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Brief Description 

 

The increased incidence of psychiatric disorders, such as anxiety disorders and 

depression, makes a strengthened search of genetic and environmental causal 

factors essential. Besides clinical studies, the broad preclinical research identifies 

continuously involved neuronal circuits, proteins, and genes representing new 

candidates in the progress of pharmacological research and the development of new 

therapies. 

In this context, an animal model of extremes in trait anxiety, simulating pathologic 

anxiety, was generated to investigate the neuronal and genetic basis. Thus, CD1 

mice selectively and bi-directionally inbred concerning their anxiety-related behavior 

form two lines, the high (HAB) and the low (LAB) anxiety-related behavior mice. The 

two lines display, after 24 generations, robust differences in trait anxiety and, 

additionally, in depression-like behavior, reflecting the clinical comorbidity of anxiety 

and depression, both of which are potentially based on a few selected genes in the 

two lines. The peptide arginine-vasopressin (AVP) is one factor found to be 

differentially expressed between the two mouse lines. In the present manuscript its 

involvement in the behavioral phenotype is scrutinized. 

As the antidiuretic hormone, AVP expressed in the hypothalamic paraventricular 

nucleus (PVN) and the supraoptic nucleus is well known to regulate peripherally the 

body water balance. Therefore, the physiological consequence of the differences in 

Avp expression was analyzed, uncovering signs of central diabetes insipidus in LAB 

mice, an AVP deficit-related disease in humans. Symptoms also seen in LAB mice 

are increased daily fluid intake and high amounts of highly diluted urine as a result of 

the inability to secrete enough AVP in the blood circulation. 

Besides the antidiuretic function, AVP of the PVN is potentially involved in 

emotionality-related behaviors and further in the regulation of the hypothalamo-

pituitary-adrenocortical axis, the neuroendocrine stress response. Thus, the 

peripherally observable strong deficit in AVP might also be present in the brain of 

LAB mice, causing a dysregulation of anxiety-related behavior in these animals. 

Indeed, the less anxious LAB mice exhibit less releasable AVP in the PVN compared 

to HAB and “normal” CD1 mice, supporting the role of AVP as a crucial regulatory 

factor of emotionality 
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Besides the genetic predisposition, environmental factors, especially maternal and 

social interactions after birth, display a significant parameter in shaping the 

genetically given behavioral traits in emotionality. Therefore, we tested the maternal 

rearing behavior of HAB and LAB dams for differences possibly involved in the 

development of the two phenotypes. As dams of the two lines differ in their nursing 

style with LAB mothers showing less arched back nursing, a posture associated with 

the quality of maternal investment, we cross-fostered pups of the two lines to quantify 

the maternal influence on the anxiety- and stress-related phenotype of HAB and LAB 

mice. As we found just slight shifts in some parameters still within the range of the 

HAB and LAB phenotype, the two breeding lines can be defined as mainly genetically 

distinct, providing a beneficial tool to identify genes responsible for pathologic 

alterations in human diseases. 
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1  Introduction 

 

Anxiety and affective disorders are a growing social and economic burden, not only in 

the developed countries, but increasingly also in the less developed parts of the 

world. Thus, lifetime prevalence in Europe and the USA for mood disorders have 

risen in the past decade from 14.0% to 20.8% and for anxiety disorders from 13.6% 

to 28.8% with a twofold higher risk in women than in men (Alonso et al., 2004b; 

Kessler et al., 2005a). Consequences are not only a loss of mental and physical 

quality of life, but also a high economic burden as a result of a three to four times 

higher loss of working days of people suffering from psychiatric disorders compared 

to people without a mental disorder (Alonso et al., 2004c). Moreover, the “Global 

Burden of Disease Study” of the “World Health Organization” of 1990 ranks unipolar 

depression as the fourth leading cause of disability-adjusted life-years (Ustun et al., 

2004) with a prediction of a change to rank two in the year 2020 (Lopez and Murray, 

1998). This resulted in 1990 in total costs of 77.4 billion US-dollars with an increase 

to 83.1 billion US-dollars in 2000 and, astoundingly, with just one third as direct costs 

for the treatment of the patients (Greenberg et al., 2003). Despite the high social and 

economic burden, and finally personal suffering, only half of the patients with a 

serious disorder and around 25% of mild mental disorder patients receive adequate 

treatment (Demyttenaere et al., 2004; Kessler et al., 2005b). Reasons may be the still 

widespread social rejection of mental disorders and partly faulty diagnostics.  

Affective disorders including major depression, mania and bipolar (manic-depressive) 

disorder show a high comorbidity with anxiety disorders, especially with generalized 

anxiety disorder (33.7%), panic disorder (29.4%), agoraphobia (25.8%), and post-

traumatic stress disorder (20.7%) (Alonso et al., 2004a), whereas the risk of 

depression in patients suffering from an anxiety disorder is higher than the other way 

round (Hettema et al., 2006). Patients suffering from major depression exhibit not 

only depressed mood but also irritability, low self esteem, hopelessness, guilt, 

decreased ability to concentrate, insomnia or hypersomnia, decreased interest in 

pleasurable stimuli, and finally thoughts of death (Nestler et al., 2002). Manic 

episodes in contrast are defined by increased activity and talkativeness, agitation, 

overestimation, increased distractibility, and flight of ideas. Moreover, in 15% of 

cases the depression leads to suicide (Hegerl and Rupprecht, 2006). In anxiety 

disorders, patients show increased and extended anxiety or fear over a longer 
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period. On the one hand, the anxiety can be unspecific as in panic disorder 

characterized by a sudden feeling of intense terror; on the other hand, it can be 

related to special subjects or situations as in phobias, leading to avoidance behavior. 

Both result in symptoms of palpitation, sweating, trembling, shortness of breath, 

blushing, or chills (Alpers et al., 2006). Initiating events can be severe traumatic 

experiences, such as loss of a loved person, but also chronic private or work-related 

stress. The loss of close family-structures, which can alleviate these difficult periods 

in life, and the anonymity of the modern cities support the increase in psychiatric 

disorders. Thus, socio-demographic parameters of different studies show that the life- 

and environmental situations can influence the development of affective and anxiety 

disorders, as the prevalence of unmarried, unemployed, disabled or people living in 

large cities is higher than in the other groups (Alonso et al., 2004a, b; Kessler et al., 

2005a). But, on the other hand, there is also a high genetic predisposition to develop 

anxiety and affective disorders, as not everybody exposed to chronic stress or a 

traumatic event develops symptoms of anxiety and depression and vice versa. In this 

context, family studies show a three-fold higher risk to develop depression and a 

three- to five-fold higher risk to develop anxiety disorders in first-degree relatives of 

patients suffering from these disorders (Lieb, 2005; Merikangas and Low, 2005; 

Smoller and Finn, 2003). Thus, the genetic risk of developing an anxiety disorder is 

around 30-40% and for depression 40-50% (Hegerl and Rupprecht, 2006; Nestler et 

al., 2002), also revealed in broad twin studies (Merikangas and Low, 2005; Smoller 

and Finn, 2003). 

In the last decades the knowledge about a genetic basis and further the association 

of mental disorders with first candidate genes changed the idea of a miraculous or 

religious reason to a biological and neuroscientific founded cause of psychiatric 

diseases and in parallel the way of treatment. Although already the Arabic-Islamic 

culture kept elaborated facilities to care for their mentally disturbed and similar 

facilities were also established in Spain in the second part of the medieval times, the 

history of psychiatry in Europe of the last 5 centuries is singed by the highhanded 

confinement of mentally disordered people combined with permanent restraint or 

tranquilization. In the beginning of the 19th century, psychiatry was established as a 

medical field dissociated from a religious and demonic context, and it gradually 

embraced a neurological background. Proceedings in the research of neuroanatomy 

by Franz Nissl, Ramón y Cajal, Camillo Golgi and Korbinian Brodmann together with 
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his new system to classify psychiatric diseases allowed Emil Kraepelin to combine 

biological and clinical methodology and thereby to start a new era in psychiatry in the 

beginning of the 20th century (Schott and Tölle, 2006). With the introduction of the 

psychoanalysis by Sigmund Freud in the first half of the 20th century and the 

development of the first psychotropics in the 1950s, the psychiatry took a big step 

forward in the treatment of mental disorders (Laux et al., 2000; Schott and Tölle, 

2006; Wong and Licinio, 2001). However, despite the progressive and successful 

development of new and more effective substances in the last 50 years, the delayed 

therapeutic effectiveness, high side effects of all pharmaceuticals, and finally 

complete remission in only 50% of all patients demonstrate the small knowledge 

about the underpinning neurobiological mechanisms (Nestler et al., 2002). Thus, it is 

necessary to analyze in detail the underlying neuronal circuits to find more specific 

treatments with less adverse effects. 

 

1.1 Neuroendocrine Background of the Stress Response 

 

Fear is a basic mechanism, which presumably evolved in order to allow an organism 

to react quickly to threatening situations, to protect the body from injuries, to maintain 

a physiological homeostasis, and ultimately to save the organism’s life. Interfering 

factors, called stressors, are intrinsic or extrinsic forces disturbing the physiological 

equilibrium of the body (homeostasis) (Tsigos and Chrousos, 2002). Stressors can 

be real threats, such as decreased blood pressure due to an injury or increased 

plasma osmolality after diminished fluid intake mediated by systemic mechanisms 

such as visceral and somatic pain, humoral inflammatory signals or baro- and 

osmoreceptors. Further, situations including confrontation with predators or new 

environments can be realized innately or by learning as life threatening. These 

predicted stressors are mainly processed by limbic structures (Engelmann et al., 

2004). In case of a dangerous situation, the organism reacts with a non-specific 

startle response followed by a specific fight or flight behavior to diminish or avoid the 

stressor (Engelmann et al., 2004). 

In the presence of a life-threatening stressor, the stress response system answers 

immediately with an activation of the autonomous nervous system to prepare the 

body for a fast and active reaction to avoid the stressor. Both the sympathetic and 

parasympathetic system regulate an increase in blood pressure, heart and 
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respiratory rate, gluconeogenesis, and lipolysis to provide the body with the required 

oxygen and nutrients (Charmandari et al., 2005). Thereby, a central role is assumed 

by the sympathetic-adrenomedullary system (SAS), where finally epinephrine and 

norepinephrine are released from the 

adrenal medulla into blood circulation to 

increase the necessary metabolic activities. 

Besides its peripheral function 

norepinephrine is also released centrally 

from neurons of the locus coeruleus (LC) 

interacting among others with amygdala 

and hypothalamus to influence behaviors 

accompanying increased activation of the 

autonomic and 

neuroendocrine stress 

response, such as 

increased arousal, 

alertness, and attention 

or inhibition of appetite, 

feeding, and reproductive 

behavior (Charmandari et al., 2005; Tsigos and Chrousos, 2002).  

Secondarily, with a higher latency and also during more severe, long-lasting, and 

predicted stressors, the hypothalamo-pituitary-adrenocortical (HPA) axis is activated 

by the release of corticotropin-releasing hormone (CRH), a 41-amino-acid peptide, 

from parvocellular neurons of the hypothalamic paraventricular nucleus (PVN). CRH 

is secreted from axonal terminals in the Zona externa of the median eminence into 

the hypophysial portal system. Furthermore, the co-segregated nonapeptide arginine-

vasopressin (AVP) potentiates the effect of CRH. Both, CRH and AVP activate the 

Fig. 1. The stress response. 
A, Overview of the brain 
areas involved in 
emotionality and stress 
response.   B, HPA axis and 
SAS effect the release of 
glucocorticoides and 
norepinephrine / 
epinephrine, respectively, to 
prepare the body for the 
stress response. 

A 

B 
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secretion of adrenocorticotropic hormone (ACTH) from the corticotrope cells of the 

anterior pituitary into blood circulation (Carrasco and Van de Kar, 2003; Engelmann 

et al., 2004). The two peptides operate at the secretory cells via CRH receptor 1 

(CRH R1) and AVP receptor 1b (V1b) thereby activating second messenger 

pathways resulting both in an increased synthesis of the ACTH precursor 

(proopiomelanocortin = POMC) gene, and an increased secretion of ACTH itself. 

Both receptors are composed of seven transmembrane domains and are G-protein-

coupled with a following adenylyl cyclase-responsible increase in cAMP activating 

protein kinase A after binding of CRH and an activation of the phosphatidylinositol 

pathway leading to increased protein kinase C activity after binding of AVP (Klinke 

and Silbernagl, 2001). The main target of ACTH is the adrenal cortex, where it 

stimulates the synthesis and secretion of glucocorticoids from the Zona fasciculata. 

The glucocorticoids cortisol (main glucocorticoid in humans, 95%) and corticosterone 

(main glucocorticoid in mice, 95%) increase metabolic activities, such as 

gluconeogenesis and lipolysis to increase the plasma glucose level, inhibit 

inflammatory and immune responses, and influence paracrinely the synthesis of 

epinephrine. Finally, they regulate both the basal HPA axis activity and terminate the 

stress response via a negative feedback-loop to reestablish and maintain the 

organisms homeostasis (Engelmann et al., 2004). Thereby, corticosterone/cortisol 

binds on glucocorticoid (GR) and mineralocorticoid (MR) receptors at the level of the 

pituitary, the hypothalamus, and the hippocampus to influence the release of CRH 

and ACTH. MRs, exhibiting a higher affinity for glucocorticoids, respond mainly to 

basal concentrations, maintaining a basal HPA axis activation level, whereas the 

GRs are activated at higher, stress-related glucocorticoid levels, mediating the 

negative feedback (Carrasco and Van de Kar, 2003; Charmandari et al., 2005; Klinke 

and Silbernagl, 2001).  

Besides the parvocellular neurons, the PVN contains AVP and oxytocin (OXT) 

expressing magnocellular neurons projecting to the neurohypophysis (HNS = 

hypothalamic-neurohypophysial system). There they secrete AVP and OXT directly 

from axonal terminals into the blood circulation. The secretion of AVP by the HNS is 

required for the maintenance of a physiological plasma osmolality as it regulates the 

water reuptake from the primary urine at the level of the renal collection ducts. OXT 

regulates the contraction of uterus muscles at parturition and is involved in the milk 

injection reflex. Further, also the magnocellular neurons of the supraoptic nucleus 
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(SON) contribute to the AVP and OXT secretion of the HNS (Burbach et al., 2001; 

Swaab, 1998). In case of a stress response, the HNS is also involved in the 

activation of the HPA axis by the release of AVP and OXT locally from dendrites and 

somata of magnocellular PVN neurons modulating the activity of parvocellular PVN 

neurons. Additionally, AVP and OXT influence the secretion of ACTH en passant 

from axons at the 

level of the 

median eminence 

secreted in the 

portal vessel or 

from axonal 

terminals secreted 

into the general 

circulation 

reaching the 

posterior pituitary 

by a short portal 

vessel 

(Engelmann et al., 

2004). 

Besides the PVN, 

activating the HPA 

axis, the stress 

system includes 

several 

interactions with 

other brain areas, 

regulating the 

autonomic and the 

endocrine stress 

response, stress-related behaviors, and cognition. Thus, there is a reciprocal 

interaction between CRH of the PVN and the central norepinephrine system, at which 

the PVN receives norepinephrine and epinephrine input from the nucleus of the 

solitary tract to integrate visceral and somatic sensory information (Herman et al., 

Fig. 2. The two functions of AVP. AVP  released in the portal vessel of the 
adenohypophysis potentiates the effect of CRH in activating the HPA axis. 
Released into blood circulation from the neurohypophysis AVP activates 
water retention in the kidney to maintain physiological plasma volume and 
plasma osmolality. 



Introduction 

7 

2003). On the other hand, the PVN holds CRH connections to the LC involved in the 

autonomic stress response (Tsigos and Chrousos, 2002). Further, the PVN is 

innervated by limbic areas, receiving excitatory glutamatergic and inhibitory 

GABAergic projections from the ventral subiculum, the prefrontal cortex, the 

amygdala, and the lateral septum (LS). Additionally, the GABAergic projections are 

mainly connected to the PVN via projections of the bed nucleus of the stria terminalis 

(BNST) and the peri-PVN region. The PVN also receives excitatory serotonergic 

projections involved in HPA axis activation directly from the raphe nucleus and also 

indirectly by serotonergic innervations of the hippocampus, the prefrontal cortex, and 

the amygdala (Herman et al., 2002; Herman et al., 2003). With regard to a reciprocal 

interaction, the PVN in turn projects directly and indirectly back to these brain 

regions. 

During the last few years, besides the “classic” transmitters glutamate and GABA and 

the peptides AVP and CRH, other neuropeptides, such as substance P, neuropeptide 

Y, and galanine in connection with the equivalent receptors, have been shown to play 

a role in anxiety- and stress-related responses (Holmes et al., 2003) 

 

Finally, when a stressor exceeds a certain threshold in quality and quantity, leading in 

parallel to a chronic disruption of the homeostasis, the adaptive stress response can 

change into a maladaptive state (distress) with harmful and drastic consequences, 

including also alterations on a molecular and genetic level (Charmandari et al., 2005; 

Engelmann et al., 2004). These maladaptive changes in the stress response are the 

neuroendocrine basis of psychiatric disorders, such as anxiety and affective 

disorders. 

 

1.2 Biological Bases and Pharmacological Treatment of Anxiety and Affective 

Disorders 

 

As anxiety and affective disorders are highly comorbit, it is not astonishing that the 

underlying central circuits with the appendant nuclei, neurotransmitters and receptors 

seem to overlap. Nevertheless, the exact interactions and alterations causing mood 

disorders are still slightly understood. 

In consequence of the use of substances, coincidentally found to be effective in the 

treatment of psychiatric disorders, a main focus in research and treatment are the 
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catecholamines dopamine and norepinephrine and the amine neurotransmitter 

serotonin. Synthesized from neurons in the substantia nigra and ventral tegmental 

area (dopamine), the LC (norepinephrine), and the raphe nuclei (serotonin), the 

transmitters are released in several brain areas involved in the modulation of various 

physiological functions and behaviors including attention, sleep-wake cycles, 

information processing, learning and memory, pain, mood, and anxiety (Bear et al., 

2006). The use of psychopharmacological drugs started in 1952 with the discovery of 

the antipsychotic substance Chlorpromazin, a D2 receptor antagonist, used as the 

first neurolepticum. In the same year, the first monoaminoxidase inhibitor (MAO), 

Iproniazid, was implemented, followed in 1957 by Imipramin, a tricyclic 

antidepressant (TCA) (Laux et al., 2000; Nestler et al., 2002). Both show an 

antidepressive effect by increasing the bioactive amount of serotonin and 

norepinephrine. The MAOs inhibit the degrading enzyme monoamineoxidase, 

whereas the TCAs block the reuptake of the transmitter into the cell (Göthert et al., 

1998). In the 1960s, the discovery of the benzodiazepine-tranquilizers, 

Chlordiazepoxide and Diazepam, provided sedative and anxiolytic substances 

multifarious applicable in psychiatric disorders (Laux et al., 2000). Benzodiazepines 

bind on the α-subunit of the GABAA receptors, increasing their inhibitory activity 

(Göthert et al., 1998). In the following years, more specific drugs with fewer adverse 

effects were tried to develop. The selective serotonin reuptake inhibitors (SSRI), the 

serotonin-norpeinephrine reuptake inhibitors (SNRI) and, latest, selective 

norepinephrine reuptake inhibitors (NARI) are expected to be more specific in their 

effect. Nevertheless, although these substances display higher safety concerning 

death by overdose and show higher tolerability (Peretti et al., 2000), they also exhibit 

side effects, like the former substances, including increased appetite, fatigue, 

dizziness, sleep disturbances and agitation, diarrhea, nausea, and sexual 

dysfunctions. Especially the long-term side effects diminish patients’ quality of life by 

impairing familial, social, and professional abilities (Cassano and Fava, 2004), 

leading in 8% of the treated patients to discontinuation of the therapy with 

antidepressants (Laux et al., 2000), anyhow less than caused by TCAs in the case of 

SSRIs (Anderson, 2000). Further, they show a delayed therapeutic effectiveness in 

patients, despite a rapid increase in extracellular serotonin levels upon starting 

treatment. This points not to a direct effect of the transmitter, but rather to changes in 

other neuronal circuits by a long-term elevation of serotonin in the brain (Nestler et 
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al., 2002). Indeed, it has been shown that SSRIs decrease the activity of the HPA 

axis, rather due to an increased glucocorticoid receptor expression in the 

hippocampus that strengthens the negative feedback. However, the effectiveness of 

SSRIs in the treatment of anxiety and affective disorders, paralleled by the influence 

on the HPA axis activity, brought the HPA axis in the researchers’ focus.  

In the recent years, clinical examinations and research showed the HPA axis to be 

involved in the development of anxiety and affective disorders. Thus, patients 

suffering from anxiety and depressive disorders showed a hyperactive HPA axis 

possibly due to increased excitatory input of the hyperactive amygdala or a 

decreased inhibition by the hippocampus. The diminished negative feedback in 

depressed patients has also been shown by the Dexamethason (DEX)/CRH test. 

DEX, a synthetic glucocorticoid, binds the GR at the level of the pituitary, and in 

higher dosages also at the level of the hippocampus, to initiate the negative 

feedback, inhibiting the activation of the HPA axis (Karssen et al., 2005). As healthy 

subjects exhibit a total DEX-related suppression of a CRH-initiated plasma ACTH 

increase, depressed patients show in 60% of all cases an increase in ACTH 

secretion (Heuser et al., 1994; Ising et al., 2005). Furthermore, 60% of patients in a 

major depression episode exhibit not only increased cortisol and ACTH levels but 

also an increase in CRH expression. By contrast, investigations of the HPA axis 

activity in anxiety disorders gave different results. In patients suffering from panic 

disorder, basal and stress-induced cortisol levels were reported to be normal or 

increased depending on the stressor, whereas social and specific phobias induce an 

increased cortisol secretion after stress exposure. Also, DEX-induced cortisol-

nonsuppression was found in some patients suffering from panic disorders and 

generalized anxiety disorder, whereas analyses of CRH concentrations in the liquor 

or expression levels showed inconsistent results. 

Nevertheless, the involvement of the different transmitters as well as CRH and AVP 

on the activity of the HPA axis and the etiology of anxiety and affective disorders still 

deserves further and closer attention. As ethical and moral standards exclude 

humans from most of the genetic, molecular, histological, and pharmacological 

studies because of the need of invasive and manipulative techniques, the use of 

animal models in research is elementary.  

 



Introduction 

10 

1.3 Animal Models of Anxiety and Affective Disorders 

 

To investigate neuronal circuits and their specific alterations causing anxiety and 

affective disorders, animal models play a fundamental role in research. This includes 

genetic approaches by manipulating defined targets or phenotype-based studies, 

simulating behavioral traits of clinical relevance. Both approaches are powerful tools 

and should finally interact and excite each other.  

To simulate anxiety and affective disorders, it is possible to induce anxiety and 

depression-like behavior by exposing mice or rats to chronic social (Haller et al., 

1999; Karolewicz and Paul, 2001), non-social mild stress (Mitra et al., 2005; Willner, 

1997, 2005), or to the learned helplessness paradigm (Seligman and Beagley, 1975; 

Shanks and Anisman, 1993). In contrast to the chronic social stress or the leaned 

helplessness paradigm, in the chronic non-social stress paradigm, the animals can 

habituate to the situation, loosing stress-induced behavioral and neuronal changes. 

However, chronic stress, learned helplessness, or challenging situations, such as 

behavioral tests, reflect only short-term or momentary states of emotionality, more 

vulnerable to environmental conditions and the experimental design. In contrast, 

genetic manipulations or a selectively bred trait is fixed in the animal and therefore 

more usable to identify involved neuronal circuits and genes and vice versa (Belzung 

and Griebel, 2001; Lister, 1990) 

Concerning genetic manipulations, there is a wide range of well-established knockout 

and transgenic mice, concerning clinically already established but also newly 

described transmitter systems. Thus, MAO-A/B-, catechol-O-methyltransferase-, or 

norepinephrine transporter-knockout, leading to an increase in norepinephrine, 

serotonin, and dopamine in the brain, reduces anxiety- and depression-like behavior 

in specific behavioral tests. Further, several serotonin receptor (5-HT1A, 5-HT1B, 5-

HT2C, 5-HT5A) and a serotonin transporter knockout mice exist displaying an altered 

anxiety and depression-like phenotype. Also the GABA system is a target for genetic 

manipulation, affecting several subunits of the GABA receptor. More recently, the 

HPA axis got in the focus of research, generating knockouts and transgenics of CRH, 

the CRH receptors, V1a and V1b, and of GR (Muller and Holsboer, 2006). Also other 

neuropeptide systems, such as substance P and neuropeptide Y, are investigated in 

this context by manipulating genetically their receptors, NK1 and NPYR (Cryan and 

Mombereau, 2004; Finn et al., 2003; Holmes, 2001; Urani et al., 2005).  
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Conventional knockout animals lack the targeted gene product already from early 

development. As a consequence this can lead to unintentional alterations in gene 

expression or peptide synthesis, trying to compensate the lack or other severe or 

lethal developmental dysfunctions. These side effects can distort investigations and 

cause false positive or negative results. To avoid this, the development of conditional 

knockouts, where the lack of the gene product is regional and temporal restricted and 

manageable, provides a successful tool for more precise genetic manipulation 

(Plomin and Crabbe, 2000).  

Nevertheless, though the manipulation of single genes is helpful to trace specific 

circuits and interactions, it is less effective in discovering broad dependencies and 

new, yet unnoticed factors. As anxiety and affective disorders are not based on the 

alteration of a single gene, but on multiple genes of varying but rather small effect 

size, a more global approach is advantageous. Thus, the investigation and 

comparison of inbred mouse strains or selected breeding lines provides an 

opportunity to link different behavioral phenotypes with a genetic background 

(Belzung and Griebel, 2001). Over the last century, the in research commonly used 

mouse (BALB, C57, DBA, A/C etc.) and rat (Fischer, Lewis, Wistar etc.) strains were 

described to be emotionally different. This led to a more focused comparison of the 

different stains in anxiety- and depression-like, exploratory, and cognitive behavior 

(Bouwknecht and Paylor, 2002; Brodkin et al., 1998; Carola et al., 2004; Stohr et al., 

2000; Trullas and Skolnick, 1993). To reveal the underlying genetic patterns of the 

different phenotypic characteristics, genetic mappings or linkage studies, such as 

quantitative trait locus (QTL) mapping, single nucleotide polymorphism screening, 

and microarray expression analysis, have been undertaken. Also the analysis of F2 

segregating mice of two different strains or lines is a helpful approach to identify 

chromosomal localizations of genes contributing to specific phenotypes like anxiety- 

or depression-like behavior (Clement et al., 2002; Plomin and Crabbe, 2000). 

In comparison to the analysis of inbred strains, the selective breeding of mice or rats 

according to a specific phenotype leads to the fixation of a stable feature (trait) in 

these animals, and can isolate alleles that are associated with this trait (Clement et 

al., 2002; Phillips and Belknap, 2002). As inbreeding of mice for at least 20 

generations leads to genetically homozygote animals (Plomin and Crabbe, 2000), the 

selective inbreeding of two lines according to one phenotypic difference results in 

homozygous strains dissociating the specific underlying genes. In the past decades, 
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mice and rats were selected for high and low defecation in the open field (Broadhurst, 

1975; DeFries et al., 1978), for their time of acquisition, alcohol sensitivity, 

exploration, attack-latency, or coping strategy (Bignami, 1965; Clement et al., 2002; 

Veenema et al., 2003).  

Methodological background of analyzing mice and rats for their emotionality is a wide 

variety of behavioral test, including conditioned and unconditioned tests. Conflict or 

conditioned tests are based on the pairing of an aversive stimulus (electric shock) 

with a positive stimulus, such as food (Geller-Seifer test, Vogel conflict test), or with a 

neutral stimulus (fear conditioning) to analyze the avoidance behavior. Anxiolytic 

substances have been shown to reduce the reaction on the conditioned stimulus 

(File, 1985; Kulkarni and Reddy, 1996). By contrast, unconditioned tests use the 

conflict between the impulse of the animal to explore new environments and the 

avoidance of unknown areas (Finn et al., 2004; Kulkarni and Reddy, 1996; Ohl, 

2003). Thus, more anxious animals avoid the open, unprotected and lit 

compartments of the test apparatus, such as the central part of the open field (Harro, 

1993) or the holeboard (Ohl, 2003), the open arms of the elevated plus maze (Lister, 

1987; Pellow et al., 1985), or the lit part of the dark/light box (Bourin and Hascoet, 

2003). Anxiolytic drugs enhance the time the animals spend exploring the aversive 

compartment. As some drugs, such as bezodiazepines, have a sedative effect in 

higher dosages, the locomotor activity, basically connected to exploratory behavior, 

has to be carefully observed to eliminate false positive results. Other anxiety tests 

use the social context of mice or rats by analyzing latency to and time of social 

contact or dominant and submissive behavior (File, 1985; Finn et al., 2004). Finally, 

also mouse and rat pups can be analyzed to their emotionality during development, 

as the number of ultrasonic vocalization calls, emitted during separation from their 

mother and the nest, is correlated to anxiety (Branchi et al., 2001; Insel et al., 1986). 

To investigate depression-like behavior, the coping strategy of the animal in an 

impasse situation can be investigated. In this context, the animal can be forced to 

swim (forced swim test) (Porsolt et al., 1977a; Porsolt et al., 1977b) or hang up on its 

tail (tail suspension test) (Steru et al., 1985; Trullas et al., 1989). In both situation, the 

activity of the animal points to the coping strategy with displaying high rates of 

floating or immobility, reflecting a passive coping style and therefore depression-like 

behavior. Further, the investigation of anhedonia (loss of interest in pleasure), a core 

symptom of depression in humans, by analyzing the reduced intake of sucrose 
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solution or sweet food as well as impairments in place preference conditioning or 

brain stimulation, is a well established paradigm to analyze depression-like behavior 

in rats and mice (Willner et al., 1992).  

Animal models of clinical conditions, whether chronically induced, genetically 

modified, or selectively bred share the need of validity. Three validation criteria were 

established in the last decades: Face validity predicts an identical behavioral and 

physiological response in the animal compared to the response observed in humans. 

Construct validity relates to the similarity of the psychological and biological factors 

underlying both the animal model and the human disease. Finally, predictive validity 

requires the sensitivity of the model to clinical effective drugs (Belzung and Griebel, 

2001).  

As mice or rats are not miniature versions of humans, we can never entirely create 

human psychopathologies, like anxiety or depression, in an animal model. 

Nevertheless, fundamental behavioral and linked neuronal structures are conserved 

in both, giving the possibility to investigate behavior, the underlying neuronal circuits 

and genes (Cryan and Holmes, 2005). Anxiety and depressive disorders are very 

complex syndromes with a high heterogeneity of clinical symptoms. Though, it is not 

possible to model in mice or rats some of the main symptoms observed in patients, 

including depressed mood, feeling of worthlessness, and thoughts of death, or even 

depression or anxiety disorders per se. Nevertheless, animal models are suitable to 

simulate several single aspects, like anhedonia, concentration problems, weight loss 

or gain, sleep disturbances, agitation, and hypercortisolism, providing the possibility 

to close a gap of knowledge in clinical research of psychiatric disorders (Cryan and 

Mombereau, 2004). 

 

1.4 Arginine-Vasopressin 

 
The nonapeptide AVP, discovered concerning its chemical structure by Du Vigneaud 

in 1955, is biosynthesized from a prepropeptide (human: 164 amino acids; mus 

musculus: 168 amino acids), including besides the AVP part a signal peptide with 19 

(human) to 23 (mus musculus) amino acids, the carrier protein neurophysin II (NPII) 

with 93 amino acids, and a glycoprotein of 39 amino acids and unknown function 

(Burbach et al., 2001; de Bree and Burbach, 1998). The gene encoding the AVP 

precursor lies on chromosome 20 (human) and 2 (mus musculus) respectively and is 
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composed of 3 exons. Exon 1 encodes the signal peptide, the AVP part, a 3 amino 

acids linker, and the N-terminal part of NP II. The second exon includes the highly 

conserved central part of NPII (67 amino acids), whereas the third exon encodes for 

the C-terminal part of the NPII (17 amino acids), an arginine linker, and the 

glycoprotein. After cotranslational translocation of the AVP prepropeptide into the 

endoplasmic reticulum (ER), it is processed on its way across the Golgi apparatus 

and in the large dense core vesicles transporting it to the axonal terminals. After 

truncation of the signal peptide in the ER, AVP is bound with its N-terminal domain 

into the binding pocket of NPII. Both AVP and NPII include several disulphide bridges 

(AVP: one; NPII: seven) necessary for folding and consequently for forming the AVP-

NPII-complex. During the process of the propeptide, the glycoprotein is cleaved in the 

Golgi apparatus. 

Following, the AVP-NPII-

complex matures to a 

biologically active AVP by 

four enzyme-dependent 

steps.  

AVP is secreted from 

axons of magnocellular 

neurons of the SON and 

PVN into the systemic 

circulation at the level of the neurohypophysis (HNS) (Burbach et al., 2001; Landgraf 

and Neumann, 2004). It acts as an antidiuretic factor to preserve body water balance 

(Swaab, 1998). Plasma hyperosmolality, detected by the magnocellular cells itself or 

by osmoresposive cells of the subfornical organ and the organum vasculosum of the 

stria terminalis, initiates the AVP release into circulation. Likewise, a fall of blood 

pressure can initiate the AVP release from magnocellular neurons via 

Fig. 3. Structure of the gene and the prepropeptide of AVP. The three exons of the gene encode for 
a signal peptide (SP), arginine-vasopressin (AVP), neurophysin II (NPII), and a glycoprotein (GP). 
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Fig. 4. Structure of AVP. The peptide is composed of 9 amino 
acids and includes one disulfide bond. 



Introduction 

15 

norepinephrinergic projections of brain stem centers, receiving information from baro- 

and chemoreceptors. After release, AVP activates, via binding to the V2 receptor and 

activation of the adenylylcyclase-cAMP-protein kinase A-pathway, the insertion of 

aquaporins, mainly aquaporin-2, in the apical membrane of the renal collection ducts 

of the kidneys. This increase in permeability leads to water retention from the kidney 

and concentrates the 170l of primary urine to maximal 2l. This highly sensitive 

mechanism preserves a physiological plasma volume and osmolality (Bourque et al., 

1994; Knepper, 1994). Thus, an deficit in plasma AVP (<2pg/ml) and following 

plasma AVP increase leads to an inability of proper water retention from the kidney, 

causing hypotonic polyuria (>2l, <800mosmol/kg), inadequate plasma volume and 

plasma osmolality (>293 mosmol/kg) and high fluid intake (polydipsia) (Robertson et 

al., 1976; Verbalis, 2003), known as central/neurohypophysial diabetes insipidus 

(cDI). Besides infectious, inflammatory, trauma- or tumor-induced manipulation of the 

pituitary, autosomal dominant or recessive mutations of the Avp gene cause the AVP 

deficit (Verbalis, 2003). At present, 56 dominant or recessive single nucleotide 

polymorphisms (SNP) in the AVP precursor gene are identified to be responsible for 

cDI (Fig. 5), concerning the signal peptide (5), the AVP part (3), and the NPII domain 

(48) (Christensen and Rittig, 2006). Mutations cause inefficient cleavage of the signal 

peptide and/or inadequate folding and binding of the AVP part with the NPII moiety 

(Beuret et al., 1999; Christensen et al., 2004; Ito et al., 1993; Nijenhuis et al., 2001; 

Nijenhuis et al., 2000). Consequences are retention and accumulations of the mutant 

AVP-NPII-precursor in the ER (Nijenhuis et al., 1999). The accumulation results in a 

disrupted processing of the precursor and further in diminished release of AVP from 

the posterior pituitary. In addition, the accumulated aggregates of the mutated AVP 

precursor interfere in the ER with the processing of intact AVP precursors (dominant-

negative effect) (Ito et al., 1999), as well as with other proteins leading to cell death of 

the Avp-expressing neurons (Hansen et al., 1997; Ito and Jameson, 1997; Nijenhuis 

et al., 1999). While in the beginning of the disease the normal allele produces 

AVP GP SP NPII 

Fig. 5. Localization of the 56 SNPs inducing cDI on the Avp precursor gene.  Arrowheads 
represent the SNPs, shaded boxes indicate β-strands, the striped box indicates the α-helix 
and the brackets show the 7 disulfide bridges. SP, signal peptide; AVP, arginine-vasopressin; 
NPII, neurophysin II ; GP, glycoprotein. Adopted from Christensen and Rittig, 2006. 
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enough AVP, facilitating osmoregulation, its dimerization with the mutant prohormone 

and the following progressive cell degeneration causes the delayed onset of the 

disease in childhood and the gradual advancement of cDI (Hansen et al, 1997). 

Further, from autopsy studies of cDI patients it is known that atrophy occurs in 

magnocellular neurons in the PVN and SON as well as in the neurohypophysis 

(Bergeron et al, 1991; Christensen et al, 2004) 

Besides the antidiuretic function, AVP was identified to be also co-expressed with 

CRH in parvocellular neurons of the PVN (Kiss et al., 1984; Sawchenko et al., 1984), 

potentiating the effect of CRH on the release of ACTH from the anterior pituitary, 

thereby activating the HPA axis in response to a stressor, as described in 1.1 (Antoni, 

1993; Carrasco and Van de Kar, 2003). Parallel to this neuroendocrine function, AVP 

acts as a neurotransmitter/neuromodulator within the brain (de Wied et al., 1993; 

Swanson and Sawchenko, 1983). This includes axonal hypothalamic projections to 

autonomic brainstem centers, such as the LC or the nucleus of the solitary tract, 

where it modulates the sympathetic and parasympathetic nervous system 

(Charmandari et al., 2005) or cardiorespiratory adjustments during stress response 

(Bailey et al., 2006). Further, axonal projections to and somato-dendritical release in 

hypothalamic and limbic brain areas are involved in social memory (Bielsky et al., 

2005; Bielsky and Young, 2004; Landgraf et al., 2003), social bonding (Young et al., 

1999; Young and Wang, 2004; Young et al., 1997), aggression (Ferris et al., 2006; 

Ferris et al., 1997), emotionality, and stress-related behavior (Landgraf and 

Neumann, 2004; Landgraf et al., 1998; Wotjak et al., 1996b). Also the wide 

distribution of the V1a and V1b receptors within the brain, including the LS, the 

amygdala, the BNST, the hippocampus, and the hypothalamus (Barberis and 

Tribollet, 1996; Hernando et al., 2001) makes the vasopressinergic system likely to 

be involved in multiple functions. Consequently, AVP got in the focus of research 

regarding alterations and pathological changes of social behavior and emotionality, 

the latter including anxiety and affective disorders and the dysregulation of the HPA 

axis (Gispen-de Wied and Jansen, 2002; Kim and Gorman, 2005; Nestler et al., 

2002). Thus, in depressed patients AVP was found to be elevated in plasma (Inder et 

al., 1997; van Londen et al., 1997), and also the number of Avp-expressing neurons 

in the PVN increases (Purba et al., 1996; Raadsheer et al., 1994), suggesting a role 

of AVP, besides CRH, in the dysregulation of the HPA axis and in the development of 

anxiety and affective disorders. Also in rats, chronic or repeated stress enhances 
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AVP in the external zone of the median eminence (De Goeij et al., 1992; Nakase et 

al., 1998; Wotjak et al., 1996a), anxiety-related behavior and HPA-axis activity 

(Landgraf et al., 1998; Liebsch et al., 1998a; Wigger et al., 2004), and leads to an 

elevation in V1b mRNA in the pituitary (Rabadan-Diehl et al., 1995). In the DEX/CRH 

test, hypoanxious rats, displaying DEX nonsuppression and a greater ACTH and 

corticosterone release to CRH after DEX treatment, showed a inhibited increase of 

ACTH and corticosterone after V1a/b receptor antagonist pretreatment (Keck et al., 

2002). This confirms a shift of the main contribution in activating the HPA axis under 

chronic stress from CRH to AVP (Aguilera and Rabadan-Diehl, 2000; Tilders et al., 

1993). However, the exact action of AVP regarding ACTH secretion under chronic 

stress, dysregulation of the HPA axis (Aguilera and Rabadan-Diehl, 2000; 

Engelmann et al., 2004; Scott and Dinan, 2002), and intra-brain functions in the 

development of anxiety and affective disorders is poorly understood. 

 

1.5 Pre- and Postnatal Influences on Stress-related Behavior 

 

Besides the genetic predisposition giving rise to the development of anxiety and 

depression, environmental factors play a role in the etiology of mood disorders. 

During the prenatal phase, maternal stress-related endocrine and intra-uterine 

parameters might be crucial, whereas in the postnatal phase the parental rearing 

behavior as well as social and nonsocial experiences shape the individual’s 

emotionality. 

During pregnancy, prolonged periods of stress can alter the fetal environment and 

thereby influence the development and the physical and mental health of the child 

(Van den Bergh et al., 2005). In human studies associations were found between 

chronic stress, resulting in higher levels of cortisol and CRH, and preterm birth, 

reduced birth weigh, and developmental impairments (Weinstock, 2005). 

Nevertheless, there is a lack of evidence of an involvement of prenatal stress or 

stress hormone levels during pregnancy on the fetal brain and their consequences on 

behavior. In animal studies, chronic stress during pregnancy led to increased 

maternal and fetal plasma corticosterone levels (Takahashi et al., 1998). Prenatally 

stressed adult rats displayed a reduced number of hippocampal GR and MR 

(Barbazanges et al., 1996; Henry et al., 1994) and altered neuronal activation of 

hippocampus, LC, and PVN (Viltart et al., 2006) in connection with altered HPA axis 
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activity and negative feedback. Further, increased brain CRH (Cratty et al., 1995; 

Fujioka et al., 1999) and behavioral alterations, such as hyperanxiety and increased 

depression-like behavior (Burlet et al., 2005; Fride and Weinstock, 1988; Frye and 

Wawrzycki, 2003; Patin et al., 2005; Vallee et al., 1997) could be observed in 

prenatally stressed rats. 

After birth, the housing conditions shape the behavior of an animal. Therefore, an 

“enriched environment” enhances possibilities of activity, sensory stimulation, and 

learning opportunities, resulting in decreased anxiety-related behavior, altered HPA 

axis reactivity, and increased learning and memory abilities (Barbelivien et al., 2006; 

Olsson and Dahlborn, 2002; Welberg et al., 2006). 

Secondly, postnatal social interactions shape the behavior of the offspring. They are 

involved in the development of emotionality, social skills, and character. In animal 

models, the contact to littermates and to other conspecifics during adolescence 

influenced anxiety, stress-related behavior, and the underlying mechanisms. Thus, 

early weaning or isolation after weaning induced more anxious and aggressive 

behavior (Kikusui et al., 2004) and behavioral, hormonal, and autonomic hyper-

reactive stress-responses (Ito et al., 2006; Weiss et al., 2004). Further, it was shown, 

that the number and the emotional status of cagemates during growth and after 

weaning influences anxiety-related and depression-like behavior, exploration urge, 

social abilities as well as BDNF-related hippocampal cell survival with strain and sex 

differences (Branchi et al., 2006a; Branchi et al., 2006b; Holmes et al., 2005).  

The most relevant postnatal non-genetic factor influencing emotionality is the 

interaction with the parents. Thus, neglect, a distant parental relationship, violence, or 

stressful familial conditions are associated with the development of anxiety disorders 

and depression (Canetti et al., 1997; Holmes and Robins, 1988; Parker, 1981), as 

well as disturbed HPA axis development and responsiveness (Tarullo and Gunnar, 

2006). Also in rats and mice, maternal rearing behavior, including the amount of 

maternal investment and nursing style, shape the animals’ behavior (Calatayud and 

Belzung, 2001; Calatayud et al., 2004). The first days after birth, dams display an 

active and extensive nursing with bending over the pups with an arched back (arched 

back nursing) giving the pups the possibility to suckle in a smooth and un-exhausting 

way. Later, the time invested in maternal care decreases and the nursing periods get 

shorter. Further, dams switch from arched back nursing to less extensive positions, 

such as lying on the pups or on the side (Meaney, 2001). During nursing, rat and 
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mouse dams show intensive licking and grooming of the pups. It was examined, that 

the number of lickings together with the time spent in arched back nursing influences 

the development of emotionality-related behavior (Meaney, 2001). Thus, pups 

receiving lots of lickings and arched back nursing displayed less anxiety-related 

behavior and less stress-induced corticosterone release as adults (Anisman et al., 

1998; Francis et al., 1999b). Further, this is associated with decreased Crh mRNA 

expression levels in the PVN, increased GABAA receptor subunit mRNA expression 

in the amygdala and hippocampus, and increased GR mRNA expression in the 

hippocampus (Caldji et al., 2003; Francis et al., 1999a; Francis et al., 2003; Liu et al., 

1997), the latter transferred by DNA acetylation and methylation (Weaver et al., 2005; 

Weaver et al., 2006). Moreover, pups of both more anxious rat and mouse strains, 

with their mothers displaying less lickings and arched back nursing, cross-fostered to 

a high licking and arched back nursing mother, exhibited reduced anxiety (Francis et 

al., 1999a; Francis et al., 2003; Priebe et al., 2005), underlining the influence of the 

maternal rearing behavior on genetically determined traits.  

Additionally, the maternal rearing behavior is non-genetically transmitted to female 

offspring, as cross-fostered high licking and low licking females showed the maternal 

behavior received as pups (Francis et al., 1999a). Moreover, maternally deprived (5 

hrs) females, treated with artificial stroking during separation, showed as adults more 

lickings and arched-back nursing compared to non-treated deprived females 

(Fleming et al., 2002). Both confirm human studies, revealing the transmission of cold 

and distant child-parental relationship and childhood violence and abuse across 

generations (Pears and Capaldi, 2001). Even, more remarkable, mothers who are 

anxious or depressed show less positive behavior to their babies and have children 

that are more shy and fearful (Field, 1998; Hirshfeld et al., 1997b, a). An increase in 

oxytocin receptor binding in the medial preoptic area, the BNST, the LS, the central 

nucleus of the amygdala, and the ventral medial hypothalamus was shown to be 

involved in the high licking behavior of the rat dams (Champagne and Meaney, 

2006). Further, this behavior was transferred to female offspring by a epigenetic 

mechanism, including demethylation-induced increase in estrogen receptor 

expression, affecting oxytocin receptor binding in the medial preoptic area 

(Champagne et al., 2006). 

The need of extensive maternal care, including undisturbed feeding and licking the 

pups to secure the adequate neonatal development of the HPA axis is also 
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underlined by studies using maternal deprivation and separation. Thus, pups exhibit 

a stress-hyporesponsive period from postnatal day 4 to 14 in the rat (Levine, 1994) 

and from postnatal day 1 to 12 in mice (Schmidt et al., 2003), mainly maintained by 

maternal behavior. During this stress-hyporesponsive period, pups showed a 

diminished ACTH and corticosterone reaction on mild stressors, such as 15 min of 

separation or handling (Schmidt et al., 2003). Nevertheless, stronger stressors, like 

separating the pups from the mother for 24 hrs, disinhibited the stress-

hyporesponsiveness resulting in increased basal corticosterone and ACTH levels as 

well as an enhanced ACTH and corticosterone stress response (Levine, 1994; 

Schmidt et al., 2004). Central regulatory factors of the HPA axis are also influenced, 

including down-regulated basal Crh, GR, and MR mRNA expression in the pup 

(Schmidt et al., 2004). 

Further, for rats it was shown that short periods of handling (15 min) have no effect 

(Huot et al., 2004) or even reduce anxiety-related behavior and stress-induced ACTH 

release of adult rats, because of an increased maternal investment after reunion 

(Macri et al., 2004). Thus, dams displayed increased duration of maternal licking and 

grooming after handling, causing increased Fos expression in the thalamic 

paraventricular nucleus and the BNST associated with a decrease in Crh mRNA 

expression in the PVN (Fenoglio et al., 2006). In contrast, 180min of maternal 

separation caused an increase in HPA axis stress-response, increased Crh mRNA in 

the PVN, and decreased cortical GR mRNA expression levels (Huot et al., 2004), 

whereas the use of foster litters, given to the dams during the 180 min of separation, 

eliminated the stress-induced HPA axis response and the alterations in CRH and GR 

expression (Huot et al., 2004), possibly by preventing a separation-induced disruption 

of maternal behavior (Pryce et al., 2001). Interestingly, Macri et al. (2004) found the 

same increased compensatory maternal care in 15min handled and 240min 

separated pups after reunion with following reduced HPA axis and fear response in 

adult handled and adult separated offspring in comparison to control rats. This 

reveals a contribution of further factors, besides the amount of maternal care, on 

HPA axis development and fear response.  

Taken together, the interaction of maternal behavior and the development of stress-

related neuroendocrine and behavioral parameters, together with the underlying 

epigenetic mechanisms, are a well-balanced and fragile system. 
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1.6 Scope of the Thesis 

 

In accordance with the well established rat model (Landgraf and Wigger, 2002; 

Liebsch et al., 1998a; Liebsch et al., 1998b), we generated a mouse model of trait 

anxiety allowing besides behavioral, neuroendocrine, and pharmacological studies 

broad genetic analyses. Therefore, we started in the year 2000 a bi-directional 

selective breeding of CD1 mice. Taking their anxiety-related behavior on the elevated 

plus-maze (EPM) as the key selection criterion (Pellow et al, 1985; Lister, 1987), we 

bred the most and least anxious animals. Thus, we mated mice spending most of the 

test time on the open arms and mice spending most of the test time on the closed 

arms, resulting in low anxiety-related behavior (LAB) and high anxiety-related 

behavior (HAB) mice (Kromer et al., 2005) (Fig. 6B). The animals are now in the 24th 

generation and show robust behavioral differences on the EPM, indicating trait 

anxiety (Fig. 6A). Besides the EPM test, the mice were also examined in a variety of 

other test paradigms for anxiety, including the dark/light box (DaLi), the open field 

(OF), and the ultrasonic vocalization (USV) test. In consideration of the high clinical 

comorbidity of depression and anxiety disorders (Alonso et al., 2004a), the two lines 

were also analyzed in paradigms of depression-like behavior, such as the forced 

swim test (FS) (Porsolt et al, 1977) and the tail suspension test (TST) (Steru et al, 

1985). The results suggest the comorbidity of anxiety-related and depression-like 

Fig. 6. Breeding progress of the HAB/LAB mouse model. B, Unlike non-anxious LAB mice which 
explore the aversive open arms of the EPM,  the anxious HAB mice spend most of the test time in 
the dim lit closed arms. A, EPM data (% time open arms) of the parental male and female CD1 mice 
(bigger and smaller crosses, respectively) and F1 to F21 generations of male and female HAB and 
LAB mice. CD1 mice selected as controls independent of their performance (NAB) are shown for 
comparison (horizontal bar). Independent of gender, HAB and LAB animals differ significantly in 
their anxiety-related behavior (*** p<0.001, F4-F21) with NAB mice displaying a intermediate 
behavior (n=40-80 per line and generation). 
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behavior in our mouse model (Kromer et al., 2005) as shown before in accordingly 

bred HAB/LAB rats (Landgraf and Wigger, 2002; 2003). 

1.6.1 AVP Deficit in LAB Mice 

As Avp was found to be differently expressed in the PVN of HAB and LAB rats with a 

higher level in HAB rats associated with higher anxiety-related behavior (Landgraf 

and Wigger, 2003; Wigger et al., 2004), the analysis of the amount of biological 

active AVP in the PVN of HAB and LAB mice and as a consequence of the 

differential availability its physiological function in this model was a major goal of the 

validation of the HAB/LAB mouse model.  

1.6.1.1 Intra-PVN in vivo Microdialysis  

We analyzed the amount of releasable AVP in the PVN of HAB and LAB mice by in-

vivo microdialysis, a highly beneficial technique to analyze the release of substances, 

such as neurotransmitters or neuropeptides, into the extracellular fluid of distinct 

brain areas of freely behaving animals.  

1.6.1.2 Examination of the Symptoms of an AVP Deficit 

Further, we investigated the physiological consequences of the determined AVP 

deficit in LAB mice, investigating the daily fluid intake and daily urine osmolality, both 

known as symptoms of the AVP deficit-induced cDI in humans. Moreover, we 

challenged the water balance system by a 48-h water deprivation to have a closer 

look at its total AVP capacity. Additionally, we treated LAB mice with a V2 receptor 

agonist to prove the AVP deficit as the origin of the inability in water retention. 

To investigate the progress of cDI, we analyzed the daily fluid intake and urine 

osmolality during development, adulthood and aging. Aged HAB, NAB, and LAB mice 

were characterized concerning their anxiety-related behavior on the EPM to show 

stability of the bred trait and additionally concerning a recently found SNP localized in 

the signal peptide of the AVP precursor gene of LAB mice and possibly related to the 

AVP deficit. Finally the Avp mRNA expression level at different ages was estimated 

to investigate the cellular consequences of the cDI. 
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1.6.1.3 Viral-Vector-induced Increase in Avp mRNA Expression in the PVN of LAB 
Mice 

To manipulate the expression of AVP in the PVN of LAB mice, we increased the 

expression level by transferring the wild-type Avp gene into PVN neurons via a viral 

vector. The use of adeno-associated viral (AAV) vectors, based on a nonpathogenic 

and replication-defective virus due to the deletion of more than 90% of the viral 

genes, is a successful method for long-term gene expression and phenotype 

manipulation in animals (Kaplitt et al., 1994; Lo et al., 1999). Therefore, after 

manipulation, we analyzed anxiety-related, depression-like behavior, and HPA axis 

stress-reactivity as well as daily fluid intake and urine osmolality. Finally, the Avp 

mRNA expression level in the PVN was examined to validate the method. 

1.6.2 Postnatal Maternal Influence on the HAB/LAB-Phenotype 

The different anxiety-related behavior of the two lines is supposed to be the result of 

a genetic variation forced by selective bi-directional inbreeding concerning one 

parameter on the EPM. To exclude non-genetic postnatal maternal factors 

influencing the behavioral phenotype of HAB and LAB mice, we investigated the 

maternal rearing behavior of HAB and LAB mice and afterwards its influence on the 

behavioral phenotype of the two lines. 

1.6.2.1 Maternal Behavior of HAB/LAB Mice 

As inbreeding can alter, besides the selected trait, also other behaviors of an animal, 

we wanted to know, if there are differences in the maternal behavior of HAB and LAB 

dams. Thus, we investigated the time dams of the two lines spent in caring for the 

pups and on their detailed nursing style. 

1.6.2.2 Cross-Fostering HAB/LAB Mice 

To analyze a possible influence of the maternal rearing style on the behavioral 

phenotype of the two breeding lines, we cross-fostered pups of HAB and LAB mice 

directly after birth. On postnatal day 5, we analyzed anxiety-related USV in the pups 

to detect possible short-time influences. As adults, the mice were investigated 

concerning anxiety-related and depression-like behaviors, as well as in exploration 

and locomotor activity. Finally, we examined the Avp mRNA expression levels in the 

PVN. 
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2 Material and Methods 

 

2.1 Animals 

 

We used male and female inbred HAB and LAB mice, male and female offspring of 

reciprocal cross-mated HAB and LAB mice (CM) bred in our own facility, and adult 

male CD1 mice (Charles River, Sulzfeld, Germany). Mice were kept in the animal 

facility of the Max Planck Institute, Munich, in groups of two to five animals in type 2-

macrolone cages (25.5 x 19.5 x 13.8cm) in a 12h-light/dark cycle (with lights on at 

6a.m.), with room temperature of 23 ± 2°C, humidity of 60%, and tap water and food 

(Nr. 1314, Altromin GmbH, Germany) ad libitum. Experiments were performed 

between 8a.m. and 1p.m. 

At the age of 7 weeks all animals were tested on the EPM for 5 min selecting animals 

for breeding and experiments (according to (Kromer et al., 2005). 

 

2.2 Projects 

 

2.2.1 AVP Deficit in LAB Mice 

2.2.1.1 In vivo Microdialysis 

Surgery. For implantation of the microdialysis 

probes (U-shaped, Spectra/Por hollow 

dialysis membrane, outer diameter 0.25mm, 

length 1.5mm), isoflurane (Curamed Pharma, 

Germany) anaesthetized mice were fixed in a 

stereotaxic frame (Type 516000, TSE GmbH, 

Germany). After uncovering the calvaria the 

microdialysis probe was inserted into the brain 

by a small hole in the skull and positioned at 

the right PVN (0.05mm caudal to the bregma, 0.09mm lateral and 0.52mm ventral 

with an angle of 10° (Paxinos and Franklin, 2001). Afterwards, the probe was fixed by 

two screws (M1*3, stainless steel, Schrauben Preisinger, Germany) and two-

Fig. 7. Microdialysis probe. The probe is 
fixed on the skull by screws and cement 
with the menbrane touching the relevant 
brain area.  
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component adhesive (Twinlock Cement, Heraeus Kulzer, Germany) on the scull and 

the wound medicated with iodine (Fig. 7). 

Procedure. The experiment took place 48h after surgery between 8a.m. and 1p.m. 

Four animals, single-housed in special Plexiglas cages (40cm x 23cm x 36cm), were 

done in parallel. For the experiment the probe’s inflow was connected by PSE tubing 

(inner diameter 0.38mm, PE 20, Karman & Droll, Germany) to a syringe (2.5ml, 

Hamilton, Bonaduz AG, Switzerland) driven by a pump (E540220, TSE GmbH, 

Germany). At the beginning probes were perfused at a rate of 50µl/30min with sterile 

isotonic Ringer´s solution (Braun Melsungen AG, Germany) for 2h to establish an 

equilibrium between inside and outside the dialysis membrane. After two basal 

dialysates (sample 1 and 2), two additional samples were collected, one during 

hypertonic stimulation with 0.5M NaCl solution (sample 3) and one afterwards during 

perfusion with isotonic Ringer´s solution (sample 4). Samples were stored 

immediately on dry ice until analyzing by radioimmunoassay. 

Histological verification of probe localization. After the experiment, mice were 

sacrificed, brains removed, snap-

frozen in dry ice-chilled N-

methylbutane (Roth GmbH, 

Germany), and stored at –20°C till 

sectioning with a cryostat (HM 500 

O, Microm, 

Germany). For 

verification of the 

probe positioning 

in the right PVN, 

25µm coronar sections were stained with Cresyl violet. Only successfully implanted 

mice with the probe placed within or adjacent to the PVN were used for data analysis 

(Fig. 8 A, B). 

 

2.2.1.2 Examination of the Symptoms of an AVP Deficit  

24-h fluid intake and urine osmolality. Animals were single-housed after weaning. On 

PND 21 (week 3), 35 (week 5), 54 (week 7), 140 (week 20), and 350 (week 50) urine 

osmolality and 24-h fluid intake was measured. The amount of drunken water was 

calculated as difference of the bottle weight before and after 24h. Urine osmolality 

A 

B 

Fig. 8. Verification of probe 
localization. A, Coronar brain 
section including the 
paranentricular nucleus (PVN). 
B, Valide localization of the 
probe in the right PVN. 
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was measured via freezing point depression with an osmometer (Vogel, Germany) in 

samples of 10µl urine dissolved in 40µl aqua dest. At the different time points, mice 

were sacrificed, brains removed, snap-frozen in dry ice-chilled N-methylbutane (Roth 

GmbH, Germany), and stored at –20°C until sectioning 14µm slides of the PVN 

region with a cryostat (HM 500 O, Microm, Germany) for Avp mRNA in situ 

hybridization. 

Water deprivation. For the water deprivation test, mice were kept in groups of four 

animals for 48h without water. Then, deprived animals and animals that were kept 

under standard conditions were killed by decapitation. Trunk-blood, hypothalami, 

pituitaries, and urine were collected for further investigation. Blood was collected in 

1ml EDTA-coated tubes (KABE Labortechnik, Germany) with 10µl of Trasylol 

(500000 KIE, Bayer AG, Germany) on ice and centrifuged for 10min at 3500rpm and 

4°C to get plasma. Tissues were collected in 1.5ml-tubes (Eppendorf-Netheler-Hinz 

GmbH, Germany) on dry ice and stored at –20°C until further treatment. AVP levels 

in plasma, hypothalamus and pituitary were measured by radioimmunoassay. Urine 

and plasma osmolality were taken by freezing point depression.  

DDAVP treatment. To normalize the physiological water balance, the V2 receptor 

agonist 1-deamino-8-D-arginine-vasopressin (dDAVP) (Sigma-Aldrich, Germany) in a 

concentration of 100ng/30g body weight (BW) or vehicle (0.9% saline) was injected 

i.p. in a volume of 0.1ml/10g BW. Injection took place at 6a.m. Animals were kept in 

groups of two (pooled data) in metabolic-cages (TECNIPLAST GmbH, Germany). 

Urine was collected in intervals of 6 hours and centrifuged for 2min at 2500rpm to 

eliminate dirt particles. Urine osmolality was analyzed by freezing point depression.  

 

2.2.1.3 Viral–Vector-mediated Avp Gene Transduction  

AAV vectors. The AAV vectors (provided by Junichi Ideno, Japan) of serotype 2 

contains, besides the AVP precursor gene cDNA or the ß-galactosidase (lacZ) gene 

(used as control), the human cytomegalovirus (hCMV) promoter, human growth 

hormone first intron enhancers, and a simian virus 40 polyadenylation signal 

sequence between inverted terminal repeats of the viral genome. 

Surgery. With an age of 10 weeks isoflurane-anesthetized LAB mice were 

stereotactically fixed and the AAV-Avp vector was injected bilaterally into the PVN. 

Therefore, the calvarium was exposed and a glass-fiber-capillary (Fig. 9) was 

inserted into the PVN (0.05mm caudal to the bregma, 0.09mm lateral, and 0.52mm 
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ventral with an angle of 10° (Paxinos and Franklin, 2001) via a little hole in the skull. 

Via a tubing (PSE, inner diameter 0.4mm, Karman & Droll, Germany) conducted to a 

syringe (10µl, Hamilton, Bonaduz AG, Switzerland) 0.5µl of 

the AAV-Avp solution (1x1010 genome copies/µl) was 

slowly, over 30 seconds, injected into the PVN on each 

side. Finally, the wound was closed with a sterile surgical 

suture (Hauptner & Herberholz, Germany). 

Procedure. 30 days after surgery the behavior of the 

animals was analyzed in different test paradigms for 

anxiety (EPM, DaLi), depression-like behavior (TST, FS), 

and locomotion and exploration (OF, elevated platform 

(EPF)), as well as for basal and restrained stress-induced 

corticosterone concentrations in plasma (stress-reactivity 

test, SRT) over six weeks with a 3-7-day interval between the tests. 24-h fluid intake 

and urine osmolality were observed during the whole course of the experiment. 10 

weeks after surgery, animals were killed and brains were taken, frozen, and cut in 

14µm slides to analyze PVN-Avp mRNA-expression by in situ hybridization (Fig. 

10A). Avp mRNA, 35S-labeled in the in situ hybridization, was additionally labeled 

with silver grains. For histological 

validation of the correct 

application locus in the PVN 

region, 1µl black ink was added 

to the AAV-solution, later visible 

on the in situ hybridization slides 

and histological incorporeal after 

Nissel staining with Cresyl violett 

(Fig. 10B). 

As no behavioral differences 

between animals with unilateral 

and bilateral hits, as well as 

mishits and untreated mice were 

detectable, following groups were 

found after histological validation: three mice with a bilateral and three mice with a 

unilateral hit were merged in the AAV-Avp group, one mouse with a bilateral hit and 

B 

Fig. 10. Avp
expression in the 
PVN. A, Increased 
Avp expression after 
unilateral AAV-Avp
injection. B, Co-
localization of silver 
grain-labeled Avp
mRNA and ink 
particles in the PVN. 

A 

Fig. 9. Glass-fiber-
capillary for AAV-Avp
injection into the PVN. 
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two mice with a unilateral in the lacZ group, and two untreated mice and two lacZ 

mice with mishits in the control group.  

2.2.2 Postnatal Maternal Influence on the HAB/LAB-Phenotype 

2.2.2.1 Maternal Behavior 

Breeding. 20 inbred HAB and 24 inbred LAB females of the 22nd generation were 

mated with one male animal of the equivalent line. Animals were housed in type 3-

macrolone cages, equipped with a red plastic house (ACRE, Tecniplast GmbH, 

Germany) and nesting material (ABEDD-LAB and VET Service GmbH, Austria). After 

2 weeks, pregnancy was controlled and male animals removed from the cages. 5 

LAB females did not get pregnant (failed pregnancy). Animals gave birth after 22±2 

days. 10 mothers failed to give birth correctly (failed birth, FB) including that they did 

not attend to clean and suck the pups or even did not notice them after birth. 12 

hours after birth, number and gender of the pups were assessed and litters were 

culled at best to 5 male and 5 female animals per litter. Finally, 5 HAB mothers with 

their litters were randomly excluded to end up with 12 litters per line (6 cross-fostered 

and 6 non-fostered; see 2.2.2.2). Animals were housed under standard conditions. 

Maternal observation. On PND 2, 4, 8 and 12, maternal behavior was observed 5 

times during the day (7-8a.m., 11-12a.m., 3-4p.m., 7-8p.m., 11-12p.m.) at 5min- 

observation intervals. The following parameters were taken: arched back nursing 

(Fig. 11A), blanket posture (Fig. 11B), and side posture (together: mother ON); 

locomotion, eating / drinking / self-grooming, and sleeping (together: mother OFF). 

Fig. 11. Maternal nursing styles. A, Arched back nursing is characterized by a bent back of the dam 
while crouching active over the pups. B, During blanket posture nursing the dams lay flat on the 
pups. 

A B 
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2.2.2.2 Cross-Fostering 

Animals. 12 hours after birth number and gender of pups of 20 inbred HAB and 24 

inbred LAB mothers (see 2.2.2.1) were assessed and the pups fostered to a dam of 

the other line or put back with their own mother. Finally, 5 non-fostered HAB litters 

were randomly excluded to end up with 6 cross-fostered and 6 non-fostered litters in 

each line. After weaning at PND 28, animals were housed in groups of two to five 

littermates of the same sex in type 2-macrolone cages (25.5 x 19.5 x 13.8cm) under 

standard conditions. 

Procedure. The anxiety-related and depression-like behavior, exploratory and 

locomotor activity, as well as stress-reactivity-related corticosterone increase in 

plasma of the adult animals was investigated in different tests, including EPM, TST, 

OF, and SRT. Tests started with an age of 7 weeks in a 48h-interval. Further, the 

number of emitted USV calls in 5-day old pups was examined. Additionally, the 

weight of the pups was assessed on PND 5 (USV), 12, 28 (weaning), and 49 (EPM) 

to analyze weight gain. Finally, animals were sacrificed, brains removed, frozen, and 

cut in 14µm slides for Avp mRNA in situ hybridization.  

 

2.3 Behavioral Tests 

 

2.3.1 USV  

On PND 5, pups were separated from their mothers 

and placed individually on a petri dish (∅ 15cm) in a 

soundproofed box to analyze the number of ultrasonic 

vocalization (USV) calls and the locomotion during a 

5min-period. The surface of the dish is subdivided in 

squares of 2cm2. Constant temperature was ensured by placing 

the dish in a water-bath of 20°C. USV calls were detected with a 

bat detector (Mini 3 bat-detector, Ultra Sound Advice, U.K.) at 

70kHz (Fig. 12) and digitally recorded with the “WaveLab Lite” 

software (Steinberg, USA). In parallel, the pup was observed via a 

camera and square-crossings were counted. A square crossing is defined as being in 

one square with half of the body. The dish was cleaned with alcohol between the 

trails. 

Fig. 12.
The bat 
detector 
makes the 
70 kHz 
USV calls 
of the pup 
hearable. 
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2.3.2 EPM 

The plus-shaped EPM is made of dark gray PVC and consists of two opposing open 

(30 x 5cm, 300lux) and two opposing closed arms (30 x 5 x 15cm, 10lux) connected 

by a central platform (5 x 5cm, 90lux). The EPM is located 40cm above the floor and 

surrounded by a black curtain (Fig. 13).  

At the beginning of each 5-min trial, the mouse was placed on the central platform 

facing a closed arm. The apparatus was cleaned before 

each test session with water containing a detergent. 

Behavior was monitored by a trained observer blind to 

line or treatment via a video camera fixed above the 

EPM. Percentage (%) of time spent on the open arms 

relative to the time spent on all arms, the number of 

entries into the closed and the open arms, and the 

latency to the first entry into an open arm were 

determined using the “plus 

maze“ software (E. Fricke, 

Germany).  

2.3.3 EPF 

The EPF is made up of a round platform (∅ 10cm) of gray PVC fixed 40cm above the 

floor on a wooden stick. After cleaning the platform with water containing a detergent, 

an animal was placed on the platform and videotaped for 5min. Following parameters 

were analyzed by a trained observer blind to the treatment or line using the “Eventlog 

1.0” software (EMCO): number of head-dippings (defined as an exploratory 

movement of the head with the snout up to the eyes under the level of the platform), 

latency to the first head-dip, and number of rearings and grooming (Fig. 14A). 

 

Fig. 13. The amount of time 
the mouse spend in the closed 
arms during the test refelects 
the level of anxiety.  

A B 

Fig. 14. EPF and OF. Less anxious mice show (A) more 
head-dippings on the EPF and (B) spend more time in the 
inner zone of the OF. 

head-
dip 
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2.3.4 OF 

The open field (∅ 60cm) is divided into an inner (∅ 30cm) and an outer area by a line 

on the floor. The inner zone is additionally divided in four and the outer zone in eight 

compartments to count line crossings. Animals were placed in the center of the field 

and observed for 5min. Before each trial, the chamber was cleaned with water 

containing a detergent. The animals’ behavior was videotaped and following 

parameters were obtained by a trained observer blind to line or treatment using 

“Eventlog 1.0” software (EMCO): time in the inner / outer zone, number of rearings, 

and number of line crossings. A mouse was considered to have entered the inner or 

outer zone when two feet had passed the dividing line (Fig. 14B).  

2.3.5 TST  

During 6min of TST, the mouse is suspended by the end of its tail to a bar 35cm 

above the floor (Fig. 15A).  

The animals’ behavior was videotaped and duration of total immobility was scored by 

a trained observer blind to line or treatment using “Eventlog 1.0” software (EMCO). 

2.3.6 FS 

The animal is placed for 6min in a 

beaker-glass (∅ 11cm) filled with 

water of 23°C up to 15cm and 

videotaped (Fig. 15B). Struggling 

(forepaws brake through the water 

surface), swimming (leastwise one 

limb makes swimming-

movements), floating (the animal is 

immobile), and latency to first 

floating were scored by a trained 

observer blind to line or treatment using “Eventlog 1.0” software (EMCO). 

2.3.7 SRT 

The SRT contained a 15min-restrained stress with a blood collection directly before 

and after the stressor. For restraint stress the animal was fixed in a 50ml plastic tube 

(Falkon) fastened on a table by modeling clay to guarantee a stable position (Fig. 

Fig. 15. (A) Immobility in the TST and (B) floating in the 
FS reflects depression-like behavior. 

A B 
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16B). Blood was taken from the tail 

veins into a haematocrit-glass 

capillary via a little cut (Fig. 16A). 

After 5min centrifugation at 

10000rpm, the plasma was 

transferred into a 1.5ml tube, and 

stored at –20°C until further analysis. 

Initial and stress-induced plasma corticosterone concentration was analyzed using a 

radioimmunoassay to calculate the increase. 

 

2.4 Analysis 

 

2.4.1 Radioimmunoassays (RIA) 

2.4.1.1 Corticosterone-RIA 

Plasma corticosterone concentration was analyzed using a commercial available RIA 

kit (Rat Corticosterone 125I RIA, DRG instruments GmbH, Germany) with modified 

protocol. After diluting 10µl plasma in 50µl 1* PBS (phosphate buffered saline), 75µl 

steroid diluent for basal samples and 950µl for stress samples were added, 

respectively. Corticosterone concentration was determined indirectly by measuring 

the amount of 125I-radioactive-labelled corticosterone, not bound to an antibody. 

2.4.1.2 AVP-RIA 

Dialysates and plasma samples were lyophilized and tissue samples homogenized in 

1ml buffer. Samples were estimated by sensitive and specific radioimmunoassays 

(minimal detection limit: 0.03pg/sample; intra- and interassay variations were 

between 7 and 10%, and 9 and 13%, respectively). Crossreactivities of the antisera 

with related peptides (including AVP and OXT, respectively) were < 0.7% (Landgraf 

et al. 1995). 

Fig. 16. SRT procedure. A, Blood collection from a 
small cut in the tail vessle. B, Mice are restrained for 
15min in a 50ml plasice tube. 

A B 
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2.4.2 Histochemistry 

2.4.2.1 In situ Hybridization 

Avp mRNA in situ hybridization was conducted according to the protocol of (Wigger 

et al., 2004). Slides were dehydrated using an alcohol line, including increasing 

concentrations and chloroform, and finally air-dried. A highly specific 48-base-long 

oligonucleotide directed against the last 16 amino acids of the glycoprotein that Avp 

mRNA does not share with OXT (5´ gca gaa ggc ccg gcc ggc ccg tcc agc tgc gtg gcg 

ttg ctc cgg tc; Ivell and Richter, 1984; Villar et al., 1994) was used for hybridization. 

The oligonucleotides were labeled by using [35S]ATP (NEN DuPont, Germany) and 

terminal transferase (Tdt, Boehringer, Germany) and purified by tRNA (Sigma, 

Germany) precipitation. For incubation, the labeled oligonucleotide was add to a 

hybridization-mix (for details see Wigger et al., 2004) and spread over the slides with 

a radioactivity of 1 000 000cpm/100µl/slide. Incubation occurred in a humid chamber 

at 45ºC for 20h. After several washes in saline sodium citrate (SSC), slides were 

dehydrated and air-dried. Sections were exposed to a radiation-sensitive film (Kodak 

BioMax, Eastman Kodak Co., Rochester, NY) for 20h and the following blackening of 

the film was analyzed by “Optimas 5.22” software (Optimas Corporation, Silver 

Spring, USA). 

For each animal 3 matched sections of the relevant region were measured to define 

the mean hybridization of the probe.  

2.4.2.2 Silver Grain Label 

35S-labeled Avp mRNA slides were dipped for 4sec in a silver-nitrate emulsion 

(Kodak NTB2; Kodak, USA), dried over night at room temperature, and stored at 4°C 

for one week in light-tight boxes. All steps, including the development, have to occur 

in total darkness. After getting on room-temperature for two hours, the slides were 

developed in Kodak D19 developer solution (Sigma-Aldrich, Germany) for 3-4min, 

rinsed in water for 30sec, fixed in Kodak fixer solution (Sigma-Aldrich, Germany) for 

5-7min and rinsed again in water for 25sec. After removing the emulsion from the 

backside of the slides with a razor blade, slides were air-dried. 

2.4.3 PCR and Restriction Fragment Length Polymorphism (RFLP) Analysis 

Total DNA of HAB, LAB, NAB, and CM mice were isolated from tail tissue using the 

NucleoSpin kit (Machery-Nagel, Düren, Germany). A fragment of 196bp including the 
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Avp gene signal peptide coding sequence was amplified by PCR using 5' gtt agc agc 

cac gtt gtc 3' as forward and 5' ctc ttg ggc agt tct gga ag 3' as reverse primers (MWG 

Biotech, Ebersberg, Germany), and applying a standard PCR protocol with Taq 

polymerase. The PCR was carried out under the following conditions: initial 

denaturation at 94°C for 4min; 35 identical cycles of denaturation (94°C for 1min), 

annealing (57°C for 1min) and extension (72°C for 1min); and a final extension of 

10min at 72°C. Then 8.5µl of the PCR product were restriction digested with 1µl 

NEBuffer2 and 0.5µl BstNI (New England Biolabs, Frankfurt am Main, Germany) at 

37°C over night. This digestion would cut the wild type sequence, but would not cut 

the sequence with an allele carrying the mutation (cytosine replaced by thymine). The 

products of the digest were loaded on a 2% agarose gel that was run at 50V for 

20min then at 70V for 70min. 

2.4.4 Statistics 

The data presented as means ± SEM were statistically analyzed using SPSS 12.0. 

Data of two independent groups were compared with the Mann-Whitney U-test 

(MWU-test). Data of more than two independent groups were calculated with the 

Kruskal-Wallis H-test and in case of significant variation with a post hoc comparison 

using multiple MWU-tests with sequential Bonferroni correction to adjust for multiple 

comparisons. Data of dependent groups were compared by the Friedman-test 

followed by the Wilcoxon-test. Significance was accepted with p < 0.05. 
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3 Results 

 

3.1 AVP Deficit in LAB mice  

 

3.1.1 Intra-PVN Release of AVP 

Microdialysis (Fig. 17) revealed no 

difference in the release of AVP 

under basal conditions (samples 1-

3) in HAB and LAB mice, but a 

significant increase in both groups 

after hypertonic stimulation 

(p<0.001, sample 4 vs. 3). In 

contrast to basal conditions, after 

hypertonic stimulation the amount of 

AVP released in the PVN of HAB 

animals is significantly higher than 

in LAB animals (p<0.05, sample 4). 

3.1.2 Symptoms of an AVP Deficit 

3.1.2.1 Fluid Intake and Urine Osmolality  

Adult mice of the three lines displayed significant differences in fluid intake (p<0.001) 

and urine osmolality (p<0.05). Whereas LAB mice were found to drink daily a 2-fold 

higher amount of water than HAB and NAB mice (p<0.001, Fig. 18A), only compared 
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Fig. 17. Intra-PVN release of AVP in HAB and LAB 
mice under basal conditions and after hypertonic 
stimulation. * p<0.05 vs. LAB sample 4, ### p<0.001 vs. 
sample 3. 
 

Fig. 18. 24-h fluid intake and urine osmolality of adult 12-14 week old HAB, NAB, and LAB mice. A, 
LAB mice drunk significantly more than HAB and NAB mice. B, Urine of LAB mice was significantly 
lower concentrated than the urine of NAB mice. *** p<0.001, * p<0.05; +++ p < 0.001 vs. HAB and 
NAB, T p=0.063 vs. NAB. 
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to NAB mice they displayed a lower urine concentration (p<0.05, Fig. 18B). 

3.1.2.2 Water Deprivation 

 After 48-h water deprivation, we found a significantly increased plasma osmolality 

(Fig. 19A) in all three lines (HAB: p<0.001; NAB: p<0.01; LAB: p<0.05), being 

significantly stronger increased in LAB compared to NAB mice (p<0.05). Further, we 

found higher AVP plasma levels after water deprivation in HAB and NAB mice 

(p<0.05) compared to basal levels, which does not account for LAB mice (Fig. 19B). 

Consequently urine concentration (Fig. 19C) increased in all three lines (HAB: 

p<0.05; NAB: p<0.01; LAB: p<0.01) but less intense in LAB mice compared to HAB 

mice (p<0.05). There are no differences in the amount of AVP in the hypothalami of 

HAB, LAB, and NAB mice under basal conditions and after water deprivation (Fig. 

20A). The pituitaries exhibited no basal differences in AVP content but a stronger 

depletion in LAB animals after water deprivation compared to HAB and NAB mice 

(Fig. 20B, C).  

Fig. 19. Symptoms of a cDI. A, Water 
deprivation increased plasma osmolality in all 
three lines; stronger in LAB mice compared to 
NAB mice. B, Water deprivation led to an 
increase in plasma AVP in HAB and NAB mice 
only, leading to (C) urine concentration in all 
mice  but with a lower resulting urine osmolality 
maximum in LAB mice. * p<0.05 vs. NAB depr., 
+ p<0.05 vs. NAB basal, ## p<0.01 vs. basal, # 
p<0.05 vs. basal, T: p=0,064 vs. HAB 
basal/depr. 
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3.1.2.3 DDAVP Treatment 

After treatment with vehicle LAB mice displayed a significant lower urine osmolality 

than HAB mice (p<0.05). Treatment with dDAVP (Fig. 21) led to a significant increase 

in urine osmolality in HAB, NAB, and LAB mice (p<0.05), but with a significant lower 

osmolality in LAB animals comparable to basal HAB and NAB levels (p<0.05).  

3.1.2.4 Progress of cDI Symptoms 

From the 5th week on, HAB, NAB, LAB, and CM mice showed significant differences 

in 24h-fluid intake (week 5: p<0.01; weeks 7, 20, and 50: p<0.001, Fig. 22A) and 

urine osmolality (weeks 5, 7, 50: p<0.01; week 20: p<0.001, Fig. 22B). In more detail, 

at weeks 5, 7, 20, and 50 LAB mice drunk significant more than HAB mice (p 0.001). 

Fig. 21. Urine osmolality of HAB, NAB, and 
LAB mice 6h after vehicle or dDAVP treatment. 
Treatment with dDAVP shifted the lower basal 
urine osmolality of LAB mice to a level equal to 
HAB and NAB basal levels. + p<0.05 vs. HAB 
basal, * p<0.05 vs. HAB and NAB dDAVP, # 
p<0.05 vs. basal.  

Fig. 20. AVP concentration and depletion in the  
hypothalamus and pituitary of HAB, NAB, and 
LAB mice under basal conditions and after 48h 
of water deprivation. A, There were no 
differences in the amount of AVP in the 
hypothalamus. B, After water deprivation, the 
AVP concentration in the pituitary of LABs and 
NABs was lower than in HAB mice. C, this was 
due to a stronger percentage decrease in 
LABs. ** p<0.01 vs. HAB depr., + p<0.05 vs. 
NAB depr., ## p<0.01 vs. basal, T p<0.1 vs. 
basal. 
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Additionally, at week 7 water intake was higher than in NABs (p<0.001) and at weeks 

20 and 50 also higher than in NABs (p<0.001) and CM mice (p<0.01). Further, at 

week 20 HAB mice drunk significantly less than NABs (p<0.05) and CMs (p<0.001) 

and at week 50 less than CM (p<0.05) mice. Similar was found in urine osmolality 

with significant differences between LAB and HAB mice at week 5 (p<0.01), between 

LABs, NABs (p<0.05), and CMs (p<0.05), respectively, at week 7 and between LAB 

and the three other lines at weeks 20 (p<0.001) and 50 (p<0.01 vs. HAB, p<0.05 vs. 

NAB, p<0.001 vs. CM). 

The progress in fluid intake in LAB mice was also shown by an increase over the time 

(p < 0.001) with a significant higher fluid intake at week 5 compared to week 3 

(p<0.01), at week 20 relative to weeks 3, 5, and 7 (p<0.001) and at week 50 

compared to weeks 3 and 7 (p<0.01). Also in urine osmolality we found a progressive 

decrease over time with LAB mice at weeks 20 (p<0.05) and 50 (p<0.001) displaying 

lower urine osmolalities than LABs at weeks 3 and 7. 
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Fig. 22. Signs of 
cDI. A, 24-h fluid 
intake of HAB, NAB, 
LAB, and CM mice 
from week 3 to week 
50. LAB drunk 
significantly more 
than the other lines. 
At week 20 and 50, 
HAB drunk less than 
NAB and CM. B, 
Urine osmolality of 
HAB, NAB, LAB, 
and CM mice from 
week 3 to week 50. 
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LAB mice wasless 
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other lines. At week 
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3.1.2.5 EPM Behavior of aged HAB, NAB, 

and LAB Mice 

In the EPM test HAB, NAB, and LAB mice 

at an age of 7 and 50 weeks, respectively, 

(Fig. 23) showed significant differences in 

percentage of time spent on the open arms 

(p < 0.001). Post hoc comparisons between 

the three lines confirmed the differences 

between HABs, NABs, and LABs at an age 

of 7 weeks (HAB vs. LAB/NAB: p<0.01; 

NAB vs. LAB: p<0.05) and an age of 50 

weeks (LAB vs. HAB/NAB: p<0.01; HAB vs. 

NAB: p<0.05). There are no differences in 

percentage of time spent on the open arms 

for HABs, NABs, and LABs between the 

two time points.  

3.1.2.6 RFLP Analysis in the AVP Precursor Gene 

The restriction enzyme cuts the wild-type sequence producing two small fragments of 

112 and 84bp (HAB allele), whereas the sequence carrying the mutation is not 

affected by the enzyme resulting in one fragment of 196bp visible on the gel (Fig. 24). 
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mice,  3 fragments 
for heterozygous CM 
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Fig. 23. Anxiety-related behavior on the EPM of 
7 and 50 week old HAB, NAB, and LAB mice. 
HAB animals of both ages spend significantly 
more and LAB animals of both ages spend 
significantly less time on the open arm of the 
EPM than NAB mice. *** p<0.001 (same age); 
+++ p<0.001 vs. LAB, ++ p<0.01 vs. LAB, ### 
p<0.001 vs. NAB, ## p<.0.1 vs. NAB, # p<0.05 
vs. NAB. 
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HAB, LAB, NAB, and CM mice analyzed for their Avp sequence had all the expected 

alleles. LAB mice were homozygous for the C(+40)T mutation, HAB mice were 

homozygous for the wild-type allele, NAB animals were both homozygous for the wild 

type or the mutant allele as well as heterozygous, and CM mice were heterozygous. 

3.1.2.7 Avp mRNA Expression in the PVN 

In situ hybridization of Avp mRNA in the PVN showed a significant difference 

concerning both relative intensity (Fig. 25A) and area (Fig. 25B) of labeled Avp 

mRNA between the lines. At PND 5, weeks 3 and 7 (p<0.01/0.05), with a lower Avp 

mRNA label in LAB mice disappearing at week 20, and an increase of labeled area in 

LABs over the time (p<0.05) shown by significant differences between PND 5 and 

weeks 7 and 20 (p<0.05), respectively.  

 

Fig. 25. Avp mRNA 
in situ hybridization 
in PVN neurons of 
HAB, NAB, LAB, 
and CM mice. A, 
Relative intensity of 
Avp mRNA label. B, 
Area of Avp mRNA 
label. LAB mice 
showed a decreased 
Avp mRNA-labeled 
area at PND 5, week 
3 and 7 compared to 
HAB and NAB mice, 
respectively, with an 
increase from PND 5 
to later timepoints. ** 
p<0.01, * p<0.05 
(same age); ## 
p<0.001 vs. HAB, + 
p<0.05 vs. NAB, & 
p<0.05 vs. LAB5. 
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3.1.3 Viral-Vector-induced Increase in Avp mRNA Expression in the PVN of 

LAB Mice 

3.1.3.1 Behavior 

In the EPM test, animals showed significant differences in the latency to the first entry 

onto the open arms (p<0.01) with AAV-Avp treated mice displaying an increased 

latency (p<0.05 vs. AAV-lacZ; p<0.01 vs. Control) but no differences in the time spent 

on the open arms (Fig. 26A). Additionally, the three groups displayed a significant 

difference in total (p<0.05) and a trend in open (p<0.061) arm entries with AAV-Avp 

treated mice 

having less total 

entries compared 

to AAV-lacZ 

treated and 

Control mice 

(p<0.05). This is 

due to a 

decreased 

number of entries 

onto the open 

arms compared to 

control mice 

(p<0.05), but no 

differences onto the 

closed arms (Fig. 

26B). 

 

In further tests, AAV-Avp treated animals showed no significant behavioral 

differences in the DaLi (Fig. 27A), on the EPF (Fig. 27B), in the FS test (Fig. 27C), in 

TST (Fig. 27D), and in the OF (Fig. 27E, F) compared to AAV-lacZ treated and 

Control animals. Also the SRT revealed no differences in initial, stress values, and 

the increase of plasma corticosterone between the three treatment groups (Fig. 27G).  

 

 

Fig. 26. EPM behavior after AAV-Avp treatment. AAV-Avp treated mice 
showed (A) a increased latency to the first open arm entry and (B) 
decreased locomotion due to less open arm entries. * p<0.05 vs. AVP, T 
p<0.075 vs. AVP. 
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Fig. 27. Behavioral analysis after AAV-Avp treatment. AAV-Avp treated mice displayed no 
behavioral differences (A) in the DaLi, (B) on the EPF, (C) in the FS test, (D) in the TST, and (E, F)  
in the OF compared to AAV-lacZ treated and Control animals. G, AAV-Avp treated mice showed no 
different initial or stress-induced maximal values and increase of plasma corticosterone 
concentrations after restrained stress.  
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3.1.3.2 Fluid Intake and Urine Osmolality 

Over the time course of the experiment, from day 10 to day 65 after surgery, AAV-

Avp treated mice exhibited a significant difference in 24-h fluid intake (p<0.001, Fig. 

28A) and urine osmolality (p<0.05, Fig. 28B) due to daily fluctuations, but with no 

noticeable decrease or increase over time. This is confirmed by no differences in fluid 

intake and urine osmolality found between the three treatment groups within single 

time points. 

 

3.1.3.3 Avp mRNA Expression in the PVN 

Statistical analysis of Avp mRNA in 

situ hybridization revealed just a 

tangential difference in Avp mRNA 

expression in the PVN (p=0.093) 

with AAV-Avp treated mice 

displaying higher levels of Avp 

mRNA expression compared to 

animals of the AAV-lacZ treated 

group and Controls (Fig. 29). 
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Fig. 29. Avp mRNA expression in the PVN after AAV-
Avp treatment. AAV-Avp treated LAB mice expressed 
more Avp mRNA than AAV-lacZ treated or Control mice. 

 

Fig. 28. AAV-
Avp influence 
on daily fluid 
intake and urine 
osmolality. (A) 
Fluid intake and 
(B) urine 
osmolality 
revealed no 
difference 
between the 
three groups on 
each time point. 
Over the time 
course, fluid 
intake and urine 
osmlality 
showed a 
significant 
difference over 
the time for the 
AAV-Avp group 
but with 
unspecific 
fluctuations. 
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3.2 Postnatal Maternal Influence on the HAB/LAB-Phenotype 

 

3.2.1 Maternal Behavior of HAB and LAB Mice 

3.2.1.1 Reproductive Success 

All of the HAB and 79.1% of the LAB females got pregnant. 15% HAB and 36.8% 

LAB dams lost their pups directly during or after birth due to a lack of correct 

maternal behavior including licking and nursing. This resulted in a rate of total 

reproduction failures of 15% in HAB mothers and 50% in LAB mothers (Fig. 30).   

 

 
 

3.2.1.2 Time Course 

In the following, data of HABs and LABs are further split in Control and Cross group, 

because of the experimental design (see: 2.2.2.1, 2.2.2.2). On PND 2 and 4 dams of 

the four groups exhibited great differences in maternal investment (Mother ON: PND 

2 p<0.05, PND 4 p<0.05, Fig. 31A; Mother OFF: PND 2 p<0.05, PND 4 p<0.05, Fig. 

31B). This was attributed to differences in arched back nursing, still existent on PND 

8 (p<0.01, Fig. 31C). Though, Bonferroni correction due to multiple testing resulted in 

no significant differences in between the four treatment groups. A biologically justified 

comparison of HAB and LAB dams within a treatment group, neglecting the 

Bonferroni correction (used in all following comparisons), led to significant higher 

levels of arched back nursing in HAB dams of both groups compared to the 

equivalent LAB dams (PND 2 p<0.05, PND 4 p<0.01, PND 8 p<0.01 (vs. Control), 

Fig. 31C). All four groups showed a decline in arched back nursing over the course of 

time (p<0.001/0.01, Fig. 31C). Blanked posture nursing increases over the time 

(p<0.05/0.01), except in LAB Cross mothers, with a strong difference between the 

lines (p<0.001) in both treatment groups on PND 12 (p<0.001; Fig. 31E). 
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Fig. 30. Breeding success in HAB 
and LAB mice. All HAB females got 
pregnant, but 3 failed to give birth 
correctly. 5 LAB females failed to get 
pregnant and 7 lost their pups during 
birth. This resulted in a total failure 
rate of 15% in HAB and 50% in LAB 
mice. 
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Fig. 31. Time Course. A, B, On PND 2 and 4 dams of the two lines exhibited differences in the maternal 
rearing style due to differences in (C) arched back nursing also seen on PND 8 with higher levels in HAB 
dams in both treatment- groups, but with an decline over the time course in all groups. E, Blanked
posture nursing increases except in LAB cross mothers, with finally HAB mothers exhibiting higher levels 
on PND 12. G, LAB dams displayed increased levels of side posture compared to HAB mothers on PND 
4, 8, and 12. D, outside the nest, LAB mothers showed a increased locomotor activity compared to HAB 
mothers on PND 2 and 4. F, Both lines show no differences in active self-directed behavior 
(eating/drinking/self-grooming) and (H) a parallel increase in sleeping over the observation time except of 
LAB control dams. *** p < 0.001, ** p < 0.01, * p < 0.05 (same time); ++ p < 0.01, + p < 0.05 vs. LAB 
Control, †† p < 0.01, † p < 0.05 vs. LAB Cross,  ## p < 0.01, # p < 0.05 (same line). 
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Side posture nursing revealed no difference on PND 2, but on PND 4 (p<0.05) with a 

difference between HAB and LAB in the Control group (p<0.01), and on PND 8 and 

PND 12 (p<0.01) with differences between HAB and LAB dams in both treatment 

groups (p<0.05/0.01, Fig. 31G). Further, the four groups showed differences in 

locomotor activity on PND 2 and 4 (p<0.01) with LAB mothers exhibiting higher 

locomotion than HAB mothers of the same group on PND 2 (p=0.065 (Control), 

p<0.01 (Cross)) and 4 (p<0.01, Fig. 31D). The difference diminished on PND 8 and 

12. The four groups displayed no differences in active self-directed behaviors 

(eating/drinking/self-grooming, Fig. 31F) and sleeping (Fig. 31H) over the observation 

time except on PND 12 in the latter (p<0.05) due to LAB Control dams sleeping 

significantly less than HAB control and LAB Cross dams (p<0.01). This was also 

seen by an increase in sleeping in HAB Controls and crosses and LAB Cross 

mothers (p<0.05/0.01), which was not seen in LAB Controls. 

3.2.1.3 PND 2 

The main differences in maternal investment between the lines were at 3-4p.m. 

(Mother ON: p<0.05, Mother OFF: p<0.01, Fig. 32A, B). In particular, arched back 

nursing (p<0.01) and blanked posture (p<0.05) were different, with HAB mothers of 

both treatment groups showing more arched back nursing (p<0.05/0.01, Fig. 32C) 

and HAB Cross displaying more blanked posture nursing (p<0.05, Fig. 32E) 

compared to the equivalent LAB group. Also at 11-12p.m., arched back nursing was 

significantly different between the lines (p<0.05, Fig. 32C). Concerning side posture 

nursing, the groups exhibited no differences (Fig. 32G). Further, the lines showed 

differences in locomotion and active self-directed behavior (eating/drinking/self-

grooming), significant at 7-8a.m. and 3-4 p.m. (p<0.05). In the former, HAB Crosses 

and HAB Controls, respectively, exhibiting lower locomotor activity than the 

equivalent LAB group (p<0.05; Fig. 32D). In the latter, significant difference were 

displayed at 3-4p.m. (p<0.05; Fig. 32F). Concerning sleeping, the groups exhibited 

no differences (Fig. 32H). 

3.2.1.4 PND 4 

The main intraday differences in nursing behavior were also on PND4 at 3-4p.m. 

(p<0.05, Fig. 33A), but with more spacious and pronounced alterations concerning 

arched back nursing (p<0.05/0.01, Fig. 33C) and side posture nursing (p<0.01, Fig. 

33G). Thus, LAB mothers showed less arched back nursing at 11-12a.m. (p<0.01), 



Results 

47 
 

A B 

 Eating/Drinking/Self-grooming 

0

10 
20 
30 
40 
50 
60 
70 

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

* 
F 

  Side Posture 

0

5

10

15

20

25

30

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

G   Sleeping/Resting 

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

H 

Mother ON 

time point 
0

10 20 30 40 50 60 70 80 90 100 

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

%
 

* 
†

0

20

40

60

80

100 
120 

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

 Mother OFF 

** 

†

D   Locomotion 

0

10 
20 
30 
40 
50 
60 

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

* * 

†

+ 
0

10

20

30

40

50

60

70

80

90

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

Arched Back Nursing 

** 

C 
* 

† 

+ 
†

0

5

10

15

20

25

30

7-8a.m. 11-12a.m. 3-4p.m. 7-8p.m. 11-12p.m. 

time point 

%
 

Blanket Posture 

** 
E 

† 

HAB Control (n=6) HAB Cross (n=6) LAB Control (n=6) LAB Cross (n=6) 

Fig. 32. PND 2. A, B, On PND 2 the main intraday differences in maternal care were at 3-4p.m. At that 
time HAB dams showed high investment in nursing, mainly (C) ached back and blacked posture. G, The 
four groups exhibited no difference in side posture nursing. Outside the nest, LAB dams displayed (D) 
high locomotor activity and (F) active self-directed behavior (eating/drinking, grooming) with the most 
obvious differences at 3-4 p.m.. ** p < 0.01, * p < 0.05 (same time piont); + p < 0.05 vs. LAB Control, ††
p < 0.01, † p < 0.05 vs. LAB Cross.  
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3-4p.m. (p<0.01), and 11-12p.m. (p<0.01) and higher levels of side posture nursing 

at 11-12a.m. (p<0.01) than HAB mothers. Although Mother OFF revealed no 

significant differences between the lines (Fig. 33B), locomotion showed differences, 

significant at 7-8a.m. (p<0.01) and 3-4p.m. (p<0.05, Fig. 34D) with HAB mothers 

exhibiting lower levels (p<0.05/0.01).  

3.2.1.5 PND 8 

Mother ON and mother OFF revealed significant differences at 11-12a.m. (p<0.05, 

Fig. 34A, B), with no differences between the lines but between LAB Control and LAB 

Cross dams (p<0.05). Arched back nursing was less shown at PND 8 except at 11-

12a.m. and 3-4p.m., revealing differences between the lines (p<0.05/0.01) with HAB 

mothers displaying higher levels compared to LAB mothers (p<0.05, Fig. 34C). The 

lines showed no differences in blanked posture (Fig. 34E), but in side posture nursing 

(p<0.01) with LAB mothers still exhibit higher levels than HAB mothers (p<0.01, Fig. 

34G). Outside the nest, the mice displayed differences in locomotion (Fig. 31D) and 

active self-directed behavior (eating/drinking/self-grooming Fig. 34F), significant (p< 

0.05) at 11-12p.m. and at 11-12a.m., respectively.  

3.2.1.6 PND 12 

 HAB and LAB dams showed no differences in time spent inside or outside the nest 

(Fig. 325A, B). They performed less arched back nursing during the day with no 

difference between the lines (Fig. 35C), but more blanked posture nursing, especially 

in HAB mothers at 11-12a.m. (p<0.05, Fig. 35E), and side posture nursing, especially in 

LAB mothers at 11-12a.m. and 3-4p.m. (p<0.05, Fig. 35G). Outside the nest 

differences in locomotion are less distinct, but with differences at 3-4p.m. (p<0.05, 

Fig. 35D). The difference in sleeping is attributed to very low sleeping in LAB Control 

mothers at 7-8a.m. (p<0.05, Fig. 35H).  
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Fig. 33. PND 4. A, The main intraday differences in nursing behavior were still at 3-4p.m but with more 
spacious and pronounced alterations concerning the nursing style over the day. C, Thus, LAB mothers 
showed less arched back nursing at 11-12a.m., 3-4 p.m. and 11-12p.m. and (G) higher levels of side 
posture nursing at 11-12a.m. than HAB mothers. B, Although Mother OFF revealed no significant 
differences between the lines, (D) LAB mothers exhibited still differences in locomotion over the day, 
significant at 7-8a.m. and 3-4p.m. ** p < 0.01, * p < 0.05 (same time point); ++ p < 0.01, + p < 0.05 vs. 
LAB Control, †† p < 0.01, † p < 0.05 vs. LAB Cross.   
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Fig. 34. PND 8. A, B, Mother ON and mother OFF revealed differences at 11-12a.m., with no 
differences between the lines but between LAB Control and LAB Cross dams. C, Arched back nursing 
was less pronounced shown at PND 8 except at 11-12a.m. and 3-4p.m. At this time point HAB mothers 
displayed higher levels compared to LAB mothers. E, The lines showed no differences in blanked 
posture, but (G) in side posture nursing with LAB mothers still exhibiting higher levels than HAB 
mothers. Outside the nest, the mice displayed differences in (D) locomotion and (F) active self-directed 
behavior (eating/drinking, grooming), significant at 11-12p.m. and at 11-12a.m., respectively. ** p < 
0.01, * p < 0.05 (same time point); ++ p < 0.01, + p < 0.05 vs. LAB Control, † p < 0.05 vs. LAB Cross. # 
p < 0.05 vs. HAB Control.  



Results 

51 
 

Fig. 35. PND 12. A, B,  HAB and LAB dams showed no differences in time spent inside or outside the 
nest. They performed (C) less arched back nursing with no difference between the lines, but (E) more 
blanked posture nursing, especially in HAB mothers at 11-12a.m., and (G) side posture nursing, 
especially in LAB mothers at 11-12a.m. and 3-4p.m. D, Outside the nest differences in locomotion are 
less distinct but with differences at 3-4p.m. H, The difference in sleeping is attributed to very low 
sleeping in LAB control mothers. * p < 0.05 (same time point); + p < 0.05 vs. LAB Control, †† p < 0.01 
vs. LAB Cross.  
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3.2.2 Cross-Fostering HAB/LAB Mice 

3.2.2.1 Maternal Behavior 

In consideration of the data shown above (see 3.2.1.2-3.2.1.6), dams rearing pups of 

the other line (Cross), in general, displayed no differences in nursing style and 

maternal investment than mothers rearing their own pups (Control). However, some 

differences were observed. On PND 4, LAB Cross dams showed less side nursing 

posture than  Control mice at 11-12a.m. (p<0.05, Fig. 33G). At PND 8, Mother ON 

and mother OFF were different between LAB Crosses and LAB Controls at 11-

12a.m. (p<0.05, Fig 34A, B) with LAB Crosses spending more time outside the nest 

due to higher levels of active self-directed behavior (p<0.05, Fig. 34F). Further, there 

was a difference between HAB Crosses and HAB Controls at 11-12p.m. concerning 

locomotion (p<0.05, Fig. 34D). At PND 12, LAB Cross mothers showed less blanked 

posture nursing at 11-12a-m. (p<0.05, Fig. 35E) and more sleeping at 7-8a.m. 

(p<0.05, Fig. 35H) compared to LAB Controls. 

3.2.2.2 Litter Size 

The mean number of born pups assessed 12h after birth, before culling, differed 

between HABs and LABs with a higher number in HAB litters (p<0.05). The equalized 

litter size after culling was kept also when divided in control and cross-fostered litters. 

Also after weaning, there are no differences in litter size between HAB and LAB, 

control and cross-fostered groups. Thus, litters showed no loss of pups from 12h 

after birth to weaning (Fig. 36). 

 

3.2.2.3 Weight Gain 

Male (Fig. 37A) and female (Fig. 37B) pups of all four groups showed a progressive 

weight gain from PND 5 to PND 49 (p< 0.001). At PND 5, pups of both genders of the 

Fig. 36. Litter size. 
12h after birth litter 
size is different 
between HABs and 
LABs. After culling, 
there is no  
difference in the 
number of pups with 
no relevant loss till 
weaning. * p<0.05 
vs. LAB; w= 
weaning. 
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LAB control group were heavier (p< 0.001 vs. HAB Control, HAB Cross, LAB Cross) 

and LAB cross-fostered pups were lighter than the other pups (p<0.001 vs. LAB 

Control, HAB Cross, p<0.01 vs. HAB Control). The same was found for male pups of 

the LAB control group at PND 12 (p< 0.001 vs. LAB cross, p<0.01 vs. HAB control, 

p<0.05 vs. HAB Cross), but not for cross-fostered LAB pups and LAB females. On 

PND 28 and 49, male LAB pups of the control group weighed more than the LAB 

pups of the cross-fostered litters (p<0.001), but not more than the pups of the HAB 

litters. Again, cross-fostered mal LAB pups were lighter than HAB pups of both 

treatments on PND 28 (p<0.001) and on PND 49 (p<0.05 vs. HAB Control, p<0.001 

vs. HAB Cross). Among the females, pups of the LAB cross-fostered litters were 

lighter than the pups of both HAB groups on PND 28 (p< 0.001 vs. HAB Control, HAB 

Cross) and on PND 49 (p<0.01 vs. HAB Control, HAB Cross). 

3.2.2.4 USV 

The analysis of the number of USV calls revealed strong differences between the 

lines (p<0.001, Fig. 38A). Male and female HAB pups emitted significantly more USV 

calls than LAB pups (p < 0.001). Also the USV-associated locomotion displayed 

significant differences between the lines (p<0.001, Fig. 38B), with male and female 

Fig. 37. Weight Gain. A, Male and (B) female pups of all groups showed a progressive increase in 
weight. Cross-fostered LAB pups of both genders were lighter than HAB pups and on PND 5 also 
lighter than LAB Control pups. . *** p<0.001, ** p<0.01, * p<0.05 (same age);  ### p<0.001 (same 
line) in HAB Control, HAB Cross, LAB Control, LAB Cross; +++ p<0.001 LAB Control vs. HAB; ††† 
p<0.001 LAB Cross vs. LAB Control, HAB Cross; †† p<0.01 LAB Cross vs. HAB Control; §§§ p<0.01 
LAB Cross vs. LAB Control, HAB; $$$ p<0.001 LAB Cross vs. HAB; $$ p<0.01 LAB Cross vs. HAB. 
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HAB pups showing higher locomotor activity than LAB pups (p<0.001). Cross-

fostering treatment had no influence on USV and locomotion. 

3.2.2.5 EPM 

Male and female HAB and LAB mice showed the well established differences 

(p<0.001, Fig. 39A, B) with LAB mice spending significantly more percentage of time 

on the open arms independent of treatment (p<0.01, Fig. 39A) and exhibiting more 

percentage of entries into the open arms (p<0.01, Fig. 39B). Remarkably, male and 

female cross-fostered HAB mice showed a slight but significant increase in 

percentage of time spent on the open arms (p<0.05, Fig. 39A). Also the latency to the 

first entry onto the open arms revealed differences (p<0.001), but reaching 

significance only in male LAB Control animals (p<0.01, Fig. 39C). 

3.2.2.6 TST 

Male and female HAB and LAB mice displayed the already known differences 

(p<0.001, Fig. 40A, B), with LAB mice spending significantly less time immobile 

(p<0.01, Fig. 40A) and showing a higher latency to the first immobility (p<0.01, Fig. 

40B). Cross-fostered mice exhibited no change in immobility time, whereas cross-

fostered LABs showed a decrease in latency for both genders, but significant only in 

females (p<0.05, Fig. 40B). 

 
 

Fig. 38. Ultrasonic Vocalization and Locomotion on PND 5. A, 5 day old HAB pups displayed an 
anxiety-related increase in the number of USV calls compared to LAB pups. B, The HAB pups 
showed also an increase in the USV call connected locomotion. Cross-fostering had no significant 
influence on USV and locomotion. *** p < 0.001 within gender; ++ p < 0.001vs. LAB Control, †† p < 
0.01vs. LAB Cross. 
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3.2.2.7 OF 

HAB and LAB mice of both sexes displayed no differences in time spent in the inner 

or outer zone of the OF (Fig. 41A, B). Analysis of the locomotion in the OF revealed 

differences between the groups (p<0.001, Fig. 41C) with male and female LAB mice, 

independent of treatment, displaying more line-crossings than the equivalent HAB 

mice (p<0.001). Further, the lines showed differences in exploratory behavior 

(p<0.001, Fig. 41D) as male and female LAB mice exhibited significantly more 

rearings in the outer zone than HAB mice (p<0.001) with a slight but not significant 

decrease in cross-fostered LABs compared to LAB control mice.  

3.2.2.8 SRT 

15min of restraint stress led to a greater corticosterone increase in LAB males than in 

HAB males (p<0.001, Fig. 42C) with no influence of cross-fostering. Accordingly, 

male LAB mice exhibited higher corticosterone levels after stress than male HAB 

mice (p<0.001, Fig. 37A). Females of both lines displayed the same increase and the 

same post-stress levels (Fig. 42B, C) with no cross-fostering-induced alterations. 

Fig. 39. EPM. Adult LAB mice spent 
significantly (A) more %time and (B) showed 
more  entries on the open arms compared to 
HAB mice with (C) a significant lower latency 
in male LAB Control. A, Cross-fostered HAB 
mice displayed an increase in %time spent on 
the open arms compared to HAB Controls. *** 
p < 0.001 within gender; ++ p < 0.001vs. LAB 
Control, †† p < 0.01vs. LAB Cross, # p < 0.05 
vs. HAB control. 
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3.2.2.9 Avp mRNA Expression.  

In situ hybridization of Avp mRNA in the PVN revealed significant differences 

between the groups in relative intensity (p<0.001, Fig. 43A) and area (p<0.001, Fig. 

Fig. 41. OF. There were no differences in time spent (A) in the inner or (B) outer zone of the OF. 
LAB mice displayed significantly higher locomotor (C) and exploratory (D) activity in the outer zone. 
Cross-fostering led to slight but not significant alterations in exploratory behavior. *** p < 0.001 within 
gender; ++ p < 0.001 vs. LAB Control, ††† p < 0.001 vs. LAB Cross. 

Fig. 40. TST. LAB mice showed a strong decrease in (A)  immobility time with (B) an increase in 
latency compared to HAB mice. Cross-fostering reduced the latency in LAB females (B). *** p < 
0.001 within gender; ++ p < 0.001, + p < 0.05 vs. LAB  Control, †† p < 0.01 vs. LAB Cross. 
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43B). Thus, LAB mice of both treatment groups expressed less Avp mRNA than HAB 

animals. The cross-fostering had no influence on the Avp mRNA expression levels. 
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Fig. 42. SRT. Adult (A) male and (B) female 
mice showed an increase in plasma 
corticosterone after restraint stress 
(p<0.001). In HAB male mice the increase 
was lower compared to LABs. *** p < 0.001 
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Fig. 43. Avp mRNA ISH. LAB mice exhibited a lower (A) relative intensity and (B) area of Avp mRNA 
expression in the PVN. *** p < 0.001 within gender; +++ p < 0.001 vs. LAB Control, ††† p < 0.001vs. 
LAB Cross. 
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4 Discussion 

 

LAB mice displayed, besides their reduced anxiety, symptoms of cDI, revealing a 

strong deficit of releasable AVP, which was proved in the PVN by microdialysis. This 

AVP deficit is likely based on a SNP in the signal peptide of the AVP precursor gene. 

An increase of wild-type Avp mRNA expression in the PVN of LAB mice resulted in 

increased anxiety-related behavior, confirming a partial influence of AVP on trait 

anxiety. Furthermore, the difference in maternal behavior of HAB and LAB dams had 

no influence on anxiety-related and depression-like behavior, shown in a cross-

fostering study, confirming the genetic basis of the bred phenotype. 

 

4.1 AVP Deficit in LAB Mice 

 

Regarding the observed results, it is very likely that the clear-cut deficit of AVP in the 

PVN of LAB mice is the key factor in both trait anxiety and cDI. 

The microdialysis study revealed a strong deficit in the releasable amount of 

bioactive AVP in LAB mice compared to the more anxious HAB mice. Since AVP is 

not only centrally released from somata and dendrites of the PVN neurons or 

synaptically at the level of the median eminence, but also as antidiuretic hormone 

into the systemic circulation, the deficit in AVP affects both behavior and the water 

balance system of LABs. This is reflected by an increased daily fluid intake and a 

decreased urine osmolality of these mice. Water deprivation for 48h pointed the 

problem out in a diminished increase of plasma AVP resulting in an inadequate urine 

concentration and a stronger increase in plasma osmolality in LABs compared to 

NABs. The treatment with dDAVP, a V2-specific potent AVP analog, increased the 

urine osmolality to a level typical of HAB and NAB mice. Analyzing the progressive 

development of the symptoms of cDI revealed a constant increase in fluid intake 

during adolescence and a robustly elevated level in adulthood accompanied by a 

steady decrease in urine osmolality. The intensity of anxiety and non-anxiety in HAB 

and LAB mice, respectively, is not different in aged animals compared to the levels 

measured in adult, seven week old mice. Analyzed concerning a SNP in the signal 

peptide of the AVP precursor gene, aged HABs mice were identified as homozygous 

for the wild-type allele, LABs as homozygous for the mutant allele, CMs as 

heterozygous, and NABs as carrier of all three variations. Furthermore, in situ 
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hybridization of Avp mRNA in the PVN revealed a decreased expression level in 

LABs. This was present only in adolescence and at the beginning of the adulthood, 

disappearing during aging.  

The existence of the deficit in AVP is reflected by the physiological consequences 

emerging in LAB animals. A lack of antidiuretic acting AVP leads to a noticeable 

insufficiency in maintaining a homeostasis in body water and consequently in plasma 

osmolality and plasma volume (Robertson et al., 1976), known from patients suffering 

from DI (Verbalis, 2003). Visible signs are an increased water intake and 

consequently an increase in the amount of secondary urine, reflected by a low urine 

osmolality, and in fact also displayed by LAB mice. The severe consequences are 

more obvious after water deprivation, an approach also used in patients. These 

challenging conditions uncover the inability to increase plasma AVP resulting in a 

harmful increase in plasma osmolality (Verbalis, 2003). The LAB mice’s inability to 

increase plasma AVP under conditions of water deprivation probably results from a 

reduced refill-rate of the neurohypophysial synapses with AVP-containing 

neurosecretory vesicles. This reduction is observable by the depletion of the pituitary 

reflected by the stronger decrease in the amount of AVP in the pituitary of LAB mice 

after water deprivation compared to NAB and HAB mice. The treatment with dDAVP, 

an AVP analog used in clinical diagnostics and therapy of patients (Rado et al., 1976; 

Vavra et al., 1968; Verbalis, 2003), increased the urine osmolality to a level typical of 

HAB and NAB mice. This excludes a defect in the V2 receptor-mediated insertion of 

aquaporines and confirms a deficit in AVP as the underlying ligant of the observed 

symptoms. A identified cytosine to thymine nucleotide transition (C40T) in the AVP 

precursor gene, exchanging alanine to valine in the third position of the signal 

peptide (A(-21)V) in LAB mice (Murgatroyd, unpubl., Fig. 44), is very likely involved in 

this AVP deficit. 

At present, 56 dominant and one recessive SNP in the AVP precursor gene have 

been identified as the cause of cDI in humans. Most of the mutations, including 

nucleotide substitutions or deletions, are localized in the NPII part and some in the 

region, which encodes for AVP. The mutations change the stable three-dimensional 

structure of the protein by inducing substitutions or deletions of amino acids, involved 

in disulfide bridges or secondary structures, like β-sheets and a α-helix, (e.g. NPII: 

G14R, G17V, E47del, S57G, G65V, C73G, C85G; AVP: Y2H, F3del, P7L) or by 

forming a truncated propeptide (e.g. C61stop, C67stop, C79stop, E87stop) lacking 
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the glycopeptide and some amino acids of the NPII moiety (Christensen and Rittig, 

2006; de Bree and Burbach, 1998; Ito and Jameson, 1997; Ito et al., 1999; Nagasaki 

et al., 1995; Nijenhuis et al., 1999, 2000; 2001; Rittig et al., 2002; Willcutts et al., 

1999) These structural alterations lead to an  incorrect folding of the peptides and 

inadequate binding of vasopressin to its carrier protein, whereby the misfolded 

propeptide accumulates in the ER. Accumulation results in an impairment of further 

processing, axonal transport, and, finally, AVP secretion. The accumulated mutant 

protein in the ER hinders not only the processing of the wild-type AVP propeptide 

(dominant-negative effect) but also the processing of other essential proteins, finally 

resulting in cell death (Ito and Jameson, 1997; Ito et al., 1999). Both cause the 

delayed onset and progressive course of the disease. Mutations identified in the 

signal peptide affect the N-terminal and the C-terminal part. One is the very common 

A(-1)T mutation in the COOH-terminus (Christensen and Rittig, 2006). An 

involvement of this amino acid in cleavage of the signal peptide was suggested by 

the finding of a 23 kDa molecule in an in vitro study consistent with an uncleaved 

prepropeptide unable for proper folding (Ito and Jameson, 1997; Ito et al., 1993; 

Siggaard et al., 1999). The mutation leads to a cDI with delayed onset and 

progressive development (Kawakami et al., 1998; McLeod et al., 1993; Siggaard et 

al., 1999). This pattern is caused by the impaired transport of the misfolded 

propeptide and the advanced decrease of cell viability (Ito and Jameson, 1997; Ito et 

al., 1999) provoked by the cytotoxicity of the unfolded propeptide accumulated in the 

ER as mentioned above. A SNP in the same codon which leads to a substitution of 

valine for alanine in the same position  (A(-1)V) was found in two families with similar 

gtc 

SP AVP NPII GP 
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cDI symptoms (Repaske et al., 1997). In contrast, a mouse model carrying the A(-1)T 

mutation displays no symptoms of cDI (Russell et al., 2003), underlining that the 

individual severity of this disease is influenced not only genetically but also by other 

unknown factors.  

Two other SNPs identified in the signal peptide change the N-terminal part. The 

substitution or deletion of one nucleotide (A225G, G227A, G227del) leads to the 

deletion of the first four amino acids (M1P2D3T4del) (Beuret et al., 1999; Rutishauser 

et al., 1996). Since methionine forms the translation initiation codon (ATG), this 

translation is now inhibited. Nevertheless, the translation of the protein takes place, 

because the fifth amino acid displays an alternative onset for translation. Translation 

of this protein results in a prepropeptide with a truncated signal peptide lacking a 

hydrophilic N-terminal segment. Changing or deletion of the N-terminal part leads to 

a different positioning of the signal peptide within the translocation machinery and 

reduces the possibility for cleavage from the propeptide (Nilsson et al., 1994). 

Misfolding and accumulation of the AVP precursor in the ER is the consequence 

(Beuret et al., 1999).  

Comparable processes may occur with the mutant AVP prepropeptide in LAB mice. 

The exchange of the amino acid alanine to valine may alter the structure of the N-

terminal part of the signal peptide, because an additional side chain (methyl group) 

provided by valine can alter the hydrophobicity. As mentioned above, the structural 

alteration of the N-terminal part of the signal peptide can inhibit the adequate 

cleavage of the signal peptide, interfering with the subsequent processing of the 

peptide.  Expected consequences would be an accumulation of the peptide in the ER 

and a diminished transport of the precursor, resulting in low levels of bioactive and 

secretable AVP in a progressive manner. The lack of progressive decline in Avp 

mRNA-labeled PVN neurons in aged LABs, possibly reflecting continuous cell death, 

points to a slightly reduced processing and a partial accumulation of the mutant AVP 

precursor in the ER. Moreover, the release of a glycosylated uncleaved propeptide 

with reduced function is possible, similar to the A(-1)T mutation. A complete lack of 

AVP was shown to be lethal, seen in mice homozygous for the C67stop mutation 

(Russell et al., 2003). Therefore, the hypothesis that a correlation exists between 

reduced AVP release and reduced antidiuretic activity fits with the observed 

phenomena in LAB mice, homozygous for the C40T SNP in the signal peptide. This 

process was also found for the P7L mutation, causing the only known recessive form 
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of cDI. Here, the mutant propeptide is not retained in the ER, but it seems to diminish 

the processing to AVP and NPII (Christensen et al., 2004), leading to the secretion of 

a Leu-AVP with sufficient endocrine activity, but with decreased binding affinity to the 

V2 receptor (Willcutts et al., 1999). 

 A moderate release of a peptide with reduced efficiency would also explain the equal 

basal AVP plasma levels between HAB, NAB, and LAB mice, in contrast to the 

elevated fluid intake and decreased urine osmolality in LABs compared to HABs and 

NABs, as the AVP-RIA is not able to differ between the mature AVP and the 

unprocessed precursor. Therefore, it is necessary to investigate the precise cellular 

processes (i.e. quantification of the accumulation of the precursor in the ER and 

analysis of the diminished processing during axonal transport and of the amount and 

quality of the released peptide) to evaluate the impact of the C40T SNP on the AVP 

deficit in LAB mice. In contrast to the non-decrease of Avp mRNA labeled cells in the 

PVN, LAB mice showed an increase in fluid intake and decrease in urine osmolality 

while aging, pointing to the progressive development of the disease. The 

magnocellular neurons, responsible for osmolality-dependent AVP release, are 

located in the PVN and SON with the major part in the latter (Lucassen et al., 1995; 

Swaab, 1998; Swanson and Sawchenko, 1983). Thus, the main source of the 

increase in cDI symptoms can be a low, but progressive, cell loss in the SON, not 

detectable in the PVN by in situ hybridization, as the magnocellular part of the PVN is 

considerably smaller than its parvocellular part (Lucassen et al., 1995; Swaab, 1998; 

Swanson and Sawchenko, 1983). Moreover, accumulation of the prepropeptide and 

its cytotoxic effect in the parvocellular neurons is reduced, since the rate of AVP 

biosynthesis is much lower in parvocellular than in magnocellular neurons (Burbach 

et al., 2001). Equally, a case report of a 72-year-old man suffering from excessive 

thirst and urination refers from a loss of magnocellular SON and PVN but not 

parvocellular neurons in the PVN (Bergeron et al., 1991), supporting the difference in 

AVP synthesis in the two cell types. Investigations of the SON, including Avp mRNA 

expression levels and the amount of releasable AVP, as well as cell culture studies 

revealing the effect of the SNP on AVP processing are necessary to find out the 

exact molecular and cellular background of the cDI symptoms in LAB mice.  

Besides the retention of the mutant prohormone in the ER, the extent of degradation 

of misfolded proteins from the ER can also influence the viability of the cell (Repaske 

et al., 1997). Since both problems occur to different degrees among the different 
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mutations, the degree of cDI in patients varies heavily among the known mutation of 

the AVP-encoding gene (Christensen et al., 2004; Ito and Jameson, 1997; Nijenhuis 

et al., 2001). However, it is not known whether there is a direct correlation among 

retention of the mutant prohormone in the ER, degenerative processes, and the 

severity of cDI, or if additional factors are involved. In fact, transgenic animals 

carrying the same mutations in the Avp gene causing cDI show different degrees and 

symptoms of the disease. Thus, transgenic mice heterozygous for the same mutation 

had progressive symptoms, similar to humans, with highly increased water intake and 

urine output and decreased urine osmolality. They also exhibit a massive loss of 

magnocellular neurons, in line with the results of several in vitro studies (Russell et 

al., 2003). In contrast, rats transgenic for the C67stop mutation show slight symptoms 

of cDI. They exhibit the accumulation of the mutant protein in the ER, but no 

degenerative processes or death of the affected magnocellular neurons (Davies and 

Murphy, 2002; Si-Hoe et al., 2000). It follows, that additional factors beside the SNP 

may form the observed cDI symptoms in LAB mice, affecting the progressive 

increase in water intake and decrease in urine osmolality without the discussed 

cellular background. 

Besides the release of antidiuretic-acting AVP at the level of the neurohypophysis, 

AVP involved in the regulation of HPA axis activity and emotionality-related behavior 

is released synaptically and somato-dendritically from magnocellular and 

parvocellular neurons of the PVN. Analysis of anxiety-related behavior on the EPM 

exhibited the same differences in aged animals of the three breeding lines as with an 

age of 7 weeks, in contrast to the slightly progressive development of the symptoms 

of cDI. Thus, besides the acute effect of an AVP deficit in emotional-challenging 

situations, the constant deficit of centrally released AVP likely influences trait anxiety 

robustly from birth on, or even prenatal. Since AVP was shown to be expressed in 

the diencephalon already on embryonic day 13.5 and in a region corresponding to 

the PVN on day 14.5 (Jing et al., 1998), the deficit may shape essential projections 

and functions of anxiety-related brain regions already during development. 

Furthermore, since the AVP that is involved in emotionality-related behavior 

originates mainly from the PVN, not the SON (Swaab, 1998; Swanson and 

Sawchenko, 1983), the influence of a possible progressive accumulation of the 

mutant precursor and the consequential cell death, if present at all, seems to play just 

a subordinate role.  
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The influence of AVP of PVN neurons is additionally supported by the partial increase 

in anxiety-related behavior on the EPM in AAV-Avp treated LAB mice. In contrast, no 

significant differences in anxiety-reflecting behaviors in the DaLi and the OF were 

found. Also depression-like behavior in the TST and the FS test, exploratory activity 

on the EPF, and locomotor activity in the OF, as well as parameters characterizing 

the reactivity of the HPA axis displayed no differences in AAV-Avp treated compared 

to AAV-lacZ treated or control mice. Furthermore, daily fluid intake and urine 

osmolality analyzed over several weeks after surgery were not influenced by the 

treatment with AAV-Avp compared to mice treated with AAV-lacZ and untreated 

controls. Nevertheless, in situ hybridization of Avp mRNA in the PVN showed a 

strong, but not significant, increase in Avp mRNA in AAV-Avp treated animals in 

contrast to the two other treatment groups. 

The increase of Avp mRNA expression in the PVN by the transduction of the Avp 

gene via a viral vector is accompanied by an increase in the latency to the first open 

arm entry and a tendentious decrease in total entries. The decrease in the number of 

total entries resulted from a decrease in open arm entries, but not from a general 

decrease in locomotor activity, reflected by equal numbers of closed arm entries in all 

groups. Anyhow, the increase of Avp mRNA expression in the PVN was not able to 

alter the main parameter representing anxiety-related behavior on the EPM, 

percentage of time spend on the open arms. This is possibly attributed to the difficulty 

of an artificial increase in gene expression to influence fundamentally and by 

selective inbreeding already during development manifested circuits. Furthermore, 

together with the complexity of the anxiety-generating circuits, including several brain 

regions and additional neurotransmitters/peptides, the manipulation of one parameter 

is hardly expected to invert an inborn trait. This limited impact of the Avp expression 

increase in PVN neurons by the transduction of the gene via a viral vector is also 

reflected by the absent modification of anxiety-related and depression-like behavior 

as well as exploratory and locomotor activity in the additional test paradigms. 

Furthermore, the increase in Avp expression in the PVN had no influence on the 

water retention in the kidney, demonstrated by an unchanged urine osmolality and 

fluid intake in AAV-Avp treated mice compared to mice of the AAV-lacZ treated group 

and controls. This again reflects the lower involvement of the PVN in contrast to the 

SON in antidiuretic functions. Finally, although the technique of viral vector-induced 

gene transduction and long-term expression in the mammalian brain was 
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successfully used in several approaches using rats, mice, and primates for 

phenotypic correction (Kaplitt et al., 1994; Landgraf et al., 2003; Malik et al., 2005; 

Muramatsu et al., 2002; Shen et al., 2000), the right composition of the vector 

regarding viral elements, serotypes, promoters, transcriptional control elements, and 

the right injection dose is fundamental for a successful gene transduction (Hermening 

et al., 2006; Lo et al., 1999; Millecamps et al., 1999; Shevtsova et al., 2005). Thus, 

although Ideno et al. (2003) achieved an increase in AVP-positive cells and a 

normalization of the cDI phenotype in Brattleboro rats after Avp gene transduction in 

the SON using the present vector, there is no guaranty for successful transduction 

and expression of the AAV-Avp gene in PVN neurons of LAB mice. So, for the hCMV 

promoter a very low expression in neuronal cells and a strong expression in non-

neuronal cells was shown in comparison to the neuron-specific synapsin-1 gene 

(syn) promoter (Kugler et al., 2003). In contrast, hCMV-mediated gene transduction 

was successfully accomplished in rats and primates, increasing the expression of 

dopamine-synthesis-involved enzymes in striatal neurons, demonstrated by dual 

immunofluorescence staining (Muramatsu et al., 2002; Shen et al., 2000).  

The lack of dual immunofluorescence staining in the present experiment, proving the 

neuronal localization of AVP in addition to in situ hybridization, which shows the 

increased expression of Avp mRNA in the PVN, is caused by the technical difficulty 

to use both methods in parallel on sections of the same brain. A consequential 

increase in the number of animals was not possible due to the limited number of 

animals produced by selective inbreeding. Nevertheless, the validity that in situ 

hybridization shows a viral-vector induced increase in Avp gene expression was 

demonstrated by a study using a lentiviral vector based expression of the Avp gene 

from a hCMV promoter in the SON of Brattleboro rats, presenting in situ hybridization 

and immunohistochemistry with comparable results. Additionally, besides the 

possibly low expression levels using the hCMV promoter, also the stability of gene 

expression with the hCMV is not as persistent as with the syn promoter. Even the use 

of transgene expression enhancing elements, such as the woodchuck hepatitis virus 

post-transcriptional regulatory element, was not able to increase and prolong 

expression to the same level found with the use of vectors including the syn promoter 

(Glover et al., 2003; Hermening et al., 2006). In any case, an adequate gene 

expression up to 3 months was shown for the hCMV promoter (Kaplitt et al., 1994), 
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sufficient for the present study and partially reflected by the strong increase in Avp 

mRNA expression in the PVN of LAB mice 10 weeks after treatment. 

Taken together, the AVP deficit in the non-anxious LAB mice, shown by a strongly 

decreased amount of releasable AVP in the PVN and by dramatic physiological 

consequences, is probably based on a SNP in the signal peptide of the AVP 

precursor gene, at least in part. The manipulation of the LAB phenotype by the 

increase of Avp gene expression in the PVN documents the partial involvement of the 

AVP deficit in their reduced trait anxiety. In rats, the crucial involvement of AVP in 

emotionality-related behavior (Landgraf, 2001) and in the function of anxiety-related 

and stress response-related brain regions, like amygdala, BNST, LC, and PVN was 

repeatedly described (De Goeij et al., 1992; Engelmann et al., 2004; Landgraf et al., 

1998; Nakase et al., 1998; Wotjak et al., 1998; Wotjak et al., 2001). Further, in the 

last years increased AVP plasma concentration and increased Avp expression in the 

PVN and SON were found in depressed patients (Inder et al., 1997; Meynen et al., 

2006; Purba et al., 1996; Raadsheer et al., 1994; van Londen et al., 1997). This 

points to an association of AVP and depression and confirm a crucial involvement of 

AVP expressed in PVN and SON neurons in the hyperactivity of the HPA axis under 

chronic stress (Aguilera and Rabadan-Diehl, 2000; Tilders et al., 1993). Moreover, an 

increased AVP plasma concentration associated with increased plasma 

corticosterone levels in patients with anxious-retarded depression point to a crucial 

involvement of AVP in depression with comorbid anxiety (de Winter et al., 2003; 

Goekoop et al., 2006; Meynen et al., 2006). Unfortunately there is no study about the 

Avp expression levels in PVN and SON neurons in these patients, which would 

uncover in more detail the underlying neuronal circuits. A strong association of AVP 

in PVN neurons and trait anxiety was already shown in the HAB/LAB rat model 

(Landgraf, 2003; Wigger et al., 2004). In rats, a SNP in the promoter region led to a 

increased Avp expression in PVN neurons of HAB rats (Murgatroyd et al., 2004). In 

LAB mice, the impact of the SNP on the AVP deficit and the functional influence of 

AVP on the differences in anxiety-related and comorbit depression-like behavior in 

the HAB/LAB mouse model is a main goal of further investigations. Moreover, since 

the SNP in the signal peptide cannot directly cause the reduced Avp transcription in 

the PVN and also SNP-induced cytotoxicity is negligible in PVN neurons, intensive 

screenings for additional SNPs in transcription regulating sites in the promoter region 

of the AVP precursor gene of LAB mice were performed. 



Discussion 

67 

4.2 Postnatal Maternal Influence on the HAB/LAB-Phenotype 

 

The analysis of maternal investment and rearing style revealed slight behavioral 

differences between HAB and LAB mothers with a minor impact on the formation of 

anxiety-related behavior of the two breeding lines affirming the fixed genetic 

manifestation of trait anxiety and comorbid depression in HAB and LAB mice 

accomplished by selective breeding. 

In contrast to HAB females, LAB females showed a higher rate of failed pregnancies 

and births resulting in a reproductive success of only 50% in the LAB line compared 

to 85% in the HAB line. It remains unclear why only the LAB line is affected by the 

well-known “inbreeding depression”, as the possible main source of reproductive 

failures. Inbreeding depression is the reduction of fitness and fertility by the increased 

accumulation of deleterious recessive alleles (Swindell and Bouzat, 2006) which is 

caused by an increase in the level of homozygosity due to consanguineous mating. 

This process can be diminished by natural selection purging deleterious genes out. 

Under artificial laboratory conditions the impact of natural selection, like predator 

stress, nutrition competitors, or foraging, is less effective enhancing the accumulation 

of deleterious genes by inbreeding. Furthermore, also environmental conditions 

shape the intensity of inbreeding depression by a varying influence on the expression  

levels of the different deleterious recessive alleles (Armbruster and Reed, 2005). This 

might cause the strong difference between HAB and LAB dams concerning 

reproductive success, assuming that the individually accumulated deleterious 

recessive genes in the HAB and LAB line, underlying inbreeding depression, are 

differently influenced by the environmental conditions. 

On days 2 and 4 after delivery, LAB and HAB mothers spent different amounts of 

time on maternal care with HAB mothers spending more time inside the nest than 

LAB mothers. Outside the nest, we found no differences in self-directed behavior, 

such as eating, drinking, and self-grooming, but on a higher locomotor activity of LAB 

mothers. Furthermore, the maternal rearing style varied between the dams of the two 

lines with HAB mothers showing twice as much arched back nursing than the LAB 

mothers on PND 2 and 4, and the latter preferring the side posture. Over the time 

course of observation, dams of all groups showed a progressive decrease in arched 

back nursing and an increase in blanked posture, while the difference in side posture 

nursing was constant. On closer examination of the four postnatal days, the 
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examined mothers spent nearly the whole day inside the nest on PND 2, but over the 

observation period nursing was predominantly performed during the resting phase 

(11-12a.m. and 3-4p.m.). Consistently, the lower amount of arched back nursing of 

LAB mothers on PND 2, 4, and 8 was observable on all five daily time points 

investigated, but most prominently and consistently at 3-4p.m. Interestingly, the 

difference in locomotor activity on PND 2 and 4, was also significant at time point 3-

4p.m. On PND 4, 8, and 12 the strong preference in side posture nursing of LAB 

dams was mainly observable at 11-12a.m., but with increasing rates also at 3-4 p.m. 

and 11-12p.m. Cross-fostering of the pups induced no alterations in the time spent 

on maternal care of the type of rearing style. Thus, there are only a few trivial 

differences in maternal behavior between mothers with cross-fostered pups and 

mothers with their own pups. 

The difference in maternal investment on PND 2 and 4 were mainly attributed to the 

absence of LAB mothers from the nest at 3-4p.m. On the first 4 days after birth, HAB 

mothers spent nearly the whole day inside the nest nursing the pups. HAB dams 

were outside the nest for eating, drinking, and self-grooming only for the hour after 

the light was turned on (7-8a.m.) and at PND 4 also for the hour after the light was 

turned off (7-8p.m.). In contrast, LAB mothers were, in addition to the hours after 

lights on and lights off, also outside the nest at 3-4p.m. and on PND 4 at 11-12p.m. 

Furthermore, during the time outside the nest, LAB dams spent time not only on self-

directed behavior, but they spent the main portion of their time on locomotor activity. 

These differences can be ascribed to a shifted circadian rhythm and an increased 

locomotor activity of the LAB line, as has already been shown for male LAB mice in a 

homecage-activity study (Singewald et al., unpubl.). This experiment showed, 

besides the increased activity over the dark phase, an altered resting-activity rhythm 

of LAB mice compared to HAB mice. Thus, HAB mice showed nearly no activity over 

the 12 hours of lights on, whereas LAB mice rested only for the 2 hours from 12a.m. 

to 2p.m. This reflects the strong differences in locomotor activity and maternal 

investment at 3-4p.m. between HAB and LAB dams. At PND 8 and 12, HAB mothers 

reduced their time inside the nest to the core period of the light phase (11-12a.m. and 

3-4p.m.), comparable with LABs. The amount of time outside the nest all mothers 

spent more and more with resting. 

The resting-activity rhythm, which includes locomotor activity, sleep-wake behavior, 

feeding and drinking, body temperature, and corticosterone/cortisol levels, is primarily 
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affected by the rhythmic activity of the suprachiasmatic nucleus (SCN), the biological 

clock (Kalsbeek and Buijs, 2002). 10% to 30% of the SCN neurons are 

vasopressinergic, playing a main role in the connections of the SCN (Kalsbeek et al., 

2002). Besides projections to hypothalamic neurons regulating endocrine systems by 

the release of CRH, thyrotropin-releasing hormone (TRH), and gonadotropin-

releasing hormone (GnRH), SCN neurons project directly and indirectly via PVN 

neurons to autonomic neurons in the brain stem and the spinal cord. These 

autonomic centers, such as the dorsal motor nucleus of the vagus of the 

intermediolateral columns, influence sympathetic and parasympathetic activity. 

Lastly, the SCN holds projections to other hypothalamic areas, such as the 

subparaventricular nucleus (sPVN) and the posterior hypothalamic area (PHA) 

(Kalsbeek and Buijs, 2002). The sympathetic-parasympathetic system in the 

periphery and the sPVN and the PHA via cortical projections within the brain are 

mainly involved in the sleep-wake cycle and the rest-activity rhythm (Abrahamson 

and Moore, 2006; Buijs and Kalsbeek, 2001). Interestingly, the SCN projections to 

the autonomic neurons are segregated into sympathetic- and parasympathetic-

projecting neurons. These projections are vasopressinergic with GABA or glutamate 

as co-transmitter, pointing to an opposite vasopressinergic regulation of the two 

branches, which depend on the co-transmitter (Buijs et al., 2003). Provided that the 

AVP deficit is caused by the SNP in the signal peptide of the AVP precursor gene, 

this deficit is not restricted to the PVN, but observable in all other vasopressinergic 

neurons. Thus, the reduced amount of AVP found in the PVN is likely also present in 

the vasopressinergic neurons of the SCN disrupting the balance of the sympathetic-

parasympathetic system and causing the alteration of the normal rest-activity rhythm 

and the elevated locomotor activity of LAB male and female mice. This hypothesis is 

supported by the finding that tyrosine hydroxilase activity is increased in the adrenals 

of male LAB mice (Touma, unpubl.), reflecting an increased amount of synthesized 

norepinephrine and enhanced sympathetic activity. Vasopressinergic projections of 

the SCN are also crucially involved in the regulation of the estrous cycle, reproductive 

behavior, pregnancy, and nursing. The SCN projects here in the form of a daily signal 

to estrogen-sensitive GnRH neurons in the MPOA, where every 4-5 days, during 

proestrus, this signal together with a positive estrogen feedback initiates the release 

of GnRH in the median eminence, resulting in a surge of luteinizing hormone (LH) 

from the posterior pituitary into systemic circulation (Barbacka-Surowiak et al., 2003; 
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Kriegsfeld and Silver, 2006; Palm et al., 1999; Palm et al., 2001b). LH in combination 

with the follicle-stimulating hormone stimulates the proliferation of follicular cells, 

inducing an increased progesterone concentration and ovulation, and the 

luteinization of the follicles. In parallel to the ovulation, progesterone and estrogen 

coordinate mating behavior via MPOA neurons to facilitate receptivity and pregnancy 

(Barbacka-Surowiak et al., 2003; Kriegsfeld and Silver, 2006).  

In this context, it is not astonishing that female Clock mutant mice carrying a 51 

amino acid deletion in the transcriptional-activation domain of the CLOCK protein 

display a disrupted estrous cycle, strong inhibition of the LH surge, low estradiol and 

progesterone levels, increased fetal reabsorbtion, and a higher incidence of failed 

pregnancies (Miller et al., 2004). In more detail, core clock genes and clock-

controlled genes induce the circadian rhythmicity of the SCN. When CLOCK in a 

heterodimeric complex with BMAL1, it enhances the transcription of the Period (Per) 

and Cryptochrome (Cyr) genes by binding to the E-box (CACGTG) domain in the 

promoter region of these genes. The accumulation in the cytoplasm of PER and CRY 

proteins over the day leads to the negative feedback on transcription of Clock and 

Bmal1. Besides the Per and Cyr genes, the Avp gene also includes the E-box in its 

promoter region, and is regulated by the CLOCK:BMAL1 complex (Kriegsfeld and 

Silver, 2006; Munoz et al., 2002). Furthermore, Avp mRNA expression in the SCN is 

reduced in the female Clock mutant mice compared to wild-type mice (Miller et al., 

2006), pointing to an involvement of AVP in the circadian coordination of the estrous 

cycle. In addition to the inhibited LH surge, low progesterone and estrogen levels, 

and pregnancy failures, female Clock mutant mice display a loss of daily rhythmicity 

in plasma prolactin (PRL) levels (Hoshino et al., 2006). As PRL stimulates milk 

production and secretion from the mammary glands and centrally via PRL receptors 

in the MPOA, together with estrogen and oxytocin, maternal behavior (Bridges et al., 

1990; Lucas et al., 1998; Pedersen et al., 1994; Sheehan and Numan, 2002),  it is 

not astonishing that these dams showed also a loss of daily rhythmicity in nursing 

behavior and decreased milk secretion, which results in decreased weight gain and 

reduced survival of pups. Furthermore, Clock mutant dams build low nests without a 

ridge formation compared to wild-type mothers (Dolatshad et al., 2006; Hoshino et 

al., 2006). Again, vasopressinergic SCN projections were shown to be involved in the 

dopaminergic inhibition of PRL release from the adenohypophysis regulating, 

besides the stimulatory effect of suckling, the daily PRL surge (Palm et al., 2001a). 
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This involvement of AVP in the regulation of the estrous cycle, pregnancy, and 

maternal behavior points to a relevant connection of the AVP deficit and the different 

reproductive success and maternal behavior of LAB mothers. 

Again, the reduced amount of AVP found in the PVN is likely also present in the 

vasopressinergic neurons of the SCN. This might cause a lower activation signal of 

the SCN, affecting the intensity of the LH and PRL surge and the following mating 

behavior, pregnancy success, and maternal behavior. The reduced number of 

pregnant females, successful deliveries, and born pups in the LAB line indicates an 

AVP deficit, a diminished LH surge, and a less effective fertilization and pregnancy. 

Furthermore, as mentioned above, LAB mothers do not only show different 

rhythmicity in nursing, but also differences in nursing style. Thus, LAB mothers spent 

less time in arched back nursing, the most effective posture for suckling. Moreover, 

while HAB mothers showed arched back nursing, LAB dams displayed less but 

sufficient side posture nursing, apparently enough to ensure the growth of the pups. 

This was reflected by no meaningful differences in the survival rate and weight gain 

of HAB and LAB pups, also after cross-fostering. Thus, although the AVP deficit 

might disturb the circadian rhythmicity of PRL release, the influence on milk ejection 

seems to be minor, possibly due to the stimulatory effect of suckling (Arey et al., 

1991; Febo et al., 2005). On the other hand, the disturbed circadian signal at the 

level of the MPOA at birth and postpartum might influence maternal care including 

nursing and pup retrieval. The connection between estrogen receptor expression and 

estrogen-dependent oxytocin receptor binding, as well as PRL receptor expression 

and PRL in the MPOA, and maternal behavior was already shown in the high/low LG-

ABN rats (Champagne et al., 2006). In addition, an increased hippocampal GR 

expression, due to DNA methylation and enhanced transcription factor binding in the 

GR-promoter region, and decreased stress reactivity and anxiety was also 

associated with high amounts of pup licking and arched back nursing in these rats 

(Szyf et al., 2005). These data suggest a strong epigenetic influence of maternal care 

on anxiety-related behavior with a non-genetic transmission. However, there is a lack 

in evidence on a neuronal or molecular level for the connection of maternal behavior 

with the hippocampal alteration in GR expression. Remarkably, in contrast to the LG-

ABN rats, in the HAB/LAB mouse model the less anxious mice spent less time in 

maternal care and displayed less arched back nursing. This might be due to different 

or additionally involved, possibly vasopressinergic, neuronal circuits in the HAB/LAB 
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mice, as AVP seems not be involved in the phenotype of the high/low LG-ABN rats. 

Thus, instead of the established circuit, including the MPOA, the ventral tegmental 

area, the nucleus accumbens, and the ventral pallidum, that generates maternal 

behavior under the influence of oxytocin and estrogen (Numan et al., 2005; Stack et 

al., 2002) and is altered in the LG-ABN rats, in the LAB mice other regions with 

vasopressinergic projections such as the hippocampus, LS, BNST, amygdala, or 

caudal periaqueductal gray (cPAG) might be involved (Hallbeck et al., 1999). An 

effect of these regions on maternal behavior was already shown. Thus, hippocampal 

and septal lesions lead to uncoordinated nest building and pup retrieval (Fleischer 

and Slotnick, 1978; Kimble et al., 1967; Terlecki and Sainsbury, 1978), whereas the 

amygdala and the BNST are involved together with the main olfactory bulb in the 

olfactory recognition of the offspring (Fleming et al., 1980; Levy et al., 2004), and the 

cPAG is involved in the performance of the arched back nursing position (kyphosis) 

in rats (Lonstein and Stern, 1998). These regions were also determined to express 

an increased number of c-Fos positive cells in lactating rats (Lonstein et al., 1998) 

and in rats that were given hormonal stimuli at pregnancy termination (Sheehan and 

Numan, 2002).  

In contrast, the role of AVP in maternal behavior is poorly understood, as there are 

few studies showing an increase in AVP immunoreactivity in the hypothalamus during 

pregnancy and postpartum (Caba et al., 1996) or the induction of maternal behavior 

after intracerebroventricular AVP injection (Pedersen et al., 1982). A likely possibility 

is the involvement of AVP in maternal behavior via an influence on mother-pup 

recognition. AVP was identified to be mainly involved in social recognition throughout 

species including pair bonding in voles (Young and Wang, 2004) and dominant-

subordinate behavior in hamsters (Ferris et al., 2006). Olfactory stimuli, the main 

signals of recognition-relevant information, are projected from the olfactory bulbs via 

the amygdala and the BNST to the LS and the MPOA (Ferguson et al., 2002). This 

pathway includes vasopressinergic projections into the LS shown to be relevant in 

social recognition (Bielsky et al., 2005). Remarkably, the results of a previous social 

recognition/discrimination study discovered strong deficits in the social memory of 

male LAB mice (Bunck, unpubl.), supporting the hypothesis of a crucial impact of the 

AVP deficit on social recognition in male and female LAB mice. 

In summary, a vasopressinergic deficit affecting the amygdala, the LS, and the 

MPOA, as well as the BNST and the cPAG, can be an additional factor generating 
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the disturbed maternal behavior of female LAB mice displaying insufficient nest-

building, pup-retrieval, and pup recognition after birth, leading to higher levels of 

death or infanticide (personal observations), besides the above mentioned 

deficiencies in reproductive behavior, pregnancy, and arched back nursing related to 

an altered circadian rhythm and an AVP deficit in the SCN. Additional, extensive 

studies have to prove the deficit of AVP in these brain areas in LAB mice and its 

involvement in the disturbed reproductive and maternal behavior.  

In the second part of the study, the influence of maternal behavior on the divergent 

emotionality of the HAB and LAB lines were investigated by cross-fostering the 

offspring. Although the litter size was differing between the lines directly after birth, 

after culling the number of pups and pup survival were equal until weaning. 

Furthermore, this is confirmed by the progressive weight gain of the offspring in all 

groups with no meaningful differences. Both of these findings indicate a sufficient 

food supply, resulting in an equal physiological growth of all groups.  

Cross-fostering HAB and LAB pups induced no alteration in the number of emitted 

USV calls and the amount of associated locomotion at PND 5. Male and female HAB 

mice of both treatment groups showed a higher amount of USV calls and line 

crossings compared to LAB pups. In adulthood, cross-fostered HAB mice of both 

genders displayed a slight, but significant, increase in the percentage of time spent 

on the open arms of the EPM in comparison to the control groups. All other anxiety-

related parameters on the EPM showed no alteration by cross-fostering. Therefore, 

the well-established difference in percentage of time spent on the open arms 

between HAB and LAB mice was completely reproduced. Also in the TST, the 

characteristic differences between the different lines were reproduced. Except for a 

slight reduction of the latency to the first immobility in cross-fostered female LABs, 

HAB and LAB mice displayed no changes in depression-like behavior after cross-

fostering. In the OF, LAB mice displayed increased locomotor activity and exploratory 

activity with no alterations by cross-fostering. The SRT revealed a stronger increase 

in plasma corticosterone after 15min of restraint stress in male LAB mice compared 

to HAB mice but again no difference between the two treatments. In situ hybridization 

of Avp mRNA expression showed a higher intensity and larger area of labeled Avp 

mRNA in the PVN of HAB mice of both genders. Again, cross-fostering had no effect 

in the expression level of Avp. 
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The analysis of anxiety-related, depression-like, and stress-related behaviors in 

adults revealed just a slight decrease in anxiety-related behavior in HAB mice. 

Nevertheless, this increase in percentage of time spent on the open arms on the 

EPM is just a fractional amount of the time LAB mice spent on the open arms. Thus, 

the increase is measurable, but with no consequence on the classification of these 

mice in the inborn HAB phenotype. In addition, there are no alterations observed in 

the other anxiety-related parameters, such as latency or percentage of entries on the 

open arms. Also the analysis of the USV calls at PND 5 revealed no influence of the 

cross-fostering. However, one can expect an increasing influence of the maternal 

behavior on the phenotype, with no alterations after birth but in adulthood. Also in 

depression-like behavior, the cross-fostering caused no changes in the phenotype, 

except for a slight decrease in the latency to the first immobility in LAB females, who 

showed no difference in their absolute immobility time. The reactivity of the HPA axis 

to a stressor showed a stronger increase in plasma corticosterone concentration in 

male LABs compared to HAB mice but not in female mice. Females displayed the 

known higher initial and stress corticosterone levels likely due to the stimulatory 

effect of estrogen on AVP and CRH synthesis in the parvocellular neurons of the 

PVN (Kalsbeek et al., 2002). No differences were found between cross-fostered and 

control animals. Finally, locomotor and exploratory activity were different between the 

lines, with LAB mice exhibiting a higher locomotor activity and showing more rearings 

in the OF, reflecting an increased exploratory drive likely based on the non-anxious 

phenotype of LAB mice but possibly further influenced by their hyperactivity. Again, 

cross-fostering of the offspring induced no change in the inborn characteristics. The 

expression of Avp as a possible molecular background revealed the already shown 

difference between HAB and LAB in both cross-fostered mice and the control group.  

Cross-fostering was used in several rat and mice lines that demonstrated differences 

in emotionality and related physiology in order to estimate the postnatal maternal 

influence on the phenotype. In spontaneously hypertensive rats (SHR), cross-

fostered postpartum to normotensive Wistar-Kyoto (WKY) dams, the blood pressure 

was reduced but the higher exploratory drive in the OF remained the same (Cierpial 

and McCarty, 1991; Cierpial et al., 1989). Also in the high (HR) and low responder 

(LR) rats, based on their exploratory locomotion in the open filed, cross-fostering had 

a minor effect on the phenotype of the LR line (Stead et al., 2006), while high and low 

shuttle box avoidance rats displayed no phenotypic alterations after cross-fostering 
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(Ohta et al., 1998). A maternal influence in form of nursing and licking is assumed to 

have an impact on the future phenotype of the pups of the SHR/WKY rats and the 

HR/LR lines, as it is already mentioned for high and low LG-ABN rats and the mouse 

strains BALB/c and C57BL/6 (Francis et al., 1999a; Priebe et al., 2005). Interestingly 

the phenotypic alterations after cross-fostering were mostly related to just one of the 

breeding lines, pointing to a combination of the genetic background of the pup and 

the nursing behavior of the dams necessary to modulate the emotional phenotype of 

the offspring. Thereby the mother-infant interaction, including a feedback loop, might 

be of special importance. Besides olfactory interaction, the intensity and amount of 

the USV calls influence the extent of maternal care (Smotherman et al., 1974). Thus, 

with respect to the differences in emitted USV calls between HAB and LAB mice, the 

interaction of LAB dams with HAB pups might be different in comparison to the 

interaction of LAB dams with their biological offspring, leading to enhanced pup 

licking of the LAB dam, which is stimulated by the higher number of USV calls of HAB 

pups. This intensified mother-pup interaction might cause the slight decrease in 

anxiety-like behavior observed in HAB mice. In contrast, the mother-pup interaction 

of HAB dams and LAB pups might be less disturbed by the low number of USV calls 

from the LAB pups because of the normal or enhanced maternal investment given by 

HAB mothers, which does not result in an alteration of the anxiety-related behavior of 

cross-fostered LAB pups. Further, it is unexplained if this enhanced mother-pup 

interaction of LAB mothers could also be reflected by altered arched back nursing or 

time spent inside the nest, or if the more intensive care occurs during nursing without 

prolonging the time inside the nest or changing the nursing style. Additionally, more 

detailed studies of postpartum maternal behavior, including pup-licking, are 

necessary to analyze the mother-pup interaction of HAB and LAB mice and the 

impact on anxiety-related behavior. 

In consideration of these data, the anxiety-related and depression-like phenotype in 

HAB and LAB mice, induced by selective inbreeding, is neglectably influenced by 

maternal rearing behavior and is therefore predominately genetically based. 

Remarkably, already in the HAB/LAB rat model cross-fostering had no influence on 

the inborn phenotypes (Wigger et al., 2001), confirming the effect of the used 

breeding strategy to induce genetic alterations that are functionally linked to trait 

anxiety. Furthermore, the differences in emotionality and in maternal care are just 

marginally functionally intermingled, but are probably causally related due to a 
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pleiotropic effect of the Avp gene, as both can be traced back on a genetically 

determined central AVP deficit. In addition, regarding the multigenic character of 

complex traits like maternal behavior and anxiety, AVP cannot be the sole factor 

forming theses traits. Thus, broad genetic screenings and expression studies are 

necessary to find additional factors involved in the strong behavioral differences in 

HAB and LAB mice.  
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5 Conclusion and Perspectives 

 

Selective breeding for a particular phenotype is a valuable and successful tool to 

generate valid animal models of affective disorders. Therefore, breeding criterions 

are based on clinically observed symptoms, such as anhedonia, decreased activity, 

cognitive disturbances, enhanced anxiety and startle, HPA axis hyper-reactivity, and 

altered social behaviors. Since complex traits are multigenic, breeding for a specific 

behavior enhances the accumulation of genes according to this behavior, providing a 

valuable tool for genetic screenings. Once a gene is identified to be involved in the 

phenotype, the functional relevance can be evaluated by selective manipulation to 

definitively provide a new target for clinical research and new drug development. 

Despite the advantages of these animal models, such as their ability to inclose 

several underlying factors with their functional interaction and pathological impact, 

this can also be of disadvantage, since the investigation of different functionally 

intermingled genes and neuronal circuits and the dissection of single underlying 

elements is complicated. On the other hand, since most genes are pleiotropic, the 

modification of one gene can change several traits interfering with the trait of interest. 

In case of the HAB/LAB mouse model, selected for extremes in trait anxiety based on 

their behavior on the EPM, AVP is differently expressed at least shown for the PVN. 

A SNP in the signal peptide of the AVP precursor gene is likely to be involved in the 

AVP deficit in LAB mice.  

The presented alterations in body water regulation and changes in maternal behavior 

confirm that a genetically induced general AVP deficit is influencing several additional 

AVP-associated brain areas in their functions including the SON, SCN, BNST, 

amygdala, MPOA, and LS. Still, the molecular and cellular effects of the SNP on 

peptide processing and cell viability have to be analyzed to prove the functional 

impact of the mutation on the AVP release. Furthermore, besides the SNP in the 

signal peptide, which influences the processing of the peptide, additional SNPs are 

present in transcription factor binding sites of the promoter region of the AVP 

precursor gene in LAB mice (Czibere, unpubl.), and may possibly decrease the Avp 

transcription. This might be restricted to the anxiety-related Avp expression in the 

PVN by PVN specific transcription factors binding at these binding sites, pronouncing 

the AVP deficit in this context compared to the other mentioned pathways. Thus, 

detailed genetic studies also have to elucidate the transcriptional activity of the AVP 
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precursor gene in parvocellular and magnocellular PVN neurons and other brain 

areas in LAB mice. Moreover, in the HAB line, a possible increase of transcriptional 

activity of the AVP precursor gene has to be investigated, since SNPs were also 

identified in this line in the promoter region. In any case, additionally observed 

behavioral alterations in the LAB line, such as increased locomotor activity and 

altered activity patterns, deficits in social and spatial memory (Bunck, unpubl.), and 

disturbed inter-male interaction and increased aggression (Frank & Keßler, unpubl.) 

support the concept of an overall influence of the genetically based AVP deficit. In 

the future, extensive behavioral, neuroendocrine, histochemical, and 

pharmacological studies of the HAB, NAB, and the LAB line will provide the 

possibility to decode the neuronal circuits underlying the diverse altered behavioral 

traits and their interactions and predominantly their influence on anxiety. 

With respect on the multigenic character of complex traits, such as anxiety, and in 

consideration of the results of the AAV study, indicating only a partial involvement of 

AVP in the development of anxiety, an involvement of additional genes in the 

extremes of trait anxiety of the HAB and LAB lines are likely. Extensive microarray 

studies in different brain areas and a genome screen (Czibere, unpubl.) will uncover 

further candidates involved in the HAB/LAB phenotypes and in anxiety-related 

behavior. In histochemistry studies CRH was found to be higher expressed in the 

PVN of HAB mice compared to NAB and LAB mice and the treatment of HAB mice 

with a CRH R1 antagonist revealed an involvement of CRH in the HAB phenotype 

(Bunck, unpubl.). Furthermore, recent microdialysis studies showed elevated 

serotonin levels in the PVN of LAB mice under basal conditions and a decreased 

serotonin stress response in HAB mice compared to NAB mice (Margich, unpubl.). 

Moreover, c-Fos studies uncovered increased neuronal activity after different 

stressors in several brain areas, such as the medial and lateral amygdala, BNST, LC, 

PAG, MPOA, LS, nucleus accumbens, and several hypothalamic nuclei, in HABs 

compared to NABs (Muigg & Nguyen, unpubl.). Some of these areas were already 

identified in extensive c-Fos studies in HAB/LAB rats to be involved in anxiety-related 

behavior (Frank et al., 2006; Salome et al., 2004; Singewald, 2006). Increased 

tyrosine hydroxilase activity found in the LC of HAB mice points to an involvement of 

increased central norepinephrine in the HAB phenotype (Nguyen, unpubl.). These 

data point to a hyperexcitability in anxiety circuitries and the stress response-involved 

brain regions in HAB mice compared to NAB and LAB mice associated with an 
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increased anxiety-related and depression-like behavior of the former. In the future, 

widespread experiments will be necessary to dissect the functional involvement of 

the different brain areas, the associated neurotransmitters and peptides, and the 

underlying genetic factors that induce the different anxiety-related and depression-

like behaviors in HAB and LAB mice. The identification of glyoxalase I as a valuable 

biomarker for trait anxiety (Ditzen et al., 2006; Kromer et al., 2005) was a first 

success in the extensive analysis of the HAB/LAB mouse model. 

Taken together, the two breeding lines represent an animal model to decode and 

analyze the different elements of anxiety disorders and depression. With respect to 

the concept of endophenotypes, the HAB line provides a unique opportunity to 

identify some single aspects of the multigenic pathophysiology of anxiety, each 

based on a few genes, including neuroendocrine, neurophysiological, cognitive, and 

psychopathological components. On the other hand, in the LAB line the influence of a 

single genetic variation on functionally different circuits can be analyzed. 

Furthermore, these mice give the opportunity to investigate simple interlocking of 

different behavioral and physiological functions by one peptide in more complex 

processes. 

Thus, the HAB/LAB mouse model is a valuable and promising tool to understand the 

physiological and pathological mechanisms of anxiety and stress-related behaviors. 
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6 List of Abbreviations 

 

AAV  adeno-associated virus 

ACTH  adrenocorticotropic hormone 

AVP  arginine-vasopressin  

 

BNST  bed nucleus of the stria terminalis 

 

cDI  central diabetes insipidus 

CRH   corticotropin-releasing hormone 

CRH R1 CRH receptor 1 

 

DaLi  dark-light box 

dDAVP 1-deamino-8-D-arginine-vasopressin 

DEX  dexamethason 

 

EPF  elevated platform 

EPM  elevated plus maze 

ER  endoplasmic reticulum 

 

FS  forced swim 

 

GABA  gamma-aminoutyric-acid 

GnRH  gonadotropin-releasing hormone 

GP  glycoprotein 

GR  glucocorticoid receptor 

 

HAB  high anxiety-related behavior 

hCMV  human cytomegalovirus 

HNS  hypothalamo-neurohypophysial-system 

HPA-axis hypothalam-pituitary-adrenocortical-axis 

 

LAB  low anxiety-related behavior 

lacZ  ß-galactosidase gene 

LC  locus coeruleus 

LH  luteinizing hormone 
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LS  lateral septum 

 

MAO  monoaminoxidase inhibitor 

MPOA medial preoptic area 

MR  mineralocorticoid receptor 

 

NAB  normal anxiety-related behavior 

NPII  neurophysin II 

 

OF  open field 

OXT  oxytocin 

 

PAG  periaqueductal gray 

PND  postnatal day 

PVN  paraventricular nucleus 

POMC proopiomelanocortin 

PRL  prolactin 

 

RIA  radioimmunoassay 

 

SAS  sympathetic-adrenomedullary-system 

SCN  suprachiasmatic nucleus 

SNP  single nucleotide polymorphism  

SON  suprachiasmatic nucleus 

SP  signal peptide 

SRT  stress reactivity test 

SSRI  selective serotonin reuptake inhibitor 

 

TCA  tricyclic antidepressant 

TRH  thyrotropin-releasing hormone  

TST  tail suspension test 

 

USV  ultrasonic vocalization 

 

V1a/b  ACP receptor 1a and 1b 
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