generic case of ω being a Morse form. Then Kω will become
more transparent and more applications will appear.

We close this section by making a remark about what happens if (M,ω) 6∈
C. Then, in particular, every leaf L of F is closed in M \ S. The subset
SL := ClL\L of the zero set S consists of points which can be approximated
by points in L. Set

Sappr = ∪p∈M\SSLp .

Theorem 12. Assume that (M,ω) 6∈ C and the set S \ Sappr is closed in M .
Then ω is transitive if and only S \ Sappr = ∅.

Proof. Let L be a leaf of F . Since (M,ω) is not from the class C, the closure
(in M) ClL of L admits an open connected F -saturated neighbourhood UL
satisfying IB conditions. Let fL : UL −→ R be a primitive function for ω|UL .
Consider the following equivalence relation on M . Two points p and q are
equivalent provided fL(p) = fL(q) for some L and that is well-defined since
any two local primitive functions for the same 1-form differ by a constant.
Let the quotient space be denoted by X and let π : M −→ X be the natural
projection. Since for every x ∈ X, the preimage π−1(x) is a level set of
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some local primitive function of ω and therefore is closed, we have that X
is Hausdorff. The space X is second countable since it is a quotient of M ,
which is second countable. We set

XS := π(M \ (S \ Sappr))

and
πS = π|M\(S\Sappr).

The next step is to give XS a structure of a smooth oriented 1-manifold,
such that πs becomes a smooth map. Since for any L the function fL factors
through π, we obtain a continuous one to one map π(fL) : π(UL) −→ I ⊂ R
with fL = π(fL) ◦ π. Note that fL satisfies maximum principle, since for
every critical value can be attained at a regular point. This implies that fL
is open. Thus the map π(fL) is open. Therefore, π(fL) is a homeomorphism
of π(UL) with an open interval I of the real line. This gives XS the structure
of a topological 1-manifold. Moreover, transition maps are of the form x 7→
x + const, therefore, XS gets a structure of an oriented C∞ manifold with
the canonical projection πS being a smooth map. Clearly, ω-positive paths
on M \ S descend to positive paths on XS. The next step is to show that
XS = X \ π(S \ Sappr). Indeed, consider any level set

{fL = c} = ({fL = c} ∩ ClL) ∪ ({fL = c} ∩ (S \ Sappr)).

The union is disjoint, both of ClL and S \ Sappr are closed, therefore one of
{fL = c} ∩ ClL) and {fL = c} ∩ (S \ Sappr) is empty, since level sets of fL
are connected. This shows that S \ Sappr is saturated with respect to the
equivalence relation above. Thus,

XS = π(M \ (S \ Sappr)) = π(M) \ π(S \ Sappr) = X \ π(S \ Sappr).

This allows us to finish the argument as follows. Assume that (S \Sappr) 6= ∅,
then XS is a proper open subset of X. This says that XS is noncompact (as
a proper open subset of a Hausdorff space) and, therefore, topologically is a
union of several open intervals. Thus, not every point in XS admits a closed
positive path through it (in fact no point admits). This shows that ω is
nontransitive.

For the converse assume that (S \ Sappr) = ∅, then XS = X = π(M) is
compact. Now X is a compact connected smooth 1-manifold, so it is a circle.
Every two points of X can be joined by a positive path. Given any two points
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p and q ∈ L in M \S we construct an ω-positive path joining p to some point
p1 ∈ UL by lifting a positive path in X between π(p) and π(p1). Then we
join p1 to q by an ω-positive path inside UL. This, by the transitivity of the
relation “can be joined by an ω-positive path” gives us that p and q can be
joined by an ω-positive path. Since p and q were arbitrary, this completes
the proof.�

The following theorem is an easy corollary.

Theorem 13. Assume that M \ S is foliated by regular closed leaves of F .
Then ω is transitive if and only S = ∅.
Proof. Note that (M,ω) 6∈ C and the set S \ Sappr = S is closed. Therefore
Theorem 12 applies.�

4.2 Nondegenerate zeros.

In this section we assume all the zeros of ω to be nondegenerate. That is
ω is a Morse form. The local picture of P = ClL ∈ C0

ω around a singular
point is given by the Morse Lemma. There is a local coordinate system
(U ;x1, x2, ...xn) around p such that L ∩ U is a union of several connected
components of the set {f = 0}\{p}, where f = −x2

1− ...−x2
λ+x2

λ+1 + ...+x2
n

is a local primitive function for ω and λ is the Morse index of the point p
(n = dimM).

Definition 16. The set of zeros of ω of index 0 or n will be denoted by Stop
(top zeros). The set of zeros of ω of index 1 or n− 1 will be denoted by Sess
(essential zeros), the set S \ (Stop ∪ Sess) (intermediate value zeros) will be
denoted by Sint.

First of all we see what Theorem 12 transfers to in the Morse case.

Theorem 14. Let ω be a closed Morse form on a closed n-manifold M .
Assume that (M,ω) 6∈ C. Then ω is transitive if and only Stop = ∅.
Proof. Clearly, S − Sappr = Stop. Since the set Stop is closed, we are done by
Theorem 12. �

The characteristic set Kω is now finite. A potential candidate P ∈ C0
ω for

being a member of Cω should meet some zeros of ω. First of all, we show that
if P meets only intermediate value zeros, then P actually is not a member
of Cω.
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Lemma 9. Let L be a leaf of F closed in M \S. Assume that ClL∩Sess = ∅.
Then there exists an open connected F-saturated neighbourhood of L which
satisfies IB conditions.

Proof. Consider an open connected neighbourhood U of P = ClL which can
be retracted to P . This gives us a primitive function f for ω|U (this is IB1).
For any p ∈ P ∩ S, the set ClL separates a Morse neighbourhood around p
into two parts: {f > 0} and {f < 0}. This crucial observation is due to the
Morse index of p having intermediate value. Since every foliated chart around
regular points of P is also separated in a similar way ({f > 0} and {f < 0}),
we have the whole U is separated by P into {f > 0} and {f < 0}. Therefore
∂U ∩{f = 0} = ∅ and hence we can assume U to be F -saturated (by making
it smaller, if necessary). We can also assume that ∂U ∩ S = P ∩ S. This
gives us IB2. Note that IB3 is satisfied by hyperbolicity of the zero set P∩S.
To see IB4 we cover U be finitely many Morse neighbourhoods and foliated
charts, note that within every such a model neighbourhood (a foliated chart
or a Morse neighbourhood) all the level sets {f = c} are connected and then
we can force the connectedness of global level sets by traveling from one
model neighbourhood to the other using the fact that U is F saturated. �

An immediate corollary of Lemma 9 is that if P ∈ C0
ω does not contain

essential zeros, then it is not a member of the set Cω. Note, however, that
even if P ∈ C0

ω does contain essential zeros, it does not necessarily belong to
Cω. The following theorem is a remark in a paper [5] by Calabi. E. Calabi
states it there without a proof only saying “it can be shown by a method of
continuity that...” Here this statement comes as an immediate corollary of
the technique we worked out by now.

Theorem 15. Let ω be a closed Morse form on a closed n-dimensional man-
ifold M , such that there are no zeros of index 1 or n−1. Then it is transitive
if and only if it has no zeros of indices 0 and n.

Proof. One direction is clear, indeed, if a form has at least one zero of index
0 or n, then it is automatically nontransitive. So we assume Stop = ∅ and
show transitivity. Note that since Sess = ∅, we have that the characteristic
set Kω is also empty. If there there exists a point p ∈ M \ S with Lp not
closed in M \ S, then (M,ω) ∈ C and the form ω is transitive by Theorem
11. If, alternatively, such a point p does not exists, then, as it follows from
Lemma 9, the foliated manifold (M,ω) does not belong to the class C and
we apply Theorem 14.�
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We give one result, similar in spirit, which may be viewed as an appli-
cation of the concept of transitivity to a purely topological statement about
foliations.

Theorem 16. Let ω be a closed Morse form on a closed n-dimensional man-
ifold M , such that there is at least one zero of ω of index 0 or n and at least
one leaf of F not closed in M \S, then there is at least one zero of ω of index
1 or n− 1.

Proof. Presence of zeros of index 0 or n implies immediately that ω is non-
transitive. A nonclosed (in M \ S) leaf of F tells us that (M,ω) ∈ C. As it
follows from Theorem 11 the set Kω is nonempty, therefore Cω is nonempty
and hence the set Sess is nonempty.�

The case n = 2 is special for dimension reasons and requires a little dif-
ferent definitions and notation to get later theorems correct. So we assume
that n > 2. Let P ∈ C0

ω. Let Vsing ⊂ Using be two open sets one compactly
contained in the other, both of them being disjoint unions of Morse neigh-
bourhoods. Then there exists a smooth submanifold P̂ of M such that the
following holds true:
i) P̂ \ Using = P \ Using,
ii) For a connected component V of Vsing and a Morse neighbourhood of

p ∈ P at the same time, the intersection P̂ ∩ V is a nonsingular level set of
a primitive function of ω|V .

Let i0 : P̂ −→ M be the obvious inclusion. Then there exists a homotopy
{it : P̂ −→ M}t∈[0,1] such that i1(P̂) = P and every it(P̂), t ∈ [0, 1) is a
smooth submanifold of M satisfying i) and ii). Inside every connected com-
ponent of Vsing this homotopy is just pushing a regular level set of a local
primitive function of ω along the flowlines of some gradient-like vector field,
eventually reaching the singular level set. We can assume Using to be small

enough so that for all t ∈ [0, 1) the submanifolds it(P̂) and it(P̂j) are disjoint
whenever Pi and Pj are different elements of C0

ω. By property ii), outside
Using any P ∈ C0

ω is a leaf of the kernel foliation of ω, so it bears the canonical
co-orientation — the direction of decrease of a local primitive function of ω.
This induces the canonical orientation for P̂ . The image of the fundamental
class P̂or of P̂ in Hn−1(M) under i0 will be denoted by [P̂ ]. This orientation
procedure is the same that was used for elements of K0

ω. We use the map i1
to make the following definition:
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Definition 17. Consider P ∈ C0
ω. The image in Hn−1(M) of the funda-

mental class P̂or under the induced map i1? : Hn−1(P̂) −→ Hn−1(M) will be

denoted by [P ]. In brief: [P ] = i1?(P̂or).

Philosophically speaking, the element [P ] in Hn−1(M) should be thought
of as the image of the “fundamental class of P” in homology under the
obvious inclusion. Of course, P is not a manifold, so defining the notion of
fundamental class requires some additional effort, but we do not care, since
we have a rigorous definition of [P ], which does not rely on any slippery
concept. We apply the homotopy axiom to the continuous family {it}t∈[0,1]

of maps: P̂ −→M to get that i0? = i1? and therefore

[P ] = [P̂ ]. (4.1)

We also make following notation [P ]1 — the image of H1(P) in H1(M) under
the map induced by the canonical inclusion of P in M . Note that whereas
[P ] is an element in Hn−1(M), the above defined [P ]1 is a subset of H1(M).
Consider P1, ...,Pl ∈ C0

ω and let K = P1 ∪ ...∪Pl ∈ C0
ω. Since the homotopy

bringing Pi(sm) to Pi is happening only near zeros of ω and near a nonde-
generate zero of ω we can always choose a pair of points locally separated
by all it(Psm), t ∈ [0, 1], it is easy to see that K separates M , such that the
boundary orientation of K\S coincides with the canonical one if and only if
the disjoint union Ksm := P1(sm) ∪ ... ∪ Pl(sm) ∈ C0

ω of smooth submanifolds
of M does so. The later is equivalent to

[P̂1] + ...+ [P̂l] = 0

and this, in view of (4.1) is equivalent to

[P1] + ...+ [Pl] = 0.

Observe that L1∪ ...∪Ll, for Li ∈ K0
ω, i = 1, ..., l separates M \S if and only

if P1 ∪ ... ∪ Pl for Pi = ClLi ∈ C0
ω, i = 1, ..., l separates M .

This leads us to the following “Morse” version of Theorem 11, sometimes
referred to as a characterization theorem.

Theorem 17. Let ω be a closed Morse 1-form on closed connected oriented
manifold M . Then the following assertions are equivalent:
1) The form ω is nontransitive.
2) There exist P1,P2, ...,Pl ∈ C0

ω with

[P1] + [P2] + ...+ [Pl] = 0. (4.2)
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Assume in addition that (M,ω) ∈ C, then each of the above is equivalent to
the following:
3) There exist P1,P2, ...,Pl ∈ Cw

ω with (4.2).

In the discussion above we have treated the case n = dimM > 2. Now
we set up the definitions and state the characterization theorem for the case
n = 2.

Definition 18. A homoclinic orbit of ω is an element P ∈ C0
ω, such that

P ∩ S = P ∩ Sess = {p} - a zero of Morse index 1 (a hyperbolic zero).

Definition 19. A heteroclinic orbit of ω is an element P ∈ C0
ω, such that

P ∩ S = {p, q} — a pair of distinct zeros of Morse index 1.

Definition 20. A heteroclinic pair of ω is a pair (P1,P2) of distinct elements
of C0

ω, such that P1∩S = P2∩S = {p, q} — a pair of distinct zeros of Morse
index 1.

Every homoclinic orbit P of ω can be given a canonical co-orientation —
the direction of decrease of the local primitive function of ω. This together
with the orientation of the ambient manifold M gives us the canonical orien-
tation of P . The image of the canonical orientation class of P in homology
of M will be denoted by [P ]. Note that this orientation procedure is not
that easy with heteroclinic pair, since it consists of two pieces and the two
orientations may mismatch (say both P1 and P2 are oriented “from p to q”).
This leads to the following definition.

Definition 21. Let (P1,P2) be a heteroclinic pair. Both P1 and P2 get
a canonical orientation as explained above. If the two orientations piece
together to give an orientation on (P1 ∪ P2), then the union (P1 ∪ P2) is
called a true heteroclinic pair. Otherwise (if the two orientations mismatch)it
is called a virtual heteroclinic pair.

Let P be a true heteroclinic pair, then the image of the canonical orien-
tation class of P in the homology of M will be denoted by [P ].

Definition 22. The set of all regular closed leaves of F , homoclinic orbits
and true heteroclinic pairs of ω will be denoted by D0

ω.

Remark on the notation. For n = 2 we have H1 = Hn−1, so we do not
introduce “[P ]1” since that would be redundant.

Now we are in a position to formulate the 2-dimensional characterization
theorem.
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Theorem 18. Let ω be a closed Morse 1-form on closed connected oriented
2-dimensional manifold M . Then ω is nontransitive if and only there exist
P1,P2, ...,Pl ∈ D0

ω with

[P1] + [P2] + ...+ [Pl] = 0. (4.3)

The proof is completely analogous to that of Theorem 17, it is even easier
in the 2-dimensional case, since all the elements of D0

ω are topological mani-
folds. Note that if there are no heteroclinic orbits at all, then D0

ω = C0
ω and

Theorem 17 applies in 2-dimensional case without any changes in terminol-
ogy.

Now we are back to the general case n ≥ 2. It is useful to remark at
this point that although the relation (4.2) formed by regular closed leaves
obstructs transitivity, as regular closed leaves belong to C0

ω, it is not true,
that if the form is nontransitive, then we can always find this homological
obstruction presented by regular closed leaves of the kernel foliation. However
in one important (“generic”) case this hope is true.

Definition 23. Let P ∈ C0
ω contain 2 or more essential zeros of ω. Then P

will be called heteroclinic.

Definition 24. Let ω be a closed Morse form on M such that there exists
a heteroclinic element of C0

ω. Then ω will be called heteroclinic. The set all
heteroclinic forms will be denoted by Het.

Heteroclinic forms are not generic — given a heteroclinic form ω, it can
be removed from the set Het by a small perturbation within its cohomology
class.

Proposition 8. Let ω be a non-heteroclinic closed Morse form. Then for
every P ∈ C0

ω there is a closed regular leaf Q of the kernel foliation of ω
inducing the same image in homology: [Q] = [P ], [Q]1 = [P ]1.

Proof Let P ∈ Cω. Let U be an open contractible neighbourhood of P .
Let f be a primitive function for ω in this neighbourhood, normalized such
that f |P = 0. Since ω is not heteroclinic, we have only one essential zero
of ω lying on P , and consequently at least one of the two parts into which
P separates U does not contain preimages of zero under f . We denote this
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part of U by U− and without loss of generality assume that f |U− ∈ (−∞, 0).
The boundary ∂U− of U− consists of two connected components: one is P
and the other ∂U− \P with f∂U−\P being strictly negative and bounded away
from zero. Consider supf |∂U−\P = ρ < 0. Since f−1

U−
(0.33ρ) ∩ ∂U− = ∅, we

have that Q := f−1
U−

(0.33ρ) is compactly contained in U−. Therefore, Q is a
regular closed leaf of F . Let h0 : Q −→ M be the obvious inclusion. Then
there exists a homotopy {ht : Q −→ U}t∈[0,1], such that h1(Q) = Psm. This
homotopy may be described as pushing a regular level set of a local primitive
function of ω along the flowlines of some gradient-like vector field. By the
homotopy axiom we have: [Q] = [P ] and [Q]1 = [P ]1.

This gives us the following version of Theorem 17 for non-heteroclinic
forms.

Theorem 19. Let ω be a closed Morse 1-form on a closed connected oriented
manifold M . Assume that ω /∈ Het. Then ω is nontransitive if and only if
one can find Q1,Q2, ...,Ql - regular closed leaves of F , with

[Q1] + [Q2] + ...+ [Ql] = 0.

The following “No Blow up” theorem plays a crucial role in the proof of
the main theorem of Section 4.3. The proof of it follows from the fact that
elements of Cw

ω can not enter an IB foliation chart more than once and a
Morse neighbourhood satisfying the conditions of Lemma 7 more than twice.

Theorem 20. Let {ωm}m∈N be a C1-convergent sequence of nontransitive
closed Morse 1-forms. Set dm := max{diamP|P ∈ Cw

ωm}, where diameter
is understood to be the intrinsic diameter, taken with respect to some fixed
Riemannian metric. Then the sequence {dm}m∈N is bounded.

Informally speaking this theorem states that elements of Cw
ω do not blow

up when one takes C1-convergent sequences of forms.

Definition 25. Let p be a zero of ω of index n − 1. Consider a primitive
function f for ω in a Morse neighbourhood of p with a normalization f(p) =
0. In Morse coordinates: f = x2

1 − x2
2 − ...− x2

n. Define

Lloc(p) := {f = 0} \ {p}.
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This set consists of two (or four if n = 2) connected components:

Lloc(p)+ := Lloc(p) ∩ {x1 > 0}

and
Lloc(p)− := Lloc(p) ∩ {x1 < 0}

with Lloc(p)+ and Lloc(p)− being connected if n > 2 and having 2 connected
components otherwise. If n > 2 and p a zero of ω of index 1, then we define
Lloc(p), Lloc(p)+ and Lloc(p)− be replacing ω with −ω.

Definition 26. Let p be a zero of ω of index 1 or n − 1. A leaf L of F
is called a top attached to p if Lloc(p)+ ⊂ L. Analogously, a leaf L of F is
called a bottom attached to p if Lloc(p)− ⊂ L.

Note that it may happen that a leaf is both top and bottom attached to
the same essential zero of ω. Let L ∈ K0

ω, then we say that P = ClL ∈ C0
ω is

top (bottom) attached to p ∈ S if L is. Assume now that P is not heteroclinic.
Consider an open neighbourhood U of P , which can be retracted to P . We
integrate ω|U to get a primitive function f (df = ω|U) with the normalization
f |P = 0. Note that if L is top and bottom attached to p, then {f = 0} = P ,
else {f = 0} = P ∪R, where R is contained in a Morse neighbourhood of p
and is defined by the following equations: R = Lloc(p)+ if Lloc(p)− ⊂ P and
R = Lloc(p)− if Lloc(p)+ ⊂ P.

Lemma 10. Assume that P ∈ C0
ω contains exactly one essential zero p of ω.

According to the above notation P is top (bottom) attached to p. Consider an
open neighbourhood U of P as above. Let ω̃ be a closed 1-form sufficiently C1

close to ω. Assume furthermore that ω̃|U is exact. Let p̃ be a unique essential
zero of ω̃ in U . Let L̃ be a top (bottom) attached to p̃ (with respect to the
kernel foliation F̃ of ω̃). Then L̃ is contained in U and closed in M \ S̃.

Proof. Let f a primitive function for the form ω|U normalized so that f |P = 0.
Consider a primitive function f̃ of ω̃ and normalize it such that f̃(p) = 0.
With this normalization f̃ is C2-close to f . We assume that p has index
n − 1, the case of index 1 is completely analogous. We also assume that P
is top attached to p (the “bottom” case is analogous). Let UM be a common
Morse neighbourhood for p and p̃. That is we have to sets of coordinates on
UM : x1, ..., xn and x̃1, ..., x̃n. With f looking like x2

1 − ...− x2
n and f̃ looking

like c + x̃2
1 − ... − x̃2

n, for some c ∈ R, where x1 = ... = xn = 0 corresponds
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to p and x̃1 = ... = x̃n = 0 corresponds to p̃. Moreover the diffeomorphism
bringing one set of coordinates to the other is close to identity. See Lemma
20 in the Appendix. In particular, we have that L̃loc(p̃)+ is (Hausdorff-)close
to Lloc(p)+ and L̃loc(p̃)− is (Hausdorff-)close to Lloc(p)−. Since L̃ is top
attached to p̃, we have that L̃loc(p̃)+ ⊂ L̃. This motivates us to consider
the connected component of {f̃ = f̃(p̃)} \ S̃ containing L̃loc(p̃)+. Let such
connected component be denoted by C+

f̃
. Assume for a moment that we have

that C+

f̃
∩ ∂U = ∅. Then C+

f̃
is a leaf of F̃ itself and therefore coincides with

L̃. Since C+

f̃
is contained in U by construction and is closed in M \ S̃ as a

part of a level set, we are done modulo our assumption that C+

f̃
∩ ∂U = ∅.

To see this we would like to say that C+

f̃
and L are connected components

of level sets of f̃ respectively f , so they must be close to each other, and
hence L ∩ ∂U = ∅ should give us that C+

f̃
∩ ∂U = ∅. Unfortunately, the

above mentioned level sets are singular, so the idea is to subtract something
from U , so that on the complement both of our connected components of
the relevant level sets remain connected and become regular. First, we take
a small open neighbourhood Up of {p, p̃}, serving as a Morse neighbourhood
for both p and p̃. We can take Up to be literally a ball in Morse coordinates
for f near p. Then in Morse coordinates for f̃ it will look like a slightly
deformed ball (recall that the diffeomorphism bringing one set of coordinates
to the other is close to identity). The sets L\Up and C+

f̃
\Up are connected.

This is so because L and C+

f̃
are singular near p respectively p̃. Let q1, ..., ql

be possible intermediate value (!) zeros of ω on L and let q̃1, ..., q̃l be the
corresponding set of zeros of ω̃ that lie close by.

We consider small balls Ui around qi, i = 1, ..., l containing q̃i. They will
play a role in our analysis near qi, q̃i analogous to that played by Up near p, p̃.
Let us look at how L \ Up respectively C+

f̃
\ Up passes through U1. Both of

them fall into the same pattern: a level set (singular or regular) of a function
near its nondegenerate critical point with the index of intermediate value.
Such level sets remain connected after removing a small open neighbourhood
containing the critical point. (The open neighbourhood is not necessarily
the round ball around the critical point, but a maybe a slightly deformed
one). So the sets L\ (Up∪U1) and C+

f̃
\ (Up∪U1) are connected. Proceeding

inductively, we get that the sets L̂ := L \ (Up ∪ U1 ∪ ... ∪ Ul) and Ĉ+ :=

C+

f̃
\(Up∪U1∪ ...∪Ul) are connected. Now L̂ and Ĉ+ are two connected level
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sets of smooth functions f |U\(Up∪U1...∪Ul) respectively f̃ |U\(Up∪U1...∪Ul). The two
functions are C2-close to each other both with nonvanishing differentials up
to the boundary of their common domain of definition. Moreover, the set
L̂ contains Lloc(p)+ \ Up, which is close to L̃loc(p̃)+ \ Up, contained in Ĉ+.

So the two sets L̂ and Ĉ+ must be close to each other. The first one does
not intersect ∂U , so the second one also does not, i.e Ĉ+ ∩ ∂U = ∅. Hence
C+

f̃
∩ ∂U is also empty. This completes the proof.�

We would like to make a remark of a psychological nature. This lemma
does not deserve a proof of this length. One even may want to remove the
whole proof replacing it with an expression like “obvious”. The purpose of
writing so detailed proof is to help the reader to get closer to the objects we
are playing with.

Lemma 11. Assume we are in the situation of the last lemma. Let P̃ = ClL̃
denote the closure of L. Then [P̃ ] = [P ] and [P̃ ]1 = [P ]1.

Proof. Let Using be a disjoint union of Morse neighbourhoods of zeros of ω
lying in P such that the complement Utub = U \ Using of Using in U is diffeo-
morphic to Y × (−a, b) for a compact (n − 1)-manifold Y (with boundary)
with f corresponding to the projection to the second factor and P ∩ Utub
corresponding to Y × {0}. We identify Utub with Y × (−a, b) via this diffeo-
morphism.

First, we look at the image in Hn−1(M). Let [γ] be a homology class in
H1(M). We can assume that its representative γ does not intersect Using.
Since algebraic intersection number of any line segment y× (−a, b) with P ∩
Utub and P̃ ∩Utub is the same (plus one), we have that homology intersection
number of ([P̃ ] − [P ]) with [γ] is equal to zero. Let α := PD([P̃ ] − [P ]) ∈
H1(M,Z) be the Poincaré dual of [P̃ ]− [P ]. We identify α with an element
of Hom(H1(M,Z)) via the isomorphism given by the Universal Coefficient
Theorem. The intersection number of ([P̃ ] − [P ]) with [γ] being equal to
zero translates to the evaluation of α on [γ] being equal to zero. Since γ was
arbitrary this gives us that α = 0 and hence [P̃ ] = [P ].

Next, we look at the image in H1(M). Note that if n = 2, we are done
already since 1 = n − 1. So we can assume that n > 2. In this case we can
smoothly deform any closed loop γ in P representing a homology class in
H1(P) such that γ ⊂ Utub and then move along the line segments y× (−a, b)
to get a closed loop γ̃ in P̃ representing the same class in H1(M) as γ.
Conversely, starting from any closed loop γ̃ in P̃ we can smoothly perturb it
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to a loop γ in P representing the same homology class in H1(M) as γ̃. This
proves that [P̃ ]1 = [P ]1.�

4.3 Convergence.

The following definition is a precise version of saying that “a sequence of
singular closed leaves Pm of ωm converges to a singular closed leaf P of ω”.

Definition 27. Let {ωm}m∈N, ω be closed Morse forms and ωm
C1

→ ω. Let
Pm ∈ C0

ωm and P ∈ C0
ω. Moreover, assume that Pm contains exactly one

essential zero of ωm and P contains exactly one essential zero of ω. We say
that the sequence {Pm}m∈N converges with respect to the C1 topology to P
and write Pm

C1

→ P if there exist an open neighbourhood U of P retractable
to P and a natural number N , such that for all m > N we have the following
two properties:
i) ωm|U is exact,
ii)Pm ⊂ U .

The following assertion, which is an immediate corollary of Lemma 11
states what we really need from the concept of convergence.

Proposition 9. Let a sequence of closed Morse forms {ωm}m∈N converges
with respect to the C1 topology to a closed Morse form ω. If Pm ∈ C0

ωm and

Pm
C1

→ P, where P ∈ C0
ω, then there exists N ∈ N, such that for all m > N

we have a stabilization in homology: [Pm] = [P ], [Pm]1 = [P ]1.

And now we give a (crucial) criterion saying under what conditions we
actually have C1 convergence.

Theorem 21. Let a sequence of closed Morse forms {ωm}m∈N converge with
respect to the C1 topology to a closed Morse form ω. Let pm → p, where pm is
an essential zero of ωm and p is an essential zero of ω. Let Pm ∈ Cw

ωm be top
attached to pm. Assume that ω is not a heteroclinic form. Then there exists

a top attached element P ∈ C0
ω to p with Pm

C1

→ P. Analogous statement
holds if we replace “top” with “bottom”.

Proof. We may assume without loss of generality that ind(pm) = ind(p) =
n− 1 (otherwise replace ωm by −ωm). Consider a leaf L of F which contains
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L+
locp

. We show that L is closed in M \ S. Assume by contradiction that

it is not, then there exists a point in M \ S to which L accumulates, and
therefore an IB foliated chart U for the kernel foliation of ω through which
it passes twice (at least). In particular there exists a closed path γ in L
which starts near p and then passes through U twice: U ∩ γ is union of two
connected components γ1 and γ2. Choose a small neighbourhood V ⊂M \S
around γ, retractable to γ. Assuming that V is small enough we can achieve
that V ∩ U consist of two connected components: V1 ⊃ γ1 and V2 ⊃ γ2.
Since V is contractible, we can find smooth functions f, fm on V , such that
df = ω|V , dfn = ωn|V . By making m big enough we can assume that Pm
passes near the starting point of γ, say some point p̂m ∈ Lm ∩ V is close to
the starting point of γ. Then (assuming m is big enough) we start the path
γm at p̂m and draw it “along” γ inside the level set {fm = fm(pm)}, so that
γm passes through U twice: U ∩ γm consists of two connected components:
γm1 ⊂ V1 and γm2 ⊂ V2. It means that Pm passes through U twice: Pm ∩ U
consists of two connected components: Pm1 ⊂ V1 and Pm2 ⊂ V2. Since for
m big enough kernel foliations of ω and ωm become arbitrarily close to each
other, we can find an IB foliated chart Um for the kernel foliation of ωm
inside U which is met by Pm twice. This is forbidden since Pm is nonwinding
as a member of Cw

ωm . This contradiction shows that L is closed in M \ S.
Set P := ClL.

For the rest of the proof length(·) stands to denote the length of a path

with respect to some reference Riemannian metric. We show that Pm
C1

→ P.
Let Using be a disjoint union of Morse neighbourhoods of zeros of ω lying in
P such that the complement Utub = U \ Using of Using in U is diffeomorphic
to Y × (−a, a) for a compact (n−1)-manifold Y (with boundary) with f cor-
responding to the projection to the second factor and P ∩Utub corresponding
to Y × {0}. We identify Utub with Y × (−a, a) via this diffeomorphism.

The first step is to show that for m big enough Pm ∩ ∂U ∩ ∂Utub = ∅.
Indeed, if not, we join a point qm ∈ Pm ∩ ∂U ∩ ∂Utub to some point p̂m ∈
L+
locpm

by a path γm within Pm ∩ U with length(γm) ≤ dm ≤ C, where

dm = diam(Pm) and the existence of a uniform constant C is guaranteed by
“No Blow up” Lemma. On the one hand, since |f(q̂m)| is equal to a and
f(p̂m) is close to zero, we have that the absolute value of the integral

∫ qm
p̂m

ω
should be close to a. On the other hand,

|
∫ qm

p̂m

ω| = |
∫ qm

p̂m

ω − ωm| ≤ length(γm)εm ≤ Cεm
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with εm converging to zero as ω−ωm converges to zero with respect to the C1

topology. It means that
∫ qm
p̂m

ω becomes arbitrarily close to zero as m→∞.
This is a contradiction.

The next step is to show that ωm|U is exact. Indeed, if n > 2, then given
any homology class in H1(U) = H1(P), we can find a closed loop γ ⊂ P
representing this class, such that γ misses Using, i.e. γ ⊂ Utub. Consider the
holonomy of Pm along γ. First, the holonomy exists, because Pm can not
“run away” through ∂U ∩ ∂Utub. Second, the holonomy is trivial, otherwise
the leaf Pm meets some IB foliated chart of F twice, and therefore (F and
Fm are close to each other) it comes through some IB foliated chart of Fm
twice, but this is forbidden. The triviality of this holonomy implies that the
form ωm acts trivially on the homology class [γ] of γ. Therefore, since [γ]
was arbitrary, we see that ωm|U is exact.

If n = 2, then P is simply a homoclinic orbit and it is clear that not only
Pm∩∂U∩∂Utub = ∅, but also Pm∩∂U∩Using = ∅ and therefore Pm∩∂U = ∅.
So we consider the holonomy of Pm along P , which is well-defined and trivial,
and hence we also get that ωm|U is exact.

The inclusion Pm ⊂ U follows from Lemma 10. �

In order to show the existence of P and the convergence Pm
C1

→ P the
nonwinding property of the elements Pm and the diameter bound it implies
were used essentially. It seems plausible that both the existence of P and the
convergence can be obtained just using the diameter bound without using
the nonwinding property itself.

Lemma 12. Let {ωm}m∈N be a sequence of closed nontransitive Morse forms,

such that (M,ωm) ∈ C for all m. Assume that ωn
C1

→ ω, where ω is a closed
(nontransitive) Morse form. Assume that ω is not heteroclinic. Then there
exist P1

m, ...,P lm ∈ Cw
ωm for each m, a natural number N and P1, ...,P l ∈ C0

ω

with [P im] = [P i], [P im]1 = [P i] for all m > N and [P1] + ...+ [P l] = 0.

Proof. Let pim, i = 1, ..., N be the zeros of ωm, and pi, i = 1, ..., N — zeros
of ω. Assume we have set the enumeration of zeros such that pim → pi as
m→∞. Since ωm is nontransitive, by Theorem 17 we get P1

m, ...,P lm ∈ Cw
ωm

with [P1
m] + ... + [P lm] = 0 (relation (4.3)). By passing to a subsequence

of {ωm}m∈N if necessary (and we call it again {ωm}m∈N) and to a subset
{1, 2, ..., l} of {1, 2, ..., N} we can achieve that for every ωm and every zero
pim, i = 1, ..., l of ωm there exists P im top (bottom) attached to pim, such that
[P1

m] + ...+ [P lm] = 0. Apply Theorem 21 and then Proposition 9.�
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4.4 Main Theorem.

We denote the space of all closed Morse forms with the C1 topology by M,
the subspace of transitive ones by T . Nontransitive forms will be denoted
by T̄ (as a complement). The cohomology class [ω] of ω may be viewed as
an Abelian group homomorphism

[ω] : H1(M,Z) −→ R.

Since the target group R has no torsion we get that the torsion subgroup
Tor of H1(M,Z) is automatically in the kernel Ker[ω] of [ω].

Definition 28. Let ω be a closed 1-form. We say it is totally irrational,
provided the kernel of the homomorphism [ω] coincides with Tor.

Tensoring everything with R gives us an R-linear map

[ω]R : H1(M,R) −→ R,

whose kernel Ker[ω]R is a codimension 1 linear subspace of H1(M,R). Now
Ker[ω] being equal to Tor is the same as Ker[ω]R missing integer lattice
of H1(M,R) completely, i.e. Ker[ω]R ∩ (H1(M,Z)/Tor) = 0. The sub-
space Ker[ω]R is positioned “totally irrationally” in H1(M,R). If b1(M) =
dimH1(M) > 1, then the set of totally irrational forms is C1 dense in the
set of all closed forms (“the set of totally irrational positions is dense” and
the map sending a form to its real cohomology class is continuous and open).
The main property of totally irrational forms we need is that for every totally
irrational closed 1-form ω̂ and every P ∈ C0

ω̂ we have [P ]1 ∈ Tor. Indeed,
every element of [P ]1 trivially belongs to the kernel of [ω], since it is con-
tained in a leaf of the kernel foliation of ω. Here is the main theorem of this
chapter.

Theorem 22. Let ω be a closed Morse form on M , such that ω ∈ Cl(IntT̄ ).
Assume that ω is not heteroclinic. Then ω ∈ IntT̄ .

Proof. Assume that b1(M) > 1. In this case we approximate ω by ωm ∈ IntT̄
in C1. Since the set of totally irrational forms is dense in the set of all closed
forms we may assume that ωm is totally irrational. By passing to a subset
we can achieve that either {(M,ωm)}m∈N ⊂ C or (M,ωm) /∈ C for all m ∈ N.
In the second case we are easily done. Indeed, (M,ωm) /∈ C together with
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the nontransitivity of ω according to Theorem 14 imply that ωm has elliptic
zeros (i.e. of index 0 or n), therefore ω does, and hence as elliptic zeros are
stable under small C1 perturbations we get that ω ∈ IntT̄ . So we stick to
the first one: {(M,ωm)}m∈N ⊂ C. We apply Lemma 12 to get P1, ...,P l ∈ C0

ω

with
(i) [P i]1 ⊂ Tor

and
(ii) [P1] + ...+ [P l] = 0.

Let U i be a small open neighbourhood of P i retractable to P i. Relation
(i) implies that for any (!) closed 1-form ω̃ the restrictions ω̃|U i are exact.
In particular they are exact for Morse forms ω̃ ∈ U , where U is a small
C1 neihghbourhood of ω in M. Since ω is not heteroclinic, to any such a
form ω̃ ∈ U Lemma 10 and Lemma 11 apply to give P̃1, ..., P̃ l ∈ C0

ω̃ with
[P̃1] + ...+ [P̃ l] = 0. Now we apply Theorem 17 to deduce nontransitivity of
ω̃. This shows that ω belongs to the set of nontransitive forms T̄ together
with an open neighbourhood, i.e. ω belongs to the interior of T̄ .

In the remaining case b1(M) = 1 the proof is even easier. We apply
Theorem 17 to get P1, ...,P l ∈ C0

ω with (ii) and Let U i be a small open
neighbourhood of P i retractable to P i. Now b1(M) = 1 implies that for any
closed 1-form ω̃ the restrictions ω̃|U i are exact and we conclude the proof as
above. �

4.5 Examples.

In this section we give two examples illustrating the results of the previous
section.

Example 2. We take our manifold M to be the double torus Σ2 — an
oriented surface of genus 2. Theorem 18 now takes the following form.

Theorem 23. Let ω be a closed Morse 1-form on Σ2. Assume that all zeros
of ω are hyperbolic. Then ω is nontransitive if and only if one can find
P ∈ D0

ω with
[P ] = 0. (4.4)

If, in addition ω is not heteroclinic, then there exists a regular closed leaf Q
with

[Q] = 0. (4.5)
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Proof. Since we already have Theorem 18, the only nontrivial part to do
here is to show that existence of P1,P2, ...,Pl ∈ D0

ω with (4.3) implies that
l = 1. Assume that ω is not heteroclinic. Then by Theorem 19 we get l
regular closed leaves of F whose union separates M on M1 and M2. Now
both M1 and M2 are punctured Riemannian surfaces (say with genera g1 and
g2 respectively) with l punctures. Then we can write out the genus of Σ2 in
terms of g1, g2 and l, that is g1 + g2 + l− 1. On the other hand we know that
the last expression must be equal to 2. Note that both g1 and g2 are positive,
otherwise the restriction of ω on either M1 or M2 is exact and we have an
elliptic zero, which is forbidden. It means that l can only be equal to 1. If
ω is heteroclinic, then the proof is a little longer, but the crucial point is the
same, so we leave it out.�

Let ω be a nontransitive closed Morse form on the double torus without
elliptic zeros. We take up the main question for this chapter: “when ω ∈
IntT̄ ?”

Theorem 24. Let ω be a closed non-heteroclinic Morse 1-form on Σ2. Let
all the zeros of ω be hyperbolic. Assume that ω ∈ T̄ . Then ω ∈ IntT̄

Proof. We apply Theorem 23 to get Q — a regular closed leaf of the kernel
foliation with [Q] = 0. Let U be a small neighbourhood of Q such that Q
is a deformation retract of U . We integrate ω|U to give a primitive function
f , normalized such that Q = {f = 0}. Let ω1 be sufficiently C1-close to
ω. Since the image of Q in H1(M) is trivial (here it plays a role that for
dimension reasons 1 = n−1), we can integrate ω1 to give a primitive function
f1, normalized such that f1(p) = 0, for some p ∈ Q. Since f |∂U is bounded
away from zero, we have that {f1 = 0} ∩ ∂U = ∅, and hence {f1 = 0} ⊂ U .
Moreover, by joining f1 to f within smooth functions without critical points
(say linearly), we get a continuous deformation of {f1 = 0} to Q. Thus, by
the homotopy axiom we see that {f1 = 0} is a regular closed leaf of ω1, whose
image in homology is zero, so ω1 is nontransitive. In other words, ω belongs
to T̄ together with an open neighbourhood, i.e. ω ∈ IntT̄ .�

So we see that in the case of a double torus we can “by hand” get results
even stronger than the main theorem suggests. All nontransitive Morse forms
which are non-heteroclinic belong to the interior of the set of nontransitive
forms.
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If all the leaves of the kernel foliation of the above form ω are closed,
then the leaf space Γ is a non-Calabi graph, first mentioned by Calabi in his
paper [5]. As an illustration, we give one more example of a 1-form having
the same graph as the leaf space of the kernel foliation.

Example 3. Let B be the standard unit ball in R3. Let B1 and B2 be the
balls centered at the points p1, p2 ∈ B, so small that B1 ⊂ B, B2 ⊂ B and
B1∩B2 = ∅. Let S := ∂B, S1 := ∂B1, S2 := ∂B2 be the three copies of the to
2-sphere S2. Let C be the cobordism from S to S1∪̇S2 given by B \ (B1∪̇B2).
This cobordism can be given a Morse function f with f |S = 1, f |S1∪S2 = 2
and one critical point of index 2 at the level 3/2. Take S1 and S2 the copies
of the 2-sphere at the level 1. Apply C to S1 to get S3 and S4 at the level
2 and a trivial cobordism to S2 to get S2 at the level 2. Now apply C−1 to
S2 and S3 to get S5 at the level 3 and a trivial cobordism to S4 to get S4 at
the level 3. This gives a cobordism M̃ from S1∪̇S2 to S4∪̇S5 together with
a Morse function h on this cobordism with h|S1∪̇S2

= 1, h|S4∪̇S5
= 3 and two

critical points, one at the level 3/2 of index 2 (disconnecting) and the other
at the level 5/2 of index 1 (connecting). We glue S1 to S4 and S2 to S5.
Under this gluing the cobordism M̃ transforms to a closed 3-manifold M ,
the 1-form dh on M̃ descends to a closed 1-form ω on M , whose leaf space
is the graph Γ. Since the graph Γ is non-Calabi, we have that ω ∈ T̄ . But
now we ask a finer question: is it true that ω ∈ IntT̄ ?. The answer is yes.
Indeed, since the leaf space of ω is the same as in the first example, there
exists a regular closed leaf Q with [Q] = 0. Note that Q must be a copy a
the 2-sphere, so [Q]1 = {0}, because the 2-sphere is simply connected. The
rest is standard: we take a small open neighbourhood U , retractable to Q,
argue that any closed 1-form ω̃ is exact, when restricted to U , because the
image of U in first homology of M is trivial e.t.c.

Again, we see that in this particular example we get more information
about the above constructed form ω than the main theorem gives us without
applying the theorem. We were able to deduce that a nontransitive non-
heteroclinic form ω belongs to the interior of the set of nontransitive forms
directly.
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Chapter 5

Smooth functions near isolated
critical points: reduction to
normal forms

Consider a C∞ function defined on an open ball around (0, 0) ∈ R2 with the
following Taylor expansion around zero:

f = Re(x+ iy)m + h.o.,

where Re(x + iy)m is the leading term of f and h.o. stands for the terms of
order higher than m. In this chapter we would like to address the following
question. When can f be brought by a smooth change of variables to the
normal form f0 = Re(x + iy)m in some open neighbourhood of the origin?
In other words, when does there exist an open neighbourhood U around
(0, 0) ∈ R2 and a diffeomorphism φ : U −→ φ(U) fixing the origin with
f |U = f0 ◦ φ|U? The notation f , f0, h.o. is fixed throughout this chapter.
In Section 5.1 we give the answer to this question, this is Theorem 25 —
the main theorem of this chapter. The first proof of this theorem is based
on the work of Arnold [1] and forms the core of Section 5.1. The second
independent proof of this theorem occupies the rest of the chapter. The
later sections correspond exactly to the steps of the proof as outlined in the
introduction.

65
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5.1 Main results.

Theorem 25. Let f = Re(x+iy)m+h.o. be a function defined on an open ball
around the origin in R2, where h.o. denotes the terms in the Taylor expansion
around the origin of order higher than m. Then for m = 1, 2, 3, 4 the function
f can always be brought to Re(x + iy)m by a smooth change of coordinates
in some open ball around zero. For m > 4, the sufficient condition for such
a coordinate transformation to exist is that h.o. starts with the order 2m− 3
or higher.

Proof. First, note that for m = 1 the theorem follows from the flowbox
theorem for vector fields, for m = 2 it is the Morse Lemma, the case m = 3
is covered by Arnold in [1], so we assume m ≥ 4. For this we apply Lemma
3.2 in [1] with r = 2m− 4. This lemma says that for the desired coordinate
transformation to exist it suffices that for each function of the form χ =
Qr+1 + Qr+2 + ..., there exist h1 = Q1

l + Q1
l+1 + ... and h2 = Q2

l + Q2
l+1 + ...

such that

χ = h1fx + h2fy mod (r + 2). (5.1)

Here Qj, Q
1
j , Q

2
j denote homogeneous polynomials of order j in x, y and

mod (r + 2) means modulo functions whose Taylor expansion begins with
something of order r + 2. On the one hand the leading terms in Equation
(5.1) give us

Qr+1 = Q1
l f0x +Q2

l f0y. (5.2)

So we should take l = r −m + 2 and solve the above equation with respect
to Q1

l and Q2
l . On the other hand once (5.2) is satisfied, Equation (5.1) is

also satisfied regardless of what is happening with higher order terms since
(5.1) is understood mod (r+ 2) anyway. So we are left with (5.2) which is a
linear system of equations when we write out the homogeneous polynomials
involved as sums of monomials. In this setup we are given the coefficients
of Qr+1 and we are looking for coefficients of Q1

l and Q2
l . So the number of

unknowns is 2(l + 1) = 2(r −m+ 2 + 1) = 2(r −m+ 3) and the number of
equations is r+ 2. Now we substitute r = 2m− 4. The number of unknowns
becomes 2(r −m + 3) = 2(2m− 4−m + 3) = 2(m− 1) and the number of
equations r+2 = 2m−4+2 = 2(m−1). Since the number of equations is equal
to the number of unknowns, we are done provided that the 2(m−1)×2(m−1)
matrix of the above system determined by the leading term of fx and fy is
nonsingular. To prove that the matrix is, indeed, nonsingular we rewrite
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Equation (5.2) in a more convenient form. Note that f0x = Re(x + iy)mx =
mRe(x+ iy)m−1, f0y = Re(x+ iy)my = mRei(x+ iy)m−1 = −mIm(x+ iy)m−1.
So if we divide both parts of (5.2) by m we can write it as

Qr+1 = Re(Qlz
m−1),

where Ql = Q1
l + iQ2

l . Let Hom? denote the graded algebra of (real valued)
polynomials in (x, y) and let Hom? ×Hom? denote the bi-graded algebra of
pairs (P1, P2) of polynomials. We write (P1, P2) as P = (P1 + iP2) viewing a
pair of real-valued polynomials as one complex valued polynomial in (x, y).
The notation P = (P1 + iP2) suggests what the algebra structure on Hom?×
Hom? should be. This way Hom? ×Hom? also gets a structure of C-vector
space. To emphasize complex issues we also introduce the notation HomC

for Hom? × Hom? and use it synonymously. Note that P = P1 + iP2 is a
complex valued, but not necessarily a holomorphic function of the complex
variable z = x + iy. In this setup the solvability of Equation (5.2) may be
expressed as follows. Let the map F be a composition of multiplication with
zm−1 and then taking the real part. Solvability of (5.2) is equivalent to this
map being surjective.

The following action ρ of S1 (considered as the unit circle in C) on HomC

will be of fundamental importance for us. For the general discussion of this
action we allow a slightly wider range for m, namely m ≥ 2. Let

P ∈ HomC,

then for s ∈ S1 we define

ρ(s)P (z) := P (sz).

We make several important remarks about this action. The first is that this
action respects the algebra structure, i.e. for P,Q ∈ HomC and s ∈ S1 we
have ρ(s)(PQ) = ρ(s)(P )ρ(s)(Q). The second is that the action of S1 on
C = Hom0 × Hom0 ⊂ Hom? × Hom? is trivial and more generally on a
holomorphic polynomial zn ∈ Homn × Homn the group S1 acts as follows:
ρ(s)zn = (sz)n = snzn. For every s ∈ S1 consider the map

Fs : HomC −→ HomC

defined by
Fs(P ) := Pszm−1, (5.3)
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where on the righthandside Pszm−1 denotes the polynomial which takes value
P (z)szm−1 at the point z = x+ iy. Note that F = ReF1. Now we formulate
three lemmas illustrating the “equivariant” behavior of the family {Fs}s∈S1

of linear maps HomC −→ HomC.

Lemma 13. For any s1, s2 ∈ S1 we have the following relation

Fs2 = Fs1s
−1
1 s2. (5.4)

Here the right hand side is understood as first multiplying the polynomial by
s−1

1 s2 and the applying the map Fs1.

Proof. Apply the left hand side of (5.4) to a polynomial P ∈ HomC: Fs2(P ) =
Ps2z

m−1 = Ps−1
1 s2s1z

m−1 = Fs1(Ps−1
1 s2). Since we have ended up with the

right hand side, we are done.�

A consequence of Lemma 13 is that the image of Fs does not depend on
s ∈ S1.

Lemma 14. For any s1, s ∈ S1 we have the following relation

ρ(s)Fs1 = Fs1sm−1ρ(s). (5.5)

Proof. Apply the left hand side of (5.5) to a polynomial P ∈ HomC and
evaluate it at a point z ∈ C:

(ρ(s)Fs1(P ))(z) = P (z1)s1z
m−1
1 |z1=sz = P (sz)s1s

m−1zm−1 = Fs1sm−1(ρ(s)(P ))(z).

�

The immediate consequence of the above lemmas is the following “equiv-
ariance” lemma.

Lemma 15. For any s1, s ∈ S1 we have the following relation

ρ(s)Fs1 = Fs1ρ(s)sm−1. (5.6)

The following fact is a useful consequence of the last lemma
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Lemma 16. The image of the map Fs is invariant under the ρ-action of S1.
In particular the image of F = ReF1 is invariant under this action.

Consider HomN , the space of homogeneous polynomials of degree N , as
a ρ-representation of S1 via restriction from Hom?. We recall the decompo-
sition of HomN into the irreducible summands:

HomN = Σ
[N/2]
q=0 Irr

q
N , (5.7)

where IrrqN = (x2 + y2)qSpan{Re(x + iy)p, Im(x + iy)p}, p + 2q = N , and
square brackets [·] denote “the biggest integer not greater than”. To finish
the proof of Theorem 25 we restrict our attention back to

F : Homl ×Homl −→ Homr+1

and m ≥ 4 , where r = 2m− 4 and

l = r −m+ 2 = 2m− 4−m+ 2 = m− 2.

The following trick is suggested by the last lemma. We view Homr+1 =
Hom2m−3 as the ρ-representation of S1 and decompose it into irreducible
summands:

Hom2m−3 = Σm−2
q=0 Irr

q
2m−3,

where
Irrq2m−3 = (x2 + y2)qSpan{Re(x+ iy)p, Im(x+ iy)p},

p+ 2q = 2m− 3. Note that the last equality allows us to write out

p+ q − (m− 1) = 2m− 3− q − (m− 1) = m− 2− q ≥ 0

and therefore makes the following calculation possible:

(zz̄)qzp = z̄qzp+q = (z̄qzm−2−q)zm−1,

therefore
(x2 + y2)qRe(x+ iy)p = F (z̄qzm−2−q),

which means that every irreducible summand Irrq2m−3 is present in the image
of F , implying surjectivity of F . This finishes the proof of Theorem 25.�

We would like to reformulate the above question from the theory of sin-
gularities of differentiable functions in terms of intrinsic harmonicity. To do
this we need a preliminary statement. From now on (until the end of this
chapter) we allow m ≥ 2.
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Proposition 10. Let w be a C∞ function defined an open ball B around
(0, 0) ∈ R2. Then the following two assertions are equivalent:
1. There exists a diffeomorphism φ : B −→ φ(B) fixing the origin, which
brings w to the form f0 = Re(x+ iy)m for some nonnegative integer m, i.e.
w = f0 ◦ φ.
2. There exists a Riemannian metric g on B which makes w harmonic.

Proof. The implication from 1. to 2. is obvious, since the function Re(x +
iy)m is harmonic with respect to the standard (Euclidean) metric on R2. For
the converse, take a Riemannian metric g which makes w harmonic and con-
sider an almost complex structure J induced by g — a rotation by 90 degrees
counterclockwise. For dimension reasons any almost complex structure on B
is integrable. This means that locally around a point q ∈ B there is a com-
plex coordinate z = x+ iy such that J∂x = ∂y, i.e. ∂y is obtained from ∂x by
means of the rotation by 90 degrees (counterclockwise). This implies that g
looks like a multiple of identity in the coordinate system (x, y). We pause for
a moment to make a historical remark: existence of such a coordinate system
(“isothermal coordinates”) essentially goes back to Gauss. Since for dimen-
sion reasons the Hodge-star operator and therefore the Laplace(-Beltrami)
operator on B does not change if we re-scale the metric conformally, we have
that w is harmonic with respect to the metric represented by the identity
matrix in the coordinates (x, y). This means that w in coordinates (x, y) is a
real part of some complex-valued function F , which depends holomorphically
on z = x+ iy. The last step is to bring F = amz

m + am+1z
m+1 + ..., aj ∈ C

to its leading power zm by a biholomorphic change of coordinates. So finally
w = ReF = Rezm = Re(x + iy)m. Moreover, we can assume that all our
coordinate changes preserved the origin.�

Now we are ready to reformulate Theorem 25.

Theorem 26. Consider a smooth function f = Re(x + iy)m + h.o. on an
open ball around (0, 0) in R2 as in the beginning of this section. Let h.o. begin
with the order max(m+1, 2m−3). Then f is harmonic with respect to some
smooth Riemannian metric on some open ball around zero, possibly smaller
than the original one.

By Proposition 10 we know already, that Theorem 26 is true. Still we
would like to give an independent proof of it and the method we employ will
also give the following result.
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Theorem 27. Let f = Re(x + iy)2 + h.o. and h = Im(x + iy)2 + h.o. be
smooth functions on an open ball around (0, 0) in R2 where the notation h.o.
stands for the terms of order 3 and higher. Then there exists a Riemannian
metric g which makes f harmonic on some open ball around zero and 4gh is
exponentially small around zero. Moreover the Taylor expansion at zero for
the conformal structure induced by g is uniquely determined.

The remainder of this chapter is devoted to proving the two theorems
above.

5.2 Inductive setup.

In this section we consider a pair of smooth functions f, h, defined on some
open ball around the origin in R2 with the following Taylor expansions at
the origin: f = f0 + h.o., h = h0 + h.o., where f0 = Re(x + iy)m, h0 =
Im(x + iy)m. The higher order terms in the Taylor expansions of f and h
may of course be different, but we denote them by the same symbol “h.o.”
to simplify the notation. Assume that the higher order terms h.o. begin with
the order max(2m − 3,m + 1). This assumption on h.o. will be a standing
assumption from now on unless otherwise specified. We use the following
notation: α := df , β := dh, α0 := df0, β0 := dh0, γ ∈ {α, β}, γ0 ∈ {α0, β0}.
Finally, let us denote as ˜h.o. the higher oder terms for 1-forms (to distinguish
from higher order terms for functions) and recall from Section 2.2, Definition
6 that rn[·] stands for taking the n-th term in the Taylor expansion around
(0, 0).

Proposition 11. There exists a sequence {Tk}k=0,1,... of traceless C∞(R2)-
linear operators

Tk : Ω1(R2) −→ Ω1(R2),

with T0 =

(
0 −1
1 0

)
such that

(i) rn[dTkα] = 0 for n = 0, 1, 2, ..., k +m− 2;

(ii) r0[Tk] = T0 ;

(iii) rn[detTk] = 0 for n = 1, 2, ..., k;

(iv) the entries of Tk are polynomials in (x, y) of order at most k;
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(v) rn[Tk] = rn[Tk−1] for n = 0, 2, ..., k − 1 and 1 ≤ k.

If m = 2, then we can achieve that {Tk}k=0,1,... in addition satisfies

(i)’ rn[dTkβ] = 0 for n = 0, 1, 2, ..., k +m− 2.

Moreover, the Taylor expansion at the origin of Tk up to order k is uniquely
determined by (i),(ii),(iii),(iv),(v) and (i)’.

Proof. We proceed by induction on k. For the basic step we consider k =
0, 1, ...,max(m − 4, 0). For these values of k we can take Tk to be equal

to

(
0 −1
1 0

)
. Conditions (ii)-(v) are satisfied automatically, so we have

to check (i),(i)’. Note that rn[dTkγ] = rn[dTkγ0] + rn[dTk ˜h.o.]. The first
summand is automatically zero, since

dTkγ0 ∈ {4stRe(x+ iy)m,4stIm(x+ iy)m} = {0},

where 4st denotes the standard Laplace-Beltrami operator in R2. In the
second summand the leading power of ˜h.o. is max(2m − 4,m), so the lead-
ing power of dTk ˜h.o. is max(2m − 5,m − 1), which is strictly greater than
max(2m− 6,m− 2) ≥ k +m− 2 ≥ n, so the n− th order of dTk ˜h.o. is zero
anyway.

For inductive step assume, that the statement is true for k − 1, where
k ≥ max(m − 3, 1), this gives us the operator Tk−1 with (i), (ii), (iii),
(iv) and (i)’ if m = 2. Let Tk−1 be represented by the following matrix:(
−T 12

k−1 −T 22
k−1

T 11
k−1 T 12

k−1

)
. We are looking for the operator Tk in the following

form: Tk = Tk−1 + Gk, where Gk =

(
−G12

k −G22
k

G11
k G12

k

)
, here Gij

k is a homo-

geneous polynomial in (x, y) of order k. Clearly,

dTkγ = d(Tk−1 +Gk)γ = dTk−1γ + dGkγ.

Consider n = 0, 1, ..., k + m − 3 = (k − 1) + m − 2. Since the leading term
of dGkγ is of order k + m − 2 we have that rn[dGkγ] = 0. By induction
hypothesis rn[dTk−1α] = 0 (and rn[dTk−1β] = 0 if m = 2). It means that
for the above values of n Equation (i) (and also Equation (i)’ if m = 2) is
satisfied. It remains to check Equation (i) and Equation (i)’ for n = k+m−2.
That is rk+m−2[dTkγ] = 0 which is the same as

rk+m−2[dGkγ] = −rk+m−2[dTk−1γ].
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Since the leading power of ˜h.o. is greater than or equal to m the last equation
is equivalent to

rk+m−2[dGkγ0] = −rk+m−2[dTk−1γ], (5.8)

where we know the right hand side and the unknowns are G11
k , G12

k , G22
k .

Equation (ii) is clear by the choice of T0. Now we consider Equation (iii).
Since it is automatically true for n = 1, ..., k − 1 by induction hypothesis,
this equation will follow if

rk[detTk] = 0. (5.9)

Clearly, rk[detTk] = G11
k + G22

k + rk[detTk−1], therefore Equation (5.9) is
equivalent to G22

k = rk[detTk−1] − G11
k . Now we substitute this in Equation

(5.8), obtaining the following equation:

dG̃kγ0 = φk−1dx ∧ dy, (5.10)

where φk−1 is a homogeneous polynomial in (x, y) of degree k+m− 2 which
depends only on the components of Tk−1, i.e. on the data we know already
by induction hypothesis and G̃k is the operator represented by the matrix(
−G12

k G11
k

G11
k G12

k

)
.

The left hand side of (5.10) is the volume form dx ∧ dy times a homoge-
neous polynomial of order k+m−2. So we if specify γ = α in (5.10), then we
have k+m−1 equations and 2(k+1) unknowns. Since k ≥ m−3, the balance
between the two is “correct”: 2(k+1) ≥ k+m−1 — the number of unknowns
is at least the number of equations. So we expect solvability and therefore
the first part of the statement to be true. For the second part we specialize
to m = 2 and try to solve (5.10) for both cases γ = α and γ = β simultane-
ously. The number of unknowns is still 2(k+1), but the number of equations
doubles — it becomes 2(k + m − 1). Fortunately, we can use that m = 2,
rewriting the number of unknowns as 2(k+m−1) = 2(k+ 2−1) = 2(k+ 1).
We see that the number of unknowns is equal (!) to the number of equations.
So we expect the unique (!) solvability. This finishes the proof of Proposi-
tion 11 modulo the two expectations above. These will be treated in the next
section.

We close this section by making a remark of heuristic nature. In the
inductive setup above we have taken the function f to be of the form Re(x+
iy)m+h.o., where h.o. starts from the order max(2m−3,m+1). Assume for
a moment, that we allow more general form for the function f , i.e. Σ∞j=mPj,
where Pj is a homogeneous polynomial in (x, y) of order j. Then we are faced
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with a system of equations for every k as above, but now k ranges from 0 to
∞, not just from max(m− 3, 1) to∞. For k ≥ max(m− 3, 1) we argue with
the number of unknowns versus the number of equations exactly as above,
but for k = 0, ...,max(m − 4, 0) the balance between the two is not in our
favour: the number of equations minus the number of unknowns is equal to
k+m−1−2(k+1) = m−k−3. So the system is (m−k−3)-overdetermined.
In other words for a solution to exist, the right hand side has to satisfy
m− k − 3 conditions. Summing these conditions up while k runs from 0 to
max(m− 4, 0) gives us 1

2
(m− 2)(m− 3). Philosophically speaking these are

1
2
(m− 2)(m− 3) conditions, that polynomials Pj, j = 0, ...,max(2m− 4,m)

have to satisfy in order for df to be co-closed near the origin, that is for f to
look like f0 in an appropriate coordinate system near the origin. We remark
that only finitely many of P ′js decide the question and denote the number
1
2
(m − 2)(m − 3) by L(m). These heuristic considerations will be given a

precise formalism in Chapter 6.

5.3 Key algebraic trick: Cauchy-Riemann op-

erator.

Note that the operator

(
−G12

k G11
k

G11
k G12

k

)
applies to the form γ0 = γ01dx+γ02dy

to give (−G12
k γ01+G11

k γ02)dx+(G11
k γ01+G12

k γ02)dy. Taking exterior derivative
from the last expression gives us:

((G12
k γ01 −G11

k γ02)y + (G11
k γ01 +G12

k γ02)x)dx ∧ dy. (5.11)

Recall that γ0 ∈ {α0, β0} = {df0, dh0}. More precisely: f0 = Re(x+ iy)m,
df0 = m{Re(x+ iy)m−1dx− Im(x+ iy)m−1dy},
h0 = Im(x+ iy)m,
dh0 = m{Im(x+ iy)m−1dx+Re(x+ iy)m−1dy}.

This suggests to introduce complex notation: z = x+iy, Gk = G11
k +iG12

k .
It should not be confused with the Gk in the preveous section, denoting a
certain matrix. We also recall the Cauchy-Riemann operator: ∂z = 1

2
(∂x −

i∂y). For a complex valued function a+ ib of z one has

∂z(a+ ib) =
1

2
(∂x − i∂y)(a+ ib) =

1

2
((ax + by) + i(−ay + bx)).
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This notation, together with (5.11) allows us to rewrite the lefthandside of
(5.10) as follows. For γ = α:

dG̃kα0 = ((G12
k f0x −G11

k f0y)y + (G11
k f0x +G12

k f0y)x)dx ∧ dy =

= {((G12
k Rez

m−1 +G11
k Imz

m−1)y + (G11
k Rez

m−1 −G12
k Imz

m−1)x)}dx ∧ dy =

= m{Re(Gkz
m−1)x + Im(Gkz

m−1)y}dx ∧ dy = 2mRe∂z(Gkz
m−1)dx ∧ dy

and for γ = β:

dG̃kβ0 = ((G12
k h0x −G11

k h0y)y + (G11
k h0x +G12

k h0y)x)dx ∧ dy =

= m{((G12
k Imz

m−1−G11
k Rez

m−1)y+(G11
k Imz

m−1 +G12
k Rez

m−1)x)}dx∧dy =

= m{−Re(Gkz
m−1)y + Im(Gkz

m−1)x}dx ∧ dy = 2mIm∂z(Gkz
m−1)dx ∧ dy.

In short, viewing γ0 as α0 + iβ0 one gets:

dG̃kγ0 = 2m∂z(Gkz
m−1)dx ∧ dy = 2m∂z ◦ F1(Gk)dx ∧ dy.

Now we turn to the second part of the Proposition 11, which came down
to the unique solvability of (5.10) for m = 2. Since the number of unknowns
is equal to the number of equations, this is the same as injectivity of the
linear operator Gk 7→ ∂z(Gkz) acting on the space Homk ×Homk. Let a Gk

be the element of the kernel of this operator. This tells us that Gkz is in the
kernel of ∂z. So Gkz should write out as a cz̄k+1 for some c ∈ C, but this
immidiatelly implies that c = 0 since Gkz is a multiple of z.

For the first part of the Proposition 11, which came down to the (not
necessarily unique) solvability of (5.10) for any m ≥ 2, but only for γ = α
we consider the family {Ds}s∈S1 of maps

Ds = ∂z ◦ Fs : Homk ×Homk −→ Homk+m−2 ×Homk+m−2

which takes Gk to (Gksz
m−1)z for every s ∈ S1. Note that ∂sz = 1

s
∂z. This

together with Lemmas 13, 14 and 15 gives us the following

Lemma 17. We have the following “equivariance” relations for the family
{Ds}s∈S1.

Ds2 = Ds1s
−1
1 s2, (5.12)

ρ(s)Ds1 = Ds1ρ(s)sm−2 = Ds1sm−2ρ(s). (5.13)
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This, of course, implies that the image of Ds does not depend on s and is
invariant under the ρ-action of S1. Consequently, the image of of Re◦∂z ◦F1

is invariant under this action of S1. This suggests to decompose the target
space Homk+m−2 of Re◦∂z ◦F1 into irreducible representations (recall (5.7)):

Homk+m−2 = Σ
[(k+m−2)/2]
q=0 Irrqk+m−2,

where
Irrqk+m−2 = (x2 + y2)qSpan{Re(x+ iy)p, Im(x+ iy)p},

p + 2q = k + m − 2. For the next calculation it is useful note that since
k ≥ m− 3 we have that

n := k − q =
1

2
(2k − 2q) ≥ 1

2
(2k − (k +m− 2)) =

1

2
(k − (m− 2)) ≥ 0.

Now for the nonnegative integer n we have

p = n+m− 2− q = k +m− 2− 2q ≥ 0.

Finally,

Re∂z(F1(z̄qzn)) = Re(z̄qznzm−1)z = Re(zn+m−1z̄q)z =

= Re(n+m−1)zn+m−2z̄q = Re(n+m−1)zpzqz̄q = (n+m−1)(x2+y2)qRe(x+iy)p,

which means that every irreducible summand Irrqk+m−2 is present in the
image of Re ◦ ∂z ◦ F1, implying surjectivity of this map. This completes the
proof of Proposition 11. �

5.4 Approximate solution.

Proposition 12. There exists an open ball W around the origin and a trace-
less C∞(W )-linear operator T : Ω1(W ) −→ Ω1(W ) with the following prop-
erties:

(i) T(0,0) =

(
0 −1
1 0

)
,

(ii) dTα = O(exp),

(iii) detT = 1,



5.4. APPROXIMATE SOLUTION. 77

where O(exp) stands for exponentially small functions or top degree differ-
ential forms (Section 2.3). Moreover, if m = 2, then in addition

(ii)’ dTβ = O(exp),

holds and the Taylor power series of T at the origin is uniquely determined
by (i), (ii), (iii) and (ii)’.

Proof. Since “the inductive structure (v)” (see condition (v) of Proposition
11) is true, we have that the sequence of operators {Tk}k=0,1,... constitute a
formal power series Tformal at the origin. By the result of Mirkil cf. [16], there
exists an operator T̃ : Ω1(W ) −→ Ω1(W ), where W is a small ball around
the origin, such that its (formal) Taylor power series is exactly Tformal. This
allows us to make the following computations. Fix a positive integer k, then
rk[dT̃α] = rk[dTkα] = 0 by Equation (i) of Proposition 11; rk[TraceT̃ ] =
rk[TraceTk] = 0; r0[detT̃ ] = r0[detTk] = 1, by Equation (ii) of Proposition 11
and if k > 0, then rk[detT̃ ] = rk[detTk] = 0, by Equation (iii) of Proposition
11. Therefore the following three equalities hold true:
(a) dT̃α = O(exp),
(b) TraceT̃ = O(exp),
(c) detT̃ = 1 +O(exp).
Now we are going to correct the operator T̃ a little bit. The property (b)
says that the sum of the diagonal elements of the operator T̃ is of the class
O(exp), therefore by changing the lower right element of T̃ , we can achieve
that the new operator (called again T̃ ) is now traceless and the properties
(a) and (c) still hold true. The last step is to set T = (detT̃ )−1/2T̃ (we shrink
the neighbourhood W if necessary to insure that detT̃ |W > 0). Clearly, the
operator T is traceless and detT = 1. We check whether it satisfies property
(a). Indeed,

dTα = d((detT̃ )−1/2T̃α) = d(detT̃ )−1/2 ∧ T̃α + (detT̃ )−1/2dT̃α.

Working out the two terms one by one gives us:

d(detT̃ )−1/2 ∧ T̃α = d(1 +O(exp))−1/2 ∧ T̃α =

= d(1 +O(exp)) ∧ T̃α = d(O(exp)) ∧ T̃α = O(exp);

(detT̃ )−1/2dT̃α = (1 +O(exp))O(exp) = O(exp).

Altogether, dTα = O(exp) and of course T(0,0) = T̃(0,0) = T0 =

(
0 −1
1 0

)
.�
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Proposition 13. There exists an open ball W around the origin and a Rie-
mannian metric g̃ on it such that

4g̃f = O(exp) (5.14)

and in the case m = 2 we have in addition

4g̃h = O(exp). (5.15)

Moreover, the Taylor expansion for the conformal structure induced by g at
the origin is uniquely determined by 5.14 and 5.15.

Proof. Let

(
−g̃12 −g̃22

g̃11 g̃12

)
be the matrix representing T in standard coor-

dinates (dx, dy). We set the Riemann metric g̃ to be defined by the matrix(
g̃11 g̃12

g̃12 g̃22

)
.

We recall the explicit computation for the Hodge-star operator from Sec-
tion 2.1 and apply Proposition 12. �

This means that we are almost done. Recall that we would like to have
zero in the right hand side of (5.14) instead of O(exp). The next step is to
correct g̃ in an exponentially small fashion to achieve zero on the right hand
side of (5.14). In the case m = 2 such a modification (being exponentially
small) will not spoil (5.15). Of course we would be more happy to also
improve (5.15) to achieve zero on the right hand side. Unfortunately, it is
not clear whether this is possible or not.

5.5 Technical analysis around zero.

We set up the machinery which starts with a C∞-metric making f harmonic
“up to order l” at the origin and produces a C l-metric out of it making f
honestly harmonic, l = 0, 1, ...∞. Doing this for l = ∞ would obviously
finish the job. It turns out, however, that it is convenient to start out slowly
with l = 0, postponing the case l =∞ until later. Note that the most naive
metric — the standard one in coordinates (x, y) — already makes f harmonic
“up to order 0” at the origin. So for the next proposition we do not need
any assumptions on the higher order terms h.o. of f at all.
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Proposition 14. Let f = Re(x + iy)m + h.o. There exists a continuous
Riemannian metric g on some open neighbourhood U around zero in R2,
which makes f = Re(x + iy)m + h.o. harmonic. Moreover the metric is
smooth in the punctured open neighbourhood U \ {(0, 0)}. The higher order
terms h.o. here are allowed to begin with the order m+ 1.

Proof. In standard coordinates (x, y) we have: α0 = f0xdx + f0ydy. Clearly,
Kerf0x ∩Kerf0y = {(0, 0)}. Let the desired Riemannian metric g be repre-
sented by the matrix {gij}i,j=1,2. With the convention that det{gij} = 1 the
equation 4gf = 0 for g reads as

(g12fx + g22fy)y + (g11fx + g12fy)x = 0. (5.16)

Assume for the moment, that Equation (5.16) is solved by a Riemannian
metric g with regularity we want. Then the combination

A = g12fx + g22fy, (5.17)

gives us a function on R2 with a-priori the same regularity as g has. Analo-
gously

B = g11fx + g12fy. (5.18)

Note that Ay + Bx = 0. Recall, that according to our convention the deter-
minant of the matrix {gij}i,j=1,2 must be equal to 1, i.e.

g11g22 − (g12)2 = 1. (5.19)

The set of equations (5.17), (5.18) and (5.19) can be viewed as a system of
equations on our matrix elements {gij}i,j=1,2. To solve this system we express
g11 and g22 in terms of g12, A and B using (5.17) and (5.18):

g11 =
B − g12fy

fx
, (5.20)

g22 =
A− g12fx

fy
. (5.21)

and substitute these expressions in (5.19):

B − g12fy
fx

A− g12fx
fy

− (g12)2 = 1,
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and hence,

g12 =
AB − fxfy
Afy +Bfx

(5.22)

Formulas (5.20), (5.21) and (5.22) can be viewed as an expression of our
matrix elements g11, g22, g12 through the functions A and B. Of course,
while writing out these formulas we have divided by zero in several places,
but it does not hurt to do this at the moment, since our computations were
done under the assumption that {gij}i,j=1,2 is well defined on the whole of U
a-priory.

Now we change the direction of the logic. We want to solve Equation
(5.16) together with (5.19), thus obtaining the desired Riemannian metric.
For this we give ourselves smooth functions A and B, defined in some open
neighbourhood U around the origin with Ay + Bx = 0. The freedom of this
choice will be exploited later. We insert the functions A and B in the system
(5.17), (5.18) and (5.19) as a right hand side and note that the solution
to this system will automatically satisfy (5.16) and (5.19), thus giving the
Riemannian metric we want provided that regularity questions are taken care
of. Unfortunately, the direct usage of the formulas (5.20), (5.21) and (5.22)
in order to solve the system (5.17), (5.18), (5.19) will run into problems like
division by zero. Therefore, we will do the following. First, we exploit the
freedom in the choice of the functions A and B by fixing their principal
parts properly. The higher order terms remain arbitrary. Next, we will see,
that Formula (5.22) does not have problems in a small neighbourhood of the
origin, and hence defines a function g12 in this small neighbourhood. The
function g11 will be defined in two steps. First, we use Formula (5.20) to
defined it away from the set where the corresponding denominator is small
and then we use Equation (5.19) to extend it over the problematic set. The
function g22 is defined analogously. The last step is to show that the so
defined functions g12, g11 and g22 do satisfy the system (5.17), (5.18), (5.19),
which is not automatic, because the formulas (5.20) and (5.21) do not apply
everywhere in the domain of definition of the functions {gij}i,j=1,2.

Now we carry out this plan. We set Am−1 = f0y, Bm−1 = f0x to be the
principal parts of A = Am−1 + Ar and B = Bm−1 + Br respectively, where
Ar and Br are left to be arbitrary smooth functions of the order higher than
m− 1, subject to the relation Ary +Brx = 0. (the lower r in “Ar” and “Br”
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stands for “rest”) First, we analyze Formula (5.22):

g12 =
AB − fxfy
Afy +Bfx

=
(Am−1 + Ar)(Bm−1 +Br)− (f0x + φ1)(f0y + φ2)

(Am−1 + Ar)(f0y + φ2) + (Bm−1 +Br)(f0x + φ1)
=

=
Am−1Bm−1 − f0xf0y + r12

n

Am−1f0y +Bm−1f0x + r12
d

=
r12
n

f 2
0y + f 2

0x + r12
d

,

where

r12
n = Am−1Br + ArBm−1 − f0xφ2 − f0yφ1 + ArBr − φ1φ2

and
r12
d = Am−1φ2 + Arf0y +Bm−1φ1 +Brf0x + Arφ2 +Brφ1,

where φ1 and φ2 are partial derivatives of h.o. with respect to x and y re-
spectively. Note that f 2

0x + f 2
0y is a nowhere zero homogeneous polynomial of

order 2(m− 1), so the estimate (2.1) applied to f 2
0x + f 2

0y implies that

r12
n

f 2
0y + f 2

0x

= o(1)

at (0, 0) and
r12
d

f 2
0y + f 2

0x

= o(1)

at (0, 0). Therefore, the function g12 is well-defined in some neighbourhood
U of the origin, belongs to the class C∞(U \ (0, 0))∩C0(U) and the relation

lim
(x,y)→(0,0)

g12 = g12|(x,y)=(0,0) = 0

holds true. Now, we analyze the formulas (5.20) and (5.21) and define the
functions g11 and g22. The idea is that for each formula we cut out “problem-
atic” sectors and work on those parts of R2 where we are guaranteed from
small or vanishing denominators. Since f0x = Re(x + iy)m−1 is a homoge-
neous polynomial of order m− 1, not identically zero, we fix a small positive
δ and set Ω11 = Ωδ(f0x). Next, we rewrite (5.20) in a more convenient way:

g11 =
B − g12fy

fx
=
Bm−1 +Br − g12(f0y + φ2)

f0x + φ1

=
f0x + r11

n

f0x + φ1

=
f0x(1 + r11

n

f0x
)

f0x(1 + φ1

f0x
)
,
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where r11
n = Br − g12f0y − g12φ2. To take a more precise look at Formula

(5.20) we restrict ourselves to U ∩ Ω11. Now Estimate (2.2) applied to f0x

implies that
r11
n

f0x

|Ω11 = o(1)

at (0, 0) and
φ1

f0x

|Ω11 = o(1)

at (0, 0). Therefore, fx|U∩Ω11 has an isolated zero at the origin, and the right
hand side of (5.20) is well-defined on U∩Ω11 (we shrink the neighbourhood U
if necessary). At this point we set the function g11 to be defined on U∩Ω11 by
Formula (5.20). The so defined function g11 (only on U ∩Ω11 so far) exhibits
the following regularity: g11|U∩Ω11 ∈ C∞((U ∩Ω11)\ (0, 0))∩C0(U ∩Ω11) and
the relation

lim
(x,y)→(0,0)

g11|U∩Ω11 = g11|(x,y)=(0,0) = 1

holds true. The latter allows us to assume (by shrinking U further if neces-
sary) that g11|U∩Ω11 is nowhere zero. Similar discussions apply to Formula
(5.21). In brief, Ω22 = Ωδ(f0y),

g22 =
f0y + r22

n

f0y + φ2

,

for r22
n being a function with the faster decay at (0, 0) than (x2 + y2)(m−1)/2.

By the same token as before,

r22
n

f0y

|Ω22 = o(1)

and
φ2

f0y

|Ω22 = o(1)

at (0, 0). Therefore, the function g22 is well-defined on U ∩ Ω22 (the neigh-
bourhood U can be shrunk further if needed). Moreover, we have g22|U∩Ω22 ∈
C∞((U ∩ Ω22) \ (0, 0)) ∩ C0(U ∩ Ω22) and the relation

lim
(x,y)→(0,0)

g22|U∩Ω22 = g22|(x,y)=(0,0) = 1
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holds true. Therefore g22|U∩Ω22 is nowhere zero. Since we know that

Ker(f0x) ∩Ker(f0y) = {(0, 0)},

we can choose δ small enough and achieve that

Ω11 ∪ Ω22 = R2

and
Int(Ω11 ∩ Ω22) 6= ∅.

Now comes a crucial moment. We are to extend the functions g11 and g22

to the whole of U . Equation (5.19)

g11g22 − (g12)2 = 1

holds true on the triple intersection U ∩Ω11∩Ω22 by the formulas (5.20) and
(5.21). Since g22|U∩Ω22 is nowhere zero this equation equivalently reads as

g11 =
1 + (g12)2

g22
. (5.23)

The right hand side of this equation makes perfect sense and has the regu-
larity required for the function g11 on U ∩ Ω22. This allows us to define the
function g11 on U ∩ Ω22 by (5.23). So now we have defined the function g11

on U ∩Ω11 via (5.20) and on U ∩Ω22 via (5.23). The two definitions overlap
on U ∩ Ω11 ∩ Ω22 and clearly agree there, since Equation (5.19), where the
second definition has come from, holds true on U ∩Ω11∩Ω22 with g11 defined
in the first way. Altogether, we have that the function g11 is defined and has
the regularity we need on both U ∩Ω11 and U ∩Ω22 and hence on U — their
union. Note that Equation (5.19), after we have made this extension, holds
true not only on U ∩ Ω11 ∩ Ω22, but on the large set U ∩ Ω22. Analogously
we extend the function g22 from U ∩ Ω22 to the whole of U .

We remark that Equation (5.19) now holds true not only on U ∩ Ω22,
but on the whole of U . Now we have come to the last step, i.e. we are
to show that the so defined functions g12, g11 and g22 do actually satisfy
the system (5.17), (5.18), (5.19) and hence both (5.16) and (5.19), therefore,
giving us the Riemannian metric g which makes α co-closed and has the
C∞(U \ (0, 0)) ∩ C0(U) regularity.

Equation (5.19) is satisfied automatically by the remark above. For (5.18)
we start we a point (x, y) ∈ U and consider g11fx at this point. Here we
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distinguish between the following two cases:
1) (x, y) ∈ Ω11 and
2) (x, y) ∈ Ω22.
In the first case we are done by Formula (5.20). In the second case Formula
(5.20) does not apply, but fortunately (5.21) does apply. For this we carry
out an easy computation:

g11fx|(x,y) = g11g22fxfy
1

g22fy
|(x,y) = (1 + (g12)2)fxfy

1

g22fy
|(x,y) =

= (AB − g12(Afy +Bfx) + (g12)2fxfy)
1

g22fy
|(x,y) =

=
(B − g12fy)(A− g12fx)

g22fy
|(x,y) = (B − g12fy)|(x,y).

The first equality sign is valid, because g22 is nowhere zero and fy|U∩Ω22 has
a unique zero at the origin. The second one is valid by (5.19). The third one
easily follows from the definition of g12. The fourth one is just an elementary
algebra. The fifth one follows from (5.21). This shows (5.18). It can be
shown completely analogously that Equation (5.17) is also satisfied. �

Next proposition is the final step. We take up the case l =∞. That is we
find a smooth Riemannian metric g making f harmonic with g− g̃ = O(exp).

Proposition 15. There exists an open neighbourhood U of the origin, pos-
sibly smaller than W and a Riemannian metric g ∈ C∞(U), which makes
α = df co-closed. Moreover, g − g̃ = O(exp).

Proof. Recall from Proposition 14 that Riemannian metric g on some neigh-
bourhood U of the origin making α co-closed. The only problem is the
regularity of this metric at (0, 0). To take care of these questions we are
going to exploit the freedom in the choice of functions A and B. Recall
that Proposition 12 gave us an open neighbourhood W of the origin and

an operator T =

(
−g̃12 −g̃22

g̃11 g̃12

)
on Ω1(W ) with dTα = 4g̃f exponen-

tially small. Set κ = 4g̃f and recall that the last expression is equal to
(g̃12fx + g̃22fy)y + (g̃11fx + g̃12fy)x. We shrink U if necessary, so that U is
convex and contained in W . We introduce a smooth function ξ, defined on
U , by the formula:

ξ(x, y) =

∫ x

0

κ(x̃, y)dx̃.
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Clearly, the function ξ is of the class O(exp). We set

A∞ = g̃12fx + g̃22fy,

B∞ = g̃11fx + g̃12fy

and pick some function φ ∈ O(exp) arbitrarily. Set A = A∞ + φx, B =
B∞ − ξ − φy. First, we check, that the principal parts Am−1 and Bm−1 of A
and B coincide with those chosen previously. Indeed,

Am−1 = g̃12
(0,0)f0x + g̃22

(0,0)f0y = f0y

and
Bm−1 = g̃11

(0,0)f0x + g̃12
(0,0)f0y = f0x

as before. Next, we check, that A and B satisfy the condition Ay + Bx = 0.
Indeed,

Ay +Bx = A∞y + φxy +B∞x − φyx − ξx = κ− κ+ φxy − φyx = 0.

Now we analyze formula (5.22) for the off diagonal element of the metric
deeper than previously. Basically, it follows the same pattern as before,
but now we want infinite differentiability of g12 at the origin instead of just
continuity.

g12 =
AB − fxfy
Afy +Bfx

=
(A∞ + φx)(B∞ − ξ − φy)− fxfy
(A∞ + φx)fy + (B∞ − ξ − φy)fx

=

=
A∞B∞ − fxfy + r12

n

A∞fy +B∞fx + r12
d

=

A∞B∞−fxfy
A∞fy+B∞fx

+ r̃12
n

1 + r̃12
d

=
A∞B∞ − fxfy
A∞fy +B∞fx

+ r,

where the functions r12
n , r12

d , r̃12
n , r̃12

d , r are all of the class O(exp) and the
neighbourhood U around the origin we are working at is taken to be small
enough for A∞fy +B∞fx to be nonzero in the punctured neighbourhood. By
the choice of A∞ and B∞, we have that

A∞B∞ − fxfy
A∞fy +B∞fx

= g̃12,

therefore g12 = g̃12 + r, in particular g12 is smooth. To work out the desired
regularity for diagonal elements is a little harder. First, we consider the
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difference g11 − g̃11 restricted to the set U ∩ Ω11, where the formula (5.20)
works:

(g11 − g̃11)|U∩Ω11 =
B − g12fy

fx
− g̃11 =

B∞ − ξ − φy − (g̃12 + r)fy
fx

− g̃11 =

=
B∞ − g̃12fy + r11

n

fx
= g̃11 + r̃11 − g̃11 = r̃11,

where the function r11
n is of the class O(exp) and we have to be a little more

careful about the function r̃11. It is smooth on the set U ∩Ω11 \ {(0, 0)} and
decays at (0, 0) together with all its derivatives faster than any polynomial.
Analogously, g22|U∩Ω22 = g̃22+r̃22, where the function r̃22 is smooth on the set
U ∩ Ω22 \ {(0, 0)} and decays at (0, 0) together with all its derivatives faster
than any polynomial. This allows us to write out the difference g11 − g̃11

restricted to the set U ∩ Ω22:

(g11 − g̃11)|U∩Ω22 =
1 + (g12)2

g22
− g̃11 =

1 + (g̃12)2 + 2g̃12r + r2

g̃22 + r̃22
− g̃11 =

=
1 + (g̃12)2

g̃22
+ r̂11 − g̃11 = g̃11 + r̂11 − g̃11 = r̂11,

where the function r̂11 is smooth on the set (U ∩Ω22)\{(0, 0)} and decays at
(0, 0) together with all its derivatives faster than any polynomial. Altogether,
we have that the difference g11− g̃11 is smooth in a punctured neighbourhood
of (0, 0) and decays at (0, 0) together with all its derivatives faster than any
polynomial (in the above calculations we shrink the neighbourhood U of the
origin whenever necessary, to keep track of the denominators). Consequently,
the difference g11 − g̃11 is of the class O(exp). In particular, the upper left
element g11 of the metric is smooth. The lower right element g22 can be
treated analogously. The above calculations show that the metric g is smooth
and moreover, g − g̃ = O(exp). �

This finishes the proof of Theorem 26 and Theorem 27.



Chapter 6

Applications

This chapter is the logical continuation of the previous one. In Section 6.1
with the hard analytical work of proving Theorem 25 behind us we introduce
the algebraic formalism of jets (following the spirit of [1]) to derive some
applications of Theorem 25. In Section 6.2 we apply the results of Section 6.1
to give a smooth characterization of intrinsically harmonic forms on surfaces
with arbitrary zeros. In Section 6.3 we give an illustrating example. Section
6.4 is an “epilogue”.

6.1 Finite dimensional reduction.

Let Diff denote the (infinite dimensional Lie) group of diffeomorphisms of
R

2 fixing the origin. It acts linearly on the space of smooth functions C∞(R2)
on R2 by composition on the right. Let C∞(R2)(0,0) denote the subspace of
C∞(R2) consisting of functions f ∈ C∞(R2) with f(0, 0) = 0 and df(0,0) = 0.
Let GC∞(R2)(0,0) denote the space of germs of functions f ∈ C∞(R2)(0,0)

at (0, 0). More generally, for any function space the corresponding space of
germs will be denoted by adding G in front. The germ at (0, 0) of a function
f ∈ C∞(R2)(0,0) will be denoted by {f}. The map sending a function to its
germ gives the space of germs a target topology — the strongest topology
in which this map is continuous. The action of the group Diff on f ∈
C∞(R2) descends to the space of germs GC∞(R2)(0,0). Indeed, assume that
{f1} = {f2} ∈ GC∞(R2)(0,0) for f1, f2 ∈ C∞(R2)(0,0), that is f1|U = f2|U
for some open neighbourhood U of (0, 0). Then f1 ◦ φ|φ−1(U) = f2 ◦ φ|φ−1(U),
i.e. {f1 ◦ φ} = {f2 ◦ φ} ∈ GC∞(R2)(0,0). The action of φ ∈ Diff on a germ

87
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{h} ∈ GC∞(R2)(0,0) will be denoted by writing φ to the right of {h}, i.e.{h}φ,
remembering the obvious formula {h}φ = {h ◦ φ}.

Now pick f ∈ C∞(0,0). Let m ≥ 2 be the order of its leading power in
the Taylor expansion around the origin. We ask exactly the same question
as we asked in Chapter 5: When can f be brought by a smooth change of
variables to the normal form f0 = Re(x+ iy)m in some open neighbourhood
of the origin? In other words, when does there exist an open neighbourhood
U around (0, 0) ∈ R2 and a diffeomorphism φ : U −→ φ(U) fixing the origin
with f |U = f0 ◦ φ|U? This question has a very transparent reformulation in
the language of germs. Indeed, assume such a diffeomorphism φ : U −→ φ(U)
exists. Then the restriction of φ to a sufficiently small ball B around zero
can be extended to a diffeomorphism Φ : R2 −→ R

2. In the language of
germs the equation f |B = f0 ◦ Φ|B translates to {f} = {f0}Φ, i.e. the germ
{f} of the function f belongs to the orbit of the germ {f0} of the normal
form f0 under the action of the group Diff , in formulas: {f} ∈ {f0}Diff .
Assume conversely that {f} ∈ {f0}Diff . Then there exists a neighbourhood
U of the origin and a diffeomorphism φ : R2 −→ R

2 fixing the origin with
f |U = f0 ◦ φ|U , answering positively the question of Chapter 5. Therefore
the “germ” version of this question is: does the germ {f} of the function
f belongs to the orbit of the germ {f0} of the normal form f0 under the
action of the group Diff? In formulas: is it true that {f} ∈ {f0}Diff? In
quantitative terms: what is the co-dimension of the orbit of {f0} under the
action of the group Diff? Theorem 25 suggests that the question is “finite
dimensional” and the above mentioned co-dimension is finite. In order to
make this precise we need some machinery, essentially borrowed from [1].

For n ≥ 1 let An denote the algebra of smooth functions on R2 which
vanish at (0, 0) together with n − 1 derivatives. With this notation A2 =
C∞(R2)(0,0). Let r ≥ n be a natural number. Note that Ar+1 ⊂ An is
an ideal. The finite dimensional quotient-algebra An/Ar+1 will be denoted
by Jetnr ; it is usually referred to as an algebra of jets of smooth functions.
Note that since for r2 ≥ r1 ≥ n we have the following inclusion of ideals:
Ar2+1 ⊂ Ar1+1 ⊂ An and hence also a natural “forgetful” map Jetnr2 −→
Jetnr1 that will be referred to as a projection. Sometimes it is useful to fix
some coordinate system and think of Jetnr as a space of truncated Taylor
series which start at order n and go up to order r. Since in coordinates a
vector field on R2 is simply a pair of functions, we can define the space V Jetnr
of jets of vector fields.

An analogous constructions also work for diffeomorphisms. Consider r ≥
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1 and let Dr be a normal subgroup of Diff consisting of elements φ such
that the function (x, y) 7→ φ(x, y) − (x, y) vanishes at (0, 0) together with
its derivatives up to order r. The quotient group Diffr := Diff/Dr is a
finite dimensional Lie group. Indeed the algebraic structure has just been
explained and the manifold structure is given by viewing a diffeomorphism
φ ∈ Diff as pair (φ1, φ2) of real valued functions on R2 such that φ1 ∈
A1 and φ2 ∈ A1. This way an element j ∈ Diffr is viewed as a point
in the vector space Jet1r × Jet1r and is characterized by the condition of
having an inverse, which is an open condition. So, as a smooth manifold,
Diffr is just an open subset of Jet1r × Jet1r and this smooth structure is
compatible with the algebraic one. As with functions, the truncated Taylor
series interpretation for Diffr is useful to keep in mind. For instance, Diff1

consists of linear maps, Diff2 allows for quadratic terms etc. It is easy to
see that our construction of Jetmr and Diffr is independent of the choice of
coordinates. Let {·}r denote the operation of taking the r-th jet of a function
or a diffemorphism. The operation {·}r will sometimes be called truncation.
Since the ideal of functions vanishing at (0, 0) up to order r is invariant under
the action of the group Diff , we get the induced action of Diff on Jetmm+r−1

by the formula: {h}m+r−1φ := {hφ}m+r−1. It is easy to see that the normal
subgroup Dr acts trivially on Jetmm+r−1, so we get an action of Diffr on
Jetmr+m−1 by the formula: {h}m+r−1{φ}r := {h}m+r−1φ, i.e.

{h}m+r−1{φ}r = {hφ}m+r−1. (6.1)

The latter is a linear action of a finite dimensional Lie group on a finite
dimensional R-linear space. Moreover the corresponding map

Diffr −→ Aut(Jetmm+r−1)

is smooth. Note that the map producing the r-th jet out of a function factors
through the map producing a germ out of a function, so we can take jets of
germs. The quotient map producing jets out of germs will also be denoted
by {·}r and called truncation. In the theorem below we introduce another
notation for this map coming from the first letter of the word “truncation”.

Theorem 28. Let f ∈ Am. Set r := max(1,m− 3). Let

t : Diff −→ Diffr

and
T : GAm −→ Jetmm+r−1
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be maps sending diffeomorphisms respectively germs of functions to their jets
in Diffr respectively Jetmr+m−1. Then the following statements are true.

First: the map T is (Diff −Diffr)-equivariant, in other words

T ({h}φ) = T ({h})t(φ), (6.2)

for all {h} ∈ GAm and φ ∈ Diff .

Second: a germ {f} ∈ GAm belongs to the orbit {f0}Diff of {f0} under
the action of Diff if and only if its truncation T{f} belongs to the orbit
T{f0}Diffr of T{f0} under the action of Diffr. In other words

{f0}Diff = T−1(T{f0}Diffr). (6.3)

Proof. Equation (6.2) is simply the Formula (6.1). For Equation (6.3) take
any {f} ∈ {f0}Diff , that is {f} = {f0}φ for some diffeomorphism φ ∈
Diff , then Equation (6.2) applied to {f0} tells us that T{f} = T ({f0}φ) =
T{f0}t(φ), i.e. {f} ∈ T−1(T{f0}Diffr). For the converse inclusion take
{f} ∈ T−1(T{f0}Diffr), i.e. T{f} ∈ T{f0}Diffr, therefore there exists
a diffeomorphism φ̃ ∈ Diff such that {f}m+r−1 = {f0φ̃}m+r−1. The last
equation means that in some coordinate system (call it (x, y)) the function
f looks like Re(x + iy)m + h.o. with h.o. starting from the order m + r =
m + max(1,m − 3) = max(m + 1, 2m − 3). Now we apply Theorem 25 to
get that f can be brought to the form Re(x + iy)m by a coordinate change
around the fixing the origin. That is for some open neighbourhood U of the
origin and some diffeomorphism φ : U −→ φ(U) fixing the origin we have
f |U = f0φ|U . The last equation gives us that {f} ∈ {f0}Diff .�

Now we compute the codimension the orbit {f0}m+r−1Diffr in Jetmm+r−1

for the values of r we are interested in. As {f0}m+r−1Diffr is an immersed
manifold in Am, its codimension is understood as a difference between the
dimension of Jetmm+r−1 and the dimension of {f0}m+r−1Diffr as a manifold.
The dimension of the orbit {f0}m+r−1Diffr of {f0}m+r−1 ∈ Jetmm+r−1 under
the action of the group Diffr is equal to the difference between the dimension
of the group Diffr and the the dimension of the stabilizer of the element
{f0}m+r−1 under the action of the group. The dimension of the stabilizer is
equal to the dimension of the kernel of the derivative of the evaluation map
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induced by the group action. To carry out this program we fix {f}m+r−1 ∈
Jetmm+r−1 and consider the evaluation map

ev{f}m+r−1 : Diffr −→ Jetmm+r−1

given by the action:

ev{f}m+r−1(φ) = {f}m+r−1φ.

Note that id ∈ Diffr maps to {f}m+r−1 under the map ev{f}m+r−1 . Taking
the derivative of ev{f}m+r−1 at id ∈ Diffr gives us

Didev{f}m+r−1 : TidDiffr −→ T{f}m+r−1Jet
m
m+r−1

Since Jetmm+r−1 is a linear space, its tangent space at every point can be
canonically identified with itself. The tangent space to Diffr at id is identi-
fied with V Jet1r. In coordinates we view jets as truncated Taylor series, i.e.
certain sums of homogeneous polynomials and the map

Didev{f}m+r−1 : V Jet1r −→ Jetmr+m−1

writes out as

P∂x +Q∂y 7→ P{fx}m+r−2 +Q{fy}m+r−2.

The Lie subalgebra Ker(Didev{f}m+r−1) of V Jet1r is tangent to the stabilizer

Stab{f}m+r−1 := {g ∈ Diffr|{f}m+r−1φ = {f}m+r−1}

of the element {f}m+r−1. This allows us to compute the dimension of the
stabilizer via the dimension of this Lie subalgebra and once we know the di-
mension of a stabilizer of an element this allows us to compute the dimension
and therefore the codimension of the orbit of the element.

Lemma 18. Let 1 ≤ r ≤ max(1,m − 3) and consider the jet {f0}m+r−1 ∈
Jetmm+r−1 of the function f0 = Re(x + iy)m. Let Diffr act on Jetmm+r−1 as
above. Then
Ker(Didev{f0}m+r−1) = 1 for m = 2 and
Ker(Didev{f0}m+r−1) = 0 for m > 2.



92 CHAPTER 6. APPLICATIONS

Proof. Let P = P1∂x + P2∂y ∈ Ker(Didev{f0}m+r−1) that is

P1{f0x}m+r−2 + P2{f0y}m+r−2 = 0. (6.4)

We use the complex notation of Section 5.1 to view P as

P1 + iP2 ∈ Hom? ×Hom? = HomC

and say that Equation (6.4) is equivalent to

RePzm−1 = 0.

We write P as a sum of homogeneous polynomials Pk ∈ Homk × Homk as
follows: P = Σr

k=1Pk. This brings the last equation to the form

RePkz
m−1 = 0 (6.5)

for all k = 1, ..., r. Let us take up some k from this range and express Pk in
terms of the basis {zj z̄k−j}j=0,1,...,k for Homk ×Homk as C-linear space:

Pk = Σk
i=0ajz

j z̄k−j,

aj ∈ C. We compute:

RePkz
m−1 = Σk

j=0Reajz
j+m−1z̄k−j = Σk

j=0(x2 + y2)qReajz
p,

where q = k − j ≥ 0 and

p = (j+m−1)−(k−j) = m−k+2j−1 ≥ m−r−1 = m−1−max(1,m−3) ≥ 0.

Assume that m = 2. Then r = k = 1. So the Equation (6.5) transforms
to

(x2 + y2)Rea0 +Rea1z
2 = 0,

or writing a1 = a+ ib, for a, b ∈ R, to

(x2 + y2)Rea0 + a(x2 − y2)− 2bxy = 0,

which immediately leads to the solution space a = b = 0, a0 ∈ iR of dimension
1, so for m = 2 we get Ker(Didevf0m+r−1

) = 1.
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Assume now that m > 2. Then p ≥ m − 1 − max(1,m − 3) > 0. So
p is strictly(!) positive. We write aj = aj1 + iaj2, with this Equation (6.5)
becomes

Σk
j=0(x2 + y2)q(a1jRe(x+ iy)p − a2jIm(x+ iy)p) = 0.

With the notation for the irreducible representations for the ρ-action of S1

(see (5.7)) we have

(x2 + y2)q(a1jRe(x+ iy)p − a2jIm(x+ iy)p) ∈ Irrqm+k−1.

As a check for the lower m + k − 1 in Irrqm+k−1 we compute: 2q + p =
2(k− j) +m−k+ 2j−1 = m+k−1. Since irreducible representations form
a direct sum, we get

(a1jRe(x+ iy)p − a2jIm(x+ iy)p) = 0

for all j = 0, ..., k. Fix some j form this range. The last equation asks a
homogeneous polynomial of order p > 0 to vanish. The xp coefficient of this
polynomial is equal to a1j, so we get a1j = 0 and hence a2jIm(x+ iy)p = 0,
i.e. a2j = 0. So for m > 2 we get Ker(Didev{f0}k+m−1

) = 0.�

The following is an immediate corollary

Lemma 19. Let 1 ≤ r ≤ max(1,m − 3) and {f0}m+r−1 ∈ Jetmm+r−1. Con-
sider Diffr acting on Jetmm+r−1 as above. Then dimStab{f0}m+r−1 = 1 for
m = 2 and dimStab{f0}m+r−1 = 0 for m > 2.

This allows us to finish the computation:

codim({f0}m+r−1Diffr) = dimJetmm+r−1 − dim({f0}m+r−1Diffr) =

= dimJetmm+r−1 − dimDiffr + dimStab{f0}m+r−1 .

It easy to compute that

dimJetmm+r−1 = Σj=m+r−1
m (j+1) = Σj=m+r

m+1 j =
1

2
[(r+m)(r+m+1)−m(m+1)]

and

dimDiffr = dimV Jet1r = 2Σr
j=1(j + 1) = (r + 1)(r + 2)− 2 = r(r + 3).

This gives us the following
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Proposition 16. Let s(m) denote 0 for m > 2 and 1 for m = 2. Then
under the conditions of Lemma 19 we have the following formula

codim({f0}m+r−1Diffr) =

=
1

2
[(r +m)(r +m+ 1)−m(m+ 1)]− r(r + 3) + s(m) (6.6)

Now we use this proposition to compute some interesting partial cases.
For m = 2 (and then r = 1, s(m) = 1) we have

codim({f0}m+r−1Diffr) =
1

2
[(1 + 2)(1 + 2 + 1)− 2(2 + 1)]− 4 + 1 = 0.

For m = 3, 4 (and then r = 1, s(m) = 0) we have

codim({f0}m+r−1Diffr) =
1

2
[(1+m)(2+m)−m(m+1)]−4 = (m+1)−4 = m−3.

For m = 5 and r = 1 (and then s(m) = 0) we have

codim({f0}5Diff1) =
1

2
[(1 + 5)(1 + 5 + 1)− 5(5 + 1)]− 1(1 + 3) = 2.

For m ≥ 4 and r = max(1,m− 3) = m− 3 (and then s(m) = 0) we have

codim({f0}m+r−1Diffr) =
1

2
[(2m− 3)(2m− 2)−m(m+ 1)]− (m− 3)m =

=
1

2
(m2 − 5m+ 6) =

1

2
(m− 2)(m− 3).

Note that the last formula also makes sense for m = 3, 4 and gives correct
numbers for these values of m. Altogether we have just proved the following

Proposition 17. For m ≥ 2 and r = max(1,m− 3) we have

codim({f0}m+r−1Diffr) =
1

2
(m− 2)(m− 3).

For m = 5 and r = 1 we have

codim({f0}5Diff1) = 2.
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Now we use this proposition to deduce the following

Proposition 18. Set j0 := {Re(x + iy)5}6 ∈ Jet56. Then there exists a jet
j ∈ Jet56 arbitrarily close to j0, such that the projection of j − j0 ∈ Jet56 to
Jet55 vanishes (that is j0 and j have the same leading terms) and j /∈ j0Diff2.

Proof. Assume by contradiction that all the jets in some neighbourhood U
of j0 in Jet56 with the same leading term as j0 were on the orbit j0Diff2 of
j0 under the action of Diff2. Let the projection of j0 to Jet55 be denoted
by j05 Let the affine subspace of Jet56 consisting of jets j with leading term
{f0}5 by denoted by L. By our assumption

L ∩ U ⊂ j0Diff2.

Therefore
(L ∩ U)Diff2 ⊂ j0Diff2.

Consider the direct sum decomposition

Jet56 = Jet55 ⊕ Jet66.

The tangent space Tj0((L∩U)Diff2) to (L∩U)Diff2 at j0 can be canonically
identified with Jet56 and contains both Jet66 and Tj05(j05Diff1) and therefore
their direct sum, altogether

Tj05(j05Diff1)⊕ Jet66 ⊂ Tj0((L ∩ U)Diff2) ⊂ Tj0(j0Diff2) ⊂ Jet55 ⊕ Jet66.

On the one hand this implies that the codimension of j0Diff2 in Jet56, is
less or equal than the codimension of j05Diff1 in Jet55 and the latter was
computed in Proposition 17 to be equal to 2. On the other hand, the codi-
mension of j0Diff2 in Jet56 can be computed using the first half of the same
proposition to be equal to 3. This is a contradiction. �

As a corollary we get the following

Theorem 29. There exists a smooth function f̃ on R2 arbitrarily C∞ close
to f0 = Re(x+ iy)5 with the properties
1) The leading term of the Taylor expansion of the function f̃ at (0, 0) is
Re(x+ iy)5.
2) The function f̃ is not equivalent to f0 under any coordinate change in any
open neighbourhood of (0, 0). In the language of germs: the germ {f̃} of the
function f̃ does not lie on the orbit of the germ {f0} of the function f0 under
the action of the group Diff .
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Proof. We write the jet j (see Proposition 18) in coordinates (x, y) as a
truncated Taylor series: f0 + f1, where f1 is a homogeneous polynomial in
(x, y) of order 6. We take the function f̃ to be equal to f0 +σf1 on R2, where
σ is cut-off function, which is constantly 1 in some fixed small neighbourhood
of (0, 0) and vanishes outside the unit ball in R2. Then clearly {f̃}6 = j. Now
f̃ is C∞ close to f0 = Re(x + iy)5 because j is close to j0 in Jet56. Property
1) is satisfied by construction. Property 2) follows from Proposition 18 and
Theorem 28.�

Morally speaking Theorem 28 allows us to reduce the question of having
a nice normal form near a critical point to working with a finite dimensional
representation of a finite dimensional Lie group. Moreover, as we have just
seen, certain codimension computations in this finite dimensional space lead
to existence results on the level of smooth functions. This motivates the
following definition.

Definition 29. Let m ≥ 2 and consider the action of Diff on GAm. Con-
sider the function f0 = Re(x + iy)m. The codimension of the orbit of the
germ {f0} of f0 in GAm under the action of the group Diff is defined to be
the codimension of the orbit of {f0}m+r−1 in Jetmm+r−1 under the action of
the group Diffr for r = max(1,m− 3).

With this definition we can rewrite Proposition 18 as follows:

Theorem 30. Let m ≥ 2, f0 = Re(x + iy)m and consider the action of
Diff on GAm. Then the codimension of {f0}Diff in GC∞(R2)(0,0) is equal
to 1

2
(m− 2)(m− 3).

We close this section by recalling the number L(m) = 1
2
(m − 2)(m − 3)

from the end of Section 5.2 and leaving it for the reader to think about the
miraculous coincidence that occurred.

6.2 Characterization of intrinsically harmonic

1-forms on surfaces.

Since we already have from see Chapter 3 a characterization of intrinsically
harmonic 1-forms as those which are simultaneously transitive and locally
intrinsically harmonic, we concentrate on local intrinsic harmonicity here.
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Since we are allowing the zeros of our 1-form to be of arbitrary order, the
characterization of local intrinsic harmonicity stops being “topological” and
becomes “smooth”. As we already mentioned in the introduction, the answer
to the question whether or not a given closed 1-form on a surface of genus
g is locally intrinsically harmonic near its zero p starts depending on higher
order terms in the Taylor expansion of ω near p. The main consequence of
the previous section (in fact the previous chapter) is that we will be able
to say how many terms at most we have to control in order to ensure local
intrinsic harmonicity. The upper bound is given in terms of the genus g of
the underlying Riemann surface.

Let ω be a locally intrinsically harmonic 1-form on a connected oriented
surface Σg of genus g ≥ 2. Then ω has isolated zeros and near every zero pj
it looks like dRe(x + iy)mj . We say that ω has degree dj = mj − 1 near pj.
The index of ω at pj (as a section of the cotangent bundle) is equal to −pj.
So, by the Poincare-Hopf Theorem the sum of all of the dj is equal to 2g−2,
which gives an obvious upper bound of 2g − 2 for the value of dj. We now
perform a Morse-theoretic trick, which allows us to give a twice better upper
bound: g−1. We approximate ω by a closed Morse form ω̃, which foliates Σg

by closed (singular and nonsingular) leaves. Zeros of ω̃ all have Morse index
1, some of them being connecting, some disconnecting. Clearly, the number
of connecting zeros must be equal to the number of disconnecting, i.e. g− 1.
This has the following implications for the zeros of ω. The zero set S of ω
can be decomposed as a disjoint union S = P ∪̇Q, where P = {pj}j=1,...,kP ,
Q = {qi}i=1,...,kQ . Let dpj denote the degree of pj and dqi denote the degree of
qi. Under the perturbation ω → ω̃ the set P gives rise to connecting zeros
of ω̃, Q — to disconnecting. Therefore, the degrees of zeros of ω satisfy the
following relation: dp1 + ... + dpkP = dq1 + ... + dqkQ = g − 1. Now we give a
characterization for local intrinsic harmonicity for closed 1-forms on surfaces.
The proof of it follows from the discussion above and Theorem 28.

Theorem 31. A closed 1-form ω on Σg is locally intrinsically harmonic if
and only if it has isolated zeros p1, ..., pKP , q1, ..., qKQ with the positive integers
dp1, ..., d

p
KP
, dq1, ..., d

q
KQ

being the corresponding orders such that the following
holds true:
(i) dp1 + ...+ dpkP = dq1 + ...+ dqkQ = g − 1.

(ii)Near every zero of ω the jet (at this zero) {f}m+r−1 ∈ Jetmm+r−1 of
the local primitive function f of ω lies on the orbit {f0}m+r−1Diffr of the
jet {f0}m+r−1 ∈ Jetmm+r−1 under the action of the group Diffr for r =
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max(1,m− 3).

Note that by (i) the order m+r−1 of the jet space Jetmm+r−1 has a definite
upper bound. Indeed, near a zero p(q)j the order mj of the local primitive

function f of ω satisfies: mj = d
p(q)
j + 1, hence mj − 1 = d

p(q)
j ≤ g − 1, so

mj ≤ g and mj+r−1 ≤ g−1+max(1, g−3) = max(g, 2g−4). Moreover, we
can give an upper bound on the codimension of the orbit {f0}mj+r−1Diffr
in Jetmmj+r−1. By Proposition 17 that is 1

2
(g − 2)(g − 3).

6.3 An example.

Example 4. Consider the cobordism C = (W,V = S1, V ′ = ∪5
j=1S

1), that
is S1 is cobordant to the disjoint union of five S1’s via W , where W is
the surface of genus zero with boundary 6 components. Take the function
f0 = Re(x+ iy)5 on R2. Using this function as a local model for an isolated
singularity it is possible to construct a function f on the cobordism C which
has a unique critical point p and near p it looks like f0. Moreover f |V = −1,
f |V ′ = 1. By doubling the cobordism along V ′ we obtain a cobordism of S1

to S1 and after gluing these S1’s we obtain the surface Σ5. The form df on
W gives rise to a closed form ω on Σ5 with two critical points p and p′ where
it looks like df0 and −df0 respectively. Note that whereas df is exact on W ,
the form ω it gives rise to on Σ5 is not exact. Clearly, the form ω is transitive
and locally intrinsically harmonic and hence harmonic. We perturb ω near
p to give ω̃ by perturbing the local model f0 near (0, 0) to f̃ . The form ω̃
so constructed is C∞ close to ω, has the same zeros and the same principle
parts at zeros. But ω̃ is not locally intrinsically harmonic and therefore not
harmonic.

Philosophically speaking, this example shows two things happening if we
allow closed 1-forms with isolated zeros of finite order instead of just Morse
forms: intrinsic harmonicity can not be detected by topological tools, and
openness of the set of intrinsically harmonic 1-forms fails.

A recent result by M. Farber and D. Schütz (cf. [8]) stating that in any
nonzero cohomology class ξ ∈ H1(M,R) there always exists a closed 1-form
ω having at most one zero motivates the second example. Consider such a
1-form on the oriented surface Σg of genus g. In this case it is clear that ω is
not intrinsically harmonic, since otherwise by Theorem 31 it would have at
least two zeros, contradicting the construction of ω.
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6.4 Concluding remarks.

This section addresses possible “what is next?” questions.
Chapter 3 suggests to try to decide the question of intrinsic harmonicity

in concrete examples. The form constructed by M. Farber and D. Schütz in
[8] seems to be challenging if one looks at it on manifolds of dimensions higher
than two. The following consideration illustrates the possible complexity of
its behavior. Let M be an odd-dimensional manifold and ξ ∈ H1(M,Q) a
rational cohomology class. Assume furthermore, that M does not fiber over
the circle. Let ω be a closed 1-form representing ξ with at most one zero. Let
this zero be denoted by p. We take a small ball B around p and consider the
primitive function f : B −→ R for ω in this ball: df = ω|B. This function
displays a complicated behavior near its critical point p. Let X be a vector
field dual to df with respect to some Riemannian metric. By the Poincaré-
Hopf Theorem the index of X at p is equal to zero. But it is not possible
to construct a function f̃ : B −→ R being equal to f near ∂B and without
critical points. Indeed, that would give us a closed 1-form ω̃ on M without
zeros representing the same cohomology class as ω, i.e. [ω̃] = ξ . But the
class ξ is rational so M fibers over the circle contradicting our assumption.

Chapter 4 leaves open the following question. Let M0,n denote the sub-
space of Morse forms without zeros of index 0 or n. Is it true that the
intersection of the interior IntT̄ of the set T̄ of nontransitive forms with
M0,n is nonempty? On manifolds for which the answer to this question is
negative Theorem 22 — the main theorem of Chapter 4 is empty (meaning
trivially true). So it seems interesting to find a large class of manifolds where
the answer to the question is positive. So far we know two examples with the
positive answer to this question — these are the examples from Section 4.5
Potential examples of manifolds on which the answer is negative look exotic
and counterintuitive. So it is interesting to find one.

Chapter 5 contains to main theorems — Theorem 25 and Theorem 27.
The second one raises the obvious question: can we improve 4gh from being
exponentially small to being exactly zero? Concerning Theorem 25, one
would like to have some analogs in higher dimensions. So what about a
function f = f0 +h.o. defined on an open ball around the origin in Rn? Here
f0 is a homogeneous polynomial of order m, which is harmonic with respect
to the standard metric on Rn and h.o. stands for the terms of higher order.
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Chapter 7

Appendix

Lemma 20. Consider the following smooth function on BR(0) ⊂ Rn:
f0(x1, ..., xn) = −x2

1 − ... − xλ + x2
λ+1 + ... + x2

n. Then there exists a C2-
open neighbourhood U of f0 in the space of smooth functions, such that every
f̃ ∈ U can be brought to the canonical Morse form with λ minus signs in
it, throughout BR/2(0) by a smooth change of coordinates. Moreover, the
diffeomorphism which brings one set of coordinates to the other is close to
the identity.

Proof. We closely follow Milnor cf. [15]. Let δ be a positive real number and
consider all smooth functions f̃ on BR(0) with ||f̃−f0||C2 < δ. Fix a smooth
function χ : Rn −→ R with the following cut-off properties: χ|BR/2(0) = 1,

χ|Rn\BR(0) = 0. The function f = f0 + χ(f̃ − f0) is a real valued function

defined on the whole of Rn. Moreover, the function f coincides f̃ in BR/2(0).

Note that f inherits nice properties of f̃ , namely for any ε > 0 we can choose
δ to be so small that ||f−f0||C2 < ε, but the advantage is that both f0 and f
are defined on the whole of Rn. Another nice (although not necessary for us)
remark is that (f−f0)|Rn\BR(0) = 0. By taking δ small enough we can achieve
that there exists a unique critical point a of the function f and a is close to the
origin. We set ca := f(a) and y = x−a (expressions like x and y are shortcuts
for (x1, ..., xn), (y1, ..., yn) etc). The function f can now be expressed in the
following form: f(x) = ca + k(y), where k(y) = Σn

i,j=1yiyjhij(y), where the
matrices {hij(y)}i,j=1,...,n are symmetric and the map producing hij out of f
is continuous if we equip the domain with the C2 topology and the target
with the the C1 topology. In particular |hij − (±1)δij| is C1 small provided
δ is small enough. Here ± should be taken as a minus if i ≤ λ and as a plus

101
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otherwise, δij is the usual Kronecker delta. The smallness of |hij − (±)δij|
guarantees that the Morse index of f at a coincides with λ — the Morse
index of f0 at 0.

Suppose by induction that there exist coordinates u1, ..., un in Rn so that

k = ±u2
1 ± u2

2 ± ...± u2
r−1 + Σi,j≥ruiujHij(u)

throughout Rn, where the matrices {Hij(u)}i,j=1,...,n are symmetric and |Hij−
(±1)δij| is C1 small. Here ± should be taken as a minus if i ≤ λ and as
a plus otherwise. Moreover the diffeomorphism taking y coordinates to u
coordinates is close to identity. Let g(u) denote the square root of |Hrr(u)|.
This will be a smooth non-zero function throughout Rn. Now we introduce
new coordinates v by vi = ui for i 6= r and

vr(u) = g(u)[ur + Σi>ruiHir(u)/Hrr(u)].

Since the smooth map producing v out of u does not have critical points,
and moreover the norm of the inverse of the derivative is bounded, the global
inverse function theorem by Hadamard cf. [13] Theorem 6.2.4. page 125 (see
also [9] and [10]) applies to guarantee that v1, ..., vn will serve as coordinate
functions within Rn. It is easily verified that k can be expressed as

k = Σi≤r(±)v2
i + Σi,j>rvivjH

′

ij(v)

throughout Rn, where

H
′
(v) = Hij(u) +

Hri(u)Hrj(u)

Hrr(u)
.

Therefore the matrices {H ′ij(v)}i,j=1,...,n are symmetric, |H ′ij − (±1)δij| is C1

small and the diffeomorphism taking u coordinates to v coordinates is close
to identity. This completes the induction step. Therefore f can be brought
to the canonical form on the whole of Rn. Recall that f coincides with f̃ on
BR/2(0).�
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[8] M. Farber, D. Schütz, Closed 1-forms with at most one zero, Topology
45(2006) pp. 465-473.

[9] J. Hadamard, Sur les transformations planes, Comptes Rendus des
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